forked from coin-or/Clp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaddRows.cpp
285 lines (273 loc) · 11.8 KB
/
addRows.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// Copyright (C) 2004, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
// This is a simple example to create a model by row
#include "ClpSimplex.hpp"
#include "CoinHelperFunctions.hpp"
#include "CoinTime.hpp"
#include "CoinBuild.hpp"
#include "CoinModel.hpp"
#include <iomanip>
#include <cassert>
int main(int argc, const char *argv[])
{
#if COIN_BIG_INDEX<2
try {
// Empty model
ClpSimplex model;
// Objective - just nonzeros
int objIndex[] = {0, 2};
double objValue[] = {1.0, 4.0};
// Upper bounds - as dense vector
double upper[] = {2.0, COIN_DBL_MAX, 4.0};
// Create space for 3 columns
model.resize(0, 3);
// Fill in
int i;
// Virtuous way
// First objective
for (i = 0; i < 2; i++)
model.setObjectiveCoefficient(objIndex[i], objValue[i]);
// Now bounds (lower will be zero by default but do again)
for (i = 0; i < 3; i++) {
model.setColumnLower(i, 0.0);
model.setColumnUpper(i, upper[i]);
}
/*
We could also have done in non-virtuous way e.g.
double * objective = model.objective();
and then set directly
*/
// Faster to add rows all at once - but this is easier to show
// Now add row 1 as >= 2.0
int row1Index[] = {0, 2};
double row1Value[] = {1.0, 1.0};
model.addRow(2, row1Index, row1Value,
2.0, COIN_DBL_MAX);
// Now add row 2 as == 1.0
int row2Index[] = {0, 1, 2};
double row2Value[] = {1.0, -5.0, 1.0};
model.addRow(3, row2Index, row2Value,
1.0, 1.0);
// solve
model.dual();
/*
Adding one row at a time has a significant overhead so let's
try a more complicated but faster way
First time adding in 10000 rows one by one
*/
model.allSlackBasis();
ClpSimplex modelSave = model;
double time1 = CoinCpuTime();
int k;
for (k = 0; k < 10000; k++) {
int row2Index[] = {0, 1, 2};
double row2Value[] = {1.0, -5.0, 1.0};
model.addRow(3, row2Index, row2Value,
1.0, 1.0);
}
printf("Time for 10000 addRow is %g\n", CoinCpuTime() - time1);
model.dual();
model = modelSave;
// Now use build
CoinBuild buildObject;
time1 = CoinCpuTime();
for (k = 0; k < 10000; k++) {
int row2Index[] = {0, 1, 2};
double row2Value[] = {1.0, -5.0, 1.0};
buildObject.addRow(3, row2Index, row2Value,
1.0, 1.0);
}
model.addRows(buildObject);
printf("Time for 10000 addRow using CoinBuild is %g\n", CoinCpuTime() - time1);
model.dual();
model = modelSave;
int del[] = {0, 1, 2};
model.deleteRows(2, del);
// Now use build +-1
CoinBuild buildObject2;
time1 = CoinCpuTime();
for (k = 0; k < 10000; k++) {
int row2Index[] = {0, 1, 2};
double row2Value[] = {1.0, -1.0, 1.0};
buildObject2.addRow(3, row2Index, row2Value,
1.0, 1.0);
}
model.addRows(buildObject2, true);
printf("Time for 10000 addRow using CoinBuild+-1 is %g\n", CoinCpuTime() - time1);
model.dual();
model = modelSave;
model.deleteRows(2, del);
// Now use build +-1
CoinModel modelObject2;
time1 = CoinCpuTime();
for (k = 0; k < 10000; k++) {
int row2Index[] = {0, 1, 2};
double row2Value[] = {1.0, -1.0, 1.0};
modelObject2.addRow(3, row2Index, row2Value,
1.0, 1.0);
}
model.addRows(modelObject2, true);
printf("Time for 10000 addRow using CoinModel+-1 is %g\n", CoinCpuTime() - time1);
model.dual();
model = ClpSimplex();
// Now use build +-1
CoinModel modelObject3;
time1 = CoinCpuTime();
for (k = 0; k < 10000; k++) {
int row2Index[] = {0, 1, 2};
double row2Value[] = {1.0, -1.0, 1.0};
modelObject3.addRow(3, row2Index, row2Value,
1.0, 1.0);
}
model.loadProblem(modelObject3, true);
printf("Time for 10000 addRow using CoinModel load +-1 is %g\n", CoinCpuTime() - time1);
model.writeMps("xx.mps");
model.dual();
model = modelSave;
// Now use model
CoinModel modelObject;
time1 = CoinCpuTime();
for (k = 0; k < 10000; k++) {
int row2Index[] = {0, 1, 2};
double row2Value[] = {1.0, -5.0, 1.0};
modelObject.addRow(3, row2Index, row2Value,
1.0, 1.0);
}
model.addRows(modelObject);
printf("Time for 10000 addRow using CoinModel is %g\n", CoinCpuTime() - time1);
model.dual();
model.writeMps("b.mps");
// Method using least memory - but most complicated
time1 = CoinCpuTime();
// Assumes we know exact size of model and matrix
// Empty model
ClpSimplex model2;
{
// Create space for 3 columns and 10000 rows
int numberRows = 10000;
int numberColumns = 3;
// This is fully dense - but would not normally be so
int numberElements = numberRows * numberColumns;
// Arrays will be set to default values
model2.resize(numberRows, numberColumns);
double * elements = new double [numberElements];
CoinBigIndex * starts = new CoinBigIndex [numberColumns+1];
int * rows = new int [numberElements];;
int * lengths = new int[numberColumns];
// Now fill in - totally unsafe but ....
// no need as defaults to 0.0 double * columnLower = model2.columnLower();
double * columnUpper = model2.columnUpper();
double * objective = model2.objective();
double * rowLower = model2.rowLower();
double * rowUpper = model2.rowUpper();
// Columns - objective was packed
for (k = 0; k < 2; k++) {
int iColumn = objIndex[k];
objective[iColumn] = objValue[k];
}
for (k = 0; k < numberColumns; k++)
columnUpper[k] = upper[k];
// Rows
for (k = 0; k < numberRows; k++) {
rowLower[k] = 1.0;
rowUpper[k] = 1.0;
}
// Now elements
double row2Value[] = {1.0, -5.0, 1.0};
CoinBigIndex put = 0;
for (k = 0; k < numberColumns; k++) {
starts[k] = put;
lengths[k] = numberRows;
double value = row2Value[k];
for (int i = 0; i < numberRows; i++) {
rows[put] = i;
elements[put] = value;
put++;
}
}
starts[numberColumns] = put;
// assign to matrix
CoinPackedMatrix * matrix = new CoinPackedMatrix(true, 0.0, 0.0);
matrix->assignMatrix(true, numberRows, numberColumns, numberElements,
elements, rows, starts, lengths);
ClpPackedMatrix * clpMatrix = new ClpPackedMatrix(matrix);
model2.replaceMatrix(clpMatrix, true);
printf("Time for 10000 addRow using hand written code is %g\n", CoinCpuTime() - time1);
// If matrix is really big could switch off creation of row copy
// model2.setSpecialOptions(256);
}
model2.dual();
model2.writeMps("a.mps");
// Print column solution
int numberColumns = model.numberColumns();
// Alternatively getColSolution()
double * columnPrimal = model.primalColumnSolution();
// Alternatively getReducedCost()
double * columnDual = model.dualColumnSolution();
// Alternatively getColLower()
double * columnLower = model.columnLower();
// Alternatively getColUpper()
double * columnUpper = model.columnUpper();
// Alternatively getObjCoefficients()
double * columnObjective = model.objective();
int iColumn;
std::cout << " Primal Dual Lower Upper Cost"
<< std::endl;
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
double value;
std::cout << std::setw(6) << iColumn << " ";
value = columnPrimal[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = columnDual[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = columnLower[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = columnUpper[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = columnObjective[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
std::cout << std::endl;
}
std::cout << "--------------------------------------" << std::endl;
// Test CoinAssert
std::cout << "If Clp compiled without NDEBUG below should give assert, if with NDEBUG or COIN_ASSERT CoinError" << std::endl;
model = modelSave;
model.deleteRows(2, del);
// Deliberate error
model.deleteColumns(1, del + 2);
// Now use build +-1
CoinBuild buildObject3;
time1 = CoinCpuTime();
for (k = 0; k < 10000; k++) {
int row2Index[] = {0, 1, 2};
double row2Value[] = {1.0, -1.0, 1.0};
buildObject3.addRow(3, row2Index, row2Value,
1.0, 1.0);
}
model.addRows(buildObject3, true);
} catch (CoinError e) {
e.print();
if (e.lineNumber() >= 0)
std::cout << "This was from a CoinAssert" << std::endl;
}
#else
printf("addRows not available with COIN_BIG_INDEX=2\n");
#endif
return 0;
}