-
Notifications
You must be signed in to change notification settings - Fork 23
/
utils.py
257 lines (209 loc) · 8.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import random
import numpy as np
import torch
from PIL import Image
from args_fusion import args
from scipy.misc import imread, imsave, imresize
import matplotlib as mpl
from os import listdir
from os.path import join
def list_images(directory):
images = []
names = []
dir = listdir(directory)
dir.sort()
for file in dir:
name = file.lower()
if name.endswith('.png'):
images.append(join(directory, file))
elif name.endswith('.jpg'):
images.append(join(directory, file))
elif name.endswith('.jpeg'):
images.append(join(directory, file))
name1 = name.split('.')
names.append(name1[0])
return images
def tensor_load_rgbimage(filename, size=None, scale=None, keep_asp=False):
img = Image.open(filename).convert('RGB')
if size is not None:
if keep_asp:
size2 = int(size * 1.0 / img.size[0] * img.size[1])
img = img.resize((size, size2), Image.ANTIALIAS)
else:
img = img.resize((size, size), Image.ANTIALIAS)
elif scale is not None:
img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS)
img = np.array(img).transpose(2, 0, 1)
img = torch.from_numpy(img).float()
return img
def tensor_save_rgbimage(tensor, filename, cuda=False):
if cuda:
# img = tensor.clone().cpu().clamp(0, 255).numpy()
img = tensor.cpu().clamp(0, 255).data[0].numpy()
else:
# img = tensor.clone().clamp(0, 255).numpy()
img = tensor.clamp(0, 255).numpy()
img = img.transpose(1, 2, 0).astype('uint8')
img = Image.fromarray(img)
img.save(filename)
def tensor_save_bgrimage(tensor, filename, cuda=False):
(b, g, r) = torch.chunk(tensor, 3)
tensor = torch.cat((r, g, b))
tensor_save_rgbimage(tensor, filename, cuda)
def gram_matrix(y):
(b, ch, h, w) = y.size()
features = y.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (ch * h * w)
return gram
def matSqrt(x):
U,D,V = torch.svd(x)
return U * (D.pow(0.5).diag()) * V.t()
# load training images
def load_dataset(image_path, BATCH_SIZE, num_imgs=None):
if num_imgs is None:
num_imgs = len(image_path)
original_imgs_path = image_path[:num_imgs]
# random
random.shuffle(original_imgs_path)
mod = num_imgs % BATCH_SIZE
print('BATCH SIZE %d.' % BATCH_SIZE)
print('Train images number %d.' % num_imgs)
print('Train images samples %s.' % str(num_imgs / BATCH_SIZE))
if mod > 0:
print('Train set has been trimmed %d samples...\n' % mod)
original_imgs_path = original_imgs_path[:-mod]
batches = int(len(original_imgs_path) // BATCH_SIZE)
return original_imgs_path, batches
def get_image(path, height=256, width=256, flag=False):
if flag is True:
image = imread(path, mode='RGB')
else:
image = imread(path, mode='L')
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
return image
# load images - test phase
def get_test_image(paths, height=None, width=None, flag=False):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = imread(path, mode='L')
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
base_size = 512
h = image.shape[0]
w = image.shape[1]
c = 1
if h > base_size or w > base_size:
c = 4
images = get_img_parts(image, h, w)
else:
image = np.reshape(image, [1, image.shape[0], image.shape[1]])
images.append(image)
images = np.stack(images, axis=0)
images = torch.from_numpy(images).float()
# images = np.stack(images, axis=0)
# images = torch.from_numpy(images).float()
return images, h, w, c
def get_img_parts(image, h, w):
images = []
h_cen = int(np.floor(h / 2))
w_cen = int(np.floor(w / 2))
img1 = image[0:h_cen + 3, 0: w_cen + 3]
img1 = np.reshape(img1, [1, 1, img1.shape[0], img1.shape[1]])
img2 = image[0:h_cen + 3, w_cen - 2: w]
img2 = np.reshape(img2, [1, 1, img2.shape[0], img2.shape[1]])
img3 = image[h_cen - 2:h, 0: w_cen + 3]
img3 = np.reshape(img3, [1, 1, img3.shape[0], img3.shape[1]])
img4 = image[h_cen - 2:h, w_cen - 2: w]
img4 = np.reshape(img4, [1, 1, img4.shape[0], img4.shape[1]])
images.append(torch.from_numpy(img1).float())
images.append(torch.from_numpy(img2).float())
images.append(torch.from_numpy(img3).float())
images.append(torch.from_numpy(img4).float())
return images
def recons_fusion_images(img_lists, h, w):
img_f_list = []
h_cen = int(np.floor(h / 2))
w_cen = int(np.floor(w / 2))
ones_temp = torch.ones(1, 1, h, w).cuda()
for i in range(len(img_lists[0])):
# img1, img2, img3, img4
img1 = img_lists[0][i]
img2 = img_lists[1][i]
img3 = img_lists[2][i]
img4 = img_lists[3][i]
# save_image_test(img1, './outputs/test/block1.png')
# save_image_test(img2, './outputs/test/block2.png')
# save_image_test(img3, './outputs/test/block3.png')
# save_image_test(img4, './outputs/test/block4.png')
img_f = torch.zeros(1, 1, h, w).cuda()
count = torch.zeros(1, 1, h, w).cuda()
img_f[:, :, 0:h_cen + 3, 0: w_cen + 3] += img1
count[:, :, 0:h_cen + 3, 0: w_cen + 3] += ones_temp[:, :, 0:h_cen + 3, 0: w_cen + 3]
img_f[:, :, 0:h_cen + 3, w_cen - 2: w] += img2
count[:, :, 0:h_cen + 3, w_cen - 2: w] += ones_temp[:, :, 0:h_cen + 3, w_cen - 2: w]
img_f[:, :, h_cen - 2:h, 0: w_cen + 3] += img3
count[:, :, h_cen - 2:h, 0: w_cen + 3] += ones_temp[:, :, h_cen - 2:h, 0: w_cen + 3]
img_f[:, :, h_cen - 2:h, w_cen - 2: w] += img4
count[:, :, h_cen - 2:h, w_cen - 2: w] += ones_temp[:, :, h_cen - 2:h, w_cen - 2: w]
img_f = img_f / count
img_f_list.append(img_f)
return img_f_list
def save_image_test(img_fusion, output_path):
img_fusion = img_fusion.float()
if args.cuda:
img_fusion = img_fusion.cpu().data[0].numpy()
# img_fusion = img_fusion.cpu().clamp(0, 255).data[0].numpy()
else:
img_fusion = img_fusion.clamp(0, 255).data[0].numpy()
img_fusion = (img_fusion - np.min(img_fusion)) / (np.max(img_fusion) - np.min(img_fusion))
img_fusion = img_fusion * 255
img_fusion = img_fusion.transpose(1, 2, 0).astype('uint8')
# cv2.imwrite(output_path, img_fusion)
if img_fusion.shape[2] == 1:
img_fusion = img_fusion.reshape([img_fusion.shape[0], img_fusion.shape[1]])
# img_fusion = imresize(img_fusion, [h, w])
imsave(output_path, img_fusion)
def get_train_images(paths, height=256, width=256, flag=False):
if isinstance(paths, str):
paths = [paths]
images_ir = []
images_vi = []
for path in paths:
image = get_image(path, height, width, flag)
image = np.reshape(image, [1, height, width])
# imsave('./outputs/ir_gray.jpg', image)
# image = image.transpose(2, 0, 1)
images_ir.append(image)
path_vi = path.replace('lwir', 'visible')
image = get_image(path_vi, height, width, flag)
image = np.reshape(image, [1, height, width])
# imsave('./outputs/vi_gray.jpg', image)
# image = image.transpose(2, 0, 1)
images_vi.append(image)
images_ir = np.stack(images_ir, axis=0)
images_ir = torch.from_numpy(images_ir).float()
images_vi = np.stack(images_vi, axis=0)
images_vi = torch.from_numpy(images_vi).float()
return images_ir, images_vi
def get_train_images_auto(paths, height=256, width=256, flag=False):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height, width, flag)
if flag is True:
image = np.transpose(image, (2, 0, 1))
else:
image = np.reshape(image, [1, height, width])
images.append(image)
images = np.stack(images, axis=0)
images = torch.from_numpy(images).float()
return images
# 自定义colormap
def colormap():
return mpl.colors.LinearSegmentedColormap.from_list('cmap', ['#FFFFFF', '#98F5FF', '#00FF00', '#FFFF00','#FF0000', '#8B0000'], 256)