-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindependent.py
186 lines (149 loc) · 6.4 KB
/
independent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: UTF-8 -*-
import glob
import numpy as np
import pandas as pd
import torch
from dataset import ACPDataset
from train import train
import argparse
import os
from lightgbm.sklearn import LGBMClassifier
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
def generate_feature(arg):
if arg.data_name == 'Main':
tmpdir = "Anti-cancer-data/Main"
postrain = glob.glob(tmpdir + '/ACP20mainTrain-Pos.fasta*')
negtrain = glob.glob(tmpdir + '/ACP20mainTrain-Neg.fasta*')
postest = glob.glob(tmpdir + '/ACP20mainTest-Pos.fasta*')
negtest = glob.glob(tmpdir + '/ACP20mainTest-Neg.fasta*')
min_len = 3
elif arg.data_name == 'Alternate':
tmpdir = "Anti-cancer-data/Alternate"
postrain = glob.glob(tmpdir + '/ACP20AltTrain-Pos.fasta*')
negtrain = glob.glob(tmpdir + '/ACP20AltTrain-Neg.fasta*')
postest = glob.glob(tmpdir + '/ACP20AltTest-Pos.fasta*')
negtest = glob.glob(tmpdir + '/ACP20AltTest-Neg.fasta*')
min_len = 3
else:
raise ValueError('No dataset name!')
filegroup = {}
filegroup['postrain'] = postrain
filegroup['negtrain'] = negtrain
filegroup['postest'] = postest
filegroup['negtest'] = negtest
encoding_types = ['One_hot.csv', 'One_hot_6_bit', 'Binary_5_bit', 'Hydrophobicity_matrix',
'Meiler_parameters', 'Acthely_factors', 'PAM250', 'BLOSUM62', 'Miyazawa_energies',
'Micheletti_potentials', 'AESNN3', 'ANN4D']
method_residual = []
for encoding_type in encoding_types:
for i in range(arg.begin, min_len + 1, arg.step):
forward_methodname = "forward_" + str(i) + "_" + encoding_type
backward_methodname = "backward_" + str(i) + "_" + encoding_type
method_residual.append(forward_methodname)
method_residual.append(backward_methodname)
method_peptide = ["feature-DT.csv", "-PDT-Profile.csv", "-Top-n-gram.csv", "-CC-PSSM.csv", "-AC-PSSM.csv", '-AC.csv',
"ACC-PSSM.csv", "kmer", "feature-AC.csv", "ACC.csv", "feature-CC.csv", "DP.csv", "DR.csv",
"PC-PseAAC.csv", "PC-PseAAC-General.csv", "PDT.csv", "-PSSM-DT.csv", "SC-PseAAC-General.csv",
"SC-PseAAC.csv"]
if arg.feature_level == 'both':
method = method_peptide + method_residual
elif arg.feature_level == 'peptide':
method = method_peptide
elif arg.feature_level == 'residual':
method = method_residual
else:
raise ValueError('No method type!')
datadics = generate_data(filegroup, method)
setup_seed(arg.seed)
data = train_ML_model(datadics)
return data
def generate_data(filegroup, method):
postrain = filegroup["postrain"]
negtrain = filegroup["negtrain"]
postest = filegroup["postest"]
negtest = filegroup["negtest"]
method_data = {}
for method_name in method:
for i in postrain:
if method_name in i:
postrain_method = i
break
for j in negtrain:
if method_name in j:
negtrain_method = j
break
for k in postest:
if method_name in k:
postest_method = k
break
for l in negtest:
if method_name in l:
negtest_method = l
break
filepath = [negtest_method, negtrain_method, postest_method, postrain_method]
method_data[method_name] = file_reading(filepath)
return method_data
def file_reading(filepath):
dataset1 = pd.read_csv(filepath[0], header=None, low_memory=False, dtype=np.float32)
dataset2 = pd.read_csv(filepath[1], header=None, low_memory=False, dtype=np.float32)
dataset3 = pd.read_csv(filepath[2], header=None, low_memory=False, dtype=np.float32)
dataset4 = pd.read_csv(filepath[3], header=None, low_memory=False, dtype=np.float32)
train_data = pd.concat([dataset2, dataset4], axis=0)
test_data = pd.concat([dataset1, dataset3], axis=0)
neg_train_tags = [0.0] * dataset2.shape[0]
pos_train_tags = [1.0] * dataset4.shape[0]
train_tags = neg_train_tags + pos_train_tags
neg_test_tags = [0.0] * dataset1.shape[0]
pos_test_tags = [1.0] * dataset3.shape[0]
test_tags = neg_test_tags + pos_test_tags
data = [train_data, train_tags, test_data, test_tags]
return data
def train_ML_model(datadic):
train_feature = {}
test_feature = {}
for i in datadic:
data = datadic[i]
y_pred_train, y_pred_test = machine_learning_train(data[0], data[1], data[2])
train_feature[i] = y_pred_train
test_feature[i] = y_pred_test
train_feature_vector = pd.DataFrame(train_feature)
test_feature_vector = pd.DataFrame(test_feature)
data[0] = train_feature_vector.values
data[2] = test_feature_vector.values
return data
def machine_learning_train(traindata, traintags, testdata):
clf = LGBMClassifier()
clf.fit(traindata, traintags)
train_label = clf.predict_proba(traindata)
y_score = clf.predict_proba(testdata)
return train_label[:, 1], y_score[:, 1]
def independent(arg):
all_evaluation = []
probability = generate_feature(arg)
setup_seed(arg.seed)
train_dataset = ACPDataset(probability, train=True)
test_dataset = ACPDataset(probability, train=False)
max_epoch, best_evaluation = train(device, train_dataset, test_dataset, arg.batch_size, arg.epochs, lr=arg.lr)
all_evaluation.append(best_evaluation)
all_evaluation = pd.DataFrame(all_evaluation)
return all_evaluation.mean(axis=0)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--feature_level', default='both')
parser.add_argument('--data_name', default='Main')
parser.add_argument('--begin', default=3, type=int)
parser.add_argument('--step', default=1, type=int)
parser.add_argument('--end', default=11, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--epochs', default=30, type=int)
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--seed', default=0, type=int)
arg = parser.parse_args()
result = independent(arg=arg)
print(result)