-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_par_dag_ilp.py
245 lines (224 loc) · 9.13 KB
/
test_par_dag_ilp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright 2023 Janos Czentye
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import pathlib
import pprint
import time
import networkx as nx
import pulp
from slambuc.alg.app import NAME
from slambuc.alg.dag.ilp import (build_greedy_dag_mtx_model, greedy_dag_partitioning, build_dag_mtx_model,
dag_partitioning)
from slambuc.alg.util import ibacktrack_chain
from slambuc.misc.plot import draw_dag
from slambuc.misc.random import get_random_dag
from slambuc.misc.util import (print_lp_desc, print_var_matrix, convert_var_dict, print_cost_coeffs, print_lat_coeffs,
evaluate_par_dag_partitioning)
def test_greedy_dag_model_creation(dag_file: str = pathlib.Path(__file__).parent / "data/graph_test_dag.gml",
save_file: bool = False):
dag = nx.read_gml(dag_file, destringizer=int)
dag.graph[NAME] += "-greedy_dag_mtx"
cpath = set(ibacktrack_chain(dag, 1, 10))
params = dict(dag=dag,
root=1,
cpath=cpath,
M=6,
L=430,
N=2,
delay=10)
print(" Test input ".center(80, '='))
pprint.pprint(params)
print('=' * 80)
_s = time.perf_counter()
model_greedy, X_greedy = build_greedy_dag_mtx_model(**params)
_d = time.perf_counter() - _s
print(f"Greedy Model building time: {_d * 1000} ms")
X_greedy = convert_var_dict(X_greedy)
print(" Decision variables ".center(80, '='))
print("Greedy:")
print_var_matrix(X_greedy)
print(" Cost Coefficients ".center(80, '='))
print("Greedy:")
print_cost_coeffs(model_greedy, X_greedy)
print(" Latency Coefficients ".center(80, '='))
print("Greedy:")
print_lat_coeffs(model_greedy, X_greedy)
print(" Generated LP model ".center(80, '='))
print_lp_desc(model_greedy)
if save_file:
model_greedy.writeLP("tree_par_mtx_model.lp")
def test_dag_model_creation(dag_file: str = pathlib.Path(__file__).parent / "data/graph_test_dag.gml",
save_file: bool = False):
dag = nx.read_gml(dag_file, destringizer=int)
dag.graph[NAME] += "-dag_mtx"
cpath = set(ibacktrack_chain(dag, 1, 10))
params = dict(dag=dag,
root=1,
cpath=cpath,
M=6,
L=430,
N=2,
delay=10)
print(" Test input ".center(80, '='))
pprint.pprint(params)
print('=' * 80)
_s = time.perf_counter()
model_greedy, X_greedy = build_dag_mtx_model(**params)
_d = time.perf_counter() - _s
print(f"Greedy Model building time: {_d * 1000} ms")
X_greedy = convert_var_dict(X_greedy)
print(" Decision variables ".center(80, '='))
print("Greedy:")
print_var_matrix(X_greedy)
print(" Cost Coefficients ".center(80, '='))
print("Greedy:")
print_cost_coeffs(model_greedy, X_greedy)
print(" Latency Coefficients ".center(80, '='))
print("Greedy:")
print_lat_coeffs(model_greedy, X_greedy)
print(" Generated LP model ".center(80, '='))
print_lp_desc(model_greedy)
if save_file:
model_greedy.writeLP("tree_par_mtx_model.lp")
def compare_dag_models(dag_file: str = pathlib.Path(__file__).parent / "data/graph_test_tree_par.gml"):
tree = nx.read_gml(dag_file, destringizer=int)
tree.graph[NAME] += "-dag_mtx"
cpath = set(ibacktrack_chain(tree, 1, 10))
params = dict(dag=tree,
root=1,
cpath=cpath,
M=6,
L=430,
N=2,
delay=10)
print(" Test input ".center(80, '='))
pprint.pprint(params)
print('=' * 80)
_s = time.perf_counter()
model_greedy, X_greedy = build_greedy_dag_mtx_model(**params)
_d = time.perf_counter() - _s
print(f"Greedy Model building time: {_d * 1000} ms")
_s = time.perf_counter()
model, X = build_dag_mtx_model(**params)
_d = time.perf_counter() - _s
print(f"Direct Model building time: {_d * 1000} ms")
X = convert_var_dict(X)
X_greedy = convert_var_dict(X_greedy)
print(" Decision variables ".center(80, '='))
print("Greedy:")
print_var_matrix(X_greedy)
print("Direct:")
print_var_matrix(X)
print(" Cost Coefficients ".center(80, '='))
print("Greedy:")
print_cost_coeffs(model_greedy, X_greedy)
print("Direct:")
print_cost_coeffs(model, X)
print(" Latency Coefficients ".center(80, '='))
print("Greedy:")
print_lat_coeffs(model_greedy, X_greedy)
print("Direct:")
print_lat_coeffs(model, X)
print(" Generated LP model ".center(80, '='))
print_lp_desc(model_greedy)
print_lp_desc(model)
def evaluate_greedy_dag_model(file_name: str = "data/graph_test_dag.gml", path_tree: bool = False):
dag = nx.read_gml(pathlib.Path(__file__).parent / file_name, destringizer=int)
draw_dag(dag)
dag.graph[NAME] += f"-dag_mtx{'_path_tree' if path_tree else ''}"
params = dict(dag=dag,
root=1,
cp_end=10,
M=6,
L=430,
N=2,
delay=10,
path_tree=path_tree)
print(" CBC solver ".center(80, '='))
partition, opt_cost, opt_lat = greedy_dag_partitioning(**params,
solver=pulp.PULP_CBC_CMD(mip=True, warmStart=False))
print(f"Partitioning: {partition}, {opt_cost = }, {opt_lat = }")
evaluate_par_dag_partitioning(partition=partition, opt_cost=opt_cost, opt_lat=opt_lat, **params)
def evaluate_dag_model(file_name: str = "data/graph_test_dag.gml", path_tree: bool = False):
dag = nx.read_gml(pathlib.Path(__file__).parent / file_name, destringizer=int)
draw_dag(dag)
dag.graph[NAME] += f"-dag_mtx{'_path_tree' if path_tree else ''}"
params = dict(dag=dag,
root=1,
cp_end=10,
M=6,
L=430,
N=2,
delay=10,
path_tree=path_tree)
print(" CBC solver ".center(80, '='))
partition, opt_cost, opt_lat = dag_partitioning(**params,
solver=pulp.PULP_CBC_CMD(mip=True, warmStart=False))
print(f"Partitioning: {partition}, {opt_cost = }, {opt_lat = }")
evaluate_par_dag_partitioning(partition=partition, opt_cost=opt_cost, opt_lat=opt_lat, **params)
########################################################################################################################
def run_test(dag: nx.DiGraph, root: int, cp_end: int, M: int, L: int, N: int, delay: int, path_tree: bool):
try:
partition, opt_cost, opt_lat = dag_partitioning(dag, root, M, L, N, cp_end, delay, path_tree,
solver=pulp.PULP_CBC_CMD(mip=True, warmStart=False,
msg=False))
evaluate_par_dag_partitioning(dag, partition, opt_cost, opt_lat, root, cp_end, M, L, N, delay)
except Exception as e:
print(e)
nx.write_gml(dag, "failed.gml", stringizer=str)
return
return partition, opt_cost, opt_lat
def test_par_dag(path_tree: bool = False):
dag = nx.read_gml(pathlib.Path(__file__).parent / "data/graph_test_dag.gml", destringizer=int)
dag.graph[NAME] += f"-dag_mtx{'_path_tree' if path_tree else ''}"
params = dict(dag=dag,
root=1,
cp_end=10,
M=6,
# L = math.inf
L=430,
N=2,
delay=10,
path_tree=path_tree
)
run_test(**params)
def test_random_par_dag(n: int = 10, x: int = 3, path_tree: bool = False):
dag = get_random_dag(n, x)
dag.graph[NAME] += f"-dag_mtx{'_path_tree' if path_tree else ''}"
params = dict(dag=dag,
root=1,
cp_end=n,
M=6,
L=math.inf,
N=2,
delay=10,
path_tree=path_tree
)
run_test(**params)
if __name__ == '__main__':
# test_greedy_dag_model_creation()
# test_dag_model_creation()
# test_dag_model_creation("failed.gml")
# compare_dag_models()
#
# evaluate_greedy_dag_model()
# evaluate_greedy_dag_model(path_tree=True)
# evaluate_greedy_dag_model("data/graph_test_tree_par.gml")
# evaluate_dag_model()
# evaluate_dag_model(path_tree=True)
# evaluate_dag_model("data/graph_test_tree_par.gml")
#
# test_par_dag()
# test_random_par_dag(path_tree=True)
test_random_par_dag()