forked from hcmcaic/ai-challenge-2020
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbb_polygon.py
122 lines (94 loc) · 3.4 KB
/
bb_polygon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Idea:
# 1) Draw a horizontal line to the right of each point and extend it to infinity
# 2) Count the number of times the line intersects with polygon edges.
# 3) A point is inside the polygon if either count of intersections is odd or
# point lies on an edge of polygon. If none of the conditions is true, then
# point lies outside.
# Given three colinear points p, q, r, the function checks if
# point q lies on line segment 'pr'
def onSegment(p, q, r):
if (q[0] <= max(p[0], r[0]) and q[0] >= min(p[0], r[0]) and q[1] <= max(p[1], r[1]) and q[1] >= min(p[1], r[1])):
return True
return False
# To find orientation of ordered triplet (p, q, r).
# The function returns following values
# 0 --> p, q and r are colinear
# 1 --> Clockwise
# 2 --> Counterclockwise
def orientation(p, q, r):
val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1])
# colinear
if (val == 0):
return 0
# clock or counterclock wise
if (val > 0):
return 1
else:
return 2
def is_intersect(p1, q1, p2, q2):
# Find the four orientations needed for general and special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
# General case
if (o1 != o2 and o3 != o4):
return True
# Special Cases
# p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 == 0 and onSegment(p1, p2, q1)):
return True
# p1, q1 and p2 are colinear and q2 lies on segment p1q1
if (o2 == 0 and onSegment(p1, q2, q1)):
return True
# p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 == 0 and onSegment(p2, p1, q2)):
return True
# p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 == 0 and onSegment(p2, q1, q2)):
return True
return False # Doesn't fall in any of the above cases
def is_point_in_polygon(polygon, point):
# Create a point for line segment from p to infinite
extreme = [point[0], 1e9]
# Count intersections of the above line with sides of polygon
count = 0
i = 0
while True:
j = (i+1) % len(polygon)
# Check if the line segment from 'p' to 'extreme' intersects
# with the line segment from 'polygon[i]' to 'polygon[j]'
if is_intersect(polygon[i], polygon[j], point, extreme):
# If the point 'p' is colinear with line segment 'i-j',
# then check if it lies on segment. If it lies, return true,
# otherwise false
if orientation(polygon[i], point, polygon[j])==0:
return onSegment(polygon[i], point, polygon[j])
count = count + 1
i = j
if i==0:
break
return count % 2 == 1
# use this function to check if a bounding box is inside the polygon
def is_bounding_box_intersect(bounding_box, polygon):
for i in range(len(bounding_box)):
if is_point_in_polygon(polygon, bounding_box[i]):
return True
return False
# def main():
# polygon1 = ((0, 0), (10, 0), (10, 10), (0, 10))
# p = (20, 20)
# print(is_point_in_polygon(polygon1, p))
# p = (5, 5)
# print(is_point_in_polygon(polygon1, p))
# polygon2 = ((0, 0), (5, 5), (5, 0))
# p = (3, 3)
# print(is_point_in_polygon(polygon2, p))
# p = (5, 1)
# print(is_point_in_polygon(polygon2, p))
# p = (8, 1)
# print(is_point_in_polygon(polygon2, p))
# polygon3 = ((0, 0), (10, 0), (10, 10), (0, 10))
# p = (-1,10)
# print(is_point_in_polygon(polygon3, p))
# main()