forked from coin-or/Clp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiis.cpp
299 lines (293 loc) · 9.37 KB
/
iis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
Copyright (C) 2003, International Business Machines Corporation and others.
All Rights Reserved.
This sample program is designed to illustrate programming techniques
using CoinLP, has not been thoroughly tested and comes without any
warranty whatsoever.
You may copy, modify and distribute this sample program without any
restrictions whatsoever and without any payment to anyone.
*/
/* Find an irreducible infeasible subsytem.
This is not trying to be fast - this implementation is
really trying to find the maximum feasible subsystem
*/
#include "ClpSimplex.hpp"
#include "CoinSort.hpp"
#include "CoinHelperFunctions.hpp"
#include "CoinTime.hpp"
#include <iomanip>
int main(int argc, const char *argv[])
{
ClpSimplex model;
int status;
if (argc < 2) {
printf("please give a model\n");
status=1;
} else {
status = model.readMps(argv[1], true);
}
if (status)
exit(10);
// check infeasible
model.initialSolve();
if (model.problemStatus()==0) {
printf("Problem is feasible - nothing to do\n");
exit(11);
}
double * rowLower = model.rowLower();
double * rowUpper = model.rowUpper();
int numberColumns = model.numberColumns();
int numberRows = model.numberRows();
if (model.numberPrimalInfeasibilities()==1) {
const double * rowActivity = model.primalRowSolution();
for (int iRow = 0; iRow < numberRows; iRow++) {
if (rowActivity[iRow]<rowLower[iRow]-1.0e-5||
rowActivity[iRow]>rowUpper[iRow]+1.0e-5) {
printf("The following one row is the IIS\n");
printf("%d %s\n",iRow,model.getRowName(iRow).c_str());
return 0;
}
}
}
// This example only looks at constraints
// add infeasibility slacks
ClpSimplex model2(model);
double time1 = CoinCpuTime();
int nAdded=0;
CoinBigIndex * starts = new CoinBigIndex [2*numberRows+1];
int * rows = new int [2*numberRows+1];
double * elements = new double [2*numberRows];
double * newObjective = new double [2*numberRows];
memset(model2.objective(),0,numberColumns*sizeof(double));
for (int iRow = 0; iRow < numberRows; iRow++) {
if (rowLower[iRow]>-1.0e30) {
rows[nAdded]=iRow;
elements[nAdded++]=1.0;
}
if (rowUpper[iRow]<1.0e30) {
rows[nAdded]=iRow;
elements[nAdded++]=-1.0;
}
}
rows[nAdded]=-1; // so can test if two slacks for a row
starts[0]=0;
#define OBJ 10000.0
for (int i=0;i<nAdded;i++) {
starts[i+1]=i+1;
newObjective[i]=OBJ;
}
model2.addColumns(nAdded,NULL,NULL,newObjective,starts,rows,elements);
delete [] newObjective;
delete [] starts;
delete [] elements;
int numberColumns2=numberColumns+nAdded;
rowLower = model2.rowLower();
rowUpper = model2.rowUpper();
// solve
model2.allSlackBasis();
model2.dual();
printf("Initial sum of infeasibilities is %g\n",model2.objectiveValue()/OBJ);
if (model2.numberPrimalInfeasibilities()) {
printf("ouch\n");
model2.writeMps("bad.mps");
abort();
}
model2.setLogLevel(0);
model2.setInfeasibilityCost(1.0e15);
//#define SWITCH_OFF_SCALING
#ifdef SWITCH_OFF_SCALING
model2.scaling(0);
#endif
int * coverRows = new int [numberRows];
int * candidateRows = new int [numberRows];
int * nextRows = new int [numberRows];
int nCover=0;
int nCandidate=0;
int outRow=9999;
const double * duals = model2.dualRowSolution();
for (int iRow=0;iRow<numberRows;iRow++) {
if (fabs(duals[iRow])>1.0e-5)
nextRows[nCandidate++]=iRow;
}
assert (nCandidate);
/* save basis info -
we could reduce problem size each time but
normally not many passes needed */
unsigned char * statusArray = new unsigned char [numberColumns2+numberRows];
double * solution = new double[numberColumns2];
memcpy(statusArray,model2.statusArray(),numberColumns2+numberRows);
memcpy(solution,model2.primalColumnSolution(),numberColumns2*sizeof(double));
double lastObjectiveValue = model2.objectiveValue();
double * objective = model2.objective();
int nSolves=0;
int nPass=0;
while (outRow>=0) {
memcpy(candidateRows,nextRows,nCandidate*sizeof(int));
double sumInf=COIN_DBL_MAX;
int nInf=numberColumns2;
bool badAccuracy=false;
outRow=-1;
nPass++;
for (int j=0;j<nCandidate;j++) {
memcpy(model2.statusArray(),statusArray,numberColumns2+numberRows);
memcpy(model2.primalColumnSolution(),solution,numberColumns2*sizeof(double));
int iRow=candidateRows[j];
/* One can free rows or zero out costs -
zeroing out costs is cleaner from basis */
#define ZAP_COSTS
#ifdef ZAP_COSTS
// zero cost and solve
int iColumn0=-1;
int iColumn1=-1;
for (int i=0;i<nAdded;i++) {
if (rows[i]==iRow) {
iColumn0=i+numberColumns;
objective[iColumn0]=0.0;
if (rows[i+1]==iRow) {
iColumn1=i+1+numberColumns;
objective[iColumn1]=0.0;
}
break;
}
}
model2.primal(1);
if (model2.objectiveValue()>lastObjectiveValue+1.0e-1) {
if (!badAccuracy)
printf("Sum infeasibilities increased from %g to %g! - problems with accuracy\n",
lastObjectiveValue/OBJ,model2.objectiveValue()/OBJ);
badAccuracy=true;
}
nSolves++;
objective[iColumn0]=OBJ;
if (iColumn1>=0)
objective[iColumn1]=OBJ;
#else
// delete and solve
double lower=rowLower[iRow];
double upper=rowUpper[iRow];
rowLower[iRow]=-COIN_DBL_MAX;
rowUpper[iRow]=COIN_DBL_MAX;
model2.primal(1);
if (model2.objectiveValue()>lastObjectiveValue+1.0e-1) {
if (!badAccuracy)
printf("Sum infeasibilities increased from %g to %g! - problems with accuracy\n",
lastObjectiveValue/OBJ,model2.objectiveValue()/OBJ);
badAccuracy=true;
}
nSolves++;
rowLower[iRow]=lower;
rowUpper[iRow]=upper;
#endif
double objectiveValue = model2.objectiveValue();
if (objectiveValue<sumInf+1.0e-3) {
int n=0;
for (int i=numberColumns;i<numberColumns2;i++) {
if (solution[i]>1.0e-5)
n++;
}
if (objectiveValue>1.0e-6) {
if (objectiveValue<sumInf-1.0e-3||n<nInf) {
sumInf=objectiveValue;
outRow=iRow;
nInf=n;
}
} else {
coverRows[nCover++]=iRow;
printf("Pass %d (%d solves, %.2f seconds) - candidate %d (%s) added - Final as feasible\n",nPass,nSolves,CoinCpuTime()-time1,iRow,
model2.getRowName(iRow).c_str());
outRow=-1;
break; // finished
}
}
}
if (outRow>=0) {
#ifdef ZAP_COSTS
int iColumn0=-1;
int iColumn1=-1;
for (int i=0;i<nAdded;i++) {
if (rows[i]==outRow) {
iColumn0=i+numberColumns;
objective[iColumn0]=0.0;
if (rows[i+1]==outRow) {
iColumn1=i+1+numberColumns;
objective[iColumn1]=0.0;
}
break;
}
}
#else
rowLower[outRow]=-COIN_DBL_MAX;
rowUpper[outRow]=COIN_DBL_MAX;
#endif
coverRows[nCover++]=outRow;
memcpy(model2.statusArray(),statusArray,numberColumns2+numberRows);
memcpy(model2.primalColumnSolution(),solution,numberColumns2*sizeof(double));
model2.primal(1);
if (model2.objectiveValue()>lastObjectiveValue+1.0e-1) {
if (!badAccuracy)
printf("Sum infeasibilities increased from %g to %g on cover solve! - problems with accuracy\n",
lastObjectiveValue/OBJ,model2.objectiveValue()/OBJ);
badAccuracy=true;
}
lastObjectiveValue=model2.objectiveValue();
memcpy(statusArray,model2.statusArray(),numberColumns2+numberRows);
memcpy(solution,model2.primalColumnSolution(),numberColumns2*sizeof(double));
nCandidate=0;
for (int iRow=0;iRow<numberRows;iRow++) {
if (fabs(duals[iRow])>1.0e-6)
nextRows[nCandidate++]=iRow;
}
printf("Pass %d (%d solves, %.2f seconds) - candidate %d (%s) added - infeasibility %g (%d)\n",
nPass,nSolves,CoinCpuTime()-time1,outRow,
model2.getRowName(outRow).c_str(),
model2.objectiveValue()/OBJ,nInf);
}
}
model2=model;
model2.deleteRows(nCover,coverRows);
// make sure not unbounded
memset(model2.objective(),0,numberColumns*sizeof(double));
model2.dual();
printf("The following %d rows cover the IIS\n",nCover);
for (int i=0;i<nCover;i++) {
int iRow=coverRows[i];
printf("%d %s\n",iRow,model.getRowName(iRow).c_str());
}
if (model2.problemStatus()) {
printf("We seem to have an accuracy problem??\n");
} else {
// see if we can do better
CoinPackedMatrix * matrix = model.matrix();
// get row copy
CoinPackedMatrix rowCopy = *matrix;
rowCopy.reverseOrdering();
const int * column = rowCopy.getIndices();
const int * rowLength = rowCopy.getVectorLengths();
const CoinBigIndex * rowStart = rowCopy.getVectorStarts();
const double * element = rowCopy.getElements();
numberRows=model2.numberRows();
memcpy(statusArray,model2.statusArray(),numberColumns+numberRows);
memcpy(solution,model2.primalColumnSolution(),numberColumns*sizeof(double));
int lastRow=numberRows-1;
for (int i=0;i<nCover;i++) {
memcpy(model2.statusArray(),statusArray,numberColumns+numberRows);
memcpy(model2.primalColumnSolution(),solution,numberColumns*sizeof(double));
int iRow=coverRows[i];
model2.addRow(rowLength[iRow],
column+rowStart[iRow],element+rowStart[iRow],
model.rowLower()[iRow],model.rowUpper()[iRow]);
model2.dual();
if (!model2.problemStatus()) {
printf("%d %s should not be in cover\n",iRow,model.getRowName(iRow).c_str());
}
model2.deleteRows(1,&lastRow);
}
}
delete [] rows;
delete [] statusArray;
delete [] solution;
delete [] candidateRows;
delete [] nextRows;
delete [] coverRows;
return 0;
}