-
Notifications
You must be signed in to change notification settings - Fork 3
/
multi_scene_single_test.py
88 lines (77 loc) · 3.52 KB
/
multi_scene_single_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# encoding: utf-8
"""
@author: Drinky Yan
@contact: [email protected]
"""
from utils.logger import setup_logger
from datasets import make_combine_dataloader
from model import make_model
import torch
import os
import argparse
from config import cfg
from utils.metrics import R1_mAP_eval
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ReID Single-scene Testing")
parser.add_argument("--config_file", default="", help="path to config file", type=str)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("VersReID", output_dir, if_train=False)
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
train_loader, val_loader_dict, num_classes_list, total_classes, len_query_list = make_combine_dataloader(cfg)
device = "cuda"
model = make_model(cfg, num_class=total_classes, camera_num=0, view_num=0)
ckpt = torch.load(cfg.TEST.WEIGHT, 'cpu')
new_ckpt = {}
for k, v in ckpt.items():
if 'classifier' not in k:
new_ckpt[k] = v
msg = model.load_state_dict(new_ckpt, strict=False)
print(msg)
model.to(device)
evaluator_dict = {}
for i, name in enumerate(cfg.DATASETS.COMBINE_NAMES):
evaluator_dict[name] = R1_mAP_eval(len_query_list[i], max_rank=50, feat_norm=cfg.TEST.FEAT_NORM, dataset=name)
evaluator_dict[name].reset()
sum_r_1 = 0.0
sum_map = 0.0
model.eval()
logger.info("------------------------------------")
for dataset_id, (name, val_loader) in enumerate(val_loader_dict.items()):
logger.info('Evaluating Dataset ' + name)
dataset_type = -1 if cfg.MODEL.AUX_LOSS else int(cfg.DATASETS.COMBINE_TYPE[dataset_id])
if cfg.TEST.ASSIGN_SCENE != -1:
dataset_type = cfg.TEST.ASSIGN_SCENE
for n_iter, (img, pid, camid, camids, vid, target_view, imgpath) in enumerate(val_loader):
with torch.no_grad():
img = img.to(device)
camids = camids.to(device)
target_view = target_view.to(device)
feat = model(img, cam_label=camids, view_label=target_view, dataset_label=dataset_type)
evaluator_dict[name].update((feat, pid, camid))
cmc, mAP, _, _, _, _, _ = evaluator_dict[name].compute()
logger.info("Validation Results for ")
logger.info("mAP: {:.1%}".format(mAP))
for r in [1, 5, 10]:
logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1]))
sum_r_1 += cmc[0]
sum_map += mAP
torch.cuda.empty_cache()
logger.info("------------------------------------")
logger.info("Avg Rank-1: {:.1%} | Avg mAP: {:.1%}".format(sum_r_1 / len(val_loader_dict),
sum_map / len(val_loader_dict)))