forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrank.py
146 lines (129 loc) · 6.45 KB
/
rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import copy
import os
sns.set(style='ticks',context='poster')
pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 500)
from scipy.stats import rankdata, ttest_ind, f_oneway
from matplotlib.ticker import MaxNLocator
results_file_path = 'result.csv'
bias = 0.01
df = pd.read_csv(results_file_path)
dataset = 'all'
model = 'all'
df=df[df['model_family'] != 'mixed']
if dataset != 'all':
df = df[df['dataset'] == dataset]
if model != 'all':
df = df[df['model'] == model]
name_mapping = { 'has_bn':'Batch Normalization', 'has_l2norm':'L2 Normalization', 'dropout':'Dropout', 'aggregation':'Aggregation',
'layers_gnn':'Message passing layers', 'layers_pre_mp': 'Pre-process layers', 'layers_post_mp': 'Post-process layers', 'stage_type': 'Layer connectivity',
'lr': 'Learning rate', 'max_epoch':'Training epochs', 'model': 'Model', 'macro_func' : 'Macro function', 'activation': 'Activation', 'num_heads' : 'Number of heads', 'hidden_dim':'Hidden dimension', 'optimizer': 'Optimizer'}
column = df.columns.values.tolist()
score = 'score'
column.remove(score)
column.remove('value')
column.remove('epoch')
column.remove('time')
column.remove('parameter')
def get_acc(df, name, ax, metric='acc', has_y=True):
print(name)
df_selected = df[df['key'] == name].copy()
df_selected[column] = df_selected[column].fillna('Nan')
# if(name == 'macro_func'):
# df_selected = df_selected[df_selected['value'] != 'homo_GNN']
# if model == 'homo_GNN':
# return
# df_selected[column] = df_selected[column].fillna('Nan')
# if(name == 'num_heads'):
# df_selected['num_heads'] = df_selected['value']
# df_selected = df_selected[df_selected['gnn_type'] == 'gatconv']
# if(name == 'optimizer'):
# df_selected['optimizer'] = df_selected['value']
# if(name == 'activation'):
# df_selected['activation'] = df_selected['value']
# df_selected = df_selected[(df_selected['activation'] != 'relu6') & (df_selected['activation'] != 'sigmoid')]
# if (name == 'lr'):
# #df_selected['activation'] = df_selected['value']
# df_selected = df_selected[(df_selected['lr'] != 0.0001)]
# if (name == 'max_epoch'):
#
# df_selected = df_selected[(df_selected['max_epoch'] != 50) & (df_selected['max_epoch'] != 300)]
# column_temp = copy.deepcopy(column)
# column_temp.remove(name)
column_temp = ['key', 'dataset', 'model_family', 'gnn_type', 'times']
#df_selected['num_heads'] = df_selected['value']2
df_pivot = pd.pivot_table(df_selected, values=score, index=column_temp, columns=[name], aggfunc=np.mean)
accs_np = df_pivot.fillna(df_pivot.min()).values.round(5)
options = df_pivot.columns.values
ranks_raw = {'Model ID': [], 'Accuracy': [], 'Acc. Ranking': [], name_mapping[name]: []}
rank_np = np.zeros((accs_np.shape[0], accs_np.shape[1]))
for i, row in enumerate(accs_np):
# (1) rank is asceneding, so we neg the row; (2) rank start with 1 so we minus 1
rank_base = -row
med = np.median(rank_base)
for j in range(len(rank_base)):
if abs(rank_base[j] - med) <= bias:
rank_base[j] = med
rank = rankdata(rank_base, method='min')
for j in range(len(rank)):
ranks_raw['Model ID'].append(i)
ranks_raw['Accuracy'].append(accs_np[i, j])
ranks_raw['Acc. Ranking'].append(rank[j])
ranks_raw[name_mapping[name]].append(options[j])
rank_np[i, j] = rank[j]
# if metric == 'rank_bar':
# p_ffffc value = f_oneway(*[rank_np[:,i] for i in range(rank_np.shape[1])])[1]
# print(name, p_value, p_value<0.05, p_value<0.05/12)
ranks_raw = pd.DataFrame(data=ranks_raw)
with sns.color_palette("muted"):
if metric == 'acc':
splot = sns.violinplot(x=name_mapping[name], y="Accuracy", inner="box", data=ranks_raw, cut=0, ax=ax)
elif metric == 'rank_bar':
splot = sns.barplot(x=name_mapping[name], y="Acc. Ranking", data=ranks_raw, ax=ax)
ax.set_ylim(bottom=1)
ax.set_yticks([1, 2])
ax.set_xlabel('', fontsize=48)
if not has_y:
ax.set_ylabel('', fontsize=48)
else:
ax.set_ylabel('Average', fontsize=48)
elif metric == 'rank_violin':
sns.violinplot(x=name_mapping[name], y="Acc. Ranking", inner="box", data=ranks_raw, cut=0, ax=ax)
ax.set_ylim(bottom=1)
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
if not has_y:
ax.set_ylabel('', fontsize=48)
else:
ax.set_ylabel('Distribution', fontsize=48)
ax.xaxis.label.set_size(48)
ax.yaxis.label.set_size(48)
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(40)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(40)
count = 3
for names in [['has_bn', 'dropout', 'activation', 'has_l2norm', 'layers_pre_mp', 'layers_post_mp',], [ 'layers_gnn', 'stage_type', 'hidden_dim', 'optimizer', 'lr', 'max_epoch', ]]:
#for names in [['lr', 'dropout', 'activation', 'has_l2norm', 'layers_pre_mp', 'layers_post_mp',], [ 'layers_gnn', 'stage_type', 'hidden_dim', 'optimizer', 'lr', 'max_epoch', ]]:
#for names in [['num_heads', 'macro_func', ],['num_heads', 'macro_func',]]:
col = 6
row = 2
f, axes = plt.subplots(nrows=row, ncols=col, figsize=(55, 10))
#f, axes = plt.subplots(nrows=row, ncols=col, figsize=(20, 10))
for j, metric in enumerate(['rank_bar', 'rank_violin']):
for i, name in enumerate(names):
get_acc(df, name, axes[j, i], metric, has_y=i == 0)
f.text(0.02, 0.5, 'Score Ranking', ha='center', va='center', rotation='vertical', fontsize=48)
plt.tight_layout()
#plt.subplots_adjust(wspace=0.2, hspace=0.2)
plt.subplots_adjust(left=0.05, bottom=0.2, right=0.97, top=0.9, hspace=0.3, wspace=0.2)
#plt.subplots_adjust(left=0.15, bottom=0.2, right=0.97, top=0.9, hspace=0.3, wspace=0.2)
path = 'figs/1112'
if not os.path.exists(path):
os.makedirs(path)
plt.savefig('{}/{}_all_{}_{}.png'.format(path, dataset, count, bias), dpi=300)
count += 1
plt.show()