From 81568f77ef8d742653cde532547f941fe4e3fa60 Mon Sep 17 00:00:00 2001 From: Theodore Kisner Date: Fri, 15 Nov 2024 10:03:01 -0800 Subject: [PATCH] Remove stale, commented code --- src/toast/tests/_helpers.py | 137 ------------------------------------ 1 file changed, 137 deletions(-) diff --git a/src/toast/tests/_helpers.py b/src/toast/tests/_helpers.py index 0105a64f8..bd709509a 100644 --- a/src/toast/tests/_helpers.py +++ b/src/toast/tests/_helpers.py @@ -968,143 +968,6 @@ def create_fake_wcs_scanned_tod( del ob[buf] -# def create_fake_sky(data, dist_key, map_key, hpix_out=None): -# np.random.seed(987654321) -# dist = data[dist_key] -# pix_data = PixelData(dist, np.float64, n_value=3, units=defaults.det_data_units) -# # Just replicate the fake data across all local submaps -# off = 0 -# for submap in range(dist.n_submap): -# I_data = 0.3 * np.random.normal(size=dist.n_pix_submap) -# Q_data = 0.03 * np.random.normal(size=dist.n_pix_submap) -# U_data = 0.03 * np.random.normal(size=dist.n_pix_submap) -# if submap in dist.local_submaps: -# pix_data.data[off, :, 0] = I_data -# pix_data.data[off, :, 1] = Q_data -# pix_data.data[off, :, 2] = U_data -# off += 1 -# data[map_key] = pix_data -# if hpix_out is not None: -# write_healpix_fits( -# pix_data, -# hpix_out, -# nest=True, -# comm_bytes=10000000, -# report_memory=False, -# single_precision=False, -# ) - - -# def create_fake_healpix_sky( -# data, -# dist_key, -# map_key, -# fwhm=10.0 * u.arcmin, -# lmax=256, -# hpix_out=None, -# ): -# npix = data[dist_key].npix -# map_vals = np.array( -# rng.random( -# npix, -# key=(12345, 6789), -# counter=(0, 0), -# sampler="gaussian", -# ), -# dtype=np.float64, -# ) -# map_vals = hp.smoothing( -# map_vals, fwhm=self.fwhm.to_value(u.radian), lmax=self.lmax -# ).astype(dtype) -# sss_map /= np.std(sss_map) - -# dist = data[dist_key] -# pix_data = PixelData(dist, np.float64, n_value=3, units=defaults.det_data_units) -# # Just replicate the fake data across all local submaps -# off = 0 -# for submap in range(dist.n_submap): -# I_data = 0.3 * np.random.normal(size=dist.n_pix_submap) -# Q_data = 0.03 * np.random.normal(size=dist.n_pix_submap) -# U_data = 0.03 * np.random.normal(size=dist.n_pix_submap) -# if submap in dist.local_submaps: -# pix_data.data[off, :, 0] = I_data -# pix_data.data[off, :, 1] = Q_data -# pix_data.data[off, :, 2] = U_data -# off += 1 -# data[map_key] = pix_data -# if hpix_out is not None: -# write_healpix_fits( -# pix_data, -# hpix_out, -# nest=True, -# comm_bytes=10000000, -# report_memory=False, -# single_precision=False, -# ) - - -# def create_fake_sky_tod( -# data, -# pixel_pointing, -# stokes_weights, -# map_vals=(1.0, 1.0, 1.0), -# det_data=defaults.det_data, -# randomize=False, -# ): -# """Fake sky signal with constant I/Q/U""" -# np.random.seed(987654321) - -# # Build the pixel distribution -# build_dist = ops.BuildPixelDistribution( -# pixel_dist="fake_map_dist", -# pixel_pointing=pixel_pointing, -# ) -# build_dist.apply(data) - -# # Create a fake sky -# map_key = "fake_map" -# dist_key = build_dist.pixel_dist -# dist = data[dist_key] -# pix_data = PixelData(dist, np.float64, n_value=3, units=u.K) -# off = 0 -# for submap in range(dist.n_submap): -# if submap in dist.local_submaps: -# if randomize: -# pix_data.data[off, :, 0] = map_vals[0] * np.random.normal( -# size=dist.n_pix_submap -# ) -# pix_data.data[off, :, 1] = map_vals[1] * np.random.normal( -# size=dist.n_pix_submap -# ) -# pix_data.data[off, :, 2] = map_vals[2] * np.random.normal( -# size=dist.n_pix_submap -# ) -# else: -# pix_data.data[off, :, 0] = map_vals[0] -# pix_data.data[off, :, 1] = map_vals[1] -# pix_data.data[off, :, 2] = map_vals[2] -# off += 1 -# data[map_key] = pix_data - -# # Scan map into timestreams -# scanner = ops.ScanMap( -# det_data=defaults.det_data, -# pixels=pixel_pointing.pixels, -# weights=stokes_weights.weights, -# map_key=map_key, -# ) -# scan_pipe = ops.Pipeline( -# detector_sets=["SINGLE"], -# operators=[ -# pixel_pointing, -# stokes_weights, -# scanner, -# ], -# ) -# scan_pipe.apply(data) -# return map_key - - def create_fake_mask(data, dist_key, mask_key): np.random.seed(987654321) dist = data[dist_key]