From b5aca322cd88be3018685c171774799ae45a1be9 Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Sat, 16 Mar 2024 16:46:29 +0100 Subject: [PATCH] gritlm : add initial README.md (#6086) * gritlm: add initial README.md to examples/gritlm This commit adds a suggestion for an initial README.md for the gritlm example. Signed-off-by: Daniel Bevenius * squash! gritlm: add initial README.md to examples/gritlm Use the `scripts/hf.sh` script to download the model file. Signed-off-by: Daniel Bevenius * squash! gritlm: add initial README.md to examples/gritlm Fix editorconfig-checker error in examples/gritlm/README.md. Signed-off-by: Daniel Bevenius --------- Signed-off-by: Daniel Bevenius --- examples/gritlm/README.md | 62 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 62 insertions(+) create mode 100644 examples/gritlm/README.md diff --git a/examples/gritlm/README.md b/examples/gritlm/README.md new file mode 100644 index 0000000000000..64cc192040c43 --- /dev/null +++ b/examples/gritlm/README.md @@ -0,0 +1,62 @@ +## Generative Representational Instruction Tuning (GRIT) Example +[gritlm] a model which can generate embeddings as well as "normal" text +generation depending on the instructions in the prompt. + +* Paper: https://arxiv.org/pdf/2402.09906.pdf + +### Retrieval-Augmented Generation (RAG) use case +One use case for `gritlm` is to use it with RAG. If we recall how RAG works is +that we take documents that we want to use as context, to ground the large +language model (LLM), and we create token embeddings for them. We then store +these token embeddings in a vector database. + +When we perform a query, prompt the LLM, we will first create token embeddings +for the query and then search the vector database to retrieve the most +similar vectors, and return those documents so they can be passed to the LLM as +context. Then the query and the context will be passed to the LLM which will +have to _again_ create token embeddings for the query. But because gritlm is used +the first query can be cached and the second query tokenization generation does +not have to be performed at all. + +### Running the example +Download a Grit model: +```console +$ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf +``` + +Run the example using the downloaded model: +```console +$ ./gritlm -m gritlm-7b_q4_1.gguf + +Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605 +Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103 +Cosine similarity between "Generative Representational Instruction Tuning" and "A purely peer-to-peer version of electronic cash w" is: 0.112 +Cosine similarity between "Generative Representational Instruction Tuning" and "All text-based language problems can be reduced to" is: 0.547 + +Oh, brave adventurer, who dared to climb +The lofty peak of Mt. Fuji in the night, +When shadows lurk and ghosts do roam, +And darkness reigns, a fearsome sight. + +Thou didst set out, with heart aglow, +To conquer this mountain, so high, +And reach the summit, where the stars do glow, +And the moon shines bright, up in the sky. + +Through the mist and fog, thou didst press on, +With steadfast courage, and a steadfast will, +Through the darkness, thou didst not be gone, +But didst climb on, with a steadfast skill. + +At last, thou didst reach the summit's crest, +And gazed upon the world below, +And saw the beauty of the night's best, +And felt the peace, that only nature knows. + +Oh, brave adventurer, who dared to climb +The lofty peak of Mt. Fuji in the night, +Thou art a hero, in the eyes of all, +For thou didst conquer this mountain, so bright. +``` + +[gritlm]: https://github.com/ContextualAI/gritlm