This is a collection of implementations of different types of GANs in Keras. Below, you can find a breakdown of which GANs have been implemented and how to run them.
You'll find so far:
Original GAN - https://arxiv.org/pdf/1406.2661.pdf
usage: gan.py [-h] [--epochs EPOCHS] [--batch_size BATCH_SIZE]
[--batch_per_epoch BATCH_PER_EPOCH] [--noise_dim NOISE_DIM]
- --epochs - The number of epochs to train for (400 by default)
- --batch_size - The standard batch size (128 by default)
- --batch_per_epoch - The number of batches to train on per epoch
- --noise_dim - The size of the noise vector (100 by default)
Result from GAN:
usage: dcgan.py [-h] [--epochs EPOCHS] [--batch_size BATCH_SIZE]
[--batch_per_epoch BATCH_PER_EPOCH] [--noise_dim NOISE_DIM]
[--dataset DATASET] [--load_model LOAD_MODEL] [--latent]
- --epochs - The number of epochs to train for (400 by default)
- --batch_size - The standard batch size (128 by default)
- --batch_per_epoch - The number of batches to train on per epoch
- --noise_dim - The size of the noise vector (100 by default)
- --dataset - The name of the data set
- --load_model - If loading a model for the latent space interpolation, the path to the model's weights
- --latent - The flag for interpolating over the latent space
Result from DCGAN on original 151 Pokemon:
Result from DCGAN on generation 5 Pokemon: