-
Notifications
You must be signed in to change notification settings - Fork 0
/
abc151_f.cpp
357 lines (334 loc) · 8.54 KB
/
abc151_f.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*8<{==========~ BEGIN TEMPLATE ~============>8*/
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "debug.cpp"
#else
#define dbg(...)
#endif
#define endl '\n'
#define fastio \
ios_base::sync_with_stdio(0); \
cin.tie(0);
#define all(j) j.begin(), j.end()
#define rall(j) j.rbegin(), j.rend()
#define len(j) (int)j.size()
#define rep(i, a, b) \
for (common_type_t<decltype(a), decltype(b)> \
i = (a); \
i < (b); i++)
#define rrep(i, a, b) \
for (common_type_t<decltype(a), decltype(b)> \
i = (a); \
i > (b); i--)
#define trav(xi, xs) for (auto &xi : xs)
#define rtrav(xi, xs) \
for (auto &xi : ranges::views::reverse(xs))
using ll = long long;
#define inte ll
#define pb push_back
#define pf push_front
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
#define fi first
#define se second
#define emp emplace
#define ins insert
#define divc(a, b) ((a) + (b)-1ll) / (b)
using str = string;
using ull = unsigned long long;
using ld = long double;
using vll = vector<ll>;
using pll = pair<ll, ll>;
using vll2d = vector<vll>;
using vi = vector<int>;
using vi2d = vector<vi>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vc = vector<char>;
using vs = vector<str>;
template <typename T, typename T2>
using umap = unordered_map<T, T2>;
template <typename T>
using pqmn =
priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using pqmx = priority_queue<T, vector<T>>;
template <typename T, typename U>
inline bool chmax(T &a, U const &b) {
return (a < b ? a = b, 1 : 0);
}
template <typename T, typename U>
inline bool chmin(T &a, U const &b) {
return (a > b ? a = b, 1 : 0);
}
/*8<============~ END TEMPLATE ~============}>8*/
void run();
int32_t main() {
#ifndef LOCAL
fastio;
#endif
int T = 1;
// cin >> T;
rep(t, 0, T) {
dbg(t);
run();
}
}
/*8<==========================================>8*/
/*8<
@Problems:
https://vjudge.net/problem/AtCoder-abc259_b
https://atcoder.jp/contests/abc181/tasks/abc181_c?lang=en
https://atcoder.jp/contests/abc248/tasks/abc248_e
https://codeforces.com/problemset/problem/127/A
https://cses.fi/problemset/task/2189
https://cses.fi/problemset/task/2190
https://atcoder.jp/contests/mujin-pc-2016/tasks/mujin_pc_2016_b
>8*/
const double EPS{1e-4};
const ld PI=acos(-1);
template <class Point>
vector<Point> segInter(Point a, Point b, Point c,
Point d);
template <typename T>
bool equals(T a, T b) {
if (std::is_floating_point<T>::value)
return fabs(a - b) < EPS;
else
return a == b;
}
template <class T>
int sgn(T x) {
return (x > 0) - (x < 0);
}
template <class T>
struct Point {
typedef Point P;
T x, y;
explicit Point(T x = 0, T y = 0) : x(x), y(y) {}
bool operator<(P p) const {
return tie(x, y) < tie(p.x, p.y);
}
bool operator==(P p) const {
return tie(x, y) == tie(p.x, p.y);
}
P operator+(P p) const {
return P(x + p.x, y + p.y);
}
P operator-(P p) const {
return P(x - p.x, y - p.y);
}
P operator*(T d) const {
return P(x * d, y * d);
}
P operator/(T d) const {
return P(x / d, y / d);
}
T dot(P p) const { return x * p.x + y * p.y; }
T cross(P p) const { return x * p.y - y * p.x; }
T cross(P a, P b) const {
return (a - *this).cross(b - *this);
}
T dist2() const { return x * x + y * y; }
double dist() const {
return sqrt((double)dist2());
}
// angle to x-axis in interval [-pi, pi]
double angle() const { return atan2(y, x); }
P unit() const {
return *this / dist();
} // makes dist()=1
P perp() const {
return P(-y, x);
} // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated 'a' radians ccw around
// the origin
P rotate(double a) const {
return P(x * cos(a) - y * sin(a),
x * sin(a) + y * cos(a));
}
pair<T,T> slope(const Point<T>&o){
auto a=o.x-x;
auto b=o.y-y;
if (!is_floating_point<T>::value){
auto g=__gcd(a,b);
if(g)a/=g,b/=g;
}
return {b,a};
}
friend ostream& operator<<(ostream& os, P p) {
return os << "(" << p.x << "," << p.y << ")";
}
};
template <typename T>
struct Line {
T a, b, c;
Point<T> p1, p2;
Line(T a = 0, T b = 0, T c = 0)
: a(a), b(b), c(c) {
if (a != 0) {
double x = 0;
double y = (-c) / b;
p1 = Point<T>(x, y);
}
if (b != 0) {
double y = 0;
double x = (-c) / a;
p2 = Point<T>(x, y);
}
}
Line(const Point<T>& p, const Point<T>& q) {
assert(p != q);
a = p.y - q.y;
b = q.x - p.x;
c = p.cross(q);
p1 = p, p2 = q;
}
bool operator==(const Line<T>& other) const {
return tie(a, b, c) ==
tie(other.a, other.b, other.c);
}
// Less-than operator
bool operator<(const Line& rhs) const {
return tie(a, b, c) <
tie(rhs.a, rhs.b, rhs.c);
}
bool operator>(const Line& rhs) const {
return rhs < *this;
}
Line<T> norm() {
T d = a == 0 ? b : a;
return Line(a / d, b / d, c / d);
}
bool contains(const Point<T>& p) {
return equals(a * p.x + b * p.y + c, (T)0);
}
T direction(const Point<T>& p3) {
return p1.cross(p2, p3);
}
friend ostream& operator<<(ostream& os,
Line l) {
return os << fixed << setprecision(6) << "("
<< l.a << "," << l.b << "," << l.c
<< ")";
}
};
template <typename T>
struct LineSegment {
Point<T> p1, p2;
LineSegment(const Point<T>& p,
const Point<T>& q) {
// assert(p != q);
p1 = p, p2 = q;
}
LineSegment(T a, T b, T c, T d)
: LineSegment(Point<T>(a, b),
Point<T>(c, d)) {}
bool operator==(
const LineSegment<T>& other) const {
return tie(p1, p2) == tie(other.p1, other.p2);
}
// Less-than operator
bool operator<(const LineSegment& rhs) const {
return tie(p1, p2) < tie(rhs.p1, rhs.p2);
}
bool operator>(const LineSegment& rhs) const {
return rhs < *this;
}
T direction(const Point<T>& p3) {
return p1.cross(p2, p3);
}
friend ostream& operator<<(ostream& os,
LineSegment l) {
return os << "(" << l.p1 << "," << l.p2
<< ")";
}
vector<Point<T>> intersection(
const LineSegment<T>& other) {
return segInter(p1, p2, other.p1, other.p2);
}
};
template<typename T>
struct Circle {
Point<T> p;
T r;
Circle(Point<T> _p, T _r):p(_p),r(_r){}
Circle(T _r):Circle(Point<T>(0,0),_r){}
ld area(){
return PI*r*r;
}
};
template <typename T>
ld euclidianDistance(const Point<T>& a,
const Point<T>& b) {
return hypot(a.x - b.x, a.y - b.y);
}
template <class Point>
bool onSegment(Point s, Point e, Point p) {
return p.cross(s, e) == 0 &&
(s - p).dot(e - p) <= 0;
}
template <class Point>
vector<Point> segInter(Point a, Point b, Point c,
Point d) {
auto oa = c.cross(d, a), ob = c.cross(d, b),
oc = a.cross(b, c), od = a.cross(b, d);
// Checks if intersection is single non-endpoint
// point.
if (sgn(oa) * sgn(ob) < 0 &&
sgn(oc) * sgn(od) < 0)
return {(a * ob - b * oa) / (ob - oa)};
set<Point> s;
if (onSegment(c, d, a)) s.insert(a);
if (onSegment(c, d, b)) s.insert(b);
if (onSegment(a, b, c)) s.insert(c);
if (onSegment(a, b, d)) s.insert(d);
return {all(s)};
}
/*8<==========================================>8*/
template<typename T>
double ccRadius(const Point<T>& A, const Point<T>& B, const Point<T>& C) {
return (B-A).dist()*(C-B).dist()*(A-C).dist()/
abs((B-A).cross(C-A))/2;
}
template<typename T>
Point<T> ccCenter(const Point<T>& A, const Point<T>& B, const Point<T>& C) {
Point<T> b = C-A, c = B-A;
return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
}
template<typename T>
pair<Point<T>, double> mec(vector<Point<T>> ps) {
shuffle(all(ps), mt19937(time(0)));
Point<T> o = ps[0];
double r = 0, EPS = 1 + 1e-8;
rep(i,0,len(ps)) if ((o - ps[i]).dist() > r * EPS) {
o = ps[i], r = 0;
rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
o = (ps[i] + ps[j]) / 2;
r = (o - ps[i]).dist();
rep(k,0,j) if ((o - ps[k]).dist() > r * EPS) {
o = ccCenter(ps[i], ps[j], ps[k]);
r = (o - ps[i]).dist();
}
}
}
return {o, r};
}
void run() {
int N;cin>>N;
vector<Point<ld>> PTS;
rep(i,0,N){
int x,y;cin>>x>>y;
PTS.eb(x,y);
}
auto[_,ans]=mec(PTS);
cout<<fixed<<setprecision(10)<<ans<<endl;
}
/*8<
AC, geometry
>8*/