-
Notifications
You must be signed in to change notification settings - Fork 179
/
Copy pathmodel.py
330 lines (265 loc) · 13.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# coding: utf-8
""" BigGAN PyTorch model.
From "Large Scale GAN Training for High Fidelity Natural Image Synthesis"
By Andrew Brocky, Jeff Donahuey and Karen Simonyan.
https://openreview.net/forum?id=B1xsqj09Fm
PyTorch version implemented from the computational graph of the TF Hub module for BigGAN.
Some part of the code are adapted from https://github.com/brain-research/self-attention-gan
This version only comprises the generator (since the discriminator's weights are not released).
This version only comprises the "deep" version of BigGAN (see publication).
"""
from __future__ import (absolute_import, division, print_function, unicode_literals)
import os
import logging
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .config import BigGANConfig
from .file_utils import cached_path
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {
'biggan-deep-128': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-128-pytorch_model.bin",
'biggan-deep-256': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-256-pytorch_model.bin",
'biggan-deep-512': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-512-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
'biggan-deep-128': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-128-config.json",
'biggan-deep-256': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-256-config.json",
'biggan-deep-512': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-512-config.json",
}
WEIGHTS_NAME = 'pytorch_model.bin'
CONFIG_NAME = 'config.json'
def snconv2d(eps=1e-12, **kwargs):
return nn.utils.spectral_norm(nn.Conv2d(**kwargs), eps=eps)
def snlinear(eps=1e-12, **kwargs):
return nn.utils.spectral_norm(nn.Linear(**kwargs), eps=eps)
def sn_embedding(eps=1e-12, **kwargs):
return nn.utils.spectral_norm(nn.Embedding(**kwargs), eps=eps)
class SelfAttn(nn.Module):
""" Self attention Layer"""
def __init__(self, in_channels, eps=1e-12):
super(SelfAttn, self).__init__()
self.in_channels = in_channels
self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8,
kernel_size=1, bias=False, eps=eps)
self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8,
kernel_size=1, bias=False, eps=eps)
self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2,
kernel_size=1, bias=False, eps=eps)
self.snconv1x1_o_conv = snconv2d(in_channels=in_channels//2, out_channels=in_channels,
kernel_size=1, bias=False, eps=eps)
self.maxpool = nn.MaxPool2d(2, stride=2, padding=0)
self.softmax = nn.Softmax(dim=-1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
_, ch, h, w = x.size()
# Theta path
theta = self.snconv1x1_theta(x)
theta = theta.view(-1, ch//8, h*w)
# Phi path
phi = self.snconv1x1_phi(x)
phi = self.maxpool(phi)
phi = phi.view(-1, ch//8, h*w//4)
# Attn map
attn = torch.bmm(theta.permute(0, 2, 1), phi)
attn = self.softmax(attn)
# g path
g = self.snconv1x1_g(x)
g = self.maxpool(g)
g = g.view(-1, ch//2, h*w//4)
# Attn_g - o_conv
attn_g = torch.bmm(g, attn.permute(0, 2, 1))
attn_g = attn_g.view(-1, ch//2, h, w)
attn_g = self.snconv1x1_o_conv(attn_g)
# Out
out = x + self.gamma*attn_g
return out
class BigGANBatchNorm(nn.Module):
""" This is a batch norm module that can handle conditional input and can be provided with pre-computed
activation means and variances for various truncation parameters.
We cannot just rely on torch.batch_norm since it cannot handle
batched weights (pytorch 1.0.1). We computate batch_norm our-self without updating running means and variances.
If you want to train this model you should add running means and variance computation logic.
"""
def __init__(self, num_features, condition_vector_dim=None, n_stats=51, eps=1e-4, conditional=True):
super(BigGANBatchNorm, self).__init__()
self.num_features = num_features
self.eps = eps
self.conditional = conditional
# We use pre-computed statistics for n_stats values of truncation between 0 and 1
self.register_buffer('running_means', torch.zeros(n_stats, num_features))
self.register_buffer('running_vars', torch.ones(n_stats, num_features))
self.step_size = 1.0 / (n_stats - 1)
if conditional:
assert condition_vector_dim is not None
self.scale = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps)
self.offset = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps)
else:
self.weight = torch.nn.Parameter(torch.Tensor(num_features))
self.bias = torch.nn.Parameter(torch.Tensor(num_features))
def forward(self, x, truncation, condition_vector=None):
# Retreive pre-computed statistics associated to this truncation
coef, start_idx = math.modf(truncation / self.step_size)
start_idx = int(start_idx)
if coef != 0.0: # Interpolate
running_mean = self.running_means[start_idx] * coef + self.running_means[start_idx + 1] * (1 - coef)
running_var = self.running_vars[start_idx] * coef + self.running_vars[start_idx + 1] * (1 - coef)
else:
running_mean = self.running_means[start_idx]
running_var = self.running_vars[start_idx]
if self.conditional:
running_mean = running_mean.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
running_var = running_var.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
weight = 1 + self.scale(condition_vector).unsqueeze(-1).unsqueeze(-1)
bias = self.offset(condition_vector).unsqueeze(-1).unsqueeze(-1)
out = (x - running_mean) / torch.sqrt(running_var + self.eps) * weight + bias
else:
out = F.batch_norm(x, running_mean, running_var, self.weight, self.bias,
training=False, momentum=0.0, eps=self.eps)
return out
class GenBlock(nn.Module):
def __init__(self, in_size, out_size, condition_vector_dim, reduction_factor=4, up_sample=False,
n_stats=51, eps=1e-12):
super(GenBlock, self).__init__()
self.up_sample = up_sample
self.drop_channels = (in_size != out_size)
middle_size = in_size // reduction_factor
self.bn_0 = BigGANBatchNorm(in_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
self.conv_0 = snconv2d(in_channels=in_size, out_channels=middle_size, kernel_size=1, eps=eps)
self.bn_1 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
self.conv_1 = snconv2d(in_channels=middle_size, out_channels=middle_size, kernel_size=3, padding=1, eps=eps)
self.bn_2 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
self.conv_2 = snconv2d(in_channels=middle_size, out_channels=middle_size, kernel_size=3, padding=1, eps=eps)
self.bn_3 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True)
self.conv_3 = snconv2d(in_channels=middle_size, out_channels=out_size, kernel_size=1, eps=eps)
self.relu = nn.ReLU()
def forward(self, x, cond_vector, truncation):
x0 = x
x = self.bn_0(x, truncation, cond_vector)
x = self.relu(x)
x = self.conv_0(x)
x = self.bn_1(x, truncation, cond_vector)
x = self.relu(x)
if self.up_sample:
x = F.interpolate(x, scale_factor=2, mode='nearest')
x = self.conv_1(x)
x = self.bn_2(x, truncation, cond_vector)
x = self.relu(x)
x = self.conv_2(x)
x = self.bn_3(x, truncation, cond_vector)
x = self.relu(x)
x = self.conv_3(x)
if self.drop_channels:
new_channels = x0.shape[1] // 2
x0 = x0[:, :new_channels, ...]
if self.up_sample:
x0 = F.interpolate(x0, scale_factor=2, mode='nearest')
out = x + x0
return out
class Generator(nn.Module):
def __init__(self, config):
super(Generator, self).__init__()
self.config = config
ch = config.channel_width
condition_vector_dim = config.z_dim * 2
self.gen_z = snlinear(in_features=condition_vector_dim,
out_features=4 * 4 * 16 * ch, eps=config.eps)
layers = []
for i, layer in enumerate(config.layers):
if i == config.attention_layer_position:
layers.append(SelfAttn(ch*layer[1], eps=config.eps))
layers.append(GenBlock(ch*layer[1],
ch*layer[2],
condition_vector_dim,
up_sample=layer[0],
n_stats=config.n_stats,
eps=config.eps))
self.layers = nn.ModuleList(layers)
self.bn = BigGANBatchNorm(ch, n_stats=config.n_stats, eps=config.eps, conditional=False)
self.relu = nn.ReLU()
self.conv_to_rgb = snconv2d(in_channels=ch, out_channels=ch, kernel_size=3, padding=1, eps=config.eps)
self.tanh = nn.Tanh()
def forward(self, cond_vector, truncation):
z = self.gen_z(cond_vector)
# We use this conversion step to be able to use TF weights:
# TF convention on shape is [batch, height, width, channels]
# PT convention on shape is [batch, channels, height, width]
z = z.view(-1, 4, 4, 16 * self.config.channel_width)
z = z.permute(0, 3, 1, 2).contiguous()
for i, layer in enumerate(self.layers):
if isinstance(layer, GenBlock):
z = layer(z, cond_vector, truncation)
else:
z = layer(z)
z = self.bn(z, truncation)
z = self.relu(z)
z = self.conv_to_rgb(z)
z = z[:, :3, ...]
z = self.tanh(z)
return z
class BigGAN(nn.Module):
"""BigGAN Generator."""
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
model_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
model_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
try:
resolved_model_file = cached_path(model_file, cache_dir=cache_dir)
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error("Wrong model name, should be a valid path to a folder containing "
"a {} file and a {} file or a model name in {}".format(
WEIGHTS_NAME, CONFIG_NAME, PRETRAINED_MODEL_ARCHIVE_MAP.keys()))
raise
logger.info("loading model {} from cache at {}".format(pretrained_model_name_or_path, resolved_model_file))
# Load config
config = BigGANConfig.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
state_dict = torch.load(resolved_model_file, map_location='cpu' if not torch.cuda.is_available() else None)
model.load_state_dict(state_dict, strict=False)
return model
def __init__(self, config):
super(BigGAN, self).__init__()
self.config = config
self.embeddings = nn.Linear(config.num_classes, config.z_dim, bias=False)
self.generator = Generator(config)
def forward(self, z, class_label, truncation):
assert 0 < truncation <= 1
embed = self.embeddings(class_label)
cond_vector = torch.cat((z, embed), dim=1)
z = self.generator(cond_vector, truncation)
return z
if __name__ == "__main__":
import PIL
from .utils import truncated_noise_sample, save_as_images, one_hot_from_names
from .convert_tf_to_pytorch import load_tf_weights_in_biggan
load_cache = False
cache_path = './saved_model.pt'
config = BigGANConfig()
model = BigGAN(config)
if not load_cache:
model = load_tf_weights_in_biggan(model, config, './models/model_128/', './models/model_128/batchnorms_stats.bin')
torch.save(model.state_dict(), cache_path)
else:
model.load_state_dict(torch.load(cache_path))
model.eval()
truncation = 0.4
noise = truncated_noise_sample(batch_size=2, truncation=truncation)
label = one_hot_from_names('diver', batch_size=2)
# Tests
# noise = np.zeros((1, 128))
# label = [983]
noise = torch.tensor(noise, dtype=torch.float)
label = torch.tensor(label, dtype=torch.float)
with torch.no_grad():
outputs = model(noise, label, truncation)
print(outputs.shape)
save_as_images(outputs)