forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmp2vec_trainer.py
80 lines (67 loc) · 3.58 KB
/
mp2vec_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os.path
import numpy
from tqdm import tqdm
import torch.optim as optim
from torch.utils.data import DataLoader
from ..models import build_model
from . import BaseFlow, register_flow
from ..sampler import random_walk_sampler
@register_flow("mp2vec_trainer")
class Metapath2VecTrainer(BaseFlow):
def __init__(self, args):
super(Metapath2VecTrainer, self).__init__(args)
self.model = build_model(self.model).build_model_from_args(self.args, self.hg).to(self.device)
self.model = self.model.to(self.device)
self.mp2vec_sampler = None
self.dataloader = None
self.embeddings_file_path = os.path.join(self.args.output_dir, self.args.dataset + '_mp2vec_embeddings.npy')
self.load_trained_embeddings = False
def preprocess(self):
metapath = self.task.dataset.meta_paths_dict[self.args.meta_path_key]
self.mp2vec_sampler = random_walk_sampler.RandomWalkSampler(g=self.hg.to('cpu'),
metapath=metapath * self.args.rw_length,
rw_walks=self.args.rw_walks,
window_size=self.args.window_size,
neg_size=self.args.neg_size)
self.dataloader = DataLoader(self.mp2vec_sampler, batch_size=self.args.batch_size,
shuffle=True, num_workers=self.args.num_workers,
collate_fn=self.mp2vec_sampler.collate)
def train(self):
emb = self.load_embeddings()
# todo: only supports node classification now
start_idx, end_idx = self.get_ntype_range(self.task.dataset.category)
metric = {'test': self.task.downstream_evaluate(logits=emb[start_idx:end_idx], evaluation_metric='f1_lr')}
self.logger.train_info(self.logger.metric2str(metric))
def load_embeddings(self):
if not self.load_trained_embeddings or not os.path.exists(self.embeddings_file_path):
self.train_embeddings()
emb = numpy.load(self.embeddings_file_path)
return emb
def train_embeddings(self):
self.preprocess()
optimizer = optim.SparseAdam(list(self.model.parameters()), lr=self.args.lr)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, len(self.dataloader))
for epoch in range(self.max_epoch):
self.logger.info('Epoch: ' + str(epoch + 1))
running_loss = 0.0
for i, sample_batched in enumerate(tqdm(self.dataloader)):
if len(sample_batched[0]) > 1:
pos_u = sample_batched[0].to(self.device)
pos_v = sample_batched[1].to(self.device)
neg_v = sample_batched[2].to(self.device)
optimizer.zero_grad()
loss = self.model.forward(pos_u, pos_v, neg_v)
loss.backward()
optimizer.step()
scheduler.step()
running_loss = running_loss * 0.9 + loss.item() * 0.1
if i > 0 and i % 50 == 0:
self.logger.info(' Loss: ' + str(running_loss))
self.model.save_embedding(self.embeddings_file_path)
def get_ntype_range(self, target_ntype):
start_idx = 0
for ntype in self.hg.ntypes:
if ntype == target_ntype:
end_idx = start_idx + self.hg.num_nodes(ntype)
return start_idx, end_idx
start_idx += self.hg.num_nodes(ntype)