diff --git a/notebooks/hfdemo/patch_tsmixer_getting_started.ipynb b/notebooks/hfdemo/patch_tsmixer_getting_started.ipynb index c0f31f4e..646ddb47 100644 --- a/notebooks/hfdemo/patch_tsmixer_getting_started.ipynb +++ b/notebooks/hfdemo/patch_tsmixer_getting_started.ipynb @@ -301,7 +301,7 @@ "source": [ "## Testing with a `PatchTSMixer` model that was trained on the training part of the `ETTh1` data\n", "\n", - "A pre-trained model (on `ETTh1` data) is available at [ibm/patchtsmixer-etth1-forecasting](https://huggingface.co/ibm/patchtsmixer-etth1-forecasting)." + "A pre-trained model (on `ETTh1` data) is available at [ibm-granite/granite-timeseries-patchtsmixer](https://huggingface.co/ibm-granite/granite-timeseries-patchtsmixer)." ] }, { @@ -322,7 +322,7 @@ "source": [ "print(\"Loading pretrained model\")\n", "inference_forecast_model = PatchTSMixerForPrediction.from_pretrained(\n", - " \"ibm/patchtsmixer-etth1-forecasting\"\n", + " \"ibm-granite/granite-timeseries-patchtsmixer\"\n", ")\n", "print(\"Done\")" ] @@ -885,7 +885,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/notebooks/hfdemo/patch_tst_getting_started.ipynb b/notebooks/hfdemo/patch_tst_getting_started.ipynb index 975c09b6..5cad2c5f 100644 --- a/notebooks/hfdemo/patch_tst_getting_started.ipynb +++ b/notebooks/hfdemo/patch_tst_getting_started.ipynb @@ -289,7 +289,7 @@ "source": [ "## Testing with a `PatchTST` model that was trained on the training part of the `ETTh1` data\n", "\n", - "A pre-trained model (on `ETTh1` data) is available at [ibm/patchtst-etth1-forecasting](https://huggingface.co/ibm/patchtst-etth1-forecasting)." + "A pre-trained model (on `ETTh1` data) is available at [ibm-granite/granite-timeseries-patchtst](https://huggingface.co/ibm-granite/granite-timeseries-patchtst)." ] }, { @@ -310,7 +310,7 @@ "source": [ "print(\"Loading pretrained model\")\n", "inference_forecast_model = PatchTSTForPrediction.from_pretrained(\n", - " \"ibm/patchtst-etth1-forecasting\"\n", + " \"ibm-granite/granite-timeseries-patchtst\"\n", ")\n", "print(\"Done\")" ] diff --git a/notebooks/hfdemo/ttm_getting_started.ipynb b/notebooks/hfdemo/ttm_getting_started.ipynb index b0e346bf..df035518 100644 --- a/notebooks/hfdemo/ttm_getting_started.ipynb +++ b/notebooks/hfdemo/ttm_getting_started.ipynb @@ -16,7 +16,7 @@ "\n", "Note: Alternatively, this notebook can be modified to try the TTM-1024-96 model.\n", "\n", - "Pre-trained TTM models will be fetched from the [Hugging Face TTM Model Repository](https://huggingface.co/ibm/TTM)." + "Pre-trained TTM models will be fetched from the [Hugging Face TTM Model Repository](https://huggingface.co/ibm-granite/granite-timeseries-ttm-v1)." ] }, { @@ -141,12 +141,12 @@ " # Load model\n", " if prediction_filter_length is None:\n", " zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm/TTM\", revision=TTM_MODEL_REVISION\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION\n", " )\n", " else:\n", " if prediction_filter_length <= forecast_length:\n", " zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm/TTM\", revision=TTM_MODEL_REVISION, prediction_filter_length=prediction_filter_length\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_filter_length=prediction_filter_length\n", " )\n", " else:\n", " raise ValueError(f\"`prediction_filter_length` should be <= `forecast_length\")\n", @@ -214,22 +214,22 @@ " if \"ett\" in dataset_name:\n", " if prediction_filter_length is None:\n", " finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm/TTM\", revision=TTM_MODEL_REVISION, head_dropout=0.7\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7\n", " )\n", " elif prediction_filter_length <= forecast_length:\n", " finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm/TTM\", revision=TTM_MODEL_REVISION, head_dropout=0.7, prediction_filter_length=prediction_filter_length\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7, prediction_filter_length=prediction_filter_length\n", " )\n", " else:\n", " raise ValueError(f\"`prediction_filter_length` should be <= `forecast_length\")\n", " else:\n", " if prediction_filter_length is None:\n", " finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm/TTM\", revision=TTM_MODEL_REVISION,\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION,\n", " )\n", " elif prediction_filter_length <= forecast_length:\n", " finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm/TTM\", revision=TTM_MODEL_REVISION, prediction_filter_length=prediction_filter_length\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_filter_length=prediction_filter_length\n", " )\n", " else:\n", " raise ValueError(f\"`prediction_filter_length` should be <= `forecast_length\")\n", diff --git a/notebooks/tutorial/ttm_tutorial.ipynb b/notebooks/tutorial/ttm_tutorial.ipynb index bbbf4690..6898ddca 100644 --- a/notebooks/tutorial/ttm_tutorial.ipynb +++ b/notebooks/tutorial/ttm_tutorial.ipynb @@ -16,7 +16,7 @@ "\n", "Note: Alternatively, this notebook can be modified to try the TTM-1024-96 model.\n", "\n", - "Pre-trained TTM models will be fetched from the [Hugging Face TTM Model Repository](https://huggingface.co/ibm/TTM)." + "Pre-trained TTM models will be fetched from the [Hugging Face TTM Model Repository](https://huggingface.co/ibm-granite/granite-timeseries-ttm-v1)." ] }, { @@ -49,7 +49,7 @@ ], "source": [ "# Clone the ibm/tsfm\n", - "! git clone https://github.com/IBM/tsfm.git" + "! git clone https://github.com/IBM-granite/granite-tsfm.git" ] }, { @@ -1014,7 +1014,7 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION)\n", "zeroshot_model" ] }, @@ -1300,7 +1300,7 @@ } ], "source": [ - "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", + "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", "finetune_forecast_model" ] }, @@ -1650,7 +1650,7 @@ "### Q 19.\tZero-shot on channel 0 and 2 for etth1\n", "In your notebook, add `prediction_channel_indices=[0,2]` during model loading to forecast only 0th and 2nd channels. In this case, execute the following code and note the output shape.\n", "```\n", - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION, prediction_channel_indices=[0,2])\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_channel_indices=[0,2])\n", "output = zeroshot_model.forward(test_dataset[0]['past_values'].unsqueeze(0), return_loss=False)\n", "output.prediction_outputs.shape\n", "```" diff --git a/notebooks/tutorial/ttm_tutorial_with_ans.ipynb b/notebooks/tutorial/ttm_tutorial_with_ans.ipynb index 7c075883..98ad0d36 100644 --- a/notebooks/tutorial/ttm_tutorial_with_ans.ipynb +++ b/notebooks/tutorial/ttm_tutorial_with_ans.ipynb @@ -16,7 +16,7 @@ "\n", "Note: Alternatively, this notebook can be modified to try the TTM-1024-96 model.\n", "\n", - "Pre-trained TTM models will be fetched from the [Hugging Face TTM Model Repository](https://huggingface.co/ibm/TTM)." + "Pre-trained TTM models will be fetched from the [Hugging Face TTM Model Repository](https://huggingface.co/ibm-granite/granite-timeseries-ttm-v1)." ] }, { @@ -43,7 +43,7 @@ ], "source": [ "# Clone the ibm/tsfm\n", - "! git clone https://github.com/IBM/tsfm.git" + "! git clone https://github.com/IBM-granite/granite-tsfm.git" ] }, { @@ -1009,7 +1009,7 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION)\n", "zeroshot_model" ] }, @@ -1295,7 +1295,7 @@ } ], "source": [ - "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", + "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", "finetune_forecast_model" ] }, @@ -1694,7 +1694,7 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION)\n", "temp_dir = tempfile.mkdtemp()\n", "# zeroshot_trainer\n", "zeroshot_trainer = Trainer(\n", @@ -1755,7 +1755,7 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION, prediction_filter_length=24)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_filter_length=24)\n", "temp_dir = tempfile.mkdtemp()\n", "# zeroshot_trainer\n", "zeroshot_trainer = Trainer(\n", @@ -1959,7 +1959,7 @@ } ], "source": [ - "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", + "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", "finetune_forecast_model" ] }, @@ -2201,7 +2201,7 @@ "metadata": {}, "outputs": [], "source": [ - "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION, head_dropout=0.7, loss=\"mae\")" + "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7, loss=\"mae\")" ] }, { @@ -2425,7 +2425,7 @@ "### Q 19.\tZero-shot on channel 0 and 2 for etth1\n", "In your notebook, add `prediction_channel_indices=[0,2]` during model loading to forecast only 0th and 2nd channels. In this case, execute the following code and note the output shape.\n", "```\n", - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION, prediction_channel_indices=[0,2])\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_channel_indices=[0,2])\n", "output = zeroshot_model.forward(test_dataset[0]['past_values'].unsqueeze(0), return_loss=False)\n", "output.prediction_outputs.shape\n", "```" @@ -2449,7 +2449,7 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=TTM_MODEL_REVISION, prediction_channel_indices=[0,2])\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_channel_indices=[0,2])\n", "output = zeroshot_model.forward(test_dataset[0]['past_values'].unsqueeze(0), return_loss=False)\n", "output.prediction_outputs.shape" ]