forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_pan.py
225 lines (194 loc) · 7.54 KB
/
custom_pan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import DropBlock
from ppdet.modeling.ops import get_act_fn
from ..backbones.cspresnet import ConvBNLayer, BasicBlock
from ..shape_spec import ShapeSpec
__all__ = ['CustomCSPPAN']
class SPP(nn.Layer):
def __init__(self,
ch_in,
ch_out,
k,
pool_size,
act='swish',
data_format='NCHW'):
super(SPP, self).__init__()
self.pool = []
self.data_format = data_format
for i, size in enumerate(pool_size):
pool = self.add_sublayer(
'pool{}'.format(i),
nn.MaxPool2D(
kernel_size=size,
stride=1,
padding=size // 2,
data_format=data_format,
ceil_mode=False))
self.pool.append(pool)
self.conv = ConvBNLayer(ch_in, ch_out, k, padding=k // 2, act=act)
def forward(self, x):
outs = [x]
for pool in self.pool:
outs.append(pool(x))
if self.data_format == 'NCHW':
y = paddle.concat(outs, axis=1)
else:
y = paddle.concat(outs, axis=-1)
y = self.conv(y)
return y
class CSPStage(nn.Layer):
def __init__(self, block_fn, ch_in, ch_out, n, act='swish', spp=False):
super(CSPStage, self).__init__()
ch_mid = int(ch_out // 2)
self.conv1 = ConvBNLayer(ch_in, ch_mid, 1, act=act)
self.conv2 = ConvBNLayer(ch_in, ch_mid, 1, act=act)
self.convs = nn.Sequential()
next_ch_in = ch_mid
for i in range(n):
self.convs.add_sublayer(
str(i),
eval(block_fn)(next_ch_in, ch_mid, act=act, shortcut=False))
if i == (n - 1) // 2 and spp:
self.convs.add_sublayer(
'spp', SPP(ch_mid * 4, ch_mid, 1, [5, 9, 13], act=act))
next_ch_in = ch_mid
self.conv3 = ConvBNLayer(ch_mid * 2, ch_out, 1, act=act)
def forward(self, x):
y1 = self.conv1(x)
y2 = self.conv2(x)
y2 = self.convs(y2)
y = paddle.concat([y1, y2], axis=1)
y = self.conv3(y)
return y
@register
@serializable
class CustomCSPPAN(nn.Layer):
__shared__ = ['norm_type', 'data_format', 'width_mult', 'depth_mult', 'trt']
def __init__(self,
in_channels=[256, 512, 1024],
out_channels=[1024, 512, 256],
norm_type='bn',
act='leaky',
stage_fn='CSPStage',
block_fn='BasicBlock',
stage_num=1,
block_num=3,
drop_block=False,
block_size=3,
keep_prob=0.9,
spp=False,
data_format='NCHW',
width_mult=1.0,
depth_mult=1.0,
trt=False):
super(CustomCSPPAN, self).__init__()
out_channels = [max(round(c * width_mult), 1) for c in out_channels]
block_num = max(round(block_num * depth_mult), 1)
act = get_act_fn(
act, trt=trt) if act is None or isinstance(act,
(str, dict)) else act
self.num_blocks = len(in_channels)
self.data_format = data_format
self._out_channels = out_channels
in_channels = in_channels[::-1]
fpn_stages = []
fpn_routes = []
for i, (ch_in, ch_out) in enumerate(zip(in_channels, out_channels)):
if i > 0:
ch_in += ch_pre // 2
stage = nn.Sequential()
for j in range(stage_num):
stage.add_sublayer(
str(j),
eval(stage_fn)(block_fn,
ch_in if j == 0 else ch_out,
ch_out,
block_num,
act=act,
spp=(spp and i == 0)))
if drop_block:
stage.add_sublayer('drop', DropBlock(block_size, keep_prob))
fpn_stages.append(stage)
if i < self.num_blocks - 1:
fpn_routes.append(
ConvBNLayer(
ch_in=ch_out,
ch_out=ch_out // 2,
filter_size=1,
stride=1,
padding=0,
act=act))
ch_pre = ch_out
self.fpn_stages = nn.LayerList(fpn_stages)
self.fpn_routes = nn.LayerList(fpn_routes)
pan_stages = []
pan_routes = []
for i in reversed(range(self.num_blocks - 1)):
pan_routes.append(
ConvBNLayer(
ch_in=out_channels[i + 1],
ch_out=out_channels[i + 1],
filter_size=3,
stride=2,
padding=1,
act=act))
ch_in = out_channels[i] + out_channels[i + 1]
ch_out = out_channels[i]
stage = nn.Sequential()
for j in range(stage_num):
stage.add_sublayer(
str(j),
eval(stage_fn)(block_fn,
ch_in if j == 0 else ch_out,
ch_out,
block_num,
act=act,
spp=False))
if drop_block:
stage.add_sublayer('drop', DropBlock(block_size, keep_prob))
pan_stages.append(stage)
self.pan_stages = nn.LayerList(pan_stages[::-1])
self.pan_routes = nn.LayerList(pan_routes[::-1])
def forward(self, blocks, for_mot=False):
blocks = blocks[::-1]
fpn_feats = []
for i, block in enumerate(blocks):
if i > 0:
block = paddle.concat([route, block], axis=1)
route = self.fpn_stages[i](block)
fpn_feats.append(route)
if i < self.num_blocks - 1:
route = self.fpn_routes[i](route)
route = F.interpolate(
route, scale_factor=2., data_format=self.data_format)
pan_feats = [fpn_feats[-1], ]
route = fpn_feats[-1]
for i in reversed(range(self.num_blocks - 1)):
block = fpn_feats[i]
route = self.pan_routes[i](route)
block = paddle.concat([route, block], axis=1)
route = self.pan_stages[i](block)
pan_feats.append(route)
return pan_feats[::-1]
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]