forked from coin-or/Clp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpiece.cpp
276 lines (253 loc) · 10.3 KB
/
piece.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
// Copyright (C) 2003, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
/* This simple example takes a matrix read in by CoinMpsIo,
deletes every second column and solves the resulting problem */
#include "ClpSimplex.hpp"
#include "ClpNonLinearCost.hpp"
#include "CoinMpsIO.hpp"
#include <iomanip>
int main(int argc, const char *argv[])
{
int status;
CoinMpsIO m;
if (argc < 2)
status = m.readMps("model1.mps", "");
else
status = m.readMps(argv[1], "");
if (status) {
fprintf(stdout, "Bad readMps %s\n", argv[1]);
exit(1);
}
// Load up model1 - so we can use known good solution
ClpSimplex model1;
model1.loadProblem(*m.getMatrixByCol(),
m.getColLower(), m.getColUpper(),
m.getObjCoefficients(),
m.getRowLower(), m.getRowUpper());
model1.dual();
// Get data arrays
const CoinPackedMatrix * matrix1 = m.getMatrixByCol();
const CoinBigIndex * start1 = matrix1->getVectorStarts();
const int * length1 = matrix1->getVectorLengths();
const int * row1 = matrix1->getIndices();
const double * element1 = matrix1->getElements();
const double * columnLower1 = m.getColLower();
const double * columnUpper1 = m.getColUpper();
const double * rowLower1 = m.getRowLower();
const double * rowUpper1 = m.getRowUpper();
const double * objective1 = m.getObjCoefficients();
int numberColumns = m.getNumCols();
int numberRows = m.getNumRows();
CoinBigIndex numberElements = m.getNumElements();
// Get new arrays
int numberColumns2 = (numberColumns + 1);
CoinBigIndex * start2 = new CoinBigIndex[numberColumns2+1];
int * row2 = new int[numberElements];
double * element2 = new double[numberElements];
int * segstart = new int[numberColumns+1];
double * breakpt = new double[2*numberColumns];
double * slope = new double[2*numberColumns];
double * objective2 = new double[numberColumns2];
double * columnLower2 = new double[numberColumns2];
double * columnUpper2 = new double[numberColumns2];
double * rowLower2 = new double[numberRows];
double * rowUpper2 = new double[numberRows];
// We need to modify rhs
memcpy(rowLower2, rowLower1, numberRows * sizeof(double));
memcpy(rowUpper2, rowUpper1, numberRows * sizeof(double));
double objectiveOffset = 0.0;
// For new solution
double * newSolution = new double [numberColumns];
const double * oldSolution = model1.primalColumnSolution();
int iColumn;
for (iColumn = 0; iColumn < numberColumns; iColumn++)
printf("%g ", oldSolution[iColumn]);
printf("\n");
numberColumns2 = 0;
numberElements = 0;
start2[0] = 0;
int segptr = 0;
segstart[0] = 0;
// Now check for duplicates
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
// test if column identical to next column
bool ifcopy = 1;
if (iColumn < numberColumns - 1) {
int joff = length1[iColumn];
for (CoinBigIndex j = start1[iColumn]; j < start1[iColumn] + length1[iColumn]; j++) {
if (row1[j] != row1[j+joff]) {
ifcopy = 0;
break;
}
if (element1[j] != element1[j+joff]) {
ifcopy = 0;
break;
}
}
} else {
ifcopy = 0;
}
//if (iColumn>47||iColumn<45)
//ifcopy=0;
if (ifcopy) {
double lo1 = columnLower1[iColumn];
double up1 = columnUpper1[iColumn];
double obj1 = objective1[iColumn];
double sol1 = oldSolution[iColumn];
double lo2 = columnLower1[iColumn+1];
double up2 = columnUpper1[iColumn+1];
double obj2 = objective1[iColumn+1];
double sol2 = oldSolution[iColumn+1];
if (fabs(up1 - lo2) > 1.0e-8) {
// try other way
double temp;
temp = lo1;
lo1 = lo2;
lo2 = temp;
temp = up1;
up1 = up2;
up2 = temp;
temp = obj1;
obj1 = obj2;
obj2 = temp;
temp = sol1;
sol1 = sol2;
sol2 = temp;
assert(fabs(up1 - lo2) < 1.0e-8);
}
// subtract out from rhs
double fixed = up1;
// do offset
objectiveOffset += fixed * obj2;
for (CoinBigIndex j = start1[iColumn]; j < start1[iColumn] + length1[iColumn]; j++) {
int iRow = row1[j];
double value = element1[j];
if (rowLower2[iRow] > -1.0e30)
rowLower2[iRow] -= value * fixed;
if (rowUpper2[iRow] < 1.0e30)
rowUpper2[iRow] -= value * fixed;
}
newSolution[numberColumns2] = fixed;
if (fabs(sol1 - fixed) > 1.0e-8)
newSolution[numberColumns2] = sol1;
if (fabs(sol2 - fixed) > 1.0e-8)
newSolution[numberColumns2] = sol2;
columnLower2[numberColumns2] = lo1;
columnUpper2[numberColumns2] = up2;
objective2[numberColumns2] = 0.0;
breakpt[segptr] = lo1;
slope[segptr++] = obj1;
breakpt[segptr] = lo2;
slope[segptr++] = obj2;
for (CoinBigIndex j = start1[iColumn]; j < start1[iColumn] + length1[iColumn]; j++) {
row2[numberElements] = row1[j];
element2[numberElements++] = element1[j];
}
start2[++numberColumns2] = numberElements;
breakpt[segptr] = up2;
slope[segptr++] = COIN_DBL_MAX;
segstart[numberColumns2] = segptr;
iColumn++; // skip next column
} else {
// normal column
columnLower2[numberColumns2] = columnLower1[iColumn];
columnUpper2[numberColumns2] = columnUpper1[iColumn];
objective2[numberColumns2] = objective1[iColumn];
breakpt[segptr] = columnLower1[iColumn];
slope[segptr++] = objective1[iColumn];
for (CoinBigIndex j = start1[iColumn]; j < start1[iColumn] + length1[iColumn]; j++) {
row2[numberElements] = row1[j];
element2[numberElements++] = element1[j];
}
newSolution[numberColumns2] = oldSolution[iColumn];
start2[++numberColumns2] = numberElements;
breakpt[segptr] = columnUpper1[iColumn];
slope[segptr++] = COIN_DBL_MAX;
segstart[numberColumns2] = segptr;
}
}
// print new number of columns, elements
printf("New number of columns = %d\n", numberColumns2);
printf("New number of elements = %d\n", numberElements);
printf("Objective offset is %g\n", objectiveOffset);
ClpSimplex model;
// load up
model.loadProblem(numberColumns2, numberRows,
start2, row2, element2,
columnLower2, columnUpper2,
objective2,
rowLower2, rowUpper2);
model.scaling(0);
model.setDblParam(ClpObjOffset, -objectiveOffset);
// Create nonlinear objective
int returnCode = model.createPiecewiseLinearCosts(segstart, breakpt, slope);
if( returnCode != 0 )
{
printf("Unexpected return code %d from model.createPiecewiseLinearCosts()\n", returnCode);
return returnCode;
}
// delete
delete [] segstart;
delete [] breakpt;
delete [] slope;
delete [] start2;
delete [] row2 ;
delete [] element2;
delete [] objective2;
delete [] columnLower2;
delete [] columnUpper2;
delete [] rowLower2;
delete [] rowUpper2;
// copy in solution - (should be optimal)
model.allSlackBasis();
memcpy(model.primalColumnSolution(), newSolution, numberColumns2 * sizeof(double));
//memcpy(model.columnLower(),newSolution,numberColumns2*sizeof(double));
//memcpy(model.columnUpper(),newSolution,numberColumns2*sizeof(double));
delete [] newSolution;
//model.setLogLevel(63);
const double * solution = model.primalColumnSolution();
double * saveSol = new double[numberColumns2];
memcpy(saveSol, solution, numberColumns2 * sizeof(double));
for (iColumn = 0; iColumn < numberColumns2; iColumn++)
printf("%g ", solution[iColumn]);
printf("\n");
// solve
model.primal(1);
for (iColumn = 0; iColumn < numberColumns2; iColumn++) {
if (fabs(solution[iColumn] - saveSol[iColumn]) > 1.0e-3)
printf(" ** was %g ", saveSol[iColumn]);
printf("%g ", solution[iColumn]);
}
printf("\n");
model.primal(1);
for (iColumn = 0; iColumn < numberColumns2; iColumn++) {
if (fabs(solution[iColumn] - saveSol[iColumn]) > 1.0e-3)
printf(" ** was %g ", saveSol[iColumn]);
printf("%g ", solution[iColumn]);
}
printf("\n");
model.primal();
for (iColumn = 0; iColumn < numberColumns2; iColumn++) {
if (fabs(solution[iColumn] - saveSol[iColumn]) > 1.0e-3)
printf(" ** was %g ", saveSol[iColumn]);
printf("%g ", solution[iColumn]);
}
printf("\n");
model.allSlackBasis();
for (iColumn = 0; iColumn < numberColumns2; iColumn++) {
if (fabs(solution[iColumn] - saveSol[iColumn]) > 1.0e-3)
printf(" ** was %g ", saveSol[iColumn]);
printf("%g ", solution[iColumn]);
}
printf("\n");
model.setLogLevel(63);
model.primal();
for (iColumn = 0; iColumn < numberColumns2; iColumn++) {
if (fabs(solution[iColumn] - saveSol[iColumn]) > 1.0e-3)
printf(" ** was %g ", saveSol[iColumn]);
printf("%g ", solution[iColumn]);
}
printf("\n");
return 0;
}