forked from linzh92/DeepICF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvaluate.py
130 lines (118 loc) · 3.73 KB
/
Evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
'''
Created on Apr 15, 2016
Evaluate the performance of Top-K recommendation:
Protocol: leave-1-out evaluation
Measures: Hit Ratio and NDCG
(more details are in: Xiangnan He, et al. Fast Matrix Factorization for Online Recommendation with Implicit Feedback. SIGIR'16)
@author: hexiangnan
'''
import math
import heapq # for retrieval topK
import multiprocessing
import numpy as np
from time import time
#from numba import jit, autojit
# Global variables that are shared across processes
_model = None
_testRatings = None
_testNegatives = None
_K = None
_DictList = None
_sess = None
def init_evaluate_model(model, sess, testRatings, testNegatives, trainList):
"""
Evaluate the performance (Hit_Ratio, NDCG) of top-K recommendation
Return: score of each test rating.
"""
global _model
global _testRatings
global _testNegatives
global _trainList
global _DictList
global _sess
_sess = sess
_model = model
_testRatings = testRatings
_testNegatives = testNegatives
_trainList = trainList
return load_test_as_list()
def eval(model, sess, testRatings, testNegatives, DictList):
global _model
global _testRatings
global _testNegatives
global _K
global _DictList
global _sess
_model = model
_testRatings = testRatings
_testNegatives = testNegatives
_DictList = DictList
_sess = sess
_K = 10
num_thread = 1#multiprocessing.cpu_count()
hits, ndcgs, losses = [],[],[]
if(num_thread > 1): # Multi-thread
pool = multiprocessing.Pool(num_thread)
res = pool.map(_eval_one_rating, range(len(_testRatings)))
pool.close()
pool.join()
hits = [r[0] for r in res]
ndcgs = [r[1] for r in res]
losses = [r[2] for r in res]
# Single thread
else:
for idx in range(len(_testRatings)):
(hr, ndcg, loss) = _eval_one_rating(idx)
hits.append(hr)
ndcgs.append(ndcg)
losses.append(loss)
return (hits, ndcgs, losses)
def load_test_as_list():
DictList = []
for idx in range(len(_testRatings)):
rating = _testRatings[idx]
items = _testNegatives[idx]
user = _trainList[idx]
num_idx_ = len(user)
gtItem = rating[1]
items.append(gtItem)
# Get prediction scores
num_idx = np.full(len(items),num_idx_, dtype=np.int32 )[:,None]
user_input = []
for i in range(len(items)):
user_input.append(user)
user_input = np.array(user_input)
item_input = np.array(items)[:,None]
feed_dict = {_model.user_input: user_input, _model.num_idx: num_idx,
_model.item_input: item_input, _model.is_train_phase: False}
DictList.append(feed_dict)
print("already load the evaluate model...")
return DictList
def _eval_one_rating(idx):
map_item_score = {}
rating = _testRatings[idx]
items = _testNegatives[idx]
gtItem = rating[1]
labels = np.zeros(len(items))[:, None]
labels[-1] = 1
feed_dict = _DictList[idx]
feed_dict[_model.labels] = labels
predictions, loss = _sess.run([_model.output, _model.loss], feed_dict=feed_dict)
for i in range(len(items)):
item = items[i]
map_item_score[item] = predictions[i]
ranklist = heapq.nlargest(_K, map_item_score, key=map_item_score.get)
hr = _getHitRatio(ranklist, gtItem)
ndcg = _getNDCG(ranklist, gtItem)
return (hr, ndcg, loss)
def _getHitRatio(ranklist, gtItem):
for item in ranklist:
if item == gtItem:
return 1
return 0
def _getNDCG(ranklist, gtItem):
for i in range(len(ranklist)):
item = ranklist[i]
if item == gtItem:
return math.log(2) / math.log(i+2)
return 0