forked from mangye16/Cross-Modal-Re-ID-baseline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_loader.py
169 lines (129 loc) · 6.43 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os.path
import numpy as np
from PIL import Image
import torch.utils.data as data
import local_path
'''
# 代码重构
这个文件应该重命名为 DatasetForAGW
# 解释
给每个数据集定义一个Dataset类
'''
class SYSUData(data.Dataset):
def __init__(self, data_dir, transform=None, colorIndex = None, thermalIndex = None):
# data_dir = '../Datasets/SYSU-MM01/'
# data_dir = local_dataset_path.data_SYSU_MM01
data_dir = local_path.my_test_SYSU_MM01
# Load training images (path) and labels
# train_color_image = np.load(data_dir + 'train_rgb_resized_img.npy')
# self.train_color_label = np.load(data_dir + 'train_rgb_resized_label.npy')
# train_color_image = np.load(data_dir + '\\train_rgb_resized_img.npy')
train_color_image = np.load(os.path.join(data_dir, 'train_rgb_resized_img.npy'))
# self.train_color_label = np.load(data_dir + '\\train_rgb_resized_label.npy')
self.train_color_label = np.load(os.path.join(data_dir, 'train_rgb_resized_label.npy'))
# train_thermal_image = np.load(data_dir + 'train_ir_resized_img.npy')
# self.train_thermal_label = np.load(data_dir + 'train_ir_resized_label.npy')
# train_thermal_image = np.load(data_dir + '\\train_ir_resized_img.npy')
train_thermal_image = np.load(os.path.join(data_dir, 'train_ir_resized_img.npy'))
# self.train_thermal_label = np.load(data_dir + '\\train_ir_resized_label.npy')
self.train_thermal_label = np.load(os.path.join(data_dir, 'train_ir_resized_label.npy'))
# BGR to RGB
self.train_color_image = train_color_image
self.train_thermal_image = train_thermal_image
self.transform = transform
self.cIndex = colorIndex
self.tIndex = thermalIndex
def __getitem__(self, index):
'''根据 index 取出 visible 和 infrared 照片及 label'''
img1, target1 = self.train_color_image[self.cIndex[index]], self.train_color_label[self.cIndex[index]]
img2, target2 = self.train_thermal_image[self.tIndex[index]], self.train_thermal_label[self.tIndex[index]]
img1 = self.transform(img1)
img2 = self.transform(img2)
# 返回:图片1, 图片2, label1, label2
return img1, img2, target1, target2
def __len__(self):
return len(self.train_color_label)
class RegDBData(data.Dataset):
def __init__(self, data_dir, trial, transform=None, colorIndex = None, thermalIndex = None):
# Load training images (path) and labels
data_dir = '../Datasets/RegDB/'
data_dir = local_path.data_RegDB
train_color_list = data_dir + 'idx/train_visible_{}'.format(trial)+ '.txt'
train_thermal_list = data_dir + 'idx/train_thermal_{}'.format(trial)+ '.txt'
color_img_file, train_color_label = load_data(train_color_list)
thermal_img_file, train_thermal_label = load_data(train_thermal_list)
train_color_image = []
for i in range(len(color_img_file)):
img = Image.open(data_dir+ color_img_file[i])
img = img.resize((144, 288), Image.ANTIALIAS)
pix_array = np.array(img)
train_color_image.append(pix_array)
train_color_image = np.array(train_color_image)
train_thermal_image = []
for i in range(len(thermal_img_file)):
img = Image.open(data_dir+ thermal_img_file[i])
img = img.resize((144, 288), Image.ANTIALIAS)
pix_array = np.array(img)
train_thermal_image.append(pix_array)
train_thermal_image = np.array(train_thermal_image)
# BGR to RGB
self.train_color_image = train_color_image
self.train_color_label = train_color_label
# BGR to RGB
self.train_thermal_image = train_thermal_image
self.train_thermal_label = train_thermal_label
self.transform = transform
self.cIndex = colorIndex
self.tIndex = thermalIndex
def __getitem__(self, index):
img1, target1 = self.train_color_image[self.cIndex[index]], self.train_color_label[self.cIndex[index]]
img2, target2 = self.train_thermal_image[self.tIndex[index]], self.train_thermal_label[self.tIndex[index]]
img1 = self.transform(img1)
img2 = self.transform(img2)
return img1, img2, target1, target2
def __len__(self):
return len(self.train_color_label)
class TestData(data.Dataset):
'''将测试集中的照片resize为相同分辨率,并转为RGB'''
def __init__(self, test_img_file, test_label, transform=None, img_size = (144,288)):
test_image = []
for i in range(len(test_img_file)):
img = Image.open(test_img_file[i])
img = img.resize((img_size[0], img_size[1]), Image.ANTIALIAS)
pix_array = np.array(img)
test_image.append(pix_array)
test_image = np.array(test_image)
self.test_image = test_image
self.test_label = test_label
self.transform = transform
def __getitem__(self, index):
img1, target1 = self.test_image[index], self.test_label[index]
img1 = self.transform(img1)
return img1, target1
def __len__(self):
return len(self.test_image)
class TestDataOld(data.Dataset):
def __init__(self, data_dir, test_img_file, test_label, transform=None, img_size = (144,288)):
test_image = []
for i in range(len(test_img_file)):
img = Image.open(data_dir + test_img_file[i])
img = img.resize((img_size[0], img_size[1]), Image.ANTIALIAS)
pix_array = np.array(img)
test_image.append(pix_array)
test_image = np.array(test_image)
self.test_image = test_image
self.test_label = test_label
self.transform = transform
def __getitem__(self, index):
img1, target1 = self.test_image[index], self.test_label[index]
img1 = self.transform(img1)
return img1, target1
def __len__(self):
return len(self.test_image)
def load_data(input_data_path ):
with open(input_data_path) as f:
data_file_list = open(input_data_path, 'rt').read().splitlines()
# Get full list of image and labels
file_image = [s.split(' ')[0] for s in data_file_list]
file_label = [int(s.split(' ')[1]) for s in data_file_list]
return file_image, file_label