forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multigraph.py
62 lines (50 loc) · 1.94 KB
/
multigraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
from dgl.data.utils import download, extract_archive
from dgl.data import DGLDataset
from dgl.data.utils import load_graphs
class MultiGraphDataset(DGLDataset):
_prefix = 'https://s3.cn-north-1.amazonaws.com.cn/dgl-data/'
_urls = {
}
def __init__(self, name, raw_dir=None, force_reload=False, verbose=True):
assert name in ['LastFM4KGCN']
# HGBn means node classification
# HGBl means link prediction
self.data_path = './openhgnn/dataset/{}.zip'.format(name)
self.g_path = './openhgnn/dataset/{}/graph.bin'.format(name)
raw_dir = './openhgnn/dataset'
url = self._prefix + 'dataset/{}.zip'.format(name)
super(MultiGraphDataset, self).__init__(name=name,
url=url,
raw_dir=raw_dir,
force_reload=force_reload,
verbose=verbose)
def download(self):
# download raw data to local disk
# path to store the file
if os.path.exists(self.data_path): # pragma: no cover
pass
else:
file_path = os.path.join(self.raw_dir)
# download file
download(self.url, path=file_path)
extract_archive(self.data_path, os.path.join(self.raw_dir, self.name))
def process(self):
# process raw data to graphs, labels, splitting masks
g, _ = load_graphs(self.g_path)
self._g = g
def __getitem__(self, idx):
# get one example by index
return self._g[idx]
def __len__(self):
# number of data examples
return 1
def save(self):
# save processed data to directory `self.save_path`
pass
def load(self):
# load processed data from directory `self.save_path`
pass
def has_cache(self):
# check whether there are processed data in `self.save_path`
pass