-
Notifications
You must be signed in to change notification settings - Fork 187
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Question about Densification #180
Comments
你好,这的确是一种简化的假设,在deform之后的Gaussian作densification按理说是更合理的,但是我们很难将deform之后的Gaussian和canonical Gaussian对应起来(具体可以参考Dynamic Gaussian Mesh,额外训了一个网络,但是这样做会增加计算开销。) |
非常感謝您的解答,想再請問一下你們有試過flow supervision或depth surpervison嗎? 因為我目測試起來發現效果並沒有改善,所以我正在想會不會是densification的原因。 |
我们都试过,感觉flow supervision一次好像也只渲染timestamp相邻的2-3张图,所以不是很有用。但是depth在某些单目场景是有成效的。主要还是deformationfield有时候会陷入local minima |
|
對的,我是用optical flow来做监督,我目前是效果不只沒上升反而有下降 |
您好,非常感謝您release code,想請問一下我在gaussian_model.py看到你在Densification的時候只考慮了canonical gaussian 的Densification,並沒有考慮deform後的gaussian的Densification,例如下面的連結的code只考慮了canonical gaussian 的scaling,這樣在Densification時是否不太合理呢?
https://github.com/hustvl/4DGaussians/blob/master/scene/gaussian_model.py#L448
The text was updated successfully, but these errors were encountered: