-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsymbolize.cpp
934 lines (851 loc) · 24.8 KB
/
symbolize.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
#include "tools.h"
#include "symbolize.h"
/*单项式部分*/
//从字符串构造单项式并合并指数
monomial::monomial(string const &exp)
{
string expression="";
int power0, power1, length = exp.length();
coefficient = myStod(exp);
for (int i = 0; i < length; i++)
{
if (power1 = getPower(exp, i))
{
if (power0=getPower(expression,exp[i]))
cout << "you have input repeated letter " << exp[i] << "!" << endl;
changePower(expression, exp[i], power0 + power1);
}
}
this->expression = expression;
this->arrange();
}
//将单项式字母按升序排列
void monomial::arrange(void)
{
string temp;
vector<string> strings;
int length = expression.length();
temp.append(1, expression[0]);
for (int i = 1; i < length; i++)
{
if (isalpha(expression[i]))
{
strings.push_back(temp);
temp.erase();
}
temp.append(1, expression[i]);
}
strings.push_back(temp);
temp.erase();
sort(strings.begin(), strings.end());
for (vector<string>::iterator iter = strings.begin(); iter < strings.end(); iter++)
temp.append(*iter);
expression = temp;
}
//获取其中某个字母的系数(也许用不到)
monomial monomial::getCoeff(char var) const
{
monomial result = *this;
changePower(result.expression, var, 0);
return result;
}
//获取单项式中所含字母
vector<char> monomial::getVar(void) const
{
vector<char> result;
for (int i = 0; i < expression.length(); i++)
if (isalpha(expression[i])) result.push_back(expression[i]);
return result;
}
//将单项式中指数小于零的项拆分
monomial * monomial::split(void) const
{
int length = expression.length();
monomial *split = new monomial[2];
split[0].coefficient = coefficient;
string num, denom;
for (int i = 0; i < length; i++)
if (getPower(expression, i) > 0)
{
num.append(1, expression[i]);
changePower(num, expression[i], getPower(expression, i));
}
else if (getPower(expression, i) < 0)
{
denom.append(1, expression[i]);
changePower(num, 0, -1 * getPower(expression, i));
}
split[0].expression = num;
split[1].expression = denom;
return split;
}
//重载单项式互加
polynomial monomial::operator+(monomial const & m2) const
{
polynomial result;
if (expression == m2.expression)
{
result.termNumber = 1;
result.terms.push_back(monomial(coefficient + m2.coefficient, expression));
}
else
{
result.termNumber = 2;
result.terms.push_back(*this);
result.terms.push_back(m2);
}
return result;
}
//重载单项式互乘
monomial monomial::operator*(monomial const & m2) const
{
monomial result;
result.coefficient = coefficient * m2.coefficient;
result.expression = multiply(expression, m2.expression);
result.arrange();
return result;
}
//重载单项式互除
monomial monomial::operator/(monomial const & m2) const
{
monomial result(*this);
result.coefficient /= m2.coefficient;
for (int i = 0; i < m2.expression.length(); i++)
if (getPower(m2.expression, i))
changePower(result.expression, m2.expression[i], getPower(result.expression, m2.expression[i]) - getPower(m2.expression, i));
return result;
}
//重载单项式比较
bool monomial::operator==(monomial const & m2) const
{
if (coefficient == m2.coefficient&&expression == m2.expression) return true;
else return false;
}
//重载单项式输出
ostream & operator<<(ostream & output,monomial const & m)
{
if (m.coefficient == 0) output << "0";
else if (m.expression[0]=='\0') output << m.coefficient;
else if (m.coefficient == 1) output << m.expression;
else if (m.coefficient == -1) output << "-" << m.expression;
else output << m.coefficient << m.expression;
return output;
}
//创造下一项可能的根
monomial nextValue(int &step, vector<char> const & Coeff, vector<char> const & Const, vector<double> const &value) //创造一项可能的因式
{
string exp1, exp2;
int lvalue, leffv, lconv;
lvalue = value.size();
leffv = Coeff.size(); lconv = Const.size();
if (step >= (2 * lvalue * pow(2, (leffv + lconv))))
return monomial(0);
bool *vars = Subset(leffv + lconv, (step / (2 * lvalue)) % (int)pow(2, (leffv + lconv)));
for (int i = 0; i < leffv; i++)
if (vars[i]) { exp1.append(1, Coeff[i]); exp1.append("^-1"); }
for (int i = 0; i < lconv; i++)
if (vars[i + leffv]) exp2.append(1, Const[i]);
monomial result = monomial(value[(step / 2) % lvalue], exp1 + exp2);
if ((step++) % 2 == 1)
result.coefficient *= -1;
return result;
}
/*多项式部分*/
polynomial::polynomial(string const & expression)
{
string temp;
int head, cur = 0;
int length = expression.length();
while (cur < length)
{
head = cur++;
while ((expression[cur] != '+') && (expression[cur] != '-') && cur < length) cur++;
temp = expression.substr(head, cur - head);
termNumber++;
terms.push_back(monomial(temp));
}
}
//判定多项式是否为零
bool polynomial::isZero(void) const
{
if (termNumber == 0 || coefficient == 0 || terms.empty()) return true;
bool flag = true;
for (int i = 0; i < termNumber; i++)
if (!tools::isZero(terms[i].coefficient)) flag = false;
return flag;
}
//确认多项式是否"小于零"
bool polynomial::isNegative(void) const
{
bool flag = true;
for (int i = 0; i < termNumber; i++)
if (terms[i].coefficient >= 0) flag = false;
return flag;
}
//提取公因式
polynomial polynomial::extraction(void) const
{
bool flag = true;
polynomial result(*this);
if (termNumber == 0) return result;
int *power = new int[termNumber], copower;
double *coeff = new double[termNumber];
for (int i = 0; i < termNumber; i++)
coeff[i] = terms[i].coefficient;
result.coefficient = getGCF(coeff, termNumber);
for (int i = 0; i < result.termNumber; i++)
result.terms[i].coefficient /= result.coefficient;
for (int i = 0; i < terms[0].expression.length(); i++)
if (power[0] = getPower(terms[0].expression, i))
{
flag = true;
for (int j = 1; j < result.termNumber; j++)
if (!(power[j] = getPower(terms[j].expression, terms[0].expression[i]))) flag = false;
if (flag == true)
{
copower = *min_element(power, power+termNumber);
changePower(result.expression, terms[0].expression[i], copower);
for (int j = 1; j < result.termNumber; j++)
changePower(result.terms[j].expression, terms[0].expression[i], power[j] - copower);
changePower(result.terms[0].expression, terms[0].expression[i], power[0] - copower);
}
}
return result;
}
//多项式展开(没用?)
polynomial polynomial::expansion(void) const
{
polynomial result(*this);
if (expression != "" || coefficient != 1)
{
for (int i = 0; i < termNumber; i++)
{
result.terms[i].coefficient *= coefficient;
result.terms[i].expression = multiply(terms[i].expression, expression);
}
result.expression.erase(); result.coefficient = 1;
}
return result;
}
//按字符a降幂排序(用到lambda表达式)
void polynomial::orderBy(char a)
{
sort(terms.begin(), terms.end(), [&](monomial m1, monomial m2)->bool {return(getPower(m1.expression, a) > getPower(m2.expression, a)); });
}
//带入并消除同类项
polynomial polynomial::substitution(char var, polynomial value) const
{
polynomial result = *this;
for (int i = 0; i < termNumber; i++)
{
int power = getPower(terms[i].expression, var);
if (power > 0)
{
polynomial temp;
temp = temp + terms[i];
changePower(temp.terms[0].expression, var, 0);
for (int i = 0; i < power; i++)
temp = temp * value;
result = result + temp;
result = result + terms[i].changeSign();
}
}
return result;
}
//若整除则除并返回true,否则不改变且返回false
bool polynomial::tryDivide(polynomial const & p)
{
polynomial temp(*this);
if ((temp.DivideWithRemainder(p).isZero()))
{
*this = temp; return true;
}
else return false;
}
//带余除法,返回余式
polynomial polynomial::DivideWithRemainder(polynomial const ÷r)
{
polynomial result, remainder, mydivider = divider;
remainder = *this;
char var = getComVar(remainder.getVar(), divider.getVar());
if (var != '\0')
{
remainder.orderBy(var);
mydivider.orderBy(var);
while ((!remainder.terms.empty()) && getPower(remainder.terms[0].expression, var) >= getPower(mydivider.terms[0].expression, var))
{
result = remainder.terms[0] / mydivider.terms[0] + result;
remainder = remainder + remainder.terms[0] / mydivider.terms[0] * mydivider.changeSign();
remainder.orderBy(var);
}
}
*this = result;
return remainder;
}
//改变多项式每项符号用于处理减法
polynomial polynomial::changeSign(void) const
{
polynomial result = *this;
if (result.terms.empty()) return result;
for (int i = 0; i < result.termNumber; i++)
result.terms[i].coefficient *= -1;
return result;
}
//递归地分解因式,想得太复杂,回头再做
//改进:处理整数,(不能用char了,修正getpower和changepower(if isdigit))处理(x-ab)^2,写多项式系数情况,考虑是否有递归溢出
vector<polynomial> polynomial::factorize(char var) const
{
#pragma region PreGlobal
vector<polynomial> result;
polynomial exp(*this); exp.orderBy(var);
int step = 0;
int power = getPower(exp.terms[0].expression, var);
vector<int> varPower = getFactor(power); int varPowerSize = varPower.size() - 1;
if (varPowerSize == 0) varPowerSize += 1;
if (exp.termNumber <= 2) { result.push_back(*this); return result; }
polynomial Const = exp.getConst(var), Coeff = exp.getCoeff(var, power);
vector<char> ConstVar = Const.getVar(), CoeffVar = Coeff.getVar();
int ConstSize = ConstVar.size(), CoeffSize = CoeffVar.size();
#pragma endregion
//Const,Coeff,ConstVar,CoeffVar,ConstSize,CoeffSize
if (Const.termNumber == 1 && Coeff.termNumber == 1)
{
#pragma region PreValue
vector<int> effFactor, conFactor;
double constvalue = Const.terms[0].coefficient; double coeffvalue = Coeff.terms[0].coefficient;
if (isInteger(coeffvalue) && isInteger(constvalue))
{
effFactor = getFactor((int)coeffvalue);
conFactor = getFactor((int)constvalue);
}
else { effFactor.push_back(1); conFactor.push_back(1); }
vector<double> Coeffvalue = getValue(conFactor, effFactor);
monomial value = nextValue(step, CoeffVar, ConstVar, Coeffvalue);
#pragma endregion
//CoeffValue +CoeffVar,ConstVar->value
#pragma region PrePower
vector<char> vars = value.getVar();
int size = vars.size(), total = 1;
int *powers = new int[size];
vector<int> power, *factors = new vector<int>[size];
for (int i = 0; i < size; i++)
{
powers[i] = max(getPower(Const.terms[0].expression, vars[i]), getPower(Coeff.terms[0].expression, vars[i]));
factors[i] = getFactor(powers[i]);
total *= factors[i].size();
}
power = nextPower(vars, powers, factors, 0);
polynomial nextTerm = createTerm(var, value, power);
#pragma endregion
//vars=value.getVar(),*powers,*factors,power=NextPower
while ((getPower(exp.terms[0].expression, var) > getPower(nextTerm.terms[0].expression, var)) && (!value.isZero()))
{
for (int i = 0; i < varPowerSize; i++)
for (int j = 0; j < total; j++)
{
power = nextPower(vars, powers, factors, j);
nextTerm = createTerm(var, value, power);
changePower(nextTerm.terms[0].expression, var, varPower[i]);
if (exp.tryDivide(nextTerm))
{
result.push_back(nextTerm); step = 0;
if (getPower(exp.terms[0].expression, var) == 1 || getPower(exp.terms[0].expression, var) == 0) { result.push_back(exp); return result; }
}
}
value = nextValue(step, CoeffVar, ConstVar, Coeffvalue);
#pragma region PrePower
vars = value.getVar(); size = vars.size();
delete[]powers; delete[]factors; total = 1;
powers = new int[size]; factors = new vector<int>[size];
for (int i = 0; i < size; i++)
{
powers[i] = max(getPower(Const.terms[0].expression, vars[i]), getPower(Coeff.terms[0].expression, vars[i]));
factors[i] = getFactor(powers[i]);
total *= factors[i].size();
}
#pragma endregion
}
result.push_back(exp);
return result;
}
else
//{
//vector<polynomial>effFactor, conFactor;
result.push_back(*this);
return result;
}
//获取输出后字符串的长度
int polynomial::getLength(void) const
{
string temp;
int length = 0;
stringstream stream;
if (terms.empty()) return 0;
stream << *this;
temp = stream.str();
return temp.length();
}
//获取幂次最高的字母
char polynomial::getMainTerm(void) const
{
char result='0';
int maxPower = 0;
for (int i = 0; i < termNumber; i++)
for (int j = 0; j < terms[i].expression.length(); j++)
if (getPower(terms[i].expression, j) > maxPower)
{ maxPower = getPower(terms[i].expression, j); result = terms[i].expression[j]; }
return result;
}
//获取多项式的公系数
int polynomial::getCoeff(void) const
{
double *coeff = new double[termNumber];
for (int i = 0; i < termNumber; i++)
coeff[i] = terms[i].coefficient;
double result = getGCF(coeff, termNumber);
delete[]coeff;
if (isInteger(result)) return result;
else return 1;
}
//获取某多项式因子在另一多项式中的次数
int polynomial::factorPower(polynomial const & factor) const
{
int power = 0;
polynomial temp(*this);
while (temp.tryDivide(factor)) power++;
return power;
}
//获取对某字母而言的常数项
polynomial polynomial::getConst(char var) const
{
polynomial result;
if (terms.empty()) return result;
for (int i = 0; i < termNumber; i++)
if (getPower(terms[i].expression, var) == 0)
result = result + terms[i];
return result;
}
//获取对某字母而言最高次幂的系数项
polynomial polynomial::getCoeff(char var, int power) const
{
polynomial result;
for (int i = 0; i < termNumber; i++)
if (getPower(terms[i].expression, var) == power)
result = result + terms[i];
for (int i = 0; i < result.termNumber; i++)
changePower(result.terms[i].expression, var, 0);
return result;
}
//获取多项式中所含字母
vector<char> polynomial::getVar(void) const
{
char cur;
vector<char>::iterator iter;
vector<char> var;
for (int i = 0; i < expression.length(); i++)
{
cur = expression[i];
if (!isalpha(cur)) continue;
iter = find(var.begin(), var.end(), cur);
if (iter == var.end()) var.push_back(cur);
}
for (int i = 0; i < termNumber; i++)
for (int j = 0; j < terms[i].expression.length(); j++)
{
cur = terms[i].expression[j];
if (!isalpha(cur)) continue;
iter = find(var.begin(), var.end(), cur);
if (iter == var.end()) var.push_back(cur);
}
return var;
}
//重载多项式互加
polynomial polynomial::operator+(polynomial const & p2) const
{
polynomial result(*this);
for (int i = 0; i < p2.termNumber; i++)
result = result + p2.terms[i];
return result;
}
//重载多项式互乘
polynomial polynomial::operator*(polynomial const & p2) const
{
polynomial result;
if ((*this).isZero() || p2.isZero())
return result;
for (int i = 0; i < termNumber; i++)
for (int j = 0; j < p2.termNumber; j++)
result = result + terms[i] * p2.terms[j];
return result;
}
//重载多项式互除
fraction polynomial::operator/(polynomial const & p2) const
{
fraction result;
result.numerator = this->extraction();
result.denominator = p2.extraction();
monomial m1 = result.numerator, m2 = result.denominator;
monomial *split = (m1 / m2).split();
result.numerator = result.numerator * split[0]; result.denominator = result.denominator *split[1];
delete[]split;
result.numerator.coefficient = 1; result.numerator.expression.erase();
result.denominator.coefficient = 1; result.denominator.expression.erase();
return result;
}
//重载多项式比较
bool polynomial::operator==(polynomial const & p2) const
{
monomial const &m1 = *this, &m2 = p2;
for (int i = 0; i < termNumber; i++)
if (!(terms[i] == p2.terms[i])) return false;
if (!(m1 == m2)) return false;
return true;
}
//重载多项式输出
ostream & operator<<(ostream & output, polynomial const & p)
{
monomial const &m = p;
if (m.expression != ""||m.coefficient!=1)
output << m << " (";
if (p.isZero()) { output << "0"; return output; }
output << p.terms[0] << " ";
for (int i = 1; i < p.termNumber; i++)
{
if (p.terms[i].coefficient > 0) output << "+" << p.terms[i] << " ";
else output << p.terms[i] << " ";
}
if (m.expression != "")
output << ")";
return output;
}
//创造提取公因式中的一项(x的值为单项式)
polynomial createTerm(char var, monomial & value, vector<int> & power)//这里的power都应该是正数
{
monomial temp;
polynomial result(string(1, var));
if (value.isZero())
{
changePower(result.terms[0].expression, var, 0);
return result;
}
result = result + monomial(-1 * value.coefficient);
vector<char> variable = value.getVar();
if (variable.size() != power.size()) throw "err!";//处理错误信息
for (int i = 0; i < variable.size(); i++)
{
temp = monomial(string(1, variable[i]));
changePower(temp.expression, variable[i], power[i]);
if (getPower(value.expression, variable[i]) < 0)
result.terms[0] = result.terms[0] * temp;
else result.terms[1] = result.terms[1] * temp;
}
return result;
}
//创建提取公因式中的一项
polynomial createTerm(char var, polynomial const Coeff, int coeffPower, polynomial const Const, int constpower)
{
polynomial result;
monomial Var(string(1, var));
result = result + Var;
for (int i = 0; i < coeffPower; i++)
result = result * Coeff;
polynomial temp = Const;
for (int i = 1; i < abs(constpower); i++)
temp = temp * Const;
if (constpower < 0) result = result + temp;
else result = result + temp.changeSign();
return result;
}
//获取下一个因式中可能的幂次组合(单项式因子)
vector<int> nextPower(vector<char>& vars, int *powers,vector<int> *factors,int step)
{
int size = vars.size(), total = 1, cur;
int *num = new int[size];
vector<int> result;
for (int i = 0; i < size; i++)
{
num[i] = factors[i].size();
total *= num[i];
}
for (int i = 0; i < size; i++)
{
cur = step;
for (int j = 0; j < i; j++)
cur /= num[j];
cur = cur % num[i];
result.push_back(factors[i][cur]);
}
return result;
}
/*分式部分*/
//从单项式构造分式,分母为1
fraction::fraction(monomial const & m)
{
termNumber = 1;
terms.push_back(monomial("1"));
numerator = polynomial(m);
denominator.termNumber = 1;
for (int i = 0; i < m.expression.length(); i++)
{
int power = getPower(m.expression, i);
if (power < 0)
{
changePower(numerator.terms[0].expression, m.expression[i], 0);
changePower(denominator.terms[0].expression, m.expression[i], -1*power);
}
}
}
//从多项式构造分式,分母为1
fraction::fraction(polynomial const & p)
{
numerator = p;
termNumber = 1;
terms.push_back(monomial("1"));
monomial m = p.extraction();
denominator.termNumber = 1;
denominator.terms.push_back(monomial("1"));
for (int i = 0; i < m.expression.length(); i++)
{
int power = getPower(m.expression, i);
if (power > 0)
changePower(m.expression, i--, 0);
}
m.coefficient = 1;
for(int i=0;i<p.termNumber;i++)
numerator.terms[i] = numerator.terms[i] / m;
denominator.terms[0] = denominator.terms[0] / m;
}
//重载分式输出
ostream & operator<<(ostream & output, fraction const & f)
{
if (f.isDigit())
{
output << f.toDigit() << endl;
return output;
}
else if (f.denominator == polynomial(1))
{
output << f.numerator << endl;
return output;
}
int l2 = f.numerator.getLength(), l3 = f.denominator.getLength();
int d1 = (l2 < l3) ? ((l3 - l2) / 2)+1 : 0;
int d2 = (l3 < l2) ? ((l2 - l3) / 2)+1 : 0;
for (int i = 0; i < d1; i++) output << " ";
output << f.numerator << endl;
for (int i = 0; i < max(l2, l3); i++) output << "-";
output << endl;
for (int i = 0; i < d2; i++) output << " ";
output << f.denominator;
return output;
}
//改变分式的符号
fraction fraction::changeSign(void) const
{
fraction result(*this);
if (result.isZero()) return result;
for (int i = 0; i < result.numerator.termNumber; i++)
result.numerator.terms[i].coefficient *= -1;
return result;
}
//判断分式是否为数字
bool fraction::isDigit(void) const
{
if (denominator.termNumber == 1 &&numerator.termNumber == 1 )
if(denominator.terms[0].expression[0] == '\0'&& numerator.terms[0].expression[0] == '\0')
return true;
return false;
}
//将是纯数的分式转化为double
double fraction::toDigit(void) const
{
if(terms.empty()) return numerator.terms[0].coefficient / denominator.terms[0].coefficient;
else return terms[0].coefficient*numerator.terms[0].coefficient / denominator.terms[0].coefficient;
}
//尝试化简分式
fraction fraction::trySimplify(void)
{
fraction result(*this);//待处理前缀
char varnum = result.numerator.getMainTerm();
char vardenom = result.denominator.getMainTerm();
if (result.numerator.isNegative() && result.denominator.isNegative())
{ result.numerator = result.numerator.changeSign(); result.denominator = result.denominator.changeSign(); }
if (result.numerator.isZero()) result.denominator = monomial(1);
if (varnum == '0' || vardenom == '0') return result;
vector<polynomial> num = numerator.factorize(varnum);
vector<polynomial> denom = denominator.factorize(vardenom);
for (int i = 0; i < num.size(); i++)
{
vector<polynomial>::iterator iter = find(denom.begin(), denom.end(), num[i]);
if (iter != denom.end())
{
result.numerator.DivideWithRemainder(num[i]);
result.denominator.DivideWithRemainder(num[i]);
denom.erase(iter);
}
}
return result;
}
//用于debug的输出
void output(fraction ** const Matrix, int row, int column)
{
for (int i = 0; i < row; i++)
{
for (int j = 0; j < column; j++)
cout << Matrix[i][j].numerator << "/" << Matrix[i][j].denominator << " ";
cout << endl;
}
cout << endl;
}
//求幂运算,用于计算"^"操作符
fraction myPow(fraction const & f, int power)
{
fraction result = monomial(1);
if (power > 0)
for (int i = 0; i < power; i++)
result = result * f;
else if (power < 0)
for (int i = 0; i < abs(power); i++)
result = result / f;
return result;
}
//重载分式互加
fraction fraction::operator+(fraction const & f2) const
{
fraction result;
if (f2.terms[0].expression[0] != '\0')
cout << "err!fracton addition!" << endl;
result.denominator = denominator * f2.denominator;
polynomial p1 = numerator * f2.denominator;
polynomial p2 = f2.numerator * denominator;
result.numerator = p1 + p2;
result = result.numerator / result.denominator;
return result.trySimplify();
}
//重载分式互乘
fraction fraction::operator*(fraction const & f2) const
{
fraction result;
if ((*this).isZero() || f2.isZero()) return result;
if (f2.terms[0].expression[0] != '\0')
cout << "err!fracton multuply!" << endl;
result.numerator = numerator * f2.numerator;
result.denominator = denominator * f2.denominator;
result = result.numerator / result.denominator;
return result.trySimplify();
}
//重载分式互除
fraction fraction::operator/(fraction const & f2) const
{
fraction result;
if (f2.terms[0].expression[0] != '\0')
cout << "err!fracton division!" << endl;
result.numerator = numerator * f2.denominator;
result.denominator = denominator * f2.numerator;
result = result.numerator / result.denominator;
return result.trySimplify();
}
/*混合运算部分*/
//重载单项式加多项式
polynomial operator+(monomial const & m, polynomial const & p)
{
polynomial result(p);
for (vector<monomial>::iterator iter = result.terms.begin(); iter < result.terms.end(); iter++)
if (m.expression == iter->expression)
{
iter->coefficient += m.coefficient;
if (iter->coefficient == 0)
{
result.termNumber--;
result.terms.erase(iter);
}
return result;
}
result.termNumber++;
result.terms.push_back(m);
return result;
}
polynomial operator +(polynomial const &p, monomial const &m) { return m + p; }
//重载单项式乘多项式
polynomial operator*(monomial const & m, polynomial const & p)
{
polynomial result;
if (m.isZero() || p.isZero()) return result;
result.termNumber = p.termNumber;
for (int i = 0; i < p.termNumber; i++)
result.terms.push_back(m*p.terms[i]);
return result;
}
polynomial operator *(polynomial const &p, monomial const &m) { return m * p; }
//重载单项式除以多项式
fraction operator/(monomial const & m, polynomial const & p)
{
fraction result;
result.denominator = p.extraction();
monomial &coeff = result.denominator;
monomial *split = (m / coeff).split();
result.numerator = split[0]; result.denominator = result.denominator*split[1];
delete[]split;
result.denominator.coefficient = 1; result.denominator.expression = "";
return result;
}
//重载多项式除以单项式
fraction operator/(polynomial const & p, monomial const & m)
{
fraction result;
result.numerator= p.extraction();
monomial &coeff = result.numerator;
monomial *split = (coeff / m).split();
result.numerator = result.numerator*split[0]; result.denominator = split[1];
delete[]split;
result.numerator.coefficient = 1; result.numerator.expression = "";
return result;
}
fraction operator+(monomial const & m, fraction const & f)
{
return fraction(m) + f;
}
fraction operator+(fraction const & f, monomial const & m)
{
return fraction(m) + f;
}
fraction operator*(monomial const & m, fraction const & f)
{
return fraction(m) * f;
}
fraction operator*(fraction const & f, monomial const & m)
{
return fraction(m) * f;
}
fraction operator/(monomial const & m, fraction const & f)
{
return fraction(m) / f;
}
fraction operator/(fraction const & f, monomial const & m)
{
return f / fraction(m);
}
fraction operator+(polynomial const & p, fraction const & f)
{
return fraction(p) + f;
}
fraction operator+(fraction const & f, polynomial const & p)
{
return fraction(p) + f;
}
fraction operator*(polynomial const & p, fraction const & f)
{
return fraction(p) * f;
}
fraction operator*(fraction const & f, polynomial const & p)
{
return fraction(p) * f;
}
fraction operator/(polynomial const & p, fraction const & f)
{
return fraction(p) / f;
}
fraction operator/(fraction const & f, polynomial const & p)
{
return f / fraction(p);
}