diff --git a/backend/aiproject/utils.py b/backend/aiproject/utils.py index fc1acf5c..e69de29b 100644 --- a/backend/aiproject/utils.py +++ b/backend/aiproject/utils.py @@ -1,28 +0,0 @@ -# https://services.digitalglobe.com/earthservice/tmsaccess/tms/1.0.0/DigitalGlobe:ImageryTileService@EPSG:3857@jpg/{z}/{x}/{y}.jpg?connectId=c2cbd3f2-003a-46ec-9e46-26a3996d6484&flipy=true -import math - -tile_size = 256 - -def convert2worldcd(lat,lng): - """ - World coordinates are measured from the Mercator projection's origin (the northwest corner of the map at 180 degrees longitude and approximately 85 degrees latitude) and increase in the x direction towards the east (right) and increase in the y direction towards the south (down). Because the basic Mercator tile is 256 x 256 pixels, the usable world coordinate space is {0-256}, {0-256} - """ - siny = math.sin((lat * math.pi) / 180) - siny = min(max(siny, -0.9999), 0.9999) - world_x= tile_size * (0.5 + (lng / 360)) - world_y = tile_size * (0.5 - math.log((1 + siny) / (1 - siny)) / (4 * math.pi)) - print(world_x,world_y) - return world_x,world_y - -def latlng2tile(zoom,lat,lng): - """By dividing the pixel coordinates by the tile size and taking the integer parts of the result, you produce as a by-product the tile coordinate at the current zoom level.""" - zoom_byte=1 << zoom #converting zoom level to pixel bytes - # print(zoom_byte) - w_x,w_y=convert2worldcd(lat,lng) - t_x=math.floor((w_x * zoom_byte) / tile_size) - t_y=math.floor((w_y * zoom_byte) / tile_size) - return t_x,t_y - -z,x,y=19,-80.6719408929348,35.03247598940751 -tile_x,tile_y=latlng2tile(z,x,y) -print(z,tile_x,tile_y) \ No newline at end of file diff --git a/backend/core/serializers.py b/backend/core/serializers.py index a4e7fed7..9b08ff8b 100644 --- a/backend/core/serializers.py +++ b/backend/core/serializers.py @@ -230,6 +230,7 @@ class PredictionParamSerializer(serializers.Serializer): # for vectorization tolerance = serializers.FloatField(required=False) area_threshold = serializers.FloatField(required=False) + tile_overlap_distance = serializers.FloatField(required=False) def validate_max_angle_change(self, value): if value is not None: @@ -255,6 +256,14 @@ def validate_tolerance(self, value): ) return value + def validate_tile_overlap_distance(self, value): + if value is not None: + if value < 0 or value > 1: + raise serializers.ValidationError( + f"Invalid Tile Overlap Distance : {value}, Should be between 0 and 1" + ) + return value + def validate_area_threshold(self, value): if value is not None: if value < 0 or value > 20: diff --git a/backend/core/tasks.py b/backend/core/tasks.py index 3069da39..b78d4a96 100644 --- a/backend/core/tasks.py +++ b/backend/core/tasks.py @@ -16,10 +16,9 @@ FeedbackLabelFileSerializer, LabelFileSerializer, ) +from predictor import download_imagery,get_start_end_download_coords from core.utils import ( bbox, - download_imagery, - get_start_end_download_coords, is_dir_empty, ) from django.conf import settings diff --git a/backend/core/utils.py b/backend/core/utils.py index 6477efd7..b423b627 100644 --- a/backend/core/utils.py +++ b/backend/core/utils.py @@ -51,164 +51,10 @@ def bbox(coord_list): return ret -def convert2worldcd(lat, lng, tile_size): - """ - World coordinates are measured from the Mercator projection's origin - (the northwest corner of the map at 180 degrees longitude and - approximately 85 degrees latitude) and increase in the x direction - towards the east (right) and increase in the y direction towards the south - (down).Because the basic Mercator tile is 256 x 256 pixels, the usable - world coordinate space is {0-256}, {0-256} - """ - siny = math.sin((lat * math.pi) / 180) - siny = min(max(siny, -0.9999), 0.9999) - world_x = tile_size * (0.5 + (lng / 360)) - world_y = tile_size * (0.5 - math.log((1 + siny) / (1 - siny)) / (4 * math.pi)) - # print("world coordinate space is %s, %s",world_x,world_y) - return world_x, world_y - - -def latlng2tile(zoom, lat, lng, tile_size): - """By dividing the pixel coordinates by the tile size and taking the - integer parts of the result, you produce as a by-product the tile - coordinate at the current zoom level.""" - zoom_byte = 1 << zoom # converting zoom level to pixel bytes - # print(zoom_byte) - w_x, w_y = convert2worldcd(lat, lng, tile_size) - - t_x = math.floor((w_x * zoom_byte) / tile_size) - t_y = math.floor((w_y * zoom_byte) / tile_size) - return t_x, t_y - - -def get_start_end_download_coords(bbox_coords, zm_level, tile_size): - # start point where we will start downloading the tiles - - start_point_lng = bbox_coords[0] # getting the starting lat lng - start_point_lat = bbox_coords[1] - - # end point where we should stop downloading the tile - end_point_lng = bbox_coords[2] # getting the ending lat lng - end_point_lat = bbox_coords[3] - - # Note : lat=y-axis, lng=x-axis - # getting tile coordinate for first point of bbox - start_x, start_y = latlng2tile( - zoom=zm_level, - lat=start_point_lat, - lng=start_point_lng, - tile_size=tile_size, - ) - start = [start_x, start_y] - - # getting tile coordinate for last point of bbox - end_x, end_y = latlng2tile( - zoom=zm_level, - lat=end_point_lat, - lng=end_point_lng, - tile_size=tile_size, - ) - end = [end_x, end_y] - return start, end - - -import logging - - def is_dir_empty(directory_path): return not any(os.scandir(directory_path)) -def download_image(url, base_path, source_name): - response = requests.get(url) - - image = response.content - - pattern = r"/(\d+)/(\d+)/(\d+)(?:\.\w+)?" - match = re.search(pattern, url) - # filename = z-x-y - filename = f"{base_path}/{source_name}-{match.group(2)}-{match.group(3)}-{match.group(1)}.png" - - - with open(filename, "wb") as f: - f.write(image) - - # print(f"Downloaded: {url}") - - -def download_imagery(start: list, end: list, zm_level, base_path, source="maxar"): - """Downloads imagery from start to end tile coordinate system - - Args: - start (list):[tile_x,tile_y] - end (list): [tile_x,tile_y], - source (string): it should be eithre url string or maxar value - zm_level : Zoom level - - """ - - begin_x = start[0] # this will be the beginning of the download loop for x - begin_y = start[1] # this will be the beginning of the download loop for x - stop_x = end[0] # this will be the end of the download loop for x - stop_y = end[1] # this will be the end of the download loop for x - - print(f"Download starting from {start} to {end} using source {source} - {zm_level}") - - start_x = begin_x # starting loop from beginning - start_y = begin_y # starting y loop from beginnig - source_name = "OAM" # default - download_urls = [] - while start_x <= stop_x: # download x section while keeping y as c - start_y = begin_y - while start_y >= stop_y: # download y section while keeping x as c - download_path = [start_x, start_y] - if source == "maxar": - try: - connect_id = os.environ.get("MAXAR_CONNECT_ID") - except Exception as ex: - raise ex - source_name = source - download_url = f"https://services.digitalglobe.com/earthservice/tmsaccess/tms/1.0.0/DigitalGlobe:ImageryTileService@EPSG:3857@jpg/{zm_level}/{download_path[0]}/{download_path[1]}.jpg?connectId={connect_id}&flipy=true" - - # add multiple logic on supported sources here - else: - # source should be url as string , like this : https://tiles.openaerialmap.org/62dbd947d8499800053796ec/0/62dbd947d8499800053796ed/{z}/{x}/{y} - if "{-y}" in source: - ## negative TMS - source_value = source.replace("{-y}", "{y}") - # conversion from normal tms - y_value = int((2**zm_level) - download_path[1] - 1) - - else: - # If it doesn't, use the positive y-coordinate - y_value = download_path[1] - source_value = source - download_url = source_value.format( - x=download_path[0], y=y_value, z=zm_level) - download_urls.append(download_url) - - start_y = start_y - 1 # decrease the y - - start_x = start_x + 1 # increase the x - - # Use the ThreadPoolExecutor to download the images in parallel - - # with concurrent.futures.ThreadPoolExecutor() as executor: - # for url in download_urls: - # executor.submit(download_image, url, base_path, source_name) - - with concurrent.futures.ThreadPoolExecutor() as executor: - futures = [ - executor.submit(download_image, url, base_path, source_name) - for url in download_urls - ] - for future in concurrent.futures.as_completed(futures): - try: - future.result() - except Exception as e: - print(f"An exception occurred in a thread: {e}") - raise e - def request_rawdata(request_params): """will make call to galaxy API & provides response as json diff --git a/backend/core/views.py b/backend/core/views.py index ae412c19..17ef09fc 100644 --- a/backend/core/views.py +++ b/backend/core/views.py @@ -7,9 +7,7 @@ import subprocess import sys import time -import uuid import zipfile -from concurrent.futures import ProcessPoolExecutor, TimeoutError from datetime import datetime from tempfile import NamedTemporaryFile @@ -27,7 +25,6 @@ from django_filters.rest_framework import DjangoFilterBackend from drf_yasg.utils import swagger_auto_schema from geojson2osm import geojson2osm -from hot_fair_utilities import polygonize, predict, vectorize from login.authentication import OsmAuthentication from login.permissions import IsOsmAuthenticated from orthogonalizer import othogonalize_poly @@ -39,6 +36,8 @@ from rest_framework.views import APIView from rest_framework_gis.filters import InBBoxFilter, TMSTileFilter +from predictor import predict + from .models import ( AOI, Dataset, @@ -63,12 +62,8 @@ ) from .tasks import train_model from .utils import ( - bbox, - download_imagery, get_dir_size, - get_start_end_download_coords, gpx_generator, - is_dir_empty, process_rawdata, request_rawdata, ) @@ -539,85 +534,36 @@ def post(self, request, *args, **kwargs): else source_img_in_dataset ) zoom_level = deserialized_data["zoom_level"] - start, end = get_start_end_download_coords( - bbox, zoom_level, DEFAULT_TILE_SIZE - ) - temp_path = f"temp/{uuid.uuid4()}/" - os.makedirs(temp_path,exist_ok=True) try: - download_imagery( - start, - end, - zoom_level, - base_path=temp_path, - source=source, - ) - prediction_output = f"{temp_path}/prediction/output" - print("Image Downloaded , Starting Inference") - if is_dir_empty(temp_path): - return Response("No Images found", status=500) start_time = time.time() model_path = os.path.join( settings.TRAINING_WORKSPACE, f"dataset_{model_instance.dataset.id}", "output", f"training_{training_instance.id}", - "checkpoint.h5", + "checkpoint.tflite", ) - # give high priority to h5 model format if not avilable fall back to .tf + # give high priority to tflite model format if not avilable fall back to .h5 if not use default .tf if not os.path.exists(model_path): model_path = os.path.join( settings.TRAINING_WORKSPACE, f"dataset_{model_instance.dataset.id}", "output", f"training_{training_instance.id}", - "checkpoint.tf", + "checkpoint.h5", ) - # Spawn a new process for the prediction task - with ProcessPoolExecutor(max_workers=1) as executor: - try: - future = executor.submit( - predict, - model_path, - temp_path, - prediction_output, - deserialized_data["confidence"] / 100 - if "confidence" in deserialized_data - else 0.5, + if not os.path.exists(model_path): + model_path = os.path.join( + settings.TRAINING_WORKSPACE, + f"dataset_{model_instance.dataset.id}", + "output", + f"training_{training_instance.id}", + "checkpoint.tf", ) - future.result( - timeout=45 - ) # Wait for process to complete, wait for max 45 sec - except TimeoutError: - print("Prediction Timeout") - return Response( - "Prediction Timeout , Took more than 30 sec : Use smaller models/area", - status=500, - ) - - print("Prediction is Complete, Vectorizing images") - start = time.time() - - geojson_output = f"{prediction_output}/prediction.geojson" - # polygonize( - # input_path=prediction_output, - # output_path=geojson_output, - # remove_inputs=True, - # ) - - vectorize( - input_path=prediction_output, - output_path=geojson_output, - tolerance=deserialized_data["tolerance"] - if "tolerance" in deserialized_data - else 0.2, # in meters - area_threshold=deserialized_data["area_threshold"] - if "area_threshold" in deserialized_data - else 3, # in sqm + geojson_data = predict(bbox=bbox,model_path=model_path,zoom_level=zoom_level,tms_url=source, tile_size=DEFAULT_TILE_SIZE,confidence=deserialized_data["confidence"] / 100 if "confidence" in deserialized_data else 0.5,tile_overlap_distance=deserialized_data["tile_overlap_distance"] if "tile_overlap_distance" in deserialized_data else 0.15) + print( + f"It took {round(time.time()-start_time)}sec for generating predictions" ) - with open(geojson_output, "r") as f: - geojson_data = json.load(f) - for feature in geojson_data["features"]: feature["properties"]["building"] = "yes" feature["properties"]["source"] = "fAIr" @@ -632,12 +578,7 @@ def post(self, request, *args, **kwargs): else 15, ) - shutil.rmtree(temp_path) - - print( - f"It took {round(time.time()-start)}sec for vectorization , Produced :{sys.getsizeof(geojson_data)*0.001} kb" - ) - print(f"Prediction API took ({round(time.time()-start_time)} sec)") + print(f"Prediction API took ({round(time.time()-start_time)} sec) in total") ## TODO : can send osm xml format from here as well using geojson2osm return Response(geojson_data, status=status.HTTP_201_CREATED) @@ -648,7 +589,6 @@ def post(self, request, *args, **kwargs): return Response(str(e), status=500) except Exception as ex: print(ex) - shutil.rmtree(temp_path) return Response("Prediction Error", status=500) diff --git a/backend/requirements.txt b/backend/requirements.txt index 037a5e0f..3ac6c0cd 100644 --- a/backend/requirements.txt +++ b/backend/requirements.txt @@ -1,5 +1,5 @@ django==4.1.4 -gdal +# gdal psycopg2 djangorestframework==3.14.0 djangorestframework-gis==1.0 @@ -17,7 +17,9 @@ django_celery_results==2.4.0 flower==1.2.0 validators==0.20.0 gpxpy==1.5.0 -hot-fair-utilities==1.2.2 +hot-fair-utilities==1.2.3 geojson2osm==0.0.1 osmconflator -orthogonalizer \ No newline at end of file +orthogonalizer +fairpredictor==0.0.26 +tflite-runtime==2.14.0 \ No newline at end of file