-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
43 lines (32 loc) · 1.25 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import numpy as np
import config
from torch.utils.data import Dataset, DataLoader
from PIL import Image
class MyImageFolder(Dataset):
def __init__(self, root_dir):
super(MyImageFolder, self).__init__()
self.data = []
self.root_dir = root_dir
self.class_names = os.listdir(root_dir)
for index, name in enumerate(self.class_names):
files = os.listdir(os.path.join(root_dir, name))
self.data += list(zip(files, [index] * len(files)))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img_file, label = self.data[index]
root_and_dir = os.path.join(self.root_dir, self.class_names[label])
image = np.array(Image.open(os.path.join(root_and_dir, img_file)))
image = config.both_transforms(image=image)["image"]
high_res = config.highres_transform(image=image)["image"]
low_res = config.lowres_transform(image=image)["image"]
return low_res, high_res
def test():
dataset = MyImageFolder(root_dir="new_data/")
loader = DataLoader(dataset, batch_size=1, num_workers=8)
for low_res, high_res in loader:
print(low_res.shape)
print(high_res.shape)
if __name__ == "__main__":
test()