forked from Teddy-Li/LLM-NLI-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrequency_controlled_experiments.py
339 lines (309 loc) · 16.2 KB
/
frequency_controlled_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from matplotlib import pyplot as plt
import json
import argparse
import os
from scipy.stats import spearmanr
from sklearn.metrics import precision_recall_curve, average_precision_score, auc
from utils import load_general_entries, load_typed_general_entries, get_auc_norm_from_prec_recs, print_metrics, \
get_freq_halves
from randprem_experiments import calc_score_from_predscr
def get_ranking_from_scores(scores):
sorted_scores = sorted(scores, reverse=True)
ranking = []
for score in scores:
ranking.append(sorted_scores.index(score))
return ranking
def phi_coefficient(preds, labels):
assert len(preds) == len(labels)
assert all([isinstance(x, bool) for x in preds])
assert all([isinstance(x, bool) for x in labels])
num_true_true = 0
num_true_false = 0
num_false_true = 0
num_false_false = 0
for i in range(len(preds)):
if preds[i] and labels[i]:
num_true_true += 1
elif preds[i] and not labels[i]:
num_true_false += 1
elif not preds[i] and labels[i]:
num_false_true += 1
elif not preds[i] and not labels[i]:
num_false_false += 1
num_true = num_true_true + num_true_false
num_false = num_false_true + num_false_false
num_pred_true = num_true_true + num_false_true
num_pred_false = num_true_false + num_false_false
phi = (num_true_true * num_false_false - num_true_false * num_false_true) / \
(num_true * num_false * num_pred_true * num_pred_false) ** 0.5
return phi
def discretize_freqscores(freqscores, margin):
freq_discretes = []
for x in freqscores:
if x > margin / (1 + margin):
freq_discretes.append('A')
elif x < 1 / (1 + margin):
freq_discretes.append('C')
else:
freq_discretes.append('B')
return freq_discretes
def evaluate_subsets(preds: list, labels: list, crit: list, entries: list,
fscore_beta: float, name_of_prior: str, entries_out_path: str):
c_true_preds = []
c_unk_preds = []
c_false_preds = []
c_true_golds = []
c_unk_golds = []
c_false_golds = []
c_consistent_preds = []
c_neutral_preds = []
c_adversarial_preds = []
c_consistent_golds = []
c_neutral_golds = []
c_adversarial_golds = []
c_consistent_entries = []
c_neutral_entries = []
c_adversarial_entries = []
assert len(preds) == len(labels) == len(crit) == len(entries)
for i, (p, l, c, e) in enumerate(zip(preds, labels, crit, entries)):
# if i % 1 == 0:
# print(f"consistents: {len(c_consistent_preds)}; neutrals: {len(c_neutral_preds)}; adversarials: {len(c_adversarial_preds)}")
assert isinstance(l, bool)
if c == 'A':
c_true_preds.append(p)
c_true_golds.append(l)
if l is True:
c_consistent_preds.append(p)
c_consistent_golds.append(l)
c_consistent_entries.append(e)
elif l is False:
c_adversarial_preds.append(p)
c_adversarial_golds.append(l)
c_adversarial_entries.append(e)
else:
raise ValueError('Unknown label: {}'.format(l))
elif c == 'B':
c_unk_preds.append(p)
c_unk_golds.append(l)
c_neutral_preds.append(p)
c_neutral_golds.append(l)
c_neutral_entries.append(e)
elif c == 'C':
c_false_preds.append(p)
c_false_golds.append(l)
if l is True:
c_adversarial_preds.append(p)
c_adversarial_golds.append(l)
c_adversarial_entries.append(e)
elif l is False:
c_consistent_preds.append(p)
c_consistent_golds.append(l)
c_consistent_entries.append(e)
else:
raise ValueError('Unknown label: {}'.format(l))
else:
raise ValueError('Unknown prior value: {}'.format(c))
c_true_subset_posis = len([x for x in c_true_preds if x > 0.5])
c_unk_subset_posis = len([x for x in c_unk_preds if x > 0.5])
c_false_subset_posis = len([x for x in c_false_preds if x > 0.5])
print(f"{name_of_prior} True: {c_true_subset_posis} / {len(c_true_preds)}: {c_true_subset_posis / len(c_true_preds):.4f}")
print(f"{name_of_prior} Unknown: {c_unk_subset_posis} / {len(c_unk_preds)}: {c_unk_subset_posis / len(c_unk_preds):.4f}")
print(f"{name_of_prior} False: {c_false_subset_posis} / {len(c_false_preds)}: {c_false_subset_posis / len(c_false_preds):.4f}")
print_metrics(c_true_golds, c_true_preds, f'{name_of_prior} True', beta=fscore_beta)
print_metrics(c_unk_golds, c_unk_preds, f'{name_of_prior} Unknown', beta=fscore_beta)
print_metrics(c_false_golds, c_false_preds, f'{name_of_prior} False', beta=fscore_beta)
print_metrics(c_consistent_golds, c_consistent_preds, f'{name_of_prior} Consistent', beta=fscore_beta)
print_metrics(c_neutral_golds, c_neutral_preds, f'{name_of_prior} Neutral', beta=fscore_beta)
print_metrics(c_adversarial_golds, c_adversarial_preds, f'{name_of_prior} Adversarial', beta=fscore_beta)
print_metrics(labels, preds, f'{name_of_prior} All', beta=fscore_beta)
with open(entries_out_path % 'consistent', 'w') as fp:
for e in c_consistent_entries:
oline = json.dumps(e, ensure_ascii=False)
fp.write(oline + '\n')
with open(entries_out_path % 'neutral', 'w') as fp:
for e in c_neutral_entries:
oline = json.dumps(e, ensure_ascii=False)
fp.write(oline + '\n')
with open(entries_out_path % 'adversarial', 'w') as fp:
for e in c_adversarial_entries:
oline = json.dumps(e, ensure_ascii=False)
fp.write(oline + '\n')
return
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='levyholt')
parser.add_argument('--split', type=str, default='dev')
parser.add_argument('--model_name', type=str, default=None)
parser.add_argument('--model_type', type=str, default='llama', choices=['llama', 'gpt'])
# parser.add_argument('--use_plhr', type=str, default='type', help='Only relevant for search engine frequencies.')
parser.add_argument('--in_context', type=str, default='cot')
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--ordered', action='store_true')
parser.add_argument('--lemmatized', action='store_true')
parser.add_argument('--diff_num_chunks', type=int, default=5)
parser.add_argument('--start_year', type=str, default="2000")
parser.add_argument('--prompt_idx', type=int, default=None)
parser.add_argument('--num_templates', type=int, default=4)
parser.add_argument('--freq_margin', type=float, default=5)
parser.add_argument('--fscore_beta', type=float, default=0.5)
parser.add_argument('--results_root', type=str, default='./results')
parser.add_argument('--always_type_freq', action='store_true')
parser.add_argument('--rte_ngram_aggr', type=str, default='max', choices=['max', 'avg', 'min', 'geo', 'tfidf'])
args = parser.parse_args()
ordstr = 'Ordered' if args.ordered else 'Entord'
lemmstr = 'lemmatized' if args.lemmatized else 'raw'
if args.model_name is None:
if args.model_type == 'llama':
args.model_name = 'llama-65b-hf'
elif args.model_type == 'gpt':
args.model_name = 'text-davinci-003'
else:
raise ValueError('Unknown model type: {}'.format(args.model_type))
else:
pass
print(f"Model type: {args.model_type}; Model name: {args.model_name}")
# Load the frequency baselines
if args.dataset == 'levyholt':
# The N-Gram frequency baseline is available only for LevyHolt and does not differ between different use_plhr settings
with open(f'./levyholt_files/dir_files/with_original/{args.split}_{ordstr.lower()}_freqs_{lemmstr}.json', 'r', encoding='utf8') as fp:
ngram_freq_baseline = json.load(fp)
ngram_freq_res = [x['score'][args.start_year] for x in ngram_freq_baseline]
ngram_freq_trinaries = discretize_freqscores(ngram_freq_res, args.freq_margin)
# if args.use_plhr == 'type' or args.always_type_freq:
# plhr_str = 'type'
# elif args.use_plhr == 'original':
# plhr_str = 'original'
# else:
# raise ValueError('Unknown use_plhr value: {}'.format(args.use_plhr))
# with open(f'./levyholt_files/dir_files/with_{plhr_str}/{args.split}_ordered_freqs_search_engine.json_noargs_lemmatized', 'r') as fp:
# search_engine_freq_baseline = json.load(fp)
# search_engine_freq_res = [x['score'] for x in search_engine_freq_baseline]
# search_engine_freq_trinaries = discretize_freqscores(search_engine_freq_res, args.freq_margin)
elif args.dataset == 'rte':
with open(f'./rte_files/rte_ngram_frequencies/{args.split}_type_freqs_ngram_{lemmstr}.json', 'r', encoding='utf8') as fp:
ngram_freq_baseline = json.load(fp)
ngram_freq_res = [x[f'score_tok{args.rte_ngram_aggr}'][args.start_year] for x in ngram_freq_baseline]
ngram_freq_trinaries = discretize_freqscores(ngram_freq_res, args.freq_margin)
# plhr_str = 'type' if args.always_type_freq else args.use_plhr
# with open(f'./rte_files/rte_search_engine_frequencies/{args.split}_{plhr_str}_freqs_search_engine.json', 'r', encoding='utf8') as fp:
# search_engine_freq_baseline = json.load(fp)
# search_engine_freq_res = [x['score'] for x in search_engine_freq_baseline]
# search_engine_freq_trinaries = discretize_freqscores(search_engine_freq_res, args.freq_margin)
else:
raise ValueError(f'Invalid dataset: {args.dataset}')
# Load the model results
if args.model_type == 'llama':
if args.dataset == 'levyholt':
with open(f'./results/levyholt_results/llama_results/llama_{args.model_name}_res_dir_text_{args.split}_{args.use_plhr}_icl={args.in_context}_{args.num_templates}.json', 'r', encoding='utf8') as fp:
all_results = json.load(fp)
if len(all_results) == 1:
assert args.prompt_idx is None
model_res = all_results[0]
else:
assert args.prompt_idx is not None
model_res = all_results[args.prompt_idx]
elif args.dataset == 'rte':
print(f"RTE results for {args.model_name} comes only with COT.")
with open(f'./rte_results_llama/rte_{args.split}_{args.use_plhr}_results_{args.model_name}.json', 'r', encoding='utf8') as fp:
all_results = json.load(fp)
model_res = all_results['scores']
model_res = [x for x in model_res if len(x) > 0]
assert len(model_res) == 1
model_res = model_res[0]
else:
raise ValueError(f'Invalid dataset: {args.dataset}')
elif args.model_type == 'gpt':
if args.dataset == 'levyholt':
model_res = []
with open(f'./results/levyholt_results/gpt_results/gpt3_{args.model_name}_res_dir_text_{args.split}_{args.use_plhr}_icl={args.in_context}_trinary_{args.num_templates}.json', 'r', encoding='utf8') as fp:
for line in fp:
data = json.loads(line)
curr_preds = data['preds']
assert isinstance(curr_preds, list)
if len(curr_preds) == 1:
assert args.prompt_idx is None
model_res.append(curr_preds[0])
else:
assert args.prompt_idx is not None
model_res.append(curr_preds[args.prompt_idx])
elif args.dataset == 'rte':
model_res = []
assert args.split == 'test', f"DEV set results for GPT-3 on RTE are not available yet."
with open(f'./results/gpt3_{args.model_name}_rte_{args.split}_{args.use_plhr}_cot_res.json', 'r', encoding='utf8') as fp:
for line in fp:
item = json.loads(line)
curr_preds = item['preds']
assert isinstance(curr_preds, list) and len(curr_preds) == 1
model_res.append(curr_preds[0])
else:
raise ValueError(f'Invalid dataset: {args.dataset}')
else:
raise ValueError(f'Invalid model name: {args.model_name}')
# Load the input entries
input_entries = []
golds = []
if args.dataset == 'levyholt':
if args.use_plhr == 'type':
data_path = f'./levyholt_files/dir_files/with_type/{args.split}%s.txt'
prem_hyp_pairs = load_typed_general_entries(data_path)
elif args.use_plhr in ['original', 'random', 'lowfreq', 'highfreq', 'randprem']:
data_path = f'./levyholt_files/dir_files/with_original/{args.split}_ordered.txt'
prem_hyp_pairs = load_general_entries(data_path)
else:
raise NotImplementedError(f"Unknown placeholder type: {args.use_plhr}")
for prm, hyp, gold, _ in prem_hyp_pairs:
if gold == 'True':
gold = True
elif gold == 'False':
gold = False
else:
raise ValueError(f"Unknown gold value: {gold}")
input_entries.append({'premise': prm, 'hypothesis': hyp, 'gold': gold})
golds.append(gold)
elif args.dataset == 'rte':
data_path = f'./rte_files/rte_raw_files/{args.split}_{args.use_plhr}.txt'
with open(data_path, 'r', encoding='utf8') as fp:
for line in fp:
if len(line) < 2:
continue
hyp, prm, gold = line.rstrip('\n').split('\t')
if gold == 'True':
gold = True
elif gold == 'False':
gold = False
else:
raise ValueError(f"Unknown gold value: {gold}")
input_entries.append({'premise': prm, 'hypothesis': hyp, 'gold': gold})
golds.append(gold)
else:
raise ValueError(f'Invalid dataset: {args.dataset}')
if args.dataset == 'levyholt':
ngram_subsets_out_fn = f'./levyholt_files/dir_files/with_original/{args.split}_{args.use_plhr}_ngram_%s_entries.json'
# search_engine_subsets_out_fn = f'./levyholt_files/dir_files/with_original/{args.split}_{args.use_plhr}_search_engine_%s_entries.json'
elif args.dataset == 'rte':
ngram_subsets_out_fn = f'./rte_files/rte_raw_files/{args.split}_{args.use_plhr}_ngram_%s_entries.json'
# search_engine_subsets_out_fn = f'./rte_files/rte_raw_files/{args.split}_{args.use_plhr}_search_engine_%s_entries.json'
else:
raise ValueError(f'Invalid dataset: {args.dataset}')
# Evaluate the model results on the frequency-based subsets
if ngram_freq_trinaries is not None:
print_metrics(golds=golds, scores=ngram_freq_res, legend_str='ngram_freq_performance', beta=args.fscore_beta)
evaluate_subsets(model_res, golds, ngram_freq_trinaries, entries=input_entries, fscore_beta=args.fscore_beta,
name_of_prior='ngram_freq', entries_out_path=ngram_subsets_out_fn)
else:
pass
# print_metrics(golds=golds, scores=search_engine_freq_res, legend_str='search_engine_freq_performance', beta=args.fscore_beta)
# evaluate_subsets(model_res, golds, search_engine_freq_trinaries, entries=input_entries, fscore_beta=args.fscore_beta,
# name_of_prior='search_engine_freq', entries_out_path=search_engine_subsets_out_fn)
lmodel_ranking = get_ranking_from_scores(model_res)
if ngram_freq_res is not None:
ngram_freq_ranking = get_ranking_from_scores(ngram_freq_res)
spearman_rho, spearman_p = spearmanr(lmodel_ranking, ngram_freq_ranking)
print(f"N-Gram Frequency - Spearman's rho: {spearman_rho}, p-value: {spearman_p}")
else:
pass
# search_engine_freq_ranking = get_ranking_from_scores(search_engine_freq_res)
# spearman_rho, spearman_p = spearmanr(lmodel_ranking, search_engine_freq_ranking)
# print(f"Search Engine Frequency - Spearman's rho: {spearman_rho}, p-value: {spearman_p}")
if __name__ == '__main__':
main()