forked from Blank-Wang/dcase2017_task4_cvssp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data.py
320 lines (274 loc) · 10.4 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import print_function
import numpy as np
import sys
import soundfile
import os
import librosa
from scipy import signal
import pickle
import cPickle
import scipy
import time
import csv
import gzip
import h5py
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn import metrics
import argparse
import config as cfg
# Read wav
def read_audio(path, target_fs=None):
(audio, fs) = soundfile.read(path)
if audio.ndim > 1:
audio = np.mean(audio, axis=1)
if target_fs is not None and fs != target_fs:
audio = librosa.resample(audio, orig_sr=fs, target_sr=target_fs)
fs = target_fs
return audio, fs
# Write wav
def write_audio(path, audio, sample_rate):
soundfile.write(file=path, data=audio, samplerate=sample_rate)
# Create an empty folder
def create_folder(fd):
if not os.path.exists(fd):
os.makedirs(fd)
### Feature extraction.
def extract_features(wav_dir, out_dir, recompute):
"""Extract log mel spectrogram features.
Args:
wav_dir: string, directory of wavs.
out_dir: string, directory to write out features.
recompute: bool, if True recompute all features, if False skip existed
extracted features.
Returns:
None
"""
fs = cfg.sample_rate
n_window = cfg.n_window
n_overlap = cfg.n_overlap
create_folder(out_dir)
names = [na for na in os.listdir(wav_dir) if na.endswith(".wav")]
names = sorted(names)
print("Total file number: %d" % len(names))
# Mel filter bank
melW = librosa.filters.mel(sr=fs,
n_fft=n_window,
n_mels=64,
fmin=0.,
fmax=8000.)
cnt = 0
t1 = time.time()
for na in names:
wav_path = wav_dir + '/' + na
out_path = out_dir + '/' + os.path.splitext(na)[0] + '.p'
# Skip features already computed
if recompute or (not os.path.isfile(out_path)):
print(cnt, out_path)
(audio, _) = read_audio(wav_path, fs)
# Skip corrupted wavs
if audio.shape[0] == 0:
print("File %s is corrupted!" % wav_path)
else:
# Compute spectrogram
ham_win = np.hamming(n_window)
[f, t, x] = signal.spectral.spectrogram(
x=audio,
window=ham_win,
nperseg=n_window,
noverlap=n_overlap,
detrend=False,
return_onesided=True,
mode='magnitude')
x = x.T
x = np.dot(x, melW.T)
x = np.log(x + 1e-8)
x = x.astype(np.float32)
# Dump to pickle
cPickle.dump(x, open(out_path, 'wb'),
protocol=cPickle.HIGHEST_PROTOCOL)
cnt += 1
print("Extracting feature time: %s" % (time.time() - t1,))
### Pack features of hdf5 file
def pack_features_to_hdf5(fe_dir, csv_path, out_path):
"""Pack extracted features to a single hdf5 file.
This hdf5 file can speed up loading the features. This hdf5 file has
structure:
na_list: list of names
x: bool array, (n_clips)
y: float32 array, (n_clips, n_time, n_freq)
Args:
fe_dir: string, directory of features.
csv_path: string | "", path of csv file. E.g. "testing_set.csv". If the
string is empty, then pack features with all labels False.
out_path: string, path to write out the created hdf5 file.
Returns:
None
"""
max_len = cfg.max_len
create_folder(os.path.dirname(out_path))
t1 = time.time()
x_all, y_all, na_all = [], [], []
if csv_path != "": # Pack from csv file (training & testing from dev. data)
with open(csv_path, 'rb') as f:
reader = csv.reader(f)
lis = list(reader)
cnt = 0
for li in lis:
[na, bgn, fin, lbs, ids] = li
if cnt % 100 == 0: print(cnt)
na = os.path.splitext(na)[0]
bare_na = 'Y' + na + '_' + bgn + '_' + fin # Correspond to the wav name.
fe_na = bare_na + ".p"
fe_path = os.path.join(fe_dir, fe_na)
if not os.path.isfile(fe_path):
print("File %s is in the csv file but the feature is not extracted!" % fe_path)
else:
na_all.append(bare_na[1:] + ".wav") # Remove 'Y' in the begining.
x = cPickle.load(open(fe_path, 'rb'))
x = pad_trunc_seq(x, max_len)
x_all.append(x)
ids = ids.split(',')
y = ids_to_multinomial(ids)
y_all.append(y)
cnt += 1
else: # Pack from features without ground truth label (dev. data)
names = os.listdir(fe_dir)
names = sorted(names)
for fe_na in names:
bare_na = os.path.splitext(fe_na)[0]
fe_path = os.path.join(fe_dir, fe_na)
na_all.append(bare_na + ".wav")
x = cPickle.load(open(fe_path, 'rb'))
x = pad_trunc_seq(x, max_len)
x_all.append(x)
y_all.append(None)
x_all = np.array(x_all, dtype=np.float32)
y_all = np.array(y_all, dtype=np.bool)
print("len(na_all): %d", len(na_all))
print("x_all.shape: %s, %s" % (x_all.shape, x_all.dtype))
print("y_all.shape: %s, %s" % (y_all.shape, y_all.dtype))
with h5py.File(out_path, 'w') as hf:
hf.create_dataset('na_list', data=na_all)
hf.create_dataset('x', data=x_all)
hf.create_dataset('y', data=y_all)
print("Save hdf5 to %s" % out_path)
print("Pack features time: %s" % (time.time() - t1,))
def ids_to_multinomial(ids):
"""Ids of wav to multinomial representation.
Args:
ids: list of id, e.g. ['/m/0284vy3', '/m/02mfyn']
Returns:
1d array, multimonial representation, e.g. [1,0,1,0,0,...]
"""
y = np.zeros(len(cfg.lbs))
for id in ids:
index = cfg.id_to_idx[id]
y[index] = 1
return y
def pad_trunc_seq(x, max_len):
"""Pad or truncate a sequence data to a fixed length.
Args:
x: ndarray, input sequence data.
max_len: integer, length of sequence to be padded or truncated.
Returns:
ndarray, Padded or truncated input sequence data.
"""
L = len(x)
shape = x.shape
if L < max_len:
pad_shape = (max_len - L,) + shape[1:]
pad = np.zeros(pad_shape)
x_new = np.concatenate((x, pad), axis=0)
else:
x_new = x[0:max_len]
return x_new
### Load data & scale data
def load_hdf5_data(hdf5_path, verbose=1):
"""Load hdf5 data.
Args:
hdf5_path: string, path of hdf5 file.
verbose: integar, print flag.
Returns:
x: ndarray (np.float32), shape: (n_clips, n_time, n_freq)
y: ndarray (np.bool), shape: (n_clips, n_classes)
na_list: list, containing wav names.
"""
t1 = time.time()
with h5py.File(hdf5_path, 'r') as hf:
x = np.array(hf.get('x'))
y = np.array(hf.get('y'))
na_list = list(hf.get('na_list'))
if verbose == 1:
print("--- %s ---" % hdf5_path)
print("x.shape: %s %s" % (x.shape, x.dtype))
print("y.shape: %s %s" % (y.shape, y.dtype))
print("len(na_list): %d" % len(na_list))
print("Loading time: %s" % (time.time() - t1,))
return x, y, na_list
def calculate_scaler(hdf5_path, out_path):
"""Calculate scaler of input data on each frequency bin.
Args:
hdf5_path: string, path of packed hdf5 features file.
out_path: string, path to write out the calculated scaler.
Returns:
None.
"""
create_folder(os.path.dirname(out_path))
t1 = time.time()
(x, y, na_list) = load_hdf5_data(hdf5_path, verbose=1)
(n_clips, n_time, n_freq) = x.shape
x2d = x.reshape((n_clips * n_time, n_freq))
scaler = preprocessing.StandardScaler().fit(x2d)
print("Mean: %s" % (scaler.mean_,))
print("Std: %s" % (scaler.scale_,))
print("Calculating scaler time: %s" % (time.time() - t1,))
pickle.dump(scaler, open(out_path, 'wb'))
def do_scale(x3d, scaler_path, verbose=1):
"""Do scale on the input sequence data.
Args:
x3d: ndarray, input sequence data, shape: (n_clips, n_time, n_freq)
scaler_path: string, path of pre-calculated scaler.
verbose: integar, print flag.
Returns:
Scaled input sequence data.
"""
t1 = time.time()
scaler = pickle.load(open(scaler_path, 'rb'))
(n_clips, n_time, n_freq) = x3d.shape
x2d = x3d.reshape((n_clips * n_time, n_freq))
x2d_scaled = scaler.transform(x2d)
x3d_scaled = x2d_scaled.reshape((n_clips, n_time, n_freq))
if verbose == 1:
print("Scaling time: %s" % (time.time() - t1,))
return x3d_scaled
### Main function
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="")
subparsers = parser.add_subparsers(dest='mode')
parser_ef = subparsers.add_parser('extract_features')
parser_ef.add_argument('--wav_dir', type=str)
parser_ef.add_argument('--out_dir', type=str)
parser_ef.add_argument('--recompute', type=bool)
parser_pf = subparsers.add_parser('pack_features')
parser_pf.add_argument('--fe_dir', type=str)
parser_pf.add_argument('--csv_path', type=str)
parser_pf.add_argument('--out_path', type=str)
parser_cs = subparsers.add_parser('calculate_scaler')
parser_cs.add_argument('--hdf5_path', type=str)
parser_cs.add_argument('--out_path', type=str)
args = parser.parse_args()
if args.mode == 'extract_features':
extract_features(wav_dir=args.wav_dir,
out_dir=args.out_dir,
recompute=args.recompute)
elif args.mode == 'pack_features':
pack_features_to_hdf5(fe_dir=args.fe_dir,
csv_path=args.csv_path,
out_path=args.out_path)
elif args.mode == 'calculate_scaler':
calculate_scaler(hdf5_path=args.hdf5_path,
out_path=args.out_path)
else:
raise Exception("Incorrect argument!")