forked from mndrix/golog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prove_test.go
310 lines (270 loc) · 7.62 KB
/
prove_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
package golog
import (
"testing"
"github.com/mndrix/golog/term"
)
func TestFacts(t *testing.T) {
m := NewMachine().Consult(`
father(michael).
father(marc).
mother(gail).
parent(X) :-
father(X).
parent(X) :-
mother(X).
`)
// these should be provably true
if !m.CanProve(`father(michael).`) {
t.Errorf("Couldn't prove father(michael)")
}
if !m.CanProve(`father(marc).`) {
t.Errorf("Couldn't prove father(marc)")
}
if !m.CanProve(`parent(michael).`) {
t.Errorf("Couldn't prove parent(michael)")
}
if !m.CanProve(`parent(marc).`) {
t.Errorf("Couldn't prove parent(marc)")
}
// these should not be provable
if m.CanProve(`father(sue).`) {
t.Errorf("Proved father(sue)")
}
if m.CanProve(`mother(michael).`) {
t.Errorf("Proved mother(michael)")
}
if m.CanProve(`parent(sue).`) {
t.Errorf("Proved parent(sue)")
}
// trivial predicate with multiple solutions
solutions := m.ProveAll(`father(X).`)
if len(solutions) != 2 {
t.Errorf("Wrong number of solutions: %d vs 2", len(solutions))
}
if x := solutions[0].ByName_("X").String(); x != "michael" {
t.Errorf("Wrong first solution: %s", x)
}
if x := solutions[1].ByName_("X").String(); x != "marc" {
t.Errorf("Wrong second solution: %s", x)
}
// simple predicate with multiple solutions
solutions = m.ProveAll(`parent(Name).`)
if len(solutions) != 3 {
t.Errorf("Wrong number of solutions: %d vs 2", len(solutions))
}
if x := solutions[0].ByName_("Name").String(); x != "michael" {
t.Errorf("Wrong first solution: %s", x)
}
if x := solutions[1].ByName_("Name").String(); x != "marc" {
t.Errorf("Wrong second solution: %s", x)
}
if x := solutions[2].ByName_("Name").String(); x != "gail" {
t.Errorf("Wrong third solution: %s", x)
}
// cut in the top level query
solutions = m.ProveAll(`parent(Name), !.`)
if len(solutions) != 1 {
t.Errorf("Wrong number of solutions: %d vs 1", len(solutions))
}
if x := solutions[0].ByName_("Name").String(); x != "michael" {
t.Errorf("Wrong first solution: %s", x)
}
}
func TestConjunction(t *testing.T) {
m := NewMachine().Consult(`
floor_wax(briwax).
floor_wax(shimmer).
floor_wax(minwax).
dessert(shimmer).
dessert(cake).
dessert(pie).
verb(glimmer).
verb(shimmer).
snl(Item) :-
floor_wax(Item),
dessert(Item).
three(Item) :-
verb(Item),
dessert(Item),
floor_wax(Item).
`)
skits := m.ProveAll(`snl(X).`)
if len(skits) != 1 {
t.Errorf("Wrong number of solutions: %d vs 1", len(skits))
}
if x := skits[0].ByName_("X").String(); x != "shimmer" {
t.Errorf("Wrong solution: %s vs shimmer", x)
}
skits = m.ProveAll(`three(W).`)
if len(skits) != 1 {
t.Errorf("Wrong number of solutions: %d vs 1", len(skits))
}
if x := skits[0].ByName_("W").String(); x != "shimmer" {
t.Errorf("Wrong solution: %s vs shimmer", x)
}
}
func TestCut(t *testing.T) {
m := NewMachine().Consult(`
single(foo) :-
!.
single(bar).
twice(X) :-
single(X). % cut inside here doesn't cut twice/1
twice(bar).
`)
proofs := m.ProveAll(`single(X).`)
if len(proofs) != 1 {
t.Errorf("Wrong number of solutions: %d vs 1", len(proofs))
}
if x := proofs[0].ByName_("X").String(); x != "foo" {
t.Errorf("Wrong solution: %s vs foo", x)
}
proofs = m.ProveAll(`twice(X).`)
if len(proofs) != 2 {
t.Errorf("Wrong number of solutions: %d vs 2", len(proofs))
}
if x := proofs[0].ByName_("X").String(); x != "foo" {
t.Errorf("Wrong solution: %s vs foo", x)
}
if x := proofs[1].ByName_("X").String(); x != "bar" {
t.Errorf("Wrong solution: %s vs bar", x)
}
}
func TestAppend(t *testing.T) {
m := NewMachine().Consult(`
append([], A, A). % test same variable name as other clauses
append([A|B], C, [A|D]) :-
append(B, C, D).
`)
proofs := m.ProveAll(`append([a], [b], List).`)
if len(proofs) != 1 {
t.Errorf("Wrong number of answers: %d vs 1", len(proofs))
}
if x := proofs[0].ByName_("List").String(); x != "[a,b]" {
t.Errorf("Wrong solution: %s vs [a, b]", x)
}
proofs = m.ProveAll(`append([a,b,c], [d,e], List).`)
if len(proofs) != 1 {
t.Errorf("Wrong number of answers: %d vs 1", len(proofs))
}
if x := proofs[0].ByName_("List").String(); x != "[a,b,c,d,e]" {
t.Errorf("Wrong solution: %s", x)
}
}
func TestCall(t *testing.T) {
m := NewMachine().Consult(`
bug(spider).
bug(fly).
squash(Animal, Class) :-
call(Class, Animal).
`)
proofs := m.ProveAll(`squash(It, bug).`)
if len(proofs) != 2 {
t.Errorf("Wrong number of answers: %d vs 2", len(proofs))
}
if x := proofs[0].ByName_("It").String(); x != "spider" {
t.Errorf("Wrong solution: %s vs spider", x)
}
if x := proofs[1].ByName_("It").String(); x != "fly" {
t.Errorf("Wrong solution: %s vs fly", x)
}
}
func TestUnify(t *testing.T) {
m := NewMachine().Consult(`
thing(Z) :-
Z = whatever.
two(X, Y) :-
X = a,
Y = b.
`)
proofs := m.ProveAll(`thing(It).`)
if len(proofs) != 1 {
t.Errorf("Wrong number of answers: %d vs 1", len(proofs))
}
if x := proofs[0].ByName_("It").String(); x != "whatever" {
t.Errorf("Wrong solution: %s vs whatever", x)
}
proofs = m.ProveAll(`two(First, Second).`)
if len(proofs) != 1 {
t.Errorf("Wrong number of answers: %d vs 1", len(proofs))
}
if x := proofs[0].ByName_("First").String(); x != "a" {
t.Errorf("Wrong solution: %s vs a", x)
}
if x := proofs[0].ByName_("Second").String(); x != "b" {
t.Errorf("Wrong solution: %s vs b", x)
}
proofs = m.ProveAll(`two(j, k).`)
if len(proofs) != 0 {
t.Errorf("Proved the impossible")
}
}
func TestDisjunction(t *testing.T) {
m := NewMachine().Consult(`
insect(fly).
arachnid(spider).
squash(Critter) :-
arachnid(Critter) ; insect(Critter).
`)
proofs := m.ProveAll(`squash(It).`)
if len(proofs) != 2 {
t.Errorf("Wrong number of answers: %d vs 2", len(proofs))
}
if x := proofs[0].ByName_("It").String(); x != "spider" {
t.Errorf("Wrong solution: %s vs spider", x)
}
if x := proofs[1].ByName_("It").String(); x != "fly" {
t.Errorf("Wrong solution: %s vs fly", x)
}
}
func TestIfThenElse(t *testing.T) {
m := NewMachine().Consult(`
succeeds(yes).
succeeds(yup).
alpha(X) :- succeeds(yes) -> X = ok.
beta(X) :- succeeds(no) -> X = ok.
`)
proofs := m.ProveAll(`alpha(Y).`)
if len(proofs) != 1 {
t.Errorf("Wrong number of answers: %d vs 1", len(proofs))
}
if x := proofs[0].ByName_("Y").String(); x != "ok" {
t.Errorf("Wrong solution: %s vs ok", x)
}
proofs = m.ProveAll(`beta(Y).`)
if len(proofs) != 0 {
t.Errorf("Wrong number of answers: %d vs 0", len(proofs))
}
}
// make sure the effect of !/0 are localized to (\+)/1
func TestNotWithCut(t *testing.T) {
m := NewMachine()
proofs := m.ProveAll(`\+(!); X=ok.`)
if len(proofs) != 1 {
t.Errorf("Wrong number of answers: %d vs 1", len(proofs))
}
if x := proofs[0].ByName_("X").String(); x != "ok" {
t.Errorf("Wrong solution: %s vs ok", x)
}
}
// make sure that CanProve only finds the first solution
func TestCanProveOnce(t *testing.T) {
counter := 0
f := func(m Machine, args []term.Term) ForeignReturn {
counter++
return ForeignTrue()
}
m := NewMachine().RegisterForeign(map[string]ForeignPredicate{
"increment_counter/0": f,
})
m = m.Consult(`
go :- increment_counter.
go :- increment_counter. % increment again on backtrack
`)
if !m.CanProve(`go.`) {
t.Errorf("Couldn't prove go/0")
}
if counter != 1 {
t.Errorf("CanProve found multiple solutions")
}
}