Skip to content

Latest commit

 

History

History

Generative-Adversarial-Networks

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

GANs

This is a collection of implementations of different types of GANs in Keras. Below, you can find a breakdown of which GANs have been implemented and how to run them.

You'll find so far:

usage: gan.py [-h] [--epochs EPOCHS] [--batch_size BATCH_SIZE]
              [--batch_per_epoch BATCH_PER_EPOCH] [--noise_dim NOISE_DIM]
  • --epochs - The number of epochs to train for (400 by default)
  • --batch_size - The standard batch size (128 by default)
  • --batch_per_epoch - The number of batches to train on per epoch
  • --noise_dim - The size of the noise vector (100 by default)

Result from GAN:

GAN GIF

usage: dcgan.py [-h] [--epochs EPOCHS] [--batch_size BATCH_SIZE]
                [--batch_per_epoch BATCH_PER_EPOCH] [--noise_dim NOISE_DIM]
                [--dataset DATASET] [--load_model LOAD_MODEL] [--latent]

  • --epochs - The number of epochs to train for (400 by default)
  • --batch_size - The standard batch size (128 by default)
  • --batch_per_epoch - The number of batches to train on per epoch
  • --noise_dim - The size of the noise vector (100 by default)
  • --dataset - The name of the data set
  • --load_model - If loading a model for the latent space interpolation, the path to the model's weights
  • --latent - The flag for interpolating over the latent space

Result from DCGAN on original 151 Pokemon:

GAN GIF

GAN GIF

Result from DCGAN on generation 5 Pokemon:

GAN GIF

GAN GIF