-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelGPT.py
324 lines (284 loc) · 11.8 KB
/
modelGPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GenerationConfig
from tqdm import tqdm
# Base Config for Character level GPT model, Pre trained GPT2 model use config folder
# --------------------------------------------#
batch_size = 16 # how many independent sequences will we process in parallel?
block_size = 64 # 16 what is the maximum context length for predictions?
max_iters = 2000 # how many training iterations?
eval_interval = 1000 # every so often we check on the validation set
learning_rate = 3e-4 # learning rate for the Adam optimizer
device = (
"cuda" if torch.cuda.is_available() else "cpu"
) # what device to use for training
eval_iters = 200 # how many iterations to use for estimating validation loss
n_embd = 320 # embedding dimension
n_head = 6 # number of attention heads
n_layer = 6 # number of transformer blocks
dropout = 0.2 # dropout rate
# --------------------------------------------#
class SelfAttentionHead(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B, T, C = x.shape
k = self.key(x) # (B,T,hs)
q = self.query(x) # (B,T,hs)
# compute attention scores ("affinities")
wei = (
q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5
) # (B, T, hs) @ (B, hs, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei) # (B, T, T)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,hs)
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size) -> None:
super().__init__()
self.heads = nn.ModuleList(
[SelfAttentionHead(head_size) for _ in range(num_heads)]
)
self.proj = nn.Linear(num_heads * head_size, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, channels)
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
"""a simple linear layer followed by a non-linearity"""
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd), # OpenAI uses 4 * n_embd
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
"""Transformer block: communication followed by computation"""
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.l1n = nn.LayerNorm(n_embd)
self.l2n = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.l1n(x))
x = x + self.ffwd(self.l2n(x))
return x
class NewsGPT(nn.Module):
def __init__(self, vocab_size):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) # (B,T,C)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(
*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]
)
self.ln1 = nn.LayerNorm(n_embd)
self.lang_model_head = nn.Linear(n_embd, vocab_size) # (B,T,Vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
token_embd = self.token_embedding_table(idx) # (B,T,C)
pos_embd = self.position_embedding_table(
torch.arange(T, device=device)
) # (T,C)
x = token_embd + pos_embd
x = self.blocks(x)
x = self.ln1(x)
logits = self.lang_model_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
class NewsTokenizer:
def __init__(self, text: str):
chars = sorted(list(set(text)))
self.vocab_size = len(chars)
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
self.encode = lambda s: [stoi[c] for c in s]
self.decode = lambda l: "".join([itos[i] for i in l])
def train_NewsGPT(text, checkpoint=None, save_path=None):
torch.manual_seed(1337)
with open(
"c:context.txt",
"r",
encoding="utf-8",
) as f:
text = f.read()
tokenizer = NewsTokenizer(text)
model = NewsGPT(tokenizer.vocab_size)
m = model.to(device)
# Train and test splits
data = torch.tensor(tokenizer.encode(text), dtype=torch.long)
n = int(0.9 * len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
print(sum(p.numel() for p in m.parameters()) / 1e6, "M parameters")
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
if checkpoint:
checkpoint = torch.load(checkpoint)
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
loss = checkpoint["loss"]
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == "train" else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
# if ran on GPU, move to CPU
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
for iter in tqdm(range(max_iters)):
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
)
if iter > 0 and save_path:
torch.save(
{
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"loss": loss,
},
save_path.joinpath(f"checkpoint_{iter}.pt"),
)
# sample a batch of data
xb, yb = get_batch("train")
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
model.eval()
context = torch.zeros((1, 1), dtype=torch.long, device=device)
out = tokenizer.decode(m.generate(context, max_new_tokens=1000)[0].tolist())
if save_path:
torch.save(
{
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"loss": loss,
},
save_path.joinpath("NewsGPT.pt"),
)
torch.save(
{
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"loss": loss,
},
"NewsGPT.pt",
)
# Pre trained GPT2 model, for consumer build since char level GPT is too slow and currently not filtering out bad words well enough.
class FakeNewsGPT:
def __init__(self, config: dict):
assert "Headline" in config, "Headline config missing"
assert "Article" in config, "Article config missing"
self.config = config
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.headlines = GPT2LMHeadModel.from_pretrained(config["Headline"])
self.headlines_tokenizer = GPT2Tokenizer.from_pretrained(config["Headline"])
self.headlines_generator = GenerationConfig.from_pretrained(
config["Headline"], "generation_config.json"
)
self.articles = GPT2LMHeadModel.from_pretrained(config["Article"])
self.articles_tokenizer = GPT2Tokenizer.from_pretrained(config["Article"])
self.articles_generator = GenerationConfig.from_pretrained(
config["Article"], "generation_config.json"
)
def generate(self, from_headline: str = None, return_text: bool = False, **kwargs):
if not from_headline:
input_text = self.headlines_tokenizer.bos_token
text_ids = self.headlines_tokenizer.encode(input_text, return_tensors="pt")
text_ids = text_ids.to(self.device)
self.headlines = self.headlines.to(self.device)
generated_text_samples = self.headlines.generate(
text_ids, generation_config=self.headlines_generator
)
from_headline = self.headlines_tokenizer.decode(
generated_text_samples[0], skip_special_tokens=True
)
headline = " ".join(
[
self.articles_tokenizer.bos_token,
from_headline,
self.articles_tokenizer.sep_token,
]
)
headline = self.articles_tokenizer.encode(headline, return_tensors="pt")
content = self.articles.generate(
headline, **kwargs, generation_config=self.articles_generator
)
text = self.articles_tokenizer.decode(
content[0], skip_special_tokens=True
).replace(from_headline, "")
if return_text:
return f"\n {from_headline} \n\n {text}"
else:
print(f"\n {from_headline} \n\n {text}")
if __name__ == "__main__":
config = {
"Headline": "config/article-gpt2",
"Article": "config/article-gpt2",
}
model = FakeNewsGPT(config)
model.generate(
from_headline="Facebook Plans to Crack Down on Vaccine Misinformation"
)