Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ollama logging Gin (Go framework) and multiline #123

Open
jwsy opened this issue Nov 8, 2024 · 2 comments
Open

Ollama logging Gin (Go framework) and multiline #123

jwsy opened this issue Nov 8, 2024 · 2 comments

Comments

@jwsy
Copy link

jwsy commented Nov 8, 2024

Ollama logs look awesome in Humanlog but can get a few improvements

image

Logs attached: ollama_serve_output.log

The GIN logs look like they're not getting parsed

[GIN] 2024/10/26 - 00:20:44 | 200 |   14.036458ms |       127.0.0.1 | GET      "/api/tags"

Multiline logs aren't getting parsed either

time=2024-11-08T14:46:33.875+09:00 level=INFO source=server.go:606 msg="llama runner started in 3.52 seconds"
[GIN] 2024/11/08 - 14:46:38 | 200 |   7.94878925s |       127.0.0.1 | POST     "/api/chat"
[GIN] 2024/11/08 - 14:46:39 | 200 |  994.447125ms |       127.0.0.1 | POST     "/v1/chat/completions"
llama_model_loader: loaded meta data with 24 key-value pairs and 291 tensors from /Users/jyee/.ollama/models/blobs/sha256-e8a35b5937a5e6d5c35d1f2a15f161e07eefe5e5bb0a3cdd42998ee79b057730 (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = mistralai
llama_model_loader: - kv   2:                       llama.context_length u32              = 32768
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 2
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                      tokenizer.ggml.merges arr[str,58980]   = ["▁ t", "i n", "e r", "▁ a", "h e...
llama_model_loader: - kv  17:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  18:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  19:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  20:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  21:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  22:                    tokenizer.chat_template str              = {{ bos_token }}{% for message in mess...
llama_model_loader: - kv  23:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  225 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.1637 MB

Steps to reproduce

DO NOT ❌ run Ollama like usual, be sure to run ollama with a custom OLLAMA_HOST like below so the webui can access it from within the container

OLLAMA_HOST=0.0.0.0 ollama serve &> ~/ollama_serve_output.log &

Then start Rancher Desktop and run Open WebUI

docker run -d -p 3000:8080 --add-host=rd.local:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

View the nice output in Humanlog

humanlog < ~/ollama_serve_output.log
@aybabtme
Copy link
Collaborator

aybabtme commented Nov 8, 2024

When this is fixed, would be good to let the folks know in https://www.reddit.com/r/ollama/comments/1drdvoh/how_do_i_hide_these_long_config_logs_and_gin/

@aybabtme aybabtme changed the title Ollama logging GIN and multiline Ollama logging Gin (Go framework) and multiline Nov 8, 2024
@aybabtme
Copy link
Collaborator

aybabtme commented Nov 8, 2024

the logger that produces the [GIN] stuff is https://github.com/gin-gonic/gin/blob/master/logger.go

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants