-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
39 lines (30 loc) · 1.01 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from torch.utils.data.dataset import Dataset
import numpy as np
import torch
class ACPDataset(Dataset):
def __init__(self, data=None, train=True):
super(ACPDataset, self).__init__()
if train:
self.data = data[0]
self.target = data[1]
else:
self.data = data[2]
self.target = data[3]
self.data = self.data[:, np.newaxis, :]
self.data = torch.from_numpy(self.data)
def __getitem__(self, item):
return [self.data[item], self.target[item]]
def __len__(self):
return self.data.size()[0]
class TestDataset(Dataset):
def __init__(self, data=None):
super(TestDataset, self).__init__()
if type(data) == np.ndarray:
self.data = torch.tensor(data=data)
else:
self.data = torch.tensor(data=data.values)
self.data = self.data[:, np.newaxis, :]
def __getitem__(self, item):
return self.data[item]
def __len__(self):
return self.data.size()[0]