forked from linzh92/DeepICF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepICF_a.py
325 lines (267 loc) · 16 KB
/
DeepICF_a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from __future__ import absolute_import
from __future__ import division
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
import numpy as np
import logging
from time import time
from Dataset import Dataset
import Batch_gen as data
import Evaluate as evaluate
import argparse
from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm
def parse_args():
parser = argparse.ArgumentParser(description="Run NAIS.")
parser.add_argument('--path', nargs='?', default='Data/',
help='Input data path.')
parser.add_argument('--dataset', nargs='?', default='pinterest-20',
help='Choose a dataset.')
parser.add_argument('--pretrain', type=int, default=1,
help='0: No pretrain, 1: Pretrain with updating FISM variables, 2:Pretrain with fixed FISM variables.')
parser.add_argument('--verbose', type=int, default=1,
help='Interval of evaluation.')
parser.add_argument('--batch_choice', nargs='?', default='user',
help='user: generate batches by user, fixed:batch_size: generate batches by batch size')
parser.add_argument('--epochs', type=int, default=100,
help='Number of epochs.')
parser.add_argument('--weight_size', type=int, default=16,
help='weight size.')
parser.add_argument('--embed_size', type=int, default=16,
help='Embedding size.')
parser.add_argument('--layers', nargs='?', default='[32,16]',
help='Size of each layer')
parser.add_argument('--regs', nargs='?', default='[1e-7,1e-7,0]',
help='Regularization for user and item embeddings.')
parser.add_argument('--reg_W', nargs='?', default='[0,0]',
help='L_2 regularization on each layer weights.')
parser.add_argument('--alpha', type=float, default=0,
help='Index of coefficient of embedding vector')
parser.add_argument('--train_loss', type=float, default=1,
help='Caculate training loss or nor')
parser.add_argument('--beta', type=float, default=0.5,
help='Index of coefficient of sum of exp(A)')
parser.add_argument('--num_neg', type=int, default=4,
help='Number of negative instances to pair with a positive instance.')
parser.add_argument('--lr', type=float, default=0.01,
help='Learning rate.')
parser.add_argument('--batch_norm', type=int, default=1,
help='Whether to perform batch norm (0 or 1)')
parser.add_argument('--activation', type=int, default=0,
help='Activation for ReLU, sigmoid, tanh.')
parser.add_argument('--algorithm', type=int, default=0,
help='0 for prod, 1 for concat')
return parser.parse_args()
# batch norm
def batch_norm_layer(x, train_phase, scope_bn):
bn_train = batch_norm(x, decay=0.9, center=True, scale=True, updates_collections=None,
is_training=True, reuse=None, trainable=True, scope=scope_bn)
bn_inference = batch_norm(x, decay=0.9, center=True, scale=True, updates_collections=None,
is_training=False, reuse=True, trainable=True, scope=scope_bn)
z = tf.cond(train_phase, lambda: bn_train, lambda: bn_inference)
return z
class DeepICF_a:
def __init__(self, num_items, args):
self.pretrain = args.pretrain
self.num_items = num_items
self.dataset_name = args.dataset
self.learning_rate = args.lr
self.embedding_size = args.embed_size
self.weight_size = args.weight_size
self.alpha = args.alpha
self.beta = args.beta
self.verbose = args.verbose
self.n_hidden = eval(args.layers)
self.activation = args.activation
self.algorithm = args.algorithm
self.batch_choice = args.batch_choice
regs = eval(args.regs)
self.lambda_bilinear = regs[0]
self.gamma_bilinear = regs[1]
self.eta_bilinear = regs[2]
self.reg_W = eval(args.reg_W)
self.train_loss = args.train_loss
self.use_batch_norm = args.batch_norm
def _create_placeholders(self):
with tf.name_scope("input_data"):
self.user_input = tf.placeholder(tf.int32, shape=[None, None]) # the index of users
self.num_idx = tf.placeholder(tf.float32, shape=[None, 1]) # the number of items rated by users
self.item_input = tf.placeholder(tf.int32, shape=[None, 1]) # the index of items
self.labels = tf.placeholder(tf.float32, shape=[None, 1]) # the ground truth
self.is_train_phase = tf.placeholder(tf.bool) # mark is training or testing
def _create_variables(self):
with tf.name_scope("embedding"): # The embedding initialization is unknown now
trainable_flag = (self.pretrain != 2)
self.c1 = tf.Variable(tf.truncated_normal(shape=[self.num_items, self.embedding_size], mean=0.0, stddev=0.01), name='c1', dtype=tf.float32, trainable=trainable_flag)
self.c2 = tf.constant(0.0, tf.float32, [1, self.embedding_size], name='c2')
self.embedding_Q_ = tf.concat([self.c1, self.c2], 0, name='embedding_Q_')
self.embedding_Q = tf.Variable(tf.truncated_normal(shape=[self.num_items, self.embedding_size], mean=0.0, stddev=0.01), name='embedding_Q', dtype=tf.float32, trainable=trainable_flag)
self.bias = tf.Variable(tf.zeros(self.num_items), name='bias', trainable=trainable_flag)
# Variables for attention
if self.algorithm == 0:
self.W = tf.Variable(tf.truncated_normal(shape=[self.embedding_size, self.weight_size], mean=0.0, stddev=tf.sqrt(tf.div(2.0, self.weight_size + self.embedding_size))), name='Weights_for_MLP', dtype=tf.float32, trainable=True)
else:
self.W = tf.Variable(tf.truncated_normal(shape=[2 * self.embedding_size, self.weight_size], mean=0.0, stddev=tf.sqrt(tf.div(2.0, self.weight_size + ( 2 * self.embedding_size)))), name='Weights_for_MLP', dtype=tf.float32, trainable=True)
self.b = tf.Variable(tf.truncated_normal(shape=[1, self.weight_size], mean=0.0, stddev=tf.sqrt(tf.div(2.0, self.weight_size + self.embedding_size))), name='Bias_for_MLP', dtype=tf.float32, trainable=True)
self.h = tf.Variable(tf.ones([self.weight_size, 1]), name='H_for_MLP', dtype=tf.float32)
# Variables for DeepICF+a
self.weights = {
'out': tf.Variable(tf.random_normal([self.n_hidden[-1], 1], mean=0, stddev=np.sqrt(2.0 / (self.n_hidden[-1] + 1))), name='weights_out')
}
self.biases = {
'out': tf.Variable(tf.random_normal([1]), name='biases_out')
}
n_hidden_0 = self.embedding_size
for i in range(len(self.n_hidden)):
if i > 0:
n_hidden_0 = self.n_hidden[i - 1]
n_hidden_1 = self.n_hidden[i]
self.weights['h%d' % i] = tf.Variable(tf.random_normal([n_hidden_0, n_hidden_1], mean=0, stddev=np.sqrt(2.0 / (n_hidden_0 + n_hidden_1))), name='weights_h%d' % i)
self.biases['b%d' % i] = tf.Variable(tf.random_normal([n_hidden_1]), name='biases_b%d' % i)
def _attention_MLP(self, q_):
with tf.name_scope("attention_MLP"):
b = tf.shape(q_)[0]
n = tf.shape(q_)[1]
r = (self.algorithm + 1) * self.embedding_size
MLP_output = tf.matmul(tf.reshape(q_, [-1, r]), self.W) + self.b # (b*n, e or 2*e) * (e or 2*e, w) + (1, w)
if self.activation == 0:
MLP_output = tf.nn.relu(MLP_output)
elif self.activation == 1:
MLP_output = tf.nn.sigmoid(MLP_output)
elif self.activation == 2:
MLP_output = tf.nn.tanh(MLP_output)
A_ = tf.reshape(tf.matmul(MLP_output, self.h), [b, n]) # (b*n, w) * (w, 1) => (None, 1) => (b, n)
# softmax for not mask features
exp_A_ = tf.exp(A_)
num_idx = tf.reduce_sum(self.num_idx, 1)
mask_mat = tf.sequence_mask(num_idx, maxlen=n, dtype=tf.float32) # (b, n)
exp_A_ = mask_mat * exp_A_
exp_sum = tf.reduce_sum(exp_A_, 1, keep_dims=True) # (b, 1)
exp_sum = tf.pow(exp_sum, tf.constant(self.beta, tf.float32, [1]))
A = tf.expand_dims(tf.div(exp_A_, exp_sum), 2) # (b, n, 1)
return A, tf.reduce_sum(A * self.embedding_q_, 1)
def _create_inference(self):
with tf.name_scope("inference"):
self.embedding_q_ = tf.nn.embedding_lookup(self.embedding_Q_, self.user_input) # (b, n, e)
self.embedding_q = tf.nn.embedding_lookup(self.embedding_Q, self.item_input) # (b, 1, e)
if self.algorithm == 0: # prod
self.A, self.embedding_p = self._attention_MLP(self.embedding_q_ * self.embedding_q) # (?, k)
else: # concat
n = tf.shape(self.user_input)[1]
self.A, self.embedding_p = self._attention_MLP(tf.concat([self.embedding_q_, tf.tile(self.embedding_q, tf.stack([1, n, 1]))], 2)) # (?, k)
self.embedding_q = tf.reduce_sum(self.embedding_q, 1) # (?, k)
self.bias_i = tf.nn.embedding_lookup(self.bias, self.item_input)
self.coeff = tf.pow(self.num_idx, tf.constant(self.alpha, tf.float32, [1]))
self.embedding_p = self.coeff * self.embedding_p # (?, k)
# DeepICF+a
layer1 = tf.multiply(self.embedding_p, self.embedding_q) # (?, k)
for i in range(len(self.n_hidden)):
layer1 = tf.add(tf.matmul(layer1, self.weights['h%d' % i]), self.biases['b%d' % i])
if self.use_batch_norm:
layer1 = batch_norm_layer(layer1, train_phase=self.is_train_phase, scope_bn='bn_%d' % i)
layer1 = tf.nn.relu(layer1)
out_layer = tf.matmul(layer1, self.weights['out']) + self.biases['out'] # (?, 1)
self.output = tf.sigmoid(tf.add_n([out_layer, self.bias_i])) # (?, 1)
def _create_loss(self):
with tf.name_scope("loss"):
self.loss = tf.losses.log_loss(self.labels, self.output) + \
self.lambda_bilinear * tf.reduce_sum(tf.square(self.embedding_Q)) + \
self.gamma_bilinear * tf.reduce_sum(tf.square(self.embedding_Q_)) + \
self.eta_bilinear * tf.reduce_sum(tf.square(self.W))
for i in range(min(len(self.n_hidden), len(self.reg_W))):
if self.reg_W[i] > 0:
self.loss = self.loss + self.reg_W[i] * tf.reduce_sum(tf.square(self.weights['h%d'%i]))
def _create_optimizer(self):
with tf.name_scope("optimizer"):
self.optimizer = tf.train.AdagradOptimizer(learning_rate=self.learning_rate,
initial_accumulator_value=1e-8).minimize(self.loss)
def build_graph(self):
self._create_placeholders()
self._create_variables()
self._create_inference()
self._create_loss()
self._create_optimizer()
logging.info("already build the computing graph...")
def training(flag, model, dataset, epochs, num_negatives):
weight_path = 'Pretraining/%s/%s/alpha0.0.ckpt' % (model.dataset_name, model.embedding_size)
saver = tf.train.Saver([model.c1, model.embedding_Q, model.bias])
with tf.Session() as sess:
# pretrain nor not
if flag != 0:
sess.run(tf.global_variables_initializer())
saver.restore(sess, weight_path)
p_c1, p_e_Q, p_b = sess.run([model.c1, model.embedding_Q, model.bias])
model.c1 = tf.Variable(p_c1, dtype=tf.float32, trainable=True, name='c1')
model.embedding_Q_ = tf.concat([model.c1, model.c2], 0, name='embedding_Q_')
model.embedding_Q = tf.Variable(p_e_Q, dtype=tf.float32, trainable=True, name='embedding_Q')
model.bias = tf.Variable(p_b, dtype=tf.float32, trainable=True, name='embedding_Q')
logging.info("using pretrained variables")
print("using pretrained variables")
else:
sess.run(tf.global_variables_initializer())
logging.info("initialized")
print("initialized")
# initialize for training batches
batch_begin = time()
batches = data.shuffle(dataset, model.batch_choice, num_negatives)
batch_time = time() - batch_begin
num_batch = len(batches[1])
batch_index = range(num_batch)
# initialize the evaluation feed_dicts
testDict = evaluate.init_evaluate_model(model, sess, dataset.testRatings, dataset.testNegatives, dataset.trainList)
best_hr, best_ndcg = 0, 0
# train by epoch
for epoch_count in range(epochs):
train_begin = time()
training_batch(batch_index, model, sess, batches)
train_time = time() - train_begin
if epoch_count % model.verbose == 0:
if model.train_loss:
loss_begin = time()
train_loss = training_loss(model, sess, batches)
loss_time = time() - loss_begin
else:
loss_time, train_loss = 0, 0
eval_begin = time()
(hits, ndcgs, losses) = evaluate.eval(model, sess, dataset.testRatings, dataset.testNegatives, testDict)
hr, ndcg, test_loss = np.array(hits).mean(), np.array(ndcgs).mean(), np.array(losses).mean()
eval_time = time() - eval_begin
if hr > best_hr:
best_hr = hr
best_ndcg = ndcg
logging.info("Epoch %d [%.1fs + %.1fs]: HR = %.4f, NDCG = %.4f, loss = %.4f [%.1fs] train_loss = %.4f [%.1fs]" % (
epoch_count, batch_time, train_time, hr, ndcg, test_loss, eval_time, train_loss, loss_time))
print("Epoch %d [%.1fs + %.1fs]: HR = %.4f, NDCG = %.4f, loss = %.4f [%.1fs] train_loss = %.4f [%.1fs]" % (
epoch_count, batch_time, train_time, hr, ndcg, test_loss, eval_time, train_loss, loss_time))
batch_begin = time()
batches = data.shuffle(dataset, model.batch_choice, num_negatives)
np.random.shuffle(batch_index)
batch_time = time() - batch_begin
return best_hr, best_ndcg
def training_batch(batch_index, model, sess, batches):
for index in batch_index:
user_input, num_idx, item_input, labels = data.batch_gen(batches, index)
feed_dict = {model.user_input: user_input, model.num_idx: num_idx[:, None], model.item_input: item_input[:, None],
model.labels: labels[:, None], model.is_train_phase: True}
sess.run([model.loss, model.optimizer], feed_dict)
def training_loss(model, sess, batches):
train_loss = 0.0
num_batch = len(batches[1])
for index in range(num_batch):
user_input, num_idx, item_input, labels = data.batch_gen(batches, index)
feed_dict = {model.user_input: user_input, model.num_idx: num_idx[:, None], model.item_input: item_input[:, None],
model.labels: labels[:, None], model.is_train_phase: True}
train_loss += sess.run(model.loss, feed_dict)
return train_loss / num_batch
if __name__ == '__main__':
args = parse_args()
regs = eval(args.regs)
logging.info("dataset:%s pretrain:%d weight_size:%d embedding_size:%d"
% (args.dataset, args.pretrain, args.weight_size, args.embed_size))
logging.info("regs:%.8f, %.8f, %.8f beta:%.1f learning_rate:%.4f train_loss:%d activation:%d"
% (regs[0], regs[1], regs[2], args.beta, args.lr, args.train_loss, args.activation))
dataset = Dataset(args.path + args.dataset)
model = DeepICF_a(dataset.num_items, args)
model.build_graph()
best_hr, best_ndcg = training(args.pretrain, model, dataset, args.epochs, args.num_neg)
print("End. best HR = %.4f, best NDCG = %.4f" % (best_hr, best_ndcg))