forked from ahmetcecen/Tortuosity-MATLAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dijkstra.cpp
1054 lines (841 loc) · 30 KB
/
dijkstra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* dijkstra.cpp
*
* [D, P] = DIJKSTRA(G, S)
*
* This function computes the shortest distance tree(s) from one (or more)
* source node(s) in a graph.
*
* G is a sparse matrix where element (i,j) contains the cost of going
* from node i to node j in the graph. That is, G contains the edge
* weights or distances between nodes.
*
* Note: Matlab's convention is that the absence of an element in a sparse
* matrix means edge weight = 0. However, in this function, the lack of an
* entry in the sparse matrix is understood as a lack of edge (or edge
* weight = Inf).
*
* S is a vector with a list of source nodes. A shortest path tree will be
* computed for
*
* D, P are matrices where each row corresponds to a source node in S. D
* is the shortest distance from each node to the source node.
*
* P is the predecessor of each node in the shortest path tree.
*
* Because this function is implemented as a MEX function in C++,
* takes a sparse matrix at the input, and uses a Fibonacci heap
* implementation [1], it is well suited for huge sparse graphs.
*
* [1]
* http://www.ahhf45.com/info/Data_Structures_and_Algorithms/resources/technical_artile/fibonacci_heap/fibonacci.htm
*
* Author: Mark Steyvers, Stanford University, 19 Dec 2000.
*
* Modified by Ramon Casero <[email protected]>, University of Oxford,
* 23 Mar 2010 to also provide the predecessor list at the output.
*
* This file is distributed as a derivative work of a third-party function
* with project Gerardus.
*
* http://code.google.com/p/gerardus/
*
*
* To compile dijkstra.cpp with mex from Matlab's GUI:
*
* 32 bit
* >> mex dijkstra.cpp
*
* 64 bit
* >> mex -largeArrayDims dijkstra.cpp
*
**/
#include <math.h>
#include "mex.h"
extern void _main();
#include <stdlib.h>
// #include <iostream.h>
#include <iostream>
#include <stdio.h>
// #include <conio.h>
#include <ctype.h>
#include <memory.h>
#include <time.h>
#include "fibheap.h"
#define _FIBHEAP_CPP
//***************************************************************************
// This Fibonacci heap implementation is Copyright (c) 1996 by John Boyer.
// See the header file for free usage information.
//***************************************************************************
//***************************************************************************
// The classes in this package are designed to allow the package user
// to quickly and easily develop applications that require a heap data
// structure. Using amortized analysis, the asymptotically fastest heap
// data structure is the Fibonacci heap. The constants are a little
// high so the real speed gain will not be seen until larger data sets
// are required, but in most cases, if the data set is small, then the
// run-time will be neglible anyway.
//
// To use this heap class you need do only two things. First, subclass
// the FibHeapNode class to create the class of objects that you'd
// like to store in a heap. Second, create an instance of the FibHeap
// class, which can then be used to Insert(), ExtractMin(), etc.,
// instances of your FibHeapNode subclass. Notice that you don't need
// to create a subclass of the FibHeap class.
//
// The application-specific data object that you'd like to store in a heap
// will have a key value. In the class that you derive from FibHeapNode,
// you will need to define the key structure then provide assignment (=),
// equality (==) and less-than operators and a destructor. These functions
// are declared virtual so that the code in the FibHeap class can compare,
// assign and destroy your objects by calling on your code.
//
// The overloaded operators in your defined class MUST call functions in
// the Fibonacci heap node class first. For assignment, the function
// FHN_Assign() should be called before code that deals with the copy of
// the key value. For comparison operators, the function FHN_Cmp() should
// appear first. If it returns 0, then keys can be compared as normal.
// The following indicates what the three most common operators must do
// based on the return value of FHN_Cmp()
//
// For ==, if zero returned, then compare keys
// if non-zero X returned, then return 0
// For <, if zero returned, then compare keys
// if non-zero X returned, then return X<0?1:0
// For >, if zero returned, then compare keys
// if non-zero X returned, then return X>0?1:0
//***************************************************************************
#include <stdlib.h>
#include <iostream>
#include <stdio.h>
#include "fibheap.h"
//***************************************************************************
//=========================================================
// FibHeapNode Constructor
//=========================================================
//***************************************************************************
FibHeapNode::FibHeapNode()
{
Left = Right = Parent = Child = NULL;
Degree = Mark = NegInfinityFlag = 0;
}
//=========================================================
// FibHeapNode Destructor
//
// Body is empty, but declaration is required in order to
// force virtual. This will ensure that FibHeap class
// calls derived class destructors.
//=========================================================
FibHeapNode::~FibHeapNode()
{
}
//=========================================================
// FHN_Assign()
//
// To be used as first step of an assignment operator in a
// derived class. The derived class will handle assignment
// of key value, and this function handles copy of the
// NegInfinityFlag (which overrides the key value if it is
// set).
//=========================================================
void FibHeapNode::FHN_Assign(FibHeapNode& RHS)
{
NegInfinityFlag = RHS.NegInfinityFlag;
}
//=========================================================
// FHN_Cmp()
//
// To be used as the first step of ALL comparators in a
// derived class.
//
// Compares the relative state of the two neg. infinity
// flags. Note that 'this' is the left hand side. If
// LHS neg. infinity is set, then it will be less than (-1)
// the RHS unless RHS neg. infinity flag is also set.
// Only if function returns 0 should the key comparison
// defined in the derived class be performed, e.g.
//
// For ==, if zero returned, then compare keys
// if non-zero X returned, then return 0
// For <, if zero returned, then compare keys
// if non-zero X returned, then return X<0?1:0
// For >, if zero returned, then compare keys
// if non-zero X returned, then return X>0?1:0
//=========================================================
int FibHeapNode::FHN_Cmp(FibHeapNode& RHS)
{
if (NegInfinityFlag)
return RHS.NegInfinityFlag ? 0 : -1;
return RHS.NegInfinityFlag ? 1 : 0;
}
//========================================================================
// We do, on occasion, compare and assign objects of type FibHeapNode, but
// only when the NegInfinityFlag is set. See for example FibHeap::Delete().
//
// Also, these functions exemplify what a derived class should do.
//========================================================================
void FibHeapNode::operator =(FibHeapNode& RHS)
{
FHN_Assign(RHS);
// Key assignment goes here in derived classes
}
int FibHeapNode::operator ==(FibHeapNode& RHS)
{
if (FHN_Cmp(RHS)) return 0;
// Key compare goes here in derived classes
return 1;
}
int FibHeapNode::operator <(FibHeapNode& RHS)
{
int X;
if ((X=FHN_Cmp(RHS)) != 0)
return X < 0 ? 1 : 0;
// Key compare goes here in derived classes
return 0;
}
//=========================================================
// Print()
//=========================================================
void FibHeapNode::Print()
{
if (NegInfinityFlag)
std::cout << "-inf.";
}
//***************************************************************************
//===========================================================================
// FibHeap Constructor
//===========================================================================
//***************************************************************************
FibHeap::FibHeap()
{
MinRoot = NULL;
NumNodes = NumTrees = NumMarkedNodes = 0;
ClearHeapOwnership();
}
//===========================================================================
// FibHeap Destructor
//===========================================================================
FibHeap::~FibHeap()
{
FibHeapNode *Temp;
if (GetHeapOwnership())
{
while (MinRoot != NULL)
{
Temp = ExtractMin();
delete Temp;
}
}
}
//===========================================================================
// Insert() - O(1) actual; O(2) amortized
//
// I am using O(2) here to indicate that although Insert() is
// constant time, its amortized rating is more costly because some
// of the work of inserting is done by other operations such as
// ExtractMin(), which is where tree-balancing occurs.
//
// The child pointer is deliberately not set to NULL because Insert()
// is also used internally to help put whole trees onto the root list.
//===========================================================================
void FibHeap::Insert(FibHeapNode *NewNode)
{
if (NewNode == NULL) return;
// If the heap is currently empty, then new node becomes singleton
// circular root list
if (MinRoot == NULL)
MinRoot = NewNode->Left = NewNode->Right = NewNode;
else
{
// Pointers from NewNode set to insert between MinRoot and MinRoot->Right
NewNode->Right = MinRoot->Right;
NewNode->Left = MinRoot;
// Set Pointers to NewNode
NewNode->Left->Right = NewNode;
NewNode->Right->Left = NewNode;
// The new node becomes new MinRoot if it is less than current MinRoot
if (*NewNode < *MinRoot)
MinRoot = NewNode;
}
// We have one more node in the heap, and it is a tree on the root list
NumNodes++;
NumTrees++;
NewNode->Parent = NULL;
}
//===========================================================================
// Union() - O(1) actual; O(1) amortized
//===========================================================================
void FibHeap::Union(FibHeap *OtherHeap)
{
FibHeapNode *Min1, *Min2, *Next1, *Next2;
if (OtherHeap == NULL || OtherHeap->MinRoot == NULL) return;
// We join the two circular lists by cutting each list between its
// min node and the node after the min. This code just pulls those
// nodes into temporary variables so we don't get lost as changes
// are made.
Min1 = MinRoot;
Min2 = OtherHeap->MinRoot;
Next1 = Min1->Right;
Next2 = Min2->Right;
// To join the two circles, we join the minimum nodes to the next
// nodes on the opposite chains. Conceptually, it looks like the way
// two bubbles join to form one larger bubble. They meet at one point
// of contact, then expand out to make the bigger circle.
Min1->Right = Next2;
Next2->Left = Min1;
Min2->Right = Next1;
Next1->Left = Min2;
// Choose the new minimum for the heap
if (*Min2 < *Min1)
MinRoot = Min2;
// Set the amortized analysis statistics and size of the new heap
NumNodes += OtherHeap->NumNodes;
NumMarkedNodes += OtherHeap->NumMarkedNodes;
NumTrees += OtherHeap->NumTrees;
// Complete the union by setting the other heap to emptiness
// then destroying it
OtherHeap->MinRoot = NULL;
OtherHeap->NumNodes =
OtherHeap->NumTrees =
OtherHeap->NumMarkedNodes = 0;
delete OtherHeap;
}
//===========================================================================
// Minimum - O(1) actual; O(1) amortized
//===========================================================================
FibHeapNode *FibHeap::Minimum()
{
return MinRoot;
}
//===========================================================================
// ExtractMin() - O(n) worst-case actual; O(lg n) amortized
//===========================================================================
FibHeapNode *FibHeap::ExtractMin()
{
FibHeapNode *Result;
FibHeap *ChildHeap = NULL;
// Remove minimum node and set MinRoot to next node
if ((Result = Minimum()) == NULL)
return NULL;
MinRoot = Result->Right;
Result->Right->Left = Result->Left;
Result->Left->Right = Result->Right;
Result->Left = Result->Right = NULL;
NumNodes --;
if (Result->Mark)
{
NumMarkedNodes --;
Result->Mark = 0;
}
Result->Degree = 0;
// Attach child list of Minimum node to the root list of the heap
// If there is no child list, then do no work
if (Result->Child == NULL)
{
if (MinRoot == Result)
MinRoot = NULL;
}
// If MinRoot==Result then there was only one root tree, so the
// root list is simply the child list of that node (which is
// NULL if this is the last node in the list)
else if (MinRoot == Result)
MinRoot = Result->Child;
// If MinRoot is different, then the child list is pushed into a
// new temporary heap, which is then merged by Union() onto the
// root list of this heap.
else
{
ChildHeap = new FibHeap();
ChildHeap->MinRoot = Result->Child;
}
// Complete the disassociation of the Result node from the heap
if (Result->Child != NULL)
Result->Child->Parent = NULL;
Result->Child = Result->Parent = NULL;
// If there was a child list, then we now merge it with the
// rest of the root list
if (ChildHeap)
Union(ChildHeap);
// Consolidate heap to find new minimum and do reorganize work
if (MinRoot != NULL)
_Consolidate();
// Return the minimum node, which is now disassociated with the heap
// It has Left, Right, Parent, Child, Mark and Degree cleared.
return Result;
}
//===========================================================================
// DecreaseKey() - O(lg n) actual; O(1) amortized
//
// The O(lg n) actual cost stems from the fact that the depth, and
// therefore the number of ancestor parents, is bounded by O(lg n).
//===========================================================================
int FibHeap::DecreaseKey(FibHeapNode *theNode, FibHeapNode& NewKey)
{
FibHeapNode *theParent;
if (theNode==NULL || *theNode < NewKey)
return NOTOK;
*theNode = NewKey;
theParent = theNode->Parent;
if (theParent != NULL && *theNode < *theParent)
{
_Cut(theNode, theParent);
_CascadingCut(theParent);
}
if (*theNode < *MinRoot)
MinRoot = theNode;
return OK;
}
//===========================================================================
// Delete() - O(lg n) amortized; ExtractMin() dominates
//
// Notice that if we don't own the heap nodes, then we clear the
// NegInfinityFlag on the deleted node. Presumably, the programmer
// will be reusing the node.
//===========================================================================
int FibHeap::Delete(FibHeapNode *theNode)
{
FibHeapNode Temp;
int Result;
if (theNode == NULL) return NOTOK;
Temp.NegInfinityFlag = 1;
Result = DecreaseKey(theNode, Temp);
if (Result == OK)
if (ExtractMin() == NULL)
Result = NOTOK;
if (Result == OK)
{
if (GetHeapOwnership())
delete theNode;
else theNode->NegInfinityFlag = 0;
}
return Result;
}
//===========================================================================
void FibHeap::_Exchange(FibHeapNode*& N1, FibHeapNode*& N2)
{
FibHeapNode *Temp;
Temp = N1;
N1 = N2;
N2 = Temp;
}
//===========================================================================
// Consolidate()
//
// Internal function that reorganizes heap as part of an ExtractMin().
// We must find new minimum in heap, which could be anywhere along the
// root list. The search could be O(n) since all nodes could be on
// the root list. So, we reorganize the tree into more of a binomial forest
// structure, and then find the new minimum on the consolidated O(lg n) sized
// root list, and in the process set each Parent pointer to NULL, and count
// the number of resulting subtrees.
//
// Note that after a list of n inserts, there will be n nodes on the root
// list, so the first ExtractMin() will be O(n) regardless of whether or
// not we consolidate. However, the consolidation causes subsequent
// ExtractMin() operations to be O(lg n). Furthermore, the extra cost of
// the first ExtractMin() is covered by the higher amortized cost of
// Insert(), which is the real governing factor in how costly the first
// ExtractMin() will be.
//===========================================================================
void FibHeap::_Consolidate()
{
FibHeapNode *x, *y, *w;
FibHeapNode *A[1+8*sizeof(long)]; // 1+lg(n)
int I=0, Dn = 1+8*sizeof(long);
short d;
// Initialize the consolidation detection array
for (I=0; I < Dn; I++)
A[I] = NULL;
// We need to loop through all elements on root list.
// When a collision of degree is found, the two trees
// are consolidated in favor of the one with the lesser
// element key value. We first need to break the circle
// so that we can have a stopping condition (we can't go
// around until we reach the tree we started with
// because all root trees are subject to becoming a
// child during the consolidation).
MinRoot->Left->Right = NULL;
MinRoot->Left = NULL;
w = MinRoot;
do {
//cout << "Top of Consolidate's loop\n";
//Print(w);
x = w;
d = x->Degree;
w = w->Right;
// We need another loop here because the consolidated result
// may collide with another large tree on the root list.
while (A[d] != NULL)
{
y = A[d];
if (*y < *x)
_Exchange(x, y);
if (w == y) w = y->Right;
_Link(y, x);
A[d] = NULL;
d++;
//cout << "After a round of Linking\n";
//Print(x);
}
A[d] = x;
} while (w != NULL);
// Now we rebuild the root list, find the new minimum,
// set all root list nodes' parent pointers to NULL and
// count the number of subtrees.
MinRoot = NULL;
NumTrees = 0;
for (I = 0; I < Dn; I++)
if (A[I] != NULL)
_AddToRootList(A[I]);
}
//===========================================================================
// The node y is removed from the root list and becomes a subtree of node x.
//===========================================================================
void FibHeap::_Link(FibHeapNode *y, FibHeapNode *x)
{
// Remove node y from root list
if (y->Right != NULL)
y->Right->Left = y->Left;
if (y->Left != NULL)
y->Left->Right = y->Right;
NumTrees--;
// Make node y a singleton circular list with a parent of x
y->Left = y->Right = y;
y->Parent = x;
// If node x has no children, then list y is its new child list
if (x->Child == NULL)
x->Child = y;
// Otherwise, node y must be added to node x's child list
else
{
y->Left = x->Child;
y->Right = x->Child->Right;
x->Child->Right = y;
y->Right->Left = y;
}
// Increase the degree of node x because it's now a bigger tree
x->Degree ++;
// Node y has just been made a child, so clear its mark
if (y->Mark) NumMarkedNodes--;
y->Mark = 0;
}
//===========================================================================
//===========================================================================
void FibHeap::_AddToRootList(FibHeapNode *x)
{
if (x->Mark) NumMarkedNodes --;
x->Mark = 0;
NumNodes--;
Insert(x);
}
//===========================================================================
// Remove node x from the child list of its parent node y
//===========================================================================
void FibHeap::_Cut(FibHeapNode *x, FibHeapNode *y)
{
if (y->Child == x)
y->Child = x->Right;
if (y->Child == x)
y->Child = NULL;
y->Degree --;
x->Left->Right = x->Right;
x->Right->Left = x->Left;
_AddToRootList(x);
}
//===========================================================================
// Cuts each node in parent list, putting successive ancestor nodes on the
// root list until we either arrive at the root list or until we find an
// ancestor that is unmarked. When a mark is set (which only happens during
// a cascading cut), it means that one child subtree has been lost; if a
// second subtree is lost later during another cascading cut, then we move
// the node to the root list so that it can be re-balanced on the next
// consolidate.
//===========================================================================
void FibHeap::_CascadingCut(FibHeapNode *y)
{
FibHeapNode *z = y->Parent;
while (z != NULL)
{
if (y->Mark == 0)
{
y->Mark = 1;
NumMarkedNodes++;
z = NULL;
}
else
{
_Cut(y, z);
y = z;
z = y->Parent;
}
}
}
class HeapNode : public FibHeapNode
{
double N;
long int IndexV;
public:
HeapNode() : FibHeapNode() { N = 0; };
virtual void operator =(FibHeapNode& RHS);
virtual int operator ==(FibHeapNode& RHS);
virtual int operator <(FibHeapNode& RHS);
virtual void operator =(double NewKeyVal );
virtual void Print();
double GetKeyValue() { return N; }; /* !!!! */
void SetKeyValue(double n) { N = n; };
long int GetIndexValue() { return IndexV; };
void SetIndexValue( long int v) { IndexV = v; };
};
void HeapNode::Print()
{
FibHeapNode::Print();
mexPrintf( "%f (%d)" , N , IndexV );
}
void HeapNode::operator =(double NewKeyVal)
{
HeapNode Temp;
Temp.N = N = NewKeyVal;
FHN_Assign(Temp);
}
void HeapNode::operator =(FibHeapNode& RHS)
{
FHN_Assign(RHS);
N = ((HeapNode&) RHS).N;
}
int HeapNode::operator ==(FibHeapNode& RHS)
{
if (FHN_Cmp(RHS)) return 0;
return N == ((HeapNode&) RHS).N ? 1 : 0;
}
int HeapNode::operator <(FibHeapNode& RHS)
{
int X;
if ((X=FHN_Cmp(RHS)) != 0)
return X < 0 ? 1 : 0;
return N < ((HeapNode&) RHS).N ? 1 : 0;
};
int IntCmp(const void *pA, const void *pB)
{
int A, B;
A = *((const int *) pA);
B = *((const int *) pB);
if (A < B) return -1;
if (A == B) return 0;
return 1;
}
void dodijk_sparse(
long int M,
long int N,
long int S,
long int *P, // parents
double *D, // distances
double *sr,
mwSize *irs,
mwSize *jcs,
HeapNode *A,
FibHeap *theHeap )
{
int finished;
long int i,startind,endind,whichneighbor,ndone,index,switchwith,closest,closesti;
long int *INDICES;
double closestD,arclength;
double INF,SMALL,olddist;
HeapNode *Min;
HeapNode Temp;
INF = mxGetInf();
SMALL = mxGetEps();
/* initialize */
for (i=0; i<M; i++)
{
if (i!=S) A[ i ] = (double) INF; else A[ i ] = (double) SMALL;
if (i!=S) D[ i ] = (double) INF; else D[ i ] = (double) SMALL;
theHeap->Insert( &A[i] );
A[ i ].SetIndexValue( (long int) i );
P[i] = 0;
}
// Insert 0 then extract it. This will cause the
// Fibonacci heap to get balanced.
theHeap->Insert(&Temp);
theHeap->ExtractMin();
/*theHeap->Print();
for (i=0; i<M; i++)
{
closest = A[ i ].GetIndexValue();
closestD = A[ i ].GetKeyValue();
mexPrintf( "Index at i=%d =%d value=%f\n" , i , closest , closestD );
}*/
/* loop over nonreached nodes */
finished = 0;
ndone = 0;
while ((finished==0) && (ndone < M))
{
// if ((ndone % 100) == 0) mexPrintf( "Done with node %d\n" , ndone );
Min = (HeapNode *) theHeap->ExtractMin();
closest = Min->GetIndexValue();
closestD = Min->GetKeyValue();
if ((closest<0) || (closest>=M)) mexErrMsgTxt( "Minimum Index out of bound..." );
//theHeap->Print();
// mexPrintf( "EXTRACTED MINIMUM NDone=%d S=%d closest=%d closestD=%f\n" , ndone , S , closest , closestD );//TT
//mexErrMsgTxt( "Exiting..." );
D[ closest ] = closestD;
if (closestD == INF) finished=1; else
{
/* add the closest to the determined list */
ndone++;
/* relax all nodes adjacent to closest */
startind = jcs[ closest ];
endind = jcs[ closest+1 ] - 1;
if (startind!=endind+1)
for (i=startind; i<=endind; i++)
{
whichneighbor = irs[ i ];
arclength = sr[ i ];
olddist = D[ whichneighbor ];
// mexPrintf( "INSPECT NEIGHBOR #%d olddist=%f newdist=%f\n" , whichneighbor , olddist , closestD+arclength );//TT
if ( olddist > ( closestD + arclength ))
{
D[ whichneighbor ] = closestD + arclength;
P[whichneighbor] = closest;
Temp = A[ whichneighbor ];
Temp.SetKeyValue( closestD + arclength );
theHeap->DecreaseKey( &A[ whichneighbor ], Temp );
// mexPrintf( "UPDATING NODE #%d olddist=%f newdist=%f newpred=%d\n",
// whichneighbor, olddist, closestD+arclength, closest );//TT
}
}
}
}
// source node has no parent
P[S] = -1;
}
//========================================================================
// Print()
//
// Used internally for debugging purposes. The function prints the key
// value for each node along the root list, then it calls itself on each
// child list.
//========================================================================
void FibHeap::Print(FibHeapNode *Tree, FibHeapNode *theParent)
{
FibHeapNode* Temp = NULL;
if (Tree == NULL) {
Tree = MinRoot;
}
Temp = Tree;
do {
if (Temp->Left == NULL)
mexPrintf( "(Left is NULL)" );
Temp->Print();
if (Temp->Parent != theParent)
mexPrintf("(Parent is incorrect)" );
if (Temp->Right == NULL)
mexPrintf( "(Right is NULL)" );
else if (Temp->Right->Left != Temp)
mexPrintf( "(Error in left link left) ->" );
else mexPrintf( " <-> " );
Temp = Temp->Right;
// if (kbhit() && getch() == 27)
// {
// std::cout << "Hit a key to resume or ESC to break\n";
// if (getch() == 27)
// break;
// }
} while (Temp != NULL && Temp != Tree);
mexPrintf( "\n" );
Temp = Tree;
do {
mexPrintf( "Children of " );
Temp->Print();
mexPrintf( ": " );
if (Temp->Child == NULL)
mexPrintf( "NONE\n" );
else Print(Temp->Child, Temp);
Temp = Temp->Right;
} while (Temp!=NULL && Temp != Tree);
if (theParent == NULL)
{
char ch;
mexPrintf( "\n\n\n" );
std::cin >> ch;
}
}
//===========================================================================
void mexFunction(
int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[]
)
{
double *sr,*D,*P,*SS,*Dsmall;
long int *Psmall;
mwIndex *irs,*jcs;
mwSize M,N,S,MS,NS,i,j,in;
HeapNode *A = NULL;
FibHeap *theHeap = NULL;
if (nrhs != 2)
{
mexErrMsgTxt( "Two input arguments required." );
}
else if (nlhs > 2)
{
mexErrMsgTxt( "Too many output arguments." );
}
M = mxGetM( prhs[0] );
N = mxGetN( prhs[0] );
if (M != N) mexErrMsgTxt( "Input matrix needs to be square." );
SS = mxGetPr(prhs[1]);
MS = mxGetM( prhs[1] );
NS = mxGetN( prhs[1] );
if ((MS==0) || (NS==0) || ((MS>1) && (NS>1))) mexErrMsgTxt( "Source nodes are specified in one dimensional matrix only" );
if (NS>MS) MS=NS;
// distance values output
plhs[0] = mxCreateDoubleMatrix( MS,M, mxREAL);
D = mxGetPr(plhs[0]);
// predecessors output
plhs[1] = mxCreateDoubleMatrix( MS,M, mxREAL);
P = mxGetPr(plhs[1]);
Dsmall = (double *) mxCalloc( M , sizeof( double ));
Psmall = (long int *) mxCalloc(M , sizeof(long int));
if (Dsmall == NULL || Psmall == NULL) {
mexErrMsgTxt("Memory allocation failed");
}
if (mxIsSparse( prhs[ 0 ] ) == 1)