-
Notifications
You must be signed in to change notification settings - Fork 3
/
time_measure.py
69 lines (58 loc) · 2.64 KB
/
time_measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from umap import umap_
import numpy as np
import timeit
from gensim.models.keyedvectors import KeyedVectors
from utils import pca, run_umap, run_umap2, run_tsne, draw_plot, load_merge_cifar, load_merge_mnist
# from sklearn.datasets import load_digits
timeit.template = """
def inner(_it, _timer{init}):
{setup}
_t0 = _timer()
for _i in _it:
retval = {stmt}
_t1 = _timer()
return _t1 - _t0, retval
"""
if __name__ == "__main__":
# # TOY DATA # (1797, 64)
# from sklearn.datasets import load_digits
# digits = load_digits()
# umap_.UMAP(n_neighbors=5, min_dist=0.3, local_connectivity=1, metric='correlation', verbose=True).fit_transform(digits.data)
# FASHION MNIST (6-70000, 784), 26MB
# https://github.com/zalandoresearch/fashion-mnist
x, y = load_merge_mnist()
# x = pca(x, no_dims=300).real
item = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
# UMAP run
# run_umap(x=x, y=y, item=item, n_neighbors_list=[5])
# run_umap(x=x, y=y, item=item, n_neighbors_list=[2,5,10,20,50])
# run_umap2(x=x, y=y, item=item, min_dist_list=[0.1,0.05, 0.01])
x_umap = umap_.UMAP(n_neighbors=5, min_dist=0.3, metric='correlation', verbose=True).fit_transform(x)
draw_plot(x_umap, y, item, "umap_result")
# t-SNE run
# x_tse = run_tsne(x)
# draw_plot(x_tse, y, item, "tsne_result")
# CIFAR 10 (60000, 3072), 163MB
# http://www.cs.toronto.edu/~kriz/cifar.html
# x2, y2 = load_merge_cifar()
# item2 = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
# UMAP run
# run_umap(x=x2, y=y2, item=item2, n_neighbors_list=[5,20,50,100,200])
# x_umap2 = umap_.UMAP(n_neighbors=5, min_dist=0.3, metric='correlation', verbose=True).fit_transform(x2)
# draw_plot(x_umap2, y2, item2, "umap_result2")
# # t-SNE run
# x_tse2 = run_tsne(x2)
# draw_plot(x_tse2, y2, item2, "tsne_result2")
# # WORD VECTOR (0.6M-3M, 300), 3.35GB
# # https://www.kaggle.com/sandreds/googlenewsvectorsnegative300
# word_vectors = KeyedVectors.load_word2vec_format('./data/google/GoogleNews-vectors-negative300.bin', binary=True)
# x3 = word_vectors.vectors[:600000,] # wv.shape (3,000,000, 300) -> (600,000, 300)
# # UMAP run
# x_umap3 = umap_.UMAP(n_neighbors=5, min_dist=0.3, metric='correlation', verbose=True).fit_transform(x3)
# # t-SNE run
# x_tse3 = run_tsne(x3)
# plotData = data[33]
# plotData = plotData.reshape(28, 28)
# plt.gray()
# plt.imshow(plotData)
# plt.show()