-
Notifications
You must be signed in to change notification settings - Fork 462
/
Copy pathtrain.py
150 lines (116 loc) · 4.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
@author : Hyunwoong
@when : 2019-10-22
@homepage : https://github.com/gusdnd852
"""
import math
import time
from torch import nn, optim
from torch.optim import Adam
from data import *
from models.model.transformer import Transformer
from util.bleu import idx_to_word, get_bleu
from util.epoch_timer import epoch_time
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def initialize_weights(m):
if hasattr(m, 'weight') and m.weight.dim() > 1:
nn.init.kaiming_uniform(m.weight.data)
model = Transformer(src_pad_idx=src_pad_idx,
trg_pad_idx=trg_pad_idx,
trg_sos_idx=trg_sos_idx,
d_model=d_model,
enc_voc_size=enc_voc_size,
dec_voc_size=dec_voc_size,
max_len=max_len,
ffn_hidden=ffn_hidden,
n_head=n_heads,
n_layers=n_layers,
drop_prob=drop_prob,
device=device).to(device)
print(f'The model has {count_parameters(model):,} trainable parameters')
model.apply(initialize_weights)
optimizer = Adam(params=model.parameters(),
lr=init_lr,
weight_decay=weight_decay,
eps=adam_eps)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
verbose=True,
factor=factor,
patience=patience)
criterion = nn.CrossEntropyLoss(ignore_index=src_pad_idx)
def train(model, iterator, optimizer, criterion, clip):
model.train()
epoch_loss = 0
for i, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
optimizer.zero_grad()
output = model(src, trg[:, :-1])
output_reshape = output.contiguous().view(-1, output.shape[-1])
trg = trg[:, 1:].contiguous().view(-1)
loss = criterion(output_reshape, trg)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
print('step :', round((i / len(iterator)) * 100, 2), '% , loss :', loss.item())
return epoch_loss / len(iterator)
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
batch_bleu = []
with torch.no_grad():
for i, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
output = model(src, trg[:, :-1])
output_reshape = output.contiguous().view(-1, output.shape[-1])
trg = trg[:, 1:].contiguous().view(-1)
loss = criterion(output_reshape, trg)
epoch_loss += loss.item()
total_bleu = []
for j in range(batch_size):
try:
trg_words = idx_to_word(batch.trg[j], loader.target.vocab)
output_words = output[j].max(dim=1)[1]
output_words = idx_to_word(output_words, loader.target.vocab)
bleu = get_bleu(hypotheses=output_words.split(), reference=trg_words.split())
total_bleu.append(bleu)
except:
pass
total_bleu = sum(total_bleu) / len(total_bleu)
batch_bleu.append(total_bleu)
batch_bleu = sum(batch_bleu) / len(batch_bleu)
return epoch_loss / len(iterator), batch_bleu
def run(total_epoch, best_loss):
train_losses, test_losses, bleus = [], [], []
for step in range(total_epoch):
start_time = time.time()
train_loss = train(model, train_iter, optimizer, criterion, clip)
valid_loss, bleu = evaluate(model, valid_iter, criterion)
end_time = time.time()
if step > warmup:
scheduler.step(valid_loss)
train_losses.append(train_loss)
test_losses.append(valid_loss)
bleus.append(bleu)
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_loss:
best_loss = valid_loss
torch.save(model.state_dict(), 'saved/model-{0}.pt'.format(valid_loss))
f = open('result/train_loss.txt', 'w')
f.write(str(train_losses))
f.close()
f = open('result/bleu.txt', 'w')
f.write(str(bleus))
f.close()
f = open('result/test_loss.txt', 'w')
f.write(str(test_losses))
f.close()
print(f'Epoch: {step + 1} | Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
print(f'\tVal Loss: {valid_loss:.3f} | Val PPL: {math.exp(valid_loss):7.3f}')
print(f'\tBLEU Score: {bleu:.3f}')
if __name__ == '__main__':
run(total_epoch=epoch, best_loss=inf)