-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadme.txt
317 lines (251 loc) · 11.7 KB
/
readme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
Scala
......
http://docs.scala-lang.org/cheatsheets/
. Download from scala site
. Extract to ~/dev/scala
. Leave new directory as is
. Add PATH="$HOME/dev/scala/scala-2.12.1/bin" to .profile
SBT
....
https://gist.github.com/djspiewak/cb72c41ac335a3a9b28b3307be04aa43
. Download from sbt site
. Extract to ~/dev/scala
. Rename directory to sbt
. Add PATH="$HOME/dev/scala/scala-2.12.1/bin"
PATH="$HOME/dev/scala/scala-2.12.1/bin:$HOME/dev/scala/sbt/bin:$PATH"
to .profile
. Add to ~/.sbt/0.13/global.sbt (touch global.sbt)
resolvers += "Artima Maven Repository" at "http://repo.artima.com/releases"
. Add to ~/.sbt/0.13/plugins (mkdir plugins; touch plugins/plugins.sbt)
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "5.0.1")
. sbt update
Note on Artima Supersafe
-------------------------
- When we add the plug-in in projects/build.sbt:
addSbtPlugin("com.artima.supersafe" % "sbtplugin" % "1.1.2")
- We must *not* add the above plug-in anywhere else
- Add to ~/.sbt/0.13/global.sbt
resolvers += "Artima Maven Repository" at "http://repo.artima.com/releases"
- Do not add this resolver anywhere else
- Make sure you have an empty line before and after each of the sbt lines
http://stackoverflow.com/questions/17552457/how-do-i-upload-eclipse-projects-to-github
git init
git remote add origin https://github.com/[username]/[reponame].git
git commit -a -m "Initial commit"
git push -u origin --all
sbt eclipse
reload
eclipse with-source=true
ND4J Examples
..............
sbt "run-main org.nd4j.examples.MatrixOperationExample"
sbt "run-main org.nd4j.examples.Nd4jEx1_INDArrayBasics"
sbt "run-main org.nd4j.examples.Nd4jEx2_CreatingINDArrays"
sbt "run-main org.nd4j.examples.Nd4jEx3_GettingAndSettingSubsets"
sbt "run-main org.nd4j.examples.Nd4jEx4_Ops"
sbt "run-main org.nd4j.examples.Nd4jEx5_Accumulations"
sbt "run-main org.nd4j.examples.Nd4jEx6_BooleanIndexing"
Checking if OpenBLAS is working
...................................
Instalation
............
sudo update-alternatives --list libblas.so
/usr/lib/atlas-base/atlas/libblas.so
/usr/lib/libblas/libblas.so
/usr/lib/openblas-base/libblas.so
root@gandalfix:/home/hmf# sudo update-alternatives --config libblas.so
There are 3 choices for the alternative libblas.so (providing /usr/lib/libblas.so).
Selection Path Priority Status
------------------------------------------------------------
* 0 /usr/lib/openblas-base/libblas.so 40 auto mode
1 /usr/lib/atlas-base/atlas/libblas.so 35 manual mode
2 /usr/lib/libblas/libblas.so 10 manual mode
3 /usr/lib/openblas-base/libblas.so 40 manual mode
Press <enter> to keep the current choice[*], or type selection number: 0
sudo update-alternatives --config libblas.so.3
There are 3 choices for the alternative libblas.so.3 (providing /usr/lib/libblas.so.3).
Selection Path Priority Status
------------------------------------------------------------
* 0 /usr/lib/openblas-base/libblas.so.3 40 auto mode
1 /usr/lib/atlas-base/atlas/libblas.so.3 35 manual mode
2 /usr/lib/libblas/libblas.so.3 10 manual mode
3 /usr/lib/openblas-base/libblas.so.3 40 manual mode
Press <enter> to keep the current choice[*], or type selection number: 0
sudo update-alternatives --config liblapack.so
sudo update-alternatives --config liblapack.so.3
Checking with R
...............
Start R
root@gandalfix:/home/hmf# ps aux | grep exec/R
Press <enter> to keep the current choice[*], or type selection number: 0
root@gandalfix:/home/hmf# ps aux | grep exec/R
hmf 19961 9.2 0.2 418792 36924 pts/18 Sl+ 17:55 0:00 /usr/lib/R/bin/exec/R
root 19973 0.0 0.0 14232 1016 pts/19 S+ 17:55 0:00 grep --color=auto exec/R
root@gandalfix:/home/hmf# lsof -p 19961 | grep 'blas\|lapack'
lsof: WARNING: can't stat() fuse.gvfsd-fuse file system /run/user/1000/gvfs
Output information may be incomplete.
R 19961 hmf mem REG 8,2 6172176 18612834 /usr/lib/openblas-base/liblapack.so.3
R 19961 hmf mem REG 8,2 31962416 18488605 /usr/lib/libopenblasp-r0.2.18.so
R 19961 hmf mem REG 8,2 395528 18612831 /usr/lib/openblas-base/libblas.so.3
Checking with ND4J Examples
.............................
sbt "run-main org.nd4j.examples.MatrixOperationExample"
(See the line referring to BLAS)
[info] Loading global plugins from /home/hmf/.sbt/0.13/plugins
[info] Loading project definition from /home/hmf/tmp/dl4jtest/project
[info] Set current project to dl4jtest (in build file:/home/hmf/tmp/dl4jtest/)
[info] Running org.nd4j.examples.MatrixOperationExample
[run-main-0] INFO org.nd4j.nativeblas.NativeOps - Number of threads used for NativeOps: 4
[run-main-0] INFO org.nd4j.nativeblas.Nd4jBlas - Number of threads used for BLAS: 4
[run-main-0] INFO org.reflections.Reflections - Reflections took 90 ms to scan 11 urls, producing 121 keys and 415 values
[run-main-0] INFO org.reflections.Reflections - Reflections took 35 ms to scan 11 urls, producing 121 keys and 415 values
[1.00, 2.00]
[3.00, 4.00]
[[1.00, 3.00],
[2.00, 4.00]]
[[3.00, 4.00],
[5.00, 6.00]]
Creating nd array with data type FLOAT
11.00
[13.00, 16.00]
[[18.00, 22.00],
[26.00, 32.00]]
[[11.00, 25.00],
[17.00, 39.00]]
[[3.00, 6.00],
[4.00, 8.00]]
[5.00, 5.00]
[success] Total time: 1 s, completed 15/nov/2016 10:43:35
DL4J
-----
Anomaly Detection
.................
1. Autoencoder
. https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/feedforward/anomalydetection/MNISTAnomalyExample.java
. sbt "run-main org.dl4j.examples.MNISTAnomalyExample"
2. https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/unsupervised/deepbelief/DeepAutoEncoderExample.java
. sbt "run-main org.dl4j.examples.DeepAutoEncoderExample"
Running Experimets in server
----------------------------
http://askubuntu.com/questions/349262/run-a-nohup-command-over-ssh-then-disconnect
ssh [email protected] "nohup ~/git/dl4jtest/run0.sh >> out.txt 2>&1"
ssh [email protected] "ulimit -c unlimited ; nohup ~/git/dl4jtest/run0.sh >> out.txt 2>&1"
TODO
-----
StreamBuilder
.............
. Take multi discrete distribution that return E. Make E array of distributions
Returned E is sampled
. Use above to implementnet and test binomial distributions
. Make example above for mixed distributions
. Start with labelled distributions using above functions
Use combine
. Add TODO to use HLists via Shapeless for combine
. TODO Add support for filtering in streams - supports segmentation
. TODO Add exponential, polynomial and other types of space functions
Use linspace as base. Pass the function that does the jumps. Show examples
Others
. TODO Add comprehension to generate parameters using streams or lazy stuff or tailed can stuff
. Add support to filter generation - limit testing set
. Add random search and others auto- ml
. TODO: add filtering based on multiple signals/streams
Pattern Examples
. http://gigiigig.github.io/tlp-step-by-step/introduction.html
. https://apocalisp.wordpress.com/2010/06/08/type-level-programming-in-scala/
. http://www.michaelpollmeier.com/presentations/2013-11-28-typelevel-programming-scala/#/
. http://slick.lightbend.com/talks/scalaio2014/Type-Level_Computations.pdf
. http://stackoverflow.com/questions/4415511/scala-type-programming-resources
. http://downloads.typesafe.com/website/presentations/ScalaDaysSF2015/T4_Barnes_Typelevel_Prog.pdf
https://www.youtube.com/watch?v=_-J4YRI1rAw
. http://rudairandamacha.blogspot.pt/2012/02/type-level-programming.html
https://www.youtube.com/watch?v=WZOzxAP8NpI
https://amplab.cs.berkeley.edu/wp-content/uploads/2015/07/163-sparks.pdf
https://xyclade.github.io/MachineLearning/
https://github.com/haifengl/smile
https://github.com/yahoo/egads
https://blog.scalac.io/2015/05/07/encog-dsl.html
http://haifengl.github.io/smile
http://www.heatonresearch.com/encog/
Anomaly Detection Benckmark
----------------------------
0. Numenta Anomaly Detection Benchmark
https://github.com/numenta/NAB
0. Create a virtual environment for python 2.7
cd /home/hmf
mkdir my_py2
sudo pip install virtualenv
sudo pip install --upgrade virtualenv
pip install --upgrade pip
virtualenv --system-site-packages --always-copy --python=/usr/bin/python2 my_py2
source my_py2/bin/activate
0. Clone the repository
https://help.github.com/articles/importing-a-git-repository-using-the-command-line/
git clone --bare https://external-host.com/extuser/repo.git
# Makes a bare clone of the external repository in a local directory
http://stackoverflow.com/questions/1872113/how-do-i-clone-a-github-project-to-run-locally
git clone git://github.com/ryanb/railscasts-episodes.git
git clone git://github.com/ryanb/railscasts-episodes.git -b branch_name
git clone https://github.com/ryanb/railscasts-episodes.git Rails
```
cd /home/hmf/my_py2/
mkdir download
cd download/
cd /home/hmf/my_py2/download
git clone https://github.com/numenta/NAB.git
```
0. Update the cloned repository
http://stackoverflow.com/questions/7244321/how-do-i-update-a-github-forked-repository
```
# Add the remote, call it "upstream":
cd /home/hmf/my_py2/download/NAB
git remote add upstream https://github.com/numenta/NAB.git
# Fetch all the branches of that remote into remote-tracking branches,
# such as upstream/master:
git fetch upstream
# Make sure that you're on your master branch:
git checkout master
# Rewrite your master branch so that any commits of yours that
# aren't already in upstream/master are replayed on top of that
# other branch:
git rebase upstream/master
```
0. Installing NAB
cd /home/hmf/my_py2
source ./bin/activate
# Force local numpy install
pip install -U --force numpy
cd /home/hmf/my_py2/download/NAB
pip install -r requirements.txt
python setup.py install --user
python run.py --help
0. Running existing bench marks
cd /home/hmf/my_py2
cd /home/hmf/my_py2/download/NAB
# Run single algorithm HTM - but use obnly a subset of the benchmark data
# Need to install NuPIC first - https://github.com/numenta/nupic
python run.py -d numenta --detect --windowsFile labels/combined_windows_tiny.json
# Run all of NAB
python run.py
# Run HTM with NAB with all of the data
python run.py -d numenta --detect --optimize --score --normalize
# This should work
# Run Twitter's algorithm - "--optimize" is ptional
python run.py -d twitterADVec --optimize (optional) --score --normalize
Others (see NAB/results):
```
bayesChangePt null random skyline
contextOSE htmjava numenta twitterADVec
expose knncad numentaTM relativeEntropy windowedGaussian
```
0. See results
```
Running scoring step
twitterADVec detector benchmark scores written to /home/hmf/my_py2/download/NAB/results/twitterADVec/twitterADVec_reward_low_FP_rate_scores.csv
twitterADVec detector benchmark scores written to /home/hmf/my_py2/download/NAB/results/twitterADVec/twitterADVec_reward_low_FN_rate_scores.csv
twitterADVec detector benchmark scores written to /home/hmf/my_py2/download/NAB/results/twitterADVec/twitterADVec_standard_scores.csv
Running score normalization step
Final score for 'twitterADVec' detector on 'reward_low_FP_rate' profile = 33.61
Final score for 'twitterADVec' detector on 'reward_low_FN_rate' profile = 53.50
Final score for 'twitterADVec' detector on 'standard' profile = 47.06
Final scores have been written to /home/hmf/my_py2/download/NAB/results/final_results.json.
```