-
Notifications
You must be signed in to change notification settings - Fork 3
/
metamodules.py
342 lines (270 loc) · 10.6 KB
/
metamodules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import torch
import re
from torch import nn
from torchmeta.modules import MetaModule, MetaSequential
import numpy as np
from collections import OrderedDict
import math
import torch.nn.functional as F
def get_subdict(dictionary, key=None):
if dictionary is None:
return None
if (key is None) or (key == ''):
return dictionary
key_re = re.compile(r'^{0}\.(.+)'.format(re.escape(key)))
return OrderedDict((key_re.sub(r'\1', k), value) for (k, value)
in dictionary.items() if key_re.match(k) is not None)
class BatchLinear(nn.Linear, MetaModule):
'''A linear meta-layer that can deal with batched weight matrices and biases, as for instance output by a
hypernetwork.'''
__doc__ = nn.Linear.__doc__
def forward(self, input, params=None):
if params is None:
params = OrderedDict(self.named_parameters())
if self.bias is not None:
bias = params.get('bias', None)
weight = params['weight']
output = input.matmul(weight.permute(*[i for i in range(len(weight.shape) - 2)], -1, -2))
if self.bias is not None:
output += bias.unsqueeze(-2)
return output
class Sine(nn.Module):
def __init(self):
super().__init__()
def forward(self, input):
# See paper sec. 3.2, final paragraph, and supplement Sec. 1.5 for discussion of factor 30
return torch.sin(30 * input)
class FCBlock(MetaModule):
'''A fully connected neural network that also allows swapping out the weights when used with a hypernetwork.
Can be used just as a normal neural network though, as well.
'''
def __init__(self, in_features, out_features, num_hidden_layers, hidden_features,
outermost_linear=False, nonlinearity='relu', weight_init=None,bias = True):
super().__init__()
# nonlinearity = 'sine'
self.first_layer_init = None
# Dictionary that maps nonlinearity name to the respective function, initialization, and, if applicable,
# special first-layer initialization scheme
nls_and_inits = {'sine':(Sine(), sine_init, first_layer_sine_init),
'relu':(nn.ReLU(inplace=True), init_weights_normal, None),
'sigmoid':(nn.Sigmoid(), init_weights_xavier, None),
'tanh':(nn.Tanh(), init_weights_xavier, None),
'selu':(nn.SELU(inplace=True), init_weights_selu, None),
'softplus':(nn.Softplus(), init_weights_normal, None),
'elu':(nn.ELU(inplace=True), init_weights_elu, None)}
nl, nl_weight_init, first_layer_init = nls_and_inits[nonlinearity]
if weight_init is not None: # Overwrite weight init if passed
self.weight_init = weight_init
else:
self.weight_init = nl_weight_init
self.net = []
self.net.append(MetaSequential(
BatchLinear(in_features, hidden_features,bias=bias), nl
))
for i in range(num_hidden_layers):
self.net.append(MetaSequential(
BatchLinear(hidden_features, hidden_features,bias=bias), nl
))
if outermost_linear:
self.net.append(MetaSequential(BatchLinear(hidden_features, out_features,bias=bias)))
else:
self.net.append(MetaSequential(
BatchLinear(hidden_features, out_features,bias=bias), nl
))
self.net = MetaSequential(*self.net)
if self.weight_init is not None:
self.net.apply(self.weight_init)
if first_layer_init is not None: # Apply special initialization to first layer, if applicable.
self.net[0].apply(first_layer_init)
def forward(self, coords, params=None, **kwargs):
if params is None:
params = OrderedDict(self.named_parameters())
# print('passing on with siren ', siren, get_subdict(params, 'net').keys())
output = self.net(coords, params=get_subdict(params, 'net'))
# output = self.net(coords)
return output
def forward_with_activations(self, coords, params=None, retain_grad=False):
'''Returns not only model output, but also intermediate activations.'''
if params is None:
params = OrderedDict(self.named_parameters())
activations = OrderedDict()
x = coords.clone().detach().requires_grad_(True)
activations['input'] = x
for i, layer in enumerate(self.net):
subdict = get_subdict(params, 'net.%d' % i)
for j, sublayer in enumerate(layer):
if isinstance(sublayer, BatchLinear):
x = sublayer(x, params=get_subdict(subdict, '%d' % j))
else:
x = sublayer(x)
if retain_grad:
x.retain_grad()
activations['_'.join((str(sublayer.__class__), "%d" % i))] = x
return activations
########################
# HyperNetwork modules
class HyperNetwork(nn.Module):
def __init__(self, hyper_in_features, hyper_hidden_layers, hyper_hidden_features, hypo_module,activation='relu'):
'''
Args:
hyper_in_features: In features of hypernetwork
hyper_hidden_layers: Number of hidden layers in hypernetwork
hyper_hidden_features: Number of hidden units in hypernetwork
hypo_module: MetaModule. The module whose parameters are predicted.
'''
super().__init__()
hypo_parameters = hypo_module.meta_named_parameters()
self.names = []
self.nets = nn.ModuleList()
self.param_shapes = []
for name, param in hypo_parameters:
if 'variance' in name:
continue
self.names.append(name)
self.param_shapes.append(param.size())
hn = FCBlock(in_features=hyper_in_features, out_features=int(torch.prod(torch.tensor(param.size()))),
num_hidden_layers=hyper_hidden_layers, hidden_features=hyper_hidden_features,
outermost_linear=True,nonlinearity=activation)
if 'weight' in name:
hn.net[-1].apply(lambda m: hyper_weight_init(m, param.size()[-1]))
elif 'bias' in name:
hn.net[-1].apply(lambda m: hyper_bias_init(m))
# print(hn.net[-1])
# exit()
self.nets.append(hn)
# exit()
def forward(self, z_shape,z_color=None):
'''
Args:-
z: Embedding. Input to hypernetwork. Could be output of "Autodecoder" (see above)
Returns:
params: OrderedDict. Can be directly passed as the "params" parameter of a MetaModule.
'''
params = OrderedDict()
for name, net, param_shape in zip(self.names, self.nets, self.param_shapes):
# print(f"name: {name}")
# print(f"param shape: {param_shape}, {int(torch.prod(torch.tensor(param_shape)))}")
batch_param_shape = (-1,) + param_shape
# print(f"batch param shape: {batch_param_shape}")
if 'color_net' in name:
params[name] = net(z_color).reshape(batch_param_shape)
else:
params[name] = net(z_shape).reshape(batch_param_shape)
# print(f'name: {name}, param_shape: {param_shape}, params[name].shape: {params[name].shape}')
return params
############################
# Initialization scheme
def hyper_weight_init(m, in_features_main_net, siren=False):
if hasattr(m, 'weight'):
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity='relu', mode='fan_in')
m.weight.data = m.weight.data / 1e1
# if hasattr(m, 'bias') and siren:
# with torch.no_grad():
# m.bias.uniform_(-1/in_features_main_net, 1/in_features_main_net)
def hyper_bias_init(m, siren=False):
if hasattr(m, 'weight'):
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity='relu', mode='fan_in')
m.weight.data = m.weight.data / 1.e1
# if hasattr(m, 'bias') and siren:
# fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
# with torch.no_grad():
# m.bias.uniform_(-1/fan_in, 1/fan_in)
########################
# Initialization methods
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
# grab from upstream pytorch branch and paste here for now
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def init_weights_trunc_normal(m):
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
if type(m) == BatchLinear or type(m) == nn.Linear:
if hasattr(m, 'weight'):
fan_in = m.weight.size(1)
fan_out = m.weight.size(0)
std = math.sqrt(2.0 / float(fan_in + fan_out))
mean = 0.
# initialize with the same behavior as tf.truncated_normal
# "The generated values follow a normal distribution with specified mean and
# standard deviation, except that values whose magnitude is more than 2
# standard deviations from the mean are dropped and re-picked."
_no_grad_trunc_normal_(m.weight, mean, std, -2 * std, 2 * std)
def init_weights_normal(m):
if type(m) == BatchLinear or type(m) == nn.Linear:
if hasattr(m, 'weight'):
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity='relu', mode='fan_in')
def init_weights_selu(m):
if type(m) == BatchLinear or type(m) == nn.Linear:
if hasattr(m, 'weight'):
num_input = m.weight.size(-1)
nn.init.normal_(m.weight, std=1 / math.sqrt(num_input))
def init_weights_elu(m):
if type(m) == BatchLinear or type(m) == nn.Linear:
if hasattr(m, 'weight'):
num_input = m.weight.size(-1)
nn.init.normal_(m.weight, std=math.sqrt(1.5505188080679277) / math.sqrt(num_input))
def init_weights_xavier(m):
if type(m) == BatchLinear or type(m) == nn.Linear:
if hasattr(m, 'weight'):
nn.init.xavier_normal_(m.weight)
def sine_init(m):
with torch.no_grad():
if hasattr(m, 'weight'):
num_input = m.weight.size(-1)
# See supplement Sec. 1.5 for discussion of factor 30
m.weight.uniform_(-np.sqrt(6 / num_input) / 30, np.sqrt(6 / num_input) / 30)
def first_layer_sine_init(m):
with torch.no_grad():
if hasattr(m, 'weight'):
num_input = m.weight.size(-1)
# See paper sec. 3.2, final paragraph, and supplement Sec. 1.5 for discussion of factor 30
m.weight.uniform_(-1 / num_input, 1 / num_input)
###################
# Complex operators
def compl_conj(x):
y = x.clone()
y[..., 1::2] = -1 * y[..., 1::2]
return y
def compl_div(x, y):
''' x / y '''
a = x[..., ::2]
b = x[..., 1::2]
c = y[..., ::2]
d = y[..., 1::2]
outr = (a * c + b * d) / (c ** 2 + d ** 2)
outi = (b * c - a * d) / (c ** 2 + d ** 2)
out = torch.zeros_like(x)
out[..., ::2] = outr
out[..., 1::2] = outi
return out
def compl_mul(x, y):
''' x * y '''
a = x[..., ::2]
b = x[..., 1::2]
c = y[..., ::2]
d = y[..., 1::2]
outr = a * c - b * d
outi = (a + b) * (c + d) - a * c - b * d
out = torch.zeros_like(x)
out[..., ::2] = outr
out[..., 1::2] = outi
return out