-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_all_eval.py
581 lines (501 loc) · 25.9 KB
/
run_all_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
#!/usr/bin/env python
# coding=utf-8
# Copyright BigScience, The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Reproduce the main evaluation in `Multitask Prompted Training Enables Zero-Shot Task Generalization` using PyTorch.
This script is heavily adapted from https://github.com/huggingface/transformers/blob/7533d30acd975027e83a548e4c38e06fa335291b/examples/pytorch/multiple-choice/run_swag_no_trainer.py
"""
import argparse
import logging
import math
import os
import random
from dataclasses import dataclass
from itertools import chain
from typing import Optional, Union
import json
import codecs
import datasets
import torch
from datasets import load_dataset, load_metric, concatenate_datasets, Value
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from collections import Counter
import transformers
from accelerate import Accelerator
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
PreTrainedTokenizerBase,
default_data_collator,
)
from transformers.file_utils import PaddingStrategy
# from promptsource.templates import DatasetTemplates
from templates import DatasetTemplates
logger = logging.getLogger(__name__)
def read_split_list(file_name):
test_task_list = []
with codecs.open(file_name, 'r', encoding='utf-8') as f:
for line in f.readlines():
line = line.strip()
line = line.replace('\n', '')
task_tuple = line.split('/')
if len(task_tuple) == 2:
test_task_list.append(task_tuple)
else:
test_task_list.append((task_tuple[0], None))
return test_task_list
def parse_args():
parser = argparse.ArgumentParser(description="Reproduce main evaluation in T0.")
parser.add_argument("--max_length", type=int, default=1024,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."),
)
parser.add_argument("--target_max_length", type=int, default=256,
help="Target max length. Sequences longer than this will be truncated." )
parser.add_argument("--pad_to_max_length", action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument("--model_name_or_path", type=str,
help="Path to pretrained model or model identifier from huggingface.co/models. The list of T0 variants can be found on `https://huggingface.co/bigscience/T0_3B`",
required=True, )
parser.add_argument("--config_name", type=str, default=None,
help="Pretrained config name or path if not the same as model_name", )
parser.add_argument("--template_dir", type=str, default='./templates')
parser.add_argument("--tokenizer_name", type=str, default=None,
help="Pretrained tokenizer name or path if not the same as model_name", )
parser.add_argument("--use_slow_tokenizer", action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", )
parser.add_argument("--per_device_eval_batch_size", type=int, default=8,
help="Batch size (per device) for the evaluation dataloader.", )
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--debug", action="store_true",
help="Activate debug mode and run training only with a subset of data.", )
parser.add_argument("--ga_dev_distribution", type=str, choices=['uniform', 'ratio'], default='uniform')
parser.add_argument("--parallelize", action="store_true",
help=(
"If passed, will call `model.parallelize` which splits the model on all GPUs available when applicable (model parallelism). "
"Note that this feature is still experimental in HF Transformers."),
)
parser.add_argument("--test_split", type=str, help='list of task to eval')
parser.add_argument("--dataset_type", type=str, choices=['ga', 'all'])
args = parser.parse_args()
return args
@dataclass
class DataCollatorForMultipleChoice:
"""
Data collator that will dynamically pad the inputs for multiple choice received.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
Note that it's very NOT recommended to use fp16 to do any time of inference with T0 as the predictions will vastly differ from the predictions using fp32.
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
num_choices = len(features[0]["input_ids"])
flattened_features = [
[
{
k: v[i]
for k, v in feature.items()
if k != "targets"
}
for i in range(num_choices)
]
for feature in features
]
flattened_features = list(chain(*flattened_features))
batch = self.tokenizer.pad(
flattened_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
)
# Pad the labels because it's not padded automatically
max_label_length = max([len(elem["labels"]) for elem in flattened_features])
batch["labels"] = [
l + [self.tokenizer.pad_token_id] * (max_label_length - len(l))
for l in [elem["labels"] for elem in flattened_features]
]
batch["labels_attention_mask"] = [
m + [0] * (max_label_length - len(m))
for m in [elem["labels_attention_mask"] for elem in flattened_features]
]
# Convert to tensors
batch = {
k: torch.tensor(v)
for k, v in batch.items()
}
batch["targets"] = torch.tensor([f.pop("targets") for f in features])
return batch
def build_ga_dataset(dataset_name, dataset_config_name, raw_datasets, distribution='uniform'):
task_name = f'{dataset_name}/{dataset_config_name}' if dataset_config_name else f'{dataset_name}'
dataset_distribution = {'anli/r1': {0: 334, 2: 333, 1: 333},
'anli/r2': {0: 334, 1: 333, 2: 333},
'anli/r3': {0: 402, 1: 402, 2: 396},
'super_glue/cb': {1: 28, 0: 23, 2: 5},
'super_glue/rte': {0: 146, 1: 131},
'super_glue/wsc.fixed': {0: 66, 1: 38},
'winogrande/winogrande_xl': {'2': 639, '1': 628},
'super_glue/copa': {0: 55, 1: 45},
'hellaswag': {'2': 2584, '0': 2515, '1': 2485, '3': 2458},
'super_glue/wic': {0: 319, 1: 319},
'story_cloze/2016': {1: 962, 2: 909}
}
label_key = 'label'
if dataset_name in ['winogrande']:
label_key = 'answer'
if dataset_name in ['story_cloze']:
label_key = 'answer_right_ending'
filtered_dataset = raw_datasets
if dataset_name == 'anli':
filtered_dataset = filtered_dataset.filter(lambda x: len(x['reason']) > 0, load_from_cache_file=False)
if dataset_name == 'winogrande':
train_file_path = './T0_dataset'
train_file_path = os.path.join(train_file_path, 'winogrande_winogrande_debiased')
data_files = {
'train': os.path.join(train_file_path, 'train.json'),
}
filtered_dataset = load_dataset('json', data_files=data_files)['train']
label_list = filtered_dataset[label_key]
label_type_set = set(label_list)
print(f'label_type_set: {label_type_set}')
ga_dataset_list = []
# sample 32 shot dev set
for label_type in label_type_set:
single_label_dataset = filtered_dataset.filter(lambda x: x[label_key] == label_type, load_from_cache_file=False)
single_label_dataset = single_label_dataset.shuffle(seed=42)
if distribution == 'ratio':
example_num_per_label = math.ceil(
dataset_distribution[task_name][label_type] / sum(dataset_distribution[task_name].values()) * 32)
else:
example_num_per_label = math.ceil(32 / len(label_type_set))
ga_dataset_list.append(single_label_dataset.select(
range(min(example_num_per_label, len(single_label_dataset)))))
filtered_dataset = concatenate_datasets(ga_dataset_list)
return filtered_dataset
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO, )
logger.info(accelerator.state)
# Metrics
metric = load_metric("accuracy")
test_task_list = read_split_list(args.test_split)
logger.info(f'eval tasks: {test_task_list}')
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Handle the output directory creation
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name)
elif args.model_name_or_path:
# T0 model
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
raise ValueError(
"Either `args.config_name` or `args.model_name_or_path` should be provided."
)
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if args.model_name_or_path:
model = AutoModelForSeq2SeqLM.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForSeq2SeqLM.from_config(config)
# Use the device given by the `accelerator` object.
device = accelerator.device
if args.parallelize:
assert torch.cuda.is_available(), "You need at least 1 GPU to call `parallelize` (even though if there is only 1 GPU, there won't be any model parallelism)."
model.parallelize()
else:
model.to(device)
# Preprocessing the datasets.
# First we tokenize all the texts.
padding = "max_length" if args.pad_to_max_length else False
for dataset_name, dataset_config_name in test_task_list:
train_file_path = './T0_dataset'
if dataset_config_name:
train_file_path = os.path.join(train_file_path, f'{dataset_name}_{dataset_config_name}')
else:
train_file_path = os.path.join(train_file_path, dataset_name)
data_files = {
'train': os.path.join(train_file_path, 'train.json'),
'validation': os.path.join(train_file_path, 'validation.json')
}
if args.dataset_type == 'ga':
if dataset_name == 'story_cloze':
raw_datasets = load_dataset('json', data_files=data_files)['validation']
else:
raw_datasets = load_dataset('json', data_files=data_files)['train']
else:
raw_datasets = load_dataset('json', data_files=data_files)['validation']
if dataset_name == 'story_cloze':
new_feature = raw_datasets.features.copy()
new_feature['answer_right_ending'] = Value('int64', id=None)
raw_datasets = raw_datasets.cast(new_feature, load_from_cache_file=False)
logger.info(f'raw dataset for {dataset_name}_{dataset_config_name}: {raw_datasets}')
# Trim a number of evaluation examples
if args.debug:
raw_datasets = raw_datasets.select(range(min(len(raw_datasets), 100)))
elif args.dataset_type == 'ga':
pass # do nothing
else:
# optional: only eval up to 1000 samples per task to save our valuable time
if dataset_name != 'hellaswag':
raw_datasets = raw_datasets.select(range(min(len(raw_datasets), 1000)))
column_names = raw_datasets.column_names
logger.info(f'column name: {column_names}')
def preprocess_function(examples):
bs = len(examples[column_names[0]])
input_texts = []
target_texts = []
answer_choices_texts = []
for i in range(bs):
ex = {
k: examples[k][i]
for k in column_names
}
input, target = template.apply(ex)
ex_answer_choices = template.get_answer_choices_list(ex)
assert target in ex_answer_choices
input_texts.append(input)
target_texts.append(target)
answer_choices_texts.append(ex_answer_choices)
tokenized_inputs = tokenizer(
input_texts,
padding=padding,
max_length=args.max_length,
truncation=True,
add_special_tokens=False,
)
tokenized_targets = [
tokenizer(
ans_choi,
padding=True,
max_length=args.target_max_length,
truncation=True,
)
for ans_choi in answer_choices_texts
]
features = {
k: [
[elem for _ in range(len(tokenized_targets[idx]["input_ids"]))]
for idx, elem in enumerate(v)
]
for k, v in tokenized_inputs.items()
}
features["labels"] = [
tokenized_targets[idx]["input_ids"]
for idx in range(bs)
]
features["labels_attention_mask"] = [
tokenized_targets[idx]["attention_mask"]
for idx in range(bs)
]
features["targets"] = [
answer_choices_texts[idx].index(t)
for idx, t in enumerate(target_texts)
]
return features
logger.info(f'use template_dir: {args.template_dir}')
prompts = DatasetTemplates(
f"{dataset_name}" if dataset_config_name is None else f"{dataset_name}/{dataset_config_name}",
template_dir=args.template_dir)
template_list = prompts.templates.keys()
logger.info(f'{dataset_name} contains templates: {template_list}')
result_summary = []
for template_id in template_list:
template = prompts.templates[template_id]
template_name = template.name
logger.info(f'{template.metadata.original_task}, type: {type(template.metadata.original_task)}')
if template.metadata.original_task is not True:
logger.info(f'skip {template_name}, we only need templates for original task')
continue
prediction_list = []
# filter invalid samples
filtered_dataset = None
if dataset_config_name == 'copa':
if template_name in ["\u2026What could happen next, C1 or C2?", "\u2026As a result, C1 or C2?"]:
filtered_dataset = raw_datasets.filter(lambda example: example['question'] == 'effect', load_from_cache_file=False)
if template_name in ["\u2026which may be caused by", "\u2026why? C1 or C2"]:
filtered_dataset = raw_datasets.filter(lambda example: example['question'] == 'cause', load_from_cache_file=False)
if args.dataset_type == 'ga':
if not filtered_dataset:
filtered_dataset = raw_datasets
filtered_dataset = build_ga_dataset(dataset_name, dataset_config_name, filtered_dataset,
args.ga_dev_distribution)
label_key = 'label'
if dataset_name in ['winogrande']:
label_key = 'answer'
if dataset_name in ['story_cloze']:
label_key = 'answer_right_ending'
print(f'filtered_dataset: {filtered_dataset}')
print(f'label distribution: {Counter(filtered_dataset[label_key])}')
print(f'evaluating {dataset_name}_{dataset_config_name}_{template_name}')
with accelerator.main_process_first():
if filtered_dataset:
eval_dataset = filtered_dataset.map(
preprocess_function, batched=True, remove_columns=column_names,
load_from_cache_file=False)
else:
eval_dataset = raw_datasets.map(
preprocess_function, batched=True, remove_columns=column_names,
load_from_cache_file=False)
# Log a few random samples from the eval set:
if args.debug:
for index in random.sample(range(len(eval_dataset)), 3):
logger.info(f"Sample {index} of the training set: {eval_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorForMultipleChoice(
tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator,
batch_size=args.per_device_eval_batch_size)
# Prepare everything with our `accelerator`.
eval_dataloader = accelerator.prepare(eval_dataloader)
# Eval!
total_batch_size = args.per_device_eval_batch_size * accelerator.num_processes
logger.info("***** Running evaluation *****")
logger.info(f" Num examples = {len(eval_dataset)}")
logger.info(f" Instantaneous batch size per device = {args.per_device_eval_batch_size}")
logger.info(f" Total eval batch size (w. parallel, distributed) = {total_batch_size}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(len(eval_dataloader)), disable=not accelerator.is_local_main_process)
model.eval()
for batch in eval_dataloader:
# batch: attention_mask, input_ids, labels, labels_attention_mask
model_inputs = {
k: batch[k]
for k in ["input_ids", "attention_mask", "labels"]
}
with torch.no_grad():
# [batch_size, seq_len, vocab]
logits = model(**model_inputs).logits
# [batch_size, seq_len, vocab]
masked_log_probs = batch["labels_attention_mask"].unsqueeze(-1) * torch.log_softmax(logits, dim=-1)
# [batch_size, seq_len]
seq_token_log_probs = torch.gather(masked_log_probs, -1, batch["labels"].unsqueeze(-1))
# [batch_size, ]
seq_log_prob = seq_token_log_probs.squeeze(dim=-1).sum(dim=-1)
seq_log_prob = seq_log_prob.view(batch["targets"].size(0), -1)
# TODO(Victor): this reshapes works based on the assumption that all examples have the same number of choices. the pre-processing doesn't make this assumption.
# [batch_size, choice_num]
predictions = seq_log_prob.argmax(dim=-1)
exam_num = seq_log_prob.shape[0]
choice_num = seq_log_prob.shape[1]
# dumps eval result
for exam_id, batch_idx in enumerate(range(0, exam_num*choice_num, choice_num)):
prediction_result = {
'input_text:': tokenizer.decode(batch['input_ids'][batch_idx], skip_special_tokens=True),
'target_text': tokenizer.decode(batch['labels'][batch_idx], skip_special_tokens=True),
'label:': batch['targets'][exam_id].item(),
'prediction:': predictions[exam_id].item(),
'logits': seq_log_prob[exam_id].cpu().numpy().tolist()
}
prediction_list.append(prediction_result)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["targets"]),
)
progress_bar.update(1)
eval_metric = metric.compute()
accelerator.print(f"Result: {eval_metric}")
results = {
"dataset_name": dataset_name,
"dataset_config_name": dataset_config_name,
"template_id": template.get_id(),
"template_name": template_name,
"evaluation": eval_metric
}
result_summary.append(results)
# dumps prediction results
prediction_dir = os.path.join(args.output_dir, 'predictions')
os.makedirs(prediction_dir, exist_ok=True)
if accelerator.is_main_process:
output_name = '_'.join(dataset_name.split(' '))
if dataset_config_name is not None:
output_name = output_name + '_' + '_'.join(dataset_config_name.split(' '))
if template_name.find('/') != -1:
output_name = output_name + '_' + '_'.join(template_name.split('/'))
else:
output_name = output_name + '_' + '_'.join(template_name.split(' '))
with open(os.path.join(prediction_dir, f"{output_name}.json"), "w") as f:
json.dump(prediction_list, f, indent=4)
if accelerator.is_main_process:
output_name = '_'.join(dataset_name.split(' '))
if dataset_config_name is not None:
output_name = output_name + '_' + '_'.join(dataset_config_name.split(' '))
with open(os.path.join(args.output_dir, f"{output_name}.json"), "w") as f:
json.dump(result_summary, f, indent=4)
if __name__ == "__main__":
main()