-
Notifications
You must be signed in to change notification settings - Fork 0
/
validate_tree_par.py
executable file
·135 lines (122 loc) · 6.34 KB
/
validate_tree_par.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python3.11
# Copyright 2023 Janos Czentye
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import itertools
import math
import operator
import pathlib
import random
import time
import networkx as nx
import pandas as pd
import tabulate
from slambuc.alg.app import *
from slambuc.alg.tree.parallel import *
from slambuc.alg.util import ibacktrack_chain, ser_subchain_latency
from slambuc.misc.random import get_random_tree
TREE_ALGS = dict(
GREEDY_PAR=greedy_par_tree_partitioning,
GREEDY_ILP_PAR=all_par_tree_mtx_partitioning,
ILP_HYBRID_PAR=tree_par_hybrid_partitioning,
ILP_CFG_PAR=tree_par_cfg_partitioning,
ILP_MTX_PAR=tree_par_mtx_partitioning,
# PSEUDO_B_PAR=pseudo_par_btree_partitioning,
PSEUDO_L_PAR=pseudo_par_ltree_partitioning,
PSEUDO_L_PAR_MP=pseudo_par_mp_ltree_partitioning
)
def run_all_tree_par_tests(params: dict) -> list:
stats = []
for name, tree_alg in TREE_ALGS.items():
print(f"Executing {name}")
t_start = time.perf_counter()
result = tree_alg(**params)
alg_time = time.perf_counter() - t_start
if name.startswith('GREEDY'):
stats.extend([[name + f'_{i}', *res, round(alg_time, ndigits=8)] for i, res in enumerate(result)])
else:
stats.append([name, *result, round(alg_time, ndigits=8)])
return stats
def compare_results(tree_path: str = None, L: int = math.inf, N: int = 1):
tree = nx.read_gml(
tree_path if tree_path is not None else pathlib.Path(__file__).parent / "data/graph_test_tree_par.gml",
destringizer=int)
tree.graph[NAME] += "-parallel"
params = dict(tree=tree, root=1, cp_end=10, M=6, L=L, N=N, delay=10)
##########################################################
cpath = list(reversed(list(ibacktrack_chain(tree, 1, params['cp_end']))))
print("Runtime:", [tree.nodes[v][RUNTIME] for v in tree.nodes if v is not PLATFORM])
print("Memory:", [tree.nodes[v][MEMORY] for v in tree.nodes if v is not PLATFORM])
print("Rate:", [tree[next(tree.predecessors(v))][v][RATE] for v in tree.nodes if v is not PLATFORM])
print("Data:", [tree[next(tree.predecessors(v))][v][DATA] for v in tree.nodes if v is not PLATFORM])
print(f"Tree partitioning [M={params['M']}, L={params['L']}:{(1, params['cp_end'])}] -> cpath:{cpath}")
##########################################################
print('#' * 80)
stats = run_all_tree_par_tests(params)
print('#' * 80)
print("Summary:")
print(tabulate.tabulate(stats, ['Alg.', 'Partition', 'Cost', 'Latency', 'Time (s)'],
colalign=('left', 'left', 'decimal', 'decimal', 'decimal'), tablefmt='pretty'))
def test_random_validation(n: int = 10, N: int = 2, cache_failed: bool = False, stop_failed=False) -> tuple[str, list]:
tree = get_random_tree(n)
tree.graph[NAME] += "-parallel"
cp_end = n
cpath = list(reversed(list(ibacktrack_chain(tree, 1, cp_end))))
singleton_lat = ser_subchain_latency(tree, 1, set(range(1, n + 1)), set(cpath))
rand_factor = 1 - 1 / random.randint(2, len(cpath))
params = dict(tree=tree, root=1, cp_end=cp_end, M=6, N=N, delay=10, L=int(rand_factor * singleton_lat))
print(tree.graph.get(NAME, "tree").center(80, '#'))
print("Runtime:", [tree.nodes[v][RUNTIME] for v in tree.nodes if v is not PLATFORM])
print("Memory:", [tree.nodes[v][MEMORY] for v in tree.nodes if v is not PLATFORM])
print("Rate:", [tree[next(tree.predecessors(v))][v][RATE] for v in tree.nodes if v is not PLATFORM])
print("Data:", [tree[next(tree.predecessors(v))][v][DATA] for v in tree.nodes if v is not PLATFORM])
print(f"Tree partitioning [M={params['M']}, L={params['L']}:{(1, cp_end)}] -> cpath:{cpath}")
print("Params:", repr(params))
stat = run_all_tree_par_tests(params)
print(tabulate.tabulate(stat, ['Alg.', 'Partition', 'Cost', 'Latency', 'Time'],
stralign='decimal', tablefmt='pretty'))
print('#' * 80)
alg_num = len(TREE_ALGS) - 1
p_grdy, p_algs = [p[1] for p in stat[:-alg_num]], list(map(operator.itemgetter(1), stat[-alg_num:]))
c_grdy, c_algs = stat[0][2], list(map(operator.itemgetter(2), stat[-alg_num:]))
l_grdy, l_algs = [p[3] for p in stat[:-alg_num]], list(map(operator.itemgetter(3), stat[-alg_num:]))
validated = all((all(p in p_grdy for p in p_algs),
all(c_grdy == c for c in c_algs) if all((c_grdy, *c_algs)) else True,
all(l in l_grdy for l in l_algs)))
if not validated and cache_failed:
tree.graph[NAME] = f"failed_{tree.graph[NAME]}_L{params['L']}_M{params['M']}.gml"
nx.write_gml(tree, tree.graph[NAME], stringizer=str)
result = 'SUCCESS' if validated else 'FAILED'
print(f"Validation: {result}")
if stop_failed:
assert result == 'SUCCESS'
print('#' * 80)
return result, stat
def stress_test(n: int = 10, N: int = 2, iteration: int = 100, cache_failed: bool = True, stop_failed: bool = False):
results = [test_random_validation(n, N, cache_failed=cache_failed, stop_failed=stop_failed)
for _ in range(iteration)]
valid, stats = zip(*results)
print("Validation statistics:", collections.Counter(valid))
df = pd.DataFrame(itertools.chain(*stats))
pd.set_option('display.expand_frame_repr', False)
grouped_stat = df[(df[2] < math.inf) & (df[0].isin(('GREEDY_0', *TREE_ALGS)))][[0, 4]].groupby(0)
print("Runtime statistics:")
print(grouped_stat.describe().reset_index().sort_values((4, 'mean'), ascending=False))
if __name__ == '__main__':
compare_results(N=2)
# test_latencies()
# test_random_validation(N=2)
# compare_results(pathlib.Path(__file__).parent / "data/graph_test_tree_par_btree.gml", L=600, N=2)
# compare_results(pathlib.Path(__file__).parent / "data/graph_test_tree_par_ltree.gml", L=360, N=2)
# stress_test(n=10, N=2, iteration=100, stop_failed=True)