From afc4eb013f6cdab2479c50331e8beb71d55ed404 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Thu, 1 Aug 2024 07:38:20 -0400 Subject: [PATCH 01/13] refactor ttm_utils :recycle: --- .../models/tinytimemixer/utils/ttm_utils.py | 54 -------------- tsfm_public/toolkit/callbacks.py | 4 ++ tsfm_public/toolkit/util.py | 13 ++++ tsfm_public/toolkit/visualization.py | 70 +++++++++++++++++++ 4 files changed, 87 insertions(+), 54 deletions(-) diff --git a/tsfm_public/models/tinytimemixer/utils/ttm_utils.py b/tsfm_public/models/tinytimemixer/utils/ttm_utils.py index dbbb5d68..cfd4e0b9 100644 --- a/tsfm_public/models/tinytimemixer/utils/ttm_utils.py +++ b/tsfm_public/models/tinytimemixer/utils/ttm_utils.py @@ -5,8 +5,6 @@ import os # Third Party -import matplotlib.pyplot as plt -import numpy as np import pandas as pd import torch @@ -163,10 +161,6 @@ def get_ttm_args(): return args -def count_parameters(model): - return sum(p.numel() for p in model.parameters() if p.requires_grad) - - def int_to_bool(value): if value == 0: return False @@ -176,54 +170,6 @@ def int_to_bool(value): raise argparse.ArgumentTypeError("Boolean value expected (0 or 1)") -# Utitlity: plot -def plot_preds(trainer, dset, plot_dir, num_plots=10, plot_prefix="valid", channel=-1, truncate_history=True): - device = torch.cuda.current_device() if torch.cuda.is_available() else torch.device("cpu") - random_indices = np.random.choice(len(dset), size=num_plots, replace=False) - random_samples = torch.stack([dset[i]["past_values"] for i in random_indices]) - trainer.model = trainer.model.to(device) - output = trainer.model(random_samples.to(device=device)) - y_hat = output.prediction_outputs[:, :, channel].detach().cpu().numpy() - pred_len = y_hat.shape[1] - - # Set a more beautiful style - plt.style.use("seaborn-v0_8-whitegrid") - - # Adjust figure size and subplot spacing - fig, axs = plt.subplots(num_plots, 1, figsize=(10, 20)) - for i, ri in enumerate(random_indices): - batch = dset[ri] - - y = batch["future_values"][:pred_len, channel].squeeze().cpu().numpy() - if truncate_history: - x = batch["past_values"][-2 * pred_len :, channel].squeeze().cpu().numpy() - else: - x = batch["past_values"][:, channel].squeeze().cpu().numpy() - y = np.concatenate((x, y), axis=0) - - # Plot predicted values with a dashed line - y_hat_plot = np.concatenate((x, y_hat[i, ...]), axis=0) - axs[i].plot(y_hat_plot, label="Predicted", linestyle="--", color="orange", linewidth=2) - - # Plot true values with a solid line - axs[i].plot(y, label="True", linestyle="-", color="blue", linewidth=2) - - # Plot horizon border - axs[i].axvline(x=2 * pred_len, color="r", linestyle="-") - - axs[i].set_title(f"Example {random_indices[i]}") - axs[i].legend() - - # Adjust overall layout - plt.tight_layout() - - # Save the plot - plot_filename = f"synthetic_{plot_prefix}_ch_{str(channel)}.pdf" - os.makedirs(plot_dir, exist_ok=True) - plt.savefig(os.path.join(plot_dir, plot_filename)) - - -# Get data loaders using TSP def get_data( dataset_name: str, context_length, diff --git a/tsfm_public/toolkit/callbacks.py b/tsfm_public/toolkit/callbacks.py index a8cdb81c..50fd51b8 100644 --- a/tsfm_public/toolkit/callbacks.py +++ b/tsfm_public/toolkit/callbacks.py @@ -1,3 +1,5 @@ +# Copyright contributors to the TSFM project +# """Some basic callbacks for training with HF Trainer""" import time @@ -9,6 +11,8 @@ class TrackingCallback(TrainerCallback): + """Simple tracking callback that tracks per epoch run times and calculates some statistics after training completes.""" + def on_train_begin( self, args: TrainingArguments, diff --git a/tsfm_public/toolkit/util.py b/tsfm_public/toolkit/util.py index c471e2f9..1f9103e0 100644 --- a/tsfm_public/toolkit/util.py +++ b/tsfm_public/toolkit/util.py @@ -9,6 +9,7 @@ from typing import Any, Callable, Dict, List, Optional, Tuple, Union import pandas as pd +import torch class FractionLocation(enum.Enum): @@ -660,3 +661,15 @@ def join_list_without_repeat(*lists: List[List[Any]]) -> List[Any]: final = final + [item for item in alist if item not in final_set] final_set = set(final) return final + + +def count_parameters(model: torch.nn.Module) -> int: + """Count trainable parameters in a model + + Args: + model (torch.nn.Module): The model. + + Returns: + int: Number of parameters requiring gradients. + """ + return sum(p.numel() for p in model.parameters() if p.requires_grad) diff --git a/tsfm_public/toolkit/visualization.py b/tsfm_public/toolkit/visualization.py index 18af9cc8..f17808bd 100644 --- a/tsfm_public/toolkit/visualization.py +++ b/tsfm_public/toolkit/visualization.py @@ -3,9 +3,12 @@ """Utilities for plotting time series data""" import logging +import os +import numpy as np import pandas as pd import plotly.graph_objs as go +import torch from IPython.display import Image from plotly.subplots import make_subplots @@ -194,3 +197,70 @@ def plot_ts_forecasting( plt.xticks(rotation=45) plt.close() return fig + + +def plot_predictions( + model: torch.nn.Module, + dset: torch.utils.data.Dataset, + plot_dir: str = None, + num_plots: int = 10, + plot_prefix: str = "valid", + channel: int = -1, + truncate_history: bool = True, +): + """Utility for plotting forecasts along with history. + + Args: + model (torch.nn.Module): A trained model. + dset (torch.utils.data.Dataset): Dataset that was fed into Trainer for predicting + plot_dir (str, optional): A location to save the plot. If None, no plot is saved. Defaults to None. + num_plots (int, optional): Number of sub-plots (context windows) to include. Defaults to 10. + plot_prefix (str, optional): A prefix for the saved filename. Defaults to "valid". + channel (int, optional): Which channels to plot for a multivariate dataset. Defaults to -1. + truncate_history (bool, optional): If True only some hisotry (2 * pred_len samples) will be included in the plot. Defaults to True. + """ + # device = torch.cuda.current_device() if torch.cuda.is_available() else torch.device("cpu") + device = model.device + random_indices = np.random.choice(len(dset), size=num_plots, replace=False) + random_samples = torch.stack([dset[i]["past_values"] for i in random_indices]).to(device=device) + + output = model(random_samples) + y_hat = output.prediction_outputs[:, :, channel].detach().cpu().numpy() + pred_len = y_hat.shape[1] + + # Set a more beautiful style + plt.style.use("seaborn-v0_8-whitegrid") + + # Adjust figure size and subplot spacing + fig, axs = plt.subplots(num_plots, 1, figsize=(10, 20)) + for i, ri in enumerate(random_indices): + batch = dset[ri] + + y = batch["future_values"][:pred_len, channel].squeeze().cpu().numpy() + if truncate_history: + x = batch["past_values"][-2 * pred_len :, channel].squeeze().cpu().numpy() + else: + x = batch["past_values"][:, channel].squeeze().cpu().numpy() + y = np.concatenate((x, y), axis=0) + + # Plot predicted values with a dashed line + y_hat_plot = np.concatenate((x, y_hat[i, ...]), axis=0) + axs[i].plot(y_hat_plot, label="Predicted", linestyle="--", color="orange", linewidth=2) + + # Plot true values with a solid line + axs[i].plot(y, label="True", linestyle="-", color="blue", linewidth=2) + + # Plot horizon border + axs[i].axvline(x=2 * pred_len, color="r", linestyle="-") + + axs[i].set_title(f"Example {random_indices[i]}") + axs[i].legend() + + # Adjust overall layout + plt.tight_layout() + + # Save the plot + if plot_dir is not None: + plot_filename = f"{plot_prefix}_ch_{str(channel)}.pdf" + os.makedirs(plot_dir, exist_ok=True) + plt.savefig(os.path.join(plot_dir, plot_filename)) From 6014f376f20385a61d58c79ce32372a6c6d4472a Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Thu, 1 Aug 2024 07:38:45 -0400 Subject: [PATCH 02/13] ease imports --- tsfm_public/__init__.py | 4 ++++ tsfm_public/toolkit/__init__.py | 2 ++ 2 files changed, 6 insertions(+) diff --git a/tsfm_public/__init__.py b/tsfm_public/__init__.py index a491654b..f8cd91c1 100644 --- a/tsfm_public/__init__.py +++ b/tsfm_public/__init__.py @@ -23,6 +23,8 @@ "PretrainDFDataset", "RegressionDFDataset", "get_datasets", + "TrackingCallback", + "count_parameters", ], } @@ -53,6 +55,8 @@ RegressionDFDataset, TimeSeriesForecastingPipeline, TimeSeriesPreprocessor, + TrackingCallback, + count_parameters, get_datasets, ) else: diff --git a/tsfm_public/toolkit/__init__.py b/tsfm_public/toolkit/__init__.py index ed9d8cd3..fc5541e8 100644 --- a/tsfm_public/toolkit/__init__.py +++ b/tsfm_public/toolkit/__init__.py @@ -1,6 +1,8 @@ # Copyright contributors to the TSFM project # +from .callbacks import TrackingCallback from .dataset import ForecastDFDataset, PretrainDFDataset, RegressionDFDataset from .time_series_forecasting_pipeline import TimeSeriesForecastingPipeline from .time_series_preprocessor import TimeSeriesPreprocessor, get_datasets +from .util import count_parameters From 72bd5d148af8006beb3cc6cac66ce0f7fed1a23f Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Thu, 1 Aug 2024 08:07:20 -0400 Subject: [PATCH 03/13] :recycle: refactor notebooks --- notebooks/tutorial/install_tsfm.ipynb | 36 +- notebooks/tutorial/ttm_tutorial.ipynb | 589 ++++-------- .../tutorial/ttm_tutorial_with_ans.ipynb | 878 ++++++------------ 3 files changed, 484 insertions(+), 1019 deletions(-) diff --git a/notebooks/tutorial/install_tsfm.ipynb b/notebooks/tutorial/install_tsfm.ipynb index a69cfbb3..0314f4be 100644 --- a/notebooks/tutorial/install_tsfm.ipynb +++ b/notebooks/tutorial/install_tsfm.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Install IBM/tsfm repository\n", + "# Install IBM-Granite/granite-tsfm repository\n", "\n", "This notebook installs the IBM Time Series Foundation Model repository." ] @@ -15,38 +15,8 @@ "metadata": {}, "outputs": [], "source": [ - "# Clone the ibm/tsfm\n", - "! git clone https://github.com/IBM/tsfm.git" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Change directory. Move inside the tsfm repo.\n", - "%cd tsfm" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Do ls\n", - "! ls" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Install the tsfm library\n", - "! pip install \".[notebooks]\"" + "# Install ibm/tsfm\n", + "! pip install \"tsfm_public[notebooks] @ git+ssh://git@github.com/ibm-granite/granite-tsfm.git\"" ] }, { diff --git a/notebooks/tutorial/ttm_tutorial.ipynb b/notebooks/tutorial/ttm_tutorial.ipynb index 6898ddca..493e8e95 100644 --- a/notebooks/tutorial/ttm_tutorial.ipynb +++ b/notebooks/tutorial/ttm_tutorial.ipynb @@ -30,275 +30,12 @@ { "cell_type": "code", "execution_count": 1, - "id": "9fe05685", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cloning into 'tsfm'...\n", - "remote: Enumerating objects: 1490, done.\u001b[K\n", - "remote: Counting objects: 100% (331/331), done.\u001b[K\n", - "remote: Compressing objects: 100% (211/211), done.\u001b[K\n", - "remote: Total 1490 (delta 164), reused 151 (delta 120), pack-reused 1159\u001b[K\n", - "Receiving objects: 100% (1490/1490), 15.79 MiB | 53.91 MiB/s, done.\n", - "Resolving deltas: 100% (824/824), done.\n" - ] - } - ], - "source": [ - "# Clone the ibm/tsfm\n", - "! git clone https://github.com/IBM-granite/granite-tsfm.git" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "be51b4e7", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/dccstor/dnn_forecasting/FM/tsfm_hf_refactor/public_repo/public/my_fork/tsfm/notebooks/tutorial/tsfm\n" - ] - } - ], - "source": [ - "# Change directory. Move inside the tsfm repo.\n", - "%cd tsfm" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "128a92da", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hacking Makefile pyproject.toml scripts tsfmhfdemos wiki.md\n", - "LICENSE notebooks README.md\t tests tsfm_public\n" - ] - } - ], - "source": [ - "# Do ls\n", - "! ls" - ] - }, - { - "cell_type": "code", - "execution_count": 4, "id": "5f120eaa", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing /dccstor/dnn_forecasting/FM/tsfm_hf_refactor/public_repo/public/my_fork/tsfm/notebooks/tutorial/tsfm\n", - " Installing build dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", - "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25hRequirement already satisfied: transformers[torch]>=4.36.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (4.37.2)\n", - "Requirement already satisfied: pandas>=2.2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (2.2.2)\n", - "Requirement already satisfied: datasets in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (2.14.4)\n", - "Requirement already satisfied: scikit-learn in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (1.2.2)\n", - "Requirement already satisfied: deprecated in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (1.2.14)\n", - "Requirement already satisfied: kaleido in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (0.2.1)\n", - "Requirement already satisfied: matplotlib in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (3.8.3)\n", - "Requirement already satisfied: jupyter in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (1.0.0)\n", - "Requirement already satisfied: ipywidgets in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (8.1.2)\n", - "Requirement already satisfied: plotly in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (5.16.1)\n", - "Requirement already satisfied: tensorboard in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (2.13.0)\n", - "Requirement already satisfied: numpy>=1.22.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pandas>=2.2.0->tsfm_public==0.2.0) (1.23.5)\n", - "Requirement already satisfied: pytz>=2020.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pandas>=2.2.0->tsfm_public==0.2.0) (2022.6)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pandas>=2.2.0->tsfm_public==0.2.0) (2.8.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pandas>=2.2.0->tsfm_public==0.2.0) (2023.3)\n", - "Requirement already satisfied: regex!=2019.12.17 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2023.8.8)\n", - "Requirement already satisfied: requests in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2.31.0)\n", - "Requirement already satisfied: safetensors>=0.4.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (0.4.2)\n", - "Requirement already satisfied: filelock in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (3.8.0)\n", - "Requirement already satisfied: tqdm>=4.27 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (4.64.1)\n", - "Requirement already satisfied: pyyaml>=5.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (6.0)\n", - "Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (0.20.2)\n", - "Requirement already satisfied: tokenizers<0.19,>=0.14 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (0.15.0)\n", - "Requirement already satisfied: packaging>=20.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (23.2)\n", - "Requirement already satisfied: accelerate>=0.21.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (0.22.0)\n", - "Requirement already satisfied: torch!=1.12.0,>=1.11 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2.3.0)\n", - "Requirement already satisfied: xxhash in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (3.3.0)\n", - "Requirement already satisfied: aiohttp in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (3.8.4)\n", - "Requirement already satisfied: pyarrow>=8.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (12.0.1)\n", - "Requirement already satisfied: fsspec[http]>=2021.11.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (2023.6.0)\n", - "Requirement already satisfied: dill<0.3.8,>=0.3.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (0.3.4)\n", - "Requirement already satisfied: multiprocess in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (0.70.12.2)\n", - "Requirement already satisfied: wrapt<2,>=1.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from deprecated->tsfm_public==0.2.0) (1.15.0)\n", - "Requirement already satisfied: comm>=0.1.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (0.1.4)\n", - "Requirement already satisfied: widgetsnbextension~=4.0.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (4.0.10)\n", - "Requirement already satisfied: traitlets>=4.3.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (5.9.0)\n", - "Requirement already satisfied: ipython>=6.1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (8.14.0)\n", - "Requirement already satisfied: jupyterlab-widgets~=3.0.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (3.0.10)\n", - "Requirement already satisfied: jupyter-console in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (6.6.3)\n", - "Requirement already satisfied: qtconsole in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (5.5.1)\n", - "Requirement already satisfied: nbconvert in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (7.7.4)\n", - "Requirement already satisfied: ipykernel in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (6.25.1)\n", - "Requirement already satisfied: notebook in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (7.1.1)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (3.0.9)\n", - "Requirement already satisfied: pillow>=8 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (9.3.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (4.38.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (1.4.4)\n", - "Requirement already satisfied: importlib-resources>=3.2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (6.0.1)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (1.0.6)\n", - "Requirement already satisfied: cycler>=0.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (0.11.0)\n", - "Requirement already satisfied: tenacity>=6.2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from plotly->tsfm_public==0.2.0) (8.2.3)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from scikit-learn->tsfm_public==0.2.0) (3.1.0)\n", - "Requirement already satisfied: scipy>=1.3.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from scikit-learn->tsfm_public==0.2.0) (1.12.0)\n", - "Requirement already satisfied: joblib>=1.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from scikit-learn->tsfm_public==0.2.0) (1.2.0)\n", - "Requirement already satisfied: setuptools>=41.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (65.5.0)\n", - "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (0.7.1)\n", - "Requirement already satisfied: werkzeug>=1.0.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (2.2.2)\n", - "Requirement already satisfied: protobuf>=3.19.6 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (3.20.3)\n", - "Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (1.0.0)\n", - "Requirement already satisfied: grpcio>=1.48.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (1.58.0)\n", - "Requirement already satisfied: wheel>=0.26 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (0.37.1)\n", - "Requirement already satisfied: absl-py>=0.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (1.3.0)\n", - "Requirement already satisfied: google-auth<3,>=1.6.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (2.15.0)\n", - "Requirement already satisfied: markdown>=2.6.8 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (3.4.1)\n", - "Requirement already satisfied: psutil in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from accelerate>=0.21.0->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (5.9.5)\n", - "Requirement already satisfied: attrs>=17.3.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (23.1.0)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (1.3.1)\n", - "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (2.1.1)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (1.3.3)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (6.0.4)\n", - "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (4.0.2)\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (1.9.2)\n", - "Requirement already satisfied: rsa<5,>=3.1.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (4.9)\n", - "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (5.2.0)\n", - "Requirement already satisfied: six>=1.9.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (1.16.0)\n", - "Requirement already satisfied: pyasn1-modules>=0.2.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (0.2.8)\n", - "Requirement already satisfied: requests-oauthlib>=0.7.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard->tsfm_public==0.2.0) (1.3.1)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.19.3->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (4.11.0)\n", - "Requirement already satisfied: zipp>=3.1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from importlib-resources>=3.2.0->matplotlib->tsfm_public==0.2.0) (3.11.0)\n", - "Requirement already satisfied: pygments>=2.4.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (2.16.1)\n", - "Requirement already satisfied: matplotlib-inline in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.1.6)\n", - "Requirement already satisfied: jedi>=0.16 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.19.0)\n", - "Requirement already satisfied: decorator in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (5.1.1)\n", - "Requirement already satisfied: pickleshare in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.7.5)\n", - "Requirement already satisfied: pexpect>4.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (4.8.0)\n", - "Requirement already satisfied: backcall in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.2.0)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (3.0.39)\n", - "Requirement already satisfied: stack-data in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.6.2)\n", - "Requirement already satisfied: importlib-metadata>=4.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard->tsfm_public==0.2.0) (6.0.0)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from requests->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (1.26.16)\n", - "Requirement already satisfied: idna<4,>=2.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from requests->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (3.4)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from requests->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2022.9.24)\n", - "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.105)\n", - "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.105)\n", - "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (10.3.2.106)\n", - "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (8.9.2.26)\n", - "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.3.1)\n", - "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2.20.5)\n", - "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (11.0.2.54)\n", - "Requirement already satisfied: networkx in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (3.1)\n", - "Requirement already satisfied: triton==2.3.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2.3.0)\n", - "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.0.106)\n", - "Requirement already satisfied: sympy in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (1.11.1)\n", - "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.105)\n", - "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (11.4.5.107)\n", - "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.105)\n", - "Requirement already satisfied: jinja2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (3.1.2)\n", - "Requirement already satisfied: nvidia-nvjitlink-cu12 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.4.127)\n", - "Requirement already satisfied: MarkupSafe>=2.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard->tsfm_public==0.2.0) (2.1.1)\n", - "Requirement already satisfied: pyzmq>=20 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (25.1.1)\n", - "Requirement already satisfied: tornado>=6.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (6.3.3)\n", - "Requirement already satisfied: nest-asyncio in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (1.5.7)\n", - "Requirement already satisfied: debugpy>=1.6.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (1.6.7.post1)\n", - "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (5.3.1)\n", - "Requirement already satisfied: jupyter-client>=6.1.12 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (8.3.0)\n", - "Requirement already satisfied: nbclient>=0.5.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (0.8.0)\n", - "Requirement already satisfied: beautifulsoup4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (4.12.2)\n", - "Requirement already satisfied: jupyterlab-pygments in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (0.2.2)\n", - "Requirement already satisfied: mistune<4,>=2.0.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (3.0.1)\n", - "Requirement already satisfied: nbformat>=5.7 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (5.9.2)\n", - "Requirement already satisfied: bleach!=5.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (6.0.0)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (1.5.0)\n", - "Requirement already satisfied: tinycss2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (1.2.1)\n", - "Requirement already satisfied: defusedxml in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (0.7.1)\n", - "Requirement already satisfied: jupyterlab-server<3,>=2.22.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from notebook->jupyter->tsfm_public==0.2.0) (2.24.0)\n", - "Requirement already satisfied: jupyter-server<3,>=2.4.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from notebook->jupyter->tsfm_public==0.2.0) (2.12.5)\n", - "Requirement already satisfied: notebook-shim<0.3,>=0.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from notebook->jupyter->tsfm_public==0.2.0) (0.2.3)\n", - "Requirement already satisfied: jupyterlab<4.2,>=4.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from notebook->jupyter->tsfm_public==0.2.0) (4.1.2)\n", - "Requirement already satisfied: qtpy>=2.4.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from qtconsole->jupyter->tsfm_public==0.2.0) (2.4.1)\n", - "Requirement already satisfied: webencodings in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from bleach!=5.0.0->nbconvert->jupyter->tsfm_public==0.2.0) (0.5.1)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.8.3)\n", - "Requirement already satisfied: platformdirs>=2.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter->tsfm_public==0.2.0) (2.5.3)\n", - "Requirement already satisfied: terminado>=0.8.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.17.1)\n", - "Requirement already satisfied: overrides in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (7.4.0)\n", - "Requirement already satisfied: send2trash>=1.8.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.8.2)\n", - "Requirement already satisfied: jupyter-events>=0.9.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.9.0)\n", - "Requirement already satisfied: websocket-client in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.6.2)\n", - "Requirement already satisfied: argon2-cffi in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (23.1.0)\n", - "Requirement already satisfied: prometheus-client in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.13.1)\n", - "Requirement already satisfied: jupyter-server-terminals in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.4.4)\n", - "Requirement already satisfied: anyio>=3.1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (3.7.1)\n", - "Requirement already satisfied: tomli in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (2.0.1)\n", - "Requirement already satisfied: jupyter-lsp>=2.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (2.2.0)\n", - "Requirement already satisfied: httpx>=0.25.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (0.25.2)\n", - "Requirement already satisfied: async-lru>=1.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (2.0.4)\n", - "Requirement already satisfied: babel>=2.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (2.12.1)\n", - "Requirement already satisfied: jsonschema>=4.17.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (4.19.0)\n", - "Requirement already satisfied: json5>=0.9.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (0.9.14)\n", - "Requirement already satisfied: fastjsonschema in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbformat>=5.7->nbconvert->jupyter->tsfm_public==0.2.0) (2.18.0)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.2.6)\n", - "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (0.4.8)\n", - "Requirement already satisfied: oauthlib>=3.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard->tsfm_public==0.2.0) (3.2.2)\n", - "Requirement already satisfied: soupsieve>1.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from beautifulsoup4->nbconvert->jupyter->tsfm_public==0.2.0) (2.4.1)\n", - "Requirement already satisfied: executing>=1.2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (1.2.0)\n", - "Requirement already satisfied: pure-eval in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.2.2)\n", - "Requirement already satisfied: asttokens>=2.1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (2.2.1)\n", - "Requirement already satisfied: mpmath>=0.19 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from sympy->torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (1.3.0)\n", - "Requirement already satisfied: exceptiongroup in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.1.3)\n", - "Requirement already satisfied: sniffio>=1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.3.0)\n", - "Requirement already satisfied: httpcore==1.* in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from httpx>=0.25.0->jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (1.0.4)\n", - "Requirement already satisfied: h11<0.15,>=0.13 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from httpcore==1.*->httpx>=0.25.0->jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (0.14.0)\n", - "Requirement already satisfied: referencing>=0.28.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (0.30.2)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (2023.7.1)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (0.9.2)\n", - "Requirement already satisfied: python-json-logger>=2.0.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (2.0.7)\n", - "Requirement already satisfied: rfc3339-validator in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.1.4)\n", - "Requirement already satisfied: rfc3986-validator>=0.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.1.1)\n", - "Requirement already satisfied: argon2-cffi-bindings in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from argon2-cffi->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (21.2.0)\n", - "Requirement already satisfied: webcolors>=1.11 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (1.13)\n", - "Requirement already satisfied: uri-template in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (1.3.0)\n", - "Requirement already satisfied: jsonpointer>1.13 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (2.4)\n", - "Requirement already satisfied: fqdn in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (1.5.1)\n", - "Requirement already satisfied: isoduration in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (20.11.0)\n", - "Requirement already satisfied: cffi>=1.0.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from argon2-cffi-bindings->argon2-cffi->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.15.1)\n", - "Requirement already satisfied: pycparser in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (2.21)\n", - "Requirement already satisfied: arrow>=0.15.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from isoduration->jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (1.2.3)\n", - "Building wheels for collected packages: tsfm_public\n", - " Building wheel for tsfm_public (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for tsfm_public: filename=tsfm_public-0.2.0-py3-none-any.whl size=2303294 sha256=7e65b4fa72745020ceeb8df06e9922d3cabd27ed472e6f105ffc8672f737aa2e\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-7jmvx07z/wheels/91/0b/a5/62aeda6aed2054a29fd91e1e24d2ff2edf6d9aded30338bdf4\n", - "Successfully built tsfm_public\n", - "Installing collected packages: tsfm_public\n", - " Attempting uninstall: tsfm_public\n", - " Found existing installation: tsfm_public 0.1.dev241+g879c707.d20240610\n", - " Uninstalling tsfm_public-0.1.dev241+g879c707.d20240610:\n", - " Successfully uninstalled tsfm_public-0.1.dev241+g879c707.d20240610\n", - "Successfully installed tsfm_public-0.2.0\n" - ] - } - ], + "outputs": [], "source": [ "# Install the tsfm library\n", - "! pip install \".[notebooks]\"" + "! pip install \"tsfm_public[notebooks] @ git+ssh://git@github.com/ibm-granite/granite-tsfm.git\"" ] }, { @@ -311,41 +48,24 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "id": "f63ae353-96df-4380-89f6-1e6cebf684fb", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-06-10 11:31:22.081482: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" - ] - } - ], + "outputs": [], "source": [ - "# Standard\n", "import os\n", "import math\n", "import tempfile\n", "import torch\n", "\n", - "# Third Party\n", "from torch.optim import AdamW\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", "import numpy as np\n", "import pandas as pd\n", "\n", - "# First Party\n", - "from tsfm_public.models.tinytimemixer.utils import (\n", - " count_parameters,\n", - " plot_preds,\n", - ")\n", - "\n", - "# Local\n", - "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction\n", - "from tsfm_public.toolkit.callbacks import TrackingCallback" + "from tsfm_public.toolkit.visualization import plot_predictions\n", + "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, TimeSeriesPreprocessor, get_datasets" ] }, { @@ -359,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "id": "a826c4f3-1c6c-4088-b6af-f430f45fd380", "metadata": {}, "outputs": [], @@ -398,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "id": "55baa818", "metadata": {}, "outputs": [ @@ -590,7 +310,7 @@ "[69680 rows x 8 columns]" ] }, - "execution_count": 7, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -603,7 +323,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "id": "a8c4718e", "metadata": {}, "outputs": [ @@ -613,13 +333,13 @@ "" ] }, - "execution_count": 8, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAHACAYAAAD5rKrZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV331f6pzmLQTdmc2a5VWWiUkgSSQhEAiZ3gBE00wmN9LMMjYGAw2YGxs8yJyMkkGi5yMCEIJZWmVd6Vdbd7ZndnJeTrH3x9V99at6urcvTPTcz7Po0c7Mx1qpqurqr/nnnO0fD6fByGEEEIIIYQQQgghhBBCyArHtdQbQAghhBBCCCGEEEIIIYQQ0ggoehBCCCGEEEIIIYQQQgghpCWg6EEIIYQQQgghhBBCCCGEkJaAogchhBBCCCGEEEIIIYQQQloCih6EEEIIIYQQQgghhBBCCGkJKHoQQgghhBBCCCGEEEIIIaQloOhBCCGEEEIIIYQQQgghhJCWgKIHIYQQQgghhBBCCCGEEEJaAs9Sb4CdXC6HkZERtLe3Q9O0pd4cQgghhBBCCCGEEEIIIYQsIfl8HouLi1i/fj1crtJejmUneoyMjGDTpk1LvRmEEEIIIYQQQgghhBBCCFlGDA0NYePGjSVvs+xEj/b2dgD6xnd0dCzx1hBCCCGEEEIIIYQQQgghZClZWFjApk2bpH5QimUneohIq46ODooehBBCCCGEEEIIIYQQQggBgIoqMVhkTgghhBBCCCGEEEIIIYSQloCiByGEEEIIIYQQQgghhBBCWgKKHoQQQgghhBBCCCGEEEIIaQmWXacHIYQQQgghhBBCCCGEELLcyefzyGQyyGazS70pLYHX64Xb7a77cSh6EEIIIYQQQgghhBBCCCFVkEqlMDo6ilgsttSb0jJomoaNGzeira2trseh6EEIIYQQQgghhBBCCCGEVEgul8PRo0fhdruxfv16+Hw+aJq21Ju1osnn85icnMTw8DBOP/30uhwfFD0IIYQQQgghhBBCCCGEkApJpVLI5XLYtGkTQqHQUm9Oy9DX14fBwUGk0+m6RA8WmRNCCCGEEEIIIYQQQgghVeJycbzeSBrlluGrQgghhBBCCCGEEEIIIYSQloCiByGEEEIIIYQQQgghhBBCWgKKHoQQQgghhBBCCCGEEEIIaQkoehBCCCGEEEIIIYQQQgghq4C3ve1teOUrX1nw/TvuuAOapmFubg7XX389urq6HO+vaRp+85vfAAAGBwehaVrBf29+85stP3/88ceb88sUwXNSn40QQgghhBBCCCGEEEIIIS3Drbfeih07dsivg8HgEm4NRQ9CCCGEEEIIIYQQQgghTeahwRl89fZD+Mwrz8Gm7tBSb07DyefziKezJ/15g143NE076c+r0tPTg/7+/iXdBhWKHoQQQgghhBBCCCGEEEKayn/etA8PDc7iB/cP4h9fcvZSb07DiaezOPuf/nTSn3fvp1+AkI9jfpWqOj0++clPFuRzbd++Xf78qquuKvj5e97znoZvNCGEEEIIIYQQQgghhJCVwVQkiYePzQIAdg3PL/HWkN/97ndoa2uz/PeiF72o5sd75jOfaXmsxx57rIFbWz1VS0A7duzArbfeaj6Ax/oQ73rXu/DpT39afh0KtZ5ViRBCCCGEEEIIIYQQQkhl3PbUOPJ5/d9PnphHNpeH27W0kUyNJuh1Y++nX7Akz1stz3nOc/CNb3zD8r2dO3fKAvJq+elPf4qzzjpLfr1p06aaHqdRVC16eDyekvlcoVBoWeV3EUIIIYQQQgghhBBCCFk6/rRnXP47lsri8GQEZ6xrX8Itajyapq2YmKlwOIzTTjvN8r3h4WH5746ODkSjUeRyObhcZljU3NwcAKCzs9Ny302bNhU83lJSVbwVABw8eBDr16/Htm3b8KY3vQnHjx+3/PyGG25Ab28vzjnnHHz0ox9FLBYr+XjJZBILCwuW/wghhBBCCCGEEEIIIYSsfDLZHO45NAUAWNfhBwA8PjS3hFtEynHmmWcik8ng8ccft3z/0UcfBQCcccYZS7BVlVOV9HTJJZfg+uuvx5lnnonR0VF86lOfwhVXXIEnn3wS7e3teOMb34gtW7Zg/fr12L17Nz7ykY9g//79+NWvflX0MT/72c/iU5/6VN2/CCGEEEIIIYQQQgghhJDlRSSZQSqTAwC86JwBXH/fIHYPz+F1Fy9tBBIpzo4dO/D85z8f73jHO/D5z38e27Ztw/79+/HBD34Qr3/967Fhw4aqHm///v2Oz+H1ehu1yRaqEj3UMpPzzjsPl1xyCbZs2YKf/exneOc734l3v/vd8ufnnnsuBgYGcPXVV+Pw4cM49dRTHR/zox/9KK699lr59cLCwpJnfhFCCCGEEEIIIYQQQgipn1gqCwDwujVcvHUNrr9vELuGWGa+3PnpT3+Kf/7nf8Zf//VfY2RkBBs3bsSrXvUqfOITn6j6sf7iL/6i4HtDQ0PYuHFjIza1gLpCxrq6unDGGWfg0KFDjj+/5JJLAACHDh0qKnr4/X74/f56NoMQQgghhBBCCCGEEELIMkSIHkGvG1u6wwCAicXEUm7Squb66693/P5VV12FvGibhz77/9KXvoQvfelLRR9r69atlvtU+/NmUXWnh0okEsHhw4cxMDDg+HOR+VXs54QQQgghhBBCCCGEEEJal7gheoR8HgS8+jg6kc4t5SaRFqcqp8eHP/xhvOxlL8OWLVswMjKCf/7nf4bb7cYb3vAGHD58GD/60Y/w4he/GD09Pdi9ezc+9KEP4corr8R5553XrO0nhBBCCCGEEEIIIYQQskyJpTIAgJDPjYDXDQBIpLNLuUmkxalK9BgeHsYb3vAGTE9Po6+vD5dffjkeeOAB9PX1IZFI4NZbb8UXv/hFRKNRbNq0Ca95zWvw8Y9/vFnbTgghhBBCCCGEEEIIIWQZEzMEjqDPDb/h9Ehmcsjn89A0bSk3jbQoVYkeP/nJT4r+bNOmTbjzzjvr3iBCCCGEEEIIIYQQQgghrYEZb2U6PQBd+FC/JqRR1NXpQQghhBBCCCGEEEIIIYQUQxaZ+zwIeBTRowV6PZaipLuVadTfk6IHIYQQQgghhBBCCCGEkKYgOz28bnjdGlxGolUis3J7PbxeLwAgFost8Za0FqlUCgDgdtfnAKoq3ooQQgghhBBCCCGEEEIIqZSYEm+laRoCXjdiqeyKLjN3u93o6urCxMQEACAUCrGfpE5yuRwmJycRCoXg8dQnW1D0IIQQQgghhBBCCCGEENIUzHgrffW+KXqs7Hir/v5+AJDCB6kfl8uFzZs31y0gUfQghBBCCCGEEEIIIYQQ0hTiIt5KiB4evXFhJTs9AEDTNAwMDGDt2rVIp9NLvTktgc/ng8tVfyMHRQ9CCCGEEEIIIYQQQgghTUEtMgd0pwew8kUPgdvtrruDgjQWFpkTQgghhBBCCCGEEEIIaQpxQ/QIG04PvxA9Mis73oosXyh6EEIIIYQQQgghhBBCCGkKapE5AAS8rRFvRZYvFD0IIYQQQgghhBBCCCGENIVY2hZv5WmteCuy/KDoQQghhBBCCCGEEEIIIaQpFBSZG06PZJrxVqQ5UPQghBBCCCGEEEIIIYQQ0hTMInOj08NweiQzdHqQ5kDRgxBCCCGEEEIIIYQQQkhTEEXmIa+904NOD9IcKHoQQgghhBBCCCGEEEIIaQpmkbnR6eFlpwdpLhQ9CCGEEEIIIYQQQgghhDSFmNHpEZSdHobowXgr0iQoehBCCCGEEEIIIYQQQghpCvG0cHoYnR6MtyJNhqIHIYQQQgghhBBCCCGEkIaTzuaQzuYBmKJHwMN4K9JcKHoQQgghhBBCCCGEEEIIaTiizwNwiLei04M0CYoehBBCCCGEEEIIIYQQQhqO6PNwuzT43PooOiDirdjpQZoERQ9CCCGEEEIIIYQQQgghDUc4PUJeNzRNA2A6PZKMtyJNgqIHIYQQQgghhBBCCKmJfD6P6UhyqTeDELJMiRuih4i2AhSnB+OtSJOg6EEIIYQQQgghhBBCauKLtx7ERZ+5FTfvGVvqTSGELEOE0yPs98jviSLzJOOtSJOg6EEIIYQQQgghhBBCauJLtx0EAHzqxr1LvCWEkOWI6PQIelWnB4vMSXOh6EEIIYQQQgghhBBC6mJdh3+pN4EQsgwR8VYhJd7KL+Ot6PQgzYGiByGEEEIIIYQQQgipmmgyI//d3xlYwi0hhCxXYo6dHobTg/FWpElQ9CCEEEIIIYQQQgghVXNkMir/7XFxxERIq5PL5fHl2w7iZw8PVXyfWLrQ6SE6PRhvRZqFp/xNCCGEEEIIIYQQQkg5crk8fnD/IC7csgbnbexa6s1pOocnI/LfquuDENKa3PDgcVx3ywEAwKl9YVy0pbvsfWLGsSHsM8fQjLcizYYyPCGEEEIIIYQQQkgD+MOTo/jkjXvx8q/ei2Qmi9/vHsVcLLVk2/PE8DweHpxp2uOrokeEogchLc34QgL/+cd98uuP/uoJpDLlnRoLiTQAoCPold8T8VZJOj1Ik6DoQQghhBBCCCGEENIABqfMuKffPHYC7/3Ro3JV9Mkmk83hjd95AG/8zs6mCRIWp0eKogchrcx37zmKxWQGO9Z3oCfsw4HxCG59arzs/Rbi+rGhI2A6PQIefSSdyuaQzeWbs8FkVUPRgxBCCCGEEEIIIaQBtAfMlcxHDAHkqCKEnEwmFpNYTGSQyuQwHUk25TkOT5i/WzTJmBpCWpl7D00BAN595TZcdeZaAJUd30o5PQAgyTJz0gQoehBCCCGEEEIIIYQ0gDa/uZJZCAITC80RHMoxOh+X/xYrrRtJLpe3DDwZb0VI6zIfS2Pv6AIA4LJtPdi4JggAGJ6Nlb3vQtwQPQLOogfLzEkzoOhBCCGEEEIIIYQQ0gDUkJYD44sAgInFxJJsy4k583nFSutGEk9nkcqaw0oWmRPSujw4OIN8HtjWF8bajgA2dYcAAMOz8TL3BBYSRrxV0BSF3S4NXrcGgE4P0hwoehBCCCGEEEIIIYQ0gLQiAhyf0VdAz8bSFZX9NprROdXp0XjRw/47xVJZ5JjNv6w5OL6I5113J27cNQJAHza/9pv34T9u2lfmnmS188CRaQDApdt6AEBxelQgejg4PQAg4NHdHnR6kGZA0YMQQgghhBBCCCGkARQTN6aa1KlRitH55jo9kg6/ayzNFduluGHnMbz3R4+eNBHsocEZvOeHj8gIovf8zyM4OBHB+3/8GADgwFgEDw3O4mcPDZ2U7SErl2Kix4nZeFmx06nTAwD8XiF68LhBGg9FD0IIIYQQQgghhJAGoDo9VCYWT77oMTLX3E4PEUkT9rnh0lNqGHFVhi/eehC/3z2KhwdnTsrz/d3Pd+GmPWN4+VfvBQAcnrSWTseNYXMsxaEzKc3BiQgA4IKNXQCA/o4A3C4NqWwOk2VEXXH8KXB6ePWxNEUP0gwoehBCCCGEEEIIIYQ0gFQR0WNyCUSPZjs9hFvB73UjbBS4s8y8OIl0Vu4HJ+bKRwI1AvF6zERTmHYYTAvRI55mNBkpTj6fl+/3sF93Z3jcLgx0BgAAQzPFy8xTmZzcz9ROD8AsM2e8FWkGFD0IIYQQQgghhBBCGkCx2KKlKDMfnW9up4eIt/J7XGgzRA86PYqjCh2qINVMzuxvl//+iRJhtbbdD8C6wj7BMmliY2Qujpv3jFmi7EQkFVBZr8eiIriK44Qg7NMfqxmiLCEUPQghhBBCCCGEEEIaQNF4q4WT6/RIpLOYiqTk1wuJ5sVb+TwuOj0qQB0Mq4JUM1FX0H/77iPy3/3GCn1V9Igz4orYuPI//4x3//AR/NYovgd0kVOwcU0IAGRnjBPi2NPm98Djto6ht/W1AQAOji82bJsJEVD0IIQQQgghhBBCCGkAxZwe5TLv6yGazBRk4o/ZnAROTo9UJleXSKE6PcLS6cHBeTHUwfDI3Mlxeqj7xVzM3AeyRpSV+nP2ehA7GWM/uffQFADApQEeUeCDypwe4tjTEfAU/Gy74UR6aoyiB2k8FD0IIYQQQgghhBBCGkA669yL0CynRyabw/OuuxOX/8efkVFcJiM2J4FTfMxrv3U/rviP2xFL1SZ8CNHD53Ghzcj5r/WxVgNL4/TQhQx7rJAQ51QnSJxl0kRBPZ6EfPr+4/e4oWmq6CGcHiVED+PY0xH0Fvxs+0AHAGA/RQ/SBCh6EEIIIYQQQgghhDQAe5H5eiNGaLJJnR7T0RRG5hOYiiQxOB2V3x81nARetz6gXIhbxYh8Po89J+YxG0vX7DpIpoXTwy2Hooy3Ko5F9DhpTg/9NXrZ+est3xf7aZzxVqQIE4umUOszjiMBr3WM3GUIGYsl3vfi2NMRcBA9DKfHkclIgVuNkHqh6EEIIYQQQgghhBDSAOzxVmcZK5knF5vj9FCLw/cpq6Wno/rzbe7WV2LbnR6pbE5G19Q6bBSDc7XI/Au3HMRLvnw3ppsY57VSUeOtFpMZR/fNkckIXvCFu/Drx4Yb8pzitX3peQNQFugjLZ0ejLcizozMmSLdotHL4fe4LbfxGv0e6SKxfoDq9CiMt1rb7seakBe5PHBoIlL3NhOiQtGDEEIIIYQQQgghpAHYi8zPXm+IHpEk8nnn6Kt6UJ0VakSM6G/Y0hMGUNjpoa7qrzXWKJlWi8z1YehUJIk9IwvYeXSmpsdsZewRQE5ujz/vn8T+8UX84pHGih4buoJ48bkD8vuOTo80XTrEZETpBZo3jh9+m9NDOMnsxz0Vs9Oj0OmhaRq29+vHyKdGF+rbYEJsUPQghBBCCCGEEEIIaQB2p4cY6KWzeUuRdKOIJMxB9VOjiuhhDBo3GUXD0VQWX7ntIP60ZwyAdVV/rSv8VadH2NYZMUWnh4VEOivdPgNG5Jm9dwUw/272Ivqan9fYH4M+N774+gvwhw9cAcDsY0mqnR6p4oNrsvoYVZwe4nji91jHyD634fQoJXqU6PQAgO0DesTVPvZ6kAZD0YMQQgghhBBCCCGkAdiHf2esa0N7QBcEpqOphj/foiXeylwpPW8ILJuMeCsA+PwtB/DBnzyORDprETpq7XJQOz3afDbRo0lxXisV4fJo83tk5JlweuTzefxo53E8enxW/t0aUXyfzuaQNSLMAh43vG6X3BfFfhq3iF90ehCTUQenR8Bri7eSokdxF5vZ6VEYbwUAp61tAwAMTkUdf05IrTjvcYQQQgghhBBCCCGkKsQK+g9dcwYu3NKF09e1oyfsw2Iig5kmiB6q02N4No6FRBodAS/m4vpz9bb5EfK5pcgRT2dxz8EprOsIyPvVGmskflefg9NjMtL433UlI5wbA50BrO/S//ajhtPjiRPz+Nivn8C2vjC2GCLVYjKDaDJT8HcVJDNZ3HVgClee0VvQsyBQ+zpELJFYqS8cSYlM/TFnpDVROz3mizk9xP5Uh9OjK+gDULoMnZBaoNODEEIIIYQQQgghpAGIFfTb+sK44vQ+AEBPmx8AGlruPRNN4dDEoqXTAwAOGBExIkqrM+QtyNK/ee+YZVV/rbFGYnDuVzo9BIy3siIEhbDfg/VdeuTY0IxebH5wPCK/nlAcMmMLxSOurr93EO/6wcO47uYD8ntHJiNYVMrRxXNqmjmsFivzc3kgk81Zu11YZE4UnJweBUXmbquI5kSpTg8A8tgRpehBGgxFD0IIIYQQQgghhJAGIGJefMqK6O6wvpK5kfFWV3/+Dlxz3V0FOfhfvv0Q5uNpOaTsCnrREbS6BW59asIiltRcZJ5Ri8zZ6VEK8bfye1w4y+h5eXJEjyM7Nq3H+qSzeRyciMj7jBuix0IiXRCb9vjQHADgd7tHkc/nsfPINJ77+Ttx7c92mc+ZNkUpTdMLp9X9Mp3Ny84PoPZuF9KajCqdM6rAqVJZp4cRbxV0di21GccOih6k0VD0IIQQQgghhBBCCGkAYjgohoEA0Numix6Nircam09g1nBy3Hd4CgCwvb8dfo8Ldx2YxId/vkt2enSFfLLXAQDa/R7MRFO499C0/F68xi6HZMbs9AjbOz0oelhICAHC68Z5GzsBAIcnI1hIpDE4HZO3U1fMjy8kMB9L48JP34KXfeUey+MdntTFkRNzcewZWcCXbz8IALhl77jynLqIofYwqKJHKpOzRGAx3ooIEuksphwi6kRMmsDr0cW0kqJHGadHm9H1YXetEVIvFD0IIYQQQgghhBBCGoAY/nndDk6PBgkBO4+agoWIsXrBjn58+60XAwAeODIt8/E7g14cU4bq5xoD94MTpkOk1mG3uvrb/hjT7PSwIJweAY8LPW1+bFwTRD4PPDk8j2MzMcf7jM0nsfPoNDK5PPaNLeLYdBRP/9db8eXbDmJwyrzPzXvGLF/nDJFLCC1BRfTwuDRzm7JZi+jBInMiGJt3jlYLFIm3SmfzyOedy8wXDadHe7F4Kx9FD9IcKHoQQgghhBBCCCGENICUUu4t6A4bnR4Ncno8cMQUPUSMVXvAgws2dwEwh4wA0BHwIKM6PYxV1RMLpgBTa6eHGm91+em9GOgM4IU7+gHoUUkcopskFacHAJy/sQsAsGt4XsZb2RlfSFhiw/79j/swuZjEdbccsBRH//LREzihlE7PxvT9TJSUq04PTdPM8mm706PG/YC0HkemIo7ftzs97HFpTggxQzg67Ih4q0Q6h0w2h3Q2hzd/Zyc++4enqt5uQlQoehBCCCGEEEIIIYQ0gJR0epgr6kW8VaPcD/cfni74Xpvfg46AVw4QAV3g8Lhd+KeXng0AuO5158vV1uOL5krueLreeCsXOgJe3PuR5+Ibb74QAWMwOrVIt4cgaetEOH+T7ri568CkdOvYGV9IWEQJ+/6zqTuIkM9tETwAswBd3Nfew+BXVufHLfFWFKmIzlOjuhOszdbVYy8yV2P8Ug4RV7lc3hQ9/M6ihyrsRZNZ/HnfBO45NIVv3XWkto0nxICiByGEEEIIIYQQQkgDEPFWTkXmjej0GJ2PWzogBGIV9UBnQH6vK6QLHO+4/BQ88vFr8OoLN8pcfXXQHq+xwFrGWxlOApdLg6Zp6G3TnS2T7PWQqEXmAHCe4fS4/0ihgCUYW0ggqrw2T40tWH5+waY1uPZ5ZxTcTxSgi9dVdXoAsDk9WGROCtk3poseF2zqsnzfLqCpMX7pTKHoEVXcXu1FnB4+j0vuk5FURhafE1IvFD0IIYQQQgghhBBCGoBTkXmPjLeqXwTYO7Lg+H2xinqgKyi/1xX0mdtgCBFOg8dah93SveC2jpbEc7HM3ESIC0KAOHdDp2UfUVlvCFcTC0nElJ6DRdsw+NS+MN72zK3Y1he2fH9sXv+7JzLiOZ0H1alMDomUGm9F0YPo7BvVjzMFoodNQHO7NIiaGKcyc+Hy8Li0AsFEpd04fkUSGYv7qFhPCCGVQNGDEEIIIYQQQgghpAGIXHt1BXSPEW81G0vLkulaER0edoSYsd7B6eF0O5Vai8yle8E2VO8zfl+KHiZ2p0fY78FfXXGK/PmmblOsOnu9Hn01vpAoWe58al8bPG4XfvX/PRPfestFeMMzNsv7AWa8VVGnRzYnez+A2vcD0lok0lkcmdJ7Zso5PQBFRHMSPRJmn4emaQU/F4iIq0gyYxHiMnUeL8nqhqIHIYQQQgghhBBCSANwKjJfE9JFgGwuX1S0qJQFpbhcpc2vCxwDnebwvCNYKHqIeCuVRI3DbidXCwAZb8VODxOz08MUIN7/3NPlv599Rp/891kD7dA0feA7NFMYZSY4Y107AKAr5MMLdvSjv0MXvITokTRe12AR0SOeylrKpxlvRQDg0EQE2VweXSEvtvaGLD9zEj18SkeMncUyfR4CIXpEk1anR8ohMouQSqHoQQghhBBCCCGEEFIn+XxeKTI3xy0+jwsdhkhRb8SVyLvf2mONNJKdHl2K08NJ9Ag2Id7KW0T0oNNDkkwX/q2CPjdu+uAV+MvLtuCD15whxYh1HQEZ9zMyn7A8jqYBX37D0/Dxl5yFM/vbLT/r79T/7maRuTVSSyD2zcWEVYBjvBUBzD6P7f3tBcXl9ngrwBTRHOOtEpWJHu2K00M9HlH0IPVQlejxyU9+EpqmWf7bvn27/HkikcB73/te9PT0oK2tDa95zWswPj7e8I0mhBBCCCGEEEIIWU6oK519Hueei+lIZe6HYjFYwumxpce6AlsMFdcrTg/neKvC79Ucb5UudC8AQK8RbzW5SNFDIOKtArb9Ynt/Bz71inPQ2+aXJfS9bX7p0hmziR5r2/14+fnr8VdXbCt4jnWG00Pcx4y3sj6n2DcX7KIH460IgP1jep/H9v6OAsGsZLyVg0Ah4tmKlZgLwn63vH0kae6XSYoepA6qdnrs2LEDo6Oj8r977rlH/uxDH/oQbrzxRvz85z/HnXfeiZGREbz61a9u6AYTQgghhBBCCCGELDfUlc72yKeesC4ETEfLix6HJyO48DO34Mu3HSz4mRhU250eYZ8+NLQ6PXyw4zR8TNS4wl+4WuwCz9Zefdv2jTmXrq9GEtLpUbhSXvDmS7bg/I2duGxbj4whG52PW26zXimqt9MvCtANsUmIGAWr9Y19cyFu7QuJpYr3h5DVg9h/NnQFCwQzuwgCAF6P3tVRstOjwnirSCKDeWW/pNOD1EPVoofH40F/f7/8r7e3FwAwPz+P7373u7juuuvw3Oc+FxdddBG+//3v47777sMDDzzQ8A0nhBBCCCGEEEJWO4cnI3jxl+7G73aPLPWmrHpU0cPrtpb2dpcQPe49NIUXfvEu/OzhIQDAfYenMRdL47anCpMzxKB6XYdfrroOet3wGINs1enR6eD0cOr0WExm8JffexCf/O2e0r+gjWTaWs4tOH9jFwBgcDqG+Vh9HSatgr3I3Il3XbkN//u+y9EZ8soYsimbM0h9fe2sa9dFj5loCslMtni8lTGktvfLJNK5og4jsnoQbrLOoLcqp0faQaCQnR4Oxx0VIcZGkxn5/ACQytJ9RGqnatHj4MGDWL9+PbZt24Y3velNOH78OADgkUceQTqdxjXXXCNvu337dmzevBn3339/0cdLJpNYWFiw/EcIIYQQQgghhJDy3PbUOPaOLuDnDw835fFPzMXx1z98GDuPTDfl8VsJsSrZpUGKEAIhesw4xFvduGsE+8YW8fe/2I0v3noAo3P66n77wBswnR4dQa98zDbFvRH0ubHGEDucOj2cnB6LiQzuPDCJ6+8bLPs7qoiV3XYnwZqwT8Zv7T4xV9VjtipORealcBKnAMgILCe6Ql7puplYSCKRKRJv5bbGW3Uq+4m4D1m9iN6gjqAHXrcLbpcp4FZbZB6ttMjcZzg9UhmLGMd4K1IPVYkel1xyCa6//nrcdNNN+MY3voGjR4/iiiuuwOLiIsbGxuDz+dDV1WW5z7p16zA2Nlb0MT/72c+is7NT/rdp06aafhFCCCGEEEIIIWS1MbGgR5E0qz/hj0+M4k97xqseiK9GnErMBV0hXaCYixcKGWqXwrfuPIIRQ/SYjCSRz1sHiU6iR7ttoHjOhk4AwLa+toLncur0UMk4RNQUQ3R62OOtAOA8w+2xa2iu4sdrZUzRo7IxXIeDYAUAAyXirTRNw0bj50emorLTI2hbrS87PYzhstr9UmupPWkdxH4hhDe1h8ZJtJNOD6d4q4o7Pcx4K4vTg6IHqYPSe52NF73oRfLf5513Hi655BJs2bIFP/vZzxAMFj/wluKjH/0orr32Wvn1wsIChQ9CCCGEEEIIIaQCRP76ZKQ5oodY9Tu+kChzSyIGdE4igHBfzDnEPcWVQXM8ncWu4Xn5eIvJjGXVv4i36gg4Oz0A4KtvvBBj8wmctrZQ9PB5XPB7XEVXUMfSWXQ4iDZOlBrkn7+xEzfuGpG/y2onKUvFa3N6BL1uxNNZnO7wmqqcs6ETR6ai2D00J0Wpgngr6fTIyMcOeF1IpHOWfZGsTlRhFdB7aKIpZ9cQYB7vnDo9Fivs9FDjreYpepAGUZXoYaerqwtnnHEGDh06hOc973lIpVKYm5uzuD3Gx8fR399f9DH8fj/8fn89m0EIIYQQQgghhKxKJhZ1MWI6ksR8LI2b944hkcnh8tN6cUpvuMy9yyOKaCea5CRpJUS8i73EHADWGE6P2Vih08O+uv7oVFT+e2oxaRU9ZCSRRz6mfaDYGfRaIovsdAS9RZ1BsWS2aLSSSj6fL1pkDgDnb+oCQKeHQApEDkNjJ0Snh+CLf3EBXJqGK07vLXm/8zd14beG2CRcQgXxVjanR9DnRsjnQSKdsriOyOpEFVaBSpweRpG5g0ARqTTeSjg97KJHFc4zQuxU3emhEolEcPjwYQwMDOCiiy6C1+vFbbfdJn++f/9+HD9+HJdddlndG0oIIYQQQgghhBArYnidywOfunEP/u4Xu/GJ3zyJv/7hww15fJHJPrlYGLVErJRyeogIoVkHp0c0lSn6mGqvRz6ft0TPSKdHmYGinVJRM7ES26KiOkWcnB7nrO+Epuli2VSTXEgriWKl78WwC0/besN43tnroGlakXvonL9RjzbbNTwnBYxiZdRCQAt43DICi/FWq5tUJif3GyG8qfuPk2hXMt7K2MfsbjQ74hg2uZhEJmeeZ+j0IPVQlejx4Q9/GHfeeScGBwdx33334VWvehXcbjfe8IY3oLOzE+985ztx7bXX4s9//jMeeeQRvP3tb8dll12GSy+9tFnbTwghhBBCCCGErFpUB8adByblv0fnGhNHFTGG4MlMTsbhEGdKdXqsMQSKOSenR1IfMm7rK3TmqIJBNJWFmAdaOj0qcGaoqLe394FUOvS2ih6Fq7+DPjdCYpCe5CC96iJzm1MnVKGwtWN9J9wuDZOLSQwajiH7c8p4K2NFf9DnRtCn32bPyDzFzVXMYsIUZYUQ4VdFj5JF5iU6Pcrsv+K5Thh9RgIWmZN6qGo5wPDwMN7whjdgenoafX19uPzyy/HAAw+gr68PAPCFL3wBLpcLr3nNa5BMJvGCF7wAX//615uy4YQQQgghhBBCyGomkc7KzHQAmI6aA/VYOot8Pl92ZXg5IsrjTy4mSsYmrXbSUvQo/JuLTo9Z4zXK5fJwufTbCafHWQMdODIZtdxPFT1E7IvPrfdyvPz89dg1NIc3PKO6XtQOY9W1x6WhI+jFYtJ8jSsVPdQV2E6/L6A7XqKpLJIZih5ieOvUieBEh21lfNhXmVgS9Llxxrp2PDW6gJH5hONziiG12J8CXhdCxuP/46+fxOGJKP7pZWdX9Hxk5aKeH8S/F5QODo+xn6j7T6ki81TWKpbl83l5fgpXGG+lOtsAOj1IfVQlevzkJz8p+fNAIICvfe1r+NrXvlbXRhFCCCGEEEIIIaQ0xXoZACCb0zsXKl1ZXoyoMhCfWEjitLXtdT1eK2PGWxX+zbuM/o2FRAafvnEvfrvrBH7/gSuwriMghYazBzrw+92jlvtNKa+xjLYKeqBpGrb2hvHdtz296u0U0UlBn7tgIF4qaktFCBl+j6uosKbve2mu1oYuUAJ1OD18lY/vLtjUiadGF+TXQVu8lYhfU+OvXnvRRhyfiWEulsYjx2crfi6yMvn2XUfwtTsO4YfvuAS/fHQYv39iFL9//+VKfJ65vwWUfdZJtPMa+1NaeZ//4P5BfO6m/VJQrTTeyg5FD1IPdXV6EEIIIYQQQgghZGkQJeYq6qr7eAPy+SOK6DHJboaSCKeHz8H5oDpkvnfvUUxFUvjZQ0MATGHp7PUdBfebVFY+q30e9SA6PUJGgbVKpfuMGddUfKwkhuurXfTIZHOyp6CWTg+f2+XYE1OMp21aY/na3ulhj18LeN14y2Vb8X1DQJsqIaaSlc++sQX86x+ewlwsjZv2jOL6+wYxuZjEdbcckD0vquhWzunhFG/1T/+7x+IgqzTeyk7SeMzP/G4v3vydnVI8JKQSKHoQQgghhBBCCCErkImFwuHkqX1tUvhoRClxxOb0IMUpVWTudbsKBn/tAQ+yubwUBbb3my4aEWekxluJ6Jn2OiPGTNHDgzyskTSqs6cUpVwtAjHgX+2rtVPKMNipCNoJUSINACF/dW6tS7f1WL62ix72/VM4Qfra/QB0Bxl7PVqDRDqLv/3ZLtz0pO4gW0ik8ZFfPiF/rro4nhpdkD0vqugm9h9Nc46y83n075V6n5dzeoSL7OPiMb9zz1Hcc2gKv37sRMnHIUSFogchhBBCCCGEELICcXJebO4OySFmI0QPS7yVg7OEmJQqMgeArrBVrGgPeBFT4qTWhHwY6AwAAHZs6ARgEz0comdqQcZbed2I2krG4xWupK7O6bG6V2cn06VL351QV9qHq4i2AoBN3UFs6ArKr+2RRPbXTPxciB6pbA5zsTSq5fZ94/jPm/Yhl8vjhp3H8N/3DVb9GKSx3Lx3HL98dBifvnEvxuYTeOVX78WuoTn584Ty3tw/vqg4PZR4K+N8UizKzuvg9OgKWY91xZwc8udFjml2IeXBozMlH4cQFYoehBBCCCGEEELICkQ4L9Yaw0oA2NoblqWwjYi3UofipTpECJA2inyLiR5rjF4PQSqbk8KU26XB73Hh7AE94uoyY7W+1elRGD1TC2q81WLCOty2iyDFSKbNTo9i0OmhIwQir1uD2+Xcf2KnzeeBmC8XWwVfDE3TcMkp3fLrck4PEXHm97jlsLqWKLt//f1T+Podh3H3oSl84jdP4pM37inYv8jJ5dBEBAAwMp/Ax3/zBI5MRTHQGZDHl4QiyCXSORlt5hRvZd+PBE5F5pvWhCy3KSfc+T1uy3lMkMrkkFHElMfYN0OqgKIHIYQQQgghhBCyAhHOix1KF8SWnhCCPuH0qCyqqBjJTNYSzTNB0aMkpeKtALPMXJBIZ6WTJuRzQ9M0/Nurz8V/veUivPJpGwAAU4tqp0dh9EwtrO3Q3SQ9bT4sJqz7SLzCfUbsF6W6JtjpoVNtiTkAuFyajEOrpsRccPFWRfTwlO706Amb+2Vfmz54riXKTrhDnjwxj1weyOeB+ThFj6Xk8GRE/vvWpyYAAJ96+Q48wxDFEuksVPPGTsNJoR5jxH5bTOB0cnqIDhuBqwKx74uvv6Dge6lsFgnl+DE4HbNELhJSCooehBBCCCGEEELICuPwZAQHxvWB1o71nfL7W7rDCPkaE29lX/VP0aM0ZpF5MaeHVaxIpE2nh1gJva4jgOfv6JdRQ/F0VopXTtEztXD1WWvxiZeejb9/4fYCQSJaaZG5sULcX2T1N2D2fdDpUT4KzAmx2r5cNJATl2xTRA+f9Xnt+2dvm7nCfm2H0esRqT7KTgyj940tyu/ZRTVycjk8EbF8HfC6cMXpfdK1EUlmoNa33HNoCoDV6SF6aIqJdj6j50MVPWqJtHvmab24+++fg3988Vl43cUbAejHDnt5+cODjLgilUHRgxBCCCGEEEIIWUEMzcRwzXV34nEjm/2cDVanR8irD0nrFT0itoHlxAI7PUpRzulhj7dKZhSnhy3CKOxzy1gZEStmdnrU5/Twe9x45+Wn4NS+Nqw3OkQEle4zcpBfRODRn4dOD8AcAFctehivsxAxq+HUvjb888vOxr+8YkfBsNq+f/YqsUJr2/X9oVqnRzqbk6/z/rEF+X2uyl86srk8jk5FLd+78vQ+BJVjSzEnjtobFCjj9BD7k0X0SNf2nt/UHcK7rtyGdYYbLekoejDiilRGfcsDCCGEEEIIIYQQclIZmonJ1bkv2LEOV525Fh947mlYSGSwcU3QMd4qn887ltCWQgws/R4XkpkcFhIZJNLZotnuqxH172oWmTv/ne3lvk5OD4GmaejvCGBwOobR+QS29IQxHdWjruotMlf5zl8+Hf/v5v3oCnrxq8dOVBFvZQzyveXjrVKrvcjcEAOqfd8IR0+4BqcHALz9Wac4ft8eb9XbpsRbGQJIta6uqCJuHJ40B+3s9Gg+uVzeMT5qZC6OZCYHn9uFPPJIZ/N4/o5+AOa+WKyw3trpYYgeRd7rYn9SxU1xLNzaE8J7n3Natb+SpQ/ILnrMxVNOdyGkADo9CCGEEEIIIYSQFUTSGCids6ED33rLxQh43bj2+Wfiky/fAU3T5MrweDqL49MxvOJr9+Lq6+4sGB6VI2oMwPs7AxAztQVm9Es++JPH8OzP3SHFpbKdHkG76JGVf2On1fwDnUEAwOh8HDPRlIyeOXdjV0O2HwDOXt+B773t6bho6xoANcRbVVJknl3lTo90+f4TJ4TTo9oi83LYXzNLvJUhekxWKXqojo6s0ufAeKvm8oVbDuDCz9yCQZujAwAOGX0ep/SG8e4rt+GZp/bghecI0aPQ6eFRhBPVTSaLzIvEW5mdHubrnjTONd9729Px2os3Vf17+Syih/X4sdrj8kjlUPQghBBCCCGEEEJWEHK4XiRaSDg9jk5F8fKv3YNdQ3M4MhnF4HThYKwUIt6qze+RvQKLjKuR3L5vAsdnYjhirGxPS6dHkXirsD3eKoeY0ZvitJp/oEuPeBmZS+CnDw0hlcnhnA0dOH9jZ8Ft60U4TeIVih6VFJnLeKsao25aBVlkXrXTwxA9aigyL4X6mrX7PRYHiun0sEbZTUWSePlX78EPHzjm+Jj2/h8BRY/m8qc9Y5iLpaUgqiL6PE5dG8bfvWA7fvSuS+VxXAgYczHdNdEV8uL8TV3yvmpvUFmnh4i3yqidHrUJfQJxbktmC50eqrhCSCkoehBCCCGEEEIIISuIco4C4Rr4wxOjlviS2Wh1Lg2xervN70G7sfKXQ0ydfD4vXRGis6FckXmXvdOjjNNjveH0ODEXxw079WHzWy/bWnVMWSUIoSxaYbyV2Jfa/cX7RUSXxKp3etRYZC7ErbPXd5S5ZXWoolxPm3WfLBZvdd/haewenscvHh5yfMxI0vnYojpAJhYTeM8PH8FdByZr2m5SyLjRs3R8JlbwMxEzdlpfW8HP/DanR8DjxmXbeuTPVafHWQMdcGnA2QPO+6G9yDyfzyv7fG0uJZ84dtDpQeqAnR6EEEIIIYQQQsgKwhQ9nAdKIWNluH1wOV9lFnrUInoYTg9m9APQB9kixkc4GcqJUdt6w9A0yD6WRCZbtNMDANZ36aLH3QcnMTwbR8jnxsvPX9/Q30NQrdNjeFYfsm5cEyx6Gx+LzAGYoli1nR5vuWwrXnLeenTbHEL1ou6farQVYBaZ2+OthCOgWNF9pKjTwzxefOGWg7hpzxhu2jOGwX9/SfUbTiwkM1nMGqK2iLc6MRfHd+4+grc/8xQMGULIlp5wwX2F00MkkQW8Lly6rQdf/fMhAFbR44JNXXjk488r6CQSCBFNiJuqyFmq86cUvhKdHqv9eEIqh6IHIYQQQgghhBCygkiVcRQEjeFq3pYCMluktLYY0ukRMOOtInR6ALAWN4shXMqIXSkWb7WpO4SbP3glbt83gc/+cR+S6ZzsAwk59DaIeKuhmTgAfaV1s0rkq3V6DM/q27Sxu7jooZYRr2ZqdXoAaLjgAViPGwWiR4f+9WIig0Q6K/c34ewpKnoUOS6o35+NsoC6kUwsmMLUsWld4PjePUfx/XsHoUHDVET/uXhNVexRawGvGxdu6ZJfd9scQPZoPhWf7X2uihK17PP2x0xkrPvcaneOkcqh6EEIIYQQQgghhKwgUmWGqE5RSQAwG6tu6ChEj7DF6UHRA7AOf8VK5HJODwA4fV079o4u6PfLZGUXQql4K8H2gfb6NroEoiy7YqfHnHB6hIreRubyZyp7zFZFdnrUOABuND6PGY/W224dZusdHy4k0jmMLySkS2BWOj2c3//RIl0/6vFCRGcB+j5Ra/QR0RlbMHtXjs1Ekc/nsXdEP7aMzsel6NETLhQ9AjYHht/rRsjnwY3vuxyJTFaK3JVgFplbHW9AcWG+HD7FPWI/JqVXuYhKKmd5HHEJIYQQQgghhNRELJXBwfHFpd4MchKptNPD/vVclU6PqFOnB4vMAVgdEWJlc7kic4EY9iZUp4dDvJVwegjO7G9st4NKyKs/f7FCapVMNofROX3guqmU6MF4KwCou9+g0fjc5nbYnR6apmGDEat2wnDzAJXEWxURPZIZHJ2KYiGRlm4iwHQvkdoZmzdFD12kSmLfmBA9EpgxnDV2YQsojFoLGO/Vczd24ulbu6vaDp8UPYy4P0WUr7V/SMRiJTNZJIzHEw9FpwepFIoehBBCCCGEELKC+btf7MbzvnAXdg/PLfWmkJNE2Xgr2wD9lF5jtXaV8TJqkXkbOz0sqCvbxUp+4WgQxb7FUAd6UdnpUTgQ7wh4LSuuz+pvntNDDKTj6SxyuXzJ244vJpHJ5eF1a1jbXriKXOCn6AHA7Hyxr65fKkp1egCme2dYET1ENJ7aZaNSTPTYP7aIa667E+/4/kMWl8ix6WhtG08k44rTAwAeGpyRr9PB8UXk8rpQ0B2qQPSoIzbP7vRIGsfDUo63cvjdZryVeLx241i42uPySOUsjyMuIYQQQgghhJCaODCmuzyOTnGItFpIVun0kKJH1Z0exkBeibdip4eO6ogQr4cof+5xGCSrBFSnR1J0ejjHyaxX3B5nNFH0CCudIvF0abfHsFGQvKErCJeruMDjM37P1T6kFGLYcnF6eBVRrsehq0GU0w8ZZfWA6fQAnCOuisVbHZ+JIZvL48hUFDHlPTM4HXO8Pakcu+jxpz1j8t9CTO0O+eBxEMcDtnNHPYKc2J+EGN8IZ5NTkXlHUHcbpun0IBVC0YMQQgghhBBCVjAia51dC6uHcvFWQZvosc0QPebjVTo9DFdHu98jV9lyP9NRB79iKDdqxM0MdAYc7yMQA8ZEWnV6OIseA0avx8Y1QXQYEWPNIKAMKItFGAlkiXmJaCuATg+BHAIvQ6eHGCSrODk95uKmYOq0f9hj7+ypRpFkxhIJd5xOj7oZM4rM3YbwqIoeAicnD9Bgp4fH5vQo0zlVCVbRQ3+8TmNfXe0iKqmc5XHEJYQQQgghhBBSNblcXq7eL7bSthSLiTRe/fV78c07Dzd600gTKdvpYRtgba3R6RG1OD1EpwfjrQDTBQPoQ75MNidXXq/vCha7GwBzBXQyo3R6+J2HjsLpsb2JfR4A4HJp0iFUrszcFD1K/57m4JJF5sDyKTJXO2echDTxug4rTg81Gs9J9FD7fwBgfad130hlcpbjD50e9SOON+ds6ARgdmqoOPV5AE6dHnW4MpQoKsCMt6pH5JPHjqzp9BBuw9UuopLKWR5HXEIIIYQQQgghVbOYyMh89WKZ6qV4aHAGjx6fw492Hm/0ppEm8J837cN1N+9HKiu6I5w/0odtUUlC9FAjaipB7FNhv1sOnOj00IlZisyzmFhMIpfXo176ysVbKU4PEflTzOlx8Ra9VPjZZ/Q2YrNLIkSPqEN8kYoYhpcTPej00BG/fz2r6RuJ3+PC2nY/PC4Np69rK/i5KXro4lYmm8OC8r53EtjF9y4/Td9Pr3TYX0X8G6DHXpH6EKLHK85fX/Q2xZwebpdmiTlrhEAhRBcRc1VXvJXbPHaIuD0h0LHInFSK81mVEEIIIYQQQsiyZ0YZYtciekwY8RjVFlyTk8+JuTi+fofuyHm5MeSqJN4q4HXJuKW5WBr5fB6aPXumCGL43eb3yFW8FD101E6PRDqH0Xl9QLyuI1Cy5wIwh9/JdE6umrf3sAhec9FGPPvMPsfuhUYT8nkApBoWb6VG1KxmGhH300g0TcNdf/8cZHN5RyFGvK5jCwmkMjksJqzuLqfOF3FceMl5A/jXV50Dr8eFHz84ZLmN2kFxfCaGv//FLnzg6tPL7kekkHw+jzEjTu+as9ZhfVcQH/rp48jm8tjYHcSRST0+rJjoAejujnRWf90aUmQunR6lnYiV4BRvxU4PUi0UPQghhBBCCCFkhTKjiBW1xFtNGCtvF5MZpDK5uoYUpLmoA8MFYwhZbIiqDtDXhHxYE9IH5plcHovJTMXdEGq8lVjFW4u41oqo77dkJosTc0a0VWdp9wNgvm6pbE5x0xQfz5QaXDYSsd84FVWrHJmKAAA2dZfr9GCROQApGhQTtpaCUkPu3jYfAl6XFPPssUmOTg9FIO1p8yOXK4xaUsW0bC6Pnz08jHg6h6+84Wm1/hqrlvl4Woppazv82NzTjws3X4WFRAZfvPVARaKH3+uWXSz2YvNqKF5k3qB4q4w13mq1H09I5fCKlhBCCCGEEEJWKKpDo5ZhtBo3Um30ETm5TCiix7xRKly808McoHeFfAh43TJSaS5aeSeH7JvwqfFW7PQArBFQiXQOo3O6+2Ggq3SJOWAdOEvRYxkMxE3Ro7jTY2w+gfGFJFwacNZAe8nH8zHeCoAZ5bRphTgaNE2zlJnbzw1OnS9CIG0zjhMulyb7Pex8/rXn40PXnAEAuOnJUUwsJhxvR4ojFix0Br3yeLK2I4DT1rZhbbt5DOppK+4QCyiRVv46nB4iisosMq+/w0YIpvk8EDFcRDLeapUfT0jlUPQghBBCCCGEkBWKNd6q+rJgddg0Q9FjWTMypzg9hOhRpNMjaHF6eI3/68Ov2Qpf51wur0QveaToEWG8FQC70yOHUSNqZqAKp4eKiG5ZSkJGr0gpp8eu4TkAwBnr2uXti+FnvBWyuTyGDNFjc8/KED0As9djaCZmKSAHnEUxEW+ldtOIY4adZ5zSjb+55nRcuLkL6WweP7HFYJHyTEV00aPXQdRY22G6O0r1C6niaz3xVkLczOX1/d10etT+mOoxUjgbO41jZCaXd3QSEWKHogchhBBCCCGErFAsTo8qVuDHU1lZviyYYa/HskZ0RgCQpcLFnB4+jwseo1dCiB1dxv/n4pXtJ2puv15krg+coqksshw4IZpSOz2yGDGcHusrcHp43ObrAwBBr3tZlFwLsSyeKi5S7BqaAwCcv7Gr7OOZRebVC7KtwsicHg/lc7sqEsSWC0L0+MlDQzg8GbH8zEkUEyKg6u4o5vQQjqK3XrYVAPCLR4br3t7Vhjhf9ziIGmvbze+V7PRQnB6BOorMvYr4nsrkpMhZVzm68pjC2aiKaCwzJ5XATg9CCCGEEEIIWaGo7oxohU6PZCaLqz9/B4I+tywIBYDZKmKPyMlnZL7Q6eEt4vQA9AH2YiKDTsPp0WWskq00xkys5tY0vfDW4zKfK6I87molZnN6CAGykk4PQF9ZLaKt1iyTv2XQEF6ciqoFu4fnAQDnb+oq+3hOReb5fB6aVrrovZU4Nm1EW3UH4S5TcL+c+Iunb8ZvHhvB40NzeNwQugR2p0cmm5P7TFugvNND9Nc845RuAHpk2mrbL+plOmKIHuFCp0efKnq0l4i3UpwYgTpcGRbRI5trSLyVy6XB49KQyeWxEDfirRQ3XCqbWxZCMVne0OlBCCGEEEIIISuUWjo9Dk9EMTKfwOHJKE7Mme4Bxlstb0aV10rEh5QqnherqWW8VVj//2yFjh7Z5+F1w+XS4PO45BDrWf9xOz7xmyer/A1aC1VkTCpOj0o6PQDrymrhwllqhOiRKCJ65HJ5GW913sbOso8n4m3E/vr1Ow7h6f96Gwanog3Y2pXBsRn9d93SE17iLamOczZ04jfvfRY6HISLqE30UL8O+81BdFugUMxzaeYwXAyx9UE5V+5Xw7R0ejjEW6mdHuFSReaq06Me0cMUq9LZHJLp+ovMAfP8JuKtLE4P7i+kAih6EEIIIYQQQsgKZUZxZ1QqehyyRZUIKh2Gk5PLdTfvx+u+dT8OThS+bqVFD31AZI+3sufzF0MM9UP+wpXbkWQGP39kaFXnqqtF5vPxtBxCVur0UPPuhSC11JjxVs6ixwNHp7GYyMDvceHM/tIl5oC5f2ZyeWRzedy6dxxTkSQePjbbuI1e5ginx5YV1OchOG1tG1538aaC78dt8VYi2srr1iz7tZPTI+zzSEdH2OeW7peFCmP3iM600enR7SBqbO0NYVtvGFec3lvyHGFxetQRRaVpmhQ+0oqAVU+nB1DoFAt63ZbnIaQcFD0IIYQQQgghZIUyEzU7OaLJDPL58kPoww7Dc/2xKHosR758+yE8eHRGFgWr+EvFWxkrd4XYIbLd1R6XUginR9inDjHN4XwincOI0jOy2lAjfoTLw+vW0FVhVJV/GTo9AiXire4+OIm3ff8hAMCVZ/SVjFYTqCu9U5mc3IcXq+gfWukIV8vWFeb0ELz50i0F37M7PSIOfR4AcN4G3Q105jpTIAspThBN06STZJ6iR1WI87VTkbnf48Yt1z4bP3jHM0o+RqOKzAEz4iqdyTck3gqw9noAuigrnodOD1IJFD0IIYQQQgghZAXxy0eGcf29RwFYV+1ncvmKIkLspbSCWcZbrThKreLd2quvLD99bRsAs5h4eDZW0WOLwaZwjACFK7cPFRHQVgOqs0oUy3cEvBX3EqirrFdCp8f19w4ilcnhqjP7cN3rzq/o8Xw20UPE1IiM/tWAcHpsXoFODwDY2hvGxVvWAACed/Y6AIVOIPFeCNtEj3dfuQ2PfPwavOrCDfJ7YZ/1NiLiamIxic/+4Sk8cmymsb9AiyKcZd0OnR4A4HZpZY9F/gYVmQOKK8Pi9GjMYwoCHrf83qPHZ/Fvf3hqVQmopHooehBCCCGEEELICiGRzuJvf74Ln7xxLyYWEgXujEgyg9loCt+752hR58bhSec8/dG5BL5/71FLzwdZ3pQSPf7z/5yP33/gclk4LUSPE7OVvb6iqDukOD3sbpNi+9JqIOYQJ1esuNkJdeC4Zpk4PYI+fZsSDvFW4rjwtmdutTh+SuFxaRDd3clMdtU5PfL5vOz0WKlODwD4n7+6BH/4wBW46sw+AGaclWA+JjoXrPuFpmnoafNbHCBBn9VR0GHc5zePncC37jqC//jj/oZvfytixlvVfuxQ3R31RlEJgSOeykoXhr9O94hdNAl43dL9cd0tB/Bfdx3BH58Yq+s5SGtD0YMQQgghhBBCVghDM+Yq/bl4uiASJJrM4Gt/PoRP/24v/vu+wYL753J5HLE5PUS8yIODM/jUjXvxNz9+rPEbTmqm1ArcUqJHm9+DHevNsulNa/SV5sNz8Yq6OKTTQxlYHrUVUBdzDbU6uVy+IOIHKBz6lkJ1enQGl7/TQ0R4re+qrLME0IfeYh+NpbIyEswpqq0VmYmmkDBKnTdU8XdbbgS8bpy9vkMKoPb9Y9jYN4r9jqoYWOj00L8+YLjGhEhESmPGWxUvKi9Hozo9ALNbZCqabKDTwyqaBLwuGW81acQ0ji8k6noO0tpQ9CCEEEIIIYSQFcLgtCl6CAFE08xc78VEBvccmgLgnJF+Yi6OZCYHn9slV4hu7++w3GY1lQyvBDLZ4gKFPfO8FP2dAbg0PWZoKlK+18Op0+OMdW2W2xTrh2lVhmZimImmHEUBwBzgVkJgGTo9inV6RJMZGeE10Bmo6jHFCvJppX9oYZU4PYTIE/C6SgqUK4WgV9+/7U4PEZkn3GR2VKeH2ukBmE4P0X0yvpCUnRDEmUw2J6Mt63N6mPtkvU4PcQ0ytWi+fvXu8wXxVl63FFKEmDjNLjJSgpV/1CWEEEIIIYSQVcKxaXMV7HFD9OgIeGUu+vBsHPvGFgHAsd9DrMzf2hvC2QO62LF9oN1ym5CvvuEHaRz5fB4Zw5XxygvW44rTey0/r2ao5HW7MNCpDyWHKoi4ijl0enzlDRfiTZdsxnfeejGA1RVvdXw6hiv+88947TfvQzTl7FRo91fu2FCHjGvCy8TpIVby21wso0ZhfbvfU5WbBTD30amIOZxcLU6PRFqIHq1xTA0bgkXMtn8MG8eTYqKH2vVR4PQw9idVpB+Z4+r9UgjBQ9PqE0wbWWTeZzhOpqMpJNONcXrY7+/3FIqHFD1IKSh6EEIIIYQQQsgK4Zji9BCix5qQV66kvX3fuPx5OuskeuhD6lP72vDuK7fhOWf24U2XbLHcppr4GtJc0orL49OvPAdnr7e6cqpdSVtNmXlMlhObw7Az+9vxr686F5ee2gMAmIoki3bHtBo/uH8QgP4eiiadV6JX0+mhrrLuWiZODxFvlbA5PcQQupZjg1+KHqbTY7V0eojV6IE6V9EvF4QgXlz0cC5rtzg97J0eDu4oNcZxNZPPO7v8xDF3TcgHt6t0WXkpAg0sMu9tN+KtFtV4q/r2+y3d5v4U8LqgaZqMtxLMRMu7FsnqhaIHIYQQQgghhKwQBhWnhxgMdYZ8cvXs7fsm5M+dRA8xIFjXEcCVZ/Th+29/RkFkUWSVrMJeCaivoc/tkkNpgd9d3VBJDCWHK3B6RB2cHoI2vwf9HXrM0cWfuQXfuftIVduxErl9v/neEvE+HTaRo6pOD+W1XC7xVsU6PYTTY6CrumgrQHF6LK5Cp0fGjLdqBcSxwC56nCgTb2Xp9PA7Oz1UKjk+tTq/fGQYF/7LLXjk2EzBz0SJeU8d0VZAY50eMt4qYsZb1ev0OH9Tl/y32L4Cp0dkdYjupDZa48hLCCGEEEIIISuUuVgKr/zavfjuPUfL3vaYpdNDHwx1Bb1oM4ZKaoRMyiHeSqxQV1fva5p1pehqWYW9ElBFD6/bVTCYqt3pUUm8VWGnh8qLzu0HAOTywI27R6vajpXGXCyFI0qUV8QQPex5+tV0eriUFdprQssj3ipQpKhaOD1EPFo1iN4Z1emxWjo9Wi3eShaZK/Fu8VRWnnc21eT0cBI96PT425/vwmwsjb/674cLfiYinerp8wBMB5LbVeigqBZRqD4VSclrD3+dYt/5G7vkv4WAYu+xYrwVKQVFD0IIIYQQQghZQn7+8DAeH5rDv/xub8nbpbM5nJgzh9VDxmCoS4m3st/eTkRGFllv/7yz18l/R1NZZHPFy7PJySNlvIYuTR9MBWwiRzPjrYRAFnLYtwDgn1+2A79937MA6IXmxaJYWgHVQQWY/QNtAY9lCFeN00ONkKq2J6NZSKdHynrsEE6P9VWWmAOA33hMq+ixSpweotugRUQP0fkSS2fl+/3EnH4safd7iop+baWcHg73odPDRPR3qIh4q562+kQPIUrYzyu1YIoeZryVr0onop0z+82+sYlF/fhhP+fNRlPI8XqFFIGiByGEEEIIIYQsIQFl5asYhN6w8xh++tBxy+1OzMYtYoSIGOkMei3ODYFTkbmI5bGLJF9/04V48B+vll/vGp7DZ363F5OLzMteSkSnh1iFG1T2FbdLqzrPXcRbnWiA0wPQh1Jul4ZIMiOHUq3I7uF5y9cLhugR8nosq5mr6fRQy8LryeVvJOU6PQZq6fRwcHqkMjkZgdPKiN+xEUPl5YCIUcznTUFnyDiWbFgTLHANCvwetxQH7RF9zvFWdHqUwoy38tf1OMKB1AgnkpPoUa/TQxU4hKZud6RkcvlV4xwj1dMaR15CCCGEEEIIWaG0KYLFkckooskMPvGbJ/GxXz9pGT6qfR4qXUEv2vzm4Ehka5d0eth6GrxuF9a2B2T2/Ku/fh++c89RfOzXT9T4W5FGkJYrZo0Vucpwyh7zUQnrjU6GsYVE2dsKp0ewhOjh97ix2SibfXxoDj984FhLxqMJkUMgxEOfx2Up63Ua4BbDHiG1HAgq8Vaqc2ekLqeHvp/as/dXQ69Hyzk9lN8jaoii5UrMBcLtYRfoneOt6PQoxWSkMU6Pxooe+rbMRFNSMK+30wMANtiEVqfHZMQVKQZFD0IIIYQQQghZQtTujcOTEUSSGeTyQDaXlzE6AHB8xnn1a2fIZxFOrji9D4DpElCJFom3Ethjdp6wrXAnjWMqksQd+ydKxkIJ4crrcRA9ahgoifs79b3YMZ0epd0Lp/aFAQB//cNH8InfPInP33yg6u1a7tjjmETJu9etWUqq7cXmpYinlp/oIfaPbC4vjx/5fB6jdTg9hDg3GbE6gexCUisiOz1axOnhcmlKBJr+uw2XKTEXCHdhyFe8yFwc0yYWkwVuo9WG6hobnY/jnoNT8lwh4uYGahAhVUSXUFcDOoW6wz5omt7xNL6gv9dVQbhWXnPRRgCm49DpvMcyc1KM1jjyEkIIIYQQQsgKJWkTPdRhqLpqXqx+XddhjbTQnR7mgOTy03oBOA+2RSSWUxwWUDi0LXY7Uj+v/9b9eNv3H8IvHhm2fP/EXFzGl4hOD69bj42pV/QQ0SCZXL5oDnomm8O+sQU52A+V2QdOXdtm+fqWveNVb9dyx+5eEYKQ1+2yrDyupptjW19b+RudZNSV/MKJMhVJyX/XMmQVTg+7s2N1OD1aq8gcMAXz2Zg+aB6c0h2I5UQPMVi3OzvUTo9TesKy6HyoiMi/WlgTMl0cl332drz5uzux8+gMAJgiZGf1IqTKuRs68amX78BnXnlOXY8DAB63y7LNQGOcHu9/7mn46Iu245f/95kAzHOhyky0daMVSX1Q9CCEEEIIIYSQJSSZVkWPqCX2Rl1hLlbUnjXQYbl/V8grh61nrmtHvzGYrKbIXGAf2joVpJPGcHhSHxb+6EGzuyWSzOD5192JV339PgAOnR51xlupA6N0ztnt8b4fPYYXfvFuHJqIAKjE6WEd3p++bvkN8+vFPqAX0V/2eKtqOj0+8sIz8ZZLt+DXxjBvOeB1mz0xYmD/8KA+aN3e317T8L7YfroaRA8haAfq7DZYTpw1oJdLP3psFvl8Hg8PzgIALtjUVfJ+f/v8M/G2Z27FZdt6LN9XnR49bT55fntyZHW7DJ32mceOzwEARuaMuLkanFcqmqbhL5+5FU/bvKauxxH02uK26u30APRz318/+1Rs79f3C0enB+OtSBFa58hLCCGEEEIIISsQtdD38EREujEAawSMcHo4iR5XntGHa85aiw8973Q5IHdyehQrMhfYh7bFxBHSOMSqXUAvGI+msjg+E0MinZXCldnpYX6Er2UVrVoC6xR/9qc9Y7hpz5jle+XcPnbRoxVji+xFubLTw+2yxls59BMUoyvkw7+88pyGDRwbgaYVxhfdf2QaAHCpbVhdKcUiblZD+XArOj3EfvDAkRkcnIhgOppCwOvCeRu7St7v2Wf04ZMv31EwtA753FJo6w77cN7GTgDArqHVLXo4nb87g14sJtJYNI4/oqNpuSDKzAW1CPPl8LkL30uMtyLFoOhBCCGEEEIIIUuIOtw4MhWR0TmAdTW0iPs42yZ6dAa96Gv34zt/+XS88JwBuZo/5eD0ECvUi4kZ9iJme/46aTxqqfiMsmJ1IZ6WReaOTo8aRA91CJW2DdUy2Rw++ds9Bfcptw+ITg9BK666tbsSYrLTo3anx3JFDOiF4+wBKXp01/R49v3UmG+3ZOG9nZYWPY5O495DUwCAi7d013Q8AnShTcQq9oR90jGya3iu7m1dySQdRI9IMo3Ref180Rn0Lrvzs1308Ddhv/d6nOKtWu+cQxoDRQ9CCCGEEEIIWULU4UYincNhI1YIMIetkWQGszF9SGh3enQGrZESYvhkXymayuSkENJWZFii5qsDQK5EyTZpPCInHwDm4mn5enka1OnhcmnwGFNne/zZ6HxCDtRUysVbdYV8uOrMPim2zbTYqtt8Pi8H9OJ3FMKkz2M6PQJel8VJs1IJ+vTfIZ7OYiqSxIFx/Xj0jFNqc3r023pA+jv0r1dDvFXCiC5slSJzADhvYydCPjfmYmn84P5jAGoXxATCIdXT5peOkT0jC45uh9WC0+++EM/IaKt6S8ybQYHo0YT93u9wjG1FoZ00htY58hJCCCGEEELICsS+onNw2ixwFcPWE0a0VWfQWxBp0WmL1BGr+e1DbRHJAxQvp7Z3eqil6qSxiMJewIw4U1eszsXSBZ0eakZ6rdEh4rHs+93Eoi549LVbB1dBX/nVute//Rl46B+vAQAsJjOWyLaVTjSVheh87w775PcAq9PD7pJaqQg3USKVxc4jZp+H+N2rxT4Q32AUXi+sCtFD30+aseJ9qfC6Xbh4q/6aHjVKzC87tTZBTCDeO91hH7b2hNAR8CCVyeHA+GJ9G7uCcXJ6LCRMp0e9fR7N4ILNXfLf2/rCUmBvJKrYL2LRpiMsMifOUPQghBBCCCGEkCXEPiCeVD7Ai9x7UWK+cU0QQa9bDhPCPnfBin/xtb2zIaqsTi+2Ir3dFnullqqTxqJGIQ3N6KLWrCJ6zMfTBZ0e9cZbAaZbwS6KTS7q+92mNUGEfdU/T0fAK/fLVoobEcKj26XJ4awQEL0eTTo9WiHaCjD3sXg6i6dGFwAAF26pvXfk3A1dlv12gzGs/fnDQ/j2XUfq2NLlT0IWmbeO6AEAV29fK//d2+bDuRu66nq8bUZE3hnr2qFpGs43Iq4eH5qr63FXMk7C8UI8vaydHi8/fz3u/Lur8Lv3X47fv/8KaFrjRQ/12kW4xuZbsEeKNIbWOCsTQgghhBBCyAolmbYOn6cWTdFDRMCIEvONa4LQNA3tAQ9mY2l0hQpXXxcrMhd9HsVKzIHCIuYERY+mkVFEqWPTUZy2tg0zarxVLCUFB5FjXm+8lXo/uyg2Yex3a9sDiKWy2DdW3Sprl0vDmrAPk4tJTEdSGOhcfiuRa0G8BzsCHvneEp0ePsXpYXdJrVTUTo8pQ4AVw8Va8HlcOHdDJx4c1F0jYoX66HwC//qHp3DN2etwSm+41EOsWMxOj9Zab/zmS7fg9LVtiCQz2LGhs+ZjkeDfXnUu3nXFNuxYr0c3nr+xC3cfnMLu4TkAW+rf4BVGLpcvOD4DujtqZG75Oj0AYEtPc9/L6r62JuzFibn4qo5BI6VprSMvIYQQQgghhKww7DEWUxEn0UM4PUIAzAGrXaQAFNEjm0Ne6eSIGKvTw0WirfTHtQoiFD2ah1o0LyLN7E6PlK3I3Ot2STdFvfFWdqfHxIK+3/W1+7G5O1TTY/cYEUitlLEunB7tAS+8xsBNOD18brPTw+m9uBIRcWbxlCl62LP6q+Xs9WYP0TqbgDITbd1oGil6eFrL6eF2aXjmab14/o5+6dyph7Dfg3M2dEpnwHkbOwEAu4bm637slUgq6zzEX4inMTqvL4Cwx1yuFiyih7Hoo9jfixCKHoQQQgghhBCyhNhFj0mL00PEW5lOD8AUJ7ocBq3qUEBdLSoGtaWKqQs6PSh6NA1VdDg2rWfjz8TMmA6nTg/AXIlfe7yVKYqpTEqnhx+XbKsto7+nTR9CtdIgeyGuv2/aAx74ZJG50enhccm+hlaLt0qks5g0Sul722rr8xA867Re+e81tm6QVi40T7ZovFWzucCItzo4sWjpolotqO7Pj7/kLFz7vDMA6EK46PRoFSddtajnQil60OlBikDRgxBCCCGEEEKWEJHdLYbYasGvGLiaooe+Al90C3SFHEQPtyp6mMMAMTwqFW9lH9yyyLzxiJ6WtCXeqtDpMRdPIZOzdnoAjRA9jE6PIkXmazv8eOtlW/D2Z23Fd956cVWP3RPWHQHTkdZxeojXqyPglQM30Y/jdbukSNBqRebxdFZG7fW21+f0uOastfjAc0/D5197Pp5/9jr85WVmZFErih7ZXB6xVAbJFo23ajZrOwLo7wgglweePLH63B7JrL7faBrwzstPwXONDpV5pdNj/SoVPfwWp4d+zHUqfScEYKcHIYQQQgghhCwp4gN7T9gnV3EKxMB1OmJGDwGK08NJ9PAUET0MASNUqtPDNrhNcJjQUL53z1F8+nd78aW/uADZnCl6CJeFWgA+F1PjrcxCWDFA9dfc6aEPte1OD7XTw+t24Z9ftqPqx+5uyXgr0+kh3qsiNc7nceFl5w9g9/AcXnfxxqXaxIYSMOKtYkq8VV+d8VaapuHa558pv/7UK87BibkEbn1qvCVFj7/83oN44sQ8Qsbf0t9i8VYng/M3dWJsTwK7h+drdp6tVITTw+9xQdM0eV6ejCTlsWddZ33vyZWKugCgk04PUgbKzYQQQgghhBCyhIhB6hqHUnIxEJyLp43b6MMPEUPVGSy8j9ulwah9sAwDTKdH5Z0eqUzOMpwn9fHp3+0FAPzT/+6xfF+IHbMxa6dHyXirGjs9RERTQafHolVYqwURgzQdaZ14K1P08FrEJ0D/W562th3ff/sz8LTNa5Zi8xqOcHpMRZLy2FRvp4cTHcaxJpJMl7nlyuPxoTlLFBGdHtVz3sYuAMDjw3NLuh1LgRCkhVjWacRYCsGjt82/aoU0a7yV/neh6EGKwSMvIYQQQgghhCwhIgKlxyE3fyGRRjKTlR0CXYYwcvnpPQh63bh0W7fjYwq3h7qaP1JBp4dTRA/LzBuDWiq/3lb+Ox1NIpE2X2dAiB6G00NxdQQb1emRMbcnm8tLoWJtHaJHtxFvNdNCTo8FWWTusQzcABR83QqI/WtoRo/RCfvcsty8kbQZokerOT3y+byMPxOw06N6RK/HrqG5Jd2OpUA4PcQxvs22GGG1lpgDxYvM1fMrIYLWO0MTQgghhBBCyApCrFLsDheKHpFkBrNRfejqdmlydfSrnrYRT37qBbjqzLWOj2kOtgudHuEynR6bu0OWwTfLzBvD8ZmY/LcopBeks3nLzwFRZO7U6aH/u17RQ3V6TEeTyOUBlwb01LGqvzXjrYxOj6C3QOSo9TVYzgiBY2hW3x/r7fMoRnuLih6xVBb2+SudHtVz1kAHAL3PSvRerRbE7ysiDN0uDe3KeXugk6IHYI33FMLH5/60D1/786Gl2DSyDKnryPvv//7v0DQNH/zgB+X3rrrqKmiaZvnvPe95T73bSQghhBBCCCEtSal4q3weODGnDx87g15omhmv43ZpBbcX+ORg25y+VVJk7nJp+OPfXIHb/vbZcuBCp0djeFxZsSxec7dLQ9gYMh8cj1huPxdLSaeOtdNDxFvVtnpcuEZU0WNiQXd59LT5S+5X5TDjrVpJ9NDfNx2rxOkh9q9hw+nRjGgrwIzoazXRQxxnVVZrFFE9rAl55YBbHJ9WC2Kxgjrg7wiaA367U3A1oR5z1YUiqUwOP3t4CF/782F87k/7ZU8WWd3UXGT+0EMP4Vvf+hbOO++8gp+9613vwqc//Wn5dSgUqvVpCCGEEEIIIaQl+dOeMXQEvJYicyeOTeuih1NpeTFkvFVGjbfSxYtSTg/150GfG8lMjqJHg9g9PC//LQajPrcL3W0+RGfiODShix69bT5MRVJYSGRkzIljp0etReYOnR6TDSqsFvFrc7HWEz3aAx74PPZOj9YTPUS8lRDcih2X6kWIr63W6RFxED0Yb1U9mqahvyOA4zMxjC0ksKl79cwVxTWBKpapfVvrO1ev6OFXnR5Kp9nYfAL/9od98uv9Y4t19VOR1qCmM3QkEsGb3vQmfPvb38aaNYVlXaFQCP39/fK/jo6OujeUEEIIIYQQQlqFuVgK/9//PIK//uHDstNjTZHhoog9cnKCFEPGWymD7VhKxFtVNoATw894iiWhjUDNpo8Yg3SvW5M9GIcmddFja09Y3m7KECMsq1uN/aAzWLkIpuIkiE0aK6nXdtQ3JHJyGK10FuKi06Mw3qoVnR4hW3/Hao632j+2iCdPzJe/oYLayyNgvFVtrDOOR+MLiSXekpOLKXo4Oz0G2OkBQL+WEeecnz8yjPm4KaDuG1s46dtGlh81HXnf+9734iUveQmuueYax5/fcMMN6O3txTnnnIOPfvSjiMVijrcjhBBCCCGEkNXIfDyNXB5YSGQQMcSIYiuqTdGjeqdHusoicxWxOjmxyvLUm8XeUXMII14Ln8eFXuN1Pzi+CEAXHsQqeBHRoQ563vfc0/APL9qOl50/UNN2mIKYKUxMLOpDxXpKzAHAY7hIMrnWEcrMeCsvPK7W7/QoED2aFm9VueiRyeZwaGLxpJYVJ9JZvOCLd+GlX7kHcQchoxh0ejSOdR36cH9sfnWJHo7xVgFF9FjFTg9VaA77PUoEmnUfeWp08aRuF1meVB1v9ZOf/ASPPvooHnroIcefv/GNb8SWLVuwfv167N69Gx/5yEewf/9+/OpXv3K8fTKZRDJpZq0tLFCNI4QQQgghhLQ2SWWVvZjj2YvMfW4XUtmczNbvqsXpUWWRuUpAOj0oetRLKpOzrAAX5dhet0u+7gcM0aMr5ENn0ItIMiNjp9ROj03dIbzn2afWvC1ORebjhtNDDBnrf+w88vm8pYNmpSJeq/aAB15bvJX6urQKF2/ths/jkseOvrbmxFuJTg8nkcDOP/92D27YeRyfeeU5ePOlW5qyPXb2jJizqbl4CkFfZYNme6eH26W1pCPoZNBvHI9Wn9PDWmQOAB1BJd5qFTs9hGvK7dLg97h00SOpLyABgM3dIRyfiWH/OGfLpErRY2hoCH/zN3+DW265BYGA85vs3e9+t/z3ueeei4GBAVx99dU4fPgwTj218MLss5/9LD71qU9VudmEEEIIIYQQ0lyaObQVXQ0qPbbhYl+7Hyfm4jg2EwVQpdPDobchanR6lCoyVwkaw4U4Oz3qxi4cRY2vvW4XeoyV9DlD/NraE8LjQS9OzMUxZTg97A6DepDChCKIjRlDxfpFD/P9ks3lpfNjJbOgdnqsgnir7rAPLz1vAL969ASA5jk9xHFoMZGWDo5ix9sbdh4HAHz2D0+dNNFj9/Cc/LdTZFUx7CJOoAXdQCeLdVL0aK1S6nLXFk6dHsLp4XZpWNu+ekWP/o4A/uLpm7CuIwBN0+QxWcQQXrCpC8dnYjgwHkEmm4OnBY/RpHKqevUfeeQRTExM4MILL4TH44HH48Gdd96JL3/5y/B4PMhmC08El1xyCQDg0KFDjo/50Y9+FPPz8/K/oaGhGn4NQgghhBBCCGkcuVwer/7GfXjH9c4O93pJOXx2snd2rJV55vrApxqnh3OReZWdHkbMDYvM6yeasg5Cs4bC4XVrBbFm2/s7ZGm9GLh7Gzg4dRLExhskeqgDpkyuNXo9hOgX9nsKRA5/iw6033rZVvnvYl1D9SLirWZjabz8q/fir/774bL3iZ5E19nuYbPLI5as/Hmjttsy2qp21nUa8VYt5PS499AULvrMrfjjE6NFb5Mq0emxrt0Pt2vli8m1omka/v015+FDzzsDgHmts2A48k5f24aQz41UJofB6eiSbSdZHlR1hr766qvxxBNP4PHHH5f/XXzxxXjTm96Exx9/HG534cH88ccfBwAMDDjnjfr9fnR0dFj+I4QQQgghhJClZDqawmPH53D7vgnkmjC8dXJ62EWNU3rDlq8bV2ReYbyVh6JHoyi2UlyNtxJsH2i35LcDplDRCJw6PURmfn+9oocyjFNFlV1Dc3j5V+/B/Yen63r8k006m5MCld/jWhVF5oC+WvqFO/qxuTuEczZ0NuU5RLxVNpfHEyfmcdu+Cfm3Xg7sGpqT/7aLlqWwx1tR9KidVoy3etN3dmImmsL/d8OjRW/jGG9liITru1Zvn4cTQvQQJeZBnxtn9rcDAPay12PVU1W8VXt7O8455xzL98LhMHp6enDOOefg8OHD+NGPfoQXv/jF6Onpwe7du/GhD30IV155Jc4777yGbjghhBBCCCGENIucUpibzefhQmNXVqqdHoA+3HC7NAS9brmy/GmbumTEDFBrkbn5e4jBe7DCIVzAx06PRhErMjT1eVyWWLPusA99bX60Bawf1Rs5XLe7gDLZHKaM7pB1nfVFGanbmVH2vTd/ZycWkxm85bs7cejfXlzXc5xM1PdpwOsu6PBopANnufGNN1/Y1E4Wp5i9aCpTIPgtBfPxNI5MmavEi71/nbALJC1Qa7NkrDPcjmPziZbpCKoE6fTwmseXs9frC8Qv3LJmSbZpuSKEoYW4/r4LeN04pSeMx47PYWQuvpSbRpYBVReZl8Ln8+HWW2/FF7/4RUSjUWzatAmvec1r8PGPf7yRT0MIIYQQQgghTUVdcZzN5dHoxbpOogeguzDi6Sy8bg07bCusO6sQPexF5tlcXj5nyFdhvJUoMndwpZDqKOX06AmbQsP2/nZomlYwEG6k6GEvMp+KpJDL61nxveH6RA+3S4OmAfk8kM6Z+82isfp9pUVeqS4nn9vJ6dG6Q9hmD5jdLg1hn9sSWRVLZh1Fj3a/R+5D2Vy+6fE+TyjRVkBhZFUp7E4POuVqR8TtJTM5LMQzVZ0DVzLiXK12CD3z1F48+LGrm9axs1IRIr5YLBLwuqWbtZouHtKa1C163HHHHfLfmzZtwp133lnvQxJCCCGEEELIkmIXPRqNiK8Q+A2Boc3vxlRE/+B+5rp2y22qibcynR768EQtIw/5Koy3MlaZcmhXP2KluM/tskSOed0auhWnh4jlaD8JTg+xb4i8/LXtfrgaMEz2uvTfUXUZrVTk8NHjgsulFXZ6OER8k8ppC3gsooe9BFzQHjBFj8nFJPo7m1vkfHDCGotTjdMjYhNI6JSrnYDXja6QF3OxNMYWEqtO9PDbVlusrTN+sBXx2Y7JAa8LIaO3LFbkeEJWD63rxSSEEEIIIYSQGrHHWzWaYk4PIUiEfPpqxc3dIXmbqkQPm9NDDO00zRQzyiGcHhQ96kesOO2yDe10p4f5um4w8trtTg+fp5GdHvpjCfFF9HnUW2Iu8BiPn8kWOoQ6gytraJlMW7P1C+OtWtfpcTJot7k6hEtiZC6Ox5VODfV4OTLf/Mga+wrxalaM250ecR4/62Jde+uVmZcj5eD0IM74bBGDAY8bbcZ1VDVdPKQ14TuIEEIIIYQQQmxYnB5NWLGeKiJ6iGG3EBw2rjFLS+0D81LYB9txpc+j0tgaM96KQ7t6EUNTu3Dlc7ssRcfC6dHMTg8z3krfr0VJcL0l5gJRZi4eX93XV5rokTCi3cRrZB+wtWqR+cnCLu4JweDN39mJV37tXjw0OAPAegwanWv+8NvuzqhH9FhhiW7LDuHqGZ6NLfGWnDycisyJM/a/UcDrRsg4rlQTS0daE76DCCGEEEIIIcTGyXZ6+Dz6UDVsxDKIIas6iA5UUSxiL6sWQ7tK+zwAFpk3EhGz4eT0AIDPv/Z8vO85p+Hy03oBFA6DmyJ6GPuGFD0aFBkkHj+Tsz4+ULnLaLlgHz6qr4OmmQIPqQ37/hBJZpDL5WWJ+A/uP4Z8Pm8RPU5GObFd6LULGaUoFtFFauO8jXq31SODs0u8JY2l1LEjmS4sMifO2IXooM+FsHHtUk0sHWlNGlpkTgghhBBCCCGtgJrM04xOj2JOD1HAKcSJrb3hmh7fXlYtRI9gNaKHIcQkMiwyr5dY2tnp4TVe99dctNHy/aZ2eojoM3unR0djCnKl6GE4PdQh9UorlrU7PdTXwet2Nb3su9WZi6UtX0dTGUxHU/LrXUNzSGZyUHXn5R5vtdL28eXOpdt68JXbD+GBI9PI5/Mt856zD+tVklnGW1WK/W/k99DpQUz4DiKEEEIIIYQQGye9yNweb2WIE3/5zK04a6AD73vOaVU9fkGRuXB6eCtf9xak06NhxJLOnR7Fhlpt/spuVwv2faPh8VZuEW+lP/7ovOn0WGn7kt3p4VE6PTiQrJ8ZReAA9BLwUUXUOD4Tw5Mn5i23ORnxVqLHqNvo26nG6VHNbUl5Lty8Bl63hpH5BI7PtE7EVUnRI+1cZE4KKej08Lrp9CASnqUJIYQQQgghxIYl3qopoofN6eEV8VbWTo/OoBd//Jsr8OEXnFnV4xcrMq/G6cEi89o5ML6IN33nAVx3ywEA5urvTrvoUaQIuyDeqqFF5tZ9QxSZN0r0MOOtDKeHMsReacWywukhRA+fxenRGivOlxK76BFNZjBiEzX+9/ERy9ejJ8HpIcQ5IXpU494Q8VZ/94IzEfS68cXXX9Dw7VtNBH1uXLCpCwDwwJHppd2YOskr1xWlRFN2elSO32O9pgl4XQjJInNeu6x2+A4ihBBCCFkmPHliHu+94VEcNbKsSWtx36EpvP/Hj2EqklzqTSEV0GynR9F4K0OUCPrqSyKWg20jYkhk1FfV6UHRo2q+dOtBvO6b9+OVX7sX9x6axpdvO4g7D0xK0anN57ENzp0/kjcz3sqrODFSmRyGZvQh8sY1oYY8vllkbjg9lCF2Ip1ryvupWYjho1O8VamV2qQyPvvqcy1fx5KZgs6OR49buxxU51Aprr/3KD752z2WQXOliDi6HuH0qEKsE06Pl5w7gCc/9QK88mkbqn5+YuXSbT0AgAeOzCzxltSHutih1PFDXB/wGFMeR6eH0Y0Wo+tq1cN3ECE1kM/n8Z27j+C+w1NLvSmEEEJaiJd+5R78/olR/NP/PrnUm0KawLfuOoIbd43glr3jS70ppAKyTS8ytwoJ4oO76PDY3B2s6/EbUmRulKjaS31XE8lMFtfdvL9g8OrEQiKNL9x6AA8OziCWyspV4h//zRNyRXvI77EMaYqJGXanRyOjlLwy3iqPfWMLSGVz6Ap5sanOfU7gsXV62Ffmr6TIETGkNIvMTXdHI4Wo1cprL96EnR+7Gu959qkArPFWHYbwN76gLxRwG2LaVCSJTLZ8z9Anb9yL6+8bLDso//GDx3Htzx7Hv/xuL+aNjpGEcbzsbdd7bmIVdgPkcnm5ujzs98htJvVhih7TNYlYywU1+qzU8cM87jDeqhxOogedHkTAInNCauCnDw3hM79/CgAw+O8vWeKtIYQQ0mpMR1Llb6SwmEjj14+dwAvP6cfa9sbEk5DGI3LzF+LpMrcky4Fcszs90s5Oj1dcsAFbesLYsb6jrscvVmQeqsJBIuKtVrPoce+hKXz59kN4aHAWP373pSVvO2EMZ8M+N771lotx7sZOXHPdnRiaicufhXxu+D0uCMNXscFX2B5v1YQi83Q2h11DcwCA8zZ2NawgWAgDmZy+79njimKpLNoD3oL7LUeS6RJOD4oeDWFdRwBtxsrsaDKDiCGKbe/vwIODM5iO6m+WjWuCODEbRyaXx1Qkhf7O4tc76mC8VBzWXCyFj/36CVmUfkpvGG++dIs85vWKeKt0ZUJdTDlW2oVLUjui12PU6PXY0hNe6k2qCbVYu9R1hV1sJcWxH4cDHpfp9FghAvujx2cxNBPDKy6gK6zR8B1ESA2ouaIreaUBIYSQ5YOaa336uraq7vvzh4fxT/+7B9+840ijN4s0kMlFfXDDktOVQdPjrbJ20UP/kO52abhoyxo5ZK0Ve1m1iHmoxunRZqy0nlhIWiKu4qksbt833tKxV0+emMfx6RgWE/rfrZJ4m4lFoxujM4DLT+9FZ9ArxSsxxAr53JaVqb4ivRA+j8vmCGlOp8euYb0k+oKNnQ17fDPeSn/fCMFXsJKOgfbho+W140CyYQiRL5LKYNSItzqzvx0ApCAR9nmw1nBejC0URlw9PDiD49N60XVCEZVLLTSYWExC/TgvFp2IYWlPW3VOD3GcdWmmU47UT6v0ekSUY1+6hFspZThBeYwpj/086XGbnR7pbL4gSnQ58uqv34e/+cnj2De2sNSb0nLwHURIlWRzeewanpNfR1bQRTshhJDly27l3FLt6lGxCnKSXRHLlnQ2h2lD2FrktcOKINvsIvMiTo9GIYbpMt7KECiqKTLf3t+BDV1BRJIZ3LjLXPTz7buP4B3XP4z/vm+wcRu8jLjzwCRe+pV78Nbv7ZSvUyWDEyFsqo67XmNoKgj5PJbXupSDw3K7Bu4fMvosm5PnnvM2djXs8T02l5H9mFdNKfRSk7A5PTwuxls1AyF6RJMZ2dkhRA9B0OfG2g79vTU2n8ChiYiMuTowvoj/8837ceXn/gzAusJ7Pl78nGt31i4kjHgr430v3r/lRM/R+TjuOzSFBwf1KK2wz9Mw5xTRaYVeD3W/FKKwE3R6VI76NwoYi0fCynVOJW6PvSMLuO/QFMYq7AtqJOo8UVxDkMbBdxAhVfLIsVnLhfpUlREkhBBCiBO7hublvxNVrkoSH85X0urZ1YY6WOHrtDLIKW/Dpogetk4Pf4NXBauDbUB3ZwDVOT3cLg1vunQzAOCHDxyT3z8yGQEA7BtbRD6fb6l9OpXJ4b03PAoAGJyOydepEtFDRFj1tZtCh130CNucHqXEDDXP3etqfJH5XCyNgxP6a3nepsY5PWS8VTYvy9IBpRR6ifaXVCZXcnW1E4WdHs1x36x2RBTUQjwtnUFnDdhED68b/Ybo8dOHjuOa6+7E+3/8GIDC1f9qJJ9wYDkhFo0IhCtE3L+nzYi3KuH0mI+n8Zz/dwfe+J2deN+P9O2xx9OR+rmsBXo9Knd6sMi8UtS/kV+I026XPGaXW6R8695xvPjLd+ON39mJ5/y/O6TwebI4MWvG72ngOaXR8B1ESJXc+pS1fHSKq2oJIYQ0ANXpUW1kjLg93YfLF3XoEq0wJoMsLarTI3MS460ahRphBJirHavp9ACA11+8CT63C7uH5/G40f8gFv0Mz8bwyd/uwdM+fQueGm2NWIafPHTcciwVi53sr5cTwm231iJ6+Cy3CdpFj0qdHg0csAs3YSSZQT4PrO8MNLQPyuMynR7qYjEhAMWWIBYtnc3hWf9xO174xbuqGpiK86sYpjHeqjkIkeDoVBS5vL6/b+u1Rn0GfW7Z4/Hn/ZMAgD8+OYabnhzDXMwcVKazOSnyAmYRuhNqtChgOj3E8VJ1ehTbb0bn45Y4LcDssyGN42mb18DndmF0PoGhmeI9LcsZ9fqvlOjBIvPKsTg9lMUj4phSzln47bvNaOB4OisXL5wshmdj8t+VxGiS6uBZmpAqER/2BFO0oBFCCKmTVCZnOb9UK3qIFYmttNq61VA/RDHeamWgFpnnmrCqtNnxVsWKzINVdoX0tPnx0vMGAAA/uH8QgLnoZ3g2jv++/xhS2Ryuv3ewAVu99Ow5YRVvRKdHZU4PXdxc22GKHqrrA9AHMeogq1inB2B1/7hdje/0EJzS19hSYLPI3HQB+dwudIb08vJK+xEaydGpKCYXkzg8GZUDxUoQtw04Oj04TmkUosh81hAv1nUE0BG0lt0HvW6s6ygU5z752z2WhYjRZMYy6LR3yqgIAbc9IJwmGeRyeSliCHdSLo+i+40QWPqVbWMaROMJ+tzY1B0EAAzPxcrcenkSrdDpIRyGjLcqj88iepjnVuFqLfXZaP/YInYenbGcX092B8iw4vRYKcXrKwm+gwipgnw+j33GKjZxwqXTgxBCSL18++4jsu8BKByGlkPcfiXlpK82Jm0DGbK8+PVjw3j11++15DmrkVaZEtnbtVLo9Fh+8VaCt1y2BQDwu92jmImm5PWvWiasDvpXMvZr+3kj7qYSp8fEYvl4q6DXbeltKu30MF+rRvYD2CO1usONfe3E75TJ5uQQJ+x3y5z1pVjNqh53qznH2p0equOm2v4tUhy7A21DVxBul4Z2JSZKFz0K99WxhQTuOjApv15MZCzxVk6l54IZI95qW68u/C0k0hZxo1txahU7d4vnag948Jv3PgtrQl68/7mnFX1OUjudhhCmltPHU1m84b8ewDfvPLxUm1Ux1nirvKN7KJ83y7cpepTH5zbPkxanh6+80+OGnXps5/POWocNXfp8r5JzfSMZmjEFvAid4A2H7yBCqmB0PoGFRAYel4ZLT9EzJSe5ioMQQkgdDM3E8OXbDgIAXnHBegDWLOpKYLzV8kd1elD0WH586Ke78OjxOXzJeC8C1kirZjo9xCy78UXmhtMjo2+7dHrUIHpcsKkL52zoQCqTw48fPC4jYdQ/S0fAW+TeK4upInE36QYVmYf9HouDo9J4q0Zij8rqDjX2tTOLzPNyiBPyeRAScSNLcAxcSCiiR6byc2zpTg+OUxpFm60DY2uPLkKobo+gz21xU2gacP6mLgB6/45gMZGxxFtNRZKy8NyOOJZtNUSP+Xjastq6zeeRg9Riw9O4cmy9YFMXHv748/C3zz+zxG9LakWIHvOK6PHQ4AzuPzKNH95/rNjdlg326z+nMvNMLg9x+cF4q/KoTg/VyRryl3d67B7W+xRfev6APMYnT3L8osXpwc8HDYdnaUKqYP/YIgDg1L42DBhK8DSdHoQQQurgjv0TSGZyuHBzF15/8SYANXR6ZBhvtdxROz0WE3ydlivqqstckzs9xOD19LV6bv3GNaGGPr4YBMh4q7Q5fK4WTdPwF0/XC81/89gJOP05qj1uLVfs0bW1OD1KdXqEfDanR8ki8+Z8XPe7rYO0NWFfkVvWhtcl4q1ycohjdXqc/H1lLqa4KauJtzLESdPpwU6PZmAv/t7Sqx8PRewUoIsK6zpN0eOUnjCeZogeKouJtEWgyOetbksVEUMlRJaFeFouPPF7XHC5NLlivJhDSdxeDFwbGUVHrDiJHsLJY1/4c3w6hn//476SRfYnm4htH3LqflEXPqkCOXGmWLxVJU4PcS7oCHgL3LEnCzWqbSnOja0O30GEVMFTY3q01faBdvQZH2AYb0UIIaQexOrT09e2y6FKoopVqABk9nQslbX0EJDG86tHhy2l85UyoQxSWVS4vFDfMz3KgFqNt2rG+0rEV3z6FefgV//3mbjqzL6GPr4Yzh6ZiuKGnccQMRwLtcRbAcBZAx0AgIMTEcefV+tQW47k8/mCa3sRo5LO5kvuB4l0Vg7i1HirrpAPYgaqafog1e+trNMjUGX/SqV4PTanR4NFD4/xO6WzeTnECfs9UnArl1uez+fxi0eG8eSJ+YZtk1pYXUygm1hM4If3D2IxYQ5UxflYdHq4XZp8Pen0aBxhv3Vfd3R62Do9tg+0Y3t/e8FjLSYyBfuYGl2oIvaLbUavzaLSByJccWLFeCVOD9JcnESP8XlT9FAXLnz77iP45p2H8dMHh07uRpbA3mcknJgqYgGT160x3qoC1EUEqjMmVEGcolh8EvC65d+6kk6PycUkfrTzeMlelkpRnR5cvNZ4+A4ipAr2jepOjzP726VVnSVlhBBC6kFEp7QHPHKVYKLKTg91gMOBevPYO7KAa3+2Cx/86eNV33dy0Rpv5ZTjTJaGWWUF+JqQOfxVnR7Zpjg9cvI5L9y8pqGdDYA1wugff/0kDk9GAdQ+mNvaU9qJ0gqiRySZUV4XIztecWalHVblCoRY4vO45GAO0IfkojMj7PNA07QqOj2aFW9lfVx1v28EHtnpYRaZh30epVi29L7y6PE5fPjnu/DSr9zTsG2ajZZ3erzp2zvxif/dg3/7w1PmbW1OD8D8+/k8XNHfKPwet+WYtblbP96osXkhnxttfo+Mwtre34HthhirEklmCoStPz45hoPji8jl8rjrwKRc/S9SG4TIks+b5+uQ8ZrLFeNF9tu4dNFR9Gg2quixd2QB+8YWMG68ltlc3nIeGpnTh8nT0eUzr7EPtZ1cBRHjnNPm9zT8uqAVsTo9lE4Pv/m+zeXyuPvgZIEYKo/vHpfp9KhA9Hjxl+/Gx379BP77vkEA+r5398HJqhyv05Ekfr97FHMxU8BjkXnjoehBSBXsM5weZ/V3oLddiB50ehBCCKkdEXXUFjBzo6uNiVE/5JUbJpHaOTypr3A/Ph2reuW/Knqks/mq4lVIcylWcmspMm+i6NG0CKMij1vrYK477CvI3VdphXgrsZgp7HNLIUBdUVxqGCJLzNv8BYMqEXElBCc1sqRURJK/SU4Pj6u5Tg813koI8SGf2xxClRnsqK6MRn3WmrHEWznvq8LFdMd+sxTb7vQAzJXFLDJvLOpagC2GyKoKiML5tL5Ld3ucNdCBM9a1wT4XtsdbAcB/3XUEL/rS3Xjhl+7CW7/3IP7+F7uRzeUxZ7y/B7oC8r04bpwTAsLpUWbFuHB6NMuZRUyE82diIYnXfvM+vPYb9+OYrc9FII7J6jF8qbFHcDk5BRaT5ucCUh5/kXgr9X17y1PjeMt3H8TLv3qv5b7yOszrqjjeKpLMyGv6B47MAABuenIMb/nug3jV1++reLv/6X/34L0/etTyPX6Gazw8SxNSIalMTq6Qszg9Fil6EEIIqR2xoqs94JUX68kqnR7q7Vlm3jyEBT2Ty1sGaOXI5/MW0QOghX05Ma6IHmqpaLbJReZigN6sXoBiBaghb22DFE3T5CBSf3zrdsdbIItaDNh72/3ydVmoVPRYMESPdn/Bz8T3RKfFUjs97G6TZjk90tm8XB2vx1tV1umhrtatJU7Qidmo+TqWO8eqIpCj08Oh1JzUjyoutxsOj46g0ulhvAYfeeF2/OVlW/DsM/oQ8nmwpdvqQlMjquyPf2BcF7YeGZzFbCwlhZbukE+6SsaN97J4vnKxbPZOD9I8hAh2cCKCaCqLxWQGjxyblT9Xo+mEm2c5iR524cxJ9DCdHt6Cn5FC/EWcHm1+s9Pj7oO6kH1oIoKhGVMkEwK432N2bZVblHSnIop3GMLUHfsnAABPjS5gdD5e0TX+40NzBd/jZ4PGw7M0IRUyOh9HNpdHwOvCQGdArtiKprIt8SGPEELI0rCoxFsJ0SOVzVUVp6OusKY1unkMz5oflIrlgzsxH0/LlWPiQxXFqeXD2LwpSGWUAUQzi8xzubzcJ5o12N64Jog3PGOzLEoX1JM7LyJgAOCcDZ2Wn7VCvJVYzNTb5jdFaGUAUmoF6KQxYFvrIHqIxVJBY3iqOj1KDc7VaJ9G41GihJrX6ZGTxzq9yFz//ct9dsoo4uOuocb0ekxHzfd5ud4s9e+RkEMx9TXTf79SJfSkMdjjrQDg6rPW4VOvOEcKk9v7rRFXiwkz3uqybT141mk9+PqbLsQ/vfRs+V70eVyYNpxdXSEvPG6XFFiEEB6yOz2KxVulGG91shCix7HpqPyeKnAJp0cul5fOveUkekTsnR5OoodxzGwv4awkJurCkaDF6aH//aLJDNa1m11AP3rwuPy36ritNN7q5r1j8t8iWm2TIry+5uv34ZxP/gm37h2vaPs7Ah5cc9Y6fVv5Ga7h8CxNSIUMzeirOzeuCUHTNLT5PfLilxFXhBBCakX9cKOuUKomKka9LYfpzUMtGxwvEonkhPgQHvC60GX0BPB1Wj5YnB451elh3qbRRebq8LxZTg9N0/DZV5+Lr7zxaZbv1zOY26w4Pa48vQ8Xbu6S18PxKh1qzSKXy+N137ofb/3eg1V350inR5vPUYxyKp0ViOPD+q5gwc/EYinh9PArQkepiKT3PudUnL62Df/wou0VbH11qOcNcVxqFF6X6PTISSE+7PPIQuhyq1nVQeCuk+T0UP8eTk4PNTbF46LTo5moMXpqkXmgyLHrNRdtxObuEJ55ag8Aa7zV07euwQ1/dSlefO4A3nH5Kfjd+y8HAMzF07LPo8d4vU2nhxFvJTo9/Obw1Ak6PU4eYn8odkoW11szsZRcPLScRI+CTo9MHuMLCTzr32/H5/60D4Di9GC8VUX4isRbhZXzjboo46cPDSGdzSGfz0uBQxc9jIVniugxNq+/Nl+57SAA/Zx2+74Jy8/t9xmZTyCfB+45NFVyu0Wf3G/fdzneeMkmAHB0qJH64FmakAoRqzs3rdE/yGiaJleKTFL0IIQQUiOLaryVEkdTleihXGwzD7Z5qE4PEX9RCap9vk0OT/g6LRes8VbmeynbRKeH6h4oFkPVKDbbol/qGcypZeYDXQH86v8+C198/QUAgMQy+bA+upDAg0dncNeBSZmNXimTxsrg3ja/Y59GKlv8dxS58k6F76bTQ3R6qFFJxYtqe9r8uOXaZ+M9zz61gq2vDnWXbnQXgXR65PIyyirk85iF0GX2FTVmbvfwfNXilRPWTo9C0WNCOaarwqBT944YsjXLpbXaESIhYMbHAGaxuJ3nnb0Od/39c/Dc7WsB6ENjsY8Jd5VACHzZXB7HjZibnrD+/hQDdXFOEMfKdmMb1L4IFdnpQadH01E7XpwQC0rU9/NyEj1itnNSJpfDZ37/FE7MxfG1Px8GoHR60OlREerCgYCT0yOVRUIRumeiKQzPxq3XYV7neKtHjs3ixFwcfzLcHZORpOU4ID4LOLlA1RgtO8lMVh6j1oR8clu5IKrx8CxNSIWI1Vsb15gfZGSZOXs9CCGE1IhaZO5yaXKYkqiw6Dpti8JiHmxzyOfzFqdHsfJrJxJypbBLrhiNJJfPh/DVjvpaWuKt1E6Phose+oddTTOjcppFyDb0c7lqf74tSrxVnzHIF4O+5RJvpYpYIr6mUkynh99SXC0olfU9aMStqH8jwXkbuwDoxctA5Z0eKxXxO2WyOXlOCvvdZQuhBZlc4YCqHvL5PGajhUXmv901gn/89RPIZHMypgSwii7JdGFJtYy3avJ7d7Xx9mdtBQD808vOlt9TnR7lovnEkFiNt7I72wJet7zOOjKlv2eFs6czaO30EPcVnTfFurxi4rno9Gg65UQPERmrLkpdLqJHJJnBuDE3EoJpOpvDg0enrbej06MqVKeHKkQLp0cslSm4PhmaidkWn7hk7KTq2hDnKiFQiH1JPE8kmUEkmZH3+b9XnYr/eeclAMxrAifmYvrjuDRdVJULArggquHwXURIhYjVnRvXmJb1PmMVylSVH6gIIa3Pzx4egkvT8H8u2rjUm0KWOWqnBwAEPC6kMrmKnR72C3muEmoOU5GU5QPSeBWdHmLAFvCaTg97rjNZOtR+lmJF5g13eqTNjhdNa/7gtCPgwUKRVcrVoHZ6SPeCd3mJHuoK35loEqf0FooQxZCdHu1++KcKB5jq/qGSz5urxrc4OD0uO7UHD37sakufgKBUvNVKRYgBmWxeutr0IvPKBjv2TPU9IwuWzPRqWUxmLO/hRDqH+XgaH/jxYwCA5+/otxTWq44vJ6eHEHVaUbBaSj7xkrPxnmefinUdZv6+2ulRzqUmys8XkxnZyeR0n66gFxOLSRye0EvNe9pEvJW100OILOLnqnCmkpCuEooezaa86CGcHuZ5XVxTN9rRVi0PDc4gm8tjc3cIPo8LhyYiSKZzBc5hsSiGnR6VUSzeyuz0yBZ8phqejWP7QDsAXXjwuDR5LlYdnUK0F+eseUOsWN8VxORiUheyFhLyOj/odctrgKEZvRPY7bDQRIgeXSEfXC7NjOJip0fD4VmakApxcnoIKyw7PQghKouJNP7+F7vx4Z/vkgNtQpzI5/MFhYXigr1S0cN+Ozo9Gkcqk8PPHhrCbDSFoVmrTb0Wp4ff4yqbDU5OPhOKY1ddYa4WmWcbEK+j0uwScztrlSFiXY/T7seakBdul4b1XfpjStFjmcRbTSgr9qtdmCSu6fvafI5Oj2IFp5ORJGKpLFya9bOCytqOgHTZOA3Ql4pmdMqIzot0Li+PdSGf2+z0KOv0sL7fDk9G6toe+7A6mcnil48My69TmZxjzF02l5fvVavTQ//9mtXHs1pxuTSL4AFAlosDFTg9lBiqWAkhQkRcHZhYBACsNUqOhatE7H/iNZdOjyKih+z08HFI3WxCPjc8JdyKUvSwJXEsB7fHA0d0R8el27rlMWTPyIL8ueoeABhvVSnF4q1Eh1YslZHXJ2LXGZ6NycUnfo8bmqbJv796nhfHEXHOEvtRR9CLdR36LHB8PiHFcZ/HhfVdQXjdGlLZHEbnnV2Kos9DHIvUzwaNiHMkJjxLE1IhpuhhOj1624XTg6IHIcREXR1cLP+XEEC/mBa7i1ihWK3oYS9k5TC9cfzg/kH8/S9344VfukteB4gPTNUUmSfSqtNDf30jPDYsC5KZrGWQlSni9Mg65DXX9bziw/ZJWnkqoqjqxeXS8N/veAauf/vT0WPrqaimh6iZqO/NYkPKYkxZOj0qFz1En8f6rmBFg3CfRfRY2oikZqwmNp0eZpF5m9+M8LAPdtLZHG7fNy6HfWnb+61e0cO+H8RTOfzPA8fk17FUxuL4ShmF9Slb/InAR6fHSaM6p4cQPdJF460AoCuof4YX5/W1xvBSfS71viL+arZYvFXKXOVNmoumaSXdHuJz16RN9FhYFqLHDADg0m098BnHyLsOTsqfi2uORcZbVYWmmS6NgHLeDikdegnDiXH6Wt3doXZ6iHO9z0H0kE6PVBb5fF6KHp1BL/o7dbF0fDEh7+PzuOB2adhkLH54fGgODx6dKdjmOeNYIgRVIXrk8qVjNEn18CxNiAPpbA5HlIvrZCYrc14toofxYa/avGBCSGujLlBcLkMgsjwRH2w8Lk1eqIv/L8QzOFYiD1ZQ4PRYJqutWwHxQWV8IYlD4/qK0O39Hcb3qom3MlYKe9zyQyxjyJYH9sGIJd7K4vRo7POK1eMnK9ro4q1rGvZY523swhWn98mvl3e8lfUa/fh0rKhwod6+p82PgEPBvH0YLxg0ugG2OvR5OKGW13uX2C3QjMGaxy3y6q1F5mJVay5vPQZ+/uYDeMf1D+Mjv9wt7weY74/Dk+XPhaWwD6sfOT4r+xwA3aU0rhwLxOusnl9V0UMIfU4DddJYxD6jaYX9RHba/eb5tZTTo9N4THGIF6Kw6ioBzGOb6fRwHpyL/YSix8lBFT22GlFCYj8R0VD2c/tSOz0WE2k8eWIeAHDJth4pmO48Yg7EM7k80tkcnR41II7PwTJOj9PWtQEwnB6GECLua8ZbFYoe2VweyUzOInoIV9rYfNLi9ADMmMv3/egxvO5b9+OJ4XnL9s4a8VZrjP1W3W4uXmssFD0IceC9NzyK537+Tvxu9wgAYHQugXxePxiJlR6AKXpM0ulBCFFQ41FiHECTEogPZ20Bj8z1F06PD/z4MTz7c3dg9/BcycdI0OnRNNRs/p88NAQAuGiLPjyejaWrjiDzexlvtdxYiFtfB0u8VTOLzJV94mTw3uechjdfuhk/eMczGv7YAUX0WA6xDOrwWnVj/+axE7jyc3/Gl2876Hi/fD4vXQlhv9vxtSm2AlP0eWx26PNwYjl1ejRjsCbiZzI5a5G5WiItMs0B4Jt3HgYA/H73KABTdBCZ60cmInXtW/Zh9QlbXGE0lbX0NInnF6+3x6VJIQfQy2rffOlmXHXm2pq3iVRGe8CLj7/kLHz8JWeXjbeSnR5qvFWRTg+VYk4PcWxTnR5O+6EZb0XR42Sgltt/8uU78IZnbMJbL90CQI23si5MWWrR47Hjc8jm8tjUHcSGrqAUPVI2IT2ezppF5hQ9KkacVyydHuJ6O2V2epy+Vhc9hlSnh7EIQTxG0lJkbl7nx1JZ2Y3WGfRI0WN8wXR6iMfaYlsAsWfELnqIeCv92OJ2afJYFWXnX0Oh6EGIAzfvHQcAfP/eQQDWaCu1bFKIHoy3IoSoqJEoHGySUoiL53Zlpa24YF809p1ysR7Csi2gg6BxqGXjE4tJaBrw2os3yg9G9pWExUgoucFtPjo9lhP2bgFrvJXy/UaLHrYPyM0m4HXjM688F1ee0Vf+xlUiBn35ZRLLMFEk3uqDP30cAPDVPx9yvF8ml5dOTb/b7ej0sA+oBINGvNXWCkWP5dTp0dug6DMV8TvpReZC9NCPfWLgXGoImTH+zqf1tcGl6efDSo+3TtgHoNMFcVcZS0+TKXpYVwILLtnWg8+88lwOJU8Sf3XFNrzz8lPK3k5cS2Vzefned3KH2OOR7J0eAnFf4SLI5vLyuk2F8VYnF/H6uV0arjy9D5999Xk4pU8fMotrK9HpIdzTSy16iP1xS7e+nZ4isYaJVNZ0ejDeqmJM0cM8Vovr7VQmJz9TnWaIHpOLSblPSKeHY6eH+X6PJjMyJq0z6EW/dHpY460A66IpAAVl5rLIXDnmyEVRLDNvKBQ9CCmBOPAMG6uB1GgrAOgTnR51XIQTQloPdWjGCxdSCpnb6zcvegO2D82RMit+WGTePOx/yzdfsgXnbeySH3RG5yuLuBKDs4Di9KDosTywv8ZqfJEab5VrdJG57QPySkYt/F4OZeZqga0YNFVyXLT0N3hdjk6PdDGnhxFFaF/dWQzxuru0wmHIyeLfXnUutvWG8S+vOKfhjy0GeulsTg6Ew7YBshg4ZZT3nBgUiXirsN+Dzd369w7V2OuRz+dx4y7dQdJjrNi3D0CjqawlsjBlPL8QrO3nZbI8CfncsncrXqrTI2Rec2ka0NOm7xfb+9st78egz1w9LqJyZh16ghIlorRI4xGiR2+bDy7j9Wo3rqMXEnpfkBBJT+3Th9xLLXqI46A4lhRz+CXSjLeqhVdcsAE71nfgrIEO+T31/SiuBQY6A/K9fNSITbR3ekSTGbz0K3fj/T9+zPIZLJbKOsdbLSTkdb54XTd0WeeG9vhPcRxZo6TIhP1mHBdpHCv/KpuQJiIvbgwltse2EkqsjFpIZOSBjhBC1OFYuYE1Wd1EnJwetiForMywzj5kpC26cajCxKl9YfzdC88EAJzSqw82RT5zOSxOD3Z6LCvs75dMkUirTINLPUynx8r/OOZxu+QH/aXu9bAX04ti8rsOmGWxxUpwVZeKz+1ydOEUc3qI5xFDkHKI130pXR5vvGQzbv/wVRVHclWDx2UMj1IZ+Z4KGQMdUSItVroOKt1Va9v1z1ZCfPS4NTm0rLXX45Fjs3hqdAF+jwtvvGQzALPLQTC1mLS8/kLcKub0IMsTTdMKBsVOglVnyBw0dod88n24riOA5521Tv5MdW6I4aTdJQSUFlhI4xHH8L52czbTppTYn5iLI5bKwuPScGa/HpG31KKHfR8pduyPp02nRzudHhXzDy/ajt9/4AqLs8vnMa9NxPkm6PVgo1EyLpz04lwv/n94MoonTyzg97tHEEmY+000lbGIHiL2biGeltcGQkB5xindWNdh7p/2uOs543FUATYkneD8HNdIePYmpARiNWaxC97OoBdeYyUTy8wJIYIM461WHBMLCbz/x4/hocGZ8jduIIvGxXS7vzDeSlBuH0rYVh5zmN44xN/yq298Gm7+0LNl3vel23oAAA8cma7ocYQbJ+B1yYEMjw3Lg0qdHtkGOz1abZgqIiWWWvSwRyDNRPWvRXQtoA+/nBYrqSs1XS7NEpMhKFaCXu3Q02eL02g1xOcjtbdDOD1EifRcXP/s9NTooryN+PuK6yiv24VTjTiSwxO1OT1+cP8xAMArL9iAtUVEqXHbfmMWmdPpsdJoD9gjqkp3eqiDcwB462Vb5L/VWGvZ62ETPVKZnNxfuZ+cHIToIWLJAFMgiCQy2G2URm8faJe3WXLRw1i9L4Q0b5Fjv7XTw1mgJ5UjxHZB0OeW6S2m6GE9H4u+jVze6hyNK06PjoBXvpbxdNbs9DBElq6QDw989Gq8yRDaC0QP4znWKAJsm3B68PNBQ2nNqyxC6kCNCRGDiWIRBJqmoSfMXg9CiBV2eqw8fnD/Mdy4awSv/eb9J/WDkdNqLvugrdJ4q3ZmwdbN4ckIvnDLAfk3FR88w36PJfLi0m3dAICdR2cqKrhOZMxYAzPeiiu5lgN2kVAVPdTXNptzHnbXSqqFnB6AGSOx1PFWYkAhVnfORPXi4V3Dc5bbOfVDJNPW18TJ6ZEu4vSI2QZa5ejvCMDj0goiMFoFUfotzqcBr0seQ8XAWQgi+8YW5P2E20K8P7xuTUZeDdvKxyvlwaP6YobXXLSxwEkpPtupPTBAYadHq4pTrYh9dbxjkbmyutouhF12ao+8njpzXbv8vhA9ZmK2PhhldkCnx8lBuG3PUF4fEW+1mMhg19AcAOC8jV1SIKnn2j6VyeFrfz6E+w9XttDFCXvZvdfW6SH207lYSopo7PSon7DP7vxyYaBLf88fN7q4pOhhnLcWld6eMSXGNpq0Oj1E/F0inZXnLvVcoWmavOaP2z6biSQZJ6dHdBnEhLYSPHsTYmNWuZCxlxk5XfD2il4Pih6EEAM1BoWr7lcGI/Nx+e//uGnfSXtes8i8eKdHOeEsaXyQ6jVWKzLeqnb+86Z9+NJtB/E/D+grg4WA1G6LyzhnQyfCPjfm42nsG1sseBw76jBVDN2SS7winuiI95f44GktMncuNW8EJ7vIvNmIgY29Y8hOLJXBj3YeLxgyNwrxuKev090B6axePGwXYxxFD9v1vpPTw6moPZfLS0dApUPPnjY//vA3V+AH73hGRbdfaYiBnhgeqYMne6fHPsXpIfafjCEyelwu6bBbdCiQrgQxbOxp88FvO7/2GVHF4wWiBzs9Virqymm/xyU7H1TUiLs+W3y1pmm4+yPPwZ8+eCW29podPd0hZ6eH2Gc9Lm1J4+pWE6982gb84j2X4YPXnC6/J8SueDqLR4/PAgAuUESPhTpEj/+8aR8+96f9ePcPH0a+RtdnPKUfS4ToYe/0EL0y4tykaUCIx526sZ+Tg163/Mw1ZbyXzXirwvevmt6gdnp0BL3yfqrTwz4vFNdGlTg9RKcHF0w2Fh6VCbExGzVPiOLgJTP6HC5kRK/H1CLjrQghOmqnh/0ipx5G5uLyQp40FnUA9pMHj2MhcXLcHtLCrqzmsq9KjJRxboihjCho5cVy7ew3BIzHjFWC4m8ZtokeXrcLF2/V3R6VRFwlFaeH+MBbbjhMmsux6SiePDEv319i9Xk65xxp1WinR6utIA8oMQ+l+Nyf9uNjv34Cf/FfDzRlO8YX9GP55u6QdGzPRFPyXCwEzAlH0cMaOebY6eEgelhXele+MveMde1F45ZWOvbhrxox0mUMeeaNla6HlYJyISqlM/p7z+dxyWHmoiFe3XVgsmjMGADsHVmQK3gB81jr97gKhlprjcz12Zj1nJ9kp8eK5Wmbu+S/i4mQolcGMPcBy89DPtkFIVhTxOkhji2VurxI/bhdGi7e2m0RI9Xr6IcG9c9K523qVESP2q6Nj0xG8J17jgLQj0FDM/Ey93Amnra6AT02p4fojp00FtK2+TyOgh2pjpBDx489zcVeZF4Me6eHeT2fU84z1uNAyMEFm8/npdPRInr46NhvBjx7E2JjTrmQEdbmkk4P4wR1dDrquGqMELL6UFeFNNLp8cx/vx2v/vp92DuyUP7GpCqGZ80PMbk8cKjG7PBqkZ0eyoc1+0rUsp0ewulhnI/i6SyFjxpIZrI4PqMPynYbUTiLMle5cJApej3uPTRV9rHN1cKuiofDpLk8+3N34KVfuQeHJ/RyZDEYyRSNt2rs86/WeKs/75sAAByZqq2UuhwTi/qK/bXtfhlHMx1Jyu0Spd1Oooc5ADFWfTp1ejjsCOrihlZ5PevFYxvWqU6PjqC100ON8pCih3R6aGZWfzKDb955GG/93oP4yUPHHZ93OpLEq75+L6783J8xvpBAPp+3uKrsr499lb9YPCDjrdLWfYIsf8S5GSguQnaq8VbthaKHE8U6PcSxJchoqyXF63ZZ3Hkhnxunr21HR1DfB2qNt/rWnUcsX1fa5WZH7CdOReY+twsdxnFOzJMYbdUYwsr7UtP0c7Q9As/e6VGMmUhKXid0hrwWoVN8XrA/hni91euExWRGzgrUeCuxwCpGx35D4VUZITbUlT6pTHnRQ1gRv3HHYTz/C3dS+CCEWFYEN2P4XMmQlVROLpfHCUP0ENnhtRamliOZyVoy4cVFsrXI3HquKXfxK4bn/Z0Buf13HZhsyPauJo5NxyBm3EMzcUwsJuSwzEn0uOrMPgDAPYemZJ5/MSxOD6+5MowsPY8c0/P+O43VdpZ4q6Y6PYpfW65EghWKefaS4UYjnB5rOwJySDm5mJRixdYePa5m0iFeK2kTohw7PZycHspKb67M1bE7PVS3nL3TQ436k/FWWbPIvF3GW6VxbFoXy45MOotm+8YW5ev4yd/usYhUqugssJdYr7GLHi0mTq4GLtqyRv67WPx0u98D8VZVy7BLIVZkz0Stw3N7VwNZOrwu8316zvpOuF2aXNAwG6stlUMshtncrV9f31+r6JE2rwMBa7xVyO+W35+K6NvpdN1JqkcVPgMeNzRNK/jbinO9PXLMzojR7+HSdCeOej4RIkZBvJXx/DHlPCdcjvZzkhBIGI3dWHj2JsTGrIPTI5k1VwjZUVcIzcbS+NnDQ03eQkLIckcdmjVD9DhZ0UurhcmIPhBzuzQ867ReAMDhIgOVesjm8njRF+/G879wl1xNbhaZK50etnNNuYtfNXP8+WevAwDcvHe8Ydu9WrALXWphpT3eCgC297djU3cQyUwOdx0oLUQmlE4PsXo8kcnWnA1N6kN1c8gySRlvZf5MXdSfbfBrVcpFtBKptNNDrLptFqKbYV1HAL3GwiTVySeE4UmHYWhhvFWFTg8jtoQlxib26BZ1Za2900PtSZFOj6xZZK46PcR9ig2z1aisPz45hnsOmsdmR6eHTfTotokeKRFDx66GFYN6vnbq4AEAlzIMt+8DxegOOw/P44y3Wjaox513XH4KAFOsmFhM1vT5SRxrXnreAADd6VHLtZs9Bk0VhsM+j/z+pOFWpNOjMYSVaEUhTBaKHpU5PUaN/seOoBculwa3Sys4N9jPMWa8lflZTuwL9u0QAkix4xapDZ69CbFhjbfST2ilnB7PPqMPW3tCuMyw0t7wwDHLh2lCyOpDHY41Y7VGPWV8pJDhWX0VV39HAGeu0zOc1cFJo5iLpXBkKoqjU1FZfi3irdosTg9bvFW5To+M+UHq+Tv6AQC3PTVucZSQ8thfc+Go8nlcjud/TdPw/LP1v/fNe8dKPnZCWeEnXt98nh9slgqnwbVTkXkz463E8KUj2Fznw8kiUGG8Vbvf/H3Vv2+jEI7rte1++bcVQoimARvXGAOwBQfRI20vMq+s0yPGeJsCPC7rMbNDEfZFn8JcLG2JnwL0xQHpbE5+BvO6XfL8mM7mZSzZTNR51bZdvH7yhB4H6tJ0AcW+gK1A9AgJ0SOPfD4vt6NVHFmrhVOUAvJivObCjTh3QyfO3dBZ0WOaTg+b6EGnx7Lhbc88BaetbcOP33UpXniOfn3WFfKh3+hOOmBce1eDED2ev6MfXreG0fmEdH9Ug7gOdIq3CvvdiuhhxFu1yIKIpUYVQcXf2C4oicVI5Rx9Y4bTo1O5brO78wudHoXxVuYCC+sxQzy/+DlpDDx7E2LDEm9lszY7rfI5fV077vi75+D7b386usM+jMwncLuRV0wIWZ1kc6rTw/nC5YEj03j11+/FkyfmK3pMVUytNZeWOCNWAW9cE8Rpa9sANEf0UC94xeu+KJ0exeOtKu30CHhduHDzGvSEfVhIZHDV5+7A9+892pBtXw0Id89Ap/7h+N5DutOj1AdP4ay57amJkiKTmimvrgZNMuJqSXD6u3c5dHo0M95KlKp2NDnu6WRhxluV/jupw4a5IueyT924Bx/48WM1raZVnR7ivStcHUGvW+b3OxeZW53dlTo9ErasdqILDCqqw0d1ejj9PZOZnDyeetwuhH0eaMbDifP1dMRZ9DhkO3eL3hC/EWti72mxRxt1t5mlsulsXm4fnR4ri6+98UL4PS584LmnFb3Nx196Nm58/+UVixVdhuhhX3gk4i3p9Fh6/uaa03Hrtc/GZaf2WL6/fUBf0PRUlaJHOpuTs6FNa4IyHvHEbPVl5jLeSogeHvMYGfJ55LW/iLey906Q2lA7PcTxX118ASjxVmVEj5E5/XVXRQ/78cN+rgh5nUQP59hEU/TgZ4NGwrM3ITZUy6rZ6WFYm0scCANeN16wQx9+PFHhEJMQ0ppkcuXjrX7xyDAePT6HG3ePVPSY6gUQRY/GkM7m8A+/3I2v/fkQAH0F8Kl9uuhxZDKKf/jlbvzq0eGGPZ/q2Ng1bIgeCYd4K9sH53JuoaQSb+V2aXjl0zYAAE7MxXH9fYN1b/dqQZTXiwiDE8aHG9Uab+fird1o83swH08XzZgHTGHK73XB63bBbYSJs8x8aXAatIpOj3TuZDs9WmOwUWmnR04RMpwiimKpDL5/7yB+u2tE5mdXSjKTlQOqdR1+meUtVs6GfG6s7fBbvme/P2AOHqp3erTGa9kIPO7iTg9RIh1PZ6X4p5JIZ5HJmfFWLpeGNp+1jHi6qNNDPw6fbixgULPTgcIhk93pIYrMAf0aodW6d1YLZ6/vwBOffAGuff6ZDXtMIdgu2q7J7Cv4yfJje38HAGD/2EJV9xOuHrdLw5qQz4wfquGCoCDeymV1eggxRBzj7IN5Uhtqp0dRp0eF8VYLxmc2q9OjtOghy8mVz4B2V6m8ryG+OF1nkNrh2ZsQG3OK08PMc63sglcMrXigImR1ow7KikUTiVWmU4uVFetR9Gg8DxyZxk8eGsKBcX3YvXFNEOs6/HJV0E8eGsK1P9slb/+73SP4wf2DNT+f6vrZNTQHwIy3Uld02VcLJtK5krGJqtMDAD724rPwxddfAID7SqXk83np7rni9D7Lz9pKfPB0uzSculYIZcXdQfI1Mj7QVNp/sJz47j1HcdOTpWO8VgrLw+lhiB6t4vTwVbZPq9fIjx6bxXU377csDlBX0M5VWTwrhAyfx4XOoBdtflEMm5TbKFb2T0WSBfFaYttk1IXXwenhJHqIoSdXeku8LrvTw9zP2/0eKfyq0WM+ZZVrOmPGWwGFq55nY6mC1y+SzGDMeLwd6zvk7QBzJW/ZIvOQVfSo9DMgWX40+jUTzrFUJmeJnxGRfk4iKVkenGU4PfaNVuf0EOeU7rAPLpdmrsSvwaVrdwSqbji100Ogus5I7Vg6PYToUaTTw++u7D2sXrepr5vP7YLLdu4rGW9le83p9GgOPHuvEPaMzOPLtx1s6IrTlcqf90/gvkOlC0PrYc6hyFxam8tcPImTl9OBaj6exo92Hq/6AxwhZOWRqSDeasL4YF6sjNOO+gGr2ApHUh2RhFWQ2rAmCE3TLCu9Af0DbSabw/t+9Bj+6X/3YKiGLF/A6vrZP76ISDIjC67VgY7XIUYjVmKQGE9bP3C7XRqeaVj7F+LppuTmtxqTkSRiqSw0DXjGKd1QP7O0lXB6AMCpfXrcQalINHFdIIQp8f+V4vR4eHAG//K7vXjP/zyy1JvSEFLZwr+7U6eHGlWYbfDbSLi8WqbTQzg9ynR6qKLBp27ciy/ffsgSwzc0ax5fqxVtxxfMPg9N0+QKS+n08HrQYwySMrl8wePb460CnsL3vlOMnSgo5Upvk1JOD00zS6QnjNJev8eFgBwoZpE2REaPcTC2r8zNOrx+QnjubfNjnRFTKCLUijk9uoJey/CxK+SVUVopRfRwOi+T1YU6KFWv7cX1GeOtli/C6bFvbLGq2ETxeau3TRdHhRBeS+dC3LafeD2q08NB9AhR9GgEqtNDXKfYRXQhPlQqlK4JOzs9nO4fcug7Kxpv5TXPgaRx8Oy9QnhqdBHX3XIAv3m8shiUVmUulsK7/vthvPO/H26am0J1epjxVsaBqcwFr89Qh50+EP3PA8fwsV8/ge/dw3x1QlqdrM3p8dDgDEbnrfmvQuyYjlYoeiiriiYWkjVlnRMr9tgoMbx+ybkDlu+fmIthXIlCqWZQvfPItBy4qdbmbC6PnUem5ddq0Z66Ulqshi3V6yGjk5QBnRik5vKFUQykEJEP323EF6g57+XKJEUk2uGS8Va2YeoKc3rsGakuEmK547Q4RYgeavRV7qQ4PVojEqnSeCv17ytu+9jxOfm9YcXpMR+rTvSYUPo8APO4KiKvAj43vG6XHEzYnZj2Dj+vW5MDcDG4cIpGEys4AxQ9JJ4SnR6AGQ8ihCq/xy0HT4m02ekhBoPtDo4o+wIQITyf2heW+6MQRsyeFvM10jT9dVWHje0Br3z99U6P8hHHZHXgdmlyX1EXzbDTZ/mzrS8Mr1tDJJmxnGPKMWVcv/caYrk4ftSyEj9mcwSpQmrI5y5wCq0JU/RoBKrTQ/yN/R6XFNTF10Dx47y9a1F0uwA2p4eT6OHVz32ZXF7OFO1RmvL+xj7hdJ1Baodn7xWCsNyv9piKgxMRZHJ5xNNZaYduNJZOD2NZX6XWZvFzJ0FGDFSmuEKbkJZHdXrk88Brv3k/3vNDc4V0JpuTH9YrjbdKqFb6dBbRMqtpSXmEkLC23Y9/ftnZuHDzGgDAtc87Ax9+/hnY0BUEAAzNxjGsuDsqHVQ/MTyP1//XA/jbn+sRWRGb6+cBQ/QIet3WDz/KBboYuJcWPfRzjlqmF/C65UW6vXSTFCJym7uND5kDXaboEa5Q9BCdIE4kbRFkAWW4txIYU665si3gHHIaWHQGTQeAIFvk3/WSzeWlGNkqTo9ghe4lp1iQXcNzUshXB1LFis6LIWIj1xm9HXbBUsRPOa281LfN7N4BdEeCcHuo0TZ2xDCL8VYm9lxze4ybKXrox5aA16VEe2Sl40rk3juV+k7bnLK7hvSurFPXtsljrFjMJl5TVcjSC9I1yzG+PeAxRQ8lZsup1J6sPoTjSF00I4477PRZvnjdLpy2Vo+4Eos48vk8jkxGSrqhxQI16fTw1LYSP5fLy+sOcf5Rj5FtTk6PcGtcGyw1lk4P42+vaZrFPSjELLdLk4vNVOwxiKcZsbaAVRBxOk+on83ENUfSthBK3l90xqyQzwYrBZ69Vwii8G1+lUcjqQOFkbnKVfpKydms0vZOD/uByY6wRzups0LRLWf7J4SsfJwuoFVL9XQ0BbGAeDpamWvDfgE00SThdzUhhKNnn9GHtz/rFGjGJGRTdwjve+7pONvIBB+ejVsGccUiy+wMTkeN++uCScy2qvjolP5z+zDnsm09ePeV23Dd686Xgza7YKIiBLGA7WJbDJXmqlwtvRqZtoke6zuD8mflnB7iw8/hyUjR97IZbyWcHvprtVKcHupCk5WyzaVwGlyLlejZXF6+jurlXCNFD3WVsNMwdyUiOz3KxVs5XCNPRVKytHxYibeq9tgl9lPh1LILlmLYJMSJmF30cIicEMNy8TqlHHLO4lzpXYCnRKcHYDqrVKdHwMnpYXy2cjoOzygLyeKpLH792AkAwDVnrS1wegjxShWyxApgdSjVHvBId0k6mzMjjhlvRaD30QCm6BFNZvD73aMAIGNFyfLkws1dAICHBmcAAP/v5v147ufvxA0PHi96H1P0EE6P2joX1IVrQdnpoTo9PAVOwTWMt2oIYUuRuVVoEqjnfKdjfV+bVfQQi50A6/nDaYG0T3GVxNL6cSNp6w+zb0ct8WmkODx7rxCE06PaFU+txmFF9Bidb/zAbyGRhvqZVsZbVdjp4Vcuku2IgxtFD0Jan4zDcCyZyWHSuHieWDBXJ6azhbnUTtgvsCcWK4vFIsUR7oliK/k3rtEH38MzMUvOfDxdWVyUeF2j8sOx9fh/3HCP2LPKNU3Dx158Fl594UY5lCnp9ChSotllrFxf7S7RSpi2reZb31V5vNWWnhA8Lg2xVNbiiBBkc3l5HSGuE1ZakXmriR7242nI57YUWKaNwbY13qpxosdCwuwZKLegZqUQKCIk2CkWT7t7aA6A3elR3WIv2elhOD3CtiGSGCo5FYsChZ0e+r+t8UqlnB5c6W1iXy1rj3ET511x7PV7rE4P8R70uK1/fxXVPX/jrhHMx9PY1B3Es88wRQ/xvlWHS+LfYhvUoVi732tZxMYic6JiOj30Y/ivHzuBxWQGp/SGcflpvUu5aaQMl27TRakHjkxjz8g8vnnnEQDAvtHi8Z1TEVunR43xVuq5RoiuagRg2O8uWLjUzXirhhByiLcCbKKHw/lBRY289XtcMgnA/pjFxHH7NUfReCuRGsN4q4bCs/cKQTo9VnkhqVoSOjLfeKeH/cOPEC/ECut64q2k6NECwwJCSGmKZb+LYY4o7hRUUmZuX/UxSdGjboSQUGyovXFNCEDtTg8hNsSM29uFi6EZ/TGdhjmCsL8wSkElkc7KvhGRYy/oZDRmxRTEWylOj3LxVl63C5t79H3l8ERhr4f63jWdHpX1HywXjqvxbk3qVDuZ2K/Twn6PZQCRMY7hqtDhJGbXyrzs82id+IqesD4UmrSdz374wDE8419vxc8fHgJQfAXj48NzAOrs9DDOreuKOT1kvJX+fbuA7eT0sBefphy2XzwOnR4mmqZB1T3sTo+QQ/yU6vTI2JweTo6omYgpevzPzmMAgDdfsgVul+awgrZQyBLn/gKnh9LpkaToQRTEPrNouPVu2Km7BN586Ra4HGJxyPLhkm3dAIC9owv48M93y/P7YqL4oqKCeKsai6bjcnGSS+4n6oA87PdYjkMAOz0ahdXpYT3WC9Tzg6PTQ4m32toTtrzXy3V6AIWRmkXjrWR82sq/zl5O8Oy9QhCDi3y+9IG51VFLQkfnGu/0sDs0pOhRodNDXCQ7qf9iZeRKGXAQQmqn2HBsyBgc2gWLyQp6PQrirSh61I2IjCo21N4knB6zMUvkiurYm4ok8bpv3Y9fPToMQI82e/+PH8O//G6v7NKIpjLI5/OyNHegUx/IifNBe4mhurhYt0djCQ5NRJDN5dEV8soce0GHdImu7mjMShCr+XqMCINqnB6AWmZe2OuhvnfFB5qV1OmRyuRwQhlEt4bTw/o7hH1ui+jh5PTIVRBDWCnC6dEqfR6A4oybjVli3n7x8BAmFpP4u1/sxnfuPlIgOF28Re9S2jU0h2gyY4ksKibY7hqaw2u+cR8eOTZj+f6EzelR0Okh4q2KOj0KS6tNp4f+WGnGW1WMeilkFy3E30p0Kfo9bovTQ8SIic9WTufJmaj+es/H0tg9rPd5vPrCjQBQkI9vWcnrse4H6uvWpnZ6KPFWXsZbEUCJHM0gm8tj35juEnjJuQNLuVmkAta2B3BqXxj5PPCU4u6wLyr66u0H8dc/fBiJdFZ+Xuttt3V6VLn4Q1zvq8cle5G5+jOPSyv52YBUjlOROWC9PlB7OdTzv3CLqqKH+vnA/pjFup9C8rOccHoULrBQv6bTo7Hw7L1C8Hvc8oJsuQwvdh6ZxrU/fdzy4aSZJNJZS7zIaBOcHvYPYqlMDvl83rQ2l7ngrcTp0QrDAkJIaYo58kynh1WwqMTpkbAN6exuEVI9ptPDeVBV1OmhCBD/8cd9ePDoDK79mV5WPjgdxY27RvDde47KnohcXh9uC8eHaosGSmf6i4v1Yp0e+8YWAQDb+9tlJ4mgK0SnR6WI4VmPg9PDHj/mxCZjX3HqGxPvXY9Lk1EtK8npcWIubhletsIKNCenhyhMBiBXmTeryHwhbpSYt0ifBwCs7wpC0/Rj3bTy2WBBWaz1i0eGC/72f/GMzQD0EmrRcyQo1unxu90jeOTYLH77+Ij83tBMDAcm9OPhKb1hAIWCdqCs6FHC6eGvJN6Kokcx7CtaRRTYbMyMehN/62QmJ91WstNDea+IU52It9p9Yg4AsLk7JIdT9tciUMLpIRYXBLwueN0u0+mRySFNpwdRkPFWiQzm42nZzycWTJDljYi4AswOlsWEeZ6Zj6XxxVsP4k97xnHL3nEl3kp0etQWbyWEcavoocRb+TyW4fmasK/gmp7Uhur0sIgeitPW4vRQjvXrjc9rquumv9P6Ga4Sp0dQxn+KTg8j3qqII7EVrrOXEzx7ryCWW0zFd+45il89dgK37B07Kc83OB2FusjuRBOcHnZVNZXNWVZ0lY23UlYG2RE2SHZ6ENL6FHN61BVvZbsAUmMdSG0I8SJUJId9g7FyeTqasoge6qBMjf0BrH1Tx6bNAV40lUHEeD7xuIJSTgIxtCvW6SGyiLf3dxT8bLldNyxnzHgrfWA2oKzkCjjk+9ppD5irP+0IN4f6YStYQ5F5Pp/Ht+48jNueGq/4Po1gcNo6iLYLsCsR+8Ai7PfA5dJkD4E4hjdN9GhBp4fP40K/EbG3Z2QBn795P8bmE5hQ+mBiqazlb98R8OAl5w6gO+xDPJ3FH58ctTxmsS5D4XpXBZUbdh5HPg9cflqvFKzDNkE75NXfpzLeyi56iMgJh5WbbbLIvPAaX4iXdHpUjlzM5+T0SGel2OB16PQQCwfEdZBweZy/qUveppTTQxyLw7Z4K/EcXo/S6cEic6KgFpkLl1K730Mn0Arh6rPWAgCetrkL775yGwBrisrt+8fl+f+mJ8fkgpi+NrvTo8p4q3ShMO5VHQV+q+jRzRLzhqF2elRbZH7Ohk4AuqAuEG59+ZiWInPna4CCeCuH/jB1O1hk3lhaZ3nRKqAz6MXofKLoqqeTjXjTnqy4LZGT3R7wYDGRaYrTIy2t1BrS2TzS2bzlw00xy5rAW8KSxk4PQlYPxYZjIiJJ2KV9HhdSmVyFnR7W40qMx5K6KVdk3hn0oiPgsQzWAOugzH4OVFf6H1EiGWPJLGLG821cY3d6FB98tpURPfaP6yubzxpod9x+oPpc/NXItC3eqjdsWtmLuWxUSoke4sNLwGHoVk0u9P7xRXz2j/uwtt2PB/9xXcX3q5fj01ZhrxUcq/bV+uJ95nFpyObycvFKo4rMb3pyDOs6/HjaZj3KaaEFOz0A/dg2Op/Ax3/zBIZm4jgxG0dUOV7G01n5t//uX16MU3rDCPrcuOSUbvzxyTH8+MEh+TjDs3HMx5zF/UXjfSZW6CbSWfz0IT1b/y2XbZG383vc8poeMAcPxYvMC8tFhXNADNpLOj28/GhdKeK1EANGa5F5Dumcvcjc/Nue0hvG8Gwc08ZA8vGhOQDA+Rs75W0CdtHDIbLMLDIXbh79a7XTI1UkhoSsToT4uZjISMGuK9xax/FW5rnb1+Hn77kMZw104KBx/axex9+8x1xUctOeMeTy+ntf9L2ZnR41Oj3UAbml08Nt+dka7lMNw+d2wePSkMnlLX9j1eVvjT8UjmwXPvWKHXjjJZtlDCcAPOu0XsvjO51b7BQUmaedzytigXUurzuOPRRTGwL/iisIEVNRbNXTyUZcBNo/MDQLsdLwMsOWOBdLN9w1IX4ncRGczeUtH+7LrfLxu4vHW4nHaYVhASGkNPbhmLhYPmGLtzpjnd4DMFVJp4dt1UesyBCcVI4oJC/ltDjF6Gqw3E+Jt7IPuVWnhxrxEklm5PBvQ1fIcp/S8Vali8yfGtU/tJ3p4PRgvFXliNdKxFupJYXrbau6nJA53w4LQRIOhYXBGuKthmfM40cqk8O9h6bk0KWZHDQigwT12u4nFhN48OhM+Rs2kYJOD9uwM5NtnNPjieF5vOd/HsGrvn6f/J4QUjuCrTUkFw6LIWNfvffwlOXniVRW9uRtH+jANuP4KiJHhOPqrYZwUewzj3ifiZiwnUdnMBtLo78jgKu3r7XcVnXyBW3xVnFbV5LT6stPvPRsfOkvLsDzztaFRqeFTYy3Ko3HoeDZ/rfye9Qi82xhkblynt5mxJfNRPX9Y/fwHACr08Muelhy1732InP9/+Jc7FU+z6UYb0UU2oyYu0gyIxeidgW5Kn8l8fSt3Wjze+SCI3F9nUhnceeBSQD68Uic8995+Sly+FxzvJVDp4faIxbyeSw/62aJecPQNE2e862dHqXjrcI+DzoCXjx9azc0TcNNH7wC3/3Li3GRIoAAdqdH6SJzsWDRaYGFfTuq3cdIcXj2XkGIE2qxVU8nG/GhJVqkXLXR/P/svXeYJFd5/X+qc5qenDZHbZC0K2kVdiVQlshJIshIgGVsLCz8M8g2RhhnY/TFNskGDCbZmGDAItkEIVBAYRVR1irsanOYnTzTPZ3r90fVe+vW7aru6p6e1P1+nkePdma6e3q6qyu8555zaCX0+r6EOEk9OjGDdK5QV7Z9tlAsc4vQyj45+48urAI+zTYEcYJ2dE4lh3TSzPFWDNP80MrF89Z24f2Xb8TX330uAODw+AxKJV2UrW4xB9WeOj1ERI6xn5kvwbmZmRZOD/dB1c2v2lz2PXk/rooRTp0OgJHjSm6NgfYw5MNJRdGDTpQVt0GhWMI9LwxjeDoLTbMENJlmibfSdR3PHpvEgy+NzsmQP18siddIvtD8zu/vwkdeswWXKkNUJ8TqT8d4q/Ls3nAdReYnpHOdWx89jGu/9AD+8odPe75/vagChdPijZNTWc+Ooov/8U689Qv346H99Qsf09mCcMzVQ7nTw3g/aAhBfQLy6VyxziLzB14aKfteMzs9ZE6Yxzrax6Ulp4e8kEjOWR9sj+Bqs4w6nSs6LiSi/S7FhFGE1qaBtrKVkbKoTUMlN6eH04B7sD2KN5yxXAxLqO9PZkZEJbLo4YQaNQWUv1aRoBVvlc4VRY8Qde3IjshB03Uzkyvg+EQGJyaz8Ps0nLrMEv+dRBXr32a8Vcju9KD9uFOROYseDGDv9KA+GlpgwiwtZIeurut4aP8o0rmicQzaYRyDVnXF8IeXbhT3keOHxtM5z922ltPDOh7JkWiJsF306OR4q4ZCC1vsnR7O8VZ0fIgp14abB5K4bEu5y1p+38IuC6StSE3q9CiP0gTsxxkWPRoHH72XEMLpsUhiKua7o2KM8rZjIZGld3R8Bjd+41G87P/dURa/UI2//tHTOP+WXwlLNGCt3pIHYHRh5cXWHKzg9JDjrdSLJYZhmgtaHbSuN4H3X34KNvW3we/TkCuUMDSVxUlT5Ngy6F30oFUhlPPKosfsIdG+ktNj57pu/OqPL8JbdqzAK08dMO8niR5qvNWEswg/nS2I9ywRDqJDuqDx5PRQFhj89Y+fxnVffgAAsLor5thLQn0Bi+W8oV5+9PhRvOrTv8Zbv3A/XvmpXze0WwGwzi98Gmzvy7lru/C7L1/nqUyyktODjv9ykS6Jl7U4PU5I29avXzBW0KvFz41A13Vxbjc8ncXzJ6YBQAwU1U6PTL6Iy/75Tpz7D7fjF8+cEI/hJI7oui4+B7Nxe1z3pQdw4cfvwInJ+vrdyjo9QhRvRedxxjZWkra1gsOCFi/I7i/adpux0wMoFz0IKhaXP7vyxf3GvoQQHN9+7ip0xkKirNpJtKXPGcWSULa+0+pY+ZyeBu3U7aHGRDoVmYvnKw0z1MVNaYeSWsbCyQGjRoHJTg95MQFFB8sDKuqOSeeLePKI0eexsS9hOw5GlPfQ3qlEnR72bg8qqyd3Sa5oOT24s4EB7J0etAiDB9RLEzr3LpaM8xJyKG4dTOJ9l2zAVWctx+euPcu2/wpL525n//3tOOvvfuFpFpYWTg9rPyKPg2Jhv+24w06PxkL7eFlsb3Pr9DD/HfMYVxl1cBGW3UaNt3I51/D7NOGMdJonMvUxq6P3LbfcAk3T8P73v198L5PJ4MYbb0R3dzcSiQSuvvpqnDgxv4WLzUr7You3IqeHh6zrRjBqDm064yGxwufZY5O46/mTyBVKePiA94vnYknH/z5xDLoOPLDPWoFHOxf5pJlOvL2s8AkJ9d9J9DBep5LubI1nGKZ5IKcHXSMH/FbB653PDSFXKCEa9GObmT99bCJTVQyl/UqHED043mq2kPMiVkH0AAzx6h/fsh0Xb+oFYI9EkffnxZKOY65Oj6LUIeK3rQyULdYqbkXmTx2ZFP/+g4s3ON63o0mcHg/vHxP/Pj6ZEavkGwVFW3XGQqLIulYqF5mXOz2iUoyLV45LA35asOF1lWEt/PkPnsKWv/wZ9p6cFsLE5oE2seBEdaecnMpiMlNAtlDC7/3nw3js0Dje/R8PY9vf3FYm6MoCXF9bGPXw4tA0Hjs0jpl8Ebv3lbsovEDne+eu7cLOdV14/RnLAFjDTuH0kIb0pToXrMiuYtpvUyxT8zk9Yo7fX9MdL/uefLHv82n4kys34Yqt/XjnrjXw+TTx2kzMlG/j00qnB8UcOQ0f5c6m8nir6p0ehHwdkFfO4+lx2OnhjNPron4vLDk9ZPGYBkDy4oABc1+k68Bx8/O1rMMuuFVyerzl7BXYta4bV241FjJcvqUf56/vxjXnrgQgd3pwkTljh/YnU1KReSc7PZYk0aBfnPNNZwviHKsvGcGyjig+8dYzRJE1QS6AkemcuNajCPZKZByEcfmcIh4KwOfTxH6KhbTG8jsXrMXFm3pt0VQkpPt9ms0hSvt61enhhiyoux0nYkFV9HA/1+Ay88ZTd5DsQw89hC984QvYtm2b7fsf+MAH8H//93/47ne/i/b2drzvfe/DVVddhXvvvXfWT7bVWWwxFSKuKT8/gzfh9IgHceqyJO5+/iS+ePdLwv689+R02X0+/rM9+PETR/HV3z4XG/qs6I9nj02K1WEHRi2HCF3EhANW4VGqDtFDvRgC7BnYmVzJltnHMExzQauDadUwYAwNj4zP4Gv37QcAnL68HZsG2hAN+jE0lcWDL43iPCniQ4X2IbT6h50esyNXKInVugkHl4QTNEQhsV8VIjL5om1Vt0wqa8VbxUMB84LGuFCqHG9lrkhW3m8aJv/Pe88vy5clFtt5Q73Ix2nA+Hs6G7gKTi0xrwc551uFhA2708Ob6FEq6XjP1x9GKlu0CTJHTHFtbA7ivr75gFEI/bk79oqV0DvXdQuHmvqcVbfKw/tH8as9QwCAnzx5DO/ctUb8TB4OeHHQOHHbM8fFv+uNuCIR+Zw1nfjTV1gRdhRvRfsGeShRqNNhRKtHAWM43hYJSk6PZuv0cHZ6rOiMivNqQh0OvP28VXj7eavE1x2xICZm8o5ONRI7prIFlEq67RpBpVK8lboPF+WiDo4N+TogVyghbmp2uq6LVbxOjjvG+XVRYyXDAZ943W1OD7+9fwOwnB6AJVqrIkdEuc6SB1MXb+rDxZus2MJV3TF88/d2Wr+True404NRsFydeSneigfUSxFN05AIBzAxk8dUJi9iEuX9iwoNpOVzLzqHrITo9JD2hRt6E7hgQzd6E2FxfhcN+ZEtlNjp0WDU8wvA+iy7lYnHPR7PbaJHtU4Pirdy6PojwkE/Ui7Rnkx91HX0np6exrXXXot///d/R2endaE9MTGBL3/5y/jEJz6BSy+9FDt27MBXv/pV3Hfffdi9e3fDnnSrQp0eiyWmgi4Y583pIa3EpDJBeQXh3iG7yj40lcG//3ofDo3O4OZbn7BFFMgrAw9IF+DyiS2dZNfk9KhUZC6ptbXEWTAMANyxZwhv/cL92HN8svqNmQXHcnpYQz3KLN9z3CgF3raiHW2RIN54prHC+Ou7D1R8TNqHdLLo0RDkYVelTg8ZGtzQgEsduA5NZV0Lx6ezBWswFvbbVgYmKogeFIOUlY4buq6L419vwn21PIke09mCKIW978VhXP35+/Dc8SnX+y02Diir6Bot4oykjNdyNheZiQpODxFv5ej0qHxRc/cLJ3H7s0O4f98IHnTowEjnijW5RWphOpsX50s713WLIaL6nNV9kezEUeN+DkoCVr3P+7anLQe5lxWWTjgVVgNWfwB9XmxOjzpED13XsU9alEOvVbN2egy2R0VfkfzeD7RHbF8H/dV78jpc4vl0XRcRg7puxBQKt5ZTvJU0uKB9uHB61BBv5fdp4m+THX75oi62Ey4yd8bJ6aHGW8mdHrQf9WnWeVQk6MeO1Z1Y1xPH8s6ouOai68OYsq/x+TTbtZuXmGLC6vTQxTVdLfdnmhfZ1TnOTo8lD72fUxnL6THQ7n5eTecMYynruHR0wtnhLeMUgejzafjG7+7Ep645U3yPzrMaubCHcYbO291ED6/OTS9F5lFlAZvV6eEepcmdHo2jrqP3jTfeiNe85jW4/PLLbd9/5JFHkM/nbd/fvHkzVq1ahfvvv9/xsbLZLCYnJ23/Mc5QFIaTzXshmO9ibjmv94wVHWWxCKrT49sPHhIr9R7aP4bvPXpY/EwWPfYPp/GtBw/ir3/0tK1ckSIOhOjhwdZMOzo1vqpY0m35vyx6MLXy9//3DB58aRSv/NSvxTCGWbwUzWgUJ9GD2L6yAwBw3c7VAICfPXVcrDJyglaF0MXVfO17mxW5r0ktvnXDKhU37jukiB57h8odh8TIdE7k9ybCAbRHrQuaZAXRgy6Q5ONGKlcUg+eeNvcLo3apL2DSdDe+/UsP4JEDY/jd/3zI9X6LiXyxhMNjxgUl/T20Sr5R0NCsO15f3BJgrRjLFUpllnQSrMIOnR7VBv9fv98SQ91Wfc2F2wMwxKUXzW36jJUdrs9Zjdqj8mqgfAi8f3h2oseJyYyti+1AjX1uhNvqbavI3PiwFmfp9DgxmbV1ANEFL7mNm63TIxTw4fQVHYgG/XjNtkHx/f5kBBE5F92D27ndXD2txvpm8iWbGDWVsWJmuhxWXMsRFWq8lSrY0WfXbXAhzvOlz6J8LOZ4K2ecxKCyeCsHp4d6bP7u7+/CbR+4EEG/T+yPaJW1s7BS2zZH2Do9uMickUiIyNGiGHzzgHrpQu/nVKaA46ZTu7+S0yNYPus5Nl69Wywj3ICV90Mb+xMI+jWc0p+oeDtm9qzpjiMS9NnSYADJ6VEl+pjwcpxRIzUrxlvRYjeOt2oYNR+9v/3tb+PRRx/Fxz72sbKfHT9+HKFQCB0dHbbv9/f34/jx42W3B4CPfexjaG9vF/+tXLmy1qfUMriteFoo6IQ/NQ+58pl8UVyYdMZD8Pk04fYg9o+kxDC4UCyJeAbKzP/Jk8cAGALEA1J55tGJGdx865P42n378ZuD4wCMnV0oYLe+hzycLJMwUizptgsydVDBw0qmVqakfOOv3rt/4Z4I4wknp8fWZUlbadr2FR0AgFOXtWPzQBsKJR2PHhyDG3TyQzmvuWLJMUrPC0fHZ/Dxn+0RJ/itiJcScxW1iG5oyv76OcUsEnRbTTNWcskrA9sqrPaOOKxIHjbFlljIXzFOJeD3ib9vXBmMy5E7i5mj4zMolnSEAz5xEdhop4cVjTObeCvrfUhlDVv6J257Do8dGhcClez0iDiIWSqHRtP41XNDVX/3XPR6GL9/BiXd2GZ7EiErkku5EFPPaWQ3h1r+K7t26lnF9pRZWmw9Xn2ih9sFp5zlD9jdHfU4PdR9AkXCTginR/PFIX3r987D3R+8xBa715+M2IY9XgbI1nVPDr85OIZ/vu05ZAtFTGXtn//JTF58hp2Gj/Jnk56DuuqSqLaqXzi6pWNv2nxPg36Ny64VNvW3AQDevGNF2c+cRA8qH6dOD3XBmU/KXqfjMbkenbq55GFUxKVg1gl6H7P5orie404PBrC7OunYy/FWSxdyW05lCjghnB7V461kjnlwetB5UjU34JfedTbu/dClGGx3jopkGkdXPIR7/uxSfP3d59m+Lzo9PC5ikI8tbuc2JKCQoO/mNpZ/Pzs9GkdNR+9Dhw7hj/7oj/CNb3wDkYj7zqAWbr75ZkxMTIj/Dh061JDHbUYWa5H5fAzwaQVXwKeJoeFrTjdWkG02M/HzRR2HzNWgTx+dxPHJDNqjQbz7ZWsBWCfQLwxNYSpTQCIcQDToh9xLSRfyQb8PIeH0qLzqSyYo3UYeRqpKLTs9mFqRD3zfe+RwhVsyiwGr08MSPfw+Deeu7QJguDVWdlkntDRsrXSCQz+Th+X1Rlz9x/378bk79+KbDx6s6/7NgFUq7n3oSLelle1qvNW+k8ZAd3V3eZkvuUJiQT98Ps02nKskvJDVfSZnbRs05PHSQbHUez32m0Pt1d0x4Y5p9N9C51Uds4io8Ps0cYE0nSngh48dwWd+9SLe+Nl7RWRCxDaAq97pcfuzJ+ClO1uOWWgk1BvSFQshIK2szirxVuo5zaExS4goFO1/gBxHVY/Tg4bSq7pi4jn++oWTeNgh+svL45Q7PSjeqtzpUayjyFwVPdK5IrKForjwnY27aLESCwXQ2xa27QcHkvZ4Ky8DZPo8jqfzuOWne/Avv3oRtz8zZCu5Boxh1WjaXbiMO3R6WKsurcfSdb3iIAKwuj7kbZeOwxGHHpBW57vv3YXv3bALr9++rOxn5UXjfvH6Tgmnh3sEGgn+bvFW6u+ozelBMVvW+xxkpwcD+/naUfMYyfFWSxcSsUZTWdHR0t9WSfQo34/QuVIlKN622nEiHPCjr8LvZxpLTyJc9p70mmkylRw/Ml7ObWgRB0WbZvJenB4sejSKmo7ejzzyCIaGhnDWWWchEAggEAjgrrvuwmc+8xkEAgH09/cjl8thfHzcdr8TJ05gYGDA8THD4TCSyaTtP8YZeXCh13Hh1UgKRctaPh9Oj1FpBRcVX56/oQdf+e2z8W/X7cC63jgAiBgGUtzX9cbF6guKF9hzzMgx3zqYLBtMiZVFAZ84uaXvhb3EW0m3kXdUav71XOVvM81JKluwDfnm4zPHzA4npwdg7LcA4KxVnbYSXxq85Yvu+3bap7RFgkJMUWNlvDI8ZexTpxocE7SUoD6qWuJI6MTWcnrYRY+XzIHuqcvKz2VIIKEBHA30fFrl50BDG7nTg0SPngp9HsRSFz0OjpCQFJ+zv4UctO2zjBoSMQnZPB45YLm2vnbffuPxpcFIxEOnB53TnL++2/U2AMTAd66g7czq9FDjrexfH5McZLQAJJUt4O7nT4q/yelxvJA3963LO6KIBH0olnS848sP4s3/dr8QMo5PZPBQFRHEvdOD4q3I6WH9rFiH0+OFE3bRI5Utiu3N79NEnngzsr7XcGaFAz6bUwjwtpCIBIyRVE6swN13crqsN2c8nRf7hE6HFde2InNyeij7csDu3nDK2Qak/ankuqfFXxxtVU4yEsTZa7ps5zuE6lIMBy2nBy1KqOScoe3JrcgcsA+UanF60PYpn2Ox04MBjG2K4s9InOuIstNjqULH4L3moqVQwFdxAYyz06O6a56PE0uHd+5ajU+8dTt++4I1nm5vi+50Oc50KIvXnbr+xGME6LqPRY9GUdOZ9mWXXYYnn3zS9r3rr78emzdvxp/92Z9h5cqVCAaD+OUvf4mrr74aAPDcc8/h4MGD2LVrV+OedYtCw/tcoYRMvrSgZXk2W/d8OD3MVYxqVu+lm42Iq/W9CTx9dBJ7T07jCvSLPOmBZASJsD2m6lmzCHrzYBuGJrOiVBiwIoQMpwet8jF+tyenh7QiSY60KnN6mK/ZwZE0+tvDNa0+YloP1TbrluvOLB5oOOZXLvSv27kKuUIJrzrNvhBAjVRxIiOtEoqG/JjKFOre/1InQiuvIqFjQi3xViRYZAuG8K86PSgubE13HD4NkGekQ4roQcO5RDjgOBAinDo9TpoZ5q0geginR1dMvJ5z5/SY3eAiEQkYZfaZAp45ZnXUFUs61vXE8a5da8T3ohWcHscmZpCMBIVL4FWnD+K+vUYX2YrOqOg4IcbmKN6KoN4YGjKq+w06p+mKhzCaytnjPc192id/8Ty+dM9LtvtVK3F3Ii85NFZ3xfHcCescbjydwxOHJ/B7X38Yug789I9eji2DzoupqnV6kAAt/y31iB7PSeeYgBFvJRbyxIJVy7yXMv3JCD7+5m1IRoII+H22YY+XUuhuU/QYTWXFYHv/SBo7FKfHodG0cEQ5Dauoi8mnWb9XzdcG7Nu12/OjFd1jkuiRFsOs5hWw5gK/WTSekwTIsCJGBSt8PqLmsIjSAJxe/3qdHtY1oLWtBSu4TpjWQdM0JMIB2z6gI85Oj6UKiR4vDBnH6oFkpOI5udNQ+9j4DIamMmgLB13ncxRtGWVH4KKnLRLEVWeVRzK6EZGOLW7ieLtSU0CCRqV4K7UjmKmfms7O2tracNppp9m+F4/H0d3dLb7/7ne/GzfddBO6urqQTCbxh3/4h9i1axd27tzZuGfdosRDfgR8GgolHaPpHJaHFi7rTx66pnNF6Lpe8QAxW2gVY6fLSQWtJttnDggoSsLIELbHkZDTY9NAW9mBiQaBISmXl1YDe7lA0zQNIb+vLGu/bECQL2L3vhFc88XdeM3pg/jstWdVfWymdTlqFqT5fRqKJZ0PgksAIXooF8nhgB/vvXh92e3FCY6HeKtwwId4KGCIHtk6RY8Z+0lXKzJdR7yVPLRL5wplTg9ajdwRC6IrHsLwdA5t4QCmsgUhkNBjkOhRqc8DsC6QCiUd+WIJQb8PIzU4PWgIuFRFD+qAWN0Tx6gp9kw2+G+ZMM8xOmbp9KD4zdFUDs+aosf7LtmAbKGIP7xso8iOBqzVXWo01EP7R3Htvz+As9d0ipWH25a3Y1VXDAdH0zhtWXuZ6DFXnR6EcHq4FJnT39CfjJQ9F9qnPX10Eip1OT3M41/Qr6EvGbaJHo8fnsAN//WIGIA/f2LKVfQQhdXKBSqd+5HTYzZF5rqui4U2K7uiODQ6g3SuaPVPtEAO/FvPtroaozU7PYzt7vhERixKOjCSEqurCdpHJCMBR2cA7eOjQb+4VhFRhXnrGkY+HrpGVJjv2ZjkrqLrCx5m1U4s5LdED8npQahF5vb7Gu8hfUSrFZnX0+lh9Tr65vQ6l1laJCKW6CFHbzNLj0TYOC8jF+pAlUgjpyF1KlfEuR/9JS7Y0I1v/K7zzLNRjmJm8RH0a2JG43ZuQ07vyUwepZLurcick2EaRsN9mp/85Cfx2te+FldffTUuvPBCDAwM4NZbb230r2lJNE0TxUpHPWQHziXyEH8+hrDVSkYp15yGOicmLNGDVvGSeLGHnB4DSazpjtseZzrrEG8lfc8LdDub08Mh//ojP3gKAPB/ZsE6w7hBTg+KY2Onx+Kn6NDpUYmgWF1cQfSg/M+gtWK23niryQwVqbXuCVU9To9wwAd6S9O5Io6Y3QX0PtOxMRkJiuPVsg77AgUatp25qgOXbu7D7758beXfKQ1qaEhM8Va9tXR6mBdcS21uQ0XVa7pjaI8ar91i7PQArGzoB/ePIl/U0RUP4Y+vPAV//pqtNsEDsDs9KLI0Wyjihq8/glyxhPv2jgihbH1fApsHjELglV1Rsdqc4vPGGhhv5RSfSqJHuEq81aBD+Sft0+R91TLzdpk6jmWW6OErG3Df++KwzY1RKWebzlvVVZv0WSanx2yKzI+Zw/qAT8Ppy9sBGM4CayFP84seMtEai8zp3F6ORDswmi7r9Dgwauwj3K4RaB8fDZXHXMnXMEIIqzDg7hQ9I9ZnjmNL6kfu4QgHfMLpQVRyV6g57E4rrCPB+pwewYDxe8XCN462YiRoUA4Y5w0siC1dyOlBKSF9ycqLiSotgr33xRHXnwnRg/tfmg5N08Q5vdv2Qddium4s5qbTSafjEj1GK6cxNJpZH8HvvPNOfOpTnxJfRyIRfPazn8Xo6ChSqRRuvfVW1z4PpnZoSL9/OFXllnOLOnSd6zLz0Sqr4qwBoPE8yOkx0B62LOz5Ikams+KgtmmgDZdt7sMp/QnxOPZ4Kyoyr1P0qFRknivaLuIA42L6mi/ej+u/+uCCd7YwiwtyetDnn0WPxY/V6eFtvxH0YGWVIyBi4fI88lqYnOF4K+p5ioe9D0I0TROrS1PZglhxv7G/zXa7ZDQoCoqXddgHwRS1Egn68ZXfPgfXX1BF9Aj4hFBBK+qpk6WnzXu8FQ32l9pqZBI4uuIhcbHYaNGDHq9RnR73vjgMANi2ot11GELDvZJufe7/4779IsaHGDAXb1x11nIs74ji8i39omRxY59x/tJIp4dTr5AQPYTTQz0HNM6TBiqIHvR33foH5+PGSzeYj1OP08N4fkG/D++/fCNWdFqionpedWzcPWdbRAv4nVeW0/OejdODFtms702IbUt2eqiRrc1OVBlwV4PirVLSce7kVBYnpuzv68GRyqJHzPxcyqKEPGyna5ic5KZ0o1M4PcrjrRYydnipIr9mkaC/zI1RqdNDfb2rOT3cstadUOOtuMSckdmxukP8u5aFM8ziI6n0alV3elTeF7gtjiChvBUcnq1IRIgezucB4YBfHKMoFQBwPi6FzMfgeU/j4CP4EmOVudKbVj4uFOqg7JO/eB6//dUH52zV8GgVp4eajU07k/62iC265NGD4wCAVV0xJMIB9CUjuO0DF+GKrUY3iCxwkHghrM0eV/nQqiR5R6UOCOSCU7qoe35oCrv3jeKO50629CCSKUd1ehRKel3Z4sz8YXV6eLs9XVDnC+7vK+3fwgEfYkGK7Ztdp0crn1DRvr3WHHY6aT00NoNsoQRNA9b32l2DyUgQL9vYg0jQh5dt7LXfv8YLZHkF0aMHxvDWL9yPXzx7AoDHTg9FKJBXvtYzdJ5vxIr8gE8Mjidn6nM4OVEq6ZboMVunh7n683mzvHrbig7X20Zt74PxN9753Mmy263vM7atV542iHs/dCnOW9eNCzf2Ihby48pTjUVFjXR6OAmvPQl7p0dGXchhbkc9iTBUcxuJFCNmNFl3PORaiO4F2emxbUUH7vmzS/GKU41zuOelqCugvA9Lxs3pQedwBYdOj1KNC1KeNeNUNw+2ISrts0epp86DU6uZsDs9qgsE3S77t2eUqLRqTo+tg0m0R4PYua5LfC8gdffRcdSt3F7GKd6Ktn92etSOfPwNB3xlr30l0SMWrC56yMe7SC1OD4q3ytV2Dci0Bn98xSbx7/0LPJNhZkdCFT0cFm/IBPw+4bJ1IuXgwM8VSkK872SnR1NCgn2lRdIUoTs0aUUjOx1b2OnRePgIvsRYQ6LH6EKLHvYL1f+4/wDufO4kbnv6xJz8vtEq6nhEcnMAlkWxvz2CcMA6OJHYQDER4v5By+YO2GMT5sLp8aPHj5bdjwpw1fsyzLEJu9MDaO1h9VLA6vTwuN9wKDLXdR23/HQP/vP+/QCsk59IUHZ61D78LZV0sV/jeKvaV+nRYOV5s6B4MBlBUnEItEeDuPGSDXjir16BXeu6bT/rqSPSho5Rf/2jZ/DgS6Ni+6qlyJys9XJcCIlfixlRXO33z0kp+1SmIDLhZ+v0aFMunreZkUZOBP2aEAiyZsQV9YD8/kXrxO2os0zmI6/disf+8krsWN0JAGKI7oVcoYSbb30CP3GJ1sw7HFvIUSRED2UhR1qK91E/C7lCCTO5ojg/64qHrEL0eorMpU4Pgobd1LGz1ezxOOrB6RHy2wehAZ99Xyyv2qzd6WF1yFnF2QUxMG85p4cseng4NnZEg2UiGmD1w9C5Pe0P3a4RetvCeOjPL8f/u3qb4/MpFz0qOT3scYGAHG/FK75rRS0aV1/7QIWVI6rTg4RF+22sx6vF6aH2Onq9BmRag854CJ9463ZoGnD9BWsW+ukws6AtbD9ncTrnUpH3U+p5+GSm/LqMXB4+DWVRp0xzsKm/DX6fhjU9cdfbtJvnKLQ4O+T3wedwkhN2iMpnZgcfwZcYq82hJ5X2LRRuH0LfHGVaVuv0oNU+6VwR09mCGOgNJCNmHInx86ePTgAw8rFl1JPs0GxED4dC4kpKLa10lFVf3skxMpRLTk4PgLeRxU6hxk4PJ7H08NgM/u2uvfiHnzwLwD6QUSP9amEqaw15W3kVyXSW4q1qG1RRLjytKl/RGSuLjEqa3ROhgK9MVDm9wup/198pyszt71dPDZ0eFGkmxxepheDHJmbwz7c9Z7NeLzT0mQgGNHGx2EjRY3zGOL+Ihfw1Zb47ob7XW5Y5l2gDdgfPTL6Ik1NZjKXz8GnAdeetFrdzuwAPBXxiaD5WQ7zVw/tH8a0HD+ETv3je8edOvUI9ZlQblQyr5Ypyp4EqHOWLJYyksuI5J8IBsSKuHtE1J8VbEeqwe9sKQ2yqx+lBQ1bah8vxVrpeW6/Hc2a81ZaBpG3ATlFfLdfpUWO8lc+nOZ73v2RG/PYr8X5u1wiAc0+HJUSZoofUm+WGc5E5x1vVSyxk3ybUno5KTg/1to5Oj0Bt25z1e6nTo7ZrQKZ1uOqsFbj/Q5fhI6/ZutBPhZkFstNjsD2Cl2/sqXofeV/yR5dtwO6bLxPih3peDVhxiO3RoOOQm1n6fO66s3D/hy7FcqXHUUY4PcwFOm7HpFCg/nNkxhk+gi8xaOi52Do9CNUi2ChGq1wg0oVGJlcUjom2cEAMs+LmkIqGx93K45SJHk7xVh5PeIOOoof7TouGjoelwk0eaDOErusil3xVV0xk+2eLfCBczBTN4bTfoxDsFItH+71MvoRsoSj2I0aRef3xVvIJeT0rrZsFcjmoq/OrQZ0clugRLRc9pJVcMaUz5IyV7qv/3VBzzgkvnR4dUeN4R0KBvI2p4sFX792Pf/nVi/j6/Qdqfo5zQamkC5Em5JfirTL5mkul3SAHTMcsXR6A/RyoLRIQhd1u0NDuk794Hne/YPSArO2JY2VXDKeagslpFdwinXHjOY+mc567wMg56yYcOcZbtSnxVqroYX4dDZaLHrlCyRZtpWmaq2PECwUp3opQh90UKzaWzrt2ztGAW3Uc0NcF4fSw36/o8XXWdR37Thrn6hv6EpZQnZc6PeKtteKzVtEDqCxkLFOGC7WKSJYQRc5Hcv9Ud3qMy50eeeP+S60vaTFgEz2CvrLXsFKRuSpyOHZ6mN+rVE7vBF3zzbjsJxgGMKKQKkUdMYsf+Rrg7eeuEr1elZAXyLRFghhoj4jFTs6iB/d5NDvhgB99Vfpg6PyYFpa5LbCg7auVFyY2GvbhLjFWdRmix2SmgPF0Tqw4mg8Ojabx0P5RxEJ+13Leonp12CDo4sItB1FeLTlk7kj6ktYwiIpqj5rCgnpR7pQha8XNGBe4atmlG3QhJ6+WrHRhXyjpKBRLODxmRZax6MEQ09mCuOgabI8i5PchWyjxNrLIsYrMvYoe5fuNcenEeWImb+2LlDK0e14Yxq713Z5/lxxp1MqrSGgVeLXSQpWoED2M3oYVnVFRSk3IF1FxJfJkXU9167zb71QLq9s8uFSsInPjvvJ7rg6+adHA8UXi9MhL5xShgOXA1HXDsTTbOCrA+py1N+B8SnZ6bBlIVh2ytceCGEnl8IPHjuIHjxmxl5vNaKbPvv0svDA0LSKsnKCBcK5QQjpX9ORaovOpKZdoM6djS3dcibdSbpOW4n2cnB5qLxuJeGo3iBec4q3UQcLanjjiIT9SuSKOTcxgnYNbpprTg/a3qshRLOnwMttO54riONCdCNlcBWIhT4sNQOShtNeFRLLosa4njn3Soq/BjiggdeT1eoj7c3o+6bwSb1XhDXbs9JCcTkxtyJFUkaAf0ZAfbeEApswFZwGX603jvkq8VYVOj0iNTg3VYcJOD4ZpTuR4qmvOXeXpPvJ5A+33abFTpXirDu7zaGno/acYfjd3eYjjrRoOH8GXGLFQAH3mys56irOOjM+I1Wu1ct2XH8BN33kcN/zXo/jXO150vE21D+d4OoeTU9mKt3GCLozdLijk2AAa1shFVDQIIPFBFYvUi15juKIpt/F2MeO0o1KjIFQyhRIOj0lOD+70YEzkKJqw5EDiA+HihgpvK+VRyziKHtJQhVZKA8bAkPZ5X7tvP6778gP43yfKe4LckEugW3lfQw6qwY7aRA8SMUiMVOOt4iG/baWY7NJY3xuvy9pOER1kbnjFqf34j98519PKVbkHQ3ZO0PdkKIZoZLr24/RcIO/ngn4j+oQWFjitpqsHUWIenf06IFns2qR0hznx0Teejt86d6Xte1vM+63pieOKrf0V7x8N+sUxQRXE3KC/N5MvOUZZydsHYGw/9DuEWOESbxUN+co7PYo6hs3tiYqpwzUUmeu6jgMjKeFkyTvEW6lugN62kDEQh3Ovh+ogkqEhK0XJFRVHkdcy8ylz8OH3GTFmUeHOkzo9WizeSo4j8jpElsvMX7tt0PYz2UnVkwjj8iqfF5WYOXCn7TdXS6fHjOU243ir+lHjrQCjj5GoGG9V5vQo34fTNuf1Gs7t97LTg2Gak/5kBJ9823Z87fpz0OvBPQ3YY/NosUtSiZKVsRbvttYxn7HTHqN4q2pOD463ajR8BF+CrKmz1+ObDxzEBbf8Cp+9Y2/Nv/PkVBYHJJFl38lpx9vliu4Xg7945gRe9v/uwOWfuAupbAG5QslzPAVFsLgpojRwyhZKovS5X1q9q4olqtIeKXN6aHWf8Ip4K1uReflgYWWXZcvP5os4MsbxVkw5NHjRNCPfWpRbtfCweilQKNbm9LAcYs4DaVn0CPl9Ze6BF4ec98lO2JweLRpvlclbufrL2t3zV51QjycrOqO2YZc69JWFiQ19tbs8gPJh2jt3rcFFp/R6ui+dZGfyJTGIJeQyXsDazrwO0Oca+VhIx+BGl5lP0Aq8aGOdHpsHq4seu9Z342NXbcP5662y+00D7j0gKnIviFcbvCymTjusSFSFELk3Ro63kuO0KB4oGqzs9OhWnR4e9j/fevAQLvrHO/G1+/bbnp+t00MRD3oSYQyag9OjDr0e8vFTHb7TgpdCUXc8R/VaZi7H52maJrrnWtnpEXUYcFdDjqPduiyJ7SusuLflnda++y9ft7Vm5xc9H4qxTZnbcaXnRoumSrr1HgunB8db1YzN/WN+pvslp37FeCtFRHM636L9o1tEpBvq72WnB8M0L286cwUu3tTn+fY2pweJHuail0kHF63o9GCnR0tD1xki3splrmmJHq15jT4X8BF8CUK9HgdqcHrouo4Pf/9JAMAnb3cur6zEc8enbF+rgxMi7/LhfPzQOH7vPx/GdLaAiZk87nr+JHZ97Jf43f98uOrv1nXdyrJ3OemUL6So70QWPdRyUTW7W1Va5RX1hOcicyenh/nvuPQ8V3XFxG2nswVb4Sbv5BiC0l2oGyLk0BnDLD5odbD3To9yMUseSNMK/IBPQ8DvKxu81+Kgs3V6tOh2RDFO0aC/Zru52tGxojNmez/kPg+VLYPeB9oyamGrekyrRFs4ILqATk7bV71PzNiP5TSMHZ5eHKKHtapfEw6ZRoseotOjARejNtGjBvHiHTut4vLNHhwiMk4usUrIXQTT2fJzOXWfIEc/yI4jWaAl8cKtyFyNt6rF6fHMsQkAVodOXiq2J7ok8SDo19AeDYoyyWMOTg/5b1QvOgNStKlTf4fXxToUH0b7A9pHDE/nxO9vNadHPfFWFK0GGK6PK08dEF9vGUzirWevwO+9fC1ep7hAank+5Np76oixra3ribveJxTwiXN5GmSR6OfkNGAqQ9dvYalzQ75+q+T0kK/93JMAfObj1yZIlXX9sOjBMIyJPI+i44Hl9HCPt2q1hQ6MnfJ4q8pOD571NA4+gi9ByOpdywX/Q/utzNvtKztq/p17jk96up3b6vPfHByzff2B/34MI6kcfrVnqOpjFkq6iPRwO2mVnRrk9JBXh6kXIqrSru505E4PwrPo4ej0MC6o5FitFR0xkTH70nAK8nU07+QYgoYutIItxOr/kqDeTg/5sy93etAQmvZV6j5tqBbRQxKtW9U6S6u/BzsiNZWbAsBlW+wRKoMdEZsokXSISXr3y9bilP4Err9gbR3Ptjy7PFFD+brPp4nB69CkfTuRzyN0XRfD6cXm9JAHX+0VIgTqwer0aOwKPC/xVsQVW/tx8aZevOLUfqzorM15VOvFkbxfcVqRSKKCphkuptduX2b9LmmBiNzHIZweLqIH7b+6E/ZC9GyhVFbA/m937cUFt/xK9JyNpaiDpGA+nimESVn/nVIheHc8DE3TMGg6uI45OD3k/Z66ojto7rMLpVJZtJXxfa9OD+P5UuQZDWiPmN1yoUC5eN3s2OKt/N7+9i7JadQVD+FKKcIqGvTj42/ejj9/zdaa9+OAPRoXAHbvGwFgOLAqQefyNMjieKv6oc+AvG3IPVuVIkLl46Kby4Zu49VZRATVhW8cb8UwjIk8j4oLp4f7ghyryJydHq1M2aJrV9GDi8wbDS9JWYLUk/P29d0HxL+DdeSJP3vMWGG3eaANexTXh4zbSkM1I1r+EOu6XvFixbYiz8We7PNpiAR9yORLIifPViSrrMz1UmRed7yVwwDC6hIJigteUX6bKZRF03B0EUMUi86iBwtji5vaOz2oPFfu9JBFD3NViHkBrw7LaL/nBdXpUW0f3IzQ6u9ao60A4JJNffjqb5+DP/7u4zhteTuCfp9t+OLk9PiL126t/8miPJrDS4G5TEcsiImZfJk49pV7X8KLJ6fxuWvPQrGoi4HuTL6IdK6w4CuXc0XjPEdedDBnTo8GxFudvqId/ckwNg0ka3LjBPw+fO36c+v6nU77jkrIr5uTa5ceZ1N/G372/gttP5Mv0LL5EmDOJsXQN+gv2/5zhRJmcmanhxJvBRj7IHng+ZMnj+HI+AweOTCGFZ0xIcDRc805FJknwgEE/RryRR09bcbvIIFFLpyWnxP9Peq+LyA5Z5z6O7w7Peyih/pZ6o6HWm6/G62j06NHWsDUEw8jGQ3golN6sX8kVXdcICEPqYans3j+hHEufu7ayqJHZ9w4l6d9BzmWWk3EagTUdSPvW2SnR6VrL5vTw2V/e+qydiTCAZxX5T1V4SJzhmHcsDs9qNOjeryV2inLtBZli65dxHqad7bqwsS5gEWPJYj4INSQxf6AuXoJsC5Oa4GcHmev6awoergNYukidVVXDAdH7bFc6gWvilwCXvHkN+g3RQ/j4joRtnYscv59NOgvEznUgVJoFvFWYYcV25bTw3pOK7qi4vfuVTpSeKDNEG5OD95GFjdWp0dtsXjy4HJiRi4yN/ZrEeH0qBxv9W937UU6V8RNV5xS9rvkE3LdjKkJBVpr+HbUFJ8H22srMScu2dyHBz58mYgvi1Xo9GgEs3F6AJZQ4CSO3f38SfzkyWPYsbrT9v2R6RxiXQssehTKy6ZpmH1isjFl6yQCNCLeKhYK4NcfvLRiDn2jcYrGq4Qcm+fU6VGpzFnTjF6pbKEkBr2lki4WpzjFW+WKulgR32VGFcnnfJl80fY1vR+prPH4JFpQFFdBxFtZz0/TNHTGQhiayoo4Lqt/pPx1oefrdF4XECKSPjunxwx1etjjrYhWjLmQhR+vK+8pAizg05CMGv0oX/3tc0Tc3Wyg0trhqSwe2DcKwFjcVS12jN67MXZ6zBpyaMiL2vrrcXq4vPYru2J49C+uqFm0iCuPx6IHwzCEvdPDjLeKVCoy53grxmnRtfNxhaPMGw8fwZcgtVqeMvmibXUnxRB4pVAs4QXTiXD26q6Kt3W76KYP7Y7VnVAXtlUTYcTFqd9X8SKHLqZo5ZXs9JBXADkNNjw5PWrs9JCHlyRQyTu7FZ0xEcul9rPwTo4himapB4kebHlcGtTb6ZEvWAM12elBBdOW08M+jB6ezonfeWIyg1t+ugef+eULttJiQs2bbUVn2VEzBnFZR+1ODyIoHZNs8VY1ChJeiEgDGJ9WLoJUQ4geLkKBHG1FLIaIq5xDafXqbiNv/8BoqiG/g8TFWkuQ3Qg5uAfmklqF8HFJTJ3KusdbuWXpW9FUxrnbjLQwJRryY63Sh5AvlMT+iwSroN8qHVZFiUkhehj7KcvpkTefny4eQ4YG1SR60GdkxqE3xBJ2yj9HFJtVKJZEpxZgHYOdhBAnyOmhdnoQPW3hsvs0O/U4Pdb0xOH3aVjXGxefq0YIHgDQY26Pw9NZEW21c111R0CHED2o08NyOjG1EROdHlK8VXvtnR6VXvt6BIsBZUFEpefBMExrQfurUMCaF4lOjwpOD463am1Up49rvJVwerTe9flcwUfwJYjXeKvh6Sx+8JsjIheZqNXpsX8khVyhhHjIXzWjuprTozMWwvpeux095VCkKZOtsOpQpiz+Q463kk6MnQYb6mOHA76ylZpeT5qdsvnpb2gLy6JHVOzURpTSWIr0YBiaR5cVmVcYVBeKJfzwsSNiNTsz/6gOnWo4va+2To+U0umhRPYVS9bQerfk7HMa+Kkn5FkPZcLNBuX8L+uoz+mhEp1jp4fcW5UIB2oeqtNx74RL98tUplB2HFoUoofD8X9VVwwAcFBZLFAvVrzV0rwYtYrMvQ3jx6s5PVxEBYLOtUiskM8pIwE/ti5L4tY/OB8fu+p083lZReZy1xq51uQyc13XRRfGdLYAXdctp4fo9CiPtwLKRY+IcEWX798qnVcKp0fJXmRO+2jvood9AY4qVG/qn10001IkErJeb6/n1P3JCH544wX4j9+pL/6tElSSPjydw+OHxwEA566tvLgLsAZXtKhgRsRbcYBCrfSZro4eqbtF7vSotHDEi9OjXtoiQVuMZK2dIAzDNC+0P5DnS7TgqVKROcdbtTblnR4u8Vbm93kRdOPgs7MliCV6VP4g/O2Pn8GPHj+K124bBGBcYOQKpZpFjxeHjNWUG/rbqmZUu3Z6UBlpQMNZqzpsHRapKs4TEnfc+jwI1VZu7/So4vRQHjvoL4+3Cntc5SOKpqXXgi7qO6UL/r62iBhkjSjDJd7JMURBcXp4WdX7ge88jh8/fhSv274M//JbZ879k2TKoMGY504Px3grazh5ctJwJrh1egBGxFVvWxi7zZgOwDkGUbVet+JKEur0GKyj08MJW7yVQ6fHbJGPb211PD6JHiddul8mZ/IYCdkFEeqRWUjo8yAfj9eYTo/9DRA9CsUSjpufrc4qkTaLlZC/fN/hRiZftH3eJyvEW6lFvoQVG1W0/T8a9IsV+Get6hQX+VOZghgKy69xJOhHKle0FaJPZwti35nKFjCdLQgxR3R6OJTbA1YkDkXWRTw5Pcr/RnrcQtFeZB7wa0AeNiGkEpbTI2A+Hx80zYgUBIDNA0lPj9NM1BNvBQCnLW+fi6cj3DbD01nx+VndHat6P9rWvvXgIVx0Sq9w0HOnR+2ctaoDn77mDGxb0SG+JwsgTqumCVunxxwIToMdEUyZPS8cb8UwDCEWoEn7HTenh67rYrFJZ3xpLq5hGkMs5BcdxID7bJOON6OpHO7bO4xd67pbrgOu0fARfAlCQ69qnR4PvmQMvm5/9gQAo5QSMOKtdI8XbYB1QdsWDngQPZwfl1Yvh/0+3HTFJrz/8o1ipRTlNrtBf6ebGkrEgvbnJg+G5CJzZ6eHGm+llfWHuJUNqYh4KymmhoYMG/oS+OibTsMX3rEDfp8mLsrVok0WPRiC4jW8ih57jk/ix48fBQDxf2b+UcWqatCq5VyhhKlMHkOTGVv2/jFzMEulrnJPUcD8HdTXIHc4OQka6qCzFUWPo412esjxVtHGD1/kx4+Hax+sWZ0ehpCxdTCJv3vjaaLHYzJTwOgidnrIA+5V5lByeDpb1Skqo+s6XhpO2YqoH9o/hqlMAZ2xIDbOshR5ofAabzUyncX+EXskWKUic7cONVqsoTo91IUn9J7JcVryfivicC4rC72pXAFjKcmVkiugVNJFp4Yqerzv0g34/y7biDeeudz2+M6dHsZzdhpk0r64UNRFkblPs/azlZwexycymDFfDxp80CBE0zTb57iac7oZiUiv92JYOU/D9ZNTWQyb+79lHoTwa85Zic0DbRiezuKG/3pEbGPc6VE7mqbhDWcst8XiBaTPtupAlJE/T3Px2svxl5U6JRmGaS1oJiTPxeg8W11YNp0tiPOWjujSXFzDNAZN03DNOavE127jWDo/GprK4u3//gB++tTx+Xh6TQ0fwZcgEQ/xVicmM2L1Ip2MbzSt9CUdthLKahSkFctqpIp6wegabyUNLgbaI3j/5aeIlVINi7dSTnjlA5GsxDsdcJyKzOUL6lDA5/kC1SoVtV5f4VYJ+HDteavxilMHxNdA+UV0Kw4hGWfcnR7On99P3Pa8+PdZqzrm9skxrhSLtXV6yKu1r/rcfTj3H35pi7qiEyMqXpU7JE5dZqwYHprK4sRkBvuGrcGm03Gi3Omx8PFWmXyxTIwveYyRqZWpTF4Mexvl9LB3esxtkXm1xQdOkMOROj1CAR/esXM1XnFqPwDT6bEIOz2cCqfbo0GxaELtw6rEl+95CZf80534/F17xfdue8a4kLhsS79t0LaUEIJpBadHtlDExf90J175qV/bvj9dodMjFHDed1nxVsZ+g1a5q5n6dC5EQkY44LOJwGHlceTbGs+tiFFpQYiuG0KIW7zV+t4EbrriFDF4UJ+nTCWnR8Ds9MiXrCJzv0+D31c53ur4RAYv//ivcP3XHgRgCUqy61h2Wm9YoiLbbAj4feJYtxhWzlMUGl3nRII+Rze4SncijO+993wAEGIJwE6PuUA9LsnMZbwVYD8/WAzbK8MwiwOnqGE695/KFmzXL+TyCAd8LIwz+OMrTxH/dnNoq4ux731xeE6fUyvAR/AliHB6VBiMP35ovOx7p/RbQ/sv3LUPp/3Vz3Hnc0NVf1/B/EAGfD6EA37bhea7X7YWL9/Yg+XmahjXInOHiAoa3FQrVq+0Ik8mJp38+n2a7QQ4UWORecjvs0U7vGxDj+dBU9hh1aWbcBMJOotIrVgszDhTUrohKGbN7fN/aMzq8WDxbOGotdNDzuV/QYr/U+kzRY+eRAhvO3slrr9gDTaa+/aTU1lbnwfg4vRQRY8qrsG55uBIGmf+7S/wkR88BcA45rzyU3fjDZ+913N+fi0cMbtuOmNBW/ThbAgHfKC3ei46PWQLdKIOUYUuxqbNRQZ0LKLvT2Ys0YMGgcMVVtjOFzkX14EoM1ecC5X4+/97FgDwjz9/DoDh/LjtacMJe+XW/lk/14Ui6CHe6vhExtHV4fQ9t/goIqzERll9Bs6ih9sqeOEYkfZRsuiRzhYwpgw8pzKFqs+PqFRk7iSmEQHh9LDirXyaBvp1bvukfSenkS/qePrIpPlcqdPD+fOqnv+1ClGH4uqFIhL023oblrVHPUdIJMIBEV0mHm8R/E3NRqlCMoHPp4lj2Zw4PTwWqjMM01pYnR7WMYAWOOi64UwlqF9zoL0xznJmadMWCeK/37MTu9Z14/oL1jjeRj03pc4xpn74CL4E8dLp4fThWN0VE/f91XNDKJR0/PqFYXz69hdwyT/diZMuBad5ESVgXAjIQ6LueAhff/d5uG7nagDVnR7yhzhmPo7neKsqF4hRReSQL1zki/F2R9Gj3OkhD1loNawXQtLwkqC/Qb3IVbP8aPUqx1sxhCgy9xhvJYuILHosHDV3eogBYeX9Ya/pkNM0Df/vzdvwV687VQghJ6ey+M3Bcdvt1ccbns5iKluApgH9SeN+Cy2y7n5pBDP5ohBsjo5nsOf4FJ48MoGnj040/PcdHjUuQFZ0Vs9u94ocXTPXTo+2OoQadfBKx1ORQTxTwGjKOAc4xXSF0tcLidUHZj9WrjEjrg6Mend6qI7OZ45N4sj4DCJBH16+sXeWz3ThEH1AFfb3cnm5jHOReeV4Kyojp6g0inNSRQ/1/qoTxMnpMWlzehTK3EZGx4c30cMpPotwOiclrE4P3bboIFDF6UFxVlPZAmZyRVFm6rQ/6Fqi/TGNgLaDxbJynno9AKPDod77yp02zOz59DVnYHlHFB994+kVb0fXfmrEcSMY7GCnB8Mw5ZBoL8fNRoJ+MU+Sz2UOj9E1R2Oc5czS57x13fjWe3bi1GXOfWXq8WbPsSnPCT2MM3wEX4JYoof7xv/E4fJB0YrOmBAsjpt55gdG0vjk7c/jpeEUvvfIYcfHEk4Pf7mqTR9KEkRci8wdLlLj5olq9SJzj/FWFeI/bE4Ph3grpyJzuYjqsi3eRQ85m5/ISPFWtt+rrArrjIXK7su0NiLeSlNED5fPmiwi8na0cFBchud4KzpRrlDaCQC9iXD598zBy9BUpkzwVgd+zx2fAmCI4LS/WWinB63Wp8Es9W0AwANSKbtKvljCu7/2ED7zyxdq+n2Hx4xBeaMvQM5Z24XetjDW9sar37hGVFG/VtqUFck0kLY5PUxnB7lCK8WKzBduA/hVdTg9uuPWZ6dY0vFz0+Vx4cbeJR05EPZXPiYAsMVEyTh2eph9ZG5F5qrLhiKb3JyrhKvTwyXeKpUrlPWdTWXyrp0eKjRczymF5IDVo+YkSNB5WqZQtOKtNA0+cnq4rDwnkQMw9sWW06P887qqq3GC61LjnLVdaI8Gsb53ccR7yaXZXvo87Pe19ikcbdVY3nDGctz7oUtx+orKJfbk8p+L1192erDowTAMsW1FO0J+H85Z02X7vryQiCDRY2UDF1oxzU1fWxjre+PYvrID3fEQCiUdzxybXOintaThI/gShAblboMqXddFvNVmqYdiRWdUXASSq+NZ6QPkVr5aMB0LVOIoD1xoEEEXiW6ih9OqurhXp4eLYKAin/CqF5mxKvFWqiU9FPBhx+pOaBpwxsoO24VNNUL0/sjxVi5uFXXlKa3+42E1Q6hF5k7xaTJ2pwevClgoRKeHx5WfTg4xoHx1dF+yfF/U12ZcmB8dz+Dpo8Y+nVwcqtuH9vmbB5JSVOLCbifUyzA+k4eu6zgmiR5qXJfMQ/tH8cs9Q/jEL56vaZ85V6uuvvKuc3Dvn11alyhRDZuo7zBErYYauUVCPx335U4P6hqoVCBbiScOj+MD//2YsPTPBrfuBeH0qKHTQz4vODo+g9ueNvo8qGNrqRJ02XfIqDFR5NaYcuhUq1ZkLr/233n4EP78+08CcIq3su/71H0Znf+4Fplni2VOj6lMwXL/VHHRyZ8ZdYXcsQmj886p04fEmXSuaBWZ1+D0AAwXjFOnx9VnrQAAfPCVmyo+92bmM9ecgQf//LJF43aRz+/llf1ekBchLGXhdClDfY5z8frL20OY460YhjE5b103nvjrK/G7L19n+z5FHsrnA3O10IppXoJ+H26/6SL8zw27sH1lBwDgCYfqAsY7jb8yZ+YcGla4RdeMpHKYNC+23nDGcuz52R7EQ350xILChkfXbEekoYTbKpl8iTo9KN7Kuh09F1He7fKc6GI85OD0qN7pQUOPKvFWQXfRIy7HWznkratOj4BPw/reBO7/0GWeSg1lnFbie+306CTRgzs9GBO3InOnz3+ppNuKUjneauGg1cA0KKtG0KU0WB2w9bWVix60avjxw+PQdeOk+5T+NpyYzJYJGuT02DTQJgaKC72d0OC6WNIxmSng6HhG/OzBl0ZRLOmO4pF8PHnu+FTVFaGEJXo0dtWVz6chNEfxJrMtMlePiWHF6TGWzovjzkZT9Bh3cQdU4/X/ei8A4zj22befVddjEG6l1eQ2eGnYu9NDdjXc8dwQ9hyfgt+n4dLNfbN6jgsN7TsqCX+qeNDbFsZIKifcCDI5l9ecoNd+78lpfPB7T4jvx0L2bUx1YpSLHtTpUcThsTS+/eAhDE9bkWrTWSenRwG5ojenh3y+NZMv2qJZSZBb5hBnRG7mmVzRFi9JH21X0UMSbE5MZkSmtyw4/r+rT8dNV54ievBaEU3TFkWfB9Ftc3rUGG8l3Vfdvpn5ITqHTo9BaXtw6gZiGKZ1cerlovNzOTp0rq45mOZG0zQE/Bq2rWjHr/YM4XGHFB/GO7xsYQkirPcuJ2DykGDH6k4AxspNTdMQDbkPS9ycI8LpQfFWNqeHPZs357LSsFKnx7TDSkP78zKdHsHKm2vU5vSwCxXyxbiT6CEPz0J+n+gDGWiP1Fw2KaK+zL85WygKxV8dVqkiSBfHWzEKapE5feachDH1omyhY4taGRFvVWOnh4r6Pvc6iB6nLU9iQ18ClLqyfWWHlWev7Ev2mKLHlsE2SUBfuIt5XdexX4ooGk/nbA6BqWwBzxx1tvTKr00tJW+Hx5feqqtIBVHfC2Wih3B6GMfDmbwR5RPwaWKonc4XoVcoka3GiYlM9RtVwa1wer0ZIXZsIoNUlXMIQnYR/NudewEA567pEosNliqVjgmEKnrQgL5SkblbnMtq0+lBF/LE0JT9/a4ab0WiR76I933zN/jXO17Etx86JH6emmWnh1xyXIvTIyZFr9qLzI19ubvTw3otXzqZEvtj+bMX8PtaWvBYjMzG6cHxVgsPLQQhx2sjkY+7siDLMAzjRMgh+WQpXnMwiwdyenCZ+exg0WMJEpbik5wGElYclQ/nrOnEp685A//81u0A7I4HFbfVvgW1yNyx04OcHs7Ds5zDRSoJAOmq8VbeOj0qOT1CAZ8of3UaGgb8PuFkmW1ua1hxejxxeAK5Qgnd8VDZAc/V6cGiB2NSUGKSKhWZq/042cLshpZM/RRr7PRwG+Cdv75b/Ls9GnRcIatpGt65a7X4evuKDsdhX6FYwvMnDNFj80CyalTafDCeztsGr+PpvBhIEr85NOZ4X/l5P16D7XcprrqabaeH2l1A25F6rOxPRkR8lq7X7gKSBYhV3bN/fd0G8B2xkFhlve9kdbdHvliyLbA4am5jV57qva9rsUJOj0pF5qpj4py1Rg71dLZQdoyoJioMJCOO50lbBpP251XV6UH7qBIec/j8pnNFEbFGt53K5EXPnFv8lv13kLBif22OmcKqU3E1LciR4638PsBfLd5KEtX2npw2nmPAt6hcDUw5snBRs9OjjeOtFpq/ef1p+OTbttvOleaCZSxWMgxThaDSsVYolnDMdK8vpWsOZvFwxooOvPtla/GBy09Z6KeypGHRYwkiOx5op3poNC2GA3TBGvBr0DQNbzhjOTb0Gd0elVYiuQ2+RJG5r9zpEVZED7dMaUenR81F5lXiraoMhf7xLdvx0Tedhv6k80WN9bfMLp5EHUrv3mtk0u9c1y0cJEREHeSYq26zHG/FmIihi1pk7vB5VQXEkm6Jlsz8oeu6JXrU2OlBtEUCeN8lG/DPb90u3nOnaCviTWcuF6L29pUdNnGc2D+SRrZQQjTox6qumONt5pv9ShH1mOT0oGiJibRzubv8vJ/waPudyuRFYfryJbTqSj5W1NPpEQ747I5G6dgtnxcs64jYhtNyXJ4XnjNFNcDZ+l8rlQbw68wiZBowV0J2eRC9bWFcvWPFLJ/hwmP1AVV3evz2+Wvw/126ATe/agsAY4CvOgTp2OImevh8GlZLRdxvO3sl3n/5Rvz+Rettt1PPpdTzz7BUZN7mIuRRBCsVgE5lCuI8M+DhXC0quUmIQrGE45PGEMLJdUHFyLlCSZxj+zUN9HJ46fTYawpxTkXpzOKicU4PToxeCFZ1x/CmM1fAN0fRkt//g/Pxx1ecIvp4GIZh3LCcHsZ5wompLAolHUG/VvEajmHc6IyH8Bev3YrXbV+20E9lScOixxJEdjyks0X87Y+fwcs/fgf+9HuPA7B2tE4XrBXjrVxcGqrTIyF1etDOvdqKYaeMaHKMVIum8Fpkbnd6lF9ovvK0AVx73uqy7xM0oJmt0yOoDCDuN4t4dzqsQpKLzWMhvxC02OnBEIWSs9PD6fNKA0p59TZvS/OPPBMLeBU9lP3O6u4Y/uQVmzDYHhUDQacSc6ItEsQ/vWU7fueCtbhkU29ZSXCuUMLnzUifUwbabNEvCxmDdnDUXkQtOz029htivVsEorxtvzA05SnmiFwenbHgnBSOzxWzdXpommbbL8jHU3kwO9gehV/aNqhzq1jSxQKISuw5ZokeMzUKJk5UilpaX4PoMe4gnP31605tiqG0tbKwUpG58fefs6YLN125Cf3JsOiomFYirujcpdI5F0WgAcAlm/vw/svLeyq8x1uVHB0XgBVDRb1FRqeHt3gr43eUO96GprIo6ca+WR5aEzHpHJdeG59P8+D0sF5H2iaTdQiUzPxC7u+2SKDmfaut04OdHk3Jmas68YeXbZz1tSHDMM2POgM6bF7jLO+IzpkwyzBMdfgIvgSRV2ve8tM9+Mq9LwEAfv3CMADJ6eGwc60n3kp2jgBKp0eZ06PyY8gX0fQ4qSqDERrI1dbpUd9KWMDbhXQlQn5LuMgWinjkgBHNsmtdV9ltI0H76yHfl2EAlDkGwhW2ERpQdsasC/GFLqluRah8HvDe6SEX5QJKcbW5P+t1GNDJvOr0Qfzl67Yi4PdJLg5j//rh7z+J/3n0MDQNuP78NQAqC2jzxf5hu+hxZHxGrMrf1G8Mtac8iB4lHXjqSHW3x1KMtgKASGB2xzf1fjbRI2p9n4bPtCp/JldEvljCtV/ajfNv+VXVDq49x63+lXQVF6cXaMAddjgub+irxelhOB2Wd0TxpjOX4/cvXIdXnz4w6+e3GKjk/iNGzXirzrgh8miaJga8k2WiR/Wi8NVSdNn2le2Otwn67PdXnT8RqVPIqWtNZr35Xo9LMV21xFvJbpZjE8Y+oD8ZcXTihfw+8X2K3vP7NNCu3M09KTs9nBYgMIuT05e34/It/fiDizfUfF+b04OLzBmGYVoa1Xm7VK85GKbZ4LPxJYimGasws4US7nlxWHzfZ8bfWM4MJ6dHHZ0eolPAPd7KKjJ3cXo4xCXQarrqTg+P8VazLHol14WXC+lKnNVeCwAAivpJREFU0GuxbziF0//6NuQKJfQkQmJVqow8yEqEA56GF0xroYoelT5rKWnQEvRryBf1BR1otyrySmCvnR6AsX+k/Z08IEwIp4f3vHGrpLyEVLaAHz1+FADw+Wt34JWnGcNe4fRYwP3NASXe6pljxtC8LRzAgFkyrK5EJ9TPAEXWVOLw2NIsFPT5NIQCPuQKJSTC9bkTZAdkyMXpscx8zWOhAMbSeaRzRXzlnpewe98oAGD/cAqnLXcecgN2p0et0VhOVIq3ojLzvUPunR4vDafwzq88gLU9xvG3OxHCJ992xqyf12Ki2qITABgz4626pNL2tkgQk5kCpjJ2F4wXJ8UaU/ToawtjwGW/5PNpCPg0cU6qxlvJTg81Yst+Ox9Wmk6PUcmx4yXeyqnT46iZr73MxV2iaRpiQT+msgVMZ43f59c0EfFacunJmnSIUEtWEXOYhScU8OFL7zq7rvvKHYFF7k9jGIZpaSjRhOY4luixtK45GKbZYKfHEoWGVSOprPjeWDoHXbciKJy6KeQS8nU9cdvquqzLRSetWg76qMjcunBVezDchvV0MS4PWhJSWWQlPMdbNcjp0ah4K8B6Pd5wxvKyPg/A7l6Jh/1lJegMU+b0qNjpYQyH46GAtdJ/AaOLWhWb6FGDnVkWXKNOokcNebBhycVx9/MnkSuUsLo7hldIxc0k9Kqix0+fPIarPncv7ts7jLlmxBzGUn/Hs0cN0WOwIyJivdzcBeoxy2noqLKUL0DOXdOFgWRERP3UiuzokBcRyINZeh/oePrScAqfvP158fNMheG0rut41ub0mL3okfUQb/XScMo1cuizd7yIQ6MzuPv5kwBQ1VGwFAmZ519uokeppIsi8y7JBUivhdp3UilSjHj5xl5Eg3686Uzncxsi6LJPA6yemkyhWLatyDFDy9qjIiZqVDrn9eLKjVZwegy2u+8DaFHOlBRvRcaVYknHl369D+/8yoO2z4PqmAGAtT3xsu8xzYO8OEHtVGMYhmFaC7XjdnjaOGfhPg+GWVjY6bFECQf9QKZgW71WLOmYtJU8VnZ6rOmJ46fvfzm+eNc+/PMvnncdtKuPZ4u38huPV22loRhcyE6PUK1OD++dHvWshKUB4GzjrVZ0RhEJGqWx//r2s7BlMGlbDSYjOz3iIXZ6MOXQqtKA6vRw2EbI6REN+Y3bZTnear754WNHcPuzQ+Jrr50eABA03zPAvq/ePNCGB14axekVVtiryCucb3vmBADgyq39tgGlk4D25Xtewt/97zMAgP/afQDnr+/x/DvrgUTt/mQExyYy2DdsrNofbI+KWC+vTg+nsmoVcnqsrFM4WEj+83fORaGk1y3Mt0nHRXunhzRg7iCnh7H93PX8Sdt5RqaCiGq4Bqz3qhGiR6UB/PKOqHC9HhpNY43DgFk9njel6FHlvGEykxc9Qx2S6EGujzEpMgqQ3TXu+641PXE887evqPrcgn4N9LFU461oH5fOFsr6X5Z1RPD8CSO2bLAjIhayUDdJtedHOHV6WE6PCqJHKAAga8VbSU6PYknH3//fswCAnzx5DFedtQKFYslRnL3mnFVVnyPTHKQaEOfHMAzDLF2CAfs8jM4LnLpmGYaZP1j0WKK4CQBjqZxwZlTr9GiPBhEO+MWFqNuK8GJZkXl5p0e1InOniArPReai06NKvNUicXp0xEL49QcvRTzsNy+cK/xOZTU3iUgsejAERYNQfJ3Vw+De6SG7hjjean7559uet5Vz1+L0kId4soj7l687Fe+5aH1ZUXAl6P1PZQu414xBvPLUAcfbyNvI5+54Ufz7WSmqaK6gfV2/UtK+ojMqjjVeOj0Ar6LH0nV6+HwaQrMoQpSPi7Z4K0kIoEEwbX8nlMiwSjFEakzSTAOGgJXirXw+DSu7YnhxaBpHxmccRQ+5aBgAOmLNd+FpFZmXHxPue3EYv3jWED3bpAhNAOg0RY/RlP19E87cKgtAKjk8CPn3qedDtDgllS13evS2hS3Roz0qbjtqOsOCfs3T76fzwqyD08Mt3sp4rk5OD+P30cpNAGXdHzKRoA9blyWrPkemOah2LcMwDMM0N2qnB4ke8oJhhmHmH/4ELlHcRI/RdK7ikEC+6KQVj5WGqEB5MbpTp4dq51PJObg16HHS+SJKJV1cUKp4jrdyiIOpBTWqaza4OTvcfidgFplzvBWjUCqR08oUPSoMuFJmvEIsFKgqRDJzg1ze7NO8DQYJeUAor4r2+7SaBA/Aii964vAEJjMFtEeDOGtVp+PvI2G5VNJF4TFg9G1k8sWyFdqNJCtED/sA8vTl7ZbTI+ssZqjHrNpEj6Xn9Jgtsrhhi7cyV6CFAz50mqIADX1V0aNSvJU6+K3F6fHE4XEMTWZx+dZ+2/erRS3RQg6356V+vyMacrzdUsbNaavrOt7+pQfE151x+9/eZb7X1PdBOHWw1Ystsi9kfzz6fE85OD3kKNZl7ZbTg0S3gM/bcyM3rSzWHRn3EG9lblei08NnnQO/YIoxgHXOSyXmsZAfa7rjeObYJD786i2eniOztBlIRnB8MoOLN/Ut9FNhGIZhFhAR906ih3lenKhjMS7DMI2DP4FLFLXUe1VXDAdH06bTwz4klaGcYsAagFRbEV6oFG/loci8WNJFtILN6WE+F103Mp3dXBFe463kksxkHTZCek1DVQrTG4k8TIyH/RxvxZTh5vRw7PQgp0fIb3V68LY0r8jxP14Hc4Qt/z40u/0Q7S9PTll5sqrrRN1GpjIFUBdrPORHKlfEi0PTFYurZ4ub6LF9ZYcYMrrGW4nSdx8y+VKZ6PHi0DTiYb8Ybk5m8uI2tYpIzYC708P4/rKOqBDp6Hg8NJWFTCWnB3WqaJpxXJ/JFTEyncX+kRR2rO6q+Nx+7z8fxonJLO6/+VLbMJrOKdyO/2GHomoZNXKoGZ0ebscE9b3rUkQP4fRQ4q1y5jnfbF2vgBX1AJR3etDilIl0TrzPH3/zNmwZSOIr974kbjfYES1byOJ1cYq6fei6jgMjhhNvdbe78EnbvxxvRcfg54csBxxt85Mzxu2SkSA+d+1Z2HN8Eq9QnHVMc/KDGy/Ar184idefsWyhnwrDMAyzgIhFKAXjPErEW7HTg2EWFC4yX6LIBdgAsLLLGBKMpnJCpHB2etjjreTHchuOqnFZTvFWIl6hUIKu290e8oV4SLkApkXQbkW18vNShR6VaMh6PLmw1Sv0OoQa4PTwSkQuMg8FxKpIHlQzhFpkXsmZJZwe4YD0ueZ4q/lEfr1ribYC3IvM64HefxomOkX+qYL3+Iwx/IyF/Ni2ogMA8OyxybL7NRI6PgxIokck6MPGvoTk9CiUHVcA6zPQ12bcVxY9XhpO4fJP3IWrP3ef+N4R0+XRFQ+1pNVczhSWRQTqeZCFoKgS70Oo5fEydNt+8/1I54u4/msP4erP3487nxtyvd90toATk8aA/tiE3VlSzXVgddc4P69ppVy4KTs9XJy26mdXFQVFp0fKrdOjAaKHTci1f+Zon3RSiot6wxnLcPqKdrEoBjDEOHUhi1dBRi0yH0vnxXa6qkKvj+X0sOKtSGh5/rgletBjkdOjPRrEmp44XnnaYE0uP2bpMtAewVvOXln1GoVhGIZpblTnbYrjrRhmUcCixxJFHliEAj4x9BlLW50eTivhZDcFlZeK1b75EgrFUllEQnmRuXF7v08rK1cGrJXphCx6yBfAmqaJCIN01n2QIuKtgpU313DAjw+9cjNuuuIUW1mnVygGoREX+l6RL5Js8VY8qGZMVNGjUmzVTF52etiji7ySLRQdB8xMdYol3TZ4rFX0CDZQ9IgoA5iEg/tNFbzH08bgriMaxKaBNgDAHmnANxfIRebEpoEkAn6fENjzRd1R5CNBh+IEJ2asAf13Hj4EADg6kRHb8yGza2Up9nk0Aln4ks8hrtjSj6vPWoE/uGS9+F7MxWlUqch8yowCon6WYknHE4cnAABf+vVLrvc7ZsYNAeWDeeE6cDkuR81t2M2BMq30jDSj6OEWb/Wc8tlVX8POGHV6OMdbhQKzH9pX2qfJn2/A2F+GHBzFy9ojNhFEfdxKqEXmB0ZSAIDB9kjF2D46V56UnB7keEtJUVzUY0OOj3oW3DAMwzAMs/ShOQ6dj1EnYT2x6wzDNA7+BC5R5GF5WzggXbzm0RU3Bg5O0SqOTg8ajhZLeNsXd+P4RAa333SRWOmpiijLO6K46szl6EtGxEo2+WI6VyjZLkjlyCtViImF/JjOFpCqUHgqisw9rOz7/YvWV72NG8Lp0YBIB6/ITo9EWOph4E4PxqRoDmz9Goke7mX3cqdHta4eJ46Oz+DKT96N124bxC1Xb5vV825FVFdN7aKHdfvIbOOtFJHY2elhj7eigXN7LIQtg4booQ5OGw39brkHaY0ZOyPn+k9nC2VDSjo29CaM+05KA/P79o6If6dzRcTDgSVdYt4I5NXyaqH1P791u+22bvFqlYvMjeN4XzICYML2s0qOoaOSu2MirYgeVTo9qjk9UsqCinoWRCx21AxpggTLN5yxDMPTWXzg8lNsPxdOj7Sz0yPkn/3Kddk5qwppasZ1LOh3dEcMdkQR8PsQC/lFT4xTfKsTUWX7oGirSi4P+bmSaObzaXjFqf34x58/Z7ud6vSoJ1qVYRiGYZiljzgfKyidHix6MMyCwp/AJYpagN0VtwopC0VvTg9L9DDt/7kCnjcLGn/y5DH8x/37sWUgaTk9TBFF0zR84m1n2B5X/l3qasOcuID2lV3QxsMBYCpbNpiQ8RpvNVvUUvb5wN7pEeBOD6aMYlEpMq8gjIlOj7C/ojjixuOHxjGdLeDB/aOzes6tiuqqCSyg00PdXzrlyYYVYWycRI9oAJsHkgDmL95K/ntpIOnzaUiEA5jOFjCdKaAnEbbf1/wM9CXtosdoKocnD4+L26WyBUX0aL0Sc8BydwLVj6exoH176UmEMTydrVhkTq9/VyyEkN9n20eNpHKYyRUdxRTZ6TGu9kuYQqJrvFWV7iI1OtNrF8RSwu28gT67r9++DJdt6S+7n7xYRkbEWzXY6aGKlnEl7kreNuRYNRoWtEUCQvTw7vSwd3rsN50ea7rjFe9H/Xe0/fg1Det7E1jXE8e+4ZS43WRG6fRoQicRwzAMwzDVEXHvxRKKJV0sFOIic4ZZWDjeaokSli4eE+GArZAyX7KLFDI2p4dZ6EkXzPKF7z/85Fk8cXgC//3wIRGvU2llXcDvA8331AvvfIWVmhRZUNHpQfFWc+zAsIrM5+9jEfBp4nWLh/3CMVPSIcQrprUhp4dPcVUVSzre8m/34Y49VlY+iYfRUKCsr8ELw2a2eqpCxw7jTmaWTg+182g2qPtLJ6eHcAOZJ+UT5sC5IxoSQ8GRVM7TNvTtBw/iHV9+oGI/kxNC1A768MpTB9ARC+Kdu9aIn9PA0+lxaSBOTo+pbAHFko5fPnsCcsoi2csPj7V6vJXU6VElLlKNEyInjhenR1sk4ChuPHJgzPF+stNjfEYdwFcu1Vbji1Rouwn4NAy2R7BlMOn6/JcqTvFWuUIJe08ai1goqk5FdnrIkYbZKj0qtWDbpynbhN+nIS59Tz4/VWPOAKVPzqvoEaJFPcb2cZBKzHuqOD2CSpG5T4OmabhSKScvd3rwYINhGIZhWhH5fEy+blHPqRmGmV9Y9FiiyAOtRDiArphVSEkiQ9BhSFAp3kpeYTkiZTxXco7IyOq2jHB6ODyftrDxHCYdLnAJugCPVBnSzJYNfQkAwLqeyisAG4mmaWIlYlyKJAI44ooxKAkRs7w/56H9Y7j+aw+Jr4XTQ+70qMHpcXLa+NxX6thh3FGdHrMqMg/Nbn+nrqpuc+r0UNxAotMjFkRbJAAy5k3OVBcyvnbffvz6hWHslmKlqlEwV0IBxt/+uWvPwgMfvswWdUWro9RCbcDatnuk20/O5PH0Ubs7JSVEjxaPt4p6HxqrA2p6Typ1elD/QTIadOwE2b3PeduwOz2c463cFj1Uj7cyntOP3vcy3PmnF1fscViqWBnSlnCxb3ga+aKOtnDAVlAv02EufCmWdPHeGY9juXNniyycxBxee3n1o1x0/o6dqwEAF2/qFd+T92Fe460i5mtDgjQ5PVZ3VXF6mNsvOUt85r78jWcuQyjgE+fD5Z0e7PRgGIZhmFYk5LfOx0j0CPl9c55WwjBMZXhJ0hLFHm/ltzk9RAeHw8AtEQ6gIxZEsaSLVX604lMtICfUeCs3QgEfsoWS7cIbsIYWTqJJd8J4DsPTubKfEVanx9weMK4+aznOWdNZNeu50USCfpE5bxM9CiU0Yfx4S3JkfAb//dAhvHPX6rKInmrQ59LnIHqoUMFqLBQo62vwgnB65ArQdd0xX51xZ7ZOD3u81ewOz+qQ2ClP1jXeKhaEz6ehLRzAZKaAiZm8TYhwgkQJdaV+JWRhNxz0wefTEPY5lx07Oz2M+8dCfsRDfqRyRUzM5MtWiU9nje35kHB6tGa8VS1OD1W0IDdNxXgrcwDs5vTYc9w5Ku3ohCV6qAsgcsXKroOwEl+kQttNMhpo2otOusiWXbb7zQim9X0J1/14JGh9bv5r9wH0JyN4844VVd01tWDbpzlsE4lwACdgHHfkbW7num78+oOXYKA9Ir4nu9W8ulDod6qdHqu7qzg9lFWZdPq6eSCJez54CZ49PoV3feVBsd+jc9h2Fj0YhmEYpiWhWNB8sSQW3XC0FcMsPPwpXKLIF++JSNCKKUjlLJHCQWQI+H249b3no6Rbj1FtEEAXi9Xy6Z0uvIHKTg8aANOwVUXX9XmLt9I0Daur5DzPBT2JEEZTOfQnwwj4NGgaoOvG6/ji0BSeOTaF120bhKZpGE3lcPszJ/Da7YO2fhZmcfPVe17Cl+55CeGADzdesqGm+1K8FX3+5G1EJZ2VOj2C9ugiLwxPGZ/Dkm4MEd3KjBlnZt3pUSEKplY8FZkH7aIHiQUdUeN40h4LCtGjGhRRqHYyVEJ+vdxWldPzns6WPwfZBZCMBoXooT6H6UwBY+m8GFDOt7C9WGiLBBAP+ZEv6cJl6YYqullODy/xVs5OD7dorGPjFeKtqhaZ+1wfO18siW27mUskab8hi4jkmOmOV1450RkPIZWbEQXdHdGgcF81Jt7K2AdqmvM5XEIS4tRtZqXyOa1H9KDOl5l8CVOZvHAxVxU9HKK4iL5kRDwOCX0HRk0HyQKcQzIMwzAMs/AEpVnYFJeYM8yigT+FSxR5oJUI+0Uh5fhMXgyCAi4Xhet6E/bHqiIm0DDL7fEIp1xpwBpaOF2k0iCFhq0qhZIustmbdZXmp685E/uHU+J9CfkNx0y2UMLln7gbALC8I4Idq7vwwe89jtufHcJ9e4fxqWvOXMinzdSAKDvNeF8FT1CROTk9NE2zCR7ycMbu9DA+b1PZAu7fO4IdqzurrtyVxcepTB6PHx7HthXtLLB5RHXV+Gp2eli3b3iRuUO8Ff2OqUwehWJJDEpptXJ7NIhDmKkYPwgY4vS0eXLvRSAhaEjr92muxxfh9HCIt5IF9fZoEMcmMobooTyHVK4gYm0G2yNNGXHkhaDfh69efy5yheqCZpnTw5PoYTk91CJ0wOpVkNF13eb0UAWrbIVFE4C1DdPzyuSLePTAGM5Z22XrJoo38UUn7TfyxZJw6MmurUp0xUMi9g0APnTrk2WPO7vnZrxv0aDf0XHSJr0v1fZ5slDnudPDfMxsvoj9w4bLozsectwfyqjHPJ/y3EmAmcwYLjJykKypIqYwDMMwDNOcOHV6NPP5J8MsFbjTY4lii7cKBUQ2s65bg0uneKtqj+UE5ftXy1AOuXQI5CrkQ/eIeCtn0UN+rGpxHEuVLYNJvOr0QfE1vY5PHZkQ3zsxabw+tz9rlFb/4LGj8/gMmdlC27HqBPCC6vRQkb9PQ8V42C+2o6/eux+/9e+78R/37a/6u+Qun289eAjXfHE3PnHb8zU/51ZFHQjX6vSQ98XzUWS+ojOGZCSAbKGEp49OYmLGLDKPWaIHUF3IyBZKIoZN7WSoeL+85dRwg0SPKYd4Kzn6MCk91wnzOZADcjpTEAXGreryIM5d24WXbeypejtV9KBjdaUic9FrEAnaRBXa9mYc9n/j6bwtmkoWrHRdrxiPCcidHsbtPv6z5/D2Lz2Af7rtObHKLhzwNcS1sFihcytdh3BpiH6eaBWnh5KhKZ+LNTLeym1/Jq+AdHIH2W4r7cO8dnpQN9JMviji1U7pdy52l6nk9AAsETlXKOHEZFZsa6o7hWEYhmGY1kDu9KCFN20sejDMgtO8V4FNjj3eKoCg34ekeUE4ZLomqjkzCPXCdiAZwVVnLhdfk9MjWKXTQ15tKJP3FG/lHIkiR/PMdbzVYoH+zv994pj4Hq0yTHIu5JKEhrP1lNPTEMvvkss+lS2gVDKGg/T4cqcH8ewx5zx9Gdlx9cwxQ3SjHgSmOqrg66+yz1SRB7ORWRaZexE9/D4N567tBmCUTFuD0tpED3lFfS1ODy/RhTToTDl1eihOD8BwU9HgnArLp7NF4fRYw/EznpBFi0Q4IFa+q90ZBWmfZsVbBWxD40Gzl8HJJSK7PAAIwQqw94yF/c4D8YiIaDMe+yv3vgQA+MJd+8S5S7NHC9i6wIoUVWcXMN3okuKvdqzutP2s2jlfLc/NzV0lCxmxKu9TPfFWdBzM5IvYc3wKALB50IvooTg9FNFD3qaeNBeotLKLjGEYhmFaHTrnyRdLwqHOnR4Ms/C0xhS5CZGHRHTxRfY5Wm1Z60UhcdryJD7xtjPEyjyaO1R3ehi3L+v0KFRyelTu9MhKed6tUqpMr9P/PWmJHjTQWStFkzlFhTCLE3r/6nJ6KEXmKroOTOcKtu0hFvKXDZLV4aLKTK4o4rEA4PiEkbOf5u3MM+pQt9bF5fYi89kNzwJ+n81p4jb43bmuC4ApeiiROMmIN9FDLhmvpcg8W6WvAbBWSDnGW0nHFhI9xtNWkfnyDkP0SGULIn5mFcfPeEIe+ibCgbIYKQDYd3IaZ3/0dnzkB0YkEokeqtNjoN14H5yOWdTnQfFZEzN56Ka7TT6XcO30CNif1zKp+JpEvGa/4JT3G/mC8dqJfp4qoofM+y/faPu61ng+J+h8xs3FYXN6VNnnybf1Gm9F2+FMznJ6bB6ow+mhnH/6fZrYN5Ho0eouMoZhGIZpZUSnR7EkHOocb8UwCw+LHksUe6eHsTOlIScNoLzmMQf9RjEyQTtndchQ7fFCLk6PbIVOjx5z0DEynRODDuI/79+P82/5FYDWcXkAzsMdGpbLTo8Xhqbm7Tkxs0PEWxVqFxBI9KgUlTQ5kxermkNmlIv6mTk2kXG6q0AVHo+at2dxzTtl0X6F2kQum9OjASuG5W3ALcN+5zrD6fHQ/jGMmNtAhxl5I9wTipCh6zp++6sP4urP34f9wymb6DHhocj8vr3DuOCWX+G2p4+bz9P9b6WBtWO8FRWZBy3R4+j4jPjMLOsgp0cBB9jpURMxJZ6KHBWy6PG+b/4G4+k8/mv3QeSLJRF9Veb0SBpChFM0FomxWwaTAAx3B4mv8ufHa7zVoPmeA8D9e0cAGBGgzYx8bCCnh9rP48ZJyd13wfrqsWe1Qu+bW4eM7N6oFm+VlPZhXs9vxfZRKOE5cnoMJKveT91m1HgrwHruFEXK+xaGYRiGaV3k1BNyqDe725hhlgKtM0luMuQhkSpS0E424DGaQNM023CMVniqw/dqjydb+mTyZhGz0zC/24xWyBVLmJyxhlqlko5//dWL4utmLTF3wul1yjg4BfYcY9FjqUDD2VqH4ICz0+Pqs1YgLg2IJmcKSJuiBw2OwsrQ/NhEpkxYlDmpiB4kgqRY9PCM6vSo1H/gBAnHQb/WkA4CeRtwircCgK2DSbRHg5jOFoSrj+Ktki7xVtPZAu587iQeOTCGV376blv/kBenx13PncSR8RnhZqvc6WE8ByenB4mIstPj4GhaPCY5Caclp8dqdnp4Qu3koOExbdOTmTyekSLzpqT3xxA9rO2tv72C6GE6Pdb1xMV2QGXmdC7h09zjOmkBCD22HIN2+7MnADS/00PTNHHeUKvoceMlGxDwafjgKzfB59Owrrexg3vaj7nGW8lF5lXEKXunh0enR9ByIA9P56Bp3jo9VJFGLTIHLCGZnB6re3jfwjAMwzCtiigyL+hiQZjb9RfDMPMHfwqXKBFHp4dxkUZDSq9Fj3RfWilJw1Q1PsBppZsM7ejdVjs7DfMjQT/awgFMZQv49C9fwN6T0wgFfLh0c5/oJjGeX+voc5WcHhnJKfDs8eodDcziQMRbzUL0kFfz/tNbtuGjbzoNr/7Mr7HvZAqTmbz4jNAKVfUzkyuUMJLKiUGwitznARixWQAwkysfNjPOqO/vTK4+p0ejcuEj5jYQ9Guu+1CfT8MFG7rxkycN10XApwnhzK3TQ+51yORL+PZDh8TXXorMaUBNt60Ub0WDzmmnTg/p2EIuOBI3OmJBJMLG33FiMoORlDFIZ9HDG3LUUCISLHNU3PrIYdvtSSSNhfwI+H22eDbq9MgVSiiWdNu5xDHT6THYHkF7NIihqSzG03ms6PQWf6bGbsniy9NHjWNkK6yyC/l9yBVKyBeo04PirSoXme9a342n/uYV4v09a1Un9p1MNex5BavFW9Xg9Kin00M+VwaAtd1xV9eJTDysFpmX3yYZNZ4PuWVWd7HTg2EYhmFaFXkBMJ2PNrvbmGGWAq0zSW4y1CJz43t2p4dX+z9gHyrEw85D02oXmULdLtpXk4sic5f7U8TVV+59CXc9fxK/eOYEbr71SdttjoxX7iNoJkIOuf400GGnx9JEFJnXI3qY6oO80lTTNESCfhH3MTljlTd3xo3vOQ0Kj1b4HA1PO8cSkYiq6zq+ePde3PvicM1/Q6ugxpc5FTdXgt6z2fZ5EOT0aIsEK3YiXXPOKvHvoN/qT3IXPex/16FRa7uazORRKrk7igArMm3MXNFfSdQWnR6K6KHruq3IvNN0DdKxoiMaEscyGn53x0OuMV+MnYDfJ45FTvFW97w4Yrv9/uGUuC1gH2APSD0b6rZDnR7LOqKif4K2t1yVcwegPN7KSRxrhTzloBIvSm6ZjipOD8Ausr79PGNfQB0rs6XaPs3u9Kgmelh/S8hrvFXAb/tbvLg86H4yzvFW9teWBVWGYRiGaV3kTg8Rb8VOD4ZZcFj0WKLIQ6K4EkdFxcO1xKPYHs9c4VYWb1W1yNzc0dfg9ACAnoS1ErGvLSwir1oVebh9zlqjZNipE+Kl4catxmTmlrnq9KD4oclMARNKnIlTJBxFyTihdnoQNKD+6VPH8Q8/2YNrv/RADc++eTg8lsatjx4W74cTGaWoPl2jS4b22V5WInuB9uvVVrq/bIOV5S9HELmJHup2LG87um5fbU8USzpuffQwDo2mkTE/D/RSeur0UB4zX9SFGykc8GO1madP7097LCj+7lHT5cEl5rVB22GbVGSeLZRQKuliqE7sHyHRw9hmZNGjv80SPdSIK+r0WNYRQUfUOPYL0cOD04MG9tl8EbquO4oereD0kJ22+WJJiNW1FJkDhtPj1j84Hz+88YKGPK8u83zOTUSppdNDfh+9xlv5fBr+9bfOFL1121d2eL6fTJfDean83DWNRQ+GYRiGaWXkBSjTotOjdSLaGWaxwqLHEkUWKdQic8LrRaF6X7dOj2C1Tg/h9FBEjyIVmTuLJnLczss39uIjr90iHu+du1Y7PpdmZr8ZzwIAmweMVYlO8UgpZaCayRdx397hutwEzNzSiHgrp5WmFOkzOZOXVvYawxmn1fMUJeOEm+iRyhWg6zoe2Dfi+PNm4cnDEzgx6S4KvfZf7sFN33kc/3n/ftfbqGJAFcNDGcFGOz0C1kr9Svh8mtjXDkqr8t2KzFVxR2V8ptw1dNfzQ7jpO4/jb//3GSGkERXjrcIketifQ046zoQDPqzusg8c26PBsmH3yk4eStYCDaHlTg/A2I+p3S0vDRvHLdonyf0MXfGQcIrI732xpIvP3GB7FO3mgJ5iz6q5RAErvihTKGImXxT7y9OXt4vbtMIFpxypIIuU9TibzlrViWVSIfxseOMZy/HxN2/DH1660fHn1NkDeCkyrz3eCgDOW9eN3TdfhluuOl3s57ywzNwXruqK4XcuWOvwfKznftnmPnaRMQzDMEwLE5JST6iLUD7PYRhmYWj+5W9NSjjoFG9lv2AMVungsD2eHJdFxej++pweZaJHVaeHJXrsWt+NN56xHNOZAvqTEVyyuQ9d8RBevrHX41+y9JGHz2p0hxwNIv/70Ggab/3C/Tg2kcFHXrMFv/vydfP0bBkvZGYTbyVEj/LPj+X0yEODGUkUI6dH+e0Pjc7gyPgMlisDraePTuAXzxilv22RgG1Vva4bQ85mjpg7OJLG6z97D05b1o4f/+HLABgxOcWSLgb/NIj92VPHcb3DAAywx8/VA0W2NKrTg/brXkr0/uK1W7GsI2pzfXiNt1IZT+exutv+PeraGJrKisgq63m6DzBlN5OM/FkK+X0Ix4xeD7pdRzRYFmu0orMxg9xWwRI9grZtciZfFNtETyKE4emcFG9lvF9xaYDdEQsiGjR6w+RtZ3g6i3xRh08zXJ4UxUSimSenh7mN54u6+Iz6fRrOW9slCqZb4YJTvtCm1yEZCVTtYptroiE/3nr2Stef2+Ktgt6LzL3GWxH9yQiuOXdV9RtKfPSq07Hn2BSuv2CN4z5ZPie+bqd3MYVhGIZhmOaDFmQUSzomzcVaHG/FMAtP6yyfbzK8xVHV4PQIyk6P+uKtyMmhrmbPC6eH8/ORV/ftXNcFTdPwjl1rcOWpAwj6fXj/5adgx+pOj39J87C2Jy7eZyenQL6oi9f2vd94BMcmjBWzB0fTYBYXjXF6lP/MWolfEINCGhyGHYY0X7n3JVxwy6+wW3JtZPJFvOsrD+LYRAaru2O45pzyAVU6V8ThseYRPVTx6dnjk9B14LkTU9B1HRMzeVz2z3fi4n+8oyyiSh2+y9QTXybT+E4PireqPvQN+n244aL1OE1aIU/bVypXtInZ1Z0e5WXmJObO5AplEUdO2ypBgk2uYB+Y03sY9Gvw+TRomoY1PVaRcEcsWHahsYKdHjVBrs9E2Bie02B9Jl8UcXrrehIA5HgrcnpY5xGRoF9s0/J7Tx1D/ckIAn6fJbKl7fFWlVb1y8NoKpROhAO2GCO1lLoZCfplp4d5LKhSYr4YqCXeKhr0CxGnFqdHvVyyqQ/vvXi9qwgt7xMvbKGFOQzDMAzDlBOUZmfUW9gKbmOGWeyw6LFEoWF40K+J1bzlxeO1OD3Ki8xrjbcKusVbVVmtKQ+CeSgFfOW3z8ZZqzrw5XedXeb0UIfmNASUS83VInlmYdF1fXadHg5F5oQoMs/kxaCww8Hpoa72vfXRw+LfJ6eyGJ7OIRTw4Uc3vszxM5jKFmxOj0Jx6Uao/fF3Hsd5/3A7nj9hfWYOmUJhrlDCeDqPj/9sD05MZjGWzgsxkVBjlmSqiQHVuGBDD85b24VrznVfGV0LdGxI1rnKSB5IyhFXtN9x6wtQ+x4AYHjK+F46VyxzilSKL0qEAiKPX3Yg0WdJvi/1ehjPLVQWb8VOj9qIhuxOIRLRxlI5ES+2rtd4zelzQi4yEkxIhI2YjyXHW9F9KEqJzj0oulEuqndD3s+R6NEWCeAMSfRohXhMuVNtXDkWLGbkz2g10UPTNLEt1rKoZ674/QvX49w1Xfja9eeUdYAwDMMwDNNayLO3sZTp9GgBtzHDLHYW/qqBqYuVXTFsX9mB129fLr4nuzUAIFBFpJAJSfFWcYd4K00rL3YsfwyXIvMqudzvOn8NlndE8ZHXbPH8fJuZSzf349Y/uADrehM2p0ehWCorUZ7JG98vSN/PVomeYeYXuXB5NvFWTk6rZFTq9JhRi8ytz9uG3oTtfrc/OySEC4qp6YwF0R4LOg6extN5ZeC8dEWPO54bwlg6j5tvfRIl87WVXSy/3DOEbzxwUHytFmir/RYys3V69LVF8N+/vwtvOGN59Rt7gI4JXuKtnAj4fWIoOenw/g+2O4sITq+R5fQoOjg93I9VPp/m2OvhJKbLvR5OnR4setTGq04bwMquKM5ba2SVkVvjuClWBP1a2Wu63tzXbF2WxMa+BF6/fZntvk5OD+qRIZGFxMMpkYfsvv36fJrY19E2lggHbM9reMq5r6iZoAvtXNESPehYsJiRI+iiVUQPwNoWalnUM1es7IrhOzfswsWb+hb6qTAMwzAMs8DIC4Rp/sXxVgyz8PCncIkS9PvwwxsvsH0v5Fc6Pep1ejjEW1VzeRi/39npUa2MdG1PHPd+6FLPz7WVkJ0e8qDZpxklyZlcCbmw4v6Y5eCVaSzyIHw28VbVnB40BG43i8zlz+/OdV2YzOTRn4xg/0gKo6kcHjkwhvPWdYsBNT2W04Dx6aMTtq8z+WJZX8Ji5o49Q/jC3Xvx9288DaMpw3HwyIExfOuhg7j2vNU20UN2wQDlA/xK8VazdXo0Gtqvz+aEuz0axHS2YOv1IKdGTyKEgE8TomvI77MNXWVoIJ3OFctciZWcHoCxbU5lCo7Ci0306LZEjw4HAa9R5cytwvUXrLX119Dx6LhZPt4eDaFb6uQCgPV9hvMjEQ7gFzddJL4fFccyd6eHKoxQNEBXvHJMUyToR7ZQEk6PZCQITdNw7Xmr8D+PHsYbz2yMiLiYkZ22qgC+mAkFfDhjZQdGUln0tUWq3t7ojJlpCfcOwzAMwzBLB59Ps10XAYZjnWGYhYWvGpoIdbVsLZnH8hAq5hBvVa3PQ769upqdhlNBvkitGdnpIQ+LaJgxky+WlScvtsFrqyMLHfU4PejEycm5lbR1eqjxVtbAd1lHFPf82aX43g27cOlmY1XqDx47atzXXD1PjxVzEDOeOKKIHkvM6XH91x7C7n2jeOsXdtu+f8tP92BoMoPDY1YPzqMHx2y3mcoUhCOE0HXnCDkSuM5d2wUAuG5nbcW5jYZW3Z/S31b3YyQdysxJWI0G/eiUBtLLOoyhpXOnhzHAnskXka7B6QFYThXZ6UGfK3k7lzs92qPG4FumUQXxrQqJEidM0aMjFiwTJKjjo+y+oXKnx7EJxelBwogZgUUCZWdV0cPu9KDt5e/feBoe+8srsa7X+Tk1E/L518TM0om3AoD/ee/5+OVNF3sSMtqE04PPJxmGYRiGWVyo5yet0CvHMIudmq4aPv/5z2Pbtm1IJpNIJpPYtWsXfvrTn4qfX3zxxdA0zfbfDTfc0PAnzTijrpb1IlQQ8uCIFGlZCAl4yCumnXyuzOlhrQJmaoPeA9npEfL7RF76TL5Y9nqrefnMwiKLHoWSXnMfRqlCkTl1NUxm8sKRIEQPaZCciBhFxAG/D6/bZsTNfOvBg/irHz6FyZmC7bHiDhEjTx4ud3osRWiIurYnjm0r2jGVKeBv/vcZHJGcHqpoOJXJl7mnnJwMAIQA+TsXrMFdf3ox/vb1pzXy6dfMey9ajzv/5GIRMVQP7WaEmt3pYfydkaAfXVJZ8nIzUkh9fXRdx8lpK2JoQhFF5OOPE5boYTk9HOOtZKdH1D4o55Xhs4fEBYq36ogG0ZOwXufueMhVoCDBaSZnfb6GJo1tYiBpiB60zxJOD/Pz2lWlkJsem7YxcjZpmtYyQpfstJ0wHTLqZ2Cx4vdpnj+fq8zPeH8yXOWWDMMwDMMw84uctBIN+hdFBxnDtDo1fQpXrFiBW265BY888ggefvhhXHrppXjDG96Ap59+Wtzm937v93Ds2DHx38c//vGGP2nGmdl0esj3pRWZskjhZVVdjxlzceujR/Djx4+K7+eocJaHTjVDA5tsoSStbPZZq2ZzTk6PpTmQblbUjhVVpKoGFZn7Kzg9JmbyVnmtOeiyR9ZZ7o2LN/XiT1+xCZoG/Mf9B/CbQ2O2x3KKrXru+JTt66W+ja3ojOIf3nQ6fBrwf08cw1S2PLJqZZcxwJ/M5JHO2f/eE1OZstsDlgMiHPRjdXd8wcttfT4Na3riZY6HWqD9+p5jk+J79P6HAz50xq3V5MvMjg9V1JjKFmwuJ9Uoo8ZdqYgYN+lxnbqiehNhdMVD0DSgv90+FO1cIqveFzNqvJXh9LBe5/V97o4Kp04PcpmRc1GNwBo192lVnR6maCYXmbca1qITvcz110z8xWu34pu/ex4uPoV7NBiGYRiGWVzI866lFAXNMM1MTVPo173udXj1q1+NjRs34pRTTsFHP/pRJBIJ7N5tRYbEYjEMDAyI/5LJZMOfNOOMulq2nk6PkN8ndta1xlu96czluHRzH7KFEj74vSfE4IKdHvUjx1tlpYGqPBxSy5M53mpxofZ41BpxVazo9DCGWlOZgojBogGi/HmTT7o0TcONl2zARnNASYIGPVbcIXu03E20tLYxVXtY1h7FacvbRQyVE6cvbwdgvLYziuhBK91VSICsNsRfSrz69EEAwHcePiS2XRLyIkE/uqWhd2+b8W91n1StSLra61XJ6SEL9pqm4cvvOhtfeufZZf0AnVXcAkx1IkqReTIaRLfk9FhfIUbKqdODXGZt5r7HisAy3lvh9IhXHt6TA4VEj0S4+Yb91aD40HyhhLElVGReK+3RIM7f0LPggjLDMAzDMIyKvFC4FRfhMMxipO7JTLFYxLe//W2kUins2rVLfP8b3/gGenp6cNppp+Hmm29GOp2u8ChANpvF5OSk7T+mPlQnRS2Zx3RfOXfQJnp4cI1EQ3586Z1nIxL0YSZfFLnfTjEkjDeE0yNfEoPmcMBnWzWrDtW5yHx+yOSLGHJZ8S+jvj+1lplbooeT08N+MhUK+MQAUF7dT8NoGRpWvzScsj2Wl+xR1b2y2BlstxdYD5rdE1duHXC8fSzkx1qzH2IqUyh3ekxWdno0U6TOFVv70Z8MY3g6h58+dQyA1ekSCdqdHlRqrTqBqM/DjeqiB4l7cqeH6SBUjnNnrurEZVv6yx5j24r2ir+DqU5UET06oiG0hQNigcX63rj7fSV3IkHvJ10URlSnB3V6eI23amGnR0iKFx0y9099yerF4AzDMAzDMExjkOdvCXZ6MMyioOYp9JNPPolEIoFwOIwbbrgB3//+97F161YAwNvf/nb813/9F+644w7cfPPN+PrXv47rrruu4uN97GMfQ3t7u/hv5cqV9f0lTNngqJ5Oj5i0yjvktwZ3Xh/L59PQb15onzDzummVOBdP1g6tYs4WimLQHA76EJHjrRSRQ427YuaG1/3LPTj3o78UZbxuqAJBre+PED0cIorCAb+IYQKMjH1Z7PjbN5yK379oHbY7DHy7zBXatCpYOD0qnKD5zdW1S01Yiyk9JRTDdMVWazguR8Gs6opZkUqZPNI5e/wV7dtUmtHpEfT78FvnGoXs3334MABrKK12elC/g+oEGp6u7PSoJoi3ie6ayp0eTnzjd8/DVWcux5+/emvF2zHVIUGV4uA6Ysb+hgTUSk6PiBJvVSzpSJkCCL2/qhtkLE1OD2+iBz1eshVFj4Cxb84XSiJ+jHsvGIZhGIZh5g97vFXzLIJjmKVMzVeGmzZtwmOPPYaJiQl873vfw7ve9S7cdddd2Lp1K97znveI251++ukYHBzEZZddhr1792L9+vWOj3fzzTfjpptuEl9PTk6y8FEn6qCtFpEhXNXp4V1A6U9GcGAkLS682elRP5RVLheZhwN+RKXCV+70mH8KxRJeGJoGANz34giu3rHC9bZl8VbF2t4fy+nh/BnctqIDh0YN4UXNcH/nrjWuj9ujDBKp0yMc8MGnASXdGELKGfwrOqM4MJJecvFWajwXOT1WdlnF131tYdGLsqY7LtwFkzMO8VZuTo988zk9AIgYMPq75b9TFpSo/2OmzOlRLd6q8utF2+ak5PTIFbwJTBds6MEFG3oq3obxhrpd0/7md162Br9+YRg713W73lft9JiWBCz6rMnCiK7rGPHs9LBvA4kWFD3ofG86WxD7sQF2ejAMwzAMw8wbdqdH88WMMsxSpOYpdCgUwoYNG7Bjxw587GMfw/bt2/HpT3/a8bbnnXceAODFF190fbxwOIxkMmn7j6mPMqdHDUKFJXpITg/p8WoRUOhC+8SEXfSopWOEMbA5PaRIGVunhznQbTPfOxY95p7DY5a7oytReSBXFj9Wr9PD5fN8xooO8W8qMfeCXEAMWE4PTdPEfmCg3T40I4fEUtvGVGFQjrv617efiYFkBP/45u1iH7W6Jyb1SOTFCnLihFunh8dB/FKDRAnal8tRe7QKPyoJIGXxVnPQ6SGLwMz8oIoe1BnxngvX4+vvPk9EWDkRDRnvccb8LJGAFQlaPWJyBFY6VxTbm1enB9HWgheZFG91aMyIlA0HfE3Z6cEwDMMwDLNYCUnzrgQ7PRhmUTDryUypVEI26zzQeOyxxwAAg4ODs/01jAfKi8xrcHqYQwO5xLjWInOCBqW0KnjcjKhI8gV4zZDTI1/URcROOOCzDYdooEuvb62dEUzt7D05Lf5drZhcjR9TXQfVKOruReaAvaugls+YKtbIAzLaD8grhTtjQSGGzKfT48GXRnHNF+8Xhev1oL4Hyzqsv+u125Zh94cvw/aVHaL8enVXXLyWRqeHPd6KYndkdF2XhMnmOsklUYJeR9npQavw4+GA1Mlg3z5OVun0qB5vVd7pwQ7C+afc6eFdZI2a+xRyekyKPg9rvxMR21kJI+Y2Ewr4yuLpyp6Xcu7Tik4Pct08dcToxRtoj9iiDhmGYRiGYZi5xeb0aMHzUYZZjNQ0Lbj55ptx9913Y//+/XjyySdx8803484778S1116LvXv34u/+7u/wyCOPYP/+/fjRj36Ed77znbjwwguxbdu2uXr+jMRsOj3Wm6W9G/qsTO6wX4638r6p9JmlyccnM8hJ+dIrOqOV7sY4EJZiOyZnjCFROOC3xYDQIJKG1oWSjkKNg/XFgq7r+Pv/fQa3Pnp4oZ9KRWTRo5rrQXUZ1NrpUSi6F5kDwGnLLdGjFkGlPN7KOjHb2J+A36fhdElQ6UmERYyMKiLMJd99+BB27xvF/z1xtO7HkIXAjljQ1l0kQwLSmas6pB6JvIi3or8/lS3/++Xf0WxODxIWSGiQxZ2N/QkEfBo29iXEfkntsZl1vBW9FzNSp4e5ratF5szcMaB0RNTiJFDjrci1I5eOy04R6krqioWqDu/VeKtWLDJfZ/apHBw1nB79bRxtxTAMwzAMM59wvBXDLD5qujIcGhrCO9/5Thw7dgzt7e3Ytm0bfv7zn+OKK67AoUOHcPvtt+NTn/oUUqkUVq5ciauvvhof+chH5uq5MwrqitdanB7nb+jB3X96iW0FtD3eqnanx9BkBscnMijpxhCwN8GlmrUiDwMnhOjhsw2QaAApD6AyhRISS2AYmM4V8MW79+G125ZhQ18Cu/eN4kv3vAQAeNOZyxftStW9Qynx72oihuq8qVUwKOnuReaAPZLu4EjK8TZOqJExSWnF9b+/82yMpnK454Vh8T1D9HBeyT+XkKuCtn8nvv3gQfS2hXHZln7Hn8vvwSn9ba6P88m3nYEPvzqLlV0xvDhkOEsMp4fxnvW2hXFodAbT2ULZfeXf0axODyveyhKBBtujuPuDl6AzFsL4jPFeqUX3Y2Y3Q8jvcxTmwkGPTo+stQ2IeKsq92Uax+u2L8M//HSP2A466hE9KN7K/DwnbU4P63Nz1BQ9OqtEWwEcbwXYF6wAQH87ix4MwzAMwzDzSTAgix7NdT3IMEuVmkSPL3/5y64/W7lyJe66665ZPyGmfsrirWpwZwDAqu6Y7WtZ9HDrE3CCInGOT2Zw2MyXXt4ZXbQD7MWM36ch6NeQL+qYNFfGhoN+e6eHOYCSV7dm8kUkwot/tetHvv8Ubv3NEfzo8aP41R9fbHNNnJzKom+RFrG+KDs9qogYZfFWNcaPVev0AIBTlyXx9NFJXO4y9HeiWxEh5WisSNCPZR1RxKSTtZ42y+kxn50eY2Yp72SmXGgAgKeOTOBDtz4JANh/y2vKfl4olsRr+MV37MAZKztcf1ck6Bfl5jRon85a8Va9CUP0SOUcRA/zNfFptfUpLQWE08MULDLk9DCPOcs6DBdftmDF8RWKJQRM4ZWijPqSYVsfjnj8KgJt0rHTo+jpvkzj6E6E8cpTB/Cjxw3XFUUqeUF0elRwevh8GsIBH7KFEo6OGw7Rrnj13yGLHpoGdHq4T7OxujsGnwaYu7oyVw7DMAzDMAwzt9g7PRb/LIZhWgGeFjQR6orXWuKtnJCHSbW4RvqpyHwyK0o1V3TGKt2FqQCJWbQyNqJ0euSkqBlakb1UiqZv/c0RAMC+k4ZDYUZ63rKwMF88e2wSR8fLh7Iyuq7jxaEa4q3KnB6NFz3+43fOxUffdBref8Upnh+3W1lB7RQJI2fpd8dDYlusJvQ0EnJ6TLo4PZ48MiH+nckX8ciBUdEjBNgjv162scezkEYr0IslHcNmv0CvGd2XquD0CAf8TSfw0rEgX9RRKulC4FFX2MtfZ6TtnGKp+l1ee89Oj0wBuul84k6PheHa81aJf8t9HNWIlMVblTs95NsdMffDnR56Q+R941t3rKzpeTUL4YAfq7qs8yy3zxrDMAzDMAwzN9g7PVrvfJRhFiM8LWgi1BWvsxY95CLzGlYu95krDHOFkhhIcp9H/dDqehFvFfQ5dnqEA74FiR+qF7l3hLYvOcJo79D8ih6jqRxe/6/34LovP1D1dvLzrPZal3V61Cp66NVFj55EGNeet7qmFSXt0aB4zFjI7yhsyt0XvZLTo9ZektkwIZwezqIHuckA4M7nhnD15+/Hn3z3CfE9+bnW4gqIBH1iuxyaMladk+iRL+plDh458qnZCEtiRq5YEn+rKlbIXSayGEgD7gE30aNap4fZN1Ms6SJqjGKSqt2XaSznrevGP79lO774jh01OUDVTo9JB6eHfLtjpuihxvA5IX/mbn71Zs/PqdlY32tFXA1wvBXDMAzDMMy8Yu/04GsUhlkMNN90poVRB1C1xlup2ESPGoaF4YBfDCoe3j8GAFjJTo+6oaHehFRkbg2QSmKoa4ghS8fp8dTRSfFvEsVsosdJ7/0UjeDYxAzyRR2HRys7PfYN259XdafHLOOtitVFj3rw+TSxilpdbU3ITo+eREjEGdW6feUKJQxPZ8Wg2iu6rmPc3CbkEmuZ545b4tijB8cB2IvmSWQK+LSa9mOapomB7IlJo4i7R4oEozLzQrEEXddtTo9mQxaLsoWSEPoiyt+qaVqZ26xQLCFlvu/y6nO5J6qaWyMa9Ivtf9TsB3n2uNG5srY3XvsfxMyKq3eswJWnDtR0H8udaGw7wumh9ILQ7ax4q+qix9VnrcBVZy3Hd2/YhQ4PzpBmZb3U68FOD4ZhGIZhmPmFi8wZZvHBQXNNhDyY8vs0+GY5JK23yBwwLrhHUznsMQdT7PSon7Dq9JDirTK5om3YSk6PWsuyF4Ld+0bEv6fNAbJd9JhfpwcN5HPFEnKFkusgdmQ6Z/u6mnNjtkXm5PSYi56I7ngIw9NZsZJeRXZ69CTCQnioRfQYns7itZ+5B8cnMwgHfPjeDefj9BXtnu47mSmIeC83p8ee45Z4RjFpw1NZ8T3ZCVUrbZEgxtJ5nJg0BrCJcEB0DqSyBSTCAVz5ybvQFQ/hw6/eAqA5nR7y/j9XKIl4M6e/NRL024QRuYejX+oZ6IqHhJhU7b3RNA2JcAATM3m8/ON34P+7bCOeNUXT7R63JWZhkXuoAKnTQ3Gn0bZwtAanR3cijE+89YxGPdUlywbZ6cGiB8MwDMMwzLwSCkidHg7R0QzDzD/NN51pYeQIkkYMSGURJVCja0Qt0WTRo35Ep4c59I0E/baoEFu8VWDpxFvZRQ9azb9w8VZyn0jaoaiamFb6HOba6VEwh/6zFTGd6E7U4vSQi8y9/w1/97/P4LgpGmQLJTx8YNTzfeVuDqdOj8lM3laM/dKwsc1MZQvifRGiYLB2BwaJQSR6xEIBESGWyhVwcDSN/SNpPHpwXPQXNaPTQ9M0IQJmC0Upyqv8b1XdZjTcjoX8tq6F7rh1jPDSyyF/Jj/zyxeQK5bQEQvaegyYxYt8zNJ13bHIHLCcHlPmftZLpwdjsL7Pcj31cZE5wzAMwzDMvMLxVgyz+GDRo4kI25wZs39rw7Z4q9oGrttWdNi+5iLz+hGdHmnL6WHv9LCcHuElFG91cNTqYsjkS8gXSzanx9GJjGNh9FyRlqKXUhVimKYVx8Fcd3qUqMh8DsqxaRW1GjFDxGWnR1tYCAeVisyPjM/gXV95ED987AjufXEYP3zsKDTNWpE/lsq53ldlLG291qlc0dYDAwDPm04yQt6mhqcNF4GIf6vH6WHakvNmxFgs5EecRA9JWAGAXzxzAoAlJDUbYSF6WC4OpwLyqOI2I7G2LRKwiWjy6+TlvXn99uVQPwLbVnQ0XWl8sxIx3/tiSUe+qEvbhRJvpQhpXpwejMGWwSQGkhGcs6azKcVXhmEYhmGYxQzHWzHM4oNFjyYi4NPEUGi2JeZA/UXmAPB7F66zfd3TpIPA+YAGglT8KsdbzeSKwjkQWmJOD7XfYTpTsIkeAPDS8Pz1esjPp5LYUub0qBJXNdt4K3J6NLrTA7A6KpIu9ttEJID+ZBg9iTD62sJCbHMT1XRdxzu//ADuev4k/ujbj+F/Hj0MALjmnFW4aFMfAGA0XYvoYb+tHJUEWL0OBIkTADBsxpDR6+3FTaDitAqdRI/pbNH2fEj0UAXfZoH2Q9PS3+zs9LB3N5BDJxkJiv0WYO9H8VIw/09v2YZn//aVeNVpVpcER1stHWQxYyZXFMezsk4PZZtip4d3YqEA7vrgxfj2e3Yt9FNhGIZhGIZpOWTRI85OD4ZZFLDo0UTIJbK1xlE5UW+ROWBk33/mt84EAJy1ilfjzgZ1xWZYirfK2JweviXl9JhRnuNUplAWYbR/ZB5Fj7xX0cO4HcUcZT3GW1F2fS3xVuTyAOZG9FhnlkC7RQT5fRp+9kcX4rYPXIig34dIoHK81f8+ccxWQP/LZ4cAAK86bQBdMWO4OZZy7uZwYiJtv63a6/HCCbvoIUO9HrlC/U4PdSAbC/mFVTmVLdgEMBJczljZnIN4Eibk90AtMgesGDHaB8nDbdk5tLIrhlDAh8H2iKfjg6ZpiAT9eMWpsujRUfsfwiwIQb9PHLdOTmdEkbkqLKpCGjs9aiMc8M/JsYJhGIZhGIapTEhaeCxf9zAMs3DwJ7HJCAf8yORLNRePOyGvvg3WcRH9+u3LsKorhsF2LtScDWpZcDjgs3d6mMPFcNAnFZkvfqdHWnF6TGbywunRnwzjxGQWQ5NZp7vO+fNRn5sM9Y90J0KYzhaqx1uZ70UyGsRUtlDTe1OYY9HjmnNWYU13HOes6XK9Tac0dKy2fX3zgYO2rydm8gj4NJy9plO4NkYd4q2Gp7O454VhvPK0AdvQU3V6UJE68aLZ+7K8I4oj4zO2n4l4Kyn+rVY6HEQPy+lRcHTANa3Tw3xf6D3waXA8zghhzCHeSnZ69LWFcet7zxfioVcu2dSHcMCHkq5j+8qOmv8OZuHYuiyJRw6M4YnDE2I7qiZ6dMQ4GoBhGIZhGIZZ/JDTIxEOzEkfJ8MwtcNOjyaD3BmN6PSYjdODOGNlB/qTLHrMBnVYGwn6EQkZ78dMvoiMNNStFj+0WCiWdLECn1byTmeteKsNfQkAwNDU/IkeM1JRshphJUPxPhTPU7XI3BRFaLindnxUoqTPregRCvhw4Sm9tmF0JYTo4fI3n5gyCr9PX265Hbav7EAsFBDvsypkAMDb/3033v/fj+Fzd7xo+/5YFafH3pOG6LFjdWfZY1qihykK1uH02DKYtH0dDQaE6JFWnB6AsU00q8hLIjit0I8E/Y4ODWsfVB5vJXd6RIN+nLa8HWt64mWPUYn2WBDf+N3z8LXrz0VvG5c1LyXImfP4oXGxHSXVTo+QFAsQ8jtGqDEMwzAMwzDMYiNoXm9ytBXDLB5Y9GgyRLxVozs9GvB4TH1UcnroujWEDAd8ZausASM/nQbAiwU5SqrPHFxOzuRFFM6GXkP0ODmfokdednpU7/SgnprqnR7Gz2m4lyt6Fz2KktOj1l6duSBSJT6NXByv2TYovrdzneEioWx+J6fH8ycM8eJnTx+3fX+8zOlhiR5TmTxOmE6gs1Z1lD3m8HQOh0bTFUu3q7FdiaqKh/2Im4P7VK5Y1jFyxsr2po3yo+MBCZNuw2h1G5kS8Vb2IvPZDLPPXtOFCzb01H1/ZmGgz9ND+8csB1yFIvNOjrZiGIZhGIZhlgiy04NhmMUBix5NBokewUZ0etjirXhTWSjKOj0C9tWv1HsQDvjKVlkDwLVf2o2X/b9fOQofuq7bBuvqz3Td+WezhUQFTbMcEycmM+K5bOhvAwAMmc6B+SBtKzJ3FzKmypwedhGjUFSLyxWnRw1F5nK8lW8RDNNpW8w4xFvliyWMm9viK08dAGk0O9d1A4DN6eG2XakD0EpOj31md0hvWxiruss7Sb523368/ON34F9+9YLtudfCup6E7aQ1qsRbqc6TZo22AqxjC/3NERfnjOo2s+Kt7EXm8op+pjUgp8czxybF9xIV4q24z4NhGIZhGIZZKlCnRyLC8awMs1jgqUOTETIHe41wZmiaJoQPdnosHGVOj6APQb9P5OmPmyuvQwGfuC3FD2XyRfzm0Dgy+RKeOjJhe5xSSccN//UIzv3o7RhzWH3/Nz9+Bmf93S8wNNl44WHGFBiiQb8QAw6bnQwhvw8rO6MA5tnpkfNaZO4eb7X35DR23fIr/Ol3Hxffkzs9gPqLzBe704NiqzTNKKn+w0s34nXbl+G8tYboQU6PfFG3xULJAohaHE5OD4r2mpCcHhRttb43jvao+3CUitVDdUT0+XwaNvYnxNexUECIIKlsQUSdnbosiV3ruvGWs1fU/DuWCuT0oC6GsItTI6qIHsLpEQkiJhX6cWxR67G6O4Z26TMeD5WXbsvbBe0zGIZhGIZhGGaxQ9dLCY63YphFA4seTYYVb9WYt5Z23Ith4NqqlHV6mF/TcIgGw06dHi8Np0Az5YOjadvjfO+Rw/j50ycwksrh2eOTtp9NZwv45gMHMZbO4/HDdrGkEVCUVCwkiR5jhuiRjAbR12b0IixUvFWqYpG5KXq02Z0euq7jDf96L05OZfHdRw6L21vxVuT0qK/IfDGUocnbl+rWoNiqrlgIfp+GD1xxCv7lt84U+5BoyC8G4nLE1aQUEaWWGpOQsqzD2B7kInNL9Eh4KjuuJ94KADb2WaJHNGh3etBA/01nLse33rMTg+3Run7HUkCNt3LrSHHt9IgGbNFFLHq0HpqmYctgm/j6si39ZbeJstODYRiGYRiGWYLsWN2FgWQErzh1YKGfCsMwJix6NBmiyLxBA9JQg0UUpnacnB6ANRyiuXg4WB5vRYNhANg/bIkeE+k8PvqTZ8XX+aJ9gH3nc0Oie2JmDkrRKUoqEvQjETYG1kdM0aM9GkBf0hAURlI55GvowGjEcwKMkmo3aHV/r9npQa6a7//miGMBulVkHrR97QUqMl8soiMJbiW9fJsZmTZFjwqDSvqZLHrITiI1aY3islZ3GWXXcpzUi0OW6CGvHm9zyVCtp8gcAE7pt4a0fp8mRI+UVGSuijXNCDllJjOVOz3CihtIjrfy+zTxPkRZ9GhJXrttGQDg2vNW4Z/esr3s5+z0YBiGYRiGYZYiG/oS2P3hy/DOXWsW+qkwDGPCk+wmQ3R6NMrp4Wenx0JT3ulhrZxXvx9Wisz3DqXEzw+MWP/+zaExW1SQGrl029MnxL8zuSK++/AhfP7OvQ3r+KAoKdnpcWScRI+gcAsA1jB9rrHFW1UoMp9S4q3IufHLZ4fEbeQoJSveynR61CDikNNjMbg8ALtbQi1wH0l5Fz3GpILy45LoMaO87iR6rOwyOjsmbfFWxva8vs8uemyQ4qhsz72OTg/AKmUnxwfZlVPZIqakgX6zQ3FWk6LI3MXpIXpf1HgrY/vf2J9AJOjDsiZ2xTDuXLdzNZ7+m1fgo286XSyqkJG7Xrrizf+5YhiGYRiGYRiGYeaG5l+e2mKEG9jpAUjOEXZ6LBgru+zDQXqP1ZXSTvFWstPjgBRvpToS5HLtXKGEO/ZYA/x0roC//vEzAIDTl7fjZRt76v5bCNHpEQoI0YOirNqjQfh8GnoSIZyYzGJoKoOB9sisf2c10tLA3a3IPFsoCoGIRI9csYRiSbdFceWKJeSLJQT9Pineipwe3p0z1OnhXwQl5oAhrGkaoOvGNiYXj49MG38/vS5OdAqnhyVeHJ+wRA/ZbZPJF8V2urbHFD2kKCxyBq3qiiHo9yERDmA6W8C6ngR+c3Dc8bnXw2B7FLtvvgxxU+ygXopUriC244SLu6SZsJwexnvg5vQoi7fKULyVsa18+z27kM4W0O4hkoxpTuIVPi/yca2T460YhmEYhmEYhmGYOuFJdpPRcKeHiLdaHEPXVuSKrQP47fPXAACCfk2IBDEHp4c6cKQIIMDo9KAhulrULUcu3b9vRLgZAGBC6lG47ZnjNT//TL6IH/zmiC3SKJ2nInNfWTQQrdqnXo+hyfnp9ZiRXoO0i9NDFkO6EtZALlsoYnja/jzTuSKKJX1WRebk9FgsTitNs+KJ1JiuUS9OD3PQPSZtCycmnUUP6nhpCwewotPu9NB1XTgJ4ubngLabnoTz73daVe6VgfaIcHPIRebkYmiJeCul0yPi4pxRy+6ph4WcHolwAH3JuRcxmaWJLKZ1cbwVwzAMwzAMwzAMUyfNP6lpMcINLh6n1b1BH+tjC4Xfp+GvX38qLtnch1JJF6tke9vsK+oN0cMaOJZKOvYNW6JHrlDC8ckMlnVExbBW/EyKXLrtabuwMZKyhvn3vDDs+Xk/enAMa7vj+Pxde/HFu/dh+8oO/PDGCwBYMUaxUKAsGsgSPYy/7+T0PIkektDh1M0BWH0e0aAfiZC1+8zkS2XPM50roFjSRZF8f9Ieh+WF4iKLtwKMoWQmXxJDbcJLvJVwerjGW1mPeWjMcCYt74yKbYJcA7liSbyuFLvUEQviyPgMOuMh/PDGC/DE4XH8xQ+fFo9Xb7yVitXpIcdbNf+hNKyKHi7xVlGl7J5eo2QLRIAxsyfCTg+GYRiGYRiGYRimATT/pKbFoMz9Rjk9guz0WDRcdEqv7esBZbV0OOAXg91MoYSjEzPI5EsI+jUMtkdxcDSN/SMpLOuIlsU3UeRSqaTjF88YfR4b+xJ4YWhaDLMBYN9wCntPTmN9r3NvAnHPC8O47ssPYE13TDgbHj80Ln5uxVv53Z0epkgwX04PW5F5zjmCaiprDHATkQB8Pg0hvw+5YgmTM/kyISmdK4rXuS0SEMNyVSyoxGIrMgdohX9euIkIK96qktPD7PSwOT2s9zedt15Dcnqs6IyJgTm5BuTfTcN3Elu64yFsX9mBU5cl7aKHy5C+VqjTYyqTl4rMm3+gT6IHfZ4TLkKP7DZL5YqinD4Zbf7XiJk9crxVN4seDMMwDMMwDMMwTJ3w8v0mQzgzGiRSRITowZvKYqNf6bkIBy2nRzZfxD6z6Hl1dxzreuMAgAMjxup5taib3AePHx7H0FQWiXAAl27pAwCMKkXict+HG7c+ehgAsH8k7TgcpXirWNBf1odwxqoOAECv2Q0xNJWBE/kaCsG9MCOJEWr8F0FOjzbzOdMg+KhZwh70a0KMSmeLorC7Kx4S3x9J5WyOhkoUiovR6WFuY0qRuRVv5aXTwzneasYWb2Vsqys6o6LcmCKt6HdrmrXPu+Gi9bjqzOW4cusAAGOfJW9b9XZ6qJB4NZkpiIF+Kzg91HiwRNhZxJDdZuTyCPq1hr3+THMTDbHTg2EYhmEYhmEYhpk9PIVoMijqpVEixTXnrsS5a7uwa113Qx6PaRz9bXbRI+S3Oj2yhZIo1h5sj2BNtyF67Dk2CQDl8Vam6HH7s4bL4+JNvcJxIQ+oAWBoqrrzgiJwAOdV8Hanh/XzeMiP89cbRem9pkjg9PsOjqRx5t/+An//v89UfS5ekQfubkXmtLKfhBz6vJEroTseFoXX6VzB1nPREQuJXoODUql8JRaj00O4icqcHh46PcyfjcnxVi5F5pbTIyp+J/WI0P+NYnXjtblgQw8+8bYzbAXZyYgsejQ23orw+zTb6vRmJaQcU9yEHvpMZApFqc8jKN4nhqmE/FnqYHcQwzAMwzAMwzAMUycsejQZVpF5YwZMbzpzBb7z+7vK+iOYhWdAcnqE/D74fJooF87ki0J46IiFcP56Q7T61kOHsO/kdHmRuSl6HBo1Bs1nrOwQw6cRRfTwEs9E3QuAfThK93WLt7poU68QbmjgNSU9FvHEkXFMZwv4dQ0dI5XIFUqiNBwod8IQQvQwB9+0qp1cCT1tIcTMro90rihinCjWaU2PIT7tH0l5el70nHyLaGBMgo/6vtB2UineqjNmd3oUiiVbAfyM2QMB2OOtRHl6wfg5bUeRKmKDHKnUMKdHyD7sT4QDLTHQV+PBkm7xVpIoRvsBjrZivDLYHsH2Fe14zemD7DBlGIZhGIZhGIZh6oavKJuMbSs64NOM/zPNTb/U6UEDXTlaZpxEj2gQV2ztx0Wn9CJXKOEvf/i0ED06zFXxVGSezllD/ZgZMyKvygfgKZpJdnr4pYEwRRlZ8VYBm+jx8o1WbwmJLjP58hirtOnEkEvWZ8OMIuSkc9bwXaZc9LA7PXoSYfG6pXNFUdhNMS2rTcfNwRFvTg8qMl9MnTqd5jYzlrbe43yxJN5zb04P47ZHxzOQtCbouuUgOSLFW5FLo6QbQhCJdJEq7g25PFuNZ6oXv0+zlXir8WzNiur0cO/0MG43k2utonemMQT8PvzwfS/DZ689a6GfCsMwDMMwDMMwDLOEYdGjybhiaz+e+ptX4LfOXbXQT4WZY/qTlvuGHAEUvTOdLWDcHLh3xIxomb9+/akAgHteHBar8mkITUXmNNSPhQNioF8s2Yf/qkDghCx6OEUZWU4PH6JBP9b1xhH0a3jlqQPitpTtnnEQWeh5jqZyKJXKxYlaUYWcojRYt/3ejD3eynJ6lIseqVzBcnqYr/Oa7hgAy+nxnYcO4eM/2+MosNDzAOzC0ULTESuPqKK/06dZP3eiM26IEOPpHIolHXtPTgMATulPiNukcwXM5IoYNuOyVnbFbC6DXKEknB7VysmT0cZ3egAQ/SxA6wz0Q4rA1ObS6UGf26wSb8UwDMMwDMMwDMMwDDNfsOjRhMRCrTGEa3XkLgwSImi4ni/qYhBP3RxrumPwm90Q9DOKXaIBP3UqJMJ+154CtctBRdd1m+hxUoovOj6pih5GNNAPbrwAD3z4cltxbUQ4PcpFD3KklHQIR8tsoMeLSyW6TmXmJLZQkTk5DUS8VSIsPn8zuSJGU8Zzo1inVV2G6HFgJA1d1/HB/3kCn7tzL548MuH4vEj0WExF5uT0GJdEj/2mc6W3LSy2Mef7Gq9DSQcmZ/J4ccgQPTb2twkBKZ0r4si48XhtkQDao0GbyyBbKIltsBanR7iBvRsXb+oT/24V0UMVjVydHg7xVq3yGjEMwzAMwzAMwzAMszhg0YNhmohI0C8G9/vMVfQkemiaJobO1KPQbfYvUJE5DfpjoYBYsa1SrdNjcqZgE0ZOSkXk5fFWxu9IRoJlsUjRCqJHSnJmjDYg4op+RzwcEL837eAwmSpzehi3PWo6WHoSIVu8FbkhukyHA3V6HBhN2YQhJ1fJ8yemcNszxwEsriJzy+lhPf8H9o0AAM5e01XxvkG/T3RBjKZzwumxvjdh60I5JPV5AIboQz1F2UIR2QJ1elRzejS+0wMArjy1X/y7VURmNR7MTcigz0QmXxSfF3Z6MAzDMAzDMAzDMAwzn7DowTBNRpcpZBwcNVbLy3FDNHy3vjYisrJC9CCnR6DM6UHuhmrxVkfGZ2xfywLIiUlDoJgxnRVuwor8M6d4K9mFMTKdK/t5rcjF6nJEmIrV6WG8jurQ3d7pURCF3SQ2rTbjrY6MzQi3DQAUiuXxVjd+41F89d79ABZXkTn9LeOS6HG/KXrsXNdd9f6i1yMlix5xSWwq4NCo1edBUK9HNm85PcJVnR5zE291riTuPH9iqmGPu5gpEz1c4q3oM1Eo6WL7l2PGGIZhGIZhGIZhGIZh5hoWPRhmCdMeLR88dptCBlVdUFk5YA2sCRJBaOV8KkdOD79YsS1ua4op1ZwexyZmXH8m4q3ylsjgRkWnR9b6HvWTzAZydUSDfsTD1vBdhdwZ5PRQI5N6EmHEwpZjwXJ6GK9drymKlHTgkQNj0u8v/12Hxqyy88VYZE7xVtlCUfwtu9ZVdnoAVqn7aCqHvSeNbhPD6WG+37ki9pnfX2c6YwBLtMjW1OkhOz0aF28V8PuE06Ff6vdoZlTRqJrTAwCGTJdXGzs9GIZhGIZhGIZhGIaZR1j0YJglTGfMSfSwCxsd0uBXjZCSnR66rgsHRTxcHm9Fgkk1pwdFPTlxwvwZiQyxCj0LJHoUSjryRXv8kywSVBM91Ps6IZ5PyC/iiqaz5X8nORNWm90caqdET1tI/E02p4f5umuaJno9dpvuCON32UWPmVzR5pBZTE4Puci8VNJx74vDyBZK6EmEsb43UeXeVo/M3pMp8fqs643bYsHk2CvCEj2KwpmkCnMqcqyS6lSYLT/5/16ON56xDP/45m0NfdzFivr6uXV6yOLIkClyJrnTg2EYhmEYhmEYhmGYeYRFD4ZZwjitMleFDdkN0qn8jASSbKGEbKEk3CFxh3gruq1T3JTMsXEPTg8hMrgPQyMha/ekCi3Ttngr906Ph/aP4vS//jm+eu9LFZ9zRnKeJEynh1pkPpMrYv+w4UDYPNhmPEeneCvT6TE5UxCdBl2Sw2Zdr+FekEUPtT9kNG0XchZXpwc5PfJ42xfvx+987WEAwM51XdA8iDO0DT5yYBQAsLwjauuQSeeL2GsWnK/vk5we5vaYk50eVYQMOVapkfFWALCyK4ZPXXMmNva3NfRxFyvy6xcJ+hD0O7+emqaJbeSAWXCfdHCkMQzDMAzDMAzDMAzDzBUsejDMEuYfrjod/ckw/up1W8X3uhNh223kgaM8fA/5fUiYA/psoWQb8keD/jLRg8SUak6PYxWcHkOTWei6LsVbue+CQn4faNavCi1pW5G5u9Pj0QNjyORLeGDfaMXnbMVbBYQ7QC4aB4AXhqZQ0g3xp9d8jeXIpMH2CLpiVpH5YVP88Wl24YncC3IRuCqwjCl/k28RiR7k+BlJ5fDQfiPWKhr04807Vni6P21HD75kvCckApEANjyVFW4h2ekR8kvxVqLI3LvTo1oUFlOZkN96ravFVfW1GZ8PEjk53ophGIZhGIZhGIZhmPmEMycYZgmzvjeBBz58ue17crxVNGjv5pCdHolIQETW5Aol0ZMRDfrh92ll8VY0rJZjl5xwi5vSNCBXLGF4OmeJDBWcHpqmIRr0I5UrlgkttiLzCqIH/Z6UQ2eG/XZyl4nxmqhiyp5jRmH15sE24WiQnR5vP3cVfD5NiB5HzE6OzljIJlo4RUCllCgt9XcvRqcH0dsWxoMfvsyTywOwRJNJ0wWzoc94PWh7e+roBACgJxESUVqAJVpkC0Vk8xRvtTCdHq2ILBq1hSufOvS2hfH8iWnxNcdbMQzDMAzDMAzDMAwzn/DSV4ZpMuR4K3VATcXlABAP+209CSQMxM2BphoHJDs9dF23/ezgSBp/8t3H8eLQFKYzhoNBLjpujwYxYEZxHRxNIWd2MlTq9AAsUaRM9Mh5i7eiGKSZKpFcIt4q6Bc9JyPTOfzPI4fxsZ88C13X8ezxSQDA5oGkuN/+kZT49zXnrjL+JnIsTNv7PAgn0SOdK+ATtz2Hz9+5F4ViSRSgE/5FJHpEFBfQ2u64Z8EDsG+DALDFfD1pW3jqiCF6rFNeJ7Gt5i2nRzUhw+b0aHC8VasRkuKs3ErMib42e+wex1sxDMMwDMMwDMMwDDOf8PJLhmkyuhPWkL1dGTZ2Sivn46GArSchLUQP43vktCDBQY7NyhZKNgfJdV9+AAdH03j22CQKRUMQ6U9GMJWZNn+XH8s7ozg2kbGtAFfdJCoUf6WKFumst3grcnqonRlut4uG/MIpM5LK4m//9xlMzOTxxjOXC6fHpgGrw+EVpw7gJ08ex1mrOtBrRvrEVYdMzC56UJyTzPMnpnDHcycBAPftHcYFG3psP19MogcAdMaCmJkwXrNV3bEa72t/PagfhRwytH2o4hAJHNlCybPTo6ctZLp3/LahPVM7cpG5W4k5QfFWRDWRhGEYhmEYhmEYhmEYppHwJIJhmozuuDVwLHd6WAPntkjA1pMwnS0vF4+GLNFDXqGfyRdtosfBUSPK6bnjU6JcvT8ZxotmIXUsHMCKzhge2j+GF8yhtqZVX31PjoLKTo/qoke1HpK0KFb3C9Ho0Gha9Hocn8xgj+n02CI5PV5z+iB6EmGcvabTes4usWBEPBzAYHvE1n1Crx8A/PqFYew7mbLdx1+Dk2I+6IiFRO/GmhpFD/n18GnAxj5D9FCjztYr4pDsSspSp0cVp0csFMD3bjgfoYBvUfWiLEXkz2pbuLJzo7fNvVeIYRiGYRiGYRiGYRhmruGlrwzTZHR5dXqEA1ZPQr6ItNmTkQhbg2Q5xqgtEkTQbwyOZRGBoqoAw8UwbT6OHHETD/mxojMKwCgEB4w4o2qxSPT7M9LvKxRLtl6RsXQOxZJedl/jeRrPJV2l04MePxbyi6H8nuNT4ufPHpvEWDoPTQM29lsOhIDfhws29NhilmLK8H5NT7mzQ3UxHB23l78fMUvQiels5ec/33RKAtjq7vK/r/J9rW1wTU9ciEQxRSxa32d/jeT+GXr/vZSTb12WFL0hTP3ITo9qzg1Z9NA0IFGhu4dhGIZhGIZhGIZhGKbRsOjBME2GXGTeEbW7DORV9vFwQKzezhVLSOXKnR5yfJBcik5xU0NTGTxzbNL6fbGQKBnvS1qDz1goIESP508YYkK1aCvj99Pvs0SOtOLaKOnAeNrZ7TFTY7xVJOgXThn5Po8dHAcA9LdFbA4XJ8qG9w5xVuoQvpoTpVKE10IgF4yvrtXpId13gyT+yK+bpgFnruyw3c9yepQsp0eV94JpHLXFW1mCZyIcYJcNwzAMwzAMwzAMwzDzCi+/ZJgmIxL0Ix7yI5UrlsVbxUJ+hAI+5AoltIUDYpCZLZSEWBGXnR4hv+2+0aAfU5kCZvJFPH10Aq/5zD22xx+ZzqJgui76ZadH2I+VncZw/MRktuyx3aDbyKIA9XkEfBri4QAmZvI4NpGxdY6I21K8lUfRIxYK2DpRiMcPjwMABjsiZT9TUUUPJ5eBkxACAEG/hnyx3LWy2ESPTmm7Wt1Vm9NDdh8NtFuvp7w9bB5I2oQVwN7pQU6PavFWTOOwF5l7j7dKVrktwzAMwzAMwzAMwzBMo2GnB8M0IRRx1a6IHpqmiZX2htPDGBrrOjCeNvor4nKnR9Ae2xQRcVMl/MZ0P8gcl3oq5MFnNGR0eshs6k+iGk6dHhT1FAv5sWO10aXx/d8ccbw/3a9Q0m0xXCpO8VYyJNQs64hWfc7xsF1LXtdbLnpceeoAdqzuxJt3rLB9f/uKDsfHHFl0okfI/H+wbBurhrzqn9w/gF0s2rmuq+x+chQbvV9e4q2YxqBpmhBJ28JVnB6Sy4v7PBiGYRiGYRiGYRiGmW94YsQwTQhFNKnxVoDVqZCQ4q0AoxsDsA/t5figqOn0AAyRoFAsFxEoIise8tsicOIhPwbaI5BTbq48tb/q3yF+n+TUoH6ORDiA63auAgB89+FDjm4O+XuV3B70mBEzwivu4kJZ1l7d6aGWs6u9KgDQn4zgf957Pq7budr2/dOWt2ORdZY7Qn/Tqhr7PIh37FyNtT1xvO2cVeJ7cqzaznXdZfexx1uZnR7s9JhXwqbbo1qnR1s4IKLxqt2WYRiGYRiGYRiGYRim0bDowTBNyHlruxD0a9i2or3sZ11mCXUiHLBF1lCEUtylyDwW8iMSsjo9UhVEhHg4gIQknsRCRpSW3Dd+2ea+qn9HxCHeKmXGW8XCAVx0Sh9WdkUxmSngR4+Xuz3kXo503r0M3Iq3Mn6fU1QWAAy2V3d6yOXs1UQSVVzpS4axzMPvWGjOXNWJgE/DhRt76rr/373xNNzxJxfbBCFZlDpvrYPTwxZvRZ0efAibT8jpUa3TQ9M00evB8VYMwzAMwzAMwzAMw8w3PDFimCbkQ6/ajMf+8kqctrxc9Ng8YMRKre+Lw+fThPBBTg95xT31LAT9GoJ+HyLm0DNTKIqYqet2rsJv/uIK2+9IhAO2uCJZSCHchAUZp3gr0T0S8sPv0/CmM5YDAB7aP1Z2f1sXSAWRZiZvFz2cIq4AYJmHTg+ZgWqihxIT1BEN2YrB/+TKUwAA11+wpqbfO9fsWN2Jx//qSvzxlZsa+pgAsKorVtbnAcDWPyPirdjpMa+Q26Zapwdgxdslo+z0YBiGYRiGYRiGYRhmfuFpBMM0IZqmlQ3UiQ+9ajN+69xVokw7FPAhVyxZTo9QudND/F9yeqRN8aEjGkJ7NAhNM7pBAGMluNwNQkLKb527Ct968CBuuuIUT3+HED0kwSKVo8J14zEHTGcEdZLIeI23op9RnFePQ5k54M3pYbt9lQ4Q+TUCjNio1d1x3Ld3BLGQHzdesgGvPG0A63rKe0EWGrftq15WdsVw959egs6480DdircqingrdnrMLwPtERydyNi6WNzoI9GDnR4MwzAMwzAMwzAMw8wzLHowTIsR9Puwoc8aoocDPkxngbGUe6cHiRZyp8e0GTMVDwfg82lIhAOYypALI2B7HHJ6fPjVm/Ga0wdxwYbyzgYnSGTJODg26Dl1mEXaEzP2su9SSffu9Mh5c3oM1uj0uGJL5d6SmOKA6YgFhdOjMxaCpmnY0NdW0+9cyqzqjrn+LGxzepDowU6P+eRf334WDo2msb63ughH72V/srbPDMMwDMMwDMMwDMMwzGxh0YNhWhwaJo+ZTglZrCDRgcQAOW6KYqYS5uC+TRI9EpGALdKKBIq2SBAvq6EHIlIp3sp8/I4oiR52p0emYBc5qKxcRdd1pPN2IaXLLILXNGBlZwwHR9MI+X3oiVeP5AKA2z5wIR47NI43nLGs4u2Cfp/htDGdC+3RoBgo9yW9/a5WIWxuC9l8Cdm83ZnDzA/LOqJYVsW9RPz+heuxsjOG122v/BlgGIZhGIZhGIZhGIZpNCx6MEyLQ10Jaq8FUB5rFRZOj1JZzFRbJAhMZAAYnR7RoF9EXqmF3V5xjLeSHCYAkDRFDzXeSo2zcou3yhd1FM2Gdfo7Kd6qJxHGYHsEB0fTGGiPwOfTHB9D5ZT+NpzS782hEQ/5hejREQti00Ab3nfJBly0qdfT/VsFp3gr+h6z+OiKh3DdztUL/TQYhmEYhmEYhmEYhmlBWPRgmBZHLYNOyE6PoLvTYzprFz0SEXuclaZpiIcCmM4WhJhQK9GQXZABLMcGCSkUbzU+k4eu69A0zbyd6vRwFj1kMYT+Poq3GkhG0GfG8wxWKSWvl1goIFw2HbEQgn4f/uQVjSsIbxZoO83ki8gVOd6KYRiGYRiGYRiGYRiGcYaXyTJMixNWyqBjUrl2hMQO6vQgESJnxVvFRXSVdb9EOGg+lnH/ekuv5Q4RgsQWq9PDEChyUtcDYBdKAPd4q3Te+H7ApwnXy8s39uLMVR24bucq9CaMmCmvsT61QiJTwKfV7YhpBei9mZyx3kcuMmcYhmEYhmEYhmEYhmFUeGLEMC1OyG/fDchdHDvXdqE/GcYVW41CbhIhsoWiFDNlfE92iFDPx6tOG8C6nji2DCbrem5OnR7k2KDfFw/5ETBjp8alMvNanR6yG6W3LYzv/8EFeNs5q3DZlj70JMJ4xamVS8nrhcrM26NB4VJhyqEoq8lMXvoei0QMwzAMwzAMwzAMwzCMHY63YpgWR3V6yK6Mjf1t2H3zZWIYH5E6NqjTIyF3eiiP8TdvOM0WOVUrcqdHqaTjT773OL7/myMALLFA0zR0xIIYns5hYiaPwfaouI+Mm+hB34+6RCVdsKEHD/35ZXMmSJBTpj0WrHLL1oZEDyqsD/o1+D12rDAMwzAMwzAMwzAMwzCtA4seDNPiyE4PTbPHVBnfswbLsvMipXR6JG3xVgHH+9cKuS8y+RJeGJrGrY8eET9b35sQ/05GDdFjPJ1HvljCx36yB9mCUmSed3F6OBS4q8ylA4OcMh1RFj0qETa3PRKpIuzyYBiGYRiGYRiGYRiGYRxg0YNhWhw5ImhlZ6xiZBC5ISZnCsgXdQBSkXnYWfSYDXJx+uGxNABgXU8cn79uBzYNtInbkWAwns7jwZdG8ZV7Xyp7LLdODyveamF2h3Glm4Rxhpwe4mvu82AYhmEYhmEYhmEYhmEcYNGDYVoceXi8vjde8bbk9BiezorvUfm2rcg80phdixyndXhsBgCwsT9hEzwASzCYmMkJB4pK9XirhRmix9jp4Yky0YOdHgzDMAzDMAzDMAzDMIwDLHowTIsjx1vJkVFOREPGbUn0CAd8CJj3Tzh0eswWireayRdxaNRweqzojJXdTnZ6uCVRqR0f4vt5QySJLZDTo9MUbHrawgvy+5cKIUX0iLDTg2EYhmEYhmEYhmEYhnGARQ+GaXFkp8eGvsqiBzkvxtJGmbQcY9Xm0ukxG+Ry8b0npwEAKzqjZbejEvCJmTwKJd32M00DdN2D06NCp8dc8vbzViFXLOEdO1cvyO9fKqjODnZ6MAzDMAzDMAzDMAzDME7UtFT285//PLZt24ZkMolkMoldu3bhpz/9qfh5JpPBjTfeiO7ubiQSCVx99dU4ceJEw580wzCNQx4er68iesgiBGB3dMyF6BGRft/zJ0j0cHJ6GG6J8Zk8hqeytp91mU4KV6dHrnqR+Vwy2B7Fza/a4vh3MRZqhwc7PRiGYRiGYRiGYRiGYRgnapoarVixArfccgseeeQRPPzww7j00kvxhje8AU8//TQA4AMf+AB+/OMf47vf/S7uuusuHD16FFddddWcPHGGYRpDUXJGVIu3ilQSPcKNj7fy+zQRa3Rk3Oj0WNnl4PSIGr9vIp3HyWm76NGdMESPB/ePYstf/Ay7943Yfi6KzIPsHFjMqJ0e6rbIMAzDMAzDMAzDMAzDMECN8Vave93rbF9/9KMfxec//3ns3r0bK1aswJe//GV885vfxKWXXgoA+OpXv4otW7Zg9+7d2LlzZ+OeNcMwDeOoKSYAQFc8VPG2PQl770QibA2e58LpAQBrumPC5QEAyzvKRQ8qMh+fyWE0lbf9TP6bZvJF/PCxI9i5rlt8L51f2Hgrxhty9wwA9HIHCsMwDMMwDMMwDMMwDONA3fkgxWIR3/72t5FKpbBr1y488sgjyOfzuPzyy8VtNm/ejFWrVuH+++93fZxsNovJyUnbfwzDzB+Hx2aq38ikJxFCUhI35PLvgfYIBtsj2L6iHX6fS5t4HVyxtV/8uyMWRJtUmE5Qp8d4Oi9K1oluRah57NCE7euFjrdivKFpmq3MfPNAcgGfDcMwDMMwDMMwDMMwDLNYqVn0ePLJJ5FIJBAOh3HDDTfg+9//PrZu3Yrjx48jFAqho6PDdvv+/n4cP37c9fE+9rGPob29Xfy3cuXKmv8IhmHq5z0XrgMAvPGMZVVvq2marfdDdnREgn7c8ScX43/ee35Dn9+VWwfEv3sTzqv7O6KW6DGaytl+1qO4V54/MWXr9+B4q6WDHHG1ebBtAZ8JwzAMwzAMwzAMwzAMs1ipOYNm06ZNeOyxxzAxMYHvfe97eNe73oW77rqr7idw880346abbhJfT05OsvDBMPPIG85YhlOXJbGmJ+7p9ut7E/jNwXEAQDxsFwrmomfh9OXt4t8HR9OOt6F4qyPj5a4V1elRLOl4+ugEzl7TBUCOt2pcJBczN8j+oS3s9GAYhmEYhmEYhmEYhmEcqHnKFwqFsGHDBgDAjh078NBDD+HTn/403va2tyGXy2F8fNzm9jhx4gQGBgZcHg0Ih8MIhzmbnWEWCk3TsLHf+6p5uey8UYXllfD5NLxsQw/ueXEYV5213PE2XTG7m8OnAdTP3hGz4rD8Pg3Fko7HD0/gtOXt+NlTx7F/OAWA462WApOZgvh3f5KPGwzDMAzDMAzDMAzDMEw5dXd6EKVSCdlsFjt27EAwGMQvf/lL8bPnnnsOBw8exK5du2b7axiGWSSs77UcIY0sLK/EF96xA3/3xtPwoVdtcfx5eyyItZJTRXat6Lp1uzeeYYgmv3jmON742Xvx/v9+DE8eMTo+ON5q6eDTDLGOYRiGYRiGYRiGYRiGYVRqmljefPPNeNWrXoVVq1ZhamoK3/zmN3HnnXfi5z//Odrb2/Hud78bN/3/7d17dFT11f/xz4Qkw8RcIEAuhoBBJdwvBgkhIqihUawCWssCRGjxqbSgoJVafxaxRSUVXHgDQQEBq9CC9VJA6gWCBG1oICAIBISkQYXwCISL0ECS/fvDJyMjmcwAhoTx/Vpr1sJzvmef7znj3pOTnTnngQcUHR2tyMhI3XvvvUpLS1OPHj1qa/4ALrArTnumh+sCfTviEmewhvVoWeOYHq2iVfh/39qIiXBq9/9++++IhsF66vZOqjBTQiOX3tjwhf61++AZ21+oY8H5S/LzVmwAAAAAAAD48Tmrpsf+/ft11113ae/evYqKilKnTp30z3/+U3379pUkTZs2TUFBQbr99ttVVlamzMxMzZgxo1YmDqBuJEaHuf995ER5DSMvrB6tmmjhuj2SpKbhTj0zqIvW7PxaP+10qUL/7wHYpyoqdUdKcxUd+EZNw516d8s+9/bc3uri0bl5o7qeAgAAAAAAAOqps2p6zJkzp8b1DRs21PTp0zV9+vTzmhSA+iukwXd3xTt+sn41PaqEBgdpQNcEDejq+QyQkAZBmnJHZ/d//2pBnt7bWiKJpsfF4MmBHbV4/R79v5urv80ZAAAAAAAAcN7P9ADw4/PgT1qrabhTI69JquupuMVGNnT/++tjJ/3a5vRGSUOe6VHvDUltoTd/k66m4TzEHAAAAAAAANWj6QHgrI25/kr9+5Eb1LJJ/Xq2wtgbrlSQQxrVu5Vf409vejiDaXoAAAAAAAAAF7uzur0VAFRxOBx1PYUzjMu4Uv9zbSuFO/0rbW3iIuRwSEEOh+KjGvreAAAAAAAAAEC9RtMDQMBwOBx+NzwkKSjIofV/6Kuy8gpdchbbAQAAAAAAAKif+C0fgB+16EtC63oKAAAAAAAAAH4gPNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAJCcF1P4PvMTJJ05MiROp4JAAAAAAAAAACoa1X9gqr+QU3qXdPj6NGjkqTExMQ6ngkAAAAAAAAAAKgvjh49qqioqBrHOMyf1sgFVFlZqa+++koRERFyOBx1PZ165ciRI0pMTNSePXsUGRlZ19MBEICoMwBqG3UGQG2jzgCobdQZALWNOnMmM9PRo0d16aWXKiio5qd21LtvegQFBal58+Z1PY16LTIykv/ZAdQq6gyA2kadAVDbqDMAaht1BkBto8548vUNjyo8yBwAAAAAAAAAAAQEmh4AAAAAAAAAACAg0PS4iDidTk2cOFFOp7OupwIgQFFnANQ26gyA2kadAVDbqDMAaht15vzUuweZAwAAAAAAAAAAnAu+6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEhHrX9Jg8ebKuvvpqRUREKCYmRgMGDFBBQYHHmP/+978aPXq0mjRpovDwcN1+++0qKSnxGHPfffcpJSVFTqdTXbp0qXZfZqapU6eqdevWcjqdSkhI0BNPPOFzjosXL1abNm3UsGFDdezYUcuXL/dY73A4qn1NmTKlxrjFxcW6+eabFRYWppiYGI0fP17l5eXu9Xv37tWQIUPUunVrBQUFady4cT7n6k9cScrOztZVV10lp9OpK664QvPmzfMZ9+DBgxo6dKgiIyPVqFEjjRw5UseOHfMY8+mnn6pXr15q2LChEhMT9dRTT/mM68/7688xAd5QZ7znTk5OjtLT09WkSRO5XC61adNG06ZN8zlfX7n+8ssvq1evXmrcuLEaN26sjIwMrVu3zmfci61+AVWoM97zNjs7u9q4+/btqzHu2eTkokWL5HA4NGDAAJ/ngTqDixV1xnvejhgxotq47du3rzGuPzlZWlqq0aNHKz4+Xk6nU61btz7juL6P6yZcrKgzNefO9OnT1bZtW7lcLiUnJ2vBggU+5+tP3Ndee02dO3dWWFiY4uPj9ctf/lIHDhyoMW5t1QMz06OPPqr4+Hi5XC5lZGRo586dHmP8qXEAcMFZPZOZmWmvvPKKbdmyxTZu3Gj9+vWzFi1a2LFjx9xjRo0aZYmJifbhhx9aXl6e9ejRw3r27OkR595777UXXnjBhg0bZp07d652X/fee68lJyfb22+/bbt377a8vDx77733apzf2rVrrUGDBvbUU0/Z1q1b7Q9/+IOFhITY5s2b3WP27t3r8Zo7d645HA7btWuX17jl5eXWoUMHy8jIsPz8fFu+fLk1bdrUHn74YfeYwsJCu++++2z+/PnWpUsXGzt2bI1z9Tfu7t27LSwszB544AHbunWrPf/889agQQNbsWJFjbFvvPFG69y5s/3rX/+yNWvW2BVXXGGDBw92rz98+LDFxsba0KFDbcuWLbZw4UJzuVw2a9asGuP6en/9OSagJtQZ77mzYcMGe/31123Lli1WWFhor776qoWFhdWYt/7k+pAhQ2z69OmWn59v27ZtsxEjRlhUVJR98cUX5zXf+la/gCrUGe95u2rVKpNkBQUFHvErKiq8xj2bnCwsLLSEhATr1auX9e/fv8bzQJ3BxYw64z1vS0tLPeLu2bPHoqOjbeLEiV7j+pOTZWVl1q1bN+vXr5/l5ORYYWGhZWdn28aNG2s8F1w34WJFnfGeOzNmzLCIiAhbtGiR7dq1yxYuXGjh4eH2zjvvnFfcnJwcCwoKsmeffdZ2795ta9assfbt29vAgQNrPBe1VQ+ysrIsKirK3nrrLdu0aZPdeuutlpSUZCdOnHCP8VXjAKAu1Lumx/ft37/fJNnq1avN7NsfYENCQmzx4sXuMdu2bTNJ9sknn5yx/cSJE6v9UN26dasFBwfb9u3bz2o+P//5z+3mm2/2WJaammr33HOP12369+9v119/fY1xly9fbkFBQbZv3z73shdffNEiIyOtrKzsjPG9e/f2q+nhT9zf/e531r59e4/tBg0aZJmZmV7jbt261STZv//9b/eyd9991xwOh3355Zdm9u0PAY0bN/aY/0MPPWTJycle4/rz/p7tuQJ8oc7UnDsDBw60O++80+v6c8n18vJyi4iIsPnz55/XfOtT/QJqQp35Lm+rmh6HDh3ye77+5mR5ebn17NnTZs+ebcOHD/fZ9KDOIJBQZ7z/PPPmm2+aw+GwoqIir3H9yckXX3zRWrVqZSdPnqxxjqfjugmBhDrzXe6kpaXZgw8+6LHdAw88YOnp6ecVd8qUKdaqVSuP7Z577jlLSEjwGre26kFlZaXFxcXZlClTPPbldDpt4cKFZuZfjQOAulDvbm/1fYcPH5YkRUdHS5LWr1+vU6dOKSMjwz2mTZs2atGihT755BO/4/7jH/9Qq1attHTpUiUlJemyyy7T3XffrYMHD9a43SeffOKxb0nKzMz0uu+SkhItW7ZMI0eO9Bm3Y8eOio2N9Yh75MgRffbZZ34e1bnF9eeY5s2bJ4fD4RG3UaNG6tatm3tZRkaGgoKClJub6x5z7bXXKjQ01CNuQUGBDh06JOm7W1wUFRVJ8u/9ra1zhR8v6oz33MnPz9fHH3+s3r171xjXV65/3/Hjx3Xq1Cn3OZekxx57TJdddtlZzbcu6xdwNqgzZ9aZLl26KD4+Xn379tXatWt9xvUnJ//0pz8pJibG6zypMwhk1BnvP8/MmTNHGRkZatmyZY1xfeXkO++8o7S0NI0ePVqxsbHq0KGDnnzySVVUVLi34boJgYw6813ulJWVqWHDhh7buVwurVu3TqdOnTrnuGlpadqzZ4+WL18uM1NJSYmWLFmifv36ubeprXpQVFQkh8Oh7OxsSVJhYaH27dvnETcqKkqpqakecX3VOACoC/W66VFZWalx48YpPT1dHTp0kCTt27dPoaGhatSokcfY2NhYn/eCPt3u3bv1n//8R4sXL9aCBQs0b948rV+/Xj/72c9q3G7fvn0eHxK+9j1//nxFRETotttuO6e4VevOlT9xvY05cuSITpw4IenbD7bk5GSPuDExMR7bBAcHKzo62mfc0/cdFham5ORkhYSEuJf7en9r61zhx4k6U33uNG/eXE6nU926ddPo0aN19913/yBxqzz00EO69NJLPX6Abtq0qS6//PKziluX9QvwF3XGM3fi4+M1c+ZMvfHGG3rjjTeUmJioPn36aMOGDecVNycnR3PmzNHLL7/sNQ51BoGKOuM9d7766iu9++67Nf4s42/c3bt3a8mSJaqoqNDy5cs1YcIEPf3003r88cfd23DdhEBFnfHMnczMTM2ePVvr16+XmSkvL0+zZ8/WqVOn9PXXX59z3PT0dL322msaNGiQQkNDFRcXp6ioKE2fPt29TW3Vg5CQECUnJyssLMxjeU3n2J8aBwB1oV43PUaPHq0tW7Zo0aJFP3jsyspKlZWVacGCBerVq5f69OmjOXPmaNWqVSooKFBxcbHCw8PdryeffPKc9jN37lwNHTrU4y8AbrrpJndcXw/Tqy8GDhyo7du3/+Bxu3fvru3btyshIeEHjw34gzpTvTVr1igvL08zZ87UM888o4ULF57T3KqTlZWlRYsW6c033/SY85gxY/Thhx/+YPupUlv1C/AXdcZTcnKy7rnnHqWkpKhnz56aO3euevbsqWnTpp3T3CTp6NGjGjZsmF5++WU1bdrU6zjqDAIVdca7+fPnq1GjRhowYMA5bX+6yspKxcTE6KWXXlJKSooGDRqkRx55RDNnznSP4boJgYo642nChAm66aab1KNHD4WEhKh///4aPny4JCko6Nx/1bZ161aNHTtWjz76qNavX68VK1aoqKhIo0aNco+prXqQkJCg7du3q3v37j9oXACoC8F1PQFvxowZo6VLl+qjjz5S8+bN3cvj4uJ08uRJlZaWenSxS0pKFBcX53f8+Ph4BQcHq3Xr1u5lbdu2lSQVFxfruuuu08aNG93rqr6+GRcXp5KSEo9Y3va9Zs0aFRQU6K9//avH8tmzZ7v/MrCqMx8XF6d169adEbdq3bnyJ663Y4qMjJTL5fIad//+/R7LysvLdfDgQZ9xT993dXF9vb+1da7w40Od8Z47SUlJkqSOHTuqpKREjz32mAYPHlztcZ5Nrk+dOlVZWVn64IMP1KlTp2rjnR73YqpfQHWoM/7lTvfu3ZWTk+N1va+c3LVrl4qKinTLLbe411dWVkr69q8NCwoKPL7hcXpc6gwudtQZ77ljZpo7d66GDRvmceuo6viTk/Hx8QoJCVGDBg3cY9q2bat9+/bp5MmT1e6D6yYEAurMmbnjcrk0d+5czZo1SyUlJYqPj9dLL72kiIgINWvWrNrj9Cfu5MmTlZ6ervHjx0uSOnXqpEsuuUS9evXS448/rvj4+Grj1kY9qFpedXynb9elSxf3GF81DgDqQr37poeZacyYMXrzzTe1cuVK9y/eqqSkpCgkJMTjr/SqOv9paWl+7yc9PV3l5eXatWuXe9mOHTskSS1btlRwcLCuuOIK96vqQzUtLe2MvxB8//33q933nDlzlJKSos6dO3ssT0hIcMetuq9sWlqaNm/e7PFh8f777ysyMlLt2rXz+7i+z5+4Z3NMp8ctLS3V+vXr3ctWrlypyspKpaamusd89NFHHvezfP/995WcnKzGjRtXG9ef97e2zhV+PKgzZ5c7VX955Y2/uf7UU09p0qRJWrFihcc9X2uKezHVL+B01JmzqzMbN26s9iK+iq+cbNOmjTZv3qyNGze6X7feeqv7lySJiYle41JncLGizviuM6tXr9bnn3/u8/79VXF95WR6ero+//xzd1O16lzEx8d7bapw3YSLGXXGd+6EhISoefPmatCggRYtWqSf/vSnXr/p4U/c48ePn7F9VaPVzKqNW1v1ICkpSXFxcR5xjxw5otzcXI+4vmocANSJOnuEuhe//vWvLSoqyrKzs23v3r3u1/Hjx91jRo0aZS1atLCVK1daXl6epaWlWVpamkecnTt3Wn5+vt1zzz3WunVry8/Pt/z8fCsrKzMzs4qKCrvqqqvs2muvtQ0bNlheXp6lpqZa3759a5zf2rVrLTg42KZOnWrbtm2ziRMnWkhIiG3evNlj3OHDhy0sLMxefPFFv467vLzcOnToYD/5yU9s48aNtmLFCmvWrJk9/PDDHuOqjiMlJcWGDBli+fn59tlnn51X3N27d1tYWJiNHz/etm3bZtOnT7cGDRrYihUr3GP+/ve/W3JyskfsG2+80bp27Wq5ubmWk5NjV155pQ0ePNi9vrS01GJjY23YsGG2ZcsWW7RokYWFhdmsWbPcY3Jzcy05Odm++OIL9zJf76+/5wrwhjrjPXdeeOEFe+edd2zHjh22Y8cOmz17tkVERNgjjzziNa4/uZ6VlWWhoaG2ZMkSj3N+9OhR95jnn3/err/++rOab13WL6Am1BnveTtt2jR76623bOfOnbZ582YbO3asBQUF2QcffOA17rnk5PDhw61///4ey6gzCCTUGd/XAnfeeaelpqb6FdefnCwuLraIiAgbM2aMFRQU2NKlSy0mJsYef/xx9xiumxBIqDPec6egoMBeffVV27Fjh+Xm5tqgQYMsOjraCgsLzyvuK6+8YsHBwTZjxgzbtWuX5eTkWLdu3ax79+7uMbVVD7744gtLTk623Nxc97KsrCxr1KiRvf322/bpp59a//79LSkpyU6cOOEe46vGAUBdqHdND0nVvl555RX3mBMnTthvfvMba9y4sYWFhdnAgQNt7969HnF69+5dbZzTP4C+/PJLu+222yw8PNxiY2NtxIgRduDAAZ9z/Nvf/matW7e20NBQa9++vS1btuyMMbNmzTKXy2WlpaV+H3tRUZHddNNN5nK5rGnTpvbb3/7WTp065fP8tGzZ8rzjrlq1yrp06WKhoaHWqlUrj/Nt9u0H7/d7ZAcOHLDBgwdbeHi4RUZG2i9+8QuPX2CamW3atMmuueYaczqdlpCQYFlZWWfs9/vviz/vrz/HBHhDnfGeO88995y1b9/ewsLCLDIy0rp27WozZsywioqKGuP6yvWWLVtWe64mTpzoHjNx4sQz6ll9rl9ATagz3vP2z3/+s11++eXWsGFDi46Otj59+tjKlSt9xj3bnKyu6UGdQSChztSct6WlpeZyueyll17yO64/Ofnxxx9bamqqOZ1Oa9WqlT3xxBNWXl7uXs91EwIJdcZ77mzdutW6dOliLpfLIiMjrX///rZ9+/bzjmv27TVZu3btzOVyWXx8vA0dOtSjwVFb9aCwsNAk2apVq9zLKisrbcKECRYbG2tOp9NuuOEGKygo8IjrT40DgAvNYebl+3EAAAAAAAAAAAAXkXr3TA8AAAAAAAAAAIBzQdMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAdaJPnz4aN25cXU8DAAAAQACh6QEAAACg3svOzpbD4VBpaWldTwUAAABAPUbTAwAAAAAAAAAABASaHgAAAABq3TfffKO77rpL4eHhio+P19NPP+2x/tVXX1W3bt0UERGhuLg4DRkyRPv375ckFRUV6brrrpMkNW7cWA6HQyNGjJAkVVZWavLkyUpKSpLL5VLnzp21ZMmSC3psAAAAAOoPmh4AAAAAat348eO1evVqvf3223rvvfeUnZ2tDRs2uNefOnVKkyZN0qZNm/TWW2+pqKjI3dhITEzUG2+8IUkqKCjQ3r179eyzz0qSJk+erAULFmjmzJn67LPPdP/99+vOO+/U6tWrL/gxAgAAAKh7DjOzup4EAAAAgMB17NgxNWnSRH/5y190xx13SJIOHjyo5s2b61e/+pWeeeaZM7bJy8vT1VdfraNHjyo8PFzZ2dm67rrrdOjQITVq1EiSVFZWpujoaH3wwQdKS0tzb3v33Xfr+PHjev311y/E4QEAAACoR4LregIAAAAAAtuuXbt08uRJpaamupdFR0crOTnZ/d/r16/XY489pk2bNunQoUOqrKyUJBUXF6tdu3bVxv388891/Phx9e3b12P5yZMn1bVr11o4EgAAAAD1HU0PAAAAAHXqm2++UWZmpjIzM/Xaa6+pWbNmKi4uVmZmpk6ePOl1u2PHjkmSli1bpoSEBI91TqezVucMAAAAoH6i6QEAAACgVl1++eUKCQlRbm6uWrRoIUk6dOiQduzYod69e2v79u06cOCAsrKylJiYKOnb21udLjQ0VJJUUVHhXtauXTs5nU4VFxerd+/eF+hoAAAAANRnND0AAAAA1Krw8HCNHDlS48ePV5MmTRQTE6NHHnlEQUFBkqQWLVooNDRUzz//vEaNGqUtW7Zo0qRJHjFatmwph8OhpUuXql+/fnK5XIqIiNCDDz6o+++/X5WVlbrmmmt0+PBhrV27VpGRkRo+fHhdHC4AAACAOhRU1xMAAAAAEPimTJmiXr166ZZbblFGRoauueYapaSkSJKaNWumefPmafHixWrXrp2ysrI0depUj+0TEhL0xz/+Ub///e8VGxurMWPGSJImTZqkCRMmaPLkyWrbtq1uvPFGLVu2TElJSRf8GAEAAADUPYeZWV1PAgAAAAAAAAAA4HzxTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIPx/45vT5NzGPVcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAHACAYAAAD5rKrZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV331f6pzmLQTdmc2a5VWWiUkgSSQhEAiZ3gBE00wmN9LMMjYGAw2YGxs8yJyMkkGi5yMCEIJZWmVd6Vdbd7ZndnJeTrH3x9V99at6urcvTPTcz7Po0c7Mx1qpqurqr/nnnO0fD6fByGEEEIIIYQQQgghhBBCyArHtdQbQAghhBBCCCGEEEIIIYQQ0ggoehBCCCGEEEIIIYQQQgghpCWg6EEIIYQQQgghhBBCCCGEkJaAogchhBBCCCGEEEIIIYQQQloCih6EEEIIIYQQQgghhBBCCGkJKHoQQgghhBBCCCGEEEIIIaQloOhBCCGEEEIIIYQQQgghhJCWgKIHIYQQQgghhBBCCCGEEEJaAs9Sb4CdXC6HkZERtLe3Q9O0pd4cQgghhBBCCCGEEEIIIYQsIfl8HouLi1i/fj1crtJejmUneoyMjGDTpk1LvRmEEEIIIYQQQgghhBBCCFlGDA0NYePGjSVvs+xEj/b2dgD6xnd0dCzx1hBCCCGEEEIIIYQQQgghZClZWFjApk2bpH5QimUneohIq46ODooehBBCCCGEEEIIIYQQQggBgIoqMVhkTgghhBBCCCGEEEIIIYSQloCiByGEEEIIIYQQQgghhBBCWgKKHoQQQgghhBBCCCGEEEIIaQmWXacHIYQQQgghhBBCCCGEELLcyefzyGQyyGazS70pLYHX64Xb7a77cSh6EEIIIYQQQgghhBBCCCFVkEqlMDo6ilgsttSb0jJomoaNGzeira2trseh6EEIIYQQQgghhBBCCCGEVEgul8PRo0fhdruxfv16+Hw+aJq21Ju1osnn85icnMTw8DBOP/30uhwfFD0IIYQQQgghhBBCCCGEkApJpVLI5XLYtGkTQqHQUm9Oy9DX14fBwUGk0+m6RA8WmRNCCCGEEEIIIYQQQgghVeJycbzeSBrlluGrQgghhBBCCCGEEEIIIYSQloCiByGEEEIIIYQQQgghhBBCWgKKHoQQQgghhBBCCCGEEEIIaQkoehBCCCGEEEIIIYQQQgghq4C3ve1teOUrX1nw/TvuuAOapmFubg7XX389urq6HO+vaRp+85vfAAAGBwehaVrBf29+85stP3/88ceb88sUwXNSn40QQgghhBBCCCGEEEIIIS3Drbfeih07dsivg8HgEm4NRQ9CCCGEEEIIIYQQQgghTeahwRl89fZD+Mwrz8Gm7tBSb07DyefziKezJ/15g143NE076c+r0tPTg/7+/iXdBhWKHoQQQgghhBBCCCGEEEKayn/etA8PDc7iB/cP4h9fcvZSb07DiaezOPuf/nTSn3fvp1+AkI9jfpWqOj0++clPFuRzbd++Xf78qquuKvj5e97znoZvNCGEEEIIIYQQQgghhJCVwVQkiYePzQIAdg3PL/HWkN/97ndoa2uz/PeiF72o5sd75jOfaXmsxx57rIFbWz1VS0A7duzArbfeaj6Ax/oQ73rXu/DpT39afh0KtZ5ViRBCCCGEEEIIIYQQQkhl3PbUOPJ5/d9PnphHNpeH27W0kUyNJuh1Y++nX7Akz1stz3nOc/CNb3zD8r2dO3fKAvJq+elPf4qzzjpLfr1p06aaHqdRVC16eDyekvlcoVBoWeV3EUIIIYQQQgghhBBCCFk6/rRnXP47lsri8GQEZ6xrX8Itajyapq2YmKlwOIzTTjvN8r3h4WH5746ODkSjUeRyObhcZljU3NwcAKCzs9Ny302bNhU83lJSVbwVABw8eBDr16/Htm3b8KY3vQnHjx+3/PyGG25Ab28vzjnnHHz0ox9FLBYr+XjJZBILCwuW/wghhBBCCCGEEEIIIYSsfDLZHO45NAUAWNfhBwA8PjS3hFtEynHmmWcik8ng8ccft3z/0UcfBQCcccYZS7BVlVOV9HTJJZfg+uuvx5lnnonR0VF86lOfwhVXXIEnn3wS7e3teOMb34gtW7Zg/fr12L17Nz7ykY9g//79+NWvflX0MT/72c/iU5/6VN2/CCGEEEIIIYQQQgghhJDlRSSZQSqTAwC86JwBXH/fIHYPz+F1Fy9tBBIpzo4dO/D85z8f73jHO/D5z38e27Ztw/79+/HBD34Qr3/967Fhw4aqHm///v2Oz+H1ehu1yRaqEj3UMpPzzjsPl1xyCbZs2YKf/exneOc734l3v/vd8ufnnnsuBgYGcPXVV+Pw4cM49dRTHR/zox/9KK699lr59cLCwpJnfhFCCCGEEEIIIYQQQgipn1gqCwDwujVcvHUNrr9vELuGWGa+3PnpT3+Kf/7nf8Zf//VfY2RkBBs3bsSrXvUqfOITn6j6sf7iL/6i4HtDQ0PYuHFjIza1gLpCxrq6unDGGWfg0KFDjj+/5JJLAACHDh0qKnr4/X74/f56NoMQQgghhBBCCCGEEELIMkSIHkGvG1u6wwCAicXEUm7Squb66693/P5VV12FvGibhz77/9KXvoQvfelLRR9r69atlvtU+/NmUXWnh0okEsHhw4cxMDDg+HOR+VXs54QQQgghhBBCCCGEEEJal7gheoR8HgS8+jg6kc4t5SaRFqcqp8eHP/xhvOxlL8OWLVswMjKCf/7nf4bb7cYb3vAGHD58GD/60Y/w4he/GD09Pdi9ezc+9KEP4corr8R5553XrO0nhBBCCCGEEEIIIYQQskyJpTIAgJDPjYDXDQBIpLNLuUmkxalK9BgeHsYb3vAGTE9Po6+vD5dffjkeeOAB9PX1IZFI4NZbb8UXv/hFRKNRbNq0Ca95zWvw8Y9/vFnbTgghhBBCCCGEEEIIIWQZEzMEjqDPDb/h9Ehmcsjn89A0bSk3jbQoVYkeP/nJT4r+bNOmTbjzzjvr3iBCCCGEEEIIIYQQQgghrYEZb2U6PQBd+FC/JqRR1NXpQQghhBBCCCGEEEIIIYQUQxaZ+zwIeBTRowV6PZaipLuVadTfk6IHIYQQQgghhBBCCCGEkKYgOz28bnjdGlxGolUis3J7PbxeLwAgFost8Za0FqlUCgDgdtfnAKoq3ooQQgghhBBCCCGEEEIIqZSYEm+laRoCXjdiqeyKLjN3u93o6urCxMQEACAUCrGfpE5yuRwmJycRCoXg8dQnW1D0IIQQQgghhBBCCCGEENIUzHgrffW+KXqs7Hir/v5+AJDCB6kfl8uFzZs31y0gUfQghBBCCCGEEEIIIYQQ0hTiIt5KiB4evXFhJTs9AEDTNAwMDGDt2rVIp9NLvTktgc/ng8tVfyMHRQ9CCCGEEEIIIYQQQgghTUEtMgd0pwew8kUPgdvtrruDgjQWFpkTQgghhBBCCCGEEEIIaQpxQ/QIG04PvxA9Mis73oosXyh6EEIIIYQQQgghhBBCCGkKapE5AAS8rRFvRZYvFD0IIYQQQgghhBBCCCGENIVY2hZv5WmteCuy/KDoQQghhBBCCCGEEEIIIaQpFBSZG06PZJrxVqQ5UPQghBBCCCGEEEIIIYQQ0hTMInOj08NweiQzdHqQ5kDRgxBCCCGEEEIIIYQQQkhTEEXmIa+904NOD9IcKHoQQgghhBBCCCGEEEIIaQpmkbnR6eFlpwdpLhQ9CCGEEEIIIYQQQgghhDSFmNHpEZSdHobowXgr0iQoehBCCCGEEEIIIYQQQghpCvG0cHoYnR6MtyJNhqIHIYQQQgghhBBCCCGEkIaTzuaQzuYBmKJHwMN4K9JcKHoQQgghhBBCCCGEEEIIaTiizwNwiLei04M0CYoehBBCCCGEEEIIIYQQQhqO6PNwuzT43PooOiDirdjpQZoERQ9CCCGEEEIIIYQQQgghDUc4PUJeNzRNA2A6PZKMtyJNgqIHIYQQQgghhBBCCKmJfD6P6UhyqTeDELJMiRuih4i2AhSnB+OtSJOg6EEIIYQQQgghhBBCauKLtx7ERZ+5FTfvGVvqTSGELEOE0yPs98jviSLzJOOtSJOg6EEIIYQQQgghhBBCauJLtx0EAHzqxr1LvCWEkOWI6PQIelWnB4vMSXOh6EEIIYQQQgghhBBC6mJdh3+pN4EQsgwR8VYhJd7KL+Ot6PQgzYGiByGEEEIIIYQQQgipmmgyI//d3xlYwi0hhCxXYo6dHobTg/FWpElQ9CCEEEIIIYQQQgghVXNkMir/7XFxxERIq5PL5fHl2w7iZw8PVXyfWLrQ6SE6PRhvRZqFp/xNCCGEEEIIIYQQQkg5crk8fnD/IC7csgbnbexa6s1pOocnI/LfquuDENKa3PDgcVx3ywEAwKl9YVy0pbvsfWLGsSHsM8fQjLcizYYyPCGEEEIIIYQQQkgD+MOTo/jkjXvx8q/ei2Qmi9/vHsVcLLVk2/PE8DweHpxp2uOrokeEogchLc34QgL/+cd98uuP/uoJpDLlnRoLiTQAoCPold8T8VZJOj1Ik6DoQQghhBBCCCGEENIABqfMuKffPHYC7/3Ro3JV9Mkmk83hjd95AG/8zs6mCRIWp0eKogchrcx37zmKxWQGO9Z3oCfsw4HxCG59arzs/Rbi+rGhI2A6PQIefSSdyuaQzeWbs8FkVUPRgxBCCCGEEEIIIaQBtAfMlcxHDAHkqCKEnEwmFpNYTGSQyuQwHUk25TkOT5i/WzTJmBpCWpl7D00BAN595TZcdeZaAJUd30o5PQAgyTJz0gQoehBCCCGEEEIIIYQ0gDa/uZJZCAITC80RHMoxOh+X/xYrrRtJLpe3DDwZb0VI6zIfS2Pv6AIA4LJtPdi4JggAGJ6Nlb3vQtwQPQLOogfLzEkzoOhBCCGEEEIIIYQQ0gDUkJYD44sAgInFxJJsy4k583nFSutGEk9nkcqaw0oWmRPSujw4OIN8HtjWF8bajgA2dYcAAMOz8TL3BBYSRrxV0BSF3S4NXrcGgE4P0hwoehBCCCGEEEIIIYQ0gLQiAhyf0VdAz8bSFZX9NprROdXp0XjRw/47xVJZ5JjNv6w5OL6I5113J27cNQJAHza/9pv34T9u2lfmnmS188CRaQDApdt6AEBxelQgejg4PQAg4NHdHnR6kGZA0YMQQgghhBBCCCGkARQTN6aa1KlRitH55jo9kg6/ayzNFduluGHnMbz3R4+eNBHsocEZvOeHj8gIovf8zyM4OBHB+3/8GADgwFgEDw3O4mcPDZ2U7SErl2Kix4nZeFmx06nTAwD8XiF68LhBGg9FD0IIIYQQQgghhJAGoDo9VCYWT77oMTLX3E4PEUkT9rnh0lNqGHFVhi/eehC/3z2KhwdnTsrz/d3Pd+GmPWN4+VfvBQAcnrSWTseNYXMsxaEzKc3BiQgA4IKNXQCA/o4A3C4NqWwOk2VEXXH8KXB6ePWxNEUP0gwoehBCCCGEEEIIIYQ0gFQR0WNyCUSPZjs9hFvB73UjbBS4s8y8OIl0Vu4HJ+bKRwI1AvF6zERTmHYYTAvRI55mNBkpTj6fl+/3sF93Z3jcLgx0BgAAQzPFy8xTmZzcz9ROD8AsM2e8FWkGFD0IIYQQQgghhBBCGkCx2KKlKDMfnW9up4eIt/J7XGgzRA86PYqjCh2qINVMzuxvl//+iRJhtbbdD8C6wj7BMmliY2Qujpv3jFmi7EQkFVBZr8eiIriK44Qg7NMfqxmiLCEUPQghhBBCCCGEEEIaQNF4q4WT6/RIpLOYiqTk1wuJ5sVb+TwuOj0qQB0Mq4JUM1FX0H/77iPy3/3GCn1V9Igz4orYuPI//4x3//AR/NYovgd0kVOwcU0IAGRnjBPi2NPm98Djto6ht/W1AQAOji82bJsJEVD0IIQQQgghhBBCCGkAxZwe5TLv6yGazBRk4o/ZnAROTo9UJleXSKE6PcLS6cHBeTHUwfDI3Mlxeqj7xVzM3AeyRpSV+nP2ehA7GWM/uffQFADApQEeUeCDypwe4tjTEfAU/Gy74UR6aoyiB2k8FD0IIYQQQgghhBBCGkA669yL0CynRyabw/OuuxOX/8efkVFcJiM2J4FTfMxrv3U/rviP2xFL1SZ8CNHD53Ghzcj5r/WxVgNL4/TQhQx7rJAQ51QnSJxl0kRBPZ6EfPr+4/e4oWmq6CGcHiVED+PY0xH0Fvxs+0AHAGA/RQ/SBCh6EEIIIYQQQgghhDQAe5H5eiNGaLJJnR7T0RRG5hOYiiQxOB2V3x81nARetz6gXIhbxYh8Po89J+YxG0vX7DpIpoXTwy2Hooy3Ko5F9DhpTg/9NXrZ+est3xf7aZzxVqQIE4umUOszjiMBr3WM3GUIGYsl3vfi2NMRcBA9DKfHkclIgVuNkHqh6EEIIYQQQgghhBDSAOzxVmcZK5knF5vj9FCLw/cpq6Wno/rzbe7WV2LbnR6pbE5G19Q6bBSDc7XI/Au3HMRLvnw3ppsY57VSUeOtFpMZR/fNkckIXvCFu/Drx4Yb8pzitX3peQNQFugjLZ0ejLcizozMmSLdotHL4fe4LbfxGv0e6SKxfoDq9CiMt1rb7seakBe5PHBoIlL3NhOiQtGDEEIIIYQQQgghpAHYi8zPXm+IHpEk8nnn6Kt6UJ0VakSM6G/Y0hMGUNjpoa7qrzXWKJlWi8z1YehUJIk9IwvYeXSmpsdsZewRQE5ujz/vn8T+8UX84pHGih4buoJ48bkD8vuOTo80XTrEZETpBZo3jh9+m9NDOMnsxz0Vs9Oj0OmhaRq29+vHyKdGF+rbYEJsUPQghBBCCCGEEEIIaQB2p4cY6KWzeUuRdKOIJMxB9VOjiuhhDBo3GUXD0VQWX7ntIP60ZwyAdVV/rSv8VadH2NYZMUWnh4VEOivdPgNG5Jm9dwUw/272Ivqan9fYH4M+N774+gvwhw9cAcDsY0mqnR6p4oNrsvoYVZwe4nji91jHyD634fQoJXqU6PQAgO0DesTVPvZ6kAZD0YMQQgghhBBCCCGkAdiHf2esa0N7QBcEpqOphj/foiXeylwpPW8ILJuMeCsA+PwtB/DBnzyORDprETpq7XJQOz3afDbRo0lxXisV4fJo83tk5JlweuTzefxo53E8enxW/t0aUXyfzuaQNSLMAh43vG6X3BfFfhq3iF90ehCTUQenR8Bri7eSokdxF5vZ6VEYbwUAp61tAwAMTkUdf05IrTjvcYQQQgghhBBCCCGkKsQK+g9dcwYu3NKF09e1oyfsw2Iig5kmiB6q02N4No6FRBodAS/m4vpz9bb5EfK5pcgRT2dxz8EprOsIyPvVGmskflefg9NjMtL433UlI5wbA50BrO/S//ajhtPjiRPz+Nivn8C2vjC2GCLVYjKDaDJT8HcVJDNZ3HVgClee0VvQsyBQ+zpELJFYqS8cSYlM/TFnpDVROz3mizk9xP5Uh9OjK+gDULoMnZBaoNODEEIIIYQQQgghpAGIFfTb+sK44vQ+AEBPmx8AGlruPRNN4dDEoqXTAwAOGBExIkqrM+QtyNK/ee+YZVV/rbFGYnDuVzo9BIy3siIEhbDfg/VdeuTY0IxebH5wPCK/nlAcMmMLxSOurr93EO/6wcO47uYD8ntHJiNYVMrRxXNqmjmsFivzc3kgk81Zu11YZE4UnJweBUXmbquI5kSpTg8A8tgRpehBGgxFD0IIIYQQQgghhJAGIGJefMqK6O6wvpK5kfFWV3/+Dlxz3V0FOfhfvv0Q5uNpOaTsCnrREbS6BW59asIiltRcZJ5Ri8zZ6VEK8bfye1w4y+h5eXJEjyM7Nq3H+qSzeRyciMj7jBuix0IiXRCb9vjQHADgd7tHkc/nsfPINJ77+Ttx7c92mc+ZNkUpTdMLp9X9Mp3Ny84PoPZuF9KajCqdM6rAqVJZp4cRbxV0di21GccOih6k0VD0IIQQQgghhBBCCGkAYjgohoEA0Numix6Nircam09g1nBy3Hd4CgCwvb8dfo8Ldx2YxId/vkt2enSFfLLXAQDa/R7MRFO499C0/F68xi6HZMbs9AjbOz0oelhICAHC68Z5GzsBAIcnI1hIpDE4HZO3U1fMjy8kMB9L48JP34KXfeUey+MdntTFkRNzcewZWcCXbz8IALhl77jynLqIofYwqKJHKpOzRGAx3ooIEuksphwi6kRMmsDr0cW0kqJHGadHm9H1YXetEVIvFD0IIYQQQgghhBBCGoAY/nndDk6PBgkBO4+agoWIsXrBjn58+60XAwAeODIt8/E7g14cU4bq5xoD94MTpkOk1mG3uvrb/hjT7PSwIJweAY8LPW1+bFwTRD4PPDk8j2MzMcf7jM0nsfPoNDK5PPaNLeLYdBRP/9db8eXbDmJwyrzPzXvGLF/nDJFLCC1BRfTwuDRzm7JZi+jBInMiGJt3jlYLFIm3SmfzyOedy8wXDadHe7F4Kx9FD9IcKHoQQgghhBBCCCGENICUUu4t6A4bnR4Ncno8cMQUPUSMVXvAgws2dwEwh4wA0BHwIKM6PYxV1RMLpgBTa6eHGm91+em9GOgM4IU7+gHoUUkcopskFacHAJy/sQsAsGt4XsZb2RlfSFhiw/79j/swuZjEdbccsBRH//LREzihlE7PxvT9TJSUq04PTdPM8mm706PG/YC0HkemIo7ftzs97HFpTggxQzg67Ih4q0Q6h0w2h3Q2hzd/Zyc++4enqt5uQlQoehBCCCGEEEIIIYQ0gJR0epgr6kW8VaPcD/cfni74Xpvfg46AVw4QAV3g8Lhd+KeXng0AuO5158vV1uOL5krueLreeCsXOgJe3PuR5+Ibb74QAWMwOrVIt4cgaetEOH+T7ri568CkdOvYGV9IWEQJ+/6zqTuIkM9tETwAswBd3Nfew+BXVufHLfFWFKmIzlOjuhOszdbVYy8yV2P8Ug4RV7lc3hQ9/M6ihyrsRZNZ/HnfBO45NIVv3XWkto0nxICiByGEEEIIIYQQQkgDEPFWTkXmjej0GJ2PWzogBGIV9UBnQH6vK6QLHO+4/BQ88vFr8OoLN8pcfXXQHq+xwFrGWxlOApdLg6Zp6G3TnS2T7PWQqEXmAHCe4fS4/0ihgCUYW0ggqrw2T40tWH5+waY1uPZ5ZxTcTxSgi9dVdXoAsDk9WGROCtk3poseF2zqsnzfLqCpMX7pTKHoEVXcXu1FnB4+j0vuk5FURhafE1IvFD0IIYQQQgghhBBCGoBTkXmPjLeqXwTYO7Lg+H2xinqgKyi/1xX0mdtgCBFOg8dah93SveC2jpbEc7HM3ESIC0KAOHdDp2UfUVlvCFcTC0nElJ6DRdsw+NS+MN72zK3Y1he2fH9sXv+7JzLiOZ0H1alMDomUGm9F0YPo7BvVjzMFoodNQHO7NIiaGKcyc+Hy8Li0AsFEpd04fkUSGYv7qFhPCCGVQNGDEEIIIYQQQgghpAGIXHt1BXSPEW81G0vLkulaER0edoSYsd7B6eF0O5Vai8yle8E2VO8zfl+KHiZ2p0fY78FfXXGK/PmmblOsOnu9Hn01vpAoWe58al8bPG4XfvX/PRPfestFeMMzNsv7AWa8VVGnRzYnez+A2vcD0lok0lkcmdJ7Zso5PQBFRHMSPRJmn4emaQU/F4iIq0gyYxHiMnUeL8nqhqIHIYQQQgghhBBCSANwKjJfE9JFgGwuX1S0qJQFpbhcpc2vCxwDnebwvCNYKHqIeCuVRI3DbidXCwAZb8VODxOz08MUIN7/3NPlv599Rp/891kD7dA0feA7NFMYZSY4Y107AKAr5MMLdvSjv0MXvITokTRe12AR0SOeylrKpxlvRQDg0EQE2VweXSEvtvaGLD9zEj18SkeMncUyfR4CIXpEk1anR8ohMouQSqHoQQghhBBCCCGEEFIn+XxeKTI3xy0+jwsdhkhRb8SVyLvf2mONNJKdHl2K08NJ9Ag2Id7KW0T0oNNDkkwX/q2CPjdu+uAV+MvLtuCD15whxYh1HQEZ9zMyn7A8jqYBX37D0/Dxl5yFM/vbLT/r79T/7maRuTVSSyD2zcWEVYBjvBUBzD6P7f3tBcXl9ngrwBTRHOOtEpWJHu2K00M9HlH0IPVQlejxyU9+EpqmWf7bvn27/HkikcB73/te9PT0oK2tDa95zWswPj7e8I0mhBBCCCGEEEIIWU6oK519Hueei+lIZe6HYjFYwumxpce6AlsMFdcrTg/neKvC79Ucb5UudC8AQK8RbzW5SNFDIOKtArb9Ynt/Bz71inPQ2+aXJfS9bX7p0hmziR5r2/14+fnr8VdXbCt4jnWG00Pcx4y3sj6n2DcX7KIH460IgP1jep/H9v6OAsGsZLyVg0Ah4tmKlZgLwn63vH0kae6XSYoepA6qdnrs2LEDo6Oj8r977rlH/uxDH/oQbrzxRvz85z/HnXfeiZGREbz61a9u6AYTQgghhBBCCCGELDfUlc72yKeesC4ETEfLix6HJyO48DO34Mu3HSz4mRhU250eYZ8+NLQ6PXyw4zR8TNS4wl+4WuwCz9Zefdv2jTmXrq9GEtLpUbhSXvDmS7bg/I2duGxbj4whG52PW26zXimqt9MvCtANsUmIGAWr9Y19cyFu7QuJpYr3h5DVg9h/NnQFCwQzuwgCAF6P3tVRstOjwnirSCKDeWW/pNOD1EPVoofH40F/f7/8r7e3FwAwPz+P7373u7juuuvw3Oc+FxdddBG+//3v47777sMDDzzQ8A0nhBBCCCGEEEJWO4cnI3jxl+7G73aPLPWmrHpU0cPrtpb2dpcQPe49NIUXfvEu/OzhIQDAfYenMRdL47anCpMzxKB6XYdfrroOet3wGINs1enR6eD0cOr0WExm8JffexCf/O2e0r+gjWTaWs4tOH9jFwBgcDqG+Vh9HSatgr3I3Il3XbkN//u+y9EZ8soYsimbM0h9fe2sa9dFj5loCslMtni8lTGktvfLJNK5og4jsnoQbrLOoLcqp0faQaCQnR4Oxx0VIcZGkxn5/ACQytJ9RGqnatHj4MGDWL9+PbZt24Y3velNOH78OADgkUceQTqdxjXXXCNvu337dmzevBn3339/0cdLJpNYWFiw/EcIIYQQQgghhJDy3PbUOPaOLuDnDw835fFPzMXx1z98GDuPTDfl8VsJsSrZpUGKEAIhesw4xFvduGsE+8YW8fe/2I0v3noAo3P66n77wBswnR4dQa98zDbFvRH0ubHGEDucOj2cnB6LiQzuPDCJ6+8bLPs7qoiV3XYnwZqwT8Zv7T4xV9VjtipORealcBKnAMgILCe6Ql7puplYSCKRKRJv5bbGW3Uq+4m4D1m9iN6gjqAHXrcLbpcp4FZbZB6ttMjcZzg9UhmLGMd4K1IPVYkel1xyCa6//nrcdNNN+MY3voGjR4/iiiuuwOLiIsbGxuDz+dDV1WW5z7p16zA2Nlb0MT/72c+is7NT/rdp06aafhFCCCGEEEIIIWS1MbGgR5E0qz/hj0+M4k97xqseiK9GnErMBV0hXaCYixcKGWqXwrfuPIIRQ/SYjCSRz1sHiU6iR7ttoHjOhk4AwLa+toLncur0UMk4RNQUQ3R62OOtAOA8w+2xa2iu4sdrZUzRo7IxXIeDYAUAAyXirTRNw0bj50emorLTI2hbrS87PYzhstr9UmupPWkdxH4hhDe1h8ZJtJNOD6d4q4o7Pcx4K4vTg6IHqYPSe52NF73oRfLf5513Hi655BJs2bIFP/vZzxAMFj/wluKjH/0orr32Wvn1wsIChQ9CCCGEEEIIIaQCRP76ZKQ5oodY9Tu+kChzSyIGdE4igHBfzDnEPcWVQXM8ncWu4Xn5eIvJjGXVv4i36gg4Oz0A4KtvvBBj8wmctrZQ9PB5XPB7XEVXUMfSWXQ4iDZOlBrkn7+xEzfuGpG/y2onKUvFa3N6BL1uxNNZnO7wmqqcs6ETR6ai2D00J0Wpgngr6fTIyMcOeF1IpHOWfZGsTlRhFdB7aKIpZ9cQYB7vnDo9Fivs9FDjreYpepAGUZXoYaerqwtnnHEGDh06hOc973lIpVKYm5uzuD3Gx8fR399f9DH8fj/8fn89m0EIIYQQQgghhKxKJhZ1MWI6ksR8LI2b944hkcnh8tN6cUpvuMy9yyOKaCea5CRpJUS8i73EHADWGE6P2Vih08O+uv7oVFT+e2oxaRU9ZCSRRz6mfaDYGfRaIovsdAS9RZ1BsWS2aLSSSj6fL1pkDgDnb+oCQKeHQApEDkNjJ0Snh+CLf3EBXJqGK07vLXm/8zd14beG2CRcQgXxVjanR9DnRsjnQSKdsriOyOpEFVaBSpweRpG5g0ARqTTeSjg97KJHFc4zQuxU3emhEolEcPjwYQwMDOCiiy6C1+vFbbfdJn++f/9+HD9+HJdddlndG0oIIYQQQgghhBArYnidywOfunEP/u4Xu/GJ3zyJv/7hww15fJHJPrlYGLVErJRyeogIoVkHp0c0lSn6mGqvRz6ft0TPSKdHmYGinVJRM7ES26KiOkWcnB7nrO+Epuli2VSTXEgriWKl78WwC0/besN43tnroGlakXvonL9RjzbbNTwnBYxiZdRCQAt43DICi/FWq5tUJif3GyG8qfuPk2hXMt7K2MfsbjQ74hg2uZhEJmeeZ+j0IPVQlejx4Q9/GHfeeScGBwdx33334VWvehXcbjfe8IY3oLOzE+985ztx7bXX4s9//jMeeeQRvP3tb8dll12GSy+9tFnbTwghhBBCCCGErFpUB8adByblv0fnGhNHFTGG4MlMTsbhEGdKdXqsMQSKOSenR1IfMm7rK3TmqIJBNJWFmAdaOj0qcGaoqLe394FUOvS2ih6Fq7+DPjdCYpCe5CC96iJzm1MnVKGwtWN9J9wuDZOLSQwajiH7c8p4K2NFf9DnRtCn32bPyDzFzVXMYsIUZYUQ4VdFj5JF5iU6Pcrsv+K5Thh9RgIWmZN6qGo5wPDwMN7whjdgenoafX19uPzyy/HAAw+gr68PAPCFL3wBLpcLr3nNa5BMJvGCF7wAX//615uy4YQQQgghhBBCyGomkc7KzHQAmI6aA/VYOot8Pl92ZXg5IsrjTy4mSsYmrXbSUvQo/JuLTo9Z4zXK5fJwufTbCafHWQMdODIZtdxPFT1E7IvPrfdyvPz89dg1NIc3PKO6XtQOY9W1x6WhI+jFYtJ8jSsVPdQV2E6/L6A7XqKpLJIZih5ieOvUieBEh21lfNhXmVgS9Llxxrp2PDW6gJH5hONziiG12J8CXhdCxuP/46+fxOGJKP7pZWdX9Hxk5aKeH8S/F5QODo+xn6j7T6ki81TWKpbl83l5fgpXGG+lOtsAOj1IfVQlevzkJz8p+fNAIICvfe1r+NrXvlbXRhFCCCGEEEIIIaQ0xXoZACCb0zsXKl1ZXoyoMhCfWEjitLXtdT1eK2PGWxX+zbuM/o2FRAafvnEvfrvrBH7/gSuwriMghYazBzrw+92jlvtNKa+xjLYKeqBpGrb2hvHdtz296u0U0UlBn7tgIF4qaktFCBl+j6uosKbve2mu1oYuUAJ1OD18lY/vLtjUiadGF+TXQVu8lYhfU+OvXnvRRhyfiWEulsYjx2crfi6yMvn2XUfwtTsO4YfvuAS/fHQYv39iFL9//+VKfJ65vwWUfdZJtPMa+1NaeZ//4P5BfO6m/VJQrTTeyg5FD1IPdXV6EEIIIYQQQgghZGkQJeYq6qr7eAPy+SOK6DHJboaSCKeHz8H5oDpkvnfvUUxFUvjZQ0MATGHp7PUdBfebVFY+q30e9SA6PUJGgbVKpfuMGddUfKwkhuurXfTIZHOyp6CWTg+f2+XYE1OMp21aY/na3ulhj18LeN14y2Vb8X1DQJsqIaaSlc++sQX86x+ewlwsjZv2jOL6+wYxuZjEdbcckD0vquhWzunhFG/1T/+7x+IgqzTeyk7SeMzP/G4v3vydnVI8JKQSKHoQQgghhBBCCCErkImFwuHkqX1tUvhoRClxxOb0IMUpVWTudbsKBn/tAQ+yubwUBbb3my4aEWekxluJ6Jn2OiPGTNHDgzyskTSqs6cUpVwtAjHgX+2rtVPKMNipCNoJUSINACF/dW6tS7f1WL62ix72/VM4Qfra/QB0Bxl7PVqDRDqLv/3ZLtz0pO4gW0ik8ZFfPiF/rro4nhpdkD0vqugm9h9Nc46y83n075V6n5dzeoSL7OPiMb9zz1Hcc2gKv37sRMnHIUSFogchhBBCCCGEELICcXJebO4OySFmI0QPS7yVg7OEmJQqMgeArrBVrGgPeBFT4qTWhHwY6AwAAHZs6ARgEz0comdqQcZbed2I2krG4xWupK7O6bG6V2cn06VL351QV9qHq4i2AoBN3UFs6ArKr+2RRPbXTPxciB6pbA5zsTSq5fZ94/jPm/Yhl8vjhp3H8N/3DVb9GKSx3Lx3HL98dBifvnEvxuYTeOVX78WuoTn584Ty3tw/vqg4PZR4K+N8UizKzuvg9OgKWY91xZwc8udFjml2IeXBozMlH4cQFYoehBBCCCGEEELICkQ4L9Yaw0oA2NoblqWwjYi3UofipTpECJA2inyLiR5rjF4PQSqbk8KU26XB73Hh7AE94uoyY7W+1elRGD1TC2q81WLCOty2iyDFSKbNTo9i0OmhIwQir1uD2+Xcf2KnzeeBmC8XWwVfDE3TcMkp3fLrck4PEXHm97jlsLqWKLt//f1T+Podh3H3oSl84jdP4pM37inYv8jJ5dBEBAAwMp/Ax3/zBI5MRTHQGZDHl4QiyCXSORlt5hRvZd+PBE5F5pvWhCy3KSfc+T1uy3lMkMrkkFHElMfYN0OqgKIHIYQQQgghhBCyAhHOix1KF8SWnhCCPuH0qCyqqBjJTNYSzTNB0aMkpeKtALPMXJBIZ6WTJuRzQ9M0/Nurz8V/veUivPJpGwAAU4tqp0dh9EwtrO3Q3SQ9bT4sJqz7SLzCfUbsF6W6JtjpoVNtiTkAuFyajEOrpsRccPFWRfTwlO706Amb+2Vfmz54riXKTrhDnjwxj1weyOeB+ThFj6Xk8GRE/vvWpyYAAJ96+Q48wxDFEuksVPPGTsNJoR5jxH5bTOB0cnqIDhuBqwKx74uvv6Dge6lsFgnl+DE4HbNELhJSCooehBBCCCGEEELICuPwZAQHxvWB1o71nfL7W7rDCPkaE29lX/VP0aM0ZpF5MaeHVaxIpE2nh1gJva4jgOfv6JdRQ/F0VopXTtEztXD1WWvxiZeejb9/4fYCQSJaaZG5sULcX2T1N2D2fdDpUT4KzAmx2r5cNJATl2xTRA+f9Xnt+2dvm7nCfm2H0esRqT7KTgyj940tyu/ZRTVycjk8EbF8HfC6cMXpfdK1EUlmoNa33HNoCoDV6SF6aIqJdj6j50MVPWqJtHvmab24+++fg3988Vl43cUbAejHDnt5+cODjLgilUHRgxBCCCGEEEIIWUEMzcRwzXV34nEjm/2cDVanR8irD0nrFT0itoHlxAI7PUpRzulhj7dKZhSnhy3CKOxzy1gZEStmdnrU5/Twe9x45+Wn4NS+Nqw3OkQEle4zcpBfRODRn4dOD8AcAFctehivsxAxq+HUvjb888vOxr+8YkfBsNq+f/YqsUJr2/X9oVqnRzqbk6/z/rEF+X2uyl86srk8jk5FLd+78vQ+BJVjSzEnjtobFCjj9BD7k0X0SNf2nt/UHcK7rtyGdYYbLekoejDiilRGfcsDCCGEEEIIIYQQclIZmonJ1bkv2LEOV525Fh947mlYSGSwcU3QMd4qn887ltCWQgws/R4XkpkcFhIZJNLZotnuqxH172oWmTv/ne3lvk5OD4GmaejvCGBwOobR+QS29IQxHdWjruotMlf5zl8+Hf/v5v3oCnrxq8dOVBFvZQzyveXjrVKrvcjcEAOqfd8IR0+4BqcHALz9Wac4ft8eb9XbpsRbGQJIta6uqCJuHJ40B+3s9Gg+uVzeMT5qZC6OZCYHn9uFPPJIZ/N4/o5+AOa+WKyw3trpYYgeRd7rYn9SxU1xLNzaE8J7n3Natb+SpQ/ILnrMxVNOdyGkADo9CCGEEEIIIYSQFUTSGCids6ED33rLxQh43bj2+Wfiky/fAU3T5MrweDqL49MxvOJr9+Lq6+4sGB6VI2oMwPs7AxAztQVm9Es++JPH8OzP3SHFpbKdHkG76JGVf2On1fwDnUEAwOh8HDPRlIyeOXdjV0O2HwDOXt+B773t6bho6xoANcRbVVJknl3lTo90+f4TJ4TTo9oi83LYXzNLvJUhekxWKXqojo6s0ufAeKvm8oVbDuDCz9yCQZujAwAOGX0ep/SG8e4rt+GZp/bghecI0aPQ6eFRhBPVTSaLzIvEW5mdHubrnjTONd9729Px2os3Vf17+Syih/X4sdrj8kjlUPQghBBCCCGEEEJWEHK4XiRaSDg9jk5F8fKv3YNdQ3M4MhnF4HThYKwUIt6qze+RvQKLjKuR3L5vAsdnYjhirGxPS6dHkXirsD3eKoeY0ZvitJp/oEuPeBmZS+CnDw0hlcnhnA0dOH9jZ8Ft60U4TeIVih6VFJnLeKsao25aBVlkXrXTwxA9aigyL4X6mrX7PRYHiun0sEbZTUWSePlX78EPHzjm+Jj2/h8BRY/m8qc9Y5iLpaUgqiL6PE5dG8bfvWA7fvSuS+VxXAgYczHdNdEV8uL8TV3yvmpvUFmnh4i3yqidHrUJfQJxbktmC50eqrhCSCkoehBCCCGEEEIIISuIco4C4Rr4wxOjlviS2Wh1Lg2xervN70G7sfKXQ0ydfD4vXRGis6FckXmXvdOjjNNjveH0ODEXxw079WHzWy/bWnVMWSUIoSxaYbyV2Jfa/cX7RUSXxKp3etRYZC7ErbPXd5S5ZXWoolxPm3WfLBZvdd/haewenscvHh5yfMxI0vnYojpAJhYTeM8PH8FdByZr2m5SyLjRs3R8JlbwMxEzdlpfW8HP/DanR8DjxmXbeuTPVafHWQMdcGnA2QPO+6G9yDyfzyv7fG0uJZ84dtDpQeqAnR6EEEIIIYQQQsgKwhQ9nAdKIWNluH1wOV9lFnrUInoYTg9m9APQB9kixkc4GcqJUdt6w9A0yD6WRCZbtNMDANZ36aLH3QcnMTwbR8jnxsvPX9/Q30NQrdNjeFYfsm5cEyx6Gx+LzAGYoli1nR5vuWwrXnLeenTbHEL1ou6farQVYBaZ2+OthCOgWNF9pKjTwzxefOGWg7hpzxhu2jOGwX9/SfUbTiwkM1nMGqK2iLc6MRfHd+4+grc/8xQMGULIlp5wwX2F00MkkQW8Lly6rQdf/fMhAFbR44JNXXjk488r6CQSCBFNiJuqyFmq86cUvhKdHqv9eEIqh6IHIYQQQgghhBCygkiVcRQEjeFq3pYCMluktLYY0ukRMOOtInR6ALAWN4shXMqIXSkWb7WpO4SbP3glbt83gc/+cR+S6ZzsAwk59DaIeKuhmTgAfaV1s0rkq3V6DM/q27Sxu7jooZYRr2ZqdXoAaLjgAViPGwWiR4f+9WIig0Q6K/c34ewpKnoUOS6o35+NsoC6kUwsmMLUsWld4PjePUfx/XsHoUHDVET/uXhNVexRawGvGxdu6ZJfd9scQPZoPhWf7X2uihK17PP2x0xkrPvcaneOkcqh6EEIIYQQQgghhKwgUmWGqE5RSQAwG6tu6ChEj7DF6UHRA7AOf8VK5HJODwA4fV079o4u6PfLZGUXQql4K8H2gfb6NroEoiy7YqfHnHB6hIreRubyZyp7zFZFdnrUOABuND6PGY/W224dZusdHy4k0jmMLySkS2BWOj2c3//RIl0/6vFCRGcB+j5Ra/QR0RlbMHtXjs1Ekc/nsXdEP7aMzsel6NETLhQ9AjYHht/rRsjnwY3vuxyJTFaK3JVgFplbHW9AcWG+HD7FPWI/JqVXuYhKKmd5HHEJIYQQQgghhNRELJXBwfHFpd4MchKptNPD/vVclU6PqFOnB4vMAVgdEWJlc7kic4EY9iZUp4dDvJVwegjO7G9st4NKyKs/f7FCapVMNofROX3guqmU6MF4KwCou9+g0fjc5nbYnR6apmGDEat2wnDzAJXEWxURPZIZHJ2KYiGRlm4iwHQvkdoZmzdFD12kSmLfmBA9EpgxnDV2YQsojFoLGO/Vczd24ulbu6vaDp8UPYy4P0WUr7V/SMRiJTNZJIzHEw9FpwepFIoehBBCCCGEELKC+btf7MbzvnAXdg/PLfWmkJNE2Xgr2wD9lF5jtXaV8TJqkXkbOz0sqCvbxUp+4WgQxb7FUAd6UdnpUTgQ7wh4LSuuz+pvntNDDKTj6SxyuXzJ244vJpHJ5eF1a1jbXriKXOCn6AHA7Hyxr65fKkp1egCme2dYET1ENJ7aZaNSTPTYP7aIa667E+/4/kMWl8ix6WhtG08k44rTAwAeGpyRr9PB8UXk8rpQ0B2qQPSoIzbP7vRIGsfDUo63cvjdZryVeLx241i42uPySOUsjyMuIYQQQgghhJCaODCmuzyOTnGItFpIVun0kKJH1Z0exkBeibdip4eO6ogQr4cof+5xGCSrBFSnR1J0ejjHyaxX3B5nNFH0CCudIvF0abfHsFGQvKErCJeruMDjM37P1T6kFGLYcnF6eBVRrsehq0GU0w8ZZfWA6fQAnCOuisVbHZ+JIZvL48hUFDHlPTM4HXO8Pakcu+jxpz1j8t9CTO0O+eBxEMcDtnNHPYKc2J+EGN8IZ5NTkXlHUHcbpun0IBVC0YMQQgghhBBCVjAia51dC6uHcvFWQZvosc0QPebjVTo9DFdHu98jV9lyP9NRB79iKDdqxM0MdAYc7yMQA8ZEWnV6OIseA0avx8Y1QXQYEWPNIKAMKItFGAlkiXmJaCuATg+BHAIvQ6eHGCSrODk95uKmYOq0f9hj7+ypRpFkxhIJd5xOj7oZM4rM3YbwqIoeAicnD9Bgp4fH5vQo0zlVCVbRQ3+8TmNfXe0iKqmc5XHEJYQQQgghhBBSNblcXq7eL7bSthSLiTRe/fV78c07Dzd600gTKdvpYRtgba3R6RG1OD1EpwfjrQDTBQPoQ75MNidXXq/vCha7GwBzBXQyo3R6+J2HjsLpsb2JfR4A4HJp0iFUrszcFD1K/57m4JJF5sDyKTJXO2echDTxug4rTg81Gs9J9FD7fwBgfad130hlcpbjD50e9SOON+ds6ARgdmqoOPV5AE6dHnW4MpQoKsCMt6pH5JPHjqzp9BBuw9UuopLKWR5HXEIIIYQQQgghVbOYyMh89WKZ6qV4aHAGjx6fw492Hm/0ppEm8J837cN1N+9HKiu6I5w/0odtUUlC9FAjaipB7FNhv1sOnOj00IlZisyzmFhMIpfXo176ysVbKU4PEflTzOlx8Ra9VPjZZ/Q2YrNLIkSPqEN8kYoYhpcTPej00BG/fz2r6RuJ3+PC2nY/PC4Np69rK/i5KXro4lYmm8OC8r53EtjF9y4/Td9Pr3TYX0X8G6DHXpH6EKLHK85fX/Q2xZwebpdmiTlrhEAhRBcRc1VXvJXbPHaIuD0h0LHInFSK81mVEEIIIYQQQsiyZ0YZYtciekwY8RjVFlyTk8+JuTi+fofuyHm5MeSqJN4q4HXJuKW5WBr5fB6aPXumCGL43eb3yFW8FD101E6PRDqH0Xl9QLyuI1Cy5wIwh9/JdE6umrf3sAhec9FGPPvMPsfuhUYT8nkApBoWb6VG1KxmGhH300g0TcNdf/8cZHN5RyFGvK5jCwmkMjksJqzuLqfOF3FceMl5A/jXV50Dr8eFHz84ZLmN2kFxfCaGv//FLnzg6tPL7kekkHw+jzEjTu+as9ZhfVcQH/rp48jm8tjYHcSRST0+rJjoAejujnRWf90aUmQunR6lnYiV4BRvxU4PUi0UPQghhBBCCCFkhTKjiBW1xFtNGCtvF5MZpDK5uoYUpLmoA8MFYwhZbIiqDtDXhHxYE9IH5plcHovJTMXdEGq8lVjFW4u41oqo77dkJosTc0a0VWdp9wNgvm6pbE5x0xQfz5QaXDYSsd84FVWrHJmKAAA2dZfr9GCROQApGhQTtpaCUkPu3jYfAl6XFPPssUmOTg9FIO1p8yOXK4xaUsW0bC6Pnz08jHg6h6+84Wm1/hqrlvl4Woppazv82NzTjws3X4WFRAZfvPVARaKH3+uWXSz2YvNqKF5k3qB4q4w13mq1H09I5fCKlhBCCCGEEEJWKKpDo5ZhtBo3Um30ETm5TCiix7xRKly808McoHeFfAh43TJSaS5aeSeH7JvwqfFW7PQArBFQiXQOo3O6+2Ggq3SJOWAdOEvRYxkMxE3Ro7jTY2w+gfGFJFwacNZAe8nH8zHeCoAZ5bRphTgaNE2zlJnbzw1OnS9CIG0zjhMulyb7Pex8/rXn40PXnAEAuOnJUUwsJhxvR4ojFix0Br3yeLK2I4DT1rZhbbt5DOppK+4QCyiRVv46nB4iisosMq+/w0YIpvk8EDFcRDLeapUfT0jlUPQghBBCCCGEkBWKNd6q+rJgddg0Q9FjWTMypzg9hOhRpNMjaHF6eI3/68Ov2Qpf51wur0QveaToEWG8FQC70yOHUSNqZqAKp4eKiG5ZSkJGr0gpp8eu4TkAwBnr2uXti+FnvBWyuTyGDNFjc8/KED0As9djaCZmKSAHnEUxEW+ldtOIY4adZ5zSjb+55nRcuLkL6WweP7HFYJHyTEV00aPXQdRY22G6O0r1C6niaz3xVkLczOX1/d10etT+mOoxUjgbO41jZCaXd3QSEWKHogchhBBCCCGErFAsTo8qVuDHU1lZviyYYa/HskZ0RgCQpcLFnB4+jwseo1dCiB1dxv/n4pXtJ2puv15krg+coqksshw4IZpSOz2yGDGcHusrcHp43ObrAwBBr3tZlFwLsSyeKi5S7BqaAwCcv7Gr7OOZRebVC7KtwsicHg/lc7sqEsSWC0L0+MlDQzg8GbH8zEkUEyKg6u4o5vQQjqK3XrYVAPCLR4br3t7Vhjhf9ziIGmvbze+V7PRQnB6BOorMvYr4nsrkpMhZVzm68pjC2aiKaCwzJ5XATg9CCCGEEEIIWaGo7oxohU6PZCaLqz9/B4I+tywIBYDZKmKPyMlnZL7Q6eEt4vQA9AH2YiKDTsPp0WWskq00xkys5tY0vfDW4zKfK6I87molZnN6CAGykk4PQF9ZLaKt1iyTv2XQEF6ciqoFu4fnAQDnb+oq+3hOReb5fB6aVrrovZU4Nm1EW3UH4S5TcL+c+Iunb8ZvHhvB40NzeNwQugR2p0cmm5P7TFugvNND9Nc845RuAHpk2mrbL+plOmKIHuFCp0efKnq0l4i3UpwYgTpcGRbRI5trSLyVy6XB49KQyeWxEDfirRQ3XCqbWxZCMVne0OlBCCGEEEIIISuUWjo9Dk9EMTKfwOHJKE7Mme4Bxlstb0aV10rEh5QqnherqWW8VVj//2yFjh7Z5+F1w+XS4PO45BDrWf9xOz7xmyer/A1aC1VkTCpOj0o6PQDrymrhwllqhOiRKCJ65HJ5GW913sbOso8n4m3E/vr1Ow7h6f96Gwanog3Y2pXBsRn9d93SE17iLamOczZ04jfvfRY6HISLqE30UL8O+81BdFugUMxzaeYwXAyx9UE5V+5Xw7R0ejjEW6mdHuFSReaq06Me0cMUq9LZHJLp+ovMAfP8JuKtLE4P7i+kAih6EEIIIYQQQsgKZUZxZ1QqehyyRZUIKh2Gk5PLdTfvx+u+dT8OThS+bqVFD31AZI+3sufzF0MM9UP+wpXbkWQGP39kaFXnqqtF5vPxtBxCVur0UPPuhSC11JjxVs6ixwNHp7GYyMDvceHM/tIl5oC5f2ZyeWRzedy6dxxTkSQePjbbuI1e5ginx5YV1OchOG1tG1538aaC78dt8VYi2srr1iz7tZPTI+zzSEdH2OeW7peFCmP3iM600enR7SBqbO0NYVtvGFec3lvyHGFxetQRRaVpmhQ+0oqAVU+nB1DoFAt63ZbnIaQcFD0IIYQQQgghZIUyEzU7OaLJDPL58kPoww7Dc/2xKHosR758+yE8eHRGFgWr+EvFWxkrd4XYIbLd1R6XUginR9inDjHN4XwincOI0jOy2lAjfoTLw+vW0FVhVJV/GTo9AiXire4+OIm3ff8hAMCVZ/SVjFYTqCu9U5mc3IcXq+gfWukIV8vWFeb0ELz50i0F37M7PSIOfR4AcN4G3Q105jpTIAspThBN06STZJ6iR1WI87VTkbnf48Yt1z4bP3jHM0o+RqOKzAEz4iqdyTck3gqw9noAuigrnodOD1IJFD0IIYQQQgghZAXxy0eGcf29RwFYV+1ncvmKIkLspbSCWcZbrThKreLd2quvLD99bRsAs5h4eDZW0WOLwaZwjACFK7cPFRHQVgOqs0oUy3cEvBX3EqirrFdCp8f19w4ilcnhqjP7cN3rzq/o8Xw20UPE1IiM/tWAcHpsXoFODwDY2hvGxVvWAACed/Y6AIVOIPFeCNtEj3dfuQ2PfPwavOrCDfJ7YZ/1NiLiamIxic/+4Sk8cmymsb9AiyKcZd0OnR4A4HZpZY9F/gYVmQOKK8Pi9GjMYwoCHrf83qPHZ/Fvf3hqVQmopHooehBCCCGEEELICiGRzuJvf74Ln7xxLyYWEgXujEgyg9loCt+752hR58bhSec8/dG5BL5/71FLzwdZ3pQSPf7z/5yP33/gclk4LUSPE7OVvb6iqDukOD3sbpNi+9JqIOYQJ1esuNkJdeC4Zpk4PYI+fZsSDvFW4rjwtmdutTh+SuFxaRDd3clMdtU5PfL5vOz0WKlODwD4n7+6BH/4wBW46sw+AGaclWA+JjoXrPuFpmnoafNbHCBBn9VR0GHc5zePncC37jqC//jj/oZvfytixlvVfuxQ3R31RlEJgSOeykoXhr9O94hdNAl43dL9cd0tB/Bfdx3BH58Yq+s5SGtD0YMQQgghhBBCVghDM+Yq/bl4uiASJJrM4Gt/PoRP/24v/vu+wYL753J5HLE5PUS8yIODM/jUjXvxNz9+rPEbTmqm1ArcUqJHm9+DHevNsulNa/SV5sNz8Yq6OKTTQxlYHrUVUBdzDbU6uVy+IOIHKBz6lkJ1enQGl7/TQ0R4re+qrLME0IfeYh+NpbIyEswpqq0VmYmmkDBKnTdU8XdbbgS8bpy9vkMKoPb9Y9jYN4r9jqoYWOj00L8+YLjGhEhESmPGWxUvKi9Hozo9ALNbZCqabKDTwyqaBLwuGW81acQ0ji8k6noO0tpQ9CCEEEIIIYSQFcLgtCl6CAFE08xc78VEBvccmgLgnJF+Yi6OZCYHn9slV4hu7++w3GY1lQyvBDLZ4gKFPfO8FP2dAbg0PWZoKlK+18Op0+OMdW2W2xTrh2lVhmZimImmHEUBwBzgVkJgGTo9inV6RJMZGeE10Bmo6jHFCvJppX9oYZU4PYTIE/C6SgqUK4WgV9+/7U4PEZkn3GR2VKeH2ukBmE4P0X0yvpCUnRDEmUw2J6Mt63N6mPtkvU4PcQ0ytWi+fvXu8wXxVl63FFKEmDjNLjJSgpV/1CWEEEIIIYSQVcKxaXMV7HFD9OgIeGUu+vBsHPvGFgHAsd9DrMzf2hvC2QO62LF9oN1ym5CvvuEHaRz5fB4Zw5XxygvW44rTey0/r2ao5HW7MNCpDyWHKoi4ijl0enzlDRfiTZdsxnfeejGA1RVvdXw6hiv+88947TfvQzTl7FRo91fu2FCHjGvCy8TpIVby21wso0ZhfbvfU5WbBTD30amIOZxcLU6PRFqIHq1xTA0bgkXMtn8MG8eTYqKH2vVR4PQw9idVpB+Z4+r9UgjBQ9PqE0wbWWTeZzhOpqMpJNONcXrY7+/3FIqHFD1IKSh6EEIIIYQQQsgK4Zji9BCix5qQV66kvX3fuPx5OuskeuhD6lP72vDuK7fhOWf24U2XbLHcppr4GtJc0orL49OvPAdnr7e6cqpdSVtNmXlMlhObw7Az+9vxr686F5ee2gMAmIoki3bHtBo/uH8QgP4eiiadV6JX0+mhrrLuWiZODxFvlbA5PcQQupZjg1+KHqbTY7V0eojV6IE6V9EvF4QgXlz0cC5rtzg97J0eDu4oNcZxNZPPO7v8xDF3TcgHt6t0WXkpAg0sMu9tN+KtFtV4q/r2+y3d5v4U8LqgaZqMtxLMRMu7FsnqhaIHIYQQQgghhKwQBhWnhxgMdYZ8cvXs7fsm5M+dRA8xIFjXEcCVZ/Th+29/RkFkUWSVrMJeCaivoc/tkkNpgd9d3VBJDCWHK3B6RB2cHoI2vwf9HXrM0cWfuQXfuftIVduxErl9v/neEvE+HTaRo6pOD+W1XC7xVsU6PYTTY6CrumgrQHF6LK5Cp0fGjLdqBcSxwC56nCgTb2Xp9PA7Oz1UKjk+tTq/fGQYF/7LLXjk2EzBz0SJeU8d0VZAY50eMt4qYsZb1ev0OH9Tl/y32L4Cp0dkdYjupDZa48hLCCGEEEIIISuUuVgKr/zavfjuPUfL3vaYpdNDHwx1Bb1oM4ZKaoRMyiHeSqxQV1fva5p1pehqWYW9ElBFD6/bVTCYqt3pUUm8VWGnh8qLzu0HAOTywI27R6vajpXGXCyFI0qUV8QQPex5+tV0eriUFdprQssj3ipQpKhaOD1EPFo1iN4Z1emxWjo9Wi3eShaZK/Fu8VRWnnc21eT0cBI96PT425/vwmwsjb/674cLfiYinerp8wBMB5LbVeigqBZRqD4VSclrD3+dYt/5G7vkv4WAYu+xYrwVKQVFD0IIIYQQQghZQn7+8DAeH5rDv/xub8nbpbM5nJgzh9VDxmCoS4m3st/eTkRGFllv/7yz18l/R1NZZHPFy7PJySNlvIYuTR9MBWwiRzPjrYRAFnLYtwDgn1+2A79937MA6IXmxaJYWgHVQQWY/QNtAY9lCFeN00ONkKq2J6NZSKdHynrsEE6P9VWWmAOA33hMq+ixSpweotugRUQP0fkSS2fl+/3EnH4safd7iop+baWcHg73odPDRPR3qIh4q562+kQPIUrYzyu1YIoeZryVr0onop0z+82+sYlF/fhhP+fNRlPI8XqFFIGiByGEEEIIIYQsIQFl5asYhN6w8xh++tBxy+1OzMYtYoSIGOkMei3ODYFTkbmI5bGLJF9/04V48B+vll/vGp7DZ363F5OLzMteSkSnh1iFG1T2FbdLqzrPXcRbnWiA0wPQh1Jul4ZIMiOHUq3I7uF5y9cLhugR8nosq5mr6fRQy8LryeVvJOU6PQZq6fRwcHqkMjkZgdPKiN+xEUPl5YCIUcznTUFnyDiWbFgTLHANCvwetxQH7RF9zvFWdHqUwoy38tf1OMKB1AgnkpPoUa/TQxU4hKZud6RkcvlV4xwj1dMaR15CCCGEEEIIWaG0KYLFkckooskMPvGbJ/GxXz9pGT6qfR4qXUEv2vzm4Ehka5d0eth6GrxuF9a2B2T2/Ku/fh++c89RfOzXT9T4W5FGkJYrZo0Vucpwyh7zUQnrjU6GsYVE2dsKp0ewhOjh97ix2SibfXxoDj984FhLxqMJkUMgxEOfx2Up63Ua4BbDHiG1HAgq8Vaqc2ekLqeHvp/as/dXQ69Hyzk9lN8jaoii5UrMBcLtYRfoneOt6PQoxWSkMU6Pxooe+rbMRFNSMK+30wMANtiEVqfHZMQVKQZFD0IIIYQQQghZQtTujcOTEUSSGeTyQDaXlzE6AHB8xnn1a2fIZxFOrji9D4DpElCJFom3Ethjdp6wrXAnjWMqksQd+ydKxkIJ4crrcRA9ahgoifs79b3YMZ0epd0Lp/aFAQB//cNH8InfPInP33yg6u1a7tjjmETJu9etWUqq7cXmpYinlp/oIfaPbC4vjx/5fB6jdTg9hDg3GbE6gexCUisiOz1axOnhcmlKBJr+uw2XKTEXCHdhyFe8yFwc0yYWkwVuo9WG6hobnY/jnoNT8lwh4uYGahAhVUSXUFcDOoW6wz5omt7xNL6gv9dVQbhWXnPRRgCm49DpvMcyc1KM1jjyEkIIIYQQQsgKJWkTPdRhqLpqXqx+XddhjbTQnR7mgOTy03oBOA+2RSSWUxwWUDi0LXY7Uj+v/9b9eNv3H8IvHhm2fP/EXFzGl4hOD69bj42pV/QQ0SCZXL5oDnomm8O+sQU52A+V2QdOXdtm+fqWveNVb9dyx+5eEYKQ1+2yrDyupptjW19b+RudZNSV/MKJMhVJyX/XMmQVTg+7s2N1OD1aq8gcMAXz2Zg+aB6c0h2I5UQPMVi3OzvUTo9TesKy6HyoiMi/WlgTMl0cl332drz5uzux8+gMAJgiZGf1IqTKuRs68amX78BnXnlOXY8DAB63y7LNQGOcHu9/7mn46Iu245f/95kAzHOhyky0daMVSX1Q9CCEEEIIIYSQJSSZVkWPqCX2Rl1hLlbUnjXQYbl/V8grh61nrmtHvzGYrKbIXGAf2joVpJPGcHhSHxb+6EGzuyWSzOD5192JV339PgAOnR51xlupA6N0ztnt8b4fPYYXfvFuHJqIAKjE6WEd3p++bvkN8+vFPqAX0V/2eKtqOj0+8sIz8ZZLt+DXxjBvOeB1mz0xYmD/8KA+aN3e317T8L7YfroaRA8haAfq7DZYTpw1oJdLP3psFvl8Hg8PzgIALtjUVfJ+f/v8M/G2Z27FZdt6LN9XnR49bT55fntyZHW7DJ32mceOzwEARuaMuLkanFcqmqbhL5+5FU/bvKauxxH02uK26u30APRz318/+1Rs79f3C0enB+OtSBFa58hLCCGEEEIIISsQtdD38EREujEAawSMcHo4iR5XntGHa85aiw8973Q5IHdyehQrMhfYh7bFxBHSOMSqXUAvGI+msjg+E0MinZXCldnpYX6Er2UVrVoC6xR/9qc9Y7hpz5jle+XcPnbRoxVji+xFubLTw+2yxls59BMUoyvkw7+88pyGDRwbgaYVxhfdf2QaAHCpbVhdKcUiblZD+XArOj3EfvDAkRkcnIhgOppCwOvCeRu7St7v2Wf04ZMv31EwtA753FJo6w77cN7GTgDArqHVLXo4nb87g14sJtJYNI4/oqNpuSDKzAW1CPPl8LkL30uMtyLFoOhBCCGEEEIIIUuIOtw4MhWR0TmAdTW0iPs42yZ6dAa96Gv34zt/+XS88JwBuZo/5eD0ECvUi4kZ9iJme/46aTxqqfiMsmJ1IZ6WReaOTo8aRA91CJW2DdUy2Rw++ds9Bfcptw+ITg9BK666tbsSYrLTo3anx3JFDOiF4+wBKXp01/R49v3UmG+3ZOG9nZYWPY5O495DUwCAi7d013Q8AnShTcQq9oR90jGya3iu7m1dySQdRI9IMo3Ref180Rn0Lrvzs1308Ddhv/d6nOKtWu+cQxoDRQ9CCCGEEEIIWULU4UYincNhI1YIMIetkWQGszF9SGh3enQGrZESYvhkXymayuSkENJWZFii5qsDQK5EyTZpPCInHwDm4mn5enka1OnhcmnwGFNne/zZ6HxCDtRUysVbdYV8uOrMPim2zbTYqtt8Pi8H9OJ3FMKkz2M6PQJel8VJs1IJ+vTfIZ7OYiqSxIFx/Xj0jFNqc3r023pA+jv0r1dDvFXCiC5slSJzADhvYydCPjfmYmn84P5jAGoXxATCIdXT5peOkT0jC45uh9WC0+++EM/IaKt6S8ybQYHo0YT93u9wjG1FoZ00htY58hJCCCGEEELICsS+onNw2ixwFcPWE0a0VWfQWxBp0WmL1BGr+e1DbRHJAxQvp7Z3eqil6qSxiMJewIw4U1eszsXSBZ0eakZ6rdEh4rHs+93Eoi549LVbB1dBX/nVute//Rl46B+vAQAsJjOWyLaVTjSVheh87w775PcAq9PD7pJaqQg3USKVxc4jZp+H+N2rxT4Q32AUXi+sCtFD30+aseJ9qfC6Xbh4q/6aHjVKzC87tTZBTCDeO91hH7b2hNAR8CCVyeHA+GJ9G7uCcXJ6LCRMp0e9fR7N4ILNXfLf2/rCUmBvJKrYL2LRpiMsMifOUPQghBBCCCGEkCXEPiCeVD7Ai9x7UWK+cU0QQa9bDhPCPnfBin/xtb2zIaqsTi+2Ir3dFnullqqTxqJGIQ3N6KLWrCJ6zMfTBZ0e9cZbAaZbwS6KTS7q+92mNUGEfdU/T0fAK/fLVoobEcKj26XJ4awQEL0eTTo9WiHaCjD3sXg6i6dGFwAAF26pvXfk3A1dlv12gzGs/fnDQ/j2XUfq2NLlT0IWmbeO6AEAV29fK//d2+bDuRu66nq8bUZE3hnr2qFpGs43Iq4eH5qr63FXMk7C8UI8vaydHi8/fz3u/Lur8Lv3X47fv/8KaFrjRQ/12kW4xuZbsEeKNIbWOCsTQgghhBBCyAolmbYOn6cWTdFDRMCIEvONa4LQNA3tAQ9mY2l0hQpXXxcrMhd9HsVKzIHCIuYERY+mkVFEqWPTUZy2tg0zarxVLCUFB5FjXm+8lXo/uyg2Yex3a9sDiKWy2DdW3Sprl0vDmrAPk4tJTEdSGOhcfiuRa0G8BzsCHvneEp0ePsXpYXdJrVTUTo8pQ4AVw8Va8HlcOHdDJx4c1F0jYoX66HwC//qHp3DN2etwSm+41EOsWMxOj9Zab/zmS7fg9LVtiCQz2LGhs+ZjkeDfXnUu3nXFNuxYr0c3nr+xC3cfnMLu4TkAW+rf4BVGLpcvOD4DujtqZG75Oj0AYEtPc9/L6r62JuzFibn4qo5BI6VprSMvIYQQQgghhKww7DEWUxEn0UM4PUIAzAGrXaQAFNEjm0Ne6eSIGKvTw0WirfTHtQoiFD2ah1o0LyLN7E6PlK3I3Ot2STdFvfFWdqfHxIK+3/W1+7G5O1TTY/cYEUitlLEunB7tAS+8xsBNOD18brPTw+m9uBIRcWbxlCl62LP6q+Xs9WYP0TqbgDITbd1oGil6eFrL6eF2aXjmab14/o5+6dyph7Dfg3M2dEpnwHkbOwEAu4bm637slUgq6zzEX4inMTqvL4Cwx1yuFiyih7Hoo9jfixCKHoQQQgghhBCyhNhFj0mL00PEW5lOD8AUJ7ocBq3qUEBdLSoGtaWKqQs6PSh6NA1VdDg2rWfjz8TMmA6nTg/AXIlfe7yVKYqpTEqnhx+XbKsto7+nTR9CtdIgeyGuv2/aAx74ZJG50enhccm+hlaLt0qks5g0Sul722rr8xA867Re+e81tm6QVi40T7ZovFWzucCItzo4sWjpolotqO7Pj7/kLFz7vDMA6EK46PRoFSddtajnQil60OlBikDRgxBCCCGEEEKWEJHdLYbYasGvGLiaooe+Al90C3SFHEQPtyp6mMMAMTwqFW9lH9yyyLzxiJ6WtCXeqtDpMRdPIZOzdnoAjRA9jE6PIkXmazv8eOtlW/D2Z23Fd956cVWP3RPWHQHTkdZxeojXqyPglQM30Y/jdbukSNBqRebxdFZG7fW21+f0uOastfjAc0/D5197Pp5/9jr85WVmZFErih7ZXB6xVAbJFo23ajZrOwLo7wgglweePLH63B7JrL7faBrwzstPwXONDpV5pdNj/SoVPfwWp4d+zHUqfScEYKcHIYQQQgghhCwp4gN7T9gnV3EKxMB1OmJGDwGK08NJ9PAUET0MASNUqtPDNrhNcJjQUL53z1F8+nd78aW/uADZnCl6CJeFWgA+F1PjrcxCWDFA9dfc6aEPte1OD7XTw+t24Z9ftqPqx+5uyXgr0+kh3qsiNc7nceFl5w9g9/AcXnfxxqXaxIYSMOKtYkq8VV+d8VaapuHa558pv/7UK87BibkEbn1qvCVFj7/83oN44sQ8Qsbf0t9i8VYng/M3dWJsTwK7h+drdp6tVITTw+9xQdM0eV6ejCTlsWddZ33vyZWKugCgk04PUgbKzYQQQgghhBCyhIhB6hqHUnIxEJyLp43b6MMPEUPVGSy8j9ulwah9sAwDTKdH5Z0eqUzOMpwn9fHp3+0FAPzT/+6xfF+IHbMxa6dHyXirGjs9RERTQafHolVYqwURgzQdaZ14K1P08FrEJ0D/W562th3ff/sz8LTNa5Zi8xqOcHpMRZLy2FRvp4cTHcaxJpJMl7nlyuPxoTlLFBGdHtVz3sYuAMDjw3NLuh1LgRCkhVjWacRYCsGjt82/aoU0a7yV/neh6EGKwSMvIYQQQgghhCwhIgKlxyE3fyGRRjKTlR0CXYYwcvnpPQh63bh0W7fjYwq3h7qaP1JBp4dTRA/LzBuDWiq/3lb+Ox1NIpE2X2dAiB6G00NxdQQb1emRMbcnm8tLoWJtHaJHtxFvNdNCTo8FWWTusQzcABR83QqI/WtoRo/RCfvcsty8kbQZokerOT3y+byMPxOw06N6RK/HrqG5Jd2OpUA4PcQxvs22GGG1lpgDxYvM1fMrIYLWO0MTQgghhBBCyApCrFLsDheKHpFkBrNRfejqdmlydfSrnrYRT37qBbjqzLWOj2kOtgudHuEynR6bu0OWwTfLzBvD8ZmY/LcopBeks3nLzwFRZO7U6aH/u17RQ3V6TEeTyOUBlwb01LGqvzXjrYxOj6C3QOSo9TVYzgiBY2hW3x/r7fMoRnuLih6xVBb2+SudHtVz1kAHAL3PSvRerRbE7ysiDN0uDe3KeXugk6IHYI33FMLH5/60D1/786Gl2DSyDKnryPvv//7v0DQNH/zgB+X3rrrqKmiaZvnvPe95T73bSQghhBBCCCEtSal4q3weODGnDx87g15omhmv43ZpBbcX+ORg25y+VVJk7nJp+OPfXIHb/vbZcuBCp0djeFxZsSxec7dLQ9gYMh8cj1huPxdLSaeOtdNDxFvVtnpcuEZU0WNiQXd59LT5S+5X5TDjrVpJ9NDfNx2rxOkh9q9hw+nRjGgrwIzoazXRQxxnVVZrFFE9rAl55YBbHJ9WC2Kxgjrg7wiaA367U3A1oR5z1YUiqUwOP3t4CF/782F87k/7ZU8WWd3UXGT+0EMP4Vvf+hbOO++8gp+9613vwqc//Wn5dSgUqvVpCCGEEEIIIaQl+dOeMXQEvJYicyeOTeuih1NpeTFkvFVGjbfSxYtSTg/150GfG8lMjqJHg9g9PC//LQajPrcL3W0+RGfiODShix69bT5MRVJYSGRkzIljp0etReYOnR6TDSqsFvFrc7HWEz3aAx74PPZOj9YTPUS8lRDcih2X6kWIr63W6RFxED0Yb1U9mqahvyOA4zMxjC0ksKl79cwVxTWBKpapfVvrO1ev6OFXnR5Kp9nYfAL/9od98uv9Y4t19VOR1qCmM3QkEsGb3vQmfPvb38aaNYVlXaFQCP39/fK/jo6OujeUEEIIIYQQQlqFuVgK/9//PIK//uHDstNjTZHhoog9cnKCFEPGWymD7VhKxFtVNoATw894iiWhjUDNpo8Yg3SvW5M9GIcmddFja09Y3m7KECMsq1uN/aAzWLkIpuIkiE0aK6nXdtQ3JHJyGK10FuKi06Mw3qoVnR4hW3/Hao632j+2iCdPzJe/oYLayyNgvFVtrDOOR+MLiSXekpOLKXo4Oz0G2OkBQL+WEeecnz8yjPm4KaDuG1s46dtGlh81HXnf+9734iUveQmuueYax5/fcMMN6O3txTnnnIOPfvSjiMVijrcjhBBCCCGEkNXIfDyNXB5YSGQQMcSIYiuqTdGjeqdHusoicxWxOjmxyvLUm8XeUXMII14Ln8eFXuN1Pzi+CEAXHsQqeBHRoQ563vfc0/APL9qOl50/UNN2mIKYKUxMLOpDxXpKzAHAY7hIMrnWEcrMeCsvPK7W7/QoED2aFm9VueiRyeZwaGLxpJYVJ9JZvOCLd+GlX7kHcQchoxh0ejSOdR36cH9sfnWJHo7xVgFF9FjFTg9VaA77PUoEmnUfeWp08aRuF1meVB1v9ZOf/ASPPvooHnroIcefv/GNb8SWLVuwfv167N69Gx/5yEewf/9+/OpXv3K8fTKZRDJpZq0tLFCNI4QQQgghhLQ2SWWVvZjj2YvMfW4XUtmczNbvqsXpUWWRuUpAOj0oetRLKpOzrAAX5dhet0u+7gcM0aMr5ENn0ItIMiNjp9ROj03dIbzn2afWvC1ORebjhtNDDBnrf+w88vm8pYNmpSJeq/aAB15bvJX6urQKF2/ths/jkseOvrbmxFuJTg8nkcDOP/92D27YeRyfeeU5ePOlW5qyPXb2jJizqbl4CkFfZYNme6eH26W1pCPoZNBvHI9Wn9PDWmQOAB1BJd5qFTs9hGvK7dLg97h00SOpLyABgM3dIRyfiWH/OGfLpErRY2hoCH/zN3+DW265BYGA85vs3e9+t/z3ueeei4GBAVx99dU4fPgwTj218MLss5/9LD71qU9VudmEEEIIIYQQ0lyaObQVXQ0qPbbhYl+7Hyfm4jg2EwVQpdPDobchanR6lCoyVwkaw4U4Oz3qxi4cRY2vvW4XeoyV9DlD/NraE8LjQS9OzMUxZTg97A6DepDChCKIjRlDxfpFD/P9ks3lpfNjJbOgdnqsgnir7rAPLz1vAL969ASA5jk9xHFoMZGWDo5ix9sbdh4HAHz2D0+dNNFj9/Cc/LdTZFUx7CJOoAXdQCeLdVL0aK1S6nLXFk6dHsLp4XZpWNu+ekWP/o4A/uLpm7CuIwBN0+QxWcQQXrCpC8dnYjgwHkEmm4OnBY/RpHKqevUfeeQRTExM4MILL4TH44HH48Gdd96JL3/5y/B4PMhmC08El1xyCQDg0KFDjo/50Y9+FPPz8/K/oaGhGn4NQgghhBBCCGkcuVwer/7GfXjH9c4O93pJOXx2snd2rJV55vrApxqnh3OReZWdHkbMDYvM6yeasg5Cs4bC4XVrBbFm2/s7ZGm9GLh7Gzg4dRLExhskeqgDpkyuNXo9hOgX9nsKRA5/iw6033rZVvnvYl1D9SLirWZjabz8q/fir/774bL3iZ5E19nuYbPLI5as/Hmjttsy2qp21nUa8VYt5PS499AULvrMrfjjE6NFb5Mq0emxrt0Pt2vli8m1omka/v015+FDzzsDgHmts2A48k5f24aQz41UJofB6eiSbSdZHlR1hr766qvxxBNP4PHHH5f/XXzxxXjTm96Exx9/HG534cH88ccfBwAMDDjnjfr9fnR0dFj+I4QQQgghhJClZDqawmPH53D7vgnkmjC8dXJ62EWNU3rDlq8bV2ReYbyVh6JHoyi2UlyNtxJsH2i35LcDplDRCJw6PURmfn+9oocyjFNFlV1Dc3j5V+/B/Yen63r8k006m5MCld/jWhVF5oC+WvqFO/qxuTuEczZ0NuU5RLxVNpfHEyfmcdu+Cfm3Xg7sGpqT/7aLlqWwx1tR9KidVoy3etN3dmImmsL/d8OjRW/jGG9liITru1Zvn4cTQvQQJeZBnxtn9rcDAPay12PVU1W8VXt7O8455xzL98LhMHp6enDOOefg8OHD+NGPfoQXv/jF6Onpwe7du/GhD30IV155Jc4777yGbjghhBBCCCGENIucUpibzefhQmNXVqqdHoA+3HC7NAS9brmy/GmbumTEDFBrkbn5e4jBe7DCIVzAx06PRhErMjT1eVyWWLPusA99bX60Bawf1Rs5XLe7gDLZHKaM7pB1nfVFGanbmVH2vTd/ZycWkxm85bs7cejfXlzXc5xM1PdpwOsu6PBopANnufGNN1/Y1E4Wp5i9aCpTIPgtBfPxNI5MmavEi71/nbALJC1Qa7NkrDPcjmPziZbpCKoE6fTwmseXs9frC8Qv3LJmSbZpuSKEoYW4/r4LeN04pSeMx47PYWQuvpSbRpYBVReZl8Ln8+HWW2/FF7/4RUSjUWzatAmvec1r8PGPf7yRT0MIIYQQQgghTUVdcZzN5dHoxbpOogeguzDi6Sy8bg07bCusO6sQPexF5tlcXj5nyFdhvJUoMndwpZDqKOX06AmbQsP2/nZomlYwEG6k6GEvMp+KpJDL61nxveH6RA+3S4OmAfk8kM6Z+82isfp9pUVeqS4nn9vJ6dG6Q9hmD5jdLg1hn9sSWRVLZh1Fj3a/R+5D2Vy+6fE+TyjRVkBhZFUp7E4POuVqR8TtJTM5LMQzVZ0DVzLiXK12CD3z1F48+LGrm9axs1IRIr5YLBLwuqWbtZouHtKa1C163HHHHfLfmzZtwp133lnvQxJCCCGEEELIkmIXPRqNiK8Q+A2Boc3vxlRE/+B+5rp2y22qibcynR768EQtIw/5Koy3MlaZcmhXP2KluM/tskSOed0auhWnh4jlaD8JTg+xb4i8/LXtfrgaMEz2uvTfUXUZrVTk8NHjgsulFXZ6OER8k8ppC3gsooe9BFzQHjBFj8nFJPo7m1vkfHDCGotTjdMjYhNI6JSrnYDXja6QF3OxNMYWEqtO9PDbVlusrTN+sBXx2Y7JAa8LIaO3LFbkeEJWD63rxSSEEEIIIYSQGrHHWzWaYk4PIUiEfPpqxc3dIXmbqkQPm9NDDO00zRQzyiGcHhQ96kesOO2yDe10p4f5um4w8trtTg+fp5GdHvpjCfFF9HnUW2Iu8BiPn8kWOoQ6gytraJlMW7P1C+OtWtfpcTJot7k6hEtiZC6Ox5VODfV4OTLf/Mga+wrxalaM250ecR4/62Jde+uVmZcj5eD0IM74bBGDAY8bbcZ1VDVdPKQ14TuIEEIIIYQQQmxYnB5NWLGeKiJ6iGG3EBw2rjFLS+0D81LYB9txpc+j0tgaM96KQ7t6EUNTu3Dlc7ssRcfC6dHMTg8z3krfr0VJcL0l5gJRZi4eX93XV5rokTCi3cRrZB+wtWqR+cnCLu4JweDN39mJV37tXjw0OAPAegwanWv+8NvuzqhH9FhhiW7LDuHqGZ6NLfGWnDycisyJM/a/UcDrRsg4rlQTS0daE76DCCGEEEIIIcTGyXZ6+Dz6UDVsxDKIIas6iA5UUSxiL6sWQ7tK+zwAFpk3EhGz4eT0AIDPv/Z8vO85p+Hy03oBFA6DmyJ6GPuGFD0aFBkkHj+Tsz4+ULnLaLlgHz6qr4OmmQIPqQ37/hBJZpDL5WWJ+A/uP4Z8Pm8RPU5GObFd6LULGaUoFtFFauO8jXq31SODs0u8JY2l1LEjmS4sMifO2IXooM+FsHHtUk0sHWlNGlpkTgghhBBCCCGtgJrM04xOj2JOD1HAKcSJrb3hmh7fXlYtRI9gNaKHIcQkMiwyr5dY2tnp4TVe99dctNHy/aZ2eojoM3unR0djCnKl6GE4PdQh9UorlrU7PdTXwet2Nb3su9WZi6UtX0dTGUxHU/LrXUNzSGZyUHXn5R5vtdL28eXOpdt68JXbD+GBI9PI5/Mt856zD+tVklnGW1WK/W/k99DpQUz4DiKEEEIIIYQQGye9yNweb2WIE3/5zK04a6AD73vOaVU9fkGRuXB6eCtf9xak06NhxJLOnR7Fhlpt/spuVwv2faPh8VZuEW+lP/7ovOn0WGn7kt3p4VE6PTiQrJ8ZReAA9BLwUUXUOD4Tw5Mn5i23ORnxVqLHqNvo26nG6VHNbUl5Lty8Bl63hpH5BI7PtE7EVUnRI+1cZE4KKej08Lrp9CASnqUJIYQQQgghxIYl3qopoofN6eEV8VbWTo/OoBd//Jsr8OEXnFnV4xcrMq/G6cEi89o5ML6IN33nAVx3ywEA5urvTrvoUaQIuyDeqqFF5tZ9QxSZN0r0MOOtDKeHMsReacWywukhRA+fxenRGivOlxK76BFNZjBiEzX+9/ERy9ejJ8HpIcQ5IXpU494Q8VZ/94IzEfS68cXXX9Dw7VtNBH1uXLCpCwDwwJHppd2YOskr1xWlRFN2elSO32O9pgl4XQjJInNeu6x2+A4ihBBCCFkmPHliHu+94VEcNbKsSWtx36EpvP/Hj2EqklzqTSEV0GynR9F4K0OUCPrqSyKWg20jYkhk1FfV6UHRo2q+dOtBvO6b9+OVX7sX9x6axpdvO4g7D0xK0anN57ENzp0/kjcz3sqrODFSmRyGZvQh8sY1oYY8vllkbjg9lCF2Ip1ryvupWYjho1O8VamV2qQyPvvqcy1fx5KZgs6OR49buxxU51Aprr/3KD752z2WQXOliDi6HuH0qEKsE06Pl5w7gCc/9QK88mkbqn5+YuXSbT0AgAeOzCzxltSHutih1PFDXB/wGFMeR6eH0Y0Wo+tq1cN3ECE1kM/n8Z27j+C+w1NLvSmEEEJaiJd+5R78/olR/NP/PrnUm0KawLfuOoIbd43glr3jS70ppAKyTS8ytwoJ4oO76PDY3B2s6/EbUmRulKjaS31XE8lMFtfdvL9g8OrEQiKNL9x6AA8OziCWyspV4h//zRNyRXvI77EMaYqJGXanRyOjlLwy3iqPfWMLSGVz6Ap5sanOfU7gsXV62Ffmr6TIETGkNIvMTXdHI4Wo1cprL96EnR+7Gu959qkArPFWHYbwN76gLxRwG2LaVCSJTLZ8z9Anb9yL6+8bLDso//GDx3Htzx7Hv/xuL+aNjpGEcbzsbdd7bmIVdgPkcnm5ujzs98htJvVhih7TNYlYywU1+qzU8cM87jDeqhxOogedHkTAInNCauCnDw3hM79/CgAw+O8vWeKtIYQQ0mpMR1Llb6SwmEjj14+dwAvP6cfa9sbEk5DGI3LzF+LpMrcky4Fcszs90s5Oj1dcsAFbesLYsb6jrscvVmQeqsJBIuKtVrPoce+hKXz59kN4aHAWP373pSVvO2EMZ8M+N771lotx7sZOXHPdnRiaicufhXxu+D0uCMNXscFX2B5v1YQi83Q2h11DcwCA8zZ2NawgWAgDmZy+79njimKpLNoD3oL7LUeS6RJOD4oeDWFdRwBtxsrsaDKDiCGKbe/vwIODM5iO6m+WjWuCODEbRyaXx1Qkhf7O4tc76mC8VBzWXCyFj/36CVmUfkpvGG++dIs85vWKeKt0ZUJdTDlW2oVLUjui12PU6PXY0hNe6k2qCbVYu9R1hV1sJcWxH4cDHpfp9FghAvujx2cxNBPDKy6gK6zR8B1ESA2ouaIreaUBIYSQ5YOaa336uraq7vvzh4fxT/+7B9+840ijN4s0kMlFfXDDktOVQdPjrbJ20UP/kO52abhoyxo5ZK0Ve1m1iHmoxunRZqy0nlhIWiKu4qksbt833tKxV0+emMfx6RgWE/rfrZJ4m4lFoxujM4DLT+9FZ9ArxSsxxAr53JaVqb4ivRA+j8vmCGlOp8euYb0k+oKNnQ17fDPeSn/fCMFXsJKOgfbho+W140CyYQiRL5LKYNSItzqzvx0ApCAR9nmw1nBejC0URlw9PDiD49N60XVCEZVLLTSYWExC/TgvFp2IYWlPW3VOD3GcdWmmU47UT6v0ekSUY1+6hFspZThBeYwpj/086XGbnR7pbL4gSnQ58uqv34e/+cnj2De2sNSb0nLwHURIlWRzeewanpNfR1bQRTshhJDly27l3FLt6lGxCnKSXRHLlnQ2h2lD2FrktcOKINvsIvMiTo9GIYbpMt7KECiqKTLf3t+BDV1BRJIZ3LjLXPTz7buP4B3XP4z/vm+wcRu8jLjzwCRe+pV78Nbv7ZSvUyWDEyFsqo67XmNoKgj5PJbXupSDw3K7Bu4fMvosm5PnnvM2djXs8T02l5H9mFdNKfRSk7A5PTwuxls1AyF6RJMZ2dkhRA9B0OfG2g79vTU2n8ChiYiMuTowvoj/8837ceXn/gzAusJ7Pl78nGt31i4kjHgr430v3r/lRM/R+TjuOzSFBwf1KK2wz9Mw5xTRaYVeD3W/FKKwE3R6VI76NwoYi0fCynVOJW6PvSMLuO/QFMYq7AtqJOo8UVxDkMbBdxAhVfLIsVnLhfpUlREkhBBCiBO7hublvxNVrkoSH85X0urZ1YY6WOHrtDLIKW/Dpogetk4Pf4NXBauDbUB3ZwDVOT3cLg1vunQzAOCHDxyT3z8yGQEA7BtbRD6fb6l9OpXJ4b03PAoAGJyOydepEtFDRFj1tZtCh130CNucHqXEDDXP3etqfJH5XCyNgxP6a3nepsY5PWS8VTYvy9IBpRR6ifaXVCZXcnW1E4WdHs1x36x2RBTUQjwtnUFnDdhED68b/Ybo8dOHjuOa6+7E+3/8GIDC1f9qJJ9wYDkhFo0IhCtE3L+nzYi3KuH0mI+n8Zz/dwfe+J2deN+P9O2xx9OR+rmsBXo9Knd6sMi8UtS/kV+I026XPGaXW6R8695xvPjLd+ON39mJ5/y/O6TwebI4MWvG72ngOaXR8B1ESJXc+pS1fHSKq2oJIYQ0ANXpUW1kjLg93YfLF3XoEq0wJoMsLarTI3MS460ahRphBJirHavp9ACA11+8CT63C7uH5/G40f8gFv0Mz8bwyd/uwdM+fQueGm2NWIafPHTcciwVi53sr5cTwm231iJ6+Cy3CdpFj0qdHg0csAs3YSSZQT4PrO8MNLQPyuMynR7qYjEhAMWWIBYtnc3hWf9xO174xbuqGpiK86sYpjHeqjkIkeDoVBS5vL6/b+u1Rn0GfW7Z4/Hn/ZMAgD8+OYabnhzDXMwcVKazOSnyAmYRuhNqtChgOj3E8VJ1ehTbb0bn45Y4LcDssyGN42mb18DndmF0PoGhmeI9LcsZ9fqvlOjBIvPKsTg9lMUj4phSzln47bvNaOB4OisXL5wshmdj8t+VxGiS6uBZmpAqER/2BFO0oBFCCKmTVCZnOb9UK3qIFYmttNq61VA/RDHeamWgFpnnmrCqtNnxVsWKzINVdoX0tPnx0vMGAAA/uH8QgLnoZ3g2jv++/xhS2Ryuv3ewAVu99Ow5YRVvRKdHZU4PXdxc22GKHqrrA9AHMeogq1inB2B1/7hdje/0EJzS19hSYLPI3HQB+dwudIb08vJK+xEaydGpKCYXkzg8GZUDxUoQtw04Oj04TmkUosh81hAv1nUE0BG0lt0HvW6s6ygU5z752z2WhYjRZMYy6LR3yqgIAbc9IJwmGeRyeSliCHdSLo+i+40QWPqVbWMaROMJ+tzY1B0EAAzPxcrcenkSrdDpIRyGjLcqj88iepjnVuFqLfXZaP/YInYenbGcX092B8iw4vRYKcXrKwm+gwipgnw+j33GKjZxwqXTgxBCSL18++4jsu8BKByGlkPcfiXlpK82Jm0DGbK8+PVjw3j11++15DmrkVaZEtnbtVLo9Fh+8VaCt1y2BQDwu92jmImm5PWvWiasDvpXMvZr+3kj7qYSp8fEYvl4q6DXbeltKu30MF+rRvYD2CO1usONfe3E75TJ5uQQJ+x3y5z1pVjNqh53qznH2p0equOm2v4tUhy7A21DVxBul4Z2JSZKFz0K99WxhQTuOjApv15MZCzxVk6l54IZI95qW68u/C0k0hZxo1txahU7d4vnag948Jv3PgtrQl68/7mnFX1OUjudhhCmltPHU1m84b8ewDfvPLxUm1Ux1nirvKN7KJ83y7cpepTH5zbPkxanh6+80+OGnXps5/POWocNXfp8r5JzfSMZmjEFvAid4A2H7yBCqmB0PoGFRAYel4ZLT9EzJSe5ioMQQkgdDM3E8OXbDgIAXnHBegDWLOpKYLzV8kd1elD0WH586Ke78OjxOXzJeC8C1kirZjo9xCy78UXmhtMjo2+7dHrUIHpcsKkL52zoQCqTw48fPC4jYdQ/S0fAW+TeK4upInE36QYVmYf9HouDo9J4q0Zij8rqDjX2tTOLzPNyiBPyeRAScSNLcAxcSCiiR6byc2zpTg+OUxpFm60DY2uPLkKobo+gz21xU2gacP6mLgB6/45gMZGxxFtNRZKy8NyOOJZtNUSP+Xjastq6zeeRg9Riw9O4cmy9YFMXHv748/C3zz+zxG9LakWIHvOK6PHQ4AzuPzKNH95/rNjdlg326z+nMvNMLg9x+cF4q/KoTg/VyRryl3d67B7W+xRfev6APMYnT3L8osXpwc8HDYdnaUKqYP/YIgDg1L42DBhK8DSdHoQQQurgjv0TSGZyuHBzF15/8SYANXR6ZBhvtdxROz0WE3ydlivqqstckzs9xOD19LV6bv3GNaGGPr4YBMh4q7Q5fK4WTdPwF0/XC81/89gJOP05qj1uLVfs0bW1OD1KdXqEfDanR8ki8+Z8XPe7rYO0NWFfkVvWhtcl4q1ycohjdXqc/H1lLqa4KauJtzLESdPpwU6PZmAv/t7Sqx8PRewUoIsK6zpN0eOUnjCeZogeKouJtEWgyOetbksVEUMlRJaFeFouPPF7XHC5NLlivJhDSdxeDFwbGUVHrDiJHsLJY1/4c3w6hn//476SRfYnm4htH3LqflEXPqkCOXGmWLxVJU4PcS7oCHgL3LEnCzWqbSnOja0O30GEVMFTY3q01faBdvQZH2AYb0UIIaQexOrT09e2y6FKoopVqABk9nQslbX0EJDG86tHhy2l85UyoQxSWVS4vFDfMz3KgFqNt2rG+0rEV3z6FefgV//3mbjqzL6GPr4Yzh6ZiuKGnccQMRwLtcRbAcBZAx0AgIMTEcefV+tQW47k8/mCa3sRo5LO5kvuB4l0Vg7i1HirrpAPYgaqafog1e+trNMjUGX/SqV4PTanR4NFD4/xO6WzeTnECfs9UnArl1uez+fxi0eG8eSJ+YZtk1pYXUygm1hM4If3D2IxYQ5UxflYdHq4XZp8Pen0aBxhv3Vfd3R62Do9tg+0Y3t/e8FjLSYyBfuYGl2oIvaLbUavzaLSByJccWLFeCVOD9JcnESP8XlT9FAXLnz77iP45p2H8dMHh07uRpbA3mcknJgqYgGT160x3qoC1EUEqjMmVEGcolh8EvC65d+6kk6PycUkfrTzeMlelkpRnR5cvNZ4+A4ipAr2jepOjzP726VVnSVlhBBC6kFEp7QHPHKVYKLKTg91gMOBevPYO7KAa3+2Cx/86eNV33dy0Rpv5ZTjTJaGWWUF+JqQOfxVnR7Zpjg9cvI5L9y8pqGdDYA1wugff/0kDk9GAdQ+mNvaU9qJ0gqiRySZUV4XIztecWalHVblCoRY4vO45GAO0IfkojMj7PNA07QqOj2aFW9lfVx1v28EHtnpYRaZh30epVi29L7y6PE5fPjnu/DSr9zTsG2ajZZ3erzp2zvxif/dg3/7w1PmbW1OD8D8+/k8XNHfKPwet+WYtblbP96osXkhnxttfo+Mwtre34HthhirEklmCoStPz45hoPji8jl8rjrwKRc/S9SG4TIks+b5+uQ8ZrLFeNF9tu4dNFR9Gg2quixd2QB+8YWMG68ltlc3nIeGpnTh8nT0eUzr7EPtZ1cBRHjnNPm9zT8uqAVsTo9lE4Pv/m+zeXyuPvgZIEYKo/vHpfp9KhA9Hjxl+/Gx379BP77vkEA+r5398HJqhyv05Ekfr97FHMxU8BjkXnjoehBSBXsM5weZ/V3oLddiB50ehBCCKkdEXXUFjBzo6uNiVE/5JUbJpHaOTypr3A/Ph2reuW/Knqks/mq4lVIcylWcmspMm+i6NG0CKMij1vrYK477CvI3VdphXgrsZgp7HNLIUBdUVxqGCJLzNv8BYMqEXElBCc1sqRURJK/SU4Pj6u5Tg813koI8SGf2xxClRnsqK6MRn3WmrHEWznvq8LFdMd+sxTb7vQAzJXFLDJvLOpagC2GyKoKiML5tL5Ld3ucNdCBM9a1wT4XtsdbAcB/3XUEL/rS3Xjhl+7CW7/3IP7+F7uRzeUxZ7y/B7oC8r04bpwTAsLpUWbFuHB6NMuZRUyE82diIYnXfvM+vPYb9+OYrc9FII7J6jF8qbFHcDk5BRaT5ucCUh5/kXgr9X17y1PjeMt3H8TLv3qv5b7yOszrqjjeKpLMyGv6B47MAABuenIMb/nug3jV1++reLv/6X/34L0/etTyPX6Gazw8SxNSIalMTq6Qszg9Fil6EEIIqR2xoqs94JUX68kqnR7q7Vlm3jyEBT2Ty1sGaOXI5/MW0QOghX05Ma6IHmqpaLbJReZigN6sXoBiBaghb22DFE3T5CBSf3zrdsdbIItaDNh72/3ydVmoVPRYMESPdn/Bz8T3RKfFUjs97G6TZjk90tm8XB2vx1tV1umhrtatJU7Qidmo+TqWO8eqIpCj08Oh1JzUjyoutxsOj46g0ulhvAYfeeF2/OVlW/DsM/oQ8nmwpdvqQlMjquyPf2BcF7YeGZzFbCwlhZbukE+6SsaN97J4vnKxbPZOD9I8hAh2cCKCaCqLxWQGjxyblT9Xo+mEm2c5iR524cxJ9DCdHt6Cn5FC/EWcHm1+s9Pj7oO6kH1oIoKhGVMkEwK432N2bZVblHSnIop3GMLUHfsnAABPjS5gdD5e0TX+40NzBd/jZ4PGw7M0IRUyOh9HNpdHwOvCQGdArtiKprIt8SGPEELI0rCoxFsJ0SOVzVUVp6OusKY1unkMz5oflIrlgzsxH0/LlWPiQxXFqeXD2LwpSGWUAUQzi8xzubzcJ5o12N64Jog3PGOzLEoX1JM7LyJgAOCcDZ2Wn7VCvJVYzNTb5jdFaGUAUmoF6KQxYFvrIHqIxVJBY3iqOj1KDc7VaJ9G41GihJrX6ZGTxzq9yFz//ct9dsoo4uOuocb0ekxHzfd5ud4s9e+RkEMx9TXTf79SJfSkMdjjrQDg6rPW4VOvOEcKk9v7rRFXiwkz3uqybT141mk9+PqbLsQ/vfRs+V70eVyYNpxdXSEvPG6XFFiEEB6yOz2KxVulGG91shCix7HpqPyeKnAJp0cul5fOveUkekTsnR5OoodxzGwv4awkJurCkaDF6aH//aLJDNa1m11AP3rwuPy36ritNN7q5r1j8t8iWm2TIry+5uv34ZxP/gm37h2vaPs7Ah5cc9Y6fVv5Ga7h8CxNSIUMzeirOzeuCUHTNLT5PfLilxFXhBBCakX9cKOuUKomKka9LYfpzUMtGxwvEonkhPgQHvC60GX0BPB1Wj5YnB451elh3qbRRebq8LxZTg9N0/DZV5+Lr7zxaZbv1zOY26w4Pa48vQ8Xbu6S18PxKh1qzSKXy+N137ofb/3eg1V350inR5vPUYxyKp0ViOPD+q5gwc/EYinh9PArQkepiKT3PudUnL62Df/wou0VbH11qOcNcVxqFF6X6PTISSE+7PPIQuhyq1nVQeCuk+T0UP8eTk4PNTbF46LTo5moMXpqkXmgyLHrNRdtxObuEJ55ag8Aa7zV07euwQ1/dSlefO4A3nH5Kfjd+y8HAMzF07LPo8d4vU2nhxFvJTo9/Obw1Ak6PU4eYn8odkoW11szsZRcPLScRI+CTo9MHuMLCTzr32/H5/60D4Di9GC8VUX4isRbhZXzjboo46cPDSGdzSGfz0uBQxc9jIVniugxNq+/Nl+57SAA/Zx2+74Jy8/t9xmZTyCfB+45NFVyu0Wf3G/fdzneeMkmAHB0qJH64FmakAoRqzs3rdE/yGiaJleKTFL0IIQQUiOLaryVEkdTleihXGwzD7Z5qE4PEX9RCap9vk0OT/g6LRes8VbmeynbRKeH6h4oFkPVKDbbol/qGcypZeYDXQH86v8+C198/QUAgMQy+bA+upDAg0dncNeBSZmNXimTxsrg3ja/Y59GKlv8dxS58k6F76bTQ3R6qFFJxYtqe9r8uOXaZ+M9zz61gq2vDnWXbnQXgXR65PIyyirk85iF0GX2FTVmbvfwfNXilRPWTo9C0WNCOaarwqBT944YsjXLpbXaESIhYMbHAGaxuJ3nnb0Od/39c/Dc7WsB6ENjsY8Jd5VACHzZXB7HjZibnrD+/hQDdXFOEMfKdmMb1L4IFdnpQadH01E7XpwQC0rU9/NyEj1itnNSJpfDZ37/FE7MxfG1Px8GoHR60OlREerCgYCT0yOVRUIRumeiKQzPxq3XYV7neKtHjs3ixFwcfzLcHZORpOU4ID4LOLlA1RgtO8lMVh6j1oR8clu5IKrx8CxNSIWI1Vsb15gfZGSZOXs9CCGE1IhaZO5yaXKYkqiw6Dpti8JiHmxzyOfzFqdHsfJrJxJypbBLrhiNJJfPh/DVjvpaWuKt1E6Phose+oddTTOjcppFyDb0c7lqf74tSrxVnzHIF4O+5RJvpYpYIr6mUkynh99SXC0olfU9aMStqH8jwXkbuwDoxctA5Z0eKxXxO2WyOXlOCvvdZQuhBZlc4YCqHvL5PGajhUXmv901gn/89RPIZHMypgSwii7JdGFJtYy3avJ7d7Xx9mdtBQD808vOlt9TnR7lovnEkFiNt7I72wJet7zOOjKlv2eFs6czaO30EPcVnTfFurxi4rno9Gg65UQPERmrLkpdLqJHJJnBuDE3EoJpOpvDg0enrbej06MqVKeHKkQLp0cslSm4PhmaidkWn7hk7KTq2hDnKiFQiH1JPE8kmUEkmZH3+b9XnYr/eeclAMxrAifmYvrjuDRdVJULArggquHwXURIhYjVnRvXmJb1PmMVylSVH6gIIa3Pzx4egkvT8H8u2rjUm0KWOWqnBwAEPC6kMrmKnR72C3muEmoOU5GU5QPSeBWdHmLAFvCaTg97rjNZOtR+lmJF5g13eqTNjhdNa/7gtCPgwUKRVcrVoHZ6SPeCd3mJHuoK35loEqf0FooQxZCdHu1++KcKB5jq/qGSz5urxrc4OD0uO7UHD37sakufgKBUvNVKRYgBmWxeutr0IvPKBjv2TPU9IwuWzPRqWUxmLO/hRDqH+XgaH/jxYwCA5+/otxTWq44vJ6eHEHVaUbBaSj7xkrPxnmefinUdZv6+2ulRzqUmys8XkxnZyeR0n66gFxOLSRye0EvNe9pEvJW100OILOLnqnCmkpCuEooezaa86CGcHuZ5XVxTN9rRVi0PDc4gm8tjc3cIPo8LhyYiSKZzBc5hsSiGnR6VUSzeyuz0yBZ8phqejWP7QDsAXXjwuDR5LlYdnUK0F+eseUOsWN8VxORiUheyFhLyOj/odctrgKEZvRPY7bDQRIgeXSEfXC7NjOJip0fD4VmakApxcnoIKyw7PQghKouJNP7+F7vx4Z/vkgNtQpzI5/MFhYXigr1S0cN+Ozo9Gkcqk8PPHhrCbDSFoVmrTb0Wp4ff4yqbDU5OPhOKY1ddYa4WmWcbEK+j0uwScztrlSFiXY/T7seakBdul4b1XfpjStFjmcRbTSgr9qtdmCSu6fvafI5Oj2IFp5ORJGKpLFya9bOCytqOgHTZOA3Ql4pmdMqIzot0Li+PdSGf2+z0KOv0sL7fDk9G6toe+7A6mcnil48My69TmZxjzF02l5fvVavTQ//9mtXHs1pxuTSL4AFAlosDFTg9lBiqWAkhQkRcHZhYBACsNUqOhatE7H/iNZdOjyKih+z08HFI3WxCPjc8JdyKUvSwJXEsB7fHA0d0R8el27rlMWTPyIL8ueoeABhvVSnF4q1Eh1YslZHXJ2LXGZ6NycUnfo8bmqbJv796nhfHEXHOEvtRR9CLdR36LHB8PiHFcZ/HhfVdQXjdGlLZHEbnnV2Kos9DHIvUzwaNiHMkJjxLE1IhpuhhOj1624XTg6IHIcREXR1cLP+XEEC/mBa7i1ihWK3oYS9k5TC9cfzg/kH8/S9344VfukteB4gPTNUUmSfSqtNDf30jPDYsC5KZrGWQlSni9Mg65DXX9bziw/ZJWnkqoqjqxeXS8N/veAauf/vT0WPrqaimh6iZqO/NYkPKYkxZOj0qFz1En8f6rmBFg3CfRfRY2oikZqwmNp0eZpF5m9+M8LAPdtLZHG7fNy6HfWnb+61e0cO+H8RTOfzPA8fk17FUxuL4ShmF9Slb/InAR6fHSaM6p4cQPdJF460AoCuof4YX5/W1xvBSfS71viL+arZYvFXKXOVNmoumaSXdHuJz16RN9FhYFqLHDADg0m098BnHyLsOTsqfi2uORcZbVYWmmS6NgHLeDikdegnDiXH6Wt3doXZ6iHO9z0H0kE6PVBb5fF6KHp1BL/o7dbF0fDEh7+PzuOB2adhkLH54fGgODx6dKdjmOeNYIgRVIXrk8qVjNEn18CxNiAPpbA5HlIvrZCYrc14toofxYa/avGBCSGujLlBcLkMgsjwRH2w8Lk1eqIv/L8QzOFYiD1ZQ4PRYJqutWwHxQWV8IYlD4/qK0O39Hcb3qom3MlYKe9zyQyxjyJYH9sGIJd7K4vRo7POK1eMnK9ro4q1rGvZY523swhWn98mvl3e8lfUa/fh0rKhwod6+p82PgEPBvH0YLxg0ugG2OvR5OKGW13uX2C3QjMGaxy3y6q1F5mJVay5vPQZ+/uYDeMf1D+Mjv9wt7weY74/Dk+XPhaWwD6sfOT4r+xwA3aU0rhwLxOusnl9V0UMIfU4DddJYxD6jaYX9RHba/eb5tZTTo9N4THGIF6Kw6ioBzGOb6fRwHpyL/YSix8lBFT22GlFCYj8R0VD2c/tSOz0WE2k8eWIeAHDJth4pmO48Yg7EM7k80tkcnR41II7PwTJOj9PWtQEwnB6GECLua8ZbFYoe2VweyUzOInoIV9rYfNLi9ADMmMv3/egxvO5b9+OJ4XnL9s4a8VZrjP1W3W4uXmssFD0IceC9NzyK537+Tvxu9wgAYHQugXxePxiJlR6AKXpM0ulBCFFQ41FiHECTEogPZ20Bj8z1F06PD/z4MTz7c3dg9/BcycdI0OnRNNRs/p88NAQAuGiLPjyejaWrjiDzexlvtdxYiFtfB0u8VTOLzJV94mTw3uechjdfuhk/eMczGv7YAUX0WA6xDOrwWnVj/+axE7jyc3/Gl2876Hi/fD4vXQlhv9vxtSm2AlP0eWx26PNwYjl1ejRjsCbiZzI5a5G5WiItMs0B4Jt3HgYA/H73KABTdBCZ60cmInXtW/Zh9QlbXGE0lbX0NInnF6+3x6VJIQfQy2rffOlmXHXm2pq3iVRGe8CLj7/kLHz8JWeXjbeSnR5qvFWRTg+VYk4PcWxTnR5O+6EZb0XR42Sgltt/8uU78IZnbMJbL90CQI23si5MWWrR47Hjc8jm8tjUHcSGrqAUPVI2IT2ezppF5hQ9KkacVyydHuJ6O2V2epy+Vhc9hlSnh7EIQTxG0lJkbl7nx1JZ2Y3WGfRI0WN8wXR6iMfaYlsAsWfELnqIeCv92OJ2afJYFWXnX0Oh6EGIAzfvHQcAfP/eQQDWaCu1bFKIHoy3IoSoqJEoHGySUoiL53Zlpa24YF809p1ysR7Csi2gg6BxqGXjE4tJaBrw2os3yg9G9pWExUgoucFtPjo9lhP2bgFrvJXy/UaLHrYPyM0m4HXjM688F1ee0Vf+xlUiBn35ZRLLMFEk3uqDP30cAPDVPx9yvF8ml5dOTb/b7ej0sA+oBINGvNXWCkWP5dTp0dug6DMV8TvpReZC9NCPfWLgXGoImTH+zqf1tcGl6efDSo+3TtgHoNMFcVcZS0+TKXpYVwILLtnWg8+88lwOJU8Sf3XFNrzz8lPK3k5cS2Vzefned3KH2OOR7J0eAnFf4SLI5vLyuk2F8VYnF/H6uV0arjy9D5999Xk4pU8fMotrK9HpIdzTSy16iP1xS7e+nZ4isYaJVNZ0ejDeqmJM0cM8Vovr7VQmJz9TnWaIHpOLSblPSKeHY6eH+X6PJjMyJq0z6EW/dHpY460A66IpAAVl5rLIXDnmyEVRLDNvKBQ9CCmBOPAMG6uB1GgrAOgTnR51XIQTQloPdWjGCxdSCpnb6zcvegO2D82RMit+WGTePOx/yzdfsgXnbeySH3RG5yuLuBKDs4Di9KDosTywv8ZqfJEab5VrdJG57QPySkYt/F4OZeZqga0YNFVyXLT0N3hdjk6PdDGnhxFFaF/dWQzxuru0wmHIyeLfXnUutvWG8S+vOKfhjy0GeulsTg6Ew7YBshg4ZZT3nBgUiXirsN+Dzd369w7V2OuRz+dx4y7dQdJjrNi3D0CjqawlsjBlPL8QrO3nZbI8CfncsncrXqrTI2Rec2ka0NOm7xfb+9st78egz1w9LqJyZh16ghIlorRI4xGiR2+bDy7j9Wo3rqMXEnpfkBBJT+3Th9xLLXqI46A4lhRz+CXSjLeqhVdcsAE71nfgrIEO+T31/SiuBQY6A/K9fNSITbR3ekSTGbz0K3fj/T9+zPIZLJbKOsdbLSTkdb54XTd0WeeG9vhPcRxZo6TIhP1mHBdpHCv/KpuQJiIvbgwltse2EkqsjFpIZOSBjhBC1OFYuYE1Wd1EnJwetiForMywzj5kpC26cajCxKl9YfzdC88EAJzSqw82RT5zOSxOD3Z6LCvs75dMkUirTINLPUynx8r/OOZxu+QH/aXu9bAX04ti8rsOmGWxxUpwVZeKz+1ydOEUc3qI5xFDkHKI130pXR5vvGQzbv/wVRVHclWDx2UMj1IZ+Z4KGQMdUSItVroOKt1Va9v1z1ZCfPS4NTm0rLXX45Fjs3hqdAF+jwtvvGQzALPLQTC1mLS8/kLcKub0IMsTTdMKBsVOglVnyBw0dod88n24riOA5521Tv5MdW6I4aTdJQSUFlhI4xHH8L52czbTppTYn5iLI5bKwuPScGa/HpG31KKHfR8pduyPp02nRzudHhXzDy/ajt9/4AqLs8vnMa9NxPkm6PVgo1EyLpz04lwv/n94MoonTyzg97tHEEmY+000lbGIHiL2biGeltcGQkB5xindWNdh7p/2uOs543FUATYkneD8HNdIePYmpARiNWaxC97OoBdeYyUTy8wJIYIM461WHBMLCbz/x4/hocGZ8jduIIvGxXS7vzDeSlBuH0rYVh5zmN44xN/yq298Gm7+0LNl3vel23oAAA8cma7ocYQbJ+B1yYEMjw3Lg0qdHtkGOz1abZgqIiWWWvSwRyDNRPWvRXQtoA+/nBYrqSs1XS7NEpMhKFaCXu3Q02eL02g1xOcjtbdDOD1EifRcXP/s9NTooryN+PuK6yiv24VTjTiSwxO1OT1+cP8xAMArL9iAtUVEqXHbfmMWmdPpsdJoD9gjqkp3eqiDcwB462Vb5L/VWGvZ62ETPVKZnNxfuZ+cHIToIWLJAFMgiCQy2G2URm8faJe3WXLRw1i9L4Q0b5Fjv7XTw1mgJ5UjxHZB0OeW6S2m6GE9H4u+jVze6hyNK06PjoBXvpbxdNbs9DBElq6QDw989Gq8yRDaC0QP4znWKAJsm3B68PNBQ2nNqyxC6kCNCRGDiWIRBJqmoSfMXg9CiBV2eqw8fnD/Mdy4awSv/eb9J/WDkdNqLvugrdJ4q3ZmwdbN4ckIvnDLAfk3FR88w36PJfLi0m3dAICdR2cqKrhOZMxYAzPeiiu5lgN2kVAVPdTXNptzHnbXSqqFnB6AGSOx1PFWYkAhVnfORPXi4V3Dc5bbOfVDJNPW18TJ6ZEu4vSI2QZa5ejvCMDj0goiMFoFUfotzqcBr0seQ8XAWQgi+8YW5P2E20K8P7xuTUZeDdvKxyvlwaP6YobXXLSxwEkpPtupPTBAYadHq4pTrYh9dbxjkbmyutouhF12ao+8njpzXbv8vhA9ZmK2PhhldkCnx8lBuG3PUF4fEW+1mMhg19AcAOC8jV1SIKnn2j6VyeFrfz6E+w9XttDFCXvZvdfW6SH207lYSopo7PSon7DP7vxyYaBLf88fN7q4pOhhnLcWld6eMSXGNpq0Oj1E/F0inZXnLvVcoWmavOaP2z6biSQZJ6dHdBnEhLYSPHsTYmNWuZCxlxk5XfD2il4Pih6EEAM1BoWr7lcGI/Nx+e//uGnfSXtes8i8eKdHOeEsaXyQ6jVWKzLeqnb+86Z9+NJtB/E/D+grg4WA1G6LyzhnQyfCPjfm42nsG1sseBw76jBVDN2SS7winuiI95f44GktMncuNW8EJ7vIvNmIgY29Y8hOLJXBj3YeLxgyNwrxuKev090B6axePGwXYxxFD9v1vpPTw6moPZfLS0dApUPPnjY//vA3V+AH73hGRbdfaYiBnhgeqYMne6fHPsXpIfafjCEyelwu6bBbdCiQrgQxbOxp88FvO7/2GVHF4wWiBzs9Virqymm/xyU7H1TUiLs+W3y1pmm4+yPPwZ8+eCW29podPd0hZ6eH2Gc9Lm1J4+pWE6982gb84j2X4YPXnC6/J8SueDqLR4/PAgAuUESPhTpEj/+8aR8+96f9ePcPH0a+RtdnPKUfS4ToYe/0EL0y4tykaUCIx526sZ+Tg163/Mw1ZbyXzXirwvevmt6gdnp0BL3yfqrTwz4vFNdGlTg9RKcHF0w2Fh6VCbExGzVPiOLgJTP6HC5kRK/H1CLjrQghOmqnh/0ipx5G5uLyQp40FnUA9pMHj2MhcXLcHtLCrqzmsq9KjJRxboihjCho5cVy7ew3BIzHjFWC4m8ZtokeXrcLF2/V3R6VRFwlFaeH+MBbbjhMmsux6SiePDEv319i9Xk65xxp1WinR6utIA8oMQ+l+Nyf9uNjv34Cf/FfDzRlO8YX9GP55u6QdGzPRFPyXCwEzAlH0cMaOebY6eEgelhXele+MveMde1F45ZWOvbhrxox0mUMeeaNla6HlYJyISqlM/p7z+dxyWHmoiFe3XVgsmjMGADsHVmQK3gB81jr97gKhlprjcz12Zj1nJ9kp8eK5Wmbu+S/i4mQolcGMPcBy89DPtkFIVhTxOkhji2VurxI/bhdGi7e2m0RI9Xr6IcG9c9K523qVESP2q6Nj0xG8J17jgLQj0FDM/Ey93Amnra6AT02p4fojp00FtK2+TyOgh2pjpBDx489zcVeZF4Me6eHeT2fU84z1uNAyMEFm8/npdPRInr46NhvBjx7E2JjTrmQEdbmkk4P4wR1dDrquGqMELL6UFeFNNLp8cx/vx2v/vp92DuyUP7GpCqGZ80PMbk8cKjG7PBqkZ0eyoc1+0rUsp0ewulhnI/i6SyFjxpIZrI4PqMPynYbUTiLMle5cJApej3uPTRV9rHN1cKuiofDpLk8+3N34KVfuQeHJ/RyZDEYyRSNt2rs86/WeKs/75sAAByZqq2UuhwTi/qK/bXtfhlHMx1Jyu0Spd1Oooc5ADFWfTp1ejjsCOrihlZ5PevFYxvWqU6PjqC100ON8pCih3R6aGZWfzKDb955GG/93oP4yUPHHZ93OpLEq75+L6783J8xvpBAPp+3uKrsr499lb9YPCDjrdLWfYIsf8S5GSguQnaq8VbthaKHE8U6PcSxJchoqyXF63ZZ3Hkhnxunr21HR1DfB2qNt/rWnUcsX1fa5WZH7CdOReY+twsdxnFOzJMYbdUYwsr7UtP0c7Q9As/e6VGMmUhKXid0hrwWoVN8XrA/hni91euExWRGzgrUeCuxwCpGx35D4VUZITbUlT6pTHnRQ1gRv3HHYTz/C3dS+CCEWFYEN2P4XMmQlVROLpfHCUP0ENnhtRamliOZyVoy4cVFsrXI3HquKXfxK4bn/Z0Buf13HZhsyPauJo5NxyBm3EMzcUwsJuSwzEn0uOrMPgDAPYemZJ5/MSxOD6+5MowsPY8c0/P+O43VdpZ4q6Y6PYpfW65EghWKefaS4UYjnB5rOwJySDm5mJRixdYePa5m0iFeK2kTohw7PZycHspKb67M1bE7PVS3nL3TQ436k/FWWbPIvF3GW6VxbFoXy45MOotm+8YW5ev4yd/usYhUqugssJdYr7GLHi0mTq4GLtqyRv67WPx0u98D8VZVy7BLIVZkz0Stw3N7VwNZOrwu8316zvpOuF2aXNAwG6stlUMshtncrV9f31+r6JE2rwMBa7xVyO+W35+K6NvpdN1JqkcVPgMeNzRNK/jbinO9PXLMzojR7+HSdCeOej4RIkZBvJXx/DHlPCdcjvZzkhBIGI3dWHj2JsTGrIPTI5k1VwjZUVcIzcbS+NnDQ03eQkLIckcdmjVD9DhZ0UurhcmIPhBzuzQ867ReAMDhIgOVesjm8njRF+/G879wl1xNbhaZK50etnNNuYtfNXP8+WevAwDcvHe8Ydu9WrALXWphpT3eCgC297djU3cQyUwOdx0oLUQmlE4PsXo8kcnWnA1N6kN1c8gySRlvZf5MXdSfbfBrVcpFtBKptNNDrLptFqKbYV1HAL3GwiTVySeE4UmHYWhhvFWFTg8jtoQlxib26BZ1Za2900PtSZFOj6xZZK46PcR9ig2z1aisPz45hnsOmsdmR6eHTfTotokeKRFDx66GFYN6vnbq4AEAlzIMt+8DxegOOw/P44y3Wjaox513XH4KAFOsmFhM1vT5SRxrXnreAADd6VHLtZs9Bk0VhsM+j/z+pOFWpNOjMYSVaEUhTBaKHpU5PUaN/seOoBculwa3Sys4N9jPMWa8lflZTuwL9u0QAkix4xapDZ69CbFhjbfST2ilnB7PPqMPW3tCuMyw0t7wwDHLh2lCyOpDHY41Y7VGPWV8pJDhWX0VV39HAGeu0zOc1cFJo5iLpXBkKoqjU1FZfi3irdosTg9bvFW5To+M+UHq+Tv6AQC3PTVucZSQ8thfc+Go8nlcjud/TdPw/LP1v/fNe8dKPnZCWeEnXt98nh9slgqnwbVTkXkz463E8KUj2Fznw8kiUGG8Vbvf/H3Vv2+jEI7rte1++bcVQoimARvXGAOwBQfRI20vMq+s0yPGeJsCPC7rMbNDEfZFn8JcLG2JnwL0xQHpbE5+BvO6XfL8mM7mZSzZTNR51bZdvH7yhB4H6tJ0AcW+gK1A9AgJ0SOPfD4vt6NVHFmrhVOUAvJivObCjTh3QyfO3dBZ0WOaTg+b6EGnx7Lhbc88BaetbcOP33UpXniOfn3WFfKh3+hOOmBce1eDED2ev6MfXreG0fmEdH9Ug7gOdIq3CvvdiuhhxFu1yIKIpUYVQcXf2C4oicVI5Rx9Y4bTo1O5brO78wudHoXxVuYCC+sxQzy/+DlpDDx7E2LDEm9lszY7rfI5fV077vi75+D7b386usM+jMwncLuRV0wIWZ1kc6rTw/nC5YEj03j11+/FkyfmK3pMVUytNZeWOCNWAW9cE8Rpa9sANEf0UC94xeu+KJ0exeOtKu30CHhduHDzGvSEfVhIZHDV5+7A9+892pBtXw0Id89Ap/7h+N5DutOj1AdP4ay57amJkiKTmimvrgZNMuJqSXD6u3c5dHo0M95KlKp2NDnu6WRhxluV/jupw4a5IueyT924Bx/48WM1raZVnR7ivStcHUGvW+b3OxeZW53dlTo9ErasdqILDCqqw0d1ejj9PZOZnDyeetwuhH0eaMbDifP1dMRZ9DhkO3eL3hC/EWti72mxRxt1t5mlsulsXm4fnR4ri6+98UL4PS584LmnFb3Nx196Nm58/+UVixVdhuhhX3gk4i3p9Fh6/uaa03Hrtc/GZaf2WL6/fUBf0PRUlaJHOpuTs6FNa4IyHvHEbPVl5jLeSogeHvMYGfJ55LW/iLey906Q2lA7PcTxX118ASjxVmVEj5E5/XVXRQ/78cN+rgh5nUQP59hEU/TgZ4NGwrM3ITZUy6rZ6WFYm0scCANeN16wQx9+PFHhEJMQ0ppkcuXjrX7xyDAePT6HG3ePVPSY6gUQRY/GkM7m8A+/3I2v/fkQAH0F8Kl9uuhxZDKKf/jlbvzq0eGGPZ/q2Ng1bIgeCYd4K9sH53JuoaQSb+V2aXjl0zYAAE7MxXH9fYN1b/dqQZTXiwiDE8aHG9Uab+fird1o83swH08XzZgHTGHK73XB63bBbYSJs8x8aXAatIpOj3TuZDs9WmOwUWmnR04RMpwiimKpDL5/7yB+u2tE5mdXSjKTlQOqdR1+meUtVs6GfG6s7fBbvme/P2AOHqp3erTGa9kIPO7iTg9RIh1PZ6X4p5JIZ5HJmfFWLpeGNp+1jHi6qNNDPw6fbixgULPTgcIhk93pIYrMAf0aodW6d1YLZ6/vwBOffAGuff6ZDXtMIdgu2q7J7Cv4yfJje38HAGD/2EJV9xOuHrdLw5qQz4wfquGCoCDeymV1eggxRBzj7IN5Uhtqp0dRp0eF8VYLxmc2q9OjtOghy8mVz4B2V6m8ryG+OF1nkNrh2ZsQG3OK08PMc63sglcMrXigImR1ow7KikUTiVWmU4uVFetR9Gg8DxyZxk8eGsKBcX3YvXFNEOs6/HJV0E8eGsK1P9slb/+73SP4wf2DNT+f6vrZNTQHwIy3Uld02VcLJtK5krGJqtMDAD724rPwxddfAID7SqXk83np7rni9D7Lz9pKfPB0uzSculYIZcXdQfI1Mj7QVNp/sJz47j1HcdOTpWO8VgrLw+lhiB6t4vTwVbZPq9fIjx6bxXU377csDlBX0M5VWTwrhAyfx4XOoBdtflEMm5TbKFb2T0WSBfFaYttk1IXXwenhJHqIoSdXeku8LrvTw9zP2/0eKfyq0WM+ZZVrOmPGWwGFq55nY6mC1y+SzGDMeLwd6zvk7QBzJW/ZIvOQVfSo9DMgWX40+jUTzrFUJmeJnxGRfk4iKVkenGU4PfaNVuf0EOeU7rAPLpdmrsSvwaVrdwSqbji100Ogus5I7Vg6PYToUaTTw++u7D2sXrepr5vP7YLLdu4rGW9le83p9GgOPHuvEPaMzOPLtx1s6IrTlcqf90/gvkOlC0PrYc6hyFxam8tcPImTl9OBaj6exo92Hq/6AxwhZOWRqSDeasL4YF6sjNOO+gGr2ApHUh2RhFWQ2rAmCE3TLCu9Af0DbSabw/t+9Bj+6X/3YKiGLF/A6vrZP76ISDIjC67VgY7XIUYjVmKQGE9bP3C7XRqeaVj7F+LppuTmtxqTkSRiqSw0DXjGKd1QP7O0lXB6AMCpfXrcQalINHFdIIQp8f+V4vR4eHAG//K7vXjP/zyy1JvSEFLZwr+7U6eHGlWYbfDbSLi8WqbTQzg9ynR6qKLBp27ciy/ffsgSwzc0ax5fqxVtxxfMPg9N0+QKS+n08HrQYwySMrl8wePb460CnsL3vlOMnSgo5Upvk1JOD00zS6QnjNJev8eFgBwoZpE2REaPcTC2r8zNOrx+QnjubfNjnRFTKCLUijk9uoJey/CxK+SVUVopRfRwOi+T1YU6KFWv7cX1GeOtli/C6bFvbLGq2ETxeau3TRdHhRBeS+dC3LafeD2q08NB9AhR9GgEqtNDXKfYRXQhPlQqlK4JOzs9nO4fcug7Kxpv5TXPgaRx8Oy9QnhqdBHX3XIAv3m8shiUVmUulsK7/vthvPO/H26am0J1epjxVsaBqcwFr89Qh50+EP3PA8fwsV8/ge/dw3x1QlqdrM3p8dDgDEbnrfmvQuyYjlYoeiiriiYWkjVlnRMr9tgoMbx+ybkDlu+fmIthXIlCqWZQvfPItBy4qdbmbC6PnUem5ddq0Z66Ulqshi3V6yGjk5QBnRik5vKFUQykEJEP323EF6g57+XKJEUk2uGS8Va2YeoKc3rsGakuEmK547Q4RYgeavRV7qQ4PVojEqnSeCv17ytu+9jxOfm9YcXpMR+rTvSYUPo8APO4KiKvAj43vG6XHEzYnZj2Dj+vW5MDcDG4cIpGEys4AxQ9JJ4SnR6AGQ8ihCq/xy0HT4m02ekhBoPtDo4o+wIQITyf2heW+6MQRsyeFvM10jT9dVWHje0Br3z99U6P8hHHZHXgdmlyX1EXzbDTZ/mzrS8Mr1tDJJmxnGPKMWVcv/caYrk4ftSyEj9mcwSpQmrI5y5wCq0JU/RoBKrTQ/yN/R6XFNTF10Dx47y9a1F0uwA2p4eT6OHVz32ZXF7OFO1RmvL+xj7hdJ1Baodn7xWCsNyv9piKgxMRZHJ5xNNZaYduNJZOD2NZX6XWZvFzJ0FGDFSmuEKbkJZHdXrk88Brv3k/3vNDc4V0JpuTH9YrjbdKqFb6dBbRMqtpSXmEkLC23Y9/ftnZuHDzGgDAtc87Ax9+/hnY0BUEAAzNxjGsuDsqHVQ/MTyP1//XA/jbn+sRWRGb6+cBQ/QIet3WDz/KBboYuJcWPfRzjlqmF/C65UW6vXSTFCJym7uND5kDXaboEa5Q9BCdIE4kbRFkAWW4txIYU665si3gHHIaWHQGTQeAIFvk3/WSzeWlGNkqTo9ghe4lp1iQXcNzUshXB1LFis6LIWIj1xm9HXbBUsRPOa281LfN7N4BdEeCcHuo0TZ2xDCL8VYm9lxze4ybKXrox5aA16VEe2Sl40rk3juV+k7bnLK7hvSurFPXtsljrFjMJl5TVcjSC9I1yzG+PeAxRQ8lZsup1J6sPoTjSF00I4477PRZvnjdLpy2Vo+4Eos48vk8jkxGSrqhxQI16fTw1LYSP5fLy+sOcf5Rj5FtTk6PcGtcGyw1lk4P42+vaZrFPSjELLdLk4vNVOwxiKcZsbaAVRBxOk+on83ENUfSthBK3l90xqyQzwYrBZ69Vwii8G1+lUcjqQOFkbnKVfpKydms0vZOD/uByY6wRzups0LRLWf7J4SsfJwuoFVL9XQ0BbGAeDpamWvDfgE00SThdzUhhKNnn9GHtz/rFGjGJGRTdwjve+7pONvIBB+ejVsGccUiy+wMTkeN++uCScy2qvjolP5z+zDnsm09ePeV23Dd686Xgza7YKIiBLGA7WJbDJXmqlwtvRqZtoke6zuD8mflnB7iw8/hyUjR97IZbyWcHvprtVKcHupCk5WyzaVwGlyLlejZXF6+jurlXCNFD3WVsNMwdyUiOz3KxVs5XCNPRVKytHxYibeq9tgl9lPh1LILlmLYJMSJmF30cIicEMNy8TqlHHLO4lzpXYCnRKcHYDqrVKdHwMnpYXy2cjoOzygLyeKpLH792AkAwDVnrS1wegjxShWyxApgdSjVHvBId0k6mzMjjhlvRaD30QCm6BFNZvD73aMAIGNFyfLkws1dAICHBmcAAP/v5v147ufvxA0PHi96H1P0EE6P2joX1IVrQdnpoTo9PAVOwTWMt2oIYUuRuVVoEqjnfKdjfV+bVfQQi50A6/nDaYG0T3GVxNL6cSNp6w+zb0ct8WmkODx7rxCE06PaFU+txmFF9Bidb/zAbyGRhvqZVsZbVdjp4Vcuku2IgxtFD0Jan4zDcCyZyWHSuHieWDBXJ6azhbnUTtgvsCcWK4vFIsUR7oliK/k3rtEH38MzMUvOfDxdWVyUeF2j8sOx9fh/3HCP2LPKNU3Dx158Fl594UY5lCnp9ChSotllrFxf7S7RSpi2reZb31V5vNWWnhA8Lg2xVNbiiBBkc3l5HSGuE1ZakXmriR7242nI57YUWKaNwbY13qpxosdCwuwZKLegZqUQKCIk2CkWT7t7aA6A3elR3WIv2elhOD3CtiGSGCo5FYsChZ0e+r+t8UqlnB5c6W1iXy1rj3ET511x7PV7rE4P8R70uK1/fxXVPX/jrhHMx9PY1B3Es88wRQ/xvlWHS+LfYhvUoVi732tZxMYic6JiOj30Y/ivHzuBxWQGp/SGcflpvUu5aaQMl27TRakHjkxjz8g8vnnnEQDAvtHi8Z1TEVunR43xVuq5RoiuagRg2O8uWLjUzXirhhByiLcCbKKHw/lBRY289XtcMgnA/pjFxHH7NUfReCuRGsN4q4bCs/cKQTo9VnkhqVoSOjLfeKeH/cOPEC/ECut64q2k6NECwwJCSGmKZb+LYY4o7hRUUmZuX/UxSdGjboSQUGyovXFNCEDtTg8hNsSM29uFi6EZ/TGdhjmCsL8wSkElkc7KvhGRYy/oZDRmxRTEWylOj3LxVl63C5t79H3l8ERhr4f63jWdHpX1HywXjqvxbk3qVDuZ2K/Twn6PZQCRMY7hqtDhJGbXyrzs82id+IqesD4UmrSdz374wDE8419vxc8fHgJQfAXj48NzAOrs9DDOreuKOT1kvJX+fbuA7eT0sBefphy2XzwOnR4mmqZB1T3sTo+QQ/yU6vTI2JweTo6omYgpevzPzmMAgDdfsgVul+awgrZQyBLn/gKnh9LpkaToQRTEPrNouPVu2Km7BN586Ra4HGJxyPLhkm3dAIC9owv48M93y/P7YqL4oqKCeKsai6bjcnGSS+4n6oA87PdYjkMAOz0ahdXpYT3WC9Tzg6PTQ4m32toTtrzXy3V6AIWRmkXjrWR82sq/zl5O8Oy9QhCDi3y+9IG51VFLQkfnGu/0sDs0pOhRodNDXCQ7qf9iZeRKGXAQQmqn2HBsyBgc2gWLyQp6PQrirSh61I2IjCo21N4knB6zMUvkiurYm4ok8bpv3Y9fPToMQI82e/+PH8O//G6v7NKIpjLI5/OyNHegUx/IifNBe4mhurhYt0djCQ5NRJDN5dEV8soce0GHdImu7mjMShCr+XqMCINqnB6AWmZe2OuhvnfFB5qV1OmRyuRwQhlEt4bTw/o7hH1ui+jh5PTIVRBDWCnC6dEqfR6A4oybjVli3n7x8BAmFpP4u1/sxnfuPlIgOF28Re9S2jU0h2gyY4ksKibY7hqaw2u+cR8eOTZj+f6EzelR0Okh4q2KOj0KS6tNp4f+WGnGW1WMeilkFy3E30p0Kfo9bovTQ8SIic9WTufJmaj+es/H0tg9rPd5vPrCjQBQkI9vWcnrse4H6uvWpnZ6KPFWXsZbEUCJHM0gm8tj35juEnjJuQNLuVmkAta2B3BqXxj5PPCU4u6wLyr66u0H8dc/fBiJdFZ+Xuttt3V6VLn4Q1zvq8cle5G5+jOPSyv52YBUjlOROWC9PlB7OdTzv3CLqqKH+vnA/pjFup9C8rOccHoULrBQv6bTo7Hw7L1C8Hvc8oJsuQwvdh6ZxrU/fdzy4aSZJNJZS7zIaBOcHvYPYqlMDvl83rQ2l7ngrcTp0QrDAkJIaYo58kynh1WwqMTpkbAN6exuEVI9ptPDeVBV1OmhCBD/8cd9ePDoDK79mV5WPjgdxY27RvDde47KnohcXh9uC8eHaosGSmf6i4v1Yp0e+8YWAQDb+9tlJ4mgK0SnR6WI4VmPg9PDHj/mxCZjX3HqGxPvXY9Lk1EtK8npcWIubhletsIKNCenhyhMBiBXmTeryHwhbpSYt0ifBwCs7wpC0/Rj3bTy2WBBWaz1i0eGC/72f/GMzQD0EmrRcyQo1unxu90jeOTYLH77+Ij83tBMDAcm9OPhKb1hAIWCdqCs6FHC6eGvJN6Kokcx7CtaRRTYbMyMehN/62QmJ91WstNDea+IU52It9p9Yg4AsLk7JIdT9tciUMLpIRYXBLwueN0u0+mRySFNpwdRkPFWiQzm42nZzycWTJDljYi4AswOlsWEeZ6Zj6XxxVsP4k97xnHL3nEl3kp0etQWbyWEcavoocRb+TyW4fmasK/gmp7Uhur0sIgeitPW4vRQjvXrjc9rquumv9P6Ga4Sp0dQxn+KTg8j3qqII7EVrrOXEzx7ryCWW0zFd+45il89dgK37B07Kc83OB2FusjuRBOcHnZVNZXNWVZ0lY23UlYG2RE2SHZ6ENL6FHN61BVvZbsAUmMdSG0I8SJUJId9g7FyeTqasoge6qBMjf0BrH1Tx6bNAV40lUHEeD7xuIJSTgIxtCvW6SGyiLf3dxT8bLldNyxnzHgrfWA2oKzkCjjk+9ppD5irP+0IN4f6YStYQ5F5Pp/Ht+48jNueGq/4Po1gcNo6iLYLsCsR+8Ai7PfA5dJkD4E4hjdN9GhBp4fP40K/EbG3Z2QBn795P8bmE5hQ+mBiqazlb98R8OAl5w6gO+xDPJ3FH58ctTxmsS5D4XpXBZUbdh5HPg9cflqvFKzDNkE75NXfpzLeyi56iMgJh5WbbbLIvPAaX4iXdHpUjlzM5+T0SGel2OB16PQQCwfEdZBweZy/qUveppTTQxyLw7Z4K/EcXo/S6cEic6KgFpkLl1K730Mn0Arh6rPWAgCetrkL775yGwBrisrt+8fl+f+mJ8fkgpi+NrvTo8p4q3ShMO5VHQV+q+jRzRLzhqF2elRbZH7Ohk4AuqAuEG59+ZiWInPna4CCeCuH/jB1O1hk3lhaZ3nRKqAz6MXofKLoqqeTjXjTnqy4LZGT3R7wYDGRaYrTIy2t1BrS2TzS2bzlw00xy5rAW8KSxk4PQlYPxYZjIiJJ2KV9HhdSmVyFnR7W40qMx5K6KVdk3hn0oiPgsQzWAOugzH4OVFf6H1EiGWPJLGLG821cY3d6FB98tpURPfaP6yubzxpod9x+oPpc/NXItC3eqjdsWtmLuWxUSoke4sNLwGHoVk0u9P7xRXz2j/uwtt2PB/9xXcX3q5fj01ZhrxUcq/bV+uJ95nFpyObycvFKo4rMb3pyDOs6/HjaZj3KaaEFOz0A/dg2Op/Ax3/zBIZm4jgxG0dUOV7G01n5t//uX16MU3rDCPrcuOSUbvzxyTH8+MEh+TjDs3HMx5zF/UXjfSZW6CbSWfz0IT1b/y2XbZG383vc8poeMAcPxYvMC8tFhXNADNpLOj28/GhdKeK1EANGa5F5Dumcvcjc/Nue0hvG8Gwc08ZA8vGhOQDA+Rs75W0CdtHDIbLMLDIXbh79a7XTI1UkhoSsToT4uZjISMGuK9xax/FW5rnb1+Hn77kMZw104KBx/axex9+8x1xUctOeMeTy+ntf9L2ZnR41Oj3UAbml08Nt+dka7lMNw+d2wePSkMnlLX9j1eVvjT8UjmwXPvWKHXjjJZtlDCcAPOu0XsvjO51b7BQUmaedzytigXUurzuOPRRTGwL/iisIEVNRbNXTyUZcBNo/MDQLsdLwMsOWOBdLN9w1IX4ncRGczeUtH+7LrfLxu4vHW4nHaYVhASGkNPbhmLhYPmGLtzpjnd4DMFVJp4dt1UesyBCcVI4oJC/ltDjF6Gqw3E+Jt7IPuVWnhxrxEklm5PBvQ1fIcp/S8Vali8yfGtU/tJ3p4PRgvFXliNdKxFupJYXrbau6nJA53w4LQRIOhYXBGuKthmfM40cqk8O9h6bk0KWZHDQigwT12u4nFhN48OhM+Rs2kYJOD9uwM5NtnNPjieF5vOd/HsGrvn6f/J4QUjuCrTUkFw6LIWNfvffwlOXniVRW9uRtH+jANuP4KiJHhOPqrYZwUewzj3ifiZiwnUdnMBtLo78jgKu3r7XcVnXyBW3xVnFbV5LT6stPvPRsfOkvLsDzztaFRqeFTYy3Ko3HoeDZ/rfye9Qi82xhkblynt5mxJfNRPX9Y/fwHACr08Muelhy1732InP9/+Jc7FU+z6UYb0UU2oyYu0gyIxeidgW5Kn8l8fSt3Wjze+SCI3F9nUhnceeBSQD68Uic8995+Sly+FxzvJVDp4faIxbyeSw/62aJecPQNE2e862dHqXjrcI+DzoCXjx9azc0TcNNH7wC3/3Li3GRIoAAdqdH6SJzsWDRaYGFfTuq3cdIcXj2XkGIE2qxVU8nG/GhJVqkXLXR/P/svXeYJFd5/X+qc5qenDZHbZC0K2kVdiVQlshJIshIgGVsLCz8M8g2RhhnY/TFNskGDCbZmGDAItkEIVBAYRVR1irsanOYnTzTPZ3r90fVe+vW7aru6p6e1P1+nkePdma6e3q6qyu8555zaCX0+r6EOEk9OjGDdK5QV7Z9tlAsc4vQyj45+48urAI+zTYEcYJ2dE4lh3TSzPFWDNP80MrF89Z24f2Xb8TX330uAODw+AxKJV2UrW4xB9WeOj1ERI6xn5kvwbmZmRZOD/dB1c2v2lz2PXk/rooRTp0OgJHjSm6NgfYw5MNJRdGDTpQVt0GhWMI9LwxjeDoLTbMENJlmibfSdR3PHpvEgy+NzsmQP18siddIvtD8zu/vwkdeswWXKkNUJ8TqT8d4q/Ls3nAdReYnpHOdWx89jGu/9AD+8odPe75/vagChdPijZNTWc+Ooov/8U689Qv346H99Qsf09mCcMzVQ7nTw3g/aAhBfQLy6VyxziLzB14aKfteMzs9ZE6Yxzrax6Ulp4e8kEjOWR9sj+Bqs4w6nSs6LiSi/S7FhFGE1qaBtrKVkbKoTUMlN6eH04B7sD2KN5yxXAxLqO9PZkZEJbLo4YQaNQWUv1aRoBVvlc4VRY8Qde3IjshB03Uzkyvg+EQGJyaz8Ps0nLrMEv+dRBXr32a8Vcju9KD9uFOROYseDGDv9KA+GlpgwiwtZIeurut4aP8o0rmicQzaYRyDVnXF8IeXbhT3keOHxtM5z922ltPDOh7JkWiJsF306OR4q4ZCC1vsnR7O8VZ0fIgp14abB5K4bEu5y1p+38IuC6StSE3q9CiP0gTsxxkWPRoHH72XEMLpsUhiKua7o2KM8rZjIZGld3R8Bjd+41G87P/dURa/UI2//tHTOP+WXwlLNGCt3pIHYHRh5cXWHKzg9JDjrdSLJYZhmgtaHbSuN4H3X34KNvW3we/TkCuUMDSVxUlT5Ngy6F30oFUhlPPKosfsIdG+ktNj57pu/OqPL8JbdqzAK08dMO8niR5qvNWEswg/nS2I9ywRDqJDuqDx5PRQFhj89Y+fxnVffgAAsLor5thLQn0Bi+W8oV5+9PhRvOrTv8Zbv3A/XvmpXze0WwGwzi98Gmzvy7lru/C7L1/nqUyyktODjv9ykS6Jl7U4PU5I29avXzBW0KvFz41A13Vxbjc8ncXzJ6YBQAwU1U6PTL6Iy/75Tpz7D7fjF8+cEI/hJI7oui4+B7Nxe1z3pQdw4cfvwInJ+vrdyjo9QhRvRedxxjZWkra1gsOCFi/I7i/adpux0wMoFz0IKhaXP7vyxf3GvoQQHN9+7ip0xkKirNpJtKXPGcWSULa+0+pY+ZyeBu3U7aHGRDoVmYvnKw0z1MVNaYeSWsbCyQGjRoHJTg95MQFFB8sDKuqOSeeLePKI0eexsS9hOw5GlPfQ3qlEnR72bg8qqyd3Sa5oOT24s4EB7J0etAiDB9RLEzr3LpaM8xJyKG4dTOJ9l2zAVWctx+euPcu2/wpL525n//3tOOvvfuFpFpYWTg9rPyKPg2Jhv+24w06PxkL7eFlsb3Pr9DD/HfMYVxl1cBGW3UaNt3I51/D7NOGMdJonMvUxq6P3LbfcAk3T8P73v198L5PJ4MYbb0R3dzcSiQSuvvpqnDgxv4WLzUr7You3IqeHh6zrRjBqDm064yGxwufZY5O46/mTyBVKePiA94vnYknH/z5xDLoOPLDPWoFHOxf5pJlOvL2s8AkJ9d9J9DBep5LubI1nGKZ5IKcHXSMH/FbB653PDSFXKCEa9GObmT99bCJTVQyl/UqHED043mq2kPMiVkH0AAzx6h/fsh0Xb+oFYI9EkffnxZKOY65Oj6LUIeK3rQyULdYqbkXmTx2ZFP/+g4s3ON63o0mcHg/vHxP/Pj6ZEavkGwVFW3XGQqLIulYqF5mXOz2iUoyLV45LA35asOF1lWEt/PkPnsKWv/wZ9p6cFsLE5oE2seBEdaecnMpiMlNAtlDC7/3nw3js0Dje/R8PY9vf3FYm6MoCXF9bGPXw4tA0Hjs0jpl8Ebv3lbsovEDne+eu7cLOdV14/RnLAFjDTuH0kIb0pToXrMiuYtpvUyxT8zk9Yo7fX9MdL/uefLHv82n4kys34Yqt/XjnrjXw+TTx2kzMlG/j00qnB8UcOQ0f5c6m8nir6p0ehHwdkFfO4+lx2OnhjNPron4vLDk9ZPGYBkDy4oABc1+k68Bx8/O1rMMuuFVyerzl7BXYta4bV241FjJcvqUf56/vxjXnrgQgd3pwkTljh/YnU1KReSc7PZYk0aBfnPNNZwviHKsvGcGyjig+8dYzRJE1QS6AkemcuNajCPZKZByEcfmcIh4KwOfTxH6KhbTG8jsXrMXFm3pt0VQkpPt9ms0hSvt61enhhiyoux0nYkFV9HA/1+Ay88ZTd5DsQw89hC984QvYtm2b7fsf+MAH8H//93/47ne/i/b2drzvfe/DVVddhXvvvXfWT7bVWWwxFSKuKT8/gzfh9IgHceqyJO5+/iS+ePdLwv689+R02X0+/rM9+PETR/HV3z4XG/qs6I9nj02K1WEHRi2HCF3EhANW4VGqDtFDvRgC7BnYmVzJltnHMExzQauDadUwYAwNj4zP4Gv37QcAnL68HZsG2hAN+jE0lcWDL43iPCniQ4X2IbT6h50esyNXKInVugkHl4QTNEQhsV8VIjL5om1Vt0wqa8VbxUMB84LGuFCqHG9lrkhW3m8aJv/Pe88vy5clFtt5Q73Ix2nA+Hs6G7gKTi0xrwc551uFhA2708Ob6FEq6XjP1x9GKlu0CTJHTHFtbA7ivr75gFEI/bk79oqV0DvXdQuHmvqcVbfKw/tH8as9QwCAnzx5DO/ctUb8TB4OeHHQOHHbM8fFv+uNuCIR+Zw1nfjTV1gRdhRvRfsGeShRqNNhRKtHAWM43hYJSk6PZuv0cHZ6rOiMivNqQh0OvP28VXj7eavE1x2xICZm8o5ONRI7prIFlEq67RpBpVK8lboPF+WiDo4N+TogVyghbmp2uq6LVbxOjjvG+XVRYyXDAZ943W1OD7+9fwOwnB6AJVqrIkdEuc6SB1MXb+rDxZus2MJV3TF88/d2Wr+True404NRsFydeSneigfUSxFN05AIBzAxk8dUJi9iEuX9iwoNpOVzLzqHrITo9JD2hRt6E7hgQzd6E2FxfhcN+ZEtlNjp0WDU8wvA+iy7lYnHPR7PbaJHtU4Pirdy6PojwkE/Ui7Rnkx91HX0np6exrXXXot///d/R2endaE9MTGBL3/5y/jEJz6BSy+9FDt27MBXv/pV3Hfffdi9e3fDnnSrQp0eiyWmgi4Y583pIa3EpDJBeQXh3iG7yj40lcG//3ofDo3O4OZbn7BFFMgrAw9IF+DyiS2dZNfk9KhUZC6ptbXEWTAMANyxZwhv/cL92HN8svqNmQXHcnpYQz3KLN9z3CgF3raiHW2RIN54prHC+Ou7D1R8TNqHdLLo0RDkYVelTg8ZGtzQgEsduA5NZV0Lx6ezBWswFvbbVgYmKogeFIOUlY4buq6L419vwn21PIke09mCKIW978VhXP35+/Dc8SnX+y02Diir6Bot4oykjNdyNheZiQpODxFv5ej0qHxRc/cLJ3H7s0O4f98IHnTowEjnijW5RWphOpsX50s713WLIaL6nNV9kezEUeN+DkoCVr3P+7anLQe5lxWWTjgVVgNWfwB9XmxOjzpED13XsU9alEOvVbN2egy2R0VfkfzeD7RHbF8H/dV78jpc4vl0XRcRg7puxBQKt5ZTvJU0uKB9uHB61BBv5fdp4m+THX75oi62Ey4yd8bJ6aHGW8mdHrQf9WnWeVQk6MeO1Z1Y1xPH8s6ouOai68OYsq/x+TTbtZuXmGLC6vTQxTVdLfdnmhfZ1TnOTo8lD72fUxnL6THQ7n5eTecMYynruHR0wtnhLeMUgejzafjG7+7Ep645U3yPzrMaubCHcYbO291ED6/OTS9F5lFlAZvV6eEepcmdHo2jrqP3jTfeiNe85jW4/PLLbd9/5JFHkM/nbd/fvHkzVq1ahfvvv9/xsbLZLCYnJ23/Mc5QFIaTzXshmO9ibjmv94wVHWWxCKrT49sPHhIr9R7aP4bvPXpY/EwWPfYPp/GtBw/ir3/0tK1ckSIOhOjhwdZMOzo1vqpY0m35vyx6MLXy9//3DB58aRSv/NSvxTCGWbwUzWgUJ9GD2L6yAwBw3c7VAICfPXVcrDJyglaF0MXVfO17mxW5r0ktvnXDKhU37jukiB57h8odh8TIdE7k9ybCAbRHrQuaZAXRgy6Q5ONGKlcUg+eeNvcLo3apL2DSdDe+/UsP4JEDY/jd/3zI9X6LiXyxhMNjxgUl/T20Sr5R0NCsO15f3BJgrRjLFUpllnQSrMIOnR7VBv9fv98SQ91Wfc2F2wMwxKUXzW36jJUdrs9Zjdqj8mqgfAi8f3h2oseJyYyti+1AjX1uhNvqbavI3PiwFmfp9DgxmbV1ANEFL7mNm63TIxTw4fQVHYgG/XjNtkHx/f5kBBE5F92D27ndXD2txvpm8iWbGDWVsWJmuhxWXMsRFWq8lSrY0WfXbXAhzvOlz6J8LOZ4K2ecxKCyeCsHp4d6bP7u7+/CbR+4EEG/T+yPaJW1s7BS2zZH2Do9uMickUiIyNGiGHzzgHrpQu/nVKaA46ZTu7+S0yNYPus5Nl69Wywj3ICV90Mb+xMI+jWc0p+oeDtm9qzpjiMS9NnSYADJ6VEl+pjwcpxRIzUrxlvRYjeOt2oYNR+9v/3tb+PRRx/Fxz72sbKfHT9+HKFQCB0dHbbv9/f34/jx42W3B4CPfexjaG9vF/+tXLmy1qfUMriteFoo6IQ/NQ+58pl8UVyYdMZD8Pk04fYg9o+kxDC4UCyJeAbKzP/Jk8cAGALEA1J55tGJGdx865P42n378ZuD4wCMnV0oYLe+hzycLJMwUizptgsydVDBw0qmVqakfOOv3rt/4Z4I4wknp8fWZUlbadr2FR0AgFOXtWPzQBsKJR2PHhyDG3TyQzmvuWLJMUrPC0fHZ/Dxn+0RJ/itiJcScxW1iG5oyv76OcUsEnRbTTNWcskrA9sqrPaOOKxIHjbFlljIXzFOJeD3ib9vXBmMy5E7i5mj4zMolnSEAz5xEdhop4cVjTObeCvrfUhlDVv6J257Do8dGhcClez0iDiIWSqHRtP41XNDVX/3XPR6GL9/BiXd2GZ7EiErkku5EFPPaWQ3h1r+K7t26lnF9pRZWmw9Xn2ih9sFp5zlD9jdHfU4PdR9AkXCTginR/PFIX3r987D3R+8xBa715+M2IY9XgbI1nVPDr85OIZ/vu05ZAtFTGXtn//JTF58hp2Gj/Jnk56DuuqSqLaqXzi6pWNv2nxPg36Ny64VNvW3AQDevGNF2c+cRA8qH6dOD3XBmU/KXqfjMbkenbq55GFUxKVg1gl6H7P5orie404PBrC7OunYy/FWSxdyW05lCjghnB7V461kjnlwetB5UjU34JfedTbu/dClGGx3jopkGkdXPIR7/uxSfP3d59m+Lzo9PC5ikI8tbuc2JKCQoO/mNpZ/Pzs9GkdNR+9Dhw7hj/7oj/CNb3wDkYj7zqAWbr75ZkxMTIj/Dh061JDHbUYWa5H5fAzwaQVXwKeJoeFrTjdWkG02M/HzRR2HzNWgTx+dxPHJDNqjQbz7ZWsBWCfQLwxNYSpTQCIcQDToh9xLSRfyQb8PIeH0qLzqSyYo3UYeRqpKLTs9mFqRD3zfe+RwhVsyiwGr08MSPfw+Deeu7QJguDVWdlkntDRsrXSCQz+Th+X1Rlz9x/378bk79+KbDx6s6/7NgFUq7n3oSLelle1qvNW+k8ZAd3V3eZkvuUJiQT98Ps02nKskvJDVfSZnbRs05PHSQbHUez32m0Pt1d0x4Y5p9N9C51Uds4io8Ps0cYE0nSngh48dwWd+9SLe+Nl7RWRCxDaAq97pcfuzJ+ClO1uOWWgk1BvSFQshIK2szirxVuo5zaExS4goFO1/gBxHVY/Tg4bSq7pi4jn++oWTeNgh+svL45Q7PSjeqtzpUayjyFwVPdK5IrKForjwnY27aLESCwXQ2xa27QcHkvZ4Ky8DZPo8jqfzuOWne/Avv3oRtz8zZCu5Boxh1WjaXbiMO3R6WKsurcfSdb3iIAKwuj7kbZeOwxGHHpBW57vv3YXv3bALr9++rOxn5UXjfvH6Tgmnh3sEGgn+bvFW6u+ozelBMVvW+xxkpwcD+/naUfMYyfFWSxcSsUZTWdHR0t9WSfQo34/QuVIlKN622nEiHPCjr8LvZxpLTyJc9p70mmkylRw/Ml7ObWgRB0WbZvJenB4sejSKmo7ejzzyCIaGhnDWWWchEAggEAjgrrvuwmc+8xkEAgH09/cjl8thfHzcdr8TJ05gYGDA8THD4TCSyaTtP8YZeXCh13Hh1UgKRctaPh9Oj1FpBRcVX56/oQdf+e2z8W/X7cC63jgAiBgGUtzX9cbF6guKF9hzzMgx3zqYLBtMiZVFAZ84uaXvhb3EW0m3kXdUav71XOVvM81JKluwDfnm4zPHzA4npwdg7LcA4KxVnbYSXxq85Yvu+3bap7RFgkJMUWNlvDI8ZexTpxocE7SUoD6qWuJI6MTWcnrYRY+XzIHuqcvKz2VIIKEBHA30fFrl50BDG7nTg0SPngp9HsRSFz0OjpCQFJ+zv4UctO2zjBoSMQnZPB45YLm2vnbffuPxpcFIxEOnB53TnL++2/U2AMTAd66g7czq9FDjrexfH5McZLQAJJUt4O7nT4q/yelxvJA3963LO6KIBH0olnS848sP4s3/dr8QMo5PZPBQFRHEvdOD4q3I6WH9rFiH0+OFE3bRI5Utiu3N79NEnngzsr7XcGaFAz6bUwjwtpCIBIyRVE6swN13crqsN2c8nRf7hE6HFde2InNyeij7csDu3nDK2Qak/ankuqfFXxxtVU4yEsTZa7ps5zuE6lIMBy2nBy1KqOScoe3JrcgcsA+UanF60PYpn2Ox04MBjG2K4s9InOuIstNjqULH4L3moqVQwFdxAYyz06O6a56PE0uHd+5ajU+8dTt++4I1nm5vi+50Oc50KIvXnbr+xGME6LqPRY9GUdOZ9mWXXYYnn3zS9r3rr78emzdvxp/92Z9h5cqVCAaD+OUvf4mrr74aAPDcc8/h4MGD2LVrV+OedYtCw/tcoYRMvrSgZXk2W/d8OD3MVYxqVu+lm42Iq/W9CTx9dBJ7T07jCvSLPOmBZASJsD2m6lmzCHrzYBuGJrOiVBiwIoQMpwet8jF+tyenh7QiSY60KnN6mK/ZwZE0+tvDNa0+YloP1TbrluvOLB5oOOZXLvSv27kKuUIJrzrNvhBAjVRxIiOtEoqG/JjKFOre/1InQiuvIqFjQi3xViRYZAuG8K86PSgubE13HD4NkGekQ4roQcO5RDjgOBAinDo9TpoZ5q0geginR1dMvJ5z5/SY3eAiEQkYZfaZAp45ZnXUFUs61vXE8a5da8T3ohWcHscmZpCMBIVL4FWnD+K+vUYX2YrOqOg4IcbmKN6KoN4YGjKq+w06p+mKhzCaytnjPc192id/8Ty+dM9LtvtVK3F3Ii85NFZ3xfHcCescbjydwxOHJ/B7X38Yug789I9eji2DzoupqnV6kAAt/y31iB7PSeeYgBFvJRbyxIJVy7yXMv3JCD7+5m1IRoII+H22YY+XUuhuU/QYTWXFYHv/SBo7FKfHodG0cEQ5Dauoi8mnWb9XzdcG7Nu12/OjFd1jkuiRFsOs5hWw5gK/WTSekwTIsCJGBSt8PqLmsIjSAJxe/3qdHtY1oLWtBSu4TpjWQdM0JMIB2z6gI85Oj6UKiR4vDBnH6oFkpOI5udNQ+9j4DIamMmgLB13ncxRtGWVH4KKnLRLEVWeVRzK6EZGOLW7ieLtSU0CCRqV4K7UjmKmfms7O2tracNppp9m+F4/H0d3dLb7/7ne/GzfddBO6urqQTCbxh3/4h9i1axd27tzZuGfdosRDfgR8GgolHaPpHJaHFi7rTx66pnNF6Lpe8QAxW2gVY6fLSQWtJttnDggoSsLIELbHkZDTY9NAW9mBiQaBISmXl1YDe7lA0zQNIb+vLGu/bECQL2L3vhFc88XdeM3pg/jstWdVfWymdTlqFqT5fRqKJZ0PgksAIXooF8nhgB/vvXh92e3FCY6HeKtwwId4KGCIHtk6RY8Z+0lXKzJdR7yVPLRL5wplTg9ajdwRC6IrHsLwdA5t4QCmsgUhkNBjkOhRqc8DsC6QCiUd+WIJQb8PIzU4PWgIuFRFD+qAWN0Tx6gp9kw2+G+ZMM8xOmbp9KD4zdFUDs+aosf7LtmAbKGIP7xso8iOBqzVXWo01EP7R3Htvz+As9d0ipWH25a3Y1VXDAdH0zhtWXuZ6DFXnR6EcHq4FJnT39CfjJQ9F9qnPX10Eip1OT3M41/Qr6EvGbaJHo8fnsAN//WIGIA/f2LKVfQQhdXKBSqd+5HTYzZF5rqui4U2K7uiODQ6g3SuaPVPtEAO/FvPtroaozU7PYzt7vhERixKOjCSEqurCdpHJCMBR2cA7eOjQb+4VhFRhXnrGkY+HrpGVJjv2ZjkrqLrCx5m1U4s5LdED8npQahF5vb7Gu8hfUSrFZnX0+lh9Tr65vQ6l1laJCKW6CFHbzNLj0TYOC8jF+pAlUgjpyF1KlfEuR/9JS7Y0I1v/K7zzLNRjmJm8RH0a2JG43ZuQ07vyUwepZLurcick2EaRsN9mp/85Cfx2te+FldffTUuvPBCDAwM4NZbb230r2lJNE0TxUpHPWQHziXyEH8+hrDVSkYp15yGOicmLNGDVvGSeLGHnB4DSazpjtseZzrrEG8lfc8LdDub08Mh//ojP3gKAPB/ZsE6w7hBTg+KY2Onx+Kn6NDpUYmgWF1cQfSg/M+gtWK23niryQwVqbXuCVU9To9wwAd6S9O5Io6Y3QX0PtOxMRkJiuPVsg77AgUatp25qgOXbu7D7758beXfKQ1qaEhM8Va9tXR6mBdcS21uQ0XVa7pjaI8ar91i7PQArGzoB/ePIl/U0RUP4Y+vPAV//pqtNsEDsDs9KLI0Wyjihq8/glyxhPv2jgihbH1fApsHjELglV1Rsdqc4vPGGhhv5RSfSqJHuEq81aBD+Sft0+R91TLzdpk6jmWW6OErG3Df++KwzY1RKWebzlvVVZv0WSanx2yKzI+Zw/qAT8Ppy9sBGM4CayFP84seMtEai8zp3F6ORDswmi7r9Dgwauwj3K4RaB8fDZXHXMnXMEIIqzDg7hQ9I9ZnjmNL6kfu4QgHfMLpQVRyV6g57E4rrCPB+pwewYDxe8XCN462YiRoUA4Y5w0siC1dyOlBKSF9ycqLiSotgr33xRHXnwnRg/tfmg5N08Q5vdv2Qddium4s5qbTSafjEj1GK6cxNJpZH8HvvPNOfOpTnxJfRyIRfPazn8Xo6ChSqRRuvfVW1z4PpnZoSL9/OFXllnOLOnSd6zLz0Sqr4qwBoPE8yOkx0B62LOz5Ikams+KgtmmgDZdt7sMp/QnxOPZ4Kyoyr1P0qFRknivaLuIA42L6mi/ej+u/+uCCd7YwiwtyetDnn0WPxY/V6eFtvxH0YGWVIyBi4fI88lqYnOF4K+p5ioe9D0I0TROrS1PZglhxv7G/zXa7ZDQoCoqXddgHwRS1Egn68ZXfPgfXX1BF9Aj4hFBBK+qpk6WnzXu8FQ32l9pqZBI4uuIhcbHYaNGDHq9RnR73vjgMANi2ot11GELDvZJufe7/4779IsaHGDAXb1x11nIs74ji8i39omRxY59x/tJIp4dTr5AQPYTTQz0HNM6TBiqIHvR33foH5+PGSzeYj1OP08N4fkG/D++/fCNWdFqionpedWzcPWdbRAv4nVeW0/OejdODFtms702IbUt2eqiRrc1OVBlwV4PirVLSce7kVBYnpuzv68GRyqJHzPxcyqKEPGyna5ic5KZ0o1M4PcrjrRYydnipIr9mkaC/zI1RqdNDfb2rOT3cstadUOOtuMSckdmxukP8u5aFM8ziI6n0alV3elTeF7gtjiChvBUcnq1IRIgezucB4YBfHKMoFQBwPi6FzMfgeU/j4CP4EmOVudKbVj4uFOqg7JO/eB6//dUH52zV8GgVp4eajU07k/62iC265NGD4wCAVV0xJMIB9CUjuO0DF+GKrUY3iCxwkHghrM0eV/nQqiR5R6UOCOSCU7qoe35oCrv3jeKO50629CCSKUd1ehRKel3Z4sz8YXV6eLs9XVDnC+7vK+3fwgEfYkGK7Ztdp0crn1DRvr3WHHY6aT00NoNsoQRNA9b32l2DyUgQL9vYg0jQh5dt7LXfv8YLZHkF0aMHxvDWL9yPXzx7AoDHTg9FKJBXvtYzdJ5vxIr8gE8Mjidn6nM4OVEq6ZboMVunh7n683mzvHrbig7X20Zt74PxN9753Mmy263vM7atV542iHs/dCnOW9eNCzf2Ihby48pTjUVFjXR6OAmvPQl7p0dGXchhbkc9iTBUcxuJFCNmNFl3PORaiO4F2emxbUUH7vmzS/GKU41zuOelqCugvA9Lxs3pQedwBYdOj1KNC1KeNeNUNw+2ISrts0epp86DU6uZsDs9qgsE3S77t2eUqLRqTo+tg0m0R4PYua5LfC8gdffRcdSt3F7GKd6Ktn92etSOfPwNB3xlr30l0SMWrC56yMe7SC1OD4q3ytV2Dci0Bn98xSbx7/0LPJNhZkdCFT0cFm/IBPw+4bJ1IuXgwM8VSkK872SnR1NCgn2lRdIUoTs0aUUjOx1b2OnRePgIvsRYQ6LH6EKLHvYL1f+4/wDufO4kbnv6xJz8vtEq6nhEcnMAlkWxvz2CcMA6OJHYQDER4v5By+YO2GMT5sLp8aPHj5bdjwpw1fsyzLEJu9MDaO1h9VLA6vTwuN9wKDLXdR23/HQP/vP+/QCsk59IUHZ61D78LZV0sV/jeKvaV+nRYOV5s6B4MBlBUnEItEeDuPGSDXjir16BXeu6bT/rqSPSho5Rf/2jZ/DgS6Ni+6qlyJys9XJcCIlfixlRXO33z0kp+1SmIDLhZ+v0aFMunreZkUZOBP2aEAiyZsQV9YD8/kXrxO2os0zmI6/disf+8krsWN0JAGKI7oVcoYSbb30CP3GJ1sw7HFvIUSRED2UhR1qK91E/C7lCCTO5ojg/64qHrEL0eorMpU4Pgobd1LGz1ezxOOrB6RHy2wehAZ99Xyyv2qzd6WF1yFnF2QUxMG85p4cseng4NnZEg2UiGmD1w9C5Pe0P3a4RetvCeOjPL8f/u3qb4/MpFz0qOT3scYGAHG/FK75rRS0aV1/7QIWVI6rTg4RF+22sx6vF6aH2Onq9BmRag854CJ9463ZoGnD9BWsW+ukws6AtbD9ncTrnUpH3U+p5+GSm/LqMXB4+DWVRp0xzsKm/DX6fhjU9cdfbtJvnKLQ4O+T3wedwkhN2iMpnZgcfwZcYq82hJ5X2LRRuH0LfHGVaVuv0oNU+6VwR09mCGOgNJCNmHInx86ePTgAw8rFl1JPs0GxED4dC4kpKLa10lFVf3skxMpRLTk4PgLeRxU6hxk4PJ7H08NgM/u2uvfiHnzwLwD6QUSP9amEqaw15W3kVyXSW4q1qG1RRLjytKl/RGSuLjEqa3ROhgK9MVDm9wup/198pyszt71dPDZ0eFGkmxxepheDHJmbwz7c9Z7NeLzT0mQgGNHGx2EjRY3zGOL+Ihfw1Zb47ob7XW5Y5l2gDdgfPTL6Ik1NZjKXz8GnAdeetFrdzuwAPBXxiaD5WQ7zVw/tH8a0HD+ETv3je8edOvUI9ZlQblQyr5Ypyp4EqHOWLJYyksuI5J8IBsSKuHtE1J8VbEeqwe9sKQ2yqx+lBQ1bah8vxVrpeW6/Hc2a81ZaBpG3ATlFfLdfpUWO8lc+nOZ73v2RG/PYr8X5u1wiAc0+HJUSZoofUm+WGc5E5x1vVSyxk3ybUno5KTg/1to5Oj0Bt25z1e6nTo7ZrQKZ1uOqsFbj/Q5fhI6/ZutBPhZkFstNjsD2Cl2/sqXofeV/yR5dtwO6bLxPih3peDVhxiO3RoOOQm1n6fO66s3D/hy7FcqXHUUY4PcwFOm7HpFCg/nNkxhk+gi8xaOi52Do9CNUi2ChGq1wg0oVGJlcUjom2cEAMs+LmkIqGx93K45SJHk7xVh5PeIOOoof7TouGjoelwk0eaDOErusil3xVV0xk+2eLfCBczBTN4bTfoxDsFItH+71MvoRsoSj2I0aRef3xVvIJeT0rrZsFcjmoq/OrQZ0clugRLRc9pJVcMaUz5IyV7qv/3VBzzgkvnR4dUeN4R0KBvI2p4sFX792Pf/nVi/j6/Qdqfo5zQamkC5Em5JfirTL5mkul3SAHTMcsXR6A/RyoLRIQhd1u0NDuk794Hne/YPSArO2JY2VXDKeagslpFdwinXHjOY+mc567wMg56yYcOcZbtSnxVqroYX4dDZaLHrlCyRZtpWmaq2PECwUp3opQh90UKzaWzrt2ztGAW3Uc0NcF4fSw36/o8XXWdR37Thrn6hv6EpZQnZc6PeKtteKzVtEDqCxkLFOGC7WKSJYQRc5Hcv9Ud3qMy50eeeP+S60vaTFgEz2CvrLXsFKRuSpyOHZ6mN+rVE7vBF3zzbjsJxgGMKKQKkUdMYsf+Rrg7eeuEr1elZAXyLRFghhoj4jFTs6iB/d5NDvhgB99Vfpg6PyYFpa5LbCg7auVFyY2GvbhLjFWdRmix2SmgPF0Tqw4mg8Ojabx0P5RxEJ+13Leonp12CDo4sItB1FeLTlk7kj6ktYwiIpqj5rCgnpR7pQha8XNGBe4atmlG3QhJ6+WrHRhXyjpKBRLODxmRZax6MEQ09mCuOgabI8i5PchWyjxNrLIsYrMvYoe5fuNcenEeWImb+2LlDK0e14Yxq713Z5/lxxp1MqrSGgVeLXSQpWoED2M3oYVnVFRSk3IF1FxJfJkXU9167zb71QLq9s8uFSsInPjvvJ7rg6+adHA8UXi9MhL5xShgOXA1HXDsTTbOCrA+py1N+B8SnZ6bBlIVh2ytceCGEnl8IPHjuIHjxmxl5vNaKbPvv0svDA0LSKsnKCBcK5QQjpX9ORaovOpKZdoM6djS3dcibdSbpOW4n2cnB5qLxuJeGo3iBec4q3UQcLanjjiIT9SuSKOTcxgnYNbpprTg/a3qshRLOnwMttO54riONCdCNlcBWIhT4sNQOShtNeFRLLosa4njn3Soq/BjiggdeT1eoj7c3o+6bwSb1XhDXbs9JCcTkxtyJFUkaAf0ZAfbeEApswFZwGX603jvkq8VYVOj0iNTg3VYcJOD4ZpTuR4qmvOXeXpPvJ5A+33abFTpXirDu7zaGno/acYfjd3eYjjrRoOH8GXGLFQAH3mys56irOOjM+I1Wu1ct2XH8BN33kcN/zXo/jXO150vE21D+d4OoeTU9mKt3GCLozdLijk2AAa1shFVDQIIPFBFYvUi15juKIpt/F2MeO0o1KjIFQyhRIOj0lOD+70YEzkKJqw5EDiA+HihgpvK+VRyziKHtJQhVZKA8bAkPZ5X7tvP6778gP43yfKe4LckEugW3lfQw6qwY7aRA8SMUiMVOOt4iG/baWY7NJY3xuvy9pOER1kbnjFqf34j98519PKVbkHQ3ZO0PdkKIZoZLr24/RcIO/ngn4j+oQWFjitpqsHUWIenf06IFns2qR0hznx0Teejt86d6Xte1vM+63pieOKrf0V7x8N+sUxQRXE3KC/N5MvOUZZydsHYGw/9DuEWOESbxUN+co7PYo6hs3tiYqpwzUUmeu6jgMjKeFkyTvEW6lugN62kDEQh3Ovh+ogkqEhK0XJFRVHkdcy8ylz8OH3GTFmUeHOkzo9WizeSo4j8jpElsvMX7tt0PYz2UnVkwjj8iqfF5WYOXCn7TdXS6fHjOU243ir+lHjrQCjj5GoGG9V5vQo34fTNuf1Gs7t97LTg2Gak/5kBJ9823Z87fpz0OvBPQ3YY/NosUtSiZKVsRbvttYxn7HTHqN4q2pOD463ajR8BF+CrKmz1+ObDxzEBbf8Cp+9Y2/Nv/PkVBYHJJFl38lpx9vliu4Xg7945gRe9v/uwOWfuAupbAG5QslzPAVFsLgpojRwyhZKovS5X1q9q4olqtIeKXN6aHWf8Ip4K1uReflgYWWXZcvP5os4MsbxVkw5NHjRNCPfWpRbtfCweilQKNbm9LAcYs4DaVn0CPl9Ze6BF4ec98lO2JweLRpvlclbufrL2t3zV51QjycrOqO2YZc69JWFiQ19tbs8gPJh2jt3rcFFp/R6ui+dZGfyJTGIJeQyXsDazrwO0Oca+VhIx+BGl5lP0Aq8aGOdHpsHq4seu9Z342NXbcP5662y+00D7j0gKnIviFcbvCymTjusSFSFELk3Ro63kuO0KB4oGqzs9OhWnR4e9j/fevAQLvrHO/G1+/bbnp+t00MRD3oSYQyag9OjDr0e8vFTHb7TgpdCUXc8R/VaZi7H52maJrrnWtnpEXUYcFdDjqPduiyJ7SusuLflnda++y9ft7Vm5xc9H4qxTZnbcaXnRoumSrr1HgunB8db1YzN/WN+pvslp37FeCtFRHM636L9o1tEpBvq72WnB8M0L286cwUu3tTn+fY2pweJHuail0kHF63o9GCnR0tD1xki3splrmmJHq15jT4X8BF8CUK9HgdqcHrouo4Pf/9JAMAnb3cur6zEc8enbF+rgxMi7/LhfPzQOH7vPx/GdLaAiZk87nr+JHZ97Jf43f98uOrv1nXdyrJ3OemUL6So70QWPdRyUTW7W1Va5RX1hOcicyenh/nvuPQ8V3XFxG2nswVb4Sbv5BiC0l2oGyLk0BnDLD5odbD3To9yMUseSNMK/IBPQ8DvKxu81+Kgs3V6tOh2RDFO0aC/Zru52tGxojNmez/kPg+VLYPeB9oyamGrekyrRFs4ILqATk7bV71PzNiP5TSMHZ5eHKKHtapfEw6ZRoseotOjARejNtGjBvHiHTut4vLNHhwiMk4usUrIXQTT2fJzOXWfIEc/yI4jWaAl8cKtyFyNt6rF6fHMsQkAVodOXiq2J7ok8SDo19AeDYoyyWMOTg/5b1QvOgNStKlTf4fXxToUH0b7A9pHDE/nxO9vNadHPfFWFK0GGK6PK08dEF9vGUzirWevwO+9fC1ep7hAank+5Np76oixra3ribveJxTwiXN5GmSR6OfkNGAqQ9dvYalzQ75+q+T0kK/93JMAfObj1yZIlXX9sOjBMIyJPI+i44Hl9HCPt2q1hQ6MnfJ4q8pOD571NA4+gi9ByOpdywX/Q/utzNvtKztq/p17jk96up3b6vPfHByzff2B/34MI6kcfrVnqOpjFkq6iPRwO2mVnRrk9JBXh6kXIqrSru505E4PwrPo4ej0MC6o5FitFR0xkTH70nAK8nU07+QYgoYutIItxOr/kqDeTg/5sy93etAQmvZV6j5tqBbRQxKtW9U6S6u/BzsiNZWbAsBlW+wRKoMdEZsokXSISXr3y9bilP4Err9gbR3Ptjy7PFFD+brPp4nB69CkfTuRzyN0XRfD6cXm9JAHX+0VIgTqwer0aOwKPC/xVsQVW/tx8aZevOLUfqzorM15VOvFkbxfcVqRSKKCphkuptduX2b9LmmBiNzHIZweLqIH7b+6E/ZC9GyhVFbA/m937cUFt/xK9JyNpaiDpGA+nimESVn/nVIheHc8DE3TMGg6uI45OD3k/Z66ojto7rMLpVJZtJXxfa9OD+P5UuQZDWiPmN1yoUC5eN3s2OKt/N7+9i7JadQVD+FKKcIqGvTj42/ejj9/zdaa9+OAPRoXAHbvGwFgOLAqQefyNMjieKv6oc+AvG3IPVuVIkLl46Kby4Zu49VZRATVhW8cb8UwjIk8j4oLp4f7ghyryJydHq1M2aJrV9GDi8wbDS9JWYLUk/P29d0HxL+DdeSJP3vMWGG3eaANexTXh4zbSkM1I1r+EOu6XvFixbYiz8We7PNpiAR9yORLIifPViSrrMz1UmRed7yVwwDC6hIJigteUX6bKZRF03B0EUMUi86iBwtji5vaOz2oPFfu9JBFD3NViHkBrw7LaL/nBdXpUW0f3IzQ6u9ao60A4JJNffjqb5+DP/7u4zhteTuCfp9t+OLk9PiL126t/8miPJrDS4G5TEcsiImZfJk49pV7X8KLJ6fxuWvPQrGoi4HuTL6IdK6w4CuXc0XjPEdedDBnTo8GxFudvqId/ckwNg0ka3LjBPw+fO36c+v6nU77jkrIr5uTa5ceZ1N/G372/gttP5Mv0LL5EmDOJsXQN+gv2/5zhRJmcmanhxJvBRj7IHng+ZMnj+HI+AweOTCGFZ0xIcDRc805FJknwgEE/RryRR09bcbvIIFFLpyWnxP9Peq+LyA5Z5z6O7w7Peyih/pZ6o6HWm6/G62j06NHWsDUEw8jGQ3golN6sX8kVXdcICEPqYans3j+hHEufu7ayqJHZ9w4l6d9BzmWWk3EagTUdSPvW2SnR6VrL5vTw2V/e+qydiTCAZxX5T1V4SJzhmHcsDs9qNOjeryV2inLtBZli65dxHqad7bqwsS5gEWPJYj4INSQxf6AuXoJsC5Oa4GcHmev6awoergNYukidVVXDAdH7bFc6gWvilwCXvHkN+g3RQ/j4joRtnYscv59NOgvEznUgVJoFvFWYYcV25bTw3pOK7qi4vfuVTpSeKDNEG5OD95GFjdWp0dtsXjy4HJiRi4yN/ZrEeH0qBxv9W937UU6V8RNV5xS9rvkE3LdjKkJBVpr+HbUFJ8H22srMScu2dyHBz58mYgvi1Xo9GgEs3F6AJZQ4CSO3f38SfzkyWPYsbrT9v2R6RxiXQssehTKy6ZpmH1isjFl6yQCNCLeKhYK4NcfvLRiDn2jcYrGq4Qcm+fU6VGpzFnTjF6pbKEkBr2lki4WpzjFW+WKulgR32VGFcnnfJl80fY1vR+prPH4JFpQFFdBxFtZz0/TNHTGQhiayoo4Lqt/pPx1oefrdF4XECKSPjunxwx1etjjrYhWjLmQhR+vK+8pAizg05CMGv0oX/3tc0Tc3Wyg0trhqSwe2DcKwFjcVS12jN67MXZ6zBpyaMiL2vrrcXq4vPYru2J49C+uqFm0iCuPx6IHwzCEvdPDjLeKVCoy53grxmnRtfNxhaPMGw8fwZcgtVqeMvmibXUnxRB4pVAs4QXTiXD26q6Kt3W76KYP7Y7VnVAXtlUTYcTFqd9X8SKHLqZo5ZXs9JBXADkNNjw5PWrs9JCHlyRQyTu7FZ0xEcul9rPwTo4himapB4kebHlcGtTb6ZEvWAM12elBBdOW08M+jB6ezonfeWIyg1t+ugef+eULttJiQs2bbUVn2VEzBnFZR+1ODyIoHZNs8VY1ChJeiEgDGJ9WLoJUQ4geLkKBHG1FLIaIq5xDafXqbiNv/8BoqiG/g8TFWkuQ3Qg5uAfmklqF8HFJTJ3KusdbuWXpW9FUxrnbjLQwJRryY63Sh5AvlMT+iwSroN8qHVZFiUkhehj7KcvpkTefny4eQ4YG1SR60GdkxqE3xBJ2yj9HFJtVKJZEpxZgHYOdhBAnyOmhdnoQPW3hsvs0O/U4Pdb0xOH3aVjXGxefq0YIHgDQY26Pw9NZEW21c111R0CHED2o08NyOjG1EROdHlK8VXvtnR6VXvt6BIsBZUFEpefBMExrQfurUMCaF4lOjwpOD463am1Up49rvJVwerTe9flcwUfwJYjXeKvh6Sx+8JsjIheZqNXpsX8khVyhhHjIXzWjuprTozMWwvpeux095VCkKZOtsOpQpiz+Q463kk6MnQYb6mOHA76ylZpeT5qdsvnpb2gLy6JHVOzURpTSWIr0YBiaR5cVmVcYVBeKJfzwsSNiNTsz/6gOnWo4va+2To+U0umhRPYVS9bQerfk7HMa+Kkn5FkPZcLNBuX8L+uoz+mhEp1jp4fcW5UIB2oeqtNx74RL98tUplB2HFoUoofD8X9VVwwAcFBZLFAvVrzV0rwYtYrMvQ3jx6s5PVxEBYLOtUiskM8pIwE/ti5L4tY/OB8fu+p083lZReZy1xq51uQyc13XRRfGdLYAXdctp4fo9CiPtwLKRY+IcEWX798qnVcKp0fJXmRO+2jvood9AY4qVG/qn10001IkErJeb6/n1P3JCH544wX4j9+pL/6tElSSPjydw+OHxwEA566tvLgLsAZXtKhgRsRbcYBCrfSZro4eqbtF7vSotHDEi9OjXtoiQVuMZK2dIAzDNC+0P5DnS7TgqVKROcdbtTblnR4u8Vbm93kRdOPgs7MliCV6VP4g/O2Pn8GPHj+K124bBGBcYOQKpZpFjxeHjNWUG/rbqmZUu3Z6UBlpQMNZqzpsHRapKs4TEnfc+jwI1VZu7/So4vRQHjvoL4+3Cntc5SOKpqXXgi7qO6UL/r62iBhkjSjDJd7JMURBcXp4WdX7ge88jh8/fhSv274M//JbZ879k2TKoMGY504Px3grazh5ctJwJrh1egBGxFVvWxi7zZgOwDkGUbVet+JKEur0GKyj08MJW7yVQ6fHbJGPb211PD6JHiddul8mZ/IYCdkFEeqRWUjo8yAfj9eYTo/9DRA9CsUSjpufrc4qkTaLlZC/fN/hRiZftH3eJyvEW6lFvoQVG1W0/T8a9IsV+Get6hQX+VOZghgKy69xJOhHKle0FaJPZwti35nKFjCdLQgxR3R6OJTbA1YkDkXWRTw5Pcr/RnrcQtFeZB7wa0AeNiGkEpbTI2A+Hx80zYgUBIDNA0lPj9NM1BNvBQCnLW+fi6cj3DbD01nx+VndHat6P9rWvvXgIVx0Sq9w0HOnR+2ctaoDn77mDGxb0SG+JwsgTqumCVunxxwIToMdEUyZPS8cb8UwDCEWoEn7HTenh67rYrFJZ3xpLq5hGkMs5BcdxID7bJOON6OpHO7bO4xd67pbrgOu0fARfAlCQ69qnR4PvmQMvm5/9gQAo5QSMOKtdI8XbYB1QdsWDngQPZwfl1Yvh/0+3HTFJrz/8o1ipRTlNrtBf6ebGkrEgvbnJg+G5CJzZ6eHGm+llfWHuJUNqYh4KymmhoYMG/oS+OibTsMX3rEDfp8mLsrVok0WPRiC4jW8ih57jk/ix48fBQDxf2b+UcWqatCq5VyhhKlMHkOTGVv2/jFzMEulrnJPUcD8HdTXIHc4OQka6qCzFUWPo412esjxVtHGD1/kx4+Hax+sWZ0ehpCxdTCJv3vjaaLHYzJTwOgidnrIA+5V5lByeDpb1Skqo+s6XhpO2YqoH9o/hqlMAZ2xIDbOshR5ofAabzUyncX+EXskWKUic7cONVqsoTo91IUn9J7JcVryfivicC4rC72pXAFjKcmVkiugVNJFp4Yqerzv0g34/y7biDeeudz2+M6dHsZzdhpk0r64UNRFkblPs/azlZwexycymDFfDxp80CBE0zTb57iac7oZiUiv92JYOU/D9ZNTWQyb+79lHoTwa85Zic0DbRiezuKG/3pEbGPc6VE7mqbhDWcst8XiBaTPtupAlJE/T3Px2svxl5U6JRmGaS1oJiTPxeg8W11YNp0tiPOWjujSXFzDNAZN03DNOavE127jWDo/GprK4u3//gB++tTx+Xh6TQ0fwZcgEQ/xVicmM2L1Ip2MbzSt9CUdthLKahSkFctqpIp6wegabyUNLgbaI3j/5aeIlVINi7dSTnjlA5GsxDsdcJyKzOUL6lDA5/kC1SoVtV5f4VYJ+HDteavxilMHxNdA+UV0Kw4hGWfcnR7On99P3Pa8+PdZqzrm9skxrhSLtXV6yKu1r/rcfTj3H35pi7qiEyMqXpU7JE5dZqwYHprK4sRkBvuGrcGm03Gi3Omx8PFWmXyxTIwveYyRqZWpTF4Mexvl9LB3esxtkXm1xQdOkMOROj1CAR/esXM1XnFqPwDT6bEIOz2cCqfbo0GxaELtw6rEl+95CZf80534/F17xfdue8a4kLhsS79t0LaUEIJpBadHtlDExf90J175qV/bvj9dodMjFHDed1nxVsZ+g1a5q5n6dC5EQkY44LOJwGHlceTbGs+tiFFpQYiuG0KIW7zV+t4EbrriFDF4UJ+nTCWnR8Ds9MiXrCJzv0+D31c53ur4RAYv//ivcP3XHgRgCUqy61h2Wm9YoiLbbAj4feJYtxhWzlMUGl3nRII+Rze4SncijO+993wAEGIJwE6PuUA9LsnMZbwVYD8/WAzbK8MwiwOnqGE695/KFmzXL+TyCAd8LIwz+OMrTxH/dnNoq4ux731xeE6fUyvAR/AliHB6VBiMP35ovOx7p/RbQ/sv3LUPp/3Vz3Hnc0NVf1/B/EAGfD6EA37bhea7X7YWL9/Yg+XmahjXInOHiAoa3FQrVq+0Ik8mJp38+n2a7QQ4UWORecjvs0U7vGxDj+dBU9hh1aWbcBMJOotIrVgszDhTUrohKGbN7fN/aMzq8WDxbOGotdNDzuV/QYr/U+kzRY+eRAhvO3slrr9gDTaa+/aTU1lbnwfg4vRQRY8qrsG55uBIGmf+7S/wkR88BcA45rzyU3fjDZ+913N+fi0cMbtuOmNBW/ThbAgHfKC3ei46PWQLdKIOUYUuxqbNRQZ0LKLvT2Ys0YMGgcMVVtjOFzkX14EoM1ecC5X4+/97FgDwjz9/DoDh/LjtacMJe+XW/lk/14Ui6CHe6vhExtHV4fQ9t/goIqzERll9Bs6ih9sqeOEYkfZRsuiRzhYwpgw8pzKFqs+PqFRk7iSmEQHh9LDirXyaBvp1bvukfSenkS/qePrIpPlcqdPD+fOqnv+1ClGH4uqFIhL023oblrVHPUdIJMIBEV0mHm8R/E3NRqlCMoHPp4lj2Zw4PTwWqjMM01pYnR7WMYAWOOi64UwlqF9zoL0xznJmadMWCeK/37MTu9Z14/oL1jjeRj03pc4xpn74CL4E8dLp4fThWN0VE/f91XNDKJR0/PqFYXz69hdwyT/diZMuBad5ESVgXAjIQ6LueAhff/d5uG7nagDVnR7yhzhmPo7neKsqF4hRReSQL1zki/F2R9Gj3OkhD1loNawXQtLwkqC/Qb3IVbP8aPUqx1sxhCgy9xhvJYuILHosHDV3eogBYeX9Ya/pkNM0Df/vzdvwV687VQghJ6ey+M3Bcdvt1ccbns5iKluApgH9SeN+Cy2y7n5pBDP5ohBsjo5nsOf4FJ48MoGnj040/PcdHjUuQFZ0Vs9u94ocXTPXTo+2OoQadfBKx1ORQTxTwGjKOAc4xXSF0tcLidUHZj9WrjEjrg6Mend6qI7OZ45N4sj4DCJBH16+sXeWz3ThEH1AFfb3cnm5jHOReeV4Kyojp6g0inNSRQ/1/qoTxMnpMWlzehTK3EZGx4c30cMpPotwOiclrE4P3bboIFDF6UFxVlPZAmZyRVFm6rQ/6Fqi/TGNgLaDxbJynno9AKPDod77yp02zOz59DVnYHlHFB994+kVb0fXfmrEcSMY7GCnB8Mw5ZBoL8fNRoJ+MU+Sz2UOj9E1R2Oc5czS57x13fjWe3bi1GXOfWXq8WbPsSnPCT2MM3wEX4JYoof7xv/E4fJB0YrOmBAsjpt55gdG0vjk7c/jpeEUvvfIYcfHEk4Pf7mqTR9KEkRci8wdLlLj5olq9SJzj/FWFeI/bE4Ph3grpyJzuYjqsi3eRQ85m5/ISPFWtt+rrArrjIXK7su0NiLeSlNED5fPmiwi8na0cFBchud4KzpRrlDaCQC9iXD598zBy9BUpkzwVgd+zx2fAmCI4LS/WWinB63Wp8Es9W0AwANSKbtKvljCu7/2ED7zyxdq+n2Hx4xBeaMvQM5Z24XetjDW9sar37hGVFG/VtqUFck0kLY5PUxnB7lCK8WKzBduA/hVdTg9uuPWZ6dY0vFz0+Vx4cbeJR05EPZXPiYAsMVEyTh2eph9ZG5F5qrLhiKb3JyrhKvTwyXeKpUrlPWdTWXyrp0eKjRczymF5IDVo+YkSNB5WqZQtOKtNA0+cnq4rDwnkQMw9sWW06P887qqq3GC61LjnLVdaI8Gsb53ccR7yaXZXvo87Pe19ikcbdVY3nDGctz7oUtx+orKJfbk8p+L1192erDowTAMsW1FO0J+H85Z02X7vryQiCDRY2UDF1oxzU1fWxjre+PYvrID3fEQCiUdzxybXOintaThI/gShAblboMqXddFvNVmqYdiRWdUXASSq+NZ6QPkVr5aMB0LVOIoD1xoEEEXiW6ih9OqurhXp4eLYKAin/CqF5mxKvFWqiU9FPBhx+pOaBpwxsoO24VNNUL0/sjxVi5uFXXlKa3+42E1Q6hF5k7xaTJ2pwevClgoRKeHx5WfTg4xoHx1dF+yfF/U12ZcmB8dz+Dpo8Y+nVwcqtuH9vmbB5JSVOLCbifUyzA+k4eu6zgmiR5qXJfMQ/tH8cs9Q/jEL56vaZ85V6uuvvKuc3Dvn11alyhRDZuo7zBErYYauUVCPx335U4P6hqoVCBbiScOj+MD//2YsPTPBrfuBeH0qKHTQz4vODo+g9ueNvo8qGNrqRJ02XfIqDFR5NaYcuhUq1ZkLr/233n4EP78+08CcIq3su/71H0Znf+4Fplni2VOj6lMwXL/VHHRyZ8ZdYXcsQmj886p04fEmXSuaBWZ1+D0AAwXjFOnx9VnrQAAfPCVmyo+92bmM9ecgQf//LJF43aRz+/llf1ekBchLGXhdClDfY5z8frL20OY460YhjE5b103nvjrK/G7L19n+z5FHsrnA3O10IppXoJ+H26/6SL8zw27sH1lBwDgCYfqAsY7jb8yZ+YcGla4RdeMpHKYNC+23nDGcuz52R7EQ350xILChkfXbEekoYTbKpl8iTo9KN7Kuh09F1He7fKc6GI85OD0qN7pQUOPKvFWQXfRIy7HWznkratOj4BPw/reBO7/0GWeSg1lnFbie+306CTRgzs9GBO3InOnz3+ppNuKUjneauGg1cA0KKtG0KU0WB2w9bWVix60avjxw+PQdeOk+5T+NpyYzJYJGuT02DTQJgaKC72d0OC6WNIxmSng6HhG/OzBl0ZRLOmO4pF8PHnu+FTVFaGEJXo0dtWVz6chNEfxJrMtMlePiWHF6TGWzovjzkZT9Bh3cQdU4/X/ei8A4zj22befVddjEG6l1eQ2eGnYu9NDdjXc8dwQ9hyfgt+n4dLNfbN6jgsN7TsqCX+qeNDbFsZIKifcCDI5l9ecoNd+78lpfPB7T4jvx0L2bUx1YpSLHtTpUcThsTS+/eAhDE9bkWrTWSenRwG5ojenh3y+NZMv2qJZSZBb5hBnRG7mmVzRFi9JH21X0UMSbE5MZkSmtyw4/r+rT8dNV54ievBaEU3TFkWfB9Ftc3rUGG8l3Vfdvpn5ITqHTo9BaXtw6gZiGKZ1cerlovNzOTp0rq45mOZG0zQE/Bq2rWjHr/YM4XGHFB/GO7xsYQkirPcuJ2DykGDH6k4AxspNTdMQDbkPS9ycI8LpQfFWNqeHPZs357LSsFKnx7TDSkP78zKdHsHKm2vU5vSwCxXyxbiT6CEPz0J+n+gDGWiP1Fw2KaK+zL85WygKxV8dVqkiSBfHWzEKapE5feachDH1omyhY4taGRFvVWOnh4r6Pvc6iB6nLU9iQ18ClLqyfWWHlWev7Ev2mKLHlsE2SUBfuIt5XdexX4ooGk/nbA6BqWwBzxx1tvTKr00tJW+Hx5feqqtIBVHfC2Wih3B6GMfDmbwR5RPwaWKonc4XoVcoka3GiYlM9RtVwa1wer0ZIXZsIoNUlXMIQnYR/NudewEA567pEosNliqVjgmEKnrQgL5SkblbnMtq0+lBF/LE0JT9/a4ab0WiR76I933zN/jXO17Etx86JH6emmWnh1xyXIvTIyZFr9qLzI19ubvTw3otXzqZEvtj+bMX8PtaWvBYjMzG6cHxVgsPLQQhx2sjkY+7siDLMAzjRMgh+WQpXnMwiwdyenCZ+exg0WMJEpbik5wGElYclQ/nrOnEp685A//81u0A7I4HFbfVvgW1yNyx04OcHs7Ds5zDRSoJAOmq8VbeOj0qOT1CAZ8of3UaGgb8PuFkmW1ua1hxejxxeAK5Qgnd8VDZAc/V6cGiB2NSUGKSKhWZq/042cLshpZM/RRr7PRwG+Cdv75b/Ls9GnRcIatpGt65a7X4evuKDsdhX6FYwvMnDNFj80CyalTafDCeztsGr+PpvBhIEr85NOZ4X/l5P16D7XcprrqabaeH2l1A25F6rOxPRkR8lq7X7gKSBYhV3bN/fd0G8B2xkFhlve9kdbdHvliyLbA4am5jV57qva9rsUJOj0pF5qpj4py1Rg71dLZQdoyoJioMJCOO50lbBpP251XV6UH7qBIec/j8pnNFEbFGt53K5EXPnFv8lv13kLBif22OmcKqU3E1LciR4638PsBfLd5KEtX2npw2nmPAt6hcDUw5snBRs9OjjeOtFpq/ef1p+OTbttvOleaCZSxWMgxThaDSsVYolnDMdK8vpWsOZvFwxooOvPtla/GBy09Z6KeypGHRYwkiOx5op3poNC2GA3TBGvBr0DQNbzhjOTb0Gd0elVYiuQ2+RJG5r9zpEVZED7dMaUenR81F5lXiraoMhf7xLdvx0Tedhv6k80WN9bfMLp5EHUrv3mtk0u9c1y0cJEREHeSYq26zHG/FmIihi1pk7vB5VQXEkm6Jlsz8oeu6JXrU2OlBtEUCeN8lG/DPb90u3nOnaCviTWcuF6L29pUdNnGc2D+SRrZQQjTox6qumONt5pv9ShH1mOT0oGiJibRzubv8vJ/waPudyuRFYfryJbTqSj5W1NPpEQ747I5G6dgtnxcs64jYhtNyXJ4XnjNFNcDZ+l8rlQbw68wiZBowV0J2eRC9bWFcvWPFLJ/hwmP1AVV3evz2+Wvw/126ATe/agsAY4CvOgTp2OImevh8GlZLRdxvO3sl3n/5Rvz+Rettt1PPpdTzz7BUZN7mIuRRBCsVgE5lCuI8M+DhXC0quUmIQrGE45PGEMLJdUHFyLlCSZxj+zUN9HJ46fTYawpxTkXpzOKicU4PToxeCFZ1x/CmM1fAN0fRkt//g/Pxx1ecIvp4GIZh3LCcHsZ5wompLAolHUG/VvEajmHc6IyH8Bev3YrXbV+20E9lScOixxJEdjyks0X87Y+fwcs/fgf+9HuPA7B2tE4XrBXjrVxcGqrTIyF1etDOvdqKYaeMaHKMVIum8Fpkbnd6lF9ovvK0AVx73uqy7xM0oJmt0yOoDCDuN4t4dzqsQpKLzWMhvxC02OnBEIWSs9PD6fNKA0p59TZvS/OPPBMLeBU9lP3O6u4Y/uQVmzDYHhUDQacSc6ItEsQ/vWU7fueCtbhkU29ZSXCuUMLnzUifUwbabNEvCxmDdnDUXkQtOz029htivVsEorxtvzA05SnmiFwenbHgnBSOzxWzdXpommbbL8jHU3kwO9gehV/aNqhzq1jSxQKISuw5ZokeMzUKJk5UilpaX4PoMe4gnP31605tiqG0tbKwUpG58fefs6YLN125Cf3JsOiomFYirujcpdI5F0WgAcAlm/vw/svLeyq8x1uVHB0XgBVDRb1FRqeHt3gr43eUO96GprIo6ca+WR5aEzHpHJdeG59P8+D0sF5H2iaTdQiUzPxC7u+2SKDmfaut04OdHk3Jmas68YeXbZz1tSHDMM2POgM6bF7jLO+IzpkwyzBMdfgIvgSRV2ve8tM9+Mq9LwEAfv3CMADJ6eGwc60n3kp2jgBKp0eZ06PyY8gX0fQ4qSqDERrI1dbpUd9KWMDbhXQlQn5LuMgWinjkgBHNsmtdV9ltI0H76yHfl2EAlDkGwhW2ERpQdsasC/GFLqluRah8HvDe6SEX5QJKcbW5P+t1GNDJvOr0Qfzl67Yi4PdJLg5j//rh7z+J/3n0MDQNuP78NQAqC2jzxf5hu+hxZHxGrMrf1G8Mtac8iB4lHXjqSHW3x1KMtgKASGB2xzf1fjbRI2p9n4bPtCp/JldEvljCtV/ajfNv+VXVDq49x63+lXQVF6cXaMAddjgub+irxelhOB2Wd0TxpjOX4/cvXIdXnz4w6+e3GKjk/iNGzXirzrgh8miaJga8k2WiR/Wi8NVSdNn2le2Otwn67PdXnT8RqVPIqWtNZr35Xo9LMV21xFvJbpZjE8Y+oD8ZcXTihfw+8X2K3vP7NNCu3M09KTs9nBYgMIuT05e34/It/fiDizfUfF+b04OLzBmGYVoa1Xm7VK85GKbZ4LPxJYimGasws4US7nlxWHzfZ8bfWM4MJ6dHHZ0eolPAPd7KKjJ3cXo4xCXQarrqTg+P8VazLHol14WXC+lKnNVeCwAAivpJREFU0GuxbziF0//6NuQKJfQkQmJVqow8yEqEA56GF0xroYoelT5rKWnQEvRryBf1BR1otyrySmCvnR6AsX+k/Z08IEwIp4f3vHGrpLyEVLaAHz1+FADw+Wt34JWnGcNe4fRYwP3NASXe6pljxtC8LRzAgFkyrK5EJ9TPAEXWVOLw2NIsFPT5NIQCPuQKJSTC9bkTZAdkyMXpscx8zWOhAMbSeaRzRXzlnpewe98oAGD/cAqnLXcecgN2p0et0VhOVIq3ojLzvUPunR4vDafwzq88gLU9xvG3OxHCJ992xqyf12Ki2qITABgz4626pNL2tkgQk5kCpjJ2F4wXJ8UaU/ToawtjwGW/5PNpCPg0cU6qxlvJTg81Yst+Ox9Wmk6PUcmx4yXeyqnT46iZr73MxV2iaRpiQT+msgVMZ43f59c0EfFacunJmnSIUEtWEXOYhScU8OFL7zq7rvvKHYFF7k9jGIZpaSjRhOY4luixtK45GKbZYKfHEoWGVSOprPjeWDoHXbciKJy6KeQS8nU9cdvquqzLRSetWg76qMjcunBVezDchvV0MS4PWhJSWWQlPMdbNcjp0ah4K8B6Pd5wxvKyPg/A7l6Jh/1lJegMU+b0qNjpYQyH46GAtdJ/AaOLWhWb6FGDnVkWXKNOokcNebBhycVx9/MnkSuUsLo7hldIxc0k9Kqix0+fPIarPncv7ts7jLlmxBzGUn/Hs0cN0WOwIyJivdzcBeoxy2noqLKUL0DOXdOFgWRERP3UiuzokBcRyINZeh/oePrScAqfvP158fNMheG0rut41ub0mL3okfUQb/XScMo1cuizd7yIQ6MzuPv5kwBQ1VGwFAmZ519uokeppIsi8y7JBUivhdp3UilSjHj5xl5Eg3686Uzncxsi6LJPA6yemkyhWLatyDFDy9qjIiZqVDrn9eLKjVZwegy2u+8DaFHOlBRvRcaVYknHl369D+/8yoO2z4PqmAGAtT3xsu8xzYO8OEHtVGMYhmFaC7XjdnjaOGfhPg+GWVjY6bFECQf9QKZgW71WLOmYtJU8VnZ6rOmJ46fvfzm+eNc+/PMvnncdtKuPZ4u38huPV22loRhcyE6PUK1OD++dHvWshKUB4GzjrVZ0RhEJGqWx//r2s7BlMGlbDSYjOz3iIXZ6MOXQqtKA6vRw2EbI6REN+Y3bZTnear754WNHcPuzQ+Jrr50eABA03zPAvq/ePNCGB14axekVVtiryCucb3vmBADgyq39tgGlk4D25Xtewt/97zMAgP/afQDnr+/x/DvrgUTt/mQExyYy2DdsrNofbI+KWC+vTg+nsmoVcnqsrFM4WEj+83fORaGk1y3Mt0nHRXunhzRg7iCnh7H93PX8Sdt5RqaCiGq4Bqz3qhGiR6UB/PKOqHC9HhpNY43DgFk9njel6FHlvGEykxc9Qx2S6EGujzEpMgqQ3TXu+641PXE887evqPrcgn4N9LFU461oH5fOFsr6X5Z1RPD8CSO2bLAjIhayUDdJtedHOHV6WE6PCqJHKAAga8VbSU6PYknH3//fswCAnzx5DFedtQKFYslRnL3mnFVVnyPTHKQaEOfHMAzDLF2CAfs8jM4LnLpmGYaZP1j0WKK4CQBjqZxwZlTr9GiPBhEO+MWFqNuK8GJZkXl5p0e1InOniArPReai06NKvNUicXp0xEL49QcvRTzsNy+cK/xOZTU3iUgsejAERYNQfJ3Vw+De6SG7hjjean7559uet5Vz1+L0kId4soj7l687Fe+5aH1ZUXAl6P1PZQu414xBvPLUAcfbyNvI5+54Ufz7WSmqaK6gfV2/UtK+ojMqjjVeOj0Ar6LH0nV6+HwaQrMoQpSPi7Z4K0kIoEEwbX8nlMiwSjFEakzSTAOGgJXirXw+DSu7YnhxaBpHxmccRQ+5aBgAOmLNd+FpFZmXHxPue3EYv3jWED3bpAhNAOg0RY/RlP19E87cKgtAKjk8CPn3qedDtDgllS13evS2hS3Roz0qbjtqOsOCfs3T76fzwqyD08Mt3sp4rk5OD+P30cpNAGXdHzKRoA9blyWrPkemOah2LcMwDMM0N2qnB4ke8oJhhmHmH/4ELlHcRI/RdK7ikEC+6KQVj5WGqEB5MbpTp4dq51PJObg16HHS+SJKJV1cUKp4jrdyiIOpBTWqaza4OTvcfidgFplzvBWjUCqR08oUPSoMuFJmvEIsFKgqRDJzg1ze7NO8DQYJeUAor4r2+7SaBA/Aii964vAEJjMFtEeDOGtVp+PvI2G5VNJF4TFg9G1k8sWyFdqNJCtED/sA8vTl7ZbTI+ssZqjHrNpEj6Xn9Jgtsrhhi7cyV6CFAz50mqIADX1V0aNSvJU6+K3F6fHE4XEMTWZx+dZ+2/erRS3RQg6356V+vyMacrzdUsbNaavrOt7+pQfE151x+9/eZb7X1PdBOHWw1Ystsi9kfzz6fE85OD3kKNZl7ZbTg0S3gM/bcyM3rSzWHRn3EG9lblei08NnnQO/YIoxgHXOSyXmsZAfa7rjeObYJD786i2eniOztBlIRnB8MoOLN/Ut9FNhGIZhFhAR906ih3lenKhjMS7DMI2DP4FLFLXUe1VXDAdH06bTwz4klaGcYsAagFRbEV6oFG/loci8WNJFtILN6WE+F103Mp3dXBFe463kksxkHTZCek1DVQrTG4k8TIyH/RxvxZTh5vRw7PQgp0fIb3V68LY0r8jxP14Hc4Qt/z40u/0Q7S9PTll5sqrrRN1GpjIFUBdrPORHKlfEi0PTFYurZ4ub6LF9ZYcYMrrGW4nSdx8y+VKZ6PHi0DTiYb8Ybk5m8uI2tYpIzYC708P4/rKOqBDp6Hg8NJWFTCWnB3WqaJpxXJ/JFTEyncX+kRR2rO6q+Nx+7z8fxonJLO6/+VLbMJrOKdyO/2GHomoZNXKoGZ0ebscE9b3rUkQP4fRQ4q1y5jnfbF2vgBX1AJR3etDilIl0TrzPH3/zNmwZSOIr974kbjfYES1byOJ1cYq6fei6jgMjhhNvdbe78EnbvxxvRcfg54csBxxt85Mzxu2SkSA+d+1Z2HN8Eq9QnHVMc/KDGy/Ar184idefsWyhnwrDMAyzgIhFKAXjPErEW7HTg2EWFC4yX6LIBdgAsLLLGBKMpnJCpHB2etjjreTHchuOqnFZTvFWIl6hUIKu290e8oV4SLkApkXQbkW18vNShR6VaMh6PLmw1Sv0OoQa4PTwSkQuMg8FxKpIHlQzhFpkXsmZJZwe4YD0ueZ4q/lEfr1ribYC3IvM64HefxomOkX+qYL3+Iwx/IyF/Ni2ogMA8OyxybL7NRI6PgxIokck6MPGvoTk9CiUHVcA6zPQ12bcVxY9XhpO4fJP3IWrP3ef+N4R0+XRFQ+1pNVczhSWRQTqeZCFoKgS70Oo5fEydNt+8/1I54u4/msP4erP3487nxtyvd90toATk8aA/tiE3VlSzXVgddc4P69ppVy4KTs9XJy26mdXFQVFp0fKrdOjAaKHTci1f+Zon3RSiot6wxnLcPqKdrEoBjDEOHUhi1dBRi0yH0vnxXa6qkKvj+X0sOKtSGh5/rgletBjkdOjPRrEmp44XnnaYE0uP2bpMtAewVvOXln1GoVhGIZpblTnbYrjrRhmUcCixxJFHliEAj4x9BlLW50eTivhZDcFlZeK1b75EgrFUllEQnmRuXF7v08rK1cGrJXphCx6yBfAmqaJCIN01n2QIuKtgpU313DAjw+9cjNuuuIUW1mnVygGoREX+l6RL5Js8VY8qGZMVNGjUmzVTF52etiji7ySLRQdB8xMdYol3TZ4rFX0CDZQ9IgoA5iEg/tNFbzH08bgriMaxKaBNgDAHmnANxfIRebEpoEkAn6fENjzRd1R5CNBh+IEJ2asAf13Hj4EADg6kRHb8yGza2Up9nk0Aln4ks8hrtjSj6vPWoE/uGS9+F7MxWlUqch8yowCon6WYknHE4cnAABf+vVLrvc7ZsYNAeWDeeE6cDkuR81t2M2BMq30jDSj6OEWb/Wc8tlVX8POGHV6OMdbhQKzH9pX2qfJn2/A2F+GHBzFy9ojNhFEfdxKqEXmB0ZSAIDB9kjF2D46V56UnB7keEtJUVzUY0OOj3oW3DAMwzAMs/ShOQ6dj1EnYT2x6wzDNA7+BC5R5GF5WzggXbzm0RU3Bg5O0SqOTg8ajhZLeNsXd+P4RAa333SRWOmpiijLO6K46szl6EtGxEo2+WI6VyjZLkjlyCtViImF/JjOFpCqUHgqisw9rOz7/YvWV72NG8Lp0YBIB6/ITo9EWOph4E4PxqRoDmz9Goke7mX3cqdHta4eJ46Oz+DKT96N124bxC1Xb5vV825FVFdN7aKHdfvIbOOtFJHY2elhj7eigXN7LIQtg4booQ5OGw39brkHaY0ZOyPn+k9nC2VDSjo29CaM+05KA/P79o6If6dzRcTDgSVdYt4I5NXyaqH1P791u+22bvFqlYvMjeN4XzICYML2s0qOoaOSu2MirYgeVTo9qjk9UsqCinoWRCx21AxpggTLN5yxDMPTWXzg8lNsPxdOj7Sz0yPkn/3Kddk5qwppasZ1LOh3dEcMdkQR8PsQC/lFT4xTfKsTUWX7oGirSi4P+bmSaObzaXjFqf34x58/Z7ud6vSoJ1qVYRiGYZiljzgfKyidHix6MMyCwp/AJYpagN0VtwopC0VvTg9L9DDt/7kCnjcLGn/y5DH8x/37sWUgaTk9TBFF0zR84m1n2B5X/l3qasOcuID2lV3QxsMBYCpbNpiQ8RpvNVvUUvb5wN7pEeBOD6aMYlEpMq8gjIlOj7C/ojjixuOHxjGdLeDB/aOzes6tiuqqCSyg00PdXzrlyYYVYWycRI9oAJsHkgDmL95K/ntpIOnzaUiEA5jOFjCdKaAnEbbf1/wM9CXtosdoKocnD4+L26WyBUX0aL0Sc8BydwLVj6exoH176UmEMTydrVhkTq9/VyyEkN9n20eNpHKYyRUdxRTZ6TGu9kuYQqJrvFWV7iI1OtNrF8RSwu28gT67r9++DJdt6S+7n7xYRkbEWzXY6aGKlnEl7kreNuRYNRoWtEUCQvTw7vSwd3rsN50ea7rjFe9H/Xe0/fg1Det7E1jXE8e+4ZS43WRG6fRoQicRwzAMwzDVEXHvxRKKJV0sFOIic4ZZWDjeaokSli4eE+GArZAyX7KLFDI2p4dZ6EkXzPKF7z/85Fk8cXgC//3wIRGvU2llXcDvA8331AvvfIWVmhRZUNHpQfFWc+zAsIrM5+9jEfBp4nWLh/3CMVPSIcQrprUhp4dPcVUVSzre8m/34Y49VlY+iYfRUKCsr8ELw2a2eqpCxw7jTmaWTg+182g2qPtLJ6eHcAOZJ+UT5sC5IxoSQ8GRVM7TNvTtBw/iHV9+oGI/kxNC1A768MpTB9ARC+Kdu9aIn9PA0+lxaSBOTo+pbAHFko5fPnsCcsoi2csPj7V6vJXU6VElLlKNEyInjhenR1sk4ChuPHJgzPF+stNjfEYdwFcu1Vbji1Rouwn4NAy2R7BlMOn6/JcqTvFWuUIJe08ai1goqk5FdnrIkYbZKj0qtWDbpynbhN+nIS59Tz4/VWPOAKVPzqvoEaJFPcb2cZBKzHuqOD2CSpG5T4OmabhSKScvd3rwYINhGIZhWhH5fEy+blHPqRmGmV9Y9FiiyAOtRDiArphVSEkiQ9BhSFAp3kpeYTkiZTxXco7IyOq2jHB6ODyftrDxHCYdLnAJugCPVBnSzJYNfQkAwLqeyisAG4mmaWIlYlyKJAI44ooxKAkRs7w/56H9Y7j+aw+Jr4XTQ+70qMHpcXLa+NxX6thh3FGdHrMqMg/Nbn+nrqpuc+r0UNxAotMjFkRbJAAy5k3OVBcyvnbffvz6hWHslmKlqlEwV0IBxt/+uWvPwgMfvswWdUWro9RCbcDatnuk20/O5PH0Ubs7JSVEjxaPt4p6HxqrA2p6Typ1elD/QTIadOwE2b3PeduwOz2c463cFj1Uj7cyntOP3vcy3PmnF1fscViqWBnSlnCxb3ga+aKOtnDAVlAv02EufCmWdPHeGY9juXNniyycxBxee3n1o1x0/o6dqwEAF2/qFd+T92Fe460i5mtDgjQ5PVZ3VXF6mNsvOUt85r78jWcuQyjgE+fD5Z0e7PRgGIZhmFYk5LfOx0j0CPl9c55WwjBMZXhJ0hLFHm/ltzk9RAeHw8AtEQ6gIxZEsaSLVX604lMtICfUeCs3QgEfsoWS7cIbsIYWTqJJd8J4DsPTubKfEVanx9weMK4+aznOWdNZNeu50USCfpE5bxM9CiU0Yfx4S3JkfAb//dAhvHPX6rKInmrQ59LnIHqoUMFqLBQo62vwgnB65ArQdd0xX51xZ7ZOD3u81ewOz+qQ2ClP1jXeKhaEz6ehLRzAZKaAiZm8TYhwgkQJdaV+JWRhNxz0wefTEPY5lx07Oz2M+8dCfsRDfqRyRUzM5MtWiU9nje35kHB6tGa8VS1OD1W0IDdNxXgrcwDs5vTYc9w5Ku3ohCV6qAsgcsXKroOwEl+kQttNMhpo2otOusiWXbb7zQim9X0J1/14JGh9bv5r9wH0JyN4844VVd01tWDbpzlsE4lwACdgHHfkbW7num78+oOXYKA9Ir4nu9W8ulDod6qdHqu7qzg9lFWZdPq6eSCJez54CZ49PoV3feVBsd+jc9h2Fj0YhmEYpiWhWNB8sSQW3XC0FcMsPPwpXKLIF++JSNCKKUjlLJHCQWQI+H249b3no6Rbj1FtEEAXi9Xy6Z0uvIHKTg8aANOwVUXX9XmLt9I0Daur5DzPBT2JEEZTOfQnwwj4NGgaoOvG6/ji0BSeOTaF120bhKZpGE3lcPszJ/Da7YO2fhZmcfPVe17Cl+55CeGADzdesqGm+1K8FX3+5G1EJZ2VOj2C9ugiLwxPGZ/Dkm4MEd3KjBlnZt3pUSEKplY8FZkH7aIHiQUdUeN40h4LCtGjGhRRqHYyVEJ+vdxWldPzns6WPwfZBZCMBoXooT6H6UwBY+m8GFDOt7C9WGiLBBAP+ZEv6cJl6YYqullODy/xVs5OD7dorGPjFeKtqhaZ+1wfO18siW27mUskab8hi4jkmOmOV1450RkPIZWbEQXdHdGgcF81Jt7K2AdqmvM5XEIS4tRtZqXyOa1H9KDOl5l8CVOZvHAxVxU9HKK4iL5kRDwOCX0HRk0HyQKcQzIMwzAMs/AEpVnYFJeYM8yigT+FSxR5oJUI+0Uh5fhMXgyCAi4Xhet6E/bHqiIm0DDL7fEIp1xpwBpaOF2k0iCFhq0qhZIustmbdZXmp685E/uHU+J9CfkNx0y2UMLln7gbALC8I4Idq7vwwe89jtufHcJ9e4fxqWvOXMinzdSAKDvNeF8FT1CROTk9NE2zCR7ycMbu9DA+b1PZAu7fO4IdqzurrtyVxcepTB6PHx7HthXtLLB5RHXV+Gp2eli3b3iRuUO8Ff2OqUwehWJJDEpptXJ7NIhDmKkYPwgY4vS0eXLvRSAhaEjr92muxxfh9HCIt5IF9fZoEMcmMobooTyHVK4gYm0G2yNNGXHkhaDfh69efy5yheqCZpnTw5PoYTk91CJ0wOpVkNF13eb0UAWrbIVFE4C1DdPzyuSLePTAGM5Z22XrJoo38UUn7TfyxZJw6MmurUp0xUMi9g0APnTrk2WPO7vnZrxv0aDf0XHSJr0v1fZ5slDnudPDfMxsvoj9w4bLozsectwfyqjHPJ/y3EmAmcwYLjJykKypIqYwDMMwDNOcOHV6NPP5J8MsFbjTY4lii7cKBUQ2s65bg0uneKtqj+UE5ftXy1AOuXQI5CrkQ/eIeCtn0UN+rGpxHEuVLYNJvOr0QfE1vY5PHZkQ3zsxabw+tz9rlFb/4LGj8/gMmdlC27HqBPCC6vRQkb9PQ8V42C+2o6/eux+/9e+78R/37a/6u+Qun289eAjXfHE3PnHb8zU/51ZFHQjX6vSQ98XzUWS+ojOGZCSAbKGEp49OYmLGLDKPWaIHUF3IyBZKIoZN7WSoeL+85dRwg0SPKYd4Kzn6MCk91wnzOZADcjpTEAXGreryIM5d24WXbeypejtV9KBjdaUic9FrEAnaRBXa9mYc9n/j6bwtmkoWrHRdrxiPCcidHsbtPv6z5/D2Lz2Af7rtObHKLhzwNcS1sFihcytdh3BpiH6eaBWnh5KhKZ+LNTLeym1/Jq+AdHIH2W4r7cO8dnpQN9JMviji1U7pdy52l6nk9AAsETlXKOHEZFZsa6o7hWEYhmGY1kDu9KCFN20sejDMgtO8V4FNjj3eKoCg34ekeUE4ZLomqjkzCPXCdiAZwVVnLhdfk9MjWKXTQ15tKJP3FG/lHIkiR/PMdbzVYoH+zv994pj4Hq0yTHIu5JKEhrP1lNPTEMvvkss+lS2gVDKGg/T4cqcH8ewx5zx9Gdlx9cwxQ3SjHgSmOqrg66+yz1SRB7ORWRaZexE9/D4N567tBmCUTFuD0tpED3lFfS1ODy/RhTToTDl1eihOD8BwU9HgnArLp7NF4fRYw/EznpBFi0Q4IFa+q90ZBWmfZsVbBWxD40Gzl8HJJSK7PAAIwQqw94yF/c4D8YiIaDMe+yv3vgQA+MJd+8S5S7NHC9i6wIoUVWcXMN3okuKvdqzutP2s2jlfLc/NzV0lCxmxKu9TPfFWdBzM5IvYc3wKALB50IvooTg9FNFD3qaeNBeotLKLjGEYhmFaHTrnyRdLwqHOnR4Ms/C0xhS5CZGHRHTxRfY5Wm1Z60UhcdryJD7xtjPEyjyaO1R3ehi3L+v0KFRyelTu9MhKed6tUqpMr9P/PWmJHjTQWStFkzlFhTCLE3r/6nJ6KEXmKroOTOcKtu0hFvKXDZLV4aLKTK4o4rEA4PiEkbOf5u3MM+pQt9bF5fYi89kNzwJ+n81p4jb43bmuC4ApeiiROMmIN9FDLhmvpcg8W6WvAbBWSDnGW0nHFhI9xtNWkfnyDkP0SGULIn5mFcfPeEIe+ibCgbIYKQDYd3IaZ3/0dnzkB0YkEokeqtNjoN14H5yOWdTnQfFZEzN56Ka7TT6XcO30CNif1zKp+JpEvGa/4JT3G/mC8dqJfp4qoofM+y/faPu61ng+J+h8xs3FYXN6VNnnybf1Gm9F2+FMznJ6bB6ow+mhnH/6fZrYN5Ho0eouMoZhGIZpZUSnR7EkHOocb8UwCw+LHksUe6eHsTOlIScNoLzmMQf9RjEyQTtndchQ7fFCLk6PbIVOjx5z0DEynRODDuI/79+P82/5FYDWcXkAzsMdGpbLTo8Xhqbm7Tkxs0PEWxVqFxBI9KgUlTQ5kxermkNmlIv6mTk2kXG6q0AVHo+at2dxzTtl0X6F2kQum9OjASuG5W3ALcN+5zrD6fHQ/jGMmNtAhxl5I9wTipCh6zp++6sP4urP34f9wymb6DHhocj8vr3DuOCWX+G2p4+bz9P9b6WBtWO8FRWZBy3R4+j4jPjMLOsgp0cBB9jpURMxJZ6KHBWy6PG+b/4G4+k8/mv3QeSLJRF9Veb0SBpChFM0FomxWwaTAAx3B4mv8ufHa7zVoPmeA8D9e0cAGBGgzYx8bCCnh9rP48ZJyd13wfrqsWe1Qu+bW4eM7N6oFm+VlPZhXs9vxfZRKOE5cnoMJKveT91m1HgrwHruFEXK+xaGYRiGaV3k1BNyqDe725hhlgKtM0luMuQhkSpS0E424DGaQNM023CMVniqw/dqjydb+mTyZhGz0zC/24xWyBVLmJyxhlqlko5//dWL4utmLTF3wul1yjg4BfYcY9FjqUDD2VqH4ICz0+Pqs1YgLg2IJmcKSJuiBw2OwsrQ/NhEpkxYlDmpiB4kgqRY9PCM6vSo1H/gBAnHQb/WkA4CeRtwircCgK2DSbRHg5jOFoSrj+Ktki7xVtPZAu587iQeOTCGV376blv/kBenx13PncSR8RnhZqvc6WE8ByenB4mIstPj4GhaPCY5Caclp8dqdnp4Qu3koOExbdOTmTyekSLzpqT3xxA9rO2tv72C6GE6Pdb1xMV2QGXmdC7h09zjOmkBCD22HIN2+7MnADS/00PTNHHeUKvoceMlGxDwafjgKzfB59Owrrexg3vaj7nGW8lF5lXEKXunh0enR9ByIA9P56Bp3jo9VJFGLTIHLCGZnB6re3jfwjAMwzCtiigyL+hiQZjb9RfDMPMHfwqXKBFHp4dxkUZDSq9Fj3RfWilJw1Q1PsBppZsM7ejdVjs7DfMjQT/awgFMZQv49C9fwN6T0wgFfLh0c5/oJjGeX+voc5WcHhnJKfDs8eodDcziQMRbzUL0kFfz/tNbtuGjbzoNr/7Mr7HvZAqTmbz4jNAKVfUzkyuUMJLKiUGwitznARixWQAwkysfNjPOqO/vTK4+p0ejcuEj5jYQ9Guu+1CfT8MFG7rxkycN10XApwnhzK3TQ+51yORL+PZDh8TXXorMaUBNt60Ub0WDzmmnTg/p2EIuOBI3OmJBJMLG33FiMoORlDFIZ9HDG3LUUCISLHNU3PrIYdvtSSSNhfwI+H22eDbq9MgVSiiWdNu5xDHT6THYHkF7NIihqSzG03ms6PQWf6bGbsniy9NHjWNkK6yyC/l9yBVKyBeo04PirSoXme9a342n/uYV4v09a1Un9p1MNex5BavFW9Xg9Kin00M+VwaAtd1xV9eJTDysFpmX3yYZNZ4PuWVWd7HTg2EYhmFaFXkBMJ2PNrvbmGGWAq0zSW4y1CJz43t2p4dX+z9gHyrEw85D02oXmULdLtpXk4sic5f7U8TVV+59CXc9fxK/eOYEbr71SdttjoxX7iNoJkIOuf400GGnx9JEFJnXI3qY6oO80lTTNESCfhH3MTljlTd3xo3vOQ0Kj1b4HA1PO8cSkYiq6zq+ePde3PvicM1/Q6ugxpc5FTdXgt6z2fZ5EOT0aIsEK3YiXXPOKvHvoN/qT3IXPex/16FRa7uazORRKrk7igArMm3MXNFfSdQWnR6K6KHruq3IvNN0DdKxoiMaEscyGn53x0OuMV+MnYDfJ45FTvFW97w4Yrv9/uGUuC1gH2APSD0b6rZDnR7LOqKif4K2t1yVcwegPN7KSRxrhTzloBIvSm6ZjipOD8Ausr79PGNfQB0rs6XaPs3u9Kgmelh/S8hrvFXAb/tbvLg86H4yzvFW9teWBVWGYRiGaV3kTg8Rb8VOD4ZZcFj0WKLIQ6K4EkdFxcO1xKPYHs9c4VYWb1W1yNzc0dfg9ACAnoS1ErGvLSwir1oVebh9zlqjZNipE+Kl4catxmTmlrnq9KD4oclMARNKnIlTJBxFyTihdnoQNKD+6VPH8Q8/2YNrv/RADc++eTg8lsatjx4W74cTGaWoPl2jS4b22V5WInuB9uvVVrq/bIOV5S9HELmJHup2LG87um5fbU8USzpuffQwDo2mkTE/D/RSeur0UB4zX9SFGykc8GO1madP7097LCj+7lHT5cEl5rVB22GbVGSeLZRQKuliqE7sHyHRw9hmZNGjv80SPdSIK+r0WNYRQUfUOPYL0cOD04MG9tl8EbquO4oereD0kJ22+WJJiNW1FJkDhtPj1j84Hz+88YKGPK8u83zOTUSppdNDfh+9xlv5fBr+9bfOFL1121d2eL6fTJfDean83DWNRQ+GYRiGaWXkBSjTotOjdSLaGWaxwqLHEkUWKdQic8LrRaF6X7dOj2C1Tg/h9FBEjyIVmTuLJnLczss39uIjr90iHu+du1Y7PpdmZr8ZzwIAmweMVYlO8UgpZaCayRdx397hutwEzNzSiHgrp5WmFOkzOZOXVvYawxmn1fMUJeOEm+iRyhWg6zoe2Dfi+PNm4cnDEzgx6S4KvfZf7sFN33kc/3n/ftfbqGJAFcNDGcFGOz0C1kr9Svh8mtjXDkqr8t2KzFVxR2V8ptw1dNfzQ7jpO4/jb//3GSGkERXjrcIketifQ046zoQDPqzusg8c26PBsmH3yk4eStYCDaHlTg/A2I+p3S0vDRvHLdonyf0MXfGQcIrI732xpIvP3GB7FO3mgJ5iz6q5RAErvihTKGImXxT7y9OXt4vbtMIFpxypIIuU9TibzlrViWVSIfxseOMZy/HxN2/DH1660fHn1NkDeCkyrz3eCgDOW9eN3TdfhluuOl3s57ywzNwXruqK4XcuWOvwfKznftnmPnaRMQzDMEwLE5JST6iLUD7PYRhmYWj+5W9NSjjoFG9lv2AMVungsD2eHJdFxej++pweZaJHVaeHJXrsWt+NN56xHNOZAvqTEVyyuQ9d8RBevrHX41+y9JGHz2p0hxwNIv/70Ggab/3C/Tg2kcFHXrMFv/vydfP0bBkvZGYTbyVEj/LPj+X0yEODGUkUI6dH+e0Pjc7gyPgMlisDraePTuAXzxilv22RgG1Vva4bQ85mjpg7OJLG6z97D05b1o4f/+HLABgxOcWSLgb/NIj92VPHcb3DAAywx8/VA0W2NKrTg/brXkr0/uK1W7GsI2pzfXiNt1IZT+exutv+PeraGJrKisgq63m6DzBlN5OM/FkK+X0Ix4xeD7pdRzRYFmu0orMxg9xWwRI9grZtciZfFNtETyKE4emcFG9lvF9xaYDdEQsiGjR6w+RtZ3g6i3xRh08zXJ4UxUSimSenh7mN54u6+Iz6fRrOW9slCqZb4YJTvtCm1yEZCVTtYptroiE/3nr2Stef2+Ktgt6LzL3GWxH9yQiuOXdV9RtKfPSq07Hn2BSuv2CN4z5ZPie+bqd3MYVhGIZhmOaDFmQUSzomzcVaHG/FMAtP6yyfbzK8xVHV4PQIyk6P+uKtyMmhrmbPC6eH8/ORV/ftXNcFTdPwjl1rcOWpAwj6fXj/5adgx+pOj39J87C2Jy7eZyenQL6oi9f2vd94BMcmjBWzB0fTYBYXjXF6lP/MWolfEINCGhyGHYY0X7n3JVxwy6+wW3JtZPJFvOsrD+LYRAaru2O45pzyAVU6V8ThseYRPVTx6dnjk9B14LkTU9B1HRMzeVz2z3fi4n+8oyyiSh2+y9QTXybT+E4PireqPvQN+n244aL1OE1aIU/bVypXtInZ1Z0e5WXmJObO5AplEUdO2ypBgk2uYB+Y03sY9Gvw+TRomoY1PVaRcEcsWHahsYKdHjVBrs9E2Bie02B9Jl8UcXrrehIA5HgrcnpY5xGRoF9s0/J7Tx1D/ckIAn6fJbKl7fFWlVb1y8NoKpROhAO2GCO1lLoZCfplp4d5LKhSYr4YqCXeKhr0CxGnFqdHvVyyqQ/vvXi9qwgt7xMvbKGFOQzDMAzDlBOUZmfUW9gKbmOGWeyw6LFEoWF40K+J1bzlxeO1OD3Ki8xrjbcKusVbVVmtKQ+CeSgFfOW3z8ZZqzrw5XedXeb0UIfmNASUS83VInlmYdF1fXadHg5F5oQoMs/kxaCww8Hpoa72vfXRw+LfJ6eyGJ7OIRTw4Uc3vszxM5jKFmxOj0Jx6Uao/fF3Hsd5/3A7nj9hfWYOmUJhrlDCeDqPj/9sD05MZjGWzgsxkVBjlmSqiQHVuGBDD85b24VrznVfGV0LdGxI1rnKSB5IyhFXtN9x6wtQ+x4AYHjK+F46VyxzilSKL0qEAiKPX3Yg0WdJvi/1ehjPLVQWb8VOj9qIhuxOIRLRxlI5ES+2rtd4zelzQi4yEkxIhI2YjyXHW9F9KEqJzj0oulEuqndD3s+R6NEWCeAMSfRohXhMuVNtXDkWLGbkz2g10UPTNLEt1rKoZ674/QvX49w1Xfja9eeUdYAwDMMwDNNayLO3sZTp9GgBtzHDLHYW/qqBqYuVXTFsX9mB129fLr4nuzUAIFBFpJAJSfFWcYd4K00rL3YsfwyXIvMqudzvOn8NlndE8ZHXbPH8fJuZSzf349Y/uADrehM2p0ehWCorUZ7JG98vSN/PVomeYeYXuXB5NvFWTk6rZFTq9JhRi8ytz9uG3oTtfrc/OySEC4qp6YwF0R4LOg6extN5ZeC8dEWPO54bwlg6j5tvfRIl87WVXSy/3DOEbzxwUHytFmir/RYys3V69LVF8N+/vwtvOGN59Rt7gI4JXuKtnAj4fWIoOenw/g+2O4sITq+R5fQoOjg93I9VPp/m2OvhJKbLvR5OnR4setTGq04bwMquKM5ba2SVkVvjuClWBP1a2Wu63tzXbF2WxMa+BF6/fZntvk5OD+qRIZGFxMMpkYfsvv36fJrY19E2lggHbM9reMq5r6iZoAvtXNESPehYsJiRI+iiVUQPwNoWalnUM1es7IrhOzfswsWb+hb6qTAMwzAMs8DIC4Rp/sXxVgyz8PCncIkS9PvwwxsvsH0v5Fc6Pep1ejjEW1VzeRi/39npUa2MdG1PHPd+6FLPz7WVkJ0e8qDZpxklyZlcCbmw4v6Y5eCVaSzyIHw28VbVnB40BG43i8zlz+/OdV2YzOTRn4xg/0gKo6kcHjkwhvPWdYsBNT2W04Dx6aMTtq8z+WJZX8Ji5o49Q/jC3Xvx9288DaMpw3HwyIExfOuhg7j2vNU20UN2wQDlA/xK8VazdXo0Gtqvz+aEuz0axHS2YOv1IKdGTyKEgE8TomvI77MNXWVoIJ3OFctciZWcHoCxbU5lCo7Ci0306LZEjw4HAa9R5cytwvUXrLX119Dx6LhZPt4eDaFb6uQCgPV9hvMjEQ7gFzddJL4fFccyd6eHKoxQNEBXvHJMUyToR7ZQEk6PZCQITdNw7Xmr8D+PHsYbz2yMiLiYkZ22qgC+mAkFfDhjZQdGUln0tUWq3t7ojJlpCfcOwzAMwzBLB59Ps10XAYZjnWGYhYWvGpoIdbVsLZnH8hAq5hBvVa3PQ769upqdhlNBvkitGdnpIQ+LaJgxky+WlScvtsFrqyMLHfU4PejEycm5lbR1eqjxVtbAd1lHFPf82aX43g27cOlmY1XqDx47atzXXD1PjxVzEDOeOKKIHkvM6XH91x7C7n2jeOsXdtu+f8tP92BoMoPDY1YPzqMHx2y3mcoUhCOE0HXnCDkSuM5d2wUAuG5nbcW5jYZW3Z/S31b3YyQdysxJWI0G/eiUBtLLOoyhpXOnhzHAnskXka7B6QFYThXZ6UGfK3k7lzs92qPG4FumUQXxrQqJEidM0aMjFiwTJKjjo+y+oXKnx7EJxelBwogZgUUCZWdV0cPu9KDt5e/feBoe+8srsa7X+Tk1E/L518TM0om3AoD/ee/5+OVNF3sSMtqE04PPJxmGYRiGWVyo5yet0CvHMIudmq4aPv/5z2Pbtm1IJpNIJpPYtWsXfvrTn4qfX3zxxdA0zfbfDTfc0PAnzTijrpb1IlQQ8uCIFGlZCAl4yCumnXyuzOlhrQJmaoPeA9npEfL7RF76TL5Y9nqrefnMwiKLHoWSXnMfRqlCkTl1NUxm8sKRIEQPaZCciBhFxAG/D6/bZsTNfOvBg/irHz6FyZmC7bHiDhEjTx4ud3osRWiIurYnjm0r2jGVKeBv/vcZHJGcHqpoOJXJl7mnnJwMAIQA+TsXrMFdf3ox/vb1pzXy6dfMey9ajzv/5GIRMVQP7WaEmt3pYfydkaAfXVJZ8nIzUkh9fXRdx8lpK2JoQhFF5OOPE5boYTk9HOOtZKdH1D4o55Xhs4fEBYq36ogG0ZOwXufueMhVoCDBaSZnfb6GJo1tYiBpiB60zxJOD/Pz2lWlkJsem7YxcjZpmtYyQpfstJ0wHTLqZ2Cx4vdpnj+fq8zPeH8yXOWWDMMwDMMw84uctBIN+hdFBxnDtDo1fQpXrFiBW265BY888ggefvhhXHrppXjDG96Ap59+Wtzm937v93Ds2DHx38c//vGGP2nGmdl0esj3pRWZskjhZVVdjxlzceujR/Djx4+K7+eocJaHTjVDA5tsoSStbPZZq2ZzTk6PpTmQblbUjhVVpKoGFZn7Kzg9JmbyVnmtOeiyR9ZZ7o2LN/XiT1+xCZoG/Mf9B/CbQ2O2x3KKrXru+JTt66W+ja3ojOIf3nQ6fBrwf08cw1S2PLJqZZcxwJ/M5JHO2f/eE1OZstsDlgMiHPRjdXd8wcttfT4Na3riZY6HWqD9+p5jk+J79P6HAz50xq3V5MvMjg9V1JjKFmwuJ9Uoo8ZdqYgYN+lxnbqiehNhdMVD0DSgv90+FO1cIqveFzNqvJXh9LBe5/V97o4Kp04PcpmRc1GNwBo192lVnR6maCYXmbca1qITvcz110z8xWu34pu/ex4uPoV7NBiGYRiGWVzI866lFAXNMM1MTVPo173udXj1q1+NjRs34pRTTsFHP/pRJBIJ7N5tRYbEYjEMDAyI/5LJZMOfNOOMulq2nk6PkN8ndta1xlu96czluHRzH7KFEj74vSfE4IKdHvUjx1tlpYGqPBxSy5M53mpxofZ41BpxVazo9DCGWlOZgojBogGi/HmTT7o0TcONl2zARnNASYIGPVbcIXu03E20tLYxVXtY1h7FacvbRQyVE6cvbwdgvLYziuhBK91VSICsNsRfSrz69EEAwHcePiS2XRLyIkE/uqWhd2+b8W91n1StSLra61XJ6SEL9pqm4cvvOhtfeufZZf0AnVXcAkx1IkqReTIaRLfk9FhfIUbKqdODXGZt5r7HisAy3lvh9IhXHt6TA4VEj0S4+Yb91aD40HyhhLElVGReK+3RIM7f0LPggjLDMAzDMIyKvFC4FRfhMMxipO7JTLFYxLe//W2kUins2rVLfP8b3/gGenp6cNppp+Hmm29GOp2u8ChANpvF5OSk7T+mPlQnRS2Zx3RfOXfQJnp4cI1EQ3586Z1nIxL0YSZfFLnfTjEkjDeE0yNfEoPmcMBnWzWrDtW5yHx+yOSLGHJZ8S+jvj+1lplbooeT08N+MhUK+MQAUF7dT8NoGRpWvzScsj2Wl+xR1b2y2BlstxdYD5rdE1duHXC8fSzkx1qzH2IqUyh3ekxWdno0U6TOFVv70Z8MY3g6h58+dQyA1ekSCdqdHlRqrTqBqM/DjeqiB4l7cqeH6SBUjnNnrurEZVv6yx5j24r2ir+DqU5UET06oiG0hQNigcX63rj7fSV3IkHvJ10URlSnB3V6eI23amGnR0iKFx0y9099yerF4AzDMAzDMExjkOdvCXZ6MMyioOYp9JNPPolEIoFwOIwbbrgB3//+97F161YAwNvf/nb813/9F+644w7cfPPN+PrXv47rrruu4uN97GMfQ3t7u/hv5cqV9f0lTNngqJ5Oj5i0yjvktwZ3Xh/L59PQb15onzDzummVOBdP1g6tYs4WimLQHA76EJHjrRSRQ427YuaG1/3LPTj3o78UZbxuqAJBre+PED0cIorCAb+IYQKMjH1Z7PjbN5yK379oHbY7DHy7zBXatCpYOD0qnKD5zdW1S01Yiyk9JRTDdMVWazguR8Gs6opZkUqZPNI5e/wV7dtUmtHpEfT78FvnGoXs3334MABrKK12elC/g+oEGp6u7PSoJoi3ie6ayp0eTnzjd8/DVWcux5+/emvF2zHVIUGV4uA6Ysb+hgTUSk6PiBJvVSzpSJkCCL2/qhtkLE1OD2+iBz1eshVFj4Cxb84XSiJ+jHsvGIZhGIZh5g97vFXzLIJjmKVMzVeGmzZtwmOPPYaJiQl873vfw7ve9S7cdddd2Lp1K97znveI251++ukYHBzEZZddhr1792L9+vWOj3fzzTfjpptuEl9PTk6y8FEn6qCtFpEhXNXp4V1A6U9GcGAkLS682elRP5RVLheZhwN+RKXCV+70mH8KxRJeGJoGANz34giu3rHC9bZl8VbF2t4fy+nh/BnctqIDh0YN4UXNcH/nrjWuj9ujDBKp0yMc8MGnASXdGELKGfwrOqM4MJJecvFWajwXOT1WdlnF131tYdGLsqY7LtwFkzMO8VZuTo988zk9AIgYMPq75b9TFpSo/2OmzOlRLd6q8utF2+ak5PTIFbwJTBds6MEFG3oq3obxhrpd0/7md162Br9+YRg713W73lft9JiWBCz6rMnCiK7rGPHs9LBvA4kWFD3ofG86WxD7sQF2ejAMwzAMw8wbdqdH88WMMsxSpOYpdCgUwoYNG7Bjxw587GMfw/bt2/HpT3/a8bbnnXceAODFF190fbxwOIxkMmn7j6mPMqdHDUKFJXpITg/p8WoRUOhC+8SEXfSopWOEMbA5PaRIGVunhznQbTPfOxY95p7DY5a7oytReSBXFj9Wr9PD5fN8xooO8W8qMfeCXEAMWE4PTdPEfmCg3T40I4fEUtvGVGFQjrv617efiYFkBP/45u1iH7W6Jyb1SOTFCnLihFunh8dB/FKDRAnal8tRe7QKPyoJIGXxVnPQ6SGLwMz8oIoe1BnxngvX4+vvPk9EWDkRDRnvccb8LJGAFQlaPWJyBFY6VxTbm1enB9HWgheZFG91aMyIlA0HfE3Z6cEwDMMwDLNYCUnzrgQ7PRhmUTDryUypVEI26zzQeOyxxwAAg4ODs/01jAfKi8xrcHqYQwO5xLjWInOCBqW0KnjcjKhI8gV4zZDTI1/URcROOOCzDYdooEuvb62dEUzt7D05Lf5drZhcjR9TXQfVKOruReaAvaugls+YKtbIAzLaD8grhTtjQSGGzKfT48GXRnHNF+8Xhev1oL4Hyzqsv+u125Zh94cvw/aVHaL8enVXXLyWRqeHPd6KYndkdF2XhMnmOsklUYJeR9npQavw4+GA1Mlg3z5OVun0qB5vVd7pwQ7C+afc6eFdZI2a+xRyekyKPg9rvxMR21kJI+Y2Ewr4yuLpyp6Xcu7Tik4Pct08dcToxRtoj9iiDhmGYRiGYZi5xeb0aMHzUYZZjNQ0Lbj55ptx9913Y//+/XjyySdx8803484778S1116LvXv34u/+7u/wyCOPYP/+/fjRj36Ed77znbjwwguxbdu2uXr+jMRsOj3Wm6W9G/qsTO6wX4638r6p9JmlyccnM8hJ+dIrOqOV7sY4EJZiOyZnjCFROOC3xYDQIJKG1oWSjkKNg/XFgq7r+Pv/fQa3Pnp4oZ9KRWTRo5rrQXUZ1NrpUSi6F5kDwGnLLdGjFkGlPN7KOjHb2J+A36fhdElQ6UmERYyMKiLMJd99+BB27xvF/z1xtO7HkIXAjljQ1l0kQwLSmas6pB6JvIi3or8/lS3/++Xf0WxODxIWSGiQxZ2N/QkEfBo29iXEfkntsZl1vBW9FzNSp4e5ratF5szcMaB0RNTiJFDjrci1I5eOy04R6krqioWqDu/VeKtWLDJfZ/apHBw1nB79bRxtxTAMwzAMM59wvBXDLD5qujIcGhrCO9/5Thw7dgzt7e3Ytm0bfv7zn+OKK67AoUOHcPvtt+NTn/oUUqkUVq5ciauvvhof+chH5uq5MwrqitdanB7nb+jB3X96iW0FtD3eqnanx9BkBscnMijpxhCwN8GlmrUiDwMnhOjhsw2QaAApD6AyhRISS2AYmM4V8MW79+G125ZhQ18Cu/eN4kv3vAQAeNOZyxftStW9Qynx72oihuq8qVUwKOnuReaAPZLu4EjK8TZOqJExSWnF9b+/82yMpnK454Vh8T1D9HBeyT+XkKuCtn8nvv3gQfS2hXHZln7Hn8vvwSn9ba6P88m3nYEPvzqLlV0xvDhkOEsMp4fxnvW2hXFodAbT2ULZfeXf0axODyveyhKBBtujuPuDl6AzFsL4jPFeqUX3Y2Y3Q8jvcxTmwkGPTo+stQ2IeKsq92Uax+u2L8M//HSP2A466hE9KN7K/DwnbU4P63Nz1BQ9OqtEWwEcbwXYF6wAQH87ix4MwzAMwzDzSTAgix7NdT3IMEuVmkSPL3/5y64/W7lyJe66665ZPyGmfsrirWpwZwDAqu6Y7WtZ9HDrE3CCInGOT2Zw2MyXXt4ZXbQD7MWM36ch6NeQL+qYNFfGhoN+e6eHOYCSV7dm8kUkwot/tetHvv8Ubv3NEfzo8aP41R9fbHNNnJzKom+RFrG+KDs9qogYZfFWNcaPVev0AIBTlyXx9NFJXO4y9HeiWxEh5WisSNCPZR1RxKSTtZ42y+kxn50eY2Yp72SmXGgAgKeOTOBDtz4JANh/y2vKfl4olsRr+MV37MAZKztcf1ck6Bfl5jRon85a8Va9CUP0SOUcRA/zNfFptfUpLQWE08MULDLk9DCPOcs6DBdftmDF8RWKJQRM4ZWijPqSYVsfjnj8KgJt0rHTo+jpvkzj6E6E8cpTB/Cjxw3XFUUqeUF0elRwevh8GsIBH7KFEo6OGw7Rrnj13yGLHpoGdHq4T7OxujsGnwaYu7oyVw7DMAzDMAwzt9g7PRb/LIZhWgGeFjQR6orXWuKtnJCHSbW4RvqpyHwyK0o1V3TGKt2FqQCJWbQyNqJ0euSkqBlakb1UiqZv/c0RAMC+k4ZDYUZ63rKwMF88e2wSR8fLh7Iyuq7jxaEa4q3KnB6NFz3+43fOxUffdBref8Upnh+3W1lB7RQJI2fpd8dDYlusJvQ0EnJ6TLo4PZ48MiH+nckX8ciBUdEjBNgjv162scezkEYr0IslHcNmv0CvGd2XquD0CAf8TSfw0rEgX9RRKulC4FFX2MtfZ6TtnGKp+l1ee89Oj0wBuul84k6PheHa81aJf8t9HNWIlMVblTs95NsdMffDnR56Q+R941t3rKzpeTUL4YAfq7qs8yy3zxrDMAzDMAwzN9g7PVrvfJRhFiM8LWgi1BWvsxY95CLzGlYu95krDHOFkhhIcp9H/dDqehFvFfQ5dnqEA74FiR+qF7l3hLYvOcJo79D8ih6jqRxe/6/34LovP1D1dvLzrPZal3V61Cp66NVFj55EGNeet7qmFSXt0aB4zFjI7yhsyt0XvZLTo9ZektkwIZwezqIHuckA4M7nhnD15+/Hn3z3CfE9+bnW4gqIBH1iuxyaMladk+iRL+plDh458qnZCEtiRq5YEn+rKlbIXSayGEgD7gE30aNap4fZN1Ms6SJqjGKSqt2XaSznrevGP79lO774jh01OUDVTo9JB6eHfLtjpuihxvA5IX/mbn71Zs/PqdlY32tFXA1wvBXDMAzDMMy8Yu/04GsUhlkMNN90poVRB1C1xlup2ESPGoaF4YBfDCoe3j8GAFjJTo+6oaHehFRkbg2QSmKoa4ghS8fp8dTRSfFvEsVsosdJ7/0UjeDYxAzyRR2HRys7PfYN259XdafHLOOtitVFj3rw+TSxilpdbU3ITo+eREjEGdW6feUKJQxPZ8Wg2iu6rmPc3CbkEmuZ545b4tijB8cB2IvmSWQK+LSa9mOapomB7IlJo4i7R4oEozLzQrEEXddtTo9mQxaLsoWSEPoiyt+qaVqZ26xQLCFlvu/y6nO5J6qaWyMa9Ivtf9TsB3n2uNG5srY3XvsfxMyKq3eswJWnDtR0H8udaGw7wumh9ILQ7ax4q+qix9VnrcBVZy3Hd2/YhQ4PzpBmZb3U68FOD4ZhGIZhmPmFi8wZZvHBQXNNhDyY8vs0+GY5JK23yBwwLrhHUznsMQdT7PSon7Dq9JDirTK5om3YSk6PWsuyF4Ld+0bEv6fNAbJd9JhfpwcN5HPFEnKFkusgdmQ6Z/u6mnNjtkXm5PSYi56I7ngIw9NZsZJeRXZ69CTCQnioRfQYns7itZ+5B8cnMwgHfPjeDefj9BXtnu47mSmIeC83p8ee45Z4RjFpw1NZ8T3ZCVUrbZEgxtJ5nJg0BrCJcEB0DqSyBSTCAVz5ybvQFQ/hw6/eAqA5nR7y/j9XKIl4M6e/NRL024QRuYejX+oZ6IqHhJhU7b3RNA2JcAATM3m8/ON34P+7bCOeNUXT7R63JWZhkXuoAKnTQ3Gn0bZwtAanR3cijE+89YxGPdUlywbZ6cGiB8MwDMMwzLwSCkidHg7R0QzDzD/NN51pYeQIkkYMSGURJVCja0Qt0WTRo35Ep4c59I0E/baoEFu8VWDpxFvZRQ9azb9w8VZyn0jaoaiamFb6HOba6VEwh/6zFTGd6E7U4vSQi8y9/w1/97/P4LgpGmQLJTx8YNTzfeVuDqdOj8lM3laM/dKwsc1MZQvifRGiYLB2BwaJQSR6xEIBESGWyhVwcDSN/SNpPHpwXPQXNaPTQ9M0IQJmC0Upyqv8b1XdZjTcjoX8tq6F7rh1jPDSyyF/Jj/zyxeQK5bQEQvaegyYxYt8zNJ13bHIHLCcHlPmftZLpwdjsL7Pcj31cZE5wzAMwzDMvMLxVgyz+GDRo4kI25wZs39rw7Z4q9oGrttWdNi+5iLz+hGdHmnL6WHv9LCcHuElFG91cNTqYsjkS8gXSzanx9GJjGNh9FyRlqKXUhVimKYVx8Fcd3qUqMh8DsqxaRW1GjFDxGWnR1tYCAeVisyPjM/gXV95ED987AjufXEYP3zsKDTNWpE/lsq53ldlLG291qlc0dYDAwDPm04yQt6mhqcNF4GIf6vH6WHakvNmxFgs5EecRA9JWAGAXzxzAoAlJDUbYSF6WC4OpwLyqOI2I7G2LRKwiWjy6+TlvXn99uVQPwLbVnQ0XWl8sxIx3/tiSUe+qEvbhRJvpQhpXpwejMGWwSQGkhGcs6azKcVXhmEYhmGYxQzHWzHM4oNFjyYi4NPEUGi2JeZA/UXmAPB7F66zfd3TpIPA+YAGglT8KsdbzeSKwjkQWmJOD7XfYTpTsIkeAPDS8Pz1esjPp5LYUub0qBJXNdt4K3J6NLrTA7A6KpIu9ttEJID+ZBg9iTD62sJCbHMT1XRdxzu//ADuev4k/ujbj+F/Hj0MALjmnFW4aFMfAGA0XYvoYb+tHJUEWL0OBIkTADBsxpDR6+3FTaDitAqdRI/pbNH2fEj0UAXfZoH2Q9PS3+zs9LB3N5BDJxkJiv0WYO9H8VIw/09v2YZn//aVeNVpVpcER1stHWQxYyZXFMezsk4PZZtip4d3YqEA7vrgxfj2e3Yt9FNhGIZhGIZpOWTRI85OD4ZZFLDo0UTIJbK1xlE5UW+ROWBk33/mt84EAJy1ilfjzgZ1xWZYirfK2JweviXl9JhRnuNUplAWYbR/ZB5Fj7xX0cO4HcUcZT3GW1F2fS3xVuTyAOZG9FhnlkC7RQT5fRp+9kcX4rYPXIig34dIoHK81f8+ccxWQP/LZ4cAAK86bQBdMWO4OZZy7uZwYiJtv63a6/HCCbvoIUO9HrlC/U4PdSAbC/mFVTmVLdgEMBJczljZnIN4Eibk90AtMgesGDHaB8nDbdk5tLIrhlDAh8H2iKfjg6ZpiAT9eMWpsujRUfsfwiwIQb9PHLdOTmdEkbkqLKpCGjs9aiMc8M/JsYJhGIZhGIapTEhaeCxf9zAMs3DwJ7HJCAf8yORLNRePOyGvvg3WcRH9+u3LsKorhsF2LtScDWpZcDjgs3d6mMPFcNAnFZkvfqdHWnF6TGbywunRnwzjxGQWQ5NZp7vO+fNRn5sM9Y90J0KYzhaqx1uZ70UyGsRUtlDTe1OYY9HjmnNWYU13HOes6XK9Tac0dKy2fX3zgYO2rydm8gj4NJy9plO4NkYd4q2Gp7O454VhvPK0AdvQU3V6UJE68aLZ+7K8I4oj4zO2n4l4Kyn+rVY6HEQPy+lRcHTANa3Tw3xf6D3waXA8zghhzCHeSnZ69LWFcet7zxfioVcu2dSHcMCHkq5j+8qOmv8OZuHYuiyJRw6M4YnDE2I7qiZ6dMQ4GoBhGIZhGIZZ/JDTIxEOzEkfJ8MwtcNOjyaD3BmN6PSYjdODOGNlB/qTLHrMBnVYGwn6EQkZ78dMvoiMNNStFj+0WCiWdLECn1byTmeteKsNfQkAwNDU/IkeM1JRshphJUPxPhTPU7XI3BRFaLindnxUoqTPregRCvhw4Sm9tmF0JYTo4fI3n5gyCr9PX265Hbav7EAsFBDvsypkAMDb/3033v/fj+Fzd7xo+/5YFafH3pOG6LFjdWfZY1qihykK1uH02DKYtH0dDQaE6JFWnB6AsU00q8hLIjit0I8E/Y4ODWsfVB5vJXd6RIN+nLa8HWt64mWPUYn2WBDf+N3z8LXrz0VvG5c1LyXImfP4oXGxHSXVTo+QFAsQ8jtGqDEMwzAMwzDMYiNoXm9ytBXDLB5Y9GgyRLxVozs9GvB4TH1UcnroujWEDAd8ZausASM/nQbAiwU5SqrPHFxOzuRFFM6GXkP0ODmfokdednpU7/SgnprqnR7Gz2m4lyt6Fz2KktOj1l6duSBSJT6NXByv2TYovrdzneEioWx+J6fH8ycM8eJnTx+3fX+8zOlhiR5TmTxOmE6gs1Z1lD3m8HQOh0bTFUu3q7FdiaqKh/2Im4P7VK5Y1jFyxsr2po3yo+MBCZNuw2h1G5kS8Vb2IvPZDLPPXtOFCzb01H1/ZmGgz9ND+8csB1yFIvNOjrZiGIZhGIZhlgiy04NhmMUBix5NBokewUZ0etjirXhTWSjKOj0C9tWv1HsQDvjKVlkDwLVf2o2X/b9fOQofuq7bBuvqz3Td+WezhUQFTbMcEycmM+K5bOhvAwAMmc6B+SBtKzJ3FzKmypwedhGjUFSLyxWnRw1F5nK8lW8RDNNpW8w4xFvliyWMm9viK08dAGk0O9d1A4DN6eG2XakD0EpOj31md0hvWxiruss7Sb523368/ON34F9+9YLtudfCup6E7aQ1qsRbqc6TZo22AqxjC/3NERfnjOo2s+Kt7EXm8op+pjUgp8czxybF9xIV4q24z4NhGIZhGIZZKlCnRyLC8awMs1jgqUOTETIHe41wZmiaJoQPdnosHGVOj6APQb9P5OmPmyuvQwGfuC3FD2XyRfzm0Dgy+RKeOjJhe5xSSccN//UIzv3o7RhzWH3/Nz9+Bmf93S8wNNl44WHGFBiiQb8QAw6bnQwhvw8rO6MA5tnpkfNaZO4eb7X35DR23fIr/Ol3Hxffkzs9gPqLzBe704NiqzTNKKn+w0s34nXbl+G8tYboQU6PfFG3xULJAohaHE5OD4r2mpCcHhRttb43jvao+3CUitVDdUT0+XwaNvYnxNexUECIIKlsQUSdnbosiV3ruvGWs1fU/DuWCuT0oC6GsItTI6qIHsLpEQkiJhX6cWxR67G6O4Z26TMeD5WXbsvbBe0zGIZhGIZhGGaxQ9dLCY63YphFA4seTYYVb9WYt5Z23Ith4NqqlHV6mF/TcIgGw06dHi8Np0Az5YOjadvjfO+Rw/j50ycwksrh2eOTtp9NZwv45gMHMZbO4/HDdrGkEVCUVCwkiR5jhuiRjAbR12b0IixUvFWqYpG5KXq02Z0euq7jDf96L05OZfHdRw6L21vxVuT0qK/IfDGUocnbl+rWoNiqrlgIfp+GD1xxCv7lt84U+5BoyC8G4nLE1aQUEaWWGpOQsqzD2B7kInNL9Eh4KjuuJ94KADb2WaJHNGh3etBA/01nLse33rMTg+3Run7HUkCNt3LrSHHt9IgGbNFFLHq0HpqmYctgm/j6si39ZbeJstODYRiGYRiGWYLsWN2FgWQErzh1YKGfCsMwJix6NBmiyLxBA9JQg0UUpnacnB6ANRyiuXg4WB5vRYNhANg/bIkeE+k8PvqTZ8XX+aJ9gH3nc0Oie2JmDkrRKUoqEvQjETYG1kdM0aM9GkBf0hAURlI55GvowGjEcwKMkmo3aHV/r9npQa6a7//miGMBulVkHrR97QUqMl8soiMJbiW9fJsZmTZFjwqDSvqZLHrITiI1aY3islZ3GWXXcpzUi0OW6CGvHm9zyVCtp8gcAE7pt4a0fp8mRI+UVGSuijXNCDllJjOVOz3CihtIjrfy+zTxPkRZ9GhJXrttGQDg2vNW4Z/esr3s5+z0YBiGYRiGYZYiG/oS2P3hy/DOXWsW+qkwDGPCk+wmQ3R6NMrp4Wenx0JT3ulhrZxXvx9Wisz3DqXEzw+MWP/+zaExW1SQGrl029MnxL8zuSK++/AhfP7OvQ3r+KAoKdnpcWScRI+gcAsA1jB9rrHFW1UoMp9S4q3IufHLZ4fEbeQoJSveynR61CDikNNjMbg8ALtbQi1wH0l5Fz3GpILy45LoMaO87iR6rOwyOjsmbfFWxva8vs8uemyQ4qhsz72OTg/AKmUnxwfZlVPZIqakgX6zQ3FWk6LI3MXpIXpf1HgrY/vf2J9AJOjDsiZ2xTDuXLdzNZ7+m1fgo286XSyqkJG7Xrrizf+5YhiGYRiGYRiGYeaG5l+e2mKEG9jpAUjOEXZ6LBgru+zDQXqP1ZXSTvFWstPjgBRvpToS5HLtXKGEO/ZYA/x0roC//vEzAIDTl7fjZRt76v5bCNHpEQoI0YOirNqjQfh8GnoSIZyYzGJoKoOB9sisf2c10tLA3a3IPFsoCoGIRI9csYRiSbdFceWKJeSLJQT9Pineipwe3p0z1OnhXwQl5oAhrGkaoOvGNiYXj49MG38/vS5OdAqnhyVeHJ+wRA/ZbZPJF8V2urbHFD2kKCxyBq3qiiHo9yERDmA6W8C6ngR+c3Dc8bnXw2B7FLtvvgxxU+ygXopUriC244SLu6SZsJwexnvg5vQoi7fKULyVsa18+z27kM4W0O4hkoxpTuIVPi/yca2T460YhmEYhmEYhmGYOuFJdpPRcKeHiLdaHEPXVuSKrQP47fPXAACCfk2IBDEHp4c6cKQIIMDo9KAhulrULUcu3b9vRLgZAGBC6lG47ZnjNT//TL6IH/zmiC3SKJ2nInNfWTQQrdqnXo+hyfnp9ZiRXoO0i9NDFkO6EtZALlsoYnja/jzTuSKKJX1WRebk9FgsTitNs+KJ1JiuUS9OD3PQPSZtCycmnUUP6nhpCwewotPu9NB1XTgJ4ubngLabnoTz73daVe6VgfaIcHPIRebkYmiJeCul0yPi4pxRy+6ph4WcHolwAH3JuRcxmaWJLKZ1cbwVwzAMwzAMwzAMUyfNP6lpMcINLh6n1b1BH+tjC4Xfp+GvX38qLtnch1JJF6tke9vsK+oN0cMaOJZKOvYNW6JHrlDC8ckMlnVExbBW/EyKXLrtabuwMZKyhvn3vDDs+Xk/enAMa7vj+Pxde/HFu/dh+8oO/PDGCwBYMUaxUKAsGsgSPYy/7+T0PIkektDh1M0BWH0e0aAfiZC1+8zkS2XPM50roFjSRZF8f9Ieh+WF4iKLtwKMoWQmXxJDbcJLvJVwerjGW1mPeWjMcCYt74yKbYJcA7liSbyuFLvUEQviyPgMOuMh/PDGC/DE4XH8xQ+fFo9Xb7yVitXpIcdbNf+hNKyKHi7xVlGl7J5eo2QLRIAxsyfCTg+GYRiGYRiGYRimATT/pKbFoMz9Rjk9guz0WDRcdEqv7esBZbV0OOAXg91MoYSjEzPI5EsI+jUMtkdxcDSN/SMpLOuIlsU3UeRSqaTjF88YfR4b+xJ4YWhaDLMBYN9wCntPTmN9r3NvAnHPC8O47ssPYE13TDgbHj80Ln5uxVv53Z0epkgwX04PW5F5zjmCaiprDHATkQB8Pg0hvw+5YgmTM/kyISmdK4rXuS0SEMNyVSyoxGIrMgdohX9euIkIK96qktPD7PSwOT2s9zedt15Dcnqs6IyJgTm5BuTfTcN3Elu64yFsX9mBU5cl7aKHy5C+VqjTYyqTl4rMm3+gT6IHfZ4TLkKP7DZL5YqinD4Zbf7XiJk9crxVN4seDMMwDMMwDMMwTJ3w8v0mQzgzGiRSRITowZvKYqNf6bkIBy2nRzZfxD6z6Hl1dxzreuMAgAMjxup5taib3AePHx7H0FQWiXAAl27pAwCMKkXict+HG7c+ehgAsH8k7TgcpXirWNBf1odwxqoOAECv2Q0xNJWBE/kaCsG9MCOJEWr8F0FOjzbzOdMg+KhZwh70a0KMSmeLorC7Kx4S3x9J5WyOhkoUiovR6WFuY0qRuRVv5aXTwzneasYWb2Vsqys6o6LcmCKt6HdrmrXPu+Gi9bjqzOW4cusAAGOfJW9b9XZ6qJB4NZkpiIF+Kzg91HiwRNhZxJDdZuTyCPq1hr3+THMTDbHTg2EYhmEYhmEYhpk9PIVoMijqpVEixTXnrsS5a7uwa113Qx6PaRz9bXbRI+S3Oj2yhZIo1h5sj2BNtyF67Dk2CQDl8Vam6HH7s4bL4+JNvcJxIQ+oAWBoqrrzgiJwAOdV8Hanh/XzeMiP89cbRem9pkjg9PsOjqRx5t/+An//v89UfS5ekQfubkXmtLKfhBz6vJEroTseFoXX6VzB1nPREQuJXoODUql8JRaj00O4icqcHh46PcyfjcnxVi5F5pbTIyp+J/WI0P+NYnXjtblgQw8+8bYzbAXZyYgsejQ23orw+zTb6vRmJaQcU9yEHvpMZApFqc8jKN4nhqmE/FnqYHcQwzAMwzAMwzAMUycsejQZVpF5YwZMbzpzBb7z+7vK+iOYhWdAcnqE/D74fJooF87ki0J46IiFcP56Q7T61kOHsO/kdHmRuSl6HBo1Bs1nrOwQw6cRRfTwEs9E3QuAfThK93WLt7poU68QbmjgNSU9FvHEkXFMZwv4dQ0dI5XIFUqiNBwod8IQQvQwB9+0qp1cCT1tIcTMro90rihinCjWaU2PIT7tH0l5el70nHyLaGBMgo/6vtB2UineqjNmd3oUiiVbAfyM2QMB2OOtRHl6wfg5bUeRKmKDHKnUMKdHyD7sT4QDLTHQV+PBkm7xVpIoRvsBjrZivDLYHsH2Fe14zemD7DBlGIZhGIZhGIZh6oavKJuMbSs64NOM/zPNTb/U6UEDXTlaZpxEj2gQV2ztx0Wn9CJXKOEvf/i0ED06zFXxVGSezllD/ZgZMyKvygfgKZpJdnr4pYEwRRlZ8VYBm+jx8o1WbwmJLjP58hirtOnEkEvWZ8OMIuSkc9bwXaZc9LA7PXoSYfG6pXNFUdhNMS2rTcfNwRFvTg8qMl9MnTqd5jYzlrbe43yxJN5zb04P47ZHxzOQtCbouuUgOSLFW5FLo6QbQhCJdJEq7g25PFuNZ6oXv0+zlXir8WzNiur0cO/0MG43k2utonemMQT8PvzwfS/DZ689a6GfCsMwDMMwDMMwDLOEYdGjybhiaz+e+ptX4LfOXbXQT4WZY/qTlvuGHAEUvTOdLWDcHLh3xIxomb9+/akAgHteHBar8mkITUXmNNSPhQNioF8s2Yf/qkDghCx6OEUZWU4PH6JBP9b1xhH0a3jlqQPitpTtnnEQWeh5jqZyKJXKxYlaUYWcojRYt/3ejD3eynJ6lIseqVzBcnqYr/Oa7hgAy+nxnYcO4eM/2+MosNDzAOzC0ULTESuPqKK/06dZP3eiM26IEOPpHIolHXtPTgMATulPiNukcwXM5IoYNuOyVnbFbC6DXKEknB7VysmT0cZ3egAQ/SxA6wz0Q4rA1ObS6UGf26wSb8UwDMMwDMMwDMMwDDNfsOjRhMRCrTGEa3XkLgwSImi4ni/qYhBP3RxrumPwm90Q9DOKXaIBP3UqJMJ+154CtctBRdd1m+hxUoovOj6pih5GNNAPbrwAD3z4cltxbUQ4PcpFD3KklHQIR8tsoMeLSyW6TmXmJLZQkTk5DUS8VSIsPn8zuSJGU8Zzo1inVV2G6HFgJA1d1/HB/3kCn7tzL548MuH4vEj0WExF5uT0GJdEj/2mc6W3LSy2Mef7Gq9DSQcmZ/J4ccgQPTb2twkBKZ0r4si48XhtkQDao0GbyyBbKIltsBanR7iBvRsXb+oT/24V0UMVjVydHg7xVq3yGjEMwzAMwzAMwzAMszhg0YNhmohI0C8G9/vMVfQkemiaJobO1KPQbfYvUJE5DfpjoYBYsa1SrdNjcqZgE0ZOSkXk5fFWxu9IRoJlsUjRCqJHSnJmjDYg4op+RzwcEL837eAwmSpzehi3PWo6WHoSIVu8FbkhukyHA3V6HBhN2YQhJ1fJ8yemcNszxwEsriJzy+lhPf8H9o0AAM5e01XxvkG/T3RBjKZzwumxvjdh60I5JPV5AIboQz1F2UIR2QJ1elRzejS+0wMArjy1X/y7VURmNR7MTcigz0QmXxSfF3Z6MAzDMAzDMAzDMAwzn7DowTBNRpcpZBwcNVbLy3FDNHy3vjYisrJC9CCnR6DM6UHuhmrxVkfGZ2xfywLIiUlDoJgxnRVuwor8M6d4K9mFMTKdK/t5rcjF6nJEmIrV6WG8jurQ3d7pURCF3SQ2rTbjrY6MzQi3DQAUiuXxVjd+41F89d79ABZXkTn9LeOS6HG/KXrsXNdd9f6i1yMlix5xSWwq4NCo1edBUK9HNm85PcJVnR5zE291riTuPH9iqmGPu5gpEz1c4q3oM1Eo6WL7l2PGGIZhGIZhGIZhGIZh5hoWPRhmCdMeLR88dptCBlVdUFk5YA2sCRJBaOV8KkdOD79YsS1ua4op1ZwexyZmXH8m4q3ylsjgRkWnR9b6HvWTzAZydUSDfsTD1vBdhdwZ5PRQI5N6EmHEwpZjwXJ6GK9drymKlHTgkQNj0u8v/12Hxqyy88VYZE7xVtlCUfwtu9ZVdnoAVqn7aCqHvSeNbhPD6WG+37ki9pnfX2c6YwBLtMjW1OkhOz0aF28V8PuE06Ff6vdoZlTRqJrTAwCGTJdXGzs9GIZhGIZhGIZhGIaZR1j0YJglTGfMSfSwCxsd0uBXjZCSnR66rgsHRTxcHm9Fgkk1pwdFPTlxwvwZiQyxCj0LJHoUSjryRXv8kywSVBM91Ps6IZ5PyC/iiqaz5X8nORNWm90caqdET1tI/E02p4f5umuaJno9dpvuCON32UWPmVzR5pBZTE4Puci8VNJx74vDyBZK6EmEsb43UeXeVo/M3pMp8fqs643bYsHk2CvCEj2KwpmkCnMqcqyS6lSYLT/5/16ON56xDP/45m0NfdzFivr6uXV6yOLIkClyJrnTg2EYhmEYhmEYhmGYeYRFD4ZZwjitMleFDdkN0qn8jASSbKGEbKEk3CFxh3gruq1T3JTMsXEPTg8hMrgPQyMha/ekCi3Ttngr906Ph/aP4vS//jm+eu9LFZ9zRnKeJEynh1pkPpMrYv+w4UDYPNhmPEeneCvT6TE5UxCdBl2Sw2Zdr+FekEUPtT9kNG0XchZXpwc5PfJ42xfvx+987WEAwM51XdA8iDO0DT5yYBQAsLwjauuQSeeL2GsWnK/vk5we5vaYk50eVYQMOVapkfFWALCyK4ZPXXMmNva3NfRxFyvy6xcJ+hD0O7+emqaJbeSAWXCfdHCkMQzDMAzDMAzDMAzDzBUsejDMEuYfrjod/ckw/up1W8X3uhNh223kgaM8fA/5fUiYA/psoWQb8keD/jLRg8SUak6PYxWcHkOTWei6LsVbue+CQn4faNavCi1pW5G5u9Pj0QNjyORLeGDfaMXnbMVbBYQ7QC4aB4AXhqZQ0g3xp9d8jeXIpMH2CLpiVpH5YVP88Wl24YncC3IRuCqwjCl/k28RiR7k+BlJ5fDQfiPWKhr04807Vni6P21HD75kvCckApEANjyVFW4h2ekR8kvxVqLI3LvTo1oUFlOZkN96ravFVfW1GZ8PEjk53ophGIZhGIZhGIZhmPmEMycYZgmzvjeBBz58ue17crxVNGjv5pCdHolIQETW5Aol0ZMRDfrh92ll8VY0rJZjl5xwi5vSNCBXLGF4OmeJDBWcHpqmIRr0I5UrlgkttiLzCqIH/Z6UQ2eG/XZyl4nxmqhiyp5jRmH15sE24WiQnR5vP3cVfD5NiB5HzE6OzljIJlo4RUCllCgt9XcvRqcH0dsWxoMfvsyTywOwRJNJ0wWzoc94PWh7e+roBACgJxESUVqAJVpkC0Vk8xRvtTCdHq2ILBq1hSufOvS2hfH8iWnxNcdbMQzDMAzDMAzDMAwzn/DSV4ZpMuR4K3VATcXlABAP+209CSQMxM2BphoHJDs9dF23/ezgSBp/8t3H8eLQFKYzhoNBLjpujwYxYEZxHRxNIWd2MlTq9AAsUaRM9Mh5i7eiGKSZKpFcIt4q6Bc9JyPTOfzPI4fxsZ88C13X8ezxSQDA5oGkuN/+kZT49zXnrjL+JnIsTNv7PAgn0SOdK+ATtz2Hz9+5F4ViSRSgE/5FJHpEFBfQ2u64Z8EDsG+DALDFfD1pW3jqiCF6rFNeJ7Gt5i2nRzUhw+b0aHC8VasRkuKs3ErMib42e+wex1sxDMMwDMMwDMMwDDOf8PJLhmkyuhPWkL1dGTZ2Sivn46GArSchLUQP43vktCDBQY7NyhZKNgfJdV9+AAdH03j22CQKRUMQ6U9GMJWZNn+XH8s7ozg2kbGtAFfdJCoUf6WKFumst3grcnqonRlut4uG/MIpM5LK4m//9xlMzOTxxjOXC6fHpgGrw+EVpw7gJ08ex1mrOtBrRvrEVYdMzC56UJyTzPMnpnDHcycBAPftHcYFG3psP19MogcAdMaCmJkwXrNV3bEa72t/PagfhRwytH2o4hAJHNlCybPTo6ctZLp3/LahPVM7cpG5W4k5QfFWRDWRhGEYhmEYhmEYhmEYppHwJIJhmozuuDVwLHd6WAPntkjA1pMwnS0vF4+GLNFDXqGfyRdtosfBUSPK6bnjU6JcvT8ZxotmIXUsHMCKzhge2j+GF8yhtqZVX31PjoLKTo/qoke1HpK0KFb3C9Ho0Gha9Hocn8xgj+n02CI5PV5z+iB6EmGcvabTes4usWBEPBzAYHvE1n1Crx8A/PqFYew7mbLdx1+Dk2I+6IiFRO/GmhpFD/n18GnAxj5D9FCjztYr4pDsSspSp0cVp0csFMD3bjgfoYBvUfWiLEXkz2pbuLJzo7fNvVeIYRiGYRiGYRiGYRhmruGlrwzTZHR5dXqEA1ZPQr6ItNmTkQhbg2Q5xqgtEkTQbwyOZRGBoqoAw8UwbT6OHHETD/mxojMKwCgEB4w4o2qxSPT7M9LvKxRLtl6RsXQOxZJedl/jeRrPJV2l04MePxbyi6H8nuNT4ufPHpvEWDoPTQM29lsOhIDfhws29NhilmLK8H5NT7mzQ3UxHB23l78fMUvQiels5ec/33RKAtjq7vK/r/J9rW1wTU9ciEQxRSxa32d/jeT+GXr/vZSTb12WFL0hTP3ITo9qzg1Z9NA0IFGhu4dhGIZhGIZhGIZhGKbRsOjBME2GXGTeEbW7DORV9vFwQKzezhVLSOXKnR5yfJBcik5xU0NTGTxzbNL6fbGQKBnvS1qDz1goIESP508YYkK1aCvj99Pvs0SOtOLaKOnAeNrZ7TFTY7xVJOgXThn5Po8dHAcA9LdFbA4XJ8qG9w5xVuoQvpoTpVKE10IgF4yvrtXpId13gyT+yK+bpgFnruyw3c9yepQsp0eV94JpHLXFW1mCZyIcYJcNwzAMwzAMwzAMwzDzCi+/ZJgmIxL0Ix7yI5UrlsVbxUJ+hAI+5AoltIUDYpCZLZSEWBGXnR4hv+2+0aAfU5kCZvJFPH10Aq/5zD22xx+ZzqJgui76ZadH2I+VncZw/MRktuyx3aDbyKIA9XkEfBri4QAmZvI4NpGxdY6I21K8lUfRIxYK2DpRiMcPjwMABjsiZT9TUUUPJ5eBkxACAEG/hnyx3LWy2ESPTmm7Wt1Vm9NDdh8NtFuvp7w9bB5I2oQVwN7pQU6PavFWTOOwF5l7j7dKVrktwzAMwzAMwzAMwzBMo2GnB8M0IRRx1a6IHpqmiZX2htPDGBrrOjCeNvor4nKnR9Ae2xQRcVMl/MZ0P8gcl3oq5MFnNGR0eshs6k+iGk6dHhT1FAv5sWO10aXx/d8ccbw/3a9Q0m0xXCpO8VYyJNQs64hWfc7xsF1LXtdbLnpceeoAdqzuxJt3rLB9f/uKDsfHHFl0okfI/H+wbBurhrzqn9w/gF0s2rmuq+x+chQbvV9e4q2YxqBpmhBJ28JVnB6Sy4v7PBiGYRiGYRiGYRiGmW94YsQwTQhFNKnxVoDVqZCQ4q0AoxsDsA/t5figqOn0AAyRoFAsFxEoIise8tsicOIhPwbaI5BTbq48tb/q3yF+n+TUoH6ORDiA63auAgB89+FDjm4O+XuV3B70mBEzwivu4kJZ1l7d6aGWs6u9KgDQn4zgf957Pq7budr2/dOWt2ORdZY7Qn/Tqhr7PIh37FyNtT1xvO2cVeJ7cqzaznXdZfexx1uZnR7s9JhXwqbbo1qnR1s4IKLxqt2WYRiGYRiGYRiGYRim0bDowTBNyHlruxD0a9i2or3sZ11mCXUiHLBF1lCEUtylyDwW8iMSsjo9UhVEhHg4gIQknsRCRpSW3Dd+2ea+qn9HxCHeKmXGW8XCAVx0Sh9WdkUxmSngR4+Xuz3kXo503r0M3Iq3Mn6fU1QWAAy2V3d6yOXs1UQSVVzpS4axzMPvWGjOXNWJgE/DhRt76rr/373xNNzxJxfbBCFZlDpvrYPTwxZvRZ0efAibT8jpUa3TQ9M00evB8VYMwzAMwzAMwzAMw8w3PDFimCbkQ6/ajMf+8kqctrxc9Ng8YMRKre+Lw+fThPBBTg95xT31LAT9GoJ+HyLm0DNTKIqYqet2rsJv/uIK2+9IhAO2uCJZSCHchAUZp3gr0T0S8sPv0/CmM5YDAB7aP1Z2f1sXSAWRZiZvFz2cIq4AYJmHTg+ZgWqihxIT1BEN2YrB/+TKUwAA11+wpqbfO9fsWN2Jx//qSvzxlZsa+pgAsKorVtbnAcDWPyPirdjpMa+Q26Zapwdgxdslo+z0YBiGYRiGYRiGYRhmfuFpBMM0IZqmlQ3UiQ+9ajN+69xVokw7FPAhVyxZTo9QudND/F9yeqRN8aEjGkJ7NAhNM7pBAGMluNwNQkLKb527Ct968CBuuuIUT3+HED0kwSKVo8J14zEHTGcEdZLIeI23op9RnFePQ5k54M3pYbt9lQ4Q+TUCjNio1d1x3Ld3BLGQHzdesgGvPG0A63rKe0EWGrftq15WdsVw959egs6480DdircqingrdnrMLwPtERydyNi6WNzoI9GDnR4MwzAMwzAMwzAMw8wzLHowTIsR9Puwoc8aoocDPkxngbGUe6cHiRZyp8e0GTMVDwfg82lIhAOYypALI2B7HHJ6fPjVm/Ga0wdxwYbyzgYnSGTJODg26Dl1mEXaEzP2su9SSffu9Mh5c3oM1uj0uGJL5d6SmOKA6YgFhdOjMxaCpmnY0NdW0+9cyqzqjrn+LGxzepDowU6P+eRf334WDo2msb63ughH72V/srbPDMMwDMMwDMMwDMMwzGxh0YNhWhwaJo+ZTglZrCDRgcQAOW6KYqYS5uC+TRI9EpGALdKKBIq2SBAvq6EHIlIp3sp8/I4oiR52p0emYBc5qKxcRdd1pPN2IaXLLILXNGBlZwwHR9MI+X3oiVeP5AKA2z5wIR47NI43nLGs4u2Cfp/htDGdC+3RoBgo9yW9/a5WIWxuC9l8Cdm83ZnDzA/LOqJYVsW9RPz+heuxsjOG122v/BlgGIZhGIZhGIZhGIZpNCx6MEyLQ10Jaq8FUB5rFRZOj1JZzFRbJAhMZAAYnR7RoF9EXqmF3V5xjLeSHCYAkDRFDzXeSo2zcou3yhd1FM2Gdfo7Kd6qJxHGYHsEB0fTGGiPwOfTHB9D5ZT+NpzS782hEQ/5hejREQti00Ab3nfJBly0qdfT/VsFp3gr+h6z+OiKh3DdztUL/TQYhmEYhmEYhmEYhmlBWPRgmBZHLYNOyE6PoLvTYzprFz0SEXuclaZpiIcCmM4WhJhQK9GQXZABLMcGCSkUbzU+k4eu69A0zbyd6vRwFj1kMYT+Poq3GkhG0GfG8wxWKSWvl1goIFw2HbEQgn4f/uQVjSsIbxZoO83ki8gVOd6KYRiGYRiGYRiGYRiGcYaXyTJMixNWyqBjUrl2hMQO6vQgESJnxVvFRXSVdb9EOGg+lnH/ekuv5Q4RgsQWq9PDEChyUtcDYBdKAPd4q3Te+H7ApwnXy8s39uLMVR24bucq9CaMmCmvsT61QiJTwKfV7YhpBei9mZyx3kcuMmcYhmEYhmEYhmEYhmFUeGLEMC1OyG/fDchdHDvXdqE/GcYVW41CbhIhsoWiFDNlfE92iFDPx6tOG8C6nji2DCbrem5OnR7k2KDfFw/5ETBjp8alMvNanR6yG6W3LYzv/8EFeNs5q3DZlj70JMJ4xamVS8nrhcrM26NB4VJhyqEoq8lMXvoei0QMwzAMwzAMwzAMwzCMHY63YpgWR3V6yK6Mjf1t2H3zZWIYH5E6NqjTIyF3eiiP8TdvOM0WOVUrcqdHqaTjT773OL7/myMALLFA0zR0xIIYns5hYiaPwfaouI+Mm+hB34+6RCVdsKEHD/35ZXMmSJBTpj0WrHLL1oZEDyqsD/o1+D12rDAMwzAMwzAMwzAMwzCtA4seDNPiyE4PTbPHVBnfswbLsvMipXR6JG3xVgHH+9cKuS8y+RJeGJrGrY8eET9b35sQ/05GDdFjPJ1HvljCx36yB9mCUmSed3F6OBS4q8ylA4OcMh1RFj0qETa3PRKpIuzyYBiGYRiGYRiGYRiGYRxg0YNhWhw5ImhlZ6xiZBC5ISZnCsgXdQBSkXnYWfSYDXJx+uGxNABgXU8cn79uBzYNtInbkWAwns7jwZdG8ZV7Xyp7LLdODyveamF2h3Glm4Rxhpwe4mvu82AYhmEYhmEYhmEYhmEcYNGDYVoceXi8vjde8bbk9BiezorvUfm2rcg80phdixyndXhsBgCwsT9hEzwASzCYmMkJB4pK9XirhRmix9jp4Yky0YOdHgzDMAzDMAzDMAzDMIwDLHowTIsjx1vJkVFOREPGbUn0CAd8CJj3Tzh0eswWireayRdxaNRweqzojJXdTnZ6uCVRqR0f4vt5QySJLZDTo9MUbHrawgvy+5cKIUX0iLDTg2EYhmEYhmEYhmEYhnGARQ+GaXFkp8eGvsqiBzkvxtJGmbQcY9Xm0ukxG+Ry8b0npwEAKzqjZbejEvCJmTwKJd32M00DdN2D06NCp8dc8vbzViFXLOEdO1cvyO9fKqjODnZ6MAzDMAzDMAzDMAzDME7UtFT285//PLZt24ZkMolkMoldu3bhpz/9qfh5JpPBjTfeiO7ubiQSCVx99dU4ceJEw580wzCNQx4er68iesgiBGB3dMyF6BGRft/zJ0j0cHJ6GG6J8Zk8hqeytp91mU4KV6dHrnqR+Vwy2B7Fza/a4vh3MRZqhwc7PRiGYRiGYRiGYRiGYRgnapoarVixArfccgseeeQRPPzww7j00kvxhje8AU8//TQA4AMf+AB+/OMf47vf/S7uuusuHD16FFddddWcPHGGYRpDUXJGVIu3ilQSPcKNj7fy+zQRa3Rk3Oj0WNnl4PSIGr9vIp3HyWm76NGdMESPB/ePYstf/Ay7943Yfi6KzIPsHFjMqJ0e6rbIMAzDMAzDMAzDMAzDMECN8Vave93rbF9/9KMfxec//3ns3r0bK1aswJe//GV885vfxKWXXgoA+OpXv4otW7Zg9+7d2LlzZ+OeNcMwDeOoKSYAQFc8VPG2PQl770QibA2e58LpAQBrumPC5QEAyzvKRQ8qMh+fyWE0lbf9TP6bZvJF/PCxI9i5rlt8L51f2Hgrxhty9wwA9HIHCsMwDMMwDMMwDMMwDONA3fkgxWIR3/72t5FKpbBr1y488sgjyOfzuPzyy8VtNm/ejFWrVuH+++93fZxsNovJyUnbfwzDzB+Hx2aq38ikJxFCUhI35PLvgfYIBtsj2L6iHX6fS5t4HVyxtV/8uyMWRJtUmE5Qp8d4Oi9K1oluRah57NCE7euFjrdivKFpmq3MfPNAcgGfDcMwDMMwDMMwDMMwDLNYqVn0ePLJJ5FIJBAOh3HDDTfg+9//PrZu3Yrjx48jFAqho6PDdvv+/n4cP37c9fE+9rGPob29Xfy3cuXKmv8IhmHq5z0XrgMAvPGMZVVvq2marfdDdnREgn7c8ScX43/ee35Dn9+VWwfEv3sTzqv7O6KW6DGaytl+1qO4V54/MWXr9+B4q6WDHHG1ebBtAZ8JwzAMwzAMwzAMwzAMs1ipOYNm06ZNeOyxxzAxMYHvfe97eNe73oW77rqr7idw880346abbhJfT05OsvDBMPPIG85YhlOXJbGmJ+7p9ut7E/jNwXEAQDxsFwrmomfh9OXt4t8HR9OOt6F4qyPj5a4V1elRLOl4+ugEzl7TBUCOt2pcJBczN8j+oS3s9GAYhmEYhmEYhmEYhmEcqHnKFwqFsGHDBgDAjh078NBDD+HTn/403va2tyGXy2F8fNzm9jhx4gQGBgZcHg0Ih8MIhzmbnWEWCk3TsLHf+6p5uey8UYXllfD5NLxsQw/ueXEYV5213PE2XTG7m8OnAdTP3hGz4rD8Pg3Fko7HD0/gtOXt+NlTx7F/OAWA462WApOZgvh3f5KPGwzDMAzDMAzDMAzDMEw5dXd6EKVSCdlsFjt27EAwGMQvf/lL8bPnnnsOBw8exK5du2b7axiGWSSs77UcIY0sLK/EF96xA3/3xtPwoVdtcfx5eyyItZJTRXat6Lp1uzeeYYgmv3jmON742Xvx/v9+DE8eMTo+ON5q6eDTDLGOYRiGYRiGYRiGYRiGYVRqmljefPPNeNWrXoVVq1ZhamoK3/zmN3HnnXfi5z//Odrb2/Hud78bN/3/7d17dFT11f/xz4Qkw8RcIEAuhoBBJdwvBgkhIqihUawCWssCRGjxqbSgoJVafxaxRSUVXHgDQQEBq9CC9VJA6gWCBG1oICAIBISkQYXwCISL0ECS/fvDJyMjmcwAhoTx/Vpr1sJzvmef7znj3pOTnTnngQcUHR2tyMhI3XvvvUpLS1OPHj1qa/4ALrArTnumh+sCfTviEmewhvVoWeOYHq2iVfh/39qIiXBq9/9++++IhsF66vZOqjBTQiOX3tjwhf61++AZ21+oY8H5S/LzVmwAAAAAAAD48Tmrpsf+/ft11113ae/evYqKilKnTp30z3/+U3379pUkTZs2TUFBQbr99ttVVlamzMxMzZgxo1YmDqBuJEaHuf995ER5DSMvrB6tmmjhuj2SpKbhTj0zqIvW7PxaP+10qUL/7wHYpyoqdUdKcxUd+EZNw516d8s+9/bc3uri0bl5o7qeAgAAAAAAAOqps2p6zJkzp8b1DRs21PTp0zV9+vTzmhSA+iukwXd3xTt+sn41PaqEBgdpQNcEDejq+QyQkAZBmnJHZ/d//2pBnt7bWiKJpsfF4MmBHbV4/R79v5urv80ZAAAAAAAAcN7P9ADw4/PgT1qrabhTI69JquupuMVGNnT/++tjJ/3a5vRGSUOe6VHvDUltoTd/k66m4TzEHAAAAAAAANWj6QHgrI25/kr9+5Eb1LJJ/Xq2wtgbrlSQQxrVu5Vf409vejiDaXoAAAAAAAAAF7uzur0VAFRxOBx1PYUzjMu4Uv9zbSuFO/0rbW3iIuRwSEEOh+KjGvreAAAAAAAAAEC9RtMDQMBwOBx+NzwkKSjIofV/6Kuy8gpdchbbAQAAAAAAAKif+C0fgB+16EtC63oKAAAAAAAAAH4gPNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAJCcF1P4PvMTJJ05MiROp4JAAAAAAAAAACoa1X9gqr+QU3qXdPj6NGjkqTExMQ6ngkAAAAAAAAAAKgvjh49qqioqBrHOMyf1sgFVFlZqa+++koRERFyOBx1PZ165ciRI0pMTNSePXsUGRlZ19MBEICoMwBqG3UGQG2jzgCobdQZALWNOnMmM9PRo0d16aWXKiio5qd21LtvegQFBal58+Z1PY16LTIykv/ZAdQq6gyA2kadAVDbqDMAaht1BkBto8548vUNjyo8yBwAAAAAAAAAAAQEmh4AAAAAAAAAACAg0PS4iDidTk2cOFFOp7OupwIgQFFnANQ26gyA2kadAVDbqDMAaht15vzUuweZAwAAAAAAAAAAnAu+6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEhHrX9Jg8ebKuvvpqRUREKCYmRgMGDFBBQYHHmP/+978aPXq0mjRpovDwcN1+++0qKSnxGHPfffcpJSVFTqdTXbp0qXZfZqapU6eqdevWcjqdSkhI0BNPPOFzjosXL1abNm3UsGFDdezYUcuXL/dY73A4qn1NmTKlxrjFxcW6+eabFRYWppiYGI0fP17l5eXu9Xv37tWQIUPUunVrBQUFady4cT7n6k9cScrOztZVV10lp9OpK664QvPmzfMZ9+DBgxo6dKgiIyPVqFEjjRw5UseOHfMY8+mnn6pXr15q2LChEhMT9dRTT/mM68/7688xAd5QZ7znTk5OjtLT09WkSRO5XC61adNG06ZN8zlfX7n+8ssvq1evXmrcuLEaN26sjIwMrVu3zmfci61+AVWoM97zNjs7u9q4+/btqzHu2eTkokWL5HA4NGDAAJ/ngTqDixV1xnvejhgxotq47du3rzGuPzlZWlqq0aNHKz4+Xk6nU61btz7juL6P6yZcrKgzNefO9OnT1bZtW7lcLiUnJ2vBggU+5+tP3Ndee02dO3dWWFiY4uPj9ctf/lIHDhyoMW5t1QMz06OPPqr4+Hi5XC5lZGRo586dHmP8qXEAcMFZPZOZmWmvvPKKbdmyxTZu3Gj9+vWzFi1a2LFjx9xjRo0aZYmJifbhhx9aXl6e9ejRw3r27OkR595777UXXnjBhg0bZp07d652X/fee68lJyfb22+/bbt377a8vDx77733apzf2rVrrUGDBvbUU0/Z1q1b7Q9/+IOFhITY5s2b3WP27t3r8Zo7d645HA7btWuX17jl5eXWoUMHy8jIsPz8fFu+fLk1bdrUHn74YfeYwsJCu++++2z+/PnWpUsXGzt2bI1z9Tfu7t27LSwszB544AHbunWrPf/889agQQNbsWJFjbFvvPFG69y5s/3rX/+yNWvW2BVXXGGDBw92rz98+LDFxsba0KFDbcuWLbZw4UJzuVw2a9asGuP6en/9OSagJtQZ77mzYcMGe/31123Lli1WWFhor776qoWFhdWYt/7k+pAhQ2z69OmWn59v27ZtsxEjRlhUVJR98cUX5zXf+la/gCrUGe95u2rVKpNkBQUFHvErKiq8xj2bnCwsLLSEhATr1auX9e/fv8bzQJ3BxYw64z1vS0tLPeLu2bPHoqOjbeLEiV7j+pOTZWVl1q1bN+vXr5/l5ORYYWGhZWdn28aNG2s8F1w34WJFnfGeOzNmzLCIiAhbtGiR7dq1yxYuXGjh4eH2zjvvnFfcnJwcCwoKsmeffdZ2795ta9assfbt29vAgQNrPBe1VQ+ysrIsKirK3nrrLdu0aZPdeuutlpSUZCdOnHCP8VXjAKAu1Lumx/ft37/fJNnq1avN7NsfYENCQmzx4sXuMdu2bTNJ9sknn5yx/cSJE6v9UN26dasFBwfb9u3bz2o+P//5z+3mm2/2WJaammr33HOP12369+9v119/fY1xly9fbkFBQbZv3z73shdffNEiIyOtrKzsjPG9e/f2q+nhT9zf/e531r59e4/tBg0aZJmZmV7jbt261STZv//9b/eyd9991xwOh3355Zdm9u0PAY0bN/aY/0MPPWTJycle4/rz/p7tuQJ8oc7UnDsDBw60O++80+v6c8n18vJyi4iIsPnz55/XfOtT/QJqQp35Lm+rmh6HDh3ye77+5mR5ebn17NnTZs+ebcOHD/fZ9KDOIJBQZ7z/PPPmm2+aw+GwoqIir3H9yckXX3zRWrVqZSdPnqxxjqfjugmBhDrzXe6kpaXZgw8+6LHdAw88YOnp6ecVd8qUKdaqVSuP7Z577jlLSEjwGre26kFlZaXFxcXZlClTPPbldDpt4cKFZuZfjQOAulDvbm/1fYcPH5YkRUdHS5LWr1+vU6dOKSMjwz2mTZs2atGihT755BO/4/7jH/9Qq1attHTpUiUlJemyyy7T3XffrYMHD9a43SeffOKxb0nKzMz0uu+SkhItW7ZMI0eO9Bm3Y8eOio2N9Yh75MgRffbZZ34e1bnF9eeY5s2bJ4fD4RG3UaNG6tatm3tZRkaGgoKClJub6x5z7bXXKjQ01CNuQUGBDh06JOm7W1wUFRVJ8u/9ra1zhR8v6oz33MnPz9fHH3+s3r171xjXV65/3/Hjx3Xq1Cn3OZekxx57TJdddtlZzbcu6xdwNqgzZ9aZLl26KD4+Xn379tXatWt9xvUnJ//0pz8pJibG6zypMwhk1BnvP8/MmTNHGRkZatmyZY1xfeXkO++8o7S0NI0ePVqxsbHq0KGDnnzySVVUVLi34boJgYw6813ulJWVqWHDhh7buVwurVu3TqdOnTrnuGlpadqzZ4+WL18uM1NJSYmWLFmifv36ubeprXpQVFQkh8Oh7OxsSVJhYaH27dvnETcqKkqpqakecX3VOACoC/W66VFZWalx48YpPT1dHTp0kCTt27dPoaGhatSokcfY2NhYn/eCPt3u3bv1n//8R4sXL9aCBQs0b948rV+/Xj/72c9q3G7fvn0eHxK+9j1//nxFRETotttuO6e4VevOlT9xvY05cuSITpw4IenbD7bk5GSPuDExMR7bBAcHKzo62mfc0/cdFham5ORkhYSEuJf7en9r61zhx4k6U33uNG/eXE6nU926ddPo0aN19913/yBxqzz00EO69NJLPX6Abtq0qS6//PKziluX9QvwF3XGM3fi4+M1c+ZMvfHGG3rjjTeUmJioPn36aMOGDecVNycnR3PmzNHLL7/sNQ51BoGKOuM9d7766iu9++67Nf4s42/c3bt3a8mSJaqoqNDy5cs1YcIEPf3003r88cfd23DdhEBFnfHMnczMTM2ePVvr16+XmSkvL0+zZ8/WqVOn9PXXX59z3PT0dL322msaNGiQQkNDFRcXp6ioKE2fPt29TW3Vg5CQECUnJyssLMxjeU3n2J8aBwB1oV43PUaPHq0tW7Zo0aJFP3jsyspKlZWVacGCBerVq5f69OmjOXPmaNWqVSooKFBxcbHCw8PdryeffPKc9jN37lwNHTrU4y8AbrrpJndcXw/Tqy8GDhyo7du3/+Bxu3fvru3btyshIeEHjw34gzpTvTVr1igvL08zZ87UM888o4ULF57T3KqTlZWlRYsW6c033/SY85gxY/Thhx/+YPupUlv1C/AXdcZTcnKy7rnnHqWkpKhnz56aO3euevbsqWnTpp3T3CTp6NGjGjZsmF5++WU1bdrU6zjqDAIVdca7+fPnq1GjRhowYMA5bX+6yspKxcTE6KWXXlJKSooGDRqkRx55RDNnznSP4boJgYo642nChAm66aab1KNHD4WEhKh///4aPny4JCko6Nx/1bZ161aNHTtWjz76qNavX68VK1aoqKhIo0aNco+prXqQkJCg7du3q3v37j9oXACoC8F1PQFvxowZo6VLl+qjjz5S8+bN3cvj4uJ08uRJlZaWenSxS0pKFBcX53f8+Ph4BQcHq3Xr1u5lbdu2lSQVFxfruuuu08aNG93rqr6+GRcXp5KSEo9Y3va9Zs0aFRQU6K9//avH8tmzZ7v/MrCqMx8XF6d169adEbdq3bnyJ663Y4qMjJTL5fIad//+/R7LysvLdfDgQZ9xT993dXF9vb+1da7w40Od8Z47SUlJkqSOHTuqpKREjz32mAYPHlztcZ5Nrk+dOlVZWVn64IMP1KlTp2rjnR73YqpfQHWoM/7lTvfu3ZWTk+N1va+c3LVrl4qKinTLLbe411dWVkr69q8NCwoKPL7hcXpc6gwudtQZ77ljZpo7d66GDRvmceuo6viTk/Hx8QoJCVGDBg3cY9q2bat9+/bp5MmT1e6D6yYEAurMmbnjcrk0d+5czZo1SyUlJYqPj9dLL72kiIgINWvWrNrj9Cfu5MmTlZ6ervHjx0uSOnXqpEsuuUS9evXS448/rvj4+Grj1kY9qFpedXynb9elSxf3GF81DgDqQr37poeZacyYMXrzzTe1cuVK9y/eqqSkpCgkJMTjr/SqOv9paWl+7yc9PV3l5eXatWuXe9mOHTskSS1btlRwcLCuuOIK96vqQzUtLe2MvxB8//33q933nDlzlJKSos6dO3ssT0hIcMetuq9sWlqaNm/e7PFh8f777ysyMlLt2rXz+7i+z5+4Z3NMp8ctLS3V+vXr3ctWrlypyspKpaamusd89NFHHvezfP/995WcnKzGjRtXG9ef97e2zhV+PKgzZ5c7VX955Y2/uf7UU09p0qRJWrFihcc9X2uKezHVL+B01JmzqzMbN26s9iK+iq+cbNOmjTZv3qyNGze6X7feeqv7lySJiYle41JncLGizviuM6tXr9bnn3/u8/79VXF95WR6ero+//xzd1O16lzEx8d7bapw3YSLGXXGd+6EhISoefPmatCggRYtWqSf/vSnXr/p4U/c48ePn7F9VaPVzKqNW1v1ICkpSXFxcR5xjxw5otzcXI+4vmocANSJOnuEuhe//vWvLSoqyrKzs23v3r3u1/Hjx91jRo0aZS1atLCVK1daXl6epaWlWVpamkecnTt3Wn5+vt1zzz3WunVry8/Pt/z8fCsrKzMzs4qKCrvqqqvs2muvtQ0bNlheXp6lpqZa3759a5zf2rVrLTg42KZOnWrbtm2ziRMnWkhIiG3evNlj3OHDhy0sLMxefPFFv467vLzcOnToYD/5yU9s48aNtmLFCmvWrJk9/PDDHuOqjiMlJcWGDBli+fn59tlnn51X3N27d1tYWJiNHz/etm3bZtOnT7cGDRrYihUr3GP+/ve/W3JyskfsG2+80bp27Wq5ubmWk5NjV155pQ0ePNi9vrS01GJjY23YsGG2ZcsWW7RokYWFhdmsWbPcY3Jzcy05Odm++OIL9zJf76+/5wrwhjrjPXdeeOEFe+edd2zHjh22Y8cOmz17tkVERNgjjzziNa4/uZ6VlWWhoaG2ZMkSj3N+9OhR95jnn3/err/++rOab13WL6Am1BnveTtt2jR76623bOfOnbZ582YbO3asBQUF2QcffOA17rnk5PDhw61///4ey6gzCCTUGd/XAnfeeaelpqb6FdefnCwuLraIiAgbM2aMFRQU2NKlSy0mJsYef/xx9xiumxBIqDPec6egoMBeffVV27Fjh+Xm5tqgQYMsOjraCgsLzyvuK6+8YsHBwTZjxgzbtWuX5eTkWLdu3ax79+7uMbVVD7744gtLTk623Nxc97KsrCxr1KiRvf322/bpp59a//79LSkpyU6cOOEe46vGAUBdqHdND0nVvl555RX3mBMnTthvfvMba9y4sYWFhdnAgQNt7969HnF69+5dbZzTP4C+/PJLu+222yw8PNxiY2NtxIgRduDAAZ9z/Nvf/matW7e20NBQa9++vS1btuyMMbNmzTKXy2WlpaV+H3tRUZHddNNN5nK5rGnTpvbb3/7WTp065fP8tGzZ8rzjrlq1yrp06WKhoaHWqlUrj/Nt9u0H7/d7ZAcOHLDBgwdbeHi4RUZG2i9+8QuPX2CamW3atMmuueYaczqdlpCQYFlZWWfs9/vviz/vrz/HBHhDnfGeO88995y1b9/ewsLCLDIy0rp27WozZsywioqKGuP6yvWWLVtWe64mTpzoHjNx4sQz6ll9rl9ATagz3vP2z3/+s11++eXWsGFDi46Otj59+tjKlSt9xj3bnKyu6UGdQSChztSct6WlpeZyueyll17yO64/Ofnxxx9bamqqOZ1Oa9WqlT3xxBNWXl7uXs91EwIJdcZ77mzdutW6dOliLpfLIiMjrX///rZ9+/bzjmv27TVZu3btzOVyWXx8vA0dOtSjwVFb9aCwsNAk2apVq9zLKisrbcKECRYbG2tOp9NuuOEGKygo8IjrT40DgAvNYebl+3EAAAAAAAAAAAAXkXr3TA8AAAAAAAAAAIBzQdMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAdaJPnz4aN25cXU8DAAAAQACh6QEAAACg3svOzpbD4VBpaWldTwUAAABAPUbTAwAAAAAAAAAABASaHgAAAABq3TfffKO77rpL4eHhio+P19NPP+2x/tVXX1W3bt0UERGhuLg4DRkyRPv375ckFRUV6brrrpMkNW7cWA6HQyNGjJAkVVZWavLkyUpKSpLL5VLnzp21ZMmSC3psAAAAAOoPmh4AAAAAat348eO1evVqvf3223rvvfeUnZ2tDRs2uNefOnVKkyZN0qZNm/TWW2+pqKjI3dhITEzUG2+8IUkqKCjQ3r179eyzz0qSJk+erAULFmjmzJn67LPPdP/99+vOO+/U6tWrL/gxAgAAAKh7DjOzup4EAAAAgMB17NgxNWnSRH/5y190xx13SJIOHjyo5s2b61e/+pWeeeaZM7bJy8vT1VdfraNHjyo8PFzZ2dm67rrrdOjQITVq1EiSVFZWpujoaH3wwQdKS0tzb3v33Xfr+PHjev311y/E4QEAAACoR4LregIAAAAAAtuuXbt08uRJpaamupdFR0crOTnZ/d/r16/XY489pk2bNunQoUOqrKyUJBUXF6tdu3bVxv388891/Phx9e3b12P5yZMn1bVr11o4EgAAAAD1HU0PAAAAAHXqm2++UWZmpjIzM/Xaa6+pWbNmKi4uVmZmpk6ePOl1u2PHjkmSli1bpoSEBI91TqezVucMAAAAoH6i6QEAAACgVl1++eUKCQlRbm6uWrRoIUk6dOiQduzYod69e2v79u06cOCAsrKylJiYKOnb21udLjQ0VJJUUVHhXtauXTs5nU4VFxerd+/eF+hoAAAAANRnND0AAAAA1Krw8HCNHDlS48ePV5MmTRQTE6NHHnlEQUFBkqQWLVooNDRUzz//vEaNGqUtW7Zo0qRJHjFatmwph8OhpUuXql+/fnK5XIqIiNCDDz6o+++/X5WVlbrmmmt0+PBhrV27VpGRkRo+fHhdHC4AAACAOhRU1xMAAAAAEPimTJmiXr166ZZbblFGRoauueYapaSkSJKaNWumefPmafHixWrXrp2ysrI0depUj+0TEhL0xz/+Ub///e8VGxurMWPGSJImTZqkCRMmaPLkyWrbtq1uvPFGLVu2TElJSRf8GAEAAADUPYeZWV1PAgAAAAAAAAAA4HzxTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIPx/45vT5NzGPVcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -634,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "id": "08124f60", "metadata": {}, "outputs": [ @@ -644,19 +364,9 @@ "text": [ "Data lengths: train = 1607, val = 11425, test = 11425\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_1536914/1603373431.py:38: DeprecationWarning: Call to deprecated method get_datasets. (Please use the standalone function `get_datasets()`.) -- Deprecated since version 0.1.1.\n", - " train_dataset, valid_dataset, test_dataset = tsp.get_datasets(\n" - ] } ], "source": [ - "from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor\n", - "\n", "dataset_path = DATA_ROOT_PATH\n", "timestamp_column = \"date\"\n", "id_columns = []\n", @@ -692,7 +402,7 @@ " scaler_type=\"standard\",\n", ")\n", "\n", - "train_dataset, valid_dataset, test_dataset = tsp.get_datasets(\n", + "train_dataset, valid_dataset, test_dataset = get_datasets(tsp,\n", " data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location=\"first\"\n", ")\n", "print(f\"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}\")" @@ -700,7 +410,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "id": "d2991e01", "metadata": {}, "outputs": [ @@ -810,11 +520,114 @@ " [-0.2895, -0.3237, -0.6072, -0.5086, 0.2675, 0.2795, 0.5817],\n", " [-0.2495, -0.2327, -0.5738, -0.3757, 0.2675, 0.2795, 0.6196],\n", " [ 0.0787, 0.2039, -0.3877, 0.2534, 0.2675, 0.2795, 0.6196]]),\n", + " 'past_observed_mask': tensor([[True, True, True, ..., True, True, True],\n", + " [True, True, True, ..., True, True, True],\n", + " [True, True, True, ..., True, True, True],\n", + " ...,\n", + " [True, True, True, ..., True, True, True],\n", + " [True, True, True, ..., True, True, True],\n", + " [True, True, True, ..., True, True, True]]),\n", + " 'future_observed_mask': tensor([[True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True]]),\n", " 'timestamp': numpy.datetime64('2016-07-06T08:30:00.000000000'),\n", " 'id': (0,)}" ] }, - "execution_count": 10, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -834,7 +647,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "id": "037d03dd", "metadata": {}, "outputs": [ @@ -1008,7 +821,7 @@ ")" ] }, - "execution_count": 11, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -1020,7 +833,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "id": "9dc4da08", "metadata": {}, "outputs": [], @@ -1038,23 +851,19 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "id": "773cf2c8", "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [179/179 00:01]\n", - "
\n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "86849ff7a4d149dd9e3891d7e0fd2471", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/179 [00:00" ] @@ -1097,7 +906,7 @@ ], "source": [ "# plot\n", - "plot_preds(trainer=zeroshot_trainer, dset=test_dataset, plot_dir=os.path.join(OUT_DIR, \"ettm2\"), plot_prefix=\"test_zeroshot\", channel=0)" + "plot_predictions(model=zeroshot_trainer.model, dset=test_dataset, plot_dir=os.path.join(OUT_DIR, \"ettm2\"), plot_prefix=\"test_zeroshot\", channel=0)" ] }, { @@ -1120,7 +929,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 12, "id": "c8333271", "metadata": {}, "outputs": [ @@ -1294,7 +1103,7 @@ ")" ] }, - "execution_count": 15, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1314,7 +1123,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "id": "86af5cc5", "metadata": {}, "outputs": [ @@ -1354,7 +1163,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 14, "id": "ba2c132f", "metadata": {}, "outputs": [], @@ -1367,7 +1176,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 15, "id": "d1013616", "metadata": {}, "outputs": [ @@ -1378,69 +1187,57 @@ "Using learning rate = 0.001\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", - " self.pid = os.fork()\n" - ] - }, { "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [26/26 00:04, Epoch 1/1]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
EpochTraining LossValidation Loss
10.2791000.132347

" - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "f0536acbf952457085d07ddd500643f8", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/26 [00:00\n", - " \n", - " \n", - " [179/179 00:01]\n", - " \n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "85d88dc6267144c68e8e5ffdc7c7b76e", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/179 [00:00=2.2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (2.2.2)\n", - "Requirement already satisfied: transformers[torch]>=4.36.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (4.37.2)\n", - "Requirement already satisfied: datasets in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (2.14.4)\n", - "Requirement already satisfied: scikit-learn in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (1.2.2)\n", - "Requirement already satisfied: deprecated in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (1.2.14)\n", - "Requirement already satisfied: kaleido in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (0.2.1)\n", - "Requirement already satisfied: jupyter in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (1.0.0)\n", - "Requirement already satisfied: plotly in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (5.16.1)\n", - "Requirement already satisfied: matplotlib in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (3.8.3)\n", - "Requirement already satisfied: tensorboard in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (2.13.0)\n", - "Requirement already satisfied: ipywidgets in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tsfm_public==0.2.0) (8.1.2)\n", - "Requirement already satisfied: numpy>=1.22.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pandas>=2.2.0->tsfm_public==0.2.0) (1.23.5)\n", - "Requirement already satisfied: tzdata>=2022.7 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pandas>=2.2.0->tsfm_public==0.2.0) (2023.3)\n", - "Requirement already satisfied: pytz>=2020.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pandas>=2.2.0->tsfm_public==0.2.0) (2022.6)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pandas>=2.2.0->tsfm_public==0.2.0) (2.8.2)\n", - "Requirement already satisfied: safetensors>=0.4.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (0.4.2)\n", - "Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (0.20.2)\n", - "Requirement already satisfied: requests in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2.31.0)\n", - "Requirement already satisfied: regex!=2019.12.17 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2023.8.8)\n", - "Requirement already satisfied: tqdm>=4.27 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (4.64.1)\n", - "Requirement already satisfied: pyyaml>=5.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (6.0)\n", - "Requirement already satisfied: packaging>=20.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (23.2)\n", - "Requirement already satisfied: filelock in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (3.8.0)\n", - "Requirement already satisfied: tokenizers<0.19,>=0.14 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (0.15.0)\n", - "Requirement already satisfied: accelerate>=0.21.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (0.22.0)\n", - "Requirement already satisfied: torch!=1.12.0,>=1.11 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2.3.0)\n", - "Requirement already satisfied: multiprocess in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (0.70.12.2)\n", - "Requirement already satisfied: dill<0.3.8,>=0.3.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (0.3.4)\n", - "Requirement already satisfied: pyarrow>=8.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (12.0.1)\n", - "Requirement already satisfied: aiohttp in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (3.8.4)\n", - "Requirement already satisfied: xxhash in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (3.3.0)\n", - "Requirement already satisfied: fsspec[http]>=2021.11.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from datasets->tsfm_public==0.2.0) (2023.6.0)\n", - "Requirement already satisfied: wrapt<2,>=1.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from deprecated->tsfm_public==0.2.0) (1.15.0)\n", - "Requirement already satisfied: ipython>=6.1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (8.14.0)\n", - "Requirement already satisfied: jupyterlab-widgets~=3.0.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (3.0.10)\n", - "Requirement already satisfied: traitlets>=4.3.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (5.9.0)\n", - "Requirement already satisfied: comm>=0.1.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (0.1.4)\n", - "Requirement already satisfied: widgetsnbextension~=4.0.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipywidgets->tsfm_public==0.2.0) (4.0.10)\n", - "Requirement already satisfied: nbconvert in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (7.7.4)\n", - "Requirement already satisfied: jupyter-console in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (6.6.3)\n", - "Requirement already satisfied: ipykernel in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (6.25.1)\n", - "Requirement already satisfied: notebook in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (7.1.1)\n", - "Requirement already satisfied: qtconsole in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter->tsfm_public==0.2.0) (5.5.1)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (1.0.6)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (1.4.4)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (4.38.0)\n", - "Requirement already satisfied: importlib-resources>=3.2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (6.0.1)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (3.0.9)\n", - "Requirement already satisfied: cycler>=0.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (0.11.0)\n", - "Requirement already satisfied: pillow>=8 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from matplotlib->tsfm_public==0.2.0) (9.3.0)\n", - "Requirement already satisfied: tenacity>=6.2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from plotly->tsfm_public==0.2.0) (8.2.3)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from scikit-learn->tsfm_public==0.2.0) (3.1.0)\n", - "Requirement already satisfied: joblib>=1.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from scikit-learn->tsfm_public==0.2.0) (1.2.0)\n", - "Requirement already satisfied: scipy>=1.3.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from scikit-learn->tsfm_public==0.2.0) (1.12.0)\n", - "Requirement already satisfied: protobuf>=3.19.6 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (3.20.3)\n", - "Requirement already satisfied: setuptools>=41.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (65.5.0)\n", - "Requirement already satisfied: grpcio>=1.48.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (1.58.0)\n", - "Requirement already satisfied: werkzeug>=1.0.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (2.2.2)\n", - "Requirement already satisfied: google-auth<3,>=1.6.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (2.15.0)\n", - "Requirement already satisfied: markdown>=2.6.8 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (3.4.1)\n", - "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (0.7.1)\n", - "Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (1.0.0)\n", - "Requirement already satisfied: absl-py>=0.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (1.3.0)\n", - "Requirement already satisfied: wheel>=0.26 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from tensorboard->tsfm_public==0.2.0) (0.37.1)\n", - "Requirement already satisfied: psutil in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from accelerate>=0.21.0->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (5.9.5)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (6.0.4)\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (1.9.2)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (1.3.1)\n", - "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (2.1.1)\n", - "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (4.0.2)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (1.3.3)\n", - "Requirement already satisfied: attrs>=17.3.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from aiohttp->datasets->tsfm_public==0.2.0) (23.1.0)\n", - "Requirement already satisfied: six>=1.9.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (1.16.0)\n", - "Requirement already satisfied: rsa<5,>=3.1.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (4.9)\n", - "Requirement already satisfied: pyasn1-modules>=0.2.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (0.2.8)\n", - "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (5.2.0)\n", - "Requirement already satisfied: requests-oauthlib>=0.7.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard->tsfm_public==0.2.0) (1.3.1)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.19.3->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (4.11.0)\n", - "Requirement already satisfied: zipp>=3.1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from importlib-resources>=3.2.0->matplotlib->tsfm_public==0.2.0) (3.11.0)\n", - "Requirement already satisfied: decorator in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (5.1.1)\n", - "Requirement already satisfied: jedi>=0.16 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.19.0)\n", - "Requirement already satisfied: pygments>=2.4.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (2.16.1)\n", - "Requirement already satisfied: matplotlib-inline in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.1.6)\n", - "Requirement already satisfied: backcall in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.2.0)\n", - "Requirement already satisfied: stack-data in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.6.2)\n", - "Requirement already satisfied: pexpect>4.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (4.8.0)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (3.0.39)\n", - "Requirement already satisfied: pickleshare in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.7.5)\n", - "Requirement already satisfied: importlib-metadata>=4.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard->tsfm_public==0.2.0) (6.0.0)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from requests->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2022.9.24)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from requests->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (1.26.16)\n", - "Requirement already satisfied: idna<4,>=2.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from requests->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (3.4)\n", - "Requirement already satisfied: jinja2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (3.1.2)\n", - "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (11.0.2.54)\n", - "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.105)\n", - "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.105)\n", - "Requirement already satisfied: triton==2.3.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2.3.0)\n", - "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.3.1)\n", - "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (2.20.5)\n", - "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.105)\n", - "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.105)\n", - "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.1.0.106)\n", - "Requirement already satisfied: networkx in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (3.1)\n", - "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (8.9.2.26)\n", - "Requirement already satisfied: sympy in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (1.11.1)\n", - "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (11.4.5.107)\n", - "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (10.3.2.106)\n", - "Requirement already satisfied: nvidia-nvjitlink-cu12 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (12.4.127)\n", - "Requirement already satisfied: MarkupSafe>=2.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard->tsfm_public==0.2.0) (2.1.1)\n", - "Requirement already satisfied: tornado>=6.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (6.3.3)\n", - "Requirement already satisfied: jupyter-client>=6.1.12 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (8.3.0)\n", - "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (5.3.1)\n", - "Requirement already satisfied: nest-asyncio in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (1.5.7)\n", - "Requirement already satisfied: debugpy>=1.6.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (1.6.7.post1)\n", - "Requirement already satisfied: pyzmq>=20 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from ipykernel->jupyter->tsfm_public==0.2.0) (25.1.1)\n", - "Requirement already satisfied: tinycss2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (1.2.1)\n", - "Requirement already satisfied: jupyterlab-pygments in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (0.2.2)\n", - "Requirement already satisfied: mistune<4,>=2.0.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (3.0.1)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (1.5.0)\n", - "Requirement already satisfied: beautifulsoup4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (4.12.2)\n", - "Requirement already satisfied: nbformat>=5.7 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (5.9.2)\n", - "Requirement already satisfied: bleach!=5.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (6.0.0)\n", - "Requirement already satisfied: nbclient>=0.5.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (0.8.0)\n", - "Requirement already satisfied: defusedxml in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbconvert->jupyter->tsfm_public==0.2.0) (0.7.1)\n", - "Requirement already satisfied: jupyter-server<3,>=2.4.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from notebook->jupyter->tsfm_public==0.2.0) (2.12.5)\n", - "Requirement already satisfied: jupyterlab-server<3,>=2.22.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from notebook->jupyter->tsfm_public==0.2.0) (2.24.0)\n", - "Requirement already satisfied: jupyterlab<4.2,>=4.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from notebook->jupyter->tsfm_public==0.2.0) (4.1.2)\n", - "Requirement already satisfied: notebook-shim<0.3,>=0.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from notebook->jupyter->tsfm_public==0.2.0) (0.2.3)\n", - "Requirement already satisfied: qtpy>=2.4.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from qtconsole->jupyter->tsfm_public==0.2.0) (2.4.1)\n", - "Requirement already satisfied: webencodings in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from bleach!=5.0.0->nbconvert->jupyter->tsfm_public==0.2.0) (0.5.1)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.8.3)\n", - "Requirement already satisfied: platformdirs>=2.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter->tsfm_public==0.2.0) (2.5.3)\n", - "Requirement already satisfied: overrides in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (7.4.0)\n", - "Requirement already satisfied: anyio>=3.1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (3.7.1)\n", - "Requirement already satisfied: terminado>=0.8.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.17.1)\n", - "Requirement already satisfied: send2trash>=1.8.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.8.2)\n", - "Requirement already satisfied: jupyter-server-terminals in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.4.4)\n", - "Requirement already satisfied: prometheus-client in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.13.1)\n", - "Requirement already satisfied: websocket-client in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.6.2)\n", - "Requirement already satisfied: argon2-cffi in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (23.1.0)\n", - "Requirement already satisfied: jupyter-events>=0.9.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.9.0)\n", - "Requirement already satisfied: httpx>=0.25.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (0.25.2)\n", - "Requirement already satisfied: async-lru>=1.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (2.0.4)\n", - "Requirement already satisfied: tomli in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (2.0.1)\n", - "Requirement already satisfied: jupyter-lsp>=2.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (2.2.0)\n", - "Requirement already satisfied: jsonschema>=4.17.3 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (4.19.0)\n", - "Requirement already satisfied: json5>=0.9.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (0.9.14)\n", - "Requirement already satisfied: babel>=2.10 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (2.12.1)\n", - "Requirement already satisfied: fastjsonschema in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from nbformat>=5.7->nbconvert->jupyter->tsfm_public==0.2.0) (2.18.0)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.2.6)\n", - "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->tsfm_public==0.2.0) (0.4.8)\n", - "Requirement already satisfied: oauthlib>=3.0.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard->tsfm_public==0.2.0) (3.2.2)\n", - "Requirement already satisfied: soupsieve>1.2 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from beautifulsoup4->nbconvert->jupyter->tsfm_public==0.2.0) (2.4.1)\n", - "Requirement already satisfied: executing>=1.2.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (1.2.0)\n", - "Requirement already satisfied: pure-eval in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (0.2.2)\n", - "Requirement already satisfied: asttokens>=2.1.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets->tsfm_public==0.2.0) (2.2.1)\n", - "Requirement already satisfied: mpmath>=0.19 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from sympy->torch!=1.12.0,>=1.11->transformers[torch]>=4.36.1->tsfm_public==0.2.0) (1.3.0)\n", - "Requirement already satisfied: exceptiongroup in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.1.3)\n", - "Requirement already satisfied: sniffio>=1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.3.0)\n", - "Requirement already satisfied: httpcore==1.* in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from httpx>=0.25.0->jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (1.0.4)\n", - "Requirement already satisfied: h11<0.15,>=0.13 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from httpcore==1.*->httpx>=0.25.0->jupyterlab<4.2,>=4.1.1->notebook->jupyter->tsfm_public==0.2.0) (0.14.0)\n", - "Requirement already satisfied: referencing>=0.28.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (0.30.2)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (0.9.2)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (2023.7.1)\n", - "Requirement already satisfied: rfc3986-validator>=0.1.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.1.1)\n", - "Requirement already satisfied: python-json-logger>=2.0.4 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (2.0.7)\n", - "Requirement already satisfied: rfc3339-validator in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (0.1.4)\n", - "Requirement already satisfied: argon2-cffi-bindings in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from argon2-cffi->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (21.2.0)\n", - "Requirement already satisfied: uri-template in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (1.3.0)\n", - "Requirement already satisfied: jsonpointer>1.13 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (2.4)\n", - "Requirement already satisfied: webcolors>=1.11 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (1.13)\n", - "Requirement already satisfied: fqdn in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (1.5.1)\n", - "Requirement already satisfied: isoduration in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (20.11.0)\n", - "Requirement already satisfied: cffi>=1.0.1 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from argon2-cffi-bindings->argon2-cffi->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (1.15.1)\n", - "Requirement already satisfied: pycparser in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->jupyter-server<3,>=2.4.0->notebook->jupyter->tsfm_public==0.2.0) (2.21)\n", - "Requirement already satisfied: arrow>=0.15.0 in /dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/site-packages (from isoduration->jsonschema>=4.17.3->jupyterlab-server<3,>=2.22.1->notebook->jupyter->tsfm_public==0.2.0) (1.2.3)\n", - "Building wheels for collected packages: tsfm_public\n", - " Building wheel for tsfm_public (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for tsfm_public: filename=tsfm_public-0.2.0-py3-none-any.whl size=2303294 sha256=d38ce1f02c7de8ecd0875f3d93f30e81f3294f27b296ce89edc59ad65b9dc59b\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-l5e8dfaa/wheels/91/0b/a5/62aeda6aed2054a29fd91e1e24d2ff2edf6d9aded30338bdf4\n", - "Successfully built tsfm_public\n", - "Installing collected packages: tsfm_public\n", - " Attempting uninstall: tsfm_public\n", - " Found existing installation: tsfm_public 0.2.0\n", - " Uninstalling tsfm_public-0.2.0:\n", - " Successfully uninstalled tsfm_public-0.2.0\n", - "Successfully installed tsfm_public-0.2.0\n" - ] - } - ], + "outputs": [], "source": [ "# Install the tsfm library\n", - "! pip install \".[notebooks]\"" + "# ! pip install \"tsfm_public[notebooks] @ git+ssh://git@github.com/ibm-granite/granite-tsfm.git\"" ] }, { @@ -306,41 +48,24 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "id": "f63ae353-96df-4380-89f6-1e6cebf684fb", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-06-10 11:33:09.085490: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" - ] - } - ], + "outputs": [], "source": [ - "# Standard\n", "import os\n", "import math\n", "import tempfile\n", "import torch\n", "\n", - "# Third Party\n", "from torch.optim import AdamW\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", "import numpy as np\n", "import pandas as pd\n", "\n", - "# First Party\n", - "from tsfm_public.models.tinytimemixer.utils import (\n", - " count_parameters,\n", - " plot_preds,\n", - ")\n", - "\n", - "# Local\n", - "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction\n", - "from tsfm_public.toolkit.callbacks import TrackingCallback" + "from tsfm_public.toolkit.visualization import plot_predictions\n", + "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, get_datasets, TimeSeriesPreprocessor\n" ] }, { @@ -354,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "id": "a826c4f3-1c6c-4088-b6af-f430f45fd380", "metadata": {}, "outputs": [], @@ -393,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "id": "55baa818", "metadata": {}, "outputs": [ @@ -585,7 +310,7 @@ "[69680 rows x 8 columns]" ] }, - "execution_count": 7, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -598,7 +323,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "id": "a8c4718e", "metadata": {}, "outputs": [ @@ -608,13 +333,13 @@ "" ] }, - "execution_count": 8, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAHACAYAAAD5rKrZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV331f6pzmLQTdmc2a5VWWiUkgSSQhEAiZ3gBE00wmN9LMMjYGAw2YGxs8yJyMkkGi5yMCEIJZWmVd6Vdbd7ZndnJeTrH3x9V99at6urcvTPTcz7Po0c7Mx1qpqurqr/nnnO0fD6fByGEEEIIIYQQQgghhBBCyArHtdQbQAghhBBCCCGEEEIIIYQQ0ggoehBCCCGEEEIIIYQQQgghpCWg6EEIIYQQQgghhBBCCCGEkJaAogchhBBCCCGEEEIIIYQQQloCih6EEEIIIYQQQgghhBBCCGkJKHoQQgghhBBCCCGEEEIIIaQloOhBCCGEEEIIIYQQQgghhJCWgKIHIYQQQgghhBBCCCGEEEJaAs9Sb4CdXC6HkZERtLe3Q9O0pd4cQgghhBBCCCGEEEIIIYQsIfl8HouLi1i/fj1crtJejmUneoyMjGDTpk1LvRmEEEIIIYQQQgghhBBCCFlGDA0NYePGjSVvs+xEj/b2dgD6xnd0dCzx1hBCCCGEEEIIIYQQQgghZClZWFjApk2bpH5QimUneohIq46ODooehBBCCCGEEEIIIYQQQggBgIoqMVhkTgghhBBCCCGEEEIIIYSQloCiByGEEEIIIYQQQgghhBBCWgKKHoQQQgghhBBCCCGEEEIIaQmWXacHIYQQQgghhBBCCCGEELLcyefzyGQyyGazS70pLYHX64Xb7a77cSh6EEIIIYQQQgghhBBCCCFVkEqlMDo6ilgsttSb0jJomoaNGzeira2trseh6EEIIYQQQgghhBBCCCGEVEgul8PRo0fhdruxfv16+Hw+aJq21Ju1osnn85icnMTw8DBOP/30uhwfFD0IIYQQQgghhBBCCCGEkApJpVLI5XLYtGkTQqHQUm9Oy9DX14fBwUGk0+m6RA8WmRNCCCGEEEIIIYQQQgghVeJycbzeSBrlluGrQgghhBBCCCGEEEIIIYSQloCiByGEEEIIIYQQQgghhBBCWgKKHoQQQgghhBBCCCGEEEIIaQkoehBCCCGEEEIIIYQQQgghq4C3ve1teOUrX1nw/TvuuAOapmFubg7XX389urq6HO+vaRp+85vfAAAGBwehaVrBf29+85stP3/88ceb88sUwXNSn40QQgghhBBCCCGEEEIIIS3Drbfeih07dsivg8HgEm4NRQ9CCCGEEEIIIYQQQgghTeahwRl89fZD+Mwrz8Gm7tBSb07DyefziKezJ/15g143NE076c+r0tPTg/7+/iXdBhWKHoQQQgghhBBCCCGEEEKayn/etA8PDc7iB/cP4h9fcvZSb07DiaezOPuf/nTSn3fvp1+AkI9jfpWqOj0++clPFuRzbd++Xf78qquuKvj5e97znoZvNCGEEEIIIYQQQgghhJCVwVQkiYePzQIAdg3PL/HWkN/97ndoa2uz/PeiF72o5sd75jOfaXmsxx57rIFbWz1VS0A7duzArbfeaj6Ax/oQ73rXu/DpT39afh0KtZ5ViRBCCCGEEEIIIYQQQkhl3PbUOPJ5/d9PnphHNpeH27W0kUyNJuh1Y++nX7Akz1stz3nOc/CNb3zD8r2dO3fKAvJq+elPf4qzzjpLfr1p06aaHqdRVC16eDyekvlcoVBoWeV3EUIIIYQQQgghhBBCCFk6/rRnXP47lsri8GQEZ6xrX8Itajyapq2YmKlwOIzTTjvN8r3h4WH5746ODkSjUeRyObhcZljU3NwcAKCzs9Ny302bNhU83lJSVbwVABw8eBDr16/Htm3b8KY3vQnHjx+3/PyGG25Ab28vzjnnHHz0ox9FLBYr+XjJZBILCwuW/wghhBBCCCGEEEIIIYSsfDLZHO45NAUAWNfhBwA8PjS3hFtEynHmmWcik8ng8ccft3z/0UcfBQCcccYZS7BVlVOV9HTJJZfg+uuvx5lnnonR0VF86lOfwhVXXIEnn3wS7e3teOMb34gtW7Zg/fr12L17Nz7ykY9g//79+NWvflX0MT/72c/iU5/6VN2/CCGEEEIIIYQQQgghhJDlRSSZQSqTAwC86JwBXH/fIHYPz+F1Fy9tBBIpzo4dO/D85z8f73jHO/D5z38e27Ztw/79+/HBD34Qr3/967Fhw4aqHm///v2Oz+H1ehu1yRaqEj3UMpPzzjsPl1xyCbZs2YKf/exneOc734l3v/vd8ufnnnsuBgYGcPXVV+Pw4cM49dRTHR/zox/9KK699lr59cLCwpJnfhFCCCGEEEIIIYQQQgipn1gqCwDwujVcvHUNrr9vELuGWGa+3PnpT3+Kf/7nf8Zf//VfY2RkBBs3bsSrXvUqfOITn6j6sf7iL/6i4HtDQ0PYuHFjIza1gLpCxrq6unDGGWfg0KFDjj+/5JJLAACHDh0qKnr4/X74/f56NoMQQgghhBBCCCGEEELIMkSIHkGvG1u6wwCAicXEUm7Squb66693/P5VV12FvGibhz77/9KXvoQvfelLRR9r69atlvtU+/NmUXWnh0okEsHhw4cxMDDg+HOR+VXs54QQQgghhBBCCCGEEEJal7gheoR8HgS8+jg6kc4t5SaRFqcqp8eHP/xhvOxlL8OWLVswMjKCf/7nf4bb7cYb3vAGHD58GD/60Y/w4he/GD09Pdi9ezc+9KEP4corr8R5553XrO0nhBBCCCGEEEIIIYQQskyJpTIAgJDPjYDXDQBIpLNLuUmkxalK9BgeHsYb3vAGTE9Po6+vD5dffjkeeOAB9PX1IZFI4NZbb8UXv/hFRKNRbNq0Ca95zWvw8Y9/vFnbTgghhBBCCCGEEEIIIWQZEzMEjqDPDb/h9Ehmcsjn89A0bSk3jbQoVYkeP/nJT4r+bNOmTbjzzjvr3iBCCCGEEEIIIYQQQgghrYEZb2U6PQBd+FC/JqRR1NXpQQghhBBCCCGEEEIIIYQUQxaZ+zwIeBTRowV6PZaipLuVadTfk6IHIYQQQgghhBBCCCGEkKYgOz28bnjdGlxGolUis3J7PbxeLwAgFost8Za0FqlUCgDgdtfnAKoq3ooQQgghhBBCCCGEEEIIqZSYEm+laRoCXjdiqeyKLjN3u93o6urCxMQEACAUCrGfpE5yuRwmJycRCoXg8dQnW1D0IIQQQgghhBBCCCGEENIUzHgrffW+KXqs7Hir/v5+AJDCB6kfl8uFzZs31y0gUfQghBBCCCGEEEIIIYQQ0hTiIt5KiB4evXFhJTs9AEDTNAwMDGDt2rVIp9NLvTktgc/ng8tVfyMHRQ9CCCGEEEIIIYQQQgghTUEtMgd0pwew8kUPgdvtrruDgjQWFpkTQgghhBBCCCGEEEIIaQpxQ/QIG04PvxA9Mis73oosXyh6EEIIIYQQQgghhBBCCGkKapE5AAS8rRFvRZYvFD0IIYQQQgghhBBCCCGENIVY2hZv5WmteCuy/KDoQQghhBBCCCGEEEIIIaQpFBSZG06PZJrxVqQ5UPQghBBCCCGEEEIIIYQQ0hTMInOj08NweiQzdHqQ5kDRgxBCCCGEEEIIIYQQQkhTEEXmIa+904NOD9IcKHoQQgghhBBCCCGEEEIIaQpmkbnR6eFlpwdpLhQ9CCGEEEIIIYQQQgghhDSFmNHpEZSdHobowXgr0iQoehBCCCGEEEIIIYQQQghpCvG0cHoYnR6MtyJNhqIHIYQQQgghhBBCCCGEkIaTzuaQzuYBmKJHwMN4K9JcKHoQQgghhBBCCCGEEEIIaTiizwNwiLei04M0CYoehBBCCCGEEEIIIYQQQhqO6PNwuzT43PooOiDirdjpQZoERQ9CCCGEEEIIIYQQQgghDUc4PUJeNzRNA2A6PZKMtyJNgqIHIYQQQgghhBBCCKmJfD6P6UhyqTeDELJMiRuih4i2AhSnB+OtSJOg6EEIIYQQQgghhBBCauKLtx7ERZ+5FTfvGVvqTSGELEOE0yPs98jviSLzJOOtSJOg6EEIIYQQQgghhBBCauJLtx0EAHzqxr1LvCWEkOWI6PQIelWnB4vMSXOh6EEIIYQQQgghhBBC6mJdh3+pN4EQsgwR8VYhJd7KL+Ot6PQgzYGiByGEEEIIIYQQQgipmmgyI//d3xlYwi0hhCxXYo6dHobTg/FWpElQ9CCEEEIIIYQQQgghVXNkMir/7XFxxERIq5PL5fHl2w7iZw8PVXyfWLrQ6SE6PRhvRZqFp/xNCCGEEEIIIYQQQkg5crk8fnD/IC7csgbnbexa6s1pOocnI/LfquuDENKa3PDgcVx3ywEAwKl9YVy0pbvsfWLGsSHsM8fQjLcizYYyPCGEEEIIIYQQQkgD+MOTo/jkjXvx8q/ei2Qmi9/vHsVcLLVk2/PE8DweHpxp2uOrokeEogchLc34QgL/+cd98uuP/uoJpDLlnRoLiTQAoCPold8T8VZJOj1Ik6DoQQghhBBCCCGEENIABqfMuKffPHYC7/3Ro3JV9Mkmk83hjd95AG/8zs6mCRIWp0eKogchrcx37zmKxWQGO9Z3oCfsw4HxCG59arzs/Rbi+rGhI2A6PQIefSSdyuaQzeWbs8FkVUPRgxBCCCGEEEIIIaQBtAfMlcxHDAHkqCKEnEwmFpNYTGSQyuQwHUk25TkOT5i/WzTJmBpCWpl7D00BAN595TZcdeZaAJUd30o5PQAgyTJz0gQoehBCCCGEEEIIIYQ0gDa/uZJZCAITC80RHMoxOh+X/xYrrRtJLpe3DDwZb0VI6zIfS2Pv6AIA4LJtPdi4JggAGJ6Nlb3vQtwQPQLOogfLzEkzoOhBCCGEEEIIIYQQ0gDUkJYD44sAgInFxJJsy4k583nFSutGEk9nkcqaw0oWmRPSujw4OIN8HtjWF8bajgA2dYcAAMOz8TL3BBYSRrxV0BSF3S4NXrcGgE4P0hwoehBCCCGEEEIIIYQ0gLQiAhyf0VdAz8bSFZX9NprROdXp0XjRw/47xVJZ5JjNv6w5OL6I5113J27cNQJAHza/9pv34T9u2lfmnmS188CRaQDApdt6AEBxelQgejg4PQAg4NHdHnR6kGZA0YMQQgghhBBCCCGkARQTN6aa1KlRitH55jo9kg6/ayzNFduluGHnMbz3R4+eNBHsocEZvOeHj8gIovf8zyM4OBHB+3/8GADgwFgEDw3O4mcPDZ2U7SErl2Kix4nZeFmx06nTAwD8XiF68LhBGg9FD0IIIYQQQgghhJAGoDo9VCYWT77oMTLX3E4PEUkT9rnh0lNqGHFVhi/eehC/3z2KhwdnTsrz/d3Pd+GmPWN4+VfvBQAcnrSWTseNYXMsxaEzKc3BiQgA4IKNXQCA/o4A3C4NqWwOk2VEXXH8KXB6ePWxNEUP0gwoehBCCCGEEEIIIYQ0gFQR0WNyCUSPZjs9hFvB73UjbBS4s8y8OIl0Vu4HJ+bKRwI1AvF6zERTmHYYTAvRI55mNBkpTj6fl+/3sF93Z3jcLgx0BgAAQzPFy8xTmZzcz9ROD8AsM2e8FWkGFD0IIYQQQgghhBBCGkCx2KKlKDMfnW9up4eIt/J7XGgzRA86PYqjCh2qINVMzuxvl//+iRJhtbbdD8C6wj7BMmliY2Qujpv3jFmi7EQkFVBZr8eiIriK44Qg7NMfqxmiLCEUPQghhBBCCCGEEEIaQNF4q4WT6/RIpLOYiqTk1wuJ5sVb+TwuOj0qQB0Mq4JUM1FX0H/77iPy3/3GCn1V9Igz4orYuPI//4x3//AR/NYovgd0kVOwcU0IAGRnjBPi2NPm98Djto6ht/W1AQAOji82bJsJEVD0IIQQQgghhBBCCGkAxZwe5TLv6yGazBRk4o/ZnAROTo9UJleXSKE6PcLS6cHBeTHUwfDI3Mlxeqj7xVzM3AeyRpSV+nP2ehA7GWM/uffQFADApQEeUeCDypwe4tjTEfAU/Gy74UR6aoyiB2k8FD0IIYQQQgghhBBCGkA669yL0CynRyabw/OuuxOX/8efkVFcJiM2J4FTfMxrv3U/rviP2xFL1SZ8CNHD53Ghzcj5r/WxVgNL4/TQhQx7rJAQ51QnSJxl0kRBPZ6EfPr+4/e4oWmq6CGcHiVED+PY0xH0Fvxs+0AHAGA/RQ/SBCh6EEIIIYQQQgghhDQAe5H5eiNGaLJJnR7T0RRG5hOYiiQxOB2V3x81nARetz6gXIhbxYh8Po89J+YxG0vX7DpIpoXTwy2Hooy3Ko5F9DhpTg/9NXrZ+est3xf7aZzxVqQIE4umUOszjiMBr3WM3GUIGYsl3vfi2NMRcBA9DKfHkclIgVuNkHqh6EEIIYQQQgghhBDSAOzxVmcZK5knF5vj9FCLw/cpq6Wno/rzbe7WV2LbnR6pbE5G19Q6bBSDc7XI/Au3HMRLvnw3ppsY57VSUeOtFpMZR/fNkckIXvCFu/Drx4Yb8pzitX3peQNQFugjLZ0ejLcizozMmSLdotHL4fe4LbfxGv0e6SKxfoDq9CiMt1rb7seakBe5PHBoIlL3NhOiQtGDEEIIIYQQQgghpAHYi8zPXm+IHpEk8nnn6Kt6UJ0VakSM6G/Y0hMGUNjpoa7qrzXWKJlWi8z1YehUJIk9IwvYeXSmpsdsZewRQE5ujz/vn8T+8UX84pHGih4buoJ48bkD8vuOTo80XTrEZETpBZo3jh9+m9NDOMnsxz0Vs9Oj0OmhaRq29+vHyKdGF+rbYEJsUPQghBBCCCGEEEIIaQB2p4cY6KWzeUuRdKOIJMxB9VOjiuhhDBo3GUXD0VQWX7ntIP60ZwyAdVV/rSv8VadH2NYZMUWnh4VEOivdPgNG5Jm9dwUw/272Ivqan9fYH4M+N774+gvwhw9cAcDsY0mqnR6p4oNrsvoYVZwe4nji91jHyD634fQoJXqU6PQAgO0DesTVPvZ6kAZD0YMQQgghhBBCCCGkAdiHf2esa0N7QBcEpqOphj/foiXeylwpPW8ILJuMeCsA+PwtB/DBnzyORDprETpq7XJQOz3afDbRo0lxXisV4fJo83tk5JlweuTzefxo53E8enxW/t0aUXyfzuaQNSLMAh43vG6X3BfFfhq3iF90ehCTUQenR8Bri7eSokdxF5vZ6VEYbwUAp61tAwAMTkUdf05IrTjvcYQQQgghhBBCCCGkKsQK+g9dcwYu3NKF09e1oyfsw2Iig5kmiB6q02N4No6FRBodAS/m4vpz9bb5EfK5pcgRT2dxz8EprOsIyPvVGmskflefg9NjMtL433UlI5wbA50BrO/S//ajhtPjiRPz+Nivn8C2vjC2GCLVYjKDaDJT8HcVJDNZ3HVgClee0VvQsyBQ+zpELJFYqS8cSYlM/TFnpDVROz3mizk9xP5Uh9OjK+gDULoMnZBaoNODEEIIIYQQQgghpAGIFfTb+sK44vQ+AEBPmx8AGlruPRNN4dDEoqXTAwAOGBExIkqrM+QtyNK/ee+YZVV/rbFGYnDuVzo9BIy3siIEhbDfg/VdeuTY0IxebH5wPCK/nlAcMmMLxSOurr93EO/6wcO47uYD8ntHJiNYVMrRxXNqmjmsFivzc3kgk81Zu11YZE4UnJweBUXmbquI5kSpTg8A8tgRpehBGgxFD0IIIYQQQgghhJAGIGJefMqK6O6wvpK5kfFWV3/+Dlxz3V0FOfhfvv0Q5uNpOaTsCnrREbS6BW59asIiltRcZJ5Ri8zZ6VEK8bfye1w4y+h5eXJEjyM7Nq3H+qSzeRyciMj7jBuix0IiXRCb9vjQHADgd7tHkc/nsfPINJ77+Ttx7c92mc+ZNkUpTdMLp9X9Mp3Ny84PoPZuF9KajCqdM6rAqVJZp4cRbxV0di21GccOih6k0VD0IIQQQgghhBBCCGkAYjgohoEA0Numix6Nircam09g1nBy3Hd4CgCwvb8dfo8Ldx2YxId/vkt2enSFfLLXAQDa/R7MRFO499C0/F68xi6HZMbs9AjbOz0oelhICAHC68Z5GzsBAIcnI1hIpDE4HZO3U1fMjy8kMB9L48JP34KXfeUey+MdntTFkRNzcewZWcCXbz8IALhl77jynLqIofYwqKJHKpOzRGAx3ooIEuksphwi6kRMmsDr0cW0kqJHGadHm9H1YXetEVIvFD0IIYQQQgghhBBCGoAY/nndDk6PBgkBO4+agoWIsXrBjn58+60XAwAeODIt8/E7g14cU4bq5xoD94MTpkOk1mG3uvrb/hjT7PSwIJweAY8LPW1+bFwTRD4PPDk8j2MzMcf7jM0nsfPoNDK5PPaNLeLYdBRP/9db8eXbDmJwyrzPzXvGLF/nDJFLCC1BRfTwuDRzm7JZi+jBInMiGJt3jlYLFIm3SmfzyOedy8wXDadHe7F4Kx9FD9IcKHoQQgghhBBCCCGENICUUu4t6A4bnR4Ncno8cMQUPUSMVXvAgws2dwEwh4wA0BHwIKM6PYxV1RMLpgBTa6eHGm91+em9GOgM4IU7+gHoUUkcopskFacHAJy/sQsAsGt4XsZb2RlfSFhiw/79j/swuZjEdbccsBRH//LREzihlE7PxvT9TJSUq04PTdPM8mm706PG/YC0HkemIo7ftzs97HFpTggxQzg67Ih4q0Q6h0w2h3Q2hzd/Zyc++4enqt5uQlQoehBCCCGEEEIIIYQ0gJR0epgr6kW8VaPcD/cfni74Xpvfg46AVw4QAV3g8Lhd+KeXng0AuO5158vV1uOL5krueLreeCsXOgJe3PuR5+Ibb74QAWMwOrVIt4cgaetEOH+T7ri568CkdOvYGV9IWEQJ+/6zqTuIkM9tETwAswBd3Nfew+BXVufHLfFWFKmIzlOjuhOszdbVYy8yV2P8Ug4RV7lc3hQ9/M6ihyrsRZNZ/HnfBO45NIVv3XWkto0nxICiByGEEEIIIYQQQkgDEPFWTkXmjej0GJ2PWzogBGIV9UBnQH6vK6QLHO+4/BQ88vFr8OoLN8pcfXXQHq+xwFrGWxlOApdLg6Zp6G3TnS2T7PWQqEXmAHCe4fS4/0ihgCUYW0ggqrw2T40tWH5+waY1uPZ5ZxTcTxSgi9dVdXoAsDk9WGROCtk3poseF2zqsnzfLqCpMX7pTKHoEVXcXu1FnB4+j0vuk5FURhafE1IvFD0IIYQQQgghhBBCGoBTkXmPjLeqXwTYO7Lg+H2xinqgKyi/1xX0mdtgCBFOg8dah93SveC2jpbEc7HM3ESIC0KAOHdDp2UfUVlvCFcTC0nElJ6DRdsw+NS+MN72zK3Y1he2fH9sXv+7JzLiOZ0H1alMDomUGm9F0YPo7BvVjzMFoodNQHO7NIiaGKcyc+Hy8Li0AsFEpd04fkUSGYv7qFhPCCGVQNGDEEIIIYQQQgghpAGIXHt1BXSPEW81G0vLkulaER0edoSYsd7B6eF0O5Vai8yle8E2VO8zfl+KHiZ2p0fY78FfXXGK/PmmblOsOnu9Hn01vpAoWe58al8bPG4XfvX/PRPfestFeMMzNsv7AWa8VVGnRzYnez+A2vcD0lok0lkcmdJ7Zso5PQBFRHMSPRJmn4emaQU/F4iIq0gyYxHiMnUeL8nqhqIHIYQQQgghhBBCSANwKjJfE9JFgGwuX1S0qJQFpbhcpc2vCxwDnebwvCNYKHqIeCuVRI3DbidXCwAZb8VODxOz08MUIN7/3NPlv599Rp/891kD7dA0feA7NFMYZSY4Y107AKAr5MMLdvSjv0MXvITokTRe12AR0SOeylrKpxlvRQDg0EQE2VweXSEvtvaGLD9zEj18SkeMncUyfR4CIXpEk1anR8ohMouQSqHoQQghhBBCCCGEEFIn+XxeKTI3xy0+jwsdhkhRb8SVyLvf2mONNJKdHl2K08NJ9Ag2Id7KW0T0oNNDkkwX/q2CPjdu+uAV+MvLtuCD15whxYh1HQEZ9zMyn7A8jqYBX37D0/Dxl5yFM/vbLT/r79T/7maRuTVSSyD2zcWEVYBjvBUBzD6P7f3tBcXl9ngrwBTRHOOtEpWJHu2K00M9HlH0IPVQlejxyU9+EpqmWf7bvn27/HkikcB73/te9PT0oK2tDa95zWswPj7e8I0mhBBCCCGEEEIIWU6oK519Hueei+lIZe6HYjFYwumxpce6AlsMFdcrTg/neKvC79Ucb5UudC8AQK8RbzW5SNFDIOKtArb9Ynt/Bz71inPQ2+aXJfS9bX7p0hmziR5r2/14+fnr8VdXbCt4jnWG00Pcx4y3sj6n2DcX7KIH460IgP1jep/H9v6OAsGsZLyVg0Ah4tmKlZgLwn63vH0kae6XSYoepA6qdnrs2LEDo6Oj8r977rlH/uxDH/oQbrzxRvz85z/HnXfeiZGREbz61a9u6AYTQgghhBBCCCGELDfUlc72yKeesC4ETEfLix6HJyO48DO34Mu3HSz4mRhU250eYZ8+NLQ6PXyw4zR8TNS4wl+4WuwCz9Zefdv2jTmXrq9GEtLpUbhSXvDmS7bg/I2duGxbj4whG52PW26zXimqt9MvCtANsUmIGAWr9Y19cyFu7QuJpYr3h5DVg9h/NnQFCwQzuwgCAF6P3tVRstOjwnirSCKDeWW/pNOD1EPVoofH40F/f7/8r7e3FwAwPz+P7373u7juuuvw3Oc+FxdddBG+//3v47777sMDDzzQ8A0nhBBCCCGEEEJWO4cnI3jxl+7G73aPLPWmrHpU0cPrtpb2dpcQPe49NIUXfvEu/OzhIQDAfYenMRdL47anCpMzxKB6XYdfrroOet3wGINs1enR6eD0cOr0WExm8JffexCf/O2e0r+gjWTaWs4tOH9jFwBgcDqG+Vh9HSatgr3I3Il3XbkN//u+y9EZ8soYsimbM0h9fe2sa9dFj5loCslMtni8lTGktvfLJNK5og4jsnoQbrLOoLcqp0faQaCQnR4Oxx0VIcZGkxn5/ACQytJ9RGqnatHj4MGDWL9+PbZt24Y3velNOH78OADgkUceQTqdxjXXXCNvu337dmzevBn3339/0cdLJpNYWFiw/EcIIYQQQgghhJDy3PbUOPaOLuDnDw835fFPzMXx1z98GDuPTDfl8VsJsSrZpUGKEAIhesw4xFvduGsE+8YW8fe/2I0v3noAo3P66n77wBswnR4dQa98zDbFvRH0ubHGEDucOj2cnB6LiQzuPDCJ6+8bLPs7qoiV3XYnwZqwT8Zv7T4xV9VjtipORealcBKnAMgILCe6Ql7puplYSCKRKRJv5bbGW3Uq+4m4D1m9iN6gjqAHXrcLbpcp4FZbZB6ttMjcZzg9UhmLGMd4K1IPVYkel1xyCa6//nrcdNNN+MY3voGjR4/iiiuuwOLiIsbGxuDz+dDV1WW5z7p16zA2Nlb0MT/72c+is7NT/rdp06aafhFCCCGEEEIIIWS1MbGgR5E0qz/hj0+M4k97xqseiK9GnErMBV0hXaCYixcKGWqXwrfuPIIRQ/SYjCSRz1sHiU6iR7ttoHjOhk4AwLa+toLncur0UMk4RNQUQ3R62OOtAOA8w+2xa2iu4sdrZUzRo7IxXIeDYAUAAyXirTRNw0bj50emorLTI2hbrS87PYzhstr9UmupPWkdxH4hhDe1h8ZJtJNOD6d4q4o7Pcx4K4vTg6IHqYPSe52NF73oRfLf5513Hi655BJs2bIFP/vZzxAMFj/wluKjH/0orr32Wvn1wsIChQ9CCCGEEEIIIaQCRP76ZKQ5oodY9Tu+kChzSyIGdE4igHBfzDnEPcWVQXM8ncWu4Xn5eIvJjGXVv4i36gg4Oz0A4KtvvBBj8wmctrZQ9PB5XPB7XEVXUMfSWXQ4iDZOlBrkn7+xEzfuGpG/y2onKUvFa3N6BL1uxNNZnO7wmqqcs6ETR6ai2D00J0Wpgngr6fTIyMcOeF1IpHOWfZGsTlRhFdB7aKIpZ9cQYB7vnDo9Fivs9FDjreYpepAGUZXoYaerqwtnnHEGDh06hOc973lIpVKYm5uzuD3Gx8fR399f9DH8fj/8fn89m0EIIYQQQgghhKxKJhZ1MWI6ksR8LI2b944hkcnh8tN6cUpvuMy9yyOKaCea5CRpJUS8i73EHADWGE6P2Vih08O+uv7oVFT+e2oxaRU9ZCSRRz6mfaDYGfRaIovsdAS9RZ1BsWS2aLSSSj6fL1pkDgDnb+oCQKeHQApEDkNjJ0Snh+CLf3EBXJqGK07vLXm/8zd14beG2CRcQgXxVjanR9DnRsjnQSKdsriOyOpEFVaBSpweRpG5g0ARqTTeSjg97KJHFc4zQuxU3emhEolEcPjwYQwMDOCiiy6C1+vFbbfdJn++f/9+HD9+HJdddlndG0oIIYQQQgghhBArYnidywOfunEP/u4Xu/GJ3zyJv/7hww15fJHJPrlYGLVErJRyeogIoVkHp0c0lSn6mGqvRz6ft0TPSKdHmYGinVJRM7ES26KiOkWcnB7nrO+Epuli2VSTXEgriWKl78WwC0/besN43tnroGlakXvonL9RjzbbNTwnBYxiZdRCQAt43DICi/FWq5tUJif3GyG8qfuPk2hXMt7K2MfsbjQ74hg2uZhEJmeeZ+j0IPVQlejx4Q9/GHfeeScGBwdx33334VWvehXcbjfe8IY3oLOzE+985ztx7bXX4s9//jMeeeQRvP3tb8dll12GSy+9tFnbTwghhBBCCCGErFpUB8adByblv0fnGhNHFTGG4MlMTsbhEGdKdXqsMQSKOSenR1IfMm7rK3TmqIJBNJWFmAdaOj0qcGaoqLe394FUOvS2ih6Fq7+DPjdCYpCe5CC96iJzm1MnVKGwtWN9J9wuDZOLSQwajiH7c8p4K2NFf9DnRtCn32bPyDzFzVXMYsIUZYUQ4VdFj5JF5iU6Pcrsv+K5Thh9RgIWmZN6qGo5wPDwMN7whjdgenoafX19uPzyy/HAAw+gr68PAPCFL3wBLpcLr3nNa5BMJvGCF7wAX//615uy4YQQQgghhBBCyGomkc7KzHQAmI6aA/VYOot8Pl92ZXg5IsrjTy4mSsYmrXbSUvQo/JuLTo9Z4zXK5fJwufTbCafHWQMdODIZtdxPFT1E7IvPrfdyvPz89dg1NIc3PKO6XtQOY9W1x6WhI+jFYtJ8jSsVPdQV2E6/L6A7XqKpLJIZih5ieOvUieBEh21lfNhXmVgS9Llxxrp2PDW6gJH5hONziiG12J8CXhdCxuP/46+fxOGJKP7pZWdX9Hxk5aKeH8S/F5QODo+xn6j7T6ki81TWKpbl83l5fgpXGG+lOtsAOj1IfVQlevzkJz8p+fNAIICvfe1r+NrXvlbXRhFCCCGEEEIIIaQ0xXoZACCb0zsXKl1ZXoyoMhCfWEjitLXtdT1eK2PGWxX+zbuM/o2FRAafvnEvfrvrBH7/gSuwriMghYazBzrw+92jlvtNKa+xjLYKeqBpGrb2hvHdtz296u0U0UlBn7tgIF4qaktFCBl+j6uosKbve2mu1oYuUAJ1OD18lY/vLtjUiadGF+TXQVu8lYhfU+OvXnvRRhyfiWEulsYjx2crfi6yMvn2XUfwtTsO4YfvuAS/fHQYv39iFL9//+VKfJ65vwWUfdZJtPMa+1NaeZ//4P5BfO6m/VJQrTTeyg5FD1IPdXV6EEIIIYQQQgghZGkQJeYq6qr7eAPy+SOK6DHJboaSCKeHz8H5oDpkvnfvUUxFUvjZQ0MATGHp7PUdBfebVFY+q30e9SA6PUJGgbVKpfuMGddUfKwkhuurXfTIZHOyp6CWTg+f2+XYE1OMp21aY/na3ulhj18LeN14y2Vb8X1DQJsqIaaSlc++sQX86x+ewlwsjZv2jOL6+wYxuZjEdbcckD0vquhWzunhFG/1T/+7x+IgqzTeyk7SeMzP/G4v3vydnVI8JKQSKHoQQgghhBBCCCErkImFwuHkqX1tUvhoRClxxOb0IMUpVWTudbsKBn/tAQ+yubwUBbb3my4aEWekxluJ6Jn2OiPGTNHDgzyskTSqs6cUpVwtAjHgX+2rtVPKMNipCNoJUSINACF/dW6tS7f1WL62ix72/VM4Qfra/QB0Bxl7PVqDRDqLv/3ZLtz0pO4gW0ik8ZFfPiF/rro4nhpdkD0vqugm9h9Nc46y83n075V6n5dzeoSL7OPiMb9zz1Hcc2gKv37sRMnHIUSFogchhBBCCCGEELICcXJebO4OySFmI0QPS7yVg7OEmJQqMgeArrBVrGgPeBFT4qTWhHwY6AwAAHZs6ARgEz0comdqQcZbed2I2krG4xWupK7O6bG6V2cn06VL351QV9qHq4i2AoBN3UFs6ArKr+2RRPbXTPxciB6pbA5zsTSq5fZ94/jPm/Yhl8vjhp3H8N/3DVb9GKSx3Lx3HL98dBifvnEvxuYTeOVX78WuoTn584Ty3tw/vqg4PZR4K+N8UizKzuvg9OgKWY91xZwc8udFjml2IeXBozMlH4cQFYoehBBCCCGEEELICkQ4L9Yaw0oA2NoblqWwjYi3UofipTpECJA2inyLiR5rjF4PQSqbk8KU26XB73Hh7AE94uoyY7W+1elRGD1TC2q81WLCOty2iyDFSKbNTo9i0OmhIwQir1uD2+Xcf2KnzeeBmC8XWwVfDE3TcMkp3fLrck4PEXHm97jlsLqWKLt//f1T+Podh3H3oSl84jdP4pM37inYv8jJ5dBEBAAwMp/Ax3/zBI5MRTHQGZDHl4QiyCXSORlt5hRvZd+PBE5F5pvWhCy3KSfc+T1uy3lMkMrkkFHElMfYN0OqgKIHIYQQQgghhBCyAhHOix1KF8SWnhCCPuH0qCyqqBjJTNYSzTNB0aMkpeKtALPMXJBIZ6WTJuRzQ9M0/Nurz8V/veUivPJpGwAAU4tqp0dh9EwtrO3Q3SQ9bT4sJqz7SLzCfUbsF6W6JtjpoVNtiTkAuFyajEOrpsRccPFWRfTwlO706Amb+2Vfmz54riXKTrhDnjwxj1weyOeB+ThFj6Xk8GRE/vvWpyYAAJ96+Q48wxDFEuksVPPGTsNJoR5jxH5bTOB0cnqIDhuBqwKx74uvv6Dge6lsFgnl+DE4HbNELhJSCooehBBCCCGEEELICuPwZAQHxvWB1o71nfL7W7rDCPkaE29lX/VP0aM0ZpF5MaeHVaxIpE2nh1gJva4jgOfv6JdRQ/F0VopXTtEztXD1WWvxiZeejb9/4fYCQSJaaZG5sULcX2T1N2D2fdDpUT4KzAmx2r5cNJATl2xTRA+f9Xnt+2dvm7nCfm2H0esRqT7KTgyj940tyu/ZRTVycjk8EbF8HfC6cMXpfdK1EUlmoNa33HNoCoDV6SF6aIqJdj6j50MVPWqJtHvmab24+++fg3988Vl43cUbAejHDnt5+cODjLgilUHRgxBCCCGEEEIIWUEMzcRwzXV34nEjm/2cDVanR8irD0nrFT0itoHlxAI7PUpRzulhj7dKZhSnhy3CKOxzy1gZEStmdnrU5/Twe9x45+Wn4NS+Nqw3OkQEle4zcpBfRODRn4dOD8AcAFctehivsxAxq+HUvjb888vOxr+8YkfBsNq+f/YqsUJr2/X9oVqnRzqbk6/z/rEF+X2uyl86srk8jk5FLd+78vQ+BJVjSzEnjtobFCjj9BD7k0X0SNf2nt/UHcK7rtyGdYYbLekoejDiilRGfcsDCCGEEEIIIYQQclIZmonJ1bkv2LEOV525Fh947mlYSGSwcU3QMd4qn887ltCWQgws/R4XkpkcFhIZJNLZotnuqxH172oWmTv/ne3lvk5OD4GmaejvCGBwOobR+QS29IQxHdWjruotMlf5zl8+Hf/v5v3oCnrxq8dOVBFvZQzyveXjrVKrvcjcEAOqfd8IR0+4BqcHALz9Wac4ft8eb9XbpsRbGQJIta6uqCJuHJ40B+3s9Gg+uVzeMT5qZC6OZCYHn9uFPPJIZ/N4/o5+AOa+WKyw3trpYYgeRd7rYn9SxU1xLNzaE8J7n3Natb+SpQ/ILnrMxVNOdyGkADo9CCGEEEIIIYSQFUTSGCids6ED33rLxQh43bj2+Wfiky/fAU3T5MrweDqL49MxvOJr9+Lq6+4sGB6VI2oMwPs7AxAztQVm9Es++JPH8OzP3SHFpbKdHkG76JGVf2On1fwDnUEAwOh8HDPRlIyeOXdjV0O2HwDOXt+B773t6bho6xoANcRbVVJknl3lTo90+f4TJ4TTo9oi83LYXzNLvJUhekxWKXqojo6s0ufAeKvm8oVbDuDCz9yCQZujAwAOGX0ep/SG8e4rt+GZp/bghecI0aPQ6eFRhBPVTSaLzIvEW5mdHubrnjTONd9729Px2os3Vf17+Syih/X4sdrj8kjlUPQghBBCCCGEEEJWEHK4XiRaSDg9jk5F8fKv3YNdQ3M4MhnF4HThYKwUIt6qze+RvQKLjKuR3L5vAsdnYjhirGxPS6dHkXirsD3eKoeY0ZvitJp/oEuPeBmZS+CnDw0hlcnhnA0dOH9jZ8Ft60U4TeIVih6VFJnLeKsao25aBVlkXrXTwxA9aigyL4X6mrX7PRYHiun0sEbZTUWSePlX78EPHzjm+Jj2/h8BRY/m8qc9Y5iLpaUgqiL6PE5dG8bfvWA7fvSuS+VxXAgYczHdNdEV8uL8TV3yvmpvUFmnh4i3yqidHrUJfQJxbktmC50eqrhCSCkoehBCCCGEEEIIISuIco4C4Rr4wxOjlviS2Wh1Lg2xervN70G7sfKXQ0ydfD4vXRGis6FckXmXvdOjjNNjveH0ODEXxw079WHzWy/bWnVMWSUIoSxaYbyV2Jfa/cX7RUSXxKp3etRYZC7ErbPXd5S5ZXWoolxPm3WfLBZvdd/haewenscvHh5yfMxI0vnYojpAJhYTeM8PH8FdByZr2m5SyLjRs3R8JlbwMxEzdlpfW8HP/DanR8DjxmXbeuTPVafHWQMdcGnA2QPO+6G9yDyfzyv7fG0uJZ84dtDpQeqAnR6EEEIIIYQQQsgKwhQ9nAdKIWNluH1wOV9lFnrUInoYTg9m9APQB9kixkc4GcqJUdt6w9A0yD6WRCZbtNMDANZ36aLH3QcnMTwbR8jnxsvPX9/Q30NQrdNjeFYfsm5cEyx6Gx+LzAGYoli1nR5vuWwrXnLeenTbHEL1ou6farQVYBaZ2+OthCOgWNF9pKjTwzxefOGWg7hpzxhu2jOGwX9/SfUbTiwkM1nMGqK2iLc6MRfHd+4+grc/8xQMGULIlp5wwX2F00MkkQW8Lly6rQdf/fMhAFbR44JNXXjk488r6CQSCBFNiJuqyFmq86cUvhKdHqv9eEIqh6IHIYQQQgghhBCygkiVcRQEjeFq3pYCMluktLYY0ukRMOOtInR6ALAWN4shXMqIXSkWb7WpO4SbP3glbt83gc/+cR+S6ZzsAwk59DaIeKuhmTgAfaV1s0rkq3V6DM/q27Sxu7jooZYRr2ZqdXoAaLjgAViPGwWiR4f+9WIig0Q6K/c34ewpKnoUOS6o35+NsoC6kUwsmMLUsWld4PjePUfx/XsHoUHDVET/uXhNVexRawGvGxdu6ZJfd9scQPZoPhWf7X2uihK17PP2x0xkrPvcaneOkcqh6EEIIYQQQgghhKwgUmWGqE5RSQAwG6tu6ChEj7DF6UHRA7AOf8VK5HJODwA4fV079o4u6PfLZGUXQql4K8H2gfb6NroEoiy7YqfHnHB6hIreRubyZyp7zFZFdnrUOABuND6PGY/W224dZusdHy4k0jmMLySkS2BWOj2c3//RIl0/6vFCRGcB+j5Ra/QR0RlbMHtXjs1Ekc/nsXdEP7aMzsel6NETLhQ9AjYHht/rRsjnwY3vuxyJTFaK3JVgFplbHW9AcWG+HD7FPWI/JqVXuYhKKmd5HHEJIYQQQgghhNRELJXBwfHFpd4MchKptNPD/vVclU6PqFOnB4vMAVgdEWJlc7kic4EY9iZUp4dDvJVwegjO7G9st4NKyKs/f7FCapVMNofROX3guqmU6MF4KwCou9+g0fjc5nbYnR6apmGDEat2wnDzAJXEWxURPZIZHJ2KYiGRlm4iwHQvkdoZmzdFD12kSmLfmBA9EpgxnDV2YQsojFoLGO/Vczd24ulbu6vaDp8UPYy4P0WUr7V/SMRiJTNZJIzHEw9FpwepFIoehBBCCCGEELKC+btf7MbzvnAXdg/PLfWmkJNE2Xgr2wD9lF5jtXaV8TJqkXkbOz0sqCvbxUp+4WgQxb7FUAd6UdnpUTgQ7wh4LSuuz+pvntNDDKTj6SxyuXzJ244vJpHJ5eF1a1jbXriKXOCn6AHA7Hyxr65fKkp1egCme2dYET1ENJ7aZaNSTPTYP7aIa667E+/4/kMWl8ix6WhtG08k44rTAwAeGpyRr9PB8UXk8rpQ0B2qQPSoIzbP7vRIGsfDUo63cvjdZryVeLx241i42uPySOUsjyMuIYQQQgghhJCaODCmuzyOTnGItFpIVun0kKJH1Z0exkBeibdip4eO6ogQr4cof+5xGCSrBFSnR1J0ejjHyaxX3B5nNFH0CCudIvF0abfHsFGQvKErCJeruMDjM37P1T6kFGLYcnF6eBVRrsehq0GU0w8ZZfWA6fQAnCOuisVbHZ+JIZvL48hUFDHlPTM4HXO8Pakcu+jxpz1j8t9CTO0O+eBxEMcDtnNHPYKc2J+EGN8IZ5NTkXlHUHcbpun0IBVC0YMQQgghhBBCVjAia51dC6uHcvFWQZvosc0QPebjVTo9DFdHu98jV9lyP9NRB79iKDdqxM0MdAYc7yMQA8ZEWnV6OIseA0avx8Y1QXQYEWPNIKAMKItFGAlkiXmJaCuATg+BHAIvQ6eHGCSrODk95uKmYOq0f9hj7+ypRpFkxhIJd5xOj7oZM4rM3YbwqIoeAicnD9Bgp4fH5vQo0zlVCVbRQ3+8TmNfXe0iKqmc5XHEJYQQQgghhBBSNblcXq7eL7bSthSLiTRe/fV78c07Dzd600gTKdvpYRtgba3R6RG1OD1EpwfjrQDTBQPoQ75MNidXXq/vCha7GwBzBXQyo3R6+J2HjsLpsb2JfR4A4HJp0iFUrszcFD1K/57m4JJF5sDyKTJXO2echDTxug4rTg81Gs9J9FD7fwBgfad130hlcpbjD50e9SOON+ds6ARgdmqoOPV5AE6dHnW4MpQoKsCMt6pH5JPHjqzp9BBuw9UuopLKWR5HXEIIIYQQQgghVbOYyMh89WKZ6qV4aHAGjx6fw492Hm/0ppEm8J837cN1N+9HKiu6I5w/0odtUUlC9FAjaipB7FNhv1sOnOj00IlZisyzmFhMIpfXo176ysVbKU4PEflTzOlx8Ra9VPjZZ/Q2YrNLIkSPqEN8kYoYhpcTPej00BG/fz2r6RuJ3+PC2nY/PC4Np69rK/i5KXro4lYmm8OC8r53EtjF9y4/Td9Pr3TYX0X8G6DHXpH6EKLHK85fX/Q2xZwebpdmiTlrhEAhRBcRc1VXvJXbPHaIuD0h0LHInFSK81mVEEIIIYQQQsiyZ0YZYtciekwY8RjVFlyTk8+JuTi+fofuyHm5MeSqJN4q4HXJuKW5WBr5fB6aPXumCGL43eb3yFW8FD101E6PRDqH0Xl9QLyuI1Cy5wIwh9/JdE6umrf3sAhec9FGPPvMPsfuhUYT8nkApBoWb6VG1KxmGhH300g0TcNdf/8cZHN5RyFGvK5jCwmkMjksJqzuLqfOF3FceMl5A/jXV50Dr8eFHz84ZLmN2kFxfCaGv//FLnzg6tPL7kekkHw+jzEjTu+as9ZhfVcQH/rp48jm8tjYHcSRST0+rJjoAejujnRWf90aUmQunR6lnYiV4BRvxU4PUi0UPQghhBBCCCFkhTKjiBW1xFtNGCtvF5MZpDK5uoYUpLmoA8MFYwhZbIiqDtDXhHxYE9IH5plcHovJTMXdEGq8lVjFW4u41oqo77dkJosTc0a0VWdp9wNgvm6pbE5x0xQfz5QaXDYSsd84FVWrHJmKAAA2dZfr9GCROQApGhQTtpaCUkPu3jYfAl6XFPPssUmOTg9FIO1p8yOXK4xaUsW0bC6Pnz08jHg6h6+84Wm1/hqrlvl4Woppazv82NzTjws3X4WFRAZfvPVARaKH3+uWXSz2YvNqKF5k3qB4q4w13mq1H09I5fCKlhBCCCGEEEJWKKpDo5ZhtBo3Um30ETm5TCiix7xRKly808McoHeFfAh43TJSaS5aeSeH7JvwqfFW7PQArBFQiXQOo3O6+2Ggq3SJOWAdOEvRYxkMxE3Ro7jTY2w+gfGFJFwacNZAe8nH8zHeCoAZ5bRphTgaNE2zlJnbzw1OnS9CIG0zjhMulyb7Pex8/rXn40PXnAEAuOnJUUwsJhxvR4ojFix0Br3yeLK2I4DT1rZhbbt5DOppK+4QCyiRVv46nB4iisosMq+/w0YIpvk8EDFcRDLeapUfT0jlUPQghBBCCCGEkBWKNd6q+rJgddg0Q9FjWTMypzg9hOhRpNMjaHF6eI3/68Ov2Qpf51wur0QveaToEWG8FQC70yOHUSNqZqAKp4eKiG5ZSkJGr0gpp8eu4TkAwBnr2uXti+FnvBWyuTyGDNFjc8/KED0As9djaCZmKSAHnEUxEW+ldtOIY4adZ5zSjb+55nRcuLkL6WweP7HFYJHyTEV00aPXQdRY22G6O0r1C6niaz3xVkLczOX1/d10etT+mOoxUjgbO41jZCaXd3QSEWKHogchhBBCCCGErFAsTo8qVuDHU1lZviyYYa/HskZ0RgCQpcLFnB4+jwseo1dCiB1dxv/n4pXtJ2puv15krg+coqksshw4IZpSOz2yGDGcHusrcHp43ObrAwBBr3tZlFwLsSyeKi5S7BqaAwCcv7Gr7OOZRebVC7KtwsicHg/lc7sqEsSWC0L0+MlDQzg8GbH8zEkUEyKg6u4o5vQQjqK3XrYVAPCLR4br3t7Vhjhf9ziIGmvbze+V7PRQnB6BOorMvYr4nsrkpMhZVzm68pjC2aiKaCwzJ5XATg9CCCGEEEIIWaGo7oxohU6PZCaLqz9/B4I+tywIBYDZKmKPyMlnZL7Q6eEt4vQA9AH2YiKDTsPp0WWskq00xkys5tY0vfDW4zKfK6I87molZnN6CAGykk4PQF9ZLaKt1iyTv2XQEF6ciqoFu4fnAQDnb+oq+3hOReb5fB6aVrrovZU4Nm1EW3UH4S5TcL+c+Iunb8ZvHhvB40NzeNwQugR2p0cmm5P7TFugvNND9Nc845RuAHpk2mrbL+plOmKIHuFCp0efKnq0l4i3UpwYgTpcGRbRI5trSLyVy6XB49KQyeWxEDfirRQ3XCqbWxZCMVne0OlBCCGEEEIIISuUWjo9Dk9EMTKfwOHJKE7Mme4Bxlstb0aV10rEh5QqnherqWW8VVj//2yFjh7Z5+F1w+XS4PO45BDrWf9xOz7xmyer/A1aC1VkTCpOj0o6PQDrymrhwllqhOiRKCJ65HJ5GW913sbOso8n4m3E/vr1Ow7h6f96Gwanog3Y2pXBsRn9d93SE17iLamOczZ04jfvfRY6HISLqE30UL8O+81BdFugUMxzaeYwXAyx9UE5V+5Xw7R0ejjEW6mdHuFSReaq06Me0cMUq9LZHJLp+ovMAfP8JuKtLE4P7i+kAih6EEIIIYQQQsgKZUZxZ1QqehyyRZUIKh2Gk5PLdTfvx+u+dT8OThS+bqVFD31AZI+3sufzF0MM9UP+wpXbkWQGP39kaFXnqqtF5vPxtBxCVur0UPPuhSC11JjxVs6ixwNHp7GYyMDvceHM/tIl5oC5f2ZyeWRzedy6dxxTkSQePjbbuI1e5ginx5YV1OchOG1tG1538aaC78dt8VYi2srr1iz7tZPTI+zzSEdH2OeW7peFCmP3iM600enR7SBqbO0NYVtvGFec3lvyHGFxetQRRaVpmhQ+0oqAVU+nB1DoFAt63ZbnIaQcFD0IIYQQQgghZIUyEzU7OaLJDPL58kPoww7Dc/2xKHosR758+yE8eHRGFgWr+EvFWxkrd4XYIbLd1R6XUginR9inDjHN4XwincOI0jOy2lAjfoTLw+vW0FVhVJV/GTo9AiXire4+OIm3ff8hAMCVZ/SVjFYTqCu9U5mc3IcXq+gfWukIV8vWFeb0ELz50i0F37M7PSIOfR4AcN4G3Q105jpTIAspThBN06STZJ6iR1WI87VTkbnf48Yt1z4bP3jHM0o+RqOKzAEz4iqdyTck3gqw9noAuigrnodOD1IJFD0IIYQQQgghZAXxy0eGcf29RwFYV+1ncvmKIkLspbSCWcZbrThKreLd2quvLD99bRsAs5h4eDZW0WOLwaZwjACFK7cPFRHQVgOqs0oUy3cEvBX3EqirrFdCp8f19w4ilcnhqjP7cN3rzq/o8Xw20UPE1IiM/tWAcHpsXoFODwDY2hvGxVvWAACed/Y6AIVOIPFeCNtEj3dfuQ2PfPwavOrCDfJ7YZ/1NiLiamIxic/+4Sk8cmymsb9AiyKcZd0OnR4A4HZpZY9F/gYVmQOKK8Pi9GjMYwoCHrf83qPHZ/Fvf3hqVQmopHooehBCCCGEEELICiGRzuJvf74Ln7xxLyYWEgXujEgyg9loCt+752hR58bhSec8/dG5BL5/71FLzwdZ3pQSPf7z/5yP33/gclk4LUSPE7OVvb6iqDukOD3sbpNi+9JqIOYQJ1esuNkJdeC4Zpk4PYI+fZsSDvFW4rjwtmdutTh+SuFxaRDd3clMdtU5PfL5vOz0WKlODwD4n7+6BH/4wBW46sw+AGaclWA+JjoXrPuFpmnoafNbHCBBn9VR0GHc5zePncC37jqC//jj/oZvfytixlvVfuxQ3R31RlEJgSOeykoXhr9O94hdNAl43dL9cd0tB/Bfdx3BH58Yq+s5SGtD0YMQQgghhBBCVghDM+Yq/bl4uiASJJrM4Gt/PoRP/24v/vu+wYL753J5HLE5PUS8yIODM/jUjXvxNz9+rPEbTmqm1ArcUqJHm9+DHevNsulNa/SV5sNz8Yq6OKTTQxlYHrUVUBdzDbU6uVy+IOIHKBz6lkJ1enQGl7/TQ0R4re+qrLME0IfeYh+NpbIyEswpqq0VmYmmkDBKnTdU8XdbbgS8bpy9vkMKoPb9Y9jYN4r9jqoYWOj00L8+YLjGhEhESmPGWxUvKi9Hozo9ALNbZCqabKDTwyqaBLwuGW81acQ0ji8k6noO0tpQ9CCEEEIIIYSQFcLgtCl6CAFE08xc78VEBvccmgLgnJF+Yi6OZCYHn9slV4hu7++w3GY1lQyvBDLZ4gKFPfO8FP2dAbg0PWZoKlK+18Op0+OMdW2W2xTrh2lVhmZimImmHEUBwBzgVkJgGTo9inV6RJMZGeE10Bmo6jHFCvJppX9oYZU4PYTIE/C6SgqUK4WgV9+/7U4PEZkn3GR2VKeH2ukBmE4P0X0yvpCUnRDEmUw2J6Mt63N6mPtkvU4PcQ0ytWi+fvXu8wXxVl63FFKEmDjNLjJSgpV/1CWEEEIIIYSQVcKxaXMV7HFD9OgIeGUu+vBsHPvGFgHAsd9DrMzf2hvC2QO62LF9oN1ym5CvvuEHaRz5fB4Zw5XxygvW44rTey0/r2ao5HW7MNCpDyWHKoi4ijl0enzlDRfiTZdsxnfeejGA1RVvdXw6hiv+88947TfvQzTl7FRo91fu2FCHjGvCy8TpIVby21wso0ZhfbvfU5WbBTD30amIOZxcLU6PRFqIHq1xTA0bgkXMtn8MG8eTYqKH2vVR4PQw9idVpB+Z4+r9UgjBQ9PqE0wbWWTeZzhOpqMpJNONcXrY7+/3FIqHFD1IKSh6EEIIIYQQQsgK4Zji9BCix5qQV66kvX3fuPx5OuskeuhD6lP72vDuK7fhOWf24U2XbLHcppr4GtJc0orL49OvPAdnr7e6cqpdSVtNmXlMlhObw7Az+9vxr686F5ee2gMAmIoki3bHtBo/uH8QgP4eiiadV6JX0+mhrrLuWiZODxFvlbA5PcQQupZjg1+KHqbTY7V0eojV6IE6V9EvF4QgXlz0cC5rtzg97J0eDu4oNcZxNZPPO7v8xDF3TcgHt6t0WXkpAg0sMu9tN+KtFtV4q/r2+y3d5v4U8LqgaZqMtxLMRMu7FsnqhaIHIYQQQgghhKwQBhWnhxgMdYZ8cvXs7fsm5M+dRA8xIFjXEcCVZ/Th+29/RkFkUWSVrMJeCaivoc/tkkNpgd9d3VBJDCWHK3B6RB2cHoI2vwf9HXrM0cWfuQXfuftIVduxErl9v/neEvE+HTaRo6pOD+W1XC7xVsU6PYTTY6CrumgrQHF6LK5Cp0fGjLdqBcSxwC56nCgTb2Xp9PA7Oz1UKjk+tTq/fGQYF/7LLXjk2EzBz0SJeU8d0VZAY50eMt4qYsZb1ev0OH9Tl/y32L4Cp0dkdYjupDZa48hLCCGEEEIIISuUuVgKr/zavfjuPUfL3vaYpdNDHwx1Bb1oM4ZKaoRMyiHeSqxQV1fva5p1pehqWYW9ElBFD6/bVTCYqt3pUUm8VWGnh8qLzu0HAOTywI27R6vajpXGXCyFI0qUV8QQPex5+tV0eriUFdprQssj3ipQpKhaOD1EPFo1iN4Z1emxWjo9Wi3eShaZK/Fu8VRWnnc21eT0cBI96PT425/vwmwsjb/674cLfiYinerp8wBMB5LbVeigqBZRqD4VSclrD3+dYt/5G7vkv4WAYu+xYrwVKQVFD0IIIYQQQghZQn7+8DAeH5rDv/xub8nbpbM5nJgzh9VDxmCoS4m3st/eTkRGFllv/7yz18l/R1NZZHPFy7PJySNlvIYuTR9MBWwiRzPjrYRAFnLYtwDgn1+2A79937MA6IXmxaJYWgHVQQWY/QNtAY9lCFeN00ONkKq2J6NZSKdHynrsEE6P9VWWmAOA33hMq+ixSpweotugRUQP0fkSS2fl+/3EnH4safd7iop+baWcHg73odPDRPR3qIh4q562+kQPIUrYzyu1YIoeZryVr0onop0z+82+sYlF/fhhP+fNRlPI8XqFFIGiByGEEEIIIYQsIQFl5asYhN6w8xh++tBxy+1OzMYtYoSIGOkMei3ODYFTkbmI5bGLJF9/04V48B+vll/vGp7DZ363F5OLzMteSkSnh1iFG1T2FbdLqzrPXcRbnWiA0wPQh1Jul4ZIMiOHUq3I7uF5y9cLhugR8nosq5mr6fRQy8LryeVvJOU6PQZq6fRwcHqkMjkZgdPKiN+xEUPl5YCIUcznTUFnyDiWbFgTLHANCvwetxQH7RF9zvFWdHqUwoy38tf1OMKB1AgnkpPoUa/TQxU4hKZud6RkcvlV4xwj1dMaR15CCCGEEEIIWaG0KYLFkckooskMPvGbJ/GxXz9pGT6qfR4qXUEv2vzm4Ehka5d0eth6GrxuF9a2B2T2/Ku/fh++c89RfOzXT9T4W5FGkJYrZo0Vucpwyh7zUQnrjU6GsYVE2dsKp0ewhOjh97ix2SibfXxoDj984FhLxqMJkUMgxEOfx2Up63Ua4BbDHiG1HAgq8Vaqc2ekLqeHvp/as/dXQ69Hyzk9lN8jaoii5UrMBcLtYRfoneOt6PQoxWSkMU6Pxooe+rbMRFNSMK+30wMANtiEVqfHZMQVKQZFD0IIIYQQQghZQtTujcOTEUSSGeTyQDaXlzE6AHB8xnn1a2fIZxFOrji9D4DpElCJFom3Ethjdp6wrXAnjWMqksQd+ydKxkIJ4crrcRA9ahgoifs79b3YMZ0epd0Lp/aFAQB//cNH8InfPInP33yg6u1a7tjjmETJu9etWUqq7cXmpYinlp/oIfaPbC4vjx/5fB6jdTg9hDg3GbE6gexCUisiOz1axOnhcmlKBJr+uw2XKTEXCHdhyFe8yFwc0yYWkwVuo9WG6hobnY/jnoNT8lwh4uYGahAhVUSXUFcDOoW6wz5omt7xNL6gv9dVQbhWXnPRRgCm49DpvMcyc1KM1jjyEkIIIYQQQsgKJWkTPdRhqLpqXqx+XddhjbTQnR7mgOTy03oBOA+2RSSWUxwWUDi0LXY7Uj+v/9b9eNv3H8IvHhm2fP/EXFzGl4hOD69bj42pV/QQ0SCZXL5oDnomm8O+sQU52A+V2QdOXdtm+fqWveNVb9dyx+5eEYKQ1+2yrDyupptjW19b+RudZNSV/MKJMhVJyX/XMmQVTg+7s2N1OD1aq8gcMAXz2Zg+aB6c0h2I5UQPMVi3OzvUTo9TesKy6HyoiMi/WlgTMl0cl332drz5uzux8+gMAJgiZGf1IqTKuRs68amX78BnXnlOXY8DAB63y7LNQGOcHu9/7mn46Iu245f/95kAzHOhyky0daMVSX1Q9CCEEEIIIYSQJSSZVkWPqCX2Rl1hLlbUnjXQYbl/V8grh61nrmtHvzGYrKbIXGAf2joVpJPGcHhSHxb+6EGzuyWSzOD5192JV339PgAOnR51xlupA6N0ztnt8b4fPYYXfvFuHJqIAKjE6WEd3p++bvkN8+vFPqAX0V/2eKtqOj0+8sIz8ZZLt+DXxjBvOeB1mz0xYmD/8KA+aN3e317T8L7YfroaRA8haAfq7DZYTpw1oJdLP3psFvl8Hg8PzgIALtjUVfJ+f/v8M/G2Z27FZdt6LN9XnR49bT55fntyZHW7DJ32mceOzwEARuaMuLkanFcqmqbhL5+5FU/bvKauxxH02uK26u30APRz318/+1Rs79f3C0enB+OtSBFa58hLCCGEEEIIISsQtdD38EREujEAawSMcHo4iR5XntGHa85aiw8973Q5IHdyehQrMhfYh7bFxBHSOMSqXUAvGI+msjg+E0MinZXCldnpYX6Er2UVrVoC6xR/9qc9Y7hpz5jle+XcPnbRoxVji+xFubLTw+2yxls59BMUoyvkw7+88pyGDRwbgaYVxhfdf2QaAHCpbVhdKcUiblZD+XArOj3EfvDAkRkcnIhgOppCwOvCeRu7St7v2Wf04ZMv31EwtA753FJo6w77cN7GTgDArqHVLXo4nb87g14sJtJYNI4/oqNpuSDKzAW1CPPl8LkL30uMtyLFoOhBCCGEEEIIIUuIOtw4MhWR0TmAdTW0iPs42yZ6dAa96Gv34zt/+XS88JwBuZo/5eD0ECvUi4kZ9iJme/46aTxqqfiMsmJ1IZ6WReaOTo8aRA91CJW2DdUy2Rw++ds9Bfcptw+ITg9BK666tbsSYrLTo3anx3JFDOiF4+wBKXp01/R49v3UmG+3ZOG9nZYWPY5O495DUwCAi7d013Q8AnShTcQq9oR90jGya3iu7m1dySQdRI9IMo3Ref180Rn0Lrvzs1308Ddhv/d6nOKtWu+cQxoDRQ9CCCGEEEIIWULU4UYincNhI1YIMIetkWQGszF9SGh3enQGrZESYvhkXymayuSkENJWZFii5qsDQK5EyTZpPCInHwDm4mn5enka1OnhcmnwGFNne/zZ6HxCDtRUysVbdYV8uOrMPim2zbTYqtt8Pi8H9OJ3FMKkz2M6PQJel8VJs1IJ+vTfIZ7OYiqSxIFx/Xj0jFNqc3r023pA+jv0r1dDvFXCiC5slSJzADhvYydCPjfmYmn84P5jAGoXxATCIdXT5peOkT0jC45uh9WC0+++EM/IaKt6S8ybQYHo0YT93u9wjG1FoZ00htY58hJCCCGEEELICsS+onNw2ixwFcPWE0a0VWfQWxBp0WmL1BGr+e1DbRHJAxQvp7Z3eqil6qSxiMJewIw4U1eszsXSBZ0eakZ6rdEh4rHs+93Eoi549LVbB1dBX/nVute//Rl46B+vAQAsJjOWyLaVTjSVheh87w775PcAq9PD7pJaqQg3USKVxc4jZp+H+N2rxT4Q32AUXi+sCtFD30+aseJ9qfC6Xbh4q/6aHjVKzC87tTZBTCDeO91hH7b2hNAR8CCVyeHA+GJ9G7uCcXJ6LCRMp0e9fR7N4ILNXfLf2/rCUmBvJKrYL2LRpiMsMifOUPQghBBCCCGEkCXEPiCeVD7Ai9x7UWK+cU0QQa9bDhPCPnfBin/xtb2zIaqsTi+2Ir3dFnullqqTxqJGIQ3N6KLWrCJ6zMfTBZ0e9cZbAaZbwS6KTS7q+92mNUGEfdU/T0fAK/fLVoobEcKj26XJ4awQEL0eTTo9WiHaCjD3sXg6i6dGFwAAF26pvXfk3A1dlv12gzGs/fnDQ/j2XUfq2NLlT0IWmbeO6AEAV29fK//d2+bDuRu66nq8bUZE3hnr2qFpGs43Iq4eH5qr63FXMk7C8UI8vaydHi8/fz3u/Lur8Lv3X47fv/8KaFrjRQ/12kW4xuZbsEeKNIbWOCsTQgghhBBCyAolmbYOn6cWTdFDRMCIEvONa4LQNA3tAQ9mY2l0hQpXXxcrMhd9HsVKzIHCIuYERY+mkVFEqWPTUZy2tg0zarxVLCUFB5FjXm+8lXo/uyg2Yex3a9sDiKWy2DdW3Sprl0vDmrAPk4tJTEdSGOhcfiuRa0G8BzsCHvneEp0ePsXpYXdJrVTUTo8pQ4AVw8Va8HlcOHdDJx4c1F0jYoX66HwC//qHp3DN2etwSm+41EOsWMxOj9Zab/zmS7fg9LVtiCQz2LGhs+ZjkeDfXnUu3nXFNuxYr0c3nr+xC3cfnMLu4TkAW+rf4BVGLpcvOD4DujtqZG75Oj0AYEtPc9/L6r62JuzFibn4qo5BI6VprSMvIYQQQgghhKww7DEWUxEn0UM4PUIAzAGrXaQAFNEjm0Ne6eSIGKvTw0WirfTHtQoiFD2ah1o0LyLN7E6PlK3I3Ot2STdFvfFWdqfHxIK+3/W1+7G5O1TTY/cYEUitlLEunB7tAS+8xsBNOD18brPTw+m9uBIRcWbxlCl62LP6q+Xs9WYP0TqbgDITbd1oGil6eFrL6eF2aXjmab14/o5+6dyph7Dfg3M2dEpnwHkbOwEAu4bm637slUgq6zzEX4inMTqvL4Cwx1yuFiyih7Hoo9jfixCKHoQQQgghhBCyhNhFj0mL00PEW5lOD8AUJ7ocBq3qUEBdLSoGtaWKqQs6PSh6NA1VdDg2rWfjz8TMmA6nTg/AXIlfe7yVKYqpTEqnhx+XbKsto7+nTR9CtdIgeyGuv2/aAx74ZJG50enhccm+hlaLt0qks5g0Sul722rr8xA867Re+e81tm6QVi40T7ZovFWzucCItzo4sWjpolotqO7Pj7/kLFz7vDMA6EK46PRoFSddtajnQil60OlBikDRgxBCCCGEEEKWEJHdLYbYasGvGLiaooe+Al90C3SFHEQPtyp6mMMAMTwqFW9lH9yyyLzxiJ6WtCXeqtDpMRdPIZOzdnoAjRA9jE6PIkXmazv8eOtlW/D2Z23Fd956cVWP3RPWHQHTkdZxeojXqyPglQM30Y/jdbukSNBqRebxdFZG7fW21+f0uOastfjAc0/D5197Pp5/9jr85WVmZFErih7ZXB6xVAbJFo23ajZrOwLo7wgglweePLH63B7JrL7faBrwzstPwXONDpV5pdNj/SoVPfwWp4d+zHUqfScEYKcHIYQQQgghhCwp4gN7T9gnV3EKxMB1OmJGDwGK08NJ9PAUET0MASNUqtPDNrhNcJjQUL53z1F8+nd78aW/uADZnCl6CJeFWgA+F1PjrcxCWDFA9dfc6aEPte1OD7XTw+t24Z9ftqPqx+5uyXgr0+kh3qsiNc7nceFl5w9g9/AcXnfxxqXaxIYSMOKtYkq8VV+d8VaapuHa558pv/7UK87BibkEbn1qvCVFj7/83oN44sQ8Qsbf0t9i8VYng/M3dWJsTwK7h+drdp6tVITTw+9xQdM0eV6ejCTlsWddZ33vyZWKugCgk04PUgbKzYQQQgghhBCyhIhB6hqHUnIxEJyLp43b6MMPEUPVGSy8j9ulwah9sAwDTKdH5Z0eqUzOMpwn9fHp3+0FAPzT/+6xfF+IHbMxa6dHyXirGjs9RERTQafHolVYqwURgzQdaZ14K1P08FrEJ0D/W562th3ff/sz8LTNa5Zi8xqOcHpMRZLy2FRvp4cTHcaxJpJMl7nlyuPxoTlLFBGdHtVz3sYuAMDjw3NLuh1LgRCkhVjWacRYCsGjt82/aoU0a7yV/neh6EGKwSMvIYQQQgghhCwhIgKlxyE3fyGRRjKTlR0CXYYwcvnpPQh63bh0W7fjYwq3h7qaP1JBp4dTRA/LzBuDWiq/3lb+Ox1NIpE2X2dAiB6G00NxdQQb1emRMbcnm8tLoWJtHaJHtxFvNdNCTo8FWWTusQzcABR83QqI/WtoRo/RCfvcsty8kbQZokerOT3y+byMPxOw06N6RK/HrqG5Jd2OpUA4PcQxvs22GGG1lpgDxYvM1fMrIYLWO0MTQgghhBBCyApCrFLsDheKHpFkBrNRfejqdmlydfSrnrYRT37qBbjqzLWOj2kOtgudHuEynR6bu0OWwTfLzBvD8ZmY/LcopBeks3nLzwFRZO7U6aH/u17RQ3V6TEeTyOUBlwb01LGqvzXjrYxOj6C3QOSo9TVYzgiBY2hW3x/r7fMoRnuLih6xVBb2+SudHtVz1kAHAL3PSvRerRbE7ysiDN0uDe3KeXugk6IHYI33FMLH5/60D1/786Gl2DSyDKnryPvv//7v0DQNH/zgB+X3rrrqKmiaZvnvPe95T73bSQghhBBCCCEtSal4q3weODGnDx87g15omhmv43ZpBbcX+ORg25y+VVJk7nJp+OPfXIHb/vbZcuBCp0djeFxZsSxec7dLQ9gYMh8cj1huPxdLSaeOtdNDxFvVtnpcuEZU0WNiQXd59LT5S+5X5TDjrVpJ9NDfNx2rxOkh9q9hw+nRjGgrwIzoazXRQxxnVVZrFFE9rAl55YBbHJ9WC2Kxgjrg7wiaA367U3A1oR5z1YUiqUwOP3t4CF/782F87k/7ZU8WWd3UXGT+0EMP4Vvf+hbOO++8gp+9613vwqc//Wn5dSgUqvVpCCGEEEIIIaQl+dOeMXQEvJYicyeOTeuih1NpeTFkvFVGjbfSxYtSTg/150GfG8lMjqJHg9g9PC//LQajPrcL3W0+RGfiODShix69bT5MRVJYSGRkzIljp0etReYOnR6TDSqsFvFrc7HWEz3aAx74PPZOj9YTPUS8lRDcih2X6kWIr63W6RFxED0Yb1U9mqahvyOA4zMxjC0ksKl79cwVxTWBKpapfVvrO1ev6OFXnR5Kp9nYfAL/9od98uv9Y4t19VOR1qCmM3QkEsGb3vQmfPvb38aaNYVlXaFQCP39/fK/jo6OujeUEEIIIYQQQlqFuVgK/9//PIK//uHDstNjTZHhoog9cnKCFEPGWymD7VhKxFtVNoATw894iiWhjUDNpo8Yg3SvW5M9GIcmddFja09Y3m7KECMsq1uN/aAzWLkIpuIkiE0aK6nXdtQ3JHJyGK10FuKi06Mw3qoVnR4hW3/Hao632j+2iCdPzJe/oYLayyNgvFVtrDOOR+MLiSXekpOLKXo4Oz0G2OkBQL+WEeecnz8yjPm4KaDuG1s46dtGlh81HXnf+9734iUveQmuueYax5/fcMMN6O3txTnnnIOPfvSjiMVijrcjhBBCCCGEkNXIfDyNXB5YSGQQMcSIYiuqTdGjeqdHusoicxWxOjmxyvLUm8XeUXMII14Ln8eFXuN1Pzi+CEAXHsQqeBHRoQ563vfc0/APL9qOl50/UNN2mIKYKUxMLOpDxXpKzAHAY7hIMrnWEcrMeCsvPK7W7/QoED2aFm9VueiRyeZwaGLxpJYVJ9JZvOCLd+GlX7kHcQchoxh0ejSOdR36cH9sfnWJHo7xVgFF9FjFTg9VaA77PUoEmnUfeWp08aRuF1meVB1v9ZOf/ASPPvooHnroIcefv/GNb8SWLVuwfv167N69Gx/5yEewf/9+/OpXv3K8fTKZRDJpZq0tLFCNI4QQQgghhLQ2SWWVvZjj2YvMfW4XUtmczNbvqsXpUWWRuUpAOj0oetRLKpOzrAAX5dhet0u+7gcM0aMr5ENn0ItIMiNjp9ROj03dIbzn2afWvC1ORebjhtNDDBnrf+w88vm8pYNmpSJeq/aAB15bvJX6urQKF2/ths/jkseOvrbmxFuJTg8nkcDOP/92D27YeRyfeeU5ePOlW5qyPXb2jJizqbl4CkFfZYNme6eH26W1pCPoZNBvHI9Wn9PDWmQOAB1BJd5qFTs9hGvK7dLg97h00SOpLyABgM3dIRyfiWH/OGfLpErRY2hoCH/zN3+DW265BYGA85vs3e9+t/z3ueeei4GBAVx99dU4fPgwTj218MLss5/9LD71qU9VudmEEEIIIYQQ0lyaObQVXQ0qPbbhYl+7Hyfm4jg2EwVQpdPDobchanR6lCoyVwkaw4U4Oz3qxi4cRY2vvW4XeoyV9DlD/NraE8LjQS9OzMUxZTg97A6DepDChCKIjRlDxfpFD/P9ks3lpfNjJbOgdnqsgnir7rAPLz1vAL969ASA5jk9xHFoMZGWDo5ix9sbdh4HAHz2D0+dNNFj9/Cc/LdTZFUx7CJOoAXdQCeLdVL0aK1S6nLXFk6dHsLp4XZpWNu+ekWP/o4A/uLpm7CuIwBN0+QxWcQQXrCpC8dnYjgwHkEmm4OnBY/RpHKqevUfeeQRTExM4MILL4TH44HH48Gdd96JL3/5y/B4PMhmC08El1xyCQDg0KFDjo/50Y9+FPPz8/K/oaGhGn4NQgghhBBCCGkcuVwer/7GfXjH9c4O93pJOXx2snd2rJV55vrApxqnh3OReZWdHkbMDYvM6yeasg5Cs4bC4XVrBbFm2/s7ZGm9GLh7Gzg4dRLExhskeqgDpkyuNXo9hOgX9nsKRA5/iw6033rZVvnvYl1D9SLirWZjabz8q/fir/774bL3iZ5E19nuYbPLI5as/Hmjttsy2qp21nUa8VYt5PS499AULvrMrfjjE6NFb5Mq0emxrt0Pt2vli8m1omka/v015+FDzzsDgHmts2A48k5f24aQz41UJofB6eiSbSdZHlR1hr766qvxxBNP4PHHH5f/XXzxxXjTm96Exx9/HG534cH88ccfBwAMDDjnjfr9fnR0dFj+I4QQQgghhJClZDqawmPH53D7vgnkmjC8dXJ62EWNU3rDlq8bV2ReYbyVh6JHoyi2UlyNtxJsH2i35LcDplDRCJw6PURmfn+9oocyjFNFlV1Dc3j5V+/B/Yen63r8k006m5MCld/jWhVF5oC+WvqFO/qxuTuEczZ0NuU5RLxVNpfHEyfmcdu+Cfm3Xg7sGpqT/7aLlqWwx1tR9KidVoy3etN3dmImmsL/d8OjRW/jGG9liITru1Zvn4cTQvQQJeZBnxtn9rcDAPay12PVU1W8VXt7O8455xzL98LhMHp6enDOOefg8OHD+NGPfoQXv/jF6Onpwe7du/GhD30IV155Jc4777yGbjghhBBCCCGENIucUpibzefhQmNXVqqdHoA+3HC7NAS9brmy/GmbumTEDFBrkbn5e4jBe7DCIVzAx06PRhErMjT1eVyWWLPusA99bX60Bawf1Rs5XLe7gDLZHKaM7pB1nfVFGanbmVH2vTd/ZycWkxm85bs7cejfXlzXc5xM1PdpwOsu6PBopANnufGNN1/Y1E4Wp5i9aCpTIPgtBfPxNI5MmavEi71/nbALJC1Qa7NkrDPcjmPziZbpCKoE6fTwmseXs9frC8Qv3LJmSbZpuSKEoYW4/r4LeN04pSeMx47PYWQuvpSbRpYBVReZl8Ln8+HWW2/FF7/4RUSjUWzatAmvec1r8PGPf7yRT0MIIYQQQgghTUVdcZzN5dHoxbpOogeguzDi6Sy8bg07bCusO6sQPexF5tlcXj5nyFdhvJUoMndwpZDqKOX06AmbQsP2/nZomlYwEG6k6GEvMp+KpJDL61nxveH6RA+3S4OmAfk8kM6Z+82isfp9pUVeqS4nn9vJ6dG6Q9hmD5jdLg1hn9sSWRVLZh1Fj3a/R+5D2Vy+6fE+TyjRVkBhZFUp7E4POuVqR8TtJTM5LMQzVZ0DVzLiXK12CD3z1F48+LGrm9axs1IRIr5YLBLwuqWbtZouHtKa1C163HHHHfLfmzZtwp133lnvQxJCCCGEEELIkmIXPRqNiK8Q+A2Boc3vxlRE/+B+5rp2y22qibcynR768EQtIw/5Koy3MlaZcmhXP2KluM/tskSOed0auhWnh4jlaD8JTg+xb4i8/LXtfrgaMEz2uvTfUXUZrVTk8NHjgsulFXZ6OER8k8ppC3gsooe9BFzQHjBFj8nFJPo7m1vkfHDCGotTjdMjYhNI6JSrnYDXja6QF3OxNMYWEqtO9PDbVlusrTN+sBXx2Y7JAa8LIaO3LFbkeEJWD63rxSSEEEIIIYSQGrHHWzWaYk4PIUiEfPpqxc3dIXmbqkQPm9NDDO00zRQzyiGcHhQ96kesOO2yDe10p4f5um4w8trtTg+fp5GdHvpjCfFF9HnUW2Iu8BiPn8kWOoQ6gytraJlMW7P1C+OtWtfpcTJot7k6hEtiZC6Ox5VODfV4OTLf/Mga+wrxalaM250ecR4/62Jde+uVmZcj5eD0IM74bBGDAY8bbcZ1VDVdPKQ14TuIEEIIIYQQQmxYnB5NWLGeKiJ6iGG3EBw2rjFLS+0D81LYB9txpc+j0tgaM96KQ7t6EUNTu3Dlc7ssRcfC6dHMTg8z3krfr0VJcL0l5gJRZi4eX93XV5rokTCi3cRrZB+wtWqR+cnCLu4JweDN39mJV37tXjw0OAPAegwanWv+8NvuzqhH9FhhiW7LDuHqGZ6NLfGWnDycisyJM/a/UcDrRsg4rlQTS0daE76DCCGEEEIIIcTGyXZ6+Dz6UDVsxDKIIas6iA5UUSxiL6sWQ7tK+zwAFpk3EhGz4eT0AIDPv/Z8vO85p+Hy03oBFA6DmyJ6GPuGFD0aFBkkHj+Tsz4+ULnLaLlgHz6qr4OmmQIPqQ37/hBJZpDL5WWJ+A/uP4Z8Pm8RPU5GObFd6LULGaUoFtFFauO8jXq31SODs0u8JY2l1LEjmS4sMifO2IXooM+FsHHtUk0sHWlNGlpkTgghhBBCCCGtgJrM04xOj2JOD1HAKcSJrb3hmh7fXlYtRI9gNaKHIcQkMiwyr5dY2tnp4TVe99dctNHy/aZ2eojoM3unR0djCnKl6GE4PdQh9UorlrU7PdTXwet2Nb3su9WZi6UtX0dTGUxHU/LrXUNzSGZyUHXn5R5vtdL28eXOpdt68JXbD+GBI9PI5/Mt856zD+tVklnGW1WK/W/k99DpQUz4DiKEEEIIIYQQGye9yNweb2WIE3/5zK04a6AD73vOaVU9fkGRuXB6eCtf9xak06NhxJLOnR7Fhlpt/spuVwv2faPh8VZuEW+lP/7ovOn0WGn7kt3p4VE6PTiQrJ8ZReAA9BLwUUXUOD4Tw5Mn5i23ORnxVqLHqNvo26nG6VHNbUl5Lty8Bl63hpH5BI7PtE7EVUnRI+1cZE4KKej08Lrp9CASnqUJIYQQQgghxIYl3qopoofN6eEV8VbWTo/OoBd//Jsr8OEXnFnV4xcrMq/G6cEi89o5ML6IN33nAVx3ywEA5urvTrvoUaQIuyDeqqFF5tZ9QxSZN0r0MOOtDKeHMsReacWywukhRA+fxenRGivOlxK76BFNZjBiEzX+9/ERy9ejJ8HpIcQ5IXpU494Q8VZ/94IzEfS68cXXX9Dw7VtNBH1uXLCpCwDwwJHppd2YOskr1xWlRFN2elSO32O9pgl4XQjJInNeu6x2+A4ihBBCCFkmPHliHu+94VEcNbKsSWtx36EpvP/Hj2EqklzqTSEV0GynR9F4K0OUCPrqSyKWg20jYkhk1FfV6UHRo2q+dOtBvO6b9+OVX7sX9x6axpdvO4g7D0xK0anN57ENzp0/kjcz3sqrODFSmRyGZvQh8sY1oYY8vllkbjg9lCF2Ip1ryvupWYjho1O8VamV2qQyPvvqcy1fx5KZgs6OR49buxxU51Aprr/3KD752z2WQXOliDi6HuH0qEKsE06Pl5w7gCc/9QK88mkbqn5+YuXSbT0AgAeOzCzxltSHutih1PFDXB/wGFMeR6eH0Y0Wo+tq1cN3ECE1kM/n8Z27j+C+w1NLvSmEEEJaiJd+5R78/olR/NP/PrnUm0KawLfuOoIbd43glr3jS70ppAKyTS8ytwoJ4oO76PDY3B2s6/EbUmRulKjaS31XE8lMFtfdvL9g8OrEQiKNL9x6AA8OziCWyspV4h//zRNyRXvI77EMaYqJGXanRyOjlLwy3iqPfWMLSGVz6Ap5sanOfU7gsXV62Ffmr6TIETGkNIvMTXdHI4Wo1cprL96EnR+7Gu959qkArPFWHYbwN76gLxRwG2LaVCSJTLZ8z9Anb9yL6+8bLDso//GDx3Htzx7Hv/xuL+aNjpGEcbzsbdd7bmIVdgPkcnm5ujzs98htJvVhih7TNYlYywU1+qzU8cM87jDeqhxOogedHkTAInNCauCnDw3hM79/CgAw+O8vWeKtIYQQ0mpMR1Llb6SwmEjj14+dwAvP6cfa9sbEk5DGI3LzF+LpMrcky4Fcszs90s5Oj1dcsAFbesLYsb6jrscvVmQeqsJBIuKtVrPoce+hKXz59kN4aHAWP373pSVvO2EMZ8M+N771lotx7sZOXHPdnRiaicufhXxu+D0uCMNXscFX2B5v1YQi83Q2h11DcwCA8zZ2NawgWAgDmZy+79njimKpLNoD3oL7LUeS6RJOD4oeDWFdRwBtxsrsaDKDiCGKbe/vwIODM5iO6m+WjWuCODEbRyaXx1Qkhf7O4tc76mC8VBzWXCyFj/36CVmUfkpvGG++dIs85vWKeKt0ZUJdTDlW2oVLUjui12PU6PXY0hNe6k2qCbVYu9R1hV1sJcWxH4cDHpfp9FghAvujx2cxNBPDKy6gK6zR8B1ESA2ouaIreaUBIYSQ5YOaa336uraq7vvzh4fxT/+7B9+840ijN4s0kMlFfXDDktOVQdPjrbJ20UP/kO52abhoyxo5ZK0Ve1m1iHmoxunRZqy0nlhIWiKu4qksbt833tKxV0+emMfx6RgWE/rfrZJ4m4lFoxujM4DLT+9FZ9ArxSsxxAr53JaVqb4ivRA+j8vmCGlOp8euYb0k+oKNnQ17fDPeSn/fCMFXsJKOgfbho+W140CyYQiRL5LKYNSItzqzvx0ApCAR9nmw1nBejC0URlw9PDiD49N60XVCEZVLLTSYWExC/TgvFp2IYWlPW3VOD3GcdWmmU47UT6v0ekSUY1+6hFspZThBeYwpj/086XGbnR7pbL4gSnQ58uqv34e/+cnj2De2sNSb0nLwHURIlWRzeewanpNfR1bQRTshhJDly27l3FLt6lGxCnKSXRHLlnQ2h2lD2FrktcOKINvsIvMiTo9GIYbpMt7KECiqKTLf3t+BDV1BRJIZ3LjLXPTz7buP4B3XP4z/vm+wcRu8jLjzwCRe+pV78Nbv7ZSvUyWDEyFsqo67XmNoKgj5PJbXupSDw3K7Bu4fMvosm5PnnvM2djXs8T02l5H9mFdNKfRSk7A5PTwuxls1AyF6RJMZ2dkhRA9B0OfG2g79vTU2n8ChiYiMuTowvoj/8837ceXn/gzAusJ7Pl78nGt31i4kjHgr430v3r/lRM/R+TjuOzSFBwf1KK2wz9Mw5xTRaYVeD3W/FKKwE3R6VI76NwoYi0fCynVOJW6PvSMLuO/QFMYq7AtqJOo8UVxDkMbBdxAhVfLIsVnLhfpUlREkhBBCiBO7hublvxNVrkoSH85X0urZ1YY6WOHrtDLIKW/Dpogetk4Pf4NXBauDbUB3ZwDVOT3cLg1vunQzAOCHDxyT3z8yGQEA7BtbRD6fb6l9OpXJ4b03PAoAGJyOydepEtFDRFj1tZtCh130CNucHqXEDDXP3etqfJH5XCyNgxP6a3nepsY5PWS8VTYvy9IBpRR6ifaXVCZXcnW1E4WdHs1x36x2RBTUQjwtnUFnDdhED68b/Ybo8dOHjuOa6+7E+3/8GIDC1f9qJJ9wYDkhFo0IhCtE3L+nzYi3KuH0mI+n8Zz/dwfe+J2deN+P9O2xx9OR+rmsBXo9Knd6sMi8UtS/kV+I026XPGaXW6R8695xvPjLd+ON39mJ5/y/O6TwebI4MWvG72ngOaXR8B1ESJXc+pS1fHSKq2oJIYQ0ANXpUW1kjLg93YfLF3XoEq0wJoMsLarTI3MS460ahRphBJirHavp9ACA11+8CT63C7uH5/G40f8gFv0Mz8bwyd/uwdM+fQueGm2NWIafPHTcciwVi53sr5cTwm231iJ6+Cy3CdpFj0qdHg0csAs3YSSZQT4PrO8MNLQPyuMynR7qYjEhAMWWIBYtnc3hWf9xO174xbuqGpiK86sYpjHeqjkIkeDoVBS5vL6/b+u1Rn0GfW7Z4/Hn/ZMAgD8+OYabnhzDXMwcVKazOSnyAmYRuhNqtChgOj3E8VJ1ehTbb0bn45Y4LcDssyGN42mb18DndmF0PoGhmeI9LcsZ9fqvlOjBIvPKsTg9lMUj4phSzln47bvNaOB4OisXL5wshmdj8t+VxGiS6uBZmpAqER/2BFO0oBFCCKmTVCZnOb9UK3qIFYmttNq61VA/RDHeamWgFpnnmrCqtNnxVsWKzINVdoX0tPnx0vMGAAA/uH8QgLnoZ3g2jv++/xhS2Ryuv3ewAVu99Ow5YRVvRKdHZU4PXdxc22GKHqrrA9AHMeogq1inB2B1/7hdje/0EJzS19hSYLPI3HQB+dwudIb08vJK+xEaydGpKCYXkzg8GZUDxUoQtw04Oj04TmkUosh81hAv1nUE0BG0lt0HvW6s6ygU5z752z2WhYjRZMYy6LR3yqgIAbc9IJwmGeRyeSliCHdSLo+i+40QWPqVbWMaROMJ+tzY1B0EAAzPxcrcenkSrdDpIRyGjLcqj88iepjnVuFqLfXZaP/YInYenbGcX092B8iw4vRYKcXrKwm+gwipgnw+j33GKjZxwqXTgxBCSL18++4jsu8BKByGlkPcfiXlpK82Jm0DGbK8+PVjw3j11++15DmrkVaZEtnbtVLo9Fh+8VaCt1y2BQDwu92jmImm5PWvWiasDvpXMvZr+3kj7qYSp8fEYvl4q6DXbeltKu30MF+rRvYD2CO1usONfe3E75TJ5uQQJ+x3y5z1pVjNqh53qznH2p0equOm2v4tUhy7A21DVxBul4Z2JSZKFz0K99WxhQTuOjApv15MZCzxVk6l54IZI95qW68u/C0k0hZxo1txahU7d4vnag948Jv3PgtrQl68/7mnFX1OUjudhhCmltPHU1m84b8ewDfvPLxUm1Ux1nirvKN7KJ83y7cpepTH5zbPkxanh6+80+OGnXps5/POWocNXfp8r5JzfSMZmjEFvAid4A2H7yBCqmB0PoGFRAYel4ZLT9EzJSe5ioMQQkgdDM3E8OXbDgIAXnHBegDWLOpKYLzV8kd1elD0WH586Ke78OjxOXzJeC8C1kirZjo9xCy78UXmhtMjo2+7dHrUIHpcsKkL52zoQCqTw48fPC4jYdQ/S0fAW+TeK4upInE36QYVmYf9HouDo9J4q0Zij8rqDjX2tTOLzPNyiBPyeRAScSNLcAxcSCiiR6byc2zpTg+OUxpFm60DY2uPLkKobo+gz21xU2gacP6mLgB6/45gMZGxxFtNRZKy8NyOOJZtNUSP+Xjastq6zeeRg9Riw9O4cmy9YFMXHv748/C3zz+zxG9LakWIHvOK6PHQ4AzuPzKNH95/rNjdlg326z+nMvNMLg9x+cF4q/KoTg/VyRryl3d67B7W+xRfev6APMYnT3L8osXpwc8HDYdnaUKqYP/YIgDg1L42DBhK8DSdHoQQQurgjv0TSGZyuHBzF15/8SYANXR6ZBhvtdxROz0WE3ydlivqqstckzs9xOD19LV6bv3GNaGGPr4YBMh4q7Q5fK4WTdPwF0/XC81/89gJOP05qj1uLVfs0bW1OD1KdXqEfDanR8ki8+Z8XPe7rYO0NWFfkVvWhtcl4q1ycohjdXqc/H1lLqa4KauJtzLESdPpwU6PZmAv/t7Sqx8PRewUoIsK6zpN0eOUnjCeZogeKouJtEWgyOetbksVEUMlRJaFeFouPPF7XHC5NLlivJhDSdxeDFwbGUVHrDiJHsLJY1/4c3w6hn//476SRfYnm4htH3LqflEXPqkCOXGmWLxVJU4PcS7oCHgL3LEnCzWqbSnOja0O30GEVMFTY3q01faBdvQZH2AYb0UIIaQexOrT09e2y6FKoopVqABk9nQslbX0EJDG86tHhy2l85UyoQxSWVS4vFDfMz3KgFqNt2rG+0rEV3z6FefgV//3mbjqzL6GPr4Yzh6ZiuKGnccQMRwLtcRbAcBZAx0AgIMTEcefV+tQW47k8/mCa3sRo5LO5kvuB4l0Vg7i1HirrpAPYgaqafog1e+trNMjUGX/SqV4PTanR4NFD4/xO6WzeTnECfs9UnArl1uez+fxi0eG8eSJ+YZtk1pYXUygm1hM4If3D2IxYQ5UxflYdHq4XZp8Pen0aBxhv3Vfd3R62Do9tg+0Y3t/e8FjLSYyBfuYGl2oIvaLbUavzaLSByJccWLFeCVOD9JcnESP8XlT9FAXLnz77iP45p2H8dMHh07uRpbA3mcknJgqYgGT160x3qoC1EUEqjMmVEGcolh8EvC65d+6kk6PycUkfrTzeMlelkpRnR5cvNZ4+A4ipAr2jepOjzP726VVnSVlhBBC6kFEp7QHPHKVYKLKTg91gMOBevPYO7KAa3+2Cx/86eNV33dy0Rpv5ZTjTJaGWWUF+JqQOfxVnR7Zpjg9cvI5L9y8pqGdDYA1wugff/0kDk9GAdQ+mNvaU9qJ0gqiRySZUV4XIztecWalHVblCoRY4vO45GAO0IfkojMj7PNA07QqOj2aFW9lfVx1v28EHtnpYRaZh30epVi29L7y6PE5fPjnu/DSr9zTsG2ajZZ3erzp2zvxif/dg3/7w1PmbW1OD8D8+/k8XNHfKPwet+WYtblbP96osXkhnxttfo+Mwtre34HthhirEklmCoStPz45hoPji8jl8rjrwKRc/S9SG4TIks+b5+uQ8ZrLFeNF9tu4dNFR9Gg2quixd2QB+8YWMG68ltlc3nIeGpnTh8nT0eUzr7EPtZ1cBRHjnNPm9zT8uqAVsTo9lE4Pv/m+zeXyuPvgZIEYKo/vHpfp9KhA9Hjxl+/Gx379BP77vkEA+r5398HJqhyv05Ekfr97FHMxU8BjkXnjoehBSBXsM5weZ/V3oLddiB50ehBCCKkdEXXUFjBzo6uNiVE/5JUbJpHaOTypr3A/Ph2reuW/Knqks/mq4lVIcylWcmspMm+i6NG0CKMij1vrYK477CvI3VdphXgrsZgp7HNLIUBdUVxqGCJLzNv8BYMqEXElBCc1sqRURJK/SU4Pj6u5Tg813koI8SGf2xxClRnsqK6MRn3WmrHEWznvq8LFdMd+sxTb7vQAzJXFLDJvLOpagC2GyKoKiML5tL5Ld3ucNdCBM9a1wT4XtsdbAcB/3XUEL/rS3Xjhl+7CW7/3IP7+F7uRzeUxZ7y/B7oC8r04bpwTAsLpUWbFuHB6NMuZRUyE82diIYnXfvM+vPYb9+OYrc9FII7J6jF8qbFHcDk5BRaT5ucCUh5/kXgr9X17y1PjeMt3H8TLv3qv5b7yOszrqjjeKpLMyGv6B47MAABuenIMb/nug3jV1++reLv/6X/34L0/etTyPX6Gazw8SxNSIalMTq6Qszg9Fil6EEIIqR2xoqs94JUX68kqnR7q7Vlm3jyEBT2Ty1sGaOXI5/MW0QOghX05Ma6IHmqpaLbJReZigN6sXoBiBaghb22DFE3T5CBSf3zrdsdbIItaDNh72/3ydVmoVPRYMESPdn/Bz8T3RKfFUjs97G6TZjk90tm8XB2vx1tV1umhrtatJU7Qidmo+TqWO8eqIpCj08Oh1JzUjyoutxsOj46g0ulhvAYfeeF2/OVlW/DsM/oQ8nmwpdvqQlMjquyPf2BcF7YeGZzFbCwlhZbukE+6SsaN97J4vnKxbPZOD9I8hAh2cCKCaCqLxWQGjxyblT9Xo+mEm2c5iR524cxJ9DCdHt6Cn5FC/EWcHm1+s9Pj7oO6kH1oIoKhGVMkEwK432N2bZVblHSnIop3GMLUHfsnAABPjS5gdD5e0TX+40NzBd/jZ4PGw7M0IRUyOh9HNpdHwOvCQGdArtiKprIt8SGPEELI0rCoxFsJ0SOVzVUVp6OusKY1unkMz5oflIrlgzsxH0/LlWPiQxXFqeXD2LwpSGWUAUQzi8xzubzcJ5o12N64Jog3PGOzLEoX1JM7LyJgAOCcDZ2Wn7VCvJVYzNTb5jdFaGUAUmoF6KQxYFvrIHqIxVJBY3iqOj1KDc7VaJ9G41GihJrX6ZGTxzq9yFz//ct9dsoo4uOuocb0ekxHzfd5ud4s9e+RkEMx9TXTf79SJfSkMdjjrQDg6rPW4VOvOEcKk9v7rRFXiwkz3uqybT141mk9+PqbLsQ/vfRs+V70eVyYNpxdXSEvPG6XFFiEEB6yOz2KxVulGG91shCix7HpqPyeKnAJp0cul5fOveUkekTsnR5OoodxzGwv4awkJurCkaDF6aH//aLJDNa1m11AP3rwuPy36ritNN7q5r1j8t8iWm2TIry+5uv34ZxP/gm37h2vaPs7Ah5cc9Y6fVv5Ga7h8CxNSIUMzeirOzeuCUHTNLT5PfLilxFXhBBCakX9cKOuUKomKka9LYfpzUMtGxwvEonkhPgQHvC60GX0BPB1Wj5YnB451elh3qbRRebq8LxZTg9N0/DZV5+Lr7zxaZbv1zOY26w4Pa48vQ8Xbu6S18PxKh1qzSKXy+N137ofb/3eg1V350inR5vPUYxyKp0ViOPD+q5gwc/EYinh9PArQkepiKT3PudUnL62Df/wou0VbH11qOcNcVxqFF6X6PTISSE+7PPIQuhyq1nVQeCuk+T0UP8eTk4PNTbF46LTo5moMXpqkXmgyLHrNRdtxObuEJ55ag8Aa7zV07euwQ1/dSlefO4A3nH5Kfjd+y8HAMzF07LPo8d4vU2nhxFvJTo9/Obw1Ak6PU4eYn8odkoW11szsZRcPLScRI+CTo9MHuMLCTzr32/H5/60D4Di9GC8VUX4isRbhZXzjboo46cPDSGdzSGfz0uBQxc9jIVniugxNq+/Nl+57SAA/Zx2+74Jy8/t9xmZTyCfB+45NFVyu0Wf3G/fdzneeMkmAHB0qJH64FmakAoRqzs3rdE/yGiaJleKTFL0IIQQUiOLaryVEkdTleihXGwzD7Z5qE4PEX9RCap9vk0OT/g6LRes8VbmeynbRKeH6h4oFkPVKDbbol/qGcypZeYDXQH86v8+C198/QUAgMQy+bA+upDAg0dncNeBSZmNXimTxsrg3ja/Y59GKlv8dxS58k6F76bTQ3R6qFFJxYtqe9r8uOXaZ+M9zz61gq2vDnWXbnQXgXR65PIyyirk85iF0GX2FTVmbvfwfNXilRPWTo9C0WNCOaarwqBT944YsjXLpbXaESIhYMbHAGaxuJ3nnb0Od/39c/Dc7WsB6ENjsY8Jd5VACHzZXB7HjZibnrD+/hQDdXFOEMfKdmMb1L4IFdnpQadH01E7XpwQC0rU9/NyEj1itnNSJpfDZ37/FE7MxfG1Px8GoHR60OlREerCgYCT0yOVRUIRumeiKQzPxq3XYV7neKtHjs3ixFwcfzLcHZORpOU4ID4LOLlA1RgtO8lMVh6j1oR8clu5IKrx8CxNSIWI1Vsb15gfZGSZOXs9CCGE1IhaZO5yaXKYkqiw6Dpti8JiHmxzyOfzFqdHsfJrJxJypbBLrhiNJJfPh/DVjvpaWuKt1E6Phose+oddTTOjcppFyDb0c7lqf74tSrxVnzHIF4O+5RJvpYpYIr6mUkynh99SXC0olfU9aMStqH8jwXkbuwDoxctA5Z0eKxXxO2WyOXlOCvvdZQuhBZlc4YCqHvL5PGajhUXmv901gn/89RPIZHMypgSwii7JdGFJtYy3avJ7d7Xx9mdtBQD808vOlt9TnR7lovnEkFiNt7I72wJet7zOOjKlv2eFs6czaO30EPcVnTfFurxi4rno9Gg65UQPERmrLkpdLqJHJJnBuDE3EoJpOpvDg0enrbej06MqVKeHKkQLp0cslSm4PhmaidkWn7hk7KTq2hDnKiFQiH1JPE8kmUEkmZH3+b9XnYr/eeclAMxrAifmYvrjuDRdVJULArggquHwXURIhYjVnRvXmJb1PmMVylSVH6gIIa3Pzx4egkvT8H8u2rjUm0KWOWqnBwAEPC6kMrmKnR72C3muEmoOU5GU5QPSeBWdHmLAFvCaTg97rjNZOtR+lmJF5g13eqTNjhdNa/7gtCPgwUKRVcrVoHZ6SPeCd3mJHuoK35loEqf0FooQxZCdHu1++KcKB5jq/qGSz5urxrc4OD0uO7UHD37sakufgKBUvNVKRYgBmWxeutr0IvPKBjv2TPU9IwuWzPRqWUxmLO/hRDqH+XgaH/jxYwCA5+/otxTWq44vJ6eHEHVaUbBaSj7xkrPxnmefinUdZv6+2ulRzqUmys8XkxnZyeR0n66gFxOLSRye0EvNe9pEvJW100OILOLnqnCmkpCuEooezaa86CGcHuZ5XVxTN9rRVi0PDc4gm8tjc3cIPo8LhyYiSKZzBc5hsSiGnR6VUSzeyuz0yBZ8phqejWP7QDsAXXjwuDR5LlYdnUK0F+eseUOsWN8VxORiUheyFhLyOj/odctrgKEZvRPY7bDQRIgeXSEfXC7NjOJip0fD4VmakApxcnoIKyw7PQghKouJNP7+F7vx4Z/vkgNtQpzI5/MFhYXigr1S0cN+Ozo9Gkcqk8PPHhrCbDSFoVmrTb0Wp4ff4yqbDU5OPhOKY1ddYa4WmWcbEK+j0uwScztrlSFiXY/T7seakBdul4b1XfpjStFjmcRbTSgr9qtdmCSu6fvafI5Oj2IFp5ORJGKpLFya9bOCytqOgHTZOA3Ql4pmdMqIzot0Li+PdSGf2+z0KOv0sL7fDk9G6toe+7A6mcnil48My69TmZxjzF02l5fvVavTQ//9mtXHs1pxuTSL4AFAlosDFTg9lBiqWAkhQkRcHZhYBACsNUqOhatE7H/iNZdOjyKih+z08HFI3WxCPjc8JdyKUvSwJXEsB7fHA0d0R8el27rlMWTPyIL8ueoeABhvVSnF4q1Eh1YslZHXJ2LXGZ6NycUnfo8bmqbJv796nhfHEXHOEvtRR9CLdR36LHB8PiHFcZ/HhfVdQXjdGlLZHEbnnV2Kos9DHIvUzwaNiHMkJjxLE1IhpuhhOj1624XTg6IHIcREXR1cLP+XEEC/mBa7i1ihWK3oYS9k5TC9cfzg/kH8/S9344VfukteB4gPTNUUmSfSqtNDf30jPDYsC5KZrGWQlSni9Mg65DXX9bziw/ZJWnkqoqjqxeXS8N/veAauf/vT0WPrqaimh6iZqO/NYkPKYkxZOj0qFz1En8f6rmBFg3CfRfRY2oikZqwmNp0eZpF5m9+M8LAPdtLZHG7fNy6HfWnb+61e0cO+H8RTOfzPA8fk17FUxuL4ShmF9Slb/InAR6fHSaM6p4cQPdJF460AoCuof4YX5/W1xvBSfS71viL+arZYvFXKXOVNmoumaSXdHuJz16RN9FhYFqLHDADg0m098BnHyLsOTsqfi2uORcZbVYWmmS6NgHLeDikdegnDiXH6Wt3doXZ6iHO9z0H0kE6PVBb5fF6KHp1BL/o7dbF0fDEh7+PzuOB2adhkLH54fGgODx6dKdjmOeNYIgRVIXrk8qVjNEn18CxNiAPpbA5HlIvrZCYrc14toofxYa/avGBCSGujLlBcLkMgsjwRH2w8Lk1eqIv/L8QzOFYiD1ZQ4PRYJqutWwHxQWV8IYlD4/qK0O39Hcb3qom3MlYKe9zyQyxjyJYH9sGIJd7K4vRo7POK1eMnK9ro4q1rGvZY523swhWn98mvl3e8lfUa/fh0rKhwod6+p82PgEPBvH0YLxg0ugG2OvR5OKGW13uX2C3QjMGaxy3y6q1F5mJVay5vPQZ+/uYDeMf1D+Mjv9wt7weY74/Dk+XPhaWwD6sfOT4r+xwA3aU0rhwLxOusnl9V0UMIfU4DddJYxD6jaYX9RHba/eb5tZTTo9N4THGIF6Kw6ioBzGOb6fRwHpyL/YSix8lBFT22GlFCYj8R0VD2c/tSOz0WE2k8eWIeAHDJth4pmO48Yg7EM7k80tkcnR41II7PwTJOj9PWtQEwnB6GECLua8ZbFYoe2VweyUzOInoIV9rYfNLi9ADMmMv3/egxvO5b9+OJ4XnL9s4a8VZrjP1W3W4uXmssFD0IceC9NzyK537+Tvxu9wgAYHQugXxePxiJlR6AKXpM0ulBCFFQ41FiHECTEogPZ20Bj8z1F06PD/z4MTz7c3dg9/BcycdI0OnRNNRs/p88NAQAuGiLPjyejaWrjiDzexlvtdxYiFtfB0u8VTOLzJV94mTw3uechjdfuhk/eMczGv7YAUX0WA6xDOrwWnVj/+axE7jyc3/Gl2876Hi/fD4vXQlhv9vxtSm2AlP0eWx26PNwYjl1ejRjsCbiZzI5a5G5WiItMs0B4Jt3HgYA/H73KABTdBCZ60cmInXtW/Zh9QlbXGE0lbX0NInnF6+3x6VJIQfQy2rffOlmXHXm2pq3iVRGe8CLj7/kLHz8JWeXjbeSnR5qvFWRTg+VYk4PcWxTnR5O+6EZb0XR42Sgltt/8uU78IZnbMJbL90CQI23si5MWWrR47Hjc8jm8tjUHcSGrqAUPVI2IT2ezppF5hQ9KkacVyydHuJ6O2V2epy+Vhc9hlSnh7EIQTxG0lJkbl7nx1JZ2Y3WGfRI0WN8wXR6iMfaYlsAsWfELnqIeCv92OJ2afJYFWXnX0Oh6EGIAzfvHQcAfP/eQQDWaCu1bFKIHoy3IoSoqJEoHGySUoiL53Zlpa24YF809p1ysR7Csi2gg6BxqGXjE4tJaBrw2os3yg9G9pWExUgoucFtPjo9lhP2bgFrvJXy/UaLHrYPyM0m4HXjM688F1ee0Vf+xlUiBn35ZRLLMFEk3uqDP30cAPDVPx9yvF8ml5dOTb/b7ej0sA+oBINGvNXWCkWP5dTp0dug6DMV8TvpReZC9NCPfWLgXGoImTH+zqf1tcGl6efDSo+3TtgHoNMFcVcZS0+TKXpYVwILLtnWg8+88lwOJU8Sf3XFNrzz8lPK3k5cS2Vzefned3KH2OOR7J0eAnFf4SLI5vLyuk2F8VYnF/H6uV0arjy9D5999Xk4pU8fMotrK9HpIdzTSy16iP1xS7e+nZ4isYaJVNZ0ejDeqmJM0cM8Vovr7VQmJz9TnWaIHpOLSblPSKeHY6eH+X6PJjMyJq0z6EW/dHpY460A66IpAAVl5rLIXDnmyEVRLDNvKBQ9CCmBOPAMG6uB1GgrAOgTnR51XIQTQloPdWjGCxdSCpnb6zcvegO2D82RMit+WGTePOx/yzdfsgXnbeySH3RG5yuLuBKDs4Di9KDosTywv8ZqfJEab5VrdJG57QPySkYt/F4OZeZqga0YNFVyXLT0N3hdjk6PdDGnhxFFaF/dWQzxuru0wmHIyeLfXnUutvWG8S+vOKfhjy0GeulsTg6Ew7YBshg4ZZT3nBgUiXirsN+Dzd369w7V2OuRz+dx4y7dQdJjrNi3D0CjqawlsjBlPL8QrO3nZbI8CfncsncrXqrTI2Rec2ka0NOm7xfb+9st78egz1w9LqJyZh16ghIlorRI4xGiR2+bDy7j9Wo3rqMXEnpfkBBJT+3Th9xLLXqI46A4lhRz+CXSjLeqhVdcsAE71nfgrIEO+T31/SiuBQY6A/K9fNSITbR3ekSTGbz0K3fj/T9+zPIZLJbKOsdbLSTkdb54XTd0WeeG9vhPcRxZo6TIhP1mHBdpHCv/KpuQJiIvbgwltse2EkqsjFpIZOSBjhBC1OFYuYE1Wd1EnJwetiForMywzj5kpC26cajCxKl9YfzdC88EAJzSqw82RT5zOSxOD3Z6LCvs75dMkUirTINLPUynx8r/OOZxu+QH/aXu9bAX04ti8rsOmGWxxUpwVZeKz+1ydOEUc3qI5xFDkHKI130pXR5vvGQzbv/wVRVHclWDx2UMj1IZ+Z4KGQMdUSItVroOKt1Va9v1z1ZCfPS4NTm0rLXX45Fjs3hqdAF+jwtvvGQzALPLQTC1mLS8/kLcKub0IMsTTdMKBsVOglVnyBw0dod88n24riOA5521Tv5MdW6I4aTdJQSUFlhI4xHH8L52czbTppTYn5iLI5bKwuPScGa/HpG31KKHfR8pduyPp02nRzudHhXzDy/ajt9/4AqLs8vnMa9NxPkm6PVgo1EyLpz04lwv/n94MoonTyzg97tHEEmY+000lbGIHiL2biGeltcGQkB5xindWNdh7p/2uOs543FUATYkneD8HNdIePYmpARiNWaxC97OoBdeYyUTy8wJIYIM461WHBMLCbz/x4/hocGZ8jduIIvGxXS7vzDeSlBuH0rYVh5zmN44xN/yq298Gm7+0LNl3vel23oAAA8cma7ocYQbJ+B1yYEMjw3Lg0qdHtkGOz1abZgqIiWWWvSwRyDNRPWvRXQtoA+/nBYrqSs1XS7NEpMhKFaCXu3Q02eL02g1xOcjtbdDOD1EifRcXP/s9NTooryN+PuK6yiv24VTjTiSwxO1OT1+cP8xAMArL9iAtUVEqXHbfmMWmdPpsdJoD9gjqkp3eqiDcwB462Vb5L/VWGvZ62ETPVKZnNxfuZ+cHIToIWLJAFMgiCQy2G2URm8faJe3WXLRw1i9L4Q0b5Fjv7XTw1mgJ5UjxHZB0OeW6S2m6GE9H4u+jVze6hyNK06PjoBXvpbxdNbs9DBElq6QDw989Gq8yRDaC0QP4znWKAJsm3B68PNBQ2nNqyxC6kCNCRGDiWIRBJqmoSfMXg9CiBV2eqw8fnD/Mdy4awSv/eb9J/WDkdNqLvugrdJ4q3ZmwdbN4ckIvnDLAfk3FR88w36PJfLi0m3dAICdR2cqKrhOZMxYAzPeiiu5lgN2kVAVPdTXNptzHnbXSqqFnB6AGSOx1PFWYkAhVnfORPXi4V3Dc5bbOfVDJNPW18TJ6ZEu4vSI2QZa5ejvCMDj0goiMFoFUfotzqcBr0seQ8XAWQgi+8YW5P2E20K8P7xuTUZeDdvKxyvlwaP6YobXXLSxwEkpPtupPTBAYadHq4pTrYh9dbxjkbmyutouhF12ao+8njpzXbv8vhA9ZmK2PhhldkCnx8lBuG3PUF4fEW+1mMhg19AcAOC8jV1SIKnn2j6VyeFrfz6E+w9XttDFCXvZvdfW6SH207lYSopo7PSon7DP7vxyYaBLf88fN7q4pOhhnLcWld6eMSXGNpq0Oj1E/F0inZXnLvVcoWmavOaP2z6biSQZJ6dHdBnEhLYSPHsTYmNWuZCxlxk5XfD2il4Pih6EEAM1BoWr7lcGI/Nx+e//uGnfSXtes8i8eKdHOeEsaXyQ6jVWKzLeqnb+86Z9+NJtB/E/D+grg4WA1G6LyzhnQyfCPjfm42nsG1sseBw76jBVDN2SS7winuiI95f44GktMncuNW8EJ7vIvNmIgY29Y8hOLJXBj3YeLxgyNwrxuKev090B6axePGwXYxxFD9v1vpPTw6moPZfLS0dApUPPnjY//vA3V+AH73hGRbdfaYiBnhgeqYMne6fHPsXpIfafjCEyelwu6bBbdCiQrgQxbOxp88FvO7/2GVHF4wWiBzs9Virqymm/xyU7H1TUiLs+W3y1pmm4+yPPwZ8+eCW29podPd0hZ6eH2Gc9Lm1J4+pWE6982gb84j2X4YPXnC6/J8SueDqLR4/PAgAuUESPhTpEj/+8aR8+96f9ePcPH0a+RtdnPKUfS4ToYe/0EL0y4tykaUCIx526sZ+Tg163/Mw1ZbyXzXirwvevmt6gdnp0BL3yfqrTwz4vFNdGlTg9RKcHF0w2Fh6VCbExGzVPiOLgJTP6HC5kRK/H1CLjrQghOmqnh/0ipx5G5uLyQp40FnUA9pMHj2MhcXLcHtLCrqzmsq9KjJRxboihjCho5cVy7ew3BIzHjFWC4m8ZtokeXrcLF2/V3R6VRFwlFaeH+MBbbjhMmsux6SiePDEv319i9Xk65xxp1WinR6utIA8oMQ+l+Nyf9uNjv34Cf/FfDzRlO8YX9GP55u6QdGzPRFPyXCwEzAlH0cMaOebY6eEgelhXele+MveMde1F45ZWOvbhrxox0mUMeeaNla6HlYJyISqlM/p7z+dxyWHmoiFe3XVgsmjMGADsHVmQK3gB81jr97gKhlprjcz12Zj1nJ9kp8eK5Wmbu+S/i4mQolcGMPcBy89DPtkFIVhTxOkhji2VurxI/bhdGi7e2m0RI9Xr6IcG9c9K523qVESP2q6Nj0xG8J17jgLQj0FDM/Ey93Amnra6AT02p4fojp00FtK2+TyOgh2pjpBDx489zcVeZF4Me6eHeT2fU84z1uNAyMEFm8/npdPRInr46NhvBjx7E2JjTrmQEdbmkk4P4wR1dDrquGqMELL6UFeFNNLp8cx/vx2v/vp92DuyUP7GpCqGZ80PMbk8cKjG7PBqkZ0eyoc1+0rUsp0ewulhnI/i6SyFjxpIZrI4PqMPynYbUTiLMle5cJApej3uPTRV9rHN1cKuiofDpLk8+3N34KVfuQeHJ/RyZDEYyRSNt2rs86/WeKs/75sAAByZqq2UuhwTi/qK/bXtfhlHMx1Jyu0Spd1Oooc5ADFWfTp1ejjsCOrihlZ5PevFYxvWqU6PjqC100ON8pCih3R6aGZWfzKDb955GG/93oP4yUPHHZ93OpLEq75+L6783J8xvpBAPp+3uKrsr499lb9YPCDjrdLWfYIsf8S5GSguQnaq8VbthaKHE8U6PcSxJchoqyXF63ZZ3Hkhnxunr21HR1DfB2qNt/rWnUcsX1fa5WZH7CdOReY+twsdxnFOzJMYbdUYwsr7UtP0c7Q9As/e6VGMmUhKXid0hrwWoVN8XrA/hni91euExWRGzgrUeCuxwCpGx35D4VUZITbUlT6pTHnRQ1gRv3HHYTz/C3dS+CCEWFYEN2P4XMmQlVROLpfHCUP0ENnhtRamliOZyVoy4cVFsrXI3HquKXfxK4bn/Z0Buf13HZhsyPauJo5NxyBm3EMzcUwsJuSwzEn0uOrMPgDAPYemZJ5/MSxOD6+5MowsPY8c0/P+O43VdpZ4q6Y6PYpfW65EghWKefaS4UYjnB5rOwJySDm5mJRixdYePa5m0iFeK2kTohw7PZycHspKb67M1bE7PVS3nL3TQ436k/FWWbPIvF3GW6VxbFoXy45MOotm+8YW5ev4yd/usYhUqugssJdYr7GLHi0mTq4GLtqyRv67WPx0u98D8VZVy7BLIVZkz0Stw3N7VwNZOrwu8316zvpOuF2aXNAwG6stlUMshtncrV9f31+r6JE2rwMBa7xVyO+W35+K6NvpdN1JqkcVPgMeNzRNK/jbinO9PXLMzojR7+HSdCeOej4RIkZBvJXx/DHlPCdcjvZzkhBIGI3dWHj2JsTGrIPTI5k1VwjZUVcIzcbS+NnDQ03eQkLIckcdmjVD9DhZ0UurhcmIPhBzuzQ867ReAMDhIgOVesjm8njRF+/G879wl1xNbhaZK50etnNNuYtfNXP8+WevAwDcvHe8Ydu9WrALXWphpT3eCgC297djU3cQyUwOdx0oLUQmlE4PsXo8kcnWnA1N6kN1c8gySRlvZf5MXdSfbfBrVcpFtBKptNNDrLptFqKbYV1HAL3GwiTVySeE4UmHYWhhvFWFTg8jtoQlxib26BZ1Za2900PtSZFOj6xZZK46PcR9ig2z1aisPz45hnsOmsdmR6eHTfTotokeKRFDx66GFYN6vnbq4AEAlzIMt+8DxegOOw/P44y3Wjaox513XH4KAFOsmFhM1vT5SRxrXnreAADd6VHLtZs9Bk0VhsM+j/z+pOFWpNOjMYSVaEUhTBaKHpU5PUaN/seOoBculwa3Sys4N9jPMWa8lflZTuwL9u0QAkix4xapDZ69CbFhjbfST2ilnB7PPqMPW3tCuMyw0t7wwDHLh2lCyOpDHY41Y7VGPWV8pJDhWX0VV39HAGeu0zOc1cFJo5iLpXBkKoqjU1FZfi3irdosTg9bvFW5To+M+UHq+Tv6AQC3PTVucZSQ8thfc+Go8nlcjud/TdPw/LP1v/fNe8dKPnZCWeEnXt98nh9slgqnwbVTkXkz463E8KUj2Fznw8kiUGG8Vbvf/H3Vv2+jEI7rte1++bcVQoimARvXGAOwBQfRI20vMq+s0yPGeJsCPC7rMbNDEfZFn8JcLG2JnwL0xQHpbE5+BvO6XfL8mM7mZSzZTNR51bZdvH7yhB4H6tJ0AcW+gK1A9AgJ0SOPfD4vt6NVHFmrhVOUAvJivObCjTh3QyfO3dBZ0WOaTg+b6EGnx7Lhbc88BaetbcOP33UpXniOfn3WFfKh3+hOOmBce1eDED2ev6MfXreG0fmEdH9Ug7gOdIq3CvvdiuhhxFu1yIKIpUYVQcXf2C4oicVI5Rx9Y4bTo1O5brO78wudHoXxVuYCC+sxQzy/+DlpDDx7E2LDEm9lszY7rfI5fV077vi75+D7b386usM+jMwncLuRV0wIWZ1kc6rTw/nC5YEj03j11+/FkyfmK3pMVUytNZeWOCNWAW9cE8Rpa9sANEf0UC94xeu+KJ0exeOtKu30CHhduHDzGvSEfVhIZHDV5+7A9+892pBtXw0Id89Ap/7h+N5DutOj1AdP4ay57amJkiKTmimvrgZNMuJqSXD6u3c5dHo0M95KlKp2NDnu6WRhxluV/jupw4a5IueyT924Bx/48WM1raZVnR7ivStcHUGvW+b3OxeZW53dlTo9ErasdqILDCqqw0d1ejj9PZOZnDyeetwuhH0eaMbDifP1dMRZ9DhkO3eL3hC/EWti72mxRxt1t5mlsulsXm4fnR4ri6+98UL4PS584LmnFb3Nx196Nm58/+UVixVdhuhhX3gk4i3p9Fh6/uaa03Hrtc/GZaf2WL6/fUBf0PRUlaJHOpuTs6FNa4IyHvHEbPVl5jLeSogeHvMYGfJ55LW/iLey906Q2lA7PcTxX118ASjxVmVEj5E5/XVXRQ/78cN+rgh5nUQP59hEU/TgZ4NGwrM3ITZUy6rZ6WFYm0scCANeN16wQx9+PFHhEJMQ0ppkcuXjrX7xyDAePT6HG3ePVPSY6gUQRY/GkM7m8A+/3I2v/fkQAH0F8Kl9uuhxZDKKf/jlbvzq0eGGPZ/q2Ng1bIgeCYd4K9sH53JuoaQSb+V2aXjl0zYAAE7MxXH9fYN1b/dqQZTXiwiDE8aHG9Uab+fird1o83swH08XzZgHTGHK73XB63bBbYSJs8x8aXAatIpOj3TuZDs9WmOwUWmnR04RMpwiimKpDL5/7yB+u2tE5mdXSjKTlQOqdR1+meUtVs6GfG6s7fBbvme/P2AOHqp3erTGa9kIPO7iTg9RIh1PZ6X4p5JIZ5HJmfFWLpeGNp+1jHi6qNNDPw6fbixgULPTgcIhk93pIYrMAf0aodW6d1YLZ6/vwBOffAGuff6ZDXtMIdgu2q7J7Cv4yfJje38HAGD/2EJV9xOuHrdLw5qQz4wfquGCoCDeymV1eggxRBzj7IN5Uhtqp0dRp0eF8VYLxmc2q9OjtOghy8mVz4B2V6m8ryG+OF1nkNrh2ZsQG3OK08PMc63sglcMrXigImR1ow7KikUTiVWmU4uVFetR9Gg8DxyZxk8eGsKBcX3YvXFNEOs6/HJV0E8eGsK1P9slb/+73SP4wf2DNT+f6vrZNTQHwIy3Uld02VcLJtK5krGJqtMDAD724rPwxddfAID7SqXk83np7rni9D7Lz9pKfPB0uzSculYIZcXdQfI1Mj7QVNp/sJz47j1HcdOTpWO8VgrLw+lhiB6t4vTwVbZPq9fIjx6bxXU377csDlBX0M5VWTwrhAyfx4XOoBdtflEMm5TbKFb2T0WSBfFaYttk1IXXwenhJHqIoSdXeku8LrvTw9zP2/0eKfyq0WM+ZZVrOmPGWwGFq55nY6mC1y+SzGDMeLwd6zvk7QBzJW/ZIvOQVfSo9DMgWX40+jUTzrFUJmeJnxGRfk4iKVkenGU4PfaNVuf0EOeU7rAPLpdmrsSvwaVrdwSqbji100Ogus5I7Vg6PYToUaTTw++u7D2sXrepr5vP7YLLdu4rGW9le83p9GgOPHuvEPaMzOPLtx1s6IrTlcqf90/gvkOlC0PrYc6hyFxam8tcPImTl9OBaj6exo92Hq/6AxwhZOWRqSDeasL4YF6sjNOO+gGr2ApHUh2RhFWQ2rAmCE3TLCu9Af0DbSabw/t+9Bj+6X/3YKiGLF/A6vrZP76ISDIjC67VgY7XIUYjVmKQGE9bP3C7XRqeaVj7F+LppuTmtxqTkSRiqSw0DXjGKd1QP7O0lXB6AMCpfXrcQalINHFdIIQp8f+V4vR4eHAG//K7vXjP/zyy1JvSEFLZwr+7U6eHGlWYbfDbSLi8WqbTQzg9ynR6qKLBp27ciy/ffsgSwzc0ax5fqxVtxxfMPg9N0+QKS+n08HrQYwySMrl8wePb460CnsL3vlOMnSgo5Upvk1JOD00zS6QnjNJev8eFgBwoZpE2REaPcTC2r8zNOrx+QnjubfNjnRFTKCLUijk9uoJey/CxK+SVUVopRfRwOi+T1YU6KFWv7cX1GeOtli/C6bFvbLGq2ETxeau3TRdHhRBeS+dC3LafeD2q08NB9AhR9GgEqtNDXKfYRXQhPlQqlK4JOzs9nO4fcug7Kxpv5TXPgaRx8Oy9QnhqdBHX3XIAv3m8shiUVmUulsK7/vthvPO/H26am0J1epjxVsaBqcwFr89Qh50+EP3PA8fwsV8/ge/dw3x1QlqdrM3p8dDgDEbnrfmvQuyYjlYoeiiriiYWkjVlnRMr9tgoMbx+ybkDlu+fmIthXIlCqWZQvfPItBy4qdbmbC6PnUem5ddq0Z66Ulqshi3V6yGjk5QBnRik5vKFUQykEJEP323EF6g57+XKJEUk2uGS8Va2YeoKc3rsGakuEmK547Q4RYgeavRV7qQ4PVojEqnSeCv17ytu+9jxOfm9YcXpMR+rTvSYUPo8APO4KiKvAj43vG6XHEzYnZj2Dj+vW5MDcDG4cIpGEys4AxQ9JJ4SnR6AGQ8ihCq/xy0HT4m02ekhBoPtDo4o+wIQITyf2heW+6MQRsyeFvM10jT9dVWHje0Br3z99U6P8hHHZHXgdmlyX1EXzbDTZ/mzrS8Mr1tDJJmxnGPKMWVcv/caYrk4ftSyEj9mcwSpQmrI5y5wCq0JU/RoBKrTQ/yN/R6XFNTF10Dx47y9a1F0uwA2p4eT6OHVz32ZXF7OFO1RmvL+xj7hdJ1Baodn7xWCsNyv9piKgxMRZHJ5xNNZaYduNJZOD2NZX6XWZvFzJ0FGDFSmuEKbkJZHdXrk88Brv3k/3vNDc4V0JpuTH9YrjbdKqFb6dBbRMqtpSXmEkLC23Y9/ftnZuHDzGgDAtc87Ax9+/hnY0BUEAAzNxjGsuDsqHVQ/MTyP1//XA/jbn+sRWRGb6+cBQ/QIet3WDz/KBboYuJcWPfRzjlqmF/C65UW6vXSTFCJym7uND5kDXaboEa5Q9BCdIE4kbRFkAWW4txIYU665si3gHHIaWHQGTQeAIFvk3/WSzeWlGNkqTo9ghe4lp1iQXcNzUshXB1LFis6LIWIj1xm9HXbBUsRPOa281LfN7N4BdEeCcHuo0TZ2xDCL8VYm9lxze4ybKXrox5aA16VEe2Sl40rk3juV+k7bnLK7hvSurFPXtsljrFjMJl5TVcjSC9I1yzG+PeAxRQ8lZsup1J6sPoTjSF00I4477PRZvnjdLpy2Vo+4Eos48vk8jkxGSrqhxQI16fTw1LYSP5fLy+sOcf5Rj5FtTk6PcGtcGyw1lk4P42+vaZrFPSjELLdLk4vNVOwxiKcZsbaAVRBxOk+on83ENUfSthBK3l90xqyQzwYrBZ69Vwii8G1+lUcjqQOFkbnKVfpKydms0vZOD/uByY6wRzups0LRLWf7J4SsfJwuoFVL9XQ0BbGAeDpamWvDfgE00SThdzUhhKNnn9GHtz/rFGjGJGRTdwjve+7pONvIBB+ejVsGccUiy+wMTkeN++uCScy2qvjolP5z+zDnsm09ePeV23Dd686Xgza7YKIiBLGA7WJbDJXmqlwtvRqZtoke6zuD8mflnB7iw8/hyUjR97IZbyWcHvprtVKcHupCk5WyzaVwGlyLlejZXF6+jurlXCNFD3WVsNMwdyUiOz3KxVs5XCNPRVKytHxYibeq9tgl9lPh1LILlmLYJMSJmF30cIicEMNy8TqlHHLO4lzpXYCnRKcHYDqrVKdHwMnpYXy2cjoOzygLyeKpLH792AkAwDVnrS1wegjxShWyxApgdSjVHvBId0k6mzMjjhlvRaD30QCm6BFNZvD73aMAIGNFyfLkws1dAICHBmcAAP/v5v147ufvxA0PHi96H1P0EE6P2joX1IVrQdnpoTo9PAVOwTWMt2oIYUuRuVVoEqjnfKdjfV+bVfQQi50A6/nDaYG0T3GVxNL6cSNp6w+zb0ct8WmkODx7rxCE06PaFU+txmFF9Bidb/zAbyGRhvqZVsZbVdjp4Vcuku2IgxtFD0Jan4zDcCyZyWHSuHieWDBXJ6azhbnUTtgvsCcWK4vFIsUR7oliK/k3rtEH38MzMUvOfDxdWVyUeF2j8sOx9fh/3HCP2LPKNU3Dx158Fl594UY5lCnp9ChSotllrFxf7S7RSpi2reZb31V5vNWWnhA8Lg2xVNbiiBBkc3l5HSGuE1ZakXmriR7242nI57YUWKaNwbY13qpxosdCwuwZKLegZqUQKCIk2CkWT7t7aA6A3elR3WIv2elhOD3CtiGSGCo5FYsChZ0e+r+t8UqlnB5c6W1iXy1rj3ET511x7PV7rE4P8R70uK1/fxXVPX/jrhHMx9PY1B3Es88wRQ/xvlWHS+LfYhvUoVi732tZxMYic6JiOj30Y/ivHzuBxWQGp/SGcflpvUu5aaQMl27TRakHjkxjz8g8vnnnEQDAvtHi8Z1TEVunR43xVuq5RoiuagRg2O8uWLjUzXirhhByiLcCbKKHw/lBRY289XtcMgnA/pjFxHH7NUfReCuRGsN4q4bCs/cKQTo9VnkhqVoSOjLfeKeH/cOPEC/ECut64q2k6NECwwJCSGmKZb+LYY4o7hRUUmZuX/UxSdGjboSQUGyovXFNCEDtTg8hNsSM29uFi6EZ/TGdhjmCsL8wSkElkc7KvhGRYy/oZDRmxRTEWylOj3LxVl63C5t79H3l8ERhr4f63jWdHpX1HywXjqvxbk3qVDuZ2K/Twn6PZQCRMY7hqtDhJGbXyrzs82id+IqesD4UmrSdz374wDE8419vxc8fHgJQfAXj48NzAOrs9DDOreuKOT1kvJX+fbuA7eT0sBefphy2XzwOnR4mmqZB1T3sTo+QQ/yU6vTI2JweTo6omYgpevzPzmMAgDdfsgVul+awgrZQyBLn/gKnh9LpkaToQRTEPrNouPVu2Km7BN586Ra4HGJxyPLhkm3dAIC9owv48M93y/P7YqL4oqKCeKsai6bjcnGSS+4n6oA87PdYjkMAOz0ahdXpYT3WC9Tzg6PTQ4m32toTtrzXy3V6AIWRmkXjrWR82sq/zl5O8Oy9QhCDi3y+9IG51VFLQkfnGu/0sDs0pOhRodNDXCQ7qf9iZeRKGXAQQmqn2HBsyBgc2gWLyQp6PQrirSh61I2IjCo21N4knB6zMUvkiurYm4ok8bpv3Y9fPToMQI82e/+PH8O//G6v7NKIpjLI5/OyNHegUx/IifNBe4mhurhYt0djCQ5NRJDN5dEV8soce0GHdImu7mjMShCr+XqMCINqnB6AWmZe2OuhvnfFB5qV1OmRyuRwQhlEt4bTw/o7hH1ui+jh5PTIVRBDWCnC6dEqfR6A4oybjVli3n7x8BAmFpP4u1/sxnfuPlIgOF28Re9S2jU0h2gyY4ksKibY7hqaw2u+cR8eOTZj+f6EzelR0Okh4q2KOj0KS6tNp4f+WGnGW1WMeilkFy3E30p0Kfo9bovTQ8SIic9WTufJmaj+es/H0tg9rPd5vPrCjQBQkI9vWcnrse4H6uvWpnZ6KPFWXsZbEUCJHM0gm8tj35juEnjJuQNLuVmkAta2B3BqXxj5PPCU4u6wLyr66u0H8dc/fBiJdFZ+Xuttt3V6VLn4Q1zvq8cle5G5+jOPSyv52YBUjlOROWC9PlB7OdTzv3CLqqKH+vnA/pjFup9C8rOccHoULrBQv6bTo7Hw7L1C8Hvc8oJsuQwvdh6ZxrU/fdzy4aSZJNJZS7zIaBOcHvYPYqlMDvl83rQ2l7ngrcTp0QrDAkJIaYo58kynh1WwqMTpkbAN6exuEVI9ptPDeVBV1OmhCBD/8cd9ePDoDK79mV5WPjgdxY27RvDde47KnohcXh9uC8eHaosGSmf6i4v1Yp0e+8YWAQDb+9tlJ4mgK0SnR6WI4VmPg9PDHj/mxCZjX3HqGxPvXY9Lk1EtK8npcWIubhletsIKNCenhyhMBiBXmTeryHwhbpSYt0ifBwCs7wpC0/Rj3bTy2WBBWaz1i0eGC/72f/GMzQD0EmrRcyQo1unxu90jeOTYLH77+Ij83tBMDAcm9OPhKb1hAIWCdqCs6FHC6eGvJN6Kokcx7CtaRRTYbMyMehN/62QmJ91WstNDea+IU52It9p9Yg4AsLk7JIdT9tciUMLpIRYXBLwueN0u0+mRySFNpwdRkPFWiQzm42nZzycWTJDljYi4AswOlsWEeZ6Zj6XxxVsP4k97xnHL3nEl3kp0etQWbyWEcavoocRb+TyW4fmasK/gmp7Uhur0sIgeitPW4vRQjvXrjc9rquumv9P6Ga4Sp0dQxn+KTg8j3qqII7EVrrOXEzx7ryCWW0zFd+45il89dgK37B07Kc83OB2FusjuRBOcHnZVNZXNWVZ0lY23UlYG2RE2SHZ6ENL6FHN61BVvZbsAUmMdSG0I8SJUJId9g7FyeTqasoge6qBMjf0BrH1Tx6bNAV40lUHEeD7xuIJSTgIxtCvW6SGyiLf3dxT8bLldNyxnzHgrfWA2oKzkCjjk+9ppD5irP+0IN4f6YStYQ5F5Pp/Ht+48jNueGq/4Po1gcNo6iLYLsCsR+8Ai7PfA5dJkD4E4hjdN9GhBp4fP40K/EbG3Z2QBn795P8bmE5hQ+mBiqazlb98R8OAl5w6gO+xDPJ3FH58ctTxmsS5D4XpXBZUbdh5HPg9cflqvFKzDNkE75NXfpzLeyi56iMgJh5WbbbLIvPAaX4iXdHpUjlzM5+T0SGel2OB16PQQCwfEdZBweZy/qUveppTTQxyLw7Z4K/EcXo/S6cEic6KgFpkLl1K730Mn0Arh6rPWAgCetrkL775yGwBrisrt+8fl+f+mJ8fkgpi+NrvTo8p4q3ShMO5VHQV+q+jRzRLzhqF2elRbZH7Ohk4AuqAuEG59+ZiWInPna4CCeCuH/jB1O1hk3lhaZ3nRKqAz6MXofKLoqqeTjXjTnqy4LZGT3R7wYDGRaYrTIy2t1BrS2TzS2bzlw00xy5rAW8KSxk4PQlYPxYZjIiJJ2KV9HhdSmVyFnR7W40qMx5K6KVdk3hn0oiPgsQzWAOugzH4OVFf6H1EiGWPJLGLG821cY3d6FB98tpURPfaP6yubzxpod9x+oPpc/NXItC3eqjdsWtmLuWxUSoke4sNLwGHoVk0u9P7xRXz2j/uwtt2PB/9xXcX3q5fj01ZhrxUcq/bV+uJ95nFpyObycvFKo4rMb3pyDOs6/HjaZj3KaaEFOz0A/dg2Op/Ax3/zBIZm4jgxG0dUOV7G01n5t//uX16MU3rDCPrcuOSUbvzxyTH8+MEh+TjDs3HMx5zF/UXjfSZW6CbSWfz0IT1b/y2XbZG383vc8poeMAcPxYvMC8tFhXNADNpLOj28/GhdKeK1EANGa5F5Dumcvcjc/Nue0hvG8Gwc08ZA8vGhOQDA+Rs75W0CdtHDIbLMLDIXbh79a7XTI1UkhoSsToT4uZjISMGuK9xax/FW5rnb1+Hn77kMZw104KBx/axex9+8x1xUctOeMeTy+ntf9L2ZnR41Oj3UAbml08Nt+dka7lMNw+d2wePSkMnlLX9j1eVvjT8UjmwXPvWKHXjjJZtlDCcAPOu0XsvjO51b7BQUmaedzytigXUurzuOPRRTGwL/iisIEVNRbNXTyUZcBNo/MDQLsdLwMsOWOBdLN9w1IX4ncRGczeUtH+7LrfLxu4vHW4nHaYVhASGkNPbhmLhYPmGLtzpjnd4DMFVJp4dt1UesyBCcVI4oJC/ltDjF6Gqw3E+Jt7IPuVWnhxrxEklm5PBvQ1fIcp/S8Vali8yfGtU/tJ3p4PRgvFXliNdKxFupJYXrbau6nJA53w4LQRIOhYXBGuKthmfM40cqk8O9h6bk0KWZHDQigwT12u4nFhN48OhM+Rs2kYJOD9uwM5NtnNPjieF5vOd/HsGrvn6f/J4QUjuCrTUkFw6LIWNfvffwlOXniVRW9uRtH+jANuP4KiJHhOPqrYZwUewzj3ifiZiwnUdnMBtLo78jgKu3r7XcVnXyBW3xVnFbV5LT6stPvPRsfOkvLsDzztaFRqeFTYy3Ko3HoeDZ/rfye9Qi82xhkblynt5mxJfNRPX9Y/fwHACr08Muelhy1732InP9/+Jc7FU+z6UYb0UU2oyYu0gyIxeidgW5Kn8l8fSt3Wjze+SCI3F9nUhnceeBSQD68Uic8995+Sly+FxzvJVDp4faIxbyeSw/62aJecPQNE2e862dHqXjrcI+DzoCXjx9azc0TcNNH7wC3/3Li3GRIoAAdqdH6SJzsWDRaYGFfTuq3cdIcXj2XkGIE2qxVU8nG/GhJVqkXLXR/P/svXeYJFd5/X+qc5qenDZHbZC0K2kVdiVQlshJIshIgGVsLCz8M8g2RhhnY/TFNskGDCbZmGDAItkEIVBAYRVR1irsanOYnTzTPZ3r90fVe+vW7aru6p6e1P1+nkePdma6e3q6qyu8555zaCX0+r6EOEk9OjGDdK5QV7Z9tlAsc4vQyj45+48urAI+zTYEcYJ2dE4lh3TSzPFWDNP80MrF89Z24f2Xb8TX330uAODw+AxKJV2UrW4xB9WeOj1ERI6xn5kvwbmZmRZOD/dB1c2v2lz2PXk/rooRTp0OgJHjSm6NgfYw5MNJRdGDTpQVt0GhWMI9LwxjeDoLTbMENJlmibfSdR3PHpvEgy+NzsmQP18siddIvtD8zu/vwkdeswWXKkNUJ8TqT8d4q/Ls3nAdReYnpHOdWx89jGu/9AD+8odPe75/vagChdPijZNTWc+Ooov/8U689Qv346H99Qsf09mCcMzVQ7nTw3g/aAhBfQLy6VyxziLzB14aKfteMzs9ZE6Yxzrax6Ulp4e8kEjOWR9sj+Bqs4w6nSs6LiSi/S7FhFGE1qaBtrKVkbKoTUMlN6eH04B7sD2KN5yxXAxLqO9PZkZEJbLo4YQaNQWUv1aRoBVvlc4VRY8Qde3IjshB03Uzkyvg+EQGJyaz8Ps0nLrMEv+dRBXr32a8Vcju9KD9uFOROYseDGDv9KA+GlpgwiwtZIeurut4aP8o0rmicQzaYRyDVnXF8IeXbhT3keOHxtM5z922ltPDOh7JkWiJsF306OR4q4ZCC1vsnR7O8VZ0fIgp14abB5K4bEu5y1p+38IuC6StSE3q9CiP0gTsxxkWPRoHH72XEMLpsUhiKua7o2KM8rZjIZGld3R8Bjd+41G87P/dURa/UI2//tHTOP+WXwlLNGCt3pIHYHRh5cXWHKzg9JDjrdSLJYZhmgtaHbSuN4H3X34KNvW3we/TkCuUMDSVxUlT5Ngy6F30oFUhlPPKosfsIdG+ktNj57pu/OqPL8JbdqzAK08dMO8niR5qvNWEswg/nS2I9ywRDqJDuqDx5PRQFhj89Y+fxnVffgAAsLor5thLQn0Bi+W8oV5+9PhRvOrTv8Zbv3A/XvmpXze0WwGwzi98Gmzvy7lru/C7L1/nqUyyktODjv9ykS6Jl7U4PU5I29avXzBW0KvFz41A13Vxbjc8ncXzJ6YBQAwU1U6PTL6Iy/75Tpz7D7fjF8+cEI/hJI7oui4+B7Nxe1z3pQdw4cfvwInJ+vrdyjo9QhRvRedxxjZWkra1gsOCFi/I7i/adpux0wMoFz0IKhaXP7vyxf3GvoQQHN9+7ip0xkKirNpJtKXPGcWSULa+0+pY+ZyeBu3U7aHGRDoVmYvnKw0z1MVNaYeSWsbCyQGjRoHJTg95MQFFB8sDKuqOSeeLePKI0eexsS9hOw5GlPfQ3qlEnR72bg8qqyd3Sa5oOT24s4EB7J0etAiDB9RLEzr3LpaM8xJyKG4dTOJ9l2zAVWctx+euPcu2/wpL525n//3tOOvvfuFpFpYWTg9rPyKPg2Jhv+24w06PxkL7eFlsb3Pr9DD/HfMYVxl1cBGW3UaNt3I51/D7NOGMdJonMvUxq6P3LbfcAk3T8P73v198L5PJ4MYbb0R3dzcSiQSuvvpqnDgxv4WLzUr7You3IqeHh6zrRjBqDm064yGxwufZY5O46/mTyBVKePiA94vnYknH/z5xDLoOPLDPWoFHOxf5pJlOvL2s8AkJ9d9J9DBep5LubI1nGKZ5IKcHXSMH/FbB653PDSFXKCEa9GObmT99bCJTVQyl/UqHED043mq2kPMiVkH0AAzx6h/fsh0Xb+oFYI9EkffnxZKOY65Oj6LUIeK3rQyULdYqbkXmTx2ZFP/+g4s3ON63o0mcHg/vHxP/Pj6ZEavkGwVFW3XGQqLIulYqF5mXOz2iUoyLV45LA35asOF1lWEt/PkPnsKWv/wZ9p6cFsLE5oE2seBEdaecnMpiMlNAtlDC7/3nw3js0Dje/R8PY9vf3FYm6MoCXF9bGPXw4tA0Hjs0jpl8Ebv3lbsovEDne+eu7cLOdV14/RnLAFjDTuH0kIb0pToXrMiuYtpvUyxT8zk9Yo7fX9MdL/uefLHv82n4kys34Yqt/XjnrjXw+TTx2kzMlG/j00qnB8UcOQ0f5c6m8nir6p0ehHwdkFfO4+lx2OnhjNPron4vLDk9ZPGYBkDy4oABc1+k68Bx8/O1rMMuuFVyerzl7BXYta4bV241FjJcvqUf56/vxjXnrgQgd3pwkTljh/YnU1KReSc7PZYk0aBfnPNNZwviHKsvGcGyjig+8dYzRJE1QS6AkemcuNajCPZKZByEcfmcIh4KwOfTxH6KhbTG8jsXrMXFm3pt0VQkpPt9ms0hSvt61enhhiyoux0nYkFV9HA/1+Ay88ZTd5DsQw89hC984QvYtm2b7fsf+MAH8H//93/47ne/i/b2drzvfe/DVVddhXvvvXfWT7bVWWwxFSKuKT8/gzfh9IgHceqyJO5+/iS+ePdLwv689+R02X0+/rM9+PETR/HV3z4XG/qs6I9nj02K1WEHRi2HCF3EhANW4VGqDtFDvRgC7BnYmVzJltnHMExzQauDadUwYAwNj4zP4Gv37QcAnL68HZsG2hAN+jE0lcWDL43iPCniQ4X2IbT6h50esyNXKInVugkHl4QTNEQhsV8VIjL5om1Vt0wqa8VbxUMB84LGuFCqHG9lrkhW3m8aJv/Pe88vy5clFtt5Q73Ix2nA+Hs6G7gKTi0xrwc551uFhA2708Ob6FEq6XjP1x9GKlu0CTJHTHFtbA7ivr75gFEI/bk79oqV0DvXdQuHmvqcVbfKw/tH8as9QwCAnzx5DO/ctUb8TB4OeHHQOHHbM8fFv+uNuCIR+Zw1nfjTV1gRdhRvRfsGeShRqNNhRKtHAWM43hYJSk6PZuv0cHZ6rOiMivNqQh0OvP28VXj7eavE1x2xICZm8o5ONRI7prIFlEq67RpBpVK8lboPF+WiDo4N+TogVyghbmp2uq6LVbxOjjvG+XVRYyXDAZ943W1OD7+9fwOwnB6AJVqrIkdEuc6SB1MXb+rDxZus2MJV3TF88/d2Wr+True404NRsFydeSneigfUSxFN05AIBzAxk8dUJi9iEuX9iwoNpOVzLzqHrITo9JD2hRt6E7hgQzd6E2FxfhcN+ZEtlNjp0WDU8wvA+iy7lYnHPR7PbaJHtU4Pirdy6PojwkE/Ui7Rnkx91HX0np6exrXXXot///d/R2endaE9MTGBL3/5y/jEJz6BSy+9FDt27MBXv/pV3Hfffdi9e3fDnnSrQp0eiyWmgi4Y583pIa3EpDJBeQXh3iG7yj40lcG//3ofDo3O4OZbn7BFFMgrAw9IF+DyiS2dZNfk9KhUZC6ptbXEWTAMANyxZwhv/cL92HN8svqNmQXHcnpYQz3KLN9z3CgF3raiHW2RIN54prHC+Ou7D1R8TNqHdLLo0RDkYVelTg8ZGtzQgEsduA5NZV0Lx6ezBWswFvbbVgYmKogeFIOUlY4buq6L419vwn21PIke09mCKIW978VhXP35+/Dc8SnX+y02Diir6Bot4oykjNdyNheZiQpODxFv5ej0qHxRc/cLJ3H7s0O4f98IHnTowEjnijW5RWphOpsX50s713WLIaL6nNV9kezEUeN+DkoCVr3P+7anLQe5lxWWTjgVVgNWfwB9XmxOjzpED13XsU9alEOvVbN2egy2R0VfkfzeD7RHbF8H/dV78jpc4vl0XRcRg7puxBQKt5ZTvJU0uKB9uHB61BBv5fdp4m+THX75oi62Ey4yd8bJ6aHGW8mdHrQf9WnWeVQk6MeO1Z1Y1xPH8s6ouOai68OYsq/x+TTbtZuXmGLC6vTQxTVdLfdnmhfZ1TnOTo8lD72fUxnL6THQ7n5eTecMYynruHR0wtnhLeMUgejzafjG7+7Ep645U3yPzrMaubCHcYbO291ED6/OTS9F5lFlAZvV6eEepcmdHo2jrqP3jTfeiNe85jW4/PLLbd9/5JFHkM/nbd/fvHkzVq1ahfvvv9/xsbLZLCYnJ23/Mc5QFIaTzXshmO9ibjmv94wVHWWxCKrT49sPHhIr9R7aP4bvPXpY/EwWPfYPp/GtBw/ir3/0tK1ckSIOhOjhwdZMOzo1vqpY0m35vyx6MLXy9//3DB58aRSv/NSvxTCGWbwUzWgUJ9GD2L6yAwBw3c7VAICfPXVcrDJyglaF0MXVfO17mxW5r0ktvnXDKhU37jukiB57h8odh8TIdE7k9ybCAbRHrQuaZAXRgy6Q5ONGKlcUg+eeNvcLo3apL2DSdDe+/UsP4JEDY/jd/3zI9X6LiXyxhMNjxgUl/T20Sr5R0NCsO15f3BJgrRjLFUpllnQSrMIOnR7VBv9fv98SQ91Wfc2F2wMwxKUXzW36jJUdrs9Zjdqj8mqgfAi8f3h2oseJyYyti+1AjX1uhNvqbavI3PiwFmfp9DgxmbV1ANEFL7mNm63TIxTw4fQVHYgG/XjNtkHx/f5kBBE5F92D27ndXD2txvpm8iWbGDWVsWJmuhxWXMsRFWq8lSrY0WfXbXAhzvOlz6J8LOZ4K2ecxKCyeCsHp4d6bP7u7+/CbR+4EEG/T+yPaJW1s7BS2zZH2Do9uMickUiIyNGiGHzzgHrpQu/nVKaA46ZTu7+S0yNYPus5Nl69Wywj3ICV90Mb+xMI+jWc0p+oeDtm9qzpjiMS9NnSYADJ6VEl+pjwcpxRIzUrxlvRYjeOt2oYNR+9v/3tb+PRRx/Fxz72sbKfHT9+HKFQCB0dHbbv9/f34/jx42W3B4CPfexjaG9vF/+tXLmy1qfUMriteFoo6IQ/NQ+58pl8UVyYdMZD8Pk04fYg9o+kxDC4UCyJeAbKzP/Jk8cAGALEA1J55tGJGdx865P42n378ZuD4wCMnV0oYLe+hzycLJMwUizptgsydVDBw0qmVqakfOOv3rt/4Z4I4wknp8fWZUlbadr2FR0AgFOXtWPzQBsKJR2PHhyDG3TyQzmvuWLJMUrPC0fHZ/Dxn+0RJ/itiJcScxW1iG5oyv76OcUsEnRbTTNWcskrA9sqrPaOOKxIHjbFlljIXzFOJeD3ib9vXBmMy5E7i5mj4zMolnSEAz5xEdhop4cVjTObeCvrfUhlDVv6J257Do8dGhcClez0iDiIWSqHRtP41XNDVX/3XPR6GL9/BiXd2GZ7EiErkku5EFPPaWQ3h1r+K7t26lnF9pRZWmw9Xn2ih9sFp5zlD9jdHfU4PdR9AkXCTginR/PFIX3r987D3R+8xBa715+M2IY9XgbI1nVPDr85OIZ/vu05ZAtFTGXtn//JTF58hp2Gj/Jnk56DuuqSqLaqXzi6pWNv2nxPg36Ny64VNvW3AQDevGNF2c+cRA8qH6dOD3XBmU/KXqfjMbkenbq55GFUxKVg1gl6H7P5orie404PBrC7OunYy/FWSxdyW05lCjghnB7V461kjnlwetB5UjU34JfedTbu/dClGGx3jopkGkdXPIR7/uxSfP3d59m+Lzo9PC5ikI8tbuc2JKCQoO/mNpZ/Pzs9GkdNR+9Dhw7hj/7oj/CNb3wDkYj7zqAWbr75ZkxMTIj/Dh061JDHbUYWa5H5fAzwaQVXwKeJoeFrTjdWkG02M/HzRR2HzNWgTx+dxPHJDNqjQbz7ZWsBWCfQLwxNYSpTQCIcQDToh9xLSRfyQb8PIeH0qLzqSyYo3UYeRqpKLTs9mFqRD3zfe+RwhVsyiwGr08MSPfw+Deeu7QJguDVWdlkntDRsrXSCQz+Th+X1Rlz9x/378bk79+KbDx6s6/7NgFUq7n3oSLelle1qvNW+k8ZAd3V3eZkvuUJiQT98Ps02nKskvJDVfSZnbRs05PHSQbHUez32m0Pt1d0x4Y5p9N9C51Uds4io8Ps0cYE0nSngh48dwWd+9SLe+Nl7RWRCxDaAq97pcfuzJ+ClO1uOWWgk1BvSFQshIK2szirxVuo5zaExS4goFO1/gBxHVY/Tg4bSq7pi4jn++oWTeNgh+svL45Q7PSjeqtzpUayjyFwVPdK5IrKForjwnY27aLESCwXQ2xa27QcHkvZ4Ky8DZPo8jqfzuOWne/Avv3oRtz8zZCu5Boxh1WjaXbiMO3R6WKsurcfSdb3iIAKwuj7kbZeOwxGHHpBW57vv3YXv3bALr9++rOxn5UXjfvH6Tgmnh3sEGgn+bvFW6u+ozelBMVvW+xxkpwcD+/naUfMYyfFWSxcSsUZTWdHR0t9WSfQo34/QuVIlKN622nEiHPCjr8LvZxpLTyJc9p70mmkylRw/Ml7ObWgRB0WbZvJenB4sejSKmo7ejzzyCIaGhnDWWWchEAggEAjgrrvuwmc+8xkEAgH09/cjl8thfHzcdr8TJ05gYGDA8THD4TCSyaTtP8YZeXCh13Hh1UgKRctaPh9Oj1FpBRcVX56/oQdf+e2z8W/X7cC63jgAiBgGUtzX9cbF6guKF9hzzMgx3zqYLBtMiZVFAZ84uaXvhb3EW0m3kXdUav71XOVvM81JKluwDfnm4zPHzA4npwdg7LcA4KxVnbYSXxq85Yvu+3bap7RFgkJMUWNlvDI8ZexTpxocE7SUoD6qWuJI6MTWcnrYRY+XzIHuqcvKz2VIIKEBHA30fFrl50BDG7nTg0SPngp9HsRSFz0OjpCQFJ+zv4UctO2zjBoSMQnZPB45YLm2vnbffuPxpcFIxEOnB53TnL++2/U2AMTAd66g7czq9FDjrexfH5McZLQAJJUt4O7nT4q/yelxvJA3963LO6KIBH0olnS848sP4s3/dr8QMo5PZPBQFRHEvdOD4q3I6WH9rFiH0+OFE3bRI5Utiu3N79NEnngzsr7XcGaFAz6bUwjwtpCIBIyRVE6swN13crqsN2c8nRf7hE6HFde2InNyeij7csDu3nDK2Qak/ankuqfFXxxtVU4yEsTZa7ps5zuE6lIMBy2nBy1KqOScoe3JrcgcsA+UanF60PYpn2Ox04MBjG2K4s9InOuIstNjqULH4L3moqVQwFdxAYyz06O6a56PE0uHd+5ajU+8dTt++4I1nm5vi+50Oc50KIvXnbr+xGME6LqPRY9GUdOZ9mWXXYYnn3zS9r3rr78emzdvxp/92Z9h5cqVCAaD+OUvf4mrr74aAPDcc8/h4MGD2LVrV+OedYtCw/tcoYRMvrSgZXk2W/d8OD3MVYxqVu+lm42Iq/W9CTx9dBJ7T07jCvSLPOmBZASJsD2m6lmzCHrzYBuGJrOiVBiwIoQMpwet8jF+tyenh7QiSY60KnN6mK/ZwZE0+tvDNa0+YloP1TbrluvOLB5oOOZXLvSv27kKuUIJrzrNvhBAjVRxIiOtEoqG/JjKFOre/1InQiuvIqFjQi3xViRYZAuG8K86PSgubE13HD4NkGekQ4roQcO5RDjgOBAinDo9TpoZ5q0geginR1dMvJ5z5/SY3eAiEQkYZfaZAp45ZnXUFUs61vXE8a5da8T3ohWcHscmZpCMBIVL4FWnD+K+vUYX2YrOqOg4IcbmKN6KoN4YGjKq+w06p+mKhzCaytnjPc192id/8Ty+dM9LtvtVK3F3Ii85NFZ3xfHcCescbjydwxOHJ/B7X38Yug789I9eji2DzoupqnV6kAAt/y31iB7PSeeYgBFvJRbyxIJVy7yXMv3JCD7+5m1IRoII+H22YY+XUuhuU/QYTWXFYHv/SBo7FKfHodG0cEQ5Dauoi8mnWb9XzdcG7Nu12/OjFd1jkuiRFsOs5hWw5gK/WTSekwTIsCJGBSt8PqLmsIjSAJxe/3qdHtY1oLWtBSu4TpjWQdM0JMIB2z6gI85Oj6UKiR4vDBnH6oFkpOI5udNQ+9j4DIamMmgLB13ncxRtGWVH4KKnLRLEVWeVRzK6EZGOLW7ieLtSU0CCRqV4K7UjmKmfms7O2tracNppp9m+F4/H0d3dLb7/7ne/GzfddBO6urqQTCbxh3/4h9i1axd27tzZuGfdosRDfgR8GgolHaPpHJaHFi7rTx66pnNF6Lpe8QAxW2gVY6fLSQWtJttnDggoSsLIELbHkZDTY9NAW9mBiQaBISmXl1YDe7lA0zQNIb+vLGu/bECQL2L3vhFc88XdeM3pg/jstWdVfWymdTlqFqT5fRqKJZ0PgksAIXooF8nhgB/vvXh92e3FCY6HeKtwwId4KGCIHtk6RY8Z+0lXKzJdR7yVPLRL5wplTg9ajdwRC6IrHsLwdA5t4QCmsgUhkNBjkOhRqc8DsC6QCiUd+WIJQb8PIzU4PWgIuFRFD+qAWN0Tx6gp9kw2+G+ZMM8xOmbp9KD4zdFUDs+aosf7LtmAbKGIP7xso8iOBqzVXWo01EP7R3Htvz+As9d0ipWH25a3Y1VXDAdH0zhtWXuZ6DFXnR6EcHq4FJnT39CfjJQ9F9qnPX10Eip1OT3M41/Qr6EvGbaJHo8fnsAN//WIGIA/f2LKVfQQhdXKBSqd+5HTYzZF5rqui4U2K7uiODQ6g3SuaPVPtEAO/FvPtroaozU7PYzt7vhERixKOjCSEqurCdpHJCMBR2cA7eOjQb+4VhFRhXnrGkY+HrpGVJjv2ZjkrqLrCx5m1U4s5LdED8npQahF5vb7Gu8hfUSrFZnX0+lh9Tr65vQ6l1laJCKW6CFHbzNLj0TYOC8jF+pAlUgjpyF1KlfEuR/9JS7Y0I1v/K7zzLNRjmJm8RH0a2JG43ZuQ07vyUwepZLurcick2EaRsN9mp/85Cfx2te+FldffTUuvPBCDAwM4NZbb230r2lJNE0TxUpHPWQHziXyEH8+hrDVSkYp15yGOicmLNGDVvGSeLGHnB4DSazpjtseZzrrEG8lfc8LdDub08Mh//ojP3gKAPB/ZsE6w7hBTg+KY2Onx+Kn6NDpUYmgWF1cQfSg/M+gtWK23niryQwVqbXuCVU9To9wwAd6S9O5Io6Y3QX0PtOxMRkJiuPVsg77AgUatp25qgOXbu7D7758beXfKQ1qaEhM8Va9tXR6mBdcS21uQ0XVa7pjaI8ar91i7PQArGzoB/ePIl/U0RUP4Y+vPAV//pqtNsEDsDs9KLI0Wyjihq8/glyxhPv2jgihbH1fApsHjELglV1Rsdqc4vPGGhhv5RSfSqJHuEq81aBD+Sft0+R91TLzdpk6jmWW6OErG3Df++KwzY1RKWebzlvVVZv0WSanx2yKzI+Zw/qAT8Ppy9sBGM4CayFP84seMtEai8zp3F6ORDswmi7r9Dgwauwj3K4RaB8fDZXHXMnXMEIIqzDg7hQ9I9ZnjmNL6kfu4QgHfMLpQVRyV6g57E4rrCPB+pwewYDxe8XCN462YiRoUA4Y5w0siC1dyOlBKSF9ycqLiSotgr33xRHXnwnRg/tfmg5N08Q5vdv2Qddium4s5qbTSafjEj1GK6cxNJpZH8HvvPNOfOpTnxJfRyIRfPazn8Xo6ChSqRRuvfVW1z4PpnZoSL9/OFXllnOLOnSd6zLz0Sqr4qwBoPE8yOkx0B62LOz5Ikams+KgtmmgDZdt7sMp/QnxOPZ4Kyoyr1P0qFRknivaLuIA42L6mi/ej+u/+uCCd7YwiwtyetDnn0WPxY/V6eFtvxH0YGWVIyBi4fI88lqYnOF4K+p5ioe9D0I0TROrS1PZglhxv7G/zXa7ZDQoCoqXddgHwRS1Egn68ZXfPgfXX1BF9Aj4hFBBK+qpk6WnzXu8FQ32l9pqZBI4uuIhcbHYaNGDHq9RnR73vjgMANi2ot11GELDvZJufe7/4779IsaHGDAXb1x11nIs74ji8i39omRxY59x/tJIp4dTr5AQPYTTQz0HNM6TBiqIHvR33foH5+PGSzeYj1OP08N4fkG/D++/fCNWdFqionpedWzcPWdbRAv4nVeW0/OejdODFtms702IbUt2eqiRrc1OVBlwV4PirVLSce7kVBYnpuzv68GRyqJHzPxcyqKEPGyna5ic5KZ0o1M4PcrjrRYydnipIr9mkaC/zI1RqdNDfb2rOT3cstadUOOtuMSckdmxukP8u5aFM8ziI6n0alV3elTeF7gtjiChvBUcnq1IRIgezucB4YBfHKMoFQBwPi6FzMfgeU/j4CP4EmOVudKbVj4uFOqg7JO/eB6//dUH52zV8GgVp4eajU07k/62iC265NGD4wCAVV0xJMIB9CUjuO0DF+GKrUY3iCxwkHghrM0eV/nQqiR5R6UOCOSCU7qoe35oCrv3jeKO50629CCSKUd1ehRKel3Z4sz8YXV6eLs9XVDnC+7vK+3fwgEfYkGK7Ztdp0crn1DRvr3WHHY6aT00NoNsoQRNA9b32l2DyUgQL9vYg0jQh5dt7LXfv8YLZHkF0aMHxvDWL9yPXzx7AoDHTg9FKJBXvtYzdJ5vxIr8gE8Mjidn6nM4OVEq6ZboMVunh7n683mzvHrbig7X20Zt74PxN9753Mmy263vM7atV542iHs/dCnOW9eNCzf2Ihby48pTjUVFjXR6OAmvPQl7p0dGXchhbkc9iTBUcxuJFCNmNFl3PORaiO4F2emxbUUH7vmzS/GKU41zuOelqCugvA9Lxs3pQedwBYdOj1KNC1KeNeNUNw+2ISrts0epp86DU6uZsDs9qgsE3S77t2eUqLRqTo+tg0m0R4PYua5LfC8gdffRcdSt3F7GKd6Ktn92etSOfPwNB3xlr30l0SMWrC56yMe7SC1OD4q3ytV2Dci0Bn98xSbx7/0LPJNhZkdCFT0cFm/IBPw+4bJ1IuXgwM8VSkK872SnR1NCgn2lRdIUoTs0aUUjOx1b2OnRePgIvsRYQ6LH6EKLHvYL1f+4/wDufO4kbnv6xJz8vtEq6nhEcnMAlkWxvz2CcMA6OJHYQDER4v5By+YO2GMT5sLp8aPHj5bdjwpw1fsyzLEJu9MDaO1h9VLA6vTwuN9wKDLXdR23/HQP/vP+/QCsk59IUHZ61D78LZV0sV/jeKvaV+nRYOV5s6B4MBlBUnEItEeDuPGSDXjir16BXeu6bT/rqSPSho5Rf/2jZ/DgS6Ni+6qlyJys9XJcCIlfixlRXO33z0kp+1SmIDLhZ+v0aFMunreZkUZOBP2aEAiyZsQV9YD8/kXrxO2os0zmI6/disf+8krsWN0JAGKI7oVcoYSbb30CP3GJ1sw7HFvIUSRED2UhR1qK91E/C7lCCTO5ojg/64qHrEL0eorMpU4Pgobd1LGz1ezxOOrB6RHy2wehAZ99Xyyv2qzd6WF1yFnF2QUxMG85p4cseng4NnZEg2UiGmD1w9C5Pe0P3a4RetvCeOjPL8f/u3qb4/MpFz0qOT3scYGAHG/FK75rRS0aV1/7QIWVI6rTg4RF+22sx6vF6aH2Onq9BmRag854CJ9463ZoGnD9BWsW+ukws6AtbD9ncTrnUpH3U+p5+GSm/LqMXB4+DWVRp0xzsKm/DX6fhjU9cdfbtJvnKLQ4O+T3wedwkhN2iMpnZgcfwZcYq82hJ5X2LRRuH0LfHGVaVuv0oNU+6VwR09mCGOgNJCNmHInx86ePTgAw8rFl1JPs0GxED4dC4kpKLa10lFVf3skxMpRLTk4PgLeRxU6hxk4PJ7H08NgM/u2uvfiHnzwLwD6QUSP9amEqaw15W3kVyXSW4q1qG1RRLjytKl/RGSuLjEqa3ROhgK9MVDm9wup/198pyszt71dPDZ0eFGkmxxepheDHJmbwz7c9Z7NeLzT0mQgGNHGx2EjRY3zGOL+Ihfw1Zb47ob7XW5Y5l2gDdgfPTL6Ik1NZjKXz8GnAdeetFrdzuwAPBXxiaD5WQ7zVw/tH8a0HD+ETv3je8edOvUI9ZlQblQyr5Ypyp4EqHOWLJYyksuI5J8IBsSKuHtE1J8VbEeqwe9sKQ2yqx+lBQ1bah8vxVrpeW6/Hc2a81ZaBpG3ATlFfLdfpUWO8lc+nOZ73v2RG/PYr8X5u1wiAc0+HJUSZoofUm+WGc5E5x1vVSyxk3ybUno5KTg/1to5Oj0Bt25z1e6nTo7ZrQKZ1uOqsFbj/Q5fhI6/ZutBPhZkFstNjsD2Cl2/sqXofeV/yR5dtwO6bLxPih3peDVhxiO3RoOOQm1n6fO66s3D/hy7FcqXHUUY4PcwFOm7HpFCg/nNkxhk+gi8xaOi52Do9CNUi2ChGq1wg0oVGJlcUjom2cEAMs+LmkIqGx93K45SJHk7xVh5PeIOOoof7TouGjoelwk0eaDOErusil3xVV0xk+2eLfCBczBTN4bTfoxDsFItH+71MvoRsoSj2I0aRef3xVvIJeT0rrZsFcjmoq/OrQZ0clugRLRc9pJVcMaUz5IyV7qv/3VBzzgkvnR4dUeN4R0KBvI2p4sFX792Pf/nVi/j6/Qdqfo5zQamkC5Em5JfirTL5mkul3SAHTMcsXR6A/RyoLRIQhd1u0NDuk794Hne/YPSArO2JY2VXDKeagslpFdwinXHjOY+mc567wMg56yYcOcZbtSnxVqroYX4dDZaLHrlCyRZtpWmaq2PECwUp3opQh90UKzaWzrt2ztGAW3Uc0NcF4fSw36/o8XXWdR37Thrn6hv6EpZQnZc6PeKtteKzVtEDqCxkLFOGC7WKSJYQRc5Hcv9Ud3qMy50eeeP+S60vaTFgEz2CvrLXsFKRuSpyOHZ6mN+rVE7vBF3zzbjsJxgGMKKQKkUdMYsf+Rrg7eeuEr1elZAXyLRFghhoj4jFTs6iB/d5NDvhgB99Vfpg6PyYFpa5LbCg7auVFyY2GvbhLjFWdRmix2SmgPF0Tqw4mg8Ojabx0P5RxEJ+13Leonp12CDo4sItB1FeLTlk7kj6ktYwiIpqj5rCgnpR7pQha8XNGBe4atmlG3QhJ6+WrHRhXyjpKBRLODxmRZax6MEQ09mCuOgabI8i5PchWyjxNrLIsYrMvYoe5fuNcenEeWImb+2LlDK0e14Yxq713Z5/lxxp1MqrSGgVeLXSQpWoED2M3oYVnVFRSk3IF1FxJfJkXU9167zb71QLq9s8uFSsInPjvvJ7rg6+adHA8UXi9MhL5xShgOXA1HXDsTTbOCrA+py1N+B8SnZ6bBlIVh2ytceCGEnl8IPHjuIHjxmxl5vNaKbPvv0svDA0LSKsnKCBcK5QQjpX9ORaovOpKZdoM6djS3dcibdSbpOW4n2cnB5qLxuJeGo3iBec4q3UQcLanjjiIT9SuSKOTcxgnYNbpprTg/a3qshRLOnwMttO54riONCdCNlcBWIhT4sNQOShtNeFRLLosa4njn3Soq/BjiggdeT1eoj7c3o+6bwSb1XhDXbs9JCcTkxtyJFUkaAf0ZAfbeEApswFZwGX603jvkq8VYVOj0iNTg3VYcJOD4ZpTuR4qmvOXeXpPvJ5A+33abFTpXirDu7zaGno/acYfjd3eYjjrRoOH8GXGLFQAH3mys56irOOjM+I1Wu1ct2XH8BN33kcN/zXo/jXO150vE21D+d4OoeTU9mKt3GCLozdLijk2AAa1shFVDQIIPFBFYvUi15juKIpt/F2MeO0o1KjIFQyhRIOj0lOD+70YEzkKJqw5EDiA+HihgpvK+VRyziKHtJQhVZKA8bAkPZ5X7tvP6778gP43yfKe4LckEugW3lfQw6qwY7aRA8SMUiMVOOt4iG/baWY7NJY3xuvy9pOER1kbnjFqf34j98519PKVbkHQ3ZO0PdkKIZoZLr24/RcIO/ngn4j+oQWFjitpqsHUWIenf06IFns2qR0hznx0Teejt86d6Xte1vM+63pieOKrf0V7x8N+sUxQRXE3KC/N5MvOUZZydsHYGw/9DuEWOESbxUN+co7PYo6hs3tiYqpwzUUmeu6jgMjKeFkyTvEW6lugN62kDEQh3Ovh+ogkqEhK0XJFRVHkdcy8ylz8OH3GTFmUeHOkzo9WizeSo4j8jpElsvMX7tt0PYz2UnVkwjj8iqfF5WYOXCn7TdXS6fHjOU243ir+lHjrQCjj5GoGG9V5vQo34fTNuf1Gs7t97LTg2Gak/5kBJ9823Z87fpz0OvBPQ3YY/NosUtSiZKVsRbvttYxn7HTHqN4q2pOD463ajR8BF+CrKmz1+ObDxzEBbf8Cp+9Y2/Nv/PkVBYHJJFl38lpx9vliu4Xg7945gRe9v/uwOWfuAupbAG5QslzPAVFsLgpojRwyhZKovS5X1q9q4olqtIeKXN6aHWf8Ip4K1uReflgYWWXZcvP5os4MsbxVkw5NHjRNCPfWpRbtfCweilQKNbm9LAcYs4DaVn0CPl9Ze6BF4ec98lO2JweLRpvlclbufrL2t3zV51QjycrOqO2YZc69JWFiQ19tbs8gPJh2jt3rcFFp/R6ui+dZGfyJTGIJeQyXsDazrwO0Oca+VhIx+BGl5lP0Aq8aGOdHpsHq4seu9Z342NXbcP5662y+00D7j0gKnIviFcbvCymTjusSFSFELk3Ro63kuO0KB4oGqzs9OhWnR4e9j/fevAQLvrHO/G1+/bbnp+t00MRD3oSYQyag9OjDr0e8vFTHb7TgpdCUXc8R/VaZi7H52maJrrnWtnpEXUYcFdDjqPduiyJ7SusuLflnda++y9ft7Vm5xc9H4qxTZnbcaXnRoumSrr1HgunB8db1YzN/WN+pvslp37FeCtFRHM636L9o1tEpBvq72WnB8M0L286cwUu3tTn+fY2pweJHuail0kHF63o9GCnR0tD1xki3splrmmJHq15jT4X8BF8CUK9HgdqcHrouo4Pf/9JAMAnb3cur6zEc8enbF+rgxMi7/LhfPzQOH7vPx/GdLaAiZk87nr+JHZ97Jf43f98uOrv1nXdyrJ3OemUL6So70QWPdRyUTW7W1Va5RX1hOcicyenh/nvuPQ8V3XFxG2nswVb4Sbv5BiC0l2oGyLk0BnDLD5odbD3To9yMUseSNMK/IBPQ8DvKxu81+Kgs3V6tOh2RDFO0aC/Zru52tGxojNmez/kPg+VLYPeB9oyamGrekyrRFs4ILqATk7bV71PzNiP5TSMHZ5eHKKHtapfEw6ZRoseotOjARejNtGjBvHiHTut4vLNHhwiMk4usUrIXQTT2fJzOXWfIEc/yI4jWaAl8cKtyFyNt6rF6fHMsQkAVodOXiq2J7ok8SDo19AeDYoyyWMOTg/5b1QvOgNStKlTf4fXxToUH0b7A9pHDE/nxO9vNadHPfFWFK0GGK6PK08dEF9vGUzirWevwO+9fC1ep7hAank+5Np76oixra3ribveJxTwiXN5GmSR6OfkNGAqQ9dvYalzQ75+q+T0kK/93JMAfObj1yZIlXX9sOjBMIyJPI+i44Hl9HCPt2q1hQ6MnfJ4q8pOD571NA4+gi9ByOpdywX/Q/utzNvtKztq/p17jk96up3b6vPfHByzff2B/34MI6kcfrVnqOpjFkq6iPRwO2mVnRrk9JBXh6kXIqrSru505E4PwrPo4ej0MC6o5FitFR0xkTH70nAK8nU07+QYgoYutIItxOr/kqDeTg/5sy93etAQmvZV6j5tqBbRQxKtW9U6S6u/BzsiNZWbAsBlW+wRKoMdEZsokXSISXr3y9bilP4Err9gbR3Ptjy7PFFD+brPp4nB69CkfTuRzyN0XRfD6cXm9JAHX+0VIgTqwer0aOwKPC/xVsQVW/tx8aZevOLUfqzorM15VOvFkbxfcVqRSKKCphkuptduX2b9LmmBiNzHIZweLqIH7b+6E/ZC9GyhVFbA/m937cUFt/xK9JyNpaiDpGA+nimESVn/nVIheHc8DE3TMGg6uI45OD3k/Z66ojto7rMLpVJZtJXxfa9OD+P5UuQZDWiPmN1yoUC5eN3s2OKt/N7+9i7JadQVD+FKKcIqGvTj42/ejj9/zdaa9+OAPRoXAHbvGwFgOLAqQefyNMjieKv6oc+AvG3IPVuVIkLl46Kby4Zu49VZRATVhW8cb8UwjIk8j4oLp4f7ghyryJydHq1M2aJrV9GDi8wbDS9JWYLUk/P29d0HxL+DdeSJP3vMWGG3eaANexTXh4zbSkM1I1r+EOu6XvFixbYiz8We7PNpiAR9yORLIifPViSrrMz1UmRed7yVwwDC6hIJigteUX6bKZRF03B0EUMUi86iBwtji5vaOz2oPFfu9JBFD3NViHkBrw7LaL/nBdXpUW0f3IzQ6u9ao60A4JJNffjqb5+DP/7u4zhteTuCfp9t+OLk9PiL126t/8miPJrDS4G5TEcsiImZfJk49pV7X8KLJ6fxuWvPQrGoi4HuTL6IdK6w4CuXc0XjPEdedDBnTo8GxFudvqId/ckwNg0ka3LjBPw+fO36c+v6nU77jkrIr5uTa5ceZ1N/G372/gttP5Mv0LL5EmDOJsXQN+gv2/5zhRJmcmanhxJvBRj7IHng+ZMnj+HI+AweOTCGFZ0xIcDRc805FJknwgEE/RryRR09bcbvIIFFLpyWnxP9Peq+LyA5Z5z6O7w7Peyih/pZ6o6HWm6/G62j06NHWsDUEw8jGQ3golN6sX8kVXdcICEPqYans3j+hHEufu7ayqJHZ9w4l6d9BzmWWk3EagTUdSPvW2SnR6VrL5vTw2V/e+qydiTCAZxX5T1V4SJzhmHcsDs9qNOjeryV2inLtBZli65dxHqad7bqwsS5gEWPJYj4INSQxf6AuXoJsC5Oa4GcHmev6awoergNYukidVVXDAdH7bFc6gWvilwCXvHkN+g3RQ/j4joRtnYscv59NOgvEznUgVJoFvFWYYcV25bTw3pOK7qi4vfuVTpSeKDNEG5OD95GFjdWp0dtsXjy4HJiRi4yN/ZrEeH0qBxv9W937UU6V8RNV5xS9rvkE3LdjKkJBVpr+HbUFJ8H22srMScu2dyHBz58mYgvi1Xo9GgEs3F6AJZQ4CSO3f38SfzkyWPYsbrT9v2R6RxiXQssehTKy6ZpmH1isjFl6yQCNCLeKhYK4NcfvLRiDn2jcYrGq4Qcm+fU6VGpzFnTjF6pbKEkBr2lki4WpzjFW+WKulgR32VGFcnnfJl80fY1vR+prPH4JFpQFFdBxFtZz0/TNHTGQhiayoo4Lqt/pPx1oefrdF4XECKSPjunxwx1etjjrYhWjLmQhR+vK+8pAizg05CMGv0oX/3tc0Tc3Wyg0trhqSwe2DcKwFjcVS12jN67MXZ6zBpyaMiL2vrrcXq4vPYru2J49C+uqFm0iCuPx6IHwzCEvdPDjLeKVCoy53grxmnRtfNxhaPMGw8fwZcgtVqeMvmibXUnxRB4pVAs4QXTiXD26q6Kt3W76KYP7Y7VnVAXtlUTYcTFqd9X8SKHLqZo5ZXs9JBXADkNNjw5PWrs9JCHlyRQyTu7FZ0xEcul9rPwTo4himapB4kebHlcGtTb6ZEvWAM12elBBdOW08M+jB6ezonfeWIyg1t+ugef+eULttJiQs2bbUVn2VEzBnFZR+1ODyIoHZNs8VY1ChJeiEgDGJ9WLoJUQ4geLkKBHG1FLIaIq5xDafXqbiNv/8BoqiG/g8TFWkuQ3Qg5uAfmklqF8HFJTJ3KusdbuWXpW9FUxrnbjLQwJRryY63Sh5AvlMT+iwSroN8qHVZFiUkhehj7KcvpkTefny4eQ4YG1SR60GdkxqE3xBJ2yj9HFJtVKJZEpxZgHYOdhBAnyOmhdnoQPW3hsvs0O/U4Pdb0xOH3aVjXGxefq0YIHgDQY26Pw9NZEW21c111R0CHED2o08NyOjG1EROdHlK8VXvtnR6VXvt6BIsBZUFEpefBMExrQfurUMCaF4lOjwpOD463am1Up49rvJVwerTe9flcwUfwJYjXeKvh6Sx+8JsjIheZqNXpsX8khVyhhHjIXzWjuprTozMWwvpeux095VCkKZOtsOpQpiz+Q463kk6MnQYb6mOHA76ylZpeT5qdsvnpb2gLy6JHVOzURpTSWIr0YBiaR5cVmVcYVBeKJfzwsSNiNTsz/6gOnWo4va+2To+U0umhRPYVS9bQerfk7HMa+Kkn5FkPZcLNBuX8L+uoz+mhEp1jp4fcW5UIB2oeqtNx74RL98tUplB2HFoUoofD8X9VVwwAcFBZLFAvVrzV0rwYtYrMvQ3jx6s5PVxEBYLOtUiskM8pIwE/ti5L4tY/OB8fu+p083lZReZy1xq51uQyc13XRRfGdLYAXdctp4fo9CiPtwLKRY+IcEWX798qnVcKp0fJXmRO+2jvood9AY4qVG/qn10001IkErJeb6/n1P3JCH544wX4j9+pL/6tElSSPjydw+OHxwEA566tvLgLsAZXtKhgRsRbcYBCrfSZro4eqbtF7vSotHDEi9OjXtoiQVuMZK2dIAzDNC+0P5DnS7TgqVKROcdbtTblnR4u8Vbm93kRdOPgs7MliCV6VP4g/O2Pn8GPHj+K124bBGBcYOQKpZpFjxeHjNWUG/rbqmZUu3Z6UBlpQMNZqzpsHRapKs4TEnfc+jwI1VZu7/So4vRQHjvoL4+3Cntc5SOKpqXXgi7qO6UL/r62iBhkjSjDJd7JMURBcXp4WdX7ge88jh8/fhSv274M//JbZ879k2TKoMGY504Px3grazh5ctJwJrh1egBGxFVvWxi7zZgOwDkGUbVet+JKEur0GKyj08MJW7yVQ6fHbJGPb211PD6JHiddul8mZ/IYCdkFEeqRWUjo8yAfj9eYTo/9DRA9CsUSjpufrc4qkTaLlZC/fN/hRiZftH3eJyvEW6lFvoQVG1W0/T8a9IsV+Get6hQX+VOZghgKy69xJOhHKle0FaJPZwti35nKFjCdLQgxR3R6OJTbA1YkDkXWRTw5Pcr/RnrcQtFeZB7wa0AeNiGkEpbTI2A+Hx80zYgUBIDNA0lPj9NM1BNvBQCnLW+fi6cj3DbD01nx+VndHat6P9rWvvXgIVx0Sq9w0HOnR+2ctaoDn77mDGxb0SG+JwsgTqumCVunxxwIToMdEUyZPS8cb8UwDCEWoEn7HTenh67rYrFJZ3xpLq5hGkMs5BcdxID7bJOON6OpHO7bO4xd67pbrgOu0fARfAlCQ69qnR4PvmQMvm5/9gQAo5QSMOKtdI8XbYB1QdsWDngQPZwfl1Yvh/0+3HTFJrz/8o1ipRTlNrtBf6ebGkrEgvbnJg+G5CJzZ6eHGm+llfWHuJUNqYh4KymmhoYMG/oS+OibTsMX3rEDfp8mLsrVok0WPRiC4jW8ih57jk/ix48fBQDxf2b+UcWqatCq5VyhhKlMHkOTGVv2/jFzMEulrnJPUcD8HdTXIHc4OQka6qCzFUWPo412esjxVtHGD1/kx4+Hax+sWZ0ehpCxdTCJv3vjaaLHYzJTwOgidnrIA+5V5lByeDpb1Skqo+s6XhpO2YqoH9o/hqlMAZ2xIDbOshR5ofAabzUyncX+EXskWKUic7cONVqsoTo91IUn9J7JcVryfivicC4rC72pXAFjKcmVkiugVNJFp4Yqerzv0g34/y7biDeeudz2+M6dHsZzdhpk0r64UNRFkblPs/azlZwexycymDFfDxp80CBE0zTb57iac7oZiUiv92JYOU/D9ZNTWQyb+79lHoTwa85Zic0DbRiezuKG/3pEbGPc6VE7mqbhDWcst8XiBaTPtupAlJE/T3Px2svxl5U6JRmGaS1oJiTPxeg8W11YNp0tiPOWjujSXFzDNAZN03DNOavE127jWDo/GprK4u3//gB++tTx+Xh6TQ0fwZcgEQ/xVicmM2L1Ip2MbzSt9CUdthLKahSkFctqpIp6wegabyUNLgbaI3j/5aeIlVINi7dSTnjlA5GsxDsdcJyKzOUL6lDA5/kC1SoVtV5f4VYJ+HDteavxilMHxNdA+UV0Kw4hGWfcnR7On99P3Pa8+PdZqzrm9skxrhSLtXV6yKu1r/rcfTj3H35pi7qiEyMqXpU7JE5dZqwYHprK4sRkBvuGrcGm03Gi3Omx8PFWmXyxTIwveYyRqZWpTF4Mexvl9LB3esxtkXm1xQdOkMOROj1CAR/esXM1XnFqPwDT6bEIOz2cCqfbo0GxaELtw6rEl+95CZf80534/F17xfdue8a4kLhsS79t0LaUEIJpBadHtlDExf90J175qV/bvj9dodMjFHDed1nxVsZ+g1a5q5n6dC5EQkY44LOJwGHlceTbGs+tiFFpQYiuG0KIW7zV+t4EbrriFDF4UJ+nTCWnR8Ds9MiXrCJzv0+D31c53ur4RAYv//ivcP3XHgRgCUqy61h2Wm9YoiLbbAj4feJYtxhWzlMUGl3nRII+Rze4SncijO+993wAEGIJwE6PuUA9LsnMZbwVYD8/WAzbK8MwiwOnqGE695/KFmzXL+TyCAd8LIwz+OMrTxH/dnNoq4ux731xeE6fUyvAR/AliHB6VBiMP35ovOx7p/RbQ/sv3LUPp/3Vz3Hnc0NVf1/B/EAGfD6EA37bhea7X7YWL9/Yg+XmahjXInOHiAoa3FQrVq+0Ik8mJp38+n2a7QQ4UWORecjvs0U7vGxDj+dBU9hh1aWbcBMJOotIrVgszDhTUrohKGbN7fN/aMzq8WDxbOGotdNDzuV/QYr/U+kzRY+eRAhvO3slrr9gDTaa+/aTU1lbnwfg4vRQRY8qrsG55uBIGmf+7S/wkR88BcA45rzyU3fjDZ+913N+fi0cMbtuOmNBW/ThbAgHfKC3ei46PWQLdKIOUYUuxqbNRQZ0LKLvT2Ys0YMGgcMVVtjOFzkX14EoM1ecC5X4+/97FgDwjz9/DoDh/LjtacMJe+XW/lk/14Ui6CHe6vhExtHV4fQ9t/goIqzERll9Bs6ih9sqeOEYkfZRsuiRzhYwpgw8pzKFqs+PqFRk7iSmEQHh9LDirXyaBvp1bvukfSenkS/qePrIpPlcqdPD+fOqnv+1ClGH4uqFIhL023oblrVHPUdIJMIBEV0mHm8R/E3NRqlCMoHPp4lj2Zw4PTwWqjMM01pYnR7WMYAWOOi64UwlqF9zoL0xznJmadMWCeK/37MTu9Z14/oL1jjeRj03pc4xpn74CL4E8dLp4fThWN0VE/f91XNDKJR0/PqFYXz69hdwyT/diZMuBad5ESVgXAjIQ6LueAhff/d5uG7nagDVnR7yhzhmPo7neKsqF4hRReSQL1zki/F2R9Gj3OkhD1loNawXQtLwkqC/Qb3IVbP8aPUqx1sxhCgy9xhvJYuILHosHDV3eogBYeX9Ya/pkNM0Df/vzdvwV687VQghJ6ey+M3Bcdvt1ccbns5iKluApgH9SeN+Cy2y7n5pBDP5ohBsjo5nsOf4FJ48MoGnj040/PcdHjUuQFZ0Vs9u94ocXTPXTo+2OoQadfBKx1ORQTxTwGjKOAc4xXSF0tcLidUHZj9WrjEjrg6Mend6qI7OZ45N4sj4DCJBH16+sXeWz3ThEH1AFfb3cnm5jHOReeV4Kyojp6g0inNSRQ/1/qoTxMnpMWlzehTK3EZGx4c30cMpPotwOiclrE4P3bboIFDF6UFxVlPZAmZyRVFm6rQ/6Fqi/TGNgLaDxbJynno9AKPDod77yp02zOz59DVnYHlHFB994+kVb0fXfmrEcSMY7GCnB8Mw5ZBoL8fNRoJ+MU+Sz2UOj9E1R2Oc5czS57x13fjWe3bi1GXOfWXq8WbPsSnPCT2MM3wEX4JYoof7xv/E4fJB0YrOmBAsjpt55gdG0vjk7c/jpeEUvvfIYcfHEk4Pf7mqTR9KEkRci8wdLlLj5olq9SJzj/FWFeI/bE4Ph3grpyJzuYjqsi3eRQ85m5/ISPFWtt+rrArrjIXK7su0NiLeSlNED5fPmiwi8na0cFBchud4KzpRrlDaCQC9iXD598zBy9BUpkzwVgd+zx2fAmCI4LS/WWinB63Wp8Es9W0AwANSKbtKvljCu7/2ED7zyxdq+n2Hx4xBeaMvQM5Z24XetjDW9sar37hGVFG/VtqUFck0kLY5PUxnB7lCK8WKzBduA/hVdTg9uuPWZ6dY0vFz0+Vx4cbeJR05EPZXPiYAsMVEyTh2eph9ZG5F5qrLhiKb3JyrhKvTwyXeKpUrlPWdTWXyrp0eKjRczymF5IDVo+YkSNB5WqZQtOKtNA0+cnq4rDwnkQMw9sWW06P887qqq3GC61LjnLVdaI8Gsb53ccR7yaXZXvo87Pe19ikcbdVY3nDGctz7oUtx+orKJfbk8p+L1192erDowTAMsW1FO0J+H85Z02X7vryQiCDRY2UDF1oxzU1fWxjre+PYvrID3fEQCiUdzxybXOintaThI/gShAblboMqXddFvNVmqYdiRWdUXASSq+NZ6QPkVr5aMB0LVOIoD1xoEEEXiW6ih9OqurhXp4eLYKAin/CqF5mxKvFWqiU9FPBhx+pOaBpwxsoO24VNNUL0/sjxVi5uFXXlKa3+42E1Q6hF5k7xaTJ2pwevClgoRKeHx5WfTg4xoHx1dF+yfF/U12ZcmB8dz+Dpo8Y+nVwcqtuH9vmbB5JSVOLCbifUyzA+k4eu6zgmiR5qXJfMQ/tH8cs9Q/jEL56vaZ85V6uuvvKuc3Dvn11alyhRDZuo7zBErYYauUVCPx335U4P6hqoVCBbiScOj+MD//2YsPTPBrfuBeH0qKHTQz4vODo+g9ueNvo8qGNrqRJ02XfIqDFR5NaYcuhUq1ZkLr/233n4EP78+08CcIq3su/71H0Znf+4Fplni2VOj6lMwXL/VHHRyZ8ZdYXcsQmj886p04fEmXSuaBWZ1+D0AAwXjFOnx9VnrQAAfPCVmyo+92bmM9ecgQf//LJF43aRz+/llf1ekBchLGXhdClDfY5z8frL20OY460YhjE5b103nvjrK/G7L19n+z5FHsrnA3O10IppXoJ+H26/6SL8zw27sH1lBwDgCYfqAsY7jb8yZ+YcGla4RdeMpHKYNC+23nDGcuz52R7EQ350xILChkfXbEekoYTbKpl8iTo9KN7Kuh09F1He7fKc6GI85OD0qN7pQUOPKvFWQXfRIy7HWznkratOj4BPw/reBO7/0GWeSg1lnFbie+306CTRgzs9GBO3InOnz3+ppNuKUjneauGg1cA0KKtG0KU0WB2w9bWVix60avjxw+PQdeOk+5T+NpyYzJYJGuT02DTQJgaKC72d0OC6WNIxmSng6HhG/OzBl0ZRLOmO4pF8PHnu+FTVFaGEJXo0dtWVz6chNEfxJrMtMlePiWHF6TGWzovjzkZT9Bh3cQdU4/X/ei8A4zj22befVddjEG6l1eQ2eGnYu9NDdjXc8dwQ9hyfgt+n4dLNfbN6jgsN7TsqCX+qeNDbFsZIKifcCDI5l9ecoNd+78lpfPB7T4jvx0L2bUx1YpSLHtTpUcThsTS+/eAhDE9bkWrTWSenRwG5ojenh3y+NZMv2qJZSZBb5hBnRG7mmVzRFi9JH21X0UMSbE5MZkSmtyw4/r+rT8dNV54ievBaEU3TFkWfB9Ftc3rUGG8l3Vfdvpn5ITqHTo9BaXtw6gZiGKZ1cerlovNzOTp0rq45mOZG0zQE/Bq2rWjHr/YM4XGHFB/GO7xsYQkirPcuJ2DykGDH6k4AxspNTdMQDbkPS9ycI8LpQfFWNqeHPZs357LSsFKnx7TDSkP78zKdHsHKm2vU5vSwCxXyxbiT6CEPz0J+n+gDGWiP1Fw2KaK+zL85WygKxV8dVqkiSBfHWzEKapE5feachDH1omyhY4taGRFvVWOnh4r6Pvc6iB6nLU9iQ18ClLqyfWWHlWev7Ev2mKLHlsE2SUBfuIt5XdexX4ooGk/nbA6BqWwBzxx1tvTKr00tJW+Hx5feqqtIBVHfC2Wih3B6GMfDmbwR5RPwaWKonc4XoVcoka3GiYlM9RtVwa1wer0ZIXZsIoNUlXMIQnYR/NudewEA567pEosNliqVjgmEKnrQgL5SkblbnMtq0+lBF/LE0JT9/a4ab0WiR76I933zN/jXO17Etx86JH6emmWnh1xyXIvTIyZFr9qLzI19ubvTw3otXzqZEvtj+bMX8PtaWvBYjMzG6cHxVgsPLQQhx2sjkY+7siDLMAzjRMgh+WQpXnMwiwdyenCZ+exg0WMJEpbik5wGElYclQ/nrOnEp685A//81u0A7I4HFbfVvgW1yNyx04OcHs7Ds5zDRSoJAOmq8VbeOj0qOT1CAZ8of3UaGgb8PuFkmW1ua1hxejxxeAK5Qgnd8VDZAc/V6cGiB2NSUGKSKhWZq/042cLshpZM/RRr7PRwG+Cdv75b/Ls9GnRcIatpGt65a7X4evuKDsdhX6FYwvMnDNFj80CyalTafDCeztsGr+PpvBhIEr85NOZ4X/l5P16D7XcprrqabaeH2l1A25F6rOxPRkR8lq7X7gKSBYhV3bN/fd0G8B2xkFhlve9kdbdHvliyLbA4am5jV57qva9rsUJOj0pF5qpj4py1Rg71dLZQdoyoJioMJCOO50lbBpP251XV6UH7qBIec/j8pnNFEbFGt53K5EXPnFv8lv13kLBif22OmcKqU3E1LciR4638PsBfLd5KEtX2npw2nmPAt6hcDUw5snBRs9OjjeOtFpq/ef1p+OTbttvOleaCZSxWMgxThaDSsVYolnDMdK8vpWsOZvFwxooOvPtla/GBy09Z6KeypGHRYwkiOx5op3poNC2GA3TBGvBr0DQNbzhjOTb0Gd0elVYiuQ2+RJG5r9zpEVZED7dMaUenR81F5lXiraoMhf7xLdvx0Tedhv6k80WN9bfMLp5EHUrv3mtk0u9c1y0cJEREHeSYq26zHG/FmIihi1pk7vB5VQXEkm6Jlsz8oeu6JXrU2OlBtEUCeN8lG/DPb90u3nOnaCviTWcuF6L29pUdNnGc2D+SRrZQQjTox6qumONt5pv9ShH1mOT0oGiJibRzubv8vJ/waPudyuRFYfryJbTqSj5W1NPpEQ747I5G6dgtnxcs64jYhtNyXJ4XnjNFNcDZ+l8rlQbw68wiZBowV0J2eRC9bWFcvWPFLJ/hwmP1AVV3evz2+Wvw/126ATe/agsAY4CvOgTp2OImevh8GlZLRdxvO3sl3n/5Rvz+Rettt1PPpdTzz7BUZN7mIuRRBCsVgE5lCuI8M+DhXC0quUmIQrGE45PGEMLJdUHFyLlCSZxj+zUN9HJ46fTYawpxTkXpzOKicU4PToxeCFZ1x/CmM1fAN0fRkt//g/Pxx1ecIvp4GIZh3LCcHsZ5wompLAolHUG/VvEajmHc6IyH8Bev3YrXbV+20E9lScOixxJEdjyks0X87Y+fwcs/fgf+9HuPA7B2tE4XrBXjrVxcGqrTIyF1etDOvdqKYaeMaHKMVIum8Fpkbnd6lF9ovvK0AVx73uqy7xM0oJmt0yOoDCDuN4t4dzqsQpKLzWMhvxC02OnBEIWSs9PD6fNKA0p59TZvS/OPPBMLeBU9lP3O6u4Y/uQVmzDYHhUDQacSc6ItEsQ/vWU7fueCtbhkU29ZSXCuUMLnzUifUwbabNEvCxmDdnDUXkQtOz029htivVsEorxtvzA05SnmiFwenbHgnBSOzxWzdXpommbbL8jHU3kwO9gehV/aNqhzq1jSxQKISuw5ZokeMzUKJk5UilpaX4PoMe4gnP31605tiqG0tbKwUpG58fefs6YLN125Cf3JsOiomFYirujcpdI5F0WgAcAlm/vw/svLeyq8x1uVHB0XgBVDRb1FRqeHt3gr43eUO96GprIo6ca+WR5aEzHpHJdeG59P8+D0sF5H2iaTdQiUzPxC7u+2SKDmfaut04OdHk3Jmas68YeXbZz1tSHDMM2POgM6bF7jLO+IzpkwyzBMdfgIvgSRV2ve8tM9+Mq9LwEAfv3CMADJ6eGwc60n3kp2jgBKp0eZ06PyY8gX0fQ4qSqDERrI1dbpUd9KWMDbhXQlQn5LuMgWinjkgBHNsmtdV9ltI0H76yHfl2EAlDkGwhW2ERpQdsasC/GFLqluRah8HvDe6SEX5QJKcbW5P+t1GNDJvOr0Qfzl67Yi4PdJLg5j//rh7z+J/3n0MDQNuP78NQAqC2jzxf5hu+hxZHxGrMrf1G8Mtac8iB4lHXjqSHW3x1KMtgKASGB2xzf1fjbRI2p9n4bPtCp/JldEvljCtV/ajfNv+VXVDq49x63+lXQVF6cXaMAddjgub+irxelhOB2Wd0TxpjOX4/cvXIdXnz4w6+e3GKjk/iNGzXirzrgh8miaJga8k2WiR/Wi8NVSdNn2le2Otwn67PdXnT8RqVPIqWtNZr35Xo9LMV21xFvJbpZjE8Y+oD8ZcXTihfw+8X2K3vP7NNCu3M09KTs9nBYgMIuT05e34/It/fiDizfUfF+b04OLzBmGYVoa1Xm7VK85GKbZ4LPxJYimGasws4US7nlxWHzfZ8bfWM4MJ6dHHZ0eolPAPd7KKjJ3cXo4xCXQarrqTg+P8VazLHol14WXC+lKnNVeCwAAivpJREFU0GuxbziF0//6NuQKJfQkQmJVqow8yEqEA56GF0xroYoelT5rKWnQEvRryBf1BR1otyrySmCvnR6AsX+k/Z08IEwIp4f3vHGrpLyEVLaAHz1+FADw+Wt34JWnGcNe4fRYwP3NASXe6pljxtC8LRzAgFkyrK5EJ9TPAEXWVOLw2NIsFPT5NIQCPuQKJSTC9bkTZAdkyMXpscx8zWOhAMbSeaRzRXzlnpewe98oAGD/cAqnLXcecgN2p0et0VhOVIq3ojLzvUPunR4vDafwzq88gLU9xvG3OxHCJ992xqyf12Ki2qITABgz4626pNL2tkgQk5kCpjJ2F4wXJ8UaU/ToawtjwGW/5PNpCPg0cU6qxlvJTg81Yst+Ox9Wmk6PUcmx4yXeyqnT46iZr73MxV2iaRpiQT+msgVMZ43f59c0EfFacunJmnSIUEtWEXOYhScU8OFL7zq7rvvKHYFF7k9jGIZpaSjRhOY4luixtK45GKbZYKfHEoWGVSOprPjeWDoHXbciKJy6KeQS8nU9cdvquqzLRSetWg76qMjcunBVezDchvV0MS4PWhJSWWQlPMdbNcjp0ah4K8B6Pd5wxvKyPg/A7l6Jh/1lJegMU+b0qNjpYQyH46GAtdJ/AaOLWhWb6FGDnVkWXKNOokcNebBhycVx9/MnkSuUsLo7hldIxc0k9Kqix0+fPIarPncv7ts7jLlmxBzGUn/Hs0cN0WOwIyJivdzcBeoxy2noqLKUL0DOXdOFgWRERP3UiuzokBcRyINZeh/oePrScAqfvP158fNMheG0rut41ub0mL3okfUQb/XScMo1cuizd7yIQ6MzuPv5kwBQ1VGwFAmZ519uokeppIsi8y7JBUivhdp3UilSjHj5xl5Eg3686Uzncxsi6LJPA6yemkyhWLatyDFDy9qjIiZqVDrn9eLKjVZwegy2u+8DaFHOlBRvRcaVYknHl369D+/8yoO2z4PqmAGAtT3xsu8xzYO8OEHtVGMYhmFaC7XjdnjaOGfhPg+GWVjY6bFECQf9QKZgW71WLOmYtJU8VnZ6rOmJ46fvfzm+eNc+/PMvnncdtKuPZ4u38huPV22loRhcyE6PUK1OD++dHvWshKUB4GzjrVZ0RhEJGqWx//r2s7BlMGlbDSYjOz3iIXZ6MOXQqtKA6vRw2EbI6REN+Y3bZTnear754WNHcPuzQ+Jrr50eABA03zPAvq/ePNCGB14axekVVtiryCucb3vmBADgyq39tgGlk4D25Xtewt/97zMAgP/afQDnr+/x/DvrgUTt/mQExyYy2DdsrNofbI+KWC+vTg+nsmoVcnqsrFM4WEj+83fORaGk1y3Mt0nHRXunhzRg7iCnh7H93PX8Sdt5RqaCiGq4Bqz3qhGiR6UB/PKOqHC9HhpNY43DgFk9njel6FHlvGEykxc9Qx2S6EGujzEpMgqQ3TXu+641PXE887evqPrcgn4N9LFU461oH5fOFsr6X5Z1RPD8CSO2bLAjIhayUDdJtedHOHV6WE6PCqJHKAAga8VbSU6PYknH3//fswCAnzx5DFedtQKFYslRnL3mnFVVnyPTHKQaEOfHMAzDLF2CAfs8jM4LnLpmGYaZP1j0WKK4CQBjqZxwZlTr9GiPBhEO+MWFqNuK8GJZkXl5p0e1InOniArPReai06NKvNUicXp0xEL49QcvRTzsNy+cK/xOZTU3iUgsejAERYNQfJ3Vw+De6SG7hjjean7559uet5Vz1+L0kId4soj7l687Fe+5aH1ZUXAl6P1PZQu414xBvPLUAcfbyNvI5+54Ufz7WSmqaK6gfV2/UtK+ojMqjjVeOj0Ar6LH0nV6+HwaQrMoQpSPi7Z4K0kIoEEwbX8nlMiwSjFEakzSTAOGgJXirXw+DSu7YnhxaBpHxmccRQ+5aBgAOmLNd+FpFZmXHxPue3EYv3jWED3bpAhNAOg0RY/RlP19E87cKgtAKjk8CPn3qedDtDgllS13evS2hS3Roz0qbjtqOsOCfs3T76fzwqyD08Mt3sp4rk5OD+P30cpNAGXdHzKRoA9blyWrPkemOah2LcMwDMM0N2qnB4ke8oJhhmHmH/4ELlHcRI/RdK7ikEC+6KQVj5WGqEB5MbpTp4dq51PJObg16HHS+SJKJV1cUKp4jrdyiIOpBTWqaza4OTvcfidgFplzvBWjUCqR08oUPSoMuFJmvEIsFKgqRDJzg1ze7NO8DQYJeUAor4r2+7SaBA/Aii964vAEJjMFtEeDOGtVp+PvI2G5VNJF4TFg9G1k8sWyFdqNJCtED/sA8vTl7ZbTI+ssZqjHrNpEj6Xn9Jgtsrhhi7cyV6CFAz50mqIADX1V0aNSvJU6+K3F6fHE4XEMTWZx+dZ+2/erRS3RQg6356V+vyMacrzdUsbNaavrOt7+pQfE151x+9/eZb7X1PdBOHWw1Ystsi9kfzz6fE85OD3kKNZl7ZbTg0S3gM/bcyM3rSzWHRn3EG9lblei08NnnQO/YIoxgHXOSyXmsZAfa7rjeObYJD786i2eniOztBlIRnB8MoOLN/Ut9FNhGIZhFhAR906ih3lenKhjMS7DMI2DP4FLFLXUe1VXDAdH06bTwz4klaGcYsAagFRbEV6oFG/loci8WNJFtILN6WE+F103Mp3dXBFe463kksxkHTZCek1DVQrTG4k8TIyH/RxvxZTh5vRw7PQgp0fIb3V68LY0r8jxP14Hc4Qt/z40u/0Q7S9PTll5sqrrRN1GpjIFUBdrPORHKlfEi0PTFYurZ4ub6LF9ZYcYMrrGW4nSdx8y+VKZ6PHi0DTiYb8Ybk5m8uI2tYpIzYC708P4/rKOqBDp6Hg8NJWFTCWnB3WqaJpxXJ/JFTEyncX+kRR2rO6q+Nx+7z8fxonJLO6/+VLbMJrOKdyO/2GHomoZNXKoGZ0ebscE9b3rUkQP4fRQ4q1y5jnfbF2vgBX1AJR3etDilIl0TrzPH3/zNmwZSOIr974kbjfYES1byOJ1cYq6fei6jgMjhhNvdbe78EnbvxxvRcfg54csBxxt85Mzxu2SkSA+d+1Z2HN8Eq9QnHVMc/KDGy/Ar184idefsWyhnwrDMAyzgIhFKAXjPErEW7HTg2EWFC4yX6LIBdgAsLLLGBKMpnJCpHB2etjjreTHchuOqnFZTvFWIl6hUIKu290e8oV4SLkApkXQbkW18vNShR6VaMh6PLmw1Sv0OoQa4PTwSkQuMg8FxKpIHlQzhFpkXsmZJZwe4YD0ueZ4q/lEfr1ribYC3IvM64HefxomOkX+qYL3+Iwx/IyF/Ni2ogMA8OyxybL7NRI6PgxIokck6MPGvoTk9CiUHVcA6zPQ12bcVxY9XhpO4fJP3IWrP3ef+N4R0+XRFQ+1pNVczhSWRQTqeZCFoKgS70Oo5fEydNt+8/1I54u4/msP4erP3487nxtyvd90toATk8aA/tiE3VlSzXVgddc4P69ppVy4KTs9XJy26mdXFQVFp0fKrdOjAaKHTci1f+Zon3RSiot6wxnLcPqKdrEoBjDEOHUhi1dBRi0yH0vnxXa6qkKvj+X0sOKtSGh5/rgletBjkdOjPRrEmp44XnnaYE0uP2bpMtAewVvOXln1GoVhGIZpblTnbYrjrRhmUcCixxJFHliEAj4x9BlLW50eTivhZDcFlZeK1b75EgrFUllEQnmRuXF7v08rK1cGrJXphCx6yBfAmqaJCIN01n2QIuKtgpU313DAjw+9cjNuuuIUW1mnVygGoREX+l6RL5Js8VY8qGZMVNGjUmzVTF52etiji7ySLRQdB8xMdYol3TZ4rFX0CDZQ9IgoA5iEg/tNFbzH08bgriMaxKaBNgDAHmnANxfIRebEpoEkAn6fENjzRd1R5CNBh+IEJ2asAf13Hj4EADg6kRHb8yGza2Up9nk0Aln4ks8hrtjSj6vPWoE/uGS9+F7MxWlUqch8yowCon6WYknHE4cnAABf+vVLrvc7ZsYNAeWDeeE6cDkuR81t2M2BMq30jDSj6OEWb/Wc8tlVX8POGHV6OMdbhQKzH9pX2qfJn2/A2F+GHBzFy9ojNhFEfdxKqEXmB0ZSAIDB9kjF2D46V56UnB7keEtJUVzUY0OOj3oW3DAMwzAMs/ShOQ6dj1EnYT2x6wzDNA7+BC5R5GF5WzggXbzm0RU3Bg5O0SqOTg8ajhZLeNsXd+P4RAa333SRWOmpiijLO6K46szl6EtGxEo2+WI6VyjZLkjlyCtViImF/JjOFpCqUHgqisw9rOz7/YvWV72NG8Lp0YBIB6/ITo9EWOph4E4PxqRoDmz9Goke7mX3cqdHta4eJ46Oz+DKT96N124bxC1Xb5vV825FVFdN7aKHdfvIbOOtFJHY2elhj7eigXN7LIQtg4booQ5OGw39brkHaY0ZOyPn+k9nC2VDSjo29CaM+05KA/P79o6If6dzRcTDgSVdYt4I5NXyaqH1P791u+22bvFqlYvMjeN4XzICYML2s0qOoaOSu2MirYgeVTo9qjk9UsqCinoWRCx21AxpggTLN5yxDMPTWXzg8lNsPxdOj7Sz0yPkn/3Kddk5qwppasZ1LOh3dEcMdkQR8PsQC/lFT4xTfKsTUWX7oGirSi4P+bmSaObzaXjFqf34x58/Z7ud6vSoJ1qVYRiGYZiljzgfKyidHix6MMyCwp/AJYpagN0VtwopC0VvTg9L9DDt/7kCnjcLGn/y5DH8x/37sWUgaTk9TBFF0zR84m1n2B5X/l3qasOcuID2lV3QxsMBYCpbNpiQ8RpvNVvUUvb5wN7pEeBOD6aMYlEpMq8gjIlOj7C/ojjixuOHxjGdLeDB/aOzes6tiuqqCSyg00PdXzrlyYYVYWycRI9oAJsHkgDmL95K/ntpIOnzaUiEA5jOFjCdKaAnEbbf1/wM9CXtosdoKocnD4+L26WyBUX0aL0Sc8BydwLVj6exoH176UmEMTydrVhkTq9/VyyEkN9n20eNpHKYyRUdxRTZ6TGu9kuYQqJrvFWV7iI1OtNrF8RSwu28gT67r9++DJdt6S+7n7xYRkbEWzXY6aGKlnEl7kreNuRYNRoWtEUCQvTw7vSwd3rsN50ea7rjFe9H/Xe0/fg1Det7E1jXE8e+4ZS43WRG6fRoQicRwzAMwzDVEXHvxRKKJV0sFOIic4ZZWDjeaokSli4eE+GArZAyX7KLFDI2p4dZ6EkXzPKF7z/85Fk8cXgC//3wIRGvU2llXcDvA8331AvvfIWVmhRZUNHpQfFWc+zAsIrM5+9jEfBp4nWLh/3CMVPSIcQrprUhp4dPcVUVSzre8m/34Y49VlY+iYfRUKCsr8ELw2a2eqpCxw7jTmaWTg+182g2qPtLJ6eHcAOZJ+UT5sC5IxoSQ8GRVM7TNvTtBw/iHV9+oGI/kxNC1A768MpTB9ARC+Kdu9aIn9PA0+lxaSBOTo+pbAHFko5fPnsCcsoi2csPj7V6vJXU6VElLlKNEyInjhenR1sk4ChuPHJgzPF+stNjfEYdwFcu1Vbji1Rouwn4NAy2R7BlMOn6/JcqTvFWuUIJe08ai1goqk5FdnrIkYbZKj0qtWDbpynbhN+nIS59Tz4/VWPOAKVPzqvoEaJFPcb2cZBKzHuqOD2CSpG5T4OmabhSKScvd3rwYINhGIZhWhH5fEy+blHPqRmGmV9Y9FiiyAOtRDiArphVSEkiQ9BhSFAp3kpeYTkiZTxXco7IyOq2jHB6ODyftrDxHCYdLnAJugCPVBnSzJYNfQkAwLqeyisAG4mmaWIlYlyKJAI44ooxKAkRs7w/56H9Y7j+aw+Jr4XTQ+70qMHpcXLa+NxX6thh3FGdHrMqMg/Nbn+nrqpuc+r0UNxAotMjFkRbJAAy5k3OVBcyvnbffvz6hWHslmKlqlEwV0IBxt/+uWvPwgMfvswWdUWro9RCbcDatnuk20/O5PH0Ubs7JSVEjxaPt4p6HxqrA2p6Typ1elD/QTIadOwE2b3PeduwOz2c463cFj1Uj7cyntOP3vcy3PmnF1fscViqWBnSlnCxb3ga+aKOtnDAVlAv02EufCmWdPHeGY9juXNniyycxBxee3n1o1x0/o6dqwEAF2/qFd+T92Fe460i5mtDgjQ5PVZ3VXF6mNsvOUt85r78jWcuQyjgE+fD5Z0e7PRgGIZhmFYk5LfOx0j0CPl9c55WwjBMZXhJ0hLFHm/ltzk9RAeHw8AtEQ6gIxZEsaSLVX604lMtICfUeCs3QgEfsoWS7cIbsIYWTqJJd8J4DsPTubKfEVanx9weMK4+aznOWdNZNeu50USCfpE5bxM9CiU0Yfx4S3JkfAb//dAhvHPX6rKInmrQ59LnIHqoUMFqLBQo62vwgnB65ArQdd0xX51xZ7ZOD3u81ewOz+qQ2ClP1jXeKhaEz6ehLRzAZKaAiZm8TYhwgkQJdaV+JWRhNxz0wefTEPY5lx07Oz2M+8dCfsRDfqRyRUzM5MtWiU9nje35kHB6tGa8VS1OD1W0IDdNxXgrcwDs5vTYc9w5Ku3ohCV6qAsgcsXKroOwEl+kQttNMhpo2otOusiWXbb7zQim9X0J1/14JGh9bv5r9wH0JyN4844VVd01tWDbpzlsE4lwACdgHHfkbW7num78+oOXYKA9Ir4nu9W8ulDod6qdHqu7qzg9lFWZdPq6eSCJez54CZ49PoV3feVBsd+jc9h2Fj0YhmEYpiWhWNB8sSQW3XC0FcMsPPwpXKLIF++JSNCKKUjlLJHCQWQI+H249b3no6Rbj1FtEEAXi9Xy6Z0uvIHKTg8aANOwVUXX9XmLt9I0Daur5DzPBT2JEEZTOfQnwwj4NGgaoOvG6/ji0BSeOTaF120bhKZpGE3lcPszJ/Da7YO2fhZmcfPVe17Cl+55CeGADzdesqGm+1K8FX3+5G1EJZ2VOj2C9ugiLwxPGZ/Dkm4MEd3KjBlnZt3pUSEKplY8FZkH7aIHiQUdUeN40h4LCtGjGhRRqHYyVEJ+vdxWldPzns6WPwfZBZCMBoXooT6H6UwBY+m8GFDOt7C9WGiLBBAP+ZEv6cJl6YYqullODy/xVs5OD7dorGPjFeKtqhaZ+1wfO18siW27mUskab8hi4jkmOmOV1450RkPIZWbEQXdHdGgcF81Jt7K2AdqmvM5XEIS4tRtZqXyOa1H9KDOl5l8CVOZvHAxVxU9HKK4iL5kRDwOCX0HRk0HyQKcQzIMwzAMs/AEpVnYFJeYM8yigT+FSxR5oJUI+0Uh5fhMXgyCAi4Xhet6E/bHqiIm0DDL7fEIp1xpwBpaOF2k0iCFhq0qhZIustmbdZXmp685E/uHU+J9CfkNx0y2UMLln7gbALC8I4Idq7vwwe89jtufHcJ9e4fxqWvOXMinzdSAKDvNeF8FT1CROTk9NE2zCR7ycMbu9DA+b1PZAu7fO4IdqzurrtyVxcepTB6PHx7HthXtLLB5RHXV+Gp2eli3b3iRuUO8Ff2OqUwehWJJDEpptXJ7NIhDmKkYPwgY4vS0eXLvRSAhaEjr92muxxfh9HCIt5IF9fZoEMcmMobooTyHVK4gYm0G2yNNGXHkhaDfh69efy5yheqCZpnTw5PoYTk91CJ0wOpVkNF13eb0UAWrbIVFE4C1DdPzyuSLePTAGM5Z22XrJoo38UUn7TfyxZJw6MmurUp0xUMi9g0APnTrk2WPO7vnZrxv0aDf0XHSJr0v1fZ5slDnudPDfMxsvoj9w4bLozsectwfyqjHPJ/y3EmAmcwYLjJykKypIqYwDMMwDNOcOHV6NPP5J8MsFbjTY4lii7cKBUQ2s65bg0uneKtqj+UE5ftXy1AOuXQI5CrkQ/eIeCtn0UN+rGpxHEuVLYNJvOr0QfE1vY5PHZkQ3zsxabw+tz9rlFb/4LGj8/gMmdlC27HqBPCC6vRQkb9PQ8V42C+2o6/eux+/9e+78R/37a/6u+Qun289eAjXfHE3PnHb8zU/51ZFHQjX6vSQ98XzUWS+ojOGZCSAbKGEp49OYmLGLDKPWaIHUF3IyBZKIoZN7WSoeL+85dRwg0SPKYd4Kzn6MCk91wnzOZADcjpTEAXGreryIM5d24WXbeypejtV9KBjdaUic9FrEAnaRBXa9mYc9n/j6bwtmkoWrHRdrxiPCcidHsbtPv6z5/D2Lz2Af7rtObHKLhzwNcS1sFihcytdh3BpiH6eaBWnh5KhKZ+LNTLeym1/Jq+AdHIH2W4r7cO8dnpQN9JMviji1U7pdy52l6nk9AAsETlXKOHEZFZsa6o7hWEYhmGY1kDu9KCFN20sejDMgtO8V4FNjj3eKoCg34ekeUE4ZLomqjkzCPXCdiAZwVVnLhdfk9MjWKXTQ15tKJP3FG/lHIkiR/PMdbzVYoH+zv994pj4Hq0yTHIu5JKEhrP1lNPTEMvvkss+lS2gVDKGg/T4cqcH8ewx5zx9Gdlx9cwxQ3SjHgSmOqrg66+yz1SRB7ORWRaZexE9/D4N567tBmCUTFuD0tpED3lFfS1ODy/RhTToTDl1eihOD8BwU9HgnArLp7NF4fRYw/EznpBFi0Q4IFa+q90ZBWmfZsVbBWxD40Gzl8HJJSK7PAAIwQqw94yF/c4D8YiIaDMe+yv3vgQA+MJd+8S5S7NHC9i6wIoUVWcXMN3okuKvdqzutP2s2jlfLc/NzV0lCxmxKu9TPfFWdBzM5IvYc3wKALB50IvooTg9FNFD3qaeNBeotLKLjGEYhmFaHTrnyRdLwqHOnR4Ms/C0xhS5CZGHRHTxRfY5Wm1Z60UhcdryJD7xtjPEyjyaO1R3ehi3L+v0KFRyelTu9MhKed6tUqpMr9P/PWmJHjTQWStFkzlFhTCLE3r/6nJ6KEXmKroOTOcKtu0hFvKXDZLV4aLKTK4o4rEA4PiEkbOf5u3MM+pQt9bF5fYi89kNzwJ+n81p4jb43bmuC4ApeiiROMmIN9FDLhmvpcg8W6WvAbBWSDnGW0nHFhI9xtNWkfnyDkP0SGULIn5mFcfPeEIe+ibCgbIYKQDYd3IaZ3/0dnzkB0YkEokeqtNjoN14H5yOWdTnQfFZEzN56Ka7TT6XcO30CNif1zKp+JpEvGa/4JT3G/mC8dqJfp4qoofM+y/faPu61ng+J+h8xs3FYXN6VNnnybf1Gm9F2+FMznJ6bB6ow+mhnH/6fZrYN5Ho0eouMoZhGIZpZUSnR7EkHOocb8UwCw+LHksUe6eHsTOlIScNoLzmMQf9RjEyQTtndchQ7fFCLk6PbIVOjx5z0DEynRODDuI/79+P82/5FYDWcXkAzsMdGpbLTo8Xhqbm7Tkxs0PEWxVqFxBI9KgUlTQ5kxermkNmlIv6mTk2kXG6q0AVHo+at2dxzTtl0X6F2kQum9OjASuG5W3ALcN+5zrD6fHQ/jGMmNtAhxl5I9wTipCh6zp++6sP4urP34f9wymb6DHhocj8vr3DuOCWX+G2p4+bz9P9b6WBtWO8FRWZBy3R4+j4jPjMLOsgp0cBB9jpURMxJZ6KHBWy6PG+b/4G4+k8/mv3QeSLJRF9Veb0SBpChFM0FomxWwaTAAx3B4mv8ufHa7zVoPmeA8D9e0cAGBGgzYx8bCCnh9rP48ZJyd13wfrqsWe1Qu+bW4eM7N6oFm+VlPZhXs9vxfZRKOE5cnoMJKveT91m1HgrwHruFEXK+xaGYRiGaV3k1BNyqDe725hhlgKtM0luMuQhkSpS0E424DGaQNM023CMVniqw/dqjydb+mTyZhGz0zC/24xWyBVLmJyxhlqlko5//dWL4utmLTF3wul1yjg4BfYcY9FjqUDD2VqH4ICz0+Pqs1YgLg2IJmcKSJuiBw2OwsrQ/NhEpkxYlDmpiB4kgqRY9PCM6vSo1H/gBAnHQb/WkA4CeRtwircCgK2DSbRHg5jOFoSrj+Ktki7xVtPZAu587iQeOTCGV376blv/kBenx13PncSR8RnhZqvc6WE8ByenB4mIstPj4GhaPCY5Caclp8dqdnp4Qu3koOExbdOTmTyekSLzpqT3xxA9rO2tv72C6GE6Pdb1xMV2QGXmdC7h09zjOmkBCD22HIN2+7MnADS/00PTNHHeUKvoceMlGxDwafjgKzfB59Owrrexg3vaj7nGW8lF5lXEKXunh0enR9ByIA9P56Bp3jo9VJFGLTIHLCGZnB6re3jfwjAMwzCtiigyL+hiQZjb9RfDMPMHfwqXKBFHp4dxkUZDSq9Fj3RfWilJw1Q1PsBppZsM7ejdVjs7DfMjQT/awgFMZQv49C9fwN6T0wgFfLh0c5/oJjGeX+voc5WcHhnJKfDs8eodDcziQMRbzUL0kFfz/tNbtuGjbzoNr/7Mr7HvZAqTmbz4jNAKVfUzkyuUMJLKiUGwitznARixWQAwkysfNjPOqO/vTK4+p0ejcuEj5jYQ9Guu+1CfT8MFG7rxkycN10XApwnhzK3TQ+51yORL+PZDh8TXXorMaUBNt60Ub0WDzmmnTg/p2EIuOBI3OmJBJMLG33FiMoORlDFIZ9HDG3LUUCISLHNU3PrIYdvtSSSNhfwI+H22eDbq9MgVSiiWdNu5xDHT6THYHkF7NIihqSzG03ms6PQWf6bGbsniy9NHjWNkK6yyC/l9yBVKyBeo04PirSoXme9a342n/uYV4v09a1Un9p1MNex5BavFW9Xg9Kin00M+VwaAtd1xV9eJTDysFpmX3yYZNZ4PuWVWd7HTg2EYhmFaFXkBMJ2PNrvbmGGWAq0zSW4y1CJz43t2p4dX+z9gHyrEw85D02oXmULdLtpXk4sic5f7U8TVV+59CXc9fxK/eOYEbr71SdttjoxX7iNoJkIOuf400GGnx9JEFJnXI3qY6oO80lTTNESCfhH3MTljlTd3xo3vOQ0Kj1b4HA1PO8cSkYiq6zq+ePde3PvicM1/Q6ugxpc5FTdXgt6z2fZ5EOT0aIsEK3YiXXPOKvHvoN/qT3IXPex/16FRa7uazORRKrk7igArMm3MXNFfSdQWnR6K6KHruq3IvNN0DdKxoiMaEscyGn53x0OuMV+MnYDfJ45FTvFW97w4Yrv9/uGUuC1gH2APSD0b6rZDnR7LOqKif4K2t1yVcwegPN7KSRxrhTzloBIvSm6ZjipOD8Ausr79PGNfQB0rs6XaPs3u9Kgmelh/S8hrvFXAb/tbvLg86H4yzvFW9teWBVWGYRiGaV3kTg8Rb8VOD4ZZcFj0WKLIQ6K4EkdFxcO1xKPYHs9c4VYWb1W1yNzc0dfg9ACAnoS1ErGvLSwir1oVebh9zlqjZNipE+Kl4catxmTmlrnq9KD4oclMARNKnIlTJBxFyTihdnoQNKD+6VPH8Q8/2YNrv/RADc++eTg8lsatjx4W74cTGaWoPl2jS4b22V5WInuB9uvVVrq/bIOV5S9HELmJHup2LG87um5fbU8USzpuffQwDo2mkTE/D/RSeur0UB4zX9SFGykc8GO1madP7097LCj+7lHT5cEl5rVB22GbVGSeLZRQKuliqE7sHyHRw9hmZNGjv80SPdSIK+r0WNYRQUfUOPYL0cOD04MG9tl8EbquO4oereD0kJ22+WJJiNW1FJkDhtPj1j84Hz+88YKGPK8u83zOTUSppdNDfh+9xlv5fBr+9bfOFL1121d2eL6fTJfDean83DWNRQ+GYRiGaWXkBSjTotOjdSLaGWaxwqLHEkUWKdQic8LrRaF6X7dOj2C1Tg/h9FBEjyIVmTuLJnLczss39uIjr90iHu+du1Y7PpdmZr8ZzwIAmweMVYlO8UgpZaCayRdx397hutwEzNzSiHgrp5WmFOkzOZOXVvYawxmn1fMUJeOEm+iRyhWg6zoe2Dfi+PNm4cnDEzgx6S4KvfZf7sFN33kc/3n/ftfbqGJAFcNDGcFGOz0C1kr9Svh8mtjXDkqr8t2KzFVxR2V8ptw1dNfzQ7jpO4/jb//3GSGkERXjrcIketifQ046zoQDPqzusg8c26PBsmH3yk4eStYCDaHlTg/A2I+p3S0vDRvHLdonyf0MXfGQcIrI732xpIvP3GB7FO3mgJ5iz6q5RAErvihTKGImXxT7y9OXt4vbtMIFpxypIIuU9TibzlrViWVSIfxseOMZy/HxN2/DH1660fHn1NkDeCkyrz3eCgDOW9eN3TdfhluuOl3s57ywzNwXruqK4XcuWOvwfKznftnmPnaRMQzDMEwLE5JST6iLUD7PYRhmYWj+5W9NSjjoFG9lv2AMVungsD2eHJdFxej++pweZaJHVaeHJXrsWt+NN56xHNOZAvqTEVyyuQ9d8RBevrHX41+y9JGHz2p0hxwNIv/70Ggab/3C/Tg2kcFHXrMFv/vydfP0bBkvZGYTbyVEj/LPj+X0yEODGUkUI6dH+e0Pjc7gyPgMlisDraePTuAXzxilv22RgG1Vva4bQ85mjpg7OJLG6z97D05b1o4f/+HLABgxOcWSLgb/NIj92VPHcb3DAAywx8/VA0W2NKrTg/brXkr0/uK1W7GsI2pzfXiNt1IZT+exutv+PeraGJrKisgq63m6DzBlN5OM/FkK+X0Ix4xeD7pdRzRYFmu0orMxg9xWwRI9grZtciZfFNtETyKE4emcFG9lvF9xaYDdEQsiGjR6w+RtZ3g6i3xRh08zXJ4UxUSimSenh7mN54u6+Iz6fRrOW9slCqZb4YJTvtCm1yEZCVTtYptroiE/3nr2Stef2+Ktgt6LzL3GWxH9yQiuOXdV9RtKfPSq07Hn2BSuv2CN4z5ZPie+bqd3MYVhGIZhmOaDFmQUSzomzcVaHG/FMAtP6yyfbzK8xVHV4PQIyk6P+uKtyMmhrmbPC6eH8/ORV/ftXNcFTdPwjl1rcOWpAwj6fXj/5adgx+pOj39J87C2Jy7eZyenQL6oi9f2vd94BMcmjBWzB0fTYBYXjXF6lP/MWolfEINCGhyGHYY0X7n3JVxwy6+wW3JtZPJFvOsrD+LYRAaru2O45pzyAVU6V8ThseYRPVTx6dnjk9B14LkTU9B1HRMzeVz2z3fi4n+8oyyiSh2+y9QTXybT+E4PireqPvQN+n244aL1OE1aIU/bVypXtInZ1Z0e5WXmJObO5AplEUdO2ypBgk2uYB+Y03sY9Gvw+TRomoY1PVaRcEcsWHahsYKdHjVBrs9E2Bie02B9Jl8UcXrrehIA5HgrcnpY5xGRoF9s0/J7Tx1D/ckIAn6fJbKl7fFWlVb1y8NoKpROhAO2GCO1lLoZCfplp4d5LKhSYr4YqCXeKhr0CxGnFqdHvVyyqQ/vvXi9qwgt7xMvbKGFOQzDMAzDlBOUZmfUW9gKbmOGWeyw6LFEoWF40K+J1bzlxeO1OD3Ki8xrjbcKusVbVVmtKQ+CeSgFfOW3z8ZZqzrw5XedXeb0UIfmNASUS83VInlmYdF1fXadHg5F5oQoMs/kxaCww8Hpoa72vfXRw+LfJ6eyGJ7OIRTw4Uc3vszxM5jKFmxOj0Jx6Uao/fF3Hsd5/3A7nj9hfWYOmUJhrlDCeDqPj/9sD05MZjGWzgsxkVBjlmSqiQHVuGBDD85b24VrznVfGV0LdGxI1rnKSB5IyhFXtN9x6wtQ+x4AYHjK+F46VyxzilSKL0qEAiKPX3Yg0WdJvi/1ehjPLVQWb8VOj9qIhuxOIRLRxlI5ES+2rtd4zelzQi4yEkxIhI2YjyXHW9F9KEqJzj0oulEuqndD3s+R6NEWCeAMSfRohXhMuVNtXDkWLGbkz2g10UPTNLEt1rKoZ674/QvX49w1Xfja9eeUdYAwDMMwDNNayLO3sZTp9GgBtzHDLHYW/qqBqYuVXTFsX9mB129fLr4nuzUAIFBFpJAJSfFWcYd4K00rL3YsfwyXIvMqudzvOn8NlndE8ZHXbPH8fJuZSzf349Y/uADrehM2p0ehWCorUZ7JG98vSN/PVomeYeYXuXB5NvFWTk6rZFTq9JhRi8ytz9uG3oTtfrc/OySEC4qp6YwF0R4LOg6extN5ZeC8dEWPO54bwlg6j5tvfRIl87WVXSy/3DOEbzxwUHytFmir/RYys3V69LVF8N+/vwtvOGN59Rt7gI4JXuKtnAj4fWIoOenw/g+2O4sITq+R5fQoOjg93I9VPp/m2OvhJKbLvR5OnR4setTGq04bwMquKM5ba2SVkVvjuClWBP1a2Wu63tzXbF2WxMa+BF6/fZntvk5OD+qRIZGFxMMpkYfsvv36fJrY19E2lggHbM9reMq5r6iZoAvtXNESPehYsJiRI+iiVUQPwNoWalnUM1es7IrhOzfswsWb+hb6qTAMwzAMs8DIC4Rp/sXxVgyz8PCncIkS9PvwwxsvsH0v5Fc6Pep1ejjEW1VzeRi/39npUa2MdG1PHPd+6FLPz7WVkJ0e8qDZpxklyZlcCbmw4v6Y5eCVaSzyIHw28VbVnB40BG43i8zlz+/OdV2YzOTRn4xg/0gKo6kcHjkwhvPWdYsBNT2W04Dx6aMTtq8z+WJZX8Ji5o49Q/jC3Xvx9288DaMpw3HwyIExfOuhg7j2vNU20UN2wQDlA/xK8VazdXo0Gtqvz+aEuz0axHS2YOv1IKdGTyKEgE8TomvI77MNXWVoIJ3OFctciZWcHoCxbU5lCo7Ci0306LZEjw4HAa9R5cytwvUXrLX119Dx6LhZPt4eDaFb6uQCgPV9hvMjEQ7gFzddJL4fFccyd6eHKoxQNEBXvHJMUyToR7ZQEk6PZCQITdNw7Xmr8D+PHsYbz2yMiLiYkZ22qgC+mAkFfDhjZQdGUln0tUWq3t7ojJlpCfcOwzAMwzBLB59Ps10XAYZjnWGYhYWvGpoIdbVsLZnH8hAq5hBvVa3PQ769upqdhlNBvkitGdnpIQ+LaJgxky+WlScvtsFrqyMLHfU4PejEycm5lbR1eqjxVtbAd1lHFPf82aX43g27cOlmY1XqDx47atzXXD1PjxVzEDOeOKKIHkvM6XH91x7C7n2jeOsXdtu+f8tP92BoMoPDY1YPzqMHx2y3mcoUhCOE0HXnCDkSuM5d2wUAuG5nbcW5jYZW3Z/S31b3YyQdysxJWI0G/eiUBtLLOoyhpXOnhzHAnskXka7B6QFYThXZ6UGfK3k7lzs92qPG4FumUQXxrQqJEidM0aMjFiwTJKjjo+y+oXKnx7EJxelBwogZgUUCZWdV0cPu9KDt5e/feBoe+8srsa7X+Tk1E/L518TM0om3AoD/ee/5+OVNF3sSMtqE04PPJxmGYRiGWVyo5yet0CvHMIudmq4aPv/5z2Pbtm1IJpNIJpPYtWsXfvrTn4qfX3zxxdA0zfbfDTfc0PAnzTijrpb1IlQQ8uCIFGlZCAl4yCumnXyuzOlhrQJmaoPeA9npEfL7RF76TL5Y9nqrefnMwiKLHoWSXnMfRqlCkTl1NUxm8sKRIEQPaZCciBhFxAG/D6/bZsTNfOvBg/irHz6FyZmC7bHiDhEjTx4ud3osRWiIurYnjm0r2jGVKeBv/vcZHJGcHqpoOJXJl7mnnJwMAIQA+TsXrMFdf3ox/vb1pzXy6dfMey9ajzv/5GIRMVQP7WaEmt3pYfydkaAfXVJZ8nIzUkh9fXRdx8lpK2JoQhFF5OOPE5boYTk9HOOtZKdH1D4o55Xhs4fEBYq36ogG0ZOwXufueMhVoCDBaSZnfb6GJo1tYiBpiB60zxJOD/Pz2lWlkJsem7YxcjZpmtYyQpfstJ0wHTLqZ2Cx4vdpnj+fq8zPeH8yXOWWDMMwDMMw84uctBIN+hdFBxnDtDo1fQpXrFiBW265BY888ggefvhhXHrppXjDG96Ap59+Wtzm937v93Ds2DHx38c//vGGP2nGmdl0esj3pRWZskjhZVVdjxlzceujR/Djx4+K7+eocJaHTjVDA5tsoSStbPZZq2ZzTk6PpTmQblbUjhVVpKoGFZn7Kzg9JmbyVnmtOeiyR9ZZ7o2LN/XiT1+xCZoG/Mf9B/CbQ2O2x3KKrXru+JTt66W+ja3ojOIf3nQ6fBrwf08cw1S2PLJqZZcxwJ/M5JHO2f/eE1OZstsDlgMiHPRjdXd8wcttfT4Na3riZY6HWqD9+p5jk+J79P6HAz50xq3V5MvMjg9V1JjKFmwuJ9Uoo8ZdqYgYN+lxnbqiehNhdMVD0DSgv90+FO1cIqveFzNqvJXh9LBe5/V97o4Kp04PcpmRc1GNwBo192lVnR6maCYXmbca1qITvcz110z8xWu34pu/ex4uPoV7NBiGYRiGWVzI866lFAXNMM1MTVPo173udXj1q1+NjRs34pRTTsFHP/pRJBIJ7N5tRYbEYjEMDAyI/5LJZMOfNOOMulq2nk6PkN8ndta1xlu96czluHRzH7KFEj74vSfE4IKdHvUjx1tlpYGqPBxSy5M53mpxofZ41BpxVazo9DCGWlOZgojBogGi/HmTT7o0TcONl2zARnNASYIGPVbcIXu03E20tLYxVXtY1h7FacvbRQyVE6cvbwdgvLYziuhBK91VSICsNsRfSrz69EEAwHcePiS2XRLyIkE/uqWhd2+b8W91n1StSLra61XJ6SEL9pqm4cvvOhtfeufZZf0AnVXcAkx1IkqReTIaRLfk9FhfIUbKqdODXGZt5r7HisAy3lvh9IhXHt6TA4VEj0S4+Yb91aD40HyhhLElVGReK+3RIM7f0LPggjLDMAzDMIyKvFC4FRfhMMxipO7JTLFYxLe//W2kUins2rVLfP8b3/gGenp6cNppp+Hmm29GOp2u8ChANpvF5OSk7T+mPlQnRS2Zx3RfOXfQJnp4cI1EQ3586Z1nIxL0YSZfFLnfTjEkjDeE0yNfEoPmcMBnWzWrDtW5yHx+yOSLGHJZ8S+jvj+1lplbooeT08N+MhUK+MQAUF7dT8NoGRpWvzScsj2Wl+xR1b2y2BlstxdYD5rdE1duHXC8fSzkx1qzH2IqUyh3ekxWdno0U6TOFVv70Z8MY3g6h58+dQyA1ekSCdqdHlRqrTqBqM/DjeqiB4l7cqeH6SBUjnNnrurEZVv6yx5j24r2ir+DqU5UET06oiG0hQNigcX63rj7fSV3IkHvJ10URlSnB3V6eI23amGnR0iKFx0y9099yerF4AzDMAzDMExjkOdvCXZ6MMyioOYp9JNPPolEIoFwOIwbbrgB3//+97F161YAwNvf/nb813/9F+644w7cfPPN+PrXv47rrruu4uN97GMfQ3t7u/hv5cqV9f0lTNngqJ5Oj5i0yjvktwZ3Xh/L59PQb15onzDzummVOBdP1g6tYs4WimLQHA76EJHjrRSRQ427YuaG1/3LPTj3o78UZbxuqAJBre+PED0cIorCAb+IYQKMjH1Z7PjbN5yK379oHbY7DHy7zBXatCpYOD0qnKD5zdW1S01Yiyk9JRTDdMVWazguR8Gs6opZkUqZPNI5e/wV7dtUmtHpEfT78FvnGoXs3334MABrKK12elC/g+oEGp6u7PSoJoi3ie6ayp0eTnzjd8/DVWcux5+/emvF2zHVIUGV4uA6Ysb+hgTUSk6PiBJvVSzpSJkCCL2/qhtkLE1OD2+iBz1eshVFj4Cxb84XSiJ+jHsvGIZhGIZh5g97vFXzLIJjmKVMzVeGmzZtwmOPPYaJiQl873vfw7ve9S7cdddd2Lp1K97znveI251++ukYHBzEZZddhr1792L9+vWOj3fzzTfjpptuEl9PTk6y8FEn6qCtFpEhXNXp4V1A6U9GcGAkLS682elRP5RVLheZhwN+RKXCV+70mH8KxRJeGJoGANz34giu3rHC9bZl8VbF2t4fy+nh/BnctqIDh0YN4UXNcH/nrjWuj9ujDBKp0yMc8MGnASXdGELKGfwrOqM4MJJecvFWajwXOT1WdlnF131tYdGLsqY7LtwFkzMO8VZuTo988zk9AIgYMPq75b9TFpSo/2OmzOlRLd6q8utF2+ak5PTIFbwJTBds6MEFG3oq3obxhrpd0/7md162Br9+YRg713W73lft9JiWBCz6rMnCiK7rGPHs9LBvA4kWFD3ofG86WxD7sQF2ejAMwzAMw8wbdqdH88WMMsxSpOYpdCgUwoYNG7Bjxw587GMfw/bt2/HpT3/a8bbnnXceAODFF190fbxwOIxkMmn7j6mPMqdHDUKFJXpITg/p8WoRUOhC+8SEXfSopWOEMbA5PaRIGVunhznQbTPfOxY95p7DY5a7oytReSBXFj9Wr9PD5fN8xooO8W8qMfeCXEAMWE4PTdPEfmCg3T40I4fEUtvGVGFQjrv617efiYFkBP/45u1iH7W6Jyb1SOTFCnLihFunh8dB/FKDRAnal8tRe7QKPyoJIGXxVnPQ6SGLwMz8oIoe1BnxngvX4+vvPk9EWDkRDRnvccb8LJGAFQlaPWJyBFY6VxTbm1enB9HWgheZFG91aMyIlA0HfE3Z6cEwDMMwDLNYCUnzrgQ7PRhmUTDryUypVEI26zzQeOyxxwAAg4ODs/01jAfKi8xrcHqYQwO5xLjWInOCBqW0KnjcjKhI8gV4zZDTI1/URcROOOCzDYdooEuvb62dEUzt7D05Lf5drZhcjR9TXQfVKOruReaAvaugls+YKtbIAzLaD8grhTtjQSGGzKfT48GXRnHNF+8Xhev1oL4Hyzqsv+u125Zh94cvw/aVHaL8enVXXLyWRqeHPd6KYndkdF2XhMnmOsklUYJeR9npQavw4+GA1Mlg3z5OVun0qB5vVd7pwQ7C+afc6eFdZI2a+xRyekyKPg9rvxMR21kJI+Y2Ewr4yuLpyp6Xcu7Tik4Pct08dcToxRtoj9iiDhmGYRiGYZi5xeb0aMHzUYZZjNQ0Lbj55ptx9913Y//+/XjyySdx8803484778S1116LvXv34u/+7u/wyCOPYP/+/fjRj36Ed77znbjwwguxbdu2uXr+jMRsOj3Wm6W9G/qsTO6wX4638r6p9JmlyccnM8hJ+dIrOqOV7sY4EJZiOyZnjCFROOC3xYDQIJKG1oWSjkKNg/XFgq7r+Pv/fQa3Pnp4oZ9KRWTRo5rrQXUZ1NrpUSi6F5kDwGnLLdGjFkGlPN7KOjHb2J+A36fhdElQ6UmERYyMKiLMJd99+BB27xvF/z1xtO7HkIXAjljQ1l0kQwLSmas6pB6JvIi3or8/lS3/++Xf0WxODxIWSGiQxZ2N/QkEfBo29iXEfkntsZl1vBW9FzNSp4e5ratF5szcMaB0RNTiJFDjrci1I5eOy04R6krqioWqDu/VeKtWLDJfZ/apHBw1nB79bRxtxTAMwzAMM59wvBXDLD5qujIcGhrCO9/5Thw7dgzt7e3Ytm0bfv7zn+OKK67AoUOHcPvtt+NTn/oUUqkUVq5ciauvvhof+chH5uq5MwrqitdanB7nb+jB3X96iW0FtD3eqnanx9BkBscnMijpxhCwN8GlmrUiDwMnhOjhsw2QaAApD6AyhRISS2AYmM4V8MW79+G125ZhQ18Cu/eN4kv3vAQAeNOZyxftStW9Qynx72oihuq8qVUwKOnuReaAPZLu4EjK8TZOqJExSWnF9b+/82yMpnK454Vh8T1D9HBeyT+XkKuCtn8nvv3gQfS2hXHZln7Hn8vvwSn9ba6P88m3nYEPvzqLlV0xvDhkOEsMp4fxnvW2hXFodAbT2ULZfeXf0axODyveyhKBBtujuPuDl6AzFsL4jPFeqUX3Y2Y3Q8jvcxTmwkGPTo+stQ2IeKsq92Uax+u2L8M//HSP2A466hE9KN7K/DwnbU4P63Nz1BQ9OqtEWwEcbwXYF6wAQH87ix4MwzAMwzDzSTAgix7NdT3IMEuVmkSPL3/5y64/W7lyJe66665ZPyGmfsrirWpwZwDAqu6Y7WtZ9HDrE3CCInGOT2Zw2MyXXt4ZXbQD7MWM36ch6NeQL+qYNFfGhoN+e6eHOYCSV7dm8kUkwot/tetHvv8Ubv3NEfzo8aP41R9fbHNNnJzKom+RFrG+KDs9qogYZfFWNcaPVev0AIBTlyXx9NFJXO4y9HeiWxEh5WisSNCPZR1RxKSTtZ42y+kxn50eY2Yp72SmXGgAgKeOTOBDtz4JANh/y2vKfl4olsRr+MV37MAZKztcf1ck6Bfl5jRon85a8Va9CUP0SOUcRA/zNfFptfUpLQWE08MULDLk9DCPOcs6DBdftmDF8RWKJQRM4ZWijPqSYVsfjnj8KgJt0rHTo+jpvkzj6E6E8cpTB/Cjxw3XFUUqeUF0elRwevh8GsIBH7KFEo6OGw7Rrnj13yGLHpoGdHq4T7OxujsGnwaYu7oyVw7DMAzDMAwzt9g7PRb/LIZhWgGeFjQR6orXWuKtnJCHSbW4RvqpyHwyK0o1V3TGKt2FqQCJWbQyNqJ0euSkqBlakb1UiqZv/c0RAMC+k4ZDYUZ63rKwMF88e2wSR8fLh7Iyuq7jxaEa4q3KnB6NFz3+43fOxUffdBref8Upnh+3W1lB7RQJI2fpd8dDYlusJvQ0EnJ6TLo4PZ48MiH+nckX8ciBUdEjBNgjv162scezkEYr0IslHcNmv0CvGd2XquD0CAf8TSfw0rEgX9RRKulC4FFX2MtfZ6TtnGKp+l1ee89Oj0wBuul84k6PheHa81aJf8t9HNWIlMVblTs95NsdMffDnR56Q+R941t3rKzpeTUL4YAfq7qs8yy3zxrDMAzDMAwzN9g7PVrvfJRhFiM8LWgi1BWvsxY95CLzGlYu95krDHOFkhhIcp9H/dDqehFvFfQ5dnqEA74FiR+qF7l3hLYvOcJo79D8ih6jqRxe/6/34LovP1D1dvLzrPZal3V61Cp66NVFj55EGNeet7qmFSXt0aB4zFjI7yhsyt0XvZLTo9ZektkwIZwezqIHuckA4M7nhnD15+/Hn3z3CfE9+bnW4gqIBH1iuxyaMladk+iRL+plDh458qnZCEtiRq5YEn+rKlbIXSayGEgD7gE30aNap4fZN1Ms6SJqjGKSqt2XaSznrevGP79lO774jh01OUDVTo9JB6eHfLtjpuihxvA5IX/mbn71Zs/PqdlY32tFXA1wvBXDMAzDMMy8Yu/04GsUhlkMNN90poVRB1C1xlup2ESPGoaF4YBfDCoe3j8GAFjJTo+6oaHehFRkbg2QSmKoa4ghS8fp8dTRSfFvEsVsosdJ7/0UjeDYxAzyRR2HRys7PfYN259XdafHLOOtitVFj3rw+TSxilpdbU3ITo+eREjEGdW6feUKJQxPZ8Wg2iu6rmPc3CbkEmuZ545b4tijB8cB2IvmSWQK+LSa9mOapomB7IlJo4i7R4oEozLzQrEEXddtTo9mQxaLsoWSEPoiyt+qaVqZ26xQLCFlvu/y6nO5J6qaWyMa9Ivtf9TsB3n2uNG5srY3XvsfxMyKq3eswJWnDtR0H8udaGw7wumh9ILQ7ax4q+qix9VnrcBVZy3Hd2/YhQ4PzpBmZb3U68FOD4ZhGIZhmPmFi8wZZvHBQXNNhDyY8vs0+GY5JK23yBwwLrhHUznsMQdT7PSon7Dq9JDirTK5om3YSk6PWsuyF4Ld+0bEv6fNAbJd9JhfpwcN5HPFEnKFkusgdmQ6Z/u6mnNjtkXm5PSYi56I7ngIw9NZsZJeRXZ69CTCQnioRfQYns7itZ+5B8cnMwgHfPjeDefj9BXtnu47mSmIeC83p8ee45Z4RjFpw1NZ8T3ZCVUrbZEgxtJ5nJg0BrCJcEB0DqSyBSTCAVz5ybvQFQ/hw6/eAqA5nR7y/j9XKIl4M6e/NRL024QRuYejX+oZ6IqHhJhU7b3RNA2JcAATM3m8/ON34P+7bCOeNUXT7R63JWZhkXuoAKnTQ3Gn0bZwtAanR3cijE+89YxGPdUlywbZ6cGiB8MwDMMwzLwSCkidHg7R0QzDzD/NN51pYeQIkkYMSGURJVCja0Qt0WTRo35Ep4c59I0E/baoEFu8VWDpxFvZRQ9azb9w8VZyn0jaoaiamFb6HOba6VEwh/6zFTGd6E7U4vSQi8y9/w1/97/P4LgpGmQLJTx8YNTzfeVuDqdOj8lM3laM/dKwsc1MZQvifRGiYLB2BwaJQSR6xEIBESGWyhVwcDSN/SNpPHpwXPQXNaPTQ9M0IQJmC0Upyqv8b1XdZjTcjoX8tq6F7rh1jPDSyyF/Jj/zyxeQK5bQEQvaegyYxYt8zNJ13bHIHLCcHlPmftZLpwdjsL7Pcj31cZE5wzAMwzDMvMLxVgyz+GDRo4kI25wZs39rw7Z4q9oGrttWdNi+5iLz+hGdHmnL6WHv9LCcHuElFG91cNTqYsjkS8gXSzanx9GJjGNh9FyRlqKXUhVimKYVx8Fcd3qUqMh8DsqxaRW1GjFDxGWnR1tYCAeVisyPjM/gXV95ED987AjufXEYP3zsKDTNWpE/lsq53ldlLG291qlc0dYDAwDPm04yQt6mhqcNF4GIf6vH6WHakvNmxFgs5EecRA9JWAGAXzxzAoAlJDUbYSF6WC4OpwLyqOI2I7G2LRKwiWjy6+TlvXn99uVQPwLbVnQ0XWl8sxIx3/tiSUe+qEvbhRJvpQhpXpwejMGWwSQGkhGcs6azKcVXhmEYhmGYxQzHWzHM4oNFjyYi4NPEUGi2JeZA/UXmAPB7F66zfd3TpIPA+YAGglT8KsdbzeSKwjkQWmJOD7XfYTpTsIkeAPDS8Pz1esjPp5LYUub0qBJXNdt4K3J6NLrTA7A6KpIu9ttEJID+ZBg9iTD62sJCbHMT1XRdxzu//ADuev4k/ujbj+F/Hj0MALjmnFW4aFMfAGA0XYvoYb+tHJUEWL0OBIkTADBsxpDR6+3FTaDitAqdRI/pbNH2fEj0UAXfZoH2Q9PS3+zs9LB3N5BDJxkJiv0WYO9H8VIw/09v2YZn//aVeNVpVpcER1stHWQxYyZXFMezsk4PZZtip4d3YqEA7vrgxfj2e3Yt9FNhGIZhGIZpOWTRI85OD4ZZFLDo0UTIJbK1xlE5UW+ROWBk33/mt84EAJy1ilfjzgZ1xWZYirfK2JweviXl9JhRnuNUplAWYbR/ZB5Fj7xX0cO4HcUcZT3GW1F2fS3xVuTyAOZG9FhnlkC7RQT5fRp+9kcX4rYPXIig34dIoHK81f8+ccxWQP/LZ4cAAK86bQBdMWO4OZZy7uZwYiJtv63a6/HCCbvoIUO9HrlC/U4PdSAbC/mFVTmVLdgEMBJczljZnIN4Eibk90AtMgesGDHaB8nDbdk5tLIrhlDAh8H2iKfjg6ZpiAT9eMWpsujRUfsfwiwIQb9PHLdOTmdEkbkqLKpCGjs9aiMc8M/JsYJhGIZhGIapTEhaeCxf9zAMs3DwJ7HJCAf8yORLNRePOyGvvg3WcRH9+u3LsKorhsF2LtScDWpZcDjgs3d6mMPFcNAnFZkvfqdHWnF6TGbywunRnwzjxGQWQ5NZp7vO+fNRn5sM9Y90J0KYzhaqx1uZ70UyGsRUtlDTe1OYY9HjmnNWYU13HOes6XK9Tac0dKy2fX3zgYO2rydm8gj4NJy9plO4NkYd4q2Gp7O454VhvPK0AdvQU3V6UJE68aLZ+7K8I4oj4zO2n4l4Kyn+rVY6HEQPy+lRcHTANa3Tw3xf6D3waXA8zghhzCHeSnZ69LWFcet7zxfioVcu2dSHcMCHkq5j+8qOmv8OZuHYuiyJRw6M4YnDE2I7qiZ6dMQ4GoBhGIZhGIZZ/JDTIxEOzEkfJ8MwtcNOjyaD3BmN6PSYjdODOGNlB/qTLHrMBnVYGwn6EQkZ78dMvoiMNNStFj+0WCiWdLECn1byTmeteKsNfQkAwNDU/IkeM1JRshphJUPxPhTPU7XI3BRFaLindnxUoqTPregRCvhw4Sm9tmF0JYTo4fI3n5gyCr9PX265Hbav7EAsFBDvsypkAMDb/3033v/fj+Fzd7xo+/5YFafH3pOG6LFjdWfZY1qihykK1uH02DKYtH0dDQaE6JFWnB6AsU00q8hLIjit0I8E/Y4ODWsfVB5vJXd6RIN+nLa8HWt64mWPUYn2WBDf+N3z8LXrz0VvG5c1LyXImfP4oXGxHSXVTo+QFAsQ8jtGqDEMwzAMwzDMYiNoXm9ytBXDLB5Y9GgyRLxVozs9GvB4TH1UcnroujWEDAd8ZausASM/nQbAiwU5SqrPHFxOzuRFFM6GXkP0ODmfokdednpU7/SgnprqnR7Gz2m4lyt6Fz2KktOj1l6duSBSJT6NXByv2TYovrdzneEioWx+J6fH8ycM8eJnTx+3fX+8zOlhiR5TmTxOmE6gs1Z1lD3m8HQOh0bTFUu3q7FdiaqKh/2Im4P7VK5Y1jFyxsr2po3yo+MBCZNuw2h1G5kS8Vb2IvPZDLPPXtOFCzb01H1/ZmGgz9ND+8csB1yFIvNOjrZiGIZhGIZhlgiy04NhmMUBix5NBokewUZ0etjirXhTWSjKOj0C9tWv1HsQDvjKVlkDwLVf2o2X/b9fOQofuq7bBuvqz3Td+WezhUQFTbMcEycmM+K5bOhvAwAMmc6B+SBtKzJ3FzKmypwedhGjUFSLyxWnRw1F5nK8lW8RDNNpW8w4xFvliyWMm9viK08dAGk0O9d1A4DN6eG2XakD0EpOj31md0hvWxiruss7Sb523368/ON34F9+9YLtudfCup6E7aQ1qsRbqc6TZo22AqxjC/3NERfnjOo2s+Kt7EXm8op+pjUgp8czxybF9xIV4q24z4NhGIZhGIZZKlCnRyLC8awMs1jgqUOTETIHe41wZmiaJoQPdnosHGVOj6APQb9P5OmPmyuvQwGfuC3FD2XyRfzm0Dgy+RKeOjJhe5xSSccN//UIzv3o7RhzWH3/Nz9+Bmf93S8wNNl44WHGFBiiQb8QAw6bnQwhvw8rO6MA5tnpkfNaZO4eb7X35DR23fIr/Ol3Hxffkzs9gPqLzBe704NiqzTNKKn+w0s34nXbl+G8tYboQU6PfFG3xULJAohaHE5OD4r2mpCcHhRttb43jvao+3CUitVDdUT0+XwaNvYnxNexUECIIKlsQUSdnbosiV3ruvGWs1fU/DuWCuT0oC6GsItTI6qIHsLpEQkiJhX6cWxR67G6O4Z26TMeD5WXbsvbBe0zGIZhGIZhGGaxQ9dLCY63YphFA4seTYYVb9WYt5Z23Ith4NqqlHV6mF/TcIgGw06dHi8Np0Az5YOjadvjfO+Rw/j50ycwksrh2eOTtp9NZwv45gMHMZbO4/HDdrGkEVCUVCwkiR5jhuiRjAbR12b0IixUvFWqYpG5KXq02Z0euq7jDf96L05OZfHdRw6L21vxVuT0qK/IfDGUocnbl+rWoNiqrlgIfp+GD1xxCv7lt84U+5BoyC8G4nLE1aQUEaWWGpOQsqzD2B7kInNL9Eh4KjuuJ94KADb2WaJHNGh3etBA/01nLse33rMTg+3Run7HUkCNt3LrSHHt9IgGbNFFLHq0HpqmYctgm/j6si39ZbeJstODYRiGYRiGWYLsWN2FgWQErzh1YKGfCsMwJix6NBmiyLxBA9JQg0UUpnacnB6ANRyiuXg4WB5vRYNhANg/bIkeE+k8PvqTZ8XX+aJ9gH3nc0Oie2JmDkrRKUoqEvQjETYG1kdM0aM9GkBf0hAURlI55GvowGjEcwKMkmo3aHV/r9npQa6a7//miGMBulVkHrR97QUqMl8soiMJbiW9fJsZmTZFjwqDSvqZLHrITiI1aY3islZ3GWXXcpzUi0OW6CGvHm9zyVCtp8gcAE7pt4a0fp8mRI+UVGSuijXNCDllJjOVOz3CihtIjrfy+zTxPkRZ9GhJXrttGQDg2vNW4Z/esr3s5+z0YBiGYRiGYZYiG/oS2P3hy/DOXWsW+qkwDGPCk+wmQ3R6NMrp4Wenx0JT3ulhrZxXvx9Wisz3DqXEzw+MWP/+zaExW1SQGrl029MnxL8zuSK++/AhfP7OvQ3r+KAoKdnpcWScRI+gcAsA1jB9rrHFW1UoMp9S4q3IufHLZ4fEbeQoJSveynR61CDikNNjMbg8ALtbQi1wH0l5Fz3GpILy45LoMaO87iR6rOwyOjsmbfFWxva8vs8uemyQ4qhsz72OTg/AKmUnxwfZlVPZIqakgX6zQ3FWk6LI3MXpIXpf1HgrY/vf2J9AJOjDsiZ2xTDuXLdzNZ7+m1fgo286XSyqkJG7Xrrizf+5YhiGYRiGYRiGYeaG5l+e2mKEG9jpAUjOEXZ6LBgru+zDQXqP1ZXSTvFWstPjgBRvpToS5HLtXKGEO/ZYA/x0roC//vEzAIDTl7fjZRt76v5bCNHpEQoI0YOirNqjQfh8GnoSIZyYzGJoKoOB9sisf2c10tLA3a3IPFsoCoGIRI9csYRiSbdFceWKJeSLJQT9Pineipwe3p0z1OnhXwQl5oAhrGkaoOvGNiYXj49MG38/vS5OdAqnhyVeHJ+wRA/ZbZPJF8V2urbHFD2kKCxyBq3qiiHo9yERDmA6W8C6ngR+c3Dc8bnXw2B7FLtvvgxxU+ygXopUriC244SLu6SZsJwexnvg5vQoi7fKULyVsa18+z27kM4W0O4hkoxpTuIVPi/yca2T460YhmEYhmEYhmGYOuFJdpPRcKeHiLdaHEPXVuSKrQP47fPXAACCfk2IBDEHp4c6cKQIIMDo9KAhulrULUcu3b9vRLgZAGBC6lG47ZnjNT//TL6IH/zmiC3SKJ2nInNfWTQQrdqnXo+hyfnp9ZiRXoO0i9NDFkO6EtZALlsoYnja/jzTuSKKJX1WRebk9FgsTitNs+KJ1JiuUS9OD3PQPSZtCycmnUUP6nhpCwewotPu9NB1XTgJ4ubngLabnoTz73daVe6VgfaIcHPIRebkYmiJeCul0yPi4pxRy+6ph4WcHolwAH3JuRcxmaWJLKZ1cbwVwzAMwzAMwzAMUyfNP6lpMcINLh6n1b1BH+tjC4Xfp+GvX38qLtnch1JJF6tke9vsK+oN0cMaOJZKOvYNW6JHrlDC8ckMlnVExbBW/EyKXLrtabuwMZKyhvn3vDDs+Xk/enAMa7vj+Pxde/HFu/dh+8oO/PDGCwBYMUaxUKAsGsgSPYy/7+T0PIkektDh1M0BWH0e0aAfiZC1+8zkS2XPM50roFjSRZF8f9Ieh+WF4iKLtwKMoWQmXxJDbcJLvJVwerjGW1mPeWjMcCYt74yKbYJcA7liSbyuFLvUEQviyPgMOuMh/PDGC/DE4XH8xQ+fFo9Xb7yVitXpIcdbNf+hNKyKHi7xVlGl7J5eo2QLRIAxsyfCTg+GYRiGYRiGYRimATT/pKbFoMz9Rjk9guz0WDRcdEqv7esBZbV0OOAXg91MoYSjEzPI5EsI+jUMtkdxcDSN/SMpLOuIlsU3UeRSqaTjF88YfR4b+xJ4YWhaDLMBYN9wCntPTmN9r3NvAnHPC8O47ssPYE13TDgbHj80Ln5uxVv53Z0epkgwX04PW5F5zjmCaiprDHATkQB8Pg0hvw+5YgmTM/kyISmdK4rXuS0SEMNyVSyoxGIrMgdohX9euIkIK96qktPD7PSwOT2s9zedt15Dcnqs6IyJgTm5BuTfTcN3Elu64yFsX9mBU5cl7aKHy5C+VqjTYyqTl4rMm3+gT6IHfZ4TLkKP7DZL5YqinD4Zbf7XiJk9crxVN4seDMMwDMMwDMMwTJ3w8v0mQzgzGiRSRITowZvKYqNf6bkIBy2nRzZfxD6z6Hl1dxzreuMAgAMjxup5taib3AePHx7H0FQWiXAAl27pAwCMKkXict+HG7c+ehgAsH8k7TgcpXirWNBf1odwxqoOAECv2Q0xNJWBE/kaCsG9MCOJEWr8F0FOjzbzOdMg+KhZwh70a0KMSmeLorC7Kx4S3x9J5WyOhkoUiovR6WFuY0qRuRVv5aXTwzneasYWb2Vsqys6o6LcmCKt6HdrmrXPu+Gi9bjqzOW4cusAAGOfJW9b9XZ6qJB4NZkpiIF+Kzg91HiwRNhZxJDdZuTyCPq1hr3+THMTDbHTg2EYhmEYhmEYhpk9PIVoMijqpVEixTXnrsS5a7uwa113Qx6PaRz9bXbRI+S3Oj2yhZIo1h5sj2BNtyF67Dk2CQDl8Vam6HH7s4bL4+JNvcJxIQ+oAWBoqrrzgiJwAOdV8Hanh/XzeMiP89cbRem9pkjg9PsOjqRx5t/+An//v89UfS5ekQfubkXmtLKfhBz6vJEroTseFoXX6VzB1nPREQuJXoODUql8JRaj00O4icqcHh46PcyfjcnxVi5F5pbTIyp+J/WI0P+NYnXjtblgQw8+8bYzbAXZyYgsejQ23orw+zTb6vRmJaQcU9yEHvpMZApFqc8jKN4nhqmE/FnqYHcQwzAMwzAMwzAMUycsejQZVpF5YwZMbzpzBb7z+7vK+iOYhWdAcnqE/D74fJooF87ki0J46IiFcP56Q7T61kOHsO/kdHmRuSl6HBo1Bs1nrOwQw6cRRfTwEs9E3QuAfThK93WLt7poU68QbmjgNSU9FvHEkXFMZwv4dQ0dI5XIFUqiNBwod8IQQvQwB9+0qp1cCT1tIcTMro90rihinCjWaU2PIT7tH0l5el70nHyLaGBMgo/6vtB2UineqjNmd3oUiiVbAfyM2QMB2OOtRHl6wfg5bUeRKmKDHKnUMKdHyD7sT4QDLTHQV+PBkm7xVpIoRvsBjrZivDLYHsH2Fe14zemD7DBlGIZhGIZhGIZh6oavKJuMbSs64NOM/zPNTb/U6UEDXTlaZpxEj2gQV2ztx0Wn9CJXKOEvf/i0ED06zFXxVGSezllD/ZgZMyKvygfgKZpJdnr4pYEwRRlZ8VYBm+jx8o1WbwmJLjP58hirtOnEkEvWZ8OMIuSkc9bwXaZc9LA7PXoSYfG6pXNFUdhNMS2rTcfNwRFvTg8qMl9MnTqd5jYzlrbe43yxJN5zb04P47ZHxzOQtCbouuUgOSLFW5FLo6QbQhCJdJEq7g25PFuNZ6oXv0+zlXir8WzNiur0cO/0MG43k2utonemMQT8PvzwfS/DZ689a6GfCsMwDMMwDMMwDLOEYdGjybhiaz+e+ptX4LfOXbXQT4WZY/qTlvuGHAEUvTOdLWDcHLh3xIxomb9+/akAgHteHBar8mkITUXmNNSPhQNioF8s2Yf/qkDghCx6OEUZWU4PH6JBP9b1xhH0a3jlqQPitpTtnnEQWeh5jqZyKJXKxYlaUYWcojRYt/3ejD3eynJ6lIseqVzBcnqYr/Oa7hgAy+nxnYcO4eM/2+MosNDzAOzC0ULTESuPqKK/06dZP3eiM26IEOPpHIolHXtPTgMATulPiNukcwXM5IoYNuOyVnbFbC6DXKEknB7VysmT0cZ3egAQ/SxA6wz0Q4rA1ObS6UGf26wSb8UwDMMwDMMwDMMwDDNfsOjRhMRCrTGEa3XkLgwSImi4ni/qYhBP3RxrumPwm90Q9DOKXaIBP3UqJMJ+154CtctBRdd1m+hxUoovOj6pih5GNNAPbrwAD3z4cltxbUQ4PcpFD3KklHQIR8tsoMeLSyW6TmXmJLZQkTk5DUS8VSIsPn8zuSJGU8Zzo1inVV2G6HFgJA1d1/HB/3kCn7tzL548MuH4vEj0WExF5uT0GJdEj/2mc6W3LSy2Mef7Gq9DSQcmZ/J4ccgQPTb2twkBKZ0r4si48XhtkQDao0GbyyBbKIltsBanR7iBvRsXb+oT/24V0UMVjVydHg7xVq3yGjEMwzAMwzAMwzAMszhg0YNhmohI0C8G9/vMVfQkemiaJobO1KPQbfYvUJE5DfpjoYBYsa1SrdNjcqZgE0ZOSkXk5fFWxu9IRoJlsUjRCqJHSnJmjDYg4op+RzwcEL837eAwmSpzehi3PWo6WHoSIVu8FbkhukyHA3V6HBhN2YQhJ1fJ8yemcNszxwEsriJzy+lhPf8H9o0AAM5e01XxvkG/T3RBjKZzwumxvjdh60I5JPV5AIboQz1F2UIR2QJ1elRzejS+0wMArjy1X/y7VURmNR7MTcigz0QmXxSfF3Z6MAzDMAzDMAzDMAwzn7DowTBNRpcpZBwcNVbLy3FDNHy3vjYisrJC9CCnR6DM6UHuhmrxVkfGZ2xfywLIiUlDoJgxnRVuwor8M6d4K9mFMTKdK/t5rcjF6nJEmIrV6WG8jurQ3d7pURCF3SQ2rTbjrY6MzQi3DQAUiuXxVjd+41F89d79ABZXkTn9LeOS6HG/KXrsXNdd9f6i1yMlix5xSWwq4NCo1edBUK9HNm85PcJVnR5zE291riTuPH9iqmGPu5gpEz1c4q3oM1Eo6WL7l2PGGIZhGIZhGIZhGIZh5hoWPRhmCdMeLR88dptCBlVdUFk5YA2sCRJBaOV8KkdOD79YsS1ua4op1ZwexyZmXH8m4q3ylsjgRkWnR9b6HvWTzAZydUSDfsTD1vBdhdwZ5PRQI5N6EmHEwpZjwXJ6GK9drymKlHTgkQNj0u8v/12Hxqyy88VYZE7xVtlCUfwtu9ZVdnoAVqn7aCqHvSeNbhPD6WG+37ki9pnfX2c6YwBLtMjW1OkhOz0aF28V8PuE06Ff6vdoZlTRqJrTAwCGTJdXGzs9GIZhGIZhGIZhGIaZR1j0YJglTGfMSfSwCxsd0uBXjZCSnR66rgsHRTxcHm9Fgkk1pwdFPTlxwvwZiQyxCj0LJHoUSjryRXv8kywSVBM91Ps6IZ5PyC/iiqaz5X8nORNWm90caqdET1tI/E02p4f5umuaJno9dpvuCON32UWPmVzR5pBZTE4Puci8VNJx74vDyBZK6EmEsb43UeXeVo/M3pMp8fqs643bYsHk2CvCEj2KwpmkCnMqcqyS6lSYLT/5/16ON56xDP/45m0NfdzFivr6uXV6yOLIkClyJrnTg2EYhmEYhmEYhmGYeYRFD4ZZwjitMleFDdkN0qn8jASSbKGEbKEk3CFxh3gruq1T3JTMsXEPTg8hMrgPQyMha/ekCi3Ttngr906Ph/aP4vS//jm+eu9LFZ9zRnKeJEynh1pkPpMrYv+w4UDYPNhmPEeneCvT6TE5UxCdBl2Sw2Zdr+FekEUPtT9kNG0XchZXpwc5PfJ42xfvx+987WEAwM51XdA8iDO0DT5yYBQAsLwjauuQSeeL2GsWnK/vk5we5vaYk50eVYQMOVapkfFWALCyK4ZPXXMmNva3NfRxFyvy6xcJ+hD0O7+emqaJbeSAWXCfdHCkMQzDMAzDMAzDMAzDzBUsejDMEuYfrjod/ckw/up1W8X3uhNh223kgaM8fA/5fUiYA/psoWQb8keD/jLRg8SUak6PYxWcHkOTWei6LsVbue+CQn4faNavCi1pW5G5u9Pj0QNjyORLeGDfaMXnbMVbBYQ7QC4aB4AXhqZQ0g3xp9d8jeXIpMH2CLpiVpH5YVP88Wl24YncC3IRuCqwjCl/k28RiR7k+BlJ5fDQfiPWKhr04807Vni6P21HD75kvCckApEANjyVFW4h2ekR8kvxVqLI3LvTo1oUFlOZkN96ravFVfW1GZ8PEjk53ophGIZhGIZhGIZhmPmEMycYZgmzvjeBBz58ue17crxVNGjv5pCdHolIQETW5Aol0ZMRDfrh92ll8VY0rJZjl5xwi5vSNCBXLGF4OmeJDBWcHpqmIRr0I5UrlgkttiLzCqIH/Z6UQ2eG/XZyl4nxmqhiyp5jRmH15sE24WiQnR5vP3cVfD5NiB5HzE6OzljIJlo4RUCllCgt9XcvRqcH0dsWxoMfvsyTywOwRJNJ0wWzoc94PWh7e+roBACgJxESUVqAJVpkC0Vk8xRvtTCdHq2ILBq1hSufOvS2hfH8iWnxNcdbMQzDMAzDMAzDMAwzn/DSV4ZpMuR4K3VATcXlABAP+209CSQMxM2BphoHJDs9dF23/ezgSBp/8t3H8eLQFKYzhoNBLjpujwYxYEZxHRxNIWd2MlTq9AAsUaRM9Mh5i7eiGKSZKpFcIt4q6Bc9JyPTOfzPI4fxsZ88C13X8ezxSQDA5oGkuN/+kZT49zXnrjL+JnIsTNv7PAgn0SOdK+ATtz2Hz9+5F4ViSRSgE/5FJHpEFBfQ2u64Z8EDsG+DALDFfD1pW3jqiCF6rFNeJ7Gt5i2nRzUhw+b0aHC8VasRkuKs3ErMib42e+wex1sxDMMwDMMwDMMwDDOf8PJLhmkyuhPWkL1dGTZ2Sivn46GArSchLUQP43vktCDBQY7NyhZKNgfJdV9+AAdH03j22CQKRUMQ6U9GMJWZNn+XH8s7ozg2kbGtAFfdJCoUf6WKFumst3grcnqonRlut4uG/MIpM5LK4m//9xlMzOTxxjOXC6fHpgGrw+EVpw7gJ08ex1mrOtBrRvrEVYdMzC56UJyTzPMnpnDHcycBAPftHcYFG3psP19MogcAdMaCmJkwXrNV3bEa72t/PagfhRwytH2o4hAJHNlCybPTo6ctZLp3/LahPVM7cpG5W4k5QfFWRDWRhGEYhmEYhmEYhmEYppHwJIJhmozuuDVwLHd6WAPntkjA1pMwnS0vF4+GLNFDXqGfyRdtosfBUSPK6bnjU6JcvT8ZxotmIXUsHMCKzhge2j+GF8yhtqZVX31PjoLKTo/qoke1HpK0KFb3C9Ho0Gha9Hocn8xgj+n02CI5PV5z+iB6EmGcvabTes4usWBEPBzAYHvE1n1Crx8A/PqFYew7mbLdx1+Dk2I+6IiFRO/GmhpFD/n18GnAxj5D9FCjztYr4pDsSspSp0cVp0csFMD3bjgfoYBvUfWiLEXkz2pbuLJzo7fNvVeIYRiGYRiGYRiGYRhmruGlrwzTZHR5dXqEA1ZPQr6ItNmTkQhbg2Q5xqgtEkTQbwyOZRGBoqoAw8UwbT6OHHETD/mxojMKwCgEB4w4o2qxSPT7M9LvKxRLtl6RsXQOxZJedl/jeRrPJV2l04MePxbyi6H8nuNT4ufPHpvEWDoPTQM29lsOhIDfhws29NhilmLK8H5NT7mzQ3UxHB23l78fMUvQiels5ec/33RKAtjq7vK/r/J9rW1wTU9ciEQxRSxa32d/jeT+GXr/vZSTb12WFL0hTP3ITo9qzg1Z9NA0IFGhu4dhGIZhGIZhGIZhGKbRsOjBME2GXGTeEbW7DORV9vFwQKzezhVLSOXKnR5yfJBcik5xU0NTGTxzbNL6fbGQKBnvS1qDz1goIESP508YYkK1aCvj99Pvs0SOtOLaKOnAeNrZ7TFTY7xVJOgXThn5Po8dHAcA9LdFbA4XJ8qG9w5xVuoQvpoTpVKE10IgF4yvrtXpId13gyT+yK+bpgFnruyw3c9yepQsp0eV94JpHLXFW1mCZyIcYJcNwzAMwzAMwzAMwzDzCi+/ZJgmIxL0Ix7yI5UrlsVbxUJ+hAI+5AoltIUDYpCZLZSEWBGXnR4hv+2+0aAfU5kCZvJFPH10Aq/5zD22xx+ZzqJgui76ZadH2I+VncZw/MRktuyx3aDbyKIA9XkEfBri4QAmZvI4NpGxdY6I21K8lUfRIxYK2DpRiMcPjwMABjsiZT9TUUUPJ5eBkxACAEG/hnyx3LWy2ESPTmm7Wt1Vm9NDdh8NtFuvp7w9bB5I2oQVwN7pQU6PavFWTOOwF5l7j7dKVrktwzAMwzAMwzAMwzBMo2GnB8M0IRRx1a6IHpqmiZX2htPDGBrrOjCeNvor4nKnR9Ae2xQRcVMl/MZ0P8gcl3oq5MFnNGR0eshs6k+iGk6dHhT1FAv5sWO10aXx/d8ccbw/3a9Q0m0xXCpO8VYyJNQs64hWfc7xsF1LXtdbLnpceeoAdqzuxJt3rLB9f/uKDsfHHFl0okfI/H+wbBurhrzqn9w/gF0s2rmuq+x+chQbvV9e4q2YxqBpmhBJ28JVnB6Sy4v7PBiGYRiGYRiGYRiGmW94YsQwTQhFNKnxVoDVqZCQ4q0AoxsDsA/t5figqOn0AAyRoFAsFxEoIise8tsicOIhPwbaI5BTbq48tb/q3yF+n+TUoH6ORDiA63auAgB89+FDjm4O+XuV3B70mBEzwivu4kJZ1l7d6aGWs6u9KgDQn4zgf957Pq7budr2/dOWt2ORdZY7Qn/Tqhr7PIh37FyNtT1xvO2cVeJ7cqzaznXdZfexx1uZnR7s9JhXwqbbo1qnR1s4IKLxqt2WYRiGYRiGYRiGYRim0bDowTBNyHlruxD0a9i2or3sZ11mCXUiHLBF1lCEUtylyDwW8iMSsjo9UhVEhHg4gIQknsRCRpSW3Dd+2ea+qn9HxCHeKmXGW8XCAVx0Sh9WdkUxmSngR4+Xuz3kXo503r0M3Iq3Mn6fU1QWAAy2V3d6yOXs1UQSVVzpS4axzMPvWGjOXNWJgE/DhRt76rr/373xNNzxJxfbBCFZlDpvrYPTwxZvRZ0efAibT8jpUa3TQ9M00evB8VYMwzAMwzAMwzAMw8w3PDFimCbkQ6/ajMf+8kqctrxc9Ng8YMRKre+Lw+fThPBBTg95xT31LAT9GoJ+HyLm0DNTKIqYqet2rsJv/uIK2+9IhAO2uCJZSCHchAUZp3gr0T0S8sPv0/CmM5YDAB7aP1Z2f1sXSAWRZiZvFz2cIq4AYJmHTg+ZgWqihxIT1BEN2YrB/+TKUwAA11+wpqbfO9fsWN2Jx//qSvzxlZsa+pgAsKorVtbnAcDWPyPirdjpMa+Q26Zapwdgxdslo+z0YBiGYRiGYRiGYRhmfuFpBMM0IZqmlQ3UiQ+9ajN+69xVokw7FPAhVyxZTo9QudND/F9yeqRN8aEjGkJ7NAhNM7pBAGMluNwNQkLKb527Ct968CBuuuIUT3+HED0kwSKVo8J14zEHTGcEdZLIeI23op9RnFePQ5k54M3pYbt9lQ4Q+TUCjNio1d1x3Ld3BLGQHzdesgGvPG0A63rKe0EWGrftq15WdsVw959egs6480DdircqingrdnrMLwPtERydyNi6WNzoI9GDnR4MwzAMwzAMwzAMw8wzLHowTIsR9Puwoc8aoocDPkxngbGUe6cHiRZyp8e0GTMVDwfg82lIhAOYypALI2B7HHJ6fPjVm/Ga0wdxwYbyzgYnSGTJODg26Dl1mEXaEzP2su9SSffu9Mh5c3oM1uj0uGJL5d6SmOKA6YgFhdOjMxaCpmnY0NdW0+9cyqzqjrn+LGxzepDowU6P+eRf334WDo2msb63ughH72V/srbPDMMwDMMwDMMwDMMwzGxh0YNhWhwaJo+ZTglZrCDRgcQAOW6KYqYS5uC+TRI9EpGALdKKBIq2SBAvq6EHIlIp3sp8/I4oiR52p0emYBc5qKxcRdd1pPN2IaXLLILXNGBlZwwHR9MI+X3oiVeP5AKA2z5wIR47NI43nLGs4u2Cfp/htDGdC+3RoBgo9yW9/a5WIWxuC9l8Cdm83ZnDzA/LOqJYVsW9RPz+heuxsjOG122v/BlgGIZhGIZhGIZhGIZpNCx6MEyLQ10Jaq8FUB5rFRZOj1JZzFRbJAhMZAAYnR7RoF9EXqmF3V5xjLeSHCYAkDRFDzXeSo2zcou3yhd1FM2Gdfo7Kd6qJxHGYHsEB0fTGGiPwOfTHB9D5ZT+NpzS782hEQ/5hejREQti00Ab3nfJBly0qdfT/VsFp3gr+h6z+OiKh3DdztUL/TQYhmEYhmEYhmEYhmlBWPRgmBZHLYNOyE6PoLvTYzprFz0SEXuclaZpiIcCmM4WhJhQK9GQXZABLMcGCSkUbzU+k4eu69A0zbyd6vRwFj1kMYT+Poq3GkhG0GfG8wxWKSWvl1goIFw2HbEQgn4f/uQVjSsIbxZoO83ki8gVOd6KYRiGYRiGYRiGYRiGcYaXyTJMixNWyqBjUrl2hMQO6vQgESJnxVvFRXSVdb9EOGg+lnH/ekuv5Q4RgsQWq9PDEChyUtcDYBdKAPd4q3Te+H7ApwnXy8s39uLMVR24bucq9CaMmCmvsT61QiJTwKfV7YhpBei9mZyx3kcuMmcYhmEYhmEYhmEYhmFUeGLEMC1OyG/fDchdHDvXdqE/GcYVW41CbhIhsoWiFDNlfE92iFDPx6tOG8C6nji2DCbrem5OnR7k2KDfFw/5ETBjp8alMvNanR6yG6W3LYzv/8EFeNs5q3DZlj70JMJ4xamVS8nrhcrM26NB4VJhyqEoq8lMXvoei0QMwzAMwzAMwzAMwzCMHY63YpgWR3V6yK6Mjf1t2H3zZWIYH5E6NqjTIyF3eiiP8TdvOM0WOVUrcqdHqaTjT773OL7/myMALLFA0zR0xIIYns5hYiaPwfaouI+Mm+hB34+6RCVdsKEHD/35ZXMmSJBTpj0WrHLL1oZEDyqsD/o1+D12rDAMwzAMwzAMwzAMwzCtA4seDNPiyE4PTbPHVBnfswbLsvMipXR6JG3xVgHH+9cKuS8y+RJeGJrGrY8eET9b35sQ/05GDdFjPJ1HvljCx36yB9mCUmSed3F6OBS4q8ylA4OcMh1RFj0qETa3PRKpIuzyYBiGYRiGYRiGYRiGYRxg0YNhWhw5ImhlZ6xiZBC5ISZnCsgXdQBSkXnYWfSYDXJx+uGxNABgXU8cn79uBzYNtInbkWAwns7jwZdG8ZV7Xyp7LLdODyveamF2h3Glm4Rxhpwe4mvu82AYhmEYhmEYhmEYhmEcYNGDYVoceXi8vjde8bbk9BiezorvUfm2rcg80phdixyndXhsBgCwsT9hEzwASzCYmMkJB4pK9XirhRmix9jp4Yky0YOdHgzDMAzDMAzDMAzDMIwDLHowTIsjx1vJkVFOREPGbUn0CAd8CJj3Tzh0eswWireayRdxaNRweqzojJXdTnZ6uCVRqR0f4vt5QySJLZDTo9MUbHrawgvy+5cKIUX0iLDTg2EYhmEYhmEYhmEYhnGARQ+GaXFkp8eGvsqiBzkvxtJGmbQcY9Xm0ukxG+Ry8b0npwEAKzqjZbejEvCJmTwKJd32M00DdN2D06NCp8dc8vbzViFXLOEdO1cvyO9fKqjODnZ6MAzDMAzDMAzDMAzDME7UtFT285//PLZt24ZkMolkMoldu3bhpz/9qfh5JpPBjTfeiO7ubiQSCVx99dU4ceJEw580wzCNQx4er68iesgiBGB3dMyF6BGRft/zJ0j0cHJ6GG6J8Zk8hqeytp91mU4KV6dHrnqR+Vwy2B7Fza/a4vh3MRZqhwc7PRiGYRiGYRiGYRiGYRgnapoarVixArfccgseeeQRPPzww7j00kvxhje8AU8//TQA4AMf+AB+/OMf47vf/S7uuusuHD16FFddddWcPHGGYRpDUXJGVIu3ilQSPcKNj7fy+zQRa3Rk3Oj0WNnl4PSIGr9vIp3HyWm76NGdMESPB/ePYstf/Ay7943Yfi6KzIPsHFjMqJ0e6rbIMAzDMAzDMAzDMAzDMECN8Vave93rbF9/9KMfxec//3ns3r0bK1aswJe//GV885vfxKWXXgoA+OpXv4otW7Zg9+7d2LlzZ+OeNcMwDeOoKSYAQFc8VPG2PQl770QibA2e58LpAQBrumPC5QEAyzvKRQ8qMh+fyWE0lbf9TP6bZvJF/PCxI9i5rlt8L51f2Hgrxhty9wwA9HIHCsMwDMMwDMMwDMMwDONA3fkgxWIR3/72t5FKpbBr1y488sgjyOfzuPzyy8VtNm/ejFWrVuH+++93fZxsNovJyUnbfwzDzB+Hx2aq38ikJxFCUhI35PLvgfYIBtsj2L6iHX6fS5t4HVyxtV/8uyMWRJtUmE5Qp8d4Oi9K1oluRah57NCE7euFjrdivKFpmq3MfPNAcgGfDcMwDMMwDMMwDMMwDLNYqVn0ePLJJ5FIJBAOh3HDDTfg+9//PrZu3Yrjx48jFAqho6PDdvv+/n4cP37c9fE+9rGPob29Xfy3cuXKmv8IhmHq5z0XrgMAvPGMZVVvq2marfdDdnREgn7c8ScX43/ee35Dn9+VWwfEv3sTzqv7O6KW6DGaytl+1qO4V54/MWXr9+B4q6WDHHG1ebBtAZ8JwzAMwzAMwzAMwzAMs1ipOYNm06ZNeOyxxzAxMYHvfe97eNe73oW77rqr7idw880346abbhJfT05OsvDBMPPIG85YhlOXJbGmJ+7p9ut7E/jNwXEAQDxsFwrmomfh9OXt4t8HR9OOt6F4qyPj5a4V1elRLOl4+ugEzl7TBUCOt2pcJBczN8j+oS3s9GAYhmEYhmEYhmEYhmEcqHnKFwqFsGHDBgDAjh078NBDD+HTn/403va2tyGXy2F8fNzm9jhx4gQGBgZcHg0Ih8MIhzmbnWEWCk3TsLHf+6p5uey8UYXllfD5NLxsQw/ueXEYV5213PE2XTG7m8OnAdTP3hGz4rD8Pg3Fko7HD0/gtOXt+NlTx7F/OAWA462WApOZgvh3f5KPGwzDMAzDMAzDMAzDMEw5dXd6EKVSCdlsFjt27EAwGMQvf/lL8bPnnnsOBw8exK5du2b7axiGWSSs77UcIY0sLK/EF96xA3/3xtPwoVdtcfx5eyyItZJTRXat6Lp1uzeeYYgmv3jmON742Xvx/v9+DE8eMTo+ON5q6eDTDLGOYRiGYRiGYRiGYRiGYVRqmljefPPNeNWrXoVVq1ZhamoK3/zmN3HnnXfi5z//Odrb2/Hud78bN/3/7d17dFT11f/xz4Qkw8RcIEAuhoBBJdwvBgkhIqihUawCWssCRGjxqbSgoJVafxaxRSUVXHgDQQEBq9CC9VJA6gWCBG1oICAIBISkQYXwCISL0ECS/fvDJyMjmcwAhoTx/Vpr1sJzvmef7znj3pOTnTnngQcUHR2tyMhI3XvvvUpLS1OPHj1qa/4ALrArTnumh+sCfTviEmewhvVoWeOYHq2iVfh/39qIiXBq9/9++++IhsF66vZOqjBTQiOX3tjwhf61++AZ21+oY8H5S/LzVmwAAAAAAAD48Tmrpsf+/ft11113ae/evYqKilKnTp30z3/+U3379pUkTZs2TUFBQbr99ttVVlamzMxMzZgxo1YmDqBuJEaHuf995ER5DSMvrB6tmmjhuj2SpKbhTj0zqIvW7PxaP+10qUL/7wHYpyoqdUdKcxUd+EZNw516d8s+9/bc3uri0bl5o7qeAgAAAAAAAOqps2p6zJkzp8b1DRs21PTp0zV9+vTzmhSA+iukwXd3xTt+sn41PaqEBgdpQNcEDejq+QyQkAZBmnJHZ/d//2pBnt7bWiKJpsfF4MmBHbV4/R79v5urv80ZAAAAAAAAcN7P9ADw4/PgT1qrabhTI69JquupuMVGNnT/++tjJ/3a5vRGSUOe6VHvDUltoTd/k66m4TzEHAAAAAAAANWj6QHgrI25/kr9+5Eb1LJJ/Xq2wtgbrlSQQxrVu5Vf409vejiDaXoAAAAAAAAAF7uzur0VAFRxOBx1PYUzjMu4Uv9zbSuFO/0rbW3iIuRwSEEOh+KjGvreAAAAAAAAAEC9RtMDQMBwOBx+NzwkKSjIofV/6Kuy8gpdchbbAQAAAAAAAKif+C0fgB+16EtC63oKAAAAAAAAAH4gPNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAJCcF1P4PvMTJJ05MiROp4JAAAAAAAAAACoa1X9gqr+QU3qXdPj6NGjkqTExMQ6ngkAAAAAAAAAAKgvjh49qqioqBrHOMyf1sgFVFlZqa+++koRERFyOBx1PZ165ciRI0pMTNSePXsUGRlZ19MBEICoMwBqG3UGQG2jzgCobdQZALWNOnMmM9PRo0d16aWXKiio5qd21LtvegQFBal58+Z1PY16LTIykv/ZAdQq6gyA2kadAVDbqDMAaht1BkBto8548vUNjyo8yBwAAAAAAAAAAAQEmh4AAAAAAAAAACAg0PS4iDidTk2cOFFOp7OupwIgQFFnANQ26gyA2kadAVDbqDMAaht15vzUuweZAwAAAAAAAAAAnAu+6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEhHrX9Jg8ebKuvvpqRUREKCYmRgMGDFBBQYHHmP/+978aPXq0mjRpovDwcN1+++0qKSnxGHPfffcpJSVFTqdTXbp0qXZfZqapU6eqdevWcjqdSkhI0BNPPOFzjosXL1abNm3UsGFDdezYUcuXL/dY73A4qn1NmTKlxrjFxcW6+eabFRYWppiYGI0fP17l5eXu9Xv37tWQIUPUunVrBQUFady4cT7n6k9cScrOztZVV10lp9OpK664QvPmzfMZ9+DBgxo6dKgiIyPVqFEjjRw5UseOHfMY8+mnn6pXr15q2LChEhMT9dRTT/mM68/7688xAd5QZ7znTk5OjtLT09WkSRO5XC61adNG06ZN8zlfX7n+8ssvq1evXmrcuLEaN26sjIwMrVu3zmfci61+AVWoM97zNjs7u9q4+/btqzHu2eTkokWL5HA4NGDAAJ/ngTqDixV1xnvejhgxotq47du3rzGuPzlZWlqq0aNHKz4+Xk6nU61btz7juL6P6yZcrKgzNefO9OnT1bZtW7lcLiUnJ2vBggU+5+tP3Ndee02dO3dWWFiY4uPj9ctf/lIHDhyoMW5t1QMz06OPPqr4+Hi5XC5lZGRo586dHmP8qXEAcMFZPZOZmWmvvPKKbdmyxTZu3Gj9+vWzFi1a2LFjx9xjRo0aZYmJifbhhx9aXl6e9ejRw3r27OkR595777UXXnjBhg0bZp07d652X/fee68lJyfb22+/bbt377a8vDx77733apzf2rVrrUGDBvbUU0/Z1q1b7Q9/+IOFhITY5s2b3WP27t3r8Zo7d645HA7btWuX17jl5eXWoUMHy8jIsPz8fFu+fLk1bdrUHn74YfeYwsJCu++++2z+/PnWpUsXGzt2bI1z9Tfu7t27LSwszB544AHbunWrPf/889agQQNbsWJFjbFvvPFG69y5s/3rX/+yNWvW2BVXXGGDBw92rz98+LDFxsba0KFDbcuWLbZw4UJzuVw2a9asGuP6en/9OSagJtQZ77mzYcMGe/31123Lli1WWFhor776qoWFhdWYt/7k+pAhQ2z69OmWn59v27ZtsxEjRlhUVJR98cUX5zXf+la/gCrUGe95u2rVKpNkBQUFHvErKiq8xj2bnCwsLLSEhATr1auX9e/fv8bzQJ3BxYw64z1vS0tLPeLu2bPHoqOjbeLEiV7j+pOTZWVl1q1bN+vXr5/l5ORYYWGhZWdn28aNG2s8F1w34WJFnfGeOzNmzLCIiAhbtGiR7dq1yxYuXGjh4eH2zjvvnFfcnJwcCwoKsmeffdZ2795ta9assfbt29vAgQNrPBe1VQ+ysrIsKirK3nrrLdu0aZPdeuutlpSUZCdOnHCP8VXjAKAu1Lumx/ft37/fJNnq1avN7NsfYENCQmzx4sXuMdu2bTNJ9sknn5yx/cSJE6v9UN26dasFBwfb9u3bz2o+P//5z+3mm2/2WJaammr33HOP12369+9v119/fY1xly9fbkFBQbZv3z73shdffNEiIyOtrKzsjPG9e/f2q+nhT9zf/e531r59e4/tBg0aZJmZmV7jbt261STZv//9b/eyd9991xwOh3355Zdm9u0PAY0bN/aY/0MPPWTJycle4/rz/p7tuQJ8oc7UnDsDBw60O++80+v6c8n18vJyi4iIsPnz55/XfOtT/QJqQp35Lm+rmh6HDh3ye77+5mR5ebn17NnTZs+ebcOHD/fZ9KDOIJBQZ7z/PPPmm2+aw+GwoqIir3H9yckXX3zRWrVqZSdPnqxxjqfjugmBhDrzXe6kpaXZgw8+6LHdAw88YOnp6ecVd8qUKdaqVSuP7Z577jlLSEjwGre26kFlZaXFxcXZlClTPPbldDpt4cKFZuZfjQOAulDvbm/1fYcPH5YkRUdHS5LWr1+vU6dOKSMjwz2mTZs2atGihT755BO/4/7jH/9Qq1attHTpUiUlJemyyy7T3XffrYMHD9a43SeffOKxb0nKzMz0uu+SkhItW7ZMI0eO9Bm3Y8eOio2N9Yh75MgRffbZZ34e1bnF9eeY5s2bJ4fD4RG3UaNG6tatm3tZRkaGgoKClJub6x5z7bXXKjQ01CNuQUGBDh06JOm7W1wUFRVJ8u/9ra1zhR8v6oz33MnPz9fHH3+s3r171xjXV65/3/Hjx3Xq1Cn3OZekxx57TJdddtlZzbcu6xdwNqgzZ9aZLl26KD4+Xn379tXatWt9xvUnJ//0pz8pJibG6zypMwhk1BnvP8/MmTNHGRkZatmyZY1xfeXkO++8o7S0NI0ePVqxsbHq0KGDnnzySVVUVLi34boJgYw6813ulJWVqWHDhh7buVwurVu3TqdOnTrnuGlpadqzZ4+WL18uM1NJSYmWLFmifv36ubeprXpQVFQkh8Oh7OxsSVJhYaH27dvnETcqKkqpqakecX3VOACoC/W66VFZWalx48YpPT1dHTp0kCTt27dPoaGhatSokcfY2NhYn/eCPt3u3bv1n//8R4sXL9aCBQs0b948rV+/Xj/72c9q3G7fvn0eHxK+9j1//nxFRETotttuO6e4VevOlT9xvY05cuSITpw4IenbD7bk5GSPuDExMR7bBAcHKzo62mfc0/cdFham5ORkhYSEuJf7en9r61zhx4k6U33uNG/eXE6nU926ddPo0aN19913/yBxqzz00EO69NJLPX6Abtq0qS6//PKziluX9QvwF3XGM3fi4+M1c+ZMvfHGG3rjjTeUmJioPn36aMOGDecVNycnR3PmzNHLL7/sNQ51BoGKOuM9d7766iu9++67Nf4s42/c3bt3a8mSJaqoqNDy5cs1YcIEPf3003r88cfd23DdhEBFnfHMnczMTM2ePVvr16+XmSkvL0+zZ8/WqVOn9PXXX59z3PT0dL322msaNGiQQkNDFRcXp6ioKE2fPt29TW3Vg5CQECUnJyssLMxjeU3n2J8aBwB1oV43PUaPHq0tW7Zo0aJFP3jsyspKlZWVacGCBerVq5f69OmjOXPmaNWqVSooKFBxcbHCw8PdryeffPKc9jN37lwNHTrU4y8AbrrpJndcXw/Tqy8GDhyo7du3/+Bxu3fvru3btyshIeEHjw34gzpTvTVr1igvL08zZ87UM888o4ULF57T3KqTlZWlRYsW6c033/SY85gxY/Thhx/+YPupUlv1C/AXdcZTcnKy7rnnHqWkpKhnz56aO3euevbsqWnTpp3T3CTp6NGjGjZsmF5++WU1bdrU6zjqDAIVdca7+fPnq1GjRhowYMA5bX+6yspKxcTE6KWXXlJKSooGDRqkRx55RDNnznSP4boJgYo642nChAm66aab1KNHD4WEhKh///4aPny4JCko6Nx/1bZ161aNHTtWjz76qNavX68VK1aoqKhIo0aNco+prXqQkJCg7du3q3v37j9oXACoC8F1PQFvxowZo6VLl+qjjz5S8+bN3cvj4uJ08uRJlZaWenSxS0pKFBcX53f8+Ph4BQcHq3Xr1u5lbdu2lSQVFxfruuuu08aNG93rqr6+GRcXp5KSEo9Y3va9Zs0aFRQU6K9//avH8tmzZ7v/MrCqMx8XF6d169adEbdq3bnyJ663Y4qMjJTL5fIad//+/R7LysvLdfDgQZ9xT993dXF9vb+1da7w40Od8Z47SUlJkqSOHTuqpKREjz32mAYPHlztcZ5Nrk+dOlVZWVn64IMP1KlTp2rjnR73YqpfQHWoM/7lTvfu3ZWTk+N1va+c3LVrl4qKinTLLbe411dWVkr69q8NCwoKPL7hcXpc6gwudtQZ77ljZpo7d66GDRvmceuo6viTk/Hx8QoJCVGDBg3cY9q2bat9+/bp5MmT1e6D6yYEAurMmbnjcrk0d+5czZo1SyUlJYqPj9dLL72kiIgINWvWrNrj9Cfu5MmTlZ6ervHjx0uSOnXqpEsuuUS9evXS448/rvj4+Grj1kY9qFpedXynb9elSxf3GF81DgDqQr37poeZacyYMXrzzTe1cuVK9y/eqqSkpCgkJMTjr/SqOv9paWl+7yc9PV3l5eXatWuXe9mOHTskSS1btlRwcLCuuOIK96vqQzUtLe2MvxB8//33q933nDlzlJKSos6dO3ssT0hIcMetuq9sWlqaNm/e7PFh8f777ysyMlLt2rXz+7i+z5+4Z3NMp8ctLS3V+vXr3ctWrlypyspKpaamusd89NFHHvezfP/995WcnKzGjRtXG9ef97e2zhV+PKgzZ5c7VX955Y2/uf7UU09p0qRJWrFihcc9X2uKezHVL+B01JmzqzMbN26s9iK+iq+cbNOmjTZv3qyNGze6X7feeqv7lySJiYle41JncLGizviuM6tXr9bnn3/u8/79VXF95WR6ero+//xzd1O16lzEx8d7bapw3YSLGXXGd+6EhISoefPmatCggRYtWqSf/vSnXr/p4U/c48ePn7F9VaPVzKqNW1v1ICkpSXFxcR5xjxw5otzcXI+4vmocANSJOnuEuhe//vWvLSoqyrKzs23v3r3u1/Hjx91jRo0aZS1atLCVK1daXl6epaWlWVpamkecnTt3Wn5+vt1zzz3WunVry8/Pt/z8fCsrKzMzs4qKCrvqqqvs2muvtQ0bNlheXp6lpqZa3759a5zf2rVrLTg42KZOnWrbtm2ziRMnWkhIiG3evNlj3OHDhy0sLMxefPFFv467vLzcOnToYD/5yU9s48aNtmLFCmvWrJk9/PDDHuOqjiMlJcWGDBli+fn59tlnn51X3N27d1tYWJiNHz/etm3bZtOnT7cGDRrYihUr3GP+/ve/W3JyskfsG2+80bp27Wq5ubmWk5NjV155pQ0ePNi9vrS01GJjY23YsGG2ZcsWW7RokYWFhdmsWbPcY3Jzcy05Odm++OIL9zJf76+/5wrwhjrjPXdeeOEFe+edd2zHjh22Y8cOmz17tkVERNgjjzziNa4/uZ6VlWWhoaG2ZMkSj3N+9OhR95jnn3/err/++rOab13WL6Am1BnveTtt2jR76623bOfOnbZ582YbO3asBQUF2QcffOA17rnk5PDhw61///4ey6gzCCTUGd/XAnfeeaelpqb6FdefnCwuLraIiAgbM2aMFRQU2NKlSy0mJsYef/xx9xiumxBIqDPec6egoMBeffVV27Fjh+Xm5tqgQYMsOjraCgsLzyvuK6+8YsHBwTZjxgzbtWuX5eTkWLdu3ax79+7uMbVVD7744gtLTk623Nxc97KsrCxr1KiRvf322/bpp59a//79LSkpyU6cOOEe46vGAUBdqHdND0nVvl555RX3mBMnTthvfvMba9y4sYWFhdnAgQNt7969HnF69+5dbZzTP4C+/PJLu+222yw8PNxiY2NtxIgRduDAAZ9z/Nvf/matW7e20NBQa9++vS1btuyMMbNmzTKXy2WlpaV+H3tRUZHddNNN5nK5rGnTpvbb3/7WTp065fP8tGzZ8rzjrlq1yrp06WKhoaHWqlUrj/Nt9u0H7/d7ZAcOHLDBgwdbeHi4RUZG2i9+8QuPX2CamW3atMmuueYaczqdlpCQYFlZWWfs9/vviz/vrz/HBHhDnfGeO88995y1b9/ewsLCLDIy0rp27WozZsywioqKGuP6yvWWLVtWe64mTpzoHjNx4sQz6ll9rl9ATagz3vP2z3/+s11++eXWsGFDi46Otj59+tjKlSt9xj3bnKyu6UGdQSChztSct6WlpeZyueyll17yO64/Ofnxxx9bamqqOZ1Oa9WqlT3xxBNWXl7uXs91EwIJdcZ77mzdutW6dOliLpfLIiMjrX///rZ9+/bzjmv27TVZu3btzOVyWXx8vA0dOtSjwVFb9aCwsNAk2apVq9zLKisrbcKECRYbG2tOp9NuuOEGKygo8IjrT40DgAvNYebl+3EAAAAAAAAAAAAXkXr3TA8AAAAAAAAAAIBzQdMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAdaJPnz4aN25cXU8DAAAAQACh6QEAAACg3svOzpbD4VBpaWldTwUAAABAPUbTAwAAAAAAAAAABASaHgAAAABq3TfffKO77rpL4eHhio+P19NPP+2x/tVXX1W3bt0UERGhuLg4DRkyRPv375ckFRUV6brrrpMkNW7cWA6HQyNGjJAkVVZWavLkyUpKSpLL5VLnzp21ZMmSC3psAAAAAOoPmh4AAAAAat348eO1evVqvf3223rvvfeUnZ2tDRs2uNefOnVKkyZN0qZNm/TWW2+pqKjI3dhITEzUG2+8IUkqKCjQ3r179eyzz0qSJk+erAULFmjmzJn67LPPdP/99+vOO+/U6tWrL/gxAgAAAKh7DjOzup4EAAAAgMB17NgxNWnSRH/5y190xx13SJIOHjyo5s2b61e/+pWeeeaZM7bJy8vT1VdfraNHjyo8PFzZ2dm67rrrdOjQITVq1EiSVFZWpujoaH3wwQdKS0tzb3v33Xfr+PHjev311y/E4QEAAACoR4LregIAAAAAAtuuXbt08uRJpaamupdFR0crOTnZ/d/r16/XY489pk2bNunQoUOqrKyUJBUXF6tdu3bVxv388891/Phx9e3b12P5yZMn1bVr11o4EgAAAAD1HU0PAAAAAHXqm2++UWZmpjIzM/Xaa6+pWbNmKi4uVmZmpk6ePOl1u2PHjkmSli1bpoSEBI91TqezVucMAAAAoH6i6QEAAACgVl1++eUKCQlRbm6uWrRoIUk6dOiQduzYod69e2v79u06cOCAsrKylJiYKOnb21udLjQ0VJJUUVHhXtauXTs5nU4VFxerd+/eF+hoAAAAANRnND0AAAAA1Krw8HCNHDlS48ePV5MmTRQTE6NHHnlEQUFBkqQWLVooNDRUzz//vEaNGqUtW7Zo0qRJHjFatmwph8OhpUuXql+/fnK5XIqIiNCDDz6o+++/X5WVlbrmmmt0+PBhrV27VpGRkRo+fHhdHC4AAACAOhRU1xMAAAAAEPimTJmiXr166ZZbblFGRoauueYapaSkSJKaNWumefPmafHixWrXrp2ysrI0depUj+0TEhL0xz/+Ub///e8VGxurMWPGSJImTZqkCRMmaPLkyWrbtq1uvPFGLVu2TElJSRf8GAEAAADUPYeZWV1PAgAAAAAAAAAA4HzxTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIPx/45vT5NzGPVcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABj0AAAHACAYAAAD5rKrZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV331f6pzmLQTdmc2a5VWWiUkgSSQhEAiZ3gBE00wmN9LMMjYGAw2YGxs8yJyMkkGi5yMCEIJZWmVd6Vdbd7ZndnJeTrH3x9V99at6urcvTPTcz7Po0c7Mx1qpqurqr/nnnO0fD6fByGEEEIIIYQQQgghhBBCyArHtdQbQAghhBBCCCGEEEIIIYQQ0ggoehBCCCGEEEIIIYQQQgghpCWg6EEIIYQQQgghhBBCCCGEkJaAogchhBBCCCGEEEIIIYQQQloCih6EEEIIIYQQQgghhBBCCGkJKHoQQgghhBBCCCGEEEIIIaQloOhBCCGEEEIIIYQQQgghhJCWgKIHIYQQQgghhBBCCCGEEEJaAs9Sb4CdXC6HkZERtLe3Q9O0pd4cQgghhBBCCCGEEEIIIYQsIfl8HouLi1i/fj1crtJejmUneoyMjGDTpk1LvRmEEEIIIYQQQgghhBBCCFlGDA0NYePGjSVvs+xEj/b2dgD6xnd0dCzx1hBCCCGEEEIIIYQQQgghZClZWFjApk2bpH5QimUneohIq46ODooehBBCCCGEEEIIIYQQQggBgIoqMVhkTgghhBBCCCGEEEIIIYSQloCiByGEEEIIIYQQQgghhBBCWgKKHoQQQgghhBBCCCGEEEIIaQmWXacHIYQQQgghhBBCCCGEELLcyefzyGQyyGazS70pLYHX64Xb7a77cSh6EEIIIYQQQgghhBBCCCFVkEqlMDo6ilgsttSb0jJomoaNGzeira2trseh6EEIIYQQQgghhBBCCCGEVEgul8PRo0fhdruxfv16+Hw+aJq21Ju1osnn85icnMTw8DBOP/30uhwfFD0IIYQQQgghhBBCCCGEkApJpVLI5XLYtGkTQqHQUm9Oy9DX14fBwUGk0+m6RA8WmRNCCCGEEEIIIYQQQgghVeJycbzeSBrlluGrQgghhBBCCCGEEEIIIYSQloCiByGEEEIIIYQQQgghhBBCWgKKHoQQQgghhBBCCCGEEEIIaQkoehBCCCGEEEIIIYQQQgghq4C3ve1teOUrX1nw/TvuuAOapmFubg7XX389urq6HO+vaRp+85vfAAAGBwehaVrBf29+85stP3/88ceb88sUwXNSn40QQgghhBBCCCGEEEIIIS3Drbfeih07dsivg8HgEm4NRQ9CCCGEEEIIIYQQQgghTeahwRl89fZD+Mwrz8Gm7tBSb07DyefziKezJ/15g143NE076c+r0tPTg/7+/iXdBhWKHoQQQgghhBBCCCGEEEKayn/etA8PDc7iB/cP4h9fcvZSb07DiaezOPuf/nTSn3fvp1+AkI9jfpWqOj0++clPFuRzbd++Xf78qquuKvj5e97znoZvNCGEEEIIIYQQQgghhJCVwVQkiYePzQIAdg3PL/HWkN/97ndoa2uz/PeiF72o5sd75jOfaXmsxx57rIFbWz1VS0A7duzArbfeaj6Ax/oQ73rXu/DpT39afh0KtZ5ViRBCCCGEEEIIIYQQQkhl3PbUOPJ5/d9PnphHNpeH27W0kUyNJuh1Y++nX7Akz1stz3nOc/CNb3zD8r2dO3fKAvJq+elPf4qzzjpLfr1p06aaHqdRVC16eDyekvlcoVBoWeV3EUIIIYQQQgghhBBCCFk6/rRnXP47lsri8GQEZ6xrX8Itajyapq2YmKlwOIzTTjvN8r3h4WH5746ODkSjUeRyObhcZljU3NwcAKCzs9Ny302bNhU83lJSVbwVABw8eBDr16/Htm3b8KY3vQnHjx+3/PyGG25Ab28vzjnnHHz0ox9FLBYr+XjJZBILCwuW/wghhBBCCCGEEEIIIYSsfDLZHO45NAUAWNfhBwA8PjS3hFtEynHmmWcik8ng8ccft3z/0UcfBQCcccYZS7BVlVOV9HTJJZfg+uuvx5lnnonR0VF86lOfwhVXXIEnn3wS7e3teOMb34gtW7Zg/fr12L17Nz7ykY9g//79+NWvflX0MT/72c/iU5/6VN2/CCGEEEIIIYQQQgghhJDlRSSZQSqTAwC86JwBXH/fIHYPz+F1Fy9tBBIpzo4dO/D85z8f73jHO/D5z38e27Ztw/79+/HBD34Qr3/967Fhw4aqHm///v2Oz+H1ehu1yRaqEj3UMpPzzjsPl1xyCbZs2YKf/exneOc734l3v/vd8ufnnnsuBgYGcPXVV+Pw4cM49dRTHR/zox/9KK699lr59cLCwpJnfhFCCCGEEEIIIYQQQgipn1gqCwDwujVcvHUNrr9vELuGWGa+3PnpT3+Kf/7nf8Zf//VfY2RkBBs3bsSrXvUqfOITn6j6sf7iL/6i4HtDQ0PYuHFjIza1gLpCxrq6unDGGWfg0KFDjj+/5JJLAACHDh0qKnr4/X74/f56NoMQQgghhBBCCCGEEELIMkSIHkGvG1u6wwCAicXEUm7Squb66693/P5VV12FvGibhz77/9KXvoQvfelLRR9r69atlvtU+/NmUXWnh0okEsHhw4cxMDDg+HOR+VXs54QQQgghhBBCCCGEEEJal7gheoR8HgS8+jg6kc4t5SaRFqcqp8eHP/xhvOxlL8OWLVswMjKCf/7nf4bb7cYb3vAGHD58GD/60Y/w4he/GD09Pdi9ezc+9KEP4corr8R5553XrO0nhBBCCCGEEEIIIYQQskyJpTIAgJDPjYDXDQBIpLNLuUmkxalK9BgeHsYb3vAGTE9Po6+vD5dffjkeeOAB9PX1IZFI4NZbb8UXv/hFRKNRbNq0Ca95zWvw8Y9/vFnbTgghhBBCCCGEEEIIIWQZEzMEjqDPDb/h9Ehmcsjn89A0bSk3jbQoVYkeP/nJT4r+bNOmTbjzzjvr3iBCCCGEEEIIIYQQQgghrYEZb2U6PQBd+FC/JqRR1NXpQQghhBBCCCGEEEIIIYQUQxaZ+zwIeBTRowV6PZaipLuVadTfk6IHIYQQQgghhBBCCCGEkKYgOz28bnjdGlxGolUis3J7PbxeLwAgFost8Za0FqlUCgDgdtfnAKoq3ooQQgghhBBCCCGEEEIIqZSYEm+laRoCXjdiqeyKLjN3u93o6urCxMQEACAUCrGfpE5yuRwmJycRCoXg8dQnW1D0IIQQQgghhBBCCCGEENIUzHgrffW+KXqs7Hir/v5+AJDCB6kfl8uFzZs31y0gUfQghBBCCCGEEEIIIYQQ0hTiIt5KiB4evXFhJTs9AEDTNAwMDGDt2rVIp9NLvTktgc/ng8tVfyMHRQ9CCCGEEEIIIYQQQgghTUEtMgd0pwew8kUPgdvtrruDgjQWFpkTQgghhBBCCCGEEEIIaQpxQ/QIG04PvxA9Mis73oosXyh6EEIIIYQQQgghhBBCCGkKapE5AAS8rRFvRZYvFD0IIYQQQgghhBBCCCGENIVY2hZv5WmteCuy/KDoQQghhBBCCCGEEEIIIaQpFBSZG06PZJrxVqQ5UPQghBBCCCGEEEIIIYQQ0hTMInOj08NweiQzdHqQ5kDRgxBCCCGEEEIIIYQQQkhTEEXmIa+904NOD9IcKHoQQgghhBBCCCGEEEIIaQpmkbnR6eFlpwdpLhQ9CCGEEEIIIYQQQgghhDSFmNHpEZSdHobowXgr0iQoehBCCCGEEEIIIYQQQghpCvG0cHoYnR6MtyJNhqIHIYQQQgghhBBCCCGEkIaTzuaQzuYBmKJHwMN4K9JcKHoQQgghhBBCCCGEEEIIaTiizwNwiLei04M0CYoehBBCCCGEEEIIIYQQQhqO6PNwuzT43PooOiDirdjpQZoERQ9CCCGEEEIIIYQQQgghDUc4PUJeNzRNA2A6PZKMtyJNgqIHIYQQQgghhBBCCKmJfD6P6UhyqTeDELJMiRuih4i2AhSnB+OtSJOg6EEIIYQQQgghhBBCauKLtx7ERZ+5FTfvGVvqTSGELEOE0yPs98jviSLzJOOtSJOg6EEIIYQQQgghhBBCauJLtx0EAHzqxr1LvCWEkOWI6PQIelWnB4vMSXOh6EEIIYQQQgghhBBC6mJdh3+pN4EQsgwR8VYhJd7KL+Ot6PQgzYGiByGEEEIIIYQQQgipmmgyI//d3xlYwi0hhCxXYo6dHobTg/FWpElQ9CCEEEIIIYQQQgghVXNkMir/7XFxxERIq5PL5fHl2w7iZw8PVXyfWLrQ6SE6PRhvRZqFp/xNCCGEEEIIIYQQQkg5crk8fnD/IC7csgbnbexa6s1pOocnI/LfquuDENKa3PDgcVx3ywEAwKl9YVy0pbvsfWLGsSHsM8fQjLcizYYyPCGEEEIIIYQQQkgD+MOTo/jkjXvx8q/ei2Qmi9/vHsVcLLVk2/PE8DweHpxp2uOrokeEogchLc34QgL/+cd98uuP/uoJpDLlnRoLiTQAoCPold8T8VZJOj1Ik6DoQQghhBBCCCGEENIABqfMuKffPHYC7/3Ro3JV9Mkmk83hjd95AG/8zs6mCRIWp0eKogchrcx37zmKxWQGO9Z3oCfsw4HxCG59arzs/Rbi+rGhI2A6PQIefSSdyuaQzeWbs8FkVUPRgxBCCCGEEEIIIaQBtAfMlcxHDAHkqCKEnEwmFpNYTGSQyuQwHUk25TkOT5i/WzTJmBpCWpl7D00BAN595TZcdeZaAJUd30o5PQAgyTJz0gQoehBCCCGEEEIIIYQ0gDa/uZJZCAITC80RHMoxOh+X/xYrrRtJLpe3DDwZb0VI6zIfS2Pv6AIA4LJtPdi4JggAGJ6Nlb3vQtwQPQLOogfLzEkzoOhBCCGEEEIIIYQQ0gDUkJYD44sAgInFxJJsy4k583nFSutGEk9nkcqaw0oWmRPSujw4OIN8HtjWF8bajgA2dYcAAMOz8TL3BBYSRrxV0BSF3S4NXrcGgE4P0hwoehBCCCGEEEIIIYQ0gLQiAhyf0VdAz8bSFZX9NprROdXp0XjRw/47xVJZ5JjNv6w5OL6I5113J27cNQJAHza/9pv34T9u2lfmnmS188CRaQDApdt6AEBxelQgejg4PQAg4NHdHnR6kGZA0YMQQgghhBBCCCGkARQTN6aa1KlRitH55jo9kg6/ayzNFduluGHnMbz3R4+eNBHsocEZvOeHj8gIovf8zyM4OBHB+3/8GADgwFgEDw3O4mcPDZ2U7SErl2Kix4nZeFmx06nTAwD8XiF68LhBGg9FD0IIIYQQQgghhJAGoDo9VCYWT77oMTLX3E4PEUkT9rnh0lNqGHFVhi/eehC/3z2KhwdnTsrz/d3Pd+GmPWN4+VfvBQAcnrSWTseNYXMsxaEzKc3BiQgA4IKNXQCA/o4A3C4NqWwOk2VEXXH8KXB6ePWxNEUP0gwoehBCCCGEEEIIIYQ0gFQR0WNyCUSPZjs9hFvB73UjbBS4s8y8OIl0Vu4HJ+bKRwI1AvF6zERTmHYYTAvRI55mNBkpTj6fl+/3sF93Z3jcLgx0BgAAQzPFy8xTmZzcz9ROD8AsM2e8FWkGFD0IIYQQQgghhBBCGkCx2KKlKDMfnW9up4eIt/J7XGgzRA86PYqjCh2qINVMzuxvl//+iRJhtbbdD8C6wj7BMmliY2Qujpv3jFmi7EQkFVBZr8eiIriK44Qg7NMfqxmiLCEUPQghhBBCCCGEEEIaQNF4q4WT6/RIpLOYiqTk1wuJ5sVb+TwuOj0qQB0Mq4JUM1FX0H/77iPy3/3GCn1V9Igz4orYuPI//4x3//AR/NYovgd0kVOwcU0IAGRnjBPi2NPm98Djto6ht/W1AQAOji82bJsJEVD0IIQQQgghhBBCCGkAxZwe5TLv6yGazBRk4o/ZnAROTo9UJleXSKE6PcLS6cHBeTHUwfDI3Mlxeqj7xVzM3AeyRpSV+nP2ehA7GWM/uffQFADApQEeUeCDypwe4tjTEfAU/Gy74UR6aoyiB2k8FD0IIYQQQgghhBBCGkA669yL0CynRyabw/OuuxOX/8efkVFcJiM2J4FTfMxrv3U/rviP2xFL1SZ8CNHD53Ghzcj5r/WxVgNL4/TQhQx7rJAQ51QnSJxl0kRBPZ6EfPr+4/e4oWmq6CGcHiVED+PY0xH0Fvxs+0AHAGA/RQ/SBCh6EEIIIYQQQgghhDQAe5H5eiNGaLJJnR7T0RRG5hOYiiQxOB2V3x81nARetz6gXIhbxYh8Po89J+YxG0vX7DpIpoXTwy2Hooy3Ko5F9DhpTg/9NXrZ+est3xf7aZzxVqQIE4umUOszjiMBr3WM3GUIGYsl3vfi2NMRcBA9DKfHkclIgVuNkHqh6EEIIYQQQgghhBDSAOzxVmcZK5knF5vj9FCLw/cpq6Wno/rzbe7WV2LbnR6pbE5G19Q6bBSDc7XI/Au3HMRLvnw3ppsY57VSUeOtFpMZR/fNkckIXvCFu/Drx4Yb8pzitX3peQNQFugjLZ0ejLcizozMmSLdotHL4fe4LbfxGv0e6SKxfoDq9CiMt1rb7seakBe5PHBoIlL3NhOiQtGDEEIIIYQQQgghpAHYi8zPXm+IHpEk8nnn6Kt6UJ0VakSM6G/Y0hMGUNjpoa7qrzXWKJlWi8z1YehUJIk9IwvYeXSmpsdsZewRQE5ujz/vn8T+8UX84pHGih4buoJ48bkD8vuOTo80XTrEZETpBZo3jh9+m9NDOMnsxz0Vs9Oj0OmhaRq29+vHyKdGF+rbYEJsUPQghBBCCCGEEEIIaQB2p4cY6KWzeUuRdKOIJMxB9VOjiuhhDBo3GUXD0VQWX7ntIP60ZwyAdVV/rSv8VadH2NYZMUWnh4VEOivdPgNG5Jm9dwUw/272Ivqan9fYH4M+N774+gvwhw9cAcDsY0mqnR6p4oNrsvoYVZwe4nji91jHyD634fQoJXqU6PQAgO0DesTVPvZ6kAZD0YMQQgghhBBCCCGkAdiHf2esa0N7QBcEpqOphj/foiXeylwpPW8ILJuMeCsA+PwtB/DBnzyORDprETpq7XJQOz3afDbRo0lxXisV4fJo83tk5JlweuTzefxo53E8enxW/t0aUXyfzuaQNSLMAh43vG6X3BfFfhq3iF90ehCTUQenR8Bri7eSokdxF5vZ6VEYbwUAp61tAwAMTkUdf05IrTjvcYQQQgghhBBCCCGkKsQK+g9dcwYu3NKF09e1oyfsw2Iig5kmiB6q02N4No6FRBodAS/m4vpz9bb5EfK5pcgRT2dxz8EprOsIyPvVGmskflefg9NjMtL433UlI5wbA50BrO/S//ajhtPjiRPz+Nivn8C2vjC2GCLVYjKDaDJT8HcVJDNZ3HVgClee0VvQsyBQ+zpELJFYqS8cSYlM/TFnpDVROz3mizk9xP5Uh9OjK+gDULoMnZBaoNODEEIIIYQQQgghpAGIFfTb+sK44vQ+AEBPmx8AGlruPRNN4dDEoqXTAwAOGBExIkqrM+QtyNK/ee+YZVV/rbFGYnDuVzo9BIy3siIEhbDfg/VdeuTY0IxebH5wPCK/nlAcMmMLxSOurr93EO/6wcO47uYD8ntHJiNYVMrRxXNqmjmsFivzc3kgk81Zu11YZE4UnJweBUXmbquI5kSpTg8A8tgRpehBGgxFD0IIIYQQQgghhJAGIGJefMqK6O6wvpK5kfFWV3/+Dlxz3V0FOfhfvv0Q5uNpOaTsCnrREbS6BW59asIiltRcZJ5Ri8zZ6VEK8bfye1w4y+h5eXJEjyM7Nq3H+qSzeRyciMj7jBuix0IiXRCb9vjQHADgd7tHkc/nsfPINJ77+Ttx7c92mc+ZNkUpTdMLp9X9Mp3Ny84PoPZuF9KajCqdM6rAqVJZp4cRbxV0di21GccOih6k0VD0IIQQQgghhBBCCGkAYjgohoEA0Numix6Nircam09g1nBy3Hd4CgCwvb8dfo8Ldx2YxId/vkt2enSFfLLXAQDa/R7MRFO499C0/F68xi6HZMbs9AjbOz0oelhICAHC68Z5GzsBAIcnI1hIpDE4HZO3U1fMjy8kMB9L48JP34KXfeUey+MdntTFkRNzcewZWcCXbz8IALhl77jynLqIofYwqKJHKpOzRGAx3ooIEuksphwi6kRMmsDr0cW0kqJHGadHm9H1YXetEVIvFD0IIYQQQgghhBBCGoAY/nndDk6PBgkBO4+agoWIsXrBjn58+60XAwAeODIt8/E7g14cU4bq5xoD94MTpkOk1mG3uvrb/hjT7PSwIJweAY8LPW1+bFwTRD4PPDk8j2MzMcf7jM0nsfPoNDK5PPaNLeLYdBRP/9db8eXbDmJwyrzPzXvGLF/nDJFLCC1BRfTwuDRzm7JZi+jBInMiGJt3jlYLFIm3SmfzyOedy8wXDadHe7F4Kx9FD9IcKHoQQgghhBBCCCGENICUUu4t6A4bnR4Ncno8cMQUPUSMVXvAgws2dwEwh4wA0BHwIKM6PYxV1RMLpgBTa6eHGm91+em9GOgM4IU7+gHoUUkcopskFacHAJy/sQsAsGt4XsZb2RlfSFhiw/79j/swuZjEdbccsBRH//LREzihlE7PxvT9TJSUq04PTdPM8mm706PG/YC0HkemIo7ftzs97HFpTggxQzg67Ih4q0Q6h0w2h3Q2hzd/Zyc++4enqt5uQlQoehBCCCGEEEIIIYQ0gJR0epgr6kW8VaPcD/cfni74Xpvfg46AVw4QAV3g8Lhd+KeXng0AuO5158vV1uOL5krueLreeCsXOgJe3PuR5+Ibb74QAWMwOrVIt4cgaetEOH+T7ri568CkdOvYGV9IWEQJ+/6zqTuIkM9tETwAswBd3Nfew+BXVufHLfFWFKmIzlOjuhOszdbVYy8yV2P8Ug4RV7lc3hQ9/M6ihyrsRZNZ/HnfBO45NIVv3XWkto0nxICiByGEEEIIIYQQQkgDEPFWTkXmjej0GJ2PWzogBGIV9UBnQH6vK6QLHO+4/BQ88vFr8OoLN8pcfXXQHq+xwFrGWxlOApdLg6Zp6G3TnS2T7PWQqEXmAHCe4fS4/0ihgCUYW0ggqrw2T40tWH5+waY1uPZ5ZxTcTxSgi9dVdXoAsDk9WGROCtk3poseF2zqsnzfLqCpMX7pTKHoEVXcXu1FnB4+j0vuk5FURhafE1IvFD0IIYQQQgghhBBCGoBTkXmPjLeqXwTYO7Lg+H2xinqgKyi/1xX0mdtgCBFOg8dah93SveC2jpbEc7HM3ESIC0KAOHdDp2UfUVlvCFcTC0nElJ6DRdsw+NS+MN72zK3Y1he2fH9sXv+7JzLiOZ0H1alMDomUGm9F0YPo7BvVjzMFoodNQHO7NIiaGKcyc+Hy8Li0AsFEpd04fkUSGYv7qFhPCCGVQNGDEEIIIYQQQgghpAGIXHt1BXSPEW81G0vLkulaER0edoSYsd7B6eF0O5Vai8yle8E2VO8zfl+KHiZ2p0fY78FfXXGK/PmmblOsOnu9Hn01vpAoWe58al8bPG4XfvX/PRPfestFeMMzNsv7AWa8VVGnRzYnez+A2vcD0lok0lkcmdJ7Zso5PQBFRHMSPRJmn4emaQU/F4iIq0gyYxHiMnUeL8nqhqIHIYQQQgghhBBCSANwKjJfE9JFgGwuX1S0qJQFpbhcpc2vCxwDnebwvCNYKHqIeCuVRI3DbidXCwAZb8VODxOz08MUIN7/3NPlv599Rp/891kD7dA0feA7NFMYZSY4Y107AKAr5MMLdvSjv0MXvITokTRe12AR0SOeylrKpxlvRQDg0EQE2VweXSEvtvaGLD9zEj18SkeMncUyfR4CIXpEk1anR8ohMouQSqHoQQghhBBCCCGEEFIn+XxeKTI3xy0+jwsdhkhRb8SVyLvf2mONNJKdHl2K08NJ9Ag2Id7KW0T0oNNDkkwX/q2CPjdu+uAV+MvLtuCD15whxYh1HQEZ9zMyn7A8jqYBX37D0/Dxl5yFM/vbLT/r79T/7maRuTVSSyD2zcWEVYBjvBUBzD6P7f3tBcXl9ngrwBTRHOOtEpWJHu2K00M9HlH0IPVQlejxyU9+EpqmWf7bvn27/HkikcB73/te9PT0oK2tDa95zWswPj7e8I0mhBBCCCGEEEIIWU6oK519Hueei+lIZe6HYjFYwumxpce6AlsMFdcrTg/neKvC79Ucb5UudC8AQK8RbzW5SNFDIOKtArb9Ynt/Bz71inPQ2+aXJfS9bX7p0hmziR5r2/14+fnr8VdXbCt4jnWG00Pcx4y3sj6n2DcX7KIH460IgP1jep/H9v6OAsGsZLyVg0Ah4tmKlZgLwn63vH0kae6XSYoepA6qdnrs2LEDo6Oj8r977rlH/uxDH/oQbrzxRvz85z/HnXfeiZGREbz61a9u6AYTQgghhBBCCCGELDfUlc72yKeesC4ETEfLix6HJyO48DO34Mu3HSz4mRhU250eYZ8+NLQ6PXyw4zR8TNS4wl+4WuwCz9Zefdv2jTmXrq9GEtLpUbhSXvDmS7bg/I2duGxbj4whG52PW26zXimqt9MvCtANsUmIGAWr9Y19cyFu7QuJpYr3h5DVg9h/NnQFCwQzuwgCAF6P3tVRstOjwnirSCKDeWW/pNOD1EPVoofH40F/f7/8r7e3FwAwPz+P7373u7juuuvw3Oc+FxdddBG+//3v47777sMDDzzQ8A0nhBBCCCGEEEJWO4cnI3jxl+7G73aPLPWmrHpU0cPrtpb2dpcQPe49NIUXfvEu/OzhIQDAfYenMRdL47anCpMzxKB6XYdfrroOet3wGINs1enR6eD0cOr0WExm8JffexCf/O2e0r+gjWTaWs4tOH9jFwBgcDqG+Vh9HSatgr3I3Il3XbkN//u+y9EZ8soYsimbM0h9fe2sa9dFj5loCslMtni8lTGktvfLJNK5og4jsnoQbrLOoLcqp0faQaCQnR4Oxx0VIcZGkxn5/ACQytJ9RGqnatHj4MGDWL9+PbZt24Y3velNOH78OADgkUceQTqdxjXXXCNvu337dmzevBn3339/0cdLJpNYWFiw/EcIIYQQQgghhJDy3PbUOPaOLuDnDw835fFPzMXx1z98GDuPTDfl8VsJsSrZpUGKEAIhesw4xFvduGsE+8YW8fe/2I0v3noAo3P66n77wBswnR4dQa98zDbFvRH0ubHGEDucOj2cnB6LiQzuPDCJ6+8bLPs7qoiV3XYnwZqwT8Zv7T4xV9VjtipORealcBKnAMgILCe6Ql7puplYSCKRKRJv5bbGW3Uq+4m4D1m9iN6gjqAHXrcLbpcp4FZbZB6ttMjcZzg9UhmLGMd4K1IPVYkel1xyCa6//nrcdNNN+MY3voGjR4/iiiuuwOLiIsbGxuDz+dDV1WW5z7p16zA2Nlb0MT/72c+is7NT/rdp06aafhFCCCGEEEIIIWS1MbGgR5E0qz/hj0+M4k97xqseiK9GnErMBV0hXaCYixcKGWqXwrfuPIIRQ/SYjCSRz1sHiU6iR7ttoHjOhk4AwLa+toLncur0UMk4RNQUQ3R62OOtAOA8w+2xa2iu4sdrZUzRo7IxXIeDYAUAAyXirTRNw0bj50emorLTI2hbrS87PYzhstr9UmupPWkdxH4hhDe1h8ZJtJNOD6d4q4o7Pcx4K4vTg6IHqYPSe52NF73oRfLf5513Hi655BJs2bIFP/vZzxAMFj/wluKjH/0orr32Wvn1wsIChQ9CCCGEEEIIIaQCRP76ZKQ5oodY9Tu+kChzSyIGdE4igHBfzDnEPcWVQXM8ncWu4Xn5eIvJjGXVv4i36gg4Oz0A4KtvvBBj8wmctrZQ9PB5XPB7XEVXUMfSWXQ4iDZOlBrkn7+xEzfuGpG/y2onKUvFa3N6BL1uxNNZnO7wmqqcs6ETR6ai2D00J0Wpgngr6fTIyMcOeF1IpHOWfZGsTlRhFdB7aKIpZ9cQYB7vnDo9Fivs9FDjreYpepAGUZXoYaerqwtnnHEGDh06hOc973lIpVKYm5uzuD3Gx8fR399f9DH8fj/8fn89m0EIIYQQQgghhKxKJhZ1MWI6ksR8LI2b944hkcnh8tN6cUpvuMy9yyOKaCea5CRpJUS8i73EHADWGE6P2Vih08O+uv7oVFT+e2oxaRU9ZCSRRz6mfaDYGfRaIovsdAS9RZ1BsWS2aLSSSj6fL1pkDgDnb+oCQKeHQApEDkNjJ0Snh+CLf3EBXJqGK07vLXm/8zd14beG2CRcQgXxVjanR9DnRsjnQSKdsriOyOpEFVaBSpweRpG5g0ARqTTeSjg97KJHFc4zQuxU3emhEolEcPjwYQwMDOCiiy6C1+vFbbfdJn++f/9+HD9+HJdddlndG0oIIYQQQgghhBArYnidywOfunEP/u4Xu/GJ3zyJv/7hww15fJHJPrlYGLVErJRyeogIoVkHp0c0lSn6mGqvRz6ft0TPSKdHmYGinVJRM7ES26KiOkWcnB7nrO+Epuli2VSTXEgriWKl78WwC0/besN43tnroGlakXvonL9RjzbbNTwnBYxiZdRCQAt43DICi/FWq5tUJif3GyG8qfuPk2hXMt7K2MfsbjQ74hg2uZhEJmeeZ+j0IPVQlejx4Q9/GHfeeScGBwdx33334VWvehXcbjfe8IY3oLOzE+985ztx7bXX4s9//jMeeeQRvP3tb8dll12GSy+9tFnbTwghhBBCCCGErFpUB8adByblv0fnGhNHFTGG4MlMTsbhEGdKdXqsMQSKOSenR1IfMm7rK3TmqIJBNJWFmAdaOj0qcGaoqLe394FUOvS2ih6Fq7+DPjdCYpCe5CC96iJzm1MnVKGwtWN9J9wuDZOLSQwajiH7c8p4K2NFf9DnRtCn32bPyDzFzVXMYsIUZYUQ4VdFj5JF5iU6Pcrsv+K5Thh9RgIWmZN6qGo5wPDwMN7whjdgenoafX19uPzyy/HAAw+gr68PAPCFL3wBLpcLr3nNa5BMJvGCF7wAX//615uy4YQQQgghhBBCyGomkc7KzHQAmI6aA/VYOot8Pl92ZXg5IsrjTy4mSsYmrXbSUvQo/JuLTo9Z4zXK5fJwufTbCafHWQMdODIZtdxPFT1E7IvPrfdyvPz89dg1NIc3PKO6XtQOY9W1x6WhI+jFYtJ8jSsVPdQV2E6/L6A7XqKpLJIZih5ieOvUieBEh21lfNhXmVgS9Llxxrp2PDW6gJH5hONziiG12J8CXhdCxuP/46+fxOGJKP7pZWdX9Hxk5aKeH8S/F5QODo+xn6j7T6ki81TWKpbl83l5fgpXGG+lOtsAOj1IfVQlevzkJz8p+fNAIICvfe1r+NrXvlbXRhFCCCGEEEIIIaQ0xXoZACCb0zsXKl1ZXoyoMhCfWEjitLXtdT1eK2PGWxX+zbuM/o2FRAafvnEvfrvrBH7/gSuwriMghYazBzrw+92jlvtNKa+xjLYKeqBpGrb2hvHdtz296u0U0UlBn7tgIF4qaktFCBl+j6uosKbve2mu1oYuUAJ1OD18lY/vLtjUiadGF+TXQVu8lYhfU+OvXnvRRhyfiWEulsYjx2crfi6yMvn2XUfwtTsO4YfvuAS/fHQYv39iFL9//+VKfJ65vwWUfdZJtPMa+1NaeZ//4P5BfO6m/VJQrTTeyg5FD1IPdXV6EEIIIYQQQgghZGkQJeYq6qr7eAPy+SOK6DHJboaSCKeHz8H5oDpkvnfvUUxFUvjZQ0MATGHp7PUdBfebVFY+q30e9SA6PUJGgbVKpfuMGddUfKwkhuurXfTIZHOyp6CWTg+f2+XYE1OMp21aY/na3ulhj18LeN14y2Vb8X1DQJsqIaaSlc++sQX86x+ewlwsjZv2jOL6+wYxuZjEdbcckD0vquhWzunhFG/1T/+7x+IgqzTeyk7SeMzP/G4v3vydnVI8JKQSKHoQQgghhBBCCCErkImFwuHkqX1tUvhoRClxxOb0IMUpVWTudbsKBn/tAQ+yubwUBbb3my4aEWekxluJ6Jn2OiPGTNHDgzyskTSqs6cUpVwtAjHgX+2rtVPKMNipCNoJUSINACF/dW6tS7f1WL62ix72/VM4Qfra/QB0Bxl7PVqDRDqLv/3ZLtz0pO4gW0ik8ZFfPiF/rro4nhpdkD0vqugm9h9Nc46y83n075V6n5dzeoSL7OPiMb9zz1Hcc2gKv37sRMnHIUSFogchhBBCCCGEELICcXJebO4OySFmI0QPS7yVg7OEmJQqMgeArrBVrGgPeBFT4qTWhHwY6AwAAHZs6ARgEz0comdqQcZbed2I2krG4xWupK7O6bG6V2cn06VL351QV9qHq4i2AoBN3UFs6ArKr+2RRPbXTPxciB6pbA5zsTSq5fZ94/jPm/Yhl8vjhp3H8N/3DVb9GKSx3Lx3HL98dBifvnEvxuYTeOVX78WuoTn584Ty3tw/vqg4PZR4K+N8UizKzuvg9OgKWY91xZwc8udFjml2IeXBozMlH4cQFYoehBBCCCGEEELICkQ4L9Yaw0oA2NoblqWwjYi3UofipTpECJA2inyLiR5rjF4PQSqbk8KU26XB73Hh7AE94uoyY7W+1elRGD1TC2q81WLCOty2iyDFSKbNTo9i0OmhIwQir1uD2+Xcf2KnzeeBmC8XWwVfDE3TcMkp3fLrck4PEXHm97jlsLqWKLt//f1T+Podh3H3oSl84jdP4pM37inYv8jJ5dBEBAAwMp/Ax3/zBI5MRTHQGZDHl4QiyCXSORlt5hRvZd+PBE5F5pvWhCy3KSfc+T1uy3lMkMrkkFHElMfYN0OqgKIHIYQQQgghhBCyAhHOix1KF8SWnhCCPuH0qCyqqBjJTNYSzTNB0aMkpeKtALPMXJBIZ6WTJuRzQ9M0/Nurz8V/veUivPJpGwAAU4tqp0dh9EwtrO3Q3SQ9bT4sJqz7SLzCfUbsF6W6JtjpoVNtiTkAuFyajEOrpsRccPFWRfTwlO706Amb+2Vfmz54riXKTrhDnjwxj1weyOeB+ThFj6Xk8GRE/vvWpyYAAJ96+Q48wxDFEuksVPPGTsNJoR5jxH5bTOB0cnqIDhuBqwKx74uvv6Dge6lsFgnl+DE4HbNELhJSCooehBBCCCGEEELICuPwZAQHxvWB1o71nfL7W7rDCPkaE29lX/VP0aM0ZpF5MaeHVaxIpE2nh1gJva4jgOfv6JdRQ/F0VopXTtEztXD1WWvxiZeejb9/4fYCQSJaaZG5sULcX2T1N2D2fdDpUT4KzAmx2r5cNJATl2xTRA+f9Xnt+2dvm7nCfm2H0esRqT7KTgyj940tyu/ZRTVycjk8EbF8HfC6cMXpfdK1EUlmoNa33HNoCoDV6SF6aIqJdj6j50MVPWqJtHvmab24+++fg3988Vl43cUbAejHDnt5+cODjLgilUHRgxBCCCGEEEIIWUEMzcRwzXV34nEjm/2cDVanR8irD0nrFT0itoHlxAI7PUpRzulhj7dKZhSnhy3CKOxzy1gZEStmdnrU5/Twe9x45+Wn4NS+Nqw3OkQEle4zcpBfRODRn4dOD8AcAFctehivsxAxq+HUvjb888vOxr+8YkfBsNq+f/YqsUJr2/X9oVqnRzqbk6/z/rEF+X2uyl86srk8jk5FLd+78vQ+BJVjSzEnjtobFCjj9BD7k0X0SNf2nt/UHcK7rtyGdYYbLekoejDiilRGfcsDCCGEEEIIIYQQclIZmonJ1bkv2LEOV525Fh947mlYSGSwcU3QMd4qn887ltCWQgws/R4XkpkcFhIZJNLZotnuqxH172oWmTv/ne3lvk5OD4GmaejvCGBwOobR+QS29IQxHdWjruotMlf5zl8+Hf/v5v3oCnrxq8dOVBFvZQzyveXjrVKrvcjcEAOqfd8IR0+4BqcHALz9Wac4ft8eb9XbpsRbGQJIta6uqCJuHJ40B+3s9Gg+uVzeMT5qZC6OZCYHn9uFPPJIZ/N4/o5+AOa+WKyw3trpYYgeRd7rYn9SxU1xLNzaE8J7n3Natb+SpQ/ILnrMxVNOdyGkADo9CCGEEEIIIYSQFUTSGCids6ED33rLxQh43bj2+Wfiky/fAU3T5MrweDqL49MxvOJr9+Lq6+4sGB6VI2oMwPs7AxAztQVm9Es++JPH8OzP3SHFpbKdHkG76JGVf2On1fwDnUEAwOh8HDPRlIyeOXdjV0O2HwDOXt+B773t6bho6xoANcRbVVJknl3lTo90+f4TJ4TTo9oi83LYXzNLvJUhekxWKXqojo6s0ufAeKvm8oVbDuDCz9yCQZujAwAOGX0ep/SG8e4rt+GZp/bghecI0aPQ6eFRhBPVTSaLzIvEW5mdHubrnjTONd9729Px2os3Vf17+Syih/X4sdrj8kjlUPQghBBCCCGEEEJWEHK4XiRaSDg9jk5F8fKv3YNdQ3M4MhnF4HThYKwUIt6qze+RvQKLjKuR3L5vAsdnYjhirGxPS6dHkXirsD3eKoeY0ZvitJp/oEuPeBmZS+CnDw0hlcnhnA0dOH9jZ8Ft60U4TeIVih6VFJnLeKsao25aBVlkXrXTwxA9aigyL4X6mrX7PRYHiun0sEbZTUWSePlX78EPHzjm+Jj2/h8BRY/m8qc9Y5iLpaUgqiL6PE5dG8bfvWA7fvSuS+VxXAgYczHdNdEV8uL8TV3yvmpvUFmnh4i3yqidHrUJfQJxbktmC50eqrhCSCkoehBCCCGEEEIIISuIco4C4Rr4wxOjlviS2Wh1Lg2xervN70G7sfKXQ0ydfD4vXRGis6FckXmXvdOjjNNjveH0ODEXxw079WHzWy/bWnVMWSUIoSxaYbyV2Jfa/cX7RUSXxKp3etRYZC7ErbPXd5S5ZXWoolxPm3WfLBZvdd/haewenscvHh5yfMxI0vnYojpAJhYTeM8PH8FdByZr2m5SyLjRs3R8JlbwMxEzdlpfW8HP/DanR8DjxmXbeuTPVafHWQMdcGnA2QPO+6G9yDyfzyv7fG0uJZ84dtDpQeqAnR6EEEIIIYQQQsgKwhQ9nAdKIWNluH1wOV9lFnrUInoYTg9m9APQB9kixkc4GcqJUdt6w9A0yD6WRCZbtNMDANZ36aLH3QcnMTwbR8jnxsvPX9/Q30NQrdNjeFYfsm5cEyx6Gx+LzAGYoli1nR5vuWwrXnLeenTbHEL1ou6farQVYBaZ2+OthCOgWNF9pKjTwzxefOGWg7hpzxhu2jOGwX9/SfUbTiwkM1nMGqK2iLc6MRfHd+4+grc/8xQMGULIlp5wwX2F00MkkQW8Lly6rQdf/fMhAFbR44JNXXjk488r6CQSCBFNiJuqyFmq86cUvhKdHqv9eEIqh6IHIYQQQgghhBCygkiVcRQEjeFq3pYCMluktLYY0ukRMOOtInR6ALAWN4shXMqIXSkWb7WpO4SbP3glbt83gc/+cR+S6ZzsAwk59DaIeKuhmTgAfaV1s0rkq3V6DM/q27Sxu7jooZYRr2ZqdXoAaLjgAViPGwWiR4f+9WIig0Q6K/c34ewpKnoUOS6o35+NsoC6kUwsmMLUsWld4PjePUfx/XsHoUHDVET/uXhNVexRawGvGxdu6ZJfd9scQPZoPhWf7X2uihK17PP2x0xkrPvcaneOkcqh6EEIIYQQQgghhKwgUmWGqE5RSQAwG6tu6ChEj7DF6UHRA7AOf8VK5HJODwA4fV079o4u6PfLZGUXQql4K8H2gfb6NroEoiy7YqfHnHB6hIreRubyZyp7zFZFdnrUOABuND6PGY/W224dZusdHy4k0jmMLySkS2BWOj2c3//RIl0/6vFCRGcB+j5Ra/QR0RlbMHtXjs1Ekc/nsXdEP7aMzsel6NETLhQ9AjYHht/rRsjnwY3vuxyJTFaK3JVgFplbHW9AcWG+HD7FPWI/JqVXuYhKKmd5HHEJIYQQQgghhNRELJXBwfHFpd4MchKptNPD/vVclU6PqFOnB4vMAVgdEWJlc7kic4EY9iZUp4dDvJVwegjO7G9st4NKyKs/f7FCapVMNofROX3guqmU6MF4KwCou9+g0fjc5nbYnR6apmGDEat2wnDzAJXEWxURPZIZHJ2KYiGRlm4iwHQvkdoZmzdFD12kSmLfmBA9EpgxnDV2YQsojFoLGO/Vczd24ulbu6vaDp8UPYy4P0WUr7V/SMRiJTNZJIzHEw9FpwepFIoehBBCCCGEELKC+btf7MbzvnAXdg/PLfWmkJNE2Xgr2wD9lF5jtXaV8TJqkXkbOz0sqCvbxUp+4WgQxb7FUAd6UdnpUTgQ7wh4LSuuz+pvntNDDKTj6SxyuXzJ244vJpHJ5eF1a1jbXriKXOCn6AHA7Hyxr65fKkp1egCme2dYET1ENJ7aZaNSTPTYP7aIa667E+/4/kMWl8ix6WhtG08k44rTAwAeGpyRr9PB8UXk8rpQ0B2qQPSoIzbP7vRIGsfDUo63cvjdZryVeLx241i42uPySOUsjyMuIYQQQgghhJCaODCmuzyOTnGItFpIVun0kKJH1Z0exkBeibdip4eO6ogQr4cof+5xGCSrBFSnR1J0ejjHyaxX3B5nNFH0CCudIvF0abfHsFGQvKErCJeruMDjM37P1T6kFGLYcnF6eBVRrsehq0GU0w8ZZfWA6fQAnCOuisVbHZ+JIZvL48hUFDHlPTM4HXO8Pakcu+jxpz1j8t9CTO0O+eBxEMcDtnNHPYKc2J+EGN8IZ5NTkXlHUHcbpun0IBVC0YMQQgghhBBCVjAia51dC6uHcvFWQZvosc0QPebjVTo9DFdHu98jV9lyP9NRB79iKDdqxM0MdAYc7yMQA8ZEWnV6OIseA0avx8Y1QXQYEWPNIKAMKItFGAlkiXmJaCuATg+BHAIvQ6eHGCSrODk95uKmYOq0f9hj7+ypRpFkxhIJd5xOj7oZM4rM3YbwqIoeAicnD9Bgp4fH5vQo0zlVCVbRQ3+8TmNfXe0iKqmc5XHEJYQQQgghhBBSNblcXq7eL7bSthSLiTRe/fV78c07Dzd600gTKdvpYRtgba3R6RG1OD1EpwfjrQDTBQPoQ75MNidXXq/vCha7GwBzBXQyo3R6+J2HjsLpsb2JfR4A4HJp0iFUrszcFD1K/57m4JJF5sDyKTJXO2echDTxug4rTg81Gs9J9FD7fwBgfad130hlcpbjD50e9SOON+ds6ARgdmqoOPV5AE6dHnW4MpQoKsCMt6pH5JPHjqzp9BBuw9UuopLKWR5HXEIIIYQQQgghVbOYyMh89WKZ6qV4aHAGjx6fw492Hm/0ppEm8J837cN1N+9HKiu6I5w/0odtUUlC9FAjaipB7FNhv1sOnOj00IlZisyzmFhMIpfXo176ysVbKU4PEflTzOlx8Ra9VPjZZ/Q2YrNLIkSPqEN8kYoYhpcTPej00BG/fz2r6RuJ3+PC2nY/PC4Np69rK/i5KXro4lYmm8OC8r53EtjF9y4/Td9Pr3TYX0X8G6DHXpH6EKLHK85fX/Q2xZwebpdmiTlrhEAhRBcRc1VXvJXbPHaIuD0h0LHInFSK81mVEEIIIYQQQsiyZ0YZYtciekwY8RjVFlyTk8+JuTi+fofuyHm5MeSqJN4q4HXJuKW5WBr5fB6aPXumCGL43eb3yFW8FD101E6PRDqH0Xl9QLyuI1Cy5wIwh9/JdE6umrf3sAhec9FGPPvMPsfuhUYT8nkApBoWb6VG1KxmGhH300g0TcNdf/8cZHN5RyFGvK5jCwmkMjksJqzuLqfOF3FceMl5A/jXV50Dr8eFHz84ZLmN2kFxfCaGv//FLnzg6tPL7kekkHw+jzEjTu+as9ZhfVcQH/rp48jm8tjYHcSRST0+rJjoAejujnRWf90aUmQunR6lnYiV4BRvxU4PUi0UPQghhBBCCCFkhTKjiBW1xFtNGCtvF5MZpDK5uoYUpLmoA8MFYwhZbIiqDtDXhHxYE9IH5plcHovJTMXdEGq8lVjFW4u41oqo77dkJosTc0a0VWdp9wNgvm6pbE5x0xQfz5QaXDYSsd84FVWrHJmKAAA2dZfr9GCROQApGhQTtpaCUkPu3jYfAl6XFPPssUmOTg9FIO1p8yOXK4xaUsW0bC6Pnz08jHg6h6+84Wm1/hqrlvl4Woppazv82NzTjws3X4WFRAZfvPVARaKH3+uWXSz2YvNqKF5k3qB4q4w13mq1H09I5fCKlhBCCCGEEEJWKKpDo5ZhtBo3Um30ETm5TCiix7xRKly808McoHeFfAh43TJSaS5aeSeH7JvwqfFW7PQArBFQiXQOo3O6+2Ggq3SJOWAdOEvRYxkMxE3Ro7jTY2w+gfGFJFwacNZAe8nH8zHeCoAZ5bRphTgaNE2zlJnbzw1OnS9CIG0zjhMulyb7Pex8/rXn40PXnAEAuOnJUUwsJhxvR4ojFix0Br3yeLK2I4DT1rZhbbt5DOppK+4QCyiRVv46nB4iisosMq+/w0YIpvk8EDFcRDLeapUfT0jlUPQghBBCCCGEkBWKNd6q+rJgddg0Q9FjWTMypzg9hOhRpNMjaHF6eI3/68Ov2Qpf51wur0QveaToEWG8FQC70yOHUSNqZqAKp4eKiG5ZSkJGr0gpp8eu4TkAwBnr2uXti+FnvBWyuTyGDNFjc8/KED0As9djaCZmKSAHnEUxEW+ldtOIY4adZ5zSjb+55nRcuLkL6WweP7HFYJHyTEV00aPXQdRY22G6O0r1C6niaz3xVkLczOX1/d10etT+mOoxUjgbO41jZCaXd3QSEWKHogchhBBCCCGErFAsTo8qVuDHU1lZviyYYa/HskZ0RgCQpcLFnB4+jwseo1dCiB1dxv/n4pXtJ2puv15krg+coqksshw4IZpSOz2yGDGcHusrcHp43ObrAwBBr3tZlFwLsSyeKi5S7BqaAwCcv7Gr7OOZRebVC7KtwsicHg/lc7sqEsSWC0L0+MlDQzg8GbH8zEkUEyKg6u4o5vQQjqK3XrYVAPCLR4br3t7Vhjhf9ziIGmvbze+V7PRQnB6BOorMvYr4nsrkpMhZVzm68pjC2aiKaCwzJ5XATg9CCCGEEEIIWaGo7oxohU6PZCaLqz9/B4I+tywIBYDZKmKPyMlnZL7Q6eEt4vQA9AH2YiKDTsPp0WWskq00xkys5tY0vfDW4zKfK6I87molZnN6CAGykk4PQF9ZLaKt1iyTv2XQEF6ciqoFu4fnAQDnb+oq+3hOReb5fB6aVrrovZU4Nm1EW3UH4S5TcL+c+Iunb8ZvHhvB40NzeNwQugR2p0cmm5P7TFugvNND9Nc845RuAHpk2mrbL+plOmKIHuFCp0efKnq0l4i3UpwYgTpcGRbRI5trSLyVy6XB49KQyeWxEDfirRQ3XCqbWxZCMVne0OlBCCGEEEIIISuUWjo9Dk9EMTKfwOHJKE7Mme4Bxlstb0aV10rEh5QqnherqWW8VVj//2yFjh7Z5+F1w+XS4PO45BDrWf9xOz7xmyer/A1aC1VkTCpOj0o6PQDrymrhwllqhOiRKCJ65HJ5GW913sbOso8n4m3E/vr1Ow7h6f96Gwanog3Y2pXBsRn9d93SE17iLamOczZ04jfvfRY6HISLqE30UL8O+81BdFugUMxzaeYwXAyx9UE5V+5Xw7R0ejjEW6mdHuFSReaq06Me0cMUq9LZHJLp+ovMAfP8JuKtLE4P7i+kAih6EEIIIYQQQsgKZUZxZ1QqehyyRZUIKh2Gk5PLdTfvx+u+dT8OThS+bqVFD31AZI+3sufzF0MM9UP+wpXbkWQGP39kaFXnqqtF5vPxtBxCVur0UPPuhSC11JjxVs6ixwNHp7GYyMDvceHM/tIl5oC5f2ZyeWRzedy6dxxTkSQePjbbuI1e5ginx5YV1OchOG1tG1538aaC78dt8VYi2srr1iz7tZPTI+zzSEdH2OeW7peFCmP3iM600enR7SBqbO0NYVtvGFec3lvyHGFxetQRRaVpmhQ+0oqAVU+nB1DoFAt63ZbnIaQcFD0IIYQQQgghZIUyEzU7OaLJDPL58kPoww7Dc/2xKHosR758+yE8eHRGFgWr+EvFWxkrd4XYIbLd1R6XUginR9inDjHN4XwincOI0jOy2lAjfoTLw+vW0FVhVJV/GTo9AiXire4+OIm3ff8hAMCVZ/SVjFYTqCu9U5mc3IcXq+gfWukIV8vWFeb0ELz50i0F37M7PSIOfR4AcN4G3Q105jpTIAspThBN06STZJ6iR1WI87VTkbnf48Yt1z4bP3jHM0o+RqOKzAEz4iqdyTck3gqw9noAuigrnodOD1IJFD0IIYQQQgghZAXxy0eGcf29RwFYV+1ncvmKIkLspbSCWcZbrThKreLd2quvLD99bRsAs5h4eDZW0WOLwaZwjACFK7cPFRHQVgOqs0oUy3cEvBX3EqirrFdCp8f19w4ilcnhqjP7cN3rzq/o8Xw20UPE1IiM/tWAcHpsXoFODwDY2hvGxVvWAACed/Y6AIVOIPFeCNtEj3dfuQ2PfPwavOrCDfJ7YZ/1NiLiamIxic/+4Sk8cmymsb9AiyKcZd0OnR4A4HZpZY9F/gYVmQOKK8Pi9GjMYwoCHrf83qPHZ/Fvf3hqVQmopHooehBCCCGEEELICiGRzuJvf74Ln7xxLyYWEgXujEgyg9loCt+752hR58bhSec8/dG5BL5/71FLzwdZ3pQSPf7z/5yP33/gclk4LUSPE7OVvb6iqDukOD3sbpNi+9JqIOYQJ1esuNkJdeC4Zpk4PYI+fZsSDvFW4rjwtmdutTh+SuFxaRDd3clMdtU5PfL5vOz0WKlODwD4n7+6BH/4wBW46sw+AGaclWA+JjoXrPuFpmnoafNbHCBBn9VR0GHc5zePncC37jqC//jj/oZvfytixlvVfuxQ3R31RlEJgSOeykoXhr9O94hdNAl43dL9cd0tB/Bfdx3BH58Yq+s5SGtD0YMQQgghhBBCVghDM+Yq/bl4uiASJJrM4Gt/PoRP/24v/vu+wYL753J5HLE5PUS8yIODM/jUjXvxNz9+rPEbTmqm1ArcUqJHm9+DHevNsulNa/SV5sNz8Yq6OKTTQxlYHrUVUBdzDbU6uVy+IOIHKBz6lkJ1enQGl7/TQ0R4re+qrLME0IfeYh+NpbIyEswpqq0VmYmmkDBKnTdU8XdbbgS8bpy9vkMKoPb9Y9jYN4r9jqoYWOj00L8+YLjGhEhESmPGWxUvKi9Hozo9ALNbZCqabKDTwyqaBLwuGW81acQ0ji8k6noO0tpQ9CCEEEIIIYSQFcLgtCl6CAFE08xc78VEBvccmgLgnJF+Yi6OZCYHn9slV4hu7++w3GY1lQyvBDLZ4gKFPfO8FP2dAbg0PWZoKlK+18Op0+OMdW2W2xTrh2lVhmZimImmHEUBwBzgVkJgGTo9inV6RJMZGeE10Bmo6jHFCvJppX9oYZU4PYTIE/C6SgqUK4WgV9+/7U4PEZkn3GR2VKeH2ukBmE4P0X0yvpCUnRDEmUw2J6Mt63N6mPtkvU4PcQ0ytWi+fvXu8wXxVl63FFKEmDjNLjJSgpV/1CWEEEIIIYSQVcKxaXMV7HFD9OgIeGUu+vBsHPvGFgHAsd9DrMzf2hvC2QO62LF9oN1ym5CvvuEHaRz5fB4Zw5XxygvW44rTey0/r2ao5HW7MNCpDyWHKoi4ijl0enzlDRfiTZdsxnfeejGA1RVvdXw6hiv+88947TfvQzTl7FRo91fu2FCHjGvCy8TpIVby21wso0ZhfbvfU5WbBTD30amIOZxcLU6PRFqIHq1xTA0bgkXMtn8MG8eTYqKH2vVR4PQw9idVpB+Z4+r9UgjBQ9PqE0wbWWTeZzhOpqMpJNONcXrY7+/3FIqHFD1IKSh6EEIIIYQQQsgK4Zji9BCix5qQV66kvX3fuPx5OuskeuhD6lP72vDuK7fhOWf24U2XbLHcppr4GtJc0orL49OvPAdnr7e6cqpdSVtNmXlMlhObw7Az+9vxr686F5ee2gMAmIoki3bHtBo/uH8QgP4eiiadV6JX0+mhrrLuWiZODxFvlbA5PcQQupZjg1+KHqbTY7V0eojV6IE6V9EvF4QgXlz0cC5rtzg97J0eDu4oNcZxNZPPO7v8xDF3TcgHt6t0WXkpAg0sMu9tN+KtFtV4q/r2+y3d5v4U8LqgaZqMtxLMRMu7FsnqhaIHIYQQQgghhKwQBhWnhxgMdYZ8cvXs7fsm5M+dRA8xIFjXEcCVZ/Th+29/RkFkUWSVrMJeCaivoc/tkkNpgd9d3VBJDCWHK3B6RB2cHoI2vwf9HXrM0cWfuQXfuftIVduxErl9v/neEvE+HTaRo6pOD+W1XC7xVsU6PYTTY6CrumgrQHF6LK5Cp0fGjLdqBcSxwC56nCgTb2Xp9PA7Oz1UKjk+tTq/fGQYF/7LLXjk2EzBz0SJeU8d0VZAY50eMt4qYsZb1ev0OH9Tl/y32L4Cp0dkdYjupDZa48hLCCGEEEIIISuUuVgKr/zavfjuPUfL3vaYpdNDHwx1Bb1oM4ZKaoRMyiHeSqxQV1fva5p1pehqWYW9ElBFD6/bVTCYqt3pUUm8VWGnh8qLzu0HAOTywI27R6vajpXGXCyFI0qUV8QQPex5+tV0eriUFdprQssj3ipQpKhaOD1EPFo1iN4Z1emxWjo9Wi3eShaZK/Fu8VRWnnc21eT0cBI96PT425/vwmwsjb/674cLfiYinerp8wBMB5LbVeigqBZRqD4VSclrD3+dYt/5G7vkv4WAYu+xYrwVKQVFD0IIIYQQQghZQn7+8DAeH5rDv/xub8nbpbM5nJgzh9VDxmCoS4m3st/eTkRGFllv/7yz18l/R1NZZHPFy7PJySNlvIYuTR9MBWwiRzPjrYRAFnLYtwDgn1+2A79937MA6IXmxaJYWgHVQQWY/QNtAY9lCFeN00ONkKq2J6NZSKdHynrsEE6P9VWWmAOA33hMq+ixSpweotugRUQP0fkSS2fl+/3EnH4safd7iop+baWcHg73odPDRPR3qIh4q562+kQPIUrYzyu1YIoeZryVr0onop0z+82+sYlF/fhhP+fNRlPI8XqFFIGiByGEEEIIIYQsIQFl5asYhN6w8xh++tBxy+1OzMYtYoSIGOkMei3ODYFTkbmI5bGLJF9/04V48B+vll/vGp7DZ363F5OLzMteSkSnh1iFG1T2FbdLqzrPXcRbnWiA0wPQh1Jul4ZIMiOHUq3I7uF5y9cLhugR8nosq5mr6fRQy8LryeVvJOU6PQZq6fRwcHqkMjkZgdPKiN+xEUPl5YCIUcznTUFnyDiWbFgTLHANCvwetxQH7RF9zvFWdHqUwoy38tf1OMKB1AgnkpPoUa/TQxU4hKZud6RkcvlV4xwj1dMaR15CCCGEEEIIWaG0KYLFkckooskMPvGbJ/GxXz9pGT6qfR4qXUEv2vzm4Ehka5d0eth6GrxuF9a2B2T2/Ku/fh++c89RfOzXT9T4W5FGkJYrZo0Vucpwyh7zUQnrjU6GsYVE2dsKp0ewhOjh97ix2SibfXxoDj984FhLxqMJkUMgxEOfx2Up63Ua4BbDHiG1HAgq8Vaqc2ekLqeHvp/as/dXQ69Hyzk9lN8jaoii5UrMBcLtYRfoneOt6PQoxWSkMU6Pxooe+rbMRFNSMK+30wMANtiEVqfHZMQVKQZFD0IIIYQQQghZQtTujcOTEUSSGeTyQDaXlzE6AHB8xnn1a2fIZxFOrji9D4DpElCJFom3Ethjdp6wrXAnjWMqksQd+ydKxkIJ4crrcRA9ahgoifs79b3YMZ0epd0Lp/aFAQB//cNH8InfPInP33yg6u1a7tjjmETJu9etWUqq7cXmpYinlp/oIfaPbC4vjx/5fB6jdTg9hDg3GbE6gexCUisiOz1axOnhcmlKBJr+uw2XKTEXCHdhyFe8yFwc0yYWkwVuo9WG6hobnY/jnoNT8lwh4uYGahAhVUSXUFcDOoW6wz5omt7xNL6gv9dVQbhWXnPRRgCm49DpvMcyc1KM1jjyEkIIIYQQQsgKJWkTPdRhqLpqXqx+XddhjbTQnR7mgOTy03oBOA+2RSSWUxwWUDi0LXY7Uj+v/9b9eNv3H8IvHhm2fP/EXFzGl4hOD69bj42pV/QQ0SCZXL5oDnomm8O+sQU52A+V2QdOXdtm+fqWveNVb9dyx+5eEYKQ1+2yrDyupptjW19b+RudZNSV/MKJMhVJyX/XMmQVTg+7s2N1OD1aq8gcMAXz2Zg+aB6c0h2I5UQPMVi3OzvUTo9TesKy6HyoiMi/WlgTMl0cl332drz5uzux8+gMAJgiZGf1IqTKuRs68amX78BnXnlOXY8DAB63y7LNQGOcHu9/7mn46Iu245f/95kAzHOhyky0daMVSX1Q9CCEEEIIIYSQJSSZVkWPqCX2Rl1hLlbUnjXQYbl/V8grh61nrmtHvzGYrKbIXGAf2joVpJPGcHhSHxb+6EGzuyWSzOD5192JV339PgAOnR51xlupA6N0ztnt8b4fPYYXfvFuHJqIAKjE6WEd3p++bvkN8+vFPqAX0V/2eKtqOj0+8sIz8ZZLt+DXxjBvOeB1mz0xYmD/8KA+aN3e317T8L7YfroaRA8haAfq7DZYTpw1oJdLP3psFvl8Hg8PzgIALtjUVfJ+f/v8M/G2Z27FZdt6LN9XnR49bT55fntyZHW7DJ32mceOzwEARuaMuLkanFcqmqbhL5+5FU/bvKauxxH02uK26u30APRz318/+1Rs79f3C0enB+OtSBFa58hLCCGEEEIIISsQtdD38EREujEAawSMcHo4iR5XntGHa85aiw8973Q5IHdyehQrMhfYh7bFxBHSOMSqXUAvGI+msjg+E0MinZXCldnpYX6Er2UVrVoC6xR/9qc9Y7hpz5jle+XcPnbRoxVji+xFubLTw+2yxls59BMUoyvkw7+88pyGDRwbgaYVxhfdf2QaAHCpbVhdKcUiblZD+XArOj3EfvDAkRkcnIhgOppCwOvCeRu7St7v2Wf04ZMv31EwtA753FJo6w77cN7GTgDArqHVLXo4nb87g14sJtJYNI4/oqNpuSDKzAW1CPPl8LkL30uMtyLFoOhBCCGEEEIIIUuIOtw4MhWR0TmAdTW0iPs42yZ6dAa96Gv34zt/+XS88JwBuZo/5eD0ECvUi4kZ9iJme/46aTxqqfiMsmJ1IZ6WReaOTo8aRA91CJW2DdUy2Rw++ds9Bfcptw+ITg9BK666tbsSYrLTo3anx3JFDOiF4+wBKXp01/R49v3UmG+3ZOG9nZYWPY5O495DUwCAi7d013Q8AnShTcQq9oR90jGya3iu7m1dySQdRI9IMo3Ref180Rn0Lrvzs1308Ddhv/d6nOKtWu+cQxoDRQ9CCCGEEEIIWULU4UYincNhI1YIMIetkWQGszF9SGh3enQGrZESYvhkXymayuSkENJWZFii5qsDQK5EyTZpPCInHwDm4mn5enka1OnhcmnwGFNne/zZ6HxCDtRUysVbdYV8uOrMPim2zbTYqtt8Pi8H9OJ3FMKkz2M6PQJel8VJs1IJ+vTfIZ7OYiqSxIFx/Xj0jFNqc3r023pA+jv0r1dDvFXCiC5slSJzADhvYydCPjfmYmn84P5jAGoXxATCIdXT5peOkT0jC45uh9WC0+++EM/IaKt6S8ybQYHo0YT93u9wjG1FoZ00htY58hJCCCGEEELICsS+onNw2ixwFcPWE0a0VWfQWxBp0WmL1BGr+e1DbRHJAxQvp7Z3eqil6qSxiMJewIw4U1eszsXSBZ0eakZ6rdEh4rHs+93Eoi549LVbB1dBX/nVute//Rl46B+vAQAsJjOWyLaVTjSVheh87w775PcAq9PD7pJaqQg3USKVxc4jZp+H+N2rxT4Q32AUXi+sCtFD30+aseJ9qfC6Xbh4q/6aHjVKzC87tTZBTCDeO91hH7b2hNAR8CCVyeHA+GJ9G7uCcXJ6LCRMp0e9fR7N4ILNXfLf2/rCUmBvJKrYL2LRpiMsMifOUPQghBBCCCGEkCXEPiCeVD7Ai9x7UWK+cU0QQa9bDhPCPnfBin/xtb2zIaqsTi+2Ir3dFnullqqTxqJGIQ3N6KLWrCJ6zMfTBZ0e9cZbAaZbwS6KTS7q+92mNUGEfdU/T0fAK/fLVoobEcKj26XJ4awQEL0eTTo9WiHaCjD3sXg6i6dGFwAAF26pvXfk3A1dlv12gzGs/fnDQ/j2XUfq2NLlT0IWmbeO6AEAV29fK//d2+bDuRu66nq8bUZE3hnr2qFpGs43Iq4eH5qr63FXMk7C8UI8vaydHi8/fz3u/Lur8Lv3X47fv/8KaFrjRQ/12kW4xuZbsEeKNIbWOCsTQgghhBBCyAolmbYOn6cWTdFDRMCIEvONa4LQNA3tAQ9mY2l0hQpXXxcrMhd9HsVKzIHCIuYERY+mkVFEqWPTUZy2tg0zarxVLCUFB5FjXm+8lXo/uyg2Yex3a9sDiKWy2DdW3Sprl0vDmrAPk4tJTEdSGOhcfiuRa0G8BzsCHvneEp0ePsXpYXdJrVTUTo8pQ4AVw8Va8HlcOHdDJx4c1F0jYoX66HwC//qHp3DN2etwSm+41EOsWMxOj9Zab/zmS7fg9LVtiCQz2LGhs+ZjkeDfXnUu3nXFNuxYr0c3nr+xC3cfnMLu4TkAW+rf4BVGLpcvOD4DujtqZG75Oj0AYEtPc9/L6r62JuzFibn4qo5BI6VprSMvIYQQQgghhKww7DEWUxEn0UM4PUIAzAGrXaQAFNEjm0Ne6eSIGKvTw0WirfTHtQoiFD2ah1o0LyLN7E6PlK3I3Ot2STdFvfFWdqfHxIK+3/W1+7G5O1TTY/cYEUitlLEunB7tAS+8xsBNOD18brPTw+m9uBIRcWbxlCl62LP6q+Xs9WYP0TqbgDITbd1oGil6eFrL6eF2aXjmab14/o5+6dyph7Dfg3M2dEpnwHkbOwEAu4bm637slUgq6zzEX4inMTqvL4Cwx1yuFiyih7Hoo9jfixCKHoQQQgghhBCyhNhFj0mL00PEW5lOD8AUJ7ocBq3qUEBdLSoGtaWKqQs6PSh6NA1VdDg2rWfjz8TMmA6nTg/AXIlfe7yVKYqpTEqnhx+XbKsto7+nTR9CtdIgeyGuv2/aAx74ZJG50enhccm+hlaLt0qks5g0Sul722rr8xA867Re+e81tm6QVi40T7ZovFWzucCItzo4sWjpolotqO7Pj7/kLFz7vDMA6EK46PRoFSddtajnQil60OlBikDRgxBCCCGEEEKWEJHdLYbYasGvGLiaooe+Al90C3SFHEQPtyp6mMMAMTwqFW9lH9yyyLzxiJ6WtCXeqtDpMRdPIZOzdnoAjRA9jE6PIkXmazv8eOtlW/D2Z23Fd956cVWP3RPWHQHTkdZxeojXqyPglQM30Y/jdbukSNBqRebxdFZG7fW21+f0uOastfjAc0/D5197Pp5/9jr85WVmZFErih7ZXB6xVAbJFo23ajZrOwLo7wgglweePLH63B7JrL7faBrwzstPwXONDpV5pdNj/SoVPfwWp4d+zHUqfScEYKcHIYQQQgghhCwp4gN7T9gnV3EKxMB1OmJGDwGK08NJ9PAUET0MASNUqtPDNrhNcJjQUL53z1F8+nd78aW/uADZnCl6CJeFWgA+F1PjrcxCWDFA9dfc6aEPte1OD7XTw+t24Z9ftqPqx+5uyXgr0+kh3qsiNc7nceFl5w9g9/AcXnfxxqXaxIYSMOKtYkq8VV+d8VaapuHa558pv/7UK87BibkEbn1qvCVFj7/83oN44sQ8Qsbf0t9i8VYng/M3dWJsTwK7h+drdp6tVITTw+9xQdM0eV6ejCTlsWddZ33vyZWKugCgk04PUgbKzYQQQgghhBCyhIhB6hqHUnIxEJyLp43b6MMPEUPVGSy8j9ulwah9sAwDTKdH5Z0eqUzOMpwn9fHp3+0FAPzT/+6xfF+IHbMxa6dHyXirGjs9RERTQafHolVYqwURgzQdaZ14K1P08FrEJ0D/W562th3ff/sz8LTNa5Zi8xqOcHpMRZLy2FRvp4cTHcaxJpJMl7nlyuPxoTlLFBGdHtVz3sYuAMDjw3NLuh1LgRCkhVjWacRYCsGjt82/aoU0a7yV/neh6EGKwSMvIYQQQgghhCwhIgKlxyE3fyGRRjKTlR0CXYYwcvnpPQh63bh0W7fjYwq3h7qaP1JBp4dTRA/LzBuDWiq/3lb+Ox1NIpE2X2dAiB6G00NxdQQb1emRMbcnm8tLoWJtHaJHtxFvNdNCTo8FWWTusQzcABR83QqI/WtoRo/RCfvcsty8kbQZokerOT3y+byMPxOw06N6RK/HrqG5Jd2OpUA4PcQxvs22GGG1lpgDxYvM1fMrIYLWO0MTQgghhBBCyApCrFLsDheKHpFkBrNRfejqdmlydfSrnrYRT37qBbjqzLWOj2kOtgudHuEynR6bu0OWwTfLzBvD8ZmY/LcopBeks3nLzwFRZO7U6aH/u17RQ3V6TEeTyOUBlwb01LGqvzXjrYxOj6C3QOSo9TVYzgiBY2hW3x/r7fMoRnuLih6xVBb2+SudHtVz1kAHAL3PSvRerRbE7ysiDN0uDe3KeXugk6IHYI33FMLH5/60D1/786Gl2DSyDKnryPvv//7v0DQNH/zgB+X3rrrqKmiaZvnvPe95T73bSQghhBBCCCEtSal4q3weODGnDx87g15omhmv43ZpBbcX+ORg25y+VVJk7nJp+OPfXIHb/vbZcuBCp0djeFxZsSxec7dLQ9gYMh8cj1huPxdLSaeOtdNDxFvVtnpcuEZU0WNiQXd59LT5S+5X5TDjrVpJ9NDfNx2rxOkh9q9hw+nRjGgrwIzoazXRQxxnVVZrFFE9rAl55YBbHJ9WC2Kxgjrg7wiaA367U3A1oR5z1YUiqUwOP3t4CF/782F87k/7ZU8WWd3UXGT+0EMP4Vvf+hbOO++8gp+9613vwqc//Wn5dSgUqvVpCCGEEEIIIaQl+dOeMXQEvJYicyeOTeuih1NpeTFkvFVGjbfSxYtSTg/150GfG8lMjqJHg9g9PC//LQajPrcL3W0+RGfiODShix69bT5MRVJYSGRkzIljp0etReYOnR6TDSqsFvFrc7HWEz3aAx74PPZOj9YTPUS8lRDcih2X6kWIr63W6RFxED0Yb1U9mqahvyOA4zMxjC0ksKl79cwVxTWBKpapfVvrO1ev6OFXnR5Kp9nYfAL/9od98uv9Y4t19VOR1qCmM3QkEsGb3vQmfPvb38aaNYVlXaFQCP39/fK/jo6OujeUEEIIIYQQQlqFuVgK/9//PIK//uHDstNjTZHhoog9cnKCFEPGWymD7VhKxFtVNoATw894iiWhjUDNpo8Yg3SvW5M9GIcmddFja09Y3m7KECMsq1uN/aAzWLkIpuIkiE0aK6nXdtQ3JHJyGK10FuKi06Mw3qoVnR4hW3/Hao632j+2iCdPzJe/oYLayyNgvFVtrDOOR+MLiSXekpOLKXo4Oz0G2OkBQL+WEeecnz8yjPm4KaDuG1s46dtGlh81HXnf+9734iUveQmuueYax5/fcMMN6O3txTnnnIOPfvSjiMVijrcjhBBCCCGEkNXIfDyNXB5YSGQQMcSIYiuqTdGjeqdHusoicxWxOjmxyvLUm8XeUXMII14Ln8eFXuN1Pzi+CEAXHsQqeBHRoQ563vfc0/APL9qOl50/UNN2mIKYKUxMLOpDxXpKzAHAY7hIMrnWEcrMeCsvPK7W7/QoED2aFm9VueiRyeZwaGLxpJYVJ9JZvOCLd+GlX7kHcQchoxh0ejSOdR36cH9sfnWJHo7xVgFF9FjFTg9VaA77PUoEmnUfeWp08aRuF1meVB1v9ZOf/ASPPvooHnroIcefv/GNb8SWLVuwfv167N69Gx/5yEewf/9+/OpXv3K8fTKZRDJpZq0tLFCNI4QQQgghhLQ2SWWVvZjj2YvMfW4XUtmczNbvqsXpUWWRuUpAOj0oetRLKpOzrAAX5dhet0u+7gcM0aMr5ENn0ItIMiNjp9ROj03dIbzn2afWvC1ORebjhtNDDBnrf+w88vm8pYNmpSJeq/aAB15bvJX6urQKF2/ths/jkseOvrbmxFuJTg8nkcDOP/92D27YeRyfeeU5ePOlW5qyPXb2jJizqbl4CkFfZYNme6eH26W1pCPoZNBvHI9Wn9PDWmQOAB1BJd5qFTs9hGvK7dLg97h00SOpLyABgM3dIRyfiWH/OGfLpErRY2hoCH/zN3+DW265BYGA85vs3e9+t/z3ueeei4GBAVx99dU4fPgwTj218MLss5/9LD71qU9VudmEEEIIIYQQ0lyaObQVXQ0qPbbhYl+7Hyfm4jg2EwVQpdPDobchanR6lCoyVwkaw4U4Oz3qxi4cRY2vvW4XeoyV9DlD/NraE8LjQS9OzMUxZTg97A6DepDChCKIjRlDxfpFD/P9ks3lpfNjJbOgdnqsgnir7rAPLz1vAL969ASA5jk9xHFoMZGWDo5ix9sbdh4HAHz2D0+dNNFj9/Cc/LdTZFUx7CJOoAXdQCeLdVL0aK1S6nLXFk6dHsLp4XZpWNu+ekWP/o4A/uLpm7CuIwBN0+QxWcQQXrCpC8dnYjgwHkEmm4OnBY/RpHKqevUfeeQRTExM4MILL4TH44HH48Gdd96JL3/5y/B4PMhmC08El1xyCQDg0KFDjo/50Y9+FPPz8/K/oaGhGn4NQgghhBBCCGkcuVwer/7GfXjH9c4O93pJOXx2snd2rJV55vrApxqnh3OReZWdHkbMDYvM6yeasg5Cs4bC4XVrBbFm2/s7ZGm9GLh7Gzg4dRLExhskeqgDpkyuNXo9hOgX9nsKRA5/iw6033rZVvnvYl1D9SLirWZjabz8q/fir/774bL3iZ5E19nuYbPLI5as/Hmjttsy2qp21nUa8VYt5PS499AULvrMrfjjE6NFb5Mq0emxrt0Pt2vli8m1omka/v015+FDzzsDgHmts2A48k5f24aQz41UJofB6eiSbSdZHlR1hr766qvxxBNP4PHHH5f/XXzxxXjTm96Exx9/HG534cH88ccfBwAMDDjnjfr9fnR0dFj+I4QQQgghhJClZDqawmPH53D7vgnkmjC8dXJ62EWNU3rDlq8bV2ReYbyVh6JHoyi2UlyNtxJsH2i35LcDplDRCJw6PURmfn+9oocyjFNFlV1Dc3j5V+/B/Yen63r8k006m5MCld/jWhVF5oC+WvqFO/qxuTuEczZ0NuU5RLxVNpfHEyfmcdu+Cfm3Xg7sGpqT/7aLlqWwx1tR9KidVoy3etN3dmImmsL/d8OjRW/jGG9liITru1Zvn4cTQvQQJeZBnxtn9rcDAPay12PVU1W8VXt7O8455xzL98LhMHp6enDOOefg8OHD+NGPfoQXv/jF6Onpwe7du/GhD30IV155Jc4777yGbjghhBBCCCGENIucUpibzefhQmNXVqqdHoA+3HC7NAS9brmy/GmbumTEDFBrkbn5e4jBe7DCIVzAx06PRhErMjT1eVyWWLPusA99bX60Bawf1Rs5XLe7gDLZHKaM7pB1nfVFGanbmVH2vTd/ZycWkxm85bs7cejfXlzXc5xM1PdpwOsu6PBopANnufGNN1/Y1E4Wp5i9aCpTIPgtBfPxNI5MmavEi71/nbALJC1Qa7NkrDPcjmPziZbpCKoE6fTwmseXs9frC8Qv3LJmSbZpuSKEoYW4/r4LeN04pSeMx47PYWQuvpSbRpYBVReZl8Ln8+HWW2/FF7/4RUSjUWzatAmvec1r8PGPf7yRT0MIIYQQQgghTUVdcZzN5dHoxbpOogeguzDi6Sy8bg07bCusO6sQPexF5tlcXj5nyFdhvJUoMndwpZDqKOX06AmbQsP2/nZomlYwEG6k6GEvMp+KpJDL61nxveH6RA+3S4OmAfk8kM6Z+82isfp9pUVeqS4nn9vJ6dG6Q9hmD5jdLg1hn9sSWRVLZh1Fj3a/R+5D2Vy+6fE+TyjRVkBhZFUp7E4POuVqR8TtJTM5LMQzVZ0DVzLiXK12CD3z1F48+LGrm9axs1IRIr5YLBLwuqWbtZouHtKa1C163HHHHfLfmzZtwp133lnvQxJCCCGEEELIkmIXPRqNiK8Q+A2Boc3vxlRE/+B+5rp2y22qibcynR768EQtIw/5Koy3MlaZcmhXP2KluM/tskSOed0auhWnh4jlaD8JTg+xb4i8/LXtfrgaMEz2uvTfUXUZrVTk8NHjgsulFXZ6OER8k8ppC3gsooe9BFzQHjBFj8nFJPo7m1vkfHDCGotTjdMjYhNI6JSrnYDXja6QF3OxNMYWEqtO9PDbVlusrTN+sBXx2Y7JAa8LIaO3LFbkeEJWD63rxSSEEEIIIYSQGrHHWzWaYk4PIUiEfPpqxc3dIXmbqkQPm9NDDO00zRQzyiGcHhQ96kesOO2yDe10p4f5um4w8trtTg+fp5GdHvpjCfFF9HnUW2Iu8BiPn8kWOoQ6gytraJlMW7P1C+OtWtfpcTJot7k6hEtiZC6Ox5VODfV4OTLf/Mga+wrxalaM250ecR4/62Jde+uVmZcj5eD0IM74bBGDAY8bbcZ1VDVdPKQ14TuIEEIIIYQQQmxYnB5NWLGeKiJ6iGG3EBw2rjFLS+0D81LYB9txpc+j0tgaM96KQ7t6EUNTu3Dlc7ssRcfC6dHMTg8z3krfr0VJcL0l5gJRZi4eX93XV5rokTCi3cRrZB+wtWqR+cnCLu4JweDN39mJV37tXjw0OAPAegwanWv+8NvuzqhH9FhhiW7LDuHqGZ6NLfGWnDycisyJM/a/UcDrRsg4rlQTS0daE76DCCGEEEIIIcTGyXZ6+Dz6UDVsxDKIIas6iA5UUSxiL6sWQ7tK+zwAFpk3EhGz4eT0AIDPv/Z8vO85p+Hy03oBFA6DmyJ6GPuGFD0aFBkkHj+Tsz4+ULnLaLlgHz6qr4OmmQIPqQ37/hBJZpDL5WWJ+A/uP4Z8Pm8RPU5GObFd6LULGaUoFtFFauO8jXq31SODs0u8JY2l1LEjmS4sMifO2IXooM+FsHHtUk0sHWlNGlpkTgghhBBCCCGtgJrM04xOj2JOD1HAKcSJrb3hmh7fXlYtRI9gNaKHIcQkMiwyr5dY2tnp4TVe99dctNHy/aZ2eojoM3unR0djCnKl6GE4PdQh9UorlrU7PdTXwet2Nb3su9WZi6UtX0dTGUxHU/LrXUNzSGZyUHXn5R5vtdL28eXOpdt68JXbD+GBI9PI5/Mt856zD+tVklnGW1WK/W/k99DpQUz4DiKEEEIIIYQQGye9yNweb2WIE3/5zK04a6AD73vOaVU9fkGRuXB6eCtf9xak06NhxJLOnR7Fhlpt/spuVwv2faPh8VZuEW+lP/7ovOn0WGn7kt3p4VE6PTiQrJ8ZReAA9BLwUUXUOD4Tw5Mn5i23ORnxVqLHqNvo26nG6VHNbUl5Lty8Bl63hpH5BI7PtE7EVUnRI+1cZE4KKej08Lrp9CASnqUJIYQQQgghxIYl3qopoofN6eEV8VbWTo/OoBd//Jsr8OEXnFnV4xcrMq/G6cEi89o5ML6IN33nAVx3ywEA5urvTrvoUaQIuyDeqqFF5tZ9QxSZN0r0MOOtDKeHMsReacWywukhRA+fxenRGivOlxK76BFNZjBiEzX+9/ERy9ejJ8HpIcQ5IXpU494Q8VZ/94IzEfS68cXXX9Dw7VtNBH1uXLCpCwDwwJHppd2YOskr1xWlRFN2elSO32O9pgl4XQjJInNeu6x2+A4ihBBCCFkmPHliHu+94VEcNbKsSWtx36EpvP/Hj2EqklzqTSEV0GynR9F4K0OUCPrqSyKWg20jYkhk1FfV6UHRo2q+dOtBvO6b9+OVX7sX9x6axpdvO4g7D0xK0anN57ENzp0/kjcz3sqrODFSmRyGZvQh8sY1oYY8vllkbjg9lCF2Ip1ryvupWYjho1O8VamV2qQyPvvqcy1fx5KZgs6OR49buxxU51Aprr/3KD752z2WQXOliDi6HuH0qEKsE06Pl5w7gCc/9QK88mkbqn5+YuXSbT0AgAeOzCzxltSHutih1PFDXB/wGFMeR6eH0Y0Wo+tq1cN3ECE1kM/n8Z27j+C+w1NLvSmEEEJaiJd+5R78/olR/NP/PrnUm0KawLfuOoIbd43glr3jS70ppAKyTS8ytwoJ4oO76PDY3B2s6/EbUmRulKjaS31XE8lMFtfdvL9g8OrEQiKNL9x6AA8OziCWyspV4h//zRNyRXvI77EMaYqJGXanRyOjlLwy3iqPfWMLSGVz6Ap5sanOfU7gsXV62Ffmr6TIETGkNIvMTXdHI4Wo1cprL96EnR+7Gu959qkArPFWHYbwN76gLxRwG2LaVCSJTLZ8z9Anb9yL6+8bLDso//GDx3Htzx7Hv/xuL+aNjpGEcbzsbdd7bmIVdgPkcnm5ujzs98htJvVhih7TNYlYywU1+qzU8cM87jDeqhxOogedHkTAInNCauCnDw3hM79/CgAw+O8vWeKtIYQQ0mpMR1Llb6SwmEjj14+dwAvP6cfa9sbEk5DGI3LzF+LpMrcky4Fcszs90s5Oj1dcsAFbesLYsb6jrscvVmQeqsJBIuKtVrPoce+hKXz59kN4aHAWP373pSVvO2EMZ8M+N771lotx7sZOXHPdnRiaicufhXxu+D0uCMNXscFX2B5v1YQi83Q2h11DcwCA8zZ2NawgWAgDmZy+79njimKpLNoD3oL7LUeS6RJOD4oeDWFdRwBtxsrsaDKDiCGKbe/vwIODM5iO6m+WjWuCODEbRyaXx1Qkhf7O4tc76mC8VBzWXCyFj/36CVmUfkpvGG++dIs85vWKeKt0ZUJdTDlW2oVLUjui12PU6PXY0hNe6k2qCbVYu9R1hV1sJcWxH4cDHpfp9FghAvujx2cxNBPDKy6gK6zR8B1ESA2ouaIreaUBIYSQ5YOaa336uraq7vvzh4fxT/+7B9+840ijN4s0kMlFfXDDktOVQdPjrbJ20UP/kO52abhoyxo5ZK0Ve1m1iHmoxunRZqy0nlhIWiKu4qksbt833tKxV0+emMfx6RgWE/rfrZJ4m4lFoxujM4DLT+9FZ9ArxSsxxAr53JaVqb4ivRA+j8vmCGlOp8euYb0k+oKNnQ17fDPeSn/fCMFXsJKOgfbho+W140CyYQiRL5LKYNSItzqzvx0ApCAR9nmw1nBejC0URlw9PDiD49N60XVCEZVLLTSYWExC/TgvFp2IYWlPW3VOD3GcdWmmU47UT6v0ekSUY1+6hFspZThBeYwpj/086XGbnR7pbL4gSnQ58uqv34e/+cnj2De2sNSb0nLwHURIlWRzeewanpNfR1bQRTshhJDly27l3FLt6lGxCnKSXRHLlnQ2h2lD2FrktcOKINvsIvMiTo9GIYbpMt7KECiqKTLf3t+BDV1BRJIZ3LjLXPTz7buP4B3XP4z/vm+wcRu8jLjzwCRe+pV78Nbv7ZSvUyWDEyFsqo67XmNoKgj5PJbXupSDw3K7Bu4fMvosm5PnnvM2djXs8T02l5H9mFdNKfRSk7A5PTwuxls1AyF6RJMZ2dkhRA9B0OfG2g79vTU2n8ChiYiMuTowvoj/8837ceXn/gzAusJ7Pl78nGt31i4kjHgr430v3r/lRM/R+TjuOzSFBwf1KK2wz9Mw5xTRaYVeD3W/FKKwE3R6VI76NwoYi0fCynVOJW6PvSMLuO/QFMYq7AtqJOo8UVxDkMbBdxAhVfLIsVnLhfpUlREkhBBCiBO7hublvxNVrkoSH85X0urZ1YY6WOHrtDLIKW/Dpogetk4Pf4NXBauDbUB3ZwDVOT3cLg1vunQzAOCHDxyT3z8yGQEA7BtbRD6fb6l9OpXJ4b03PAoAGJyOydepEtFDRFj1tZtCh130CNucHqXEDDXP3etqfJH5XCyNgxP6a3nepsY5PWS8VTYvy9IBpRR6ifaXVCZXcnW1E4WdHs1x36x2RBTUQjwtnUFnDdhED68b/Ybo8dOHjuOa6+7E+3/8GIDC1f9qJJ9wYDkhFo0IhCtE3L+nzYi3KuH0mI+n8Zz/dwfe+J2deN+P9O2xx9OR+rmsBXo9Knd6sMi8UtS/kV+I026XPGaXW6R8695xvPjLd+ON39mJ5/y/O6TwebI4MWvG72ngOaXR8B1ESJXc+pS1fHSKq2oJIYQ0ANXpUW1kjLg93YfLF3XoEq0wJoMsLarTI3MS460ahRphBJirHavp9ACA11+8CT63C7uH5/G40f8gFv0Mz8bwyd/uwdM+fQueGm2NWIafPHTcciwVi53sr5cTwm231iJ6+Cy3CdpFj0qdHg0csAs3YSSZQT4PrO8MNLQPyuMynR7qYjEhAMWWIBYtnc3hWf9xO174xbuqGpiK86sYpjHeqjkIkeDoVBS5vL6/b+u1Rn0GfW7Z4/Hn/ZMAgD8+OYabnhzDXMwcVKazOSnyAmYRuhNqtChgOj3E8VJ1ehTbb0bn45Y4LcDssyGN42mb18DndmF0PoGhmeI9LcsZ9fqvlOjBIvPKsTg9lMUj4phSzln47bvNaOB4OisXL5wshmdj8t+VxGiS6uBZmpAqER/2BFO0oBFCCKmTVCZnOb9UK3qIFYmttNq61VA/RDHeamWgFpnnmrCqtNnxVsWKzINVdoX0tPnx0vMGAAA/uH8QgLnoZ3g2jv++/xhS2Ryuv3ewAVu99Ow5YRVvRKdHZU4PXdxc22GKHqrrA9AHMeogq1inB2B1/7hdje/0EJzS19hSYLPI3HQB+dwudIb08vJK+xEaydGpKCYXkzg8GZUDxUoQtw04Oj04TmkUosh81hAv1nUE0BG0lt0HvW6s6ygU5z752z2WhYjRZMYy6LR3yqgIAbc9IJwmGeRyeSliCHdSLo+i+40QWPqVbWMaROMJ+tzY1B0EAAzPxcrcenkSrdDpIRyGjLcqj88iepjnVuFqLfXZaP/YInYenbGcX092B8iw4vRYKcXrKwm+gwipgnw+j33GKjZxwqXTgxBCSL18++4jsu8BKByGlkPcfiXlpK82Jm0DGbK8+PVjw3j11++15DmrkVaZEtnbtVLo9Fh+8VaCt1y2BQDwu92jmImm5PWvWiasDvpXMvZr+3kj7qYSp8fEYvl4q6DXbeltKu30MF+rRvYD2CO1usONfe3E75TJ5uQQJ+x3y5z1pVjNqh53qznH2p0equOm2v4tUhy7A21DVxBul4Z2JSZKFz0K99WxhQTuOjApv15MZCzxVk6l54IZI95qW68u/C0k0hZxo1txahU7d4vnag948Jv3PgtrQl68/7mnFX1OUjudhhCmltPHU1m84b8ewDfvPLxUm1Ux1nirvKN7KJ83y7cpepTH5zbPkxanh6+80+OGnXps5/POWocNXfp8r5JzfSMZmjEFvAid4A2H7yBCqmB0PoGFRAYel4ZLT9EzJSe5ioMQQkgdDM3E8OXbDgIAXnHBegDWLOpKYLzV8kd1elD0WH586Ke78OjxOXzJeC8C1kirZjo9xCy78UXmhtMjo2+7dHrUIHpcsKkL52zoQCqTw48fPC4jYdQ/S0fAW+TeK4upInE36QYVmYf9HouDo9J4q0Zij8rqDjX2tTOLzPNyiBPyeRAScSNLcAxcSCiiR6byc2zpTg+OUxpFm60DY2uPLkKobo+gz21xU2gacP6mLgB6/45gMZGxxFtNRZKy8NyOOJZtNUSP+Xjastq6zeeRg9Riw9O4cmy9YFMXHv748/C3zz+zxG9LakWIHvOK6PHQ4AzuPzKNH95/rNjdlg326z+nMvNMLg9x+cF4q/KoTg/VyRryl3d67B7W+xRfev6APMYnT3L8osXpwc8HDYdnaUKqYP/YIgDg1L42DBhK8DSdHoQQQurgjv0TSGZyuHBzF15/8SYANXR6ZBhvtdxROz0WE3ydlivqqstckzs9xOD19LV6bv3GNaGGPr4YBMh4q7Q5fK4WTdPwF0/XC81/89gJOP05qj1uLVfs0bW1OD1KdXqEfDanR8ki8+Z8XPe7rYO0NWFfkVvWhtcl4q1ycohjdXqc/H1lLqa4KauJtzLESdPpwU6PZmAv/t7Sqx8PRewUoIsK6zpN0eOUnjCeZogeKouJtEWgyOetbksVEUMlRJaFeFouPPF7XHC5NLlivJhDSdxeDFwbGUVHrDiJHsLJY1/4c3w6hn//476SRfYnm4htH3LqflEXPqkCOXGmWLxVJU4PcS7oCHgL3LEnCzWqbSnOja0O30GEVMFTY3q01faBdvQZH2AYb0UIIaQexOrT09e2y6FKoopVqABk9nQslbX0EJDG86tHhy2l85UyoQxSWVS4vFDfMz3KgFqNt2rG+0rEV3z6FefgV//3mbjqzL6GPr4Yzh6ZiuKGnccQMRwLtcRbAcBZAx0AgIMTEcefV+tQW47k8/mCa3sRo5LO5kvuB4l0Vg7i1HirrpAPYgaqafog1e+trNMjUGX/SqV4PTanR4NFD4/xO6WzeTnECfs9UnArl1uez+fxi0eG8eSJ+YZtk1pYXUygm1hM4If3D2IxYQ5UxflYdHq4XZp8Pen0aBxhv3Vfd3R62Do9tg+0Y3t/e8FjLSYyBfuYGl2oIvaLbUavzaLSByJccWLFeCVOD9JcnESP8XlT9FAXLnz77iP45p2H8dMHh07uRpbA3mcknJgqYgGT160x3qoC1EUEqjMmVEGcolh8EvC65d+6kk6PycUkfrTzeMlelkpRnR5cvNZ4+A4ipAr2jepOjzP726VVnSVlhBBC6kFEp7QHPHKVYKLKTg91gMOBevPYO7KAa3+2Cx/86eNV33dy0Rpv5ZTjTJaGWWUF+JqQOfxVnR7Zpjg9cvI5L9y8pqGdDYA1wugff/0kDk9GAdQ+mNvaU9qJ0gqiRySZUV4XIztecWalHVblCoRY4vO45GAO0IfkojMj7PNA07QqOj2aFW9lfVx1v28EHtnpYRaZh30epVi29L7y6PE5fPjnu/DSr9zTsG2ajZZ3erzp2zvxif/dg3/7w1PmbW1OD8D8+/k8XNHfKPwet+WYtblbP96osXkhnxttfo+Mwtre34HthhirEklmCoStPz45hoPji8jl8rjrwKRc/S9SG4TIks+b5+uQ8ZrLFeNF9tu4dNFR9Gg2quixd2QB+8YWMG68ltlc3nIeGpnTh8nT0eUzr7EPtZ1cBRHjnNPm9zT8uqAVsTo9lE4Pv/m+zeXyuPvgZIEYKo/vHpfp9KhA9Hjxl+/Gx379BP77vkEA+r5398HJqhyv05Ekfr97FHMxU8BjkXnjoehBSBXsM5weZ/V3oLddiB50ehBCCKkdEXXUFjBzo6uNiVE/5JUbJpHaOTypr3A/Ph2reuW/Knqks/mq4lVIcylWcmspMm+i6NG0CKMij1vrYK477CvI3VdphXgrsZgp7HNLIUBdUVxqGCJLzNv8BYMqEXElBCc1sqRURJK/SU4Pj6u5Tg813koI8SGf2xxClRnsqK6MRn3WmrHEWznvq8LFdMd+sxTb7vQAzJXFLDJvLOpagC2GyKoKiML5tL5Ld3ucNdCBM9a1wT4XtsdbAcB/3XUEL/rS3Xjhl+7CW7/3IP7+F7uRzeUxZ7y/B7oC8r04bpwTAsLpUWbFuHB6NMuZRUyE82diIYnXfvM+vPYb9+OYrc9FII7J6jF8qbFHcDk5BRaT5ucCUh5/kXgr9X17y1PjeMt3H8TLv3qv5b7yOszrqjjeKpLMyGv6B47MAABuenIMb/nug3jV1++reLv/6X/34L0/etTyPX6Gazw8SxNSIalMTq6Qszg9Fil6EEIIqR2xoqs94JUX68kqnR7q7Vlm3jyEBT2Ty1sGaOXI5/MW0QOghX05Ma6IHmqpaLbJReZigN6sXoBiBaghb22DFE3T5CBSf3zrdsdbIItaDNh72/3ydVmoVPRYMESPdn/Bz8T3RKfFUjs97G6TZjk90tm8XB2vx1tV1umhrtatJU7Qidmo+TqWO8eqIpCj08Oh1JzUjyoutxsOj46g0ulhvAYfeeF2/OVlW/DsM/oQ8nmwpdvqQlMjquyPf2BcF7YeGZzFbCwlhZbukE+6SsaN97J4vnKxbPZOD9I8hAh2cCKCaCqLxWQGjxyblT9Xo+mEm2c5iR524cxJ9DCdHt6Cn5FC/EWcHm1+s9Pj7oO6kH1oIoKhGVMkEwK432N2bZVblHSnIop3GMLUHfsnAABPjS5gdD5e0TX+40NzBd/jZ4PGw7M0IRUyOh9HNpdHwOvCQGdArtiKprIt8SGPEELI0rCoxFsJ0SOVzVUVp6OusKY1unkMz5oflIrlgzsxH0/LlWPiQxXFqeXD2LwpSGWUAUQzi8xzubzcJ5o12N64Jog3PGOzLEoX1JM7LyJgAOCcDZ2Wn7VCvJVYzNTb5jdFaGUAUmoF6KQxYFvrIHqIxVJBY3iqOj1KDc7VaJ9G41GihJrX6ZGTxzq9yFz//ct9dsoo4uOuocb0ekxHzfd5ud4s9e+RkEMx9TXTf79SJfSkMdjjrQDg6rPW4VOvOEcKk9v7rRFXiwkz3uqybT141mk9+PqbLsQ/vfRs+V70eVyYNpxdXSEvPG6XFFiEEB6yOz2KxVulGG91shCix7HpqPyeKnAJp0cul5fOveUkekTsnR5OoodxzGwv4awkJurCkaDF6aH//aLJDNa1m11AP3rwuPy36ritNN7q5r1j8t8iWm2TIry+5uv34ZxP/gm37h2vaPs7Ah5cc9Y6fVv5Ga7h8CxNSIUMzeirOzeuCUHTNLT5PfLilxFXhBBCakX9cKOuUKomKka9LYfpzUMtGxwvEonkhPgQHvC60GX0BPB1Wj5YnB451elh3qbRRebq8LxZTg9N0/DZV5+Lr7zxaZbv1zOY26w4Pa48vQ8Xbu6S18PxKh1qzSKXy+N137ofb/3eg1V350inR5vPUYxyKp0ViOPD+q5gwc/EYinh9PArQkepiKT3PudUnL62Df/wou0VbH11qOcNcVxqFF6X6PTISSE+7PPIQuhyq1nVQeCuk+T0UP8eTk4PNTbF46LTo5moMXpqkXmgyLHrNRdtxObuEJ55ag8Aa7zV07euwQ1/dSlefO4A3nH5Kfjd+y8HAMzF07LPo8d4vU2nhxFvJTo9/Obw1Ak6PU4eYn8odkoW11szsZRcPLScRI+CTo9MHuMLCTzr32/H5/60D4Di9GC8VUX4isRbhZXzjboo46cPDSGdzSGfz0uBQxc9jIVniugxNq+/Nl+57SAA/Zx2+74Jy8/t9xmZTyCfB+45NFVyu0Wf3G/fdzneeMkmAHB0qJH64FmakAoRqzs3rdE/yGiaJleKTFL0IIQQUiOLaryVEkdTleihXGwzD7Z5qE4PEX9RCap9vk0OT/g6LRes8VbmeynbRKeH6h4oFkPVKDbbol/qGcypZeYDXQH86v8+C198/QUAgMQy+bA+upDAg0dncNeBSZmNXimTxsrg3ja/Y59GKlv8dxS58k6F76bTQ3R6qFFJxYtqe9r8uOXaZ+M9zz61gq2vDnWXbnQXgXR65PIyyirk85iF0GX2FTVmbvfwfNXilRPWTo9C0WNCOaarwqBT944YsjXLpbXaESIhYMbHAGaxuJ3nnb0Od/39c/Dc7WsB6ENjsY8Jd5VACHzZXB7HjZibnrD+/hQDdXFOEMfKdmMb1L4IFdnpQadH01E7XpwQC0rU9/NyEj1itnNSJpfDZ37/FE7MxfG1Px8GoHR60OlREerCgYCT0yOVRUIRumeiKQzPxq3XYV7neKtHjs3ixFwcfzLcHZORpOU4ID4LOLlA1RgtO8lMVh6j1oR8clu5IKrx8CxNSIWI1Vsb15gfZGSZOXs9CCGE1IhaZO5yaXKYkqiw6Dpti8JiHmxzyOfzFqdHsfJrJxJypbBLrhiNJJfPh/DVjvpaWuKt1E6Phose+oddTTOjcppFyDb0c7lqf74tSrxVnzHIF4O+5RJvpYpYIr6mUkynh99SXC0olfU9aMStqH8jwXkbuwDoxctA5Z0eKxXxO2WyOXlOCvvdZQuhBZlc4YCqHvL5PGajhUXmv901gn/89RPIZHMypgSwii7JdGFJtYy3avJ7d7Xx9mdtBQD808vOlt9TnR7lovnEkFiNt7I72wJet7zOOjKlv2eFs6czaO30EPcVnTfFurxi4rno9Gg65UQPERmrLkpdLqJHJJnBuDE3EoJpOpvDg0enrbej06MqVKeHKkQLp0cslSm4PhmaidkWn7hk7KTq2hDnKiFQiH1JPE8kmUEkmZH3+b9XnYr/eeclAMxrAifmYvrjuDRdVJULArggquHwXURIhYjVnRvXmJb1PmMVylSVH6gIIa3Pzx4egkvT8H8u2rjUm0KWOWqnBwAEPC6kMrmKnR72C3muEmoOU5GU5QPSeBWdHmLAFvCaTg97rjNZOtR+lmJF5g13eqTNjhdNa/7gtCPgwUKRVcrVoHZ6SPeCd3mJHuoK35loEqf0FooQxZCdHu1++KcKB5jq/qGSz5urxrc4OD0uO7UHD37sakufgKBUvNVKRYgBmWxeutr0IvPKBjv2TPU9IwuWzPRqWUxmLO/hRDqH+XgaH/jxYwCA5+/otxTWq44vJ6eHEHVaUbBaSj7xkrPxnmefinUdZv6+2ulRzqUmys8XkxnZyeR0n66gFxOLSRye0EvNe9pEvJW100OILOLnqnCmkpCuEooezaa86CGcHuZ5XVxTN9rRVi0PDc4gm8tjc3cIPo8LhyYiSKZzBc5hsSiGnR6VUSzeyuz0yBZ8phqejWP7QDsAXXjwuDR5LlYdnUK0F+eseUOsWN8VxORiUheyFhLyOj/odctrgKEZvRPY7bDQRIgeXSEfXC7NjOJip0fD4VmakApxcnoIKyw7PQghKouJNP7+F7vx4Z/vkgNtQpzI5/MFhYXigr1S0cN+Ozo9Gkcqk8PPHhrCbDSFoVmrTb0Wp4ff4yqbDU5OPhOKY1ddYa4WmWcbEK+j0uwScztrlSFiXY/T7seakBdul4b1XfpjStFjmcRbTSgr9qtdmCSu6fvafI5Oj2IFp5ORJGKpLFya9bOCytqOgHTZOA3Ql4pmdMqIzot0Li+PdSGf2+z0KOv0sL7fDk9G6toe+7A6mcnil48My69TmZxjzF02l5fvVavTQ//9mtXHs1pxuTSL4AFAlosDFTg9lBiqWAkhQkRcHZhYBACsNUqOhatE7H/iNZdOjyKih+z08HFI3WxCPjc8JdyKUvSwJXEsB7fHA0d0R8el27rlMWTPyIL8ueoeABhvVSnF4q1Eh1YslZHXJ2LXGZ6NycUnfo8bmqbJv796nhfHEXHOEvtRR9CLdR36LHB8PiHFcZ/HhfVdQXjdGlLZHEbnnV2Kos9DHIvUzwaNiHMkJjxLE1IhpuhhOj1624XTg6IHIcREXR1cLP+XEEC/mBa7i1ihWK3oYS9k5TC9cfzg/kH8/S9344VfukteB4gPTNUUmSfSqtNDf30jPDYsC5KZrGWQlSni9Mg65DXX9bziw/ZJWnkqoqjqxeXS8N/veAauf/vT0WPrqaimh6iZqO/NYkPKYkxZOj0qFz1En8f6rmBFg3CfRfRY2oikZqwmNp0eZpF5m9+M8LAPdtLZHG7fNy6HfWnb+61e0cO+H8RTOfzPA8fk17FUxuL4ShmF9Slb/InAR6fHSaM6p4cQPdJF460AoCuof4YX5/W1xvBSfS71viL+arZYvFXKXOVNmoumaSXdHuJz16RN9FhYFqLHDADg0m098BnHyLsOTsqfi2uORcZbVYWmmS6NgHLeDikdegnDiXH6Wt3doXZ6iHO9z0H0kE6PVBb5fF6KHp1BL/o7dbF0fDEh7+PzuOB2adhkLH54fGgODx6dKdjmOeNYIgRVIXrk8qVjNEn18CxNiAPpbA5HlIvrZCYrc14toofxYa/avGBCSGujLlBcLkMgsjwRH2w8Lk1eqIv/L8QzOFYiD1ZQ4PRYJqutWwHxQWV8IYlD4/qK0O39Hcb3qom3MlYKe9zyQyxjyJYH9sGIJd7K4vRo7POK1eMnK9ro4q1rGvZY523swhWn98mvl3e8lfUa/fh0rKhwod6+p82PgEPBvH0YLxg0ugG2OvR5OKGW13uX2C3QjMGaxy3y6q1F5mJVay5vPQZ+/uYDeMf1D+Mjv9wt7weY74/Dk+XPhaWwD6sfOT4r+xwA3aU0rhwLxOusnl9V0UMIfU4DddJYxD6jaYX9RHba/eb5tZTTo9N4THGIF6Kw6ioBzGOb6fRwHpyL/YSix8lBFT22GlFCYj8R0VD2c/tSOz0WE2k8eWIeAHDJth4pmO48Yg7EM7k80tkcnR41II7PwTJOj9PWtQEwnB6GECLua8ZbFYoe2VweyUzOInoIV9rYfNLi9ADMmMv3/egxvO5b9+OJ4XnL9s4a8VZrjP1W3W4uXmssFD0IceC9NzyK537+Tvxu9wgAYHQugXxePxiJlR6AKXpM0ulBCFFQ41FiHECTEogPZ20Bj8z1F06PD/z4MTz7c3dg9/BcycdI0OnRNNRs/p88NAQAuGiLPjyejaWrjiDzexlvtdxYiFtfB0u8VTOLzJV94mTw3uechjdfuhk/eMczGv7YAUX0WA6xDOrwWnVj/+axE7jyc3/Gl2876Hi/fD4vXQlhv9vxtSm2AlP0eWx26PNwYjl1ejRjsCbiZzI5a5G5WiItMs0B4Jt3HgYA/H73KABTdBCZ60cmInXtW/Zh9QlbXGE0lbX0NInnF6+3x6VJIQfQy2rffOlmXHXm2pq3iVRGe8CLj7/kLHz8JWeXjbeSnR5qvFWRTg+VYk4PcWxTnR5O+6EZb0XR42Sgltt/8uU78IZnbMJbL90CQI23si5MWWrR47Hjc8jm8tjUHcSGrqAUPVI2IT2ezppF5hQ9KkacVyydHuJ6O2V2epy+Vhc9hlSnh7EIQTxG0lJkbl7nx1JZ2Y3WGfRI0WN8wXR6iMfaYlsAsWfELnqIeCv92OJ2afJYFWXnX0Oh6EGIAzfvHQcAfP/eQQDWaCu1bFKIHoy3IoSoqJEoHGySUoiL53Zlpa24YF809p1ysR7Csi2gg6BxqGXjE4tJaBrw2os3yg9G9pWExUgoucFtPjo9lhP2bgFrvJXy/UaLHrYPyM0m4HXjM688F1ee0Vf+xlUiBn35ZRLLMFEk3uqDP30cAPDVPx9yvF8ml5dOTb/b7ej0sA+oBINGvNXWCkWP5dTp0dug6DMV8TvpReZC9NCPfWLgXGoImTH+zqf1tcGl6efDSo+3TtgHoNMFcVcZS0+TKXpYVwILLtnWg8+88lwOJU8Sf3XFNrzz8lPK3k5cS2Vzefned3KH2OOR7J0eAnFf4SLI5vLyuk2F8VYnF/H6uV0arjy9D5999Xk4pU8fMotrK9HpIdzTSy16iP1xS7e+nZ4isYaJVNZ0ejDeqmJM0cM8Vovr7VQmJz9TnWaIHpOLSblPSKeHY6eH+X6PJjMyJq0z6EW/dHpY460A66IpAAVl5rLIXDnmyEVRLDNvKBQ9CCmBOPAMG6uB1GgrAOgTnR51XIQTQloPdWjGCxdSCpnb6zcvegO2D82RMit+WGTePOx/yzdfsgXnbeySH3RG5yuLuBKDs4Di9KDosTywv8ZqfJEab5VrdJG57QPySkYt/F4OZeZqga0YNFVyXLT0N3hdjk6PdDGnhxFFaF/dWQzxuru0wmHIyeLfXnUutvWG8S+vOKfhjy0GeulsTg6Ew7YBshg4ZZT3nBgUiXirsN+Dzd369w7V2OuRz+dx4y7dQdJjrNi3D0CjqawlsjBlPL8QrO3nZbI8CfncsncrXqrTI2Rec2ka0NOm7xfb+9st78egz1w9LqJyZh16ghIlorRI4xGiR2+bDy7j9Wo3rqMXEnpfkBBJT+3Th9xLLXqI46A4lhRz+CXSjLeqhVdcsAE71nfgrIEO+T31/SiuBQY6A/K9fNSITbR3ekSTGbz0K3fj/T9+zPIZLJbKOsdbLSTkdb54XTd0WeeG9vhPcRxZo6TIhP1mHBdpHCv/KpuQJiIvbgwltse2EkqsjFpIZOSBjhBC1OFYuYE1Wd1EnJwetiForMywzj5kpC26cajCxKl9YfzdC88EAJzSqw82RT5zOSxOD3Z6LCvs75dMkUirTINLPUynx8r/OOZxu+QH/aXu9bAX04ti8rsOmGWxxUpwVZeKz+1ydOEUc3qI5xFDkHKI130pXR5vvGQzbv/wVRVHclWDx2UMj1IZ+Z4KGQMdUSItVroOKt1Va9v1z1ZCfPS4NTm0rLXX45Fjs3hqdAF+jwtvvGQzALPLQTC1mLS8/kLcKub0IMsTTdMKBsVOglVnyBw0dod88n24riOA5521Tv5MdW6I4aTdJQSUFlhI4xHH8L52czbTppTYn5iLI5bKwuPScGa/HpG31KKHfR8pduyPp02nRzudHhXzDy/ajt9/4AqLs8vnMa9NxPkm6PVgo1EyLpz04lwv/n94MoonTyzg97tHEEmY+000lbGIHiL2biGeltcGQkB5xindWNdh7p/2uOs543FUATYkneD8HNdIePYmpARiNWaxC97OoBdeYyUTy8wJIYIM461WHBMLCbz/x4/hocGZ8jduIIvGxXS7vzDeSlBuH0rYVh5zmN44xN/yq298Gm7+0LNl3vel23oAAA8cma7ocYQbJ+B1yYEMjw3Lg0qdHtkGOz1abZgqIiWWWvSwRyDNRPWvRXQtoA+/nBYrqSs1XS7NEpMhKFaCXu3Q02eL02g1xOcjtbdDOD1EifRcXP/s9NTooryN+PuK6yiv24VTjTiSwxO1OT1+cP8xAMArL9iAtUVEqXHbfmMWmdPpsdJoD9gjqkp3eqiDcwB462Vb5L/VWGvZ62ETPVKZnNxfuZ+cHIToIWLJAFMgiCQy2G2URm8faJe3WXLRw1i9L4Q0b5Fjv7XTw1mgJ5UjxHZB0OeW6S2m6GE9H4u+jVze6hyNK06PjoBXvpbxdNbs9DBElq6QDw989Gq8yRDaC0QP4znWKAJsm3B68PNBQ2nNqyxC6kCNCRGDiWIRBJqmoSfMXg9CiBV2eqw8fnD/Mdy4awSv/eb9J/WDkdNqLvugrdJ4q3ZmwdbN4ckIvnDLAfk3FR88w36PJfLi0m3dAICdR2cqKrhOZMxYAzPeiiu5lgN2kVAVPdTXNptzHnbXSqqFnB6AGSOx1PFWYkAhVnfORPXi4V3Dc5bbOfVDJNPW18TJ6ZEu4vSI2QZa5ejvCMDj0goiMFoFUfotzqcBr0seQ8XAWQgi+8YW5P2E20K8P7xuTUZeDdvKxyvlwaP6YobXXLSxwEkpPtupPTBAYadHq4pTrYh9dbxjkbmyutouhF12ao+8njpzXbv8vhA9ZmK2PhhldkCnx8lBuG3PUF4fEW+1mMhg19AcAOC8jV1SIKnn2j6VyeFrfz6E+w9XttDFCXvZvdfW6SH207lYSopo7PSon7DP7vxyYaBLf88fN7q4pOhhnLcWld6eMSXGNpq0Oj1E/F0inZXnLvVcoWmavOaP2z6biSQZJ6dHdBnEhLYSPHsTYmNWuZCxlxk5XfD2il4Pih6EEAM1BoWr7lcGI/Nx+e//uGnfSXtes8i8eKdHOeEsaXyQ6jVWKzLeqnb+86Z9+NJtB/E/D+grg4WA1G6LyzhnQyfCPjfm42nsG1sseBw76jBVDN2SS7winuiI95f44GktMncuNW8EJ7vIvNmIgY29Y8hOLJXBj3YeLxgyNwrxuKev090B6axePGwXYxxFD9v1vpPTw6moPZfLS0dApUPPnjY//vA3V+AH73hGRbdfaYiBnhgeqYMne6fHPsXpIfafjCEyelwu6bBbdCiQrgQxbOxp88FvO7/2GVHF4wWiBzs9Virqymm/xyU7H1TUiLs+W3y1pmm4+yPPwZ8+eCW29podPd0hZ6eH2Gc9Lm1J4+pWE6982gb84j2X4YPXnC6/J8SueDqLR4/PAgAuUESPhTpEj/+8aR8+96f9ePcPH0a+RtdnPKUfS4ToYe/0EL0y4tykaUCIx526sZ+Tg163/Mw1ZbyXzXirwvevmt6gdnp0BL3yfqrTwz4vFNdGlTg9RKcHF0w2Fh6VCbExGzVPiOLgJTP6HC5kRK/H1CLjrQghOmqnh/0ipx5G5uLyQp40FnUA9pMHj2MhcXLcHtLCrqzmsq9KjJRxboihjCho5cVy7ew3BIzHjFWC4m8ZtokeXrcLF2/V3R6VRFwlFaeH+MBbbjhMmsux6SiePDEv319i9Xk65xxp1WinR6utIA8oMQ+l+Nyf9uNjv34Cf/FfDzRlO8YX9GP55u6QdGzPRFPyXCwEzAlH0cMaOebY6eEgelhXele+MveMde1F45ZWOvbhrxox0mUMeeaNla6HlYJyISqlM/p7z+dxyWHmoiFe3XVgsmjMGADsHVmQK3gB81jr97gKhlprjcz12Zj1nJ9kp8eK5Wmbu+S/i4mQolcGMPcBy89DPtkFIVhTxOkhji2VurxI/bhdGi7e2m0RI9Xr6IcG9c9K523qVESP2q6Nj0xG8J17jgLQj0FDM/Ey93Amnra6AT02p4fojp00FtK2+TyOgh2pjpBDx489zcVeZF4Me6eHeT2fU84z1uNAyMEFm8/npdPRInr46NhvBjx7E2JjTrmQEdbmkk4P4wR1dDrquGqMELL6UFeFNNLp8cx/vx2v/vp92DuyUP7GpCqGZ80PMbk8cKjG7PBqkZ0eyoc1+0rUsp0ewulhnI/i6SyFjxpIZrI4PqMPynYbUTiLMle5cJApej3uPTRV9rHN1cKuiofDpLk8+3N34KVfuQeHJ/RyZDEYyRSNt2rs86/WeKs/75sAAByZqq2UuhwTi/qK/bXtfhlHMx1Jyu0Spd1Oooc5ADFWfTp1ejjsCOrihlZ5PevFYxvWqU6PjqC100ON8pCih3R6aGZWfzKDb955GG/93oP4yUPHHZ93OpLEq75+L6783J8xvpBAPp+3uKrsr499lb9YPCDjrdLWfYIsf8S5GSguQnaq8VbthaKHE8U6PcSxJchoqyXF63ZZ3Hkhnxunr21HR1DfB2qNt/rWnUcsX1fa5WZH7CdOReY+twsdxnFOzJMYbdUYwsr7UtP0c7Q9As/e6VGMmUhKXid0hrwWoVN8XrA/hni91euExWRGzgrUeCuxwCpGx35D4VUZITbUlT6pTHnRQ1gRv3HHYTz/C3dS+CCEWFYEN2P4XMmQlVROLpfHCUP0ENnhtRamliOZyVoy4cVFsrXI3HquKXfxK4bn/Z0Buf13HZhsyPauJo5NxyBm3EMzcUwsJuSwzEn0uOrMPgDAPYemZJ5/MSxOD6+5MowsPY8c0/P+O43VdpZ4q6Y6PYpfW65EghWKefaS4UYjnB5rOwJySDm5mJRixdYePa5m0iFeK2kTohw7PZycHspKb67M1bE7PVS3nL3TQ436k/FWWbPIvF3GW6VxbFoXy45MOotm+8YW5ev4yd/usYhUqugssJdYr7GLHi0mTq4GLtqyRv67WPx0u98D8VZVy7BLIVZkz0Stw3N7VwNZOrwu8316zvpOuF2aXNAwG6stlUMshtncrV9f31+r6JE2rwMBa7xVyO+W35+K6NvpdN1JqkcVPgMeNzRNK/jbinO9PXLMzojR7+HSdCeOej4RIkZBvJXx/DHlPCdcjvZzkhBIGI3dWHj2JsTGrIPTI5k1VwjZUVcIzcbS+NnDQ03eQkLIckcdmjVD9DhZ0UurhcmIPhBzuzQ867ReAMDhIgOVesjm8njRF+/G879wl1xNbhaZK50etnNNuYtfNXP8+WevAwDcvHe8Ydu9WrALXWphpT3eCgC297djU3cQyUwOdx0oLUQmlE4PsXo8kcnWnA1N6kN1c8gySRlvZf5MXdSfbfBrVcpFtBKptNNDrLptFqKbYV1HAL3GwiTVySeE4UmHYWhhvFWFTg8jtoQlxib26BZ1Za2900PtSZFOj6xZZK46PcR9ig2z1aisPz45hnsOmsdmR6eHTfTotokeKRFDx66GFYN6vnbq4AEAlzIMt+8DxegOOw/P44y3Wjaox513XH4KAFOsmFhM1vT5SRxrXnreAADd6VHLtZs9Bk0VhsM+j/z+pOFWpNOjMYSVaEUhTBaKHpU5PUaN/seOoBculwa3Sys4N9jPMWa8lflZTuwL9u0QAkix4xapDZ69CbFhjbfST2ilnB7PPqMPW3tCuMyw0t7wwDHLh2lCyOpDHY41Y7VGPWV8pJDhWX0VV39HAGeu0zOc1cFJo5iLpXBkKoqjU1FZfi3irdosTg9bvFW5To+M+UHq+Tv6AQC3PTVucZSQ8thfc+Go8nlcjud/TdPw/LP1v/fNe8dKPnZCWeEnXt98nh9slgqnwbVTkXkz463E8KUj2Fznw8kiUGG8Vbvf/H3Vv2+jEI7rte1++bcVQoimARvXGAOwBQfRI20vMq+s0yPGeJsCPC7rMbNDEfZFn8JcLG2JnwL0xQHpbE5+BvO6XfL8mM7mZSzZTNR51bZdvH7yhB4H6tJ0AcW+gK1A9AgJ0SOPfD4vt6NVHFmrhVOUAvJivObCjTh3QyfO3dBZ0WOaTg+b6EGnx7Lhbc88BaetbcOP33UpXniOfn3WFfKh3+hOOmBce1eDED2ev6MfXreG0fmEdH9Ug7gOdIq3CvvdiuhhxFu1yIKIpUYVQcXf2C4oicVI5Rx9Y4bTo1O5brO78wudHoXxVuYCC+sxQzy/+DlpDDx7E2LDEm9lszY7rfI5fV077vi75+D7b386usM+jMwncLuRV0wIWZ1kc6rTw/nC5YEj03j11+/FkyfmK3pMVUytNZeWOCNWAW9cE8Rpa9sANEf0UC94xeu+KJ0exeOtKu30CHhduHDzGvSEfVhIZHDV5+7A9+892pBtXw0Id89Ap/7h+N5DutOj1AdP4ay57amJkiKTmimvrgZNMuJqSXD6u3c5dHo0M95KlKp2NDnu6WRhxluV/jupw4a5IueyT924Bx/48WM1raZVnR7ivStcHUGvW+b3OxeZW53dlTo9ErasdqILDCqqw0d1ejj9PZOZnDyeetwuhH0eaMbDifP1dMRZ9DhkO3eL3hC/EWti72mxRxt1t5mlsulsXm4fnR4ri6+98UL4PS584LmnFb3Nx196Nm58/+UVixVdhuhhX3gk4i3p9Fh6/uaa03Hrtc/GZaf2WL6/fUBf0PRUlaJHOpuTs6FNa4IyHvHEbPVl5jLeSogeHvMYGfJ55LW/iLey906Q2lA7PcTxX118ASjxVmVEj5E5/XVXRQ/78cN+rgh5nUQP59hEU/TgZ4NGwrM3ITZUy6rZ6WFYm0scCANeN16wQx9+PFHhEJMQ0ppkcuXjrX7xyDAePT6HG3ePVPSY6gUQRY/GkM7m8A+/3I2v/fkQAH0F8Kl9uuhxZDKKf/jlbvzq0eGGPZ/q2Ng1bIgeCYd4K9sH53JuoaQSb+V2aXjl0zYAAE7MxXH9fYN1b/dqQZTXiwiDE8aHG9Uab+fird1o83swH08XzZgHTGHK73XB63bBbYSJs8x8aXAatIpOj3TuZDs9WmOwUWmnR04RMpwiimKpDL5/7yB+u2tE5mdXSjKTlQOqdR1+meUtVs6GfG6s7fBbvme/P2AOHqp3erTGa9kIPO7iTg9RIh1PZ6X4p5JIZ5HJmfFWLpeGNp+1jHi6qNNDPw6fbixgULPTgcIhk93pIYrMAf0aodW6d1YLZ6/vwBOffAGuff6ZDXtMIdgu2q7J7Cv4yfJje38HAGD/2EJV9xOuHrdLw5qQz4wfquGCoCDeymV1eggxRBzj7IN5Uhtqp0dRp0eF8VYLxmc2q9OjtOghy8mVz4B2V6m8ryG+OF1nkNrh2ZsQG3OK08PMc63sglcMrXigImR1ow7KikUTiVWmU4uVFetR9Gg8DxyZxk8eGsKBcX3YvXFNEOs6/HJV0E8eGsK1P9slb/+73SP4wf2DNT+f6vrZNTQHwIy3Uld02VcLJtK5krGJqtMDAD724rPwxddfAID7SqXk83np7rni9D7Lz9pKfPB0uzSculYIZcXdQfI1Mj7QVNp/sJz47j1HcdOTpWO8VgrLw+lhiB6t4vTwVbZPq9fIjx6bxXU377csDlBX0M5VWTwrhAyfx4XOoBdtflEMm5TbKFb2T0WSBfFaYttk1IXXwenhJHqIoSdXeku8LrvTw9zP2/0eKfyq0WM+ZZVrOmPGWwGFq55nY6mC1y+SzGDMeLwd6zvk7QBzJW/ZIvOQVfSo9DMgWX40+jUTzrFUJmeJnxGRfk4iKVkenGU4PfaNVuf0EOeU7rAPLpdmrsSvwaVrdwSqbji100Ogus5I7Vg6PYToUaTTw++u7D2sXrepr5vP7YLLdu4rGW9le83p9GgOPHuvEPaMzOPLtx1s6IrTlcqf90/gvkOlC0PrYc6hyFxam8tcPImTl9OBaj6exo92Hq/6AxwhZOWRqSDeasL4YF6sjNOO+gGr2ApHUh2RhFWQ2rAmCE3TLCu9Af0DbSabw/t+9Bj+6X/3YKiGLF/A6vrZP76ISDIjC67VgY7XIUYjVmKQGE9bP3C7XRqeaVj7F+LppuTmtxqTkSRiqSw0DXjGKd1QP7O0lXB6AMCpfXrcQalINHFdIIQp8f+V4vR4eHAG//K7vXjP/zyy1JvSEFLZwr+7U6eHGlWYbfDbSLi8WqbTQzg9ynR6qKLBp27ciy/ffsgSwzc0ax5fqxVtxxfMPg9N0+QKS+n08HrQYwySMrl8wePb460CnsL3vlOMnSgo5Upvk1JOD00zS6QnjNJev8eFgBwoZpE2REaPcTC2r8zNOrx+QnjubfNjnRFTKCLUijk9uoJey/CxK+SVUVopRfRwOi+T1YU6KFWv7cX1GeOtli/C6bFvbLGq2ETxeau3TRdHhRBeS+dC3LafeD2q08NB9AhR9GgEqtNDXKfYRXQhPlQqlK4JOzs9nO4fcug7Kxpv5TXPgaRx8Oy9QnhqdBHX3XIAv3m8shiUVmUulsK7/vthvPO/H26am0J1epjxVsaBqcwFr89Qh50+EP3PA8fwsV8/ge/dw3x1QlqdrM3p8dDgDEbnrfmvQuyYjlYoeiiriiYWkjVlnRMr9tgoMbx+ybkDlu+fmIthXIlCqWZQvfPItBy4qdbmbC6PnUem5ddq0Z66Ulqshi3V6yGjk5QBnRik5vKFUQykEJEP323EF6g57+XKJEUk2uGS8Va2YeoKc3rsGakuEmK547Q4RYgeavRV7qQ4PVojEqnSeCv17ytu+9jxOfm9YcXpMR+rTvSYUPo8APO4KiKvAj43vG6XHEzYnZj2Dj+vW5MDcDG4cIpGEys4AxQ9JJ4SnR6AGQ8ihCq/xy0HT4m02ekhBoPtDo4o+wIQITyf2heW+6MQRsyeFvM10jT9dVWHje0Br3z99U6P8hHHZHXgdmlyX1EXzbDTZ/mzrS8Mr1tDJJmxnGPKMWVcv/caYrk4ftSyEj9mcwSpQmrI5y5wCq0JU/RoBKrTQ/yN/R6XFNTF10Dx47y9a1F0uwA2p4eT6OHVz32ZXF7OFO1RmvL+xj7hdJ1Baodn7xWCsNyv9piKgxMRZHJ5xNNZaYduNJZOD2NZX6XWZvFzJ0FGDFSmuEKbkJZHdXrk88Brv3k/3vNDc4V0JpuTH9YrjbdKqFb6dBbRMqtpSXmEkLC23Y9/ftnZuHDzGgDAtc87Ax9+/hnY0BUEAAzNxjGsuDsqHVQ/MTyP1//XA/jbn+sRWRGb6+cBQ/QIet3WDz/KBboYuJcWPfRzjlqmF/C65UW6vXSTFCJym7uND5kDXaboEa5Q9BCdIE4kbRFkAWW4txIYU665si3gHHIaWHQGTQeAIFvk3/WSzeWlGNkqTo9ghe4lp1iQXcNzUshXB1LFis6LIWIj1xm9HXbBUsRPOa281LfN7N4BdEeCcHuo0TZ2xDCL8VYm9lxze4ybKXrox5aA16VEe2Sl40rk3juV+k7bnLK7hvSurFPXtsljrFjMJl5TVcjSC9I1yzG+PeAxRQ8lZsup1J6sPoTjSF00I4477PRZvnjdLpy2Vo+4Eos48vk8jkxGSrqhxQI16fTw1LYSP5fLy+sOcf5Rj5FtTk6PcGtcGyw1lk4P42+vaZrFPSjELLdLk4vNVOwxiKcZsbaAVRBxOk+on83ENUfSthBK3l90xqyQzwYrBZ69Vwii8G1+lUcjqQOFkbnKVfpKydms0vZOD/uByY6wRzups0LRLWf7J4SsfJwuoFVL9XQ0BbGAeDpamWvDfgE00SThdzUhhKNnn9GHtz/rFGjGJGRTdwjve+7pONvIBB+ejVsGccUiy+wMTkeN++uCScy2qvjolP5z+zDnsm09ePeV23Dd686Xgza7YKIiBLGA7WJbDJXmqlwtvRqZtoke6zuD8mflnB7iw8/hyUjR97IZbyWcHvprtVKcHupCk5WyzaVwGlyLlejZXF6+jurlXCNFD3WVsNMwdyUiOz3KxVs5XCNPRVKytHxYibeq9tgl9lPh1LILlmLYJMSJmF30cIicEMNy8TqlHHLO4lzpXYCnRKcHYDqrVKdHwMnpYXy2cjoOzygLyeKpLH792AkAwDVnrS1wegjxShWyxApgdSjVHvBId0k6mzMjjhlvRaD30QCm6BFNZvD73aMAIGNFyfLkws1dAICHBmcAAP/v5v147ufvxA0PHi96H1P0EE6P2joX1IVrQdnpoTo9PAVOwTWMt2oIYUuRuVVoEqjnfKdjfV+bVfQQi50A6/nDaYG0T3GVxNL6cSNp6w+zb0ct8WmkODx7rxCE06PaFU+txmFF9Bidb/zAbyGRhvqZVsZbVdjp4Vcuku2IgxtFD0Jan4zDcCyZyWHSuHieWDBXJ6azhbnUTtgvsCcWK4vFIsUR7oliK/k3rtEH38MzMUvOfDxdWVyUeF2j8sOx9fh/3HCP2LPKNU3Dx158Fl594UY5lCnp9ChSotllrFxf7S7RSpi2reZb31V5vNWWnhA8Lg2xVNbiiBBkc3l5HSGuE1ZakXmriR7242nI57YUWKaNwbY13qpxosdCwuwZKLegZqUQKCIk2CkWT7t7aA6A3elR3WIv2elhOD3CtiGSGCo5FYsChZ0e+r+t8UqlnB5c6W1iXy1rj3ET511x7PV7rE4P8R70uK1/fxXVPX/jrhHMx9PY1B3Es88wRQ/xvlWHS+LfYhvUoVi732tZxMYic6JiOj30Y/ivHzuBxWQGp/SGcflpvUu5aaQMl27TRakHjkxjz8g8vnnnEQDAvtHi8Z1TEVunR43xVuq5RoiuagRg2O8uWLjUzXirhhByiLcCbKKHw/lBRY289XtcMgnA/pjFxHH7NUfReCuRGsN4q4bCs/cKQTo9VnkhqVoSOjLfeKeH/cOPEC/ECut64q2k6NECwwJCSGmKZb+LYY4o7hRUUmZuX/UxSdGjboSQUGyovXFNCEDtTg8hNsSM29uFi6EZ/TGdhjmCsL8wSkElkc7KvhGRYy/oZDRmxRTEWylOj3LxVl63C5t79H3l8ERhr4f63jWdHpX1HywXjqvxbk3qVDuZ2K/Twn6PZQCRMY7hqtDhJGbXyrzs82id+IqesD4UmrSdz374wDE8419vxc8fHgJQfAXj48NzAOrs9DDOreuKOT1kvJX+fbuA7eT0sBefphy2XzwOnR4mmqZB1T3sTo+QQ/yU6vTI2JweTo6omYgpevzPzmMAgDdfsgVul+awgrZQyBLn/gKnh9LpkaToQRTEPrNouPVu2Km7BN586Ra4HGJxyPLhkm3dAIC9owv48M93y/P7YqL4oqKCeKsai6bjcnGSS+4n6oA87PdYjkMAOz0ahdXpYT3WC9Tzg6PTQ4m32toTtrzXy3V6AIWRmkXjrWR82sq/zl5O8Oy9QhCDi3y+9IG51VFLQkfnGu/0sDs0pOhRodNDXCQ7qf9iZeRKGXAQQmqn2HBsyBgc2gWLyQp6PQrirSh61I2IjCo21N4knB6zMUvkiurYm4ok8bpv3Y9fPToMQI82e/+PH8O//G6v7NKIpjLI5/OyNHegUx/IifNBe4mhurhYt0djCQ5NRJDN5dEV8soce0GHdImu7mjMShCr+XqMCINqnB6AWmZe2OuhvnfFB5qV1OmRyuRwQhlEt4bTw/o7hH1ui+jh5PTIVRBDWCnC6dEqfR6A4oybjVli3n7x8BAmFpP4u1/sxnfuPlIgOF28Re9S2jU0h2gyY4ksKibY7hqaw2u+cR8eOTZj+f6EzelR0Okh4q2KOj0KS6tNp4f+WGnGW1WMeilkFy3E30p0Kfo9bovTQ8SIic9WTufJmaj+es/H0tg9rPd5vPrCjQBQkI9vWcnrse4H6uvWpnZ6KPFWXsZbEUCJHM0gm8tj35juEnjJuQNLuVmkAta2B3BqXxj5PPCU4u6wLyr66u0H8dc/fBiJdFZ+Xuttt3V6VLn4Q1zvq8cle5G5+jOPSyv52YBUjlOROWC9PlB7OdTzv3CLqqKH+vnA/pjFup9C8rOccHoULrBQv6bTo7Hw7L1C8Hvc8oJsuQwvdh6ZxrU/fdzy4aSZJNJZS7zIaBOcHvYPYqlMDvl83rQ2l7ngrcTp0QrDAkJIaYo58kynh1WwqMTpkbAN6exuEVI9ptPDeVBV1OmhCBD/8cd9ePDoDK79mV5WPjgdxY27RvDde47KnohcXh9uC8eHaosGSmf6i4v1Yp0e+8YWAQDb+9tlJ4mgK0SnR6WI4VmPg9PDHj/mxCZjX3HqGxPvXY9Lk1EtK8npcWIubhletsIKNCenhyhMBiBXmTeryHwhbpSYt0ifBwCs7wpC0/Rj3bTy2WBBWaz1i0eGC/72f/GMzQD0EmrRcyQo1unxu90jeOTYLH77+Ij83tBMDAcm9OPhKb1hAIWCdqCs6FHC6eGvJN6Kokcx7CtaRRTYbMyMehN/62QmJ91WstNDea+IU52It9p9Yg4AsLk7JIdT9tciUMLpIRYXBLwueN0u0+mRySFNpwdRkPFWiQzm42nZzycWTJDljYi4AswOlsWEeZ6Zj6XxxVsP4k97xnHL3nEl3kp0etQWbyWEcavoocRb+TyW4fmasK/gmp7Uhur0sIgeitPW4vRQjvXrjc9rquumv9P6Ga4Sp0dQxn+KTg8j3qqII7EVrrOXEzx7ryCWW0zFd+45il89dgK37B07Kc83OB2FusjuRBOcHnZVNZXNWVZ0lY23UlYG2RE2SHZ6ENL6FHN61BVvZbsAUmMdSG0I8SJUJId9g7FyeTqasoge6qBMjf0BrH1Tx6bNAV40lUHEeD7xuIJSTgIxtCvW6SGyiLf3dxT8bLldNyxnzHgrfWA2oKzkCjjk+9ppD5irP+0IN4f6YStYQ5F5Pp/Ht+48jNueGq/4Po1gcNo6iLYLsCsR+8Ai7PfA5dJkD4E4hjdN9GhBp4fP40K/EbG3Z2QBn795P8bmE5hQ+mBiqazlb98R8OAl5w6gO+xDPJ3FH58ctTxmsS5D4XpXBZUbdh5HPg9cflqvFKzDNkE75NXfpzLeyi56iMgJh5WbbbLIvPAaX4iXdHpUjlzM5+T0SGel2OB16PQQCwfEdZBweZy/qUveppTTQxyLw7Z4K/EcXo/S6cEic6KgFpkLl1K730Mn0Arh6rPWAgCetrkL775yGwBrisrt+8fl+f+mJ8fkgpi+NrvTo8p4q3ShMO5VHQV+q+jRzRLzhqF2elRbZH7Ohk4AuqAuEG59+ZiWInPna4CCeCuH/jB1O1hk3lhaZ3nRKqAz6MXofKLoqqeTjXjTnqy4LZGT3R7wYDGRaYrTIy2t1BrS2TzS2bzlw00xy5rAW8KSxk4PQlYPxYZjIiJJ2KV9HhdSmVyFnR7W40qMx5K6KVdk3hn0oiPgsQzWAOugzH4OVFf6H1EiGWPJLGLG821cY3d6FB98tpURPfaP6yubzxpod9x+oPpc/NXItC3eqjdsWtmLuWxUSoke4sNLwGHoVk0u9P7xRXz2j/uwtt2PB/9xXcX3q5fj01ZhrxUcq/bV+uJ95nFpyObycvFKo4rMb3pyDOs6/HjaZj3KaaEFOz0A/dg2Op/Ax3/zBIZm4jgxG0dUOV7G01n5t//uX16MU3rDCPrcuOSUbvzxyTH8+MEh+TjDs3HMx5zF/UXjfSZW6CbSWfz0IT1b/y2XbZG383vc8poeMAcPxYvMC8tFhXNADNpLOj28/GhdKeK1EANGa5F5Dumcvcjc/Nue0hvG8Gwc08ZA8vGhOQDA+Rs75W0CdtHDIbLMLDIXbh79a7XTI1UkhoSsToT4uZjISMGuK9xax/FW5rnb1+Hn77kMZw104KBx/axex9+8x1xUctOeMeTy+ntf9L2ZnR41Oj3UAbml08Nt+dka7lMNw+d2wePSkMnlLX9j1eVvjT8UjmwXPvWKHXjjJZtlDCcAPOu0XsvjO51b7BQUmaedzytigXUurzuOPRRTGwL/iisIEVNRbNXTyUZcBNo/MDQLsdLwMsOWOBdLN9w1IX4ncRGczeUtH+7LrfLxu4vHW4nHaYVhASGkNPbhmLhYPmGLtzpjnd4DMFVJp4dt1UesyBCcVI4oJC/ltDjF6Gqw3E+Jt7IPuVWnhxrxEklm5PBvQ1fIcp/S8Vali8yfGtU/tJ3p4PRgvFXliNdKxFupJYXrbau6nJA53w4LQRIOhYXBGuKthmfM40cqk8O9h6bk0KWZHDQigwT12u4nFhN48OhM+Rs2kYJOD9uwM5NtnNPjieF5vOd/HsGrvn6f/J4QUjuCrTUkFw6LIWNfvffwlOXniVRW9uRtH+jANuP4KiJHhOPqrYZwUewzj3ifiZiwnUdnMBtLo78jgKu3r7XcVnXyBW3xVnFbV5LT6stPvPRsfOkvLsDzztaFRqeFTYy3Ko3HoeDZ/rfye9Qi82xhkblynt5mxJfNRPX9Y/fwHACr08Muelhy1732InP9/+Jc7FU+z6UYb0UU2oyYu0gyIxeidgW5Kn8l8fSt3Wjze+SCI3F9nUhnceeBSQD68Uic8995+Sly+FxzvJVDp4faIxbyeSw/62aJecPQNE2e862dHqXjrcI+DzoCXjx9azc0TcNNH7wC3/3Li3GRIoAAdqdH6SJzsWDRaYGFfTuq3cdIcXj2XkGIE2qxVU8nG/GhJVqkXLXR/P/svXeYJFd5/X+qc5qenDZHbZC0K2kVdiVQlshJIshIgGVsLCz8M8g2RhhnY/TFNskGDCbZmGDAItkEIVBAYRVR1irsanOYnTzTPZ3r90fVe+vW7aru6p6e1P1+nkePdma6e3q6qyu8555zaCX0+r6EOEk9OjGDdK5QV7Z9tlAsc4vQyj45+48urAI+zTYEcYJ2dE4lh3TSzPFWDNP80MrF89Z24f2Xb8TX330uAODw+AxKJV2UrW4xB9WeOj1ERI6xn5kvwbmZmRZOD/dB1c2v2lz2PXk/rooRTp0OgJHjSm6NgfYw5MNJRdGDTpQVt0GhWMI9LwxjeDoLTbMENJlmibfSdR3PHpvEgy+NzsmQP18siddIvtD8zu/vwkdeswWXKkNUJ8TqT8d4q/Ls3nAdReYnpHOdWx89jGu/9AD+8odPe75/vagChdPijZNTWc+Ooov/8U689Qv346H99Qsf09mCcMzVQ7nTw3g/aAhBfQLy6VyxziLzB14aKfteMzs9ZE6Yxzrax6Ulp4e8kEjOWR9sj+Bqs4w6nSs6LiSi/S7FhFGE1qaBtrKVkbKoTUMlN6eH04B7sD2KN5yxXAxLqO9PZkZEJbLo4YQaNQWUv1aRoBVvlc4VRY8Qde3IjshB03Uzkyvg+EQGJyaz8Ps0nLrMEv+dRBXr32a8Vcju9KD9uFOROYseDGDv9KA+GlpgwiwtZIeurut4aP8o0rmicQzaYRyDVnXF8IeXbhT3keOHxtM5z922ltPDOh7JkWiJsF306OR4q4ZCC1vsnR7O8VZ0fIgp14abB5K4bEu5y1p+38IuC6StSE3q9CiP0gTsxxkWPRoHH72XEMLpsUhiKua7o2KM8rZjIZGld3R8Bjd+41G87P/dURa/UI2//tHTOP+WXwlLNGCt3pIHYHRh5cXWHKzg9JDjrdSLJYZhmgtaHbSuN4H3X34KNvW3we/TkCuUMDSVxUlT5Ngy6F30oFUhlPPKosfsIdG+ktNj57pu/OqPL8JbdqzAK08dMO8niR5qvNWEswg/nS2I9ywRDqJDuqDx5PRQFhj89Y+fxnVffgAAsLor5thLQn0Bi+W8oV5+9PhRvOrTv8Zbv3A/XvmpXze0WwGwzi98Gmzvy7lru/C7L1/nqUyyktODjv9ykS6Jl7U4PU5I29avXzBW0KvFz41A13Vxbjc8ncXzJ6YBQAwU1U6PTL6Iy/75Tpz7D7fjF8+cEI/hJI7oui4+B7Nxe1z3pQdw4cfvwInJ+vrdyjo9QhRvRedxxjZWkra1gsOCFi/I7i/adpux0wMoFz0IKhaXP7vyxf3GvoQQHN9+7ip0xkKirNpJtKXPGcWSULa+0+pY+ZyeBu3U7aHGRDoVmYvnKw0z1MVNaYeSWsbCyQGjRoHJTg95MQFFB8sDKuqOSeeLePKI0eexsS9hOw5GlPfQ3qlEnR72bg8qqyd3Sa5oOT24s4EB7J0etAiDB9RLEzr3LpaM8xJyKG4dTOJ9l2zAVWctx+euPcu2/wpL525n//3tOOvvfuFpFpYWTg9rPyKPg2Jhv+24w06PxkL7eFlsb3Pr9DD/HfMYVxl1cBGW3UaNt3I51/D7NOGMdJonMvUxq6P3LbfcAk3T8P73v198L5PJ4MYbb0R3dzcSiQSuvvpqnDgxv4WLzUr7You3IqeHh6zrRjBqDm064yGxwufZY5O46/mTyBVKePiA94vnYknH/z5xDLoOPLDPWoFHOxf5pJlOvL2s8AkJ9d9J9DBep5LubI1nGKZ5IKcHXSMH/FbB653PDSFXKCEa9GObmT99bCJTVQyl/UqHED043mq2kPMiVkH0AAzx6h/fsh0Xb+oFYI9EkffnxZKOY65Oj6LUIeK3rQyULdYqbkXmTx2ZFP/+g4s3ON63o0mcHg/vHxP/Pj6ZEavkGwVFW3XGQqLIulYqF5mXOz2iUoyLV45LA35asOF1lWEt/PkPnsKWv/wZ9p6cFsLE5oE2seBEdaecnMpiMlNAtlDC7/3nw3js0Dje/R8PY9vf3FYm6MoCXF9bGPXw4tA0Hjs0jpl8Ebv3lbsovEDne+eu7cLOdV14/RnLAFjDTuH0kIb0pToXrMiuYtpvUyxT8zk9Yo7fX9MdL/uefLHv82n4kys34Yqt/XjnrjXw+TTx2kzMlG/j00qnB8UcOQ0f5c6m8nir6p0ehHwdkFfO4+lx2OnhjNPron4vLDk9ZPGYBkDy4oABc1+k68Bx8/O1rMMuuFVyerzl7BXYta4bV241FjJcvqUf56/vxjXnrgQgd3pwkTljh/YnU1KReSc7PZYk0aBfnPNNZwviHKsvGcGyjig+8dYzRJE1QS6AkemcuNajCPZKZByEcfmcIh4KwOfTxH6KhbTG8jsXrMXFm3pt0VQkpPt9ms0hSvt61enhhiyoux0nYkFV9HA/1+Ay88ZTd5DsQw89hC984QvYtm2b7fsf+MAH8H//93/47ne/i/b2drzvfe/DVVddhXvvvXfWT7bVWWwxFSKuKT8/gzfh9IgHceqyJO5+/iS+ePdLwv689+R02X0+/rM9+PETR/HV3z4XG/qs6I9nj02K1WEHRi2HCF3EhANW4VGqDtFDvRgC7BnYmVzJltnHMExzQauDadUwYAwNj4zP4Gv37QcAnL68HZsG2hAN+jE0lcWDL43iPCniQ4X2IbT6h50esyNXKInVugkHl4QTNEQhsV8VIjL5om1Vt0wqa8VbxUMB84LGuFCqHG9lrkhW3m8aJv/Pe88vy5clFtt5Q73Ix2nA+Hs6G7gKTi0xrwc551uFhA2708Ob6FEq6XjP1x9GKlu0CTJHTHFtbA7ivr75gFEI/bk79oqV0DvXdQuHmvqcVbfKw/tH8as9QwCAnzx5DO/ctUb8TB4OeHHQOHHbM8fFv+uNuCIR+Zw1nfjTV1gRdhRvRfsGeShRqNNhRKtHAWM43hYJSk6PZuv0cHZ6rOiMivNqQh0OvP28VXj7eavE1x2xICZm8o5ONRI7prIFlEq67RpBpVK8lboPF+WiDo4N+TogVyghbmp2uq6LVbxOjjvG+XVRYyXDAZ943W1OD7+9fwOwnB6AJVqrIkdEuc6SB1MXb+rDxZus2MJV3TF88/d2Wr+True404NRsFydeSneigfUSxFN05AIBzAxk8dUJi9iEuX9iwoNpOVzLzqHrITo9JD2hRt6E7hgQzd6E2FxfhcN+ZEtlNjp0WDU8wvA+iy7lYnHPR7PbaJHtU4Pirdy6PojwkE/Ui7Rnkx91HX0np6exrXXXot///d/R2endaE9MTGBL3/5y/jEJz6BSy+9FDt27MBXv/pV3Hfffdi9e3fDnnSrQp0eiyWmgi4Y583pIa3EpDJBeQXh3iG7yj40lcG//3ofDo3O4OZbn7BFFMgrAw9IF+DyiS2dZNfk9KhUZC6ptbXEWTAMANyxZwhv/cL92HN8svqNmQXHcnpYQz3KLN9z3CgF3raiHW2RIN54prHC+Ou7D1R8TNqHdLLo0RDkYVelTg8ZGtzQgEsduA5NZV0Lx6ezBWswFvbbVgYmKogeFIOUlY4buq6L419vwn21PIke09mCKIW978VhXP35+/Dc8SnX+y02Diir6Bot4oykjNdyNheZiQpODxFv5ej0qHxRc/cLJ3H7s0O4f98IHnTowEjnijW5RWphOpsX50s713WLIaL6nNV9kezEUeN+DkoCVr3P+7anLQe5lxWWTjgVVgNWfwB9XmxOjzpED13XsU9alEOvVbN2egy2R0VfkfzeD7RHbF8H/dV78jpc4vl0XRcRg7puxBQKt5ZTvJU0uKB9uHB61BBv5fdp4m+THX75oi62Ey4yd8bJ6aHGW8mdHrQf9WnWeVQk6MeO1Z1Y1xPH8s6ouOai68OYsq/x+TTbtZuXmGLC6vTQxTVdLfdnmhfZ1TnOTo8lD72fUxnL6THQ7n5eTecMYynruHR0wtnhLeMUgejzafjG7+7Ep645U3yPzrMaubCHcYbO291ED6/OTS9F5lFlAZvV6eEepcmdHo2jrqP3jTfeiNe85jW4/PLLbd9/5JFHkM/nbd/fvHkzVq1ahfvvv9/xsbLZLCYnJ23/Mc5QFIaTzXshmO9ibjmv94wVHWWxCKrT49sPHhIr9R7aP4bvPXpY/EwWPfYPp/GtBw/ir3/0tK1ckSIOhOjhwdZMOzo1vqpY0m35vyx6MLXy9//3DB58aRSv/NSvxTCGWbwUzWgUJ9GD2L6yAwBw3c7VAICfPXVcrDJyglaF0MXVfO17mxW5r0ktvnXDKhU37jukiB57h8odh8TIdE7k9ybCAbRHrQuaZAXRgy6Q5ONGKlcUg+eeNvcLo3apL2DSdDe+/UsP4JEDY/jd/3zI9X6LiXyxhMNjxgUl/T20Sr5R0NCsO15f3BJgrRjLFUpllnQSrMIOnR7VBv9fv98SQ91Wfc2F2wMwxKUXzW36jJUdrs9Zjdqj8mqgfAi8f3h2oseJyYyti+1AjX1uhNvqbavI3PiwFmfp9DgxmbV1ANEFL7mNm63TIxTw4fQVHYgG/XjNtkHx/f5kBBE5F92D27ndXD2txvpm8iWbGDWVsWJmuhxWXMsRFWq8lSrY0WfXbXAhzvOlz6J8LOZ4K2ecxKCyeCsHp4d6bP7u7+/CbR+4EEG/T+yPaJW1s7BS2zZH2Do9uMickUiIyNGiGHzzgHrpQu/nVKaA46ZTu7+S0yNYPus5Nl69Wywj3ICV90Mb+xMI+jWc0p+oeDtm9qzpjiMS9NnSYADJ6VEl+pjwcpxRIzUrxlvRYjeOt2oYNR+9v/3tb+PRRx/Fxz72sbKfHT9+HKFQCB0dHbbv9/f34/jx42W3B4CPfexjaG9vF/+tXLmy1qfUMriteFoo6IQ/NQ+58pl8UVyYdMZD8Pk04fYg9o+kxDC4UCyJeAbKzP/Jk8cAGALEA1J55tGJGdx865P42n378ZuD4wCMnV0oYLe+hzycLJMwUizptgsydVDBw0qmVqakfOOv3rt/4Z4I4wknp8fWZUlbadr2FR0AgFOXtWPzQBsKJR2PHhyDG3TyQzmvuWLJMUrPC0fHZ/Dxn+0RJ/itiJcScxW1iG5oyv76OcUsEnRbTTNWcskrA9sqrPaOOKxIHjbFlljIXzFOJeD3ib9vXBmMy5E7i5mj4zMolnSEAz5xEdhop4cVjTObeCvrfUhlDVv6J257Do8dGhcClez0iDiIWSqHRtP41XNDVX/3XPR6GL9/BiXd2GZ7EiErkku5EFPPaWQ3h1r+K7t26lnF9pRZWmw9Xn2ih9sFp5zlD9jdHfU4PdR9AkXCTginR/PFIX3r987D3R+8xBa715+M2IY9XgbI1nVPDr85OIZ/vu05ZAtFTGXtn//JTF58hp2Gj/Jnk56DuuqSqLaqXzi6pWNv2nxPg36Ny64VNvW3AQDevGNF2c+cRA8qH6dOD3XBmU/KXqfjMbkenbq55GFUxKVg1gl6H7P5orie404PBrC7OunYy/FWSxdyW05lCjghnB7V461kjnlwetB5UjU34JfedTbu/dClGGx3jopkGkdXPIR7/uxSfP3d59m+Lzo9PC5ikI8tbuc2JKCQoO/mNpZ/Pzs9GkdNR+9Dhw7hj/7oj/CNb3wDkYj7zqAWbr75ZkxMTIj/Dh061JDHbUYWa5H5fAzwaQVXwKeJoeFrTjdWkG02M/HzRR2HzNWgTx+dxPHJDNqjQbz7ZWsBWCfQLwxNYSpTQCIcQDToh9xLSRfyQb8PIeH0qLzqSyYo3UYeRqpKLTs9mFqRD3zfe+RwhVsyiwGr08MSPfw+Deeu7QJguDVWdlkntDRsrXSCQz+Th+X1Rlz9x/378bk79+KbDx6s6/7NgFUq7n3oSLelle1qvNW+k8ZAd3V3eZkvuUJiQT98Ps02nKskvJDVfSZnbRs05PHSQbHUez32m0Pt1d0x4Y5p9N9C51Uds4io8Ps0cYE0nSngh48dwWd+9SLe+Nl7RWRCxDaAq97pcfuzJ+ClO1uOWWgk1BvSFQshIK2szirxVuo5zaExS4goFO1/gBxHVY/Tg4bSq7pi4jn++oWTeNgh+svL45Q7PSjeqtzpUayjyFwVPdK5IrKForjwnY27aLESCwXQ2xa27QcHkvZ4Ky8DZPo8jqfzuOWne/Avv3oRtz8zZCu5Boxh1WjaXbiMO3R6WKsurcfSdb3iIAKwuj7kbZeOwxGHHpBW57vv3YXv3bALr9++rOxn5UXjfvH6Tgmnh3sEGgn+bvFW6u+ozelBMVvW+xxkpwcD+/naUfMYyfFWSxcSsUZTWdHR0t9WSfQo34/QuVIlKN622nEiHPCjr8LvZxpLTyJc9p70mmkylRw/Ml7ObWgRB0WbZvJenB4sejSKmo7ejzzyCIaGhnDWWWchEAggEAjgrrvuwmc+8xkEAgH09/cjl8thfHzcdr8TJ05gYGDA8THD4TCSyaTtP8YZeXCh13Hh1UgKRctaPh9Oj1FpBRcVX56/oQdf+e2z8W/X7cC63jgAiBgGUtzX9cbF6guKF9hzzMgx3zqYLBtMiZVFAZ84uaXvhb3EW0m3kXdUav71XOVvM81JKluwDfnm4zPHzA4npwdg7LcA4KxVnbYSXxq85Yvu+3bap7RFgkJMUWNlvDI8ZexTpxocE7SUoD6qWuJI6MTWcnrYRY+XzIHuqcvKz2VIIKEBHA30fFrl50BDG7nTg0SPngp9HsRSFz0OjpCQFJ+zv4UctO2zjBoSMQnZPB45YLm2vnbffuPxpcFIxEOnB53TnL++2/U2AMTAd66g7czq9FDjrexfH5McZLQAJJUt4O7nT4q/yelxvJA3963LO6KIBH0olnS848sP4s3/dr8QMo5PZPBQFRHEvdOD4q3I6WH9rFiH0+OFE3bRI5Utiu3N79NEnngzsr7XcGaFAz6bUwjwtpCIBIyRVE6swN13crqsN2c8nRf7hE6HFde2InNyeij7csDu3nDK2Qak/ankuqfFXxxtVU4yEsTZa7ps5zuE6lIMBy2nBy1KqOScoe3JrcgcsA+UanF60PYpn2Ox04MBjG2K4s9InOuIstNjqULH4L3moqVQwFdxAYyz06O6a56PE0uHd+5ajU+8dTt++4I1nm5vi+50Oc50KIvXnbr+xGME6LqPRY9GUdOZ9mWXXYYnn3zS9r3rr78emzdvxp/92Z9h5cqVCAaD+OUvf4mrr74aAPDcc8/h4MGD2LVrV+OedYtCw/tcoYRMvrSgZXk2W/d8OD3MVYxqVu+lm42Iq/W9CTx9dBJ7T07jCvSLPOmBZASJsD2m6lmzCHrzYBuGJrOiVBiwIoQMpwet8jF+tyenh7QiSY60KnN6mK/ZwZE0+tvDNa0+YloP1TbrluvOLB5oOOZXLvSv27kKuUIJrzrNvhBAjVRxIiOtEoqG/JjKFOre/1InQiuvIqFjQi3xViRYZAuG8K86PSgubE13HD4NkGekQ4roQcO5RDjgOBAinDo9TpoZ5q0geginR1dMvJ5z5/SY3eAiEQkYZfaZAp45ZnXUFUs61vXE8a5da8T3ohWcHscmZpCMBIVL4FWnD+K+vUYX2YrOqOg4IcbmKN6KoN4YGjKq+w06p+mKhzCaytnjPc192id/8Ty+dM9LtvtVK3F3Ii85NFZ3xfHcCescbjydwxOHJ/B7X38Yug789I9eji2DzoupqnV6kAAt/y31iB7PSeeYgBFvJRbyxIJVy7yXMv3JCD7+5m1IRoII+H22YY+XUuhuU/QYTWXFYHv/SBo7FKfHodG0cEQ5Dauoi8mnWb9XzdcG7Nu12/OjFd1jkuiRFsOs5hWw5gK/WTSekwTIsCJGBSt8PqLmsIjSAJxe/3qdHtY1oLWtBSu4TpjWQdM0JMIB2z6gI85Oj6UKiR4vDBnH6oFkpOI5udNQ+9j4DIamMmgLB13ncxRtGWVH4KKnLRLEVWeVRzK6EZGOLW7ieLtSU0CCRqV4K7UjmKmfms7O2tracNppp9m+F4/H0d3dLb7/7ne/GzfddBO6urqQTCbxh3/4h9i1axd27tzZuGfdosRDfgR8GgolHaPpHJaHFi7rTx66pnNF6Lpe8QAxW2gVY6fLSQWtJttnDggoSsLIELbHkZDTY9NAW9mBiQaBISmXl1YDe7lA0zQNIb+vLGu/bECQL2L3vhFc88XdeM3pg/jstWdVfWymdTlqFqT5fRqKJZ0PgksAIXooF8nhgB/vvXh92e3FCY6HeKtwwId4KGCIHtk6RY8Z+0lXKzJdR7yVPLRL5wplTg9ajdwRC6IrHsLwdA5t4QCmsgUhkNBjkOhRqc8DsC6QCiUd+WIJQb8PIzU4PWgIuFRFD+qAWN0Tx6gp9kw2+G+ZMM8xOmbp9KD4zdFUDs+aosf7LtmAbKGIP7xso8iOBqzVXWo01EP7R3Htvz+As9d0ipWH25a3Y1VXDAdH0zhtWXuZ6DFXnR6EcHq4FJnT39CfjJQ9F9qnPX10Eip1OT3M41/Qr6EvGbaJHo8fnsAN//WIGIA/f2LKVfQQhdXKBSqd+5HTYzZF5rqui4U2K7uiODQ6g3SuaPVPtEAO/FvPtroaozU7PYzt7vhERixKOjCSEqurCdpHJCMBR2cA7eOjQb+4VhFRhXnrGkY+HrpGVJjv2ZjkrqLrCx5m1U4s5LdED8npQahF5vb7Gu8hfUSrFZnX0+lh9Tr65vQ6l1laJCKW6CFHbzNLj0TYOC8jF+pAlUgjpyF1KlfEuR/9JS7Y0I1v/K7zzLNRjmJm8RH0a2JG43ZuQ07vyUwepZLurcick2EaRsN9mp/85Cfx2te+FldffTUuvPBCDAwM4NZbb230r2lJNE0TxUpHPWQHziXyEH8+hrDVSkYp15yGOicmLNGDVvGSeLGHnB4DSazpjtseZzrrEG8lfc8LdDub08Mh//ojP3gKAPB/ZsE6w7hBTg+KY2Onx+Kn6NDpUYmgWF1cQfSg/M+gtWK23niryQwVqbXuCVU9To9wwAd6S9O5Io6Y3QX0PtOxMRkJiuPVsg77AgUatp25qgOXbu7D7758beXfKQ1qaEhM8Va9tXR6mBdcS21uQ0XVa7pjaI8ar91i7PQArGzoB/ePIl/U0RUP4Y+vPAV//pqtNsEDsDs9KLI0Wyjihq8/glyxhPv2jgihbH1fApsHjELglV1Rsdqc4vPGGhhv5RSfSqJHuEq81aBD+Sft0+R91TLzdpk6jmWW6OErG3Df++KwzY1RKWebzlvVVZv0WSanx2yKzI+Zw/qAT8Ppy9sBGM4CayFP84seMtEai8zp3F6ORDswmi7r9Dgwauwj3K4RaB8fDZXHXMnXMEIIqzDg7hQ9I9ZnjmNL6kfu4QgHfMLpQVRyV6g57E4rrCPB+pwewYDxe8XCN462YiRoUA4Y5w0siC1dyOlBKSF9ycqLiSotgr33xRHXnwnRg/tfmg5N08Q5vdv2Qddium4s5qbTSafjEj1GK6cxNJpZH8HvvPNOfOpTnxJfRyIRfPazn8Xo6ChSqRRuvfVW1z4PpnZoSL9/OFXllnOLOnSd6zLz0Sqr4qwBoPE8yOkx0B62LOz5Ikams+KgtmmgDZdt7sMp/QnxOPZ4Kyoyr1P0qFRknivaLuIA42L6mi/ej+u/+uCCd7YwiwtyetDnn0WPxY/V6eFtvxH0YGWVIyBi4fI88lqYnOF4K+p5ioe9D0I0TROrS1PZglhxv7G/zXa7ZDQoCoqXddgHwRS1Egn68ZXfPgfXX1BF9Aj4hFBBK+qpk6WnzXu8FQ32l9pqZBI4uuIhcbHYaNGDHq9RnR73vjgMANi2ot11GELDvZJufe7/4779IsaHGDAXb1x11nIs74ji8i39omRxY59x/tJIp4dTr5AQPYTTQz0HNM6TBiqIHvR33foH5+PGSzeYj1OP08N4fkG/D++/fCNWdFqionpedWzcPWdbRAv4nVeW0/OejdODFtms702IbUt2eqiRrc1OVBlwV4PirVLSce7kVBYnpuzv68GRyqJHzPxcyqKEPGyna5ic5KZ0o1M4PcrjrRYydnipIr9mkaC/zI1RqdNDfb2rOT3cstadUOOtuMSckdmxukP8u5aFM8ziI6n0alV3elTeF7gtjiChvBUcnq1IRIgezucB4YBfHKMoFQBwPi6FzMfgeU/j4CP4EmOVudKbVj4uFOqg7JO/eB6//dUH52zV8GgVp4eajU07k/62iC265NGD4wCAVV0xJMIB9CUjuO0DF+GKrUY3iCxwkHghrM0eV/nQqiR5R6UOCOSCU7qoe35oCrv3jeKO50629CCSKUd1ehRKel3Z4sz8YXV6eLs9XVDnC+7vK+3fwgEfYkGK7Ztdp0crn1DRvr3WHHY6aT00NoNsoQRNA9b32l2DyUgQL9vYg0jQh5dt7LXfv8YLZHkF0aMHxvDWL9yPXzx7AoDHTg9FKJBXvtYzdJ5vxIr8gE8Mjidn6nM4OVEq6ZboMVunh7n683mzvHrbig7X20Zt74PxN9753Mmy263vM7atV542iHs/dCnOW9eNCzf2Ihby48pTjUVFjXR6OAmvPQl7p0dGXchhbkc9iTBUcxuJFCNmNFl3PORaiO4F2emxbUUH7vmzS/GKU41zuOelqCugvA9Lxs3pQedwBYdOj1KNC1KeNeNUNw+2ISrts0epp86DU6uZsDs9qgsE3S77t2eUqLRqTo+tg0m0R4PYua5LfC8gdffRcdSt3F7GKd6Ktn92etSOfPwNB3xlr30l0SMWrC56yMe7SC1OD4q3ytV2Dci0Bn98xSbx7/0LPJNhZkdCFT0cFm/IBPw+4bJ1IuXgwM8VSkK872SnR1NCgn2lRdIUoTs0aUUjOx1b2OnRePgIvsRYQ6LH6EKLHvYL1f+4/wDufO4kbnv6xJz8vtEq6nhEcnMAlkWxvz2CcMA6OJHYQDER4v5By+YO2GMT5sLp8aPHj5bdjwpw1fsyzLEJu9MDaO1h9VLA6vTwuN9wKDLXdR23/HQP/vP+/QCsk59IUHZ61D78LZV0sV/jeKvaV+nRYOV5s6B4MBlBUnEItEeDuPGSDXjir16BXeu6bT/rqSPSho5Rf/2jZ/DgS6Ni+6qlyJys9XJcCIlfixlRXO33z0kp+1SmIDLhZ+v0aFMunreZkUZOBP2aEAiyZsQV9YD8/kXrxO2os0zmI6/disf+8krsWN0JAGKI7oVcoYSbb30CP3GJ1sw7HFvIUSRED2UhR1qK91E/C7lCCTO5ojg/64qHrEL0eorMpU4Pgobd1LGz1ezxOOrB6RHy2wehAZ99Xyyv2qzd6WF1yFnF2QUxMG85p4cseng4NnZEg2UiGmD1w9C5Pe0P3a4RetvCeOjPL8f/u3qb4/MpFz0qOT3scYGAHG/FK75rRS0aV1/7QIWVI6rTg4RF+22sx6vF6aH2Onq9BmRag854CJ9463ZoGnD9BWsW+ukws6AtbD9ncTrnUpH3U+p5+GSm/LqMXB4+DWVRp0xzsKm/DX6fhjU9cdfbtJvnKLQ4O+T3wedwkhN2iMpnZgcfwZcYq82hJ5X2LRRuH0LfHGVaVuv0oNU+6VwR09mCGOgNJCNmHInx86ePTgAw8rFl1JPs0GxED4dC4kpKLa10lFVf3skxMpRLTk4PgLeRxU6hxk4PJ7H08NgM/u2uvfiHnzwLwD6QUSP9amEqaw15W3kVyXSW4q1qG1RRLjytKl/RGSuLjEqa3ROhgK9MVDm9wup/198pyszt71dPDZ0eFGkmxxepheDHJmbwz7c9Z7NeLzT0mQgGNHGx2EjRY3zGOL+Ihfw1Zb47ob7XW5Y5l2gDdgfPTL6Ik1NZjKXz8GnAdeetFrdzuwAPBXxiaD5WQ7zVw/tH8a0HD+ETv3je8edOvUI9ZlQblQyr5Ypyp4EqHOWLJYyksuI5J8IBsSKuHtE1J8VbEeqwe9sKQ2yqx+lBQ1bah8vxVrpeW6/Hc2a81ZaBpG3ATlFfLdfpUWO8lc+nOZ73v2RG/PYr8X5u1wiAc0+HJUSZoofUm+WGc5E5x1vVSyxk3ybUno5KTg/1to5Oj0Bt25z1e6nTo7ZrQKZ1uOqsFbj/Q5fhI6/ZutBPhZkFstNjsD2Cl2/sqXofeV/yR5dtwO6bLxPih3peDVhxiO3RoOOQm1n6fO66s3D/hy7FcqXHUUY4PcwFOm7HpFCg/nNkxhk+gi8xaOi52Do9CNUi2ChGq1wg0oVGJlcUjom2cEAMs+LmkIqGx93K45SJHk7xVh5PeIOOoof7TouGjoelwk0eaDOErusil3xVV0xk+2eLfCBczBTN4bTfoxDsFItH+71MvoRsoSj2I0aRef3xVvIJeT0rrZsFcjmoq/OrQZ0clugRLRc9pJVcMaUz5IyV7qv/3VBzzgkvnR4dUeN4R0KBvI2p4sFX792Pf/nVi/j6/Qdqfo5zQamkC5Em5JfirTL5mkul3SAHTMcsXR6A/RyoLRIQhd1u0NDuk794Hne/YPSArO2JY2VXDKeagslpFdwinXHjOY+mc567wMg56yYcOcZbtSnxVqroYX4dDZaLHrlCyRZtpWmaq2PECwUp3opQh90UKzaWzrt2ztGAW3Uc0NcF4fSw36/o8XXWdR37Thrn6hv6EpZQnZc6PeKtteKzVtEDqCxkLFOGC7WKSJYQRc5Hcv9Ud3qMy50eeeP+S60vaTFgEz2CvrLXsFKRuSpyOHZ6mN+rVE7vBF3zzbjsJxgGMKKQKkUdMYsf+Rrg7eeuEr1elZAXyLRFghhoj4jFTs6iB/d5NDvhgB99Vfpg6PyYFpa5LbCg7auVFyY2GvbhLjFWdRmix2SmgPF0Tqw4mg8Ojabx0P5RxEJ+13Leonp12CDo4sItB1FeLTlk7kj6ktYwiIpqj5rCgnpR7pQha8XNGBe4atmlG3QhJ6+WrHRhXyjpKBRLODxmRZax6MEQ09mCuOgabI8i5PchWyjxNrLIsYrMvYoe5fuNcenEeWImb+2LlDK0e14Yxq713Z5/lxxp1MqrSGgVeLXSQpWoED2M3oYVnVFRSk3IF1FxJfJkXU9167zb71QLq9s8uFSsInPjvvJ7rg6+adHA8UXi9MhL5xShgOXA1HXDsTTbOCrA+py1N+B8SnZ6bBlIVh2ytceCGEnl8IPHjuIHjxmxl5vNaKbPvv0svDA0LSKsnKCBcK5QQjpX9ORaovOpKZdoM6djS3dcibdSbpOW4n2cnB5qLxuJeGo3iBec4q3UQcLanjjiIT9SuSKOTcxgnYNbpprTg/a3qshRLOnwMttO54riONCdCNlcBWIhT4sNQOShtNeFRLLosa4njn3Soq/BjiggdeT1eoj7c3o+6bwSb1XhDXbs9JCcTkxtyJFUkaAf0ZAfbeEApswFZwGX603jvkq8VYVOj0iNTg3VYcJOD4ZpTuR4qmvOXeXpPvJ5A+33abFTpXirDu7zaGno/acYfjd3eYjjrRoOH8GXGLFQAH3mys56irOOjM+I1Wu1ct2XH8BN33kcN/zXo/jXO150vE21D+d4OoeTU9mKt3GCLozdLijk2AAa1shFVDQIIPFBFYvUi15juKIpt/F2MeO0o1KjIFQyhRIOj0lOD+70YEzkKJqw5EDiA+HihgpvK+VRyziKHtJQhVZKA8bAkPZ5X7tvP6778gP43yfKe4LckEugW3lfQw6qwY7aRA8SMUiMVOOt4iG/baWY7NJY3xuvy9pOER1kbnjFqf34j98519PKVbkHQ3ZO0PdkKIZoZLr24/RcIO/ngn4j+oQWFjitpqsHUWIenf06IFns2qR0hznx0Teejt86d6Xte1vM+63pieOKrf0V7x8N+sUxQRXE3KC/N5MvOUZZydsHYGw/9DuEWOESbxUN+co7PYo6hs3tiYqpwzUUmeu6jgMjKeFkyTvEW6lugN62kDEQh3Ovh+ogkqEhK0XJFRVHkdcy8ylz8OH3GTFmUeHOkzo9WizeSo4j8jpElsvMX7tt0PYz2UnVkwjj8iqfF5WYOXCn7TdXS6fHjOU243ir+lHjrQCjj5GoGG9V5vQo34fTNuf1Gs7t97LTg2Gak/5kBJ9823Z87fpz0OvBPQ3YY/NosUtSiZKVsRbvttYxn7HTHqN4q2pOD463ajR8BF+CrKmz1+ObDxzEBbf8Cp+9Y2/Nv/PkVBYHJJFl38lpx9vliu4Xg7945gRe9v/uwOWfuAupbAG5QslzPAVFsLgpojRwyhZKovS5X1q9q4olqtIeKXN6aHWf8Ip4K1uReflgYWWXZcvP5os4MsbxVkw5NHjRNCPfWpRbtfCweilQKNbm9LAcYs4DaVn0CPl9Ze6BF4ec98lO2JweLRpvlclbufrL2t3zV51QjycrOqO2YZc69JWFiQ19tbs8gPJh2jt3rcFFp/R6ui+dZGfyJTGIJeQyXsDazrwO0Oca+VhIx+BGl5lP0Aq8aGOdHpsHq4seu9Z342NXbcP5662y+00D7j0gKnIviFcbvCymTjusSFSFELk3Ro63kuO0KB4oGqzs9OhWnR4e9j/fevAQLvrHO/G1+/bbnp+t00MRD3oSYQyag9OjDr0e8vFTHb7TgpdCUXc8R/VaZi7H52maJrrnWtnpEXUYcFdDjqPduiyJ7SusuLflnda++y9ft7Vm5xc9H4qxTZnbcaXnRoumSrr1HgunB8db1YzN/WN+pvslp37FeCtFRHM636L9o1tEpBvq72WnB8M0L286cwUu3tTn+fY2pweJHuail0kHF63o9GCnR0tD1xki3splrmmJHq15jT4X8BF8CUK9HgdqcHrouo4Pf/9JAMAnb3cur6zEc8enbF+rgxMi7/LhfPzQOH7vPx/GdLaAiZk87nr+JHZ97Jf43f98uOrv1nXdyrJ3OemUL6So70QWPdRyUTW7W1Va5RX1hOcicyenh/nvuPQ8V3XFxG2nswVb4Sbv5BiC0l2oGyLk0BnDLD5odbD3To9yMUseSNMK/IBPQ8DvKxu81+Kgs3V6tOh2RDFO0aC/Zru52tGxojNmez/kPg+VLYPeB9oyamGrekyrRFs4ILqATk7bV71PzNiP5TSMHZ5eHKKHtapfEw6ZRoseotOjARejNtGjBvHiHTut4vLNHhwiMk4usUrIXQTT2fJzOXWfIEc/yI4jWaAl8cKtyFyNt6rF6fHMsQkAVodOXiq2J7ok8SDo19AeDYoyyWMOTg/5b1QvOgNStKlTf4fXxToUH0b7A9pHDE/nxO9vNadHPfFWFK0GGK6PK08dEF9vGUzirWevwO+9fC1ep7hAank+5Np76oixra3ribveJxTwiXN5GmSR6OfkNGAqQ9dvYalzQ75+q+T0kK/93JMAfObj1yZIlXX9sOjBMIyJPI+i44Hl9HCPt2q1hQ6MnfJ4q8pOD571NA4+gi9ByOpdywX/Q/utzNvtKztq/p17jk96up3b6vPfHByzff2B/34MI6kcfrVnqOpjFkq6iPRwO2mVnRrk9JBXh6kXIqrSru505E4PwrPo4ej0MC6o5FitFR0xkTH70nAK8nU07+QYgoYutIItxOr/kqDeTg/5sy93etAQmvZV6j5tqBbRQxKtW9U6S6u/BzsiNZWbAsBlW+wRKoMdEZsokXSISXr3y9bilP4Err9gbR3Ptjy7PFFD+brPp4nB69CkfTuRzyN0XRfD6cXm9JAHX+0VIgTqwer0aOwKPC/xVsQVW/tx8aZevOLUfqzorM15VOvFkbxfcVqRSKKCphkuptduX2b9LmmBiNzHIZweLqIH7b+6E/ZC9GyhVFbA/m937cUFt/xK9JyNpaiDpGA+nimESVn/nVIheHc8DE3TMGg6uI45OD3k/Z66ojto7rMLpVJZtJXxfa9OD+P5UuQZDWiPmN1yoUC5eN3s2OKt/N7+9i7JadQVD+FKKcIqGvTj42/ejj9/zdaa9+OAPRoXAHbvGwFgOLAqQefyNMjieKv6oc+AvG3IPVuVIkLl46Kby4Zu49VZRATVhW8cb8UwjIk8j4oLp4f7ghyryJydHq1M2aJrV9GDi8wbDS9JWYLUk/P29d0HxL+DdeSJP3vMWGG3eaANexTXh4zbSkM1I1r+EOu6XvFixbYiz8We7PNpiAR9yORLIifPViSrrMz1UmRed7yVwwDC6hIJigteUX6bKZRF03B0EUMUi86iBwtji5vaOz2oPFfu9JBFD3NViHkBrw7LaL/nBdXpUW0f3IzQ6u9ao60A4JJNffjqb5+DP/7u4zhteTuCfp9t+OLk9PiL126t/8miPJrDS4G5TEcsiImZfJk49pV7X8KLJ6fxuWvPQrGoi4HuTL6IdK6w4CuXc0XjPEdedDBnTo8GxFudvqId/ckwNg0ka3LjBPw+fO36c+v6nU77jkrIr5uTa5ceZ1N/G372/gttP5Mv0LL5EmDOJsXQN+gv2/5zhRJmcmanhxJvBRj7IHng+ZMnj+HI+AweOTCGFZ0xIcDRc805FJknwgEE/RryRR09bcbvIIFFLpyWnxP9Peq+LyA5Z5z6O7w7Peyih/pZ6o6HWm6/G62j06NHWsDUEw8jGQ3golN6sX8kVXdcICEPqYans3j+hHEufu7ayqJHZ9w4l6d9BzmWWk3EagTUdSPvW2SnR6VrL5vTw2V/e+qydiTCAZxX5T1V4SJzhmHcsDs9qNOjeryV2inLtBZli65dxHqad7bqwsS5gEWPJYj4INSQxf6AuXoJsC5Oa4GcHmev6awoergNYukidVVXDAdH7bFc6gWvilwCXvHkN+g3RQ/j4joRtnYscv59NOgvEznUgVJoFvFWYYcV25bTw3pOK7qi4vfuVTpSeKDNEG5OD95GFjdWp0dtsXjy4HJiRi4yN/ZrEeH0qBxv9W937UU6V8RNV5xS9rvkE3LdjKkJBVpr+HbUFJ8H22srMScu2dyHBz58mYgvi1Xo9GgEs3F6AJZQ4CSO3f38SfzkyWPYsbrT9v2R6RxiXQssehTKy6ZpmH1isjFl6yQCNCLeKhYK4NcfvLRiDn2jcYrGq4Qcm+fU6VGpzFnTjF6pbKEkBr2lki4WpzjFW+WKulgR32VGFcnnfJl80fY1vR+prPH4JFpQFFdBxFtZz0/TNHTGQhiayoo4Lqt/pPx1oefrdF4XECKSPjunxwx1etjjrYhWjLmQhR+vK+8pAizg05CMGv0oX/3tc0Tc3Wyg0trhqSwe2DcKwFjcVS12jN67MXZ6zBpyaMiL2vrrcXq4vPYru2J49C+uqFm0iCuPx6IHwzCEvdPDjLeKVCoy53grxmnRtfNxhaPMGw8fwZcgtVqeMvmibXUnxRB4pVAs4QXTiXD26q6Kt3W76KYP7Y7VnVAXtlUTYcTFqd9X8SKHLqZo5ZXs9JBXADkNNjw5PWrs9JCHlyRQyTu7FZ0xEcul9rPwTo4himapB4kebHlcGtTb6ZEvWAM12elBBdOW08M+jB6ezonfeWIyg1t+ugef+eULttJiQs2bbUVn2VEzBnFZR+1ODyIoHZNs8VY1ChJeiEgDGJ9WLoJUQ4geLkKBHG1FLIaIq5xDafXqbiNv/8BoqiG/g8TFWkuQ3Qg5uAfmklqF8HFJTJ3KusdbuWXpW9FUxrnbjLQwJRryY63Sh5AvlMT+iwSroN8qHVZFiUkhehj7KcvpkTefny4eQ4YG1SR60GdkxqE3xBJ2yj9HFJtVKJZEpxZgHYOdhBAnyOmhdnoQPW3hsvs0O/U4Pdb0xOH3aVjXGxefq0YIHgDQY26Pw9NZEW21c111R0CHED2o08NyOjG1EROdHlK8VXvtnR6VXvt6BIsBZUFEpefBMExrQfurUMCaF4lOjwpOD463am1Up49rvJVwerTe9flcwUfwJYjXeKvh6Sx+8JsjIheZqNXpsX8khVyhhHjIXzWjuprTozMWwvpeux095VCkKZOtsOpQpiz+Q463kk6MnQYb6mOHA76ylZpeT5qdsvnpb2gLy6JHVOzURpTSWIr0YBiaR5cVmVcYVBeKJfzwsSNiNTsz/6gOnWo4va+2To+U0umhRPYVS9bQerfk7HMa+Kkn5FkPZcLNBuX8L+uoz+mhEp1jp4fcW5UIB2oeqtNx74RL98tUplB2HFoUoofD8X9VVwwAcFBZLFAvVrzV0rwYtYrMvQ3jx6s5PVxEBYLOtUiskM8pIwE/ti5L4tY/OB8fu+p083lZReZy1xq51uQyc13XRRfGdLYAXdctp4fo9CiPtwLKRY+IcEWX798qnVcKp0fJXmRO+2jvood9AY4qVG/qn10001IkErJeb6/n1P3JCH544wX4j9+pL/6tElSSPjydw+OHxwEA566tvLgLsAZXtKhgRsRbcYBCrfSZro4eqbtF7vSotHDEi9OjXtoiQVuMZK2dIAzDNC+0P5DnS7TgqVKROcdbtTblnR4u8Vbm93kRdOPgs7MliCV6VP4g/O2Pn8GPHj+K124bBGBcYOQKpZpFjxeHjNWUG/rbqmZUu3Z6UBlpQMNZqzpsHRapKs4TEnfc+jwI1VZu7/So4vRQHjvoL4+3Cntc5SOKpqXXgi7qO6UL/r62iBhkjSjDJd7JMURBcXp4WdX7ge88jh8/fhSv274M//JbZ879k2TKoMGY504Px3grazh5ctJwJrh1egBGxFVvWxi7zZgOwDkGUbVet+JKEur0GKyj08MJW7yVQ6fHbJGPb211PD6JHiddul8mZ/IYCdkFEeqRWUjo8yAfj9eYTo/9DRA9CsUSjpufrc4qkTaLlZC/fN/hRiZftH3eJyvEW6lFvoQVG1W0/T8a9IsV+Get6hQX+VOZghgKy69xJOhHKle0FaJPZwti35nKFjCdLQgxR3R6OJTbA1YkDkXWRTw5Pcr/RnrcQtFeZB7wa0AeNiGkEpbTI2A+Hx80zYgUBIDNA0lPj9NM1BNvBQCnLW+fi6cj3DbD01nx+VndHat6P9rWvvXgIVx0Sq9w0HOnR+2ctaoDn77mDGxb0SG+JwsgTqumCVunxxwIToMdEUyZPS8cb8UwDCEWoEn7HTenh67rYrFJZ3xpLq5hGkMs5BcdxID7bJOON6OpHO7bO4xd67pbrgOu0fARfAlCQ69qnR4PvmQMvm5/9gQAo5QSMOKtdI8XbYB1QdsWDngQPZwfl1Yvh/0+3HTFJrz/8o1ipRTlNrtBf6ebGkrEgvbnJg+G5CJzZ6eHGm+llfWHuJUNqYh4KymmhoYMG/oS+OibTsMX3rEDfp8mLsrVok0WPRiC4jW8ih57jk/ix48fBQDxf2b+UcWqatCq5VyhhKlMHkOTGVv2/jFzMEulrnJPUcD8HdTXIHc4OQka6qCzFUWPo412esjxVtHGD1/kx4+Hax+sWZ0ehpCxdTCJv3vjaaLHYzJTwOgidnrIA+5V5lByeDpb1Skqo+s6XhpO2YqoH9o/hqlMAZ2xIDbOshR5ofAabzUyncX+EXskWKUic7cONVqsoTo91IUn9J7JcVryfivicC4rC72pXAFjKcmVkiugVNJFp4Yqerzv0g34/y7biDeeudz2+M6dHsZzdhpk0r64UNRFkblPs/azlZwexycymDFfDxp80CBE0zTb57iac7oZiUiv92JYOU/D9ZNTWQyb+79lHoTwa85Zic0DbRiezuKG/3pEbGPc6VE7mqbhDWcst8XiBaTPtupAlJE/T3Px2svxl5U6JRmGaS1oJiTPxeg8W11YNp0tiPOWjujSXFzDNAZN03DNOavE127jWDo/GprK4u3//gB++tTx+Xh6TQ0fwZcgEQ/xVicmM2L1Ip2MbzSt9CUdthLKahSkFctqpIp6wegabyUNLgbaI3j/5aeIlVINi7dSTnjlA5GsxDsdcJyKzOUL6lDA5/kC1SoVtV5f4VYJ+HDteavxilMHxNdA+UV0Kw4hGWfcnR7On99P3Pa8+PdZqzrm9skxrhSLtXV6yKu1r/rcfTj3H35pi7qiEyMqXpU7JE5dZqwYHprK4sRkBvuGrcGm03Gi3Omx8PFWmXyxTIwveYyRqZWpTF4Mexvl9LB3esxtkXm1xQdOkMOROj1CAR/esXM1XnFqPwDT6bEIOz2cCqfbo0GxaELtw6rEl+95CZf80534/F17xfdue8a4kLhsS79t0LaUEIJpBadHtlDExf90J175qV/bvj9dodMjFHDed1nxVsZ+g1a5q5n6dC5EQkY44LOJwGHlceTbGs+tiFFpQYiuG0KIW7zV+t4EbrriFDF4UJ+nTCWnR8Ds9MiXrCJzv0+D31c53ur4RAYv//ivcP3XHgRgCUqy61h2Wm9YoiLbbAj4feJYtxhWzlMUGl3nRII+Rze4SncijO+993wAEGIJwE6PuUA9LsnMZbwVYD8/WAzbK8MwiwOnqGE695/KFmzXL+TyCAd8LIwz+OMrTxH/dnNoq4ux731xeE6fUyvAR/AliHB6VBiMP35ovOx7p/RbQ/sv3LUPp/3Vz3Hnc0NVf1/B/EAGfD6EA37bhea7X7YWL9/Yg+XmahjXInOHiAoa3FQrVq+0Ik8mJp38+n2a7QQ4UWORecjvs0U7vGxDj+dBU9hh1aWbcBMJOotIrVgszDhTUrohKGbN7fN/aMzq8WDxbOGotdNDzuV/QYr/U+kzRY+eRAhvO3slrr9gDTaa+/aTU1lbnwfg4vRQRY8qrsG55uBIGmf+7S/wkR88BcA45rzyU3fjDZ+913N+fi0cMbtuOmNBW/ThbAgHfKC3ei46PWQLdKIOUYUuxqbNRQZ0LKLvT2Ys0YMGgcMVVtjOFzkX14EoM1ecC5X4+/97FgDwjz9/DoDh/LjtacMJe+XW/lk/14Ui6CHe6vhExtHV4fQ9t/goIqzERll9Bs6ih9sqeOEYkfZRsuiRzhYwpgw8pzKFqs+PqFRk7iSmEQHh9LDirXyaBvp1bvukfSenkS/qePrIpPlcqdPD+fOqnv+1ClGH4uqFIhL023oblrVHPUdIJMIBEV0mHm8R/E3NRqlCMoHPp4lj2Zw4PTwWqjMM01pYnR7WMYAWOOi64UwlqF9zoL0xznJmadMWCeK/37MTu9Z14/oL1jjeRj03pc4xpn74CL4E8dLp4fThWN0VE/f91XNDKJR0/PqFYXz69hdwyT/diZMuBad5ESVgXAjIQ6LueAhff/d5uG7nagDVnR7yhzhmPo7neKsqF4hRReSQL1zki/F2R9Gj3OkhD1loNawXQtLwkqC/Qb3IVbP8aPUqx1sxhCgy9xhvJYuILHosHDV3eogBYeX9Ya/pkNM0Df/vzdvwV687VQghJ6ey+M3Bcdvt1ccbns5iKluApgH9SeN+Cy2y7n5pBDP5ohBsjo5nsOf4FJ48MoGnj040/PcdHjUuQFZ0Vs9u94ocXTPXTo+2OoQadfBKx1ORQTxTwGjKOAc4xXSF0tcLidUHZj9WrjEjrg6Mend6qI7OZ45N4sj4DCJBH16+sXeWz3ThEH1AFfb3cnm5jHOReeV4Kyojp6g0inNSRQ/1/qoTxMnpMWlzehTK3EZGx4c30cMpPotwOiclrE4P3bboIFDF6UFxVlPZAmZyRVFm6rQ/6Fqi/TGNgLaDxbJynno9AKPDod77yp02zOz59DVnYHlHFB994+kVb0fXfmrEcSMY7GCnB8Mw5ZBoL8fNRoJ+MU+Sz2UOj9E1R2Oc5czS57x13fjWe3bi1GXOfWXq8WbPsSnPCT2MM3wEX4JYoof7xv/E4fJB0YrOmBAsjpt55gdG0vjk7c/jpeEUvvfIYcfHEk4Pf7mqTR9KEkRci8wdLlLj5olq9SJzj/FWFeI/bE4Ph3grpyJzuYjqsi3eRQ85m5/ISPFWtt+rrArrjIXK7su0NiLeSlNED5fPmiwi8na0cFBchud4KzpRrlDaCQC9iXD598zBy9BUpkzwVgd+zx2fAmCI4LS/WWinB63Wp8Es9W0AwANSKbtKvljCu7/2ED7zyxdq+n2Hx4xBeaMvQM5Z24XetjDW9sar37hGVFG/VtqUFck0kLY5PUxnB7lCK8WKzBduA/hVdTg9uuPWZ6dY0vFz0+Vx4cbeJR05EPZXPiYAsMVEyTh2eph9ZG5F5qrLhiKb3JyrhKvTwyXeKpUrlPWdTWXyrp0eKjRczymF5IDVo+YkSNB5WqZQtOKtNA0+cnq4rDwnkQMw9sWW06P887qqq3GC61LjnLVdaI8Gsb53ccR7yaXZXvo87Pe19ikcbdVY3nDGctz7oUtx+orKJfbk8p+L1192erDowTAMsW1FO0J+H85Z02X7vryQiCDRY2UDF1oxzU1fWxjre+PYvrID3fEQCiUdzxybXOintaThI/gShAblboMqXddFvNVmqYdiRWdUXASSq+NZ6QPkVr5aMB0LVOIoD1xoEEEXiW6ih9OqurhXp4eLYKAin/CqF5mxKvFWqiU9FPBhx+pOaBpwxsoO24VNNUL0/sjxVi5uFXXlKa3+42E1Q6hF5k7xaTJ2pwevClgoRKeHx5WfTg4xoHx1dF+yfF/U12ZcmB8dz+Dpo8Y+nVwcqtuH9vmbB5JSVOLCbifUyzA+k4eu6zgmiR5qXJfMQ/tH8cs9Q/jEL56vaZ85V6uuvvKuc3Dvn11alyhRDZuo7zBErYYauUVCPx335U4P6hqoVCBbiScOj+MD//2YsPTPBrfuBeH0qKHTQz4vODo+g9ueNvo8qGNrqRJ02XfIqDFR5NaYcuhUq1ZkLr/233n4EP78+08CcIq3su/71H0Znf+4Fplni2VOj6lMwXL/VHHRyZ8ZdYXcsQmj886p04fEmXSuaBWZ1+D0AAwXjFOnx9VnrQAAfPCVmyo+92bmM9ecgQf//LJF43aRz+/llf1ekBchLGXhdClDfY5z8frL20OY460YhjE5b103nvjrK/G7L19n+z5FHsrnA3O10IppXoJ+H26/6SL8zw27sH1lBwDgCYfqAsY7jb8yZ+YcGla4RdeMpHKYNC+23nDGcuz52R7EQ350xILChkfXbEekoYTbKpl8iTo9KN7Kuh09F1He7fKc6GI85OD0qN7pQUOPKvFWQXfRIy7HWznkratOj4BPw/reBO7/0GWeSg1lnFbie+306CTRgzs9GBO3InOnz3+ppNuKUjneauGg1cA0KKtG0KU0WB2w9bWVix60avjxw+PQdeOk+5T+NpyYzJYJGuT02DTQJgaKC72d0OC6WNIxmSng6HhG/OzBl0ZRLOmO4pF8PHnu+FTVFaGEJXo0dtWVz6chNEfxJrMtMlePiWHF6TGWzovjzkZT9Bh3cQdU4/X/ei8A4zj22befVddjEG6l1eQ2eGnYu9NDdjXc8dwQ9hyfgt+n4dLNfbN6jgsN7TsqCX+qeNDbFsZIKifcCDI5l9ecoNd+78lpfPB7T4jvx0L2bUx1YpSLHtTpUcThsTS+/eAhDE9bkWrTWSenRwG5ojenh3y+NZMv2qJZSZBb5hBnRG7mmVzRFi9JH21X0UMSbE5MZkSmtyw4/r+rT8dNV54ievBaEU3TFkWfB9Ftc3rUGG8l3Vfdvpn5ITqHTo9BaXtw6gZiGKZ1cerlovNzOTp0rq45mOZG0zQE/Bq2rWjHr/YM4XGHFB/GO7xsYQkirPcuJ2DykGDH6k4AxspNTdMQDbkPS9ycI8LpQfFWNqeHPZs357LSsFKnx7TDSkP78zKdHsHKm2vU5vSwCxXyxbiT6CEPz0J+n+gDGWiP1Fw2KaK+zL85WygKxV8dVqkiSBfHWzEKapE5feachDH1omyhY4taGRFvVWOnh4r6Pvc6iB6nLU9iQ18ClLqyfWWHlWev7Ev2mKLHlsE2SUBfuIt5XdexX4ooGk/nbA6BqWwBzxx1tvTKr00tJW+Hx5feqqtIBVHfC2Wih3B6GMfDmbwR5RPwaWKonc4XoVcoka3GiYlM9RtVwa1wer0ZIXZsIoNUlXMIQnYR/NudewEA567pEosNliqVjgmEKnrQgL5SkblbnMtq0+lBF/LE0JT9/a4ab0WiR76I933zN/jXO17Etx86JH6emmWnh1xyXIvTIyZFr9qLzI19ubvTw3otXzqZEvtj+bMX8PtaWvBYjMzG6cHxVgsPLQQhx2sjkY+7siDLMAzjRMgh+WQpXnMwiwdyenCZ+exg0WMJEpbik5wGElYclQ/nrOnEp685A//81u0A7I4HFbfVvgW1yNyx04OcHs7Ds5zDRSoJAOmq8VbeOj0qOT1CAZ8of3UaGgb8PuFkmW1ua1hxejxxeAK5Qgnd8VDZAc/V6cGiB2NSUGKSKhWZq/042cLshpZM/RRr7PRwG+Cdv75b/Ls9GnRcIatpGt65a7X4evuKDsdhX6FYwvMnDNFj80CyalTafDCeztsGr+PpvBhIEr85NOZ4X/l5P16D7XcprrqabaeH2l1A25F6rOxPRkR8lq7X7gKSBYhV3bN/fd0G8B2xkFhlve9kdbdHvliyLbA4am5jV57qva9rsUJOj0pF5qpj4py1Rg71dLZQdoyoJioMJCOO50lbBpP251XV6UH7qBIec/j8pnNFEbFGt53K5EXPnFv8lv13kLBif22OmcKqU3E1LciR4638PsBfLd5KEtX2npw2nmPAt6hcDUw5snBRs9OjjeOtFpq/ef1p+OTbttvOleaCZSxWMgxThaDSsVYolnDMdK8vpWsOZvFwxooOvPtla/GBy09Z6KeypGHRYwkiOx5op3poNC2GA3TBGvBr0DQNbzhjOTb0Gd0elVYiuQ2+RJG5r9zpEVZED7dMaUenR81F5lXiraoMhf7xLdvx0Tedhv6k80WN9bfMLp5EHUrv3mtk0u9c1y0cJEREHeSYq26zHG/FmIihi1pk7vB5VQXEkm6Jlsz8oeu6JXrU2OlBtEUCeN8lG/DPb90u3nOnaCviTWcuF6L29pUdNnGc2D+SRrZQQjTox6qumONt5pv9ShH1mOT0oGiJibRzubv8vJ/waPudyuRFYfryJbTqSj5W1NPpEQ747I5G6dgtnxcs64jYhtNyXJ4XnjNFNcDZ+l8rlQbw68wiZBowV0J2eRC9bWFcvWPFLJ/hwmP1AVV3evz2+Wvw/126ATe/agsAY4CvOgTp2OImevh8GlZLRdxvO3sl3n/5Rvz+Rettt1PPpdTzz7BUZN7mIuRRBCsVgE5lCuI8M+DhXC0quUmIQrGE45PGEMLJdUHFyLlCSZxj+zUN9HJ46fTYawpxTkXpzOKicU4PToxeCFZ1x/CmM1fAN0fRkt//g/Pxx1ecIvp4GIZh3LCcHsZ5wompLAolHUG/VvEajmHc6IyH8Bev3YrXbV+20E9lScOixxJEdjyks0X87Y+fwcs/fgf+9HuPA7B2tE4XrBXjrVxcGqrTIyF1etDOvdqKYaeMaHKMVIum8Fpkbnd6lF9ovvK0AVx73uqy7xM0oJmt0yOoDCDuN4t4dzqsQpKLzWMhvxC02OnBEIWSs9PD6fNKA0p59TZvS/OPPBMLeBU9lP3O6u4Y/uQVmzDYHhUDQacSc6ItEsQ/vWU7fueCtbhkU29ZSXCuUMLnzUifUwbabNEvCxmDdnDUXkQtOz029htivVsEorxtvzA05SnmiFwenbHgnBSOzxWzdXpommbbL8jHU3kwO9gehV/aNqhzq1jSxQKISuw5ZokeMzUKJk5UilpaX4PoMe4gnP31605tiqG0tbKwUpG58fefs6YLN125Cf3JsOiomFYirujcpdI5F0WgAcAlm/vw/svLeyq8x1uVHB0XgBVDRb1FRqeHt3gr43eUO96GprIo6ca+WR5aEzHpHJdeG59P8+D0sF5H2iaTdQiUzPxC7u+2SKDmfaut04OdHk3Jmas68YeXbZz1tSHDMM2POgM6bF7jLO+IzpkwyzBMdfgIvgSRV2ve8tM9+Mq9LwEAfv3CMADJ6eGwc60n3kp2jgBKp0eZ06PyY8gX0fQ4qSqDERrI1dbpUd9KWMDbhXQlQn5LuMgWinjkgBHNsmtdV9ltI0H76yHfl2EAlDkGwhW2ERpQdsasC/GFLqluRah8HvDe6SEX5QJKcbW5P+t1GNDJvOr0Qfzl67Yi4PdJLg5j//rh7z+J/3n0MDQNuP78NQAqC2jzxf5hu+hxZHxGrMrf1G8Mtac8iB4lHXjqSHW3x1KMtgKASGB2xzf1fjbRI2p9n4bPtCp/JldEvljCtV/ajfNv+VXVDq49x63+lXQVF6cXaMAddjgub+irxelhOB2Wd0TxpjOX4/cvXIdXnz4w6+e3GKjk/iNGzXirzrgh8miaJga8k2WiR/Wi8NVSdNn2le2Otwn67PdXnT8RqVPIqWtNZr35Xo9LMV21xFvJbpZjE8Y+oD8ZcXTihfw+8X2K3vP7NNCu3M09KTs9nBYgMIuT05e34/It/fiDizfUfF+b04OLzBmGYVoa1Xm7VK85GKbZ4LPxJYimGasws4US7nlxWHzfZ8bfWM4MJ6dHHZ0eolPAPd7KKjJ3cXo4xCXQarrqTg+P8VazLHol14WXC+lKnNVeCwAAivpJREFU0GuxbziF0//6NuQKJfQkQmJVqow8yEqEA56GF0xroYoelT5rKWnQEvRryBf1BR1otyrySmCvnR6AsX+k/Z08IEwIp4f3vHGrpLyEVLaAHz1+FADw+Wt34JWnGcNe4fRYwP3NASXe6pljxtC8LRzAgFkyrK5EJ9TPAEXWVOLw2NIsFPT5NIQCPuQKJSTC9bkTZAdkyMXpscx8zWOhAMbSeaRzRXzlnpewe98oAGD/cAqnLXcecgN2p0et0VhOVIq3ojLzvUPunR4vDafwzq88gLU9xvG3OxHCJ992xqyf12Ki2qITABgz4626pNL2tkgQk5kCpjJ2F4wXJ8UaU/ToawtjwGW/5PNpCPg0cU6qxlvJTg81Yst+Ox9Wmk6PUcmx4yXeyqnT46iZr73MxV2iaRpiQT+msgVMZ43f59c0EfFacunJmnSIUEtWEXOYhScU8OFL7zq7rvvKHYFF7k9jGIZpaSjRhOY4luixtK45GKbZYKfHEoWGVSOprPjeWDoHXbciKJy6KeQS8nU9cdvquqzLRSetWg76qMjcunBVezDchvV0MS4PWhJSWWQlPMdbNcjp0ah4K8B6Pd5wxvKyPg/A7l6Jh/1lJegMU+b0qNjpYQyH46GAtdJ/AaOLWhWb6FGDnVkWXKNOokcNebBhycVx9/MnkSuUsLo7hldIxc0k9Kqix0+fPIarPncv7ts7jLlmxBzGUn/Hs0cN0WOwIyJivdzcBeoxy2noqLKUL0DOXdOFgWRERP3UiuzokBcRyINZeh/oePrScAqfvP158fNMheG0rut41ub0mL3okfUQb/XScMo1cuizd7yIQ6MzuPv5kwBQ1VGwFAmZ519uokeppIsi8y7JBUivhdp3UilSjHj5xl5Eg3686Uzncxsi6LJPA6yemkyhWLatyDFDy9qjIiZqVDrn9eLKjVZwegy2u+8DaFHOlBRvRcaVYknHl369D+/8yoO2z4PqmAGAtT3xsu8xzYO8OEHtVGMYhmFaC7XjdnjaOGfhPg+GWVjY6bFECQf9QKZgW71WLOmYtJU8VnZ6rOmJ46fvfzm+eNc+/PMvnncdtKuPZ4u38huPV22loRhcyE6PUK1OD++dHvWshKUB4GzjrVZ0RhEJGqWx//r2s7BlMGlbDSYjOz3iIXZ6MOXQqtKA6vRw2EbI6REN+Y3bZTnear754WNHcPuzQ+Jrr50eABA03zPAvq/ePNCGB14axekVVtiryCucb3vmBADgyq39tgGlk4D25Xtewt/97zMAgP/afQDnr+/x/DvrgUTt/mQExyYy2DdsrNofbI+KWC+vTg+nsmoVcnqsrFM4WEj+83fORaGk1y3Mt0nHRXunhzRg7iCnh7H93PX8Sdt5RqaCiGq4Bqz3qhGiR6UB/PKOqHC9HhpNY43DgFk9njel6FHlvGEykxc9Qx2S6EGujzEpMgqQ3TXu+641PXE887evqPrcgn4N9LFU461oH5fOFsr6X5Z1RPD8CSO2bLAjIhayUDdJtedHOHV6WE6PCqJHKAAga8VbSU6PYknH3//fswCAnzx5DFedtQKFYslRnL3mnFVVnyPTHKQaEOfHMAzDLF2CAfs8jM4LnLpmGYaZP1j0WKK4CQBjqZxwZlTr9GiPBhEO+MWFqNuK8GJZkXl5p0e1InOniArPReai06NKvNUicXp0xEL49QcvRTzsNy+cK/xOZTU3iUgsejAERYNQfJ3Vw+De6SG7hjjean7559uet5Vz1+L0kId4soj7l687Fe+5aH1ZUXAl6P1PZQu414xBvPLUAcfbyNvI5+54Ufz7WSmqaK6gfV2/UtK+ojMqjjVeOj0Ar6LH0nV6+HwaQrMoQpSPi7Z4K0kIoEEwbX8nlMiwSjFEakzSTAOGgJXirXw+DSu7YnhxaBpHxmccRQ+5aBgAOmLNd+FpFZmXHxPue3EYv3jWED3bpAhNAOg0RY/RlP19E87cKgtAKjk8CPn3qedDtDgllS13evS2hS3Roz0qbjtqOsOCfs3T76fzwqyD08Mt3sp4rk5OD+P30cpNAGXdHzKRoA9blyWrPkemOah2LcMwDMM0N2qnB4ke8oJhhmHmH/4ELlHcRI/RdK7ikEC+6KQVj5WGqEB5MbpTp4dq51PJObg16HHS+SJKJV1cUKp4jrdyiIOpBTWqaza4OTvcfidgFplzvBWjUCqR08oUPSoMuFJmvEIsFKgqRDJzg1ze7NO8DQYJeUAor4r2+7SaBA/Aii964vAEJjMFtEeDOGtVp+PvI2G5VNJF4TFg9G1k8sWyFdqNJCtED/sA8vTl7ZbTI+ssZqjHrNpEj6Xn9Jgtsrhhi7cyV6CFAz50mqIADX1V0aNSvJU6+K3F6fHE4XEMTWZx+dZ+2/erRS3RQg6356V+vyMacrzdUsbNaavrOt7+pQfE151x+9/eZb7X1PdBOHWw1Ystsi9kfzz6fE85OD3kKNZl7ZbTg0S3gM/bcyM3rSzWHRn3EG9lblei08NnnQO/YIoxgHXOSyXmsZAfa7rjeObYJD786i2eniOztBlIRnB8MoOLN/Ut9FNhGIZhFhAR906ih3lenKhjMS7DMI2DP4FLFLXUe1VXDAdH06bTwz4klaGcYsAagFRbEV6oFG/loci8WNJFtILN6WE+F103Mp3dXBFe463kksxkHTZCek1DVQrTG4k8TIyH/RxvxZTh5vRw7PQgp0fIb3V68LY0r8jxP14Hc4Qt/z40u/0Q7S9PTll5sqrrRN1GpjIFUBdrPORHKlfEi0PTFYurZ4ub6LF9ZYcYMrrGW4nSdx8y+VKZ6PHi0DTiYb8Ybk5m8uI2tYpIzYC708P4/rKOqBDp6Hg8NJWFTCWnB3WqaJpxXJ/JFTEyncX+kRR2rO6q+Nx+7z8fxonJLO6/+VLbMJrOKdyO/2GHomoZNXKoGZ0ebscE9b3rUkQP4fRQ4q1y5jnfbF2vgBX1AJR3etDilIl0TrzPH3/zNmwZSOIr974kbjfYES1byOJ1cYq6fei6jgMjhhNvdbe78EnbvxxvRcfg54csBxxt85Mzxu2SkSA+d+1Z2HN8Eq9QnHVMc/KDGy/Ar184idefsWyhnwrDMAyzgIhFKAXjPErEW7HTg2EWFC4yX6LIBdgAsLLLGBKMpnJCpHB2etjjreTHchuOqnFZTvFWIl6hUIKu290e8oV4SLkApkXQbkW18vNShR6VaMh6PLmw1Sv0OoQa4PTwSkQuMg8FxKpIHlQzhFpkXsmZJZwe4YD0ueZ4q/lEfr1ribYC3IvM64HefxomOkX+qYL3+Iwx/IyF/Ni2ogMA8OyxybL7NRI6PgxIokck6MPGvoTk9CiUHVcA6zPQ12bcVxY9XhpO4fJP3IWrP3ef+N4R0+XRFQ+1pNVczhSWRQTqeZCFoKgS70Oo5fEydNt+8/1I54u4/msP4erP3487nxtyvd90toATk8aA/tiE3VlSzXVgddc4P69ppVy4KTs9XJy26mdXFQVFp0fKrdOjAaKHTci1f+Zon3RSiot6wxnLcPqKdrEoBjDEOHUhi1dBRi0yH0vnxXa6qkKvj+X0sOKtSGh5/rgletBjkdOjPRrEmp44XnnaYE0uP2bpMtAewVvOXln1GoVhGIZpblTnbYrjrRhmUcCixxJFHliEAj4x9BlLW50eTivhZDcFlZeK1b75EgrFUllEQnmRuXF7v08rK1cGrJXphCx6yBfAmqaJCIN01n2QIuKtgpU313DAjw+9cjNuuuIUW1mnVygGoREX+l6RL5Js8VY8qGZMVNGjUmzVTF52etiji7ySLRQdB8xMdYol3TZ4rFX0CDZQ9IgoA5iEg/tNFbzH08bgriMaxKaBNgDAHmnANxfIRebEpoEkAn6fENjzRd1R5CNBh+IEJ2asAf13Hj4EADg6kRHb8yGza2Up9nk0Aln4ks8hrtjSj6vPWoE/uGS9+F7MxWlUqch8yowCon6WYknHE4cnAABf+vVLrvc7ZsYNAeWDeeE6cDkuR81t2M2BMq30jDSj6OEWb/Wc8tlVX8POGHV6OMdbhQKzH9pX2qfJn2/A2F+GHBzFy9ojNhFEfdxKqEXmB0ZSAIDB9kjF2D46V56UnB7keEtJUVzUY0OOj3oW3DAMwzAMs/ShOQ6dj1EnYT2x6wzDNA7+BC5R5GF5WzggXbzm0RU3Bg5O0SqOTg8ajhZLeNsXd+P4RAa333SRWOmpiijLO6K46szl6EtGxEo2+WI6VyjZLkjlyCtViImF/JjOFpCqUHgqisw9rOz7/YvWV72NG8Lp0YBIB6/ITo9EWOph4E4PxqRoDmz9Goke7mX3cqdHta4eJ46Oz+DKT96N124bxC1Xb5vV825FVFdN7aKHdfvIbOOtFJHY2elhj7eigXN7LIQtg4booQ5OGw39brkHaY0ZOyPn+k9nC2VDSjo29CaM+05KA/P79o6If6dzRcTDgSVdYt4I5NXyaqH1P791u+22bvFqlYvMjeN4XzICYML2s0qOoaOSu2MirYgeVTo9qjk9UsqCinoWRCx21AxpggTLN5yxDMPTWXzg8lNsPxdOj7Sz0yPkn/3Kddk5qwppasZ1LOh3dEcMdkQR8PsQC/lFT4xTfKsTUWX7oGirSi4P+bmSaObzaXjFqf34x58/Z7ud6vSoJ1qVYRiGYZiljzgfKyidHix6MMyCwp/AJYpagN0VtwopC0VvTg9L9DDt/7kCnjcLGn/y5DH8x/37sWUgaTk9TBFF0zR84m1n2B5X/l3qasOcuID2lV3QxsMBYCpbNpiQ8RpvNVvUUvb5wN7pEeBOD6aMYlEpMq8gjIlOj7C/ojjixuOHxjGdLeDB/aOzes6tiuqqCSyg00PdXzrlyYYVYWycRI9oAJsHkgDmL95K/ntpIOnzaUiEA5jOFjCdKaAnEbbf1/wM9CXtosdoKocnD4+L26WyBUX0aL0Sc8BydwLVj6exoH176UmEMTydrVhkTq9/VyyEkN9n20eNpHKYyRUdxRTZ6TGu9kuYQqJrvFWV7iI1OtNrF8RSwu28gT67r9++DJdt6S+7n7xYRkbEWzXY6aGKlnEl7kreNuRYNRoWtEUCQvTw7vSwd3rsN50ea7rjFe9H/Xe0/fg1Det7E1jXE8e+4ZS43WRG6fRoQicRwzAMwzDVEXHvxRKKJV0sFOIic4ZZWDjeaokSli4eE+GArZAyX7KLFDI2p4dZ6EkXzPKF7z/85Fk8cXgC//3wIRGvU2llXcDvA8331AvvfIWVmhRZUNHpQfFWc+zAsIrM5+9jEfBp4nWLh/3CMVPSIcQrprUhp4dPcVUVSzre8m/34Y49VlY+iYfRUKCsr8ELw2a2eqpCxw7jTmaWTg+182g2qPtLJ6eHcAOZJ+UT5sC5IxoSQ8GRVM7TNvTtBw/iHV9+oGI/kxNC1A768MpTB9ARC+Kdu9aIn9PA0+lxaSBOTo+pbAHFko5fPnsCcsoi2csPj7V6vJXU6VElLlKNEyInjhenR1sk4ChuPHJgzPF+stNjfEYdwFcu1Vbji1Rouwn4NAy2R7BlMOn6/JcqTvFWuUIJe08ai1goqk5FdnrIkYbZKj0qtWDbpynbhN+nIS59Tz4/VWPOAKVPzqvoEaJFPcb2cZBKzHuqOD2CSpG5T4OmabhSKScvd3rwYINhGIZhWhH5fEy+blHPqRmGmV9Y9FiiyAOtRDiArphVSEkiQ9BhSFAp3kpeYTkiZTxXco7IyOq2jHB6ODyftrDxHCYdLnAJugCPVBnSzJYNfQkAwLqeyisAG4mmaWIlYlyKJAI44ooxKAkRs7w/56H9Y7j+aw+Jr4XTQ+70qMHpcXLa+NxX6thh3FGdHrMqMg/Nbn+nrqpuc+r0UNxAotMjFkRbJAAy5k3OVBcyvnbffvz6hWHslmKlqlEwV0IBxt/+uWvPwgMfvswWdUWro9RCbcDatnuk20/O5PH0Ubs7JSVEjxaPt4p6HxqrA2p6Typ1elD/QTIadOwE2b3PeduwOz2c463cFj1Uj7cyntOP3vcy3PmnF1fscViqWBnSlnCxb3ga+aKOtnDAVlAv02EufCmWdPHeGY9juXNniyycxBxee3n1o1x0/o6dqwEAF2/qFd+T92Fe460i5mtDgjQ5PVZ3VXF6mNsvOUt85r78jWcuQyjgE+fD5Z0e7PRgGIZhmFYk5LfOx0j0CPl9c55WwjBMZXhJ0hLFHm/ltzk9RAeHw8AtEQ6gIxZEsaSLVX604lMtICfUeCs3QgEfsoWS7cIbsIYWTqJJd8J4DsPTubKfEVanx9weMK4+aznOWdNZNeu50USCfpE5bxM9CiU0Yfx4S3JkfAb//dAhvHPX6rKInmrQ59LnIHqoUMFqLBQo62vwgnB65ArQdd0xX51xZ7ZOD3u81ewOz+qQ2ClP1jXeKhaEz6ehLRzAZKaAiZm8TYhwgkQJdaV+JWRhNxz0wefTEPY5lx07Oz2M+8dCfsRDfqRyRUzM5MtWiU9nje35kHB6tGa8VS1OD1W0IDdNxXgrcwDs5vTYc9w5Ku3ohCV6qAsgcsXKroOwEl+kQttNMhpo2otOusiWXbb7zQim9X0J1/14JGh9bv5r9wH0JyN4844VVd01tWDbpzlsE4lwACdgHHfkbW7num78+oOXYKA9Ir4nu9W8ulDod6qdHqu7qzg9lFWZdPq6eSCJez54CZ49PoV3feVBsd+jc9h2Fj0YhmEYpiWhWNB8sSQW3XC0FcMsPPwpXKLIF++JSNCKKUjlLJHCQWQI+H249b3no6Rbj1FtEEAXi9Xy6Z0uvIHKTg8aANOwVUXX9XmLt9I0Daur5DzPBT2JEEZTOfQnwwj4NGgaoOvG6/ji0BSeOTaF120bhKZpGE3lcPszJ/Da7YO2fhZmcfPVe17Cl+55CeGADzdesqGm+1K8FX3+5G1EJZ2VOj2C9ugiLwxPGZ/Dkm4MEd3KjBlnZt3pUSEKplY8FZkH7aIHiQUdUeN40h4LCtGjGhRRqHYyVEJ+vdxWldPzns6WPwfZBZCMBoXooT6H6UwBY+m8GFDOt7C9WGiLBBAP+ZEv6cJl6YYqullODy/xVs5OD7dorGPjFeKtqhaZ+1wfO18siW27mUskab8hi4jkmOmOV1450RkPIZWbEQXdHdGgcF81Jt7K2AdqmvM5XEIS4tRtZqXyOa1H9KDOl5l8CVOZvHAxVxU9HKK4iL5kRDwOCX0HRk0HyQKcQzIMwzAMs/AEpVnYFJeYM8yigT+FSxR5oJUI+0Uh5fhMXgyCAi4Xhet6E/bHqiIm0DDL7fEIp1xpwBpaOF2k0iCFhq0qhZIustmbdZXmp685E/uHU+J9CfkNx0y2UMLln7gbALC8I4Idq7vwwe89jtufHcJ9e4fxqWvOXMinzdSAKDvNeF8FT1CROTk9NE2zCR7ycMbu9DA+b1PZAu7fO4IdqzurrtyVxcepTB6PHx7HthXtLLB5RHXV+Gp2eli3b3iRuUO8Ff2OqUwehWJJDEpptXJ7NIhDmKkYPwgY4vS0eXLvRSAhaEjr92muxxfh9HCIt5IF9fZoEMcmMobooTyHVK4gYm0G2yNNGXHkhaDfh69efy5yheqCZpnTw5PoYTk91CJ0wOpVkNF13eb0UAWrbIVFE4C1DdPzyuSLePTAGM5Z22XrJoo38UUn7TfyxZJw6MmurUp0xUMi9g0APnTrk2WPO7vnZrxv0aDf0XHSJr0v1fZ5slDnudPDfMxsvoj9w4bLozsectwfyqjHPJ/y3EmAmcwYLjJykKypIqYwDMMwDNOcOHV6NPP5J8MsFbjTY4lii7cKBUQ2s65bg0uneKtqj+UE5ftXy1AOuXQI5CrkQ/eIeCtn0UN+rGpxHEuVLYNJvOr0QfE1vY5PHZkQ3zsxabw+tz9rlFb/4LGj8/gMmdlC27HqBPCC6vRQkb9PQ8V42C+2o6/eux+/9e+78R/37a/6u+Qun289eAjXfHE3PnHb8zU/51ZFHQjX6vSQ98XzUWS+ojOGZCSAbKGEp49OYmLGLDKPWaIHUF3IyBZKIoZN7WSoeL+85dRwg0SPKYd4Kzn6MCk91wnzOZADcjpTEAXGreryIM5d24WXbeypejtV9KBjdaUic9FrEAnaRBXa9mYc9n/j6bwtmkoWrHRdrxiPCcidHsbtPv6z5/D2Lz2Af7rtObHKLhzwNcS1sFihcytdh3BpiH6eaBWnh5KhKZ+LNTLeym1/Jq+AdHIH2W4r7cO8dnpQN9JMviji1U7pdy52l6nk9AAsETlXKOHEZFZsa6o7hWEYhmGY1kDu9KCFN20sejDMgtO8V4FNjj3eKoCg34ekeUE4ZLomqjkzCPXCdiAZwVVnLhdfk9MjWKXTQ15tKJP3FG/lHIkiR/PMdbzVYoH+zv994pj4Hq0yTHIu5JKEhrP1lNPTEMvvkss+lS2gVDKGg/T4cqcH8ewx5zx9Gdlx9cwxQ3SjHgSmOqrg66+yz1SRB7ORWRaZexE9/D4N567tBmCUTFuD0tpED3lFfS1ODy/RhTToTDl1eihOD8BwU9HgnArLp7NF4fRYw/EznpBFi0Q4IFa+q90ZBWmfZsVbBWxD40Gzl8HJJSK7PAAIwQqw94yF/c4D8YiIaDMe+yv3vgQA+MJd+8S5S7NHC9i6wIoUVWcXMN3okuKvdqzutP2s2jlfLc/NzV0lCxmxKu9TPfFWdBzM5IvYc3wKALB50IvooTg9FNFD3qaeNBeotLKLjGEYhmFaHTrnyRdLwqHOnR4Ms/C0xhS5CZGHRHTxRfY5Wm1Z60UhcdryJD7xtjPEyjyaO1R3ehi3L+v0KFRyelTu9MhKed6tUqpMr9P/PWmJHjTQWStFkzlFhTCLE3r/6nJ6KEXmKroOTOcKtu0hFvKXDZLV4aLKTK4o4rEA4PiEkbOf5u3MM+pQt9bF5fYi89kNzwJ+n81p4jb43bmuC4ApeiiROMmIN9FDLhmvpcg8W6WvAbBWSDnGW0nHFhI9xtNWkfnyDkP0SGULIn5mFcfPeEIe+ibCgbIYKQDYd3IaZ3/0dnzkB0YkEokeqtNjoN14H5yOWdTnQfFZEzN56Ka7TT6XcO30CNif1zKp+JpEvGa/4JT3G/mC8dqJfp4qoofM+y/faPu61ng+J+h8xs3FYXN6VNnnybf1Gm9F2+FMznJ6bB6ow+mhnH/6fZrYN5Ho0eouMoZhGIZpZUSnR7EkHOocb8UwCw+LHksUe6eHsTOlIScNoLzmMQf9RjEyQTtndchQ7fFCLk6PbIVOjx5z0DEynRODDuI/79+P82/5FYDWcXkAzsMdGpbLTo8Xhqbm7Tkxs0PEWxVqFxBI9KgUlTQ5kxermkNmlIv6mTk2kXG6q0AVHo+at2dxzTtl0X6F2kQum9OjASuG5W3ALcN+5zrD6fHQ/jGMmNtAhxl5I9wTipCh6zp++6sP4urP34f9wymb6DHhocj8vr3DuOCWX+G2p4+bz9P9b6WBtWO8FRWZBy3R4+j4jPjMLOsgp0cBB9jpURMxJZ6KHBWy6PG+b/4G4+k8/mv3QeSLJRF9Veb0SBpChFM0FomxWwaTAAx3B4mv8ufHa7zVoPmeA8D9e0cAGBGgzYx8bCCnh9rP48ZJyd13wfrqsWe1Qu+bW4eM7N6oFm+VlPZhXs9vxfZRKOE5cnoMJKveT91m1HgrwHruFEXK+xaGYRiGaV3k1BNyqDe725hhlgKtM0luMuQhkSpS0E424DGaQNM023CMVniqw/dqjydb+mTyZhGz0zC/24xWyBVLmJyxhlqlko5//dWL4utmLTF3wul1yjg4BfYcY9FjqUDD2VqH4ICz0+Pqs1YgLg2IJmcKSJuiBw2OwsrQ/NhEpkxYlDmpiB4kgqRY9PCM6vSo1H/gBAnHQb/WkA4CeRtwircCgK2DSbRHg5jOFoSrj+Ktki7xVtPZAu587iQeOTCGV376blv/kBenx13PncSR8RnhZqvc6WE8ByenB4mIstPj4GhaPCY5Caclp8dqdnp4Qu3koOExbdOTmTyekSLzpqT3xxA9rO2tv72C6GE6Pdb1xMV2QGXmdC7h09zjOmkBCD22HIN2+7MnADS/00PTNHHeUKvoceMlGxDwafjgKzfB59Owrrexg3vaj7nGW8lF5lXEKXunh0enR9ByIA9P56Bp3jo9VJFGLTIHLCGZnB6re3jfwjAMwzCtiigyL+hiQZjb9RfDMPMHfwqXKBFHp4dxkUZDSq9Fj3RfWilJw1Q1PsBppZsM7ejdVjs7DfMjQT/awgFMZQv49C9fwN6T0wgFfLh0c5/oJjGeX+voc5WcHhnJKfDs8eodDcziQMRbzUL0kFfz/tNbtuGjbzoNr/7Mr7HvZAqTmbz4jNAKVfUzkyuUMJLKiUGwitznARixWQAwkysfNjPOqO/vTK4+p0ejcuEj5jYQ9Guu+1CfT8MFG7rxkycN10XApwnhzK3TQ+51yORL+PZDh8TXXorMaUBNt60Ub0WDzmmnTg/p2EIuOBI3OmJBJMLG33FiMoORlDFIZ9HDG3LUUCISLHNU3PrIYdvtSSSNhfwI+H22eDbq9MgVSiiWdNu5xDHT6THYHkF7NIihqSzG03ms6PQWf6bGbsniy9NHjWNkK6yyC/l9yBVKyBeo04PirSoXme9a342n/uYV4v09a1Un9p1MNex5BavFW9Xg9Kin00M+VwaAtd1xV9eJTDysFpmX3yYZNZ4PuWVWd7HTg2EYhmFaFXkBMJ2PNrvbmGGWAq0zSW4y1CJz43t2p4dX+z9gHyrEw85D02oXmULdLtpXk4sic5f7U8TVV+59CXc9fxK/eOYEbr71SdttjoxX7iNoJkIOuf400GGnx9JEFJnXI3qY6oO80lTTNESCfhH3MTljlTd3xo3vOQ0Kj1b4HA1PO8cSkYiq6zq+ePde3PvicM1/Q6ugxpc5FTdXgt6z2fZ5EOT0aIsEK3YiXXPOKvHvoN/qT3IXPex/16FRa7uazORRKrk7igArMm3MXNFfSdQWnR6K6KHruq3IvNN0DdKxoiMaEscyGn53x0OuMV+MnYDfJ45FTvFW97w4Yrv9/uGUuC1gH2APSD0b6rZDnR7LOqKif4K2t1yVcwegPN7KSRxrhTzloBIvSm6ZjipOD8Ausr79PGNfQB0rs6XaPs3u9Kgmelh/S8hrvFXAb/tbvLg86H4yzvFW9teWBVWGYRiGaV3kTg8Rb8VOD4ZZcFj0WKLIQ6K4EkdFxcO1xKPYHs9c4VYWb1W1yNzc0dfg9ACAnoS1ErGvLSwir1oVebh9zlqjZNipE+Kl4catxmTmlrnq9KD4oclMARNKnIlTJBxFyTihdnoQNKD+6VPH8Q8/2YNrv/RADc++eTg8lsatjx4W74cTGaWoPl2jS4b22V5WInuB9uvVVrq/bIOV5S9HELmJHup2LG87um5fbU8USzpuffQwDo2mkTE/D/RSeur0UB4zX9SFGykc8GO1madP7097LCj+7lHT5cEl5rVB22GbVGSeLZRQKuliqE7sHyHRw9hmZNGjv80SPdSIK+r0WNYRQUfUOPYL0cOD04MG9tl8EbquO4oereD0kJ22+WJJiNW1FJkDhtPj1j84Hz+88YKGPK8u83zOTUSppdNDfh+9xlv5fBr+9bfOFL1121d2eL6fTJfDean83DWNRQ+GYRiGaWXkBSjTotOjdSLaGWaxwqLHEkUWKdQic8LrRaF6X7dOj2C1Tg/h9FBEjyIVmTuLJnLczss39uIjr90iHu+du1Y7PpdmZr8ZzwIAmweMVYlO8UgpZaCayRdx397hutwEzNzSiHgrp5WmFOkzOZOXVvYawxmn1fMUJeOEm+iRyhWg6zoe2Dfi+PNm4cnDEzgx6S4KvfZf7sFN33kc/3n/ftfbqGJAFcNDGcFGOz0C1kr9Svh8mtjXDkqr8t2KzFVxR2V8ptw1dNfzQ7jpO4/jb//3GSGkERXjrcIketifQ046zoQDPqzusg8c26PBsmH3yk4eStYCDaHlTg/A2I+p3S0vDRvHLdonyf0MXfGQcIrI732xpIvP3GB7FO3mgJ5iz6q5RAErvihTKGImXxT7y9OXt4vbtMIFpxypIIuU9TibzlrViWVSIfxseOMZy/HxN2/DH1660fHn1NkDeCkyrz3eCgDOW9eN3TdfhluuOl3s57ywzNwXruqK4XcuWOvwfKznftnmPnaRMQzDMEwLE5JST6iLUD7PYRhmYWj+5W9NSjjoFG9lv2AMVungsD2eHJdFxej++pweZaJHVaeHJXrsWt+NN56xHNOZAvqTEVyyuQ9d8RBevrHX41+y9JGHz2p0hxwNIv/70Ggab/3C/Tg2kcFHXrMFv/vydfP0bBkvZGYTbyVEj/LPj+X0yEODGUkUI6dH+e0Pjc7gyPgMlisDraePTuAXzxilv22RgG1Vva4bQ85mjpg7OJLG6z97D05b1o4f/+HLABgxOcWSLgb/NIj92VPHcb3DAAywx8/VA0W2NKrTg/brXkr0/uK1W7GsI2pzfXiNt1IZT+exutv+PeraGJrKisgq63m6DzBlN5OM/FkK+X0Ix4xeD7pdRzRYFmu0orMxg9xWwRI9grZtciZfFNtETyKE4emcFG9lvF9xaYDdEQsiGjR6w+RtZ3g6i3xRh08zXJ4UxUSimSenh7mN54u6+Iz6fRrOW9slCqZb4YJTvtCm1yEZCVTtYptroiE/3nr2Stef2+Ktgt6LzL3GWxH9yQiuOXdV9RtKfPSq07Hn2BSuv2CN4z5ZPie+bqd3MYVhGIZhmOaDFmQUSzomzcVaHG/FMAtP6yyfbzK8xVHV4PQIyk6P+uKtyMmhrmbPC6eH8/ORV/ftXNcFTdPwjl1rcOWpAwj6fXj/5adgx+pOj39J87C2Jy7eZyenQL6oi9f2vd94BMcmjBWzB0fTYBYXjXF6lP/MWolfEINCGhyGHYY0X7n3JVxwy6+wW3JtZPJFvOsrD+LYRAaru2O45pzyAVU6V8ThseYRPVTx6dnjk9B14LkTU9B1HRMzeVz2z3fi4n+8oyyiSh2+y9QTXybT+E4PireqPvQN+n244aL1OE1aIU/bVypXtInZ1Z0e5WXmJObO5AplEUdO2ypBgk2uYB+Y03sY9Gvw+TRomoY1PVaRcEcsWHahsYKdHjVBrs9E2Bie02B9Jl8UcXrrehIA5HgrcnpY5xGRoF9s0/J7Tx1D/ckIAn6fJbKl7fFWlVb1y8NoKpROhAO2GCO1lLoZCfplp4d5LKhSYr4YqCXeKhr0CxGnFqdHvVyyqQ/vvXi9qwgt7xMvbKGFOQzDMAzDlBOUZmfUW9gKbmOGWeyw6LFEoWF40K+J1bzlxeO1OD3Ki8xrjbcKusVbVVmtKQ+CeSgFfOW3z8ZZqzrw5XedXeb0UIfmNASUS83VInlmYdF1fXadHg5F5oQoMs/kxaCww8Hpoa72vfXRw+LfJ6eyGJ7OIRTw4Uc3vszxM5jKFmxOj0Jx6Uao/fF3Hsd5/3A7nj9hfWYOmUJhrlDCeDqPj/9sD05MZjGWzgsxkVBjlmSqiQHVuGBDD85b24VrznVfGV0LdGxI1rnKSB5IyhFXtN9x6wtQ+x4AYHjK+F46VyxzilSKL0qEAiKPX3Yg0WdJvi/1ehjPLVQWb8VOj9qIhuxOIRLRxlI5ES+2rtd4zelzQi4yEkxIhI2YjyXHW9F9KEqJzj0oulEuqndD3s+R6NEWCeAMSfRohXhMuVNtXDkWLGbkz2g10UPTNLEt1rKoZ674/QvX49w1Xfja9eeUdYAwDMMwDNNayLO3sZTp9GgBtzHDLHYW/qqBqYuVXTFsX9mB129fLr4nuzUAIFBFpJAJSfFWcYd4K00rL3YsfwyXIvMqudzvOn8NlndE8ZHXbPH8fJuZSzf349Y/uADrehM2p0ehWCorUZ7JG98vSN/PVomeYeYXuXB5NvFWTk6rZFTq9JhRi8ytz9uG3oTtfrc/OySEC4qp6YwF0R4LOg6extN5ZeC8dEWPO54bwlg6j5tvfRIl87WVXSy/3DOEbzxwUHytFmir/RYys3V69LVF8N+/vwtvOGN59Rt7gI4JXuKtnAj4fWIoOenw/g+2O4sITq+R5fQoOjg93I9VPp/m2OvhJKbLvR5OnR4setTGq04bwMquKM5ba2SVkVvjuClWBP1a2Wu63tzXbF2WxMa+BF6/fZntvk5OD+qRIZGFxMMpkYfsvv36fJrY19E2lggHbM9reMq5r6iZoAvtXNESPehYsJiRI+iiVUQPwNoWalnUM1es7IrhOzfswsWb+hb6qTAMwzAMs8DIC4Rp/sXxVgyz8PCncIkS9PvwwxsvsH0v5Fc6Pep1ejjEW1VzeRi/39npUa2MdG1PHPd+6FLPz7WVkJ0e8qDZpxklyZlcCbmw4v6Y5eCVaSzyIHw28VbVnB40BG43i8zlz+/OdV2YzOTRn4xg/0gKo6kcHjkwhvPWdYsBNT2W04Dx6aMTtq8z+WJZX8Ji5o49Q/jC3Xvx9288DaMpw3HwyIExfOuhg7j2vNU20UN2wQDlA/xK8VazdXo0Gtqvz+aEuz0axHS2YOv1IKdGTyKEgE8TomvI77MNXWVoIJ3OFctciZWcHoCxbU5lCo7Ci0306LZEjw4HAa9R5cytwvUXrLX119Dx6LhZPt4eDaFb6uQCgPV9hvMjEQ7gFzddJL4fFccyd6eHKoxQNEBXvHJMUyToR7ZQEk6PZCQITdNw7Xmr8D+PHsYbz2yMiLiYkZ22qgC+mAkFfDhjZQdGUln0tUWq3t7ojJlpCfcOwzAMwzBLB59Ps10XAYZjnWGYhYWvGpoIdbVsLZnH8hAq5hBvVa3PQ769upqdhlNBvkitGdnpIQ+LaJgxky+WlScvtsFrqyMLHfU4PejEycm5lbR1eqjxVtbAd1lHFPf82aX43g27cOlmY1XqDx47atzXXD1PjxVzEDOeOKKIHkvM6XH91x7C7n2jeOsXdtu+f8tP92BoMoPDY1YPzqMHx2y3mcoUhCOE0HXnCDkSuM5d2wUAuG5nbcW5jYZW3Z/S31b3YyQdysxJWI0G/eiUBtLLOoyhpXOnhzHAnskXka7B6QFYThXZ6UGfK3k7lzs92qPG4FumUQXxrQqJEidM0aMjFiwTJKjjo+y+oXKnx7EJxelBwogZgUUCZWdV0cPu9KDt5e/feBoe+8srsa7X+Tk1E/L518TM0om3AoD/ee/5+OVNF3sSMtqE04PPJxmGYRiGWVyo5yet0CvHMIudmq4aPv/5z2Pbtm1IJpNIJpPYtWsXfvrTn4qfX3zxxdA0zfbfDTfc0PAnzTijrpb1IlQQ8uCIFGlZCAl4yCumnXyuzOlhrQJmaoPeA9npEfL7RF76TL5Y9nqrefnMwiKLHoWSXnMfRqlCkTl1NUxm8sKRIEQPaZCciBhFxAG/D6/bZsTNfOvBg/irHz6FyZmC7bHiDhEjTx4ud3osRWiIurYnjm0r2jGVKeBv/vcZHJGcHqpoOJXJl7mnnJwMAIQA+TsXrMFdf3ox/vb1pzXy6dfMey9ajzv/5GIRMVQP7WaEmt3pYfydkaAfXVJZ8nIzUkh9fXRdx8lpK2JoQhFF5OOPE5boYTk9HOOtZKdH1D4o55Xhs4fEBYq36ogG0ZOwXufueMhVoCDBaSZnfb6GJo1tYiBpiB60zxJOD/Pz2lWlkJsem7YxcjZpmtYyQpfstJ0wHTLqZ2Cx4vdpnj+fq8zPeH8yXOWWDMMwDMMw84uctBIN+hdFBxnDtDo1fQpXrFiBW265BY888ggefvhhXHrppXjDG96Ap59+Wtzm937v93Ds2DHx38c//vGGP2nGmdl0esj3pRWZskjhZVVdjxlzceujR/Djx4+K7+eocJaHTjVDA5tsoSStbPZZq2ZzTk6PpTmQblbUjhVVpKoGFZn7Kzg9JmbyVnmtOeiyR9ZZ7o2LN/XiT1+xCZoG/Mf9B/CbQ2O2x3KKrXru+JTt66W+ja3ojOIf3nQ6fBrwf08cw1S2PLJqZZcxwJ/M5JHO2f/eE1OZstsDlgMiHPRjdXd8wcttfT4Na3riZY6HWqD9+p5jk+J79P6HAz50xq3V5MvMjg9V1JjKFmwuJ9Uoo8ZdqYgYN+lxnbqiehNhdMVD0DSgv90+FO1cIqveFzNqvJXh9LBe5/V97o4Kp04PcpmRc1GNwBo192lVnR6maCYXmbca1qITvcz110z8xWu34pu/ex4uPoV7NBiGYRiGWVzI866lFAXNMM1MTVPo173udXj1q1+NjRs34pRTTsFHP/pRJBIJ7N5tRYbEYjEMDAyI/5LJZMOfNOOMulq2nk6PkN8ndta1xlu96czluHRzH7KFEj74vSfE4IKdHvUjx1tlpYGqPBxSy5M53mpxofZ41BpxVazo9DCGWlOZgojBogGi/HmTT7o0TcONl2zARnNASYIGPVbcIXu03E20tLYxVXtY1h7FacvbRQyVE6cvbwdgvLYziuhBK91VSICsNsRfSrz69EEAwHcePiS2XRLyIkE/uqWhd2+b8W91n1StSLra61XJ6SEL9pqm4cvvOhtfeufZZf0AnVXcAkx1IkqReTIaRLfk9FhfIUbKqdODXGZt5r7HisAy3lvh9IhXHt6TA4VEj0S4+Yb91aD40HyhhLElVGReK+3RIM7f0LPggjLDMAzDMIyKvFC4FRfhMMxipO7JTLFYxLe//W2kUins2rVLfP8b3/gGenp6cNppp+Hmm29GOp2u8ChANpvF5OSk7T+mPlQnRS2Zx3RfOXfQJnp4cI1EQ3586Z1nIxL0YSZfFLnfTjEkjDeE0yNfEoPmcMBnWzWrDtW5yHx+yOSLGHJZ8S+jvj+1lplbooeT08N+MhUK+MQAUF7dT8NoGRpWvzScsj2Wl+xR1b2y2BlstxdYD5rdE1duHXC8fSzkx1qzH2IqUyh3ekxWdno0U6TOFVv70Z8MY3g6h58+dQyA1ekSCdqdHlRqrTqBqM/DjeqiB4l7cqeH6SBUjnNnrurEZVv6yx5j24r2ir+DqU5UET06oiG0hQNigcX63rj7fSV3IkHvJ10URlSnB3V6eI23amGnR0iKFx0y9099yerF4AzDMAzDMExjkOdvCXZ6MMyioOYp9JNPPolEIoFwOIwbbrgB3//+97F161YAwNvf/nb813/9F+644w7cfPPN+PrXv47rrruu4uN97GMfQ3t7u/hv5cqV9f0lTNngqJ5Oj5i0yjvktwZ3Xh/L59PQb15onzDzummVOBdP1g6tYs4WimLQHA76EJHjrRSRQ427YuaG1/3LPTj3o78UZbxuqAJBre+PED0cIorCAb+IYQKMjH1Z7PjbN5yK379oHbY7DHy7zBXatCpYOD0qnKD5zdW1S01Yiyk9JRTDdMVWazguR8Gs6opZkUqZPNI5e/wV7dtUmtHpEfT78FvnGoXs3334MABrKK12elC/g+oEGp6u7PSoJoi3ie6ayp0eTnzjd8/DVWcux5+/emvF2zHVIUGV4uA6Ysb+hgTUSk6PiBJvVSzpSJkCCL2/qhtkLE1OD2+iBz1eshVFj4Cxb84XSiJ+jHsvGIZhGIZh5g97vFXzLIJjmKVMzVeGmzZtwmOPPYaJiQl873vfw7ve9S7cdddd2Lp1K97znveI251++ukYHBzEZZddhr1792L9+vWOj3fzzTfjpptuEl9PTk6y8FEn6qCtFpEhXNXp4V1A6U9GcGAkLS682elRP5RVLheZhwN+RKXCV+70mH8KxRJeGJoGANz34giu3rHC9bZl8VbF2t4fy+nh/BnctqIDh0YN4UXNcH/nrjWuj9ujDBKp0yMc8MGnASXdGELKGfwrOqM4MJJecvFWajwXOT1WdlnF131tYdGLsqY7LtwFkzMO8VZuTo988zk9AIgYMPq75b9TFpSo/2OmzOlRLd6q8utF2+ak5PTIFbwJTBds6MEFG3oq3obxhrpd0/7md162Br9+YRg713W73lft9JiWBCz6rMnCiK7rGPHs9LBvA4kWFD3ofG86WxD7sQF2ejAMwzAMw8wbdqdH88WMMsxSpOYpdCgUwoYNG7Bjxw587GMfw/bt2/HpT3/a8bbnnXceAODFF190fbxwOIxkMmn7j6mPMqdHDUKFJXpITg/p8WoRUOhC+8SEXfSopWOEMbA5PaRIGVunhznQbTPfOxY95p7DY5a7oytReSBXFj9Wr9PD5fN8xooO8W8qMfeCXEAMWE4PTdPEfmCg3T40I4fEUtvGVGFQjrv617efiYFkBP/45u1iH7W6Jyb1SOTFCnLihFunh8dB/FKDRAnal8tRe7QKPyoJIGXxVnPQ6SGLwMz8oIoe1BnxngvX4+vvPk9EWDkRDRnvccb8LJGAFQlaPWJyBFY6VxTbm1enB9HWgheZFG91aMyIlA0HfE3Z6cEwDMMwDLNYCUnzrgQ7PRhmUTDryUypVEI26zzQeOyxxwAAg4ODs/01jAfKi8xrcHqYQwO5xLjWInOCBqW0KnjcjKhI8gV4zZDTI1/URcROOOCzDYdooEuvb62dEUzt7D05Lf5drZhcjR9TXQfVKOruReaAvaugls+YKtbIAzLaD8grhTtjQSGGzKfT48GXRnHNF+8Xhev1oL4Hyzqsv+u125Zh94cvw/aVHaL8enVXXLyWRqeHPd6KYndkdF2XhMnmOsklUYJeR9npQavw4+GA1Mlg3z5OVun0qB5vVd7pwQ7C+afc6eFdZI2a+xRyekyKPg9rvxMR21kJI+Y2Ewr4yuLpyp6Xcu7Tik4Pct08dcToxRtoj9iiDhmGYRiGYZi5xeb0aMHzUYZZjNQ0Lbj55ptx9913Y//+/XjyySdx8803484778S1116LvXv34u/+7u/wyCOPYP/+/fjRj36Ed77znbjwwguxbdu2uXr+jMRsOj3Wm6W9G/qsTO6wX4638r6p9JmlyccnM8hJ+dIrOqOV7sY4EJZiOyZnjCFROOC3xYDQIJKG1oWSjkKNg/XFgq7r+Pv/fQa3Pnp4oZ9KRWTRo5rrQXUZ1NrpUSi6F5kDwGnLLdGjFkGlPN7KOjHb2J+A36fhdElQ6UmERYyMKiLMJd99+BB27xvF/z1xtO7HkIXAjljQ1l0kQwLSmas6pB6JvIi3or8/lS3/++Xf0WxODxIWSGiQxZ2N/QkEfBo29iXEfkntsZl1vBW9FzNSp4e5ratF5szcMaB0RNTiJFDjrci1I5eOy04R6krqioWqDu/VeKtWLDJfZ/apHBw1nB79bRxtxTAMwzAMM59wvBXDLD5qujIcGhrCO9/5Thw7dgzt7e3Ytm0bfv7zn+OKK67AoUOHcPvtt+NTn/oUUqkUVq5ciauvvhof+chH5uq5MwrqitdanB7nb+jB3X96iW0FtD3eqnanx9BkBscnMijpxhCwN8GlmrUiDwMnhOjhsw2QaAApD6AyhRISS2AYmM4V8MW79+G125ZhQ18Cu/eN4kv3vAQAeNOZyxftStW9Qynx72oihuq8qVUwKOnuReaAPZLu4EjK8TZOqJExSWnF9b+/82yMpnK454Vh8T1D9HBeyT+XkKuCtn8nvv3gQfS2hXHZln7Hn8vvwSn9ba6P88m3nYEPvzqLlV0xvDhkOEsMp4fxnvW2hXFodAbT2ULZfeXf0axODyveyhKBBtujuPuDl6AzFsL4jPFeqUX3Y2Y3Q8jvcxTmwkGPTo+stQ2IeKsq92Uax+u2L8M//HSP2A466hE9KN7K/DwnbU4P63Nz1BQ9OqtEWwEcbwXYF6wAQH87ix4MwzAMwzDzSTAgix7NdT3IMEuVmkSPL3/5y64/W7lyJe66665ZPyGmfsrirWpwZwDAqu6Y7WtZ9HDrE3CCInGOT2Zw2MyXXt4ZXbQD7MWM36ch6NeQL+qYNFfGhoN+e6eHOYCSV7dm8kUkwot/tetHvv8Ubv3NEfzo8aP41R9fbHNNnJzKom+RFrG+KDs9qogYZfFWNcaPVev0AIBTlyXx9NFJXO4y9HeiWxEh5WisSNCPZR1RxKSTtZ42y+kxn50eY2Yp72SmXGgAgKeOTOBDtz4JANh/y2vKfl4olsRr+MV37MAZKztcf1ck6Bfl5jRon85a8Va9CUP0SOUcRA/zNfFptfUpLQWE08MULDLk9DCPOcs6DBdftmDF8RWKJQRM4ZWijPqSYVsfjnj8KgJt0rHTo+jpvkzj6E6E8cpTB/Cjxw3XFUUqeUF0elRwevh8GsIBH7KFEo6OGw7Rrnj13yGLHpoGdHq4T7OxujsGnwaYu7oyVw7DMAzDMAwzt9g7PRb/LIZhWgGeFjQR6orXWuKtnJCHSbW4RvqpyHwyK0o1V3TGKt2FqQCJWbQyNqJ0euSkqBlakb1UiqZv/c0RAMC+k4ZDYUZ63rKwMF88e2wSR8fLh7Iyuq7jxaEa4q3KnB6NFz3+43fOxUffdBref8Upnh+3W1lB7RQJI2fpd8dDYlusJvQ0EnJ6TLo4PZ48MiH+nckX8ciBUdEjBNgjv162scezkEYr0IslHcNmv0CvGd2XquD0CAf8TSfw0rEgX9RRKulC4FFX2MtfZ6TtnGKp+l1ee89Oj0wBuul84k6PheHa81aJf8t9HNWIlMVblTs95NsdMffDnR56Q+R941t3rKzpeTUL4YAfq7qs8yy3zxrDMAzDMAwzN9g7PVrvfJRhFiM8LWgi1BWvsxY95CLzGlYu95krDHOFkhhIcp9H/dDqehFvFfQ5dnqEA74FiR+qF7l3hLYvOcJo79D8ih6jqRxe/6/34LovP1D1dvLzrPZal3V61Cp66NVFj55EGNeet7qmFSXt0aB4zFjI7yhsyt0XvZLTo9ZektkwIZwezqIHuckA4M7nhnD15+/Hn3z3CfE9+bnW4gqIBH1iuxyaMladk+iRL+plDh458qnZCEtiRq5YEn+rKlbIXSayGEgD7gE30aNap4fZN1Ms6SJqjGKSqt2XaSznrevGP79lO774jh01OUDVTo9JB6eHfLtjpuihxvA5IX/mbn71Zs/PqdlY32tFXA1wvBXDMAzDMMy8Yu/04GsUhlkMNN90poVRB1C1xlup2ESPGoaF4YBfDCoe3j8GAFjJTo+6oaHehFRkbg2QSmKoa4ghS8fp8dTRSfFvEsVsosdJ7/0UjeDYxAzyRR2HRys7PfYN259XdafHLOOtitVFj3rw+TSxilpdbU3ITo+eREjEGdW6feUKJQxPZ8Wg2iu6rmPc3CbkEmuZ545b4tijB8cB2IvmSWQK+LSa9mOapomB7IlJo4i7R4oEozLzQrEEXddtTo9mQxaLsoWSEPoiyt+qaVqZ26xQLCFlvu/y6nO5J6qaWyMa9Ivtf9TsB3n2uNG5srY3XvsfxMyKq3eswJWnDtR0H8udaGw7wumh9ILQ7ax4q+qix9VnrcBVZy3Hd2/YhQ4PzpBmZb3U68FOD4ZhGIZhmPmFi8wZZvHBQXNNhDyY8vs0+GY5JK23yBwwLrhHUznsMQdT7PSon7Dq9JDirTK5om3YSk6PWsuyF4Ld+0bEv6fNAbJd9JhfpwcN5HPFEnKFkusgdmQ6Z/u6mnNjtkXm5PSYi56I7ngIw9NZsZJeRXZ69CTCQnioRfQYns7itZ+5B8cnMwgHfPjeDefj9BXtnu47mSmIeC83p8ee45Z4RjFpw1NZ8T3ZCVUrbZEgxtJ5nJg0BrCJcEB0DqSyBSTCAVz5ybvQFQ/hw6/eAqA5nR7y/j9XKIl4M6e/NRL024QRuYejX+oZ6IqHhJhU7b3RNA2JcAATM3m8/ON34P+7bCOeNUXT7R63JWZhkXuoAKnTQ3Gn0bZwtAanR3cijE+89YxGPdUlywbZ6cGiB8MwDMMwzLwSCkidHg7R0QzDzD/NN51pYeQIkkYMSGURJVCja0Qt0WTRo35Ep4c59I0E/baoEFu8VWDpxFvZRQ9azb9w8VZyn0jaoaiamFb6HOba6VEwh/6zFTGd6E7U4vSQi8y9/w1/97/P4LgpGmQLJTx8YNTzfeVuDqdOj8lM3laM/dKwsc1MZQvifRGiYLB2BwaJQSR6xEIBESGWyhVwcDSN/SNpPHpwXPQXNaPTQ9M0IQJmC0Upyqv8b1XdZjTcjoX8tq6F7rh1jPDSyyF/Jj/zyxeQK5bQEQvaegyYxYt8zNJ13bHIHLCcHlPmftZLpwdjsL7Pcj31cZE5wzAMwzDMvMLxVgyz+GDRo4kI25wZs39rw7Z4q9oGrttWdNi+5iLz+hGdHmnL6WHv9LCcHuElFG91cNTqYsjkS8gXSzanx9GJjGNh9FyRlqKXUhVimKYVx8Fcd3qUqMh8DsqxaRW1GjFDxGWnR1tYCAeVisyPjM/gXV95ED987AjufXEYP3zsKDTNWpE/lsq53ldlLG291qlc0dYDAwDPm04yQt6mhqcNF4GIf6vH6WHakvNmxFgs5EecRA9JWAGAXzxzAoAlJDUbYSF6WC4OpwLyqOI2I7G2LRKwiWjy6+TlvXn99uVQPwLbVnQ0XWl8sxIx3/tiSUe+qEvbhRJvpQhpXpwejMGWwSQGkhGcs6azKcVXhmEYhmGYxQzHWzHM4oNFjyYi4NPEUGi2JeZA/UXmAPB7F66zfd3TpIPA+YAGglT8KsdbzeSKwjkQWmJOD7XfYTpTsIkeAPDS8Pz1esjPp5LYUub0qBJXNdt4K3J6NLrTA7A6KpIu9ttEJID+ZBg9iTD62sJCbHMT1XRdxzu//ADuev4k/ujbj+F/Hj0MALjmnFW4aFMfAGA0XYvoYb+tHJUEWL0OBIkTADBsxpDR6+3FTaDitAqdRI/pbNH2fEj0UAXfZoH2Q9PS3+zs9LB3N5BDJxkJiv0WYO9H8VIw/09v2YZn//aVeNVpVpcER1stHWQxYyZXFMezsk4PZZtip4d3YqEA7vrgxfj2e3Yt9FNhGIZhGIZpOWTRI85OD4ZZFLDo0UTIJbK1xlE5UW+ROWBk33/mt84EAJy1ilfjzgZ1xWZYirfK2JweviXl9JhRnuNUplAWYbR/ZB5Fj7xX0cO4HcUcZT3GW1F2fS3xVuTyAOZG9FhnlkC7RQT5fRp+9kcX4rYPXIig34dIoHK81f8+ccxWQP/LZ4cAAK86bQBdMWO4OZZy7uZwYiJtv63a6/HCCbvoIUO9HrlC/U4PdSAbC/mFVTmVLdgEMBJczljZnIN4Eibk90AtMgesGDHaB8nDbdk5tLIrhlDAh8H2iKfjg6ZpiAT9eMWpsujRUfsfwiwIQb9PHLdOTmdEkbkqLKpCGjs9aiMc8M/JsYJhGIZhGIapTEhaeCxf9zAMs3DwJ7HJCAf8yORLNRePOyGvvg3WcRH9+u3LsKorhsF2LtScDWpZcDjgs3d6mMPFcNAnFZkvfqdHWnF6TGbywunRnwzjxGQWQ5NZp7vO+fNRn5sM9Y90J0KYzhaqx1uZ70UyGsRUtlDTe1OYY9HjmnNWYU13HOes6XK9Tac0dKy2fX3zgYO2rydm8gj4NJy9plO4NkYd4q2Gp7O454VhvPK0AdvQU3V6UJE68aLZ+7K8I4oj4zO2n4l4Kyn+rVY6HEQPy+lRcHTANa3Tw3xf6D3waXA8zghhzCHeSnZ69LWFcet7zxfioVcu2dSHcMCHkq5j+8qOmv8OZuHYuiyJRw6M4YnDE2I7qiZ6dMQ4GoBhGIZhGIZZ/JDTIxEOzEkfJ8MwtcNOjyaD3BmN6PSYjdODOGNlB/qTLHrMBnVYGwn6EQkZ78dMvoiMNNStFj+0WCiWdLECn1byTmeteKsNfQkAwNDU/IkeM1JRshphJUPxPhTPU7XI3BRFaLindnxUoqTPregRCvhw4Sm9tmF0JYTo4fI3n5gyCr9PX265Hbav7EAsFBDvsypkAMDb/3033v/fj+Fzd7xo+/5YFafH3pOG6LFjdWfZY1qihykK1uH02DKYtH0dDQaE6JFWnB6AsU00q8hLIjit0I8E/Y4ODWsfVB5vJXd6RIN+nLa8HWt64mWPUYn2WBDf+N3z8LXrz0VvG5c1LyXImfP4oXGxHSXVTo+QFAsQ8jtGqDEMwzAMwzDMYiNoXm9ytBXDLB5Y9GgyRLxVozs9GvB4TH1UcnroujWEDAd8ZausASM/nQbAiwU5SqrPHFxOzuRFFM6GXkP0ODmfokdednpU7/SgnprqnR7Gz2m4lyt6Fz2KktOj1l6duSBSJT6NXByv2TYovrdzneEioWx+J6fH8ycM8eJnTx+3fX+8zOlhiR5TmTxOmE6gs1Z1lD3m8HQOh0bTFUu3q7FdiaqKh/2Im4P7VK5Y1jFyxsr2po3yo+MBCZNuw2h1G5kS8Vb2IvPZDLPPXtOFCzb01H1/ZmGgz9ND+8csB1yFIvNOjrZiGIZhGIZhlgiy04NhmMUBix5NBokewUZ0etjirXhTWSjKOj0C9tWv1HsQDvjKVlkDwLVf2o2X/b9fOQofuq7bBuvqz3Td+WezhUQFTbMcEycmM+K5bOhvAwAMmc6B+SBtKzJ3FzKmypwedhGjUFSLyxWnRw1F5nK8lW8RDNNpW8w4xFvliyWMm9viK08dAGk0O9d1A4DN6eG2XakD0EpOj31md0hvWxiruss7Sb523368/ON34F9+9YLtudfCup6E7aQ1qsRbqc6TZo22AqxjC/3NERfnjOo2s+Kt7EXm8op+pjUgp8czxybF9xIV4q24z4NhGIZhGIZZKlCnRyLC8awMs1jgqUOTETIHe41wZmiaJoQPdnosHGVOj6APQb9P5OmPmyuvQwGfuC3FD2XyRfzm0Dgy+RKeOjJhe5xSSccN//UIzv3o7RhzWH3/Nz9+Bmf93S8wNNl44WHGFBiiQb8QAw6bnQwhvw8rO6MA5tnpkfNaZO4eb7X35DR23fIr/Ol3Hxffkzs9gPqLzBe704NiqzTNKKn+w0s34nXbl+G8tYboQU6PfFG3xULJAohaHE5OD4r2mpCcHhRttb43jvao+3CUitVDdUT0+XwaNvYnxNexUECIIKlsQUSdnbosiV3ruvGWs1fU/DuWCuT0oC6GsItTI6qIHsLpEQkiJhX6cWxR67G6O4Z26TMeD5WXbsvbBe0zGIZhGIZhGGaxQ9dLCY63YphFA4seTYYVb9WYt5Z23Ith4NqqlHV6mF/TcIgGw06dHi8Np0Az5YOjadvjfO+Rw/j50ycwksrh2eOTtp9NZwv45gMHMZbO4/HDdrGkEVCUVCwkiR5jhuiRjAbR12b0IixUvFWqYpG5KXq02Z0euq7jDf96L05OZfHdRw6L21vxVuT0qK/IfDGUocnbl+rWoNiqrlgIfp+GD1xxCv7lt84U+5BoyC8G4nLE1aQUEaWWGpOQsqzD2B7kInNL9Eh4KjuuJ94KADb2WaJHNGh3etBA/01nLse33rMTg+3Run7HUkCNt3LrSHHt9IgGbNFFLHq0HpqmYctgm/j6si39ZbeJstODYRiGYRiGWYLsWN2FgWQErzh1YKGfCsMwJix6NBmiyLxBA9JQg0UUpnacnB6ANRyiuXg4WB5vRYNhANg/bIkeE+k8PvqTZ8XX+aJ9gH3nc0Oie2JmDkrRKUoqEvQjETYG1kdM0aM9GkBf0hAURlI55GvowGjEcwKMkmo3aHV/r9npQa6a7//miGMBulVkHrR97QUqMl8soiMJbiW9fJsZmTZFjwqDSvqZLHrITiI1aY3islZ3GWXXcpzUi0OW6CGvHm9zyVCtp8gcAE7pt4a0fp8mRI+UVGSuijXNCDllJjOVOz3CihtIjrfy+zTxPkRZ9GhJXrttGQDg2vNW4Z/esr3s5+z0YBiGYRiGYZYiG/oS2P3hy/DOXWsW+qkwDGPCk+wmQ3R6NMrp4Wenx0JT3ulhrZxXvx9Wisz3DqXEzw+MWP/+zaExW1SQGrl029MnxL8zuSK++/AhfP7OvQ3r+KAoKdnpcWScRI+gcAsA1jB9rrHFW1UoMp9S4q3IufHLZ4fEbeQoJSveynR61CDikNNjMbg8ALtbQi1wH0l5Fz3GpILy45LoMaO87iR6rOwyOjsmbfFWxva8vs8uemyQ4qhsz72OTg/AKmUnxwfZlVPZIqakgX6zQ3FWk6LI3MXpIXpf1HgrY/vf2J9AJOjDsiZ2xTDuXLdzNZ7+m1fgo286XSyqkJG7Xrrizf+5YhiGYRiGYRiGYeaG5l+e2mKEG9jpAUjOEXZ6LBgru+zDQXqP1ZXSTvFWstPjgBRvpToS5HLtXKGEO/ZYA/x0roC//vEzAIDTl7fjZRt76v5bCNHpEQoI0YOirNqjQfh8GnoSIZyYzGJoKoOB9sisf2c10tLA3a3IPFsoCoGIRI9csYRiSbdFceWKJeSLJQT9Pineipwe3p0z1OnhXwQl5oAhrGkaoOvGNiYXj49MG38/vS5OdAqnhyVeHJ+wRA/ZbZPJF8V2urbHFD2kKCxyBq3qiiHo9yERDmA6W8C6ngR+c3Dc8bnXw2B7FLtvvgxxU+ygXopUriC244SLu6SZsJwexnvg5vQoi7fKULyVsa18+z27kM4W0O4hkoxpTuIVPi/yca2T460YhmEYhmEYhmGYOuFJdpPRcKeHiLdaHEPXVuSKrQP47fPXAACCfk2IBDEHp4c6cKQIIMDo9KAhulrULUcu3b9vRLgZAGBC6lG47ZnjNT//TL6IH/zmiC3SKJ2nInNfWTQQrdqnXo+hyfnp9ZiRXoO0i9NDFkO6EtZALlsoYnja/jzTuSKKJX1WRebk9FgsTitNs+KJ1JiuUS9OD3PQPSZtCycmnUUP6nhpCwewotPu9NB1XTgJ4ubngLabnoTz73daVe6VgfaIcHPIRebkYmiJeCul0yPi4pxRy+6ph4WcHolwAH3JuRcxmaWJLKZ1cbwVwzAMwzAMwzAMUyfNP6lpMcINLh6n1b1BH+tjC4Xfp+GvX38qLtnch1JJF6tke9vsK+oN0cMaOJZKOvYNW6JHrlDC8ckMlnVExbBW/EyKXLrtabuwMZKyhvn3vDDs+Xk/enAMa7vj+Pxde/HFu/dh+8oO/PDGCwBYMUaxUKAsGsgSPYy/7+T0PIkektDh1M0BWH0e0aAfiZC1+8zkS2XPM50roFjSRZF8f9Ieh+WF4iKLtwKMoWQmXxJDbcJLvJVwerjGW1mPeWjMcCYt74yKbYJcA7liSbyuFLvUEQviyPgMOuMh/PDGC/DE4XH8xQ+fFo9Xb7yVitXpIcdbNf+hNKyKHi7xVlGl7J5eo2QLRIAxsyfCTg+GYRiGYRiGYRimATT/pKbFoMz9Rjk9guz0WDRcdEqv7esBZbV0OOAXg91MoYSjEzPI5EsI+jUMtkdxcDSN/SMpLOuIlsU3UeRSqaTjF88YfR4b+xJ4YWhaDLMBYN9wCntPTmN9r3NvAnHPC8O47ssPYE13TDgbHj80Ln5uxVv53Z0epkgwX04PW5F5zjmCaiprDHATkQB8Pg0hvw+5YgmTM/kyISmdK4rXuS0SEMNyVSyoxGIrMgdohX9euIkIK96qktPD7PSwOT2s9zedt15Dcnqs6IyJgTm5BuTfTcN3Elu64yFsX9mBU5cl7aKHy5C+VqjTYyqTl4rMm3+gT6IHfZ4TLkKP7DZL5YqinD4Zbf7XiJk9crxVN4seDMMwDMMwDMMwTJ3w8v0mQzgzGiRSRITowZvKYqNf6bkIBy2nRzZfxD6z6Hl1dxzreuMAgAMjxup5taib3AePHx7H0FQWiXAAl27pAwCMKkXict+HG7c+ehgAsH8k7TgcpXirWNBf1odwxqoOAECv2Q0xNJWBE/kaCsG9MCOJEWr8F0FOjzbzOdMg+KhZwh70a0KMSmeLorC7Kx4S3x9J5WyOhkoUiovR6WFuY0qRuRVv5aXTwzneasYWb2Vsqys6o6LcmCKt6HdrmrXPu+Gi9bjqzOW4cusAAGOfJW9b9XZ6qJB4NZkpiIF+Kzg91HiwRNhZxJDdZuTyCPq1hr3+THMTDbHTg2EYhmEYhmEYhpk9PIVoMijqpVEixTXnrsS5a7uwa113Qx6PaRz9bXbRI+S3Oj2yhZIo1h5sj2BNtyF67Dk2CQDl8Vam6HH7s4bL4+JNvcJxIQ+oAWBoqrrzgiJwAOdV8Hanh/XzeMiP89cbRem9pkjg9PsOjqRx5t/+An//v89UfS5ekQfubkXmtLKfhBz6vJEroTseFoXX6VzB1nPREQuJXoODUql8JRaj00O4icqcHh46PcyfjcnxVi5F5pbTIyp+J/WI0P+NYnXjtblgQw8+8bYzbAXZyYgsejQ23orw+zTb6vRmJaQcU9yEHvpMZApFqc8jKN4nhqmE/FnqYHcQwzAMwzAMwzAMUycsejQZVpF5YwZMbzpzBb7z+7vK+iOYhWdAcnqE/D74fJooF87ki0J46IiFcP56Q7T61kOHsO/kdHmRuSl6HBo1Bs1nrOwQw6cRRfTwEs9E3QuAfThK93WLt7poU68QbmjgNSU9FvHEkXFMZwv4dQ0dI5XIFUqiNBwod8IQQvQwB9+0qp1cCT1tIcTMro90rihinCjWaU2PIT7tH0l5el70nHyLaGBMgo/6vtB2UineqjNmd3oUiiVbAfyM2QMB2OOtRHl6wfg5bUeRKmKDHKnUMKdHyD7sT4QDLTHQV+PBkm7xVpIoRvsBjrZivDLYHsH2Fe14zemD7DBlGIZhGIZhGIZh6oavKJuMbSs64NOM/zPNTb/U6UEDXTlaZpxEj2gQV2ztx0Wn9CJXKOEvf/i0ED06zFXxVGSezllD/ZgZMyKvygfgKZpJdnr4pYEwRRlZ8VYBm+jx8o1WbwmJLjP58hirtOnEkEvWZ8OMIuSkc9bwXaZc9LA7PXoSYfG6pXNFUdhNMS2rTcfNwRFvTg8qMl9MnTqd5jYzlrbe43yxJN5zb04P47ZHxzOQtCbouuUgOSLFW5FLo6QbQhCJdJEq7g25PFuNZ6oXv0+zlXir8WzNiur0cO/0MG43k2utonemMQT8PvzwfS/DZ689a6GfCsMwDMMwDMMwDLOEYdGjybhiaz+e+ptX4LfOXbXQT4WZY/qTlvuGHAEUvTOdLWDcHLh3xIxomb9+/akAgHteHBar8mkITUXmNNSPhQNioF8s2Yf/qkDghCx6OEUZWU4PH6JBP9b1xhH0a3jlqQPitpTtnnEQWeh5jqZyKJXKxYlaUYWcojRYt/3ejD3eynJ6lIseqVzBcnqYr/Oa7hgAy+nxnYcO4eM/2+MosNDzAOzC0ULTESuPqKK/06dZP3eiM26IEOPpHIolHXtPTgMATulPiNukcwXM5IoYNuOyVnbFbC6DXKEknB7VysmT0cZ3egAQ/SxA6wz0Q4rA1ObS6UGf26wSb8UwDMMwDMMwDMMwDDNfsOjRhMRCrTGEa3XkLgwSImi4ni/qYhBP3RxrumPwm90Q9DOKXaIBP3UqJMJ+154CtctBRdd1m+hxUoovOj6pih5GNNAPbrwAD3z4cltxbUQ4PcpFD3KklHQIR8tsoMeLSyW6TmXmJLZQkTk5DUS8VSIsPn8zuSJGU8Zzo1inVV2G6HFgJA1d1/HB/3kCn7tzL548MuH4vEj0WExF5uT0GJdEj/2mc6W3LSy2Mef7Gq9DSQcmZ/J4ccgQPTb2twkBKZ0r4si48XhtkQDao0GbyyBbKIltsBanR7iBvRsXb+oT/24V0UMVjVydHg7xVq3yGjEMwzAMwzAMwzAMszhg0YNhmohI0C8G9/vMVfQkemiaJobO1KPQbfYvUJE5DfpjoYBYsa1SrdNjcqZgE0ZOSkXk5fFWxu9IRoJlsUjRCqJHSnJmjDYg4op+RzwcEL837eAwmSpzehi3PWo6WHoSIVu8FbkhukyHA3V6HBhN2YQhJ1fJ8yemcNszxwEsriJzy+lhPf8H9o0AAM5e01XxvkG/T3RBjKZzwumxvjdh60I5JPV5AIboQz1F2UIR2QJ1elRzejS+0wMArjy1X/y7VURmNR7MTcigz0QmXxSfF3Z6MAzDMAzDMAzDMAwzn7DowTBNRpcpZBwcNVbLy3FDNHy3vjYisrJC9CCnR6DM6UHuhmrxVkfGZ2xfywLIiUlDoJgxnRVuwor8M6d4K9mFMTKdK/t5rcjF6nJEmIrV6WG8jurQ3d7pURCF3SQ2rTbjrY6MzQi3DQAUiuXxVjd+41F89d79ABZXkTn9LeOS6HG/KXrsXNdd9f6i1yMlix5xSWwq4NCo1edBUK9HNm85PcJVnR5zE291riTuPH9iqmGPu5gpEz1c4q3oM1Eo6WL7l2PGGIZhGIZhGIZhGIZh5hoWPRhmCdMeLR88dptCBlVdUFk5YA2sCRJBaOV8KkdOD79YsS1ua4op1ZwexyZmXH8m4q3ylsjgRkWnR9b6HvWTzAZydUSDfsTD1vBdhdwZ5PRQI5N6EmHEwpZjwXJ6GK9drymKlHTgkQNj0u8v/12Hxqyy88VYZE7xVtlCUfwtu9ZVdnoAVqn7aCqHvSeNbhPD6WG+37ki9pnfX2c6YwBLtMjW1OkhOz0aF28V8PuE06Ff6vdoZlTRqJrTAwCGTJdXGzs9GIZhGIZhGIZhGIaZR1j0YJglTGfMSfSwCxsd0uBXjZCSnR66rgsHRTxcHm9Fgkk1pwdFPTlxwvwZiQyxCj0LJHoUSjryRXv8kywSVBM91Ps6IZ5PyC/iiqaz5X8nORNWm90caqdET1tI/E02p4f5umuaJno9dpvuCON32UWPmVzR5pBZTE4Puci8VNJx74vDyBZK6EmEsb43UeXeVo/M3pMp8fqs643bYsHk2CvCEj2KwpmkCnMqcqyS6lSYLT/5/16ON56xDP/45m0NfdzFivr6uXV6yOLIkClyJrnTg2EYhmEYhmEYhmGYeYRFD4ZZwjitMleFDdkN0qn8jASSbKGEbKEk3CFxh3gruq1T3JTMsXEPTg8hMrgPQyMha/ekCi3Ttngr906Ph/aP4vS//jm+eu9LFZ9zRnKeJEynh1pkPpMrYv+w4UDYPNhmPEeneCvT6TE5UxCdBl2Sw2Zdr+FekEUPtT9kNG0XchZXpwc5PfJ42xfvx+987WEAwM51XdA8iDO0DT5yYBQAsLwjauuQSeeL2GsWnK/vk5we5vaYk50eVYQMOVapkfFWALCyK4ZPXXMmNva3NfRxFyvy6xcJ+hD0O7+emqaJbeSAWXCfdHCkMQzDMAzDMAzDMAzDzBUsejDMEuYfrjod/ckw/up1W8X3uhNh223kgaM8fA/5fUiYA/psoWQb8keD/jLRg8SUak6PYxWcHkOTWei6LsVbue+CQn4faNavCi1pW5G5u9Pj0QNjyORLeGDfaMXnbMVbBYQ7QC4aB4AXhqZQ0g3xp9d8jeXIpMH2CLpiVpH5YVP88Wl24YncC3IRuCqwjCl/k28RiR7k+BlJ5fDQfiPWKhr04807Vni6P21HD75kvCckApEANjyVFW4h2ekR8kvxVqLI3LvTo1oUFlOZkN96ravFVfW1GZ8PEjk53ophGIZhGIZhGIZhmPmEMycYZgmzvjeBBz58ue17crxVNGjv5pCdHolIQETW5Aol0ZMRDfrh92ll8VY0rJZjl5xwi5vSNCBXLGF4OmeJDBWcHpqmIRr0I5UrlgkttiLzCqIH/Z6UQ2eG/XZyl4nxmqhiyp5jRmH15sE24WiQnR5vP3cVfD5NiB5HzE6OzljIJlo4RUCllCgt9XcvRqcH0dsWxoMfvsyTywOwRJNJ0wWzoc94PWh7e+roBACgJxESUVqAJVpkC0Vk8xRvtTCdHq2ILBq1hSufOvS2hfH8iWnxNcdbMQzDMAzDMAzDMAwzn/DSV4ZpMuR4K3VATcXlABAP+209CSQMxM2BphoHJDs9dF23/ezgSBp/8t3H8eLQFKYzhoNBLjpujwYxYEZxHRxNIWd2MlTq9AAsUaRM9Mh5i7eiGKSZKpFcIt4q6Bc9JyPTOfzPI4fxsZ88C13X8ezxSQDA5oGkuN/+kZT49zXnrjL+JnIsTNv7PAgn0SOdK+ATtz2Hz9+5F4ViSRSgE/5FJHpEFBfQ2u64Z8EDsG+DALDFfD1pW3jqiCF6rFNeJ7Gt5i2nRzUhw+b0aHC8VasRkuKs3ErMib42e+wex1sxDMMwDMMwDMMwDDOf8PJLhmkyuhPWkL1dGTZ2Sivn46GArSchLUQP43vktCDBQY7NyhZKNgfJdV9+AAdH03j22CQKRUMQ6U9GMJWZNn+XH8s7ozg2kbGtAFfdJCoUf6WKFumst3grcnqonRlut4uG/MIpM5LK4m//9xlMzOTxxjOXC6fHpgGrw+EVpw7gJ08ex1mrOtBrRvrEVYdMzC56UJyTzPMnpnDHcycBAPftHcYFG3psP19MogcAdMaCmJkwXrNV3bEa72t/PagfhRwytH2o4hAJHNlCybPTo6ctZLp3/LahPVM7cpG5W4k5QfFWRDWRhGEYhmEYhmEYhmEYppHwJIJhmozuuDVwLHd6WAPntkjA1pMwnS0vF4+GLNFDXqGfyRdtosfBUSPK6bnjU6JcvT8ZxotmIXUsHMCKzhge2j+GF8yhtqZVX31PjoLKTo/qoke1HpK0KFb3C9Ho0Gha9Hocn8xgj+n02CI5PV5z+iB6EmGcvabTes4usWBEPBzAYHvE1n1Crx8A/PqFYew7mbLdx1+Dk2I+6IiFRO/GmhpFD/n18GnAxj5D9FCjztYr4pDsSspSp0cVp0csFMD3bjgfoYBvUfWiLEXkz2pbuLJzo7fNvVeIYRiGYRiGYRiGYRhmruGlrwzTZHR5dXqEA1ZPQr6ItNmTkQhbg2Q5xqgtEkTQbwyOZRGBoqoAw8UwbT6OHHETD/mxojMKwCgEB4w4o2qxSPT7M9LvKxRLtl6RsXQOxZJedl/jeRrPJV2l04MePxbyi6H8nuNT4ufPHpvEWDoPTQM29lsOhIDfhws29NhilmLK8H5NT7mzQ3UxHB23l78fMUvQiels5ec/33RKAtjq7vK/r/J9rW1wTU9ciEQxRSxa32d/jeT+GXr/vZSTb12WFL0hTP3ITo9qzg1Z9NA0IFGhu4dhGIZhGIZhGIZhGKbRsOjBME2GXGTeEbW7DORV9vFwQKzezhVLSOXKnR5yfJBcik5xU0NTGTxzbNL6fbGQKBnvS1qDz1goIESP508YYkK1aCvj99Pvs0SOtOLaKOnAeNrZ7TFTY7xVJOgXThn5Po8dHAcA9LdFbA4XJ8qG9w5xVuoQvpoTpVKE10IgF4yvrtXpId13gyT+yK+bpgFnruyw3c9yepQsp0eV94JpHLXFW1mCZyIcYJcNwzAMwzAMwzAMwzDzCi+/ZJgmIxL0Ix7yI5UrlsVbxUJ+hAI+5AoltIUDYpCZLZSEWBGXnR4hv+2+0aAfU5kCZvJFPH10Aq/5zD22xx+ZzqJgui76ZadH2I+VncZw/MRktuyx3aDbyKIA9XkEfBri4QAmZvI4NpGxdY6I21K8lUfRIxYK2DpRiMcPjwMABjsiZT9TUUUPJ5eBkxACAEG/hnyx3LWy2ESPTmm7Wt1Vm9NDdh8NtFuvp7w9bB5I2oQVwN7pQU6PavFWTOOwF5l7j7dKVrktwzAMwzAMwzAMwzBMo2GnB8M0IRRx1a6IHpqmiZX2htPDGBrrOjCeNvor4nKnR9Ae2xQRcVMl/MZ0P8gcl3oq5MFnNGR0eshs6k+iGk6dHhT1FAv5sWO10aXx/d8ccbw/3a9Q0m0xXCpO8VYyJNQs64hWfc7xsF1LXtdbLnpceeoAdqzuxJt3rLB9f/uKDsfHHFl0okfI/H+wbBurhrzqn9w/gF0s2rmuq+x+chQbvV9e4q2YxqBpmhBJ28JVnB6Sy4v7PBiGYRiGYRiGYRiGmW94YsQwTQhFNKnxVoDVqZCQ4q0AoxsDsA/t5figqOn0AAyRoFAsFxEoIise8tsicOIhPwbaI5BTbq48tb/q3yF+n+TUoH6ORDiA63auAgB89+FDjm4O+XuV3B70mBEzwivu4kJZ1l7d6aGWs6u9KgDQn4zgf957Pq7budr2/dOWt2ORdZY7Qn/Tqhr7PIh37FyNtT1xvO2cVeJ7cqzaznXdZfexx1uZnR7s9JhXwqbbo1qnR1s4IKLxqt2WYRiGYRiGYRiGYRim0bDowTBNyHlruxD0a9i2or3sZ11mCXUiHLBF1lCEUtylyDwW8iMSsjo9UhVEhHg4gIQknsRCRpSW3Dd+2ea+qn9HxCHeKmXGW8XCAVx0Sh9WdkUxmSngR4+Xuz3kXo503r0M3Iq3Mn6fU1QWAAy2V3d6yOXs1UQSVVzpS4axzMPvWGjOXNWJgE/DhRt76rr/373xNNzxJxfbBCFZlDpvrYPTwxZvRZ0efAibT8jpUa3TQ9M00evB8VYMwzAMwzAMwzAMw8w3PDFimCbkQ6/ajMf+8kqctrxc9Ng8YMRKre+Lw+fThPBBTg95xT31LAT9GoJ+HyLm0DNTKIqYqet2rsJv/uIK2+9IhAO2uCJZSCHchAUZp3gr0T0S8sPv0/CmM5YDAB7aP1Z2f1sXSAWRZiZvFz2cIq4AYJmHTg+ZgWqihxIT1BEN2YrB/+TKUwAA11+wpqbfO9fsWN2Jx//qSvzxlZsa+pgAsKorVtbnAcDWPyPirdjpMa+Q26Zapwdgxdslo+z0YBiGYRiGYRiGYRhmfuFpBMM0IZqmlQ3UiQ+9ajN+69xVokw7FPAhVyxZTo9QudND/F9yeqRN8aEjGkJ7NAhNM7pBAGMluNwNQkLKb527Ct968CBuuuIUT3+HED0kwSKVo8J14zEHTGcEdZLIeI23op9RnFePQ5k54M3pYbt9lQ4Q+TUCjNio1d1x3Ld3BLGQHzdesgGvPG0A63rKe0EWGrftq15WdsVw959egs6480DdircqingrdnrMLwPtERydyNi6WNzoI9GDnR4MwzAMwzAMwzAMw8wzLHowTIsR9Puwoc8aoocDPkxngbGUe6cHiRZyp8e0GTMVDwfg82lIhAOYypALI2B7HHJ6fPjVm/Ga0wdxwYbyzgYnSGTJODg26Dl1mEXaEzP2su9SSffu9Mh5c3oM1uj0uGJL5d6SmOKA6YgFhdOjMxaCpmnY0NdW0+9cyqzqjrn+LGxzepDowU6P+eRf334WDo2msb63ughH72V/srbPDMMwDMMwDMMwDMMwzGxh0YNhWhwaJo+ZTglZrCDRgcQAOW6KYqYS5uC+TRI9EpGALdKKBIq2SBAvq6EHIlIp3sp8/I4oiR52p0emYBc5qKxcRdd1pPN2IaXLLILXNGBlZwwHR9MI+X3oiVeP5AKA2z5wIR47NI43nLGs4u2Cfp/htDGdC+3RoBgo9yW9/a5WIWxuC9l8Cdm83ZnDzA/LOqJYVsW9RPz+heuxsjOG122v/BlgGIZhGIZhGIZhGIZpNCx6MEyLQ10Jaq8FUB5rFRZOj1JZzFRbJAhMZAAYnR7RoF9EXqmF3V5xjLeSHCYAkDRFDzXeSo2zcou3yhd1FM2Gdfo7Kd6qJxHGYHsEB0fTGGiPwOfTHB9D5ZT+NpzS782hEQ/5hejREQti00Ab3nfJBly0qdfT/VsFp3gr+h6z+OiKh3DdztUL/TQYhmEYhmEYhmEYhmlBWPRgmBZHLYNOyE6PoLvTYzprFz0SEXuclaZpiIcCmM4WhJhQK9GQXZABLMcGCSkUbzU+k4eu69A0zbyd6vRwFj1kMYT+Poq3GkhG0GfG8wxWKSWvl1goIFw2HbEQgn4f/uQVjSsIbxZoO83ki8gVOd6KYRiGYRiGYRiGYRiGcYaXyTJMixNWyqBjUrl2hMQO6vQgESJnxVvFRXSVdb9EOGg+lnH/ekuv5Q4RgsQWq9PDEChyUtcDYBdKAPd4q3Te+H7ApwnXy8s39uLMVR24bucq9CaMmCmvsT61QiJTwKfV7YhpBei9mZyx3kcuMmcYhmEYhmEYhmEYhmFUeGLEMC1OyG/fDchdHDvXdqE/GcYVW41CbhIhsoWiFDNlfE92iFDPx6tOG8C6nji2DCbrem5OnR7k2KDfFw/5ETBjp8alMvNanR6yG6W3LYzv/8EFeNs5q3DZlj70JMJ4xamVS8nrhcrM26NB4VJhyqEoq8lMXvoei0QMwzAMwzAMwzAMwzCMHY63YpgWR3V6yK6Mjf1t2H3zZWIYH5E6NqjTIyF3eiiP8TdvOM0WOVUrcqdHqaTjT773OL7/myMALLFA0zR0xIIYns5hYiaPwfaouI+Mm+hB34+6RCVdsKEHD/35ZXMmSJBTpj0WrHLL1oZEDyqsD/o1+D12rDAMwzAMwzAMwzAMwzCtA4seDNPiyE4PTbPHVBnfswbLsvMipXR6JG3xVgHH+9cKuS8y+RJeGJrGrY8eET9b35sQ/05GDdFjPJ1HvljCx36yB9mCUmSed3F6OBS4q8ylA4OcMh1RFj0qETa3PRKpIuzyYBiGYRiGYRiGYRiGYRxg0YNhWhw5ImhlZ6xiZBC5ISZnCsgXdQBSkXnYWfSYDXJx+uGxNABgXU8cn79uBzYNtInbkWAwns7jwZdG8ZV7Xyp7LLdODyveamF2h3Glm4Rxhpwe4mvu82AYhmEYhmEYhmEYhmEcYNGDYVoceXi8vjde8bbk9BiezorvUfm2rcg80phdixyndXhsBgCwsT9hEzwASzCYmMkJB4pK9XirhRmix9jp4Yky0YOdHgzDMAzDMAzDMAzDMIwDLHowTIsjx1vJkVFOREPGbUn0CAd8CJj3Tzh0eswWireayRdxaNRweqzojJXdTnZ6uCVRqR0f4vt5QySJLZDTo9MUbHrawgvy+5cKIUX0iLDTg2EYhmEYhmEYhmEYhnGARQ+GaXFkp8eGvsqiBzkvxtJGmbQcY9Xm0ukxG+Ry8b0npwEAKzqjZbejEvCJmTwKJd32M00DdN2D06NCp8dc8vbzViFXLOEdO1cvyO9fKqjODnZ6MAzDMAzDMAzDMAzDME7UtFT285//PLZt24ZkMolkMoldu3bhpz/9qfh5JpPBjTfeiO7ubiQSCVx99dU4ceJEw580wzCNQx4er68iesgiBGB3dMyF6BGRft/zJ0j0cHJ6GG6J8Zk8hqeytp91mU4KV6dHrnqR+Vwy2B7Fza/a4vh3MRZqhwc7PRiGYRiGYRiGYRiGYRgnapoarVixArfccgseeeQRPPzww7j00kvxhje8AU8//TQA4AMf+AB+/OMf47vf/S7uuusuHD16FFddddWcPHGGYRpDUXJGVIu3ilQSPcKNj7fy+zQRa3Rk3Oj0WNnl4PSIGr9vIp3HyWm76NGdMESPB/ePYstf/Ay7943Yfi6KzIPsHFjMqJ0e6rbIMAzDMAzDMAzDMAzDMECN8Vave93rbF9/9KMfxec//3ns3r0bK1aswJe//GV885vfxKWXXgoA+OpXv4otW7Zg9+7d2LlzZ+OeNcMwDeOoKSYAQFc8VPG2PQl770QibA2e58LpAQBrumPC5QEAyzvKRQ8qMh+fyWE0lbf9TP6bZvJF/PCxI9i5rlt8L51f2Hgrxhty9wwA9HIHCsMwDMMwDMMwDMMwDONA3fkgxWIR3/72t5FKpbBr1y488sgjyOfzuPzyy8VtNm/ejFWrVuH+++93fZxsNovJyUnbfwzDzB+Hx2aq38ikJxFCUhI35PLvgfYIBtsj2L6iHX6fS5t4HVyxtV/8uyMWRJtUmE5Qp8d4Oi9K1oluRah57NCE7euFjrdivKFpmq3MfPNAcgGfDcMwDMMwDMMwDMMwDLNYqVn0ePLJJ5FIJBAOh3HDDTfg+9//PrZu3Yrjx48jFAqho6PDdvv+/n4cP37c9fE+9rGPob29Xfy3cuXKmv8IhmHq5z0XrgMAvPGMZVVvq2marfdDdnREgn7c8ScX43/ee35Dn9+VWwfEv3sTzqv7O6KW6DGaytl+1qO4V54/MWXr9+B4q6WDHHG1ebBtAZ8JwzAMwzAMwzAMwzAMs1ipOYNm06ZNeOyxxzAxMYHvfe97eNe73oW77rqr7idw880346abbhJfT05OsvDBMPPIG85YhlOXJbGmJ+7p9ut7E/jNwXEAQDxsFwrmomfh9OXt4t8HR9OOt6F4qyPj5a4V1elRLOl4+ugEzl7TBUCOt2pcJBczN8j+oS3s9GAYhmEYhmEYhmEYhmEcqHnKFwqFsGHDBgDAjh078NBDD+HTn/403va2tyGXy2F8fNzm9jhx4gQGBgZcHg0Ih8MIhzmbnWEWCk3TsLHf+6p5uey8UYXllfD5NLxsQw/ueXEYV5213PE2XTG7m8OnAdTP3hGz4rD8Pg3Fko7HD0/gtOXt+NlTx7F/OAWA462WApOZgvh3f5KPGwzDMAzDMAzDMAzDMEw5dXd6EKVSCdlsFjt27EAwGMQvf/lL8bPnnnsOBw8exK5du2b7axiGWSSs77UcIY0sLK/EF96xA3/3xtPwoVdtcfx5eyyItZJTRXat6Lp1uzeeYYgmv3jmON742Xvx/v9+DE8eMTo+ON5q6eDTDLGOYRiGYRiGYRiGYRiGYVRqmljefPPNeNWrXoVVq1ZhamoK3/zmN3HnnXfi5z//Odrb2/Hud78bN/3/7d17dFT11f/xz4Qkw8RcIEAuhoBBJdwvBgkhIqihUawCWssCRGjxqbSgoJVafxaxRSUVXHgDQQEBq9CC9VJA6gWCBG1oICAIBISkQYXwCISL0ECS/fvDJyMjmcwAhoTx/Vpr1sJzvmef7znj3pOTnTnngQcUHR2tyMhI3XvvvUpLS1OPHj1qa/4ALrArTnumh+sCfTviEmewhvVoWeOYHq2iVfh/39qIiXBq9/9++++IhsF66vZOqjBTQiOX3tjwhf61++AZ21+oY8H5S/LzVmwAAAAAAAD48Tmrpsf+/ft11113ae/evYqKilKnTp30z3/+U3379pUkTZs2TUFBQbr99ttVVlamzMxMzZgxo1YmDqBuJEaHuf995ER5DSMvrB6tmmjhuj2SpKbhTj0zqIvW7PxaP+10qUL/7wHYpyoqdUdKcxUd+EZNw516d8s+9/bc3uri0bl5o7qeAgAAAAAAAOqps2p6zJkzp8b1DRs21PTp0zV9+vTzmhSA+iukwXd3xTt+sn41PaqEBgdpQNcEDejq+QyQkAZBmnJHZ/d//2pBnt7bWiKJpsfF4MmBHbV4/R79v5urv80ZAAAAAAAAcN7P9ADw4/PgT1qrabhTI69JquupuMVGNnT/++tjJ/3a5vRGSUOe6VHvDUltoTd/k66m4TzEHAAAAAAAANWj6QHgrI25/kr9+5Eb1LJJ/Xq2wtgbrlSQQxrVu5Vf409vejiDaXoAAAAAAAAAF7uzur0VAFRxOBx1PYUzjMu4Uv9zbSuFO/0rbW3iIuRwSEEOh+KjGvreAAAAAAAAAEC9RtMDQMBwOBx+NzwkKSjIofV/6Kuy8gpdchbbAQAAAAAAAKif+C0fgB+16EtC63oKAAAAAAAAAH4gPNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAJCcF1P4PvMTJJ05MiROp4JAAAAAAAAAACoa1X9gqr+QU3qXdPj6NGjkqTExMQ6ngkAAAAAAAAAAKgvjh49qqioqBrHOMyf1sgFVFlZqa+++koRERFyOBx1PZ165ciRI0pMTNSePXsUGRlZ19MBEICoMwBqG3UGQG2jzgCobdQZALWNOnMmM9PRo0d16aWXKiio5qd21LtvegQFBal58+Z1PY16LTIykv/ZAdQq6gyA2kadAVDbqDMAaht1BkBto8548vUNjyo8yBwAAAAAAAAAAAQEmh4AAAAAAAAAACAg0PS4iDidTk2cOFFOp7OupwIgQFFnANQ26gyA2kadAVDbqDMAaht15vzUuweZAwAAAAAAAAAAnAu+6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEhHrX9Jg8ebKuvvpqRUREKCYmRgMGDFBBQYHHmP/+978aPXq0mjRpovDwcN1+++0qKSnxGHPfffcpJSVFTqdTXbp0qXZfZqapU6eqdevWcjqdSkhI0BNPPOFzjosXL1abNm3UsGFDdezYUcuXL/dY73A4qn1NmTKlxrjFxcW6+eabFRYWppiYGI0fP17l5eXu9Xv37tWQIUPUunVrBQUFady4cT7n6k9cScrOztZVV10lp9OpK664QvPmzfMZ9+DBgxo6dKgiIyPVqFEjjRw5UseOHfMY8+mnn6pXr15q2LChEhMT9dRTT/mM68/7688xAd5QZ7znTk5OjtLT09WkSRO5XC61adNG06ZN8zlfX7n+8ssvq1evXmrcuLEaN26sjIwMrVu3zmfci61+AVWoM97zNjs7u9q4+/btqzHu2eTkokWL5HA4NGDAAJ/ngTqDixV1xnvejhgxotq47du3rzGuPzlZWlqq0aNHKz4+Xk6nU61btz7juL6P6yZcrKgzNefO9OnT1bZtW7lcLiUnJ2vBggU+5+tP3Ndee02dO3dWWFiY4uPj9ctf/lIHDhyoMW5t1QMz06OPPqr4+Hi5XC5lZGRo586dHmP8qXEAcMFZPZOZmWmvvPKKbdmyxTZu3Gj9+vWzFi1a2LFjx9xjRo0aZYmJifbhhx9aXl6e9ejRw3r27OkR595777UXXnjBhg0bZp07d652X/fee68lJyfb22+/bbt377a8vDx77733apzf2rVrrUGDBvbUU0/Z1q1b7Q9/+IOFhITY5s2b3WP27t3r8Zo7d645HA7btWuX17jl5eXWoUMHy8jIsPz8fFu+fLk1bdrUHn74YfeYwsJCu++++2z+/PnWpUsXGzt2bI1z9Tfu7t27LSwszB544AHbunWrPf/889agQQNbsWJFjbFvvPFG69y5s/3rX/+yNWvW2BVXXGGDBw92rz98+LDFxsba0KFDbcuWLbZw4UJzuVw2a9asGuP6en/9OSagJtQZ77mzYcMGe/31123Lli1WWFhor776qoWFhdWYt/7k+pAhQ2z69OmWn59v27ZtsxEjRlhUVJR98cUX5zXf+la/gCrUGe95u2rVKpNkBQUFHvErKiq8xj2bnCwsLLSEhATr1auX9e/fv8bzQJ3BxYw64z1vS0tLPeLu2bPHoqOjbeLEiV7j+pOTZWVl1q1bN+vXr5/l5ORYYWGhZWdn28aNG2s8F1w34WJFnfGeOzNmzLCIiAhbtGiR7dq1yxYuXGjh4eH2zjvvnFfcnJwcCwoKsmeffdZ2795ta9assfbt29vAgQNrPBe1VQ+ysrIsKirK3nrrLdu0aZPdeuutlpSUZCdOnHCP8VXjAKAu1Lumx/ft37/fJNnq1avN7NsfYENCQmzx4sXuMdu2bTNJ9sknn5yx/cSJE6v9UN26dasFBwfb9u3bz2o+P//5z+3mm2/2WJaammr33HOP12369+9v119/fY1xly9fbkFBQbZv3z73shdffNEiIyOtrKzsjPG9e/f2q+nhT9zf/e531r59e4/tBg0aZJmZmV7jbt261STZv//9b/eyd9991xwOh3355Zdm9u0PAY0bN/aY/0MPPWTJycle4/rz/p7tuQJ8oc7UnDsDBw60O++80+v6c8n18vJyi4iIsPnz55/XfOtT/QJqQp35Lm+rmh6HDh3ye77+5mR5ebn17NnTZs+ebcOHD/fZ9KDOIJBQZ7z/PPPmm2+aw+GwoqIir3H9yckXX3zRWrVqZSdPnqxxjqfjugmBhDrzXe6kpaXZgw8+6LHdAw88YOnp6ecVd8qUKdaqVSuP7Z577jlLSEjwGre26kFlZaXFxcXZlClTPPbldDpt4cKFZuZfjQOAulDvbm/1fYcPH5YkRUdHS5LWr1+vU6dOKSMjwz2mTZs2atGihT755BO/4/7jH/9Qq1attHTpUiUlJemyyy7T3XffrYMHD9a43SeffOKxb0nKzMz0uu+SkhItW7ZMI0eO9Bm3Y8eOio2N9Yh75MgRffbZZ34e1bnF9eeY5s2bJ4fD4RG3UaNG6tatm3tZRkaGgoKClJub6x5z7bXXKjQ01CNuQUGBDh06JOm7W1wUFRVJ8u/9ra1zhR8v6oz33MnPz9fHH3+s3r171xjXV65/3/Hjx3Xq1Cn3OZekxx57TJdddtlZzbcu6xdwNqgzZ9aZLl26KD4+Xn379tXatWt9xvUnJ//0pz8pJibG6zypMwhk1BnvP8/MmTNHGRkZatmyZY1xfeXkO++8o7S0NI0ePVqxsbHq0KGDnnzySVVUVLi34boJgYw6813ulJWVqWHDhh7buVwurVu3TqdOnTrnuGlpadqzZ4+WL18uM1NJSYmWLFmifv36ubeprXpQVFQkh8Oh7OxsSVJhYaH27dvnETcqKkqpqakecX3VOACoC/W66VFZWalx48YpPT1dHTp0kCTt27dPoaGhatSokcfY2NhYn/eCPt3u3bv1n//8R4sXL9aCBQs0b948rV+/Xj/72c9q3G7fvn0eHxK+9j1//nxFRETotttuO6e4VevOlT9xvY05cuSITpw4IenbD7bk5GSPuDExMR7bBAcHKzo62mfc0/cdFham5ORkhYSEuJf7en9r61zhx4k6U33uNG/eXE6nU926ddPo0aN19913/yBxqzz00EO69NJLPX6Abtq0qS6//PKziluX9QvwF3XGM3fi4+M1c+ZMvfHGG3rjjTeUmJioPn36aMOGDecVNycnR3PmzNHLL7/sNQ51BoGKOuM9d7766iu9++67Nf4s42/c3bt3a8mSJaqoqNDy5cs1YcIEPf3003r88cfd23DdhEBFnfHMnczMTM2ePVvr16+XmSkvL0+zZ8/WqVOn9PXXX59z3PT0dL322msaNGiQQkNDFRcXp6ioKE2fPt29TW3Vg5CQECUnJyssLMxjeU3n2J8aBwB1oV43PUaPHq0tW7Zo0aJFP3jsyspKlZWVacGCBerVq5f69OmjOXPmaNWqVSooKFBxcbHCw8PdryeffPKc9jN37lwNHTrU4y8AbrrpJndcXw/Tqy8GDhyo7du3/+Bxu3fvru3btyshIeEHjw34gzpTvTVr1igvL08zZ87UM888o4ULF57T3KqTlZWlRYsW6c033/SY85gxY/Thhx/+YPupUlv1C/AXdcZTcnKy7rnnHqWkpKhnz56aO3euevbsqWnTpp3T3CTp6NGjGjZsmF5++WU1bdrU6zjqDAIVdca7+fPnq1GjRhowYMA5bX+6yspKxcTE6KWXXlJKSooGDRqkRx55RDNnznSP4boJgYo642nChAm66aab1KNHD4WEhKh///4aPny4JCko6Nx/1bZ161aNHTtWjz76qNavX68VK1aoqKhIo0aNco+prXqQkJCg7du3q3v37j9oXACoC8F1PQFvxowZo6VLl+qjjz5S8+bN3cvj4uJ08uRJlZaWenSxS0pKFBcX53f8+Ph4BQcHq3Xr1u5lbdu2lSQVFxfruuuu08aNG93rqr6+GRcXp5KSEo9Y3va9Zs0aFRQU6K9//avH8tmzZ7v/MrCqMx8XF6d169adEbdq3bnyJ663Y4qMjJTL5fIad//+/R7LysvLdfDgQZ9xT993dXF9vb+1da7w40Od8Z47SUlJkqSOHTuqpKREjz32mAYPHlztcZ5Nrk+dOlVZWVn64IMP1KlTp2rjnR73YqpfQHWoM/7lTvfu3ZWTk+N1va+c3LVrl4qKinTLLbe411dWVkr69q8NCwoKPL7hcXpc6gwudtQZ77ljZpo7d66GDRvmceuo6viTk/Hx8QoJCVGDBg3cY9q2bat9+/bp5MmT1e6D6yYEAurMmbnjcrk0d+5czZo1SyUlJYqPj9dLL72kiIgINWvWrNrj9Cfu5MmTlZ6ervHjx0uSOnXqpEsuuUS9evXS448/rvj4+Grj1kY9qFpedXynb9elSxf3GF81DgDqQr37poeZacyYMXrzzTe1cuVK9y/eqqSkpCgkJMTjr/SqOv9paWl+7yc9PV3l5eXatWuXe9mOHTskSS1btlRwcLCuuOIK96vqQzUtLe2MvxB8//33q933nDlzlJKSos6dO3ssT0hIcMetuq9sWlqaNm/e7PFh8f777ysyMlLt2rXz+7i+z5+4Z3NMp8ctLS3V+vXr3ctWrlypyspKpaamusd89NFHHvezfP/995WcnKzGjRtXG9ef97e2zhV+PKgzZ5c7VX955Y2/uf7UU09p0qRJWrFihcc9X2uKezHVL+B01JmzqzMbN26s9iK+iq+cbNOmjTZv3qyNGze6X7feeqv7lySJiYle41JncLGizviuM6tXr9bnn3/u8/79VXF95WR6ero+//xzd1O16lzEx8d7bapw3YSLGXXGd+6EhISoefPmatCggRYtWqSf/vSnXr/p4U/c48ePn7F9VaPVzKqNW1v1ICkpSXFxcR5xjxw5otzcXI+4vmocANSJOnuEuhe//vWvLSoqyrKzs23v3r3u1/Hjx91jRo0aZS1atLCVK1daXl6epaWlWVpamkecnTt3Wn5+vt1zzz3WunVry8/Pt/z8fCsrKzMzs4qKCrvqqqvs2muvtQ0bNlheXp6lpqZa3759a5zf2rVrLTg42KZOnWrbtm2ziRMnWkhIiG3evNlj3OHDhy0sLMxefPFFv467vLzcOnToYD/5yU9s48aNtmLFCmvWrJk9/PDDHuOqjiMlJcWGDBli+fn59tlnn51X3N27d1tYWJiNHz/etm3bZtOnT7cGDRrYihUr3GP+/ve/W3JyskfsG2+80bp27Wq5ubmWk5NjV155pQ0ePNi9vrS01GJjY23YsGG2ZcsWW7RokYWFhdmsWbPcY3Jzcy05Odm++OIL9zJf76+/5wrwhjrjPXdeeOEFe+edd2zHjh22Y8cOmz17tkVERNgjjzziNa4/uZ6VlWWhoaG2ZMkSj3N+9OhR95jnn3/err/++rOab13WL6Am1BnveTtt2jR76623bOfOnbZ582YbO3asBQUF2QcffOA17rnk5PDhw61///4ey6gzCCTUGd/XAnfeeaelpqb6FdefnCwuLraIiAgbM2aMFRQU2NKlSy0mJsYef/xx9xiumxBIqDPec6egoMBeffVV27Fjh+Xm5tqgQYMsOjraCgsLzyvuK6+8YsHBwTZjxgzbtWuX5eTkWLdu3ax79+7uMbVVD7744gtLTk623Nxc97KsrCxr1KiRvf322/bpp59a//79LSkpyU6cOOEe46vGAUBdqHdND0nVvl555RX3mBMnTthvfvMba9y4sYWFhdnAgQNt7969HnF69+5dbZzTP4C+/PJLu+222yw8PNxiY2NtxIgRduDAAZ9z/Nvf/matW7e20NBQa9++vS1btuyMMbNmzTKXy2WlpaV+H3tRUZHddNNN5nK5rGnTpvbb3/7WTp065fP8tGzZ8rzjrlq1yrp06WKhoaHWqlUrj/Nt9u0H7/d7ZAcOHLDBgwdbeHi4RUZG2i9+8QuPX2CamW3atMmuueYaczqdlpCQYFlZWWfs9/vviz/vrz/HBHhDnfGeO88995y1b9/ewsLCLDIy0rp27WozZsywioqKGuP6yvWWLVtWe64mTpzoHjNx4sQz6ll9rl9ATagz3vP2z3/+s11++eXWsGFDi46Otj59+tjKlSt9xj3bnKyu6UGdQSChztSct6WlpeZyueyll17yO64/Ofnxxx9bamqqOZ1Oa9WqlT3xxBNWXl7uXs91EwIJdcZ77mzdutW6dOliLpfLIiMjrX///rZ9+/bzjmv27TVZu3btzOVyWXx8vA0dOtSjwVFb9aCwsNAk2apVq9zLKisrbcKECRYbG2tOp9NuuOEGKygo8IjrT40DgAvNYebl+3EAAAAAAAAAAAAXkXr3TA8AAAAAAAAAAIBzQdMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAdaJPnz4aN25cXU8DAAAAQACh6QEAAACg3svOzpbD4VBpaWldTwUAAABAPUbTAwAAAAAAAAAABASaHgAAAABq3TfffKO77rpL4eHhio+P19NPP+2x/tVXX1W3bt0UERGhuLg4DRkyRPv375ckFRUV6brrrpMkNW7cWA6HQyNGjJAkVVZWavLkyUpKSpLL5VLnzp21ZMmSC3psAAAAAOoPmh4AAAAAat348eO1evVqvf3223rvvfeUnZ2tDRs2uNefOnVKkyZN0qZNm/TWW2+pqKjI3dhITEzUG2+8IUkqKCjQ3r179eyzz0qSJk+erAULFmjmzJn67LPPdP/99+vOO+/U6tWrL/gxAgAAAKh7DjOzup4EAAAAgMB17NgxNWnSRH/5y190xx13SJIOHjyo5s2b61e/+pWeeeaZM7bJy8vT1VdfraNHjyo8PFzZ2dm67rrrdOjQITVq1EiSVFZWpujoaH3wwQdKS0tzb3v33Xfr+PHjev311y/E4QEAAACoR4LregIAAAAAAtuuXbt08uRJpaamupdFR0crOTnZ/d/r16/XY489pk2bNunQoUOqrKyUJBUXF6tdu3bVxv388891/Phx9e3b12P5yZMn1bVr11o4EgAAAAD1HU0PAAAAAHXqm2++UWZmpjIzM/Xaa6+pWbNmKi4uVmZmpk6ePOl1u2PHjkmSli1bpoSEBI91TqezVucMAAAAoH6i6QEAAACgVl1++eUKCQlRbm6uWrRoIUk6dOiQduzYod69e2v79u06cOCAsrKylJiYKOnb21udLjQ0VJJUUVHhXtauXTs5nU4VFxerd+/eF+hoAAAAANRnND0AAAAA1Krw8HCNHDlS48ePV5MmTRQTE6NHHnlEQUFBkqQWLVooNDRUzz//vEaNGqUtW7Zo0qRJHjFatmwph8OhpUuXql+/fnK5XIqIiNCDDz6o+++/X5WVlbrmmmt0+PBhrV27VpGRkRo+fHhdHC4AAACAOhRU1xMAAAAAEPimTJmiXr166ZZbblFGRoauueYapaSkSJKaNWumefPmafHixWrXrp2ysrI0depUj+0TEhL0xz/+Ub///e8VGxurMWPGSJImTZqkCRMmaPLkyWrbtq1uvPFGLVu2TElJSRf8GAEAAADUPYeZWV1PAgAAAAAAAAAA4HzxTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIND0AAAAAAAAAAAAAYGmBwAAAAAAAAAACAg0PQAAAAAAAAAAQECg6QEAAAAAAAAAAAICTQ8AAAAAAAAAABAQaHoAAAAAAAAAAICAQNMDAAAAAAAAAAAEBJoeAAAAAAAAAAAgIPx/45vT5NzGPVcAAAAASUVORK5CYII=", "text/plain": [ "

" ] @@ -629,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "id": "08124f60", "metadata": {}, "outputs": [ @@ -639,14 +364,6 @@ "text": [ "Data lengths: train = 1607, val = 11425, test = 11425\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_1538057/1603373431.py:38: DeprecationWarning: Call to deprecated method get_datasets. (Please use the standalone function `get_datasets()`.) -- Deprecated since version 0.1.1.\n", - " train_dataset, valid_dataset, test_dataset = tsp.get_datasets(\n" - ] } ], "source": [ @@ -687,7 +404,7 @@ " scaler_type=\"standard\",\n", ")\n", "\n", - "train_dataset, valid_dataset, test_dataset = tsp.get_datasets(\n", + "train_dataset, valid_dataset, test_dataset = get_datasets(tsp,\n", " data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location=\"first\"\n", ")\n", "print(f\"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}\")" @@ -695,7 +412,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "id": "d2991e01", "metadata": {}, "outputs": [ @@ -805,11 +522,114 @@ " [-0.2895, -0.3237, -0.6072, -0.5086, 0.2675, 0.2795, 0.5817],\n", " [-0.2495, -0.2327, -0.5738, -0.3757, 0.2675, 0.2795, 0.6196],\n", " [ 0.0787, 0.2039, -0.3877, 0.2534, 0.2675, 0.2795, 0.6196]]),\n", + " 'past_observed_mask': tensor([[True, True, True, ..., True, True, True],\n", + " [True, True, True, ..., True, True, True],\n", + " [True, True, True, ..., True, True, True],\n", + " ...,\n", + " [True, True, True, ..., True, True, True],\n", + " [True, True, True, ..., True, True, True],\n", + " [True, True, True, ..., True, True, True]]),\n", + " 'future_observed_mask': tensor([[True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True],\n", + " [True, True, True, True, True, True, True]]),\n", " 'timestamp': numpy.datetime64('2016-07-06T08:30:00.000000000'),\n", " 'id': (0,)}" ] }, - "execution_count": 10, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -829,7 +649,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "id": "037d03dd", "metadata": {}, "outputs": [ @@ -1003,7 +823,7 @@ ")" ] }, - "execution_count": 11, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -1015,7 +835,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "id": "9dc4da08", "metadata": {}, "outputs": [], @@ -1033,23 +853,19 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "id": "773cf2c8", "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [179/179 00:01]\n", - "
\n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "d0677f8ca38f4b72b2521d6a262e8e64", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/179 [00:00" ] @@ -1092,7 +908,7 @@ ], "source": [ "# plot\n", - "plot_preds(trainer=zeroshot_trainer, dset=test_dataset, plot_dir=os.path.join(OUT_DIR, \"ettm2\"), plot_prefix=\"test_zeroshot\", channel=0)" + "plot_predictions(model=zeroshot_trainer.model, dset=test_dataset, plot_dir=os.path.join(OUT_DIR, \"ettm2\"), plot_prefix=\"test_zeroshot\", channel=0)" ] }, { @@ -1115,7 +931,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 12, "id": "c8333271", "metadata": {}, "outputs": [ @@ -1289,7 +1105,7 @@ ")" ] }, - "execution_count": 15, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1309,7 +1125,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "id": "86af5cc5", "metadata": {}, "outputs": [ @@ -1349,7 +1165,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 14, "id": "ba2c132f", "metadata": {}, "outputs": [], @@ -1362,7 +1178,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 15, "id": "d1013616", "metadata": {}, "outputs": [ @@ -1373,70 +1189,57 @@ "Using learning rate = 0.001\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/dccstor/dnn_forecasting/conda_envs/envs/fm/lib/python3.9/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", - " self.pid = os.fork()\n" - ] - }, { "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [26/26 00:04, Epoch 1/1]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
EpochTraining LossValidation Loss
10.2791000.132347

" - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "a1873553010b45679310ff48eb558cb1", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/26 [00:00\n", - " \n", - " \n", - " [179/179 00:01]\n", - " \n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "76ea597fb64d4f78a010fe627a4ec5e3", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/179 [00:00\n", - " \n", - " \n", - " [44/44 00:00]\n", - " \n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "b6e4eea5602c4150b5bf85f14d0eef67", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/44 [00:00\n", - " \n", - " \n", - " [44/44 00:00]\n", - " \n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "a40c01d6bd444e859024e21e2d15f029", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/44 [00:00\n", - " \n", - " \n", - " [5/5 00:03, Epoch 1/1]\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
EpochTraining LossValidation Loss
11.0383000.657834

" - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "3a84686d332242d2bb08d51d55ba6662", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/5 [00:00\n", - " \n", - " \n", - " [44/44 00:00]\n", - " \n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "bbca9d9b1f1e4cf79e494a29438270c7", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/44 [00:00\n", - " \n", - " \n", - " [5/5 00:03, Epoch 1/1]\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
EpochTraining LossValidation Loss
10.7371000.552214

" - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "7d91fb9bee9a4dc1a042647b10584bd0", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/5 [00:00\n", - " \n", - " \n", - " [44/44 00:00]\n", - " \n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "9d54b67ffaae42c29c8ad8e50f96a202", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/44 [00:00 Date: Fri, 2 Aug 2024 08:39:35 -0400 Subject: [PATCH 04/13] add dataset config --- .../resources/data_config/electricity.yaml | 24 ++++++++++++++ tsfm_public/resources/data_config/etth1.yaml | 32 +++++++++++++++++++ tsfm_public/resources/data_config/etth2.yaml | 31 ++++++++++++++++++ tsfm_public/resources/data_config/ettm1.yaml | 31 ++++++++++++++++++ tsfm_public/resources/data_config/ettm2.yaml | 31 ++++++++++++++++++ .../resources/data_config/traffic.yaml | 24 ++++++++++++++ .../resources/data_config/weather.yaml | 24 ++++++++++++++ 7 files changed, 197 insertions(+) create mode 100644 tsfm_public/resources/data_config/electricity.yaml create mode 100644 tsfm_public/resources/data_config/etth1.yaml create mode 100644 tsfm_public/resources/data_config/etth2.yaml create mode 100644 tsfm_public/resources/data_config/ettm1.yaml create mode 100644 tsfm_public/resources/data_config/ettm2.yaml create mode 100644 tsfm_public/resources/data_config/traffic.yaml create mode 100644 tsfm_public/resources/data_config/weather.yaml diff --git a/tsfm_public/resources/data_config/electricity.yaml b/tsfm_public/resources/data_config/electricity.yaml new file mode 100644 index 00000000..6f7a9c83 --- /dev/null +++ b/tsfm_public/resources/data_config/electricity.yaml @@ -0,0 +1,24 @@ +data_file: electricity.csv +data_path: electricity/ +id_columns: [] +timestamp_column: date +target_columns: [] +observable_columns: [] +control_columns: [] +conditional_columns: [] +static_categorical_columns: [] +freq: 1h + +batch_size: 16 + +scale: + scaling: True + scaler_type: standard + +encode_categorical: False + +split: + train: 0.7 + test: 0.2 + + diff --git a/tsfm_public/resources/data_config/etth1.yaml b/tsfm_public/resources/data_config/etth1.yaml new file mode 100644 index 00000000..05ed8141 --- /dev/null +++ b/tsfm_public/resources/data_config/etth1.yaml @@ -0,0 +1,32 @@ +data_file: ETTh1.csv +data_path: ETT-small/ +id_columns: [] +timestamp_column: date +target_columns: [] +observable_columns: [] +control_columns: [] +conditional_columns: [] +static_categorical_columns: [] +freq: 1h + +batch_size: 256 + +scale: + scaling: True + scaler_type: standard + +encode_categorical: False + +split: + train: + - 0 + - 8640 # = 12 * 30 * 24 + valid: + - 8640 # = 12 * 30 * 24 + - 11520 # = 12 * 30 * 24 + 4 * 30 * 24 + test: + - 11520 # = 12 * 30 * 24 + 4 * 30 * 24 + - 14400 # = 12 * 30 * 24 + 8 * 30 * 24 + +fewshot_fraction: + diff --git a/tsfm_public/resources/data_config/etth2.yaml b/tsfm_public/resources/data_config/etth2.yaml new file mode 100644 index 00000000..3ebdc005 --- /dev/null +++ b/tsfm_public/resources/data_config/etth2.yaml @@ -0,0 +1,31 @@ +data_file: ETTh2.csv +data_path: ETT-small/ +id_columns: [] +timestamp_column: date +target_columns: [] +observable_columns: [] +control_columns: [] +conditional_columns: [] +static_categorical_columns: [] +freq: 1h + +batch_size: 256 + +scale: + scaling: True + scaler_type: standard + +encode_categorical: False + +split: + train: + - 0 + - 8640 # = 12 * 30 * 24 + valid: + - 8640 # = 12 * 30 * 24 + - 11520 # = 12 * 30 * 24 + 4 * 30 * 24 + test: + - 11520 # = 12 * 30 * 24 + 4 * 30 * 24 + - 14400 # = 12 * 30 * 24 + 8 * 30 * 24 + + diff --git a/tsfm_public/resources/data_config/ettm1.yaml b/tsfm_public/resources/data_config/ettm1.yaml new file mode 100644 index 00000000..7b1f718d --- /dev/null +++ b/tsfm_public/resources/data_config/ettm1.yaml @@ -0,0 +1,31 @@ +data_file: ETTm1.csv +data_path: ETT-small/ +id_columns: [] +timestamp_column: date +target_columns: [] +observable_columns: [] +control_columns: [] +conditional_columns: [] +static_categorical_columns: [] +freq: 1min + +batch_size: 256 + +scale: + scaling: True + scaler_type: standard + +encode_categorical: False + +split: + train: + - 0 + - 34560 # = 12 * 30 * 24 * 4 + valid: + - 34560 # = 12 * 30 * 24 * 4 + - 46080 # = 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 + test: + - 46080 # = 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 + - 57600 # = 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4 + + diff --git a/tsfm_public/resources/data_config/ettm2.yaml b/tsfm_public/resources/data_config/ettm2.yaml new file mode 100644 index 00000000..d863a7d4 --- /dev/null +++ b/tsfm_public/resources/data_config/ettm2.yaml @@ -0,0 +1,31 @@ +data_file: ETTm2.csv +data_path: ETT-small/ +id_columns: [] +timestamp_column: date +target_columns: [] +observable_columns: [] +control_columns: [] +conditional_columns: [] +static_categorical_columns: [] +freq: 1min + +batch_size: 256 + +scale: + scaling: True + scaler_type: standard + +encode_categorical: False + +split: + train: + - 0 + - 34560 # = 12 * 30 * 24 * 4 + valid: + - 34560 # = 12 * 30 * 24 * 4 + - 46080 # = 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 + test: + - 46080 # = 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 + - 57600 # = 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4 + + diff --git a/tsfm_public/resources/data_config/traffic.yaml b/tsfm_public/resources/data_config/traffic.yaml new file mode 100644 index 00000000..bc0831c8 --- /dev/null +++ b/tsfm_public/resources/data_config/traffic.yaml @@ -0,0 +1,24 @@ +data_file: traffic.csv +data_path: traffic/ +id_columns: [] +timestamp_column: date +target_columns: [] +observable_columns: [] +control_columns: [] +conditional_columns: [] +static_categorical_columns: [] +freq: 1h + +batch_size: 4 + +scale: + scaling: True + scaler_type: standard + +encode_categorical: False + +split: + train: 0.7 + test: 0.2 + + diff --git a/tsfm_public/resources/data_config/weather.yaml b/tsfm_public/resources/data_config/weather.yaml new file mode 100644 index 00000000..c39113e2 --- /dev/null +++ b/tsfm_public/resources/data_config/weather.yaml @@ -0,0 +1,24 @@ +data_file: weather.csv +data_path: weather/ +id_columns: [] +timestamp_column: date +target_columns: [] +observable_columns: [] +control_columns: [] +conditional_columns: [] +static_categorical_columns: [] +freq: 10min + +batch_size: 256 + +scale: + scaling: True + scaler_type: standard + +encode_categorical: False + +split: + train: 0.7 + test: 0.2 + + From a88519f247054825428d30f0a9e512b4a07bb808 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Fri, 2 Aug 2024 09:00:15 -0400 Subject: [PATCH 05/13] simplify packages --- pyproject.toml | 13 +------------ 1 file changed, 1 insertion(+), 12 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 6d00fff7..07fbe8bb 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -26,18 +26,7 @@ dependencies = [ ] [tool.setuptools] -packages = [ - "tsfm_public", - "tsfm_public.toolkit", - "tsfm_public.models", - "tsfm_public.models.tinytimemixer", - "tsfm_public.models.tinytimemixer.utils", - "tsfmhfdemos", - "tsfmhfdemos.neurips", - "tsfmhfdemos.neurips.backends", - "tsfmhfdemos.neurips.backends.v1", - "tsfmhfdemos.neurips.backends.v1.figures", -] +packages = ["tsfm_public", "tsfmhfdemos"] [project.optional-dependencies] From 26030418f5dd63ba1071e08340da4e1dc749f827 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Fri, 2 Aug 2024 09:05:18 -0400 Subject: [PATCH 06/13] update config --- tsfm_public/resources/__init__.py | 2 ++ tsfm_public/resources/data_config/__init__.py | 2 ++ tsfm_public/resources/data_config/electricity.yaml | 2 -- tsfm_public/resources/data_config/etth1.yaml | 3 --- tsfm_public/resources/data_config/etth2.yaml | 2 -- tsfm_public/resources/data_config/ettm1.yaml | 2 -- tsfm_public/resources/data_config/ettm2.yaml | 2 -- tsfm_public/resources/data_config/traffic.yaml | 2 -- tsfm_public/resources/data_config/weather.yaml | 2 -- 9 files changed, 4 insertions(+), 15 deletions(-) create mode 100644 tsfm_public/resources/__init__.py create mode 100644 tsfm_public/resources/data_config/__init__.py diff --git a/tsfm_public/resources/__init__.py b/tsfm_public/resources/__init__.py new file mode 100644 index 00000000..4f85bd0b --- /dev/null +++ b/tsfm_public/resources/__init__.py @@ -0,0 +1,2 @@ +# Copyright contributors to the TSFM project +# diff --git a/tsfm_public/resources/data_config/__init__.py b/tsfm_public/resources/data_config/__init__.py new file mode 100644 index 00000000..4f85bd0b --- /dev/null +++ b/tsfm_public/resources/data_config/__init__.py @@ -0,0 +1,2 @@ +# Copyright contributors to the TSFM project +# diff --git a/tsfm_public/resources/data_config/electricity.yaml b/tsfm_public/resources/data_config/electricity.yaml index 6f7a9c83..0c652f06 100644 --- a/tsfm_public/resources/data_config/electricity.yaml +++ b/tsfm_public/resources/data_config/electricity.yaml @@ -9,8 +9,6 @@ conditional_columns: [] static_categorical_columns: [] freq: 1h -batch_size: 16 - scale: scaling: True scaler_type: standard diff --git a/tsfm_public/resources/data_config/etth1.yaml b/tsfm_public/resources/data_config/etth1.yaml index 05ed8141..49bf9cbb 100644 --- a/tsfm_public/resources/data_config/etth1.yaml +++ b/tsfm_public/resources/data_config/etth1.yaml @@ -9,8 +9,6 @@ conditional_columns: [] static_categorical_columns: [] freq: 1h -batch_size: 256 - scale: scaling: True scaler_type: standard @@ -28,5 +26,4 @@ split: - 11520 # = 12 * 30 * 24 + 4 * 30 * 24 - 14400 # = 12 * 30 * 24 + 8 * 30 * 24 -fewshot_fraction: diff --git a/tsfm_public/resources/data_config/etth2.yaml b/tsfm_public/resources/data_config/etth2.yaml index 3ebdc005..99699d3f 100644 --- a/tsfm_public/resources/data_config/etth2.yaml +++ b/tsfm_public/resources/data_config/etth2.yaml @@ -9,8 +9,6 @@ conditional_columns: [] static_categorical_columns: [] freq: 1h -batch_size: 256 - scale: scaling: True scaler_type: standard diff --git a/tsfm_public/resources/data_config/ettm1.yaml b/tsfm_public/resources/data_config/ettm1.yaml index 7b1f718d..d57c235d 100644 --- a/tsfm_public/resources/data_config/ettm1.yaml +++ b/tsfm_public/resources/data_config/ettm1.yaml @@ -9,8 +9,6 @@ conditional_columns: [] static_categorical_columns: [] freq: 1min -batch_size: 256 - scale: scaling: True scaler_type: standard diff --git a/tsfm_public/resources/data_config/ettm2.yaml b/tsfm_public/resources/data_config/ettm2.yaml index d863a7d4..c9778790 100644 --- a/tsfm_public/resources/data_config/ettm2.yaml +++ b/tsfm_public/resources/data_config/ettm2.yaml @@ -9,8 +9,6 @@ conditional_columns: [] static_categorical_columns: [] freq: 1min -batch_size: 256 - scale: scaling: True scaler_type: standard diff --git a/tsfm_public/resources/data_config/traffic.yaml b/tsfm_public/resources/data_config/traffic.yaml index bc0831c8..54b2426b 100644 --- a/tsfm_public/resources/data_config/traffic.yaml +++ b/tsfm_public/resources/data_config/traffic.yaml @@ -9,8 +9,6 @@ conditional_columns: [] static_categorical_columns: [] freq: 1h -batch_size: 4 - scale: scaling: True scaler_type: standard diff --git a/tsfm_public/resources/data_config/weather.yaml b/tsfm_public/resources/data_config/weather.yaml index c39113e2..d90bab09 100644 --- a/tsfm_public/resources/data_config/weather.yaml +++ b/tsfm_public/resources/data_config/weather.yaml @@ -9,8 +9,6 @@ conditional_columns: [] static_categorical_columns: [] freq: 10min -batch_size: 256 - scale: scaling: True scaler_type: standard From 38ca85cfcd2ea8bbb651397133e461902a05a708 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Fri, 2 Aug 2024 12:38:55 -0400 Subject: [PATCH 07/13] ttm_utils --> ttm_args, move other functions to toolkit --- tsfm_public/__init__.py | 4 + .../models/tinytimemixer/utils/__init__.py | 10 +- .../models/tinytimemixer/utils/ttm_args.py | 166 ++++++++++ .../models/tinytimemixer/utils/ttm_utils.py | 308 ------------------ tsfm_public/toolkit/__init__.py | 2 + tsfm_public/toolkit/data_handling.py | 78 +++++ 6 files changed, 253 insertions(+), 315 deletions(-) create mode 100644 tsfm_public/models/tinytimemixer/utils/ttm_args.py delete mode 100644 tsfm_public/models/tinytimemixer/utils/ttm_utils.py create mode 100644 tsfm_public/toolkit/data_handling.py diff --git a/tsfm_public/__init__.py b/tsfm_public/__init__.py index f8cd91c1..6faab255 100644 --- a/tsfm_public/__init__.py +++ b/tsfm_public/__init__.py @@ -23,8 +23,10 @@ "PretrainDFDataset", "RegressionDFDataset", "get_datasets", + "load_dataset", "TrackingCallback", "count_parameters", + "plot_predictions", ], } @@ -58,6 +60,8 @@ TrackingCallback, count_parameters, get_datasets, + load_dataset, + plot_predictions, ) else: # Standard diff --git a/tsfm_public/models/tinytimemixer/utils/__init__.py b/tsfm_public/models/tinytimemixer/utils/__init__.py index bfe8e4e8..fda78029 100644 --- a/tsfm_public/models/tinytimemixer/utils/__init__.py +++ b/tsfm_public/models/tinytimemixer/utils/__init__.py @@ -1,7 +1,3 @@ -# First Party -from tsfm_public.models.tinytimemixer.utils.ttm_utils import ( - count_parameters, - get_data, - get_ttm_args, - plot_preds, -) +# Copyright contributors to the TSFM project +# +from tsfm_public.models.tinytimemixer.utils.ttm_args import get_ttm_args diff --git a/tsfm_public/models/tinytimemixer/utils/ttm_args.py b/tsfm_public/models/tinytimemixer/utils/ttm_args.py new file mode 100644 index 00000000..e889fcbb --- /dev/null +++ b/tsfm_public/models/tinytimemixer/utils/ttm_args.py @@ -0,0 +1,166 @@ +# Copyright contributors to the TSFM project +# +"""Utilities for TTM notebooks""" + +import argparse +import os + +import torch + + +def get_ttm_args(): + parser = argparse.ArgumentParser(description="TTM pretrain arguments.") + # Adding a positional argument + parser.add_argument( + "--forecast_length", + "-fl", + type=int, + required=False, + default=96, + help="Forecast length", + ) + parser.add_argument( + "--context_length", + "-cl", + type=int, + required=False, + default=512, + help="History context length", + ) + parser.add_argument( + "--patch_length", + "-pl", + type=int, + required=False, + default=64, + help="Patch length", + ) + parser.add_argument( + "--adaptive_patching_levels", + "-apl", + type=int, + required=False, + default=3, + help="Number of adaptive patching levels of TTM", + ) + parser.add_argument( + "--d_model_scale", + "-dms", + type=int, + required=False, + default=3, + help="Model hidden dimension", + ) + parser.add_argument( + "--decoder_d_model_scale", + "-ddms", + type=int, + required=False, + default=2, + help="Decoder hidden dimension", + ) + parser.add_argument( + "--num_gpus", + "-ng", + type=int, + required=False, + default=None, + help="Number of GPUs", + ) + parser.add_argument("--random_seed", "-rs", type=int, required=False, default=42, help="Random seed") + parser.add_argument("--batch_size", "-bs", type=int, required=False, default=3000, help="Batch size") + parser.add_argument( + "--num_epochs", + "-ne", + type=int, + required=False, + default=25, + help="Number of epochs", + ) + + parser.add_argument( + "--num_workers", + "-nw", + type=int, + required=False, + default=8, + help="Number of dataloader workers", + ) + parser.add_argument( + "--learning_rate", + "-lr", + type=float, + required=False, + default=0.001, + help="Learning rate", + ) + parser.add_argument( + "--dataset", + "-ds", + type=str, + required=False, + default="etth1", + help="Dataset", + ) + parser.add_argument( + "--data_root_path", + "-drp", + type=str, + required=False, + default="datasets/", + help="Dataset", + ) + parser.add_argument( + "--save_dir", + "-sd", + type=str, + required=False, + default="tmp/", + help="Data path", + ) + parser.add_argument( + "--early_stopping", + "-es", + type=int, + required=False, + default=1, + help="Whether to use early stopping during finetuning.", + ) + parser.add_argument( + "--freeze_backbone", + "-fb", + type=int, + required=False, + default=1, + help="Whether to freeze the backbone during few-shot finetuning.", + ) + + # Parsing the arguments + args = parser.parse_args() + args.early_stopping = int_to_bool(args.early_stopping) + args.freeze_backbone = int_to_bool(args.freeze_backbone) + args.d_model = args.patch_length * args.d_model_scale + args.decoder_d_model = args.patch_length * args.decoder_d_model_scale + + # Calculate number of gpus + if args.num_gpus is None: + args.num_gpus = torch.cuda.device_count() + print("Automatically calculated number of GPUs =", args.num_gpus) + + # Create save directory + args.save_dir = os.path.join( + args.save_dir, + f"TTM_cl-{args.context_length}_fl-{args.forecast_length}_pl-{args.patch_length}_apl-{args.adaptive_patching_levels}_ne-{args.num_epochs}_es-{args.early_stopping}", + ) + os.makedirs(args.save_dir, exist_ok=True) + + return args + + +def int_to_bool(value): + if value == 0: + return False + elif value == 1: + return True + else: + raise argparse.ArgumentTypeError("Boolean value expected (0 or 1)") diff --git a/tsfm_public/models/tinytimemixer/utils/ttm_utils.py b/tsfm_public/models/tinytimemixer/utils/ttm_utils.py deleted file mode 100644 index cfd4e0b9..00000000 --- a/tsfm_public/models/tinytimemixer/utils/ttm_utils.py +++ /dev/null @@ -1,308 +0,0 @@ -"""Utilities for TTM notebooks""" - -# Standard -import argparse -import os - -# Third Party -import pandas as pd -import torch - -# Local -from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor - - -def get_ttm_args(): - parser = argparse.ArgumentParser(description="TTM pretrain arguments.") - # Adding a positional argument - parser.add_argument( - "--forecast_length", - "-fl", - type=int, - required=False, - default=96, - help="Forecast length", - ) - parser.add_argument( - "--context_length", - "-cl", - type=int, - required=False, - default=512, - help="History context length", - ) - parser.add_argument( - "--patch_length", - "-pl", - type=int, - required=False, - default=64, - help="Patch length", - ) - parser.add_argument( - "--adaptive_patching_levels", - "-apl", - type=int, - required=False, - default=3, - help="Number of adaptive patching levels of TTM", - ) - parser.add_argument( - "--d_model_scale", - "-dms", - type=int, - required=False, - default=3, - help="Model hidden dimension", - ) - parser.add_argument( - "--decoder_d_model_scale", - "-ddms", - type=int, - required=False, - default=2, - help="Decoder hidden dimension", - ) - parser.add_argument( - "--num_gpus", - "-ng", - type=int, - required=False, - default=None, - help="Number of GPUs", - ) - parser.add_argument("--random_seed", "-rs", type=int, required=False, default=42, help="Random seed") - parser.add_argument("--batch_size", "-bs", type=int, required=False, default=3000, help="Batch size") - parser.add_argument( - "--num_epochs", - "-ne", - type=int, - required=False, - default=25, - help="Number of epochs", - ) - - parser.add_argument( - "--num_workers", - "-nw", - type=int, - required=False, - default=8, - help="Number of dataloader workers", - ) - parser.add_argument( - "--learning_rate", - "-lr", - type=float, - required=False, - default=0.001, - help="Learning rate", - ) - parser.add_argument( - "--dataset", - "-ds", - type=str, - required=False, - default="etth1", - help="Dataset", - ) - parser.add_argument( - "--data_root_path", - "-drp", - type=str, - required=False, - default="datasets/", - help="Dataset", - ) - parser.add_argument( - "--save_dir", - "-sd", - type=str, - required=False, - default="tmp/", - help="Data path", - ) - parser.add_argument( - "--early_stopping", - "-es", - type=int, - required=False, - default=1, - help="Whether to use early stopping during finetuning.", - ) - parser.add_argument( - "--freeze_backbone", - "-fb", - type=int, - required=False, - default=1, - help="Whether to freeze the backbone during few-shot finetuning.", - ) - - # Parsing the arguments - args = parser.parse_args() - args.early_stopping = int_to_bool(args.early_stopping) - args.freeze_backbone = int_to_bool(args.freeze_backbone) - args.d_model = args.patch_length * args.d_model_scale - args.decoder_d_model = args.patch_length * args.decoder_d_model_scale - - # Calculate number of gpus - if args.num_gpus is None: - args.num_gpus = torch.cuda.device_count() - print("Automatically calculated number of GPUs =", args.num_gpus) - - # Create save directory - args.save_dir = os.path.join( - args.save_dir, - f"TTM_cl-{args.context_length}_fl-{args.forecast_length}_pl-{args.patch_length}_apl-{args.adaptive_patching_levels}_ne-{args.num_epochs}_es-{args.early_stopping}", - ) - os.makedirs(args.save_dir, exist_ok=True) - - return args - - -def int_to_bool(value): - if value == 0: - return False - elif value == 1: - return True - else: - raise argparse.ArgumentTypeError("Boolean value expected (0 or 1)") - - -def get_data( - dataset_name: str, - context_length, - forecast_length, - fewshot_fraction=1.0, - data_root_path: str = "datasets/", -): - print(dataset_name, context_length, forecast_length) - - config_map = { - "etth1": { - "dataset_path": os.path.join(data_root_path, "ETT-small/ETTh1.csv"), - "timestamp_column": "date", - "id_columns": [], - "target_columns": ["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL", "OT"], - "split_config": { - "train": [0, 12 * 30 * 24], - "valid": [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24], - "test": [12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24], - }, - }, - "etth2": { - "dataset_path": os.path.join(data_root_path, "ETT-small/ETTh2.csv"), - "timestamp_column": "date", - "id_columns": [], - "target_columns": ["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL", "OT"], - "split_config": { - "train": [0, 12 * 30 * 24], - "valid": [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24], - "test": [12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24], - }, - }, - "ettm1": { - "dataset_path": os.path.join(data_root_path, "ETT-small/ETTm1.csv"), - "timestamp_column": "date", - "id_columns": [], - "target_columns": ["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL", "OT"], - "split_config": { - "train": [0, 12 * 30 * 24 * 4], - "valid": [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4], - "test": [ - 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, - 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4, - ], - }, - }, - "ettm2": { - "dataset_path": os.path.join(data_root_path, "ETT-small/ETTm2.csv"), - "timestamp_column": "date", - "id_columns": [], - "target_columns": ["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL", "OT"], - "split_config": { - "train": [0, 12 * 30 * 24 * 4], - "valid": [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4], - "test": [ - 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, - 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4, - ], - }, - }, - "weather": { - "dataset_path": os.path.join(data_root_path, "weather/weather.csv"), - "timestamp_column": "date", - "id_columns": [], - "target_columns": [], - "split_config": { - "train": 0.7, - "test": 0.2, - }, - }, - "electricity": { - "dataset_path": os.path.join(data_root_path, "electricity/electricity.csv"), - "timestamp_column": "date", - "id_columns": [], - "target_columns": [], - "split_config": { - "train": 0.7, - "test": 0.2, - }, - }, - "traffic": { - "dataset_path": os.path.join(data_root_path, "traffic/traffic.csv"), - "timestamp_column": "date", - "id_columns": [], - "target_columns": [], - "split_config": { - "train": 0.7, - "test": 0.2, - }, - }, - } - if dataset_name not in config_map.keys(): - raise ValueError( - f"Currently `get_data()` function supports the following datasets: {config_map.keys()}\n \ - For other datasets, please provide the proper configs to the TimeSeriesPreprocessor (TSP) module." - ) - - dataset_path = config_map[dataset_name]["dataset_path"] - timestamp_column = config_map[dataset_name]["timestamp_column"] - id_columns = config_map[dataset_name]["id_columns"] - target_columns = config_map[dataset_name]["target_columns"] - split_config = config_map[dataset_name]["split_config"] - dataset_path = config_map[dataset_name]["dataset_path"] - - if target_columns == []: - df_tmp_ = pd.read_csv(dataset_path) - target_columns = list(df_tmp_.columns) - target_columns.remove(timestamp_column) - - data = pd.read_csv( - dataset_path, - parse_dates=[timestamp_column], - ) - - column_specifiers = { - "timestamp_column": timestamp_column, - "id_columns": id_columns, - "target_columns": target_columns, - "control_columns": [], - } - - tsp = TimeSeriesPreprocessor( - **column_specifiers, - context_length=context_length, - prediction_length=forecast_length, - scaling=True, - encode_categorical=False, - scaler_type="standard", - ) - - train_dataset, valid_dataset, test_dataset = tsp.get_datasets( - data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location="first" - ) - print(f"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}") - - return train_dataset, valid_dataset, test_dataset diff --git a/tsfm_public/toolkit/__init__.py b/tsfm_public/toolkit/__init__.py index fc5541e8..e05868cb 100644 --- a/tsfm_public/toolkit/__init__.py +++ b/tsfm_public/toolkit/__init__.py @@ -2,7 +2,9 @@ # from .callbacks import TrackingCallback +from .data_handling import load_dataset from .dataset import ForecastDFDataset, PretrainDFDataset, RegressionDFDataset from .time_series_forecasting_pipeline import TimeSeriesForecastingPipeline from .time_series_preprocessor import TimeSeriesPreprocessor, get_datasets from .util import count_parameters +from .visualization import plot_predictions diff --git a/tsfm_public/toolkit/data_handling.py b/tsfm_public/toolkit/data_handling.py new file mode 100644 index 00000000..a991932d --- /dev/null +++ b/tsfm_public/toolkit/data_handling.py @@ -0,0 +1,78 @@ +"""Utilities for handling datasets""" + +import glob +import os +from importlib import resources +from pathlib import Path +from typing import Optional + +import pandas as pd +import yaml + +from tsfm_public import get_datasets + +from .time_series_preprocessor import TimeSeriesPreprocessor + + +def load_dataset( + dataset_name: str, + context_length, + forecast_length, + fewshot_fraction=1.0, + fewshot_location="first", + dataset_root_path: str = "datasets/", + dataset_path: Optional[str] = None, +): + print(dataset_name, context_length, forecast_length) + + config_path = resources.files("tsfm_public.resources.data_config") + configs = glob.glob(os.path.join(config_path, "*.yaml")) + + names_to_config = {Path(p).stem: p for p in configs} + config_path = names_to_config.get(dataset_name, None) + + if config_path is None: + raise ValueError( + f"Currently `get_data()` function supports the following datasets: {names_to_config.keys()}\n \ + For other datasets, please provide the proper configs to the TimeSeriesPreprocessor (TSP) module." + ) + + config = yaml.safe_load(open(config_path, "r")) + + tsp = TimeSeriesPreprocessor( + id_columns=config["id_columns"], + timestamp_column=config["timestamp_column"], + target_columns=config["target_columns"], + observable_columns=config["observable_columns"], + control_columns=config["control_columns"], + conditional_columns=config["conditional_columns"], + static_categorical_columns=config["static_categorical_columns"], + scaling=config["scale"]["scaling"], + scaler_type=config["scale"]["scaler_type"], + encode_categorical=config["encode_categorical"], + freq=config["freq"], + context_length=context_length, + prediction_length=forecast_length, + ) + + split_config = config["split"] + + # if dataset_path is provided we will ignore the config file + if dataset_path is None: + dataset_path = Path(dataset_root_path) / config["data_path"] / config["data_file"] + + data = pd.read_csv( + dataset_path, + parse_dates=[config["timestamp_column"]], + ) + + train_dataset, valid_dataset, test_dataset = get_datasets( + tsp, + data, + split_config=split_config, + fewshot_fraction=fewshot_fraction, + fewshot_location=fewshot_location, + ) + print(f"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}") + + return train_dataset, valid_dataset, test_dataset From a48b04f17f64e40c1293ca875346ec38f9aa703d Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Fri, 2 Aug 2024 13:29:40 -0400 Subject: [PATCH 08/13] apply style to notebooks --- notebooks/hfdemo/patch_tsmixer_blog.ipynb | 21 +- .../patch_tsmixer_getting_started.ipynb | 12 +- notebooks/hfdemo/patch_tsmixer_transfer.ipynb | 15 +- .../hfdemo/patch_tst_getting_started.ipynb | 12 +- notebooks/hfdemo/patch_tst_transfer.ipynb | 7 +- .../ttm_benchmarking_1024_96.ipynb | 48 +- .../ttm_benchmarking_512_96.ipynb | 52 +- .../hfdemo/tinytimemixer/ttm_m4_hourly.ipynb | 166 ++---- notebooks/hfdemo/ttm_getting_started.ipynb | 528 ++++++++++++------ .../thinklab/01_patch_tst_pretrain.ipynb | 16 +- .../thinklab/02_patch_tst_fine_tune.ipynb | 20 +- .../thinklab/03_patch_tst_inference.ipynb | 520 +++++++++-------- .../tutorial/DataLoadingAndStatistics.ipynb | 134 +++-- notebooks/tutorial/LongHorizonForecast.ipynb | 153 ++--- notebooks/tutorial/StatisticalModels.ipynb | 133 +++-- notebooks/tutorial/install_tsfm.ipynb | 1 + notebooks/tutorial/ttm_tutorial.ipynb | 62 +- .../tutorial/ttm_tutorial_with_ans.ipynb | 120 ++-- pyproject.toml | 1 + 19 files changed, 1059 insertions(+), 962 deletions(-) diff --git a/notebooks/hfdemo/patch_tsmixer_blog.ipynb b/notebooks/hfdemo/patch_tsmixer_blog.ipynb index c9380b21..a9ec8aa6 100644 --- a/notebooks/hfdemo/patch_tsmixer_blog.ipynb +++ b/notebooks/hfdemo/patch_tsmixer_blog.ipynb @@ -96,28 +96,27 @@ "source": [ "# Standard\n", "import os\n", - "import random\n", + "\n", + "# supress some warnings\n", + "import warnings\n", + "\n", + "import pandas as pd\n", "\n", "# Third Party\n", "from transformers import (\n", " EarlyStoppingCallback,\n", " PatchTSMixerConfig,\n", " PatchTSMixerForPrediction,\n", - " set_seed,\n", " Trainer,\n", " TrainingArguments,\n", + " set_seed,\n", ")\n", - "import numpy as np\n", - "import pandas as pd\n", - "import torch\n", "\n", "# First Party\n", "from tsfm_public.toolkit.dataset import ForecastDFDataset\n", "from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor\n", "from tsfm_public.toolkit.util import select_by_index\n", "\n", - "# supress some warnings\n", - "import warnings\n", "\n", "warnings.filterwarnings(\"ignore\", module=\"torch\")" ] @@ -916,9 +915,7 @@ ], "source": [ "print(\"Loading pretrained model\")\n", - "finetune_forecast_model = PatchTSMixerForPrediction.from_pretrained(\n", - " \"patchtsmixer_4/electricity/model/pretrain/\"\n", - ")\n", + "finetune_forecast_model = PatchTSMixerForPrediction.from_pretrained(\"patchtsmixer_4/electricity/model/pretrain/\")\n", "print(\"Done\")" ] }, @@ -1323,9 +1320,7 @@ ], "source": [ "# Reload the model\n", - "finetune_forecast_model = PatchTSMixerForPrediction.from_pretrained(\n", - " \"patchtsmixer_4/electricity/model/pretrain/\"\n", - ")\n", + "finetune_forecast_model = PatchTSMixerForPrediction.from_pretrained(\"patchtsmixer_4/electricity/model/pretrain/\")\n", "finetune_forecast_trainer = Trainer(\n", " model=finetune_forecast_model,\n", " args=finetune_forecast_args,\n", diff --git a/notebooks/hfdemo/patch_tsmixer_getting_started.ipynb b/notebooks/hfdemo/patch_tsmixer_getting_started.ipynb index 646ddb47..82d2be65 100644 --- a/notebooks/hfdemo/patch_tsmixer_getting_started.ipynb +++ b/notebooks/hfdemo/patch_tsmixer_getting_started.ipynb @@ -32,9 +32,12 @@ ], "source": [ "# Standard\n", - "import os\n", "import random\n", "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import torch\n", + "\n", "# Third Party\n", "from transformers import (\n", " EarlyStoppingCallback,\n", @@ -43,9 +46,6 @@ " Trainer,\n", " TrainingArguments,\n", ")\n", - "import numpy as np\n", - "import pandas as pd\n", - "import torch\n", "\n", "# First Party\n", "from tsfm_public.toolkit.dataset import ForecastDFDataset\n", @@ -321,9 +321,7 @@ ], "source": [ "print(\"Loading pretrained model\")\n", - "inference_forecast_model = PatchTSMixerForPrediction.from_pretrained(\n", - " \"ibm-granite/granite-timeseries-patchtsmixer\"\n", - ")\n", + "inference_forecast_model = PatchTSMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-patchtsmixer\")\n", "print(\"Done\")" ] }, diff --git a/notebooks/hfdemo/patch_tsmixer_transfer.ipynb b/notebooks/hfdemo/patch_tsmixer_transfer.ipynb index 0b97f3c2..f76beba0 100644 --- a/notebooks/hfdemo/patch_tsmixer_transfer.ipynb +++ b/notebooks/hfdemo/patch_tsmixer_transfer.ipynb @@ -49,6 +49,10 @@ "import os\n", "import random\n", "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import torch\n", + "\n", "# Third Party\n", "from transformers import (\n", " EarlyStoppingCallback,\n", @@ -57,9 +61,6 @@ " Trainer,\n", " TrainingArguments,\n", ")\n", - "import numpy as np\n", - "import pandas as pd\n", - "import torch\n", "\n", "# First Party\n", "from tsfm_public.toolkit.dataset import ForecastDFDataset\n", @@ -923,9 +924,7 @@ ], "source": [ "print(\"Loading pretrained model\")\n", - "finetune_forecast_model = PatchTSMixerForPrediction.from_pretrained(\n", - " \"patchtsmixer/electricity/model/pretrain/\"\n", - ")\n", + "finetune_forecast_model = PatchTSMixerForPrediction.from_pretrained(\"patchtsmixer/electricity/model/pretrain/\")\n", "print(\"Done\")" ] }, @@ -1415,9 +1414,7 @@ ], "source": [ "# Reload the model\n", - "finetune_forecast_model = PatchTSMixerForPrediction.from_pretrained(\n", - " \"patchtsmixer/electricity/model/pretrain/\"\n", - ")\n", + "finetune_forecast_model = PatchTSMixerForPrediction.from_pretrained(\"patchtsmixer/electricity/model/pretrain/\")\n", "finetune_forecast_trainer = Trainer(\n", " model=finetune_forecast_model,\n", " args=finetune_forecast_args,\n", diff --git a/notebooks/hfdemo/patch_tst_getting_started.ipynb b/notebooks/hfdemo/patch_tst_getting_started.ipynb index 5cad2c5f..56496e74 100644 --- a/notebooks/hfdemo/patch_tst_getting_started.ipynb +++ b/notebooks/hfdemo/patch_tst_getting_started.ipynb @@ -19,9 +19,12 @@ "outputs": [], "source": [ "# Standard\n", - "import os\n", "import random\n", "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import torch\n", + "\n", "# Third Party\n", "from transformers import (\n", " EarlyStoppingCallback,\n", @@ -30,9 +33,6 @@ " Trainer,\n", " TrainingArguments,\n", ")\n", - "import numpy as np\n", - "import pandas as pd\n", - "import torch\n", "\n", "# First Party\n", "from tsfm_public.toolkit.dataset import ForecastDFDataset\n", @@ -309,9 +309,7 @@ ], "source": [ "print(\"Loading pretrained model\")\n", - "inference_forecast_model = PatchTSTForPrediction.from_pretrained(\n", - " \"ibm-granite/granite-timeseries-patchtst\"\n", - ")\n", + "inference_forecast_model = PatchTSTForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-patchtst\")\n", "print(\"Done\")" ] }, diff --git a/notebooks/hfdemo/patch_tst_transfer.ipynb b/notebooks/hfdemo/patch_tst_transfer.ipynb index 37b84bce..26ca4147 100644 --- a/notebooks/hfdemo/patch_tst_transfer.ipynb +++ b/notebooks/hfdemo/patch_tst_transfer.ipynb @@ -35,6 +35,10 @@ "import os\n", "import random\n", "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import torch\n", + "\n", "# Third Party\n", "from transformers import (\n", " EarlyStoppingCallback,\n", @@ -43,9 +47,6 @@ " Trainer,\n", " TrainingArguments,\n", ")\n", - "import numpy as np\n", - "import pandas as pd\n", - "import torch\n", "\n", "# First Party\n", "from tsfm_public.toolkit.dataset import ForecastDFDataset\n", diff --git a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb index 96112d9b..69106742 100644 --- a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb +++ b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb @@ -35,24 +35,24 @@ "# Standard\n", "import math\n", "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", "# Third Party\n", "from torch.optim import AdamW\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", "\n", - "# First Party\n", - "from tsfm_public.toolkit.callbacks import TrackingCallback\n", + "# Local\n", + "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction\n", "from tsfm_public.models.tinytimemixer.utils import (\n", " count_parameters,\n", " get_data,\n", " plot_preds,\n", ")\n", "\n", - "# Local\n", - "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction\n" + "# First Party\n", + "from tsfm_public.toolkit.callbacks import TrackingCallback" ] }, { @@ -84,13 +84,13 @@ "\n", "# Make sure all the datasets in the following `list_datasets` are\n", "# saved in the `DATA_ROOT_PATH` folder. Or, change it accordingly.\n", - "# Refer to the get_data() function \n", - "# in notebooks/hfdemo/tinytimemixer/utils/ttm_utils.py \n", + "# Refer to the get_data() function\n", + "# in notebooks/hfdemo/tinytimemixer/utils/ttm_utils.py\n", "# to see how it is used.\n", "DATA_ROOT_PATH = \"datasets/\"\n", "\n", "# This is where results will be saved\n", - "OUT_DIR = \"ttm_results_benchmark_1024_96_tmp\"\n" + "OUT_DIR = \"ttm_results_benchmark_1024_96_tmp\"" ] }, { @@ -115,7 +115,7 @@ " \"weather\",\n", " \"electricity\",\n", " \"traffic\",\n", - "]\n" + "]" ] }, { @@ -138,9 +138,7 @@ "elif context_length == 1024:\n", " hf_model_branch = \"1024_96_v1\"\n", "else:\n", - " raise ValueError(\n", - " \"Current supported context lengths are 512 and 1024. Stay tuned for more TTMs!\"\n", - " )\n" + " raise ValueError(\"Current supported context lengths are 512 and 1024. Stay tuned for more TTMs!\")" ] }, { @@ -195,9 +193,7 @@ " ##### Use the pretrained model in zero-shot forecasting #####\n", " #############################################################\n", " # Load model\n", - " zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " hf_model_path, revision=hf_model_branch\n", - " )\n", + " zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(hf_model_path, revision=hf_model_branch)\n", "\n", " # zeroshot_trainer\n", " zeroshot_trainer = Trainer(\n", @@ -242,7 +238,7 @@ " context_length,\n", " forecast_length,\n", " fewshot_fraction=fewshot_percent / 100,\n", - " data_root_path=DATA_ROOT_PATH\n", + " data_root_path=DATA_ROOT_PATH,\n", " )\n", "\n", " # change head dropout to 0.7 for ett datasets\n", @@ -343,20 +339,14 @@ "\n", " # write results\n", " all_results[f\"fs{fewshot_percent}_mse\"].append(fewshot_output[\"eval_loss\"])\n", - " all_results[f\"fs{fewshot_percent}_mean_epoch_time\"].append(\n", - " tracking_callback.mean_epoch_time\n", - " )\n", - " all_results[f\"fs{fewshot_percent}_total_train_time\"].append(\n", - " tracking_callback.total_train_time\n", - " )\n", - " all_results[f\"fs{fewshot_percent}_best_val_metric\"].append(\n", - " tracking_callback.best_eval_metric\n", - " )\n", + " all_results[f\"fs{fewshot_percent}_mean_epoch_time\"].append(tracking_callback.mean_epoch_time)\n", + " all_results[f\"fs{fewshot_percent}_total_train_time\"].append(tracking_callback.total_train_time)\n", + " all_results[f\"fs{fewshot_percent}_best_val_metric\"].append(tracking_callback.best_eval_metric)\n", "\n", " df_out = pd.DataFrame(all_results).round(3)\n", " print(df_out[[\"dataset\", \"zs_mse\", \"fs5_mse\", \"fs10_mse\"]])\n", " df_out.to_csv(f\"{OUT_DIR}/results_zero_few.csv\")\n", - " df_out.to_csv(f\"{OUT_DIR}/results_zero_few.csv\")\n" + " df_out.to_csv(f\"{OUT_DIR}/results_zero_few.csv\")" ] }, { @@ -544,7 +534,7 @@ } ], "source": [ - "df_out\n" + "df_out" ] }, { diff --git a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb index 74fbbeb8..0ab91550 100644 --- a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb +++ b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb @@ -32,27 +32,15 @@ } ], "source": [ - "# Standard\n", "import math\n", "\n", - "# Third Party\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", "from torch.optim import AdamW\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# First Party\n", - "from tsfm_public.toolkit.callbacks import TrackingCallback\n", - "from tsfm_public.models.tinytimemixer.utils import (\n", - " count_parameters,\n", - " get_data,\n", - " plot_preds,\n", - ")\n", "\n", - "# Local\n", - "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction\n" + "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, get_data, plot_preds" ] }, { @@ -84,13 +72,13 @@ "\n", "# Make sure all the datasets in the following `list_datasets` are\n", "# saved in the `DATA_ROOT_PATH` folder. Or, change it accordingly.\n", - "# Refer to the get_data() function \n", - "# in notebooks/hfdemo/tinytimemixer/utils/ttm_utils.py \n", + "# Refer to the get_data() function\n", + "# in notebooks/hfdemo/tinytimemixer/utils/ttm_utils.py\n", "# to see how it is used.\n", "DATA_ROOT_PATH = \"datasets/\"\n", "\n", "# This is where results will be saved\n", - "OUT_DIR = \"ttm_results_benchmark_512_96/\"\n" + "OUT_DIR = \"ttm_results_benchmark_512_96/\"" ] }, { @@ -115,7 +103,7 @@ " \"weather\",\n", " \"electricity\",\n", " \"traffic\",\n", - "]\n" + "]" ] }, { @@ -138,9 +126,7 @@ "elif context_length == 1024:\n", " hf_model_branch = \"1024_96_v1\"\n", "else:\n", - " raise ValueError(\n", - " \"Current supported context lengths are 512 and 1024. Stay tuned for more TTMs!\"\n", - " )\n" + " raise ValueError(\"Current supported context lengths are 512 and 1024. Stay tuned for more TTMs!\")" ] }, { @@ -195,9 +181,7 @@ " ##### Use the pretrained model in zero-shot forecasting #####\n", " #############################################################\n", " # Load model\n", - " zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " hf_model_path, revision=hf_model_branch\n", - " )\n", + " zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(hf_model_path, revision=hf_model_branch)\n", "\n", " # zeroshot_trainer\n", " zeroshot_trainer = Trainer(\n", @@ -242,7 +226,7 @@ " context_length,\n", " forecast_length,\n", " fewshot_fraction=fewshot_percent / 100,\n", - " data_root_path=DATA_ROOT_PATH\n", + " data_root_path=DATA_ROOT_PATH,\n", " )\n", "\n", " # change head dropout to 0.7 for ett datasets\n", @@ -343,20 +327,14 @@ "\n", " # write results\n", " all_results[f\"fs{fewshot_percent}_mse\"].append(fewshot_output[\"eval_loss\"])\n", - " all_results[f\"fs{fewshot_percent}_mean_epoch_time\"].append(\n", - " tracking_callback.mean_epoch_time\n", - " )\n", - " all_results[f\"fs{fewshot_percent}_total_train_time\"].append(\n", - " tracking_callback.total_train_time\n", - " )\n", - " all_results[f\"fs{fewshot_percent}_best_val_metric\"].append(\n", - " tracking_callback.best_eval_metric\n", - " )\n", + " all_results[f\"fs{fewshot_percent}_mean_epoch_time\"].append(tracking_callback.mean_epoch_time)\n", + " all_results[f\"fs{fewshot_percent}_total_train_time\"].append(tracking_callback.total_train_time)\n", + " all_results[f\"fs{fewshot_percent}_best_val_metric\"].append(tracking_callback.best_eval_metric)\n", "\n", " df_out = pd.DataFrame(all_results).round(3)\n", " print(df_out[[\"dataset\", \"zs_mse\", \"fs5_mse\", \"fs10_mse\"]])\n", " df_out.to_csv(f\"{OUT_DIR}/results_zero_few.csv\")\n", - " df_out.to_csv(f\"{OUT_DIR}/results_zero_few.csv\")\n" + " df_out.to_csv(f\"{OUT_DIR}/results_zero_few.csv\")" ] }, { @@ -546,7 +524,7 @@ } ], "source": [ - "df_out\n" + "df_out" ] } ], diff --git a/notebooks/hfdemo/tinytimemixer/ttm_m4_hourly.ipynb b/notebooks/hfdemo/tinytimemixer/ttm_m4_hourly.ipynb index 7db76924..e45bce9a 100644 --- a/notebooks/hfdemo/tinytimemixer/ttm_m4_hourly.ipynb +++ b/notebooks/hfdemo/tinytimemixer/ttm_m4_hourly.ipynb @@ -45,23 +45,20 @@ } ], "source": [ - "# Standard\n", - "import os\n", "import math\n", - "import tempfile\n", - "import torch\n", + "import os\n", + "from collections import OrderedDict\n", "from dataclasses import dataclass\n", "from types import SimpleNamespace\n", - "import matplotlib.pyplot as plt\n", "\n", - "# Third Party\n", - "from torch.optim import AdamW\n", - "from torch.optim.lr_scheduler import OneCycleLR\n", - "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", + "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", + "import torch\n", + "from torch.optim import AdamW\n", + "from torch.optim.lr_scheduler import OneCycleLR\n", + "from transformers import Trainer, TrainingArguments, set_seed\n", "\n", - "# Local\n", "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction" ] }, @@ -87,9 +84,9 @@ "\n", "# Select device\n", "if torch.cuda.is_available():\n", - " device = torch.device('cuda')\n", + " device = torch.device(\"cuda\")\n", "else:\n", - " device = torch.device('cpu')" + " device = torch.device(\"cpu\")" ] }, { @@ -144,9 +141,7 @@ " groups=m4_info.SP.values,\n", " frequencies=m4_info.Frequency.values,\n", " horizons=m4_info.Horizon.values,\n", - " values=np.load(\n", - " train_cache_file if training else test_cache_file, allow_pickle=True\n", - " ),\n", + " values=np.load(train_cache_file if training else test_cache_file, allow_pickle=True),\n", " )\n", "\n", "\n", @@ -183,6 +178,8 @@ "outputs": [], "source": [ "from torch.utils.data import DataLoader, Dataset\n", + "\n", + "\n", "class Dataset_M4(Dataset):\n", " def __init__(\n", " self,\n", @@ -223,18 +220,12 @@ " if self.scale:\n", " train_dataset = M4Dataset.load(training=True, dataset_file=self.root_path)\n", " if self.flag != \"train\":\n", - " test_dataset = M4Dataset.load(\n", - " training=False, dataset_file=self.root_path\n", - " )\n", + " test_dataset = M4Dataset.load(training=False, dataset_file=self.root_path)\n", " else:\n", " if self.flag == \"train\":\n", - " train_dataset = M4Dataset.load(\n", - " training=True, dataset_file=self.root_path\n", - " )\n", + " train_dataset = M4Dataset.load(training=True, dataset_file=self.root_path)\n", " else:\n", - " test_dataset = M4Dataset.load(\n", - " training=False, dataset_file=self.root_path\n", - " )\n", + " test_dataset = M4Dataset.load(training=False, dataset_file=self.root_path)\n", "\n", " if self.flag == \"train\":\n", " dataset = train_dataset\n", @@ -242,33 +233,26 @@ " dataset = test_dataset\n", "\n", " data_values = np.array(\n", - " [\n", - " v[~np.isnan(v)]\n", - " for v in dataset.values[dataset.groups == self.seasonal_patterns]\n", - " ]\n", + " [v[~np.isnan(v)] for v in dataset.values[dataset.groups == self.seasonal_patterns]]\n", " ) # split different frequencies\n", - " self.ids = np.array(\n", - " [i for i in dataset.ids[dataset.groups == self.seasonal_patterns]]\n", - " )\n", - " self.timeseries = [ts for ts in data_values]\n", + "\n", + " # np.array(\n", + " # [i for i in dataset.ids[dataset.groups == self.seasonal_patterns]]\n", + " # )\n", + " self.ids = np.array(list(dataset.ids[dataset.groups == self.seasonal_patterns]))\n", + " self.timeseries = list(data_values) # [ts for ts in data_values]\n", "\n", " if self.scale:\n", " training_values = np.array(\n", - " [\n", - " v[~np.isnan(v)]\n", - " for v in train_dataset.values[\n", - " train_dataset.groups == self.seasonal_patterns\n", - " ]\n", - " ]\n", + " [v[~np.isnan(v)] for v in train_dataset.values[train_dataset.groups == self.seasonal_patterns]]\n", " ) # split different frequencies\n", - " self.train_timeseries = [ts for ts in training_values]\n", + " self.train_timeseries = list(training_values) # [ts for ts in training_values]\n", " self.train_means = [np.nanmean(ts) for ts in self.train_timeseries]\n", " self.train_stds = [np.nanstd(ts) for ts in self.train_timeseries]\n", "\n", " # normalize\n", " self.timeseries = [\n", - " (ts - self.train_means[i]) / max(self.train_stds[i], 1e-8)\n", - " for i, ts in enumerate(self.timeseries)\n", + " (ts - self.train_means[i]) / max(self.train_stds[i], 1e-8) for i, ts in enumerate(self.timeseries)\n", " ]\n", "\n", " def __getitem__(self, index):\n", @@ -284,14 +268,11 @@ " size=1,\n", " )[0]\n", "\n", - " insample_window = sampled_timeseries[\n", - " max(0, cut_point - self.seq_len) : cut_point\n", - " ]\n", + " insample_window = sampled_timeseries[max(0, cut_point - self.seq_len) : cut_point]\n", " insample[-len(insample_window) :, 0] = insample_window\n", " insample_mask[-len(insample_window) :, 0] = 1.0\n", " outsample_window = sampled_timeseries[\n", - " cut_point\n", - " - self.label_len : min(len(sampled_timeseries), cut_point + self.pred_len)\n", + " cut_point - self.label_len : min(len(sampled_timeseries), cut_point + self.pred_len)\n", " ]\n", " outsample[: len(outsample_window), 0] = outsample_window\n", " outsample_mask[: len(outsample_window), 0] = 1.0\n", @@ -303,9 +284,7 @@ " def inverse_transform(self, data: torch.Tensor):\n", " rescaled_data = []\n", " for i in range(data.shape[0]):\n", - " rescaled_data.append(\n", - " data[i, ...] * self.train_stds[i] + self.train_means[i]\n", - " )\n", + " rescaled_data.append(data[i, ...] * self.train_stds[i] + self.train_means[i])\n", " rescaled_data = torch.stack(rescaled_data).reshape(data.shape)\n", " return rescaled_data\n", "\n", @@ -344,7 +323,7 @@ "def data_provider(args, flag):\n", " Data = Dataset_M4\n", " timeenc = 0 if args.embed != \"timeF\" else 1\n", - " percent = args.percent\n", + " # percent = args.percent\n", "\n", " if flag == \"test\":\n", " shuffle_flag = False\n", @@ -383,7 +362,7 @@ " )\n", " return data_set, data_loader\n", " else:\n", - " raise ValueError(f\"Unsupported task_name {args.task_name}\")\n" + " raise ValueError(f\"Unsupported task_name {args.task_name}\")" ] }, { @@ -430,7 +409,7 @@ " args_ = SimpleNamespace(**args_)\n", " train_data, train_loader = data_provider(args_, \"train\")\n", " test_data, test_loader = data_provider(args_, \"test\")\n", - " return train_data, train_loader, test_data, test_loader\n" + " return train_data, train_loader, test_data, test_loader" ] }, { @@ -453,14 +432,13 @@ "M4 Summary\n", "\"\"\"\n", "\n", + "\n", "def group_values(values, groups, group_name):\n", " return np.array([v[~np.isnan(v)] for v in values[groups == group_name]])\n", "\n", "\n", "def mase(forecast, insample, outsample, frequency):\n", - " return np.mean(np.abs(forecast - outsample)) / np.mean(\n", - " np.abs(insample[:-frequency] - insample[frequency:])\n", - " )\n", + " return np.mean(np.abs(forecast - outsample)) / np.mean(np.abs(insample[:-frequency] - insample[frequency:]))\n", "\n", "\n", "def smape_2(forecast, target):\n", @@ -516,19 +494,11 @@ " if os.path.exists(file_name):\n", " model_forecast = pd.read_csv(file_name).values\n", "\n", - " naive2_forecast = group_values(\n", - " naive2_forecasts, self.test_set.groups, group_name\n", - " )\n", - " target = group_values(\n", - " self.test_set.values, self.test_set.groups, group_name\n", - " )\n", + " naive2_forecast = group_values(naive2_forecasts, self.test_set.groups, group_name)\n", + " target = group_values(self.test_set.values, self.test_set.groups, group_name)\n", " # all timeseries within group have same frequency\n", - " frequency = self.training_set.frequencies[\n", - " self.test_set.groups == group_name\n", - " ][0]\n", - " insample = group_values(\n", - " self.training_set.values, self.test_set.groups, group_name\n", - " )\n", + " frequency = self.training_set.frequencies[self.test_set.groups == group_name][0]\n", + " insample = group_values(self.training_set.values, self.test_set.groups, group_name)\n", "\n", " model_mases[group_name] = np.mean(\n", " [\n", @@ -554,12 +524,8 @@ " )\n", "\n", " naive2_smapes[group_name] = np.mean(smape_2(naive2_forecast, target))\n", - " grouped_smapes[group_name] = np.mean(\n", - " smape_2(forecast=model_forecast, target=target)\n", - " )\n", - " grouped_mapes[group_name] = np.mean(\n", - " mape(forecast=model_forecast, target=target)\n", - " )\n", + " grouped_smapes[group_name] = np.mean(smape_2(forecast=model_forecast, target=target))\n", + " grouped_mapes[group_name] = np.mean(mape(forecast=model_forecast, target=target))\n", "\n", " grouped_smapes = self.summarize_groups(grouped_smapes)\n", " grouped_mapes = self.summarize_groups(grouped_mapes)\n", @@ -568,12 +534,12 @@ " grouped_naive2_mases = self.summarize_groups(naive2_mases)\n", " for k in grouped_model_mases.keys():\n", " grouped_owa[k] = (\n", - " grouped_model_mases[k] / grouped_naive2_mases[k]\n", - " + grouped_smapes[k] / grouped_naive2_smapes[k]\n", + " grouped_model_mases[k] / grouped_naive2_mases[k] + grouped_smapes[k] / grouped_naive2_smapes[k]\n", " ) / 2\n", "\n", " def round_all(d):\n", - " return dict(map(lambda kv: (kv[0], np.round(kv[1], 3)), d.items()))\n", + " return {k: np.round(v, 3) for k, v in d.items()}\n", + " # return dict(map(lambda kv: (kv[0], np.round(kv[1], 3)), d.items()))\n", "\n", " return (\n", " round_all(grouped_smapes),\n", @@ -617,20 +583,12 @@ " else:\n", " raise Exception(\"Forecast output file not found!\")\n", "\n", - " naive2_forecast = group_values(\n", - " naive2_forecasts, self.test_set.groups, group_name\n", - " )\n", + " naive2_forecast = group_values(naive2_forecasts, self.test_set.groups, group_name)\n", " self.naive2_forecasts = naive2_forecast\n", - " target = group_values(\n", - " self.test_set.values, self.test_set.groups, group_name\n", - " )\n", + " target = group_values(self.test_set.values, self.test_set.groups, group_name)\n", " # all timeseries within group have same frequency\n", - " frequency = self.training_set.frequencies[\n", - " self.test_set.groups == group_name\n", - " ][0]\n", - " insample = group_values(\n", - " self.training_set.values, self.test_set.groups, group_name\n", - " )\n", + " frequency = self.training_set.frequencies[self.test_set.groups == group_name][0]\n", + " insample = group_values(self.training_set.values, self.test_set.groups, group_name)\n", "\n", " model_mase = np.mean(\n", " [\n", @@ -684,9 +642,7 @@ " print(f\"Data = {group_name}, Naive2 MASE = {naive2_mase}\\n\")\n", " print(f\"Data = {group_name}, sMAPE = {model_smape/200} (not %)\")\n", " print(f\"Data = {group_name}, Naive2 sMAPE = {naive2_smape/200} (not %)\\n\")\n", - " print(\n", - " f\"Data = {group_name}, OWA = {owa} (should be <1 to be better than naive)\"\n", - " )\n", + " print(f\"Data = {group_name}, OWA = {owa} (should be <1 to be better than naive)\")\n", " print(\"=\" * 50)\n", "\n", " results[\"mse\"].append(model_mse)\n", @@ -730,7 +686,7 @@ " average = np.sum(list(weighted_score.values())) / len(self.test_set.groups)\n", " scores_summary[\"Average\"] = average\n", "\n", - " return scores_summary\n" + " return scores_summary" ] }, { @@ -785,9 +741,7 @@ " save_strategy=\"epoch\",\n", " logging_strategy=\"epoch\",\n", " save_total_limit=1,\n", - " logging_dir=os.path.join(\n", - " save_path, \"logs\"\n", - " ), # Make sure to specify a logging directory\n", + " logging_dir=os.path.join(save_path, \"logs\"), # Make sure to specify a logging directory\n", " load_best_model_at_end=False, # Load the best model when training ends\n", " # metric_for_best_model=metric_for_best_model, # Metric to monitor for early stopping\n", " greater_is_better=False, # For loss\n", @@ -886,9 +840,7 @@ " if not os.path.exists(folder_path):\n", " os.makedirs(folder_path)\n", "\n", - " forecasts_df = pd.DataFrame(\n", - " preds[:, :, 0], columns=[f\"V{i + 1}\" for i in range(forecast_length)]\n", - " )\n", + " forecasts_df = pd.DataFrame(preds[:, :, 0], columns=[f\"V{i + 1}\" for i in range(forecast_length)])\n", " forecasts_df.index = test_loader.dataset.ids[: preds.shape[0]]\n", " forecasts_df.index.name = \"id\"\n", " forecasts_df.set_index(forecasts_df.columns[0], inplace=True)\n", @@ -946,7 +898,7 @@ " # else:\n", " # print(\"After all 6 tasks are finished, you can calculate the averaged index\")\n", "\n", - " return\n" + " return" ] }, { @@ -1118,13 +1070,13 @@ "outputs": [], "source": [ "model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm/TTM\",\n", - " revision=\"main\",\n", - " prediction_filter_length=M4_FORECAST_HORIZON,\n", - " head_dropout=0.0,\n", - " dropout=0.0,\n", - " loss=\"mae\",\n", - " ).to(\"cuda\")" + " \"ibm/TTM\",\n", + " revision=\"main\",\n", + " prediction_filter_length=M4_FORECAST_HORIZON,\n", + " head_dropout=0.0,\n", + " dropout=0.0,\n", + " loss=\"mae\",\n", + ").to(\"cuda\")" ] }, { @@ -1450,7 +1402,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/notebooks/hfdemo/ttm_getting_started.ipynb b/notebooks/hfdemo/ttm_getting_started.ipynb index df035518..9d01aa7c 100644 --- a/notebooks/hfdemo/ttm_getting_started.ipynb +++ b/notebooks/hfdemo/ttm_getting_started.ipynb @@ -24,39 +24,17 @@ "execution_count": 1, "id": "f63ae353-96df-4380-89f6-1e6cebf684fb", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-06-10 11:11:23.205565: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" - ] - } - ], + "outputs": [], "source": [ - "# Standard\n", - "import os\n", "import math\n", + "import os\n", "import tempfile\n", - "import torch\n", "\n", - "# Third Party\n", "from torch.optim import AdamW\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", - "import numpy as np\n", - "import pandas as pd\n", "\n", - "# First Party\n", - "from tsfm_public.models.tinytimemixer.utils import (\n", - " count_parameters,\n", - " get_data,\n", - " plot_preds,\n", - ")\n", - "\n", - "# Local\n", - "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction\n", - "from tsfm_public.toolkit.callbacks import TrackingCallback" + "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, load_dataset, plot_predictions" ] }, { @@ -68,6 +46,7 @@ "source": [ "import warnings\n", "\n", + "\n", "# Suppress all warnings\n", "warnings.filterwarnings(\"ignore\")" ] @@ -96,7 +75,7 @@ "# Make sure to download the target data (here ettm2) on the `DATA_ROOT_PATH` folder.\n", "# ETT is available at: https://github.com/zhouhaoyi/ETDataset/tree/main\n", "target_dataset = \"ettm2\"\n", - "DATA_ROOT_PATH = \"/dccstor/tsfm23/datasets/\"\n", + "DATA_ROOT_PATH = \"/Users/wmgifford/Downloads/tsfm_data/\"\n", "\n", "# Results dir\n", "OUT_DIR = \"ttm_finetuned_models/\"\n", @@ -123,21 +102,16 @@ "metadata": {}, "outputs": [], "source": [ - "def zeroshot_eval(\n", - " dataset_name, \n", - " batch_size,\n", - " context_length=512,\n", - " forecast_length=96,\n", - " prediction_filter_length=None\n", - "):\n", + "def zeroshot_eval(dataset_name, batch_size, context_length=512, forecast_length=96, prediction_filter_length=None):\n", " # Get data\n", - " _, _, dset_test = get_data(dataset_name=dataset_name, \n", - " context_length=context_length, \n", - " forecast_length=forecast_length, \n", - " fewshot_fraction=1.0,\n", - " data_root_path=DATA_ROOT_PATH\n", - " )\n", - " \n", + " _, _, dset_test = load_dataset(\n", + " dataset_name=dataset_name,\n", + " context_length=context_length,\n", + " forecast_length=forecast_length,\n", + " fewshot_fraction=1.0,\n", + " dataset_root_path=DATA_ROOT_PATH,\n", + " )\n", + "\n", " # Load model\n", " if prediction_filter_length is None:\n", " zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", @@ -146,10 +120,12 @@ " else:\n", " if prediction_filter_length <= forecast_length:\n", " zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_filter_length=prediction_filter_length\n", + " \"ibm-granite/granite-timeseries-ttm-v1\",\n", + " revision=TTM_MODEL_REVISION,\n", + " prediction_filter_length=prediction_filter_length,\n", " )\n", " else:\n", - " raise ValueError(f\"`prediction_filter_length` should be <= `forecast_length\")\n", + " raise ValueError(\"`prediction_filter_length` should be <= `forecast_length\")\n", " temp_dir = tempfile.mkdtemp()\n", " # zeroshot_trainer\n", " zeroshot_trainer = Trainer(\n", @@ -157,7 +133,7 @@ " args=TrainingArguments(\n", " output_dir=temp_dir,\n", " per_device_eval_batch_size=batch_size,\n", - " )\n", + " ),\n", " )\n", " # evaluate = zero-shot performance\n", " print(\"+\" * 20, \"Test MSE zero-shot\", \"+\" * 20)\n", @@ -165,7 +141,13 @@ " print(zeroshot_output)\n", "\n", " # plot\n", - " plot_preds(trainer=zeroshot_trainer, dset=dset_test, plot_dir=os.path.join(OUT_DIR, dataset_name), plot_prefix=\"test_zeroshot\", channel=0)" + " plot_predictions(\n", + " model=zeroshot_trainer.model,\n", + " dset=dset_test,\n", + " plot_dir=os.path.join(OUT_DIR, dataset_name),\n", + " plot_prefix=\"test_zeroshot\",\n", + " channel=0,\n", + " )" ] }, { @@ -185,29 +167,28 @@ "outputs": [], "source": [ "def fewshot_finetune_eval(\n", - " dataset_name, \n", - " batch_size, \n", - " learning_rate=0.001,\n", - " context_length=512,\n", - " forecast_length=96,\n", - " fewshot_percent=5, \n", - " freeze_backbone=True,\n", - " num_epochs=50,\n", - " save_dir=OUT_DIR,\n", - " prediction_filter_length=None\n", - " ):\n", - " \n", + " dataset_name,\n", + " batch_size,\n", + " learning_rate=0.001,\n", + " context_length=512,\n", + " forecast_length=96,\n", + " fewshot_percent=5,\n", + " freeze_backbone=True,\n", + " num_epochs=50,\n", + " save_dir=OUT_DIR,\n", + " prediction_filter_length=None,\n", + "):\n", " out_dir = os.path.join(save_dir, dataset_name)\n", - " \n", + "\n", " print(\"-\" * 20, f\"Running few-shot {fewshot_percent}%\", \"-\" * 20)\n", - " \n", + "\n", " # Data prep: Get dataset\n", - " dset_train, dset_val, dset_test = get_data(\n", + " dset_train, dset_val, dset_test = load_dataset(\n", " dataset_name,\n", " context_length,\n", " forecast_length,\n", " fewshot_fraction=fewshot_percent / 100,\n", - " data_root_path=DATA_ROOT_PATH\n", + " dataset_root_path=DATA_ROOT_PATH,\n", " )\n", "\n", " # change head dropout to 0.7 for ett datasets\n", @@ -218,21 +199,27 @@ " )\n", " elif prediction_filter_length <= forecast_length:\n", " finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7, prediction_filter_length=prediction_filter_length\n", + " \"ibm-granite/granite-timeseries-ttm-v1\",\n", + " revision=TTM_MODEL_REVISION,\n", + " head_dropout=0.7,\n", + " prediction_filter_length=prediction_filter_length,\n", " )\n", " else:\n", - " raise ValueError(f\"`prediction_filter_length` should be <= `forecast_length\")\n", + " raise ValueError(\"`prediction_filter_length` should be <= `forecast_length\")\n", " else:\n", " if prediction_filter_length is None:\n", " finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION,\n", + " \"ibm-granite/granite-timeseries-ttm-v1\",\n", + " revision=TTM_MODEL_REVISION,\n", " )\n", " elif prediction_filter_length <= forecast_length:\n", " finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", - " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_filter_length=prediction_filter_length\n", + " \"ibm-granite/granite-timeseries-ttm-v1\",\n", + " revision=TTM_MODEL_REVISION,\n", + " prediction_filter_length=prediction_filter_length,\n", " )\n", " else:\n", - " raise ValueError(f\"`prediction_filter_length` should be <= `forecast_length\")\n", + " raise ValueError(\"`prediction_filter_length` should be <= `forecast_length\")\n", " if freeze_backbone:\n", " print(\n", " \"Number of params before freezing backbone\",\n", @@ -305,7 +292,13 @@ " print(\"+\" * 60)\n", "\n", " # plot\n", - " plot_preds(trainer=finetune_forecast_trainer, dset=dset_test, plot_dir=os.path.join(OUT_DIR, dataset_name), plot_prefix=\"test_fewshot\", channel=0)" + " plot_predictions(\n", + " model=finetune_forecast_trainer.model,\n", + " dset=dset_test,\n", + " plot_dir=os.path.join(OUT_DIR, dataset_name),\n", + " plot_prefix=\"test_fewshot\",\n", + " channel=0,\n", + " )" ] }, { @@ -343,17 +336,13 @@ }, { "data": { - "text/html": [ - "\n", - "

\n", - " \n", - " \n", - " [179/179 00:01]\n", - "
\n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "db38bf3ef92f4e1d94b28a41e7b6815b", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/179 [00:00" ] @@ -410,92 +399,13 @@ }, { "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [ 338/1300 00:29 < 01:25, 11.24 it/s, Epoch 13/50]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
EpochTraining LossValidation Loss
10.4245000.130577
20.3559000.129258
30.3061000.128870
40.2455000.130462
50.2013000.135558
60.1707000.139993
70.1584000.142349
80.1498000.142551
90.1457000.144603
100.1402000.145076
110.1381000.149500
120.1337000.148273
130.1311000.148749

" - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "10e50b38e763489c81f35ddad05d7fc4", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/1300 [00:00\n", - " \n", - " \n", - " [179/179 00:01]\n", - " \n", - " " - ], + "application/vnd.jupyter.widget-view+json": { + "model_id": "5671b6e850c5429b83b37ef6227a0de0", + "version_major": 2, + "version_minor": 0 + }, "text/plain": [ - "" + " 0%| | 0/179 [00:00" + " 0%| | 0/179 [00:00 1\u001b[0m \u001b[43mfewshot_finetune_eval\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtarget_dataset\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m64\u001b[39;49m\u001b[43m)\u001b[49m\n", + "Cell \u001b[0;32mIn[5], line 113\u001b[0m, in \u001b[0;36mfewshot_finetune_eval\u001b[0;34m(dataset_name, batch_size, learning_rate, context_length, forecast_length, fewshot_percent, freeze_backbone, num_epochs, save_dir, prediction_filter_length)\u001b[0m\n\u001b[1;32m 103\u001b[0m finetune_forecast_trainer \u001b[38;5;241m=\u001b[39m Trainer(\n\u001b[1;32m 104\u001b[0m model\u001b[38;5;241m=\u001b[39mfinetune_forecast_model,\n\u001b[1;32m 105\u001b[0m args\u001b[38;5;241m=\u001b[39mfinetune_forecast_args,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 109\u001b[0m optimizers\u001b[38;5;241m=\u001b[39m(optimizer, scheduler),\n\u001b[1;32m 110\u001b[0m )\n\u001b[1;32m 112\u001b[0m \u001b[38;5;66;03m# Fine tune\u001b[39;00m\n\u001b[0;32m--> 113\u001b[0m \u001b[43mfinetune_forecast_trainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;66;03m# Evaluation\u001b[39;00m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m+\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m20\u001b[39m, \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTest MSE after few-shot \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfewshot_percent\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m% fine-tuning\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m+\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m20\u001b[39m)\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:1885\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1883\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n\u001b[1;32m 1884\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1885\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1886\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1887\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1888\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1889\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1890\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:2311\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2308\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol\u001b[38;5;241m.\u001b[39mshould_training_stop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 2310\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_handler\u001b[38;5;241m.\u001b[39mon_epoch_end(args, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol)\n\u001b[0;32m-> 2311\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_maybe_log_save_evaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtr_loss\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgrad_norm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepoch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2313\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m DebugOption\u001b[38;5;241m.\u001b[39mTPU_METRICS_DEBUG \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mdebug:\n\u001b[1;32m 2314\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_torch_xla_available():\n\u001b[1;32m 2315\u001b[0m \u001b[38;5;66;03m# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:2721\u001b[0m, in \u001b[0;36mTrainer._maybe_log_save_evaluate\u001b[0;34m(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2719\u001b[0m metrics \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 2720\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol\u001b[38;5;241m.\u001b[39mshould_evaluate:\n\u001b[0;32m-> 2721\u001b[0m metrics \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mevaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mignore_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2722\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_report_to_hp_search(trial, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mglobal_step, metrics)\n\u001b[1;32m 2724\u001b[0m \u001b[38;5;66;03m# Run delayed LR scheduler now that metrics are populated\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:3572\u001b[0m, in \u001b[0;36mTrainer.evaluate\u001b[0;34m(self, eval_dataset, ignore_keys, metric_key_prefix)\u001b[0m\n\u001b[1;32m 3569\u001b[0m start_time \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[1;32m 3571\u001b[0m eval_loop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprediction_loop \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39muse_legacy_prediction_loop \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mevaluation_loop\n\u001b[0;32m-> 3572\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43meval_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3573\u001b[0m \u001b[43m \u001b[49m\u001b[43meval_dataloader\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3574\u001b[0m \u001b[43m \u001b[49m\u001b[43mdescription\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mEvaluation\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3575\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# No point gathering the predictions if there are no metrics, otherwise we defer to\u001b[39;49;00m\n\u001b[1;32m 3576\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# self.args.prediction_loss_only\u001b[39;49;00m\n\u001b[1;32m 3577\u001b[0m \u001b[43m \u001b[49m\u001b[43mprediction_loss_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompute_metrics\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 3578\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3579\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_key_prefix\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_key_prefix\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3580\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3582\u001b[0m total_batch_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39meval_batch_size \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mworld_size\n\u001b[1;32m 3583\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmetric_key_prefix\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m_jit_compilation_time\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m output\u001b[38;5;241m.\u001b[39mmetrics:\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:3747\u001b[0m, in \u001b[0;36mTrainer.evaluation_loop\u001b[0;34m(self, dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix)\u001b[0m\n\u001b[1;32m 3744\u001b[0m observed_num_examples \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m 3746\u001b[0m \u001b[38;5;66;03m# Main evaluation loop\u001b[39;00m\n\u001b[0;32m-> 3747\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, inputs \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(dataloader):\n\u001b[1;32m 3748\u001b[0m \u001b[38;5;66;03m# Update the observed num examples\u001b[39;00m\n\u001b[1;32m 3749\u001b[0m observed_batch_size \u001b[38;5;241m=\u001b[39m find_batch_size(inputs)\n\u001b[1;32m 3750\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m observed_batch_size \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/accelerate/data_loader.py:451\u001b[0m, in \u001b[0;36mDataLoaderShard.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbegin()\n\u001b[1;32m 450\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_epoch(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miteration)\n\u001b[0;32m--> 451\u001b[0m dataloader_iter \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__iter__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 452\u001b[0m \u001b[38;5;66;03m# We iterate one batch ahead to check when we are at the end\u001b[39;00m\n\u001b[1;32m 453\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:439\u001b[0m, in \u001b[0;36mDataLoader.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 437\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterator\n\u001b[1;32m 438\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 439\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_iterator\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:387\u001b[0m, in \u001b[0;36mDataLoader._get_iterator\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 385\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 386\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcheck_worker_number_rationality()\n\u001b[0;32m--> 387\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_MultiProcessingDataLoaderIter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1040\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter.__init__\u001b[0;34m(self, loader)\u001b[0m\n\u001b[1;32m 1033\u001b[0m w\u001b[38;5;241m.\u001b[39mdaemon \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 1034\u001b[0m \u001b[38;5;66;03m# NB: Process.start() actually take some time as it needs to\u001b[39;00m\n\u001b[1;32m 1035\u001b[0m \u001b[38;5;66;03m# start a process and pass the arguments over via a pipe.\u001b[39;00m\n\u001b[1;32m 1036\u001b[0m \u001b[38;5;66;03m# Therefore, we only add a worker to self._workers list after\u001b[39;00m\n\u001b[1;32m 1037\u001b[0m \u001b[38;5;66;03m# it started, so that we do not call .join() if program dies\u001b[39;00m\n\u001b[1;32m 1038\u001b[0m \u001b[38;5;66;03m# before it starts, and __del__ tries to join but will get:\u001b[39;00m\n\u001b[1;32m 1039\u001b[0m \u001b[38;5;66;03m# AssertionError: can only join a started process.\u001b[39;00m\n\u001b[0;32m-> 1040\u001b[0m \u001b[43mw\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1041\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_index_queues\u001b[38;5;241m.\u001b[39mappend(index_queue)\n\u001b[1;32m 1042\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_workers\u001b[38;5;241m.\u001b[39mappend(w)\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/process.py:121\u001b[0m, in \u001b[0;36mBaseProcess.start\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _current_process\u001b[38;5;241m.\u001b[39m_config\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdaemon\u001b[39m\u001b[38;5;124m'\u001b[39m), \\\n\u001b[1;32m 119\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdaemonic processes are not allowed to have children\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 120\u001b[0m _cleanup()\n\u001b[0;32m--> 121\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_popen \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_Popen\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sentinel \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_popen\u001b[38;5;241m.\u001b[39msentinel\n\u001b[1;32m 123\u001b[0m \u001b[38;5;66;03m# Avoid a refcycle if the target function holds an indirect\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;66;03m# reference to the process object (see bpo-30775)\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/context.py:224\u001b[0m, in \u001b[0;36mProcess._Popen\u001b[0;34m(process_obj)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[38;5;129m@staticmethod\u001b[39m\n\u001b[1;32m 223\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_Popen\u001b[39m(process_obj):\n\u001b[0;32m--> 224\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_default_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_context\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mProcess\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_Popen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprocess_obj\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/context.py:288\u001b[0m, in \u001b[0;36mSpawnProcess._Popen\u001b[0;34m(process_obj)\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[38;5;129m@staticmethod\u001b[39m\n\u001b[1;32m 286\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_Popen\u001b[39m(process_obj):\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpopen_spawn_posix\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Popen\n\u001b[0;32m--> 288\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mPopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprocess_obj\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/popen_spawn_posix.py:32\u001b[0m, in \u001b[0;36mPopen.__init__\u001b[0;34m(self, process_obj)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, process_obj):\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fds \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m---> 32\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mprocess_obj\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/popen_fork.py:19\u001b[0m, in \u001b[0;36mPopen.__init__\u001b[0;34m(self, process_obj)\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreturncode \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfinalizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m---> 19\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_launch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprocess_obj\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/popen_spawn_posix.py:62\u001b[0m, in \u001b[0;36mPopen._launch\u001b[0;34m(self, process_obj)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msentinel \u001b[38;5;241m=\u001b[39m parent_r\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(parent_w, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwb\u001b[39m\u001b[38;5;124m'\u001b[39m, closefd\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m f:\n\u001b[0;32m---> 62\u001b[0m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetbuffer\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 64\u001b[0m fds_to_close \u001b[38;5;241m=\u001b[39m []\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] } ], "source": [ @@ -580,7 +744,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "b4eff2e1-acfd-4c5b-8463-e084ba831cdf", "metadata": {}, "outputs": [ @@ -644,7 +808,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "4b56cd24-bae6-4cc6-9a3c-52f965014eb0", "metadata": {}, "outputs": [ @@ -819,7 +983,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/notebooks/thinklab/01_patch_tst_pretrain.ipynb b/notebooks/thinklab/01_patch_tst_pretrain.ipynb index 59295d47..374bc6c7 100644 --- a/notebooks/thinklab/01_patch_tst_pretrain.ipynb +++ b/notebooks/thinklab/01_patch_tst_pretrain.ipynb @@ -94,16 +94,16 @@ "outputs": [], "source": [ "import pandas as pd\n", - "\n", - "from tsfm_public.toolkit.dataset import PretrainDFDataset\n", - "from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor\n", - "from tsfm_public.toolkit.util import select_by_index\n", "from transformers import (\n", " PatchTSTConfig,\n", " PatchTSTForPretraining,\n", " Trainer,\n", " TrainingArguments,\n", - ")" + ")\n", + "\n", + "from tsfm_public.toolkit.dataset import PretrainDFDataset\n", + "from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor\n", + "from tsfm_public.toolkit.util import select_by_index" ] }, { @@ -138,9 +138,7 @@ "metadata": {}, "outputs": [], "source": [ - "dataset_path = (\n", - " \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv\"\n", - ")\n", + "dataset_path = \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv\"\n", "timestamp_column = \"date\"\n", "id_columns = []\n", "forecast_columns = [\"HUFL\", \"HULL\", \"MUFL\", \"MULL\", \"LUFL\", \"LULL\", \"OT\"]\n", @@ -424,7 +422,7 @@ " output_dir=\"./checkpoint/pretrain\",\n", " per_device_train_batch_size=8,\n", " per_device_eval_batch_size=64,\n", - " num_train_epochs=3, #50,\n", + " num_train_epochs=3, # 50,\n", " evaluation_strategy=\"epoch\",\n", " save_strategy=\"epoch\",\n", " save_total_limit=5,\n", diff --git a/notebooks/thinklab/02_patch_tst_fine_tune.ipynb b/notebooks/thinklab/02_patch_tst_fine_tune.ipynb index c548bdac..35e945d5 100644 --- a/notebooks/thinklab/02_patch_tst_fine_tune.ipynb +++ b/notebooks/thinklab/02_patch_tst_fine_tune.ipynb @@ -97,16 +97,16 @@ "outputs": [], "source": [ "import pandas as pd\n", - "\n", - "from tsfm_public.toolkit.dataset import ForecastDFDataset\n", - "from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor\n", - "from tsfm_public.toolkit.util import select_by_index\n", "from transformers import (\n", " PatchTSTConfig,\n", " PatchTSTForPrediction,\n", " Trainer,\n", " TrainingArguments,\n", - ")" + ")\n", + "\n", + "from tsfm_public.toolkit.dataset import ForecastDFDataset\n", + "from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor\n", + "from tsfm_public.toolkit.util import select_by_index" ] }, { @@ -141,9 +141,7 @@ "metadata": {}, "outputs": [], "source": [ - "dataset_path = (\n", - " \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh2.csv\"\n", - ")\n", + "dataset_path = \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh2.csv\"\n", "timestamp_column = \"date\"\n", "id_columns = []\n", "forecast_columns = [\"HUFL\", \"HULL\", \"MUFL\", \"MULL\", \"LUFL\", \"LULL\", \"OT\"]\n", @@ -154,9 +152,7 @@ "\n", "# load pretrained model config, to access some previously defined parameters\n", "pretrained_config = PatchTSTConfig.from_pretrained(pretrained_model_path)\n", - "context_length = (\n", - " pretrained_config.context_length\n", - ") # use pretrained_config.context_length to match pretrained model\n", + "context_length = pretrained_config.context_length # use pretrained_config.context_length to match pretrained model\n", "\n", "train_start_index = None # None indicates beginning of dataset\n", "train_end_index = 12 * 30 * 24\n", @@ -272,7 +268,7 @@ " context_length=context_length,\n", " num_input_channels=tsp.num_input_channels,\n", " prediction_length=prediction_length,\n", - " do_mask_input=False\n", + " do_mask_input=False,\n", ")" ] }, diff --git a/notebooks/thinklab/03_patch_tst_inference.ipynb b/notebooks/thinklab/03_patch_tst_inference.ipynb index f7803f67..619c3e2e 100644 --- a/notebooks/thinklab/03_patch_tst_inference.ipynb +++ b/notebooks/thinklab/03_patch_tst_inference.ipynb @@ -101,8 +101,8 @@ "outputs": [], "source": [ "import pandas as pd\n", - "\n", "from transformers.models.patchtst import PatchTSTForPrediction\n", + "\n", "from tsfm_public.toolkit.time_series_forecasting_pipeline import (\n", " TimeSeriesForecastingPipeline,\n", ")\n", @@ -179,9 +179,7 @@ "metadata": {}, "outputs": [], "source": [ - "dataset_path = (\n", - " \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh2.csv\"\n", - ")\n", + "dataset_path = \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh2.csv\"\n", "test_start_index = 12 * 30 * 24 + 4 * 30 * 24 - context_length\n", "test_end_index = 12 * 30 * 24 + 8 * 30 * 24" ] @@ -1483,10 +1481,10 @@ -1.16930046421141, -1.642367358340416, -1.2735226161552446, - -1.3938230361491941, + -1.393823036149194, -1.1853789148031688, -1.2896008842053592, - -1.5942280234701607, + -1.594228023470161, -1.2174397990816652, -1.2896008842053592, -1.7865938767660714, @@ -1494,7 +1492,7 @@ -1.4579449872478305, -1.3216619510254994, -1.8908158461682611, - -1.5861888894451037, + -1.5861888894451035, -1.834733211636326, -1.3857839021241365, -1.0891958968843918, @@ -1510,7 +1508,7 @@ -1.626288907748657, -1.530106072371524, -1.3456837012789384, - -1.5861888894451037, + -1.5861888894451035, -1.2896008842053592, -1.626288907748657, -1.8908158461682611, @@ -1518,14 +1516,14 @@ -1.498045005551384, -1.16930046421141, -1.2094006650566076, - -1.5861888894451037, - -1.6583499745687977, - -1.3938230361491941, + -1.5861888894451035, + -1.6583499745687975, + -1.393823036149194, -1.498045005551384, - -1.6583499745687977, + -1.6583499745687975, -1.1773395982364676, - -1.8507158278647078, - -1.6102106396985423, + -1.850715827864708, + -1.6102106396985425, -1.530106072371524, -1.353722835303997, -1.698449992872351, @@ -1533,19 +1531,19 @@ -2.1233775521311022, -2.195538637254796, -1.9629771138335996, - -1.7224719256674341, + -1.722471925667434, -2.0591599492107324, -1.530106072371524, - -1.5140278043214095, - -1.8026721448161853, + -1.5140278043214097, + -1.802672144816185, -1.3055835004337406, -0.8085905078730294, -0.7684904895694753, -1.2815617501803018, -0.9207561420201884, - -0.9448737266370035, + -0.9448737266370036, -0.8566343734631953, - -1.3938230361491941, + -1.393823036149194, -0.7283904712659219, -0.6562292036005835, -1.024978293964022, @@ -1553,7 +1551,7 @@ -0.8485952394381386, -0.7283904712659219, -0.912812659816863, - -1.0330174279890803, + -1.0330174279890805, -1.1212569637045329, -1.024978293964022, -1.2896008842053592, @@ -1565,7 +1563,7 @@ -1.16930046421141, -0.8485952394381386, -0.6322074533471453, - -0.9849737449405573, + -0.9849737449405572, -0.7844731057978568, -1.2495006833601612, -0.75241222151936, @@ -1575,14 +1573,14 @@ -0.6963292219041375, -0.8326122581264674, -0.49592441712481405, - -0.9608563428653857, + -0.9608563428653856, -0.75241222151936, -0.87271264151331, -1.1934180488282264, - -1.0570391782425181, + -1.057039178242518, -1.1612613301863524, -1.2094006650566076, - -1.0330174279890803, + -1.0330174279890805, -1.1132176471378303, -0.760451355544418, -1.3216619510254994, @@ -1602,7 +1600,7 @@ -0.2072800766300381, -1.3617619693290532, -0.8005513738479707, - -1.8266938950696245, + -1.8266938950696243, -1.017034811760698, -0.8646735074882519, -1.313622634458798, @@ -1624,7 +1622,7 @@ -0.8245731241014101, -0.49592441712481405, -1.2896008842053592, - -0.9769346109154999, + -0.9769346109155, -0.8245731241014101, -0.8406517572348139, -1.0009565437105832, @@ -1646,14 +1644,14 @@ -0.1351188089646996, -0.8326122581264674, -0.03893579104592302, - -0.22335834468015206, + -0.2233583446801521, -0.3034627294655263, -0.3917022651809788, -0.6963292219041375, -1.0410565620141363, -1.369705451532377, -0.8485952394381386, - -0.9769346109154999, + -0.9769346109155, -0.8406517572348139, -0.6802509538540216, -1.0490956960391944, @@ -1661,7 +1659,7 @@ -0.5840683010185334, -1.417844786402633, -1.024978293964022, - -1.3938230361491941, + -1.393823036149194, -1.2654834821301872, -0.4718070150496414, -0.6642683376256407, @@ -1678,21 +1676,21 @@ -1.1612613301863524, -0.7765296235945327, -1.5702062732167223, - -0.9528172088403281, + -0.952817208840328, -0.7203513372408646, -0.5840683010185334, -1.3216619510254994, -0.8646735074882519, - -1.0570391782425181, + -1.057039178242518, -1.0811567628593346, -0.9368345926119466, -1.2013615310315506, - -1.5861888894451037, + -1.5861888894451035, -1.0811567628593346, -0.7765296235945327, -0.5439679176316915, -0.4237631494594755, - -0.9287952760452447, + -0.9287952760452448, -0.6882900878790795, -0.5439679176316915, -0.8566343734631953, @@ -1701,34 +1699,34 @@ -1.4579449872478305, -1.449905853222773, -1.3216619510254994, - -1.6182497737236001, + -1.6182497737236, -1.369705451532377, -1.858754961889765, -1.16930046421141, -1.4579449872478305, -0.904773525791806, -1.1773395982364676, - -1.0330174279890803, + -1.0330174279890805, -1.1132176471378303, -1.073117628834277, -1.2735226161552446, -1.2094006650566076, -0.9929172271438814, - -0.9849737449405573, + -0.9849737449405572, -0.8485952394381386, -1.0089956777356408, -1.073117628834277, -1.017034811760698, - -0.9287952760452447, - -0.9448737266370035, + -0.9287952760452448, + -0.9448737266370036, -1.4017665183525176, -1.858754961889765, -1.7465893277426063, -2.0431773329823506, -1.706489309439053, - -1.8266938950696245, + -1.8266938950696243, -1.5460886885999054, - -1.5059884877547083, + -1.5059884877547085, -1.810711278841243, -1.2094006650566076, -1.778650394562747, @@ -1750,15 +1748,15 @@ -1.1051785131127734, -1.2975443664086836, -1.2495006833601612, - -0.9608563428653857, - -0.9849737449405573, + -0.9608563428653856, + -0.9849737449405572, -0.8886952577416913, -1.3055835004337406, -0.6963292219041375, -0.6882900878790795, -0.7203513372408646, -1.024978293964022, - -0.9448737266370035, + -0.9448737266370036, -1.073117628834277, -0.8646735074882519, -0.7844731057978568, @@ -1772,18 +1770,18 @@ -0.87271264151331, -0.9207561420201884, -1.2334224153100466, - -0.9769346109154999, + -0.9769346109155, -1.4819667375012688, -1.017034811760698, -1.417844786402633, -0.9929172271438814, - -1.3938230361491941, + -1.393823036149194, -0.7844731057978568, -0.8085905078730294, -0.8646735074882519, -1.0009565437105832, -1.3617619693290532, - -0.9849737449405573, + -0.9849737449405572, -0.8245731241014101, -0.7684904895694753, -0.7043687210124839, @@ -1806,17 +1804,17 @@ -2.788714556463463, -2.6765490135871266, -2.756653580914145, - -2.9090149764574122, + -2.909014976457412, -2.868914775612214, -2.548209368297298, - -1.5861888894451037, + -1.5861888894451035, -0.7684904895694753, -0.4878852830997567, -0.5921074350435913, - -0.9608563428653857, + -0.9608563428653856, -1.0009565437105832, -0.7283904712659219, - -1.0570391782425181, + -1.057039178242518, -0.8245731241014101, -0.9688954768904426, -1.0971393790877149, @@ -1824,7 +1822,7 @@ -0.8485952394381386, -0.9688954768904426, -0.904773525791806, - -0.9287952760452447, + -0.9287952760452448, -1.5220669383464671, -0.8646735074882519, -1.1132176471378303, @@ -1843,7 +1841,7 @@ -0.7844731057978568, -0.8245731241014101, -1.0891958968843918, - -0.9608563428653857, + -0.9608563428653856, -1.017034811760698, -0.8085905078730294, -1.2094006650566076, @@ -1851,7 +1849,7 @@ -0.6882900878790795, -1.024978293964022, -0.8326122581264674, - -1.0330174279890803, + -1.0330174279890805, -0.8005513738479707, -0.9368345926119466, -0.8165339900763529, @@ -1877,7 +1875,7 @@ -2.1554386189512424, -2.259660588353433, -2.1233775521311022, - -2.5562485935931774, + -2.556248593593178, -2.572326861643292, -2.548209368297298, -2.4600656669452223, @@ -1893,21 +1891,21 @@ -2.580270343846616, -2.7165533800689468, -2.588309569142496, - -2.5562485935931774, + -2.556248593593178, -2.620370544691814, -2.307704271401955, -2.2275997040749367, -2.2996651373768975, -2.1393601683594836, -1.9469943150635736, - -1.9068942967600202, + -1.90689429676002, -1.979055381883714, -2.2917216551735735, -2.3959436245757635, -2.3318216734771267, -2.187499503229739, -2.1233775521311022, - -1.9549377972668982, + -1.9549377972668984, -2.187499503229739, -2.259660588353433, -2.187499503229739, @@ -1920,15 +1918,15 @@ -2.708609989136445, -2.788714556463463, -2.6765490135871266, - -2.5322267520689166, + -2.532226752068917, -2.2516214543283755, - -1.6583499745687977, + -1.6583499745687975, -1.3857839021241365, -1.2013615310315506, -1.3376445672538813, -1.634328224315359, -1.634328224315359, - -1.6904108588472935, + -1.6904108588472937, -1.626288907748657, -1.2735226161552446, -1.417844786402633, @@ -1936,22 +1934,22 @@ -1.4339230544527468, -0.8646735074882519, -0.6161291852970301, - -0.9608563428653857, + -0.9608563428653856, -1.1212569637045329, -1.1853789148031688, -1.2254789331067226, -1.369705451532377, - -1.8026721448161853, + -1.802672144816185, -1.3456837012789384, - -1.7224719256674341, + -1.722471925667434, -0.8485952394381386, -1.2174397990816652, -1.1372395799329138, -0.7364296052909792, -0.8646735074882519, - -0.9608563428653857, + -0.9608563428653856, -1.017034811760698, - -0.9849737449405573, + -0.9849737449405572, -1.073117628834277, -1.017034811760698, -0.7364296052909792, @@ -1960,11 +1958,11 @@ -0.6161291852970301, -0.5360244354283674, -0.6001465690686486, - -0.9608563428653857, + -0.9608563428653856, -0.8326122581264674, -1.698449992872351, -1.16930046421141, - -1.0330174279890803, + -1.0330174279890805, -1.2896008842053592, -1.5621669566500205, -0.7765296235945327, @@ -1974,9 +1972,9 @@ -1.313622634458798, -1.073117628834277, -1.1452787139579712, - -0.9528172088403281, - -1.0570391782425181, - -0.9608563428653857, + -0.952817208840328, + -1.057039178242518, + -0.9608563428653856, -0.8807517755383679, -0.7844731057978568, -0.38366313115592215, @@ -1985,23 +1983,23 @@ -0.3917022651809788, -0.4477848997129143, -0.6882900878790795, - -0.9769346109154999, - -0.9528172088403281, - -0.9528172088403281, + -0.9769346109155, + -0.952817208840328, + -0.952817208840328, -0.7444687393160366, -1.4017665183525176, - -0.9849737449405573, + -0.9849737449405572, -0.7283904712659219, -0.75241222151936, -1.4579449872478305, -1.0009565437105832, -1.2013615310315506, - -0.9849737449405573, + -0.9849737449405572, -0.9929172271438814, -2.0591599492107324, - -1.0330174279890803, + -1.0330174279890805, -0.7925122398229141, - -0.9849737449405573, + -0.9849737449405572, -0.7123118381325183, -0.7765296235945327, -0.7043687210124839, @@ -2016,11 +2014,11 @@ -1.417844786402633, -1.1853789148031688, -1.0650783122675758, - -0.9528172088403281, + -0.952817208840328, -1.6022671574952183, -1.2815617501803018, -0.9688954768904426, - -0.9287952760452447, + -0.9287952760452448, -1.1452787139579712, -0.904773525791806, -0.8326122581264674, @@ -2038,7 +2036,7 @@ -1.1853789148031688, -1.257539999926863, -0.9688954768904426, - -0.9287952760452447, + -0.9287952760452448, -0.7283904712659219, -0.8485952394381386, -0.8165339900763529, @@ -2046,7 +2044,7 @@ -1.1212569637045329, -0.7444687393160366, -1.024978293964022, - -0.9849737449405573, + -0.9849737449405572, -1.1452787139579712, -1.1372395799329138, -0.8566343734631953, @@ -2066,13 +2064,13 @@ -0.8005513738479707, -0.7925122398229141, -1.0089956777356408, - -0.9287952760452447, + -0.9287952760452448, -1.1934180488282264, -0.8646735074882519, -1.0891958968843918, -0.9368345926119466, -0.8406517572348139, - -0.9608563428653857, + -0.9608563428653856, -0.7925122398229141, -0.8807517755383679, -0.5600461856818062, @@ -2088,7 +2086,7 @@ -1.1372395799329138, -1.1212569637045329, -0.8566343734631953, - -0.9287952760452447, + -0.9287952760452448, -1.0650783122675758, -0.8485952394381386, -0.5840683010185334, @@ -2106,7 +2104,7 @@ -0.9368345926119466, -0.8085905078730294, -1.017034811760698, - -0.9769346109154999, + -0.9769346109155, -1.0891958968843918, -1.417844786402633, -1.257539999926863, @@ -2134,19 +2132,19 @@ -1.257539999926863, -1.1292002633662122, -1.1051785131127734, - -1.0330174279890803, + -1.0330174279890805, -1.5460886885999054, -1.6022671574952183, - -1.8026721448161853, + -1.802672144816185, -0.8807517755383679, -1.6663891085938551, - -1.6583499745687977, - -0.9608563428653857, + -1.6583499745687975, + -0.9608563428653856, -0.8165339900763529, -1.329701085050557, - -0.9528172088403281, + -0.952817208840328, -0.87271264151331, - -0.9448737266370035, + -0.9448737266370036, -0.5199461673782528, -0.5760288019101876, -0.6963292219041375, @@ -2179,15 +2177,15 @@ -0.9929172271438814, -1.0089956777356408, -1.017034811760698, - -1.0330174279890803, + -1.0330174279890805, -0.8967343917667486, - -0.9769346109154999, + -0.9769346109155, -0.8085905078730294, -0.5439679176316915, -0.6161291852970301, -0.6963292219041375, -0.6080900512719735, - -0.9769346109154999, + -0.9769346109155, -0.6402465873722026, -1.3216619510254994, -1.313622634458798, @@ -2201,7 +2199,7 @@ -0.4477848997129143, -0.5760288019101876, -0.7765296235945327, - -0.9769346109154999, + -0.9769346109155, -1.1292002633662122, -1.1533178479830282, -1.3777445855574346, @@ -2209,11 +2207,11 @@ -1.1533178479830282, -1.024978293964022, -1.1051785131127734, - -1.4258839204276899, + -1.42588392042769, -0.8326122581264674, -1.1051785131127734, -0.5600461856818062, - -0.9769346109154999, + -0.9769346109155, -0.8165339900763529, -1.0891958968843918, -0.9207561420201884, @@ -2226,8 +2224,8 @@ -0.43974576568785695, -0.8326122581264674, -0.8406517572348139, - -0.9448737266370035, - -1.4739276034762119, + -0.9448737266370036, + -1.473927603476212, -1.3376445672538813, -1.2174397990816652, -1.2254789331067226, @@ -2247,16 +2245,16 @@ -0.46386353284631865, -0.46386353284631865, -0.46386353284631865, - -0.9769346109154999, + -0.9769346109155, -1.369705451532377, -1.0089956777356408, -1.329701085050557, -1.1292002633662122, - -1.4258839204276899, + -1.42588392042769, -1.1051785131127734, - -1.0330174279890803, + -1.0330174279890805, -1.073117628834277, - -0.9528172088403281, + -0.952817208840328, -1.1934180488282264, -0.5119070333531954, -0.6402465873722026, @@ -2378,13 +2376,13 @@ ], "y": [ -1.114380121231079, - -1.1012076139450073, - -1.0430634021759033, - -1.2277408838272095, - -1.2993509769439697, + -1.101207613945007, + -1.043063402175903, + -1.2277408838272097, + -1.2993509769439695, -1.2025686502456665, -1.0498031377792358, - -1.2646393775939941, + -1.264639377593994, -1.3147271871566772, -1.0548253059387207, -1.3030890226364136, @@ -2392,44 +2390,44 @@ -1.0638914108276367, -0.888178288936615, -1.1275345087051392, - -0.9416507482528687, + -0.9416507482528688, -1.0817251205444336, -0.8538972735404968, -0.7802585363388062, -0.8119070529937744, - -0.9703841209411621, + -0.970384120941162, -0.7368140816688538, -0.7150887846946716, - -0.9615399241447449, - -1.2473393678665161, + -0.9615399241447448, + -1.247339367866516, -1.036447525024414, -1.129603624343872, -1.0258170366287231, -1.168280005455017, - -1.1466639041900635, - -1.0412933826446533, + -1.1466639041900637, + -1.041293382644653, -1.2883615493774414, - -1.3563733100891113, + -1.356373310089111, -1.1307183504104614, -1.0854873657226562, -1.1897168159484863, -1.1143451929092407, - -1.0678737163543701, + -1.06787371635437, -1.1274898052215576, -1.0223543643951416, - -1.0048792362213135, + -1.0048792362213137, -0.9456254243850708, -0.9219006299972534, -0.9371864795684814, -0.9628844261169434, -0.8253697156906128, -0.8615092635154724, - -0.9975356459617615, + -0.9975356459617616, -1.1939489841461182, -1.1691333055496216, - -1.2266896963119507, + -1.226689696311951, -1.1902910470962524, - -1.1685158014297485, + -1.1685158014297483, -1.3183757066726685, -1.10786771774292, -1.225210189819336, @@ -2442,8 +2440,8 @@ -1.0715348720550537, -0.965918242931366, -1.2027311325073242, - -1.0227609872817993, - -0.9886167049407959, + -1.022760987281799, + -0.988616704940796, -0.8692268133163452, -0.9481931924819946, -0.9726306200027466, @@ -2468,11 +2466,11 @@ -1.1662001609802246, -0.7988014221191406, -0.7146113514900208, - -0.9570643305778503, + -0.9570643305778505, -0.7842862606048584, -0.6960272789001465, -0.926305890083313, - -0.9584517478942871 + -0.9584517478942872 ] }, { @@ -2580,16 +2578,16 @@ -0.8723561763763428, -1.0079503059387207, -0.8817741274833679, - -0.9090412855148315, - -1.0054376125335693, + -0.9090412855148317, + -1.0054376125335691, -1.1146657466888428, - -1.0298707485198975, + -1.0298707485198977, -1.025174856185913, -1.0227417945861816, - -1.0035077333450317, + -1.0035077333450315, -1.012802243232727, -0.9462154507637024, - -0.9412500858306885, + -0.9412500858306884, -0.9205936789512634, -0.9151426553726196, -0.770983874797821, @@ -2608,8 +2606,8 @@ -1.0077489614486694, -1.0327340364456177, -0.856086015701294, - -1.0146985054016113, - -0.9909955859184265, + -1.014698505401611, + -0.9909955859184264, -0.8547475934028625, -0.9331160187721252, -0.8523315191268921, @@ -2627,21 +2625,21 @@ -0.8418104648590088, -0.8829984664916992, -1.097349762916565, - -1.0521595478057861, + -1.052159547805786, -0.9907715916633606, -1.0889906883239746, -1.0586446523666382, - -1.0137771368026733, + -1.0137771368026731, -1.0937504768371582, -1.0829766988754272, - -1.0141123533248901, + -1.01411235332489, -0.981816291809082, -0.991590678691864, -1.1610442399978638, -1.079716682434082, - -0.9979380369186401, + -0.99793803691864, -0.8740617632865906, - -0.9440527558326721, + -0.944052755832672, -0.7086359858512878, -0.7679603695869446, -0.7754336595535278, @@ -2653,13 +2651,13 @@ -1.053515911102295, -1.000349521636963, -1.0941377878189087, - -1.2575812339782715, + -1.2575812339782717, -1.1154881715774536, -1.0541685819625854, -1.1759408712387085, -1.1063493490219116, -1.0004912614822388, - -1.0727506875991821, + -1.072750687599182, -1.033949613571167, -0.9886517524719238, -0.9839311838150024, @@ -2781,16 +2779,16 @@ -1.11812162399292, -1.0742759704589844, -1.0217924118041992, - -1.1624258756637573, + -1.162425875663757, -1.1169286966323853, -1.0311871767044067, -1.1504594087600708, -1.1491039991378784, - -0.9933449029922485, + -0.9933449029922484, -1.100246548652649, -0.9200284481048584, -1.0303630828857422, - -0.9863337874412537, + -0.9863337874412536, -0.7568250894546509, -0.7537345886230469, -0.7747013568878174, @@ -2800,21 +2798,21 @@ -0.6652269959449768, -0.6808099150657654, -0.6788861751556396, - -0.9570900201797485, + -0.9570900201797484, -1.0581060647964478, -1.1980540752410889, - -1.0926035642623901, + -1.09260356426239, -0.9993208646774292, - -1.1813428401947021, + -1.181342840194702, -1.0971959829330444, -1.0739070177078247, -1.1892178058624268, -1.205440878868103, - -1.0549736022949219, - -0.9792154431343079, - -0.9992469549179077, - -0.9931943416595459, - -0.9454977512359619, + -1.054973602294922, + -0.979215443134308, + -0.9992469549179076, + -0.993194341659546, + -0.945497751235962, -0.7733556032180786, -0.8824097514152527, -0.9184880256652832, @@ -2829,7 +2827,7 @@ -1.0472010374069214, -1.1606311798095703, -1.0111703872680664, - -1.1500499248504639, + -1.150049924850464, -1.1422120332717896, -1.1100784540176392, -1.0909085273742676, @@ -2837,7 +2835,7 @@ -1.063998818397522, -1.0559271574020386, -1.0096478462219238, - -1.1330921649932861, + -1.133092164993286, -1.1361849308013916, -1.0428688526153564, -0.8610979318618774, @@ -2848,9 +2846,9 @@ -0.8199552297592163, -0.7061428427696228, -0.8381249308586121, - -0.9673633575439453, + -0.9673633575439452, -1.0186474323272705, - -1.1204442977905273, + -1.1204442977905271, -1.108569860458374, -0.9801048636436462, -1.2778130769729614, @@ -2872,7 +2870,7 @@ -0.6781456470489502, -0.6119953989982605, -0.6622210741043091, - -0.9014444351196289 + -0.9014444351196288 ] } ], @@ -4579,7 +4577,7 @@ -0.8853722131449302, -0.6340998007380396, -0.5673071472464294, - -0.9282593533711171, + -0.9282593533711172, -0.5387157958561509, -0.7676846551581806, -0.6357011951947522, @@ -4618,16 +4616,16 @@ -0.8185796727940898, -0.7708878966346848, -0.6627504378917289, - -0.9139636776759785, + -0.9139636776759784, -1.0157539392293364, -1.123831999068112, - -1.1333822114526755, + -1.1333822114526757, -1.031651235662728, -0.8312738408917466, - -1.0427437830221327, + -1.0427437830221329, -0.7549904870605239, -0.7072391988561687, - -0.9012695095783223, + -0.9012695095783224, -0.6086521787793152, -0.30179834490781043, -0.28109629940043196, @@ -4639,10 +4637,10 @@ -0.33993990868265195, -0.30179834490781043, -0.5434611460259572, - -0.44647574668735596, + -0.446475746687356, -0.4846768225071481, - -0.37814098450244404, - -0.45922920054842364, + -0.378140984502444, + -0.4592292005484237, -0.4926254141534589, -0.5673071472464294, -0.599161252158163, @@ -4677,15 +4675,15 @@ -0.38923353186184856, -0.7883274149021483, -0.3637859099031241, - -0.19366088616485366, + -0.1936608861648537, -0.25090310099036195, -0.6230072533786347, -0.5880094190353475, -0.39243677333835314, -0.2588519189182121, -0.2716053727792797, - -0.22865872050814207, - -0.23975126786754614, + -0.2286587205081421, + -0.23975126786754616, -0.3812849402155377, -0.4067325621742622, -0.20481271928766948, @@ -4704,8 +4702,8 @@ -0.3494903473487548, -0.1984657483796105, -0.29064651178499507, - -0.23975126786754614, - -0.24455613008230298, + -0.23975126786754616, + -0.24455613008230295, -0.3065436950776167, -0.1857122945185433, -0.2207101288618304, @@ -4716,23 +4714,23 @@ -0.7040952431430746, -0.5657650385531277, -0.4130795330823203, - -0.48782055193870205, + -0.4878205519387021, -0.5419190373326556, -0.4448741259491037, -0.45282271759541454, -0.3940383940766054, - -0.44647574668735596, + -0.446475746687356, -0.8392224325380574, -0.6182023911638783, -0.30814531581586896, -0.3876319111235963, - -0.10936965492390967, - -0.24455613008230298, + -0.10936965492390968, + -0.24455613008230295, -0.29064651178499507, -0.3733361222876876, -0.3351945585128457, -0.20160970409270465, - -0.11417429085712677, + -0.11417429085712676, -0.06488089395946989, -0.4083339566309747, -0.06327927322121718, @@ -4756,17 +4754,17 @@ -0.09667548682625288, -0.20955829573901544, -0.27795234368733823, - -0.22545570531317638, + -0.2254557053131764, -0.052127440098402235, -0.2859009353336491, -0.4830752017688954, - -0.49737099060480533, - -0.21276153721552002, + -0.4973709906048054, + -0.21276153721552, -0.3097469365541212, -0.35583731825681286, -0.47672800457929754, -0.5816622218457493, - -0.38608957614875483, + -0.3860895761487548, -0.7803788232558375, -0.45282271759541454, -0.28750255607190134, @@ -4778,10 +4776,10 @@ -0.3033999656460623, -0.5403174165944028, -0.7406354124612036, - -0.38608957614875483, + -0.3860895761487548, -0.1825090530420387, -0.1348170506010944, - -0.10142083699605911, + -0.10142083699605912, -0.417884395297078, -0.21115991647726773, -0.16346791403632338, @@ -4813,7 +4811,7 @@ -0.35904055973331783, -0.5737136301994386, -0.8185796727940898, - -0.9012695095783223, + -0.9012695095783224, -0.92986097410937, -0.8201812935323421, -0.8710171385456105, @@ -4828,12 +4826,12 @@ -0.5085228237276203, -0.3192971489386843, -0.2620549341131769, - -0.21276153721552002, + -0.21276153721552, -0.22705709976988936, -0.3272459668665349, -0.2223117496000831, -0.19045787096988925, - -0.09192991037490647, + -0.09192991037490648, -0.3144925130054672, -0.3431431501591565, -0.40993557736922703, @@ -4855,9 +4853,9 @@ -0.16186629329807112, -0.09827710756450474, -0.4576275798101714, - -0.21590526664707355, - -0.22865872050814207, - -0.24770008579539626, + -0.21590526664707357, + -0.2286587205081421, + -0.24770008579539624, -0.26680051056452286, -0.4051309414360095, -0.4242313662051361, @@ -4866,11 +4864,11 @@ -0.6277526035484413, -0.4401287757792979, -0.6738429852511334, - -0.37814098450244404, + -0.378140984502444, -0.7358900622913978, -0.18731391525679555, -0.21750688738532625, - -0.20000808335445278, + -0.2000080833544528, -0.35743893899506557, -0.5641634178148754, -0.30179834490781043, @@ -4880,15 +4878,15 @@ -0.13007170043128813, -0.1507144601752553, -0.2525047217286138, - -0.20795667500076317, + -0.20795667500076315, -0.37173472783097466, -0.26519888982627016, - -0.39083515260010043, + -0.3908351526001004, -0.47672800457929754, -0.55301158469206, -0.548266008240714, -0.4957693698665526, - -0.46397477699976963, + -0.4639747769997696, -1.0777416173654202, -1.3957472843597405, -1.63907110512032, @@ -4925,7 +4923,7 @@ -0.13962191281585123, -0.1539177016517603, -0.13962191281585123, - -0.042636513477250004, + -0.04263651347725, -0.27635072294908597, -0.1459691100054495, -0.09667548682625288, @@ -4940,18 +4938,18 @@ -0.33679617925109795, -0.21115991647726773, -0.42102812472863155, - -0.20795667500076317, + -0.20795667500076315, -0.37173472783097466, -0.16821349048766937, -0.3033999656460623, -0.25570796320511835, - -0.20641434002592218, + -0.20641434002592216, -0.18731391525679555, -0.08552365370343708, -0.10462407847256368, -0.0728294856057807, -0.29859510343130585, - -0.11417429085712677, + -0.11417429085712676, -0.20955829573901544, -0.1459691100054495, -0.33038969629808884, @@ -4970,18 +4968,18 @@ -1.2431211777931137, -1.2685686866110688, -1.192226047016435, - -1.2256222606214697, + -1.2256222606214695, -1.2049795008775026, -1.017296274204178, - -0.9791544841477967, - -1.0491501528343719, + -0.9791544841477968, + -1.049150152834372, -1.1349838321909276, -1.1397885812649144, -1.1317805907144227, -1.270170307349321, -1.408500738220808, -1.3973489050979926, - -1.4768355004057199, + -1.47683550040572, -1.4529894991852477, -1.4164493298671188, -1.445040794398167, @@ -4989,10 +4987,10 @@ -1.2160720482369072, -1.2097249641880787, -1.123831999068112, - -1.0284481073269933, + -1.028448107326993, -1.0157539392293364, -1.0634459416702808, - -1.2256222606214697, + -1.2256222606214695, -1.266967179013586, -1.2033778801392496, -1.146135665313743, @@ -5008,8 +5006,8 @@ -1.505486250700179, -1.4339482470387626, -1.487987333528535, - -1.4577942482592345, - -1.3910018210491641, + -1.4577942482592343, + -1.391001821049164, -1.348055281918796, -1.26222171570301, -0.8678732959732867, @@ -5028,7 +5026,7 @@ -0.24930148025210924, -0.3256443461282822, -0.5148697946356788, - -0.46397477699976963, + -0.4639747769997696, -0.5228183862819896, -0.5434611460259572, -0.8646700544967819, @@ -5037,11 +5035,11 @@ -0.354235697518561, -0.6198040119021305, -0.5387157958561509, - -0.23975126786754614, - -0.19366088616485366, + -0.23975126786754616, + -0.1936608861648537, -0.35743893899506557, -0.3622438012098224, - -0.36538753064137636, + -0.3653875306413763, -0.44967898816386054, -0.3669891513796287, -0.25090310099036195, @@ -5054,7 +5052,7 @@ -0.3876319111235963, -0.8901176764555065, -0.4544243383336668, - -0.37814098450244404, + -0.378140984502444, -0.55301158469206, -0.6548018462454182, -0.3113485572923731, @@ -5063,13 +5061,13 @@ -0.3001967241695581, -0.5085228237276203, -0.3955805027699075, - -0.43852715504104517, + -0.4385271550410452, -0.3828865609537896, -0.4003853649846639, - -0.37814098450244404, + -0.378140984502444, -0.42102812472863155, -0.2747491022108337, - -0.09987872830275743, + -0.09987872830275744, -0.9473598912810138, -0.9044133521506456, -0.12526683821653128, @@ -5081,30 +5079,30 @@ -0.37968331947728545, -0.7549904870605239, -0.4719233686460804, - -0.24770008579539626, + -0.24770008579539624, -0.17936532361048474, -0.5896110397735999, -0.27000375204102744, -0.4926254141534589, -0.2588519189182121, -0.3319913170363411, - -0.9426144279704377, + -0.9426144279704376, -0.3415415294209042, -0.29859510343130585, -0.29064651178499507, - -0.21276153721552002, + -0.21276153721552, -0.37173472783097466, -0.2826976938571445, -0.3129501780306258, -0.19045787096988925, -0.24615775082055527, -0.28109629940043196, - -0.36538753064137636, + -0.3653875306413763, -0.4814735810306435, -0.5307672042098401, -0.4576275798101714, -0.5562145998870248, - -0.45922920054842364, + -0.4592292005484237, -0.3844881816920423, -0.39718212350815935, -0.8519758863991251, @@ -5116,7 +5114,7 @@ -0.35583731825681286, -0.3447447708974088, -0.3129501780306258, - -0.21276153721552002, + -0.21276153721552, -0.05058510512356081, -0.6102537995175674, -0.1348170506010944, @@ -5143,7 +5141,7 @@ -0.2032113248309565, -0.017188891518525554, -0.28904489104674275, - -0.17616208213398019, + -0.1761620821339802, -0.18731391525679555, -0.2223117496000831, -0.24930148025210924, @@ -5157,31 +5155,31 @@ -0.32244110465177805, -0.4130795330823203, -0.3033999656460623, - -0.49737099060480533, + -0.4973709906048054, -0.2747491022108337, -0.3431431501591565, -0.2826976938571445, -0.21115991647726773, - -0.21910850812357854, + -0.21910850812357857, -0.19045787096988925, -0.33038969629808884, -0.13007170043128813, -0.20481271928766948, -0.1666118697494171, -0.17936532361048474, - -0.11417429085712677, + -0.11417429085712676, -0.24615775082055527, -0.3844881816920423, - -0.41147791234406844, + -0.4114779123440685, -0.4941677491283003, - -0.43852715504104517, + -0.4385271550410452, -0.45282271759541454, -0.4894221726769543, -0.38923353186184856, -0.38923353186184856, -0.510064932420922, -0.27955396442559055, - -0.19205926542660182, + -0.19205926542660184, -0.16026467255981883, -0.27955396442559055, -0.28904489104674275, @@ -5189,7 +5187,7 @@ -0.3351945585128457, -0.4719233686460804, -0.2604533133749246, - -0.11731824657022047, + -0.11731824657022048, -0.20955829573901544, -0.2716053727792797, -0.12847007969303542, @@ -5199,17 +5197,17 @@ -0.40993557736922703, -0.5005740057997697, -0.7008922279481101, - -0.49737099060480533, + -0.4973709906048054, -0.3876319111235963, -0.39243677333835314, - -0.36538753064137636, + -0.3653875306413763, -0.6690974087997874, -0.33679617925109795, -0.3208987696769366, - -0.22545570531317638, + -0.2254557053131764, -0.3510917418054677, -0.42743460768164065, - -0.39083515260010043, + -0.3908351526001004, -0.37968331947728545, -0.29859510343130585, -0.2525047217286138, @@ -5222,7 +5220,7 @@ -0.4576275798101714, -0.516471415373931, -0.5260216277584941, - -0.46397477699976963, + -0.4639747769997696, -0.4926254141534589, -0.44967898816386054, -0.7629390787068351, @@ -5233,15 +5231,15 @@ -0.7120440610709255, -0.28429931459539676, -0.3113485572923731, - -0.43852715504104517, + -0.4385271550410452, -0.2302603412463939, -0.2525047217286138, - -0.24455613008230298, + -0.24455613008230295, -0.16821349048766937, -0.17936532361048474, -0.3113485572923731, -0.13321565614438183, - -0.12212310878497733, + -0.12212310878497731, -0.4242313662051361, -0.3637859099031241, -0.3637859099031241, @@ -5274,7 +5272,7 @@ -0.4067325621742622, -0.2969934826930536, -0.22705709976988936, - -0.19686412764135866, + -0.19686412764135863, -0.1809669443487366, -0.09347224534974788, -0.37968331947728545, @@ -5286,13 +5284,13 @@ -0.2223117496000831, -0.23180267622123535, -0.08077807725209152, - -0.38608957614875483, + -0.3860895761487548, -0.3622438012098224, -0.04898348438530811, -0.19526250690310637, -0.3478887266105021, -0.4083339566309747, - -0.48782055193870205, + -0.4878205519387021, -0.5339702194048049, -0.5657650385531277, -0.5069212029893679, @@ -5307,12 +5305,12 @@ -0.2223117496000831, -0.4560259590719187, -0.2525047217286138, - -0.20795667500076317, + -0.20795667500076315, -0.16186629329807112, -0.06648251469772218, -0.3622438012098224, -0.13007170043128813, - -0.10142083699605911, + -0.10142083699605912, -0.15866305182156654, -0.31769552820043206, -0.35743893899506557, @@ -5349,20 +5347,20 @@ -0.3447447708974088, -0.5752559651742799, -0.14757050446216205, - -0.21276153721552002, + -0.21276153721552, -0.08712527444168977, -0.25570796320511835, -0.3208987696769366, -0.3192971489386843, -0.37968331947728545, -0.3812849402155377, - -0.36538753064137636, + -0.3653875306413763, -0.3319913170363411, -0.37493774302593946, -0.6643520586299811, 0.01620732208651013, -0.1459691100054495, - -0.21276153721552002 + -0.21276153721552 ] }, { @@ -5468,7 +5466,7 @@ ], "y": [ -0.43027183413505554, - -0.42390280961990356, + -0.4239028096199035, -0.3690532147884369, -0.4997428357601166, -0.5329204797744751, @@ -5478,7 +5476,7 @@ -0.5195258855819702, -0.3666682243347168, -0.4522668123245239, - -0.36115384101867676, + -0.3611538410186768, -0.34067124128341675, -0.2479216754436493, -0.39184972643852234, @@ -5525,10 +5523,10 @@ -0.5013623237609863, -0.47774869203567505, -0.3572198748588562, - -0.37806791067123413, + -0.3780679106712342, -0.3945810794830322, -0.44084662199020386, - -0.39097172021865845, + -0.3909717202186585, -0.34607356786727905, -0.3114209771156311, -0.4446004331111908, @@ -5537,11 +5535,11 @@ -0.31284546852111816, -0.32119518518447876, -0.35834288597106934, - -0.38285815715789795, + -0.3828581571578979, -0.3723020851612091, -0.4229162931442261, -0.4060932397842407, - -0.47867926955223083, + -0.4786792695522308, -0.6029704809188843, -0.583959698677063, -0.5073027610778809, @@ -5705,7 +5703,7 @@ -0.28227466344833374, -0.4012889564037323, -0.30505046248435974, - -0.24338026344776154, + -0.2433802634477615, -0.223413348197937, -0.24670545756816864, -0.20341485738754272, @@ -5722,12 +5720,12 @@ -0.4856155812740326, -0.47947239875793457, -0.4524945318698883, - -0.49388381838798523, - -0.47361642122268677, + -0.4938838183879852, + -0.4736164212226868, -0.38114362955093384, -0.3589770793914795, -0.37393510341644287, - -0.46648266911506653, + -0.4664826691150666, -0.4209396541118622, -0.3800652325153351, -0.31397196650505066, @@ -5741,7 +5739,7 @@ -0.4137554168701172, -0.5416671633720398, -0.4786807894706726, - -0.42942604422569275, + -0.4294260442256927, -0.5076782703399658, -0.5913574695587158, -0.4976896643638611, @@ -5868,24 +5866,24 @@ ], "y": [ -0.3136693835258484, - -0.48255351185798645, + -0.4825535118579865, -0.4674164056777954, -0.4333106577396393, -0.5270497798919678, -0.48819953203201294, -0.4413444399833679, - -0.46351268887519836, + -0.4635126888751984, -0.5104973316192627, -0.379749596118927, -0.4170100688934326, -0.3244268298149109, -0.3922155201435089, - -0.36820581555366516, - -0.23117756843566895, + -0.3682058155536651, + -0.23117756843566897, -0.246806800365448, -0.25506100058555603, -0.22341850399971008, - -0.19540894031524658, + -0.19540894031524655, -0.27491283416748047, -0.2526005804538727, -0.2228122055530548, @@ -5900,10 +5898,10 @@ -0.4495970904827118, -0.5226061344146729, -0.49445998668670654, - -0.39157024025917053, + -0.3915702402591706, -0.35026979446411133, -0.35054218769073486, - -0.36145687103271484, + -0.3614568710327149, -0.35620546340942383, -0.25212904810905457, -0.3176071047782898, @@ -5927,7 +5925,7 @@ -0.3998788595199585, -0.404817670583725, -0.33762216567993164, - -0.43748751282691956, + -0.4374875128269195, -0.43563759326934814, -0.39762231707572937, -0.29675185680389404, @@ -5947,7 +5945,7 @@ -0.5632251501083374, -0.5216364860534668, -0.5268236398696899, - -0.48555004596710205, + -0.4855500459671021, -0.4695591926574707, -0.36663514375686646, -0.3515389561653137, @@ -5959,9 +5957,9 @@ -0.2619193494319916, -0.2522519528865814, -0.3459148406982422, - -0.22723433375358582, + -0.22723433375358584, -0.21085217595100403, - -0.21771883964538574, + -0.21771883964538577, -0.3529844284057617 ] } diff --git a/notebooks/tutorial/DataLoadingAndStatistics.ipynb b/notebooks/tutorial/DataLoadingAndStatistics.ipynb index e12a9164..1ab17c6d 100644 --- a/notebooks/tutorial/DataLoadingAndStatistics.ipynb +++ b/notebooks/tutorial/DataLoadingAndStatistics.ipynb @@ -17,9 +17,9 @@ "source": [ "%%capture\n", "try:\n", - " import pandas \n", - "except ImportError as e:\n", - " !pip install pandas " + " import pandas # noqa: F401\n", + "except ImportError:\n", + " !pip install pandas" ] }, { @@ -31,8 +31,8 @@ "source": [ "%%capture\n", "try:\n", - " import numpy \n", - "except ImportError as e:\n", + " import numpy # noqa: F401\n", + "except ImportError:\n", " !pip install numpy" ] }, @@ -45,8 +45,8 @@ "source": [ "%%capture\n", "try:\n", - " import matplotlib \n", - "except ImportError as e:\n", + " import matplotlib # noqa: F401\n", + "except ImportError:\n", " !pip install matplotlib" ] }, @@ -59,8 +59,8 @@ "source": [ "%%capture\n", "try:\n", - " import sklearn\n", - "except ImportError as e:\n", + " import sklearn # noqa: F401\n", + "except ImportError:\n", " !pip install scikit-learn" ] }, @@ -71,9 +71,9 @@ "metadata": {}, "outputs": [], "source": [ - "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", "import numpy as np\n", - "import matplotlib.pyplot as plt" + "import pandas as pd" ] }, { @@ -93,9 +93,10 @@ "metadata": {}, "outputs": [], "source": [ - "df = pd.read_csv('https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv',\n", - " parse_dates=['date'])\n", - "df = df.set_index('date')\n", + "df = pd.read_csv(\n", + " \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv\", parse_dates=[\"date\"]\n", + ")\n", + "df = df.set_index(\"date\")\n", "df.index.freq = pd.infer_freq(df.index)" ] }, @@ -253,8 +254,8 @@ } ], "source": [ - "ax = df.OT.plot(color='gray', figsize=(20, 3))\n", - "for s in ['top', 'right']:\n", + "ax = df.OT.plot(color=\"gray\", figsize=(20, 3))\n", + "for s in [\"top\", \"right\"]:\n", " ax.spines[s].set_visible(False)" ] }, @@ -276,8 +277,8 @@ } ], "source": [ - "ax = df[['OT']].plot(color='gray', figsize=(20, 3))\n", - "for s in ['top', 'right']:\n", + "ax = df[[\"OT\"]].plot(color=\"gray\", figsize=(20, 3))\n", + "for s in [\"top\", \"right\"]:\n", " ax.spines[s].set_visible(False)\n", "plt.show()" ] @@ -524,7 +525,7 @@ ], "source": [ "fig, ax = plt.subplots(1, 1)\n", - "cbar = ax.imshow(df.corr(), interpolation='nearest', vmin=-1, vmax=1, cmap='jet')\n", + "cbar = ax.imshow(df.corr(), interpolation=\"nearest\", vmin=-1, vmax=1, cmap=\"jet\")\n", "ax.set_xticks(np.arange(df.shape[1]), df.columns)\n", "ax.set_yticks(np.arange(df.shape[1]), df.columns)\n", "fig.colorbar(cbar)\n", @@ -549,10 +550,9 @@ "metadata": {}, "outputs": [], "source": [ - "def autocorr(x: np.ndarray,\n", - " l: int):\n", + "def autocorr(x: np.ndarray, l: int):\n", " assert len(x.shape) == 1, f\"Error: expects 1D array, received array size {x.shape}!\"\n", - " assert len(x) > l + 3, f\"Error: not sufficient data points for auto correlation computation!\"\n", + " assert len(x) > l + 3, \"Error: not sufficient data points for auto correlation computation!\"\n", "\n", " x_ = x[l:]\n", " _x = x[:-l]\n", @@ -566,9 +566,10 @@ "metadata": {}, "outputs": [], "source": [ - "def get_autocorr_profile(x: np.ndarray,\n", - " max_lag: int = 40,\n", - " ):\n", + "def get_autocorr_profile(\n", + " x: np.ndarray,\n", + " max_lag: int = 40,\n", + "):\n", " c = [1.0]\n", " for l in range(max_lag):\n", " c.append(autocorr(x, l + 1))\n", @@ -606,8 +607,8 @@ "source": [ "fig = plt.figure(figsize=(10, 3))\n", "ax = plt.subplot(1, 1, 1)\n", - "ax.bar(np.arange(max_lag + 1, dtype=float), c_prof, color='gray')\n", - "for s in ['top', 'right']:\n", + "ax.bar(np.arange(max_lag + 1, dtype=float), c_prof, color=\"gray\")\n", + "for s in [\"top\", \"right\"]:\n", " ax.spines[s].set_visible(False)\n", "ax.set_xlabel(\"LAG\", fontsize=18)\n", "ax.set_ylabel(\"ACF\", fontsize=18)\n", @@ -638,12 +639,12 @@ "\n", "for i, lag in enumerate(lags):\n", " r = np.corrcoef(df.OT.values[lag:], df.OT.values[:-lag])[0, 1]\n", - " axs[i].scatter(df.OT.values[lag:], df.OT.values[:-lag], s=0.8, color='gray')\n", + " axs[i].scatter(df.OT.values[lag:], df.OT.values[:-lag], s=0.8, color=\"gray\")\n", " if i == 0:\n", - " axs[i].set_ylabel('$X[T]$')\n", - " axs[i].set_xlabel(f'$X[T+{lag}]$')\n", - " axs[i].set_title(f'Correlation @ lag = {lag}', fontsize=12)\n", - " axs[i].text(x=30, y=5, s=f'$\\\\rho = ${r:.3f}')\n", + " axs[i].set_ylabel(\"$X[T]$\")\n", + " axs[i].set_xlabel(f\"$X[T+{lag}]$\")\n", + " axs[i].set_title(f\"Correlation @ lag = {lag}\", fontsize=12)\n", + " axs[i].text(x=30, y=5, s=f\"$\\\\rho = ${r:.3f}\")\n", "plt.show()" ] }, @@ -667,15 +668,14 @@ "from sklearn.linear_model import LinearRegression\n", "\n", "\n", - "def prepare_pacf_payload(x: np.ndarray,\n", - " lag: int):\n", + "def prepare_pacf_payload(x: np.ndarray, lag: int):\n", " assert len(x.shape) == 1, f\"Error: expects 1D array recieved {x.shape}!\"\n", - " assert len(x) > lag + 3, f\"Error: not enough data for PACF!\"\n", + " assert len(x) > lag + 3, \"Error: not enough data for PACF!\"\n", "\n", " n = len(x) - lag\n", - " x_ = list()\n", - " for i in range(lag+1):\n", - " x_.append(x[i:(i+n)])\n", + " x_ = []\n", + " for i in range(lag + 1):\n", + " x_.append(x[i : (i + n)])\n", " x_ = np.array(x_).T\n", " x_, y_ = x_[..., :-1], x_[..., -1]\n", " return x_, y_\n", @@ -685,7 +685,7 @@ " x_, y_ = prepare_pacf_payload(x, lag)\n", " reg = LinearRegression(fit_intercept=True, copy_X=True)\n", " reg.fit(x_, y_)\n", - " return np.concatenate([reg.coef_, [1.]])[::-1]" + " return np.concatenate([reg.coef_, [1.0]])[::-1]" ] }, { @@ -719,11 +719,11 @@ "source": [ "fig = plt.figure(figsize=(10, 3))\n", "ax = plt.subplot(1, 1, 1)\n", - "ax.bar(np.arange(max_lag + 1, dtype=float), c_prof, color='gray')\n", - "for s in [ 'top', 'right' ]:\n", - " ax.spines[ s ].set_visible(False)\n", - "ax.set_ylabel('PACF', fontsize=18)\n", - "ax.set_xlabel('LAG', fontsize=18)\n", + "ax.bar(np.arange(max_lag + 1, dtype=float), c_prof, color=\"gray\")\n", + "for s in [\"top\", \"right\"]:\n", + " ax.spines[s].set_visible(False)\n", + "ax.set_ylabel(\"PACF\", fontsize=18)\n", + "ax.set_xlabel(\"LAG\", fontsize=18)\n", "plt.tight_layout()" ] }, @@ -744,16 +744,13 @@ "metadata": {}, "outputs": [], "source": [ - "def mark_mean_over_window(x,\n", - " window: int,\n", - " window_stride: int, \n", - " start_index: int = 5):\n", + "def mark_mean_over_window(x, window: int, window_stride: int, start_index: int = 5):\n", " n = len(x)\n", " start_index = min(max(start_index, 0), n - window)\n", - " xs, ys = list(), list()\n", - " \n", + " xs, ys = [], []\n", + "\n", " while start_index + window < n:\n", - " mean = np.mean(x[start_index:(start_index + window)])\n", + " mean = np.mean(x[start_index : (start_index + window)])\n", " ys.append(mean)\n", " xs.append([start_index, start_index + window])\n", " start_index += window_stride\n", @@ -778,22 +775,21 @@ } ], "source": [ - "\n", "x = df.OT.values\n", "\n", "fig, ax = plt.subplots(1, 1, figsize=(20, 3))\n", - "ax.plot(x, linewidth=0.5, color='gray')\n", + "ax.plot(x, linewidth=0.5, color=\"gray\")\n", "\n", "xs, ys = mark_mean_over_window(x, window=2500, window_stride=4000, start_index=250)\n", "\n", "for i in range(len(xs)):\n", " x_, y_ = xs[i], np.repeat(ys[i], 2)\n", - " ax.plot(x_, y_, color='r', linewidth=5, linestyle='dashed')\n", - " ax.text(x=np.mean(xs[i]), y=ys[i]+5, s=f'{ys[i]:.1f}', fontsize=14, color='blue')\n", + " ax.plot(x_, y_, color=\"r\", linewidth=5, linestyle=\"dashed\")\n", + " ax.text(x=np.mean(xs[i]), y=ys[i] + 5, s=f\"{ys[i]:.1f}\", fontsize=14, color=\"blue\")\n", "\n", - "for s in ['top', 'right']:\n", + "for s in [\"top\", \"right\"]:\n", " ax.spines[s].set_visible(False)\n", - "ax.set_ylabel('OT', fontsize=16)\n", + "ax.set_ylabel(\"OT\", fontsize=16)\n", "plt.show()" ] }, @@ -826,36 +822,36 @@ "d = np.arange(3)\n", "x = df.OT.values\n", "y = np.arange(max_lag + 1, dtype=float)\n", - "c_profs = list()\n", - "x_diffs = list()\n", - "y_label = list()\n", + "c_profs = []\n", + "x_diffs = []\n", + "y_label = []\n", "for i, d_ in enumerate(d):\n", " c_prof = get_autocorr_profile(x, max_lag=max_lag)\n", " x_diffs.append(x.copy())\n", " c_profs.append(c_prof)\n", " if i == 0:\n", - " y_label.append('$Y$')\n", + " y_label.append(\"$Y$\")\n", " elif i == 1:\n", - " y_label.append(r'$\\Delta Y$')\n", + " y_label.append(r\"$\\Delta Y$\")\n", " else:\n", - " y_label.append(f'$\\Delta^{i} Y$')\n", + " y_label.append(rf\"$\\Delta^{i} Y$\")\n", " x = np.diff(x)\n", "\n", "fig = plt.figure(figsize=(15, 2 * len(c_profs)))\n", "counter = 0\n", "m, n = len(c_profs), 2\n", "for c_prof, x_, ylab in zip(c_profs, x_diffs, y_label):\n", - " ax = plt.subplot(m, n, counter+1)\n", - " ax.plot(x_, color='gray', linewidth=0.5)\n", - " for s in ['top', 'right']:\n", + " ax = plt.subplot(m, n, counter + 1)\n", + " ax.plot(x_, color=\"gray\", linewidth=0.5)\n", + " for s in [\"top\", \"right\"]:\n", " ax.spines[s].set_visible(False)\n", " ax.set_ylabel(ylab, fontsize=18)\n", " if counter // 2 == len(y_label) - 1:\n", " ax.set_xlabel(\"Time\", fontsize=18)\n", "\n", - " ax = plt.subplot(m, n, counter+2)\n", - " ax.bar(y, c_prof, color='gray')\n", - " for s in ['top', 'right']:\n", + " ax = plt.subplot(m, n, counter + 2)\n", + " ax.bar(y, c_prof, color=\"gray\")\n", + " for s in [\"top\", \"right\"]:\n", " ax.spines[s].set_visible(False)\n", " ax.set_ylabel(\"ACF\", fontsize=18)\n", " if counter // 2 == len(y_label) - 1:\n", diff --git a/notebooks/tutorial/LongHorizonForecast.ipynb b/notebooks/tutorial/LongHorizonForecast.ipynb index 1c61cd0e..e285bf30 100644 --- a/notebooks/tutorial/LongHorizonForecast.ipynb +++ b/notebooks/tutorial/LongHorizonForecast.ipynb @@ -9,38 +9,38 @@ "source": [ "%%capture\n", "try:\n", - " import pandas\n", - "except ImportError as e:\n", - " !pip install pandas \n", + " import pandas # noqa: F401\n", + "except ImportError:\n", + " !pip install pandas\n", "\n", - "try: \n", - " import numpy\n", - "except ImportError as e:\n", - " !pip install numpy \n", + "try:\n", + " import numpy # noqa: F401\n", + "except ImportError:\n", + " !pip install numpy\n", "\n", "try:\n", - " import matplotlib\n", - "except ImportError as e:\n", - " !pip install matplotlib \n", + " import matplotlib # noqa: F401\n", + "except ImportError:\n", + " !pip install matplotlib\n", "\n", "try:\n", - " import sklearn\n", - "except ImportError as e:\n", + " import sklearn # noqa: F401\n", + "except ImportError:\n", " !pip install scikit-learn\n", "\n", "try:\n", - " import scipy\n", - "except ImportError as e:\n", + " import scipy # noqa: F401\n", + "except ImportError:\n", " !pip install scipy\n", "\n", "try:\n", - " import torch\n", - "except ImportError as e:\n", + " import torch # noqa: F401\n", + "except ImportError:\n", " !pip install torch\n", "\n", "try:\n", - " import tqdm\n", - "except ImportError as e:\n", + " import tqdm # noqa: F401\n", + "except ImportError:\n", " !pip install tqdm" ] }, @@ -51,14 +51,11 @@ "metadata": {}, "outputs": [], "source": [ - "import pandas as pd\n", - "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.metrics import mean_squared_error as mse\n", - "import statsmodels.api as sm\n", - "from scipy import stats\n", - "from sklearn.ensemble import RandomForestRegressor" + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.preprocessing import StandardScaler" ] }, { @@ -76,9 +73,10 @@ "metadata": {}, "outputs": [], "source": [ - "df = pd.read_csv('https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv',\n", - " parse_dates=['date'])\n", - "df = df.set_index('date')\n", + "df = pd.read_csv(\n", + " \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv\", parse_dates=[\"date\"]\n", + ")\n", + "df = df.set_index(\"date\")\n", "df.index.freq = pd.infer_freq(df.index)" ] }, @@ -100,7 +98,7 @@ "TRAIN_FRACTION = 0.8\n", "CONTEXT_LENGTH = 512\n", "FORECAST_LENGTH = 96\n", - "STRIDE=1\n", + "STRIDE = 1\n", "N_SAMPLE_TO_PLOT = 4\n", "PAST_WINDOW = 100" ] @@ -124,10 +122,10 @@ "source": [ "data = df.OT.values\n", "\n", - "x = list()\n", + "x = []\n", "\n", "for i in range(1, len(data) - CONTEXT_LENGTH - FORECAST_LENGTH, STRIDE):\n", - " x.append(data[i:(i + CONTEXT_LENGTH + FORECAST_LENGTH)])\n", + " x.append(data[i : (i + CONTEXT_LENGTH + FORECAST_LENGTH)])\n", "\n", "x = np.array(x).astype(float)\n", "\n", @@ -156,10 +154,12 @@ "metadata": {}, "outputs": [], "source": [ - "rf_model = RandomForestRegressor(n_estimators=50, \n", - " max_depth=5, \n", - " # n_jobs=4, \n", - " verbose=2)" + "rf_model = RandomForestRegressor(\n", + " n_estimators=50,\n", + " max_depth=5,\n", + " # n_jobs=4,\n", + " verbose=2,\n", + ")" ] }, { @@ -658,17 +658,17 @@ "source": [ "random_indices = np.random.default_rng(1).choice(len(testY), N_SAMPLE_TO_PLOT, replace=False)\n", "\n", - "fig, axs = plt.subplots(N_SAMPLE_TO_PLOT, 1, sharex='col', sharey=True, figsize=(20, 2*N_SAMPLE_TO_PLOT))\n", + "fig, axs = plt.subplots(N_SAMPLE_TO_PLOT, 1, sharex=\"col\", sharey=True, figsize=(20, 2 * N_SAMPLE_TO_PLOT))\n", "\n", "for i, index in enumerate(random_indices):\n", " n_history = min(PAST_WINDOW, CONTEXT_LENGTH)\n", " y_true = np.concatenate([testX[index, -n_history:], testY[index]])\n", " y_pred = np.concatenate([testX[index, -n_history:], predictY[index]])\n", - " axs[i].plot(y_true, color='green', linestyle='dashed', linewidth=1, label='actual')\n", - " axs[i].plot(y_pred, color='orange', linewidth=1, label='predicted')\n", - " for s in ['top', 'right']:\n", + " axs[i].plot(y_true, color=\"green\", linestyle=\"dashed\", linewidth=1, label=\"actual\")\n", + " axs[i].plot(y_pred, color=\"orange\", linewidth=1, label=\"predicted\")\n", + " for s in [\"top\", \"right\"]:\n", " axs[i].spines[s].set_visible(False)\n", - " axs[i].plot([n_history-1, n_history-1], [0, 15], linewidth=2, linestyle='dotted', color='gray') \n", + " axs[i].plot([n_history - 1, n_history - 1], [0, 15], linewidth=2, linestyle=\"dotted\", color=\"gray\")\n", " axs[i].legend()" ] }, @@ -688,11 +688,10 @@ "outputs": [], "source": [ "import torch\n", - "from tqdm import tqdm\n", "import torch.nn as nn\n", "from torch.nn import functional as F\n", - "from torch.utils.data import Dataset, DataLoader\n", - "from sklearn.preprocessing import StandardScaler" + "from torch.utils.data import DataLoader, Dataset\n", + "from tqdm import tqdm" ] }, { @@ -702,12 +701,8 @@ "metadata": {}, "outputs": [], "source": [ - "border1s = [0, \n", - " 12 * 30 * 24 - CONTEXT_LENGTH, \n", - " 12 * 30 * 24 + 4 * 30 * 24 - CONTEXT_LENGTH]\n", - "border2s = [12 * 30 * 24, \n", - " 12 * 30 * 24 + 4 * 30 * 24, \n", - " 12 * 30 * 24 + 8 * 30 * 24 ]" + "border1s = [0, 12 * 30 * 24 - CONTEXT_LENGTH, 12 * 30 * 24 + 4 * 30 * 24 - CONTEXT_LENGTH]\n", + "border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24]" ] }, { @@ -719,14 +714,14 @@ "source": [ "data = df.OT.values.reshape(-1, 1)\n", "scaler = StandardScaler()\n", - "train_data = data[border1s[0]:border2s[0],:]\n", + "train_data = data[border1s[0] : border2s[0], :]\n", "scaler = StandardScaler()\n", "scaler.fit(train_data)\n", "\n", "data = scaler.transform(data)\n", - "train_data = data[border1s[0]:border2s[0],:]\n", - "valid_data = data[border1s[1]:border2s[1],:]\n", - "test_data = data[border1s[2]:border2s[2],:]" + "train_data = data[border1s[0] : border2s[0], :]\n", + "valid_data = data[border1s[1] : border2s[1], :]\n", + "test_data = data[border1s[2] : border2s[2], :]" ] }, { @@ -736,19 +731,31 @@ "metadata": {}, "outputs": [], "source": [ - "train_io_pairs = np.array([train_data[i:(i + CONTEXT_LENGTH + FORECAST_LENGTH)] \n", - " for i in range(1, len(train_data) - CONTEXT_LENGTH - FORECAST_LENGTH, STRIDE)])\n", + "train_io_pairs = np.array(\n", + " [\n", + " train_data[i : (i + CONTEXT_LENGTH + FORECAST_LENGTH)]\n", + " for i in range(1, len(train_data) - CONTEXT_LENGTH - FORECAST_LENGTH, STRIDE)\n", + " ]\n", + ")\n", "X_train = train_io_pairs[:, :CONTEXT_LENGTH]\n", "y_train = train_io_pairs[:, CONTEXT_LENGTH:]\n", "\n", - "valid_io_pairs = np.array([valid_data[i:(i + CONTEXT_LENGTH + FORECAST_LENGTH),0] \n", - " for i in range(1, len(valid_data) - CONTEXT_LENGTH - FORECAST_LENGTH, STRIDE)])\n", + "valid_io_pairs = np.array(\n", + " [\n", + " valid_data[i : (i + CONTEXT_LENGTH + FORECAST_LENGTH), 0]\n", + " for i in range(1, len(valid_data) - CONTEXT_LENGTH - FORECAST_LENGTH, STRIDE)\n", + " ]\n", + ")\n", "\n", "X_valid = valid_io_pairs[:, :CONTEXT_LENGTH]\n", "y_valid = valid_io_pairs[:, CONTEXT_LENGTH:]\n", "\n", - "test_io_pairs = np.array([test_data[i:(i + CONTEXT_LENGTH + FORECAST_LENGTH), 0] \n", - " for i in range(1, len(test_data) - CONTEXT_LENGTH - FORECAST_LENGTH, STRIDE)])\n", + "test_io_pairs = np.array(\n", + " [\n", + " test_data[i : (i + CONTEXT_LENGTH + FORECAST_LENGTH), 0]\n", + " for i in range(1, len(test_data) - CONTEXT_LENGTH - FORECAST_LENGTH, STRIDE)\n", + " ]\n", + ")\n", "X_test = test_io_pairs[:, :CONTEXT_LENGTH]\n", "y_test = test_io_pairs[:, CONTEXT_LENGTH:]" ] @@ -799,10 +806,7 @@ "outputs": [], "source": [ "class CreateModel(nn.Module):\n", - " def __init__(self,\n", - " in_features,\n", - " units,\n", - " out_features):\n", + " def __init__(self, in_features, units, out_features):\n", " super(CreateModel, self).__init__()\n", " self.l1 = nn.Linear(in_features, units)\n", " self.l2 = nn.Linear(units, units)\n", @@ -840,8 +844,7 @@ "tr_loader = DataLoader(dataset=tr_data, batch_size=64, shuffle=True)\n", "nn_model = CreateModel(CONTEXT_LENGTH, HIDDEN_UNITS, FORECAST_LENGTH)\n", "criterion = nn.MSELoss()\n", - "optimizer = torch.optim.Adam(nn_model.parameters(), \n", - " lr=0.001)" + "optimizer = torch.optim.Adam(nn_model.parameters(), lr=0.001)" ] }, { @@ -890,7 +893,7 @@ " optimizer.step()\n", " running_loss += loss.item()\n", " pbar.set_description(f\"Epoch[{t+1} : {i}/{len(tr_loader)}]: train_loss {running_loss/(i+1):.4f}\")\n", - " loss_list.append(running_loss/len(tr_loader))" + " loss_list.append(running_loss / len(tr_loader))" ] }, { @@ -920,9 +923,9 @@ ], "source": [ "step = np.linspace(0, EPOCHS, EPOCHS)\n", - "fig, ax = plt.subplots(1, 1, figsize=(10,2))\n", - "ax.plot(step, np.array(loss_list), marker='*')\n", - "for s in ['right', 'top']:\n", + "fig, ax = plt.subplots(1, 1, figsize=(10, 2))\n", + "ax.plot(step, np.array(loss_list), marker=\"*\")\n", + "for s in [\"right\", \"top\"]:\n", " ax.spines[s].set_visible(False)\n", "ax.set_xlabel(\"Epochs\", fontsize=12)\n", "ax.set_ylabel(\"Loss\", fontsize=12)\n", @@ -936,7 +939,7 @@ "metadata": {}, "outputs": [], "source": [ - "yp_test = nn_model(torch.from_numpy(X_test).float()).to('cpu').detach().numpy()" + "yp_test = nn_model(torch.from_numpy(X_test).float()).to(\"cpu\").detach().numpy()" ] }, { @@ -981,7 +984,7 @@ "source": [ "random_indices = np.random.default_rng(1).choice(len(y_test), N_SAMPLE_TO_PLOT, replace=False)\n", "\n", - "fig, axs = plt.subplots(N_SAMPLE_TO_PLOT, 1, sharex='col', figsize=(20, 2*N_SAMPLE_TO_PLOT))\n", + "fig, axs = plt.subplots(N_SAMPLE_TO_PLOT, 1, sharex=\"col\", figsize=(20, 2 * N_SAMPLE_TO_PLOT))\n", "\n", "for i, index in enumerate(random_indices):\n", " n_history = min(PAST_WINDOW, CONTEXT_LENGTH)\n", @@ -990,11 +993,11 @@ " y_true = y_true[..., np.newaxis]\n", " y_pred = np.concatenate([x_hist[..., 0], yp_test_[index, :, 0]], axis=0)\n", " y_pred = y_pred[..., np.newaxis]\n", - " axs[i].plot(y_true, color='green', linestyle='dashed', linewidth=1, label='actual')\n", - " axs[i].plot(y_pred, color='orange', linewidth=1, label='predicted')\n", - " for s in ['top', 'right']:\n", + " axs[i].plot(y_true, color=\"green\", linestyle=\"dashed\", linewidth=1, label=\"actual\")\n", + " axs[i].plot(y_pred, color=\"orange\", linewidth=1, label=\"predicted\")\n", + " for s in [\"top\", \"right\"]:\n", " axs[i].spines[s].set_visible(False)\n", - " axs[i].plot([n_history-1, n_history-1], [-1, 0], linewidth=2, linestyle='dotted', color='gray') \n", + " axs[i].plot([n_history - 1, n_history - 1], [-1, 0], linewidth=2, linestyle=\"dotted\", color=\"gray\")\n", " axs[i].legend()" ] }, diff --git a/notebooks/tutorial/StatisticalModels.ipynb b/notebooks/tutorial/StatisticalModels.ipynb index 669369b5..f32178e6 100644 --- a/notebooks/tutorial/StatisticalModels.ipynb +++ b/notebooks/tutorial/StatisticalModels.ipynb @@ -9,33 +9,33 @@ "source": [ "%%capture\n", "try:\n", - " import pandas\n", - "except ImportError as e:\n", - " !pip install pandas \n", + " import pandas # noqa: F401\n", + "except ImportError:\n", + " !pip install pandas\n", "\n", - "try: \n", - " import numpy\n", - "except ImportError as e:\n", - " !pip install numpy \n", + "try:\n", + " import numpy # noqa: F401\n", + "except ImportError:\n", + " !pip install numpy\n", "\n", "try:\n", - " import matplotlib\n", - "except ImportError as e:\n", - " !pip install matplotlib \n", + " import matplotlib # noqa: F401\n", + "except ImportError:\n", + " !pip install matplotlib\n", "\n", "try:\n", - " import sklearn\n", - "except ImportError as e:\n", + " import sklearn # noqa: F401\n", + "except ImportError:\n", " !pip install scikit-learn\n", "\n", "try:\n", - " import scipy\n", - "except ImportError as e:\n", + " import scipy # noqa: F401\n", + "except ImportError:\n", " !pip install scipy\n", "\n", "try:\n", - " import statsmodels\n", - "except ImportError as e:\n", + " import statsmodels # noqa: F401\n", + "except ImportError:\n", " !pip install statsmodels" ] }, @@ -46,13 +46,11 @@ "metadata": {}, "outputs": [], "source": [ - "import pandas as pd\n", - "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "from sklearn.preprocessing import StandardScaler\n", + "import numpy as np\n", + "import pandas as pd\n", "from sklearn.metrics import mean_squared_error as mse\n", - "import statsmodels.api as sm\n", - "from scipy import stats\n", + "from sklearn.preprocessing import StandardScaler\n", "from statsmodels.tsa.arima.model import ARIMA" ] }, @@ -85,9 +83,10 @@ "metadata": {}, "outputs": [], "source": [ - "df = pd.read_csv('https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv',\n", - " parse_dates=['date'])\n", - "df = df.set_index('date')\n", + "df = pd.read_csv(\n", + " \"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv\", parse_dates=[\"date\"]\n", + ")\n", + "df = df.set_index(\"date\")\n", "df.index.freq = pd.infer_freq(df.index)" ] }, @@ -98,13 +97,9 @@ "metadata": {}, "outputs": [], "source": [ - "border1s = [0, \n", - " 12 * 30 * 24 - context_len, \n", - " 12 * 30 * 24 + 4 * 30 * 24 - context_len]\n", + "border1s = [0, 12 * 30 * 24 - context_len, 12 * 30 * 24 + 4 * 30 * 24 - context_len]\n", "\n", - "border2s = [12 * 30 * 24, \n", - " 12 * 30 * 24 + 4 * 30 * 24, \n", - " 12 * 30 * 24 + 8 * 30 * 24]" + "border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24]" ] }, { @@ -122,16 +117,16 @@ "metadata": {}, "outputs": [], "source": [ - "data = df[['OT']].values\n", + "data = df[[\"OT\"]].values\n", "scaler = StandardScaler()\n", - "train_data = data[border1s[0]:border2s[0],:]\n", + "train_data = data[border1s[0] : border2s[0], :]\n", "scaler = StandardScaler()\n", "scaler.fit(train_data)\n", "\n", "\n", "data = scaler.transform(data)\n", - "valid_data = data[border1s[1]:border2s[1],:]\n", - "test_data = data[border1s[2]:border2s[2]:STRIDE,:]" + "valid_data = data[border1s[1] : border2s[1], :]\n", + "test_data = data[border1s[2] : border2s[2] : STRIDE, :]" ] }, { @@ -150,11 +145,10 @@ "outputs": [], "source": [ "def get_ema_forecast(context, alpha=ALPHA):\n", - " s_t = context[0,:]\n", + " s_t = context[0, :]\n", " for t in range(1, context.shape[0]):\n", - " s_t = alpha * context[t,:] + (1-alpha) * s_t\n", - " return s_t\n", - " " + " s_t = alpha * context[t, :] + (1 - alpha) * s_t\n", + " return s_t" ] }, { @@ -166,9 +160,9 @@ "source": [ "summary = []\n", "for idx, _ in enumerate(test_data):\n", - " if idx+context_len+forecast_len < test_data.shape[0]:\n", - " context = test_data[idx:idx+context_len,:]\n", - " actual = test_data[idx+context_len:idx+context_len+forecast_len,:]\n", + " if idx + context_len + forecast_len < test_data.shape[0]:\n", + " context = test_data[idx : idx + context_len, :]\n", + " actual = test_data[idx + context_len : idx + context_len + forecast_len, :]\n", " forecast = get_ema_forecast(context)\n", " summary.append((context, actual, np.array([forecast])))" ] @@ -180,8 +174,8 @@ "metadata": {}, "outputs": [], "source": [ - "actual = [i[1][0,0] for i in summary]\n", - "forecast = [i[2][0,0] for i in summary]" + "actual = [i[1][0, 0] for i in summary]\n", + "forecast = [i[2][0, 0] for i in summary]" ] }, { @@ -199,7 +193,7 @@ } ], "source": [ - "print(np.round(mse(actual,forecast),5))" + "print(np.round(mse(actual, forecast), 5))" ] }, { @@ -231,15 +225,15 @@ ], "source": [ "last_pts = 10\n", - "fig, axs = plt.subplots(len(random_indices), 1, sharex='col', sharey=True, figsize=(20,len(random_indices)*2))\n", + "fig, axs = plt.subplots(len(random_indices), 1, sharex=\"col\", sharey=True, figsize=(20, len(random_indices) * 2))\n", "for i, ri in enumerate(random_indices):\n", - " act = np.concatenate((summary[ri][0],summary[ri][1]), axis=0)\n", - " fcast = np.concatenate((summary[ri][0],summary[ri][2]),axis=0)\n", - " axs[i].plot(act[-last_pts:,:], label=\"True\", linestyle='--', marker='*', color='green', linewidth=2)\n", - " axs[i].plot(fcast[-last_pts:,:], label=\"Predicted\", linestyle='-', color='red', linewidth=2, alpha=0.3 )\n", - " axs[i].set_title(f'Example {random_indices[i]}')\n", + " act = np.concatenate((summary[ri][0], summary[ri][1]), axis=0)\n", + " fcast = np.concatenate((summary[ri][0], summary[ri][2]), axis=0)\n", + " axs[i].plot(act[-last_pts:, :], label=\"True\", linestyle=\"--\", marker=\"*\", color=\"green\", linewidth=2)\n", + " axs[i].plot(fcast[-last_pts:, :], label=\"Predicted\", linestyle=\"-\", color=\"red\", linewidth=2, alpha=0.3)\n", + " axs[i].set_title(f\"Example {random_indices[i]}\")\n", " # axs[i].set_ylim(-3, 3)\n", - " for s in ['top', 'right']:\n", + " for s in [\"top\", \"right\"]:\n", " axs[i].spines[s].set_visible(False)\n", " axs[i].legend()" ] @@ -261,9 +255,8 @@ "source": [ "def get_arma_forecast(context, p=1, r=0, q=0):\n", " arma = ARIMA(context, order=(p, r, q)).fit(method_kwargs={\"warn_convergence\": False})\n", - " predict_etth1_ot = arma.predict(context.shape[0]+1, context.shape[0]+1)\n", - " return predict_etth1_ot\n", - " " + " predict_etth1_ot = arma.predict(context.shape[0] + 1, context.shape[0] + 1)\n", + " return predict_etth1_ot" ] }, { @@ -290,13 +283,13 @@ "context_len = 512\n", "arma_summary = []\n", "for idx, _ in enumerate(test_data):\n", - " if idx+context_len+forecast_len < test_data.shape[0]:\n", - " context = test_data[idx:idx+context_len,:]\n", - " actual = test_data[idx+context_len:idx+context_len+forecast_len,:]\n", + " if idx + context_len + forecast_len < test_data.shape[0]:\n", + " context = test_data[idx : idx + context_len, :]\n", + " actual = test_data[idx + context_len : idx + context_len + forecast_len, :]\n", " forecast = get_arma_forecast(context)\n", " arma_summary.append((context, actual, np.array([forecast])))\n", - " if idx%100==0:\n", - " print(f'# of forecasts so far {idx}', actual[0,0], forecast[0])" + " if idx % 100 == 0:\n", + " print(f\"# of forecasts so far {idx}\", actual[0, 0], forecast[0])" ] }, { @@ -306,8 +299,8 @@ "metadata": {}, "outputs": [], "source": [ - "arma_actual = [i[1][0,0] for i in arma_summary]\n", - "arma_forecast = [i[2][0,0] for i in arma_summary]" + "arma_actual = [i[1][0, 0] for i in arma_summary]\n", + "arma_forecast = [i[2][0, 0] for i in arma_summary]" ] }, { @@ -325,7 +318,7 @@ } ], "source": [ - "print(np.round(mse(arma_actual,arma_forecast),5))" + "print(np.round(mse(arma_actual, arma_forecast), 5))" ] }, { @@ -356,15 +349,17 @@ } ], "source": [ - "fig, axs = plt.subplots(len(arma_random_indices), 1, sharey=True, sharex='col', figsize=(20,len(arma_random_indices)*2))\n", + "fig, axs = plt.subplots(\n", + " len(arma_random_indices), 1, sharey=True, sharex=\"col\", figsize=(20, len(arma_random_indices) * 2)\n", + ")\n", "for i, ri in enumerate(arma_random_indices):\n", - " act = np.concatenate((arma_summary[ri][0],arma_summary[ri][1]), axis=0)\n", - " fcast = np.concatenate((arma_summary[ri][0],arma_summary[ri][2]),axis=0)\n", - " axs[i].plot(act[-last_pts:,:], label=\"True\", linestyle='--', color='green', marker='*', linewidth=2)\n", - " axs[i].plot(fcast[-last_pts:,:], label=\"Predicted\", linestyle='-', color='red', linewidth=2, alpha=0.3 )\n", - " axs[i].set_title(f'Example {random_indices[i]}')\n", + " act = np.concatenate((arma_summary[ri][0], arma_summary[ri][1]), axis=0)\n", + " fcast = np.concatenate((arma_summary[ri][0], arma_summary[ri][2]), axis=0)\n", + " axs[i].plot(act[-last_pts:, :], label=\"True\", linestyle=\"--\", color=\"green\", marker=\"*\", linewidth=2)\n", + " axs[i].plot(fcast[-last_pts:, :], label=\"Predicted\", linestyle=\"-\", color=\"red\", linewidth=2, alpha=0.3)\n", + " axs[i].set_title(f\"Example {random_indices[i]}\")\n", " # axs[i].set_ylim(-3, 3)\n", - " for s in ['top', 'right']:\n", + " for s in [\"top\", \"right\"]:\n", " axs[i].spines[s].set_visible(False)\n", " axs[i].legend()" ] diff --git a/notebooks/tutorial/install_tsfm.ipynb b/notebooks/tutorial/install_tsfm.ipynb index 0314f4be..661b605e 100644 --- a/notebooks/tutorial/install_tsfm.ipynb +++ b/notebooks/tutorial/install_tsfm.ipynb @@ -28,6 +28,7 @@ "# Check installation\n", "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction\n", "\n", + "\n", "model_512 = TinyTimeMixerForPrediction.from_pretrained(\"ibm/TTM\", revision=\"main\")\n", "model_512.config.context_length" ] diff --git a/notebooks/tutorial/ttm_tutorial.ipynb b/notebooks/tutorial/ttm_tutorial.ipynb index 493e8e95..92804735 100644 --- a/notebooks/tutorial/ttm_tutorial.ipynb +++ b/notebooks/tutorial/ttm_tutorial.ipynb @@ -53,19 +53,23 @@ "metadata": {}, "outputs": [], "source": [ - "import os\n", "import math\n", + "import os\n", "import tempfile\n", - "import torch\n", "\n", + "import pandas as pd\n", "from torch.optim import AdamW\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", - "import numpy as np\n", - "import pandas as pd\n", "\n", - "from tsfm_public.toolkit.visualization import plot_predictions\n", - "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, TimeSeriesPreprocessor, get_datasets" + "from tsfm_public import (\n", + " TimeSeriesPreprocessor,\n", + " TinyTimeMixerForPrediction,\n", + " TrackingCallback,\n", + " count_parameters,\n", + " get_datasets,\n", + ")\n", + "from tsfm_public.toolkit.visualization import plot_predictions" ] }, { @@ -349,7 +353,7 @@ } ], "source": [ - "df_tmp.iloc[:1000].plot(x=\"date\", y=\"HUFL\", figsize=(20,5))" + "df_tmp.iloc[:1000].plot(x=\"date\", y=\"HUFL\", figsize=(20, 5))" ] }, { @@ -372,13 +376,13 @@ "id_columns = []\n", "target_columns = [\"HUFL\", \"HULL\", \"MUFL\", \"MULL\", \"LUFL\", \"LULL\", \"OT\"]\n", "split_config = {\n", - " \"train\": [0, 12 * 30 * 24 * 4],\n", - " \"valid\": [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4],\n", - " \"test\": [\n", - " 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4,\n", - " 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4,\n", - " ],\n", - " }\n", + " \"train\": [0, 12 * 30 * 24 * 4],\n", + " \"valid\": [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4],\n", + " \"test\": [\n", + " 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4,\n", + " 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4,\n", + " ],\n", + "}\n", "# Understanding the split config -- slides\n", "\n", "data = pd.read_csv(\n", @@ -402,8 +406,8 @@ " scaler_type=\"standard\",\n", ")\n", "\n", - "train_dataset, valid_dataset, test_dataset = get_datasets(tsp,\n", - " data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location=\"first\"\n", + "train_dataset, valid_dataset, test_dataset = get_datasets(\n", + " tsp, data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location=\"first\"\n", ")\n", "print(f\"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}\")" ] @@ -827,7 +831,9 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION\n", + ")\n", "zeroshot_model" ] }, @@ -845,7 +851,7 @@ " args=TrainingArguments(\n", " output_dir=temp_dir,\n", " per_device_eval_batch_size=64,\n", - " )\n", + " ),\n", ")" ] }, @@ -906,7 +912,13 @@ ], "source": [ "# plot\n", - "plot_predictions(model=zeroshot_trainer.model, dset=test_dataset, plot_dir=os.path.join(OUT_DIR, \"ettm2\"), plot_prefix=\"test_zeroshot\", channel=0)" + "plot_predictions(\n", + " model=zeroshot_trainer.model,\n", + " dset=test_dataset,\n", + " plot_dir=os.path.join(OUT_DIR, \"ettm2\"),\n", + " plot_prefix=\"test_zeroshot\",\n", + " channel=0,\n", + ")" ] }, { @@ -1109,7 +1121,9 @@ } ], "source": [ - "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", + "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7\n", + ")\n", "finetune_forecast_model" ] }, @@ -1138,9 +1152,9 @@ ], "source": [ "print(\n", - " \"Number of params before freezing backbone\",\n", - " count_parameters(finetune_forecast_model),\n", - " )\n", + " \"Number of params before freezing backbone\",\n", + " count_parameters(finetune_forecast_model),\n", + ")\n", "\n", "# Freeze the backbone of the model\n", "for param in finetune_forecast_model.backbone.parameters():\n", @@ -1170,7 +1184,7 @@ "source": [ "# Important parameters\n", "learning_rate = 0.001\n", - "num_epochs = 1 # Ideally, we need more epochs (try offline preferably in a gpu for faster computation)\n", + "num_epochs = 1 # Ideally, we need more epochs (try offline preferably in a gpu for faster computation)\n", "batch_size = 64" ] }, diff --git a/notebooks/tutorial/ttm_tutorial_with_ans.ipynb b/notebooks/tutorial/ttm_tutorial_with_ans.ipynb index c38a77db..13c27cf6 100644 --- a/notebooks/tutorial/ttm_tutorial_with_ans.ipynb +++ b/notebooks/tutorial/ttm_tutorial_with_ans.ipynb @@ -53,19 +53,23 @@ "metadata": {}, "outputs": [], "source": [ - "import os\n", "import math\n", + "import os\n", "import tempfile\n", - "import torch\n", "\n", + "import pandas as pd\n", "from torch.optim import AdamW\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", - "import numpy as np\n", - "import pandas as pd\n", "\n", - "from tsfm_public.toolkit.visualization import plot_predictions\n", - "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, get_datasets, TimeSeriesPreprocessor\n" + "from tsfm_public import (\n", + " TimeSeriesPreprocessor,\n", + " TinyTimeMixerForPrediction,\n", + " TrackingCallback,\n", + " count_parameters,\n", + " get_datasets,\n", + ")\n", + "from tsfm_public.toolkit.visualization import plot_predictions" ] }, { @@ -349,7 +353,7 @@ } ], "source": [ - "df_tmp.iloc[:1000].plot(x=\"date\", y=\"HUFL\", figsize=(20,5))" + "df_tmp.iloc[:1000].plot(x=\"date\", y=\"HUFL\", figsize=(20, 5))" ] }, { @@ -367,20 +371,18 @@ } ], "source": [ - "from tsfm_public.toolkit.time_series_preprocessor import TimeSeriesPreprocessor\n", - "\n", "dataset_path = DATA_ROOT_PATH\n", "timestamp_column = \"date\"\n", "id_columns = []\n", "target_columns = [\"HUFL\", \"HULL\", \"MUFL\", \"MULL\", \"LUFL\", \"LULL\", \"OT\"]\n", "split_config = {\n", - " \"train\": [0, 12 * 30 * 24 * 4],\n", - " \"valid\": [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4],\n", - " \"test\": [\n", - " 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4,\n", - " 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4,\n", - " ],\n", - " }\n", + " \"train\": [0, 12 * 30 * 24 * 4],\n", + " \"valid\": [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4],\n", + " \"test\": [\n", + " 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4,\n", + " 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4,\n", + " ],\n", + "}\n", "# Understanding the split config -- slides\n", "\n", "data = pd.read_csv(\n", @@ -404,8 +406,8 @@ " scaler_type=\"standard\",\n", ")\n", "\n", - "train_dataset, valid_dataset, test_dataset = get_datasets(tsp,\n", - " data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location=\"first\"\n", + "train_dataset, valid_dataset, test_dataset = get_datasets(\n", + " tsp, data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location=\"first\"\n", ")\n", "print(f\"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}\")" ] @@ -829,7 +831,9 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION\n", + ")\n", "zeroshot_model" ] }, @@ -847,7 +851,7 @@ " args=TrainingArguments(\n", " output_dir=temp_dir,\n", " per_device_eval_batch_size=64,\n", - " )\n", + " ),\n", ")" ] }, @@ -908,7 +912,13 @@ ], "source": [ "# plot\n", - "plot_predictions(model=zeroshot_trainer.model, dset=test_dataset, plot_dir=os.path.join(OUT_DIR, \"ettm2\"), plot_prefix=\"test_zeroshot\", channel=0)" + "plot_predictions(\n", + " model=zeroshot_trainer.model,\n", + " dset=test_dataset,\n", + " plot_dir=os.path.join(OUT_DIR, \"ettm2\"),\n", + " plot_prefix=\"test_zeroshot\",\n", + " channel=0,\n", + ")" ] }, { @@ -1111,7 +1121,9 @@ } ], "source": [ - "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", + "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7\n", + ")\n", "finetune_forecast_model" ] }, @@ -1140,9 +1152,9 @@ ], "source": [ "print(\n", - " \"Number of params before freezing backbone\",\n", - " count_parameters(finetune_forecast_model),\n", - " )\n", + " \"Number of params before freezing backbone\",\n", + " count_parameters(finetune_forecast_model),\n", + ")\n", "\n", "# Freeze the backbone of the model\n", "for param in finetune_forecast_model.backbone.parameters():\n", @@ -1172,7 +1184,7 @@ "source": [ "# Important parameters\n", "learning_rate = 0.001\n", - "num_epochs = 1 # Ideally, we need more epochs (try offline preferably in a gpu for faster computation)\n", + "num_epochs = 1 # Ideally, we need more epochs (try offline preferably in a gpu for faster computation)\n", "batch_size = 64" ] }, @@ -1392,13 +1404,13 @@ "id_columns = []\n", "target_columns = [\"HUFL\", \"HULL\", \"MUFL\", \"MULL\", \"LUFL\", \"LULL\", \"OT\"]\n", "split_config = {\n", - " \"train\": [0, 12 * 30 * 24],\n", - " \"valid\": [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24],\n", - " \"test\": [\n", - " 12 * 30 * 24 + 4 * 30 * 24,\n", - " 12 * 30 * 24 + 8 * 30 * 24,\n", - " ],\n", - " }\n", + " \"train\": [0, 12 * 30 * 24],\n", + " \"valid\": [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24],\n", + " \"test\": [\n", + " 12 * 30 * 24 + 4 * 30 * 24,\n", + " 12 * 30 * 24 + 8 * 30 * 24,\n", + " ],\n", + "}\n", "# Understanding the split config -- slides\n", "\n", "data = pd.read_csv(\n", @@ -1422,8 +1434,8 @@ " scaler_type=\"standard\",\n", ")\n", "\n", - "train_dataset, valid_dataset, test_dataset = get_datasets(tsp,\n", - " data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location=\"first\"\n", + "train_dataset, valid_dataset, test_dataset = get_datasets(\n", + " tsp, data, split_config, fewshot_fraction=fewshot_fraction, fewshot_location=\"first\"\n", ")\n", "print(f\"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}\")" ] @@ -1463,7 +1475,9 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION\n", + ")\n", "temp_dir = tempfile.mkdtemp()\n", "# zeroshot_trainer\n", "zeroshot_trainer = Trainer(\n", @@ -1471,7 +1485,7 @@ " args=TrainingArguments(\n", " output_dir=temp_dir,\n", " per_device_eval_batch_size=64,\n", - " )\n", + " ),\n", ")\n", "zeroshot_trainer.evaluate(test_dataset)" ] @@ -1520,7 +1534,9 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_filter_length=24)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_filter_length=24\n", + ")\n", "temp_dir = tempfile.mkdtemp()\n", "# zeroshot_trainer\n", "zeroshot_trainer = Trainer(\n", @@ -1528,7 +1544,7 @@ " args=TrainingArguments(\n", " output_dir=temp_dir,\n", " per_device_eval_batch_size=64,\n", - " )\n", + " ),\n", ")\n", "zeroshot_trainer.evaluate(test_dataset)" ] @@ -1724,7 +1740,9 @@ } ], "source": [ - "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7)\n", + "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7\n", + ")\n", "finetune_forecast_model" ] }, @@ -1745,9 +1763,9 @@ ], "source": [ "print(\n", - " \"Number of params before freezing backbone\",\n", - " count_parameters(finetune_forecast_model),\n", - " )\n", + " \"Number of params before freezing backbone\",\n", + " count_parameters(finetune_forecast_model),\n", + ")\n", "\n", "# Freeze the backbone of the model\n", "for param in finetune_forecast_model.backbone.parameters():\n", @@ -1942,7 +1960,9 @@ "metadata": {}, "outputs": [], "source": [ - "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7, loss=\"mae\")" + "finetune_forecast_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, head_dropout=0.7, loss=\"mae\"\n", + ")" ] }, { @@ -1962,9 +1982,9 @@ ], "source": [ "print(\n", - " \"Number of params before freezing backbone\",\n", - " count_parameters(finetune_forecast_model),\n", - " )\n", + " \"Number of params before freezing backbone\",\n", + " count_parameters(finetune_forecast_model),\n", + ")\n", "\n", "# Freeze the backbone of the model\n", "for param in finetune_forecast_model.backbone.parameters():\n", @@ -2167,8 +2187,10 @@ } ], "source": [ - "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_channel_indices=[0,2])\n", - "output = zeroshot_model.forward(test_dataset[0]['past_values'].unsqueeze(0), return_loss=False)\n", + "zeroshot_model = TinyTimeMixerForPrediction.from_pretrained(\n", + " \"ibm-granite/granite-timeseries-ttm-v1\", revision=TTM_MODEL_REVISION, prediction_channel_indices=[0, 2]\n", + ")\n", + "output = zeroshot_model.forward(test_dataset[0][\"past_values\"].unsqueeze(0), return_loss=False)\n", "output.prediction_outputs.shape" ] } diff --git a/pyproject.toml b/pyproject.toml index 07fbe8bb..7bad60b2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -69,6 +69,7 @@ line-length = 119 lint.ignore = ["C901", "E501", "E741", "F402", "F823"] lint.select = ["C", "E", "F", "I", "W"] extend-exclude = ["tsfm_public/_version.py"] +extend-include = ["*.ipynb"] # Ignore import violations in all `__init__.py` files. [tool.ruff.lint.per-file-ignores] From c71957f6c46207b2cf44aafd46654e48d7cc3607 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Fri, 2 Aug 2024 15:03:20 -0400 Subject: [PATCH 09/13] continue refactor --- .../ttm_benchmarking_1024_96.ipynb | 28 ++-- .../ttm_benchmarking_512_96.ipynb | 121 +++++++++++++++--- tsfm_public/toolkit/data_handling.py | 4 +- 3 files changed, 109 insertions(+), 44 deletions(-) diff --git a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb index 69106742..ae2c1d71 100644 --- a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb +++ b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb @@ -32,27 +32,15 @@ } ], "source": [ - "# Standard\n", "import math\n", "\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", - "\n", - "# Third Party\n", "from torch.optim import AdamW\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", "\n", - "# Local\n", - "from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction\n", - "from tsfm_public.models.tinytimemixer.utils import (\n", - " count_parameters,\n", - " get_data,\n", - " plot_preds,\n", - ")\n", - "\n", - "# First Party\n", - "from tsfm_public.toolkit.callbacks import TrackingCallback" + "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, load_dataset, plot_predictions" ] }, { @@ -187,7 +175,7 @@ " BATCH_SIZE = 64\n", "\n", " # Data prep: Get dataset\n", - " _, _, dset_test = get_data(DATASET, context_length, forecast_length, data_root_path=DATA_ROOT_PATH)\n", + " _, _, dset_test = load_dataset(DATASET, context_length, forecast_length, dataset_root_path=DATA_ROOT_PATH)\n", "\n", " #############################################################\n", " ##### Use the pretrained model in zero-shot forecasting #####\n", @@ -213,8 +201,8 @@ " all_results[\"zs_eval_time\"].append(zeroshot_output[\"eval_runtime\"])\n", "\n", " # Plot\n", - " plot_preds(\n", - " zeroshot_trainer,\n", + " plot_predictions(\n", + " zeroshot_trainer.models,\n", " dset_test,\n", " SUBDIR,\n", " num_plots=10,\n", @@ -233,12 +221,12 @@ " for fewshot_percent in [5, 10]:\n", " print(\"-\" * 20, f\"Running few-shot {fewshot_percent}%\", \"-\" * 20)\n", " # Data prep: Get dataset\n", - " dset_train, dset_val, dset_test = get_data(\n", + " dset_train, dset_val, dset_test = load_dataset(\n", " DATASET,\n", " context_length,\n", " forecast_length,\n", " fewshot_fraction=fewshot_percent / 100,\n", - " data_root_path=DATA_ROOT_PATH,\n", + " dataset_root_path=DATA_ROOT_PATH,\n", " )\n", "\n", " # change head dropout to 0.7 for ett datasets\n", @@ -327,8 +315,8 @@ " print(\"+\" * 60)\n", "\n", " # Plot\n", - " plot_preds(\n", - " finetune_forecast_trainer,\n", + " plot_predictions(\n", + " finetune_forecast_trainer.model,\n", " dset_test,\n", " SUBDIR,\n", " num_plots=10,\n", diff --git a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb index 0ab91550..f077330a 100644 --- a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb +++ b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb @@ -22,15 +22,7 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-04-08 13:35:32.541840: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" - ] - } - ], + "outputs": [], "source": [ "import math\n", "\n", @@ -40,7 +32,7 @@ "from torch.optim.lr_scheduler import OneCycleLR\n", "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", "\n", - "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, get_data, plot_preds" + "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, load_dataset, plot_predictions" ] }, { @@ -139,9 +131,96 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-512 on dataset = etth1, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/main\n", + "etth1 512 96\n", + "Data lengths: train = 8033, val = 2785, test = 2785\n", + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d82abfe284a749f79144aa614219fefd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/44 [00:00 160\u001b[0m \u001b[43mfinetune_forecast_trainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 162\u001b[0m \u001b[38;5;66;03m# Evaluation\u001b[39;00m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 164\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m+\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m20\u001b[39m,\n\u001b[1;32m 165\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTest MSE after few-shot \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfewshot_percent\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m% fine-tuning\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 166\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m+\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m20\u001b[39m,\n\u001b[1;32m 167\u001b[0m )\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:1885\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1883\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n\u001b[1;32m 1884\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1885\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1886\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1887\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1888\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1889\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1890\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:2178\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2175\u001b[0m rng_to_sync \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 2177\u001b[0m step \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[0;32m-> 2178\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, inputs \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(epoch_iterator):\n\u001b[1;32m 2179\u001b[0m total_batched_samples \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 2181\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39minclude_num_input_tokens_seen:\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/accelerate/data_loader.py:464\u001b[0m, in \u001b[0;36mDataLoaderShard.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 463\u001b[0m current_batch \u001b[38;5;241m=\u001b[39m send_to_device(current_batch, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice, non_blocking\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_non_blocking)\n\u001b[0;32m--> 464\u001b[0m next_batch \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mdataloader_iter\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m batch_index \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mskip_batches:\n\u001b[1;32m 466\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m current_batch\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:631\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 628\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sampler_iter \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 629\u001b[0m \u001b[38;5;66;03m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reset() \u001b[38;5;66;03m# type: ignore[call-arg]\u001b[39;00m\n\u001b[0;32m--> 631\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_next_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 632\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 633\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dataset_kind \u001b[38;5;241m==\u001b[39m _DatasetKind\u001b[38;5;241m.\u001b[39mIterable \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 634\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 635\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called:\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1318\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1315\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1316\u001b[0m \u001b[38;5;66;03m# no valid `self._rcvd_idx` is found (i.e., didn't break)\u001b[39;00m\n\u001b[1;32m 1317\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_persistent_workers:\n\u001b[0;32m-> 1318\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_shutdown_workers\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1319\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m\n\u001b[1;32m 1321\u001b[0m \u001b[38;5;66;03m# Now `self._rcvd_idx` is the batch index we want to fetch\u001b[39;00m\n\u001b[1;32m 1322\u001b[0m \n\u001b[1;32m 1323\u001b[0m \u001b[38;5;66;03m# Check if the next sample has already been generated\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1443\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._shutdown_workers\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1438\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mark_worker_as_unavailable(worker_id, shutdown\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 1439\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m w \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_workers:\n\u001b[1;32m 1440\u001b[0m \u001b[38;5;66;03m# We should be able to join here, but in case anything went\u001b[39;00m\n\u001b[1;32m 1441\u001b[0m \u001b[38;5;66;03m# wrong, we set a timeout and if the workers fail to join,\u001b[39;00m\n\u001b[1;32m 1442\u001b[0m \u001b[38;5;66;03m# they are killed in the `finally` block.\u001b[39;00m\n\u001b[0;32m-> 1443\u001b[0m \u001b[43mw\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMP_STATUS_CHECK_INTERVAL\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1444\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m q \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_index_queues:\n\u001b[1;32m 1445\u001b[0m q\u001b[38;5;241m.\u001b[39mcancel_join_thread()\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/process.py:149\u001b[0m, in \u001b[0;36mBaseProcess.join\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_parent_pid \u001b[38;5;241m==\u001b[39m os\u001b[38;5;241m.\u001b[39mgetpid(), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcan only join a child process\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_popen \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcan only join a started process\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m--> 149\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_popen\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwait\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m res \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 151\u001b[0m _children\u001b[38;5;241m.\u001b[39mdiscard(\u001b[38;5;28mself\u001b[39m)\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/popen_fork.py:40\u001b[0m, in \u001b[0;36mPopen.wait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m timeout \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmultiprocessing\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconnection\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m wait\n\u001b[0;32m---> 40\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[43mwait\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msentinel\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 42\u001b[0m \u001b[38;5;66;03m# This shouldn't block if wait() returned successfully.\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/connection.py:931\u001b[0m, in \u001b[0;36mwait\u001b[0;34m(object_list, timeout)\u001b[0m\n\u001b[1;32m 928\u001b[0m deadline \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mmonotonic() \u001b[38;5;241m+\u001b[39m timeout\n\u001b[1;32m 930\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 931\u001b[0m ready \u001b[38;5;241m=\u001b[39m \u001b[43mselector\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mselect\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 932\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ready:\n\u001b[1;32m 933\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [key\u001b[38;5;241m.\u001b[39mfileobj \u001b[38;5;28;01mfor\u001b[39;00m (key, events) \u001b[38;5;129;01min\u001b[39;00m ready]\n", + "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/selectors.py:416\u001b[0m, in \u001b[0;36m_PollLikeSelector.select\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 414\u001b[0m ready \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 415\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 416\u001b[0m fd_event_list \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_selector\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpoll\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mInterruptedError\u001b[39;00m:\n\u001b[1;32m 418\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ready\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], "source": [ "all_results = {\n", " \"dataset\": [],\n", @@ -175,7 +254,7 @@ " BATCH_SIZE = 64\n", "\n", " # Data prep: Get dataset\n", - " _, _, dset_test = get_data(DATASET, context_length, forecast_length, data_root_path=DATA_ROOT_PATH)\n", + " _, _, dset_test = load_dataset(DATASET, context_length, forecast_length, dataset_root_path=DATA_ROOT_PATH)\n", "\n", " #############################################################\n", " ##### Use the pretrained model in zero-shot forecasting #####\n", @@ -201,8 +280,8 @@ " all_results[\"zs_eval_time\"].append(zeroshot_output[\"eval_runtime\"])\n", "\n", " # Plot\n", - " plot_preds(\n", - " zeroshot_trainer,\n", + " plot_predictions(\n", + " zeroshot_trainer.model,\n", " dset_test,\n", " SUBDIR,\n", " num_plots=10,\n", @@ -221,12 +300,12 @@ " for fewshot_percent in [5, 10]:\n", " print(\"-\" * 20, f\"Running few-shot {fewshot_percent}%\", \"-\" * 20)\n", " # Data prep: Get dataset\n", - " dset_train, dset_val, dset_test = get_data(\n", + " dset_train, dset_val, dset_test = load_dataset(\n", " DATASET,\n", " context_length,\n", " forecast_length,\n", " fewshot_fraction=fewshot_percent / 100,\n", - " data_root_path=DATA_ROOT_PATH,\n", + " dataset_root_path=DATA_ROOT_PATH,\n", " )\n", "\n", " # change head dropout to 0.7 for ett datasets\n", @@ -315,8 +394,8 @@ " print(\"+\" * 60)\n", "\n", " # Plot\n", - " plot_preds(\n", - " finetune_forecast_trainer,\n", + " plot_predictions(\n", + " finetune_forecast_trainer.model,\n", " dset_test,\n", " SUBDIR,\n", " num_plots=10,\n", @@ -349,7 +428,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -544,7 +623,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/tsfm_public/toolkit/data_handling.py b/tsfm_public/toolkit/data_handling.py index a991932d..7bd984d2 100644 --- a/tsfm_public/toolkit/data_handling.py +++ b/tsfm_public/toolkit/data_handling.py @@ -9,9 +9,7 @@ import pandas as pd import yaml -from tsfm_public import get_datasets - -from .time_series_preprocessor import TimeSeriesPreprocessor +from .time_series_preprocessor import TimeSeriesPreprocessor, get_datasets def load_dataset( From c622e6ae9caa82e4cc8e5be5a62cda12f7a119a7 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Tue, 6 Aug 2024 14:17:12 -0400 Subject: [PATCH 10/13] use logging --- .../tinytimemixer/ttm_pretrain_sample.py | 51 +++++++++---------- tsfm_public/__init__.py | 33 +++++++++++- .../models/tinytimemixer/utils/ttm_args.py | 6 ++- tsfm_public/toolkit/data_handling.py | 10 ++-- 4 files changed, 68 insertions(+), 32 deletions(-) diff --git a/notebooks/hfdemo/tinytimemixer/ttm_pretrain_sample.py b/notebooks/hfdemo/tinytimemixer/ttm_pretrain_sample.py index 38724786..8e77b147 100644 --- a/notebooks/hfdemo/tinytimemixer/ttm_pretrain_sample.py +++ b/notebooks/hfdemo/tinytimemixer/ttm_pretrain_sample.py @@ -1,38 +1,36 @@ #!/usr/bin/env python # coding: utf-8 -# TTM pre-training example. -# This scrips provides a toy example to pretrain a Tiny Time Mixer (TTM) model on -# the `etth1` dataset. For pre-training TTM on a much large set of datasets, please -# have a look at our paper: https://arxiv.org/pdf/2401.03955.pdf -# If you want to directly utilize the pre-trained models. Please use them from the -# Hugging Face Hub: https://huggingface.co/ibm/TTM -# Have a look at the fine-tune scripts for example usecases of the pre-trained -# TTM models. - -# Basic usage: -# python ttm_pretrain_sample.py --data_root_path datasets/ -# See the get_ttm_args() function to know more about other TTM arguments - -# Standard +import logging import math import os -# Third Party from torch.optim import AdamW from torch.optim.lr_scheduler import OneCycleLR from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed -# Local from tsfm_public.models.tinytimemixer import ( TinyTimeMixerConfig, TinyTimeMixerForPrediction, ) -from tsfm_public.models.tinytimemixer.utils import get_data, get_ttm_args +from tsfm_public.models.tinytimemixer.utils import get_ttm_args +from tsfm_public.toolkit.data_handling import load_dataset -# Arguments -args = get_ttm_args() +logger = logging.getLogger(__file__) + +# TTM pre-training example. +# This scrips provides a toy example to pretrain a Tiny Time Mixer (TTM) model on +# the `etth1` dataset. For pre-training TTM on a much large set of datasets, please +# have a look at our paper: https://arxiv.org/pdf/2401.03955.pdf +# If you want to directly utilize the pre-trained models. Please use them from the +# Hugging Face Hub: https://huggingface.co/ibm/TTM +# Have a look at the fine-tune scripts for example usecases of the pre-trained +# TTM models. + +# Basic usage: +# python ttm_pretrain_sample.py --data_root_path datasets/ +# See the get_ttm_args() function to know more about other TTM arguments def get_model(args): @@ -71,7 +69,7 @@ def pretrain(args, model, dset_train, dset_val): overwrite_output_dir=True, learning_rate=args.learning_rate, num_train_epochs=args.num_epochs, - evaluation_strategy="epoch", + eval_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, dataloader_num_workers=args.num_workers, @@ -129,21 +127,22 @@ def pretrain(args, model, dset_train, dset_val): if __name__ == "__main__": + # Arguments + args = get_ttm_args() + # Set seed set_seed(args.random_seed) - print( - "*" * 20, - f"Pre-training a TTM for context len = {args.context_length}, forecast len = {args.forecast_length}", - "*" * 20, + logger.info( + f"{'*' * 20} Pre-training a TTM for context len = {args.context_length}, forecast len = {args.forecast_length} {'*' * 20}" ) # Data prep - dset_train, dset_val, dset_test = get_data( + dset_train, dset_val, dset_test = load_dataset( args.dataset, args.context_length, args.forecast_length, - data_root_path=args.data_root_path, + dataset_root_path=args.data_root_path, ) print("Length of the train dataset =", len(dset_train)) diff --git a/tsfm_public/__init__.py b/tsfm_public/__init__.py index 6faab255..5725aa8d 100644 --- a/tsfm_public/__init__.py +++ b/tsfm_public/__init__.py @@ -1,16 +1,45 @@ # Copyright contributors to the TSFM project # +import logging +import os from pathlib import Path from typing import TYPE_CHECKING # Check the dependencies satisfy the minimal versions required. -from transformers.utils import _LazyModule, logging +from transformers.utils import _LazyModule from .version import __version__, __version_tuple__ -logger = logging.get_logger(__name__) # pylint: disable=invalid-name +TSFM_PYTHON_LOGGING_LEVEL = os.getenv("TSFM_PYTHON_LOGGING_LEVEL", "INFO") + +LevelNamesMapping = { + "INFO": logging.INFO, + "WARN": logging.WARN, + "WARNING": logging.WARNING, + "ERROR": logging.ERROR, + "CRITICAL": logging.CRITICAL, + "DEBUG": logging.DEBUG, + "FATAL": logging.FATAL, +} + +TSFM_PYTHON_LOGGING_LEVEL = ( + logging.getLevelNamesMapping()[TSFM_PYTHON_LOGGING_LEVEL] + if hasattr(logging, "getLevelNamesMapping") + else LevelNamesMapping[TSFM_PYTHON_LOGGING_LEVEL] +) +TSFM_PYTHON_LOGGING_FORMAT = os.getenv( + "TSFM_PYTHON_LOGGING_FORMAT", + "%(levelname)s:p-%(process)d:t-%(thread)d:%(filename)s:%(funcName)s:%(message)s", +) + +logging.basicConfig( + format=TSFM_PYTHON_LOGGING_FORMAT, + level=TSFM_PYTHON_LOGGING_LEVEL, +) + +logger = logging.getLogger(__name__) # pylint: disable=invalid-name # Base objects, independent of any specific backend _import_structure = { diff --git a/tsfm_public/models/tinytimemixer/utils/ttm_args.py b/tsfm_public/models/tinytimemixer/utils/ttm_args.py index e889fcbb..c4ef3ed6 100644 --- a/tsfm_public/models/tinytimemixer/utils/ttm_args.py +++ b/tsfm_public/models/tinytimemixer/utils/ttm_args.py @@ -3,11 +3,15 @@ """Utilities for TTM notebooks""" import argparse +import logging import os import torch +logger = logging.getLogger(__name__) + + def get_ttm_args(): parser = argparse.ArgumentParser(description="TTM pretrain arguments.") # Adding a positional argument @@ -145,7 +149,7 @@ def get_ttm_args(): # Calculate number of gpus if args.num_gpus is None: args.num_gpus = torch.cuda.device_count() - print("Automatically calculated number of GPUs =", args.num_gpus) + logger.info(f"Automatically calculated number of GPUs ={args.num_gpus}") # Create save directory args.save_dir = os.path.join( diff --git a/tsfm_public/toolkit/data_handling.py b/tsfm_public/toolkit/data_handling.py index 7bd984d2..094d0a6a 100644 --- a/tsfm_public/toolkit/data_handling.py +++ b/tsfm_public/toolkit/data_handling.py @@ -1,6 +1,7 @@ """Utilities for handling datasets""" import glob +import logging import os from importlib import resources from pathlib import Path @@ -12,6 +13,9 @@ from .time_series_preprocessor import TimeSeriesPreprocessor, get_datasets +LOGGER = logging.getLogger(__file__) + + def load_dataset( dataset_name: str, context_length, @@ -21,7 +25,7 @@ def load_dataset( dataset_root_path: str = "datasets/", dataset_path: Optional[str] = None, ): - print(dataset_name, context_length, forecast_length) + LOGGER.info(f"Dataset name: {dataset_name}, context length: {context_length}, prediction length {forecast_length}") config_path = resources.files("tsfm_public.resources.data_config") configs = glob.glob(os.path.join(config_path, "*.yaml")) @@ -31,7 +35,7 @@ def load_dataset( if config_path is None: raise ValueError( - f"Currently `get_data()` function supports the following datasets: {names_to_config.keys()}\n \ + f"Currently the `load_dataset()` function supports the following datasets: {names_to_config.keys()}\n \ For other datasets, please provide the proper configs to the TimeSeriesPreprocessor (TSP) module." ) @@ -71,6 +75,6 @@ def load_dataset( fewshot_fraction=fewshot_fraction, fewshot_location=fewshot_location, ) - print(f"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}") + LOGGER.info(f"Data lengths: train = {len(train_dataset)}, val = {len(valid_dataset)}, test = {len(test_dataset)}") return train_dataset, valid_dataset, test_dataset From 03d4c4a157c92f3620ed359f591c6ca89d515d95 Mon Sep 17 00:00:00 2001 From: Arindam Jati <41211350+ajati@users.noreply.github.com> Date: Fri, 9 Aug 2024 20:11:52 +0530 Subject: [PATCH 11/13] Update visualization.py Automatic figure size selection --- tsfm_public/toolkit/visualization.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tsfm_public/toolkit/visualization.py b/tsfm_public/toolkit/visualization.py index f17808bd..41927e0c 100644 --- a/tsfm_public/toolkit/visualization.py +++ b/tsfm_public/toolkit/visualization.py @@ -232,7 +232,7 @@ def plot_predictions( plt.style.use("seaborn-v0_8-whitegrid") # Adjust figure size and subplot spacing - fig, axs = plt.subplots(num_plots, 1, figsize=(10, 20)) + fig, axs = plt.subplots(num_plots, 1, figsize=(10, 2*num_plots)) for i, ri in enumerate(random_indices): batch = dset[ri] From 307f708ff367f348031150bf22d6814292d83238 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Mon, 12 Aug 2024 15:39:19 -0400 Subject: [PATCH 12/13] Cleanly run ttm notebooks --- .../ttm_benchmarking_1024_96.ipynb | 3506 ++++++++++++++++- .../ttm_benchmarking_512_96.ipynb | 3445 +++++++++++++++- notebooks/hfdemo/ttm_getting_started.ipynb | 530 +-- 3 files changed, 6870 insertions(+), 611 deletions(-) diff --git a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb index ae2c1d71..9f2e39e7 100644 --- a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb +++ b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_1024_96.ipynb @@ -22,126 +22,3276 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "from torch.optim import AdamW\n", + "from torch.optim.lr_scheduler import OneCycleLR\n", + "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", + "\n", + "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, load_dataset, plot_predictions" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Important arguments" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Set seed\n", + "set_seed(42)\n", + "\n", + "# Specify model parameters\n", + "context_length = 1024\n", + "forecast_length = 96\n", + "freeze_backbone = True\n", + "learning_rate = 0.001\n", + "\n", + "# Other args\n", + "EPOCHS = 50\n", + "NUM_WORKERS = 16\n", + "\n", + "# Make sure all the datasets in the following `list_datasets` are\n", + "# saved in the `DATA_ROOT_PATH` folder. Or, change it accordingly.\n", + "# Refer to the load_dataset() function\n", + "# in notebooks/hfdemo/tinytimemixer/utils/ttm_utils.py\n", + "# to see how it is used.\n", + "DATA_ROOT_PATH = \"datasets/\"\n", + "\n", + "# This is where results will be saved\n", + "OUT_DIR = \"ttm_results_benchmark_1024_96_tmp\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## List of benchmark datasets (TTM was not pre-trained on any of these)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "list_datasets = [\n", + " \"etth1\",\n", + " \"etth2\",\n", + " \"ettm1\",\n", + " \"ettm2\",\n", + " \"weather\",\n", + " \"electricity\",\n", + " \"traffic\",\n", + "]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Get model path" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "hf_model_path = \"ibm/TTM\"\n", + "if context_length == 512:\n", + " hf_model_branch = \"main\"\n", + "elif context_length == 1024:\n", + " hf_model_branch = \"1024_96_v1\"\n", + "else:\n", + " raise ValueError(\"Current supported context lengths are 512 and 1024. Stay tuned for more TTMs!\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Main benchmarking loop" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2024-04-08 13:42:57.255646: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: etth1, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 7521, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-1024 on dataset = etth1, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/1024_96_v1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.3621068000793457, 'eval_model_preparation_time': 0.0026, 'eval_runtime': 1.3961, 'eval_samples_per_second': 1994.831, 'eval_steps_per_second': 31.516}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: etth1, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 285, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 85/250 00:25 < 00:50, 3.30 it/s, Epoch 17/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.5844000.663804
20.6017000.663111
30.5854000.662300
40.5641000.661117
50.5276000.659781
60.4972000.658587
70.4550000.658336
80.4279000.660301
90.3999000.663791
100.3537000.670050
110.3124000.682261
120.3010000.700288
130.2663000.724918
140.2495000.753728
150.2338000.775392
160.2164000.788408
170.2149000.795417

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.6449106020085952 seconds, Total Train Time = 26.784369707107544\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.3614313006401062, 'eval_runtime': 0.8213, 'eval_samples_per_second': 3390.92, 'eval_steps_per_second': 53.573, 'epoch': 17.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: etth1, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 666, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [143/550 00:19 < 00:55, 7.29 it/s, Epoch 13/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.6421000.663602
20.5947000.662923
30.5452000.662525
40.5182000.663749
50.4647000.667679
60.4144000.674993
70.3717000.687040
80.3347000.708806
90.3086000.737532
100.2867000.751357
110.2686000.776843
120.2562000.794736
130.2455000.800167

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.6648349028367263 seconds, Total Train Time = 19.866912841796875\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.36271077394485474, 'eval_runtime': 0.8044, 'eval_samples_per_second': 3462.269, 'eval_steps_per_second': 54.7, 'epoch': 13.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: etth2, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 7521, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.362 0.361 0.363\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-1024 on dataset = etth2, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/1024_96_v1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.280693918466568, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 0.7642, 'eval_samples_per_second': 3644.388, 'eval_steps_per_second': 57.577}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: etth2, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 285, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 55/250 00:16 < 00:58, 3.31 it/s, Epoch 11/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.5659000.224047
20.5244000.224874
30.5606000.226318
40.5189000.229082
50.5328000.234455
60.4875000.244063
70.4378000.257846
80.4044000.275406
90.3685000.299849
100.3539000.332489
110.3209000.374024

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.6113908724351362 seconds, Total Train Time = 16.502498388290405\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.2801705598831177, 'eval_runtime': 0.8422, 'eval_samples_per_second': 3306.73, 'eval_steps_per_second': 52.243, 'epoch': 11.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: etth2, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 666, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [132/550 00:18 < 00:59, 7.00 it/s, Epoch 12/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.4144000.223319
20.4206000.223185
30.3781000.223428
40.3597000.224102
50.3301000.225113
60.2985000.227125
70.2645000.229628
80.2429000.238282
90.2191000.251995
100.2018000.277940
110.1803000.317722
120.1712000.340438

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.6947970191637675 seconds, Total Train Time = 19.07732081413269\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.28046759963035583, 'eval_runtime': 0.8378, 'eval_samples_per_second': 3324.221, 'eval_steps_per_second': 52.519, 'epoch': 12.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: ettm1, context length: 1024, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.362 0.361 0.363\n", + "1 etth2 0.281 0.280 0.280\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-1024 on dataset = ettm1, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/1024_96_v1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 33441, val = 11425, test = 11425\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [179/179 00:02]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.3872631788253784, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 2.973, 'eval_samples_per_second': 3842.88, 'eval_steps_per_second': 60.208}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: ettm1, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 1581, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 375/1250 00:39 < 01:33, 9.37 it/s, Epoch 15/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.5045000.422623
20.4717000.417156
30.4247000.412834
40.3850000.409597
50.3409000.409013
60.3009000.417046
70.2733000.429183
80.2512000.439041
90.2325000.448727
100.2231000.456104
110.2142000.460536
120.2076000.466538
130.2038000.476997
140.1981000.480505
150.1941000.488817

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.9596449693044027 seconds, Total Train Time = 40.5400505065918\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.37150949239730835, 'eval_runtime': 1.7137, 'eval_samples_per_second': 6666.964, 'eval_steps_per_second': 104.454, 'epoch': 15.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: ettm1, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 3258, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 714/2550 00:41 < 01:48, 16.95 it/s, Epoch 14/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.5425000.419067
20.4707000.414835
30.4186000.413820
40.3666000.407678
50.3274000.407747
60.3012000.413063
70.2829000.419441
80.2718000.437654
90.2622000.438877
100.2544000.450964
110.2509000.463638
120.2468000.465234
130.2417000.471252
140.2398000.479022

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.3417655570166451 seconds, Total Train Time = 42.53421998023987\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.37059730291366577, 'eval_runtime': 1.8022, 'eval_samples_per_second': 6339.626, 'eval_steps_per_second': 99.325, 'epoch': 14.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: ettm2, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 33441, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.362 0.361 0.363\n", + "1 etth2 0.281 0.280 0.280\n", + "2 ettm1 0.387 0.372 0.371\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-1024 on dataset = ettm2, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/1024_96_v1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [179/179 00:03]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.17503736913204193, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 3.098, 'eval_samples_per_second': 3687.892, 'eval_steps_per_second': 57.78}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: ettm2, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 1581, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 275/1250 00:30 < 01:47, 9.06 it/s, Epoch 11/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.2807000.121009
20.2646000.121268
30.2265000.123216
40.1996000.129200
50.1690000.141758
60.1522000.155555
70.1381000.163517
80.1293000.172492
90.1220000.183950
100.1164000.191413
110.1126000.197757

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.9758692871440541 seconds, Total Train Time = 30.6837100982666\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.17288224399089813, 'eval_runtime': 1.6844, 'eval_samples_per_second': 6782.904, 'eval_steps_per_second': 106.27, 'epoch': 11.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: ettm2, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 3258, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 561/2550 00:33 < 01:57, 16.94 it/s, Epoch 11/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.3141000.121323
20.2749000.122920
30.2439000.126737
40.2130000.131092
50.1947000.134649
60.1840000.137388
70.1755000.139926
80.1697000.142911
90.1642000.151129
100.1608000.147594
110.1575000.151603

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.2968504645607688 seconds, Total Train Time = 33.76823949813843\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.1721041202545166, 'eval_runtime': 1.6932, 'eval_samples_per_second': 6747.614, 'eval_steps_per_second': 105.718, 'epoch': 11.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: weather, context length: 1024, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.362 0.361 0.363\n", + "1 etth2 0.281 0.280 0.280\n", + "2 ettm1 0.387 0.372 0.371\n", + "3 ettm2 0.175 0.173 0.172\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-1024 on dataset = weather, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/1024_96_v1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 35768, val = 5175, test = 10444\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [164/164 00:05]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.15184031426906586, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 5.2719, 'eval_samples_per_second': 1981.068, 'eval_steps_per_second': 31.108}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: weather, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 1698, val = 5175, test = 10444\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 297/1350 00:36 < 02:08, 8.16 it/s, Epoch 11/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.1524000.419179
20.1476000.424661
30.1421000.439751
40.1363000.458828
50.1278000.483952
60.1192000.519423
70.1106000.522068
80.1036000.505524
90.0970000.515911
100.0913000.517793
110.0862000.485350

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.3858745965090664 seconds, Total Train Time = 37.15680694580078\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [164/164 00:02]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.1506919413805008, 'eval_runtime': 3.1774, 'eval_samples_per_second': 3287.006, 'eval_steps_per_second': 51.615, 'epoch': 11.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: weather, context length: 1024, prediction length 96\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 3491, val = 5175, test = 10444\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 605/2750 00:43 < 02:34, 13.88 it/s, Epoch 11/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.1377000.424454
20.1336000.436503
30.1285000.445798
40.1234000.456645
50.1167000.477022
60.1115000.483446
70.1055000.470728
80.0999000.470292
90.0954000.476556
100.0907000.458923
110.0872000.471447

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 2.053315422751687 seconds, Total Train Time = 44.43015384674072\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [164/164 00:02]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.15016287565231323, 'eval_runtime': 3.1208, 'eval_samples_per_second': 3346.574, 'eval_steps_per_second': 52.551, 'epoch': 11.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: electricity, context length: 1024, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.362 0.361 0.363\n", + "1 etth2 0.281 0.280 0.280\n", + "2 ettm1 0.387 0.372 0.371\n", + "3 ettm2 0.175 0.173 0.172\n", + "4 weather 0.152 0.151 0.150\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-1024 on dataset = electricity, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/1024_96_v1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 17293, val = 2537, test = 5165\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [162/162 00:24]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.15557251870632172, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 25.1486, 'eval_samples_per_second': 205.379, 'eval_steps_per_second': 6.442}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: electricity, context length: 1024, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 774, val = 2537, test = 5165\n", + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1250/1250 11:42, Epoch 50/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.1459000.127765
20.1400000.124079
30.1354000.121057
40.1316000.118233
50.1273000.116960
60.1247000.115788
70.1213000.114265
80.1198000.113604
90.1179000.113588
100.1159000.114102
110.1142000.114330
120.1141000.114430
130.1126000.113078
140.1119000.114254
150.1109000.113203
160.1103000.116154
170.1088000.114116
180.1083000.114400
190.1076000.113790
200.1071000.112894
210.1070000.114230
220.1071000.113750
230.1066000.112724
240.1052000.112615
250.1046000.112540
260.1044000.114088
270.1043000.113155
280.1040000.113183
290.1033000.113108
300.1033000.112891
310.1030000.112966
320.1028000.112305
330.1021000.112232
340.1018000.112428
350.1018000.112281
360.1015000.112245
370.1013000.112165
380.1016000.112430
390.1008000.112168
400.1011000.112292
410.1007000.112243
420.1011000.112085
430.1005000.112192
440.1005000.112366
450.1002000.112117
460.1005000.112201
470.1004000.112215
480.1004000.112120
490.1004000.112149
500.1000000.112153

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 4.613817219734192 seconds, Total Train Time = 703.9778573513031\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [162/162 00:16]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.14543357491493225, 'eval_runtime': 18.0001, 'eval_samples_per_second': 286.943, 'eval_steps_per_second': 9.0, 'epoch': 50.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: electricity, context length: 1024, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 1643, val = 2537, test = 5165\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [2288/2600 13:13 < 01:48, 2.88 it/s, Epoch 44/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.1426000.123726
20.1368000.119504
30.1326000.116580
40.1292000.114476
50.1265000.112773
60.1241000.111989
70.1224000.111565
80.1210000.111765
90.1199000.112019
100.1191000.110442
110.1184000.111159
120.1177000.111936
130.1168000.110754
140.1165000.111346
150.1157000.111159
160.1156000.112541
170.1154000.110576
180.1146000.110490
190.1143000.110820
200.1137000.110099
210.1136000.111032
220.1131000.110572
230.1125000.110152
240.1122000.110462
250.1122000.110486
260.1115000.109890
270.1112000.109659
280.1109000.110145
290.1110000.110042
300.1105000.109693
310.1104000.109685
320.1103000.109534
330.1099000.109661
340.1098000.109107
350.1095000.109508
360.1092000.109286
370.1090000.109707
380.1086000.109372
390.1086000.109286
400.1085000.109232
410.1084000.109145
420.1083000.109114
430.1083000.109157
440.1083000.109180

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 8.607493021271445 seconds, Total Train Time = 795.0402648448944\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [162/162 00:16]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.13808377087116241, 'eval_runtime': 17.9411, 'eval_samples_per_second': 287.886, 'eval_steps_per_second': 9.03, 'epoch': 44.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: traffic, context length: 1024, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.362 0.361 0.363\n", + "1 etth2 0.281 0.280 0.280\n", + "2 ettm1 0.387 0.372 0.371\n", + "3 ettm2 0.175 0.173 0.172\n", + "4 weather 0.152 0.151 0.150\n", + "5 electricity 0.156 0.145 0.138\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-1024 on dataset = traffic, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/1024_96_v1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 11161, val = 1661, test = 3413\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [427/427 00:47]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.4576044976711273, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 47.4188, 'eval_samples_per_second': 71.976, 'eval_steps_per_second': 9.005}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: traffic, context length: 1024, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 467, val = 1661, test = 3413\n", + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1652/2950 10:51 < 08:32, 2.53 it/s, Epoch 28/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.2867000.364595
20.2611000.354531
30.2483000.348675
40.2378000.347864
50.2291000.346862
60.2230000.355750
70.2179000.347379
80.2150000.351959
90.2108000.345832
100.2080000.353231
110.2071000.352474
120.2044000.359140
130.2041000.350371
140.2021000.366590
150.2012000.361391
160.1985000.349136
170.1961000.369769
180.1954000.345229
190.1951000.357952
200.1924000.357397
210.1920000.363344
220.1905000.355350
230.1891000.363749
240.1880000.354421
250.1887000.353886
260.1863000.361907
270.1847000.352133
280.1845000.356455

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 7.176408444132123 seconds, Total Train Time = 653.2981734275818\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [427/427 00:30]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.4156947731971741, 'eval_runtime': 31.8013, 'eval_samples_per_second': 107.323, 'eval_steps_per_second': 13.427, 'epoch': 28.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Dataset name: traffic, context length: 1024, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-3361:t-22942224311040:data_handling.py:load_dataset:Data lengths: train = 1030, val = 1661, test = 3413\n", + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-3361:t-22942224311040:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 946336\n", + "Number of params after freezing the backbone 389984\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [2064/6450 08:07 < 17:17, 4.23 it/s, Epoch 16/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.2703000.362664
20.2503000.351346
30.2412000.348280
40.2350000.348637
50.2302000.346396
60.2262000.343058
70.2231000.351453
80.2207000.347172
90.2187000.349513
100.2167000.351570
110.2150000.353760
120.2142000.348613
130.2130000.353903
140.2113000.347297
150.2103000.354026
160.2083000.350533

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 14.365050464868546 seconds, Total Train Time = 488.8848283290863\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [427/427 00:30]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.41844481229782104, 'eval_runtime': 31.8365, 'eval_samples_per_second': 107.204, 'eval_steps_per_second': 13.412, 'epoch': 16.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n", + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.362 0.361 0.363\n", + "1 etth2 0.281 0.280 0.280\n", + "2 ettm1 0.387 0.372 0.371\n", + "3 ettm2 0.175 0.173 0.172\n", + "4 weather 0.152 0.151 0.150\n", + "5 electricity 0.156 0.145 0.138\n", + "6 traffic 0.458 0.416 0.418\n" ] } ], - "source": [ - "import math\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", - "from torch.optim import AdamW\n", - "from torch.optim.lr_scheduler import OneCycleLR\n", - "from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed\n", - "\n", - "from tsfm_public import TinyTimeMixerForPrediction, TrackingCallback, count_parameters, load_dataset, plot_predictions" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Important arguments" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Set seed\n", - "set_seed(42)\n", - "\n", - "# Specify model parameters\n", - "context_length = 1024\n", - "forecast_length = 96\n", - "freeze_backbone = True\n", - "learning_rate = 0.001\n", - "\n", - "# Other args\n", - "EPOCHS = 50\n", - "NUM_WORKERS = 16\n", - "\n", - "# Make sure all the datasets in the following `list_datasets` are\n", - "# saved in the `DATA_ROOT_PATH` folder. Or, change it accordingly.\n", - "# Refer to the get_data() function\n", - "# in notebooks/hfdemo/tinytimemixer/utils/ttm_utils.py\n", - "# to see how it is used.\n", - "DATA_ROOT_PATH = \"datasets/\"\n", - "\n", - "# This is where results will be saved\n", - "OUT_DIR = \"ttm_results_benchmark_1024_96_tmp\"" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## List of benchmark datasets (TTM was not pre-trained on any of these)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "list_datasets = [\n", - " \"etth1\",\n", - " \"etth2\",\n", - " \"ettm1\",\n", - " \"ettm2\",\n", - " \"weather\",\n", - " \"electricity\",\n", - " \"traffic\",\n", - "]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Get model path" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "hf_model_path = \"ibm/TTM\"\n", - "if context_length == 512:\n", - " hf_model_branch = \"main\"\n", - "elif context_length == 1024:\n", - " hf_model_branch = \"1024_96_v1\"\n", - "else:\n", - " raise ValueError(\"Current supported context lengths are 512 and 1024. Stay tuned for more TTMs!\")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Main benchmarking loop" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], "source": [ "all_results = {\n", " \"dataset\": [],\n", @@ -202,7 +3352,7 @@ "\n", " # Plot\n", " plot_predictions(\n", - " zeroshot_trainer.models,\n", + " zeroshot_trainer.model,\n", " dset_test,\n", " SUBDIR,\n", " num_plots=10,\n", @@ -389,13 +3539,13 @@ " 0\n", " etth1\n", " 0.362\n", - " 0.359\n", + " 0.361\n", " 0.363\n", - " 4.982\n", - " 1.032\n", - " 38.533\n", - " 1.009\n", - " 31.517\n", + " 1.396\n", + " 0.645\n", + " 26.784\n", + " 0.665\n", + " 19.867\n", " 0.658\n", " 0.663\n", " \n", @@ -404,12 +3554,12 @@ " etth2\n", " 0.281\n", " 0.280\n", - " 0.281\n", - " 0.479\n", - " 0.935\n", - " 26.790\n", - " 1.028\n", - " 27.575\n", + " 0.280\n", + " 0.764\n", + " 0.611\n", + " 16.502\n", + " 0.695\n", + " 19.077\n", " 0.224\n", " 0.223\n", " \n", @@ -418,14 +3568,14 @@ " ettm1\n", " 0.387\n", " 0.372\n", - " 0.360\n", - " 2.012\n", - " 1.268\n", - " 50.618\n", - " 1.659\n", - " 56.423\n", + " 0.371\n", + " 2.973\n", + " 0.960\n", + " 40.540\n", + " 1.342\n", + " 42.534\n", " 0.409\n", - " 0.406\n", + " 0.408\n", " \n", " \n", " 3\n", @@ -433,11 +3583,11 @@ " 0.175\n", " 0.173\n", " 0.172\n", - " 1.905\n", - " 1.282\n", - " 38.194\n", - " 1.675\n", - " 42.355\n", + " 3.098\n", + " 0.976\n", + " 30.684\n", + " 1.297\n", + " 33.768\n", " 0.121\n", " 0.121\n", " \n", @@ -447,41 +3597,41 @@ " 0.152\n", " 0.151\n", " 0.150\n", - " 3.417\n", - " 1.619\n", - " 42.032\n", - " 2.313\n", - " 49.691\n", + " 5.272\n", + " 1.386\n", + " 37.157\n", + " 2.053\n", + " 44.430\n", " 0.419\n", - " 0.425\n", + " 0.424\n", " \n", " \n", " 5\n", " electricity\n", " 0.156\n", " 0.145\n", - " 0.139\n", - " 15.869\n", - " 4.097\n", - " 537.848\n", - " 7.450\n", - " 440.682\n", + " 0.138\n", + " 25.149\n", + " 4.614\n", + " 703.978\n", + " 8.607\n", + " 795.040\n", " 0.112\n", - " 0.110\n", + " 0.109\n", " \n", " \n", " 6\n", " traffic\n", " 0.458\n", - " 0.409\n", - " 0.424\n", - " 26.355\n", - " 6.167\n", - " 303.630\n", - " 12.259\n", - " 406.904\n", - " 0.344\n", - " 0.347\n", + " 0.416\n", + " 0.418\n", + " 47.419\n", + " 7.176\n", + " 653.298\n", + " 14.365\n", + " 488.885\n", + " 0.345\n", + " 0.343\n", " \n", " \n", "\n", @@ -489,31 +3639,31 @@ ], "text/plain": [ " dataset zs_mse fs5_mse fs10_mse zs_eval_time fs5_mean_epoch_time \\\n", - "0 etth1 0.362 0.359 0.363 4.982 1.032 \n", - "1 etth2 0.281 0.280 0.281 0.479 0.935 \n", - "2 ettm1 0.387 0.372 0.360 2.012 1.268 \n", - "3 ettm2 0.175 0.173 0.172 1.905 1.282 \n", - "4 weather 0.152 0.151 0.150 3.417 1.619 \n", - "5 electricity 0.156 0.145 0.139 15.869 4.097 \n", - "6 traffic 0.458 0.409 0.424 26.355 6.167 \n", + "0 etth1 0.362 0.361 0.363 1.396 0.645 \n", + "1 etth2 0.281 0.280 0.280 0.764 0.611 \n", + "2 ettm1 0.387 0.372 0.371 2.973 0.960 \n", + "3 ettm2 0.175 0.173 0.172 3.098 0.976 \n", + "4 weather 0.152 0.151 0.150 5.272 1.386 \n", + "5 electricity 0.156 0.145 0.138 25.149 4.614 \n", + "6 traffic 0.458 0.416 0.418 47.419 7.176 \n", "\n", " fs5_total_train_time fs10_mean_epoch_time fs10_total_train_time \\\n", - "0 38.533 1.009 31.517 \n", - "1 26.790 1.028 27.575 \n", - "2 50.618 1.659 56.423 \n", - "3 38.194 1.675 42.355 \n", - "4 42.032 2.313 49.691 \n", - "5 537.848 7.450 440.682 \n", - "6 303.630 12.259 406.904 \n", + "0 26.784 0.665 19.867 \n", + "1 16.502 0.695 19.077 \n", + "2 40.540 1.342 42.534 \n", + "3 30.684 1.297 33.768 \n", + "4 37.157 2.053 44.430 \n", + "5 703.978 8.607 795.040 \n", + "6 653.298 14.365 488.885 \n", "\n", " fs5_best_val_metric fs10_best_val_metric \n", "0 0.658 0.663 \n", "1 0.224 0.223 \n", - "2 0.409 0.406 \n", + "2 0.409 0.408 \n", "3 0.121 0.121 \n", - "4 0.419 0.425 \n", - "5 0.112 0.110 \n", - "6 0.344 0.347 " + "4 0.419 0.424 \n", + "5 0.112 0.109 \n", + "6 0.345 0.343 " ] }, "execution_count": 6, @@ -605,7 +3755,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb index f077330a..55ec8f72 100644 --- a/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb +++ b/notebooks/hfdemo/tinytimemixer/ttm_benchmarking_512_96.ipynb @@ -64,7 +64,7 @@ "\n", "# Make sure all the datasets in the following `list_datasets` are\n", "# saved in the `DATA_ROOT_PATH` folder. Or, change it accordingly.\n", - "# Refer to the get_data() function\n", + "# Refer to the load_datasets() function\n", "# in notebooks/hfdemo/tinytimemixer/utils/ttm_utils.py\n", "# to see how it is used.\n", "DATA_ROOT_PATH = \"datasets/\"\n", @@ -131,31 +131,3016 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: etth1, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 8033, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-512 on dataset = etth1, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/main\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "85ec2afa39384bd4b35d8ebf67b5d033", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "config.json: 0%| | 0.00/1.19k [00:00\n", + " \n", + " \n", + " [44/44 00:01]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.36317431926727295, 'eval_model_preparation_time': 0.0028, 'eval_runtime': 4.6427, 'eval_samples_per_second': 599.87, 'eval_steps_per_second': 9.477}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: etth1, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 311, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 55/250 00:16 < 01:02, 3.12 it/s, Epoch 11/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
11.0857000.656020
21.0862000.656616
31.0704000.657144
41.0933000.658152
50.9374000.659537
60.8652000.661400
70.8036000.662929
80.7480000.664672
90.6986000.667598
100.6660000.674859
110.6166000.685595

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.7791833227330988 seconds, Total Train Time = 18.585089206695557\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.363126665353775, 'eval_runtime': 0.9124, 'eval_samples_per_second': 3052.451, 'eval_steps_per_second': 48.225, 'epoch': 11.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: etth1, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 717, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [204/600 00:28 < 00:55, 7.15 it/s, Epoch 17/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
11.0438000.655415
20.9909000.655896
30.8844000.657076
40.7920000.657461
50.6659000.657554
60.6211000.655823
70.5276000.655078
80.4743000.657213
90.4438000.662531
100.4336000.670480
110.4103000.681129
120.4071000.680766
130.3938000.694353
140.3926000.692552
150.3756000.702562
160.3739000.702306
170.3690000.706614

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.7961447799907011 seconds, Total Train Time = 28.757564544677734\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.3642033636569977, 'eval_runtime': 0.9201, 'eval_samples_per_second': 3027.003, 'eval_steps_per_second': 47.823, 'epoch': 17.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: etth2, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 8033, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.363 0.363 0.364\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-512 on dataset = etth2, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/main\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [44/44 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.28556710481643677, 'eval_model_preparation_time': 0.0021, 'eval_runtime': 1.4084, 'eval_samples_per_second': 1977.384, 'eval_steps_per_second': 31.241}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: etth2, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 311, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 60/250 00:19 < 01:02, 3.03 it/s, Epoch 12/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.4971000.208019
20.4393000.207998
30.4502000.208099
40.4245000.208681
50.3997000.209764
60.3367000.211253
70.2674000.213202
80.2470000.215709
90.2233000.218617
100.1872000.222340
110.1704000.225701
120.1594000.230151

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.6941847006479899 seconds, Total Train Time = 19.669750213623047\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.2842232882976532, 'eval_runtime': 0.8497, 'eval_samples_per_second': 3277.649, 'eval_steps_per_second': 51.783, 'epoch': 12.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: etth2, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 717, val = 2785, test = 2785\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [132/600 00:18 < 01:06, 7.03 it/s, Epoch 11/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.6943000.208229
20.6672000.208902
30.6849000.210279
40.5309000.212758
50.4716000.216474
60.4071000.222424
70.3663000.230155
80.3359000.234342
90.3103000.233168
100.3057000.231881
110.2908000.239227

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 0.8266618685288862 seconds, Total Train Time = 19.24742102622986\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [44/44 00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.2839512825012207, 'eval_runtime': 0.8597, 'eval_samples_per_second': 3239.659, 'eval_steps_per_second': 51.183, 'epoch': 11.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: ettm1, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.363 0.363 0.364\n", + "1 etth2 0.286 0.284 0.284\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-512 on dataset = ettm1, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/main\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 33953, val = 11425, test = 11425\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [179/179 00:05]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.41525667905807495, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 5.9133, 'eval_samples_per_second': 1932.084, 'eval_steps_per_second': 30.271}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: ettm1, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 1607, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 520/1300 00:53 < 01:20, 9.66 it/s, Epoch 20/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.5509000.463731
20.4799000.465929
30.4544000.473586
40.3670000.475486
50.3158000.475515
60.2693000.468186
70.2534000.460052
80.2399000.458469
90.2335000.453531
100.2258000.453469
110.2227000.455705
120.2178000.453836
130.2138000.456086
140.2127000.458392
150.2084000.456380
160.2074000.462406
170.2044000.465798
180.2016000.465260
190.1993000.473123
200.2005000.470573

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.0061900973320008 seconds, Total Train Time = 54.34703779220581\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.3644302487373352, 'eval_runtime': 1.6557, 'eval_samples_per_second': 6900.436, 'eval_steps_per_second': 108.112, 'epoch': 20.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: ettm1, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 3309, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 936/2600 00:53 < 01:35, 17.39 it/s, Epoch 18/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.6539000.460911
20.5532000.463849
30.4525000.466370
40.3642000.445985
50.3208000.436441
60.3022000.430455
70.2937000.430863
80.2847000.427922
90.2798000.434429
100.2750000.431091
110.2706000.431898
120.2686000.429764
130.2651000.439841
140.2640000.432602
150.2610000.434874
160.2606000.439803
170.2566000.444250
180.2551000.443020

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.373883843421936 seconds, Total Train Time = 54.45233702659607\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.37092921137809753, 'eval_runtime': 1.6994, 'eval_samples_per_second': 6723.14, 'eval_steps_per_second': 105.334, 'epoch': 18.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: ettm2, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.363 0.363 0.364\n", + "1 etth2 0.286 0.284 0.284\n", + "2 ettm1 0.415 0.364 0.371\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-512 on dataset = ettm2, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/main\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 33953, val = 11425, test = 11425\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [179/179 00:05]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.1860235333442688, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 5.5954, 'eval_samples_per_second': 2041.859, 'eval_steps_per_second': 31.991}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: ettm2, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 1607, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 338/1300 00:34 < 01:39, 9.65 it/s, Epoch 13/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.4031000.130643
20.3400000.129244
30.2834000.128597
40.2387000.130647
50.1976000.135873
60.1785000.141251
70.1604000.143489
80.1515000.143133
90.1442000.145625
100.1413000.146513
110.1387000.148491
120.1357000.151306
130.1323000.146737

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.026107146189763 seconds, Total Train Time = 35.573742151260376\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.17499123513698578, 'eval_runtime': 1.6567, 'eval_samples_per_second': 6896.184, 'eval_steps_per_second': 108.045, 'epoch': 13.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: ettm2, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 3309, val = 11425, test = 11425\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 624/2600 00:36 < 01:54, 17.22 it/s, Epoch 12/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.3667000.129779
20.2677000.128715
30.2152000.129231
40.1696000.130869
50.1500000.131003
60.1397000.131113
70.1341000.130966
80.1298000.134528
90.1271000.132286
100.1243000.136354
110.1228000.130616
120.1208000.137425

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.3781344493230183 seconds, Total Train Time = 36.829975605010986\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.17638567090034485, 'eval_runtime': 1.5909, 'eval_samples_per_second': 7181.252, 'eval_steps_per_second': 112.512, 'epoch': 12.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: weather, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 36280, val = 5175, test = 10444\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.363 0.363 0.364\n", + "1 etth2 0.286 0.284 0.284\n", + "2 ettm1 0.415 0.364 0.371\n", + "3 ettm2 0.186 0.175 0.176\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-512 on dataset = weather, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/main\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [164/164 00:06]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.1524711698293686, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 6.5114, 'eval_samples_per_second': 1603.959, 'eval_steps_per_second': 25.187}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: weather, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 1723, val = 5175, test = 10444\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 351/1350 00:33 < 01:36, 10.40 it/s, Epoch 13/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.1601000.425349
20.1558000.422991
30.1514000.422865
40.1461000.427230
50.1402000.434825
60.1335000.442507
70.1272000.453159
80.1202000.465943
90.1143000.465322
100.1090000.464073
110.1039000.479937
120.0988000.485888
130.0956000.479965

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.1684032403505766 seconds, Total Train Time = 34.34052586555481\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [164/164 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.15006662905216217, 'eval_runtime': 2.1448, 'eval_samples_per_second': 4869.363, 'eval_steps_per_second': 76.463, 'epoch': 13.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: weather, context length: 512, prediction length 96\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 3542, val = 5175, test = 10444\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 672/2800 00:35 < 01:53, 18.72 it/s, Epoch 12/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.1349000.422834
20.1310000.421728
30.1280000.422719
40.1237000.425492
50.1205000.428487
60.1160000.436083
70.1122000.438655
80.1068000.437371
90.1030000.436040
100.1000000.427018
110.0966000.435761
120.0933000.433628

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 1.6051064729690552 seconds, Total Train Time = 36.556100368499756\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [164/164 00:01]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.14866013824939728, 'eval_runtime': 2.1524, 'eval_samples_per_second': 4852.25, 'eval_steps_per_second': 76.194, 'epoch': 12.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: electricity, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.363 0.363 0.364\n", + "1 etth2 0.286 0.284 0.284\n", + "2 ettm1 0.415 0.364 0.371\n", + "3 ettm2 0.186 0.175 0.176\n", + "4 weather 0.152 0.150 0.149\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-512 on dataset = electricity, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/main\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 17805, val = 2537, test = 5165\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [162/162 01:18]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.17006558179855347, 'eval_model_preparation_time': 0.0023, 'eval_runtime': 79.6138, 'eval_samples_per_second': 64.876, 'eval_steps_per_second': 2.035}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: electricity, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 800, val = 2537, test = 5165\n", + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1250/1250 07:03, Epoch 50/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.1860000.136702
20.1792000.132026
30.1736000.128869
40.1679000.125446
50.1632000.123641
60.1594000.122560
70.1565000.121135
80.1537000.120255
90.1517000.119879
100.1497000.118841
110.1479000.119294
120.1466000.118377
130.1451000.119855
140.1444000.118071
150.1428000.118609
160.1421000.118664
170.1411000.118297
180.1401000.118825
190.1390000.117799
200.1388000.118162
210.1383000.118339
220.1377000.117534
230.1372000.117699
240.1362000.117654
250.1353000.117274
260.1351000.117221
270.1346000.117807
280.1342000.117367
290.1338000.117252
300.1334000.117081
310.1330000.117083
320.1329000.116850
330.1324000.116892
340.1322000.116912
350.1318000.117315
360.1315000.116783
370.1309000.116776
380.1308000.116731
390.1306000.116967
400.1306000.116730
410.1303000.116513
420.1303000.116554
430.1300000.116673
440.1300000.116653
450.1300000.116706
460.1300000.116553
470.1300000.116500
480.1299000.116503
490.1297000.116548
500.1298000.116546

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 2.957715253829956 seconds, Total Train Time = 424.4246916770935\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [162/162 00:09]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.14259681105613708, 'eval_runtime': 10.2424, 'eval_samples_per_second': 504.275, 'eval_steps_per_second': 15.817, 'epoch': 50.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: electricity, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 1695, val = 2537, test = 5165\n", + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [1325/2650 04:23 < 04:23, 5.03 it/s, Epoch 25/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.1664000.131775
20.1568000.126925
30.1503000.123428
40.1457000.121103
50.1419000.119786
60.1389000.118132
70.1364000.117050
80.1342000.116493
90.1326000.116092
100.1312000.115692
110.1305000.115982
120.1295000.115369
130.1285000.115938
140.1281000.115339
150.1273000.114844
160.1266000.115098
170.1261000.115571
180.1259000.115323
190.1251000.115411
200.1247000.114962
210.1242000.114975
220.1237000.114859
230.1234000.114951
240.1229000.115152
250.1226000.115177

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TrackingCallback] Mean Epoch Time = 5.148207950592041 seconds, Total Train Time = 264.00721859931946\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [162/162 00:09]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.13970844447612762, 'eval_runtime': 10.0814, 'eval_samples_per_second': 512.33, 'eval_steps_per_second': 16.069, 'epoch': 25.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: traffic, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.363 0.363 0.364\n", + "1 etth2 0.286 0.284 0.284\n", + "2 ettm1 0.415 0.364 0.371\n", + "3 ettm2 0.186 0.175 0.176\n", + "4 weather 0.152 0.150 0.149\n", + "5 electricity 0.170 0.143 0.140\n", + "\n", + "====================================================================================================\n", + "Running zero-shot/few-shot for TTM-512 on dataset = traffic, forecast_len = 96\n", + "Model will be loaded from ibm/TTM/main\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 11673, val = 1661, test = 3413\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [427/427 01:57]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.5094045996665955, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 117.7341, 'eval_samples_per_second': 28.989, 'eval_steps_per_second': 3.627}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: traffic, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 493, val = 1661, test = 3413\n", + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "\n", - "====================================================================================================\n", - "Running zero-shot/few-shot for TTM-512 on dataset = etth1, forecast_len = 96\n", - "Model will be loaded from ibm/TTM/main\n", - "etth1 512 96\n", - "Data lengths: train = 8033, val = 2785, test = 2785\n", - "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" + "Number of params before freezing backbone 805280\n", + "Number of params after freezing the backbone 289696\n", + "Using learning rate = 0.001\n" ] }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d82abfe284a749f79144aa614219fefd", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [3100/3100 11:16, Epoch 50/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.2727000.393278
20.2534000.375481
30.2411000.360526
40.2305000.351872
50.2222000.344429
60.2148000.339461
70.2096000.338062
80.2056000.336990
90.2029000.336078
100.2000000.334375
110.1980000.333791
120.1970000.333844
130.1951000.333792
140.1936000.333915
150.1927000.334478
160.1915000.333000
170.1908000.332865
180.1895000.334100
190.1888000.332967
200.1881000.331086
210.1869000.332582
220.1867000.331533
230.1858000.330423
240.1851000.331567
250.1846000.331676
260.1845000.330323
270.1839000.330532
280.1833000.329897
290.1824000.330098
300.1819000.330095
310.1818000.329849
320.1813000.329267
330.1807000.329384
340.1802000.329585
350.1802000.328754
360.1795000.328836
370.1794000.328085
380.1788000.328287
390.1787000.328173
400.1784000.328408
410.1781000.328306
420.1779000.327732
430.1777000.328101
440.1776000.327719
450.1777000.327562
460.1773000.327719
470.1771000.327573
480.1772000.327571
490.1772000.327563
500.1772000.327564

" + ], "text/plain": [ - " 0%| | 0/44 [00:00" ] }, "metadata": {}, @@ -165,59 +3150,293 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'eval_loss': 0.36317431926727295, 'eval_runtime': 1.3033, 'eval_samples_per_second': 2136.926, 'eval_steps_per_second': 33.761}\n", - "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n", - "-------------------- Running few-shot 5% --------------------\n", - "etth1 512 96\n", - "Data lengths: train = 311, val = 2785, test = 2785\n", + "[TrackingCallback] Mean Epoch Time = 4.475683298110962 seconds, Total Train Time = 677.882349729538\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [427/427 00:16]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.3968665301799774, 'eval_runtime': 17.4472, 'eval_samples_per_second': 195.618, 'eval_steps_per_second': 24.474, 'epoch': 50.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Dataset name: traffic, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 10% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "/u/wmgiffor/git/tsfm/tsfm_public/toolkit/dataset.py:186: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + " data_df[\"group\"] = 0 # create a artificial group\n", + "INFO:p-86752:t-23060138476288:data_handling.py:load_dataset:Data lengths: train = 1081, val = 1661, test = 3413\n", + "/dccstor/tsfm-reg-class/wmgiffor/.conda/envs/tsfm/lib/python3.10/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n", + "WARNING:p-86752:t-23060138476288:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Number of params before freezing backbone 805280\n", "Number of params after freezing the backbone 289696\n", "Using learning rate = 0.001\n" ] }, { - "name": "stderr", + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [4080/6800 08:58 < 05:59, 7.57 it/s, Epoch 30/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.2942000.380806
20.2712000.362084
30.2585000.351829
40.2483000.345643
50.2405000.340656
60.2345000.339494
70.2296000.335847
80.2265000.335783
90.2255000.338349
100.2232000.336193
110.2226000.343954
120.2221000.340995
130.2198000.339137
140.2191000.335982
150.2177000.344850
160.2186000.342654
170.2181000.333909
180.2153000.338186
190.2136000.342740
200.2131000.332170
210.2132000.335310
220.2130000.334148
230.2110000.337650
240.2110000.340426
250.2102000.339711
260.2109000.342000
270.2096000.339016
280.2084000.335918
290.2076000.332504
300.2067000.337658

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", "output_type": "stream", "text": [ - "/Users/wmgifford/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/training_args.py:1474: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", - " warnings.warn(\n", - "/Users/wmgifford/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:558: UserWarning: This DataLoader will create 16 worker processes in total. Our suggested max number of worker in current system is 12 (`cpuset` is not taken into account), which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n", - " warnings.warn(_create_warning_msg(\n" + "[TrackingCallback] Mean Epoch Time = 8.763746841748555 seconds, Total Train Time = 539.691143989563\n", + "++++++++++++++++++++ Test MSE after few-shot 10% fine-tuning ++++++++++++++++++++\n" ] }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6ae7dec9260248269d7cf430502d4625", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [427/427 00:16]\n", + "
\n", + " " + ], "text/plain": [ - " 0%| | 0/250 [00:00" ] }, "metadata": {}, "output_type": "display_data" }, { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[9], line 160\u001b[0m\n\u001b[1;32m 150\u001b[0m finetune_forecast_trainer \u001b[38;5;241m=\u001b[39m Trainer(\n\u001b[1;32m 151\u001b[0m model\u001b[38;5;241m=\u001b[39mfinetune_forecast_model,\n\u001b[1;32m 152\u001b[0m args\u001b[38;5;241m=\u001b[39mfinetune_forecast_args,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 156\u001b[0m optimizers\u001b[38;5;241m=\u001b[39m(optimizer, scheduler),\n\u001b[1;32m 157\u001b[0m )\n\u001b[1;32m 159\u001b[0m \u001b[38;5;66;03m# Fine tune\u001b[39;00m\n\u001b[0;32m--> 160\u001b[0m \u001b[43mfinetune_forecast_trainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 162\u001b[0m \u001b[38;5;66;03m# Evaluation\u001b[39;00m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 164\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m+\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m20\u001b[39m,\n\u001b[1;32m 165\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTest MSE after few-shot \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfewshot_percent\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m% fine-tuning\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 166\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m+\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m20\u001b[39m,\n\u001b[1;32m 167\u001b[0m )\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:1885\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1883\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n\u001b[1;32m 1884\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1885\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1886\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1887\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1888\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1889\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1890\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:2178\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2175\u001b[0m rng_to_sync \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 2177\u001b[0m step \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[0;32m-> 2178\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, inputs \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(epoch_iterator):\n\u001b[1;32m 2179\u001b[0m total_batched_samples \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 2181\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39minclude_num_input_tokens_seen:\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/accelerate/data_loader.py:464\u001b[0m, in \u001b[0;36mDataLoaderShard.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 463\u001b[0m current_batch \u001b[38;5;241m=\u001b[39m send_to_device(current_batch, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice, non_blocking\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_non_blocking)\n\u001b[0;32m--> 464\u001b[0m next_batch \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mdataloader_iter\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m batch_index \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mskip_batches:\n\u001b[1;32m 466\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m current_batch\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:631\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 628\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sampler_iter \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 629\u001b[0m \u001b[38;5;66;03m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reset() \u001b[38;5;66;03m# type: ignore[call-arg]\u001b[39;00m\n\u001b[0;32m--> 631\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_next_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 632\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 633\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dataset_kind \u001b[38;5;241m==\u001b[39m _DatasetKind\u001b[38;5;241m.\u001b[39mIterable \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 634\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 635\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called:\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1318\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1315\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1316\u001b[0m \u001b[38;5;66;03m# no valid `self._rcvd_idx` is found (i.e., didn't break)\u001b[39;00m\n\u001b[1;32m 1317\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_persistent_workers:\n\u001b[0;32m-> 1318\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_shutdown_workers\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1319\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m\n\u001b[1;32m 1321\u001b[0m \u001b[38;5;66;03m# Now `self._rcvd_idx` is the batch index we want to fetch\u001b[39;00m\n\u001b[1;32m 1322\u001b[0m \n\u001b[1;32m 1323\u001b[0m \u001b[38;5;66;03m# Check if the next sample has already been generated\u001b[39;00m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1443\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter._shutdown_workers\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1438\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mark_worker_as_unavailable(worker_id, shutdown\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 1439\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m w \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_workers:\n\u001b[1;32m 1440\u001b[0m \u001b[38;5;66;03m# We should be able to join here, but in case anything went\u001b[39;00m\n\u001b[1;32m 1441\u001b[0m \u001b[38;5;66;03m# wrong, we set a timeout and if the workers fail to join,\u001b[39;00m\n\u001b[1;32m 1442\u001b[0m \u001b[38;5;66;03m# they are killed in the `finally` block.\u001b[39;00m\n\u001b[0;32m-> 1443\u001b[0m \u001b[43mw\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMP_STATUS_CHECK_INTERVAL\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1444\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m q \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_index_queues:\n\u001b[1;32m 1445\u001b[0m q\u001b[38;5;241m.\u001b[39mcancel_join_thread()\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/process.py:149\u001b[0m, in \u001b[0;36mBaseProcess.join\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_parent_pid \u001b[38;5;241m==\u001b[39m os\u001b[38;5;241m.\u001b[39mgetpid(), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcan only join a child process\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_popen \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcan only join a started process\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m--> 149\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_popen\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwait\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m res \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 151\u001b[0m _children\u001b[38;5;241m.\u001b[39mdiscard(\u001b[38;5;28mself\u001b[39m)\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/popen_fork.py:40\u001b[0m, in \u001b[0;36mPopen.wait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m timeout \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmultiprocessing\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconnection\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m wait\n\u001b[0;32m---> 40\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[43mwait\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msentinel\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 42\u001b[0m \u001b[38;5;66;03m# This shouldn't block if wait() returned successfully.\u001b[39;00m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/connection.py:931\u001b[0m, in \u001b[0;36mwait\u001b[0;34m(object_list, timeout)\u001b[0m\n\u001b[1;32m 928\u001b[0m deadline \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mmonotonic() \u001b[38;5;241m+\u001b[39m timeout\n\u001b[1;32m 930\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 931\u001b[0m ready \u001b[38;5;241m=\u001b[39m \u001b[43mselector\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mselect\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 932\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ready:\n\u001b[1;32m 933\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [key\u001b[38;5;241m.\u001b[39mfileobj \u001b[38;5;28;01mfor\u001b[39;00m (key, events) \u001b[38;5;129;01min\u001b[39;00m ready]\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/selectors.py:416\u001b[0m, in \u001b[0;36m_PollLikeSelector.select\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 414\u001b[0m ready \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 415\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 416\u001b[0m fd_event_list \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_selector\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpoll\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mInterruptedError\u001b[39;00m:\n\u001b[1;32m 418\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ready\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + "name": "stdout", + "output_type": "stream", + "text": [ + "{'eval_loss': 0.4039205312728882, 'eval_runtime': 17.7536, 'eval_samples_per_second': 192.242, 'eval_steps_per_second': 24.051, 'epoch': 30.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n", + " dataset zs_mse fs5_mse fs10_mse\n", + "0 etth1 0.363 0.363 0.364\n", + "1 etth2 0.286 0.284 0.284\n", + "2 ettm1 0.415 0.364 0.371\n", + "3 ettm2 0.186 0.175 0.176\n", + "4 weather 0.152 0.150 0.149\n", + "5 electricity 0.170 0.143 0.140\n", + "6 traffic 0.509 0.397 0.404\n" ] } ], @@ -428,7 +3647,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -472,25 +3691,25 @@ " 0.363\n", " 0.363\n", " 0.364\n", - " 1.037\n", - " 1.340\n", - " 33.769\n", - " 1.303\n", - " 49.612\n", + " 4.643\n", + " 0.779\n", + " 18.585\n", + " 0.796\n", + " 28.758\n", " 0.656\n", - " 0.654\n", + " 0.655\n", " \n", " \n", " 1\n", " etth2\n", " 0.286\n", - " 0.285\n", " 0.284\n", - " 0.435\n", - " 1.218\n", - " 32.602\n", - " 1.303\n", - " 33.487\n", + " 0.284\n", + " 1.408\n", + " 0.694\n", + " 19.670\n", + " 0.827\n", + " 19.247\n", " 0.208\n", " 0.208\n", " \n", @@ -498,15 +3717,15 @@ " 2\n", " ettm1\n", " 0.415\n", - " 0.366\n", - " 0.368\n", - " 1.727\n", - " 1.555\n", - " 72.793\n", - " 1.930\n", - " 91.994\n", - " 0.450\n", - " 0.427\n", + " 0.364\n", + " 0.371\n", + " 5.913\n", + " 1.006\n", + " 54.347\n", + " 1.374\n", + " 54.452\n", + " 0.453\n", + " 0.428\n", " \n", " \n", " 3\n", @@ -514,11 +3733,11 @@ " 0.186\n", " 0.175\n", " 0.176\n", - " 1.673\n", - " 1.578\n", - " 51.517\n", - " 1.951\n", - " 52.046\n", + " 5.595\n", + " 1.026\n", + " 35.574\n", + " 1.378\n", + " 36.830\n", " 0.129\n", " 0.129\n", " \n", @@ -528,11 +3747,11 @@ " 0.152\n", " 0.150\n", " 0.149\n", - " 2.065\n", - " 1.665\n", - " 44.358\n", - " 2.159\n", - " 50.491\n", + " 6.511\n", + " 1.168\n", + " 34.341\n", + " 1.605\n", + " 36.556\n", " 0.423\n", " 0.422\n", " \n", @@ -540,13 +3759,13 @@ " 5\n", " electricity\n", " 0.170\n", - " 0.142\n", - " 0.139\n", - " 8.555\n", - " 3.005\n", - " 351.540\n", - " 4.900\n", - " 275.353\n", + " 0.143\n", + " 0.140\n", + " 79.614\n", + " 2.958\n", + " 424.425\n", + " 5.148\n", + " 264.007\n", " 0.116\n", " 0.115\n", " \n", @@ -555,14 +3774,14 @@ " traffic\n", " 0.509\n", " 0.397\n", - " 0.397\n", - " 14.519\n", - " 4.312\n", - " 557.765\n", - " 7.788\n", - " 731.283\n", + " 0.404\n", + " 117.734\n", + " 4.476\n", + " 677.882\n", + " 8.764\n", + " 539.691\n", " 0.328\n", - " 0.331\n", + " 0.332\n", " \n", " \n", "\n", @@ -570,31 +3789,31 @@ ], "text/plain": [ " dataset zs_mse fs5_mse fs10_mse zs_eval_time fs5_mean_epoch_time \\\n", - "0 etth1 0.363 0.363 0.364 1.037 1.340 \n", - "1 etth2 0.286 0.285 0.284 0.435 1.218 \n", - "2 ettm1 0.415 0.366 0.368 1.727 1.555 \n", - "3 ettm2 0.186 0.175 0.176 1.673 1.578 \n", - "4 weather 0.152 0.150 0.149 2.065 1.665 \n", - "5 electricity 0.170 0.142 0.139 8.555 3.005 \n", - "6 traffic 0.509 0.397 0.397 14.519 4.312 \n", + "0 etth1 0.363 0.363 0.364 4.643 0.779 \n", + "1 etth2 0.286 0.284 0.284 1.408 0.694 \n", + "2 ettm1 0.415 0.364 0.371 5.913 1.006 \n", + "3 ettm2 0.186 0.175 0.176 5.595 1.026 \n", + "4 weather 0.152 0.150 0.149 6.511 1.168 \n", + "5 electricity 0.170 0.143 0.140 79.614 2.958 \n", + "6 traffic 0.509 0.397 0.404 117.734 4.476 \n", "\n", " fs5_total_train_time fs10_mean_epoch_time fs10_total_train_time \\\n", - "0 33.769 1.303 49.612 \n", - "1 32.602 1.303 33.487 \n", - "2 72.793 1.930 91.994 \n", - "3 51.517 1.951 52.046 \n", - "4 44.358 2.159 50.491 \n", - "5 351.540 4.900 275.353 \n", - "6 557.765 7.788 731.283 \n", + "0 18.585 0.796 28.758 \n", + "1 19.670 0.827 19.247 \n", + "2 54.347 1.374 54.452 \n", + "3 35.574 1.378 36.830 \n", + "4 34.341 1.605 36.556 \n", + "5 424.425 5.148 264.007 \n", + "6 677.882 8.764 539.691 \n", "\n", " fs5_best_val_metric fs10_best_val_metric \n", - "0 0.656 0.654 \n", + "0 0.656 0.655 \n", "1 0.208 0.208 \n", - "2 0.450 0.427 \n", + "2 0.453 0.428 \n", "3 0.129 0.129 \n", "4 0.423 0.422 \n", "5 0.116 0.115 \n", - "6 0.328 0.331 " + "6 0.328 0.332 " ] }, "execution_count": 6, @@ -623,7 +3842,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/notebooks/hfdemo/ttm_getting_started.ipynb b/notebooks/hfdemo/ttm_getting_started.ipynb index 9d01aa7c..d9a24858 100644 --- a/notebooks/hfdemo/ttm_getting_started.ipynb +++ b/notebooks/hfdemo/ttm_getting_started.ipynb @@ -24,7 +24,16 @@ "execution_count": 1, "id": "f63ae353-96df-4380-89f6-1e6cebf684fb", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-4186912:t-22963135206144:font_manager.py:__init__:Failed to extract font properties from /usr/share/fonts/google-noto-emoji/NotoColorEmoji.ttf: In FT2Font: Can not load face (unknown file format; error code 0x2)\n", + "INFO:p-4186912:t-22963135206144:font_manager.py:_load_fontmanager:generated new fontManager\n" + ] + } + ], "source": [ "import math\n", "import os\n", @@ -75,7 +84,7 @@ "# Make sure to download the target data (here ettm2) on the `DATA_ROOT_PATH` folder.\n", "# ETT is available at: https://github.com/zhouhaoyi/ETDataset/tree/main\n", "target_dataset = \"ettm2\"\n", - "DATA_ROOT_PATH = \"/Users/wmgifford/Downloads/tsfm_data/\"\n", + "DATA_ROOT_PATH = \"/dccstor/tsfm23/datasets/\"\n", "\n", "# Results dir\n", "OUT_DIR = \"ttm_finetuned_models/\"\n", @@ -325,24 +334,35 @@ "id": "6a84d458-76ca-4e2a-a756-59981e9847f1", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-4186912:t-22963135206144:data_handling.py:load_dataset:Dataset name: ettm2, context length: 512, prediction length 96\n", + "INFO:p-4186912:t-22963135206144:data_handling.py:load_dataset:Data lengths: train = 33953, val = 11425, test = 11425\n", + "WARNING:p-4186912:t-22963135206144:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "ettm2 512 96\n", - "Data lengths: train = 33953, val = 11425, test = 11425\n", "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" ] }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "db38bf3ef92f4e1d94b28a41e7b6815b", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [179/179 00:02]\n", + "
\n", + " " + ], "text/plain": [ - " 0%| | 0/179 [00:00" ] }, "metadata": {}, @@ -352,12 +372,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'eval_loss': 0.1860235035419464, 'eval_runtime': 5.3247, 'eval_samples_per_second': 2145.676, 'eval_steps_per_second': 33.617}\n" + "{'eval_loss': 0.1860235333442688, 'eval_model_preparation_time': 0.0026, 'eval_runtime': 18.5973, 'eval_samples_per_second': 614.337, 'eval_steps_per_second': 9.625}\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAfFCAYAAACMBK9jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUxf/H33eXXi69kd4rIRB6gFAlCCIqNn6iKBas6Ncuir1iF8SCHUQU6UqRTugEQggppPfeLr3c7e+Pye3c5u6SS3KpzOt5eNjbnd2du+zOzKeLOI7jwGAwGAwGg8FgMBgMBkPviAe6AwwGg8FgMBgMBoPBYAxXmNDNYDAYDAaDwWAwGAxGH8GEbgaDwWAwGAwGg8FgMPoIJnQzGAwGg8FgMBgMBoPRRzChm8FgMBgMBoPBYDAYjD6CCd0MBoPBYDAYDAaDwWD0EUzoZjAYDAaDwWAwGAwGo49gQjeDwWAwGAwGg8FgMBh9BBO6GQwGg8FgMBgMBoPB6COY0M1gMBgMRhe89NJLCAwM1PovKipqoLvYLQIDA/HVV1/1+jrp6el45JFHMG7cOEyYMAEvvvgiysrKBG3a2trw+eefIzo6GqNGjcKSJUtw+fJlrddsa2vD4sWLsXTp0l73j8FgMBiMwYDBQHeAwWAwGIyhgIODA9auXavxmKGhYT/3ZuApKSnBvffeCw8PD6xZswaNjY347LPPcP/992P79u38b/LBBx9g69atePbZZ+Hq6oqffvoJy5Ytw44dO+Dp6al23e+++w5XrlzB+PHj+/srMRgMBoPRJzChm8FgMBgMHTAyMkJERMRAd2PQ8Ndff6G2thbr16+HjY0NAMDW1hb33nsvzpw5g6lTp6KoqAibN2/GqlWrsGTJEgDAlClTMHfuXHz//fd45513BNdMSUnBt99+CwcHh37/PgwGg8Fg9BXMvZzBYDAYDD2RmJiI0NBQvPTSS/y+iooKTJo0Cffffz84jgMAnD9/HsuXL8e4ceMQFhaGmTNn4quvvoJCoQAA5OfnIzAwEPv27cNjjz2GiIgITJ48GV9//TXq6urwyiuvIDIyEpMnT8aaNWv46yrP++eff7BixQqMGjUK06dPx7p16/hra6K6uhqrV6/G5MmTMXLkSNxxxx04ffp0p991yZIl+P3333mBG6AW/+bmZgDA6dOn0dbWhjlz5vBtjIyMMH36dBw7dkxwvZaWFrzwwgtYunQpvL29u/ytGQwGg8EYKjChm8FgMBgMHWlra9P4Tyn0hoWF4aGHHsL27dt5oXX16tVQKBT44IMPIBKJkJKSgmXLlsHa2hqfffYZ1q9fj7Fjx2Lt2rXYu3ev4H6vvvoqAgICsH79ekyaNAlffPEFFi9eDBMTE6xduxY33HADNmzYgH379gnOe+ONN2BhYYGvvvoKN998M9auXYtPPvlE43dqbm7Gfffdh0OHDuGZZ57B2rVr4ezsjAcffLBTwdvW1hYjR47krxEfH4+33noLHh4emDJlCgAgIyMD5ubmapZrT09PlJaWor6+nt+3bt06tLW14amnntLlT8FgMBgMxpCBuZczGAwGg6EDBQUFCA0N1XjshRdewPLlywEAjz/+OA4fPow333wTDz/8MA4ePIgvvvgCTk5OAIgLtdJCLRYT3XdUVBQOHz6Ms2fPYv78+fx1p06diqeffhoA4O/vjz179sDOzg6rV68GAEycOBG7d+/GxYsXMW/ePP680NBQfPzxxwCAadOmoaGhAb/88gseffRRWFhYCPq+c+dOpKSk4M8//8SoUaP4c5YuXYqPP/4Yf//9d5e/zcKFC5Gdnc0rA0xMTAAAtbW1avcDAHNzcwBAXV0dzM3NkZCQgB9//BGbNm2CkZFRl/djMBgMBmMowYRuBoPBYDB0wMHBAevXr9d4zMXFhd82NDTEhx9+iNtvvx2rVq3CLbfcgpiYGP74okWLsGjRIjQ3NyMrKws5OTlITk6GXC5Ha2ur4LqjR4/mt+3t7QEA4eHh/D6RSAQrKyvU1tYKzlu0aJHg89y5c/Hrr7/i0qVLmDp1quDY6dOn4eDggNDQULS1tfH7Z8yYgY8++gg1NTWwsrLq7KfB66+/DoVCgY0bN2LFihX45ptvMHXqVN4DQBtisRjNzc146aWXcN999wm+G4PBYDAYwwUmdDMYDAaDoQNGRka8O3VXBAcHIzAwEImJiZgxY4bgWFNTE95++23s3LkTbW1tcHNzw+jRo2FgYKAmpGqyEpuZmXV5f6VVXYmtrS0AoKamRq1tdXU1ysrKtFrxy8rKuhS6J0+eDIBY3ufPn4/vv/8eU6dOhYWFhcCFXEldXR0AwNLSEp9//jkUCgUee+wxXuhX/g5tbW2QSCQQiUSd3p/BYDAYjMEME7oZDAaDwdAzW7ZsQWJiIoKCgvDuu+9i0qRJkEqlAIB3330X+/fvx+eff47JkyfzQvSkSZP0dv+qqirB54qKCgCAnZ2dWltLS0t4eXnx7ugdcXNz07j/zJkzaG5uRnR0NL/PwMAAgYGBuHbtGgDAx8cHdXV1qKys5AV/AMjJyYGrqytMTEywf/9+FBQUCKz6SkJDQ/H+++/j1ltv7eIbMxgMBoMxeGGJ1BgMBoPB0CMFBQX48MMPsXjxYnzzzTeora3Fu+++yx+Pi4vDhAkTMHv2bF7gTkxMRGVlZacZxrvDwYMHBZ/3798PU1NTPmZblfHjx6OoqAh2dnYYOXIk/+/kyZPYsGEDJBKJxnvs3LkTL7zwAm+1BogF+9KlSwgMDARALeCqid5aWlpw9OhRREVFAQDWr1+PrVu3Cv6FhoYiNDQUW7duVfMUYDAYDAZjqMEs3QwGg8Fg6EBLSwvi4+O1Hg8MDISJiQlWrVoFU1NTvPDCC7CyssLTTz+N9957D3PnzsXMmTMRHh6OvXv3YvPmzfD19UVKSgrWr18PkUiExsZGvfR17969sLOzQ3R0NM6dO4dNmzbhmWee0eiafuutt2Ljxo24//77sWLFCri4uODUqVP4/vvvcc899/BlwDry4IMPYt++fXj00UexfPlytLS04Pvvv0d9fT2efPJJAICrqytuueUWvP/++2huboaXlxd++uknyGQyPPjgg/zv1hFlojVd3fkZDAaDwRjMMKGbwWAwGAwdKCsrw5133qn1+I4dO3Dx4kWcPn0an3/+OR8HvXTpUuzevRurV6/GmDFj8NJLL6G1tRWff/45Wlpa4ObmhkcffRTp6ek4fPgw5HJ5r/u6cuVKnDt3Dlu2bIGLiwtWr16Nu+++W2NbMzMzbNq0CZ988gnWrFmD2tpauLq64tlnn8UDDzyg9R6+vr78eS+88ALa2towfvx4vPvuu/Dz8+PbvfXWW5BKpfj+++/R0NCA0NBQ/PTTT/D09Oz192QwGAwGYygg4rpKLcpgMBgMBmNIkJ+fj1mzZrE4aAaDwWAwBhEsppvBYDAYDAaDwWAwGIw+ggndDAaDwWAwGAwGg8Fg9BHMvZzBYDAYDAaDwWAwGIw+glm6GQwGg8FgMBgMBoPB6COY0M1gMBgMBoPBYDAYDEYfMSRKhrW1taGmpgbGxsYQi5megMFgMBgMBoPBYDAYfYtCoUBzczOsrKxgYNBz0XlICN01NTXIzs4e6G4wGAwGg8FgMBgMBuM6w8vLC3Z2dj0+f0gI3cbGxgDIlzU1NR3g3nSOXC7HtWvXEBAQAIlEMtDdYQxh2LPE0BfsWWLoC/YsXUc0NgJRUWT75ElAz+sv9iwx9Al7nhj6ouOz1NjYiOzsbF4e7SlDQuhWupSbmprCzMxsgHvTOXK5HABgZmbGXnpGr2DPEkNfsGeJoS/Ys3QdwXFAairZNjEB9Lz+Ys8SQ5+w54mhL7Q9S70NcWYB0gwGg8FgMBgMBoPBYPQRTOhmMBgMBoPBYDAYDAajj2BCN4PB6DWNjcDGjcCePQPdEwaDwWAwGAwGY3AxJGK6GQzG4KSpCfj+e+D994GiIrLv9Glg4sSB7ReDwWAwGAwGgzFYYJZuBuM6RFYhw9XT6eAUXI+vUVQEhIYCTz1FBW4AOLQjXQ89ZDAYDAaDwWAwhgdM6GYwriOqS2vw+oqjcHfnEDbZDx/871iPr/Xv1kJkZqrvjztV3oseMhgMBoPBYDAYwwsmdDMY1wm/fhwLbx8Ob307HbJGKwDAvsPWPb5eZc41fvubdy/A3LgOAHAxxa1X/WQwGAwGg8FgMIYTTOhmMK4Dzp/jcP+Lk1Fdby3YX9tg3ONr1tTQbR8fEUb7ZwAAcsrcUFFY2ePrMhgMBoPBYDAYwwkmdDMYw5zmZuD+B0RQKMjrfvvMs7A0lQEAZPVmPb5ujUzEb1vZGmNMWDX/+eLxrB5fl8FgMBgMBoPBGE4woZvBGOa8+y5w9SrZHj0a2LRvAuyl1QCAmgbzHl9XVivht61szRAZST/Hna3t8XUZDMbQg+PIPwaDwWAwGOowoZvBGMbEx5NyXgBgYAD89BNgaAhIzRoBALIGyx5fu6bWkN+W2pojMsqZ/3zxMnVbv3YxC2V5LLkagzFcqa4mlQx8fIDs7IHuDYPBYAxuFAogLg6oZfaJ6womdA8gM2fORGBgIP8vNDQUMTEx+Pnnn/V2j6VLl+Krr74CALz00kt46aWXujynpaUFf/75Z4/vuW3bNsycObPH5zP0x+NLU9DWRrZfeQUYNYpsW1kQobulzRjNDc09urasjgrdVvaWCIz0gqlRAwAgLtkVAPDHV6cQNNYTERGtKM+v6OG3YDAYg5m//waSk4nA/fHHA90bBoPB0C9//gl8+y0RlvXBu+8CY8cC48eDX6Mxhj9M6B5gXnnlFcTGxiI2NhYHDx7EI488go8++gg7duzQ+71WrVqFVatWddnun3/+wTfffKP3+zP6l9LcMpxKDAIABHiUQPVPL7WjFm5ZTc9mkZo6UwCARNwGUwtTGBgZIMKXJFPLLPZARWEVXn3XERwnRmGlC3b+eqWH34TBYAxmkq5Sv/ItW4DW1gHsDIPBYOiRc+eAO+8EVqwANmzo/fU4jgjwAJCSAly61PtrMoYGTOgeYCwtLeHg4AAHBwe4uLjglltuwaRJk3DgwIE+uZelZdfuxBwLzBsWHPsnnd9eNCMZRkb0mHSEL79dU2/ao+vX1JEkbFZmMojEJKnamDCatfzt5xKQUeLHf973X88zpTMYjMHL1diL/HZ5OXDgz8QB7A2DwWDoj+PH6fbGjb2/3qVLQEEB/XzyZO+vyRgaMKF7EGJgYABDQ0MsXboUb7/9NmbNmoXp06ejrq4ORUVFWLFiBUaNGoWZM2di7dq1kMvl/Ln//fcf5s6di4iICLz11luCYx3dy3fu3ImYmBiMGjUKd911F5KSknD27Fm8/PLLKCgoQGBgIPLz88FxHNatW4cpU6Zg7NixWLFiBQoLC/nrlJSU4MEHH0RERARuueUW5Obm9s8PxeiUY0da+O3omcKEaVIp3ZbJenZ9WUO70G1ex++LjKRDypd/TBW0/+9cCNpa5GAwGMOLpCxnweeNP/VwUGEwGIxBRkIC3Y6NBYqKene9XbuEn5nQff0wvIXu5E+B7W5d/zu2UP3cYwt1Ozf5U711t7W1FQcOHMDJkycxa9YsACQ+es2aNVi7di3Mzc3xxBNPwM7ODtu3b8f777+P3bt3867g6enpePrpp3H33Xfj77//RltbG+Li4jTe68SJE1i1ahXuu+8+7Nq1C2FhYXjkkUcwevRovPLKK3B2dkZsbCxcXFywceNG7N69G5988gm2bNkCOzs7PPDAA2ht9yFcuXIlFAoF/vrrLzz00EP45Zdf9PabMHrOsXMjAABikRxT5gcKjulD6K5pIBeRmjfy+8bcMInf5jhxh/ZWOHNOAgaDMXyQVciQV+4q2Lfj+GjIKpjgzWAw+oe9e4HZs8U4dMha79dWFbo5Dti2rXfX6yh0x8ayyg/XCwYD3YE+pVUGNBZ03a7JXcO+Mt3Obe3dwuL111/H22+/TW7Z1AQTExPcd999WLhwIf766y9Mnz4dY8aMAQCcPn0ahYWF+OuvvyAWi+Hj44MXX3wRL7/8Mh5//HH8/fffGDt2LJYtWwYAeO2113DkyBGN992yZQsWLFiAu+++GwDwwgsvwNDQEDU1NbC0tIREIoGDgwMAYMOGDXj99dcxYcIEAMBbb72FKVOm4MSJE3B3d8elS5dw5MgRjBgxAv7+/khMTMS+fft69bswekd5fgUSc/wBAGP8UiC1CxUct7Ki27LqVgCG6A5NTSQJGwBYuQXw+0PCDGBsTGqDK5k8uginLrkAAPbtA6ZM6datGAzGICYlLg+AcHxpajXF9h/jcN/z7GVnMBh9C8eReOvcXBEuXPDEk08Cpj2LmlOjtRVIShLu27oVePzxnl0vP189hru4GMjKItUfGMOb4S10G0oBU9eu25k4aN6ny7mG0q7bdMJTTz2FG264AQBgbGwMBwcHSCTUGujqSvuQkZGB6upqREZG8vsUCgWamppQVVWFjIwMBAcH064ZGgo+q5KVlYW77rqL/2xkZIQXX3xRrV19fT2Ki4vxzDPPQCymlsumpiZkZ2ejubkZ1tbWGDFiBH9s5MiRTOgeYE7sTQNgBwCInlCmdlzafBJAFACgJvMcv60rqtZxKysRv21oCISHteJ8HBHirc2r8etmK/iRfG7Yuxd4551u3YrBYAxikuKr+O07Zp7Cn4cnAwA2/mGK+54fqF4xGIzrhcxMQBnVWFdngOPH5Zg7Vz/XTk1VTwx5/DhQUgI4OXX/ert3021bW6CyPQ1ObCwTuq8HhrfQHfw/8q8nRO/quo0esLOzg6enp9bjxsY0+VRbWxt8fHzw9ddfq7VTJkjrmATN0FCzBdPAQLc/vTIm/IsvvoC3t7fgmJWVFU6fPq3zPRn9x9HD1NQcPdNM7bjUkv7NZDXdj7OuqVG5Vge9U+Q4Q5xvj2p4+PYE+AZOw+jRRLt78WLPJysGgzH4SLpK6908sNwIF5JykFnsiUOXRqMgvQiufi4D2DshCrkCbS1tMDI16roxg8EYEhw7Jvy8Z49Ib0K3qmu5tTVQXU3Khu3YATzyCD1WXg7cfz9Z23zzDaBtia3qWr5qFfDss2T75Eng3nv102fG4GV4x3QPM7y9vVFYWAhbW1t4enrC09MT+fn5+PLLLyESieDv748rV2hZJoVCgZSUFI3X8vT0FByTy+WYOXMm4uLiIBJRy6VUKoWdnR3Kysr4e7q4uGDNmjXIyspCQEAAampqkJOTw5+TnJzcB9+e0R2OnSWJjUQiBaZ2iOcGAKk1VYz0pGSYqtCt6qoOAP/3f8Ti7ewMrHyHJFOLuYGqig/8cREMBmN4kHSNKvVCx47APTdnASA5HT5efW2guqWGQq7AzDEJMLcUYev60wPdHQaDoSeOHhV+3rNHpLcYaVWhWykgA8BffwnbffstsGcP8MMPwB9/aL5WXR1w+DDZdnMjQrvSsTU2Vj/9ZQxumNA9hJgyZQpcXV3x/PPPIzU1FRcuXMBrr70GU1NTSCQS3HHHHUhMTMT69euRmZmJDz/8UJBlXJWlS5di165d2L59O3JycvD++++D4ziEhobC1NQUNTU1yM7ORltbG5YtW4bPP/8chw8fRnZ2Nl599VVcvHgRPj4+8PX1xaRJk/DKK68gJSUFBw8exEZ91FRg9JiqkmokZJN47gifVFg7Wqm1sbJREbp7kJZAVkDLkUnFGYJjU6YAhYVARgYwwpUocGIm0aCoff80gsFgDA+UmcstTWVw9XPBw88FwtSoAQCw9s/JuHYxayC7x3PlVBqOJUSgTW6Ix17yQ01ZTdcnMRiMQU9HS3d2tgiJeqpaqCp033svdQE/ehQoU4ncu3CBbm/dqvlaBw4ALe1FZRYuBMzNgfaUTUhKoq7mjOELE7qHEBKJBOvXr4dCocAdd9yBJ598EtHR0Xj11VcBEOv1+vXr8c8//2DRokUoKytDdHS0xmuNGzcOr7/+OtatW4eFCxciOTkZ33zzDUxMTDBx4kR4enripptuQnJyMpYvX47Fixdj9erVWLRoEQoLC/HDDz/Aqt3E+dlnn8HGxgZ33XUXPv30UyxdurTffhOGOieOc3zm8OgJpRrbSG1olhFZrUhjm86oKS3nt60M8tSO29sDZipe7ZNiQmBpSqT7/WeC0NLYonYOg8EYWtTX1COrxAMAEOKZC5FYBFc/Fzx//zkAQJvcEC+uLBnILvKkXKZjVpnMAe89f6mT1gwGYyiQnU3juUUiat5WunF/9x0wbRq1MHcXpdBtbQ24uwOLF5PPcjnwzz+0XXw83d63D6itFV6H44B16+jnhe1Fk6JU0umcZg44wx9uCFBfX89duHCBq6+vH+iudElbWxt34cIFrq2tbaC7whji9PRZ+t//OI4M8Ry3fZtCY5trF7P4Nv93Q2y3+/bThyf4879+45hO59wy9TR/zqIpp7mWppZu35fRM9i4xNAXqs/ShUNJ/Dt9//zjfJvaylrOxaaIP3Z4v6zb92lp4bj9+zmupEQ//X59xRG+PwDHGRk0cZlXcvVz8eFKXR39werq9H55Ni4xesvPP9NHdNkyOb89fjzHbdlCj02a1P1rl5fT86dNI/uOHqX7HnqI7Kuq4gRjC8BxmzcLr/Xdd/SYuzvHNTWR/Vu30v0vvdTjn4GhZzqOTfqSQ/Vq6eY4Dh9//DEmTpyI8ePH46OPPoJCoT1e9J133kFgYKDgH3NNZjB6jkJBtKxKpk7TbMWW2pjz27K67udTlNXQ5ElSK93Of/k1Ke92uiN2Iu6eewGtza1dnMVgMAYrSbk03W5IpDO/bWFjgXdfpnk+/veiJeTdzNf48svA3LnA1KlAW1vX7bsi5ZoweVpLmzFeWqnupfPD+yfw3sqjzBuHwRgCqLqWL13Kwd+frDHOnSOJzZRkZ3f/2iopkhAeTv4fO5bGYZ85Q/6/fFn9XNWY77w8YTz4998DyhzJqpbukye730fG0EKvQvdPP/2EPXv2YO3atfjyyy+xe/du/PTTT1rbZ2Rk4Nlnn0VsbCz/77bbbtNnlxiM64pNm2hNyQkTADs7ze2k9pb8tqzOWHOjThAkUrPRTegeNycEu35LgYkhien++9gkPHDz2W7fm8FgDA6SUunYETLBX3Ds3v9NQEQE2Y6PV0921BUH9hGF3LVrQNxhzQlBu0NyURgAwEDSBkcrEoz55+HJOLmXJns7ui0eD74yFau+nI4NHzBfTwZjsKMcV4yNyZpn2jS6OGlooO1KS4lRois4DqivJ9uq8dxKodvcnG4nJhI3clXXciX//ksSp3EcSZimdDe//34IMqs7OwO+vmT79GkqyDOGJ3oVun/99Vc89dRTGDt2LCZOnIjnnnsOmzZt0to+IyMDISEhcHBw4P+Z6quiPYNxndEga8DLz1bwnzurh21iZgxDCbHkyOq7L3QL6nTb6H7+7DvGYOcvSTA2bAIAbNw/BQmxgyfDMYPB0J0kmh8RISHCYxIJ8Pjj9HNqqu7X5TggPYN66Rz6p6iHPSTI5cC1LFLb0M/fAG8/RytsrP2VKgt2/J7Nb/+3twcZJhkMRr+RlwdktedpnDABMDEBpk6t1thWLu86UVlbGxAZCTg6Emu0Jks3AEycSP7nOOD8eVIOVcnYseT/piaSzfyVV4C9e8k+Fxfg00/V7/t//0fvv3gxKavKGJ7oTeguKSlBUVERxo0bx++LjIxEQUEBSkvVkznV1dWhpKQEXl5e+uoCg3Fd8/HL51BQRkzbC6ZnYfZs7W1FYhGkZkT1WlOvXse7K2pkdOiQ2ph069wb7o7E+/+j6ty/NxZ0+/4MBmPgUQrdZmaAh4f6cdXpXZnsSBeKioDGJupBc/C4dY/6pyQnhyyCASAoCLj/+cmwtiZJl/buFaG1PcplX0IMf87J1AngFHqqO8RgMPSOqmu5MmdwSEgDPD3Je2tnB8yYQdt0JczGxREBuqEBePhhmoVcJAJCQ2k7pdANEOu00tItkQCvv06PLVsGfPAB/fzttyQhW0defZWE0QBAQQFwxx3gxyTG8KL7wZxaKGvPne/o6Mjvs7e3BwAUFxcL9gPEyi0SifDNN9/g+PHjsLa2xv33349bbrlF6z3kcjnk3Q0M62eU/Rvs/WQMfrrzLBVmFuPDH4jCy0DSig8+aO3yPKmNKSpqAVnriG4/r9UyOnRYWJt0+/zFy/3x7EcKcJwYf/3rgdVdnP/rJ6fw6dfOeP7JYvzf05O7dS8GG5cY+kP5DNXV1CEz0xKAGCFBreA4sVrctqujDIANACDncjzk8pE63SP1SjUAGhtzMjEEtVW1MJN2X0EIAFevAgAJxAwMVEBsIMK8eRw2bxahpgY4elQOb28gNY0qEMtkjki5mIGA0V49uuewQC5v/9Xa/+56Hj/YuMToDUePiqC0HU6dSuQDsRj48882bN4swQMPcPj1VxGOHCFtCgvlCArSfr3ycgD8Ew9UV5P/fXw4mJoq+Md//Hja7tgxrl35KEJwMIc5cxSwsxOjokKE5mbSXiLh8MEHHG68kdP4ConFwObNwPjxYhQWinD8OPDKKwp88AFT+g0UHccmfY1R3RK6m5qaUKJFVdTQHjxhZESTlSi3W1rUE5JkZmZCJBLBx8cH99xzD86fP4/XXnsNFhYWmDNnjsZ7XLs2dNxQr6j6pTAYvUDbs9TU0IIjW0tw9pwdTiWGoqGZJEe778aDaDJwRLymQCMVDE2CAQA1Mgni47tXPqeqmrp+FpTkorqlvJPWmhkfIsPZq8FIzvPFtm1X4ePTpLFdS2MLVr4+CrVNUjz9uh0Coy7AwFBv+sLrCjYuMfTFoV0noVDcCADwtT6O+HhrtTZNDS0AJgEAcnIUXY5JSs4fzAVAFfAtbcbY+uM+hE9361Ffjx0wAUBMVaamOYiPr0RYmA0Akgjup5/K4enZBMBTcN7uLVcwS1Tdo3sOB8SNjRjdvp2QkABFH4X/sXGJ0V2qqgzwxx8kT4OhoQJmZpdx5QoRUiWSBNxzD6mJ3dbmCMAdAHDuXA5sbau0XjM+no4Jqnh4VCM+PpP/zHGAldUo1NQY4NAhQKEg6yF390okJmZj6lQP7NjhAACwt2/Be+9lYcyYOo2x36q8+645HnooAG1tYqxdy+GOO+IhZoWdBxR9j03dWrlevnwZ9957r8Zjzz//PAAiYBu3p+VTCtua4rQXLVqEGTNmwLrd1yIoKAjZ2dnYvHmzVqE7ICAAZmY903T3F3K5HFeuXMHIkSMhkUi6PoHB0EJXz9Ky+aexcf8iwT5r82q8t24s7EbYdnl9Jycxrl0DWlvFCA6O4LNp6kJ9Ew3mnBA1HgZG3ReC71wuwtn/ke2rV4Nx662atbq7fzmP2iYSj1lVb4vWChOMjQnr9v2uZ9i4xNAXymeprsKC3xcRLkaEMmtaB+yl5SiX2aOg3BERES463WPrOvV46pQrUtz7tOZ7dMX6XJoWeO7kFkRERMDLC3j9dQ5tbSKcOW6I2tEO6vdMscOzWr7XdYEyoxSA8PBwkkVKj7BxidFTnnxShPp6IpEuXQpMnDhK4/OUlEQNBKamXoiI8NR4PQA4c4a2DQnh+HNvvNFKbXybPFmMvXupwA0AM2bYICLCGp99BlRUcHBz4/DJJxI4Ovrp9J0iIoAdO0TYuRNoapLAzi4Cntq7y+hDOj5LDQ0NejH8dmulPGHCBKRqyYZSUlKCNWvWoKysDG5uRButdDl3cFCfzEQiES9wK/Hx8cGZTlL3SSSSITMwD6W+MgY3mp6llsYWbD8awX+2Ma9C9OhUvP2hHRzd/aELVlZ0u65Ogu7os2paSHkgc9NGGPfQ+nH77cD/2oXubdvEeOMNze22/SWsF/Tf7ipMmc/erZ7AxiWGvki8Qt3tRkVaaH2uPBzLiNBd4QxOzumkoMvIVtcAHjrl1ONnNzWTDnYhY1wgkUhgZwdEh1/GoYujkFVgi7ziNgBi2NtzqKlqRavcCCcvuV3f74vKd5dIJILP+r0NG5cYupOUBHz3Hdk2NwfefVcseDRVnycXFT1fWZm400dYNUHsO++IUFtLkrU98YT6eZMm0QRpSsaMIe28vIDjxwFAc8nWzggIoNsZGRL4qBveGf2I8lnS1/ikN8cFJycnjBgxAnFxcfy+uLg4jBgxQi2eGwC++OILLFu2TLAvJSUFPuwJYzC65OS/V1HfTCxNd8w8hbIqKbafmIiwyboJ3AAgNaUzjKy8e5l6Zc1EkSa17rm7oZsbmbgAkiVUkz6vuRnYdWqiYN++o/Y9vieDwdAPV5KopTt8ona3bw9nUsJHrjBAUZZ6UlVNpOUQTx2JuA0hHukAgIvpQags0u4a2hnJOaR/I2yLILWT8vsXxlTz221yogy4cfxZRPqTwehagTfK8rofOsNgMPqO55+n6QVefpmU3dKGkxPd7iqRWpXK8GJjA9x7L7BqFcmK3pGJE9X3jRrV+fV1QVXoTkvr/fUYgwu9Rgvcfffd+Pjjj3H27FmcPXsWn3zyicAdvbKyEvXt7kozZszA+fPn8cMPPyA3Nxe///47duzYgQceeECfXRq0vPTSSwgMDNT67+xZVr+YoZ19e2lqy5sXcpAYdl8LJ5XH89uyku5lEFfW6Va1lveExbdRl/K/vzundvzQIaBGJrSMnb8WgvL8CrW2DAaj/0jIIIKsrUUlRvhoX/W6uzbz23npXb+3nIJDeqErAMDLsQAxU/PJfk6Mo7u7UXesnfL8ClTUkqRswZ7C0mM33a2u5I+Zq8CUcbSfJ490UWeIwWD0GwcOkBrYAODuTr3ltNEdoVuZOA3QnGVclfHjSVZzJW5ugL0e7AH+KnaTIZTGiqEjehW6ly9fjhtvvBFPPPEEVq5ciZtvvllgzV68eDF+/PFHACQ+6IsvvsDOnTuxYMEC/Pbbb/jkk08wevRoLVcfXqxatQqxsbGIjY3FK6+8AmdnZ/5zbGzsdfM7MHrG3nPjAQAiEYcbFgf36BpWUgW/Latq7qSlELkcqK1tv0Yvhe7bbizkt3/83QlXTgpnmb/+otuhvsUAyOL7wN/dX3wzGAz9ICuvR2El8dsM982BSKzdjdLDnSrWcjNru7x2aW456posAQB+7mWYdQONIz54QD0pa1ckX8znt4P8hPf3DnNHmCc1J4lECsy5NRBRN9L6QCevBIDBYPQ/xcUkGZoqqiW43n8f6Cq6zc4OfDKy7gjdNjadt7WyAoJVll76Sv2gKnQzS/fwQ68pgCUSCV5++WW8/PLLGo8fPnxY8Hn27NmY3Vkx4WGMpaUlLC0t+W2JRKIx9p3B6EhBAXHHBoBx40Swd+06aZompNTLErJq3YXuujrN1+gJnsGuGB+YiHOpYcgo9kT4FOD2Gafx+rsO8I/0w44dpJ2FBfDRmyWYfw+xqO3bL8KSlb27N4PB6Bm5KTX8dnhQ56EpHl60okludtdCc3piEQAyF/p712PaTZEwkLShTW6AfRcmoq0NMOjGyiXlCu1rsAb95MIZGUj8max0x/mch73bBETNosdjY3W/F4PB0A9//AEsWULe2QsXiHBdWamMlQZ8fYG77+76OhIJ4OBABG59WroBEh6X1J5TVl92MhcXEqdeX88s3cMRlox+EJKfn4/AwECsW7cO48aNw1tvvYWvvvoKS5cuFbSbOXMmtm3bBgDgOA7r1q3DlClTMHbsWKxYsQKFhYWaLs8Y4uzfT7djYnp+HamUWqdqqls7aSmkpoi6olspuldqTBPffW8IF5ti/vNfRyZhZJQPZo8+x0+CN90EzL41GOamZNG+P24iFAoNF2MwGH1OVipNohY+qvNlhIcv1czl5nWdWCg9mQrxfr6AhY0Fpk4jUnZWjhE++6x7fU1OogNFUJil2vHF93nx27fc1AiALNIDA8m+uDigsbF792QwGL1j82ZSmispCdi1i+zbu5fGci9aBJ3LaSnTSpWWkmtqQxnTLRIBlupDhRqqhZamTdOtL10hElFrd1YW0Kr70owxBBi2xW7/+gtYvZq6wfYHlpbAm28SDZw+uHjxIv7++28oFArs3r2707YbN27E7t278cknn8De3h4//vgjHnjgAezevRuGhob66RBjULBvH93uldBtTV9/WY28k5ZCaipoGRkrs7pOWurGqKmByMhpxLfvHcP760NQWuMAjhPjRNJ4vs3i2VdhZBqKWXPIBFxaKkJ8PDBmTK9vz2AwuklaOnX5Dh9r12lbD396PK9QQ0aiDqSn0WoFfkGkpMK77wJRUWTB/NprwMKFVCjuihSVvgaPGaF2fPT0IGxdfxoZac1Y+fYkfn9UFEnu2NoKnD+vv0U1g8HoGlXX6k2bgDvvpMI3QBTxuuLkRLwDW1qINVub67hSyW9trZtAf/vtQEUFSbQ2a1bX7XUlIACIjycKhqwsYXI1xtBm2Arda9YAKSn9f9+PPxZj/Xr9XOu+++6Dh4eHTm03bNiA119/HRMmTAAAvPXWW5gyZQpOnDiBmTNn6qdDjAGnraUN/+1tACCFjXUrxo/vuUJFaqUqdHei/u2ArKqJXsNSd2G9M0wtTfH0+9F46KV6rH/nKD78LgzlMpKVxNy4DjGLvQEQJQOv9f6Xw5gx3S/JwWAwesfVbFJ3ViRSIHSCV6dtnTwceffw3KquV4/p2bR2oV8oEdgnTQKefhr47DNS0WD5vTU4ftICYoOuE0gmZ5OQFEtTGVy8nTS2uW3FJLV9k8eU48cfyRh0cf9JTJsW1eW9GAxG75HLgYwM+nnvXqCwkBocbGyIUkxXOiZT00Xo1gWxGHjsMd37oSsd47qZ0D18GLZC9wsvEI14f1u6n3tOfz6vrq6uOrWrr69HcXExnnnmGYhV1HNNTU3Izs7WW38YA8+5/5JRXTcSAHDDmPOQSCb3+FpWNjTWUtaNimE1lTT+u7eJ1DpibmWO59ZMx4pX6rDu7aP45z8brHiwDmZSMsOqWvbffFOO/Eun8Mp7fnAPVLdgMRgM/SOXAym5ngAAPz8RzKRmnbaXGErg5g5kZwO5xV1kJwKQXkU8XMRiDl4h7vz+d94Bdu2UIyNTgpPnrLD29WN46t3oTq9VX9uGnDIyjwa550EkDu20vSp+I/IBEKE7L4f5eDIY/UVBgTCBWlsb8MQTdJ0yf3738jp0FLqDgtTbcBx1L9dV6O4rOmYwnz9/4PrC0C/DVuhevJj862/kcuIWog+MjY35bZFI3aLX1tbWfk9ibfziiy/g7e0taGOlb6mIMaDs20VL2cTM7Z2CR2pDXT1rZLqnd5DV0NnQyqpvLM0WNhZ48dPpeLHDfm9vYvU6fRpobTPAN9um4cddzfjl01O468meKyAYDIZupKcDzc1kvAgP1+399/AgQndlJUkQZG6uuR3HUbdSDw8RjE2pJ4+ZGfDDJ4mYfgsphvv22lA8/oacL5f43sqjWL8pAO+vysI9zxAlXewpAz6Gc/SE7iWcdPej7fMKjTtpyWAw9El6uvq+7dvp9sKF3bueLmXD6utpvHhXmcv7Glare/jCEqkNEQwNDfka5wCxbldWkvqhUqkUdnZ2KCsrg6enJzw9PeHi4oI1a9YgKytroLrM6AN2/efCb99wm1+vriW1obU2ZLW61/muqaYu5VKr/h9C9u4FVj2RBAsT4sbS0maMz7/uZRp1BmMYUpZXjm/eOo7clIKuG+uIsnICAISH63aOapRUXp72dpWVQE17snE/DcNb9KJRuHnKWQBAucwecUdIDFllURVWr52C/IoReP4tHyjkRCF56BA9d9YCF7XrdYarL12p5xVZdOtcBoPRczQJ3UoMDYG5c7t3PV2E7u5mLu9LWK3u4QsTuocII0eOREpKCvbu3YusrCysXr1a4Eq+bNkyfP755zh8+DCys7Px6quv4uLFi/Dx8RnAXjN6SmFGMZYvPIU9P9EVatqlbFzOItmDJgQlYoSvc6/uIbWl5iZZQ+cuoqrUVFMLu5V1/zvLWFkB73wVgqy0FjhalQEAsoo0x2oyGNcrnILDzXOL8Ojr03DzfP3FWSUkUOu2rkK3O/USR25GvdZ2qlYd1YWnKgvmUU+bvTvI+7/3jyTIFWQsKq52QdxhIowfPEjP625qE2MzY358ySu1797JDAajx6gK3R2rCk+f3v1SpUNN6Lazo9Z2ZukeXjChe4gwadIkLFu2DKtXr8Zdd90Ff39/jBo1ij++fPlyLF68GKtXr8aiRYtQWFiIH374gbmXD1E+ei0Vv/w7FW+sW4TYPQkAgK2/ZPPHb7+pvNf3sHKkC0mZRPcik6rx31JrI+0N+xh7Nzv4uxUBAEprHNAgaxiwvjAYg429Gy/gdDLJ/xCfGYTaSv0I3onHLvDb4cG6XdPD7Cy/nXv5otZ26RcS+W0/t1KNbWIW0/Ig+46QRGu79gjd3HcfdEJ5OQ31iogA7HsgN7s7EqG7qMoRbS1tasdT4zLhPyIbs8dcRGszi/tmMPSBqtC9erXwWHddywHdhG5lPDcw8O7lqmXD8vJYycLhBBO6BwG33norDh8+zH92c3NDamoq3Nzc+H0ikQgvvPACzp8/j7Nnz2LFihX47bffcOuttwIAJBIJnnnmGcTGxiI+Ph4bN25EcHBwv38Xhn6Iu2LNb3/5KckWvvUfOnPcdl/vXMsBwNhEBGU1OaVLpy7UyOgC18q26xJAfYmXK13056YWDWBPGIzBA6fg8OZ7poJ915J6X94PABLSiJu2hUktvPy0BGd3wMODjhm5OdorHqRfpcpEP2fNoVFuASMQ5kl8Ls+lhqA4qxR7T4cJ2uzab4cjf53l47lnTanoeBmdcHciGkYFJ0FhproS4M3/JSK9yAuHLo3BiZ3xPboHg8EQohS6DQ2ByZOBGTPIZ5Goe6XClAw1SzdAhW6OE2ZyZwxtmNDNYAwyOAWHq1k0CHLHifE49NdFXEwnSpSx/knwCnXTdrrOiETUTatb2ctlNP7bys60k5Z9j5cHtS5lX6vqpCWDcf1w4I84nEsVCqKpud2LaVbl85ePYfqoeEwbeRnZpcRXfKR3NsQS3ZYQHn7W/HZevvb8EWkZNHGaslyYJmKmFQIgwvCrK1NR2yj0N718GfjpN6oQmD0xU6d+dsTdlVZqyM8QCu61lbXYcYb6vubnaHebZzAYuqFQUKHbxweQSICvvgIWLADWrgU8Pbt/TQcHuj1UhO6OydR27wbuuoskkWUMXYZt9nIGYyBoaWzBwugEZBfaYuufcoRN1hKY2AmlueWoqqezhIKTYMmDtHzc4gWlAEL00V1IpUBFRfeEbpmILualDo566UdP8fSii/7sDOZezmBwCg5vvqOebTs1tWfXS4i9hmc+UC/NNTKoUudruPtTU1NukXbr+OVUMp4YSlrgO9Jda7uYm6T4+Dey/eMeWrB3dGgVLl0lvqFK67ehpAVT5/fM68vdjeO387KErvTbf0pAYwu9dxFztOkTqquB8nLNifUYw4+iIupOrfybh4YSobOnGBqSOOmKiqHhXg4Ic1p88glw6hS1ep8/P3D9YvQOZulmMPTIjh8vYP/5sUgt8MHyB5r5LLrdISkuX21fqYwuWhff59WbLgqQGpOYRVmN7vGINY3W/LaV/cBm9fXypQv4nGztbqsMxvXCoa2X+FhuBytqne2p0P3P1kK1fa62hVjxtO4KNysHK0hNSQxLbrHm0l31NfVIziOJP8O8MmBspr1M15T5oTA3Ju7yHEeWMYaSFnz5laFa24nByTC37tk45e5Jc1bk5bQIjm3cN0nwubCwb8onXs/IZMTi5+8P/PXXQPeG0R+oxnPrU9GidDEvKQEfdqLKYLZ0nzxJ+9zTcZwxOGBCN2PA4DjgtdeAJUuIBnI4cOwoFV7PpYbhj7XEF0hWIcNji4/j0duOo7mhWdvpAICkdKpmtbUQukyPDiqC7ygvvfXXypCUEmppNURTfef9UqKM/zYwAEwH1rscngF0AZ9dOAjU0wzGAPP5ZzTh16dvpEHS7s3d09Iz+w5b89upcVloqG3E9r0FCI8K0H6SBjwcSUx0XrkzOIW6MvJybCYUHOlsZGhZp9cyNjPGzMirgn3TI64garoFPJ2Fsdezp+luke+IqoU+r5p+38JC4NBh4fKpqHTgkkoOV06fBsraH4WPPx7YvjC6T1sb8OKLwPLlultn+1robmoCajXkfxxsQre26g21td3zTGQMLpjQzRgwjh4F3nkH2LwZeP/9ge6Nfjh6zlXw+aV3vFBa2ICYOY1Y//c0fLNtGr5c3XlQTlKuF7+94inh6Lp4ac/jMjUhtaDWG1mFbiO5csCXSklc+EDiEURj33NkEQPXkWHE6X+vwM2uCHfMPM0yMg8xOAWHM1dJdm9HqzLc/fg4+LgRjea15HpwCg0mnk6oKZfh5FXiph3gmoWAMd4wMjXSOZZbFQ/nagBAc6sJosfmwNoauPFGoLX9Ebt4hgrHY8Z0fb2YW70Enxfe4UISLU1LFuyfNU97bHhXuIfQTOl5FSP47T/+ILGnqhSV6V52kaEbmSqh+OfO9V/5JI4DLl4E6vSTe/C65euvgY8+An78ERg/nmQeV1YU0EZfC92AZhdzVaF7MLiXS6WAs0pVWAsVZ52Cgv7vD0M/MKGbMWDs30+3d+zQ7PIzlCjLK0dSrnCWyCt3RXCICKcv0RH/+82enS5+k5Lo9qxZVZg9m7QViYDFi/XbZ6kFFapklbrFRNdUEUHdSjrwApmJmQQu7XqI7OwB7cqw4YP3GlBQ6YK/jkzCd+8cH+ju9Cnl5SQ5z3DJDpufp0BFLREyI0dWQWIoQYAL+XL1TeYoyCju1vUOHbPk61/HzOqdBOI+gta9OXHJGzU1wN69wL59ZF/cJbociZyk2QVdlZhbnASfb7qTCMULb6GrUwuTWoyf0/MqHi4uVLGYl0f3b9xItw0kZBwsKrfu8X0YmsnskP9u06b+ue/zzwORkSRrtpxFLfUIuRz44gvhvt27gbFjiaFFG6pCtzZrb0/oSuhWjekeDJZugJRLc3QEXn4ZePxxuj9fPQKRMURgQjdjwDi4i65iMjKA5Dj12MGhxPF/qBr+pslnIRETN8/KGqEPdlqhN47tuKz1OlfbvSadnTlYWcnx008KLFtGtMUB3fPo7BKpJV1RyKp0E7plMqIEsBIPDklFmc20qIi4jjF6x6UU6k3x+hcRqCqpHrjO9DHPPgs8+SRZYKsKVUOV+ASaGTxiKhksAn3pe50a371sX/v2U1eWmLtG9qpvkZFa7tEudF9MIjHiEnEbRk7y1dxYBR8fahGfPJmOA9E3j8QIW/I9F0RdgaGxepy3rhgaglfqKZ+Pq2cycOkS2R43Vg5/z2oAQGG165BXHA82OgrdGzf2j3J++3by/4ULwJYtfX+/4ciePfTvFxwMuLY7AcrlwD33AH/+qfk8pdBtYNCzTOXa6I6le7AI3Y8+ChQXA++9B6hUEGaW7iEME7oHIbWVtbh8IrXbroBDicqiKlxMEbpi7/69h0GHg4RjF6ir8yOPiPHIw9T/0MYGeOlRasL+/hvN5WXKSuR8DJuyzLqLC/DTT8CyZXrvMqyktI+yqq5jupvqm9DSRhIcSc0Hh4Tr5UW3h4PgNJBUFFYir4I+xxW1dnjn2XgAJDP/0W3x2PPLOez55RwObI5Dfc3QLpN07Bj5v6YGWLFcNuTHXFXXzYgI8n9gEJ3mUxM1BDNqgeOoQGxsDESrJzDvFg+8EIWfP4rFjx+cQMKZPBgakt96716gsbYRV3OIoB3qmQFTS92SRWzfTjwVVBfwRqZGOLSvEV+/cRzrfuu5lVuJe3sS9ZISoLlRjm0b6SDzfzfEwsWLVJpobDJgsZZ6pqMHSkYGcPZs396zoQHIUikR//bbzNrdEz77jG5/8gkRph98kHxWKEgun7//Fp7DcVTo9vIigre+0FXoNjIa+Fw1qig9bZjQPTxgQvcgo62lDaNCqhAxLRBfv6ndtXPnTuD772k83FDj6K4UPuuskl37u3YpHMwcO0+UCGIxhyk3jcHb7xohKgoICQEOHgReX+MLO0sSX/n30UhUFqnXlU4+k8hvh7gmqR3XN1KV8rZKt/HOqCmji3YrS90Sr/U1nva5/HZ2fN//ZsOF5oZmrHv9GP75lWa4uXwqR63dV39Ow0cfAQE+NZhxWwRuWjYeNy0bj7lLInHD5IwhK6g2NQG59NHBv/9J8dunJweuQ3pAo9AdSl/yrjLfnjtwFR89exRFmSVITqZKrOnTAbNehixLDCW47/kpuP/FqRg5wR1Tp5L9WVnA37+X827sY0bqrsjx8CBul65C/S2Cxvng0denwdal98GZ7uZx/HZBegGOnqK/58K7fTCChnqzsmF6hOPULd2A0LW/L0hNFVrTU1KArVv79p79QWkpEYR7mlCxO1y6RBWagYHA3LmAiQnw7bckqRpAFBl33y3sT2kpjaPXd4k4XYVua+uBz1WjCdUxTtW9/OJFEjdfXt7/fWJ0HyZ0DzIy41ORVUIsTbu2a7YkXrkCLFoEPPxw/7s+yVv1o/I9+B/VFhhKiLB3OjkMpbmdZ60drFRWkr8LAEREiGBlI4GtLRAbS9zFx4wBTMyNce9NpFFzqwl++ypB7TpJl2v47WDfvv8tpFI6u8hquha6ZVV0QSy1aOukZf/h5ZDNb+eksZlHV7577wyeeCsaC5eNQeIpEhoRf54+fwEeZGXS2irGiy8COcUOatc4lRSOk/9c6Z8O65mMhFw1V9WVb4ShKFNLIdchQPwF8n6am3PwbffQDoygUmFqpvYa2bWVtbjhFje8+Ol0jBotxltPX+KPxcztfunDrogZc4Lffv9jKtFHztEhi1o/4u5MFY2ZyeU4fTWI7LcvgFeIG+9+DpCs5kpaGltQXVqD6tIa1Fbq7mHAIFRU0CzTEydS6+Mff/StsSFJg9727bfVE+cNNR58EPjf/4ApU/o++7VqLPfKlYC4XdIQi4HvvgOWLiWfW1uFpeBUE+X1t9CtjOkeLK7lHVEVupWW7pYWICaGZIh/4omB6RejezChe5ChOhiml2gedeJO0fpa8Ufi+7hHlDXPHYW5eSteX3G019c6dIb47BlIWvHIbSSbN8eJ8c/mlF5feyA4fpxqx6dP197uoZXu/Pb3m1zUrIRJSXRmDw6Xoq+RWlP/LVlN1wqVmgoaH2olHRxCt6cPXbBnZw3xlVE/cuIgUeooOAn2bCIKoPgE+jx8v65GkD0VAOZOSsU7TxzG/fOpwPT9+qHpU3vtMpWQzIyJsFpdb42nlmswrw0BaspqkJlLhOpwzyS+VJiTpwNfIzs1x0nb6di/JRE1DVYAgDKZA7b8N5o/FjMlS9tpPSZmEX24ktJphnFdMpf3J+50yMb2v2rR2ELGm+jILIjEIrg40zG8KIf8zgf/vAgHu0bYOFnBxskKUjtL3DHz9JD1Cukr6uqAxEQzjQKtqmt5RARw881ku6JCmIRV36gK3cqM0VevAtu29d09+xqZjIRxAKQE27p1fXevnByaKM3GBrj3XuFxsRh48036WRnCAvRd5nJAKHQXd8gnqVDQtfdgyFyuCScn8GO6UuhOT6cl9XbuJKERjMENE7oHGbJqam3MLvNCS6O69TE/j85QpYX9U9OitbkVb68bg+ZWE6zd1LuEOnmphbhW4A0AmBichCX3UbfyXXt6nvRmIDl2kFoIO4t9DB7vi6hQIuBczQ3A/GnXBPUrk65Z8tuhY906nq53rARCd9cLwpoq6n1hJR0cC0gv1VrduUPz+RkIEvND+e2DCeShjc8KAUCUYRNmemDjRpJBdv584NQpYN+pQKz6aibWbR4La/NqAMBfh8agurS6v7vfa9JS6LP84QtxcJCS1cu2Y+NRXVqj7bRBS8LpbH47IpgqZkViEQLdiT9iTpkrGmsbO54KANi9W7PSzdMhH4GRPvrraDthk/zhaiv0xxaLgVGj9H6rXuHuSetvb9kfxm9HTyPj3wijM/y+oiTiHbDuqxbIGq0E1/nryCSkJA8OReVgQKEApk0TY9myYLz1lro/r6pruY8P8H//Rz/v3t13/VIVuj/6iG5/+GHf3bOvOXSI1MxW8sknfVMOrakJuP12YoEFiDemuQbnGm9v4nYOkFrsStdu1fCXvhC6TUzI9n//Cb1SZDJqNBmslm6JhCZ1VLqXq/5eTU3k78wY3DChe5BRI6HWBQUnQXayesaE/BIqmJVWmPRLv07vvYraJmJ5raq3gULec4vioZ10Np01pQrj54TA0YoseA+cH4mm+sGRoKs7HNtHRnCRSIGpUZ0vrJ5+nLpo7z0ZiPHjSSmwujogKZv4EDlIy2Dv2vP6sroitacCa03LiE5aEirLaRy3tO8N8TrhGUQtZjmFFp20pCjkCjx623EsmnpWY2z9cKe5oRnXimg9ltjz9qiuBpLSyfMQEmoIYzMTzJpFYu727AEmTaLnm1qaYukCkoG/scUMm9Zqz8bfkc9eOoobxsbhysmBTZx4LY1m+p403QFL5pPVtoKT4OiuoedxE3+umt9WxnMrCfQmzzjHiZFxhazYVGuwt7W04Z9YknTMwqQWbz1+FGIREcLvvDEdIrH+gxxFYhFiooSFl4OCNC/SBxJ3HzrQKcuxAcD0G0kYmIs79bRRxnRfzSRmNUNJC8K8s/njJ08zpaCSkhIgIYE8V4cOdS50+/oCM2eSJFcAyZHSVyiFblNTIjQqhcNLl4aui7mqNRkg3gJff63fe3AccXFWGhG8vYnbszZiYsj/cjkRFjlOmFgtPFy//TMyooncGhqAVavoscFYLkwTShfz0lKi2OgYn79rV//3idE9mNA9yOgYa5OeqB6jmpdJG5VW9s8KZe+uan6b48SQVfQ8Ru3QYbo9a54NJIYSzJ9CFrkNzeY4/PfgihGVVcgQuzsBbS2ahenq0hrEZ5KZOdwrDTZ2nafcXPzoJPyyJhYezpX8vr//BmbPakNRFREgQ7z6Jz2l1I0KXjJ0XY/s1AnqeREUOjhSfJpJzeAgJe9JdpF63LEm9m3LxzfbpmFn7AR89cbpvuzeoCT1Yg6fuAoAmptJrJ0yS29HoU0TDz1Jg1m/2+isk+tsRUEFnvtoKv6Li8Sqp7O72Wv9kpZNlZf+o1wxaw59ng/9N/QUf5fiVcqFjRcq7AL9qYB95UIZlsw5CWNTCd558igA4PTJFl6gjJmYiNfWTsel4xn47dOTeOOrCX3W55h5QiF0jNfFPrtXT3H3U1d+jrAtgm94u9DtYc3vLyw2QlN9EzKKyLGR3hn4dqMXfzw2tk+7OqRQTTpXpiF9SUdLt5kZKQ2nPJal/4gHNDVRF+fgYGJd9CZOeZDLhcLZUEG1CoGhIU0S9vHHQL0ei098/z3www9k29SUVBbozFV73jy6vXcvSbymjOmeOVMY1qEv3niDCtW//EKSkAHCcmGD1b0cEGYwLypST4y5e/fQVQxdLzChe5ChJnSnqgdp5GfRkb+0ykrteEdaGlvw0bNH8ee6Uz3u175jwuDOqtKexXFyCg6HzhG/IXPjOkyYQ6wrCxdRF75dOzS7Pw4EnILD1HFFmLowHKsf1bxiOnconc/EPm18scY2Hbn3uSlIy7HF+vV0Ejh7jgpBIf79EycryF6ug0ftwVPEGi4WyTF9YVAf9ar7eDmTzCiFlU4aQzI6cuEy/eIn47THuQ5XEuPUV7lffkm3dRG6R0YFYEIQybafkBWI86e7VsQVZJVDwRHh8GRK5IDGuF7LI0oDJ+tSSO2kiF4YBImYKNYOnurb0I5f1sTiy1XH9JaYEgDiU4hwKBbJETZR6A6umkzt0VdGYvPBKHCcGG98PQVJZ9Ox619qrV24bBwAIHxKAO55Jkrn8l09YfZtIfxvDgCR4YMv4ZiThyMMJMLMXdFjMnnrv4u3Pb+/qMwM1y7l8s94qF8FIiNJyTUAODm0k+PrFVX33tJS9eOqMd1KwXfWLLqvL1xpr12jQksIibSBg4oeV5NyYLCTkkKrNMyYAdx5J9kuKwO++UY/98jKAp58kn7+7ruuw0SmTaPu3vv2EaFdyUMP6adfHbGzA157jWxzHEksx3GDs0a3JjpmMO8odJeUQBCuyBh8MKF7kKEmdGeot8kvo7NAaY19lwvXL1efwoufTsedT0zGxSPJ3e5TUWYJ4jOFAlZVnaWW1p2TciGTt+ZOG5UMI1MibM+5PQzGhsS6tPuYPzgVdZ1cTmOE+pvKokokZBEr9j8HNatAL56jC8Vx4yUa22jCyAhYsYK4yllZCf+GIcH9I4yoanW70uIXFzQjMYdYxscGJMPasWuFT3/hOYK8OApOgvy0ruv2xCfRvp9N8utVuMRQJDFBPf2vau1PXYRuAHjoESqQfbZW2qWWvbSQmlYq6+yQflm9RFl/UFtZi+JqomzxdyPPi9ROivGBZHxMyfdFQXrf1H86sesylr0wBSvfi8Yfa890fYIOtDS24GoOEbQD3bJhJhUKygFjA/ntmno6dssVBnh+ZRUfIysWAzcu0GNx3C6wdrTCJH/qaTJmfM/mlb5EYijBCFthuuPoaVRZYmFtDktTMv4UVVgh6RL1TgsJaoOxMTCO6DGQng6U5A5Bc2kfoGrplslEaO5QgVJp6bazA6zah2t9Cd3NzVCrXAAI47mVQrejI92nSTkw2FEmUAOIS/err1Jrt75czL/7jq7RHnsMuOeers8xNaVJZwsKSFZ6gPy9b7lFP/3SxBNP0HjxY8dIArKhKHQXFGguAdmX+Q4YvYcJ3YMMWb4wSCO9apzgc4OsAZV1NA63VW6EmvLOraLbd1IXvj1/dN8n68COfLV91Q3W3b4OABw9Q2ewGdPpwsXcyhyzI0mCscJKF1w8T0bw1GQ5nJ2JpvvcuR7dslMaG8mkpC2pSGUpFajTS/w0TtRx8cb8dmSUs3qDLoiMBA5sz+czDANA2Oj+EWhtbOgEXF7euaB/+Bj9nrNv6jr+uz/xcqcrtuxrlSjJLkPs7gStCqlLl1RKpTVaIeXC0MxY3VMSU6hQZm9VrXZ8VJhu7tV3PujLZ/j94w+SYbiyUnv70iKhF8uZI+pjS3+QdpneN8CLjp+zptAEZId3adB46oHjZ6z57ROH9FPiLiUuGy1t5P0cHaTubePvL/xsYtQEJ2siQfx7dhy/eIuKIove/uSJJ4iiMsQjHRPmhnbRemBwdxQ+1NHzhL6vLrbkuSmssEdSIh2LQkaS9ywq8Cy/7+TeoZcvoC/oWNNc1Yrc3EyTRSlL3wFEeWHZrpc5dKhnrrSHDgG2tsDUqern96XQXVBAsnpv2kT+nTihWfDXN6rx3DExQGgorRCQnU1DinpKayvw009k28CAWpJ1QRnXDdC/xb33tnuGtNUDmT8DpceFP1QvfzQjI2GCvPXrh05Mt6p7eUICic0HyN9UuY5jcd2DGyZ0DzJkpcIFU3qWmeBzQYb6qF+ar32VW1lUhTPpE/nPh053X1jadz5SbV9PY5uOnaKWjOmLJwqOLbyPJpHb9S/xO3r76TMoLyeuaDfcwCEurmf31URjI8k0fuONxO1KkzW9spRK4w3N5mqlJgAgLpmoH82M6xE4xrtHfRk/wx0HtudhfGAilsbEYtrNes4iogWJBLC1rAYAlOd2LgCpWhZmzbPV3nAA8PKmQvSXX5vCO9AcUxeG4+FbTqgJ3tWVbcjOFp5/5kghricSM8kza2FSiyUxwiRoHg75sHXQLUGjhQWJDVRO+Hv2AGPCKnD1dLrG9qXFwrwIZ5J6FqKgkCvw+cvH8O3bx3vkop52lQ5g/n501Tl7njW/ffBUHwQVAkhIo7HwCZn6yQoef4bOCxHh6l4MZmZAWHvibWNjYOcOMT59I02t3cKFeulOt7jzickoySlD/DVPGJsZd33CAODuTOcBJ8c2BEYKx3kXO6IwrWuyxLlLdI4LGUOUsFOm0LaxxzuYdDshPp7EoXYUUIcDhR2GXFWhOzubylY+Kq+IgQG1jpaVAYmJ3b/v99+TRFonTxLBRZW+ErplMuJuvWQJsQLfcw9xr/7tt55dT1fq64k1FwA8PEiiQgAY0b4MVCh6b73fs4fWvV64EGplJjtDNa5byUMPASg7Cfw7CjhzP3AwGjgwEcj+HTj/GHCs94PUokX0Nzh5UvjsDeaYblVL92GV3EhTpwLjx5PtK1egtr7Ztg14/32oeZMw+h8mdA8yZLVC9+SsLGGph/xMdWm3tEB7HNzBbcl8fBkAnE4KQX2N7tkz5HLgwAH1/aruOLrCcXQCsLQERo8WHl+wkFrkd+0CCjOKsOXQeH5fTY0Ic+aQLKK9heOARx+l8S8XLgAfPntCrV1VudDil95BlqgqqUZWCUmaE+GbAYmh7u7lHZkwNwxnU8Lw694pEEv679W0tyRKm3KZdus6x9GMsSYmNKHNYMEzgK6Mdh4J4mvpbtg1Dd++I/y7Xj5+Ve3809dRLrX6eiCrmKjMQ0OBOfOErsgRAd1L4vfII8RbxL49tDWnyA4rHtY8xpSWCgXk0xftNbZT0tbShqUxsbhp8jlBGa/NX57CMx9EY8XqaTiyLb5b/QWAaylUw+YfRBUME2NCYWpK+njojGefWKISEmn+iitZXnoJbYi/RCeJiLGaXbR//hl4/HEyBt8wzwh3PTEJ4wOFUsvCmIEplebo4QBD48Gb2ds9hNYvio4W80omJSMc6fN+IjECAGBs1AbvUPKeTZ5LXQ1OxnX+zCtpaSFCyZtvAgvnFA2ZGt+6lqLqqEhQFf46JlFTpbcu5qouueUdHE2UQrexMb2vPoTu8+epVVKV33/v2fV05dgxakyIiaHKUVXBWJMhoTv0Jhbb35/G6wNA1GQFgpteBP6bCtSpeBpVnANO/R+Qth4o3ANUdrC+cByg0L0cn0hES7vW1wufo8Fs6VYVulVjtwMDhQrTnTvp9q5dwG23Aa+8QkILVGlrI8YnRv/BhO5BhqxOuPBoawNyVMIe83PUF7OlRerJ1pTs2yv0HWqVG+HEHt3jui9coO6iZmZ00q8q637ay2vX6AAfFUW01qqMGAGMHUu24+OBl54uRpuc/B6W5kT4raoC5swBSkt6t1D9Zr0Cv/wi3Pf2+glIPCW0/qiWyALUhe6Lx+nqIHJkJ361gxh7a7JKqm2UorlBsyo041oLn4xlyhSaAGWw4DUqWOuxp96aiNP/0oz4qqWVlJy57KK2b7iias0Ji7DEtAVBgmRWEWHdn4XnzgUuxcnhaku8Jc6lBGnM9l9aJ7QeJyR0nkH3wO9nsHH/FOw5PR5fraJ1gvZvz+a3zx/qfp6KtGIqRAWMpIn0jE0NMW0aWZlqi5nrDY2NwjIvdU2WyE7qvYv9lTQqGYya7KGxTWQksHYtMKE9GblYIsanH9NxNMA1CwFhgydPw2DCJ4T+vtNnqC+bXJyod0FDI5nYgoINeCWsrYstQtzJ5HExPRANsq7nz4MH6Xx54aoLju9K6PyEQcA77xCF+iOPdN22M/fyjuXCVJk9m253t3SYQiF8/1SF7pYWmj07KIh4gQH6EbpVx5F77iE1owHg+PG+tT6qxnOrWpX1JXTn5lL3dQ8PsjbrDiKR0MX8oZsOAskfAWhfa9pNAKw7eP0ZWAA1KpNYYzFwdD5w5fVu3VspdAPAkSN0e6gI3arGuI5C99tvE7mhqorkDVLy448kQz9Awjc8PUnt76vqdghGH8GE7kGGrM5IbV96AvXDys/VsJCt1SwwcByw7/xYtf0HT+juGqw6aC+8gSaTqUrvforEY/9S7YHSRawjqgPHb3uIKdxA0ooLJ2swZRIRBioqgD/XqluldeX0v1ewciVVRkwfS2b4VrkR7l/WKhAWKsuFv3d6mtDacPEsjQcdM6b/EhDpEwcbqrQpL9SsODi4hSZ8mjV58Lli+/iAjy02MwN+/RV4ZslRAOTvunipPUqyyaouPoEOe+bGROFwNdcXsor+yRg/0Ki6ZIaFkQRiE3xpzGlERM9qMrt5SDApPA8A0NJmjKyr6sJkaaNwBS2Xo9OQkexUuhI/cor6/cWmRvHb6QXdD5m5lk+D43wjhK7Cqpa0n9aX4ctVx/DyA0eRdim72/fpSNK5XLU40oSzvfcdzq4ivrCWlhwc3HSzpAJA1IJwfPTsUUT4pGDdpyzBlzbuuouEIM2bR2JOO+KiYQpWuicriRpDxs02uSHOHey6Rv3WrcLPn3/Sdyap5oZmvP/0Ufz4Qc/n1fp64IMPyPaGDcSFuzN6aukOCaFC47FjJKZYVwoKhP1StT6npVFBRvVvp2+he/lyoqQEiBLujH5yKarBcdTiaWhIynAp0ZfQ/eOPNAxg+XKqqOgOzz9PYvXvuAO4e+V0wGY0IDYCIj4A5pwE5sUD0XsAzyXAqPeARbmA91JyclsDsG8sULQXuPo+if/WEdU1qKoAO5jdy01NST6CjgQGEq815fq5ogK49VaSUV71PausJKXcAOCtt0iIR01N34c5MChM6B5kyOrVTYjp8dT6ml+gviAurffUeK2EBKColLiOTpwgh0jU7jZ5Vvc4wkPb6Wxx563Ujb26pvsL82N76SI8eozmxFUL56oLfXfOOoeAUU5Y+2Euv2/fwZ6XsXn6fyK0thEL+v8eK8XeoyMQ7E5cmS6kheDzVbQ0WGWlUMhOPyucIeMu0zrpkVGOGIrY21JX2/IizYLnoSPUA2P21MG3ODczA/76C3j6aeKdsXQp8OGPUYgOjwdAkvOtfoZYROOTSfZ/ibgNd8wmsQocJ8b5w5rjkLtCJhNO2gNFa3Mr7l9wAgsmneMVDJroKHQDwF13kC9gaSrD1AVhPe5DkD8126TEa8g/oWHReuaI9lVfcSVdAZ1Om4TmhmYUFgJZpVRQTs/tvnVWadFydyfPjiqqQvdHXzpg5XvR+OCn6Vi6REe/2U5IOKOerT3hUu+EKYWClgTy8hLxpax05fmPp+NSRhBm3zGmV/0YzlhbkxjKf/8FzM3Vj7uERKjt6yh0T5lCl1uxRzp3429tBXbsEO7beXI8MhJyNbbvLb9+dhavfDEdy1+eitP/9Cx+a+dO6rWiUHQeb61QqAt7qpZu1XJhHYVukYgKkPX1wNmz0JmOniuqlm5N8dyAsGSYPoTuwMC+L30GEPfjPKIDxezZwvKgqkqingrdcjkRugFS9eCBB7p5gZYqIOMnPknuli0g1WwmbwJiLgAhLwJiCfmDu84HojYBoS8DRipSsYEZEKisVcZBfHYZJHLdyg4GBFCPA1UGs6UbEFq7ARIK4elJfqaff6aeIRcvkoR9AFG6KPnuO2IF//lnuq8vkhQzNMOE7kGGrEFdmExX8XjOL1IXyrVNBKpZK//vHglvwYqP173e5LUcolYbYVuEkeH0za2q7p5Vl1NwOBZHZk9z4zpETtOcpCh8rA08HIQWsmdeJH0IjwqAiw2ZIY5cCkVTvW4ZllXJTyvCuVQiVIS4p+HDz2xhYm6CH79rhFhErN8//EH7VlUlXMCm5VgLPl/MIdnlTYzlCB7XsyRqA429HTW9lReruz0q5AocvkBKDlmbV2N09OCpz61KTAzw2WdAcLunuaGxIbbsdOXL+fy+bzQqi6r40kpBblmYMZP+fc+c6L6l+48/yCQ9YcLAC96bvjiLn/+Zin/OjMcLjwlXl6f2XkHaBfLuJJ6mVrawEPLMP/b6FPz723lciK2AvVvP01cHh9AxIjlR3dSlUeg+lK31esUldIpqajXFuSPZarWO0/O7V2e9ooKGzHTM6g2QcmnKkAtVzqaEdarM0IUrCeqpghOu9i55WHExjdv01Kx/ZfQxI7ys1faFBAkHhKg5dF6JPWvR6fWO7Mrgk5WamZI/LseJ8dUH3a8+ogvxx+l4EfvPFY1t2trImiJHXW8EANi4scM147Xfr7xcfbzUZOk2NFQXMgChi7mq8NAVHYVuVUu3NqHb1JRmTO+t0G1pSazMqkL3wQN9Uw/1r7/o9uLFwmP6sHSrCvXz5gkzawuoywZKjgGlsUDZKSB1LXDkRmD7CODsA2SfKlbBgPVI3TsS9BzgSHzFRQ25cC9do9NpqnHdqugsdHMKoKFAPZt6dSKQ/h2Q8AaQ/ClQdABoyAdq04HC/eRY7l9AdTd9ujkOqIyDm4tw3evnRz0MbGyIJbujInndOqJkAICjR4nLuaqHSFxczyoBMLoPE7oHGbIGokY3NaIL1vRsKoir1uhWoovQHRMjnKhUY1i0UV9Tj9Iacj+fEaWwdqCq0mqZuht8Z2Qk5KKgkqhXJ4elak2aIxKLsHAaHYymBJ1B5Mxg/ljMZKKBaGg2R+ye7gei7NlMNRh3LMiHgRFRHkyMCYPfCLKaKKyg7pmVrUI1e3qhK5/QpqaGWsxGRUhgYDR4EwF1hr09FTzLS9QVGQkn0/gydTMjU3qVLK6/cfJywN1z4wGQ+NnXn05Aq5w8uxFBJZg4iypKzqRPRH1NPT545ig+fv5olwmuqquJ+xbHEa3yxYt99S10469tVHjbtH8i0uPJ8/z7Fycx7aYI3L1iPr545TgSU8kK0s6yAk7OZAqQGEow755xCOhh9n0lQaOo71tKqvpzokykFhDAwcqMWPtOX/HWmiSquEwokB67FKgmdOdXjEBjre7W4rRk2la5EFFFLAa+fu8KRvsmY2HUWcwaTf+wh3epZ/zuDgnJNMmZgYSsehLSul9mUBXVTLVeXr26FKOHaHQv98oTfPYZ6QFnaxKidTrRv9Px5a9faTLDz99IhYkheWZ/3DG6T8JgciroPHcpRYOUC+CLL4hwNWGCerK00lL1hKsCoZtTEOGrPdmVpmzsZbnFgLwFHEeFbm9vzS7Lt9xCLbe//KKerVkbPRG6Aepi3hOhu6mJKioCA9sNt44yBPkQzd+582LIOv5JZalA6lfAta+B+q69G2QyYNUq6jrMcTQ8QSIhpRxV0UXoPngQeOopkg1bE7HUIRA33dThIMcRwfLQLGCXN3BoOnBwKvBfFBD3JHEHl7evNZI/Qq8QS4BJvwKGxOPJTvaveqI1LXQUus3NhVZhjTSWAEcXAFtMgR1uxGKvSsEe4NwjQOKbwKVngSNzgR3uwG5/4GgMORZ7B9mvC03lQMoXwN4IYN9YuFoIXUgCAwHIqeJm5Ejghx/o8TlzgAcfFCa5U5UNAPL8qOY6YPQdTOgeZMgayKLM3zWPF7zT86jlKb+aTI52dnSRWlqibj2praxFbCyZ1H19iTZMoF3d37WVOOsqjd31ca8VCN1Vsu5l0jq2l04c06M6d/9Z9pgHDCUtEIvkePU1oUU9Zh6dgffu1s2NSJVd/1AFxk23Cxe7Du3WLVmjFZ9QrLJJaJGvbZSiLJ/4pKkuKpR1L4ciDo70Ny0rVTfXplymK5OJ47rvXTDQPPQ4VaKs30pjgSPC2+AX7srXJT552hDjw4vw8ufT8fzH07FvU+cT93tvyrS6J/YFLy47ivGBV7Fjg7o/ZXVpDf67MIr/LFcY4L1Xc1FUyOGJ16jV4NmPZqCwXfkV5p3XbVfkrggcQ5N4JWcKg+Pqa+pRX0/u52x+DRNCiABbXO2Erd+ewaKpZzEp+ApS42joSXG50CJ47JhwsackM1H3jOtpZ+nf1d9Os6bk9kcn4WJ6MHbGTsBLL9H9hw7SsVbeKhdkVFfS0tiCyiL1EAxOweFyBjFFO1mXIsKHfP/0Is9uVZToSPaleH7by6Fv3I8ZndNR6DaUtMB3pHDuEIlFCPcjgris0QqyCs3zV1tLG7YfIfXKzYzr8X8rfHHvfJJDpbZRih/W6F+7l1NO+xqfrtldQqmoLylRd+neskW93rOgysjpZUT42moLHLkRRfvfULt+aVY2sMMNZcnneDf1jq7lSqytgZUryXZbG40l74rO3MtzVV4dwX0b8uFoRRpWVWkuLYrGYqBas3Safk3OG0MDnRKBgzOAv+0xy5ekLpcrDHBst4rEk/EDsCcIiHsKuPA4sNMT2D+B1KzWUk7hlVeA994jcbwHDhAFsFIRMWsW+DlOiapbtSahOycHWLAA+OorUorqhx/Ub606DquWxANANAvJnwAlh6EVU1cg4ElgzKfa2+iKuQcQ/g7/UZzwik6ndRS6u7Ryt9UDxxYAhf8AivYHoa5DqKSZZqWVGlYdkr+2NQAF/wIVF4i1PPVL4EgMsGMEcPFpoJokUnQ1FOZdCHRKBLYYA/snAdtdgZ3euGv0l9jyB4cXXyTeeCIRcN996goF1dAJ1WzojL6DCd2DiOaGZrS0EcuOtUUjfF2Im3VmsRvkrXI0N1NNa0CACOYmZGYqzcpWu9auXy6hrY38eedNJHV4p0RxMDIk1pVD/3atss1MofHVPl5tkBgaQGpKFplVtRoC2zrh2HG6uI+e03kit8iZwYg7lo0Lh9Mwd4kwEdzsW4N5N/B9J7T5M2mmrqoOhy8RAcTVtkjNTdrRlnoXlBWQ715ZCTXSr5BZSjUBVKR6KfMhg70jtSaWl6lbX/Jy6CrDw6t7Hg6DgciZwYjwSQFAFjhKIsZaQiQCJraXi6+qliApl2a1Tk7ULghlXsnFF2uFVtiko7onceku+WlF+OiX6Th/LRS3PDQBz95zFK3N1D9s98YrvAVfya97J+GuO5pQVSuFJsIC9V8eytzKnA8PScl1E1iwy/KpIOpoVYmJkdRcdsdjk7AzdgLOpIzE12uohbC4SjhWnDzJCcpjKUlP0lCPRwvXUun5/r5dxwREzQuGsSFRNh08Q6zyCrkC8ybFw8bJCl+8coxvW1tZi9FBuXB0s8THzx8VXKckpwzlMqIACvfNQ3h7Ul6OE+Pq1Z57j+SkVfPbng6DL8nh9YBUCpiZ0mcpwDUHhsbqIVg2UjqWVldo9s44tjMBFbVESloQdRlmUjOsfIkmC/x0Q4DWKhM9JbeUSmGp+d5okKmHhqgmN+u4QFd1LVe6YickqAjiIc8DElOgrRYo2ovCdHXlUGmtI+D3EDIqaLZqbUI3QPJ3KO/1449CoVkbHa15FRUAFHKg5AhKcknoiK1NK4xUh9KqBDiKqIRZfuUQkP0HEP8SEYq2OQPbXYDzj6vfcHcAUn+6m/8YaLoFKD0KKFoxO4ymXj90wpqe4zRD/ToV50jN6rT1aoc4Thj//9BDwE8/0c8dXcsB4n6s9BTQJHS/9BLNqt7URCyly+6pR0NdG3/PkyfJWsFa2oxgxftAVYfs+v7tabMt/YHAZ4CgZ4HAlSRB2rzLwKI8YOyXgIXuOYY6xe9hcObEU0tUcggo7jq1fUgILXUJdCF0K+TAySVA5QXy2dgOcL0JEHd4zx2igPHfAtG7gYk/AcHPASPmAx63AyEvAeO+AcLfBryWCs+rzwaOzQf2jwP+HQnErQSK9gMKFT9wu4lwCxcuNgO4z8hGxRmgsZBcJ24l7nC+GR+8Uc4nXnNwIB4iSszNifeKEiZ09w99InRzHIcHHngA27Zt67RdXl4eli1bhoiICNx4442I1WTCuI6QVdOXS2olgZ87kfha2oyRn1aIQpX1lJsb4GhFFpql1daC62Ql5uJJFevWghvJdc0tRJgcQlxTMos9kJPceamarHS6KPDxIwOLtQXRzlfXdx6Tpgqn4HD0AhkMTY0aMG5W1zHBI6MCMHq6ejtbFxtMCCImxaRcP+Sm6G7h+m9rIppbiYV+4YxralY+Bzu6ICoraFcuaMgZlp5Mjl08TDXbY0b1Yd2PPsbemQYAlVeoWz7z8uk+d2/NNYAHMyKxCA89rL4AHjWZWHSUQndHSko07weAF58q4BVkSpJS+66OWkmpUEX96abpiB6dwscYbz1MJ+KY8WT2lCsMcPwk8exwcODwyK1C/8+wMP1auZUEeZJVXHW9NUpzqSmptIAK+Y72LZg4RbPiLjOX9JnjgOJqoQmxsVHEK05sLejLmV6ouwJO9e8UEN51pm9TS1NEhZExJ6fMDZlXcvHvxgv4L4785i9+PIEfSz94IQ5JuX6QKwzw/MfT8ckLR/nrJJyhyoTw4FqET6U+rAlJPX92snPoNO7lr1nBwuhbRCLARZrNfw710xz7b+03id+uatIcVrD1D6qMWryYvKMhE/xw02RiXs6vGIGfPu5G9rAuqK4mlnclCk6CxDPqseN59PEVLNCvXaOJmEaPpmWjGhpUSmxajwSCn+eTYBV1eK8BoKzeAxj1LjJz6bvQsVyYKra2JLwHIPGpH36ovS1AMoV3jEcvL20GdnmDOzgTxeVkPHK276BwMLaDo5QaKUr3PwucuhtI+pAIRU3tE4W5hlJ9bfVILVQpT+jcLvWbe2P6An+Ixe3JbU+qJGG18AG87wNGryHCmTX1YMLF/6lZ1K9eJVnZleTmkhhegITKLFqk+fdQuph3FLpPnybWUYAk6VLy6+/mePG2b4Adnri2fg7Ky8m4E+XzH8RXXiFCnyoedwAzDwILUoHIT4ExHwORn5MEaTbhUCt231skRuDC3qSf41/W6hmgpGNct9bM5a21xOugYBf5bCgFZh0BoncBNhHCthY+gN/DgOsCwGcZ+TtO3wNM+ROIeB/wfwQIexXw6VAGoUmLIczMjSgs5l8F5p6G6+hpgsOBvirPq7HKfFawm7ikV1N39EcfpYefeEJYro0lU+sf9C50KxQKvPPOOzjZMfCuAxzH4fHHH4e9vT3+/vtv3HzzzXjiiSdQWHj9aupljVSQlXqMhJ83deVNSyxDvoqM7OYGONqQQKCKWju+zFWDrAG3LGxEVT0ZPRZGncWcO6nv8+hQuvDNS++8rnRmJh0UvdsXczYWZEFQVWelMQ5TIVeouVzmpxUhr5y43EwKTSEZKnvBvJl0Ib//74xOWgrZtZMqNRbeYqZ23NGB+seVFpLvWVmpbvlNTyO/ddxlcg0jg2aEhvaNANMf2LtTd6hyeYTa8bwCOvO6+/U8ydZA8n8r/GBqSp9XV9siOLiTCermm8niBADmRlFzTkmZ5mSBJ/ckYOtRsnh2tCrjy44lZfUuNrczaprVhcPTySNx6/wiVJS2YH97Nn8XF2DTzgDeI0XJ2rUKPPiSLV5+gPiIGhk044ZbvPqkr8H+1EMg+TIdY0qL6H5HBw5R8wJhZ0kUh54OeTCQkPcqt5YsMisrOy8HtORWqhVJL9TNpa+6tAZ7zxBLmrV5NXzCNCd07MjsaTTo8uCuHHz+BX02mltN8PLKXOQk5+OTX4UanOfWTMcXrxwFACRcpO7E4aMkvKUbIFbBnpJTQMcyz8DuJZVj6A8XaxqoHBKg2UvGxpbOE9XVmq+z9wSx/JkYNmLeXVR5vvpNuj54f12gZjfnHqApMVp8mvp7oTrdqwrdygzJAPB/d7ciYgQ1ngjiusPfBG6rAOYno8jiMX63sTGZY+vqDdDY2Hm5sI787380m/yGDULhsyPp6eoyWEVZK9CQh7omCzS2kPfIyb6DAt3SD47eNNdFqaxDlRJjO8BpFuDWIXAaAKSBSK2gipbAOXcAN6UDN2fCeuYaREaS5yExsYPwO+lnYiENexW4MZ5YiAFA0YyGQ8vQWEsFLdWyrh2ZPl3oQqyKUuiWyWgZNY4jv6mSzz4DNr/yJp9T4Jfj96Khqgwn4+nzERXQvtZvVvHVB0hmcedZ+heuO4HzvAsNxu3ZMSsvAEUqwcuKVo1CuKrQrWbprrpMYrC3jwDSvyX7RAbA1L+7l+xNF8zcgLDXAf9HAc+7gYgPgRuvADfnEoWFFVHSdkwsGHjfz8D8JOD2GuC2MiD6Hyp8NxYQDwmOvGPTpwObNwNr1pBa3jY2NJlofLyW0Ak90NZGxow1a4AbbyTKtA0b+uZegx29Ct0lJSW47777cPjwYUilnWvcz5w5g7y8PLz11lvw9fXFI488goiICPz999/67NKQQjWZhlQK+PnTP096Sh3yr8Tzn91ssuFoSyf28oIqcAoOD99+CZezSKbpANcs/Lo9CGIJvY6VSnWd2prOrbNKixMA+ISQicbakigCWtqM1bKHtza3Yt7Ei7BxssLXr1OXy2sJdDYZE9b7JDAxN9OF5d79ugnw8lY59pwgMTTmxnWYvkh9wHTwpjN8WbM/OAXH1+k2M1ZJbJdpiNrKWqQWkIl4pHdGrxUJA4m9qzW/XV6jXn4pr4S8y2KRHC7eQ7MsmpUVcMcddPKPiKDHRo4ELl8mk8KmP635/SXlmq2PX31OLVHvPJ+MUC+yas0udetVbG5nqC7Q77qlAq62ZIF/Kikc0yeX8a6At90G2DpbYeUj1NJ2223kn0gswtvfTcP5/5Jw5WwhfEZqsMzogaCJVJpMKQrkt0uL6Hjj6CSG1E6Ki+easP/3OFzLcYK7BxFkc/OJkkd1ETp5gror7n3LqdeFMqFhV2xaF88vru+Zf1lrQseOzFpAVzpf/xGJQ5eESRw2/zcZd9zWxHvSjPSifqxPvz8da187hoREKqiPHOuAkSpDUG+E7uxC4j9oZlwPe9fOQ3cYfccIa2ow0CZ0qy7qNXlRAUBpDfkb+rvmwcKGCtpjZ4fixihitcotdcKvv/auv0o0uWXHX+18/ZaXR99PZZZskUiBu61HY7QxDbBWy2AuEgFWQSiqoe+Try99t8vKOpQL81LPV6OKnR2x2AFEYNi8WXvbjvHcAFDXZIHmViMUK6hLt7OXulDtOGoO/7HU9G5igY7eTVykby0DZh0k7sMdmXUYqXU0y5j/rNsAS2q+V01u21nfEfEhYBOBs+njYXv3SYQF1/PJ6FSTYil/CyWaXMuVaEqmtmULrRseEkJc1e+6vRlLZpM44tomKXZfWYKTadTaOuXmicDU7YDHnZ18gX5CJEaB/ePgLAOBKVsBFxVTbtJHwBYTYLsb8E8osH8icOJ2zBhNLcFqCRHzd5Fs423KOV8ETPgecJ4NvWPpB4S/AYz7Goj6HQh5AbAOU1NaqArd9vaArYMxiQ83bH9nXW8k7vvS9pjxygtAzp/8OXfdBTz3HI3vHkcK8KC5ufMyf92lvh74/HOSG8DOjuQGeOEFoiTKzARee01/9xpK6FXovnr1KlxcXPD333/D0rJzN9TLly8jJCQEZiq57SMjIxHfWZ2JYY6a0B1EJ9yrVznkZ1bzn91sC+Go4g5dWlCN/ZvjsOkASRRlblyH7X/LYeUgFKJU/yyq7uyayCog1nITw0Z+IrKRUkG7qoNF+8PnYnHgAonB/u43OnGlp1ALj6oioadEzgyCvZRoVQ9eCEVrS9e1Ds4euMrHU86dkAgTc3WBytGbJpAprbJCvayBZrr2TedjydNzrfH7ukvgOPJdJozqXRmhgcbSEnwMm6ZScnmlRFU+wraEz/Y+FFmxgm5PvUE4u4aFAWPHAjZO1nxW6ZIK9RCKxtpG7IklQqWtRSWWPTcJIX5k9cxxYqRe7JtEVjUqr9q0OXbYsaWKjzNOzKCzsHKR9eI7frj7bpJY55tvhNcaOzuk11nKOyN4FPXRS06m+1UTPjo6kRnfI8gVN9wdCSNTI3i06wCqq4HaWqHQPTXahC8XCJAShpFTRvBCDO/GqkJ1aQ2eWXIMP314ApyCA6fg8N1vdKX58FMaUk5rIXKGP6+wTEiibvETw6nP7blk4kZqLy3H8bNOeOPRo/yxJ9+JxvZjowGQ+vDB47xgbw+MGEEsLwnxLVozuHcGp+CQU0q+h5dTkd4T4zF0J3w8UQZLxG0YNydCYxtV91VNQre8Vc4rhSxM1ZXir30cxm+/+27nniC6otHSHd/1eefPKZB26hT/jkcFnMQI86uI8KQna7uOqkOjvz8VuktLgcwMOp97y7s2h913H93urOa1qtBtYEDftYp6F5R4rOU/a6rd7Kgih5da3k8s0K4LiHWyE0sux9H7urur13ifP59uP/cc8PvvWi4kMQYmb8ZH/7yM5lYTZBY44IMPSBb5E+15tby8SIzu1Knks6kpGf+1oUnofv1Valz45BPAwABAxHu45/kb+P2b0jcgtnAZACK4jb3lZsB9kUCZMJDIzKOgiLkMeNwm/Ns0lZDkZ40FQE0SUHEWyNuKsPwxWP3YWcyIbsXTKzuMwc7tBeENLIjL+LyLxGV8ALG1Jc8SoD00DmYjgLFfEUF89MeA+y1aGlKhG9BvXPdjjwHPPAP88w/Us/ODPHM1Ner7hzt6XUHPnDkTM2fO1KltWVkZHB2FGkU7OzsUd1I0UC6XQ94xReYgQ9m/nvSTTMIkoY6FhQIjJ7rDUNKCVrkRfj8wAYum0aylLp5mcLCns3ZRfg0O/EuF289fv4jAsVFq/bCQ0kGopqZVaz85BYfMYrKY93IqBAcvyOVyWLnTGjvltbZwaj8/8XQ63lpPM0NfK/BEa0srxBIxrmVRwd87wEwvf8M502XYvMsetY2WOHVajilTOr/mjqM0fnLBQgONfSAJJ8jvX1KiQHlRJQAyS7o41MOjvBDZpe5IK3DF599RoX3ZCvs+eS578yx1F3t7MQoLRSgv5yBXKWXT3Ay+bJybu+bfbagwbhywebMIaWnAo49yatl2lThalaOw0gUlVdZq33fv5njUNxN3wUUzEiE2iEJwYBvwDzmeeLEco6bp/zeqqpADIJoRS0sFRs8IxNo3T+KhV6jFwclJgUmTyPcyMQF++42e35/PEnFXI+9RcjJ9nkpUQtbsnE3U+uLuLoJSD5ydLUdhSjIAImQ4SfMRHZaAP06QVWpUUBwU3Dz4+Ylx4YIIubkcGupaYGxKp7TVT13CV1umA5uBZiRi1CgOCVnEvDwh8ApCJoZ06/eYPl2MnTvp+GllVoM9+6WYOpNDcjLd/8bKRFjaTcWqL6agtfUI3t1ArGh1jWQsCXTLhaGJJ+RyOcLd4lFYGImqGiPkXsuHm7/uigCAJGdraiWrZ0/nqn75+/bnszSUePy1CABHEBJuCvfgcRp/HyuDXABE4VWZGQ+5XOhxJauSASCSuYVZi9o1xo0D5swR47//RMjOBn79VYFly7qvrFEl60omAGHB+oQEDi0tCkjkcmhL8Xdu01qkGWYDmAwAuGn0bnAiA7hETIOdbRsqKg0QHy+cT5QUFYkBiGBnx8HRkRoPiovlyMxoA2AMR2kJLDJfgjx4kTBWtQP+/oCLixhFRSIcP86hsVEBIyPian7nnWI4OwM//6xASgodX0b7puB8KrEEljk8i0IVy7ujowJyufA3Jdm/Je19VD+ujbIyoLqanBcQoP5bTJwIPPaYCF9/LYZCASxdykEk4nDHHerXr4M//r1M/07ffcchOJhDayv5TjExCnAch23bgLVrRYiK4mBvr55Vnn5P+nsUZhShtPpdXMsgyocJ4QWYM9sJcjkZ16ZMAdzcxMjPF+Hffzl+f2QkByMjhdZ79DdyuRwQiSDnRGpfXGTsAJH1KKC5DGiVQaS0Xita8WbURHBTjcAZfgG5XKW2lnUkRON/BOd2C2BoqbxJP30b7fz1F7BrlwjLl2tfx8BhOrAgCzBqX39raUgq75Bn9Nw5BR58sHfjiZLYWPKOA4CjI4foaA7R0cCBAyLs2kX2p6TIMXZsJxcZQDrOc/qa77oldDc1NaFES3YhBwcHgdW6KxobG2FkJHTJNTIyQksnQQXXhlAhuSvaiht2Qsb5YgBkUdlWdgR5pdaYN9sau/b7orLaBJv20qezoa0CRsZUyE5OzMfZeOou6jua0+g10NRMBfX83CqtngUVpQo0thAVmJtzDd+uVUQTFp2Py0SrvB5trW14bJm5IHtyY4sZDv97CPbu1ojLpBrQFjOJXrwZfMPtgPacFtu3F8HCgjyXLY0tOLuvGN5BpnALpsFMO3YGAzCASMTBfZShxj5UVZkAIKVaUlIqcfHsVQBEpWhqXAdXtxZkl5IEUdX11gCAqJA4iK3Rpx4aPXmWuouFmT8AKcrK5Lh0MZ63mOXnGwEgC0MLe4Mh74ni70/+deaO7GBlgsJKF5TW2ONi3EVBeMbvv1NPj8lTyftj7UDVtRfO1yC0D36jwsuFAIibYkPBXsTHO2P0Dea49/h+/LqP1PuMGXsEV65Yd3qd/niWOA6wtByF2loDJCS0Ij6e3DO/gC44a5tK1Z4lE0NbKAWS2IPnUJhSCqXQLWmOQ0RkC/5ot+qERzQiPj4ebuYtuIBJ4DgRDu4+BtcAmnNg7zEad/jkqyEYG0jN7rcsSEd8fPcC2AICHADQMXbJvJPILnDCihVSrFxJFsPe3o0Ye6Mp/90WPWyJgtYi/PwLFabdgqz5474exUB7Apv9O+IQOad7FRnSLtA5w8m+sl/fz/54loYaMfcRF09tf4eGqnwon/GCzHzExwsXclVFMgBESWNs2KDxOnfdZY7//iNJRtetq0NERO9qx2cm1UIpdAf41eBauhXq60XYu+MsPEYoMFrLeRdS/NHYSkNJJs0Q4Yr3DrQaOsPXrwEV56QoLhbh4EHis3rmjBRTptTAykqOwsLRAESwsWmEjQ3N+n7qVD4KiojHmY9jJkSt1ag88jhynV/u9DtERHihqMgODQ0ibNyYjjFj6vDuux44c4asAf73v1JcuiQFYA6RSIGJnv/xQveZ8hnIzC6A8t1ubs5FfLywGkJlpXBtEB+vwT1AA/Hx5gDI38rWtgzx8XlqbZYtA4qLPbBtmwMUChGWLgWamq4hPFwYovDffzZoaqYhcE1NIjz9NBWQ/P0zER9P5iJl3ezOhoPWZisAxDun5PC7SHaj7/Mo1xOIj/cm8cvtzJjhit9+c+YFbnLPEsTH657Mtr/QPDbdCDjdyH8Sca0YUfY1nKuIdlqkaIEi7hkkVzih2Ug19CocqNE9d1B/YGBAvBiqqrSHqeiKRCKCRDIacrkIx483IT4+ueuTuqC1VYTsbDJyBAQ0YNOmZN7pIDXVCQCZ5w4ezIGBQS+/QB+j73muW0L35cuXce+992o8tm7dOsyerXucg7GxMao7ZBJpaWmBiYn2LK4BAQHdEuwHArlcjitXrmDkyJGQSLpXBubMLpqAxMvNCBEREXj1bWDXfrKvuZUItSKRAtE3RKEs+wK9b4sVLmcQK7SnQz6mzelYOJFQlEQnOLHYChGqwa0qnDpFtwMnRCAiggzu/v50wLW390dEBPDx88dxMWOC2jU4BCEiwpnPcmlkxOGGueHo5s+iEQMD4J32sox5ea6IiCCL2tdXHMe7G26BlVkNrqW0wG6ELUpLgbQ0ctPISGDGjDCN13R2okKBokkMqQX1xHBxMYC5tzdOdiiR+r+VLYiIGN/7L6SB3jxL3cXN8jKuYQxaWw3g5+UHS1ui1VV1/wkLs9b6vAwnnH2bcTmLZP/28BzDlxRpqm/CgXNkkWxtXo0lj94AI1MjWBvZA+1rwtx8+z75jTYqqIItMGgEIiLIYnf9n82weOAYcgtM8f5XYXD00GwR6s9nCQBC/atx5qIdSkqM4OfpBwsbC9TUxfPHJ00bCxsna8E5YzxjoRRIRHUtaGykcaVhER6YMDsQl6+eRGubCCvfiYGZ1Ayh/sexoz19BNck5X/7nOQCpBfThVNbmxhnrpJFs4VJLVa8NFMQL6sLJiYkEQxA8hs890YYPINdMWoUUFOjwNGjInzyiRFGjhSq7r/fANjZK/DJJ2QcXLiQvkeTok5j3VbSLi9TiuXdfHaunaIZgwMDjPrl/ezvZ2k40VZBFdOtbRZqf69rIup3bW1toPHvGREBfPiODNeypEi4bAZvVx9YOfQ8a31RGV1kL56RgPfSiX9yQwmH8JhwQVsjIw5SKYfycjFOpU1GfTN5h/z9FJj0wHv8wjoqSsRnQ05MHImPPhKhtFSEG27gsHGjgrfOenmZCITu4mKqKPNxIqE69rLtsJ3wCmCjksW7A7ffLuITiuXm+mPJEg6HD6sqS535ZJkebi1wtaMelTZ2wTBQqdAxbpw7IiKEieRG0IptkMvtEBGhLc21kIsX6XWjouwREaE5EekffwCPPabAhg1iyOUibNsWiHvvFVrFP/hA3Y29uZl8KUNDDg884I0uojp5ROnfoVR+CAAZfEpqHAGOrosiblyEiNHCfBfPPCP0ngKAW25xQESElkxtA0D3x6afIC+8DeKzD0DUUgnxiLkIDp8EmAye76RX2uoBA/WqIaGhJK9IZqYp/P0j1MIguktaGqBQkOc1IsIEo0dH8Mdyckj9dwBoafFCRISnhisMPB2fpYaGBr0YfrsldE+YMAGpmrJR9AAnJyekdwjEKy8vV3M5V0UikQyZSb4nfa2VUa2ltY0hJBIJxo0Dpk0DjquUAHa2LoWJmTOcR1AFxPHTUn4CHB+WB4lEs8XE2pomR6utFWnto2pyFV9fMS8o26nMGbW1EohFHD76nkyGYpEc9y+pwA+byN8wo8AVN4hoYhQfHxGMjPTz9wsLI7HItbXAmTMiiMUSiETA3/8SV8uaBivs23Ic9z43DcdoTjfMnq39Ozs5qtQUzi1ETQW1hNnZiuDkKoxH93HOwc33j+/zZ7I/nnsHG2rBrSyWwdrBGoAw9s7TU6wXhclgx9lVpYRauYSP8Tv891XUNhIFy6LpV2BqQRan3iHuMDOuR0OzOa5mOvfJ30omo9e0tTfn72FmaYZ1f0VrO02N/hpDg12ScAbk98m4UoAxM0JQWkXGJwNJK+ycbdXij7186e9ekMcJyqS5elrDXGqO3w9ECc7xD6Btsq4189/t6J4cKC1XxkZtaG6hU92SmEuwsheWXdGFkGAOkf5JiEsLwf0LTsEnbCp/7LXXlIlhNP+2a9YQ1+DCQuDhh+l7FD3fF3iGbB8/Y9Ptv01eNg3q9fY17tf5cSjNx4MFO0cqHFfXGKr9fo2gwp6l9ySt423M+Eu4lhUNucIAR3el4taHtQV3Akln0/HoQ3W4cM0fEEkAsQlGjiSxlnZ2QG4pUdS52BRj4iRj4HtyXsKlVtz9gLAD3t4i+PqK8O+/wjJjNy0Uk/jfdsao5Bl87jk6bx44IEJcHL3miBGAjQ19hs+epW19R5I1jIhTQBL/DDDzMCDW/IMoy5QBwOHDYoweLVQYNzXRsSYw2AQOo24C2hOXVVZKBLlMRoyQqP3ujo4kPJjjgLIy7WuIjqh6VAUHa58/JRJg/Xpg/36SpO6ff0TIzJTwmaUbGoB//yXb9vYkGdZaGoaOqaOuwTr/L9LBNhnQUt1eszkXaKkEJvwAjIghxxPfAq68ARdzqsQorvVCuSFNOhY+2kStr6NHk6Sjqoa/KVPUf6vBQLfGJvebAeccoCEfImkgJP2Ybb3fqM8BktYA2b8BNyYC5kKl0vjxROhWKERISJBgimabnc5kqVQc9PcXPveBNLcqMjIG/5pS+Szpa67rkzrdujBq1ChcvXoVTU10sR8XF4dRo7RrM4c7gkRq1lQj/vTTwnZuDsT1yXEEtdQcvEC1lONm+EEbUhvqSVBbp/3Pr1q2Q6VaBmzMaAmgqvxclBXWoLKOZFudNfoi7n2YKk1SU8kiU/kn9heGjfUKiQQYP4a4XxUWAvlpxShIL0JKYTDfZvc/ZEF+cFsKv2/WLO3XNDAygK0F+X5l1ZaoqqCLAVs7Mfw6/KxP3Z8NieEgHzF0xN6OftfyImpVzbtGpW53Vz1k7RkCqCbSUY2m2fovNXcsvoO+R2KJGMEexN0ws9gdjXXCrP76oKaWrmit7Xuphu4HgoOo22xyPHEfK60nA4mjfYvGhF8evtR6lJtvgOIyqiB09tBsIfIPoQv/dBUPwEOqVq5v0gSWqoee61mpF5FYhMOn3XB0Wzy+3qLu2dPpuSLgzjuJtchQxYDk5u8CH2fy7JxJDu72s5NdSXNseAWxcmGDHRsHOmdXy9Qz59fRwgiw6MQRI2YBVVDt+5cqh8//l4Qf3j+ByydSoZArsPGzkxgX7YLjVyLQ0GyOhiYTNDQAZ8+Skj3NDc0oqiKKag+nckRMpsr6+Kvq44yPjzDxkpKFC4WfR2vzSQetIQ2QbNGqlm7VxIs+48YDFu2haaXHgS1GwDYXIPkTtWu6xQcj0J24bp89SwRYJcrEmEoCAwG7IFrGq6JCmLRRNcGYEokEvMdTqZZyyppQtVGpChuaMDCgdcc5DvjyS3ps715a1uuWW4CXXwaMDWmivRj/DUDCa8CV1UDyx0DGBqDwX6AmETCyJaW7AKAsFrjyBvme1vRLF5vcg8Qi6rEXGqq5j/fcI/w+2sqRDTkMLQCroH4tb9avpG8A0tYBrTLyfHRANa768uVe3Ke1Fkj/DmlH/+V3+ZnsBK59DWRvBrJ/h69LPv8zD6GIYb3Rr0J3ZWUl6uuJoDR+/Hi4uLjg5ZdfRlpaGr777jskJCRgcWc1DoY5slr655Ba00X9woWAtwsdIN3siCDk6EmTfzQ00VrK46ZqHwktHeiMIhNrdrMGgMx0OlGp1sq0NqDeCVV5mcgqsOY/+44JFkwsqalA+oWr/Gc/52yt9+sJkwLO8dtnDmXh0A5h3M2+M2FobmjGwaNk9WJs2ISoiZ0vah2t2wWEaltUVlD3LhtbI/j50s+WJjLc/2wnK4shhr0dtfKXF9MMpnlJ9O/tbnV9jJCahO7mZmDnf2RBKpUqMHux0O0yJIy8fwpOgmtp+lfE1NRSJZyVvY4+hANIUCgVClKSW4mFqN211tFFs9LAPYAq7HILzVFcQayCJoaNkNppdp/1G0nHs/Rscl1OweHQeaLhszCpxU1L/LB3L6kP+uGHwNgo3VxDNSG1kyL6lgi9lgiMjiRuRS1txjh7IKWL1kJySqk2wTNscGQPZmhHtZpIlcxU7biuQvf0m0P52sl7Y/3AKTgknU3HlBt98eArUxExLRC20los/V8UGprbk4HaFCPEmypRjx0D8q7RdYXnCBnc/F14xXP8NQ/gyjuC+/r6qgvdNjZAlNABBYGBgDFdkggU1v/8Q7ddXABbWyp0q5ZR9vEzBMZ8SndwCqCpGKjtMA9xHFCXiVmBJMmLXA4cPEgOOVsX4eMlz6n1zV4lCqeigo7zIpF2QVLphFlaqrHcs0aUQreJCc043RkPPggoIyh/+omWity6lbZZvJh4CDy6jHTaUNKChWN2ab6g2AgIew0Qtyt4HKeScmcAHKJf5l3ui4rFfLkoNzcN9arbWbKE/l3nzu36+zAGCYErAUn7g5XxPdAk1Bz5qkwdmkoI6kRjMXBgMnDuEaTH03WjX+sa4MLjwKklwKn/g0n9Bb5SSVqa7u/ScKFfhe7Fixfjxx9/BEBM9l9//TXKyspw6623YteuXVi3bh1GqJokrjNktXSxLrWlQrdEAjy1hAqYHu7kKbXXsHgViUjcsjak9nTxWtusvaZrVjwVlr09qKBqY0f7VV1DMqjy7fwt4OhIa4GnpnJIT6KWcT8X3ZKP6MrEKXRVcuZkCw4dFh6va7LED9/IkFNGhKWosCSYWmjPGQAADtZ1/LmFRXS/rYMxAvzlvFXquQcuahUEhiL2DnQoKC+lGvS8Qvp7uftpzyA7nHCyohNSyTViejl0iLorLlwohrGZseCckPF01kpK0a32s0JBSl3pMunU1JG/g0ikgIV192KRB4LgCCpAJ18zRnU10Na+ttYWQSS1k8LKjPzIuSV2KK4iwrGzTbnWUlgObvawNCUuQul5ZLV89Uw6SqrJTaIjkmFobIjwcLLYf+GF3n4z/RMdTb/bsYPV3TpXOf6amGgudcQYXBgYGfDPa1Wten4aXYVuU0szREeQOTq/YgSSzmbgnVdL0NJGx6WaBirgL7/pBDJyrJCYMYK35J44AWSm0CRGnm7EAyXCPxsAUFzthJLTPwruq0nonj8fAtdygCZ6AkgM+pkzQHC7E5rqeOfiwkEqbYNIpD4I+vgAcL2J1C0esQCwHQuYugLyDqXUFC0A14ZZYer1wu6etBmP3fADgryociEwUBgmV15OLd329urfRYly3GpsJDWIu6K1lYbW+fuDF3A7w8aGJFYDyD02bCD327OHHp/RXlJ8zdceWPtlK/7ZVonAZb8A03YA0XuA2ceBeZeAW4qBOxsBzzuENwldBdxwFpLQlbyC4epVmpArTLstBm5uxOr+wQfAm292/X0YgwQTe1LyDADkjUDqF4LDniph1ZpKCHZJWyNwMJp4VgBIL6FaNj+nDvU8FS2812t1NXn/rif6TOg+fPgwbu1QJPDw4cN4Uuk/A8DT0xMbN27ElStXsGfPHkyePLmvujMkkNXR0V5qIxSoH1w1ExODrsBeWo6ljxCVqYGBsswVJSgInSbTUD1WW6u9XWYhGY3tpeWwVLG6q7q2VlVLBLEbXl5E6A90J6qy3FwOVxKoddgvSL9usRNmUhP86Yu2OHhW3dKz+h36hWdP01AssAOOdtTKm5pBF0W2jmYwNDZE3GVrnN6biFe/7H5M6GDG3oE+e+Vl1PKQV0IWbgaSVjh6DBdfss5xssznt0tyiDXhyBF6XFPt0xBakQ5JSbrdZ+lSshh75JGu29bUk2dRaloryKY+WPEKdePriJ9PckdJMV1Ud5K2Ax6O5PfOK3NGuaw91tSuWmt7kVgEvxEke252qStam1txaA/Npjt7eqO2UwcN0fO9+O1jp620N+wAx1Gh28Nj+HpGDjeszcnEW12nLlXX5dOAWQtF555FMbOo5Pf5pw344xBZP9lZVmDRlDOwMa+ClVkNfv4oFht2TYWppSlEIiB6Mrl/XR2w82+6CPDwIA/Q6DAq+R9OmiG4p68veX9VF+nKTNkd+flnImyfO0eEXE1OjC4uQtdtJcbG7cnLRCLA/1Fg+m4g5jxwSz4w6WdhY4kxcGsZZkxthEgkTD52T8w5GC5KwIaNzrC2Bp8jR/V+5eXU0t2Z4kpQq1sHF/MTJ6iiMTi487aqPPUU3X73XRLep1TGLFpEw1MMDIDHnzTEnIXOgP1EwO1mwHU+sWbbRACmToBIw1whEgH2xJVcqYBpVBkmOxO6ASL0v/iidms4Y5AS/Cz1eLi2FqiMI94jEHph9EjoNjAFAp4g2+aeSJeR9bG5mRxOCzcAE38iXiuRXwA2EQigUVGdVpIZjgz+1dt1hKyOuixK7YQTsoWNBU4nj0RJpS0iZ9IRvOMCdnx4GTrDyIi6B2kqWA+QOK/8CpIN3EfFrR0AbByo4FxdYyC0dLfHfge6EaGb48TYe4JmEPYL62S13QPs3ezg50I6cCYlFIWVpM9RYVehrEZXUUUVBrNu7FpodFCJbU4topKUrStx5bd2tMLEmLAhIfh0Bwdn+jupJpXJKyW/mattCSQGw+s7a8PJlb57JaXE++RaKhUaNXmSqMbA6SJ0y2TAli3kmn9saoRCQy1bVWrqyXtnZd6JpmwQYWBkgKkjiSUut8wNJ/6lAoSjnfYQDw/nagAQlB90tu/crOTnQc6RKwyQmZiHg0epsmzWgu7VvR4IvELc4OlAFD2nrwahuaG5izMIFaUtfJynl1cfdY6hd2wsiQRVVa+uYKmroJ5hFoadz+Uxt9KV8oat4eA4IjQ//6IJtp+YiAqZNSqqLXDf88KsSNHhl/jtP/bRgcvTh7i737yUri+2JAvNmUo3VGWhGisr7W7GRkbAhAlUSNQmdAPqLt3e3rpZhnmMbWFz83ZEBtJkNMFeBRj96I+AhQ+iooDKShLvbWRELMZKJVVmJgkfAjTHcyvprtD9/fd0W5OiVhuBgcR7ACCWQNW8IkuW6H4dXdD0fbsSuhlDFDM3wHsZ2W6VAfvGAtucgGM3w6TuDK9wys0F0FgC1GWqX6M6EUj7Fjj7MJAitJYj8Elg3Ddom34CWXlkDeXnL4HIbQHgswwIegYIfAqQBgjyO11vcd3Xxyp6iCCrJ9KwRNwGM0vNpdE6CnuqllkAGBfY9Yrf0oIkOaqt0bz4zUkpBMeR+/i41QiOWQti0kyQlUDVVN6eRGAN8KOW0rRCIokbSFrhEaj/0IGJ4WSxquwvACxa2IaZM4XtrMxqEDkjqMvrOTpQ4Sc7n/4NbBwHv0tvb7B3psqU8gryWzbIGvgkee5OFRrPG444udOY35JyooxIiycTkIlRM9w0FAbw8gJMTIgQnXS5Rr1BB06eBF/vtLbBFDnJndc6ra4noQxW5g2dthtMzJtNFQS//kzHGkfxGU3NAQAeruqWaWfHzoVQfx96fNGtBjiaQHItOFqXI2ySHrM39iHRY7MBAE2tpjh3ivxu+WlFqCnT/ixlJ9IcFp4WZ/u0fwz9YWNJ3uHmVhM01Qmf97o6qtyzsOy8uExgpDe8HIV1n21tgceeImO5SCzSmOhz+jw6DyvHdwDw8CNze9QsB96SfeiUcLBTKtY//JBk5D9wgIaTdcXIkRBYuAAqdHe0dKvmkdEZiQlm30y93e55cAREhnQOF4mooC2RUEutahEdfVm6y8uBbdvItp0dsVB3h1dfBW84sLQkQvjPP1Nlh75gQvd1RuhLwpJhzeVAwS6gtZZ/54uKgJaCk8AuP+DCU0RAb8gHYu8A/h0JnF9B4sLTv1W/vv8jyK1w5z08OiYfVsIs3YxBgayeaJqlprVaYxg74mgoTDU4LqrruFtLA7LAl1XWaTyelUIFLB+vFsExUwsTGBmQRW5VrSmyc8nCwNy4Dnb2ZDswRBjvCgDeTvkwMOpWhTqdmDhBrrZv1uJRuGmBMEZsxphknTKNOzjQ311pOTAw6Dy+bjhg70Lj08sryWyfn05V7O7Omp+V4Yidiy3EIvJclVSaQ94qR0YRWXz6ueRotMBIJEDQCJI1Jy3LHI21nbs1q5axA4CEs4WaG4J4njS3EuHfymLwu0sribmVLthjE2lVCkdn7eOAu5t6bKdqCTdNPPSMHx8nm5Lrgbp6YlqbNc9O53F0oIleRGssHTtjjy9XHYNXkAO8vDmU5mq2eOakVfPbXm5D57m43rG2o89zVaXQw0UQ0y3tPFmfSCxCzJQswb5nn+08vAwAgsb6wtFK/ZnyDCQSp1gM/N//kX0K1fhrZ8C0PfebnR3w3HOk1JCuiERCa7e1NclFAACOjsL33lc9UkwnVjwqgocH8Tx6+JHO332loC9XWUL01NKdmgp8/TVJygaQetYt7Uun++4TJpXThYkTgZQU4OJFYqHfs4dcR990/L4iUfdc4RlDDAsfYH4yMHYtCUcwbF/3mXvwyc04DsgrMADAAde+AvYEAXuCgdy/hNeSpQAN6sYCVSWWtopFqvuZ0M0YMGQtZASUWun+Z3G0p0KxoaQFo6ZoLxemRGpGFmi1jZolycw0ak3z9hEukEViEWwsiPWlUmaJ7BKiNfd2LuIXuIEj1cv7+Ln1TbaEidFCl3U7O2DUKOCmOSWC/bOm6+ay6eisngTL1nb4x0vaj6AWj/Ia8lzkZdAkO9dLuTAAkBhK4GBFVk8lldbITS3kExT5e1RqPW9MCFnIyhUG2LI+rtN7HDsifB4TLmkXmmpk9B20ctZgZh+kBI/zhbu9+qTs6Kx9Berhqf7+OYdqqFGkgleoGy7EViI8qEqwf9asofPSRs+igtiXnzVg5XukBnN1vTX+/SNV4znZmfQZ8vLRLXkfY+Cx8aQlPqrrhXlO6urpM9uV0A0AMTfSd8naqhVPPNH1/UViEaaNFiY3kkoBa0dr/rNS6FalR9bnDqgK3ao5czu6l/f0Xp6eJM9BYqK69bwjdurLlB5ZuhsaSJzz448DkyYBBQVC1/IHH9Sp62p4e5PSa9oSu+mDjkK3ry/Nns4Yppi7AwGPk8R7t1UCN+cCFr6CPA25pc6ApF3D1lgEtLVrA43tgYgPgdkngNtlgJmr2uVVhW5tlm4vL/pcM/dyRp/yzpNH4WhVhm/fPq52jLd02+meTEc1PnKU52W1rMqasDQn5zS3mqClsUXteGYG1b77BKgL5tbm5AXMrxjBCyNeI+iC13+Uu1pCEz/vvnGLDY/yg6kRvfbMmURT7x7gjNFeNHZt1k26CSsOzuplXGythr8VydjMGJaW5G9W1kL8y/Ky6O/q7j50BBh94GTTXjquxg6pl6kCJ8BX+7Pw0OPULf2zbxzAKdSttgBQX12HC3HCoTfhqvb3tkalqoGVo+Z61YMRkViEmGh1P0xtJcMAwGOMev3rzqxPSgLGeOHMRRssX04+29io1w4ezPj4AO1pI1BWKVz1xsWpe/MAQHYOfSc9fQd/GTkGQTUBVZVQT4S6OjouWFh1PZfPXhyGAFdi7X732XhIdSyoET1FOO97eAiPh4QAY8YI9yldy3tDRAQwpT3EfN48ul9fQjegu4Jck1DeE0v3xo3EJRcgVruxY2m98alTB7fluOP3Za7l1xliCRHCxQbCDOb144H5SYCL8iUVAX4rgAWpQMgLgOMUUttcA7oI3YaGdDy53sqGMaG7H6mrqsMbX09BmcwBj78xGRePJPPHWltpBkldJ04AcJTS0X+c76VOWlKk5nTCra1SdxvOyqWTvU+wevIxG0v1xEbeHlQYMbU0hYe90F3Wr49KyBoaG2Ksz0X+86xoKii+uboVdpYVuH/+CQSN1W0Wd/QPUdtnY5CuoeXww96eDAfKEg55uTQ2392r81Jrww0nW/JetLQZ48IZGpvsH6Dd7DAxJgwTg0j24YSsQBzdHq+x3al9KWiTCy2TCWnaV3s1KmG9usZPDhbm/Z96LXtHN+0DnIeX+u+ri9ANENfXDRvIgvfaNe31dgcjIhEwfbrmlUfcFc2lHZPSqKDtHazfJJWMvsNGpUy8mtDdQJ9/Cyt1BXBHzK3McfaiLVLjsvDYa517hKgSHSNMMKi64FZyzz3Cz/qwdItEwP79wKVLJCZciT6Fbl3Rh6Wb44DPPxe2U5YfA4CHHupx9/oFJnQzlKgq3nJyAFh4AdP/AW44AyxIQevo9fhxk62gkosmdBG6ARrX3dAAFGqPrht2MKG7jzi+6zJunnIWe36h9bVP7k2BXEEmVbnCAPcvF/OWZtXyXd0RusfMoovamLtGddKSYmlOXYVlleoCdGEp1WC5+qnPQtZWbWr7vL2EC8ZAT2HWc32XC1Nl3lzSH2PDJsybRVcxN90/HmXVtvhxz1SdYzsdNLi+2lppz7Y8nFBq/isrSZxbXjF9Dty8h09Ncl1wsqdKpBNnqHDjH9L57/D04/RF/uxTdS8SADh6UF3RlVboiQaZZm+QoSx0z5yp7h7p4KpZiASIy2lHS5WuQreSoKCuXUsHIzffTL/4yw8cgbcTqQIRn+ELeavQ2t3W0oazSWTV4mZXiBG+3fyRGAOGqqW7umNMd72q0K2bn6+1oxUCxnTPDB060Q92ljR3i4e7usLnrrsA1WlTH5ZugLgvR0QI3/OOMd39IXTrw9L933/Uqj1mjLCKgLW15oztgwkXoe6FCd3XMQL38tz2DZEIsJ8AzjIADzwALF8OzJlDlGbaUArdpqbqz5cq12tcNxO6+4hnnzfBrpMTsPQxf16wPnZROJMkZAXig+dOAQBkVTQ+T2qpLtRqY8LcMOz84Sy2rD2Fm5bpltVE9fq11eruspUyIiBLTWtgaKweK2jjo2698vIVWkIDfYXCvH+4/jOXK3nm3Yn47p3jOLTtGjyChDEm3U2kZGenvui3tdYtHnyoo1yEcByxwOTVj+WPuYd0nStgOOHkQN+R01dpqs2A8M5LUN360Di42RG17Z7T45B2KVutzbEzVOicO+4CAJJ9/+pZ9bYAUFNCvVmszLquNT+YsLICJk+mny1MamEm1S5MGBoKYz0B4d9iOLN4MbB5M7BrpwLvfj8dkcEkHr6xxQwpF4QJsy7HpqG+mSjFpkRk93dXGb3ARkHzPVRdOyE4VtdA47gtrPtOUS2WiDEtkGZz9DQ9qtbGxYXEKivpaXIzXVAVgJ2d+yeuuLuWbktLmhAtMxOorwc++4wef/VV4MgRqpz43/9o4rnBCrN0M5QI3Ms71Opeu5aEUQDEIKP63P/7L3mXbr4ZaGoCMtqLavj6dl7273rNYM6E7j6AU3BIziUjb3WDDY4fJ1LcsdN0sS0Rk4XkO99OxpWT1yArok+5tPlUt+638IEJuOPxyToLmJYWVLsuq1K34la1kPqftvaak/OoauqVeAfaCD4HqGixJBIFPIP7Tug2MTfBQ6umIWpBeK+vJZGoT8a2NppjKocb9mY06VV5biHy2qvRGBsDDk7XV6ImxxF01VfbSKzbFia1cPLs3GfZ0NgQT95HMoNwnBhffiCcvRpkDTiXQkrX+Y/IQswsqpxKuKC5LFtNHk2kZc3F6/4lBgkxMXRbNRxGGx6O1EvGxrwSxqZ9mEloECESEeviTQvFEIlFGDOKKvsunhE+G7EH6e8YNen6SXI4HLBRmU+qq4UW3rpGInQbSlpgZNp1IrXeMHsulQiDQzVLh6+/TrdHq+va9YaqFbk/rNyAuqVbLO7cQ0YkAtzbS6NnZRHL9r595LOXF8kh4eUFJCWRRG6rVvVFr/WLVEozyBsaas82zRj+WFvTKj2qQveJE0SBpMoff5A8BrW1xPpdWQns2gU8+STN2t+ZazmA67ZWNxO6+wBZWR2aWukktusfQ9TXA+faPc0DAoAX748FALTKjfDqi1UC4VdqKXQ50zeq7uu1NUIrLscBlVVEwLJ10KxutrFR3+cVJFSZBkbSmdPTg+NrTg4FHG2qBZ9trK+PLA8OJlTdWJZfxgvdbm7DP3t7R5xC1L1GAtzydVJsPfjcKJgZE2F6w/bxuHyCCs1nDqSiVU5ehuixeQiPpC9jwmXN731NNd1vZT30BNB5U+hz5WCpufyVKh42mfy2s3VJJy2HN5EzaJbruBxhgrmTZ+iAOmUOcy0fSljbUq8wtZjuNmJqtTDve0XK8ldm4sk7j+G5pUcx/17N8eCRkXS7M6tVb/HyospuZaK1vqajct3BgSjdO+Ozz6hgoiooPPUUPdfEhJQs68vfS1+IRMC49j/91KkYUus0hn4Riai1Oy8PUChIfoLbbwdfd1t5vLWVlMj76CNhDoMNG+h2V0I3s3Qz9EZZvtC1etcu4PRp+uBOnw6s/nISH1N1MsEPNaru5X0cPqtax1NWLZzc6+poPzUJ14C6pdvavBrWjsJg0+Cx7vy2f0DX9bEHEw6m2YLPtrbXh8SpquXPTG+DrN2T2d1dc/vhjCY3Q3+PKvWdGrB1scGKxecBAE2tprj1Hld+cX30PxqgHT1dgpETaPaShBzNaW5raqjSx8p66HkcjIryw6RgkmBu0U1d50dwd6Hjp7NVUZ/1a7AzJoqGMlykuSLBcUDsZWImsDSVYeSk6yv0Y6hjY69Sp7taqESrayHecBZWfedarsTYzBhf/hGNNb9Oh8RwYOdoU1Pg6FHghx+A117rn3t2FLp1yR2xYAFw4QIRqpVYWoKvmjAU2bwZ+PZbUluccX2jTKbW3EzyFqxdC5S0671nzQKOH6c5Wr7+Gvj4Y+3X6krodnOjYSTK5L3XA0zo7gNKC4SCbE4OsPZTWt83OppMeOOCiUWnotYOifF0oSmV9q2QJ7WiE2ytTOg6rap5/3/2zjs+iuL945+7S++99wopJCGhdxRBelPsAnbB8hV7wYb6UyyoKKhg7wqCKIgi0iGEQAIJhJBGCklI7/Vuf38M2bnNXULKXerzfr3yyuzu7O7c3ezsPPM0uzbiHdkqpMtSvu7lGnU8PICVK5nA9vjjXW5qr+BkL/Vzt7Pvf9rFruDgyPvFF1/y/Z72uT3fmF5Gm9AdFNG+P7c6r30yGjFDWESRjGwL3Hor8N6zh/DR99wFYtJMXzh62ovBRk6nOmlNnSEJpGZ39TRCfQ2ZXIZ98cG4cOoinn5v8lXre7nyD+xiXdBOzYGNgwOfBJ06xTQPAMtDnF/KVshGj1T2usBEdA4bRy5Ql1e2ErqvxFi0sMCgIywMWL685z57a1Py9vy51QkOBmJjgXvvZdrxtWv1ryjRJ+7u7LO0jqVBDD5a+3Xv2sW3v/ySvY9uvJFtl5YyH24AePBBFsBUnasJ3XI58OqrTEa4//5uN73fQEK3HijUEv5++y4uwU4awyaVw6P5BPq/OB+xbGWt35/F0psHyKo0ltpylebzxQE7S+1Bm2zNpMtSPqE+Wut9+CGLgnjttV1saC/haC+NOm3nMDhsrhyc+Ofcf4bbFU4cnqmt+oBGq6Y7quPhe03MTbBld4A4sdu1C3jsjfEorWbjQJj3BXgGs1nOsCtyeGmp9tQZFZVqebrt+nhknjYwMjVCQKSWvERa8PLmi44ujtojug8WWsx7q6u5Cd6hQ/z4+KltmCMRfRZbNauwsko+BxCEwS109zRd0XS3YG7OtMOXLwP33afbdhFEb6EudMfFcQurqCimSAOARx6RnmNvD6xZA3z+udQN8WpCN8B8xbOzNdMTDmRI6NYDl/Lbnhj7u1yEuy976UZfy7Veh+L5MqOVtX41q1ZqE/eqaqlWvTQnSyzbIR7asLGXatt0lUqkr+DkKFU32jr2T0Gnszi6aH7OlTfux9LHx/RCa3oXRwdNlbO6D1JH8PICfvpJ07fvxqlHsONP/l0P48MATp/WvE55JTcpt7bXv9lpbzN5ybVwsi6CQt6M+cs7nnt4IDI8nC98xu9hnePwYX583LiebhHRXUwtTGGoYAu75VV8HKirFURLFxK69U9robujmm6CGKio5+r+7DNevv56Xh45UpqR5KWXmCvqmDGsDLD4AOrXIjgkdOuBvALuNO1mJ/VJnBSTLZaHD+f7a+q4ltHKRr+aVXWfbvX84ABQWsR9y21ttZu52zpIhbOBJnQ7Oko/t53TwBd0AMB3qCPkMuZuYGFShR8/PIIPf5oEA6PBYV6vjqGRTJLHFuhaZNepU5mfopcXsGgRcDquBD/9OxY+oR5inYgIXv90vKZ1SUUVHw+sHQb+bNza0RqZ2ebITSvFxHkRVz9hABMdyIPwxR9lvj8tQrdCAYwape0soi8jk8tga8Gs3cqq+PNcXcItyCwaT2qcR+gWQ0OpWXhnNN0EMRBR13SrKwDUM5AAzNd7yBDg5pullh6rV7MgbP/9N/iC73YUErr1QO5lZlNqYliHZQtTJMcmTeI90dtbu9+0la1+/TbVXzSVreb4ZaXcH93OXnv3sHGQCqE+PrpqWd/AyUW66GHn2TGz2P6Oe4ArNr1xBPcvPID4w8VYsnLs1U8awDjb8gAHdrbKNmMcXI2lS5l/1K+/AuExmslhhwVwm/LTB85oHK+oZtGOZTIVLGwGvtANAGZWZnDxdbp6xQHO8PE+YvlkkhXKCsuRlMS2I0MrSSPaT7GxYHbk5TV8Bby6gscSsTSr0ziH0D3qft2k6SYGO95aprpWVsDo0dJ9UVHAuXPA99+zxSt1PDyungVgMENCt44RBOBiEdNieTkVYN6N0pF80iwfsSyTAdHRmmasVrYmGvt0iaVJtViuypf665aW8MBqbfky2zpJo4b4Og+sQFutzaxtbAfPY7LsqQnYsGUigoYPMPOFLuCsljouyClJb/cJHuYAAwVb7DqbrimUV9Sw/mhlWgW5YvD0RQJw9nGE+xVrqZOpflj3YoJ4bFzIqV5qFdFdbC1Z4NSKWmsom9g7t7qCR/a3MFdqPY/QLeom5qTpJgY7rq48OnkL06ZpCtZE16EZnI4pLQVq6lkcfJ9QH0RPHQJPhzwAQJB7JryHekjqD/c4qHENKzv9mjNbmvNAYZVF0qBopTyOGmzttQv/VnaWkm3vABudta0v4OTOP5+Vea3GIEQMDpytL4vlQA8tEc50hJGpEZys2XNYVG6tcbyilvVHa/MqjWPEwCd6KHNJqqyzxiufTBb3j584OAI8DkRsXflifEt2guoK7tplYa7q6SYNSkjTTRAchYIHTGuhtWk50T1I6NYxWVm87O0tg1whx8/flOHuuQfwzeeakXijR2guIVk5Omjs0yWWttwmsapGev/SMm4XYudkBm0oDBWwMWOmt45Wl2FhO7BsHB3dbMRyWxHciYGPsxUXtIO8LrdTs/s4WrOZd1GlHQSV1Pqloo6NB9YulNNlMDJzeqPGPivTCkyZ08nIfkSfwcbZUSyXX8lOUF3Jf2dyG+gZWsxmnZwAf//ebQtB9AVam5hPn9477RiokA5Px2TzOGmir/PoGWEY3cZq0fCx0om0TAZYWOnXlsPYzAhGBg1obDZGZY3UlLqsgt/bzqntN//N15/Bhi0Tcee8swAGlu+lnastTI1qUddoBhfbEgBkdzYY8fSzEctDhuk3NZODDVuQa2w2RlVZJazsmQtHQwP7AwBrPacSJPomdz89Fs6uschKZ+bHcjlw7Vx3OHh0ICcL0SexVRtOyq6Ejqiu4vFUSOjuGZ56iuUHj4gATAdHkhKCaBf1qOOhoSyPNqE7SOjWMVlZPFBaRwKM+YV7wca8HOU1NgBYZPHWKYb0gZVZFYorjVFVJzUhL63gQdzsXDRNXVv4+NeJeDGrCM4+k/XVxF5DrpDjjVVx+Ow7Nzz7RE1vN4foJW773yT89u9p2FnXYe59+rWxcrTjgZOKL5WLQneL6SkA2NjotQlEH0VhqMD8uylM+UBC/VkuL2f/qyubxX0WlrTA1hMYGwMLF/Z2Kwii76Cu6VZPFUboBhrZdczFk7Fi2dup4Kr1ZXIZhgdliNtWlj0TQMXSlGnWKmul/uOlFcyk3MigAaYW2s3LW3D2cWz3eH/mkdcnIeliIOYsG9nbTSF6CWcfRxxKGobfD4+Ckal+/Wcd7PmEu+gSd2lQF7qt214DIwiiH2FrwRdzy/KLAADVVfzdT0I3QRC9waRJ7L9cDtx0U++2ZSBCI7uOyb7Iv1Ifn44FQxkexifZVkaFOm+TNqyupCSpqpPasZVW2wAA7CzKIZNToj2C6AkcHbgfd1EB13pX5HF/FWuFNNMAQRD9ExshXiyXZ58DAFRX8/mChSUZIRIE0fNccw3Ls330KBAd3dutGXiQ0K1jsi7ZAAAMFY1w9elYOMzoGP6CtVJc1EezNLA0Z/6BDU0maKzjAVzK6pj/sp3bwPLTJoi+jKMjX+AqLuRRjCuKisSytUHPjA0EQegXWzseO6WslAnb1TyTJywsKUcPQRA9j0wGTJ4MjCQjT71AQreOuXiZCa1ejvmQG3QsQ3z0WB6t3Nqsop2ausNKLW1YVRl72zc28he/rS1puQmip3Bw5ubrRZe5qXlFKX9OybycIAYGNvY8dooYSM0wStxn4eLb000iCIIg9AwJ3Tqk/HIFKmrZzNjbpaTD5wUMD8b0ESegkDfj5tt6JmyppTmPlFpZyvzLWl7+AGBn1yPNIAgCgKMfT/9ULPAl5vIyLoBb29BwTRADAVsHHiq7vII919WNNuI+C3t6ARMEQQw0yHFIh1w8XwDgitDt0fGo1zK5DLuORaOqrApW9uP11DopVrZcs1ZVwzTypaX8OAndBNFzOHrYi+WiMh7AsKKcB1eytqHhmiAGAraOPIBpWTl7riXm5ZQyjCAIYsBBqhMdkpVaLpZ9vJrarqgFmVwmpgnqCSy9Y8RyZRPLFV6WzaOo2xllaJxDEIR+cOAeJlBz45ZGL7fVbwR1giB6BhsHS7FcXsX8t0noJgiCGNiQ0K1DLmbUi2Uvn74dCMVKTb6vqmL/SwuKxX22RtkgCKJnsOeKbhTzxxAVFTy2grWtMQiC6P9YO/AXcFklMzWvLi0X91mYC61PIQiCIPo5JHTrkKws/qL0DjBvp2bvY8kX2rnQXcSDNtnZUyA1gugpDAwAWxvmv12UXyXur6jkQ7S1nanGeQRB9D8UhgpYmTIzlrIqNleounwJACCXKWFi0mtNIwiCIPQECd06JCuHvym9Ax3aqdn7qGu6K6+kCS8t4f6jdvZ9W1NPEAMNR/McAEDRZZ6vt6KKP4fWDn17IY8giI5ja8EW18qrmS15dR2zZLEwqYZMToveBEEQAw0SunVIo3EAAMDUuB7u/h3L0d1bWKrOieWqzFgAQFkZ19TbOZD/KEH0JI42bPWrss4ajXUsV3dFFX8Ore3J0ZMgBgp2VkzoLq22QXOTCtV1zJLFwrS2N5tFEARB6AkKh6tDnnzBAVWNAqZMKYCBkWdvN6ddLE15dPXKsjoAQGkZX11XT2lCEIT+cbDlMSGKL5XBzd8FFY0uAAC5XAkLGxK6CWKg4Bvmg1PpQLPSEDm5QHU9y1pgYVp/lTMJgiCI/ghpunXIxInA3r0qzJnT8RzdvYWVjVrKsBaf7jK+BmPnRBN8guhJHO0axHJxPvP3rGhkmQWsrBSQK8jklCAGCgHBfGH7QqqA6nrmPkJCN0EQxMCEhO5BiqUN9z+vrGLdoLSCC+J2zj2XvowgCMDRgcdUKMpnligtKcOsrXujRQRB6IuAAF5OTlKiWcniN1iYNrRxBkEQBNGf0YvQLQgCli9fjq1bt7Zbb82aNQgODpb8ffvtt/poEtEKK1u+yl5VzTTcLalLAGlKE4Ig9I+DA9dkFxUwbRcJ3QQxMFEXuhNONYtlC7OmXmgNQRAEoW907tOtUqnw2muv4fDhw5g9e3a7ddPT07Fq1SosWLBA3GdhQWbNPYGljZlYrqxmK+yllcy8zca8HApDm95oFkEMWhyd+HBcfLkJ9fVAwxWlFwndBDGwCPCtB8AszhKOFQLwBgBYmJPQTRAEMRDRqaa7sLAQd955J/bu3Qsrq6trStPT0xESEgJHR0fxz9SUAnj1BJZ2fHGjqoaZlZfWOgEA7GwatZ5DEIT+cHA2FstFRQIKM3PFbTv56d5oEkEQesLd0wjGhsyi5WyWm7jfwkzZ1ikEQRBEP0anmu7k5GS4urri/fffx+LFi9utW11djcLCQvj4+HT4+kqlEkpl334htbSvr7fTwNgARgYNaGw2RmWNCZqalCirZNpvO1fHPt/+wUB/6UuEbrBz5guOl4tkOHUkF4AHACDEv6Rb/YD6EqErqC/pDn+XXJzNCRD9uQHA3FzVd75bpRIKsagEdNwu6kuELqH+ROiK1n1JV31Kp0L31KlTMXXq1A7VTU9Ph0wmw8aNG3HgwAHY2Nhg2bJlElPz1qSmpuqqqXrnzJkzvd2Eq2Jl6o3iKmNU1hrjyJHTUKmiAAAKRRUSEi70cuuIFvpDXyK6T3l1GYAwAEDeZWMc2lckHnP1rEBCQkK370F9idAV1Je6j49bLc7mBEj21Zj66eRZ1wXyujpEXSmfPn0aKj1ZIlJfInQJ9SdCV+i6L3VK6K6vr0dhYaHWY46OjjAzM9N6TBsZGRmQyWTw8/PDbbfdhri4OLzwwguwsLDAtGnTtJ4TFBTUqXv0BkqlEmfOnEF4eDgUCsXVT+hFLM3yUFwFVNVZwN2d5xX39rZAZGRk7zWMANC/+hLRfWoCBLFcqRiF9KxYcXvanHAERvp0+drUlwhdQX1JdwwJPICdsdJ9fgHuiIx0035CT1NTIxaHDRsGmJvr9PLUlwhdQv2J0BWt+1Jtba1OFL+dEroTExNxxx13aD320Ucf4dprr+3wtebPn48pU6bAxsYGADBkyBBkZWXhhx9+aFPoVigU/eZB6g9ttbI1BQqBqnobVJRz9357ezn6eNMHFf2hLxHdx8oaMDUF6uqAkhIZLl52BwCYG1cjKNIXckX3Q3BQXyJ0BfWl7hMYqPn9WVn1ofevWkMUCgX01TDqS4Quof5E6IqWvqSr/tQpoXvUqFE4f/68Tm4sk8lEgbsFPz8/HDt2TCfXJ66OpYMjAKCh0QAF504BVwzJbFWxAEb1XsMIYpDi6AhkZwNZWQKqq5n1SYR/BuSKYb3cMoIgdE3AEM1sLZTAhSAIYmCilzzdHeH999/H0qVLJftSUlLg5+fXOw0ahKgHmM++yIME2FnV9UJrCIJwcGD/q6t5zu7IkLJeag1BEPokINRJY5+FPFdLTYIgCKK/06NCd2lpKWqu+AhNmTIFcXFx2Lx5M7Kzs/H9999j27ZtWL58eU82aVBjacnL/+y3Ect29mSWQxC9gaN5jsa+yEiZlpoEQfR3PINcYaiQpui0UOT3UmsIgiAIfdKjQvfixYvx+eefA2BBOd5//31s374ds2fPxjfffIN33nkHUVFRV7kKoSsmTuTl3/bwCKp2DoZaahMEoW8czS5q7Isc6dALLSEIQt8oDBXwc5Fqti2sjHqpNQRBEIQ+0WnKMHX27t171X3XXnttp4KvEbrlvvuA377Lxp4jXpL9tg76SQtCEET7ONhJc0Eq5M0IG+3bS60hCELfBPg14nwe37awMu69xhAEQRB6o9d8uoneR6EAfvzFAt6O0pV2O8e+nZaNIAYqjo6CZHtIQDVMLWkRjCAGKoHRQyTbFtYmvdQSgiAIQp+Q0D3IsXezw9afqmBiyIOnObrZ9F6DCGIQ4+AoHZIjR9j0TkMIgugRAgKk2xbWtMhGEAQxECGhm8DwKUPxw8en4eWYi5U37oezj2NvN4kgBiWOzlJ/zsjI3mkHQRA9Q2uh29LWvHcaQhAEQegVvfl0E/2L+XePwvy7AcCjt5tCEIMWRxepawcJ3QQxsGktdJtZkXsXQRDEQIQ03QRBEH0EBxcLyXbEMKGNmgRBDAS8vVQwUDQBAMyNqyFX0LSMIAhiIEKjO0EQRB/B0d1GLLvb5sLRiXJ0E8RAxsBQjlD3ZACAp31OL7eGIAiC0BckdBMEQfQRbJ1t4O/CcnVPH5fZy60hCKIn2PiJAW6fcQgb1zf0dlMIgiAIPUE+3QRBEH0EuUKOPXsU2L/zEOYvHdbbzSEIogcYPSMMo2f0disIgiAIfUJCN0EQRB/CJ9QDPqEU0JAgCIIgCGKgQOblBEEQBEEQBEEQBKEnSOgmCIIgCIIgCIIgCD1BQjdBEARBEARBEARB6Il+4dOtUqkAAHV1db3ckqujVCoBALW1tVAoFL3cGqI/Q32J0BXUlwhdQX1pEFFfDwQH87JMtykMqS8RuoT6E6ErWvelFvmzRR7tKjJBEIRut07PlJSUICsrq7ebQRAEQRAEQRAEQQwyfHx8YG9v3+Xz+4XQ3dzcjIqKChgbG0MuJ4t4giAIgiAIgiAIQr+oVCo0NDTA2toaBgZdNxLvF0I3QRAEQRAEQRAEQfRHSG1MEARBEARBEARBEHqChG6CIAiCIAiCIAiC0BMkdOuIhoYGPPvss4iJicH48ePx+eef93aTiH7EP//8g+DgYMnfww8/DAA4e/YsbrjhBkRERGDRokVISkrq5dYSfZHGxkbMnj0bsbGx4r6cnBwsXboUkZGRmDlzJg4dOiQ558iRI5g9ezYiIiJwxx13ICcnp6ebTfRBtPWlNWvWaIxR3377rXj8jz/+wLXXXouIiAisWLECpaWlvdF0oo9QWFiIhx9+GCNHjsSECRPwxhtvoKGhAQCNS0TnaK8v0bhEdJaLFy/irrvuQlRUFCZPnoxNmzaJx/Q9NpHQrSPeeustJCUl4auvvsKLL76I9evX46+//urtZhH9hLS0NEyZMgWHDh0S/9asWYPa2lrce++9iImJwdatWxEVFYX77rsPtbW1vd1kog/R0NCAxx57DBcuXBD3CYKAFStWwMHBAVu2bMG8efOwcuVKXLp0CQBw6dIlrFixAgsXLsSvv/4KOzs7PPjgg6AwH4MbbX0JANLT07Fq1SrJGLVo0SIAwOnTp/Hcc89h5cqV+Omnn1BZWYlnnnmmN5pP9AEEQcDDDz+Muro6fPfdd3jvvffw33//Yd26dTQuEZ2ivb4E0LhEdA6VSoV7770Xtra2+O233/Dyyy9jw4YN2LFjR8+MTQLRbWpqaoTw8HDh2LFj4r6PPvpIuO2223qxVUR/YtWqVcI777yjsf+XX34Rpk6dKqhUKkEQBEGlUgnTpk0TtmzZ0tNNJPooFy5cEObOnSvMmTNHCAoKEsehI0eOCJGRkUJNTY1Y98477xQ++OADQRAEYd26dZIxqra2VoiKipKMY8Tgoq2+JAiCMGHCBOHgwYNaz3viiSeEp556Sty+dOmSEBwcLGRnZ+u9zUTfIy0tTQgKChKKiorEfTt27BDGjx9P4xLRKdrrS4JA4xLROQoLC4VHHnlEqKqqEvetWLFCePHFF3tkbCJNtw5ISUlBc3MzoqKixH3R0dFITEzsdiJ1YnCQnp4OHx8fjf2JiYmIjo6GTCYDAMhkMgwfPhwJCQk920Ciz3L8+HGMGjUKP/30k2R/YmIiQkJCYGZmJu6Ljo4W+05iYiJiYmLEY6ampggNDaW+NYhpqy9VV1ejsLBQ6xgFaPYlV1dXuLm5ITExUZ/NJfoojo6O2LRpExwcHCT7q6uraVwiOkV7fYnGJaKzODk5Yd26dbCwsIAgCIiPj0dcXBxGjhzZI2NT15ONESJFRUWwtbWFkZGRuM/BwQENDQ0oLy+HnZ1dL7aO6OsIgoDMzEwcOnQIn3zyCZRKJWbMmIGHH34YRUVFCAgIkNS3t7fXMP0kBi+33HKL1v1FRUVwcnKS7LO3t0dBQUGHjhODj7b6Unp6OmQyGTZu3IgDBw7AxsYGy5Ytw4IFCwAAly9fpr5EiFhZWWHChAnitkqlwrfffovRo0fTuER0ivb6Eo1LRHeYOnUqLl26hClTpmD69Ol4/fXX9T42kdCtA+rq6iQCNwBxu7GxsTeaRPQjLl26JPahdevWITc3F2vWrEF9fX2bfYv6FXE1rtZ3qG8RHSUjIwMymQx+fn647bbbEBcXhxdeeAEWFhaYNm0a6uvrqS8RbbJ27VqcPXsWv/76K7788ksal4guo96XkpOTaVwiuswHH3yA4uJivPTSS3jjjTd6ZM5EQrcOMDY21vjSW7ZNTEx6o0lEP8Ld3R2xsbGwtraGTCbD0KFDoVKp8MQTT2DkyJFa+xb1K+JqGBsbo7y8XLJPve+0NW5ZWVn1VBOJfsL8+fMxZcoU2NjYAACGDBmCrKws/PDDD5g2bVqbfcnU1LQXWkv0JdauXYuvvvoK7733HoKCgmhcIrpM674UGBhI4xLRZcLDwwGw4KGPP/44Fi1ahLq6OkkdXY9N5NOtA5ydnVFWVobm5mZxX1FREUxMTOhFQXQIGxsb0W8bAPz9/dHQ0ABHR0cUFxdL6hYXF2uYuBBEa5ydndvtO20dd3R07LE2Ev0DmUwmTmxb8PPzQ2FhIQDqS4R2Xn31VXzxxRdYu3Ytpk+fDoDGJaJraOtLNC4RnaW4uBh79uyR7AsICEBTU9NV59u66E8kdOuAoUOHwsDAQOJMHx8fj/DwcMjl9BUT7XPw4EGMGjVKssJ27tw52NjYIDo6GqdOnRJTEgiCgJMnTyIiIqK3mkv0EyIiIpCcnIz6+npxX3x8vNh3IiIiEB8fLx6rq6vD2bNnqW8RGrz//vtYunSpZF9KSgr8/PwAaPal/Px85OfnU18axKxfvx4//vgj3n33XcyaNUvcT+MS0Vna6ks0LhGdJTc3FytXrhQXZgAgKSkJdnZ2iI6O1vvYRBKhDjA1NcX8+fPx0ksv4fTp09izZw8+//xz3HHHHb3dNKIfEBUVBWNjYzz//PPIyMjA/v378dZbb+Huu+/GjBkzUFlZiddeew1paWl47bXXUFdXh+uvv763m030cUaOHAlXV1c888wzuHDhAj799FOcPn0aixcvBgAsWrQIJ0+exKeffooLFy7gmWeegYeHB0aNGtXLLSf6GlOmTEFcXBw2b96M7OxsfP/999i2bRuWL18OALj55puxfft2/PLLL0hJScGTTz6JyZMnw9PTs5dbTvQG6enp+Pjjj3HPPfcgOjoaRUVF4h+NS0RnaK8v0bhEdJbw8HCEhobi2WefRVpaGvbv34+1a9fi/vvv75mxqZspz4gr1NbWCk8++aQQGRkpjB8/Xvjiiy96u0lEPyI1NVVYunSpEBkZKYwbN0748MMPxdzciYmJwvz584Xw8HBh8eLFQnJyci+3luirtM6tnJWVJdx6661CWFiYMGvWLOHw4cOS+vv27ROuu+46YdiwYcKdd95J+UsJkdZ96Z9//hHmzJkjhIeHCzNmzBB2794tqb9lyxZh0qRJQmRkpLBixQqhtLS0p5tM9BE++eQTISgoSOufINC4RHScq/UlGpeIzlJQUCCsWLFCGD58uDBu3Dhhw4YN4nxb32OTTBCu2K0SBEEQBEEQBEEQBKFTyLycIAiCIAiCIAiCIPQECd0EQRAEQRAEQRAEoSdI6CYIgiAIgiAIgiAIPUFCN0EQBEEQBEEQBEHoCRK6CYIgCIIgCIIgCEJPkNBNEARBEARBEARBEHqChG6CIAiCIAiCIAiC0BMkdBMEQRAEQRAEQRCEniChmyAIgiAIgiAIgiD0BAndBEEQBEEQBEEQBKEnSOgmCIIgCIIgCIIgCD1BQjdBEARBEARBEARB6AkSugmCIAiCIAiCIAhCT5DQTRAEQRAEQRAEQRB6goRugiAIgiAIgiAIgtATJHQTBEEQBEEQBEEQhJ4goZsgCIIgCIIgCIIg9AQJ3QRBEARBEARBEAShJ0joJgiCIIhWPP300wgODm7zb9y4cb3dxE4RHByMDz/8sNvXuXjxIh555BGMHz8e0dHRuPnmm3H06NE26+/duxfBwcEa+xsaGhAaGqrxvUZFRbV5rddff13rtQiCIAiir2PQ2w0gCIIgiL6Io6Mj1q9fr/WYoaFhD7em9ykrK8Ntt90GGxsbPPvss7CwsMAvv/yC5cuX46uvvsLIkSMl9WNjY7Fq1Sqt10pNTUVzczPWrl0LLy8vcb9crl0XEBcXh6+//lp3H4YgCIIgehASugmCIAhCC0ZGRoiMjOztZvQZtm3bhrKyMvz6669wdnYGAIwbNw7z5s3D5s2bRaG7uroan332GT777DNYWlqitrZW41opKSkwMDDAjBkzYGRk1O59a2pq8Mwzz8DZ2RkFBQW6/2AEQRAEoWfIvJwgCIIgukhSUhJCQ0Px9NNPi/tKSkowZswYLFu2DIIgAGCa2rvuugsjRoxAWFgYpk6dig8//BAqlQoAkJubi+DgYPz111948MEHERkZibFjx+Ljjz9GdXU1nn32WURHR2Ps2LFYu3ateN2W8/7880/cf//9iIiIwOTJk/HRRx+J19ZGeXk5Vq9ejbFjxyI8PBw33nhju2biAODs7IylS5eKAjcAKBQKeHt7Izs7W9z366+/4ueff8bq1atx2223ab3WuXPn4Ofnd1WBGwDeeustODg4YOHChVetSxAEQRB9ERK6CYIgCKINmpubtf61CL1hYWG455578Ntvv4lC6+rVq6FSqfB///d/kMlkSElJwdKlS2FjY4P33nsPGzZsQExMDNavX49du3ZJ7vf8888jKCgIGzZswJgxY/D+++9j8eLFMDExwfr163Hddddh06ZN+OuvvyTnvfTSS7CwsMCHH36IefPmYf369XjnnXe0fqaGhgbceeed+Pfff/G///0P69evh4uLC+6+++52Be+ZM2fi8ccfl+yrqKhAXFwcAgMDxX1Tp07F3r17cdNNN7V5rXPnzkGhUGD58uWIjIzEyJEjsXr1alRXV0vqHT58GNu3b8cbb7zRpuk5QRAEQfR1yLycIAiCILSQl5eH0NBQrceefPJJ3HXXXQCAFStWYO/evXj55Zdx7733Ys+ePXj//fdFjXBKSoqooW4RHMeNG4e9e/ciNjYWs2bNEq87YcIEPProowCAwMBA/PHHH7C3t8fq1asBAKNHj8aOHTtw8uRJXH/99eJ5oaGhePvttwEAEydORG1tLb766is88MADsLCwkLR9+/btSElJwc8//4yIiAjxnNtvvx1vv/02tmzZ0qHvR6VS4YUXXkB1dTXuvvtucb+6j7Y2BEHA+fPnIQgCbrjhBjzwwAM4c+YM1q9fj7S0NHz77beQy+WoqqrCc889h4cffhi+vr4dahNBEARB9EVI6CYIgiAILTg6OmLDhg1aj7m6uoplQ0NDvPnmm7jhhhvw3HPPYcGCBZgxY4Z4fP78+Zg/fz4aGhqQmZmJixcv4ty5c1AqlWhqapJcVz16t4ODAwBg2LBh4j6ZTAZra2tUVVVJzps/f75ke/r06fj6669x6tQpTJgwQXLs6NGjcHR0RGhoKJqbm8X9U6ZMwVtvvYWKigpYW1u399WgqakJTz/9NHbv3o3Vq1dL2ng1BEHAhg0bYGdnJ2rIR4wYAQcHBzzxxBM4ePAgJk2ahNdffx0uLi5YunRph69NEARBEH0REroJgiAIQgtGRkYIDw/vUN2hQ4ciODgYSUlJmDJliuRYfX09Xn31VWzfvh3Nzc3w8PBAVFQUDAwMRDP1FlprpQHAzMzsqvdX97MGADs7OwDM/Ls15eXlKCoqalOLX1RU1K7QXVlZiZUrVyIuLg4vvPACbr311qu2Tx25XI5Ro0Zp7J88eTIA4Pz581CpVPjzzz+xZcsWqFQq8Q9gJv9yuZzMzQmCIIh+AwndBEEQBNFNfvrpJyQlJWHIkCF47bXXMGbMGFhZWQEAXnvtNezevRvr1q3D2LFjRSF6zJgxOrt/WVmZZLukpAQAYG9vr1HX0tISPj4+ojl6azw8PNq8T0FBAZYtW4bc3Fy8++67EhP3jlJYWIj9+/dj/PjxcHNzE/fX19cDAGxtbbF79240NDRg9uzZGueHhoZiwYIF+L//+79O35sgCIIgegNaJiYIgiCIbpCXl4c333wTixcvxsaNG1FVVYXXXntNPB4fH49Ro0bh2muvFQXupKQklJaWththvDPs2bNHsr17926YmpqKPtvqjBw5Evn5+bC3t0d4eLj4d/jwYWzatAkKhULrPaqrq3HnnXfi8uXL+OKLL7okcAOAUqnECy+8gJ9++kmyf+fOnVAoFIiJicHKlSvx66+/Sv5uvPFGACw6+sqVK7t0b4IgCILoDUjTTRAEQRBaaGxsREJCQpvHg4ODYWJigueeew6mpqZ48sknYW1tjUcffRSvv/46pk+fjqlTp2LYsGHYtWsXfvjhB/j7+yMlJQUbNmyATCZDXV2dTtq6a9cu2NvbY9KkSTh+/Di+++47/O9//9Nqmr5w4UJ8++23WLZsGe6//364urriyJEj+Oyzz3DbbbfB0NBQ6z0++OADZGVl4aGHHoKBgYHkuzEyMkJISEiH2urm5oaFCxdi8+bNMDY2RlRUFOLj47Fx40bceuutYtC01hr3ffv2AUCHTf4JgiAIoq9AQjdBEARBaKGoqAhLlixp8/i2bdtw8uRJHD16FOvWrRP9oG+//Xbs2LEDq1evxvDhw/H000+jqakJ69atQ2NjIzw8PPDAAw8gLS0Ne/fuhVKp7HZbH3nkERw/fhw//fQTXF1dsXr1atx8881a65qZmeG7777DO++8g7Vr16Kqqgru7u5YtWoVli9f3uY9/v77bwDAhx9+iA8//FByzN3dHXv37u1we19++WV4enpi+/bt2LBhA1xcXPDwww9LoqATBEEQxEBBJrSO4kIQBEEQRL8gNzcX11xzDd544w0sXLiwt5tDEARBEIQWyKebIAiCIAiCIAiCIPQECd0EQRAEQRAEQRAEoSfIvJwgCIIgCIIgCIIg9ARpugmCIAiCIAiCIAhCT5DQTRAEQRAEQRAEQRB6ol+kDGtubkZFRQWMjY0hl9M6AUEQBEEQBEEQBKFfVCoVGhoaYG1tDQODrovO/ULorqioQFZWVm83gyAIgiAIgiAIghhk+Pj4wN7evsvn9wuh29jYGAD7sKampr3cmvZRKpVITU1FUFAQFApFbzeH6MdQXyJ0BfUlQldQXxpE1NUB48ax8uHDgI7nX9SXCF1C/YnQFa37Ul1dHbKyskR5tKv0C6G7xaTc1NQUZmZmvdya9lEqlQAAMzMzeuiJbkF9idAV1JcIXUF9aRAhCMD586xsYgLoeP5FfYnQJdSfCF3RVl/qroszOUgTBEEQBEEQBEEQhJ4goZsgCIIgCIIgCIIg9AQJ3QRBEATRR4n75yyCPTKxYMIxqJSq3m4OQRAEQRBdgIRugiAIguiDVJZU4oZbzJCa54tth0bj4O+Jvd0kgiAIgiC6AAndBEEQBNEH+d/SRFws9hG3z52p7L3GEARBEATRZUjoJgiCIIg+xu+fx+LzPyZI9qVkdD0/KEEQBEEQvQcJ3QRBEATRhyjOLcE9j/lp7D9fGNYLrSEIgiAIoruQ0E0QBEEQfYgv1p3B5QpHAMCcsbGwtBQA8JTJBEEQBEH0L0joJgiCIIg+xLkUhVh+aY0VgoNlAICsLKC+vpcaRRAEQRBElyGhm+j3NNY1YtPrB3H4j9O93RSCIIhuk5FjKZYDhrkjOJiVBQFIS+ulRhEEQRAE0WVI6Cb6Pf/3+BHc89wETF0QjILMy73dHIIgiG6RURoOALC3bYCVvRWC3TPFY+ePxPVWswiCIAiC6CIkdBP9GkEl4OstHgCAxmZjnDxAaiCCIPovjY1Abh4zL/f1NwYABHvli8fPJ1f3SrsIgiAIgug6JHQT/ZrTh1ORXhggbqelNvViaxgFmZdxNpaEf4IgOs/Fi8yMHAD8rgQwDx7GU4WdTzXshVYRBEEQBNEdSOgm+jVbvs2XbKdlmfRSSxgFmZcRGGKK0NEB2L45tlfbQhBE/yOTW5LD15f9D4zwFPedz7Lp2QYRBEEQBNFtSOgm+jVb/vKQbKeVjeqlljD++ukMqutZEKQ319n2alsIguh/ZCRyKxk/zyoAgJmVGbwdcwEA53M8IKiEXmkbQRAEQRBdg4Ruot+SEpeBs9kBkn26iuwb989ZPH/PPmQl53bqvBMnDcTy0aQgJCfrpj0EQQwOMtXGHF+HC2I52LsAAFBeY4PL2cU93i6CIAYeZ84ATz4JmqsQRA9AQjfRb9nyTbbGvsxMoLm5e9dVqYAFtzrjtU2T8fC9lzp17okz9pLtTZu61xaCIAYXGReNxbLfED6eBPvXiOXziZ0blwiCIFpTXQ1cdx2wdi0wbhyQmNjbLSKIgQ0J3US/Zev+GLEcM7wBABO4L17s3nUzMoC8IjbZTU537vB5TQ1NSEiXat6//hqor+9eewiCGDxk5lkDAOQyJbyGuIn7W3J1A8D5pIqebhZBEAOMt98GCpgBDSoqgBkz2PyHIAj9QEI30S/JzAROnrYAAAwfLuDaCaXisbQTZ7t1bfXV3qLKjvtlJx9LR0OTNJBbaSmw7bucbrWHIIjBQ8YlVwCAp0M+DI15pPLgUEuxfD5F1ePtIgiCU1IC/PYbUFnZ2y3pGvn5TOhWp6CAab5bBHGCIHQLCd1Ev+S333h50SIZApy572Pa2aJuXVtd6K6qs0JdVV2Hzos7dFksz518Tix/9lH32kMQxOCg/HIFymrYQp+vm3TcCI5wEcvn0816tF0EQUiZPRtYuBBYtqy3W9Ix/v6bmZA/9hhQVAS89BJQc8Vj5fbbgZAQVk5PB+6/v9eaSRADGhK6iX7J9u28vHAhEDCEa4HSLmg5oROcPi2NDFyUV9pGTSknTvDyqkcbEeCaBQDYe2o40hK6afNOEMSAJ/MsT4Ho51ktOeYe4AIzE+ZGc74wrEfbRRAEp6oKOHaMlbdvZxZtuqCwEMjL08211MnMBBYtAo4cAd57DwgI4PFmLC2Bd94Bdu8GnK940/35JzM3JwhCt5DQTfQ7Si6V4dAhZl4ZFAQMGQIEhHMtUFqWabeun3hU+tYrutQx+7ETSY4AAJlMheET/XH3TVnisXuWlqK5sZsR3giCGNBkpJSJZV8fpeSYXCFH0BAWZC3johkaG3u0aQRBXOH8eV5WKoFdu7p/zZMn2XzGzw84dKj712tBpQKWLmVB01qorGT7AeDppwFHR8DDA7jpJravuVk3n4kgCCk6FboFQcDbb7+N0aNHY+TIkXjrrbegUrXte7ZmzRoEBwdL/r799ltdNokYgPz5fTJUKtZ1544/BQBw9XWGqVEtACAtx77Nc69GRVE5si5Lc39fvlTdRm1OfU09zmT6AwCGembAwtYC9zwRAVdb5hy1LzEKT9+lwzcpQRADjsz0BrHsF2CocXzIEPZfqZRa1hAE0XOkpEi31S3vuoJSCdx7LxOGGxuBF17o3vXUWbcOOHCAlb29gXvuAeRXZv5eXsCjj/K68+bx8u+/664NBEEwdCp0f/HFF/jjjz+wfv16fPDBB9ixYwe++OKLNuunp6dj1apVOHTokPi3aNEiXTaJGID8/odCLM+bz7qwXCGHvyvTUGcUeEDZpNR67tU4fVTTDPxyfoOWmlLOJBujSWkEAIiJYe2zc7XFr98UwUDRBAB459vJ+PmjI11qF0EQA5+MTP5K9g200jg+fTovb9jQEy0iCKI1rYXuv/4CGq4+TWiTjRuB+Hi+vW9f9xbVamqA2Fjg44+BZ59l+2Qy4KuvgE8/BZKSgPXrgcOHATO18BDjxwM2Nqy8cyfQ1NT1NhAEoYlOhe6vv/4aDz/8MGJiYjB69Gg8/vjj+O6779qsn56ejpCQEDg6Oop/pqbdMw0mBjb1NfX461g4AMDesgRjZoSKxwI8SwAAjc3GyL0gzWNbml+Gj1/cj3PH09u9fmJcuca+osvcLPz0oVR89toBVJdJtd8n4mViOWayr1geOysc657jgvbyVcOQlZzbbhsIghicZBa6i2W/EM10hUuWAPb2LObEzz81oTCLgjQSRE9z7px0u6oK2L+/a9cqKACee05z/9q1XbveL78ADg7A6NHAihV8MeB//wMmTWLloUPZMQ+pUR8MDYGZM1m5ogI4eLBrbSAIQjs6E7oLCwuRn5+PESNGiPuio6ORl5eHy5cva9Svrq5GYWEhfHx8dNUEYgDx35ZT2PV9IgRpTDPs25aEmgaWKmz2hHNQGBqIxwJ8eULsC0nSyej/7krGilcmYfosk3a14ImnZRr7WrpvbWUtrpllh3ufn4hrxmRJBO+4OF4/JkZ6/oMvTsTtM5hpeU2DBX7anNbm/QmCGLxkXGYuKmZmgJO3k8ZxU1Pg7vmxAIDGJkN89k5yh6+dn1GIb987jKKcYt00liAGKa013UDXzbEff5wHLbv5Zh7M7NdfO58zu76emYvX10v3jxsHvPZax64xdy4vk4k5QegWg6tX6RhFRUzIcXLiEwUHBwcAQEFBgWQ/wLTcMpkMGzduxIEDB2BjY4Nly5ZhwYIFbd5DqVRCqeya2XBP0dK+vt7OvszBHacxdXEUAGD2DwI2bVLhSlfC9q01Yr3Zc+WS79nPnwvMqeeqMEXt2L6TQQCAnGJ3XDidhsBIro1WJzFF0x/8cpk5lEolzidcRHHlUADA8fNhWDgtHtv3hcDI1AgnTsgByKBQCAgPV6H1z//4C4745i9WPpFg1KH+QX2J0BXUl/o+KhWQlcXGEV9foc14KPc84oq1nyuhEhTY+H0wHn+zXpLPWxu/bYrFPatCUF4zDlO+Pol/Tth2uZ3UlwYRSiUUYlEJjRdbty/f//pSczNw4QJ7Tn18BFy6BDQ2yvD77wLWrVNBprlu3yZxccB337Fv2NZWwLvvqvDZZzKsXi2HSgW8844KH3wgXOUqnE8/leHSJaZLGz5cwO23Cxg2TMD48YBC0bGfb9o0wNBQjqYmGbZvF/D22537TL1Jf+xPRN+kdV/SVZ/qlNBdX1+PwsJCrcdqa1kQKyMjI3FfS7lRS5jVjIwMyGQy+Pn54bbbbkNcXBxeeOEFWFhYYNq0aVrvkZqa2pnm9ipnzpzp7Sb0W774hGti/vhDhvBwJZ55+iJioi5jx75AAICxYT1chwhISEgQ65pZ8xwXZ07XiMdqa+XILowSj/23Mwk10MyHoWxWIimLpeKxsyhDaTWbmKaVBiEhIQFxsZUAhor1/4mPxoIph+HrUYLkpFkAFAjwq8T585qabKVCCTPjGtQ2mONEsqek3VeD+hKhK6gv9V0KCw3R2DgMAGBnV4GEhLZdYWaMzMHO2PHIK3XFprXbMGa2p9Z69XXAZ2+U4Kud14n79iVG4vB/h2Fu271c39SXBj7yujq0vDlPnz4NlZ7c//pTX8rONkZTE5sn+PuXw9VVjqNHrZGTI8PPP59HcHBdh6/1yis+ANhC/7335iAvrwjjxilgahqOujoFNm8GHB1zMHVqGczN2w5KDAANDTKsWRMGgM27H3vsHIYMYW3p7Nc7fHggYmOtkJUlw5YtKQgIqL/6SX2I/tSfiL6NrvtSp4TuxMRE3HHHHVqPPfHEEwCYgG1sbCyWAWj1054/fz6mTJkCmytRG4YMGYKsrCz88MMPbQrdQUFBMDPr3kRB3yiVSpw5cwbh4eFQKBRXP4GQoFKq8E9siWRfUZERHlsVCCBQ3HfN8NMYPX60pJ6dKU8bdqk6CpGRzLpCPUAJABQVWCMyMlLj3iknMlDXyPrXpKjz2HZoFARBhoYGK0RGRiI2VnO5d/eJcYBawJNxQxIRGTlO62eLiqjC4eNA1mVPeHq6wf4qQdapLxG6gvpS30fdfzIy0krrGNXCw4+exM6bWfnXrd544PlhWuvdfbcMX+2UepEJghxlOYYYN6Xt67cH9aVBRA23LBs2bBhgbq7Ty/fHvpSTw8ujRlnDzQ04epRtp6YOwZIlHdNMFxYCe/awZ9PeXsDzz7vD1JTFdLj7bhk+/BBoaJDj5Zd98NZb3rjvPgFvvimgra/p449lKCq6ktVlroCbbgru2gcEcMstMsTGtnymoVi8mH+mzZtlOHAAeP11Ae7ubVygl+iP/Ynom7TuS7W1tTpR/HZK6B41ahTOqycoVKOwsBBr165FUVERPK5EZ2gxOXd0dNSoL5PJRIG7BT8/Pxw7dqzN+ysUin7zIPWntvYlTu49j/yyEADAhGFJMHIMw7//atabO6te4/v1HuIOY2MWOCQ9z1V8ObXusskpxlp/m6S4IrQI9lHD6nEoRYaiIqCoSAaFQoFctfhnDy3LxMdfeUKp4o+Qv8tFPPqUS5u/+4ixNjh8nJUTEhS47jqt1TSgvkToCupLfZeL8UcBjAEA+DumQaEIarPudTfGYMgT6UjJ9cf+01HIPHMRAZHekjp1dcAPP7CyiVEDFkw8gR/2sAXBI/vrMW9Z9/oB9aVBgNrvq1Ao0KbE1+3b9J++dOECL4eEyDFpErByJdv+4w85XnpJ+3kqFQu4Zm3Ntj//nEcHv/tuGSws+OdfvRo4fhyi4FtXJ8O6dTIEBwP338/2lZez1GJNTUBEBPDmm/xeL70k69b3OW8e8MgjrLx1q1xMYZaUBNx3HysXFgL//NPlW+iV/tSfiL5NS1/SVX/SWSA1Z2dnuLm5IV5NrRgfHw83NzcNf24AeP/997F06VLJvpSUFPj5+emqSUQ/5PdfeNC9O5aUYvdu4NtvgXtvzcGoIUmwMq3AuNDTuHXlcI1z5XKgpfukp7OXHACNiOVJaZr9EQAST3E3iIjhpmjptpcvA4IgXeG+/3FfHN6Zgvef3Y+/vjuB/IzLuJDnhfBxbU+U1QOsqQdeIwiCyM7kOYe8XcvarSuTy7DsRj4gbf0mU6POgQM8cvGttxnhvc/42HTw+FXMbAiC0Ip65PKhQ1kE8BajlPh4Joy2pqEBiIoCHB2BN95ggnJLyj+5nAvSLTg4MO350aPSY++8w/2y77+fpf365BPgwQeBPJYxFfPmsXt1B29vYORIVk5I4ObpX3/N6+zZA5w61b37EMRgQ6cpw26++Wa8/fbbiI2NRWxsLN555x2JOXppaSlqrpgrTZkyBXFxcdi8eTOys7Px/fffY9u2bVi+fLkum0T0M37f4yqWZ98cDIUCuPVW4JNvPXHsXBgqaq1xKGkYLGwttJ4fEMD+19cD2dmsfDZBGq03Nc8bDbWaSTUT88aI5YhxvnC0YGnH6uqAmvJqidDt6QmMmh6Gh1+bhOm3xMDF1wkyefvRRtSF7u7k4CT0Q+tI+QTRk+Tm8dexp59mju7WLLqDB4Pc8qeDxvG//+bl6TNkcPZxRJA7E85PpAajrqrjvqcEQTDUI5cHXVnHakmzBQC7dmme899/wOnTTNh+9llg6lTg0pWspnPmANqS+MhkLO3Xhg3ANdewfWlpwPbtTAv+00/az1m9uksfSwN1T9JvvmHC/rffSut0Na0ZQQxWdCp033XXXZg5cyZWrlyJRx55BPPmzZNosxcvXozPP/8cAPMPev/997F9+3bMnj0b33zzDd555x1EdXeJjui3ZCbl4HQm80MaNSQJLr6aeWqvRkQELx/Zy7Tm5zKlmu1mpSFST13UOPd0MotFYG0NeAU5wck8SzxWlFeKnFT2lrSxrIWlZaebhsBAwNKC2ZOdOExpe/oKJSXA8OFAcDDXFhBET5Obz2OfuPteXRPtH+GNCF/mO3P8fBhyzl+SHN+9i1nuyGR80j5hOPORaVIaIfYf7a5iBEFoRxC40O3pCVhcWftXF7p37tQ8b98+6fahQ7zcYpreHldCJgFggq769tNPAx99xMzBt2xh7zJdsGQJy9sNAN99xxbx8vOldX7+Gbh4ZSr1339ME95G0gViAHHqFODrC7i4ANddx9LU3XorEB4OGBuzZ2PWLJZ/vrNp7wY6OksZBjDb92eeeQbPPPOM1uN79+6VbF977bW49tprddkEoh+z44cMACwK79zruiaUTojKBMA0QAf/TMGim2yQnq8Z2TcpvlhiCt7QANFnOziYTVSdHJrE44U5Fci5zBYEPO1zAbRtRt4WcjkQ7Z+EfYlRyC1yQEFmEVx8NeMdED3Lhg3cTO7zzyH6rxFET5J3mWm3DRRNcPLS1FxrY9HMfCR+xMalrd9k4pE1buxaaflIPseshkaEXYKdHds/YaICm3ewcw/Gu2HyQl1+AoIY2BQVAWVXPD+GDOH7R40CbG3Zsb//ZhptQ7UsfupCt3rqriFD+IJYe1x3HTBsGNOWq4c9CgwEXnlFei9d4eDAFhO2b2da+Yce4sdGjmTadqWS5f9WqYDNm9mx/Hzgqad03x6i7/Dee0BWFiv/84+mb39uLvvbuZPFFUlPR79JO6dvdKrpJoju8Psurj6eu6RrYTHHTHaAQt4MADh4whUXErLFYGd2FqVivaTT0jR26kHSvK/EI3J04PbGSafK0aRkqTi8XMq71DYAGBHBU5XFH8zq8nUI3SAIUj+1o//mtF2ZIPRIbjETtN3tCiFXdOzVvOgOHjxty4GxYvnvrTyOxfQxPOLqhIW8zsE47bEtCILQjrpp+VCePRQGBsD06axcUcGjmQMseFqLO1lICBNiW5LwPP98x4QRmQx4/HHN/f/3f/oRuFtQNzFPvzKk2NoCv/0GtCQl+uwzLnADzO+8jjxXBjTqz4E6BgZsIaklWCAAZGayZ4JgkNBN9AnKL1dg/+lwAICvczZCRwd06TqWdpaI8meTzOTsQBzaw00uF0xJFstJOSGS87LPF4hlL3f2xnBy5o9HfDwXwD3dup6zMmYkz2N/4lhNOzWJniD2UJUkGu2xExYQVOTcTfQs9TX1KKliJuXujqVXqc0ZOsIXwVcyAx06JBODOP39Nx+7rpttJ5Z9fSGm+TlyBGhu7l67CWIwoS5sqGu6gbZNzA8f5prtyZOZ2W1GBpCYyExyO8pNN7GgbS2MHQssWNDx87vCrFlMyG7dDjc3YNky7ecUFUkXsomBhSAALZmzvL2ZFcS//7L+XFPDAg2WlQE33sjP0RZccLBCQjfRJzi0txzNSrZkO2dq7lWDkrXHhBE8Avqmb7mZ5ozrDUUfrNYRzC8mpYllb3MWWtzJhQvI8Uncx9LTo+tOSzET+VvzRIIZcnJY5NFXX6VAXr3BNx+clGyX1djiQoJmJGiC0Cd5aXxW4uFS3eHzZDJg0SJWFgRg2zZApVThn+NMErcyrcCo64ZK6k+YwMo1NRR9mCA6g3rk8tZC9/TpXGutLnSrm5ZPnsz+Ozszc/HOYGjIgrABTKP49tv6N9k1NmZCtjot2u9VqwATE1aOiuLpCQFplHViYFFUxDXXwcGAqysLDDhsGGB0Zcosk0GSw/3yZc3rDFZI6O4B4veew0NL9uPUvjZsMgAIKgHVZR2fbA00LpZwM8nIaWPbqXl1Jkw2EcvxF7hGOzTaEaGhrJyRwSad4v2zuMrHy5ed7+hiJu47nekvlj29ux4KwTfUE7bmzCnsQEIwIkKrsWEDizi6f3+XL0t0gYbaRvz4V7jG/mN7KZraYEWbWWRsLAt2pD7h1jV5mTxFmLtrUzs1NWkRugHgy03V2PntCVFrPjX6HAyNpfanLUI3ABz8h2ZDBNFR2tN0OzkBI0aw8pkzPMWoutA9aVL37n///cCffzLz9TFjrl5fF9x+Oy8HBjL/dYClZz16lAnbR48y4XzqVHbswgVmRk8MPFK5t5IYvV8bzmpxkEnTzSGhW88IKgE332aM9T9PwrLlmsuSgkrArxuOYohXFmwcTPDFmwd7oZW9T+t0XN1h/AxN03QDRRMCIrwQFsb3nT3Ly9k5PPG9dyBzSHFy52nJGpq4IO/lqz1dWUeQyWWIGcLCOVbWWaOsil+L0oj1LDu/O4XSamZ66+vMo9kfPUomB4ORd94BLCwELF1ySXQxyM+4jOumNeOjj5gmS1++irkX+Qqgh3vn+l9UFODjzRYNj52wwJylI8Vj06c1atSfEMMF7YO7KLQsQXQEQWCBzADAyopFbm5N69Rhrf25nboZRkEmY/dQTz+qb0aPBu68k5mZv/uuVLseGcmEbWOW+EUjyjpZ7w08SOjuHiR065nMLBku5PsBAE5nBUpyo57al4KxoUm44cExSM3zhVJlgI82dyxq7UBDl0K3o6cDhnqmSfYFul2EobGhROhOOlkuli/mmYtl72A2Wjh5cF9IdTwDtO/vKDERVVr3JyV167JEJ1H3O1v70iXIZcwe7lgCBZgajLy/TgmVSoavfnbDxlfZ4ueq+9JQWcUsW3JygA8/1M+9cyu5CbhHUOcGQJkMeHLZEa3Hrlvgo7EvNNoB1mbMPvDEOa9O3YsgBiuJiTy39tix2k27Z83i5bVrWcAxdX/u/ohMBnz5JVBaCsye3X7d6dNZ2iiARVk/on1YIvoxHRW61ReYSOjmkNCtZ9RNiwRBjtSEbACAskmJGfPtcSxFat6amDkEtbU92MA+grrQrR4spKtMiJbmrB3qy1KQhXnx3LRJBxPEcnYhixZiYVIFG0em6bZxtIaBQtPU092/8/nD1bnlLncYG9bDzLgGH7xwBDIZWw5OStK+LJyfD3z1FQnluuDozjN4auk+XD8qDjuORAMAXG0LMG/5CIT7sIhqpzMDUVM+eF09BiMVFUBOLrd2efyNaGx85QB+2CN1dXn9dZbXXdfkFfOFPPch/u3U1M4DL07E+fhMPH/PPvg4scF0WnQ8/MI1hWq5Qo4wX2bZkVvihsqSyi62miAGD+rm0nPnaq8zfDjT/gJAWhqwfDk/1l+F7s4gkwH/+x/f/vvv3msLoR+6oukmn24OCd16Rl3oBoCzp9iMLe30RVyuYDmavR1zMW4Ei1jb3CzDSWlsJ51yNjYNMUFncc3wk9j8xkFUFPWNWP65F1jOLlvLapibX6VyB5gwUSHZDpnAHJHCongozqTzzLRbpVQhu4jltPV2KhCDuMnkMjjaSIUvF5tCGJsZd6ttYWMDkZ9Tj8uFwEOvjEWAJ1sQOHumDspmFqRNpQJ+/lmGlSsD4O0tx9KlwPjxQGUF2Wt1lbOxaZg4dwje+moy/jo+Qkwld+vsFBgYGWB0JFuOVQkKxO1Na+dKxEAjOVm6XdtgjgdenChuB3izcbKiAnj1qSyd3189ZWFXFx2Dhvvi1U8nI/2SOzLO5GDX0cg264YGlovls3HZXbshQQwifv+dl+fM0V5HLmfCecszrB5MrLv+3P2FqChevnSp7XpE/6RF6DYyArzaMZQi83LtkNCtRwRBU+g+l8x87BKP8RRVy29Iw9J7uabj2DH9tWndG5cQfyEEe08Nx93PToCzuzGeuGPfVc/TJyqlCrlFzBbF00E3QawmzPCWbA8NYYK0s7ejmK/7TDp7MxblFIs+296u5ZLznDyk+TI8PXQTktPW2Qbm1mx1IcybJcCsazRDZhLTUq1bB9xyixzHjllDpWJtr6gADu+I18n9ByMfvnVJjJAPALbmZZg3PhZP/x8LIzt6NF+oOXawvKebR/Qi7VmRjBl6Bv8dtISpCfOb/vhLN6QnXmz7hC6Qd2XYk8lYNNjuIFfI4RvmCYWhos06IUP54l3yqbI26xH9k4baBjyw6ADmjD2Owqyi3m5Ov6KxEfjgA+Caa4BNm9i+3FyIypDo6PYXxry8gN27ATs1LzRd+HP3F9SjVudRTNIBhVLJLDgAICAAULT9ioGjIy+T0M0hoVuPZCbnScymAeBcKtOSJp7iAW4ihpti9Ghe5+hR/bXp+GmpaXRDkwne/mYyko/2nmbvcnYxmpQs14Cns240795DPeDlwb/jkCtBzGVyGYb5swlzfpkLCjIv42Iqn5S05OhuofWL0jPITSftUydsKM/7nXSCLcZs/ZFPhK0t+ec4coDMnrtCeTnw9V/jAADmJtVIP52NkkobbDs4CvZubHY0egr/bY/FsUWYvLR8lFzqeN5kon+SdIS7nbz+bLro36+QN2Pjp8bw8JRj1e2HAABNSiPccUsFyi/rzkooN7sBAODkpBLTruiT0EhLsXw2WftCYn1NPTLOkBa8P/LwrbHYuHUi/jg6Ek8/RMHyOkJVFfDjj8DQocAjjwB79wL33suUIOpa7rZMy9UJCWFRxs2uJEBRz1k80LG3Z+nNABK6Bxo5OUADe1W1a1oOsOB6NjasTOblHBK69ci+PzRfdmcz2PJPYjJPRxUx2h0hIYCVJdOkHD1QLkbP1SV1dUBSdiAAwM/1EuaNjxWP7f+r66OjoBJQlFOssf/774EFC5gp1pw5wD33aDc3yknj53q41mtW6CLzF7LZq7OzNL1HzDA+WY4/eBEX07lPo7eXNAe3+mod0L45TVcJi+Dm6kmJdaipqMHxk0wL7u+Wg4RYPmIdjrPWfQMGAV99BdTWsmXZO5eZwC/cSyMXfNBwH9iYlwMADp8Nx63zs+AR6Aoff0NkJee2viQxgEhK5IE07nnABh+/fBj+LhfxwfOHMWw8m108+X/RcLZhz+KRs8MwcVQhLqUXaL1eZ2hubEZBIeubHlZtp5XUJaHRfIEpOVUzG0NjXSOGD82D/zAvbHzlQI+0idANn//fQXy6jbtG/PDPSL3EIRgIXLwI3HIL4O/PIpLffDNLJ9qCIAAPPghs3cr3dUToBljU75QUYMcO4JlndNvuvoxcDrhdGV7IvHxg0VF/7hZaTMxJ080hoVuP7NvPJ/VGBmx56EKeF5obm5F4gdknWZtVwHuoO+RyYGRgIgAgv9gGuRfydd6exERAqWQ/+aQZbnhuNdd2HDxs2NZpAIC6qjr8+OERPL1sH84cTpUcu2HqMTh5OWDuuFgU5RRDpVTh8eWncOutwLZtwB9/sL9Nm4AXV2tqVXKzuNDr6aHSON5VXnsN+OILZuJvwjN+YcQorkqKO1qD7Fwu9Hr5SNVMGprubkZW10ZYNJfsk84a4eju86Lmf+ywc/AMchXN7mPPBaGpoVnrdQjtqFTA+vV8e8VK7XnW5Qo5Rk9gixrFZeb4frsPAKC63hLfbiQf74FMUgYbj11sCuHgYY/7XpiItHxvPPgyd8S0tLPEn1tK4GjFLGPOZAVh3Nimbi/IFGYXifEF3J20ZzbQNS6+zuICU3KGpvVO3L/ncC6HBXRb/1n3sjUQ2klLA558kuWB1xUn9pzFg6tHSPY1NMhEM2lCyqpVLM90Riv9yJQpQGgoK586Bfz7Lyt7eQERER2/vqcni/jdE9YrfYkWobu4mGtGif5PV4Xu6moMygDR2iChW08IKgH7TvgCAMyMazBz9CkAzDQxbn8OckvYqDQsIFfUuI2O5hOuY3t16zMISPNAx8QAUZOCYG7MzJUPnvLVql0vKgLuugtwdlXg5ofH4s0vJ2PmPAs0NbCo3mdj07Bl/xgAwI4joxAR0YwFk+LwzhdRGtcCgP27cjT25WTxUdnTS7tA1BUsLIClS6VabgCImcgdsk4kmOFi1XBx2ztKmgDTSS6dEelD6A6M9IahgpmQJ6U5Yt8/fBFieDTL3zsugvWH2gZznD58QfeNGMD8/Tf3Q5o6lbsaaGP0aC15YAD8/rej1v1dQR9WLETXuZxdhKJK9vuG+bUvQEdPHYrD+2rECOFZlz3x4hNZ3bp/XgZXQ+rS0qc9ZHIZQn2Y6XhuiZtGQM1jB7h7S3JumM592Ang7rtZWqkFC9jCYHepLqvG4lusxPgkCyYniGmtPv5YGtSLYDFS/viDlQ0NmWb6nnuAv/5iQvZnn2meM3eu9lRhhBR1v+583euPiC6gi5zpnRW61ZVWZGLOIKFbT2SezUFOMRt5xoWlICKM+wr/+AN/w0ZMDBXLo8fzsN1HD+l+eTAujpdHjAAMjAwwNoz5MuaVuiLrrHTCqVIBM2YAn38OVNXwpdrcEjf88TUL6PXNJ9Jz8stc8PthFilcLlNiw5vnUVQEjAxm4YEvXPLR8JHNyeGjgYevDkKXXwXfUE/YmrNJ5YkUH1y8yO/v7Sddkna0b5Rse1m1CnOsAwyNDTHEMwsAcD7PB38f4AJe2GgbAMC4MTx12eF/afTqDOtf47/ZQw+1X/eWW5iZoakpMwkM82YLHHGpod02Ja6trMWKG/bDzqoCrz28r1vXInRH0nE+hoUFXz1mQmCUDw4fMRT9vs+mdU8TnJvJF1s93HtuQUY9gvm5k9KZ8bE4aYaGHT9m9UCLBg+VlcAhFiIA+fnSyWxX+ejVE7hYxBaUxww9gx93huD669mx7Gzgj99J6lZn+3auhb3/fhZL59NPWa5pmQwYM4YtjKjTUdPyPouqSSp9qbT0icYKIOMroL7rAfgomFrfITeXpavz8gISErp3rfM89EmnNN0AmZi3QEK3nti/k2t0J4+rwtAYP3H75128rG6qNPoavv/YKfsO3SfhwHlMDE/EqCFJWv2q1TkRy+w7DA2BYSxgMyZM5GblB+JcJPW//ZZH7LS0BK4fxaX2TZsVUClV+PZ39uQp5M2YEnlKPG5sWI9fP4nD/U8Gw8EBGBfNB/Bje9Il98m9xNvg6SeNFq4PZHIZYoYwe7LCciccO8oWQQwMNCMHO7lIhXDPgI79Lp0lLIB9P81KQ8SlsoWYIPdM2LpaAQDGTuVLhoePte8KQHB+++wYdh4eCgDwcryE2bPbrx8YyCYJpaUsJ/PCGXzGsOP7rs+MzxxORUxYPj7+dRLKa2zw2icj0dxIbgJ9gaRT3LIkLLxjr0Q3fxfYWbKFu6Jyq07dr6q0CrPHHMfE8ERczi5CbjZf2HP37LlnO2Q0NwFKzpWaAx07I83+sP3ImB5p02Dh8GGp5vn4zs7ZmF88l4vfP48Vx5Dqsmqs3RQOgC12f/6VOYxMjbByBRewPlxzuvsN70McP86CnXWVH3/k5Ztu0l7n//6PBQYDWFCofpn2SxCAgr3AvlnATybAz+bAHyHAP+OB31wApVSxgEu7gGNLga3OrE76F4Cyc0ogNzWPFfLr7j1SUoCxY4H9+5nwvXFj967Xsjhobd2xaPwkdGtCQree2L+ff7WTr7PH0BF8ElNQwO2T1IVue3d7BLplAgBOpgWiobbtgU5QCfjguf0YdY0PDiZF4Pj5MHzyVtt5b6rLqnEulZmdhftmwPiKImPC3GFiHXW/7rrqRjz/PH9hb98O7Dg4HF6OTCv01/Hh+GZTsWgmf/2ok9hzIgIfrd6PG6cewd7fLmDBPTwk+5hxXHg9dqhG0racAh7IxyNAGl1dX8REcO3S5aIrQYw8NFMgOLlxzbuBognOXrozM1YnLKRJY9+kGL5wM2xcoOgKcCTRRy9tGGjs25qAm1dEQhDYs/jY3Rdg0AHvBQsLHgNg3hL+Zvn9T9MuteP3z2MxYoqX6CMLsPRwqaeyunQ9QrckJfPxOGx4xxf9HK2ZSXZRZecWCte/fBx/HhuJg0kReOPpZOTlccsnD2+zds7ULaHRvG+r5ynPvZAvjustHDxshFIK4q8z9v0qFbKPH+u4W0F9TT3GT5Bj3l2jMHNsIhpqG/DRqydQUsWkw5unHcOQEWwBf/p0AQGuWQCAf09G4WxseluX7VckJTFz8GuuYVHCO0txMfDPP6zs5QVJ9hh17O2BnTuBJUuYkN6vfLObqoC0z4C/ooG91wCXdgKCClDWAZXngKLDQEMxUHJcel7ejisFgdWJXQ5s9wLOvAw0lnfo1qTp7n1iY4Hx4yHJoHShG56J9fUs8CDAtNwdcbNQF8xJ6GaQ0K0njiYy519To1rETA1GUBCL6qiOXM6DdbQwehgboRqaTPDRmkTccQdw3XXM96jFKuh8fAZmjTmBR16fhMZmbga473DbGpdTB9NF4SMmhJtTjhrF0zscPMjrf7D6CHJy2FM1c6aAKVMAhaECyxcz51iVoMCDj9qI9W9/eDjkCjkefHkSfvp3LMbOCpd+rmv4osOxeEvJsZzLbLLgYFUMU8uuCTadJWaqpmOvt5Om85GjK2+rh11uu7lvu0NYhObnnjSZdxgDIwOMDmHLjLklbshOoTdZe5zal4K5t/mJ/o23zziEh16d0OnrRE0aCnc71i/+PRmO6rLOpWxTKoEVzwaL7TAx5G4mp47QW6gvkJTKheaQER1PT+Box37L2gZz1FZrLpppo7mxGRu+43Z53/85FFk5fAz38LPp8P27i/q75+xZXj62J0ssmxizz6VUArt29VDDBgH7DkvdqI4nOnT43OTYTHFR5J/4aNy6uEii5X5+DTfXkivkWHEn98ff8o1mTJX+yN9/8/nQb7917Jz0dJY6EmDRyJuvGBotWaI5N1Nn5EgmcE+f3uXmdp3GciB3O5D4HHByFXD2LSDjS+Dcu0DsvcCeycC/1wJHbgPq1dzOVErgj6HA8XuBMm6BCDMPwGoIoLiyqmzqzgRvdYIfBoY+CVgN5fvqLwNnXgJ2BADn1zMz9XZQ13ST0N3z1NQwV4jWWQvSuhEPNj2dP3MdMS0HpJpubT7dTU3s3aMLf/P+AgndeqC+thEZhUzoDvPJhJGpEUxMAD8/ab1Az3wxj2MLY0ZzrceqN0bim2/YiuycOcDkiU24d8ERhI70wq7jPEJpy0T+SPKQNrXjJ47wwDgxarHCTE35dmoqW40qzi3B6xtZIDS5TIm3XuJC+vJHgiCTsTbW1rNlX2trYM689lWIHoFucLsivMSeC4SyidnWKZVAXikboT3cdRe5/GqMmKhpG+Nlp6kFcPayE303fRyy9NaesNF+GvsmzvKVbI8dwc1gD/9NgY3aorayFnMWWaOqji1CzRp9HJu3jYJc0fnhTiaXYe4Utjzc0GSCv39p25pEG7t3A7mFNgCAyaMu4YePuYlnwqmOCWqE/hBUApKy2IKgj1MOLO06biruGBAmlotLO2YW/vuWCuSU8GiMlyudseNQpLjt7t8Bmz0d4eIC2F5Zb1DXdB9L4NY8K5fyPN3quYqJrlNZUon4C1Jz/oT0QNTXdEzbnXxKanKwZZeHVi13C7OX+IjluFM9s6itb86c4eUjR65e/403gIAAJgxu2sQilrfQlml5n+DyfuDAfCD5dSDlXSDhKeDYMuDUKiD9M3a88F8g6ztArjYGyRWAh5oDul0MMO5HYG4mMPsccGMtsLgcmJ8DeM6X3tNhFBD1JjD7LDDtCOB1AyC78u5sKAHiHwJ2hgPFbbtEqGu6yby85zl5kgu5o0cDYVdeVTk5TGPdFTobRA1o37z8+HEW5Dg0lGURGCyQ0K0H8i+UiVrl0ED+ggwJrpPUi/DP1Dh39KS2J10HDhnis21jxfQyLjaF2PlNHG68jgkCdY1miDvOBNemJmD1auCdd9iK7omTfEAeMUFqwj1xAhd29/52DvfflorKOpY6afmcwwgdwSeJnsFumDEiXnL+jTcy4b09ZHIZRocxQbGqzgrn4thnLyzkacw8A3puwunhoemT4u2p6WNrYWuJZ+46CF/nbDz5rGY+W13hM8QRZmZ8uS/IPRNuflIf+3HT+JvsyPmRemtLf2fbF6eQV8q0PWOGnsHPu8NgaNx1X9m5C/jK2O/bO+eHrR4B93/PumH0NXwh5VRy53yBCd2Tk3pJXJwJ8+9cmF0HNeVkUQdjDq3/TDMmRF0j61825uUwt9Z/IMkWZDIgJJCZyOfmQoxgfiw5QKyz6gVP2NmxcWnXn/XtujwRUkoulSIzKQeZSTm4mFouRig/vOu8+A5voUlphMRDHVNDnU3SvlgnlwPPr9P0vfcf5gVrM/bbnjjnrXG8P3JazT393Dm06/rwySfAs8+ycl0di1C+bx/bDgwEorQnWukZVM1ATTZwYQOwexRQuE963KGDsRTkxoChjXSf/z1AwP3AjBPA9OOA9xJAfqXfyWSAkfXVbYQdxwDjfwbmpAM+t/H9lamASStXu6YqUWVJmu7eRd2M/OabuRurIGimx+souhK6VSrgrbeAceN4W7KzNc8dqJDQrQcuXOSDUWgYf7kOdZSuDEaEtQpgASByYjBmjT4OE8M6LJhwDFu/SMEvv7CXQwsWJlV4ZcU+XMgwx/W3jcDkRVzrve8Qk37ffRd49VXg8cdZZM64ZDYKGhvWI3SUdCV8QigXou9+1EtMAWZmXIOX39V8uu65Wxrx8o47tH8PrRkzki+xHdvHJrjq/ib6SMfVFjKZVOMPAF7e2k3H13w2GRkFXrj+thFaj+sCuRwIHcr7w+QRmmaAo6cFiu/Iw0d1l1ptoPH1d9xc983/U8HMqnt+slMWhMPChMUA+ONQeIdT7xQUADuuuMe5ugIzZwIuvk5wtmFL0AkXvCl9WC+TlMRfgWFDO6cCcFSbc3ZE6E5KAv77j5UDAwUx33cL7vZdjxbcVULdEsXyufgcNDYC8VdeB/7+gIu7EWaNPAoAqKoxwf7tnbP0GKx8+Px+OHrYwC/cE37hnvAJtsG4cUzLtG8Pj2kyOYKb/h4/WKLtUhokn+fj2ZrV3ILt1luBIUM1p3QyuQwxwcyKK7/MpdtZGHobpVLqDgGwyOPa+PVX4IEH2r7WTTf1cAqwxnIg42tg/1zgNw/gJ2NguzcQ9yDzrc74UlrfxAkYtgaYsBW4dj8w/hcg5iNg9FdMkL6hgmmsZyVpfhC7KGDkBsAuuvsf0sIHGPsNu6fTRMB9NmDRyjrvyK3Ab25A6sewMGuG1ZU1ZdJ09zzqQndgILPyaKGrJuYX1YwrW1vttoW2lGFPPgk89RR37xg1Cli3rmtt6o+Q0K0HUrN5HuiQiXylcmiIVFCKiNbUasjkMuw4PAK19SbYemA0FiwdgsWLmfnfFx+kY81D+5B+vh4vrJ8MC1umeZ08mZ+/bx9bSfrkE75v82bgwiWmYYv0T9PQ+o2boWYy3sDaZGJYh58+SYabv1TbCgCz74gW/VyDPHIxbtxVvpArjJ7IU+scO8b+95bQDQAx4VJfJm+/ngtipI2wYVxYnDw/QuO4tTU3E0pM5P5pAPDxi/thYVKNJ+/cp99G9nEupRfinxNMdeHrnI1xrWILdAVjM2PMuIb5cpdUWktS77XHlxsKRAF92TKIQdyiwlkWgZIqe+S2nxaa0DNJGdz/NWzqxE6dqy50F7efOAIA8NFHvLxypQw3Xy+VHDyC3NHThIZwK6fkU2VITOTmhy3BpebO5RP2n3+o7cnm9Uu+efcQHn5tkmjt1sKxY8ALLwD7jnETiSce45Yzx090LF7I2UymPjI3rsYzq22wezfLtLBhQ9vnxERw16QT+/u3a1JamqaJ7OHDmvXi4thCRIu/6BNPMCHcxoZty2RMC9gj1BcBR24HtjoBx+5kwcrq8lhgM3WqMzQdXMOeAzwXMGHXazEQ9CDgdwdgPwIwtGIaa8sA9Aj2I5jwP+4HzWNlp4D6AuDECuCvaLg7s8WlvLzB5bPbF9CH0F2gtlanbsnQHhYWEF1oCwuZBe7HH7NtmYylZT14kFmeDhZI6NYD6enc1lo9WE1IpDSfa8QY7T1NJpdBJpeuTBoaAksf8sdzH0yGU6sI2j4+LAInwPyb/vopBZmalusAgJhwzdV0GydrhPvwp9TGvBx//5qK2XdqN2E2NDbErt+r8MQd+/D7tsYOL6IOnxQAAwUzjTuWyIT5nAs8uoKHW8/mEY0JltrZeAfpP11Ze9x2GxPMvLyAWQustdaZOpX9V6mAv/5i5ca6Rjz39jDUNFhg7deTcWLPWa3nDga+35gClcAmr7fPz+iSH7c2JlzHhbPWWhZtCCoBmz7lprh3LeeTq8hxPmI5IbEn1SyEOkVFLEBlC2FhbdfVhqMJn70UpbS/ElNRVIFvvmYCloUFsHQpcMe9Uv+Wnoxc3kJIBHdxSE5S4thhbm0z5sp68YybwmFpyoS273dHo6ywvCeb2K/48+s4LHuCh8KeFh2PJdccgZERe7e9846AE6ksQFWIVxquvSECRgZsnDiedPVFl9rKWmReiRcT4n0RcoUM113HJq/m7XgmxIzkC7onYuvartjHqKsD5s9nvp8pKWyfuml5C9qE7tWrgcYr3XnZMuDNN4FFi9iC9apVwPffA0OHap6nF06sBLK+lQYgM7JjWmiP+UDI08D1icC0Az2seu8iBq06m7IRsAzm2+Wn4WbEzA9qa1leeqLnaBG6DQyYfKBrobsj6cJaaDExLyxkecLrrgw/N93EFgsNu+751y/Ri9AtCAKWL1+OrVu3tlsvJycHS5cuRWRkJGbOnIlDhw7pozk9TmYmiwxpbi7V3g6J5ht2FiVw16JF7goyGdd219UBD6/iA+KCKWckdWNitK+mL1vCnih3u3wc2H0ZE+ZqalrVCR8XhLe+mozg6A7amQAwszJDxNByAMDZnABUVAC5yVyC8bQ808aZ+iFmojRSsWegbn6PrjJ1KhvYLlyAaJrVmrlz+JLx718zU8//fjuN8lq+YPDyau0RtouKmKDe3Dm3ZAl1VXWYM/Y4JoQnIvloN0Jh6gFBAL7aNV7cvu0+H51dO1htPqHu23RqXwqi/FOw4ob9ElPxfb8lIL2A+U9eM/wk/Pz5UKvuQ3hKLbAs0TM0NTTh9Uf2wd+nTszYYGQk/Y07goNVhVguyq9ppyaw++dk1NQyU4fbF1+ClRUwfPIQDPXKEuu497yiG6Ex/KafbonB+29yv/bRUcxR1sLWAkvnso5a12iGr9YNrHzPuuLUvhTccE+o6K/94OL92H18OH7cMxavvcbeu4IgExcFJ4/Mg5GpEaIC2Aw5Nc/3qgsa505c1Bov5mrETORzjxMJPRc3oLu8/jpLV3r+PPDKK2zfGS3ThOPHmRathTNn+KK0jw+z/GuRZb28gLff7uEAalFvAQaWTNAOfgSYdghYVMT8rSf+BkS+AdgOu/p1+ioKI+CaPcC0w2whAYC7HXfmzju6hWn7Cb0jCFyw9vNjgrcuhW47u86lzmsR0EtLWb7wFsaP115/oKNzoVulUmHNmjU4rG3pUQ1BELBixQo4ODhgy5YtmDdvHlauXIlL/dwBpLa6CXl5bFU5JESaisLSzhJTItnkZcGUsxra7O4wOSJBLKfnsxeso1URfvwzGK+s2Mfub1qJ6YsDtZwNPPLaRKScyEBati3Cx3UwSkIXGDOZaekFQYbjx4GcS3wF3jPArq3T9IKrvwu87Jmpnbttbrd9f3WBvX37A9qE8c1iUJyd+z3R1NCELa3Wtv44OlJD261SAdOmAddfD8yb13Vzr+/Xn8AfR0fiUFIEJkyzw5E/O75Qcj4+A9cOP4mnl+3Tiy9zYiKQlMwmtGPGAIFRKx8DggABAABJREFUPjq7tnrgEHWh++01BUjIGIKPf52Eg9tPiPs3f8rNcO9ZJrWFjIzk5YQEnTWR6CBPLT+M5z6YjKpaZpFkZga8/z7Pzd5RHN14YMXikvZfpUcOc4lg9hQ2GZXJZbjjAR9xf0f95HSJi48Twn1Yh65psBAXikyNajEsmqdLfHAVF9o+/toPKmXPZZroL7zxSpkYFG/J1CP44Pvx4jv+f/8DJrTKWDh5KhvoR0Zw67O4ve3n0T6bwOuGDOn4b+A91B32luzcEyk+/SKWxPnzTDvdwu7dzJ9bXdPd4gJRXy9dwHz7bV5+7LEe1qYpG4CyVgtT5t7AxK3ArLNA9DrAcRyPCD6QcBzL/L5Hfgo3e95X8/ZvZKb1ic9J61dnAqkfsRzg5z8ALh9kAdmILnPpErMuAHgsKHt75p4IdE3oFgQeCM2lk7op9WBq27bx8tixnW/HQECnT31hYSHuvPNO7N27F1ZtqequcOzYMeTk5OCVV16Bv78/7rvvPkRGRmLLli26bFKPk3IiHYLAXrSh7okax//YH4xDO05jwy+jNY51h8nXaQqsd85LhpGpEV5YPxmnD6Xi3OkauPo5azmbTQCDo/1gYt7JmWcnGa32sXfsAHLy+cTV3V972/TJh28VYGzIabz3Wv/IX2pobIiZY1l+n4paa+zbloRtB2I06rXWdp84wYRSANi5s33/v/bYc4CbvZfV2OHahf748+uOOTm//Uou/j01HG9+ORk7Pm9/Ua4rfP01L3c0uF9H8fICjAyZiWhqIl/BP32eR6P+6Tv2nVeWVGLrPqbOtrMoxfzl0ZJrBQQA5uZs0nsqjuzuepLKkkp8soUFRFTIm3HfktNIS2PBJjuLoxt/xxWVtL/0f/gEdwkaM50vfD70ELB4MbBgATN97Wlkchn2HrTHihv2i64/ADAiOFUS+2PICD9Mi2YR1jIKvXFqb99bHG+obcCZw6kozS+7emUdU1dVh51HWPwIe8sSfLUjGgpDblWmUABffiHAwpRbREy8nqmfRo7n7+7j56WpxFqTnM9dvkJH+bZTU4pMLsOISDbWFFU6SmKp9EUEAVixQqq9Li0FYmO5ptvcnPlst9CSOiwnh5mOA0wrt3x5z7QZqiYgbRPwxxDgv+uAxgrpcZdrAdOen+P0ODI5EHAP3CfcJe66VHbFCdiylTlRRTIzvT/zEhD/CLBnIvCLNbB7NJD+BdDcd2JIlJf3zaBwX3/NXDBa5nfqSoEWoVsm49ruixe520VHqa7mgnx3hO6WZ9TSEgjvfridfolOQyAnJyfD1dUV77//PhYvXtxu3cTERISEhMBMLVF1dHQ0EtpR/SiVSig7Gjq4lzh7ikfUGepXqtFeY3NjjL6eOXrr8rN4BrvByzEX2UXcT3zpCnfxHiGj/XV+z64wYQKgUMihVMrw4YeAsSEbFZysi2BgbNfj7Zt1Zwxm3cnKvf3dtKalPa3bNWeugB/2sPLTLzmIkZNnzVTi9PEC5BS744+jIxH7TxJipjKnte1fngEQKV7j8cdVmDIyE0Gd0AYLArD3pHSkrGs0w7xlUfi16RjmLG0/unvyOT7cvPSGLWbe2awzaw+lEvj+ezkAGYyMBCxapOpwlPGOEuCSibM5AUjLsUdjfSOUzUqk5PNJ8i//hOHdugb88lkC6hpZUK4l08/AwHi8xm8Y4Z2MI2eHISvXCsWXSmHrrN2HX1e01Zd0wan9Kfj0gxLccY81xszopGN0D/Pd+lOobZgEALhn/mGs/248AGWX+or6b1ZUZtrmd1tTUYNT6cxUItTrAqwc/MS6JibAjz/yur0xBNm62uD9H8ZjxaksvPRUIU6nOuO555o1Ps+DDzThn7tZ+ZdfnLD0Mf02NjUVePttGWbPFjB3bvt1BZWAeZPPYHccW4D0sL+EmKHZePlNW4SO0n+Qqb9+SkRNA1tRnjc5GQbG4zS+P28f4LuPz+C5l+xx09xcOHhOhFKpRPQ1IWKd2Hizdp/RpHNqCyHR7p16nodP8MZfV9wpjsep4N6R4EVKJRRiUanzDqo+Ln31lQz//MOi5qtUwL//Mp2QXC5ApWLviR9/VCEj44p5faiAsWNVwJUWHjok4KGHVHjvPRmam1md++9XwcRE0M9z1VQFVKdBVnEWqEiCLOdXyGp4MB3VmZchRK7Vw437B67eXKGSq1gCwe4cVA7jpH3I0B4KjTMFoCQWKImFcPJ/gPNUCLZREEKeveo99fWey80Fhg2To6YG2L9fJVEe9SYlJcBdd8nR3CxDZaWAf/5R4fx5GVr0qf7+KiiVwpWyDPHxcqhUQHq6ssNpv4CWtG/sl3J25tfsCI6OvD0tFpajRgkAdD9H0yWt+5Ku+pROhe6pU6diakukp6tQVFQEp1be+Pb29ihQ99ZvRar6Ek4f5UQc1zDaOlW2u4iga8aF5iN7H3uTjh9yCPUGpj16/46yYoUzPviAtbOhiWnW3e0LkZAwiJL1dYIzrZzY3EMFGCia0Kw0xMkUbvY5ZuxFjA44jRc+YH6aLz5bgdc2JgAAtv8p9eOrq5Pjjluq8ca7BwAZYGZpDGNzY7RHWpoJLl9mC0ajR5fD1TABvx2cDKXKADc/EIHPandi6Ni2w1qmFPI4AacyQrF57TbETJeGrC/MKMXvPzRhwlQlhozRfq2sM4XYt1PAzBuN4OTLtEQpccUoLJwOABg7phTZ2Vk6z/3o61aLszkBaGgywd5de9BQ04xm5QzxeFGlI37YsB1ffcf9ZCdOq9b6DA7xK8KRs8yHb+evhxA6rmccelv3pe5SmleBG2+OQnltKPbHpeP73xN0en1d89nX3DLh2tk13R4fLU0DUVVnhaIyizavlXw4D0oVkxqHD81EQkIftW6QAU++ZQygHIBM4/O4hcnh7ZiNi0Ve2HNyDP7Z+hdcAh01LqNSqvDHF3mQy4FZSz26vLD2xBN++O8/W3zzjQp//nkGdnZtB6M4H3sJu+PmiNu5JW7IPeSGnKXJ+OSHhDbP0xWbt/qI5dHj237vu4cb4sstlQCsxDqCAFhaRqCqygCxsU1ISGj7GU1ICANgDFNTJUpKElDWCaW+nZ01ALYA8eefl+Hre3W1nbyuDi0hKE6fPg2VqWm79bvKO+/k4tlntftXPPvsRaxZ4wMA2LSJT/bd3IrR3JwNc/NI1NQosH9/E77/Ph2ffsqkCSMjFSZNOoOEBC39RhCgUFVDKTcDZB2LGs/OUyIo50GYNKbDUFneZrUKszHIq49BXR+cf/UU1dVmANiif2JRDE46bgAulANIEOsolPWwdnkJSoU1DJsvw6z+PCzqEmDayILcypoqgNzfUFOSgfONMyXXN6tLQqOhC5oNHNAaXb/nvvvOCZWVbK7y+eeXYWLSN1Tef/9ti+Zm9twcPiwgNjYRR464AWDqaJksDQkJzFzfwsINgOuV8zJQW9vx99CpUxYAmJWCXF6EhISOp11pbHQEII2f5Oubj4SEfO0n9DF03Zc6JXTX19ejsMWwvxWOjo4SrfXVqKurg1Er51UjIyM0tmP3EBQU1Kl79AZZOdyv85pZUfAe2nPRcWYvqMcP+1j5vvuASHXn0T5ERASQd/oYtuzjy4XeruWIjBzTzlmDD6VSiTNnziA8PBwKhXRiMDkiAXtOcrNlIyMBDz7oDWMDF3zy3SXklrhh94lxeMugCWbIQ3K2DwAg0i8FNfXGuHDJFycuRGDalXmqoaIRX70XhxsfbHsJd/9+Pnm+4QYrPLRyHJbOOYTv/x6P+iZTrHhqIv7beQkREzSXUEtKgLJK6Wf45PNg3PVEoGRSPv2eBPx7Kho//V2O7ByFhp99RVElpk3yQ1mNLY6eOovYFPYi2LrxgFjnthlJiIzUfZSOkCEH8GcsKwt11qhtdNWo8/337jiYxLRtQe6ZWLx8ulahY9ToQ/j8SuTs4jwrvT+r7fWlriIIwMyH0sUgfqmX/BHkV9UnYiNo49T+FJzKYItGwwPOYf4d07t9TUerXFTVWaG40haRkT4AgH9+PonTJ6rxwPMxMLMyw64v+eRmylTTPjsud4QHbz+Ap95lE6jHX5yEXbuNNFI9fvjCQbyycT4AwN63AA/8T1MwV6e2shYfv3oCkSMtcO0Nw8X9Fy8y7UhTkxzJseZ46Jm2zanfepJnCgjzvoCMAjfUNpgj/kIoZDIlItqPC9otGhuBQ0dYW62sBNy68noYt79+qUFwsBwnTgDFxYYIDY3U6oNcWwtcutSi5ZVj+PDITt3D0RF4/HFWzslxQWRkB0IQ13Bz+GHDhrUfIr0FQQXUZgOV5yCryQEMzCAYWgMyOWQVSYCgghDyDAA2Lm3bdgGvrdGeL3TOHAEvveSJXbsExMfLUFfHx65Jk+wRHW2HMWPk2LMHKC42wh138HDkS+8ErrkmjLdJ3Ye6oRSKbezzCwpTFuTM0BIwsAJMHCCYuALGDoCqCUL4yyw11xVkdX6Q58Rr/+jO10IV9iIsHMagk3EZBxwOarJwY6MjIiPt26jJUzU2NLDUis1VuRhm+ysiTT+Gq2UGzJzCNcZN+Y5FkNVehGARAMF3KYTgR6GEoc7fcwDw8su87yiVzm0+O4Kg3+Dzra//0Ud8o7FRjrq6CFQUc8Xf9WGn4R0YBZj7YNw4GT7/vOU6/oiM7KC2WtmItBQePyJ8qLnmOyz3N8gayyHYDgesQwA5H8AuXND8QhYudEZkZN92tWg9Z6qtrdWJ4rdTQndiYiLuaMNZ8qOPPsK1117b4WsZGxujXD3RMIDGxkaYtBPNRqFQ6PRB0gfnMtkKk7lxNXyGeugsZVFHuGnFGBTk7YORkQy3PjxRp4HadM0XW0Jxdtg5nMtjL0kPN2Wf/217C239ft7Mauw5ybenTamFra05ADM89r9SPPY82//eOkNEuV0E4AMAuHFOAabMcMC4mUoxii4ANCmN8OL/ueGmFfI2+81//6ndb5ochkZyfPn7KJRNjMOu4yNQWWeNmQsacOpkOVx9pS/YjAxocCp9KHZ+E4u5y0cBYPO7A2eY+Xp5jQ3++vEobnhAuhDz0ZpElNVMBgDEp4Xg/Ik0hIwKwF/7uKPRrCVD9NKXgoP5cJl+rhaF0LTP/Cee+9ffvuAiDAy1CwrRY/hLO/GMQY/1fV2OoRs2AP8clS6w5KQWIqQHzHm7whcbuOvPPbcXQaHofr4gR9sqZBQCpdV2EJTNKC0ow7w7hqGx2RgZmQewcetEHDnOzSzHT/Ps1+PcPU9G4YOvCpBX4oKUVFNMmAD8/TdPvVRXVYc3N3CXi/9b54R7HpK3K4Q+cnsCvvhzCowMGpA7rgyOng5oagIuXuSTwm+/bsSjz2v/3i6lF2Drfuba4mhVhBNnvbD5CyOsWMmOf/GFAh9+2L3P3R779wMVV9x358yRwcys87+vh3szTpwwgCDIUHSpDp5+Fhp1UhPyIAhsET9saAMUis7FX/H0BFxcVCgokCM+rgFymfHV5whqfVWhUEi2NShLAM69DeRuA5rbieZv7MhyT8tkqKgAnnjCHzW1bJJ+y9jvsGjkFiQWXgel5TA88UgZFOXOmHldKOLjpVr2yEg5FAoWBXnPnlaf1T4bz0XNguJfK5Y7OuwFwG8pryBwX2GZsg5Q1gENPH2p5FsZ+ihgopZO1H85UHIUsPADzH2ZkGEdBtiEQ2buqcVcenDi5sYEREEA8vNlHRr3nn8eeO89APAGsArAKsy8rha//1woPb8mB6hlQXBl1WmQnXkeyNgMRL0DCJ46fc8plRCzXABAXp5c62OQkcEy0Dg7A3v3dmx9qsMIKrzyVCbe/tgdr9z7Bx5d8heEusv4+48vAPC51sGDCqSdqwBgDSODBnjnLIEiTwVYBiKo/iYALAVAxr4tUMy4BAx5pNV9BLZgVnQUKL7yV56Ay3/fB4ANoq4FT0Kh+Fh6XsHfQPpnrKwwAWwiALsYwC4arnZzJW2Uy4GxYxXtDiV9iZa+pKv+1CmJcNSoUTh//rzWv84I3ADg7OyM4uJiyb7i4mINk/P+RG1lLTIkOTR7NjqlXCHHY29OxspXJ/VpgRtgkdy3/mYMV9sCyGVKLLm9d3Nk9zfm3OIv2V40hUvgdz/sARsbVv7uO2Dzj1w4nLvEA6NnhOHnj49j8eSjWDDhGLwdmanQhUu+OLA9Qev9mhubsf9ftoLq5FAv5jQ2NDbEL3+HYPQQZoJTWO6Ex57VDOqnvkA4ZSx/7l963UqMpHv0KNDUzK1ffvxR2ocriirw7peRkn0/fZGL/PQCnExjs/7ogLNw8dXPCmpQKNd2pF4AkpL4sbHRmulQbnugbeEzdJQvFHJm9piQ0r4msC9y4QLXmqmTeb7ng1h1hNrKWny3MxIAYGZcg5sf0I3q08GGT95LC8qQcDgbjc1MwvxixyjkpxfgaDKLW+FoVYSACG+d3Le3sHW2wX+HbODhwSLy5+YyoaclcvQnrx9HQTlfAMvLk2Pz5ravl3a2El/vYgtrjc3GSDicBQC4mFoCpZI///EXQnA2VnvY3U/fTkGzkglt996YDGMzY9xyqwwtltDffstzw+oD9cyoXQ2G527EA0vmpWZprXM2jvsLhzjFdvoeMhkQ48ss8corTZBxphv+N4LAcjOrU34GyPpOq8BdVOmA3+Lmo7bBFGgoAuqYee4998iRnc0WDyK9T2HTPXdj4Yjf8PLsB7Bm0jhYJ8wGdo/ATOMpGtcMDwdw+QBuDHoaJobsBx4ffBCf3nUPTr8xDF7WSUDxEaA6A7h8oNXZcsDlOsBhDBOYzbwAI1vtpuatA6K5zQDm5wDX7gfGfAmEPAm4zwTMtWvrByuGhjyIVl5e+3UBZg33ySea+3f+bYZDCa0Wr2UKIOQZaRT4mkwoDi3EsPQZkB+YA5x+EahI6d6HAIuWr64fbOuzfPYZC1J2/Djw22/a6xw5woKb3XNPBzPINFUB596BcnsI3ljnhqoaEzz70UyUnd6Cc8fTkFckVW789x+QfolZ4Pk7pUMhv6KhrrqAAHwq1kvLMgdqLkrvpVICv/sD232AIzcDqR8ApXGAqgmFFXxO5WKexiL0q2OkNn9X1jOf/AsfAbHL4XRG+uyGh7edEncw0Gs5CyIiIpCcnIz6ep5OJz4+HhH6tAPTM+dP8hyaIQEdz6E5WBkywg+p6RYoyqvE+Dn9OEdlL+A91AORfuyFYqBowtzbQ8VjlpbAAw+wclMTcDqDCeh+LhcRMoqVF90/Br/8NwZbD4zG/73AJ1+fbdQeLTRuzzlU1THty9SIkxITJ3Nrc+zY4wF7ezbA//gjC4ijTmoyN3l67Gl7RAeylGan0ofi5D72OdRzOALAzqMRqCzhprkfvHwK5TU2kjo//uGNXb9wiX7mVO3uL7ogaBj3MU/NMBeFbjMz4KnVUsF50rAE+IS0HanIxNwEgW7spZea69XvUjA9/TSPZurpyn/bjFQ9Sjfd4NdPT6KilgU+u/Hak7B21E3gOkd7PvkoyqvAhRT+XTQ2G+OBO7PEPjtuWHqfXwztCH6Bhti8+TyiotissbQUmDGtBmcOp+LNjZrRt19/nZmNHvnzDK4ZfhJ3XH8IVaXMz3DNW1ZiXmsASEliAlt6YqbGdb75RNOPsLGuEZ/8yBbcFPJm3Pc4s7ywsQFuuIHVKS8Htvyi24g9J/acxb+/nER+RiG2/co+i5mZgOld9Fhwd+Mz8Lws7SmTks9w3+TQYV1z4RgRxQXinb9kde7k3B0s5dPe64At9mxSro7nYpaH2sgO8JgHhDwFjPwUiFmP+Z+cxMJ1v2HupnQIM5MBExccOwZs3cqeB1tbFbb+bgPT8R8yQbh1u/3jYG/BF2tdXVkaJFw+gKHCm8j+wAuX1rvi4OqJuGfOP7DxHwWYXRl/5caAqpVft7knMHU3cN0RYNYZYP5FYHEpcFMTsKgEmJUMXLMPuO4YYKW/FKoDHbcrr8yCgqvH4Pv4Y/5OmTMHuPlmfuz331tVNnMDIl9n+c6vTwScuWBnqCyBLH8XkPQK8PcoSQT0t98GoqOZJlqd/Hzg2DHtgvC+fdLt3DbcmdVT1sW1kdDlpZdYyq5Nm4B47R4KnJI4YGcEcOpxpKerUN/EVhHrGs3wxf5l+PvMdRqnHDwINDSyBcjAIaZA+CuA4wRAZgBn60KYG7P3U1phgGZe+Pp8oEZz3IXVEBQ0cldGl8AgoFmaHQd+y4CotYDXEsBCqmxwtpR+YePGqW2UngTKk9v7FgYegp6YMmWKsGXLFsm+kpISobq6WhAEQWhubhZmzpwpPProo0JqaqrwySefCJGRkUJeXp7GtWpqaoQTJ04INTU1+mquTvjm3UMCe2wF4c3H9vZ2c4h+TnNzs3DixAmhublZ6/HDf5wWromKFza9fkDj2KVLgmBkJIj9ERCE/93yn9br1FXXCXYWJQIgCMaGdULJpVKNOq+u/E+8zmevad5PEARh82Z+r8BAQaiv58dumHJEPJaamC988up+cfuZlWmCIAjC+PHS9gLsmRIEQSi/XC7YmJcJgCAo5E3CUM80sc5QryyxfHTn6fa+0m6hUqoEK9NyARAEF9tCQSZTCYAgjBghCA0NgmBjw9u9eWPlVa83e0ysWD8n9ZLe2i0IV+9LncXXl7Xb0lIQ/vgm8ap9rLe5ZRofmw9sP6Wz6z5x3znxuv/9VSI8cvM+jT7c8vfWqv90dt/epKUvlZY2C2PHqsTPZ2xYJ5YXTToizJ3LP/u04bGCQt4kbl8TFS8kJTYICoX0O1pxwz5BEATho9Wa36OHfZ7Q3NgsfPFZjXDddYKweLEg3L44X3JPdQ4eUIrHJg5L0NnnV3/Pq/8tmnysy9f8+p2D4nXef3af1jpzxh4T62SdzenSfY78eVq8hoVJpZCZ1PZ1CjMuCusf+UX8gKpNEITv1P4O3qh5UskJQWiuk+xKTZV+T7t3s/0LF/J9n36qlF6n/JwgpH0uCGdeFYTYewVhZ5Rw67hvxPrTp7fUS2Zt+clSEA7fKgj5ewRBpXatxipBaG7owjdF6II5c/hvfKmdV1xtrSA4OrJ6crkgZGQIQmmpII4P/v6CoFK1cyOVShAu/iqo9lwrNP1gxfvoycfFKmVl7Not11MqBUForBCKzh4W3J0rBUAQ3nv2sCBc+lsQqjLE89THsZa/igrN2zs58eOjRmk2sapKOid77bV2Pk9FqiD8YCh+ji2PLpDc38+nQbjumlrJ/Vq3cdUqtes1VgpC5QUhYhgbgw0MVEJTbZX0nrl/CsLPVoLw7zRBSFwtCHm7BKG+RBAEQZg1i1+3sLCddrfQUCYI+f8KwqmnBNUv9oKBolE8/9tv1eqlbRaE8x914II9T+s5k67k0B4VuqdMmSJ88MEH4nZWVpZw6623CmFhYcKsWbOEw4cPa71WfxG6n17GBZPfv+z6C5ggBKH7gtLdS1Ilg/B/W061WfdRNWHhg7fLNI5PjjgpHs84k631GkqlIIwdy+/36gtceI/wTWGDvaJRaKxvFApzygS5nE3Yg4IEoaaiVjA0ZJNkE5Nm8RqzRscKgiAIq5+8LO5bNuuAsPHdPI2XjL1lsdDcqBuhsi1iApM17rtswRlBEATh0UfZtoODIJSXX/1a6t95e7+NLtCl0K1SqgRTY/bCD/G7JFw8lyN+jnnj++a4N/06LvCVFjfq7Lpvvsn7wS+/CML1o463KXQf/veyzu7bm6j3pdLCCiHMO1XjsyYePC/ExzW2+V0AgmBlXqOx79rhJwRBEITHbuXvUifrQrE8esjpNq+3b5t0wU2lVAlDPPji3Pn4DG0fp1MU55UI9pbFWu///fva5y8d4d9f+Pj65J3aF+z9XNjiorlxlaBsVmqt0xGWzz4g3mvSsFMa18rPKBQWTDgiKORNghmqxQ944MlxXJjZ4sSEYUEQEhMFYckSQfj1V+33W7dO+j2NGcMEcZmsZbxsEGpqrj4uffdFmXiNJ55Qb/A/GoI+0Te4/37+u8fFtV1v40Zeb8kSvn/KFL7/7Nmr36+5uVk4ERcnNJdfEITktwShhivx/vtP2g//fHqBIHwH4eVFL4j7vB0yBdW3EIS9069cT7qYLrZl4wJBiF8lCHk7BaGxSsjLkx43MmIL8SI1OcL2H/MldSZNusqHOXYPe9b+GiW8/MxljTa0/Lm5CcJXX2nu37hR85KLFvHjaWlX/z5biI5m5ygU7DvpFE21gptztXjfzEy1YznbBeH0S528YM/Q74RuXdJfhO654/hKdNrprN5uDtHP6a6gdO54utgfbc1LhKaGpjbrJsWXiHXDw9nKbVVppXDkz9PChpf3C0YG9QIgCL7OF9u9Z2KiICgUTJg2MawVclIvCcpmpWBmzAbdIHc+8Z00ib8A1r1yXizftei04GGfJwrpr75YI07QFAqlkJZ4USgqEjS0ZLded6hL31NnUNeYtvy98+R/giAIQl2dIPz0E5tQdoT1q7m2vy3rAV2hS6G7sqRSbPeUyJNCc2OzYKhoEABBGOabooPW6p7Ro/nvpSNlvyAIgvD55/y6H38sCAEBrO8bGjRL+oiREesfA4HWfSkvLV/wduQLL+oaZ/V3olzWLDywaL9gaiQVtm1tVYKVaYUACIKnQ64gCGzxRv35ak94B9ikUJsm7O0n+LkzRh4XSgvKuvXZ75nHn9nowGRhalS84GZ3SZg3/pjQUNt1jWrKCT5W3zJNcxyrrawVZDK2KBkTmNydjyBUFFdIfq93n/pPPFZfLwijhnLrDXWh+/5ZBwQhe4sgVGdLvuyWZ8vMjGksWzNtmubvFRXFyytX5nRoXKqvF4SZMwUhLEwQ0tO79RUQPcQrr/Dfef167c9oczOzjGupd+IEP/bee3z/G29c/X7tvefefVfaB6+P+FOo+dxUcLCUCrRHXxolCDuHC4IgCCdPah9v/nnmGr4A9YOh8OeaJzTqiIsMe68XhO8g3Dd1g+S4oUGTUHn2d0G48KkgxN4nCAX/SRvcVMsWDpobhBtuaHvsW7pUEC5e1Nz/77+a389TT/Hjf/119e+zBXd3do6ra8fPUafFWiAsrFUfqCsUhLIzXbuontGX0N1rPt0DEQsvFrnY3bkCXsFt5ysmiJ5gyAg/vPTAPthbluD/nk6CgVHbyQpCh9thzBVXujNnAD/3y7C0s8TYWeF44MWJYnCoa0ZltXvPYcOAh5awUJ/1Tab47atUXMooRG0DC+UZ5MUDji1cyM97aS0PQjN1QiWWXM/8tJuVhnjhZTMIAju2apUc/sO84OAAtI7dOFOaxlMvBA3VjBgcFmkJADAxAW68kQVK6QgBQ3h407RsG100r0cozObxKlwcaqEwVMDbiQVGyiz0FH+rvkRLIBwLi/YDMHcWRzVX/vx8IDOT+aiGhCowawKPNRATw/rHQMTN3wX/7G7GUM90+Dpn4833+bvvrfcd4W6XjyD3TOzbloSPf52ILZuTYaBoEuus+l8TQrxZfIOcYnfUVNQgLZsFYzQyaMD9z42EjXm5WN/GvBy/fHwMZ88CP/wAfPAB8/nUlqrnjofCYGbM/Jj/Oj4CkeHVOPzH6S59zmN/JeGz7Sy9kaVpJX7fZYd/Tw5HXokrth0cBSNTo6tcoW3c/XgA2bxCzbDH6Wdy0TJdG+LXvXgxVvZW+OqTYshkLI7EM++Oxg8fHAEAPPooEHuO+eU7WBbj8TuPiuf9tn846hwWMn/oK192djbzhQWYP27rtNTV1TxWh4Ha66fF/9XCQsCiRdKAum1hbAz8+eeV95P2lN5EH8NDLazJypVAQADw1luASi2EyY4dLDAnwKJ/R3P3YcyZw8saft2d5ORJ6fauxJl44Y/NKK6SxmP58fzbgNv1AKT+3MH+PNZCbola0DxVE04laub4O378SsEyAIIA7EyUTlCamg2wb/OnwPF7gbRPgIJ/pRcwMAVCngAURmL8GCMjwMdHWm36dMDLS/OZ0DYPCVBzt07THpdSA5UKaMkU7dzFGLWffcaynWiM0yZOgE1Y1y7aTyGhW4e8t06B119X4e11eT0euZwgtPHix5NRXGmPe5+feNW6d9/Ny1n5mlkELE0rce9KB439rVn2AI9evPMfM6QmFojbQX48qIm60F1exdPBTJrlh5vu1Lz/c88B//d/fPumm3hZJlNh+g3dTwF1NYJGR2vsCxvZtQW2wBERYjmtOLzLbeppCnJ4NF9nRxagyDeU5W6uqjVDSUmvNKtdWlI6WVvr9rrqQnfcsQYxWFBgIPDUazwA0zXX6Pa+fY3AKB8kZ/kho8AL/moR2oOj/ZBT5IKUbB9MmMv6+/W3jcC36+JgblyNYb7n8dCD9Qj2430q9VQOMgpYaixf5zyYWZnh+QcTIJcpMSXyFBJP1GDxA6MxdCgbAx56iAdsao2jpwN+3XQWtuZlAIDsIg9MnBuKHz880qnP19wk4P4VfGL96qOn4Obv0s4ZncPC1gJWpuw7yCuy0Th+IZk/VIH+zRrHO8ukBZH43y0sondDkwlueWQsJg0/j40b2XETEwG7/6jFyx/xoGZV1cD27dLrqEduB9QEjSvs3cvymAPA8uVAaKj0+N13C7C01G2QO6LvMH06C3rXQkYG8NRT0ujeP/3Ey60zYvj78z5z7BgX/rqCeqCzFt7dyqO1tSzG/rxvPJRhawBIhe7bllqK5VzXj4DxvwAB9wMWAUi4GKlxbfFZ8F+O5IoFyClh70hLUx6ETBIMrVR7ZLWGBp79ZehQYMUKfkwm48qHyZP5flNTwN1d81rqQndHU06XlQHNV4Ycly4OeU5OwP33A77aM6gOKkgy1CFOTsCTTwoIDOybEXwJoj2WLOEvOFOTZowMTsLdcw/iw+f348D2ROTlyjBiWshVrxM+NhDudvkAgP9OhSMhjk+og4L5kOPhAYyKlGo5At0y4R7giuipQxHkninu/+ADYM0a6Srp/PmAqQmb0Y0LPQN7N81UZbomqFUgW1vzMrj6du1N5OVjIGp/Orrq3BcozOMRkJ2dmVrbz5//rpmZGqf0OhXlrJ9Ym1VepWbncDDNEcvHjnLtbWAgMGEC8M03wLPPak+vNtBoKzK7TC7TOLZk5ViUlBoiIS0IVvZWCA7kguS+vwpR18iic/t7MGFz1VuTUV3RiL2nouA1RMtssh2uv20EEuPrMDE8AQCgEhS496kwXDzXRhhiLWz9TYbEjGAAQKRfCla8NO4qZ3Qedwc2FuaVOIlpFFu4kMKzvAQGd12jrs7rn47BHdcfErcPnAoWyxs2yDB8opfGOV9/Ld3eskW6Hdsqk9nOnbw8ezbw4ot828AAeOSRPmgWQ+gMNzcm3H39NTBFLXNUS79pbgZ272Zla2tg2jTNa8ybx/4LArN06Aq1tcC5c6zs56dpdXTttcCsWaycnw8cOsSirR+4kmnOwQG4Tk0+zis0A7wWAyM3AHMv4FTxfACAqXEDDA1ZnxaFbttI7Kzmq1NPPmsBAwNW5+/zNwHD32Pp58b/qLXtqak88ntYGFu8akmHOGoUaxsgFboDAlg+7Naoz19arAuuRgHXmXRZ6CY4JHQTBAEAMDdnq8HZ2UBVtQFiU8Lw2fYJWPnqJEyYGwFLO8urXwRskj1zAhvRG5pM8Ol3fPIWFCK9xqJrkiTbk0fkiNf47ss63D7jEP74JgEPPaR5Hxsb4KePE3DH9Yew8VNNk0x90NpkK8z3YpfTQBkY8JXftDT0SbNsbRTkc+HSxZWtGqivYGdk9HSL2qepoRm1dUxQsTa4eJXancPRnavOy6stxHKgDxPub7sNeO21wZ2XtC2MzYzFZyd4ONeO7zzCLVb8fbhljKklt4bpLJ7BbtgbH45bprF82FV1Vlh6c5GYqu/0oVTs25qgIey2cPAgL69Z69Suq05XcXcsB8BSApUXSXNDp17gPhGBITY6uZ+xmTG+2jkeX79zCBam/Hu+/35g6VLt5+zezSfhBQXA4cPS4+qabkHgQreRETMdXrSIC1+PPgp4UmrrAY+FBXD77azv2NiwfTt3snSmsbFMkwowrbiBlsdq7lxe7qqJ+Zkz3KR90iTgllukx594Qmo598MPzAy+xS1p0iRpX1VPG1ZZCaRnMCuYYZHGiIhgY1pKCrewUl98uukmYMwYVif1oiOyTB4FnCYChtpfEklqU6SwMMDODvj1V/adtlimAOy5ahG0w9swnHN1Zb8H0HFNNwnduoWEboIgRAwN2culu36vM2cbi+XzedzZKChCOmovvF1qbzR5Cr9xzLUh+HrXeMy6LbLN+8xZNhJf7RyP0DEBbdbRJVZWgKtzo7gdGtQ9zWmLuVdNTfdM53qSwgLukOfsxn5ndX+yvqbprizhvnjWlvXt1Ow8lraWMDJo0Ngf6Jql0/sMdIKj+Tiw/5i9WA7w1909FIYKfPxdGLwc2Yx5X2IUnn4kDwsWABETgjBlUSQeveWAVsH7xAleHjtFPxY17i7cQi4vs0xy7MIlPuMPjNBtvJjbHxuPU4mmWLYMePJJYN26tuuqVMD337Pytm2aC4Xp6RDdS5KTgZwrhiCTJ7NFXbkc2LWLTfjfekunH4Po4xga8rgrFRVsIUtdGG0rJsuIEdyXePduIDGx8/dWNy2PipKaaEdEMA37nDlcg7xpE7NQamHJEmbJ2rIokJfHj6m3JyqKaZ8B9mzEx7PPeuiKQUlgIHvnq2vN//67/ba3FroB9l19/TVrewseHizX+cKFwOrV2q8lk3Ftd2Ymd/1oDxK6dQsJ3QRB6JxrFobCUCEd0c2Ma+DmJx21/SO8EeF9RtyeNKvvR8gJsuP+oGFDu+dKEuDC1cJpcUnt1Ow7FBTyhREXD2a54OvK3QQy4mI1zulNKiRCd1M7NTuPTC6Dg5VmYKvAcFcttYm2UDeHbGri/cs/2Eyn97F2tMaXG3gwx7UfeWLbNn78g58m4bVH9kvOaWriAcICAgBbW502ScQ9NFIs51VIFyMvXPIBADg6CrB2tNH5vQMCZfj8c+DNN1nAsvb44gvmZ6puWj5pEi/HxbH/bQlUxsZM+NAW+I4Y2LTWWqv3kRkztJ8jlwM3X3G9rq9nGvHOWlOpC93Dh7O/t95i1hdff836ooUFD9ymVAsz8PrrwOLFTBHR4p+urulWDx4YGQmMHMm3jx8H/vqLX6/lOeiu0N0W993Hnsvg4LbrtAjdKlXHvkcSunULCd0EQegcSzsLTIyQCpFB7jlaTbHfWduEEK80rL5vH9wD+r6wEuzDhazwyO6ZtQe4cp/gtHNl7dTsOxQWc59SZ08bAICfPxeUMrN0b3rbHSpKuOmsjVX3g1C1xtFaau1gaVoJJ6+rBxwkOMbGmlF5AcA/JlLn95qyKAqPPiIN3uVozy0gXlg/GRtfOSBunz1ZjPorh2NidN4cEXcf7p6grkmrrmZ+pgAQGNh7kmrMlRiSSUnA6NHAf/+xbV9f4N57eb0WE/M//uD7eiKzBNH3mTGDa4u//54LrDEx7UfGXrMGYnaVwkKmmVYXBq9GS+RymYxrh594Avj3X5ZxpQV1E3O5nEXdfuYZvkDUEo29qIgtPAGaWnR1ofuHH4AHHuDb17Og6IiOZmbiALBnDw9Upo0WodvcnEUp7y7qft0dMTFX/567Gr2c4JDQTRCEXpg1TSqMBIXZa613zQ3DkXwxAC9vnNwDreo+Dz4TCl/nbMwbH4vxC8Z261oBapq8tAu6Fwj1QUExEw5kMhUcPdhvautsI0ZfzrjUtwTOilIuUFlbqdqp2TUcbasl24HueV328x/MBAdKLWNkMsDXXzMVjy54/Q0F5s5lgv6aNUDmRROsfXyfePzBl8bj4O/MbvTE3nPi/hG++rPiUI82rC50qwdZ7Gg6Qn3w0kvMNxtgwlKL9m7hQm5SCzChOzGR+8EHBfVuu4m+g7U1D/hVxA1OrrooY27OFnFCrsRxzcgAFizoWByUpibm0w2wfmhh0Xbd2bOZttvbm0XmV8/oAkif0UssS6a4cCCXM010UBCP4XH6NPdZHzOGZ7FQKHjU8YoKnnavNTU1XBsdGqo9OFpn6azQre72Rpru7kNCN0EQemHmDdJl2aBhjm3U7F9ETAhGRoEXth0c1e3UgAFh/Du5kHEVu84+QmGNDwDA3qYOhsZMKJLJZfBzZeq47CI3NDf2nQWE8lLuc63rlGEA4Ggn9RMP9O4fFgt9jSH20jReHh5XN3XuKqamLP1VZiZLRWhuDjy+djKeuGMfAEAQ5PjkI7aYEhfHZ/Yxo/SXbL0toVs9ynBvCq9TpjCBesgQ6f5Fi1hMhxbN3fHjwNq1/Li2IJjE4EXdxLyFjlhC2NkxU+wWbe+xY9rTgLUmJYVrpYcPb7+uoSEze8/K4lHT1VHPO56by3yiWzTRQ4YAZmZMMB4xQnreNdcwf3T1QHHqn1ndzF6ds2d5+Wqm5R2lO5puErq7DwndBEHohaAoX/h5qqULC2qn8iDFZ6gb5DKmMkrL1pOzqA4RBKCwmJnUu7hLTet93csBAM1KQ+Re6ITtn56pKON+3NY2utdAO9hLFxiC/DsQnYbQIHiIdDrir8Mgah1lzcaxsDZjY9aOg2FoqG3AiSRmuSGTqRA1QX8xJ9xd+OJQXgpXb184zEOn93aAvogIFlTu7ruZJcLUqUzLLZNxs9qiIh5szd4eWLas99pL9D1a/KZbcHDouNuGuzsz926hdco6bbSYlgPM/Ls7qAvdeXlMKG668nqJjOTH1NN3LVnCUp1Ztkr+ou7D3pbQ3Rl/7o6ivnDXGaHb2Fg/i9aDDRK6CYLQCzK5DHMW8lFaPdImwTAyNYK3E1NrpeW5tZmyqK9QWQnRv7W1f5efN9f4ZqYUoa9QUc79d61tdO9v7ugg/c0Cg/uWT3t/IThUmjInwCWrx9tgZGqEOROYLWplnTV2fZ+A0xksxcAQj8wOp03sCk7OBjBQsBl8bg5fyLmgbl7up9vo+13B3Jz5upaVMX/UFpNXdRPzFrPfFStYfYJowcdH6kc9Y0bnsqXMn899rLdubbcqAE2f6+6gbo2SmyvNaqB+7UcfBR5/HPjwQ7YApc1ix9mZLzYkJkqtW1rQh9BtY8MisQOdE7pdXCj4oS4goZsgCL3xwgss5+tbb0lftAQnwIMJqJV11ijOK+nl1rRPe/5dvn78jZyRKvVz7k0qKrhQbG2rex9hRyfpa1RXeZQHG8GR0iCK/r0gdAPAosW8j7z8hjWalMyROSY0X6/3VRgq4Gp7GQCQV8zjX1zI4guXAcPcNc7rLaytpZNw9QBSAGBiAqxc2bNtIvoH8+fz8qxZnTvXxQUYP56VU1KkJtja0KemW13TPm4cL1tYMBeLlSvb98NWNzHftYuXVSpg3z7pPl0J3QC3OszPB6qq2q7X1AQUX0lMQqbluoGEboIg9Ia9PUsx88QTvd2SvkuAT41YTjuj34l9dynI4W9oZyephtcvkAeFy8yQRofuTSrqbMSytZ3u1W4O/tLZUOAw3eZRHiy4+DjB0oQHX/QP6p0YB9OXDIO5MVs0SsjgDswxw/Xfp90dWGaEokpHNNQyc/MLuWwxwsWmUK+a9u7S2o912TLAcWCE8SB0zGOPsVgA993H0nF1lkWLeLk9E3OVigc68/RkpuzdQV3TnZAA/D97dx5fw/U+cPxzs68SWRCxxhJEJCFii7WKbkqr669Kda9uuqNodS8tilLV9ktpq6WqulmKErsQe5AQQojEErIn987vj5E7uXKzyU1uIs/79fIyd+bMzEmMufPMOec5a9aoy02amPb0KKvCLxwKupj/84+aI6FvXzh8LYejj49lg97CQ/0K54y4XkqK1mtFMpdbhgTdQghhRa1aahm142LTSihpfclHtf5u9XUbTbY1D9Ra544nVE7W6RuRZhNqXPZoGmTx4/s28jIu13VLw7uhVwmlRXF0NjoCGx4xfm7R2jr9kp3dnbm9V3yR9eHdK//f1b++1kPk7IkUrly4wvk0NXJt1aj65Ekwx9dXDRZAbQF/5RXr1kdUXx4esHQpzJ1rmlysrO65R1suKeg+flxryS0tiVpZNCz0PnXDBi2D/wMP3Fhm8fBw7cXUmjXqHPf33AMnT2pl3N3VnoKW7Npd1mRqkrnc8iToFkIIKzKZNuxo9cn6bc65M1qSsAZ+pgPxmrXTnkh2HmnNFdMZ46wmrdB7DE9Pyx+/cGteq3aSaaYi+vRQe314u1+gTeeWVqvHvY+bJqCw0ekJ7Vn5md38G2j/v86cuMixvdpAz1bNqsl/qBK895463dL770NL6/3ziZtc48bacIa9eyG+6DsywLJdy0Edm10wHrqwwvN7l4eNjZZQLT1dzXKelaV+joxU5/k+d87yyQjLGnRL5nLLk6BbCCGsqPA4zbgL1Xvge3Ky1qW8fkPT6ZOcXJ0Iaa62VMYl+tK3r+mbcmu5fFlbrozsq02bavOydutm+ePXJpNmhDP/w02s//sCLnVcSt+hktx+Ozg6atd6UNP4KqmPv792zjMn0zl2UJt+rlXL6jNkozgPP6xOtzRunLVrIm52hVu7i0uoZskkagX8r0ur0KpVxY5deFx3Qat8eLja8v3gg+o0ZJYmQbf1SNAthBBW1DzI39h1LO5U9e6afC5Za91u0Ljo+NKvv3HCy0sNHHbvVpPLnDhRZdUzq3BL9/XTtliCq6ua8GbKFJg0yfLHr03c6rrx+NieBPew7vyC7u4woF+m8XN40PkqOa9/I21YxpnEXI4d0Vq+WwVaZ4y7ENVRWcZ1Fw66LdG9HEyTqQE89FDFun4PGGDaNd3HR/15nJyK36eiWrTQ6lxS0F04o7qM6bYMCbqFEMKKnJy0LsrnqvewTZJTtQf/+o2KziveuW9ToqJ0NG6sfo6PV+f0taa0c+qTg7tLVrmmpimP7t3VKWLqVv+p1kUZPfB/2pjyyDuDq+Sc/k21c545A8fitQGvrdp7m9tFiFqpZUsIupaiY+dOyM013a4oWvdyH5+iLdQ36vrjPPBAxY7n5QW9e6vLNjbw009qYrbK5OSkTt0GatCtFDNTaeGXFoGBlVun2kKCbiGEsLKCoLtwttDqKPmCGhTY6PT4NjIfBLRtC5s3Q5MmaoK4devg+L6TZstWhbQrauDi4XyplJJCaB56SO258Prr8Mioqhmr79/c07h89IQ7B45pCQNadmhkZg8haq927dS/DQZITDTdlpSkfp+C2v3bUonICrd0d+ig1aEivvpKfTn9++/quO6qUNDFPC1N+z1db8cO9W93d2jTxnwZUT4SdAshhJXV81UD1KwsyLiaZ+XaFO/cRU8AfOpcxNa++Gbjxo3huXu17OaLvjpe2VUrVlqm2qfcwzWjlJJCaGxs4J131MzBDg5Vc07/FlqWppWbO7EnXm1e8q93xapj3IWojpo315avH8ZUGV3LQe2aXeBGE6hdr1Ur+Prr8s9ZXhGljetOSoLTp9Xl8HAqrZdYbSNBtxBCWFk9m23G5fMnq+dc3YpBIfmyOtFpA6+LpZb/v2cD0enUlwkLfw1AMVR9E35eTh5ZuWqw4uGWVeXnF6I8XOq4mJ1LuN/AOlVfGSGquYIu0lA06LZ05vICQ4aowfZ998GLL1ruuFWtcNB95EjR7Tt3assFmeJFxVVK0K0oCqNGjeLX4lIKXvP+++8TGBho8mfRokWVUSUhhKi2fH201u2UpOo5NdDllDRy89Ux3fW90kspDY1a+dEvLAaA+HNN2fr3gZJ3qARpKdrv0sM9p8rPL0R5vfOO2oLXqxe88AL8738wb561ayVE9VPWlm5LBt1OTupUXj//rCbRrKkKT+lnLtlpQddygC5dKr8+tcUNTEtfMoPBwAcffMDmzZu58847SywbHx/Pq6++ytChQ43r3NzcLF0lIYSo1ur5aq3A55MySyhpPcmnLgKeADTwLVur8aMPZ/HvtRaHhd9consVdp8DSLuQDqhjzz3dc0suLEQ1MHq0+kcIUbLCQXdCgum2gqDbzU3mjDencC+B6393ANu3a8vS0m05Fm3pTk5OZsSIEaxbt446dUrvDhUfH0+7du3w9fU1/nF2drZklYQQotqrV1/L8nL+XPVskT2Xrj3h1G/dvkz73DMqBBdHdSz1ktUdyM7IrpS6FefyBe0Fhked6j/PsRBCiLJp2lRbLtxae+ECnLyWuzM01HRKLqEq/Lu7Pug2GLTu5Q0bWi7zu7BwS/fBgwfx8/NjxowZDBs2rMSy6enpJCcn06zw65ZS6PV69Prq/eBUUL/qXk9R/cm1VHt419Pm5z2fnG/xf3NLXEtnz+kA9eWAr3+dMh3LuY4z9/TZyqJVkVzO8OT3BVu49+mq66t2MVVLnlbHvfp/f9QEcl+qRfR6bI2LeqiG9yVRe9nbg5+fDWfP6jhxQjFeR7t3G+DalRsWZkCvr8ZTgliJgwPUr29DcrKOhAQFvd5g3BYbC1euqL+/zp1Nt9UW19+bLHWPsmjQ3a9fP/r161emsvHx8eh0OubOncvGjRvx9PTkscceM+lqfr2jJc3iXs3s37/f2lUQNwm5lm5+OflaYrKTJ7OIiYmplPNU5FqKjq4HqBNw5+ScJCam9GRqALcMuMiiVery94vyadEl5obrUF5xR04D4QDY2FyttN9rbST3pZufTVYWBcNh9+3bh6GSeiLKtSRulK9vIGfPupGcrGPnzgM4OcHffycD6txeXl6niIm5YN1KVlO+voEkJ7uRlAQ7duzFwUF9OfHHH16A2rOtUaMkYmLOWbGW1mXpe1O5gu7s7GySk5PNbvP19cXFpexTWhw/fhydTkdAQACPPPIIO3fuZMKECbi5uXHrrbea3ad169blOoc16PV69u/fT3BwMLaSY19UgFxLtYeLQZsHOD2rDqGhoRY9viWupV9+0brAd+7chNDQJmXaLzgomJfeTuNKlgd7j7UgNLTBDZ3/Ruxdq7V0N2pk+d9rbST3pVokQ/v/06FDB4tnjpJrSVRU+/Y69u1Tl93c2pOfv5/kZD/j9sGDGxMS0thKtave2rXTceAAKIqOunVDaNVKXf/tt9p3/eDBDar0O7u6uP7elJmZaZGG33IF3Xv37uXRRx81u2327Nn079+/zMcaMmQIffv2xdPTE4A2bdqQkJDAjz/+WGzQbWtrW2NuzGWpa79+/Thz5ozxs52dHY0bN+bBBx9k5MiRFqnH8OHDiYiI4IUXXuCtt94C4OOPPy5xn9zcXH777Tfuv//+Gzrnr7/+yqxZs1i3bt0N7S9M1aTrXtyYBk20eYJSLjhV2r93Ra6llBPxgDpJqX+9bGxty/YAbmtrS4cWh4k6EEJiqj9p5y/h5Vf3hupQXlcNAcZlz4b+8v/IguS+VAsU+ve1tbWttMl65VoSN6pwMrVTp2xp2BBiYtRB3A4OEBxsK3NMF6Pw7y4x0ZY2bdTlgvHcOh106VK7f38F9yZL3Z/KFXR36dKFI+YmdLsBOp3OGHAXCAgIYNu2beZ3uEmNGzeO22+/HYD8/Hy2bdvG+PHj8fT0ZMiQIRY91/jx48tU7s8//2Tu3Lk3HHQLIcrH09cDO9s88vX2nL9YNTM4pJ6+wKtPHaaxfz7vzI7EzqHkr4OkhIsUBN31fTKBsrd6hXR0JerajGH7Y93p7VdyeUtJy2tkXPZo1KpqTiqEEKJKmGYw1+HiYsuRI2pLbUiIOu5bmGcug3lODhSMwmrTBjw8EBZktZx+M2bMKNKaGxsbS0BAgPkdblLu7u7GzO1+fn4MHTqUbt26sXr16ko5l7u7e6nlFEWSTghRlXQ2Oup5pAKQcrlqvuWeeCiOhX9H8sH8Pjx1z1YUg/b/PvNKJnk52tzhqacvsH5PMAB1XS/h4+9drnOFRGpztuzdrwX3+jw9l8+n3eiPUKq0Qoe+7h2vEEKIGu76acNiYrSX1j17Vn19ahJzQXdMDORd++qXqcIsr0qD7osXL5JxbYxQ37592blzJ9988w2nTp3ihx9+4LfffmPUqFFVWaVqyc7ODnt7e4YPH857773HLbfcQp8+fUhPT+fs2bM888wzhISE0K9fP2bNmmWSVW/NmjUMHDiQ0NBQJk+ebLLtrbfeMnYxB1ixYgWDBg0iJCSEBx98kEOHDrF9+3bGjh3LmTNnCAwM5PTp0yiKwuzZs4mMjCQ8PJxnnnmGpKQk43GSk5N54oknCA0NZejQoZw6dapqflFC3ER8G3oCcP5qAyr7vdfK73awIkrLIv7dnz1587H/OLYngfv6bsXVw4UeHU+Tnq5un//ZfnLynAAYNXQvNrbl++oICdGW9+5V/87NyqVz26P4+LmydM7WCv08xSkcdMsbeyGEuLmYBo46k6C7V6+qr09NYi7o3rFDWydBt+VVadA9bNgwvv32W0BNyjFjxgxWrFjBnXfeyffff89nn31GWFhYKUcph8Ofw/JGpf/5b3DRff8bXLZ9D39userm5eWxevVqNm/ezC233AKo46OnTJnCrFmzcHV15fnnn8fb25vly5fz0UcfsXLlSubOnQtAXFwcL7/8Mg899BDLli0jPz+f6Ohos+fatGkT48ePZ8SIEfz++++0b9+ep59+mrCwMMaNG0eDBg2IiorCz8+PRYsWsXLlSj777DOWLFmCt7c3o0aNIu/a67CXXnoJg8HAL7/8wpNPPsmCBQss9jsRorao56dmBs7L05kEi5aWmQkvTAotsn7Kwj606dSYpRu6AbDzUHPeew/yc/OZs1htqdbpDDz7WvMi+5YmKEgdHwZa0L1h+R72xLdFb7Bj5sz8G/pZSnP5ojbnuQTdQghxc2ncWJuHOyEB9uzRenNGRlqnTjWFubm6JeiuXBadMqwwc0m0rl/Xv3//ciVfK7e8K5B1pvRy2WYyG2anlG3fvCvlr1chkyZN4r333lNPmZ2Nk5MTI0aMYPDgwfzyyy/06dOHjh07ArB161aSkpL45ZdfsLGxISAggDfffJOxY8cyevRoli1bRnh4uLHb/oQJE1i/fr3Z8y5ZsoQ777yThx56CIA33ngDe3t70tLScHd3x9bWFl9fXwDmz5/PpEmT6NJFbRmbPHkykZGRbNq0icaNG7Nnzx7Wr19Pw4YNadWqFQcOHOCff/6p0O9FiNrm2n83AFJSKq879Pvvw8lEBwBuiUzh/oGHeXqC2iRgUEyThXz+ObgbjnIqpR0At3fZRYuQ8n8Tu7pCq5b5HD1mx4H9+eTnwuq/s4zbtxztytWLV3H3Kn34S3mknTwIqPdPD+c0QCJvIYS4Wdjbq4H3yZNw9ChkZakzHLVrB97lGwVV6zg7Q/36kJxcNOh2cIAOHaxWtZtWpQXd1YJ9HXD2L72ck6/5dWXZ175O+etVyIsvvsiAAQMAcHR0xNfX1yRLnr+/Vof4+HguX75Mp06djOsMBgPZ2dlcunSJ+Ph42rZtq1XN3t7kc2EnTpzgwQcfNH52cHDgzTffLFIuIyODc+fOMWbMGGxstI4R2dnZJCQkkJOTg6enJw0bNjRuCw4OlqBbiHKqV09bPn8e4/QdlnTkCEydqi7b28Ps+b4EBvpy6eIGxk7vhYtDJq89toss1+58+pkD+fkwYWo74/7PP3/jnaNCGu3k6LFu5OTacXRPHKujtHtGvt6e9b/tYfAoy75aT0t3BNQWeksH9EIIIayveXM16E5P16a6kvHcZdOsmRp0JyXBuXPqiwuAsDA18BaWdXMH3W1fUf/ciN6/W7YuxfD29qZp4T4e13F0dDQu5+fnExAQwJdfflmkXEGCtOuToNkXk7rRzq5s//QFY8JnzJhB8+am3Uo9PDzYunVrmc8phChevTrnATXyPn/8BPQofzfu0nz0kc6YJOWNNyAwUF1+8/M+PPTUGTx93anj3YfsbFj2G8THa/u2aniCAQ92vOFzh7TP5pdrHW/++fU0+xP6mGxf/U8Wgy2c0iMtQ231cHe6io2ttHILIcTNpvDY5AIynrtsmjWD7dvV5V9/1dZ36WK2uKggq2UvF+XXvHlzkpKS8PLyomnTpjRt2pTTp0/zxRdfoNPpaNWqFfv37zeWNxgMxMbGmj1W06ZNTbbp9Xr69etHdHQ0Op32trBOnTp4e3uTkpJiPKefnx9TpkzhxIkTtG7dmrS0NE6ePGnc5/Dhw5Xw0wtxc/N11KZjTElILLacQW/g3ec2MKzPVs6dOF/m4184fZmffjQA4OWlMHas6fYmbfyp46323HFygllf6E22jx5xqtwJ1AoL6ehiXJ7+bdFm/NXRlh9AlpahTmvm4Zpu8WMLIYSwvuZm3k9LS3fZFH5h8fPP2rKM564cEnTXIJGRkfj7+/P6669z5MgRdu3axYQJE3B2dsbW1pb777+fAwcOMGfOHI4fP84nn3xikmW8sOHDh/P777+zfPlyTp48yUcffYSiKAQFBeHs7ExaWhoJCQnk5+czcuRIpk+fzrp160hISODtt99m9+7dBAQE0KJFC7p168a4ceOIjY1l7dq1LFq0qIp/M0LUfPUaaH25zp83FFtu8vMbeWdOH5b9140JL5t/qWbOrwtyyNerPVyef3AHrqVMsz3odlsevGWLWjePFEa8HFrmc5kT0k2bMzsxVRs2U9dTbXo/dtyZEycqdIoi0jLUHkAerpmWPbAQQohq4fqgu2lThcZmUjWJogoH3Rs3assSdFcOCbprEFtbW+bMmYPBYOD+++/nhRdeoHfv3rz99tuA2no9Z84c/vzzT4YMGUJKSgq9e/c2e6zOnTszadIkZs+ezeDBgzl8+DBz587FycmJrl270rRpU+666y4OHz7M448/zrBhw5g4cSJDhgwhKSmJb775Bo9r6YCnTZtG3bp1efDBB/n8888ZPnx4lf1OhLhZ1GuoRcEpKebL/LlwJ+/O7WP8/MfGQBRD8QF6gcvn01j8t/rq38k+i+ffCihTnRb+2Zkls7aweUMmnvUq1j27UauG1HW9ZLLO3V3hxRe1HBarV1foFCZyMnPJzlMzwnu6S9AthBA3o+u7l0dGVvKcmzeRwr+7gpGinp7QsqU1anPzu7nHdFdz5jK8F/b9998XWde4cWPmzZtX7D49evTgjz/+MLvt448/Nvk8bNgwhg0bVqScp6cnvxYe3AGMGTOGMWPGmD1u3bp1mTVrlsm6559/vtg6CiGK8vXTEn2dTy2awSR+70keec60W/a5y/XZ899hOvY1nzCxwLxP9pKe3ReAkXftxLdx2Qa82Tvac//o7mUqWxqdjY6Qlgls2FvXuK5fPx133Knj3cnq59Wr4emnLXI60lKvAD4AeLjllFxYCCFEjXR9S7d0LS87c+PhIyK0KT6FZUlLtxBCVAP1GnsZl89fdDLZlpudx71Ds7mc4QlAfU9tLPdfvyaXeNyczBy+WKBmINfpDLw6ofjEjZWtQxvTKRYHDoSOHbWpXf5dk0N+rmXm7E67kGFc9nDPs8gxhRBCVC8NG5pm2paW7rIzl8dZupZXHgm6hRCiGnDzdMPJXp27OuWSm8m2z6bZs/eEmmq8TaN41v6ZZtz2179qxJqWksagiF2Etz5kkmBt+TfRnLtcH4B7em2nZaj1gu6QUNOvnAEDwNYW+nfcDUDaVUd2rLFMIsa0i1qXco86+hJKCiGEqKlsbCAoSF329c01zsohSlcwV3dhkrm88kjQLYQQ1YDORoevx0UAzl/2NK4/cQLee09dtrFR+GGJM+27tyKomTpjwLbY9qSmwuSXtrNqZzjRx9oxffIh4/4b/9NaeZ942rojikI6exuXW9Q/TosW6vKAflqr9Jo/L1jkXGkXs43LHnVKH/cuhBCiZvryS/i//zPw3nsnpGt0OV3fxbxzZ6tUo1aQoFsIIaqJenXVFuzUK14Y9Gqg+NJLkKU2gPPCCzrCujcE4Pb71BZrRdHx1cyLzPpFS5q4eYfWUr51j/oa20anp2v/olN1VaXg7i1pXv8UAI/ee8q4vu+dzYzLO/e4XL/bDUlDG+fu0bS9RY4phBCi+unaFRYsUAgPl+khy6tw0N20adGWb2E5EnQLIUQ1Ua+u2uKrN9hxKfkyK36+zMqV6jY/P5g8WSt7++3a8oT3PMnNdzR+3nmsPblZuWSkZbDvhBpot2tyDHcvLVmbNTg4O7Bztxv//baXcdMijeubtWuEp+tlAGKOWmaul7R0bVy8Rz0fixxTCCGEuJkUDrplPHflkqBbCCGqCV9fbfn0ySxeel57az9tGtSpo23v0QPcr8XQimJ6K8/Jc2L3bti17igGRZ2SK6ztKaoD74Ze9Lo7BDsHrau7zkZHaEt1ku4zF/1ISUyt8HnStGHveFRstjMhhBDiphRQaAZRCborlwTdQghRTdRrqw2mmv5ZJidTGgFwS8cY7r/ftKy9PQwYYJqltVOQlkBt8zYHtsUGGz+3DSs6DVl1EtpOy2wes/lkhY9XOOj29Kzw4YQQQoibzrBhEBwM7dvDyJHWrs3NTYJuIYSoJurV05YX/NrCuPzee7Zmk8Pc3iXauNyy/jHm/U+bA3vLFti6XWtNbt2penexDutoa1zes/NqhY+XmnDCuOzhIuP8hBBCiOt5ecHevbB/P/hU78eEGk+CbiGEqCYKdy8v6DLeI2gf3W4PNlv+3pGtaNXwBK6O6cydeZXQjvbGLuibN8O2beqyp6dCkyY5lVn1Cgvtqr1xiNlnX6Fj7Ys6xjc/aNlgGjdIK6G0EEIIUXtJxveqYd35Y2qxt956i+XLlxe7feHChXSRyfKEqFUKt3QXeOOVrGLLe/h6EHvKnaz0LFw9OgLQrRusWgXJyVq5iAh1LtPqrG3n5jjY5ZCb78ie2AYllk1JTOXOW8/h6pzHin9bmiSIu3w+jXvucyArV82C/vhdm2jSpmel1l0IIYQQoiTV/DHs5jV+/HiioqKIiopi3LhxNGjQwPg5KiqKsLAwa1dRCFHF6rmdMfncplE8d44oedJMG1sbXD1cjZ97tN5SpEzXiFzLVLAS2Tva077ZcQCOnGlOxlV9sWW/mbqbHUfasz4mjG8+2mhcb9AbGD7kCPHn1OnUOrU6xKwfZdJRIYQQQliXBN1W4u7ujq+vL76+vri7u2Nra2v87Ovri4ND9U56JISwPF9f08Rorz6bhI1t+W7T3Xs6FVnXJXBvhepVVcIimwNq1/r9B22LLbd9h9YXbtkf3sbl+R9F8cdWNf2ql9tFli6vg5Nr0d+HEEIIIURVkqC7Gjp9+jSBgYHMnj2bzp07M3nyZGbOnMnw4cNNyvXr149ff/0VAEVRmD17NpGRkYSHh/PMM8+QlJRkjeoLIW5QvUbe2OjUFt4Gnmd55KXyt9J26d8aW5t8k3UR/VoUU7p6CQvXAuSYmOLL7TjZ17i8+UgE506cRzEozJzvZ1z/w1fHaRbUqDKqKYQQQghRLjftmO5ffoGJE+FqxZPglpm7O7z7LrSw0PPt7t27WbZsGQaDgZUrV5ZYdtGiRaxcuZLPPvsMHx8fvv32W0aNGsXKlSuxt69YUiIhRNVwdnfmrVEbWLA8kC8+OomTq1/pO13Hra4bIc0Psjs+CIC2jY5St34LTp61dG0tLzRUW96zx3yZM2cg6az21aUoNixfGEvHruc5cLI9AN3b7WPgw+GVWFMhhBBCiLK7aYPuKVMgNrbqzzt1qg1z5ljmWCNGjKBJkyZlKjt//nwmTZpkTL42efJkIiMj2bRpE/369bNMhYQQle6D+X34YD5A+QPuAt3baUF319YxQM1o6e7QQc2iqijFt3Rv31503bLf3YiOvmT8/MSjkq1cCCGEENWHRYPuK1eu8Mknn7B+/XoMBgN9+vRh3Lhx1CmYw+Y6iYmJTJgwgZiYGBo2bMi4ceOIjIy0SF3eeAMmTKj6lu7XXjNY7Hj+/v5lKpeRkcG5c+cYM2YMNoVSFGdnZ5OQkGCx+gghaoZbhzRl1rXOMX3vaGjdypSDuzu0bHKJYyfrsi8mm/xcO+wcTL+mduzQlnU6A4piw4aYDjgeVKdEq+Ocxv3PdKzKagshhBBClMiiQfekSZM4deoU8+bNQ6fT8c477/D222/zxRdfFCmrKAqjR4+mdevWLFu2jLVr1/L888/z119/0bBhxR8Shw1T/1Q1vb7ksYjl4ejoaFzWmZlELz8//9o51TGgM2bMoHnz5iZlPDw8LFMZIUSNcdfICKbGbiA7Gx5+oWZNlxXW4jDHTnYnO9eJI9FxBHVrabJ9x39nAPWF5MODYlj8d0f0Bjsyc9Svs4dv24urR6+qrrYQQgghRLEslkgtMzOTVatWMXHiRNq3b09QUBDjxo1j7dq15OTkFCm/bds2EhMTmTx5Mi1atODpp58mNDSUZcuWWapKNxV7e3syMjKMnzMyMrh48SIAderUwdvbm5SUFJo2bUrTpk3x8/NjypQpnDhxwlpVFkJYic5Gx6uf9mH8F32wtS8+C3h1FBqsTW8Wsy3ZZJs+T8+uveqc3I28k3j+haL5Kp54q0flVlAIIYQQopwsFnTb2Ngwd+5c2rZta7Jer9ebBIsF9u7dS7t27XBxcTGu69SpEzGWaia+yQQHBxMbG8vff//NiRMnmDhxoklX8pEjRzJ9+nTWrVtHQkICb7/9Nrt37yYgIMCKtRZCiPLpGOFmXN640XSu7iO7T3A1Sx2uFBF0iogBQTT00cZyh4VBp8416yWDEEIIIW5+Fute7uTkRK9epl36Fi5cSGBgIF5eXkXKp6SkUK9ePZN13t7enDt3rthz6PV6Y1fq6qqgfuWpp8FgQFEU4z4Gg8H4d8G6iIgIRowYYQy2R4wYQXJysrHMyJEjSU9PZ8KECWRkZBAUFMS8efNwc3Or9r8zYd6NXEtCmFOTrqVug1rj7JBJVq4Lv61vy8zsXGNr/bYNSYDa3bxzxywUFIY+4MHs2eq+jz9uQK9XijmysISadC2JCtLrsTUu6tXxcxY9vFxLwnLkehKWcv21ZKlrSqcoSpmfULKzs0lOTja7zdfX16TVetGiRbz//vvMnz/fbHK0cePGodfr+eSTT4zrli5dyldffcWaNWtMymZmZnL48OGyVlMIIUQN9s7zmfyxTR2L/v0XK2nbXc3zMWtiKv/7ayAAC2b8TlAPfy5csGPs2AC8vPJ4990EHB0l6BbCEmyysgjrqf4/3LNpEwZnZyvXSAghrKdt27YmsW55laule+/evTz66KNmt82ePZv+/fsDsHjxYt5//33Gjh1bbDZyR0dHLl++bLIuNzcXJyenYs/funXrCv2wVUGv17N//36Cg4OxtZVujuLGybUkLKWmXUv337eVP7apyzs2u/PQc6EA7D96BFCzlg9+qBfuXur4bi2jeUjVVrQWqmnXkqiAQkMDO3ToAK6uFj28XEvCkuR6EpZy/bWUmZnJ0aNHK3zccgXdXbp04ciRIyWW+eabb/j000954403GDFiRLHl6tevT1xcnMm61NTUIl3OC7O1ta0x/5FqUl1F9SbXkrCUmnIt3fVIMPZv5JKnd2D52tZMR0dudi57T7QCoF3jeDx9W1m5lrVbTbmWRAUU+ve1tbU1+WzZ08i1JCxHridhKQXXkqWuJ4slUgNYvnw5n376KWPHjuXxxx8vsWxISAgHDx4kOzvbuC46OpqQEGmpEEKI2syzngf9O+0F4PSFhuz69xDbVsWSr1ezlUcEF5/7QwghhBCiurFY0H358mUmT57M0KFDueOOO0hJSTH+KRiAfvHiRWMm84iICPz8/Bg7dizHjh1j3rx57Nu3j2HWmFxbCCFEtXLvEO2F7MwZuTz6tK/xc/fu1qiREEIIIcSNsVjQvXnzZjIzM1m+fDmRkZEmf86ePQvAsGHD+PbbbwG1yf7LL78kJSWFe+65h99//53Zs2fTsGFDS1VJCCFEDXX3o0HY2KgzOSz6qyOJqf4AhAbE8vDznaxZNSGEEEKIcrHYlGF33HEHd9xxR4ll1q1bZ/K5adOmLFq0yFJVEEIIcZPw8feid29Yv15b19LvJP/8641LneqdUFMIIYQQojCLjukWQgghLOXee7VlPz9Yvcmf+s18i99BCCGEEKIakqBbCCFEtTRyJNxyC4SFwapV0LyFxTpnCSGEEEJUGXmCEUIIUS25usLatdauhRBCCCFExUhLtxBCCCGEEEIIUUkk6BZCCCGEEEIIISqJBN1CCCGEEEIIIUQlqRFjug0Gda7WrKwsK9ekdHq9HoDMzExsbW2tXBtRk8m1JCxFriVhKXIt1SLZ2RAYqC3rdBY9vFxLwpLkehKWcv21VBB/FsSjN0qnKIpS4dpVsgsXLpCQkGDtagghhBBCCCGEqGWaNWuGt7f3De9fI4Lu/Px80tLScHR0xMZGesQLIYQQQgghhKhcBoOBnJwcPDw8sLO78U7iNSLoFkIIIYQQQgghaiJpNhZCCCGEEEIIISqJBN1CCCGEEEIIIUQlkaBbCCGEEEIIIYSoJBJ0W0hOTg7jxo0jPDycyMhIvv32W2tXSdQga9asITAw0OTPiy++CMChQ4e47777CAkJ4d577+XAgQNWrq2ojnJzc7nzzjvZvn27cV1iYiIjR44kNDSU22+/naioKJN9tmzZwp133klISAiPPvooiYmJVV1tUQ2Zu5bef//9IveoRYsWGbf/8ccf9O/fn5CQEEaPHs3FixetUXVRTSQnJ/Piiy8SERFBz549+eijj8jJyQHkviTKp6RrSe5LorxOnjzJ448/TlhYGH369GH+/PnGbZV9b5Kg20I+/fRTDhw4wIIFC5g0aRKzZs3in3/+sXa1RA0RFxdH3759iYqKMv55//33yczM5KmnniI8PJxff/2VsLAwnn76aTIzM61dZVGN5OTk8Morr3Ds2DHjOkVRGD16ND4+Pixbtoy7776b559/nqSkJACSkpIYPXo099xzD0uXLsXLy4vnnnsOya1Zu5m7lgDi4+N59dVXTe5R9957LwD79u1j/PjxPP/88yxZsoQrV64wduxYa1RfVAOKovDiiy+SlZXF4sWLmTZtGuvXr2f69OlyXxLlUtK1BHJfEuVjMBh46qmnqFu3LsuXL+fdd99lzpw5rFy5smruTYqosIyMDCU4OFjZtm2bcd3s2bOVRx55xIq1EjXJq6++qnz22WdF1v/yyy9Kv379FIPBoCiKohgMBuXWW29Vli1bVtVVFNXUsWPHlMGDByt33XWX0rp1a+N9aMuWLUpoaKiSkZFhLDtixAjliy++UBRFUaZPn25yj8rMzFTCwsJM7mOidinuWlIURenZs6eyadMms/u9/vrryptvvmn8nJSUpAQGBiqnTp2q9DqL6icuLk5p3bq1kpKSYly3cuVKJTIyUu5LolxKupYURe5LonySk5OVl156Sbl69apx3ejRo5VJkyZVyb1JWrotIDY2lvz8fMLCwozrOnXqxN69ezEYDFasmagp4uPjadasWZH1e/fupVOnTuh0OgB0Oh0dO3YkJiamaisoqq0dO3bQpUsXlixZYrJ+7969tGvXDhcXF+O6Tp06Ga+dvXv3Eh4ebtzm7OxMUFCQXFu1WHHXUnp6OsnJyWbvUVD0WvLz86Nhw4bs3bu3MqsrqilfX1/mz5+Pj4+Pyfr09HS5L4lyKelakvuSKK969eoxffp03NzcUBSF6Ohodu7cSURERJXcm258hm9hlJKSQt26dXFwcDCu8/HxIScnh8uXL+Pl5WXF2onqTlEUTpw4QVRUFF999RV6vZ5Bgwbx4osvkpKSQsuWLU3Ke3t7F+n6KWqvhx9+2Oz6lJQU6tWrZ7LO29ubc+fOlWm7qH2Ku5bi4+PR6XTMnTuXjRs34unpyWOPPcbQoUMBOH/+vFxLwqhOnTr07NnT+NlgMLBo0SK6du0q9yVRLiVdS3JfEhXRr18/kpKS6Nu3LwMHDuTDDz+s9HuTBN0WkJWVZRJwA8bPubm51qiSqEGSkpKM19D06dM5ffo077//PtnZ2cVeW3JdidKUdu3ItSXK6vjx4+h0OgICAnjkkUfYuXMnEyZMwM3NjVtvvZXs7Gy5lkSxpkyZwqFDh1i6dCn/+9//5L4kbljha+ngwYNyXxI37IsvviA1NZV33nmHjz76qEqemSTotgBHR8civ/SCz05OTtaokqhB/P392b59Ox4eHuh0Otq2bYvBYOD1118nIiLC7LUl15UojaOjI5cvXzZZV/jaKe6+VadOnaqqoqghhgwZQt++ffH09ASgTZs2JCQk8OOPP3LrrbcWey05OztbobaiOpkyZQoLFixg2rRptG7dWu5L4oZdfy21atVK7kvihgUHBwNq8tDXXnuNe++9l6ysLJMylr43yZhuC6hfvz6XLl0iPz/fuC4lJQUnJyf5ohBl4unpaRy3DdCiRQtycnLw9fUlNTXVpGxqamqRLi5CXK9+/folXjvFbff19a2yOoqaQafTGR9sCwQEBJCcnAzItSTMe++99/juu++YMmUKAwcOBOS+JG6MuWtJ7kuivFJTU1m7dq3JupYtW5KXl1fq87YlricJui2gbdu22NnZmQymj46OJjg4GBsb+RWLkm3atIkuXbqYvGE7fPgwnp6edOrUiT179hinJFAUhd27dxMSEmKt6ooaIiQkhIMHD5KdnW1cFx0dbbx2QkJCiI6ONm7Lysri0KFDcm2JImbMmMHIkSNN1sXGxhIQEAAUvZbOnj3L2bNn5VqqxWbNmsVPP/3E559/zh133GFcL/clUV7FXUtyXxLldfr0aZ5//nnjixmAAwcO4OXlRadOnSr93iQRoQU4OzszZMgQ3nnnHfbt28fatWv59ttvefTRR61dNVEDhIWF4ejoyNtvv83x48f577//+PTTT3niiScYNGgQV65c4YMPPiAuLo4PPviArKwsbrvtNmtXW1RzERER+Pn5MXbsWI4dO8a8efPYt28fw4YNA+Dee+9l9+7dzJs3j2PHjjF27FgaNWpEly5drFxzUd307duXnTt38s0333Dq1Cl++OEHfvvtN0aNGgXAQw89xIoVK/jll1+IjY3ljTfeoE+fPjRu3NjKNRfWEB8fz5dffsmTTz5Jp06dSElJMf6R+5Ioj5KuJbkvifIKDg4mKCiIcePGERcXx3///ceUKVN45plnqubeVMEpz8Q1mZmZyhtvvKGEhoYqkZGRynfffWftKoka5OjRo8rIkSOV0NBQpUePHsrMmTONc3Pv3btXGTJkiBIcHKwMGzZMOXjwoJVrK6qr6+dWTkhIUP7v//5Pad++vXLHHXcomzdvNim/YcMGZcCAAUqHDh2UESNGyPylwuj6a2nNmjXKXXfdpQQHByuDBg1SVq1aZVJ+2bJlSu/evZXQ0FBl9OjRysWLF6u6yqKa+Oqrr5TWrVub/aMocl8SZVfatST3JVFe586dU0aPHq107NhR6dGjhzJnzhzj83Zl35t0inKt36oQQgghhBBCCCEsSrqXCyGEEEIIIYQQlUSCbiGEEEIIIYQQopJI0C2EEEIIIYQQQlQSCbqFEEIIIYQQQohKIkG3EEIIIYQQQghRSSToFkIIIYQQQgghKokE3UIIIYQQQgghRCWRoFsIIYQQQgghhKgkEnQLIYQQQgghhBCVRIJuIYQQQgghhBCikkjQLYQQQgghhBBCVBIJuoUQQgghhBBCiEoiQbcQQgghhBBCCFFJJOgWQgghhBBCCCEqiQTdQgghhBBCCCFEJZGgWwghhBBCCCGEqCQSdAshhBBCCCGEEJVEgm4hhBDiOm+99RaBgYHF/unRo4e1q1gugYGBzJw5s8LHiY+P55lnniEsLIyIiAhefPFFEhISii2fn5/PsGHDGD58eLHH6tixIxEREYwePZrExESTMkeOHOGJJ54gIiKCyMhI3nzzTVJTUyv8cwghhBBVyc7aFRBCCCGqI19fX2bNmmV2m729fRXXxvoSExN56KGHcHd3Z+LEiXh7e7N06VIeeOABli1bRqNGjYrsM2/ePPbv309ERITJ+rNnz/Lwww/TvHlzPv/8c7Kyspg+fTqjRo1i5cqVODk5kZqayogRI/Dz8+Ojjz4iJyeHqVOn8uSTT/Lzzz/Xyn8DIYQQNZME3UIIIYQZDg4OhIaGWrsa1caCBQvIyspi2bJlNG7cGIDIyEjuv/9+pk2bxmeffWZSPjY2lq+++gpfX98ix5o5cyZubm589913ODs7A9CoUSOeffZZDhw4QHh4OP/++y+XLl3i559/pkmTJgC4u7vzxBNPsGfPniKBvBBCCFFdSfdyIYQQ4gYdOHCAoKAg3nrrLeO6Cxcu0K1bNx577DEURQFg586dPP7443Tu3Jn27dvTr18/Zs6cicFgAOD06dMEBgbyzz//8NxzzxEaGkr37t358ssvSU9PZ9y4cXTq1Inu3bszZcoU43EL9vvzzz955plnCAkJoU+fPsyePdt4bHMuX77MxIkT6d69O8HBwdx///1s3bq1xJ/1+PHjtGzZ0hhwA9jY2NC5c2f+++8/k7K5ubm88cYbDB8+nObNm5tsUxSF1atXc++99xoDboDg4GCioqIIDw8HICcnBwA3NzdjGU9PT2P9hRBCiJpCgm4hhBCiGPn5+Wb/FAS97du358knn2T58uXGoHXixIkYDAY+/vhjdDodsbGxjBw5Ek9PT6ZNm8acOXMIDw9n1qxZ/P333ybne/vtt2ndujVz5syhW7duzJgxg2HDhuHk5MSsWbMYMGAA8+fP559//jHZ75133sHNzY2ZM2dy9913M2vWrCItzwVycnIYMWIE//77L2PGjGHWrFk0aNCAJ554osTAu27duqSkpJCXl2eyPjExkatXr5oEwrNnzyY/P58XX3yxyHFOnz7N1atXadiwIe+++y4REREEBwfz7LPPcu7cOWO52267DV9fXyZPnsz58+dJTEzk008/xdfXl+7duxdbTyGEEKK6ke7lQgghhBlnzpwhKCjI7LY33niDxx9/HIDRo0ezbt063n33XZ566inWrl3LjBkzqF+/PqB2sy5oobaxUd919+jRg3Xr1rF9+3buuOMO43F79uzJyy+/DECrVq34448/8Pb2ZuLEiQB07dqVlStXsnv3bm677TbjfkFBQUydOhWAXr16kZmZyYIFC3j22WdNWooBVqxYQWxsLD///DMhISHGfYYPH87UqVNZtmyZ2Z/5nnvu4Y8//uDNN99kzJgxuLm5sWLFCjZt2gRAVlYWnp6e7Nu3j2+//ZbFixfj4OBQ5DiXLl0CYOrUqXTo0IHPP/+cCxcu8Pnnn/Poo4/y22+/4eLigq+vL++++y6vvPKK8eWEh4cHCxcuLPIzCSGEENWZBN1CCCGEGb6+vsyZM8fsNj8/P+Oyvb09n3zyCffddx/jx49n6NChDBo0yLh9yJAhDBkyhJycHE6cOMHJkyc5fPgwer2+SKtxWFiYcdnHxweADh06GNfpdDo8PDy4evWqyX5Dhgwx+Txw4EAWLlzInj176Nmzp8m2rVu34uvrS1BQEPn5+cb1ffv25dNPPyUtLQ0PD48iP3OPHj2YMmUKH374IX/++ScA3bt358knn2TmzJk4OTmRk5PDW2+9xYgRI0zqXVhubq7x55s1a5bxRUTTpk154IEHWLlypfHvN954g0GDBnHvvfeSk5PDt99+y6hRo/j+++9p0aKF2eMLIYQQ1Y0E3UIIIYQZDg4OBAcHl6ls27ZtCQwM5MCBA/Tt29dkW3Z2Nu+99x4rVqwgPz+fRo0aERYWhp2dnbGbegFzLbguLi6lnr+gVb2Al5cXAGlpaUXKXr58mZSUlGJb8VNSUswG3QCDBw/mjjvuIDExEWdnZ+rXr8+MGTOwsbGhTp06TJ06FYPBwHPPPWcM6At+xvz8fGxtbY0/Y69evYwBN0BoaCju7u4cOnQIgFmzZhEWFsa0adOMZXr06MHtt9/OjBkz+OKLL0r9vQghhBDVgQTdQgghRAUtWbKEAwcO0KZNGz744AO6detGnTp1APjggw9YtWoV06dPp3v37sYgulu3bhY7f0GX7QIXLlwAwNvbu0hZd3d3mjVrZuyOfj1zU3+BOq/2/v37GTJkCM2aNTOuP3ToEIGBgdja2rJq1SrOnDlj0mJfICgoiI8++oiBAwei0+mMLd6F6fV6nJycALV7f//+/U22Ozk50b59e44dO2a2jkIIIUR1JInUhBBCiAo4c+YMn3zyCcOGDWPu3LlcvXqVDz74wLg9OjqaLl260L9/f2PAfeDAAS5evFhihvHyWLt2rcnnVatW4ezsbByzXVhERARnz57F29ub4OBg45/Nmzczf/58bG1tzZ7j2LFjvPnmmxw/fty4Li4ujqioKGNwPGfOHJYuXWryJygoiKCgIJYuXUrfvn1xdXWlc+fOrF692iTw3rp1K5mZmcbs5QEBAezevdukN0BOTg4HDx40yaAuhBBCVHfS0i2EEEKYkZubS0xMTLHbAwMDcXJyYvz48Tg7O/PGG2/g4eHByy+/zIcffsjAgQPp168fHTp04O+//+bHH3+kRYsWxMbGMmfOHHQ6HVlZWRap699//423tze9e/dmx44dLF68mDFjxpjtmn7PPfewaNEiHnvsMZ555hn8/PzYsmULX3/9NY888gj29vZmz9G7d2+aNGnCa6+9xksvvUR6ejqffvopjRo1YuTIkcbfyfVcXV0BTLrqv/LKKwwfPpwnn3ySUaNGceHCBaZOnUpISAj9+vUD4KWXXmL06NG89NJLDBs2jNzcXBYsWEBycnKxmdmFEEKI6kiCbiGEEMKMlJQUHnjggWK3//bbb+zevZutW7cyffp04zjo4cOHs3LlSiZOnEjHjh156623yMvLY/r06eTm5tKoUSOeffZZ4uLiWLduHXq9vsJ1femll9ixYwdLlizBz8+PiRMn8tBDD5kt6+LiwuLFi/nss8+YMmUKV69exd/fn1dffZVRo0YVew5nZ2fmz5/Phx9+yKuvvoqjoyO9evUyZjIvj7CwMBYuXMi0adN48cUXcXJyon///rz55pvGlvZbbrmFefPm8eWXX/L888/j6upKhw4dWLp0KW3atCnX+YQQQghr0inXZ3ERQgghRI1w+vRpbrnlFj766CPuuecea1dHCCGEEGbImG4hhBBCCCGEEKKSSNAthBBCCCGEEEJUEuleLoQQQgghhBBCVBJp6RZCCCGEEEIIISqJBN1CCCGEEEIIIUQlqRFThuXn55OWloajoyM2NvKeQAghhBBCCCFE5TIYDOTk5ODh4YGd3Y2HzjUi6E5LSyMhIcHa1RBCCCGEEEIIUcs0a9YMb2/vG96/RgTdjo6OgPrDOjs7W7k2JdPr9Rw9epTWrVtja2tr7eqIGkyuJWEpci0JS5FrqRbJyoIePdTlzZvBws9fci0JS5LrSVjK9ddSVlYWCQkJxnj0RtWIoLugS7mzszMuLi5Wrk3J9Ho9AC4uLvKfXlSIXEvCUuRaEpYi11Itoihw5Ii67OQEFn7+kmtJWJJcT8JSiruWKjrEWQZICyGEEEIIIYQQlUSCbiGEEEIIIYQQopJI0C2EEEIIIUQJjh2DL76AxERr10QIURNJ0C2EEOKmlJaSRm5WrrWrIYSowdLT4a23ICgIXnoJBg2C/Hxr10oIUdNI0C2EEOKm89fCnXjVdyO41RnOxJ21dnWEEDXQmjXQti188gnk5anrDh2CxYutWy8hRM0jQfdNIHrdYbb+td/a1RBC1EKZVzJZ+d0OLp69ZO2qmPhyQSMMii1HzzTn7tsukHkl09pVEkLUIAsXwu23w+nT6md7e23bu+9qQbgQQpSFBN013IpvthPRvzXd7whm7c+7rV0dIW56+jw93368iV/nbSMvp3Y/dSkGhdt7HmXwqAgeuPO4xY+fkZZB/4676djyMPuijpZ5P4MBtuxpYPwcHdeekUP2YtAbLF5HIUTNkp+v3iOKoyhqy/aIEVo38ltvhYMH1b8BTpyA776r/LoKIW4eEnTXYBeSLvL0q00xKOoccgu+SbdyjYS4+b0+chOPj+3JvU93pUWj80x9fQNXLlyxdrWsYuX/dvDfvlAA1u7uRHJCikWP/7/Pd/Hvno7siW/LrXfW5Uh02QL7I0fg0iWdybpf1ndj8vMbLVo/IUTN8vPP4O4O9eurQfXSpZCVZVpm9mx1DHeB0aPh77+hVSt47z1t/fvvQ05O1dRbCFHzSdBdg7302GGS07TWnH92dubafO5CiEpwbM8JZi7pYfycmOrP61P7EBGSWusCb4PewIT3PU3WrV95zKLn+Hm5h3H5fJovtwxw5sSB0lMHb96sLQ/sfR6dTm3WenduH7avOmDROgohrOvoUfVFW2m2boXhwyE7G1JT1e7j990HERGmidHmzNGWP/gAZs4EW7Vtgy5d4I471OXERJg3z3I/hxDi5iZBdw214pvtLF7dw2Rd6iVndu0q+zH0eXqWf72N2J2W7xYqxM3ozZeSyderA/ta+58wrj9yJoBP3jQ/vOPqxat8/3kUX4z/jy/G/8f8DzeRkphaJfWtqNysXH6evYWEg6eLbFs2bzv7TgSarFu3K7BIuRt19sQFNh3oYLLuzEU/uvV05L6+W3n7yQ1sWm9+nPbm/7ReP2+/X48PXtRauJ973hZ9nrydFOJm8L//qYnO2reHdeuKL3fyJAwZArnXJjOws9O2HTgA+6+lxcnJ0QL4kBAYNw50pp1mmDxZW377bYiPr+hPIYSoDSToroGuXLjC0681N36+NTLJuPzXX2U/znP3b+aep7oS0duHU7FnLFlFIaq17Gzo2RPatIG4uLLts2mjwvJNXQFo4JlM9H5fdq+PxcFO7V/4+cIuJB5JMtnnxIFEOgWn8uirkbz0YW9e+rA3T47vSftghd3rD1n0Z6oMLw/fxgPPdyc0wp24mJPG9fo8PZM+qlek/Pot3hY7969/eaMo6lfUM/fvpm1j9ck2+XI9lm7oxgfz+9Crnwu7zbzr2LxO7ebuYJ9HeCeF1z+NpENz9Ul6d1xb5r4fBaj/9h9/DDExFqu2EKKK/PILPP64Oj47P1+dzstcb7/0dLj7bjh/Xv3cpw9cugSvvaaVKbgHxMZqxwgONn/ejh3h0UfV5StX4MEHtWBeCCGKI0F3DbRy4X6SL6sPvHd03cF3P/oZt5U16F71wy7m/dYLgKtZdfhgrLyqFbXHql8TiYpSWzTGjyt9wlWDAV59TWvueG9SFm513Qjr04YXHtwKQHaeM2+/qnV93vPfEbr3dOBYUvMixzuf5kvv2xuz5q+rFvhpKsfZ48nM/019yZCW6cGD92eQk6m+YPj+800cTmwBQPd2++jZUwHUIPbUKXX/3Fz1s6Lc2Pl//llbfnZ8R9aud2VA+C7sbE2T123bZrrf+VMpxt95p5axODnrsHOw48svtMGX46eG8uarGQQFwdixcNttMu+uEDXJn3/Cww+bJkQ7cEBt+b7enDmwd6+63KKFOo7bzU2db7tAwfb9hSaCKS7oBpg1C1q2VJd37TIdAy5ETdWvXz8CAwONf4KCghg0aBD/M/cf6wYNHz6cmTNnAvDWW2/xVhn+8+Tm5vJz4YeCcvr111/p16/fDe9vKdUi6M7NzeXOO+9k+/bt1q5KjbB5s/Yq96WXbPFvpCM0VP28axecO3W5xP3TUtJ44sWGJuu+/aMHx6WXuagljkRrL5mWLrMhIUHbdmh7XJEhF7/+Cjt3qsvt28NjLzQzbhs/NRQvd3W6rO//iuDHH2HSi/vofZsf5y7XB6BNo3gWfb6ZH2ZsoUfQPgDSs925/W53fv/d8j+fJcz+6DB5egfj5+hj7Xjj2aNM+VTPE+Mijevfe1fPLbdoLyTWr1fHew8apNCqlRrUltfZs7Bpk7ocGKg+/DZs0YBVO8PJytSx8KtzxrJJpp0L2LpG+7ftEX5RW76zA4/doR40LdODTz93NbZOnTsHh7ZZdjy6EKLiEhIgKsr05d2RI3DvvdqLsv79tW0TJqgt24VFR2vLP/wA3tc65ISEaOsLWroLB93t2xdfL3d39cWgw7Vb5LRpsHJlWX4iIaq3cePGERUVRVRUFGvXruXpp5/m008/5bfffrP4ucaPH8/48eNLLffnn38yd+5ci5+/qlk96M7JyeGVV17h2DF54CmrzbvVB3kbnZ4ut7YG4PZILYvIPz+VnCjotSf2cvqCGnS7Oaktbfn5tiZZOS0tLg6mvZ/A1Nc3MPX1Dfz4xRZjq5kQVS0uXrv1GQw2XHvpyi9zthLcrTnB3Rqzc43W/fv777V9P/lES6oDULe+JxMn1wFAUXQ8/DBMntmBq1nqum5t9xO1vS7/N6YHD73YnTVbWzFkoDqcIz8fxoyppB+yAjKvZDLnJ3U8tZ1tHo722QB8sTCYN960RW9QB0Te23sr/YaF0bevtu/6v8+xaNoW1q9XA/ElS8p//l9/1R6y77vPdEylnYMdIV21BJLXB92bN2Ybl3v0cjLZ9smcttR1Nz/Lw85N58yuF0JUPUWBGTOgdWt1KNCXX2rbpk7VsoY/8AD88w8MHap+PnsWPvvM9FgFY651OowNFAA+PuDvry7v3aues6wt3QBhYfD559rnZ56Bq9W385IQZeLu7o6vry++vr74+fkxdOhQunXrxurVqyvlXO7u7qWWU260y1w1Y9WgOy4ujvvvv59TBf0RRanS0mB/ghpoB7c8Sx1v9WK9faAWwP71j63ZfQHW/BTN/N/VbuVuTlfZvOEqnp7qtoULy5YBtLz++QfatYNXJjTj9al9eH1qHx5+qTs9QuOJ33uy9AMIYWFxJ91MPn89T8+eDbE8/koQBsWWfL09c79Qk52lX85g9Sq1S3ODBqZdEgs8+5wtLVoUXf/gLVtYu60F3g29jOuc3Z1Z+qc/ERHq5+PHiwaO1rZw+i4upqt1frD/dj6bUrTv9biXTvLT6s4AdIlQcHZU591Zs0Zh/McBxnInTypkZJTv/D/PjzUu3zes6JdtwYMymAm6d2m/6+4DAky2+Tb24fsf3WjSBO68E76aos39vWPHzfGlLkRNd+kS3HMPvPwy5F0bTTJpkhrQnj+vvQStUwe+/lp9Cfrxx1pytE8/heRk7XgFQXfjxlrLdIGC1u7Ll9WhMQVBt4cHNGpUel2fe07LZp6UBO+8U84fVogawM7ODnt7e4YPH857773HLbfcQp8+fUhPT+fs2bM888wzhISE0K9fP2bNmoW+UHKFNWvWMHDgQEJDQ5k8ebLJtuu7l69YsYJBgwYREhLCgw8+yKFDh9i+fTtjx47lzJkzBAYGcvr0aRRFYfbs2URGRhIeHs4zzzxDUqGHgeTkZJ544glCQ0MZOnRotYkz7UovUnl27NhBly5dGDNmDKGFXz8WQ6/Xm/xjVUcF9ausem7ZAsq1ebm7929oPE/4LYHUdb3EpYy6rN7ejuzMbOwd7U32zc7I5tkxPsbPn761m6DwSF591cCECTYYDPDOOwYWLbLcw+d//8HQoTbk5emKbIs+1o6O3dL4euoW7n26i8XOebOo7GupNjuW2MDk89V0W3oOakRGjhaML1sfxhfp+fz1w16yc7oDcHfkdhQlvEiyHltbWLQIXn7ZBm9vuOsuhdtvScE/QL2uzf0b9u2rY8cO9b3n5s167rmnaD2Xz9/O2lV5vP5uM5q1K8MTYDHKcy0Z9Aamz9PO9eLrdQnr7UzUNgM//WSDj4/C//5nYNCgRsZj2tlDj6BDrN3diaSLfibHUxQdhw7p6dixbHU9l3CeTXvVF4uB/sdp164Jer3p/cPDAxzsFXLz7EiKS0SvV3vuZGdks+uomkG9VcMTePs3KfIzDxqEcSjN1Yv1eOYNA4piw879vvJ/rQzkvlSL6PXYGhf15rOUVejwRa+lzEyIjLTh0CHT//MXLsD06Qby8yEnR71vPvGEARcXBb1eHav91FM6vvzShsxM+PNPAyNGKFy6BJcuqT9FQICCXm8wOW6HDjr++ks93rp1Bk6fVpfbt1cwGEzLFmf6dPj3Xxuys3XMmKEwfLih1FZyYXk14d6kOzIN3ZHppResG4ah528mq2w2DYFLe0rdVQl8GSXwxrrQKYp63Rf8DvPy8tiwYQNRUVF88MEHLF26lGXLljF//nwcHBxwcnJixIgRBAYGsmzZMlJSUnjn2punZ599lri4OF5++WVeffVVevbsyYIFC4iOjqZLly7o9XpjC7ZerycqKopx48Yxbtw4unXrxqJFi3j66adZvXo1Y8eO5bvvvmPJkiV4eXmxcOFCVq5cyZQpU/Dx8eG7775j1KhR/Pbbb9jb2/Piiy/i4uLCTz/9RFxcHBMmTMDT07PM18b115KlrimrBt0PP/xwucofPXq09ELVxP7CfZQsaPlyP0B9wPT3TyAm5pJxW9+OV/h1U1/SMj34dupvdLmjscm+P804Q/y5wQB0b7ebzre7EhMTQ+/eNnh6tufyZXuWLNHx1Kit1PEy7ZZZHopB4dLZKxw84MD4D7qRna1+ed7S6wxD++0kLw9mf9uBuLMBXMny4IHR3fk0YTn9Hmhyw+e8mVXWtVRb5WTmcvpCNwD8PM9y9rIaJBYOuAHSMtyZMzeebX9ovUgiuiYTU0yqa3t7mD1b+5xyBVJiik61VcDP1w5Qm1nWLtlAQICnyfaLZ9J4aHRP8vX2pKSuZ9y0ik8zVpZrKXrNaY6cuRuAnu13YeOpY+/eGF59FQYNcqFZs2zc3AxFMn6Hh5xh7e5OZo+56u84bGzMd+u+3saliSjKEAAGRh5i775LZsv5efpyMqUJZ5Jdjf8mR7cnkZt/FwCd2sYTE3PR7L6FtW3kzqHE1uxPaMn2LTtxdLEvdR8h96XawCYri7Bry/v27cPg7GzR4//0ky+bNrVi9Oh42rXLNK47dEh9FvDwyOepp5L47LPGGAw6pkwxYGenADbY2ir063eAmBgtsWLbtnWAVgBs2HCekJAzHD7sArQFwNMzlZgY0xYvD4+6gNoj5quv0gF1WJCfXwoxMYmU1ciRDZg71x+9Xsdjj2Xy9ddHi0w1JqpGdb43+aUepWFW6bMFpSteHLnuSzbw4kncskvf92ziUc5mxZRazpzc3FzeeecdJl+bFy83NxdHR0duu+02GjduTHp6OiEhIeh0OvLy8li8eDGnTp3irbfeIi0tDQcHB+69916++uorunXrxuLFiwkMDCQkJIQrV65w1113sXbtWs6dO0dMTAwXL6rf0TExMXz99dd0796dNm3acOnSJQYOHMjly5fZsmULFy9eJD8/nzNnznDmzBnmzp3LY489hoODA1euXGHo0KGsWbOGhQsXUr9+fWJiYvjiiy/IyMjAz8+Pfv36sW3btmKf34pj6WvJqkF3ebVu3RoXFxdrV6NEer2e/fv3ExwcjK1t8d28y0pRTMczxhcai/rQQ01p2rSp8fN992/j12vJh8Z90pfNA8/TJjzg2n4w8+dQAGxt8vnyK1fad2xp3HfE7VuY8UNPFEVHVrI9vfqF3lB9Px6zkY/mdS4SwNx+u8LSpQ1wcFAfiEe+dJVnHtrMkn/VucYnzRjIgMGJtO/WssgxaytLX0tCdbBQwqx+XeK5eCmRv3eofb0d7HJ4Z2wK495TW3E3/teM/3aovUM8XNJ46OlbcXB2KHrQG+DvncrL16asOXDYl9DQIJPt05dsNM4JvutQAKGhFWvpvv5aOnMGHn7YhoAAha++UozdLie8rc2N/cqYfEJDOxs/h4VRrOxhdnz8nfY5sFECR043AyDzZBKhob3KVNev3tP6ot8xtEGxvaD8fQ9yMqUJF9O9aNPKESdXJ9b9eMW4vU8fhzL1oOocvIVDia3J19tjuOJCaPegUvepzeS+VIsUGhfSoUMHcHW12KG//lrH1Knq88zZs+7s32/A3h6WLNGecdas0dGxoz/nzyssWKDj6lXtkfXeexUGDTL9v+rlBS+8oC5fvFif0FBfjh3THqA6d/YmNNTLZB9nZy3Z486d2tjSPn18CA0t+xSIU6fC2rUKcXE6YmLcOXgwjEcekSErVakm3Jt0R1qjZPqXWs61btMi3182V5uiXCr9RXKDxq2pHxhaajlzHBwcePHFF+l/LTuho6Mjvr6+xt+nm5sb7du3N9bt4MGDpKen8+STTxqPoSgK2dnZNGvWjKtXrxIeHm7yswQHB9Oggfrd7uWl/n8MDQ3l4sWLPPDAAyZlw8PDAbh06RIODup3ekZGBhcvXmT27NnoCgVIOTk52NjYYGdnh4eHh/FnADh37hy7d+8u0zMBFL2WMjMzLdLwW6OCbltb22r7H+l6lqirXg8DBsCePeoUF7175rN9Wx7ggL+/QvPmtiYB+f3PduOnJdtZEdWFtEwPhgy9xPboK3jWr8uYMVrikZefPE1IZKDJuTqH28AP6vKeHZnc/kj5656dkc07X0YaA4UC/frksHSpI87O2jE9fT35cXV36t63kbm/9iIr14WH/8+WHfuycfWw3Bf7zaAmXfc1wfHDacblVgH59BvkxqohegyKLdPGbeOpCb2ZNhdSUmDlH7aABwB39dyPs1tkMUctvwbN6tPSL4G4s82IPtYafa7eJKD/6bf6xuVTF5qSdtmAl3fF0nAUvpbeew82b4bNm3X07QuPPaZm8V69Rt3euLHC4BER2NiW7Zxd+gfh4ZJGWqYHbk5X+d+8q3S7Xd12+Khzma/hqN3qA4mdbR49BrUtdj//+hlwLdfd+VMXad6+MYdita+0Lr3ql+mcEeEGFlybanH3lktE3mG6z95NR/hl4VlGPNeMVmHNyvQz1AZyX6oFCv372trammaQrID167XgGODUKR0ff2xL69aQeK1x+Y47oHNn9XyTJsHixabT+r36qk2R6jRrpk4Flp4Ohw/rsLW15cQJbXurVkX3CQwEFxe1W7vBoD1QhYQULVsSV1d1GrGCnB/z59swYkTZ9xeWU63vTe1eU/+UQZGfoE/Z0uNXpIOFTqfDx8eHgICAYrc7OTkZf78Gg4GAgAC+LJzp8BoPDw90Oh06nc7k38PBwQEbGxtsbW2NQbOtrS329vbG9dezsbEpcpwZM2bQvLnplKweHh5s3brVeMwCjo6ORfYvi4JryVLXk9Wzl4vi7dmjfjldvgyPPZrF1n8OkpGpPpT3CNxepOuSja0Ni34PokNzNRta3NlmtGmTh5ubwTh/t78/TJrSrMi5wntp4zB37bmxruWpSZeMAXcT39O88n8bWPT5Zv75xwZzvdJ0NjqmLYww1vfQqZa8+NT5Gzq3EGUVdyTLuNyytQM9B4eybdURNq7Yy3Pv9sbOTs2Ie72h91j+HWXXDmr385w8J2I2aS3wR3efYNexdiZlY/be+O365ElITtZehun1sGKFtn321DMoBoUfftCGbQ4fritzwA1qVvH5Uw/Ru0MMP38dS8St7XB2ULuMHj5Rr0zHSD19wTj/d8eWR0p8AdewQa5xOSlB7YIef8rDuK5F+4ZF9jEnoqeW52JntOkXa05mDrcPqcMH8/vw2Iis63cVQpRDbi7s2AHDhpkG0KC2FE+cqH0eN05bbt4cHn9c+9yjB8ZElIXpdNBW7UnOiROQlaUlUQPMJru0tTWfpbyk6cKKM3CgWldQp2/NzS25vBA1XfPmzUlKSsLLy4umTdXet6dPn+aLL75Ap9PRqlUrky7aBoOB2NhYs8dq2rSpyTa9Xk+/fv2Ijo42adGuU6cO3t7epKSkGM/p5+fHlClTOHHiBK1btyYtLY2TJ7VEzYcPH66En778JOiuxgpdLyQmOfPok1q3qB5dzU+35VbXjd//dKWeRwoAKVfqkZWl/TNPm6bOL3m9VqHNcHdWu2ZGxzYuWqAMUs9qXTsH9TjOZ4v68H9jehRJ6FaYk6sTP/9ij6uT2o3t25+bs3jxDZ1eiDIpPF1Yq3ZqkNb51nb0HKxN2vrwA6ZPS072WQx8wPKZcbp10ZJzbN2gjdn+cX7RrP57Ss+fYlZ0tNrCc8897Y3jsDdvzCMlpVCZQ/7sWHOQBQu0dY8+Wv5zDXu2Gxv2hnLbI52xsbOlTWP154g726RMUwRG/RNnXO7ZueQx7A39tK6bZ06p94/4C+q/UT2fXNy9Sp+GBKBDj5Y42Kl123nANFD/dX60MTHctkOBZEncLUS5LVkCbdqoLcpdusC1YZwMGqQwcuRZQM1SXtDK3bs3dO9ueowJE6BpU3Bygg8/LP5cBUG3oqizsRQkTQQopvGO63ucNm6McVaX8uqmpgshO1udhkyIm1lkZCT+/v68/vrrHDlyhF27djFhwgScndXebffffz8HDhxgzpw5HD9+nE8++cQky3hhw4cP5/fff2f58uWcPHmSjz76CEVRCAoKwtnZmbS0NBISEsjPz2fkyJFMnz6ddevWkZCQwNtvv83u3bsJCAigRYsWdOvWjXHjxhEbG8vatWtZtGhRFf9mzJOguxor+AIqkHBeC4a79yu+5ahp20b89sM5vN0vYGebR2DAZQYPhrlz1TfM5tjY2tCptfpKODHVn+SEFPMFS5B6Thv/5eNdtqyfAIGdApgzV2tdf+YZqEE580QNc+y0lrm8ZbD51tCu3e1p5qv1SxwYvrNShj1066t1Id+6XX05pRgUfvi9aZGyNxp0L12QiMGgIyfHhk8+Ud8W//r1liLlXnjRhn371OWuXRUCA4sUKbe2AerTtd5gx7HrEhiZs2mDFtX27FNy0qaGjbSXeUmJuWRlQVKS+vMFtCz7uHsHZ0dCAtRg/8iZAC6f14YfzJ6n5abQ67XfjxCibBRF7Up+5Ihp8vO2bWHxYgNPPHGWpk1Nxz4XbuUu4O8Phw6pU4H1KiE9RLtCHYQOHdJaur28ig+kQ0JMP1ck83hB0A1wrZerEDctW1tb5syZg8Fg4P777+eFF16gd+/evP3224Daej1nzhz+/PNPhgwZQkpKCr179zZ7rM6dOzNp0iRmz57N4MGDOXz4MHPnzsXJyYmuXbvStGlT7rrrLg4fPszjjz/OsGHDmDhxIkOGDCEpKYlvvvkGDw+1IWXatGnUrVuXBx98kM8//5zhw4dX2e+kJDVqTHdtk3jsPFA0uHZxzCAksuSEY91uD+b8JQMGvQE7B88yna9TcBobrr2Zjd6YwO3NfMtV39TkbOOyt0/5RpUMH2HLug3wv/+p47EeeED9wnK68STqQpgVl6xOR1W3roKXX12zZXQ2Oh66K4GPvlX7Ct5zT+W8nwzu3hJXx3QyctzYul/N2Lt7QyxHz6jNNd3aHWDXsfbk5UHM7hzAsdzn2BGVAqgv7JYt05FwQmH5WrWfpZ1tHm6O6VzOrMvOo9rT6qO37wAqPo1fuzZ5sEZdPhyTQvvurUosv2mnds+JvK3ksv5NtKSaSUmKydhNc91ISxLRxZad1170Re915ZZb1bHcmw92MCm3a5faUieEKJsLFzD2qvH2hv79oUMHePZZdZ5tJyeF6dMNDB2qDu3o1AluvdX8scqSR7dw0L1nj9Z4UdI9oTKD7hdfvPFjCVHV1q1bV+L277//vsi6xo0bM2/evGL36dGjB3/88YfZbR9//LHJ52HDhjHMTOugp6cnv/76q8m6MWPGMGaM+anR6taty6xZs0zWPf/888XWsapUm5buI0eO0EWeZkwkHtYGI9V11TIWdml7tMQu2wVsbG2wcyj7e5XwCK11aNf2jBJKmpd6Xpu6w8en/EkHZs1Su6ABxMTAayOiyn0MIUqSna09hLVqVfKLoTc+6siQyG08dscmHnqhcu5Ndg52dG6jjuU+ldKIpPhz/PCtltdg5EMXCWqWAEDsEVuyrpavf7NBb2BXrPa0aTDoeGLkVU6lqJnQ+4XtZdRQ0z6QDnY5PPBE6xv5cYpoF6y9NTt0oOQBjumX0tkdpzavt2sSh3dDrxLLN2ymjd9OOmdf6tjNknS+pY1xeWe0es/88vPkIuV27SrfcYWo7eK0ESPcdx/89JPakl230PvOu+6Cjz5SE8cuXEiFptoq6F4O8Pffaks7lHxPCA42PWdFgu4OHTDmsNm27caPI4S4+VSboFsUdfqc1rVx3hStv/Vtt6SZK15h4T21aQyi95Z/Ps4LF7Qu5T71yt8i5+qqjv1yclAfzmf/HEnUSunPKSzn+HHtIaxlKbPTedbzYPmmrnz7R88yveS6Ud06XTYuv/5qLvNW9ATA3i6Pe0e1J7S1+pZAb7Bj/9bj5g5RrGMxCVzJ8jBZ9+/GOsbloXdl8uxrptk/B0fuLrYHQHm1DdV66hw+UnKX7+077dEb1IC3Z5crJZYFaNhcaxVPOu9C/O6Dxs8tGpmf27s4nbVZ0diyWc/l82ks+ludc9zN6Sp2dmq/2OhNpXeRF0JoCr8MK+me+9ZbsGqVaUv1jWjeHByvPX4c1G4JJQbd7u6m2ysSdNvbw7VZjkhIUGeEEEIIkKC7Wks8r84R6VsnlWHPduW3+dv5/M0NvPxBj0o5X4sOTfBwUQP6XYeblHv/1CxtHx//ss9vWViHDvDxq9p409V/lD4noahdFIOCYrix+U8Lt7qUFnRXla49tD6TP6xoQnq6elu+d5g93g29CAvRXmbt2X6hXMfeufGscdnVMd1km05n4O5HAmkZ2pRBETuN6x991HJTrbTo0Bh7W/Ul2qHjPibbFIPCqh92Me2tDaSevsCmLdqLup53dyz12O5e7rg5qy3/Z9KaE39IS7zWwq98wXFgoJZgcuUftjRppiMzRx3D/+iduwlqrF44B4/7k3kls1zHFqI2K3zPLW8PlBtha6v1mCustHMPGKD+3bCh+f3Lo6Rx3bm58PPPMGOG2v1dubGvMiFEDSRBdzWVn5tP0kU1yVLjeuqAqLsf78KYj/tUWqubzkZHp0D1tXTSRT/OJpbv4TI1W/tW82leTJrQMrjjfq3lbf8hGdQtTL3yyEYcHfKY+fZ/5d732NbtxuVWDRNLKFl1uvYv+jQ4fLia+BAgrIuncX1MTPme0HZs1+blef3xtSbburU9gF+Aeo/5Yq4vXdvs5+mhG7n9kU7lOkdJ7B3taeWvBsBHTjclP1etz7E9CdzWNZpB/xfOK5/0oXUbG/43/6pxv549y3Z8/yZqj5ykFE/iE7SXFwHtGhS3i1m2tnD77drnq1lab4DnXvEnvL3a5d+g2BKzKf763YUQxShrS7clFe5iXqC4zOUFPv4Yvv0W1q0Dh7LnYTTLXNB9+bJ6jubN1Zw1L78MHTuqmdJfeQUyyj+iTwhRw0jQXU2dPXEeg6K2ODVuUHpXS0sJ76u94o3eW4asJYWkFprhx8en+HKlCQhujIuj+g20P86vlNKiNtkXdZTpP/YmT+/AOzPao8/Tl75TIXFHtWmrWjatnGEa5VWviY+xlSU4GDZuVMc1XkvCSUgP7SXUnkPl60Gyc682LrrvUC9u67TJ+HnobdrY8VZhzdh6OJi5v/bC1t5yLd0A7YLVFuPcfEeOn7Dhgxc30D7Cj1U7w41lLmXU5eQZtam5SRP1T1k0vJZ8Pj0dYuLUjO8ujhk0aFa2ecEL++47mPtlPrd32YmjvZoU8sFbthDUrSWdOmkvO6K3Su8bIcqqcEt3aYGvpZjrol5aS7e7Ozz2GBaZteH6oPvUKfXePnYsXD9b0pkz6lSuX31V8fMKIao3CbqrqcQ4rRtp44bZJZS0rPCuWqBd3qRBBUG3vb35ucDLysbWhqCmCQAcT25MRpq8Ahaq6R9rya0upnuza93hcu0fl6BN+9WyffV5ofPHH7B/v9rd8PpW3jredWjRQJ3vet/xgDK/aMjLyWNPvJoBvKVfAq51XXlvijd1XS/RvP4pRr4cZtGfoTjtOmm/5/vvOs3bM/uQm692JW/sc4Z7e5v2vyxrKzdoQTfA2YtqoB3QIAmdTfkzMTk7w9PP2vHnts5cSNFzaHs8C/9UB3uHd9feIu7abdmXEkLczApauhs2LFv2cUu4vqXb0dH0XlHZ6tdXW7RBfY4aPBhOn1Y/63QwZIgaaBe8bAXYtKnIYYQQNxkJuqupxBNaV8vGjapu0E+nQj1Lyx90q/X09q5Y9lGA4NZqa5Ki2HBwe0LFDiZuCudOnGfxqgiTdau2lj74bs1P0Ux5bQMnDiRyLFHtTu3pernU7NhVyd4e2rdXuzmbE9ZGbR7JynXhyO4T5gtdZ/+WOHLy1OEZndurT3yhvQJJvuBGfFJjfBrdWN6F8ir8ALz3mNqErdMZeHPkBg7HebJ0Qzf++20vESEXaNAAXnqp7Mf29y+6rkXjirdEu3q40jaihXEoT4ceLYxj03cdLF/XdSFqq6tX4fy1DjVVMZ67wPUt3QEBYFPFT7sFrd3Z2bD32gQRLVqo85UvX652L//7b61H044dVVs/IUTVk6C7mko8qU2v07hpBQcYlUPz5tpUHjt3liNhlaJw4bya1MjH+WSF6xHcXksedWB3+ZJHiZvTlx8fMraQFli1puQp8ZbNi2bAQ51447M+tOzQkJPXpspq2fDGWkOtJTRY6xa/Z0vRqazM2RmVYlzu3FGbzs/e0b5Kf/brH4Ad7HL45cvtfPxdH1w91J4Hve4OYXuMN0lJppnES9PQYXuRdS2alm9atbJwdHGkfTO1ye5wYgDpl9JL2UMIYY3x3AXnsiv01VCVAX+Bwl3MQZ2TfOVKaNVKW2djo93vkpK01nAhxM1Jgu5qKjFReyhu3NythJKWpdNBlw5qq9r58zo2lXHKrsyrmWTlqn3HfOpUvKWpfZjWP33/PknvWdtlXc1izk/tAbCzzcO/oZqQa/t2NUGNObt3w/CXtSzYBTkSAFo2KWanaiosXOsWv2d3XgklNTv31zcud+pumSnAbkTr1lprjofrVVb/fJh7n+lmtmx5e8g0bGgosi6gReV8rYW3V19iKIoNMVHlm7pNiNqoqjOXF3BwMA3yq2oseWGFg24bG3U6VHMJ3iIKdd6S1m4hbm4SdFdTicla9tzGLau2G+zwoVr31dlflG08dWqSNi+uT92Kj0EP7tLYuLw/tgIDxMVNYdEXO0m9oo6rva/vTobdpzZj6PXw779Fy589q46jy8pSo7jIdruo76klDosIzy26UzXWqVcz4/LmPWb6VJux84iaEcjWViGsdwXnwKkAJydYulTtNr5tpyu9h4Za7NgNG7sWWdeideUMHA3X8r6xa0v55gEXojay5hSNhXvYWKOlOywMBg5Uc0XMnQuDBpkvJ0G3qE7eeustAgMDi/2zfXvR3mWi7CTorqYS09UkRzqdQsOAqk34dO+T4dTzUFt1fv2vM2ePl96dNfWsNgbdx6tsLXElqd/UF18PtcV8/8nWFT6eqLkMeoVpX2mB5itvejJwoLZ91c8HTcrv2nSOgQPVrLCgtjisiQ4n4XQdvv98MzPf/o9nJ3StiqpbTP1mvrRpqf4f2xnbiqtXSy6fkQEHDqjL7dvrcHGrnGkGy6p/f5g+Hdq0texXjn/zoi8kW7SrwNQJJejU3de4vGt3ycMahBCm3curOvDt0EFbrui82zfCxgb++QcuXYInnyy+nATdojoZP348UVFRREVFMW7cOBo0aGD8HBUVRVhY1SRgvVlJ0F1NJV6bQtjPT4e9Y9Vmy3V0ceSJYWogk6+3Z97U0jNEp57T5vT28S7a5fNGBHdSH6jPX3QzJmMRtc+qf/QcTlSf2Hq230t4/3b07pFlnNZp1XoPFIPCxbOXePbejUT0rsf+/eq+TZqoSWucnMDJ1YlHxvTg+fd64+Ra8+Z/7zdA7fGh15ee6XbPHjBc+29YnjHSNY1fc1+TzzY2epq2qZw0xcHdWuBor46tX78/wvj7FUKYZ63u5QDPPgu33gojR6ov/azF0bHk7X5+0EhNNcKuXer9XQhrcXd3x9fXF19fX9zd3bG1tTV+9vX1xaGik9jXchJ0V0M5OZB8rXG5ceOSy1aWp19rhY1OvfvPWxJIXk7Jrdep57Uu5d7elknSFBysLRcEUaL2+Xy61qr4ytvqfwiXOs70DFZfDJ1KacQ7z/1H60ADc3/thaKot7W2bRX+/ludvuVm0K+ftrxuXcll/16pDQvp0qWSKlQNOLo44u2uJVps0sQWB+fKeShwcHag/wD1CTrprD07d1bKaYS4aRS0dHt5aQlaq0q9erB6NXz3XdVnLi+vgtbuq1fV7OZCVEenT58mMDCQ2bNn07lzZyZPnszMmTMZPny4Sbl+/frx66+/AqAoCrNnzyYyMpLw8HCeeeYZkq6frL4Wqea3otqp8PVoraC7SRt/BvdQnyqTLvqx4tuS5w+7kKIF5T71LNP1UoJusX8/rF2rLgcEwF3DtO7EA/tpfawnf9WHC1fVKbDcnK4y9fUN7N2jL5I5uybr3VtbXr+++HKKQeGXRWrXEBsbA3fdeXMnImzorQXdAQGV+7MOHaotL19eqacSokbLztaycVf1eO6apnAXcxkye/P65Rc1mV6jRlX3p21bNaeKJe3evZtly5bx6KOPllp20aJFrFy5ks8++4wlS5bg7e3NqFGjyMur+DDUmkgGplnYlStUuNth4qE4QP2Waux9GmhU4XrdiOdG2/NblLo8bZYrQ5/QY2tvvqt7wRzdAD71SulPVUYmQffeHMAyxxU1x7Rp2vLLL5vOYz1wSENen2pa/qH+m5kyJwD/ln2qonpVyscHQoKusvegO3v2GLh47gpeDTyLlNu3+SjHktQkar077KV+g7Cbusuif7009ieoyy2a5QCVN3Rg8GC11cxgUIPujz4qf8Z1IWqDEydAufZYYNGgOzMJTv0MhlzQ56h/G3JMP9u5gWtTCBgBjt4WPHnlKNwbaccOeOwx69VFVJ4pUyA21jrnHTbMcscbMWIETZo0KVPZ+fPnM2nSJLpcu8gnT55MZGQkmzZtol/h7nu1hATdFjR9OowZY8uAWxry16obP07i0WSMQbdnHNYKum+5L4zA145z5EwAWw51YPxTG/j4uz5my6Ze0DpN+NS3TPbgoLb5FFyiB7YeA9qbLZeXk8e+zXE0aeWLb+PKSaIkqt65EyksXuQJ2OPhUfRBpH23VnRqdYjoY+1o2zie2dOu0PfeHtaoapXpFxLN3oN9UBQbNv5xhMGjuvDpp3DqFLz/vtqN8+cFZwE16L5vSCkZ124CDetp+SRaNL4EVF7iSV9f6NlT4b//dBw9Cod3nqRdRNNKO58QNVWFx3NnnYPTK6DZQ2CvzeZCxknYPaZsx2hyn2nQrSiQewkcq3ZGmNJ06qS+vFMUSaZ2M3vjDZgwgVIToVqSuzu8/rplj+nvX7YZVDIyMjh37hxjxozBptAYj+zsbBISEixbqRpCgm4L2rTmHNCA1f/6sXfTYTr2MTMpYxkkntK6XTRqar3WXRtbG2Z9fplBD+WjN9jxyf/6ENTjIsOfKPqFlXpRy47s41enyPYb4epuR0CDkxw/15SDCc0w6A3Y2Gr/cX//HX78+jj/rPfickZbfOqkEn/8CnW8LXN+YV1ffnyQ3Lw+ADz9wD7c3DqYbNfZ6Ni4qxkHth0krHdr7B2tm6G7KvS91YVpP6jL69Zmc/R8JmPHqy+5EhPh9xUKv/ytBoE2Oj33jLixe1BN0sgr0bjcst4xKjPoBhjaczv//admv1++6IQE3UKYUThzeZlauvW5cHEXnF0N51ZD6jZAUQPuZg9p5WzL+EykswPn65Iqxn8De8dB90XgN6Bsx6kC7u7qFGcHD8K+fZCVpU41Jm4uw4ZZtsXZWhwLZQfUmenqlZ+fD4D+Whe7GTNm0Lx5c5MyHh4elVjD6kvGdFtQ/4ijxuXvvy59mq3iJJ7WLuLGza07R3X/+zsybewW4+cnRnuxdWvRcqn5Wl9wn0aWa20ObnkOgIwcN04c0B6uP/4Y7r4bfvojgMsZnmodrvgQ9adkIbkZpJ6+wBeL1Kkp7GzzeOE1X7PlXOq4EDEgqFYE3AC97gg0Jjhc8k87xk3Qkob98Qe89kIKx5LUL7feIfuo38z87+1m8n8v9aCh11lCA2K57ZHw0neooCEPaz2Pfv37JsnSJ4SFldrSrc9Bd/w7As68js1f7eFnF1jTAw68C6lbgWt90xOXme7n1hy6/wg9l0HvP6DvarhlAwzYCoOi4fb90H8TRP4MNoXGI10+ANEvQE4KrB8I0WMgO8WyP3QFFIzrzs+HmBirVkWIMrO3tycjQ0vcmpGRwcWL6nS/derUwdvbm5SUFJo2bUrTpk3x8/NjypQpnDhxwlpVtioJui3ogaeCcbBTp5T54c+gUjN+FycxSRuT2Lil9ccjPT+5J08/of5cubnw6KNFx62nXlZfDjg6gmsdy42pDG6bZVz+4Wv1P+m+fTBxolbG3jbXuLx7Z7rFzi2s573XDpCWqb4JHXH7Nhq1qtq56qsrD18PwlurU/idT/NFbzDtrPT5l/WMy7WhazlA647NOXWuHruPBeJSxzJDW0rStG0jOrZU/w12x7Xl5OHTlX5OIWqawkG32Zbutb2x2fkkddPXo7saC8p1iSc82kHQeGg/wXS9Q11o9iA0vgf87wC/W6F+b/DpCl4dwbM91IuExkNN93NqAPVv0T4fmQ4rmqrBd+aZivyoFiHzdYuaKDg4mNjYWP7++29OnDjBxIkTTbqSjxw5kunTp7Nu3ToSEhJ4++232b17NwEBAVastfVI0G1BXn51GdxjN6A+EK9eEnNDx0k8pwYbdrZ5NGhar5TSlU9no2Pml47GZB9xcUXnCU5NVf/29rZsYqE77tFazSd92Ytfv97JY49BQeLDV16BmC3aF2Z0jPTJqumO7Ungy6XdAXBxzGDytFZWrlH10rdbqsnnyPZ7efAB07dgtaVreQFbe1t0NlWX0WzoIK0n02/fx5dQUojaR1HgsPpeCldXdfquIpo+oJW3cYS6odDsEejyLQxJhDsOQsj7UDfEMpVy8oHev0PYVLC51kNIn6UG378HwI5nIN16rW+SwVzURN26dWPkyJFMnDiRBx98kFatWhESov2fffzxxxk2bBgTJ05kyJAhJCUl8c0339Ta7uUoNUBGRoaya9cuJSMjw9pVKdXyb7Yq6leOotzXd8sNHcPbPVUBRWnim2jh2lXM4sWK8WcbNTzNuN5gUBRHR3V9hw6WP++7z603nrfwn6AgRcnOVhR9vl5xd06rlr+zisjPz1d27dql5OfnW7sqVeqeXtr/oUnPrLd2daqdVT/sMv5+vNwuKIlHk5TU5CylvsdZ4/q+ITtN9qmt11JlObjtmPF3PShih7WrU6XkWqpF0tO1L9z09DLvdvCgtlvfvsUUyr2i6KMeVg5v+kbJz82xTH3LKuO0oux6WVF+claUxWh/frBVlB2j1YeaKpabqyhOTurvrEWLKj/9TUHuTcJSrr+WLBWHSku3hQ16MBTfOuo4oRWbOnIp+XK59s+8kmmcb7hxvYuWrl6FDBkC7q5qN/Nflqp1Bci4kkOOuhqfutkWP++Emb158JYtJutsbfT871s9jo5qwrewlscBOJXSiNTTF8wdRtQAUSv38etGNUlVA89kXvuw8sfo1jT97g3h9i478at7jiXfJNColR/e9Zz46rOTxjKPj8ixYg1vfm07t8DLTb0/74+zzuwSQlRXv/+uLQ8eDORnwbl1poXs3VG6LiTDOcR07HVVcPGHTtPg7gRoNxbsruXOUfRg52KVeQDt7aFjR3U5Ph4uyGOMEDcdCbotzN7RnqH9dgKQm+/Ikq/2lWv/f37SyjdvdMWidasoFxe4v5862OhqVh2Wf7MHgNTTWjISH9vdFj+vzkbHt8vD6Nz6oHHdGyM3ER6hfVF3bJ9mXN4TVTsTNNR0ikHhzbe0z++9fhS3um7Wq1A1Zedgx5/bOnMmtT797+9oXH/3413YuGIvK77ZzsMvdbdiDW9+Ohsd7ZqpiR3PXPTj8vm0UvYQovZYuVJbvsvzPjVJ2vpbIf5b61XKHKd6EPohDDkJwe+CbyR0eM+0jCG/yqpTuIv5zp1VdlohRBWRoLsSDLhbW174U90y76co8NFn2jiHhx+x3nRhxRnxhDYd14LFasK01LPaywEfrxtLHlcaZ3dnfv/Hl4f6b2b0ff8xaWY3k+0dw7UAfPeO2pFA6mbzzw+72HJInRasXZM4HntdAseSmBvD3HNwCINHdanS8c21VVArLdA+vOuUFWsiRPVx/jxs3apmHm/nf5AWDkvVDYoBol+C7PNWrF0xHOpC8ETov7HolGRR98H6QRD3NVw5qj6oVRJJpibEzU2C7krQLLg+7RqrqTu3x7YjIy2jlD1Ua9fCrqNq8qPQFscY9HD161obeWcHAhqo3VjX7g7j9LGzpCZnGrf7eBuK27XCGjSvxw9rejDr5944uph+MXbs1sC4HL3XtdLqICqHosCEKYHGz5PHpmBrX8VdDoUoh6B22sP3wZjL1quIEKg9hf5bvoefZ2+54ZlTLOHPbzegKOpLv8Edr/Uzd20KjYbALevU1uXq6vpu5RmJcOZ3OLsKdjwFfwTCb43gyMxKCb4l6Bbi5iZBdyXpFpYEgEGxJWbHpTLt8+GH2vK4D1tWy9YqnY2OR4eq3bcVxYZFXx4h9bw2ftTb2zqXVGCnZjg7qd3Adp/sbJU6iBu3YgVE71N7UYS1v8zQJ7tYuUZClKxdqKdx+eCJxtariKjVcnNhwRexhLY8Sp97wnjg+e5MH7+58k6ozzWf5XvHM/CzGyuXablo7rotA4ZdUsdO91oO3jXsuznjJLg0NV2XlQTRL8LWEaC3bA6bgADw8lKXt283H9dnZ6tzeQshah4JuitJp1u0lPm7DpWeaGfLFtiwQV1u3Rruubf6BdwFhj+rza/37c9NSUnW3qr71LMzt0uls3OwIzRMPXd8vI7Ll61SDXEDDAbTedcnf+SJja3cmkT1FhSp3eMPnWpmvYqIWunSJfj4Y2jWDEa+1IZ9J7SeQt8va2j5Ex6eBmt6wlIP+PeWotsVPdmZ+azaPxAA37rpdHlyMjh4Wr4uVaVeJAyOgwFbIeQjaDBA25bwPaztDZlJFjudTqe1dqemQkKC6fY1a9Tp19q0gbNnLXZaIUQVkSfbStKxi5YAateu0st/9KHeuPzmm2BbjXvWBgQ3oV+YmjDtWFJzvl9a37jNp56TtaplzPwJEBNjtWqIclryYy7796vLXbrAHXdYtz5ClEX9+lD3WsqOgwdLLiuEJU2ZAo0bw9ixpsGXg53a62x/QmviYk4Ws3c5pCdoy/smQEqU2rqbcQKy1Lnqt2+HgQPhmc+e4ePVn5OZow7vunOIG7Z2N8Ejps4GfLpC0FvQbxVE/gy2Luq2Czvg3z4WHadeXBfzM2fg4Yfh6lU1u/lrr1nslEKIKnIT3BGrp+BgdQoIgOjokssmJ6Twx59qlN3IX88jj1Ry5Szg5Re0/k174tsal30auFijOoBp0L3b8knURSXY9s8BnnxC6ykxebJVZmsRotx0OggKUpfPnKHU3jVb/9rPb/O3oxgqLxGTuPmdT8rizTcVMq6litHpYOhQ2PxfBu+9uNVYbvmiCs7ioSiw/Ymi690CoNn/gT4LgLfegtWr4atfOvHuj88Zi911V8VOX201uQ8GbFbHqQNcPQanfy95n3LoUmhkVUHQnZ+vBtypqdq2H36A9estdlohqlbGKTj4MeTWrpk/JOiuJI6O0EFNxExsrPp2sjhR/8QZlx+6ZRMODpVcOQu449FwWjUs+qXu41fHTOmq0TFEG1u+e91+q9VDlE3MxiPcNqwRGdlqy8jQOy5x661WrpQQ5VAQdAMc3l/83OjbVx2g511tGfpkF2aM31gFNRM3qwNbY42JyvpGnOToUfj1V+jey5WhjzQzllv+l3fFTnT6N0jdpn3uMBnuPAqD46H7InBrhqKY71Xm5MTNfS+vG6pmOndpAp2/hJZmXk7coM6Fhr0XBN3vvQcbr902nJ217aNHq2P6hagR8rPgwAewti+saAp7x0LiUmvXqkpZZwBuLRHe7jTR0Y1QFNizbi+97g4xW27TRu2u2auf9VqKy8PG1oaXnzjF6MnNTdb7NPS0ToWAdu10ONjlkJvvSPTemvF7rK3iYk4y4C4vLmd4AtAvbDc//NRWWrlFjdKu4UFAjbwPbtpBt549zZZ7/50M9Ab16/b9WUE8/vpV3L3cq6qaoho6cACmTVNbMG8xM0S6OIf3aVN0PnjXSVq21BJ9tQprRlCTYxw81Yqth4M5G38OvxYNzB2mZIY8iHnTdF3bV8DVdGaQs2e1Hh4dOqhdow8dgmeeATc3bm6uTeDOQ2Bn2dlSfH2heXM4cULtJTl8OCxerG6ztYVVq+D119Vu/YcPw/jxcNttFq1CjaXXQ3y8OxcvVu8hmjVe4nI49y/o7MC5PjjVBzs3sHEAnS3knIeM0+DSEFo+qe1ncICNW0CvA/oC4Jm2jbBnHq81z34SdFeiToHHATWJWvTWS/S623y5TTvVKTR0OgM9BrWuotpV3IhXInh7poFLl9QOE072Wbi4Wy/YdXB2ILj5IaKPtePImeZMH/sfz7/bAzsHucyrmw/ePkXKFTVA6d5uHyv+bY2Tm3MpewlRvQS11Vq3Dx4wP13i3k1H+GOb1mf0QroPM77I5O13Krt2orq6dAkGDFCD1iVL1IRZPj5l2/fQIe3ptF2IZ5Ht9ww6w8F5rQD4bdFRnp10A0F33Dy123QpCucy6N8fPvus/Keq0cwF3Nkp4ORbocNGRKhBd1YWLFqkrZ88GXr2hC+/VFvEDQaYOlX9IwBsgZrzDF1zDb32p7xsgT+LrB1zDD7/vKJ1qhmke3klCu+hzUe5a7e92TJXLlwhJl69SbRvGkfd+p5VUTWLcPVw5plntEvIp56D1Qfk9uqsJjRRFBvGfNybjoHH2bhir1XrJIrac0j9v2Fnm8ef65viVvdmbxYRN6OgcG1mikPHzLd4ffzuhSLrpk534VLZZpIUN6GXX8w3JkDLyICZM8u+7+E4rYdE205FZ0YZ+pAWZC9f6crmNWfp1WEvnVod5lTsmVKPr9fDwn968d/J4aWWPXRIWy481KLWOvUL/N4cEn+r0GG6XDdjppeXOqXsW2+pnzt2hOeeK7qfEDXRSQvkfKwppAmwEgV1CcDRPpucPCd2HTI/hcfWVUcxKOEARHY6R017Szd6tJpJNT8fGjW2fn+eybPCuZq+kW9WRqIoNuxPaE3vIfDIwCg+/bIVfgH1Sz2GqFwGvYEjp5sA0NLvFJ71Wli5RkLcmPpNfanreolLGXU5eNy/yPZjexL4eZ36BO1bJ4X+t9flx5/sSEtT3+y/915V11hY28rvdrBwUYTJui8+v8prLym4e5WeE+VQgnqd1fNIwbth0RbV0F6BNG1wnpPn6rF2d0fWDNABfgCMfzmK7/8pep0W9tln8OabwdjaLuDo6uEEMKDYsoVbutu1K7XqN7fzmyDqfnV563Bw3wqe7W/oUMOHw48/quO1n3oKRowo0rOfzz5Tp5c9d66C9b6JGAwGkpOTqV+/PjY20qZYorx0OLcarhwBzPfSMmp4J9QtNDzWkA9KPmAD+WmQewUMueo6Ra92NXf0AntPNft/CTw94dFHK/iz1CASdFciB2cHOjQ/yM6jQRw905wrF65Qx9v0S3XT+nTjcs9eNe+fw98f5s2D774znWvZWtzquvH1il48ufogo5/XseuY+iSwaFUkK9pfYdbkKB59LdLKtazdTsUmkZ2nttAENksFJOgWNZPORkdQ81NEHajLmYt+XD6fhmc9D+P2T985hUFpBsCYxw7y0Mt9WLoM8vJg+nR46aWydysWNd+l5Ms8/WoT4+eWDU8Rl9SEy+nuzP1wA69P7VPi/hfPXiL5stpLqF2z00DRoFtno2Pog/WYPh1jwrUCP67pyuQDiTRv39js8fPz4Ysv1GW9Xsd/h7oTUEJ9JOguxDcSmj4EJ3+E/HTYdA8M3AkOHqXvex0fH9PpwsxxcIAXXrjBut6k9HqFmJgkQkPryZju0lxJgr+Hgz5TW+foC+4twbU5uDRSx2o71QMfVzBJQWKHFj76Yu4+JMyTV0GVLDxY61q4+7/jRbZv2u5pXO55W/Mi22uCxx5TM2v272/tmmgiBgSx7WAgcydvxMvtIgBXs+rw9LhOZGdkW7l2tduRvdqr+TYts6xYEyEqLqiVNuXJ4V2njMvJCSks+LMrAHWc03hufBjNmsHjj6vb09Phq49jqrCmwtrGPbePs5fU7t+3Rexk5W/56HRqK9Nn37Qr9bvpcHSicblty+KnRHngAW3ZwwMGdI8HQG+wY8o7xU8ltmKFOv1dgZKmO1UUrXt548ZQx3oTl1QPOh10mQ91r81devUYbB+l/qKEqG7qtIbwmeDoA21egYE74J5kGLAFeiyGsE/U5InNH1EDcWEREnRXsvBw7U3zrq2XTbblZOawPbYNAM3qJdKolV9VVu2mZ2tvy9MTenHksEJkh8MAZOc5E3tEXoFaU+yBDONym7bybyFqtnZttYfqgzGXjctrlh8lT6/O//jkvXvw8FVbvN4cowXpC370kHm7a4kLSRf530p1Pig3p6vMW9SINp0DuLf3dgCSL9fju6klN28e2qtdO4Wvu+t17QoLF8K778LRo/DTMi/cnNQg/dvfIzh7PNnsfrOnnDL5vGtX8XUpnLlcxnNfY+cCPZeq3WoBEn+F2GlWrZIQAGSnqt3CCwt4TJ0CsONn4N3Z6jmZagMJuitZp0LJ1KL3mE7AHb3+CDl5TgD07Gj6ZScsx6eRN4MfaWv8vP+g+aR2omrEJmj9aQPbe1qvIkJYQFCo1u+ucAbz/w5oE+7efo+W3KpZaw/6hOwB4FhSc7atKtRHV9y0/jd9H9l56gwNo4bsNr5kHzvR01hm5jclj7c+fEhvXG7boeQp54YPV4d81asHdRvU5dn71WbrnDwnpr17uOixd8SzfnsTk3WFE6VdT7qWF8OtOXT/Xvsc8wacj7JefYS4FAP/dII9b5iu1+nAvrZ3UalaEnRXsnYRATjZq11ot+5rYtKqsWlvK+Nyz76WnetRmAoO1pb37y+9fOaVTLb9c4C8nLzKq1QtdeSc1iwSGNG2hJJCVH/BXbTxsVG7tLFt/21SX7La20PXgW1M9hnxsNbbY+H8i5VcQ2FtBr2BOd9rw8eee027Zjr2bUvHlmoQHHu6OVlXix9yc+iY9oDcrlPJAfr1xkxqi6O92n19zs+duJR82WT7l5+dNi67u6pT4elLyK9UOOiWlu7r+N8J7caqy4oetvwf5F62apVELXVqKazuAZmn4Mg0OLGo9H1EpZGgu5LZO9rTvb36hXoypRGHdmjjujdt0eYl7jk4tKqrVqu0L5REtLSgOysLukdcpdtt7Xnp/7ZWbsVqodhY9e969cDLp+YlDxSisHpNfAkNUC/qXcfakZRwhaQkOHZtmuOICHBxMd3n3idCcHFUA++fVnUgOyMbRYHVq2HLlqqsvSirzX/sY9G0zWxfdaBIwFqaVT9GE3+uKQD9O0YT2Mk0PVm7FmruF0WxIW5fYpH9Cxw6FwaAR508GjSrV2w5c/wC6jNqsNp9PT3bnZ/n7TNuu3rxKgtWqsd2ccxg3NhSshkj04WVqsNkqNdLXc48BTtlji9RhRQD7JsEUfdpydK8u0CDW6xbr1pOgu4qMHiwNk5i5Xr1yzY3F6Ku9Tjy9YXAQGvUrPbw9wdPT/VBYv+ejBLLTpgAe4+oU4vN/60rF5KkJcpSrlzBOD+tXPPiZjF4sPZV+sfqOvz3n7atd++i5d293Lmnj9rF/HKGJ799F8NTT8HAgdCzpwTe1U3Uyn1E3tWB4a/0oOug9ng18KRr2wNcvVh8MrPCvvxS6+H23DP5RbYHttLWHdlXdF53gKtXITFRfZZoF2SPzqb84y+Hj6prXN6+Xdv/569iuJqltqL/36BoBtzmXGTf6xVu6W4rHZaKsrGDbovU8d1O9aDZ/1m7RqK20OdC1ANwYLK2rtlw6L8BnCV3lDVJ0F0F7no0zLj8+0r1i+733yHtWk6U/v0lf0Fl0+kguLHaxH0m2bXYlootW9T5cwvk6R1Y8lUZ+qOLMjlyRFtu06b4ckLUJHf9X2vj8u+/w38rtQu9dy/zCa9GjNKav0e+Esr8+eqywQCzZlVOPcWN+ef3oi9et8e254fZe0rd98SBRP7cFg5AY58z3DWiU5Eyge0cjctHDueYPU5BDyG48THUoT1bYmerDpnaeVB7+F63XnsUfOypugQHg6Njkd2NFEULuiVzeQlcG0Ov3+C2feB/h7VrI2oDQx5svh8Sl6qfdTYQNhW6LQBbJ+vWTUjQXRUCArTuV9u2wfnzMP9zLZHJqFFWqlgtExyoZX7dv+1kke1ZWer0Z9fP8LFgiXdlV63WiI3aZlxu06j4qWuEqEk6doSGDdXltWth9To1oLazzaN7l0yz+/QdGkIj7yQAY0LNAsuWKVw4V7ZWVFH5Dqd0My7f01NLirXyr9IfYr/61g1FUR+1nn7oGHYORYfUBAZr3zFHj5kfcnO4UO6zG21ZdnZ3Jrit2tPr0KkWpKer6zfHqF3fnR0yCb+lDfb2EBpa/HHOntUaDaRreSnq9wbn+qbrUjbDlSPmywtxowx5sPkhOL1C/WzrDL1WQttXpWWvmpCgu4rcdZf6t6LAl9Mvs3qb2re2ef3T9OtnxYrVIibJ1HZfLrJ90ugtHD2qLkdEQIfm6ocdR9oTu7PoHOui/GIPavPQBjZLtWJNhLAcGxu48051OScHTiSribLCW8Xi5mk+SaatvS3D7z5q/OzufIVbe6UAkJurY9EXuyu30qLMDh9Vm30dHWHJvz1o6KWOkfk3OpiMtOKHK2Vnw/yFapdue3uFJ14PNVuuZQctsdqRlDCzZQ5t0XpctWt14y9kOnf3BMBg0LF7N5yJO8vJlEYARLQ5ir2jOrtHRETxx5DM5RVgyIOtI+HP9nB8gbVrI24mO5+FxGXqsq0T9F4J/rdbt07ChFWD7pycHMaNG0d4eDiRkZF8++231qxOpRp8l9Z8+sGnrsY334/fH4eNvPqoEsEdPY3L+/ebvvVLv5TOrMWhADg65PK/7xRG3n/WuH3BHJnSzRJij2ktQ21CypcISIjqbPAdRbsF9+5qfnxugZcmBBHS/AjtmsTx319JTP9U640z/4eGMod3NZCXB3Fx6nLr1mBnr+Ou3mqWvOw8Z9YuPVDsvj//DBeuXQLDhumo39jTbDmXOs40uTZb15F41yK9rQAO7dd6TLRtmVa0QBkVDqZ37oQtq7UeRz06XzYud+5MsSRzeQUcXwDpcaDkw7bH4PhCa9dI3CwCx4BbC7BxhF4rJGlaNWTVcO/TTz/lwIEDLFiwgEmTJjFr1iz++ecfa1ap0kR0NuBbR23Zy9erb5JtdHpGvijZpKpK+y5Njcv7j3iabPtz8T6yctUuoSNu30bbdjoefrYdtjZqgptFv7dGn6dHmJeTmcPEpzcw5bUNGEqYZ+ZIgtqN0sEuh2btGlVV9YSodP36GnB2MO1K3vuWkqeCrN/Ml5jjgRw82ZKwPm1o16Ul3dupWaUPnGzF9tUyh7e1HT+uBt6g5aG4a4iWaGzlCvNjsAG+/FJbHj265PMUJJa8fBlSUopuP3xC7aLs4phBk8CGpVW7WIWD6R07YHOUNi1mj16uZssVlp0Nf/2lfZagu5yaPggtnrz2QYFtI+HYXLi4G1K3QdbZkvYWonieQTBoJ/RbA34DrF0bYYbVgu7MzEx++eUXxo8fT1BQELfeeitPPPEEixcvtlaVKpWtvS139jxssu6ObrvwbymZBKuKh68HjX3OAHDgRFOTVqRflmot3w/8nzsA9Zv6clsXtYvn6QsNWb98bxXWtmaZNHor783rwxuf9eHLdzaZLZOfq+dYktqc06rhKWztbauyikJUKmd3ZwZEaF2AbXR6etxW/peqT44o1Nr95SWL1E3cuMM7E4zLbVurw2P6DW1vnPLtj6ggDGbeM0ZviGP7dnW5Qwfo3r3k8xSezeHIdcN9o9cdJv6ceu9s0/gUNrY3/ujWrh04O6kvkHdGnWfzwQ7Gbd0GtjIut24Nddy1/U6dUuvVtSusWaOuc3eX7uXlZu8GEV9B6+evrVDUbsH/dILV3WC5P0S/Avnmc0EIUSKHulCvp7VrIYphtUlyY2Njyc/PJyxMG7/UqVMn5s6di8FgwMZMn2u9Xo9eX71bGwvqZ66edw6247s/tc+jRinV/ue52QS3SCIx1Z8rWR4kHD5Fkzb+pF9K56+tIQD41kmhxx3tjP8uwx/J549rU3V//VU2fe+tun+vkq6l6uTk4TNMX9zV+Pnd2Z15eIweDw/TcvEHT5Gb3xyANs1T0etN56oVlaemXEs13R0D01lxLc9Wp+bRuHp2Kvfv/J4nQnjpnTSuZHnw0+owPkxMwbuhVyXU9sbUtmvp8K4TQDMAAn13odd3w8HFgf69kvl9jSvJl7zZtk1PSPtslsyJpoG/E7feH8bsz84CLQF4dng8BkOzEs/TqqVCwSNZ7J5EundXW7Nzs3IZOcrOOCTtvjvPode3Lu4wpdLpoFOLA0QdDOFEUj1OnlNfPgcFKdTxcTf5dw0LU2Cjuty2HRQOA52dFb7+2oCLC9zopVDbriUTodPQGfTYxM25boOCEvcVhpbPgVtzq1Stpqp115M+B93hj1HajgVbB2vX5qZy/bVkqWvKakF3SkoKdevWxcFBu1B8fHzIycnh8uXLeHkVfcg4evRokXXV1f79RaeZatBGwck+i+w8Z/w8z+IXpCMmJqbqK1eLNW9yHq61PqxZuYdO2SlsXpFIVu4QAG7rvpsDh3yM5ZuE2ODjnkrqVR9+Wd+Vh5f8S6PAqn0ANnctVScfvXqFnLwmxs+pl1x45ZVzvPDCGZNy0WtOA+pDRCO/C3LtW0F1v5Zqupbhdni4XCYt05P+fc7e8DU+tE8qC/4eSEaOG3fccpzP5x7BxaP0uZOrUk2/lhQFMjNtcHUtfjgMwN792nZHjyvGf9OQrt78fq3F98N3z3DqaAb7E3oB0PrNeE6lqNOE1XFOo0NEMjExl0s8j1v+GWAwADEb9xHT4zwAiz5P4sBJNRNrh2aH6PuAa4XvnUGtkok6qL5oNhjUXl6tW6cSE2OauyQ42M0YdBfWrFkWH398nJYts7HEbbymX0s3zGYUXn4NccuMRtHZo1Py8b7yJ6e9nyMlLg2IsXYNa6Tacj3Vv7CARqkzSY9fQbz/p+Tb+ZS+kygXS19LVgu6s7KyTAJuwPg5NzfX7D6tW7fGxcXF7LbqQq/Xs3//foKDg7G1Ldp9dua7m5m/wItxb6UTXlKmElEpunTdyuxf1OUL5+oQGhrKR69q19v/jfQm9Lq5Ul5/ciNvft4XRbFh0fJb+OmnqkluVNq1VB3sXHuIZf/1BaCu6yUy8jzJzdXx00/1mTjRl6baMHrW/3TFuBzWyaPI71lUnppwLd0sNq87ztH9sdz28EBjJujymjTlDP9sPU/y5XrsOtaBt1+O4Y//WuBSx/rffzfDtZSXB9262XDkCHz9tcKDDxZ/Tz9xRh0WptMZGHB3L1zqqC8//Pzg/fcVFEXHn6ubmOxzNKmFcXnE4Bi69IgstU51HX3hNXX59FkfQkND2b0hlpk/3Qao0899+y2Edi46z3d59ey9la9+M113113ehIaavlBuPzkDZqvLd9yucDxZITJS4d13HXBza1PhetwM11LFmWarV9KP4+/aDH+dZNgtr1p1PWUnY/Pn/wBwzTlA+xa+UDfEunW6iVx/LWVmZlqk4ddqQbejo2OR4Lrgs5OT+bkvbW1ta8x/pOLq+sTYXjwx1goVEgCERGgZsw/E+5Gdnm3sWu5TJ5V+Q0OL/Ls9/04PPl+skJysY+lSG/bvL3kOU0urrte9YlB483Wty827L+8jMbc3U6ZATo6OiRNtWbRIKx97RLvdtO3gVS1/pptddb2WbiZBXVoR1KVV6QVL0DyoCWv+OEqfQXZcTPdi4/5QHhi0kz+3hqOzqR7zrdbka2nLFowttE8+qRDa4iRBXYsOd1EMCodPqQF1U98zuNfVpvZq2BC6dIFt27TybRrF08D7Chv2qoGUrU0+o19vXKbfU7O2jXB2yCQr14UjJ33RoePpp23QG9T75ttPbaZT3z439PNer2vfxkXW9expw/XVtHXUVvz8sw5cdYDlr7+afC1ZnIeZe8fBj9W/g96q2rrUULXiejowEfLVqQN1LZ7A1qejlSt0cyq4lix1PVntVVr9+vW5dOkS+fn5xnUpKSk4OTlRp04da1VL3OTahLfAzk5t1Vi7ow0vPpVszFp+T79D2DkUfQ/l4u7A2LHag8akSVVT1+pu/keb2Lg/FIBWDU/w9NvdGTcOvNUE5SxejMn85ntj1Q06nYGgLs2quLZC1CzBPVqzavk53J3VHiJ/7+jMprVm0lqLcjt2TFvOyrLh/gcMZF4pmrgq6fg5rmapzyNtm50rsv2hh7Tl4YOi2LmvPutjwtj172EmPLWBPxbGENipbLkrbGxtaOWfCED8ucYs/3o7e+LbAtCh+RHGflZKJrZyCAhugpfbRePnep6XaNGihB2E9Rz5AvaOVf/sm4jZ+eRE7XJxN8Rfm2LZ3gM6vG/d+ogys1rQ3bZtW+zs7EzGJkVHRxMcHGw2iZoQluDgZEtQkBpAnz8P3/6sPRDd/7Bbsfs9/TT4+6vLv/8OO7dmV2o9rU0xKHz/eRRvP7mBwzvii2zf8GsMz03qZvw8ZfJ5HJzs8fSE/2fvzsOiqt4Ajn+HRTZZBAFx3xEVwRX3Lbes3C3tV2q2Z4tt7mmZLWqZlWalWZYtZqZlmZb7vosrqCCKgCwuoLIzM78/jswwbIIODOD7eZ55PPfec++cwcsw75xz3vP6s+cN+7etjwIgKwtOXFTpeRvWuoKTa+FLKQkhoE2vpsybY1ySasseWdveHLLX3c52KrIhrzx+ME+90CPG5Zv8GiXnOf7CC7BkCfzzt5Zlf3eichX1N6R1Tz9mftWdfv9rU6x2+dZVgXCW1pZX3w007H9vRhKVHMyXKEljpaFNw2OG7U5Ng9GUjQEUIjdtjs8aJ96FI29K4H0vy0qG/c8Bt+6B5tPB3tOiTRJFZ7Ho1sHBgUGDBvH2229z7NgxNm7cyNKlSxk1apSlmiTuEXPmQN26pvu83eLpNrBFvvUB7O1h2jTj9hvPhposOVbRvPvSNka93pn3lnSnaVADHuywn3U/hxAToz6wDh3b2LDe/CsjtzHwySDDuV07GOduH7z1OfbsWUhLU8NzAoPkD4QQRdX7IePvy7ZtFmxIBRJ2INhQtrFW61Qv+bMrzeqEMemJrQRvV2t2hRy7YajXxC/v8EIbG3jySejX39osw/4bNzB+wXIxRs0db9E8gwceN3/+l3YtLhvKndrK0nRlVtMJ0Poz43box3BwHOjukQzdwigrGbb2h6sH1LZzoxxLz4nywKJdypMnT6ZZs2aMHj2ad955h5deeok+fWRBd1Gy+vSBc+fg2DF4b5aW0f13seqH2HyHluc0doyWBtUuALD9eCA/frq7NJpb6uZN3MqML7qb7Pt7bzseeNSPGjXU+q1Xk9SQ/L7tDvPRd51M6gZ2aYCVRn0gOHhC9czlzHAbILk+hCiyOnUwJCTcswfS0wuvL27v7DmVN8baKotFM42Tsk9FNmT2d91p3b0hKxbsJjTHetl+LVxzX8bsfP3y/g2aPLVSiczjf+zlVlS2v4F75as8Mq7D7U8QluP7ErRbjGE+/dlFsHO4rOV9L8kOuONvLSdg6wadfpGlwsoZiwbdDg4OzJ49myNHjrBjxw7GjBljyeaIe4hGA/7+MGWqNd/93YlODxbcy52tkr01n8+NN2y/MbMRifFJJdnMUrf4ve28Pqe7YXvU/Tup7RllUid7ZJufH6zY0DLPlxVOrk40ra3mcp+40IC05DSOHjUel6BbiOLp1k39m5YG+/dI1H039Do9YTFqrlA97yiemtKFH+btomPTY2g0ankwnd6a5yf5seOAt+G8Jq1qlnjbfJtXMdlu2BCGDy+h52pdn0sxGqJjHanZyKdknkSYT8OnoMMPoLk14iJqNWzqCWnxhZ8nKoZTc00D7p7/gbskTytvZPK0EMVw/2NtGdxF9YzEJXox/eVgyzbIjGLCYxk3o71he+a4rSxb15mwi978+sUexj9/lf791QfBoCBYuxZc3fLvgWndLA5QcxOP7Qrn6L44wzFZKUyI4unW1rjm/bZVeyzYkvIvPvIyN9OcAWhYSyWme+zVTuw62YK4C1cZ2k39fK8lV+HYebUsVlWXK1St4Z7/Bc3It6VpYD9xInkyiptT5SqVsXfKf7UYUQbV+x90Xwc26v7lyj74twNcv/uljEQZ5z8dWs0De28VcHsUL1+EKBsk6BaimOZ/XQtHO5VUZ+GvnTm8JcTCLTKPf1eFkalVQ5WeGrCdaZ+p7jVbO1uGP9+BT75w5++/1fzsvXspNNttm1bG+WYHd102DC93r3yVGtUr7lx4IUpC967GVT627Xa2YEvKv7PHjcnRGtY1HZ7rWasqX/3ki5eraZZ4v4CSD7gBXD1dqX9rClMNjzgef0zeK0UuPn2g9w5wuJXZVZsK1g6WbZMoeRoraPIqDLwgAXc5JkG3EMVUu0kNpr+gElno9Na8+kp6hUiqtnmrcZj4qCdd7moeYZtOHobyun8diE1UwzQDGl4oM+sMC1Fe1Gtem5oeMQDsPtmEzLQMC7fIchLjk1ixYDfxkXe2fFpYiDHRY6OGeY97VHfny7kRJvuaNCm996xlXycx9sEdrPnlCnb28l4p8lElAPruBc9O0O1vcMq77rqooKztLN0CcRck6BbiDrz6XkcaVVcfzLYfD+TPb/dbuEV3R6+HLcdVBnIH+0za9fK7q+sFdGqAtZXqnftnX2vD/sCmFWsOvBClQWOloVtr9X6Tku7Ewc2hFm6R5TwxNIQRL3Vk6AMxd3R+2FnjqIGGvo751hn8dDuTNbj9/e/oqe5I54da8M3aLrTp1bT0nlSUP441odcOcG9pul+vs0x7hHllXIO9T0DcFku3RJiRBN1C3IFKDpWY844xgcmEGV5kpmdasEV3JywMoqJUr0rnLrbYOd7dt6kOzg40q6PW99bpjZMSAwILzxAvhMhft67GKRtb/71qwZZY1tbDvgDsOulPyvXiZ28+e86Y7bdh86oF1luwAIYMgQcegCeeKH47hShxuRdX12XBzofhxHuylnd5lrAb1gXCue9g031wYpalWyTMRIJuIe7QwLHt6NJcpeU+E12Pr+aW37ndW3J8mdqzp3mu2aZZ3qyqAbJGtxB3pNv9xiGk23ZXtmBLLCcxPonEFJXhW6+34syRyGJfIyxSnW+l0VLXr0aB9dzdYdUq+OsvqHxv/rhFeaLXw/5n4eIqODYNjrwhvd7ljTYDjr0NG7tCyq33tkpu4N7Wgo0S5iRBtxB3SGOl4aOPjT23b89vQVI5HT29ebOx3KOHea7Zurfpcha21hk0bVvPPBcX4h7TKLAuPlViAdhxzI+PJ2zjzOELFm5V6TofcslkO+Ro8Xr89To9YdHVAajrHUUlB1njVlQQGg24NDFuh86D3Y+BVpYYLBeuHYUN7eDEO6C/NarJswvcHwzV+1q0acJ8JOgW4i6069OMkSPVMK4rV+CzzyzcoDug1+nZ8m8iAM6Vs2jduvD6RdWmvZPJtl/tCPmQK8Qd0lhp6N5aTdlISXfijbnd8G1dh0GDQHePdGhFnEk02Q45WbyEcgnxOq6nugLQsH7WbWoLUc40fRPafa0yXQNc+Bm29IOMRIs2SxQi6ZQaobC+DSSqkZNorMH/bbhvMzjVtmjzhHlJ0C3EXXrvPY1hatXPP1u2LXfi1L5w4q+5AdC1+RFszDTtukULsLExzisLbHJn2YaFEMqUd7zwqxVusu+PP9QSfveCiLA0k+3QKx2LdX7YOWN+iYaBhax5KER51fBp6LLauIxY/Fb4tyNcP2vRZol8XDsGfzeDsK9Bf+tLQDd/6Lsf/GeAleTAqWgk6BbiLtWrB506qXJICJw8adn2FNfmv6MN5Z5dk812XXt7aN7IOPwzwF96loS4G807NuLk+fqE7A/nhRFHDPtXrrRgo0pRxCVvk+2Q08UbORMWZiw3amSOFglRBtUcAPdtAbtbiQKvh6ihyzEbLNsuYcrNH6rcmoZn4wzNp0Pfg+DeqvDzRLklQbcQZjB8iLEHZuXC7XmO37x2k16tDtMj8AhJCWVr4veW7cZM5T36+5j12m2bGwP6wFYytFyIu6Wx0tCkbQPeW9QSW1u1b+XKe2OIecRV06UMz5yBrGJ8l3c2R2dfw3zW6BaiwqgaBH32gMut35nMRNjWXwJvS8hKhdD5sOtR0/0ajRpG3mo+DI6CFu+AtXxOqsgk6BbCDIY+dA2NRn3q/fWvvBlxl3+yk01HWrH1aEu++XBHaTevQDqtzrAETxWnawR0Nm/3z/jXHfGtcY7BXfbSbUiQWa8txL3MzQ369FHl6GjYu7PiJ0w6f950OyMj777ChJ1KNJQl6BYVnnND6LsXagxQ2+5twbu7RZt0T9Hr4dwy+LM+HH5VzbGPz/X5r+ZD0OQVsHWxTBtFqZKgWwgzqNHQh07NjgMQcrEBJ/eEmRw/sM+Y8Gf7DmvKisjQGK4lqyV0OgecwcravG8JTYMaEhpVn9+3t8fatuy8biEqguGDrhvKK7+s2BO79XqIiMi7P+RAPjsLEHY8BlDLhdWrk2mupglRdtm6QNfVEPghdPkdrO1uf464e4knYVN32DsG0mKN++O3WapFogyQoFsIMxk+INFQXvl9lMmxg5ceMJR3hrZFX0bGgsZFJRrKdWqmFVxRCFHmDBygx9ZafaG3ckNjdNqy8b5SEhISICVFlTUaY4LGkINFWzZNr9NzNlqNQqrtGYOdg63Z2yhEmaSxgqYTwbG66f4zX8CO4ZCwS32rJe6OTgsx/8D2wfBPAMTnmGpYczD0PwbNp1mufcLiJOgWwkyGPtHYUF65rqahnJICJ08Ze3mv3KhK6MFzpdq2gsRFGxOneXnKH10hyhM3L1f6tA0GIPqqD3vXn+T0oXN8Mmkrx3edsWzjzCwi+JSh3K6ZMdAOPV20ETSHt4aSlHJrubCa8eZtnBDljV6n1vK++Bv81xl2PgxZ5kukes+J2wp/1Iat/SFqjXGt7coNoMcG6Pq7Spwm7mmSj14IM6nR0IfOzY+y80QApyIbcnJPGM06NOToUdBqTevu2BCDXzvLTyqMjzUOe/euJt/BCVHeDB+Swd+3RpY/MtqDqCvVgfrYfpTB3InbeHlWN8OShmVdXBzMnw/dukG/fqbHIk4nGsr9Op9n34m6AISEu932urER8Qx+xDhnsmuHG3ffWCHKs5vnIOumcfvib2pftz/BMW9emnJJlwmX/lXLpqXGQlo8ZN0AWzew8wB7b/B7AxyqmZ6THAkJO9Uj4xo41QXnBmDjAumXIT0Bag4Ej7bG8xyqQ2qM6XbjcdDkNbC2L6UXLMo6CbqFMKPhAxLZeUKVV34fRbMODTl0KG+9HbuseKZ0m5avuFjjtwFe1WSulxDlzcDR/thOziBTW+lWwK1kaisx/v1ubD0FS5dClSoWbGQ+Tu4Jw6umG561qhr2TZwIy5apwDsyEjw9jfUjwo1fEDZrYUdtzygiE2oSerEWep0ejVX+3yykJacxqH88Fy83ByCoyQnenN2+RF6TEOWGc0MYeAHO/wSHx0Pmdbh2WC0tFvQN+PSl3Hxbl9v10xD2BUSuUEFyYZpOMN0+MhFOf3L759DrTINu50bgVA9cm0KDp6DGg7LOtshDuraEMKOcQ8xXb1DLbx3cfDpPvR2H65RamwoTn1LXUPauXbXgikKIMsnNy5UHOx42bNf0iGHEfbsN22vWQO/ekFmG8oa99/JWmndsSHN/PZejrgBqSum6dep4Whr8+6/pOecvGD+u1Gvkil9dlZwoMdmNuAsJBT7XuBEH2BeqAu6aHjGsWeeFvZP0PAmBtR00eAJ671a9uaB6a7feD+tbw/lfICvFok28IzfOwNmFtw+47TzAztN0n76Ib5QJubKQazQwIAy6/wW1BknALfIlQbcQZlSjoQ/tfFVX97EIX84du8DBQ+rXzMY6k45NjwFwIaEWF09HF3id0hKfXNdQ9mrQwHINEULcsYXf1WPa01v5+bPdnIv25OeNHVn7hxZ3d3X80CH44APLtjHbykV7mPZ5dwDikzz5c7maq33yhJ6EHLHzhp9NhwhFXHQylOv5eePX0Dj/NORw/u+lCRcvs/SvLgA42iXz52/XqVbPyxwvQ4iKw60Z9N0Pnl2M+64dgd0jVZK1sirzOkT9CVF/mO6v/gC4NlPDums/Al1Ww4OhMOwqjMiEIQlqu/v6vL35TvXU+S3ehfu2wIBw6LkR2n2l1tPusFydF/RN3vZoJKQShZOvYoQws8H3X2b/rc7t5UtiCbnYBgD/umH06nKN3bfyAe3YbcejvhZq5C1xccayl3wWFaJc8qnvzbtfe5vse3CANf/+C0FBKqfEu+/qGXjfBQI61SUzPZPI0Bjq+9cucFh2UaSmws2bpsPAC3NocwijxweY7Pv7H1vGToLNv+wAuhr2/7urFjqtzrCMYUSMBwCV7W/g7uNOEz9ju0NP3KDH0LzPF3okGlAjeJ4YcJCW3bsV/cUJcS+x91RBZvQfcPIDuHoQNDbg2dG0Xvg3Kuu5e2uoEghOtSH9iprnjJXa79EGbJzye5a7d/0MRK6ESxvg8h7QZ6l21BxorKOxgs6/qWzt+a1/bV9VPfLj95p65FS5PnCfuV6BuIfJ1zJCmNmQUcYe43nLWqPTq+y6rZtdpstQ44fKHfstP5w7/lYSXwcHqFzZsm0RQphX69YwaaJalSArS8OYUWl8+OpW6la/TMPAOox/dPttrlCwhASoUwdq14Zff719/Uvn4hgw3I3UDEeT/f8daEpGagZbtlcy2R+X6MWxXWcB0GZquRCv5qvXq3YJjZUGvxauhrohIfmvvHA6xDgP3K9JkV6WEPcuK2uoNUT1evfcCC1m5g2eYzepud/hi+HgONj2kFqL+sibcOR1tTb1SlfYNjC/Z7gzWalw+jNY3xb+8oVj09Twbn2WOn4tGFLjTM9xbZJ/wC2EBUnQLYSZNW5Zi6ZNVTnpunEwSZs2etp30GB9a4WbHTvyObmUxcWpD6teXuU3Z4oQomBvTc2keR0VvAafa8Lk+d2JuaryTXyzpjXpKel3dN01azQkJKj516NHw/79hdd/49Vkw/N2bn6U4T32AHAj1YXta0+w9UjeqHjDmksAxJyLI1OrgvJ6Na4B4NfKmGE55Gz+3xievmxMdNQ4KCDfOkKIXDQaqHYfNJuc91j6FeA2Hxb0WnBpnHe/Nq34bUmLh43d4NArqvc9J+dG0GgcdP1TAmxRLkjQLUQJGDw47742nTypXBlatlTbJ0/ClSul266csjKyuHJFBd3ejhVrTV8hhGLnWInvlmZhbZWV51hyemV2/HXyjq6725irjbQ0GHj/FaLOXsq37oED8NOf9QHwcL3Bqr+rM3iQsXf6/Y/cSEx2AyCwfqhh/4Ytqjc7ItQ42btebfXBvWoNDzyc1RvosfO+6PPp7D6dI4elr79bkV+bEKIAPTfA8OvQexe0WQDNZ6h/O62AoCXQ8Bm1HnXdx0zPS4mGVV6wayRE/JC3Zzo/aQnwbye4esC4r0pLaPkRDDgHD52Btgug5kNg42De1ylECZCgW4gSMGSI6XYlm3Sat1cfOrvkyFWyZ/tNLOVy9FX0evUW4OWWaLF2CCFKVuuefiydvZfA+qGMG76N2a9tNRxb98f1O7rm7o2myctir3ow4P5Eblw1XQNbr4c33jBuvz3LGa/anvR52B8rKxUpbzlQ33D8qcfiqOcdCcDO4824ee0m588a21ivrjpHY6WhbUc3AOKvVubcubxtzA66HRygZs07eplCiNxsK6u53o3HQYu31b91HoYGT6qEY/2PQZVcI0vO/6TWyL7wC+wZBaurwfo2cHQaxO+AyN9g9yi4dtR4jl1V45xyhxpq2Pv9h8Hvdahcr9RerhDmIkG3ECWgZUuoU9M4lKpF3dPYOap1sNs0OG7Yf2rngTznlpb46ERD2bvqnQ0xFUKUD6Pe6MyR8CYs+LUbT08INPR8r9tWu9jXSoq7QfilWgC0qBtqCJKPhPvRo/1F4iONPdN//AHbb00db9QInn1WlT2qOdO+fd5hqvc9WIu+nc4Daq3xrX+cJOKav+F4vWa1DOVOna0N5V25kixnZmIIxBs1Aiv5tCOEBemgUhXTXVcPwcn3YGNX2Dkczv8AF1cbj2s00G6xGkLeZ4/puthClEPyZ0iIEqDRwKB26wzbrRuHGcq+fsZ53qfPWG4BgbgoY4+Ul6fWYu0QQpSuKt5udAy4AMDp6PqEhxfv/NOHEg3lft1iWbs6gypOaq71obNN6RiUwr4NJ/nvl/1MeMUYgM+ZA7a2xuv072963Wpucfi2rkff++0M+37+KYt9R9wM23X9jYkqO3Uynps76I44cZGsWyPqfesWvI63EKIUNJ0IQ+Kg1zZoOlllHM9P3EbTbetKagi5U6386wtRjkjQLUQJGfWiH1YaFcz2H2pM+tM40DjO8XSEa57zSkv8JWNPvLe3ZFET4l7S/2Fj8LpuXSEV83Es2JhpvFNXB5p1aMjOTVeo6REDQHhsHdr3a0afke04G6nWE+sSdI2BuRIa5w66e7YNQ2OloedgP2ysMwH46b9O/POPsU69HKNK27XDkJhy9y7TLw5PBxvnl/t6nyjeCxRCmJ+VLXh1hcD34f4jMDgG2n8L9cdA45egxwboucnSrRSixEjQLUQJadXDj13rQlj/40EeGtPOsN/Z3Znq7uoD4ZmLPpZqHnGxmYayVzXbQmoKISqanAFvcYPuQyeMXyJ27NMQgKZBDdmzR0Oz2mfz1Le1zuCT9y7lWSEhMBB83I0JlXp2V+9JLh4udPHPGyh36ADOzsZtJycI9FWB/slTGhLjkwzHTp9KMZR9/eT9TYgyx8FHBdztv4U2n4FPH7C2u+1pQpRXlhvbKsQ9oH2/5vnu960dS8xVHxKue3It9hpVqlXJt15Jyl6jG8C7umT+FOJe4u+vkotFRcGWLZCSAo6O+df98NWt7D9kz0cLq+NVy53gcD8AfGuco2pNYxK0mo182LE/kQnPbCf+ih2N66fS2NeKrv1q4tu6aZ7rajQwqMdpFq3yxtoqi16DGxqOLfjSmXem7MbGthK+HdvQpAk8+GDetnXyP8uhU9XR663Y8+8Z7n9Mzfs8fcbYp9C4Wem/vwohhBA5SdAthAU0rneDLcGqfPpIFO3vt0DQnWBMQuRVPf91boUQFZNGA/3v1/H1YivS02Hz7yd58LFmeeod3hLC5PndATg3MJS5H8aTqW0DQKeW0UB9k/pVvN1Y/EfXIrdj1uf+uDhvpV0He+r4tTfsbxrUkBWbGhZyptKpiy2frVDlXduSuf/WSkVnIozr9vq2rJHPmUIIIUTpkeHlQliAb2OdoXz6RFIhNUtO3GV7Q9mrpvQECXGv6R900FD+9cdr+dZZ97tx+PfRiCY886pxLnjHjnffBnefKnz4bXeGPNP+9pXz0bGPcZL3rgPGHBmnL1YHwNstHldPt7tqoxBCCHG3JOgWwgJ8mzoZymdOZxZSs+TEX1VtsNJo8fCRoFuIe819Q5pib5sKwA/rO/PRm1vz1Nmw1fS94XyMcbtTL8v3INds5ENtzygA9oX4kpmeSVJCEnGJXgD41oqxZPOEEEIIQIJuISzCN8DLUD4dZl9IzZITl9oIgKoemVjbWt+mthCioqlcpTIfTd5v2H7zo+58OXO7YTspIYk9p9SQc41GZ3Kuh/MVfFvXoyzodGv5s9QMR47uOMvpI1GGY43rXbdUs4QQQggDCbqFsIA6fjWxtc4A4PT5qretn5WRhV6nN9vz6/UQn6Ay+nr7WCboF0JY3rh3ujHrpa2G7Rfe7sxvi/YAsHlNCFqdSv3y7JDd+Psb34M6tElEY1U2lhrs1DHLUN61OYHTJ4xD5XNO5RFCCCEsRYJuISzAppI1DeuroPtsbEO02oLrrv3uAM6VM3mgw0GzBd7Xr0N6uip7eRVeVwhRsU2Z341JT2wFQK+3Yvy0uqQlp7Hhn3RDnYcG2PHddxocHNR70CNjy0YvN0Cn+6oZymvXOxNy0hiE+zYtICW7EEIIUYok6BbCQnybqYzh6ekaIiPzr6PN0vL6FE/SMh34Z39bju/OuwbunTBZLszbLJcUQpRTGisN7y/pxgPt1VDz6Ks+fDlrHxt2qczklWzS6TawKa1aQXCwjiVLQhkxwnwjb+6Wf4eGeDhfAWDTkVZ8/IMxw1vjgGoFnSaEEEKUGgm6hbAQX19j+cyZ/Osc+u8S5+KN2YKP7InPv2IO1+IS+eXz3VyOulJgnbgLCYayV5Wbt2+sEKJC01hpeG+OMfv39PktOR9fC4Au/idxclWJFxs0gMDAZDRlY2Q5ANa21nw5+ww21iopZUZmJQBsbKC+f21LNk0IIYQAJOgWwmJyBt2nT+dfZ/nPtUy2j5y4/XrajzwQzsiXO/Jgn8voC+iMij8Xbih72x647TWFEBVfQBdfhvdQ87lvpBnXue7bs+wnIxv2fAf++uE4Tk7GOdz164OtrQUbJYQQQtwiQbcQFtK4fqqhfPpA3qj7wMZT7D7VymTfkfOBhV4zKyOLrcH+gFo+Z/Pm/OvFxxrnanp52xSxxUKIiu7tDzzzZCrv+3BzC7WmePqObMXWrVZ4eqrt/v0t2x4hhBAimwTdQliIb4MUQ/n0yeQ8xz/9KG/vUnAwBfZeA4QfjyRTW8mwPW9e/vXiYo0X8fKxu31jhRD3hKZBDXn0UeNHAx8f8G97+xUWyoo2bdR0nU2bYPZsS7dGCCGEUCToFsJCqtb0wL3yVQBOR5om+7l4OoaVm4NUPZfL9LpPpTe/fh0iIgq+ZsiRBJPtdesgJCRvvfgE44RM7+q3H7IuhLh3zJgBlW59dzdsGGVq/nZRuLlBz57G1yCEEEJYmgTdQliQb61oAKKuVCc5ydjbPfuDdMP6uM+POE6HjtaGY0eOFHy9U8dT8+z7dF56nn1xCcZPo141XfIcF0Lcuxo1gq1b4ZNP4MMPLd0aIYQQovyToFsIC2pcL8lQPrrzHKCC6kU/qDVwHe1SeW6iHy2bXjbUC964p8DrnQo1Zg2yslLzMpct0+XJZB5/xcFQ9qrpcRevQAhREXXoAOPHg6Mscy2EEELcNYsH3Xq9nrFjx/L7779builClLpWgVpDeeyzTlyLS+KFF0B3K4/R2Kev4F3Hk5b+xh7sI8HWuS9jEHLOHQArjZZnB+8EIC3TgS9nHzepF3dNLQ3k7HAdB2cHhBBCCCGEECXDokG3Tqdj1qxZ7Nq1y5LNEMJinni9FU1rhwFwOro+LQNS2btXHWvSRM///qfW5a7jVxM3p0QAjpypld+l0Gl1hETWAaCBTyRvvl0fK40K6hcu9yM9xTjMPD6xCgDeblfN/pqEEEIIIYQQRhYLuuPi4hg9ejSbN2/GxUXmlIp7k7O7M2v/qoSHsxr+fSHOmFDts8902NqqLOMaKw2BDVUGtZirPsRHJuS5VmRoDKkZaixo03px1GtekyHd9gMQm+jNLwtVOSEynsRkNwC8qpT99XeFEEIIIYQozywWdJ88eRIfHx9WrVqFs7OzpZohhMXV96/N7z9EYWudYdg3YshVevY0rdeymXH+d/CuSPR6OH4cUm+NPD916JLheFNftfO1N42Zyect8kKv0/PO+8Z9bQOumfOlCCGEEEIIIXKxsdQT9+zZk565o4rb0Gq1aLXa21e0oOz2lfV2irKl04PN+er93TwzpT0+VeKZ8yFotSo4zr6XAlpawU+q/vatacxbpmfDBg3t2+vZsUPHyVvzuQF8m1ZCq9XSrm9TgpqcYF9oc45F+PLF7FN8ucQPACdHLW/MbCz36j1A3peEuci9dA/RarE2FLVg5v9zuZeEOcn9JMwl971krntKo9fr9Wa5Ui5paWnExcXle8zT0xPHHClRe/bsyYsvvsiQIUPyrZ+SkkJIfosNC1HBXI+/gZ1TJeyc7PIcizyVwJBR/fI9b/Hi06xd68Gff1YF4IcfQvDzSwFg958XeXnmoDznPPtsDE8/fSnPfiGEEMIqNZWWXboAcGTHDnQOknRTCHHv8vPzM4lfi6vEerqPHj3KqFGj8j22cOFCevXqVexrNm7c+K5ebGnQarUcP34cf39/rK0LzjItxO3kvpea+WVi92Qa6Zn2eeru2V6NuDhjboQBAxrj5KTKzZs256NFUUQm1DQcr15dz5w53jg5eZf46xCWJ+9LwlzkXrqHJCcbii1atMDwR8VM5F4S5iT3kzCX3PdSSkoKZ86cuevrlljQHRQUxOnTp816TWtr63Lzi1Se2irKtux7ydrRGv+6pzh4tikANTyvkpRcmZsplVj5m8bw21ynDri4GO89awdrXnkijNfnGIPuWbM0JnXEvUHel4S5yL10D8jx/2ttbW2ybd6nkXtJmI/cT8JcDJ+/zXQ/WXydbiFE0T0z+jIajY7A+qHs2ZHG8B77ALiR6sKNGxoAmjbNe96Tb7Q0LDkW0PA8BQxCEUIIIYQQQpiZBN1ClCNPT+3K5egkDp/1pZZvdUY/mTfzv1/1U3n2uXq68t+aGN56Ziv/bHAoqQ4LIYQQQgghRC4Wy14uhLgz7j5VDOUuA1pQ1+si5+NrGfY1bXAl3/Pa9GpKm175dIMLIYQQQgghSkyZ6OnevHlzgZnLhRAFs7K2YtTgMJN9fi3cLNMYIYQQQgghRB5lIugWQty5x5+rb7Lt16ZWATWFEEIIIYQQpU2CbiHKuYaBdejT5iAAAfVOU8XbzbINEkIIIYQQQhjInG4hKoAfV9fjjx920HdYQ0s3RQghhBBCCJGDBN1CVABVa3rw5OQulm6GEEIIIYQQIhcZXi6EEEIIIYQQQpQQCbqFEEIIIYQQQogSIkG3EEIIIYQQQghRQsrFnG6dTgdAamqqhVtye1qtFoCUlBSsra0t3BpRnsm9JMxF7iVhLnIv3UPS0sDX11jWaMx6ebmXhDnJ/STMJfe9lB1/Zsejd0qj1+v1d926EnblyhXOnz9v6WYIIYQQQgghhLjH1K1bFw8Pjzs+v1wE3VlZWSQlJWFnZ4eVlYyIF0IIIYQQQghRsnQ6Henp6bi6umJjc+eDxMtF0C2EEEIIIYQQQpRH0m0shBBCCCGEEEKUEAm6hRBCCCGEEEKIEiJBtxBCCCGEEEIIUUIk6DaT9PR0pkyZQps2bejcuTNLly61dJNEOfLff//h6+tr8nj55ZcBOHXqFMOHDycgIIChQ4dy4sQJC7dWlEUZGRk8+OCD7Nu3z7Dv4sWLjBkzhsDAQPr378/OnTtNztm9ezcPPvggAQEBjBo1iosXL5Z2s0UZlN+9NGvWrDzvUcuXLzcc/+uvv+jVqxcBAQGMGzeOq1evWqLpooyIi4vj5Zdfpl27dnTp0oUPPviA9PR0QN6XRPEUdi/J+5IorgsXLvDkk0/SsmVLunfvzpIlSwzHSvq9SYJuM5kzZw4nTpxg2bJlzJgxgwULFrB+/XpLN0uUE2FhYfTo0YOdO3caHrNmzSIlJYVnnnmGNm3a8Pvvv9OyZUueffZZUlJSLN1kUYakp6fz2muvcfbsWcM+vV7PuHHjqFq1KqtWrWLgwIG8+OKLxMTEABATE8O4ceMYMmQIv/32G+7u7rzwwgtIbs17W373EkB4eDivv/66yXvU0KFDATh27BhTp07lxRdfZMWKFVy/fp3JkydbovmiDNDr9bz88sukpqby448/8sknn7Blyxbmz58v70uiWAq7l0Del0Tx6HQ6nnnmGapUqcLq1at55513WLRoEWvXri2d9ya9uGvJycl6f39//d69ew37Fi5cqH/ssccs2CpRnrz++uv6jz/+OM/+lStX6nv27KnX6XR6vV6v1+l0+t69e+tXrVpV2k0UZdTZs2f1AwYM0D/00EP6xo0bG96Hdu/erQ8MDNQnJycb6o4ePVr/2Wef6fV6vX7+/Pkm71EpKSn6li1bmryPiXtLQfeSXq/Xd+nSRb9jx458z3vzzTf1EydONGzHxMTofX199ZGRkSXeZlH2hIWF6Rs3bqxPSEgw7Fu7dq2+c+fO8r4kiqWwe0mvl/clUTxxcXH6V155RX/jxg3DvnHjxulnzJhRKu9N0tNtBqGhoWRlZdGyZUvDvtatW3P06FF0Op0FWybKi/DwcOrWrZtn/9GjR2ndujUajQYAjUZDq1atCA4OLt0GijJr//79BAUFsWLFCpP9R48epWnTpjg6Ohr2tW7d2nDvHD16lDZt2hiOOTg40KxZM7m37mEF3Us3b94kLi4u3/coyHsv+fj4UL16dY4ePVqSzRVllKenJ0uWLKFq1aom+2/evCnvS6JYCruX5H1JFJeXlxfz58+ncuXK6PV6Dh06xIEDB2jXrl2pvDfd+QrfwiAhIYEqVapQqVIlw76qVauSnp5OYmIi7u7uFmydKOv0ej0RERHs3LmTr776Cq1WS79+/Xj55ZdJSEigYcOGJvU9PDzyDP0U965HH3003/0JCQl4eXmZ7PPw8CA2NrZIx8W9p6B7KTw8HI1Gw5dffsn27dtxc3PjiSeeYPDgwQDEx8fLvSQMXFxc6NKli2Fbp9OxfPly2rdvL+9LolgKu5fkfUncjZ49exITE0OPHj3o27cv77//fom/N0nQbQapqakmATdg2M7IyLBEk0Q5EhMTY7iH5s+fT1RUFLNmzSItLa3Ae0vuK3E7t7t35N4SRXXu3Dk0Gg3169fnscce48CBA7z11ltUrlyZ3r17k5aWJveSKNDcuXM5deoUv/32G9999528L4k7lvNeOnnypLwviTv22WefcfnyZd5++20++OCDUvnMJEG3GdjZ2eX5oWdv29vbW6JJohypUaMG+/btw9XVFY1Gg5+fHzqdjjfffJN27drle2/JfSVux87OjsTERJN9Oe+dgt63XFxcSquJopwYNGgQPXr0wM3NDYAmTZpw/vx5fv75Z3r37l3gveTg4GCB1oqyZO7cuSxbtoxPPvmExo0by/uSuGO576VGjRrJ+5K4Y/7+/oBKHvrGG28wdOhQUlNTTeqY+71J5nSbgbe3N9euXSMrK8uwLyEhAXt7e/lDIYrEzc3NMG8boEGDBqSnp+Pp6cnly5dN6l6+fDnPEBchcvP29i703inouKenZ6m1UZQPGo3G8ME2W/369YmLiwPkXhL5e/fdd/n222+ZO3cuffv2BeR9SdyZ/O4leV8SxXX58mU2btxosq9hw4ZkZmbe9vO2Oe4nCbrNwM/PDxsbG5PJ9IcOHcLf3x8rK/kRi8Lt2LGDoKAgk2/YQkJCcHNzo3Xr1hw5csSwJIFer+fw4cMEBARYqrminAgICODkyZOkpaUZ9h06dMhw7wQEBHDo0CHDsdTUVE6dOiX3lsjj008/ZcyYMSb7QkNDqV+/PpD3Xrp06RKXLl2Se+ketmDBAn755RfmzZvHAw88YNgv70uiuAq6l+R9SRRXVFQUL774ouGLGYATJ07g7u5O69atS/y9SSJCM3BwcGDQoEG8/fbbHDt2jI0bN7J06VJGjRpl6aaJcqBly5bY2dkxbdo0zp07x7Zt25gzZw5PPfUU/fr14/r167z33nuEhYXx3nvvkZqayv3332/pZosyrl27dvj4+DB58mTOnj3L119/zbFjxxg2bBgAQ4cO5fDhw3z99decPXuWyZMnU7NmTYKCgizcclHW9OjRgwMHDvDNN98QGRnJTz/9xJo1axg7diwAI0eO5I8//mDlypWEhoYyYcIEunfvTq1atSzccmEJ4eHhfPHFFzz99NO0bt2ahIQEw0Pel0RxFHYvyfuSKC5/f3+aNWvGlClTCAsLY9u2bcydO5fnnnuudN6b7nLJM3FLSkqKfsKECfrAwEB9586d9d9++62lmyTKkTNnzujHjBmjDwwM1Hfq1En/+eefG9bmPnr0qH7QoEF6f39//bBhw/QnT560cGtFWZV7beXz58/r//e//+mbN2+uf+CBB/S7du0yqb9161Z9nz599C1atNCPHj1a1i8VBrnvpf/++0//0EMP6f39/fX9+vXTb9iwwaT+qlWr9N26ddMHBgbqx40bp7969WppN1mUEV999ZW+cePG+T70enlfEkV3u3tJ3pdEccXGxurHjRunb9Wqlb5Tp076RYsWGT5vl/R7k0avvzVuVQghhBBCCCGEEGYlw8uFEEIIIYQQQogSIkG3EEIIIYQQQghRQiToFkIIIYQQQgghSogE3UIIIYQQQgghRAmRoFsIIYQQQgghhCghEnQLIYQQQgghhBAlRIJuIYQQQgghhBCihEjQLYQQQgghhBBClBAJuoUQQgghhBBCiBIiQbcQQgghhBBCCFFCJOgWQgghhBBCCCFKiATdQgghhBBCCCFECZGgWwghhBBCCCGEKCESdAshhBBCCCGEECVEgm4hhBBCCCGEEKKESNAthBBCCCGEEEKUEAm6hRBCCCGEEEKIEiJBtxBCCJHLpEmT8PX1LfDRqVMnSzexWHx9ffn888/Nes0TJ07QrFkzfv/9d5P9N27cYMaMGXTs2JHAwEBGjhzJrl278pz/+++/8+CDD9KiRQv69u3L999/j16vL/D5li1bhq+vL1FRUWZ9HUIIIURJs7F0A4QQQoiyyNPTkwULFuR7zNbWtpRbU7ZkZGQwadIksrKyTPZnZWUxZswYzp07x/PPP0/z5s3Zu3cvzz77LPPnz6dXr14ArFy5kmnTpvHUU0/RuXNnjh49yocffkhKSgrPPfdcnueLiIhg3rx5pfLahBBCCHOToFsIIYTIR6VKlQgMDLR0M8qk+fPnc+PGjTz7t2zZwokTJ5g7dy4DBgwAoGPHjmRmZvLuu+/Ss2dPrKys+PLLL+nbty9vvvkmAB06dOD8+fMsX748T9Ct1WqZPHkybm5uxMbGlvyLE0IIIcxMhpcLIYQQdyh7iPWkSZMM+65cuUKHDh144oknDMOlDxw4wJNPPknbtm1p3rw5PXv25PPPP0en0wEQFRWFr68v69ev54UXXiAwMJCOHTvyxRdfcPPmTaZMmULr1q3p2LEjc+fONVw3+7y///6b5557joCAALp3787ChQsN185PYmIi06dPp2PHjvj7+/Pwww+zZ8+eIr3mw4cPs3z5cqZPn57nWHh4OAA9e/Y02R8UFERsbCynT58G4Ouvv2bChAkmdWxtbUlPT89zzW+++YbLly/zzDPPFKl9QgghRFkjQbcQQghRgKysrHwf2UFv8+bNefrpp1m9erUhaJ0+fTo6nY4PP/wQjUZDaGgoY8aMwc3NjU8++YRFixbRpk0bFixYwD///GPyfNOmTaNx48YsWrSIDh068OmnnzJs2DDs7e1ZsGABffr0YcmSJaxfv97kvLfffpvKlSvz+eefM3DgQBYsWMDHH3+c72tKT09n9OjRbNq0iVdffZUFCxZQrVo1nnrqqdsG3qmpqUyePJlnn30WX1/fPMerVKkCQHR0tMn+yMhIAC5evAhAgwYNqFmzJnq9nsTERFauXMmaNWt49NFHTc47e/YsCxYs4P3338fBwaHQtgkhhBBllQwvF0IIIfIRHR1Ns2bN8j02YcIEnnzySQDGjRvH5s2beeedd3jmmWfYuHEjn376Kd7e3gCEhoYaeqitrNR33Z06dWLz5s3s27ePBx54wHDdLl26MH78eAAaNWrEX3/9hYeHh6FXuX379qxdu5bDhw9z//33G85r1qwZH330EQBdu3YlJSWFZcuW8fzzz1O5cmWTtv/xxx+Ehoby66+/EhAQYDjn8ccf56OPPmLVqlUF/kw+/vhjHB0defbZZ/Md6t27d28++ugjJk6cyMyZM6lfvz4HDx7km2++ASAlJcWkfnBwMCNGjADUFxhPPPGE4VhWVhYTJ05k+PDhtGvXThKoCSGEKLck6BZCCCHy4enpyaJFi/I95uPjYyjb2toye/Zshg8fztSpUxk8eDD9+vUzHB80aBCDBg0iPT2diIgILly4QEhICFqtlszMTJPrtmzZ0lCuWrUqAC1atDDs02g0uLq65plPPWjQIJPt7GzgR44coUuXLibH9uzZg6enJ82aNTNJhNajRw/mzJlDUlISrq6ueV7zvn37WLFiBStXrsTGJv+PD+7u7ixdupQpU6YwfPhwAOrUqcOrr77KxIkT8/RWV69enR9++IGoqCjmz5/PiBEjWL16NQ4ODnz55Zdcv36d119/Pd/nEkIIIcoLCbqFEEKIfFSqVAl/f/8i1fXz88PX15cTJ07Qo0cPk2NpaWm8++67/PHHH2RlZVGzZk1atmyJjY1NniWycvdKAzg6Ot72+bN71bO5u7sDkJSUlKduYmIiCQkJBfbiJyQk5Am6k5OTmTx5Mk8//TQNGzYkKyvLMGdcp9ORlZVlCMT9/f1Zu3YtcXFxpKamUqdOHfbu3QuQ57re3t54e3vTrl07atWqxWOPPcaGDRto3LgxX375JYsXL6ZSpUp5nk+r1WJtbX3bn4sQQghRFkjQLYQQQtylFStWcOLECZo0acJ7771Hhw4dcHFxAeC9995jw4YNzJ8/n44dOxqC6A4dOpjt+a9du2ayfeXKFQA8PDzy1HV2dqZu3bqG4ei51axZM8++EydOEB0dzcKFC1m4cKHJsalTpzJ16lROnz7NtWvX2Lp1K926dTP5IuDUqVNoNBr8/PxITk5m8+bNtGjRgjp16hjqNG3aFID4+HguXrxIZmYmY8aMydOW3r17065dO3744YcCfhpCCCFE2SJBtxBCCHEXoqOjmT17NsOGDePFF1+kf//+vPfee8yePRuAQ4cOERQUZFijGlQQe/Xq1UIzjBfHxo0b6d+/v2F7w4YNODg4GOZs59SuXTu2bt2Kh4cH1atXN+z/8ssvCQkJyTcYb9asGb/99pvJvoSEBJ5//nlefPFFunfvDoBer2fy5Mm8/fbbhrnaycnJ/Prrr7Rt2xZXV1fS09OZNm0aAwcOZObMmYbr7dq1CwBfX1+aNGliuGa2rVu3smDBAhYtWkTdunWL9fMRQgghLEmCbiGEECIfGRkZBAcHF3jc19cXe3t7pk6dioODAxMmTMDV1ZXx48fz/vvv07dvX3r27EmLFi34559/+Pnnn2nQoAGhoaEsWrQIjUZDamqqWdr6zz//4OHhQbdu3di/fz8//vgjr776ar5D04cMGcLy5ct54okneO655/Dx8WH37t0sXryYxx57DFtb2zznVK5cOc9Q++zEZjVq1DAcc3d354EHHmD+/PnY29vj7u7OV199RXx8vCGbup2dHc888wyff/457u7uBAUFcfr0aRYsWEDHjh3p2rUrGo0mz5D5s2fPAtC4ceN8e+OFEEKIskqCbiGEECIfCQkJPPLIIwUeX7NmDYcPH2bPnj3Mnz/fMF/58ccfZ+3atUyfPp1WrVoxadIkMjMzmT9/PhkZGdSsWZPnn3+esLAwNm/ejFarveu2vvLKK+zfv58VK1bg4+PD9OnTGTlyZL51HR0d+fHHH/n444+ZO3cuN27coEaNGrz++uuMHTv2rtvyzjvv8NFHH/HRRx+RmppKYGAgy5Yto3nz5oY6L7zwAu7u7vz4448sXboUd3d3RowYwUsvvYRGo7nrNgghhBBliUafO4uLEEIIIcqFqKgo7rvvPj744AOGDBli6eYIIYQQIh9Wlm6AEEIIIYQQQghRUUnQLYQQQgghhBBClBAZXi6EEEIIIYQQQpQQ6ekWQgghhBBCCCFKiATdQgghhBBCCCFECSkXS4ZlZWWRlJSEnZ0dVlbyPYEQQgghhBBCiJKl0+lIT0/H1dUVG5s7D53LRdCdlJTE+fPnLd0MIYQQQgghhBD3mLp16+Lh4XHH55eLoNvOzg5QL9bBwcHCrSmcVqvlzJkzNG7cGGtra0s3R5Rjci8Jc5F7SZiL3Ev3kNRU6NRJlXftAjN//pJ7SZiT3E/CXHLfS6mpqZw/f94Qj96pchF0Zw8pd3BwwNHR0cKtKZxWqwXA0dFRfunFXZF7SZiL3EvCXOReuofo9XD6tCrb24OZP3/JvSTMSe4nYS4F3Ut3O8VZJkgLIYQQQgghhBAlRIJuIYQQQgghhBCihEjQLYQQQgghRCnatw/atYOGDSE8vOB6mzbB3r2l1y4hRMmQoFsIIYQQQogSkJ4OL7wA7dvDhAmwZQtMnQodO8KBAyrgXrQo/3PnzYNevVQ+u82bS7fdQgjzKheJ1IQQQgghhChPUlNh6FD45x+1vW8fzJ2bt97+/fnvmzhRlXU6eOMNOHgQ7jKXkxDCQuRXVwghhBBCCDNKToaHHjIG3LnZ2oKTkyofOgRZWcZjSUkwYoTpviNHYMWKkmuvEKJkSdAthBBCCCGEmWRmqoB70ya1XbkyrF0Ly5fD//4Hgwapnuz+/dXxlBQICVFlvR6eeQYiItR23brG606dqoarp6bCb7+pQFwIUT7I8HIhhBBCCCHM5K231NxtAFdXWL9ezekGFXRna9cOVq5U5f37wd9f1f31V+O5W7bA00/Dxo0qEB8xAvbsgbg4sLODU6egfv3Se21CiDsjPd1CCCGEEEKYwb//wuzZqmxrq4aXZwfcubVrZyxnz+v+5RfjvgULVE939vUA1qxRATeoXu+vvzZXywun16uA38sLXn8dLl0qnecVoqKQoFsIIYQQQoi7FBsLjz9u3P7wQ+jQoeD6rVoZE6Pt36/mcK9dq7adnWH4cGO9Rx81nqfRGM/79lvIyDDfayjI/v1qTnlCgsqqXq8evPwypKWV/HMLURFI0G1BPXv2xNfX1/Bo1qwZ/fr147vvvjPbczz++ON8/vnnAEyaNIlJkybd9pyMjAx+zR7bdAd+//13evbsecfnCyGEEEKUN2PGQHy8KvfvD+PHF16/cmVo1kyVjx+HDRvg2jXj+XZ2xrqff66u/9xzcOIEDBmi9sfHGwP1krRhg+l2erpq0+uvl/xzC1ERSNBtYVOmTGHnzp3s3LmTjRs38uyzzzJnzhzWrFlj9ueaOnUqU6dOvW29v//+my+//NLszy+EEEIIURGdOWMMTKtXh+++K9ryXtlDzLVaePtt4/5Bg0zruburXu1Fi6BpU5VsLdvixXfR8CLKGXQ/95zxC4HFi+HixZJ/fiHKOwm6LczZ2RlPT088PT3x8fFh8ODBdOjQgX///bdEnsvZ2fm29fR6vdmfWwghhBCiosq5NNgrr4CnZ9HOa9vWWD54UP1rawv331/4effdp4Z4g5pHfv68Kl++rAL4okhIgJ9/NvbOF+TaNdi7V5X9/FTg/9prajszE+bMKdrzCXEvk6C7DLKxscHW1pbHH3+cd999l/vuu4/u3btz8+ZNLl26xHPPPUdAQAA9e/ZkwYIFaHO8u/7333/07duXwMBAZiRHnp8AAQAASURBVM6caXIs9/DyP/74g379+hEQEMCIESM4deoU+/btY/LkyURHR+Pr60tUVBR6vZ6FCxfSuXNn2rRpw3PPPUdMTIzhOnFxcTz11FMEBgYyePBgIiMjS+cHJYQQQghRBuQMurOXAiuKnMnUsvXsqTKXF8bKCp58UpX1enjpJejUSQX7jRrB6tVqf2EGDlRzxZs0UcF3QfU3bQKdTpX79lX/vvaacZ3xxYslsZoQt1Oxg+6QebC65u0f2wbkPXfbgKKdGzLPbM3NzMzk33//ZdeuXdx3332Amh89d+5cFixYgJOTEy+++CIeHh6sXr2aDz74gLVr1xqGgoeFhTF+/HhGjhzJqlWryMrK4tChQ/k+144dO5g6dSqjR4/mzz//pHnz5jz77LO0bNmSKVOmUK1aNXbu3ImPjw/Lly9n7dq1fPzxx6xYsQIPDw/Gjh1LZmYmAK+88go6nY6VK1fy9NNPs2zZMrP9TIQQQgghyrKUFNi6VZVr1jTO0y6K5s3B3t50X+6h5QV54gmwtlblv/6C3btVOSJCzfnu3VsNe8/PsWNq6TFQPdmPPgrDhqmM6QsWqKHsN2+q4zmHlmcH3VWrwvPPq3J6Osydq8o3bkByctHaL8S9pGKv0515HVKjb18vrVY++xKKdm7m9eK3K4cZM2bw7rvvqqdMS8Pe3p7Ro0czYMAAVq5cSffu3WnVqhUAe/bsISYmhpUrV2JlZUX9+vWZOHEikydPZty4caxatYo2bdowZswYAN566y22ZC8UmcuKFSt48MEHGTlyJAATJkzA1taWpKQknJ2dsba2xvPW2KglS5YwY8YMgoKCAJg5cyadO3dmx44d1KpViyNHjrBlyxaqV69Oo0aNOHHiBOvXr7+rn4sQQgghRHmwZYsKPEENC9doin6ura3KTp4dMAMMyKcvKD/Vq8NDD6llxLJ5exuXFNu0Cbp1g9DQvD3nP/6Y93q//64e2X74Af77zxh029lB167G42+8oQL0tDQ15HztWggLUz3gf/0F3bsX7XUIcS+o2EG3rQs41Lh9Pft8Jt7YexbtXFuX4rcrh5dffpk+ffoAYGdnh6enJ9bZX1sCNWoY2xAeHk5iYiKtW7c27NPpdKSlpXHt2jXCw8Px8/MzNs3W1mQ7p4iICEaMGGHYrlSpEhMnTsxTLzk5mdjYWF599VWscmQESUtL4/z586Snp+Pm5kb16tUNx/z9/SXoFkIIIe5xly+rwO3IEXjxxfyHUlcEdzq0PFu7dsagOyhIBdNF9cUXqqfczU31fLdtq4Lw115T87xjY9U63++/bzxHp1PDyUH1lH/xBUyZAleumF57yxYYPdqYKK1bN3B0NB739lZJ1ebPV4F3WJjan5yslk47fly1SwhR0YNuv9fU4050+9O8bSmAh4cHderUKfC4XY71IrKysqhfvz5ffPFFnnrZCdJyJ0GztbXN97o2NkX7r8+eE/7pp59SLztjxy2urq7s2bOnyM8phBBCiIrvzBl46y01r/jWTDT++AMOHIDGjS3btuK4cEENs/b1VcOq3d3z1tHrjUG3ra1KcFZcnTqpwBVg8ODinevjYwygsw0eDC1bqnZnZKhrjxsH2f04O3YYA+m+fVUm9GHDYPNm1WN/5Qq8+qoKznP2iGcPLc9pwgT49VeIiVHBv4uLSswWFaXW8f7+++K9HiEqqoo9p7uCqVevHjExMbi7u1OnTh3q1KlDVFQUn332GRqNhkaNGnH8+HFDfZ1OR2hoaL7XqlOnjskxrVZLz549OXToEJoc46JcXFzw8PAgISHB8Jw+Pj7MnTuXiIgIGjduTFJSEhcuXDCcExISUgKvXgghhBDlwaOPqkAsO+AGuH5dBYPZ84TNITpa9ey2aaPK5pSQAF26wDvvqNfj6QmdO8P27ab1zp6Fc+dUuXNnKMIiMXkMGqSC4jFjVEI0c6hbV40uAEhNNV2OLGcg/b//qX/d3VXg/b//qWA5Z/1s+QXdPj5q+PqZM2o+98GDxqHsP/xgOlw92+bNxkztQtwrJOguRzp37kyNGjV48803OX36NAcPHuStt97CwcEBa2trHn74YU6cOMGiRYs4d+4cs2fPNskyntPjjz/On3/+yerVq7lw4QIffPABer2eZs2a4eDgQFJSEufPnycrK4sxY8Ywf/58Nm/ezPnz55k2bRqHDx+mfv36NGjQgA4dOjBlyhRCQ0PZuHEjy5cvL+WfjBBCCCHKghs34PBhVXZxUfN+mzZV26dOqSHQu3bBggUali/34m4WPHnpJRW8HToE+cyQu2NZWTBihOn60zqdavfjj5tm+V63zli+k6HlADY2xuRlOYdv360pU4wB8NKl6uefng4rV6p9Tk4qg3lB5/boYdyuUcP4/5ibs7PKmG5jA7VqwWefGY89+6zpkmTLl6vRAO3aqdEPQtwrJOguR6ytrVm0aBE6nY6HH36Yl156iW7dujFt2jRA9V4vWrSIv//+m0GDBpGQkEC3bt3yvVbbtm2ZMWMGCxcuZMCAAYSEhPDll19ib29P+/btqVOnDg899BAhISE8+eSTDBs2jOnTpzNo0CBiYmL45ptvcL31Tv7JJ59QpUoVRowYwbx583j88cdL7WcihBBCiLIjONgYlI4YobJar16tAnCA335TPcLjx1sxf34tAgKsWLLENJBNSIB58yAgAOrXN2bZzmndOnXdbD/+qOaOm8OkSao3FqBaNTU/ulo1tR0ZCSdPGuvmnM99u7W1S5uHh3otoL40GDhQLTOWmKj2DRpkXPYrN2trFSD7+KjtsWOLniDu8ceNw+QvX4Zb+YLRatXIAVD/3088YfrFhhAVmUafe0JuGZSSkkJISAh+fn44mvMrwBKg1WoJDg4mMDDQJCGaEMUl95IwF7mXhLnIvXQPSU6GypVV+ebNgqOzXD79FMaPV+WvvlLzhUFlti4sK3eXLlClilrvOTjYdGh69epq361FVUhNVUttZQ/rzta7N/z7b5Gama/wcJWF++OP1baNjUom1rmzmhf96qtq/0cfweuvqyHzXl6q97hWLTUHvDiZy0tDaqrqhc5v+P26dbf/ouDqVbW8WOfO6udRVHFx0KCBuo1sbdUw/AMHYPhw03qdO6ufcXGunR95byr7wsNV/gFvb5VzIL/l8sqC3PeSueLQip1ITQghhBBClJpDh4zlHIut8NBDaojzjz+qYCwgQMeGDVf588+qgEruVZCYGDXfee1asLJS2bizA+4uXVTSrogItbzVf/+p4Ds+Xg1zP3JEDauuVw9eeMHYY33lirpeRIQK9ENCYOdO0+edP18FhWA6n3nDBhV0//GHcamwgQPLXsAN4OAAf/4JTz1lOhKgenXo1ev257u739nSX97e8MorKmt6Zqbq7Q4ONh53dYWkJPUzHzFCfaGSkKCWJHvppbL5sxR3Tq9XX7qdOmXc5+Cgvpi7VwbIStAthBBCCCHMIjvotrVVPVk5PfGEegBotXqCgi7w5JNVePZZa2Jj1X6NRvUaP/KICtSHDVMB9Lp1KtC9etWYrdvGBr78UgVz2QnBHn9c7c+vZ3fuXDVM+vJltaxWRkb+r8HaGt58UwXp2Zo0Ue26eFElU0tJgV9+MR7PsQprmdOqlfoCIipKDYcPDVU/r5JebOaNN2DhQhVcf/ONcX/Llmp/ly5qyPmqVcZjq1ap+eNDh5Zs20Tp2rHDNOAGNQrjhx8k6BZCCCGEEKLIkpNVQAcq4M6x6mmBHnhADcs+c0YNL/f2Nh1q/P330K+fKmcvq5Xt1VdVcq8mTdSQ8MOH1bDmgqSlqTWpC9K4sZrzPGqUsUc8m0ajeruXLFG922vWGIey16oFHTrc/rVaWs2a8PTTpfd8VaqoL0qmTzfdP2mS+nl98IFaciy38ePVzzp7doMo/7791lgeO1YlK0xMNG8CxLLOoonU0tPTmTJlCm3atKFz584sXbrUks0RQgghhBB36OhRlbALTIeW306lSipIr1Ej79zevn3zBmZubmrfrFlq28pKzSXPDvJdXdWQ6NdeUz1p+/ercs7pmJ6eKiD86y/VO3/pkvrCYMKEvAF3tuzgH1QvblaWKj/yiGqDyOuVV1RCt2wNGhh7sd98E7ZtU8P09++HPn3U/qgoY/I1Uf7duKGWEAT1u7lgASxbpv7fO3a0bNtKk0V7uufMmcOJEydYtmwZMTExTJw4kerVq9Mv57uaEEIIIYQo83LO527VynzXnTVLDUOOiFAB2+DBaj5oTp07q6HfN2+qNapzzwlu21b1sP7yi+qZ7t9fBfvFcd99aui5VquC9GxleWi5pbm4qJ/7m2+q7YkT1c8wW9euxvLCherLl/R0lb1+9OiClykT5cevv6rpGAAjR+b93b1XWCzoTklJYeXKlSxevJhmzZrRrFkzzp49y48//ihBtxBCCFHK9q4/weZ/LjPy6QbUa17L0s0RFpaSAsXN01tQErW7ZWurMobfjqenMcN5QcdfeunO2+HmBkFBsHu3cV+DBub9gqEieu01NRLA1lYldCtIw4YqKJ85U40iePFF2LRJkqqVd7mHlt+rLDYYJjQ0lKysLFq2bGnY17p1a44ePYoue2ySEEIIIUrczWs36Te0FlM/645fK0/eemYryUnJXLyoMh+vW6d698S94+WXjeUXXlDzoW8nO+i2toYWLUqmXZaWM4s5qF5uCQoLZ2WlAu+iZCWfNEllmge1lNixYyXfPnH31q9XOQOeecb0b8Xp07Brlyo3bw5t2limfWWBxXq6ExISqFKlCpVyjO2pWrUq6enpJCYm4u7unuccrVaLtoz/1c9uX1lvpyj75F4S5iL3kridHf+EkJTSFoD0THtmLe7Oh9/qDHNWAebN0zFunNxLFUVkaDTWNtbUaJh3AvO2bfDzL7Dk1vay72HfCT0rVugMAVFuKSlw6pQVoKFZMz22trpCv6gpr+9LvXrBjBnG8dHDh2vlCykzqlQJxo/X8Morql/wn390NG+uv+155fV+qigmTLAiOlrD4sXg7q7jvffU/9kXX2jI7uMdM0aHTnf7/0tLy30vmeuesljQnZqaahJwA4btjALWcDhz5kyJt8tcjh8/bukmiApC7iVhLnIviYKs+yM+z76sLNPBcMu/iaFrV5UaWu6l8u3EzhieeaMPttaZLPtyA3X9vQ3HsrLg6afzTqQ9fFhD69Z63n03gk6druc5fvy4EzpdEwDq1LlCcPCFIrWlvN1LNjZQtao/ly9XonHjFLKyQkzWnxZ3r1YtO0CtN7dq1U169z5b5HPL2/1UEURG2nH8uHF9wNmzrXB3DycszIHFi6sDYG2tJyDgOMHBWQVdpswx971ksaDbzs4uT3CdvW1vb5/vOY0bN8bRsbgzjEqXVqvl+PHj+Pv7Y50zU0QuU6ZMYc2aNQUe/+6772jXrl0JtFCUF0W9l4S4HbmXxO0cPGZcQHXL6iMsWNaYI8ccadgQjuy7RkKSO8dDvWhYz5mwiDC5l8oxbaaWJ4Y5k5FlR0aWHd99XZU1OwINx+fN03DunBWOJBv2Naiv5/g5uH7dhvHjGzJ1qp633tKbJMTavds4brh3b3cCA6sU3o5y/L60Zg2sWKHj6aftaNo00NLNqXACAqBePT0RERqOHnWmYcPA2y4fVp7vp/Lu33/zzhmYPLk+Op1x/5Qpenr0aJ6nXlmU+15KSUkxS8evxYJub29vrl27RlZWFja31odISEjA3t4eFxeXfM+xtrYuN79It2vrtGnTeOONNwBYt24dS5cu5bfffjMcd3V1LTevVZSs8nTfi7JN7iWRn5vXbnLgjB8ATWqG031QS7oPMh5/asAJvlnblUxtJQ5uOY5bXbmXyrMfP9nN8fNdDNt/7WnHsR2htOzehKiwK8x82wmwR4NxGOiOHRrGjFPBpl6vYdYsDatXw8CB0Ls3XL6ssoJna9PGiqLeHuXxXurUST1EyenbF778EjIzNezYYc2DDxbtvPJ4P5V3OfsQe/WCjRsxBNwajcpEP358+VtTL/teMtf9ZLGfgJ+fHzY2NgTnGJNz6NAh/P39sboHFjt0dnbG09MTT09PnJ2dsba2Nmx7enrmGXovhBBClISd60LR6tSX3z2CovMc79LF+Dd51+a8w4pF+ZGWnM5bc/JOyn53eiIpKTB0hCM3U9RowycH7DIcd3WF33+H2bON61GfPAnvvw89esDw4caM3lZWqqdSiLuRcyGjDRss1w5RuIsX1RrroH7v//jDmETR3h5WroTx4y3WvDLFYtGtg4MDgwYN4u233+bYsWNs3LiRpUuXMmrUKEs1qcyIiorC19eXhQsX0rZtW2bOnMnnn3/O448/blKvZ8+e/P777wDo9XoWLlxI586dadOmDc899xwxMTGWaL4QQohyZOvGm4Zy9x55B8B1vb+2obxzX/4j0UT5sOCLSkQm1ASgV6vD+FSJBWD1jvbc3/sm+w+pBXRrul9kRi/Txac1GpgwQS3hVNjstxdegDI+E1CUAz16qPnzoDJji7Jp9WpjeehQ9bu/Ywd8/TUcPar2CcViw8sBJk+ezNtvv83o0aOpXLkyL730En369DHLtVeuhOnT4cYNs1yuSJyd4Z131JqN5nD48GFWrVqFTqdj7dq1hdZdvnw5a9eu5eOPP6Zq1aosXbqUsWPHsnbtWmxtbc3TICGEEBXO1oN1DOXuDzbMc7xu01rUcL9E9FUfdp/wJSvzZGk2T5hJYiK8/0H2kE89H39Vny2/H2X8Byp7+fbdatJsZadM/n7zQdydEo0nZ94AnADo3h327YPYWPjnH9izB3x81FrVrVpBLVniXZiBiwt07Ajbt0NYGJw7B/XrW7pVIrdVq4zlIUPUvy4u8PTTlmlPWWbRoNvBwYHZs2cze/Zss1977lwIDTX7ZW/ro4+sWLTIPNcaPXo0tWvXvn1FYMmSJcyYMYOgoCAAZs6cSefOndmxYwc9e/Y0T4OEEEKUS3vXn+CbRVcZ9aQrXQYYx/7euAEHQ9Rw46a+KXjV8cpzrsZKQ5eWEfyyyYfk9MpcOH6ZNm1LrenCTL7/Hq5dU+VRozS0aONGw8Ztef+LBOKTPAG1vvbK32xp0fAl2J7jU/NaX2j+LNR7HFyagpU11arBE0+ohxAloW9fFXSDGmI+eDDs3KmC8erVLds2AXFxqlcboHFjaJp30QORg0WD7pI0YQK89Vbp93S/8YbObNerUaNGkeolJycTGxvLq6++ajIfPi0tjfPnz5utPUIIIcqnMU85cjq6Ocv+zuCXL/Yy5Jn2gPoAm70Eaff7Ch4T3KVTJr9sUuUTBzMZOrakWyzMbeVKY/lWHlccXRyZMimR8ZPV9uefZ8+lfQpuJAJvqgOZ1yFkrnrYVIZe28G9Zek1XtyT+vaFqVNVefp0eOkl9X7l4wPHj4OHh2Xbd6/74w/Q38q3OHSomoIiClZhg+5hw9SjtGm1mG29Rjs7O0NZk8+dnJWVdes51SemTz/9lHr1TBOkuLq6mqcxQgghyqUrMVc5Ha3GZWZqK/Hw821Ynr6bES91ZOtWY70ePQq+Rte+PjBTlQ8flU+65U102CV27fIGrPDz09O8ufEzxcsTq+NZG9zdTZNX0fh5DEG3VSXg1jKvWcngnGsawqX/IOYfqPkQeHYBqwr78VKUopYtwdMTEhJUhvxsly7Ba6/BsmWWa5uAnDNfs4eWi4JV/DThFYStrS3JycY1M5OTk7l69SoALi4ueHh4kJCQQJ06dahTpw4+Pj7MnTuXiIgISzVZCCFEGXB09wWTba3Ohv+9EkSTmuf44vNUw/6uXQu+RtOghlRxUmOT955qil5nvlFdouSt+vYMer36yDe82w6TYxoNPPporoA7twdDoOXHUGsYVOsNts6mx88vh9OfwKae8EddODYDki+a90WIe46VlRpSnq16dTVfGNR0CclqbjmZmbBtmyp7eUHr1pZtT3kgQXc54e/vT2hoKP/88w8RERFMnz7dZCj5mDFjmD9/Pps3b+b8+fNMmzaNw4cPU1+yTgghxD0t+LSPoexb8zwAOr01p6PrczNVZatu1jgJr7zTuQ2srK3oHHAGgCs3PAg5nlxwZVHmrPzTzVAe/vgdTIZ18Aa/16DLSuiZK9LR6+HSv8bt1Gg4MRP+rAubesHZryAt4Y7aLcScOWraw19/wYULas3nbM8+C4cOqTxOzz6r4fhxJ8s19B5z4IBxCu9998nQ8qKQ8T/lRIcOHRgzZowh2H7iiSeIj483HH/yySdJTk5m+vTp3Lx5k+bNm/PNN9/I8HIhhKiATp6EV1+F3r3hzTcLrxt8upqh/OPqOvy1dCtf/dKElHQVcLs53eCDSTFAIetAAV0fasHaW2sxL/3BhXkt5YNWeRATHsuuk/4ANKkZTrMOeTPU3xWNBh44CZc2wIVfIOZv0GtBr4O4Tepx8AVw8YN2X4NnR/M+v6jQXF3hxReN22PHwk8/webNKghv0yb7iBV//FGfkSNVQkBRsjZuNJZ79bJcO8oTjV6fPQW+7EpJSSEkJAQ/Pz8cy/jij1qtluDgYAIDA7GW33pxF+ReEuYi91LF89hj8OOPKt65dAm8vQuu26KFSjpkY6N6Juzt7+w5jx6FwEDj9pAh8O23xuGeomz6fNo2Xn6vGwBvPbOVmV91L9qJyclQWS0jxs2b4FTEXsSUaAhfChHL4Ga46bEHToGrH6Del07v/YUm1TVYuTUH50Zg41C05xD3tLAw8PeHtLS8xzZs0NKnj/ydK2nduhkzy58/D3XqFFq9XMn9mclccagMLxdCCCHKmTNHIgE1sjcysuB66ekQEqLKfn53HnADBATAzJnGudy//w5tm0USdfbSnV9UlLiVf7gZyg+PLtqqKHfFsQb4vwUPnYV+h6DpJHALAFs3cG5sUtX9+gas9vwP/gmAXx3hZ1tY6QZ/1Icdw+HUXIjfCTptybdblBsNG8J336l1u3v3hjFjjMdWrZLhNyUtORn27FHlhg0rVsBdkiToFkIIIcqZyBhj9BwbW3C9U0dvcGuhC5Ne6js1ZYqe+fPP4uamBsmdiarNC2MKifqFRV06F8fOnEPL25t5aHlhNBpwbwWBH0D/YBgaD1amPZD2GbmSveqzIDMJkiPg4m8QPAE2doFN3Uut2aJ8eOQRCA+Hf/+FBQvAwUG9J61erTG854k7d/OmyhD/8cfGZcGy7dihEqmBms8tikaCbiGEEKIcSUtOIy7RmPXsUnTBvYDBW4IN5cA6wQXWK47Ona+zf3ssPlVUtL92dxB/Lt1nlmsL8/rv97OGrOXD7r+IxsqCvYBWtnl2xVcZic5/FtR9TC01VqUVuPiCTa6h7F7d8l4vYTfoJLoSaubD/ferckKCxjDs+V61aRPMnq1yf9ypJUvgk0/gjTfU9XKS+dx3RhKpCSGEEOVI1Nk4wDieL/b4DqB7vnWDjxiHgwcGmC+FS/2mXsx7Zx8jX1ZJ2l6eVINew1JwdCnbeVfuNfv2Gb+Q6d677E2+v+EUhL5pYN7MVzotXA+By3shZh3UHp7rxHD4rxPYe0Gt4VBnhErQppG+pHvVsGF6fv9dfam0ciX07Flw3XPn4M8/VT6MS5dUXoqXX4bGt2Y/ZGTA/PkQHQ2zZoGzc8HXKmv++QceeED1Tk+aBO3bQ/fuKgA/ckQlplu7FurVK/w6Bw8ay3/9ZRpcZwfhGg306GH2l1BhSdAthBBClCORYVfJGXRfii040Ag+ZVzBIqCjeSfePTKuA0u+O8ymw624kFCTac9v5b6+Thw7nEw1H2tGvtgWe6e7mEQu7tq+o54AaDQ62vZoYOHWFIOVNbg1V4+GT+U9fvE39W9aPJxdqB6OtaDOI1D3cajSonTbKyyuf389dnY60tOtWLVKLTNmk0+Uk5wMHTtCXJzp/u+/V/PE27WDhx82zln28IDp00u8+WYRHg6PPmo6HHzvXvXIFhWllmFbtKjwa4WGGss510NPSIDgYFVu2VL9fETRyFeCQgghRDkSec50jezY+Er51tPr9ASHqe6MWlWj8ajubtZ2aKw0LPzaDVvrDAA++ak7D45uy5RPuzN2UheaNdewZg2cOgWvP3GYOl5RdPE/Sky4cRJ6RmoGf3yzjzOHI/J/EnHHUlPhaEQTAPzqXsKlagVaQtS9DdQaAlZ2xn0pFyHkI5WUbdtAuHrYcu0Tpa5yZejYMQlQgWFBQ8zXr88bcINa2WHoUGjWzBhwA/z3Xwk0tgQkJ8PgwZCYqLY7dVIrV+Rnw4a887Rz0ulMg+7QULU8G8CWLcb9MrS8eCToFkIIIcqRyAum81hjL+e/lNP5U1FcT1WBVmDjqBJpi2/r+rwxene+x86dt2PwYPUhdt53rYhMqMnOEwF065LGxdMxRJ29RLdWpxn0VBBBXasQfyG+RNp4rzpyBLKy1Me8oO6lkLW8NFW7D7qsUsnZOnwP1fuDJke3ZvSfsL41hH9jel5aPMSshysHIS2h8MhDlDu9el0zlFeuzL/O778by59/DseOwciRxn3Xr5vW379ffYGVm14PS5fCDz+oINXSnntOLQ0J0KQJrFuneqQPH1ZD6cPCjEPBIyLUdkGio1UQn1N2b3fOn58kUSseGV4uhBBClCORF03nv166UiXfesF7ooFaAAQ2z+dTo5lM/6w91xK3E3HRkRZ+N2nqm8b3//Zgyza7fOuHXapLly5RpKTbkXBdZdZOTHbju8VnmDDLK99zRPHty5HbLijIcu0oUbYuUO9x9Ui/Aud/gpA5kHLrSyY7T9P6l/fC9oHGbWsHtT64ix+4NoXKDcCpDlSuCw411KRVUW506ZKEvb2etDQN69blPZ6eruYnA7i5wTPPQKVK8OOP0KGDytadlQX9+qnkbKtWqfnde/fmnbv866/w5JOqvHatGp5+N0sy3o3wcFi+XJWdnWH1ajVPHdQQ8JYtVblfP2NP9fr10KhR/tfLXmYypw0b1Pm/3ZrZ4ekJXbua7zXcC6SnWwghhChHImNMk5XFJlZFr8vbYxd8KM1QDmxdcp8G7Z3sWbSqK+v3t2HOsu6MmdKPTVvs+O038PeH1q3h00/h6K7zNKquhpFfSKhJwnXTgGjxisbS8WhGOYPudu0s145SY+cBvi/BQ2HQZgE41VNzwnPS58r0r02FxGMQuQKOz4A9j6klytbUgvQE07q6zJJtv7hrjo462rZV5chIiM81eGbTJmNP9oABKuAG9d3KSy/B6dMqKP37bxiY47uZbdvyPlfOnvSVK9VQ6ytXzPdaimP9emN54kTV052fvn2N5ZzztHPLL+jeuBHmzQPtrV+hceMs9yVDeSU93UIIIUQ5Ehlr2rOdnmlPYkIiVbzdTPYHn3AwlAM7VC+NphloNGp+5NChOffWZduOOO7rHk7IRZXU6/52B7huHciuPbaEhcHWrcYepRtXb+Dk6oSVtfQP5BQZGs2RXVH0GxmInWP+owkA9u1OBpxwcNDj738P9dha20HjceqRm0sTaD4d0mIhORKSz8ONMLU+eE7OjVVm9Jz2jIG4zeDRFqp2hKpBqifdprJ6zswbao1xp7pgn+MLpcwbELUGbF3VdZ0b5Lt8WpmiTTf+fJIjIPmCGj2QEqVej70n2FeDoMWmGeMzEtVry73kW056PaAvsUzzrVvr2bFD3e+HDhmXEgPVc51tyJC859avrx5g2oube354Zmbeud67dkHnznDggJpfXppyBtD9+xdcr0ULqFYNYmPVlwvp6WCXz1tIzvnc9eurbO/Xr6vh+KDOeeEF87T9XiJBtxBCCFFO6PUQeaVWnv2xF67kCbpDIlTQ4GR3k7pNa5ZG827Lp74323fb8MnbW6lX35qxEzvx2yordt1KXPT119C9m54Zz29j1uKu1HCPZcyQM4x9uQH1mud93eVV3PkEvv30JIMerU2TtvWLfN6fS/cx4nl/UjNqMHn3Vt7/pnu+9eIjL3P+YlUAWjc8iY1N83zr3XNc/aDFO6b7dJkq8L4eAjfPqwCzcj7/J0knVLAevVY9CtLhB6j3mHE79RLsGWXctrJVgblDdRW42jhBVrJ6tJwLrjm6KW+Eq/akX74V+EaqgNiqkrpO9r/ODaH+GNN2JOxS65hXcoNKVdTDtghrX4Uthv3PArcZdmLrBu1zzZkPnghhX6th+zaO6l+sQJcO2rRb/6ZD4xehzWe5zp2sXkvlBurh3ADsvFQm+2Jo3dpYzhl0Z2XBH3+ospMT9OlT+HXq1FGPCxdUYrWcAeqePcYe844dVVAaG6uC1eXL1fzq0pKRAZs3q7KXFwQEFFxXo1G93cuWQUqK+qIgv6XVcvZ0v/QSvPqqKmfPXR81Sg0vF8UjQbcQQghRTly9CqlpeXvJYi9exy/XEOK4aypbeXWPBKysb7MoaymqWtOD95Z0N2wPHAhVq8Lly/D773omjt3O3GXqeNSV6sxaXJ1Zi2HUQ8Es/Cmw1HuRzE2v0zOgXxz7T3dn9uJETgRfokZDn9uet3DGNl5+tzM6vQpC/vivJu8XUHff5nOACrqDAi6bqeUVlJWtCsZd/Qquo9eDg4/KkJ5xreB6oHp7c9Kl59rOhBtn1SO3oCWm2+FL4NSHhT8fgPd9eYPuQ6/A1UOm++y9wbW5mseeFgc3w6DdYtVrb6jjxW0DbgCHann3pcSof7Wp6lGQ3D8TvR7OfK6+eMjNxkmNEqgSCNUfgJqDwLHgkTutWxvbnnOt6e3bjcO/+/cHBwduq1s3NVc7LU31YHfurPbnnC/+3HPg54dhWPsvv5Ru0L1rlzHpWd++YHWbAQTZQTeoYemFBd3e3mr5tOygO1vubVE0EnQLIYQQ5URkpLGs0ejR69UwyktRKSb10tIwZC73rl22k5PZ2cGYkVf56HN3MjI0zF3WzXDMSqM1BJnfrw3kUHuVPbdxY0u19u6tW36Q/afVJ/TEZDfGjgxn/b5qaKyMQ8AP74zhm0/PsuOgD1laa7K0VpyN6WZynVMXG5J4NRM397xfwuzbZbwfgjoWPARdFJFGAz3Wg14H18/A5T2QeByyrkPmTdClgY2zCg5zzyO3r6bmmKfFw/VQ1aOefAEyc6XJtnXLO6S9KMEv5D9cPb8vB9Li1CNuk3Hf9dOmQbdzI/Bop3rjnepC5XoquZxjLfWwqQwZVyDrZt7rV2mhhthnXLsVeKeon5m1vVreLftfpzp525VfwA3GUQCpMRCz7lbyvBwjCeJ3QtwmNFjhnqSnZvU0XFw6cP26lUnQnTPrdn5Dy/OTHXSDmtedHXT/84/6N7vn2NNTzaMODVXBfXQ01KiheqG//hqaNs0/uDWHnEPLc87ZLkjv3qrder06t29f+Owztab5smWqzdlz4f38oHp1NSz92DG1r39/tV8UnwTdQgghRDmRM+hu2iSdkyEqk01smumCrAk5ckB5VS9kfmUZ8dToRD763HQd8dmvbeWxF5rw3WchfLi0Mzdu2nLyJLRpozIH9+tXvOfQ6/QkJyVTuYrlusr1Oj3vfmDaxfbvwdZ8+e52nprSleXL1Qfg4ODqQP69ebWrXSYyVvVi7z9om+8w2X2HXQzloB61zdb+e57GSg3/zjkE/HbsPfOfX56VDKmxati1jZMa+p07W7pXD8BKBZpOdVWwauME+kzQZqh/dRkqYM+t8UsqUM24pnrf0xMg6ZRpgjgrWxVA5+TaFPruo1D2XkA+X+YFvFf4eQWxqwoPnFTD6W+G3fr3nGp71nUVlKdfATTgkyuyTNgOx9/GCqgHEDuDVjU2s/V6D6KjIXbtS3g1aMjqVc8DlahUCR54oGjN6pbje65t22DqVBVQZwegbdqoId0AjzwC77yjgtmVK2H8eHjxRVi8WPU+79ljTGgYHg7vvqv+u3181KNaNfVvzZpqWHvOW+Hff2HFCjWPOufweTANunv3vv1rqlpVXePgQfU6cq613bo1dO9u3M5OyDZokPE1v/HG7Z9D5E+CbiGEEKKciIzIAFTK3Xbt7Tl5axjgpcumczXj4oxlb+9Satxd8G1dn24tgtl2LBCASU9sZcLH3QGY8mk1hr6gkrKdPAk3bsD//gdRUUUbIqrX6Vm9ZB9vzvAhMqE6b47eysxFnbGpVPofgf5bcZh9oepTczW3OGIT1X/OGx+05sNvMom8aNpjaWOdiUMlNUzXwzmJaePP41CnC//7nzq+d2/euak6rY79IQ0Mz1Grcekm0RNFZOOk5i0Xpnpf9bgTTcbnvz8tXgW09tVUz3Ux50yXCCsbFey7Ns3/uF4PiUfh6mHTJHUFaFP/IFtDVEbGQ9vP4bD3JDGxrwDq98U5++1Sry90Wbj69VVPb0wM7N6tEqjlzBSeM0lbdtANaoh5t26w5NZsAZ1OBeG7dqlRSA89lH+G8GydO6s1wBs1gvnz1VJmer1Kfnb2LFjf+i+LjVVrcQO0amX8AuB2+vY1HXqf7dtvTf9eZPdoT5mifkyNGuVdOk0UnaQEFUIIIcqJyMO7DeWg5sZu79hY03o5l8op6gcxS/tyiQsPtN/PnNe38v4S06HUvr4qwMzulbl6FX798ojhuF6vEgPldmznGXq3OcLQZ9tzLrYOWVpbPljanb7tjxEfmZD3hBKk18PMT4xz6z97/xzPD1VpkVPSnUwC7rZt4av5l7gSl8r1FBeup7gQEVeLJyd3oX174zX37s37PKEHzxmmFgQ1P28ybF0I7L2ganu1FnlZCLiLQqNRc7objM17rPYj0H0d2k6ruOg5Hl2DZ2kTaFwu8eC5Nny/w5jI7vHHc5y7sSts7A7HZ6pRAPk8bXZvd3KyWnIs53zunEG3n58xidm+fSrZWM4lEPfsUcH41KmFB9wAO3eqaw0YoOZPZ18nIsI06P/3X2O5KEPLsz3yiHHud/Pm0KyZKoeFGb8oAGNPt50dvP02hi/7xJ2Rnm4hhBCinIiMrmQotwsyfm+eJ+gODwdUL5qX62Wyk2qVZU3a1uevPQVn8q5cGWZOimbjxhoAfPGVLaNvfSB97DH46ScIDISnnoIWdU8z78NrrNnZPt9rbT7SilZBqezaq4ZylpTNvx1hzhwtN/W1cfXyYtcBNYTer2ESQ58Jov+jqfy3+zxhl+oC6kP81KnQqRNA/snV6tVTc0gTEmDvXj16HSaB9a/fRQENAejcvpBkVkJUBM63Mp1rtcRfrkP1wEBae1jDrZHu2+JfZ/9hNSTG1VX1MgOQkQSXd6s55/Hb1Drtbv5QY4D6YsLWFTRWdPOrzc+oyLt/f2Mvs4eHMXlathEj4OhRVT5xQv3r7q6+JASVCTw7mZudncqmbmUFly6pR2wsrF2rhp+npqpybosWGYfH5xxaXpzpNv7+cPgwJCWpXvWff1bvoWD6RZ7M3TYvCbqFEEKIciIyRo2L1Gh0NG3piYODjtRUKy5FXgeM83jjIi6SHXR7O5ylPATdRdG+R3UC6p3maIQv+0835/CWEI5GNOGnn1TQGRys5lGCr8l5db0uMm9WNJ7VHHl4tBeXrlUjOtaBOXNg4ULztO3mtZtUsq9EJQf1xci3s3fwzNT2ZGnzJrma9o4rVtbg5OrErr0prPh6Gx171aB194a3fR6NBtoHRLN2Yw2uXdNwNjiCxq1UD7pOq+O7VeoaVhotI5/1LexSQlRIDRqoADspCbbsNL4vPvxwjikpyRfAsY5ahzxb4nH1yGGIpyfv1Yrj4kUNer1aegygT9M/sN7zE3gEqZEDVVryyCMOTJ5s2pbvvlOB8j//GANugPffz793etYsmDjR+L5kYwNffKH2R0aqnvaICPX6soNuZ2fo0KF4P6OcS4sNGWL8eWVzclLzy++ILgtuhhuz9CdfAI21WkJOYwOp0Wod+KZvQrVet79eBWHxoFuv1/Pkk0/y4IMPMqSo6QSFEEKIe1BkvAqeq7nFY+dYjWoukUSk1ib2UqZJPZPh5dUdS7OJJUpjpeGFsXE8+5YKJmdOv8724OuAa771farE8uYzoTw3NQgHZ7XO9/79l6nVSB0/fNg87fp0yjYmzG1PJZt0erU5jFfVDL5e0zXfuu3aqeGd2bxqe/LSrG751i1I+6ZnWXurx3/PpmhD0L3l92AuJLQCoG/bw9Ro2LbAawhRUWk0KsnZpk2m+0ePzrFRpQUMPKcCwqg/4MIvKit9Lp4uCYQEX+Wr7zyYO9c4qmhY62UQuRoif731pDbUq9qBdi1Wsv+Ymhjduzc8+KCaC/3vv6DVqqrduqk53vlxcoIFC2DYMJVx/ZFH1MiXhAQ1Ckavhy+/VInNsoP4++8H23wS2BeVgwOMHKmum61Jk0KnuxtlJKog2z7HF7upMfBXEZINVr//ngq6LTqnW6fTMWvWLHbt2mXJZgghhBBlXkZqOpeuqQ9ztb3V2svV3FXXxJUbHmSkZhjqxiUYP4F51TBNslbePTquFc4OarmlP3YGce2mCrj/N+AMx47BK09G0D3gCF+8vZ1zF9149cPuODgbM67VbFiVunVV+cQJ03mXxaXN0jH+0W2M/6AbGVl23ExzZs3O9iYB98uPbCP5hpaICDhyRGVBtr7LqbQduhq/ZNi7V2coL/3VOGd87Jisu3sSIcqx3Fm+69eHjh3zqehUB3xfhj67YeB56LYWOiyHNguh9WfQ8UecXBx47TXVw/z99/DDjCUMbv+v6XX0WZCwg5c7v6Yua5/KvNfXodGoAPb111W1KlVU77dhPW29HjJvwI0wSNgFUX9C9F9076rls8+yp5rAk08aA+u5c41zu6tWVdt364knTLcLHVquTYMLK2BLf1jlAWcWmB53rKmWh7udlKhit7M8s1hPd1xcHG+88QZRUVG4uLjc/gQhhBDiHhYdHoder5Z/qu1zAwAfz5twKylPXORlavmqTNXxV4wfeLxrmS7FVd5VrlKZ0Q9tY8Gvxt7hqi6Xmb/Qg6o1Yf6SeoWcrfj7w/nzcPMmXLiAIQgvjrQ0ePRRDatXG9vhXvkqV2+qn7dGo2PexB2M/0Adr2vGlcra9GhoWMN8b7DKlJeYCL//VUW1w13HQ6NbF3IFISq2Nm1Mt0eNKkLPrVOdvGuI52Bvn52I7SnQjYGkk3BlH1zeCwk74cZZ/tfpJ+p7ncPTOYGGtV8A+gPw4YfQO+g0vunTqXU2GkLTIP2yyiavzSf3wogMwPjtnPe1+Qzt6Mcv2/oavii0ttbx69enqF29AXCbpRyyktXSa6m31mpPjzeW0+Joq8ukmd8KTobYAbeSqMVtgYgfwM4DKlVRQfK1oyqTfM511XOPENBYQaNxaji5cyOofCtXhzYVdJng4ANOtaFSxfrbdDsWC7pPnjyJj48Pn376KcOGDbNUM4QQQohyIfLsFeBW0F0jHYBqXsbe7djIa8ag+6qK8GytM3Ctmv/Q6/LsufE1WPCrcXv+26epWrNTkc9v3uASa28lKju+PZi6dQOL3YYXX4TVq9WneGsrLV+/t5sxb3bi0OZTbP8vnradqtB1YPGGjReVs7szzeue5liEL8ciGpGclMwvvziRditp82OPWWHnWKnwiwhRgeUOuk2ylpuDlQ1UCVCPhs8YlzWLWE4Hx18h5aLKuH6LRgO9OkbD5l/htgsnaNTc55xuhPF8l9/5ZZtxIvicEW/QI/UT+M0OPDtC1U7g2dl0mbkrB2BTD9MgOf9n5OnH4xk/RU3DadsWNe/63LeFN9WxNnjkM42l1UeFn3cPsljQ3bNnT3r27Fmsc7RaLdrsCRFlVHb7yno7Rdkn95IwF7mXKobz4TcM5Vq11P9nNW/j/2l05A1a3fo/jrvmBoCX6xV0ei8w0399WbmXmrSrx8jeu/j5v048ct8uHnkxqFhtalYnnOzs4McPXaX//4r3en75RcM336jxoY6OelauhL59O6JHT6uevrTqqeacl+TPKahFHMcifNHprVk8+wBLV/kDHgCMGqXlrp9aqzX0s2m1Wu7+grkvXzbuJVEx5L6fatWCBg2sCA/XcN99eurU0Zn7Fs7LxR8CZqtHaixUcsv1e2Nj+J3So1E9yHbeYO+J3t5ble08QGONXqczubRGl0nnJjvp1fw/Np7ozRPdlvLq/Z+og7p01SsdtwVdg2fRe+eYJ+3YAOvbBNzZnnsqiWvpNbC3h5499egibfKdh6x3rIPeqxv6uo+DVzfVs12Bfo9z30vmeo8qsaA7LS2NuLi4fI95enri6Fj8xC5nzpy522aVmuPHj9++khBFIPeSMBe5l4rmty+i+ea3Djz+0F5GvuJTZtY5PnXimqFcyTGJ4OBgbO2uG/aFnLhEreBgdFodCddbAuDpdpXg4Bizt6Us3EuvzLThsaf/w6tuFY4eO1qsc52q3jSUDwdrCA4OLvK5l85d59lnupCdFmfChPN4e1+lGJcwi0aNjamQX/2gu6Hs65sChNx1e6xSU2l5q3zs2DF0DrcZvnqHysK9JCqOnPfTnDl27N7tSp8+VwkOtkSOg1xrOert0TTaiV5jq7J55yc7J2buX2CbZ9A0HsXcz6K4EvM1DbwvEK17EfvMSJxTDmGXGQ1A/NUUonOd28gxCI0+k0wbD7Ks3cm0cSfT2oMsG3cyrd3JsvFAp7El60IyDz10BFBLn1np6lCp7i/YaJOw0V4ny9qFVLtGaK1vTQu+BFw6dsc/nbLO3O9NJRZ0Hz16lFGjRuV7bOHChfTqVfxsdY0bN76jYL00abVajh8/jr+/P9Z3mylF3NPkXhLmIvdS0S1+fycfLh0AwLwfH8LFZQvTPs8/C3VpSkqCv3Y3MGy36dCQwMAmRB83Zi1PT3MjMDCQKzFX0erUn/dqHikEBrYyWzvK3L10h8m5m/pmYGOdSZbWltMXahIYWPD64DllpGbw7IgIklPUz/exx3RMm1ab7GH/pclR78aEfBIoTZtmT2Bg4N0/QbKxd6xFixYqrbIZlbl7SZRr+d1PgYEwcCBAdUs2rVRob0bA9ZN4OtbF06256cFASVhdHLnvpZSUFLN0/JZY0B0UFMTp06fNek1ra+ty88Zcntoqyja5l4S5yL1UuH9/PcmLb5vOC357UQ/c3LbxyvslMze3KDIzYcQIOHXWDQC/2udp1bUJ1tbW1KhtnK8dF2+FtbU1l2OuA54AeFVNL5H/8/J+LzlUdqBJzbOcuNCI0Ki6aDO0hvW1C/P1+/s5FKbuhUbVz/PFgloW+zn4tWnAJ5O28fe/lWlc/yatWmnodH8TmgR6mecJcrwua2vru0+5XuDTlO97SZQt9+z95NpQPYTZZN9L5rqfLL5OtxBCCGFpx47BsKeaotWpoeQd/I6zJ8QfgPEfdMPDcxePvVr0RF3motfDuHHw339q28MD/txYB2tb1c5qtd0MdWPjVdbZ+IQcGW+9y8bQ+LLIv1E8Jy40Iktry5kjZ2nesVGh9XVaHQuXGXu0f1qWgrOrZT/cj/+gG+M/sGgThBBCFIFF1+kWQgghSlP40Qs8PXA78ydvIzlRzetdvRo6d4YbN1SAOqhPJDuONuWtZ7Yaznthqj8x4bH5XbJE/fQTLF6sypUqwZo10LCRMZD2qlUVjUYl3Ll0VS0XFZ9S13i8Wel/UVBe+DczDs0/fvC26YTZvCqYszFqObIegUdo06tpibVNCCFExSJBtxBCiHvGC08lsOTPrrz6YTfq1k7j4fv2M2QI3LiVGLxtW1j+e22sba15Z1E3Rt2/E4AbqS688Vx4qbf328+M88iWfqOnc2fT47Z2tlStqsqxySpjds4cpl5mGmlcETUPMOaIOX40o5CayhcLjHVeeCatRNokhBCiYioTQffmzZsZMmSIpZshhBCiAos6e4n/DhmTil2+UZWVm9sZtkeMgM2bjfmiNFYaPl7cFPfKVwH4eWMnNv+XXmrtTUpIYtsh1bNazzuSRx/Nv56Pj/pTfumSGo4eH2885u1d0q0sv/zbGZMrnQgtPDN31NlL/LlLLfzrUyWWgWPbFFpfCCGEyKlMBN1CCCFESftx0Wn0evVnr0nNcKw0au1NG+tMPp2v46efoHJl03Oq1nBn9tSzhu1xL9uRcftOUbNYv+IUWVpbAB7qHlHg0mXVb8WOGRkQE2MadEtPd8Hq+NWgsr0a4nA8LG9246goCA1VX2Qs/vi0ISP80w+HYmtnW6ptFUIIUb5J0C2EEKLC0+v0fL+qpmH773W2hB66yEdvbuXA5nO8/IoVmgJyjo2dEET79qocGgrz5pVCg4G1a3WG8oChzgXWa9nSWN6/H+JCgw3bXm5JJdG0CkFjpaF5IzWK4Xx8LW5c1xuOhYZCgwbg5we1aun59IdAAKytsnj6dV9LNFcIIUQ5JkG3EEKICu/wlhBORarlVDo3P0p9/9o0almX1+d0J7Br4UGUlRV88YX6F+CddyAsrGTbm5WRxbpdKlGXi0MSXR5sXmDddgHXDOV9f+0yyV7uWa3wYdP3Ov/2dQzlk6eM37qsXYthREN0tIakFDcABnQ6SM1GPqXZRCGEEBWABN1CCCEqvO8XG8dcjx5Z/N7fli3h5ZdVOS0NnhkRgl6nL/yku7Dr7xNcS1bZyO/vcLLQNaSD2hqzcO875Ej8NRcAqjhdK9La0/cyf39j+fhxY/nwYeP/rY2NKttYZ/LGRKfSapoQQogKRIJuIYQQFVpGBvy0UaX9trNNZ/jTAXd0nXffhTrVVa/ylkN+fPPhTrO1Mbc/Vxm/GHjowcKDe5/6XtSqGg3AgdBGxF7zAMDL7VphpwmgRQtj+fDhHOUdFwCwq5TJ5fgs/v3lMAe3nKPjA/4IIYQQxSVBtxBCVGBJSTBpkoavvvIhM/P29Sui9evh8hWVBGvQkEq4erre0XUqV4avPzpn2H7jvRZ3vXb3zrXH2PzbEXRa4/xtvR7+3KyGPVtbZXH/iNuvBx3UPBKA5PTKJKerbHDe7tfvqm33gtatwcpKfamxe1siADeu3uBsTG0A/OucxbWKLb0faUVAF5nLLYQQ4s5I0C2EEBXUsf2XadMGPvrIisWLq/PhhwVkCqvgvvvOWB416u5+Bn1Gtjas3Z2U4srQBxNISrizZGU7/jxKlwEtuG94S1r4Xubnn+HiRfhxySXCLtUFoIv/cdx9qtz2WkFt8i5l5uWRekftupdUrgwB9dUE/eOhLiQlJHF0V4Qhy32rZpct2TwhhBAVhATdQghRAS3/ZBftuziaJPx6/30Np05Zrk2WcOkS/PmnKvv4QJ8+d3/NeUua4u2m5ojvDfWnV6dorl4q/lDuFcsTDeWT4V48+ijUrg2PP2NM1PVQ36IF9EFd8gbmXlVLaW2zcq5TyxgA9Hor9m0M4/Be4/9lq1YFnSWEEEIUnQTdQghRgVyJucrIXrt5/LVOpGY4AuDmqtajzszU8NSICLSZWks2sVR99/F+tLde7tixYGNz99f0qO7Ohj+vUdVF9YIePNuUnp3iuRx1pVjX+W937UKPuzgkMeKZJkW6VuvujbC2yjLZ5+2lK6C2yKljZ+Oa27u23eBwsDH7e6v2HpZokhBCiApGgm4hhCjHTuw+y9eztvP1rO18MmkrzZtl8sumjobjTw3YTtiZNOrVVAHinuP1+OKdkksAVpbotDqWLPc2bD/5mPmGCgd08WXr+kRDj/fRCF9eHH26yOdfCIniTHQ9QC1htmkTDBsGffvCxImw4rtYwk5nUr1BtSJdz9HFEf+6puuYeXlbF1Bb5NSpj/HLj90HnDkS4gmo+fT+HepbqllCCCEqEDN85y+EEMISzh2PpG33mqRlNspzrIrTNRa+H8LIl7ui1WqZOWEzj7/8EACTP2rNwMeiqd2kRmk3uVRtXhXMuTg1PrhPm4PUa9LGrNdv1qEh2zdF0KnHZS5fr8qvW9ozY384fu0a3Pbc/1ZHADUB6N31Gj17Qs+eOWsULdjOKSggnuBzxp5xr2qyXFhR1Gpcgxrul4i+6sOek76kZdoD0LT2OewrN7Zw64QQQlQE0tMthBDl1IpvzpGW6ZBnf/+gA5w4ms7Il4093n4dq/PM4G2AynD96rMXzdaOlOspJtm3y4rFX6UZyk+PLZnU7Y1b1WPiMycANSf4vQ/zD3Qz0zNJTzEmO/tvk7EXus9DVc3SlnbtTP+ke9etbpbrVnQaKw2dAiMA9buh1an+iFZN4ws7TQghhCgyCbqFEKKcWrPNuN7059O2sfTDHWxZFcxfu9vkOyz5/YX+huHQv29vz/ofD97V85/YfZberQ/h5OqIm2s6XbvC66+rDNyWlnDxMqu3qZ5tT5cEBoxpXWLP9dyUNni4pQDw8x+1OHvW9PjpQ+fwrXMJD/dMtq0ORpupZeN+1SPt6phEm55Fm7d9O0E9TeeIe9UrfM64MOoYlPdLmVaBWfnUFEIIIYpPgm4hhCiHoqNhf7DKWB3QQsuL73bjiYld6D4kEI1V/stiuXm5MvetM4btF9/wJC05Ld+6hbl+5TovPbKNwC712HhYBbM3kh3YsQPmzYP27VX7LOn9iSfJ1Kpe5ycGn6SSQ8kNta5cpTKvT1BJ63Q6eP9947HI0Gh697MjIq42yemVGfOcBzv/Os7Vm+4A9Gwdgk0l88z0atK6Ns7Oxm0vL7Nc9p7Qqadnnn0tg26/VJsQQghRFBJ0CyFEOZS9DBbAoMFFT5j12PhOdPUPBiA8tg6z39xbrOfV6/QM7XOWBb92MwzDrekeRe2axuWpYmLgwQd03Lx2s1jXNpe5b2xl/s/dAJUM66lX6pb4c44bB1VuxWg//KDn5wX7ObI1lN69Mrh42Th3/nx8LUaMNSZ369PLfMt6WVurRGwA9euDi4vZLl3hBXRphKNdssm+wM6SRE0IIYR5SNAthBDl0Jo1xvKgQUU/T2OlYeGXToblpd75sit92x5m5a860tNvczLw06e7Db3bjnbJvPfyFs5GVuXCxUpcuAD1VEJugo9aMaL/qVJfnmzxe9uZ8HF3w/an03bRqGXdEn9eFxcYP16VtVoNj77UjlY9mhgylNevdgF721QAYhON63D3HljHrO1YuBA+/RT+/hs0+Q94EPmwtbOlXRPjKJDGjXU4uzsXcoYQQghRdBJ0CyFEOZN0+TpbtqjEZXXqQEDAbU7IpXnHRrz2mFo2TK+34t+DrXj4EStatYKEhEKeNyGJ12caM6X/+vUppnzaA3snle25dm34+y89bpWvA/D33nbMeGFH8Rp3F1b8mMyzb3U2bM96aSvj3ulWas//8stQI5+E8LWqRrNliw1vvxpisr9ePT0NAswbdHt5qXY0Mc808XtKx76+hnLLlvLxSAghhPnIXxUhhCiD9Hp47jmoWxfWrjU99s/PJ8jMVG/fg3qcuqMezQ+WdGHO61up5x1p2HfqFIwYAVkF5I+a/lIwcYlqovCgznt5YFTbPHX8mmr4/btwbKxVYqovfg4gM71kMofntG4dPDbGCb1e/VzeeHwrU+aXXsAN4OYGJ0/C6m+O8NYzW+gfdIAH2u9n07+Z1G5Sg9ffa0XLlsb6ffpIV3RZ0qufo6HcuXMhFYUQQohikqBbCCHKoOXL4auv4MIFePRRTDJimwwtf6gIY8LzYW1rzZsfdScsuib//auj2q1k55s3w+SJeYeEB28/zYJfVSTiUCmF+V/XLPDaPYa2ZFj3AwBcS67Cpt+O3lEbi2r7dhg61PhlwVNjUpjzXbcCE8qVJFdXGDS2JTO/6sHfe9vy1552huHtNjawdKma+21rC08/XerNE4Xo3l0NzZ8yBZ56ytKtEUIIUZFI0C2EEGVM4lUtb7xh3L55Ex55IIL0lHTOHjnPuj3NAXCvfJXOD/rf1XNZWVvRq7cVK1eqoBDgo3nWrFiw26TehEmV0OlVwra3nt9PHb+Cg26A4Q8bk7ut/CU1z3GdVseid7bz7ODt7PrrWJHamp6STnKSMdlVclIyn0zayoMPakm7lYR9+HD4comjRQLuoggMhDNnVHb31iW3ipm4AxqNGpr/3ntgb2/p1gghhKhIJOgWQogy5q3ndhIfb7rvyNl63N/pFAHtvbiRqtJSP9T1lNmWm+rcGebPvmzYfvKNFsSExwJw9Cj8t+dWQrCaV3n9g463vd79I1vgZKeyl6/Z2sxkiPm1uEQGdT3AC2935es1Xen8UAt6tjzCllVHCrzexl8PU6PaTZyrOOBbM4Jh3fdQt3Yqr83uzo0bKsDv10+NELAuejJ3i6haFTzzrlAlhBBCiApKgm4hhChDDm8J4Yvf1DBuR7sU1v54Gjtb1Y27JbglqRlq3mmDahd4d555lzR6YbwHo+5XCdaS0yvz9usqm/MnnxjrvDbJvUhrXjs4O/BgZ9WDffWmO5tXqSHmR3ecpk1gEmt3B5nU3xLckp7DWjL+0W15Mp5/N2cn9z/qz5UbHuj1VpyJrseqbR24fL2qoc6IYSmsWgWVSm45biGEEEKIOyJBtxBClBEXT8cw+gkbwzDu6S/s58FHfZk3eZ9JvXHDt3E0tCq1fKub9fk1Vho+/toPF4ckAL75sxOb/7zATz+p41WqwJgxRb/e8OHGPzErf0nl4JYwuvT14VysytjtXvkqM8dtpaHPeUO9T3/uxvD7z5KaCuHhMOGpwzwxsTNZWlsA6npdNHwJYaXRMrLXbo7vOsvPKx1xNObBEkIIIYQoMyToFqKEZGbCvHkwYwYkJpoeS72RSnrKnSXAEhXTxl8P07KtHScuqCW5/GqF8+p7ahj38zO68uGrWxnYeR//rTjMgl+74eTqVCLtqFrTg4lPq2HeOr01Dw73IvPWyPDnngOnYjzt/SMDcLRTc7BXbfan3/D6hqHxbRqd4vD+FN5a0J2Q8zVZMH2bYe3w1ZuaUK0aNGwIc79pZbjeiw9vIyyqOjduWHNybxgx567y038dad6xUd4nF0IIIYQoIywWdF+/fp2pU6fSsWNH2rdvz6RJk7h+/bqlmiNEseh0MG0a3H+/SoqU3/GxY+H112HmTDVfNjIS9Do9i97Zjrd3Jq5uevq1O8jn07Zx8XRM6b8IUWYsnLGNviMCuHLDA1C9uStX6A3DuDVWGibO686aHUH0erhVYZcyi/HvtqO6+yUAUjMcALC10fLii8W7jqOLAw92UkPME5PduHJF/cnp2vo82w7WNSRjs6lkw7h3uvH38mNUrqzWH8/550Cj0fHRm1v57OeuWNtaY2tnS9OghnjXlYnRQgghhCj7LBZ0z5gxg9DQUL7++mu++eYbwsPDmTZtmqWaI0SxvP++ynC7fr1azkmnMx7T6/S88kwMy5cb9508Ce1bXqZXmyO88HZXbqS6kJ5pz4YDbXj5vW40aFaViWO2cCMxo/RfjCg1x3ae4cWHt3Fw4ynDvnPHIxn/XkfDkPL+QQc4FFyZZh0aWqqZOLo48s7rYSb7RvbeQ/U7GM0+fHRtk+1WrWDt5ro4uuQdC953ZCt27LCibl2VDK1rV/jwQwg5GMPrc7qX2YzkQgghhBCFsUjQnZKSwoYNG5g+fTrNmzenWbNmTJkyhY0bN5KeLkNuxZ25fFklfLr/fpgzp+Se55+/tUyfbtw+dAi+n2/Mujzj+W0s+EZFJ9bWUKuWisgvXa3K5iPGXkpvN2N66kxtJeYs60FjP1t++aXk2i4s68mxWSxc2Y2eA2oSdVb1JL876YJhvvLzQ7exdldr3H2qWLKZAIx5owN+tcIN269NvrNe5f7DahgydTdpor6ocnEpuH5goFqT/OZN2LYNJk4E31aFL08mhBBCCFGWmWetmWKysrLiyy+/xM/Pz2S/VqslOTkZOzu7fM/TarVotdp8j5UV2e0r6+2sSEKOJvHubDdWr9aQmal6wtavh/atr9GpeyGf7vORlpyGvVPBC7SGHb3Ao494oNe7muyf/G51Bj2exLxph3n36x6G/Us+jeD+h5wZ3O8Se0LUeso13C/x9acX6fNIK47vCeHnpbF89lMH0jPtiY3VMHIk6PU6hg413kvJSck4VHbAylrSMJRXyUnJHAprAsCNVBdeGBPCh58k8/0/at62m1Mi737ujx692d8/7uR9SWOt4Zdfspjy+n769Uqheccud9QuOzvYsAG2bdPw6KN63N3hdpfRaMDW9vb1ROmTv3H3EK0Wa0NRa/ZfSLmXhDnJ/STMJfe9ZK57SqPX6/VmudJdevXVVwkPD+fPP//McywlJYWQkBALtEqUJVejk9j973W0mdDAz4pqdZxYtSyDpWt7o9Xl/f5ocJetTP3EuUjX1mZp+XjyDX7dch8vP/IXo970yVMnMy2Tp//nxokLKnDq3fkstplxrNunlndqVus0Jy/6Guq/PW4NDz5RC4D0lAxWL05Aq9Mw+IkqOLo5mFz7UmQGH3/WhK1bVQ+nvb2W774LpW6dm/w4P4FFv/XF0+UKw/ocpN9QO7zruxfpdYmy4+zBWEY+94DJvro1LnM+Wi17NXHMnwx/sYYlmiaEEHlYpabSsksXAI7s2IHOweE2ZwghRMXl5+eH410sk1JiQXdaWhpxcXH5HvP09DRp9PLly5k1axZLliyhc+fOeepnB92NGze+qxdbGrRaLcePH8ff3x9ra/UdcUZqBldir6HTqh+1vZsXHlWlx7Ko/vnpIF8t0rBub2vDvNf8eHrqefyxTJYvTSI+yRNrqyzCT8ZSs5EPoaEwb56GBx7QM3Bg3nPfGLWD+T91B9QyRIe3h9E815zameO2M/Mr1YvdpGY4uw+5Ex91Df92NcnUmi4O/OmUrYyb2aVYr1Ovh7FjNfzwg7o3GtSIpZZ7BFuPd8hT9+mB21m0qlOxri8s6+tZO3nh7W75HqtaVUdY6E0qu5VMRvL83peEuBNyL91DkpOxdlWjurRJScVbuqAI5F4S5iT3kzCX3PdSSkoKZ878n707D6uiegM4/r3sKLKKiOCuoCKC+75mZmnu7blllr9SyxbLJW23XMpM00wtzRYzMzMzS819X1BRUUGQTREVUHa49/7+GLlzrywiXFbfz/PwMHfmzNwDDHPnnXPOe84XO+guse7lJ06cYMSIEXluW7RoEb179wbghx9+4MMPP2TKlCl5BtzGLC0tK8w/0tZfgnjvwyqExXrezkhs+oT41VeV6aQ0t/MCpaeks3vjaWKj0rgcm42FBYyb2gpHt3vrHl2ZaLXw+sj9fPFD7qDTmL1NKm+NOcSbc7pRpaoNVVOC+WBpT7Q6K76ZF8qEGdV46CFHYmI0rFgBCxfCyy+r+381c6ch4AZlmqRp71Xnz3/Vc+30/lBmLVOCXCvLLH7+MRuXGi641HDhlad3MPd7ZX+NRseS9/fwwnT1ePfi66/h9KkMjgXZEhZTk7CYmgBYWmSj0egNY3+/2dCNt05H0rBFnYIOJ8qRU6fUJGCNvWO4EK22ak+ZYoFTKfyvV6RrqCjf5Fy6Dxj9fS0tLU1em/dt5FwS5iPnkzCXnHPJXOdTiQXd7du359y5cwWWWb58ObNnz2by5MmMHDmypKpS6sKOXWHEyw+QkZX/2OD588HbW5lS6tTe8/QbVJWoa61Nyvyx5SRbD/oUOMa4skpNhWefhfXr1YC7dvUYRg+9QN16lhw/ruP0eUca17vFtFkNqdOkh6HcuMlNmLU8i2ytNUt/8WP3wXBiYgIN28ePh8xM6Nc9nN++v8S0L9QW6Wr2ydxKc2DTVjd27oTu3UGbpWXMc+mG1uzJo/YS0FV9v+nzWvLPnnOExXqx6IMgRr7Zrcg/t709/PZjPK3b2xumj6rpHMea767gG1CLN8cc5Pvt/QH4d6sFDVsU+a1EKQs6oyZH+2OTIx26QVISeHrC//5XhhUTQgghhBAlqkwSqQGsX7+e2bNnM2XKFEaNGlVW1TC7q5HXeGNKgCHgruV6mboe16jhloqVpY6MLGv+3NcGgDffhISocL5c6sHNNKdcx9p7ugVjBu9l9d+d7qupcvbsgUmT4MgR5bWVlY5FM3Yx5u2uWFrffcxrrYaeDOuxj5+3dSL+pjvxp5TUyVVs00jNUHocvPYavEZ9oL5hv7dG7aBJ9x6MHn379Vuw6bcEPp95goMhPQDw9brIO190MHk/J3cngkIdyUjLwK5qwb01CqNuU282/HiSceNvUK/WZRavaoR3owAAJn7Ug+9vP4f4d683414r9tuJUqDVwslwZbhCg5qXaNKiLv/+CytWwIsvKg9bhBBCCCFE5VQmQXdiYiLvv/8+gwcPpl+/fsTHxxu2ubq6VthuIdmZ2TwzJIao68q0UJ39TrL9cBNs7E2Tcr33Hrz7rjKG96Mv1KCvTeMzjHwiHjt7Cya+15q0zCr8+G9nGs1I570PK39r964NJ5gxE3aeCDCsq1YNfv3Vgj59etzTsSa+Vo2ft6mvrS0z2bY+lH8O+zNzZu7yo/vt5uNl3dAD8+ZBcDAcPAju3k7o9ep7f/PVrTx7HmgsNGbtkdC5fwuCHtYSFHQTz/oehvUt2zrg6go3bsD27ZCdDVZl9uhMFFZYGKSkK5F1YAdlyEDbtsqXEEIIIYSo3Mrkdn3v3r2kpqayfv161q9fb7Jt27ZteHtXzDlZ530QzX9BSsDt6XKFtX94YGNvk6vcjBkQGgqrV6vrBnQ+yI+bmlPVqRkA1WscZMgLbdHrLXj/IzsCWsGQIaXyY5SJ1Z/vZcTrHdHr1QRzDRvCunUQEFDAjvno0Lc5bRqf4cgF5ff55cwDdHi4Gx0eBueMnXyy2BffOpd5pHcS/R7zpll7tYv5J59Af6UHt0l9Jo/cQdcBPYr085mLpSU88ACsXQuJiUpvgA4d7rqbKGNBQepyYKu8p0QUQgghhBCVU5kE3f369aNfv353L1jBHD1XD1BaVdesuoJng8A8y2k0sGwZpMUc4c89zXnpsQPM+a4rltZqC/+g59sz76ae115XXr/9NgwcWGJ5TEpNZlomowce5uT5Grw4PJZx73Rm0/dHGfVGe0OA6+MVwbSP6vDU0xZYWxftfTQWGr79zprXXznCQ72SeWGamjV64kfdmfgRQM08933kEWU8+erVSpbyR7pHMWCoM90H9yhaZcysTx8l6Ab4969bdOhQuGnRRNkxCboDy6oWQgghhBCiLEjHVDP68EPw8NDRovkFOj3sX2BZW1v4dXsbMlIzsK3SI88yr07S8MdG2LEDLlyANWvg6afNX+/S9OWsUH78V8kCPuHDxny1Moywy4GGebZfGraTBT92wdK6+FOqNe/UmC2H730/jQa+/x6WLwcbm4ZAw2LXxZwe7JUOKF3Z/10fxjvvB5ZpfcTdSdAthBBCCHH/ksmizcjHB+bP19OqTXqh97Gtkn9XU41G6Yqe48PpV9FpdcWpInq9EsSHhhbrMIWSnZnNrRu3DK/j4+H9L5qZlDkb1ZDMbOV38OxDe/jyZ9MW/7Jkk3tkQLlQt4EdjWuFA7D/rJ/J7xgg7VYaf606TOLVpLKoXqGlp6Sj1+nLuhqlIujgVQBcnVKpoKNnhBBCCCFEEUnQXc716AGdW0YDcDa8BuuWHizW8WbOhJ49lQROly+boYJG9Do9W385xkvDdtGhaTDVHLJwrl6FN4bvICsji3fegZs3lbL9Hkygrc9pw74DOh9kxYb2WFjKKVkYfTpHApCttWbHhrOG9dpsPb07hNJvZFueGXC+rKp3V2sW7sPB0Yo+bY8V+0FSeRcXEc/lGzUACGwQgub+mYhACCGEEEIgQXe5p9HAjDfjDK8/nONa5CBl75+n+OgjZd/ERPj1V3PUUAm2/1x5iI5+p3nwiVYsXteNgyHNSc+yR6e3ZN7qHnQOCOWbb5RWzWrVYNkqFw6cacpvSw+w9MNd/PJPINa2RRzAfR968CE1U/q/W1INyytXadh3Rhna8NfBtlyPvVHqdbubrIws3nzXG63Oiq3HWnPmYFhZV6lEndgfaVgObHazDGsihBBCCCHKggTdFcCDT7SifZNgAE6G+zKo22E2rTpMdmZ2nuXjIuL5+4cjzHljB6s/30t6SjrJCcmMHOuITqf+yTdsKH7d4uKg94Pw6Kh2HAxpbrKtYc1LWFtmAnD4XFN0OqWJb9o0qFkTLCwtGDy2A2OndSuwm73IrceAJlhaKH//jf815NaNW9y6BVOnmpbbtan8tXb/+vVhoq7XMbw+fiCugNIVX9ARtft/YCtJoyGEEEIIcb+RoLsC0FhomDElzfB647729B/ZlkbeV9j/1ynD+lOnIKDRJWrWd+fhZ9sweV4Phr/WmYZ1EhjQ6wJhV+qaHHfHDj0JVwtueQved4Fn+uyls99JGtSMpLrjdQZ3PcCfKw+xe2c2rVrB9u1qf1n/euf5acE+Eq8mEXq5Ljv/OIeXq9qPvUG9dF59tZi/EIGTuxNd/ZW/fcTV2jzUJYIpkzOIuyN+3bEto1jvo9fpiQ27wqZVh9n750mTXhbJyUqQP3Ei/Lkhk9SbqQUcST3evIXOJuuOH8374VFlEXRS7cER2L5GGdZECCGEEEKUBWl2qSAeGdGWRWE7+fBLXy4nKFNdXYr3ptcgN1Yv2I9jw44MHQq3btXNtW/sDU9ib3gCUMU2hYe6Xmb91kZotRo2/XCKZyd1zvM9tVlahj1uybkY0+2/73Hj9z2mZWvV0rPow5MMGOGPhaWPYX3HR/w5djyecc8e4FiIN9/Ov46tbREm3ha5zP+yCj0fTiAhxYX9Z/3Zf3tot42NnuwsHTq9JTsO5T0tWl70emXM/8Y1keizlIc8VxJciEusSc70ar1bHWX5DzVJxYshQ+Ds7ff88ksb7Ky1jOi3iwU/tM+358LujSc5esH073883O/efvBy7MLxCGo1cKeqU1UAblxOYNNepQeInXUaTdrUL8vqCSGEEEKIMiAt3RXIS+91J/JKdf5YcYjOficBSM+y57GX2vPIIzpu3e7F2rRxCq8/u4MVn+xmcNcDJseYO+UokyakGF7/viH/U2DtkoOci2lgeO3qcAO3atdzlevRA44d0zBodECeidBq1HHnt10diLjqTbeBEnCbS0BXX/7bfJXqjtdM1k+apKFlo3OAMhzhWnTuv1le/v4bPvgAgs7X4US4LyfCfYlLNG2Z3XqsNf6tHGjbJssQcOdIz7Jn6e/dmPv2/nzfY96c3Jn9g866o68EScw/e2sHPq3q0crvqmEs/bx3TnAzzQmAZx8+LHkLhBBCCCHuQxJ0VzBWNlY8Orod2w83YcTDSnOzXm9Bdrbypxw4EI4EVWXu9z0Y/VZXftvVgVN7L/D6sztYOGMn497pSqeHmxsCtb8P+JN2Ky3X++i0Oj6c6254/e+aY1y/5cqVa05s/O4QAx+MomZNpXvxv/+Ch0cp/PAil4Cuvuz8J5Gazkq/8prOcUydnEqP9lcNZXb9deGux9Hr4f331de21unYWafh7hhP71ZHmfT0DrzdYgG4meZEcooSPDZvDqtXw9ghhwxjzD9d1or4qGu53iPkSDgb97UFwNstlj4Pqkn9Ll2695+9rESE6xg0CN5+G3S3e9snxSfx3pctATgfU5/nHg8j7lI8X6xuA4CNVQbvfFq+5nsXQgghhBClQ4LuCsrG3obv/uzMjJePGNZNmADr1kGVKqZlm3dqzNzve/Dye93RWGiwtLZkQDelmTIlw4Ftv53iTuu/OcjpyMYAdGx6igeGKQGFlY0V/Ue24/d/anP5Mnz0EVjJIIUy1ax9Iw4f0jH79R3s2JqCo2sVej5Y1bB9x/a7j+vetg0O3O4U4e8Pqel2pGXaczXJnX+PtuazH3pw6kxVRj6ijit4ZnAkBw7AM8/A0nXteH7gPgBupTny4ZvqdHDZ2bBwIXTqUw+9XrnkTBx1nnbt1cvP8ePF+Q2UnqyMLIb2ucCGDfDpp7BsmbJ+yazjhhZtgD/2tqVXLy0pGQ4AvDh0P3WaeJVFlYUQQgghRBmToLsC01hoeG9hG44dg3374IsvwNKycPsOGqKOuf19nWlQptfDBwuaGF7PmJaBxkImFy7PvBt78ubcHvi2VoYDdHnYBwuNFoAdBz1zld+14QRz3thB1LlY9Do9772n9u+ePh0s8rgyONdw4rtNXTj87xl2/BbE97/Wpqoa2zNzri9VbJWhC4t/7Uho0CXWrYqkZUvlgVBCgnIO1amjZ+zUzrRsqe57/GBiMX8DpePDV/ZyLNTX8HrKFIi+lM7n3zYDQKNRE82duaiMg7ezTmPKx01Lt6JCCCGEEKLckKC7EmjZEjp2VOb0Lqzew/wNAdLarS2Y8eIO9m48xt+b9bz+Opw46wJAG//rPPRU65KotihBTu5OtLo9rvtUhI+hu3d4cBRDuh2g+6AAJs/rgW8LZ54fuIc9e5STp2lTPUOHFnzsNr2b0X1wYK4HMZ4NPHh95GEAsrQ2tGjvzrCRdQgOVsuMGAEHDmhwdrUmsKk61vz4rvI3tdmdDv1zmo++6WKy7sYN6Nol0zD2fWj3g0yaZLrf+Ocu49lAxl8IIYQQQtyvJOi+T9lXs6dve6Vb+c00Jz5Y2oMuA1rx8CMaPv9cLTfjIzdp5a6gevZUW6+/+c6BCU/spGkrd9bv7mBYn5ZZhRV/djW8nvbiwUL3lsjLGx+3MuQLSMtUxzm0bw/798PKleB5u+G9vq8rTlWSADh+rnbR37QUpN1KY8Rz9mh1yliK8U8dwtFR2RYR7Wgo99Y0Jz75BNooQ7lxcoLJHzS483BCCCGEEOI+IkH3feyD2dVp5xuc7/a+faF//1KskDCrHgPVqbimzbBj4S/dyciyA8DD+SojHt5jSH4G0LhWOE/8r02x3tPRzZFP3lbTmnf2O8nfPx5n/37o0MG0rMZCQ2CjcABibnjmmXytvHhvoprJv03jM3z2bUs+eF9rUqZ3q6O06d0MGxslueBnn8HOneDuntcRhRBCCCHE/UJSYN3HmrVvxMEQiA27wuZfLrBnL7jVrkPLLnVp1QqaNLm3LuuifOnSRRnjrzWKDe2s05jw1EGmf9YKR7cuvHUwlMmv3uBkqBdffZ6AlU3x55EeM6UrTfxPYlfFmlY9/AvsKdHSL4mdyux3HN9ziT5PVS/2+5vbmYOhzPtemavexiqDVattsba15qX/ZfPtghCCLir5D95+W/05nZ3J1c1cCCGEEELcnyToFtRqWJMxU2oypqwrIszK0RFeeAEWL4ZWrWDMyBSefjIb5xo9DGWatW/En4Zptc2XXbtz/xaFKhfY0hJ+UpaPH75Fn6fMVgWz0Ov0vPziLbK1yhRpbz23n6btegBKJv9ffrXjtZcP0aFNKr2Gdi/DmgohhBBCiPJKgm4hKrGvvoLZs8HBAaDq3YqXupYdaxiWg07alGFNFHo9XLwImZnQuDH8smgfO04ordz1PSKZMre9SfnGLeuxcV+9MqipEEIIIYSoKCToFqKSUwLu8qlp2/rYWqeTkWXH8ZCa+ZZLTkhm+/rT9BjYFEc3x3zLFdXO9UH8+nMSm/Y0IzxWGYRtZ6fHQt/KUGbBp1ewr1bH7O8thBBCCCEqN0mkJoQoM9a21jSvdxGA87H1uHA8IleZhLhE2gXEMXBMe/r1CEen1eUqU1Tnj4XTr8NhegwJZOEv3Q0BN0B6uobUDHsABnY5SP+R7cz2vkIIIYQQ4v4hQbcQokwNeugqAHq9BdNev2yyLTMtk6F9wzkb1RCAPcEBrF18oNjvqc3SMnXMDpq38+Kvg20N660tM3mgawKPPQaNGinrateGBavb5n0gIYQQQggh7kKCbiFEmXrlvdbUcIoHYO1/HTl0UJlfXK/T8+JjB/kvqKVJ+WkfeZGZllngMW/duEXwvgtkZ2bn2qbX6Xnp8b3MWtGDLK0yjtzL9TLfzd7Dtbh0tu5y4Zdf4MIFSE6G8HCoU1culUIIIYQQomjkTlIIUaaquVZj5pQkw+vJb2lIvJrEuKG7+W5TV0CZ6sy/3nkAwq7UZemy/NNRXDwViZ/vTfw7N6ZG9XSefhpWr4Zrt6cBf/u5nSz9vRsAVpZZTB+7g3MXHRn5Zpdc48WrVlWmXRNCCCGEEKKoJOgWQpS5sa81onFjZXnnTqhbX2MIjAFWfRHEt6udDK/f/8CCmzdzHyc27Aq9H4Soa8r0Zwm3HPjpJxg+HGrUgOa+Scxe2QMAjUbH958f5oOlPajqVP4yuwshhBBCiMpBgm4hRJmztoaPP1Zf30xVWpztbVJZ8v4uHvtfR1p39uDJJ5Xt8fHwxBPw3+9nDYnV4qOu8WCvZMLjlAzjtVxicHRUk67p9XD6vBq4L35vD09O6FTCP5kQQgghhLjflVnQff36dSZOnEjr1q3p3Lkzc+bMITs79/hLIcT9YehQ6GQUAz/Rax8hJxJ48R21xfvDD5UAHeDvv6HX4KbUqn4NV4cEatSpzplIJftZfY9IDh2y4No1C3bsgDffBD8/9difvrbD5LhCCCGEEEKUlDKbp/uNN95Ao9GwZs0aEhMTeeONN6hWrRrjxo0rqyoJIcqQRgN//QUrV0K7tno6dMzdCt2wIXz3HUyYADduKOviEmuYlKnpHMe/W/R4NfIEoHt35Wv2bIg8d5mM1Awat+xRsj+MEEIIIYQQt5VJ0J2ZmYmbmxsTJkygbt26ADz00EMcPXq0LKojhCgnnJxg4kQATb5lnn5aaRX/ffkRlq/QcDikIa7VkqjpmkSTBklM+aAODQPq5rlvHV/Pkqm4EEIIIYQQ+SiToNvGxoa5c+caXl+4cIHt27fz+OOPF7ifVqtFq9WWdPWKJad+5b2eovyTcyl/VlYw7MWWDHsxZ001wNuwXX5npuRcEuYi59J9RKvF0rCoBTP/zeVcEuYk55MwlzvPJXOdUxq9Xq83y5GK6Nlnn+Xw4cP4+fmxevVqqlSpkqtMamoqZ8+eLYPaCSGEEELcfyzS0mjZVZm28fju3ejs7cu4RkIIUXaaNm2aZ5xaWCUWdKenpxMXF5fnNnd3d0OlQ0JCSEpK4sMPP8TLy4slS5bkKp8TdPv4+BTrhy0NWq2WU6dO4e/vj6VM8CuKQc4lYS5yLglzkXPpPpKSgqWTMuODNikJqpp3akU5l4Q5yfkkzOXOcyk1NZXz588XO+guse7lJ06cYMSIEXluW7RoEb179wagSZMmAHz88ccMGzaM6OhovL2989zP0tKywvwjVaS6ivJNziVhLnIuCXORc+k+YPT3tbS0NHlt3reRc0mYj5xPwlxyziVznU8lFnS3b9+ec+fO5bktOTmZv/76i759+2Jhocxa1qiRMtVPQkJCrqBbp1Pm2k1LSyup6ppNTr//1NRU+acXxSLnkjAXOZeEuci5dB9JTwdfX3VZk3+Cy6KQc0mYk5xPwlzuPJdy4s+ceLSoymRMd3x8PF26dOHnn3+mZcuWABw5coQRI0Zw6NAhHBwcTMpfv36diIiI0q6mEEIIIYQQQoj7XL169XBzcyvy/mWWSG3ChAnExMTw4YcfkpqayrRp0+jevTtTp07NVTY7O5ukpCRsbW0NLeNCCCGEEEIIIURJ0el0ZGRk4OTkhJVV0TuJl1nQfevWLT7++GO2b98OwKBBg3j99dexsbEpi+oIIYQQQgghhBBmV+ZThgkhhBBCCCGEEJWV9NUWQgghhBBCCCFKiATdQgghhBBCCCFECZGg20wyMjKYOnUqbdq0oUuXLqxYsaKsqyQqkH///RdfX1+Tr4kTJwJw5swZHnvsMQICAhg6dCjBwcFlXFtRHmVmZtK/f38OHjxoWBcVFcWoUaMIDAzkkUceYc+ePSb77Nu3j/79+xMQEMCIESOIiooq7WqLciivc+nDDz/MdY1avXq1Yfuff/5J7969CQgI4OWXX+bGjRtlUXVRTsTFxTFx4kTatWtH165dmTVrFhkZGYBcl8S9KehckuuSuFeXLl1izJgxtGzZkh49erBs2TLDtpK+NknQbSazZ88mODiYlStXMnPmTBYuXMjff/9d1tUSFURoaCg9e/Zkz549hq+czP4vvPACbdq04bfffqNly5a8+OKLpKamlnWVRTmSkZHBa6+9xoULFwzr9Ho9L7/8MtWrV2fdunUMHDiQ8ePHExsbC0BsbCwvv/wyQ4YM4ddff8XV1ZWXXnoJSfNxf8vrXAIICwvj9ddfN7lGDR06FICTJ08ybdo0xo8fz5o1a7h58yZTpkwpi+qLckCv1zNx4kTS0tL44Ycf+Pzzz/nvv/+YP3++XJfEPSnoXAK5Lol7o9PpeOGFF3BxcWH9+vW89957LF68mI0bN5bOtUkvii0lJUXv7++vP3DggGHdokWL9M8++2wZ1kpUJK+//rp+3rx5udavXbtW36tXL71Op9Pr9Xq9TqfTP/jgg/p169aVdhVFOXXhwgX9gAED9I8++qjex8fHcB3at2+fPjAwUJ+SkmIoO3LkSP2CBQv0er1eP3/+fJNrVGpqqr5ly5Ym1zFxf8nvXNLr9fquXbvqd+/ened+b775pv6tt94yvI6NjdX7+vrqIyMjS7zOovwJDQ3V+/j46OPj4w3rNm7cqO/SpYtcl8Q9Kehc0uvluiTuTVxcnP6VV17R37p1y7Du5Zdf1s+cObNUrk3S0m0GISEhZGdn07JlS8O61q1bc+LECXQ6XRnWTFQUYWFh1KtXL9f6EydO0Lp1azQaDQAajYZWrVoRFBRUuhUU5dahQ4do3749a9asMVl/4sQJmjVrRpUqVQzrWrdubTh3Tpw4QZs2bQzb7O3t8fPzk3PrPpbfuZScnExcXFye1yjIfS55enpSq1YtTpw4UZLVFeWUu7s7y5Yto3r16ibrk5OT5bok7klB55Jcl8S9qlGjBvPnz8fBwQG9Xs/Ro0c5fPgw7dq1K5VrU9Fn+BYG8fHxuLi4mMwxXr16dTIyMkhMTMTV1bUMayfKO71eT3h4OHv27OHrr79Gq9XSt29fJk6cSHx8PI0aNTIp7+bmlqvrp7h/Pf3003muj4+Pp0aNGibr3NzcuHLlSqG2i/tPfudSWFgYGo2GJUuWsGvXLpydnRk9ejSDBw8G4OrVq3IuCQNHR0e6du1qeK3T6Vi9ejUdOnSQ65K4JwWdS3JdEsXRq1cvYmNj6dmzJw899BAff/xxiV+bJOg2g7S0NJOAGzC8zszMLIsqiQokNjbWcA7Nnz+f6OhoPvzwQ9LT0/M9t+S8Endzt3NHzi1RWBcvXkSj0dCgQQOeffZZDh8+zDvvvIODgwMPPvgg6enpci6JfM2ZM4czZ87w66+/8t1338l1SRSZ8bl0+vRpuS6JIluwYAHXrl3j3XffZdasWaVyzyRBtxnY2trm+qXnvLazsyuLKokKxMvLi4MHD+Lk5IRGo6Fp06bodDrefPNN2rVrl+e5JeeVuBtbW1sSExNN1hmfO/ldtxwdHUuriqKCGDRoED179sTZ2RmAJk2aEBERwU8//cSDDz6Y77lkb29fBrUV5cmcOXNYuXIln3/+OT4+PnJdEkV257nUuHFjuS6JIvP39weU5KFvvPEGQ4cOJS0tzaSMua9NMqbbDDw8PEhISCA7O9uwLj4+Hjs7O/mgEIXi7OxsGLcN0LBhQzIyMnB3d+fatWsmZa9du5ari4sQd/Lw8Cjw3Mlvu7u7e6nVUVQMGo3GcGObo0GDBsTFxQFyLom8ffDBB3z77bfMmTOHhx56CJDrkiiavM4luS6Je3Xt2jW2bt1qsq5Ro0ZkZWXd9X7bHOeTBN1m0LRpU6ysrEwG0x89ehR/f38sLORXLAq2e/du2rdvb/KE7ezZszg7O9O6dWuOHz9umJJAr9dz7NgxAgICyqq6ooIICAjg9OnTpKenG9YdPXrUcO4EBARw9OhRw7a0tDTOnDkj55bI5YsvvmDUqFEm60JCQmjQoAGQ+1y6fPkyly9flnPpPrZw4UJ+/vlnPvvsM/r162dYL9clca/yO5fkuiTuVXR0NOPHjzc8mAEIDg7G1dWV1q1bl/i1SSJCM7C3t2fQoEG8++67nDx5kq1bt7JixQpGjBhR1lUTFUDLli2xtbVl+vTpXLx4kZ07dzJ79myef/55+vbty82bN/noo48IDQ3lo48+Ii0tjYcffrisqy3KuXbt2uHp6cmUKVO4cOECS5cu5eTJkwwbNgyAoUOHcuzYMZYuXcqFCxeYMmUK3t7etG/fvoxrLsqbnj17cvjwYZYvX05kZCQ//vgjv//+O8899xwATz31FBs2bGDt2rWEhIQwefJkevToQe3atcu45qIshIWF8dVXXzF27Fhat25NfHy84UuuS+JeFHQuyXVJ3Ct/f3/8/PyYOnUqoaGh7Ny5kzlz5jBu3LjSuTYVc8ozcVtqaqp+8uTJ+sDAQH2XLl303377bVlXSVQg58+f148aNUofGBio79y5s/7LL780zM194sQJ/aBBg/T+/v76YcOG6U+fPl3GtRXl1Z1zK0dEROifeeYZffPmzfX9+vXT792716T8jh079H369NG3aNFCP3LkSJm/VBjceS79+++/+kcffVTv7++v79u3r37Lli0m5detW6fv3r27PjAwUP/yyy/rb9y4UdpVFuXE119/rffx8cnzS6+X65IovLudS3JdEvfqypUr+pdfflnfqlUrfefOnfWLFy823G+X9LVJo9ff7rcqhBBCCCGEEEIIs5Lu5UIIIYQQQgghRAmRoFsIIYQQQgghhCghEnQLIYQQQgghhBAlRIJuIYQQQgghhBCihEjQLYQQQgghhBBClBAJuoUQQgghhBBCiBIiQbcQQgghhBBCCFFCJOgWQgghhBBCCCFKiATdQgghhBBCCCFECZGgWwghhBBCCCGEKCESdAshhBBCCCGEECVEgm4hhBBCCCGEEKKESNAthBBCCCGEEEKUEAm6hRBCCCGEEEKIEiJBtxBCCCGEEEIIUUIk6BZCCCGEEEIIIUqIBN1CCCGEEEIIIUQJsSrrCgghhBDlzdtvv8369evz3V69enX27t1bijUqHl9fX8aPH8+ECROKdZxLly7x2WefcfToUdLS0vDx8WHixIl07NjRUCY1NZUvv/ySLVu2kJCQgI+PD6+++qpJGZ1Ox5o1a/jxxx+Jjo7G1dWVBx54gIkTJ+Lg4GDyfrNmzeLIkSNYWlrSt29f3nzzTZMyQgghRHknQbcQQgiRB3d3dxYuXJjnNmtr61KuTdlLSEjg2WefxdnZmalTp+Lg4MDatWt57rnnWLlyJe3atQNgxowZbN26lUmTJtGoUSN++eUXnn/+eX788UcCAgIAWLZsGfPnz2fMmDF07NiR8PBwFixYwIULF1ixYgUajYabN28ycuRIqlevzieffMKNGzeYM2cO0dHRLF++vCx/FUIIIcQ9kaBbCCGEyIONjQ2BgYFlXY1y4/fffychIYFff/0VDw8PADp37szAgQNZvnw57dq1Iz09nb/++osXXniBkSNHAtC+fXseeOABfv75ZwICAtDpdHzzzTc88cQTvP766wB06tQJFxcXJk2aRHBwMP7+/vz0008kJiby22+/4erqCoCHhwcvvPACR48epXXr1mXzixBCCCHukYzpFkIIIYooODgYPz8/3n77bcO669ev07FjR0aPHo1erwfg8OHDjBkzhrZt29K8eXN69erFl19+iU6nAyA6OhpfX1/+/vtvXnrpJQIDA+nUqRNfffUVycnJTJ06ldatW9OpUyfmzJljOG7Ofps2bWLcuHEEBATQo0cPFi1aZDh2XhITE5kxYwadOnXC39+fxx9/nP379xf4s3p4eDBq1ChDwA1gaWlJ3bp1iYyMBCArKwudTmfS/dvKyopq1aqRkJAAQHJyMgMHDqR///4mx2/QoAEAUVFRAOzZs4fWrVsbAm6ALl26ULVqVXbt2lVgXYUQQojyRIJuIYQQIh/Z2dl5fuUEvc2bN2fs2LGsX7/eELTOmDEDnU7HJ598gkajISQkhFGjRuHs7Mznn3/O4sWLadOmDQsXLmTz5s0m7zd9+nR8fHxYvHgxHTt25IsvvmDYsGHY2dmxcOFC+vTpw7Jly/j7779N9nv33XdxcHDgyy+/ZODAgSxcuJB58+bl+TNlZGQwcuRItm3bxqRJk1i4cCE1a9bk+eefLzDwfuSRR3jjjTdM1iUlJXH48GEaN24MQLVq1Rg8eDCrVq3i+PHj3Lx5kxUrVnDhwgUGDBgAgKOjI9OnT8/VUr1161YAGjVqBEBYWBj169c3KWNpaYm3tzfh4eH51lMIIYQob6R7uRBCCJGHmJgY/Pz88tw2efJkxowZA8DLL7/M9u3bee+993jhhRfYunUrX3zxhaFFOCQkxNBCbWGhPOvu3Lkz27dv5+DBg/Tr189w3K5du/Lqq68C0LhxY/7880/c3NyYMWMGAB06dGDjxo0cO3aMhx9+2LCfn58fc+fOBaBbt26kpqaycuVK/ve//+VKOrZhwwZCQkL45ZdfDGOsu3XrxvDhw5k7dy7r1q0r1O9Hp9PxzjvvkJyczPPPP29Y/9prr3Hu3DmefPJJw7qJEyfyyCOP5HusEydOsHTpUnr27ImPjw8At27domrVqrnKVq1aleTk5ELVUQghhCgPJOgWQggh8uDu7s7ixYvz3Obp6WlYtra25tNPP+Wxxx5j2rRpDB48mL59+xq2Dxo0iEGDBpGRkUF4eDiXLl3i7NmzaLVasrKyTI7bsmVLw3L16tUBaNGihWGdRqPBycmJW7dumew3aNAgk9cPPfSQobW5a9euJtv279+Pu7s7fn5+ZGdnG9b37NmT2bNnk5SUhJOTU0G/GrKysnj77bfZsmULM2bMMNTx+vXrPPbYY1hZWTF79mw8PDzYvXs3X331FVWqVGH06NG5jnX06FHGjRuHt7c3s2bNMqzP6U2QF41GU2D9hBBCiPJEgm4hhBAiDzY2Nvj7+xeqbNOmTfH19SU4OJiePXuabEtPT+eDDz5gw4YNZGdn4+3tTcuWLbGyssoVWOY1FVaVKlXu+v7G46wBwzjopKSkXGUTExOJj4/PtxU/Pj6+wKD75s2bjB8/nsOHD/POO+/wzDPPGLatXbuWy5cvs2XLFurVqwcorfN6vZ558+YxaNAgXFxcDOX/+usv3n77berVq8eyZctMtjk4OJCSkpLr/ZOTk3P9vEIIIUR5JkG3EEIIUUxr1qwhODiYJk2a8NFHH9GxY0ccHR0B+Oijj9iyZQvz58+nU6dOhiDaeN7q4spJUpbj+vXrALi5ueUqW61aNerVq2fojn4nb2/vfN/nypUrjB49mujoaD777DOTLu4AsbGxuLm5GQLuHG3btmX58uVERkYaAuvly5czZ84c2rVrx6JFi6hWrZrJPvXr1zckaMuh1WqJjo6mT58++dZRCCGEKG8kkZoQQghRDDExMXz66acMGzaMJUuWcOvWLT766CPD9qNHj9K+fXt69+5tCLiDg4O5ceNGgRnG70VOErIcW7Zswd7e3jBm21i7du24fPkybm5u+Pv7G7727t3LsmXLsLS0zPM9kpOTGTlyJFevXuXbb7/NFXCDkoH8xo0bXLx40WT9sWPHsLCwoFatWgD8/PPPzJ49m4cffphly5blCrhBGfd++PBhbty4YVi3Z88eUlNT6dy5891/KUIIIUQ5IS3dQgghRB4yMzMJCgrKd7uvry92dnZMmzYNe3t7Jk+ejJOTE6+++ioff/wxDz30EL169aJFixZs3ryZn376iYYNGxISEsLixYvRaDSkpaWZpa6bN2/Gzc2N7t27c+jQIX744QcmTZqUZ9f0IUOGsHr1akaPHs24cePw9PRk3759fPPNNzz77LNYW1vn+R4LFiwgIiKCCRMmYGVlZfK7sbGxoVmzZgwbNozVq1czduxYJkyYgIeHB/v27WPFihU888wzuLu7Ex8fz6xZs/Dy8uKZZ57hzJkzJu9Tp04dXF1defrppw31HD9+PImJicyZM4du3brRqlUrs/zehBBCiNIgQbcQQgiRh/j4eJ544ol8t//+++8cO3aM/fv3M3/+fMM46OHDh7Nx40ZmzJhBq1atePvtt8nKymL+/PlkZmbi7e3N//73P0JDQ9m+fTtarbbYdX3llVc4dOgQa9aswdPTkxkzZvDUU0/lWbZKlSr88MMPzJs3jzlz5nDr1i28vLx4/fXXee655/J9j3/++QeAL7/8ki+//NJkm5eXF9u3b8fBwYEff/yRefPm8cknn5Cenk7dunWZOXMmjz32GAA7d+4kPT2dmJgYk/HgOWbNmsWQIUNwdXVl1apVfPzxx7zxxhtUrVqVvn37Mnny5KL+moQQQogyodEXlB5UCCGEEOVWdHQ0DzzwgCFQFUIIIUT5I2O6hRBCCCGEEEKIEiJBtxBCCCGEEEIIUUKke7kQQgghhBBCCFFCpKVbCCGEEEIIIYQoIRJ0CyGEEEIIIYQQJaRCTBmWnZ1NUlIStra2WFjIcwIhhBBCCCGEECVLp9ORkZGBk5MTVlZFD50rRNCdlJREREREWVdDCCGEEEIIIcR9pl69eri5uRV5/woRdNva2gLKD2tvb1/GtSmYVqvl/Pnz+Pj4YGlpWdbVERWYnEvCXORcEuYi59J9JC0NOndWlvfuBTPff8m5JMxJzidhLneeS2lpaURERBji0aKqEEF3Tpdye3t7qlSpUsa1KZhWqwWgSpUq8k8vikXOJWEuci4Jc5Fz6T6i18O5c8qynR2Y+f5LziVhTnI+CXPJ71wq7hBnGSAthBBCCCGEEEKUEAm6hRBCCCGEEEKIEiJBt6hUUlPh22/h+PGyrokQQgghhBBCSNAtKpk5c+C556BNGz3fzDmdZ5n//oNevWD16lKunBBCCCGEEOK+I0G3qFQOH1a+63QaXpjsxwfjd6DX6U3KvP16Ev/9B88/rychoQwqKYQQQgghhLhvSNAtKpW4ONPXMxb1YOrzO03WXTivAyAjQ8Mvv+R9nJVz9tCr5XF2rg8qgVoKIYQQQggh7hcSdItKJSfotrLSGtbNWdmFG5eVJu2UpBQSUlwM21atyn2MpPgkXpjalv+CWjJtuj53ASGEEEIIIYQoJAm6RaWh1+m5GpcJQNOGiYx4eA8AWp0VF89cASAm7KrJPvv2QWio6XE2/RhMZrYtABdjPUq41kIIIYQQQojKTIJuUWncvH6TjEwbADyqRuDTKNuwLTIsCYDoi7kHca+au9vk9frf1X+LuCQPsjOz79xFCCGEEEIIIQpFgm5RacRF3TAs13BLp049K8PrSxczAIgKT8213/fr66HTKuO809N0bD7QwrBNp7ckLjK+pKoshBBCCCGEqOQk6BaVxtWYW4ZlD/cs6jasZngdGal8j45SW62r2KYAEHG1Nrv/OAnA1m0WpKRXNTlubLikOBdCCCGEEEIUjQTdotKIi0kxLHt4QN3GrobXl6KVMdrRMeop/+LQw4blb5clA7B+fe7jxly6lXulEEIIIYQQlUSvXr3w9fU1fPn5+dG3b1++++47s73H8OHD+fLLLwF4++23efvtt++6T2ZmJr/kN91QIfz222/06tWryPubi9XdiwhRMcRdzjQs1/CwpFbDmlhotOj0lkRecQQgKtbOUGb82w1Ytv4mt9IcWflXF/os2M8ff3TMddzYy/JsSgghhBBCVG5Tp07lkUceASA7O5sDBw4wbdo0nJ2dGTRokFnfa9q0aYUqt2nTJpYsWcLjjz9u1vcvbRJNiErj6lV1ei8PTzusba3xqn4NgEvxdQCIjnMCwNoyk3rNvJn+v2OGfZ59tT3XlOJUr64eKzajbUlXXQghhBBCiDJVrVo13N3dcXd3x9PTk8GDB9OxY0f++eefEnmvatWq3bWcXl85pu+VoFtUGnFX1dPZw9sBgDo+ypRf1xIdSE2F6Gs1APByi8PC0oI353RnzKNK9nK9Xt1/zOgsw3JMTIlXXQhRToUHR7HwnZ1cvhhX1lURQgghSp2VlRXW1tYMHz6cDz74gAceeIAePXqQnJzM5cuXGTduHAEBAfTq1YuFCxei1WoN+/7777889NBDBAYG8v7775tsu7N7+YYNG+jbty8BAQE8+eSTnDlzhoMHDzJlyhRiYmLw9fUlOjoavV7PokWL6NKlC23atGHcuHHExsYajhMXF8fzzz9PYGAggwcPJjInsVMZk6BbVBpXr1kblmt4KS3adeuq28+dg+u3XADwbqQE3xoLDYvXduDhdur4bivLLMaOTjO8Nvo/FkLcR/Q6Pf37ZTDhw+6MfjKqrKsjhBAFOnkSuneHpk2VrxYtYPHisq6VMDj7Gaz3vvvXzgG59905oHD7nv3MbNXNysrin3/+Ye/evTzwwAOAMj56zpw5LFy4kKpVqzJ+/Hjc3NxYv349s2bNYuPGjSxZsgSA0NBQXn31VZ566inWrVtHdnY2R48ezfO9du/ezbRp0xg5ciR//PEHzZs358UXX6Rly5ZMnTqVmjVrsmfPHjw9PVm9ejUbN25k3rx5rFmzBjc3N5577jmyspQGs1deeQWdTsfatWsZO3YsK1euNNvvpDhkTLeoNOKuq1nHa9R2A0yD7n371GXvOraGZWtba375uym9OwVzMKQ5w/seoEGTrtjaQkaGBN1C3K9O7bvAmUgfAHadaIZOq8PCUp5VCyHKp3fegV27TNe98goMHw4ODmVTJ2Ek6yakFaL7ZHrtPNbFF27frJv3Xi8jM2fO5IMPPlDeMj0dOzs7Ro4cyYABA1i7di09evSgVatWAOzfv5/Y2FjWrl2LhYUFDRo04K233mLKlCm8/PLLrFu3jjZt2jBq1CgA3nnnHf77778833fNmjX079+fp556CoDJkydjbW1NUlIS1apVw9LSEnd3dwCWLVvGzJkzad++PQDvv/8+Xbp0Yffu3dSuXZvjx4/z33//UatWLRo3bkxwcDB///13sX4v5iBBt6g04m55A+DskIxtldvdy+uo2/fu1QMaALy9Tfd1cHFg78mmnD54nqZtO6DRQC33JMKjnYi5lAzIp5UQ95s/18YCStCdllmF8OBLNAyoW/BOQghRwi5dgjFjwM8P5s8HjQb0eti7V9mu0YCVFWRlKV+XLillRRmzdgR7r7uXs3PPe11h9rV2vPd6GZk4cSJ9+vQBwNbWFnd3dywtLQ3bvbzUOoSFhZGYmEjr1q0N63Q6Henp6SQkJBAWFkbTpk3Vqllbm7w2Fh4ezpNPPml4bWNjw1tvvZWrXEpKCleuXGHSpElYWKgPwdPT04mIiCAjIwNnZ2dq1apl2Obv7y9BtxDmdDVRmSKsRi01QK7rGgo0AmDfjkRA6V5eO4+HiJbWlrTo4mN4XcvpEuHRLUi45UDarTTsq9mXVNWFEOXQpq2uJq+Dj1yRoFsIUeZeew22bVO+hg6Fbt0gNBSuX1e2P/IIBAbCRx8pryXoLieavqZ8FUX3P8xbl3y4ublRt27+n3O2tmpP0ezsbBo0aMBXX32Vq1xOgrQ7k6BZW1vnKgvKuPHCyBkT/sUXX1C/fn2TbU5OTuzfv7/Q71napJ+cqBTS0+Hm7R41Hh7q+jpGwfWlyy6GZW+3q3c9ppdHsmH5cvjdy9/p5vWbjOq3hyHdDnDzevG6+wghSte1a3AgpLnJutMn0/IpLYQQpePiRfj9d/X11q3K9/371XUdO5oOrysneaREJVO/fn1iY2NxdXWlbt261K1bl+joaBYsWIBGo6Fx48acOnXKUF6n0xESEpLnserWrWuyTavV0qtXL44ePYpGozGsd3R0xM3Njfj4eMN7enp6MmfOHMLDw/Hx8SEpKYlLly4Z9jl79mwJ/PT3ToJuUSnEGSUWNgm6fT1yFwa83ePvesxaHkYZzCMS76k+mWmZDO1znpV/dWH97g58+d6xu+8khCg3/v4bdDrTj8jgM+XjabkQ4v61YAHodOrr7duV7wcOqOs6dDANuo3iDyHMpkuXLnh5efHmm29y7tw5jhw5wjvvvIO9vT2WlpY8/vjjBAcHs3jxYi5evMinn35qkmXc2PDhw/njjz9Yv349ly5dYtasWej1evz8/LC3tycpKYmIiAiys7MZNWoU8+fPZ/v27URERDB9+nSOHTtGgwYNaNiwIR07dmTq1KmEhISwdetWVq9eXcq/mbxJ0C0qhatx6idQjRrq+mqu1XCpmpCrfO2Gbnc9Zq1aRnN1R6YUui56nZ7nhxxi67E2hnX/7bn7PIRCiPJj06bc606H5THOTgghSklSEixfbrru4EFITlZbujUaaNfONKeNtHSLkmBpacnixYvR6XQ8/vjjTJgwge7duzN9+nRAab1evHgxmzZtYtCgQcTHx9O9e/c8j9W2bVtmzpzJokWLGDBgAGfPnmXJkiXY2dnRoUMH6taty6OPPsrZs2cZM2YMw4YNY8aMGQwaNIjY2FiWL1+Ok5Myc9Hnn3+Oi4sLTz75JJ999hnDhw8vtd9JQWRMt6gU4s4eAdoB4GF1BFAD3roecSRcVLuWW1lmUaPO3W+evWqrrVqx0ZmFrsv0F3by/d89TNbtOxtAZibY2BT6MEKIMpKdrbR0Azg7Qw3XFM5frEpITGOys5UERUIIUdqWL1cCbFCuQ9nZytfmzcp0YQDNm0O1aqZBt7R0i8LYntNtIh/ff/99rnW1a9dm6dKl+e7TuXNn/vzzzzy3ffLJJyavhw0bxrBhw3KVc3Z25rfffjNZN2nSJCZNmpTncV1cXFi4cKHJuvHjx+dbx9IiLd2iUoiLzTAs13BLNdlW1zPR5HUt1zgsrS25m1q11SnIYgoxSwPAwS3BfLy8BwAajY4mjW4BkJZuxZEjpmWzMrT88PleHmh1jOF995CVkYUQouzt+zeKxERl+aGHIKC1ci3IzNQQGpq7fEZqBteir5deBYUQ953sbKVreY5331WXP/1U7XLesaPyvUoVqF5dWZaWbiHKngTdolK4Gqc1LHt4mjYn1/HOMHnt7X6jUMesVc/JsBx7pXBjOb/6ItGw/MmkXbz+ltqtfOdO5bteD4sXQ4NGFjz7Wme2H2/F6i1d+OnLg4V6DyFEydq0Ro2s+3c9S3OjfGrBwaZl026l0SUwDPfabiz7eHcp1VAIcb/56Se1xfrhh2HcOKUrOcDRo2q5nKAb1HHdMTHK1GFCiLIjQbeoFOKuqpkNPWpVNdlWt47p1AG1ayZTGLXqq13QY69WLaCkIiEukV+2KnMVOldNZMK77TEeupITdK9cCS+9BNHRGpP9V/1YpVD1EkKUDG2WlnmTd/DFj8pdq0ajo+/AGiZT7Zw+bbrPgpkHOXKhGQBvzWrGrRu3Squ6Qoj7RHg4GPeOfe01cHNTpgW7U4cO6nJO0K3TFb7HnhCiZEjQLSqFuKtqS3QNL0eTbXXq25q89q5VuPHZDi4OONonARAT73zX8t8vOkd6ljKX94j+J7CvZk+jRuDpqWzfuyeLzPRsPv1U3efR/tnUcVMeXW8PCiTqXN5ZHYUQJSsyJIaerYJ5Y04PMrLsAHii1wGqe7vRvKl6zQjed86wHB8PHy9tb3h9I9mNrz40anISQohiysyEJ59Up0V98kl44AFlOed7DhcX8PFRX0syNSHKDwm6RaVw9YadYdmjjqvJtroNTYNwb2/TFuaC1KqhZC2PTaiFXp9/Ob0evl7XzvD6xVe9AKXrV/cWxwFITrFm1owYcqYh7NYN/thoxZgnwm8fw4IflpxDCFG6khOSebB3JruDAwClhfu1Z3awYn1LABo2ssDGShmmEnxGzaL2wQdwM8Xe5FhzlzcnJanwsx0IIURBpk+HQ4eU5YYN4euv1W7lvXqZlm3fHiyM7uxl2jAhyg+zB90ZGRlMnTqVNm3a0KVLF1asWJFv2TNnzvDYY48REBDA0KFDCb5zsJwQhRR3XRk7bW+TioOzg8m2uk29TV7Xrlv4FOJejWoBkJpuY3jKnJe9e+HMGeVTsEsXaNahkWFbt45qd9MP5nkZlie9qkTxw//X0LBu5a910OsKiO6FEGb38jNBnI+pD0C9GlHsWH+Keat7YF9NCaitbKxoWjsCgAuxdclIzeD8eSU3A0DVqtCnnZI6+NrN6iz56HCp/wxCiMpn3z6YM0dZtraGn38GR6N2hK5dTWdTMB7PDaZBt7R0C1G2zB50z549m+DgYFauXMnMmTNZuHAhf+fMvWIkNTWVF154gTZt2vDbb7/RsmVLXnzxRVJTU/M4qhAFu5roDEANpxtoLExbst29nLC1VROteTesXujj1qqlLhc0Hurrr9XlF1803da9r3oQrU75dGxQ8xKP9ldSjdZvXptu/kEAhEQ35Mi2s4WunxCieFbN3cOqzV0AcLC7xb9bdHQbGJCrnF+ja4DyP3z2SASvTdKSna1se/NN+OyLqmg0yv/0nG+akXpTPsuEEMXz88/q8qxZ0KaN6XYHB9Mx3HcG3TJtmBDlh1mD7tTUVNauXcu0adPw8/PjwQcf5Pnnn+eHH37IVfavv/7C1taWyZMn07BhQ6ZNm0bVqlXzDNCFKEh2ZjbXbrkB4OGamGu7hQXUqaNOEebdrHGhj20cdMfGwpGtZ/hi6k6SE9RkbDduwNq1yrKLCwwdanqMpm0b4u4Yb7LuleciTKYtG/m02hq+8hvTskKIknHu+GVemh5oeP31JydpFFg3z7LNm6mpf4c+Ycemv5T/35o14fXXwa9DQ4b1UGYgiEuswfLZ0tothCienASsFhbw/PN5lxkzRvlety507my6TVq6hSg/rO5epPBCQkLIzs6mZcuWhnWtW7dmyZIl6HQ6LIwGmpw4cYLWrVujuT0wRaPR0KpVK4KCghgyZEiex9dqtWi12jy3lRc59Svv9axM4qLi0euVbGUebil5/u5btdJw4YIFNWvqcXfXUdg/T82aGnKeTa1aEslPvzcmW9uMk8G7WLpe+XT7dfE+MjK6AjD8qVRsbGxzHb9by1DW7VSyoTvaJzHi1QCTeg5+rjkvz0gjPcuenza34JObmdjcHqYu55Iorvv1unQl4irO7o7YVbXLc/ubMz1IyVD+v0f3380T4zvl+ztq6q8e4+IV5U7WylLLV1+BvT1otTDlXWfW/qeU+WGdGy+9pxwrOxtefFHDnj23e+FkJuFX+xxzFtWgoX8dzO1yeBw169bI1evHHO7Xc+m+pNViaVjUUugPzkIfXs6lgty4AadOWQAaAgP1ODjkfe8yfLjS2l2rFtjamv6ZnJ3B3t6CtDQNly7p0Wp1pVX9UifnkzCXO88lc51TZg264+PjcXFxwcZGHTNbvXp1MjIySExMxNXV1aRso0aNTPZ3c3PjwoUL+R7//Pnz5qxuiTp16lRZV+G+EXrOElCCbluXagQFBeUqM2qUNS4ubnTseJNTpwrf7dPy1jXgIQC+X6feHP+0pQ2jdx/AvpodP61Vz/fOgf8RFFQz13FaNI9j3e0n1k8/vJewSA+446lzv443WberJzeSXRg05AazZoVjYSHnkjCf++lcOrgpignvPkq9GlF890M0VZxNE55lZ8PWrYEAuLmk8/yblnleO3LYOplOBVbFNoUFH2ylTh1vDLtVBb865zkd6cPBkOb8s+UENTyy2bzZlZUr6xvt7UxYVHsO9LjKos+2UD/Ao9g/b45fF8XwybcDeKjNXj5akvfDBnO4n86l+5VFWho5TSgnT55EZ29fYPmiknMpbzt2OKHXK/fJTZpcJSgousDy+d0+e3g0IyLCnvBwPcePBxmSsFVWcj4V3ZIlS9i1a1e+26dPn06zZs1KsUZly9znklmD7rS0NJOAGzC8zszMLFTZO8sZ8/HxoUqV8j2XsVar5dSpU/j7+2NpaXn3HUSRhAdHMXZkAl41Uxg4Uh1/2ci/CYGBeScie/BBgNwBcUHSrpzOe31mFc4dhEce92bXSWWMeAOPSwwZ9VCerUsNZzZk595jALw3vy1utVxzlXnn4zD+fkhHSooF27a5snq1EyNGBMm5JIrtfrwuzXo9E53ekotx9fjvt3CmLTAd7HjwIKSlKb+L3n1saN+5fV6HMdD56/ByvUzMDU/cql3njzWxtO/TP1e5wSPg9IfKcthFf/o8pOftt9VrgqurnvTUTFLTbbmaVIPRL3dl3XfneGBYy1zHKorntikf61uOdOY7tzjcaxc+h0Vh3I/n0n0rRc3C36JFCyVjoBnJuVSw779XrxvDhlUnMLBo/8s+PhZEREBGhgW1awdS3byXhHJDzqfimzNnDunp6QD8/ffffPvtt6xZs8aw3cnJKVfsVhndeS6lpqaapeHXrEG3ra1trqA557WdnV2hyt5ZzpilpWWF+UeqSHWtaHRaHSOfvsm+My3hBPy+U2259vS0wJy/9toN3ExeN/QIJSxOefK8+u9OZKbvRqdXWqkefyQcK+u8x4M6uzuz7XirAt8roLMPv/wCAwYo3cMWLLDk8uk06nvvxdJSw6ND3ej4iL8Zfipxv7qfrkvBoWrr8fyVgbz6fgqObmra3z171LI9etz9umFpacnGdUn8+es5hv+vEfX88v5fHDoUPrwddP/xhwWD+15m2zalLvXrZREaZk1iXCoDHjzH3tMtSE6vxqPP+nPaNzrf8eT3Ii5J/blP7o+mTz3ztaIbu5/OpfuW0d/X0tISs364mryNnEt52b1bXe7e3bLIv37jcd3R0ZZ4lMwlodyQ86nonJ2dDcuOjo5YWlpSs+a9NVZVJjnnkrnOJ7MmUvPw8CAhIYHsnJSuKN3I7ezscHR0zFX22rVrJuuuXbtGjRo1zFklUQl98/Ee9p1pYXidkq72fjD36VOrQQ08nK8C0LhWOPsPu+Djo2zbsUPDlyvULudPjPIs9vs98ohpJvS127owe2VPZq3oQe8hDYiLuHuStd9+UzKY5iR3E+J+k56SQehl9X8zIcWFrz48ZlJm17/q/1L37oU7bsseTXhnYQ/q+XnnWyYgAOrVU5b/+w8WfnoJvV75qB3Rdy8WFuDq6cK/+xvTv6My+W5mti0bfgwvXCUKoM3SEn/T3fD6+Am58RSiIkpKwjBsxd8fXHN3jis0SaYmzCE6OhpfX18WLVpE27Ztef/99/nyyy8ZPny4SblevXrx22+/AaDX61m0aBFdunShTZs2jBs3jtjY2LKofrlg1qC7adOmWFlZmYyLO3r0KP7+/iZJ1AACAgI4fvw4er3SFViv13Ps2DECAnJP1SJEjssX43jrE/UcyQmIDa+r5z88oSisba35c+01Zr26gz37HXCv7caIEer2s5H1APDxCiegi49Z3nPMGHjvvdzrUzOq8uu3Z+66/5tvwoED8L//ga7y5kwRIl/njl0yTM+XY96K5oZZB7RZWnbvVbrI1XC+TpMm5ntvjQYGDVKWs7Nhzgp1jp/h49Rx3fbV7Jk+U31geCG0+B/H8dE30OnVQPt4RGCxjymEKH1796qf34V9KJgfmTasfFi7Fpo2BW/v0vtq2hR+/dW8P8exY8dYt24dI4xvhvOxevVqNm7cyLx581izZg1ubm4899xzZGVl3XXfysisQbe9vT2DBg3i3Xff5eTJk2zdupUVK1YY/jDx8fGGsQJ9+/bl5s2bfPTRR4SGhvLRRx+RlpbGww8/bM4qiUogMRGOHlW+Xh4VRlKqEwCj+u3m2BEd/vWUcRbWlpk0aZBg9vdv07sZb3/egxp1lBakOx7qAfBEv0tmzRQ8YwYEHc9i1YKNfP+52g92zW/OBe6XnQ0REcry9esQdEyyeIr7z+kQdZiSnXUaANduVmfJvAgATuw5z8005TrSLfC82RMLDe6jNiflBP+d/U7SMMC0+3gjf3VOwtAIh2K/b1z0DZPXx48X+5BCiDKQM1UYFD/olpbu8mHOHAgJgZiY0vsKCVHe15xGjhxJnTp1qJfTpasAy5YtY/LkybRv356GDRvy/vvvk5SUxG7jsRP3EbOO6QaYMmUK7777LiNHjsTBwYEJEybQp08fALp06cKsWbMYMmQIDg4OfP3118ycOZNffvkFX19fli5dWu4TpYnSFRICLVvC7Wc1QCcAqjteY+5SP9xqubL7kD0r5u3AL6Aang1al3id6tSBnj2y+W+H+u/zxKj8u5sWVXN/C7K1tQhoEcBH88IIiW7IntP+xIRexqtR3l3ZY2P06HRqBLHt5z20alPMT2whKpjgcLVp573pN3n7XVv0egvmfNOcFybDzi1xQFMAuncxb+8YgM69vXB3jDfp6j3yqcRc5dxqueJSNYGEFBcuRBd/bMyV6GST1+fPw61bUK0aXDwVydpvL9Ljoeq0f6h5sd9LCFFyjIPubt2KdyzjoFtausvO5MnwzjvKNbm0VKum9H40Jy8vr0KVS0lJ4cqVK0yaNMmkt3N6ejoROa1D9xmzB9329vZ8+umnfPrpp7m2nTt3zuR1ixYtWL9+vbmrICqRX381DrhVn80Mwa1WFwCc3J2Y9EmPUq3XiIf38d8O5ZPQzzsYv44ldxOrsdDwRP8o3lvSEL3egrXLz/PqrLyD7qhTpwB1vPv23VUw8/VWlCM6rY5xQ/fw7/76YOcBFjY0bQqrVlFpM9QWxmmjSQceG+7B0dPwyy9w9SpMnw6Rx9Wpj7r3LX4uhjtZWlsyoPsZlm9UHnjZWqfz2Ni8h0418orl8HkXoq7VIj0lPd85xQsjLiYt17oTJ6BzJz2DBqRzKqIHfK60ur/+SioDn2uHhaVZO7wJIYopORmOHFGWmzYtfq6aWrXAwkLpri5Bd9kZNkz5quhsbW0Ny5o8uonl5PXKmdv6iy++oH79+iZlnJycSrCG5Zd82opy7dwZ9Sby2Wfh5dHRfDd7D8++2rkMawXDxraiXo0oAF4Zd+MupYvvidG1Dctrfs8/o0pUuGlL164TzchMM39Lnigftq09zjcbuhFxtTYRkTZERMDmzUrQfT8LDla+V62qtPJ8+inkdKJauFDPP4eUzOOuDjfw69CoROoweJga2A/sfAjnGnnfZDSumwiAXm/BxZCbxXrPK7fq5Fp3/N/9BO06x6kINefE3tMtGPJCB0Y/ug+9Lu8pFoUQZWPfPmUGEyh+13IAa2vIaZwsqaB7yxZYvBju06G69y1ra2tSjKYWTElJ4cYN5Z7Y0dERNzc34uPjqVu3LnXr1sXT05M5c+YQHl78xKEVkQTdolw7d/QiABqNjqVLslm4wpuRb3Yx6/jponBwceBUiAvnj0Uwdlox+34VQtN2DQ1j1w+E+HPpbHSe5aIumQbYqRlVObQ1pMTrJ8rG3p1qPzWHKhmG5aiosqhN+ZByS0t4uBJINmumtPDUqwfvv69s1+s1pGUqEXi3wPMl1tLb96nWjHxkD20an+HDz3IHwzkate9gWA6NKV6TVlxyHkH30WzWrLxieO3qoD4kXLW5C8tm3Z9j64Qor4xzMXQ2U/tCTkPjtWtww8ztBBcuKDOvvPQSfPll/uViY+H775Vy7dop+XHScnfOERWIv78/ISEhbN68mfDwcGbMmGHSlXzUqFHMnz+f7du3ExERwfTp0zl27BgNGjQow1qXHQm6Rbml1+k5F6WMla7rHoN9VbOPhigWBxcHGresV2rv98Sj6jQLv/yc9+PkqOjcDyO2bS75lnhRNvYfUZNv/faT+ne+Gnf/pq0/e/Acer3yf9C8jvrA6ZVXoKW/aU+Qbp3zGLtiJpbWlny3qQuHzzcr8DrR2FfNNn7hQvHe88qV3OuOna3Bmv+6KnWy0HL2tJblRoH2xPfaErwvtHhvLIQwm7Nn1WU/n5ugv6M3ii4Lki9C2hXIugm6bKVMcgRE/Q7BH8KhF2HPk4ZdWqijzjhxwrz13bVLzbS+bl3eZY4dUwL/ESOUFvHDh2H16oKDdFH+dezYkVGjRjFjxgyefPJJGjdubDIL1ZgxYxg2bBgzZsxg0KBBxMbGsnz58vu2e3n5imKEMBJ36So30zwA8K0bB9QueIdK7okXmjH99gfUz3/W5808phWLirHNtW7bbhdmlnDdROnTaXUcPNMYUKbOa9uxmmFb/PnjQMknFSyO9JR03nzuIMdPu7B0eRWatTdPN+/Tx9WHD34NrgDKfGBWVvDN/Cja9fYxTKvV/SEPs7xncTQy+rFDixn7Ggfdtd0vExXvyYmLvoZ1vR6wpEYdd557252jR3fy1a/dSc+y54mn4PDpbKo4yC2BEKUqKQSu7YfkULgVCrosQo5+BtQDwPdsHWiwBaq3V/dJuQQbG5seR2MB+jwetmZ/C1b2GM/Ge+JoGj172ucuW0TGQfzBg8qMM87OpmXmzoXMPEa6zZ0L48erw39E+TFkyBCGDBlieO3t7Z0rN5dGo2Hy5MlMnjzZsG7cuHGGZUtLSyZNmsSkSZNKvsIVgLR0i3LrXJDasuvbIKWAkveHRs1r0KqVsnzsmDIdxJ2i4hwBsNBoDWPOD5xtSkqS/P4qm5AjFw3T53VsfhEnt6pYWyp3NfEJVcuyagCc2nueD8bv4JdF+4i+cNlkW2Ii9Ol6mYW/dGfv6RbMfDvebO8bfCrbsNw80HQarta9mjLzf0orb4cmpwjo4kNZa2x071zclu64K8pAUHt76N4qLNf2J55Ql+d9154W9ZUbqDORjXj9TQm4hSg1ej3seJQN773Fko8Okn3yU4j8BX3UekIuOgNQt3oEVayT4OK3pvtmp+ZxvHx6N6Ur116ToPufraDNyLt8EQQFqctaLWzfbrr92jW1BdzNDbZuhaFDldfx8fD112arihDlmgTdwqy+nL6TLs1PcuDv4GIf61ywOl7V17eAgveRvn3V5V27cm+PuqpMUeTpepU+nZREFVlaG/ZsOpu7sKjQ9m9XA9kObdPRWGhwd7oOwNXEsu+69ejgKsxY1IMnxneito8nddxjePKRs8yfr0yBs/u4ms10+xFfdNq7d4m/cTmBxKtJBZY5fU594ODXNvfUJjMW9SA8OJodR32wtLbMtb20ubmBi6NyEx0afPkupQt2JSoRAA/HWFoGZJtss7KCwYPV13ZV7Viz1o4qVZTf+5IlsGdPsd5eCFFYGg0HL3Zh0Ocb+N+3S/h252gAriTWJCnVGYAmtULA1h3saprua+0AdZ8ErwFQsze4dwaXllCrH/hNhc5roO9RGHwZqtYDoHlzsLBQHsqduOAFR18xy4+h18PJk6brtmwxff3dd2or9+jR8MAD8J5RT73Zs2Vst7g/SNAtzObsoTAmfqS0XD3/Yu5uzvcqJES9CfdtXq2AkvcP40ymO3eYBikZqRlcTVKC7to1rvNAb7Xlavs/pmNZRcV34IA6zq9jdxcA3J2U7NfxSW5lmpU6PSWdS/Gmc9dHXfNizeamTJoEp06Zlr+R7MqJ3ecLPObRHWE0bKzBu44lwfvybxIOvlgLAKcqSXg1rJlnmXp+3thWKf41ylwa1VQekEVe9SA9pWjjzLMysrh+yw2Ami7XadnO9MHLQ330uN4x8UGT1nWZNUu9DXjhBcgwXwOYECJHZkKusdk/HR5jWN569T3of46Q+moWtabtfGFQNLR41/RYDg2g80/QfQP0+hce3AMPH4Mef0LAR1D3cXBtBfY1lW7nKL1ffBspuWBOR/uRFbIczs5VxoMXw6VLkHTHc9AtW9QfVa+HpUvVbWPHKt/9/NTW7itXYPnyYlVDiApBgm5hNl98ovZ3Ph3ZmNNBxZv+5lyY2mLlG2j+uXQrok6dwNJSeVq9868Ik23RF9QBnbVr3qLnALXr7I4D9/GkzZXU/iDlf8LSIpvWPZSBwTVclYcrWVobbl4vuEW4JCVeVf/363tE0jPwOFVsTYc41KsHr44MMrzetkk9f2/duMXli3GG11lZ8NzEuiSmOJOS4cDns2LJy83rN4m6prRu+9W7VOazHBSW8bRh4afzGDdSCFejrhmWPaqnEtjFdF7UJx7Yn+d+L78Mbdsqy2fPwuwPcideTLuVRtiJS2iztEWqmxD3DV22MuY6OUL5HrsZ9j4N673g4gpDMb0eft+sfi4fOlULHH04G6E+KGzSpj5Y2pitagGt7ADIzLYlJLYJHH8T/moOET8Xubt5XknZLl1Sh8rs2KEu9+wJPkYjeqZPV5c/+UQe+InKT4JuYRbXY2+walMbk3VrfnMs1jHPXVKmz6lqm5xvi9X9xsEB2jRWuoqHRDcg7pI6FjYqLMGwXLtWJu61q+PtqfTZupTQpHQrKkpUUnwSZ6IaAhDQ4AJVnZQHVO6uaivp1ejEsqgaAAnx6tCQrq0i2X68JUk3bTl6WMuCBfDuu3DgALzwktqDZfsu5WeIDbtCowbpeDeqzuzXd6DX6fn8czh5Su25sXZbS1Jv5h7XePqgOgltc59Es/9cJaVRA3U2ggvB1woomb+4KPX/v6Z7Bi4ezjT0UKZctLVOZ+AIvzz3s7SEb74BS0ulaerDT6sapmoESE5IJrDpFRoF1sXZMZWH2gbx2+LoIrfIC1HpZFyHs5/Bjv7wqytsqAd/1Fe+73gELv0E2jQ49gakKQ8Tg4JM58yOiICrVyHEaIbPpk3NW02Tcd2Rt1/cPAf7noJfHOCvAAj/wXQnnRYurlIeHmTn7gNuHHS3MboFzOlibjxe+8UXTfcNDIQBA5TlmJjcY8GFqGwk6C4hf/yhtB6sXFnWNSkdX3960jD3bY41a3LPdFFYGamZhMcp3VN9vKMqTItVaejeQb0p3/WXmu44KknNyFS7iTJfr6e3kqH0arwV2cXrRSbKkUNHbNDrlct3hzbqjZB7dfWPHB9bvJ4mxZEQrwbELs5K66iVjRWt2lgyYQLMnAkeHtCkTQM8XZQW7l0nmpKZlskXH4RwNckdnd6Stz7rwZhBh3j3XdMLya00R37/9jh3CjqsBp5+zcque/29auyrPlC4EFK0YPZKlNqTwKOGMvTk03fjaFH/HPOnH8Kxev7j/AMC4PXhSoK5zGxbpr521bBt/bdBnI9RWs2T06ux7XhrPl4+kAUzDhWpnkJUKnodbOsJx1+H2E2QfSvvcjauUO8Zw8v163MXOXzYNOhuYuZn5SZBt2YWuHdVV+izIfGkMhWZseybcGCk8vBgfS04MgFuHDMkbjMOuo0SWPPPPxAcDL/9prx2dzfNKZHj2WfVZckpISo7CbpLgF4Pr7xiwZEj8OqrRQ88K4rMtEwWfq98Omg0Opr6Khkzzp8v+nyQYaeiDdP6NKkv80wb695T7Xa/8z+1hSzqsrq+dlPlJtnzdq98vV7JEioqhwNH1OleOvZrZViu4a5ebK5eLrvMNAnX1cDRxTn/C6DGQkOvtkqW7ZQMB/5bf5KlvwaalPl2Y3vS0pSHbl07qF3mV/1gOib7398vMfmTlobXLVqXfTK5wmrU1NmwHBpWtAeMV2LV33lNT+Wjfei4jpy46Mu4Gd3uuv/ML9rg4awE2xv3tuJ6jJKUb81atXuru6N6Edm09Y4B4kLcjzQWSuKyKrenNLWrAd4Doc4TUOcxaDAauv2uJDVruxDslWkK8wq6Dx1S5+h2cVECVXMyCbov1IbeO6HnP1BvODg1B42lkqTNWJZRPpisRDi/EP5urbTob3+QE4eV+zN7eyWornm7U+I//ygt31m3b1FGjwabPHrKd+6sLkvQLSo7CbpLQGx4ClFRyo1TYiLE5j38sNJYs/gQlxOUK+2gLoeY8Ip6Zf15ddGmqjoXo45H9G1dv4CS95/Oj/hioVFaD3cdVrvdR0WpZWrf/vyvadQr/3LxEiOLcmS/0fDcDh3UZfca6iU9Pq7sBsgl3FADbReXgoPIXj3VhIAvvVadxBRnAFrUP2c4zwHq1NGyaUs1w1R4/x5pSWyY0kr+88/Q7/E6JKcr3dV7tTxGt4EtzPKzlIbG/mrOigsRDgWUzF/OdGEANWvd+zjQKo5VeLb/GUDJCfDz0mBuXE5gy2HlQYa3WyxXbrjh46UkfTsY0ozkBEnQKAROTeHB3dDnAAy+ogTZXX6GLr9AhxVKEG40Njs0VGkFBqhbVz3Mtm0QHa0sN20KGjN38PP0hOq3h5GfOIHyBp4PQqdV0O8UPHZLeUhgzNoR2iyC+iPA0mhu76wkboUfICxKefjmX+cMVtnX6NNH2ZyZqY7RbtbMtBXcWK1aUP/2Ld6hQ3nP5S1EZSFBdwk4uce0ZfaOueQrFW2WlrkL1cexk96wZ+gQPRYWyo30mu9vkJWRxdrF+/n0tR3ERxVuvOK58+qnjW9gLfNWuoJzqu5IYEMl0/OpCB+uxyrnW15Bt2d1tavb5bCiJWgS5YtOp4yHBuUGqmFDdZu7h9r6G3+17JJeJVi2Myy7+HQssOwDA9WHahfj6hmWV3+vYf2yI1SxTcHaMpNvPgmimqMFIwYrLeM6vSXL54cyaRI89RRkZSnXjEG9QvhzZ1MsLCvOx5urpyvOVRMBCI2qUaRjXLmiXjM9ahVtnvaR49Rr7ao1bqz/LphsrTUAj/c9j4WlBT27Kg9Ss7XW7N5fJc/jCFEpaTMg5i84/BKcX2S6rWpdqN6+UJHy77+ryy+9pLZo792rrjd313JQqpbT2n31qpI13ISVPdg4m66zcQKfl6DjShgcC22/Uh4i2NXkZKT6YDOgXjDYuplMa6rRwGuvwZEjytSI+enSRfmeng7HjinLqanw2Wewc2eRflQhyqWKc1dSgRw+4mLy+tzBU/mUrPgWfXKBk+HKJNptGp+hS/8W1PDQ0CtQGW8ZcbU2tWsm8PhLHXn78x74Ndez/psDdz2u8YMKmaM7t+7t1TGXu/9SUoNGXVS63lpb6/FQerBR01Yd93ol9I6xWqJCunDqGgm3hy536GB6j1ejQQPD8tXs1qVcM1WCOrQaZ9eCW13rNvWmQV3TpGgPtDyGf2cfBjzXnkuh6UScu0Gfp5SfZ/g4NUifsbAL8+er+73wAqzd0gT7avZUJBoLDY29lIdikddqsXhRFl27wvDhys1nYcTFWxuWa9YpWtd6/84+BDZQBpUeOtecOcvV7vpPjFCayHoNVrM7bf9PbiEqg9iwK/RqeZwnH9iXZ4JCUMYad+kCU6ZU/iFzJvR6uLoHDr0Iv9WEnf3gwmK4WPSEPcZdywcPhnbtcpcxdxK1HCZdzO91+J+NMzT+3+3u8rGccP5TPW4bF9BoGDoUHnsMurS9xs7PXmVeLz/sD/aDhPzfLK8u5m+8Aa+/Dn37wg0ZYSgqCfnENDOdVsfek81N1p07VTmvGJGRMPVT9XHs/M+yDQnPnhiqfnDHJaotN/E33RnyQgeG991D2q38x5waB93GU0wIRfeedoblnduVsZxRkUrvAi+XaCxu/2d7eqktn5djZbqfyuDQNvWfo31D02mg3GurvU7iE4s3e0BxGAfdLi75l8vxQB/TFtNJr6rnanVvN2oZzV7QKLAunZqdNClva6u0iixZAlZWVEiN6iQCyrRhL423Zs8eWL0a3p8cVqj9r1xTf4cedQpoVrqLkY+rU7WdC1O6utevr6dtbyX7effuatlt24r8NqIcWbUwhP+CWrJmeyfmvPFfnmWmTVNaYj/5RE2OVanpdRC5Dv5uBVu7QuhSZUxzjqRTkJmY3975unJFHR7k5weNG6tT9hkriZZuMA26g4LyL3fiBMyZA3Fx+RTQaDgRol7cA/r0BJRx27/8Art/WEfXGl9A0hmI/Qu2tIUzs5Vs6HfIaekG5RxLSlKTEKenw+nThfzhhCjnJOg2s5N7z3M92fSGx3i+6cpCr4fx4yHl9pDtcS/q6Nxf7Wo0ZHRzqtqq4/36dTjEo50OGl6v3tKF6ZPyv5k8d0Y5sHetDKpWvl9fsXV9xAeNRgmydx6qQUpiMgkpygdgbQ/1IY9nbXV86JU4yQBfGRw6qGYob9/BtBXZOPFOWSbOS0xUlwsTdPfqpS77+sLDz+ZxF2pk7Eg1M3vbZpc4fhwmTTL/GMjS1Ngv71/U3MV1Obnn7mOU4tKbAeBQNcswhVxRPPViMywtTKc6ePxxjeGBavXq4OOjPFQNCoLr14v8VqKcCA9Tk/DNWdWdK+FXc5XZtUtdfvvtSjz2VpeldB/f5Ad7hkFCkLrNsgrUexa6roch8bm7YhfCrl1qT4Gc6bLyaukuqaA7MFBdzq+lOzsbHn5YGYf92mv5H8t4/xaBdzzttL/9oFSjJMRFlwVBb8H23pCZYFK0aVNwdlaW9+5VHjYa9/CJiMi/DkJUJBJ0m9l/f+X+sMqZb7qiSIhLZPbrO9j47SF0Wl2eZX77DTZuVJZr1oRZn5ieSq6eLvy99iIfjN/BmYNh/Lm/HRt2t2PV3D3Y2ijpLJeuaU5S0p1HhmvR17mRpNw0+nrII868uHq60KKe0q38eFhTNq9XB2fVrqk+7KhZx9mwfDnONNuzqJgOnahuWG7Ts6HJNicnsL7dy/hq7ktRqUmIVKeyc6l29/7RDz8MXl7K8vvvY+ipkZ+Rb3Rmyfu7WPHJbvYd9yqxrpilacDwZtjYKD/7E0/AC8OOAqDVWTH2+Sy0WQX3VLlyVXkA41HTusByd+NRz52+7Y6ZrHviCdMy7doqF269HnZsOFOs9xNlLzpDzW6fkuHAzNdCcpVJNeqYFhpqOv9yhXZnX3kLa4j8BW4a/Q5cW0PHVTAkDjp9D7UH5c7yXUjGSTBzWnjvbOm2sVGTi5lbkybqZ8SmTTBrlmnPJFCSvOUkXj1yJO/jaLVw6vbIyQYNwPHOjlWeD8FjSfB4CjR7C7j9RPTqDtj5KGSrnwsWFmoX8/h4+PBD00NJ0C0qCwm6zWz7LvVC7OqgNAFEXPUmPaXsMgnfC22Wlkd6RPHWZz0Y8Fw7mta9xNcf7CIjVa2/TqvjzdfVx9xffqk+pTTW5dEWTP+yB03bKYGBxkLD8Ne7MPo55YqfnAzLluXe71yQmvDLt2E+c14KRj6ttva9Nt3LsFzbS51GzKOOGqBdjpcuAxVdZlomQWGNAPDxCsfFw9lku0YD7tWVv3/8lTKcMixeffBzt+zloDwsCAlRbq4ef/zux9dYaHjxnW6MfqsrVjYVtD/5HVq3hkuXlO6nP/8MC1Y2p4m30hvo0LnmLH4///l0MjLU3gXGMxYU1cjhakt344YZJq1jAN381Tm6t/1VuOSYovyKvmI6vGPZhs6cPlDwsIb3ZqaTGH2pJKtVeHo93Dha+MHm6dcgdBn81xcOvZB7e7XbY9rcu0CPv+Ghw1B/eJEDbWMHjFLatG+vfK9eXQlcc/j4gKVlsd8qTzY2apB/8yZMnaokXl1pNET9kPrvTWRk3r/WsDC1Ndq4y7qBpZ2S+dzSFgI/gd47wPZ2V6z4vbDnCaX1+zbjcd13JngLDy/0jydEuSZBtxllZWSx64TS5FLTOY6+HZUnpXq9BaEnogratdxY8sEeDoT4G16fj6nPuBndGNzzJHqdcuXdteEk4ZeUVpVeneMZOvTe3uPVV9XlBQuUrkzGThxWH7v6ynjufL04ta2hO3FUrJo4qnYd9d/atootrg5Kd/MrNyrOvMUibyf3hpKZrfRYaNc872z07nZKwrz4a5aG/9m7SU9J5/O3d/DPT0fNUs+EW8pNvK11eqGTmjk4mE6fcz+qWVMdImBbxZali9SHF1PmtuJqZN5jBozHXeYkUSyOR0e2MgT8rz13Jle3/abtq2Nlqdwwbz/gXfw3FGUq5o5LiU5vyVsTY+DgWJP1Gg307aQMdbieYMcnL/0Em/whaAqEzIczc+DkDNjRH+LuGBuu18F/D8P+kRA0FS6tgeSLWOhSIXYTHH0Vdg2CIxMhoxBjFrSZcGWbst8fDeDvNkrgbfKDaNXATpcN0RuV91hfEw6NhctbIPx7SL/j/6rj9zD0mjINWK2HzDZuJSNDzc7t42Oa0du4i3lJ99xZtQqGDFF/rJQUJXGZ7nbHxsOH1bLp6XAtj+dqxl3L8wy671SjG/T8G6yUaR2J/ROOTjJsNh7XfSdp6RaVhQTdZnTo37OkZChPQnu2DcW3sfoU79yp8tcacOIEtGkDI0cqXVFjQmOZMlfNVtuhiZp1ffOhtuzYrvw8q1aorc9jn7hwz59Hvr7wyCPKcmQkrP/J9Hezfac6TrXzAxWra35pqlJF+aC8U+26diavPV2VG5jLN9wLHYSJ8unQbvXmsF2bvLsb13BVArUsrQ1J127mWeZO7088wGuf9qDf8BZcOhtd7Hom3FKugy5V8xg/Igqt64AAnh+gDKZNTq/GV7PyHm5zJUIdS1DTrfi9g+yq2nE8xIvw4GjGTW2Za7t9NTva+Z4F4FxMA/5adZh9m04RE3q52O8tSldamjouv3UrLd5usQBsOtyNnZtNrwWtWsHi8R9jY6X0fFuwZSLp8RfgzCdwbBIETYbgD5QgOu6OuZ4yrsHlvyF8FZyZBXufxHKTDy0vdMNy90A49wVEb4DzX4LFHUOhQpfBf4/AkVeUoHxLR/jVSRkffO4LSIlQykX8YLpfyFz42QbWOsNaR9g1QHkPvdG1085DSfZlrFpDsC16MsL8HD+ujoXveMdMisZBd0mN587RsCGsWwfnz6ut3teuqd3FjVu6wXQ60hz3HHQDuLaC7hvAwkb5vTd63rCpbVulFT6HkxNUux2fS9AtKgsJus1o+9/q09lePbPxbapeQc6dSc9rlzI1eTIcPao89fTzg6EDbnErTRmY8/yAXew/68/yeepN3mdf2JCSlMLabYEAONonMXBU7huywpj0itq8/fks9UZNp9Xx31FljjDnqokEdpWm7oK89FLu+S9rNzRt0fasrgRe6Vn23LwuQVBFduiI2uewXde8bwrdXdVrTXxMQp5ljOm0OlatV7qsZ2ut2bEx9C573F1CsnIdcamWfJeS4m7e+bShIbHZVz/6kZ6S+7MkLizCsFzTxjy9Feyq2lHPL/9W7F6d1c+7fiPb0rm/P/WbuLFrw73OQyTKUmx4omG5UYNMPpyqNntP/eVjk7IPPQT1Bs5i0MNK76m0zCpEXs+ne0pSsOnrtEI+kLGrmbsb9/UDcHkznF+gBOXXD4DW6P9AYwU1e4O7UR/lG8fh5DvKclYSaI2G29jXgqaTlW7jAyPAwyglfwkyHs/doYPptqFDoWpVZbz1vfYeLKpGjeCZZ9TX27crrd7Bd/zpIiNz72uc+bzQQTeAR0/o+hs8uBdcAg2r7eyUITY5hg9XHg7kvP+dPSKFqIgk6Dajw2fVzBc9+9fDt4V6U3zuQvkadxgTdp2tW9VWz2vX4OBZJdj1cL7K7KVKJvLhE/yoXVsp8+efMPudMJLTlcePjz94osjz4T7Q2xL/eucB2H/WnwN/K1f5E7vPcyPZFYCerUKwtC6hgU2VhIMDvDbBtGWrdiN3k9c13dWbjcsRkmq4Ijt0yhMAa8tMAro0yrOMe3X17uRqzN1buvftziAmQQ2u9h8o3sdCVkaWocePS7WUYh1LQJ0mXgzroTQ9xd9058cv1Wao8OAo0lPSuRKrBiAeNUvnY73f0Oq51mVpbZg4ye6uSd9E+RF9LsKw7G13kGdfaUtgC6U5NijS9KF6nz5AlVrUbeKp7t9sP3RZC51+Ur53+wMevaAsG3NuAcNuQL/T0H0j+L+L3vMRUmyboms4TgnEBlyEnn9z69YdrZspeTS1OjRSMol3/lnpCt7rX6gzTN2u0UCNnsr4bEdfcGwKtYdB9z9h4CVo+Sm4tSnVKQ+Mg+47W7rr1FG6+cfE3GMQW0wPPKAub9umdH/X3ZE/N6+gO6el29ER6tW7xzf16qf0JjCWEsnDgVsAZTz7uHFqMjmtNvcQCCEqovIVCVZwHXvXY+N26NblGvWaeZOerN4InQt3LtW6aLWwfLnSRefxx3N/rvzw1Sl0uh6AMi1XdKzanWv++6G4eHQClKeuEyYoreIA73+pTgs28nnnItdPY6Hh1RfjGDNFacleND+RDn1h+19XAKVvVa/uFSP5XFkbP17PnNkJJKa64GifhJun6dRDnh5qEHY5VkcJ91wTJeTmtSRCopW7kIAGodhVbZZnuRru6sO0wiRTW7PO9MHZ/qDiDQpOiEsClIDMxbH89fCpiCZNdmTNdmX58yU1GT4pm5ef2Mc3G7rh7hhPSx81EVbNWqUzS0Hb3s34bekB9uxU/sabdtThXEwDToT7snrBAUa+3uEuRxDlQXSE+mDMy0sJeObMs+HBB03LOVRVA0Vvow4QMddcTYPd/Gg0YOOifDk1A6/+6LRaQoKCCAwMNGQOy8qCwCZw8SIsXQpjx6KMBU6/ArcuKF3DXQKV4xTEJRB6bbl7vUpRThK1qlWV3oV3ciqDtCt+flCjhjLEcOfOvMdW3xl037gB0bdHHgQEmOm5xbHXeL3tXzhmvE7THr3x8+tuEsxHREjOD1HxSUu3GU2ZAuHhWmbPVTJ6VnWqSu0ayli7c7GNCp1Y0xzWroUXX4Qnn4TnnlM+yHLodXpW/qp+au746wrfzz9Ml+YnePd/O3jiZdNHsGPHkmuu7PoekXTu509xPD2hLS5Vle6va7e34XrsDbbtVN/ogUclQU9hOLo58u0X5wlsEMLcaScM8+nmqNlCnQ7mSmrj0q6eMJOjB26i1yuX7HYB+U/C7V5DvazHxxX84EqrhV9/NV0XHNGIWzeKPi448Zq6r4tTZZ3Mt3S1f6g5nZqdBCD4kg/t22XxzQbl/zr+pjv/HGljKOvhVXqzFAwe24F5q3swb3UPFn+hDl2Z9nl7k3l2RfkVE63eHHjXVR7Y9O6tTONnrHt3dcytcdAdXfwUECbOnlUCboA337w93lyjAXtPJRmXR8+7B9zlUEyMOja6XTuwKidNXhoN9OqlLCcnKw867nRn0F2k8dwFSbkEsZuoYpvGKw98SB/LHhA0hXp11SZ3yWAuKgMJus2sdm3Ti6lvCyURWOJNO+Lzv082u6ObdxuWv/sOBg9Wp3c4tiOEM5FK19TOfidpGFCXZ19py+5TAcz8qkeuoM3ZGUYPu2CybsTgi7nK3Su7qnaMHKDcSGZk2bF83klD9ndPlys0adOgoN2FkUHPt+d4WBPGTuuWa5tnLfXf/LLkOaqwDp2ubVhu91DrfMu5e6gtnVfjdPmWA9i1K/f0LDq9JYe3F31cd0K82nLm7CTdjM1l0kT1Acbxk0rvBI0m99+3Zh3n0qqSiZ5DW9L/EaVXTUyMhvnzy6Qaldax/87yyaQdxEWY90YiOkb9HPeuqz6wmT0bjD/ijbshe6kzVJo96L5l9LwvKSn3nM0VlfFUYXeO5y5rxn/bnODW3l5twb4zkZrZg+6qdaHfGfAaoK478wn10+caXkoyNVEZSNBdwnx91eVz50rvfWNiTf+0mzZBzy43uXgqklVL1Uy3I59KLNTxXnnVxuQGb8RL5gmIX3hVfWT+/ldtDWNBe7WPKnZQLxSe6vC7XAGWqDiMM8q265z/fLE1PNWuxvHXCv4fWvOtesf8cHd1ef+uoifcS7imdil3cZZs+eYyaEwbk+6V1arB1n81rJyzB0d75e/l7hiPZ72ym/Hh0zlWWNz+6Jk1C35YdoWsjKyCdxJ3tXN9EB37NGDK/B68+vyFu+9wD2IuqwlfvRqoeWiaN4dRo9Ryxi3fJt3LzTzWNvmO3IuLFilzQld0BY3nLms5Ld3G2rRRpx8s8ZZuAIf6Smbz1l+CRrmI1NN/b9gsQbeoDCToLmFlFnTHqU+sq1VTbnwPHXekRVtXvvsjEFDm0H1sbOGumI0C6/LyY0rr+YiH99DAv45Z6tm0XUO6+QcBkJJu1LX88bZmOb5Q5v7NIS3d5dPp0/Dxx3lPzZIjJ+iuVs30unIn91rVDMvx1/Lvw5idmc26Dcr0cva26Xz0gTr2/8CRKvntdlcJKa6GZZcajkU+jjBlZaW2+tWqpYy/7PWAhhFvdOH0iVTmvLGDv3+/ho29TcEHKkHNmt0eg4sSPD07tiYNva+y5P1dMl1hEZ3eH8qg4fXIzFZ6sPx9oBk6bcE9WO5FdJxyvdBodHjWN31g89ln6nIdo498Dw8MD1dKsqUblKFxU6ea9z3KgnHQ3b592dUjLw0a5E6G1q6d+je/fFmd6gzUoNvCQnk4Y1a+46HbBrCsQj33CMPq8DAZqiQqPgm6S5hJ0H3m7kmNzCUmXhnz5FQlid27NdTzVObCTslw4Gaakq1jYNfjONcofOaOBT91I/rCZZb/bt6+US+OyZ3hOK8nr6JoPD3UlqbL50LKsCYiP4MGwbRpasByp3NBcYab27Zt1RvevLh7qeMdrybkH/RuX3eCazeVhGf9Ox0nsHNdXB2UqYAOnG1a5BwUCdlqLxiXhq2KdhCRp2efVVqdQkOhpVFiae/GnrwxpwetejYtu8rd9vHHyvjfHFHXvPjfzG4ylVgRxIZd4eEB9iSmOBvWJaY4c+ag+Zp+o+OV1m0Pp3isba1Ntllb57WH8gAopwdVSQfdAL/8Yto9+14dPKh06X7kEdi8mVLNrwNKwHr09kx+DRsqicvKG+Mu5mAadOv1ao+GrCzlITGAj4/SDd3svPrDg7up5myPm4Ny7xpx7hqkXyuBNxOi9EjQXcJ866nz5J47eLJU3lOv0xNzXbmqe1WPJyAATgbb8sKgXSblRoy8t0weGgsNXo08sbIxbwaQoWPb4FZNncqqYQOtZKk0I0cnK+yslQc+V+JkCrbyJilJCaIA/vsPMvLIfTZr2nnDct/eBWeocqruiLW1clcZn5V3skNtlpYZ76tjv594XPn/7tBF6W1yLbGaoU73KsFoanCXipfvqNyrXbuEbnTNxNVVOY93bjxHr5bHDOv37kgsu0pVUM8Ou0zUNWUAta21Omxjz1bzdFnKzszmSoJyr+Dtfm/TSeZ0Mb961bQVtLiMg27jTNorVhTteH/9BT17KoH35s1K4O3vDxs3Fq+e9+L4cfW6Xt7Gc+e4s6HDOOgGtYt5SIj69y7Rqc1cW0HvXdTzUKL96Os1ydLIB4qo2CToLmG1Gzphb6PcJAeHeZZKF7uEuETSs5S7Mi93ZaxfNddqfL2+G5tXH6Fj01O8OHgXDz+TfzKm0mRbxZZRA08ZXj/QQ6YZMieNhQZPVyX5zuUbbncpLUpb1Dm1qSgzE4KCTLdfPHmJ1X8rgwBdqibw4gsFJyfTWGhwd1fGcl+9mneZxe/v4WCI0i/Q1+sij45UrgUdO6uBeFFbliToFhoNdOvvy8Ilak+q4ydLZyqzyuLWjZv8F6R0Z/Byvcyaper4tL0h5umffOVSPDq98iDW2+PmPe2bk0xNrzfvsCXjMd0vv6wmpt2z596PtXIlDBgAaXd0Mjx9GgYOhL17i17Pe2H8Pp07l8573ivjoNvdXZmeq7aau9Mw9Ml4PHdgYAlXyqkJ9Zor83nrdBZExUijgajYzBp06/V65s6dS4cOHWjXrh2zZ89Gp8t/7NGHH36Ir6+vydfq1avNWaUyZ2FpQbsmSitVeFwdQo5cLPH3jLmoZjf1qmnaKtb3mTbsO+PPkt+6YWFZfp65THgnEBcXPZaWMHps6U15c7/wdEsE4EayKxmpMv95eRIZYnrHun/TMZPXs965hFan3HlOGnUCR7dq3I27u/L92rXcXSmjL1xmyly12/fSRbcM44CNW2GMxyDeCwm6RQ6flvWoYqsMHzoeUquMa1OxhBw1SnLY5QIPPx2AnZKCgT37zfMAI+aSGo16ed7b50JJJVMzbun28IBWty9VZ8/enj6skDZvVhLBaW8/o3z8cWV6xJwkZno9vPCCeVvp82P8wCCvebDLg5o1lWFOAKNHKw/O8mrpLpEkagWo31hNGirJ1ERFZ9ao69tvv+XPP/9k4cKFLFiwgI0bN/Ltt9/mWz4sLIzXX3+dPXv2GL6GDh1qziqVC4MeUTMBr/+hgExJZhIToT6x9vKsGFP21PVxJiJCQ2xs+e1+VZHVrK4+fImLlHFR5UlkhGkzzP69ak+PS2ej+W6TcpfoVCWJCTNaUhg5YwazspTu68YmPHeJ5HQlcB87cBfdBqp3Tu3aqdPE7N9ftF45iWFqmnUX+3vrsioqF0trS1rUVx40h12pS1J80bPi329CYhsZlpu0qo2NjZqAKyLCPIFudJKaf8E7sNM97VtSc3UbB90ODqYtw/v2Ff44s2ery+PHw08/wdChsHu3kpkb4MwZ03IlQa9XW7qdnMDPr2TfrzjWrVPOrU8+UV6Xh6DbOMGbIehOj4ebpZiZWAgzMWvQvWrVKiZOnEibNm3o0KEDb7zxBj/88EO+5cPCwmjWrBnu7u6GL/vyPFitiAY929CwvH5zyWfQiIlUb+JreZWf1uy7cXQsnwlGKgNPD7UV4/KlhAJKitIWecm0N9CBU+qdzifTL5KtVbIZvTK88IkP3auqD/euRqgt6X+tPsLve5SnWh7OV/n06xYm+zk6gl8j5aHMyRO6IgVJCUlqzgcXd7t73l9ULi391OtN0J7wMqxJxXL2nJqFvmnb+oBpAGqOrtHGwbJX7XyypuWjpObqNu5eXq2aactwYX/mc+dgxw5l2ccHFixQk09aWsI33yjfQZkRYOdO+PlneOedonVjL0hoqDrMp1OngpNgljULC6Vbec6D14KC7urVTacjLSm5gu6ru2BzIPz3ENw07/R5QpQ0s2XEiouL4/Lly7Rtq0711Lp1a2JiYrh69So17oimkpOTiYuLo96d8xQUQKvVotWW75bbnPoZ17N2E09aNjzL8bCmHLnQjIizUdT2KbmudtFR6tQ/nt425f53JvKW17lUVB411MAuNvKWnBPlSGSM6WU4Mt6bqAsxWFlZseIPpWnLwe4W46c3L/TfrbpdGKAMyLsSGUe9ZspY/i+/VMfEffbeBRyrd8h1zO6Bpwm+0B2d3pKvPjrG5Hnd7unnSbipTDdmbZmJbRVbOdcqmXu9LgW21MM6ZfnYwQS6DJDzoTDOnrUAlOincWMtWm1O12jlf3j3X+cZOrRhvvsXRlSUhpy2F09PLbn+pFotloZFLcYFlIDL8vZxdGi1994zJq9z6eZN9eeuUkV7u+fb7Z95tx5tIaZLW7JE/bmef16H7o5cOv7+8OqrGubNsyAjA3r0ULctWKDn8mUdtmZKQbB7t1qXjh2L9nsqK66uYGtrQUaGhqgoPaGhOq5eVf4WLVroCxw+ai5K4K+858UwHfpjb6BJiwVA/28ndF3/ALd2gHnvmcT97c5zyVznlNmC7vh4ZRyxcXBdvboyHc2VK1dyBd1hYWFoNBqWLFnCrl27cHZ2ZvTo0QwePDjf9zh//ny+28qbU6dOmbx+oFMMx8OU6VxWLjpK/9H5ZDgyg9OxaurvDMssgu7MzCQqlDvPpaKwsUs0LJ85fYU6ck6UGxFRuXv3bPzpMDGRGjKzBwIwvN9uIuM8iIy7VKhj2tupQ0xOn7xEVS8tMVF6/j2q9Kus7xFB4w42eV4bHhqSzuJftej0lny2wp/uQw5iW7Xwd6A3binXeheHRE6cLPnhNKJsFPa65FpTnRLy4GGtfB4VUlBQM8AeGxsdCQlBBAWBk30aGk0n9HoL9uwu/md7cHB9wBWAW7fOEhRkOq7bIi2NnAEtJ0+eRGfUE/HmTRtAmR3h9OlEgoKK3ovB+FyKjW0MKFMdhoefxMFBR+3afkRF2XH4sJ6DB09ga5t/4JqRoeHbb1sAFlhb62jV6iRBQblvmAcNsuDnn5sRE2N6bbt5U8O//57B29s8g73/+KMuoNwLe3hcICgoueAdypkaNZTffXi4jk8+uQoozdu+vrEEBV0p8fdPS7OA22fh6TMpnHJ5n0bJE6iSGYom4xps68VFr9ncrKoOjzDHPZMQYP5z6Z6C7vT0dOLi4vLclpqqjBm1sVG7ROUsZ+aRqeLixYtoNBoaNGjAs88+y+HDh3nnnXdwcHDgwQcfzPM9fHx8qFKlyr1UudRptVpOnTqFv78/lpZqq5Ll2KrM/V5Z3rm3LtO/aJHPESA9JZ34mBtFbg1PzVb7L3V5sFOpdAES5pffuVQUscFq74fMdCcCSzztqCismGuxudaFXXBiw1Z1vOUrU5vQKKDw8+gdaaje2MVccsTf35+FC9Xx1c+PSqFV67zn0A4MhMeXH+DnrZ25dqs6+zaeYtInhc+WnHi7f6izQ4qcZ5XQvV6XmvpkYPViFtlaa05HtiAwUGZQuJusjCyio5Xu3k18smjdOtCwrXndUE5F+HAyvAkN69yimuvdEyvmJ+3qRXKC7t4P+FKl6h19n1PUByYtWrSAqmqS0yZN1GLJyS4EBhZu6IuxvM8ltQ4dO7bA0hJ69dKwciVkZVmQnR1gGNuelx9/1JCUpBxj2DDo0SPvaRMBfvsNXnlFj4MDJCbCkSNKC7ujYzOzZeYOCVHqYmWl56mnGlHOb2FzadTIgqgoSEmx5PffawJgaalnypSa1KpVs1Tq4O6uJz5ew7VrDvi1eRBaHEC/Zwia+F1Y6tNpdPltdL33oq3WzGz3TOL+due1KTU11SwNv/cUdJ84cYIRI0bkue3NN98ElADb9na/nJxgO69x2oMGDaJnz544OzsD0KRJEyIiIvjpp5/yDbotLS0rzD/SnXUN6OxLw5qXCLtSl10n/UmMS8Ktlmuu/a5GxtOlYzIXYuuzcs4eRrxx76kuY2Nz6gCenpZUkF+ZyIc5znuvOo6G5StxVhXm/6gyiIpSpq7p3z/3FCvaLC3R15UbFy/XWGJuKA/alv/WkqRUZwB6tzqKb6t7m96vx8O1sZihtFbPXdmRJ8ZE88cfSndzKysYM8mvwOvC9Pc9WLNNh15vwdxlfrw8IxP7anfPt6HN0nIzTbn5dqmWIudZJVbY61KValVo5qfn5Ek4G16DzMzyPc94eXDhTCTZ2co47iY1jmJpqbbidWl9hVMRPuj0lhz57yK9H8/74VlhRF9WGkZcqiZQzTGPqQaMGw4sLU1eV62qjOu9dg1iYzXF+l83Ppdy4vwqVcDGRlnXpYtyDQXYv9+SbgWMePnmG3V53DiLAq9z7dqpszTMmwdHjijLV66Y574pPl4ZXw7QurWGatUq3vWwrtGz3uvXlYcSAwZoqF279H6W+vWV32VMjIbsbEts7d2g1xbY9wxE/YZGm4rl3mHw4EGgYsUKonzLOZfMdT7dU0qH9u3bc+7cuTy/Hn30UUDtZm687J4zf40RjUZjCLhzNGjQIN+W9IpOY6Fh8INK9yutzoo/N6TmKqPT6hgxJIwLscqH7drfi/YEOyerqacnEnALADzrqcM7Lif7lGFN7j/jX8rknXeUeWHvnL4rLvKqIVFaqyZRNKypdB/PCbgBXnz+3rs5+rZuwKtP7wYgI8uOPv2cuHFDeZ9Bg5SpeAri17ERQ7srNzBxiTX45pNDJtv1euVmMjvbdL9Eo8RrLo53TI4r7lstWyo361otBAeXcWUqgJAgdfhZk8am//+dO6sf6r/9koxeV7QxwnqdnpjryoXAq3rRZrTISaYWEwPmGt6bk73cQZ0pqtDJ1M6eVbKTg9IS37Vr4d/XODFcYTLDL1oEzZsrGb/zY5xtvbxOFXY3xnN153jxxdKtQ06vCr0etm+/vdLSDjquBpfbD52Sw7A4OBL0JT/OXIiiMlseRQ8PD2rVqsXRo0cN644ePUqtWrVyjecG+OKLLxg1apTJupCQEBo0aJCrbGUxaGRzw/KyH71z3bDOnbyLLUfV+bJikpvd83tkpmcZMmV61couuLC4b9So44bV7X4tpy/WzBX8iZJzZN8NQMn+eumOIdmRF9Qu37VrZdChhWkaYA8PPQOfa1ek933vyzbUdVeOd+WG2qW3sDdM099Xe+J8usSH7Ez1evLmm8qN0MCBpvskxqtjyV0cS2ECXFEhtDJqjD1+vOzqUVGcDVYfWDX1szHZ1vXheoblxeu60a/jEWLD7n1s7fXYG2RkKbMLeHskFqmeOdOGZWcrLZHmkBN0VzNqc/D1Bbfbl7C9e/MP8NeuVZdfeEHNwl0YtYxG890t6I6Lg1dfhdOnlYzn+TF+QGCceb4iMc5gDkqrcz6dUUuMcaqnNWuMNljZQ9d1YKN8VmliN+F5/RuEKK/MOnnBU089xdy5czl48CAHDx5k3rx5Jt3Rb9y4QcrtvkM9e/bk8OHDLF++nMjISH788Ud+//13nnvuOXNWqVzp2LO64anhnj3w0ktqy9eBv4OZ9oXpVTnm8r1N4QFwOVztKeBld6TIdRWVi6Wl+tT/4kXlZkGUvIzUTC4nqA8d78zJERmr3lnWqWdDxw6mD8qee06DtW3Ruqs4uDjw1dzLJusa1k2mV6/C7R/Q1Ze+7Q4DEHvDkwtB6hODn39Wvv/1lzIWMkdCvDoG1MVZHvoJRUuj6eWPH80qu4qUU9mZ2Vw4HkFWhvK7CTmvjvxrEmA6Br5OEy+mj91heL35UFv8Auw4viPknt4z+qLauu3lkV6EWpfMtGE5U4YZB90ajRq03rihdtm+07Zt6vKQIff2vvfS0v3dd2ovn9BQcmd9v814+rHKEnSPHVv605717atMZwnw+++QYZzvz6EedP6JnIz32ZamwyQ++0yZG33DhtKoqRAFM+u/zpgxY3jkkUcYP348r7zyCgMHDjRpzR42bBgrVqwAlKQcX3zxBRs2bKB///58//33zJs3j5bGn86VjIUFrFoFObnmvvkG3nopjFef3knvQfUM3Uw1GuUx7tWrkEcOugLFXFTnRPXyzCigpLjfGD8tXr++7OpxP4k6fxm9Xr3Mnjxpuj3yhjpgrk6rDnTooTa3aDR6xo4t3vs/MqItTz6g9nEcO+TwPd0wdWyjBtHBR5UuNImJpjelJ/eqc6UmXFNb6FycpTuFUAT4q1HJsZ35REz3sf89tg+fVvV45mHlQfnZMCVw0Gh0+ATm7t/7wdIe/LnyMJ4uSgt3YoozUybfW1bsmAi1V4q3V9Gmw8lp6QbzBN2Zmeo9T7U7RtcZB61//ZV735QUdXx2w4amY5ELo7At3TodLF2qvs7KUvJ23Ck5GXI6fjZuDHl0+KwQjINuKysYPbr062Bnp/aqSkqCLVvuKODZB1rNQ9fuW+JdHjesjo5WemWdOQMzZpRefcvK7t0waxZcv373sqJsmDXotrS0ZMqUKRw+fJgDBw7wxhtvoDHq37N9+3YmTJhgeN27d2/++OMPTp48yebNm+nTp485q1Mu9eihPCXNMWdJQ774qTspGcoApk7NTtK/n7r9smlD1V3FRKofvF615KZXqAYNUpfX/2ymvoCiQJcumH76nTqWZPLa+GatTh1o0aUxNW8nhO3fX0P9+sWvw8JVTRjWfT/Dum/n5Rlt72nf5gFqxqvTocpd4+mTpk8CT+xXs68nZDcyLLvUNkPlRaXg6GxJI88IAE5ebGgyVOF+F3E6muUblQG/a//ryOF/zxASpQTadd1jqOKYd7rrfiPaEnzaljq3h5BsPRrItSu5c8Xk58JZtayXd9FuBY2D7sKMg76bnK7lYDqmG6B3b3V5xozcrd179yoBMFDo3jzG7O2Veamh4J9l2zalt5ixsLDc5ZYsUR8g9Ox57/UpL+rVU38vjz+O4fOptD3xhLqc08X8hx+UoQfvvw9630no6w832Wf5cnUoQkhI7hwklUlyspKsdepU+OCDsq6NyE8pdxIRAE89BbOnm6aet7dJ5aVhO/lzex3qukca1secvXDn7gWKiVRviL1q33v3dFF51a4NbXyV8+n4GXcunZE5lAsrMy2TeZN38NKwXbw0bBcvP7aTTasO33W/iNAUk9enjpg+7IhU/9WpUwesreGff5RMurc7BRWbWy1Xft7WjrfnORUqA7kxv+7q3DzBlxoq33ceMClz4qT6MZKQ4mxYdvG+x6YmUam1bKI8QU7Psufc0Yh72jcyJIZ3/7eD3X+cKIGala1vPg816Q0z+c0MbqUpfWmb1Cs4sayrpwtPDlFarLU6K377o/DzUf2yQc3Z0K7bXTIr5sPc3cuNg+47W7pbtYIxY5Tl1FQlAEw36hVv3LX8gQeK9v45P09sbP7jxr/+Ove60FDT16mpMHeusqzRwMSJRatPeWBnB//+C59/Dl99VXb1ePBBcLndc/yPP5TAe8QIOH8eZs6EOXNMy2u1sOxr9cFSZiZERJRefUtbWBjcvN15JSioTKsiCiBBdxl5473GfPraDtr6nOa9l3YQGZbGorXdcfFwxsspwlAuJvzesorGxKit2151KtiEkKLEDeqjPsL/ffVFsjOzefklPf7+atc8kduSD/fzxpweLF7XjcXruvHVr90ZOLolMaEFd0W5FGHabfNcdD0yUtVhH5GRyv+rMr2fss7fH157TZmOp6w1bAi3Z4A05AE4fdr0bvREiDrmNEEd3WK4QRICoFWAet4f2XNvib9eHBnLe0t60G1gAC8/tpOUpMK36JZnWRlZrFjX1GTdjhPqELumje7eZfyJF9SEqyZJpgpw/lgE+88q81e3qH+OgK6+hdvxDubuXp5s9OPeGXQDLFgATW//uk6ehDfeULcZslpT9JblnKA7K0uZCu1OV67kPTb4zpbub75Rkq2BMle4n1/R6lNetGqlJI5zuvep2M3GxkYdIpecDE8+afpg5K234Kef1J61m7/dRvRl03vgs2dLo6ZlI1btcJZvD1mdDkaOVHrc5tU7Iy+XLuX9vyCKRoLuMqKx0DB5Xg8OnfNjxqIeVPdWb1yNW6iNW64Lwzj5mld952LXU1Qug59R75LWb3Lipcf38dViDcHBSiuCuaZ9qWy2H8w9rlKrsyL0VMEtUZeirExea3VWnD0SYXgdGapkNq/lds2QXb48sbJSb3IvXFAS2ASfM73zCo6ob+guLEG3yE+7zup5c+hQ4ccQZ6ZlsuO4OvPHV792J6C1HUYTpVRYf3x7hCuJSiuzrXXuZGZNmt79Fq1lS2h0e1THjh1KYHg333+tdrEZMewex7AZuddptu6moO7loMzd/csvSusrKNN2bdyoXHdyzgd//6KPn77bz7NihdpF+amn1PXGAUx6Onz6qfp6+vSi1UXkZtzFPEfOdGKgJB49cKAa6PV8vcIxV9mQe8s1WKEYn6/5XQP+/VfJK7VzJzz7rHq/p9UqeQqWLjWd1nTzZmjQQPm616GuIm8SdJdDXnXVp3PGLdeFERNXVT1OwwqauUOUmKZtG+LjpcwXv/NkIN9s6GbYdvasOudoeko6zz60l/ZNgrl4KjKvQ91Xjp5TpjKs5pDN+Md2GtYnJRScrDAiOvedY04X89SbaVy7qTxsq+Mem6tceZHTSqPVwrmzWZwO9zbZnp5lz/njEQAkxKlRt4tTJR5AJ+5Z6+4NDElCD51wN6w/cQICAuDll/Pe78SeUNKzTIdFhIVZ8OSTJVbVUvP1d86G5W8+OYK1lelD9qYt7t60qNGowYhOB7+uLfieQaeD77coU1lYWGh5elzTAssXxNFRDY5Lunt5jubN4Ysv1NcvvQR//qkGC0XtWg53D7p//FH5rtEo44itb7dxGHcvX7FCDVAGD4YWLYpeH2GqVy/THmA9eypdqV94QXmdlaVh4sTGjJ9gwV8H2wCmD7NCjtwxGL8SMT5fb95UhjjcKThYXT5wQMk7oNfDK68oU4m++CIsXKhs1+lg8mTl+61byrA3UXwSdJdDXvXUD9p7nTYsJl5pXnKqkkRVp6p3KS3uNxoLDYMfvJTv9g8+UC6yr488wA//dObQuebMfPP+Drrj4tQbylatrfA16omZlFjw9EeXruTuI37qhBKMRoeqj6PreN7KVa68aF5bbR7475d9XE1yz1XmxMHbmc0j1f57znb3PnewqLyc3J1o4q088DtxsZFhmMXMmUpX4a++ynsqwwM71TwIrz570JBNOTTUdEzviRPw3nsVZ9zmxYvw70El4G3gfZ1nXunEU0+Zdndp0sG/UMd64nG1i9KapQXPB7lrF1y6pHTD7dPHEs8GRRvPDUrwmdPFPDratJWsKO7WvTzH2LGQk3c3OloJvHMUJYlaDuOgO/aO56B6vRpcN22q9C6oV095HRambNdqpZW7JFlZKdnIAdq2hd9+U4Y/LVoEAwYo63U6DUuWWKDTKef4xIG/GvY/e/wKHH0NdJVv2sL/s3ffYVFc6wPHv7tLBwGliiAKKjYEe69Ro4mJmnLTe++995ue3PSeX27aTe+JqcbYewUrNgSUrgIW+u7+/jjszg67VBcBfT/Pw+PszOzuWZwd5p3znvfUvknkqme6dk///ferwPqtt7R1TzyhZij56Sd9kF57ulPRPBJ0t0Fd4rQeasee64ZYLVayD6jndgmV6tTCtdnn6wPB5+9cxPCaelmbNqlppd7+foJ9+69L+tnnj20LzFVm0takY7XUfYV35Ejdc7k2lWMa65AhENRRmzf7UHHdabLVldXsO6BKvUYGa2nom9LUdzprl9Yr3DW67fx+a+vXS5ta6JuftZzx+Ejt5k3qBtVDV1TibV/XMdw5vU+c3IYlqivBKrMXqUt3UVUF8+drAePGRc5XditXa4HoRZd1YORIbZut+r/VquZlfvxxrdfLpqxMDY1oa/7v/7Tla24KwWgycsed2iVZp04QGta4S7T+/Q30iVE5zks392ffzrpzQT/9VFu+7LKmtdkV29RcpaWNS22vT2N6ukEF+++8oyqOgxasm0wwfnzz37++nu6DB7X5oW03GuJVbUmOHlVTvG7erBXHnDpVjYUW7nXPPer/ZsUKCA5W6zw8VAD+zDMWPD2184nJBLf952xiItQsImk5vbGmvQLzp0BZ/UPD2pvax6ur72LtMe2HD2sF/2wOHIBnnnGugF57ulPRPBJ0t0EBHQMI9FVTC9l6rhujqPCwPQ0vKvRQA3uLk9XQyX0Zl5gCwN2XLOSeF8fx6INaLtKHP+unlSou7ciiuW2nksY5k9bQZ1gcs8atdnkzoLwcBg9WY71cVZptqnVrtT/igwdDULCWfVJSUnfgn51jxGxRAcPIkRDsXwzAxl1qfHhWulbZvGtXg9Pz24r+Qzvbl5dv1XIlLzxzj305dau6kVB0WJ1/TMZqOnSs56pZnJSGDtG+S6uX7GfFCjh8WLsM2bLB+TyzYqP6vvh4lpE0tqe9dxEgY4f6O1dUpE3jtGRxtb3GgNkM48ZBr17w+GPNm4u6pdiG8jjOfZycrI0VvuQSFVw2hsFo4LwZ2mwU3324w+V+R4/Ct9+q5cBAbe7jY9FXq+PmMlOhKRoa0+0oLk71yjkaMkR9ruaqL+h27Pm2zeltG0sPqhd86VLt8fTpzW+HqJvBoH7/JpN+vckE995r5X//28agQerv8tVXQ5dYX3oPUJX6i452ouBQOBQsgj8HwcEToDBEjab0dIeGOtc9uOUWrWjqf/7jXAHdbT3dRRvBcvIOPZOgu43qEqouPrIPhNfbo+cou0D7a9OlT+969hQnM6PJyPx1ieSmF/DipxMwGA1Mn+HL4J5bdft1j9AG6f34Z+faL9MqzFVmflmmbgr8smw415+z0un7MX9uKTtqrjl/++zYpxhaO3etfXlI0hECg7Xe3JJDdV8VZ2Rqp9duvSMYEJcBQM7BSA7mFpGVqQUBMd2bNpXX8RTbpwt+3ked1k87M4SO/qq3PnWnCoyKDqvgO9i/BIOx7d5IEK1j2Bgty2b1Wg/mfqfPd9ycpq82nJ9RyJ58lU8+JGEHnt6exPprU9ZlpqYA+nmTyys87FOSbd4Ma2u+vk8+BWvn6c9xrSU/X+t9Hz4cIhwyvD/7TPXgv/JK015z1gXaOXrNOtdVGed+scbeK3zuOWZ7T/Gx6K/VuNOlozZHY9PLbW6/XdUDsDmW8dxQf9Dt+Ni2n62nG1SK+bJl2uPRo4+tLaJ5evQoZ9UqC1lZKhsCoE8f7W9R2oExasFSCd7OQ6Xaq4Z6ugsLVS82qO+MY12E665Tj21T2zkOE7FVrM/LO8Yq5tVHYcM96mZHxmfH8ELtmwTdbVSXsGJAFSkqLihu1HN0fxRiZbowUTeTp4nI7tqtToPRwKP3a90M3SOyWLIi0H7n86ef1Fhvq8XK/15eytuPLcJiPv6lzgv27sdi1W5xf/jrWJ64R18c5dc/fOzL+YXHXhJ83TYVUAb6lhCf4EdQV61rp8S77lzGTIeh87GxkNi7xP5408pM9u7TPkfX+Faci6UBRpORfrEZTuv7DetKUi91Oz23KJLfvtjGnnz1u4roWOS0vxADRvfAy1PdbFq9ZxR//ak/h2zeFal7vPIf7bs9cpA6prp11743GXvU82tPf7N+hUodXb1aW2exmLjmOqO9F7w1LZ+j9bCNHnJQt81oVOnLje3ltumV3NW+vHuv6/PJjm3azbOpg1Y17Q3q4Dgdljt7uhsTdHt6qsJlISFqf1vGQHOFhqqpqaBxPd21g25bT7efn8paEK3DYICYGO075FjhPC3oI4g4BUZ/Bf5dXb9AO1NR4RwQ1+7pdhzP3aePmnLt55/VcJO33lK/qwcfVMNabJKTVcaNTbN6u83lkP4p/JYI2/4DVjNs+jeYmzYz04lCgu42qktkmX05O71x47Md7zI73rEVojHOuHwY912+kFMGrueXHyro0j2QyZPVtpwcWLMG/nPvIi69aww3/Xs837y9sv4XBDYu3cHIPpu4+swljc7YqE9OxkGndU+8HM///qeWrVb47XfttFZQVHeuYUlhCVlp9c9zk7engOyDqgdpcMJujCYjQZ287NsP1TOKwzHo7tYNEhO1q+hNGyvJytG6mbr2an4xo+OhX0/97z06JIegsCCSxmk3IC64OgarVf3urzzPDaWMxQnH28+L5IEqaN6+3cC6XfqMrPT8GEoPaUNdVm6Osy+PHKvyjWN7akOubFPypa9crHudDetVYO0YdAOkpPfmtYeX0lIyM1URooYsXahFl2OSdtWzZ+P5dvAlOkRFhrtzIl3uk5mlnRtje7in5oJjevmx9nQ3Jb3cZtAglemQn69P924OW+oyND29fMECrcbA8OFaZXPR+hyD7m27A2HS3xBZKy2i6jCUumHeu1ZQu+gf1B90234fZ56pgmpbqn5wsH7IxhMPFpHUU/udNGlcd1kebLgXfoqGlZfB0ZrhaEZviL+q6XcVTxASdLdRXWK127zZhcEN7l9RWsGrr2jpquPG1bOzEC4YjAae+2gC89YPov+onoCa8sTm8Qf28+CrWs7c0sXO88o6KiksYdZZHqxMS+S/c8ayxg2pnTmZ2lVZ71jtL81990FlJWzeWGUvZAOQXxziMtgv3Luf2G7Qo38YX72xvM73W7dEi5wHJ6oIO8ihE6mkpPYzNBlbtOfGRleSOEbLw3zn68Es36IqFwf4HCY4rO32dAP076sfD9u/v/qD6ZjaebhMXSUnx6Vx21NjjlvbRPsybJi2bLtJ4/h421rte7Nig5b+OeJ0NQVQbG8tjTojW/2dTNcnu7BhswooVy9X+cpGo9U+Xdmjrw9lz+a9NMRitvDxC0t5/6nFjbph+NNPtptrDU+ftXStlmY/6tRjjBQdxHdRswjsPxRKSaHzySkrW8sCiu3lnilFO3TQqnhv2XJsFcyb2tNtExiIW1LlQeuwOHhQFeGzcZVe3r27FjssWaJtHyOnvzalj8OseGlpOAd8ViusvAKWXwjW45/Bd6xcTW9XO73csYia4++jtptugq+/hjnfFnBmVScSi8+yb2tUT7fFDDvfIevjyTzwWEde//lC1qYPpqraA8InwGkbof9DYDw570pJ0N1GdemvXc3aKpLX5+OXVpGdo25XnXl6mW6clRDNdeYZVoxG9UfozwWhVJu1E+W23cF1Ps9qhWuvN7GnUOupythZT4TaSDn7tED/rmt32acJyc2Fb76B3z5eptu/rNKPoyXO45HnfredktIgqsxeXH3PAHas3+O0D8DaldpzBw9VPdyOhXrqC7ozd2j5Xt1iSuk/WMvb2rrNRGmFGv+cFL+nzY9/7pek73bqN0QFPrVTKI0GM++/a8HD69jT+sWJyTHotpk2TKubsGW9+t5UV6vsGlDDMzrXxNr+Qf6EBqp9bFPy7c7SR2gpu7pztPgIm7epSCyx+x5uOldFRaUV/jz3iOvvu6Pn7lzMFfeN4bpHxvH9ew1n9Xz0kfp33z5VlMjmj8/WkNhtJ/dcuhCrxUrpoVLW71LzDvaJ2U1IVCcXr9Y88V21qHX3Zufur8xclSXg5VFBeFfn6Qyby5Zifviw1tvbHE0d090S6po2zFVPt4+P66xCGc/dtkREaDfLa0+bpVa+Anu/h4LFsPuD49o2d3AVdDfY022pgvL9kPEVLDwdslRlR4MB/vUvmDFbXej0i9bGjGxald3wXbXlF8KaG7n5g2d4bs4D3Pa/1xn6yFqCbyjnlY3zIbBXcz7iCUOC7jaqvoIetVWWVfLMG1pw88jtDV9QCNEYYeEGxvRznVO0NafuOWQ/+AC++UEfqOXsO/ZpsXJztLvQUdE+3H23tu2Vlyr59W/nC9j8rANO69J3a205WhHAeedW2OcNdrQuVes+GTJWfSk9PcHXRz3/UEFBnW3NyFUXtYG+JQSHBREYqE9HNJmsXDhlGZ9/676L7pbSf5j+ytJ2U69vX/Dw0P5Pbjl/KUOn9EWIugwbos+a8PUq5bprtHWbN6nlTZvUNFSAbpowgG4R6nuXfSCSqooq0rP1BZGKjwbzw39T7PUfhvXfx9NvD8TLQ33H/1kZW28bl/26kUff1Lor//nb+dzgyGqxsmqJdp756Sf48Uf1Omdd2Z/NmT35z/8msPz3Tayet8N+83L0QBd5ocegR7z2e9ydVuzUxswCNYyla1guRpP7Lv8cb/Ify7ju5qSXu1td1162oNto1Be+q53SbjQ6H6+idRkMWu9uZqaq4q/TUZuVgw33QKl7v5ctrd6guywfCpawbZP6cnXwPULnRT7wlRf8EAbLL4Cc3yH9Y/0LmHyg67kExA4jLlwVzdi8MxjL3AlqTHb275D5tSqQ5qiD+kKs2zNYt7q01MQDDxp02SObN8O//91wjHMikaC7jWpK0P2/V1eRVagmjpw+bA1DJstFr3Cf2adr3bnBfkX07a0KYOTle3LQeYg127drVTAd5eS4YUx3rnbK6tw1kDFjYHCSujJfn+LFsi0DnJ6Tv8954HV6hn6+kZT03tx7pXNv1tpt6uI8yK+E+AFa0ZUgH/XBS4pdFwOxmC1kFaquudiIfHs620svqfF+d94J6ekGPp87mtg+0XV/4DaiS3ykfRpD0Hq2vL1hwiBVhrlr2D6efFMmphX169nLoDuWJiRvYfA47bu1ZbsqArpygXZDa8QI/WvERqnnW6wm9mzZx979zrMrvPeR1lU6bJiBwJBAhvdW3T2782LJ3uV6LuuDB+GCq7vYp/sDWLel/irH+3bmkl8Uolt341WFnHF+tH0aT4BX/nOUpQuK7Y/HjHFvhkt8T63exK7t+hsFJfsPcbhM9V51jXRx4j4GjsXUjmVcd3PTy92prmsv23JEhJrmzcaxmBqo4QXHMm2ZaBmO47pts5vYRU6GuMvVctUhWHtTnT26+fmqSv6YMZCR0RItbYLyAtj9X7LXL7KvMhhUuwsL1ZSJZH5B6W+nkpmtMuv6RG3BYHVxE/HQVufiZmO+gUn/MCBR3cwrrfAnfUs2bHoMFp0Oy86H4lpf+JizOOI5mJwi9UXq3h0GDlSbKipgec1oPosFzjgDHnsMrr/+2H4N7YkE3W2U7sS/t+4qf9WV1TzzunbB8shjPnXuK0RzXHRjP7p0ysXP+yifvrmTCZO0CzvHcUI277yj5soGOPUU7S5odm7DY3iy0rJ57PqFdU7tk1MxxL4c1aMLBgPccdl6p/18PLXbqQW5pU7bd2dpV0Xenqqxr389nsU/a1OM5abnk1ukChINTtitSwEP9FevWXLU9ZVh7p58qszq99QtSqvkfeaZsHKlCr67tqPCqQajgYED1O/U09OqGxP2yRdBvP34Ylav9qZDJ5mbW9TPaDIyNG6N/fGp4wuI7qHd1NmcrnJ3l/65077PyAFZuteIjdb+Ji7+c5+9RzvAR4valm3RhmgNG6e6JseP1L6Li36rNRAcqKpSFbD35usD6NT0HlSW1f13ePUCbRy6h0llweQVhVF0VJ/F8uPiYXzzq3aDYPSUmDpfszni+2s38HYf0N+AzNyuDfKMjXIecnMs3DVtmC293MdHH9geT66C7upqFWyBllpuUzvolvHcbZOumJqL6xYGvgQ+NUM59/0Em59U45MdWCyq8Nj8+Wp6uGnTcNnx0GKOZsHeHyH1Yfh7DPwQCauuJnu3dgOxd0K1va0FBYB3KDvzetrrZ/SO2gFB/SFsNHSeBj2ug1MWwBk7weTl/J4GA4mjtJTwTXtrZTiW1PrCdxzErnhtZoQJE+Cee7TN//yj/l2zRrtpcTIVHZSgu40KD7NiMqovT/b23XXu9+eX60nPU71xkwetY+Rpdaf8CtEcYTGhpO8LYV9mFWdcMUxXrXari9h4/p/qr5DRaOX997S7xTkFDU9jd9vV6fz7vQnMPj/IZfGi3JrXMJkgLEoFeOdeP4yoTvpeq3MmaVPy5Oc639VNL1BXSmHBJbx47wr7+q++87cvuyqiZhNUE3QfKuuAxezczszt2nju2Oj6C861F8+8HMn48fD66wZd6mdUfCQ3PDaOiG4nzpynomWdOk1FVJ6mSs64JBGD0UD/HqpnO6swmoztB/lxkeoe6eB7iOQR+mrctsJdAPMXaJcxM0Y7V/rx9Sql7zA1/Gr8ZO1m26KF+gvqLVtUWvAvv6jHISEwabC6oKys9mbLKucg3WbNKu0c8/L9y3Xz2ifHpXHvZQsB1TO/KUON544ILtBlz7hDfJLDtGH79AF/1q5i+3JsV/1nP1a9e6u0anBPenlr9XKD66C7oEAFMeAcdNdOL5fx3G2TUzG12rw7weA3tMebHoP5k+Codh3w/PPw99/aLtu3qxvp5c35E5+/AJaeBwumqZ+FM1QwXbjCKdin6jD8MRB+joUlZ8GWp6FwGaCuPbKLtIN2cILW3txcIHgA29DG4fWZdj6cvgmmLIWJf8CwdyFiAhjqDgcTHcKKTX7/hVFfQJ97YcCT0GmofmeDgR27tEzCnj1h0iRt8/z56t/fftPWnXZanW99wpGgu40yeRjo3LFm3Nr+uguebFij9eJdfUX9486EaC4vXy86RgQD0LePFmRuXauvmlOQVcim7epib3DP7XSND7D3PuXsD27wfdZs7Q7AvgNdOHTAOS3cNq4uMlK7yPPy9eLmS7bb9wnyK+Gss7Vukvw8fTXS8nLIzldRY1xCEFfcPQJPT/WZ/lquXUEtWqD1bA0Zpr8DHBSg/sparUaOlhyhtoxdWtu7xR57Wn1bMGoULFx4cqWCiZZx679H8v5Ti/n7263EJapAsd+Intr26/dTVqlusF05awNevvrvX2yclrI9f632vEkTq+nor58jfnCvnfbCfiNPTbD3RC/aoD3vjYcXMXhQNetq7tV5eMD//gczJms3z9Yuq7t+w+oUbfaBc67szeuPrcdgsJDQJZ3f5gZzz7ND8PHRnwfGJO12ewHF4GB1swBgV62ZyDLTtcigazf3diP7+mo9vlu3agFqU9mC7tYazw2ug25XlcttpKe7fXDs6XbVWQBA13Mh8QktAC1YDHN6we7/smwZPPKIWm0wWAnpqL5Py5bBxTM2Ytn2JmT/CgVL1PPyF0Khi5lRjuyBJefCP5Mg6xvI/Uv95Pymgum/R8EPtYone3YAo4ss1sA+0Pd+ssvU+OmOgWXExWpxQF4e0DGJtAptsu3efZverewYdG/c3gm6XQADn4f+D+vHw9dwTN/v1UsNybANQVmzRhWg/fVXbR8JukWbEBWqegwLSsLqTG3bmqZdjPQf7J4pQISoT984bd74revzddsW/KKlhE4aqdIZu4So/XMO1F8tt6K0nJxirRuhYJ/+4rm+FL/r7kuiU4D6vpw3NZUuPbW0zYIK/fwYexzqDMbHQ0CwL6NHq4vf9HR1sWq1wo9LVZeFyWTmlNn6+YQDA7RCbCUHnIPuzD3a9tju3i4/rxAnK28/b655aBzjZyfb1zmmKM9ZqNIZDQYLtz7Q3en53ZK072N+sfZ3Lz4hgOSh+m7SYUnaecQ/yJ+hg9Tf0u2ZncnLg/nfbeDWp8dTUakC0T59YMUKmD4dBo/U5gRftw6XzFVm1m5XkVdMaDad4yK46oGx5GceJHVHF6LiIwntHMAll+gD7NEjWuYmuS0IzM7W98Bl7ddOmrHx7p+i0HZRXVamP8c2RVvo6Xb822ILtl1VLrdxDLpjYtSPaHvi4rSbOQsXqusJJwYDJD4KpywE/5pii5ZKDld34YILasZIAw/fspW5d43C31v97f/+nwHM++QXWHQGzBsH88bDPxNh2XnO75H6EOz9rv7GVh507u3ucTWEDIN+D8HYH2BmJszYijXpWXLy1Q3KLl19ieytFViwFVNzTKfvrb+UaZQePdSQD2jctGE7tctAetVkpp9SMy26xQJffQUbNqjHgwY5f6dOZBJ0t2FdwrWL+dwM13fZt6ar29omYzU9k9vRIFHRboV3DbP3Jm3doz9b/jNP+0t2yqnqyikqQmVjHCnvwKEidcG7f98B/n3TQv75VhuPnZmWo5u3t3YBtIJ9h+y1TWyvadOpc0eW/lPEB88s4ZVPhhDeTeuOyC+J0O3rOKdvXE3R/1NP1dbNnavGJe7erS6Sx40zOU3rE9TBIeje7zw+MjNL+xzderbtObiFaAsci3HZzBqz2t4T7ii2h+tKVXF9whg4SN+LO2yEvpd83CRtCMnixfDEv7Vg+ObzV7F+PQypKR0xcGy8fX7vtWlxuLJ9/R57gbJh/bSx52ExoXj7aTfcbr9d/7wxU1umgGKPHuokabXCnu1awbrMg1rPftck9w9DO9Zx3VVVqtAStG7Q7eMDnWpO940JuoOCYOZMtXzDDS3fPtE8Hh7qRhrAgQOwdGk9O4ePhemp0PMm8O3CT8vG2KfCGzsWHr1lE4O6b+Dli++0P2V9hosioq7m/LZV+/YJh+H/hXOK1M/MLBj+IcScDT6RYKnV0RZ3JZy6CpKegpjZ4N/V/lls35suXbSpFUGbq9uWTu/h4ZyZ0RgeHtiHFe7apc0qURfHnm7b+zmmmD/2mLZ8+ulNb097JkF3G9als3YnPDu9yGm7ucrM9n3qblzPqEynFDwhWoLBaKBvN/UXaN+BKF0a+D+rugFqHtjRp6ke5qg+2tVYTr46Rh+/czOPvT2BmZf0orhAXRjuydVXIK5dAC1nl5bKHuW9htr6DIvnqgfG4hfop5vSJV/fGU/6du1mlqug+68/KvnxR+3x7NlOb0VQoPbH9FBRmdP2jH3a+PXYBMlAEaIhjkGbzR13+zqvRAU6wcH6dR4eZqJ7dmZQrWvfYRP0XY/jx2vLzz99mMWbkgFI6JLOq58OsffoAHToFEBCLxXEbtodTaWLhLPVi7QCZUMH1d173bevGv8JanhM8tgede57LOI7LLEv71qvDbvJ1IZ6tkhvrONNk+aM63aco7s108sBomvuh+TkqJsBjkG3q3m5f/xRBTgPPHB82ieax/FvuePfeJe8gmDomzB7HwuXaQfkE0+AR2h/GPQyg2aea1+/23oF9H8E+tytxjv3vR963ez8uv6x0O9BmLED4q8Er2D14x8D8VfA2O/grFzwqHXuM7geilJ76INj0J2bq3rnbUFwjx7NL1pmSzG3WCAlpf59be8XEwN+NZdC48drQwIdr8lmzGhee9orCbrbsC5R2hiw7CznFNY92w9QUaWuEBxTfoVoaX17FNuXt61VvTsZW/eRnqfuvo7suw2/wJqUJ4eLFNvFy8q1qrfpaEUAm1eoXKT0LP0fmYI8/RVujsN3oHNk/eOkfX213pLaU2mnr9XyROPD1EVpUhKEdVJ3oOfPq+Dbb7WgetYs59cPDNTev6TI+ULbNoWRj2cZoV1CnLYLIfTCwyEkQBtDPbjnVsbMcB4vaBMbW/uxCQ8vD/v0NAChgfvp1lffozx6tHbxt36j1qX68F25mDz1UwkCDBmq1lVWuu7BXb1aO1cMG11/VsvHH8Prr6sKvi1VsbdHD+3ifPcO7YZgVk0nfGSkmurP3Y61p7stTBdmY7uBUFUFqan6wMZVKqzBoJ+7W7RNp52mfe9++qnOWcGcLKqZkcvLq2b6wuD+0PsO4sdMse+zuzABBvwbBr6oxjsnPwv9XNyFGfI6JD2tgno3qB10RzrUnMzNVRXCbcNM+uhH2jXJuHHa8vff173fgQNaRXdbajmom6SD9VN3Ex6uZRWdLCTobsO6xGhpctlZzrfYt6ZrPWh9R7rIzROiheiKqaWoLIz5v2TY100aU2xfrj1Gzmqxsj03wb5u22bVo117HGBBvn5MU84+LbiN6uJ8cVxbeLhqY36efvDW7kwtuI9LUGmhRiNMHZICqDT4zZvVqXHIoAqXvUJBDn8vS4qcv5t796s7DTHdfNxeLEmIE5HBAP1jtcGAd964v97vjuNUfKClMSYkaD2506Z7Ob1GYCAM6n9A/9zITM6/abjL93G8UFy71nn76o2hNe23MHhC/bmbHTvCLbegmwHC3eJ7ayen3TVDaSrKrfbxnbVvVrhLr17aNF/H2tPd2kG3YwXyZcvqTy8X7UdQkJbmnJUF62tGtxUV1T1WOTsbdtdMIDRsmLqhb9OxozYUoXbhwuOl9g0hx6A7Lw/mzdMeD6j7HmaDZs3Svt/ffFN3sUTH8dw9e+q32cZ125x2mnYD9GRxkn3c9qVLV23sWXa28y05xwqMfZNkflxx/PQdoKVbbd2iguP5C7SL21Oma2OgHS9ScnLUHNZHyrXjNW2bOns7Bd2V+nzT3BwtCI+Kbng++ghv9Ve0uMRDV4gwfZ8qjuTtWU5UnNY9ceqpzt+xWaNXOK0DCArR2n+oPFi3raRE67WJiZGAW4jGuuySagwGC0N6buXcG0bWu29s4EbdY9tQEZNJ1WV4+2147W3XY7/HD9BfYT90e5a9wnltjj0x69bqzxHl5bAxQ1Um6tO9kMAQ1+93PMX30666d2WobKN927Xc8q7BriYpPnZeXtpFdlqaVnSqsRx7uls7vdyxAvnSpVrQ7eWlVYcX7VPtFPMdO1QP8IABKnW8tsWLtWXHoSk2tpt9+/ZpY6uPp9o93d7e2o2A3Fx9Gv0ZZzT/fTp1gqlT1fK+farYpCu1K5c7qh10n2zjuUGC7jYtOi7Yvrw323m8ti7obsE750LU1neIFklv3eGP1WLln9VqjKK/9xGGnqKVyOwSrI3FzkldxvYU/Zza2zJU4LtnR7FufX6xft7nnFytd7tzbMMXtxEh2pjwgn2qZ8tqsZKep3qhu0dkYzRpp8ApsxOobfZFrosdBXbXur9K0H/59mofVyrZCtEEV9ynqn6v3JKAp3f9+dextabii+uuRXm9e6uiVp061X6WMm6i1l3VLWwPF98+os73SU6yasXUFmzXbUtNhaoqdQ4ZNq5t5BdHxIbZqyrv3qd64TN3alkBseF1T312rGyVkSsrVVprU7Sl9PL+/VVGBKiebltgExVV59Ba0U7MnKn9H371lSquZhtj/MQT+p5h0FLLwXXQbZun3WptftV+R1arOq+UOZeKccnVdHa23u7sbG1e7K5dcap30VTnORRj//pr1/vUF3SPGqVuXIHqNZ8yhZOOBN1tWNcErSJCZo7zXyFb0G00Oh/cQrSkLvGRdPCqqEqZAAEAAElEQVRVBdS27olk25p08orVRee4pG26on5RUdpVSk6uke1b9FXJ03LUQKP03fqL6NpjsXPytQvlqG51XE07CA/Verfz9xYDkJdRaJ//N67LQd3+kd3DSOqm5UX26ryTPkNdp4vq0stL9Nsk6Bai+cJiQl2Ora6tW7w+2yU+2Lm4Yl2mnDuAxG478PKo4LXnCuoN8AM6GOgdra6mN+2Jo6JU685avVrbb9iwRr99izIYDcRHqSvxPfnRVFdWk7lby91uqfRyUKn9Ntu3172fK20p6DaZYGRNokVurjZGVVLL27/ISO3/dvdu/WwmVitcfLG+0Jct6PbwUEFjbY7VwB1TzK1WdePpiy9UgT3HeanrYrXCv/4Fycnq5kBjxpy7CrptxdQqK1VdAlDp4cd6w2jmTC1o/vZb19ksrqYLs/Hzg6uvVstXX62/jjpZSNDdhvn4+xAZpiogZBTpe9MsZgvbtqhbYXExh3TjTIRoaQajgb6xNQXUCmI47VytR3jSOP0UWp27az3W2fkBbM/SVynPyIC8rEMUHe2oW1876M7dr3IOPUxVjSpOFhGuDToqyFEXnelbtb+mcbHO816cOlq7VT37lLQ6x5TWG3RvWGVfjgne3WA7hRBNF9tDf8UW17tjHXs68+3gy4Yd8RTklHPmla7Hcjsa0k9l51SZvdi0XPtOL9EKhTO84Zc5buKjVc92tdmTvTtyycrUro67dm+5i4VjCbrb0phu0I/rtnFVuVy0P7VnJImOhgkT1HJ+Plx6qRqznJ+vTbc1ZAj4++PE1tMN2tjv7dtV1kf37nDRRfDcc3DWWfrsj0WL1D7XXacVOnv1VfiuZgrvv//W5rKujy3o9vSEsJpLLcdx3XV95uYICtKmXcvL05//bGw93SYTdOvmvP2tt9Rz33772NvTHknQ3cbZ7ubn5ZvsX0yArLQcSsvVH8++0S0zRkuI+vSN11IWM/eqcridOlm58Fb97WBvP29CA1VV4pz9HUnL1t/+tFrhr1+dp8QryK/SPc45oALtyOBCXVp4XcIjHOb8zlG9U+k7tAg5rrvzbeSr7uxHgM9hAn1LuObuuquOOAbdh/Qd9+zN0PLCYiL0velCCPfo1lufzh3Xr3Mde7pm8jQRFNa4rpYhg7Sgddl8NVOI1WJl0T8qUgwMtJKU1KS3b1E9umsXC7u3FpKZpWUOxPZsue4ld/V0t/aYbtCP67aRnu4Tg+OMJEFB8McfKl3a1kM8d66aS7qh8dyg7+m2Bd2vvaZPswbV4+w4N/gTT6jvyPvvqylL582D++7TP+fTTxv+LLagu3NnrShZ51qnwpAQ18dzc9SXYm61ap87Lq7uGRoiIk7eYRoSdLdxjqlgjmmrW9dp42L79mrk4A8h3Kjv2KG6x+PGwZo1BqJinOsPRIWoMdU5B8NJS3MOdn//wzmd9GCRJ1UVKvCurqyioESNT4wKbVwgGxGpnfFtFcx379Qqmcf3cu7x6TWoO7k5BnLzPIlPqjsPM9Cn2L5ckqG/Hb03WyvIFONQl0EI4T6dIjsS4KMitZCA/S1axGziadpV7Nz5anjK9nV7KDioosMxfdZiajgj/riJ76Fd2u3cWkJWjp/9cddeLrrB3ORESS8HNVyg9v+pBN0nhh494KWXYPJk+PNPNYY/PBw++0wLBp96Ch55RHuO45RZjlyll9uCa6NRpavbrKuZrdRshjUOo2EWL1bjm6v0/Qx88YXzOkdr16opukCfhVE76D7zTK3y+LE64wytgvt330G1w+QwOTlQWpNAKENeXZOgu41zTM9wTE3ZuklL4e3b303fJiGa4Ox/+RAYqMbpvPIKLFigVRCurUuY6g6uMnuRkeF8i/Ov+dpVlq1oEUBhTQG0/L2HsFrV6SoqzHnOelciumgXmrZU9fQMLRCP6+16XHhAxwD7HON1CeqovY5Tenmu9tyYnuEIIdzPYDRwxUw158+VZzVjYugm6D+yJ5075gGwMKUvFaUVLPpzn337+NGNOycdL737azcgXvnfCHbsVVfhHXwPERzWcjcnOnWCUHVvtN2nl/v7OxeekvTyE8edd6oU7hEONRQnTVLXMja2Y9horLunODJSXQOB6ukuLtbmqU9K0r+ebcrBtDT98e5o+HAtFbywUN0UcOXQIX2v84wZ+jY5ckdquU1AgJrqC2D/fm3aNah/ujChtEjQbbVaufLKK/nhhx/q3W/v3r1cfvnlJCcnc9ppp7HUMfdCABAbpX0zMzdrFR+2btNuwfZJkjksxPHXvbtKbdq/H26/vf75FqMiyp3WDU7WMjRKSrWUx35dtTGTBdkqos05qB3jUYn6Hva6hHfRLi7zC1WQnL5Xu5rr3q/53RZ+HfwwGdUt3kNHvXXb9uarsaUdfA81On1VCNF0r381nv3ZB3nhkwkt+j4Go4GpI1U3VmmFP0t/28Kixdrf4HFTwup6aqsYMyORIX3VTYGd6b7s3a/OdV3D8uud+9wdbL3dubnOQ2/q09bSy8F5XLf0dJ/4brtNBeSOBg7UqtnXZjBovd179qheblsBtDFj1E0oW8bqhg2ql9uxAOM116hrKVCp7l9+CVddpW3/9FM1vvyhh1QF8iuvhC1b1FhwWxG44cPhnnu05zj2dPv7qx59d3Ls9Xccd15f5XKhuD3otlgsPPXUUyxbtqze/axWKzfddBOhoaF8//33zJw5k5tvvpkc24SIAoDYjmn25YytWfblrbu1ojG9B3c9rm0SwiYggEYV8Yvq7Fzm8rTxGXiYnHOnRiRpQycKstVNJ8fTQueoxuVxRsRoPdn5+1Ujdx9Qc39HhpfjH+SiKkojGYwGAn3VVWLJEa1n22qxsrdQ3WaOCWu5qXmEEEpIVMMzGbjDqadql0t//XqIRetVWo+/9xEGT3SebrA1mTxNfPVLtFOPcWzn4hZ/b8cU89rjWuvT1tLLwbl3U4Luk8OLL6oq4jaTJtW/vy3orqpS05DZ2I6fwTUzjB49qnrPHYPuCy9Uj994A5YvVwH41Kkq3R3gl1/gnHPgmWfUENOPPlLp8Lb3sQXqjuOnbUE8qMJn7i60PHCgtixBd9O4NejOz8/nsssuY/78+QTWdVuoxsqVK9m7dy///ve/iY+P57rrriM5OZnvv//enU1q97r1CrYvZ+5VaeRWi5VtmWouotiwfQQENz94EOJ46BLt3LvSv2cRPTpn6db5eR+lf39tzHdBnuohdwy6G3vhExQaiJeHKqBWUORPaSnk5alTXlwPn/qe2rjX91c3BEqOat+/AzkHKK9Sf+FiIoqP+T2EEG3DlLMS7ENfPvm5LzkHVXfSqP7bG5xTvDXEx6siTY66dmn5+i+2ubqhaUF3W0svB+npPlkZjfDJJ3DLLaro2r331r+/YwVzxwRf2/EzZIi2bt06Leg2GFRAHhoKN98MfWsmKfL0VFXPQU379eOPdb/3//2fPsgGNSz1iSdUgbbnnqu/7c3hWDTSMehO0/oIJb28Dm4Nurds2ULnzp35/vvv6dDAWTM1NZW+ffvi56f1Eg0ePJiUlBR3Nqndi+3tMFd3tvqd5qTncahMpa327Z7r8nlCtCVR0c5BbsKATvTuVqhb1y08V18ALVelcOc6HOaNvfAxGA2Eh6tgP7+0p24OzbrGnjdFkL+qGFJSqt1g3LtL+zwxnZ2nJBNCtE+h0SEM7qFmCiko0Wo1jB91uK6ntLrzz4errqi0P05IbvlByc0tptYWe7ojI7Ueu7CwttMu0fJ8fOD111XAa6tTUBfHYmplNfe1unXTagDYeroBli2DjRvVct++dR9Tl16qf+zrq+bGfvVVLV39nnvg3HNdP//RR9V4cMe2uUtgoHajYeNGVUzNYlE99aB+XzEx7n/fE4FbK3BNmjSJSQ3lYdQoLCwkPFxfZCgkJIS8vLw6n2M2mzG7mo29DbG1z13t9AnwITRwP/sPhZKRF4rZbCZ15V5ABeN9eh1p878T0TzuPpZaU0Scc6Qc1z+KhJ654FDKoXuXg4REaGOk8wssmM1msrdsApIBCA/ej9ncuDl5Izp7si8HCgsNfP21Bdt9xn79LJjNzlXUmyLQX/11raz2pvRwKd5+3mTuLrZvj+7Sds5XJ9KxJFrXyXwsTT7Vk7U79evGnBLUpn8Xr7xmwsvHwsGDcMWt3ZrWVrMZk33RrAakNkBdjKtnpaXVf551PJYOHTIC6iapr6+5MW91XLz+Ojz/vJFrr7Ue898M0bJa69ykepr1w95Gj9aO/eRkbfuXX1qprlbH+ZAhdX8/EhNh2DAjq1cb6NTJyi+/WOxF3264QRVsCwlp1FeyRSQnG9i1y0h5OWzZor6vRUXqM44da8VisTTwCm1b7WPJXcdUk4Lu8vJy8vPzXW4LCwvT9Vo3pKysDC8v/dRCXl5eVFZW1vEM2NGUXKVWtmnTJre9VkyYN/sPhZJ9IJK1a9axYK52YyI6ukSyA05w7jyWWktRuQeg3frsGrqPHen5hIUX6/br0LUzpZVb7I/37jOTkpLC3gztvFBSvIWUlMZV2vH27gEEYbEYePu1Q0AQRqOVAQM2k5JSz1wcjeDnoxWHW7V0NYHhHdiUon03/QKK29x380Q4lkTbcDIeS3ED9OcdH88yvEMr2tz3vDZbYSbHbJ/GMJaVYRu+uXHjRiyNGBxaXQ0m0yDMZgMpKeWkpGxr8DmbNm2isLAP4Ienp4WtW1Oa1tAWFBqqxvgCtPH/ZlHjeJ+bKiq8gETdupiYvaSk7Lc/jorqT06ON4cOaUPtOnfW71PbE094smhREGPGlODjU+V0/DlOI3y8RUZGANEA/PxzFocPmwBVXyoubh8pKSdGTRt3H0tNCrpTU1O5tHbOQ4233nqLyU0okeft7U1xcbFuXWVlJT4+dY+17NWrV5MC+9ZgNpvZtGkTiYmJmNw0cWdc9Go27AaL1USIbzibcrRBU6efl0x8ouRxnIha4lhqLWYzmExWzGb1BychNo/k5IFUFnrB89p+Q4Z1YfgY7WbcoSOBJCcnU1isupc8TZWMmTQKo6lxI2N69jTYU56Kj6ohGTNGrObUU4fU86zGCem0wr7cObwrPZNj+doYbV83YHh/kpPdkMfuBifSsSRa18l8LPXrB3fdZeHwYXX+GdlvG0NHNG42hXbpqDY16YABA1Qp5EaIj1fjufft82XAgGSqqlQaanKyvuCT47FkNqsNgYEGklXXoBBN0lrnpv79wcND68EGOP/8aPr3164HRowwUntCp9mzo0lOjqY+U6aALbhtS6ZPhzffVMsHD8aSlaV99gsuiCI5uX0XQKh9LJWWlrql47dJQffw4cPZ3tTJF+sQERHBrlq3Xffv3++Ucu7IZDK1mz/y7mxrbHSFfXnvrmJWr+8GqDFGPZO6YWjZGUBEK2tPx31dTCaIDK8gO1eljifEHcVkMtFvaKxuv/h4I2HRYRgNZixWEwUHAzBgID1XDaeI6lSAp1fj/wBFBhcC+ul8rrvO6JbfZ1AHLX3qaEkFJpOJ7P0R9nXd+vekrf23nQjHkmgbTsZjyWSCSeNK+fk3dfN/3IjDJ/bvwOGzmUwmGntCS0hQQXdpqYHsbBOXXQaLF6tKzZ9/7uptTBw+rC5kAgIMJ/bvVLS4431uMplUirltnurgYEhMNOmmUR06VF9kzdsbkpNNbe4aobEci8OlpBjZUpOgGBzcvj9XbbZjyV3HU4vM090YSUlJbNmyhfJyLUVz3bp1JDmWxRMAdOumRdVz5xkpKlLLI0ciAbdoN7qEFdmXExJUwBoYEkhUJ61KWvfuYPIwEhqqxjnll/dh2+p0e+HAQb33Nek9w3226h53DdvHqRcMalb7awvqrAX/JRUq2HZM95JCIkKceM69QMu2O+Oqsa3YkrbLsZjaLbeogBvgiy9g7VrXz7EVUpNiZaI9cixYNmoUuoAb9MXUQE27VWuEbbsSHq4VtV2yBPbXZMmPHdvoe3MnpeMadB88eJCjNelKw4YNo3PnzjzwwAPs3LmT999/n40bN3LOOecczya1C7FxWsr9V79oV/K2ogpCtAdRXlo6dkJPbTx1Ug8VSHt5VhHXXQXjEZEqCaegwMCKBVpQPmKodpOuMSIi9Mk815y3C5One/4iBHXRUsdLytVcwbagu1MnaOMjYYQQzXDhhWqO3LlzYfCQVuu3aNMcg+5ff9Vve/JJ5/3NZq3qswTdoj1yDLprz+8OzkH3sGEt257jwTZft2PNtPHjW6ct7cVx/Ytxzjnn8OGHHwKqy/7tt9+msLCQs846i19++YW33nqLKJkI0Ulsz2D7ckaOVrV55MhWaIwQzTRirDp2A3wOM2iylpv09PMdmDZsDW88uoIOgeqUZBtlUlEBc+drN51Gjm9c1XKb8M5aJXSTsZorb+9dz95NE6jNFEZJCVjMFrKz1V+fmBipcivEichggPPOs421FK44Bt21/fKLc0Eyxzm6AxpXI1OINmVsTdKLwQCnn+68vVMn/XzaJ0LQPchF0qAE3fVz65RhjubPn9/gutjYWD777LOWasIJI7Z/L6d1RoOZIQOrgLoLzwnRltz25AiiopfSf1AoIVFa8DtwQm/+WKXf17G0w5/L+wDgYapi8ISeTXrPbgnaBJtnDl9AVLz7rpSDgrTlQ4cgP6OAqqpIAGL81gIncIElIYSoQ+2gOyoKbrwRHn5YPX7qKfjuO237mjXackhIy7dPCHc791yVUh4aCgMGuN5nxAjYs0dbbu9sPd02HTrYpkcTdWmxoFu4T3BHA0FBqjfNZkD3nQQEua/XToiW5uPvwyV3usi7ciE8MA9QAezhMtX1kRS3E7/Avk16z54Du/HodQtZs8GfV/7bp0nPbUhQBzO2uTdL9h9m7+792NocE1Xm1vcSQoj2IixMFVSyTVDz5pswbZr6Ny8Pvv8eNm+GPjWn5Nde05IuzzrruDdXiGNmNKrAuz6PPaa+ExMm6NPR26vaQffo0eAhUWW9ZEBSO9Gtm/7xyIEnxhx4QrgS7p3mtG7kwMJmvdYT707g91VDie3j3mk3gthsXy7JWM/e9MP2xzHRFldPEUKIE57BADfdpJZvuAFmzwZfX7j3Xm2f++4DqxUyMrz54w9VETY2Vu0rxIkoIQF+/13/PWjPYmOho8OIP0ktb5gE3e1ErH5mJUaMkP86ceKKiHQudmYbE95WBHb0tS8fOmRgb6Y2tV9MrKerpwghxEnhqadURfK339bWXXcdRNTMqvj77/DWWwa+/FKbZvGWW6SnTIj2wmDQp5NL0N0widzaiW6d9JOyjzzFvb12QrQl4ZHeTutGnlbHQKlWEtRJK09ecthDP11YN/9WaJEQQrQdtYui+fnBBx9oj++918Cvv4bY97366uPYOCHEMbv2WjVF2IgRai5yUT8JutuJ2PAc+3JIwH56JMXWs7cQ7Vt4lH6+rbAwfeXPtiAoVLuiLDnsxdadWqAd06NTazRJCCHatBkz4I471HJlpYGKCnUZetVV+uKUQoi27/zz1Rzdy5ZJlkpjSNDdTnSL0eYnHtFjJQajoRVbI0TLCu+iv/oaOVKlMrUlHTpqE8puz4xg7ho1f0ZUp1xie3dprWYJIUSb9txzMESbNRKDwcqtt7Zee4QQzRccrArJiYbJr6mdGDplAB6mKgBmzA5sYG8h2rfwGH1PcVuck97Dy4S/t5pgNqMgBotVjUO/+tztmDydx6QLIYQALy/46isIDLQCcN55VuLiWrlRQgjRwiQZoJ2ISYhiya+bydh5iHOvH93azRGiRfkH+ePvfYSjFSqFe0TvTUBi6zbKhSD/w/Y2AhgNZq6+o1crtkgIIdq++HhYs8bCZ5/t5Z57Ylq7OUII0eKkp7sdGTGtP+ffMkp60cRJISIoH1CB7NCJbbMbJNCvVPf4tBHriEmIaqXWCCFE+xEfDzNnHsDPr+F9hRCivZOgWwjRJl1+rioHfvXMZfgHtc1q4EEBZbrH193ZrXUaIoQQQggh2iwJuoUQbdIjb06guKCE934c19pNqVNQgFbgMCbGwvTZ4a3YGiGEEEII0RZJ0C2EaLOCwtr2HDKB0b3ty1dfpearFEIIIYQQwpEE3UII0UzJQ1QRtYAAuOpqOZ0KIYQQQghnUr1cCCGa6Z57oHt36NcPusjU3EIIIYQQwgUJuoUQopm8vODCC1u7FUIIIYQQoi2TfEghhBBCCCGEEKKFSNAthBBCCCGEEEK0EAm6hRBCCCGEEEKIFtIuxnRbLBYAysrKWrklDTObzQCUlpZikvmDxDGQY0m4ixxLwl3kWDqJlJdDQoK2bDC49eXlWBLuJMeTcJfax5It/rTFo81lsFqt1mNuXQs7cOAAGRkZrd0MIYQQQgghhBAnmW7duhESEtLs57eLoLu6upqSkhK8vb0xGiUjXgghhBBCCCFEy7JYLFRUVBAUFISHR/OTxNtF0C2EEEIIIYQQQrRH0m0shBBCCCGEEEK0EAm6hRBCCCGEEEKIFiJBt5tUVFTw4IMPMmTIEMaMGcOHH37Y2k0S7cjff/9NQkKC7ufWW28FYOvWrZx77rkkJSVx9tlns3nz5lZurWiLKisrmTFjBqtWrbKv27t3L5dffjnJycmcdtppLF26VPec5cuXM2PGDJKSkrj00kvZu3fv8W62aINcHUtPPfWU0znqs88+s2//9ddfmTx5MklJSdx0000cPHiwNZou2oj8/HxuvfVWhg0bxtixY3n22WepqKgA5Lwkmqa+Y0nOS6KpMjMzueqqqxg4cCATJkzggw8+sG9r6XOTBN1u8sILL7B582Y++eQTHnvsMd58803+/PPP1m6WaCd27drFxIkTWbp0qf3nqaeeorS0lGuvvZYhQ4bwww8/MHDgQK677jpKS0tbu8miDamoqODOO+9k586d9nVWq5WbbrqJ0NBQvv/+e2bOnMnNN99MTk4OADk5Odx0002cddZZfPfdd3Tq1Ikbb7wRKfNxcnN1LAHs3r2bu+66S3eOOvvsswHYuHEjDz30EDfffDNff/01hw4d4oEHHmiN5os2wGq1cuutt1JWVsbnn3/OK6+8woIFC3j11VflvCSapL5jCeS8JJrGYrFw7bXX0rFjR3788UeeeOIJ3nnnHebMmXN8zk1WccyOHj1qTUxMtK5cudK+7q233rJefPHFrdgq0Z7cdddd1pdeeslp/bfffmudNGmS1WKxWK1Wq9VisVinTJli/f777493E0UbtXPnTuuZZ55pPeOMM6y9evWyn4eWL19uTU5Oth49etS+72WXXWZ9/fXXrVar1frqq6/qzlGlpaXWgQMH6s5j4uRS17FktVqtY8eOtS5ZssTl8+655x7rfffdZ3+ck5NjTUhIsGZlZbV4m0Xbs2vXLmuvXr2shYWF9nVz5syxjhkzRs5LoknqO5asVjkviabJz8+33nbbbdbDhw/b1910003Wxx577Licm6Sn2w3S0tKorq5m4MCB9nWDBw8mNTX1mCdSFyeH3bt3061bN6f1qampDB48GIPBAIDBYGDQoEGkpKQc3waKNmv16tUMHz6cr7/+Wrc+NTWVvn374ufnZ183ePBg+7GTmprKkCFD7Nt8fX3p16+fHFsnsbqOpSNHjpCfn+/yHAXOx1Lnzp2JiooiNTW1JZsr2qiwsDA++OADQkNDdeuPHDki5yXRJPUdS3JeEk0VHh7Oq6++SkBAAFarlXXr1rFmzRqGDRt2XM5NzZ9sTNgVFhbSsWNHvLy87OtCQ0OpqKiguLiYTp06tWLrRFtntVrZs2cPS5cu5b333sNsNjNt2jRuvfVWCgsL6dGjh27/kJAQp9RPcfK68MILXa4vLCwkPDxcty4kJIS8vLxGbRcnn7qOpd27d2MwGHj33XdZvHgxwcHBXHHFFcyePRuAgoICOZaEXWBgIGPHjrU/tlgsfPbZZ4wYMULOS6JJ6juW5LwkjsWkSZPIyclh4sSJnHrqqTzzzDMtfm6SoNsNysrKdAE3YH9cWVnZGk0S7UhOTo79GHr11VfZt28fTz31FOXl5XUeW3JciYY0dOzIsSUaKz09HYPBQFxcHBdffDFr1qzhkUceISAggClTplBeXi7HkqjTiy++yNatW/nuu+/4+OOP5bwkms3xWNqyZYucl0Szvf766+zfv5/HH3+cZ5999rhcM0nQ7Qbe3t5Ov3TbYx8fn9ZokmhHunTpwqpVqwgKCsJgMNCnTx8sFgv33HMPw4YNc3lsyXElGuLt7U1xcbFuneOxU9d5KzAw8Hg1UbQTs2bNYuLEiQQHBwPQu3dvMjIy+PLLL5kyZUqdx5Kvr28rtFa0JS+++CKffPIJr7zyCr169ZLzkmi22sdSz5495bwkmi0xMRFQxUPvvvtuzj77bMrKynT7uPvcJGO63SAiIoKioiKqq6vt6woLC/Hx8ZE/FKJRgoOD7eO2AeLj46moqCAsLIz9+/fr9t2/f79TiosQtUVERNR77NS1PSws7Li1UbQPBoPBfmFrExcXR35+PiDHknDtySef5KOPPuLFF1/k1FNPBeS8JJrH1bEk5yXRVPv372fevHm6dT169KCqqqrB6213HE8SdLtBnz598PDw0A2mX7duHYmJiRiN8isW9VuyZAnDhw/X3WHbtm0bwcHBDB48mA0bNtinJLBaraxfv56kpKTWaq5oJ5KSktiyZQvl5eX2devWrbMfO0lJSaxbt86+raysjK1bt8qxJZy89tprXH755bp1aWlpxMXFAc7HUm5uLrm5uXIsncTefPNNvvrqK15++WVOP/10+3o5L4mmqutYkvOSaKp9+/Zx880322/MAGzevJlOnToxePDgFj83SUToBr6+vsyaNYvHH3+cjRs3Mm/ePD788EMuvfTS1m6aaAcGDhyIt7c3Dz/8MOnp6SxatIgXXniBq6++mmnTpnHo0CGefvppdu3axdNPP01ZWRnTp09v7WaLNm7YsGF07tyZBx54gJ07d/L++++zceNGzjnnHADOPvts1q9fz/vvv8/OnTt54IEHiI6OZvjw4a3cctHWTJw4kTVr1vDf//6XrKwsvvjiC3766SeuvPJKAC644AJ+/vlnvv32W9LS0rj33nuZMGECMTExrdxy0Rp2797N22+/zTXXXMPgwYMpLCy0/8h5STRFfceSnJdEUyUmJtKvXz8efPBBdu3axaJFi3jxxRe5/vrrj8+56RinPBM1SktLrffee681OTnZOmbMGOtHH33U2k0S7ciOHTusl19+uTU5Odk6evRo6xtvvGGfmzs1NdU6a9Ysa2JiovWcc86xbtmypZVbK9qq2nMrZ2RkWC+66CJr//79raeffrp12bJluv0XLlxonTp1qnXAgAHWyy67TOYvFXa1j6W///7besYZZ1gTExOt06ZNs/7111+6/b///nvr+PHjrcnJydabbrrJevDgwePdZNFGvPfee9ZevXq5/LFa5bwkGq+hY0nOS6Kp8vLyrDfddJN10KBB1tGjR1vfeecd+/V2S5+bDFZrTd6qEEIIIYQQQggh3ErSy4UQQgghhBBCiBYiQbcQQgghhBBCCNFCJOgWQgghhBBCCCFaiATdQgghhBBCCCFEC5GgWwghhBBCCCGEaCESdAshhBBCCCGEEC1Egm4hhBBCCCGEEKKFSNAthBBCCCGEEEK0EAm6hRBCCCGEEEKIFiJBtxBCCCGEEEII0UIk6BZCCCGEEEIIIVqIBN1CCCGEEEIIIUQLkaBbCCGEEEIIIYRoIRJ0CyGEEEIIIYQQLUSCbiGEEEIIIYQQooVI0C2EEEIIIYQQQrQQCbqFEEIIIYQQQogWIkG3EEIIIYQQQgjRQiToFkIIIWq5//77SUhIqPNn9OjRrd3EJklISOCNN9445teprKzk5ZdfZsKECQwYMIAzzzyT33//3b79jTfeqPf3tnr1aqfXzMvLY8iQIaxatcpp28KFCzn77LNJTk5m4sSJvP7661RWVh7z5xBCCCGOJ4/WboAQQgjRFoWFhfHmm2+63Obp6XmcW9M23H333Sxbtoy77rqLbt268fPPP3PnnXcSEBDAuHHjOPfccxk7dqzuOVVVVdxxxx2EhYUxYMAA3bbc3FyuuuoqDh8+7PReS5cu5YYbbmDWrFncddddpKen89JLL1FYWMiTTz7Zop9TCCGEcCcJuoUQQggXvLy8SE5Obu1mtBlr167lr7/+4v3332f8+PEAjBw5kszMTBYvXsy4ceOIjIwkMjJS97xnn32Wo0eP8tVXX+Hj4wOAxWLhp59+4vnnn6/z/d577z369evHs88+C8CoUaMoKirinXfe4YEHHsDPz6+FPqkQQgjhXpJeLoQQQjTT5s2b6devH/fff7993YEDBxg5ciRXXHEFVqsVgDVr1nDVVVcxdOhQ+vfvz6RJk3jjjTewWCwA7Nu3j4SEBP78809uvPFGkpOTGTVqFG+//TZHjhzhwQcfZPDgwYwaNYoXX3zR/rq25/32229cf/31JCUlMWHCBN566y37a7tSXFzMo48+yqhRo0hMTORf//oXK1asqPez/vnnn3Tt2tUecAMYDAa++uorHn74YZfP2b59O//73/+4+eabiY6O1q1/7LHHmDVrFi+88ILL5z7zzDNO2zw9PbFYLFRXV9fbViGEEKItkaBbCCGEqEN1dbXLH1vQ279/f6655hp+/PFHe9D66KOPYrFYeO655zAYDKSlpXH55ZcTHBzMK6+8wjvvvMOQIUN48803+eOPP3Tv9/DDD9OrVy/eeecdRo4cyWuvvcY555yDj48Pb775JlOnTuWDDz7gzz//1D3v8ccfJyAggDfeeIOZM2fy5ptv8tJLL7n8TBUVFVx22WX8888/3HHHHbz55ptERkZy9dVX1xt4p6Wl0bNnT+bMmcP06dPp27cv06dPZ968eXU+54UXXiA6OprLLrtMt75z5878/fffPPDAA/be79piYmKIi4sD4MiRI8ydO5cPP/yQ008/ncDAwDrfUwghhGhrJL1cCCGEcCE7O5t+/fq53Hbvvfdy1VVXAXDTTTcxf/58nnjiCa699lrmzZvHa6+9RkREBKCCVVsPtdGo7nWPHj2a+fPns2rVKk4//XT7644dO5bbb78dgJ49e/Lrr78SEhLCo48+CsCIESOYM2cO69evZ/r06fbn9evXj//85z8AjBs3jtLSUj755BNuuOEGAgICdG3/+eefSUtL45tvviEpKcn+nEsuuYT//Oc/fP/99y4/88GDB8nIyGDLli32MdpffPEFN998M++//z7jxo3T7Z+WlsbSpUt56qmn8PDQX24EBwe7/qW7UFBQYB8nHhMTwx133NHo5wohhBBtgQTdQgghhAthYWG88847Lrd17tzZvuzp6cnzzz/Pueeey0MPPcTs2bOZNm2affusWbOYNWsWFRUV7Nmzh8zMTLZt24bZbKaqqkr3ugMHDrQvh4aGAuiKjxkMBoKCgpwKj82aNUv3+NRTT+XTTz9lw4YNToXNVqxYQVhYGP369dOlaU+cOJEXXniBkpISgoKCnD5zVVUVhYWF/PDDD/abESNGjGDmzJm8/fbbTkH3559/TkhICDNnznT+BTaBj48PH3/8McXFxbzxxhucd955/PDDD/abGkIIIURbJ0G3EEII4YKXlxeJiYmN2rdPnz4kJCSwefNmJk6cqNtWXl7Ok08+yc8//0x1dTXR0dEMHDgQDw8Pe5q6Te1eaaBRBcNqB6CdOnUCoKSkxGnf4uJiCgsL6+zFLywsdBl0+/v724N1G5PJxMiRI/n66691+5rNZv7++29OO+00vLy8Gmx/fQIDAxk5ciQAiYmJTJ48mW+//Zabb775mF5XCCGEOF4k6BZCCCGO0ddff83mzZvp3bs3Tz/9NCNHjrSPO3766af566+/ePXVVxk1apQ9iLYFku5QVFSke3zgwAEAQkJCnPbt0KED3bp1s6ej1+ZY8MxRbGwsubm5WK1WDAaDfX11dbXTuOzU1FSKiop0KfBNYTab+euvv+jWrRt9+/bVtS0oKIiCgoJmva4QQgjRGqSQmhBCCHEMsrOzef755znnnHN49913OXz4ME8//bR9+7p16xg+fDiTJ0+2B9ybN2/m4MGD9VYYb4raxcz++usvfH197WO2HQ0bNozc3FxCQkJITEy0/yxbtowPPvgAk8nk8j3Gjx9PcXExy5Yts6+rrKxkyZIlDB48WLdvamoqHh4eTvNyN5bJZOKll15yKga3ZcsWiouLSUhIaNbrCiGEEK1BerqFEEIIFyorK0lJSalze0JCAj4+Pjz00EP4+vpy7733EhQUxO23384zzzzDqaeeyqRJkxgwYAB//PEHX375JfHx8aSlpfHOO+9gMBgoKytzS1v/+OMPQkJCGD9+PKtXr+bzzz/njjvucJmaftZZZ/HZZ59xxRVXcP3119O5c2eWL1/O//3f/3HxxRfj6enp8j3OOOMMPvvsM+6++27uuusuIiIi+PTTT8nLy+O1117T7btjxw6io6Px9vZu9me65ZZbuO+++3jssceYNm0ae/fu5fXXX6dXr16cffbZzX5dIYQQ4niToFsIIYRwobCwkPPOO6/O7T/99BPr169nxYoVvPrqq/Zx0Jdccglz5szh0UcfZdCgQdx///1UVVXx6quvUllZSXR0NDfccAO7du1i/vz5mM3mY27rbbfdxurVq/n666/p3Lkzjz76KBdccIHLff38/Pj888956aWXePHFFzl8+DBdunThrrvu4sorr6zzPTw9Pfnoo494+eWXeeWVVzh69Ch9+/bl448/dhofvn//fpfjwpti1qxZ+Pj48P777/Pzzz/j5+fH5MmTueuuu+qcZkwIIYRoiwzW2lVchBBCCNEu7Nu3j1NOOYVnn32Ws846q7WbI4QQQggXZEy3EEIIIYQQQgjRQiToFkIIIYQQQgghWoiklwshhBBCCCGEEC1EerqFEEIIIYQQQogWIkG3EEIIIYQQQgjRQtrFlGHV1dWUlJTg7e2N0Sj3CYQQQgghhBBCtCyLxUJFRQVBQUF4eDQ/dG4XQXdJSQkZGRmt3QwhhBBCCCGEECeZbt26ERIS0uznt4ug29vbG1Af1tfXt5VbUz+z2cyOHTvo1asXJpOptZsj2jE5loS7yLEk3EWOpZNIWRmMHq2Wly0DN19/ybEk3EmOJ+EutY+lsrIyMjIy7PFoc7k96K6oqOCJJ55g7ty5+Pj4cOWVV3LllVe63PeGG25g/vz5unXvvvsuEydO1K2zpZT7+vri5+fn7ia7ldlsBsDPz0++9OKYyLEk3EWOJeEuciydRKxW2L5dLfv4gJuvv+RYEu4kx5Nwl7qOpWMd4uz2oPuFF15g8+bNfPLJJ+Tk5HDfffcRFRXFtGnTnPbdvXs3L774IiNHjrSvCwoKcneThBBCCCGEEEKIVuHWoLu0tJRvv/2W//u//6Nfv37069ePnTt38vnnnzsF3ZWVlezbt4/ExETCwsLc2QwhhBBCCCGEEKJNcGsp8LS0NKqrqxk4cKB93eDBg0lNTcVisej2TU9Px2AwEBMT484mCCGEEEIIIcRJx2qFCy6Arl1h5crWbo1w5Nae7sLCQjp27IiXl5d9XWhoKBUVFRQXF9OpUyf7+vT0dAICArj33ntZvXo1kZGR3HLLLYwfP77O1zebzfY8+7bK1r623k7R9smxJNxFjiXhLnIsnUTMZkz2RTO4+f9cjiXhTnI8KRs3wldfqW/uyy9b+PJLayu3qP2pfSy565hya9BdVlamC7gB++PKykrd+vT0dMrLyxkzZgzXXnstf//9NzfccANff/01iYmJLl9/x44d7mxui9q0aVNrN0GcIORYEu4ix5JwFzmWTnzGsjJseYsbN27E0kKzx8ixJNzpZD+e5s0LBuIBWLOmgpSUra3anvbM3ceSW4Nub29vp+Da9tjHx0e3/sYbb+SSSy6xF07r3bs3W7Zs4Ztvvqkz6O7Vq1e7qF6+adMmEhMTpXqiOCZyLAl3kWNJuIscSyeRo0ftiwMGDAB/f7e+vBxLwp1OluPJaoXcXOjcGQwG5+1//KGtzMryISEh2d2z/Z3wah9LpaWlbun4dWvQHRERQVFREdXV1Xh4qJcuLCzEx8eHwMBA3b5Go9GpUnlcXBy7du2q8/VNJlO7+SK1p7aKtk2OJeEuciwJd5Fj6STg8P9rMpl0j937NnIsCfc50Y+nM8+EOXPgoYfgqaect+/erS1bLAZ27DAxaNCxvWdVFXz8McTFwSmnHNtrtSe2Y8ldx5NbC6n16dMHDw8PUlJS7OvWrVtHYmKi09xm999/Pw888IBuXVpaGnFxce5skhBCCCGEEEK0a5mZKuAGeOklOHjQeZ+dO/WPN2489vd991249lqYPBm+++7YX+9k5dag29fXl1mzZvH444+zceNG5s2bx4cffsill14KqF7v8vJyACZNmsScOXP46aefyMzM5M0332TdunVcfPHF7mySEEIIIYQQQrRrf/+tLZeXw0cfOe9TO+h2x7DkBQu05SuvhHZUYqtNcWvQDfDAAw/Qr18/LrvsMp544gluueUWpk6dCsCYMWP4/fffAZg6dSqPPfYY77zzDjNmzGD+/Pl88MEHREdHu7tJQgghhBBCCNFuOQbdAG+/rZ9U4NAhKCjQ7+OOnu7Nm7Xlw4fh7LN1JR9EI7l1TDeo3u7nn3+e559/3mnb9u3bdY/PPfdczj33XHc3QQghhBBCCCFOCGYzzJunX5eeDn/+Caefrh7X7uWGY+/pLiuD2uW2Nm+Gq65S47xr1ckW9XB7T7cQQgghhBBCCPfYsEEbwx0Zqa1/6y1t2VXQnZ/v3PvdFNu2qYrpAGPHQkCAWv76a0hOhqVLm//aJxsJuoUQQggh2jCrxUp+RiHmKnPDOwshTjhz52rLjzwCsbFq+Y8/tJ5ox6C7a1dt+Vh6ux1Ty888Ez79FDw91ePt21Ug/tBDzX/9k4kE3UIIIYQQbZTVYmXWuNVEdg8jOLCUSQM38Nj1CynKL27tpgkhjhPH8dzTp8MNN2iP33lH/esYdJ91lrZ8LOO6HYPu/v1h9mzV6z58uLb+mWcgL6/573GykKBbCCGEEOI4qq6sJnXJdqoqqhrcNy+jgF+WqSvcI+UdWJAykH+/N4GbL9nS0s0UQrQSi0UFy5WVcOQILFum1sfHQ/fuaky1l5da9803KgXcMeiePVtbPpae7i0Op5n+/dW//fqp9sycqW3LzW3+e5wsJOgWQgghhDiObrlgOcnjEjhjbGqD+25bn2Nf9vKosC9/s2CU7kL3pw9W8fStCyk7XObWtgoh6nf4MLz4oprCy2Jxz2tecQUkJUHfvvDcc1BVc3+uZkIoQkNh0iS1vG+f6n22Bd3R0TBkCBgM6rE7erqDgqBLF229yaSCb5v9+5v/HicLCbqFEEIIIY6T3akZvP/jaAD+WjOE6srqevfftumQffn1R1dx/91qrp7qagPvv6/W//PtemZfM5yH35jAs3evapmGCyGcZGfDuHFw771qDuu779YKjzWX1Qo//KCWd++Gp5/Wtk2Zoi079jR//DEcOKCWe/YEPz/1L6jeanMzykEcOgRZWWq5f38tiLcJCdGWbe8t6iZBtxBCCCGEG5irzMz5aDWXn76UG87fwCefQFqa/iL8pSezsFhN9sf79xtcvJJm2zZte58BQdx4qz/Gmqu3d9+FsqPV3HaXv32f3+cFuefDCCHqlZqqxjanpGjrXnlFjXF2pcrFaJKtW+Gyy+CXX7R1ubkqpbw2kwkmTtQen3mmtvzhh9qyLdhOTFT/lpc7T/vVGI6p5Y692jahodqy9HQ3TIJuIYQQQohjUF1ZzRsPL6JX132ceeUwPvl9DO9+PZDLL4c+fVRK6OHDUJBVyEe/DNU9t2C/yfWL1kjbFWBf7jOoCzExMGuWepyXBzNPzWHL3gT7PhsykjhUokX5K37fxJ+fr8VqOcbuNyGE3V9/wZgxqqcbIDxc2/bww/D229pjqxVeegmCg9W5oNohueWaa1RF8Isugoqa0SNpadr2gQO1abqmTVOvYRMVBUNrTidHj2rrbUH3gAHauuaM665dRK02CbqbRoJuIYQQQohj8NL9S7n16fGk58W63D5vnips9NJjaZRX+eq25efX/9rbMjsDENLhAGEx6ir3ppu07X8v66rb32IxsnyF6h1fv2ArY2b0ZfrFQ5jz8eqmfCQhRB3efx9OP13rjR42TI2bfvFFbZ+bboKLL1Y3xm68UaWdl5aqKuTz5ql9srJg+XK1fOSIFmxv3669znXXqcdffgn/+59zWxxTzG1cBd0bNjT9c7oqouZIgu6mkaBbCCGEEOIY/PZ3R/vy5EHr+OWDJcyfe5Snn4aONZv++Qde+His03MLCup+3ZJiCzkHVdDdp7t2VTtxIvSJSdftGxOhDapctEj9+/EnJnsq+8p/MprykYQQtVit8MADKhC2jZGePRsWLICICBVY33eftv/nn0NMjBoG4ujzz9W/33+vX28reObY0927t+rRPv987VziqL6ge6hDUs2cOQ1/vtoa6umWMd1NI0G3EEIIIUQzlR0uY1VabwDiIzP5e91gzrhqLBOn+PPgg/Dbb+Dnqx/MGRpUYl8uyNhX52unbdcu03oP01LIDQa4+Yq99sf+3kf46XutUtLixaqK8vdz4+zr8g9FNePTCSFsvvxSVRK3ueMO+PZbVbTM5tln1fhqWxq4LZXc01Pb78cfVTr4d9/pX98WdDv2dCckUK9+/SBO+5pjMGiPu3SBESPU8qZN+tctLGx4mi9b0B0eDmFhztulp7tpJOgWQgghhGim1fO2U1ntDcC4wVlO20eOhB8+SMXTVGlf98hNKfbl/HoqHG3bpi336aPfdsltg+jVZQ8Az9+3jkGjw+nVS21bs8bCP3Mrycn1tO+fV+jT2I8khKiluhoee0x7/Oqr8PLLqriZI4NBTfe1bRucfbZa17GjSiu/6CL1+OhReOcdLbXcxjbu2hYcBwWpHvT6GAz63u6uXcHH4at+7rnasi3I37pV9aB36wYrV7p+3cJCbeiLq15ugMBA8PBQyxJ0N0yCbiGEEEKIZlr8T7F9edw415XIT71wCD/8N4XBPbfy3B0LmXS61utcUFh3ITXHNNPaQXeHTh1YkxpC+qa93PTEeADGJ6lBmFVVRu69p0K3f96BAIQQzfPpp1oF8IkT4bbb6t8/MlIFuTt3QmYmjB+vBd2giq3VtnEjlJWp/UH1cteepssVx6Dbllpuc8452vK336p/H3oIDh6Eykp4/XXXr9lQ5XJQbbP1dkt6ecMk6BZCCCGEaKZFKwLty+NPc11IDWDGZcNYu6Mv9708gfDoYPv6ggPedT5n2xYtcK4ddAMEhgTSvX+M/fG4kUX25ZTNHXT75h8MRgjRdJWV8O9/a4+ffLLxz+3RAzrUfBXHjlVjvEGrVA4QHa3+zc2FFSu0KQZ7927ce4werX6MRjX9mKOuXVWhN1BTnH35Jfz0k7Z9zhwV6NuUlKhe/Cuv1NbV1dMN2rhu6elumATdQgghhBDNUFlhZfkWFQ1Hh+TQrW90o54X0rkTRoMag51fTw/0tvU5APh5l9E1puEpv8ZN717ntvySUCxmS6PaJ4TQ/Pe/Wu/ztGkqwG0OoxEuuEC/rk8fVYzNxnGcd0PjuW08PGDJEhX4Xnyx83bHFPMrrtBvO3IE5s5Vy2lp0KuXGqu+Z4+2z1jn+o92tp7usjJVnV3UTYJuIYQQQohmWL/BQFmFmgJs3HhPDMZG5IICJk8ToYEHASgoDnS5T0VpBbtz1XRgCdEZGE0Nv3bX3l2IDdMXZjMZVSWnarMnB3OLXD1NCFGH8nJ46intcVN6uV1xTDEHlf6dmKg9dqxo3tigG1Sqt6vq5rb3sLH1sHs7JNjY0s7vuks/m8KUKTB/vussGxspptZ4EnQLIYQQQjSDbWougPGnuijvW4+IjioAzi8OxWpx7sXemZJln+6rd/eDjX7dcYMz7MsepipOH7nO/jh/rwTdQjTFV19Bjko4YeZMGDLk2F5vwAB9uva55+rn03YMehubXt6Qbt2c2/3qq6pQG8Avv8DChfD77+pxTIwa0z13rhq/Xh/HoFvGdddPgm43slhUwYSKisbd6RZCCCFE+7V4sbY8blzTnhve8QgAFVU+HC467LQ9LVXrNuqTUOW0vS7jR2s5npMTF9GnpzZgM2/foaY1Uoh2KiVFjUvu1k2Nma7906cPPPGEVqG7Lv/9r7Z8//3uadsLL6jpvG64QQXgrgqVGY1qPLi7OKaY9+gBV1+tFWA7fBj+9S9t+6OPQt++jXtdx7m6XfV0f/mlmi/8o4+a3uYTjQTdbvTvf0OfPibuuiVCxk0JIYQQJzCzGZYuVcvh4U1LBQUID9GC4QIXPdC6Imr96i62VtsZlw6ko796vVvvCiIiVptzKP9wl6Y1Uoh2Zu1amDABBg5UgV5mJmRnO/+kpcHjj6tCY1dc4Tpg3L5d+4737QvDh7unjdOnw7598PbbKi08IADi4/X7dO+uTwE/Vpdcoiqqe3jAK6+ofx0D8cJC9W9cnHMxtvrUl17+1VcqnX7tWrj9dtU5eTKToNuNtqfkAbByfRd+/3xdA3sLIYQQor3auHQ7h2o6jscN39+oqX0cRYRV25fzXfRAb9uuzbHdJ7nxqevhXcPYvdtA+qa9TL94KJEJ2oDMvOIGJv0Voh2zWuHCC426YR/+/q57um3za1dWwscfu57Cy7F39qqrGjd9V3M5pphD02/iNaRzZzU/9549MGOGWjdlippr29Hjj4Onp9PT61RXevmff6pA31aJ/dAhyMpqVtNPGBJ0u9FFs7Wj6T8v+bZiS4QQQgjRkhb/lWdfHjdgSz17uhYero3jLih03r4tXeVtmozV9Ezu2qTX7hgRbJ9KLDJSW5+XV8cThDgB5OV5kZ6uIuPOnVVPcn4+7N3r/JOeDvfdpwWYv/2mBYgA1dXwySdq2cNDBZAtybGYGrhvPLejjh216clA9aSfeab+PS+8sGmv6aqne/VqOOss9Tt0tG1b0177RCNBtxuddvEQ+sbsAmDpliSW/7aplVskhBBCiJawYpXWHTRmctN7kMP7afPwFFTqr7i3rtrF5kyVbxrfeS9evl7NbKU+6G5o/KoQ7Vlqqr99+dpr1Zhpf3/X+3btCs89p1LRQaV7b9+ubf/9d+0m1ZlnQljT6iQ2WUv3dNfl6qu1Hvxnn9UyABrL1Zjuhx/W5v52DPLT0prfzhOBBN1uZDQZueumHPvjF5872oqtEUIIIURLWbNVjY/29Sql/8j4BvZ2FtFZu7p1DIbNVWauvLycarMK6v91WuYxtTPC4X5AXnZZ3TuKk5rV2v6rT6ekaHPeN3Yu7alTtWXbfNUAH36oLV911TE2rBGOR0+3K+PHq3HrS5bArFlNf76rnu4NG9S/4eHwxRfadunpFm51wU1D6dJJBd4/LxtG2pr0Vm6REEIIIdxp/74DpOfFAjCo5y48vZswCLJGeLi27DhN0Cuvwqo0NadQry57ePClY6ve1DHYiqepEoC89JN8UKWo02WXqQDq0UdbuyV6R47AW2+pnmezuf59U1NV0G00wogRjXv9KVO05b//Vv/m5sKvv6rlLl3g1FOb2OhmiI8HX4eRqcerpxtg1CgYM6Z5z609pvvAAS347t9f34MvQbdwKy9fL644Zw0AVquR55/IbuUWCSGEEMKd1izUbqgPS2r8HNqOXAXdO3bAI4+qHnCDwcpHH1Tg2+HYasQYjAYiO6pB4/lFHY/ptcSJ6fBh+Owztfzaa6q4WFtQVQWnnQY33wynnw69eqn5pRcuVD/Ll0N5udq3pAR27VLflaQk6NChce+RmKhlgyxYoD77m29qAf5llzU95bo5TCYV/ALExurPD21Zhw7auPj9+/Up+gkJai7wqCj1WIJu4XZTzwshyK8EgI9/G8ucj1a3couEEEII4S6rl2vDx4YOb9546/Awbf6c/N2qHszNN2tBxO23Gxg1zT05phEd1TVJYUkI5ip9d2FVRRUv3LWQj19Y6pb3Eu3Phg36KtMLF7Zqc+wefFClPdukp8Mdd8DEiepn9GjVC221wsqVYLWqwcmNTS0H1Stu6+0+elT1dr/9tnrs6Qk33uimD9MI776r5gL/7ruWrZTuTgaDNq67dtBtS5HvUzOBwoED2tRkJyMJuluAX5Avj9+2wf740lt6kb5JUrqEEEKIE8GaDX725WHjmzf3tZ+/kQCfwwAUFBg4dAj++Udt69oVnnrqmJtpFxl6BACL1UThPv3A3Q+eXcZ9L0/givvGsHbeVve9qWg31q7VP/7559Zph6MffoD//Ecte3pqBc9qW7wY/voLli/XotSmBN2gTzG//nooLlbLl1yi0suPlx49VDGzIUOO33u6gy3FfP9+fbE0W4p8H23WwpO6t1uC7hZy8xNjOHv8CgCKjwZzzoVB9rvXQgghhGifrBYrq7d2B6BTwEHiEps2nZej8GCVml5Q3JGV8/Zgqen8PmOGFT+/ep7YRJFh2gVI/j59Ovy837UgfN38ze57U9FurFunf/zLL/rps44ni0VN33XFFdq6l15Sqd9btsCTT6re4Msv17a/8AIsW+aeoHvfPm357rub9jonK1vQXV6uFVEDrafbsSicLeheuhSuu079n54s3B50V1RU8OCDDzJkyBDGjBnDh47l/2rZunUr5557LklJSZx99tls3nzinOwNRgMfft+PntFqTPeGzUHy5RVCCCHaucxt2RQeUvMHDeu7G4Ox+XmgER0PAXDwSCcW/qZVKR+dsOLYGln7fcK1VPa8vUfsy1aLlRU7R9ofp+e08LxIok2qHXTv2wfr1x/fNpjNKr26Tx+YMUOluQOcf74adgHQt6+ajurZZ+GDD9QYb1AB+dKa0RExMVZiYpr23p07O1cPP/NMfQ9tu7P3B1h/Fyw5BxafBdtegoPrwdJANTqAigOQ8ydseQ62vwnFm+u9C+NYTG1FzanL1xf7/0Ptnu7yclUp/f334a67mv7R2isPd7/gCy+8wObNm/nkk0/IycnhvvvuIyoqimnTpun2Ky0t5dprr+WMM87gueee48svv+S6667j77//xs+dt3dbUWBIIN//Hsjw4Wq+uvffVycLxzkzhRBCCNF+rN6oBaZDh/sc02uFh5Tal3/6W4sURk9tfu+5K5GR2o2BvGyt13vvjhxyi7X82fTMY/s8ov05dEg/Dtfm559h8ODj146XXoL77tOvGz4c/u//XI9vNpngnnvgmmvU4+pqtdOoUVag6TfCpkyBTZu0x/fe2+SXOL7K98Pu/4OCxWCpgIl/gdFhFoW9P0DG59rjfT+qf706QdTpEH0mhE8Ar2AwOoSDKQ/A1uec3887DGLOgsTHwLezbpPjXN1Hau7p9eqlxsuDPuhOS1OV6G3T051MMZFbe7pLS0v59ttveeihh+jXrx9Tpkzh6quv5vPPP3fa9/fff8fb25t7772X+Ph4HnroIfz9/fnzzz/d2aRWl5gIt9+ulquq1MlDCCGEEO3T6nXe9uVhUxPr2bNh4SEV9uVte9Vc39EhOXRNcO9A0sgordhbfl6VfXnlP/o5wPdkB7n1fUXb55gOPHOmtvzLL8e3HY7zOU+YAD/9BMuWQUBAXc+Aiy92Dtqamlpu4zhf9+jRzX+dFmWuVEH2qmvh5xhIfRBy/4T8BWCp0u/rH+v6NSoPQsb/YOm58EMYbHlGvz18vOvnVRTCrvdgTi/Y+gKYtXOXY0+3jeOUZ5GRqoo5qJ5ux7Dwwgvr+KwnILf2dKelpVFdXc3AgQPt6wYPHsy7776LxWLBaNRi/NTUVAYPHoyh5vaVwWBg0KBBpKSkcNZZZ7l8fbPZjLmhSfpama19ju285hp4/nkjFouB9946yj13mZo1p6c4ubg6loRoDjmWhLvIsQSrVxux9aQNGmRucO7g+oSHVTutG5WUgdkS0fwXdSG0szbtWG6ewf7/t2y9Pp08Pa+r9n9rNmObKclsNjc8SXITybHUNqxebcDWB3f66RZycgysWWMgNRV27zbTrZt73ic/X/V8hrkYwZCZCamp6mgbMsTKvHnacIj6Dg9PT7jlFgMPPaTFFyNGmDGbmz4gfeJE+Ne/DGzcaOD11y3uPtybx2qBog0Y8udjKJgPhcswmEtd7mqurgCDdkOQ2IshbCL4dwNzGYaChRjy50P+PAzV2hATiykAq+OHDZuAMXIq1sDe0HEIVBRiKFgABQvV86qPQMp9WA6swTrqKwA6ddKOIZuePS26/4fevY2sWmUgKwvy8lQ2QkSElfHj28jv2kHtc5O7zlFuDboLCwvp2LEjXl7aHdXQ0FAqKiooLi6mU6dOun179Oihe35ISAg7d+6s8/V37Njhzua2qE2OOSrA5JF+zF3Wh+x8fz548SdGzmjigBNx0qp9LAnRXHIsCXc5WY+l6mpYsyYZMNG5cwW5uZvJzW3+63l6H3Ja17dPASkpKc1/UReOVmrF0vbus9pff8GaBN1+RYcDWLw4hcBAM8ayMmxdKBs3bsTie2zzhdflZD2W2op//ukOqOvzgIA0hg4NYs0alWnx7rvZnH++NsfTypUd2LgxgH/9q4Dg4MYHItu3+3LZZb0xGuHLL7cSG1uh2/7VV2GAGlIxdGgOKSl5jX7tUaNM+PklUlpqwt/fjNW6keZ+fWwp5VYrzX6NZrNaMVgrsBq1IR4GSznJuyZitFY57W42+rM/aCaFwedQ6RGOdfNuF3n4HYGSmuVREDAKg9+9dChbR9CRxXhX7qOw0EhJWYr+aUE1vd/FNY87jMfDt4io/e8SWvIjBixkVidxsOaXdPRoJ6C77iV8fTNISSmyPw4PjwVUl3hlpWrnpEkFbN68j7bK3ecmtwbdZWVluoAbsD+urKxs1L6193PUq1evNj/e22w2s2nTJhITEzGZTPb1d968nrnL1PJ3P8Ryw8MDWqmFor2o61gSoqnkWBLucrIfS5vW5FFerj73qJGeJCcnH9Pr7UhwntbktNk9SU52z/zcNoe7aUHOQeMYkpONVFTA9u3OowwDAhJJTkZNWlxjwIAB4O/v1jad7MdSW5Gero4Bb28rs2cn0K+fNk/1unUxPPecCsCzs+HOO41UVhrw8Ynk5Zcb35v8wQcGqqvV+2ze3JeZM/XPvfde7Ti89tpIEhObNtD3vfcMPP+8hdmz95Kc3M6Op4qDGPL/xpD2EtZOQ7AOelu32VA8EgoXA2D1jcIaPgkiJkH0LEI9A3GR2d0Iw4AbAKgne9+FiViKUjGkvUDXobfT1UPdiHN143HKlFiSk7UU99GjDcyZo9/n1ltDSU5u3idoSbXPTaWlpW7p+HVr0O3t7e0UNNse+/j4NGrf2vs5MplM7eaLVLutU/81hIS709meHceijQPZtmon/Uf1bMUWivaiPR33om2TY0m4y8l6LC39bSeggpDh3ZdgMtUx/rGROnfRdyT4ex9h4NgEt/9ugzr54eurirrmF3hiMsHGjeCqnyMz08TQoahKVTVMJhNWo8llQatjdbIeS21BSQnYEkyTkw34+JhITIT4eNi9GxYvNnDokImOHWHOHO14WbnSSGP/y6xWdMHWihX65xYXq7m2Abp3h6Skph9nF18MF1xgJiXlACZTTNs+nixmyJ4Dez6Gg+ugVOvpNZRsgQFPgK/DTYeEWyH2PIg8BUOHXvZhua0mdBCM+Uq3KsLFaJi+8cWYTFqFtb599dt79IDhw1vmnOIutnOTu44ntxZSi4iIoKioiOpqbYxSYWEhPj4+BAYGOu27f/9+3br9+/cTHh7uzia1GQajgZsu32t//PbLx5CPJoQQQojj6kjREZ55S+uBnnDqsU+vFd5V/xoj+23Hw8vtE8tgMGgFp/JqMndXLtdSVseN0/bds8f5+b/9psbinnde683fLNzPcVowW6Vyg0FNlwVqPPXvv6tlx8JqW7c2/jhYt071ktssX64fp/3772rYBqhCbm05CDsmlUWw4234tTcsmQ37ftYF3AAE9YPyfP26rmdDrxshMKHN/nJCO+qHC3TpuI+ARf0g61v7gVJ7+rWLLmqzH6fFuDXo7tOnDx4eHrqxSOvWrSMxMVFXRA0gKSmJDRs2YK35z7Baraxfv56kpCR3NqlNueyOgXh7qlSyBavcW5lUCCGEEC3n2XvWklukItczR69i6JS+DTyjYeHdonWPRw87fMyvWRdb0H3woOqxXPHbWvu2i2ZpnQLpq5Y7Pfeaa9QUP998A+2ovI5ogOP83EOGaMuOVcx//ln1iC9YoK07cgT2aodMvX7+Wf/40CHYssX1dsf3PaFUHIAfImHtTXBkl7beMxDCxkLPm2DSPJi2Fjq2vzgoNMJb97h3VJq6ebD0XzBvHBxYS/fu4O2w20UXHedGtgFuDbp9fX2ZNWsWjz/+OBs3bmTevHl8+OGHXHrppYDq9S4vV0HntGnTOHToEE8//TS7du3i6aefpqysjOnTp7uzSW1KYEggMaHqFnNeUUgDewshhBCiLUjflMVLn44AwNNUyUtvumdy2U6dwGTSKjWPHt/BLa/rSkRHrahRwd4iVm5SBV39vI9y5iztajg908vpuSUO9d4yM502i3Zq9Wpt2XFO7tGj1bEJ8Mcfqpe7qlYtr61bG/cetYNuUFOBAVRUqNcH6NgRxoxp3Gu2eVaL/rF3CIQM1R5HnAITfodzimDKYhj6JkSe0m67fgMCVCV5m4SeDj3fhUvhr6GYVl3K1FPKADj1VOh5Eo6wdWvQDfDAAw/Qr18/LrvsMp544gluueUWptZMfjdmzBh+r8lTCQgI4L333mPdunWcddZZpKam8v7777f5QmnHKjJEVREsPhpM+VHnAipCCCGEaFvuuTmHiipVc+aOi5fTI7mOOXCbSE2hZKxZtjJierJbXteVSB+tEu+GxTvJKlS97EMTdhIRG0YHXxVZp2fXX9goK6vFmiiOg+pq+PJLGDkSvv1WrfPx0Y+59fCAGTPU8pEj8NBDzq/TmKB7zx6wFYDu2FFbbwu6Fy6EwzXJHaefrt633bKYIXcuLLsI5o52zr/vcT0k3AHTU+CUeRA1HQxuD8NahcGgn6u798TTYNwv0KGXtjLjf3x13WnMnasddycbtx/evr6+PP/88zz//PNO27Zv3657PGDAAH788Ud3N6FNiwjR5tfLz9pPbJ/oevYWQgghRGspPVTKIzeu5ofFEwCICC7goZcGufU9Tj8d/vtfmD3bQIeglisAFRmh9b6dfU2yfXnk4GIMRgPdI3PZuCeQzIIozFVm9ueDq9nCpae7fbv2WvjoI/26M890DnhnzoRPP1XLrlLJHVPEHX38sZqT+7rr9L3ct90Gzz+vivnZgm7HdrTL1PKyPMhfAHlzIedPKHeY6ixvHnSeoj3ufrH6OUGFhmpVzBN6GyD6DIiaBjvfgU2PQ2URfsMeZop7koTapRPjFks7EhmulQrN31tSz55CCCGEaC3//JrLgIRCXv58gn3ds/dvJzAksO4nNcP776tK4l9+6daXdRLZWbvkqzJrKeSTp6vPE9elyL4te3ceL7ygPXfQQG1Zerrbr6NH4YsvtMeJifDBB/C//znvO3Wqfgwu6ANjVz3dy5fDFVfA/fernvN33tG2nXMODBumljMyYMkSrcczPFzdfGrzqo7Aludg4enwYxT82BmWXwjpH+sDbq9OcDSjtVrZKhx7uhMSahaMnqr6+hm7YNj7KoXeUfEWsDjPQX6ikqD7OIt0uMOTl9+GpzQQQgghTjKVlfD55zB8OEw+ozO781QaubdnOS/evZDL73H/oFOjUQU/jmMiW8LkM2MJ8lM3+6NDcjh7/Ao+fWkpk85WEXVcrDbkbfvG/Xz3nfZcW48nSNDdni1YoMZRA1x6KaSmwlVXgZfzMH4CAmDyZP26Cy+E2JqRFa4qmM+dqy3n5mpF9+LjVRA+erS2/bLLwFKTfHHrreDr2/zPddwYPSDtJcj5HcpqzUJk8oMuZ8LY72F2DvS4pnXa2EouuEClmZ9yCnTtWmujdyfn34fVCkUpKjA/SbTn0RPtUkSiNqdnXlnvevYUQgghxPFSXKx64mzzFtuM6b+RDz4OIGHwhNZoltvEJ8WSmVFC2ZECIrtHAVG67XHxWhGndz8MYv8BbVv37hAcrH5Hkl7eftmm/wI466yG63bNnKmmiwN1U2jaNJU+npmpqpDn5EAXh8l4li6t+3UMBn2hNNvUdP7+cMMNTf4orcPkA/FXwdbnwTMYOg2EkGEQORXCRoPJu8GXOFFdcw3Mng0hIY2sB1e4TJ9+fxKQnu7jzLGnOz+/7v2EEEIIcfz88VulLuBOSoJPPoFFqQNIGBzXeg1zo6CwICK7h7vc1r2Hv335h7+6OW239XDu26efZ1m0D1arVinc01P1SDbkjDO0sd5TpkBgIPTrp213HNddXQ0rV6rlLl3gs8/UNW94ONx4o1o/cqRzQHbttVql9DalYAn8Mwkqi/XrE+6AGTvgnINwynxIfg4iJ53UAbdNaGgTCrCHjwEf1+eiE5UE3ceZLr08r+79hBBCCHH8bF2kzU/99n/2smGDSsE1niRXSnG96498bCmjVVVy/dIepaWpsdQA48er9PGGREaqoQWXXAKvvqrWOVY5dxzXvXGjGjMOKo38oosgO1vdpImPV+uDg/VBu4cH3HFHMz9QS7BaIfdv+OcUNb90/gJYX6uBvhEQ2LPdTu8lWo+klx9nEQ6lQOWPlhBCCNE2bEnzsS9PnWw56a6pu/WNqne74zjNrCx9WrFo+xxTy087rfHPu+AC9WNTV9Btq0gO2thto9H5ptXo0bB5s1q+8EKIiWl8W1pM1WHI+Bx2vgvFqfpth7ZDdRl4tIdB56ItO0nu37YdEeHalB35u3a0YkuEEEKIk9Ovn6zm2dsXcvjgYfu6rekq1dHHs4xufU++6Tx9/H3oEn6ozu2xDlOTSzG19qe5QXdtffpoy47p5a6CbldsAXxAADzwQPPb4RbmCthwr6pCvuYGfcDdoScM+z+YvEQCbuEW0tN9nHn7GOnoX0TR0Y7kFcj4DyGEEOJ4ytiyj1lXDsJs8aC0dCFPvj+BitIKduWqrtzeMZmYPE/OQqfdewWSXaCWY6KBfdo2x55uKabWvhw6pKboAoiLg169mv9agYGqd3rvXq2CucGgBd3+/qoeQl3Gj4ddu1S18qj6kyta1tFMWHwWFK3Xrw8ZDn3uhujZYJRZhoT7SE93K4joeBCAvKKQVm6JEEIIcXJZ+Ms2zBbV5zBvgbr5vWNDln1d3/gDdT73RBfnUC/uX2dX6rbVTi8X7cc//6ix+KB6uY916IQtxby4WA2VzMpSY7dBTbfn0UCXXnx8KwfcAEYfKMupWfaGHtfD9A1w6kroeo4E3MLtJOhuBZEhKn3raEUAR4qOtHJrhBBCiJPHitValtn6rGFUVMDWDfvt6/r1qWqNZrUJtimdvLzg4gk/ahvSXie2c4n9oQTd7Yu7Usttao/rdpwqbIz7p7JvGb4RMPpLCOwDp66CYe9Ax+TWbpU4gUl6eSuIDC2zL+dnHSCgYyNKSAohhBBNVFoKfn6t3Yq2ZWWqVtG0stLEhg2wdXOFfV3fxJN3/OaVV6rpm7rGWOiV9by2IfVBIn2fxtOjmKpqD0kvb2fW12RQm0wwYcKxv55jBfJ16/TDDeobz91qDu2Avd9DtwvB36E4QcQEOG0jGCUcEi1PerpbQUS4dhc9b29JPXsKIUTLs1jgiy9gzZrWbolwpwcfVOMrbXPk2mRu28f/Pb2YksKT7+/P4YOH2ZzRQ7du5UrYul3r/e476OSaO9aRyQRnnw1DhwJJz+q2Ga1HiemkoqusLGsrtE4014GaEROhoWos9bFyDLofeAD+9z+1bDTCiBHH/vrHxGqB4i2Q/gmsvRV+S4RfEyD1QVh9nRqE7kgCbnGcSNDdCiIjtC98fk5pK7ZECCHg6afVnKoTJmjzuIr27c8/4dmamOm999TYSwCrxcqM6WVc+/A4ThmdjbnKbH/O83cuZFxiKuvmbzv+DT5O1szfhcWqH6u5ciVs2a0CbS+PCuL6t4U5jFqZwQhRp2qPe1wDBiNdQ1ReeXGxgUO1Cp3/8YcKuD788Di2UzTKQVVKiE71T8XeaEOGaD3aFgscrpkEIDFRFVo77ixVkPMbXfOexvhLLPzeH1ZeDjvegJLN2n65f0Hh0jpfRoiWJEF3K4jsrN1Vy8uuqGdPIYRoWVVV8NZbarm0FL76tO4pg0T7UFIC11yjPbZYYPFPKr9025rdbM7sCcC6nX358AVVcvj7d1dw/ysTWLI5iTtvP3H/Lq1c4ty7v3RBMTtzbJXLM/Dwkp4vJ4NfgWEf0DVUG8ydNf//dL2GDz4Iq1bBDTdAUVFrNFK4UlWlBcXuCro9PGDhQnj+efDRprdvvfHcG+7FtGQmYSU/YijPdd4eOhIGvghn7ILwsce/fUIgQXeriIjS0tjy8iRFSwjRen7/HfLztcfffbav7p1Fq7JarGxcuoODufqIxmK2sOSXVLas2IXFbOGeK9fYKwnbzJ+rrrrn/pStW//QC33YnZrJjfdrKdfLt/bj0IET8+bLijXaAPeYUPW7yC4IptrsCUDfRP9WaVe7EH8FsYnaJM1Zy3+EjM8AdWMnLU2tr6yE779vjQYKVxxvgHTs6L7X9fCAe++FjRth5kwYNgzuvNN9r98kve/E6qG+u1aTD0SdDsnPwaR5cM5BmLpcTQPWIb6VGiiEBN2tIjK6g305v0D+C4QQrefD13boHq/b2Zf0TVKauC365D/LSBrbi4S+nuzcqdZZLVauOGM542Ym0X9UD4I7HOH/fhgKgL9vOUaDSh+fv6IzAHPn66uqFR4KY+i4UApKwuzrqs2eLPz5xEsxt1qsrNyi5sTqFHCQC2fsdNqn75Do492sdqXrwGH25ayKiRB7PgA5OVBeru33+efHu2WiLrbUcnBfT7ejnj3hp59UloPjlHMtpuoI7F+lX+cfg3XIe+yK+g+WWfkw4Vfoex9EngJebrzTIMQxkIivFUTGahc3eaUJrdgSIcTJLDc9n98WOV8lff9Jeiu0RjTk+5+8ANhfHMDZZ5kpLYV3nljMp39oOZ2Hy7QBlS/cu5pBPbYDsCmjF9m7clmUqub6CQnYj4+PyrQqOqR6iAwGi/25f//lEEGdIHbvhv2HQgEYMaiEUWOdK0o5ToUknDnO1Z3peT0YVYbArl36/RYtwinbQrSOlg66j5ujWbDpCZjTAxbNgCp9No419nxKOkwAD8lWEW2TBN2tICwmBINBLecVR9S/sxBCtJBP39yG2aLGr543abl9/bdzwup6imhF2/Zofy82bTYx87QSbn96pH3dqUPX0qWTGs949vgVXP/IGCaNKrBvf/r+nZRWqAvSGePSuO8+g+7133jxACZjNQBzl3XlRLNylfZ5R0zuzvBJzjecHKsyC2exDrMtZeVqWXu1g26rFb788jg1StSr3QfdB9fDgunwczfY9DiU50PFftj6Qmu3TIgmkaC7FXh4qGkbQD+WUgghjherxcqH32hX0E+/3IXkODUoc82OfmRuk26qtqT8aDl78vWpz/MWBVFlVr3fd160kD9XD2Hfgc6UHirj2/kjMJqMTJoaYN///37SAvSpUwzcey/0qBnKPXMm3HhnGCP7bgFgR3b3E+4YWLlSWx45EiK6hdE9QhtK4elpIV6GfNYrxqGwu+PczLu2FjvtKynmbYPjmO52FXSbyyHlQfhrGOT+CdTUQDIYoeu50P2yVm2eEE0lJTpbSWQkFBZCXp66I2zr+bZarNx/5SJ+mheLxWKo+wV8IsHkUDLSXArlBXXvb2cA/1j9qsoDUHW44aea/MCn1vylpfvAWt3wc71DwEO7K461Ckqz697fkV8XMHhqj6sOQeXBuve3MXqCbxf9uvJ8MJc1/FzPDuAVol93NBP7Sb8+PuHqd2VjLlPv2xj+sYDt/91IdWkMHta9DT/P5KOOCUdlOWCpbPi5Xh3BM0h7bDVDaSPeE8C3Mxi1woBUH1F3oBtiMIFfrWl5Kgqh+mjDz/UIAO9Q/brSLDU3Z0O8Q9XzbSwVUOai0qkrfjGq3TZVxVBZ3PDzjF7gG6VfV56nLiga4hlUazyaRaXYNYbuHGGkqiweT4v2/2q2GNmT3x2ACUkbiE8ayDmnLyTljd4AfPfRLu56Qca3thU7NuzFYlVVx2MjC8nM07IRxvRP5bn/jrY/9u2gpU2POa03HqYqqs2e9mJhAJNn98TPD5Yvh7VrYfJk9XdoyrgiltbMsPP3H6Vc0cPM7RcvZeWGMAYkHGDoMAtde1dCcst+XneprqwmZfEOqqstLJofB/hhMKiiTwAjB2Sy52/Vq98rYiuenv1br7HtgJ8fhIWp65cs26nIUs2ulSuBaQB0CS8muyCY1FTYskWyB1pbu+zpzv0b1t0GhxxqS/jHQvzVEHc5+MnfJtH+SNDdSiIjYdMmqKiAkqIqgjupi6EfP1jFC59MaMYr+gHdmtmakJqf5mjuic+T5rc3sOanOY4lnT+24V1c8qV5n9UAhDe4V92iGt7FJRPN/78JqPlpjrCan+ZobiqsN83/rME1P80R2fAuLhlp/rEUTF3tveqyUgDOvTyWh99Q676bE8Jdkr3XZqSlFgIq6L7m3C0UVcby0nvdiQ7J4eufIvD09nT5PP/gAIb33siyLQPs65KTrYTHqnNLWBhMn67tP/Vf/XnsbbU8d2UvMrYt5M1vJgCwdid8+Ksa+/3jf1cz84oRbv+c7mS1WBmTlMaqNH0g3a+vmcBAdQNtRFI+X/yt1vftshWQoLshXbuqoDs7W01H5enpwa6SUQB4mKq4a+oT3PnZK4Dq7X7mmdZsrWh3Qffuj2DVldpjoyf0exj63g8mr9ZrlxDHSILuVhJhWgmoC5b89L0Ed4qjvNTMXY9oPbOdAg5iMNTRs+oZqO/9tVRCdSN6qzGAV62zbvVRsDSi183ope+tBqgqalwPo4c/GB165q1m1VPYGJ7B+h5GS3njekQNJvVcR9WHG9f7a/IBU61iHJUHGn4eqN+R0eEPg7XKqeBHnbw6ofV0W7FUHcVobcScuUZP8Kh1I6KqpHFZCCY/MDkWFLJAZSMnWfUMAoPDacRSoXq7G2R0rihafUQ9v8Gneut7q6Em86ERWQgeAfqeeWu1+j01hldHdCNyzGUqw6QhBg99JgGo48Fa1fBzTb76rAmsjcvygFrnCCvmqnJMVuf2Thqyg39dr6pd9xrUnQHdt7NxTwIr0xLZtzOX6J6q6nV1teoRTUwEf6lTc9xt26Kdt/r092H21d24+MLtxCZE0DEiuN7nThp9kGVbtMdTptSdRTVkdCjBwVBcDHN+MVNeMcFpH6vVyOf/szDziqZ9huMtc1u2U8ANMDV5CTABgMnnDsT4khmL1cSYU6TGSmPExcG6ddo0Yf37w65M9fenW2gGF436nHu+eBGzxYOvvqjg6ae97dl84vhrd0F317Mh5V6VNddpCIz4EIITW7tVQhwzCbpbSWSYFuTm7T1EwhB4+VUTGQUq5XbyoHXMXTMIg7Gxf6m8aH5vtX/NT3M0dyoGE81vr0/NT3N0aHiXOjW3vZ7Neq7ZbCElZTvJycmYTKaGn+AkqOFdXDLS/M/qXfPTHMfSS97cKwkPmv9ZfWt+mqO5mRoGmn8sba3jWBqpe3TWtFw2vqNmVfjlsx3c+IQKuu+7D15+GQYNUsG3XEQfX9u2azfy+iSHYTAaSB7XuNkvJp0azJPva4+nTq17Xw8PmDQJfvgByiu0Y+WZ2xYy9pROTP9Xd46Ud2B5anesFmsT/kYdf1m7DmDLxhrScytjhhQSGWnl+gcG2vfpMyyenz9azZ6dZVz7YNvuuW8rhg2Db79VyytXqmyJozX3wXv07UR4OEzos5B/tkxmT6Y3aX//RJ+ps1qtvSe7Nh10W8xQmgkBDkUNPQNh0Cuq4yT2PDWGW4gTgBzJrSTSIbs0L7uU7GwtBctksvLKBwlt+mJGCHFimnl+Z/vyz/+oIRVHj8J776l169dDSSOTA4T7bNujbraYjNXED2jacIoRp/bG20v1lPv4WBgzpv79awflZ41byf0vj2fMGQMYPiAHgOyDncnKakR2iRtUlFYw56PVFGQVNul5e9O1rJsLzyrglS/Gc9/LEwgK09+QnHHZMG55ajzefs29YXhyGelwn27lSn3l8h79QmDaOk4btdm+7vdPlsCaG8HciCwz0WQWC/z6q3MFeZs2GXQfXA/rboefouGPgVCao9/e/WLodoEE3OKEIkdzK4norKWG5+VUcffd2p3iG24w0H9gc3v8hBCi+ZLG9CI2RmXiLFjdjZIS+OXTLfbzE6jxnCejH95fybkTV7Bu/raGd3Yjc5WZ7fvUDZAenbPw8nE9frsuPv4+3H6HF0Yj3HGHEZ8GEoVOnWLGaLTUvF8GH37Xx34TeNSpPe37LVt+fC4hLpi2gTOvHMbk8UWYq8yNfl5WpjaEo2s3CajdZdAglREBsGKFmv/cpkcPwD+G02670b7u99TTYOc7ULj0+Db0JPHgg3DGGTB4MBx2McrQFnQbDBDU3AQ4d7FUwfq74c/BsP01VVS06hCsu6WVGyZEy5Ogu5VEdtHSUp98ox9ffaWWO3WCJ55opUYJIU56BqOBM2epqKyqCv78Ez7/VD8WvKk9jieCqooqLr+tL98tHMmdtzamfob7ZKblUlGl/k/6dG/MLBXOnnsOjhxpXFGrbnEm/vvsci4/fQl//WXU9QyPGqX1bi89DjHU0jkb+XGJSvvelNGLv7/ZYN+2b2cu7/57MXl7XP9O9u7TLnFi4po7pEPU5usLA2sy9LdtU8NNbGxT0CX09aK7mhyBJWljOdztcYicdFzbeTJIS4OXXlLLhw6p/4/abEF3cDAYW/OqvzQH/pkEaS9p64xeED0L4tp4gQgh3ECC7lYSGa2NLT5wRE1/ZDBYef31NpT+I4Q4Kc2cqS1/+EElf61J1m0v3JN+fBvUBuxMyeRwuQrcNuzujdXiOrW69KiVn/+7igeuXMikgRuYMXJ1nUFhY23L0maJ6DO0e7Nfx7cJJQguv3cMH/06lrhEfSr7iBFgNKrPvmxZs5vSaI88ou/Z/vBzlWZfVVHFlEml3PDYOC462/V84lnZWpd+156hLvcRzTPCYfj7119ry7ag22CA005Ty1VmL/7JexiADz+EiRNhyZLj1NAT3J13qiKXNvkuZie1Bd2tcm1ZcRC2PAcLZ8CvvbVsB6MnJL8AZ+XDuB+hy4xWaJwQx5cE3a0kIkZfgMzXq5TvP9jERRe1UoOEEKLGuHFaGuLceV66+Z0BCvMbUWX+BLN5rRY4Hy4PJDfbufp8YSEMHGRg1tXDee6jCSxIGchvK4fx4iNbj+m9HXuv+gxs3QrbHTpAjx5lAGzaZKVkfyNnZmiG+d9tYGHqQN26n+Z1Z/9++PTllaTtiwdg9baeLm+CZBWoadE8TZWEd23udITCFceg2zbcxGiEbt209bagG+D3P00sXAhXXQULF8JDdx/AsOPN49DSE9fvv8Mff+jX5eXpH1ssUFQzGUmrBN0GA6Q+ADm/aTPs+MXA5MXQ9x7wCm6FRgnROtwadFutVv7zn/8wYsQIhg0bxgsvvIDFUvd0Uk899RQJCQm6n88++8ydTWqzQqI6ER2iCkeEBxWycM4eZl85oIFnCSFEy/P0hNMm5ta5vbCgEdMEnmA2b9QXgdq2w3m+2FtugR07nJ+7cduxzJpQK+juc0wv5RZjElQXt9VqYOVcFx/YDawWKw8/qk2w0rdnMaCGPHz4QTX/fkXr8T9S3oHigmKn19h7sBsAMV1NGE3Sx+BOI0c6r+vaFbwdhs5PmIC9fsCvv6qA22bXjgqMG24n/ODnLdrOE1Vlperlrq120F1SAtaa+1EtHnSX5UNBrTEnXh0hqGbaPu9Q6H4ZTFsPoTJTgDj5uPWv0EcffcSvv/7Km2++yeuvv86cOXP46KOP6tx/9+7d3HXXXSxdutT+c/bZZ7uzSW2W0WTk1x8P8/ydC1m3ppphU/u1dpOEEMJu5ikZusdeHlrvdmHhyTezwpY0fSGu2mMnf/xRS7Pt1LGK799bRacAlde5LSPqmN7b8b0SGjdLWIsakKRV1Vu26Eg9ezbfn1+sZcU2NTdv3667+OZ77cbFw48ayCqM1u2/Nz9Y9/jwYTXXOEDX2OZMuSjq060bhIfr18XH6x/7+alUcoDcXEh3GJWSXxJBtdlETOErGLY+o0WGolHeegu2b1fLEQ7JL7XTy1u8crm5ErK+hflT4acoWHYeWGvdlB32HsxIg7MKYOTH4CNDPcTJya1B96effsqtt97KkCFDGDFiBHfffTeff173Xczdu3fTt29fwsLC7D++TRl01s4ljU3g3pcmEN2zc8M7CyHEcTT9gn54mrTe3YtOXW1fLjxw8gUxm3fr07odA+EDB+CGG7THr7/hyVnXDqdPrBprnH2wM4cONC8N22qxkrZFBbnRUeV0OLZOc7foM0RrxNLVLVMO+b33tAv3J+4vpF+iyd67WlXlfPxl7dXfCNq7V1uOiWmRJp7UDAZ9ijlo47kdTZ/u+vkWq4m8YjV3qnHTo2pKMUu1652FTkGBVnDXYIB33tG21e7pbrGg+/AuSLkffo6Bpf+CvL9VsF2WA4W1ij2EjYLABNVYIU5iHg3v0jj5+fnk5uYydOhQ+7rBgweTnZ1NQUEB4bVuiR45coT8/Hy6OQ4AaoDZbMZsbvx0Ia3B1r623k7R9smxJNylOceSf7A/kwev54/VQzEazNx8dwgf/aa2FR7wOamOy7LDZezKidWt27qpDLNZpZjfdsl68vPV374ZM6ycd54Fsxl6xxezbIvaf8uaTIZN6dvk987PLKTokApO+nTegtmc3PwP4gZms5mQ6GBiQrPZu78Lq7b1ory0HE/vpk1j1pDMHBXMe5iqmHnVEMxmM1dcVMyKFSH2ffx9yjharm7UZ2ZaMJu13tI9ewBUcB4drd8mGslsxmRfNEOt7/zw4QZ++UXru4mLc/49qznftZskoaFW9u9XwVdWyJNEc6XasOtdrKV7sYz8Ajz83f1JTigPP2ygpET93i+/3MLUqVZsv+PcXCtms3bDSo23V9uCg+v5HlitULoXjuwCjw7gHQL+3fWB8v4VGIrWY8j+GUP+fOeX8O+Otet5WH2inI6V40GumYS71D6W3HVMuS3oLqyppOEYXIeGqhSSvLw8p6B79+7dGAwG3n33XRYvXkxwcDBXXHEFs2fPrvM9drgaLNdGbdq0qbWbIE4QciwJd2nqsXTDHQfxeXsho0YUY/GPxsNURbXZk/yDvqSkpLRMI9ugjI35WKyn6dZt31xCSko2+/cW8/kfpwAQ5H+Em25KJzVVFVmLitS6mZYv3IVXmH5ceGNsWZYNnAlAbJeCNvN7H9pnB3uXdKG0wp85X/5GXHKkW18/97DKo+8YVMbGTTsB6NOvHH/vJI5WBGAwWLjxmjRefEMVWlu7Np+UlBz78zfMPwBMBcCrah0pKTKmu6mMZWXYytht3LgRS61MxJCQAEAb72AypZOSUuL0OoMG9WL9+g4MHHiY4cMP8e67XQBYnjOOzoOfJDb3CYxUY8j5jbLfxrIr+jXMpjaQ0tEGbd/uywcfqMIO/v5mzjtvM2lp1XTokMThwx7s3VtBSsoW+/4pKR2BOADKyrLZvnIJIYd+xWQ+goFqDFYzJssR/MrT8DRr5yuLwYsNPZfpgu7emdfhX64vCmnBg+IOE9gfNJvDfkPBYoSdxUBKS/0KGiTXTMJd3H0sNSnoLi8vJ9/VfARAaamax9XLSysuY1uurHS+0EhPT8dgMBAXF8fFF1/MmjVreOSRRwgICGDKlCku36NXr174+fk1pcnHndlsZtOmTSQmJmIynXwpmMJ95FgS7tLcYyk5GU47V3sc2mE/ecUR7C/pRHJyeJ3Pq+299wz88IOBZ56xMHhwExreRmxeleW0Lrcoku5dvEmdp/1RvuXC1UyZMl7bZ0w1vK+WCwuCSU5ObvJ7r5yjzQk+cJBfs17DnWzH0vhx8EPNtE/Zu/0563L3tctqhaKanrzO0R10n/mFB5by2Mv9uO3STcy+ejgvvqHWVxwo1e3347uL7ctDBlhITh7ktvadNI5qY/cHDBgA/voe6J494cYbrVgsKjCbPLk7/fs7v8yff8LKlWZOOcWPr7/259131XoPj1gOBk4nuudQDCv+haHqEAHlG0nafyeW8b+Dj1Scd2S1wh13GLFa1e/7kUcMTJ6sfuFduhhJS4OiIm/te2AuZ8Vy7Zo8MbELCdFemJZ92eB7GXxCSR6onznAUDkM9qig2xrQA2vcVVi7X0aQTzgtM8ikaeSaSbhL7WOptLTULR2/TQq6U1NTufTSS11uu+eeewAVYHvXlK+0BduuxmnPmjWLiRMnEhwcDEDv3r3JyMjgyy+/rDPoNplM7eaL1J7aKto2OZaEuxzrsRQWXEJecQSFhzphNBgxGBseo7d0Kdx0k1q+7z4TCxY0++3dLicHPvhATW00ZEjd+23L0iplx0QcZG++Ghy5IyWHhQu1HtSpM0J1v99+A7vYl9P2xjfrdz/vH22u6X4DgtrMuWDkxHB4Wi2vW+/hsl1mM7z7LqSlAUWpUFXMmLGenHfzqHpf+9AhVZ0ZICzMoHvtGx8bz42PAUzkaIkWFO7bc0S3395sLd29W3ynNvN7a1ccfmcmk0n3GCAwEJKSYMMGtalnT1PtXQAIC4MzzlDLjuPrc3PVd8fYeTKGUxbCgqlQsR/D4W2Yju4Cf/dmT7R3P/6ozW/eo3sZt5/5PaYcP/AOIyJkMGn4ceSIgfIdP+Ff9CPs+4XifeuAngCEhhoxeXd0/eJeHSFkmKo0bi7D4OHv/J3pfgmEDoeOAzGEDMVgaJvZI3LNJNzFdiy563hqUtA9fPhwttvKJdaSn5/Piy++SGFhIdHRqqqoLeU8LMz5bqXBYLAH3DZxcXGsXLmyKU0SQghxnIR1PAIZUFntzeHiowR2qn/spcUCt92mPV6zqhxzlScmz7ZxQXT11Wqe2zfegH379NMdOdq8WVs+Z1oGr3yigu5tG4tYsEalbvp6lTJ8Sm/d82L7RuPrC2VlsC2ra5Pbt31dOj8vGwZA5455jDi1DcwXVqP/8Di8PCqorPZm7RbXxUC//BJuvtn2KAmAN7+BjiHrmHpB3SkPtnmfQQVsdfEP8iekwwEOHA4hKz9Et21vrnZsdk1o3bnNT2RPP62mrrr0UlWtvCFdtPtQ5OQ4bOg0ECYvgYWnwZA3IHyM29va7hzNhLx/oDQbEh/h5Ze1Tf+57j28N9xhfxxp/hI4H4D8v+4hLnwPAAezMrAF3Z06AZ2GwJTl4BkIRi8weoDRG3w7N1zoLHKS+hFCNIvbblNFREQQFRXFunXr7OvWrVtHVFSU03hugNdee43LL79cty4tLY24uDh3NUkIIYQbhfVMsi8XFjVc7OjjD6tYv157fLTMh+3r97RE05qsoAD++kst798PK1bUva8t6A4MhCmTtSJFv8zxZN8BNR3YmMRtePnq5+42GrUpvnbv1npvG+s//87GalV/pu+4Mg1vvzruCrQCL18vErvvBmB7dncOHzzstM/ixU6rAHj4cR+slroLmxXs08YFh4VU1LkfQEyYitCzD0ZgrtKK3WTlqRsjQX7FBIYE1vsaovmmT1eV/B94oHH7Owbd2dm1gryg3jBjG3Q53X0NbE+Kt8D2N2DZRfBzHPzcDVZdBdueJ3WDmaU1U2D37QtnjtOPNY0M1sqW26rC4xnEwSNa4nfHjoBXEPw/e/cdX9P9P3D8dXMzkUEkJEQWiRUJib3VaHWhqjqU0qHVpUOL0n5bnapFqbY/1UGHKm3pRG01Y5MYGSJChEhCdnLv74+P3JPrZpLJ+/l45OHccz7n3M+9Tk7O+3w+n/fHrSu4tAGnFlDPF+p4SmZxIapAhfYNuf/++/nwww/ZsWMHO3bsYNasWWbd0ZOTk0m/Mkaob9++7Nq1iy+//JK4uDi+//57fv31V8aOHVuRVRJCCFFB3BtpLdSFWyOLknYhjckvpVisD9961rJwNfj160MYCk0nu+ZPy6AR4FJqPidPquU2baB1qNbldeVWrU96v55F79/qSuN0fj6cOFH2+p2JTuTbP1Urt5NDKo+/0r6UPapeWNvzABiNVuzdlW6x/cABbXnL3ydp10yt2HWsDau+3mlRvkBSVKRp2Y0SnoYAzTxUgJ6Xb8PZk+cAMOQbib+gWrcLgnJRMzg6akPDzVq6C+iLeLB04gvIKKrwDSAvHaIWwT9d4M+2EP4snPwe0mPMysyfo005OGEC6HwfhLB5EPwuBE6kkbenaftZ54nQ+w8Ydo5kXSfT+kqZp1sIUWYVGnSPGzeOwYMH8/TTT/Pcc89x9913m7VmDx8+nEWLFgEqKcecOXP47bffuOOOO1i8eDGzZs2iffuad2MhhBDCvKtvaUH3jBf2cC5V7eDjrk2avHtnzZjOZdlS8xbU1b+eKrLcke3ahNxtm0XiFeBJHTsVYBqM2kOIfrcV3Q+6VaEe4RGHcy22Z2dkm7XQFpjzVgQ5eSoAGX/fXpzdakKqInOhAzublsOPmI+/NeQbOHRQzbvs62uk+yBv3no907R92gwXDIWmNiosKVHrEuDmXvJtipdnlmn51IkLav/482TnqrHwzRpfLMtHEVVEp9Nau0+fLsMOh9+FnU/Av30h80yl1q3KpRyCX5qq1uwLO8y36e3BvRcEvcnFjttZ8pMLoB5ajBqF6uYdMAHavAqhH9G48wjTron290KTwaC3NZunu34xw7mFEFWjwqYMAzXgfPLkyUwupp/RunXm8/r179+f/v37V2QVhBBCVJKyBt35ufks+EmN2bWzyeLnHy4TpmbVIvxQ9d/5nY+/wPp9wWbrwk+05EJCMq6e5s1Bh/ZoQVtb/0Ss9C1p6RXHnhNaNO3kkEqHPoEUpWWTE0BzACI2bYV7+5i2bV9/liHDrDAYdGzdkE6L9j4ApKUaWfCTakW3tc7muddaUhOFddZaJXfvNt8Wc+gU6RlqbvN2TcOBMO4c04mO7x9m17E2HIgJZPkX27j3ya4Wx006pz2EcGtka7G9sGZeWjf1uKg0ugBxx5IAdbIWDspFzdCkCRw7Bpcv67h8uYSHKrmX4MT/qeVLx1Tgfct6Nf74RuDUUiUwy01Rr13agd8YFWy7tAMrlQzwq49UXgiA0aNV4H21xoWeeZ0t1JmoIOiuVw9sS/5VEkJUspqZelAIIUSN41Yn3rR87ui+YsvFHonncpa6M7yt8z5C+7XCt5GadmvvCf8iW3ar0q/fHiHfoJ45O9iq6S6NRiv+/SXSouyhg1prbNv2amxwS99kszK9Qo5ibVv0M+xWLbWgMOKollH70CEYfE8jElPcSUpz483J2nf76QIdaRn1ABh191E8/WtmFuc2bbQb+ULpXAA4uEu78w9qeRkAnZXOrLV7+jvuRZ4LhR/ouHtYzn5SmJe3FknExaqeBKditK64zbyKbk0X1afwuO7z522KL2jjCP03QN0rswekHYV/+0F60b1SapTUCAh/Adb0gjU9YXV3WDfIvIyVNbSeBL6jYeB2uG0ftJwIDUJNAbfBAJ9+qu1SMBPE1RoVyhVYVNAtXcuFqH4SdAshhCgTN+cLpuWk0ynFlovYl2habh2oWhrDWqu+pBnZdYncXb3J1H7+VQvkXhuvjS1e/Y9lAHjoaD3TcpswNTNHq0DzbuL9emVSnBYhzbDSqeNGxqg735gYGDgQLl7Ukhf9sKYLJyPiSUuDmTPVOisreGlGu7J+rCpnawvtrlTv2DEjaSna93dgr/adtGuvtYgPHBlK9zZqbHdkvD/7NlvOfZp0QXuA4eZRRLNeIc38tP+fU1disbgYbehAM58K7dAnKkDhoPvcuVKaX+s2g/7roa6Pep0WCf+EQdLWSqtfuV2OhjU9YP1t8N9DKtD+ozUc/RiSNkPSFjj/H5xdDWnHzfdtMR66fq2m4ioimdmaNSoJI0D//tCymE4vhVu6E69cfo1GCbqFqEkk6BZCCFEmbh5agFM4MLpaxEEt4GrVRrXYhIZogdDuLdWXTC35TDL/7lFdy73d4nn+rU7Y2agHA2u2+1pk1T4YrSYWbuh0HvdmDQFo1cV86q5+I3sV+352dezw91Ct/JGnmhFz7DIDB8KZK8NT69ir8cv5Bms+fiuK2bO1G+UHHyz+JrumCGsZDYDRqGPvei2j8sEjWqAdFKY1w+msdAy+RespcPKElqm8QFKytq9bE5cS379Zi4am5bjTar9TKf6mdV7NLWdPEdXLPOguoaW7QF1v1a283pXZbbLOqa7mR+dBjuX5U6r8LDCUs7dNXrqavuvQ2xD9tfm2Os3U+Owzf0PsdyrQLop1XUg5UPS2YqxerS0/8UTx5QoP/Slo6U5Ph9wrzwcl6Bai+skjYCGEEGXiXigAKhwYXS3yqPY8t1U7NYY7tIs2bVN4eD6jK756pTIajPzfzAPk5fcBYPigE9Rx6kOvduGsCQ8lLqkpx/ZGExiqbu4Tos6SeGX6nWD/OHRWV4Lu9loQ6eoKQe1Knm6nle85jif4kpFdlw4dUki5kui7VStY8UM6HTrlkZlTh/9bEYaNXS5gg14P06dX7OevDKGtTgPq+wrfnkLvoWr9gePqe7O3yaR5sPkc5U19tAmd489ZRgPnktXDHb1VHvUbuZT4/h6+7lhZ5WMw6DmVrB6QxJ1vatrerG1AuT6PqHyFg+6kpDIONK7nA4N2wpYRkLgODLkQ/gwceA2GJ4OuUBvS8c8gNxX0dVXrsSFXBdqphyF5l+qmrreHkA8g8BnL9zLkQc5FOL9NBdDnNkHyHjCqxIC491FjrwtYWUOjvhD/q7bOqSU0fwJ8HgJbF7VOZ2VezytyC3WcsbY2b/DeWSjJf+/exX89NjbQsKGa/rAg6C6cRE2CbiGqnwTd1ahfv36cLpS+09raGi8vL0aOHGkxh/m1GjVqFJ06deKZZ57h1VdfBeC9994rcZ+cnBx+/fVXRowYUWK54qxYsYJ58+ZZJM4TQtRu9RvXR2+VR77BusR5uiOiXEzLgR1UwBXa28+0bveBa7sDDF8XgSHfSMcBrcu1X3o6fDvvKHPnWRMZ38e0/t6HVBA9sO8l1lwZk7z6l3hT0B2+KQ5QwWNosDZOuEUL8PRUUx4NHaq6gZekVYtMVl7pDZuS7gJAgH8m//zjgJdXfcYN2ci8n3qTkV0XrnQIeOShVJo3r3kZy68W1kNrSd69R7VaZqRlcCJB/b+39o7F2ta8Z0CTdto0RqcvWQbFSSnqAY2r40Ws9EVnhS9gbWtNkyaqa3lckorm4lTHArNM2aLmKHdLdwE7V+j7D+x9CY7OUetcO1sGskfnqG7oJcnPAruG5uvilsPWkVpwXZzUg6rvduHouMfPKiFadjJgBMcWpc59nZICAwaYJyH094f168HLC/LytFwJvr7mrdlFadxYBd2JieZdy0GCbiFqAuleXs2mTJnCli1b2LJlC2vXruWJJ57ggw8+4Ndff63w95o6dSpTp04ttdwff/zBZ599VuHvL4So3az0Vrg6qmzeBYHR1YwGIxFxqsXRq+Fp6tVXrZb1G7ng56n6VO+LaUVeKfe1V/vxk/8Iu6UVnQa25qf5/5Vpn9hYeOklaNoUnno1kMh4rdtx73b76DSgDQAD7tIGRK5ZXygj944M03JYJ229jQ2sWwcLF8KsWaXXo2Ur8+fbPdvuZ9vmLLzU18QL0/zQW2lfiI0+h9deKXre75qmTWc/U/f88Ag1V/CRnbGm6dTaBZ632Kep1hBNfLz5NqPBSFKqihDcnFPKVIeC7zEpSWV5Lhjb3bixZGyuicxbussRdINqVQ6dDf3WQsDT4F1E40Ce5Zzx2v62KlGZUyC4tLU8dnEBt1Mr1XLddTH031TEcfXqoYBTC3AKKDXgBvjgA8us/1FRWuK0I0e0rOUdO5Z6OFMytawsSEuToFuImkZauquZo6MjboUeXw4dOpTff/+d1atXM2TIkAp/r7IwGo2lFxJC3JTcnFM4l+pGUmoDjAYjOivzm8vEk+dJSVfXtFY+ZwDtDjushwfRP0FmljURERAUVLb3PLztBONe1qb4empyIL1vT6KRT/FNP6tXw513Qk6O+fpeQft4dkIWdz8SZqp7ULcAGrmcIzHFnfV7WpObnYuNnQ3h+7Vu0KE9mpodJzBQ/ZRF3zt9sJ2aTU6eHQ8M2MqiX8Owq6MF8b5tvRjRbys/rO0OwOND/8O7VZ+yHbya2djZEOx3lJ1H23LstC9p51M5GK4l3AtqYzl2tnDQdfVczelpmWTlqu/drf7lMtWhWTP478pzmA1/JnDmjKdpvah5GjdWManRWHoitV274MQJGD5cPezSDnKL+ilK129U9/CC4NvKVmUDr+OlpuLSFzM0xs4N6ncAawfQ1wHntuDeE9x6gH0pzczldO4czLnSWG9jA507w5Yt6vWaNfDuu+Zdyzt1sjzG1a5OpiZBtxA1iwTdNZC1tTU2NjaMGjWKgIAANmzYQH5+Pr///juXLl3if//7H9u2bcPV1ZVhw4bx5JNPoterVoU1a9bw4YcfkpiYyLBhw8jP1254ru5e/ttvv7FgwQLOnDlDq1atmD59OpcuXTLNsx4YGMi///5LkyZN+PTTT/nhhx/IysoiLCyM6dOn4+mpbmwSExOZOnUqu3fvxtfXl94lDTwSQtRqbvUvQxxk5tQhPfWyqSW7QESU1gLeKsi8NTw0FH76SS2Hh5ct6L6UfIl77rVSXa+vuHDJlacf2cay9epGOClJtWg6X+mNbcg38NzTWeTkqODN1hYeeACefSqT9h1DLN7DSm9F/07H+W61O5ezHNm+/hQ9BnmxO9IHgPp1L+LbpqnFfmXl3aopezadIOnMZXoP6WbxoALg7Y+bsefWaOrVyWL6rDbX/F7VIbRtMjuPquU9m2I4sF+bpqtdqGWPiHr11P9VaqplS3fSRe1Bh3vzsmWRK2jpBnj6Wb1p+c7+Z4AbZE7nG4i1tWqVPXu25JbuU6egVy/VcpucXPx0WRYa9b22irl1g9vCSy9XAd5/HzKudKQZPx7mzoWQENi/H/bsUd3EryfoPnsWLl7UXtevXyHVFkJchxs76I74CCI/Kr1cgw7Qe6X5uo13qcQZpWn5ArR64drqd5Xc3FzWr1/P1q1beeedd1i2bBkrVqzgyy+/xNbWlrp16zJ69GhatmzJL7/8QlJSEtOnT0en0zFhwgROnDjB888/z8svv0zPnj355ptvCA8Pp2vXrhbvtXnzZlN3827durF48WKeeOIJ/v33X6ZMmcKiRYv4+eefadCgAUuWLGHVqlXMmjWLhg0bsmjRIsaOHcuqVauwsbHhueeeo06dOixbtozjx48zdepU6ssVXogbkluDLNNy0umLFkF35HGtFalVZ/PxumFh2vLu3VA4dcU/3+/m79/TMToGgMOVQMloZM/Wixw9rcZYB/kc40xyA86nNeTnDV2Z/twRdkS2ZvVqdRO/aRMEBMDv3+wi8nhnADp3SGPlX064uwMUP+fzwKG+fHclU/DqrV74BUFiihqvHBqSVWSgXB5tujYvcbtvWy8i40ssUmOFhelguVp+8y0jBp129x/UyavIfZo0SCA11ZPTpzIxGuxN32/hObrdGpc8R3eBZs6RgArQoxNUH9sG9ZJ5ZmLxeQdE9WrSRAWGFy7YkJdnQK+3LLN6tQq4ATZuLEfQXcMlJGhdyO3t4Uo7BwMHqqDbaIR//9WCbisr6NCh9ONePVe3tHQLUbPc2EF3bhpkni69XFYRNwVZSWXbNzet9DIleP3113nrrbfUW2ZlYW9vz+jRo7nrrrtYtmwZffr0ocOVq+22bdtISEhg2bJlWFlZ4efnxyuvvMLkyZOZMGECy5cvJywszJSEbdq0aaxfv77I9126dCl33HEH999/PwCTJk3CxsaG1NRUHB0d0ev1pm7vCxcu5PXXX6dzZ3UT++abb9KjRw82b96Ml5cXe/fuZf369Xh6etKiRQsOHTrE33//fV3fixCiZnJz1fprJyWk4XvVsMiICG25lXn+LNq315YP7csAVKtmXORp7ng4mLz8q1u9dIDqI+xcJ5UVv9ixe/Mx7n9WJUB6a66WUC0xEcben8DG7Y14f5YWrE177iju7qUPiBxwtyc8qZZXrzZ/QBDWU1pLSzJsbDumzTxDQrIH6/dp/8nubnnFDgFo6prAkRhPsnIcSD57EVdP9aDWLOguY4/eZh6W00a98vh+nFyvscVTVLomTVRvF4NBx7lz5r0VCmwtNBX38eOW22urd97RHiZMmAAeVy4vAwbAzJlq+bff4NAhtdy2LdQtw/Mj6V4uRM12YwfdNk7gUIbUpUWN1bF3K9u+NkUnEyqrZ599loEDBwJgZ2eHm5ubqas4QJNCg9+ioqJISUkhNDTUtM5gMJCVlcXFixeJioqiVaG7XBsbG7PXhcXExDBy5EjTa1tbW1555RWLcunp6Zw9e5aJEydiVShFb1ZWFrGxsWRnZ+Pi4mLqag4QFBQkQbcQNyizacNSLXu0FA66r55jun59cHO+QFKqK8eOpFEQdO9cH0defvHXW2t9LovnHaV5SCf82zVj6U87+HVLZ9N2nc6I0ahj6x5PRt+xlf+OqLHRbZod57YHQ4s7rBkPD3Vze+iQaoVfs0bbFlq2Q9y0XNyd+embk/QZ0tDswUlQu+JvMZo00uZyPx2dZAq6z53TypQ16PbyM8/y7u6cxITpZeiPK6rN1eP6yxJ0X50wvDZKTIQvvlDLdetC4duuHj1Uy3dWlhqGUzA6sCxdy8Gye7kE3ULULDd20N3qOrp+X93dvJK4urri7e1d7HY7O62rZl5eHn5+fnxa0C+pkIIkaVcnQbOxKXq8lLV12f7rC8aEz5kzB19fX7Ntzs7ObNu2rczvKYSo/dwCtIRmSemeFtsjDqkW7AYNDLi5WU6QEegVT1KqK2cuNuZS8mUcG9TjaES2aft7L26jz72FhsTkZdHE/SJNW6g7T52Vjv9b3gH9UypJ2rhx4JR3gH7DVb2+W93dtOukZ85ipW9R5s82cKAKug0GWLTIiGppN2/1FkXrfkc7Zr68kYnvaTk92rUrvnzTJlq+kfiYNNr1UMtJJyIA9bDYzTERaGS581WaBbibvZ785BHqOktukZqscNCdkGC5/dw5OHZMe52ergJJj1re6SQ8XJuXe9w48wdLDg7Qs6d64FcoHU+ZMpeDZffywmO6JegWovrJlGG1iK+vLwkJCTRo0ABvb2+8vb2Jj49n7ty56HQ6WrRowcGDB03lDQYDkZFFz1Xp7e1tti0/P59+/foRHh6OrtCjZCcnJ1xdXUlKSjK9p4eHBzNnziQmJoaAgABSU1M5efKkaZ+Iwk1dQogbSuGbxMJdgQHSLlzi9FnVet3K42CRrVIBPtqQnOP71dxOkce0h4C3DWlI585oP93tadrC/E67obsNP/8MK1fC3XdD33uCmXDvRrMyTV0TGDmhM+UxoI82TVdmpqp8g/p5lPBcVBTy3Nu9uHdIiul1ScFCk6ba7cfpOG1qtqRTiaZlt7pnyvS+DRrXx9VRZUz3rH+a8a+V7/9dVD3zlm7LC0VBNvrCboQu5gVzyIPqWXO1Kx0fzVxLS/fOnVDQ4dDWFho2LHofIUTVkaC7FunRowdNmjTh5Zdf5ujRo+zevZtp06bh4OCAXq9nxIgRHDp0iAULFhAdHc37779PQlGPkIFRo0axcuVKfvnlF06ePMm7776L0WikTZs2ODg4kJqaSmxsLHl5eYwZM4bZs2ezbt06YmNjee2119izZw9+fn74+/vTtWtXpkyZQmRkJGvXrmXJkiVV/M0IIapKSUH30T2nTMut/C3H2QIEtNCacI4dUk0xR2NU12KdzkCL4GvLEv7e56H4uGvvP3HcMWwdyjdJc6/eemyts83Whfnvq/VdWquKzkrHosUuPP88vPgijChiCuUCTb21cffxp7Rs50kXtAcwbh7mSfpKet8vPz7BkB7b+XlJMvZ17ctdd1G1CgfdBw6o7tRffw3ZV379CnctL3CjBd1FPcwbMMD8tYMDtCnjZAaurpgS0h06pM3x/fjjqtu6EKJ6SdBdi+j1ehYsWIDBYGDEiBE888wz9O7dm9deew1QrdcLFizgjz/+YMiQISQlJRU7fVfHjh15/fXXmT9/PnfddRcRERF89tln2Nvb06VLF7y9vbnzzjuJiIhg3LhxDB8+nOnTpzNkyBASEhL48ssvcb4yP8/HH39M/fr1GTlyJB999BGjRo2qsu9ECFG1zILuc+ZzMEfs1wYRtmppoCgBrbS7v6MRORgNRo6eUoG2t9tpHBzLlrH6avXq1+P7r1LwbHCGXkH7ePzV8vcJr+NUh55Bh8zWhbYr21zRQqlXDz7+GD78kCIzUhdo4qPlQzmdoBVMuqANqXIrlD+gNHeP68wvm7vQdXAZJ38X1apw0L1woRX33QePPAJPPaXW3ahBd6FOgUXOIx8UZN5NvEOHq+YnL4Feb5kHwcdHzfkthKh+N/aY7hpu3bp1JW5fvHixxTovLy++KMjCUYTu3bvz+++/F7mtYH7uAsOHD2f48OEW5VxcXFixYoXZuokTJzJx4sQij1u/fn3mzZtntu7pp58uto5CiNrLzTkFcAHgXOQeQOtDHHEkz7Tcqm3R6XYD2mr9HI+dsOFs7DnSMtVdZqB3IlD0FFNl0XVwEKcvwPXMzTygzyX+3au9DussTUSVoamfdh7En9UetBTM063TGXD1kKknb1RNm2oJEAv76it4+mmVzBDA0REuXRn1cSME3YVbuotKHmdlpVq7CzoMlrVreYHGjdV47gILF6oHYUKI6ict3UIIIcrMtZEjOp1qxS4IkApEHNeCp5btG1MU/3ZNTfsfi63P0X3aEJiWzdMrurrlNvAu83qH9ry27u6iZK6eDbCzUfMmnT6nZR9PSlEt4K6OyehtSmgqF7WakxNMnGikUaMc+vc3cvvtar3RCCNHasnGhg6FgryvN1LQ3bBh8dOADRmiLffrV77jFx7X/fjjcMst5dtfCFF5JOgWQghRZnobPa6Oqht5QYBUIDJG9W10sM3Au1XRU4DZ17XHxz0egGPxTYg8pCVWCwys/sHTwT0DcHdSybwaOZ+lWWAZpo4U5aaz0tHEVX3P8ee1PrHnUlWaZTfnonMCiBvHBx8Y+eOPg/z9t4GlS8H9ShL6wlnLe/UCPz+1fOKEmlmgtsrLU9OjQdFdywsMGwaffaZ+Ch5GlNXdd6t/W7XS5vwWQtQMEnQLIYQol4KA6FxqA4wGNWVgfm4+UWdVf8kWTU5hpS/+z0tAMzUZc1qmM5t2aV3BW7Z1rKwql5mV3orPPoyhe5sDzHs3Bp1V9T8IuFE1aaoS3aWku5B+2UhGWiYZ2ar5z83lUkm7ihtM3bowebLl+u7docWVWf8yM4ueXqw0RiOsW2cezFeHhARtKrCSgm6dDp54Qv2UN4nj+PEQHa265zs5lV5eCFF1JOgWQghRLl6NVNbxjOy6JMWrqZriT5whL19l/PFverHYfQEC/LRu5H9t9jMtB3YJqeCaXpuhj3Vhy6F2DH+ya+mFxTUrPBXc6QQdSae1RHxuDbKqo0qiGo0fD56e2mtXVwgM1IJuuLYu5gsWqG7WISFwpmyz0FWK0jKXVxRfX6hTp/RyQoiqJUG3EEKIcvH31uZVjj6isvbERGjzh/l5lxwwBYS1Ni2npKoBm46O4OEprco3E/O5miHptNal3M01pxpqJKqTvT1cmYwFUK3cOt31Bd3Z2fD222o5MxM2bCi63OXL8P33EBtbvuOX5MgR+O47bequ0jKXCyFubBJ0CyGEKBd/P21gZVSECpSiY7Q/J75+JQfPAe3cLNYFBpa/K6Wo3ZoWylEXHw9JF7XMUm6Nr23qOFG7jRsHd90FHh4wdapadz1B93ffmXdJ37u36HLTpsGDD0LbtrBjR/neoyhffw3BwfDQQ/DWW2pd4ZZuCbqFuPlI0C2EEKJc/AO0gCjqhEozHH0x2LTOr2OXEvcPCLBc17JlxdRN1B5NPLQp5k5HnSMpU+tz696qY1G7iBucrS389psKlAumy7rWoNtgsEwmVlzQvX69+jc9HQYPhsOHy/4+hRmNKoB/5BGVOA3gzz/Vv1XVvVwIUTNJ0C2EEKJc/Fpq8ydHxaju4dHRhba3sCtxfy8vsLuqSKBHZIXVT9QOTZ20//P4IxEkaSMUcLPsDCFuUl5eKhgHLeiOj1fZzAs7fRoGDoTbboM9e+D33yHyqsvKnj0qMC7MaISoKO11crI6zuHDlmWLYzSqruuDB8OMGebbDh2CjAzpXi7EzU6CbiGEEOXi10bLdhQVp1LkFgTdOl3prTh6PbTwvWy2rqVvycnXxI2niZ+rafn0GTsJukWR9Hrw91fLUVEqmG7eXA1JWbpUrTcaYcwYWLMG/v5btZKPH68dw/XKqZacDKdOmR8/KUmN6S4sIUF1NffwUNNwLV6sxocXZfVq1ZW8b1/13qCug82bq+X8fNXCXtDSbWcn57cQNyMJuqvJq6++SmBgYLE/OypiUJEQQlSCevXr0aihyg4UfaGN+vdK0O3pqRIilSbA/ZDZ68B2rsWUFDeqxt5uWOnUHErxiU5EH9WmCZOgRBRW0MU8O1vNY52drbqPjxunEpYtXAhr12rl8/O1TOVt2sBjj2nbru5iXriV+957VTBfIDERVq6Ehx9WDxP/9z9ILTSFfE4OjBgBBw9q6zw94ddfYdIkbd2OHVpLd7NmYCV330LcdOTXvppMnTqVLVu2sGXLFqZMmULjxo1Nr7ds2UL79u2ru4pCCFGsgnHdZ87qOXf6sqmV0s/zbJn2D/DXMpzrdAZahEh/y5uNjZ01jVzUibPnRCDLflXztNtY59K0cWZ1Vk3UMIXHdefmasvp6TB0KLz4orZuzBitOzrAyy9Dhw7a65KC7s6dYetWFVwPGADOztq2xER44w245x7zYxUE4QEB8MMPKgP6XXdpY9JBtcAXtKZL13Ihbk6VEnQbjUbGjh3LihUrSix36tQpxowZQ0hICIMHD2bLli2VUZ0aydHRETc3N9zc3HB0dESv15teu7m5YVv4L4YQQtQwBd09Af79S5tf2c/tRBGlLQUE6k3LPg1jsa9bhuZxccNp6qbmeTcYtfPh9Se3Ut9NspcLTeGgG9SY63bt1PKxY3DpSieJRx6Br75SwfDIkfDSSyqDeOGge88e82MVDrr9/VVX9OnTVbfx5GTYtAmGD1fd3AHWrYOLV0bDbN2q7TtxonpPGxv1uk0bcLhyGhduhZegW4ibU4UH3QaDgRkzZrC18JWoCEajkQkTJtCwYUOWL1/O3XffzdNPP01C4bkdblLx8fEEBgYyf/58OnbsyJtvvsknn3zCqFGjzMr169fP9GDDaDQyf/58evToQVhYGOPHj5fvUghRafz8tOU1a7RsQ34+eUWUthTQ0tq03NJTkqjdrJq4a13K9VZ5fP7WJqbO7VN9FRI1UliYtty1K6xYAT//DE5O2npPT/joI7XcurVqdZ45UwXLvr5a2atbugsngSz8MBFUN/CePWHZMnj2WbXOaISNG9Vy4bai7t3N97W21oL9vEKXRclcLsTNybr0ImWXmJjISy+9RHx8PE6Fr4RF2L59O6dOneLHH3+kTp06+Pv7s23bNpYvX84zzzxz3XVZtkw9qbx0qfSyFcXRUXVJuvqifa327NnD8uXLMRgMrFq1qsSyS5YsYdWqVcyaNYuGDRuyaNEixo4dy6pVq7ApeOwqhBAVxN87E1DNOGs31DGt9/Uv2/WmQ78QmjQ4w+lkD+4cWq8yqihqgVsH5vDrFqhnf4llC49y64O9qrtKogYKDYVPP1VJ0CZNgrp1Vev3N9+oVmhQ47pdXIre38oKQkJUq3V8PJw/Dw0bqm2FW7oLP0y8Wt++8PHHann9epVgraB9ydlZtWxfrVMn89ZwkJZuIW5WFRp0Hz58GA8PD+bMmcPwgqtgMfbv30/r1q2pU0e7WQsNDWXfvn0VUpeZMy2niqgKH35oxYIFFXOs0aNH06yMV+eFCxfy+uuv07lzZwDefPNNevTowebNm+nXr1/FVEgIIa7wdz8BBAFw6pyW9covwLFM+zs4OrD/YCYxR44Q2q9nZVRR1AKPT+1JWPcIfFo2wtUzrPQdxE3rySct1w0Zok3t1bJlyfu3b6+CblCt3QMGqOWCoLtRIxXMF6dXLxW8Gwyqi3lUFJw7p7Z17Vp0crTC47oLSNAtxM2pQoPufv36lTnAS0pKwt3d3Wydq6srZ88Wn4QnPz+f/Pz8Mh3/pZfg9detqryl+4UXVB+istYTVJd8o9Fo2sdgMADg4eFhtq5wGVBdyg0GA2lpaZw9e5aJEyei0+lM27Ozs4mOjqZ3797X/dlE1Sv4vy7PuSREUSrjXPJpVXR6ae+WDcv8Pi6NnGnfyBmD0QBymtcKlXEuhfQOqPBjigqQn4/etJivUoJX6OEr5lwqPDVXSUJCdBSMqty920C/fkbS0+HsWfUp/fyM5Ocbit2/Xj0IDbVi1y4dhw7B8uUG0/G6djWQn285qbfqXq43W9e0aX5Ff5UCuWcSFefqc6mizqlyBd1ZWVkkJiYWuc3Nzc2s1bo0mZmZFsnCbG1tycnJKXafY8eOlfn4/v6wZEmZi1e4g4XnjyhFXFwcOTk5plb+pCtpgKOiokhLSwNU1/3Lly+b9QTIysoiLi7OtO6ZZ57Bw8PD7Nj16tWrsN4DonqU51wSoiQVeS4ZDUbq2tUjPVvrGm5vk8nZiwkkpp6psPcRNZNcl258VpmZFMyjcuDAAQwOlZPcrqrOJQcHe0D1AV+/PoWBA2M4cUJbV79+Mvv2xZZ4jNatm7BrV2MAZs7MpyDobtToOPv2XbYobzSCs3Mwqana7faFC/u5fNkyQBcVQ65NoqJU9LlUrqB7//79PPzww0Vumz9/Pv379y/zsezs7EhJSTFbl5OTg30JE7wGBASUK7CvDvn5+Rw8eJCgoCD0en3pOwAxMTHY2toSEhICwOnTpwFo3bo1TZo0AWDnzp1ERESYyqSnp5OWlkazZs3o3r07rq6uODk5ceuttwLqu3zppZcYO3asaR9Ru1zLuSREUSrrXPL3OMGBWG1SW7/Gp2nfQaY7vJHJdekmkp5uWmzXrl3Jfa+vQVWfS23agJ2dkexsHSdP1ickxNk0dzZAWFh9QkJcSjzGffepceQAFy6o/BXW1kYeeKA5xd2edulixT//qOVGjYx07hx8nZ9EFEWuTaKiXH0uZWRklKvhtzjlCro7d+7M0aNHr/tNARo1asSJE+ZTy5w/f96iy3lher2+1vwilaeuVlZW6HQ6U3mrKwODrKysTOuCg4P55JNPWL16NS1btmTevHno9XpTmTFjxjBnzhwaNmyIn58fn376KXv37qV58+a15jsTRatN572o2Sr6XPJrepEDsdpr3ybJ6PXNK+z4ouaS69JNoND/r16vN3tdsW9TNeeSXq+mGdu1C44d05GRoSc2VtveooVVqR+xVy81JVjhucLbt9fh6Fj8jp07Ywq6vb118ntTyeTaJCpKwblUUedThY7pLo/g4GC++OILsrKyTK3b4eHhhIaGVleVarSuXbsyZswYpk+fjpWVFY888gjnCjJ4AOPGjSM9PZ3p06dz+fJl2rZty5dffomzs3M11loIcSPz98mCQlPm+HlnVl9lhBCiFGFhKugGNQ93WTOXF6hbVwXRJU0VdrWOHbVlSaImxM2rSoPu5ORk7OzsqFu3Lp06dcLDw4PJkyfz1FNPsX79eg4cOMC7775blVWqEYYNG8awYcNMr5s2bWrRo0Cn0zFp0iQmTZpkWjd+/HjTsl6vZ+LEiUycOLHyKyyEEIB/c/N0vX6BLtVTESGEKIOhQzHNMPPdd5CRoW0r63Sv/fqVL+ju1UtlRk9MhIEDy1dfIcSNo4gJDirP8OHDWbRoEaCCxE8//ZSkpCSGDRvGypUrmT9/Pp6enlVZJSGEENfIP8B8jKdfqIxVFELUXP36QWOVB40//oADB9Ry3bpQwuhGi2MUVlrQ7eSk3mfnTnj00fLVVwhx46i0lu5169aVus7b25sl1ZliXAghxDXzb93Q7LWvbzVVRAghykCvh5EjYfZsyMmBM1cmWvD3h0IzrpaoSxeoU0e1kvv7w1WTxhTJ3b3sQb0Q4sZUpS3dQgghbhzNWnqit8ozvZagWwhR0z34oOW6snYtB7Czg08+UWO1Z8+usGoJIW5wEnQLIYS4JjZ2NgS2VFk9vb2hXr1SdhBCiGoWGgoBAebrypJErbCxY1V38TvuqLh6CSFubBJ0CyGEuGbz5um4+2747LPqrokQQpROp7Ns7S5PS7cQQlwLCbqFEEJcs7594ddf4dZbq7smQghRNg88YP5agm4hRGWToFsIIYQQQtw0mjdXCdEKtGhRfXURQtwcJOgWQgghhBA3lQ8+UMkfH39ckkAKISpfpU0ZJoQQQgghRE3UsydER1d3LYQQNwtp6RZCCCGEEEIIISqJBN1CCCGEEEIIIUQlkaBbCCGEEEIIIYSoJLViTLfBYAAgMzOzmmtSuvz8fAAyMjLQ6/XVXBtRm8m5JCqKnEuiosi5dBPJyoLAQG1Zp6vQw8u5JCqSnE+iolx9LhXEnwXx6LXSGY1G43XXrpJduHCB2NjY6q6GEEIIIYQQQoibjI+PD66urte8f60IuvPy8khNTcXOzg4rK+kRL4QQQgghhBCichkMBrKzs3F2dsba+to7ideKoFsIIYQQQgghhKiNpNlYCCGEEEIIIYSoJBJ0CyGEEEIIIYQQlUSCbiGEEEIIIYQQopJI0F1BsrOzmTJlCmFhYfTo0YNFixZVd5VELbJmzRoCAwPNfp599lkAjhw5wr333ktwcDD33HMPhw4dqubaipooJyeHO+64gx07dpjWnTp1ijFjxhASEsLgwYPZsmWL2T7//fcfd9xxB8HBwTz88MOcOnWqqqstaqCizqUZM2ZYXKOWLFli2v7777/Tv39/goODmTBhAsnJydVRdVFDJCYm8uyzz9KpUyd69uzJu+++S3Z2NiDXJVE+JZ1Lcl0S5XXy5EnGjRtH+/bt6dOnDwsXLjRtq+xrkwTdFeSDDz7g0KFDfPPNN7z++uvMmzePv//+u7qrJWqJEydO0LdvX7Zs2WL6mTFjBhkZGTz++OOEhYWxYsUK2rdvzxNPPEFGRkZ1V1nUINnZ2bzwwgscP37ctM5oNDJhwgQaNmzI8uXLufvuu3n66adJSEgAICEhgQkTJjBs2DB+/vlnGjRowFNPPYXk1ry5FXUuAURFRfHiiy+aXaPuueceAA4cOMDUqVN5+umnWbp0KWlpaUyePLk6qi9qAKPRyLPPPktmZibfffcdH3/8MevXr2f27NlyXRLlUtK5BHJdEuVjMBh4/PHHqV+/Pr/88gv/+9//WLBgAatWraqaa5NRXLf09HRjUFCQcfv27aZ18+fPNz700EPVWCtRm7z44ovGWbNmWaxftmyZsV+/fkaDwWA0Go1Gg8FgHDBggHH58uVVXUVRQx0/ftx41113Ge+8805jQECA6Tr033//GUNCQozp6emmsqNHjzbOnTvXaDQajbNnzza7RmVkZBjbt29vdh0TN5fiziWj0Wjs2bOncfPmzUXu9/LLLxtfeeUV0+uEhARjYGCgMS4urtLrLGqeEydOGAMCAoxJSUmmdatWrTL26NFDrkuiXEo6l4xGuS6J8klMTDQ+99xzxkuXLpnWTZgwwfj6669XybVJWrorQGRkJHl5ebRv3960LjQ0lP3792MwGKqxZqK2iIqKwsfHx2L9/v37CQ0NRafTAaDT6ejQoQP79u2r2gqKGmvnzp107tyZpUuXmq3fv38/rVu3pk6dOqZ1oaGhpnNn//79hIWFmbY5ODjQpk0bObduYsWdS5cvXyYxMbHIaxRYnkseHh54enqyf//+yqyuqKHc3NxYuHAhDRs2NFt/+fJluS6JcinpXJLrkigvd3d3Zs+eTb169TAajYSHh7Nr1y46depUJdema5/hW5gkJSVRv359bG1tTesaNmxIdnY2KSkpNGjQoBprJ2o6o9FITEwMW7Zs4fPPPyc/P59bb72VZ599lqSkJJo3b25W3tXV1aLrp7h5PfDAA0WuT0pKwt3d3Wydq6srZ8+eLdN2cfMp7lyKiopCp9Px2WefsWnTJlxcXHjkkUcYOnQoAOfOnZNzSZg4OTnRs2dP02uDwcCSJUvo0qWLXJdEuZR0Lsl1SVyPfv36kZCQQN++fRk0aBDvvPNOpV+bJOiuAJmZmWYBN2B6nZOTUx1VErVIQkKC6RyaPXs28fHxzJgxg6ysrGLPLTmvRGlKO3fk3BJlFR0djU6nw8/Pj4ceeohdu3Yxbdo06tWrx4ABA8jKypJzSRRr5syZHDlyhJ9//pmvv/5arkvimhU+lw4fPizXJXHN5s6dy/nz53njjTd49913q+SeSYLuCmBnZ2fxpRe8tre3r44qiVqkSZMm7NixA2dnZ3Q6Ha1atcJgMPDyyy/TqVOnIs8tOa9Eaezs7EhJSTFbV/jcKe665eTkVFVVFLXEkCFD6Nu3Ly4uLgC0bNmS2NhYfvjhBwYMGFDsueTg4FANtRU1ycyZM/nmm2/4+OOPCQgIkOuSuGZXn0stWrSQ65K4ZkFBQYBKHvrSSy9xzz33kJmZaVamoq9NMqa7AjRq1IiLFy+Sl5dnWpeUlIS9vb38oRBl4uLiYhq3DeDv7092djZubm6cP3/erOz58+cturgIcbVGjRqVeO4Ut93Nza3K6ihqB51OZ7qxLeDn50diYiIg55Io2ltvvcVXX33FzJkzGTRoECDXJXFtijqX5Lokyuv8+fOsXbvWbF3z5s3Jzc0t9X67Is4nCborQKtWrbC2tjYbTB8eHk5QUBBWVvIVi5Jt3ryZzp07mz1hi4iIwMXFhdDQUPbu3WuaksBoNLJnzx6Cg4Orq7qilggODubw4cNkZWWZ1oWHh5vOneDgYMLDw03bMjMzOXLkiJxbwsKcOXMYM2aM2brIyEj8/PwAy3PpzJkznDlzRs6lm9i8efP48ccf+eijj7j99ttN6+W6JMqruHNJrkuivOLj43n66adND2YADh06RIMGDQgNDa30a5NEhBXAwcGBIUOG8MYbb3DgwAHWrl3LokWLePjhh6u7aqIWaN++PXZ2drz22mtER0ezceNGPvjgAx599FFuvfVW0tLSePvttzlx4gRvv/02mZmZ3HbbbdVdbVHDderUCQ8PDyZPnszx48f54osvOHDgAMOHDwfgnnvuYc+ePXzxxRccP36cyZMn07RpUzp37lzNNRc1Td++fdm1axdffvklcXFxfP/99/z666+MHTsWgPvvv5/ffvuNZcuWERkZyaRJk+jTpw9eXl7VXHNRHaKiovj000957LHHCA0NJSkpyfQj1yVRHiWdS3JdEuUVFBREmzZtmDJlCidOnGDjxo3MnDmT8ePHV8216TqnPBNXZGRkGCdNmmQMCQkx9ujRw/jVV19Vd5VELXLs2DHjmDFjjCEhIcbu3bsbP/nkE9Pc3Pv37zcOGTLEGBQUZBw+fLjx8OHD1VxbUVNdPbdybGys8cEHHzS2bdvWePvttxu3bt1qVn7Dhg3GgQMHGtu1a2ccPXq0zF8qTK4+l9asWWO88847jUFBQcZbb73V+M8//5iVX758ubF3797GkJAQ44QJE4zJyclVXWVRQ3z++efGgICAIn+MRrkuibIr7VyS65Ior7NnzxonTJhg7NChg7F79+7GBQsWmO63K/vapDMar/RbFUIIIYQQQgghRIWS7uVCCCGEEEIIIUQlkaBbCCGEEEIIIYSoJBJ0CyGEEEIIIYQQlUSCbiGEEEIIIYQQopJI0C2EEEIIIYQQQlQSCbqFEEIIIYQQQohKIkG3EEIIIYQQQghRSSToFkIIIYQQQgghKokE3UIIIYQQQgghRCWRoFsIIYQQQgghhKgkEnQLIYQQQgghhBCVRIJuIYQQQgghhBCikkjQLYQQQgghhBBCVBIJuoUQQgghhBBCiEoiQbcQQgghhBBCCFFJJOgWQgghhBBCCCEqiQTdQgghhBBCCCFEJZGgWwghxE3t1VdfJTAwsNif7t27V3cVyyUwMJBPPvmkQo/53nvvMWrUqCK3ffPNNwwYMIB27doxdOhQNm7caFHmp59+4vbbbyckJITbbruN7777DqPRWOTx8vLyGDFiRJGf4fTp0zz33HN07dqVzp0789RTTxEXF3d9H04IIYSoZNbVXQEhhBCiurm5uTFv3rwit9nY2FRxbWqWRYsW8dVXX9GpUyeLbV999RUzZ85kwoQJtG3bluXLl/Pkk0/y7bffEhYWBsCyZcuYNm0ao0aN4pZbbmH37t289dZbZGdnM3bsWLPjZWdnM2nSJPbv30/Pnj3NtmVlZTF27Fjy8vKYNm0adnZ2zJ07l1GjRrFq1SqcnJwq70sQQgghroME3UIIIW56tra2hISEVHc1apRTp07x/vvvs27dOhwdHS22Z2Vl8emnn/LII48wYcIEAHr16sXIkSOZP38+X331FQDLly8nNDSU1157DYCuXbsSExPDkiVLzILu3bt38+abb5KYmFhkfXbv3k1sbCxff/01Xbt2BcDX15fbbruNf//9l6FDh1bo5xdCCCEqinQvF0IIIcrg0KFDtGnThldffdW07sKFC3Tt2pVHHnnE1F16165djBs3jo4dO9K2bVv69evHJ598gsFgACA+Pp7AwED+/vtvnnrqKUJCQujWrRuffvoply9fZsqUKYSGhtKtWzdmzpxpOm7Bfn/88Qfjx48nODiYPn36MH/+fNOxi5KSksL06dPp1q0bQUFBjBgxgm3btpX6ed99911OnjzJN998Q6tWrSy279+/n7S0NAYMGGBap9PpGDBgADt27CArKwtQrdf16tUz29fFxYWUlBSzdU8++SSenp6sWLGiyPpkZ2cDULduXbPjFHxGIYQQoqaSoFsIIYRAjSUu6qcg6G3bti2PPfYYv/zyiylonT59OgaDgffeew+dTkdkZCRjxozBxcWFjz/+mAULFhAWFsa8efP466+/zN7vtddeIyAggAULFtC1a1fmzJnD8OHDsbe3Z968eQwcOJCFCxfy999/m+33xhtvUK9ePT755BPuvvtu5s2bx6xZs4r8TNnZ2YwePZp///2XiRMnMm/ePBo3bsyjjz5aauD9/PPPs3LlSjp27Fjk9qioKAB8fHzM1nt7e5Ofn28aa/3www+zZcsWfvvtNy5dusTmzZv55ZdfuPvuu832W7JkCZ999hlNmjQp8v169OiBv78/M2fO5NSpUyQlJfHWW29Rp04d+vfvX+JnEUIIIaqTdC8XQghx0zt9+jRt2rQpctukSZMYN24cABMmTGDdunX873//4/HHH2ft2rXMmTOHRo0aARAZGWlqobayUs+1u3fvzrp169ixYwe333676bg9e/bk+eefB6BFixb8/vvvuLq6Mn36dAC6dOnCqlWr2LNnD7fddptpvzZt2vDhhx8Cqjt3RkYG33zzDU8++aRFi/Jvv/1GZGQkP/30E8HBwaZ9Ro0axYcffsjy5cuL/U4CAgJK/M4uX74MYPGeBS3RBdtvv/12du7cyaRJk0xlevTowZQpU8z2CwwMLPH97OzsePvttxk/frwpyLa1teWzzz7Dy8urxH2FEEKI6iRBtxBCiJuem5sbCxYsKHKbh4eHadnGxob333+fe++9l6lTpzJ06FBuvfVW0/YhQ4YwZMgQsrOziYmJ4eTJk0RERJCfn09ubq7Zcdu3b29abtiwIQDt2rUzrdPpdDg7O3Pp0iWz/YYMGWL2etCgQXz77bfs3bvXIvnYtm3bcHNzo02bNuTl5ZnW9+3blw8++IDU1FScnZ1L+mqKVVKXdsD00OGpp54iPDycl19+mXbt2nHs2DE++eQTnnvuOebPn49OpyvT++3cuZNx48bRoUMHHnnkEaysrFi6dClPP/00//d//2dK3CaEEELUNBJ0CyGEuOnZ2toSFBRUprKtWrUiMDCQQ4cO0bdvX7NtWVlZvPXWW/z222/k5eXRtGlT2rdvj7W1tcUUWVe3EAPUqVOn1PcvaFUv0KBBAwBSU1MtyqakpJCUlFRsK35SUtI1B90FydXS09PNjlHQwu3o6MiePXvYvHkzM2bM4N577wWgU6dOeHl58fjjj7NhwwaL77A4n332GY0aNeL//u//sLW1BVSL+ciRI3nnnXeKHQsuhBBCVDcJuoUQQohyWLp0KYcOHaJly5a8/fbbdO3a1TRd1dtvv80///zD7Nmz6datmymILsi2XREuXrxo9vrChQsAuLq6WpR1dHTEx8fH1B39ak2bNr3mevj6+gJw8uRJsxb6kydPYmNjg5eXFxEREQB06NDBbN+CVunjx4+XOeg+ffo0bdu2NQXcoFrTQ0ND+e677675cwghhBCVTRKpCSGEEGV0+vRp3n//fYYPH85nn33GpUuXePvtt03bw8PD6dy5M/379zcF3IcOHSI5ObnU7thltXbtWrPX//zzDw4ODqYx24V16tSJM2fO4OrqSlBQkOln69atLFy4EL1ef831aN++PXXq1OGff/4xrTMajaxZs4ZOnTpha2uLn58foKb7KmzPnj0A5RqL7efnx4EDB8jJyTF7v71798qYbiGEEDWatHQLIYS46eXk5LBv375itwcGBmJvb8/UqVNxcHBg0qRJODs78/zzz/POO+8waNAg+vXrR7t27fjrr7/44Ycf8Pf3JzIykgULFqDT6cjMzKyQuv7111+4urrSu3dvdu7cyXfffcfEiROL7Jo+bNgwlixZwiOPPML48ePx8PDgv//+4//+7/946KGHsLGxueZ6ODg4MHbsWObPn4+NjQ3t27dn+fLlHD58mG+//RaA1q1bM2jQIN577z1SU1MJDg7mxIkTfPLJJ7Rp08ZsurHSPPXUUzzwwAM8+uijjB49Gmtra5YvX86+ffuYO3fuNX8OIYQQorJJ0C2EEOKml5SUxH333Vfs9l9//ZU9e/awbds2Zs+ebRrDPGrUKFatWsX06dPp0KEDr776Krm5ucyePZucnByaNm3Kk08+yYkTJ1i3bh35+fnXXdfnnnuOnTt3snTpUjw8PJg+fTr3339/kWXr1KnDd999x6xZs5g5cyaXLl2iSZMmvPjii4wdO/a66zJhwgT0ej0//fQTixYtonnz5nz66aeEhoaaynz44YcsWLCAH3/8kblz5+Lp6cmwYcOYMGEC1tZlvw0JCgpiyZIlzJkzh5deegkbGxsCAwP59ttv6dSp03V/FiGEEKKy6IxXZ3YRQgghRI0THx/PLbfcwrvvvsuwYcOquzpCCCGEKCMZ0y2EEEIIIYQQQlQSCbqFEEIIIYQQQohKIt3LhRBCCCGEEEKISiIt3UIIIYQQQgghRCWRoFsIIYQQQgghhKgktWLKsLy8PFJTU7Gzs8PKSp4TCCGEEEIIIYSoXAaDgezsbJydncs1zeXVakXQnZqaSmxsbHVXQwghhBBCCCHETcbHxwdXV9dr3r9WBN12dnaA+rAODg7VXJuS5efnc+zYMQICAtDr9dVdHVGLybkkKoqcS6KiyLl0E8nMhO7d1fLWrVDB919yLomKJOeTqChXn0uZmZnExsaa4tFrVSuC7oIu5Q4ODtSpU6eaa1Oy/Px8AOrUqSO/9OK6yLkkKoqcS6KiyLl0EzEa4ehRtWxvDxV8/yXnkqhIcj6JilLcuXS9Q5xlgLQQQgghhBBCCFFJJOgWQgghhBBCCCEqiQTdQgghqsz+zUf5YsYm0lPTq7sqQgghhBBVolaM6RZCCFH7nYw10n2QD+mZgUQc2cjH3/eu7ioJIYQQQlQ6aekWQghRJV5+KZf0TJX988ixmj0ThRBCCCFERZGgWwghRKXbsAGWLbc1vU65XLNnohBCCCGEqCgSdAshhKhwp0+cYcnHWzkaHkNeHjz3nPn2VAm6hRBCCHGTkDHdQgghKlTmpUx69sglJrE7AD5uMcQm+ZqVSUmvVx1VE0IIIYSoctLSLYQQokLN+98OYhKbmV4XDrgdHS4BkJruWOX1EkIIIYSoDhJ0CyGEqDCpSam893k7AHQ6A6Etjpi2jb1zM+2bRwGQletAVnpWtdRRCCGEEKIqSdAthBCiwnw4dS/JlxsAMOrW/9h9rDUn9p3k32V7+WJ5N5wds01lU5MuVVc1hRBCCCGqjATdQgghKkRibBIffxsGgI0+h//N9AHAP9ibfsPbo7fR4+KUayqfmny5OqophBBCiKv069ePwMBA00+bNm249dZb+frrryvsPUaNGsUnn3wCwKuvvsqrr75a6j45OTn89NNP1/yeK1asoF+/fte8f0WRRGqiRH9+u4vpM+rSvUMSr77TEg+/RtVdJSFEDfX2m5dIz3YD4Il7tuHTprdFGWfHfNNyyvmMKqubEEIIIUo2ZcoUBg8eDEBeXh7bt29n6tSpuLi4MGTIkAp9r6lTp5ap3B9//MFnn33GiBEjKvT9q5q0dN+k8nLyiNwVzaqvdhIXebrIMvm5+Yx/0ZPw462Zu7Q3fi2dePnZZOLjq7iyQogaLyEBPv/OD4A69tm89n6rIsu5uBhMy6kpuUWWEUIIIUTVc3R0xM3NDTc3Nzw8PBg6dChdu3Zl9erVlfJejo6lJ1U1Go0V/t7VQYLum0z0wTh6Be2nbt18WnXy466xnQjqUI9D/x23KLvmp72cOt/E9Dor14EPP2mAlxf06gULFkCGNFQJIYAPP4ScHLX89LN2NPJxL7Kcc/NupuUUXUgV1EwIIYQQ18ra2hobGxtGjRrFW2+9xS233EKfPn24fPkyZ86cYfz48QQHB9OvXz/mzZtHfr7Wo23NmjUMGjSIkJAQ3nzzTbNtV3cv/+2337j11lsJDg5m5MiRHDlyhB07djB58mROnz5NYGAg8fHxGI1G5s+fT48ePQgLC2P8+PEkJCSYjpOYmMijjz5KSEgIQ4cOJS4urmq+qFJI9/KbzMczYth8yLzLZ1qmM3cOTWPn7vO4eTU0rf9yodYKdUfXnazdG0pWlh6AzZvVz59/wqpVVVN3IUTNlJQEn32mlh0c4MUXiy/r0sDOtJyaWskVE0IIIWqKiI8g8qPSyzXoAL1Xmq/beBck7yl935YvQKsXrq1+V8nNzWX9+vVs3bqVd955h2XLlrFixQq+/PJLbG1tqVu3LqNHj6Zly5b88ssvJCUlMX36dHQ6HRMmTODEiRM8//zzvPzyy/Ts2ZNvvvmG8PBwunbtavFemzdvZurUqUydOpVu3bqxePFinnjiCf7991+mTJnCokWL+Pnnn2nQoAFLlixh1apVzJo1i4YNG7Jo0SLGjh3LqlWrsLGx4bnnnqNOnTosW7aM48ePM3XqVOrXr18h38n1kKD7JhN+sIFp+d6+24iIbsihky2IPefF8Nv3sWaHE7YOtiSdOs9vm0MBaORyjhXr25N0Qc/ChfDDDxAZqY7x55/5JJ9Jo4FH9Z/MQojq8fGMU2RmegHw+OPgXnQjNwDOztpySkrl1ksIIYSoMXLTILPoIZ1msryKWJdUtn1z08pfr0Jef/113nrrLfWWWVnY29szevRo7rrrLpYtW0afPn3o0KEDANu2bSMhIYFly5ZhZWWFn58fr7zyCpMnT2bChAksX76csLAwxowZA8C0adNYv359ke+7dOlS7rjjDu6//34AJk2ahI2NDampqTg6OqLX63FzUzljFi5cyOuvv07nzp0BePPNN+nRowebN2/Gy8uLvXv3sn79ejw9PWnRogWHDh3i77//vq7vpSJI0H0TMeQbOBjjA4CP+yl+WteV0yfO0LHTWc5cbMymgyE8MfokC3/wZvG8Q+Tm9wHg4buOYGPXB09PmD4dpk2DZ+/fwrylPTAY9Kz+OYKRz3Qr/o2FEDesi4kpzPs/FUnb2uTx0ksl/1lxcdGWpaVbCCHETcPGCRyalF7O3q3odWXZ18ap/PUq5Nlnn2XgwIEA2NnZ4ebmhl6vN21v0kSrQ1RUFCkpKYSGhprWGQwGsrKyuHjxIlFRUbRqpeV3sbGxMXtdWExMDCNHjjS9trW15ZVXXrEol56eztmzZ5k4cSJWVtoo6aysLGJjY8nOzsbFxQVPT0/TtqCgoBsv6DYajcyaNYuff/4Zg8HA8OHDeemll8y+lMJmzJjB4sWLzdZNmzaNhx56qCKrJa6Iic7ncpZKWBDcRg3GbtLcg19/PEyvO1zIzrXn62XeJGcbOb5Xe8o27tlmZsfR6WDIPXWYt1S9/uMPIyOfqZrPIISoWT55cx+XMvsA8Mgd/9G0aa8SyzvbXQBcAUiJiwRaVm4FhRBCiJqg1XV0/b66u3klcXV1xdvbu9jtdnbaELG8vDz8/Pz49NNPLcoVJEi7OgmajY1Nkce1ti5bSFowJnzOnDn4+vqabXN2dmbbtm1lfs+qVqGJ1L766it+//135s2bx9y5c1m1ahVfffVVseWjoqJ48cUX2bJli+nnnnvuqcgqiUIOHNJOunY9Ak3LnQa24duvDRSc7ytX6og45Q9Aj7b7CQz1szhWzzvaUs/+EgB/bwskPzffoowQ4sb3/W/qoZzeKo9X3vQtpTS41NOat1PPna+0egkhhBCi8vj6+pKQkECDBg3w9vbG29ub+Ph45s6di06no0WLFhw8eNBU3mAwEFkwPvUq3t7eZtvy8/Pp168f4eHh6HQ603onJydcXV1JSkoyvaeHhwczZ84kJiaGgIAAUlNTOXnypGmfiIiISvj05VehQfe3337Ls88+S1hYGF26dOGll17iu+++K7Z8VFQUrVu3NqWmd3Nzw8HBoSKrJArZv19bDg423zbigTr89Rc4XdUrZdyoS0Uey9bBlgEdDwNwPq0hu9fVjBNaCFG14s+rAdwBTU7i27aIcWhXcW6gTQ+SklYznj4LIYQQonx69OhBkyZNePnllzl69Ci7d+9m2rRpODg4oNfrGTFiBIcOHWLBggVER0fz/vvvm2UZL2zUqFGsXLmSX375hZMnT/Luu+9iNBpp06YNDg4OpKamEhsbS15eHmPGjGH27NmsW7eO2NhYXnvtNfbs2YOfnx/+/v507dqVKVOmEBkZydq1a1myZEkVfzNFq7CgOzExkTNnztCxY0fTutDQUE6fPs25c+csyl++fJnExER8fHwqqgqiFAcOaMvt2llu798f/vsPCnqVuDXM494n2hd7vMG3atnN/1ghLVZC3GzSU9NJz64HQKMGZUve4uymBd2pl+xKKCmEEEKImkqv17NgwQIMBgMjRozgmWeeoXfv3rz22muAar1esGABf/zxB0OGDCEpKYnevXsXeayOHTvy+uuvM3/+fO666y4iIiL47LPPsLe3p0uXLnh7e3PnnXcSERHBuHHjGD58ONOnT2fIkCEkJCTw5Zdf4nwlU+vHH39M/fr1GTlyJB999BGjRo2qsu+kJBU2pjspKQkA90Jpaxs2VNNPnT171mw9qFZunU7HZ599xqZNm3BxceGRRx5h6NChxb5Hfn6+2fxuNVFB/WpiPfeHZwF1qVPHiI+PgaKq2LIl7NwJP/2ko3dvHfb17Iv9LIPu9YOpavnPde68XgM/c21Wk88lUbtU1rmUEHsOUF3K3V0zy3R8G3sb7GyyyM61J+WSg5zftYxcl24i+fnoTYv5FHnTcF2Hl3NJVBw5n67fmjVrgOK/w6+//tpiu6enJwsWLLAoW1CmS5cu/Pbbb0Vuf/vtt83KDh061CIOzM/Px9HRkWXLlpmtf/bZZ3n22WeLfE8nJyfmzJljtu3JJ58s87lx9blUUedUuYLurKwsEhMTi9yWkaESc9na2prWFSzn5ORYlI+Ojkan0+Hn58dDDz3Erl27mDZtGvXq1WPAgAFFvsexY8fKU91qVXgMQ02QeSmL6LjuALRucogDByz/Twrr2hVycmDfvpKP284nlQOxrQk/0Zr1f6+nfuPry5ooLNW0c0nUXhV9Lh3bdYaCoNupXir7SrtgXOFSpymJqfakpNcp8z6iZpHr0o3PKjOTgr5uBw4cwFBJw//kXBIVSc4nUVEq+lwqV9C9f/9+Hn744SK3vfzyy4AKsAsy2xUE20WN0x4yZAh9+/bF5cr8MS1btiQ2NpYffvih2KA7ICCAOnXqlKfKVS4/P5+DBw8SFBRklmK/uv33l3bitG+dTEhIjwo57h39N3FgYWsATh7U0/fWkAo5rqi555KofUo7l9LSYPp0He3awdixxiKOULST4drDOx9ve0JCQsq0n3O9OBJTITXdiZAQz9J3EDWGXJduIunppsV27dpB3boVeng5l0RFkvNJVJSrz6WMjIwKafgtV9DduXNnjh49WuS2xMREZs6cSVJSEk2bNgW0LucFk5kXptPpTAF3AT8/P7Zv317s++v1+lrzi1TT6np4jzbeMjiYCqvb7UMa8s5Ctfzr3x6Me7XmfOYbRU07l0TtVdy5NPXZYyxYEgBA69bQvXvZjpeUqOV1aNTYusznqUs9dTOflumIDrDSV2hOT1EF5Lp0Eyj0/6vX681eV+zbyLkkKo6cT6KiFJxLFXU+VdidTqNGjfD09CQ8PNy0Ljw8HE9PT4vx3KDmVxszZozZusjISPz8LKenEtfvwAGt9So4zKXCjtt5YGvcXS4A8PvGFtSAueeFEOWQn5vPzyvrm17Pn2co876JZ7WyjTzKnhTNuV42AEajFZeSi54hQQghhBDiRlGhzQv3338/H374ITt27GDHjh3MmjXLrDt6cnIy6Ve6K/Xt25ddu3bx5ZdfEhcXx/fff8+vv/7K2LFjK7JKN4WMtAwyL2WWWGZ/hHZTHdTFp8LeW2+j590PG5heP/EEXJJ7aCFqjS2/HyApTeuN9PNyKwpSd5w+cYaJD2zkj293FblvorGXablRQOsyv6ezo9YtPfXC5XLWWAghhBCidqnQoHvcuHEMHjyYp59+mueee467777brDV7+PDhLFq0CFDjg+bMmcNvv/3GHXfcweLFi5k1axbt2xc/RdXN6NsPtzDxgY0kn7lY5PZNv+2nWdNM3NzyObYnpsgyhnwDB2N8APB2i8fZzblC6/jIWB233KKW4+JgypQKPbwQohItX2o+1VduLixcqB7mDeiXzuwfenPf461Iu2A5JVjiOe1PSKOm9cr8ni6u9qbllNQKm0RDCCGEEKJGqtC7Hb1ez+TJk5k8eXKR29etW2f2un///vTv378iq3BD2b/5KKNfVgnPsnM28enPvcy2b/vzILeP9ONylpr39sdvjjC9g6/FcWKPxHMpsxkAwQGngaYVWk+dDr74Atq2hcxMmD/fyMhBh+l+R9sKfR8hRMUy5BtYsUaN5bbR55BnsMFo1PHZnCRidkQScaonAOnZ9YgMP0Sngea/0+fOacuNGpX9fZ19tIerqTnl2FEIIYQQohaS7DU12DefJZiWl/7ThtxsLWnR7rVHuHV4M1PADXD4bEez/VNTYf16mPtOtGldu9Yld0O/Vn5+MOMNdWyjUceUKXmV8j5CiIqza+0RTid7ADAgbD93dFM5OeKT3PhyVU+zskdPWgbHBd3QnZzA3t5ic7EK59BMSSlPjYUQQgghah8JumuovJw8vv+zjel18mVX1i7bD0BC1FkGDW1MWqZ5N/EjR3Sm5QMHwMsL+vWDOT/2Ma0Pbl/2ZEfl9dxEWwKbqAB/08EQYg/HV9p7CSGu3/Lvz5uW7xmSxVNPFl/2WJzlLBSJCepBWyPX8o3Ldi506UpNLdeuQgghhBC1jgTdNdTaZftITDHP+r70hywA3p96lOTLKnlZr6B9tGihMggfParGYwIsWWKZ0MzbLZ6BI9pQWfQ2eh6+J870eslnJ4osl52RTU5mTpHbhBCVJzsb3n0X3nsPjh01sny1Go6it8rjrodaM3BkB/wanzSV79pWm5fy6ikqs9KzSL3sAIB7nWjKQ1q6hRBCiJrl1VdfJTAwsNifHTt2VHcVazUJumuoxassg+Nf1gcRF3maL1Z0AqCOXTo//9GU9u3Vf2NuLkRFqbK7d2v7fTI7m62/HyQypiFOrk6VWu8Hxzc3LS/+xRujQU1V9u+/MOLWCFo3i6Kuox4nZwNrfgwv7jBCiEqwaJGOKVNg8mQIbKkj+qw3AL2DD9CwqStWeivefe00AO39I1j5TyPT1LxXB93nTmmt5I1cM8pVD2ciTMupx7dcwycRQgghREWaOnUqW7ZsYcuWLUyZMoXGjRubXm/ZskWSXV8nCbproEuX4JeVqgWpQQMY2X8bAGmZzgy5PZWsXLVt/PBduHk1pI1/omnfw1v2YTQY2ROumrw9PeHp5+zodnsQ9nXLMejyGnm3akrvdvsAOHbal11rj7B2LfTvD8v+aUXEKX/yDdZk59rz8pR6pqBcCFH51qzRFbn+nju1bjEjJnQj7cIldhxuTkNPZ/z81Ppjxwxmv6+Jp7Rs5o3cytdzxcVJK59ysXz5Hwxln0ZcCCGEEGXk6OiIm5sbbm5uODo6otfrTa/d3NywtbWt7irWahJ010ArVqgs4AAjRsCoUVqS+b3Rai5cO5ssXvxfSwBae2ldOw/vTSHqQBypaTYAhPrtraJaa0aN1G7gP56VxahR2jZb62zq2avt+2MCWbe86usnxM3IkG9gyyb1MM7REcJC1O+hX+OTjBzfzqysYwNHbOzUNSTATeWSyMiwIiH6rKlMYoI2jruRe/kiYecG2gPA1LSy/RmKjwdfX/DxgYiIUosLIYQQooLEx8cTGBjI/Pnz6dixI2+++SaffPIJowrf5AP9+vVjxYoVABiNRubPn0+PHj0ICwtj/PjxJCQkFHX4m4IE3TXQ4sXa8qhR0P++MBo0MC8z9q6dePo3BqB1By3B0ZFIW8K3nDa9DmuXUplVLdLwR9thb6OeGvy4OpSzV+7TBw00kJ6uZ+HMg6ayH83Kr/L6CXEzOn3sAskp6il1v/b72bXXkeSzKUREe9DAo36x+wX4XDQtH91fOOjONi03aly+PyUuDeuallOuPCAszcw3ThEbC6dOwZgxkC+XDiGEELXEsmXQqhU0bVp1P61awc8/V+zn2LNnD8uXL+fhhx8uteySJUtYtWoVs2bNYunSpbi6ujJ27Fhyc3NL3fdGJEF3DRN//Azr1qlWI39/6NoVbO10DBumlbG2NjDpTX/T6xYh3ljr1Ql8OMqN3Tu1kzm0c72qqXghzm7O3NXTvAXb3R2++dYKa1tr7nm8E83cVGbzP3d0JGJnVJXXUYjaZsuqA3z86gYuXyxfpvACh3ZmmZZ7dVGBdP1GLtg6lNxdLLCl1iX92GGtF8u5RK1beCOP8nU5c3bVpjpMvVR60H354mW+/l7LR7FzJ8ydW663FELcxGRYiqhuM2dCZCScPl11P5GR6n0r0ujRo2nWrBk+Pj6lll24cCGTJk2ic+fO+Pv78+abb5KamsrmzZsrtlK1hHXpRURV+uHzoxiNat7ch27dgU7XGYAHH4SFC1WZUaOs8GndxLSPjZ0NAU1OcCSuOUfjvam/V0tqFNrTu+oqX8ioh635aZ32+ptvoNGVaX6tba157pETvPhBUwA+fuc0X/zqX8RRhBAAqUmpDLrXn4zsdsSfWs+s7/qW+xh79rmYlnsNcC++4FUCWmvB7rFjhcZ0J2rBeCPPupSHk6sjOp0Bo9GKlEul55r4fv4e0jJ7ma177TUjQwadw7e15fzhQogb259/Qloa3Hcf6IpOVWGydy/cdpsamvLdd6pBQ4iqNmkSTJtmObNQZXJ0hJdfrthjNmnSpPRCQHp6OmfPnmXixIlYWWltvFlZWcTGxlZspWoJCbprmMXLPU3LDz3a2LTcpw/MmQPHj8Pbb1vu18Y/iSNxzcnNt2XL4SAAPBucobGvR2VXuUiDRranw4wI9pxoxbTHN3DrrX3Mtj86qQNvfJLGpUwnvv2zE2+fOo+bV8NqqasQNV30sXQystW14de1zZhVzv2NBiPbD6kcEPXsLxHSK6DM+wYEa9ehY1EOpuXEJK2FulHT8s2KYKW3wtE+lbRMZ1Iv1ymxrNFgZP4iLbDu3zuNtRudyMjQ8fioeFbvckdnVcpdtxDihrFnD9x+u1qOioKpU0su/8knkJiofrp0gd9+g27dKr+eQhQ2fLj6qe3s7OxMy7oinnjl5alecPlXxoDNmTMHX19fszLOzs6VWMOaS7qXV6PISPXHoGCe2v2bj3IwVt0Md211kOYh5q3Uzz6ryjsVcX/bOlAbX2k0qv/WsFZxlgWriI2dDVv3+RJzKJ43P+9jsd3J1YnHhu0BIDvXnm/mHq7iGgpRe1zI1B7GRZ/zJ+ZQ+X63ow7GceaiCp67Bx3F2rbsz1s9/RpTxy4dgGNxWv6IxAtaAO7u5Vqu+gC41FOP+1PSSx4C89+fBzkQEwhAl5YHWfGLDV4NVd6KtXtCWbN0T7nfWwhRe20pNMvgm2+Wnlhx1y5t+fx56Nev4se5CnEzsrGxIT093fQ6PT2d5ORkAJycnHB1dSUpKQlvb2+8vb3x8PBg5syZxMTEVFeVq5UE3dUkNjqXLl1UID1gAOTkwOIvzpi2j7rvYgl7W2rTzs5iXWhw5nXX83rY17XHp03TYrePeU6bizz8VM+qqJKoQBcTUwgLOEJoiwhO7DtZ3dW5oV24YP7635Wx5dp/8z/xpuVeXcs3JlxnpSOgySkAos96kZutckYkpqpeNA52mdSrX/7cEc511TCY1HTHEst9Olfri/fUY6k41nfg3SmxpnXrVldhXz0hRLU7cUJbzsmBRx8tfsx2ejocOWK+LjtbJWO8+roqhCifoKAgIiMj+euvv4iJiWH69OlmXcnHjBnD7NmzWbduHbGxsbz22mvs2bMHv4K5SG8yEnRXg9zsXO6/4yipqer17t3w6isGvv9Ddf+00ecw4rG25Tpm6xA3i3Whncs3zrKqBQa7YX2lwe3wETkVa5vFc/cTfrw1e0604s47skg5l1rdVbphnT9v/nrtv5Yt1alJqXRvcwC9Vb760RsIDlZJxzZv1rqA9erfwGLf0gT4qCfX+QZrog+pAD4xTQXdjTwcSh1TWRSXeuqhYFauA9kZ2UWWSYxNYtm6jgC4Ol7g3ifCAOg/VOsev3V38ZnXhRA3nqircq/+959KFrV+PSxYAP/+q23bs0cLyMeMgcGD1XJ6Ohw6VCXVFeKG1bVrV8aMGcP06dMZOXIkLVq0IDg42LR93LhxDB8+nOnTpzNkyBASEhL48ssvb9ru5TKmuwqci0ti5ZJIgju6EnZLK/739Fa2R/QxK/PxbCtAdf+8veseXD27lOs9WoQ0w1qfS16+Ns6yupKolZWtLbRoobqGHT0KeXmYgnBR8+3dpz0oiTwdyMh7TvL7emf5P6wEFi3duwMw5Buw0mv/B/Pe2st/R/pohYxw4IDKB2GvV3ke7Gyy6HhLYLnfP8A/B64kRjx2MAm/dr6mOjW6xjxmzo3c4MpNb2qqDvcihnbPnXGY3Pw+AIwbdhD7umq5kY8bzT1iOXHGh11HA8nOyMaujmVvHyHEjacg6NbrtakDX31V267TqS7o3bqZdy3v1g0yMlQSNoC46huBJ0SNN2zYMIYVmjqpadOmHD161KyMTqdj0qRJTJo0ybRu/PjxpmW9Xs/EiROZOHFi5Ve4FpDmxUqWk5lDnx5pPDa1J50GtqZ5kzje+VJl4bXW5zLuwXMW+1w1z3yZ2DrY0sIryfS6SYMzNPYte4bi6tLmSg/znBzLp9eiZtsXad674p8t3tx2G/TtC00anmNoz+3k5eQVs7cojwuR/5m9Pp/WkIP/HTO9zs7IZt7iVgBY6fLpGHAY36ZpAGRmwsXLLgB0aRVxTcFpQEvtYd6xiGyStEvNNQfdLh7aOPWUS5ZTjl1MTOGT7zsAqvfPM1PNHxZ0b69a3LNz7Qlff8xifyHEjSc/H6Kj1XLr1vD445ZljEaVpRzMg+6OHcHLS3t96lTl1VMIIa4mQXclmzPtPyJOafNTRJ/1NiU6m/HsVv5vsTuDe2nRpkudi9z+UPtreq82YdpNbGiX8mUTri6tW6SZlo9sP1pCSVGT5GTmcPikGpPj6phsat1euxY2bICEC+78uqULa37aW/xBRJmdP2+0WLd21VnT8g/zdnE2RUW/w3rvZOfRNkSccOKhh8z36dk55ZreP7BjK9PysZSeJCZq2665pbtQ77LUIkYmzJtxkEuZ6jr2yJ3badrCfCaGHt2172TLOhmcKcTNID4eclVaCfz94cMPVbfxW26BZ55RPegAVq5UwXdB0G1vrx7yS9AthKguEnRXorMxSbz1qWqp0ekM9G63Dyud6gt1W6ddvDyzFzodfLXYiWZuqtXm6Qf3X3M3ydatteWaPp67QJsm2qCqw7vPlFBS1CQRu2PIzVd3N7d2jWDBgqLLHY/IKHqDKJcLKZbXhLUb1e+40WDkowVar5YXXlZJzezs4Ntv4fXX1XprvYF7Hg22OE5ZtGirjQM/dgzORe4zvW5kd20DI11ctOWCGRwKXLoEs7/vAYDeKo9X3vSx2L97f22u0K07HCy2CyFuPIWTqPn7q3mIv/pKPfCdO1cF36CC83//1XrQtW8PNjYSdAshqo8E3ZVoypuuppaax+7ewob9IZyOusCGFftYubm9aTymezM3Dhx25L8/DvLG/GvP4n3HHepfKyu4++7rrn6VaN1e66J8JNKmhJKiJtm3XRsWEdIul0cfhX37VCv3L19p079F35yzQlS4CylqwLOVLh+P+qqFe9OBIHJyYO1Pe8ymGuw6OMi0n04Hb7wBBw/ms+znIwSFXlvykvr1we3Kr+rRo5B4WssY7u6cfE3HdHbMMS2nJpk3dX/2GSQnq+xsDz6kxy+omcX+LcN8cXVULdxbDzTHaLDsDSCEuLEUHobWvLnl9rvu0panTdOWO6p8jLi7q+AbZEy3EKJqSdBdSXbtgq++Vl+vs7OBGZ+oG+HGvu70HhpiMU+us5szXQcHobfRX/N7duyosnEeOQLB19agVeUC2nujt1Ljfg9HNazm2oiy2rc337Qc0lE9WAoOht69Iay71ioafdK+yut2IzqfqqbVauB4kf63qhbujCx73nwTpr+hXTNeeKbo6cBatQIvr6IzhJdVqys9zM+cgbkLta7ejTyv7WGZS95203JK7AF17OhE5rwZwfvvq/U6HUyeXHRqdJ2Vjm5B6g78wiVXju5LuKZ6CCFqj6tbuq92553a8nbtEkOnTupfKyuttVtauoUQVUmC7koybZr21b7xhhVuTatmWps2bSCw/MmJq42tgy0tPNUcz0fjvSXxVi2x76gWdAV3NW+F9PRrhK21CvBiTpd/eiph6cIl1ULt6phG/1u1ea3ffhu2Hw0BwLdRHEMf7VRpdXjuOW05/KjWxNTI49q6dju7aA8ejxzOZ2jP7TRp7sbzr7cyZUa/915o2bL4Y/To39i0vGVPk+ILCiFuCKW1dDdpAmFhlusLWrpBC7pTUuBy0c8phRCiwlVK0G00Ghk7diwrVqwosdypU6cYM2YMISEhDB48mC1btlRGdapcZqYVGzeq5WbNYMKE6q1PTdfGX3VVzs61J/qQPHqu6YxG2Betnuw08czFzcu8h4KV3gqfRqrVMfqsp3T7vU45mTmmYSoNXS5x223mScgKTH4m9rp6ypRm2DB49O6tFusbNb22pI0uDbRx6h9/34dft3QxJZkENb3P7NklH6P7QO2Bz1bLqgkhbjAFQbe1tfn47MIKdzEHdb0sHKDLuG4hRHWo8KDbYDAwY8YMtpZyB2Q0GpkwYQINGzZk+fLl3H333Tz99NMkJNT+LoKRuy6Qm6u6RN46KN80fkgUrU3LLNPykT2WU6iJmiUuTkt8FdK+6JPbr4lqqszIrsu5uPNVVLMb04UzF03Lri5ZuLnBnj3w9dcqgdBX8+JYs3QPj06+9nwQZTX7mxBaNjWf269Rs2vrzeDcwDI5XGOXRKY9voHDu+LZuhU8PIrYsZCwMJUwDtS8vEKIG5fRqHUv9/HBNGvG1a4OusPCVLfyAhJ0CyGqQzGXrGuTmJjISy+9RHx8PE5OJbd+bN++nVOnTvHjjz9Sp04d/P392bZtG8uXL+eZZ56pyGpVuQM7tCCyb9B2oHv1VaYWaN1Wu/k+fCCTIdVXFVEG+/ZpyyEhRZfxa5YBO9Vy9JGzNPJxK7qgKNWFs2mAmpfL1UUlH/PzUz9Ksys/la+uc11+/D6PTv2yycmzo579JVzcri05W6OmLmav7++/lXnftqaBR58yH8POTt1Qb92qbsa/eHsLw8e2oYFH1QznEUJUnXPnID1dLRfVtbxAu3bg7Q0n1cg1s67lYB50SzI1IURVqdCg+/Dhw3h4eDBnzhyGDx9eYtn9+/fTunVr6tSpY1oXGhrKvsJ39FfJz88nPz+/2O01QX5+Ptv3alf0Hrf51vg6V7eWIVpL2eFIG/m+rij4Hmra97Fnj46CTjLt2uVTVPV8fbSVJyJT6TSoZn2G2uTcWS1TuGuDvGs6HyryXGrbrTk/zN/JOzOdefThJAzGHnANh/Vq6cFz929gyy53XnjmIvdN6HJNdezW8RJbt7oA8MRrPXj69RwevHUz838IvebpF0Xxaup1SVSC/Hz0psV8irzYX9fhy3cuHT0KXKmRn5+B/Pzihy7deaeOefPU36mOHc3/Tnl6asc5eVIdZ+dOePVVK4YMMfLsszIkqjaSa5OoKFefSxV1TlVo0N2vXz/69etXprJJSUm4u7ubrXN1deXs2bPF7nPs2LHrql9VyLyUxZ4TnQEIbHKCxNRUEvfJ/NMlydXlorfKI99gzaHjDUp88HIzOnjwYHVXwcyuNfmASthlZ72Pov676jppU0DtP5hBa/k/vWb7jmn9Io116lzX70dFnUveobZ8/mMmUO+66jPqRUdGkQnYX/NxbumVwu8/exERr6ZNy8235es/epI9bC0vvOOCzqro7Ofi+tS065KoeFaZmbS/snzgwAEMDteWNLE0ZT2X1q9vAPgCYG9/mn37ih+OdtttNqxf74+bWw5NmkSb/Z3KyHAAWgOwf38y+/ad5LnnWrBrlxObN0Pr1gdp2FCSutZWcm0SFaWiz6VyBd1ZWVkkJiYWuc3Nzc2s1bo0mZmZ2Nramq2ztbUlJyenmD0gICCgXO9RHf76bhf5BvW19u18mpCQHtVco9qhRZN4Ik95cyyhOUFBVugrLx9UrZGfn8/BgwcJCgpCX4O+kIgolXehnv0lBt/RzjTfvJn8QJiuFi/Qn5AQaTm4Vrt2aUFjQIeO1/Rd1tRzqUKEwIE7jOxed5BlS87z6dIuZOU68MPa/nQIWc/E93pVdw1vKDf0uSTMFfTlBtq1awd161bo4ct7Lv36q3Yt7NnTk5AQzxLLDxoEYA+EmK339taWMzJcadu2PocPq79jRqOOc+eC6N9f/mbVNnJtEhXl6nMpIyOjQhp+yxV079+/n4cffrjIbfPnz6d///5lPpadnR0pBdmYrsjJycHevvh5ffV6fY3/Rdq0LtO03K+/bY2vb03RuqM3kacgO8eGuLiSx2vdbCr7vJ8zZSNr1jvw4dyGtOzoV2LZlHMpxJ5TwyeC/WOwsW1XZLnmgfVMyzEx8hDlelzU8qjh7n5932VtuIZeEz10GRREl0HQqfN/jHymGwCTZvWmdVA4gx/uWMoBRHndsOeS0BT6/9Xr9VTWhbys51J0tLYcGKi/5uq4uqrnB+npEB+v4/BhPRkZ2vZ166wYNeraji2qn1ybREUpOJcq6nwqV/byzp07c/To0SJ/yhNwAzRq1Ijz582zGp8/f96iy3lts3G7ljCq9+0SOZZVmzbasvQMqjonj5zi+Xd788f2Tkx5sfTM8b98pf3nhLS+WGw5Z2d1YwPajZLRYOTQf8fZv/ko2RnZpnXxx8+weeV+UpNSiznaza1gzmrQvlNRvPue7sa0xzcAYDRa8eBTLbiUfKnknYQQNV7BdGE6Hfj6XvtxdDotmVpcHGzbZr597VqVKf1qf/0Fgwerf4UQorwqZZ7usggODubw4cNkZWmZvsPDwwkODq6uKl23tAtphB9vCUCbZsdxbyYZm8uqbVtt+amnjISvP159lbmJbPgj1rS8bl9IiXlyVn21k8endjG97tvPtvjCaNm14+MhOxsWvb+FoO4tCOkVSF1HPQFNYmjglIpXgAe97g6mfVAqibFJRR4rPzefA1uOkZudW+bPdqM4n6A9jHBtYKjGmtQeb3zai9s67QIgJd2FfVuiS9lDCFHVsrLg+HEHDGW8rBVMF9akCZTQKbJMCoLuzEz44w/zbfHxcLyIW5Dx41XAPXo05MmQbyFEOVVp0J2cnEz6lTFCnTp1wsPDg8mTJ3P8+HG++OILDhw4UGrW85ps8x9HTeO5+3Su/fONV6W77oKW6nkFZ8/q6HWbJ799uaN6K3UT2LxZe5yfesm+yKRoAKt/CGf448Hk5at5uR+5fTNDH+tc4rH9PFQCQaMRTh6J56PPtEmX8w3WHE/wJSXdxbQuJrEZw4blkJ1tfpys9CxuCTtIcM8Axt59850TF2KPmpYbOl4ooaQoYKW3on8fbTzqqZjL1VgbIcTVDAbo1cuK++9vzYwZpSc7TEnRev00906Fkz9B5GzY9ypsfwR2PgnHPoWkrZCXUdKhAPNpw9assdy+dq3567NntenFkpJg3bpS30IIIcxUadA9fPhwFi1aBKh+8p9++ilJSUkMGzaMlStXMn/+fDw9S06MUZNtWKvd5PW5xaYaa1L72NvD5s3QI1Q9rMjIrsvQxzqy5OOt1VyzG9umcC+z1xs2WJbZteYIQ8a0IidPTb/0wICt/N8v3YpOoFaIr6sWLK764QRH4tRwC88GZwjxi8TBNoOmrgnc1vE/PFzU//t/e5vw+ONa1z6jwcjjw3ez8UAIAN+v7srFxJTyf9Ba7EKKljG4QWOZf7qsmrXQehrFJV9HX1RRLYwGI8f3xt6UvVtuNKtXw333wX//aeuiowumn4Qvv9Rp3bmNRsg8C2fWQPS3pvKFW579bZbB1vtgz0Q48j5Efw0nPoPdE2BND/jFAw68AYbim6MLB90FrdYNG2rrrg669+41f/3jjyV+ZCGEsFBpQfe6desYNmyYxbpnnnnG9Nrb25slS5Zw8OBBfv/9d7p161ZZ1akSkWdam5Z73ibjucurYUNYu6kBDwxQgbbRaMXoF7uwbMG2UvYUxVn3814eGrSV8HURFtvORJ3leIJ5MLJ+vXmZ0yfOcPd9DcjMUbMG3NN7G9/83hm9TelJJfz8tTKzvmpvWp781DH2RrUkI7sOp8578ufObvz+TwMKZqP59lt48kk4tCeFD17ayOK/tRkADEY9q5cdKfW9byTnU1VSOuc6qVjbVugsjze0Zu20RBFxSUU/zDUajBzbE0NWelaR20X1ee+FjQR08KF3+0iMBskkXZuNHQs//aS6Zxco3Kvq9GkdR/74Dv69BVa4q6B5/UDY+bgpcF62TCsf5FVK4pfcNDi3EXTF/53y8rJcN3o0NGigltevN5+WfM8e87K//IJFrywhhChJtY3pvhE9OM6dhg2NjBlzhoZNJOPRtbCrY8+Sv7sx4d6NgAqyHngmjJWLLLsVJ8YmSfKtEuRm5zJibDO+W92d24Y2JOWc+Xe1+W/Lca6b1qeTl6NucjIy4O773DhzsTEAPdvu5/u/Qssc+PkFaNPLnDnvDICVlZHh4y27pXfoZM+3WqMGn38OQaEuvPpxH4uyf/xxc41rvpCmvruGTinVW5FaplkzbbmgW+jV3nhqI4GhvvTreJz83BISGogq99Ov6rzfFhHEmZiz1Vwbca2Sk+H0abV88KDqJg6wb6/5g5R/fgyHxHWQXSjBriEbLh0nMxO+/FKtsrU18MCoOhDyAXT7DvqthcEHof9mCJsPPg+CzhravaUyphXIS4eoLyFfPWArfH0o0KMH9OunllNSzAPtq1u6U1JUC74QQpSVBN0VaORIOHvWwNNPy3ju66Gz0jH3h56Mu3MzAHn5Ntz7RAiHt50wlfn7u9008a9P65YZxB6Or66q1mj//XmYC5fUw5+kNDfeesH8rmHTRq3bZmMXdVN7KaMuezcew2iERx6B8D0qwPbxvMjyP5tg61By8rTC/FpZJhLs00dH4yZFZ8AZPhw++qjoWWmmPrqBevYqA/Vf20PKnHintsvPzefilXHvrs6Sgbs83N3B5soon1Onii6z4l+VSGJbRBCLP5YeNTWF0WDk+NkWptcxEUUnWBQ134kT5q/Dw9W/+9b+Z7b+nwOD1IJ9I2jcHwInQudFYO/OTz+p4B1gxAgr3Aa8C61fBp8HoPEt4NIW3HtAwFPQbQncfVK9Liz+N9jxKPzmC0c+wKuxZZ6Hrl3hllu014W7mF/d0g3SxVwIUT4SdIsayUpvxefLu/HgQNXVPCfPjo/fPWPa/vpb9uQbrElI9uCJMWel+2ER/vzHzuz13B+7E7lLa93etEslNrPS5fPCuEjT+vV/n+Obb1R3QIB69WDVP/Vx82pIeXgFeKC3Mh9Td999Je8zcaLKHDv37RN0a30AK10+T96zibc+703BrITnU+qxa1e5qlJrXUxMwWhUl2lX58xqrk3tYmVVeFogy1ZsoxGiT2sPhl7/0Mc0lZ2oXmdjz5GeXc/0Oua4PHCqrY4fM39CWnDt3hcdYLZ+09E+ZPbeC8POQr81EPoR+D8Cdq58+qlW7qmnyvCmdYoYThL7nfo36yzsewWvfebv7+sLjRpB4dlv//1X/XvxIsTEqOWwMKh/JbXGypWYze8thBAlkaBb1Fh6Gz2f/RiMk4PqFv39P6FcTExh99oj7DyqzTG2encYiz+ShGtX+3NrK7PXefk2THz6AkaDkeQzyRyMVTcdHZof5a77tb52P//uxsSJ2kOMxYvNp3QrK2tba5q5ab0+rK2NXJXmoUiNG8MzU5qz9XA78g16Pv25FzorHbff7ah9tj/LX5+SXEq+VCMTtF1I1IYENGwgAWF5NXNSYz9TUvSkXUgz23buHGRkat0q4pKa8tmM7VVaP1G041HmiUhjoiSZWq2UcZoTaxebrdq1S2X/Pn3evCdUVo4dmw6FWBxi927YuVMth4RAly4WRcqm7evgdQ+gupzX1Z+hft1k0+auHdWDHX9/8PZW6zZvhtRU8/HnXbpg+jt2+XLF/y0SQty4JOgWNVq9+vUYfdc+ADJz6vD1x/v4dLbltEkT3+lKYmIVV64Gi4uDQ4fUcvsQA14N1aC6v3d2ZMUX29myPsVUtlenJALa++JRX3Ux33WsDSkp6sbkwQdhyJBrr4efW5RpeUCnw2bZYcvrttu05Yq80YnYGYWPdy5e3tas/iG84g5cAS6c1bpAutaXMcfl1ayx9tDi1LFzZtuii5i6++35rbmULK2q1e14XAOz1zGxpSduFDXMqV/hz3acOGF+m7lrF+zfr71u3Fh7mPjPP5aHWbBAW54wwXyYdrk07AQ9f4Y7IsD/UbCywctVG3fS1WEq/DcKXeZp7rpLrcvJgZ9/Nu9a3r69eY+tL77QZtsQQoiSSNAtarynXtTSjM79oSs/rA4DVDbnobeqLufJF/U884z88StQOCgddo8VM18/aXo94qlOvDLN2fS6111t0Vnp6BMaVfgQNHQ6z+wP07keft5al+j7bj9ZQsnSNWkCwcFqefduOBt//f36jAYjT49PJflyA9Kz6zHi0eZmXfCr2/lE7ftzdZWTu7y8mmrDG05FXzTbFn1MO7ftbXMAlfvg42k168HLzejYMfPXMfH1ii4oah5DHux9GTYPhZxks7H5oPIr/P239vr++89hZaWubQWJyTIzVbby4cMxJdh0dob776+A+jkFQuf/g7tiaeat9ajo1mLLlS7oOh56SCu+eLF5ErUOHaBvX9UjC9Qc3zNmVEC9hBA3PAm6RY3XsqMf/fqpcWGxcXZk5aq5pcbcvY/Pv/XA9Uqi+GXLYPr06qpl9buYmGIa2/7nH1qr6ODBMOKprtzVXWWANxj1REZr2fV73KKW+/Yxb0md+9YxGjauy/UYPb4pjg5pBPseZfiEPtd1LIDb+2otE39/X0Rmm6sc3xvLjGc28MCAraafqY9u4Hy86i3x65c7WLe3g6l8aoYzd95tRfKZixiNKnlPdSZtu5CUY1pu6CaX6/Jq5q19Z3Ex5mPiowslBvjfc3tM+QfeW9iJiJ3mD6BE1So8JzNATGLT6qmIKJ+MBPi3H0R8aFp14nxri2LffKMtd+x4iTD1HJ3Dh+GNN8DHB0aMgOXLtTm0x46Futf358hcHU/GvdAae3sjA7tFEdIiTiVlq+NJx44QcGXI98aNsGaN+rtqawutW4O1Nfzf/2mt7tOnq7oKIURJ5C5O1AoTJlieqk++6IWbm3n3sxkzYMbzKgux0WAkMTbpppgKaMq4DTRo7MLAjntIiDrLv2vUtCge7um0b68ywi9fF8o7z23Axlpr/WvbFtNDiwFD/LDRqyDv9i47Gfl01+uuV/c72nEuyZa9JwKo63z9d0yDb9FaK//4q/gup8sWbCMs4AgBHXyYNq8PP6ztbvp558s+dOlmxYG92bw4TUu409hFjU84ccaH9kFpuLsbcHVVWbCXLKmeXhQXrLQMvK7N25dQUhSlma+DaTnupPnTk8JdlgfdWZ+n7lV5ITJz6jByZJ5p7m6jwVgjx/vfyI4fNR/DfeqcG7kyrLtmO/UL/NWOjPjd6rWVDRebf86FVCf1stCf8PNXZgWzsTHi65vFwIHaxfV//1P5Fgq4u8Pzz6tgvKINGQIXL+r4Z6s/VkNj1ZRjqGB61Cit3LlzKrpu21YF3gB33AHvvaeVGTXKcloxIYQoTIJuUSvcdRc0aaLdNPfvEE5gqB8A994Ln3yilZ02pyvt/SNxrneJxr5uhLU8Tlzk6aqucpWJPRzPB1+r4GztnlCCQmzJyFYB7m2d9piexlvbWjN5dh927rImJETdBD37rHYcnzZNWfHlPt6csIEf/miFzupaB8+Zs69rX2HH6jKoNc511Djdzfv8i8xa/9P8/xjxVFfCj1u2sBSIOlWf9mG2xCSqBHL92u9h+3+5uDmpqYniLnhz/ry6PF64oG6o7r0nx9RCXlXOX9C+N9fGjiWUFEXx8qtvWo6LN59fPvqU9n36tvbgvS860rqZmt/oQEwgLz+6j99/hw7t0mjQ2IU7uu7kTLQkjqhshnwDJ46bz3pgMBQ/7ZuoZkYj7HwSNg9jyrcvUHdsBo9/vQT6b+KE7nFTscJTcRVo00YF3oWD7gL33qum7Dp9Gj7+GJycKqf69gUzWNrUAycto3nhLuYFOjTbBvla76OXX9aC88xM87+nQghxNQm6Ra1gbQ1PPaWdrs9M8jDb/vTT8OErWgbzfdEtuZTpZFru3NWa8HURVVPZKvb+9GjyDVpAkXxZS0I0+HZri/IhISoxTEoKPPaY+bY7Rndi2rw+ODaomQGe3saasJaq629iijsJ0WfNtoevi2DMCyGm1+39I5j50gYObz9B9MFT7P13H0Ft1cMbg0EFtHq9gTnzHPFu1ZRfvz9rCuobu2UQGqode/kvtrQPya7SVs8LhWL860lCd7PyCnA3LZ86Y97TIjpBZU92dbyAk6sTdZzq8OP3BuxsVAv3vB+7cOedsO+wyn/wx/ZOtA22YdkCmc+7Mp0+cdY0hKiwgimbRA2j00FdL37ecQ/vrpwCwP+teZDzdDGbo7t/f8trWHCwCrY7d1ZzZIN6wL5/v5qy8pZb1N/+6uDjAz27mucN6VD/W1jbEy6rk1GnU4nUAgPV9i1bIEpGpgghiiFBt6g1Jk2Cd95RY6nuus9yHs4X3+vOu89vQKdTQZWP+yk8G6hEa2dTGtFrcDPefHINv/+WS2zsjZF07fRpWPS7auWuZ3/J1FIHYK3PZcDwolt7dTpwrJlxdanC2mlTP4VvijMtJyTAXfc1IjOnDgCjB28h/FhLXprZh9adm+Pb1ouQfiFs2WrFrbdqx3vySSvadlPJfrrdHsTpBGsuJFzkzLk67N6tcgW41leBWPwFTzauOlps3XJyit10TQoH3a6uxZcTRXNydcKlbgoAcYnaw6jsjGziL6gHd34e2oOboO4BfPSuecI1ABtr1bc5+XIDRjzVlelPbKi8St9Akk6d54MXNzD10Q18P2crB8LTTWN0i3PsgPb/4Vg3y7R8MwXdNb4rfU6q2cuTdV7hsUVfm61btw6zoLtFC+jY0fwwBYkx9XoVsCYnw2+/Qbt2lVDnazDqkTpmr9t774ULO+HPIDg6Fwz52Nur8eYFliyp4koKIWoNCbpFrWFtDZMnw6OPFl/m1Y/7kHgymbQLl4hJ9GL/flt6tFXzk2Rk1+X1zwZw5xAbfH3VfJurV9fu4PvDDyEnR/0aT3jSwNZdbtzWSSWIevTubTg1dC5p91optJOdaXn3DpUcy2hU07gknFeBVfc2+/l8Wcciu7U7OcGqVfDBB+p8+uAD8+11nevSwEPrljx8OMyevMn0+nikeUKugvd/6y2VYffOOysu+dr5U9qwCNcGtfhErUbN3FWX8FNJHhjy1X/MycgEjEb1e+PX1DyAePIFD8aMUctt28Ivv0BC7CWG99FauN/6og//fL+78itfS11MTOG1xzbg28KeVz7qwztf9uHB57sTHFaXoCBIL2FShOMR2jR5/cK0qC1m13+VWeUaY9IkNW54ypTqrslVor6GzffCr17we4DpD2deHjw4Sk/KZfMM8//+ax50N29eVNCtXdOsrKB+fWqUe+8Fuyt/bqysjLRrfWU6wbx0CH8O1vSA1CM88ICWVG3x4tp9TyGEqDwSdIsbjptXQ1P36IZNXVm7oyUPDdpiUW7nThg0CHp3PldktuKa/ofz3Dn4/HO17OAAL7zqjIu7M3/u6EjiySQWLO9VvRWsJGE9tUzG4ftVl+HDh1VLCUCzZkZWrG6OXR27onYH1AOcl19WPSccLHuyWggI0d7z+FXzzmZnZPPwHXuYPh2ysuD33+HAgXJ8oBJcOKcC/Lp2l7F3qJhx8Tcbr0YqqM7NtyXxpBqzHx2RbNru52PePUGng0WL1O/XgQMq2VLDJg346d8uvPv8BlO5h5/yJjE2qdLrX9vEHDpFYEAuby/sQ3q25VRfkZGwfn3x+x8/pj2xGthb6+oRE13DL8gV5Isv1L/vvqtai6tVWqE08rufhlM/Q0Y8ZJ2DdDUF5KxZsPXKyC5vb7C5MgvX2rXmWej9/Ytv6a6pXFzU0DWA++/XUWfINmg+XitwYTv805mm7hfp10+tioqCbTICRQhRBAm6xQ3Pro4di//uQcTOaL7//ASTJ6sWrAKbd7kzcLADmZe0VtOnnoI6dVRX9prq449V8haAxx9XWV4LuDdzq55KVQGf1k2pX1d1AQ4/6o3RYOSff7TtL76ow92zIueWgRbtmpiWj8dq/fJTk1IZ2CWCJX92MCu/YUPFvO+FNJWXwNUppWIOeBNq1srXtHwqSf1exJzQmlr9/C2z4Ot04OamtV6BmgHglVm9GdxZ9SQ5l+rG6BEnTa3nQln+TRRJaep7ttHnMOHejfy6cAcP3q31D4+LK25vOB6jPQUbMKSZaTkmvpIyadUg2RnZpBbqePHYY5CRUXz5SpWfBf89YHoZd74p7618hY3HBkGjvpCrhvl8/73abmUFP/wA3bqp19HRKncIQJMm6u9p4aDbx0cFtTXdzJlq6NLixYCNE3RaAP03guOVpGstXwTb+mbZzhcvrpaqCiFqOAm6xU2jZUc/7n+8Oe+8oxK1/Pgj+HuplpT4C57Mf1PNY/3772oasqws1cWvJo6vSz5zkXlz1N2Yra2Rl16q5gpVIZ2VjtDAaEBLpvbPP1or2MCBFf+e9Rs509BJzXNz/FRj0/r3XtnLpoMhAKbp1gDW/3v9J43RYOTCJdXf0tXp0nUf72bVLEB7ABV3Sv3Ji47SAmW/AMvW2OLorHR89ZMPjVzUnEb/7Apj/uubK6imN4ZDR7TMV2uXRzDvp97cPa4zoydoDz9KCrqPnVT/X/Y2mfi388ajvhrjHXO2UYXUr6gZD2qK8wnJZq+jo+H1V84VU7qSHXgdUrXko+2mHGby0ve47YO/SG6/Duq3Iy9P9VwAlUysa1eVMK1Adrb6t3lz9W+jRnD77Wr54Yer4DNUAJ0OPDzMH8Dh3gsG74f2M6HNZACGDdN6TS1dqn12IYQoIEG3uClZWakxwL/+eMGUeO3dz9qRdOo8EydqN+Tnz8O6vywTK1W3T97az+VMleTlkbv30bRpKTvcYMKCtSB0898n2bRB3eE0a5JhyiRb0Vo0UUn5Tid7kJ6qWko3bNOym236/TgNXdT6jesyrmt++EvJl3hi2Gby8lVfTVfn6mruqv2aaY2lpmAv+qS9aZ1vy/L1CnFv5sbiBdr8Ve8tCCA3uwY+masmh4+rvAo6nYGO/bQpmJp5acFu3PHzRe6bl5NP9Fl1MWvuGY+V3gpfDxV0Jqa4k5F27b8HeTl53N5lF/Ud01j9Q/g1H6cynT+TZrHuo/mu7Fpz5JqOV94hUqbySVtJ2vEVU5a+bdqWm696hGRm6gi/8vVFR2vJI9u0Uf8WNTVYQdANsHIlnDyp5uOu1fT20Ool0KthTI6OKvAGuHgRliw21vghasLSxo1q/vWff1YPlEpL/ChEeUjQLW5qbbsF8OBAlaAn+XIDenS9RFSU+a/F0i8OVUfVipV2IY0536rBcHqrPF6ZfuN2JS9OaG8/0/JHX7YkO1cFUYPCdpu3SFSgFj5av88TB+LJz83nQIyqh1/jk3S5tQ19QtRg7tQMZ/ZtPlbu98jOyOaX/9tOcOuL/N9v2pj8AX2kpftaeXlpy6agO1X1c9XrDXgFNC5ir5INGBnKkJ6qZ0xCsgcrV8qfUlBzbB8+6QNAc4+TODhqXcW9PLUEhKeOnb56VwDijp4mN98WgBbNVC8k36bauR8bkVCmeuzdC59+CmmFYtiv3t/Enzs6kprhzCdza+ZDkqQz2rAHdyeVANBg1DP8QSdORsSX+TjZ2dCrlxpjvXJl6eVPnlTZxV1coFs3I/cPT8H3+WjmrH6uyPL7VW5SDh/W1rW+MlFGx46WM2O0aKEtW1mZPwi7kYy6fZ9p+dHHdPg3S2X6lEzTMDBRs0VFqZ5ykyerJHqtWkHdumqa1Ycegk8+gUvyp1hcB7lTEDe9/81shrVe3YQdO626QFrp8nGwVa0qK9a3Izuj5vQVW/D2Hi6mq27HD926Hd+2N1kzNxDaS7tr27XPxbQ86FabSnvPFv7aI+/jh5I5ceAkGdlq7HhIgGoF79tL62K+4e/EMh87MhLGjbpIY/dMhj3ehZhE9fnq2l3mixmbeHlm74r4CDelZk21ACsu4iRGI0THqFY7b28rrG2vbSLgp6Zqk7jPX2A5LvxGZzQY+f2bnXz74RZTr46YI2dMU/a19Tc//+s41TEN0YhLLHr+u+MHta7ULfzUdGG+3tr/X8xRrdeR0WDktcc20KDeRe675T8idkaRnZHNq8+cIjQUJkyAvn1VS2zmpUz+N7uVad99x7QcDTVJ0lltirQXH40gtIVq4Y5Lakq/fvmcPnGmTMf56y/YvBlOnVKJAOfOLbn8p5+qTONpabBtm44fN91ukQRv5W/ackGiyCOFGuALWrqtrdX3Xljhlu4b2S1t19OmqfaQPibembfedeD+W/dhTJMJvGu6pUstp/3MyVEPmb77Dp59Fvz84KOPkAcpFeDtt6FxY5W49GYhQbe46fkFNePxoebT0TwxbCv39FVZYFIznFm9dH91VM1CRloGs75Udzc6nYHJb9bMm8fK5uMDDRqYr9Nb5XHLsKLnJa8IAS1tTcvHj2azb5s2n3BIkLpZ7jNY+/9Yv9l8jtfi5OWpp+uLltQnJd3FtL57mwPs33GBx6b2KnLqM1E2np46rHQqKDwVk87Fi1oLqJ9fCTuW4pYB1gRc6T29fj1ERJRcfssWWL685s+KUBYpiWkM6bWHO8d0YvTLPfhmlrp+HorWzv82nXws9vNyU0H36QuNycux7Ld5/IKWkLBFqBon4uunPdCIOa51L583fRNvL+zDxfT6/LSuG227+NDC+zzvz/Myfcd79qi8HJ++tYPTyR6mfeOTvThfdA/3anX+nPaAwbOpNX+sdiOwicpfEX3Wm359sjgbU/oY751/7zEtG43w3HPw7LjYYsez715nefLa2Bh5YqzW8t69u5pPG0pu6Qbzcd1w8wTd1kET2bb2NF++8A4D2q42XXd+2xTCsmlTYesD5hnhRY2yfLm2PHkyjBihzmt9oWeq58/Diy9CUBAklv25urhKbCxMm6a+wx9+qO7aVB0JuoUAXnu/pall26VuCm/ObsPIB7Qpp378oWZ0R3zv5Z2mzMAj+m0nMNS3lD1uTDodhIaar+vc8ggu7pU3L3mLIK0b8vHEQPbt0R6Jh4SpALtVR39Tkq1N+1sWGVhcbe1a1SIFUK9ONg8N2sIf3+xi4942+Ad7V+AnuDnZ2Fnj2UDdHcWdcyM6Wtt2PUG3lRU8+aT2esGC4stu2gS9e6s53xcuvPb3rAlWfrWL+0a244/tnUzrfvtdPZAqHIS17WjZbb+ZhxqikW+w5kwRweOx49otSYt2Kkj2baG1uMbEqKBx9Q/hPP9OD7N9DUY9p86roN/GOhcbG1V21ix445OrLhZogWNNkpSkBcUN3e1p5OPGvxsc8Guspuc6dtqXOwedN41tv3QJhg84jLd7PNv+PGjad9cuy+D6k0U+LP98u8V6o8FI+BFPADwbnCEtDcLDISFBx0dztVkg7O2hZUu1HBGhWgALWrr1ekwPoMByXLe/f9m/g9rOMXAQY2dNYfXmJvz47rem9c98PYcLh/6BP1rDkfersYaiKDExWrb90FA1nejSpeqalp4Ou3fD/fdrCfWiotS1RVybzz/XHkD3vok68lVK0G00Ghk7diwrVqwosdyMGTMIDAw0+1myZEllVEmIEnn4NWLZ/x3mzm47+HVxLA2bujLg3mDT1FQrN7e7riQ+1ys/N5/nH9jIW1/0Ma2b+r+G1VafmiA0+LLZ64G9k4spWTGat9citGOnPNh3WLshDemmBg7rrHT06XACgEuZTuzdeLTU4xaeXubbJWp6u8EPd0Rvc/N1Wa4sXu5qfPC5VDfW26SdPgABAABJREFUrdAmUfdrapm4qjxGjwYHB3Xn8M2idC5fvGxRxmgw8srEixiu5GesydMQlubIjhOMGB/KhUvm3cM37QskPzefQ4XSXxSelrFAsyZa9+lTJy5YbD9a6NelIIjza6Vd52Li7Nm2IYURjzbHYFS/Hy88uIH3Jm4wXauDfI6xe300H3yg9Q65nKUGGTd00f6/9+0r+bNWh/MXtFsyNw91fWnS3IN16/Q0c1Njuncfb83YoftIv2zkzjuNLF/bhrikprz1P/XdGvIN7IpUTcse9c8y5x0tVfz6dVf1nQWiDsSRmqEeVoa2jMPRETp0gIZF/HkpmFc7N1cFIwWZy1u0AFutIxCtWmFK7unjA/XKPkHAjcOlDcMnPcKQu9R3fi6tES989xEY86DeTfQUoqYzGsFo4JdftFUFCfEK2NmpQPz771Vgbn1lRNJ330H+tedLvWllZ2sPn21s4NFHq7c+VanCg26DwcCMGTPYunVrqWWjoqJ48cUX2bJli+nnnnvuqegqCVEmtz/ckZVbO9N7aAgAtg62DOun7iIvZzny53fV0zSSkZbBPf12M+cH7XHgmxM2ENQ9oIS9bnxh/gfNXg+6q3IfQjg6qvFHAMePw75jatx1g3rJNG2uter16a21bi/9Pp1nn1UJjSZPtuxafCk1j19+USvr14fBgyv1I9y0/JtpSfBeebedadnP9fqSJNavDw8OUgnV0tLr8t28PRZlVn29k+176pte79qFqbX93Dno2VPNbRxf9jxZ1eaLz3JNGfXv7LKVAaEqjXVKugv7txwzBd02NubJswqYZTCPtsxIdPDKr3SDBtrvWtMWHljr1Z3tL5u70K2viylIvKv7DmZ+04tXPurDyThrtv11iPBIX9r1COS552Bwl92mY1vrc/l8nvbgtCYG3UkXtJwUbp5aNjLvVk3549dM6tmr72zpum60apHGxo3ag4VN+1uRk5nDif0nTd9Px9YneXC0FvFGnLCc6zx8i5bULjS45IGq7bRfHX79VZsWq2A8dwGdTo3TvP32knuA3Oh0Opi/wBbnKx2wvt08mjXxr4CX3OdWOUMenNsCGVddaHPT4Ac9y7/YYVp1T/d1kBoJ+Za5fEJCtL/TCQlqaJEon59/xjS85557tGv9zaBCg+7ExERGjx7NunXrcHKyvLhfLSoqitatW+Pm5mb6cXBwKHU/IarKyIe01swffiz/uNpt2+Cff65vHOfc/+3nty2dAXXjuPCdzUyb1+faD3iDCO2ppaWuXzeZjre0KqF0xShofTt3Ds6mqHmDQ1ommY257nu7lthu1ted+OQTlTX7vffgww/Nj7fii+1kZqp977vnMnZ2iEowaZo7Xg0tM2b7Brhc97Gfek47xvfLzP/u5efmM/XNq5IPAEs/U63tb76pxnpv2wYPPFCzp6fJzobFK9XvmJ1NLouWt+Tu27WW/TWrEomMUB8gwC/drOWzQDMfbWVcrHmr6/nTFzlzJU9YUKt0UzdOvY01zbwte30E+x5lycrWWOnVbYxjA0e63NoWGzsVuOp08NVSb1ML8YujtnL78MZYW6uL8b6dli3t1S0pWbv/aehpft607daC7z+NME1xeeqs+VCa9Ox67Px/9u48roqqDeD477LIIpsiILghKoiIorivaFoumWtl75tlu6VZtptlvWWrWVouLWqbVmamZmWWue+Kgoo7ioAoIgrIDvfO+8fIHS6X3cuiPt/Phw9zZ87MPVyGYZ455zxn/TH2btYyvHfukIW7T308XJIAOBrjY/ae4Xu130OnbnXNthdW0NINpuMw2xSTSmPgQPj9dxg0qNRD3vR8fEyv+2+seg+zKTbCnyPj9Fb69YOuXdVgTlRQyiGIX029tHUkhf/C9x9t5MquzyByGmy7F1Z4wPreELvCdL/8dBKueLPjuHqPFdT4MAHnboM/AmGZA/zWEnY8AKe+ghz1mjFunLZ74Z5qNSEhAWbMUKfADQpSe5ns2FH2fuWhKPDHH2qLfkQEZGeXuYvRt9+q90uPPw4pKabb5s3Tlp96yhI1vXFULm1rCaKiovD29mbOnDmMGTOm1LLp6ekkJibi6+tb7uPr9Xr0tbwvR0H9ans9Rfn0HhZEQ7dELqR4sWZ7Ry7EJOLRpHwtqpGR0KuXFQaDjlWr9Nx5Z8Xeu+Ac2nmqh3HdisWHGfrfHnJ+AY39G9Kx5VH2nwrk/jsPglXvKv9cWrbUsWWL6bPKdr1ambxvi3ZN8a53gfNXzB/fvvyygr/nfu68PwSA73/UbrL/M/wUen1wldT7Vr8utenWggMHU5ny8Da+/0sdC2xtlY9vG6/r/kza9W5FK58znExozvaotly+cAVXDzX4XvrpDg6f7Q1AQKNojp9Tu5Uu+8WOcZP1LFxoBag34Fu3woxntvH6p92vqz5V5ddfdVy+rJ77Yf2v4tLAmd53NIS31O0Ll/mRl6/eUgQ1ikSv72p2DB9frdX1bKzO5LOP2HEaUMdet/XZh16vjdkeMEDHl19aodMp9O4N94zK5IEHfHB0cSz19+feqD7hESkcj4ik68Be6Kz0tGl8ioMxARw95UpGWgb2de1L3L+6XcpRuwc4OuRhV9fO7Gcb8kAo7x3azCufqOnB69ZVuP+uY3zxo/ow5J8/kklJ1QK6jl3Vzyew2TmSDnlwIcWLSwnJ1PNyM5bZd1B7UBTSs7Hpe+r1WBsX9QQF6eHampOF8oEFBhrQ6yv+ZPlWuS6NHw9z5lhx+LCOnTt1bNump3vBn/m537A+/gkrtl9h0yb1WvG//xmYP/8myLhYjawOvoF1/Eoa59vS4dUDHDkXxKB22ax9ebJJOUPSNpRWk7QV+jxWHp1ifDmqc+FhsQqkR6tfMd+jd+8JNm4MHgyurlakpupY8XMm8+6+h7rOtii2LmDjDLZOYOuC4tQSPPqAfdVM6xobC506WXH5sulDnBdfVNiyxXDdx//6ax2PPabd71hZKQwdCj/9ZCi1gaDwfidPwtq1CgsXGhgwQJ3OcedO9RrStq1C9+6GWtlFv+i1yVLXKIsG3f3796d///7lKhsdHY1Op+Pzzz9ny5YtuLm58dBDDzFy5MgS9zlxouLz3taUQ4cOlV1I3BBGD7jAvF+Gkqevw/z3djL88SZl7wR8Nzcbg6EnACt/vUjjxpV7fJ2QkAGoXQ09WilE1MZ+kTVkzlfZnI36nZahntXyuXhYJQO3m6yrV+8sERGm48nv6pvIF6uGYGebzb2jzqLUceX77xuiKDrun+DPV9l/4e7twIaIMAD8vGJw8Mqv8p/hVr8uPTPDge49VrHsFx/69U7g7PkmnC3fLEylCut8kZOrm6M32LD08830GNaE/Nx83vhQm9pu6otHmDsvnX0n2xN5JoBHR+8mJ8c0MH17QXf82/xJQDfzFsnK2LoylgVft+P+UYcYMr58160CcUeTOH8mmw79G2Jrb8ucOa0ANUAbMeIShw6dQbFVcHdLJznFiVMJ2s/arMmlYs/lLIM2pvpMrLVJme2b4igIuhs1umKy7eGHoWNHJ5o2zcHT89r0joUS4pXF3gsiD6rDgwL9UjgYE4DeYMPa5X/TPMSr/AeqYueT1P7brm4GIiIOFlvmtvuceTzjHOHhLjz55DmaNEgwBt1/b3Yz6VVV1yuLiIgImje+xJZrf/r/rN6Jfxc1SZ1iUNh/Qh3/7VPvPBdSErgQof2fssrKosO15YMHD6K3d8DNrR0pKaZTM1pZHSUiogLNYEXcCtelUaPcOXzYF4A330zjgw/UE9j3/CLcgajY1say334Ld999mHr1anHXlxqgM2TjkHsau9xYrriYdqFokm6DJ/DpuskcOaeOd9h2oheKonYsyLdyIq1ud67oO5Ny7dpiMEBCQh2+3KplxOw6xIfz9R/GLi8eu7x4HHJOYaXkkmftxsHoTNCp+/bv35SVKz3IyHZk9VpX/tvzB0rqC5nq2I1TTeaarGsR/yygI9WpJ8muw1F0FZvuND8fJkzw5/JlZ7Ntu3bBxo3Xd/4oCrz7bhtAaxgwGHSsWQMzZsQzenTx0z/89Vc9Xn/dNMFvfLyOQYOscXXNJydH+5TuvDOWyMhaOI1EIZa+NlUo6M7OziaxhBz5Hh4eODqWb4ocgNOnT6PT6fDz8+P+++9n7969vP766zg5OTFw4MBi9/H396/Qe9QEvV7PoUOHCA4OxtravEucuPE89eIZ5v2iLq/Y0Jfp81zMeocV56VC6XFzMp0ICQmp0PsWnEt5eWqXPwcHhS5d2pex162ne+/qe68znXZDkezTd93VlODgpibr5vyQz5jfwwns6END35YoCmSf28nyDd1Jz3bmvglDaeByCUVRnwaPG3maDh2rLoWnXJc0ISEhPP4qFAR4ljDynv18dW0e4/C97jz1egjL5u4k5qKafX5gaDj3TxrC5fNb2HctcfG6PWrAbWebzWOj9zP3px4YFGteebMju/fY4Nn0+nIUZKZlMnB2c65k1OfdL3x47h1Dsa26c+fq+O47HR07Ktx9t4KH/SlmvH6ZX7eoN7U9fjrIJ/Nd2bNHvbnz9VUIDb1qPJf6D9SxfLnpMbv18Cj2eqcP0mNjrY4LP5/ckJAQ7eZsQbw2PVXvAc0JCTHNxNapU2U/CVNdOm1h2QZ1+UqiE0P8A5lwz35i4p1YvMSN5m0r9nDCUgwGSE1Vrwc+PnVK/X8xf37BUiugFf6NznDiXHP2nWyLjZV6o92i4Vl69Vd7C3QI2cq3a9U90q+4GI+tjv92A6BTYCwhIUU+5Aztd9KuXTuoW5cOHaxMxrFaWysMG9a6UkNjbqXrUmAgfPGFQmKijo0b3XB1DaF5c6DdCgz7niIqXhsYn5Njxfbtwbz2mrR2k5+JLvpLdNFfwdUT6FA/E32bvtCgUK+gCw8Rf7w7/1ulBdDp2c5caLsBz0bO6FyDcbWyoWBQxrRpOubO1ZGRod3MtWihcMf4h9DpHjKuU/Q56K/sxyr7AiGNOxjXT56MMfnad1sf4L89fyjxR3D28DP9e1YMWJ3cg86Qi1vGVpqmL0Np+yZK07FgVb6/g7fe0hERoV4vmjZVWL3awLff6pg9W+1dGRcXTL9+lT9/Nm6EM2fUugQGKoSEKPz4o/p+P/7YlOnTG2Nb5DnBmjXwxhtWKIr6mT7+uIFTp3Rs2KC+Tk3VQk5nZ4WXX26Ms3NjaqOi16bMzEzLNPwqFbBr1y7F39+/2K9//vnHpGy/fv2UFStWlHgsg8GgXLlyxWTdW2+9pTz00ENmZTMyMpR9+/YpGRkZFalujcjPz1f27dun5Ofn13RVhAX16nZVuZbmUtm5s+zyOZk5ikOdDOM+vXpV/D0LzqUmTQwKKIq3d8WPISzr4Lbjxt8pKEqdOoqSm1u+fTNSM5ROraJM9i/4OhURU6X1lutS1crOyFYc7dIVUBRP14uKPl+v9GobYfz9blxxQFEURYk/maDodHqT3/2kezYp+bn5St92B4zrgn2PK5fOJV9XnRZ9ftXkfTb9esCszMWLimJlZX4+Fv2ytc4xLv/vtcsm59L8+eblT+w/U2K9fJvlKaAo9eubru/a+pBx/7TktOv62Uuz4Zf9Jp/9J9N2Gl8P67Gryt63LMnJ2uc3aFDF9n1qzCaz38HY27Ybt//9U7hx/fP3bzSu//HT7drv9amN5gdOT9cOmJ6uKIqiTJli+j6tW1fih73mVrsuvf229rk9+2yhDQaD0rzRZZPP1dM9U8nKqrGq1rzsS4oS9YGirPBUlKWYf/1tflM1frze7O9g+3bzQ587V/x1bsaM8ldPr1cUX191Pysrg5JwKkFRUo4oStJuRTm/XlHOLleU/S8qytpOihL9tenOWUmK8oO1+c/0i7uibBmtKMfnKkriVkXJPF/se2/Zol23ra21n3HbNu1nGTmy/D9LccaM0Y7100/qukGDtHXffGNaPilJURo00LY/+aSiGAzq5zR3rqK0b68oLVqoX23b5Co/zlqrKH/3VpSrp6+volWk6LXJUnFohRKpde3alePHjxf7NWDAgAoF+zqdDjc3N5N1fn5+JbakC1GTHnlCG4tYnnl2wzedICtX65URG135qYlSktVue26OVTsllihby3amrWBtm50ye9pbEkcXRzbv82XOq5vpHqh1Wbqr526Zj/sGZ+dox4BOaurui6kefDNzO9sOq71S2jQ9Rd8R6nKjlt70CtJ+97bWubz4v5ZY21qzdIWXMdnboRh/BvZJJOViqsn76PXwzz9w9mzp9VEUmPel6TxNm/5JMSu3bh3GqcyKauiWSEM39f9xnl5NgGal0/PgfzNMyvXrZ7qfvW0WfqW0FjdpqrZ2XL6sNaQa9AYOn/EFwNczDuf65l0mLaV9D1/j8rZwb975Quviv2ZHVyK2lD3NX1VIOqdlc/eoX7Gu2gNuN29m7hyqJUhrE+ptXD5yQkuWVjiJWmjX0pOoFSicwRyKT6ImijdhAhTkCl64UEswlZGp48y5eiZlLyY7sHRu8UMMbmoXt8K2sbDSByJehuyL2rb6ncDvIejwEXT72mS3vXvhm2/MQ5roaPO3KNxjODgYpk2D1avhlVfKX00rK7j/fnXZYNDx5yZvcA2EBl2g4W3QdAx0+BAG7QW/8aY72zeAe3Pg9l3QsFDP3pxkiFsB+ybB+t6k/9qTVasgJkbdrCjw9dfqrAAF1+0331RnvwDo1g08rg0fX7euYonPCktI0FrxvbygYNTva69pZd5913S6tGef1TKSjxgBc+eq3fqtrGDiRDUR26m9Bzn19WgOTbNjbMPBkLQVYn+pXCVvUFUyT3d5zJkzh/Hjx5usO3bsGH5+fsXvIEQNuvtudcoogGXLIP1a0l7FoHDhzEXW/7yfLasjUQxqd54t/5iOUzmX6Eh+bsXH1+Tn5XM1U/0v7VbHPPuyqF4Ozg40cdfmvQ0JqNiAYEcXRya/05cdR4I5cziedT+Es3RNUNk7ilpvyB1aAPPM/0KMy0+NP2eS3X7sqBTj8oNDd9G0dSPg2nzM/+TjXe8CAAeiAxncN5a8nDxj+U8/hdtvh4AA+OnHkhPl7N2rzidb2Mbtbmbl/vhOmybnjdfzGDXgGD2DDjLzhU1En3Vmzy49wb5al7o7Ou+ncStvk2MEBEBDT+3urk3TM6XOMd+00EiMuDj1e8yReDJy1IcEwS0tMMi+FPW96xkzmkdE+3PpkulYoXffrJmHm0kxZ4zLDdhVoX3D7mqNlc400U/nXp7GZR+/hjg7qA9+j8ZoCR7Dz2hDLEJ7+5brvQpnMAfz6cJEyRo0gAcfVJfT09Wx2wBHj2pl2rXS/s9/PNsG5cCrYMjjlnHud4hdBoaC66kOmt0HQw6rAWy3xRD4PDi3NO6iKGp37wK33aZ1qz51yvwtCqY2BHjhBTX79113QUVHOBQeCbt7d8nlimVlDQ26Qv+/of96aDwCbE1nJLj30yWMHAnNm6uB9aBBan6Lq9eez4X11TN1qlbe2hpjwt7MTNiwoYJ1uuarr7SA+rHHMM5E0bMnhIWpyydOqFN/gZbhHNRpNBcsUINto+S9sHUMrG0Pcb8Chbq9X97HraRag+7Lly+Tce3Rdr9+/di7dy+LFi0iNjaWH374gVWrVvHwww9XZ5WEKJe6deG++9Tl9HQIbBaPf6MzeLhdxtvPk4H3dqTviPZ89voWALbsMG010BtsOH/mYtHDlin7qjZPpJtz5RPVCMtp1VBL2xvSNr2UkqXzDWrM7feF4lTPqezCotYbck8L43J6tvqEzsn+KuMmdzAp9/BLXbm3/w4Gd9nLu3NNmwlbhjRjw7pMPF3VKZ52HQtm5cK9xu0FN+k5OXDff6x495lNxgd9hWljfjU7jwSSdVWbhzk/N591O9Q58FwdU5k2DVb805pth9vxwswwHF0caRLgw7Z9DRk/dCudWh3ho0/rmR1Xp4Ow1v8aX7dtWnpLceGgO/ba86tDe7RAu12bTKpaiL/pA0xrawV3Z3U6oF82deXonmKax4oREwPDhsEzz1zftJAAlxK1n9vDo2IHq+flRmirY8bXVlYKHftr55bOSkdgCzXoPpvUmMxMtaUs/KB6njZqBA2bly/DcmCgaXAiLd0VM3Gitvz33+r3I0e0dQ887k3PYPV3eeRcG/75Kxt0Fs15XDvoc+DsMsgq8pCtxbUYwK4BtH4O7jwKPX8At5Kf7ixdqiYPA2jePIsPP9QeSBbX0l046G7b1nx7eYWGan8Luyr2nMxUw9ugz0oYnQyD9kHoHPL8nmH9gc7GIjt3aucLwEN9F/PbA/WxXtce9kyAFPWHuusurcxvv5X8lunp8MADaiv2lSva+rw8+OILddnaGp54wnS/wq3dzz2nns8TJmjrPv742rzb+RlwZims6wbruqgt+AXsG0LQazDkEPT8qYwP5+ZSrUH3mDFjWLx4MaAm5ZgzZw6rV6/mzjvv5Pvvv2fWrFl06NChjKMIUTMeeUDrIh5/uTEnE5qTfNXdpMzbc4O4evkq2w76m+0fd6ri88JmphYKul1ySykpqktgSy3Q7tjNreYqImqVJgE+BLeINVk37s6DuLibzt1tX9een/7twZ+7Oxc7/WDrzn58MzfG+Pq339QA7Nw5dRrCwqZ9GsawnntZtXA32RnqQ7nkhMv89KPaq6ZePbjvdrUJJjffjl1/a01qu9Yd4UqGGkTf3vWIcX7rolzcXfj6997sPdGGNl1bFlumf6Eu5u1CSs+o1dRDu8mOjVS7zx6K0B4GBLcvZoJvCwtpm2Xy+tFHdbzyhNrnVFGseO+Nslvbc3Jg1Ch1LupPP4V//y1zl1IlJWrXdw/PiicVK9zFvE0bHXWL9BZv00lNWKQoOo4fV4ORtGv/0kIrkFPQ3h5aa4m2paW7goKC1C67ANu2qS2KUVHa9jZBVkx5XXuA99XOqebzet/I0mPgwMuwqhFsHwunTbuJ4xIA/f+FEeeg4yz1dWmHS4eXX9ZeP/98HP6Fbr9Ka+nW6UzP5YqqW1cL2qOitB6QlWZlDfVDIWAyJ5xnk5unPmwpnKTQwyWJVVOGs/jxR3C2T4OUg3DqC7UVec8EBvZKxP5avszffit5+NDEieoc46tWwdtva+tXrYLz1y5/d90FjYvkOevfX+3GDmo39PnzIV7tOMTAgVpPDhI3w877IblQFwD7htBxNtx1Gtq/DW5tb65zuxyqLOjesGEDo0aNMlv39NNPG18PGDCA3377jYMHD7J27Vpuv/32oocRotbo3N2ZKf/ZhIdLEvWdLlPf6TKN6p9nYGg4IX7qk+lLaQ2YdH8kaVmuZvvHnr5qtq4sGWlatzI311o4meEt6OnXgwltdYTxQ7fSY1i3mq6OqEWG3m2axf7J6T0rdZwBd4fg6qiO5/5jexB5OXr+/FmbI6tD4AXj8h+7ujDysa54eeTQttlJOoZkkpOr3qw9NPo4QwZpw1o2/q09OPxzldaNeujg67u2/Pe5fgzuspfebSMZ/0LpfxNN3OONy7Gn1DocOqIF2sGdPc32sbSQUC2Lu71dHq+/DhNe7UR9J7U+P/zdjejI0gfOT514ggMHtNfbtl1fnZIuanfHDTwrngp8wEjtgUhX8ynSCQzUlo8cUVvOClQ0M/zgwer3xo3V4QWi/HQ66NNHXU5Lg4MHTVu6g4LgrhG2eF77M1j9lwdJSYUOcPUUXLjOJzzVJS8NYn6EyGmwczz80wd+84OjH6rjlwGiF4NSJDJs2B+sy/fw7d131eAPYNgwhW7druLgoAWLRVu6DQbt827RAq53QqSCvzWDAfZZsKd04Qes06erQf3338OREy4MnzIeWjwKbu1Bdy2MUwxw6gvqrm/KgA57ADV4Lq5OS5bAd99pr7/+Wu2ODmpLdYGnnjLfV6eDzz5Op4WvaY8kZ6c8vviiUAztFQZW165jbu2g60I12G79DNg4cKu6CfusCFE1dFY6Pl4axsdmW7w5tP0E7dTZWfhubS/jlp5BB9kepWaeiY2peEt1Rpp2w+zmWvIYTlF9AkL92GeBmSPEzWfIEHj/fXW5d281SU9l2NrZMjjsPD/96UpKhhvbdsCfv14E1JwnX8zP4+zRHTz1SiuS0tRuwWlZrkTFmj7sm/CUHQ5OfvCc+nrjDq17+J8btbHZg+6+vsjJ0cWRP3d3Lrsg0LSFVse4c2qL7qGzanNTHZtcWoVUfVLBnne0wKFOJlm5jjw/bjuNGoUBTkwZv4nX54ahN9jw89dnmDq7+Lr8+d1ePllk+vPu2HAR3qz8A4NLhdKAeDQ0n9qtLGFhanfRyEh4/nnz7YWD7qNHFNauiAPUh0S9epmXL81bb6mtXZ06aeM9Rfn16YNxmr0tW7SWbicnaNJEDVweeAA++kjt7rtkCUyZAuRnwba74UoENL0XOnwAdWtpEs4T82H/c2DIKX67VR1oMgZaPgolznBduuhomDVLXa5TBz76yGAc79yihdoCe+kSpKaC67XLTkyMFmBeT9fyAl27wpdfqsu7d2tjnq/XwUI59Nq3V4dxqEM57ICR0ORadrO8dDgxF6LehfyrYMjlrm5b+X1nF0BtfR45EkZ3+JaOgefJdh/Kk0+2pfBnnpICP/4IbQIN7NqlBvHBwXDbbagt1hc3qQ9Qcq/A5f10SjnIqXcULqfXIyo+iNMX/ejWpx7Nm8/WKm3jqCaSqxcCHr1vuRbtktRYIjUhbibBPf0Z0Xuv2fpx96YYl2PjKn7RyUjTAu0iyf6FELVMz57qzXKrVtrNYGXddb/W73H5z3rW71P78Xq4JBHauxFjnuzBuYtu/Pn9Xh4YvA1P1ySc7K/iZH+V+k6Xmf7EJlp18KVxK29aescAsPtYGzLT9cSfPE/kGTXQ7uwfhZdv+cbzWkJTfy/jcmxCXXJy4ERMfQACg+qU2M3dkjyberDjnzh+nr+Ttz7vY1w/dLSWZOxUdPFdvBNjkhj/tK/xdUECs9377DDozR+MKgaFA5uOmWWiLyopWWsDaeBd8eztVlbqmP+ICNMAu0DhsdeLv7rK/uNqwN3B/2yFAwUHBxg9GprV0nivtuujnXKsXatlp27TRotNHnlEK7No0bWcAdFfqQE3qMnG1gTA/hcgw3RYS5XKTICEtXD8M9j3jJppfOsY8yzULgHFB9yOTaH9OzAiDnouBa9+lQ7I3nwTcq+1ZTz3nBpoF2hZaCRM4dZuS43nLtCtUMeeCidTK0Xhlu6iMwaYsHWCoFdg2EnwnwQurblrQJwxS35amnpduOvZB2l8xysEdAkkPV39vHu20/LTzHs3illTVhtfP/fctV9L4gY49CYc+1gdCpASSUEitPpOV+jdehsP9vmOAIefzRNbBEwGzz4ScBciLd1CWMi0WZ1Y1UV77VY3lSH3tITp6uvYcxXvUpOepl3E3OrJMzIharOCwMcSBg8GGxvIz4eFi3Tk5amB2OCex7GyVpsmbe1sGXx/ZwbfX9wRwoxL/QY4cup7yMu3ZccuOLP7JKC2dA/pn1TczlXG1cMVF4dU0rJcib1Qn6NHtUy5le0ZUBkhfQII6WO6zi9Ia/0/k+BOcRbPjiIpLQyAYT12Y2OtsHJrN9KyXDmy+yRte7QyltXn6Xlg6C5++KcnAY1OE3nCHjvH4ruOJ13WWrc9fMwT1l0v32YG7Gxzycmz53ySlmfgtefPo9NJ9Fyd2rZVH6KnpKjJsQpilcIPRlq3Vh/ibd+utoTv2QNdu0wCK1s4OB1yLqlB7bFZcPwTaDwSmj8AHr3Arr7lKnv5ACRtg0s74dIOyChh2IVbkbT2nn3VbsWefcB7ENT1BcfGYOtisSCsYEiHkxO8+qrptsIBeHQ0dOyoLhcOui2Rj6B1a3BxUYNbSwbdBS3d9eqZj6suloMXdPoMAC9g82Z12q6VK7Vs56Am9QVo6XWStZM70v/dDew73ZkDp4M4cFr9QBo21BIHY2uakwSdlfq79ugFrm3AoRE4+oBLoATX5SB38UJYSKfOOgYN0l736ueCT4uG2Fir47LjLriUsGfJ0q9qFzG3evKMTIhbhZsb9O2rLuflaf+qhw6t+L/tsEFat+f330ph9pc+2vFGVf0Y6qKaeKgzOcRdakj4Lu2OsDqD7uK4erhSv77aWn06ufi03Dv2aINAP/rMgx5dtVkldm7UErAZ9AYeHr6TH/5Rx/UfP+fHH0sKDQIv4tIV9bjWVvm4eZrnBLle1jZWBDQ2DZjaND3FiEe6lLCHqCpWVurwEzBtHCwaBBZu7V64EDXgafWk2qoZ+KLaRRvU8bxxK2DLcFjhro6fLip+DaQeNR8/XVh+hvm63Y9A+GQ4+2PJATeAUmRKVCsbGBKpBoKNhqrZx+u4Wiwwy8vTZj8ICNCmdC1QuKW7cDI1S7d0W1lB52sjTRIStKRi1+PSJW2cert2lfvIOndWHwBfvAi//govPJvBoN6xNGqQhL/PKX55ZgzODuk8NcB8qotJkwolb2s8AsL+hIHbYHAkjLkCg/dDp0+h1QRoPExN/mZznYPjbxESdAthQdOna1NIjBqlw9rGisbuatKj2IsVv7m9mq51cXSrX/HkOkKIG9ddd5reyFpb5TNwTMXnaOpXKLv4v1vdOBKr3pF6uCQR2v860vdWUtOGKQDk5Nnz6JPa3XJNB90Afn7qbVFcnNZ1tYBiUNgVpY6rd3dOplVIc7r31VoVd+5U744NegMTRm8zye8BaiKkAgc2HePe23bwx3fqsKSkVJdrx72ClXXV3Jq18TOdQWPac4lV9l6idH36mK8rOv3a3XerrbgAP/1UKDt2HTd1vOzwsxD8PzUrdGGOjUxf67Nh6yj4ow38Ug/+7Q/hU2D3o7BxEPwRBMtdYYWHeRfhBt21ZWtHtQU78EXouggGbFGTY42Ih8AXKvoRXJfYWC0zt5+f+faiLd0FCsbP29hgkuX8ehROXGiJ1u6i47mvh729OqZ75id1WbulKfFJHhw/15L2z2+BQfu597VJ1KunPYhxcDCdAgznFuAzGDx6Qr125i3fokLkaiuEBXXvriZG+eUXGD9eXVdwg3k5vT7phbKRl8eVLG38o5unm2UqKYS4Idw18ILJ6x5toqjn5Vbh43h7m449BLCzzebtF47WSNDVvKn5XNwOdtl07lhC0qVqVHADbzBoLWkFzkTFcSlNneatS+BpdFY6Qvv5Y2utRuc7ItRgZ+aLW/hqtRpVWVvl4+JwLRP9zo4kX8wm62oWd4525ecNPfjPBH9yMnNISlWDdw/XlCr72QJbatnrW3qd5J4ni0lzLqpFcUF30ZZuJycYO1ZdTk+Hr74qsoNDQwiergbfvVdCwLNqq6NnmGm5KxFaS3ReGiRuhOOzIXoRnF8HqUfU9fosNVlWYc3ug9DP1Pmj706BAZvUgL/Fw+DZG5yaq0G+bcXzEBR1/jw89pjaLbosZ85oy2UF3QUt3Xl5cOzadPYBAZZLAlg46N61Sx2j/+CDMGOG+TOM8ij3eO7rUccV6nfAsUkoDz+s/Q946CFwL35kjbAA6a8qhIX16GH6uklwMFx7chl3zpbACjwoTMrR/nO4NWlRSkkhxM3GN6gx7ZpGcjBWbe4Y0j+x0sf6+Wd1fJ97PQNtfU/SOrQZdo7F3PlXg4kvNOLv7TGkZDgR7BdHkH8a9z1QnwZeNd/UXfgG/vRp026quzfGU5Dxu2uo2hXXvq49HVsdZvexthw/58eJ/Wd453N1AKmVTs/SOXvYc8CFjxe7kqevw88rIOP0JhIuhwFq1vl/Vx4kK1e9u/bwrbrx1b0GeMEX6vLrLyRiU6dV6TuIKtOhgzrPc8a1Ht1166qZy4t6+ulrXctRp8d65BF1DLEJ6zrQZIT6VRwHH2j/LiTvheQ9kHWuyP72ZFv78eXGCWxeZs/Iu9UxvdbWgGcv9auK5ebC8OGw91o+2kGDTP/2ijqtzaBI8+bm211doUEDtat2QUv3qVNa7xVLzi9fOOhevVqdjuuiOoKGtm1hxIiKHc+SLd3l8dJL6hhwvR5ee63q3+9WJkG3EFWsaaGpe+Piis8sW5KrVwt1L3ezXJ2EEDeG+0Zd4eBstcV05AOl3IWWoUkTmDwZ1A5uNTu5cpuuLTmZUPCqQU1WxUxzrwRAHfN+et9+uL2jcdvuXVpPpa49nYzL3Tsks/taC9rYe7K5mqVGRY8O3869k/oQEAEfL1a3f/mFntho0+arn37S5klv4Fl1c3D1GxXCsrk7MBjg3omVm0NeWIatrfqA/p9/1Ndt2qjjg4tq104NgH/8UQ0gP/5YzdpdIXWbQtBU7XVmAqQdA7v65Nk0ZvFSd96eoePctVj819/UAP+tt9Qs9dWRH+v117WAG9RAubxBd3Et3aC2dl+6pI6zzsqy/HjuAl5eaib/s2fh5EnTbR9/rAXdZ8+qQa2trfr+QUHaVGY2Nuo6e3utpdvKyrIPB0ri6Wn62YuqI0G3EFWscNBdtLtiWdILjel2tXxuHSFELffcuz1wdtmMf6ATAaGhNV2dm56fzwWMQffxNJNtuw9o47e79Nd6HnXvacvsH9XlA9HqU1V72yymz1Rbktu3V2+oDx+GiEhrwDS79KpNWgu/RxXO3qaz0nHPxB5lFxTVok8f06C7JG+9pc7rnZ+vTkU4ceJ1nieOPuDow8GD2tzuRR09qo4pHz4cli5VW+LLQ1Fg5ky4cEENMOsXOtWTk9Xgsui9zN9/w4cfmq4raCkuSXmC7pYttTHWZ85o47nBskE3qK3dZ4vJM7d1qxrQduigPsAIDy/5GKGhsHGjVk9/f4xTf4mbg4zpFqKKXU/QXdDS7eBQKJukEOKWUcehDhP/15eBYyXgrg5+gVrL+5lY7aKbmwsHTqtJ51r5xFDfW5vWq8dAX7PjTHramkYt1SnIdDoYN850u611Lo181HG2V9O19o+qDLpF7TJ4sLbcq5Qe3C1bwqOPqsvp6TBtGhw4oM7JXjTZX0kiI+H+++GZZ9Sx4e+8o2a4LhxwDxsGP/xgOkRu9Wp1FoXz582PWZz16+Hll+GTT+D22yH12vT0ixdDo0Zqq+rMmdo0gQWBf1HlDbqtrEzvsQormkytqlq6Qf1ZC4wbB/Pmaa8//lj9PEoLuEHdPnq09jutsvHcosZIS7cQVayJxyUKulDGHtgDlH+KluwrKYAjbo7JgGS3EEKIqtTE3xtrq3z0BhtOx7sZ10dGQk6uLQBd+5ne5Tf296GxewLxyWoLuYsLvPKqaTfx//wHXnnFgKKobR2Pj9qJtXdfPv3U9P0bOJ4DimSfFjel0FB1Oqfz59XEW6V5/XV1CqisLDVoLkiq5usLhw5pWc6Lc/GiOkb6woXit7dtqx6vINni2LFqsP3gg+r80+Hh6rY//ig7WP3rL205PFx9sNC7t2lL9ksvwW+/qUH4smXa+saNtSm3yht0N22qdtcuTuHu6UeOqA8pQO3CXVLreGWNH68Gy+7uag+BnBx1GEBSktpLYdUqtZxOp/YcyMlRexPk5KhJGxcuVH+3BT0foHrGc4vqJS3dQlSxpr7af4TY+BL+O5QgNVP9T+rmmGLJKgkhhCiGrZ0tTT3UAeenz3sb1xeeCqhrN/Nbp+5h2kPRF14wzwDcuDEM6boPACf7q7z2QSC33Wb+/h6OMZWvvLjhjBwJTz1VcuBYwMdHbaUuKiYGNmwoeT+DQQ0Iiwu4dTo1AN63z3R2A51OHYe8fbvWihwbCz17ql3BC2RlFZrG7JqNG01f79xp3nUcYNs204C7VSv1oUKB0oLulBS4ci3JenFJ1AoUbumeOlVLqBYYqE3tainW1vDkk3DPPernZ2+vDgMAtVU/O1tdnjxZHaM/fjx88AHMng2ffqp+L0qC7puPBN1CVDFXD1fjlDFxifXKKK3Jz803JuRxczKfYkcIIYTlNfe5BEBKhhtXElOAIkF3MTNtPf+iHU5OamAyZUrxx/1meQvembyJzX/G07C5J337mt/8ezS0t8BPIG5G//sfvPeeGtwNG6atLy0J1qefwtq16rKnp9pa/emnasv5rl1q4FfS0LW2bdUynTqpr9PSYMgQdd977lEfLLm6ase/ckVrTW7aFOoVut2xsoI5c9QpVQsHyh4eavfryEgILjR5QVJSyT9TWdOFFSjc0l146q6CrvpV7amnTD/bZs3UacSK89hjatfywqR7+c1HupcLUQ2aeFwkKtaVuEsNMegN5ZobNy35KqBesd2cs6u4hkIIIQD8mqSz4YC6fDrqPKFebuzepQessbMrvgWqa1c1KFGU4rNQAzRo7M6rc8KMr11doXNgNLsOa01yDRqW0k9Y3NLq1IFXXlGXY2NhzRp1uaSge/9+tSW7wHffwR13VOw9vb1h0yZ1PPiqVWqrbdHA8c031W7kW7Zowe2oUfDf/6qBZHa22n264EFBZKQ65rluXXVe6IKu8XXqqH87BkPpLd3lSaIGakBfuMv64MHw9ttqt/7q4OGh/nyff66+/uKLkocB6HRqF/89e9RZbpo3V+subi4SdAtRDZo2TCEqFnLy7EmKS8LLt+xsOSnJVykYC+7mUs5sKUIIIa6LX3ODcfn08RR8W1/h5Cm12a5DQBx16hQzoTLqjXNFp1ca0D3OJOj28JFpKkTZmjRRW64vXlSDbkUxPfdOnIChQyHv2ix3L7xQ8YC7QN268MsvaoK0WbPMt+/ZA8ePm3Yt79dPbSEv6NJtUyjacHbWHh4UZm2tzq198aJlgm6dTh0z/8svcNddai+U6vbxx+rY9bZty/7869VTu90vXKgOO6iOqdpE9ZLu5UJUg6aNsozLsSdL6TdVSMolrUu5m6u+lJJCCCEsxa+llgTt9Mkc9mw4ZXzdNeh0cbtU2oDBbiavG/iUfwiSuHXpdGr2cYDLl00D0TNn4LbbtHHcXbuq2cqvh7U1fPQR/PwzPPecmjDt/fe17UuWaEG3TqcmTwM12LapQPNeQfb+ixdNu4QXVt6gG9TP6IMPaibgBnXmmdde0+bqLkvTpuoUcR06VGm1RA2RoFuIatC0idZyEncmrZSSmpRkLVB3czWUUlIIIYSl+AW4GZfPxFjx3Td5xtc9elYsGWZZut0RiEMd9QGri0MqdRxkbkhRPgVBN2hdzOPjoX9/rUt1u3bw559q121LuPtutbX7jjvUqb4KhlIsWqRO/wVqwFivks+OPD3V71lZkJFRfJnCQXdpidSEqG0k6BaiGhRuOQnfU77x2alXtC7lbm6WrpEQQojiNG+jZS3feiiI5RvVaR49XJIY9oBlm6DsHO14+r49ADx4V4RFjy1ubsUF3c8/r2Y0BzVL9/r1UL9+1by/tzcMGKAuF57Hu1+/yh+zIOiGkruYFyRSc3JSu6MLcaOQoFuIatB3qDZmb90Wz1JKalIua60rbvXkT1UIIaqDu089nJ3V5SOn3NEb1P6xT/0nCgdnB4u/3wffhHH5Qgqf/tTX4scWN6+iQXdSEqxcqb728IB//9W6a1eVcePM11Vl0K3Xaw8V/Pxk3LO4sVj0Tj4tLY1p06bRo0cPunXrxiuvvEJaWsldaePi4hg/fjwhISEMGTKEbdu2WbI6QtQa3n5etGt+HID9p1qTFJdc5j6pV7Qu5W71JOehEEJUB53OfKyonW02T00NqrL3rOflVmXHFjcnDw/w9VWX9++Hb77REqc99JDaEl3VRo5UE60VsLKCXr0qf7yygu5z57Sfsazx3ELUNhYNut944w2OHTvGl19+yaJFi4iOjua1114rtqyiKEycOJEGDRqwYsUKhg8fzqRJk0hISLBklYSoNe4YkAOAolixfmvZ/b2uKNoNnlsj36qqlhBCiCKK3tCPG7wHz6ZV3GwoRAUVtHZnZKhzeBd4+OHqef+6ddXpwQqEhqpT4VVWWUF3RZKoCVHbWCzozszMZN26dUyfPp22bdsSFBTEq6++yvr168nJyTErv2vXLuLi4njrrbdo0aIFTzzxBCEhIaxYscJSVRKiVrnj3nbG5XV/l90nKjVbG6zk5uNTJXUSQghhrvC0YQDPTWtUQzURomSFu5hfuaJ+79ULAgKqrw4PPqgt33779R2rcNCdVMxEL5JETdzILBZ0W1lZ8fnnnxMYGGiyXq/Xk1FMCsLIyEjatGmDo6OjcV1oaCgRERGWqpIQtUqvXlBwuv/9d8nTYRRISdGWJZGaEEJUn+ZO243LQzqsI7BLi1JKC1EzCgfdBR59tHrrcNttakbzCRPU+cCvh7R0i5uZxQaK2tvb06dPH5N13333HQEBAdQvJnViUlISnp6mCaXc3d25UDCxYDH0ej16fe2er7igfrW9nqL62dhA375WrF2r4/x5iIjQ065dyeWvXNFaw52d9cgpJSpLrkvCUm6Vc+n2UY1xeD8TvcGaae943/Q/b7H0eqyNi3os/U/oVjmXqlJICOh0ViiKer/g7KwwcqSh2u8XnnlGW76e91bDBfWsS0w0oNebtk6cPq2joL2wWTPT+yI5n4SlFD2XLHVOVSjozs7OJjExsdhtHh4eJq3WS5YsYe3atSxcuLDY8llZWdQpMnFgnTp1yM3NLbY8wIkTJypS3Rp16NChmq6CqIWC2jRg7dpmAPz8xSYMj7mVWPZCfBNAfTAVExNJQkIZTeNClEGuS8JSboVz6Y9VZzEoCnaeLrdkLzyrrCwKJkg7ePAgBgfLZ26HW+Ncqkq+vm04c0b93QwYcImTJ2NruEaVl55uBdfOuujodCIiTppsj4hoDdRFp1NITY0kIsL8vkjOJ2Eplj6XKhR0R0ZG8sADDxS7bd68eQy4NmHf0qVLmTFjBlOnTqVXCWkM7ezsSCncfxbIzc3F3t6+xPf39/c3CexrI71ez6FDhwgODsba2rrsHcQtxT7/NB/NUpf37XVjxryQEsvmpkYDnjjUyaRLl/bVUj9xc5LrkrAUOZduIYWGBrZr1840TbUFyLlkGf3761i0SF1+6aX6hIRU0cTc1UBRoE4dhdxcHdnZzoSEhBi36fVw5ozayt2yJXTtanpfJOeTsJSi51JmZqZFGn4rFHR37dqV48ePl1pm0aJFfPjhh7z00ks8WDi7QhFeXl6cOnXKZN2lS5fMupwXZm1tfcP8Id1IdRXVp03nljT1iCc2qTFbDwWRk5GDo0vxD5JS0tUbHLe6aVhbN6zOaoqblFyXhKXIuXQLKPT7tba2Nnlt2beRc+l6vP46pKdDt27QrduN/zl6ekJ8PFy8qDM5L6KjITtbXQ4O1pV4zsj5JCyl4Fyy1Plk0SnDVq5cyYcffsjUqVN55JFHSi3bvn17oqKiyC74CwLCw8Np315a9MTNS2el444eaiaQnDx7Nq6KKrFsSoYzAG5O5okIhRBCCCGaNYOffoJnn63pmlhGQdtbUhIYCk0iULinb3Bw9dZJCEuwWNCdkpLCW2+9xciRIxk6dChJSUnGr4IB6JcvXzZmMu/SpQve3t5MnTqVkydP8uWXX3Lw4EHGjBljqSoJUSsNHWZnXF6+zHw6PYD83HyuZrkA4OaUWS31EkIIIYSoSQVBt16vTYMGEnSLG5/Fgu7t27eTmZnJypUr6dWrl8nX+fPnARgzZgyLFy8G1Cb7+fPnk5SUxKhRo/jtt9+YN28ePjIfsbjJ3TG2PS4OqQCs3BhMdoba20MxKPz53V4itx4nLTnNWN7NObvY4wghhBBC3ExKmjZMgm5xo7PYlGFDhw5l6NChpZbZsGGDyetmzZqxZMkSS1VBiBuCfV17RoTt47u1vUjLcmXdT7sZ/khXZr64mZc/DsOhTia/fHUY6AKAi3NezVZYCCGEEKIaeHhoy0lJEBioLhcE3Q4O0KJF9ddLiOtl0THdQojyGfsfrYv5Tz/quRSfzIwFHQHIynVkxvva1CxuLvnVXj8hhBBCiOpWXEt3ZiYU5F5u06bKcvoJUaUk6BaiBgy4O4T6TpcB+G1be6Y/e9g4hhtg51Gt75Sbm77a6yeEEEIIUd2KC7qPHFGnEwPpWi5uXBJ0C1EDbO1sGX3bYQAyc+qyYEXfEsu6uVZXrYQQQgghak5xQffBg9o6CbrFjUqCbiFqyL33u5mtG9J1r9k613ryZyqEEEKIm19xQbckURM3A7mbF6KGhI1sh5eX9trFReG71UF0DzxkUs6teWg110wIIYQQovqVFXS3a1e99RHCUiToFqKGWFtD4WnpX3pJh7uXI089lmZSztXdASGEEEKIm13h7OVFg24PD0waK4S4kUjQLUQNev116N8f7rsPpkxR1415vDMNGijGMm5uNVM3IYQQQojq5OAAzs7q8sWL2hdI13JxY5OgW4ga5OUF//4LP/wAjo7qOvu6dZg8Wacu2+sJCKjBCgohhBBCVKOC1u6kJBnPLW4eNjVdASGEuWnTIDBQj6Icw82tdU1XRwghhBCiWnh6wunTcPky/Pyztl6CbnEjk5ZuIWohKysYORL8/LJruipCCCGEENWmcDK1L7/UliXoFjcyCbqFEEIIIYQQtULXrubrPD0l6BY3NuleLoQQQgghhKgVnnsOmjaF+Hj1tY0N3HmnmmRNiBuVBN1CCCGEEEKIWsHeHu6/v6ZrIYRlSfdyIYQQQgghhBCiikjQLYQQQgghhBBCVBEJuoUQQgghhBBCiCpyQ4zpNhgMAGRlZdVwTcqm1+sByMzMxNrauoZrI25kci4JS5FzSViKnEu3kOxsCAjQlnU6ix5eziVhSXI+CUspei4VxJ8F8Whl6RRFUa67dlUsOTmZmJiYmq6GEEIIIYQQQohbjK+vL+7u7pXe/4YIuvPz80lNTcXOzg4rK+kRL4QQQgghhBCiahkMBnJycnB1dcXGpvKdxG+IoFsIIYQQQgghhLgRSbOxEEIIIYQQQghRRSToFkIIIYQQQgghqogE3UIIIYQQQgghRBWRoNtCcnJyePXVV+nUqRO9evVi8eLFNV0lcQP5559/CAgIMPmaPHkyAEeOHOHuu++mffv2jB49msOHD9dwbUVtlJuby5133snu3buN6+Li4hg/fjwhISEMGTKEbdu2meyzY8cO7rzzTtq3b88DDzxAXFxcdVdb1ELFnUszZswwu0YtWbLEuP33339nwIABtG/fnokTJ3L58uWaqLqoJRITE5k8eTJdunShd+/evPfee+Tk5AByXRIVU9q5JNclUVFnz57lkUceoUOHDoSFhbFw4ULjtqq+NknQbSEffvghhw8f5ttvv+WNN95g7ty5/PXXXzVdLXGDOHXqFP369WPbtm3GrxkzZpCZmcnjjz9Op06d+PXXX+nQoQNPPPEEmZmZNV1lUYvk5OTw3HPPcfLkSeM6RVGYOHEiDRo0YMWKFQwfPpxJkyaRkJAAQEJCAhMnTmTUqFH88ssv1K9fn6eeegrJrXlrK+5cAoiOjub55583uUaNHj0agIMHDzJt2jQmTZrEsmXLSEtLY+rUqTVRfVELKIrC5MmTycrKYunSpXzyySds3LiR2bNny3VJVEhp5xLIdUlUjMFg4PHHH6devXqsXLmS//3vfyxYsIA1a9ZUz7VJEdctIyNDCQ4OVnbt2mVcN2/ePOX++++vwVqJG8nzzz+vzJo1y2z98uXLlf79+ysGg0FRFEUxGAzKwIEDlRUrVlR3FUUtdfLkSeWuu+5Shg0bpvj7+xuvQzt27FBCQkKUjIwMY9kHH3xQ+fTTTxVFUZTZs2ebXKMyMzOVDh06mFzHxK2lpHNJURSld+/eytatW4vd78UXX1Refvll4+uEhAQlICBAiY2NrfI6i9rn1KlTir+/v5KUlGRct2bNGqVXr15yXRIVUtq5pChyXRIVk5iYqDzzzDPK1atXjesmTpyovPHGG9VybZKWbgs4duwY+fn5dOjQwbguNDSUyMhIDAZDDdZM3Ciio6Px9fU1Wx8ZGUloaCg6nQ4AnU5Hx44diYiIqN4Kilprz549dO3alWXLlpmsj4yMpE2bNjg6OhrXhYaGGs+dyMhIOnXqZNzm4OBAUFCQnFu3sJLOpfT0dBITE4u9RoH5ueTt7Y2Pjw+RkZFVWV1RS3l4eLBw4UIaNGhgsj49PV2uS6JCSjuX5LokKsrT05PZs2fj5OSEoiiEh4ezd+9eunTpUi3XpsrP8C2MkpKSqFevHnXq1DGua9CgATk5OaSkpFC/fv0arJ2o7RRF4cyZM2zbto0vvvgCvV7PoEGDmDx5MklJSbRs2dKkvLu7u1nXT3Hr+s9//lPs+qSkJDw9PU3Wubu7c+HChXJtF7eeks6l6OhodDodn3/+OVu2bMHNzY2HHnqIkSNHAnDx4kU5l4SRi4sLvXv3Nr42GAwsWbKEbt26yXVJVEhp55Jcl8T16N+/PwkJCfTr14877riDd999t8qvTRJ0W0BWVpZJwA0YX+fm5tZElcQNJCEhwXgOzZ49m/j4eGbMmEF2dnaJ55acV6IsZZ07cm6J8jp9+jQ6nQ4/Pz/uv/9+9u7dy+uvv46TkxMDBw4kOztbziVRopkzZ3LkyBF++eUXvvnmG7kuiUorfC5FRUXJdUlU2qeffsqlS5d48803ee+996rlnkmCbguws7Mz+9ALXtvb29dElcQNpFGjRuzevRtXV1d0Oh2BgYEYDAZefPFFunTpUuy5JeeVKIudnR0pKSkm6wqfOyVdt1xcXKqriuIGMWLECPr164ebmxsArVu3JiYmhh9//JGBAweWeC45ODjUQG1FbTJz5ky+/fZbPvnkE/z9/eW6JCqt6LnUqlUruS6JSgsODgbU5KEvvPACo0ePJisry6SMpa9NMqbbAry8vLhy5Qr5+fnGdUlJSdjb28s/ClEubm5uxnHbAC1atCAnJwcPDw8uXbpkUvbSpUtmXVyEKMrLy6vUc6ek7R4eHtVWR3Fj0Ol0xhvbAn5+fiQmJgJyLonivf3223z99dfMnDmTO+64A5Drkqic4s4luS6Jirp06RLr1683WdeyZUvy8vLKvN+2xPkkQbcFBAYGYmNjYzKYPjw8nODgYKys5CMWpdu6dStdu3Y1ecJ29OhR3NzcCA0N5cCBA8YpCRRFYf/+/bRv376mqituEO3btycqKors7GzjuvDwcOO50759e8LDw43bsrKyOHLkiJxbwsycOXMYP368ybpjx47h5+cHmJ9L58+f5/z583Iu3cLmzp3LTz/9xMcff8zQoUON6+W6JCqqpHNJrkuiouLj45k0aZLxwQzA4cOHqV+/PqGhoVV+bZKI0AIcHBwYMWIEb775JgcPHmT9+vUsXryYBx54oKarJm4AHTp0wM7Ojtdee43Tp0+zefNmPvzwQx599FEGDRpEWloa77zzDqdOneKdd94hKyuLwYMH13S1RS3XpUsXvL29mTp1KidPnuTLL7/k4MGDjBkzBoDRo0ezf/9+vvzyS06ePMnUqVNp3LgxXbt2reGai9qmX79+7N27l0WLFhEbG8sPP/zAqlWrePjhhwG47777WL16NcuXL+fYsWO89NJLhIWF0aRJkxquuagJ0dHRzJ8/n8cee4zQ0FCSkpKMX3JdEhVR2rkk1yVRUcHBwQQFBfHqq69y6tQpNm/ezMyZM5kwYUL1XJuuc8ozcU1mZqby0ksvKSEhIUqvXr2Ur7/+uqarJG4gJ06cUMaPH6+EhIQoPXv2VD777DPj3NyRkZHKiBEjlODgYGXMmDFKVFRUDddW1FZF51aOiYlR/vvf/ypt27ZVhg4dqmzfvt2k/KZNm5Tbb79dadeunfLggw/K/KXCqOi59M8//yjDhg1TgoODlUGDBinr1q0zKb9ixQqlb9++SkhIiDJx4kTl8uXL1V1lUUt88cUXir+/f7FfiiLXJVF+ZZ1Lcl0SFXXhwgVl4sSJSseOHZWePXsqCxYsMN5vV/W1Saco1/qtCiGEEEIIIYQQwqKke7kQQgghhBBCCFFFJOgWQgghhBBCCCGqiATdQgghhBBCCCFEFZGgWwghhBBCCCGEqCISdAshhBBCCCGEEFVEgm4hhBBCCCGEEKKKSNAthBBCCCGEEEJUEQm6hRBCCCGEEEKIKiJBtxBCCCGEEEIIUUUk6BZCCCGEEEIIIaqIBN1CCCGEEEIIIUQVkaBbCCGEEEIIIYSoIhJ0CyGEEEIIIYQQVUSCbiGEEEIIIYQQoopI0C2EEEIIIYQQQlQRCbqFEEIIIYQQQogqYlPTFRBCCCFq0iuvvMLKlStL3N6gQQO2b99ejTW6PgEBAUyaNImnn37aYsd8//33iYqK4vvvvzfb9u2337JkyRISExNp0aIFzz77LH379gVg9+7dPPDAAyUe9+mnn2bSpEkEBASUWKZLly58//33jBs3jj179pRY7vjx4xX4iYQQQojqI0G3EEKIW56Hhwdz584tdputrW0116Z2Wbx4MV9//TVdunQx2/b1118zc+ZMJk6cSNu2bVmxYgVPPvkk3333HZ06dSIoKIhly5aZ7Td79mwOHTrE0KFDAYot8/fff7No0SLuu+8+AN544w3S09NNysTGxvLyyy9zzz33WOJHFUIIIaqEBN1CCCFueXXq1CEkJKSmq1GrxMXF8cEHH7BhwwacnZ3NtmdnZzN//nweeughJk6cCECfPn0YO3Ys8+bN4+uvv8bJycnsc/3333/ZuXMnc+bMoXnz5gBmZc6fP8/y5cv573//y5AhQwBo2bKlSRm9Xs+MGTNo3bo106ZNs9BPLYQQQliejOkWQgghyuHw4cMEBQXxyiuvGNclJyfTvXt3HnroIRRFAWDv3r088sgjdO7cmbZt29K/f38+++wzDAYDAPHx8QQEBPDXX3/x1FNPERISQo8ePZg/fz7p6em8+uqrhIaG0qNHD2bOnGk8bsF+f/zxBxMmTKB9+/aEhYUxb94847GLk5KSwvTp0+nRowfBwcHcc8897Ny5s8yf97333uPs2bN8++23BAYGmm2PjIwkLS2NgQMHGtfpdDoGDhzI7t27yc7ONtsnOzubGTNmEBYWxqBBg0p87/fffx87Ozuee+65Esv89NNPREVF8b///Y86deqU+fMIIYQQNUWCbiGEEALIz88v9qsg6G3bti2PPfYYK1euNAat06dPx2Aw8P7776PT6Th27Bjjx4/Hzc2NTz75hAULFtCpUyfmzp3L2rVrTd7vtddew9/fnwULFtC9e3fmzJnDmDFjsLe3Z+7cudx+++0sXLiQv/76y2S/N998EycnJz777DOGDx/O3LlzmTVrVrE/U05ODg8++CD//vsvU6ZMYe7cuTRs2JBHH320zMD72Wef5bfffqNz587Fbo+OjgbA19fXZH2zZs3Q6/XExsaa7fPdd9+RmJjIq6++WuL7RkRE8Ndff/Hcc8/h5ORUbJmMjAw+/fRThg8fTrt27Ur9OYQQQoiaJt3LhRBC3PLOnTtHUFBQsdteeuklHnnkEQAmTpzIhg0b+N///sfjjz/O+vXrmTNnDl5eXgAcO3bM2EJtZaU+1+7ZsycbNmxg9+7dxjHMAL179+bZZ58FoFWrVvz++++4u7szffp0ALp168aaNWvYv38/gwcPNu4XFBTERx99BKjduTMzM/n222958sknzYLU1atXc+zYMX7++Wfat29v3GfcuHF89NFHrFixosTPxN/fv9TPrGB8ddH3rFu3rsn2Arm5uXz33XcMGTKEZs2alXjchQsX0qhRI+66664Sy6xYsYK0tDSeeOKJUusohBBC1AYSdAshhLjleXh4sGDBgmK3eXt7G5dtbW354IMPuPvuu5k2bRojR4406SY9YsQIRowYQU5ODmfOnOHs2bMcPXoUvV5PXl6eyXE7dOhgXG7QoAGASautTqfD1dWVq1evmuw3YsQIk9d33HEH3333HQcOHKB3794m23bu3ImHhwdBQUHk5+cb1/fr148PP/yQ1NRUXF1dS/toSlRal3bA+NChwLp160hKSuLRRx8tcZ8LFy7w77//8sorr2BjU/ItytKlS+nfv79xTLgQQghRm0nQLYQQ4pZXp04dgoODy1U2MDCQgIAADh8+TL9+/Uy2ZWdn8/bbb7N69Wry8/Np3LgxHTp0wMbGxthNvUBxXacdHR3LfP+CVvUC9evXByA1NdWsbEpKCklJSSW24iclJVU66C5IrpaRkWFyjIIW7qLJ19atW0erVq1o3bp1icf8+++/0el0Jj0Cijp27BgxMTFMmTKlUvUWQgghqpsE3UIIIUQFLFu2jMOHD9O6dWveeecdunfvjouLCwDvvPMO69atY/bs2fTo0cMYRHfv3t1i73/lyhWT18nJyQC4u7ublXV2dsbX19fYHb2oxo0bV7oeBa3MZ8+eNWmhP3v2LLa2tjRp0sS4Li8vj23btpXayg2wadMmOnXqZGz5L6mMg4MDYWFhla67EEIIUZ0kkZoQQghRTufOneODDz5gzJgxfP7551y9epV33nnHuD08PJyuXbsyYMAAY8B9+PBhLl++XGZ37PJav369yet169bh4OBgHLNdWJcuXTh//jzu7u4EBwcbv7Zv387ChQuxtraudD06dOiAo6Mj69atM65TFIV//vmHLl26mGQUP3HiBFlZWYSGhpZ4PEVROHjwIB07diz1fSMiImjTpg329vaVrrsQQghRnaSlWwghxC0vNzeXiIiIErcHBARgb2/PtGnTcHBw4KWXXsLV1ZVnn32Wd999lzvuuIP+/fvTrl071q5dy48//kiLFi04duwYCxYsQKfTkZWVZZG6rl27Fnd3d/r27cuePXtYunQpU6ZMKbZr+qhRo1iyZAkPPfQQEyZMwNvbmx07dvDVV19x//33Y2trW+l6ODg48PDDDzNv3jxsbW3p0KEDK1asICoqiu+++86k7IkTJwBo0aJFicdLSEjg6tWrZvNxF3XixAl69epV6XoLIYQQ1U2CbiGEELe8pKQk7r333hK3r1q1iv3797Nz505mz55tHMM8btw41qxZw/Tp0+nYsSOvvPIKeXl5zJ49m9zcXBo3bsyTTz7JqVOn2LBhA3q9/rrr+swzz7Bnzx6WLVuGt7c306dP57777iu2rKOjI0uXLmXWrFnMnDmTq1ev0qhRI55//nkefvjh667LxIkTsba25ueff2bx4sW0bNmS+fPnm7VoX7p0CaDU8eMF3eQLuuqXVq6sMkIIIURtolOKZnYRQgghRK0THx/PbbfdxnvvvceoUaNqujpCCCGEKCcZ0y2EEEIIIYQQQlQRCbqFEEIIIYQQQogqIt3LhRBCCCGEEEKIKiIt3UIIIYQQQgghRBWRoFsIIYQQQgghhKgiEnQLIYQQQgghhBBV5IaYpzs/P5/U1FTs7OywspLnBEIIIYQQQgghqpbBYCAnJwdXV1dsbCofOt8QQXdqaioxMTE1XQ0hhBBCCCGEELcYX19f3N3dK73/DRF029nZAeoP6+DgUMO1KZ1er+fEiRP4+/tjbW1d09URNzA5l4SlyLkkLEXOpVtIVhb07Kkub98OFr7/knNJWJKcT8JSip5LWVlZxMTEGOPRyrohgu6CLuUODg44OjrWcG1Kp9frAXB0dJQ/enFd5FwSliLnkrAUOZduIYoCx4+ry/b2YOH7LzmXhCXJ+SQspaRz6XqHOMsAaSGEEEIIIYQQoopI0C2EEEIIIYQQQlQRCbqFEEIIYRFxxxMI8TtOhxbHuBSfXNPVEUIIIWoFCbqFEEIIYRGTn7xC5JkAIk635o8fj9Z0dYQQQohaQYJuIYQQQly39eth1cYg4+vki1k1WBshhBCi9pCgWwghhBDXJT8fnnnGdF1Kmm3NVEYIIYSoZW6IKcOEEEIIUXukX0ln3PBjRMe7M6RvPFZurTlypKFJmdRUXQ3VTgghhKhdJOgWQgghRIV8/Np+1uzoB8CR71sWWyYlTebKFUIIIUC6lwshhBCiAtKS0vn4207Fbru9T6JxOfWqdC8XQgghQFq6hRBCCFEBP32RQXq2MwAPDtlGzx4GVv7mgKNDPnMW+tK4lVouJc2uBmsphBBC1B7S0i2EEEKIcok9do5vfr8NAIc6mbz3WSsem9aHP3d35pdN3fHxa0gdmxwAUtPta7KqQgghKqB///4EBAQYv4KCghg0aBDffPONxd5j3LhxfPbZZwC88sorvPLKK2Xuk5uby88//1zp9/z111/p379/pfe3FGnpFuIWF3c8gYO7z3Hb6GDs68pNshCiZG+/cpbc/KYATP7PHrz9wky266x0uDqmkZTmQUp63RqooRBCiMp69dVXGTJkCAD5+fns2rWLadOm4ebmxogRIyz6XtOmTStXuT/++IPPP/+ce+65x6LvX92kpVuIW1hachqdu9lw54OdadXsMl98co7c3JqulRCiNjpxOJVv/+gBgKtjKi+/H1JsOTfnay3dWW7VVDMhhBCW4OzsjIeHBx4eHnh7ezNy5Ei6d+/O33//XSXv5ezsXGY5RVEs/t41QYJuIW4yWVezWPrJdl56cBNDuu4ltNVRli/YWWzZnxZEkJjiCUB8sg8TnmtEQAC89RacOFGdtRZC1HbvzXLFoKgZyV949DD1vNyKLefq3RiA1AxnbpJ7JSGEuGXZ2Nhga2vLuHHjePvtt7ntttsICwsjPT2d8+fPM2HCBNq3b0///v2ZO3cuer3euO8///zDHXfcQUhICG+99ZbJtqLdy1evXs2gQYNo3749Y8eO5ciRI+zevZupU6dy7tw5AgICiI+PR1EU5s2bR69evejUqRMTJkwgISHBeJzExEQeffRRQkJCGDlyJLGxsdXzQZVBupcLcZO5d9BB1uzoabLuP0/n4dkwgr4jQ0zWL1pS32z/mBh44w31q0ub0/y0zJbmbZtUYY2FELVdTAx8/7267Oycz8Q3u5VY1s1N/W4wQHo6lKMhQwghbn5HP4ZjH5ddrn5H6Pub6brNd8Hl/WXv2/o5CHyucvUrIi8vj40bN7J9+3beffddli9fzq+//sqiRYuoU6cOdevW5cEHH6R169asXLmSpKQkpk+fjk6nY+LEiZw6dYpnn32WF198kd69e/Ptt98SHh5O9+7dzd5r69atTJs2jWnTptGjRw++//57nnjiCf79919effVVFi9ezC+//EL9+vVZsmQJa9asYdasWTRo0IDFixfz8MMPs2bNGmxtbXnmmWdwdHRk+fLlnDx5kmnTplGvXj2LfCbXQ4JuIW4ieTl5rNsTYrY+X2/L6AebsKdlLH7B6njMwztOsud4WwBC/I7xxQ8BvPGmjnXrMLZO7Tnix/uvb+GLlRJ0C3Er++ADKGigGDv2Ii4uXiWWdXXVllNSJOgWQggA8tIg61zZ5bKLuefKTirfvnlpFa9XIW+88QZvv/22+pbZ2djb2/Pggw9y1113sXz5csLCwujYsSMAO3fuJCEhgeXLl2NlZYWfnx8vv/wyU6dOZeLEiaxYsYJOnToxfvx4AF5//XU2btxY7PsuW7aMO++8k/vuuw+Al156CVtbW1JTU3F2dsba2hoPDw8AFi5cyBtvvEHXrl0BeOutt+jVqxdbt26lSZMmHDhwgI0bN+Lj40OrVq04fPgwf/3113V9LpYgQbcQN5Hj4THk5qvz9QzqspcvvvXhiQcT+GtPZ5KvunPXyHx27AcXF1g0NwFQyz7yn0S6dG3N2rUQHw/Lf8pl6qsKOXl2/LGlFYpBQWelq8GfTAhRU86dvsLixW6ADicnhbFjLwIlB90FLd0AqanQRJ7ZCSEE2LqAQ6Oyy9l7FL+uPPvaulS8XoVMnjyZ22+/HQA7Ozs8PDywtrY2bm/USKtDdHQ0KSkphIaGGtcZDAays7O5cuUK0dHRBAYGalWztTV5XdiZM2cYO3as8XWdOnV4+eWXzcplZGRw4cIFpkyZgpWVNko6OzubmJgYcnJycHNzw8fHx7gtODhYgm4hhGUd3HORgkC6b490mrZuxE+/O9GtYzTH4lsQFe3F4MHw8485fP+72sptZ5vNfye1Nx6jcWOY8kId/l6+l7/2dObcZW8O7ThOu14BNfEjCSFq2EevHSQ3ty8ATz6RjaurvtTyrsphQL2+pJw9Cm2Lv8kSQohbSuB1dP0u2t28iri7u9OsWbMSt9vZ2RmX8/Pz8fPzY/78+WblChKkFU2CZmtrW+xxbWzKF5IWjAmfM2cOzZs3N9nm6urKzp07y/2e1c2iidQUReGjjz6iW7dudOnShQ8//BCDwVBi+RkzZpjMBxcQEMCSJUssWSUhbimR0U2Ny+06qk87XT1c+e3vRhQMZ9mxA9q01ZF81R2AUX3Di02INPT2TOPyH7+cr7pKCyFqrdSkVL5Y0RlQ5+WeMrHsrotuDpe0/ZOvVlndhBBC1JzmzZuTkJBA/fr1adasGc2aNSM+Pp5PP/0UnU5Hq1atOHTokLG8wWDg2LFjxR6rWbNmJtv0ej39+/cnPDwcnU7raeni4oK7uztJSUnG9/T29mbmzJmcOXMGf39/UlNTOXv2rHGfo0ePVsFPX3EWDbq//vprfv/9d+bOncunn37KmjVr+Prrr0ssHx0dzfPPP8+2bduMX6NHj7ZklYS4pRw8pfXjbNdP6+7TKtCe9evB21t9nXa1jnHbo084FnusIfdoTxD//LfmE1AIIarf0fA4snLVa8S9A8PxbNqgzH1cXbUbpJTkvCqrmxBCiJrTq1cvGjVqxIsvvsjx48fZt28fr7/+Og4ODlhbW3PPPfdw+PBhFixYwOnTp/nggw9MsowXNm7cOH777TdWrlzJ2bNnee+991AUhaCgIBwcHEhNTSUmJob8/HzGjx/P7Nmz2bBhAzExMbz22mvs378fPz8/WrRoQffu3Xn11Vc5duwY69evrzUNuhYNur/77jsmT55Mp06d6NatGy+88AJLly4tsXx0dDRt2rQxzgfn4eGBg4ODJaskxC0lMlL9Xr8+NCoy9KdjR9i9G4KDtXXNvWIJG9me4vgFN6V142gAdkS15fL5K1VRZSFELZZ4LsO43KJ56d3KC7jV08b/pabkW7xOQgghap61tTULFizAYDBwzz338PTTT9O3b19ee+01QG29XrBgAX/88QcjRowgKSmJvn37Fnuszp0788YbbzBv3jzuuusujh49yueff469vT3dunWjWbNmDBs2jKNHj/LII48wZswYpk+fzogRI0hISGDRokW4Xsvi+cknn1CvXj3Gjh3Lxx9/zLhx46rtMymNxcZ0JyYmcv78eTp37mxcFxoayrlz57h48SKenp4m5dPT00lMTMTX17fc76HX603md6uNCupX2+spar+KnktJSXD+vHqzGxysFDu0w8cHNm+GCfdEsHFPU2b+7xwKjUp8j8F9Yjn2QwsMijV/LT/CvRNLniZI1F5yXRKVdT4h27jcwFNXrnPJ2U27tbhyxSDn3Y1Kr8fauKjX0tdb7PByXRKWI+fT9fvnn3+Akj/Db775xmy7j48PCxYsMCtbUKZbt26sXr262O3vvPOOSdmRI0cycuRIs3LOzs4sX77cZP3kyZOZPHlyse/p4uLCnDlzTLY9+eST5T43ip5LljqnLBZ0JyUlAZgE1w0aqN3QLly4YBZ0R0dHo9Pp+Pzzz9myZQtubm489NBDZh92YSdOnLBUdatc4TEMQlyP8p5Le3fZAGqrtY/PRSIi4kss+9L78BKxQB0iIiJKLNe+81X4QV1evSqbgJ4llxW1n1yXREVFn0zVXuiuGM+h0s6l9Kwk4/L58xmlXmNE7WWVlUWHa8sHDx7EUEU9EeW6JCxJzidhKZY+lyoUdGdnZ5OYmFjstsxMNelSnTraWNGC5dzcXLPyp0+fRqfT4efnx/3338/evXt5/fXXcXJyYuDAgcW+h7+/P46OxY8/rS30ej2HDh0iODjYJMW+EBVV0XNp889bjMv9OyUREhJy3XVoE9CGp19N42qWCxvC2/N9kAvWtnJe32jkuiTy8+HCBbW3i1UFBpYtzko3Lgd3bE5wcGDZ51KaFpzl5rlY5FokakCGNrSgXbt2ULeuRQ8v1yVhSXI+CUspei5lZmZapOG3QkF3ZGQkDzzwQLHbXnzxRUANsAvSyRcE28WN0x4xYgT9+vXD7dqEnq1btyYmJoYff/yxxKDb2tr6hvlDupHqKmq38p5LBw9rUyJ0aG9lkfPPwcmBgZ0j+HVLdy6lNeDAjli69m9a9o6iVpLr0q1r4kT44gt4/HH1e3klJWvXFZ+m9Y3nT2nnkrunNk9s2lUbOeduVIV+b9bW1iavLfs2cl0SliPnk7CUgnPJUudThRKpde3alePHjxf7NWzYMEDrZl542cPDfJJ3nU5nDLgL+Pn5ldiSLoQo3cHj6hRgVjo9bbo0L6N0+Q0Z6WVcnv2VBNxC3GiS4q/w1VfqvKVffgknT5Z/38RLWu8yr6bu5drHtYGTcTml0EwJQgghxK3KYtnLvby88PHxITw83LguPDwcHx8fs/HcoE5qPn78eJN1x44dw8/Pz1JVEuKWkZeTR9RZ9W8noPEZHJwtN/Zu5AN+1K+vLv/0E/z+u8UOLYSoBqu+PYTBoE3j9fnn2jbFoJCccLnEfRMvq63WTvZXcXQp3/Aul/rOxuXUq3YVrK0QQghx87HolGH33XcfH330Ebt372b37t3MmjXLpDv65cuXybg2Rqhfv37s3buXRYsWERsbyw8//MCqVat4+OGHLVklIWq91KRUsjOyS9wedyKB5+/fxMqvdpVY5sT+s+Tmqze37VpdtGj96teHTz7RXj/5JKSlWfQthBBV6NffTB/Cff21QmaGgdysXAZ1DadBo/p88sqmYvdNTFd7t3h5KuV+P2tba5zrqte0lDzpHSOEEEJYNOh+5JFHGDJkCJMmTeKZZ55h+PDhJq3ZY8aMYfHixYCalGPOnDmsXr2aO++8k++//55Zs2bRoUOHEo4uxM1n11+H8fSxx7dxGokxSWbbL8Wm0LevFR8vDWPsxFCSLpgnJQSI3KMNy2gfnGPxeo4bB7ffri7Hx8Mrj+21+HsIISwv5WIK/4a3N1l35YqOZXO3M+2JHfy9rxMAC39oZLZvTg6kpKqpX7wau5htL41bfXsAUjNdK1NtIYQQ4qZisSnDQB1wPnXqVKZOnVrs9g0bNpi8HjBgAAMGDLBkFYS4oXz4bjq5+XYkpnjy7WebeGlWmHHbuVMXeOrJFsQmqTfDuXm2RB6GAQ3Nj3MwIs+43K6jk3mB66TTqcmX2rbJISPLjgU/d+aBhw7TbVBbi7+XEMJyfl96mDx9LwB6t41g6+EQAF77sCUJl72N5aITm6PXm+bKulio04yXltqhXFxdIS4OUlIqWXEhhBDiJmLRlm4hRPldPn+F33d0NL7+abV2V5sUd4nbb8vhdKKvyT5RUdry6dPw6KPQsU0inyzpblzfvnvjKqmvry+886zWxX3BpylV8j5CCMtZ8av2bP2dd3SEtjoCYBJwA+Tk2hAba7pv4bymFQ26C/KkZmVBMbOGCiGEELcUCbqFqCE/f3WIPL2W2fdAdCAn9p8B4IUnjnH8nJoYzdVRG0BdOOh++mlYtAgOHPUyjudu7J5AoxbFNIVbyBPTuuLqmArAig0hZKRmlLGHEKK6paeDokD6lXT+2q12Lfdyu0iPwW156uFkk7I21vnG5aLTkCae1Ya8eLqXnHeiOK4u2hjw1Ct5pZQUQghRG7zyyisEBASU+LV79+6aruINTYLum1h+bj6KofzJb0T1+n6Zm9m6ZYvPEn0wlqXrugFQ3+kym9anGrcfOaL+Pg0G2LpVXafTKQQ0Os2YsJ38/F0yOiud2XEtxb6uPfcMjAQgI8eJVYsjjNsy0zLZ9ddhFr67lRcf2MTST7ZXWT2EEMX75BNwdlZ7ptw/4iTZeWoStZH9j2Fta83Yp0Jxd1YD74Zuibz9hhZMmwXdJ48Zl71s9lSoHm75O4zLqQnnKvhTCCGEqG7Tpk1j27ZtbNu2jVdffZWGDRsaX2/btk3ybl0ni47pFrXHrr8Oc+c93rg4ZrBlqy2NW3mXvZOoNtGnFHYcaQdAkwbniLukjttetqYRcfFn0RvUjL+PjN5GcJehNPa6QnxiPaIiUlEMrpw6pePqVfVYw4frWLnSD6ie6fbGPezKV6vV5e9/tOO/U2Dvv8cZfrcr568UGuP9PXg0DOf2+0KrpV5CCJgzR/0eGwuxsdoN0qi76wLg6OLIH8tP88PXh3ny+SZcympgLHMiIg5oYnx9MVFvXPbyrth8264uWgt6SnJmhfYVQghR/ZydnXF2djYuW1tb4+HhUcO1unlIS/dN6EpiCveMq0fyVXfOJDblhQlnarpKooglS7XW6ElT3OjR7hQAUbGtWPRbDwBcHFIZNk6dIDuoaTQAKRluXDiTSPhu7SY2tJpj2p5Dg/H1jAPgn30dOB55kXse9ef8FfNu7TM/qt66CXErO3tW/SrK0zWJsJHtjK+73tGWOT/1pXVnP/x9tTm6TxxMNNkvMVG7Tnn5lG+O7gJuroW7l2eVa5+0NHj3Xdi2rUJvJYQQoorFx8cTEBDAvHnz6Ny5M2+99RafffYZ48aNMynXv39/fv31VwAURWHevHn06tWLTp06MWHCBBISEmqi+rWCtHTfZBSDwmP3HiXukpZYa9mGHjy1OpI+w9uXsqeoLooC33+vLut08J8H6uLg3JIdk9V1BkVNHzzxvv04uqnT9LRplc66a7N0RYUnsG/dMSAMgNCAs0Czaqu/lbUV9w+PZsZXTTAo1vS5rS4Xk9Wb85DASzw08jBzFjfn9IVmrN8fysFtJ2jXy7/a6ifErWrrhquA2koxeWIOQQ13c/Cgwv0Pu2NrV3xrhUfjBrg6ppKa6cqJWNNsaYlJ2i2CV+OKTf3lWqh4SnL5MqlNmAA//gg2NrBvH7SXf1lCiJvE8uUwfTrGXorVwdkZ3n4bxoyx3DH379/PihUrMBgMrFmzptSyS5YsYc2aNcyaNYsGDRqwePFiHn74YdasWYOtra3lKnWDkKD7JrPwva2s2NwHAGurfPQG9Vf8zHN27Buix9rWurTdRTXYtQui1YZr+veHxo3h7rvh2WcVDAY1eHW0y2Dy6204lxwPQFBb7fd2JDKN8ENuxtehXRyqre4Fxk1oxoyv1OWLyWq3VVdXWLW2Ac2ahWFltZmnZ6gPAj55P5Gvf5egW4iyGPQGrKwr3wFty+oDgHr9Hz74Cv2H9ilzH52VDv/G8ew94crZpEZkpWfj4KTOsZ2YrF1bvJrWr1Bd3OppP0dqStmJ1M6dSeHnn10BHfn58Mgj6rXSRu5ShBA3gZkz4dixsstVxftaMuh+8MEHadq0abnKLly4kDfeeIOuXbsC8NZbb9GrVy+2bt1K//79LVepG4R0L7+JREee5Zm3Ohlf/zx/LyF+6l94xOnWLPpQsg7WBt8vOG1cLuiV07Ah9O2rdeWc8N9oPJpoYy3btHczLh+OsmL/SXX8dpMG5/Bs5lm1FS6Gf8fmdAk4bLLuq6+g2bUG9/HPheJWNwWApX915fzpRIQQJTt7NJ7m3gkE+57kSmJKpY6xZZ86XaCNdR7deruUe7+A5lcAUBQrog/GGdcnJqut5va2WTjXc6pQXVzdtGg55YqhzPJffRiBXq9dA8PDYfaM06XsIYS4mSmK+lUesbEwa5aOmBi7qq3UdXjpJWjdGho1qr6v1q3hxRct+3M0atSoXOUyMjK4cOECU6ZMoUOHDnTo0IFOnTqRkpJCTEyMZSt1g5BnyDeRpcscyMpVx909OXozo57oi4d3JH2Gq9unze7O2KfBpfz3YsLCcrNyWbbSDQAHu2xGjbQD1BvNl1+GzZuhSRN48Z12gJbEqE1n7anims0BXM1Sf4mhreOA8l0ALe3Be5PZ85a6/NijCnffrd0wO9VzYsI9m3j/6zDy9HWY995RZnxVwYl+hbiF/PLFPmKTRgCw9KOfmDRzbIX2T4xJMk4z2Nn/GI4uweXe179lPqxTl08cTqZtj1bqMVPqAeDllozOqnGF6uNWX0u8lppa+p1zXk4eXy5rDYCVTo+CFYqi4/V3vRkx4iwtQ6pv+IwQoubt2KG2znbvDj/8AHZlxNLjxsGWLVbY2wfy448wYkS1VLNCxoyxbItzTbEr9MvQ6cxny8nPV5No6vXqPeycOXNo3ry5SRlX14oNV7pZSEv3TWTjTq3F86WZvQHofVd77r07B4BLl3SsX18jVRPX/Ln0AJfT1W6aI/uE4+yiXbDuuAMSEiAyUm35LszVw5VG9c8DcCFFC15DQyo2d64lPT6tJ688tImXx29izifmYzafnhaArbW6fsHyzmRKAmMhSnQxSRtCsn5TxVqVAbauPWVc7tM1uZSS5vxbawHyiaPqNSU/N5/kq+q1yqt+SoXr41rf3ricklL6rcaqxfuMiRiH99rL5LFbAMjOc+DJRy5V+L2FEDe22bPh/Hn49Vd4773Sy2ZkaMkXs7OtGT3ais8+q/IqCsDW1paMjAzj64yMDC5fVpNzuri44O7uTlJSEs2aNaNZs2Z4e3szc+ZMzpy5NRM8S9B9k8jOhp071WVfX/Btrv1qx/5Heyq1d6+2z95/juDrGc/Y23aQn6tN7yIs48IF6NwZAgIgKkpd9/33WovP/Q+YT8Hj5WWagKiwID/zuW5Du9a1SF0rw6aODe8tDuP9r8NwcDJ/DO3Twpt7hqlZKi+n1jWen+LGcfXyVRa+u5Vje6Wbb1W7ZHencXljVO8KX5O3bNYefPXpV7Hrgn9bbbz2iZNq8J8UfxlFUf+PeNav+BMzN3ct23nq1dJvNeZ/oQXoE5+uw4x5oTTzUPNZrN8fSvzJ8xV+fyHEjevkSW353Xfh8OGSy+7fD4ZCI1gMBh2TJ2vTJ4qqExwczLFjx1i7di1nzpxh+vTpWFlp1/vx48cze/ZsNmzYQExMDK+99hr79+/Hz696pritbSTovkns2gU5aoM2/fqZbuvcWVsuHHS/9UY6Z5Mas2xDD76ZKXO0WJJBrzBunJqB98QJNVHauTMp/L5DnTfXy+0iA+/pUMZRTLVplWG2LrSPryWqW2XChvoal48cqbl6iMqZPmk/j03rTUhPH/b8HVXT1bmpJV/Wer2kZbkSvtE8405OZg5fvL2Ftydt4u1XzvLuu2rPGIAte9SWYp3OQM/BFUtc2Kq91nX8RIz61O9igna98WqQU6HjAbi6a4F/SlrJc3wf2X2KTZHqtTCg0Wn6j+6AUz0nxo3QWu63r7s1W0WEuBUpipZsFiAvDx59FPT64ssXvq9t00a7bs2eXTX1E5ru3bszfvx4pk+fztixY2nVqhXtC0078cgjjzBmzBimT5/OiBEjSEhIYNGiRdK9XNzYNq69aFwOCzPd1qgReHurLaz79uRg0BvQ5+nZGqndmL05rwdZ5ZtKFYB3n9lEkwYJLHx36/VU+6b10UubTbryHz0KffpCbr7aInzf4KPY1KlYSoWgtqZ/rk0anMOzafHTANUWQUHacpTEbDecdVvVQC4nz54R//HhnHlnC2EhyUV6hK//w7xb9WsTdjJheh+mzwtj+gfNmDYNQkNh5nuZHIxRx2GH+B3H1aNiNzRO9ZzwqX8BgONxPgAkZmpj8LzadC52v9K4ebkbl1OtSn7A+NmH2pytTz4Qh85KffjQs6/WxX77trKznwshbg5JSebTau3eDbffDh06gKcnvPKKtq1w0P3qq2fp0EG9342LKzlQF2UbNWoUGzZsML5u3Lgxx48fp3Fj7SGtTqfjpZdeYu/evezevZsJEybw/fffM2rUKACsra2ZMmUK27ZtIyIigiVLlhAYGFjtP0ttIUH3TWLjWq37Xb9e5pMAdmmhXpVSr9pxKjKGw7tOkZrpZtx+7nwd5s83P25mWiZLP9nO6UOxxnWfv7WFaZ+GEZ/sw8vvBWHQl52Z9maWnZHNqD67aO4VxxMjt7Dova1Mm9MTUFud7O3VfwCn49yM+4x7rOIZx9t09jV5rSZRq90KX1ulpfvGkpmWyfFzLY2vzyfXY/hwOH4cfv92H4vf3yrdfi3oUpEYe/0W08A55WIqC37uRFF6Pbz0qqOxK3ifLhfNypSHfxP1d3kprQGXL2aRWGjCAS8f+xL2Kpm9ow0F07CW1NKdEH2Bxb+pU8k42V/lwWdDjNu6394KnU7937JtX/XP0CCEqBmFW7kL99TcsAEiItSg/IMPoCABdkHQbW+v0LJlFk2aqK/1enVcuBC1hQTdN5C9/xzhlwU7zYLczLQsdh9VM7+2aHiWJn7OZvt27qB1udm7OYEt6y6YlXnvPUhN1V7r8/QM7H6K+5/rSZtODZk1C9Yvj2TS/3oYy1xOr8+hHSfNjnUr+WTaTlZu7UbMxSZ8uaoPj77am3y9erc59eEtzHvfdDxsmyYn6dC3dYXfp03nJiavazKJWnm5uUEjr3QAoiJSUQzlnP9D1LjDu85gUKxN1oWHq1OQDBvfiUem9mbE0Cs1VLubT/KFNJPXO6LakJmmjaX+8oMDZOSorb/39N/BH8sTeOYZ8+P0CavclDn+ndsal0+ecTANuisx8YBOp/79A6SkFF/mo+nHjL1/Jo4Nx81Te9Dg6uFKsK/6vyXytD9XL5s/TBZC3HxOaSNLGDsWpkwpvtyaNXD5shakh4SAjQ00bardZ8TGFr+vEDVBgu4bRHTkWXoObsndT3Xns9dNu3TvXHfUeOPSr8vZYvfv3F0LxPfuyWfzNu3GrGN79cYuORlmfaRdrD6bvo0dR9oBkJNbhxdegNvvbYfeYNoteuOf5gH8reLcqfO883nxXS+7tT7Em/N68tDTftzbf4dx/bjR54xdKCvCzQ18fLTXoWEtSyxbm7RpfByAy1dduRgrmYhvFBF7tP7Oj99zGKdiEmqHn2xDalKq+QZRIQa9gctpjibrcvPt2PbHUUCdUuvTbwIAtffM2zO9GTLGh9mzYcECsLZWH8Ra6fT0Hly560JAoK1x+cQJrjvoBi0pZGoxp0hSXBKf/9IFAIc6mTz3vyCzMr1C1f8tBsWaXX+fqFwlhBA3lMIt3S1bwqxZsH07HDhg2pX8t9/UvDkFOndW718L9X4mrvZ3CBS3EAm6bxCrlp4hT6920Zv7TTOTFsONf2stJGFh1mb7AnQK0zIF7ol0Z8sB9cbMxSGVn5bZYWOjHu+D9/NYNncHZw7HMe0TrSujTqduVxQ1WOzQWhvcuXFrxbse3ixemRRtbH169K6t/PTZDkb33cmIXrtY/lsDbO1s0Vnp+PLntjw0dCsPDtnGM291rfT7hYSo362soFOfis2bW1OC/LUWqqjw+BqsiaiIiAht+f7/6lmzBnr1gmHDoG1TLcnXmaO37kM3S0m9lGZ8mGltpWUtX79T/Rv/ef4ezl32BmBYj734d9TGW0+YAGuXRjAwNJy5b2zHo0mDStXBv1DutRMnIPHEUeNrr3ppxexRNldH9W8/NdVg1svlk3n1ycpVHzQ8PnpvsfkpevbSHvBu3ywt3ULcCgoH3S1aqL1mevRQ739CQ6FgyudNmzDJndPp2i1rk0KdAiXoFrWJBN03iHUbtJbqU+d92bI60vh6005tupd+d7Uodv/63vVp0VBtBd91LIikNPXGrFe7E7QKsGbSf/YDkJtfh7FP9+C2AQqZOWr22afGbGbDBh1Nm6rHCg6GjTu9cXdWW8K2RASgz7v1slXs3AlL1vUCoF7dK7y/oC33TurBL5u6s3JrNxq38jaWdXF3YfHvvfnmj144ODtU+j3fegv694dPPgGP2p1DzahNkHaZORJRuZt3Uf0ijtQzLrfr7ktYGGzdqrYu3HuXFmifPiZdzK9X8nmtKbh/qJb84N/tXigGhY/na9f45180f8g58N6O/L0vlCff6FPpOhQOujf/ncSFc1rXdi/Pyl3f3azV7uEGgxXpKenG9RcuwNz56gPiOnUUXngntNj9e93ha1zedqBppeoghLixFO5e7ucHJO2E8Clw4EV0Jz7jrv7qbAb5+ZjkIurUqaClW3vAJ0G3qE0k6L4BZF3NYstB0653i75Ub2AyUjPYc0wdH+zf6Aw+LRqWeJzOQWrrdEHCHYC+PdWx3h9+2Y5Hhmnd1s8kqjc4TRqc473POxAWpibC2rRJ7d7j6mZFWEe1u19KhhuR226trn+Kgsl4yrdfT8Xdp17JO1hIaCj8+y9Mnlzlb2UxQSFuxuWoIxXvVi+qnz5Pz8HTanOCX8OzZtmw/VpqXZFPn6z9uQVqu+RErRW3td8VY4+W/fuhYYM09p9SMxJ2anWE3sPaVUkd/PygkY8aXG/d48GGA+q0L7bWudTzcqvUMV2dtbnDLyemsXzBTu4KO0bTplp24oce0tG4eTFjF4CmrRvRuJGauXzXYT/yKzZ1uRDiRpN6lOhT6t98o4aZOGzrBf/0gOOz4ehHED6Z4Q0fMxbPuJauyMXFQKuG6n2otHSL2qpKgm5FUXj44Yf59ddfSy0XFxfH+PHjCQkJYciQIWzbJnNFF2fLmihy8kxbN5b/G0rKxVR+mBtu7HYe1rn0q0vn0FyzdX0Gqi3etna2fLWqF+8+s8lk++ezEnBxdwGgbl3o2xfsrg0H79dXO97GtYncSvbv18YWtW0LTzzvW6P1qc3adG5mXD5y0qUGayLKK/pQnHHYRIi/efpXvwAtCD8TIw9SrtelRG2+Rvf6CgMHatsuXtE+6+cmpVQqH0R52NjAVx9EGF8XdHf3dE2u9Hu6uWhTfQ0dlMk9T3VnzebW5F1bXa+e6dQ/xenZS33Ak5GhzUkuhLjB5WdBlvnQpLS//kPSJfVvvoXbXkjablaml/9m3NxMe990ahmFzd8hNEz+Gh9vA1bXohtJpCZqE4sH3QaDgRkzZrB9u/kfSmGKojBx4kQaNGjAihUrGD58OJMmTSIhIaHU/W5F67Zo3ZT9rnURz85z4Pmnk5n0pjY+ePjI0rstd+ll2hLr6GigY1iA8bXOSsfU2WH8smAnnVodYcbTmxjyQMnzs4YN8TUub4rqWa6fpTZY8flOOrY8yv13bOf3b/eQm2X+MKIsGzdqyxMmqDesonhunq741FcDt6iYJiiSwLzWizipPSgJ6e5ttr15oJZZ63Sso9l2UTHJF3OMy+7uOp57Dvr1g2bNoJlPKr6ecTx61xbuebLy+SDKY/D9oTz3300m6zzrpVT6eK6u2kwbUbGtjMs+nhlMmQJ79oCvb+nH6NVLWy7jtkIIUdvpc+H4XPitOeybZLY5OtbNuNzS61o/c9c20HUR3LYBun2DbejbDLk9x2S/zo3+QGfIpdGledTZPgQfbzUol5ZuUZtYNFRITEzkhRdeID4+HheX0lu0du3aRVxcHD/99BOOjo60aNGCnTt3smLFCp5++mlLVuuGt25rIwCsrBQWLrKj/1B1/eKfteRoj4/YwuD7e5d6nA59WmKl0xunAere3Yo69ubPXUZP6M7oCQBtSj1emy7N8PSEixdhyzZb8vNrf/C5eWUEYyd1Il9vy4FoWPo31Jt4hdlv7uGBF3qVfYBr1JZ9NfDo16+KKnsTaeObQMJlb5KvupMUl1Rs0iRRe0REai2bIT2bmW33bNIAR7sMMnPqcvpc5RJ3CU3yJa3fdANPWxo2VOekVble+2pSzJ6W9+6X3dm0+6ixS7uXe3oZe5TMzdX0CVuTBudYMCuBQfd1xNq2hJ2K6Fnoee7WTdlMnnzrJu4U4oaVGQ8JayHqXciIUdfF/QqpR8E10FjslP4B43KLdr4Q9hd4DwSd6b3qXaPgh5+11136+KCgQ4eCLnE9TZz2E09nLl6EnByth6YQNcmiLd1RUVF4e3uzYsUKnJ3N54ouLDIykjZt2uDoqLWShIaGElE4Za4gPl4dSw3QubOOfkMaElok50xY+wPM/al7mV0A67rWJaiZlhayT+/ra3LU6SAsTF1OS1Onc6jNTh+KZfSDTYxzaBe4klGPyW8Ek59bvgGD+bn5bN2p9irwcrtEYGAZOwiCArQb96i950opKWqDwpfhgvHFhemsdPg1VHslxST63JKJFC3pUqGZ9Nw9avbu0M7Rjh+X2ePioCZ369cro9LH6tpTG6v94JBtHDrixNAHOmNtW/wsG8UJDgbnumqr1i8r7ekWeJhPXtlEWrIkZRSiVss4C3snwWo/WNUE9jyuBdwATUaDlen9WDQPGZdb9roNfO4wC7gBBg0C20K7dr73AQxh68izdlcP7XbauC3+pNrT7soVtZdibsU7NwphERZtl+zfvz/9+/cvV9mkpCQ8PT1N1rm7u3PhQsnTz+j1evT62n1zV1A/S9Xzr790FDwbGTjQgF6v8NBDOsLD1XUtWigs+8MPKxurcr1nl37NOPS1utyzl4HrrWafPjp+/lmty7//GujYsXb2HU5Lg2HDrUm+ql6Q7+i8jwkT8nnrXVcORAeSmunKjr8i6Dk0uMxj7d1wlKtZarm+HU9gMFRNAjVLn0s1qXWhBxNRESn0GXHj/0w3koqeSxERVoCO+vUVvL2Lv040b5LK4bPqfNJxMSk08Sv9Qaso2aXL2gNTNw/7Gv+bb9G+KYcjL3Bo93H6jehqUp+KnEu33R3CBof9ODja0nlA93LvV5hOB4O6hLN8Yw8Adh9ry+5jsPCHU2zdo8fVQ/JEVBm9Hmvjop7rvmEwO/zN8z9OFKLPRRfxPLrTC9EZ8sw2Kw0HYgieAfWvtSAV+v2fOqXd8/r66ks85ZycYMQIHcuXWxEcfO3/lKEvR31/JDh9Jk3ctX7lscsfphm30fve54g6YsUzzxiYNat23quK2qHotclS16gKBd3Z2dkkJhafMMvDw8Ok1bosWVlZ1KlTx2RdnTp1yC3lEdSJEzdOhuxDhw5Z5Di//OhJQbfC5s1PEBGRQYcOOvr1a05ysi3Tp8cQdyGHuHJOlTt4qB3bdvjRqlUmLi5nud6OBQ0b2gFtAVg09xyd2p6innftuglSFHjpJT+OnFG76Qc0OsWr72dT19WB+0Yd48BMNSJcuSyOuo3K/sNaszweUIPudsEXq7x3hqXOpZrk1ED7u94W1Zju0qOlRpTnXEpNzOD8eXXqqVbNk4iMLH5QnFOhFLH/bEqkY1p0seVE2eKSteEWyemXak2PL69Aa44cP1LstvJel1yaAuRe1880ebpCi+a/8ceGVhyKUa/XR+Jacu/Qnbwz3xprm/K3nIvys8rKosO15YMHD2JwqPx0l6W5Gf7HiUIUBf9zu3G+FnAbdHXIsG/LVceOpNXtQYZDO4gFYiPMdo2I8AfUB7iZmYeIiCj5nmziRCs6dnSlQ4erREZe66loU58Dru/i6Kt1H4q76MHxP78m6sgLAHz3nZ7//vegMdmaECWx9LWpQkF3ZGQkDzzwQLHb5s2bx4ABA8p9LDs7O1JSUkzW5ebmYm9f8ngtf3//CgX2NUGv13Po0CGCg4Oxtr6+GwF9np49u9Wufa5OGfz3v62MY6b/+aegVMX6NoeEwIgRAHbA9bfQtm+nENgkmqNxLTh1rgkPjbfmt19TadfTv+ydq8kXX+jYuFG9urq5Kaz6sz6tgtTpkDycGvLSTLXcjkOd+Sik7LHGrx3SkgON/G8wASG+Fq8zWPZcqmnNmgFPqcvnk1sQEmIotbywrOPH9Zw6dZxBgwLKPJf+/incuNwjIIqQkOLnfu7aVcePP6rL1tatCAmRloPKyip099ejXy/q1q3BypShpq5L3XvDDODA5ijuGO7N5fT6rN/fnbafbuKj70rPZyIqKUMbWtCuXTssfWLeTP/jbmn6XLA2bUSj0UcoW4eh+E9GCXgOxzr1cKQgE07JLl5Ur4Xu7gq9e5fd87BwokXj+dSuHTH9reHaHN6xyU3JcepiLHflii02NiG0q5rZF8VNoOi1KTMz0yINvxUKurt27crx48ev+00BvLy8OHXqlMm6S5cumXU5L8za2vqGuTBboq6Hd5ziSoaaXXxA6EHs7LpbomqWZQ0rfoEhw+KIudiE+GQf+tzhzD8rj9JtUNuarh2HD8Pzz2uvv/lGR+t29Y2vmwY0IqhNHlFHbNl7uCEpKeDuXvLx8nLy2HpQfdDhXe8CgaF+VTaFT4Eb6bwvSYMG4O0N58/DkSO6G/7nuZHs2ZFNt152WFm1Zf9+A+3alf7ZHwzPNC53CLUt8XfVsqW2HBNjhfxKKy85Wf1uZwfOztboboBZ2GrqutSpfxArvo1g4D3O5Ottmf1DGCEh23jwxfInwhTlVOj3a21tTVX9kd8M/+NuSYoCcb/A/uegx1LwLPSA1rsfjIhHV8et3IfLzlbzGAG0aFH5+wRra2uaNdP2jXd8mjMXTR8YbdxoTYcQhaIX20uXICFBzSVxI1yHRdUquDZZ6vpUY50r2rdvT1RUFNnZ2cZ14eHhtG/fvqaqVOscOZBsXO7cMaeUkjUrsEsLdu22p0vAYQDSs5157dWaz1SRdTWLsXfFUXCKTZwIw4ebl7tjkJqNQ1Hg33/VdSs+38nI3rvYt960a+W+DceN8xf36xRd5QH3zaTNtWT4ly7BX8ulK3J1+XHubhRFh16vY9n3qaWWPbjtBB9+pT3+D+la8kPQ5s215dPXctb88d1eBnfdy4NDtjHzhU389NkO3p60iXtv28Ednfex66/D1/Wz3KwKgu4GDeRGrzzCRoUw782dxtfvzfGpwdoIcYtRFLjwL/zbD7bdo2Ym3zcJDEWS0VYg4AY4cwbjlKKFH+pWRqHRT8QlebFjj5PJ9n//vAT/9ofsJOO61FQIDIT27eH776/v/YUoTrVO8HT58mXs7OyoW7cuXbp0wdvbm6lTp/LUU0+xceNGDh48yHvvvVedVarVjkZpgXZg26oZS2UpXr4ebNrrRPOmF0lM8eTASV8Ug1KjQekHL+0m6kwYAMGtU/noI9diy91xB3z8sbq8bh20aHCUeyd2Rm+wIe6pI+wr1KNk0zptnFBYX+kiXRH9+2sPNe4c24wFJ7bw2LTiuy4Ly9myVwucN+8oOdnZ0T3RDBhaj8vpak+QAR3Dadu9Y4nlfZsZKHhue/pAFNkZLbj/qVakZLipBdaa77P3nnR2h0OrVqbrDXoD7z67hWMnbPlkYQAeTW6dacgUg3It6NaV2stGmHr8tT7MXXSCQzH+nL7QGH2evkJZ0YUQlZCwDg69Acm7Tdc7NoG8VLDTLmL5+fDcc2oL9qefQimjRwGILvQsvkWL66umhwfUqaNmKj94UGtBL7B5mz25Cdups7YD9PwJPHuxebM2k8Snn0IJo2mFqLRqbekeM2YMixcvBtQm+/nz55OUlMSoUaP47bffmDdvHj4+8sS6wJHj2hWqTceGNViT8nFwdqBdCzXp0uX0+lyMvVTGHlVr0w434/KPi5NKvOD37q39M1j3Vz6PPGqF3qA+jwo/2Ybk81rr4MZtWtDSb2hTi9f5ZjZlCowYdBEAvcGGx1/rw6uPbEIxyFjgqpJ2KZWIaC2/wp69NmRmmpeLjjzLbYPqkpSm5jTo2vowv/7jX+pDM8e6VnjXUzM4nklowLqfIrWAuwRXrjoxbBgUSefBa49v4fW5YSz9uydvTCk+cdfNKiM1g5wc9XN2t7m1fvbr5dtS7TKap69DCTlehRCWkHUBto2FTYNMA27nVtBnNWkdfufsBdOnhitXwmefwVdfwRdflP0WhUecXm/QbWUFjRury0UDboCMHCd2n+oKWefg3zA48gEH9msNKeHhpvURwhKqLOjesGEDo0aNMlv39NNPG183a9aMJUuWcOjQIX7//Xd69OhRVdW5IR09o94A29lm0zyocQ3Xpnza+GvzMR8JLz7rcXU5l+QGgKtjKkHdS+6r5OAAfTurdT2XYEPkmQCT7Zt3qi3kuVm5bD/cGoDG7gm0aCdBd0U4OMAvv7nz3H83Gde9tziMVx/dLIH3dUhLTuPcqfPFbtux7gQGRWv9y8vTsX2baQ+N1KRU7rwzn/NX1Ad7HVse5a/NTXCuX/YUYH4+6kOUCyleLP5aWz93+ma+m7WN957dxM/zd7J/0wnatlV/x8ePw733qq0gAEs+2c57i8OM+67Z1PKWOh+SL6QYlxu4ppRYTphrGtDIuBwbL63cN5rly3W8/rovR4/WdE1EiRQFTi2E3wMhdpm23i0YevwIQ4+S4nQXLVrq8PWFtYV6OO3Zoy3/+WfZb1W4/PV2LwdoWswt2uDB2vK/MY+oC4oeIl5h/78RJmWXLUMIi5KE+TUoNyuX6MizxW7Ly8njxLlmAPg3ir1hus0FBWktY1ERV2usHopBIf6SmiezUYOkMkrDHT1Ol7ht0yb1+4Z/MsnMUVtW+nc5LeO5K8Ha1ppZS8KYO32zcd37X4fx9tObS9lLlORSfDKB/hn4tm7Ais93mm3fsiHdbN2mn7cYl/Nz8xl75wmOxavNCoFNovl7sxdunsUPxSjKr0macfm37V0BqO90mcdf7cG453rxyidh3P1kdzr09ee337Tu03//DU28LvP4iC08+nKoyTHjk304tOPWaWJIvqB9hu71zOe0FSUrfFMdG1t8me8/3sZ/Bm7nVETx/2tFzcjIgIcf1rF2rTuvvSa3orVazBLIS1GX7dyh2zcwOBJ8x4KVtUm37KVLtd0KzxK4ZQtkZZX8FhcvwooV6nL9+hAaWnLZ8io8rrvAa69py+tPPwhtXwfUe7n9R0xnr/npp+uvgxCFyZWuhigGhYFdj9AypBnjBm1Dn2c6F2H0wTjy9WqCr0C/mu2mXRFt2rsZl4/U4NPrK4kpZOep4+AbeZSePArgjpGNTF4/NnKXcQ7HjRvV7yvWuBm3jxxf85nZb2QT/9eX+W9qwd8b88OY9dImkzL7Nx7lwSHb2LjiQDXX7saxfFEUCZe9ydfbMmmqL1cvmz7o2rK7vtk+G3doXQBffEnHX3s6A2qwvGaNDe4+5vuUxM8332zd6NFga2drtr55c/j1V7C9tunC5fp8tboPOXnq2A5fT61nzJ/r3cpdhxvdpQvanah7fckTURGFb6qLC7pTk1J55KUu/Li+J/eOTsOgl8+3tjh5ErKy1GAnKqqGKyNKptNBly/Ayg6aPwBDj4HfgyYZHwt3w967V/2uKKZBd3Y2bN1a8tssWqSOvwZ45JGyx3+XR9Gg28cHuncH/2sjrnbv1nG1+VvQ+1eS0n2Iv2y6w+HDcm4Ky5Kgu4ZsWR3JlkMhACxZ14uHh+80uSE4GnHRuNwmoOYzgZdXm85a00NUQkiN1ePcaa11u1HDYgaxFhHYuQVtmqr/OfwanmX2N+2MT1oPH1anulq1Sn3t6Ah3DHOzcI1vPU++0YePX95kfP3yrF7EHU8A1DnqR4914ru1vRj6n4ASe4Tc6v5cp92ZXEjxZsZz2hzbWVcz2XNMnd7Ov9EZAhqp5/feE61Jv5LODz/A7DlqDxobGz0rvo2lRftmFXp/vxbmuTjHPlBy0N6nj/oQa/jt56hjoyWKDGt/gLX/asnT/tzgUdzuN6XkJO1zaNBAes9URNPG2kOfuBMJZttPHc8kT6/OH7z/dDArvtxtVkbUjJMnteWzZ0GvL7msqEZJ2yFph+k6lwAYdhy6fwv25kkuC/8uT5xQc3YkJGit3wXWrSv+LfV6+PxzdVmngwkTKl/9wooG3d27q8cfMEB9nZ+vtsDTZAQHnH8zlqtX97JxWbqYC0uSoLuGLPrStNvnd2t7MWH0NhSDGngfOVQoc3lQnWqt2/Wo5+WGt7e6fORk+bqoVoVzMVqXzUbeZf8311npWLXKhpkvbGL7DgccXRwJ661NZzdjapzxH8iQIer4ZHH9prwfxrP3qV3L9QYbvvr4OAB/Lgkn5qL6HzMr15HHH7psnEpEqLIz9fwbbtrj4pMlPTh5IAaA3f8cNwYcvUPj6N5eTQ2br7dl5fenKZReg3nzrAkbFVLhOjT3dzF57eUFffuWvk/PnrBqXSMSz2XzzYfb+OjFTfy2oSWt2zoQcC2dwo4dcOVKhatzQ0pO0rqUuzeo1glFbnhNPbWH07FHzZu6T5/3Nnn9+jte5Oea984Q1a9woJaXpyPB/JmJqE4GPex/Hv7pBTsfhPwifcHrlvxAtmjCsX37TFu5C5QUdP/5p9ZTZfBg8PMrf7VLUzToLkgbVRB0A/zzj/r9QKzWn/3lYTPR6dQbjmXLkHsPYTESdNeA1KQUftmgTsVT1y4dayv1JuCr1X348EO1zNHL2lRKgV0DzI5RmwUFqd8vXVLH6dSEc7HaP4xGjct3mrfq4MsLM8No2FydYqlfh0PGbZ9/r2XVHz3aQpUUALzwlr/xb+DLn4PIzdYzb4Hp72zDgQ58/XVxe9+6Nm2xJivXEQAne/UhXp6+Ds9PUtM4b/k3xVi2d28dHTtpfxNPvNSay9ce5t9zDzz+eOXq4NfGtEX67rvBupzpJ9w8XXnwxV48/2GYMWnbkCHqNr1eHfdtKRfOXOSpMVtY8sl2yx3UQi5d0u7o3D1unAestYF3c0/jtSP2gvlD3tNFUnUcP+fHt7PMcx+I6nfihOnrM/sj4dhsSNxYI/W5peVnwNaRcOza3KnppyB6Ubl3Lxp0791rGnQXDNWLiio+k/j8+dryU0+V+23LVFxLN0BYGNhce775yy/q/5v9+7VyQx+5jT591F5HJ04U/wBBiMqQoLsG/Lgg0niz/NDwcJbO2YOVldrCPXeeFQYDHD2q/sFbWYF/8I01eWubNtrykRqaAedcvNa63aiJXaWO0WtIa+MNncGgRhJ1bPMYMlgee1pSo5bejAyLBCAxxZOZ76awbm8nAFwdU4zlnn9e7eYvVIWzwc6bZ4NPffXDWbOjK68/sYUN27VugL0HNaNtNzfj66wcNbirX1/h008rXwfv5l7Y2Wo9Qu4dWXb+hNIUBN0Af6ywzBM7xaBw7/AEFqzow7jnevLtzG0WOa6lJF/WupQ3aOhYgzW58djUscGnvvqQKfai+ZCEokE3wJuzWpCdkW2+QVSrkydN/4+eWfsx7J8Ccb+aF977FBx4GU5/A5f2QF6aeRlROVnnYX1fOLdGfa2zgY4fQ6sny7V7To55PoWiQfeYMdpy4YepeXmwejX89Zf6unlzGDSo4j9CSQonWqxTBzqqbV3Uq6e9z7lzsHkzHLiWOsbeHlqHDWDsWG3fKc/qyT2+FBTJCSGujwTd1STlYqpxGpyFS7Sbg0cmNuTeST0YNEj9VcTHw/btGKfQaNEC7CoXM9aYgpZugKjwmmnqPpekjStt5OtSSsmSOdd3ppP/MZN1t3c6gIurjLu0tKde07p2vfa29pDp1QkR3H+/upySAuPHa8lWbmWKAn/8oS7b2MCIMfZ8+JoWYcz4sg+bI4MBaOqTTrPARrh4OtOmiWnz0idvROHlVfl6WFlb0bGl2k/Uz+ssPfqWPc1YaXr3UnByUHMwrF1nVe7EV8kJlzmx/wwn9p/h5IEYk8SUyxfsNObPAHj81c7s+ONQMUepGcmXtS7l7l5ONViTG1NTr2QALqU1IOuqaf6OwkF3z7bqE+D4ZB8+mbar2uonCsm7CkdnwT+9OHnYdMDvmaTm6oJN3SL7pMPJz+Hoh7DrIfi7Kyx3hZWNYcsoSNws/X8rw5APxz9TpwK7fC0XiK0L9FsLraeAVfm6LJ0+bf7xFw66HRxg0iRt27p1EBMDEyeCtzeMGKFtmzCh/D2lysPVFXx91eU+fUzvpceN05bnzdOGO7Rrp/5PHTsWGqqzaLJ5izVPP5WO8lc3SCvSRUOICpCg24JOn4ZXXtFxKFL7y1YMCg/duZV6Xq6EBp3n048zCD+pNgV3bHmUkD5q1/HCT9U+/FCbWiEwsNqqbzFtGmmB6pFdNZPC/FxmO+Nyo8DWlT5Ov+6mNwajR0jEVxXCwszPdTvbbB6eEswnn4DHtedUf/8N9w2JIj/31pta6dcvd/HiA5uIP3meEye0gKJ3b3Bxgf8804MZT2/C2so0h0Gf/logF9ZV6ypwe8edjJsUxPX6+vu6THt0E6t/zcXK+vr+pdjZ6xgQehBQg6h9/5Z8/UhOuMwXb28hrH0EHo3dCAhtTkBoc/w7+tK8SSp79kBmWiYvvGk6FjE3346R//Hk5++SeP99mDwZfv/9uqp9XS5d0ZLhuXu71VxFblBNvbWM/XEnE022nYlSM+K71M1k/gIbdDr1Ic4bc3sQvkEmh65Wp76C1c3gwAuknj1EUpppz4TTad2g01xodp/pflcOAMUE1VnnIH4l/BsG//SE2BWgl//P5ZK4Cf7qCOGTIe9a7yTHpjBwBzQcUOquRRXtWg5q41HB+nbt1G7drtdGf6xerWYPnz8fkpO1fXx94dFHK/yTlEqnU6che+01+PJL023Dhqn/N0GdVaNAQWu4m5uaPNfOTj33vtzwBHN/6grrOkP8bwhRGRJ0W9DUqfDRR1Y88UQrtl9rSZn/vy1880dvAA4c8+GZ57WnuI8+qrWYDh+uPYUrfAPYptX1ddesCW06ak1nUSdqJpnauXPqdxsb8PSqfMt02AAtYLG2ymfY/W1KKS0qS6czH8t1z237aNDYnQYNYPlysLdX//n9+m8Q44bs4ZcFO3nzyU1MumczR/dE10Ctq8/BbScYM6ELH30fRpeuOj54URuXOvQOtXVPZ6Vj2qdh7Nqlo3Wh50x33KEtP/m8Dy4OqbT6P3v3HR5F9TVw/LvpJEACIbQECAESIJSE3puKKKCAiA0ERAVFUX42ioJiBwsoiPoCNlAREAEREaRLD4QeSkIInVBCSc/uvH9cdmc3vWwaOZ/nyZOZ2ZnZu8nd2T1z7z235km+nV/LLnPNB7UM4L3/60aTDg0KfC6A+3vpN1RWL4/NdJ9Ny/YRUN+RUZO6sHF/CJpm+1F2+mJlunWDRx84zenLajrAe1qG0SNUDdy7dKMajwz1Yfx4+PJL9QXs8cdMXL0QZ5fXkBdX0tTdJkdHE55V8tcrpyyr7afXl5gTeva9tJQ0Tl1STVUB1WJo1imQ155USRtTjS48OsSDmzc0bl27xfTxG5kwYgOXYjKvbyKPTMaMibicykOK+v8cv5DxWnEyqRcEjoZKzW0f8OkID0ZDt1Wq23O9Z9Q2Zy99n8vbYNtg0NIlTTUmI9JJvQWbB0CcVW+fgOHQazd45XwT9q+/4K239ESX1kG3r2/G/UNC1Pewu+5S68nJqls5qFbwRx6BpUtV787KuZ+tMtdatIB331Vd162VK6dykKQXGqovt20Lc+bon5Ev/zSd7YcbwaYHYd+bqp4LkRdaKRAfH6/t3r1bi4+PL+6iZOv9iac11dFG03wqXtKWz9uhuTonWrZZ/7i5adq1a7bH97/3TIb9fpi2uVheS0FV97pg+TsUBx8f9ferVatg57l59aZW3u2GBpp2X5ud9ilcLqWlpWm7d+/W0tLSivR5i0tcnKZ5uKdZ6v72vw/YPL76132ai1NSpu+niuXitNU/7y6mkhe+R3r8l+nrBk07vONEhv0TEjTtk0807aOPNC0tzbYuGdOMWnJCcjG8itw5vjfa8tr6dtie4fHI/ac07wqXbf4Ggb5R2pBem7Une23WWjS7meFv5OSYoh3ecUK7cu6qVr/GySz/ljUrn9M2/hFepK+3Th313FWrFunT5ltJuy7NnLTB8v+b++Emy/aTB/XP4wFdtmqapmnJCcla68CDlu2dOmmaT5UUm8/tP+ZkrHNl1q1b+pvj1q3s9zWmaVr0Qk1bd5+mLaygaREz0j2eqmkrGmra1qHaz3Myftfx9c1j2YypmhY1X9P+DNa0BWjaul4Z91nbXdP+bKxph6ZqWsL5PD7BHezI5+pv9lcLTYvdluvD/v5b/3+NHKm2Pfecvu1//8t4TZ09W+33/ff6tvLlNe3NNzXt6lX7vqy8Xps2bMhY3l27Mu43bpz++GPtF6i/3QI0bU03TYs/a98XIUqE9HXJXnGoBN12lJKUot0VujvTL3MvPrJRW7JE0xo3VusTJmQ8fuHMjF+sd/5zqOhfiB3cFRpmeQ2XYmKL9LmTkvS/X7t2BT/f2t/CtLGPr9eiD58u+MnyoKR9uS0Kn72xXgMVZJqMpgyPr/h+h+bkmJLpe8zRIVX79t0NmR5XmkXsjtQMBmOmr9m/akyuXm9pqksmo0nzdI/TQNNqVLL9onz98nWtce3jltffPWSPtmf9EZu/QVKSpg0ZYvt3ennIDsvjp46c0V4YtEEb/9Jp7eefNW3OHE3z8ky1CbyLkoeHet5GjYr0afOtpNWl5fN2WP53bz+33rL930V7LNtfGaxvP3Hosla+vCnLGy+gacN7b9ISbyUW/YspabIKuo0pmnYrWtOu7NG0C+u0xH1faWm/19eDkQVo2qaHMp4vTd3se/vtjH9zg0G9d/PMZNS0s6s07cK6dNtNmvabp16enx017e82mrZpoKbtflnTTv6iaak53Ego7VJvqZsfiRdtt6cla9rJBepGSS5duKBuDFqukzXVn/iee/Rtu3dn/L9uux3Tp6Vp2rvvatqUKZp2qZDaYvJ6bTIaNa12baubs06alpjJ2z4pSdMqV1b7lHNL0W7M9dTr1eIqmnZmpX1fiCh2hRV0S/dyO3J2debXP/2pX8M2ZWrzukeZNq8tAwbAwYNqKq333894fO/BzXF3jbfZ1rBlrYw7lgKNA/Vxdod3ZzJHRCE6H6lP+OnrebLA57vr4RZ8tqAbdRr5FfhcIntjP+rGrbh4fv6nXaZdn/sMbcPqXw8you9mpozewJJvtvNgpx2Amuf72be6UrUadO+usp1bzwVbWn34aSXMl+q3n9vAo3dttTzW764ou3QRL0kMDgZaBKpr6Plr1TkfpcbpGo3w+EOXORxTH4Ag3yh+Xx1AaLeGNn8DV1f44Qd4+22VlCcwECZ/0cbyeO2Gvny5sCsfTPfjscdgxAg4uDuWIF/1nOeu1uDKuauZlm37dnXe06ft81qTkyH+9iW/SpXs9xWZq13f07Icc1rPwhR17JZlOSBArx/1Gnsze7bte+bR/rE80PZfy/p3Kzvz0uCdhVHc0i/yO/jVFZb5s++bYTx4/w3cQ0ZS4dF9tHpzF099O5fw8z3ArWrGYx3VrAnW1+V69VQ3dE2DU6fyUR6DA9TsBdW6225PvQ4VrcbZaEa4shNOL4aj02HrY7CkKvz3hJoyqwgtWgQffwxJhZFEX9PUmO3tw+H36hD2EuyfbLuPowv4P57rZGkmk0piaj0F7LlzcPSo3r3c01N15faxGqpvMEDTpref0lGNrX7rLdt9ipODAzzxhL7euLHKXp6eq6vqBg+QmOTMkls7wP3298Hky7CxN5xZVvgFFqWeBN12VqmaF59+egJPdzUW2901nl8XOuPqrgZsGwzgncUMYB6eHjzQKdyyXss7xjJ/bWkTHKx/qTkUXrTj0s9G6cnP/Crl51NcFCcPT49sE3L1GBjKnOWdeWtmNwY8244l61ox9vENlscvXzawYQN89plKzjbiiUtEHyraGz/2cvIkzP+tEgCVvFIZ+24LFqxuxzfvbmLs4xuYPD2keAtYSFo1068ZYZvVe3jZMli5MQCASuWvsWKFA15VPTM93mCAyZPh4kU4cEAlxcmOb/0a9GinR9LHws9m2Oebb6BTJ3jnHRg5Mo8vKAtXLuhf9r09E7LZU2SldqCeQyTmoj4oNCpSH28ZEGibEXvwYPj+exg7Fvbtg19+9+GPrT347uMtlHNR/4dv/+jC4tkyp3cGbj5cul6FR7/8hZAJ+1i+50E0zYHEFHfCTrbiu41P8dBXa6H1V1mewhx0Gwwabdro03+dLPg9cp2LF9y7Hfocg+AJ4FE34z7GBDj1MxicbbfHLIadIyH6V0jO/AZcfkVGwqBBMG4cPJe7Wbly7/IOWNsZ/u2upldLu33jKXKOmhosn6ZP16f1svbXX/qNkvr11XW3dWv98cBA8PDIeFxJ8uSTqtwAHTtmvZ91tvP5y4PgvnDw7as2VGoBNew415m4Y0nQXQh8A71Zs/wMI/pu5q9fjtOwdUCuj31kkP5FoZFfJmkhS4nGzfUvw4eLOEns2VN6C0dmiT3EncXR2ZHPFnRjwfT/uLvdScs0H6BaR+f9XJWgEB/++SXM5rhly1RGU1MJnnrz44/VawB46WVnKnpXxMHRgWff7MJnC7plGXSWdi1b6zNA7N6ugqAVK/TH/+//nGgQ6p/jeby91fysudGgvmZZPn5YD/pNRhOvDd3CqFH6/+Lff/UZJgri8mm9V463ISybPUVWvHw88fBQ/7uY63oiqJOn9H98QKOMd7qHDlU35prdnujC4GBg2OudmPmO/n945rVGxERkvAFTZux4NuO28gG8uuR7Fm7Xp1yp4XOLBvWSLMFLVJSBmzczHmpmDrpr1QJ/f725165Bt1nFBtD8fXgwCh5JhgeioNvfUP9ZcKmkWuQd010kzv4JJ75VreG/+8A/HSDsZTj+DVzaDMb8N1FHWM1C+v33sGZNvk+laCa4tAW2PAr/tIPY//THnCtCvafh3p1QrkauTpf+8zAhQbVOm02dqi/PmaPvX191QKKN3qmIkJDcv4zi0rAhzJ+vpjWbNCnr/dq101/junVwJtYbuiyDll9Ax1/BsZTN7SuKhQTdhaRFt4bMWd6Zrv1D8nTcfYPb0qSO+kR6/IlcflssgYJb17YsHz5etBl5z57Wpw3x9XPOZk9xJ3n8pY6s2VaX8+dVC+d774FnBVUXUtJcee5/PqQkqbSpS5eq+UFHjlRTl5REZ87Ad9+p5QoV4MUXi7c8RalV55qW5bB97miami4OVNbZ3v3s3wOoQSN3y/LxY2mW5VeGbOaTHzvZ7JuSAlv/vURBXbmo3yCs4p2WzZ4iKwYHA7Vrq2jv9GnVuxYg6oz63DEYTNRpWDOrwzMY/nonBvVQQzji4r144uHLpKWUwf/N9SMQ/XPG7Z6N2XH6fgCcneHzzyEqpjzHTrjZdNXNagjGlSt65uv69cHXV88wXihBtzVHFyhfF2reC22+gf4XoGsm8wVe3a0vayaVHf3oDNg1CtZ2gSU+sOUROP9Pnotw2XYWUp59Vh9iki1Tmprn3FrSZVgeoFq3Yxbq2ysGQYcF6vW1/T+oHEpONm9Ww7LKlYOZM/Xthw6pwBvgscfUsC3zUJgjVg0q5oC0c2d9W7t2uXhdJcDjj6tZLKxv2KdnMKgeMqCuMT//fHtj0Ivqxo61m5EQMUO/GAlxmwTdJYyruythR+pw5vh5hr7WKecDSqjKNSpRpaL6dDkak82VrBCctWqY8K3jnvWO4o5VtSpMnAgnjyfQKVhNExV1oTZzP95GYiL873/6vt//X1zxFDIHn0zcR8rt+0ejRxfOdColVUDT2nh5xAEQdqweBw+qMYSg5nTPbNxdQTVoog+qPh6pbnimJqfy1SL1zdHRIY0Hu+rT7GxYfrjAzxm2XW9R9/a+s8bmF6Xat+/xJibqc/9GnVefO37e5y3Du3LD4GDgm1+CqeOjhqRsOdic7z8tg+O7oxdkujkpSR/H27QpvPyy/n6srd9rJyYm89Naj+du0EDD11e/SV7QoFvT1I3KX3/N5QGOLuDdOuP2ntuhxxpo+Ap4ZjJNaNotiPkNLm/Pcxlj081KFx2txjqjaRB3EC6sg+sRkHpDtarvHgN/1IJfnVXAb82tCjhZ3YB0raLmOr//gBqz7VQux/Ls3KmmlezSBTZsUDcUP/1Uf/yw1WWuVSs1DrpHj4znaXA77uzeHT76SNWLZzPpKFGamYNugJ9+yiKmTr2pphTb8zJsG6L+j0Lc5lTcBRAZuZRzwbd+7roClWRBtc5x+VAVzl2twc24JCp4FcI35UycPa/3EPD1r1QkzylKpkrVvPj0M1fa3p6r+t0ZgZxJTCY6Wv8SHrbfixPhp6gfUqeYSpnRxVOxfPur+hZTzjWJsS+7UJbukRocDLRo6cy6TXD+ijffzzgEqK7D996dAti/F1Ddxn44GIyYNEeOx6jrxpFdJ0lJCwTg4e47+eTruiy7/eVy/db83wW5Hnudl4Yd4Ie/ulm2+dUuvT2bilstq3yjMTHgYrjB5RvqJkrdGrFA3sYZeVX15Mf/i6ZrP5UsadZv7RkxTh/7ecfTtCyD7ogIvUtxkya2j1kH3Vm1dB87pi/Xrw/Vq6dgMGhomqHAQffMmTBmjFr29bVtdc0T5/JQ/W71wyeQdAmuH1Y/V3ao7ucpV6FWf9vjkq/A4Y8haIyeaCud9EE3wIwZGn2rDKdH3R+yL1eKfpMuOVkljKzn9CZ31f1eBdl+/VXZs3jeX39VLdnBwWru7Pfeg+XLM+4bHQ3Xr6vkaIcO6duDb4/euPtu+O0322PMLd0GA7zxRvYvo7SqVw86dICtW1VS5BEjVCK2bt1UojgAzq2C67f/aNEL1I2TdvOg+l3FVWxRgpSdb3GiyAW18LcsH4ssvIB73eK9+Hmfp3e7XaQkpnD2op65w7d+JhlURZnSpmcw/TurFonz16rzwccZW70Wzivsfo158/nbh0hMUb00Rg7YQdVqZe9S3aqd/j7+ZoGeF+PezoWTFM+lnAv+1dS5j5/1RTNphG/Xu5CHNk/Bt34NGtRUdWVnREPir+c++Zlm0tj+90FeenQjgQ1S+OEvvSdT/87b6T+ihZ1eSdlT21tvVo3Zf5CT0VbjuQMzD0Jy0uXB5pbxqeHhBraVpZxql7dCfHSmDx08qC8HB9s+lp+WbmdnDb/b8WlmQffGjfB//6d3SQfVIhsaqhJlmstz8yZMmWJ7nN24VYVq3SDweWj/Awy4CHdvAs90dx2OfQVHpsGyOvBnQ9gySI0F3zQAVoXCMn8u711s2d2cnEvTDDzw7ky2Hmuf+fM7uIB3O/DWB0x/+aUaHnX3iEcY/88qTHWGZBlwg+otNWYMPPOMChzbtLENuOvWtR2PfeB2px7rlu7Gtxv978okfjQH3Xe6J5/Ul7/7Tt2AaNZMDQcDoM4g6LxE74GQEAPr7obdL4ExJcP5RNlS9r7JiSIT1EQfy330aOE8x7nIizzylB9nr9bgrx2t+X3Obs5e9gKgksc1ylWQ7uUC3ptWBQeD0WZb/27hluVfl5ecjHtXz19j1q8tAXBxSubVKYHFXKLi0bKlvhyfpLpJ1vY5Q1DLTLIQ20lgbRVk30ysyMVTsYTv1cfyhrRSX6K6t1FNeKlGF7auyl2WyFu3oFWLJNrf14QvFnbl0nU1Z06Fcjf4fuoWlmxoi5tH0fQEuhNZB92nT1wmKkb/WwY0z3808Pzz+nJJzf1QKKIXoGnw7bqnLZvMSQStg+7sWrpzF3Sr3/7+6veVK9gkYFu8WLUiPvusCgrffVcNDereHcLDVav7ww+rMceff247Xjo8PBevM78cnKBqZ9uuD5pJZQk3L984CjGL1FjwM0vhWjjEnyL2in5D6IMPoE8ftRyfXJ77pv3DbtNnUOdxqNoNag2A9j/BgEtw7zbopPebX71af+qPPlLjrbNK7mgy2e5vzdcXvv5a/S2HDdO379unfptbuitUwHJzJCBA/T/MypdXQ7rKgmHD1I0L66zshw/DqFFW3c1rDYD799tOY3fsC1h3FyReLMriihJGgm5RaIKC9GXrjJ32YjLBk8NduXxTn/Rx7veunL2ippDxrZJJPy5RJjVuW58n79Pnt/Yuf5m5v/rTvpG6nX/wVAMObY8sruLZ+GLKPm4lqQDvqQd23BFDTfLDOug2u7dD4c5L3qCxPhzl+ClPwg/r2eGbd1ARRfce+qis9WuySdFsZf582LNPH1/p4pTMw923cSDsBkNf63THzbVe1GoH6N+AY2JsW0wDcj95SAaPPKLnUli0CC5dzDox0p496jNv0CBIK81514wpnNm7mXs/Ws3YBdMtmzdvVr+tuxunD7rTd/PPjDnodnDQA7e6dfW/q/l/t2ePbavi9esqu/Tnn9ueLyJCdfP95BPb7YUadGfG4KCyhDd5CyqFgkO6HlUGR3CrSuxNPcdNtWqqXt1zj1q/kVCenmPGcshrAdy9HjovwVRnMEtWeLJ2rX4qTYPdu21P/9tvKjloZuOMT5yAG7eHFjdrpm5i9O0LM2aox0aOVLM8NG+uH7N/v7pZGB2t1hs3tr3HcPfd+rJ5urCywNVVzXpy6ZL6m9e4/fG8ciX88ovVjuX9ocdald3cXBdit8Dq1nB1T1EXW5QQhRJ0a5rGU089xe+//57tfu+99x5BQUE2P/Pnzy+MIoliYB10F0ZL97Rp8O9mL5tta/e0JDlVtXL4VpUEFkL3zqcB+FSMxWAw8fk7EVSq5sWj/fU5WBd+l8UgxCL026ytfDRXJe5yckzljSkFiBhKuYAA8KqYbLPt3l6FOxtBgxZ6q+jxSBfCj/sDUKPSBarVUTf3uvauZ9lnw7aMU1Fl5qef9OUvJ2/n0rkkflvXnjqNMh/3KfKmVj19fH3MWReiovTHChJ0u7nBiKfUAOaUFJj3UeZ9lk0meOopNV550SL1Bby0Orh+K03HbmLNwZ42281Bt7mlu0IF2yAboGJFNQ4YMh/TrWl60O3vr0/nZ27pBoiKgvPn4cEH9ZbbJk2sxsyiAp+JE8H9dke2X38lwxRlkZF6oFlkylWDZlPgvj0w6Bb0PgJ3b4QHTsIjSTDgIpc11Yfby0tlf3dzgz/+gK5d1SmuXVMB8eXLql6NHAkDB0LPnirpGahAOS5OLVvPhf3PP3oLtbUwq9kIBw6Eb75RXcvHjLFNStm0qb68b59tY0n6oQTWXcwbpEveXRa4u6teFtY9YF56KV12eoODym5+z2Yod3sGhYTTKiFe4oUiLa8oGewedJtMJt577z3++++/HPeNjIzklVdeYcuWLZafhx56yN5FEsWkXj1wclJ90o7utW9A888/tzN+ou6w9u12LMM+vnU8MmwTZVfthr4cPABHw2IY8j81nnbgU0EYDOpL9cKVddBMxTPFh2bS+GjsBh55oYPlptEz/bbhH1x2gzKDAVrW05vVHAxG7hqQSSZhO7L+8vjvPwlci1ct3yGB+vWrRkA1GvqpXhG7jjXk1rVb7NoFCxao5EbpRUaqxDuggofRk9vh6XNnzq9eXPwaVLMs/70tmFV/6L2cChJ0A4x68qzlGvH1gvoYU40Z9ln4/UWbYGeh1exNycnqpsuxjB9RJdKkKW7EJah6X62KPh/1pk0qsDW3fAYHZ966ae5ifvp0xjmfT5/Wg+OGDfXt1l2Vv/5aBaDmMbLt2sGuXWp6qmeegYceUkHke++pcc3W3NxUwGq2f38uX3RhcHACz4ZQtYtq9XRQPWTMidTM026BCuBWrFDj1EG19j/0kJomco65x7oG5nasXbv0YwcPVjcgzKzHYJtZB92tWmVd5AoV9PfLgQP6uG7Qx3Ob9eqlT7Fl/Tcva/r1U8E3qID75Zcz2cm7NfTaDVVuj9kPngjlinZWH1Ey2DXovnjxIkOHDmXdunVUrJjz3MyRkZE0btwYHx8fy0+5cjlPcSBKB2dnCKim+pgdO+WNyWjK4YjcmfPxLnr31ixd+MaPh9n/VyHDmF3fRo3s8nzizlG1tg8NQv0t6zXrVadrM/Vt+djZuoRvKqTkAzl498WNjJ/ezbI+vPdmpv9USiY5LUQtG+lJ09rW34FX1cINVq2D7uUr9e6hIcG2E+l2b6vmJUwzOtOxo4k2bdSX3759M3Yttu68NWRI2emGWZTcPNzo0FhFWDcSPYk6q3oluLvGU9WnYDfSAprW4r42Kmo5FevH6l9su4amJqfy1sQkm23LliZZkuw995zqJt2yZckPvC+ejWfFVjWuo7rXRXbv1odS7Npl26U5fddyM3PQnZKiuuBasw7irFtV/f31/9Hq1XpreK1asHSpCqYbNFDdehcv1ltdhw9XQwDMXnwR7r9fXy/yLuY5SE1V3eQBfHxsH6tQAZYtU13OQd3kSJ9HwNzF3Drobt3athU6s6Db+v+W2bAda82aqd8JCepGgFn6lm5PT9Xr4eBBPSFcWfXll1Dp9sikBQv0XiE2ytUgudN6fr20lsOMK9LyiZLDrkH3oUOHqFGjBkuWLKFChQrZ7nvr1i0uXryIv3W/InHHCaqjPnUTU9w5c/x8gc6lmTTGP7WBZ8a1Ji1NfXN94AF4+23wrV+D+9qG2ezvW3JyY4kS7JEBer/En/4vb12+9u5VXz5Hjcr/82smjU++0zNXvz9mPXOXd8KlnEwh1a6L3n37vruuZ7OnfdSpA87OKgC4Fa8HHCEtbcdndr9L7+a+/4h+g3nNGnh1RLhlXTNp/PStmmDcYNB4/PHCKLUAWLG2Fo/02GqzrW61c3YZL//0CP2G7oplttmq5k3dSuQF2+kGE5LcWLlgH8ePq2mdQI2PfbRPJMkJmXSHKCF++sWDNKOq20MfPkvlKvp7IDVNZRE3yyrozm5cd1ZBd2AmuSLbtIFVq/TW1MwYDCoQHzZM/UyaBCEh+uMlLei27nqcPugG9bdbtkx1nzczGPSAbs8euHrVNuhu1cq2FfpIutyOJpM6DlQitJwSnlmP6/7rL305fUs3gLd3xmC8LKpWDaZO1det5zm39sHHrjw29i7adzBwwfqrxpXdktm8jLDrPN09evSgR48eudo3MjISg8HA119/zaZNm/Dy8mL48OH0798/y2OMRiNGY8auXSWJuXwlvZxFJbBeAtz+HnR47zl8G+S/S83y73bx0XfdLOtjhkUw7ZsGODiozKrDhxlZuV3fv3p1I6X53yB1qWg89FRjXn4vieRUN35c0ZT3bibg6p5xWrHMvPuuA4cOGTh0CMaMMdrkMcitxASNm4kqcOvc9jJvfNYFk2YCO/7bS2td6j20NU+v2sS1OGdeeKddoZffYICAqqc4eta2T3LTbq1tnrtTrwDLnN4AtWtrnD+vkZrqwIwfQ2jUYCNPj+/Etr8PEHkuBIAeIXuoUSOkVF+ToOTWJc+qFVnwT1semPUfL0xozLX4SvTsdAajseB5EXr0b4TL88mkpLny1+YA0lLTMDgYSLiRwDuf62/6915cz5tfqozFCxfC37tNmEx628be4/UY/8x6pv3YpcBlMovYHcWR8Fh6PxFaoBt1mgZz5zoA6ibF0LHNMRrjsRpKzaJFmuXxhg0z/3z18zNgbs85dcpo07K6f7/+WOPG+ve5KlWMvPeegX/+MXDXXRqDBmmWXic5VTMPD70LtjovGAwOaJqB8HANo5162NmDCrTUX9Tb24TRmLEXRqtWMGeOgSefNKBpBmbPNhERAdOnO6BpsHq1iT17DICBunU1KlUyUbEiuLo6kJxs4MgR29d87BjcvKmes2XLnP8e6maK2t88XKZ8eY2aNU0l/tpVnNemwYPh7bcdOHvWwPLlGhERpgxj3f/9V72/btyAL780MWWKBudX4bBlINTsjan9z5ZhCKJ4pa9L9qpTefrvJiUlcfFi5unufXx8cDdntciFqKgoDAYDAQEBDB48mF27dvHWW29Rvnx57jGnckznWEnvm2XlgPUt3TKsio/eOrXjv7P4BOa/c8WqP/WJOsc9tZyBz/ty4EC4ZZtfc0eqesZapuO5dSuC8PCk9KcpdaQuFb4+7W+wZFN3rtz0ZubMI9zVM+f5lzWTiQ3/BgPquvfvv1EkJuY9c8/ly06Aal5wLOdIeCE2z5TGujTqLZWbIep0FBRBrjv/Gkk2QXe5ckZu3tqXodXsrVHb+GdDbe66z0jvhx3ZsCiG8Z/1A+CFtzuwJ2w1Z8/rPb563XO6xLW8FURJrUtBHd3444+DnI6Io0HranZ7P3UMTmP9vrbExPrx58K/qdXIh+VzTnP+Wj8AerfdzD1PuPPljxe5eL0aK7eFYvzPBDjg4Z5KaoqJlDRXPv+5O42bLyP0roLna7h+8SYDHg7hekIDXtu2nEdezLx71/Hj5YiNdSY09BblypkwGU1sX3mW+Qv9cXdL5o3JNzl3zY+ICDXQOjT0JgkJx9i/P5FQq/OYe5gpBwkPz5imXdMqA2qQ9rZt5wgI0PuY79rVCHDH0VEjOXkfBw6ooPPAgQP06qXGCQPExxeslbp27WBOnXLjwAGN3bvDcXSEXbsq4OOTSt26xfedYNeuCoBq1jeZLhEefjbT/Ro1gl9+ccNggHr1kkhKqgioCO6jjxJITFTzcdevf43wcJXuvVatRpw44c6xY7B7dzhOt7/d//13JUBdz2rUOEd4ePa9uZydXYCmNtvq1Elg375CmIKmkBTXtWnAgGp8+aUfmmZg0qQrvPGG/oGlaXDgQHPMYdesWSb63LuV1ucex2BKhjO/E7+yC2d9XiDBrXBzl4jcs3ddylPQvW/fPp60nsPByqxZs7jbeg6BHPTr14/u3bvj5eUFQMOGDYmOjuaXX37JMugODAzMU2BfHIxGIwcOHKBp06Y4WqfbLKNunnaEz9TypYuVCLHu+5VHF2P1gUkjXw2lVmDNDPuMeXITb37ZnaqesTzYJ4By5UtvF12pS0Xn2XGJLNmklv/d0JBXXs+5deTwjhNcu6Ffj1xc6hESkvfxo9bdAevU8SzQeyQrUpdyr1HgZlZbjYFs3tyBli1DMuwX8mUIb1mtt27dnAvnNzDjl26kGZ359g99cGk5lwSefrUbFSpnP+yqNCg1dal7zrvkxQP3b2b97WRpR/e40ntQMx75Q8+G9f4nVWnSqj4P3bOFrxZXsyREBHj5mRh83E/z8ofdAHh9Shf+bXeBZh0z6VedBx++tJ7rCV4ArNlQiw/nNsuwz8GDMGyYagV1d9fo23YzEdFV2Heyn2Wfw8NjadxEHzLx4ose6joUH5/hfADe3hp33dUk0/wE1lnEjUZfQkLU53RKCkRHq5vujRqp90th1aW2bQ2cOgUpKQ64uYWwZo2B115zwMNDY+dOU756JNnDsWP6Hyw4uCohIZn0Mb/N+mOgfn149VWNtDQD+/eXt2y/+24vy+dFixYGTpwAo9GAh0cI5pQ28+frz9m7d3VCQrLvbdismWrZvnVLP65163KF8rlkb8V9bapTB+bN04iPN/Dnnz7MmuVtmXLwwgW4cUMv0/XrTuw92Ik2Dy5E29wPgymFigk7qXjqSbQavTA1egOqdJIkIMUkfV1KSEiwS8NvnoLutm3bctROcz8ZDAZLwG0WEBDA9u3bMz8AcHR0LNkf8lZKU1kLU+MW+t38Y1EVCvQ3OXlODWxydkyhVv2amZ5r/Oddad9lL41a1KS8552RlE/qUuG7+97y1K2rssauWWPg7FlHS0KgrPy39gKgf3s7s38fjo6hWR+QBesvqZUqOVCY/2qpSzkLTNcbJzTUkOu/2SffdyIlZRNz/mhHqlG/4de/6168fDratZzFrazVpd4P+zP2Q7W86t9KhCzeR+QFlQr67hZhNO+k+lE/9mQlvlqsH+fheouxr1eicvUA1m7YyZ/b2nAtvhL39k1j45poGrWpl/6pciUtDb5Z3Nqyvi+mOdcvXadyjUo2+y1cqHcTTkgwsHB9xq7tl677cOn2hDMVKxgZNMhRXYey+P82aWLAySnzx6zT9Jw5o1/PTpzQkww2bWr7nrJ3XQoNVXMoA2zc6Mh776nl+HgDH3/saBlnX9SuXNGXq1XL/bXe0xPat8+YoKttW/0c1mOujx1ztIy537tX396mjWOOz+noqMbbb9umbwsOLtzPJXsrrmtTlSpqzvgvvoDERANz5jgyfrx6LCKTjgIzZjgwatR9GLqugO1PQaLq+WA4/zeO5/9W870HvQR1HgPH0tuAVJqZ65K96lOhzNOdGzNmzGDYsGE22yIiIggo6PweokTx8fOmkofqFn40ploOe2dNM2mcvFADgDpVz+HonPkbwMHRgR4DQ6kRkP/nEmWPg4PKhAuqG9j33+d8zKbNtvcsY05m3iqUk7jzenc/L/dr2ewpikKDRuVt1kMCjuf6WCcXJ75a3IWLZxOY99Fm7muzi3tahvHxLPlcK+0ahPpTv0Y0AFsONuGjqfpn0POjUi3LHe5vgm8lPev+84/swrtmZQwOBhasaEjbhmqi69gbPtzVy4Pje6Ntnuenn1RG6m++1tTFKAt//glnLurZ/DXNgY1/ZmwUsU6GVbmifo1q1eAwv3+7nW7N99rs/9jd/1nmfc5KdsmzfH31xjnrubqzSqJWGKwbZSdO1DOGg8oubT2Pe1GyTqRmPWVYbljPiw3qM8t6vLz1ZC3mDObWSdRq1co5iZpZs3QdJiRZWu699JL634DKap5yOz+adVZ5c9f/Y8dg5UqgRk94IBJazwZ3q7v91/bC9mGwtiukFH4i0SKVcBaifizuUhS5Ig26r169Svzt7krdu3dn165dzJ07l5iYGH7++Wf++OMPnnrqqaIskihkBgcDQbXUF5DTl32Jv56/wOTKuavcSlJdM+vWvJLD3kLk3bBh+pfFubMu8PP0LSz4/D8+fHkDT/T8j1aBh3nmwU2kJqeimTQ27bENpGLO5W9e+Lgz+jdAL604J5YVAIHNbG/YhTTLe1bZStW8GP5GZ/7a0Zp/drfEr0ENexVPFKPe3U4BYDQ5sWGf6tXi532OvkP1yY8dHB0Y/eQJAKpUvMz/3tYjloreFfl7Yy1a1FdjSs5fq85DA1LQTCq4Tk6G559XUzyNes7AmMc2YkzNOG4aMk4nBbDhX9vxymdPnLfMH966ZSoXLrmw4fe9bFt1kJ0Rjej/TDtWbwtmSK8tgOpF9vz/ck52mlXmclBThda8PfLLOnt5cQXdt27ZPmY0wscf5/5cqamwfr1t4J5f5jm6IfPs5dlJP3qzUSMob3V/MLMM5seP6z2pcpoqzJp1BvP05xbZCwgAcz7o8+dV3QE4dEjf57XX9GVLpnNHV2gwCvoeh/Y/QWWrCdXLVQen/H2/KFFSb8LZP+G/J2CZv7qhcPNEcZeqSBVp0D1w4EDmzZsHQLNmzZgxYwbLli2jT58+/PTTT3z66aeEhua9e6Yo2YIC9E+r4/vOZLNn1k4e0RP41a2Vv8BdiOzUqgX3tlffVmIuVeeJsZ0Y/L+OTJjRjZ/XdCTseGPmLO/CvKnbOHnoNGev2gZSMRcr5+t5467pX6q9KpWiPnx3KL8GNXBzVtNCORiMNGlXt5hLJEqK+wdkDEhHPnYMJxfbXi9vfNqFf34JY9fWJKrXtW1e9KrqyT8bq9HQLxKAA9GBHNiqelNs3mwbJH65sBv9uu7hyrmrNuc4dkxNTwdQu7YJB4PKrLt+h22ek78W6r007m/9H86uznTtH0q7Xk0sU6m5lHPhh5Ud+XfRXnauO0mzTpmPM2/UUF/OLuhWZVK/L16EpNv3AYoy6K5eXZ/v2uypp6Di7dn9vvsOzuTiq0haGtx7L/ToAQ89VPByFSTobtPGNshu3dr28QYN9BZWc6tqmNUsqq1akWvWLd3ly5PjUCtha9AgfXnT7Vwx1i3dr72mT5O3cWO6udUdXaDuYLh3J9y1DvwHQ8dfS29W86RYOPqlaq1fXBk29oVTP4OWBmjqsTKk0ILudevWMWDAgAzbXnzxRcv63XffzfLly9m/fz+rVq2iZ8+ehVUcUYyCGutjqyOi8heYnDwWZ1mu619ypgARd5Yxz93KcZ+PZtbl3+XRGbafuVwdUz6mp4m7ph/jVdk5mz1FUXBwdKB7qOoC3D1kH+4VS3byTlF0uvQJwjqXq5NjKk//L2MzoIOjA/c82hL/4MwzlHvXrMzoYXrUt/x3dSPZuiu42Z/b2lC9dgV6t9vFnA82s3j2Nia9sMfy+JgxDrSor7qVH4gOJPa03of5r7/1caC9B2Tdt9jgYKDHwFBCumSdYczceuftrcZMZ8c6SDMHt+agu2LFognirFu7K1RQrdsvvKDWU1Nh2rScz/Hee3pL5b//wqVL2e+fk4J0L3d2hm7d9PX0QberK9S7nR7g6FHVtXy3VULIvLR0N2umB/DBwZLLK686d9aXN21So0TMLd01a6p510eP1veZOzeTkxgMUK07dPhJtYJbu7wdTCV8/rZTC2FDH1haA8LGwKVNtwPt21yrQPCb0PiN4itjMSi2Md2i7Ahqr1/tj57K4+3d206e1ZPD1K2XuzmUhcir+wa35t9Fe/li4kbLz88ztrJ/yzHuba2+wURfqsVbn+gD6CqXV61QKWmuXIq5nOl5sxMXpy97VZa6XRIsWN6AhTO3svBP/+IuiihB3Nxsu/k+9JAhQ0t2bj0wRG86XrZZRbErV6hmYUdH+H3ufrw84gBIMzrz147WPDOxMw8/356Fa1qo8rimMGwYdGunR4ObVqrW7eSEZNbsUk3SPhUv07KHVVN1Prz2Gvz+O2zfbtvimplatfTl06dV12xzV/MmTYomiLO+MfDqqyrIffllLDdNvv3W9tqb3qZN8O67ttuyyfObK+aWbjc3chw3nxlzC6qTE2TWRmXuBp6YqMatr1ihP5aXoLtCBfjgAxVwv/123stZ1tWogWWO7p074dQpuHq7s4p5fPwTT4DL7XtiP/6oj/3O0fXDsLYL/NMWjnwC51ZB4nm7lj/PkmIzbjuzDM6tBM3q5kD5+tDgeei8FB6MgebvgnvGWYjuZBJ0i0LX0OqzPn32zdw6eVUPcuq2aV/AEgmRtR4DQ3nxva6Wn8fGdKBpx0DemqS3Gl2MUzePXJ2TeLCrPlgr5ngmHz45iLuuX4a9qrhls6coKpWqeTFodAe8a+avZ464cz32mPrt4AAvj81/l8/agdUsrbG7d8Omv89y7IR6/3cIOU3/p5qxd8ctXh2yAT/vc5meY1jv7Xh7Q/e79Qhu/XbVBX7zn4eIT1bR8X0dI3BwLNjXPRcX1dpdv37O+1q3ZMfEqGnLzAq7a7nZyJHQogX07g2vvKK2+fioYAdUt/f9WaTQuHpV7WdK13HJOqN3fpiDbh+f/N14GDxYBdLbtmX+f7BOpvb22ypjPKju8Xntzv7GG+r/Zp47XeRNl9uTBKSkqOEMZuYbI97eeu+Ry5dh+fJcnFTTYNdzYEqFq2Gw9zXYcD8s9YVdz4Mx2a6vIVvGZIj+Ff69C36vBsnpci359lG/3f1Ua/b9B+CB49B6FtTqB053xuxCeVVKBwmI0qRhQ5VcIipKddE6dkwfz5JbJ0/qy3VliKUoBh37NKNbN9iwQd/WtmEEgQ30LlMxkTdok8fzxt3QL8Ne3ndAshQh7mCPPALlykHlytCuXcHO9cADEB6ull98We/lcn/nSKAW/sF+TPvRj4+NJrb+tZ9d/121BILeVZwYNEoN1O38QHMcHTWMRgPrd6kPyL+W3bCcr3fvom1fSR90JyTo6+kzYxcWf3/bMc1m1pm4T57UgyNr48bp3eJbttTPk1XQPXeu6gUwebIae50ZTdO7l+e1a7mZwQB9+mT9uHXQvWCBvvzmm/l7PpF/Xbro3cb/7//07db17+mn1ZR+oPYdODCHkxoM0PwD2DkSrltlZkOD47Phym7ovBg87DR+Iy0RTi+BuH1w8zjcjITUODAmqaRoJqsg//J28O2tr/v2gZ7bwbs1GKR910yCblHoHBzguef0jI2zPzzA59/l7Xa3Oej28Mj/B5YQBfXmm7ZBd5d2cdSqrbeAnz6V9zvNcTf04718KhSkeEKIQmYwwIMP2udcDz4IU6ao5f1H9Q+23gNtu1w6ODrQqW8zOvXN/DwVvFxo1Qp27FBJmU5FJbFyYx0AHB3S6Plw0c75lD7oPm/V+7WoWrqzYj0rbWZTh2ma3i3bwwOWLYNOnSA6WnUVTk1V46vNpk5VrcKguhEfOJB5K3ZcnMqcDnlvdc6tzLKMd+hgOxZcFA3rmznW9d/6f9Sjh7o5FB0Nq1eroRjWQzMy5dMR7tsHceEQdwiuhcOJ2SoQvroLVoWqKcja/wgOBc0RY1IBvjEh+93K1wdDunDSuSJUaVvA57/zyO0HUSSGD03DzUWNV/vut9rEX48nJTGFyaM2MLzPZq6ez3p+YpNJfZiBauWWpB6iuPToAW2tPkc6P9iK2vX0AY7WU+TkVtxN1aXUYDBRoXLFghZRCFFKhIaCbw3bab78vM/RpH2DPJ/LOrDyr+fGsbOqxbtj8EG8qnpmflAhsQ4cNm60TRCXU+bzwpZT0H36NFy4oJbbt1fzjre/PaItMdG2S/qMGXrADSpZlrnnAsCNG6qLt6YVLHN5bjXMZNj+m2/Kd6biUKdO5gG0ddDt4ADDh6tlTYPvv8/lyR0coXJLCHgSWn4GPbeBx+0uoClX4eKG3AfcaQlw6jfYNADW32f7mJMH+PWzel5XKFcTygeAZ2OVWf2u9dD3GNS8N5eFL9sk6BZFwtvHiUfv2QXA9QRP5n8RxuO9djLlm258v7IzX3+0L8tjz0WetySZqOuTyaekEEXEYIBvvlFfbh5+GO7qVZ7agfrcNDFxeRw3AcTdUl3KPd1vFHjcpRCi9DAY4IEOO2229e5ywjKdV15075759ocftMME03nk7a264IOaK9p807xWLZW5uThZD0/LLOjesUNfNt9gbW+VRsbcxXzOHJWYLb2fflK/b9xQXc0bNFD7FiRzeW6VL28b6LVoIWOyi4vBkHHoQo0aGev/sGH6TZG5c1VPijyrFAL3hUGdR1WLs2cmXR52PAv/dIQ9r8CRzyDsZdj4gBqP/d8jcGYpXPw347jw4HHQ7W94MBoGxUP/s/BAJPQ+pDKrV+uWp7s6mqauCenzJZQV8g1PFJnnX/K2LL/wTnuWbOpkWT96Mes+ZyeP6JlZ61Y9XTiFEyKXmjeHI0fgt99UluGa9apbPnNiYvOeiTMuXrVCeXnctGcxhRClwIMDbKeku79P/mYwuPtu1V29YkUTLeof4cn7tvDNu5sY+WYHexQzTwwG1SXbmosLjB9f5EXJwN1dzeMN+Q+6z50Dq9lvGTtWz0T9889qfu/PPlNTdwF89VXRtHSD7ZhhaeUuXumD7uBMRnnUrg333W5gPnXKNulanrhUgo6/qMC4w8+2jyWcgajv4PJWYnf+SOTfs+DoDDi7AtKspkl1qgDx0bbHejVVrdgedVQLewEYjeoaFRioEh2WRTKmWxSZ1vc0pnXgIXYdCybNaNv15UysdxZHwcljejASEKAVWvmEyA9nZzX35tmzee9ermkQl6AyZHvVzHxOXyHEnatbv6ZUcLvBzaSKuDgl06N//sZfOzrCH3+AaktplP3OReC771R5KlZUXcobNtRbv4tb3bqqC/mFCyrJm/Xc65kF3c2bq7InJsLWrWoqsaTbowKeeQY+/VQFTL//Dhcvwi+/qG1m4eFqrL1ZYQbdL70Eu3bBXXfZL/eAyJ/0QXdmY+4B3npLH4LxzjswZEgB3iuOLlCumu22q3s4l9SaD355nG/XPUuq0YU+oSuYMnASoQ2iofZD4P8E+HQpcGCdnY8+0vMlLFlim2CurJCWblGknh+hj912ckzFyUn1MTl7NutjTkbp2aHr1i8hn9pCWDEnDrp0Sf8ylhtJSfr8nF5e0iQhRFnj6u7K5Bf3UN7tJhOf3Ub5SjlMgl1K+PrC6NEqgAgNLTkBN9iO646O1pdTU/VM5XXrQtXbU7A7O0Pr1vr+5mChQgV4/33VmjxkiH6eZ56BW1YNiKB6RpkVZjLYXr1Uq/rChWrMsCg+QUG2N1gya+kGNQuC+QbJuXMwa5b9ypCUBBO+eoB6z29l1poXSDWqLhl/7u1Li4l7GfTbFS7XmwPVuucp4L5wIW/fdbZuVdn9za5dy2dX+lJO3pKiSD06uhXdQ/ZSpeJlfpsdRr16qgqeOaNa/TJz8pTeIaNuUDEPCBMiE9bZes/kIYN5XJy+7OVlt+IIIUqRV6Z240Z8eSbN6lbcRSkTskqmduCAas0G24SZYNvF3JyF/JVX9KDq/vvVNHIAyZl8BFgnWCvMlm6QLuUlRfpx3Vm1dAO8957+f/vwQ7iej1QMiYlqSl5zMLxnj5ry7sMP9W0eHuqGmNmixQ60b6/GWefWkiVqfHpgIERE6Nv374cRI9RNKesx23Fx8Pjj+vvGzDrPQVkhQbcoUm4ebqzbG8qla970f6Ydfr7qnRkfDzeuZX7b7ORp/c5/3cZ5HzMrRGGr5b7Lshxz4HA2e9qSoFsIAeQreZrIn6yC7sy6lptZB92gWqv/9z993cVFzeFubcwYfay3tcIOukXJMXas+mzv3j1jHbLWpAkMHqyWr17VczQ89ljW88Nbu34dWrVSrevly6vhHG3b6sMaXFxUfY2KUhn1v/hC73Fx4oRqbd+8OXevafZs9fv0aTWMITJSdRvv0AHmzYNnn1XlP3UKli6Fjh31ZIrWLl3KuO1OJ0G3KBbmLxi+rlst284cPZPpvifPq0+oKhUv3zFd78SdpXZNfR7LmKj4XB8XdzrSsuzlmIdbzUIIIfLFHkH3hAmqe7m1J5/Ulz094e23VSCSngTdZUfHjqpFd906lXchO++8o88Bv3s3LF8Ov/5qO3QhM5qmEpOZA2yjUSXxS7s9MjM0VLV6f/qpGjLh5qYSAYaF6VP4mQP9BQuyf67kZNVV3OzcOfXe6NdPNZ6ZrV+v3mcDBujl8vKCJ57Q95GgW4gi5ldTH699Jjpjf5qUxBTOXKkBQN3qF4usXELkRe26bpbl0zFp2expK+7SVcuyl0vmN52EEELYj/W0YSdP6svmoNvZWQUq1qpWVVNwgRpO9NxzGc/bti0MGqRaFWfNUtND3X237T4ODsU/bZooWjkF22Z166pxz+mHB0RGquA2K999p8bwg0pcGBoKrq7qptCbb8L27VlnTt+yBXr2VOspKaq1/d131XjrNWvUEIpvvtGP2blTH4JhFhurdyfv00efts66i3nbtrB2rZ4bASToFqLI+frqV5ezp1RrodGoxqC89hos/vkqmqaqaV2/op9vVIjcqF3P07Icczr3l9W4q3omEUmkJoQQha9mTb3bt7mlOy5OH5/avLlqDUzv119hyhTYtCnzxw0GFfwkJekteumDbm9vSXAmsjZxouoqfvGiykRvtmtX5vtHRNhOXzd3rmrVvnVLJSt7993MhziYeXrCn3+qLuFmkyap/AQ9e6qp70aNgtWr1WPr1+v7ffSR6s5uNmECLFumciOY5x8PDVVdz7dtU+PLzckJwXYavbJC3vqiWPnV0T+5zpxWWRZWrlRv3k8+gSeerm55vG7tlCIvnxC5Uau+3l8w5px7Nnvairumt4p7VSq8qTqEEEIojo7g76+Wo6JU91zroCZ913KzBg3U9E516mR/fuuWypYtVeujmXQtFzmpUEEFp50769syC7qvXYOHH1bT3oHKmj9woFp2csp9C7uzM3z9NUybpm9Ln33fPH/4hg36tkceUePA330XVq1SmfwdHFQg/913qrv5nj2q9dv8nrAOuqWlW4gi5uuvfxqdPaeq4+4NJzPdV5KoiZLKu2ZlyrmoT76YC7nvOxh3Te9/5VXZOZs9hRBC2It5XHdCgvryn9147oJwclJJtMwKc7owcWex7oqdPui+cQPuvRcOHlTrjRrB9On5fy6DAV59FRYvVkG/mxs89JDqmQGqBfvSJX08t7+/+vHxUV3Ye/XKeM7MpgmUoFuIYuQXoH8CnTmv3qFH9l6wbOvcIQEnJ/XG7v1YYJGXT4jcMDgYqO2j6m1MbHU0Uxbz36Vjk728smshlEwIIUR66ZOprV2rr9sz6AaV4dlMWrpFbtWqBdWqqeXdu/VpdW/dUlPUmQPxatVUlnD33Heyy9JDD6k5uK9dUwH4Y4+p7UlJasineTo86xtJeWFd/yXoFqKI+dTyxtlRdRs/e0m1eh+JUoG4i1My69a7EBenphvw8yuuUgqRs9rVrwGQkOzBxVO5G6wUd12/BHtVyeS2sBBCCLuzDrqXLoWNG9Vy/fqqG7k99eqlj+O2HgMrRHYMBr21++pVPf/AE0/Af/+pZW9vdcPInvXK3V3PWWCdOf3HH/Xl/Abd1j09JOgWoog5ODpQs7J65525XIW0lDSOnVUDphrUjMHJxQkPj8y7qQhRkoQ2uWlZXr/iRK6OibvhZFn28vawe5mEEEJkZJ3B3Lpb7tixGbNHF1SDBvDLL/DGG7ZzewuRk/RdzA8cUFOJgZqC659/9Gm/Cuv5AzPpZNqtW/7O5+Skd1mXoFuIYuBXVU2bdOWmN4d2RJJqVKkWG9e7XJzFEiJPevbW8xOsXptNulArcTf0/bx8KmSzpxBCCHuxbulOvT2JROXKMHRo4TzfoEEq27M54BAiN6yD7p07VXZys3ff1aexKywGQ8Z5wuvV06cFyw/zuG4Jugvoxo0bTJw4kQ4dOtCuXTvGjRvHjRs3stz/9OnTDBs2jJCQEO6//362bNliz+KIUsK3mp4mce2f+njuRoHJxVEcIfKlU+9g3Mupb2//7G5lGX+Vnbibqg+XwWCiQuWKOewthBDCHqxbus1GjQIP6XAkShDroHvLFpg/Xy27uurT0hW2wYNt1/PbtdzMHHTHx6ufssSuQffkyZOJiIjg22+/Ze7cuURGRvLmm29muq+maYwePZoqVaqwZMkSHnzwQV544QXOZTcDvLgj+QU3tSyv+U8fuN0oOHethUKUBK7urnTrrjKQnz+vuoHlJC5ZZeT3LJ+Ig6N0PBJCiKLg6Wnb6uzsDC+8UHzlESIzVaro09vt2gVXrqjlhx6CSrmfKKVA/P1tpy/Lb9dys7I8V7fdvuUlJCSwevVqJk2aRJMmTQgODmbChAmsXbuW5OSMLZbbt2/n9OnTTJkyhXr16jFy5EhCQkJYsmSJvYokSgm/unq32k279aC7cajMrSFKl3vv1Zf/+Sfn/eMSKgMynlsIIYqadRfzxx+HGjWKryxCZKVNm4zbRowo2jK88Yb6XaMG9O5dsHOV5aDbKeddcsfBwYGvv/6aRo0a2Ww3Go3Ex8fj6mo7Hc6+ffto3Lgx7lY57lu2bEl4eHiWz2E0GjEajfYqcqEwl6+kl7MkqVHDgPn+T2KyqicOBiP1mvmW6b+j1KXSR00N4wjA339rjB1rynJfTYO4OAfAgJeXhtGY9b4FJXVJ2IvUpTLEaLx9Nbv9/7bz/7y461JwsIFdu9R3j5deMtr75YkiVtz1qbC0bGngt9/0NtK6dTU6dzYVaX3t1QtiYlQPEQ+Pgl0KvL317/znz5fM9136umSvOmW3oNvNzY0uXbrYbPvxxx8JCgqicuXKGfaPjY2lqvXtDsDb25sLFy5k2Nfs2LFj9ilsETiQm76lAoCEBA+goc22utViiDh+tXgKVMJIXSo9NA1qVAvi/MXybNmUwvate3Bzz3yYRFKSgZQUlQXF0fEW4eGFf32TuiTsRerSnc8hMZHQ28v79+/HVEjTiBRXXerf34VLl2rSosVNTKYrZNPmI0qRO+3a5OVVHtDnBOvV6xz792cdKxUmeyQ/S0mpAqhZisLCTuPre6XgJy0k9q5LeQq6k5KSuHjxYqaP+fj42LRaz58/n1WrVjFnzpxM909MTMTFxfbLqIuLCykpKVk+f2BgoM1zlERGo5EDBw7QtGlTHB0dcz5AUKlixuEHjQMuERLSqhhKU3JIXSqderf7jznLupCc6sq1aAfuezwk0/3On9Nbtv38yhMSkvl+9iB1SdiL1KUyxCrLUbNmzeyeZay461JIiLmrrBdQgHTMokQo7vpUWOrVg1GjNDTNgIODxrhx1fH1rV7cxco383zjAG5utQkJKXnvvfR1KSEhwS4Nv3kKuvft28eTTz6Z6WOzZs3i7rvvBmDBggW89957jB8/nk6dOmW6v6urK3FxcTbbUlJScDPPyJ4JR0fHUvNGKk1lLW5+tZwxGExomt59plGHVvL3u03qUunSq5czc5ap5bWrkugzJPP/3c3z0UA9ACqZduHomMnALTuTuiTsRepSGWD1/3V0dLRZt+/TSF0S9nOn1ScvL+jTB1asgCFDDNSuXbpfW3Wr+wWXLzsU1mXFLsx1yV71KU9Bd9u2bTl69Gi2+8ydO5epU6fy+uuvMzSbCQ+rVavGiRMnbLZdvnw5Q5dzcedzcXOmquclLsbp//vGTUrwu1CIbNw1oDEOzxsxaY6s3uyX5X5xlxMsy17lE7LcTwghhBBl1++/w8GDEBxc3CUpOOswr6zN1W3XOWqWLl3K1KlTGT9+PCNySK3XvHlzDh06RFJSkmVbWFgYzZs3t2eRRCnh53PZZj1dPj4hSg2vqp60a3QIgIgz9Ti252Sm+8Vd1a99Xl65mNRbCCGEEGWOk5MaDuHsXNwlKTgJuu0gLi6OKVOm0L9/f3r37k1sbKzlx5z17erVq8TfHiPUpk0batSowfjx4zl+/Djffvst+/fvZ+DAgfYqkihF/KrdtFlv2DCLHYUoBQb01pMALpx3KtN94q6mWpa9vAyFXiYhhBBCiOLk5aVuIoAE3fn233//kZCQwNKlS+nUqZPNz/nz5wEYOHAg8+bNA1Q/+a+++orY2FgGDBjA8uXLmTVrFjVr1rRXkUQp4ltdb/Xz87lExYrFWBghCmjQiEDL8q8r9C7mCz7/j4Z+UXw1eSNx19Is2z297DaRhBBCCCFEiWQw6K3dZS3otts3vd69e9M7hxnT161bZ7Nep04d5s+fb68iiFLMuqW7UbVwoGexlUWIgqoVVJOOwfv571AzDsfU5+DW41SqWp6n32hBUmo5Xn7fj9GDtln296p8B/QZE0IIIYTIgY8PnDsHsbFqqlVDGensJ80rokTwrXbLsty4TnTxFUQIO3mkXxz/qaHd/PrdWS5fcSAptQsAqUYX5i4NtezrVdm1OIoohBBCCFGkzC3dqalw/brqcl4W2DWRmhD51WVAJ5wc1RjX3oNbFnNphCi4h0c0xMGg8lnMW9KQucvb2zx+M0kfQ+FVpVyRlk0IIYQQojiU1WRqEnSLEsE/2I/Du86ya81h7nlUgm5R+lWvW5Wurc8AcP5addKMqgt5OZeM04N5eXsUadmEEEIIIYqDBN1CFLMGof60urtxcRdDCLt5dEQdm/UqFS/z3afhGfbz8qlQRCUSQgghhCg+EnQLIYSwqwEDwNFRX584XmPgqHbUrX7Gss1g0KjoLUG3EEIIIe58EnQLIYSwqypV4NFH1XJQEIx62QdHJweeG+tr2adiRQMOjnIpFkIIIcSdT4JuIYQQdvftt7B8OWzZAm5uatvwpwy43k5Ybv3hI4QQQghxJ/Px0Zcl6BZCCGEX7u7Qt69q9TarUgWmT4fAQHjrrWIrmhBCCCFEkSqrLd0yT7cQQhSDUaPUjxBCCCFEWVFWg25p6RZCCCGEEEIIUeg8PMDTUy0nJxdvWYqSBN1CCCGEEEIIIYrElCkQEAAvvVTcJSk60r1cCCGEEEIIIUSRGDNG/ZQl0tIthBBCCCGEEEIUEgm6hRBCCCGEEEKIQiJBtxBCCCGEEEIIUUhKxZhuk8kEQGJiYjGXJGdGoxGAhIQEHB0di7k0ojSTuiTsReqSsBepS2VIUhIEBenLBoNdTy91SdiT1CdhL+nrkjn+NMej+WXQNE0rcOkK2ZUrV4iOji7uYgghhBBCCCGEKGP8/f3x9vbO9/GlIuhOS0vj+vXruLq64uAgPeKFEEIIIYQQQhQuk8lEcnIynp6eODnlv5N4qQi6hRBCCCGEEEKI0kiajYUQQgghhBBCiEIiQbcQQgghhBBCCFFIJOgWQgghhBBCCCEKiQTddpKcnMyECRNo1aoVnTp1Yt68ecVdJFGKrFmzhqCgIJufMWPGAHD48GEefvhhmjdvzkMPPcTBgweLubSiJEpJSaFPnz7s2LHDsu306dMMGzaMkJAQ7r//frZs2WJzzNatW+nTpw/NmzfnySef5PTp00VdbFECZVaX3nvvvQzXqPnz51se//PPP7n77rtp3rw5o0eP5urVq8VRdFFCXLx4kTFjxtCmTRs6d+7Mhx9+SHJyMiDXJZE32dUluS6JvDp16hQjRowgNDSUbt26MWfOHMtjhX1tkqDbTqZOncrBgwf54YcfmDx5MjNnzuTvv/8u7mKJUuLEiRN0796dLVu2WH7ee+89EhISePbZZ2nVqhW///47oaGhjBw5koSEhOIusihBkpOT+d///sfx48ct2zRNY/To0VSpUoUlS5bw4IMP8sILL3Du3DkAzp07x+jRoxkwYACLFy+mcuXKPP/880huzbIts7oEEBkZySuvvGJzjXrooYcA2L9/PxMnTuSFF15g4cKF3Lhxg/HjxxdH8UUJoGkaY8aMITExkQULFvD555+zfv16pk+fLtclkSfZ1SWQ65LIG5PJxLPPPkulSpVYunQp77zzDrNnz2bFihVFc23SRIHFx8drTZs21bZv327ZNmvWLG3w4MHFWCpRmrzyyivap59+mmH7okWLtB49emgmk0nTNE0zmUzaPffcoy1ZsqSoiyhKqOPHj2sPPPCA1rdvXy0wMNByHdq6dasWEhKixcfHW/YdOnSo9sUXX2iapmnTp0+3uUYlJCRooaGhNtcxUbZkVZc0TdM6d+6sbd68OdPjXnvtNe2NN96wrJ87d04LCgrSYmJiCr3MouQ5ceKEFhgYqMXGxlq2rVixQuvUqZNcl0SeZFeXNE2uSyJvLl68qL300kvazZs3LdtGjx6tTZ48uUiuTdLSbQcRERGkpaURGhpq2dayZUv27duHyWQqxpKJ0iIyMhJ/f/8M2/ft20fLli0xGAwAGAwGWrRoQXh4eNEWUJRYO3fupG3btixcuNBm+759+2jcuDHu7u6WbS1btrTUnX379tGqVSvLY+XKlSM4OFjqVhmWVV26desWFy9ezPQaBRnrUo0aNahZsyb79u0rzOKKEsrHx4c5c+ZQpUoVm+23bt2S65LIk+zqklyXRF5VrVqV6dOnU758eTRNIywsjF27dtGmTZsiuTblf4ZvYREbG0ulSpVwcXGxbKtSpQrJycnExcVRuXLlYiydKOk0TePkyZNs2bKFb775BqPRSK9evRgzZgyxsbHUr1/fZn9vb+8MXT9F2fX4449nuj02NpaqVavabPP29ubChQu5elyUPVnVpcjISAwGA19//TWbNm3Cy8uL4cOH079/fwAuXbokdUlYVKxYkc6dO1vWTSYT8+fPp127dnJdEnmSXV2S65IoiB49enDu3Dm6d+/OvffeywcffFDo1yYJuu0gMTHRJuAGLOspKSnFUSRRipw7d85Sh6ZPn86ZM2d47733SEpKyrJuSb0SOcmp7kjdErkVFRWFwWAgICCAwYMHs2vXLt566y3Kly/PPffcQ1JSktQlkaVp06Zx+PBhFi9ezPfffy/XJZFv1nXp0KFDcl0S+fbFF19w+fJl3n77bT788MMi+c4kQbcduLq6Zvijm9fd3NyKo0iiFPH19WXHjh14enpiMBho1KgRJpOJ1157jTZt2mRat6ReiZy4uroSFxdns8267mR13apYsWJRFVGUEv369aN79+54eXkB0LBhQ6Kjo/nll1+45557sqxL5cqVK4bSipJk2rRp/PDDD3z++ecEBgbKdUnkW/q61KBBA7kuiXxr2rQpoJKHvvrqqzz00EMkJiba7GPva5OM6baDatWqce3aNdLS0izbYmNjcXNzkw8KkSteXl6WcdsA9erVIzk5GR8fHy5fvmyz7+XLlzN0cREivWrVqmVbd7J63MfHp8jKKEoHg8Fg+WJrFhAQwMWLFwGpSyJz7777Lt999x3Tpk3j3nvvBeS6JPIns7ok1yWRV5cvX2bt2rU22+rXr09qamqO37ftUZ8k6LaDRo0a4eTkZDOYPiwsjKZNm+LgIH9ikb3NmzfTtm1bmztsR44cwcvLi5YtW7J3717LlASaprFnzx6aN29eXMUVpUTz5s05dOgQSUlJlm1hYWGWutO8eXPCwsIsjyUmJnL48GGpWyKDGTNmMGzYMJttERERBAQEABnr0vnz5zl//rzUpTJs5syZ/Prrr3z22Wf07t3bsl2uSyKvsqpLcl0SeXXmzBleeOEFy40ZgIMHD1K5cmVatmxZ6NcmiQjtoFy5cvTr14+3336b/fv3s3btWubNm8eTTz5Z3EUTpUBoaCiurq68+eabREVFsXHjRqZOncrTTz9Nr169uHHjBu+//z4nTpzg/fffJzExkfvuu6+4iy1KuDZt2lCjRg3Gjx/P8ePH+fbbb9m/fz8DBw4E4KGHHmLPnj18++23HD9+nPHjx+Pn50fbtm2LueSipOnevTu7du1i7ty5xMTE8PPPP/PHH3/w1FNPAfDYY4+xbNkyFi1aREREBK+//jrdunWjVq1axVxyURwiIyP56quveOaZZ2jZsiWxsbGWH7kuibzIri7JdUnkVdOmTQkODmbChAmcOHGCjRs3Mm3aNEaNGlU016YCTnkmbktISNBef/11LSQkROvUqZP23XffFXeRRCly7NgxbdiwYVpISIjWsWNH7csvv7TMzb1v3z6tX79+WtOmTbWBAwdqhw4dKubSipIq/dzK0dHR2hNPPKE1adJE6927t/bff//Z7L9hwwatZ8+eWrNmzbShQ4fK/KXCIn1dWrNmjda3b1+tadOmWq9evbTVq1fb7L9kyRKta9euWkhIiDZ69Gjt6tWrRV1kUUJ88803WmBgYKY/mibXJZF7OdUluS6JvLpw4YI2evRorUWLFlrHjh212bNnW75vF/a1yaBpt/utCiGEEEIIIYQQwq6ke7kQQgghhBBCCFFIJOgWQgghhBBCCCEKiQTdQgghhBBCCCFEIZGgWwghhBBCCCGEKCQSdAshhBBCCCGEEIVEgm4hhBBCCCGEEKKQSNAthBBCCCGEEEIUEgm6hRBCCCGEEEKIQiJBtxBCCCGEEEIIUUgk6BZCCCGEEEIIIQqJBN1CCCGEEEIIIUQhkaBbCCGEEEIIIYQoJBJ0CyGEEEIIIYQQhUSCbiGEEEIIIYQQopBI0C2EEEIIIYQQQhQSCbqFEEIIIYQQQohCIkG3EEIIIYQQQghRSCToFkIIIdIZN24cQUFBWf507NixuIuYJ0FBQXz55ZcFPk9kZCSjRo0iNDSUNm3aMGbMGKKjozPst2HDBgYOHEizZs3o0qUL7733HgkJCVme94MPPiAoKCjb5167di1BQUHs2LGjoC9DCCGEKFJOxV0AIYQQoiTy8fFh5syZmT7m7OxcxKUpfqdPn+axxx6jQoUKTJo0CW9vbxYvXswjjzzCkiVL8PPzA2DdunWMHj2afv368corrxAZGclnn33GtWvX+PTTTzOcd9euXfz444/ZPve1a9eYPHlyobwuIYQQorBJ0C2EEEJkwsXFhZCQkOIuRonxww8/kJiYyJIlS6hVqxYAnTp1YtCgQXz++eeWgPrDDz/k3nvv5cMPPwSgffv2GI1GfvrpJxITEylXrpzlnPHx8YwfP55q1apx4cKFLJ/7nXfewclJvrIIIYQonaR7uRBCCJFPBw8eJDg4mHHjxlm2Xblyhfbt2zN8+HA0TQNUa+6IESNo3bo1TZo0oUePHnz55ZeYTCYAzpw5Q1BQEH///TfPP/88ISEhdOjQga+++opbt24xYcIEWrZsSYcOHZg2bZrlvObjVq5cyahRo2jevDndunVj1qxZlnNnJi4ujkmTJtGhQweaNm3KoEGD2LZtW7avNSoqivr161sCbgAHBwdat27Nxo0bATh8+DAxMTEMHjzY5tihQ4eydu1am4AbYOrUqVSpUoUBAwZk+bx//fUXW7du5bXXXsu2fEIIIURJJUG3EEIIkYW0tLRMf8xBb5MmTXjmmWdYunSpJWidNGkSJpOJjz76CIPBQEREBMOGDcPLy4vPP/+c2bNn06pVK2bOnMmqVatsnu/NN98kMDCQ2bNn0759e2bMmMHAgQNxc3Nj5syZ9OzZkzlz5vD333/bHPf2229Tvnx5vvzySx588EFmzpyZaVdugOTkZIYOHcq///7L2LFjmTlzJtWrV+fpp5/ONvCuVKkSsbGxpKam2mw/ffo0N2/eJC4ujiNHjgDg6urKyJEjadasGW3atOH9998nJSXF5rj//vuPZcuW8eGHH+LgkPnXkcuXL/POO+8wYcIEfHx8siybEEIIUZJJXy0hhBAiE2fPniU4ODjTx15//XVGjBgBwOjRo1m3bh3vvPMOzz77LGvXrmXGjBlUq1YNgIiICEsLtTm47NixI+vWrWPHjh307t3bct7OnTvz8ssvA9CgQQP+/PNPvL29mTRpEgDt2rVjxYoV7Nmzh/vuu89yXHBwMJ988gkAXbp0ISEhgR9++IHnnnuO8uXL25R92bJlRERE8Ntvv9G8eXPLMUOGDOGTTz5hyZIlmb7mAQMG8Oeff/LGG28wduxYypcvz7Jly9i8eTMAiYmJXL16FYAXXniBPn36MHz4cA4cOMCXX37J1atXLTcCbt68ycSJExkzZgx169bN8n/w1ltvERoaSr9+/SSBmhBCiFJLgm4hhBAiEz4+PsyePTvTx2rUqGFZdnZ25uOPP+bhhx9m4sSJ9O/fn169elke79evH/369SM5OZmTJ09y6tQpjhw5gtFozNBqHBoaalmuUqUKAM2aNbNsMxgMeHp6cvPmTZvj+vXrZ7N+77338uOPP7J37146d+5s89i2bdvw8fEhODiYtLQ0y/bu3bszdepUrl+/jqenZ4bX3LFjR6ZNm8YHH3zAypUrAejQoQPPPPMMX375JW5ubpbXc88991i6g7dr1w5N0/j000954YUXqFu3Lh988AHVq1dn2LBhmf59AZYuXUpYWBh//vlnlvsIIYQQpYEE3UIIIUQmXFxcaNq0aa72bdSoEUFBQRw8eJDu3bvbPJaUlMS7777LsmXLSEtLw8/Pj9DQUJycnCzd1M3St0oDuLu75/j85lZ1s8qVKwNw/fr1DPvGxcURGxubZSt+bGxspkE3wAMPPEDv3r05ffo05cqVo1q1asyYMQMHBwcqVqyIh4cHAN26dbM5rnPnznz66accOXKE6OhoVq5cyZIlSzCZTJYfUN35HRwcuHTpEu+//z7jxo2jcuXKpKWlWfYxmUwYjUYcHR1z/LsIIYQQJYEE3UIIIUQBLVy4kIMHD9KwYUPef/992rdvT8WKFQF4//33Wb16NdOnT6dDhw6WILp9+/Z2e/5r167ZrF+5cgUAb2/vDPtWqFABf39/S3f09MxTf6UXGRnJgQMH6NevH/7+/pbthw8fJigoCEdHR8v29OO3zS3grq6urF69muTkZPr06ZPhOYKDg+nfvz9t2rSxdEGfOHGizT7Dhg3D19eXdevWZVpOIYQQoqSRoFsIIYQogLNnz/Lxxx8zcOBAXnjhBe6//37ef/99Pv74YwDCwsJo27Ytd999t+WYgwcPcvXq1WwzjOfF2rVruf/++y3rq1evply5cpYx29batGnDhg0b8Pb2pmbNmpbtX3/9NUeOHMkyGD9+/DhvvPEGzZo1IyAgAIATJ06wZcsWnnvuOQBatWqFu7s7K1eupEePHpZj161bh5OTE6GhoQQFBfHEE0/YnPu3337jt99+Y/HixVSqVAkPDw8WL15ss8+hQ4eYPHky77zzjk03fCGEEKKkk6BbCCGEyERKSgrh4eFZPh4UFISbmxsTJ06kXLlyvP7663h6evLyyy/zwQcfcO+999KjRw+aNWvGqlWr+OWXX6hXrx4RERHMnj0bg8FAYmKiXcq6atUqvL296dq1Kzt37mTBggWMHTs2067pAwYMYP78+QwfPpxRo0ZRo0YNtm7dyv/93/8xePBgnJ2dM32Orl27Urt2bV599VVeeuklbt26xdSpU/Hz87OMzfbw8GDMmDF89NFHVKxYkZ49e7Jnzx7mzJnDk08+SeXKlalcuXKG1vQNGzYA2HTnr1Spks0+CQkJANStW5egoKD8/qmEEEKIIidBtxBCCJGJ2NhYHnnkkSwf/+OPP9izZw/btm1j+vTplnHQQ4YMYcWKFUyaNIkWLVowbtw4UlNTmT59OikpKfj5+fHcc89x4sQJ1q1bh9FoLHBZX3rpJXbu3MnChQupUaMGkyZN4rHHHst0X3d3dxYsWMCnn37KtGnTuHnzJr6+vrzyyis89dRTWT5HuXLlmDNnDh988AGvvPIKrq6udOnSxZLJ3Gz48OFUrFiR7777jkWLFlG1alVefPFFnnnmmQK/TiGEEKI0Mmjps7gIIYQQolQ4c+YMd911Fx9++CEDBgwo7uIIIYQQIhMOxV0AIYQQQgghhBDiTiVBtxBCCCGEEEIIUUike7kQQgghhBBCCFFIpKVbCCGEEEIIIYQoJIUWdKekpNCnTx927NiR5T7PPfccQUFBNj/r168vrCIJIYQQQgghhBBFqlCmDEtOTuaVV17h+PHj2e4XGRnJtGnTaN++vWWbecoVa2lpaVy/fh1XV1ccHKRxXgghhBBCCCFE4TKZTCQnJ+Pp6YmTU/5DZ7sH3SdOnOCVV14hp6HiKSkpnDlzhqZNm+Lj45PtvtevXyc6OtqOpRRCCCGEEEIIIXLm7++Pt7d3vo+3e9C9c+dO2rZty9ixYwkJCclyv6ioKAwGA7Vq1crxnK6urgDUrl0bNzc3exW1UJhMJk6cOEH9+vWlVV4UiNQlYS9Sl4S9SF0qQxITcezSBQDjpk1QrpxdTy91SdiT1CdhL+nrUlJSEjExMZZ4NL/sHnQ//vjjudovKiqK8uXL8/rrr7Nz506qV6/Oiy++SNeuXTPsa37zxMTE2LWshenEiRPFXQRxh5C6JOxF6pKwF6lLdz6HxERCjx4FYO+xY5jsHHSbSV0S9iT1SdhL+rpU0Js5hTKmOzeioqJISkqiU6dOPPvss6xZs4bnnnuOhQsX0rRp00yPCQwMxN3dvYhLmjdGo5EDBw7QtGlTHB0di7s4ohSTuiTsReqSsBepS2VIfLxlsVmzZuDhYdfTS10S9iT1SdhL+rqUkJDAsWPHCnzeYgu6n3/+eYYMGWJJnNawYUMOHTrEb7/9lmXQ7ejoWGreSKWprKJkk7ok7EXqkrAXqUtlgNX/19HR0Wbdvk8jdUnYj9QnYS/mumSv+lRsgx4cHBwyZCoPCAjg4sWLxVQiIYQQQgghyobTp2H2bDh3rrhLIsSdr9iC7nHjxjF+/HibbREREQQEBBRTiYQQQgghhCgb+veH55+HwYOLuyRC3PmKNOiOjY0lKSkJgB49erBixQr++OMPTp06xcyZMwkLC2OwvPOFEEIIIYQoNMeOQViYWt66FUym4i2PEHe6Ig26O3XqxF9//QVAz549mTx5MrNnz6ZPnz6sW7eOOXPm4OfnV5RFEkIIIYQQokxZsUJfTk6WLuZCFLZCTaR29PZUE1mtP/zwwzz88MOFWQQhhBBCCCGEFeugGyAyEqTdS4jCI7PHCyGEEEIIUUZcuwZbtthui4wsnrIIUVZI0C2EEEIIIUQZsWoVGI222yToFqJwSdAthBBCCCFEGZG+azlI0C1EYZOgWwghhBBCiDIgNVW1dAN4eoLBoJYl6BaicEnQLYQQQpRiPXr0ICgoyPITHBxMr169+P777+32HEOGDOHLL78E4Ouvv2bChAk5HpOSksJvv/2W7+f8/fff6dGjR76PF0JktGULXL+ulu+/H2rVUssSdAtRuAo1e7kQQgghCt+ECRO4//77AUhLS2P79u1MnDgRLy8v+vXrZ9fnevLJJ2natGmO+61cuZKvv/6aQYMG2fX5hRD5Z921vG9fuHABYmJUcrVr16BSpeIrmxB3MmnpFkIIIUq5ChUq4OPjg4+PDzVq1KB///60b9+ef/75x+7P5e7uToUKFXLcT9M0uz+3EKJgzF3LHR2hVy+oV09/TFq7hSg8EnQLkYmk+CT2bzmGMdWY885CCFECOTk54ezszJAhQ3j33Xe566676NatG7du3eL8+fOMGjWK5s2b06NHD2bOnInRKp3xmjVruPfeewkJCWHKlCk2j6XvXr5s2TJ69epF8+bNefTRRzl8+DA7duxg/PjxnD17lqCgIM6cOYOmacyaNYtOnTrRqlUrRo0axblz5yznuXjxIk8//TQhISH079+fmJiYovlDCVFGXLoEERFquXVr1aptHXRHRRVPuYQoC6R7uRDp/PNLGE+Pqc7py4E8P3AjsxZ1Le4iCSGK05HPIOKznPer3AK6LrfdtvEBuLon52Mb/g8a/S9/5UsnNTWV9evX899///HBBx+waNEifv/9d+bOnYuLiwseHh4MHTqUhg0bsnTpUmJjY5k0aRIGg4HRo0dz4sQJXn75ZV577TU6d+7MDz/8QFhYGO3bt8/wXJs3b2bixIlMnDiRDh068NNPPzFy5Ej+/fdfJkyYwLx581i8eDGVK1dm/vz5rFixgk8//ZQqVaowb948nnrqKVasWIGzszMvvfQS7u7uLFq0iOPHjzNx4kQqSV9XIexm82Z9uevtrzbS0i1E0ZCgW4jbbly5wasjwvm/ZV0s2775vSOvHTqDf7BfMZZMCFGsUm9A4tmc90uqlcm22Nwdm3oj7+WyMnnyZN599131lElJuLm5MXToUB544AEWLVpEt27daNGiBQDbtm3j3LlzLFq0CAcHBwICAnjjjTcYP348o0ePZsmSJbRq1Yphw4YB8NZbb7F+/fpMn3fhwoX06dOHxx57DIDXX38dZ2dnrl+/ToUKFXB0dMTHxweAOXPmMHnyZNq2bQvAlClT6NSpE5s3b6ZWrVrs3buX9evXU7NmTRo0aMDBgwf5+++/C/R3EaKsMhohLAyCglSWcrANujt3Vr8l6BaiaEjQLQRw6UIad7W7yMFTXWy2G01OfPZuJF/8KkG3EGWWc0Uo55vzfm4+mW/LzbHOFfNeLitjxoyhZ8+eALi6uuLj44Ojo6PlcV9fvQyRkZHExcXRsmVLyzaTyURSUhLXrl0jMjKSRo0a6UVzdrZZt3by5EkeffRRy7qLiwtvvPFGhv3i4+O5cOECY8eOxcFBH9mWlJREdHQ0ycnJeHl5UbNmTctjTZs2laBbiHx66y348EMIDobwcHBygk2b1GMGA3TsqJYl6BaiaEjQLcq8S5egx91OHDrVAIDybjd5+8UwJn3RmoRkD+Ysbc2kM1eo4uddzCUVQhSLRgXo+p2+u3kh8fb2pk6dOlk+7urqallOS0sjICCAr776KsN+5gRp6ZOgOTs7Z3peJ6fcfY0wjwmfMWMGdevWtXnM09OTbdu25fo5hRDZM5lg3jy1fOgQrF4NnTrBvn1qW7Nm4OWllj09wdsbrlyRoFuIwiSJ1MQdy5hq5J9fwji07QSaKfMsuhcvQvfu6kMJoFbNBPZsvcIrU7vxdL/dACSmuPPVh/uLqthCCFGo6taty7lz56hcuTJ16tShTp06nDlzhi+++AKDwUCDBg04cOCAZX+TyUSEOftSOnXq1LF5zGg00qNHD8LCwjAYDJbtFStWxNvbm9jYWMtz1qhRg2nTpnHy5EkCAwO5fv06p06dshxz5MiRQnj1Qtz5wsPV9xuz77+HrVtVMA7QxbZTn6W1+8wZSE4uihIKUfZI0C3uSJpJ48ne27n38ZY06VCfYP8oJo/awPmoizb7jRwJhw+r5Vq1YMNmdxqE+gMw9q16ODqkAfDl/KYk3JRPIiFE6depUyd8fX157bXXOHr0KLt37+att96iXLlyODo6MmjQIA4ePMjs2bOJiori448/tskybm3IkCEsX76cpUuXcurUKT788EM0TSM4OJhy5cpx/fp1oqOjSUtLY9iwYUyfPp1169YRHR3Nm2++yZ49ewgICKBevXq0b9+eCRMmEBERwdq1a5k/f34R/2WEuDOYpwUzW74c/vhDXzeP5zYzB92aBidPFmrRhCizJOgWpYZm0li/ZC97N2Te4mLtm2/g5zUdLetHTtdjyjfd6NwxCZNR3eo1GTX++Ue1gHt7w4YNEBCgn8M/2I9H7toJwOUbVZj7vd49UwghSitHR0dmz56NyWRi0KBBvPjii3Tt2pU333wTUK3Xs2fPZuXKlfTr14/Y2Fi6ds18FofWrVszefJkZs2axQMPPMCRI0f4+uuvcXNzo127dtSpU4e+ffty5MgRRowYwcCBA5k0aRL9+vXj3LlzzJ07F8/bWZ4+//xzKlWqxKOPPspnn33GkCFDiuxvIsSdJH3QnZICc+bo61kF3SBdzIUoLAYt/SCqEighIYEjR47QqFEj3N3di7s42TIajYSHhxMSEmKTxEYU3ORRG5jyTTecHFPZsvIobe9tkul+e/dC+/Z6F6lWAbsIO9kSTVP3mE4eVNnITx05g39jlSDtge7HWbauQYZz7Qs3ERKqjqtUSXVDr1GjEF5cJqQuCXuRuiTsRepSGRIfD+XLq+Vbt8DDw66nl7pUOK5eBR8f1ZW8cmW1bi0wEI4etd32/fcwfLhanjEDxowpkqLaldQnYS/p65K94lBp6Ralwo+fbGHKN90ASDM689bEzLt637gBDz+sB9xjxsCuyNa8PnSTZZ/DYaqb5JE9elfzhrUzn9KneYgDt2fC4do11R295N+mEkIIIURZtGaNPnZ76FCwmqQAyNjKDdLSLURRkKBblHgbl4bz9Lg2NtvWhLXkvz8PZNh36lT9A6N1a7UO0KSZngX30P4EACIO3rJsa9Q46wy8X3wBVauq5RUrYP5Xx/PzMoQQQgghCiw1FX75BXbuzPiYddfy+++HYcNsH0+fRA1sg+5jx+xSRCFEOoUWdKekpNCnTx927NiR5T6HDx/m4Ycfpnnz5jz00EMcPHiwsIojSqmYGOg/vBGpRhcAmtfV+0S983ZKhv13rtcz387/0Yh5lpzGIZUt2w8dUQH2kQg9s27DZl5ZlqFKFfj6a319zBs+nIu8kKfXIYQQQghhD7Nnw+OPq7m2d+/Wt5tMetDt4aFatR97DFxc9H0ya+muUUNNHQbw99+weHHhlV2IsqpQgu7k5GT+97//cfx41i2CCQkJPPvss7Rq1Yrff/+d0NBQRo4cSUJCQmEUSZRwhw9Dq1ZQvz5YV5vPPoNr11Xk3KvtPrYfqENAdRVYq9Zu26m8Tp1Sfao8XG/RIFCv3g1b1sFgUI8dOq4C8IjIivrjLWplW77+/eGxu7cCEBfvxdhno/LzMoUQQgghCmTbNvU7LQ2ef17vTr53L1y6pJbvugtcXVWiWPN47bZtwd8/4/kMBhg/Xl8fMgSyaTMTQuSD3YPuEydOMGjQIGJiYrLd76+//sLV1ZXXX3+devXqMXHiRDw8PPj777/tXSRRwv31F7RrB2Fhqmv4xJdV3UlMhB9/VPu4ucH8lc1x83DjzZf1uvX25DTLsmbSiLlUHQD/aucxOOgt2e4V3QmodhqAI6frYDJqHDnlC0B1r4t4VfXMsZxf/tAQn4qxAPy2rgM7/zlUgFcthBBCCJF3UVb3/XftgrlzVb4Z83cmgPvu05e/+AK2bIF//1UBdmZef12NAQdISoIHHpDpw4SwJ7sH3Tt37qRt27YsXLgw2/327dtHy5YtMdx+9xsMBlq0aEF4eLi9iyRKsC8+S6BvX7h5U9+2ZJUvJ8JPsXixSl4GKjmat7daHvxyOwKqq8B77Z4WHLod+148FUtSajkA6tSIy/BcwaGqhTs+yYPwXdeJveEDQCP/zOefTc+7ZmUmv3zYsv76a6loJsmqJoQQQoiikz4YHj8eRoxQwTWowNo66HZxUb5Jj5kAAQAASURBVF3Rs0tAbzDAt99Ct25q/dIlFYRL8lgh7CPr7FH59Pjjj+dqv9jYWOrXr2+zzdvbO9su6UajEaPRWKDyFTZz+Up6OYuaueuTg9Vtnm1/H+SlV5pb1mvXuE7MeU9MmiOfTInmwJmKQCUAnn7aiPlP6uDkwIjnqzJxklrfu9dEw4YaUREXAJXxrLZvQob/QcOmHiy/PdZp0S83AC8AggJu5Pr/NeKNtsyYc5Lj5+qycX8Iy3/YTp8nW+f2z5AnUpeEvUhdEvYidakMMRpxtCwawc7/c6lL+XPrFsTG2k6JdeUKfPedvj5ligk/Py3P/zJHR1i0CNq2dSAqysDmzbBsmZG+fe1Q8EIm9UnYS/q6ZK86ZfegO7cSExNxsc7sALi4uJCSkjE5ltmxUpRS8cCBjJm1y6qEBAdeeqk+Bw968OGHUXTrdh2ATz/Sm7eHPB7DiGGn6PNACLeSKjBveXtL8rRA/wu4u5/FuhOEq7snoG7abNp0gUaNzrN722mgGQCVK8Vl6DVRvnxloC4AC3/X59mrXuNannpYvPTsaV54W51n/KTKVG+0GyfnwnsrSV0S9iJ1SdiL1KU7n0NiIqG3l/fv34+pXLlCeR6pS3lz4oQbEAxA27Y3OHDAg4QEFYS7uJh4661T3HffVQrScfS557x47TWV0nzs2BRq1DiMU7FFDHkj9UnYi73rUrG9hVxdXTME2CkpKbi5uWV5TGBgYIEmJS8KRqORAwcO0LRpUxwdHXM+4A6nmTSGPXScvXsrAPDJJ/V45hkT186dZ8VW1cpd1TOWr7+ugqu7L88O3MRn87tbAm6A0Y8fITTUdo4L6/s1N29WJySkGmsX3LBsa9K8CiEhIbZl0WDS7dbxk2eqWLa37eibYd/sNG/WnPm/HmB7RFOOnAnk4IZNDHutVa6Pzy2pS8JepC4Je5G6VIbEx1sWmzVrln3f5HyQupQ/1imTevUqz/DhMGoU1KihsXixRtu2tYHaBXqO5s3h9981tm0zEB1djr17Q3nmmZLdz1zqk7CX9HUpISHBLg2/xRZ0V6tWjcuXL9tsu3z5MlXNEyJnwtHRsdS8kUpTWQvT3KmbWbBCn5/iwgUDM2Y4khxzHKPJD4CRjxzCvUI3AMZOasgXv6SSZlTzars5JzJkTGiGv2VgoBp/pGlw4mgSjo7unIrR9wkI9MxwTHAwGAwammabRaRJ63p5+185wtSPTXR5UK3+sdyNEeMK738tdUnYi9SlO8+4ceNYunRplo//+OOPtG3b1u7PK3WpDLD6/zo6Otqs2/dppC7lxSl9ZlTq1XNgyBDo1QuqVjVQrpz9/o6ffKLGgQO8844DgwdD+fJ2O32hkfok7MVcl+xVnwptnu6cNG/enL1796LdztCgaRp79uyhefPmORwpSot9m4/ywmS9BdhgUP/rqVNNfP1rUwCcHFMZ9XpDyz5+DWrwxL36PBWP3BNGpWpeGc7t6gr+1c4AcCxCJTQ7dUbv+lYnMOPNm3LlIKCabVb98uXBt17lDPvmpFOfZnh5xAEQFlGwO8pCCJFfEydOZMuWLWzZsoUJEyZQvXp1y/qWLVsIDQ3N+SRCiFLDOnN5QID6XaeO+o5jTx06wIABavnCBRg3TpKqCVEQRRp0x8bGkpSUBECvXr24ceMG77//PidOnOD9998nMTGR+6zTLYpSZ9X8XfRqs5taVc4R0iXIkk38uYc2MfKZVABu3XLgyi3Vvfvh7jupWa+6zTkmfVSbmpXP413hCuOn1MzyuRr4XQDgRqInsadjOXXeC1Ct49Xq+GR6THC9CzbrDRtmPX1GdgwOBlo0UanVz1+rzrmz8kkkhCh6FSpUwMfHBx8fHypUqICjo6Nl3cfHJ0PuFCFE6Wadubxu3cJ9rg8/xDKWe9YseOMNCbyFyK8iDbo7derEX3/9BUD58uX55ptvCAsLY8CAAezbt49vv/22xI/ZFllLTU7l0WcDWb2rFWeu6MFySEAEn/3QhsnjruPhesvmmDGvZJwfO6BpbU6e8eZ8bEWCWgZk+XyBAfp4s6P7LhAdWwuA2tUu28zRbS04KNFmvWHDTHfLlVZd9U+7sD35iNyFEKIQnTlzhqCgIGbNmkXr1q2ZMmUKX375JUOGDLHZr0ePHvz++++A6nU2a9YsOnXqRKtWrRg1ahTnzuVuWkUhROEzt3S7ukL16tnvW1CBgTB7tr4+bZoE3kLkV6GO6T569Gi2682aNct2LJooXU4fPceNxDoAuLvGE1o/kjbNrzL+oya4ebhRva4brz21nrdndwegdeBB2vYMzvRcLuVybp1pYDXj3PatScQnqiR8dRrVyvKY4CbONuuNApOArJP3ZadlS305LIxSMaWGECJvFi1SCRhv3sx5X3upUAHefRcGDrTP+fbs2cOSJUswmUysWLEi233nz5/PihUr+PTTT6lSpQrz5s3jqaeeYsWKFTg7O2d7rBCicGma3tJdt67tNKyF5emn1bSvI0eq9WnTVFf2d94p/OcW4k5SSiYAEKVB9LErgAq6Rz+yi6k/dMuwzyvvt2b1hgMcOOnPJ1ONWbZI50ZgYz2T6pqNlSzL/v5ZH9M41NtmvWG1cKBdvp4/fdAthLjzTJsGERHF87z2CrqHDh1K7dq5yz0xZ84cJk+ebEm+NmXKFDp16sTmzZvp0aOHfQokhMiXixch8XaHvcLuWm7t2WfVb3PgPWUK1KsHTz5ZdGUQorSToFvYzcnjCZZlf//Mg+nylcrz38Emt4PtgiXNa9BUT5a2eY/+hbJOnayPadiyDg4GIyZNZSJsFJL52O/cCAgALy+NuDgDYTvjAftOpyKEKH6vvw5vvVX0Ld2vvWa/8/n6+uZqv/j4eC5cuMDYsWNxsGpCS0pKIjo62n4FEkLki/V47oCsR98VimefhVu34JVX1PrTT0Pt2tCtW9GWQ4jSSoJuYTfR8R0ty/4hTbPcryCt29bqNKyJs2MKqUYXklJc9ef2z/qYchXKUa/aMY5fCMTJMZV6TbPuip4TgwFaBuzl3z0tOH/Jg3ORFzIkhRNClG4DB9qvxbm4uLrq10dDJpkj09LSADU3KcCMGTOom64ZzdMzY/4NIUTRss5cXpQt3WZjx0JkJHz1FaSmQv/+sHu3avUWQmSv2KYME3ee6FP6lzn/oLxPw5VXTi5OBFQ/k2F7nSoxmeytmzD2Et4VrjDxmf9yNXY8Oy2b3rAsh22yfd7wTUd5qs9m+nfeztdTNnEpJrZAzyWEEAXl7OxMfLyehDI+Pp6rV68CULFiRby9vYmNjaVOnTrUqVOHGjVqMG3aNE5aN7EJUYpoGhw+rKa9Ku2Ks6UbVGPDjBlgnmgoLk5lNRdC5EyCbmE31r0Ps+vibU+BdTIGsv51s+/AMez1TsTGVebt2d0K/PwtW+tBu+piDgcOQP9+aYR2DeK7lZ35Y0s7npvchRr+lXmw0w5uXLmR1emEEKJQNW3alIiICFatWsXJkyeZNGmSTVfyYcOGMX36dNatW0d0dDRvvvkme/bsIaA4vuELYQfLlkFwMDRuDEeOFHdpCqYopwvLipMTfP21vh4ZWTzlEKK0ke7lwm7MQXfVquBRRMObG9RNgq36upNjKjXqVsvxOHt1cW/Vxc+yHLbPg+3b1fim5OSMby2T5sjy/9ryy1ebGPlWF7s8vxBC5EX79u0ZNmyYJdgePnw4ly5dsjw+YsQI4uPjmTRpErdu3aJJkybMnTtXupeLUmvxYvX72jUYPhz++w8cHYu3TPlV3N3LzWrWVJnTTSY4e7b4yiFEaSJBt7CLlMQUzp51Ahzw970OFM0XtMA2wbBAX69V5TyOzrnL0msPdYNrUcnjGtfiK7H9UD0eeQSSk9VjNWuaGP/UZtp28eH7b2P5anFXQI1/GllkJRRClBUDBgxgwIABlnU/P78MU3UaDAZef/11Xn/9dcu2UaNGWZYdHR0ZO3YsY8eOLfwCC1EErGcf2LEDPv1UJUgsjcwt3ZUrQ3HeB3NyUnOEnzunfoQQOZPu5cIuTh87j6ap6uRf6VCRPW+DJlVs1v1rXCmy5wbVYt4iUH0KXr7hTcztYd2dOkFkpAMvvNuV1vc05uNvW2IwmADYe6RKVqcTQgghyrQTJ+Cvv1QrakGZTBmn/Js0SY3xLm1SU+H0abVcEkZ71Kypfl+8CLdzMQohsiFBt7ALNUe34l8rpcieNzDQdr2O760ie26zVs1tx2hXqaLxyy/g5qZvK1+pPIE1owE4cLIeqcmpRVhCIYQQouQ7ehRCQ6F3b3j++bwde/UqdO8ODzwASUlq29mzYM4baO5SnpysupnbI6gvSjExepmLs2u5mXkmQpPpzkhSJ/LOZIKVK21zDYisSdAt7CL6hJ4N179u0VWrmjXBvZx+i9W/dtHfbm3ZxtVm/adZx/Hzy7hfaEP1qZSS5sqRXXKFEkIIIcyMRhUM37p97/ybb2DBguyPsTZvHmzYACtWwKJFapt14rRRoyAoSC3v3Anbt9ul2EWmpIznNjO3dIN0MS+rXngB+vSBzp0hIaG4S1PySdAt7CL6pNGy7F+vXJE9r4MD1K9x2rJep459EqTlRfe+gVQur6bcmTRyPb0GBWa6X0gzvQfA3n3ORVI2IYQQojSYPh22bbPdNnKkav3OjT179OUdO9Rv667loaG2Y7n/+SdfxSw2xT1dWHrmlm6QZGpl0fbtMHu2Wj57Fvbvz9vxX32leqv+9pv9y1ZSSdAt7OLkKT2I9A8s/Dm6rQVW2W1ZrlO76PuLVfHzZu+uRLatOsg7X3fPcr/Qnp0sy3uPl4Db1EIIIUQW9u3Tlwu7K3ZEBEycqJYNBjULCKiu4Q8/DImJOZ/Dury7dqnf1i3djRrBPffo66Ut6P77b325fv3iK4eZddAtLd1li9GYcfhHXvIkGI3qBtjx4zBzpn3LVpJJ0C3sIvpsBctynYY1ivS5+z6snq9Kxcu0urd1kT63We2GvrTr1STbfUJb6pMF7N1b2CUSQghRViTcSGBAl+0E+Z3k8I4Tdjnnu+/qy+aW49z66iuoVk1lCs+JuVu5eeaPl1+GP/9U82oDHDgAb76Z/TmSkmxbxMPDISXFtqW7YUOoVUsF36BeU1xcLl9QMTt6FP74Qy3XrKmStRY36+7l0tJdtnzzTcbvsdY3uHISHa3nWqhShnILS9At7CL6gg8AVT1jca/oXqTPPeR/HdmzPoIjhwxUqFwh5wOKiY+Pfmc4PBw0rViLI4QQohTas0e1DlkHjG8+t5Olm9tx7GxdPv+g4M2OcXGwdq2+bm45zq3334dLl1Tr9fXr+vaICJgxAy5f1rfNm2ewjK9u0ADeew88PNS4bHNC0hkz4ODBrJ/v8GEVvJulpKjuruZAoGpVNc0WQM+e6rfJBOvX5+11FZdPPtG/M4wdC66u2e9fFKSlu2wyv6/Ty0tLt/W+5ptrZYEE3aLAkhNSOHe1GgD+1S8W+fMbHAyEdmtIFT/vIn/uvAoNVb9v3ICTkTLHhhBCiNwzZ+h+8UXo0gViY2HLiv1M/6WLZZ8jkV4Ffp7lyyHV6iNq9+6s900vIUEPwpKTYelStZyYCD16qJbsjh3Va4mLc2TiRD0Xy7ffgvvt+/aNG8OECWrZaITRo7O+WW3dtdxszRo1nRWoVm4zc9ANpaOL+fnz8OOParliRXj22eItj5m0dJdNb76p3/AbOhQq3G7ryktLd/phH2WFBN2iwGzm6Pa9kcPeZVtofb3b3961eWw6EEIIUaYt/no7N25/zB44AHf1MDF8ZEXLZzDA0dM1szg699InN9q5M/fHRkfbrpszkP/8swogAY4dg4cecmDGDD+uXlVB9xNP6GO5zV57DerVU8ubNqlzZCazoPunn/Rl6y/2XbuC8+00NKUh6J4xQ7XcAzz3nAq8SwIvLyh3O2+uBN1lw+HDMHeuWq5YEaZO1d9b1l3Gc3MeM2npFiIPomOskqj5F3328NIktLE+n/nesORiLIkQQojSZsGvbjbrBw46cOK8v822yzeqcOXc1Xw/R1xcxmD09Jncz8VsPbUVwLp1Ktj+4gvb7Zs3G1ixQg3orFABpk3LeC43N/jyS339lVdsu6ubWWdOdrj9zTar1jQPD31MdFQUREbm8IKK0Y0beoZoFxd46aXiLY81g0Fv7Zbu5WXDuHF6UsVx49SwDXPQrGm5n2nA/N40GPRp/MoCCbpFgUVf0u+q+7dqX4wlKflCO+iDoPYe8CjGkgghhChNTh89y6YDIQD4Vz2Dn5/e19rNOZG7W4RZ1o8ezkW67ywsWwapqRm35zaZmvXUVqC+pI8erQfGDRroLaRm77wDNbLIwXrffdCvn1q+eBGGDbMdv61pekt39erQrFnGc1h3L4fS0cU8ORkeewxLz4Ynn8z6b1RczOO6r1/PfSunKJ02bYIVK9Syr69+A8i6pTo3Xcw1TW/p9vfXh5OUBRJ0iwKz7krm719cpSgd6jTyxcsjDoC9x2oVb2GEEEKUGr98e9yy/NTDJ9iwXqNuddWv9/M3d9FnSIjl8YgY3/SH59qiRZlvz23Qnb6lG/Rx3aAC7PnzwWBQNw2aNNF44YXszzl9ut6t+o8/4I039MfOnlXjwwGaN4fWmUxikn7caEkPupOTYcAA+Osvte7ubvuaSwpJplY2aJoa6mH27rt6sGz93spNMrUzZ+DWLbVclrqWQyEE3cnJyUyYMIFWrVrRqVMn5s2bl+W+zz33HEFBQTY/60tLKklhIUF37hkcDITUV80A569V5+Kp2GIukRBCiNLg56XVLcuPPV2XevUdOHzCm7MnLjBqUhcaNnK0PJ7bbp7pqa7lKhiuma5VNT8t3b7pYv8aNeChh1RAuWSJif79Y1m61GQZY52VOnXUzQDH2y/x00/h66/VsvV47syCbnd38POz3RYSok9V9O+/mbfsF5eUlIwB919/lYy5udOTZGplw4IFel6HJk1UrwuzvLZ0l9UkalAIQffUqVM5ePAgP/zwA5MnT2bmzJn8/fffme4bGRnJtGnT2LJli+WnY8eO9i6SKGTR0XoXtzp1irEgpURoEz3Z3N4tMcVYEiGEEKXBoW3H2XdS9ZFu2/Ag9UPUh62bhxs166lg3HpsZH6D7m8/2ElqqsrNMqDLNpvHdu2y7dadFXNLt7MzjBlj+9ioUWpsMsADD8DEiTHUrZu7svXsqeb/NnvhBdi40XY8d7NmGYPuhg31cd5mDg5w991q+eZNNQ1bSTF1asaAu2vX4i1TVqSl+853/Dg8/7y+/vHH+s0vUN/7zcNFctPSXVaTqIGdg+6EhAQWLVrExIkTCQ4O5p577uHpp59mgTl1pZWUlBTOnDlD06ZN8fHxsfy4mK/GotQ4eUTNyVG1UlyZGpuRX6EtnCzL4btvFmNJhBBClAYL5ujNiI8PuJLpPrVr6/NaR0So35pJY8aEjUwetYHU5Oybc799bzNvTGtjWX+4gW1/5ps39fNmRdP0lm5/f5WR3HA7v6qzM4wcmf3xOXn2WXj1VbVsNMLw4bB1q/548+YQHGw7Zjz9eG4z60B28+aClcteoqPVHOegApuVK0tuwA3S0n2nS0qCQYPUex/U+/m++2z3cXTUb/idOKFn2s9KWW7pdsp5l9yLiIggLS2NUPNkxEDLli35+uuvMZlMOFjdaoyKisJgMFCrVu7HtRqNRoy5uc1ajMzlK+nltJezJy5w7qq61dmg5imMxgrFXKKSr1nbKpblPftcsqwrZa0uicIjdUnYi9SloqeZNH75U82b5WAwMnBEUJZ//8Dal9l/rBqRJ1JJSjDyz2/hvPyhitqMxvW883WXTI/79hsTz7/V2bL+au9ptKqbsfl32zYTDRtmMVk2at7wW7dUM5i/v0b16iZeesnA9OkOvP22iSpVNEtreX7r0gcfwPbtDmzZYuDkST3Id3HRqF/fhIMDhIQ4sG2bivaDgkwYjRnLrDpWqrJu3KgxdqwpT+UoDC+95EBSkir3Cy+Y6NxZy1XvguJSvTqY/4ZnzmT+dy4qcm2yv5deMhAermK3hg01Zs0yWbKXW2vUSO1nNEJEhJHgYP2xPXvgyy8NDBmi0aMHHDrkAKg6HhhoLJH1O31dsledsmvQHRsbS6VKlWxaq6tUqUJycjJxcXFUrlzZsj0qKory5cvz+uuvs3PnTqpXr86LL75I12xu6R07dsyexS1UBw4cKO4iFIn1C08DKuhu3TyG8PC04i1QKZDmmIabcyJJqeXYG1Gd8PDwbPcvK3VJFD6pS8JepC4Vncun44i+dBcAnZrs4fw1B85fy7xZMaDqTfYfq0aa0Zk1y9fx6wK9H+isX0K5b/B23MrbTju2d295nh+t901//qGVDH6lMZfOD6Aqv9vsu/H3TYSGZn1z/eBBd0A1X1WseJnw8BgGD9ZbvDP7uMtPXXrlFVd27WpMcrLemOPvn8ihQ0duL/uxbVs1AFxdTxIeHpfhHJoGnp7NuX7diU2bjOzZsy9DN/SitGVLRZYvbwCAt3cq/fsfJDy8+G8EZCcuzgVoCsDhw3GEh5/M/oAiINcm+1ixwptvv/UHwNXVxNtvH+HEiaRM9/X0rI45Fli1KprU1DgArl1zYtCgxly75sySJUaWLz/AwYNNACd8fFI4ebJk/6/sXZfsGnQnJiZm6B5uXk9J198gKiqKpKQkOnXqxLPPPsuaNWt47rnnWLhwIU2bNs30/IGBgbiX8P7LRqORAwcO0LRpUxytBz3coT4Zp78B+w3yIyQkk7k6RAZN60aw61gwJ84HUK92HBUqZ/wSU9bqkig8UpeEvUhdKnrLwnZalju2uUVISOat1QBNGm3ijy1qOfVGRf7dpWffiov3YueqFMa8387mmB9/NFiWXx6TzLRP7sXgYID4znA76HZAtfQciGpESIjeW4ukWBzCXkDzaoZWuQVH9+nd01vX+I/QlGVgTATNiNb2R3DUvyMWpC6FhMBHH8HYsfq2du3cCAkJAWDCBPj3X40aNeD55/2zHPrWrZsDy5bBjRtOODuHkMXXz0KnuvHqEf/06Y506lTyv09Zd92Pj69ESIhnsZVFrk32s2EDfPCBXh9nzoSBA7MYpwHcdZee2DAxsS4hIarHw6OPGrh2TZ0nIcGRn39uxvXrar1ZM2fL+7WkSV+XEhIS7NLwa9eg29XVNUNwbV53c7O9s/r8888zZMgQPD3VG7Rhw4YcOnSI3377Lcug29HRsdS8kUpTWfPLZDSxdqe6O16h3A069Gpyx79mewlt5c6u2+/fgxEV6dQ569vrZaEuiaIhdUnYi9SlohN+ymrIXkffbP/ujRrrQe2CBXDpuo/N45/PDeSFd0w4u+rpwg8d0h8fP9EVJ/NDVs/TuEEcO49X5MDxqiQmGihf/vYD8cfgzBIMZ5YAcGr1OOBDAOo5zMfhpNqOSyVwsZ2c2xA1j9oXVuHk3BwH9xrg4Q/VuoNDDqnMbxszRk1FtmmTWm/e3MFS5CZNVGIvBwcwGLL+e3XtquYlB9i61ZHiigF+/11PQNe1KzzxhINlLHxJ5uEBlSurKdvOnzeUiGuCXJsKJiICBg7UM/o//zyMGJF9fWzSxPp49T5ctAgWL7bdb948/btucHDJqC/ZMdcle5XTrh1pqlWrxrVr10hL07sYx8bG4ubmRkXzBIvmJ3ZwsATcZgEBAVy8eNGeRRKFKHzTUS7fUHe8e7Q8YvMhLrIX0klP17o3vBj7swkhhCjR9u7XGy1adAvMdt+gZvowvqWb21qWK5a7DsDpy778+qvtuFtz0O3jA1WrZn7edl28ATCZDKxaZfXADdvWn6hLAZblulWtuhp7+Gc4pyHmN3yuL8Xh4NuwcySsvxf+bARR34Mp56FqDg7w/fcqeVqzZjBsmO3jjo7kGLh21oexW4L34vC7VS/+KVNyLndJYs5gfu6c6rIvSq+rV6F3bzV1IKikaTNm5Fwf69UDp9vNuLt3q/psnfG8WSadNspaEjWwc9DdqFEjnJycbMaohoWF0bRpU5skagDjxo1j/PjxNtsiIiIICAhA5OxoWBR71udiQrxC9M9y/QZJz7uSi7EkpY9VrkH27i2+cgghhCjZzNNZeXmpjODZCQrVJ6TWNPW9y2AwMW/2Ncv2qZ+4WIKjy2eucOGCWm4ScCbL8z7wgL68aJHVAwFDofcR6LAAgsZy8oY+X1fAwzPh/oPwQCR0Tzd1rMkIV3dlfKJbkbB9OKwIhL1vwMWNYMo663rdumqc+L59qsU1r0JCsLTab95c+EGjpsErr0DfvvoUWwkJsHq1Wq5a1ZzgrfQwB90pKXAl88T6opT4+GO9x0WzZrBwoR5MZ8fZGQJv3w+MjISHHoLLl9X6Qw/Bn3/qUwWalbXpwsDOQXe5cuXo168fb7/9Nvv372ft2rXMmzePJ2/Poh4bG0tSkhoD3KNHD1asWMEff/zBqVOnmDlzJmFhYQwePNieRbrjhK07wgMdd9CwVQAtezRixXc7cz6okPyzQe+p0LOfTNCdF82a6fOGStAthBAiMxcv6sFZaGjOLU7lK1XAt/J5m21tmpxlwJP+tG+v1g8ehDVr1PKhXact+zXxj8zyvF27grdq7GblSoiPv/2AgzN4NgT/x6HlZ0RdCwHA0xMqBbYHr2AoHwBu6ZrQHRwx9Y3mSO3vMXZaCm2+ger36I/Hn4QjU+HfbnB+je2xqTfgzDI4+B5sfwrWdoeVTeCP2rDIC1a3U8F6Ljg56UHuuXMq4EhJgXXr9NY+e9q2DT77TAUh//uf2rZ6NSQmquV+/WznQC4NZNqwO8P16/q4bBcXWL4cKuRhQqK77sq4zccHvvoKatWCp5+2fUxauu1g/PjxBAcHM3ToUN555x1efPFFevbsCUCnTp3466+/AOjZsyeTJ09m9uzZ9OnTh3Xr1jFnzhz8/PyyO32ZtXvtYfp22EmruxqxYqveZezHP7LvalZY4q/Hs+WAmhOgbrUY6jWXoDsv3N0hqIHKd3DoYBopiba5EI7sjOSeVvv4v/cvYjKW7OylQgghshd/PZ5pr26gXaODfDExdwEhwN7NehftFiG5mx2kYZ1zNut9H6mFwQAvv6xv+/t2w/PB8OuWbU2aZB3ROznBgAFqOSEBbn+VIzUVVq1SU4WlpUFMjNqeq06LzhVIKNcEfPtC/Wehxz9w92ao3hPzlEI4llPjvM1unYTF3rCpH+x/C6K+g0sb4PohSDgNqdfhyg4VrB//JheFsO1i/vPP0LatCiDuusu25fvWLfVab9zI1WkztdOqnWTRItUquHSpvq1///yfu7iYW7pBv0EkSp9vvtHr9tChUCePX+s/+ADmzIEPP1Q/06bBf//pQ1bGj9dbu3181E9ZY9dEaqBauz/++GM+/vjjDI8dPXrUZv3hhx/m4YcftncR7ij7txxj4utx/LmtTaaPr9noRVpa7rp/FNSta7dYvfAAzdrX5nhEAqlGNbVFzw7RGAy1C78Ad5jQ2rs4crQjqWlOHN51lJAuKildUhIMeMyLiKh6rA+HjjO3MOR/nYq3sEIIIfIsJTGFGW9tZdr/BRN7oxsAez5O4dkJSbh5uGV/MLBnczSgcoCE1t4JdMjxmKB6t/jXqgdV377q991369s2/3sNqMTBg3qg3SS0UrbnHTQI/u//1PKiRarbaL9+KgAPCIA//sAy527dulmdJQdVO0GP1ZB0Gc6vhsRz4GSVgM3DH9yqQWK6JlVHd3DxBAzqGOeKKpi3ppnAkLGtqYtVMvhJk/TlPXvg0iWopmYe45FH1Gu97z79pkN2Jk+Gf/6B2bOxJGgzDxUAMJlUd94VK9R6xYrQo0fO5y1ppKW79EtOhunT1bLBAK++mvdzlC8PI0Zk/bifnxofPm0ajBuXr2KWekUQqon8unr+Gu3v9iUhWW/NrlXlLONfiGTtvo78vtSR69dVdyXrO7WF5Ym+h1j+n+qfZp0Dr2f//H66lm2hzVP5+Xavub3bLlmC7smTISLK27LfWx/5M2hUMq7ursVRTCGEEPk0ceRWPvmpm822VKML50+epm6TWjkev2efVRK1DtVy9ZwNg/Tm2do1b9G0qRq0XLkyNPGP4mB0AHsOVOTm1ZscPKZ/mAe3yf7mebduUKWKGqu5ciW89ZYefEZFwciR+r75DrrN3KpA3ScybjcYoN7TkHIFqnaFCvXBo+7tgBsVWJ/4VnV7d69pe+w/7dX0ZZVaQKVQqNwCKoXQunUFXFxUt/L0jhyBah4nSdU8WLPGB1CJ5C7u+YtqrvugnC9UbKjK4eJlCepjYlRCNFCB/PLlajn9cDLzTQxQCazSj3stDaxbuiXoLp3mz4fzt0el9O+vj8+2t1Gj1E9ZJWmTS7CwjVEkJHsA4Fv5PLPf2cTxU1V4bnIXHuynD/rJzR3XgtJMGuvC9KwH12/3SHNwgB59c/7iIDIKbaNn9N+7V3Uh374dPvnEdr9TsX7MemdbURZNCCGEHazbq6ftrVHpgmX5/Km4XB2/N0IFju6u8QSG+ufqmCZt9GF6D/TVbMaBd2mlxnCbNEe2/n2UgydVH9JaVc7i6ZP9HMvpu5h/8IHt49usPqYKNSdus7eh1ZdQeyBUCtEDblBBb4NRUC9dk5sxBa7thbgDcPIH2PMyrO0CizxxWxNE+8aHLbtWrqzftIiIACI+58TXXUlN1f+Qq//vV9g3AbYPhX/awhJv2NjX9rjbNq+7jumfbiSu7MmRw1kPEbDpWm5KhWvhcHUvXA2DpNhc/WmKg/Wo0DNZ5+ITJZTJpFqfzV5/vfjKcqeToLsEO3bklmX57VdOMGpSF0trZ69e+n6rll1Lf6jdXTh5kVtJKqOCm4ueqXzgQJVRVeRdSEeracMOeXErLpHhwzVMt4dwDxl0BYNBrbw3qznXLsYVQymFEELkh8kERyJVSu0GDUy8NEyPxM6fvpXVYRbXLsYRdVEFxc0DonB0zl2Gra596jN8OHTvDhMm22ZC6txFn9rz1wWJxMV7AdAkIHeDcTMbEZhZFuICt3TbW9JFqNgIDOk7eGpw8xgf9htB23rbeaPvR/zynR7gHjkCeDbm0Jlgm6P+Cr8/43M46zfSjx/XN8fFe3Jwz1UO7InDaFLPf3eTNTg56lnZXV2N/D979x0WxfEGcPx7dGyAgAoIInYRBXuNPZqYosb0ZnoxMd1femJ6YopRE9MTEzUxJtGYosYSjb2DgiJiQ1GRIhY6d/v7Y+D2jjuqh4C+n+fhcW7bzeGyt+/OzDtXXGFxrMxYWBwFS7rCku6woBmsvBwOzIL8zLI/a3HAnvgFbH4IVl0Ni7vColYq8dzZxLL3r6QQiw4SxWP6Rd2xYgUUj/4dOFDlNBDVQ7qXXwAzZqjWy+efh/vvr/h++xL1L8e2Ha2/OJs0ge7t97M1vhUxe3w4tv8Ega2aOarKNvbGnADU8R+8biOPvz2Q/fvlj/N8+Ab6EOyXzJG0ILbubUur0HOcPK3GrvXoAV9+701+2r/MWzmUU1k+jL9uE727F6U49eulEswUyz5asS9SZ0+1r6VTOyE/o/x96wVBwzbWy06urtgcK94R4K53mSfvFGTGlL8fQJPLrMfhnd2vEuaUx81btYJYSt8ChVn2trbWIAzqW9xJGPMgrYK9DRp3A1eLv9ecE3AmvvTtizm5gX+J8Zqnd0PuyfL39WgKXiVSgaauNc91q2kaZ8+eZWnDMxhKpj9u1AE8LbqtFpyBjO1UiH8/1Y2zWNYhOHeo/P1cGoBvd+tlGTtUEqTy1A9R/z/FNCOcXFOR2ha1innrr3NTVQKm8hic1Hlo6UyCGjtaHnc/8O5kvSxtIxhzy9+3YRv1d1esMBvSKzhjRRWvEf5NnLnpoSga+DSo2PuIUh06pGel7tjRiYBA/Zbr2FE7fZlLiF57EFDzS3btVIFrdBEnJ/jmG/vrBlyhR8M/LdP/Bju1r8B1Eesu5qCSjS1cCBER6vMWq3Wzv9YPhitj1N9dZiyc2q6ucxnbIXMnfdpsZONravjcibChgMr+FB8P+PVm92lPq8P9s/saCnvOxaXgGJxNUAneLL5vLINugP/iL8PFSW/lvmZYMoHNN/D9EnVdGT44lwYN6us7nN5tfQDNBCeWqR+ARu2gcXd1XQq7S78Ox38MO1+EwlIe6pw7oFr6w+6Cnl86ZELwxo1VctjsbDh8+LwPJy6w2Fi9fNddNVePS4EE3dVsxw547DH1xPvxxwq57qoz+AZWbDLJhFP6DXibbrYDLK647Ahb41sBsGT+Pu5+thmaSQVABqfzv5Ba1SVOT9fZtp2BFi0qn9lQ2Ipqd5QjaUHkFniSW/SlXt8jh2+/ccfFBe56FBauySWvwINF63qxaF1pR2pe9FMVncvfpFQDq7ifDzCoivu2Kvqpih7lb2KXO1WvbzOKH1hVXsein6qoavK9RlT9s4YW/VRFVPmb2OVM1evrfx77ti36qYreVdyvHlWvb8WvEbGxq5k6t6p/26JYnMXznPBwCGiuB27Hj5f/sHLHZv0hVNeujumYGNQ6gLBmhzlwogW5BXp9OkVU7HbQxQUefliNVw4OhjlzVAKljz+Ga6/Vt6u19wfOHuqBn+VDP1MBnN6jAl3XhjT1a423t5oybM8ewCeSuJxIq8OcOlOPzSdvpm8pee0SSzzf+i9rKj5eRvPrruPGM9wXft+gMkZPeKy+9Q7ufiqjO07qweKJ5WoatWJn9qqfk6uh1X368nrN7QfcBmcVmBtzVQCflWQbcJ9JgAYtrR+kVoDBoFq74+NVS7emOSSWFxeIZcb5Wvt3e5GQ7uXVyGSCCRMwdxfOyXXh6w92Vnj/4ielDRpAs+b1bNZfOcbPXP57iQt/fLuZts0P0zkskZRD5Y//yclR8+dtqEAD3t69+rRV7cIrMXGfKFOvbjnmssFg4sYh69n633HCO6k/Tb9gb/53t4znFkJcOOv2dK3pKlwU4qLPmsvh4RDYQh97fDzDz94uVrZH68FPVJ8mZWxZOZd1s+0D3Kmbr50t7Xv5ZVi/Hnbt0jN7X321Gm4GqjXco/zE7LWHkyv4dIbQmyBoFAZ3H9q3V6uOHFFThcXZ6RCzeHHphyzZ0r1mrQvbY9TwQIMBunSB9u1h5051bMshgwAEjlBzl/ecCb2+gGv2w/B10HYiNO6hekYBNB9tHeE2H62SxIXcCF0/VFOwjTkBN+apfzu/Dm4+ajtLhTnwV0eY3whWDIW4tyBtswrQK6A4WMvJgfT0Cu0iaoniBGpgnYleOJ60dFejWd9pbNhg/bjvkx9a8+Tbhbi4lf2rLyiAg0UPNdu0sf/UsMfQDvg2TCf9rC8L/uvJr6v18V5TXlnH+7PKngTvhRfgo49Ut6DDh1WXsdIkHNCD/rZdqq8b+6XmwWe7ELt7HfU8TTz5QgAde9k+Nn9p+gCGj9pJRqoeoOPTRT2xL5ZzArIq0K/L2UPta+nM3vLHiIHqwtwg1HpZ2magAt3LG7YFd4vpaPJPV6zLNYBvD+vu5eeSIPd46dsXc21k2+U6c5fqolue+sHgafHtY8pX3Z8rwqsTuFq0WuSmqi595XFyVdl0LZ1NhLwK3MG4+0HDEq3/GdvM3ctNmkZKygmaNm2GU8mLScNWav9iBecq1uUaVH0tW0Wyk1U35vK41Lftcp25GwrP2t/ekmeg+v8pZjJCxtaK1derg9W4S/Iy4Oy+0rcvZnBS56Glcwcr1vXfzQcalWgRPxWthiyUp36oddf/whzIrOCD2ypcI+6dFElqujtHjsuDVUeIW7cT6AdAeMtkAtq1Nq87ntOplL102/eo71pX53zCezpukPRlA+C7v/TXBoOJDt0r3sTl7Ax9+lgvMxjUHNePPQbdujmoojWoQweV2BRUUJyQoMoBAXqQ8vff8PrrtvsWFqps7pZOnICUFFVu21Y1poD1eOgyGQxq+FHxEKTixHBuJXpOOjnDyK12p0bDzQs6vQjtJtoOCzsdq1rUjUZIWal+eAHqhUDoLRByvWoFd/W2e0Naclx3WfeTonaxbOkOCKi5elwKJOiuJqdSMpn0hBOqGy20DjpGYnIgSanNWfTdRsbeX3b3woMH9fkuS0vd7+zqzIje8cxd1g+TZp1g5etFfZmcBfXr2983NyuXb7/SAE+ys2HzZrjSTl6QYnsPqwC+nnsWgWESdDtK4wAf5i7rV+Y2BicD/a8urwv4+XRhblfF/QDszx9fPi+gqgkBQop+qiKiivu5UfX6+hf9VEXrop+q0O98jUYj0dHRREZG4uxcXjKmBlT9swYV/VRFVbvRO1P1+jY+j31bUjx/cuVFVnE/T6pe3/KvEa2/gtQNKjjIywP3CzBL4dmMs3z13jaienozaGxk9b/hBbS7KImak8FIu86+uNdTv9O8POsbXXtMRhMJySoQ7hByEDfP87lOWxswIgQs5slt3doJz4a2vekqy9UV+ld1VEst08Hiee0ff6iGEFBzeu/dC9HRas7tEyegWYk/q6QkFXiXVBzndnVERxJnN9v8LMXsBdyWLB88FnNygxY3qdwllg/nspNg9zvqB1T39dElcqpoJkJC9PdMSnLQZxQXRPG1qEEDaCjPW6uVdC+vJq8+HkvaGRVw3zAijk+m6C1z0z4pv99VwpY95nKb4NJbU66+Wn/i6FXvND27qG7lmZkGZs8u/fi/f7uDzLP6eK7o6NK3LcjN58AJ1bLUNugITs4yWEcIIS42wRYdCC7U1D9TntvGk+8OYuRN7TmacPFM8msymtiTpILmVgFJeNT3wGDQA7Tj5XTWyUzPMWe6DvDPKXvjSmrVOcRq+rJO4RXrQnwpKe5eDvDrr3o5PNy6gWLpUtt9LbuW97PzTD2qqukrqpNPF+j3I1xzEK5OhB6fQcAVaiy4JVdv232jnyPk7Dvml4e3b1XJLSuSZFXUuOKgW7qWVz8JuqtB9ukcvvlddUWs736OD6Y3ZviNXWnffD8Aq3dGErNmb5nH2LcrxVxu2yyh1O2uf7AX/xu/ikduWE1cTDaffau3qE2bVvo177sfrDs5REeXfnE8EHfU/OXfNrT6pycTQghx4YUE68FX0r6KZ8s+H7u2q++UvAIPFn237YK8Z2WZjCamv7iaT19ZbU5WWp6DsUfIyVetx+Fh+vd5cffNtDTILyOBeVqm3k3Nr01kpetcFoOTgQFRev/nTh0cG9RfDCxbui3n3O7YEaupvf7+23Zfy6D75ptte4zU6lZgg0ENOWrzAAz+G8Ycg27TocUt0Oxy2xk2TAVw8DtCXJeYFyVtXa3mQF/SDY4ukuC7mpV1HSnPuXNwtmhUlwTd1U+C7mqwYXGq+cv2jqu207xNAAYnA4/crTcdzHg/pbTdAUjYp//XtAn3LnU7Z1dn3vl2ENPnDSSodQBRUXr3rt27YeVyo80+yYnH+WeL9VU/el3pkysmHNTH4rbrWJeyowghhKioYHd96rWkXbvL2NJx0gv1+Y8XLaudQ5e+fH83E98cyITXBrJ4dsXyB8Rt01uSw9vr08MFNtpvLqccKr25u3hKLqie8bHDr9dze/TsW8o4tEtYaCi4udkuDw+H3r3Bqygn3qpVtjGlZebyTp1sp1atlS3dpfFoAu0egX5zYMhSldzNUtZhcPWihZ/eJT0pvWj416kd8N+1aq7x/d9ULJ+KqDBNg7FjVV6mGTOs1/3xB7z6KpwuZxZOyx431Tae25gLJ1aoKVtLOrqomt60dpKguxr8/reekGT8/XpG0Dse60o9dzUX5spNZSct2XdQ/xJs26Vyj58mPqp/A0ybbNtyMPvTvTZjwBOPB3M2w34So72H9KC7ba+69G0hhBCiokJa6g9VjyTZGZRaDdLz25jL/0Z34WyG7XRHW5fv5olbVrNmUcwFqZMlkwmmfqWP3f93aVoZW+t279Jbj8Mj9OgtwEt/+H7sYOlJEi0zQPtWPLF4hY2/tz4vvKASgY0a5fjj13UuLrb5dNzcoHVrta44kdzJk3rS22KWLd1t2qhx4MVatFDzWl80GraGq/YSdP1cDAZ175mU2x98LBp2TkXDpnsgp5xEBqJS1qyBBQtU/qcnntCHif7+O1xzDUyerKb2K4tlbgm7Ld2mgvIflpw7pILnvTMg+jmIeUFlv499E/4dCb80hpXDIP5D2321C/M9U1tI0O1giTGHWb9bXWw6hiTSY5ieHKhh44a0a65alA+nBlGQV1DqcRKOqCf+jRtk0Digclfo0dcW0txX/SX9sb47B2P1pBeaSePbn/UkVMO6qqBc05zYteGQ/bpY9G5v57hcLkIIIWqRkFZ6gqWkIxfm9iA9Xc8Rkl/ozrJf9Mz5uVm5PHvXKnpd3o6pPw5k7O1BFOZf2Ju05cshPlF/CL4ltmLNQXF79CFc4V31qDmgmf5Q/PgRO/MpF6nulm4XF3jjDXjxRZlTuTSW47pB3f+4FP23WmZvLzntanFLd716qvVwwAB9Xa3uWl5VBgNuQX0ICFAnUtLJAJVB/bJFanozgIARKkC3dHA2HF9WsZkchI0vvtDLhYUwfry6Xx8/Xl++bFnZxyi1pfvsftj8EPzcEH6uD781g6V9VBCdWWJ2k8NzVY+GbY+qhHtxb6nAe+eLcHwpGIseQJ5YbjsFncullblNgm4Hm/2Z3sVm/PVHMThZf5u1Cs4EwGhyISneftKY7DPZHElTGYDbNq98YhlXd1fuv0lFyprmxIpFh8zrNv0Tx97kMAAGdo5m7NX6l370Zvtj+PZaDD8vLZO6EEKIui24tT4X9JHjnmVs6RiaZjun7x+L1MPo3ZsS6dohmXe/G2TumZV2xo/YjftLHsZh8nPymfL0Kp6/ZxWZJ1W/zOnTrbfZltAKY4HtsK2S4hJVoO1kMNI2Su/ZFhCo9zI7frT0YCNt72Zz2c89sdTtRPWxHNcNajx3sdKCbsvpwlq3Vg80Bg5UXcrd3ODee6uvvjWteNqwEycgL98Aza+GEZvg8k3Q5U3rjU1G2P4E/Hs5/OoLf0XAX+HwZwdY3BVWDIH/xsD2p9S0pnXMqVOQXY296dPT4ZdfrJfFxED37pCZqS+LjYUzZ0o/jlVLt28GHPgO1lwHf7aFxM/AVHSNyk2B9I0qiC7ItD5Io3JmHvEMgrDx0O1jNS2dpYDhZe97kZEpwxzIZDTx/ULVVc7JYOS2hzvYbNOqFbBKlfcfcqdVF5tN2L/rKKCi2zah5QzIKMWAId7wiSpHR+tPln7+QX98Pv7Wc7TrpLeiR8fYf9ydsLcAcKVpU30ckxBCiIuLX1BjPFxzyC3wJOmET/k7nKczpzUKC62/d/5a0570YxmMusadQyeDbfbZ8G8KkZc5vstV6pE0rrsymTWxgwBYvjaOmV/n8NdfTQG9judyG7J3eyIde5U+lZ+xwMiepFAAWgcm4VFf754e0Fzvwn/8eOlZw9NT9Dt2P68KzF8vHK5kS3e4nn6AXr1UQK1p1kH34cP6dGGti04Rd3fYuhWysi7uKZlCQvS5zY8cKfr8BgP42ZlaNGML5BXdjxZmqXnCSxN8nfVrYx6Y8sG1dv4yV65UyfaCg2HTpuoZHjJrlpp6EGDkSNWibTTqSdGKaZqaEnjYMPvHsQq6jz0CG3+03sClAXhHQNYhyCklB4VvD4iYDPVD1JRyoLqkm/LAqxM0ai/daYpIS7cD/ftbNEmp6oQb2XMbAWFNbbZp1Ut/PJqYbL+bWsIu/dF/29ZV60rXpV+ouRy9W7952hStB9lX39aRiD4tMRjUF/+O3bZ92M6kn+FEiquqS9M4m/VCCCEuDgYnA8H+KgFY0smmFc7UXVXpR47YLEs948fgfhnmgLtTi3189Zae4G3Dxsrdtsz5aB23Xr6OmZP/I+VQqt1tYtcn0rN7Dmti9afgWxLC6TfEG01TN4vBzTL1df+dKHkIK4f2HCe3QPUUsMxcDhDYQu/Cf+x46e0eael6i7hvU0l0VhNKtnRbBt2NGumvY2JUQA3WSdTa6OkKcHK6uANuUOPViyWVnptX8QqH/j9DyzvBMxCc66kAz6VhiWnKDODd2Xrfwz/C/EawIBCWD4I970N+pmM+RDkKCuDll+HZZ+3PxQ5qfX4+7N8P333n+DpoGnzxud5i/NFH8Pzz+no3NxNPjN9pfr1heZIaV3/0d4j/WHX/3jcTTu+27l5u2ZXV3V/1ThidBJevV1nsb8yBcZngWyIzYL0giHhZtWY3G6Z+ml8DIdeDVwcJuC1IS7cDzf1Rv1DceYf9v8ZWrfTy/lJ6ye3bq2c6bdPOTvrMCvBp6k0L/6McTm1OzP6WmIwmjIVGdiSqR6+tmh3GN1BdIdsEHiQhuSW7DoVRmF+Ii5t+WiTsOAqoriPtQktP+iKEEKLuC2l6in3HWnIutyGn0zLxbuJdbe+VfkIf3uRd/xSZWeoB8a5D6nuqcYMM/lpSj6YhPXn45TzyC93ZsDPE7rHs2bgkltueVBMlz10Gj7xmZMgQ+Owz/bv45EkYeFUoGaeK5sT2OUGh0ZnUM/7kFahWaQ/XHD54eQ83PKwemm/ZYuTOMt437lBzczm8p3XS1IAW+oPv4ydLzCVlIe2U/t3vF9Co1O1E9Sk5nM4y6AbVxTw2VrUwbt2qupGXTKJ2KQmx+NMsN+h2baiCspDrbddpGhizIS8Dzh0A1wbW65OKJk7POa5+Tq6GXa9iCL2TBnmdobANOFfP38z776vkg6ASj02caL0+Lg7WrdNff/cdPPmkA+LOgjNw/B84sZz/lp9hb8JcAAZGxtK+fSdefFG1qq9apfHlfQ/Tr9UyPkIFGRuWxEJnO9kSe8zk2DG9a3hA1+FwzqSmhvPrBU6u1ts7e6gfUWXS0u1ABQ3UU/KmvplcdXuk3W0qEnQn7NOD3radKpdEzVJkOzUe/FxuQw7sOkLcLqN5KrMeXU5ZbKcedeUVeLB32yHrusTq27VtU3pXOCGEEHVfSGCWuZyUcLJa3yvNogv1DZfvMWc/Lvb9LBMh7YNwr+dOty4qQE88FkKq/QZrK8YCIw8/Yj1Lh8nkzPLlMGmSvmzuXMwBd7c2e9iyWePfJafxb6S/yW1XbGH4dfrN6ZadpfcX1TQ1jVSxjt2se7T5Bfni4qzGrR9PK73pM+2UPqbeN6D6u/oLW/Xrq6nDQI3Htrx/A+tx3evXq38tg+7WpY9AuChVKugui8EALvWhfjA0HWi9TtOgQSj491fTmRUrzMIp8VPaHXkQp98aw5IeKlGbpRMrYM+HkPApHJgFh+aqFt+4d2DvNMgt+8KSmgpvv62//uEH220sk5uBeiizrWgSoYPxp7h19CFef3IXOYfXwpkENV49Y4cKqi3lZUDy33DoJ1gzDn5rCmuvh8TP+fzPq8ybPXDFb4A6P5cuhZwcA3eM2kJYkwP4N1LX742JvTGZ7ET9bo3N3csbNoSGYf2g82vQpL9twC0cwuEt3Xl5eUyePJl//vkHDw8P7r77bu6++2672+7evZtXXnmFhIQEWrduzeTJk+nUqZOjq3TBfPwxREWZCAk5ins92/HcAM2bg6ur6qKyf78Je8899qXoj1dbdw6qcn0iO+Xw+1pVjt5wjFMu+hP3HpdH6ttF5PPzyqLtNqYQ3kf/ptgbr2dYb9uhXpXrIoQQovYLbq53WzxyIJPO/avvvdJT9URi4R0K6HnMwKZN6vWkSTBqrD7kqc9AXzYU3bxu3AhXX132sT9/Yy079qsb9ojQBK4eeowZ8y/jzBkn/vxTJRvy9oaff9b3+X5BO4JaOxHUGv5dksi4G85QUOjCi++E4d3Ei7ZBqldY9P425Ofk4+bpxvZ/93D0oLphzkjNYep3nYiJ1+td8pbGydmJpl4pJGcEcCy99OA9/bTqUt7A4yzu9S7yfsm12LPPwv/+B48/rmcuL2YvmVpp3csvBQ4LustiMEB3i+yGp+MhYbpKAGZUD/EMmhEytkJhidkB9nwAxxeXfuydL0HHZ6Hd4+Bim0jyjTesx0xv3aqyhRf3iMjJge+/tz3sd1NjiRg/mavvepW4o6q7xOyf9vLt/ePp27boxBmyHJoN1XfK3AmrbVunTSYDC7eNBsDX6yxjr7dueXZyAto/gaEwiz4981m0HE5lNSbB5Tnah7tD/VBwbaSSofn1Mncvr7Y5uoUVh7d0v/fee8TGxjJr1ixeeeUVZsyYwZIlS2y2y87O5v7776d79+789ttvREVF8cADD5Bdnen+qpmPD0ycqBEaWnpGUmdnaNlMneUH9uXYHTOXkKTGggcEqGnGqiqym37RiN6eyxaLeel79LDYrrs+Xix6h/U0Zrv36t3f2nWuhnlLhBBC1BohLfTW4aRD1Ts9V3qqfnxfPxfefBOaNYNbblE3uJb69tXLJadoKulkUiovfKCPz/50Wi5vfjWIu+5Stzz5+fDrryrZU/GxwsOhY7h+SxTepzW7D4eReLwFLTqo7uI9O6neY/mF7uzasJ9v31tLtyEduPaeXlx7Ty/uenaQVcA9YoRt0A0Q4Kt6kJ087VfqFGhpZ1TWUr9GmWV/WFGtHnhAZaJ+9VXbdW3bqvs+UOeRpukt3cXThV1KLIPuw4dL386hvNpDj09gzFFMPb8h1WsMWqNw1Q26xY3W2wZcXvaxCs5AzPMQVyLTetZhEv9bzKef2vb2nDt9C0Q/DyuG8vNbX5szh48ZA55Ft+BzFwby/Ie9zQE3QMLxdvR/bS1v//6sWlCYZX3g4mm2irn7Q5uHOd5hhbnHat/LGuIeNQkbLW+DNg/QZ6g+zGVDzptF467vgODREDaes6YW5ocIdufoFg7n0KA7Ozub+fPn88ILLxAeHs7w4cO59957mTNnjs22f//9N+7u7kyaNIlWrVrxwgsvUL9+fbsB+sWmVcBRALLz6nPikHX3vRMn1BgzOP+npFH99Fby6Nj65qDbycl6rsjIfmH6dkd7A2o+79cmrOKXVepRrqtzPmGd9D9gIYQQF5/gzpHmclJO39I3dID0dP2hs28Td4YOVfPGzpmjeoRZKmte5GL5uQX8/cNWbrr2KJlZ3gDceeVa+l+tEjHdequ+7ZxvM/llrj586oYbbI9XcsrPHv304V5//xvIU6+Fl9wFgO6dUvjzT1i82P5YzsBg1TqlaU6cTLGdfsxkNJFxVkVzkrm85pU2HtfJCXqrWybS0uDbb22nC7uU+PioLvlQjS3dpXHzQWt5B0nNXsB0RQyMPgpuJYZlBF8Hvb+D3rOg+yfQdSr0/hYG/Aat7gNDUUjk19t6vxMreGHSGQoL1fq7B35tTkA8Z743WtzbkLKSz+dHmnd55hm4rijp+qmsxny4+CkAXF0K6dpRJVfUNCee//lt4pwmQ70SMzU0aAURr0Knl2DwUpXIrMcnHM4bbN4kpJz0FuVdMy2TqEnQfWE4NOiOj4+nsLCQqKgo87Ju3boRExODyWT9hCgmJoZu3bphKLoqGQwGunbtSnR0tCOrVCu1CtVb8/fHWWc2tcxAaNkaXRUh7YLwbqjea/O+SHbtUv8HHTvqF0aAZqG+NCkaGrNhswePTDAyut8aXvl0kHmbZ8avx82zakndhBBC1A0hrfTeVXaSiztUWrp+C+LbpOzhS4GBENJcJRndvDHXpoX4yy+haYAzo+7ozr/R6h7Eq95p3v1En16se3do00IlBF21vhGfTc80r7t+bH659e0xTB/X/drb9TlVlPhtaNR23py4irceW8U/P25jc0wTRo0qPegKaKM/6LaXTC3z5Gnz3OR+Plk260XtYRnY3HOPSqoGMHiw/e0vZgaDnsE8KUm1/DvaunUwYABMm1bOhu52hm7UD4awO1Vrb9uHof1jKuN28Bjo9QVcsROajwH/fla7zfkznJ83qVZz/0YnmXr74wzqsAqAxJQ2bD3Qnc37e7BhbzcAIiLUw5jx422r8PIrLmyKacrjj+vLZqx+GRpHWW/YqC1EvKLGWAdcDk5qbINlD4IW1jkabXTvrnrXQvlB96XWK6OmOHRMd2pqKj4+Pri5WWTd9PMjLy+PzMxMGjdubLVt6xJZJnx9fdlnmYWiBKPRiNFo+1S4NimuX1n1DGupP4DYt+c0fa5U225Ysotvv40EwMtL48knTZzvx+3S1ZPVqyE1Xf8/6R62BaOxq9V2UVFOLF1qICsLPvnUGbgMAIPBxDtPrObJdwbU+t/9xaYi55IQFSHnkqgo1eKh7tQOH9YwGq0fmDvyXErL0G9BfJrUK/eYvdtuI+loP7JzPYheG0fUQH0i5UmTnMjM1IN4r3qn+W7aHvyCe1gd9+aRO3nt88FomhMJyWr+7E4t9tG2Q1i57x8RAS4uThQWGig0qro38jzNrPkBNAvVu7ObNBOUcaimTQ0Ut3kcOWIkMtJ6fUpyBqAC+sbeeTX3d2s04mwuGjnvGxKbw9f961LPngDWCfuGD9d45ZXzv3+ri4KDndi920BuLqSkGPH3d+zxX3/dibVrDaxbp3HVVSarwPN8zqe0NPj99w4sXPgrOTlwyy0mbr9d4+efDdz1pD7P+KvPHKLe5XO5KcOXf4t6dk9a/Bfb4/RhJffdZ8Jk0rjsMvX7OHJEPX3r2lXj6adNGAzw0kvw1VdOnDtn4PvvNV5/3WQeqlCWQ4f0a0dwsAmjsfQnGx4e0KWLE9u3G4iL08jIMOHlpa8/elQ/VrNmZR/rUlPyXHLUNcqhQXdOTo5VwA2YX+fn51do25LbWUpISHBQTavfrl27Sl1Xz0vPUrgzJpPo6GiMhUYmPKJPizDh7q0cP+5k9SSqKgIDmwPW84W3Ck0mOtq6k8O4cQ3YuTOU48f1p+4NPM7y/ssr6X55c2J2xpxfRUSVlXUuCVEZci6JivDy6sLp0y4cOJBPdHSs3W0ccS6dTNdvQY6nH+V0dNnTUnZolwpFST+XLNyHwUu1fOfmGsjMVA+Sg5qd5cUJK+gyqClunm42ved6DC6Az62PO/KyPURHl8geXIqwsPYkJOhdxZ68619OZAZzIvpYhfYHKCz0A1S0sGXLUYKD06zWx+4wAipVtlsD289woTjl5FDc/rZz505MnrbJpRyhLl+XPDyccHaOxGhUgdVNN6Xw+ONHzd3MLzX16oUAKtJevjyBDh0cm6fpwIEOQD00zcCUKSe4994TNtuUdz5pGkybFsQ//zQ2Pxg5dcrV/H8IsGqVgZdeyic11dWc+XvcuJP0GOFM9MlA2vbQcHU1UVDgxKoNehb1Dh2y6Np1L9HRKoAdO7YpH3/cHHd3E888E09cnD5W+8org/n55yZkZxt4881j3HZb+bNFbN8eDKj3y8vbS3R02b/fVq2C2b69CZpm4Mcf99O7tz5cZevWJkBw0bEOER19qpSjXLocfW1yaNDt7u5uEzQXv/bw8KjQtiW3s9S2bVvq1avdGbSNRiO7du0iIiICZ2dnu9u45end91JSGxMZGcnMV9ew85B6mhYZFs/Lb3a2mi+7qoYPN/Djj9bLLr+6FZGRHa2WRUbCXXdBWpqR3TsyOBizhwEjgwnrdBWiZlTkXBKiIuRcEpXRMugM0ad9OJniTER4BM6u+jnjyHPp9DnVs83FuYA+A3rbjKEuKf8aNybPVOX4BD+eK2oiPmYR73bv1YD7nis9tXlkJHRvs5ut+/TvwPETOtA+MqzUfSxd1jeP4uf/nUP38Oz7V1T6u9qy276L5kVkZPNS17fs0p3IyBpqgcrSu7Z37tzZelyaA1ws16V33tGYPRseeUTjrrv8gEs36WxUlIEFC1TZ07OtTS+O85WbqzcYLVsWyPTpzczDOCp6Pi1eDD/8UP75lpKiNww+9JCJadN8MRj0buujRhlYuFDffswYje++86B+fb3XS5cuMGyYkbAwaNdOH+oC8Mor+uwJCxc25913AynvzyArS//8w4a1pVmzsre/+moD8+cXf57WVteSOXP0622fPi2IjCynv/olpOS5lJ2d7ZCGX4cG3U2bNuXUqVMUFhbiUjS3QmpqKh4eHjRq1Mhm27Q066e7aWlpNGnShNI4OzvXmQtzWXVtHaEnTDhwxIvs09m89FGkedkn0wpw97Qd51UVXa17kePmkkdkv3al1q1pU2g60p/BIx3cJ0hUWV0670XtJueSqIhg731E05NCowupR48T1Np2wJ8jzqW0XNW929enABfX8h+odxvYDg/XHHILPNm0s7n5/c9YNFI3bmwot163XpfK1ndUOSI0gfBebcvc3tJNV8bz1XddcXfN5dPpVfuuDvbaC6gb8JT4nTg7X2a1/pRFg1OTJk7l3ohXG4s3dnZ2proqUtevS08/rX7gEsucZkfxvOYABw44W50yq1apadf6n8c0hJZ/G/v3G9iwwZkBA6y3Ket8Mhrhuef014GB6rRu1AiuvBKuv15N6fvaa2rea4AJE2D6dCebHA0TJmAOul98ESZPNuDkZPu+V5XSdtWxI4wcCUuWqG7jixc7c+21ZXx49AR1bm4QEOCspggrw2UWl5ZVq5x47TX99QmLTgLBwc41d52pxYrPJUddnxyaSK1Dhw64uLhYdYXatm0bEREROJU4M7p06cKOHTvQijItaJrG9u3b6dKlCxc7z4aeBDVW/cb3H2vGrI+2mzOt3jZiLX1HRTjsvTq0K8TNRZ/CLLLVPkmIJoQQolQhQXoXyCOJZXf5Ph/pp1TA6te0Yj3Y3DzdaNtc3XUmpQaYp9zMOKB3AWxs2FHucW55qCM+9dXd+wN3VG4M19Dru7Jt5R5iNhyj31WdK7VvsYAQfWDlsRTb3n2W7RG+pU/lLUStY9my/dtvennRIpVcbuBA+O+/qh27oADOlZh6+7vvKneM77+H2KIRMz16wNGjKpCNjYX33lPL+vZVgXBMDKxeDdOn20+KOGwYbNoE27fD669TbgBsz8SJerm85HCapidSCwmp2Pu1aKHPI75hg/UDSsseQpJI7cJwaNDt6enJ6NGjefXVV9m5cyfLly/nm2++4Y477gBUq3durhqDNXLkSM6cOcObb75JYmIib775Jjk5OVxxxRWOrFKt1SpIZS1PO+PH+5/r3domvVR6S39VuHm4EN48zvy6R6eUMrYWQghxqQsJ1rsgJu2v2FjnysrJUT9QucDS10uNYcwvdCfrtOr+fCpVH9foU/90ucdoEuLPji1ZrPotmodeHlDu9iV1HdyBdt0q1h3d7vsH+5mnHDqe2sBmfdoJ/fP4Xbo9lUUd1KkTdC56FrVxI8THq/I7RT1LTCb4+uuqHbt4DmxLP/9sNQoCUIH0119bt4qDut689JL+esqUsqd169xZtRSXtU3PnhAVVfr68owYoU8PvHKl/kDAnsxM/aFDeZnLLV1eND15YaHqbVCsOGdUw4bQwPYyJKqBQ4NugOeee47w8HDuvPNOJk+ezKOPPsrlRf/j/fv35++//wagQYMGfP7552zbto2xY8cSExPDF198UevHbDtKqxA9mcHhVNXdfHDkDiL6VbybW0VFhukZ4XtEyfQjQgghShfcQu8NNeOz+oS3SCSw8QnW/+W4pDLpFg3olQq6vXP1Y5zIBCAjrcC8rLFvxW5rWnRozsAxkTg5O/w2qFwubi408VLN2cfTbVMWpyVsM5f93BIvWL2EOF8Gg/VUWbNmwZYt1lNWLVwIeXkl9yyfvaD73DnrFnWA66934t57YcgQ64T7H38MycmqfPXVqtW9pjk5waOP6q+nTy9928pMF2apOOgG+OcfvVzc0i1zdF84Dv+28fT05N1332XHjh2sWbOG8RZ/fXv37mXs2LHm1507d2bBggXs3LmT+fPn07FjRztHvDi1shjXXWzihPLnCa2KcXeqJ/KNPE8z8tY+5WwthBDiUhYSpjd7rIntwu6k1hw/1YzpH50tY6/KST+ut0j7eueUsaU1Xx89wE4/oepzKkOfs9unsUNT1VSb5v5FQfepJpzNsP69pmdaTLsa0BAh6pJbb1Vjt0F155461Xr9mTOwbJkqG43w1Vf6+OmyWLZcW+Yr+vZbvXzsmBtbtqim6ehoFfSD6kL+1luq7OSkt7zXBnfeqVqbAX74ATIy7G9nGXSHhFT8+IMG6f8fxUH32bN6q7l0Lb9wLvwjXgFAqy6hVq9b+B/l6ju7V8t7XXlHD/ZuO0ji3gKahkqCNCGEEKVr3SnA3P3Z0tb9jss3knZov7nsx6YK7+fbWK9Xeorqhm15k9rYzzFJSKtbjwgVdJs0ZzYt32e1Lu2UPjWXb0AFJu8VohZp0gRGjVLlY8dg7lxVtuymXZy1+7nn4L77VEIxy1ZYeyyD7iuv1Ltlr1oFJ4tm29q82foh1Usvqe7n996rAk1Q71eb2vgaNVKzB4HqAl9a9/uqtnQ3bKjGqQPs2wcHD2I1HbG0dF84EnTXkFatrF8/cmei1bQsjta2a0v8g2VwmBBCiLI1DfXn4+fXMGbARqa9sJouEap1OfFQQ06XP2S6QtJP6t3EK9W9PMBbP8Y59Z12KlO/m/fxq565pB2tX3/9+37dKutx82mZqqdBQ88zkvhU1EmWXcyLPfaYCjABfv9dJSD76CN9/SOPlN3t3DLobtwYrrtOlTUNikausnWrddB97BgMHaq3rAcF1a5W7mKPPKKXP/nEult8seLM5VC5oBusu5gvWwaHDumvJei+cCToriGtW+vlep6F3PN0ZI3VRQghhLD06BsD+e2/3jz6xkD6X+ZqXr59u2OOn56mdwn39a94l3Df1pH6MfLUnWfGKX3/xk0cO5d0del/uX7XvHaT9ZSq6WfVa79GmReySkI4zKhR4G/RsdLJCZ54AvOUWGfOqNbqQv0ywL598MEHpR/TMuj28VHjsov98YcKvrdsUX87Hh76DHebLDrSfPkleHtX7TNVpzZt1O8DVIv2H3/YblPVlm6wDrp//tl6HHlxjwFR/SToriE+PvofwTOTXPBp6l2j9RFCCCHs6dZNL2/b5pi5iNPT9KYcX7+Kt+ZatooXJ2M7dUbf36epF3VBiw5BBBZNHbpxdxsK89Xvw1hgJOOs6lLu5+W4MfRCXEiurmpsd7ExY9Q45Btu0JelFE2mUzxXNsAbb1i36FqyDLq9vaFXLz27/9KlsGMHpKerB4RDhsA991jvf/fdUJsnSCpv+rDioNtggObNK3fsrl1V7wCAFSsgIUGVO3aEm2+ufF1F1UjQXYP+/lv9Eb3ySk3XRAghhLDPMujevtEx/cvT0vXbD7+mFe8Sbi/ozjit9jcYTHj5NbKzV+1jcDLQr8shAM7lNmTXVjUoNTP1NCZNRSCVSTAnRG0zcaJq7fbygpdfVsuGD1evLX3+ud69OidHtYjbU7Kl29lZHzuelQWvvKJfU4YOhVdfheIJkZo3hw8/PP/PVJ2GD7cep15yTvLioDsgANwqOerE2Vn9Tiw1bQp//aUncRPVT4LuGuTsrJ78lTUHoBBCCFGTOnbQ8HBTY7C3b3JM0J2eoY9p9m1W8S7h1kG3mk/81Fm1v1e9Mzi71J3bmn4j9OQu67arFMJpxzPNy/x8ckvuIkSd0bKlGjt85Ig+d7e7u97FHFQX8auugsmTVRAIagqwfftsDmcTdBfvX2zxYv1meuhQFZz+/Tc89JAax1wy2K9tnJxg8GBV1jTroTw5OXqyuMp2LS9m2cXc0xMWLYLQ0KodS1RN3fl2EkIIIcQF5+JqIDJM3QUnHg8lO9O6BdZkNPH6I6t4+vZV7I85bO8QNtJP6VnGfSvRJdy3kd7lOn2fms86I0dlAmrcuG49we43tIm5vHat+jf9RJZ5mV9jO9mUhKhD6tWzbUl9+mmoX18FfMXdqL28VFbxYvHxtseyF3Rffrltq6+fn0ZE0UQLAwfCp59C+/bn9TEumB499PKWLXr5yBG9XNWge9w49SCkYUP48Ufo2bNqxxFVJ0G3EEIIIcrULUKfl+vALuuJZH/9YhMvfzKID2YPol3XIO66PZv9+0sewVq6RZfwyuQ08fatZ57OLD3TE5MJTp1WAbxPk1relFVCly5699d169S/aUXToIEKHoS42EREqAA6Pt66pTUsTC8ftvPszl7Q3bChmofa0uDBGk51NLopLeg+nyRqxby9ITFRZXS37G0gLpw6eloKIYQQ4kLp1k2/XdgXZx0Mzp+vl40mF76bXY9OnSA2tvTjpZ1WzV8+9TMrNV2ms6szPvUzAUg/04CzZ8FUNHV3caKgusLVFXr3VuWjR1UCqTRjlHm9byvHzYsuRG3i6qq6mlsKCdHLZQXdLi6qpbyYZRdzUEnU6qrwcNX1G2DzZn25I4JuUF3YGzSo+v7i/EjQLYQQQogyde/f1FzevVdvUc7NymXxhk4ANPA4i7eXmgMoNxfmzSv9eOlnvAHwbVT5MeLF+6Sf8bbb+lWX9Ot20lxe9/tG0jP1vrJ+QZWYwFyIOs4ymLSXwbz4b93HxzoX0lVXWW83ZEjd7SHi4qIyjQMcPAhpaaps+fuwfDgh6hYJuoUQQghRpg49wvB0U12fYxJCzcuX/7KTc7mq1fr6odFEx+hzZq9YYf9YhYVwOlsF7r7BlZz7BvBtpNL6ns724uRRPWj38Sqo9LFqWr9I/W563Zo880026NMhCXEpCA7Wy/ZaujMz1b8lH66FhqrpwwDCwnKsuqnXRZZdzLduVf86qqVb1CwJuoUQQghRJhc3F7qEqYHaB1JCyTypgt0Fv+SZtxlznRstWkC7dur15s0aZzKybY6VYTEk3NfPtdJ1sZxKa//2OHO5sXFdpY9V03oPb2Meo754TSiHDxWa1/lKQ7e4hLi7q4zjYBt0G41wuuj5mr0eLT/9BG+9ZeL99/fX+RmB7I3rlqD74iBBtxBCCCHKZZlMbfuaAxTmF7Lovw4A1Hc/x/Dr1bxAQ7vvAcBoNPDfHyooTj+WwU1D1/PUbas4nqy3SFclsPT1yTeX9+3Vyz4+de9u28vfiz4d1OD3AydaMO9nvaeAn8XnFOJSUBxQnjihhqgUO20xCsVe0B0aCpMmaYSE5NmurGNKBt0mk0qABuqzy7zadZcE3UIIIYQoV/fuesKzn2Zns+6vWNLOqD7QV/TZhUcDlQFo6GX6HfLKf9QUWM89HMe8lX35cM4gJj2id6muShdqXx+9NTjxgB6kNvatm7c0n33hQUPPMzbLpaVbXGosxysfPaqX63ruhspo3VplGgcVdM+bB8nJ6nWE5Fas0+rmN5QQQgghLqjBV4fi4qxaqb/54zJue0jv5zhmtMlcHnR1O3OX6RUbAkhPh9lLepnX/7O+lbns62ExAW0FWQaj+w7pSd18fN3sbF37RfRry/yvEnB20h8mNPI8jZtn3fw8QlSVZddpyy7Vl1LQbTBA9+6qfOIEPPGEvu7552umTsIxJOgWQgghRLladGjOzNc3YTCo7MBHU9Tdr4tzAVfe3Mm8XeMAH7q2jgdg58F2vP16Njl59gNIX4+Dla6Hr59+65J4LEB/Xz93e5vXCSNu6c6nk9ebXwf6ppWxtRAXp4oE3cWtwBczyy7mKSnq3+HDYcSImqmPcAwJuoUQQghRIXdN6sOLLx42B94AQwab8G7iZbXd0L76VFgfTlPdzg0GjVYB1nMBVSmRWovW5nJx93YAH/96lT5WbXL/i5cx9bnVhIfsY/KzKTVdHSEuOGnpViyDblCt3+++WzN1EY4jQbcQQgghKuzaa9P54gvNnCX4nvtsW5iHjtCz/Wia2vDKKw3Mm51l1Y3ar6lnpd/fNzjQ7vLGTRpU+li1zWNvDST2cBtumNC3pqsixAVnOaZbgm7dbbdBVFTN1EU4jgTdQgghhKiUu+7SiI6GlSvhhhts1/cf1QE3F+tMwo8+Ct2GdODlB9cC4OmWTUTvENudy1FagjGfpl72Vwgh6gTLlu4ki04xl1rQHRQEzZursrs7vP56zdZHOIZDg25N03j//ffp3bs3PXv25L333sNkMpW6/RtvvEG7du2sfmbPnu3IKgkhhBCiGnTuDIMH219Xr1E9+rTbbn7dLuQ4w4er8kvTB7Ji/g5iNp7EN7Bxpd/XXtDt6pxP/UZ1u3u5EJc6Ly/1A5d2S7fBAJ9+Cv37w5w5Mjf3xcKl/E0q7ttvv+XPP/9kxowZFBYW8swzz+Dr68s999xjd/v9+/fz1FNPMWbMGPOyBg3qfvcwIYQQ4lI3fEgeq9U03Txyxx6cnFTSM4OTgSHjqt5X0rexBljPye3T4DQGJ/8qH1MIUTu0aAE7d8KRI2qOaienSy/oBrj6avUjLh4Oben+/vvvmThxIt27d6d37948/fTTzJkzp9Tt9+/fT8eOHfH39zf/eHpWfnyXEEIIIWqXCS9GMWbARu695j/uf76/w47rWc+Ap1u21bLG0rVciItCcatuQQEcP67Kl2LQLS4+DmvpTklJ4fjx4/SwGP3frVs3kpOTOXnyJE2aNLHa/ty5c6SkpBAaGuqoKgghhBCilvBu4sVv//WulmP7NszkaLrenbyuztEthLBmmUwtKUmNb87M1JdJ0C3qKocF3ampqQBWwbWfn5rK48SJEzZB9/79+zEYDHz22Wf8999/eHt7c9ddd1l1NS/JaDRiNBodVeVqUVy/2l5PUfvJuSQcRc4l4Si15VzybXSWo+n6ax8fDaOx9BwyogqMRpzNRSM4+P+8tpxLonYJDjZQ3BH34EETPXtqnDrlBBhwdtaoV89k91SU80k4SslzyVHnVKWC7tzcXFJS7M8dmZ2tunq5uelPm4vL+fn5NtsfOHAAg8FAWFgYt912G1u2bOGll16iQYMGDC/OtlJCQkJCZapbo3bt2lXTVRAXCTmXhKPIuSQcpabPJa8G1gG2pmUQHX2oZipzkXLKyaF45P3OnTsxVdPwv5o+l0Ttomk+QBgAGzYco127FE6c6AS406CBkZiYmDL3l/NJOIqjz6VKBd0xMTHccccddtc988wzgAqw3d3dzWXA7jjt0aNHM3jwYLy9vQFo3749hw4d4scffyw16G7bti316tXu7KRGo5Fdu3YRERGBs7Nz+TsIUQo5l4SjyLkkHKW2nEtN/DZZvW4dlEdkZGTNVOZilZVlLnbu3Bnq13fo4WvLuSRqlzyLmQYLCwOJjAwgO1u1fPv7O5f6dy7nk3CUkudSdna2Qxp+KxV09+rVi71799pdl5KSwpQpU0hNTaV50eRyxV3O/f1tM4oaDAZzwF0sLCyMjRs3lvr+zs7OdeYPqS7VVdRuci4JR5FzSThKTZ9Lfj6FVq8buyTg7BxYQ7W5SFn8/zo7O1u9duzbyHVJ6Fq21MtJSU4YDPqYbh8fQ7nnipxPwlGKzyVHnU8Oy17etGlTAgMD2bZtm3nZtm3bCAwMtBnPDfDxxx8zfvx4q2Xx8fGEhYU5qkpCCCGEuAj5NrbuXt64saGULYUQdUnTplA8UjUpCc6cAU1Tr0u01QlRpzh0yrCbb76Z999/n02bNrFp0yY++OADq+7oGRkZZBV1Vxo8eDBbtmzh66+/Jikpiblz57Jw4ULuvvtuR1ZJCCGEEBcZX1/r1z6+0rIlxMXAyUnPYH74sEwXJi4eDsteDnDPPfeQnp7OI488grOzM+PGjbNqzR43bhxjxozh0UcfpXPnznz88cdMmzaNjz/+mKCgID744AOioqJKfwMhhBBCXPJ8/axvXxr7uddQTYQQjtaiBSQmwtmzcOCAvlyCblGXOTTodnZ25rnnnuO5556zu37lypVWr4cNG8awYcMcWQUhhBBCXOR8m1gH2T6+HjVUEyGEo7VrBytWqPI33+jLJegWdZlDu5cLIYQQQlQ331ZdrF43buLYzNpCiJpz5516+aef9LIE3aIuk6BbCCGEEHWKbxM3q9c+/g1rqCZCCEfr2RN69VJlk0XORAm6RV0mQbcQQggh6hSbRGpNvWqmIkKIajFxou0yCbpFXSZBtxBCCCHqFG9vcHIyAlDf/Rxunm5l7yCEqFPGjYNmzayXSdAt6jIJuoUQQghRpzg5gX+jdACaNDpZw7URQjiamxs89JD1Mgm6RV0mQbcQQggh6pznH95DM+8U/vfo0ZquihCiGtx/P7i66q8l6BZ1mQTdQgghhKhzJr45kOOnmvLAS5fVdFWEENWgWTM9k7mfHwQG1mx9hDgfDp2nWwghhBBCCCEcYdo06NsX+vQBd/earo0QVSdBtxBCCCGEEKLW8fSEu+6q6VoIcf6ke7kQQgghhBBCCFFNJOgWQgghhBBCCCGqiQTdQgghhBBCCCFENakTY7pNJhMAOTk5NVyT8hmNRgCys7Nxdnau4dqIukzOJeEoci4JR5Fz6RKSmwvt2ullg8Ghh5dzSTiSnE/CUUqeS8XxZ3E8WlUGTdO0865dNUtPT+fQoUM1XQ0hhBBCCCGEEJeY0NBQfH19q7x/nQi6CwsLOX36NO7u7jg5SY94IYQQQgghhBDVy2QykZeXh5eXFy4uVe8kXieCbiGEEEIIIYQQoi6SZmMhhBBCCCGEEKKaSNAthBBCCCGEEEJUEwm6HSQvL4/nn3+e7t27079/f7755puarpKoQ5YtW0a7du2sfiZOnAjA7t27uf766+nSpQvXXXcdsbGxNVxbURvl5+dz1VVXsWnTJvOyI0eOMH78eCIjI7nyyitZu3at1T7r16/nqquuokuXLtxxxx0cOXLkQldb1EL2zqU33njD5ho1e/Zs8/o///yTYcOG0aVLFyZMmEBGRkZNVF3UEikpKUycOJGePXsyYMAA3n77bfLy8gC5LonKKetckuuSqKzDhw9zzz33EBUVxaBBg/jqq6/M66r72iRBt4O89957xMbGMmvWLF555RVmzJjBkiVLarpaoo5ITExk8ODBrF271vzzxhtvkJ2dzf3330/37t357bffiIqK4oEHHiA7O7umqyxqkby8PJ588kn27dtnXqZpGhMmTMDPz49ff/2Va6+9lkceeYRjx44BcOzYMSZMmMDYsWP55ZdfaNy4MQ8//DCS5uPSZu9cAti/fz9PPfWU1TXquuuuA2Dnzp288MILPPLII8ybN48zZ87w3HPP1UT1RS2gaRoTJ04kJyeHOXPm8NFHH/Hvv/8ydepUuS6JSinrXAK5LonKMZlM3H///fj4+LBgwQImT57MzJkz+eOPPy7MtUkT5y0rK0uLiIjQNm7caF72ySefaLfddlsN1krUJU899ZT2wQcf2CyfP3++NmTIEM1kMmmapmkmk0kbPny49uuvv17oKopaat++fdo111yjXX311Vrbtm3N16H169drkZGRWlZWlnnbO++8U5s2bZqmaZo2depUq2tUdna2FhUVZXUdE5eW0s4lTdO0AQMGaGvWrLG73zPPPKP973//M78+duyY1q5dOy0pKana6yxqn8TERK1t27Zaamqqedkff/yh9e/fX65LolLKOpc0Ta5LonJSUlK0xx57TDt79qx52YQJE7RXXnnlglybpKXbAeLj4yksLCQqKsq8rFu3bsTExJz3ROri0rB//35CQ0NtlsfExNCtWzcMBgMABoOBrl27Eh0dfWErKGqtzZs306tXL+bNm2e1PCYmho4dO1KvXj3zsm7dupnPnZiYGLp3725e5+npSXh4uJxbl7DSzqVz586RkpJi9xoFtudSQEAAgYGBxMTEVGd1RS3l7+/PV199hZ+fn9Xyc+fOyXVJVEpZ55Jcl0RlNWnShKlTp9KgQQM0TWPbtm1s2bKFnj17XpBrU9UnGxNmqamp+Pj44ObmZl7m5+dHXl4emZmZNG7cuAZrJ2o7TdM4ePAga9eu5fPPP8doNDJy5EgmTpxIamoqrVu3ttre19fXpuunuHTdcsstdpenpqbSpEkTq2W+vr6cOHGiQuvFpae0c2n//v0YDAY+++wz/vvvP7y9vbnrrrsYM2YMACdPnpRzSZg1atSIAQMGmF+bTCZmz55N79695bokKqWsc0muS+J8DBkyhGPHjjF48GBGjBjBW2+9Ve3XJgm6HSAnJ8cq4AbMr/Pz82uiSqIOOXbsmPkcmjp1KkePHuWNN94gNze31HNLzitRnvLOHTm3REUdOHAAg8FAWFgYt912G1u2bOGll16iQYMGDB8+nNzcXDmXRKmmTJnC7t27+eWXX/juu+/kuiSqzPJciouLk+uSqLJp06aRlpbGq6++yttvv31B7pkk6HYAd3d3m1968WsPD4+aqJKoQ4KCgti0aRNeXl4YDAY6dOiAyWTimWeeoWfPnnbPLTmvRHnc3d3JzMy0WmZ57pR23WrUqNGFqqKoI0aPHs3gwYPx9vYGoH379hw6dIgff/yR4cOHl3oueXp61kBtRW0yZcoUZs2axUcffUTbtm3luiSqrOS51KZNG7kuiSqLiIgAVPLQp59+muuuu46cnByrbRx9bZIx3Q7QtGlTTp06RWFhoXlZamoqHh4e8kUhKsTb29s8bhugVatW5OXl4e/vT1pamtW2aWlpNl1chCipadOmZZ47pa339/e/YHUUdYPBYDDf2BYLCwsjJSUFkHNJ2Pf666/z7bffMmXKFEaMGAHIdUlUjb1zSa5LorLS0tJYvny51bLWrVtTUFBQ7v22I84nCbodoEOHDri4uFgNpt+2bRsRERE4OcmvWJRtzZo19OrVy+oJ2549e/D29qZbt27s2LHDPCWBpmls376dLl261FR1RR3RpUsX4uLiyM3NNS/btm2b+dzp0qUL27ZtM6/Lyclh9+7dcm4JGx9//DHjx4+3WhYfH09YWBhgey4dP36c48ePy7l0CZsxYwY//fQTH374IaNGjTIvl+uSqKzSziW5LonKOnr0KI888oj5wQxAbGwsjRs3plu3btV+bZKI0AE8PT0ZPXo0r776Kjt37mT58uV888033HHHHTVdNVEHREVF4e7uzosvvsiBAwdYvXo17733Hvfeey8jR47kzJkzvPnmmyQmJvLmm2+Sk5PDFVdcUdPVFrVcz549CQgI4LnnnmPfvn188cUX7Ny5k3HjxgFw3XXXsX37dr744gv27dvHc889R/PmzenVq1cN11zUNoMHD2bLli18/fXXJCUlMXfuXBYuXMjdd98NwM0338zvv//O/PnziY+PZ9KkSQwaNIjg4OAarrmoCfv37+fTTz/lvvvuo1u3bqSmppp/5LokKqOsc0muS6KyIiIiCA8P5/nnnycxMZHVq1czZcoUHnzwwQtzbTrPKc9EkezsbG3SpElaZGSk1r9/f+3bb7+t6SqJOiQhIUEbP368FhkZqfXr10+bPn26eW7umJgYbfTo0VpERIQ2btw4LS4uroZrK2qrknMrHzp0SLv11lu1Tp06aaNGjdLWrVtntf2qVau0yy+/XOvcubN25513yvylwqzkubRs2TLt6quv1iIiIrSRI0dqS5cutdr+119/1QYOHKhFRkZqEyZM0DIyMi50lUUt8fnnn2tt27a1+6Npcl0SFVfeuSTXJVFZJ06c0CZMmKB17dpV69evnzZz5kzz/XZ1X5sMmlbUb1UIIYQQQgghhBAOJd3LhRBCCCGEEEKIaiJBtxBCCCGEEEIIUU0k6BZCCCGEEEIIIaqJBN1CCCGEEEIIIUQ1kaBbCCGEEEIIIYSoJhJ0CyGEEEIIIYQQ1USCbiGEEEIIIYQQoppI0C2EEEIIIYQQQlQTCbqFEEIIIYQQQohqIkG3EEIIIYQQQghRTSToFkIIIYQQQgghqokE3UIIIYQQQgghRDWRoFsIIYQQQgghhKgmEnQLIYQQQgghhBDVRIJuIYQQQgghhBCimkjQLYQQQgghhBBCVBMJuoUQQgghhBBCiGoiQbcQQgghhBBCCFFNXGq6AkIIIURt8+yzz7JgwYJS1/v5+bFu3boLWKPz065dOx555BEeffTR8zrORx99xGeffWazfNKkSdxzzz0AzJ8/nxdffNFmm1tvvZWXX37ZZvm5c+e45ppr6NmzJ++88455eV5eHl27dqWwsNBq+3r16rFjx47z+hxCCCHEhSRBtxBCCGGHv78/M2bMsLvO1dX1AtemdoiPj6dnz5489dRTVssDAwPN5T179tCyZUurABrUgwp73n77bZKTk22WJyQkUFhYyJQpUwgJCTEvd3KSTnpCCCHqFgm6hRBCCDvc3NyIjIys6WrUKnv27GHs2LFl/l727NlDREREhX53q1evZvHixTRs2NBmXXx8PC4uLowcORI3N7fzqLUQQghRs+RxsRBCCFFFsbGxhIeH8+yzz5qXpaen06dPH+666y40TQNgy5Yt3HPPPfTo0YNOnToxZMgQpk+fjslkAuDo0aO0a9eOJUuW8PDDDxMZGUnfvn359NNPOXfuHM8//zzdunWjb9++TJkyxXzc4v3++usvHnzwQbp06cKgQYP45JNPzMe2JzMzk5dffpm+ffsSERHBDTfcwIYNG8r8rBkZGaSkpNChQ4dSt9E0jb1795a5TbHTp0/z4osv8swzz9CoUSOb9Xv27CEsLEwCbiGEEHWeBN1CCCFEKQoLC+3+FAe9nTp14r777mPBggXmoPXll1/GZDLxzjvvYDAYiI+PZ/z48Xh7e/PRRx8xc+ZMunfvzowZM1i8eLHV+7344ou0bduWmTNn0qdPHz7++GPGjRuHh4cHM2bM4PLLL+err75iyZIlVvu9+uqrNGjQgOnTp3PttdcyY8YMPvjgA7ufKS8vjzvvvJMVK1bwxBNPMGPGDJo1a8a9995bZuAdHx8PwKpVqxg8eDDh4eGMHj2a1atXm7dJSkoiKyuLXbt2MWLECMLDwxkxYgQLFy60Od7rr79Oq1atuOmmm+y+3549e3B2dubuu+8mMjKSnj178vLLL3Pu3LlS6yiEEELURtK9XAghhLAjOTmZ8PBwu+ssE4dNmDCBlStXMnnyZO6//36WL1/Oxx9/TNOmTQEVrBa3UBePR+7Xrx8rV65k06ZNjBo1ynzcAQMG8PjjjwPQpk0b/vzzT3x9fc0JyHr37s0ff/zB9u3bueKKK8z7hYeH8/777wNw2WWXkZ2dzaxZs3jooYdo0KCBVd1///134uPj+fnnn+nSpYt5n9tvv53333+fX3/91e5n3rNnDwCpqam88cYb5OfnM3v2bB588EG++OILBgwYYN7m6NGjPPvss7i4uLBw4UL+97//kZ+fzw033ADAsmXLWLFiBX/++ScGg8HmvYpbzDVN4/rrr+ehhx5i165dzJgxg8TERGbPni1ju4UQQtQZEnQLIYQQdvj7+zNz5ky76wICAsxlV1dX3n33Xa6//npeeOEFxowZw8iRI83rR48ezejRo8nLy+PgwYMcPnyYPXv2YDQaKSgosDpuVFSUuVyceKxz587mZQaDAS8vL86ePWu13+jRo61ejxgxgu+//54dO3YwYMAAq3UbNmzA39+f8PBwq8zggwcP5r333uP06dN4eXnZfOYrrriCsLAwLrvsMpydnQHo378/1157LdOmTWPAgAH06NGDzz77jF69elGvXj1APUjIyMhg2rRpXH/99Zw6dYqXX36ZSZMmERQUZPf3q2kaM2fOpHHjxrRp0waAHj164OfnxzPPPMOaNWsYOHCg3X2FEEKI2kaCbiGEEMIONzc3IiIiKrRthw4daNeuHbGxsQwePNhqXW5uLq+//jq///47hYWFNG/enKioKFxcXMzd1IuVbJUGzMFrWYpb1Ys1btwYUOOmS8rMzCQ1NbXUVvzU1FS7QXdgYKBVlnJQDxz69evHTz/9BICvr6/N5wcYOHAg69evJy0tjddff53WrVszbtw4q6Bf0zQKCwtxdnbGycmJXr162Rxn0KBBAOzdu1eCbiGEEHWGBN1CCCHEeZo3bx6xsbG0b9+eN998kz59+piTg7355pssXbqUqVOn0rdvX3MQ3adPH4e9/6lTp6xep6enAyoILqlhw4aEhoaau6OX1Lx5c7vLV69eTW5uLiNGjLBanpeXZw7yt27dypEjRxgzZozNNs7Oznh5ebF06VJAjYe3lJyczMKFC/n+++8JDQ1l9erV9O/f3yrQz83NBcDHx8duHYUQQojaSAZECSGEEOchOTmZd999l3HjxvHZZ59x9uxZ3nzzTfP6bdu20atXL4YNG2YOuGNjY8nIyCgzw3hlLF++3Or10qVL8fT0NI/ZttSzZ0+OHz+Or68vERER5p9169bx1VdfmbuOl7RkyRKee+45MjMzzcuys7NZtWqVuVV648aNPPvssxw8eNC8jclkYunSpURFReHm5sYvv/xi8+Pv78/gwYP55ZdfCA8Px2g08tJLLzFv3jyrOvz99984OzvTvXv3qv6qhBBCiAtOWrqFEEIIO/Lz84mOji51fbt27fDw8OCFF17A09OTSZMm4eXlxeOPP85bb73FiBEjGDJkCJ07d2bx4sX8+OOPtGrVivj4eGbOnInBYCAnJ8chdV28eDG+vr4MHDiQzZs3M2fOHJ544gm7XdPHjh3L7Nmzueuuu3jwwQcJCAhg/fr1fPnll9x22224urrafY97772XJUuWcN999/HAAw9gMpn48ssvycnJ4dFHHwXgpptu4qeffuLBBx/ksccew9PTk7lz55KQkMCcOXMA7HbZd3Nzw9vb27yuQYMGjB07lq+//hp3d3eioqLYtm0bn332GbfeeistW7Z0yO9NCCGEuBAk6BZCCCHsSE1N5cYbbyx1/cKFC9m+fTsbNmxg6tSp5nHQt99+O3/88Qcvv/wyXbt25dlnn6WgoICpU6eSn59P8+bNeeihh0hMTGTlypUYjcbzrutjjz3G5s2bmTdvHgEBAbz88svcfPPNdretV68ec+bM4YMPPmDKlCmcPXuWoKAgnnrqKe6+++5S36NVq1bMnj2bDz/8kBdeeIH8/Hx69OjBm2++SXBwMKCSvxUf+4033iArK4uIiAi+++47u63uZZk8eTLBwcH8/vvvzJw5k2bNmjFx4kTuvffeSh1HCCGEqGkGrWQWFyGEEELUCUePHmXo0KG8/fbbjB07tqarI4QQQgg7ZEy3EEIIIYQQQghRTSToFkIIIYQQQgghqol0LxdCCCGEEEIIIaqJtHQLIYQQQgghhBDVRIJuIYQQQgghhBCimtSJKcMKCws5ffo07u7uODnJcwIhhBBCCCGEENXLZDKRl5eHl5cXLi5VD51rRdCdn5/P2LFjeemll+jVq5fN+tOnT3Po0KELXzEhhBBCCCGEEJe00NBQfH19q7x/jQfdeXl5PPXUU+zbt6/Ubdzd3QH1YT09PS9U1arEaDSSkJBA27ZtcXZ2runqiDpMziXhKHIuCUeRc+kSkpMD/fqp8rp14OD7LzmXhCPJ+SQcpeS5lJOTw6FDh8zxaFXVaNCdmJjIU089RXkJ1Iu7lHt6elKvXr0LUbUqMxqNANSrV0/+6MV5kXNJOIqcS8JR5Fy6hGga7N2ryh4e4OD7LzmXhCPJ+SQcpbRz6XyHONfoAOnNmzfTq1cv5s2bV5PVEEIIIYQQQgghqkWNtnTfcsstldreaDSanz7UVsX1q+31FLWfnEvCUeRcEo4i59IlxGjE2Vw0goP/z+VcEo4k55NwlJLnkqPOKYNWXt/uC6Rdu3Z8//33dhOpZWdns2fPnhqoVe1RUGDgySdbkZTkwf/+l0TfvmdqukpCCCGEuEg55eQQNWAAADvWrMFUy3PqCCFEderQocN5DXOu8URqldG2bds6MaZ7165dREREOHRMycKFsGGDOt6TT7bm6+lHuPW+IIcdX9Q+1XUuiUuPnEvCUeRcuoRkZZmLnTt3hvr1HXp4OZeEI8n5JByl5LmUnZ1NQkLCeR+3TgXdzs7OdeYPydF1XblSLxcWGrjzoRBSD6ziqfcGOew9RO1Ul857UbvJuSQcRc6lS4DF/6+zs7PVa8e+jZxLwnHkfBKOUnwuOep8qtFEaqLiViw9Z7Ps6SmD+Pj51ebXmqZm9di06ULWTAghhBBCCCFEaSToriZfvb2WAJ8U3nli1Xkf68jeY+zd3wCAvhH7eG2Cfswn3+nP0rlbMRYYefSWzfTvD717w8yZ5/22QgghhBBCCCHOkwTd1eDkoVNMnNybE5lNeeHjARyKO3pex1vx+wFzeXi/o7w0YxDP37MKAJPmzI33tWH0wG188lNP83aPPmrdJV0IIYQQQgghxIVXa4LuvXv32s1cXhd9Pc2Z/EJ3QAXF099OPK/jLV9hMJeHXdkYgNc/v4xr+6t+5KezvfhzQ0+rfYxGGDcOEs/vrYUQQgghhBBCnIdaE3RfLLYs382v/w22WvbVb1GczThbpeNpJo0Vm1sDUN/9HD2HdQDAydmJ2YvC6dxyr3nbeu5Z/DlrK6NGqdenTsE1w4+RczanSu8thBBCCCGEEOL8SNDtQJpJ43/P6BOoBzU+DsCZHC++mZ5UsWNocPfdEBoKCxbA7k37OZHZFICBkXtw83Qzb9vApwG//1Gf3u130aXlXlb+fpBRd3Rn7lzo2D4XgD2HAlnwzXYHfUIhhBBCiKqZPBkCA2HevJquiRBCXFgSdDvQH99t5r9dkQC0CTzInwvOmNd9PCsco7GUHS3s3AnffguHD8MNN8ALL1l0LR+UZbN9aHhz1sd1IvpAO3qN6ARAo0bw0UvR5m3W/FeBNxZCXPTy8+HVV2HqVCp0PRJCCEcpLIQ334Tjx1XwLYQQlxIJuh1o9h8dzeW3Xj5O5GXtuPxy9frgQVi0qPxjrFuWbC4XFsLvK1qZXw+7OtDuPgYng82yvleE4+xUCMDabQEVqb4Q4iI35d1CJk+GJ56ABx9UPWuEEOJCSE+HggJVjo+HLNt2BCGEuGhJ0O1Alw1tCMCo4QcZfbdKbPbEE/r6556D5KOmMo+xftkhu8ubeJ2kU582Fa5LA5+GRLVS471jD7ch4/ipMrdfsAD69VNPoYUQF5/CAiOfT9evA199BU89JYG3EOLCSE3Vy5qmevYJIcSlQoJuB3rkEcjONvLqWxnm1ucRI6BzZ7V+717o2/UE8VsOlHqMddEhAHi45jCq/27z8qE99tlt0S5L/+76N9z6f/bZ3SYvDx57DMaOhfXr4aWXrL8YhRAXh23/HOdYRjOrZR99BJMnHbZatmYNBAfDjTdKF3QhhOOcPGn9eseOyt3TCCFEXSZBt4O5uYHB4nvEYIDffoOwlqpPVVJqIP2GeLN1+W6bfY/tP8Ghk8EA9Gy/l/l/t+Seq9fQs10sr75rv2t5WQYMdDeX1/ybbbM+7Wg6A7odZdo0fZmmQdIB6fMlxMVm/m96wD3+Bn0Yy+T3WxC3QZ9b8P334ehR+Pln+PEHmflACOEYJR/o79hhf7sff4T77oM33oD589XwPCGEqOsk6L4AWrWCdSsyiQyLByDjXGPuuNsdzWTdr3P9P/o3S9/umXg29OSrRQPYFN+Jtl1bVvp9+41obS6v3dLYZv0bk2LZEtfcZnlyXGyl30sIceEcPw6bN1e8a/jebQdZFdMLgNYBh/h6bgDPPxRjXr/yr6OAOt7Gjfp+k59PoTC/0GH1FkJcuirS0r1uHdxyixr+8tJLKqFsWJhqvBBCiLpMgu4LpFlLf1ZvDjQH3nuOtGLVgmirbdavzTOX+w2sd97v2TTUn7ZBqiv7lr3tbebrXrOlCQBOBiMTb9cfOScn5Z73ewshHE8zaXw98zRhYdCrl7oxrYgvph41lx+6/RBOzk6MHadPP7hhkyugZk2wvDFOPB7K7KkWUbgQQlRRyZbu2FjIz9cDb02Dp5+2v+/UqdVXLyGEuBAk6L6AGvk24tknMsyvP51hHdyu2+ZvLvcZ3hpH6B+lupEWGN3YsjLBvLwgr4DYQ2EAtGt+kCtH6oM3k5PLTvYmhChb2tF0Ppi0ih2r4iu1n8lo4tEbV9Pc9zj/G7+Kc6fOmddlnc7izlHruPdhL3KLLh3Tp5d/zKzTWXz3exSgckWMf7wLAJ37tcbTTQ072bhLDWvZvMx22MtrH4ZQkFdQqc8hhBAllWzpLiw0cOCAh/n1L7/oPW06dlRdy8PUbQpr1sCRIxeookIIUQ0k6L7AxtzTnabe6ptn4ZruHNt/AoCcszlsT2wLQPvm+/ENtO0OXhUDBujlNes9zeU9Ww6SX6jGfEe2SyEotJF5XfIxF4e8txCXqifv28PTUwYx9KqmnEk/U+H9Xn7yADN+HkhyRgDvzRpEhzZn+OjZVdx55VpaBOfyw5L+Vtvv2gVxcWUfc9GsGE5newFw0+VbaRzgA4Cruyvd26oEiwdTQkg5dJJNq/W7Yr+GqeZ1372/ocKfQQgh7LGXpDU+XvXqy89XM7wUe+89GDcOxo/Xl82bV731E0KI6iRB9wXm5unGveNUa1Kh0ZWvPlQtYVv/TaDQqLp49o085rD36391V3N57c625vKODfrNdVSXAgJb6q3sySnn37VdiEvZmm1BAJzK8mHeZ9EV2mfuXHhzmnUPl6PpgTz57iC+X9yf9LO+ADTwOMuYEXp38R+/LXu6gV0x+ebymHGuVuv6dNN73mxccYBN0frDvm+n6bMsvDilAxuXSK4HIUTVlRV0z5wJ+/erZUOGwJVXqvLNN+vbzp1bzRUUQohqJEF3Dbj/qbY4GVR37s9/akdBXgHr/tXnz+3Xz3Hv1ap9fZoVJS1ev16fAih6h96dPLJ7Q3yaeuPhqsZ8J5/0clwFhLjEnDt1jkOpeuLDr37wLXefzZvhnnv0188/foQrem6x2qaBx1luGLKebevS+PTbQJyc1DCQH+dk2yRltLT/kD52u00nf6t1vfvpvV/WrMpl+z4V9LdsmsRV43sxqvdmAE6e9mfAVe346NlVZb6XEEKUprh7ubs+sQrx8fU4eRJee01fNmWKPgtM69bQvbsq79ihpl4VQtRNv/yi8tH8/HNN16RmSNBdA0LaB3J1v60AHMsIYPIz+/nrv1bm9X2HBjnsvQwG6F/UI/XMGYiOVuUdcXpgHdkvBIOTgSBf9Y2YnO6PEKJqdm+xnvd6895wdu20H6jmnM3hlQmbuewyzTxO+5574I0Pg/lrQ3f+nLWFF+5dxdK520hLd2Peir607dqSZgFODIlUyQ8PnGjB5mWl9zHff0S1XjsZjIS2t556sPdQ/eHAD390JCdftTr16qRa0r+Z15L+nVSW80KjK0++O4j7Rq+t6K9CCFFLaSaNb99dww8frr1gORuKW7qDglQwDbBvXz0mTHAio6jTzW23Qdeu1vtZtnb/+GP111MIUT2eeUY1Mjz+eE3XpGZI0F1DHn5YHzf95vT2rN2uEhk19jHSrlvlpwcry+DBevnPhVloJo3oRPUeQY2P4x+sguwgf9Xafjrbi6zTMle3EFURtyPDZtnX39hOjbN6QTThbVJ57dOe5OWp9QMGwKefqodlBicDo+7owRtfDuLym7vhXs/dav+br882l3+clc65U+eY8vQqXn5gFblZKoLXNEg82Q6AgGY5uHm6WR0jIKwpLfxVgH3ydBPz8l491E14kxB/Vm7tyKQ7V+mf5Y8Bcn0Qoo779fON3P3sAO54qj9RbQ/x3+8x5e90HgoKMAfW/v56YJ2X58SCBer65+sLH3xgu++NN+ot3z/+WPGpEoUQtUd+vpohBdS0pykpNVufmiBBdw0ZdkMUPbvZTs01dJgzBifbG/Tzce01ejbyBXOOcmh3sjmxUmRbPR1oUFP9Rjp5f4k0o0KICondZbRZ9sMPkKfPCMjqBdGMvLEdB1NCAHBxLmDS0wUsXgxubja72zX27s64uaiDzv6zEx3anGHSB4N4/YtBfPu+6haekQGnT6vrSVCw/VkJ+nQ+bLOsZ399bLeruyvvfjeI64fq3d2PHZW5u4Woyxb/o19o4pLaMHB0F8aPWkv2mWz7O+ScgKV94K8IWNId/ukH/42FbY9D/EdwYiUUnC31/dLT9XKTJrat2aBmY2jSxHZ5UBBcdpkqJySobuZCiLrl+HHrB2Y7d9ZcXWqKBN01xMnZif/WebB0KUybBo88AhMmwPvvO/69gpo70bOdSoIUc7AdC2YfMq+LitAD7aAAvYtZ8sFMx1dEiEtAXEIDc3nwQBUUZ2TAwoVq2eZ/4rjqllbkFqjx1JdFRLNzfRLvTnGlfv2Kv493Ey+u7K3uPtPP+nI0Xe86viE6ANATEwE0b56HPb0HeFu9dnEuIOoy2ykLQyJ7mMvJqZL3QYi6bH18N5tls/7uz+V9E8k4fsp2B4+mYMqH07GQsQ3S1sPRBbD3Y9j+JKwcCvO94O/OEP+xze6W04VZtnQXGz0abrqp9Precote/v33cj6cEKLWKTnl365dNVOPmiRBdw1yd4fLL4dHH1VPeGfMgJCQ6nmv0SPTzOX3vo4ylyMH6BnNg8I7mcvJWV2qpyJCXORiD6ihIj71T/HSy3pr0oR707iy1xauuC6Ac7kNARjVezPLNnWkQ89Wdo9Vnptvst96vetQG6BiQXefK8KtXndumYhnQ0+b7YIsUk0kJ1eyokKIWiM9HeLVxCl0767x2Wv/0cBDtVKvi+vMgJ4nOLrkTeudDAbo8Aw4uYPBuZQja5C5C/LTrRfnnCB1oR41N2kCUVHg5KSavXx8NGbO1LuQ2zNsmF6Wlm4h6p6SQbe0dIuL1phb9Wg+JU1vTovqp99JB4X5mcvJx+XUEKKyMjMhOb0pAOERrgwcZKBVoBoznX7Oj8Wbe5BxTnXdHtRlB/P/ibAZZ10ZY+/ryc3D1tG9zW5+/XwjHTqom9jdu9UYysSt+qPkFgH2pxaLjAR3d71LfK8u9reToFuIi8OGDXp5wAADD7x0Gav/PkoTL/W3v/toBwbeeRO5RzZY79jiRrgpF24uhJvy4drDMOw/6P0ttHkIfKJUQO7b23q/vFROntT7lfrnLsTPuIq3Xs+hY8cs5s0zmWdZKU3LltCokSpL0C1E3XP0qPVrCbrFRat9jzDaN99vtaxRIwgN1V9b3lQfc9xU4UJcMuIskoh3imyAkxN882k6vdvvMrckAfRuv4tFK1vbbVGuDBc3F+Yu68eWhI6Mvb83nTurpqL8fDX2cX/8afO2oc1O2D2Gmxt07ay3gvfq42p3O6ug+6jtuHUhRN2wfr1e7ttX/dt1cAfWr84mrFkSAAdOtmLV/P+sd7RsinZyhfoh0GQAhI2HHp/CFdvh+tPQbKj1foU5pJ7Vo+omeb/AisH8L7Q+Wyd3Zmjod+VmRzMY1ANCUDfvaWllbi6EqGVKtnTv3g2Fl1h6GAm6LyFjLk+yet2lCzhZnAHSkiXE+bEMusOLem1fdm0XNuyJ4ExWA5ITT7B1xR5Wb29Hw8YNHf7+nTvr5Z0xJvYn6e/RtGWjUve7/Eo1VZiLCwy8ro/dbYJ89Rbw5J2bz7OmQoiasm5xvLnct48+RKVVlxa89paer2FP4cN299+4Uc21+/bbdla61Adn65kW8OtJaoA+Ebd/I/1a4pl/AKct98KKQXB6T5n1Lg66QZ/+VAhRN5QMuvPyYN++mqlLTZGg+xIy+kbrtKBRnc5YvQ4I0MvJiccvRJWEuKjExurlTp2s1xmcDAS2aka3IR3Oq0t5WTq31vtv7Vz+H4lHVetSU++TeDTwKHW/Z56B996DRYuse79YCmyh34wnpzSwv5EQolYryCtgc1wLAEKbHCEwyPo2MDxK/zuPS7B9MKhp8MADaq7d55+veK+4k6f0YzXp+xC0eQjNp7vFBv9BzHNlHiNKT0cjQbcQdUzJ7uVw6XUxl6D7EtJ9aAeCfPSzPjJkq9V6Nzf9CXRysv0ETUKI0sVtTDCXwzte+L+h4u7lABu3e3EiU40vbxVov2t5sfr1VeB9xRWlb+Pm6aZfH9Ial76hA3z11hpeuHcVOWdzqvV9hLhYnTt1jhMHbaf+3LE6wTxzQr/IJJv17dvrPeD22Gl4Xr/e+kbZsqt6WVItUkX4dx0NPT7FdPlGEprPQKsfBs6e0HVqmceQlm4h6q6SLd0gQbe4iDk5OzFuhN6Xo8/QUJttgvxU1tHjp5pgKpRxm0JURtw+bwCaeKXi3+TCX16D2wbiVU+N416zK8K8vFXImdJ2qRSr64NRPVTIz1c33rm5DnkL1v25k/teGMBbXw9iyrObHHNQIS4RBXkFfDBpFQGBGoGt/Fj20zar9ev/1QdD9+1tO6DSwwNaF80YGB9vs5qZM61fVzToLjllWLGz9XtjGhkDg5dAg1DrnUqM8+7YEVyLUk5IMjUh6o68PEhJUWXLpIk7o/NrpkI1RILuS8yrH3fl0RtX88Ub/9G+R5jN+qAm6ua80OjKySOSqUSIiko7mk5KphrCEd7STj+qC8DgZKBz2EEAjCYX8/JWLQsccnzL60Nq0fVh/Hjo1w9uuMEhb8HPP6SYy3MXNEMzlZ1gSQihbPh7F1FtD/H0lEGcy22Ipjkx5X3rbdZv0oe29BtmP2V48dCY3BKzDJ48CfPnWy9bt65idStu6W7USE2XasXFE5pcZr0s/zQs6Q5Jv5gXubnpuTLi4yHHTkeYVatgxQowSWc9IWoNyzxR/VqtoKGHupfYFSNBt7iIeTfxYtpPA7nvhcvsrg9qpjdXJR/MuFDVEqJOyciAOXPgpqsO0MQrlWFdt/PT5/qA7k7tHNOyXBUR7U/bLAtrbT8jeWVZXx/SMBlN/L5A3fn+9ZeJrKzzO75m0lj4bwfz673H2xO7IfH8DirEJSDpQDbDrwsjLqmN1fLl26PMOVo0k8a6mFAAGnicpVPv1naPVRzYlvTNN6pni6Xt2+0HvyUVt3Q3aVL2dvqBn4RT22Ht9bD2JihQ19Ticd0mE+zaZb3L9OkweLCa07tDB/j8c9i2DebOhTfegD//rOB7CyEcJ3MXR/96yfwypFEMEcHqj/dwcgNO296yXLQk6BZWggL1x8PJh2oucBCitlq1CoKD4bbbYN5fYaSe8WfFjq48+sZA8zbh4TV3abUc110srH3pmcsrw/r6cJZDu5PJzlXjQ00mp/Pu8rl9VTxJqc2tlv3yg0ylIER5Zs2pR1ZufQC6td3HrZerJmhNc2LOzL0AJO1N5liGypjau+M+nF2d7R6rZBJIAKMRPvtMlQ0GGDJElQsLYcuWsuuWnw+Zmaps2bW8VKZCKLC4E0+aBytHQMGZUsd1b9sGTz2lv05IgAcfhO7d4dZb4aWX4Oqr4dNPK/D+QojzcvYsHDgApsx9sLQnR+IPmNcF+x6hcxv9e73kw7OLmQTdwkpQc/2USD6SV8aWQlyavvsOsrP1104G29wHnSwyAF9onbv52Cxr3cl+N9LKCgzSb9KTj+QRt9V6loPybr7Ls2BpkM2y+X8Hn99BhbjIaRp8/70qGwwaC5a1YvJ7+sOrWb80RzNpzJqh9xrp17P0h+r2Wrr/+QcOH1blkSNVIFusvHHdlnNqVyjodnKB/vOh71xw9VbL0jfCv1cQ2Um/+BYH3WfPwk03QUHRKJrSZmAAmDBB/10JIc6PyQT//gsffaQecg0erKYfbtQIWrWCq29tAyE3ciRd/x5vPuwZOl+lj0e7lJKpSdAtrASFeJrLyUdlUJQQJe3erf41GNSXzZnMAl5/ZBUerqqPZQOPs0T0Ca2x+nXqbf3ejeqdwzfAMdnGS14fYmOyrdZv2Xh+2dQW/qVa5A0G6BCixqbvOdKKuI37z+u4QlzMNm6ExKJ4esgQA8EhTrTq0oJ+4epudndSa374cB1vfN4XAGenQsbdbvuAq1ibNuDiYr3s22/18sMPqzwOxcoLui0zl1e4e7nBAKE3w7BV4FZ0/UpbT5czY82b7NihHjg8/LD++Xv0gL17Vcv3hAlw993w7rvw0EP6oe+6C379tYL1EEKU6s03Va+XJ59UwzlWrbKeRvDvv+GQ/6ccNVxnXhbcLpDOnfVtJOgWl6ygUIu5eI/b73omxKVKM5nYHasGNYaF5jNoENRv5MGL0wexe3sar01YxZ9z99PI1zHduauiYeOGhDU7bH7dql19DE62Xc6rwur6cMyZuD3WY8W3rCl7arKy7NsHcXGq3KcPPHCbPp3RL39WpHlMiEvT99/piRLvuENffsdNmeby+El9KTCqJGqTxq+hU1/rsd+W3NygXTvrZUuXqn+DgtTUgm3bgq+vWrZ+vU2icStW04VV9k/ZpwsMXQFuqgePV/ZSwgLUXf3OnXDnnTB7ttq0USP46SdV/65dYcYM+PprmDQJPvkEHnlEbWcyqeFBFZ1jXAhhKzcXPv7Ydrl/4xxatNBf/7umHkeye5hfBwdbD2Epbsi4FEjQLawEhfmZy8kn6tVgTYSofZL2HiMrR924dgywHsDcslMwL80YxMAxkTVQM2sRrfXgt3XoeWY3sxDUOsBcTs7tRlyir9X6xOOhnErJrNKxFyzQy2PGwHUP9De/nr+w5h5iCFGb5WXn8dMc9Tdez7OQsXpDMDfc3wV3V/WQUNPU7V6H0GO8PK1Pucct2cW8eAbR224DZ2fVEN1XNZyTnq7GUJfGcrqwCrd0W/KJhCHLzV3No5qrpvXsbPjhB32zL76AMNtJWQBV348/hltuUa9zc2HWrCrURQgBqJkM0tUsolwx9BQb3xtNxhc+nPysGbO/0v/oV67U5+h2dlZThnl5qYSHoB7gXSok6BZWfJr64OGmuogeOxVQztZCXFp2W4xh7ti2Ail7a0jnbnp38lZtPBx23MZNG5in+0lK9mTPkVCbbbb+W7Wu4At+1L+kR4+G5iHO5pv6uDjYs6dKhxXiovbn99vJzPIG4LqBG2nQQF/n3cSLa8foU4Q5OcG3PwXiUb/8a4K9ZGoAt9+ul4v/PqHsqcPOq6W7WOOuMOgvcK5HZItoq1UNG8K8eXDjjWUfwslJdYc1FHX8+fprmVpMiKqyTEr44oBr6RX0Oz71MwEDPdvEUK+o3e7ff/WgOzBQBd4Av/yipvcrTtB4KZCgW1gxOBkIClZfyEfTA+ULSQgLu3fprcbhES5lbFmzLrtK7zras7fj6mkwqO6lAPHxBvIK1LXC3VUfy71lw9lKHzc58Tgbo1UTWKeWh2ldNJPRuHH6NtOnV63OQlyMcrNyiV2/j0+/0Ce9vuMu295p996rl596Cnr1qtjx7SVT69bNenlFx3Wfd0t3Mf++cNlCBg7WP3PnzrB1K9xwQxn7WQgN1VvY9u+H1avPoz6iVjp1Cn7/XSXYE9Vj+3aVSwKgc0gMfVqvUS/8+8GVu3BrMdx8fUhO1pMpBlvkRfXyUuPBS+aPuJhJ0C1sFGf+PH0abr4Z8iSJuRAAxO3W8xx0jPQtY8uaNXSomlP300/h2msde+wgO/mXrh2gd7Xfsr3yLetff7TXXB57+UFz+dZbMbfcffGFkfgtB0ruKoSNlx9YReuAwyyefZ7p9GshzaRx7zVrqN/QlYh+bVi5oysAzX2PMXhMF5vthw+HH39U14K33674+9hr6b7zTuvX3buDa1FahzVrrMd1f/ih6kY6ebJ10F3llu5iAcMZ8PBLzJqluotv3Fj57qmWDyK++uo86yNqFU2Dq65yYvRouO66cjcXVTTzQ73X38PDPlW9Rzo+B0NXQX0VWRdPK2ipeXPbZZcSCbqFjWee0bt//PwzXDnoCGfSZc5uIXbv16fjat8tpAZrUjaDQWXofegh1aXSkYKaZtssGztGo6GnukZs2d3CZn1ZCvIK+PwnlbXJyWDknsf1VvomTWDSg2qwqNHozLNPpto9hhDFYtfv4/UvBrH/RAseerIpJuPF1V1r45JYvv5jACbNOtHpg7cklDrv9k03qWuBcyVyo7ZqBe56z3RcnNVxLHl6qsAb1Jju4m6iS5aoVvWUFHj1VZXcrNh5tXRbuOMOmDhR1YGsI3Dguwrve+21ehK4X39VLaPi4rBtWwM2bVLjB5YtU1nshQMZc8lc8zpz5qukqg09znDr4H9g0BKIfEtN91dk8GDb3YMv8RlAJegWNkaMgEWLir7MgJUbgxk9bD+aqYz0pEJc5DSTxu7DKtBu2TSJ+l71a7hGNSPIY7PNss69g+jWVo3lTs4I4PiBlAof749Z2ziWofJHXN1vKyHtrZvSn3wxiAAflRju97W9WLMopqpVF5eAmZ/ouRYOp4awZtHFNR/NVzMzzeWRPbcw+eFV/PHdZp79YIBD38fZ2TqD+YgR9lupn3tOLz/xhMpybplBHeDcOb3s54djnUmAZf1h411wdFGFdnF318em5+XBnDkOrpOoMb/8Yn2SzpxZQxW5WBlz+WFWHjn5aijLnSNW0OC69RA4wmbTbt1UvgVLEnQLYceVV8KKv0/hU189Av43OooVv+woZy8hLl5H9x3nbI7Kot2xZdWnxqrrSnYvd3WF1l1a0KPLafOyLasOVfh4n36mN6c9/LDt4K76XvV5/Zl95tdPT3KWB4DCrrNn4ftFna2Wzfr6XClb1z1nM84yb1kUAI08T/PLPx15+ZNBXHVnz1Jbuc+H5fjt4qzfJV19NTz6qCrn5cHIkXritOLcDMW8vdV0Xg6VvAiyi6YX3HQP5FTs2nzPPXr5yy/LnvJM1A3HjsG///pYLZs7FzIza6Y+FyU3b1Yfn2B+ec/L14Cn/aTLLi4woMSzQOleLkQp+gzy4bN39ZTBb73tmLl+haiLdm/TJ3Xt2Na2i/WlIijY+q65fXsVePforSc32rqpYr+f+C0HWFE0JrV1wCGG3RBld7vxT/elUwsVeG/e24nFs7dWperiIjd7tnWrKsD8FV3IPlO1v9dF32xi/swNDqiZY8z7xYOsPJXk4JYroqu9t8199+nlK68sfbspUyCqxJ9uYCBs2ACvv64vs5cP4ry1fwqaj1blvDTV4l2BCLpTJ+jdW5V37oS9e8veXtR+X39twGhU96leqvczOTkyNdx5MRWAMddq0d4kFWS7ukKnzmU/7Cs5rltauoUow3X396JNoEps9G90FJuWxtZwjYSoGXEx+t18eKdLKN1mCUEtGli9Lm4N6zFQ/zZdtjaAgoLyj/XZR0fM5YduP4STs/2vJGdXZ563GM+9ab3j5h4XFwdNs57Cpk9EIgDnchuy8NvK99JaPHsL197Tixse7sPXb69xVDXPy1ffuJrL9/yvXxlbOoZlpvOyWqjd3dW47fpFzwCcnFQLo58fvPACvP8+RESopGoOZzBAzy/11rbjSyBhRoV2tZwdYenSaqibuGAKC+Grr1TA7eSkMW+evu7TT6uvJ0NGBpy5mFIeaRqkboDEL2HnK7CkG2wYD5rKjWE0wr6ijmetW5efebzkuG4JuoUog7OrM5MmHDW/fvsNudkVl6bdh/R+UR0jG5ex5cUtMNT6sxcH3S3aBxEcqK4PG3e3Z/RoyCrjcpFzNofvfo8EwMM1h/GP22ZettS1XzNzeU+CexlbikvRun/PEFv0TLhvX3j3Df0h2fdzKn++zLCI2179oBW5Wbmlb3wBxMbCpk2q3KULdOtRux78tW2rpmkaOlS1LA4cqJYbDCqp2s6d1ZhN2sMPen+nv97xDOybaQ4USnP55Xr5n3+qp2riwvjjD0hOVkH3VVepHASDBql1CQmwcqXj3zM2VnWXDglR71GnGXNh/zewOBKW9YXN90Psa5C5C5LmwS71xOzwYX1GI8ucD6Xp0kUNKwEVoDsqkWJdJUG3KNftj/ciqLGaHuD3tb2I25BYwzUS4sLbfUQfoNihd4carEnNCgyzTlTTKTAaAIOTgc++rI97UXzz999qPtz0dPvH2b3lEKezVR/AMQO30zjAx/6GRcI6BePqnA9A/MHaO12bsC9uQyJX9trCQ9f9Vy0ZxT99e5e5/PD9ufQb1ZmWTdVY32Vbozi2v+J5GI7sPcaSzV3Nr4+mB/Ll27YJBGPX72NQl2j6dNjFnVeu5a3HVrFvx6Gqf4gyfP21Xr73XhXM1jZDh8Ly5XDbbTXw5gGXQ7vHVNmUB1sehpXD4NzBUnfp1AkCihrIV62S6VHrIk2DhQv1vAIADz6ori8PP6wve/ZZ1SrtSL/8orqvnz4N77zj2GNfMEm/wLpb4bcAlRMh007iSc8AaDYcsB6G0b59+Yd3dobHH1flu++u3AwKFyMJukW53Ou58dR9+l9al/6heLjn4+GB+cfPD777rubqKER10jSIi1PlFi2gQcNaeMd7gbjXc8evod7VOzzK21y+8krVTbORyjfHxo1w3dXpdoOsgyf0lutOXb1t1pfk6u5K60DVHT0hOQRjgbFqH0BccOv+3En/4X4s3tyDz367jNULHZuBPjcrl99WdwPAr1Ea46434OTsxO2j1bzuJs2Z7z9LqvDxvpueYDMl11uftCPnrJ4Zfc2iGPoPb8LqnZFsjI/g+8X9eWHaIDr1DOC/3x37+Q7sSuLbr9S4dHd3jVtvdejhLx6R70HrB/TXKf/C4ijItT/VoMGgt3ZnZ8PatRegjsJhTpyAUaNgzBhITlbLWrXKYdgwVR49WrVCA2zdqpJ6HT1q91BVskt/zsecOWqKvDpn93tweC4UZOrLfHtD9xkw8C+4IgauOQRN+gMQH69vVpGWboBXXlHJ7D7/3FGVrrsk6BYVct//utO4gXpMaDS5kJfvRl4e5p/0dHh8Yj5n0k6XcyQh6p5jx/RxWx071mxdaoM2Aar1qJHnacI6WQ/SGjgQ/vsPmjZRQfHqDb58+qrtmNiDyXrLdsvIcJv19rQPVTfPeQUeHNqTXKW6iwtr0TebGDa2DZlZ3uZlcdGOHQS5cWk8eQUeAFw9YA/u9VR3i9sfbGne5o2ZPSvUBdRkgm9+U3/kBoOJfuGq5edEZlNmvrmZggKY//Veho9rZ+6pYSm/0J3r7gjiYKxj7u7PpJ/hmqvyOH1OTdFzy8ht+JTdKeTS5ewGPT+DIcugXggYXKD7dPCwM9dZkREWMx1JF/O65fbbYfFi/fWwYRpTpybiVBTZuLqqIQ9Nm6rXu3eroSeJDuqsGWuR4ig/vxZPT2YqVNPpbX/adl3za9S/rl4QejtcvhFGbIC2EyDoSvDprP6uilS2pbuYl+2l8pIkQbeokAY+Dfjhk/307biTyLB4ItslExkJkZEQFKD6ZJ0+68bMt7bXaD2FqA67Y/VWVQm64d0p7ozsuYUvp8TZnaqoSxeY+6neTe1/U7pzYJd1S+OhQ3o5NLRi79uhiz6ePP7QJT44rA7Y/E8cY+7tTm6Bp9XyfftK2aGKVi3LNJcHDdJ7obSObMHdd6tyVhbceCPkljM0e+VKOHRcnVuX9z/KzM89MBhUT43nPuxHvXpww73tzEH+iB5bSTmcyo7VexnWdRsAaWf8uOaqHM5mnD2vz2UsMHLr1fHEJbUBoH3z/Xz0ZZvzOuYlodkwGLULhq2GlreXuemwYXpXfUmmVnfs36+GMoCaP/7nn2HxYhMBAflW20VGwrp10KqVen3kCDz//Pm/f06ObfD+6aflX18umJzjcPAHWHcL/NYU/rsW4j+AUyW6j7e8A4Ys42DUSQ4GfA9+vaxWx8VZ9w6oSku30NVo0J2Xl8fzzz9P9+7d6d+/P998801NVkeU48o7erAurjM79rdnR3wQO3bAjh3w71/HcTKooOSjb8OtuuAJcTGI/VdvqQ0PkZwGA67pwuJNPbhhQt9StxlyXRQPjv0PgOy8+tx7h3U384MWQy1btiy5t33te7Y1l+P3eVSu0uKC+2JGhrmb9qheG83LEw7Wc+j7rFrvbS4PHBVqtW7aNL1FJjoaJk0q+1hWY6cnhhDRry03jFLDGvILXCgs1NffNiqaP9Z0oUmIP5GXtePnv1vRNkid2LGH23DrbQar7Svr+fvW8OeGngD41D/FokXOePlLk1GFuDYCfzvXpxJprP39oWvR8P2YGNVlWdR+s2fr5aeeguuvLz3PQatWKvAuzq6/vSJtQ8Y8OLYU4qfCzpdhyyOw8W7zz575b2EqMWoqNVVl7ceYD2cTwVRiCNTpeNg9RSUli3sb4j+C7GM4RH6mCrLX3wG/h8GCQNhwBxz+EfItBrMf/tF6v/ohrE0cRscIN9q315M1gkpO16mTCq4PH1bLilu6mzRBetxUQY0G3e+99x6xsbHMmjWLV155hRkzZrBkyZKarJKogjZRoYwbrP5SUzKb8N0HtglnROUs/3k74S0O885Tpx2WdGj3pkQ+enYVJw6edMjxLiWLlzc0l6MiZSxxRb33ZRQh/uox+b/RUXz9jj5o8tB+9XDOw0Mzd/8rTweL/HWWT9xF7WMywZ8bVauJp3sO85dF0NBTdStPSHJcL4XcrFw27lFRdcumSbTo0Nxqff36MG8e5gR/06fDDYPWMPfjdZxKybTaNj0dfvtNlf384JqinpdvT2tB69bg6QmdO6sb/K++glmLInF116fx8mnqzR+LwLuBypz+x+IG3Huv+l2YjCbef2YVrQMO87/xq9BMZc9h9MMHa3lv1iAAnJ0Kmf/tQdpEhVb69yMsHJgFa65T3W0tWHYxX7bsAtdJVJqmwfffq7LBQIVyHDRtqqa4AhVAlvsw7Ow+WDUStj8Bsa/Dvk/gwLfmn13r9X7W11+tD+aeOhW0zFj4ow384gXLB8LWibCkB/zVAaInwa5XIeZ5FXi7Nqr4BzcVQGasylVgtdwIf7RVQfahHyCrRPJA10YQcr0ao935DetdTTBxomqhz8+Hd9/V1731lvo3O1v1JDh9Wn8oJa3cVVNjQXd2djbz58/nhRdeIDw8nOHDh3PvvfcyZ86cmqqSOA/PvqR3+3xvZhiF+efxeP8St2ZRDNfc3p69yWH8snoI//1hJ5tkJZ1KyWTg5d48+e4gunc3Sgb6Skg7ms7KHWo6q5ZNk+jSv205e4hiDRs35OsZ+kOeb+eoR+OaSePQIRV0hPodrHAmZssv+j17HFZNUQ22boWUVDUWcPgITzwb1qdtmOp7eehkCPn5Ze1dcZbjuQd1P2x3m86d4aMp+hRi81cP4NbH+xEU4sbyn/Vmrz8Xmcz1uv12fW7qli1Vl/isLNUa+vPPcM89mMeOWmrbtSXzFzTAtSgWnzULHro/l2sHbOWZ9wex/0QL3ps1iE8n/1f6Z1q8i3uf7WF+Pe3FdQy9vmup24sK2PMhbBwPRxfAloesWrwtpw6TLua137p1cEDlSGTYMDVtV0WEhal/CwsrkFDNKxzqtyh1dezRTubyPTfsp08fVd61C9b/m1b0Rllw8j9ImA4ZW20P0ulFcG2gv84+BqtGwcZ7YPNDKgP/pvvh35HwZ3v4uQH8HQEb7rQ+jpMzBFg8OXL2gCaXQfjzaojFdWnQ/2c1RtvJejjY3Lmqx2qx339Xv5vt21Ui1GJ//209nluC7qqpsYke4+PjKSwsJCoqyrysW7dufPbZZ5hMJpzsfZuJWitqUHtG9tzCks09OHQymJ8+WcdtT/Sr6WrVOVuX72bUTS3Jyde7Xy5bYmToec5v+tabhaSd8QMgOSOAAcNP8ee8XfQdFXF+B74E/P5DHEbTZQCMG3EAg1NIDdeobhl2Q1dCHz3CoZPB7DoYisloIvVIOjn5KrlRy8B0IKxCx2rYEIKCTCQnOxG/Oxc09zLnTtqxA4KCZG7QmvDHH3r56qvVv207N2FbHJhMBg4cqFwintKsXp5pLluO5y7pwQn1SY1fxUezIs1J3XLy6/Hx1EKG3aC2WT5vA6C+t0aPOgs0tDpGRR8ODRsGP/2kWsRNJvjiaw+gp9U2T77Vm35D99JlQDt+/FG1sHt5QZvmKUz92J/8QtU0/9B1//Hw5IEVe2NROp9IcHJVrYX7vwLPIOj8KgB9+kCDBnDunN6id/XVauqzeo4dCSEcoLiVG+COOyq+X5jF18yBv6cS2nYBeDQD14bg7geRFvN+GQzQ+U3QjODRFNwbg3M980Vg19dB5k0jeodwbz5s2KBer9rain6jxkLGNsiyeBDoEwWht4FXBzDlg39/6wpmHYZjf5f/QbKPQF46uFtMndnyDvUZgseo7OMWyc9Kk5sLL7xgvcxkgi++gOPHrZevXQtbtuivHXHtvhTVWNCdmpqKj48Pbm76ieHn50deXh6ZmZk0btzYZh+j0YjRWLu7dhbXr7bXszpMetaZJWNV+aNPG3PzRPU70Ewabz2+hnWbGzL9S19aRUjQYs/+XUmMHNuUsznW3Y3+2dadN8/jfDp0CKZ9bj2v8aksH4aNdWfpr9H0vUIC77LMX6DfdY29xbdO/m3X9HWpU6vjHDoZzLnchhzcfZgTRzIBFXS3aJ5dqXp1aBpNcnI30k95kJKUgl9zP7vbffxhHk9Nqoe/v8a+fSYaNLC7mSiiafDOOwaWLDEwZYqJnj3tb1fRc+mPP5wAdYM6cqQRoxFatTJQ3MEuPt5ImzZQkFfAkh+jaR/pT5vI0ErXe9V6fYxz/5EhZdbrhWkDmDSlgHWLt3HLPSGcPO3Pyu3hZJ3Jwt3TneWbVP/Teu5Z9Ojlcl5/L9deC19/beCuu/QGBL9GafSLSOT3db3JL3TnxpugWesC/lvjarGnPtZicOR2Pvy+Z81dc4xGnM1FIzi4Hhf0uuQ/EEOv73DaUNQXOXYyJuf6aO2fxNkZRoxw4tdfDRQUwJ9/qp+vvtJYs8aES43dKYuScnLg55/VtaV+fY1rrjGZT8syz6fcVFq67wCuAOBg9C7wtu5tYvTpCc2v1ReE3FRqPXbFq79rHx+NJqEB9C00QtFfy7qdYRjf/LnofVMgcxfUaw6N7ESqlnXNTmb5zst5Y+GL3DPwa8YPnGVepTnXg/ot0bzCwacLmtFkvW+TIerH3nFLMXWqgaQk9Tl69dLYuhWMRgOff65x9iwUX79B9Q745BPNvKx1a6OjLwe1SslzyVHXqBq7lOTk5FgF3ID5dX4p/c4SKjLfRy2xy3ICv0tEw+YaUWGx7DjQie2JHVj4w9+ERjQldu0xXvlUNXU8fPdG3v0yo5wjXZqmPp9B+tnhAPTtuJ2UvHbs31+fHTucWLkyhsaNq9Zl/4UXWpKfrx5i3XRDMil7j/JvTC9y8uvxxuRs3gqIdtRHuOicy8hixXbVbyzE/wgujfOIjo6u2Uqdh5q6LrUMOQlFrQDL/4wmN1sDVJd938aZlfqdhgSmQlGP4OV/bKZtz2as/jWZRt4Gul2u+hmmJp3mxRd7q3KqgZ9+SqR793OlHVIAs2f7M3WqeiB6000F/PxzXJnBRlnnUuqRs8TEDAKgY8csUlLiSUkBd/fGgMqat2rVcYKDU/jl02Te+eYafOqfYsGCdTRoXL/Cdc7LNbJhd2cAQpsc5lReGqei7c/JbMk7FIb1jGbusuFk59Vn3peL8GvmxonMkQD0C9/J7r3ltxSVJyIC3pqUzgczuxHVJoFJr+TQ0Lceh++II/pAOAnH25Fw3P6+YU0P8fJ7Z4nbE3fe9agqp5wcivsi7ty5E5OnZ5nbV9WFuy61o4n/EwSnfgSAU8wkko6fJNXnJu67zwUIZPVqL9LS1P/9li0G3nrrCNdck36B6ifKs2yZD6dPqybrwYPT2bfPdkhJyfMpOOUd/E4volXhYIqD7gMnbXtXnYmZzoG00ruUFzt92pljxyIBaNnyHDExCWga+Ph05tQpV9atM7J9e4zF8BM/IBeILvO4x5LbcNP0v8jOdmFjYj+CR1xLQNMcClyaUOjsrXe1yQP2JAFJZRytbJmZzrz5ZifACScnjSee2M2XXwayYoUPJ0/qwXZYWA4HDqi/+z179OWatofo6Lwqv39d4ehrU40F3e7u7jbBdfFrDw/7WWnbtm1LvVre18doNLJr1y4iIiJwdradSudid+8da5nwqir/+3d9Pr49kskT9WDx3+geNGmUQmBYBTMnXSIK8gr4e302oFpZFi0P5Z0PPXj/fbX+xIkIhgwpO/GOPVu3wtKl6jz089P4ZGYzPN0a4+93jqy8Bhw6HkBkpPQ8KM23762j0KhaocaN2E9U1wE1XKOqqenrUnzvHKbPU+W0442suulGRPoRGRlZ4WNFRa6BP1X5XGYjVs3PYtL7owF4++S/PPP+ZVz/xBarIRpOTm2IjKz838+l4u8525g2Te8umZTkQVxcFHfeafs7q8i5NHOhnjDvxmGxREZ2B6AgX+Oll9Ty7DSNyMhI7lupToZTWT4c2aVx82ORNsc7uu84M9/bx7U3+NFzuD5n3+rVkFeg6jBooKlS59G1ozcxtyhpVszWRoRZZNAfMTSXyMhSmvorKTISnnlDw+CkH+/Hnw/Ro/9ZzuWq7uutwgr54EMDgYGQsOMwqYeSuP6edjQL7V/KUS+QrCxzsXPnznr6ZwepmetSJKY4L5xiXwUg5OT7NA9uiRb5AMOGqe61f/xh5LrrVH2+/74Fzz0XbB6jL2qO0QgPP6z3HJk40YfISB+L9fbPJ8MWL5wy8wlrcsC8bH/hzRhH3wf5pyDrEDh70si3N5FO5Z+H/1k0kPfqVd983RkwwIlFi+DMGRc8PCIrNb2opsH//udEdra6HhYanVi0+lo+/LB6vrc++sjAuXPqdzl+vMa4ce3x9YUVK6y3+/FHNwYO1MjN1b+0XV01rriiw0XdA6TkuZSdne2Yhl+thmzbtk3r0KGDVlBQYF62YcMGrXPnzprRaLTaNisrS9u6dauWlZV1oatZaYWFhdrWrVu1wsLCmq5Kjcg8mal5umVpoGne9U9pO9cmaAaDUVOXFPUz5elVNV3NWuefH7eYfz83DFmvaZqmLVtWaF52xx1VO+7g7vvMx5g+XV/eIThRA03zcM3WTEaTAz7BxemKnpvNv7+NS3bVdHWqrKavSzvX7Tf/Hm8ec1y7f/Rq8+sty+IqdawV87eZ97139AatcWPr68sdV6yxeg2a9uyz1fTBLgJxGxO1Rp6ZNr+zlsFntPzcfJvtK3IujeihX892rI43Lz+Vcsq8fFCX7Vr6sQyr74c7r42xOVZurqa1DU3TQNOaeZ/QCvP19331Vb2+s2ZV7nNnnszUnJ0KNNC0NoEHtKv7bjQfK2bN3sodrAr+/XWHNqLHFu2tx/7Vcs7lVPv7Vcm5c/ov+Nw5hx++Rq9L0S9q2hyKfgyadnCu1erLL9c/+uefX/jqCVsffqj/n7Rrp2klQoXSz6eMGE372VvL3fg/zWAwaaBpPXtWvR6ffKLXY+ZMffm77+rLv/yycsf84gvN5hpcr56mnTxZ9XqWpUsX/X3iiy7RJpOmtW+vLx80SC2/8krrenXoUD11qk1KnkuOikNrLFtZhw4dcHFxsepWuG3bNiIiIiSJWh3m5e/FDcNVd4zMLG/G3ORNydNs1p/dSk6Vecmb/1O2uXz9OPVv377g6VEAwD9/ppU7xUxJW5fv5t+taoxi6+A0HnhAXxfS7BQAuQWepB+T7v72nDpxiuXbVBfoYL9keg4Pr+Ea1V3tuoeZn4rv2teMg0f0FrOWHZtV6ljtowLN5W8W9SAjw/r68v1i29bB/Qm5lXqPS4XJaOL6GzTO5Khx0WMv28jwy1Tm3YNHGvLd+xsqfcyzGWf5d4fKExHsl2yV7d+7iTf+jVT374Qjzfjvr71W3w//bO5s893w4YeQcEjlpDiR2ZTYjfrMC6tW6dsNrGSuMS9/L/p3Ut9V+461ZOnmSAD8G6XRqU/ryh2sCgaNjWTJ5u48N3UQHvVlzvkLrvNr0OGZohcabH0E8k+bV7/2mr7pG29A3sXfk7ZW27cPnn9elQ0G+PJLO7MHFObQ4sRrkLLSerlPZxh7HPde7xAUpFpsDxygyix7HEdYpMTpZ5E7eP36ih8vNlbNNV6sb9H08tnZMG1a1epYlpgY9QPQq5eeidxggMce07ebOFH9e+WV1vtLErWqq7Ho1tPTk9GjR/Pqq6+yc+dOli9fzjfffMMdlUlFKGqle/7Xy1zef1QlS6rnnkWXCPWtFRvfwPwHb+mv77fw3XtrHTYvdV1RWAgL1qqrbD33HK68VQV67u4woJNKF3kiw49d6/dV6rgfvXfKXJ70wG6r7nEhgXqQn7RP5u2256/fz1BgVGP7xo1IxOBUwdTFwoabm/7FHh8PCUfU8JIGHmdp3MynjD1tBbRsap7v2WRSXQGdneHua62nZOnbcRdOTir5yf6dJeYtFQCs/DWa3UkqwIwITeD7RRG89twJ8/o3Pg4jL7ty0cbyX+PMmbevGrjf5u+mbfAxAI5lBPDnIushZsePqxvQYklJ8Prr1sffuErNiZubq2cLbtkSWpQ/FNPGFcP07tPFdR7aIwEnZ3nwf9EzGCDyXWh1n8r6PHgpuOlJ+Xr1glGjVPnIEfj66xqqp8BkgrvvVn/zAI8+CgNKjvQ6dxCnFZfhd3oRThtugawj1uud1YOt4gzmaWlw5kzV6mMZdIdbPIvv1k2fZnDdurKPkZqqMod36qQCd5W4TH3OH3/E/JB6xoyq17M0P/ygl0uGXA88AJ99prYZM0Ytu+IK621kurCqq9Fvlueee47w8HDuvPNOJk+ezKOPPsrllhMmijqpf39oW2Iq47uu2cpDE9zNr2fNsl6//q9dXHVnD+76X39++LASjwiLpKc7PLHqBbN6NaSlqyvsqGs8qddIH4vat5ceEC9deKzCx0xOPM7PK9UYQr9Gadw2sYfV+pDWeqCTdNK/SvW+2CUe1+/ih4zuUIM1uTgUtwgUFsLhkyrhWctmxyv9MMPgZKBDiHUCmTvvhK9+68ajN64CwNMtm8++cKeFfzIAicmBle4pcin46nO9B8DLk9Kp71Wf3iM7cWUv9bAvKbU5z9+/AWOBfnHNyoKMjNIH8y1bqgfSo66xTbzVJlS/g/zpH9u5py3nSX7iCZWt2NKGjeq2ZdPSOHPr46D+VUuSd+V4214Rw4bW0S8SUXkGA/SYCSO3gW93m9WTJ+vlt99W1y5x4X3xhZqyClTQ/NZbFis1DQ58D393wZBZNOF0YTactp+A0HLasINVeBarafqDweBg8PbW13l4qMAbICFBBfb2rFmjcj289RbEWVQzNBQ++ABCQtR0dQCZmfD555WvZ2kKC2HOHFV2dYUbb7RebzCowLv4/UH9zixbt6Wlu+pqNOj29PTk3XffZceOHaxZs4bx48fXZHWEgxgMcO+9lq9NPPZcCDfcoD8FnDsXCgr0bb75XG+VXfir3vpQEV9+sI/AQI3mzWH58vOpec2YP18vX3+99bqu/fWb1qUrracSK8uMt/aaE4A9eGMsng2tb36DLfpEJaXYn3LpUndKPyXxD5aJns+XZTe8YqGBp2wXVkD7FinmsouLiRdfVMH4x3MHsuq3aHasP0FEv7a0ClJdmc/keMkwihLSj2Ww4D91h+jXKI1rxnczr3vtLX1+tQ/nDGJk72g2/xPHxJtWE9DMyBVXdP5/e3ceF1X1PnD8M+y4IIuoiCiCgqgIivsSSK6Vpmal5ZZtlmarmkvaYl9LW7S07ZdlZotfMyvrm6m54r7vqOCKKKK4CwjM/P44MHeGHRwYluf9evnyzp17Z456vdznnOc8h7//zv1zV2/xAcDONo3wPjk7qwIaaZHLrVT1PbXdtOrQK1eqzpF/ftrNr7+qfbVqGXCwUxH21n1qesG6f7Qq5REt9hbqz5xd8+ZQr575vm79GuZ+sKiYbGyharZiohl34PR/CWtlMI52x8WZrz0vSs///Z+2PX++ST2/1CTY9ChsHQ7paqg4xd4HfbdNULdXrp9ltlZ3MVLM4+LUOu6g7h/ZZaWGQ84U84wMmDkTunaF+MwxFJ1OrRP/n/+odbCzgvgJE7Ri5XPnYrEpmatXw4XMZKY+fcDDI//js/Ttq223bJn3cSJ/kkMlSsSwYZBVaL7ffVdp3LIhbm7af9yLF+GfJaoSYGoqLN2o5QqtPdCO9DuF61Je/d/dPDe+IXfu6LhwAXr0UL3T5WXUOz0d44Ols3POuTNe/h408IwDYOOBZmxdcZCC3Lp2iy//q1LU7W3v8PzrOR9865s8Y5w9m+NtASSZxGju7tZrR0XR3OdIjn0NWxQvTy0oSBsdH9l7JQ0z4ySdjY7w/qEEhqknK/8GWgde7KE81maqpBbNPWBMqR7e9yAOztoSWWGRQXw0YR02OnUjXb07jHY9m/Hp4nBuJzuQkaHjiy9yPj6ciT7H8Xj1j9E+6DDV3HIujh7QJOf85WF9DlDfW0152bAulbNH43lyjJfx/Q9m3KBlIzW95ug5P5LOXzFbnzv8ft+i/vEB9VB7X2/th0Ujr1M0CKqXzxmiwjNkzu/e9CjsHMMLY7Tpbp99ZsV2VTAGA+zaBW++qVLFn3xSpZFnd/487M5cIrJVK4iIyHzj+nH4px2c0UYt9L5DOdLge3DNpYc3092OdJuubplbR3Ju87pv31bXTmCgCqaznk8jIuD0aXXcxIlQ02T8o0kT6NZNbZ85Yz7t5m4sXKhtF2U276RJ8NxzMGcOtGhhmbZURhJ0ixJRuzasXAnvvgsLftQilmEDtDUVZ3+gUgL/+QeuXtUeoq/ddmXX2ugCv+P4nlM8PNKPDL2W6mgwqJv4o49armewJG1YHk1i5oDNffflXJFFZ6NjQHf1sHkn3ZHIB/3438Id+X7mwtm7uHJLpY8P6r4dr1yWZzMNus8Uf6nHCs006HYr2rRjkYvgljkDsIaBrsX6rMdGBVLfM44gn1jenJ13t3sjf+0pLjb6Wp7HVTYGvYGvf9QK0j35gk+OY15+L4J/fzlAHdeEHO+BWlrm9u1s+37Xho66dck9i6Fx85xDK127V6NnazUnPzXNiYiINM4lqaA7suVuhoyoTvuW2mj4+j+PsvWwynFsWPvMXQXK992vLRHULVLyhyu9S1sgNnNo9fhndHd7AX9/9TCxejUcPWrFtlUQp09DUBC0bq0GSaKi4JtvVNp1ditWaNvGucUXo2Ble7iZWVTRwR06L8HQ7lv0tjl/zpi625HuBQu07TZtcr7foYO2vXo1TJ2qnrdGj4bYWLVfp4M33lDv++S89RplZVkAeWYWFcX167Bsmdr28Mg5Vzs/NWqojoOs4mqieCToFiWmUyfVO+ZikhXd+yFv/OuowPvfPa1Yv2wvP/6Y89x//5fHZJhMR3edoE8fPVdvuQLwQIftvDtdb6xmuXQpbFldtoZwU1NzFsSY/YEWCDx8755cz5s6uyWRLVVXb/KdKvR9oiU/zsm9SkdGWgaz/0+7i788IffUcdOUyjMnpbJzbpLOah1ErjXKQQ9OGdcgyJtqTjfM9vn6Fu+z6jfx5tQFbw6f8c+1UymLf4A2qhpzLC3P4yqb7asOcfB0YwA6Nt1PUFv/XI+LGBDK3j02PBS+hUDvE0x/YR2PDFT3i5QUXY41XVf/qz1SdLsv9/SQRi3MA2RbWwOdH2hBj55apccTF1Q9hZoul/h+SV10Njo6dNQ6V+fMdSQlTU2ZiWh9mrtx//2qk7ZVK3jtrZKvWi7KOM+O0GEh6NS1bBP7Gc/1+d349hdfWKthFccPP+TeeRGdy1iLabB5332oCvPr+8CdzF7xGs2h926oP7BQ35096E5LU8Gni4t5gJ+bkyfht9/UtpeXecp1ljp1tO/YtUsVgrys9RfSrZtadeHtt1UB0PyYZj7+73/5H1sYf/+tFaMbNEib7ilKjwTdolTZOdgx9VUtGH59sh1//KECmipVtFGp1Rtq5DgXVMG1vp220aS1H0fPqTtbs/rH+WF5EyZNtuHTd7UK378tii2JP0KxxMWp0f+GDbWUox2rDrN8s6r07u1+ngeH5V6sq7p7df4X1YyHu6pSvRl6O54a35KrF3OO3C37ejvHzqn0zoiQPbSMyL3ihaMj1HZVQ+xnYos3r7aiS0pS12ONKtews5fK5XfLxtaGZr7mAVJWWnhxFKYAm3+QFvjFnlRB27Fj8Pjj5NrZV1l89Z3WGffUsPwzAGr7evLLug5Ex/kx+ZMIBj+uBcfLl2lD3QYDrN6tsg6qOd2kbffc72dVXKrgU/Oc8XXbtjqquzpw74AgYzp7loXzTlLXXy0p1/5erbDh+v1adoMx3bSY7Ozg55/VA7J/7n0PorJpOBTafweoe8yIJk/i5Kg67b79VhUTFMUXa/JoNnhw7vtBBcQrV6ptd3dVUR6HGtAuMxOhTnfoHgVVC790Qa1a2tTHEydUTZ0VK1T18FGj4M6dvM/95BMtBX706LyDVtMUc1D3mKFDVWr6qlVwzz2Fa2vjxtAosx9w0yZtLnlxmRap7Nfv7j5LFI8E3aLUPTa2PQHeajLN1iPNSU5WP9iGDr5Nw9oq13nTwabcvm6eu7jih510eiDYGKgC1HU/zx9/OuLioYbTHxnibnxwW7bKt8xULF66VN0wk5JUD2PSZT1Tp2g/uae8eDzftVodqzjy0z9tGRihAu/kO1VY9bt5XrjBADPmaGseT5yQ/9Jr9Wupyujnr9QmLVVGAbNLulEdAPfqkpZsKcEB5sXMfBuU7PKA/sHexu3YM+oe8eKLKuAeMcJ8BKIyMBjgvffgm5/UfaJ69QwefjZnBfH83HsvODmoJ9M/f7tuXOLx4EG4eFk9zYZHVsXe0T7Pzwjw0ZYl6xqu7j1utV1pG3jYuP+1oevoPUTL36wf6I2Xm3ZelvD7fIvUfiEKpeEQaKfWCfOonsSgdosA9XP855+t2bDy484dVQV74EC4abLAgOlc6vHjte3sQfeWLVqg2aOHychw/YEQsQIi/jJb5q0wdDqts/fkSfjoI+2906dVp0purl/Xlo1zclIVvvMycqQa2HBxgXHj1PcsXAghIUVqKqClgKen312hYINB68BwdlarDInSJ0G3KHV2Dna8OT5nUaPH+sTSrf0pQM1fjvrLvPDS4p+0tWPqecTzwbh1HDlWFb9gbYJyzXoe3NNiPwAx5305vK3wo93nz6vUsfMlUG/p2DFt++xZ6NEhmhXb1QNlA884Ro5rX+Bn2Nrb8vQYLZX2f5vNq3isWgW7j6qfJq0CT9P90fwfput7qVx3g8GGczG5z9usrAx6PVduugLg7lK85YhETs2baZ1gblWTqOFasj+CqtaoapyTHHOuDtevY0yJTkuDTVElG/SXJXq9WoJr4kRt3+uv21LNtWreJ+WiShW4p4Waf33+Sh12Z9bfMH0g7NY9/yyEJu21e1dkNy04nzYlFdeqVxlwz1be/bKj2Tk6Gx3tw7JNT6h1lgZN85kUKcTd8H8Cwj4B4Llunxt3v/eeWspJ5O+331Qq+dKl5mtDnzqlfnd1VRXAs9akjokxP980pfq+HtnWDqzbE2zy7tjLT1b69507KsPF1PTpWgq2qfnztbW0hw0zL3qWXUQEJCSogsEzZ+ZcIaEoLJVifvgwnMtMMAoPVx0HovRJ0C2s4pHn2tHUR4tE67mfpfMDwXTrrs3b+/cfbQK0QW9gzXYVUDrZJ3P0hCuvzowwjnCb6n+/dt6yH+MK1Z6L527SqpWB556Dp58u8h+nQMf2mwe1u443NW6/8fJJs8rB+bnnfj9jatTff5tX+5wxQ9ueOL1Bgem3PnW1PKozMZVsyK8AN5JuGAv0ubskF3C0KKzgllqA19CzGKVji8HfW/3fS7hai1+XJJstVbhxaS6VeyqoKc9sZM4c7fWMGeYBeFGEd75o3F7+i9o2nd+dVXU3L2PGOtCypXp47dpV29/r8dYkXa/B0vXtc70ndujR2Ox1RJtTRW67EEUSMAb8n6aN3w46NFZzw2JiVFp0RoYaQfzzT5g8WQtqhGI6RztrPer0dK14a8OGKuDOGnmOjTUpgHs7jr+XqqmIOp2eno0XWKxdpvO6s9TKXBU0Lg6+/tr8vYwMlVqe5aWXCv6OGjXUaPfdCg9XI9OgnvmKWyDYNLW8Z8+7b5coHgm6hVXY2tvy1kQt0HusTyw2tjZEPqgtIbR6nzbScfJEOmcSVXdhx+ZHqeJSJc/PfnCINjFv2Yq8iyxl0WfoGdY/mgsXVJC6KfcaZXfl+FH1pG9na57G7VfnNMNeKXiUO4uTE0RGqu2EBG35ii1bVHEOgIAA6N+/4M+qX1+7e585IaO5ppIStBE1txr5TPISRRLS0de43nJwk9JJ2/dvpt0D5rx/0ey9qB2VZy24L35Wi8ra2BiYPx9ef11bB7ao2nTVOjuXr65NWsod1q9Tlb9r14ZmzfI/v0kTtQzQd99hLH6ZJb/OwvbZbpUR4VJrQZQwnQ5az0Xn2ZFFzw/Bo7qqgbJihUox7t1brXf8n/+on83J0kdrZFodPCvbLy5OWzIrq5BmVi2FW7fg4oV0iJ5N3Hf3sj9GZbG08dtBraQPLbYkTfag28sL/vhDe/2f/5j/O86erY3O9+qlKq+XFmdnrWPy/HnYt694n5OVWg4qVV9YhwTdwmoeerY9n05ZzyuPr2PaJ20BlR4eGqre37PPkUuZRczXrtfSiLr2z39iTIOgerRqpFLTd8cEcfpI/qPdH07YwD87WhtfX72qpREV1fXL13mm3wYe6LCdi2dUobLkmymcuaSW52nV6CgvDV5vPH7aq2fznfuYm9zSjd6erHVgjB9fcFVMgPq+Wjfs2dMyp9tU0kXtAnB3lb8bS/HwrsmiT3bz9IMbePODgFL5zkbNtaB773Hzgjs7jzfJUTuiIko6f8W4jGBEi92MHHl3n+fuXcN4j90TG4SfdwI3b6nMkHvbHCl2MF+QsDCws9MevIu7PrcQRWLrAF2W4tc+gqW/2hnToefPNx9BPHYMpk2zThPLotyC7qzgFbQRbtMChjE/PA27X+bvXVq1sd7dbqqCaRa6sWQPukePVkXasgYrzp9XtT8yMmDHDtVBmWXSJIs0oUhMn/mKs3RYcjKsz3zsrFevdDsNhDkJuoXV6Gx0jHknnA8XRZiNXGelJhoM2g+0tWu18yLvLfjG27+XVnDn93yqmG/75yCTZnfKsf9sMVYbu3DyIuFt4/m/3+/hr61tmfO2yqeK3R+HwaD+qwX4XmXWgk58Mnk982dsZOgrOb+7IL17aQ+d//s5muXfbmfFWrX2bT3vNIYOLdzn1PfXCpCcOSu3AlNJiVo3t7tb5Zn3Wxoefq4DX/12D77N7mKiWxHkV5E6PcOe7auP5X1ABRFzIN643cjXMqWXH7hXu8fGJWnzqvv2LLnVEKpUga5d1f0/NBR8m5bONSQEznWg/TeEd6vOvHnmb9XzTMTBQf1c/vBD2LbNCu0rg0yD7jNn1Fxp0yJqxqC7gfbzNjZWDYOvPqjNUen9xL3q799CTINu06Job72lDVj83//Bww+rwrfpKomH11+HLl0s1oxCM11Puzjzujdu1Oap9+xpsb4LUQzypC3KnPvv17Y/+0wF31lBd9Wq0KZN7ueZ6jdYexj7eWlVUm7nHK28evEag4bVID1DjTR7umoPi2cOHMlxfH5i952mU8dk9p7QlujatlulYB4/pK05HtAoHTsHO16YHs7I17sUatmj7Hwb6gjyUR0J2w43ZvR4rULzrAk7Cr32ok8jT+P2mXPORW5HRZaUqFVSca88GcgVUm5Bd9a69wAb11wtvcZYSWy0lsrv72eZTqTBT9eniqMK4B3sUunZZicLZkbx8HOFny5THAsXwuefw++/F3ysECXhmWfg/fchsHEaE/t/TPR7vrz5sCqqoter6tW5FeOqTFJSzOe4GwxqzrbpSLevL6BPp9G1scZ9sQn+4BrClrh+gHrmCwuzbNsaNdKKmz3/vFYULThYTXnJymRYtkzrOOjQQa2tbQ1+ftrSYdu3F/3aktTyskOCblHmhIdD8+aq13jzZlj06T7iMwdqOncG+0JkYzdr34hGXqcA2HK0NQ0a2jF9ulqyC1RhtmcGHebURTVC07HpfqaN3W88/8zxxEK391LcZbp0deTEBfPU1V3H/DDoDRw7ot0hGwcWMiIuwH0RKmVeb7Dl7CUVdHcN3cOjozsU+jNq1fcwzq89c8HVIu2qKJIupxu33T0KkasvyqxG/ubzAHU6PTPe06ZWRG2rlue5+gw9C2ZGMax3FLvWFK0jriyJPa7VJfAPsEzZ2sahvuzamMA/P+7iUsIdVmxvzfBxnbGxLdnHijp11Hq69esXfKwQJWX8eIjevIf/DJlJVafbjOs5lTC/PYCqFF3Z08xNg+ssx47lMtJtY4d/K60IRMydRzgXvJOz59Q9uk0bLQi2FAcHFbz+9ZfqPDH1+OOqMF5Vk0UdXF3VMpOFefYsKVlrf9+5o+phFEVWxqhOV3CRS1GyJOgWZY5OBy8N0+4qY173NW53bXWocJ9ho+PFJ08bX1+8qOONN6BxY5U29OX0jSxZqwJU16pX+fEXd/wDtLvsmdOFHw1657WDnL+iUp+a1T9O+6bq4fzqLVdOHE/lWIwWtAU0dyv05+bnvr7mVdvtbNOY96VLkUbObWxt8KmpUkTPJnoWcHTlkpRc17jtXsfDii0Rd8vdHWpUuWp83SHoIG26NaWuu1obcPPBQNLvpOc4b/faI3RsfpgnJnTm+xWd6fFgbRJOFb4zriyJPandgxo1tcw9CKBJGz96DA6junt1i32mEOVGzbbQey/UCsfONoMFzwzF3k51cM2caT7CWNmYBtdZju05y6lD2nNZg8xxiob3PmHcF3spiG07tCi7Q+HHEYrEy0vNlc4toO/ZE9asUcc4OKjR76yib9bSyWQmYlGK/Z47BwcPqu02bSRzz9ok6BZl0uPPNcXTRT3gXk/W5h5Hdi18UDnmnXC2/XOIRwamGSvkJiWp1LDnpmlFOuZ/FE2DoHr4+Lka9509V7iu1Zi9p/nsF1VlvYrjLVauqUbPh7UqFbv2OXH8pBYgNw6xzBzEzvc3o5qTVuzrlSGbCGqbz+TVPNRv5ArAtduuXCudYtLlwpX0RsZtd7+m+RwpyjqdjQ7/Wlpdhz7dE9HZ6Ogcqp4Kb6ZUZ/8m83ndH4xbR5t7A9gW3dy4L+mmO88/cSbPArq5Be5lRcxp7R7k16xuPkcKIYrEuTZE/AUe7Wjuc4gZj2jr8A0dChcu5HNuRZWRyokdO3LsPr7xH06eUg9jnp5QLTPJyLlGDbwzZ8nFxKjVWLJkX7GgtLRtq9LhExKgb1/rtMFUR20xHzZvLvx5v/yibZvODRfWIUG3KJOcqjnz3OCDZvtcnK/RMrxoFY/b9mjG4iX2xMTAY4/lfH/0w+sZ8Iy6q/sE1DLuPxNfNefBuZg4zcU4J/y1Edup6+9lNv9o1y44FucFQB3XBIuNCDk4OzD0fpXK5l/nNG983LqAM3Ln46d1aBSneFxFlTUNAcDNcgODwkqaBmhL4vV9VAWdXTpqdR42rtJGsFf+tItxH0SgN6jR4Sb1Yqnpouoy/LoujCVLzD9bn6GnT8ftVK+WxouD1nMtsez1XsWeUxXca9VIlFFpISzNrqoKvF2CeLn3x/QOUdWuLl5Ugbe+MtXiTFgPyxtzYuuGHG8dOBvMuSsquvb1Ne+9zJqzfPmyeUV4awXdoJbrcnW13vebCgrS2rJpU+FXT/vxR2370Uct3ixRRBJ0izLr+debGeccA9wTehQ7h+JN7mnYEH74AdauSqZp/RgA2jc5wAfftjMe4+LhgmvVqwCcScg9B+fqxWts+nM/p4/EsSnKwC9/qIisds1kxs1Qga9p0L3m3wwSrqpgPsDnfLHanpePvmvLPz/uYsfeGlRzy3tean5M50WejM1g5qvrGNY7ivjYytg9rzENuiUdq/yb+LY3Pdvs5L2X19G0g8pE6dxdq4YbtUXVWrhw8iJDn9P+U4wbto59x3yYN0+bzDd6tHqYzrLtn0P8uaUtKWnOfLI4nCYBKfzw8SYMesusKXu3bl27ZZz+0sjbsvcgIUQmRw/o+g821eqx4NkReLmqQjSrV8PcuVZuW2mJ/RbWRMLts5xI1EqE29upLKCdJ9sYV3Jp2NA8a9G04OWBA+p3Pz+oVQsB2NhoqfaJiWoUviCxsWruOkBIiCwVVhZI0C3KrNq+tXisx3bj665d7n493Yhuzuw77suBTcfZsLcJTlXNiwr5eKqn6bOJXugzzLunb1+/TZvQK3Tu0wLfpvXo3EX7ofHWdGequakRpLp11VwggJ27tLmUjX2Lufh3HpyqOtFjcBhutV2L/RmmQffwobeY8FEE36/ozBOD8l/bvKJLStICJhnpLv+atmvEiu2tmfBRhHFfcIdGuFRTRQ6Xb2nP2BcMPP7QOS5eU/UNerfdwXvf3IODswMPP16Dhx5S5126BBMmaJ+9fOlls++6cLU2Q17pxCdTco70WMOJg1qg7V//uhVbIkQFV9UHem6nVpMwFj0/BJ1OPUN8+mnhRybLjbTrcO2w+b7a4WCnBgBOJLUAwN7eQJu2arBEr9dCjqzlwrLktspESc3nLq9ym9edkKAKwqXlXKCHn3/WtgcPLtm2icKRoFuUaVPf96W+Zxz+dU4zdEzzgk8oBDsHO5p3bIy9Y85SlPXrXAUgLcOBi2cumb33/ZydxJz3zXFOUBA8+aT5vrDGR3McF9DRinlSefCpo3UEXLmhzftcubM1K3/aZY0mlQlJp1U2hLNjMs6ymlqFZGtvS/eeqtMtNVXHp3N1rNnTEgAvtwssWOJrrMSt08G8eVp6308/GbiapJ5ylm9omnmMnvvba52Eb33SokykmscmavUJ/EOLNj1HCFFEznUg4i8ihz5IZDtVNMxsnvKdklvHvsSlJMLhmbCyI/ziDlGPmL9fzQ/a/h+G4OmcuKhGun19dbmOsGYvTNaoUc5jrJlaXhZln9d95Qq0bg0PPAAvvZTz+J9+0rYHDSrx5olCkKBblGkNm/tw6oI3x+J88PSpWeLfV99bW97LdNkwfYae2V9p62H3ar+PJk0gMBAWLMhZATOsac40zsaBVlxvIg/1ayWYva5RRQsSxk2uRkZaRmk3qUxIuqF6690zpxuIiunLL2HMGKhSRdun0+lZ9NV5atU3r+hfuzYMHaw6qVJTdfzyxVZOnYKDMSr/sV3rFP7c0pbh90UBcOWWG7On7SmVP0d+TNMQ/ZtJrqYQJU5nA01eZNhz2nDuwoVARgr82QTW9IS45XCn+J1yyclquasSX6/+djyc/Q02D4Hf6sHeCXBpCxgy4NohSM42Fa3BI1yqM5mbN1UmoJ+fWjUmOxnpLrq2bcE2M3ly0yaYMgXiMpMS589XQXiWAwfgUOZiPx07apXihXVJ0C3KPJ2NrsTXfs1S30cLMs/EaqmY//y0i+g49VPhnuC9/L0lhCNHIDpa3Qiza92+So59AWVwkCmgpS+B3icAeKDDdmKOphPWWKWM7T8ZyPcfb8nv9Aor6YYrAO4ulp0SIMoWDw+V+nnmDLzzDoSHw4IFNkQObJnr8cMGaNUGF/7kwvLl2nsPPKj+z099rz52tmoU/KMFLUk6b92RrZgYbTu30SQhRMkYMEDr0Fu8GFKO/hdSLsKFlbChL/ziCssDYeuTcGl7vp+V3aefwuuvQ79+8NtvFm54ahJs6A/LvOE3b9jYH079APo72jEuTaDxaNCre53pPOPsa3Hn9uyTfaQ7e9Dt7AwtWtz9H6UiqVoVQkPV9qFD8MUX2nupqapuURbTUe7ciggL65CgWwgTPv5a1awzl7TlvT6erf1XeemFFAoS1sW8W1Gny70n19rsHOzYfbgOBzfH8EdUG2rW8+CD97QfrFNmBXL77qfSlyvJN5JJSVM55e4ulewPX0l5eKhRg3XrYNiwvI8LiwwiyEc9WW48GMIXn2n/V/r0Ub/7BdfniQdUZ9X15Bp8NMehpJpdKGYj3WXwHiRERVWtGsZaEFevwp/r/KBqtiHeG8fgxDewsp1K2z7yESQWvCbUdpMYfdQo8+KfhZaSCCe+g7PLzPfb14ALqyA53ny/gzsEvQZ9jsMDR6DNXKjqw8WLKkAOCIBly+DECe2UvEa6s4+8urqaFy1t3Rrsy15yoNWZzuvOXhX/669V7QC9XpvPbWsLDz9ceu0T+ZOgWwgT9UNCjNtnk3wAOLj5OKt2qZLkfnVO03dEmwI/x8uvNl5uWtpVfa+rODnlc4IVVXGpQrMOjdDZqHSwiAGh9Oms0mLPXfLk7bet2brSd+WilvLn5pKaz5GistHZ6Bj2kDbafThaBdT160NwsHbc5PcCsbdXlZPmzKvKJfPyEKUq9ogq9Fa9Who1S36GjhDChGkn3sIVnVXAes9v0Ph58GgLNiadcpe2wJ5X4dwfOT9o/YOw7RkVIN+O48QJLeJKSFBzetPS4IMPVEbL6NH5FG87vwpWdYFldWDrCIj92vx9G1twbw32LlA7Epq+Dl2WQf9z0HIWVDdPmfnlF7UeuV4Pkyebd/T5+anOPp1JsXIvL3J9HjLNxJH53LkzndcNqqZQ68wVY/ftg9274aOPtGyDe++VCvBliQTdQpgwreZ95oz6ffZ7WvA89olT2NrbUhitA44btwM8D1ikfaXl/a9aGuepz5wJq1ZZtz2lKSlBSyl3d72Tz5GiMhryfKCxKnGWPveeNXuobNCkNk8/rXbcvKlGIKwhLTWN0/E1AGhUO8asjUKIkte1K3hnloP5+2+4eMkW6j0IbeZBz20w8Cq0+xpqmBSKzciWTZd8QQXisf8HGwdgWOZDbLT51Kfvv4dAv2uMG6eC3s8+g127Ms9Nu6kOMuhh/5uwtickRqnXAJe354zQuyyFgVfg3n8hdAb49APb3EcO/vc/bfvIEfjmG+21n59KFTd9tso+nzuLaSaOzOfOnelIN6jl6J59Vnv96qswcaL22nSlDWF9EnQLYaJuXa1H9swZuJZ4jR9WqG5EF+drjHytVaE/K6yJNrGpsVdMPkeWPUFBMGOG2jYYYOhQ1ZteGSQlainl7m6Vs5CcyFu9xl7c29K8QFqfbjn/czzzjLYdHV3Srcrd6SPxZOhV75m/z1XrNEKISszWFoYMUdvp6fDjj9kOsHMG/yfhvv3QPQo6fA8Ns81xubofbByNL6/ccuN6supMq+akBd8n42qYnfbTT8DxL+AXN1jVGVZHwMG3gMwA2yUQgsarUWwgJUUF6unpqHXHdQWHCCkpsGaN+b7s6eVgnmKeV9Ddr5/6vXZtiIws8KsrpXr1oHt3tf3ss+rv6dFH1XxvgPXrM//9UHP+5e+xbJGgWwgT9vYq8AY4c0bPsh/PGef3Duuzl+ru1Qv9WV37aVVA2kbmMqmpjHvlFejdW20nJMCwBw/mWLu8IkpK1EYZTOeYCZFl2OPJxu1qTjeI6Bec4xgfH237/DnrTFOIPaytwODvK1MlhLAG0xTzb77JI+1bpwPPTtBwCLhn69z36gEDkyD8Lwh8iROMNL41uONierX42/g6LExvnAu9eDHo9QYwpEPiJkjcmPldNhD6Htx/BFq+D7U6s3OXzpiq3K6deeCcn/XrVSX13Li7Q43MfgDTYmrZi6hleeQR1UF59Kh2nsjp99/h4EH4/HP1unp1FXib6tCBSjc1sDyQoFuIbOq7HQPg4kUbFvzaxLj/8afq5XVKru7pF8r8GRuZ9do6HhvbzqJtLA02Nmo5NC/PWwCs3NacRR8XXOClvEu6pKWUu3vILVLk1P+JUGq6qInaA7ruw7GKY45j3FwNONipQPdC7KnSbJ5R7NFbxu1GjQs3LUYIYVlNm2pzlA8cgJ07i/EhdlXA+z4I+5gTrh8Yd/t3H8l/VwQxfcJxfpi9iW3bbOjVS7137hxsPBoB1QP4ZdtDBL4WzawVb0LXVdB0Auh0GAwqRblTJzh1Sp23eze0aqWKohXkby3eJzzc/L2sUW7AbK3u/FZRCAyUgLsgzs7QrJn5PPmnntK2XV1VRoUUoit75IlSiGzq19KqHq3foP6LNGwI7boVvfTvyNe78NqsCOwdy+fdr1Yt+PoDbT763ysq/i0j6bI2mu9es3z+u4mSVc2tGmv/vsJnb25gzoKco9ygiq7VcVMjzecvWydlIiZGG1LzD6xmlTYIIeDJJ7Xtgmo86PUwb54aycxtVNwsfdvfhupevkx+rzGPvdgJW1sYPFh7/6e1XTkWeJShX/2XY+cDef2HqVx10nKOJ0+GF16AO5l9zQ6Zdd2uXVNLnk2fnn9bs+Zz29rCokXg4mLSNpOge8gQ6NxZzXEfODD/zxRF1749vPii6txYsiTvbAJhXRX/CVqIIvLxTsuxb9AgKm0Rou6PhlHFUY2Ybd5fv4Cjy78raBXs3Xz88jlSVGbNOzbmuWn34For72EZL4+rAFy64UFaas77SkmLPe1s3PZvJiVshbAW03m3P/0Et27lfewHH8CYMfD88yr4zs406M5tfnTfvtr64EuWwMiRkJKiHvf1eh3r1qn3bt1Sla6zvPIKxMerNO8sb7xhfoypmBg4nlkvtlMnNd/YdMTVtG2urrBxo5r/XU36/yxOp4PZs+HwYejWzdqtEXmRoFuIbOrnElea9hxXNvaO9rQLOgrAmcR6xB0/b+UWlaykm67Gbfe6ta3XEFHu1ampnqwNBhsuni3ddcN++DiK/21Vc0Md7VPw9q9Tqt8vhNBUr6467wFu3FDBcG7OnjWfi/vmm2rU2VRuhcpMVa2qAm9Q63dv2mT+/urV6ve1ayE1s9TDyJHw4Yfg4aHWeH7/fe34V1+Fr77K+T2mqeX33ad+f+UVqFNHpUDLiLYQ5iToFiKb+g3Nl8Vo1uS22Rq8lVHH1teN25tXnsznyPIvKUnblkJq4m541dKKl104faXUvvfjKTsZ8kpn0jPU9IhnB2wr9FKHQoiSYToKPH9+7se88or5KPjly/Dee+bHZAXdNWqAm1vun5PbQIFN5hN/VtBtutRXVpAOatR0/Hjz4H/UKPjrL/PPMz0/K+j29lZrRMfHa+tHCyEUCbqtKDIyksDAQOOvZs2a0atXLxYsWGCx7xg6dCiffvopAK+//jqvv/56gefcuXOH//73v8X+zl9//ZXIcrxOgY+febroYz22WaklZUene6oatzdHVey1qyXoFpZSp7ZWH+B83M1S+c7PPoNX3tWedkcN2MBH33cule8WQuStXTtVVA0gKkqtaW1q5Ur45Re1XbOmNr969my1hClAWpq27eeX97S3nj1VSneW0aO1ta+PHoW4OG2k2t4+96WlpkyB115T2waDeZr57dsY09Tr1YPmJsuMOzmZf7cQQpGg28omTZpEVFQUUVFRrF69mmeffZaZM2fy22+/Wfy7Jk+ezOTJkws87q+//uKLL76w+PeXF/Ube5q9HvRU0QuoVTTte2hLnm3aVbHnhiZdVOue2toaqF74FeKEyMGrrvYj9sK5lHyOtJzZs7Xtt0ZH8dmSLjLKLUQZoNOZj3b36gVbt6rtw4fVPO4sH3wAY8eq7ZQUFQCDSj/PyFDbuaWWZ3F0VIW1QFW6fu8987m+c+dq1crvuYdcf9bpdDBzpkoXB9izRyvstmOHalfWn6Oy1rwRoigk6Lay6tWr4+npiaenJ15eXvTv358OHTqwcuXKEvmu6oWIIgy5LiJZeXjUdcfbXc1b7tJ8D37BFb94WEHcarvSrL6qmLInNoBb1/KpAlPOJV24CoB71UvyICHuipe3tpTY+fiMEv++y5e1wkbt28PUuZ3R2chFLERZMWKESsEGNWLdpQtERKjA2LQo2dChMGmSlm21aBEcOlTwfG5TU6fCvn2wfbsqXmYadJt2zmWlhudGp4OWLdX2lSvaKLvpsmdZy6EJIfInQXcZZGdnh729PUOHDuWdd97h3nvvJSIigps3b3L+/HlGjRpFSEgIkZGRzJ07l4wM7WFu1apV9OzZk9DQUN5++22z97Knl//+++/06tWLkJAQBg0axOHDh9m2bRsTJ07k3LlzBAYGEhcXh8FgYN68eXTu3JnWrVszatQo4uPjjZ+TkJDAU089RWhoKP379+dM1l25nNLZ6Fj28xUmjlzHwp89Cz6hkujYUnVEZOjt2PHvcSu3puQk3VBrnrhXv2Hllojyrk49rZPz/IWSH23OGjUDLZVUCFF2uLmp/6edM2d8pKfD+vXa+7VqqaJlNjbq2EmT1H6DAX74oWhBt40NtGihVTJv21aroJ6qlZvIN+gGLegG2LtX/b5rl7YvLCz/84UQSsUOuo98BMvqFfxrfd+c567vW7hzj+SxlkIxpKWlsXLlSjZt2sS9994LqPnRs2bNYu7cuVStWpUxY8bg4eHBsmXLmDFjBsuXLzemgsfExPDSSy8xePBgli5dSnp6OrtM74wmNm7cyOTJkxk+fDh//PEHzZs359lnn6Vly5ZMmjSJOnXqEBUVhZeXF4sWLWL58uV8+OGHLF68GA8PD0aOHElamloC58UXX0Sv17NkyRKefvppvvvuO4v9nVhLm+5N+c/8CHyb1bN2U8qMjh2128Xm3RUrxTw5WVWUTb+TzvVkNaffrXrFHc0XpcPLV6tydOGiQ4l/39Z/Txm3JegWomyqV08tnTV+vLbPx0fNmT5+XJv3DWrEO6sA2pIlRQu6s3NwgPBw832+vhAYmP95oaHadvag29FRjdILIQpmZ+0GlKi065B8ruDjUnxy2ZdYuHPTrhd8TD6mTZvGO++8o74yJQUnJyeGDx9O3759WbJkCREREbRqpZZ92bJlC/Hx8SxZsgQbGxv8/PyYMGECEydOZPTo0SxdupTWrVszYsQIAN544w3Wrl2b6/cuXryYBx54gMGZJS7Hjx+Pvb09165do3r16tja2uLpqUZ5v/76a6ZNm0a7du0AePvtt+ncuTMbN27Ex8eHPXv2sHbtWurWrUvjxo05ePAgK1asuKu/F1H2dOrXCSao7c1761q3MRYSveMEH82tzsLFnjg5wbdf3gYyR7prlM4cXFFx1fLRMmXOp5b8cNCWdUmALwDtQxMAWfJOiLLI3l4ty/XII3Dxokr9trfPeVytWir9fM0atS62abmfogbdoL4ne9XxgqZRmQbde/aoJcyOHVOvQ0Jyb7cQIqeKHXTbu4Czd8HHOeWSQuzkWbhz7V2K3i4TY8eOpUePHgA4Ojri6emJra2WhujtrbUhNjaWq1evEmaSy6PX60lJSeHKlSvExsYSFBSkNc3e3uy1qZMnTzIoa9FIwMHBgQkTJuQ47tatW1y4cIGXX34ZGxttpDMlJYVTp06RmpqKq6srdetqQVhwcLAE3RVQo8Y6PD0hMRE2bwa9XuuBL28y0jJ49qHNzF/exbgvNRWGPVXN+NrdNTW3U4UoNAcnO2rWhEuX4MLFkn0yzUjLYHt0IwC83c/j00jW5RairCtMavbDD6ugG1TlcVA/e+sXo9xMZhKlUUGp5QD+/mpO+M2baqR7zx7tPUktF6LwKnbQHfSK+lUc4X9Yti158PDwoEGDBnm+7+ioFeJJT0/Hz8+Pzz77LMdxWQXSshdBs8+jC9LOrnD/9FlzwufMmUPDhg3N3qtRowZbtmwp9HeK8k2ng44d4fffVUGV7z/ZS6cINxo2q1fuqiP/NHerWcCd5eZNrRfB3bXkC1+Jiq9OHRV0nz+v5mWWVHG+w9tjuZEcAED74FOg8yqZLxJClKr+/dWSX3ptBUJ8fLQlxYqieXM1en7xokoN79q14HNsbNSI9qZNcPo0rFqlvSdrcQtReOV0nKpyatiwIfHx8bi7u9OgQQMaNGhAXFwcn3zyCTqdjsaNG3PgwAHj8Xq9nujo6Fw/q0GDBmbvZWRkEBkZya5du9CZPBW6uLjg4eFBYmKi8Tu9vLyYNWsWJ0+eJCAggGvXrnH69GnjOUeyLz4pKoyOHbXtES+H0rhlA3y9EojZezrvk8qghT84GbfffG4d0Qdu4pkt4cXdvXJX8ReW4ZUZ+6amqrTMkrJ13QXjdoe2kqUhREVRu7Za1stUtjGQQrOxgVmz1Pnvv68VWSuIaTG1BQu0bRnpFqLwJOguRzp37oy3tzfjxo3j6NGj7Ny5kzfeeANnZ2dsbW155JFHOHjwIJ9//jknTpzg/fffN6sybmro0KH88ccfLFu2jNOnTzNjxgwMBgPNmjXD2dmZa9eucerUKdLT0xkxYgSzZ89mzZo1nDp1iilTprB79278/Pzw9/enQ4cOTJo0iejoaFavXs2iRYtK+W9GlJb+/XP2rsddrsuIIdfISCsfI8Nxx8+zerd6gvCrc5qpc8MJbF6Nhd+az+GWoFtYQh33q8bt8ycTS+x7tmzROkvb3+NeYt8jhCh9Dz9s/ro487mzDBumCrJlreNdGKbzurMeKx0dzYu+CSHyJ0F3OWJra8vnn3+OXq/nkUce4YUXXiA8PJwpU6YAavT6888/56+//qJfv34kJiYSnr1UZaY2bdowbdo05s2bR9++fTly5AhffPEFTk5OtG/fngYNGtCnTx+OHDnCk08+ycCBA5k6dSr9+vUjPj6e+fPnU6OGqvL88ccf4+bmxqBBg/joo48YOnRoqf2diNLVuLEqoPLdB5uY/NQ6fGqqYoObDrVg7rQoK7eucH74/CgGg7r1Det/0riOca/7nRg3dLXxuGahrtZonqhgvJz2GrcvnIiz2OceOQI9e8Lbb6u006371ZC6nW0arcIbW+x7hBDWN2CA+dSUuwm6i8N0pDtLaKgUUROiKHSG7BNyy6Dbt29z5MgRgoKCqFLYXBgrycjIYO/evYSGhpoVRBOiqMrDtbR+2V4iBoQC4Oxwm/3bEmkUmneNAmsz6A00bxjL4TOq4FTs/jP4BWvVaNLvpPP1e5uxtYWnJnYxBuTlXXm4liqq2RPX8/J7qvPzh9mbeOzFThb53G6dzvHvZlVo84nhqXz7nar/0SbgENuPltwaPnItVSK3bqkKWqCqaGUt8mwhci0VTXg4bNigtn/8ETIXnykVqanqUkhP1/Y9/zzMm1d6bSiIXE/CUrJfS5aKQ2WkWwhRbOH9Qxn98HoAku9U4clhV9Bn6As4y3p2r4s2Btydm+8zC7gB7BzsGDX1Hp6efE+FCbiFddWpqw0FnT+XZvZeejp8+SV89ZUqslZYZ6LjWbNFK5SWFXADtG95qfiNFUKUWc8+q363s4NOlum7K7TcUsllPrcQRSNBtxDirrz3ZRi+tc4CsOFAKH98u8PKLcrbd19dNG4PG1SCVa2EyORVT+sVv3DB/L1XR+5l1Cj1MP3XX4X/zB++OGacIpFdh46S7ylERTR4MPz7r1qyqzjLhd0t03ndIEG3EEVl9aDbYDAwcuRIfv31V2s3RQhRDNXcqjFnhlaw77vvyuaMlTspGfz0t0q7dbRP4eGnQ6zcIlEZ1KnvYtw+n6AFxP/37gY++T7U+DrKpCRC4tlL9OuyjTGPrM+ROWLQG1i41Mf4esLLV83ebx/pgxCi4tHpIDJSLftlDabzup2cpIiaEEVl1aBbr9czffp0Nm3aZM1mCCHu0v1DW+Plpobx/trahktlMMN14yZbLl2vCcCDEUdxrVXDyi0SlYGXb03j9oVEtVTd+mV7eX5aB7PjDh/Wtj+bsZ/fo9oxb0k4y77cYHbczn+PEB3nD8A9wXt57yNXPn73HNWcbjCsdxS+TeuV0J9ECFGZmY50h4RIETUhispqQXdCQgLDhw9nzZo1uLi4FHyCEKLMsrW3ZchwVXAnLd2WxYut3KBcrFmjbT84Qka5Remo7lYdZ4fbAJy/XIMLJy/y0HAf0jPMn1hNg+6dR7RihMt+vWN23MKvtWXHhg2+AcBLk7y5er0K3/2vs9QiEEKUiDZtoFYttd2nj3XbIkR5ZGetLz506BBeXl7MmTOHgQMHFuqcjIwMMjLK9lrAWe0r6+0UZV95u5YeH+HMrNlqe8ECA6NGla2Cav/+awOogOSeezIoJ3+tFlHerqWKxsstkRMJDbiQ5M7MKfu4fKMrAD1a7yTxTnP27HfixAkDN67cooqLM/tiGxrP/XNLO5JvJuPg7MCd5Dv89LfKLXWyT6b/yObav6lN6fz7yrVUiWRkYGvczMDSN025lsoXJyfYvFl1EHbvbvHL4a7J9SQsJfu1ZKlrympBd2RkJJGRkUU659ixYyXUGss7cOCAtZsgKojydC0FBgZx9GgVdu7UsWxZNA0bpli7SQDcumXDzp2hAPj6JpOQcJiEBOu2yRrK07VUkXi62nIioQFJN935cmlbQAXNE966yVcfbmIP92Iw6Fj520bcGnhx9myo8dxrt2vw85e/0yKiHtv/juPyjQcBuL/DVk7GuYDllv4uErmWKj6b5GSypvHu378fvbNziXyPXEvlS926cOiQtVuRN7mehKVY+loqsaA7JSWFhDyeaj09PYu1zllAQEC5WKf7wIEDBAcHyzqB4q6Ux2vpmWd0vPqq2l77hz3H3S+ycGl9GvlcZt633ng3qmOVdv3932NkZKhR7l497AnNXoa1giuP11JF4l1nJxxV27dT1VrHIx/cTnjPLuxYvYHFmVMfbl+pjmv94Bznb9/sytCxIbww1MG474mnqlrlOpZrqRK5dcu42aJFixJZp1uuJWEpcj0JS8l+Ld2+fdsiA78lFnTv27ePYcOG5frevHnz6NatW5E/09bWttz8RypPbRVlW3m6loY8ls74cXoy9HZ89n0AEABAdJw/W9teYtHne+j5WOtSb9eGFQlAEACRoTuwte2Q/wkVVHm6liqSusHtYL322tYmnXFv+mNra0vzUC2QOXIonaTUC4C32fm/rw0k8rtjbDmiAvIm9WLpNSjMqv+Wci1VAib/vra2tmavLfs1ci0Jy5HrSVhK1rVkqeupxILudu3acfTo0ZL6+HLv9ddfZ9myZXm+v3DhQtq1a1eKLRLi7tWqY0fvdtv5c0vbHO9dul6T3kPceWfrOiZ/ElGkz81Iy+DQtliC2jTE3rHoJVPXbqll3I54oHGRzxfibtTJluDxWI9t+DbrBEDTVl7G/YePOXMh4QRZQbdPzXOcveTN+St1eOY1rQr6zHcuY2vvX+LtFkIIIYRlWH2d7spq8uTJREVFERUVxaRJk6hTp47xdVRUFC1NF0QUohx5bZwDdrZpODvc5vmB69m+8jAPdNgOgMFgw5RPI9jw+74ifeaQ3tsI6RLAiD7bi9yea4nX2B0TCEDzBsfx9KlZwBlCWJaXl/nrCdO0KLxBkDdVHFUa7+ETtdh3VF2fNroMxo+KMR539ZrqIw8PN/DAsDYl3GIhhBBCWJIE3VZSvXp1PD098fT0pHr16tja2hpfe3p64uDgUPCHCFEGhfcP5fyp61y8oGfeknDadG/K7xtbM+Wpf43HTH3fB4OhcJ+XlprGr+vDAPh5dXsSzxZtEfANfx5Fb1CpQV3bxxfpXCEsoZ7J0tn9el6gWXttlNrG1oYgn9MAxJ6vz8FTfgA0rnuaR59pho3OvGrqBx/oZFkwIYQQopyRoLsMiouLIzAwkHnz5tGmTRvefvttPv30U4YOHWp2XGRkJL/++isABoOBefPm0blzZ1q3bs2oUaOIj5cAQ1hHzXoeVHOrZnxtY2vDtHnhBDS8DsD6Le6sXVu4zzq25wx30h0B0BtsWf7DkSK1Zc2qZON2ZDenIp0rhCV07Qo9e0KLFjBrbs5igk0bJQHq+s661kMCL+DpU5MuoVrxlsceM9C69EsiCCGEEOIuWW3JMFNr1qyx+GcuWQJTp8KNGxb/6DxVrw5vvQX+Fppqt3v3bpYuXYper2f58uX5Hrto0SKWL1/Ohx9+SM2aNfnmm28YOXIky5cvx96+6HNghbA0Owc7pk134fHH1eupU1Uwoitg0O7AjouA9p9q2R+OjHy98N+7dqsKcnQ6PeF9AovYaiHunr09rFiR9/tNm6RDtvdDmt8BYOyUINY/BLVqwbvvygi3EEIIUR6ViaC7JMyaBdHRpf+9H3xgw+efW+azhg8fTv369Qt17Ndff820adOMxdfefvttOnfuzMaNG4u8HroQJeXRR+Hdd+HwYdi0CVauVCOA+dkf397s9aqdLbiRdIPq7tUL/L5LcZfZd1IF2qF+R3GrHVTstgtRUpq1yLn+cUiYqmo+YID6WebqCrVrl3LDhBBCCGERFTboHj8e3nij9Ee6X3tNb7HP8/b2Lvgg4NatW1y4cIGXX34ZGxttxkBKSgqnTp2yWHuEuFu2tvDmm/DII+r1S8+eY96HF+naPzTPear7D5jvT01z4p/Fexj4XMHLfi2Zfwi4B4BunbRlw4QoS5q2yplyHtJBmwgeKAkaQgghRLlWYYPugQPVr9KWkQF791rmsxwdHY3bulxycNPT0zO/UxXamTNnDg0bNjQ7pkaNGpZpjBAW8tBDENz4AgeO1yH6tDf3DvSmpf8R5s5Jp+P9wTmO378/52csW6Zn4HMFf9fCn92M248/5ZXPkUJYj2+z+jg7G0hOVvd5j+qX8fbPGYgLIYQQonySQmrlhL29Pbdu3TK+vnXrFklJqviOi4sLHh4eJCYm0qBBAxo0aICXlxezZs3i5MmT1mqyELmysYHv51/Dt9ZZ4749sUH0frg+VxKumh179SqczTysbRs9NapcA+CvLaHcuZP/9xw7BlujVRDfwi+GkC4yXCjKJls7HU0C0o2vQxqdlgrlQgghRAUiQXc5ERwcTHR0NH///TcnT55k6tSpZqnkI0aMYPbs2axZs4ZTp04xZcoUdu/ejZ+fnxVbLUTuQroEcvysFz99spnmDY4DcD25Bkv+z3xY+8BmbZ3isJBbPHCfCkyu3axaYPXz77/Xtoc9Z6HqhkKUkKYBN43bIUHXrdgSIYQQQliaBN3lRIcOHRgxYgRTp05l0KBBNG7cmJCQEOP7Tz75JAMHDmTq1Kn069eP+Ph45s+fL+nlosyyc7Bj0Asd+e5bbYRv4c+uZsfs33bOuN3CZw/9B3kYX//3v3l/tl6vBd02NvDY4zJqKMq24DBtKkRoZJgVWyKEEEIIS6uwc7rLkwEDBjBgwADj63r16nH06FGzY3Q6HePHj2f8+PHGfaNGjTJu29ra8vLLL/Pyyy+XfIOFsKCW4U1o3uA4B083ZtOhFsTsPU2j0AYA7N+vBcstwtxoEQ5OTpCSAt98Ax3apfHUMzmXxNu4EU6fVts9eoCXTOcWZdyIEaojqUYNGDi44Mr8QgghhCg/ZKRbCGFVOhsdwwZqI9rff6HVIdgfrY3+NW/fgGrVYNo07dxnRtmyeO7mHJ/53RwtTX34cAs3WIgSULs27NoFa9ZAlSrWbo0QQgghLEmCbiGE1T3+XBNsdKoK/8Jl/ugz9Ogz9Bw85QtAw9pncPFwAWDCBHjlBbUWoMFgw5CX2vDa0HVELd/Pke0nGDVgA4v+aAKAS5XrPNgnPecXCiGEEEIIUUok6BZCWF1d/zp0C9sDwKmLPmzamMqpw3HcTFFptsGNzhuP1engg9nVeKrvBgDSM+z5cFEEXfq2oGk7P75cdg9pGQ4ADO+zB+eqMotGCCGEEEJYjwTdQogyYfjzWqX9b75zZv82LdBu0TTZ7FidjY4vfunE8wPXG0fITVVzusFrQ9fxwbcdSq7BQgghhBBCFIIMAQkhyoR+j7pTbSzcvAkLFsDK/wUZ32vR0jHH8bb2tsxbEs5bcZf5389HWP6XLQmXqvBAjys8M6ElrrUiSq/xQgghhBBC5EGCbiFEmVClCrz6Krz1lnodf9HF+F6LtrXzPK9mPQ+GvdaZYa+VdAuFEEIIIYQoOkkvF0KUGdOmqfW1a9c2GPc5O9ymUYsGVmyVEEIIIYQQxSdBtxCizNDpYMgQiD6czthH11PPI553XtyOrb2ttZsmhBBCCCFEsUh6uRCizHF1t2fOz+HMAaCulVsjhBBCCCFE8clItxBCCCGEEEIIUUIk6BZCCCGEEEIIIUqIBN1CCCGEEEIIIUQJKRdzuvV6PQDJyclWbknBMjIyALh9+za2tlL8SRSfXEvCUuRaEpYi11IlkpICgYHatk5n0Y+Xa0lYklxPwlKyX0tZ8WdWPFpcOoPBYCj4MOu6fPkyp06dsnYzhBBCCCGEEEJUMr6+vnh4eBT7/HIRdKenp3Pt2jUcHR2xsZGMeCGEEEIIIYQQJUuv15OamkqNGjWwsyt+kni5CLqFEEIIIYQQQojySIaNhRBCCCGEEEKIEiJBtxBCCCGEEEIIUUIk6BZCCCGEEEIIIUqIBN0WkpqayqRJk2jdujWdO3fmm2++sXaTRDmyatUqAgMDzX6NHTsWgMOHD/Pwww8TEhLCQw89xMGDB63cWlEW3blzhwceeIBt27YZ9509e5YRI0YQGhrKfffdR1RUlNk5mzdv5oEHHiAkJIRhw4Zx9uzZ0m62KINyu5amT5+e4x61aNEi4/t//vkn3bp1IyQkhNGjR5OUlGSNposyIiEhgbFjx9K2bVu6dOnCjBkzSE1NBeS+JIomv2tJ7kuiqE6fPs2TTz5Jy5YtiYiI4Ouvvza+V9L3Jgm6LWTmzJkcPHiQ7777jmnTpjF37lxWrFhh7WaJciImJoauXbsSFRVl/DV9+nRu377NM888Q+vWrfn1119p2bIlzz77LLdv37Z2k0UZkpqayiuvvMLx48eN+wwGA6NHj6ZmzZosXbqUBx98kDFjxhAfHw9AfHw8o0ePZsCAAfzyyy+4u7vz/PPPI7U1K7fcriWA2NhYXn31VbN71EMPPQTA/v37mTx5MmPGjGHx4sVcv36diRMnWqP5ogwwGAyMHTuW5ORkfvjhBz7++GPWrl3L7Nmz5b4kiiS/awnkviSKRq/X88wzz+Dm5sayZct46623+Pzzz1m+fHnp3JsM4q7dunXLEBwcbNi6datx37x58wxDhgyxYqtEefLqq68aPvzwwxz7lyxZYoiMjDTo9XqDwWAw6PV6Q/fu3Q1Lly4t7SaKMur48eOGvn37Gvr06WMICAgw3oc2b95sCA0NNdy6dct47PDhww2ffPKJwWAwGGbPnm12j7p9+7ahZcuWZvcxUbnkdS0ZDAZDly5dDBs3bsz1vHHjxhkmTJhgfB0fH28IDAw0nDlzpsTbLMqemJgYQ0BAgCExMdG4b/ny5YbOnTvLfUkUSX7XksEg9yVRNAkJCYYXX3zRcOPGDeO+0aNHG6ZNm1Yq9yYZ6baA6Oho0tPTadmypXFfWFgY+/btQ6/XW7FloryIjY3F19c3x/59+/YRFhaGTqcDQKfT0apVK/bu3Vu6DRRl1vbt22nXrh2LFy82279v3z6aNm1KlSpVjPvCwsKM186+ffto3bq18T1nZ2eaNWsm11Yllte1dPPmTRISEnK9R0HOa8nLy4u6deuyb9++kmyuKKM8PT35+uuvqVmzptn+mzdvyn1JFEl+15Lcl0RR1apVi9mzZ1OtWjUMBgO7du1ix44dtG3btlTuTcVf4VsYJSYm4ubmhoODg3FfzZo1SU1N5erVq7i7u1uxdaKsMxgMnDx5kqioKL788ksyMjLo1asXY8eOJTExkUaNGpkd7+HhkSP1U1Rejz32WK77ExMTqVWrltk+Dw8PLly4UKj3ReWT17UUGxuLTqfjiy++YMOGDbi6uvLEE0/Qv39/AC5evCjXkjBycXGhS5cuxtd6vZ5FixbRvn17uS+JIsnvWpL7krgbkZGRxMfH07VrV3r27Ml//vOfEr83SdBtAcnJyWYBN2B8fefOHWs0SZQj8fHxxmto9uzZxMXFMX36dFJSUvK8tuS6EgUp6NqRa0sU1okTJ9DpdPj5+TFkyBB27NjBG2+8QbVq1ejevTspKSlyLYk8zZo1i8OHD/PLL7+wYMECuS+JYjO9lg4dOiT3JVFsn3zyCZcuXeLNN99kxoxub3B8AAAEg0lEQVQZpfLMJEG3BTg6Oub4S8967eTkZI0miXLE29ubbdu2UaNGDXQ6HUFBQej1esaNG0fbtm1zvbbkuhIFcXR05OrVq2b7TK+dvO5bLi4updVEUU7069ePrl274urqCkCTJk04deoUP/30E927d8/zWnJ2drZCa0VZMmvWLL777js+/vhjAgIC5L4kii37tdS4cWO5L4liCw4OBlTx0Ndee42HHnqI5ORks2MsfW+SOd0WULt2ba5cuUJ6erpxX2JiIk5OTvKDQhSKq6urcd42gL+/P6mpqXh6enLp0iWzYy9dupQjxUWI7GrXrp3vtZPX+56enqXWRlE+6HQ644NtFj8/PxISEgC5lkTu3nnnHb799ltmzZpFz549AbkvieLJ7VqS+5IoqkuXLrF69WqzfY0aNSItLa3A521LXE8SdFtAUFAQdnZ2ZpPpd+3aRXBwMDY28lcs8rdx40batWtn1sN25MgRXF1dCQsLY8+ePcYlCQwGA7t37yYkJMRazRXlREhICIcOHSIlJcW4b9euXcZrJyQkhF27dhnfS05O5vDhw3JtiRzmzJnDiBEjzPZFR0fj5+cH5LyWzp8/z/nz5+VaqsTmzp3Lzz//zEcffcT9999v3C/3JVFUeV1Lcl8SRRUXF8eYMWOMHTMABw8exN3dnbCwsBK/N0lEaAHOzs7069ePN998k/3797N69Wq++eYbhg0bZu2miXKgZcuWODo6MmXKFE6cOMH69euZOXMmTz31FL169eL69eu8++67xMTE8O6775KcnEzv3r2t3WxRxrVt2xYvLy8mTpzI8ePH+eqrr9i/fz8DBw4E4KGHHmL37t189dVXHD9+nIkTJ1KvXj3atWtn5ZaLsqZr167s2LGD+fPnc+bMGX788Ud+++03Ro4cCcDgwYP5/fffWbJkCdHR0YwfP56IiAh8fHys3HJhDbGxsXz22Wc8/fTThIWFkZiYaPwl9yVRFPldS3JfEkUVHBxMs2bNmDRpEjExMaxfv55Zs2YxatSo0rk33eWSZyLT7du3DePHjzeEhoYaOnfubPj222+t3SRRjhw7dswwYsQIQ2hoqKFTp06GTz/91Lg29759+wz9+vUzBAcHGwYOHGg4dOiQlVsryqrsayufOnXK8PjjjxuaN29uuP/++w2bNm0yO37dunWGHj16GFq0aGEYPny4rF8qjLJfS6tWrTL06dPHEBwcbOjVq5fhn3/+MTt+6dKlhvDwcENoaKhh9OjRhqSkpNJusigjvvzyS0NAQECuvwwGuS+JwivoWpL7kiiqCxcuGEaPHm1o1aqVoVOnTobPP//c+Lxd0vcmncGQmbcqhBBCCCGEEEIIi5L0ciGEEEIIIYQQooRI0C2EEEIIIYQQQpQQCbqFEEIIIYQQQogSIkG3EEIIIYQQQghRQiToFkIIIYQQQgghSogE3UIIIYQQQgghRAmRoFsIIYQQQgghhCghEnQLIYQQQgghhBAlRIJuIYQQQgghhBCihEjQLYQQQgghhBBClBAJuoUQQgghhBBCiBLy/2eGRVP29tcLAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAfFCAYAAACMBK9jAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgU197Hv7sbd3f3ECGB4BKsEKRYqZfSS0vvhVs36rdOW6grFXhbqtBCcQsQIBAsEJIQJ+6ejcvuvH+c7J6drGSTbEgC5/M8eTJyZubs7syZ83MBx3EcGAwGg8FgMBgMBoPBYOgc4VB3gMFgMBgMBoPBYDAYjJsVJnQzGAwGg8FgMBgMBoMxSDChm8FgMBgMBoPBYDAYjEGCCd0MBoPBYDAYDAaDwWAMEkzoZjAYDAaDwWAwGAwGY5BgQjeDwWAwGAwGg8FgMBiDBBO6GQwGg8FgMBgMBoPBGCSY0M1gMBgMBoPBYDAYDMYgwYRuBoPBYDAYDAaDwWAwBgkmdDMYDAaDcYty/vx5BAYG4vz580PdFQaDwWAwblr0hroDDAaDwWAMR3bu3ImXXnpJ7f4///wTERERN65DI4C2tja89dZbSE5ORllZGaRSKdzd3XHHHXfgvvvug76+Pq+9WCzGxo0bcfToUbS1tSEsLAwvvvgiQkJC1F6jsLAQCxcuREdHB/766y+EhYUN9sdiMBgMBmNAMKGbwWAwGAwNPPHEE3Bzc1Pa7uHhMQS9Gd60tbUhJycH06dPh6urK4RCIa5cuYINGzYgOTkZH330kbytVCrFo48+iszMTDz88MOwtrbGb7/9hpUrV2Lnzp3w8vJSeY333nsPenp66OjouEGfisFgMBiMgcGEbgaDwWAwNDB9+nRmTdUSKysrbN++nbft3nvvhbm5OX755Re8+OKLsLe3BwAcOnQIV65cwWeffYaYmBgAwPz58zFv3jx88cUXPAFdxunTpxEfH49HHnkE33zzzeB/IAaDwWAwdACL6WYwGAwGYwB8/vnnCAoKQkJCAm/7a6+9htDQUGRkZAAAOjo68Nlnn2H58uUYO3YsIiIicN999+HcuXO844qLixEYGIgff/wRv/76K2bPno3Ro0dj9erVKCsrA8dx+OqrrzB9+nSEh4dj7dq1qK+v551j1qxZ+Pe//434+HgsWbIEYWFhWLBgAY4cOaLVZ7p69SoefvhhjB07FqNHj8YDDzyAxMTEfn9Hrq6uAIg7uYzDhw/Dzs4Oc+fOlW+zsbHB/PnzcezYMSVLdmdnJ9599108+OCDzMuAwWAwGCMKJnQzGAwGg6GBpqYm1NbW8v7q6urk+9euXYvg4GC88soraGpqAkAsstu3b8e6desQFBQkP8+OHTswfvx4PPfcc3jsscdQW1uLRx55BOnp6UrX3bt3r9zd+l//+hcuXLiAp556Cp9++ilOnz6NNWvW4K677sKJEyfwwQcfKB2fn5+Pp59+GtOnT8ezzz4LkUiEJ598EmfOnNH4eRMSEnD//fejubkZjz32GJ5++mmIxWKsWrUKycnJWn1nHR0dqK2tRVlZGY4ePYotW7bA1dUVnp6e8jbp6ekYNWoUhEL+VCQsLAytra3Iy8vjbf/pp58gFouxbt06rfrAYDAYDMZwgbmXMxgMBoOhgYceekhpm4GBAVJSUgAA+vr6+OCDD7B8+XK8//77eOGFF/DKK68gNDQUjz76qPwYS0tLHD9+HAYGBvJtd911F+bPn49t27bhvffe412joqICR44cgbm5OQASA71582a0tbXh77//hp4eeYXX1dVh7969ePPNN3nnzs/PxxdffCG3JK9YsQIxMTHYtGkTpkyZovKzchyHN954AxMmTMAPP/wAgUAAALjnnnuwcOFCfPrpp9iyZUuv39nRo0fxzDPPyNdDQ0PlsdgyqqqqEBUVpXSsg4MDAKCyshKBgYHytl9//TXWr18PMzOzXq/PYDAYDMZwggndDAaDwWBo4PXXX4e3tzdvW0/rbEBAAJ544gl89NFHyMzMRF1dHbZs2cITMkUiEUQiEQAiQIvFYkilUoSGhiItLU3pujExMXKBGwDCw8MBAIsXL+adNzw8HPv27UNFRQXc3d3l2x0cHHDbbbfJ183MzLB06VJ8//33qKqqksdWK5Keno78/HysXbuWZ80HgEmTJmH37t2QSqVKn78nEyZMwNatWyEWi5GQkIDMzEy0trby2rS1tfGUBDJk29rb2+XbNm3aBHd3d9x5550ar8tgMBgMxnCECd0MBoPBYGggPDxcq0RqDz/8MPbv34/k5GQ888wz8PPzU2qza9cubNmyBXl5eejs7JRvV5Ud3dnZmbcuE8DVbW9oaOAJ3Z6ennJLtQxZRvCSkhKVQnd+fj4AYP369eo+JhobG2Fpaal2PwDY2dnBzs4OAFEefPvtt/jXv/6FI0eOyK9rZGSkMgO5bJuhoSEAICkpCbt378b//d//9SrsMxgMBoMxHGFCN4PBYDAYOqCoqAgFBQUAgKysLKX9u3fvxosvvog5c+bg4Ycfhq2tLUQiETZv3oyioiKl9jKreE/UCZ4cxw2g9/xzvPDCCwgODlbZxsTEpM/nnTdvHj755BMcO3YM99xzDwDA3t4eVVVVSm0rKysBUDfzjRs3IioqCm5ubiguLgYAuRW+qqoKpaWlcHFx6XOfGAwGg8G4UTChm8FgMBiMASKVSvHiiy/CzMwMq1atwrfffot58+bxMnMfPnwY7u7u+PLLL3kW6M8//3xQ+lRQUACO43jXklmyZdnEeyKzlJuZmWHy5Mk664vMVbyxsVG+LSgoCImJiUru6snJyTA2Npa79JeVlaGkpASzZ89WOu/atWthbm6OS5cu6ayvDAaDwWDoGiZ0MxgMBoMxQLZu3YorV67gm2++wYwZM3D+/Hm88cYbiIqKgo2NDQBquVYUhK9evYqkpKRBsdRWVlbi6NGjcsG/qakJ//zzD4KDg1W6lgMk4ZmHhwe2bNmCRYsWwdTUlLe/trZW/nlUUVtbC2trayW39h07dsjPLyMmJgaHDx/GkSNH5HW6a2trcejQIcycOVMe2/3WW2+hra2Nd75z585h27ZtWL9+PXx8fLT5OhgMBoPBGDKY0M1gMBgMhgZOnTqF3Nxcpe1jxoyBu7s7rl+/Lq+/PWvWLADA+++/j6VLl+LNN9/EZ599BgCYMWMGjhw5gv/+97+YMWMGiouL8ccff8DPzw8tLS0677eXlxdeeeUVpKSkwNbWFn///TdqamqwYcMGtccIhUK88847WLNmDRYtWoTly5fD0dERFRUVOH/+PMzMzPDtt9+qPX7Pnj34448/MGfOHLi7u6O5uRnx8fE4c+YMZs6ciUmTJsnbzps3DxEREXjppZeQk5MDa2tr/P7775BIJHj88cfl7aZOnap0HVm973HjxmkVb89gMBgMxlDChG4Gg8FgMDSgzv17w4YNcHFxwfr162FtbY2XX35Zvs/LywvPPPMM3n33XRw4cAALFizA8uXLUV1djT///BPx8fHw8/PDxo0bcejQIVy4cEHn/fby8sJrr72GDz/8EHl5eXBzc8Mnn3yCadOmaTxuwoQJ+PPPP/H111/jl19+QUtLC+zt7REeHo67775b47Fjx47FlStXsH//flRXV0NPTw/e3t546aWX8MADD/DaikQifPfdd/jwww+xbds2tLe3IywsDBs2bGDWawaDwWDcVAg4XWReYTAYDAaDMWyYNWsW/P39sXnz5qHuCoPBYDAYtzys9gaDwWAwGAwGg8FgMBiDBBO6GQwGg8FgMBgMBoPBGCSY0M1gMBgMBoPBYDAYDMYgwWK6GQwGg8FgMBgMBoPBGCSYpZvBYDAYDAaDwWAwGIxBYkSXDOvq6kJDQwMMDQ0hFDL9AYPBYDAYDAaDwWAwBoZUKkV7ezssLS2hpzdwkXlEC90NDQ3Iz88f6m4wGAwGg8FgMBgMBuMmw8vLC7a2tgM+z4gWug0NDQGQL8PY2HiIe6MeiUSCrKwsBAQEQCQSDXV3GCMUdh8xdAG7jxi6gN1HtwitrcCUKWT5zBlAx3Mtdh8xdAG7jxi6oOd91Nraivz8fLm8OVBGtNAtcyk3NjaGiYnJEPdGPRKJBABgYmLCBgNGv2H3EUMXsPuIoQvYfXSLwHFAZiZZNjICdDzXYvcRQxew+4ihC9TdR7oKYWaB0AwGg8FgMBgMBoPBYAwSTOhmMBgMBoPBYDAYDAZjkGBCN4PB0DltbcAPPwAffgi0tAx1bxgMBoPBYDAYjKFjRMd0MxiM4YVM2N6wASgt7d7IcXhhvWBI+8VgMBgMBoPBYAwVzNLNYDDQIm7B/p8voiSnrN/n6OoCJk0CHn9cQeAGcPKfRB30kMFgMBgMBoPBGJkwoZvBuIVpbWzFpy+dhK9nIxatGoeocUJ0tHb061yZ6V1ISqLrImEXACAxwwOclNNBbxkMBoPBYDAYjJEHE7oZjFuUyyfS4e9Vj6ffj0Z5vSMAoLzeEcU55f06X31Bmnz5v3efw8yIqwCAinoHlOb275wMBoPBYDAYDMZIhwndDMYtSIu4Bfc8YISSWmelfeK61n6ds6G2Xb5sb9OGseFi+XriqaJ+nZPBYDAYDAaDwRjpMKGbwbgFeW3dBWSXegMAInwysHz6Ofm+hpp+Ct31nfJlS0sBxo4zlK9fvshSmDMYDAaDwWAwbk2Y0M1g3GIknKjCJ79NBwAY6rfh9z8MMGairXy/uFPZ+q0N4oYu+bKFpRBjp7rK1xOvmvSztwwGYyQhFgNFzLGFwWAwGAweTOhmMG4h2tqA1evswXHk0X/r8QQEjfOBhZu/vI2407Ff526ol8qXLa304B3qASvTegAkmZqMg79cxOHfLvXrGgwGY/hSXw/4+QEeHsC+fUPdGwaDwRieHDwI/PEHwLEcs7cUTOi+hXnxxRexbt06+frKlSvx7rvv3vB+nD9/HoGBgRCLxb03ZgyI774DMjLI8rhxUjyzYRoAwNKStunvz9DQQJctbQwhEAowJiAXAFBW54Sy3Ar8/W0CFqwch5j7o3Bsx+X+XYjBYAxL4uKAqiqyvPFNZu5mMBgjn8uXgeXLiZCsC86eBRYsAO69F/jrL92ckzEyYEL3MOTFF19EYGAgAgMDERoaittuuw1ffvklurq6ej94AHzxxRd48skntWrLBOWRyaFDdPnrr4XQM9ADAFhY0O2KwnNfaBAL5MuW1kYAgLFhCsnUThdgw4cG8vXff6rp34UYDMawJI0WMMCpS+7Iv1Y8dJ1hMBgMHfDcc8CuXcCqVUBt7cDP99tvdJl5BN1aMKF7mDJt2jTEx8fj8OHD+Ne//oUvv/wSP/74o1K7jo7+1VRWhZWVFczMzHR2PsbwoqsLiI8ny46OwNixdJ+FOfVxEtf2L+mZuFFEz2fTLXSPo0L2Z5/rITGPXvRQQiir381g3ERcu8Zf/+27nKHpCIPBYOgAqRS41B0N19EB7N49sPNxHLBnD12XzckYtwZM6B6mGBgYwN7eHq6urrjvvvswefJkHD9+XO4S/s0332Dq1KmIiYkBAJSVleHJJ59EVFQUxo8fj7Vr16K4mFoZJBIJNmzYgKioKEyYMAEffvghuB7BJD3dyzs6OrBx40ZER0fLLe47duxAcXExHnzwQQDAuHHjEBgYiBdffBEAIJVKsXnzZsyaNQvh4eFYvHgxDimaVwGcPHkS8+bNQ3h4OFauXImSkpJB+Q4ZfK7EZaKxkSxHT26EgBqmYSnIkC+L8y/26/wNjfr0fDZEeTM22ke+LfbyGF77klpnpF6u69e1GAzG8CMtuZG3vm2nO1OsMRiMQYfjgI4OQe8N+0hBAeTzJgDYsWNg57t6lZ9oMjcXKCsb2DkZIwe9oe7AkJD+MZDxce/tbMYA0Xv4204uBmq1iEUNegYIfqZ//VOBoaEh6uvrAQAJCQkwMzPD1q1bAQCdnZ14+OGHERERgV9//RV6enr4+uuv8cgjj2DPnj0wMDDAli1bsGvXLrz33nvw9fXFli1bcPToUUycOFHtNV944QUkJSXh1VdfRVBQEIqLi1FXVwdnZ2d88cUXePzxx3Ho0CGYmZnByIhYNjdv3ow9e/bgzTffhJeXFy5evIjnn38eNjY2GD9+PMrKyvDYY4/h/vvvx1133YXU1FR88MEHOvueGOo5ebgMQCAAYMboKwCmy/dZWBvLlxvEIvSHhkZaIszSzhwA4BvqBEtL9S7rh07YICyqX5djMBjDCEmnBBmZ/ClFRrEvLselY+ys4CHqFYPBuNmRSICYGCFOn47A779zWL5cd+dOTuavx8YCdXWAtXX/zrdnj/K2M2eAFSv6dz7GyOLWFLo7xUCrFtbVNncV26q0O7ZTN7HOHMchISEB8fHxeOCBB1BXVwcTExO88847MDAgrru7d++GVCrFu+++C0G3+XLDhg0YN24cLly4gKlTp+Knn37Co48+irlz5wIA3nzzTcRr8GvJy8vDwYMHsXXrVkyePBkA4O5Ovw/L7sxbtra2sOgOCO7o6MDmzZuxdetWREZGyo9JTEzEn3/+ifHjx+P333+Hh4eH3DLu4+ODrKwsfP/99zr5vhjqiYunZbuiY1x5+yysTeXL4iZ99IcGjgj0+vpSGJkSJYxAAIwZA5w4Qdv9a+lVbP1nNACSwfP55/t1OQaDMYzIu1aMtk5PAKQUYXsnGQN++aGSCd0MBmPQuHQJOHZMAECADz4YXKG7s5MIzqtW9e98qtzT4+OZ0H2rcGsK3foWgLFr7+2M7FVv0+ZYfYve22ggLi4OkZGR6OzsBMdxWLRoER5//HG89dZbCAgIkAvcAJCRkYHCwkKMGcN3321vb0dhYSEaGxtRVVWF0aNHy/fp6ekhNDRUycVcRnp6OkQiEcaNG6d1nwsKCtDa2orVq1fztnd2diI4mEy6rl+/jvDwcN7+iIgIra/B6B+STglOXyVCsb1FNYLH+fD2W9jSWH5xkwH6g7iZWMstLIQQKASujI2U4MQJYj03NmjBxq88cDKZuFXFxxPXLXPzfl2SwWAME9IulwMgQveaZefx3c6J6OgyxO8Hg7Gxo0uetJHBYDB0SVwcXb5wQYCyMsDZWTfn7il0A8TFvKfQzXGkZKImC3hxMcmEDgABAUB2NjmOxXXfOtyab8HgAbh+93Q3HyQmTJiAN954A/r6+nBwcICeHv2pjI2NeW1bWloQEhKCTZs2KZ3HxsamX9eXuYv3hZYWkoBr8+bNcHTk13pWVBIwbjxJp7MgbiWKj+gx2RAI7Xj7jUyNoC/qQKfEAA1Nff/tAepCrlh+DADGTaDu6g8uToWty3jMnw989RXRGh+P7cSSZf2zrjMYjOHBteRW+fKUqfooq7iMv09OQkW9Aw79fgGLVo0fwt7xObMvGV2dUkQvixjqrjAYjAFy8iR/fd8+YM0a3Zz76lXy38gIsLUFSkqAI0fIfEdxrnPnncDffwMffAC88ILqc+3dS5fvv58I76mpwJUrzPhwq8ASqQ1TjI2N4enpCRcXF57ArYqQkBAUFBTA1tYWnp6evD9zc3OYm5vD3t4eV2WjB4Curi5c65lqVoGAgABIpVJcvKg6qZa+PhGSJBKJfJuvry8MDAxQWlqq1A/nbrWjr68vUlJSeOdS7BdjcDh5uEK+PGO6csZ7gVAACxOSLUTcbKK0vzc4Tr3QvXQpqXE5ezbw5pdk4h0ziwZ5H9yW0OfrMRiM4UVaBn1PjYq0w8qVdHrx2lsWkHRKVB12w7l4NA1Tbw/HjOUR2P7V2aHuDoPBGABdXcDp0/xtquKm+0NzM5DTXYAhNJS6gMtczGVUVRGBGwA2biR9UoXiMYsXA1OnkmWpFDh/Xjd9ZgxvmNB9E3D77bfD2toaa9euxaVLl1BUVITz58/jnXfeQXl5OQDgwQcfxPfff4/Y2Fhcv34db775psYa225ubli2bBlefvllxMbGys954MABAICrqysEAgHi4uJQW1uL5uZmmJmZYfXq1diwYQN27dqFwsJCXLt2Ddu2bcOuXbsAAPfccw/y8/PxwQcfIDc3F3v37pXvYwwecfHUO2JGjOrwCAuTZgCAuKXvQndrU4f8RWNp2sTbZ2BAXkixsaRUGQDMnK0HA712AMDBeB+W4ZjBGOGkXbcFAAgFEgREeuD2h8Yh0jcdAJCUG4T/+yp3KLsn5/iBUvnys6+7o0XcvxKJDAZj6LlyBWjiTzkQG0sEZoDsq+tnkZRr14hBAQDCw/lx14pZzJOS6HJ1Nd/dXYZYDBw/Tpbd3YHRo6nQDTAX81sFJnTfBBgbG+OXX36Bi4sLHnvsMSxYsACvvPIK2tvb5XW3V69ejcWLF2P9+vW45557YGpqittuu03jed944w3MmzcPb7zxBubPn4/XXnsNra3EhdDR0RGPP/44PvroI0yePBlvv/02AOCpp57CunXrsHnzZixYsACPPPII4uLi4ObmBgBwcXHBF198gWPHjmHJkiX4448/8PTTTw/it8NQjOe2s6jGqAm+KttZmpLJZ0NL3/MRiKvpW82CU+9BIcPU0hTRo1MBAIVVbojdrkVFAAaDMSyRdkmQXkjiuf1cCmFkagShSIhPNrbL27zyvj+v9M5QkZ5Fw2eKa93x0csXhrA3DAZjICgKuObmRPPf1gYcPQqkpAB+foC9PaDGaVMjivHc4eHA5Mk0Vjw2lli8ASL4K6KqrNj//kfqfAPEyi0QMKH7loQbwTQ3N3OXLl3impubh7orGunq6uIuXbrEdXV1DXVXGCOY/t5Hl0+kc0Rfy3F3RJ9V22562BV5u7bmtj5dI+PSdfmxK2NOa3XMV6/HyY8xNWzkTu1O6tM1Gf2DjUcMXaB4H11PLpA/y0unJvDaLVvGyfe9/HLfr5N4PI27d048t++nCzrp94SgFHl/AI4zMWziirNLdXLum5KmJvplNTXp/PRsPGIMhAUL6O351FOF8uVlyzjOx4fuW7++7+d+/HF6/PHjZNu999Jtly4pbwM4zs6O4zo76XlOn+Y4gYDsMzLiuKwssl0q5Tg3t+45kCnHdXQM7LtgDJye45Gu5Uxm6WYwbnJ+3tosX46eqhzPLcPCjO4T1/St5F1DDU2iZGmhXezmIy9OwoIJRP3c3G6G+Xf5In6vilShDAZjWJOWWCZfDglq5e378EOgOwUIPvoIKCrq27mffsEUv8dOwX3/CUB7S3vvB2iA44D0In7lhpZ2U7zy5HXetvOHU+FmW4Zl085BKpEO6JoMBmNw6OqiFmIHBw4rVlTBxIT4g+/aRSqkyKioUHGCXlBMNyQrujNxIt2W0J2Opqelu7oaOHWKLLe0AKtXUzf1d94B/P3JskAATJlClpubgcTEvveRMbIYVKG7vr4ezz77LMaMGYOoqCi8/PLLaG5u1njMypUrERgYyPt7/fXXB7ObDMZNS1YW8OVvpJScsUEr7vhXoNq2lm4B8uWGVg11L1TQUNtGz2OhXXy2gbEB/j4WhpjxVPBeeLcnKgur+nRtBoMxtFxLV0iiFsqvVOHnBzz+OFlubwcOHtT+vBwHXM0glRbErZZIOJQ+oH6WldFEkRPGdcLalITF/HRgKlLOZMnbvft6JUpqnfFP/ESc2XtF5bkYDMbQkpREYqUBYPp0DkZGHObOVd22O72RRlpagG+/JYI8x1H3cldXkrkcACZNou3PnSPCcmYmWRcqSFQyF/PXXiOlwQAisD/1FP+a0dF0+T//IX1g3LwMqtD93HPPIScnB1u3bsW3336LS5cuaSVA33XXXYiPj5f/vaAu/z6DwdDIc88BXV0CAMDz643g4uuktq2FnZV8WdzUt2qC4npqJbewEGh9nJGpEXYdD8NtY4mKV9xqiR0/pvXp2gwGY2hJKx8rXx41ebTS/rlTiuXLBYnntD5vTQ3Q0EQTO8YerO9fB7tJV5DZJ0/Vxyv/pfkntu8jeUfa24HjKVPk28+c7JvXD4PBuDEolgqbPp38v/12qvQXCok1GdDO0v3ll8DatcC0aSQGu76ebJdZuQGSAE1WUffcORI3LrNir1hB9+3cSc718cdk3dAQ2LoVENEKqgCABx6glu+rV0mpM047uwVjBDJoQvf169dx+vRpvPPOOxg9ejSioqLw6quvYv/+/ajo5e43MjKCvb29/E+WDIzBYGhPbCytC+niArywXrMwbKGQP01DYnuVNNTTGhmWVtoL3QARvDd9SgtU7vjHUkNrQou4BSf+voLmBs2eMwwGY/CRVZ8UCoHAUOX3tbsrdQsvLFBTT0cFsnI9MmLj7frVPxkZGXQ5OBi4/+mp8kn57v1EuI+PB5pbDeXt4s+ZDuiaDAZjcFBMohYdTSTVJUs4eHiQsejTTwGnbjuDNkK3Yhby7tzAAPhCt4EBMLZbx3j9OqnZLWPqVGDBArJcWUms5jLeew8IClK+prk5cYU37R5mfvsN+Oyz3vvKGJn0zZzVB65cuQILCwuEhYXJt02ePBlCoRDJyckaM2fv3bsXe/bsgb29PWbOnIl169bB2NhYbXuJRMKrFz3ckPVtOPeRMfzR9j5qbWxFwpF0PPWKPwArAMC770phZMRB06Hm5gLI9HB1dRKNbXtSX0cn0uaWoj7f66Mm+CDANQ9ZJd44lRKOksIWOLkaqm1/7/wU7Dk7AQsmXMCeM2PVtmMow8Yjhi6Q3T+dnRKkpwsBCODjw8HAQKo0drj4UGG5sNRM63svMwMAqGnoYmYwastrYWnfu2JOFWlpdIzz95fA3h4YP16I8+cFSEkBcnIk2L+ftgGAMykB6OzohFB0i6bAkUjkv4BEIkGfXgxanZ6NR4y+09wMnD5Nxh07Ow6BgRKkpgLm5hJcvQrU1gKensCWLUKUlQlQWcmhs1PKcwHvSV0dOV9PQkOlkEio+XnCBAHOnCEn+v57Tn5MeLgENjYC7NxJL2JkxOGLLzg89JD6+VdQELGC33UXedKee47DwoVS+Piobs8YPHqOR7oelwZN6K6uroaNjQ3/Ynp6sLS0RFWV+pjNRYsWwcXFBQ4ODsjMzMSmTZuQl5eHL7/8Uu0xWVlZavcNJ1JSUoa6C4ybAHX3UVdnFza+2IJ9ZyehvXOcfHtIUB1CQnJ5WlxVtNQZACBKsowrl+Dhof3wUFJCC2W2tFUjqbeLqWDWLA5Z27zBcUJ8+U0VVqyoVtmutqQBe87OAgAcOD8ep47EwcLBXGVbhnrYeMTQBUeOZKKlhYwbrq4NSEq6rrKdtakP6pqtUVhhrfX4cDW2DMAi+bqUE2H7D6cwbr57v/qaehoAiJJO0nUFSUkCREU54fx5VwDA5s0l2L3bHgBV8tc3W2H/9kNwD7bv1zVHOsLWVkR2LycnJ0OqwQAyENh4xOgLmzc7o6HBBQAwblwtUlPzAfDvo7o6wNjYD4AluroEOHUqBVZW6oWokpJAAMqeOvr66UhKonlrHB2tAJDSq8XFikJ6MtzdAWvrUNTV6cPTsw0ffHAdfn5tvKRsqvDxAe6+2x1//ukAiUSA334rxKJFtZoPYgwagzUe9Vno3rRpE77//nuNbQ4cONDvDt19993y5cDAQNjb2+Ohhx5CYWEhPDw8VB4TEBAAExMTlfuGAxKJBCkpKQgLC4OoZ0AHg6Elvd1H//xwAX+fnMnbZm1ahx8+LcaYMRG9nj/1xFn5sjnXioiIaVr37ReOFuANCPJERESYhtaqeeRJ4NttZPncOQ+8846bynZf/H2at16UJsL9cyP6fL1bFTYeMXSB7D7qqqKT0UmRLYiIiFDZ3sMhB3V51iipcUZYiDNE+r3fex9VtiltS022xpqXVF+jN3JKKgEAdhbVmDGTiJKPPgp89RXZf2CnEXJzlYXK0uvGuP3e/l1zxKOQ/DY8PJz6weoINh4x+kpxMfDLL8SarKfH4aOPrODrG6byPvLzE8izjDs4hGHUKPXn7ewk5zQ357B2LYdNmwQYPx5YvjyIZyF3cADWr+cf6+vLYepU4od+5gyQmCjF7bfrw8xMhU+5Gu67D/jzT7Lc1uaJiAjVMg9j8Og5HrW0tOjUsNtnoXv16tVYtmyZxjbu7u6ws7NDbS1fS9PV1YWGhgbY22uvMR49miRlKSgoUCt0i0SiETFYj5R+MoY36u6jQwc65csrZiRgyWIp5t4RAAcP7QRgaxuadbixkevTvSpuphNVGzvTft3nY8aQTMc5OcCpUwLU1Ijg4KDc7q/YcN764cNCPPgse676ChuPGLog9TL1con0y4dI5KKynYdzA67mAZ0SA1SXlGtM6ijjeiFxIxcIpBAKpJBI9XAswa1f921DVQNKa50BAEEeJRCJiMt7WBjg41SM3HI3pOXSAWf+hEs4eD4KAJCQIMK6W/VZUfjcIpFIOROUzi7DxiOGdrz6KtDaXZnwv/8VIDhYJHfd7nkfOTvT46qrRRpvX1niNGtrAT74QIDnniNZy4VC/kHu7uRPsfxhZKRAft3gYPLXVxSPuX5dOFiPGkMLZPeRrsekPgcp2djYwNfXV+OfgYEBIiMjIRaLkZqaKj/23LlzkEqlRFuqJend6Ub7IqgzGLcanJTDoTN+AAAj/Vb8vCcCDzw9BQ4e2j83FlZU6G5o6FsytAa9CfJlSzffPh0rQyAA7ryTLEulwK6/O5XalJQAZy7yw1YOnwuCpJPFAzIYQ0HKNSP58ugJ6gVpD1dav7swW3XoSE+yi4nbt7tdKSYEkaoGGcW+KMkp7XM/My7TGXKwb4N8WSAAlszKUWr/yqsGMDYg9Xvir3j2+XoMBkP3XLgA/PILWba2BnoriOToSJd7S6ZWRyoIwsqK/Le3h9oYcMXSYQCgxsGnT3h5AXrdptAREjXL6CODlhnE19cX06ZNw2uvvYbk5GQkJibi7bffxsKFC+HY/RRUVFQgJiYGyd3F8AoLC/HVV18hNTUVxcXFOHbsGNavX49x48YhSFXaPwaDAQC4di4HxTXEwhQdcQ3G5n2Pu7OwppNncWPfhoYGOoeFpVX/h5U7l1NBe8f3yjE1O3fSZaGQCNo1jbZIPDGw+r0MBqN/JOcQQdtIvxV+o9W7Q3q400REhdd7L49QW1aHumZrAICfWyXmTKOec8f+UR03romM5Hr5cnCQlLdv8R38xGx2FtWYND8UE4JJAd78SncUZ5f1+ZoMBkO3KFYQfvNNoEfqKCUUhW5Ntbrb2ki5QIAK3ZqYOJG/Hhmpul1f0NcHvL3JcnY2Kx12MzKo6Tg3bdoEHx8frFq1Co8++ijGjBmDt956S76/s7MTeXl5aO32E9HX10dCQgIefvhhzJ8/Hx988AHmzp2LbxXz7t/kBAYGavz74osvhrqLjGHIoV0l8uX5c/pXRsvCmuZF6KvQLSsxJhAAA6nwFzFGD75OBQCAY1fG4LaxiTizL1m+f8cO2vbxlbSe98F/tLOcMRgM3dHe0o7sUmIFDvXKhUhffcSahxf1pCnM7+j13Dkp1Jrt79WEOQup63fslag+9zU9jVZYCArlxyVPWRgKa9M6+frcCZkQioSYOk1fvu3MJRWxLgwGY1C4ehV48EHg4EG6rbCQ1ub29wf+85/ez6OtpbuOPv6wtu79vINh6QaAgADyv6UFKO27Qw9jmDNo2csBwMrKCh999JHa/W5ubsjMzJSvOzs74xeZ38gtSnx8vHz5wIED+Pzzz3Ho0CH5NsWEcRzHQSKRQE9vUH9Gxgjg4DFaZDvmjv5l9rW0pfdWQ6OBhpbKyCzd5ubq3bG0QSAU4InV+XjyPTKRj708FrG3A7eNTcS6/0gRHx8FQICgIODZl+3w2U/kuENxDvhf/y/LYDD6QVF6HTiOPPDhgZoz7Xr40AoDhUW9h69kX6uXL/v5SjFh3iiYmpK8Xrv2GKOwEFCT5kUl6dnU+yc40pm3T99QHwumpOHXI1MAAPPnk+1TF4UC3YVT4s+KcPe92l+PwWD0nyefJAL2rl1E+DQ3B/bupftXriSW4d7QVuiWxXMD2lm6IyNJze6ODuKG7uzc+zHaEBAA7N9PlrOyAFdX3ZyXMTy4RQtPDl/s7e3lf+bm5hAIBPL13NxcjBkzBidPnsTy5csRFhaGxMREvPjii1i3bh3vPO+++y5WrlwpX5dKpdi8eTNmzZqF8PBwLF68mCfMM0YujWIOp1NIngRvx0IERHr36zwWtlRwFzf1UeiuJlK3pUlDLy175/G3p+P/PoyHT7fFGwCOJo7FsjXjwHFksn7nvEy4Bzgj1J9YuM9nBKOmZsCXZjAYfSAvk4aDhIdJNbQEPALprLSwIaTXc+dk03P7BRrDwIBMtAGgqQlYs6Zv7pfpecRSbWzQAo8g5WRvz71iBxuzWkT6pmPZ6ggAxIVU0K0fUNCHMxiMQYTjIC+x1dREBG8A2L2btlmyRLtz9Ufo1sbSbWhIXN2NjUkmc0Hf0uCoxd+fLrO47puPW85EumMHSbzQ2Nh7W11hbi7EQw9Z6cz95KOPPsL69evh7u4OCwuL3g8AsHnzZuzZswdvvvkmvLy8cPHiRTz//POwsbHB+PHjddMxxpBwIk6Azi7yKM+/3RICYf9Gf0MTQxjotaOjyxDiZqPeD1CgoZGonC0NKwBYam7cCwKhAKuen4r7nujEL5+extufeCKvgm/SuvNO8hljltghdRPAcQIcOQLcyyxRDMYNIyfbUL48Okrzu8jZ2w4iESCRAIUVdr2fO5dOT/xDbAEA779PrF0lJcCRI8DWLwuw+vHek5y1t7Qjt5x4AAW6FUIoUs4REzE9EJW1EghF1vIx1NISCA8nAkByMhEABhI+w2Aweqe2li8E//ILEbLj4si6pyepOqANJPs4Sc6qrXu5NpZuAHj7beCNN3Sb0F/mXg6QuG7GzcUtJ3Rv3AhkZNzoqwqwbZsTnntON2d74oknMGXKFK3bd3R0YPPmzdi6dSsiu7M9uLu7IzExEX/++ScTukc4ijFPMYsHJvBamohRJbZHQ7P2de872zvR2kHaW5gq19XtL/qG+vjX+ml44KlO/PzxabzzqRfyK90xJSQZoZPIG3f+fGDTJtL+0085hHnlIXSSj876wGAw1JNxncY5h03ULPyKRMRVsrCQ/PVGdoGVfNknlPhYWloC330HLFxItj+93gpzY8rg5q/ZtzPnahEkUlLdIdhHvUuMqtrhEaHNuHrVFFIpkJ9RjdCo3hUGDAaj/+T0KCZw7BiwdSvQ2e38snix9pZlkYi4f1dU6Na9XPH8ukRR6GaW7puPW07ofuEF4LXXbrSlm8PKleUAvHRyvjBtVXzdFBQUoLW1FatXr+Zt7+zsRHB/igkyhg0cB8iiBAwMgJkzB3Y+C9NWVIkBcat2HhQAIK5pBEBSiFqatQ+sAyrQN9THwy9Nw8qnOpB8Jg2hkwLklqipUwELC5LI7cIFAcKneOHOmWfx2Q9+cPJmiY8YjMGCk3K4VkAUXK42ZbB16T2o0cODCNw1NSQ229RUfducSmKNdnMSw9icjkcLFgCrFpzBTwemQNxqief+cw1/HKPXjtuZhHOn6/GflyJh5UCUkJcyaMjNqPC+mardTS4CmAEAKEzLY0I3gzHI9LTwSqXAK6/Q9cWL+3Y+R0cicFdWkjmTKoG9r4nUBgtXV8DIiGRTZ0L3zcctJ3SvWEH+biQSiRRJSfU6O5+xMb8clEAgANcjuK2ri2ZqbWkhtUY3b94sL9cmw8Cgb7G7jOFFenID8vPJxHLatIG7Plo4eQBlgLjVSu3LqScNNc2QC93myrW1dYWBsQGi5ozibzMAfvwReOwxDhUVAnCcENuPT4ZwzVn8HsuEbgZDRmcneZ51lXezuEiK+u6SXuGjGgFoI3RzAMigUpTbjKAw1VJ3XR1QU0s66h+srAD8ZEsI9gdUo1pshz3xEWhrboORqREq8qsw/55AtHUao6DwFL75ezoAIPY4NUdFLx3dl48Jdw+a+qaooFVDSwaDoQt6WroBks0bIN4u0dF9O59s2tvRQSzaqoTq/lq6dY1QSOK6U1KA3Fygq0t3YzZj6GGJ1G4CbGxsUFVVxduWnk7rFvv6+sLAwAClpaXw9PTk/TnrKuUiY9CpKa1F0vFidLTScjt/fXdFvrxotoYilFpi2e2d3tlJNK3a0FDbIl+2MO/S0HJwWLECyM3pwkcvxEFPRIT+5GwmcDMYMs6dI/VsQ0JIXLIuSE6lguzoqQEaWlI8jE7LlwtT1cd5KU66/fyU91s7WuH2aeQd19phglN7rgEA9v6WhrZOopT+62gwJJ0ScBwQG0uOMzUFJkzQqqty3L2okruoUHOyOAaDMXAUn3+HHq/y+fO1y1quiDa1uoeLpRugLuadnUBBgea2jJEFE7pvAiZOnIjU1FT8888/yM/Px+eff45sBf8cMzMzrF69Ghs2bMCuXbtQWFiIa9euYdu2bdglSwvJGNZIJVJMn9SIR15YgqcevCDfvmM/rSdxx/KBTwgV8/LJam/3hriWWn8sLYZmUmpipo9nPpgBX6ciAEBBhRM4aR9SGzMYNymclMNTj7ehqYm4Kx49qpvzJidTN5jwcO2OUSzxVZjXorad4qRbMZuvIvMXUvPPwb1Ek7B7HxWQqxvtkXCqHunpdKIdHU28Y/qCu4+VfLmoRLXJ6fKJdDz/YBzSL1zv28kZDIYSis9/z1xIfXUtBwAnJ7qsLq57uFi6Af6Yx5Kp3VwwofsmYNq0aVi3bh02btyIFStWoLm5GUuXLuW1eeqpp7Bu3Tps3rwZCxYswCOPPIK4uDi4ubkNTacZfaIgvQSZJSR+csueySjJEyPjUh5SC8joPDEoBe6BymVw+kp/hO6GOmp5txxYHrcB4+VCagU3t5uhplRz3WAG41bgyB+JOH+JViPIzNTNeVNS6LLWQrc3FYoLCyRq2+UkF8mX/XxUe8/MWT4KQgE5x6HTbmhuaEbsJX6+kz2HbRH7V6p8ffasvisF3f2pqa2oTNkdvqujC4tXWGLTthl49GEduREwGLcwMkHT3R146CGarExPD4iJ6fv5tCkbNpyEbpZM7eaFRQoMY5YvX47ly5fL1ydMmIBMNTOmJ554Ak888YTacwkEAqxatQqrVq3SeT8Zg8+1xDIApORNl0QfX36nD9OmywBIgqA7F+umSLWlIAsAGfEbSvIA/95rfjfU0zhuS0sdFavsJ56uLcBFspyfUQE7N9sh7Q+DMZRwUg5vvmPI2zYQobskpwz7fs9GRzuHsydCANjBwIBDQIB2z72HL9XKFZWoT/ubnVQA2Xjn55QL2ZikiLWjJSaNSsaZa+HIKPbFDx+cRFsnP9hzzx4gwJZa1OdMyFF5Lk1Y2lvC3FiMxlYLFFUo+50e3ZmJklpSdzw110NpP4PB0J7aWvIHkNASe3tg3Trgiy+ANWv65/qtjdA9HN3LASJ0d3aSKjWhoYAPK84yomFCN4MxyLSIW/DmExfg5y/EIy9N61cd7bRkvivm5s2Ak5m7fH3Fv9T4YPYRC/1SyCal4uo6yIR6TTTUU4uVhdXQDilentSSlZ/dgKg5Q9gZBmOIid1+GQnpY3nbMpNKALiqPkADUokUs2e0IrNkOm97iHsW9PUDtTqHRwCd/RaWqk9dnppNlGVCgQS+Yeq9sebPqsUZEs6N/31GE6SZmXahqVkPmZlAnh7Z7mBZhdBJKgLEtcDdvhJphRYornYEJ+V4Y/gve0Pky/Ut1mhtbIWxubGq0zAYjF64rhChIcvn8PnnwP/+R2pu94e+WLpFIs1VFW4Eiu7lycmkROLRoyS+PS8PMNG+oitjmMHcyxmMQWbDcxfw4U8z8Oir0/H37/1zeb6Wzhdm6+qA9CJfAMCEoFR4BPV9Eq0Knnt5fYf6hgqIO2jAlKW9jU760V+8fGiGlfxc7frPYNyMECs3fR4EAqKQyszpn0B4+USGPMRFkUWzS7U+h6W9JSyMGwAAheWqx4r2lnak5pOxLcg9DyYW6meYMUvpbLqhxQoAYGLYjPUv0HwOHV3E0j97XBaEov5Nedwd6wEAbZ3GqC6hXkWNjUDPtChl+fykpoyB0dxMSmFOmKA+CRbj5kExhllR+OyvwA30zdJtba19DfDBwt6ehuqdPk3zcFRWAhnq808yRgBM6GYMO1LOZOGH906juaF5qLuiEw4dt5Ivv/CqlTwreGNtI37ccBrXElTUx+hBWo56YfbO26sH2kU5llZ0SGio0y4TeQNHfaEsPYa27ruXn7l8uaBwCDvCYAwxp3ZfxZlrJNh6lEcOZoy+CgCobbJBdXHfw1EO/lMpX157xyn8/FE8fty0B698OrlP5/FwIOcpqnaCVKIcY516LhedEpLtbOwozVJWZHQgHCz5Qu688Sm4+y7lJIr9ieeW4e5MPY2Kcuj1du0CWntUESsrqO/3dRjK7NkDxMUBFy4AmzYNdW8YfeXIEeCff0i5Lm3orXJBf+iLpXuo47kBIvQHqImCKSm5sX1h6BYmdDOGFeIaMaLn2WPNK9Pw8r8vDXV3Boy4RozLuTS5T16+CJ9/DtSU1mH6uBI88vI0TJ9rg4aqBrXnkEqkSC8ksYI+jvmIntbO23/HKh29mQBYWNA4S3GD+kRHijQodH3IE6kF0qRH+aUsnnugSCVSvPxwHF5YFYe2Zi1ryDGGBUf218uX1z9ejmA/mhmRuJj3jYPH6fO0/m0f3PfkJIye4Qo9g76FlLg7kX61dxrhzddacPfdwCef0P2JZ6lQOzZSs+JPKBJiXgz/+otvl8I/yABBbvxM4nOW9h4qo7bPblRgL6I53vDLL8rCfWnRzaEsHi4oJpL67TdAot1riTEM2LULmDcPWLYMCAwEfvyRxCdrYjCEbjs7ar1WJXRLpXQeMxyEbkC90F1cfGP7wdAtTOhmDCvidqejrplksfj94ChIOkf2GzZ+fyakHD9h0DvvcJgzrQJJuUEAiOXpt6+vqj1HYUYpmtvNAAABHiV4atVl+b5x/snwCtFdBnoLK+qOKhZrZxlSFLoV3dOHAkcvRxgYkIlwfn3o0HbmJuCvb89hw5YZ2PjzDLzx3zND3Z1Bpb2lHWnnc26aUnNXUmhgYvRCLwQqTOIyU9Ur+VRRW1aH8xmjAADB7tfhGdz/McfDhZqG39pghu3bgWeeIbXEASAxkbYdM7H3jEbzl9A2QiGw8CFieV88M1e+3c8xe2B9HjtVvlwkJt48pdfLceyY8hhZVszCWnRJLv0ZUVYGHD8++NfkOGDFChJDeyOudzPCccB779H1/HzgkUdIpYP8fPXHKQrdvr666YueHhG8AdUhCo2NRPAGhj6JmgxZASJzc+DVV+l2Zuke2TChmzGsiD1CrWlVYnucP5I2hL0ZOCePU6uHrycpJ9PYKJAL3DK++9lB7WQ/LbFMvuznXY+FK6Nw75wzcLSqxAcbdKuUsLCmmY61rtOt0G6oLd1CkQCenkSlnZ9PXvyM/nM2Y4x8+ZNfpyIvtUhD65HN0pnJCJnoh0eWxA91V3RCUjZJtGhtWgePQFcEhlAhPDOjb+PG0b8z5MrD+dMHdg8E+KtW5u3dS/4nXiOzY4FAishpvc+6584lk2oAmDqVxEMCwNJ7aK6JudO0jztXhbsntabLLN2/b86AVEq+k8mjkuX7y8r678bOUOZ6j9Ln27YN/jVTUoC//waqqoC1a5l1vT+cOQNc6nZWVEz8lZFBYvQLClQfJ4vpdnXVbcIwmYt5RYXyvGA4lQuTsWIFkJZGvqe776bbmaV7ZMOE7hFEV0fXTWOFUUfsWb41Ys9fuimFNVTEnbOTL+/6qx3mptQ13NGqEsHuZEaRlBuExOOqFQzXrlO3Ti+fLghFQvx2dArK6xww845InfbX0obW820Qqy/po0hDAS3Ya2muXRz4YOLlRf43NdHSI4z+kZRC74eOLkO88Dh943e0dqC2qgO1tSQJzUhWcDRUNeDQhXEAgC37puGvbxKGuEcDoyK/CmV1ROiM8M+HQChA4GgqhGZe71syNUXX8phF5hpa9s6/nonAqgXxuHvORV6M7qF/ytDR2oGUPCJoB7rmwczarNfz2doCW7cCy5eTskIyJi0Iw4an4nDP7LN49YMg9SfQAndaKEIudP/xDw1lef5par0vLafeQoyBo2jpBoCdO0lytcEklZZ2R1YW8Mcfg3u9mxHFkJFvvgHOniUu5gBRiM+YART2yLtSXw9Ud6eo0ZVruQyZ0N3RwffOA4ZXuTBFgoNJf9wUpsXM0j2yYUL3CCHjYi7cHWsQ4ZeFFnGLyjYSCdEuamuhHG6U5JTJM3LL2B3rrqb18KexthGJ2WSyN8ojB2FRtvjg+fMAABebMpw43Ihn/kMtMN99qVrBkFZIMwY7heqmNJg6LKzpZFzcqKXQ3UQEM2ODFugbDn0VQpnQDajXpjOUKckpw4Uj1+SKPY4DkpL4bf6Km4Qd3yTg6ftOwtq6E7YOBrC1BWxsgOho7ZPlDDeyr/JnMute9OtXsrHhQtJl+o6IDCEzTI8gFxjpE+EwI89e4/FtzW2I25mExtpGSKXAobPEN93ERIJptw8sbMPa0Qr/t38q/jg6Ds8+C0T6ksLhl9Occezvq/Js42NHlWk6DY8HHiCWyfBw/vYXP5mB32Mnw9nHUfWBWqI46S0qAuoq6pGYQ8b2cO9MRC+mZcPKWsN7Hs7oJy0txKVckeZmkphrMEnrof9+++2bw9p95QpQOjCnD63Iy6O/kZMTcM89wKRJwIkTfMF79mzyG8tQ9Grw1/FUR1MyteFo6VbE0pJa/RUt3Z2dwMmTI3fOfyvChO4Rwvavz6C83hHJeYE4+OMBlW3eeIO4102ZQuNTRhLHY5WtpBnFvshKH5kz+TMHMyGREiF0xngyqV/7v+nISSpAZo45gsf74p61kTAzagQA/HZ0Ehoblc8jmwAIBBy8vAY3mZWFDbUsiZu0s9g0NJO3gYVJ06D0qa942lFJO/+K+lh5BqWmtBYho00wYV4Itn1MYrfz86lFwNyUPoN3rZuET3+PRks7v5jp6dPK5ZNGClnX6njrVWJ7PP5Q5hD1ZuAkZXvKlyNmTwBAko4FuBHT0vVyd3S2q89o9PCyRMy8IwJB/k34+oMc+SR15kwRjEwN1R7XH2KiqVS14SMr+XJvSdRuJCYmgK0VMa8WZVcg/kAWOI5Mn2ZOLIeVvRkMu7+WsuohTmxxE5GXR5cV43t/+WVwr9tT6M7MBLZvH9xrDjY//QSMGQNERg6+tfSLL+gc9L//BQxIMQI4OxPBW5YkLCcHOKAwnVUsF6ZrS7cTdfQZcUK3QEAVf4q/3bp1xGMgJmZke5rdSjChe4RQ10Ld+7KzVEvUhw+T/6mpJBbpRlB6vRxzxlzGv5edGrDre2wCtWoviqEC3N4DBgM671Bx8hiVoKNnUAHWd7Sn3G3SzNoM9z9ABPPmFn0lNzaOoxMALy/AyGhwR1YLW+o62tCpnZeBuIV8FkvT4ZG118ueqoLzs+uHriMjiNN7rqKhhQTkb/uJWEOTTtEZ0OOPSRDuzRdCjQ1aMG9mLWbOpNu++2pkqtyzCpQz3f9xbDL++eH8EPRm4Fy5Qpcjoqj3SqAXsd53SfSRd011cGBDVQO2Hx8PACitdcbjL9PZ7/z5uu/r/CW0HOLpJGreGjN3ku4vNgDcbYhfeUm1DY4fpe7k0TMNIRAALi5kXdGS+P7TcQhwzYOPUyF8nAoxNTQZmYk9/KVvcTgOaGlRPRVVtHzedx/1YjpyZHBrdl+7prxtpFu7v/2W/K+sBD74YPCuU18P/PADWTYyAv7zH/5+Z2fgs8/o+qFDdHkwMpfL0GTpHq7u5Yq4upL/jY3Usr1/P/mfkKCsKGIMT5jQPUIQ64+XL+eUOKtsU5RHhbzKSpVNdM47T5/DsStj8N0/03HxaHLvB6iB44DYWLJsYgK89yG1uO7ZM9BeDg1x5+goH71Q/RtkzX/opPitt4A/fmmVZ20vKuhCU7f+YdSowemnIgZG+jDqDuMVd6q+zxSRSqQQtxJB3dJUddjDjcbLnyoONGVJZVBSFSaZpzOnobWxFVfOUpX6WJ+r+PbLDlgYN8DYoAXPPhCHvMxmHDpug2PHAD9PMgs4ftoCOUkjz6c/u4LG/L68juYo+ORz3Vp1bxSysABDQyBIIZw5MIAqbDOzVSszD/15DV0S1V4ugyF0T4oZBUsT5WzqkVHD67t3dyJ97JLoY8dhmgp++gKiKHDuHi5ra4H2dqA8rxIvfzYd2aXeyKvwQF6FB85cC8c7r9wA/94RAscBCxYIMWvWaPz1l/J+xXhuPz/g/vvJslQK7N49OH1qb6fCX0QE8RwEgPT0kevJU1ND6pzL+O67wXEzl0qBf/0Lco+9lStp1nBFoqMhn2ccOkSttIqWbl27l8uEVgA4eJC/b7hbugHluG6xmB96MVLnybcaTOgeIcisUACQU6CcXKajtQMVNdTds7Js8GvqchxwMDFavl5WUN/vc2Vk0JfA9OlAWBiN/YmPp8k1RgpNTcDFLFJaJsi3Ho5eDmrbjh0LjCM5nFBcDNy70hhhvvk48fcVpJ1Jkrcb5XpjVJmysl/axAk11jbK3SwtzYZHHWevIBqvml+kXcKozk7gf/8DPvro1nTTSs2i1sb2TiOcPZSOpFT63UVOdsGkBWEoKhKgrk6ETdtmwNGLfM8CAfDoClrG7ofPFHxCe+HYMeCJJ5QzFN9oZLWABQLgtU2h8HPOBwAkpIfJlV4jhaYm+nlCQwF9Bfk5cCotfZVZ5ApV7NlDH4Dl089BICCCekhAPXx8VB4yIPQM9DBnXDpvW0DA0Jcf7Im7Cx3fSmqJhB3mlQVbV+Il4exIQzDKChuRcr5IPjaaGjZBKCCK1NOXvW5Qj4c/+fnA0aMCdHUJ8fPPytNRxXHB1xdYsoSuHzs2OH3KyqKu0SEhwIsv0n0nTgzONQebo0f5IYft7cCHH+r+Ohs20FhuKyvg5ZdVtzM2htxDqqSEZIvv7KTemnp6uisXJiMmhlZX+b//Ay7TV9aIsnQDZJ6oWL8eYEL3SIEJ3SMExfja7GInpf1l+ZXyFzwAVGZcVmqjazIzgfxSOkLVN2iXeEsVsYeoa/KcOeT/4sXkv1QKHNh5g/zltaS9nWiP1XH2LCCRkNJVM26z6vV8f/5JNeoAkF7ki5h7RuGrr+ibcpTfjUnsJHsx9czwqYpLcXRW5OE6PCzdzt6O0BeRCXBBmXY1zLZtI14Gzz1HX/y3Eqklo3nrxw6JcSWThBdYmtTDaxRZtrC1gKGJsgVy1RMh8u98664QdLT2nodBIgHuuovE/z3xxEA/Qf/hODqB8fQEjIwFmLPYAwDQ2SXC6dND17f+kHI6Va44igzgpweWKTIBMn7v//kiQjxz8N87T4KTcuhs78SBsyQpmKVJA/44MhYn/k7Gk/eexG8/Dp771Px5/PjysWMH7VL9xt1NWRs3YwI1F7oY0Iz3Zdn5SEum2prP37iC6NHEE6ygyg1FecNjrBxqFK2tqrzzFC3dPj4kJllmiTx2bHBy1yi6loeEEMWVpj6OBHpadgFg82blJHUDvcZrr5FlgQD47Td+UtOexMTQ5UOHgH37qNv3kiWAqanq4/qLrS3tH8cBzzxDFewj0dKd2SPlyPnzgxtywdANTOgeIYjF9IVfWuuM5gZ+/GzxdX5tpMpy9UlyZOQkFWDbx/FoquufKafnQF5X2/+Ap9i/aY2OOdHExLp4HhUy9/yWo3TMUNHaSiavjo7A8eOq25w5Q5ejo1W3UcTbmySiiv0nFxODiHtrR5ch9iXQsILgCBt1h+sUaunmeo3Tjz1IzeGzZw+P4UQoEsLDnswm8sudtLJcxyuUZj6xb+S5Rw+Ejg7lF/j2A14oriFBqhF+eRAIBRrP4eBhj6XTEwEAlQ322PN/ib1et7qalnQ7ebwVks6hSZxVVUW9OmQJfubcRu9lWdjLYFBf2YBtH8ejMEN3mY2unKPjZoQ/3+tAUejet6cNS1dHIK3QD1//FY0d3yQgfl8K6putAAALJqdC31Af0csi8Olv0QifGoDBIuZOfvjN2EDtvSVuFO4eyi730TOoAsrZiQ40ZUVNuJZG76GQSGtMjaGmuzPndViAeASjKPSpykMjs3QbG5NEWCIRtZDW1ipXV9AFirGxo0YBDgpOaiNR6JZKqSLZ1BR47DGy3NYGbNyom2tUVZGYe9m79q23eg9FUdx/8CBxeZexZo1u+tWTxx6jFvSTJ6lVXtHSPVyF7p6W7p7vbI4jigvG8GZ4zJIZvSIu5SdfyU3lT9KK8viCc2WlZkmjrbkN02cZ4sFnp+K5h/tnFVdMgAEAdXX988vt6uhC3GUSeGhnUY2wSOI+P2m6FewsiF/5oXNhaGseHu7L586RUlQSCdHmqiJRQeaYMEG78woEwOwlPjh9NRh3zlSuExwUeWPKp1mBWGQkEgGa6jUrZI6doa7cs5cM3qS8r3g5E8FD3GqJ+sreTfZJV6jAl3CyfrC6NSzJzAS6esi718u95MsRIdolR3v0P1QA+fo7I0glms1QihPY5jZjpJ4bGsVa1nmaiyLAiZi8Z84kzyMwuEL3YytT8eCzUzHvtrYBJ6KUkXSVKkgix/MVdRYWNPa4vNKIF7u9/i13bP+NPu+LF2tWtOgSVz9nhLnT32FMaK2G1kODu49yWNf0hTTw1MWVenqVFncgLYd62QRHeWDKDOovr6jku5VRtHT3FLqlUpq93MeHPo8yTzhgcFzMFS3do0aRHDNm3T/9SBS6k5KoBXnWLODVV4kSAyDJ1XRR83zLFmotXrJEvVu5Iv7+VACOj6eKAU9P4LbbBt4nVRgaAps20fXnniNei4qW7uHqXt6bpRtgLuYjASZ0jxDEzXzNePY1/qSkuJDvzllZpfmnPbXnGsrqiJv637HBvU6Qe9IibsHJE/xr1tf3b5J25WQWxK1kgjJzbDaEItJ3kb4Ii6aSWL/mdjOc2EWs4bVldZgUnIJQz2wkndJ9WZ/2lnaknMlSOwmuraHfVc6VLJVtEs/VAwCsrTo1ulipQs9AD78ejMKKGVTw9nIokmc8H2zsLOnEu7q0Xm27usomXMomcethXlnyGN/hgJcbnUnkZ5SjuaEZ+WqyNXe0dSL1Gn1eLmX5ayyndLORSp1MYGyo7BYeEaFd2MisOyLg40S8BE4kReL2KYmoKVUvPPXMIHsurkJ1w0Em6xpVyvi7EdObjQ11cU5OBipLVNTyGyCclMPhBKKoyij2RXG2bnw9k9JJjLFAIEX4ZG+l/YGufOWGrGRhfqU7vt05HQCgJ+pCzN0hSscOJqvvJ+YmF5syTLgt+IZeWxvcffkKjJAQwN6dZolydqPv6LIyDteKyffn5iSGha0FJk0ChN3DDBO6CYqW7pYWAU8ALCkhXjgAeLkEFIXu/irEvviCZJtXtK7KkFm6DQ3pdWXW7oEK3deuAXFx5O/sWfr5BhNF48j8+cRDb+lSst7aSgwIA0EqpdnKASLUCrWULGQu5l1d1Eq+Zk0vx7dVAaWHgc7+VcpYsoSU2QJI+MKePSPDvVydpVtPj2ZmP3qUX/ecMfxgQvcIQdzKD3DJyWzlrReX8AXeimojjec7dIa+xaob7ZF8JltDa2Xi/rmG9k5+9tu6fsZ0nzxC32Qzo/nCzuKl1BKzZxcZTT5+/SrOZYThWqE/Zi+0x9XTuhO8m+qaMCXiOsKnBmDNUtUzo7p6+tjk5Jsr7S+9Xo7yGisAwBjvFLmGvi/oG+rjt0NReGTxKZgZNeKFdTfO3dLOlv4G1WXqhY0T8WbyPAJz5gyvocTLk4Y6fPmNEZzdDOAb5ozPXzmp1Db9Yi46O2n/WztMkHxm+IQzDDapJ2la21V3K88qIyepSD+rAqFIiPdeKZEn3jpwfhwiR7fiUqzqBICVWam89YRz/Rs/JJ0S/LQxHkd+792lXRXZWfReCRhFx9nZUTS51/GdKdA1FQVVqG6kiqrk8wN3Me/q6EJKHhnb/V0KVCrqRvvT69w35zTij5TIk3zJmDFTD1YO2uVD0BVPvDMNCQdTcfWqAUwshp/7tauvo/zeBujEXYazB30XXL5mI89xEjKaWLgtLIDwcLI/JYVDQ5124VhSiRQ/bYzH2f26vweHmp4ZtBWFWsV4bsWkWv7+1Op3+jRxk+4LHEeSZpaVkcRfinR00AzaQUHEnR2gQndtLUn41R8++ojEh8+cSf6mTAHmzu3fufqCYhigTMj18KDbBhrXHRdHs73Pnt23Ul89XdBFIpL9HK0qgpObcoGL/wV2ewBxMcAuF+DCv4G6pD71VyAAXniBrp84Qd3LTUxoTfHhhoMDvR+LimgeEh8fmv+orU1ZEZWWBnz1Fc0ozxhahtdMmaESqUSKxlZ+KtccMT9QuLiUP1JU1mqetBw8xvehid3bt5H34H5ldVpdQ/9Gq7h4OtGNjnHh7bttRSgM9clbdU9cAFrELfj2zzD5/tomG8xeaIfkeNUW577ASTk8vCIZidmkNtePe6eprNNbm0eFiJJaZ7SI+f5Ziado8qKx4f2vW6xvqI/vd09HQ5Mp1v5ver/P01fs7ejEsqpMve+Z4uA+Z5mOi2oOEE9vPfnylj890dikDyknwtMbpiJ2Oz+cIumccjDhubgR6EfYT1JTqUfHunVEcy5DX9SB4CjtU1bf/dhkHP7tCuwtyHdaVO2Ku1eaqvSkqSziJwY8d9VFqY0iEgnw5JPAI48QC42MrRvP4qEXpiLm/kikX+h7GvSs61RBGRBOAzjnzKQXiT2q+wK9VxP4Sc6uJg7czzMzMR9tncR3NCJQ9Zj+/FsBuGvWWby5Lg4/7Z+E0dOCsGbpGV4b2STuRiIUCTExJhR2bso104cDBsYGcLSkY0XPXB0u3lQ5dSqJhtoolnqcOobU+pZKBTh3UKGYugY+fO4UHnphKmYuC0Jq8sgoFK1tgrOeAp+ii3nPJGoyBAJq7W5tJTWK+0JlJRWyenrbZGXRWtyKv5tiXHd/K6ns2KG87eRJ/ufUNfX19PsJDCS5YwASHy9joMm3vv+eLj/6aN+OnTGDeBTIWLRQApfyZ4E9PkC9gp8/xwGFO4DsrwFJt5alqxnI+Q44GAmk9a3w+NSpVICNi6OW7uFq5QZIf126X5HXrtF3YGAgP6u/Yim93FwS3vjYY6p/m8FIRMjQDBO6RwCq4mqzc/g/XVE53+JaWae+3kp+PinRpcixU31LFXnotCcAQE9E1b71jX2vqyrplOD0VTJBsbeoQvA4fp0IM2szzB5DNPyltU54+t9FqGm05V27ptEWsxfaoDxvYILSR+tPYvvxybxt/3neG7VldbxttaX861xP4VuoLl+kk+ex4wauNpW5298o7Ozp9aor29W2kwndenqkzNtwwitIOcM/AEg5Ee55xJPnan7livJENuG8ntK2m5WUHBLka2bUiJAoF0ycQL+PEM9cGBj37R6+7Z6xuJLYhWCPfABAbrkniguVk6T1zDuRWeKD2jL17uiHDgGffw78+CPJvCtj304ivHOcEOcO9d0amFVAxhN9UQc8g6jgP2V+sFzhd/Sct85irmUkX+aP68nXBj5WJF+kY1NEmGrfVVc/Z/x5bDJe/2oG9AzIff7WZ6GwsKAzsNtvH3BXbkq83Ol42HPMs3GyhoEe2d/SRhU5PKE7kipa4uN6T2DKSTls2e4FAOjo1Mcnnw7/eoY//giYm9OEXZroKXQrWrp7lgtTZCBx3YqxsK2tfHdcxSRqIQrRFQNNpsZx9Lo2NsC8eXTfYOaMiI2lSgRFq7KuhO7qamDnTrJsZ8cX/rTB1JT/HD0auQ7I+BiQtALnVgFSBbeC/N/Jfz1TwG0poKfgxZP0ElB5SuvrmpvT8KH0dKp8Gc5CN0BdzBVzsAQGklh9k2472y+/kEzmUilRUMtKXu7YQZ+35mbiaWFvT3IUMW4cTOgeAYhrlS0gOT28X4ur+NaBynr1ma57JkADgFNXR6G9Rb2Axbt2UgFyyrwAAFNCrsHEkPSvrlHZ1bo3kk7TeO7oMTkqsyQvWUgtTt/9QdPvHtmRKc/0XS22w7av+l/H+tiOy1j/0TT5eqgn8TGrqHfAU6v5562t4z82OWl8QSHxKvUyGDNFdS3c4YydPXXpr65SnVG6sJC64U2cSBPNDBcCo/zkmmxDQ2Dzt1IsmHARAFHSLF/SiNZGcl8lXaNutLKyV+eS3XAr0FTXhLwK4msY6pUPoUjIs/BGjupfmTpXP2csuttLvp6epSxQVlYpu5Ofj1VvqVachB87SJ45TsrhTBattZfdNK/nYRqRSqTIKSW/ta9zEUT6VNlibG6MKaHk2S+scsPuLRfw8fo4fP7KSZ3E/CdnO/VYdx7wOfOuU0E7IEh7JaiDuw22bBHC1RV4/nnNpX5uZZ77nwecnIh7qiyOUoZAKICztbJEFhJMlVhT5lGTbfyF3t33k89kIbvUS77+6296g5rMa/t2Eu/cM7GitnR1kSRaLS3EpVUxVlYV2rqX96wPP2sWXe6r0NozAZVi6c+emctlDFTorqyk38XYsSS7t4zBFLpl2bkBfokuZ4WhZiBC988/07j0hx7iW6215ZUX2+BsL8aK8X9hnl93cLjQEPC8F3IRpaUQMLQBwt8BlhYB03cBy0qBoGe7z8JBeP4hiCTa+1ArhofI7vfhmkRNhpuKaUlgIEmM99//kvWODuCOO4B33uHXlZdIgK1byfLXX5OcArW1ZJlx42BC9wigoVpZ6C4upu4lnR0cyur4M4DmdjOlsmIyDu6io2yYL3F3a2k3xbnD6Srb9yR2D828MX92PaztiDtjXaf2bqgyTh6m/l0zpqu2zCy6Tzkr9rRpwMxlofjpV2qhP3isfzGIHAf850lbSDkiBLz2aBwOxZrB0oQkWNp2aAoO/EUto7X1/NIx2Rn8oLLEDCLEWJo0wDfcAyMNeydqpVFVxgUAjm2/JF+eM2P4Ze5wcCDJXR56iGh9H/23EL/uCYCfcz4A4Mr1YHz2+jlwUg5JOcTnzs22FBOCyTNwvdwTlYX9qw3fIh4e38e+fSTGbv9+9W3SLubLl0MDiEfHsjvN5Ils5t43WcVR2hGskAurp2cNAFTWKAviCfHqXawVrWKnTosg6ZQg60oeLy46J9+4T30szi6Tu2MHeCr7jc6ZTsNDlq2ZgGc/nIEn34vGRy+eUWrbV5Lzg3jrmcVefY5P7UlBIX2le/n3bTy84w7yXvnww4H14WbmjjvIffiBGm9WZ9t6pW3B/tSi7ebvDE978i45nx7Yaz37HT/zTcHt7cA33/Stz9qSlATcfTfwxBPATz/17xxHj/KF0qtX1bdtb6clA2Uovm9kSjaBQFkJ5OxMLdEXL/Yu3CvSU+hWdBfvmblchqLQ3dMlva/XDAwkgrdl9+N5/PjguPm2t9Ns1lZWtNQaoBtLN8cNsMxXew2Q8iai69xQ+qkldjx5J0RCKWATBcy/AgQ/Cwi7FbOmnsDs40DoK4BBt2Ssbw5EfAA4dMd5tBbDvOWi1pfvmZMBGDmWbkWCul8j775L5sUASUL4v/8pt/3+exLbrVgq7qL2XxlDBzChewQgrmtVuf16Cnkhl1cI5AmtFKkqrlPa1tHagWMniVnSwaoWz/6HurvFHqzXqj+ZGdTFbeI0K1hbk2v35cUnIy6eWoWj56mO6XTxdcK4gGu8bU8/Tf77R3jDx5EoAeJTQtBY2/dsESkpQE4ZcZefGFaIN76eDlc/Z3zyOi1h890vVMVY28BPUpdznX735XmVKK0lauQxAbm91jcejtg5UbN1dY3qISL2CPWKmDNheCYde+ghotkdPZqsWzlY4u/tHfJkSN/97ovclEI0tJDZT0RAMSZG0mfm/LG+B9s9uvQUTC1N8NZ/4wba/QHR0QE8+CCZ0N1zj4SXRbysDIiPt0BnJ5B6mW4PDSHPdXg4iXP7+2/grrv7f/8GKciU6Sr0eZW1yiEt5xLVe8uU51LFl7jVEkmnsxB/hB/a0dMDqDeykukMOsBHeZyds9BBaRsA/HNIu+Ry6ujoUP5OpFIBz9LWH/KL6XjqGeiooSVjMHC25yuNXGzKlRLSTY0k76vWDhNcOaU+Fwkn5bDjIHkvCQRSiETk+fz6i5ZBKZ+ZeIlKfnH7VI99HEeSl8m8nHryyy/89SsawtZVJfBSZel2dQWMVOSFlbmYS6XqS3eqQpPQLXv+DAz4Lu2KXg39sXT3FLpFImqtr6kBru7bDTQX9f3EGjhyhCbPWrKEnyBMUejubyK1lBT6uaKjgQB1FUObCwFpD9eJsw8A/7gBKW8Q4RsABHpA+NvA3ATAUsvqBUIRMGkbYB0J6aw41JvP6v2YbqZMUc6S3idLt6QNaMgAKk4Q1/bqc0DVWaDwLyDjUyD1XbJPkZZSIPdn0raj91KmPFrL4aYfp7Q5sNv5U1+fuJD3FMzXrKFeDvn5wD338JVbGRlAQx+7wug/TOgeAYjrqYAjc38FgJxkIjAXq66EhMpG5bjW+P3X0NxOhKp5E9Nw2zL6Zjl2VrtJWm4hfQP6hjrKtYMtLX0rgSHp4nD6Khkx7CyqMWqCr9q2i+fSUcLHq12e6EcgFCBmJhm0OyUGOH6yb5YugF/b8P5HPeQx1KuemwqhkEx0FL/jOjH/GjkFCllrT+fLl8eGjcyRzM6Z5gOorlW2RnJSDscvksRpZkaNGD8My/uoI3xqAG4bSxKp5VV44KO3qddGZFgzJk6h93ZCfCtKcsrw6po4/P1t79l6ju24jO93kwC1r/+a0kvrweXYMZosqKlJhI9fJyan6ioOEyYI8dRT/oiJEeL8BepOHRpJ7+Np04Dly7Uv/aIKRUt3eopy/Kos74SteQ2crYm55Xyan9ryheX5/NnhycMViO9hcM7OpqVntCE7nfbLP0D5w0bNDsbjd5+Ev0seVsxIgLsdGQguZoX0S8koIyODZkFWrG6QnKy6vbbk1xHzn6lxO2xd1IcYMQYHl1HhvPUQb+WM9FOnUHfzM8fVZ+VKTchGVgnxwpkWmowV88n7vrLGBL9/qXvzVEE+fXCuXFadsO2vv0gMbkQEsaYp0tgI7NrF35aUpLDCSYHmAkBKzq1K2KsqLAWkXRCLqTDcM55bxoMP0uUNG4hlVxvUuZd3dtKM0IGB/ISSA3Uv7yl0g+MwezyNl4n9Ix7YFwhc2wBIOohAVriDH9OsAY4jNbc/+oiOK4qJ21as4Le3sKCKDHWW7kuXSOLK88q5ZAHwy97JSpDJkXQABduBY7OB3Z4kRpvXYQlNiCYQAZ73AfOTgNBXAWEf86mYugMxiYBd37yyLCxoXLcMrSzdxXuB3T7An8bA/mDg2CwgNho4Mgk4OgWIvxO4/DSQ/CqQ/yv/2M56Eqt+ZBLwlxWwLxjI+4U8G5rI/Qn4xw2urZt5m63N6mAnou4kjo5EWS5TsLi7kxJuiknUDhxQPn1i/wp/MPoBE7pHAOIGOvCGedOBWubWXKSgIDVXMBRVVisPXgf3UEFw/nwhXHydEOxbDwC4kBGklcYrt5hM5gz02uHi48jTDtYpG9fVkpwiQH1zdzz31E6NCcPuXRsGU1MyML36uqE8XhcA5t8/Rr586EjfE2ApCt2KCYSEIgHs7MiMWFEzWNvID2DOLqLKisQL1LV4TNQwrT3RC3Yu9AetqlPOgt9QLUZ5PfnM44JyoG+or9RmOPPow/R52ryTCscRY40xaY6XfH370dGIGGuAd3+Ygbv/Ow5luer9CiWdEjyznlpuKyr1ebGCuubKFZKV9NFHVWup//qLv/7Fb2NRU1qLx+87h9JSck+fPCnAd7voRCV0nLtO+2hlBThZkwcnPVXZilxRT/JQOFrXYdIYMsMWt1pi27cFWD79HCYEpeJaAjVdl1fzreBx8cY4c4Uf5NbUBFQWa6/sysqkgkbAKGUru0AowOd/RCOrxBs7TkzC8vvJ9aRSAeLiaLuWFpqwRpHasjp57gBFFIXr2bPpsiZ33N6QSoGCYqIQ9PIxHJFeNiMdZ3f+eDkqQPmmGB1Fx9fCQqXdcnb8TAOe71zSgKcfo15cn3zrqPPEfgVF9KWaUeyt8r6VJS1raSGu5Irs2sWvKgAoCN3NBcCRKcBuL6DgDwBqLN1ZycAeb+Repp5tPeO5ZYwZQ9/XxcU0XlUTHR3K2cJlwn15OY3t9fOVAC0lQN1VoPw4HLpoIhyVQrekHahLBmqvEMutouaP45CZQYWqwEAAVacxR2+BfFts6hwimF59GdjjBfxtB8TfRSynWrBvH7B2LfDcc8CrrxIFhCyLtYUFcNtt/PYCAbV2qxK66+tJ4rXPPycW4Q8/VHaBVxS6p07tXuhqIVbePV7AmbuBiuPdF+wxL3NZABi7AAFPALfnAFN+BaxC0G/6U5cVyhUItBK67ScDxlrm37Ds8ZlMvfnr4gwgYSVwcAyQt41YzOtTlEum2U0GOAncbPgWtkCnDAhipwHHbwNO3wGAzAsOHSJzg8OHye+/aJFyDgrFeTtzMb9xMKF7BCAGNRmNGUNfjDnXyUCjaIWNjKTLPV8OHa0d2H2MuqvNXUH8P+cssAIASCQCnFQuY8yDk3LILSdu4N6OJRCKhLA2oDOH+lLtfZUUJ63RMZoHMd9RtrhwQYiTJ7vrOCowcybV7B082DdLV2kpHXBGjwY8Pfn7ZRruykp63tpGvrtgcY2LfIKSeJVawcdOHXhipKHAwNgQFubEZaG6I1Bpf1E2FT49XXvPwDvcWPyvKDhakYdDFscPABGTXODi6wR3dzK7uF5kjWoxEQwlUj1kXVV/b2/58AyS8/jflSqXal3x2WfAhQskRmvMGOCyQhW0zvZO/LOL787X2GqBZfOK8EfsJJXns7eogqPnwFymVRHkQQanKrE9z8W9uaEZLe1ESeFg3YiJ80Ll+x56zBu7Tk/EhcxQfLGRCh7ltXzfv2OJocgu7TGJAZBztUBpmzqya6mpIyCi9/wLilmTZQmQMjKIRcHLiy9M7/vpAhzdzeDvXY/UJH6cf3LsafnyAyvoQJ18Ro3frhZUVlJrH0uENjTISvrIGDVKeYplbU+Vc3UNqpXEnJTDjgNECSYQSLH8oUBMmBeKScEkcWhKfgD2b9PtTLkglbq6S6R6SD2Xp9QmT2FTz4m6omu5LJPytWtAe+4BUtappjtNsgPxBuqZRA0AKsUOQEsxrh+mgevqLN0AP271vfd6t3Zfv06zecuoqQHQUYfyS7TWklPTZuL+fDACOD4bDtepWZ03r0p9BzgwGthuBhwcDRwaQwTm7Wbk/w5LYLsJMlOIBtbEpDsZlu0EBLgVw82GWExOZ81Ae1e36bm1DOC6x++SvZo/UDeKHgabNpH4XnF3OoolS1QnOJMlU6upUfZQfOcdqoyQSID164HFC5pRV0O/PJnQbWrSiQjRW6SG9h5vYuVtVXhXmvsD6CGxe94LLC0Goj4DzLy0+oxaI5UQ63FH7xagnnHdWrmXG9oCMw8BLgvJ5wh+Hgh+AQh8iigRRm8AJv0MTN0OuPYoAyEyAsZ+AfiuAWzG0e31V4GEB4nF/EA4kL6Jf5yFP+BxN1wn8NPDBzpnAl2NQHksUBEn3z5zJqnwIfM209cHVq/mn/Lbb+nyhQtafG6GTmBC9whA3GYlXx47jQZs5BQQi2vxZTqBGxNKJ7Y9he6nH0yQT1KnhKTI3Q8VJ5LHj2vuS2V5p3yy7ONFRmorPfomrqvQ3rynKOCrSmrRk1GjVJemUiw7UVCg7D6mib1bqe/UkkXKvvEOduQt3tYGNDW0o6O1A01tyhax3OtEIk+8TmqIm5s0w2+0p1K7kYKdPdFiVNUov62LrlNLorvryKgbq4i+oT4eWsoPnrUwboB3CLFiTpqkelisKFWdIE1cI8arG5Vd7K9dU9FYR1RkU4k+NxeYNAn48Qsyiz3+91XU1pHJ/PSoInlIyunU0fJjHr37LMzNqXYq1Keo39YCTQT7UetcxmWqHawsohMiB9tWTFKtC0BuIRlrJJ0SVDbwlQKycQgALE3q5cs56WJoA8cB1zLJGGpqCjh7914fOjqa1neVCd3vvEMSQtXUkDJJHAe0NrZi3XOu6JLoo6TGGbPmGvPuh+Q0qpybM1siVwJdzbDptwUzP58uM6F7aHDuoWcNiVBOZmdtT98fdQ2qvYSunctBRjGRNqeEpMDFl5gl1z9Lx6A33zXTqbW7sIQfOJ10Qdn1XdFKrDhRLy2lVnAfH2DZMrLc1QWk/fEKFYBExoAR0WSrdC9vIlqL3AL6fKizdAPEPXjhQrJcVAT83/+pbwuonhtUZ10Gdjqi/MwP8m1OlnxLo615jTwXCG9e1VIM1CdTIVmGpIVYvDvF6GiXILeEzLUCArpDdkSGEIx6DnNmkvlFa7shEqxTALvugdDUmwhw7svpOTkOuL5VqSY1x/Er0kilwNtv0/WeruXyz6gQfaj4mbKziYUbIOGMss+9/7Ap/v1v8r4vLKQelhO9T0Iv/X+khnabwonclwOzjgGLMkmZL0WEeoPyvjFuy4DwSBSxHmtRu3vqVH4IlUpLN8cBdUl8a46+OTBjHzDlNyDyQyDyA2DsJ0SJEPIi4L0S8LgTMPfjn0sgAAIfAyZ8B8RcAGbFAtZjoETZQRWd/QMus5/jbQoMUnD55LqATvVGkEceIcI3ANx5J0kKKfOMZZbuG8egCd3ffPMN7rnnHowePRpRUVFaHcNxHD777DNMnToV4eHheOihh5CvOJO4RRErzCE9fU1hY0YEa5lbc3EpffDGhtNELpV51AK99YPT+Pov4ktjqN+GTz6hL3tF67i6+HAZeYXUZdp7NLGUW1tTLWZdteqkb0WZpUqxmme64zFtbPg1MfuDYjmMg7+nan3cnr30EVg8S7lckb2QBrtUFZajrkK162p2vgkqK4HiMqLiHzPO9IbX19Yl9t0JoevqlMvHFBXQ39jdY2R+xkee5md9iYgABN1vX9kkRSQCZk2iM8OKMtXxde+/cBmVDeQL83Ghk7W0C8qWIl1RX8dXdnR0AGuedMKBny9ixx/093lyTQkeWsQPyrt98nmsedYABw90wsKECMWLY/qegFAbgoPoRCU9mT47lQrKHAdnU0RF0XIo7u6cvN5xUYUVAKCquIbnldCTexdQJUR2lnb1jhISqKAaFaXdHNDcHJg4ntwHmZnAhROF+PNP+hlPnwZ2/piMj185j6JqqiCtqhJg1iyaqCk5h3xYG7NauPg4YbQfGatrGm1RnteP9MgA8jPohNfTY+Qpw24GnO34Cp/gscohG1YONGdGvVh1jaXD/9CA6TsX18uXF/9rPCJ8SCmAS9mjcPCXSz0P7ReSTgmKqvkaA1VJ0BQd2a5epZbl33+n7scP3NuBMc7U9zypIIIsuC0lZZ5E5DMrWrr19bsFWrEDOOjhegU1b2uydAPK1u5O1cM0ADVCd7sfYD8VFQ3U/9bJzZz01/cRYNSLEEW+AzsrovDgCd3WESQm2SoM8HqAtHeaC1gEA2Z+gEUQcltiIJGQsStQ0Rkq/E3MXkqFstjzfsBtZ4A7qoHF14kAZ98d/sNxQMIq4PxqNJ9/B2UptLjy1avqk6GZmwNz56repy6Z2gsv0O9w/e0f4OAL82FlQpQmO/8xQEUFnbsBwJQAxcQaAsDjbmBBCjDtb8Bp1qAI1+roElkBjd0eG5mfARmfAMW7idt/cyERShWEZ0tL/vxXbunmOKApF8j8gng7HIwEagZBMnWaDcRcBGYcIJnYg54FvFYS9/ueyedA4vDtFHTPgfMeIEqN5VXAinpAXyH0sTKeuJ13J6rz8SGVTN5+G9iyhcxvZDHtRUUDKx2nicZG4oG6fj1xfXdzU879cCsxaDPmzs5OxMTE4N5779X6mO+//x7btm3DG2+8ge3bt8PY2BgPP/ww2rXNkHGToih0W1gAfq7kbVVU7YrWpjYUlVHNeWQ4zWpakUdUkZdi07D2NerK8s3bFxE1h9bDsDCjbylxueYMmqpqZ1pb00G1vlbZWvzsQxfhEeSCxVPpBKG2vF7uvhQRXDOghE0AMH8adSk9uF+7+6WprgnHLhPLtItNGcbMCFJq42BPv5vK0kbU1tHPamRI9+XkkMQjMnom6BhpyAZ2jlOO0y8qpMoTdy/lmO+RgF+4C6/Wa8Q4apFasYIkj8nOBl54nM4MKyqUrUqd7Z3YvJ0kTzLQa8dvW6h1KC2pVqm9rmhoIpYgE8NmrPs3eeY5Toj71gbg7+PknjY1bML8e8Px8rve0BORe9XKtB5f/Z8bBEIBJk4S4XpmB+L3JuPxt6aqvtAACQqjY1NGOhUEK8W0zJdD4GgYGZHnJzYWyMkRwNeZaP8Kq5zASTmUF9LvckKQslLtwX9Tv96cXO1yKXz/PV3u6XqnidnhdJL5wAMSdHXxJ5XPvmyNDd8RRbNI2IXQUeT3qawkGYtPHy5BWR2Z8Yb7FkAgFCA8mFooks/3ovlUQ/5V6r3hZc78BYcCF0f6/nOyKoONs7K/qqGJIYyNyPNY1+Wv8jzVzfR+DptAlTcCoQCvv1gvX3/zPWOdWLvL8ivRJeFb3ZPSNPvadnbSHASKSbvut5+ECIMN8vUrheOBMZ8C03YCBlb0mgqCno8PeUY6OoQQu7+C3Epq3vbx1vz5xo0j8ccAscBqCpFTJXTXiC2AWbEoN31Yvs1x5vOkFvSE74GIDUDIS3BwIQKNYqgZvB8E7moCFiQDk7eR9rMOA4vSgMXZwKJ0ZDrTpDE8oRv8fA5//QU0NgmI+3JPQVUgACwCIG4xR+TLiXCPiMKfvxBFqaKV+9//ptZMAFi8WHXmd0B12bATJ2htb2erUqy//QPMm92K/ywjLpASCfDnnz3iuZeMB6L3kazjy0qBqX8AVjRc6EbSqe8Ezm8tWZG0AZefAU4tJW7/uz2BHebAn0bE/bwbxXmAq00ZcP5R4ia/xxdIfIJ4MgDAdYUXhi4RCAGX+cCoF4Axm4DJPwORG9UmlFOs1R0YRO4LGNnx75nsb4DYacTtPJlqpW67jcT8m3XL5uPH00N0ae0uLwdefhmYOJEoMhYsIHkBLlwgCRjVlVy8Feh71ikteeKJJwAAO3fu1Ko9x3H4+eefsXbtWszp9nf+8MMPMXnyZMTGxmKhzIdIBRKJBJKegTrDCFnf+tvH+oo6AEQKMjVuhZ9nPS50vzySE3JQXNWdkMiqEs7eVA1WWWMEiUSCteuA9k4y8q694yQefG4qry/GxvSl1lhTD4lEdekugEyIZboaLy8JJBLAwopaoGqrO3nnPnQI+PgnIvDvPzce1aU1sHa0QmZSEQArAICv3TVIJAPL9hwQ6Qp3uxIUVbvi5NVQiGvFMLVULkmkyOHtKWjvJO5ct0dnQco5AD1+Ins7KmCWlzShw4RORCLH6CGhO6l1Vpa0O8sn+W7Gj5coxY4NlIHeR33B1rIZALHIlBdWw8ZGIflPMR02XLzNh/Wzp4l164Djx8m9O306//eSKU1q86lSoaxCpPRZj+64gtom8uZaFn0JUXMmws6iGtViO1zLcx2076ahmfTLyrQRn35ui7K0c9h1eqK8/BkALJicDAOTCXAPcsaPH5zFtt9M8OLLgKNnGCpTyiGRSGDtbIWJzlYABue+ChhNrUfp2Sbya5SX03HEzk4KiYSDnR0NM/FwqkN6EXEhryqpQkkhtZLPnlqF7OJa1DYRl82QEA4REx0gFEgg5UTIKbRS+ixp56/jndeqcfvtUtz7+CTUV4rx5+/GAIxgZcVh+XKp1s/rzBhLvNWdRFYWrqMv6kCkbwYuZIWjoIpaNx9ddgZvfTsV8+ZxuHxZgIoK4LbbqRt7eHADJBIJQsPpGJp0qRFz7u77b5FXQDWX7j6mg/5c3sjxaKRg5Wgpfw9Nj8yFRKK65Jy1jR5aS4G6RhOV31+jgFpAjR28eW0WrRqL8PcykZwfiAuZoTjw6wXE3DcwLW9uegUAvqU7OdcbHW0dEEkkUOdjcv68FK6uHM6fJy3CPVIQYH8Zdsb0fXFFvBoSfz2lTFylpUIAAhgYcPD0bENmJhnTym2fw/UqYp0zNxLDWrwXEpt7NPb/gQcEOHiQ3P9Hj0oxc6ZqQT0jg1wTAIRCDlKpANXVHCRSDmWdE+Tt7O2V39/29uTY1lZALJYQwUXQ7amg4RlIT6djnb8/GetkODgAUVFCXLokQGYmMH8+h337pLyEuHICX8DfP+khu5x4aT37TCduXy7BgQP0Mz3zjATOzgK88Qa53v33q5+HODjQfpWWkn699Tp9779318swiVgLyej3cZ8T8H53Iu5t27juGHABhEIO45bMhUSxv0M0Hsieka7AF6Bf/DcELWoMSNIOSIRG8n4++yyQnS2Al3U6oiomA13K4Umc7QRw9tHghsFYN2aMAElJQtjbc/D2VvPecloIocgEAkkLuJxvIfV9VDmpG2TzHPLsnjsnxYIFuglXuf9+IY4fV+/hkJnJoatLeiOdILSm53tN1++3QRO6+0pxcTGqqqoweTLNpmtubo7Ro0fjypUrGoXuLFmdh2FOSkpKv46ryW8CQFzDywsSEBQgBo6QfZ99WI6yOmKhdbGpRG5RGwz0wtDRZYjyGlPEn76CS9nE6hLomo1VzxohiVfHg2BqGIjmdjM0NBmq3C/j8kVHAETV1tGRiaSkVnR00jjuwkKx/PimJiEefjgEUHhlx+49B/8oJ5w7XQSAWOQcHGo1XlNbZkTVYNshV3R0GeKvLYcxeqarxvZ/7aCu+OMm1avsg0ifTvYz08tg2JgHgEyIvLwqkZBAhIrYww0oKCYCj61tJzw8UpCUpNvssjL6ex/1BdP2cgDkmbt6NgEdoIqYgmLqEtnQVoWkpJGXTA0gca9vv22D9nYBPD1roOoWrGsRA92JDEvKhEr3yG/b6P0xfXoVkpKSEOgGVKfZoazOCWdOnIapte69ARqaicnE0kSM5JQSPP1GF9IezEFmCZ2sT4+ulPc3ZIYJ3p9BtsvunxtxH3FSDmZGFmhqM0danqO8P1evOgEgz2dzcx6Skup5x9lbU/eK07EXkZtOvVeMjRswOTQV+86RRA5B/sVIy6yEh70d8is9kVPqgiuXr/Cydz+9VoTTyZOx/TggFv+D2mqgtX0pAGD5tCPIzNQ+iZyxYxdMDZvkpRcBYNn007hnVQdW/CtE7gZvaVKPO9cIUFCQhI0bRXji3064luMkV4ACgKtbHZKSkmBhT5+hS5e5fo2HuQXUxNXK6WZM1YYbcR+NJD7bVInE+EuYucxC7W9gZDQKgDFqa6Uq2xQWekKmaC8uzoC+Pr8u96MPFeGxN8gY8Na7BnAapfo62nL5QhGACN625nYzHP7nMNzcTBGp8ijg8OE6VFQ0ASD5S2ZPzoFUoA+p6zQ4OzajrMIUV67q4fLlJCVvtqKicAD6sLXtgK0t9Ro7daYEBVXEA8DTpQ7Jte6Q1mv+fPb2egBIzop9+1px113EBT8uzhLvvuuJmTPr8dJLhUhLGw1ADw72bZBIhKipNUBZWQeSklKRmekDgCgLamvTkJTE99rT1/cGYNN93jS4uWlXHzUhgf6WQCaSeiRVfOYZY/znPwEQi/Vw5owAs2a14LPPcmBiolxGautZ6pJTUmWD158+h7NnibLAw6MNjY3XumPcbWBkJIWDQ73K9xoAtLZaQjaXSbpSitr9a3HhIsks725biNvnF+KK9L/yFPSBgcHIzDTBpUt0XA0IaMH16xlafQ83ipSsUghcf4dpWzoMOktg2FkC/a5q6EnEEEkboCcRo7CoCc3VSfJjvvn353Cq/Rno9uiWCgzRZByORpMo1JtFo83QD6gDie0eYu67TwRzcztERTUiPV11nhkAcLJ+EK7V30LASdB86lFku32p5EFhaqoPgHjqnTjRiKSkHBVn6hscByQkREA27/fxacXYsY0YO7YRv/3miORkM9TXC3DyZAqsrIZeiaGOwXqvDRuhu6q7JpOtLT+Zja2tLaqrq1UdIicgIAAmJsPXzVUikSAlJQVhYWEQidTpjNXT1kGDq6ImRGDCFAE2/ihGY6sF/jw2Uz7J83BuQuSYcXCwrEBxjQuqG6zR3kHd12YvsEfUeNVZSSxMqtDcboamNlNERKgPoqovTIZM6I6Z4wELG2M0FtEHWSI1R0REBADg3/8WoKKC/6ZtbbBAREQE9v5AtYljohzlxwyEefMSsK3b1aogxxyrnibnbGgAvv9egIkTOXlpC07K4UQicVk1NWzCPf+eAyNTZT+s/Ev0xSrptIKVFf3+Jk2yx6G99ahrskJeIdXsP/ZgNsaPHw1dM9D7qC94uJ+SLxvp2/J+n1IxETQtTJoxOVpNBqwRAv1YqstldXV0QSCQguOEqBVbISKChiB0tnfi4Fny0jMxbMbKx+fAxMIYYUHxONPt6StoNUfEzDCd9rmrowvN7UTxYWXeLv9tdu7Mw8QZZFwwM2rEg4/PUuntcSPvIwAIcs/EpexRKKhyR6CvLYzNjSESUoXU+PFe6Pn4+/udkisWhRIbdLbTOPXgEEdYeQVgX3dY47IVroiIcIG/exLyKz3R0GIFN3t32LuTiW5TE3AunY5D6zfMhoMldVd//HlPhEWodvNVR3REIg6cp755z7/qhMjoIKzedQY/dNdqf+2/VzB9Ds38eOJEHeZGZyApl95D0XP9ERERjFGBHdB7uBNdEn1k5LsjIkJD9ig1FFfmAwCMDVowbfbUQS8ZdqPvo5FCRASw+AHNbZychMjNBVpbRQgJieC5BAOAgQG9X6OiguDeY3gKDwvHt1uzkVrgjwuZETATFsAvnF8+ry8c/pm+j8O9iBUdAJqqzBC+QP34lXvdEjJBFADuWjsN3Nh8WBs5Imq8EHv3As3NIlhaRqCzE9i9W4B77+Xg5ATU15N7xtNTH1ZWNH5VLPaHRNptGR7tgfAx2n2u8HAOyckCpKebwMMjAlZWwB13CFFXJ8DOnfaYO9cWDQ3kvKEuySivtUZNrT/EYgNERESgrY1+5zNnjlJyyw4KEsjLpNnajlIas9RRVUXPu2hRgJIVOyIC8PMD5s3jUFcnwJUr5vjqq9H49Ve+0r6+Hjh3kT+f+vSHKEik5DlfvNhA/i6IVKclUUAx9l0gdEFDq5c8OeUY/1xYzf8HEQoJ0B55RIDnn+efY84cY53M3XSB8ng0UW1b3mjfXgNhIc0gLPV8ANyYT2FqYAVTAE49Dx4GEI+wXqrjdG0Ed/AgBC0FsGg5jwiHYqVs6hwHODhwqKwUIDPTAqNHRwzY+lxWRsY1AIiJ4bBvnwEAWwC2KCgQyCt8GBiEaf0M3Uh63kctLS06Nez2SejetGkTvv9ec1zDgQMH4Ntb5gsdIxKJRsRLv7/9FDdRy6K1vSVE+iI8siwOn/w2g5dcyN2lHSKRCA7WDSiucUGV2BaXLtInaPwUK6i7vIVJC8rqAHGLqcY+5pYSdzk7i2pY25NJra09tfjU1+tBJBIh9u80/PjjKKXjszIkEIlEuJ5HZxkBoXY6+f2m3OYlXz5/2Vx+ztdfB776ipTryMsjLl2p57NRUU+G3hmRaTC1GK/qlHB0oS+d6moBTOrpS8/WVgh/12JcyLSSbzPUb8O6p+wH9X68Efe7vQMdGmqquuTX4ziguJJMsty9TdXeTzcLImMR7MyrUCW2R0WdJe97P34achfnRdPSYW5NPEpCRgHojqrJSBZj2u26/ZLq68QAyJhgad4m79Oo8X44sjMVH3/YiAdXiWBho/qeln+2GzRuBvvW4VI2iTm/nlKC0dMCUZV+FgDxanKxqoRIxJ9AeHrR8aE4vx0VdVbydRd3MyyabYtr2SRe8Z57hBCJAH/vJhztznuYl1YJJy/ihXL2LH+C2dRmLq9AMDEoBRHT+q4UmTOjBQe689NFhychalYEAODjLZHQW3MK1lZSPPnONN73a+9mh9jTQsyemomreYFwtKrE6Ml+EIlEMDYzRqgnEcjTCn3QWNMEKwflzNfq4KQc8iuIN4qXYxn09G/cO3ikvH+HEzaW7ZA9w+LaDji4GPP2K9Z8t7ISKY2zIpEID9zbjhffJ+tHz3giUAtBq76yAV0dRMA1szaVK5qLiul7bcncMiR/R4Tuq5nOuFfFb+tuW4iiGg9kZAqRm0fmGC4uwPipdnKLdmQksLe74tXmzSJ89x35XPv2AX/8Qc/l7CyAjQ0Vui9coH3x8xNofW/NmUNK9nGcAKdOieDgQKqZyHjmGXreQPtL6GoPAeCPlhYBOjpE8gRplpaAqanyNRXrHNfUKP8m6pDN111cyG+pinHjSD6L2bOJcL19uxDvvEOEcRn799NxTCiUQCoVQSKl7+kFC4Sq+yTpAEQ98lzUp8LVlcZdV1QIkSZdL18PnTkFIkO+Juj++0kyLMUogWnT1FxzCOnzeFQVB7SVk1j6cd9A6HHnoPXthiIyI5nVz9xNVlNfB9wXkxhyBcaNI/dWba0ABQWiXhMX9oZiWcGAAP7zq5jT4Pp1EaZNG9i1BhPZfaTrd1uf0letXr0aBw4c0Pjn3lMlqyX23emSa2r4JadqampgZ6e969/NiLiZvBhNDZsg0ic3wBNvT1Fy13JzI6Ohgw15Y0ukejh8iLpvjNcwBzc3Ie5rja3mahOztLe0obiGTI59nGmqQ2sFoVtWAuXrz6jm/PknqFUpM4d8lpwCOqH0DdPsBq4tnsGu8tI75675QyqRguNoYpCWFmD/HmIxi91LE2TNmaE64zoAOLhStXRltR5qM2h5NhtROvw8+NnMH4i5CAcPe4x07B3pS7q6ir5lq6tJ+TQAStaXmxVHe+LtUNHgyKsasuNvOhjf+W9aoWFUBM1OnHZN2UVwoDTU0EzjlgpJEAFgYkwoth+fhEWrNAvcN5LgQNrH9GQyNlXWUjOSg6uyNd7Dh24rLORQ3k4lCqegUBgaAt98A3zyCS3h5edLf5ycdPpcykp7AZBna5exZlV93z5MN3c+HAgL4waIhF148w263dzGHN/8PR3v/TgDegbKOm1bFxucvuSCH947jeOHxDzvmunjSNZyKSdC/ME+1D0EUFlUjbZOIrh5OQ9eAj+GbrDmaNaiOhWpp5tKaLJAU2PVLpgx91Ch6aCKCkOKFKQXY8boJFg7WsLe3Rb27rawtZVg/8+kHwXF1FNw6Sp63qQcZY8LU8MmLIw4AIAo0mR5bm+/nV9+SdHa+vHHVJGQkMBPxOXszMHamo4R52hibn65sOoLQFM+SZAlaQdaSoC6q0B9CtBchDkzqKttbCywbRu/3y0KnriBzpmwtaQbampoMjEnNaZNB4Xw/J7lWNVRU9NdBxzKSdR6MmYM8OKLZJnjgM8+4+9XTFb3yXv8CgeGhhJERytsKDtKMm7/bQf8aQjs8QeKdpITp28CDoTBofH/aPMyIDWPehSEjVYuZefszC8vCwBTBpaKZ3jgeRdwRxWwtJSU+bqZ8LgTsO3OVVCfApTsU2qiKBfool53djZdVlQaAYC/v+p2txJ9ErptbGzg6+ur8c/AQLvMsT1xc3ODvb09EmSZqQA0NTXh6tWriNTGV+YmRtxCXogWJlT97eWjL6+FKcPNnXz3DrY0/vFMApn4mZtrHvQtzIgkJeVEaBE3q2xTkFEKjiO3jI8bFaqtFUugNJI+ZBWQMAFD/Ta8+4GZvARQZgFRoGSXEKuMm20pjM11ExogEAowMZSo2RpaLJFxKQ9ZWSRboow9P5F0q7FxCnVyb1efOM7BjbrOVdaQGDwZNtZS+HnzM6U//dJwdEbqO3aO9DdRjO6Q1eYEbiGh24sohdo79OWVBLq6aNkLExOSnVNGyFg6eUnLVijhoSMaauhk0dJCu/JYQ0nQRGpJzqgiCZ8qa8n3YqjfBnNr5axBHkH05ipsGsPLdOzopNr/zS+Q3rPZCko9mdAtEADHD4nlJRctTRpw91oVNVK1wM3fGfl5HIqyaxC9LKJPx5rbmOPhl6Zh1AT+jGTGbOrRdPKY+lg9VRRkUinAy71vxzJuPFaWVJCur1b+vZqaidBjqN8GfUPVlpbwcGI9BUjWaZkyNC2NlH369luSrXvv1guIHGeKk8kRvONb2k3xyafk3AXlJDzKSL8VkRNt5dUrVMUD+zjkYsJ85edm8WL+uibXUVkdaIAIc9bWdBwrpJVOidWtqxVIeQs4MoFklf7TmGSg/seNlHM6EA7s9sC0Kgfo6xHh/dAhKqQaGbTJa03LCAwUwm4UlVILC0lpI4Bv0VakP0K3Yrb03oRuAFizhrxPAGDrVmL1BkiI3JHucBtXV+Cx512wYCotkzhjUh14EZZdjST+uLtcFJpygNN3kO/qCvERN7z6MGy6v/fyckAxhDVUTfLxBxTCJry9SV9uCgyslL0BbgYEAiDkFbp+7V1+vXHwK+2kal9tV5nGHCDxaeTE7ZZvkgvZdUlA8hsI6Nok35eVOfznLoPBoJUMKy0tRXp6OkpLSyGRSJCeno709HQ0N1OBLiYmBke7g2QEAgEefPBBfPPNNzh27BgyMzPxwgsvwMHBQZ7N/FZF3EKsPhYm/Jfz00/z27l5kXaO9vRmlkjIBDUqtFJjWS5zU4WyYbWqhe7cdGpB8faksc4mFqbQE5Fr1rU6g5NyyJO5OjqUQt/IAP4u5E2aU+qOmtJa1DQSodzPrX81adUxaRy1Wp87UYrYv9N4+49cDIO4RoyTSSQ5lqNVJUIm9lDHKWBpZwF9EfmsVXWmqK2j1isbBzP4+VMBYG54LEIm9S02dLhi50yFxaoaqvUuKqD3yS0jdCtMwiq6b9e4OKqMWLgQvAmPg4edXLC7lqv7WUlDLU2qZGmhe0u6rgmOoHk60rvniZX1VgAAB8salbHHbn7Uu6mwzEJuhbKw4H/XivhPoIJATjUR9CsLq+QxZGNHN2HsNFccP1CFRxafwj/b8nqtcKAJa0crOPuomaH3g2kLaO34uJRxGloqk59NLftensP/nrjVsbaiE9+66jal/U2txAPCzEj1uxgg8+mYGLLc2gqcOkUE73nzgI0bgbVrgaAgYPHq8ahrJkK1u10JFk26AEsTcr+cvRaEjtYOFFSTRGgezmIIhAK5wFxRAZQfXM+7rq+fPsbF8D1pTEz4pZcAwNMTsLKi6xNocvDuSh8EZ2fw3MsV8fEBUHoASPmfyv2KmBk1Y2Io8SfPz6cC653jt2N19BZe28C734edEx1I0hSmCbq0dCsK3UHKFUmVsLEBVq0iy83NtKzhnj3ozhgO3HEH8Sh4c6MXDPTJ+/jB+3oobvQtSP1wEw9SM1xGg4JUFfYWnF2I0kVR6NbX51skFVm2jL4Plyzp/fMwhgGuiwArkiwNNReAimO83YreJIrhGH2i5iJweAKQ+SlysqghSm7prk8BUt+EV8OL8vKlWRfTgLSN/bzgyGXQhO7PP/8cS5cuxRdffIGWlhYsXboUS5cuRaqCKiUvLw+NjdTdb82aNXjggQfw+uuvY8WKFWhpacEPP/wAQ0NDVZe4JeCkUohbiSXZwpTvBj15MjBuDB1svUPIBF/x5SBjXECa8kYFFGt1N9arEbqz6HYfX6p9FwgFsLYhwmhdmzOqiqvlCTm8XYmmNdCL/O/oMkTsTprt0t+L7+45UCZOpwnNEhKA2IP887e0m2LD/yrkMZ1zplRqTDgkEApgb0n6XllvjTox1YbaOFpg/j3hcLCsgpF+K9768OawcgOAvSv9Hqvr6PNXmHhWvuxudvWG9mmoUCV0//UjfZ5WrOC3FwgFGOVFXAJKap3RUFWv1XUSE0mNWU51dIechnb6gFs56U7oGyx8fQG9bl1VejoglUhR1UAEcQfrBpXHGBrSyW9hIXX9dNaQO8bbV0+eBCanOwnr8d3Uh212xCUAwOhpgfh+93TMWB7Rr88zWNi52iCs2yngcrIpGlR/NSrJz6VKUE/vW/d9OVKwViiBXVejnAW7qY14YpkZqQ99AoCYuVRYPfhrIrZ8WYJiNWXel007h+RrZth7djwWTycSVmuHCQ79dR3NLUSx6hlIxhNFK/XV+Ou88/hGBiEoiNb6BYig3zPxmEBABH8AWLQIOH6cuFD3pKd7uQyRCPDwAOBxBzD5dyDgMcB9BWA/hfy5LQV8HyF/7ssB9xWYs9Rb6Twrp27DOw//DjMT8j2bmgIe3oZQzNmraOEbLKFbG0s3ADz5JF3+4gvilv/rr3Tbnd0e0FETjXH+gj6OHOZw3yM9NOAOM4G724GlBcDCa8DUvwATmQeWABj3NRD6Cpy6vYZaW6lCNDAQUOewamYGnDlDYvLffVe7z8MYYgQCIORlsuwQDehZ8HZ7eNBlRS8Trak4CRybBXQQQ0N2OdHYiERE8QYAEJIbSk8kgY9DLgAgp8IXUhOvflxwZDNo2cvff/99vP/++xrbZGby49YEAgGefPJJPKk46tziNDc0g+OIgGhhxndlFgiAb783wSOPEC2zRwCJJXZwVP5Zx0/UPBEzN6PWEXGtsuYdAPLyqDTgE8h3m7WyAqqqiHY5L70CAOmLlxuZNAT6tQHdCbH376fX8vPVrVUmaqYfRMIuSKR6iE8NRVm5sl7p4++85MtzVqjxo1LAwc0OpbVAVaMjauqJeVMgkMLSzgIifRHyClsglUhgZt37uUYKlnYW8u+xuo5aBIqK6D3g7jZ8yz3oEp7QXdYJQB9nz5FnTE/UiYUxHAD+LCXEvwHx3RO59JQWTJxlpfEayckktkoqJfGZMguWKho6aTiEpUew+obDBH19YuVJTSUWpdyMekg5ErbhYK3ekufhQYTtUpp+AU4WxZBVT+iJoSE5pqCACt2xR+k9Ome+hcrjhhMzZhCLk1RKJreKYQuayC+i4TJe/sP/c97qWFnTd3R9rbLA2dRKxlwzY81C920zmyESmkIi1cO+o7Zo208VyC+u53D1KofrKYV47KECPPbWdLmCeUY0J6/08fMOKmXKJslRo+hzdij5NszDIXkbXz8BRCLilnryJNmmzur53nvAc88RCy5ABMbLl/ltnJ0BiUQKAwMOHR20/x4eoFndve4hf70wRwT87w2Fc1uXY9ZdkyEa/Tq2GonwxhvAunVEIFBMFXTtGl3WlXs5x9FEcgAQolwmWSWBgcR7av9+Es5lZUVLXzs7E2OLDKIcUWE0ECqEJAgERHHhPA8o+otYvu2I24GigkGWIE2da7kMX18MONkW4wbjvgKYmwDYKWR079bum5oKYGtLcg9obenuagEqThAvlNwtJM8CAM4+Gjk1pHKPt7fC8+swHZhxCBAZIGCUObLKiAGsVDJHzdv85mXQLN0M3dBQQ+O4LUyVNeJjxpCX2CYaKgGHEOXsFuNmeChtU8TCiqqpG1tUC+i5BXS7TxA/WZhMc9/QAFzPoNZlby8ykgcG0UnGwXMR8mW/UVYa+9VXTC1NET6avHAycq3R0EJiOxdOvAhjA+IV0NFJ3aVnz+79nPaOpH1nJ5BXTkxtViYN8qR2JhYmMLPWfezuUCIUCWFrTmolVzXQSXxRCRUu3X2tlY67GXHUp7PE8tQESCVS5JSSV4WvUxFMLZTNAqOm05nRtTz1OQNk7Py1TD7p6S0pksxtEiCZdkcCs6eTMUEiAX77mgYPOti1qzsEHm7KwoiTuWZVvMwtsq4OyL1WgaPniOXLUL8NU+YPfwWFYjKkuDjtjytopr67XmE3R4jLzYy1LX0H1dXxXVukXRJ5DXgzE/XPBwBYOVhiYjDxuskp80JxDRlrFk26gA3vC3DgoBCZxV54/J1onkdX9B10fNp7mI7jMqF7wXJnGBuR5+/vK//iXVMmcC1dSv7b2pIkauqQCdyAslcQQARJgUDZQ68/gt24ceCV5LpvlRVEkW8CQhFWrCCKv3XraL9lKArd6izdZmbUmq+N0H32LHVbnzq1b+FYiqGDEgXd9kMPQWOYoEb0zQCfh+QCN6D6s/YmdDNGIEIRX+AGgMpTwC5n4MhkeNoS63NJiQRdif8D8n8HpCpCPiQdwKEo4C8r4OQiIPtrucANlwWoHHUQTU3kBuUlUTN2BlzmAY4zETCazoeyCm6NOaQiTOge5ojrqNXZwly7xAMOjnzNp6NVJdwDNE/8LXxojJaYU/22yy0mD4ieqBNu/vzRWiZ0cxxwNZlu9/YjgnrgJJqtobqeCqj+4yM09qs/TJqkrPldvLAVt43jF7sPCNDuRag4GagWkxmEtblYTeubB3vLegD0MwNAUTn97dz8hr9rsy5wdKDeGBXlUpTklKO1g1iiAjyrVB4zKpQqmdI0R3YAAE4eptUAkq8qC5uKKLodjxShe/4U6tX0804v+bKDnfoxzd34rNI2J0fN302IJ61XEjXBAIVVRDkyNTQNxubG6g4bNkynZb0Rd4SEteRfK8a2j+MhrlE/5uTnk/9GRoCDM3MvH+5Y29LfqK6Ov6+lkYaMyVyiNTF/lnK2+v+9pVkJ7OMnglu3ialD4RIyV1NzSxGWLiOKgZp6vlJRJgw//jhJUnjpEl+w1oSfH991XV+fCr89hW5e5nIt0dcHZs6k6w+sMlLbVtHSrZioUZ3QLRBQK7gszEgT331Hlx99tPf2isyaBXmiXG9vYPVq4Pffgbfe6tt5eoMJ3bcw5bFAWwVQnQBPiyQAgEQiQkn8/wFn7wMOjyex2oqIDICOekCq8B4W6gN+/wam7UJ2Hn3H9sxcLuNWz2DOhO5hjlhKY5QsvLVLrtPz5TUuOF9j3DLA1w4rhNnL4aQccsuIldfTvlSpHI4VR+N7LyfRl7R3t6tjYIjqCW9/Xqy9MXGi8rY5S7yweCF/AjNndi/Bs92oipG3MVfvFnuzYOdFZlct7SbycitF3TW6bc1rYGKhm6zzwx0nNzqBragUISuZCsgBPqrdPxVdCRMTNZ+/rbkNCWnUCpucoq8xrruhjr7wRorQHb0kVO5pcr3cU75d1bMlw0OFQszZSXM4yrPPG8LNlvijy5JHAcDs6SNDSWZvD4R4EqvD5RRLHPr1EsKiLPHgs1Px3MNJKo/hOCp0e3pCHtfOGL5Y2dGxs76BPw1rrKNCt7kWQnfMUr7yc8GEi4iaM0rjMQIB36tChqclzYitmKlahkhIBXORiHiKeXn12kUesphkgAh9Msttz8qw/XVhfucdIni//bbmDOqKlm5F1LmXA3S8qq7mW6BbWoAnngBefRVobyeKlO3byT4rK9UWfk0IBMDOneS8ubnAjz8C99xDc2PoClU5MmR5JRg3OV1NgBG52T3tqF+5LKki6q4Ap5aQrOSK2I4jIQq+jwDTdgF31ALjvwVEBvKwLkC90B1A84XKa9jfSjChe5hQX9mA/GvKGVDECnNFS2vtLBj2PcpEj1dItqYOC4UwQLGK+WltnQDiVjLD9wlUjhm0NqPmtyvZXvJlryCiSrW2Vu6XiwtJaqJrJk3ir3s7FsInzAOL7g3ilQ6ZE6ldUUJ70xKlbTaWvX+nIx17Bzo8VFcDkk4JSmrI7+lur9rCezPi6G4lX66oNkB2Og358A9QPYQ6OVGF0smTQHqici1eGeePZKC9k1pkamuB0uvlats3XKdlFa2EOWrbDSeMTI0wI/Ka0nZV+SdkeHgrW6mcnDXPOt0DXXAlyRAx4/ka+jkLNUj3w4wZ40kSPolUDwtWjpEnfTxwWrUUUl1NaxD3VQBiDA3W9lSRV9fAr4nc1EAVeWamvXu3RUYHwsGSjsf/e0s7ZeiMGcrbPP2o9n3uXOV3Ni/Oup8oCqCKJaccHPiaxv4q5MPCSNK2V1/V3K6nkC9DnaUboEI3x9H62wAR9L/4giQXW7GClPuSlXBbuRIw7qeTTX+P05aen9XEhI0htwxjPwGWlwN3t8IzmmrYCmw/otnO2yqAzh4CweRfgUVpwITvAfelJGyhG0WhW10GfCZ0M4acqqJqBAZ0wC/cCb9+coa3T1EAttAyP46hIWBlQn3Wxk3qPd5Y0dKtSujOzaXL3oHKcRjWVlTtKysHZmbUCFsX6nfWs2SGOk3YQPH1BezMaXHpORPzAQCOXvaYFExczPVFHZixWLt0og4muUrbbCx7t0CMdBQnJdXVQHlBJSRSIvS4O/UhtfIIx96NmkQqakyRlUkVNwGjlGtMA8RS8dij9Bn87F31b5eTsfVK264mqElBDKChkc56LW3Vu08ON+bPUVZUOfiqjz/28FH+bp1ce5+F2rnZYv/ZsXjvyThYGDdgydTzGDtLi3o9w4TomdRTiOPoK7qk1hUVpcpJLvNT6fjk5ViqtJ8x/LB2oPd2nZj/DDc10N/YzLT3RKNCkRDvrc+ApUkDnlsZh/FztcvYFT2J/6IXCiRwVQgZ0tMD7r2Xf4wuPNMCAoi7takp8N//0u09BfzBTtZlaak6PlqT942qZGrNzaQmuox9+0jyOBlr1gysn4NJT6E7JGQAMeOMkYnISJ6EGQAKm8cBMZeAiA8BkQmQ3KNcn0D9DaKNpdvFhSqTmHs544Yg6eRnfd7zSxoqG+whkeph3SuhKM6mVrH+CN0A4GBJM32Mm9n7m9JCQMuCNOadU9qfR0MlVb54rayUfRq9Pbt4bu2B7nxBwt/2Sq/96g8CATDRn1q65syi7rhffWOExVPO44f3L8Da0Uqr8zk4KXsY2MgC4m5iegrdRTlUte/uojrD/c2IvqE+bM3JZ6+otURWLrUkBYxW74v48MNCmBuTB/jn/eNQU1Kjsl3cWWUf8eTLTSpaEvhCt2qhfzgyf4WX0jZHL/Xfn+JEQIaTu3afVygS4qVPZ6Cu0Rz/nJ4AoWjkvOqiF/JnK4b6NJlWYpKykuXKGTqu+jncgqaDEYippRlEImLZrRdE8PY1San518xJOyn34Zemob7ZEht/nqF1H/yCzeFiQ+carrbl0Dfkm7FXruQf461ckatfbN5M5jaKLuw9he7BCD1TRChUdjG3tdVsyVcldP/8s3Jcviw8aOLE4e2u3VPoZvHctyaeNOKLZDAX6gOjngfuqAam70JJCXD//cR7RKpBDygTooVC9R4TQiG1gl+/DnRpl6rqpmHkzERuEu6efRaW5q3454fz8m0nL1Nrj7jVEo8+UAxOSkZtcTFNQGShp+zmrI7bZ5OX6fzxF3nWZnWYm9KJnbheOWOqYrZOVXFA1jbKt1JPi3igC98V1s9z8KylD/yLCDIuNmWIuZ/GwkdMD8Tu+Al48LmpWp/L3lnZXc/GXXM2+JsBe+N8+XJVdiqK8miwv7ubdvHwNwuO1mRWVVFvi6xCMjs0MWyGi496X0QLO0usXkoUS60dJtj8YYpSm/aWdiRcI1ZYQ32qyEhOVVMoFUB9I7X2mo+grPl+EZ7wdeLXJNFkVbJ3s+N9JwDg5K5lxqZuRpKwLcPBwx63Tybvh3njLuHrr6jiUlV+gDNn6WecMlNNoCpjWCEQCmBtTX7Xujq+wrqpnSqWzBwGT7krEAoQHUlNTZ62eUptxo4FAhScUXQpCPe0qCqOBba2NyZfRU8Xc02u5YCy0C2VAp99Rrd9/DHfJbyvCdRuNDY2fCUDE7pvTZSEbhkiQ7S26+H224HffiPhEzt30t0cR7L019SQZZml29NTfa13gArdXV00H8mtwsibkYxgCjOKsf34ZDS3m+Gtd8lIx3FA3Hm+FHvwwjj8/BFxMxdXUE20hb72roMbf4pG2vnr2HM6Uqv2vJJhTcq3RW0hfSHbmtcr7be2UY617KkVDxzFF179AgbPNfbuxyYjJ6kAGdlmsLAdWN1aB1fl47XN1jqSsVOIZa8uqUFRPlXGuHtqGFFvQhxtiMKhtcMEOWXkDeXvUgxBL754T7zkLc8j8OW2IHS08sMSLsRmoK2TzNKWRydCX0T2J2cpW3llNDSR9ubGYnnZupHC/On5vPWe1i1FBEIBPOzp+CcSdsHO9RZ48AD8fXwM0s5fx8FzYzE1mj5rPWscA0D8FZJxzlC/DWNmBCg3YAxLZBU/elpJmxScXMwGWac2YyKNBfewUw5pEQiIhUvGYApl9vZUkTvYVm4ZPS3dfRG6d+wAdu0CMrvtItHRpNTXvn3ENT4mRtk9f7ghEPA/MxO6b01sbUk8P8AXujmOKI6uKDilfvIJXV6/HpgyBYiMBDIyqGeuunhuGbdyXDcTum8geZnUvfRK/hgUFXLIzweKSN4cODlQq86Tb4ShLLeC715upb2gIxAKEDzeVynLuDrMralALG5U9q+qLab1cW2MlF/OVipiS3u6lwSO5s+w/UMHt0af72hPmNsM3P3WXsVE33pwuz4ssHOgv2l1tRRFLbSsnHvwIAfcDTMcbWlyI1mcbYCXandxRXzCPLB0KknYV1bnhD++4ifviztCZ9y33cZhlAeJz80o9kZ7i+oavQ3NJPugpYl6F/ThyvyFdJyxMhNr1IYDgIcj/X4cLKtGnJKhv+gb6iN4vC8EQgH8/GjOjcREvodJ6fVy5HZngx8fmAlDE1YubKRgZUX+NzTwXTZvpNA9f+UkGOmTsW3qbarLij7+OF1WLMelaxQF2hsldPe0dGvKXA7whdKdO/mZ2GW1tWfNIha/gwdpXe/hDBO6GQIBtXYXFtLwiC++AH75hd/27FngwgVSCvXjj8m2oiLgrrtom97yNSkK3bdaXDcTum8gBTn8MlN79wkQF0fX//u4ER6YFw8AaGixxLav0tEgpj+RhfXgjeAWNjSNeGOzCqG7jk52bRyU3a2t7ZQTHHl78IUG7xA36IlofLVvqGvPQ4YlZlam8omJDBsrzfWCbwbsnek9UVUtQlEZ/d3dA26NGt0yHB2Uf2//CeNVtFTm6efos/HMW8G8KgUnz1IvihkLPBEeSBIASqR6SLuYr/J8DS1EArMyG3ll62YsDZE/S65Whb20BtxdaPI1J7uR93l1gVAIRAYRL6eiIgGqimiSyDNHqAfS1PF1Sscyhi/WxqTYM8cB4hoautNUQ39HM6PBzZ3hHuiCM4fzsePrBKx5abLKNoYKepzBTLIVEQEEBpJr3Hff4F1Hkb5auiMiSAy3zIVcJpz4+gKLFum8ezcEmTV+7lzVoYOMWwNZKcDWVqCqili3n3mG7r/jDrr8ySfAs8/yy+alptLl3oRuRUs4s3QzBo2CvP9n76zjozjeP/65u7g7cSMkgYQIBAkQHErRtrRQN760pa60P+oKVKmXUoMqtFCKFWlLcAgWSEgghLi7+93+/pjczW3u4nfR5/165ZXZ3dnZubvZ3XnmMXHEgB07gOj93K95yhTg+Ve4MHP6nDEqKrmm2sq2Y6lAuoK5tbnKDLaiWlNbUlLGVVJ2TlpShjlo9s3HSey/aWhsiHDfBACAv2syLPqJP6pEKoGTjViraSdLbKX2wMHBhf/ORSWGyGiWkSQScaqXwcCQoZpvEf/AjlmRTJofovLRLa60x02LKlFbWYuyMuB4Aos07OmYBe8R7ggJ5s+IizGaadka6hpR28DuNWsL7TnC+zJmVmb44P9iEOCWgldeaD93tqc7/z6cPQaBeUkrjB7GZyZnD6epykcPc3eFSVP0kH+R0Bu2Bjx4aWl+mapclRWrKls0XdR7P0ZNG46bV0R22CpOXxgaAnFxQF4esHBhz1yzsz7dAAsuFxMjzsby5JMsb3l/5KmngJwcppmXaMbDJQYJ6n7dGRnAd99xofq555jGW+kOtnkzsHcvK2tL+9ue0D1iBDdn724Kwv4GCd09SHqm+KX233/AgX1sJdvEqB5jxwgIjPCBqRHT7pxLdEVFlXqkYv1NqqQyKSxMmF1bRbWm1rqknO/TFvXbxlFTEPcerrlsuuFbEzy65BB+/F676WxfxdFGLCBo0/YPNBxcuZBzIGYEzpxhy/rOzm0HyRiIOPtqrjL4d9B9ViKVYOO2QFUQsfPXhmPmxEz4+gqorWcLXFNn2UAilSBkFHeHuHhBrtFWeSEfh9YW/eseUvLw61NwOcsXSx7RrllTxzOcWxM4ew3eIGGjI/h74Owpbn987CybBUkkCkRe144jHdGnsLHmC0plRfw3razkko+l9eCakRoath3nQde01HS3Z16uJDgYOH0aeOUV4PXXgRUrdN+3nsTFhVKFDXZaBlNTCtUGBixquYkJH+eCmpfTN98A8+aJ22rPp9vWlgnuzzzD/MIHE3Sb9SDp2WKhubERyC1lT/nIEQkwNpHAwMgAYUPZCnhKvhfS8/hbQRf+yW1hZcrMNytrNAXK0kq2z9K0QuuKuLWDWOi2syiBlZZ0RqFRAfh085QO5xLtKzjZik1btWn7BxqmlqYwN25eiKm1hiCwyeD//tebveodtE3G2nuxqGM7xBrbtzaovs/jcf6qqMWGhsB9y5nVR8h4D9U5FxM175/yYj45t7Yc+Lni/QL5s6i1FCSDgdGT+AKmMm1YZUklzicHAACCvZI7nAKR6BvY2nBH7tIibrVSVc2FbgurQba62cN0RdOtxMKCCdyvvNJ/tdwEoURd6P73Xx6JfOJEnq744YfFCpfISGDpUpYCUJltwNi4Y6kF588H3n9/8Lk0kNDdg6TlOrR6bOoEbmY+evoIVTkhg0UUMTWq0cihqWsszZiGvaJWU6NeUsnuOjsL7SahMkMZrK358pePS54eeth7ODmLFxpsh/RAPpM+gINVmaoskzZh7YtJeO21XutOr9FS6La1qtHQkrRH8IRh+O5D7vgkkwH33gskJgJTpzZfx9tJZVVxMUNzYaq8gc8Krd0HfqTqqCgWPXX27MG52KPEf5Q3LEyY3+/ZyyyN1Kl/rkIhsNn+pNG5rZ5L9E3Ug3GWFnGrlSq17CEW1hQYT590R+gmiIGEp1oWXPXgaXPm8PKQIcDdd/Ptjz7i7oZ//sne159+Ko4DQYjpXSeeQYS8SY7MIrakM9zjGrKLHFBRywW3KTNtVOXREZrLplZmVQD0a9JsZc5W26vqLKCQK1Q5bgWFgJIq1j87q8rWToeNdRPKy9nCgI+b/nJw9waO/jz1mrlxFYzN+oc/eneZNjYVP+x2h5tdLn77oRCTFoT0dpd6hSGOcgD8vvR3TYFE0vlQr0seHg9jNyA2lgULaqktl0iAkNFW+PdfoKDIGPn5YoG/vIq/zayH9KAdZi8hlbJV9MGOVCZFuF8KjsSHIqPQHUXZJTh6kTuVTpxq03udI7qEjS0XrstKeaDGqho+LbOw1nT1InRHV83LCWKgoa7prlSb5l9/vbjexx+zuqNGAePG8f3Tpuk3u8FAgTTdPURZXiWa5Ewg9fcqwvWRl1THjA3rMG42n0CNHq15vpWZ/iP3WtrbAGApkaqruOlbVVmVqu92Vq0Hb7K14pFWW0Yu7++opzOxbUXbPxD5eut4HNp+AZeTLQetwA0ATo5i/+phXmVdbmvRIuDVV1s3Tw8N5eULF8THytXWspQph4jBwaiRZary2cOpOHqSL8JOWhCq5QyiL2Nrzy3XSkvU3rfV6kL3wI8d0puoa7qlUk3NN0EMFlxdNd0kXFyAkBbTPjMz5uM9d27P9W0gQUJ3D5FRwB0XvEd4YOE8LpSO9zsFE3OeDmz4cM38jlb6dedm1xjiripXqr34S/L5TN/OpnVh2taUp7Lx9hJardcfcXLkn6ctbf9Aw9DYEJMXhfabSPP6wsjUCLbmJaptf7+mNmp3D/WouKmp4mPqQrf14PBwIJpRt4B65ClrHDnCnknu7mLTQKJ/YGvPrVZK1bK9VdVwp0kLG4pIr0/UNd1OTuSbTQxeDAzYu0SdOXMoor2uIaG7h8jJ5WZi3sNdMf+e0XCzY354d98t/hkMDIBQ/2zRPivXDkQm6CZWarHBKtSUuSXFfBXezrZ1YdpGOK8q+3gNLE23oz3/PHZWNW3UJAYqQ6zzVWX/QP0FOFJf4CnKFS/wlOVy311r08FjcUEAEWrB1K7l+6Ghgc2GJk6kiVF/xMaOr6yXlfMfsKqWPVsMZQ0wMqVAavrE1panLHJ17d2+EERvo25iDmialhPdh4TuHiI3l788vbwAK3srxCea4dLJZNz/QpRG/dH+10TbVj0QLNtSTZsuErrruRrF1r/1ND8+vuztJZEoMHzMUJ33rzdxMoxTle2MUnqxJ0RvoS50DwvUn6+loyEPtlaYdE50rDzziqpsLb0CYvAQGOGLu68/ComEL4K6uLC0K0T/w9aRa7FLy7hlWVUtE8YtTPTvUjbYkUqBVauYlpvuI2Kwo24xJZMBs2b1Xl8GKhRIrYfIzeWmZMrUNzZO1rBx0m4jOnq0BPiDb/eE0G1lqYByHaayrBYAEyzUTd/s7Fo//6m3IlBcdRTjxirgHTJZfx3tBfzHBMDKtBwVtdYYHTl48wUPZsaNBQ4lAo5WhQgcG6C36zi68tWvwiLxI1pkXm5LIUIHExKpBBv3TMJ3jXIAckAihVQmIS13P0U9xVtpLQ+bXVXL3ruWZtUAbEHol9deYzE26D4iBjvqmu7x4ylujD4gobuHKMysAMCidDB/57af8KMnOom2e8J/07L2MICpAICK9AsAxgMASrgra5tCt/swF/ywe2Am3bOyt8LhfVdw4VQcbnlwXPsnEAOOVz4eg+EjjmJMlDPMrPQXOdzBlU+0i0rFgnV5BXc6tLajyMaDEZkhOZ4OBKwd+Uu9TM4twyobWQhtCwcKpd1TkMBNEMBQNQNVMi3XDyR09xB52UyDbGVaDhub9tXWI8b6wtiwDvWNzNTMSn4eQHjbJ3UTKyv+5qks54GiOip0D3RCowIQGqU/DSfRtzG3Nse9Kyfp/To2jlYwkDWiSW6IwlJxIKXySv7ItnGgIEsE0V+RyZgFW0UFtyZTKIDqavYetrA0bONsgiAI3bJ4MfDdd+w5tGJFb/dmYEI+3T2AvEmBzCIWpcNrSD4k0vaXVQ2NDRHqyfMFWRnlt1FbN1hacw1KRTlPkVRy9YyqbGecqfd+EMRgRiKVwMGSrXQVlolNXMoreWwIa4fBHVGeIPo7ts1GLUqhu7YWEJrjKFrQ7U0QRA9iZQUcOQIcOza4FWz6hITuHiA3tQCNcjZZ9nYtbac2Z7SvmtBtkN1GTd1gZc1X1isreQTlkkKem9vOuvU83QRB6AZHG+a8XVhhB0HB78WySmZSLpEoYGFDs3KC6M8ofSZLS5mwXVXFj5HQTRAEMbAgobsHSE8qVJW9Peo6fN7U+dzBYthY/ZqWA4CVDRe6RdHLy/h+W6ceSBhOEIMcBxsWubi+0QRVZXwmXl7NhG4r00pIZfT4Joj+jK1BMgCgsRGoraxBVXGx6piFLKe3ukUQBEHoAfLp7gHSk/mkmQVR6xg3PzINH+ZEQyaTYPpizbRiusbSmucNrajkE/qScr7fTi3iKkEQ+sHRjluUFOWUwdKOLXaVVzP1l7V5JYAeiK5IEITesDUrAuAHACgtKEdVcQUAlh3DQkgGQMmjCYIgBgokdPcA6amNqrL3UJM2aoqRyqR4as1UPfRIO1Z2vG+VVVzoLm02aTU2rIOpJUVMJgh942jPnxmFORXwCWbl8homfNtYUA5fgujv2Fjx+7y0oBpV5fWqbQvzji/QEwRBEH0fsk/sAdIyeIAyL7++q52ytOHRkCuquEl5SQWb6NtZlFFqDYLoARwdFKpyYV4NAKC+tlGVzcDavONuKgRB9E1sbXjA0rLiGlRVNKi2LS1J6CYIghhIkNDdA2Rkc2HWO7Dv5t60sueRWyqr1YTuKrZQYGdZ2eN9IojBiKN/mKpc2MTiOZRX8nvS2iukp7tEEISOUUYvB4DSojpUlnPNNwVSIwiCGFiQeXkPkJbLYu9bmFTCztm2ndq9h5mlGaQSORSCDBVVTKNWV12Hmnq2aGBnVdOb3SOIQYODK39OFBazx3RZGT9ubUMmJwTR37FRu49Lixug4AYusLAknQhBEMRAgp7qPUB2iQsAwHtIXodydPcWEqlEZdJWKRkGACjNL1cdt7Mhk1aC6AkcHXm5qIj9L+e3Iqz7rpcKQRAdxNaO6z1KiuWoquTm5haWMm2nEARBEP0UErp7gMlTjQEAi+/17eWetI+lFZsEVDSbspbkc5NyW+sGrecQBKFb1IXuwuaMgyR0E8TAws2Lu55lZAioquJ+3BaWZIhIEAQxkCChuwfYvl2B7dvj8NJLvd2T9rGyYv8rm2Xt0hob1TE7Z0fNEwiC0DmOdnyBqzA9EwBQnnFZtc9GltLjfSIIQrf4jeQxXpLTTFHFs4vCwspQyxkEQRBEf4WE7h7AwABwd2/oF5G/lUJ3VRUglwMl1Q6qY3Y+gb3UK4IYXNjZ84dFYQ5TcZcXFKr2WRtl9XifCILQLa6+Q2BiWAsAuJrhgKpqft9bWBn1VrcIgiAIPUBCNyHC0rhUVa4qq0VJCT9mZ9cLHSKIQYihsSFszdm9WFjGVsLKyniUJWsbMj0liP6OVCbFUC+m3k4p8EF5HV/ktrCh8OUEQRADCb0J3V9++SVuvfVWhIaGIiIiokPnvPDCCwgICBD9LVu2TF9dJLRgBW7CWllSRkI3QfQSjjZlAICicubAXV7G/T2tbcn0lCAGAsOCmdtWQ4MUl3ODVPstnL17qUcEQRCEPtCbuqSxsRFz5sxBWFgY/vjjjw6fFxUVhdWrV6u2jYzIxKonsbRoUpUrSmpQUlgHgKUPI6GbIHoOR5sKJGUDFbXWqK+pR0kpNz21tjXpxZ4RBKEr/Px4+eJFXra07Pm+EARBEPpDb0L3448/DgDYtm1bp84zMjKCo2PnAnbJ5XLI5fL2K/YSyr715T4qsbTgfSwrqUZx0ikAUwAAVpJEyOX+vdQzoj+NI6L7ONjUqsr5mUW4lMRn4d7DHbs8DmgcEbqAxpFu8PWVQGl0WFPD95uaytEnvlq5HDJVUQ5dd4rGEaELaBwRuqDlONL1eOpzjoExMTGIjIyElZUVxo8fjyeffBK2trZtnpOUlNRDvesecXFxvd2FdpFKePjUKwmpyC/kuYlKyrIRG1uj7TSiB+kP44joPpbmPF3f6RMXEHs1EgDgYpuH3NJs5JZmd6t9GkeELqBx1D0ksAAQINonkwlISIjtE8FXpbW1CG8uX7x4EQpTU71ch8YRoQtoHBG6QF/jqE8J3VFRUZg1axbc3d2RmZmJDz/8EMuXL8fmzZshk8laPc/f3x9mZmY92NPOIZfLERcXh5EjR7b5OfoC/7hUqMqWFo6oruXm/WMnjoaNk1VvdItA/xpHRPdxdzusKpfmWqC0mi0+hvtnICxsdJfbpXFE6AIaR7rBzkRz8czStBrh4WE93xltVFeriiEhIYC5eRuVOw+NI0IX0DgidEHLcVRTU6NTxW6nhO73338fGzZsaLPOnj17MHTo0C51Zt68eaqyMpDazJkzVdrv1pDJZP3iJusP/bS24bH1qsoVKClnixlSiRy2TtaQyijgfW/TH8YR0X2cnLia699/+aM6LLhGJ78/jSNCF9A46h5ege4wNqxDfSOP02BhXAGZrI9EL1f7bWUymWhbt5ehcUR0HxpHhC5QjiNdj6VOCd33338/brzxxjbreHh4dKtDLduytbVFenp6m0I3oTssLfmQqCiXo6SSrWrbWpRBKrPvrW4RxKDDwYnfi//E8FgKYaONe6M7BEHoAalMCl/nbCRmcmWFhWltG2cQBEEQ/ZFOCd12dnaw68EQ1nl5eSgrK+t0YDWi61jZ8FRElZUCSiqZT7edZQUAEroJoqdwdOZmnEWVPH9v+AT33ugOQRB6YphnUQuhu74Xe0MQBEHoA73ZCufk5CAxMRE5OTmQy+VITExEYmIiqtX8g+bMmYMDBw4AAKqrq7F27VrExsYiKysLJ06cwMMPPwwvLy9ERUXpq5tECyytuQ93SoqAsmobAICdVXUrZxAEoQ8cA8I19llaAr4jdWdNRBBE7+PnLdZsW5iR0E0QBDHQ0FsgtU8++QR//vmnavuGG24AAGzatAnjxo0DAKSmpqKykkXolclkSEpKwvbt21FZWQknJydMnDgRTzzxBOXq7kECwlwglcihEGT4bvc01X5bKzJ3I4ieRJuBT2goIKWwCgQxoPAbJr6pLc0beqknBEEQhL7Qm9C9Zs0arFmzps06V65cUZVNTEzw7bff6qs7RAdx8R2CN55NxEvvDRftt7OmSQBB9CQODpr7wsJ6vBsEQeiZYcPFQdMszJp6qScEQRCEviCdCaHB/60ZjmbDBBV2tjQJIIiexMyM/alDQjdBDDz8gpxE2xbm8l7qCUEQBKEvSOgmNJBKgY0bgcBAhWqfnfeIXuwRQQxOHK2LRdvhfqm91BOCIPSFh78LjAy4H7eFuaKN2gRBEER/hIRuQitWVsD27VJ4eQHm5sCSuymCPEH0NI4W+aqygawRQWNce7E3BEHoA5mhDL5OKaptCwuhF3tDEARB6AO9+XQT/Z+AAODKFUAQABOT3u4NQQw+HGwqVeUR7ldhbEYWJwQxEPELHoLLOaxs4eTZu50hCIIgdA5puok2MTYmgZsgegtHizxVOYxMywliwOI3wk5VtnAZ2kZNgiAIoj9CQjdBEEQfxdEiV1UOC8xvoyZBEP2ZoCBednbuvX4QBEEQ+oHMywmCIPoooZODgZ2sPHXxuN7tDEEQeuOOO4DoaEAmA+bN6+3eEARBELqGhG6CIIg+ym2PjUNNzWE4uxojfBoJ3QQxUDE1BX76qbd7QRAEQegLEroJgiD6KIbGhnjolcm93Q2CIAiCIAiiG5BPN0EQBEEQBEEQBEHoCRK6CYIgCIIgCIIgCEJPkNBNEARBEARBEARBEHqiX/t0KxQKAEBtbW0v96Rt5HI5AKCmpgYymayXe0P0V2gcEbqAxhGhC2gcDRLq6oCAAF6WSHTaPI0jQhfQOCJ0QctxpJQvlfJmd5EIgiDopKVeoLi4GGlpab3dDYIgCIIgCIIgCGKA4e3tDXt7+26306+F7qamJpSXl8PY2BhSKVnKEwRBEARBEARBEN1DoVCgvr4e1tbWMDDovnF4vxa6CYIgCIIgCIIgCKIvQ+phgiAIgiAIgiAIgtATJHQTBEEQBEEQBEEQhJ4goZsgCIIgCIIgCIIg9AQJ3T3Azz//jOnTp2PkyJG45ZZbcPHixd7uEtGH+fTTTxEQECD6mzNnjup4fX09Xn/9dYwbNw7h4eF47LHHUFRU1Is9JvoCp0+fxkMPPYRJkyYhICAA//zzj+i4IAj4+OOPMWnSJISEhODee+/VyP5QVlaGZ555BqNGjUJERARWrVqF6urqHvwURG/T3jh64YUXNJ5Py5YtE9WhcTS4Wb9+PRYvXozw8HBERkbi4YcfRkpKiqhOR95jOTk5eOCBBxAaGorIyEisXbsWTU1NPflRiF6kI+Porrvu0ngevfLKK6I6NI4GN7/88gsWLFiAUaNGYdSoUVi6dCkOHTqkOt6TzyISuvXMnj17sHr1ajzyyCP4888/ERgYiGXLlqG4uLi3u0b0YYYNG4ajR4+q/n755RfVsXfeeQcHDx7EunXr8OOPP6KgoACPPvpoL/aW6AvU1NQgICAAr776qtbjGzZswI8//ojXXnsNW7ZsgampKZYtW4b6+npVnWeffRbJycn4/vvv8dVXX+HMmTMaExhiYNPeOAKAqKgo0fPpww8/FB2ncTS4iYmJwR133IEtW7bg+++/R1NTE5YtW4aamhpVnfbeY3K5HA8++CAaGxvx22+/Yc2aNfjzzz/xySef9MZHInqBjowjAFiyZInoebRy5UrVMRpHhLOzM5599lls27YNW7duxfjx4/HII4/g6tWrAHr4WSQQeuXmm28WXn/9ddW2XC4XJk2aJKxfv74Xe0X0ZT755BNh4cKFWo9VVFQIQUFBwt9//63al5ycLPj7+wvnz5/voR4SfR1/f3/hwIEDqm2FQiFMnDhR+Oabb1T7KioqhODgYGHXrl2CIPBxdPHiRVWdQ4cOCQEBAUJeXl7PdZ7oM7QcR4IgCM8//7ywYsWKVs+hcUS0pLi4WPD39xdiYmIEQejYeyw6OloIDAwUCgsLVXV++eUXYdSoUUJ9fX2P9p/oG7QcR4IgCHfeeafw1ltvtXoOjSNCG2PGjBG2bNnS488i0nTrkYaGBly6dAkTJkxQ7ZNKpZgwYQLOnz/fiz0j+jrp6emYNGkSZsyYgWeeeQY5OTkAgPj4eDQ2NorG1NChQ+Hq6orY2Nhe6i3R18nKykJhYaFo3FhaWiI0NFT1LDp//jysrKwwcuRIVZ0JEyZAKpWSSwwhIiYmBpGRkbjuuuvw6quvorS0VHWMxhHRksrKSgCAtbU1gI69x2JjY+Hv7w8HBwdVnUmTJqGqqgrJyck913miz9ByHCnZuXMnxo0bh/nz5+ODDz5AbW2t6hiNI0IduVyO3bt3o6amBuHh4T3+LOp+pm+iVUpLSyGXy2Fvby/ab29vr+GXQhBKQkJCsHr1avj4+KCwsBCff/457rjjDuzcuRNFRUUwNDSElZWV6Bx7e3sUFhb2Uo+Jvo5ybGh7Fil9l4qKimBnZyc6bmBgAGtraxpbhIqoqCjMmjUL7u7uyMzMxIcffojly5dj8+bNkMlkNI4IEQqFAu+88w5GjRoFf39/AOjQe6yoqEg0yQWg2qZxNPjQNo4AYP78+XB1dYWTkxOuXLmC999/H6mpqfjss88A0DgiGFeuXMGtt96K+vp6mJmZ4fPPP4efnx8SExN79FlEQjdB9DGmTJmiKgcGBiI0NBTTpk3D33//DRMTk17sGUEQg5158+apysrARTNnzlRpvwlCnddffx1Xr14VxSUhiM7S2jhaunSpqhwQEABHR0fce++9yMjIgKenZ093k+ij+Pj4YPv27aisrMS+ffvw/PPP46effurxfpB5uR6xtbWFTCbTCJpWXFyssWpCEK1hZWUFb29vZGRkwMHBAY2NjaioqBDVKS4uhqOjYy/1kOjrKMdGW88iBwcHlJSUiI43NTWhvLycxhbRKh4eHrC1tUV6ejoAGkcE54033kB0dDQ2btwIZ2dn1f6OvMccHBw0Iggrt2kcDS5aG0faCA0NBQDR84jGEWFkZAQvLy8EBwfjmWeeQWBgIDZt2tTjzyISuvWIkZERgoKCcOLECdU+hUKBEydOIDw8vBd7RvQnqqurkZmZCUdHRwQHB8PQ0FA0plJSUpCTk4OwsLDe6yTRp3F3d4ejo6No3FRVVeHChQuqZ1F4eDgqKioQHx+vqnPy5EkoFAqEhIT0eJ+J/kFeXh7KyspUkw8aR4QgCHjjjTdw4MABbNy4ER4eHqLjHXmPhYWFISkpSbRQePz4cVhYWMDPz69HPgfRu7Q3jrSRmJgIgAtDNI4IbSgUCjQ0NPT4s4jMy/XMfffdh+effx7BwcEICQnBxo0bUVtbi5tuuqm3u0b0UdauXYtp06bB1dUVBQUF+PTTTyGVSjF//nxYWlpi8eLFWLNmDaytrWFhYYG33noL4eHhJHQPcqqrq5GRkaHazsrKQmJiIqytreHq6oq7774bX375Jby8vODu7o6PP/4YTk5OmDlzJgAWPCQqKgovv/wyXn/9dTQ2NuLNN9/EvHnzMGTIkN76WEQP09Y4sra2xmeffYbrrrsODg4OyMzMxHvvvQcvLy9ERUUBoHFEMFPgXbt24YsvvoC5ubnK79HS0hImJiYdeo9NmjQJfn5+WLlyJZ577jkUFhZi3bp1uOOOO2BkZNSLn47oKdobRxkZGdi5cyemTJkCGxsbXLlyBatXr8aYMWMQGBgIgMYRAXzwwQeYPHkyXFxcUF1djV27diEmJgbffvttjz+LJIIgCHr4jIQaP/30E7799lsUFhZi+PDheOmll1QmMATRkqeeegqnT59GWVkZ7OzsMHr0aDz11FMq/6T6+nqsWbMGu3fvRkNDAyZNmoRXX32VTKUGOadOncLdd9+tsf/GG2/EmjVrIAgCPvnkE2zZsgUVFRUYPXo0Xn31Vfj4+KjqlpWV4c0338R///0HqVSK2bNn46WXXoK5uXlPfhSiF2lrHL322mt45JFHkJCQgMrKSjg5OWHixIl44oknRC5TNI4GNwEBAVr3r169WqVw6Mh7LDs7G6+99hpiYmJgamqKG2+8Ec888wwMDEhfNBhobxzl5ubiueeew9WrV1FTUwMXFxfMnDkTDz/8MCwsLFT1aRwNblatWoWTJ0+ioKAAlpaWCAgIwPLlyzFx4kQAPfssIqGbIAiCIAiCIAiCIPQE+XQTBEEQBEEQBEEQhJ4goZsgCIIgCIIgCIIg9AQJ3QRBEARBEARBEAShJ0joJgiCIAiCIAiCIAg9QUI3QRAEQRAEQRAEQegJEroJgiAIgiAIgiAIQk+Q0E0QBEEQBEEQBEEQeoKEboIgCIIgCIIgCILQEyR0EwRBEARBEARBEISeIKGbIAiCIAiCIAiCIPQECd0EQRAEQRAEQRAEoSdI6CYIgiAIgiAIgiAIPUFCN0EQBEEQBEEQBEHoCRK6CYIgCIIgCIIgCEJPkNBNEARBEARBEARBEHqChG6CIAiCIAiCIAiC0BMkdBMEQRAEQRAEQRCEniChmyAIgiAIgiAIgiD0BAndBEEQBDEIOHXqFAICAnDq1Kne7gpBEARBDCoMersDBEEQBNHbbNu2Df/3f//X6vHNmzcjLCys5zrUD8jNzcXWrVsRHR2N9PR0SKVS+Pv7Y8WKFZgwYYKobkFBATZt2oQLFy4gPj4eNTU12LRpE8aNG6fR7l133YWYmBiN/ZMmTcK3337ban++/PJLrFu3DsOGDcOuXbu6/wEJgiAIQkeQ0E0QBEEQzTz++ONwd3fX2O/p6dkLvenb/Pvvv9iwYQNmzpyJG2+8EU1NTfjrr79w33334Z133sHixYtVdVNTU7FhwwZ4e3sjICAA58+fb7NtZ2dnPP3006J9Tk5OrdbPy8vD+vXrYWZm1r0PRRAEQRB6gIRugiAIgmhm8uTJGDlyZG93o18wbtw4HDx4EHZ2dqp9t912GxYtWoRPPvlEJHQHBQXh1KlTsLGxwd69e9sVui0tLbFo0aIO92Xt2rUIDQ2FQqFAaWlp5z8MQRAEQegR8ukmCIIgiA7yySefIDAwECdOnBDtf/nllxEcHIzLly8DABoaGvDxxx/jpptuwujRoxEWFobbb78dJ0+eFJ2XlZWFgIAAfPvtt/j5558xY8YMhIaG4v7770dubi4EQcDnn3+OyZMnIyQkBCtWrEBZWZmojenTp+PBBx/E0aNHsWjRIowcORJz587F/v37O/SZLly4gGXLlmH06NEIDQ3FnXfeibNnz7Z73rBhw0QCNwAYGRlhypQpyMvLQ1VVlWq/hYUFbGxsOtQfJU1NTaiurm633unTp7Fv3z6sWrWqU+0TBEEQRE9BQjdBEARBNFNVVYWSkhLRn7rmdMWKFRg+fDhefPFFlVB55MgRbNmyBQ8//DACAwNV7fz+++8YO3Ysnn32WTz66KMoKSnB//73PyQmJmpcd+fOnfjll19w11134b777kNMTAyefPJJrFu3DkeOHMHy5cuxZMkSHDx4EGvXrtU4Py0tDU899RQmT56MZ555BjKZDE888QSOHTvW5uc9ceIE7rjjDlRXV+PRRx/FU089hYqKCtxzzz24ePFil77DwsJCmJqawtTUtEvnA+zzhIWFYdSoUZg4cSLWrVuHxsZGjXpyuRxvvvkmbr75ZgQEBHT5egRBEAShT8i8nCAIgiCauffeezX2GRkZIS4uDgBgaGiItWvX4qabbsKaNWuwcuVKvPjiiwgODsYDDzygOsfa2hr//fcfjIyMVPuWLFmC66+/Hj/++CPeeecd0TXy8/Oxf/9+WFpaAgAUCgXWr1+Puro6bN26FQYG7HVdWlqKnTt34vXXXxe1nZaWhk8//RSzZ88GANx8882YM2cO3n//fUycOFHrZxUEAa+99hrGjRuHb775BhKJBABw6623Yt68eVi3bh2+++67Tn1/6enpOHDgAObMmQOZTNapc5V4eHhg3Lhx8Pf3R01NDfbt24cvv/wSaWlpWLdunajub7/9hpycHPzwww9duhZBEARB9AQkdBMEQRBEM6+88gp8fHxE+6RSsVGYv78/Hn/8cXzwwQe4cuUKSktL8d1336kEYwCQyWQqoVOhUKCiogIKhQLBwcFISEjQuO6cOXNUAjcAhISEAAAWLlwoajckJAS7du1Cfn4+PDw8VPudnJwwa9Ys1baFhQVuuOEGbNiwAYWFhXB0dNS4ZmJiItLS0rBixQoNP+jIyEj89ddfUCgUGp+/NWpra/HEE0/AxMQEzzzzTIfO0UbLBYkbbrgBL7/8MrZs2YJ7771XFUW+tLQUn3zyCR5++GENM3eCIAiC6EuQ0E0QBEEQzYSEhHQokNqyZcuwe/duXLx4EU8//TT8/Pw06vz555/47rvvkJqaKjKN1hYd3cXFRbStFMBb219eXi4Sur28vFSaaiXe3t4AgOzsbK1Cd1paGgDg+eefb+1jorKyEtbW1q0eVyKXy/HUU08hOTkZGzZswJAhQ9o9pzPcd9992LJlC44fP64SutetWwdra2vceeedOr0WQRAEQegaEroJgiAIopNkZmYiPT0dAJCUlKRx/K+//sILL7yAmTNnYtmyZbC3t4dMJsP69euRmZmpUb81U+zWtMyCIHSj9+I2Vq5cieHDh2ut09EUXC+99BKio6Px/vvvIzIystt9a4ly8aG8vBwAWzDYsmULVq1ahYKCAlW9+vp6NDY2Iisrq0vB2wiCIAhCH5DQTRAEQRCdQKFQ4IUXXoCFhQXuuecefPXVV7juuutU/tQAsG/fPnh4eOCzzz4TaaA/+eQTvfQpPT0dgiCIrqXUZLu5uWk9R6kpt7CwwIQJE7p87bVr12Lbtm1YtWoV5s+f3+V22kK5UKE0I8/Pz4dCocBbb72Ft956S6P+jBkzcPfdd+PFF1/US38IgiAIojOQ0E0QBEEQneD777/H+fPn8eWXX2Lq1Kk4deoUXnvtNURERKiEQqXmWl0QvnDhAmJjY+Hq6qrzPhUUFODAgQMqwb+qqgrbt2/H8OHDtZqWA0BwcDA8PT3x3XffYf78+TA3NxcdLykpaddX+ptvvsF3332Hhx56CPfcc0+3P0dVVRWMjIxEQeIEQcCXX34JAJg0aRIAlq7s888/1zh/3bp1qK6uxosvvigyvycIgiCI3oSEboIgCIJo5vDhw0hJSdHYP2rUKHh4eODatWuq/NvTp08HAKxZswY33HADXn/9dXz88ccAgKlTp2L//v145JFHMHXqVGRlZeG3336Dn58fampqdN5vb29vvPjii4iLi4O9vT22bt2K4uJirF69utVzpFIp3nrrLSxfvhzz58/HTTfdhCFDhiA/Px+nTp2ChYUFvvrqq1bPP3DgAN577z14e3vD19cXf/31l+j4xIkT4eDgoNr+4osvAADJyckAmAm+Mh/4ww8/DAC4dOkSnnnmGcybNw+enp6or6/HgQMHcO7cOSxduhRBQUEAmMZ75syZGn3auHEjAGg9RhAEQRC9BQndBEEQBNFMa+bfq1evhqurK55//nnY2tpi1apVqmPe3t54+umn8fbbb2PPnj2YO3cubrrpJhQVFWHz5s04evQo/Pz88N5772Hv3r2IiYnReb+9vb3x8ssv491330Vqairc3d3x0UcfISoqqs3zxo0bh82bN+OLL77ATz/9hJqaGjg6OiIkJARLly5t89zLly8DYGbsK1eu1Di+adMmkdCtXJBQsnXrVlVZKXS7urpi9OjROHDgAIqKiiCVSuHr64vXX3+93f4QBEEQRF9FIugiGgtBEARBEL3C9OnTMWzYMKxfv763u0IQBEEQhBY6lnyTIAiCIAiCIAiCIIhOQ0I3QRAEQRAEQRAEQegJEroJgiAIgiAIgiAIQk+QTzdBEARBEARBEARB6AnSdBMEQRAEQRAEQRCEnujXKcOamppQXl4OY2NjSKW0fkAQBEEQBEEQBEF0D4VCgfr6elhbW8PAoPsic78WusvLy5GWltbb3SAIgiAIgiAIgiAGGN7e3rC3t+92O/1a6DY2NgbAvgxTU9Ne7k3ryOVyJCUlwd/fHzKZrLe7Q/RTaBwRuoDGEaELaBwNEmprgYkTWfnYMUDHcy0aR4QuoHFE6IKW46i2thZpaWkqebO79GuhW2lSbmpqCjMzs17uTevI5XIAgJmZGT0MiC5D44jQBTSOCF1A42iQIAjAlSusbGIC6HiuReOI0AU0jghd0No40pULMzlCEwRBEARBEARBEISeIKGbIAiCIPoBgkJAU0NTb3eDIAiCIIhOQkI3QRAEQfRx6qrrMDfyDGyta/H3T6d7uzsEQRAEQXQCEroJgiAIoo/z4gPHsDdmDKrqLPHJp73dG4IgCIIgOgMJ3QRBEATRh4neFouPfp2m2r6S2v3UJQRBEARB9BwkdBMEQRBEH6W8HLjnieEQBP66TivyRm1lbS/2iiAIgiCIzkBCN0EQBEH0UZ5+GsjIEucIFQQpki9m9lKPCIIgCILoLCR0EwRBEEQfpLoa2LiRlS0tgf8tPq86duVicS/1iiAIgiCIzkJCN0EQBEH0QVJTAbmclRctAq6bUac6djmhvpd6RRAEQRBEZyGhmxiQlOaX4eGbD2P9m4d7uysEQRBdIjWpSlUeOhQICOEB1K5cNeiNLhEEQRAE0QVI6CYGJC8/cgZfbp2Mh16ZjKvn03q7OwRBEJ0m5cxZVdnH6iz8Qj0hkQgAgCtFEb3VLYIgCIIgOgkJ3cSAQ94ox+8HRqq2L56kgEMEQfQ/UlJ42dfPEKYWJvD2lgAALieZQBB6qWMEQRAEQXQKErqJAcex3XEoqBii2k6+Ku/F3gD1NfX46o3DOPDb2fYrEwRBNJOaaaIq+45wBAAEBLDtykogL683ekUQBEEQRGchoZsYcPyxVbx9NVnWOx1p5os3TmDFq5Mx5/YwXDya1Kt9IQii/5CSZQcAMDasg4sPW0hUCt0AcOVKb/SKIAiCIIjOQkI3MaBQKIBtB8NE+5LTLXunM80c2N8IAFAIMnz1/rVe7QtBEP0DQSEgJc8NAODtlAOpjL2uA/0bVXUun0nvlb4RBEEQBNE5SOgmBhSnTgHZ2eJ9yVlDtFfuJC/cF42JQRcRd6zj2mpBIeDMtVDV9s/7J6C6vFon/SEIYuCSn16I2gYzAICvG8/JHTAkXlW+ci6tp7tFEMQA4p9/gPBw4NVXQTEiCELPkNBNDCi2btXcl13igpqKmm61e/lkHNb+MBXHE0Kw7s2OC90ZqbUorHBSbVfUWuP39ee71ReCIAY+qYn5qrKvF39+BYS5qMpXrpn1aJ8Ighg4VFYCd94JxMYCb7wBrFrV2z0iiIENCd3EgEFQCNi6lS3VGhgA82bwSeu1VONutX32ONc0ZZUP6/B5Z2I1J8UbNlp1qy8EQQx8Uq5UqMo+3ny/i88QWJqyY5fTdWPFQxDE4OP994F8Pk3CmjVsH0EQ+oGEbmLAcC76MtLSWDqdaZMqMHayWgTzlO4FU7twgZcLKp07fN6ZM7xsaMB8MY8nhODSieRu9YcgiIFNyjXuu+07jC8aSqQSBLhnAQDSCtxRV13X430jiMFOUxOwciXw/POs3B8oLATq61k5J4cL2FI1SeC554BNm3q+bwQxGCChmxgwbPuFL9kunh6LYWoK6eRuyrgXEixU5cJSizZqijl9mpefvo9L7t98mtW9DhEEMaBJTeMLhb6BtqJjAT6lAABBkCL5QkaP9osgCObK9t57wLvvAt9/39u9aZ+NGwFXV8DZmfX5hReAmmavlUcfZeblSp54Amho6J1+EsRAhoRuYsCw4x8W6VciUWDRnYHw8+PHrl7tXtuxV71U5YJCaYcCjggKAWfOsIouLsDK14fC2JBppTbtnYSSku71iSCIgUtK5URV2SfIU3RMFMH8QjEIguhZzp3j5T//1E2bcXHAiy8CaWm6aU9JUhKwYgXTyJeVMe38jz+yY1ZWwMsvAy+9BCxaxPaVlQGHD+u2DwRBkNBNDBBS4jIQn85U2+MCLsHZxwl+Q7lknByf1+W281ILUFDuqNpubJSgvLj9COTJF9JRXs7M3SOGp8POxRZLlhoBAEpKDXD77YBc3uVuEQQxgElJZa9ne3vAys5UdCxgBDc3v5xQ36P9IggCSEzk5X//ZUHJukNBATB5MvDOO8CCBSz9qS5oagLuuguordV+/MUXAQcHQCIBbr+d7//rL91cnyAIDgndxIDgr59TVOVFc5jmx9ZOAntLVk6+2nXp9sIJTfPNgozCds87cyRHVR4zPBUA8PY7Ujg2y+/79rE0HQRBEOrU1wNZzR4ovr6ax4NH84wIO/Y7alYgCEKvXL7Myw0N7H3eHZ59lmmYASA+Hti9u3vtKVm9GoiJYeVhw1ha1Xnz2Pb48cDjj/O6c+YAhoas/NdflEKMIHSNXoXusrIyPPPMMxg1ahQiIiKwatUqVFe3rSG86667EBAQIPp75ZVX9NlNYgCwY6+1qrzoNg9V2c8tFwCQWeSG2spWlnrb4cLZKo19hTkVWmqKORPDnaIixpsDADw8gM2bAVmzu+bbbwPbvz3bpX4RBDEwycjgE15tQndghC/ChzJV2+mkIJzaF69ZiSAIvVBfD6SkiPft2NH19g4e5ObeSt59t2ttCQKwfTvw5JPAtGnA66+z/TIZu8bYscCuXUB5OXDoEGBiws+1smLnAEBmpjiALEEQ3UevQvezzz6L5ORkfP/99/jqq69w5syZDgnQS5YswdGjR1V/K1eu1Gc3iX5OSW4pjsSNBAD4uaQhMILPUv08y1XllPhs0XnbtwMhIcBXX7Xd/oU4Q419BbksAklTE7B0KTB9OnDlirjO6Qs8+FHEFB9Vedo08Qv1f095o76GTEQJgmCkXOAzeh+3Uo3jEqkEj/6P+3J/+r2XRh2CIPRDcrKma9ju3V2LYt7QADz8MN82bfYkOXoUOH688+398gtw443Axx8D0dG8n6tWAePG8XpWVoCRkeb5Sr9ugEzMCULXGOir4WvXruHIkSP4448/MHIkE4heeuklPPDAA1i5ciWGDGk9v6iJiQkcHTtuMieXyyHvw86xyr715T72deSNcjy89CTSMs3xxtuGGDc7SHVs58/xkCuiAAALZ6RCIXgAzV/1UB+ubU66VITAsVz4XfV/EiReluKZZwTcf79CpX1uSWyyt8a+vJx6yOVy7NpWgi1b2FidNUvA4cMKeHiw/p67OhQA4OWYBTtXF9Hv//hjAg78dhZ7T49DcaU9zh2Ow9hZI9r+DmgcETqAxlHfJzk+AwBbPPS2jYNcPlGjzpIVo7DyfQWKi6XYss0Ca7PlcO5ANsP//gPeekuKUaMEvPeeAImka32kcTRIkMshUxXlOg9E0h/HUUICgOZvRSIRIAgSlJQAhw/LMWVK59p67z0JLl9m+q9x4wQsWybggQfY9rvvCti6tePO3U1NwKuvSgHwm9rFRcDttwtYtUro0E83dy6g/Gw7dgh46SUdOZfrmf44joi+R8txpOvxpDeh+/z587CyslIJ3AAwYcIESKVSXLx4EbNmzWr13J07d2LHjh1wdHTEtGnT8PDDD8PU1LTV+klJSTrtu76Ii4vr7S70W2L2ZOLbHTcAAA4taMSz9+zGTQ+6QCqTYtuf/KUQPrYKsbGxqm0be67pPnc6D57h7FhjXSOuXBkDAKipkWDXrkR4eWlqm+vrJbiSEa6xP+VaOWJjY3E+OgsAWxrOzJRg2rQGfPPNFZRn5qK6/noAQOiwa4iNzddoI3JsLvY2pxT7Z/c1GDl2LEcHjSNCF9A46rskxHM3LBPzMtEzTZ35892wcaMzGhslePPNfCxfnttqm02Ncqxf74EfNjpDECQ4fFiCsLBEBAfXdKuvNI4GNtLaWijfgBcvXoSijblYd+hP4+i//5wBsGwpU6eW4eBBZtX27bdFsLbueDrQ2lop1q4dCUAKqVTA448nwsenDo6OwSgsNMKOHcD27Ynw9u6YJdyOHfa4ds0bADB6dCXWrEmBrS1Tv1+61OFuITAwEJcvm+PcOQn27r0EZ+fG9k/qI/SncUT0XfQ1jvQmdBcVFcHOzk58MQMDWFtbo7Cw9SBU8+fPh6urK5ycnHDlyhW8//77SE1NxWeffdbqOf7+/jAzM9NZ33WNXC5HXFwcRo4cCVlr6lSiTT55mU8Mm+SGWPPdQhyMLcOsuZb47xzz1ba3LMYt/5sNAyM+rOsLuGl4QaEtwsLCAADxJ5KhEPhvIZcPR/MhEWfPAnI5WzUO8KvBlWQ2zurqrRAWFoafy8W+3WlpprhpUQAqa0JU+yLHKlTXVadurgFe/ZyVr6XYa62jDo0jQhfQOOr75BfFqMoTp4fAJ9hDa71XXgF+/FGAQiHBjh0u+OijIVpNRiuKKzB3ShZOXnYR7c/LC8Cdd3YtWhKNo0GCWhyekJAQwNxcp833x3FUUcE1ya+8YoUjRwQ0NUlw8qQTQkMdOmw98vXXElRWMq32nXcKWLo0AADw7LMSPP88IAgSLF8ehCVLBNx1l4Dx41tvq7ERWLKEe4x+8IEZJk0K7vyHA7B0qUTlC56aGow5c/gzoq4OKC4G3Ny61LTe6I/jiOh7tBxHNTU1OlXsdlrofv/997Fhw4Y26+zZs6fLHVq6dKmqHBAQAEdHR9x7773IyMiAp6en1nNkMlm/uMn6Sz/7Gk0NTdh9lJleG8oa0KQwgCBIceqcDU6dAwALAMC8WRUwNrUXnRsQ6q4qX0uzVH3/V1rktk24JMUtt2i+KePV4hPNmtGIK8msXFhkBJlMhswcHoXE2lqO8nIZKqrFmoCZ84Zo/d1HRfnDQNaIJrkhzsQ7d3hs0DgidAGNo75LSpYNAEAmbYL3cPdWfydfX+aD+eefQG6uBDt+iMPSFWEa9T56+QJOXp4KAJBKmZAOAEd3xuH550O71VcaRwMctd9WJpOhVT+sbl+m/4wjZfwWqRSIjJRh8mTmtpGSIsHlyzIEd0DWFQTg88/59hNPSFVf7UMPAR98wNKIlZZKsH69BOvXA+vXAw88wM+prwdKS4EhQ5gvtzK428yZwJQpXf8ub7iBB2DbsUOKRx9l5aYmYNYs4MQJYN064IknunwJvdGfxhHRd1GOI12PpU4HUrv//vuxZ8+eNv88PDzg4OCAkpIS0blNTU0oLy/vlL92aCibEKSnp3e2q8QA4cTeSyiuZML0wkln8e8f8fDx0fQzum25j8Y+e1c72JqzQETJWTzNTkK82JQ7/tAprddWt+qcdR3PjVtQwgTrzDxL1b5/99bA2ykLpkY1GON/Cf9beBjbvzmFiJnafbVNLU0R7HUNAJCY6YuqsvZzfxMEMfBJzWMaaQ+HXJHljjYeuTdTVf71F+1mqLv/4zFUju6IhYNVESvHekEh7x8+mwTRF1AoeLowX1/A2FgcfKy1VF+5ucALLwB//822o6O5yfeECcCoUbyulRVw5AjLm61uzb9qFTc8yMkB/PwAFxfAzg546ileTykwd5XQUMDbm5X/+w/Iy2Pl/fuZwA0wK5vycq2nEwTRCp0Wuu3s7DB06NA2/4yMjBAeHo6KigrEq6kKT548CYVCwUyUOkhiIkuL0hlBnRhY/PU7j967aKEc024KQXKyFMnJwLZtwJtvAr/9xnJMasPPjeXLzihyRV11HQAgMUlsgxmfrH18XTjMHaEmTDSAqREzcy8oYdr1jHwHAICzTT5Gj7dEar47qmtNEXMlCBv+moxFy8ZpNqrGmJEFAACFIEPskWtt1iUIYuBTVVqFsmobAICXc3HblQFMvd4VQ2zYc2TfqRBUlYpTHBZkFOJc8nAAQPjQRETOC0dUKDPZKau2QfyJZB32niAGNtnZXPANDGT/WfAxRmuGns88A6xdy+quXg18+ik/9thjmvX9/YGffwby85nmGWBm3d9/z8ovvQRkNbuPl5UBFc2ebrNnMyG+O0gkwB13sLJczrToALBpE69TUQF8/XX3rkMQgw29pQwbOnQooqKi8PLLL+PixYs4e/Ys3nzzTcybN08VuTw/Px9z5szBxYsXAQAZGRn4/PPPER8fj6ysLPz77794/vnnMWbMGAQqn27EoEJQCPjrX28AzNRy3m0sarlUCgwdylJjvPQSS9vVGgE+TGgXBCkunmNCc8I1sZB9NcdLJZCrX/vCVWae7mqXBwcnAzjZsLYKKhzRUNuAvDKmPfdwKlKdJ5F2PBxwRAQvnz5W0npFoseQN8rxzTtHsP9Xyp9O9DzZKQWqsrtz+9YvMkMZbpzOVG91jabY88tF0fEDW7k/2uwoFtBx8kT+rDtyoPXgawRBiGnWAwHgQrefHxOSAeDYMWbyrY5CAezdy7dXrWIuIQDTVC9e3Pr1LC2B117j2x9+CJw7B/zwA9s2M+P+1ZaWTLDXBXfdxcubNjHBfvt2cZ1161jKM2LwUFcHfPcd8OWXbKyXlLBo/ps3A2+9xY6dOQPUdC8+54BFr3m633//ffj6+uKee+7BAw88gFGjRuGNN95QHW9sbERqaipqa1kgLENDQ5w4cQLLli3D9ddfj7Vr12L27Nn4qr1EysSA5fLZdCTnegMAokbGwc7Ftu0TtBA5l9ttHYmxQ1NDE5KyxfEB5AoDXD4rdmHISytAeY01AGDkULak7OTF3m7FFTbIvFoAQWC3kKeLOKBaR4mYyIX/M+c084ETPc+6F49g+YtRuP6OMCTGkPUB0bNkpZSpym4uHYsafPOtFqry1m3iY/v28yBI181nz7OoWdzc/PBReu4QREdRmpYDwPDhvDxvHvsvlwMHDojPuXhRUxBX8tBDgGE7t2BoKHDddaycmsq05ULzbf3660zjXVLCtOLtxGPtMAEBPK/3hQtMuVHf7L2idHPNyWFa8IQEYNIkwNNT7JJHDDw++ghYtozllp80CbC3B4KCgFtvBV5+mR0bMwawtgbee6+3e9v30Fv0cgCwsbHBBx980Opxd3d3XFFGpADg4uKCn376SZ9dIvoZSi03ACxc2LWEspOn88j2R44AC6ZloqFJ0/87/mwRwiYHqLbTkwoBsMmprydbtnNqdgtXKIDYM1zQ9nDt2nJv8PihMDasQ32jCU4neHWpDUJ3CAoBX//E/GkVggz//JWC4WOH9nKviMFEVhpXEbi7d+yZN2VRCOwti1FcaY/dx0JQW1kLU0tTKOQC9p9kKjhz4ypMnMsshUInDYOlaQUqa61w5LwvBIXQKQsdghisqAvd6gaYc+cygQRgft1LlvBjBw/y8uzZwL//MuHc0FAcGK0tVq4E9u1j5fzmDKTe3lAFObPtvD6iXe65BzjVHO5GPejbunXcJH7VKqYFb9ad4dlngX/+0X1fiL5BdHTH6jU1AWvWAM89p9fu9Dv0qukmiO6yYwcvL7o3rEttjBjBX0hHjwKXzvKUdRHDElTl+ItirVJ6MheqvTxZsCH10AJnz/AARJ6eXUu7Y2RqhNCRLI/m1Wx3lJV1qRlCR5zan4CkXL7wciKm76YiJAYm2cUOqrK7d8fSMxkYGWDRFPYsq663wL7NzMQ87ngS8ptdYKaNSoCRqZGq/oRgZnaeW+qMaxczdNZ/ghjIaDMvB4CoKMCi2eDk77/ZwrwSdUHl/feZqfn8+cDGjYCzc8euO20aMHq0eN877wAmJtrr64KlS6GRgjAoCHjkEablBFiAOKXADbAFhXPn9NcnondR6kktLJiVxtSpbIHprbeA339nC08ezRkuS0qYOTrBIaGb6LMUFgInT7JycDCLFNoVpFL2QgRYIJKt23kU8iULuf9kXKJ4gpuRxrXXXj7szaPUdAPA2YvcpNPDq+tvvjGRvJ2zZ4GG2gbE7L+ExvqOmZYSumPTZjvR9omL2tMUEoS+yKrgM3n30Ig2aoq5eSl/Bm39gz079m3n/trXzagV1Z8cyQOuHdlHQjdBdASlptvJiUUNV2JszFJ1AWzucuYMK8vlwOHDrKw0xZ05E9i5E7jtto5fVyIRaw3HjGk7lo0usLMDFiwQ77v7bs2+AMDYsbxMZsUDk9paIKP5VTFiBPPrPniQ+XO/+CJw883Ak0+ysamkoEBrU4MWErp7kZqKGqTGZ7ZfcZCSkMD9lqZP715bk0elqcp//BOkKs++eTiszcoAAPEpLqJz0jO4uaXXUJYazMmEByU6m+CqKnuGdCAxZyuoB1PbtKEYIcOyMO66ICyZSYG8epL6euC3v8RjIK3AA3mp9NYgGKX5Zci4nK3XaygjEgM8QFJHmLE4FNZmLIfPziPBaKitx76DVqrjs28ULyBFzeD2qIePdK2vBDGYKCvj6bPU/bmVKP26AR7F/MIFqCzYpk5lSoCucvPNwIoVLDr5xo3da6uj3H03L6tHNZ8/n/n1hoezoHDR0dwScMsW5ntODCyuXeNzcmXgQG0M4SFDVK4QBIOE7l6iurwaQcOK4TvSA798fExrndT4TDx5+yG8cF805I3yHu5h75OZmKYqe7t1LVCZkqhIHgW4voGFMpBKgYCwIQj2YQHUMgrdUVHMr5OexRNkevqzt4mTFRfAiku53ZWHL9dWdxaR0L3ZHleymUp/14nRaKil0KA9xa5dPNiNVMptA0/+S7OHwcb27cCDDwIpKXxfxuVsBA2vg/cIF2z+7Ljerq0UumUy8eSlPYxMjbAgKg4AUF5jg/GREhy9FAYA8HbOx7Awb1H9MTMCYGzIbP+OnCWLDoJoj9ZMy5Vcfz0vK/N1q5uWT53avevLZMAXX7Co0dqEfn1w/fXcyvDGG/lCoFTK/LzPnWMpzUxNgccfZ8cUChZlnRhYqIXg6rDQTZpuMSR09xL//atAWgFzfPh9i1igLsoqxpO3H0JA2BB8/OsUrP1hKv5Yf6o3utmrZF5OU5U9LC+1XrEDhE/xh7mxOH+try/zhwr2L1ftu3SKRzBPz7UBABjKGuDiw+zKnVw0zcgNDTs3OW7J8OGAmammKXmT3BBJ59O1nEHoA/UcpA/ekaYqnzxWq1mZGLBUVDBtztdfA3Pm8Jy8TyzPRG6pMwRBiidf9tXIh60rlEK3qyuPEtxRbr+Tu86cv2CEhgb2ir9u0RCNQGkm5iYYO5Kp7a7leZFGgiDaQT0gWkiI5nE3Nx49/MwZ4NIlsdA9bZo+e6cfDA2Zn/YPPzDtels8/DBLYQYA334LFBW1XZ/oXyRxQ08EBLRejzTdrUNCdy9x8AjXjCamu6vK2cm5GBGkwMe/TkGjnGtSDx8afP69Wdl8kujha9mttgyNDREZdEW0b8QI9j84gpsUx6Xz5buMguYc3I55kMrYreLoohnYyN29e2ZeMhkwZWQs75dnsqocrxb0TR1BIaCpoanrFyUAAI31jbhwJAk/rN6PPXuYdtvNDXjxFf47n7jUxpIuMeCIj+c5Rq9eBVY+24id38dg+9Hxqjp5Zc744KNOSsQdoL6mHoXNt7y7becX3ObcHoFv3jmCiNHihdyFC7XXj5jirSrHx3f6cgQxqPjrL16eO1d7nRtu4OU5c4BDh1jZ0ZHPOfob3t4skrlFOwZ9dnbA8uWsXFvLzMyJgYO60N2Wpls99hEJ3WJI6O4log9xgTI51xP1NSwB4u7frqKwgpkymxrVQCJhgsCJK6M1G9Ehh/6MxbvPROPi0aR26/YUmTlcq+zhZ9/t9iZHVoq2R/gzDWbwhGGqffGJTFNUXqZAeY0NAMBLLTK5k7uNRruezsXd7ttXG13xyoPROLT9Ata8VsL7c7FeVC87qRgvP3AYPs7ZsLBowp8bTnb72oOVrKu58HUrRNhkf9y3ajaamtjj8M4b0+DmNwTe3ux3Px3viiZa3xg0xJ1IE21/8ZUh7ntCM23cux+YIjdXY3e3yEnhtnhudjmdPl8ilWDZ/0Xh9BkZEhNZRNkvvhCbvaqjLgRc6p4xEUEMaHJzgZgYVg4JYYKoNp5+Ghg1ipWzspjlDMBMyyWDICvfjTfy8rVrvdcPQveoC93DhrVejzTdrUNCdy9QWgrExvJtucIAV2NZSMALF7iAt+PHywgKYj/RxQQLlZmjrinKLsGcpQF4/sOpCI3yR4hPEj56IbrX/Ykz86wBAAayRgzxdGqndvtETbcRbY9wZoHKgnhcNZW2Jz2D3xqew3n+bEc3cXRrAPCwStTY11k8A93w+ldTMXlRKILHqGneE3nKqgdvOoZFt8/G6u+mIb3QHfWNJvjkc2NtzREd4P1Xk5BV7CraZ21WjoceYj7/48ezGVJtLXDxYo93j+gl4mM0NczFlWzRb0b4OTz6CHtG19QAr76q22tnpfAFN3eX7j1/AwNZRNkVK1qf7Ks/+0joHnhkZABffcWydhAdRxBYxPEff4RqwXXnTn580aLWz7W0ZCnDWgol3fXn7i+oB3/M1m/MSaKHUfp0u7sD5m1ksyShu3VI6O4FDu9MVEUAVJJ4gTm/xCbwiLIRU4ciMpKV5XKegkLXnDxni7pGHjQsLs0fT6+dinUv6S9YUEfILGQaf1e7fMgMu2/KOW5WAAxlfCI7PJQJ0I6OPFdmbCx74aarzbu9uMwNYzNjVbRzJZ7uulWDeg13U/mfx6exCCZZV3Px7Y7JGnVPJQZQarEuUFVahe+3hwEATAxrseapaPz90xmkpQLeQczdQ3nvATx1HTHwib/CI35PHBGrKhsZ1OPzDbZ45VUJrJqrfPutgOMHdJduKyuNr6y6uwtt1NQNIk33OZLMBhLp6UzjumIFcNutZKrTUc6eBWbNAqZMYZG7H3iA7Vc3LW9L6AaYee2BAywug5IZM3Tf176IutCd03ljHaKPUlzMF+/aMi0HSOhuCxK6e4HovZrh/BLi6qGQK3AxxQcA4OWYBRsna4znboQ4cUI//Tl9hqtBvIfwp+Tf/1rr/Fo1FTXY+tUJ/PDecfzwA7B1K7Rq8GsqalTaJQ+nEs0KXcDU0hSRAecAsAl04GgesXf0KDYpKS0FUhPyWxW6AcDRuky07eGp29tIKpMiKIRpuFOyHVFdDUTv4mGUl844hnnjmZ1bbYMZYg9f1en1BwOb1p1FRS0b33fMOYPnP5yKOXdEwMaJj3l1oTv63zp89EI0QnyS8MJ90T3cW6KnEBQC4lLYc8HZJh+b/xoCF1sWbOz1R08gYLQPHB2B//s/Vl+hkGD2Ajvs+0U3K6LZmXxR0N3TqI2ausHaGnC3Z8/8S4kyCApNQf+Hd48i1PcKfvu0dxdhiY5TVwcsXswnyQf+McCFI1faPmmQUljIXDAefBAYP55lE/n3X378++9ZJHLlPjc3bj7eFl5eLPDa7bcDn37aduCpgYSpKWDbrDsiTffA4araNLM9odvCgo0DgKKXt4SE7l4g+pRmqOuEK8ZIjc9EVR0LGBbqz55WIm1btH5Gr7oG/b8TrvB2YrnDTyYEqnzNW6OpiZ3f8uF69r9ERI28gJX3RKO2kvlOp13KQtjwfNy8IhL3rZyA++5jeSfvv1+z3axkvjzm4ay7KMHvr7PCrNFn8dlrp2Bhy6OCRHgeVZXPRF9DRnKparul0O1kK05f5ultCl0TPJLfmgkJQPRBnsJq2QPGuH4BDyx3LH6QvM11hKAQ8Nn3PHjhY89pd10IDQVMjJgQ9Ps2Ezy9diri0vyx9oepSIwhZ7WBSH56kWqxL9g3G25+LoiLN8KFI0l44aOpqnpPPglMHc+eUdX1Fph/dyh++kh76sfOoB480t2762kIO0OQLxO6y6ptkNsiJ72iSY6nXg/CxdQAPLrKn4I36oHU+EwknEpuv2IHEQQWRfrsWfH+T9+j2W9LFApm9v3IIyxbwSm1JDF2ap5kS5YA9c1ToYULO+6b7e8P/Pwz8OijOutyv0Cp4c/OhoZVJ9E/6WgQNYDdH0ptN2m6xZDQ3cOU5JbiQiobscFeV1XmzgnXHHAhmWteQ8cye+cAfwE25iyl1YmTEq2aiO4gCMDp06xsb8+Cg0SNYmreukZTnD2ofXU8Ph546inm2zFmDBAaKiAznZs5P/ZoE47Gh+K9TVMREZyNLZ8fx4QoA1zN8dFoa8cOoLGFhXTmNS70erjpzrd8zKwR2H9mNJa/KDbVjhjPfadPn2pAetxl1baXg9h81MmuRrTtMVT3FgEjR/JyfDwQfZqNDSODekTODsTEuTxJ57Hjuo+iPJD594/zSMxkgbGigi8gNEr7ooWRETB62GWtx/76NVNv/SN6j/jT/HcdGcgW1+xd7RAySTzLMDEB/v7HGounMPOjJrkh7np6IuKPd8/qJCuHa7fdfDXjR+iDIH++qHnpjHj1NCFRgrIaprYqrnLAib3k+K1Lks6lIjDcCUHj/XDoz1idtLnhnWP4/ntWNjUVYGnKxvHPeyNQkqsbq7GBwvHjbFFbHT8/4OOPmcA4bhzbV6P2ym/PtJzgJub19UAJDbkBgXqO7o5YbSgjmBcXgwLRqkFCdw9zeHcSBIF97bMm5WCYGxPokrI9cfYsF6jDJjH1qlQmwbgRbCJXUO6I1Eu6nexnJuWrUtREhNdCIgEmR/F+HP5H84m5fz8zr1q3jq9iFRdLsP4tpulJuqLAiUQuNSZk+GHpoxOQW8oWEgLdruLLV//FpEnseF0dcOGC+Brqvo0eHvoP+Rkx2VtVPnPRGuk5XJPs7ifWhLaMYO7p340k3a0QHMzLe/awPLoAED48HaaWphg5kgVsAYBjx2g1uTN8+hkfT489XNNGTWDuDD7+J6uldduxr/vR9KvLq/HqQ9FYvugwSvPLut0e0X3iz/MMB8Ej217MMjE3weYDY3HPXG4l89/u7jkxZuXz546rT/eDR3aEoGD+OS/FijM8nDgpniL89XspCN3x+/qzaGhiwTD/+KH7bkIluaV47m3+8vhmg4D7FzGXqrpGU3z7AUWEVOe333j5vfdYpPGrV4HHH2cLa199JU4Hamk5QAOiVaUBRSeBnL+BjK1AVWq3miO/7r6BILDc6nffLRaau0JnNN0A13QLAlQyBkFCd48T/V+dqjxthilG+LLR2NBkjG1beW7V0FB+TmQE10Sc/K9jQvfx3XF46KbD7a6enz7IfYXH+LBoUVHX8SfmkRNmovqN9Y147MFilWbayEiAVML6/f22ADQ1NOHHn/iwsjQVT+LGB8bhaIw9HnptBpYs4ftP/ifWsGTm26jKHt4m0DfOPk4q38azSUORlscmvM42+TAxF1/fcWigqmxpWgFrR91ruoOHc7P+P7fxcREynpmcymRQ+fvn5gJpaTrvwoAkJgbYeTQMAODmWIwb7o9os/6zaybg53XHcHTnRRy6GIYgTzYxPnk5CPlpXX+TXDhyBRHBeXhj/VR8s2MyPnk9tsttEboj/hJ/dgWPbn9hRWYow2138OdDYWHnVr/S0tgE//Bhtp1dyLTbQ2wKYGSqf59uABgRxjXqCYniBc6WAQT/+tdb59ZWg5no0x6qckyCb6fPLy8XL7h+9OoFVayKe+cdwe13SPHISu4f9cWPQyFvlLdspt9SWalpJddRmpqA339nZRMT5tNtaSmuExbG7k8lc+YAxv0xYYiiEUj7FYieBxycA5S2WHw58yiwPxKIngscvRnY4QvsDgJiXwDKO5+dRT2AHPl19w4KBUtfd++9LAq/Mg5JV1EK3QYGrafLU4eCqWmHhO4e5uBJpu2VSuSImheAEeN4XonLSYYAWBACHzUr7Mgo/iY4cbxtO42mhia88mA0ohaMwPo/J+Pme93b9MM7E8OFu4hxTMD2D/eBkzUTKI5eDBC9pL9+5wSS0thkdGJEEfLyJFgwkTmF55S4YNemc9i0idWVSoGLcUZ46vZoWJpW4NYZx/HPSV/Yu7JJXuTINP65/uFlAMis5Jpyj/BxbX5mXTFmBLM6qKy1Qn4ZE7q9nDUFKydHPsvxdNTP02SIixHsLVkUHLmCa6JGj+aLGBMj+Wzj2J7upy0b6CQmAnPnAoLABIuHn7SHobFhm+cYmRrh9icmYuL8EADAollsBiEIUuz8rWvagA1vH8bY6d64nMVzP58820b+DaLHiL/Ks0cEjfVqoybH0YX/doVFHX+lCgLLafvpp8CCBUBZSRNyS9lzx92xqMPtdJcRY7jgd+mqjehYy+CdybneuHwmBUT3qa+px7FL/D0XmxbcbgwVdTZsYAGrJk8GysqYlvvjn1iEL0NZA157j00ihoX7YM5Y5kOWVuCBXZv0lAalhzlzhk3sfX1ZANTOcvAgD/I0f76mwK3kjTeYdtvFhaXg61fUFQIJ7wE7hgLHbwdy9gC5+zTrDZmqua88AUhYC+weARy8HsjZ12GTOkob1rs0NAB33smsUZV0J+2pQsEDqQ0dygTv9iChWzskdPcgZQXluJjKnCHC/a7Axskaw8McNOqFBNWKTJrGzRwKiYQF0jpx3hFxx5Lw5qpc/PST2Fci6VwqpoQn4M2vp0IhMEGtqMIB5w8loTXOXOBvmjFTmd+wRCpB1Bj2NqqotUZcHHvQlheW47V1PMfMh2/nw9YWWL6cd/aJl7yR0ewCPXs24D3UGB/+PBVllRb49Z8JMLfmE9TQ8a4wMWRB1k7G8cBWAJCpptB3Fx/SGxHhdRr7vFwrNPY52XLB18O5TC99kUglCPYRWzUYGwsYOZKb3U8MilOVj/1H9jttkZFSi9mzeTTfKVPYKnBnWXQbj7uw4/jYTp9/6UQyHnx5ksqkVMn5JC/yEehlFHIF4lO9AQC+zumiZ1VbOLpyS5fC4o5rpw8fZikKAWbW+sXqS5Ar2GzGzatngqgBgJW9FTwc2Mz4UpqXSpNdml+ORC1reRTPQDec/vcKahu4JVlDkzEuHO14QLX169kj4+hRYOGMdLz93AVU1rJcdvcvPAmv4WrBIh/h533/Q7e73ifYtAmorQWyssTpvNpC/RH766+8fOutrZ9jackE9JwcsQVijyGvZ6bfGX8A+QeZMFyeABRqCdxYcg7I/BNI2QQcuRnY7gbErgRqWtyzFt7ibbcFgP/jQPArQPDLgEMkADWrl9y9QPQcJrh3ADIv710efFA8vgFmVdVVq5CsLHavAR2Pwq8udLcWwXwwTnlI6O5B4mN4HqqxIUyToZ4nVUmo+2nRtrWjDYZ7MO3C2asjEDLJH6+sdsFdd7GXwObNwIpbTmDEGA8cTwjRaC96n/YRLygEnLnCtG0utnlwHeqiOjZ5QZCqfPgomwiufeE8iirYIsGtM45j7GxWZ85to1Sm2Rn53A/xnnv4taQyzaFmaGKEiAC2IJCS54WCDC44KoVuIyOWR7sniBivudTtqSWIm5MjX+nQp7/5yMBy0fb4cU0wNuZPqXEzh6lM+4+dc9ZbP/o7ddV1uH5aNrKy2HZ4OJukmXTBayFimi9cmm+TAwe0p7tri68/zlbFdFi24Agmj2bPhPwyJ+Tldb4/hO5IT65CdT0TdoOHdvzHcHDj5tlFpR0fVJ9+Kt7+aAPXrLv7e6InUUYwL6+xRk4K++yn/uE+xvPG83fSX3u7H8+AAKLPB2rsiznSMQsHhQKiBZEj57zw4c9TATAt96p3horqz7ljNGzNmTr4ZLzPgHARUNfcHetA4oB33mGWAbfdxgTBbdvYfktLZgHVZ6gvZgL2uWeA/ROA362Z6ffRW4B/pzOz791BwPE7Nc9NfB84chNw8h4gcyszK1fiOh+YcRC4qQAwtBKfZxUARHwMhLwOhLwBzD4O3JQHjPoQMPfm9Txu6tBHIE1371FfD5W1qYkJF5Ll8q67IXbWnxtoW9OdlgZcdx2rs39/1/rUXyGhuwdJuMC1pkFB7KXn7y8O1AEAoaGaglxkaK72NhPYKu1Xf0SqtCTeTpn4bs0RVZ2DR7jGJjOT3ZAVFcC1ixkoq7YBAEQMTxe1GxXFy0eOAPHHr+KjH5mZt5FBPd5Zx00SZYYyLLtFrE23Mq/GooXtv9gjR3G7sJP/cLNFpdDt7q75/eiLiKmaPnVeXpq/xfgpdqp+3fJg2z7B3SE4WHztqSOOirYt7SwR6su+9/h0P5QXioV0grHtm7NIyPADAPh5luDvv1l+4q4glTJTYIAFADxwoOPn1lXX4cddbFHMxLAW720YibHTuKB1Plb/AQOJ1olP4hPR4KgOJOJtxtTCBObGLO5GYVnHNNSZSbnYvl0h2ldUbqMq95R1j5Igf756dOk0E8BPHuWxRO64rRHBXuxZc+pKEPJSW1FdEB0m+rCmVcSpS5rZPbSRliaOqK3OskUn4RnoJtonlUkREcjer/llTsi+1r9X+AQBiOOGXu0K3e++y0zDy8tZ8DR/f1YGgBtu4DmF+wT5B5mAfflDoOgEoGjF5aA6HWhqMQhkLRb9TJyA4c8B8y8DU3cyM3KTDmoxTJyAwKeABcnApD8A33sBj5vFdQqOAmm/ANWZIrUl+XT3HikpbFEOYO5LixfzY8ldzEzYFaHbievfREL3b78xZeH+/SzA2q5dXetTf4WE7h4kMYO/UIOag9eYmAC+nmJ1WegYzVQxS24zU5mYRw6Pw7vPHUfkeHFAFAvTarzxSDTiLtvi3ucmwdmGjfQjcSPQ1CigqQmYMYNpoCMjgX07uGZ5THitqK2QEMCqeQ56YH8TomY7oq6RvZkeXXoCPsEeovr3PzFM1T8AWDLjLEzN2hcixk/kL4kTR1kfKkuqVC9ED/sMbafpBTsXW/g6i6/n5av5NjYzY/4tOTnArFn6609wuI1oe/IsTUlx4mg2+RUEKU4e6H7024HIpp+5KfeGj9JEK7BdQT1lTEfNGgFg6zcXUVrNfIZvmXEWtkNsEB7Oj58/371+Ed0jPp6XR4a27evfEkdb9gwvrOzY4Ppy7RXI5ez16+agKcD2uNCtHsH8MhMGT5zhCwiRMzyxcCYTxgVBil2/djMU7iCgqQl44AE2+XSwLoODVTEC3VNwal886uu5oOjmJsDIiAksMZc6ZuFw6Qh/WEwfmwojAyaYMS23n9ZzIkK5W9TpY/17gTYnR5yKKjGx9dRU334LPP+8eJ+6hVJbpuV6obGCCaon7gX+mQpc+Ux83CFSvG3hB3jfBYS+AwxfCfjcA3jfAYx8TazJBgCPxUDYGmDUOmDKLuCGLCD8XabJ7ipSGeC5GBj/vWaC8vg3gON3AH95Atscgej5QNFJODmxYK8AmZf3NOoC8rBhLAWekqtdnCJeuyZusyNo03S/8gqzNKlo1j/6+LDUw4MJErp7kEupXFANmsQDqIxw47M9iUSBkZHeGufOvm00ks5lIi0hC8cTRuK5dyfg2HEZtm1jZhpPPw1cSzHBy59NhYWtBSRSCaZOYz9vVa05zp2X4O+fzqpuuoQE4Ik3+Iw/YrzYf1EmAyZObPblrjDgGvFhCXj1Y00tkGegG+aMOavavntZx1SJkTP4Zz1xll0jK5kvi3nY9ZzQDQBjgrJE217DbLTWMzFBt4W39lAP5GRiWItxMzVfnBMnceHgyEGumaqvqcddc45i8ZSTgzodVc61PBw4w8a5t1MmJi8K63ab06cD5uZswWvXn2UdNtXc8OcYVfl/D7EVLRK6+w7qmjP1lH0dwdGDPQyKyy0hbyc4dF11HTb8wS5gIGvE1p80hW43V4XGPn0SFMXH5qXskVDIFTiVwGZXQ2wK4DXcDYuW8gfe1kM9E9yyvyIIwPLlLNhZYSFQXGGD4kp7XMn2xS132uLAnmrUNYcQmTlTgvBwJswkJXUsKNilWC40339rDnb/fAlzxp7Gxg/PwCPAVes5ETP5nOPMVU3T9v6EtqBQx49r7tu9my18KFm5kikelNjZATNn6r5/Wik5DxxaBGx1ZIJq6kag4BBQ1iJfqpkbEPo2MHkHMwVfeBWYsAkI+j8gfC0Q+QMw4Sdg5CuAUYt5lts8YMTzQOATrCzt3OJhp6i4CuSpmXrVFwM5u4H9kZCdugsuzswNjzTdPYu6YO3vLxa6u6rpVnd9c3NrvZ46LYXukhLgrbf4vjvuYDFNfDpm3DNgIKG7B0lIYP8dHcV+ysOH8WXXYc5XWw3g4xfmJQqOIpEw85G9e4EPPgCcnMV5Zadexy9y8CCwYYM4irlczutHTNEc+ZOHi222ZkecwcFTnrCyt9KoCwCff+uM68acwasPRWPSfE3fcm24DHWGlyOzJT99ZRiaGpqQea1MddzDre1o7bom4rrxom195ODuKDZO1pgwgs0ubph8XiN1GQBMnstN4vcc5H39Zu1J/LRvErYdHo+XXjPTOG+w8POXl1VBBe++MVlrbIHOYmICRAWx3LdF5TbITW0/NGdSEnDoEJtYBwQAUQvZ/eHvD5iZMaH9fIxm0D6iZ6gorsDpU0xbaGDQcRM6JcrnuSC0rnFT8tvnZ1SxMW6ZFoNx1wVjaqh4xcXdNl3bqXpj+Ej+bLl0Cbh8JgXlNWxCHxmcAolUgogZw+HRvG6874ARUiiIuVYEAXjuOeCHH9i2gQHg55atykaRWeSGu+7iGsqpUwSMU1vDOC0O6aKVhMs8fHDQaAfMXDIKf58ag9sen9DqOWMmcV/8M/0ogHltLfDIIyz1kdKkXn2BTElLE/OmJpbuS2lq+9RTwJo1zKz1gw+Ytd/XX7O4MXpF0QjEvQ7sGwtk7wAULeLENGh5YAStAtwXdNwUvDew9AOm/wuMeAFwmQMYq/U17Se4mrJnWkGB0OUAXkTnURe6hw0Ta6Z1IXQ7dzB8kK0tYNi85pOfzzJhKD0Q/vc/4KefuDXtYIKE7h6ivFyGvDw26Q4KEh8b4cdXrUM9W6x6doOpU3n5t18asPsE8z8eYlMAGxuunfNyzICjh2YU9YVLnCGTMqH39lnHsPNwCCxsW/dZ9An2wN6YCLz25VRIpB33Tx0/kgndNfXmiDuejMw07qfk4dmzQzRiDL+elWUTbJx0n4O7M+w+6IXdG0/jm63aw6a6DnVGxDC2mnP+2nBkXGbLyn/8xYPCffOdgSgavDrZybmoKq3SfrCDbHzvKJbOOI6z//WttGWCQsDG3/my7F0PdT4PbmsEDuVjNOkCfyPt/fkMFk85iSM7xPfxN9/w8v/+x630ZDIgxJNZulzLsCK//B6mobYBH686BF+fRiSnMDeEQJ/CTk/E1RdRi9qJhfXLFu6y8thTbNZxz+3ie9BtqBN6EktLwLPZsvncOeDZJ8pUx8aPYSpZqRR46CG2TxCAL7+kGATa+PCFo/jgA1aWSpkP49UsN5w9VQsrU3Z/Ky3HAGDquGyMVUuEEHO8/eiMl5KZAC2VyBE4umOp7dzduZ/lmTP9J3Lwa68BX3wBbNzIgw9q03S3FLq3bYNqYWjaNOD999lzVyplloHHj4v9XfVCyVlg33gg7jVAaFYgmLoA/o8CM6KBWyqBqK167oSekEgA5+lA2Gpg2t/AjTlAxOeAEXOPdLNhkw5BkCA3o3tzDKLjtBS6hwwBzJv1eN0Vus3MWErjjiCR8OdNfr74/rzuuq71YyCgN4nmyy+/xK233orQ0FBERHQs2JQgCPj4448xadIkhISE4N5770VaV8Pt9TFSk/kEpaXQPWnhaBjI2FLgrAW6i0Lt789XpWIvGqk0fg/degm7dgowNWY+1NdHpWk9f8Q4Pxz/+wr2/HgaP/4dCSNT/SwJR47jy6AnDxUgM4PbZ7p7dSHEdDcYPZoLRD6+HUhGqGdsnKwx9+4xbaYvWjibm6fu+DkZBRmFOHyRC+kNDVKsXq153tavTsB9mAuCA8qQ08XAOnmpBVj2wnhs+W8CJs/1xN8/dUBN00xVaRWeviMaa56K1ks03djDV3Apgy3zThhxEX5hHZucM9m0kAABAABJREFUdoSAQH4/X7nENNSCQsD9j7lj2+HxuHOZLRRypmJpaOBaL0NDcVR/AAgbwe1JL57oWu5vomvct+g0nlw9BcWVTIgxlDVg5UOd91d2UFuzLGwje19TQxNOXGJqdFe7XIyfw8zMF/8vDKZGbCHHzqK4w+nKdMnEiex/QwPw9yn+zo6cwnOXL18OGDeHSPj+ewlqa2ndXp2ygnKs+pCb6n/1FRfsvIa745PXxSpab8d0eI9wx7hwvth2av+lNq+hkCuQmMGeZUNdMrRaQGlDIgHGNHetpARI7QePmvh44MMP+fbOney/Uug2MIDK+uL0aTZ2Abag8O67/LwXX+y5gKwqyhOBvWOAUmYVBYmMpeNamAZEfAoMmQIY9lxqQL0jNQD8HwYWXAWGrYCbHXfmzilU+5yNFUD6FqD4NPvL3gOk/gjkHgDqOha9n2gdpU+3vT3TNksk3MQ8NVWcZrijKIVuZ2dNt/62UArdhYUstaES5btmMKK3x1BjYyPmzJmD2267rcPnbNiwAT/++CNee+01bNmyBaampli2bBnq61uJ3tiPyEvgtngjXMUvXt+Rnjj4ZyJ+XncM9z3XunlYZ5FIgGkTilvsU+D+J4Zh4iQpYo/n4Zt3jmDt12GttjF2dhCuv3OMTsxyW2P8FG729s9xN2RmcbN3D9+e1TRbWgIvvMB8vZ59tkcv3WUW3cp9+P7aY4ntmxJVCyxKvvkGyMwQC7YffcYm9umF7rj/tqwuCb7/br+qippfU2+OhfeNUqWraI/vPziLj36Ziv9bNxWb3j/U6Wu3x8avudn3PbeV6bRt/xHckiDpChOu81LzkVvKVrkyijxxfA/TYO/9KUYliN2wsFEjBZ7Ir/uUbvtJtE7SuVT8coC//W+beQyXz+fhrqcndbotRwNuHl6YeKrVenHHk1FVx8bOxNA0lUWQpZ0l3n4qBjbmZXj+AS22sz3AZ58xKwyplC96yqRNiJjG7RMdHYFbb2XPibIyCQ5v7dmYGx1BEFignt7Q5O78KQ4NTWxV4oFF0Vi+XHz87mcm4sZJfPY5dSz7/oYGWqlSesUktJ3SKzU+U5XfO8i3fdcWdSKCef3Tf3d8gbQ3UCiAFSvEQsKJE0xrdvky2w4MBKZMYeW6OmalATB3urPNIWZGjWJxOHoc6+GA+8Lm8ghg9kmWjkumb3v2XsbYDhjzBVzHLFDtEvl1lycAx5Yyc/t9Y4FD84ATdwMHZ7NgbNs9gZgHmZVAH6K1bAG9yZUrwJNPci1yTQ3/rtVdpJRCd1MTkN5Jz6X6eu4y1VHTciVKv265nMdc8PGBKu3qYERvqrzHH38cALBNmQyxHQRBwKZNm7BixQrMbI5s8e6772LChAn4559/MG/evFbPlcvlkLcXvaYXkcvlSLnGTQoDAxs1+hs5NwiRavV1xeSwS/h122TV9pwxZ+A2bDTkcjmGhnpiaKinzq/ZWUIm+cHKSoGKCim27R8KW0sulbj62PV43958E3jjDbZo0ZeGlfJ7aPl9jBjnC+8hOUjLd0X0xTBU1V5WHZszowx7/7VBYyPw9lPH8PkWNsoKM4twPIFHi9p3OgJfvBGNh16OQmc48I844FNTkwz33ANUVSnw4INtz3rPneFvsTc/dMetj9XDwEg3j6TG+kb8snsEAMDYsA6LlwXrdBwNDeZjNCnFDHK5HLGnMgHwt9Kv250QOVeOjRv5de9aeB5y+WhRWyFjuCbxXKxM7+O9tXGkC8oKyrF+zQVMmmGLifNGtn9CL7Lh4zQALJbFO08cxMoP2HOyK9+LvTWPDJ2fV9tqG0f/zQPAglhNGF8vqvf421F47E0BEmlUrzyPra2ZZvax+5Lx0nNl2HNyNB679SiMzcX9efiuJGzcOBwA8MvWQDyzWr9xNzIuZ+OHT69h/i1OGDW17QBgjY3AzJlSHDsmgYN1GUJ8UjA+ohzPvRMOSzvLNs/VBVu38efX7fdZa/0dv/hxGDJmJSA1zxmPr3RQ1Rk74hr2nY5AQbkjUi4xDbg24s7kAmCa7hGBrY81bYwKTAXAZsKnT1Xh5oc6cK5cDpmqKNf5S1H9efTXX8CJExIEBDDt2tGj4sV+hQL46CMFGhvZ/pEjFYiMBH76iW0fOaLAmDEC1q6VAmALWs8+q4BCX3nJFU1AVTJQngBJRSKE4S+waN9KQt+DxGESBL9HmLDdlyYUesbFjwcOzsxUQC5nv4GkIrltbV9NJpD8NYTkDVAsSAXM1O4DQWhV1arP99pXX0nw+OMS3HqrgE2b+o5fxn33SXHihAS//iogM1OBK1cANN+tfn78Ox86VAKljvXKFTm8vTt+jdxc3uaQIQLk8o4H+XRy4tdV/iyRkbxffZGW40jX46n37WebycrKQmFhISZM4JpeS0tLhIaG4vz5820K3UnqMfL7KFfTuDZXYl6F2NjYHrmuu7/YSmDB/BzExspaqd17PP64Pd56yxsAUFrJ/BxNjWqQkZeOzIK+p03pTeK0RJEZP80dab8BTU1SnExkwqanYyaeez4Xx44HorLWCt/9NRY37oyGg4cN/tucAUG4UdTGyjVj4DX8XzgPZWO1PTMiQSHgv1NMaDExrMW8+WXY+idbwnz0UQnKy9Mwe3broXgvp3MB9Vq+H1avuYoFC8XBxCpLqvDfH6UIGWsEnzDtQe2ysoxw5IgNrruuBHZ2TAC4dLwQhRVzAADXjTmFtBwLQIepSwSFAmbGtqipN8flNAfExsbixKFsANy09Lft9lh8y3HsPMaiJA2xzoeTv6Bx7wvmDZBJmyBXGOBcgkOPPRu0jaPu0NTYhMfuMcHppGmw+64EO3efgrG5cfsn9gJNDU3YuJ0tOhnKGjB+jrRb37scfJynXqtota1Dh/lkw21odY/91p3CGHj1EwO82HgOBoaWGn2U2QBjA2IRcyUMlzIDsPnrHQiaqD2k7dn9WaiuEBB1k3un4nyos+qheuw/Mw1f/VaA7bti2nRz2r/fFseOsdgNReU2+C92FP6LBYqL92D5i/oNillbWYe9MWxBzdkmH2YuTa3+vl/+rIBEkgKFVKKqM8I/F/ualc9/bzuPyAbtpranjnF3Isch5Z0aQxZOdbydc5q/rTaktbVQGuNcvHgRCj0ltf7oo0y88MJQrcfuuScPGzey98XnnyugnMjb2+fA3r4cAPPZ+/vvclhaFmL//mYXDtd6+PrGQ1e3mWndVdhV/g2zukQYN+bAqDEPEvBJeUqxDKVWc1qcNQ2IS9BNB/oRtbWWANjvEBtbgNhYpoI1qTeGtcOjMG7MgSCRoUlmA7nUEkZNuTCruwyzukTIhDpUmEciOakIAL8PfHL+DwbycpSbT0SlWQRqjf2Y2b4aun6vAcDq1cFQKIzxyy8SPPjgeZib92x2CW2Ulhrg5EkWkLWgQIItW5KQk2MEgN1D5ua5iI1lduFGRvYAvAEA0dHZGDKkDR+oFly6ZAaALbIaGBQiNraVAEFacYO6IgIAPD0zERvb990I9DGOgD4kdBc221/a29uL9tvb26Ooncg0/v7+MDPruxGa5XI5rmSWAQCcrAsxeWbPOTSEhgjwcsxCeqE7XGzzcN8zc2BorMc0El0kLAzIz1dgwwa+BurhkIPwUeGtnzTIkMvliIuLw8iRIyGTiV8099/PAvaos3hWMqZMn4zH7jiMd76Zhka5EfZsluHDn8LwxrPcD3BS0AUcvRSKmnpzLLh1NgBAJhPw4IMCPvmk9RXJq7FpyCxmq9CTRibgty1hWLVKgffek0IQJHj1VW+Eehbjuls1U8wBwLUccdTWH3/ywwv/p1BFvASA+xccx6a/b4DNz2VISRE0IudXVymwcKEBcnIkOHfOHQcOsJfhr7/yCf7NtzsgLEz3KXL83a4iNiUQqfmeCBruis+yxfZnJSWG+PQDVzTKmZBw+7wERIyZrK0pDPdIQXz6MCRm+mG4fyOMzfQnrLY1jrrD6icP4XQSW2AoqbKDicIWoWGdDAPeQ/zx1SkUVjBrhUWTz2LyrM6blKtTl89fpXX1VggLC0NjfSO2fn0Gnn4WmHA90/qfTswFAJgZV2PBbTP65LO4Izz20Anc1Zxf9fV3QvH3XgWGjhTnmN7942k8uIoltf9IEo3H3mzbiqahtgE/f3oaYePsET6F36+xSez9X1DuhMyLyVj8YFirbTz+OH9/2FsWq3z1fz8wHh/8YNxh/+eusOWLk6hvZO3fMP0yRo3u3Ji6MrYO+JmVayutERYWprXeh9lccJ48KxChYR1MnNuMh0M2MovcEHstACEjTdp3HVNLah0SEsKjMrVHYxVQmQTUpAOG1sAQNRtvQQHpkRsARR0EhRxnLjvjzdd/0NrMLbco8OWXjti2TUBlpQRVVfxemz3bBXPmuMDaWkB5uQQHD9ri4EFuOfT884aIiAhjG/UlQEE0JIVHICk8CpTHAVIjwNAKMLAEDC0BAwvA0BqKsd8AxmqKkrSfILnyESQt03u1wKfmN3hFPd85x9cBionardbU5ISwMKV1WBiAm7SeU10NfPtzPcxqjmPkKAsEBYXx+YC8DtJrxyFpqoZVTQwAQDC0BhwmQhHwJOQOU/TyXsvIALKzeXv29iEI7AMZ9377TQJB4OMsJ8UGjU38Xp4cnIOwABfA1AXl5TxdV329O8LCOpj3CxAF4Q0KckBYWPN9URoLSUUi0FgJwcwNsB0NmIoF7JEjNe+DJUvcERKi3YqnL9ByflRTU6NTxW6nhO73338fGzZsaLPOnj17MHSo9tVKfSGTyXR6k+maouxiFJSziAJBPlmQyXowDYQM+PGbYnz9RRoefMQKJma6C9Smaz79FLgQK0fMafZbejiVQibza+eswYe28T51KmBjA5SV8X033+4AmUyGp14NwUebalDbYIZv/hyDlekVOHCKaQaGONRiz2FfjB6Ziqs5PG2cXC7BF19I8NBDwMhWrIQP7sqGclV15pQKGBjIsHYtyzP7zTdAY6MUtywbgSOuSRg1bbjo3NL8MpXQoyQlRYJff5XhvvvYtkKuwO4j7Lyyahvs+vEo7npGPJH9+q0jyMmZyvpzUIKMDBl8fFgaPYDNfebeGgR9PB78vUsQmwLIFQbIuJyBS1ftNOps/4c/C+95yLXV51T48HzEpw9Dk9wQV84mI3zqcK31dIkun5vnzgGvfzVFtC/9ajlGTe2bz+Vvv+eLGg8+ZNzt72GIq42qXFxiCJlMhvVrj+KRN6bAQNaIs9HXYOfpi4xCNtkYNyIZJmbaMxL0B5Y8OBZvvp+KpGwfpOR7IWpqIfZuv4rwZvNvQSHgtbd4PI7VXwRh+fN1bQaIe+7+GHz++xRYmFQiM70KNk7WqCypREEF11D/9LMMSx7W/ludP8/9BoOCgLg4e9w15xh+3j8RJVV2+Ov7Y7j9Cf0teP/5J5/w3nKbVafHlIc3DzaVkyNt9fwEtcjlIyJ8On2diOGZyDzihqo6S1y7cA2BY9qZr6m1L5PJ0ObDtCIJSP4ayPwDqFZzHrXwBRZeU28UqMkAyuNRUWOFu1bHoLqWSWmLx/yBCf4ncLFoDkztPfHOuxYwNXXDrFksIrk64eEyGBqy9F/KZ76SYN9MLFvmwbtbeBA4vlRcSd4EyGsAiAOJyowsxJ+z5LRmPm1Da8DCB7AcBlgHAdbBkDhEQmbQZ3RZvYoHty5vHs/tn7NiBfDLL2YAmIupsTELgvfyywCqMllasia+CCRpLAdy90CWuwdS9xthZHQfZLIwncoDR46It3NzZRrBkAHg7bdZwNQPPwQWLNA83h1ORhfi3vsNEBWegvUvbYc0/E0cOCCuc/jPs3CyLgBwPwAgsPwByHbEAtbBCBDmAlgLALh2rcVvoZBzl4jGSqA4Big6CRSdAIpjULj3JgBfAQBcXdXOTf0OuPqFuBOmroDd6Oa/CLg4zQTA37VWVkBIiEwv8zFdo5wf6Vq27FR0rPvvvx979uxp889D/U7rBI7N0YWKi8WBv4qLi+GgHhq2H5JwNktVDvLv+Vy8UQtD8ePeSZi0oGO5s3sLY2Ng6+9yuNszbdCC6/tg5Io+iqEhMHcOjwLvapuN8XPYm8HB3R7LbmB2izX15lh6cxVqWeB6LLjBFJZ2lti+TY7rx55G5MgUDFeT99paY/v3INfSzZjLJsYSCfMLvWlKjOp6/1vOzHnVSYrl90SYP3cfePNNqHJ6xp+4huIqfu//9rtY+1tdXo13vxa//bZsYYFCLjUHAB4/nkXx1Af+Q3m+1cTzhbiU7g0AcLfP1UirEeJzBaFRAa22FRbCv5/zJ/u+6ZU6dXXAXXcxf351Uq7WtXJG75J6uQgHzjIzYJ8hGZi+OKzbbTq62ajKhSVMeDh6nH0fTXJDrH0lFcdO8Mn4xLl9+1ncHkamRtj/jyFGeDANQEG5I6bMdVWlytvx/Smcv8YfJAXljvjyrdYDd6VdysL6bcy1rKrOEhfi2b1+LV7sE/L3qVEoyNBuGvnpa7z9Rx9lz6IHHuY34obv9WcNV1tZiz3H2eqkvWUxJi/sfDwDd1++aJedp92EXi4HLmczzbafRzFMuuC+MWYUvy9PH8nt9PkiGiuB3P1A3JvAP1OBXQHA5Q/EAjcAGNqgvBz4918eYRx2oyAIwH3rv0dSLns2hnrGYtOKu/H03A/xw92z8eW8QNg2sShRLT0MbWzkcLMvALJ2YOlonpNxvN8JfH7vwzj2869ipbyTuqWFBLAazoRlMw/A0IabKRtaAQYtxopR8wKS/TiWFuvGPOCWMuD688CkLcDIVwHPxYCZKwiGlRVPL5XTAdeu5GTg11/F++rrWcq44mIA1oHAwhRg3iVg1EeAx2LAhKdWlGT9iaCUmyA91LoraleIjhZvi4LCNVNZCbzyCvsML7+svR25nGUumTixg8HMBAHI+w84cjPeW3kEV1Jt8c220TiwOQaCQsD+/eLqhy9PxuUcroL3G9KcH6w8Hq7l76qyY4jShgkCsN0N2B0M7AkBfrcG/psJXHwJyNkN1Bcir4wrR4aoe+gY2Wj2uTYHyN7JUuQdmg+nq+JA2pGRba/ZDQY6JXTb2dlh6NChbf4ZdTbBaTPu7u5wdHTEiRMnVPuqqqpw4cIFhIf3bxPjhAtc0A4KIrOjtnD3MkLiVUtcOJKEx9/SbopLaGfRNJ4n+8bpl0Vmg0+/7AuphPmeHTvPF8YWNgdXHTHOD3tOjcHxi744dgwwMWFm5T/+UIPaylqNa8mbFDh4lk2UbMzLED6FC5QyGfDz7hCE+LDUS+evDccXr4uTqCZdKlOV77ohBbNmsXJqKrD/d/Y5ov8Wv6n3nwlDsZpJ+udvnNbQlv/6iwK7d/PtuXM1uq4zAoJ5YKb9h+xRU89meKOHZ+CGGeKEmPfc0vbkdmQ4b+vKZf0GptI1n34KJDS7LNrb8YWf1LS++az79ie+kPO/2/N0kpnByt4KhjImTRSWsnGQVBKpOr750Az88iNfRJw4qW9+N53BfZgLvvwuHxODmKBdWWuF+bd641z0Fbz2vo9G/Xe/DkJ1eTXi4oCbbgIeeACoak7f+/aqFDTJ+SLelWS2cJF8SeyC0iQ3xK+/a2rLi7KK8cvfTNC1NivHnbezcRi1IAQBbixzSPSFcFw9n9a9D61GfT1w6BCQmAjs+SUO1fVMwrhhakKXAkK6+nIBIitPeyqp1FSgrp7NWoNGdy2Xe8R4tefW/jYqaqOxRb7lgiPAweuAuFeAArUMFFIjwCES8L0PCHkLCHgMN90EzJwJ3Hxzc52xX+OIaw3+PMNMjW1t5Nj2ewPMRj8HmKm5KjQH0rr+evGlQ5yPQvLnEODwItw7YjnOvR2Oax/54sTrE/Dwgj9h5dVi3mjqAoSuBqbsAm4uAeYnAPPigRsygFtKgVsbgSU1wAItyYyHPQIsSgeuO8nSYpnqNz7AQMGt2YpZm6Dakg8+4BkHFi2CKne9QgH+TpdIWCT4wCeBqD+AG3OBcd+phG8pmgBo8bcWFKirA26/HViyhGU3UOfyZWXAME0OHhRvZ2Vp1rlwgfUTAOLiRB4ZKnbtAjZtYtY4a9dqv5aKxkrg+J3AfzOAzK24mMEX8T7b/yjiLjRq9Leyzgonk8cDAJwdKmE5+hHAfiwACUsb1iyEp6SoZQSozQbq8oHyS0BZHIAW7oTG9sir5dcWRS93nQeM/hgYuwEY/iwwZBqz/lBjiLn4Xpo4EUBNDpC1A7j2LVDbuewLAwJBT2RnZwsJCQnCp59+KoSFhQkJCQlCQkKCUFVVpapz3XXXCfv371dtr1+/XoiIiBD++ecf4fLly8KKFSuE6dOnC3V1dVqvUV1dLZw5c0aorq7W18fQCQ/fHC2wx4kgHP7rfG93h+inNDU1CWfOnBGampq0Hm+sbxTuvO6IMHnkeSE7OVfj+K0zjqnGISAIpqaCUFOj/Vp3zTurqvfjh0c1jp85LVcdv2lGvNY2ju26qKpjaVou6tNLy/9THdv5wynhr41xqu375h0WBEEQbow6IeovIAjrv2wQBEEQKksqBQerQgEQBIlELni7l6vqDPdKV5XPnZW3+Z12h1OneL9cXPj38dIjscLujTGqbamkSchNyW+zrdT4TFX9G2ck6q3PgtD+OOosN9/Mv4edf5SoytePjdFJ+7omLKz5d5EKQna27tp1tcsRAPZfoRAEKytBY/yy8SoIZWW6u25voRxHlaWVwnVjTqs+n5lxtaocEZQtLJ3OnztzJl0TjI35dzFrYqaQGHNNMJA1iL6jp55i11jz1EGN72/UKEFQyBXCV28cEuaNPyXcP/+wcPPU4/zc2w+K+vnes7yNlfcc1PgcXUGhEIQFC7T/vnt+7Pq4Vz7TPB0ztR7fvp1f56WXunaN8qJywdy4UtXO3p9Pt1q3qqRE+PVtftGm81+IK9QWCMLP4H87hglCwnuCUFsoqpacLP6ODh5k++fN4/u+/17tWa2QC0Luv4Jw6V1RW6NG8fqPzv5EfO3NloJw7E5ByPuPnU/0OtOm8d+rvLz1enl5guq5YGEhCKWlgnD0KD/3ppvauVB9mSA/t1Ko/d1LkJ97QXxMIReEvyOETa9+q2rvxRebj9XkCr+vPydIJArBwbZGyGxx26Ue2aFxfz/0oELj8p98Iq5z6JBmF5cv58d9fdv4LMXnBOEvP9W4rv7OVJBI+PxCIlEIKx7i20FBms+gqCi19uqKBaHwpHDjfD5HSklpPlYSKwi7QwThV0NB+EUmCHvCBSFmhSCkbBKE8iRBUCiEm27i7aant/M7KOSCUHFVENJ+E4Tjdwt5X7qL+vXvv4IgpPzE79ncf9tpsOdpOT/StZypN6H7+eefF/z9/TX+Tp48qarj7+8vbN26VbWtUCiEdevWCRMmTBCCg4OFe+65R0hRjQ5N+ovQPTX0nGrQFWUX93Z3iH5Kd4Wls/8liB6Ai64vabXu4b8uqOpNHnle4/jatbydzz9v/Zr/W3hIVW/J9GOq/bcsLFDtv3IuU6itqhUsTCoEQBDsLIqFuuo6wc6iWAAEwVBWr6o7bRo7/+3H+UT6tplHhY9eiNZ48bjY5goKueYLUleUlGifdP/2myA01DUIHg5ZAiAIi6ccb7etpkaFYGioEABBGDlSb11m19Kx0B01sU712aurFIKpERO6Atyu6aR9XePuzvrq7KzbdkN9LqvGa16uQuvY6Inft6dQH0fV5dXChBEXND7rrl2CcOnkVdGkseWftVmZxr65c9k1lt8cq9pnY92oKk8MjtfalkQiF5Jj00T9LMgoVD1DnKwLhPqa+m5/9l83lrf6WbrTvnIMGcgaBHmTpuD49tv8Wr/+2vX+f/4Kf1662OYKxTnid0FNRY3w6C0HBQuTCsEMVaqL/vTCes3GLrwsXIveLtx1a7nw80/an7effir+nqZMEYS4OL7t7Fwn1Na2/zx66SV+ztcrvxaE/+YIwsn/CULWLkFoqu3KV0HokTvv5L9XQkLr9dR/12eeYfuamgTB0ZHtMzcXhNp2fl7V86ixUXwgc7sg/Azh0dmfqK7haFUo1P5oLzT9KBX8XS6r9r/1lvjU7x9fqXGPzx+9VxCO3CIISV+qBNP77hPXee89tUYaawRF+VXBza1JVOfqVS0f4tIaJgArhdItVsKZ7ZqCv/qf+kKc8m/ZMs2mn3uOH1fTdTZ/efWt3j8TJvDzWtF/tkpTdZEglbJzZTJBqKoSBCF7L/98aZs712AP0G+F7p6gvwjdjs2r10Ns2tZ2EURb6EJYmhnGtU7frY5utZ5CrhAC3ZNVdS+fuSY01DUIcceShJ8+PCqMDOYT4MuXW79eUXaxSnsDCMLBrecFQRCE0FC2bWAgCA1MeS3SiL33wilV+YZJJ4Rhw5STakF466kYQSppUk2yE2OuCVlXczQm9ssWHO7y99RRlJMC9b/4ZsX/1fNpwoa3DwsleaUdaisggJ1vaso0afpC10L3MNcUARAEKzOmygjyTBIAQTA2rNUqOPQ2lpbsew4I0G27M0edUY2B3durVGWZTDzZeug27ZYh/Y2W46gkr1QIHlGr+pxjxvBxfNvMo6Lv4K6lparFGXWB1cyM3cNDvSoFQRBryt54vUnjXmv5d2PUCa19vWUa14Q/80S10HJe3hnKCsoEZ5s8VXtz5rCx5GhTIqx/U4uKqxPMncEXI/NyNe+dO24uUh2/eLHr11HIFSLrhKU314qO3X39EdUxdaH7+tHaJSelxtrQUBAKCzWPz5mj+Vsp3wFM0Mro0PMoN5ctWo0aNTCsRQY6zz/Pf+Pvv9f+XqusFARbWz4fUNc2qwuzu3e3fa1W32uXPxGEzRbCRP8jovG38aG7hG1P3iDaFxwsPvWeWbs0xm2491mxhcWfHkJ4UJGozi03NwlC/iFBOHG/IGy2EC6sHqnRzuevHhaE6izxBdM283b/jhCEymvCDz+0/rzz8mLf6ZAh4v1r1mh+P19/rXbtNhQlLfH1ZefY2nb8HHXCw9n5M2Y076jKEIS4NwUh6StBqEjuWqN6hITuNugvQrePN5ss3DxPh7aMxKBDF8LSxaNXBHf7bGHCiAtCVVlVm3Xff+6g6iE9xCZfMDKo03jou7u3LyB+u/qwqv7/Fh4S5HJBMDNj2/7+vN6WL/jE2Mq8RlX+eHWW8PLL2l86T9wWrTp/Ssh50bGt67VPwHXJpEni/hga8kWEzjJ/Pm9Hl2bPLdG10G1pyrR+/m7MKmn+NG7en5XRDelGDzQ18oWZsaMqddr2rQszVG2/9Ch3rXji/iTVIhGg3V2jP6JtHGVnM4HIzk4Q1IzahJS4DMHTMVPwcCoQdu1i+/b8eFpkVv7aioPCKD9mjSOVNAl11XWCpyef8BUWsvtL/Zm084dTwql98cLXbx0SPnz+oFCar10S+++Pc6L7NDJSzcSykzy6hGuJF0Xp1oXigQd4H8+c0Tw+xp9p+CUSuVBb1Um1Uwuyk3MFW2u+SPJ//ycIjY2C8Nkr3DrJxLBGeGT+P6pOmaFKSEsTt1NSIv5dlL+vkupqbjqs1Hqp/9naKoTDh8/p7HlE9B1aml37+wvCxx+L5wwff8yP33OP+Pw//+THHnig7Wu19V5rqq0QzM3ELiwRfheF8cMvaYzHuDh2jkIhCJ5ubB5iYtwoDLFnC6mOVmKXivqNhoKhoXjB39O1QlTnnSUvaFxn4ajtgnBprbij8kZm4n3hZUFoYvf3M8/wc5QCsPJv+XJ22tKl4v1qBsQq/vuPH1e673QEc3N2zvDhHT9HnWvXBGHdOkHIymq/bl+AhO426C9C9/nzTcLDD2cJmZn0UiG6jq6FpfZQN8vU9ieRCMKHH7bfTnV5tWBiyF5ernY5QkY6N72dP5/Xqyyt0tB+AYJw4YIgXLqkef1n7zoo0qR+9QafLBrK6oXyojacyHTE/TeKJ/MjR3ZdRf3kk7yd6Oj263cVXY6j6nL+e0UFxwqCIAiPP84/x2H9Gxt0itJ8bso8O6J1X9au8Nhj/HNPH8utRHZvjFFpemXSRiHj8sBYfG1tHCkU2hfiFHKFhuXD5s+OCebGlUKwV5JQVlAm3D6La8TPRicLEgkrjxnD6q9cyXwaF0yOF/LTCzrV3/ffKhBkMv4bWVuzZ0tnOH3gksqixsy4SkhP1O1M8vXXef/++kt8TCFXCDbmpQIgCF6t+Hx3lt9+Ez9TR4VUihZCNn92jNmEqgndLU1wN24Ut/HKK+LjO3fyY8uWcYse5d+qVfIefa8RPUdKinZrsAMHeB118+WW1htVVYJgYsKOubgIgrwNw6m23muJidrnMMo/9eeC0t87JUXteT6dLdQpt2uzTgtC/GpB+HeWcH5tpNY2cz8fooo1MCmEC/fKeAoWJhVC/X+3a36QFg/P667jbarfS4Ag/PEHq/PVV+L92qxgMjL48XnzWv8e1ams5OcoXfsGOvoWursftpVol5Ejgfvvz4OLS2/3hCA6jqOHA566kyW+lUrkGO5xDbfOOI53nojGrl+vISsLeOqp9tsxszLD9FHxAICcEhds+SFTdczfn9ezsDHHnHEXRefa2wPBwcCIEUC4X5Jq//vPReO9TVNFkacX3xcEY0OWDmda+EVY2Vt1+jN3Fn/vctF2sEtMl9vyc05TlZNPnOxyOz1JfgZP8ejsyKJz+/ry46mpPd2jtikvrlSVrS0b26jZeRzVAumfinNTlf1DnPD5T0F47u5obP78NDwCBnZaIYmE/Wnsl0o0IsUveWQCiooNcDHFD9aO1ggYxn+TfXtqIQisPLQ5lfTatUBVlQQ7DgXByVOcuaA9nnnREceOAT7NgdXLy4E7bi5CXXXHU9u98WollNOm1x49Dc9At3bO6Bxuas21jPhcnFOCsmobAMAwD91E/V26FHj3XZ7G59xFC1UU+WfvisaSRyZonLNpE1S/CwBs3So+fuqUeHvPHl5euJClVlJibAw8+qgAYmDi48NSVH33XXPk6maUY6a4GDjZ/KobPpzNldUxN4cqs0luLnDmTNf6cf48LwcGah5fuxaQNj+afv2VjW/1VGFTpwLu7nw7pz4CCHoBmL4f5+0Pq/Zb8sQAiCl/Eoj8ESVT83A8fgQAICAAuGExS0dXVWeJkzk3Q4MWD894NnWCrS1Lm6f8Ho2NgRkzeP/U8fPTbNbNDTBrzoR39armcW3kqaWvF0UuJ7oMCd0EQbTKmu+mIC+1EFXlDUjIGIpf/5mA/1s3FfNuHQrXTsgOc2+wUZU//ZqXA+zFM7TFN8pF21Om8Jfhpo0SLFtwBDt/iMEz707VuIaDuz02f3kB/1t4GJ997aBxXB8EjDARbQcHaqZX6yjDPLkAm5zU9XZ6kvwsvujg7MRSZvmoZYtKSenpHrVNWRFP26VPobu6lo0LA1kjvEe4wXaIDd7dOBWLH4rUfvIgxsTcBBIpm2gGDOcpR3erCWt+Lmmqslk30m2PGwfExgIhwUzQjr/qgJdXsFl/fU09/txwEmf+SdB6rqAQcPQCWyV0tCrEk29P1FqvO7gN4fd9dlKG6FjSBZ5CcZiPlpxEXeS554CjRwEfb56qcFrYeaz+ZpLW+klJXLCurAT27RMfj4nhQrkg8HRPRkbA9OlM0FcKCatWAU5dy3xG9BOsrID77gP27mWCIgDs2MHGxr59PNVWyzzsSpRpTQHgr7+61odz53j5rbfYYr4SDw/g8cfZ2ATYO+vPP9lilJJp08RCt/qC2PkLPD3gnXfy/THVLwA+d2L/f2aiz3jdHC527Uu4sc1+l5byawUHM3n8hx+AZcuA334DbGzYMX9/wNOTl01NNduSSoFhw/hnbOzA64+Ebt1DQjdBEK0ikUowxNsRppZanuKdYN6tw1Tl9GyugfYPNBbVm39nsCrfMQBMjeR5eoMnDMM3O6Iw/56xrV5n0bJx2PDXZAwL9+5WfzuK/0ixcB8c2nWJwC+YS21XU0zaqNl3yMvik/8hTmym7evDNVcpCX0rD2d5CRdqrK205HPtBo72mrMYnyFZXcrZPFgJDOWz4ROXhqvKQ521JMftIlZWwE9fZcDIoB4A8MFPk/H6w9EI9CnATQ+Mx5hZI/DLx8c0zkuJy0BptS0AYFxQKgyNDTXqdBc3W24FlH01XXTsagJf4Brmp1vt8PjxwPnTNVi1LBqP3HIIf+zxbnPcbtrE/u/ezfKVq1NaCly7xsoJCUBG89rB1KmAhQXTqu/dC6SnAy+/rNOPQfRhLCy4ZjYnBzh7Vi3/NoC5c7Wft2ABV/5+/732PNntoS50T5wILF/Ot596CjA0BG69le9bvJjl7gaYlc3YsWIrFPU+xMby8oMP8rJyYarlZ1Rq7gHNBauWKLXcABO6AabF/uYb4IYb+DGJBNi4keUg//rr1ttTWhY2NXXMCo2Ebt1DQjdBEHrH25uZiLfEP1T8JLd2tMbs0adV29MnFrc8pU8xdKQHJBIuvAWP6boPiWeAKwxkTHBLzrDrdt96grwcPuN2dmE2qj6eXJvc94Ru3l9ra9227WBwSWPfMI8i3V5kgDMs1ENVVggyVXlooKW26l1m5ER/vPXECQCAIEjx2pdTkVbAr33PM2Px94+nReecPszVWxFhNdAH7n5c7ZuVay46djWJa6L9R3RD3d8K1g5WePubqfhsyxTYudhqrWPavBb4229Afr7YtHzaNF5uTeBQYmzMNHPa3BCIgcuiRbz8559s8QVgZtmTtBtWYMgQ4LrrWDk3F5g9GyjqxGNVELh5ubMz+3vpJeDee4HHHgMeeYQdu+kmJnyrM3QosH8/s9JQ13QrhW6FggvdHh5ASAhUbqSnTwM1NfwzWlgAUVHs+qGhbN+5c0BhYet9Vxe6W5ret2TqVGDzZmYd2Brq7nxJSa3XU0JCt+4hoZsgiB6h5Uq2uXEVXHyGaNRbu24IooIv4MX/RSMocpjG8b6EsZkx/IYkAwAsTSrgPaLrPp4GRgbwdWaaruQcNwiKvu/rmJ/HFxyGuLIZubm1OYbYFAAAUnM753erb8rLuDZaaZqnKxxdLTT2+fvqRzgbqJhZmcHTUVOV5Res+xnf06ujEBV8QbTP15lpl5vkhlj8QDiOqSm8z8RwC5wx48UCsa6wcbSGqREbM9mF4lWhqync9H5YcM+4z7REKTSVljIBQylU29sDzz7L68U0h7bYsYPva818mBg8zJ/Py59+CpQ0G7LNnq0p8Krz/fc8rkNiIptLVFa2Xl+d9HQ2XgFg1Cj239yctfnJJ0ygBpjP9Jw5/LxRo4Bjx3iMEm3m5SkpvB/h4WwRaWyzIV55ObMgUS4QzJrFr6VcRBAE4MCB1vuuTdPdHQICeJmE7t6BhG6CIHqEeXMaRNv+7pkqX051giL9cDguFG9tmNpDPeseb79SjCDPq3j/xViNQFGdxc+dafar6y2Ql1agi+7plbx8/nmd3bgg4uPMNNw5JS6orew7/ullpTxmgLWNbs2+HV1tNPYN69trRn2SAE+xdYSZcTWcvXXv+CszlOHnPxwxLew8ZoSfw4HN55CU4Y5bpjOJsbbOAAsXAmVlrP7pCzaqc0dP9tZ5fwDmzuNmz+777CKxYJ2UxqxfZNIm+AS5a5zbE6xaxTSPAFBQANQ239o33ABEqoUriIlhQa+UixbDh2sP7kQMLlxduVCqLjS3tyDj7MyEU3Ut8qOPduya6qblSqG7NVavBsLCmG92dDQf64B2Tbd6gLbwcPZ/3Di+Ly6O/Tc3B158ke9XCt0A8PffrfdHXegOCmq77x2BNN29DwndBEH0CBMnSWBlyv0SA7xL2qjdf7hlRSTi04fhgZcmd7stP2+uGU2Oz2ujZt8gv5Br35y9uEmqr0eFqpyWmIO+QnkZ18xb2+rWJ9fO2VbkagAAw4Zrar+Jtgn0qxJtD3XJ1ro4pws8Alzx3/lw/HNuFGYuGQWZoQw/7hmr8j0tKWHBm+RNAs4lsxUUD4dsDPHWnwWHm2MZAKCi1hpVpey7EBQCrmazWb+3U7Ze/Mk7wtChwMWLmlZLN9/MNIXKSf358yxglZInn+yxLhJ9HPXAaEquv77983x8mA+0VXNImM2bO6bt1iYYt0ZQEKv/44/iSOQARNmHlEK3uj+3su2xLULOODoyAX70aL5v0iTe/t69gFwcPxYA04IrhXZXV8BOBx5n6ovAV660X5+Ebt1DQjdBED2CobEhZof8o9r298huo/bgRF0blJxY0XrFPkJeI59JOHlwQcTXm5txp17uO4sr5WoZ3qxtjVuv2AVkhjLYW4o/q38IhWbuLAEBYgF7qHvPjh9jY+CNN/j21q3AlSQJqmqZJceYSP0upLgN4cEJs1OY1jsvowzV9ey6/p69awHj5ATs2gWsW8fMyq+/Hpg5kx1TChz19TzStJMTcPfdvdJVog+i7tcNMGG0owLdyJE8Qnh9vTgdXWt0RtPdFkZGXPPdlqZ7zBgeL8Tbm1l7RERotqUMqFZUxDT3LcnN5Wbx7flzdxQ7O8Ch2YCmM5pumUwc8Z3oOiR0EwTRYyy+g79dx0z17r2O9FGGDecBkpKvNrVRs2+QX8A0bnZ2gJEJN9f28eVBsFKu9h2/5vJqbgJvY6/7CPGO1mWqsrFRIzz8B3ZObn0QMGGMaHuod8fzaOuK8eOhSom4b58c/x3gLhIRkTqOwNcCd1e+YJWVwlaJrmZwK5Jho7UkGu5hJBLgiSdYEKg9ewCD5lu/pZYPYPVM+kcyBqIHCAriftJA61HLW2PxYl7+44/26yuFbltbwMurc9dqidLEPC+PCf1KYdnOjgVSA5gmfu9elnLs1KnWXYzUP7e2xQNd+3MrUfp15+QAVVVt11UK3U5OTPAmug8J3QRB9BhLH5mAT148hI9XHcK8u8a0f8Igwy+Ia0b7etowQeAv5SEt4uH5+nPbvJSUvhMQrtyAjzlrj4A2anYNB2uupRzqJ4PUgGYqnSUwSJye0G9Yz4e4lkqBm2awWW9Dgwxr13K3gTF6fmy5ufHPm53OxpO6VmrYCN1Gcu8OLaOPq/uzAsyXdcWKnusP0feRSMSCc0vNd3tMnsy1rnv2sAjhrZGby99RykBn3UEpdMvlLIK/Mkja1KnitsePB557ru0c9Oom9epR/hsaWADCt9/m+3QpdKv7dV+92no9hYJlKADItFyXUAJRgiB6DIlUgsfeaiOnxSDHa7grZDI55HIZkot0ZFOmJ6qq+ISn5UvZdwQ3NU/N6DuLB8qgWABgbaN7Yc7RjmtEh/nWAdB9aqeBjpsbYG5aj+paZv4/1P//2bvv8CiqLoDDv80mgYT0BgECgUAKkEZvoQnSlKZiBRGwUMSKFAugINgVsSAqKhbUT0A6VnpHAqGFHlqAFFJIQsrufn8M2cmSHjbZlPM+Tx5md+7M3A2T2Tlz7z3XMuPi7xmSw4IlynLe6bvyjs0sDw181DwJFy8ovV3y3hxX5uR8oaFKFursm431TzyhtDAKkdcrryhzRQcFlf7vydoahg5V5qpOT1fGeQ8dWnDZvN2/b6drea68c3W/+666/OCDpd9X/frKg4D9+5XW+NhYJci9++78c5Gb85qTN+iOji58nHtiovJ/BBJ0m5O0dAshRCVhU8uGJk2U1tGTZx0wVJ5G4nyunFPnUK/rmmSyroFfPWy0Srb60xcrz1133jHduQl5zMnTXc3Q79+khHPaCBMaDfg3U7tY+wVbpot+xN3BeDqZTqLbzDe13IPIBr5qS/bFOBfANOjOe9Nc2dSqpfYEsLaWBGqiYE5O8P778PjjZdu+pF3MzTWeO1feDOa53b8dHMo+HV7e7b77Tmn1zxtwe3oqLd7mGtMNJc9gLknUyocE3UIIUYnkJlNLTVWm5amsLp9WE+HVq2U637HWRktjLyVr+bGLzdm+vUKrVqjcoLtOHXUcqjl5uqvBYvPGlT8RXmU1+B6ldbtlS2gc6F1M6fKhtdEytNdRk/fa+kWV+3EbtGhhXL6QFgbAiYPKnbitjY5Gjcq9Crfl/feV+ZgXL6bS11VUTb16qcnKVq9WxlcXpDSZy0uiYQEz9Q0ZAnZ2+d8vibzjuqdOhXPnlOXwcOVzXbyoTNNnTiWdq1uC7vIhQbcQQlQiJhnMT1quHsW5clEdv1yvXv4m+T5dYwHIyrLijjtg1aoKq1qhkuOUdLAudZKLKVk23fsozaDW2mx63VmnmNKiMK++qiQh2rnTsgl87hlu+n/YtnVWISXNp563FVY378wuXgS9Ts/Jc8og1qZ1z1b6hEYdOih/67lZpoUwN1tbdeqxlBT466+Cy+W2dNepY55hGQUF3Q88UPb9tW+fPyt43brK38/AgcpQDXPz81PHn0vQXfEk6BZCiEqkmZ86aefpo9csWJOiXY5VA5C69fI3G7/1ZUfjVEI3bijj7n76qaJqV7CkVGW8rHPtuGJKlk3v4a3Z8+cRDu06b7Fu0dWBlZVyQ+pg4WnOew4LwbWOOmVZu84u5X5MGxs1MeHFi3DhRCw3spWmtOaN4sv9+EJUBffeqy4vW5Z/fWIinD2rLIeFmefhXd4x3aDkK8id+qsstFro1099bW0Nv/6a/zjmVLu2msU9OppCh7DFxKjLEnSbjwTdQghRiXjb7DIuX4k+UERJy7ocq35b12uQP1mao5OGNWvUJDM6HYx7KoeM1Ix8ZStCdmY26ZlKy6VznfKrQ9veLQho07T4gqLSs6llw8MDlS7l7o4JtOlZMVnMcm+6r1yBo/vVMSb+TS3ztyNEZXPnnWogHRmZf33e98zRtRzyB8P33qu0ut+Ohx9Wl997DyIibm9/JZE7rjslpfAhbHv3qsshIeVfp5pCgm4hhKhEvLzVjNdxcZU3k9qVq+rXR92GBU9jZGsL338PQ/opfdWSU6xZ9d3+AsuWt5QENbGZs2PFz/0sqqZ5X7Tlq7lb2LThGnWcK2bIQAMXpZlJr4fPFqhzIjX3l1s2IUBpsc3t7n3mTP715k6iBko39byJFG+na3mu/v2Vqc82bIBJk25/fyVR3Lhug0EZ3gPK2PnKnLyxqpEruBBCVCJe9dU+tVfjKu+sjpfjahmX6/m4FFrOygqeHhNrfP3tknIYqFYCyQnXjcvOjtlFlBRCVce5DqOnRtCyU7PiC5tJA5ezxuXft3cxLjcPqjxzdAthaU2aKP9eu2Y6MwWYf7qwXKGhyr+NG0N3M81+2r+/0nJfUYrLYH7xojKFGSizEVhJpGg28qsUQohKxKuhi3H5akKtwgta2JUEpdVPo9Hj2dC9yLI9hobi46FkO9+wJ5zLZ8pnTHVRkhPUFkMXp5wKP74QJRUUmP+9lo1O0GVAi/wrhKihcoNuyN/andvSbWsLLcz4Z/Pll/Daa0p28cqe1LAwt87Vfatd6gg32rcv//rUJJW3GUUIIWogt3quWGl06A1ariZaOJNUES4nugDg4ZiIta1HkWWttFaMGHyCN79qgE5vzU8LD/PcvB7lX8k8khLULuXOTvoKPbYQpTF6cjuuXNnI9esaQkKtCGnnQUiXZtjUskwvESEqo7xB99mz4OurLF+/rgaTwcHmzQLu5wezZplvf5bg56cu5yaby2v3bnW5Q4dyr06NUm5B92effcamTZs4evQoNjY27M07Kr8QU6dOZfny5Sbvde3ala+++qq8qimEEJWKlbUWD6c4riZ7cjXJydLVKZBBb+BKkhJo13NLBIoOugFGjmvEmzcv5d/+4s1z88qxggVIvqZO5po7x6sQlZG9kz1vfNHD0tUQolIzbenWGIPugwfVrNzm7FpeXfj4KNOGGQwFj4fP29Ldrl3F1asmKLfu5dnZ2fTr148Hc1PXllBERARbt241/rz//vvlVEMhhKicvFyUqcLikt0w6CtfMrXkxAwys5WM5XXd04sprQho05QOgYcAOHAmgANbCujXVo6Sr6njuJ1dNBV6bCGEEOZ1a0t3rrxJ1MyVubw6sbVVk9Dd2tKt06mZy318wNu7QqtW7ZVbS/ekm2n4lhU0gV4RbG1t8fT0LNU2Op0OnU5XfEELya1bZa6jqPzkPKo5vFyvQwxkZNmTkpiEg6v5EiiZ4zy6eEUda143MKTE+xpxfzy7bnbN++6LS7zdueKSUyVdU8dxOzlr5e/oNsn1qIbQ6dAaF3XKXblZdy/nkSibRo2Am2fn6dPKezqdjn37NOS2KYaG6sx9ylYLjRtbcf68hvh4SE7W4XBzJFtUFKSlKb/T9u0N6HQ1ayjWrdcjc1+XKt2Y7t27d9OpUyecnJzo2LEjzz77LK55c/QX4HhB6fcqoaioKEtXQVQDch5Vfy6OKcbl7Rv34NXEzezHuJ3zaN8+B0CZd8TK6iqRkRdLtF2rLlbYWmeSlVOLlX835qGCJlgtJ6cuq1OxXc/OJLICj12dyfWoerPKyCC3sfDgwYPo7ezK5ThyHonS0uvB1jacrCwroqOV4UNRUVFs3x4E2KPVGjAYDhAZWfl6i1mak5MvoCRA3bDhGH5+Ss6TFSvcAV8AGjS4SGTkFYvUz9LK63pUqYLuiIgI+vTpQ8OGDTl//jzvv/8+jz/+OD///DPaItIE+vv7Y29vX+h6S9PpdERFRREcHFzk56ho06dPJyUlhQULFgDw6KOPEhgYyLRp0yq0Hrt372bUqFHs3LkTJ6fKOYa1Mqis55Ewv/reW4zLTvZehIW1Mtu+zXEeHT+uds9u1cqLsLCS904K8zvK7uhWnLrsi18jdxzdKiZZ3PfOap2DOvQgLKxCDlttyfWohkhLMy6GhIQokxWbkZxH4nY0aaIhOhouX66NwQABAcGcPq1kTgsMhI4dQy1cw8opPFzD2rXKcu3agcbvw88/V78nhwzxJiysZvUvv/V6lJ6ebtaG3VIF3e+++y6LFi0qsszatWvxy5sarxQGDhxoXA4ICCAgIIDevXsbW78Lo9Vqq8TFuqT1zJtQzsbGBm9vbwYPHsxTTz2FtbX5npNoNBo0Go2xTgsWLMDa2rpEddy1axcjR45kz549tx0oW92cBLCq/D9amvyeqr+6gWr2l4Sc0HKZmuTW8ygrI4v01AxcvIrPMhaXZ8av+vWtSlW/0MBEdkeDwWDFkYMZdL6jYrKapaaqy25u2io73UtlI9ejai7P/61Wqy23eZLkPBJl0aSJkqk8PV1DYqI1hw9ryclRAsfwcI2cU4Vo2lRdPn9e/T7cs0f518oK2rWrud+Tudcjc58/pYrgRo8ezdChQ4ss4+Pjc1sVunVfrq6uxMTEFBl0V0cRERHMnTuXrKwsNm3axOuvv46NjQ1PPvmkSbmsrCxsbW3NckwXFxez7EcIcXu8GqgPsuIqYErruPPxdO5wnXNx3nw+ewuPTYkosvzRrbsAZS6Reo7ngZJf90Pv6AS/K8sHjtej8x1lrHQpJSery5K9XAghqr68ydRiY205eFBtqa1hYUOp5GZ6BzWDeVqaMqYboFUrjOO8hfmUKuh2c3PDzc38YwsLc/nyZZKSkkqdWK06yJtQ7qGHHuKvv/7in3/+4cyZM6SkpBAcHMwPP/yAra0t//zzD7GxscybN49t27ZhZWVFmzZtePnll2l4M0WhTqfj7bff5rfffkOr1XLPPfdgMJiOcxkxYgSBgYG8/PLLgBLQf/TRR6xevZqEhAS8vb154okn6NSpEyNHjgSg3c35BIYOHcq8efPQ6/UsWrSIn3/+mfj4eHx9fRk/fjz9+vUzHmfTpk28+eabxMbGEhoaWuyDHCFqGi8vdfnq1fI/3kvjjnIyVgm0x07rjLPrToY90ZG0NPjhB6hVC0aOVKYZSU1M5YfVQQDY2abTtlPperqEtVYnTT1wQH1/y8oDbPn7Gk9NDcXNu+g8HmWRlGQAlBsyeb4ohBBVX97g8eLFWuzapQbd3bpVfH2qioIyv//3nzJOHqB9+wqvUo1QbmO6L126RHJyMpcuXUKn03H06FEAGjVqRJ2bY4L69evHCy+8QJ8+fUhLS2PBggX07dsXDw8Pzp8/zzvvvEPjxo2JiCi61aXUjr4Px0owFZlba+i+0vS9TYMg8b+Cy+cV+DwEPV+2+hWgVq1aJCUlAbBjxw4cHBxYvHgxoEzPNmbMGMLCwvjhhx+wtrbm008/ZezYsaxcuRJbW1u+/vprli9fzptvvomfnx9ff/01f/75Jx07diz0mC+99BKRkZG88sorBAYGcuHCBa5du4a3tzcff/wxTz/9NOvXr8fBwYHatZXpgxYuXMjKlSuZNWsWvr6+7Nmzh8mTJ+Pm5kb79u2JjY1l4sSJPPzwwwwfPpxDhw7x1ltvme33JER1kPc5Y3kH3VtWHuCbNeo1Vm/Q8uCEcF7YtZHFq9pzOU7JlxEfDy+8AN9+8B+pGd0BeKT/Xly8SndnExKiLucG3Ymx1+g/3I+0TAfOnN3Mot/Nf7eUfO4I0BKNRo+jg4bcAFwIIUTVlDd4vHixFtu2KcuurtCihWXqVBU0bKh0Idfr1aB79251fYcOFqlWtVduQff8+fON45IBhgwZAsB3331Hh5v/m2fOnCH15kA7rVbL8ePHWbFiBampqXh5edGlSxeeeeYZs3WfNspOgYwSZNu9UUCXyRtxJds2O6X4MiVgMBjYsWMHW7du5ZFHHuHatWvY29sze/Zs4+/l999/R6/XM2fOHDQa5UZy7ty5tGvXjt27d9O1a1e+/fZbnnjiCe68804AZs2axdatWws97pkzZ1i3bh2LFy+mc+fOgOnQAeeb/TPd3d2NY7qzsrJYuHAhixcvJvzm5Ig+Pj7s27ePn3/+mfbt2/PTTz/RqFEjpk6dCkDTpk05fvx4sbkChKhJvNzSASXYvXr6FFC2PBnFyc4yMG6SmhipRaOTHDnXjKycWsz9uodJ2Rkz4L579SxYrF4Hnp5cr9THdHRUxpOdPg0HDxrQ5cCfvx0hLbMLAL9vDGShTo+V1qpsH6oQyWnK79OxdipWWulfLoQQVV3eoHvrVmcSEpR74IgIJagUBbOxUQLvc+fUoHvXLnW9tHSXj3ILuufNm8e8efOKLBMdHW1crl27Nl999VV5VceUjRPYNSi+XO0CurXX9izZtja3l1xs48aNhIeHk52djcFg4K677uLpp5/m9ddfx9/f3+RBxLFjxzh37hytW7c22UdmZibnzp0jNTWVuLg4QkPVLI7W1ta0atUqXxfzXEePHkWr1Rq7j5dETEwMGRkZjB492uT97OxsgoKU7qinTp1SMqDmESZphIUw4eWRbVy+eiG5iJK354MPNRyOUebKbtv8CFsj/Rh+5y5WblMfczfxuc6Z8w6kpcGdd6QRfVHJwNI9JJLgLmFlOm5os7OcPu1LerqGUwfPsGG9OhdoXIoXkZuP0rpnUNk/WAGS05SHC851rgMSdAshRFWXN+g+eFAdhGzuDrLVka+vEnQnJCiJRnNbuuvUgZYtLVq1aqtSTRlWYYJuo+v3rd3Ny0mHDh2YOXMmNjY2eHl5mWQtt7tlnsz09HRatmzJu+++m28/ZR2Dn9tdvDTS09MBpYt53bp1TdaZvbeCENWYk7uTcT7ruGvmnaIn19WrMGuWsmxlZeDzxXWpZV+LpetCmPr4Jq7E2fDMC44EdQ4mIMDA1asaok85Grd/elxGmY8d6neW5TfnAj2w6zIbdjQzWb/h9yvlEHQrdXdxSCumpBBCiKrAzU3pPZV3dgqQ8dwl4esLmzcry7t3Q0yMstymTblNUlDjSeeLSsrOzo7GjRtTv379YqcJa9myJTExMbi7u9O4cWOTH0dHRxwdHfH09ORAnqxFOTk5HD58uNB9+vv7o9fr2ZM7f8AtbGyUZEg6nc74np+fH7a2tly6dClfPby9vY1lbp10Pm+9hBCgsdLg6ZwIwNWkoltlDXoDkZujSU1MLbLcrRYs0HDzORlPPqmhTRd3AOwc7fhoaXeW/t2ZTgOCcXGB9181/Zv18bjI4NEl7wVzq9DW6oPDH3/UcCnRdC7QDf+6lHnfBclMz+RGtnJMZ4eyPywQQghReWg0pq3doLTU3hzhKIqQ9/f288/qsnQtLz8SdFcDd999N66urowbN469e/dy/vx5du3axezZs7l8+TIAI0eOZNGiRfz111+cOnWKWbNmkZJS+Ljzhg0bMnToUKZPn85ff/1l3OfatWsBaNCgARqNho0bN5KYmEhaWhoODg6MHj2auXPnsnz5cs6dO8fhw4dZsmSJcXz/Aw88wNmzZ3nrrbc4ffo0q1atMhn7L4RQeLkkARCX4o5eV/AwEIPewNjBWwnvHkD39hfQZesKLHer9DQDn32mjH2ztoZp04ou/9D4YHqFqQkkxz18AmvbsneUCu1Y37j8+7b83/DbjoTma7m4Hcnx6rXO2SHTfDsWQghhUbcG3Z06KWOWRdHyZn5ftkxdliRq5UeC7mrAzs6O77//nvr16zNx4kQGDBjAyy+/TGZmJg43J9obPXo0gwYNYsqUKTzwwAPUqVOHPn36FLnfmTNn0rdvX2bOnEn//v159dVXychQWonq1q3L008/zXvvvUfnzp154403AHj22WcZP348CxcuZMCAAYwdO5aNGzcapy6rX78+H3/8MX///TeDBw9m6dKlPPfcc+X42xGiavJyU7pB5+hsSIoreFz3x69u5uvVyuC1/aeC2P3X0RLt+++lF7h2TQm6H37YgE8x02xrrDR8ucST9gGHuLPtXia+1qaEn6Jgvi0a4mSnfCaDQf0a6tntBgA5ORo2brytQ5hITlC7lDs7ZhdRUgghRFVya9AtXctLJm/QnZCgLktLd/nRGArLpFUFpKenc/ToUYKCgrC3t7d0dQql0+mIjIwkLCwMrQyUEGUk51HNMrL/Vpas7wrA0T1nCGxremex+fcD9BrWEp1ebXF+5fGNvPFFjyL3eyP9Bv6N4zkfrzwIi9p+iladyic7elEigg+w9ZCa3LFhQ1iwAG5OdMGECcprc9j71xHa9VHmjxl3z2Y+/Z/cld0uuR7VEGlpcPPhPdevK313zUjOI3G75s+HZ55RX//7L/ToYbHqVBlnz+Z/YFGvHly6pHTbr4luvR6ZO86Ulm4hhKiEPN3VruJxl0yHglw8Gct9j9Y3CbgB1mwuPnj+9fO9xoB7YMfdFgm4AUKDkkxe9+0LPXsq3d0BNmww37GSEm8Yl12c9UWUFEIIUZXkDRxtbAzSPbqEGjbMnzCtffuaG3BXBAm6hRCiEvLyUjshXb2Ublw26A2MffgCV5OVKQ17t95HWCtlAPT+aB8uXVLKxZ6+wvyXN3Hu2EWTbd9boE6F+NLUWuX5EYoUFmb69dO3Lzg5QedOysOGkyfhdNQFsxwrOVEdx+0ss4UJIUS1kbebdNu2cMsEP6IQ1tZK4J2XPLAoXxJ0CyFEJeRVV30EffWKOg75t4U7Wb9byRzewC2Wn3735e6h6lRe69ZBZvoNIrrc4Jk3u/PgPepgrbNHLnDgTAAA7fwPE3F3SHl/jEKFtnM3LltZ6bjjDmW5b/gW4/sblp02y7GSaWFcdm7ob5Z9CiGEsLwWLaBNG+Uh9ZNPVtkRsxZxa/dyGc9dviToFkKISsirgRpIX032AJS5SJ99XR0HPX9uDB4N3RkwQN1uzRpYMHMnpy43BmD7kRASLl8HYOc/543lBvS6isbKcv3IWnVsgp2t0oLf0T8SNzfl/T53eRnLbNlqnjGeyRlq87azd/0iSgohhKhKtFrYvl3Pn38e4JFHJOgujby9BADalX0mUFECEnQLIUQl5OkfZly+mqm01M6YARcvK8k8BnQ7w9CxSl+wdu3AQ4nL+fNPPbM/DTXZ1/Y9SiKkHdvVFvP2XcybEKm07Bzt+PrdSIZG7GTBZ2pdQrs2w0abBcD+Y/XMcqzkPMnfXVzMskshhBCVhFYLrq45lq5GlZM36A4MlOFX5U2CbiGEqIS81AZf4uLgwAH46CPlde3a8PHiJsaWaq0W+vW4CsD161Ykpbma7GvrVuXfnfs9jO91uKNZ+VW+hB54ujPLNnckvEeg8T1bO1ta+Z4CIPpiE9KS0wrbvMSSktRluakQQgghTINu6Vpe/iToFkKISshTzXfG1avw2mugv5l4+9VXoWlT0/IDu50weV3LRs3YvW0bZKRmsP+UMp45sMEJXLwqb/QZHhQPKHN4R+04c9v7S76qjmt3dpB5uoUQQoiuXdUM5rnTdYryI0G3EEJUQnXqqFPiHojUsXKlstywIbzwQv7yd97bAiuNOs3Y5FE7jYH53r2w/Y/T5OhsAGjd4mw51vz2hYep03rt35V42/tLvqA+kHC2i7/t/QkhhBBVnZ8f7NsHf/8tQXdFkKBbCCEqKU+nOACSktWEYs+NiaZWATN9uXm70r/DPgC8XS/z0rw2dGl3DYDMTPhksZpALDC8djnW+vaFd1C7x+/ff3v7unTqMtsOqnORu3g4FlFaCCGEqDlCQ6FXL5mfuyJI0C2EEJWUl9MVk9fO9sk8Psm70PKLf2nKJ69tYse2HBzdHOnSMsq4bsVaF+Oyf2s3s9fVnEI6N0GjUVq79x/xKLLsjbQbzJm0kW/f2ZpvXVZGFvcNumqc0/yuTrtxcHUwf4WFEEIIIYpgbekKCFMBAQFFrp84cSJPP/10BdVGCGFJXm7pJq/HP/Afjm49Cy3v6ePB+Fndja+73OENrynLBoPyGNvJyUDTpjcK2rzScHRzpJn3GU5cakLU2abkZOVgbVvw19UXb+7ilY97ANDE/wDdBquZ259/dAfbjyi/Dx+Pi3z9c9OCdiGEEEIIUa4k6K5ktm5VW2vWrl3L/PnzWb9+vfE9e3t747LBYECn02FtLf+NQlRHXq7Xjcu21plMeqVFqbZv0cEPlzpJJKW5GN9r1w6sqkAfp/CgOE5cakJmdm2OHU6lVXjB3cL/2aomhFv69Tlj0P3zgu188qsScNeyucGyn5Lx9Cnd708IIYQQwhyqwK1XzeLp6Wn8cXR0RKPRGF+fPn2a1q1bs2nTJoYNG0ZwcDD79u1j6tSpjB8/3mQ/c+bMYcSIEcbXer2ehQsX0qtXL0JCQhg0aJBJMC+EqHy83NWW7kd7r6Vek7ql2t5Ka0WnlqZZzTu2yzBL3cpbeG91/pL9hwoOuA0G2HU8xPh6+eb26HN0GPQGZr+rpn//9PU9tO0tAbcQQgghLKPGNZH++qsy9U5qasUd09HRilGjXAgLM8/+3nvvPaZMmYKPjw9OTk4l2mbhwoWsXLmSWbNm4evry549e5g8eTJubm60l8n5hKiU+gxqwFvf63GyS2XKvNZl2keXDmms262+7tgiiqpw6Q8PV5f374c8zxCNLlyAy5fVZ8eXk+qyfd0BrG20HIppBUCnoChGT40o7+oKIYQQQhSq8t95mdk778CxYxV9VA1LltTjxRfNs7dJkybRpUuXEpfPyspi4cKFLF68mPCbd7I+Pj7s27ePn3/+WYJuISqpXveGc/LAOeo42lHXt3GZ9tGlhwt8rL7u0NOPc1dizFPBcpT3IWVkZMFldu/O/97/fkoiJUXN9v7EqGSz1ksIIYQQorRqXND90kvw6qsV3dJtYMSIy4CvWfYXHBxcqvIxMTFkZGQwevRok/ezs7MJCgoyS52EEOWjaXCj29q+fW9/bLRZZOtsCax/FDdv/yoRdNetC97eEBsL+/frMeg1aKxM5zTZtS0dsDd579cNASRluAPgZJfMfU+GI4QQQghhSTUu6L73XuWnIul0eiIjk8y2Pzs7O5PXGo0Gg8Fg8l5OTo5xOT1dGRe6cOFC6tY1HRNqa2trtnoJISofeyd73p2yiUU/1GfOaymWrk6phDc7TmysP0lJVsQcvYBvy4Ym63f/fRwIA6CNfzT7jgdwKbGecf3DD2up41ynAmsshBBCCJFfuSVSu3DhAtOnTzcm7urduzfz588nKyuryO0yMzOZNWsWHTp0IDw8nKeffpr4+Pjyqma14ObmRlxcnMl7R48eNS77+flha2vLpUuXaNy4scmPt3fhc/4KIaqHSXO6E3W2OYNGd7B0VUolPOCScXn/9gsm63TZOvZGNwOgkecFxo26mm/7x8fLnNxCCCGEsLxyC7pPnz6NwWDg9ddfZ82aNUybNo2lS5fywQcfFLndm2++yb///suHH37IkiVLuHr1KhMnTiyvalYLHTt25NChQ6xYsYKzZ88yf/58TpxQMxY7ODgwevRo5s6dy/Llyzl37hyHDx9myZIlLF++3II1F0KIwoW3qWVc3rnNdG7xI7tPkZapBNUdWp1n8IgWaK3UHj5t2hhMkrEJIYQQQlhKuXUv79atG926dTO+9vHx4cyZM/z0009MmTKlwG1SU1P57bffePfdd+nUqROgBOEDBgwgMjKSsELSf+t0OnQ6ndk/g7nk1q20ddTr9Sbb5X2dd1+dO3fmqaee4u233yYrK4thw4YxaNAgTpw4YSz39NNP4+rqysKFCzl//jxOTk60aNGCJ554olL/7oSqrOeREHlVpfOoc9+mWGl06A1alv/ZmDnZOcZx3Ts2xgL+ALRrnYmrtws9wqL4+78wAMaM1qHTaQrZs7hdVek8ErdBp0NrXNSBmf+/5TwS5iDnkTCHW88jc59PGsOtg4HL0QcffMCWLVtYtmxZget37NjBqFGj2LNnj8lUWD179uTRRx9l1KhRJuXT09NNulELIYSoXp4bZWDLobYALPtuPY1aKPNvf/RyAks23AnA9x+vIrBTffbtrcOEif40b57BwoXHsbfXW6zeQlQHVhkZhEcoU+7t37IF/S05ZYQQoroLCgrC3t6++ILFqLBEajExMXz//feFtnIDxMfHY2Njk2/uaXd393xjlvPy9/c3yy+jvOh0OqKioggODkar1Ra/gRAFkPNImENVO4/uG7KFLYeU5f1bazHooTAADh4/CYDWKoe7H+pOHec6hIXBo6MMaDS10WpDLFPhGqKqnUeijNLSjIshISFQx7yJCeU8EuYg55Ewh1vPo/T0dI4fP262/Zc66H733XdZtGhRkWXWrl2Ln5+f8fWVK1cYO3Ys/fr1Y/jw4aWvZTG0Wm2V+COrKvUUlZucR8Icqsp5NOzRACbNVpaXrW/I61otaclpRJ1Vkqi1anwKJ7cAY/kq8JGqlapyHokyyvN/q9Vqy+0PTM4jYQ5yHglzyD2PzH0ulTroHj16NEOHDi2yjI+Pj3H5ypUrjBw5kvDwcN54440it/Pw8CA7O5uUlBST1u6EhAQ8PT1LW1UhhBBVXINm3nRucZDtR0I4fK450XtPE3suBb0hDID2IVeAgCL3IYQQQghhSaUOut3c3HBzcytR2dyAu2XLlsydOxcrq6KTpbdq1QobGxt27NhB3759ASUL+qVLlwpNoiaEEKJ6u+euRLYfUZY//zCWdRvVqQ47dpRkaUIIIYSo3MptyrArV64wYsQIvL29mTJlComJicTFxZmMzb5y5Qr9+vXj4MGDADg6OnLPPfcwb948du7cyaFDh5g+fTrh4eESdAshRA01bGQz4/KHP3Qh+mJTAJrXP8PwJ2VeMCGEEEJUbuWWSG3btm3ExMQQExNjMnUYQHR0NADZ2dmcOXOGjIwM47rp06djZWXFpEmTyMrKomvXrsyYMaO8qimEEKKS823ZkLZh19kb6WB8r0G9dP74wwYHV4cithRCCCGEsLxyC7qHDRvGsGHDiizTsGFDYwCeq1atWsyYMUMCbSGEEEb33O/A3khl2c0N/vjbHt8WlXfWCiGEEEKIXOXWvVwIIYQwl7FjITAQfHxg7Vpo0cLSNRJCCCGEKJkKm6dbCCGEKCsPDzh6FPR6KCYnpxBCCCFEpSK3LkIIIaoMCbiFEEIIUdXI7YsQQgghhBBCCFFOJOgWQgghhBBCCCHKSZUe063X6wFMphyrjHQ6HQDp6elotVoL10ZUVXIeCXOQ80iYg5xHNcSNGxAQoC5rNGbdvZxHwhzkPBLmcOt5lBtf5sabt0tjMBgMZtmTBSQkJHD27FlLV0MIIYQQQgghRDXj6+uLu7v7be+nSgfdOTk5JCcnU6tWLawku44QQgghhBBCiNuk1+vJzMzE2dkZa+vb7xxepYNuIYQQQgghhBCiMpPmYSGEEEIIIYQQopxI0C2EEEIIIYQQQpQTCbqFEEIIIYQQQohyIkG3EEIIIYQQQghRTiTorgA//PADvXr1Ijg4mPvuu4+DBw9aukqiEvv4448JCAgw+enXr59xfWZmJrNmzaJDhw6Eh4fz9NNPEx8fb8Eai8pgz549PPXUU3Tt2pWAgAD++usvk/UGg4GPPvqIrl27EhISwqhRo/JNuZiUlMQLL7xA69atadu2LdOnTyctLa0CP4WwtOLOo6lTp+a7Po0ZM8akjJxHNdvChQu55557CA8Pp1OnTowfP57Tp0+blCnJ99ilS5d44oknCA0NpVOnTrz11lvk5ORU5EcRFlSS82jEiBH5rkevvfaaSRk5j2q2H3/8kbvvvpvWrVvTunVr7r//fjZt2mRcX5HXIgm6y9natWuZO3cuEyZMYPny5QQGBjJmzBgSEhIsXTVRiTVv3pytW7caf3788UfjujfffJN///2XDz/8kCVLlnD16lUmTpxowdqKyiA9PZ2AgABmzJhR4PpFixaxZMkSZs6cyS+//IKdnR1jxowhMzPTWObFF1/k5MmTLF68mM8//5y9e/fmu4ER1Vtx5xFARESEyfXp/fffN1kv51HNtnv3bh5++GF++eUXFi9eTE5ODmPGjCE9Pd1YprjvMZ1Ox5NPPkl2djZLly5l3rx5LF++nPnz51viIwkLKMl5BDB8+HCT69FLL71kXCfnkahXrx4vvvgiy5Yt47fffqNjx45MmDCBEydOABV8LTKIcnXvvfcaZs2aZXyt0+kMXbt2NSxcuNCCtRKV2fz58w2DBg0qcF1KSoqhZcuWhnXr1hnfO3nypMHf39+wf//+CqqhqOz8/f0Nf/75p/G1Xq83dOnSxfDll18a30tJSTG0atXKsHr1aoPBoJ5HBw8eNJbZtGmTISAgwHD58uWKq7yoNG49jwwGg2HKlCmGcePGFbqNnEfiVgkJCQZ/f3/D7t27DQZDyb7HNm7caAgMDDTExcUZy/z444+G1q1bGzIzMyu0/qJyuPU8MhgMhkceecQwe/bsQreR80gUpF27doZffvmlwq9F0tJdjrKysjh8+DCdO3c2vmdlZUXnzp3Zv3+/BWsmKruYmBi6du3KHXfcwQsvvMClS5cAOHToENnZ2SbnlJ+fH/Xr1ycyMtJCtRWV3YULF4iLizM5bxwdHQkNDTVei/bv34+TkxPBwcHGMp07d8bKykqGxAgTu3fvplOnTvTt25cZM2Zw7do14zo5j8StUlNTAXB2dgZK9j0WGRmJv78/Hh4exjJdu3bl+vXrnDx5suIqLyqNW8+jXKtWraJDhw7cddddvPfee2RkZBjXyXkk8tLpdKxZs4b09HTCw8Mr/FpkbZZPIQp07do1dDod7u7uJu+7u7vnG5ciRK6QkBDmzp1LkyZNiIuL45NPPuHhhx9m1apVxMfHY2Njg5OTk8k27u7uxMXFWajGorLLPTcKuhbljl2Kj4/Hzc3NZL21tTXOzs5ybgmjiIgI+vTpQ8OGDTl//jzvv/8+jz/+OD///DNarVbOI2FCr9fz5ptv0rp1a/z9/QFK9D0WHx9vcpMLGF/LeVTzFHQeAdx1113Ur18fLy8voqOjeffddzlz5gwLFiwA5DwSiujoaB544AEyMzOxt7fnk08+oVmzZhw9erRCr0USdAtRyXTv3t24HBgYSGhoKD179mTdunXUrl3bgjUTQtR0AwcONC7nJi7q3bu3sfVbiLxmzZrFiRMnTPKSCFFahZ1H999/v3E5ICAAT09PRo0axblz52jUqFFFV1NUUk2aNGHFihWkpqayYcMGpkyZwvfff1/h9ZDu5eXI1dUVrVabL2laQkJCvqcmQhTGyckJX19fzp07h4eHB9nZ2aSkpJiUSUhIwNPT00I1FJVd7rlR1LXIw8ODxMREk/U5OTkkJyfLuSUK5ePjg6urKzExMYCcR0L1+uuvs3HjRr799lvq1atnfL8k32MeHh75MgjnvpbzqGYp7DwqSGhoKIDJ9UjOI2Fra0vjxo1p1aoVL7zwAoGBgXz33XcVfi2SoLsc2dra0rJlS3bs2GF8T6/Xs2PHDsLDwy1YM1GVpKWlcf78eTw9PWnVqhU2NjYm59Tp06e5dOkSYWFhlqukqNQaNmyIp6enyXlz/fp1Dhw4YLwWhYeHk5KSwqFDh4xldu7ciV6vJyQkpMLrLKqGy5cvk5SUZLz5kPNIGAwGXn/9df7880++/fZbfHx8TNaX5HssLCyM48ePmzwo3L59Ow4ODjRr1qxCPoewrOLOo4IcPXoUUIMhOY9EQfR6PVlZWRV+LZLu5eXsscceY8qUKbRq1YqQkBC+/fZbMjIyGDZsmKWrJiqpt956i549e1K/fn2uXr3Kxx9/jJWVFXfddReOjo7cc889zJs3D2dnZxwcHJg9ezbh4eESdNdwaWlpnDt3zvj6woULHD16FGdnZ+rXr8/IkSP57LPPaNy4MQ0bNuSjjz7Cy8uL3r17A0rykIiICF599VVmzZpFdnY2b7zxBgMHDqRu3bqW+liighV1Hjk7O7NgwQL69u2Lh4cH58+f55133qFx48ZEREQAch4JpSvw6tWr+fTTT6lTp45x3KOjoyO1a9cu0fdY165dadasGS+99BKTJ08mLi6ODz/8kIcffhhbW1sLfjpRUYo7j86dO8eqVavo3r07Li4uREdHM3fuXNq1a0dgYCAg55GA9957j27duuHt7U1aWhqrV69m9+7dfPXVVxV+LdIYDAZDOXxGkcf333/PV199RVxcHEFBQbzyyivGLjBC3Oq5555jz549JCUl4ebmRps2bXjuueeM45MyMzOZN28ea9asISsri65duzJjxgzpKlXD7dq1i5EjR+Z7f+jQocybNw+DwcD8+fP55ZdfSElJoU2bNsyYMYMmTZoYyyYlJfHGG2/wzz//YGVlxZ133skrr7xCnTp1KvKjCAsq6jyaOXMmEyZM4MiRI6SmpuLl5UWXLl145plnTIZMyXlUswUEBBT4/ty5c40NDiX5Hrt48SIzZ85k9+7d2NnZMXToUF544QWsraW9qCYo7jyKjY1l8uTJnDhxgvT0dLy9venduzfjx4/HwcHBWF7Oo5pt+vTp7Ny5k6tXr+Lo6EhAQACPP/44Xbp0ASr2WiRBtxBCCCGEEEIIUU5kTLcQQgghhBBCCFFOJOgWQgghhBBCCCHKiQTdQgghhBBCCCFEOZGgWwghhBBCCCGEKCcSdAshhBBCCCGEEOVEgm4hhBBCCCGEEKKcSNAthBBCCCGEEEKUEwm6hRBCCCGEEEKIciJBtxBCCCGEEEIIUU4k6BZCCCGEEEIIIcqJBN1CCCGEEEIIIUQ5kaBbCCGEEEIIIYQoJxJ0CyGEEEIIIYQQ5USCbiGEEEIIIYQQopxI0C2EEEIIIYQQQpQTCbqFEEIIIYQQQohyIkG3EEIIIYQQQghRTiToFkIIIWqAXbt2ERAQwK5duyxdFSGEEKJGkaBbCCFEjbds2TICAgIK/YmMjLR0FSul+Ph4pk2bRqdOnQgJCWHo0KGsW7eu2O0ee+wxAgICeP311wvd72uvvUZERATBwcH06tWL6dOn5yu3fft2RowYQYcOHWjbti333nsvK1asuN2PJYQQQpiVtaUrIIQQQlQWkyZNomHDhvneb9SokQVqU7ldv36dhx56iPj4eEaOHImnpyfr1q3j2WefJScnh7vvvrvA7f74448iH2LExsby4IMPAvDAAw9Qt25drl69ysGDB03K/f3330yYMIGwsDCefvppNBoN69atY8qUKSQlJTFq1ChzfVQhhBDitkjQLYQQQtzUrVs3goODLV2NKmHp0qXExMTwzTff0KlTJwAefPBBhg8fzltvvUXfvn2xtbU12SYzM5N58+YxduxY5s+fX+B+X3vtNbRaLf/73/9wdXUt9Pg//PADnp6efPfdd8bj3H///fTv359ly5ZJ0C2EEKLSkO7lQgghRAnNnz+fwMBAduzYYfL+q6++SqtWrTh27BgAWVlZfPTRRwwbNow2bdoQFhbGQw89xM6dO022u3DhAgEBAXz11Vf88MMP3HHHHYSGhjJ69GhiY2MxGAx88skndOvWjZCQEMaNG0dSUpLJPnr16sWTTz7J1q1bGTx4MMHBwQwYMIA//vijRJ/pwIEDjBkzhjZt2hAaGsojjzzCvn37it1u7969uLm5GQNuACsrK/r3709cXBx79uzJt82iRYswGAyMGTOmwH2eOnWKzZs3M2bMGFxdXcnMzCQ7O7vAstevX8fZ2dkksLe2tsbV1ZXatWsXW38hhBCiokjQLYQQQtx0/fp1EhMTTX6uXbtmXD9u3DiCgoJ4+eWXuX79OgBbtmzhl19+Yfz48QQGBhr38+uvv9K+fXtefPFFJk6cSGJiImPHjuXo0aP5jrtq1Sp+/PFHRowYwWOPPcbu3bt59tln+fDDD9myZQuPP/44w4cP599//+Wtt97Kt/3Zs2d57rnn6NatGy+88AJarZZnnnmGbdu2Ffl5d+zYwcMPP0xaWhoTJ07kueeeIyUlhUcffTRfd+5bZWdnFxjc5r53+PBhk/cvXbrEokWLePHFFwsNinMfZnh4ePDoo48SEhJCaGgoY8eO5cKFCyZl27dvz4kTJ/jwww+JiYnh3LlzfPLJJxw6dIixY8cWWXchhBCiIkn3ciGEEOKmgrok29raEhUVBYCNjQ1vvfUWw4YNY968ebz00ku8/PLLtGrViieeeMK4jbOzM//8849JK+zw4cPp378/S5Ys4c033zQ5xpUrV/jjjz9wdHQEQK/Xs3DhQm7cuMFvv/2GtbXydX3t2jVWrVrFrFmzTPZ99uxZPv74Y+68804A7r33Xvr168e7775Lly5dCvysBoOBmTNn0qFDB7788ks0Gg2gjKMeOHAgH374IV9//XWhv6smTZqwfft2Ll68SIMGDYzv57aSX7lyxaT8vHnzCAoKYuDAgYXu8+zZs4DScyA4OJgPPviA2NhYFixYwGOPPcbKlSuxs7MDYPz48Vy4cIHPP/+czz77DAA7Ozvmz59P7969Cz2GEEIIUdEk6BZCCCFueu2112jSpInJe1ZWpp3C/P39mTRpEu+99x7R0dFcu3aNr7/+2hgYA2i1WrRaLaAE0CkpKej1elq1asWRI0fyHbdfv37GgBsgJCQEgEGDBpnsNyQkhNWrV3PlyhV8fHyM73t5edGnTx/jawcHB4YMGcKiRYuIi4vD09Mz3zGPHj3K2bNnGTdunElrPkCnTp34/fff0ev1+T5/rnvvvZelS5fy7LPPMm3aNDw8PFi3bh1//vknADdu3DCW3blzJ3/88Qe//PJLgfvKlZ6eDoCnpydffPGF8dj16tXj+eefZ/Xq1dx3332A8jDE19eXvn37cuedd6LT6fjll1+YPHkyixcvJiwsrMhjCSGEEBVFgm4hhBDippCQkBIlUhszZgxr1qzh4MGDPP/88zRr1ixfmeXLl/P1119z5swZk3HJBWVH9/b2NnmdG4AX9n5ycrJJ0N24cWNjS3UuX19fAC5evFhg0J3bqjxlypTCPiapqak4OzsXuC4wMJB3332XGTNmGLONe3p6Mn36dGbOnIm9vT0AOTk5zJkzh8GDBxsfJhQmt9t5v379TIL9fv368dJLL/Hff/8Zg+7XX3+dAwcOsHz5cmPZ/v37c9dddzFnzhx+/fXXIo8lhBBCVBQJuoUQQohSOn/+PDExMQAcP3483/rff/+dqVOn0rt3b8aMGYO7uztarZaFCxdy/vz5fOVzW8VvVVgrs8FguI3am+7jpZdeIigoqMAyuYFzYfr160evXr04duwYer2eFi1asHv3bkAN+lesWMGZM2eYNWtWvnHZaWlpXLhwAXd3d+zs7PDy8gKUMd15abVaXFxcSElJAZREdb/99htjx441+R3Z2NgQERHBDz/8QFZWVr7s6UIIIYQlSNAthBBClIJer2fq1Kk4ODjw6KOP8vnnnxu7OOfasGEDPj4+LFiwwKQFurBpsm5XTEwMBoPB5Fi5Ldl5x1vnldtS7uDgQOfOnct8bFtbW5MW7O3btwMY9xkbG0t2draxNTyvFStWsGLFCj755BN69+5Ny5YtgfzjwbOysrh27Rpubm4AJCUlkZOTg06ny7fPnJwc9Ho9er2+zJ9JCCGEMCcJuoUQQohSWLx4Mfv37+ezzz6jR48e7Nq1i5kzZ9K2bVtjUJjbcp03ED5w4ACRkZHUr1/f7HW6evUqf/75pzHwv379OitWrCAoKKjAruUArVq1olGjRnz99dfcdddd1KlTx2R9YmKi8fOU1NmzZ1m6dCk9e/Y0jo0fMGBAgS3pEyZMoHv37gwfPtwYtHfo0AF3d3dWrVrFU089Ra1atQClq75OpzMG8u7u7jg5OfHnn38yadIkY4t2Wloa//77L02bNpVpw4QQQlQaEnQLIYQQN23evJnTp0/ne79169b4+Phw6tQp4/zbvXr1ApSs3EOGDGHWrFl89NFHAPTo0YM//viDCRMm0KNHDy5cuMDSpUtp1qyZMVmYOfn6+vLyyy8TFRWFu7s7v/32GwkJCcydO7fQbaysrJg9ezaPP/44d911F8OGDaNu3bpcuXKFXbt24eDgwOeff17kcQcMGEC/fv3w9vY2fkYXFxdmzZplLOPn54efn1+B2zds2NAk07itrS0vvfQSU6ZM4eGHH2bw4MFcunSJJUuW0LZtW+NDBa1Wy+jRo/nwww+5//77GTx4MHq9nv/9739cvnyZd955pzS/PiGEEKJcSdAthBBC3FRY9++5c+dSv359pkyZgqurK9OnTzeu8/X15fnnn2fOnDmsXbuWAQMGMGzYMOLj4/n555/ZunUrzZo145133mH9+vXGMc/m5Ovry6uvvsrbb7/NmTNnaNiwIR988AERERFFbtehQwd+/vlnPv30U77//nvS09Px9PQkJCSE+++/v9jjBgYGsmzZMuLj43F1daVfv35MmjQJd3f3Mn+WIUOGYGNjwxdffMHbb7+Nk5MT999/P88995zJ2Pdx48bRsGFDvvvuOz755BOysrIICAhg/vz59O3bt8zHF0IIIcxNYzBHNhYhhBBCWESvXr1o3rw5CxcutHRVhBBCCFGAgtOiCiGEEEIIIYQQ4rZJ0C2EEEIIIYQQQpQTCbqFEEIIIYQQQohyImO6hRBCCCGEEEKIciIt3UIIIYQQQgghRDmp0lOG5eTkkJycTK1atbCykucHQgghhBBCCCFuj16vJzMzE2dnZ6ytbz9krtJBd3JyMmfPnrV0NYQQQgghhBBCVDO+vr64u7vf9n6qdNBdq1YtQPll2NnZWbg2hdPpdBw/fhx/f3+0Wq2lqyOqKDmPhDnIeSTMQc6jGiIjA7p0UZa3bQMz32vJeSTMQc4jYQ63nkcZGRmcPXvWGG/erioddOd2Kbezs8Pe3t7CtSmcTqcDwN7eXi4GoszkPBLmIOeRMAc5j2oIgwGio5Xl2rXBzPdach4Jc5DzSJhDYeeRuYYwy0BoIYQQQgghhBCinEjQLYQQQgghhBBClJMq3b1cCCGEEEKI8paZCT/+qPz7xBMgk+YIIUpDgm4hhBDVmi5bx+Fdp/APb0TtOrUtXR0hRBWzYQNMmgTHjyuv4+PhlVcsWychRNUiz+mEEEJUa29M2kJohD+hAbHEnY+3dHWEEFXE9etw//3Qr58acAO88w4kJlquXkKIqkeC7moq/kICH0zdSPS+05auihCihsjIgE8+gf/+K5/963V6MtMzS73dN7/5AXD8YhOG9r9Upn0IIWqWq1ehZ0/45Rf1PRcX5d+UFHj3XYtUSwhRRUnQXQ3dSLtBt85JPP9WDwbcpUWv01u6SkJUW8f2nObp+zfxzdtba3ww9/Cgk0ycCHfeqdyUmtPlM1dp4n0JH+8U/vnf/hJvd/GCnpg4H+PrbYdDeOLePRj0BvNWUAhRJeh0cOiQ8pCwMKdOKdOT792rvHZ2hu++g8hIsLVV3vvoIyUwF0KIkpCguxqaMWEnR88rLTunLzdm799HLVwjIaqn9JR0+vSvzYJfuvPYlK74+lxnzhxIS7N0zSrerg2HWf5XMwASEmDLFvPuf9F7RzgX15C4FE8GPdKc7WuiSrTdtu35v+a+W9eVdyZvMm8FhRCVXmYm9O0LwcHg7g6DBsGXXyrv5y1z551w8qTyukED2LoVRoyAxo2VJGoA6ekwb17FfwYhRNUkQXc1s3P9Id79LsLkvTXL4ixUGyGqt/df3s2FhPrG15cT3XnlFRg6FAw1rCH1tVdMm43++ce8+/9ldQPjclqmA/3va8S+v48Uu922berymPvPGJdf/qgLR3adNGsdhRAVLzMTvvkGtm8vupzBAOPGwd9/K68zMmDVKnj8cTWQBti3D07fHJkXGAg7dkCrVur66dOh9s18jJ9+CufPm+2jCCGqMQm6q5GM1AxGjbVHb9CavL9mU5NS7efnBdt5Y+JGMlKL6HslRDVz7UoSacklb6K+fOYq8xa1BUBrlcOgrvuwslIi7T//hBUr8m9j0Bv47fMdjBm2n8ceg8cegzlzIDnZHJ+gfOmydbz30ka+mL0535CVzb8f4I+9bU3eM2fQfWTXKQ7FNDd5LyXDmY59mxPon8WgQfDVVwVvmzfofuezJkwbvRGAHJ0NE55MlW7mQlRhmZkwZIhyLe3eHfYXMfLk3Xdh8WJluXZtqFdPXbdhg7p88KC6PHEi+KijUwDw9lbezz3+I49ATs5tfQwhRA0gQXc1Mm/yLqIvNgWgnf9hggOVQZX7jjXm8uWS7eO3z3fwwNOdee2THjz36J7yqqoQlcrBrcdp0MiWRg0zOR11rkTbvPbcMdIyHQB4ctg2ft/Shv/9T2Nc/9JLkJWlltfr9Dz/yGbuHdeJr5eH8803SuvMK69ARARcvGjGD1QO3p+2hRff6cGTr3bj3XfVz2nQG0ymzrG11QHK2MeEy9fNcuxfv1WbkuZM2khEqwOAEjhHn7Bl1SoYO1Y5Zl7Xk9KJjFQeELRsCa6u8OqHHWhaLwaAjQfC+eGj7WRnw8dvHOa+njvY+1fxredCCMvLyYEHH4T169XXL75YcC+jtWthyhT19bffKtfc7t2V11euYLxPisozciU4uOBjT5umBuObN8Prr9/eZxFCVH8SdFcjv6xRvgG0Vjl8810t7h7mZFy3bl3x28edj2fclGbG11+t7MSpAzFmr6cQlc1v354iI8uexOtuvDU1stjyUduO89XKLgA42SUz8/2WgNLiknsTd/IkfPbGLgAy0zN56M6dfPhT94L3FwWd2iRW2u7OWRlZfLg4wPh6+stqV85fPt3BlkOhAAQ0OM34h9V5dTauUO5eExOVJERlTTr06wb12CMnBrB6YxOefXATIU1PG7t5gpIcKa9df0aj0ylfc11bKCnV7RztWPC2WpEX3mhFeDhMeq0l/9vYiUmTdGWrpBCiwuh08OijsHy56fv//ANr1uQvP3OmGozPnAnDh4OVFbRpo5bJfWhXkqDbzQ2WLgXtzY6Fs2fDX3+V4YMIUU1NnTqV8ePHG1+PGDGCOXPmVHg9du3aRUBAACnmzu5aBpUu6N6zZw9PPfUUXbt2JSAggL/kKlYiCXE5HLugJE9r0/wYLTo0Y+BAdX1BX0K3mjjqOHEpnsbXOTobXp8mg5VE9XcyIcy4/N2ffYxzOaelwXvv5b+ZmvVygnEYx/Sn9uPp4wGARgPvvXVDLfeBP1NGbSS4+SV+/qczoDwU++TVvzlyREnO06SJcid4/oobXe9wJ+bohfL6mGX282e7uZTobXyt02l44AEDL47czANPdza+P2vqZe7spbZu//1XNno99O+v3CAPHlz6Yx8+DIdPK8fu0i6Rhs29cXJ34oMfu3PgVFO++04te+mS6bbbNqr99rt0TDcu9x/RjmE9lX6oV685c/iwus3e4wHcSFP/D4UQlpOTA4sWwYIFoM8zquXzz+HHH5VlW1t45hl13eTJkJ2tvjYY4MjNDixNmsBrr6nrwsLU5QMHlLK5QXeDBkrvmMJ07qwMD8o9xsMPSzZzUflNnTqVgIAAAgICaNWqFX369GHBggXklPMYiY8//phn8v6hFqEyBcrmVOmC7vT0dAICApgxY4alq1KlbN9pbVzu2k8Jvjt0UJ7GAvzxh4HsrMKnDvv1sx38cjMocHNIxM0hEYDv13fi6IGkcqnzxo3wwANw993Kz4gRsGt7VrHbCWFuJy6oAeWNbDs+m3cIvR7uu0/prjhggJrJ9vq166zeHg5AXZerTJrVwWRfbTrUZkQ/ZSDxtTRX3v62BycuKXkV7Gul8fvi/Yx//Q6CgpQpaXZsTqN1s6PG8l9+ULlauw16A+9/4mF83bypkuvh/HkN7y3pZnz/3h47uG9cR7oOCMRaq9zx/rOzIUuWwO7dSpldu5SMv6Xx66/q8vBH3PKtr++qjp25eHCvybptux2Ny136NDJZ9+G34dSpo762tVHqnK2z5cDWyvV/IERNdOkS3HGHkuTs6afhww+V93U60zmyf/0VPvhACYIBjh1TMpLnunJFnVEiIEB5OJorb9AdGal0OU9KUl4X1sqd1+TJykNFUALuvF3YhaisIiIi2Lp1Kxs2bOCxxx5jwYIFfFVAYpSsLPPdk7u4uODg4GC2/VVFlS7o7t69O8899xx9+vSxdFWqlLzJgrp0swOUbk/9eiotdqmpGrauOlDgtgmXEpkwVe1WvmDOMV56Qmn60Ru0zHzTxez1XfFdNL17G/j5Z1i9Wvn5/nvo2k3DOy9ukrnFRYU6eUuM9ckPLZnzRrZxWEZ2NvzwldKEsW7ZRTKzlT7Nw+44hp2jXb79vTm/KXa2anSp0eiJaHWAjatiGDiynUnZug0dWL5KHQqyY68Tlcm/yyKJPB0IQPuAQ/y7qTYeHuqgSWttNu9O3sgvf3fESmuFo5sj7QOUhwjRF5sy+UW1u7bBANF7jlNSBgP88ouyrNHAPffkL9PAW306f+mi2ryly9ax47CSfK2eyxWatDTNhuTjo2Quvvde5Qb93Sk7jev2bE0ocR2FEOb3xx9KQLx5s/re3LmQmqp0KT97VnmvXz9l2i+NRumVlGvGDHUasFOn1Pf9/EyPExiozrt94EDJupbnZWWlJGdzcVFef/ON+adLFMLcbG1t8fT0pEGDBjz00EN07tyZf/75x9gl/LPPPqNr167069cPgNjYWJ555hnatm1L+/btGTduHBcuqL3ydDodc+fOpW3btnTo0IG3334bwy3JFW7tXp6VlcU777xD9+7djS3uv/76KxcuXGDkyJEAtGvXjoCAAKZOnQqAXq9n4cKF9OrVi5CQEAYNGsT63KQON23atIm+ffsSEhLCiBEjuFiJEuZYF1+k8tPpdOh0lXccXm7dyrOOW7ZYAcrj244ddeQeqn/XY/z4W1cAVq9IotuQ/HWYNk1n7FY+NGIn941rT3qGhve/N3D1qoZffoGpU3WEhJinrut/3Mf9Y0LR6TT51uXobHjpve5s2rabb37zw7Wui3kOWg1UxHlUEyUkwLVrphn/ryZ78tpM03I/fJfGy6/nsOwvNYv24IfqF/j/4d3UizVLD7DilxTCwrX0H+6Pp48y50xB5Rs0r0cDt1guJnqz62hzsm5kobUxrdPhwzB8uBWtWsFPP+mxKuMj09KeR++/pwayz05Ipp63nh8/j+bh0Z54uSSx8LN0OvaNQG/Qw81d9uycwPab3Tnj4k0/x6F9VwnpesudbyGOHNJx9KhyR9yli4F69fTcWm2vRmrr98UrDsbPdWDbcVIzggDoGnoavcHDWL9c3bopPwB7/nIxvr9rj5Zx8ndWJLke1RA6HVrjoo58f4C3KSdHR06O6Xl06BDcdZcV2dmm9wjx8fDhh3rWrtWQe7/zzDPq/U67djBokBUrV2qIi4MDB3S0aQMnTmjIbWNq0kSPTqcGA1ZW0LKlFfv3a4iONrBjh8FYtlUr07KF8fCA2bM1TJyobDd+vIE9e/TY2JTxlyJKrbJcjzTRH6CJ/rD4gq7h6CNWmLxltWUIXCsi/f5NhoBnMQQ8V6b6ARgMBgwGg8nvytbWlmvXrmEwGNixYwd16tThy5vdRW7cuMHo0aMJCwtjyZIlaLVaPv/8c8aOHcvy5cuxtbXlq6++YtmyZcyePZumTZvyzTff8Oeff9KhQwfjcW497uTJk4mMjGT69OkEBARw4cIFkpKS8PLy4qOPPuKZZ55h7dq11KlTh9q1a6PT6fj8889ZvXo1M2bMoHHjxuzdu5fJkyfj4uJCu3btiI2NZeLEiTz44IMMHz6cQ4cO8fbbbwMlixVvPY/MfT5Vi6D7+PGSt5xYUlTeR6hmlJWpZ+/eNoCGhg1vEBt7mNhYZV3DljqsNDr0Bi3fr2pJvzWbcGvgnKdOdfhyiZKkyME+g/EvZXDgoNIi/sgjXrz/vtI69PHHV5kw4ZYBk6UQE3WVM8ducPaMLV8u70VWTi0AhvXew7gptmDQseqrS3z8ywAMBivW7GzPPf328M4iA1prbTF7r1nK6zyqqY4c0ANK63PLgHgOR3uYrK9te4MbWbU5cakJP3+5nlWrlF44Tk45uDRIJvLWlNk3OTWCkS8q3ZsvJlzgYkLRY7XbBF7n4nZvrt9wZPXSdTQO9jJZP3lyU6KjXYmOhm++OUnr1reXGfzW8ygzLZPMtCycvNQu2RePJ7Bm550A+HhcoGk7ayIjI3HzhVUbTmNto3yF3Po7aN6q8Lrt3Z1Ei0J+Z7das/g8MASAzuH7iYws+AbY3dGXhFR3Lsa7GOuybtl5QAm6WwRdKfT/ycghGxttFtk6W3ZHeRdfXgByParurDIyCL+5fPDgQfR2+Xv2lFV6uhXPPdeMyMjWzJx5lv79lWFt06c3ITtbeZjWpUsyY8bEMnZsAHq9hjlzIDNTCbibNUvHw+OoyawFvr51gYYAbNhwDq02ke3bvYH6AGg0p4mMNJ2jsWHDxuzf74Fer+HbbzMBpSeTjc0xIiNLNnVqu3bQokUgR47U4dAhDdOmXeKRR2SAd0Wz9PXIO/449TOKb1m9bnAj+pbvmIDEGBxuFL9t7PnjxGZEFluuMImJiaSlpREZGYnBYODQoUNs3bqVO++8k8TERGxsbLj33ntJuzkmY+HChWRkZHDPPfeQfnN82P3338/YsWNZunQpISEhfPXVVwwcOBBPT09SU1MZMmQI//77L8nJ6j3S9evXiYuLIzIyktjYWNavX8+0adPw8PAgISEBOzs77OzsiIqKIi4uDoCLFy9S5+Y4sOzsbBYuXMi0adNwcHAgISGBJk2a0LlzZxYuXIiNjQ1Lly7F09OTvn37kpycjI+PD507d2bVqlVERUUZ91Wc8jqPqkXQ7e/vj729vaWrUSidTkdUVBTBwcFotbcfQBoMsGMH1K8Pvr6wfd0hsrKUJ6w9218mLO8gJeCuTntZub0DV5O9mPqCNxt3N8TeyZ6cHBg71gqDQfkCe312LXr2V8doenrC++8ry+fP1yMszDQIKKnZT29m5mf9871/b/cdfL+yNda2ymnYs1co/e7ey4hxfiSkurM5qh3rvv2XVz7ulm/bmsjc55FQHN64w7g8avAxVqxxZNthJRt315aRPHhfChNmKufgW++HkJam/O4HD7aibdsws9WjW5fNrLyZEfxyjD2DR6j7TkqCbdvUpu3U1OaEhZVtfumCzqOkq8l0bJPC2asN+N+ifdx1swv8Tx+pfTsnjTpB23Yl+1sMbB7Ik5NvGLvh92+/h3W7lX2eu+iR7xpVmLeOZBqX7x1sS1hYUIHlGrifJCHVndjEuoSGeKOx0vDhy+rNcv8hfoSFtSj2eGF+x9hzvCXHL/nRpME1nD0rV1f/ykSuRzVE7mBoICQkBEp401ocJWeGFfv2Kfcfb7/ty6hRjbh+Hf76S7nWeXoaWLfOAXv75mzebOCbbzRkZqrXwWnTahMeHmay34sXYf783Ko3JiysEWlpaot5795NaNnStC49e2pYtUpZPndOuWZptQYGDw6gVq2Sf6avv4ZOnQwYDBoWLWrI1Kn18fAofjtx+yrL9UgT7Y8hvUGx5eq4Ns73PWiV2hjDtcRit63n40/dgLBiyxXGzc2Nbdu2MWbMGHJycjAYDAwcOJBXX32V2bNn06JFC9q2bWss/+eff3L16lXGjh1rsp/s7GxsbW3x8/MjKSmJ/v37m3ym8PBwDAaD8T0HBwc8PT0JCwsjNjYWrVbLAw88gE0BXUJyx5IHBwfj5KR8D584cYLMzEzeeuutfPUICgoiLCyMr776ivbt25vUIyEhgVWrVpnsqzC3nkfp6elmbditFkG3VqutEl/65qrn4sUwejQ4OsK+fbBz4zXjuojW59BqfU3Kf7nUj/Ztz3P2qg//nQzisaE7mDzNkV9XOBIZ2RiA0FB4+mkr8lbPxwfqed3g8tXa7Nt1HSuNAxqr/F3Ci7Nig3e+94b32s6S1W2xtbM1eb//w+1Z5nCAnkNd0Bu0vP55N7r3jqLHsLBSH7e6qirne1Vx+qQ6Jri5vw1vRWjoPSwDH8/L/LS8LnWcfHludiZZObWIOlnfWPaee0z/Xm5X5x4e8I6yvGuXlvF5dv774v/IymptfH1gYxTa50Nv63h5z6PlX0dxMlaZzuy1mXYMetQKXY6OH1YpgaqNNovHngst8XlXx6kOAzruZPmWjrjUSWLxz740CUgnI8ueo2e8SrQfg97A1simADjapdC6W2Ch29X3SuXgWSUJ2rXL8Xj6eHAixgVQxtOHdW1eomO2D40nd8j5/i1nuOM+9XeenQ1jxkB0tJJ/onnzQnZSw8j1qJrL83+r1Wox10Xv1Vfh99/V16mpGl56SYu9vZql/LnnNDg6KsebMQN++EHNSl6vHjz8cP5rcN5x2MeOKetPn1bfa95cm2+b1q3JJyBAg7196T5rhw4wdqySbT0tTcPGjVruv79UuxC3yeLXoxYvKj8lkK+WPVaVaLvS34Xfsr1GQ4cOHZg5cyY2NjZ4eXlhbW1tXGdvb2/yO8zIyKBly5a8mzd74U1uburwLisrK5PtNDczFua+p9Fo0Gg0aLVaY0NpYf9fVjfHz+Vdn3kzScMXX3xB3bp1Tcrb2tqi1WpNjlHUvoqTW9bc51KlS6QmivfPP8q/qakwcSJs26V29+rSu36+8p4+HqxafgNHOyX1/m+bOtGxXyve+7yxscxnn4H1LY9gNBpo63cQgGupjpw5XLbpw+KTlSdLrnWusfrbPZw6eI6f/+6cL+DO1W1wKLMmKJlI9AYtD42tx9VzcWU6thDFOXFKfcravJU7Xe4KISXVmkMnG9CwuTeudV0Y0NF0nJW9XQ533mneerTu4Y+ttfKlsuOA6ZPyH340Lbs/quxdPLdsgU8/rc+VK+p7y//0NS4fPBfK1tUH+WPFeS4nKV9sd3X+D/f6+TOHF+Xz7/14d/JGtv+TQF1fTwJ9YgA4GduIzPTMYraG01ExxF6rB0DnVsfR2hT+jLhBXbVV+9JZJQnaqUvKtg3cLlO7Tu0Ct7tVu3bqF+zubaZTlfzy2R5jJvbcLMpCiJIxGODgQfj5Z3j+eSUpGoCVlYE6dZRxkz/9pCQiA3B2hjxT/OLrqwS0uSZOpMBW6MaNIbcHfO40YbmJ1OrXV9flFVrA88uSJFEryNCh6vKOHYWXE8KS7OzsaNy4MfXr1zcG3IVp2bIlMTExuLu707hxY5MfR0dHHB0d8fT05MABNVlzTk4Oh/POxXkLf39/9Ho9e/bsKXB9but33jHVfn5+2NracunSpXz18Pb2Npa5tWt43npZWqULutPS0jh69ChHjyrZby9cuMDRo0e5dOsErDXY+Tyx7x9/wOrtbQAlqA1s27TAbVp1bs7Sz6Ox0uRPCjBuZAydOhV8rLZhagbmvZtLP3+wQW8gPkWZ6LKhZxwDR7ajaXCjYraCae9H0Lv1PgBir9VjxD0xktFclIuT55QcBxqNnqatlLGANrVsTB4KPfSQaVfuAR32FHjzdjtq2deiTXOlmfXEpSbEX1CCx0unLvNvZJhJ2SPnmpZpLun0dKVb/Ndfe/PY/crYseRk+GtHY5Nyn3yUxre/NTG+HvW4M6Xl1ciTF97uQVB7JWlaCz+l25xOb82JyHPFbr95vXqhi+hY9Pj1+t7qde3imRRSEjOIT1H6dfo1KPm4yvbd1V45e/4zDdQ/+Vx9vWdnKec9E6KGGzNGCW4feECZ3ivX++8beO459W899x574kQl8M5rzhxlBoMHH4Rnny34OFZWEHRzFMqpUxAXp/xA/szluVxclKA+r7IG3R07qssSdIvq4O6778bV1ZVx48axd+9ezp8/z65du5g9ezaXLytTdo4cOZJFixbx119/cerUKWbNmlXkHNsNGzZk6NChTJ8+nb/++su4z7Vr1wLQoEEDNBoNGzduNI5Bd3BwYPTo0cydO5fly5dz7tw5Dh8+zJIlS1i+fDkADzzwAGfPnuWtt97i9OnTrFq1yriuMqh0QfehQ4cYMmQIQ4YMAWDu3LkMGTKE+bmDdATnT8SavNbpladUnYNPYKUt/L90wMh2/PTxLu7uvIsnh27mvZc2suHHfcxfVPj4k7Yd1fFbe3eXfr6+9NR0bmQr0YmHS8kTP2lttHz/WyPquSjNcX/sbctbU/aV+vhCFOfEBeX89/G4VGiL6F2PhOFQO9X4euiQ8nkA1Kmteoydu5W/66VfHMNguNk9ykrpCq/TW3Nox+n8OyjGf/9BSorS5euPrY04uPU4a9fCrVNx/rapHb//rjxo8PSE/g8UPJa6NFoEqlnQj+wvvudK3ml3uvV2KbJs/Qbqde/ShRucilGfiPiF+Ze4jgFtmuBYR3mYsfuUOqZt/8Zj7Diq3oUfOGSX73cmhChYTo4yJONWL74IEyYYGDQogY4d1Qeb9vYFB9WurvC//8GPPxY9tLzFzfQNej3knU2osKAb8rd2l3W2FldXZRoyUK63GSXLwyZEpWVnZ8f3339P/fr1mThxIgMGDODll18mMzPTOO/26NGjGTRoEFOmTOGBBx6gTp06xU79PHPmTPr27cvMmTPp378/r776Khk3/2Dq1q3L008/zXvvvUfnzp154403AHj22WcZP348CxcuZMCAAYwdO5aNGzfSsKHSYFK/fn0+/vhj/v77bwYPHszSpUt57rmyZ3o3O0MVlpaWZti7d68hLS3N0lUpUk5OjmHv3r2GnJyc296XLkdnsLW+YVA6a5n+vPnMv7df2VvEnr5i3H/PsP9Kvf3ZU5nG7e+760Kpt//7130GjUZnAINBq9Ubtmwp9S6qDXOeR0KRcCnReH72Ct9XZNmnhm0ygMHgWifRkHQ1qVzq8+uv6t/ztGnKe22aHza+N+6eTcblL2ZvKvX+33vP9JoxauBmw333qa8jWp/Od1155hnzfLZlX+w07nPGU/8WW76Z9xkDGAy21jcMGdcziiy78utdxn3PHPevye9xzpzS1bNnT3XbixeV98bcvTnf72Vf0adLtSfXoxri+nX1pL9+vUy7OH1a3UWbNgbDb78ZDMePK+tyz6N9+3IMNjZKmZdeur0qz5mjHi/v9e2NNwrfZsYM07/vM2fKfvzRo9X91OR7look1yNhDreeR+aOMytdS7coWtz5BON0W8G+0dS2UR+jdu3lavbj1WviRUN3pWv/vuimpe7iHX9N7aLr4VN8Rsdb9bq3Na++pCSK0+k0PPCAMq+yEOZw4qA6bKW5b9E9Md75sjVfzN7Mpg1xOHuWvrt1SeQd5rFjB0RujmbfCaXZpk3zI9z/iHrc/cVP55nPrcOnfljfgTVrlL9pDw/49jvbfENQRo0q/XEK0qK1OvvBkeiiUwLHnr7CyVhfANoHHit2THZ9P7Vb+KXrAcYxnFB061ZB2rdXl/fsgWtXkvhxQ5t85fb+Xfh4NSGE6uRJdfmOO2DYsPyJCENDlWvekiXw5pu3d7wWeSYq2LBBXS7qWpA3kbSjozI2vKxuvY4LIQRUwu7lomjnT6rdMjuFXeGdKbvRaPSENommQ5/b7wJakDZBynirlAxnTh6IKdW28fHqclmnznhtjjs9eijLFy/CwoVl248Qtzp5JMm43Myv6AdKDq4OPP5yN4K7lLy7cmk1aKDMGgCwfVsOnfv4GNc9NPQqYV3Vcdb7D5f+IdvunabjwLN1tqSnK18Dg/pcoknLBgzust24PiQwkRLO7lUsv2AfbKyV7vFHYovOvL5lnRo1R7S/VkRJRQN/9fd0MdH7toLudu3U5S/ePcaMZw6QkaVkWm3bXA20926Tp39ClETeoLtZs8LLtWkDjzxy+wnS8wbdeYeVlrR7eatWSiLZspKgWwhREAm6q5jzZ9RvEJ+Geia+0Z1z0VfYdci30Gzgt6ttmNqavndL6RLa5Q263d3LdnytFj75RH29d2/Z9iOqp/PnlSla8p5rJXXiuDrOuHlgyTJcl7fcG7asbGtjsNe0Xgyjng3F2cOJpvWUJGQHzzRFl50/MWJh4i8mcvqs8hmb1Y/BWpttsn5YPyWx2nOTndBolAcQ4x48dFufJS9rW2sCApVx6sdP2ZOjztTG6ahz3NdzB828Y3h/+k7+/Vcd3xnR06HYfXt6qjfqly7BqUh1Xk2/JiX/HYFpS/farYF8/HN34+vPP7cy9gTYe8izVPsVoqa6nYdgZdG0KdgWcDtU1LF9feHee5WM6E8/fXvHDwpSk8Bt3650NM914oSSJC4gAPr0gY8+Mv39CCGqLwm6q5jzZ9WpdnwaKTewDZt7U8u+6O6at6NtR0fj8t7d2UWUzC/+gtoy7+Fa/DRBhQkIAHs75dhRe2KLKS1qisxM6N4dnnhCmbu+tE6eVRNuNWtRxq4YZta1lTrdhdYqh2ce3MR/B11w81ZatsMDlAdf6Zl1OL7/bIn3u3ejmnitV/vD3N97l/G1Y+0U7rhHSRQWMSiUdd//x/fvb+PJVyJu56Pkk9sClZ2t3GhmpGYw46mNtGjjxf82duLU5ca8MLcjn//WBQArKz2d+xXfs0CrVebthZtB91nlYYVrnWu4upeu2czHB8aNw/jgIVfv1vto0yuIIB/l9xh1tlmZMsgLUdOUtKXbXKytlXuGvJydwa2IWQ81Gvj1V2U2hwcfvL3jW1mpWcyvXIGzZ+HcOWU6sYAApRHh+HH46y8lYVyzZjB16u0dUwhR+UnQXcWcP68+MvVpUkT6TjNq083XuLz3YOm6tMafUrtjetiUvdVMq4WWPkrr1amLdUlLTivzvkT1sXQpnDmjLK9dk0NyXFKptj+R2AEAjcaAX0jxU9lVhMcmNmFYt53c030H/206zYc/djcZQx4eogZ6+3dcLvF+d29Xx6wHtczkuSnqHejg7gdNxk33fagtDz/XBY3VbfSxLIDJWMuV12gffIHXF/YgM7vgXgahoVY4eziVaN8NbqaMuHrVwPn4m3N21i/bA7pPP4XY0wl8NXcrQyN2cmfbvXz2lfJQpm0rZUaFHJ0NUduliUqI4uQG3bVqwc0kw+Uu77UGlFbuknQZL2ju77LI28V87Vro3RtWrFBbva1uufv+6CPlYaQQovqSoLuKOX9R7TPVyM/8idMK4unjTuN6Sov1f6dboitFb834BPUU86hrf1v1CPZX5vk1GKw4svvsbe1LVH0GA7z/vvpap7fm7+XHSrWPEyeUfxs21FC7TvkMzygtB1cHftvUkf9t7ERI1/ytvOEd1XEa+08Flni/e/arf3/+oQ6EdQvgx4+2M+G+TXz4dYsitjSfvDfCz7zkyqEYJZuStTabF0dsZOMfKSbdu/v1K/m+69dSssQZDBr0BqV1288nqcx1revryeipXVm2uSMb9rSlWZiSWalta/UCuHdbGcY0CFGD6PVq9+mmTfMHm+WloKC7IuUNup99Vv2uqVcP5s1ThkMdOgTduinv37gBUVH5diOEqEYk6K5izl9Wxzc2bF63wo7btosyfjEt3Zro6JJvF59oY1z28HYsomTxglupN7tR+ySJUU339x8ZHDxo+t6GdUVPnhx7+grtAw5T3+0yzz68lWs3c3Tdmkm3Mgvvqc4Xvf9IyRIlGPQGdh9RkrC51rmGl6/ywO7BSZ1Z8Et33OsX0e/SjIIa5m8Z9qsXQ+SWGN75rgfd+zixY4fSg+HNN2HatJLvu0G99Pz7bmL+ybTbdlF/53v3yVeoEEW5dEkJKKFiA9+gW/LKVnTQ3aGD2rKem7/C01NJrDZlijKfd8uWSpfzXLt3V2wdhRAVS+4YqpjzV5UbPk+nOGo72BVT2nzatlWXN20q+Xbx19Ruox71b69lPri1GrRHHSzd1GWi+nn/tfzDFdZva4pBbyigtDJ+eMiAOPYcb0nstXp89GNX47qKGGdoLt7eUPfm87b9+02T9BTmXPRFriYrD87atzhp9m7jJdU8tCFaKzWDWtvmR9i+y56WndT/ACsruP9+JeB2LMVzuvre+X8Rfs1uMw1yAUK7+Bk/w97DXsWUFqJmy5skrCKvs5Zu6XZ2Nq2Dra3SvdzX17Rchw7q8q5dCCGqMQm6q5CcHLh0TRmr6NOg7EnJyuLOO9XlL74o2Y0+QHyS0jJf2yYDe8fb7F7eXp0W6OCxko3zFNXTkV0nWbdbmdvJ1+s8PcOUSavPxTUket/pfOUNegOjh+5nd3SrAvfX3CeuwPcrq/Bw5d/ERHVMe1H2bDxvXG4bWvR85OWpln0tHrpzJwB3d97Fv7sa4dXIPFnA6zewzveeX0Dxmc9Ly87RjlaNlUjicIwf6Sn5W9iFEIqKTqKWq3lz06nHKjroBtP7pq++gs6d85cJC1MSv4G0dAtR3UnQXYXExoJOp/yX+fhXUDaSm1q3VqfSiYyE7WsPF1k+V3yyEhx7OF277dY1r8ZeeDkrwVHUKZ9iSovq7IM31anrnhl9moF9ko2v1y+7YFLWoDcwY9wmlv6t3PHUqXWdP37ax8tjN+LhFE8Dt1juu6diH2Ldri5d1OWNa84VW373TvXzte1UcT1kCvLtmi5cPHmZlds64OBqvqC4QaP8n8uvZfkMwWnb6iqg5BE4sPVkMaWFqLnyBt0VGfja2poOG7JE0P3aa/Dqq0oL9yOPFFzGzk6dI/zoUdN5xYUQ1YsE3VXIebWxCh8LxJwTHzliXP7kw6Riyxv0BuJTlbGiHs7m+SYJbqr8EuJSPLlytmq1TgrzuHoujiXrlCdATnbJjH4xnH5D1YdQG/5Re1RE7ThDj7ADvPFFD0CZBurHTw/T54E2zF7Ug6vX3Im57EXjoIp9iHW7erY7a1z+Z/X5wgvetDvSxbjcrnvjcqhRyWmsNNT3q2f2/dZv7GzyupbNjXI5DkDbdupX587IyjHVnBCVkaVaugEGDlT+DQqquKzpebm4wOuvw+DBRZfLbdAwGGDv3nKvlqihAgICivz5+OOPLV3Fak+C7irE0kH3faOb4uGkZOv937/tuHL2apHlUxJTydEpidQ8XMwzxVdwYKpxOWpX8S18ovr5dO5h4xRTj9+zHyd3J1p08KOBmzI91KbIlly+kMEzz0B4hC+bo8KM2779wmYGjVYH0WmsNGhtzD/ut7y1696AOrWUbuL/7PErdBw7KEmM9h5XJq318bhIPd/qOQ65gZ9pN/Wm9S5gpS2fr7iIYWpXg5V/1i+XYwhRHeSO6dZqoXEFP+97803YsAE2b664rOllkXdct3QxF+Vl69atxp/p06fj4OBg8t7o0aONZQ0GAzk5OUXsTZRFJb4MiVudP622Flsi6K5dpzZj71GSV2XrbFn0XtFdzOMvJRmXPVzN0303OEQ9ZaP2pxZRUlRHGakZfPpjSwC0VjlMelnpP6ix0tCvi9KkkpFlj5+/DfPng06nDGlo5n2WNd/u4cV3elik3uZmW9uGiFBlerTYa/WI3lf4wO4NGyDthtL1ulcvyyRQqwjOHk7Y2arjq/2alN+kty1aqF1XN2+GOOl0I0Q+BoPa0u3rCzY2RRY3O1tbZVy1RyXvjJJ3mkRJpibKi6enp/HH0dERjUZjfH369Glat27Npk2bGDZsGMHBwezbt4+pU6cyfvx4k/3MmTOHESNGGF/r9XoWLlxIr169CAkJYdCgQaxfv76iP16VIEF3FXL+wH7jso/TUYvU4anJzbDSKFN3ff5jIDlZhT8JS7ii3gB7uJvnBji4vbdxOep8wUmxRPX1w8d7iUtRWjTv67mbRoENjOv69lcTaaVnKMt2djD79SyiTtRjwMh2FVvZctYrQu09UlQX819+UZfvH1V9W2U1Vhrqu6nRr194UBGlb/NYGhg2TFnW62HVqnI7lBBVVlwcpN58Nm7WMdUGA+hzICcN9DrTdZkJcC0S0s7nX1dJBQSA083csNLSXXX9+qs6lKGifoKC4H//M99neO+993jhhRdYu3YtAQEBJdpm4cKFrFixglmzZrFmzRpGjRrF5MmT2S0ncz75070Ks1u1Cr74wpd33lHmZSyr85dqGZcb+Vkme3fjoIbc1XkXK7d14GKiNzMnbGT2oh4Flo3PDjQuewS0L7BMabXs2AyNRvnOjTpeyR9fC7PS6wy8/7kaND4/xcVkfe9hQdhOyiQrR/k7ueceeO89aNzYtiKrWWF6DfCC95TlfzbZMh7QZevYueEwoV2a4uDqQEYGrFyplHFxgTvusFRtK0YDz2ucuqz0YfXzzQRqFb3BbRg2DN56S1le9uNlRo8un/HjQlRVZhnPnZUMl9ZCwm5IOghJUZAZD9wcUjPwCDjnecB2fhnsfkJZ1mjBviHUaQz2jcGhKfg+CE4lCyYqipUVtGsHf/+tzGt+4YJlxqCL2/POO3DsmGWOe++95tnXpEmT6JI3U2sxsrKyWLhwIYsXLyb85rQqPj4+7Nu3j59//pn27c1z719dSNBdAcaP0xB72Z3Lp2L4L7rsg5rOX1YCbSuNjvpNyycrb0lMmWbP6rt16A1a5nzZg6AW23j4ufx/pPHx6rJHXfNkTLa3V768T5yAQ4dApzOdFiQnB7Ztg9WrYeNGaNMGPvtMaZkSVduGn/Zy9LzSWh3R6gDt+oSarHet68KSD7ezYqWWUc+3486+1bsjT1iEPy51kkhKc+HffQHkZOsZ1usgq7aGE+53lO0HmrB+bQ7XrysZwocOVbpb6qpG40+Z1G/eGKKUZb/m5fuwpW1baOAZz8U4D/7c5EpKQipO7qWYWFyIaq7Mc3Rnp8LZH+HC73DlL9AX0VNOf8vQNas8f/cGHaTFKD+5jr4FrT+EZk9UqhuDDh2UoBuU1m4Juquel15SstWnVuDIR0dHmDzZfPsLDg4uVfmYmBgyMjJMxoMDZGdnExRUfr3NqioJuitAI5ejxF5uyf7jjTmwJZrQiLI9ZT0fp7TsertexdrWu5jS5afzwGDen7qJZ+d2B2DMlDY0DYii0wDTP1aToNuMjdLBwUrQfeOG8qXu76+8f3Drce6+15VzV9SESnv3wujRpmOmRNVjMMDcT9WeE88/c6PAcsMndGb4hIqqlWVpbbT0CI9mxdYOJF5349GHElm1VXnSvP9UELOe3sjZc7aAMlXa8KGpQPUOCjt1d2XpMmVYQdt25XtDbWUFQ3seZsEv3cnKqcXaH/fxwNMFTMQrRA1VounCspKolXkWCFPfM+hg7wTl31vVrgv2PqCtBVa1QHvLA32nICWgvnFFDbizrqnrdTdgz1NwdTN0/r7SBN63juvOHb4iqo577zVfi7Ol2NmZ/j1pNBoMBtNErXkTrKWnK8NIFy5cSN26po2BtrbVs5fh7ajeTUGVxIj71HGG334eW6Z9ZKZnciVJyTrs4xVfTOnyN2l2N54YshmAzOzaDH24LteuJJmUKc+gO9euf5Qn2DfSbvDgw1YmAXeuPduS870nqpaVK2HLDiVg9G+Wxd2PtrVwjSqHXt3VVp4f/+dmsu7tbyJYsVkJwl3rXOOOO2tXaN0s4amn4KefYOtW8KqAJO3DhqvDfJavKP/jCVGVFNm9/PoZ2DsJq5WNaBj3kek6Wxdwv5nS274h+E+CHuth6GUYdhn67YE+W+GOv/N3FfdoD+0XQrcV0H8/3JsI96XAgEPgP1Et59Ky0gTcYBp0y1BYUVm4ubkRd0um0KNH1ZxSfn5+2NracunSJRo3bmzy4+1tucbBykqC7gow/IlW2ForN8c/rGlJdmbpk4pdPHXFuOzjfd1sdSsrjZWGBUs70StcSe52JcmL75fWMSkTf1od3OLumGS2Y7f3P2RcfnayI6cOxDBz4k6OnFO+1Vv4XeW1KYnGMv/9c9BsxxYVLztb6baVa97btlVymq/y0OuuBvneC/FXrhV6g5Yb2cpT62G9DmFTq4JTB1uArS088AC0bl0xx4u4Oxh3xwQA1mwL4UZawT0whKiJTpxQ/tVooGnTm28a9PDfC7CqGRz/GI0uHbus0/k3DpsHfXfD4HPQ9iOo3xfsyjiszsZRCbLbfgwRv0Gj+6DFVNMyaTGQfrFs+zcDb291Vpq9e6v3MCBRdXTs2JFDhw6xYsUKzp49y/z58zmR+4cNODg4MHr0aObOncvy5cs5d+4chw8fZsmSJSxfvtyCNa+cJOiuAG7ervRrvxOAq8mebFi6v5gt8jt/Ug0ifeqbZ/qt22VTy4aPvg0zvv52ielNvemUYRlmO27f+4Lo134PAInX3eh9pxXvfBsBgK11Jj9/l8yU6bWNWdb3Ha6e8xLXFJ9/ZuD4cWU5IgKGDLFodSqVFu2b4uWsPoXu1g12R7rTtvkRk3L3PWCenArClLWtNYO6Kb/rtEwH/v4tysI1EqJySE6G/TdvdZo2hdq1UcYJ7Z8Mx95Xgm/AoLUnuU5nZV1eXhHg3s78rdE+w6DrL6C55fZ3/xRY2RR2PwkZl817zBLKbe2+fh2OWmaCGiFMREREMH78eN555x3uvfde0tLSGHLLTdizzz7L+PHjWbhwIQMGDGDs2LFs3LiRhpKYIB8JuivIwLuSjMvfflP6R5jnz6rTA/n4VJ4uUa2CNbRpoyzv26ckN8sVf0290Xf3djXbMbU2Wpau9qdFI6Xv2tmrPugNSsvnzAk7aNW5OfZO9gT5KE/PD59rKi1QVVTS1WRmvaoOD3j//UrVI9DiNFYaHh6pJEqrWxd+/BFq2Vnz7RJbY+8ad8cEet0TWtRuxG3oP1BNjbJ3Z1oRJYWoOdavVxKbAgwcePPNI3OVgBuUoLfVDPR3n+F83SmWvbCnHIdzv4A+C05+AWuDlSRuFaxDB3VZ5usW5WnYsGHs3bvX+LpDhw5ER0fj5JR/ZqRJkyaxbds29u7dy7Rp03j11VdZsmSJcb1Go+HRRx9l/fr1HDp0iB07dvDVV1/Rrl31mqbVHCToriChPb2NLVIrt7YmMfZaMVuYivxP7ZLuU8mmQBo1Sl3+9lt1OT5ZCQbq1LqOnYN5x5M6ezqzarWtsWsnQDv/w0x+u6vxdZuWSjfbHJ0Nh3YU0H1NVHpvTt5PQooLAA8POEBbGcqdz5tv27FmDURFQYObvc1bdGjGrwsj6d16H98tOF0jupZbSnBbtcvr4WPlN0WZEFVJ7lSFAINCf4WtD8CBl9U32y2EkJlQy73C65aPrZvS3dz6ZqLJzHjYPAR2PVGhrd4yrluI6k2C7gpibaPl4YFKM3BWTi2Wfl7yccZJSbBoufII1NY6ky59C0sDahkPPgg2NkrXsO8XJ5GTpTzejk9Wnph5OCWVy3GbBjdi+fcXcK1zjbouV/l2SW2sbdVWp9Zhao+CfTssn3xOlE7s6St8/JNy3teyucGb78m87AWpXRsGDADPW3IIDhrdgT/3tWHASHnaXJ6ahTYy9io4fCp/IkchaprsbFi7Vll2doZuztPg3M9qgbC3oNlYy1SuILU9IOxNGHQKGg5R3z+1CFb4wNbhEPuHkvm8HLVpo8yKANLSLUR1JEF3BRrxZD3j8u9r6xRR0tSCBZCSpnTVHnVfDPWaVK4xyu7ucFfnfQBcTnDhz1/2o9fpSUhVsil7uKSU27EjBoVy4VItYi46E9Te9GFEm05ql/b//iu3Kohy8ua0Y8ZEYBOG76RRYP6kYUJYmrWtNQENlVkUjl9sTNaN0ifKFMJc9Hq4fDn/EOmKtHWr0lgA0L8/2LjfnK/XyhZC50CLlwrd1qJqe0LEMujwJVjfvEcz5MC5X+HfvhA1q1wP7+AALVsqy4cOQZqMVhGiWpGguwIFd2qOp5PSxXzvsaYY9MV/K6alwYcfKstWVvDSG/7lWMOyGzVSbVX+ZnE2SVeTjeOsPVzSy/XY9k721LLP360ztEtTNBolWcu+w9JKWpXEHL3Awt86AcrwhClvtrRwjYQoXEs/pSdNjs6GE4dlikJR8TJSM1j4xhZaBOXg7Q3jx5fzAQ0GuH4WLq2H6I9h37OwYxRse5BVK9TEqYMGASGvQ7//4N4kaDm9nCt2mzQa8BsDA49Ci2lQO08jh1e3cj987rhunU5NRCeEqB4k6K5AGisNbcOUR5eJ1904e7b4bb74AhJuDlt+8EHwq1w9y436P9za+EDh9y2tid5/wbjOw9Uy2dYd3Rzwr38WgKgzfmRlZFmkHqL0Zk89TbZOyV3wzCN78Wok3XZF5dWym5ps4MhpecAnKs7Vc3HMeGojjRqm8dRrEUQfV4ZYffml2tpsNinH4fA82Hg3LPOClU1gY3/YNwmiP4Iz32I4u5SVvym926ytoV8/wC1c+bGuQrMo1PFRupwPPg9df4Wmj4FHZ9MyKdEQt92sh807rvvWLuY5OfDMM3DHHRhn9BBCVB0SdFewtt19jct79xWdrTMzPZN331JbiadOLaKwhdnUsuGRuw4DkJldmzdnq0+6PdxzLFUt2rSIBZRx9Ed2SzK1quBkZAyLVys3N872ybw4J8yyFRKiGC2D1eSWhw9bsCKixoi/kMDjgzfTqJkjry/sQXyK6cOenBxYvdrMBz36DhyYBpdWK8nGbrqW5sLbqybz3ZYRbD7WjVMXleSC3bqBq/kmLrEMrS00uhc6fg22zur7WUmwaRD83RMurTPb4fJmML81mdrrr8P8+fDPP/DQQzKXtxBVjQTdFSxv9uU82foLtOzLfVy6Yg/AkH6XadWqHCtmBhNeamLszr16h/q41sPdcoPLWoepAf++XakWq4comZSEFB66/zo6vdJa88Jj+3Gt62LZSglRjJZ5Rj+UJOg+HXWO9JTyHXYjqrdnxxzjy5XdyMxWZgbRWuXwUJ9tfPL2OWOZZcvMfNCGg9VlW1fw7g8tpjLl751MWfo2j37+HT1mbzIWGTTIzMevTI69D6nHlWnGttwDcdvMstsWLcBeue0zaen+6y+YPVt9vW8fLFxolkMKUbH02XBlU/HlqiEJuitYaYLuv/9SH2NOeOxSOdXIfPxCGzM0Iv88Fx71HC1QG0WbnkHG5f9iJItzZZaWBgP7XGPPcSWCqe8WyzOzWlu4VkIUr2lTsL3Z2F1c0P32CxvxC2lE19YxZKZbZuiNqPp2RSmJJa212bw4YiNnjlzlhz+68OTzjfDyVB42r197g/QUM2bjqnsHtP4A7joG9yRAz7UQNpfthwIKLH733eY7dKXT6lXwuVdZ1mXAxoFw7cBt79baWr1PjImBK1eUxHiPPJI/Od706cp6ISq9G1fh4lrYOwmWN4C/eyjDM2oY6+KLCHOqXx+8vfXExlqxb88N9LpaWGkL7ma+5b+GANhos+jSP6jAMpXN85PtWbbZ9D2PgDaWqQwQ3llNgrJvn8WqIYpx4wYMGQJb9zcGwN0xgT9Wp+Hk7m3ZiglRAtbWENgkjoPRnpw4nk1WhgFbO9t85RIuJfL6J8od9f5TQSyau4mJb3Sv6OqKSuSPn/aRmpzFsCc6orEqeshZrozUDE5f9gEgtOkJ3vmuh3GdVgtDumznixXdyMiszYafdzL08Y5lq9zFNeCQ52G1tR0EPmtSJDtbHV/s7g5168KRIzB6tPIwqtqysoHO38OmFLj8B2QnKxnO79wJDr63tev27WHzzfuo+fNh/Xo1uO7bV/kdf/cdJCfDCy/AJ5/c3kepDnQ6uH7diuRk5W9AmFlu4sSEHXBtP2hslbwH9j5Qpym45IlRMhMhagbciIOsBEi/CBkXb9mhE3bHf8K27cwK/BCWJ0G3BbRtspdVse1JTq3NqYMxNA9vnK/MlbNxHL/YRCnvH42dY3BFV7NMOg8IpkPgIXYdU/vCe1gwr5CzMzRrBidPQmQkbPkriYjeLparkCjQ558r3ecAnJ0N/LH6Bi07NbNspYQohZY+xzkY7UmOzobj+0/SqnP+83f+6wdJy+xhfD3nkyBGT9Fh7yB3iTXR0o+38+AkJX/FFwmbefzlkmXHPh55Dr1BaV1u4ZeYb/3Qe+35YoWyvOy3HIY+XobKJR+BzYOAoqcoPXFCCbwBeveGpUuV8eTWNeHuUlsLui2Dv3tDwk64cQU2D4Y+28DGocy7zTuu+8031WVvbyXY1mhg1Sq4dg1++EH5EVog3NKVqMY0QJObPw8VU9YN+LjYPTo7ZfPTUmVawZpCupdbQNswdSzf3i23Pv1RbFl3yrjcrUNCudfJXDRWGp6faDovtyWDblC/wDIzoVsfF0b020rsaemTVZls3aou//abhtZdZU5uUbW0DFLn5z78X1y+9SkJKcz/PszkvcvXvPj0cwm4a6LLZ64yYbraLXvOR75kZ5Zsjvcj+9V7ghaB+ROV9hoWgpOdMnXdqi3BpCam8tbzG7mn+06itpUs7fXxlR9y7GJzyLhcZLm8wylatFD+rREBdy7rOtBjDTg2V14nHYSdo8CgL/Mu82Ywz9W0Kfz+O3h5gacnzJ1b5t0LUSkkp9iwznw5CKuEmnRprDTadnSAT5XlvbuzebCAMls2qWP9InrWqZiKmcmwx9vTeE4iMbFugPIlYUmzZind3XLnvPx+Q1d+b5XCrEkbmTirCza1bCxbQcGxY8q/trbQXXrbiiqoZYg6HdLhqPxjtT9/8z+S0noA0KP1UTbtD8JggHnz4MknwdFyqS9EBTPoDTw18gyJ19UmzZi4Rvz4WSSPPhtW7PZHzjY0LrcIzX/i2NrZcnfEHn74owvJ6c40bRJPfEoPAE6NOsP+40praWF2r99Pl8c+IUdnw543+tOW9YWWzRt0500oWKPUcoNuv8MfHSE7Bc7/BlGvQ8jMMu3OxwcGDIC1a6FzZ3j+eWX4Vd5u048/Dlevwjbz5G+r8gwGA6mpKTg6OqEp6uQWygOh9HOQfh5y8uR8qNsLrPIMi7p+BlJvjrvWWIOti5JA0cZFuYDkZCj5DGycTOezB2W/GmtlGIam4Pbd+vWVc7smkaDbAtp0U7uT74tyLrDMlr3KCazR6OnSz79C6mUu1rbWfLzQjZEjlS8KSwfdfn6wZw98MXszL78TzLU0V1IznHj+rR589dMJFn+ZTbs+LSxbyRosJyuHE9E6oBbNG13F2trCJ4wQZdCyTV3j8pHoWibrMlIzeP9r5Rqj0ehZuKgWr7+vdAtNSICPPoJXXqnQ6goL+uGj7fy+tQsAjrVTSL3hBMDcz8N45Onix6QeiWlkXG7RteCcKUOHWvHDH8py3unEDpxswtq1MHBg4ft/e94NcnTKw+hVZ2cUGXQfOaIu19igG8A5CDr/BJvuAgyQFAl6HViVvidLbvfxxMTCewpaWcGrr95WjasVnU5PZORJwsLC0Mqg7sJdPws7Hik42/6du8AjTzeLhHhIOA2eXcG5ZSnP5arVWFhRpHu5BdRt7ImPh9KtfN9xP/Q6025IyXHJRJ5Wup2F+J7AxavgwLwyu/tu5Qtj8WJL10Sh1cK4Gd04fkzP44M3G6c2O3yuOcMedMGgt9y0ZjXd2SMXycpRgpTABqeKKS1E5dS0lQ+1bTIAOHzK9MHRN+/v4UqS8t59PXfi37opM2aowdV77xm4kVH27qii6ki4lMjTr6rR6bfzj9Dt5lDu6GhYvrz4feQGurVqQZMmBZfp92AIdWpdN74OanTWuDxnTv5M2LkunIhlxRY1edq+k0VH0rkt3ba2Sv6UGq3BAAh/B0LnQsSyMgXcuaysLD80T1QzMT/DutA8AbcGvLpB209g8Dlwv2WGH/d24D8eXENu61wWKgm6LaRt0HkArt9w5Ph/Z03Wbd9wHINB+a+JaFf0eKrKrDL28PFo6M4XK7qxa8MxmtRV5jO9kFCfy2evWrhmNdexA+r4+sDmNyxYEyHKTmujJdAnBoATlxqbTAf22yr1wemUV1wBaN4cHhyuBOlJSRp+/2pnBdZWWMqidw6SlOYCwIO9tzH08Y5Mn66uf/PNwgNigKwsJTEoQGBg4a3idZzr8N38QwzuuosfP9rOodONjS3RO3bApkKmyV34TjQ6vdoJ8r/9hd8mZmWpmcsDAmrYWO7CBL0ALacW2qVWiAqn18H+l2DbA8rwB4A6vtBnK/TepATWdXwq5017NSNXBQtpG64GF3u3xpqs27LD3rgc0T3/tDPi9rXr04KhvU8bX0ftumDB2tRsxw6piQUDgmR8vai6WjZTElzp9NYc368E4FlZsP1ICAA+3tcJ7x5oLP/YPceMy98ukXO/utPlGPjsByXhlkajZ/b7yrRfd94JbW72Et+/HzZuLHwfJ4/dIOdm7rQWxYyKGvZER1Zs6cCDkzpjpdUwbZq6bs7r6fnKZ2VksehX050mp+QrZnTiBMa61Oiu5cXJumbpGoia7PRiOPqO+rrxQ9A/Ejw7W6xKNZUE3RbStqOa/GTnDtPso5sPqN9eEXdVjanCqqLgEPWxfNT+1GLLp6XBBYnNze5YtNpUExjsZsGaCHF7WrVQs0/v+EfppbRnD2RkKC0I3e9wMJmLuceQUBp5KheVDXtay6wK1dzqNRrOxSkzMwzofIimwcrYbI0GJo5VM97vXre30H0c2bbfuNzC+0Cpjn///dDUV3ng/9e/9uz+84jJ+t8W7TUOg7Cxzp8V/VaSRK0ErvwLqwPhjMzrJSyk6WNQ707QaKHtAmV+eduqN2y1OpCg20I69G6GtVa5QVu7uYlxTPGNG8pNGijjo7wblX2uR1G04LbuxuWow0WPV4m/mEh4aBY+Pso8mcJ8os84GZcDWjcsoqQQlVvvgepY7lXragOmrZY9epiWt9JaMXKI0ldYb9Dy/adHAUhNhT//hPT8jZHCgrKylP/PLVvgypWiu4EX5JNP1OUJL4eYrAsJiDcuRx/JKHQfRw6pwxaCmpfuBLG2hiljdhtfL5xvOh3pJ1+o9xsvTSx4OtO8JOguRvJR+Kc33LgKe8cr2aCFqGhWWui6FO74F/wnSDdyC5Kg20KcPZ3pHhIFwJkrjTgcpQTgO3YoX+wAERGWql3N0KKdL1ZWSvKiqIvtiiw78dFjnDildPWfPdtQ6pstUbhj55SWn/pusTi5OxVTWojKq3XPQOp7Kl1J/9rfjrQ007GztwbdACPH+RqXv/21AUcO62nZUuly/Nhj5VtfUTrTp0PPntCtG9SrB+7upoF0UaKjlQcpoMyo0bev6Xr/MB+17JnCW6GOHFOHnLVoXfqZHkY+1x4brXKTseNAfeP7hw7BtsPKg4CWvmd44dVGBW6flwTdxXAOgsYPK8vZKbD9EdAX34NAiNty7CNIuKW3jK0reElQYWkSdFvQoBGtjMsr1yhfpN99rc6Zd8cdFV6lGsXO0Y7mzZU/gcPHahvHpt3qf5/t5Oe/1bEvJ05o2Ck5j8wi/kKCcTqbwMaxxZQWonKz0lpx9zAlUdqNGxrWrs5h2xalO28D70yaNs2/TfNwX7q0PAgosym0b5vBeSXPJr/+CmfPVkTNRUmsWGH6+to1ePGFLNKS0wosn9enn6hPaseNU7JT5+Xg6kADN+UaGH2+QaH7OXJauV5aa7NpFlp8YHyr2nVqE9pU6V1x7EITUhKUQdu5DwQAxj7TBFc3Df7FzFaaG3TXqqU8SBAFaLcAHG7+4cdvhwPTJPAW5efI2/Dfs7B5CGRU3UTM1ZUE3RZ09xD1ifXKlZAcn8IvvyqvnR2zGDrUQhWrQYJvDpnPzFQzwuYVdz6e8VPz301880351qumiI5UuzAG+hU/rl6Iym7QIHV51sws0m8o3cx7BO8ttFffow8mGZfTbqjzmxoM8NVX5VFLUVo30m5w5owOAC/3dAJ9lRvaG5m2/PW/Q0Vue/3adb75Spm+q3ZtfaE9GAJuPnhMSHUn4VJivvU5WTlEX2gMgH+DGGxqlS35XrsQpSu7wWDFvo3KNI3b8kzb27On8m/79rduqcrMVBKpQdFZ1Gs8Gyfo/IMynhbg6LuwpiWc+xUMMk2gMKOj70LkFGU54yJcWmPZ+oh8JOi2oCZN1KBv1y74YNZx0jOVG66H++7A3r6IjYVZBOfJUxcVlX/906OOE5fiCUD/DvuoU0dprfj5Zx0Z12V6q9t1LCrZuBwYYMGKCGEmvXphvHYfPqZexLt3K/wGe/gTocY5vgG6hx5Aq1WuNYsXpZKTJS1jlnYi8hx6vRI49Wmzn3dnnTeuW7kiq8htv//4P1LSleSpD/fZilsh+SIDmqrzakfvzz+m+szhC2Tl1AKgRdO4fOtLqn179dZv97ZkDAY16HZyglY3O+G1K2LU1fHjoFOeQRSbRb3G8+gIYW+rr1OPw9bhsHEA5EjiBmEG0R/D/snq69A3wW+M5eojCiRBt4XlbRWZ/WmYcfnxp+tVfGVqoOBWape/qJ0xJutOHYjh53+UbuXujgksXtqIewcqrRvJyVpWfvNfxVW0mjp2JdS4HChJ1EQ1ULs29L0zf5DcY4BPAaUVzp7OzJiwC/taaTwxZDN/7AhiYDel683FK46s/0muNZZ2NFJNdBYUkE2voa2wr6V0K1+1OQhdTsEPVQx6A5987W18PeF5z0KPEeCvfh9FH0rKt/7If2p2+xYBmfnWl1T77ur9xZ7/anHmyBUu3+yJ2rGDwdhqXVRLt4znLqWg56HPNvDqpr4XuwF2PW65Oonq4dJ6pUt5rpA3oOW0QosLy6m0QfcPP/xAr169CA4O5r777uPgwYOWrlK5GHSn+rRap1emsGrb/Ahh3aTZryIENz1nXI7abTqm+Ndv1Eyjk8dGUdfXk0eHq2VkXt3CGfQGPpu1mRdHbCQ1sfBu48dOqYnTAtvJoEBRPQzqZJr0wdv1Ms1CGxe5zdQPepCaZsfC5d2wtbPl8UfVuX0XLZLMjZZ29LDamh3UqjZ2jnbc2U7pHhWX4pFv+q1cW1Yd5FCMMjd3p6AownsEFXqMgJbq0ILoY7p8649Eqb0hWrSyzbe+pAJaN8GhtnJd3n24Eds2nDCu69J8s3E5LAysC+g2npMDv/+uvpagu4Q8O8MdG6H7aqXbuZ03BL+mrs9MgMT9oM//fy9EgVKOw7YH1KEKLadDq1csWydRqEoZdK9du5a5c+cyYcIEli9fTmBgIGPGjCEhIaH4jauYtl3cqediOjfr4yPjCyktzK1psI+xtSLqpLfJul9W1TUuDx+tBITdh4TR2FPpVrhhT2sunZJEFQX5beFOxs/sxnvf92DiI4XPJXvsmPJvnTrQoPDcQUJUKQMfDESjUVs+e7Q5ZTI/d2GstOpXcr8HWxsTa63Z0UauNRZ2NFoNcoPClNbqQXep87Kv/LXg7+0FH6ndhyc8nlLkMQJC1e+c6JO1TdblZOWwbK2arTwozKMEtS6Y1kZL2wClJ8X5+Ab8tlx9gNy1p6NxuXZttas5wMGDcPq0MuZ76VLlPWtraNu2zFWpeTQaaDAQev6hTOHklKeBJW4rrG8NG9rBtUiLVVFUEdkpsHkwZN8cptdwiNLKLSota0tXoCCLFy9m+PDh3HPPPQDMmjWLjRs38ttvv/HEE0/kK6/T6dDpKu+Twdy6FVbHuyKO8OXNAK9OresMfzKkUn+e6qaV7xl2R7fi9BUfUhJTqONch5MHzrL/lNIi0c7/MI2CAo3/JyOGnGD2Ih/0Bi1ff3iUaR8W3l3QnIo7jyqLzEyY8laY8fV367oy8e/DtO4RmK/cmTNWgIaAAAMGg55K/tGqhapyHlVlbvVd6dx8O9uOdwWgW5frpf59a7QaHrvnGLMXeaPTW/PpvKPM+rxirjUlUdPOo6On3QEla3iTVg3Q6XT0G+6PZpoeg8GKlX81ZLZOx4ED8M8/GgYMMOBoc5nlm5WI1Ms5jqFjw4v8fTVoVpdaNjfIzK5NdIynSdm338pk7wll8HRgw1MEtW9yW7/7tqHJbLz5PHTlNmXwttYqh7Y9/Uz226aNHm6W69QZ8o5A1moNfPihAW9vQ5mv3TXtPDJyvfmkwuRza9ECXNuPYX07DEGTMbR4BbS1LFDBqqUmnkeaXU9ilaK0XBicWqJvvxj0BqDm/A7M7dbzyNznU6ULurOysjh8+DBPPvmk8T0rKys6d+7M/v37C9zm+PHjFVW92xJVUKYuoF3nFL5cpSwP7radU+fc4VyBRUU5aN44kd3RrTAYrFj3vy00a1OP/31yAVBat+/sdpLISDVpWqc+Oqy+1KE3aHl/cRjdhu6gjrNdhdW3sPOosvj+ey9Ox5iOX33h2Qze/3q/SWtfzIlMdDplzLynZwKRkaZj6kX5quznUVV3113xbHsf7GzT8WttQ2RkZKn30bW/Hs2XSlD35lfd8aj7OxFDSz9NVHmq6ufRjes30OsM2BdxDdfl6Ii+qMxh3bTuOQ4fTTKua+9/iV3R4Rw534wxI0/w/c/N0Ok0TJ4MfnUzyNEprcgP9t/F0ePeBe3eRBNvT46da8TJ2Mbs3RuJtTWcPFmbmW8oD4GtrPTMeOUYB6OSit5RMer7q63bBoPSwyLE9xgnzpqOFQ8IKPg2sW7dLObOPU1ISBplOLXzqernkTnUzkzHz6YhtbMvoDHkoDkyl9QzGzjZ8AP0VnWK34GoOeeRIYemiXG4AjlWThx1n0PW4VOWrlW1UV7nUaULuq9du4ZOp8Pd3d3kfXd3d06fPl3gNv7+/thX4lTfOp2OqKgogoOD0RYwr0ZIcAgH/9vEqbP2vPVpK7yb1C1gL6K8tG2zhR/+UJaT4xwICwtj7D41rfljT4fi2zJPEBkGD925g+83dOVamiv//JrNqws6lXs9izuPKoOEBPjmG+UGTqMxUM/lKrHX6rLlUFsuHNzJ3aPUdLhn9u4yLndqGkVYWLd8+xPmVxXOo+ogNCSU0DZ78GnqQlC77mXbSRi8NGoTby3uicFgxYtz7+aXRnsYPKaIDFcVpDqcR0d2naJz71Y42aeydtmVfL1xcp2KOk9mttLdu0XTOMLC1OvYkP6b2RWtLH/7Y3PT7a40A8BKo+PZ10Lx8a9fbJ2C2lhx7Bxk51jj4hJG48bw5JNWZGcrDyyfew7uG9uv1J/1Vm5u8PwtQz+7tosnLCzC5L3QZmlwcxai4ffpib5gICzMwKxZWtzcTD9vWVSH88h8wkB3N/qj89AcnYtGn41jxn+EJb6EvttqsHW1dAUrrRp5HoVvQHd1E5qsJFo0vMvStakWbj2P0tPTzdqwW+mC7rLQarVV4o+ssHpqtVoW/FLGmzJx20JaOxuXD0fBqVNaIg8q/0/t24NfiG++bWa+5cNPf+ag01vzwbetefrVZNzrFzIPjJlV5vP9zTchKUlZfvRRDXd3OsM9TyoPkabMqMvAR/TGuWWPHVITEwW2qF1pP1N1VZnPo2pBC/0fKmLOpRKa+2UPkpI2s3B5N3R6ax6c0Jq/vQ/T9e4QM1Ty9lXl8+h/310kK8ef+JRaPDjahv+itDg55S934mAc4AtAkP8Nk887+MFGTPvQtPzDDxvYtOEqF+KVa999PXfhG9S5RHUKzBP3nzypZe1a2LdPXTd7tpVZ5sT29QUvL7h6VX2va4Rt/v/LPJnUFi+2gjoaoPj8BKVVlc8js9LaQegsZdz3xn6QdQ1Nwi60G/so48BrV54hJpVRjTuPvHtZugbVUu55ZO5zqdIlUnN1dUWr1eZLmpaQkICHR9kThwhRmOAOaiv2r38EMHGU2qNi+PCCt/ELbczou7cDkJLhzLuvVM/s+qWxaXkknyxQpkqyt4fZs2Ho2A5EtFIGBB6/2ISln6it2wcOqePUQtp7IYTIT2Ol4dNfuzKi31YAsnJq8ebssk8XJVQnTqldrE+dc+bxx8FQQKL4o1FpxuWglqZtFYFtm9KmuZK53MP1BuvXw/ffazh9wY1fPt3BOy9u5Mv/lfwBSUCevFoH9mfz1mwli71GY+Cbb5TkZv9n777Dm6reAI5/03QPCp1QaCmzZbfsUaYgQ0SWwE/BAS4EcaCCKAoqggNluBARtwIqIhsE2RvKLmVTSkspUFrobpLfH4cmDR0USJuO9/M8eTi599ybk/aS5r3nnPdYgkaTe0mwdt1rWObk4t55tVSZzh1v/m1M2A//doSUGCs2SghxL0pc0G1vb0+DBg3Yvn27cZter2f79u2EhoZasWWirPL29yLAOxqA2ITKrN1e07hv4MD8j3trWi3sbdWX31m/tiDufMGZaUu7tWvhkUdg7hfXSL2RZrbv1IFz9H8sgCyd+kI67tnDVK2qAoZ33jYloti00ZTR+cBxtVask30KdUMDi/4NCFFK2Wht+G5Ja3wrqgzZm4+EkJV7KXBxh05GmQ/XXbgQvvxCj0FvHnlHXAwxlus1rWa2T2OjYekqT374eAtH9l+ne3e13c7BjodHtuHVjzvhWsm10G3KGXRP/ySDuKuqjf27HKJVq0KfplBahJj+ZlX3OkvV2refcy6KUaXG0HUTON1c2iMpAmKWW7dNwnr0OtjzIpz52bREmChVSlzQDfDkk0+ycOFCFi9ezKlTp5g0aRKpqan079/f2k0TZdQ3My7SKNB83kb79lC9gKV1A4Kr8uwAtR5vSroLb72bx7jEMmLJEujVC377DZ4ZXZHqVa/z9rMbWLdoH8d2n6Z37yyu3lDD63u03M2EaaYxkq3vD8JGowLvPYfVXfvrV69zMlb9cBsGnkFrV46GgwlxF2ztbenUXY32upFsx759Vm5QKWfQGzhxQQUzDnamkQOjX7ChTtUoXn5kI8d2q1FPEacqGvcHNw/Mda4qNX157NUwfALufehvUM0bxvLVRFPyrDffuvt1ufPTso5pOcd2DQ5b/PzCAioEQbfN4FIDGk2G2k9bu0XCGvQ62PEkHJ8F24fB+vvzHpYjSrQSGXT36tWLcePGMWvWLB566CEiIiL49ttvZXi5KDLdH2nOwTN1OXs0ms+nnWX8ePj559sfN+HTtrjdXNb0228hxwCNMmP1ajXMPmfPWnySN+9904mug5pSr2VNjkWrTO/1A07y+7K62NqbhmC6uLtQP0B9eT18rjapKQYObT9rzJgbUs98KokQIm+dOpnKGzdarRllwtWLCVxLrghAWMMjjB5t2nfqYnVm/NaRZu19ObL9JBERaru/P7gWvtP6rlTyccW7QrzZtp4tdxOaT5K3e9Hl4VaENTyAh+tVxrwRaPHzCwtxrQE9w6HhRGu3RFiDXgc7noCzP6nnGluoO1rNERGlSolNpDZ06FCGDh1q7WaIcqZ6vWqMqlf4+pX97Hj/fXjxRfV85EjYswdsS+z/rDuzdfkR+j1cj4wMFSAPeOgGdjcOsui/luj05m/S0+0KS5fZ4+7tnus8zTsEcPgnyNLZcvAQHNiTYNwX0kTu1gpRGB1z5NvcsAFee81qTSn1ThyMBdTonNqBN5gxAxo2MPD7nENsPlgfnd6WlHQXBg7WGpND1ruDvw33Isg/hvgjpl7zCW8VzTrN9k72bD7UBF2mDq1d8SQCFXfJPvffVc7+BgYd1JDvymVa+Gtw9mYvkMYWwhaBf1+rNkncnRLZ0y1EafL88xASosoHDsAXH5WdRdZfeNGG1FT1MdG/P/z+hyu//duW00fimPPeJsYO3cCDbXdyX+g+Vv4ZR81Gea8h3LyV6Uvjnj2Yresa0lKWQRGiMIKDVcZpgC2bM8nKkIndd+tkjrW269TWo9XCs89p+C+8MZeirxNcTa15e+y8KblYcFDx3CAMCrhgLHeot7XIM9XL9J5S6NJm1fu5fRgcek+GGpdVMSsh8jNVtrGD9n9IwF2KSdAtxD2ytYWvvjI9n/h+RWJPx1mvQRYSdzae8FOqa6dB9dP89pupBz8guCrPvNWBT37qxD9bW/Hvvqa06FY/33M1b24q79kD+yM8jc8btZGMuUIUhkYDHZscAiDpuh37N1lu/dDy5kRkprFcO8jJbJ9HlUp8/22qMRdFtnpeW4qlbW07uBnLEyc5FVBTlFsXloH+5rKbh96GncNBl1HwMaJ0Sb0I2x83PQ+dDtUesl57xD2ToFsIC2jdGp5+aBMA11Mr8NaLpf/L8IZlJ4zlB7tEYX8PeXwaNzYF7Dt3Gjh0Vs0Br13lLG4ebgUcKYTIqVObq8byxjWXCqhZtu359yhvDN/Ayf3n7ur4k6dNy4XVaeiZa3+r7g15/YnNZtvqNSqez6phL7dmznubWDJvJ10HNS2W1xSlTMg0CPnI9Pz097ChJ2QkWq1JwoIMehVwp9/M7+D3gJrHLUo1CbqFsJAPPm+Au7P6gzd/eTsObI60covuzfp1pqGrXe6/ty+bTk7QoLb64xERoSE1XS02G9JalqgR4k507GlasmrDFmcrtsR6DHoDDz/qyrT5nXjuybu78XDiilqCVKPRU7NhtTzrTPq8DfX91c1HB7s0GrbKe/qMpdk52PHMWx3oM9zCa4SJskOjgfqvqfm92puLt8etV2t5p8Zat23i3p2cCxfXqLJjZWg9XxKnlQESdAthIV7VPHnr+XAADAYbxr6YnGu919Jk/U71BdNOm0G7XveeQah5nWO5tjVpWjQJgoQoq+q3rIlXhZvrdR8IQpepu80RZU9C3DXOXlKfTzuPBd/V5+zJM+qGhb+/DY4ujnnWcXB2YOUaZ55+aBM/frYPTz9JNiZKmICB0GU9ONxc3efaAVjTFpJK/2i7cq3GULVcHECbH8Hx3pcjFNYnQbcQFvTC5DbU8FWJ1NaFN2XFz3us3KK7E3XsAidjAwFoU/8ozhXuvUetefPcX4yzE9AJIQpHY6OhU1PV+5qY4s6BLeXvy/WZiIvG8o00N6JP3FnP3pUrkHBzAYXatQuuGxBclW/+7sCgUW3vtJlCFA/vNtBtK7hUV8+Tz8LadnB5l1WbJe7ArYnwbF2g7W8QthCqdLNOm4TFSdAthAU5ODswbWK08flrb3mUygzD/y09Yyx3CbtmkXM2b+uVa5sE3ULcuY5hpoRJjz5mz8RnNpT66Sx34swF8xUPIvbdWdB98qSpXKeOJVokhJVVqAvdtkHFm5nuM6+DPs26bRKFczUc1rSBpFs+wz1CIeBh67RJFAkJuoWwsIdHtqFNPZVhOOJ8Lf75vvT1dq//z1Tu0sMyS3o1alsLO60pWPBwT6FqVYucWohypVtff2P5WHQt3p/biZAOQfzz3U4rtqr4nLlY2ez5scPX7+j4EwdijOU6tcvf8HxRRjn7QdeN4NsF2v0GPh2s3SKRH4MBLq6HjX1gVTO4shN2PAl6+TwqyyToFsLCNDYa3nkr3fh84QK9FVtz5wx6A+t31QTAyT6FVt2CLXJeB2cHGgea5nWHBB6RvCBC3IWgZjWZ/+EWmtc5arb9658DrdOgYnbmjPnziGN39kFyMtw0JL92pdJ3U1SIfNlXhC7/gn8/8+36LJURW1hXViqcmgcrm8D6++DCUuDm0PKsFEgvvytSlAcSdAtRBO4b2ARPtysALN3ahJSklDzrRUVBVgkbfX7yUAzRV/wAaN/4KPZOlkt21rz2YWM5pFb5m4sqhKU88XoYu4/XJ+bkRfyrqmGkazf7Gucql2W5gu6T7nd0/IlTBS8XJkSpltfd7PDXVK+qLClmHelX4OA7sCQAdj4F1w6Z9jlXg9CPofsucJIVXcoyCbqFKAK29nb073YagJR0F1auyZ0dd+ZMqF4d2rUDXQkaUbR+h2nMd5f77+zL7O20725amqdN10CLnluI8qhKrco8PFh9vmRlwd9/W7c9xeHMafM7lRFReS/5lZ+TUepzraDlwoQoM07/CJEzIGY5rGmVe+6wKFrJ52FJIBx+F9Ivm7Z7tYF2C6DPaaj3KmjtrdZEUTwk6BaiiAwa2cJYXrgo93+1H35QQ4p27YJDh3Lttpr/cs7n7mvZLENDRrdj4jMbePvZDfR7qrVFzy1EeTVokKm8cKH12lEc9DoDZ8+YB92Xrnlx9Wrhz3EiWt1Y9PeKyXe5MCHKDOeqYH9zubukSFjdEi4ss26byhMXf/BorsoaW6j+CNy/E+7fBtUHgY1dwceLMkOCbiGKSKdO4HUzYfeyZZCcbNqXlpzGoYOmL46bNxdv2wpy/Oaob60WQkMte26tnZZ353Ri8ted0NppLXtyIcqpli0hQC1bzb//6rkSW3aHkF48e4n0zNyBckRE4Y6/GptAQrJKDlm7msyfFOVA5fugx26o2Eg9z0xSQ83DX4fUiwUfK+6MwWA+dDxbo0lQZyT0OQntfgGvlsXeNGF9EnQLUURsbWHAAFVOSYEVK0z7Dm49RZbOdHezJAXdl25+D/XxUe9BCFGyaTTwcI9TAGRl2fD39wet3KKicybCFCg7OphWQyhs0H3i4AVjuU7gDYu1S4gSzbWmWlLMf+DNDQaI+FjNMd42DBIL+R9I5C35PBybCSsaworGcPFf8/2+HaHFl6a11EW5JEG3EEXo4RxLLC6ce8RY3rP1slm9zeuuYNAbiqtZ+TLoDVyKUxPMfTzubBkeIYT1DBpgWpP3t0UuLPh8G12b7qNv+52ci4i2Ysss68yJJGO5c0vT+ypM0G3QG/jsI9PxtWtJNmdRjti5QthCaDJFDXMG0GfC2Z/VslXXjhR8fHmTlZL3El4GverNPvEVbH0U/q6ubl7sewkSb64osXsU6NJzHyvKNenHEqIIdeygx7vCVeKTvFi+sQY3Em7gWsmVPXvN73ddvOrJyQNnqRMaaJ2G3nQtPpHMrIoA+DpFAs2t2h4hROG06Fqf6t7RnIuvxrrwpqx7wbRvY4trfD9zBw+NKB15FJYvh6efViOFZs8233fmVKax3KvrNVbeHCV0bFckEFTged97YSML1ncCwMXhBgOfqG3BVgtRCmg00GACBA5TQeOpb1Rm7aoPgns9a7fOctIuQ9RCOPc7VO4GjSaa718SCNiAe331cPQFG3tAA9cOQvwWSIqA9ovBv6/puBNfw/5xaoh+frzbQ+1nQSP9msKcXBFCFCFbOxsGdFV3PlMznFn1u5rrs+eIb666m1efL9a25SUuypSNyMczrYCaQoiSRGOjYVDPk3nuu5Zckb5PtebVl9MwWH9AjdGVmKu89tgGvptmPr9m8utniI2Fzz+Hk7e8pTNnTX0F7To44+akvvxGnHAq8LUW/pbBO192AlTW8l+/PEJgA8lcLsopF38I+QAeOqfmG7eebx4k6jIoUR8WhXVlF2weAIurwJ5REL8ZUs6Z1zEYIDUGks+ojO4RH0P4q7B3DOx9AU7NVQE3gFutW15Akzvg1jqDb2doOBEeOArdNkGNRyVBmshFgm4hitiAwa7G8l9/6UlJSuHIOfVB7mBnCmw3byn2puUSd8E0pNzXu4QtIC6EKNBTL1bHyT4FgAda72L5D7sZ2Gm7cf/0GY7MmWOt1plLS07jgfti+OSnTox4oz1716svudcuJbI3IsBYb/Vq8+PORLsYyzUbVCbYX92sPHupGqnXU/N8rdhYeHy4aTmeD1/ZRJ/hrSz1VoQovWxdoNE7YOtsvv3Q27CmNUR8Clf3gr4Efx/ISIDzf1Dn/HNo/20L5/8CQ472Gm4ZIq5Phwr1wNaVfGlsoVKomgufk5MfuASCf39o+qlaW/vha3Dfemj8btkaLSAsToaXC1HEOj7UiEouKmPusq2N2Lk2Er1BpQV/uMseFq1vTnqmI5v2BtzmTEXvUmyKseybuzNeCFGC1W1ag3MnL5OZkYRfLZUdt+dQA59PO8WYN9WNvldfhe7doUYN67XToDcwvO8+dh5ra9y2ZEEczbrUY9OyY+gNpoB41SoYNcp07JkYbwAquSTg7l2JerUOs/s4GAw2RIZHEdIh9xDz9esh7eb9zUcf0fPqRx2L5o0JURZkJKqh55lJqucYwNYNvMPApwP4tIdKISpgt6bLO2HvS3B1F1qDngo59zlVgcCh6lGpsflxWkfodUD1eKdEq17tzMSbvfuZKqj2bJn7RgRAtQfVQ4i7ID3dQhQxOwc7HuygEpRcT63ARx+Z7sC2a6unZVAkAKcvVifmlHWX74iLNc2X9PGVe3JClDbe/l741apsfK6x0fDChFo884x6npwMw4eDXg/blh/i5Uc2snT+rnt6zX/+gbffhitXCld/yvs6fvu3rdm2Fet9AFj/r/m0lv/+g/Sb+Ygy0zM5f7kKADWqqM/K4Lqmz9OI/Xk3IDLSVB402AaNjaZwDRWiPEq9AC633JXLug6xK+HAG7A2DBa6wbJgFfjmlBgBEZ+o7ZYcnq7PhKxk8232leDKDpXY7CaDax1oORf6nIHQj3IH3DlpNGqYfZX7IeBhNSS85hPg2ynvgFuIeyRBtxDFoP8A09yeVbtaGMvN23rRoXWC8fnmlaeLtV23uhRn+uPl65d7LVwhROn0ySdQ/eZqNRs2QJDfCdr1bsSM3zoy4OkQLp65uzWrz5+6xsCBet57D3r0UMsjFmT1apj4jrqhp9Ho8aqgVnLYe7I+safjWLfNz6x+cjJsXX5YvdbxWPQGLQA1ql4DoF5D01zuiCMZ5CVn0B1UcK41IYR7fegZDr0OQfPPIWCQSjRmxgBJkeDgZb45ZiWEv6aGpv9TEw5MhMRj99aeE3PUHO3Imebb3eqoXmn3BujrvsiJarPR9zwMtZ8CrcO9vaYQRUCCbiGKwf2DGuPsYH6X1k6bQaO2tWjf2TSvaPOmzFsPLVZxl0wfCT5+Vh46JoSwGDc3mDfX1Ct8Mq6OsZyps2flwsi8Drutjf8cITNTfW7s2QNPPKF60fOSmQkvvWR6/sEHNjw3+LDx+Q+zIzh8TrXLRmOah7n6HxWYn7lY1bitRkN1B6FeqLdx29HIvL9oR+47A4CtrY6aNfOsIoTISaOBig2h7igIWwD9YqF3JLT8BmoOB49m4OANrrf0iF/JMWom+SwceR+W14NVLdQ61qmxhW+DQQ/7XoXdz6kM62d/Me8912ig10F44DCG0OkkubQBG+09vW0hipIE3UIUAyc3J3q2Pmi2rXHwVRycHWjTva7xC+am3VWs0TyjS5dNyYZ8/StaryFCCIu7r5stowdtND6v4RtlLC9feXfTSbbekgBy0SKYNCnvunPnwrGbnV5t28K4cdCrr6dx/7RvQozlJ3pvQ6NR0fuqTepz8cw50xfqGvVVj3itRgHG5HG7j/rnek29Ts/xKNVLV9M3CjtJKCzEndNooEJdqP00tJ4HPfZA/4u5l8VqNAlazoEq3c33Xd2j1rFe7Acrm8LZ33K/RtJxODlXPc4tgK3/g2PTTfvd6oLulmSJdm6WeodCFDkJuoUoJv37mXf/NA9T8y4reFagSc3jABw+VzvfDLzFIe6KqXfbu6pnATWFEKXRzF/b88dX29nw136OR/nh4aqWCVyzqwGZ6Xc+0mZbuAqIbTQ6bGxUL9R778HstzaZ1Uu8nMQ7E64Zn0+frr7Ht+xW3zjEPDGlonH/4P8506y2itAPngki5tRFzpwxnS87EZytvS0tg9XnZ1R8NaJPmPekRZ+IJTVDzc8Mqn53Q+iFEHnIax1q92Co/Qx0XgV9L0DTz1SveE4J4aC7ZR7K1kdgWRDsekY9tg5R62wDaLSqh73DYplrLUo1CbqFKCYPPNIQO1vTl9oWpqndNGykenAMBhtOnrLef8tLSSqZUSXXa9g72d+mthCitLHR2jDguTZ07BeCrb0tPdqopbqup1Zgy7LDtznaXHJCCkei1HDw0NqRfPKx6cbimCkdmDBiAwa9CsSnvb6Py4kVARjc4yitW6t6WjstPdqYz/m002bQrlcwPTqZguQ1f57MM+gGaNfimrG8dXWOSkDkflNyyqBa1ruhKUS541QZgl9SveIPHIEGb90MwDWqJzynio3yPofWGTosUT3sQpRyEnQLUUzcvd25r6tpbGPOoDuoeV1jOfKk9RKAxCWqYZi+1SparQ1CiOLzwAOm8vJ/7iwojdx71VgOax7PSy/ZMGHEBuO2qd91onPoAdo3OsD0H1W2cnvbdKZ+bD4ktNewNmbPW9eLwMXdhe4Pehi3vfNJIMv/TjQ+Dww01Q/rXNFY3nrYfJ3cyCM3jOWgYJnvKYRVuNeHJu+pAHxAPDhXM99ftQ94t4eQaSr7eNNPIfQTNWe76gN5n1OIUkbWBBKiGL3/PkRFQfv20CjHjd2cGXUj7y6f0T1LSYEbN7+f+vhYpw1CiOLV/eH62LyiR6+3YcXuNnxyB8ceDjcFse3a26Ox0TDl205UqbKRMVPaYzDYsPFgiNkxLz6ynRoNO5m3oacWGxsDer1ayqtLJ5WFvHX3+rg7J5KY4k5UvOlLeqDPeRwdTfO32zwQgkajcixt3V3J7NyRx03loIZmK/kKIazBIY+paxUbQLdNubcLUYZIT7cQxahZMzhyBL7+Ws1nzFYSgu5LOaY7+t66OogQokzy9KtE69bqq0BEhMZsCPetrsYm8N+f4egyVeLHvYdMiR/b3W8a7z36vY4s+nInjnamnnM/j1iG3LeNt2c0z3VeDw9o08b0gdjlYTUMyNbelmcGhhu3O9il0aRGJLOmmc/brlgRGjRQ5QMHTDcPASJPmVaHCAoxX45MCCGEKC4SdAtRAtSuDRqNmvsYeTjxNrWLRlycqSw93UKUHzmHmK9YkXcdg95Aj04xdBkYysP37SYjNYO9J+oDqufZr1Zls/oDnmvD6WNJ7PvvGElXrnPhShV++7ctrpVc8zo9r70G9vbQrp3KbJ5t2ncdOLrzFGcOR5OSas/+00E8+GTLXMe3a6f+1elg507T9sibmcsrulzDu5pXruOEEEKI4iBBtxAlgJMTVPeOBtSSOtnJh4rTpcgDxrKv47ECagohyhKzed3L8/7sObTtBLuPq+7kxZtb89Jju0nLdAKgXUhUnsdUqelLaKdg3Dxuv6zPQw9BQgJs3gy2OSa+2WhtqNeyFoENqmGjzf8rS3bQDbB17QUAUpJSjMPSg/yj0dho8jpUCCGEKHISdAtRQgRVV13NSanuxJ27XOyvHxedZCz7VpSldYQoLxo3hqp+amWFNat1/P3tjlx1Vv8dY/b8m8UdjOWwdlkWaYezs/m0mzvRrpnpM3PLvypj+YkD543b6gZaZwSREEIIARJ0C1FiBNU0TUSMPBBTQM2icSlOZyz7VLZeBnUhRPHSaODZflsB0OltGTwylFW/7DGrs2p9/knI2j0QUpTNK5QawZ5UrqhuXO44Wgddpo7Ic6bkFEENb9/bLoQQQhQVCbqFKCGCgkxdPJGHkwqoWTTi4kyv7+vnXOyvL4SwnjdndmBYjy0AZGQ50O/JBmz4az8ANxJusOWQGlpezfMCfpXTjce5uxtoEOpe7O29lcZGQ1jIaUCtOX5o+0kiz1Q07g9q1dhKLRNCCCEk6BaixAhqaEowFHlMX2Dd32dvY+SATZyPtFyP+KXLpjXEfarK0jpClCc2Whu+W9KagZ22A5CW6cSQEX4kJyaz4Z+jZGSp0S+9O55i7jzTSJj27cGmhHyTaNc6w1jeuu6i2UoQOVeIEEIIIYqbrNMtRAkR1MS0/E7kqfx7miN2neKRF1tjMNiQlr6Z+cssswxO3BUnY9k3II91NIUQZZqtvS2/rGjGtbC9/LuvGXHXfPh88gaiL5hGwfToZU+vXjB3rp6FC6/x8cfugDb/kxajdl28YZoqv/NZQ5wrpAMOaDRqhQghhBDCWkrI/WkhRNXalXFxUPO6I89551tv5ieJGAzqv+62fYVb2yszPfO2GdHjrqo5j072Kbi4uxTqvEKIssXeyZ5ZX1XERqNyPHz4TRP+2RwCgK02k8591TJhTz5pYOrUM9SpY62W5tasSzBt6h0C4Mp1T85fUD3y1asbcHIq6EghhBCiaEnQLUQJobGxoW41lW33TFw1MlIzctW5etWWn5Y3Nz4/cbEONxJu5KqX0+lDUfhXTqBmlWhiTl3Mt96laxUB8K14RZbWEaIcq9eyFkN7qGHmCcmViIpVc7bbtdNQwbPkTj2x0dqwcmMAnZqEm20P8g7P5wghhBCieEjQLUQJEhR4FVAZhE8dis61/48/vElPNwXEBoMNB7aeLvCcv359jLhrPpy95M9H43blWScrI4sr1z0A8PWQpXWEKO/enuqPrTbTbFv3HiV/Rpq7tzurttVnUOdtxm3NGhd/YkohhBAiJwm6hShBguqYercjj6aZ7UtLg0WLcg87D9+ZUOA5jx4zJUibt7wz1y7lDqovX7hqHLLu45F8R20WQpQ9tZpUZ/iD28229ehhpcbcIQdnB35b25rZb23khcEbGfteE2s3SQghRDknQbcQJUhQmxbGcmRcfbN9v/yQQkKCCqCDaqcat4fvL/i/8dGzpkRrN9LcmPtR7qGWZknUqlW6s0YLIcqkt6bVxt5eze2uXBmalKLY1UZrw+j3OjLr9454VJHPNCGEENYlQbcQJYjZsmE5lrvJysjis6mXjM/nzNEYEx2FR3jlez6dDiIv1DTbNuv7umSmmw8bvZTgZiz71K57V20XQpQt/kF+/PijlrZt4ZtvSs7SYEIIIURpI39ChShB6uaId3MG3V9M2sqx6FoAhDU4QMcujgRVOwvA4bO18ky6BnD2LKSl25lti77ix6Kvzed2x8WZyr6+d918IUQZM3gwbN0KDz5o7ZYIIYQQpZcE3UKUIK6u4O+vytu3G/h73h5iTl1k4oxQY51pH6l/Q4NVJvJMnT1H98bmeb6jR03l9q2vGcvTP/cwW0LskqkTXYJuIYQQQgghLKjEBd1fffUVQ4YMoUmTJjRv3vz2BwhRxowZo/41GDQ8Oqoej/S/yPVUtUzPsO5raN29IQChHWobjwk/UT3Pc+UMup8d5U6zOhEA7DtZj81bTFnQ46KvG8s+hVv6WwghhBBCCFEIJS7ozszMpEePHvzvf/+zdlOEsIqxY+F/3dRyNynpLmw8GAKAp9sVho91MNYLbWPqkg7PZxnao4ezjOUGDTW88naQ8fn06aZ6Fw7vN5Z9nU/dQ+uFEEIIIYQQOZW4oHvMmDE88cQT1K0ryZxE+aTRwLw/Q2kVfNhs+7Q3juDmYUq0FmoacW4Mug16A3qd3rj96M7jN8+pJ6iOjocH21Ctmtq3dCkcPw7nI2P4c4MaVWJvm05AXRlfLoQQQgghhKXYWrsBlqDT6dDpdNZuRr6y21aS2yhKFntne/5c5knbNtFExVejQ6P9DH2pJUeOHjFeR+7uUL26DefOadi/38DBbSd45H8a4q5VYs3SeBq1qU1EVAAANXyjsXesCugYPVrD+PE2GAwwY4ae66dPk5YZBsDzg7bjVKG9XKtlmHweCUuQ66ic0OnQGos6tSSGRU8v15G4d3IdCUu49Tqy9PWkMRgMhttXK35//fUXH3zwAXv27Mm3TkpKChEREcXYKiGK1/WrNzi4OYFm93nj6OqYa/+4l71Yt1nN53ZxuEFyuuoJ7xu2gefG6ujR7z4AujffypSv1fHXr2vp1asRqalaHOzSSM9U2yu5JLB48SFcPVyK460JIYQo4WxSUwlt3x6A8M2b0Ts5WblFQghRvOrVq4ezs/M9n6dYero/+eQT5s6dW2CdFStWUKtWrbs6f926dS3ywygqOp2OQ4cO0ahRI7Ra7e0PECKH9l3Uv3ldR+0bbjIG3dkBN8CKHW0YeHa38XnjBhmEhLQ2Pn/qoW3M/r29MeAGmDh6P2FdOhTlWxElgHweCUuQ66icSE42Fhs3bgwulr0pK9eRsAS5joQl3HodpaSkcPz4cYudv1iC7uHDh9OvX78C6/hnr5N0F7Raban4T1Za2ilKtpzXUdMWLvCVaZ+bUxLXUyuQkeXA+9OrGLc3aGBndu29NKE6XyzQoTeobbWrnGXUO+3k+ixH5PNIWIJcR2Vcjt+tVqs1e27Zl5HrSNw7uY6EJWRfR5a+lool6Pbw8MDDw6M4XkqIcqX9A0F4VbjM5SQvhnbfwpixHrS8vz4Ax6JNI0fqh5j//6vZKIB+Hbbz58Y2AHw0+SL2ToHF1m4hhBBCCCHKixKXSC0mJobExERiYmLQ6XTGOdsBAQG4WHhYkxClXUUfdw4fiOf8yaM069IOjY2GxvVvcPCoq1m94Ga5R5J8+WNtnJ/dQpNGWfQd0bG4miyEEEIIIUS5UuKC7lmzZrF48WLj8759+wLw448/0qpVKyu1SoiSyzfQG99Ab+PzJ55y5ZVXTPv9vS7g5lE113E+Ad78uNI713YhhBBCCCGE5ZS4oHvatGlMmzbN2s0QotR65BF47TUDOp0GgPo1YoHcQbcQQgghhBCi6NlYuwFCCMvy9YWeXa4an9evk2TF1gghhBBCCFG+SdAtRBn0zLOmjIttw2RdVSGEEEIIIaylxA0vF0LcuwcHVOSXGVu5cV1H/2fCrN0cIYQQQgghyi0JuoUoox55sZ21myCEEEIIIUS5J8PLhRBCCCGEEEKIIiJBtxBCCCGEEEIIUUQk6BZCCCGEEEIIIYpIqZ7TrdfrAUhNTbVySwqm0+kASElJQavV3qa2EHmT60hYglxHwhLkOion0tIgKMhU1mgsenq5joQlyHUkLOHW6yg7vsyON++VxmAwGCxyJiu4cuUKZ8+etXYzhBBCCCGEEEKUMYGBgXh6et7zeUp10J2VlUViYiIODg7Y2MhIeSGEEEIIIYQQ90av15Oeno67uzu2tvc+OLxUB91CCCGEEEIIIURJJt3DQgghhBBCCCFEEZGgWwghhBBCCCGEKCISdAshhBBCCCGEEEVEgm4hhBBCCCGEEKKISNBdDH755Re6dOlCo0aNePjhhzl48KC1myRKsNmzZxMUFGT26NGjh3F/eno6kydPplWrVoSGhvLCCy9w+fJlK7ZYlAS7d+/mueeeIywsjKCgIP7991+z/QaDgZkzZxIWFkbjxo154oknci25eO3aNcaOHUvTpk1p3rw5EyZMIDk5uRjfhbC2211H48ePz/X5NGLECLM6ch2Vb3PmzGHAgAGEhobSpk0bnn/+eU6fPm1WpzB/x2JiYnjmmWdo0qQJbdq04cMPPyQrK6s434qwosJcR8OGDcv1efT222+b1ZHrqHz79ddfefDBB2natClNmzZl8ODBbNy40bi/OD+LJOguYitWrGDq1KmMGjWKxYsXExwczIgRI7hy5Yq1myZKsDp16rBlyxbj49dffzXu++CDD/jvv/+YMWMGP/30E5cuXWL06NFWbK0oCVJSUggKCuKdd97Jc//cuXP56aefmDRpEgsXLsTJyYkRI0aQnp5urPPqq69y8uRJ5s+fz9dff82ePXtyfYERZdvtriOA9u3bm30+ffrpp2b75Toq33bt2sWjjz7KwoULmT9/PllZWYwYMYKUlBRjndv9HdPpdDz77LNkZmby+++/M23aNBYvXsysWbOs8ZaEFRTmOgIYNGiQ2efR66+/btwn15GoXLkyr776Kn/99Rd//vknrVu3ZtSoUZw4cQIo5s8igyhSAwcONEyePNn4XKfTGcLCwgxz5syxYqtESTZr1ixDnz598tyXlJRkaNCggWHlypXGbSdPnjTUrVvXEB4eXkwtFCVd3bp1DWvXrjU+1+v1hnbt2hm+/fZb47akpCRDw4YNDcuWLTMYDKbr6ODBg8Y6GzduNAQFBRkuXrxYfI0XJcat15HBYDCMGzfOMHLkyHyPketI3OrKlSuGunXrGnbt2mUwGAr3d2zDhg2G4OBgQ3x8vLHOr7/+amjatKkhPT29WNsvSoZbryODwWAYOnSo4f3338/3GLmORF5atGhhWLhwYbF/FklPdxHKyMjgyJEjtG3b1rjNxsaGtm3bEh4ebsWWiZLu3LlzhIWFcd999zF27FhiYmIAOHz4MJmZmWbXVK1atfDz82P//v1Waq0o6aKjo4mPjze7btzc3GjSpInxsyg8PJwKFSrQqFEjY522bdtiY2MjU2KEmV27dtGmTRu6d+/OO++8Q0JCgnGfXEfiVtevXwfA3d0dKNzfsf3791O3bl28vLyMdcLCwrhx4wYnT54svsaLEuPW6yjb0qVLadWqFb1792b69OmkpqYa98l1JHLS6XQsX76clJQUQkNDi/2zyNYi70LkKSEhAZ1Oh6enp9l2T0/PXPNShMjWuHFjpk6dSo0aNYiPj+eLL77g0UcfZenSpVy+fBk7OzsqVKhgdoynpyfx8fFWarEo6bKvjbw+i7LnLl2+fBkPDw+z/ba2tri7u8u1JYzat29Pt27dqFatGufPn+fTTz/l6aefZsGCBWi1WrmOhBm9Xs8HH3xA06ZNqVu3LkCh/o5dvnzZ7EsuYHwu11H5k9d1BNC7d2/8/Pzw8fEhMjKSTz75hDNnzvD5558Dch0JJTIykiFDhpCeno6zszNffPEFtWvXJiIiolg/iyToFqKE6dixo7EcHBxMkyZN6Ny5MytXrsTR0dGKLRNClHcPPPCAsZyduKhr167G3m8hcpo8eTInTpwwy0sixJ3K7zoaPHiwsRwUFIS3tzdPPPEEUVFRBAQEFHczRQlVo0YN/v77b65fv87q1asZN24cP//8c7G3Q4aXF6FKlSqh1WpzJU27cuVKrrsmQuSnQoUKBAYGEhUVhZeXF5mZmSQlJZnVuXLlCt7e3lZqoSjpsq+Ngj6LvLy8uHr1qtn+rKwsEhMT5doS+fL396dSpUqcO3cOkOtImLz77rts2LCBH374gcqVKxu3F+bvmJeXV64MwtnP5ToqX/K7jvLSpEkTALPPI7mOhL29PdWrV6dhw4aMHTuW4OBgfvzxx2L/LJKguwjZ29vToEEDtm/fbtym1+vZvn07oaGhVmyZKE2Sk5M5f/483t7eNGzYEDs7O7Nr6vTp08TExBASEmK9RooSrVq1anh7e5tdNzdu3ODAgQPGz6LQ0FCSkpI4fPiwsc6OHTvQ6/U0bty42NssSoeLFy9y7do145cPuY6EwWDg3XffZe3atfzwww/4+/ub7S/M37GQkBCOHz9udqNw27ZtuLq6Urt27WJ5H8K6bncd5SUiIgIwBUNyHYm86PV6MjIyiv2zSIaXF7Enn3yScePG0bBhQxo3bswPP/xAamoq/fv3t3bTRAn14Ycf0rlzZ/z8/Lh06RKzZ8/GxsaG3r174+bmxoABA5g2bRru7u64urry/vvvExoaKkF3OZecnExUVJTxeXR0NBEREbi7u+Pn58djjz3GV199RfXq1alWrRozZ87Ex8eHrl27Aip5SPv27Zk4cSKTJ08mMzOT9957jwceeABfX19rvS1RzAq6jtzd3fn888/p3r07Xl5enD9/no8//pjq1avTvn17QK4joYYCL1u2jC+//BIXFxfjvEc3NzccHR0L9XcsLCyM2rVr8/rrr/Paa68RHx/PjBkzePTRR7G3t7fiuxPF5XbXUVRUFEuXLqVjx45UrFiRyMhIpk6dSosWLQgODgbkOhIwffp0OnToQJUqVUhOTmbZsmXs2rWLefPmFftnkcZgMBiK4D2KHH7++WfmzZtHfHw89erV46233jIOgRHiVi+//DK7d+/m2rVreHh40KxZM15++WXj/KT09HSmTZvG8uXLycjIICwsjHfeeUeGSpVzO3fu5LHHHsu1vV+/fkybNg2DwcCsWbNYuHAhSUlJNGvWjHfeeYcaNWoY6167do333nuP9evXY2Njw/33389bb72Fi4tLcb4VYUUFXUeTJk1i1KhRHD16lOvXr+Pj40O7du148cUXzaZMyXVUvgUFBeW5ferUqcYOh8L8Hbtw4QKTJk1i165dODk50a9fP8aOHYutrfQXlQe3u45iY2N57bXXOHHiBCkpKVSpUoWuXbvy/PPP4+rqaqwv11H5NmHCBHbs2MGlS5dwc3MjKCiIp59+mnbt2gHF+1kkQbcQQgghhBBCCFFEZE63EEIIIYQQQghRRCToFkIIIYQQQgghiogE3UIIIYQQQgghRBGRoFsIIYQQQgghhCgiEnQLIYQQQgghhBBFRIJuIYQQQgghhBCiiEjQLYQQQgghhBBCFBEJuoUQQgghhBBCiCIiQbcQQgghhBBCCFFEJOgWQgghhBBCCCGKiATdQgghhBBCCCFEEZGgWwghhBBCCCGEKCISdAshhBBCCCGEEEVEgm4hhBBCCCGEEKKISNAthBBCCCGEEEIUEQm6hRBCCCGEEEKIIiJBtxBCCCGEEEIIUUQk6BZCCCHKgZ07dxIUFMTOnTut3RQhhBCiXJGgWwghRLn3119/ERQUlO9j//791m5iibdnzx7jz+vq1au59i9fvpx+/frRqFEjWrduzYQJE3LVS0tLY8KECfTu3ZtmzZoRGhpKnz59+OGHH8jMzCzw9d966y2CgoJ49tlnLfq+hBBCiHtla+0GCCGEECXFmDFjqFatWq7tAQEBVmhN6aHX63n//fdxdnYmJSUl1/5ff/2VyZMn06ZNG8aPH09cXBw//vgjhw8fZtGiRTg4OAAq6D558iQdOnSgatWq2NjYEB4eztSpUzl48CDTp0/P8/UPHTrE4sWLjecRQgghShIJuoUQQoibOnToQKNGjazdjFJnwYIFxMbGMnDgQH788UezfRkZGXz22We0aNGC+fPno9FoAAgNDeW5555j4cKFDBs2DICKFSuycOFCs+P/97//4ebmxs8//8z48ePx9vY2228wGJgyZQoPPfQQO3bsKMJ3KYQQQtwdGV4uhBBCFNKsWbMIDg5m+/btZtsnTpxIw4YNOXbsGKACzZkzZ9K/f3+aNWtGSEgIjzzySK6gMDo6mqCgIObNm8cvv/zCfffdR5MmTRg+fDixsbEYDAa++OILOnToQOPGjRk5ciTXrl0zO0eXLl149tln2bJlCw899BCNGjWiV69erFmzplDv6cCBA4wYMYJmzZrRpEkThg4dyt69ewv9M7l27RozZsxgzJgxVKhQIdf+EydOkJSURM+ePY0BN0Dnzp1xdnZm+fLlt32NqlWrApCUlJRr35IlSzh+/Dgvv/xyodsshBBCFCcJuoUQQoibbty4wdWrV80eCQkJxv0jR46kXr16vPnmm9y4cQOAzZs3s3DhQp5//nmCg4ON51m0aBEtW7bk1VdfZfTo0Vy9epWnnnqKiIiIXK+7dOlSfv31V4YNG8aTTz7Jrl27eOmll5gxYwabN2/m6aefZtCgQfz33398+OGHuY4/e/YsL7/8Mh06dGDs2LFotVpefPFFtm7dWuD73b59O48++ijJycmMHj2al19+maSkJB5//HEOHjxYqJ/ZzJkz8fb2ZsiQIXnuz8jIAMDR0THXPkdHRyIiItDr9bmOuXr1KrGxsaxdu5bvvvuOqlWrUr16dbN6N27c4JNPPuG5557L1QMuhBBClBQyvFwIIYS46Yknnsi1zd7enkOHDgFgZ2fHhx9+SP/+/Zk2bRqvv/46b775Jg0bNuSZZ54xHuPu7s769euxt7c3bhs0aBA9e/bkp59+4oMPPjB7jbi4ONasWYObmxug5kjPmTOHtLQ0/vzzT2xt1Z/rhIQEli5dyuTJk83OffbsWWbPns39998PwMCBA+nRoweffPIJ7dq1y/O9GgwGJk2aRKtWrfj222+NvdBDhgzhgQceYMaMGXz33XcF/ryOHTvGggUL+Oabb9BqtXnWqV69OhqNhn379jFgwADj9tOnTxsTqSUmJlKpUiXjvrVr1/LKK68Ynzds2JAPPvjA+HPI9sUXX+Dg4JDn700IIYQoKSToFkIIIW56++23qVGjhtk2GxvzQWF169ZlzJgxTJ8+ncjISBISEvjuu+/MAkKtVmsMQvV6PUlJSej1eho2bMjRo0dzvW6PHj2MATdA48aNAejTp4/ZeRs3bsyyZcuIi4vD39/fuN3Hx4du3boZn7u6utK3b1/mzp1LfHx8nr3AERERnD17lpEjR5r15gO0adOGJUuWoNfrc73/nKZMmUKHDh0ICwvLt46Hhwc9e/bk77//platWnTr1o24uDjee+897OzsyMzMJD093eyYVq1aMX/+fJKSkti+fTuRkZGkpqaa1Tlz5gw//fQT06dPN7sBIYQQQpQ0EnQLIYQQNzVu3LhQidRGjBjB8uXLOXjwIK+88gq1a9fOVWfx4sV89913nDlzxmy5q7yyo1epUsXseXYAnt/2xMREs6A7uzc5p8DAQAAuXLiQZ9B99uxZAMaNG5ff2+T69eu4u7vnuW/FihWEh4ezdOnSfI/P9u6775KWlsaHH35oHB7fp08fAgICWLNmDc7Ozmb1vby88PLyAtQNia+//ponn3ySNWvWGN/LlClTCA0NpXv37rd9fSGEEMKaJOgWQggh7tD58+c5d+4cAMePH8+1f8mSJYwfP56uXbsyYsQIPD090Wq1zJkzh/Pnz+eqn9/Q7Px6mQ0Gwz203vwcr7/+OvXq1cuzzq3BcE4fffQR3bt3x87OjujoaMCU6OzixYtkZmbi6+sLqJsFX331FTExMVy4cAE/Pz+qVq3KkCFD8PDwyDMBW07du3fns88+Y926dQwZMoTt27ezefNmPv/8c+NrA2RlZZGWlkZ0dDQVK1bE1dW18D8QIYQQoohI0C2EEELcAb1ez/jx43F1deXxxx/n66+/pnv37sb51ACrV6/G39+fzz//3KwHetasWUXSpnPnzmEwGMxeK7snOzvz962ye8pdXV1p27btHb9mbGwsy5YtY9myZbn29evXj+DgYJYsWWK23c/PDz8/P0AF6IcPHy5UT3X28PPr168bXxtg9OjRuerGxcVx33338cYbb8hcbyGEECWCBN1CCCHEHZg/fz7h4eF89dVXdOrUiZ07dzJp0iSaN2+Oh4cHYOq5zhkIHzhwgP379xuDTku6dOkSa9euNQb+N27c4O+//6ZevXr5ZvVu2LAhAQEBfPfdd/Tu3RsXFxez/VevXjW+n7x88cUXubYtX76cFStW8OGHH1K5cuUC2zx9+nR0Oh2PP/642WtWqlQp11D5RYsWGdsM0Lp16zxff+LEifj5+TFy5Ejq1q1b4OsLIYQQxUWCbiGEEOKmTZs2cfr06VzbmzZtir+/P6dOnTKuv92lSxcApk2bRt++fZk8eTIzZ84EoFOnTqxZs4ZRo0bRqVMnoqOj+f3336lduzYpKSkWb3dgYCBvvvkmhw4dwtPTkz///JMrV64wderUfI+xsbHh/fff5+mnn6Z37970798fX19f4uLi2LlzJ66urnz99df5Ht+1a9dc27KXQ+vQoYNZwP7NN99w/PhxmjRpglarZd26dWzZsoWXXnrJmDQO4J9//uH333+na9eu+Pv7k5yczJYtW9i6dSudO3emTZs2gHmPeU4ffPABXl5eebZNCCGEsBYJuoUQQoib8hv+PXXqVPz8/Bg3bhyVKlViwoQJxn2BgYG88sorTJkyhRUrVtCrVy/69+/P5cuXWbBgAVu2bKF27dp8/PHHrFq1il27dlm83YGBgUycOJGPPvqIM2fOUK1aNT777DPat29f4HGtWrViwYIFfPnll/z888+kpKTg7e1N48aNGTx4sMXaV7duXdauXcv69evR6/UEBQUxY8YMevbsaVavWbNmhIeHs3z5ci5fvoytrS01atTgjTfeYOjQoRZrjxBCCFGcNAZLZGMRQgghhFV06dKFOnXqMGfOHGs3RQghhBB5yH/xTSGEEEIIIYQQQtwTCbqFEEIIIYQQQogiIkG3EEIIIYQQQghRRGROtxBCCCGEEEIIUUSkp1sIIYQQQgghhCgipXrJsKysLBITE3FwcMDGRu4fCCGEEEIIIYS4N3q9nvT0dNzd3bG1vfeQuVQH3YmJiZw9e9bazRBCCCGEEEIIUcYEBgbi6el5z+cp1UG3g4MDoH4YTk5OVm5N/nQ6HcePH6du3bpotVprN0eUUnIdCUuQ60hYglxH5URqKrRrp8pbt4KFv2vJdSQsQa4jYQm3XkepqamcPXvWGG/eq1IddGcPKXdycsLZ2dnKrcmfTqcDwNnZWT4MxF2T60hYglxHwhLkOionDAaIjFRlR0ew8HctuY6EJch1JCwhv+vIUlOYZSK0EEIIIYQQQghRRCToFkIIIYQQwgoyMqzdAiFEcZCgWwghhBBCiGIUFwcDB6oR+2+8kX+93bth9mxISSm+tgkhLE+CbiGEEEIIIYrIL79AQAC0agWTJ8OcOdCgAfz5J+h08NlnkJmZ+7g9e1QeuzFjYMSI4m+3EMJySnUiNSGEEEIIIUqqOXPguedU+fx52LUrd530dDh0CJo2NW1LTITBg03B+O+/w0svqcBdCFH6SE+3EEIIIYQQFjZzpingzktgoKmcMxg3GOCZZ+D0afP6r7+u9gkhSh8JuoUQQgghhLCgb75RPdPZXn8dzp1TPd/Dh8Mff8Cvv5r25wy6586FhQtV2d0datRQ5U2bYNkyNb97zhz4+GNJxCZEaSHDy4UQQgghhLCQ/fvhhRdMz995Rz00GtWD/cwzantqKtjaQlaWKehOSYFXXzUd+913qnd74ED1/Pnn1XD0+Hj1PDMTJkwo8rcEqPnn8fFQuXLxvJ4QZYn0dAshhBBCCGEB16+rudjZPdAvvACTJqmA+1ZOTtC4sSofPaqOXb1a/QvwyCPQv796tG6ttkVHmwJuUD3eOl2RvR0jvR46dIAqVaBjR1i7Voa6C3EnJOgWQgghhBDiHhkMqif6+HH1vGlTNQS8IC1bmo7duxf+/tu0b+hQ9a9GY34ejQZ8fFQ5KgrWrLFI8wu0dy9s26bKmzbB/fdDmzbqJoAQ4vYk6C7Hxo8fz/PPP298PmzYMKZMmVLs7di5cydBQUEkJSUV+2sLIYQQQljC4sXw88+q7OYGCxaAg0PBx2QH3aCC2qVLTcd36WLaFxYG//wD774Lx46ped/ZvvnGMu0vyKpVubft3AlPPVX0ry1EWSBBdwk0fvx4goKCCAoKomHDhnTr1o3PP/+crKysIn3d2bNn8+KLLxaqrgTKQgghhBAm339vKn/9NdSufftjcgbdX3wBCQmq3KtX7oD9wQdh4kSoW1ft9/NT25cuhZiYe2r6beUMumfPNs3rXr1aBd9CiIJJ0F1CtW/fni1btrB69WqefPJJPv/8c+bNm5erXoYF01ZWrFgRV1dXi51PCCGEEKI8SE+HdetU2QlB6icAAQAASURBVNcXhgwp3HHBwZD91Stn4Ny3b8HH2drCiBGqrNPB/PkqIdvataZh4Ldz6hSMHq0ypRc0PzshAXbsMLV39GjV457tvfcK93pClGcSdJdQ9vb2eHt7U7VqVR555BHatm3L+vXrjUPCv/rqK8LCwujRowcAsbGxvPjiizRv3pyWLVsycuRIonNMtNHpdEydOpXmzZvTqlUrPvroIwy3fMLeOrw8IyODjz/+mI4dOxp73BctWkR0dDSPPfYYAC1atCAoKIjx48cDoNfrmTNnDl26dKFx48b06dOHVbeMSdq4cSPdu3encePGDBs2jAsXLhTJz1AIIYQQojhs2qQyjwP06AE2hfyGrdVCixbm2+zsoGfP2x87YoQpQdtnn4G/v5pr3a4d9O5tmluen6eeUr3rgwdDv35w8WLe9datU4nUQL03gMcfh4AAVV6+XM35FkLkr3wuGRbxKRz79Pb1PJpCx3/Mt23sA1f33f7Y4Feg3it31748ODg4cO3aNQC2b9+Oq6sr8+fPByAzM5MRI0YQEhLCL7/8gq2tLV9++SVPPfUU//zzD/b29nz33XcsXryYDz74gFq1avHdd9+xdu1aWmenw8zD66+/zv79+3nrrbcIDg4mOjqahIQEqlSpwuzZs3nhhRdYtWoVrq6uODo6AjBnzhz++ecfJk+eTGBgILt37+a1117Dw8ODli1bEhsby+jRo3n00UcZNGgQhw8f5sMPP7TYz0kIIYQQoritXGkq9+p1Z8e2bAn//Wd6ft99an3u26leXQXBK1fClSvm+5YvVwnWxo+HyZNzZ08/exY2bDA9X7IEtmxRc8cBHB1hzBho29Z8aHn37upfe3t44w0YOVI9f/ddmDFDLZfm7m4+H10IUV6D7swkSC1E72qafx7b4gt3bKZl5jobDAa2b9/Oli1bGDp0KAkJCTg7O/P+++9jb28PwJIlS9Dr9UyZMgXNzU/VqVOn0qJFC3bt2kVYWBg//PADzzzzDPfffz8AkydPZsuWLfm+7pkzZ1i5ciXz58+nbdu2APj7m34e7jf/Gnh6elKhQgVA9YzPmTOH+fPnExoaajxm7969LFiwgJYtW/Lbb78REBBg7BmvWbMmx48fZ27OjCBCCCGEEKXIihXqX60WunW7s2NzzuuG2w8tz2nMGFPAb2urAv69e+HCBbWG93vvqSHhjzxiftyvv5rKNjaqJ/vKFRV8Z1u9GsLD1b+gAvGOHU37n3wS3n9fvdY//6hHttmz1TB0IYRSPoNuuwrgVPX29Ry9895WmGPtKtx5u3LYsGEDoaGhZGZmYjAY6N27Ny+88ALvvvsudevWNQbcAMeOHSMqKoqmTZuanSM9PZ2oqCiuX79OfHw8TZo0Me6ztbWlYcOGuYaYZ4uIiECr1dLi1jFPBTh37hypqakMHz7cbHtmZib16tUD4NSpUzTOXpTyppCQkEK/hhBCCCFKh7Q0ldH7u+9U8Pbmm/Dyy9ZuleWdPg2Rkarcpg1UqnRnx+cMujUaeOihwh/bo4dKpHbxIvTpo5YSS06GKVNg6lRV5803YcAAU2I2gwF++cV0jh07YPr03HO7r11Tw9WzZyt27KjWFs/m4KB60l94IXe7XnsNunZVAb8QorwG3fXuYej3rcPNi0irVq2YNGkSdnZ2+Pj4YGtr+lU55fzEA1JSUmjQoAGffPJJrvN4eHjc1etnDxe/Eyk3JzPNmTMHX19fs305bxIIIYQQomxbuBCee86UjRvglVfUkOj+/S37WocOgbe3KaO2paSnq3W3Dx9WAWevXmq+tJ2deb17GVoOULUqNGgAR46ooeV3+j569zZ/7uICH3ygerzXrFFDyb/80nTD48ABOHpUldu1U3PKf/9dLT2Wmqoe992nbiacOGE6b/bQ8pyeflrNZ9+zR72H9HSVzC0tDYYNU0ndbv15CVEeSSK1EsrJyYnq1avj5+dnFnDnpUGDBpw7dw5PT0+qV69u9nBzc8PNzQ1vb28OHDhgPCYrK4sjR47ke866deui1+vZvXt3nvvtbn6C6nQ647ZatWphb29PTExMrnZUqVLFWOfQoUNm58rZLiGEEEKUfuPGmQfc2R5/3BTwWcLnn0PjxuqRI3+sRYwZo3rpd+2Cjz+Gzp1V8rBjx8zrZQ8th8IlQLuVRqN6q7/4An766d7anNOHH5rmcr//vuq5BtNa4gBDh5rKFSqozOuBgSoIvzVYzk6ilpODg7rBcvq0eg9//w1BQWrfnj2qxz2nq1dVArdp00zJ2YQoDyToLgMefPBBKlWqxMiRI9mzZw/nz59n586dvP/++1y8mYryscceY+7cufz777+cOnWKyZMnF7jGdrVq1ejXrx8TJkzg33//NZ5zxc2/LFWrVkWj0bBhwwauXr1KcnIyrq6uDB8+nKlTp7J48WKioqI4cuQIP/30E4sXLwZgyJAhnD17lg8//JDTp0+zdOlS4z4hhBBClH7x8ap3FaBOHZWwK3tO8Y0bas7y6NHQvr0Nw4cH8dNPmjyXrDIYVGKuW+7VG0VFqeA++zXfecdy7+Gbb9TjVhcvqjW4s6WmmpKgVakCOWby3ZEaNVSvuiV760NC4NFHVfnqVTW/OysLfvtNbbO1hYcfzvvYFi1U0J4tIKBwQ8WdndWNA61WPX//ffU7zPbSSzBvnkrC9mkhchoLUVZI0F0GODk58fPPP+Pn58fo0aPp1asXb775Junp6cZ1t4cPH06fPn0YN24cQ4YMwcXFhW63yfQxadIkunfvzqRJk+jZsycTJ04kNTUVAF9fX1544QWmT59O27Ztee/mIo0vvfQSzz//PHPmzKFXr1489dRTbNiwgWrVqgHg5+fH7NmzWbduHQ899BC///47L5fFCV5CCCFEOZVz+ajevdXQ7LlzTQHpiROqV3f7dg0HD7ry5JM29O2rAtrERIiIUHOMGzSA0FB1XM7e2WwvvWRapgvg++/zD9DvxPbt5knAvvhCvX52IJkzm/fGjSrwBjW0/NYs4db2/vsq0zioILdyZdN64D17gqdn/se+9JLKTu7urgL2wr63Fi3grbdUWadTc8pB3YjJmcDtjTdg5847eTdClF4aQ36ZtEqBlJQUIiIiqFevHs7OztZuTr50Oh379+8nJCQEbfYnthB3SK4jYQlyHQlLkOuonEhOhps377lxQ00WLoQpU0xB188/m3pbz5yB5s1Vr+udcnFRwXz20OXly01zmTUaUwKwXr3UvltlZhY8tzgrC7ZuVb2wf/xhCqTHjIGZM1W5fXu1rFb2ewkMhGeeUTcUQB03YMCdv7ei9uabao73rRYsgEGDbn+8wXDnNxPS09Uoh/Pn1fOtW1UP++efm9cLDFRJ9tzd1c/8br7Oy+dRyffBBzB/vsrpEBqq/i89+GDJukl163Vk6ThTerqFEEIIIYTF5OzpbtbMVK5RA3bvVsO216+H+HgdH398Ch+f/Pt/bg6UIzlZBYhpaRAba54x+9tvIXtV0xUr1Hzkv/6CiRPhgQfAz0/19rZpo+YdGwxqXvmrr6oAwNdX7e/USQ2Nzg64O3SAnDlqc85pXr0aMjLgzz/VcxeXvOc8lwTvv69GATzwgCn7eHCwCnoK424CIwcHePtt0/OXXlK/J1A/q+zFcc6ehZo1VbtcXNSNlBzpgkQZcOqUuvFz8iSsW6f+Tz30kBrNUp6Uz+zlQgghhBCiSGQH3a6uULeu+b6aNdUDVHDVufM1hg7VM2mSlh07wMtLDYGuUwf+9z+V2btlSxUkHzyoguQTJ0yBWefOar1oW1uVpA3UcXnZsUMtq1W5shrKnp9KlVTm7XffNe8d797d1IO/apW6IZDda9+nT6EHAhQ7jUb9bB5/XN1QOHoUatUyX/6rKDz+uJoXfvKkutmS7Zln4MUX1e8yIcE84d7y5eqmzMiRRds2UXy+/z7v7WlpxdoMq5OgWwghhBBCWMTlyyrBGaigyqYQYyq9vc2Tk91qwQLVM5qWZp45vGJFtRSWRqOGsH/6qVoO61aVKqm6Z86o5zkDbq1W9YRXqaKShfXvD/36QV4rpzZtqm4KXL6seuxyroaaX6Bf0jg5mY8+KEp2djB5sml6Qfa2V15RNyx+/10F5llZ6kbI4cOqzhtvqN/DLavPilJIpzMF3VqtymgfE6My198mtVSZI8PLhRBCCCGEReQ3tPxeNGyokpllq1pVDVc9cMCUUVurhV9+UetLP/CAGlr+119q+PKVK2qI6z//qF5zUEuMzZwJcXHqJsHOnbBokQqe8wq4Qd1AyF6r+vp1tVQWqID+/vst817LmsGDVUK8bMOGmaYM3H+/mioQH68S4GWPVEhMhNdfL/62Csv791/TUn69eqmM+r16qWkEDg5WbVqxK7E93b/88gvz5s0jPj6e4OBgJk6cSOPGja3dLCGEEEIIkY+iCLoBhg+H+vVVb3f79qZM4jk1aKC+5OfnwQfVIzvp2t3MVe7eXQX3OQ0YUP4CiMLSamHGDHUjpEIFmDAh/7offQRLlqj1xH/8Uf3OO3YsrpaKojBvnqk8fLj12lESlMie7hUrVjB16lRGjRrF4sWLCQ4OZsSIEVy5csXaTRNCCCHKtDlz1DJCgwaZhuOK8unECVM551rLBSmqoBugdWuV7OxeE1RrNHefNTmvHu0hQ+6tPWVd165qxEFkpJpLnh8fH5g61fT8xRfJc/12UbJcv66mCsTGmm+/fBn+/luVfXzUjZfyrET2dM+fP59BgwYx4Oa6C5MnT2bDhg38+eefPPPMM7nq63Q6dCU41WF220pyG0XJJ9eRsAS5jkRBDAaYNMmGq1c1LFoE//yjZ3T/VdjYORJ+2J3ryQ5MmZJO+wcbAXIdlWUGA4wcaSC747hLFwPTZusZPtxQYMC6d68NoMHFxUCtWvoCM1GXxs8jLy9o2tSGffvUD8HX10CHDgW/T6GCLrh9ZvLhw2HOHBv279dw4ABERuqoU6fgY0rjdVSWjByp4ZdfbPD2NrBzp56AALX95581ZGaq/t2hQ/XY2BhK9P+TW68jS19PJS7ozsjI4MiRIzz77LPGbTY2NrRt25bw8PA8jzl+/HhxNe+eHDp0yNpNEGWAXEfCEuQ6Enk5c8aRixdNEzDT022Y/lsvszovjT3G94Hq+pHrqPQy6A38PfcCZ8468/Rr9rh5uJrtX7bMg+07fIzP0zM0PPusDcuWXWbcuCgcHXN3QV67puXcuRAA6tS5waFDhft+VtquoyZN/Ni3rwoAHTvGc+jQeSu3qGxp396X/fvVxO958y4wZEh8oY4rbddRWXDjhg0LFzYBID5ewwMPpDF3biSXLtkzbVpdQGUbbN06gv37S0e68qK6jkpc0J2QkIBOp8PT09Nsu6enJ6dPn87zmLp161pk0fKiotPpOHToEI0aNUJ7r2OiRLkl15GwBLmOREG2rzYFSc1Dkzlw0I5Mnb1ZncPngqnqHceF+Gi5jkqxP77ewZS5DwGQpdvGr2tCjPuuXoUvvrABUnIdt3SpF1FRnixYoKd2bfN9a9aYyh06uBASEkJBSuvn0euvw8KF6qbD2297EhzseZsjxJ3QaGD2bFU+etSfkJCqBdYvrddRWfDbb6bebICICBfefz+U3bvhyhU1GqRDBwP9+wdbq4mFdut1lJKSYtGO3RIXdN8NrVZbKv6TlZZ2ipJNriNhCXIdibxs+veasfzVx+ep5OXEf8ujqFLNkb8WpfHdsvYA7Pj3DP5N7OQ6KqUyUjN4a4opkFn0X2sm7T1DvZZqwu3bb6YSH+9Ezu6M7+bB8BcgJQUOHNDQqpWW6dPV8loeHqpOznnfzZvbFHrudWm7joKD1bJHGg24uZWedpcWoaGmtdQ3bNCQmanNN6N8TqXtOioLFi82lW1s1FJgq1aZ5p80bAi//KIpVb+X7OvI0m0ucYnUKlWqhFarzZU07cqVK3h5eVmpVcUnKCiowMfs7Ft/QgghhAUZ9AY27FVdlxWcEgntUIdaTarz1IT2PPBYC3r3sTPW3bIh1VrNFBbwzQfbORkbaHxuMNgwZaJavHrdonDmfKtScbs6ZxrrDB4Mu3ZBUJB6npgITz2l1thu00Z9uX7rLdNrFNda0NZSoQK4uVm7FWWTRgM9eqhySgps2WLd9oi8paTAypWq7O0NP/1kvr9bN/W7y14irrwrcUG3vb09DRo0YPv27cZter2e7du3ExoaasWWFY8tW7YYHxMmTMDV1dVs2/Ac+fYNBgNZWVlWbK0QQoiy4siOk8QneQPQISQSrZ35Xf6wHqaxxJt3eRdr24TlJF1J4t1Z9Y3P3ZySAPjt39Ys/vEEA56oicGgvh6+2WeS2bENGsDu3fDww6Ztej3s2AFHjqgygK+vKTgX4m5kB90Aq1dbrx0if6tWQerN+699+8Ijj8Cnn4Kfn8o8v3w5uLtbtYklSokLugGefPJJFi5cyOLFizl16hSTJk0iNTWV/v37W7tpRc7b29v4cHNzQ6PRGJ+fPn2apk2bsnHjRvr370+jRo3Yu3cv48eP5/nnnzc7z5QpUxg2bJjxuV6vZ86cOXTp0oXGjRvTp08fVq1aVdxvTwghRAm1YWWMsdy5fe65vN7+XtTzPwXAvpNBpN1IL7a2Ccv5+I19xpsrg7tsY8KoCAD0ei39H69DYor6lvxg038Ydd+sXMe7ucGCBbBhA4wdq4ZaA9jZqWHBI0bAihX3vqyXKN+6djUt6yZfV0umP/80lW8uOMXLL8OFC2ptdju7PA8rt0rknO5evXpx9epVZs2aRXx8PPXq1ePbb7+1yPDyRYvg7bfVmnLFxc3NhieeqMht8okU2vTp0xk3bhz+/v5UqFChUMfMmTOHf/75h8mTJxMYGMju3bt57bXX8PDwoGXLlpZpmBBCiBLv5P5z+AZ44OZhPjb2v00OxnLnnpXzPLZDmI6I3yBLZ8eBw560DivSpgoLS7iczqc/qr/5dtoMpnxaFZ+a1fn4O5U8LVvT2sf49YOFaC/kyFC++3kIeR0qNkCjgY4d1eOTT+DKFRWM29sjhEV4ekLLlrBzJxw+DNHRMky5JElPh2XLVLliRejc2arNKRVKZNANMHToUIYOHWrx8378MRw7ZvHT3oaGn36qzKuvWuZsY8aMoV27doWun5GRwZw5c5g/f75xiL6/vz979+5lwYIFEnQLIUQ58fvsbfxvTFs8XK+y4o/DtOreEAC9Ts+GfXUBqOhyjcZhdfM8vkPvusz5TZXD98uE1tLm76UOpNwcoPDU4FPUalIPgFdeMc3H9veHZRvq4Fr5O1hzGbg5tvf0jxDzI3TdBD7tzc7rKcm7RRHo0UMF3QCTJkFUlArA33tPjagQ1vPvv5CkZqbQp4/ccCuMEht0F5XXX4eJE4u7p9vAsGEXgUCLnK9Ro0Z3VP/cuXOkpqaazQcHyMzMpF69ehZpkxBCiJLv94VqzO/VGx507efAilUG2nfQcGjbCa7eUJNwO4ZGorVtlefx7XPEWuHhEnSXNosWmcqPvWD6+//ii7BtG8TFwfffQ5WqWkAL7X4BbhllWOGWpX/OLYTT88G3M1TtDRXqmcYFC3EPuneHyZNVed480/aRI6FVK5W8T1hHzqzl2UPLRcHKXdA9cKB6FCedTs/+/dcsdj4nJyez5xqNBoPBYLYtZ4K1lBQ1N2/OnDn4+vqa1bOXW1NCCFFu7I/0M5ZvpLrQvQdMmACHt5iyVHdun5bv8f7+EBgIZ8/C4cMupKcbcHbOt7ooQa5ehbVrVTkgQAUt2VxdVdKjXLQ51mkK+RAS14PjLUn04v6D2FXqsX8cuNaEgEFQ6ylwq2Xx9yHKj5YtoVIlSEgw356ZqXq6t22T3AHWYDDAmjWq7OiospSL2yuRidTEnfHw8CA+Pt5sW0REhLFcq1Yt7O3tiYmJoXr16maPKlWqFHdzhRBCWMHV2ATOxfubbUtNVaO/Fqw2dRl1ymc+d7YOYWp8cnq6DXv+O2n5hooiseRvA9n34wcOvIvO6KBR0DmPjFbXT5g/v3Eajk6DpbVhfTc48xNkJN5Vm0X5ptXC9OlQqxY8+qgK9LKz4u/aBbNmqQDw2DGIiHDmlv4nUUROnIDz51W5Qwe4pS9Q5EOC7jKgdevWHD58mL///puzZ88ya9YsTpww/RF0dXVl+PDhTJ06lcWLFxMVFcWRI0f46aefWJxzfIgQQohSZ9vyQ/z59XZ0mboC6x3YdtZYfqbfFvr1y12nUeBxGrWtU+B52tfbZSxvzJHxXJRsC+eEG8uDBlpwudEua6H3cWj6Gfh2AU2OrseL/8L2x+AvHzj5reVeU5QbTz4JJ0/Czz+rHtV580w3jN58UwXkDRtqGTasHjNnyrSG4vDvv6Zy167Wa0dpU+6Gl5dF7du35/nnn+fjjz8mPT2dAQMG0LdvX44fP26s89JLL+Hh4cGcOXOIjo7Gzc2N+vXr89xzz1mx5UIIIe7FqQPn6NCnHjq9Lb+kb+WRF/NPsrl/t6m3sVVLPU+OU8MzY2KArFTskg/SqU8wNtqC78d36FEN3lTld78Oo0KFjYx5vwMaG/nCW1JdjU3g370qH0yAdzQtW1W13Mk1GqhQByq8BMEvQepFOP09nPoWbqgl5tBngHt98+NunEZz5jcc02uDvqGMExaF0q4djBoFn3+uRuqcOWPaN3u2hldekZQCRU2C7rsjQXcJ1r9/f7O1yVu1akVkZGSedceMGcOYMWPyPZdGo+Hxxx/n8ccft3g7hRBCWMfOZZvQ6Yep8sq9BQfdB01/8kNaeaHRqC+wihOQd/K0W9UJCWRg52388V9bsnR2vDS1I9t2buO7v5rg4u5yl+9EFKW/fzhMlk5lwXu4+0k0NkW49pJTZWgwHuq/DvHbIGoRXNkJXq3N653/C5tDb9EAMETZg1tdNQfc1g1sncHBBzybg2dLcJKpcMLkgw/UUPPjx9Va0K6uBhISNJw7p2H3bjUXXBQNnQ7Wr1dlT09o0sS67SlNJOgWQgghSqmoGFdjOfZawXOxwyN8ALDVZtKgVc27fk2NjYaflzej8uPL+XzRAwAsXN8Wp0e28P1yWbi7JFr4l2nS5cNDvQqoaUEaG/AJU4+8RP9jqqrPgMTD6nErr7Zw/9YiaqQojdzc1Jzuw4ehUSNYsMDAM8+o7u2FCyXovlcGg1qqzcVF/Xxz2rsXEm8OmrrvPrCRicqFJj8qIYQQopSKuuhuLMde88u3XlpyOhHnawBQP+A0Ds6O+dYtDFt7W54YV5nF3+7A1VGtwfnDijA2LTlwT+cVlncj4Qbr9qnuqADvaFp2a2DlFt3U5nv0IdNJcL0PQ4UGYGOXdz3PPCKoiOkQvxUM+qJtoyix3N3VSJ0KFeChhwxotSqL2qJFlOuEahkZcOiQ+vdu/fsvtGkDTZuqGxu37ssmQ8vvjPR0CyGEEKVUVFpHY/liYv5B99EjBrJ0KqgJaXQP38Zu8eATLfgoeivPT+oAwPNjnAnvkYmdQz4BlCh2e/47SZYuBICeYaeLdmj5nXCtiSHoRU6ndiQkJAStRg9plyArBXTJKgv6lV1Q+X7z45LPQfirquzkp5Ynqz5EBecymbdc8vSEli2T2L7dnago1QveqoDZMikpKgP3xYsQH6+Cy/o5Ug6kp6vh602aqOX1SouUFOjSRfVSe3vDsGHQp4+a9x5+M4/iW2+pfQVZdXORgqwsWLDAfD10CbrvnvR0CyGEEKVU1HlT8qnYBJ986+0/bOrZDunUKN96d+OZCe1oXucoAEei6jDzra1kZMCBA2o9b2FdOzZfM5ZbtS7BX/ts7MC5qkrKVikE/PtDyDSo3MW83vm/TOXUGIicAWtawz81Yf94SNhfvrs6y6muXU2LeS9alH+9I0egShUICYEePVRg2rAhvP22mq98+rTq5e3TR/2bklL0bbcEgwGefloF3KBuJnz6KXTqpDLAz5qlHuPG3f5cx46ZyqtyrBKYkgJbb870qFkTatSwWPPLhRL86SuEEEKIgpw7Zyonp7tyI+F6nvXCTatFERJi2TZo7bR89SVoNGqo74SZHXB1Va9TowYM6rKdcxHR6HV61v6+l2f6buLtZzeQkWre437tGuhltLDF7dxjuuHSulMZSEhW80lo8yNUfdB8SHryWTj6IawMhVXNIHqJBN/lSKdO17C1Vb/vhQvz/9XPng1JSebbDAZ47z0VoDZrZvq8jImB7duLrs2WNGMG/PqrKjs6gr193vWWLr3952xEhKm8Zw9cuqTKW7aYhq1LL/edk6BbCCGEKIUSE3N/eYw9n5xn3f37TeWiyDbbvGt9Rj5xEYDMTBsyM037Fv3XhuAmngRWjuX+/zVj7pIOvPdNJwbct5+05DQyM+HVV8HLC5o3V0M7hWUY9AZ2HFbdUe7OiQQ1KwNdU/YVocYw6PgP9I+DVt+pIeg51wdPCIeDE4EckZc+EzISISsZdJabYiFKBnd3Hffdp8rnz5t6fHPS6eDvv1XZ0VENtX7lFVMysC1b1M2/nDZuzPv1UlNhxw7MPuus5b//4LXXTM9/+QUuXICZM1Xv94cfQtjNfIaXL8O+ffmfKzU19wiltWvVvytWmLZJ0H3nJOgWQgghSqGoY7G5tl1MzJ3BXK/Tc2C/+mZYvboBD4+iac/70/0ICVFfYOvXhyEDU/BxjwcgLdOJ85fN14Zetr0lD3Y4SpfOOqZPV1+Iw8Phrx/PFk0Dy6Hzx2O4eM0XgBbBp267BnupY18Jaj0JXVZDv1ho8RVUaqr2NXxHZVDPFrcB/qgIC11hgQP86QUrm8Gm/rB/Apz5Ga7sgbTL0kNeSg0caPq9ZQfXOW3bBnFxqtyjh+rdnj4d1q0DX19TvR49TOUNG/J+rQED1PDzVq1Uj7g1jRqlPj8B3nwT+vdXNzHHjIFvvoHXX4dHHzXVzzlk/FaRkbkv/9Wr1Q3e+fPVcwcHjDc4ROGVsU9fIYQQonyIiozOtS02dxzO6UPnuX7jZhK1gL1F1p5KlVTQnJ6u5k3+tsiZ4yfsGTt0A7baTGw0Onq23M2n4zbg4nADgH/3NWXLVq3Zeb75IiGv04u7sPOA6SZMq3bOVmxJMXD0hjrPQY890HkN+Pcz32/QmT9PvwIJ+yB6MRydCtuHweoW8Jc36FLN62YlS6b0UqBnT1O0mFdP959/msoDBpjKnTqp3t8JE+DHH1WPbs2apvOk3nI5XLgAK1eqcni4CrwPHbLMe7hTJ0+ahoM3bw6TJ+ddr3t3U3n16vzPl3Noec76335rGlk1bBhFdvO2LJPs5UIIIUQpFHUmNde2vILu/dtjgOoAhDS4UcStAtsc3yzcvd355KdOjPvgMgDe/i0AaNX+ED0fDiApVS15Vq2aAZv0GKLiq7LhQCjH952hbtMyMBS6CF24AJUrg1abf52du007W3ULLoZWlQAaDVTplnu7vQdU6Q76LBVUp0RD6oXcwbiDN9jecoNi31g4+zNUqA+VGoNna/BuCxWCzXvTb6XPhIQDoHUErZNKFKe9t+X6ilXmdTVXPvkcpJxXP7OMRHWDo/540DqY6hr0Bf8sikHlylCtGkRHq/Wk9XrT0HGDAf66mYPPzg569zY/1s8PpkwxPe/YUSVVy8hQgXenTqZ92QF3tuhoNXx75Upo29bib6tAOQPogQPz/zyoUQOCglRP9vbtahh9xYq56+VMoubmBtevqznd77xj2v7KK5ZoefkjQbcQQghRCkWdy93zdvFi7nqHD5omSTdpap0v/N7+XmbP2z7QiPXLIhj78hmq13Tik2+C+PHjE7z6sRqCPndGFB//WIMff1RfhBs1ghEj4P77Cw4yS5uIXadIS8kktFPhA+L0lAyeGWnHjz9q6NBBDX/Nb6WsnL19BS2hVC54tYTOt4yr1WepYDIxApKOQtJx80AyW+IR1dt9dbd6nJp3c4cGbF3BzlWdK/RjqPm46bi0eNV7bqQB1xoqWHf2B8fK4OAFhkyo87z5a2el3Oxx16h/k6MgJQoyroLGDmzsVSI5Rx+ofMtY3xun1b/2lcC2AtgU8j9N/FY49hncOKOC7YyredfT2ECDt8y37X8DTs4BpyrqPdm6gNZZXZy6NNClgz4NqvSEhm+aHxs5S/3rWuvmo0bev4dCaN5cBcHXr6tlwYKC1Pbdu9Vcb1BDo/MKOHPq2NE0nHrjxvyD7po1VXCelKSGeedMWlkccg4Vz9mbnZfu3VXQrdOpIfU5e/uz5ezpHj5czQsHuHHzfu0DD0C9evfW5vJKgm4hhBCiFIqKzr0WduzRcCDUbNvFOFPvU2CdikXcqsJr1qUeGw6Ynj8+phETPksnI8uB75c0oN6H2xgxXnUbHT+uhoZWrQrvvnmVJ5+thMamdK/JvHvtUcJ61SIjy4EfPt7CY6+G3faYhLhr9Lv/LBsPhgCwaZMKLOrWzV03M1NlHgbVy+WT/4py5ZeNrQrwXGtA1V7513OtCamxN4PZnBNeDZB1XT1ADVnPSZ92y4kM6hzZQXFOgY+CNscvKWI6HHr79u/Bs3XuoHvHcLiUIwOYXQUVgLtUB/eG4F4fMpPUsmwVgkz1MhLg/J/cloNP7kA+NQYyE9WjIC55jGCJ+Fj1ohtpwLkaOHia2u7ZGgIGglvtAk/fvLlpPveePaagO7+h5fnp2NFUzplMLSPDlFjM01MlqQwLg4MHVTkioviC0vR0lUQNVC//7ZJk9uihlg0D1UNeUNBtZwfPP28KurONHXtvbS7PJOgWQgghSqGoWNdc2y7G6nJti4s3rR3jU829SNt0L7yqedK/4zZ+X9eWy0lejBjvlavOhQsw4nkPNi3bwpe/NcW5QumdpzzxzRQyslRv3uiJjenQ8zyBDfyN+/U6PRsWH2DRb9e5ek19Xdt7tCqnLoaYnWf79ryD7kPbo0hLCwCgVYsMIJ81hMTttflB/ZuVDFf3weXt6pFyAbJuqKBbo809dFzrAnVGqeA78wbcOAVJx9Qxt8q6deWBQiZzs8l9842Ma+bPM5PUI/kcXNpk2u5UxTzodglU/2psVE+8S+DNR3VwCQCnaip7vD6PJQYcvMC1tgq+dQUsbq2/JXO8Lk39HM0Ybg5nP2/aFL1E9Z4HvWDadv2kWpddb6DCjRhIcqB5aF2yr/U9e1QCMYPBFHTb2MBDD+XfvGyBgVC9ulqWcft2FeA6OKh1qq/fvMfSo4cagv3kk/Dyy2rbggUwaZIqnzmjesG7dMl/NMq92LoVkm9eNt273/41OnZU7yE9XfWQX7oEc+aoXuxJk1Sgffy4qlunjvpcqVNH3dgDCA017/EXd0aCbiGEEKIUiorzBMCrwmUSkyuQqbMn9rJbrnqXrpoCU++qnsXWvrvxzEgnfl9nvm3kwC10HxrG3G8MLF+hvlX+sCKM8JBIlix1IbBBNSu09N7sXH2Y1bubG59fT6vA4yMyWb8VEi8l8PW0A8xbWIPTF0PzPN7RPpW0DCdALVv0+OO56+z87yxwM+iuuR3omLuSuDO2LuDTXj0Kw8kXWnxuvs1ggLSLKjhNvQjpl1Ww7nDLTSa3OuDXS9W3sVM9vy7V1Zxzg04Fr/pMcMq9YgFVe4N7PRV8ZyRA5jXVC59+2bze9ZPmzysEQZ/T6rXyCuYL0uwz9TAYVLt0qaYbCVoHsHFQ79PmltBDo4WuG+D6KXVT4sYpNRIg+axquz7Hmlx+Pc2PjVkFe19AC9QBuADNrnsDamHpPf+dhMhVHIztyKlTjQAVeHp7F+4tdeyoEqulpcGuXdC+vfnQ8l43B0cMGqTmORsM8Ntvav7zuXMqSE1MhIkT4d13VV2DARYtUj3Kvr5QpYp6VK6sHreur33tGvzwg+rBb9fOfN+dDC0HcHaGDh1UT/358xAQYFqi0dUVhgwxrcOd3Vvfq5ept/vVV4vm5kF5IUG3EEIIUcpkZWRx4Yr6sl3d5xKXrqVz/nJVLl7NnVI27qrq3a7kkoC9U6Vibeed6tQvhNpVznIyNhCAod238PnvbbHRwkMPafht1jaeer0JKekuHDwTxNDBB9lyuHBBt0Fv4J/FqUx63xmdDr7+uviTHmV79x1TEjwHuzTSMx3ZtNOTBx6ArZvsuZHaKd9jm9aO4Puf3QhpWxW9XsOOdefITpSX085dpm/HrTuW7Jst5YpGo3qYnaoUXC/wf+pxN5q8n/f29KtqfnrSMdVj7dHMfL+NnRpqfy80GtDaq4d9IUbW2NiBTwf1yIsuTc1nj9+Sx9Dy3KMBvNziCfQ+w9n4Guw7VgXd7hf59Y/PABV0G4dUFyLxW3bQDWqIefv2prWqNRpToOvnp+pu2KB6ivfvhw8+UAE3wLRp8NhjULs2fP+9miudn5Yt4csvoVkz1Uveq5eah+3oqM7tbxoMY0yiptFAtzxyB+alRw/T8Pj0HAMW5s2Dxo1Nz7OD7rffVnPka9aEwYML9xoib7JkmBBCCFHKxJyOQ6dX980DqiRRxVMtsxWf5ElWRpZZ3UuJKtD2qVjyl+LS2Gj4/JPLBPqc59l+m/huSSuztaX/N6YtuzfGUt1bzf/ceqQxe9fnscbNLY5sP0n3lvvoO9CZ/fvV8j4dO6r5jcW9JPOedRGs2KmSawV4R7NsqdbYe7R6NdxIdQFAo9Fzf/M9/D57G2ePRnMu4gLRJ2LZExlMo1bVaFQ9EoCDJ6txIyH3cOUdB1RSOjttBiHtC54HK8oJBw/VS1/7aQh4WM1VL+m0jlChLtTKI1L1DoPQj9E3+ZAYz6fQBwwBj+Y0r6WSRaSku3AkugE/b30EUCsrDBp089iND8LqNioBXNwG0OeempNzXve6dar3+sgR9bxVKzWnO9uQIabyyy/DH3+Ynmdmql7iM2fU2tkF2bVLnXvMGGjdWgXcoHrbv/nGVC8mRs0jB2jRQq3LXRh9+piSUTo7q95uUO/tyy9N9bKDbg8P9V4++qhsJbG0BunpFkIIIUqZqBNXABVUBVRLR6fXQCQYDDbERV2iam3VC556PYXrqRUA8PVIslZz70j3R5pz5hEA/zz3129Vm7de2szTb6oe7i8/u8y8Lqr3/9Geu9i4rzbd2xxnxLNuuHs48sGkKyz6rzUGg3k/Q1YWvPgi7Fp3gp8W1y6yxGx6vepVX7dOfYENX2eau/vG6NN07V6NsWPhk0/UNnt7AyMe2sFrb1elRsPm+ZwVWodc4sCZYPQGLXv+O0Gn/qah6Ee2nyTyggq0m9WJxNGlUZG8NyGsyiMUPEIx6HTEpu3HNyQEtFqa7zfwxw5V5cOtfxBzWUWkDzxwc2i5PlMF2roUuLIDjk5TmeQDBoFXK7BzBzs3ajomU7VqDy5c0LBhgxrina3XLXn3BgyA0aPV50rOxGt2diroXrJEBezZWcAHDlS9zrGx6nHxogqiT55U2cVnz879dufOVUPV7e3NlworzNDybLVrqyHykZGq53rjRnj4YbVvzRpTveByssJgcZKgWwghhChlomJM87QDArSkpZnGCV6MSjAG3ZeiEwBV18cz97repdX/RjXl1SmJJKa48+vq5nwSd425H+1n4fpOAPy40ocfV+Y+rrp3NB+/F8+e06F89JHa9ss/dXjk5930eqxF7gPuUWqqGlaas9cL1Df3ap4xPPmqWsfrgw9UdvG0NBgxQoOfX5vbnrtNGw1zFqvy9k2JdOpv2jf/y2hABd3/65/Psk9ClFHNW5huoP26zJRl8LHHbhZSLqj58Uk5RsmkXYTjs+C4aZMGeHxoGh98qBIeXs4xJb5XldfhqDd4tQaPZnh5OdOtm/mc79BQeOEF03Dykzen0AcGquHcFSqYtzszUy2ROGWKCt5BJS5zclLnjYuDxYtVb332muOggvc70a2baTj6gw+qHvsrtyTez876flfSr6h8AddPQOoFtcSdrcpBQUq0SujXZIr6HZQjEnQLIYQQpUxUgmm4cEDzMK4nbTA+jz1vGmp86UZVY9k3KMeEvVLOxd2FJx7ayMzfOpKW6cRbL0fy3eL8k1v5uMfz6lNHGP1OK5zcqvEwULXCcV58S30h37ktmV6P5Xt4odxIuMHwAYdYsrkpLYOP0atjNEu3NWV7eN5zd9997RQOzn6A6g177bU7e73WnU2/2x17nIzlzPRMfvynAQD2tuk8Okp6uUX50rRp7m0eHqqnGwDXQOh9VCWyi1sPUYsgZkXuzOrA+2/G0rJNIFOmqLW+Afw9owh1/AT235ybotFCxSYMafc2K1eaUqPPnKmSn331lelYjUYlRrs14Ab1OTBpkhoC/uGHKnP4xImwbZspmP/yS0hIgGXL1HMvLzUP/G45OMDQoeZLg1WvDi4uhThYlwG6ZLWkW7bMG/BnIca613hMgm5r++qrr9i4cSMRERHY2dmxJ3uRSSGEEEIAEBVlKgcEwJUqpsl2Fy+Y1gaOizPV8/ErzLeo0mPkWH9m/qbKX/4WYtw++vGTtAmJY/5PjsRersCzw2J4alxLnNw6mR3fs5c9L76lyoeO3rLU0x2KPR1H7+5X2XdS9VBvOdyELYdNi+a6uqqETDX8U4k9dpiKHo606VXIDNj5qBMaSCWXBBKSK7H9UE0MegMaGw3LftxHfJLqQe/bYS+eflbKFieElVSqpIZRn8yRnP1//1MBphmnyhD4iHpkJELsarUee2YSZCWB1hmNnTMPPaQC4bVrYdXPO3ik3mvY2ORIBmHQQcI++voOw7vCSeKTfPhf75O0v5lLYeZMlYRNp1NzuzvcmjMuKxnS4iDtEuizaNqkJQsWmNKYd+qkhnsfOwabNqkgPNvMmWqu+r0YMcI86C5waLleBxf/hTM/QvTfKj9Asxmm/Xauaqh+2sWCXzQ5quD9ZVCJC7ozMzPp0aMHISEh/GE+HksIIYQQmAfd1avDxaqmL2ixMaaEQJcumer5+hZHy4pPULOa3Be6j3Xhpm6tGjVg2he1cXGpzSMvZW+tk+fxNRv642SfQmqGM4dO5rHsUiEd3XmSng86EhWvMg/ZajPJ0pmWW/LziGP5Wi9CmmoBJ0KaW2YYu43WhtYNTrJyVwvik7w5cySKmo0C+G6+aWjt8BGyNrcon5o3Nw+6H7vdSBZ7d6g+KN/dGg3cfz/cf39r0G+ApKNweaeaE355JyQepoLzdTZN7MDeM80Y9GRN4D0A2rSBzZv0XFg3g/5hG2F9mgrs0+LU49Z1zftdVMvNZb/22V94vvNFxhwbC5iGnr8y8iKPDKpA9hSifBkMavm17MA++3Vvlhvp0mge+jV7wtV56tVDrX9++nuw91Q92akX4NpBuLpHHZft8vbcr1d9sMo671ZH9WYbdGoJOYMenKreXPe9fPVyQwkMusfcTOv3V87JCkIIIYQwyg66HRxUYqDKNUxDmC+mmOYwmvV0+xRX64rP86O0rHvK9Pybbwo5LBLQ2mmpX/0se0/U59TFAJITk3Fxv7PRAPHnL9OtlwsxV9XPv7p3NCuWpuHobM+KhWeIjTXw/PggqtYumrS/rZsns3KXKu9Ydx5HZydW7FDLQFXzjKHrw3mv8y1EWde8Ofz+uyoHB6sM3xZjo4WKjdSj9s0PoOQoOPcbwRV/IdjvV/BZaHZIm4Yn4exYiC3E+bW3dMlfP8FjTT/jDYdnSU53BaBLg3V82KY7/KEFrzbg01HNL8+5lvmN07C2A6RfMl/vPA9PDRnPnvD6wM3h+SnREDmzwGOw9wD3Biqoz7mAd86eb2FU4oLuu6HT6dDpcqf6Lymy21aS2yhKPrmOhCXIdVQ2RJ1OBirg730Jg8ETnxqm+b0xCVWMv9+4E8cB1QPrVeEKOl1Fi7x+SbmOHhjakNAvDISHaxg1Sk/nzgbupEkN61xh7wmV9f3QzjO0uK9eoY/V6+GJQWeJuaoSo4XWimDp6opUDlTrHI+cZPqdFNXPqUU7F7i5zM/SlQ5sPuaJ/maW9scHnAEb33t7bZ0OrbGo445+uIU6fcm4jkTpltd1pIZwq6t3xAg9en0Rrw3oWBWCXlWPtHiwdTb7/6K5si/XOs0Gew9w9AVHHwwOPqpsY48BB/NjM6/j7pzESz1mMGXJW9T2PcHvo4dgq9Wp4d6XNsKljej9H8bge7/pBRz8sEmPR3ObgBvgiUfiOXNVT3o6DBxoQHfFhrxuFRrs3MGnE/rAYVClp7pBoNff4Q+rZLr1OrL051KZCLqPHz9++0olwKFDh6zdBFEGyHUkLEGuo9vLyNDwzjuBREQ48/rr52nbtmQsuZWcmEpichgAfpXOsX//eTIzNYAaZn3qVDL796vFXaNPJZEddF+/uo/9+z0s2paScB199pkNFy44ULduKvv339mxAdVMKXs3/3sCO8/0Amqb+/lnH1bsUAG3d4V4Ppp5kYvXUri4P+bOGnEPXCqno9HoMRhs+H2N+fJiLXpVYP+d/kBuYZOaSnZf+cGDB9E7ORVY/26VhOtIlH45ryMbG5g6tRKXL9vRvv2lO/5ssDSNPgDbmssxaOzRa+zQ2ziCJp8w7NDRWzY8gk2dvvxv7Fla9pxHkN8pMu37cTnzIq6p4ThmRgNwNSmdc7e80dqOzbDTXSFT60GWbSUytZ5k2XrcfK7+1ds4khFry8MPhwNw9CjY6F1xCpiHrS4RrS4JndaNVIe6ZNhWVr3al4HLEZRFRfV5VCxB9yeffMLcuXMLrLNixQpq1ap1V+evW7cuzs63mc9gRTqdjkOHDtGoUSO0srK8uEtyHQlLkOuocAx6A489GM7atSpIff312ixbpqdTJ+u2C2D665uN5Rr+aYSEqERZnp4GrlzRcP26CyEhIQBcu77fWLdNxxZU8HSzSBvKynUU30kP36hyzIVKxp/b7ezaBZ9/buq3+v6bq3TucWt2pOLRqPoJDp41X9+nb18DvXvXv/eTJ5vWFG/cuHHhx+4XUlm5joR15Xcdmf47+1mjWUWgLcF55EXUJUdBwl4qOflRyTPEfGeI+ntxaw65wml3V0eVVrdeRykpKRbt2C2WoHv48OH069evwDr+/v53fX6tVlsqPqxLSztFySbXkbAEuY4KNnHkBn5b3cn4PC1NQ9++Wtatu7flWe7Vn19vZ/xnpuBuyCNOxt9jlSpqrdXYWLDR2KCx0RB3Va1L42iXSkUvdzQ2mjzPe7dK+3UU0tqUzOfwMbdCvReDAZ5/3pTMaPx46DX4Xha1vTefz0zj3feP4h5Qn6ZNoVkzuO8+jWV+LznOodVqzZ5bUmm/jkTJUG6vowo11ENYRPZ1ZOlrqViCbg8PDzw8LDukTQghhCgK303bzPtzOwGg0ehp2jCJvYcqcuMG9OiWwrZ/LxLcomaxt2vn6sMMHROC4eac3UkjN9Dj0U7G/ZUd9nOYENLTNSReTqSijzuXrlUEwKfiFTQ21Yq9zSWdb3VvvCpc5nKSF4dOF+7m/7YtOvbvV1/GQkLg3XeLsIGF0L5PE9b2sW4bhBBCFOzWOf1WFxMTQ0REBDExMeh0OiIiIoiIiCA5xxAnIYQQ4l6tXw+DB8Pcz06TnpJBVkYW45/cwIg3TOsnfzpuM5t3VqRjR5WEJyHJmRFP3ECvK97EMWnJafR/xJO0TDWn9rGeW3j7845mdap43zCWY89eRpep43KSuuHtWymx+BpbimhsNDQKVt8v4q75EH/p9smWvnxvh7E89mU9dnYFVBZCCCEogUH3rFmz6Nu3L7NnzyYlJYW+ffvSt29fDh8+bO2mCSGEKCMyMmDIEFi4EJ55pSa1Ay7TvkkEH37fyVhnzOCNvDilA05OsPSvZOr4nQFg29HG/PDJ1mJt77o/DxmXpQpreIC5f7bMNVS8sk+WsXzxfBJXYq+iN6geWR8PuXGdn0Y5hpgfOlzw8Pu4s/EsWq/WHvKqcJmBAzKKtG1CCCHKhhIXdE+bNo3IyMhcj1atWlm7aUIIIcqIlSshPt70PPqKHzuONQLAVpvJZ+M3MuPXDsbA1s3DlS+mXzXWf21Kfa7EXKW4/LM41fTaL6dh72Sfq04V01LdxEanEHc+wfjc16vwWbnLm0aNTOXbJa2d99kRMnXqZz+i/2EcXRyLsGVCCCHKihIXdAshhBBF7YcfTOUWwabspH4esWz4O4KXpnbM1ZPcbUgzBnfZBsCV655MGFU8I7D0OgNLN6pEXY52qXQd2CjPelX9TYH4yeOZXIoxDTf38ZZ1kPNTUNCt1+lZt2gfh7edICsji69/rQOouf7Pjr27FVeEEEKUPxJ0CyGEKFeuXIFly1S5cmXYdqguBzYf59sPNnPggD3tejfO99hPv6mJm5Nar3vukjB2rCr6wHvvPg2xCb4AdAu7iHOFvJfIbNquqrG8c68LcTGm3nFfX8tmLS9LGjQwlQ/tNR+9MHnUJroOakqjdnXw807g/GX1M+7Vag81Gt79qitCCCHKFwm6hRBClCu/z95CZqYqP/q/TGxtoXFYXUa80R6vap4FHutXqzLvvhgOgMFgw1PPOpCRWrTzev/5x1Tu80j+y8LUahyAp9sVAHYerUncNS/jPh8/y6zPXRa5ukLNylEAHImwN0uSt2ydr7Ecn+RtLD8/Um5iCCGEKDwJuoUQQpQrP/xWyVh+fMCZOz5+9OR2NKtzFIAjUXWYOnabxdqWl5xBd+/e+dfT2GhoVf80oIa/bz9g6vn2qde0qJpXJjSqHQtAcrorZ49GAyrZ3qFzali/k30K9rZqXnyr4MN0/5/8PIUQQhSeBN1CCCHKjYhdp9l9XI0nDql5jEbt6t7xOWztbZk3T4utVnWXT/mmLYe3nbBoO7OdPQsHD6pyq1ZqOHxBWjUzZSlftdbBWPb1zau2yNa4vmko/p5NKug+cgQyM9XXpP4PO3P1chZ710fw77ZAtHZaq7RTCCFE6SRBtxBClBOZ6ZlMGrmJF4Zp2LbyNmmay6gfv44ylh8fFHfX52nSPohxT6plwzJ19ox4KRDdPeQqO30oiiljNrB12UGz7Uu/M/Wi93kg7bbnadXO1Vi+fsO0gLSPz923rTxo3c7FWN66Wd1M2bfPtL9ZM3Bxd6Fp53q4VnK99XAhhBCiQLbWboAQQoiid+FkLIP7xrP1SGcABj92kaPHEqno427llhWfrIwsflyihgtrbbJ45Ll693S+t2a05s8NyRw76cKu3XY89pjKim57F39ZBw+4wZ4TnWA2dGi0nxdHp5GYkMmcH0xd233uOw/UKfA8LbsG5dqm0YCXVx6VhVGb7qaf69Z9au52zqC7qYwmF0IIcQ+kp1sIIcq4dYv20bS5LVuPmLJyxyZU5vVnDlixVcVvxc97ibmqFrPu3XYvPtXvrfvX0cWReT+4GIPsX3+FIUPUXOA7EX0ilj0n6hufbzoUwoBnWzN8fHuORKlgsIZvFA1a177tuSr5uBF0S9zt5Z6IVkZDF6iSb0UaBKgpAvtP1eVGwg32bTONhAgJsVLDhBBClAkSdAshRBmVnJjMC4M20nVQUy4lqt47f68LuDpeB2Dukg6sX3LKmk0sVt/MNWWcfvZZy/z5a9sW/vwT7G8ukf3nnzCwyx6yMrIKfY5/N5pGGzjZp+Tab6vNZMKYc7nWDc9Pq1bmz33dLxW6LeVZu6YqmZpOb8v21ZEcOKoyvteuchb38jMgRAghRBGQoFsIIcqI06fhlVfg6afVo0mDJD5f1NG4//7me9i9145xT68zbnv6lVqk5I7zypyoYxdYubMZAAHe0dw/2HLjhfv0URnGHR3VpO6lW5sz/+PCZzRfs9607vaq1Q4s+nI7LwzeyEdjN/Dvwn3Enb/BUxPaF/p8rVubP/fxuF7oY8uzdu1MX4nmzU0nNUP9XprWi7FWk4QQQpQRMqdbCCHKiMcfhy1bcm5RQ6md7FOY9upuRr/bHgMGug+tyqq9mWzdZsfp0zBpEnz0kTVaXHy+m3kCvUEtofXUoJNo7apZ9Pzdu8OS7/bR/ZEWAHwwqwZPvJqJnYNdgcfp9bB2rSq7uUGbdlrsOrVh4Mi7b0urZmmAo/G5r2dq/pWFUbtu/sbynxtbGMtNmxTtOuxCCCHKPunpFkKIMiD6xMVbAm6lbdNL7N8ex5gpHbHRqo98G60N38y1weHmilKffQaHD997G9JT0vnvz3C2LT9EcmLy7Q8oJllZMO+vRgDYaHQMfyl3sjFLuP9/LejRcjcAZy/589NnO3LV0WXqWLdoHxfPqCHfBw7A5ctqX5cuYFdwjF4ojZpocbQzBdo+3oUf6l6e1WwUgG9F9XvJ0pl+EU1bulmrSUIIIcoICbqFEKIMWPJzpLH80hMHOXQITp2CLXt8qNu0Rq76QUHwxhuqnJUFzz+diEFvuKvXNugNLJ2/i4a1Y+kyMJR2vRvhVsmJ+gGn+OHjPO4EFLNVqyD6kicAvbtcoGrtKkX2Wm+/Y+phnjIzwGxud2Ym9O2ro+ugpjRrruNy9BXW/HnSuP/++y3TBjsHO5rV2Gt87lPphmVOXMZpbDS06+SRa3toWGDxN0YIIUSZIkG3EEKUAX8vM60d/OQIRxo2hJo11XJR+Rk3DmrVVGsSb97hzk+fbr3j140/f5merffSZ3hLTsYGGrcbDDZEnK/FE6+H8dOn1gu8r1xR7zPbMy8HFOnrtenViK5NVcB7+mJ1fpmpert1Ohg2DJatUBnXYq5W4eWnIlizIsl4bLewu183/Fat6x83ln29ysGkfQtp19581l2AdzRe1Tyt1BohhBBlhQTdQghRyiXEXWPDAbUcWA3fKBq1LXgt52yOjvD5u6Zlw159L4iT+88V+nUNBhj2hD2rdzc3bmvf8ABP9dlEkxqmnvcRr7dkw1/7C31eS0m6coMePQwcPaqeBwdDjx5F/7pvv2MK3CZMq8WEERsYNjCGBQvM6/28OowN+5sAEOhzntoN720Js5z+90IbbDQ67G3T6fJw69sfIABo1878edOgaOs0RAghRJkiQbcQQpRyy389YpyD2q/r6UIvLQXQ49HmDOi4HYD4JG/qhFbnvqb7+PPr7bcdbv7XX7B6fQUAvD2SWfjldjYeaMzcJR0IP1mX5/pvAiBTZ0+/x2pyLEJ/N2/vrqReT+XBzifZs0f9LKpUgWXLKJb1qtv3aULnkHBA9WhP/a4Tv/3tB4CtLYx42HRDQm9QDbq/7Zk7+r3dTrMu9TgXeYmzkdeo0dD/9gcIAEJDwdHBNCWgaZM0K7ZGCCFEWSFBtxBClBIRu04Rf/5yru1/LzF9lPcdVOmOz/vZnOpUqXTR+Hx9eFMGjmzDlBc35nvM9evw4oum51/PdeHhkW2MgaPGRsPs39rSs5VKLHYtuQKPDrXBcHfTxu9IRmoGA7sdZtOhEAA8Klxn7VqoVavoXzvbZ7OcCfA27yXVaODnn2Hu73WNQ9Cz3d/dAhnUblGtThWq1PS1+HnLMnt7aFnHNPqjabNiuEsjhBCizJOgWwghSoFv3t9E/Va1qNdAw/F9Z4zbU6+nsnKHGlruXSGetj0b3vG5/YP82L9fywcvbqB2lbPG7W9/0YHlP+7O85h3Jxu4cEGVe/aEfv1y17G1t2XBimDqBav1q/ftgyNH7rh5d0SXqWNY7z2s2KmWfHJzSmLVH+dp0KBoX/dWTdoHcfZiVc5FXODvb3fywduXWLcOBg9WNyS++cEbZweV4d1Go6NLv3rF20CRr4f7qsRzlVwSaPdAYyu3RgghRFkgQbcQQpRwF07GMnZKKABXrnsy+OF00pLVsNd//zhESroLAH06HkNrd3c9cz4B3rwxoxPHo6sz+fkNgEqG9ujIupwIP2tW9/C2E3z2mQqkHRxg9uz8E7a5ebjx3EhTmxYtyr8N99oLrtfpeW7gVhaubwuAo10qS385TYtu9e/txHdJY6MhILgqD41oxRuTfejc2bSvRsMAfp59iHr+p/jo1c1U8q1olTaK3Ea+Hca6ReGE706moo+7tZsjhBCiDJCgWwghSrixz57hRpppreD9p4N5dayOI7uiePPdisbtfQc43PNraWw0TJzdkf4dVNbtxBR3+g5y40aOVafemxiPTq+ShU144cRth20PGGAKyhctyh1cx8RA9+5QoQI8+4yO04fOF3g+gwEWL4b58yE8HFJvZPDbrG00qXWSb//pAICtNpM/vz1Mx34hhX7vxa3f0605GlWLsR91snZTRA5aOy1dBoZSvV41azdFCCFEGSFBtxBClGBrf9/Lgps9tx6uV3CwV0t8fTHHhdAwfw6drQtA5Ypx3Ne/kUVeU2Oj4fvFDagfcBqAoyc9mTZN7Ttz+Dx//NcKAB/3eF6fdPskXVWrQlgb1TMfEQFHtp8w7vvvP5W8as0auHEDvpmrpW5IFR7vtSXP+esZGfD449C/PwwfDk2bgrObPY+82JbD59TPQqPR8/OM3fR6rMU9/RyEEEIIISxBgm4hhCih0lPSGTXWw/j8k7eOMmOmKeFWZqbqPg6udooVixNwcnOy2Gu7ebjx1+pA7G6+3Kefqh7pmR+cNmbcfmHYERxdHAt1voc77zSWF/2oJoPPmLCJrl0NXLpkXlent+XHlWG0bplM5N7Txu0JcYl0vy+Zn37K/3Xa1DvEvwsPMHh020K1SwghhBCiqEnQLUQxy8q6fR0hYk/H0a3VMU7E1ACgXYODPP5qO559FgYNUnU0Gnh1rIHwY/6Edgq2eBuCgm0YNUqVU1PhpTEZfPtXMwCc7FMY+Ubhk0wNeDIIjUYtGbZoRTVmTtjIy1M7oNerGwf33w8nItJ4d9QGKrkkAHD6YnXadKzE9x9tYdwTGwhtlMSGLWr+uqMjTJgAQwdeIqTmMR5su5P1f4Sz9XBDugwMtdSPQAghhBDintlauwFClCVxcepf33xW6fnh64u8OL4yDRrAr79C9epq+/nIGH6fe5w6wU50HdAA10quxdNgUSJt3AiDB7gQd6UJoBKCffm1IzZadZ/0119V4B0cDA0aaAD7ImvLW2+pudOJibDoT3vjaz3x4B48/ToU+jx+tSoT1uAAmw83IeJ8bV6aWtu4b8Koo7w7sz5arSMTP+/Eky/G8kD3SA6eCSIhuRJPjgszO5d3xQSWrqpEq1YAPjcfQgghhBAlU4nq6Y6OjmbChAl06dKFxo0b07VrV2bNmkVGRoa1mybEbf37L9SoATVrws6dufcv+HwbTz7vQ2IibNsGrVvD3j0Gvpu2mYahLrw+vRP9nm6Fh7c93ZrtZfHcHRj0xbCosbCqjFTzz7ft26FrV4i7om68VPOM4b9/TtE4rK6xjlarkpMVxzJYnp4w/pVrZts0Gj0vvxlwx+ca1Pdarm1vPb2BKZ/XR5sj6Xq1OlXYvLsK3VvsyfW6nUPC2bEx6WbALYQQQghR8pWooPv06dMYDAbeffddli9fzhtvvMHvv//OZ599Zu2miVJMr4fISEhKKrrXOHP4PIP7J5KaCikpMGqUet1sK37czdCXWmAwmP7LXbwILVsZGPFGe5JSTcvSZOrs+XdfM/o/05quzcM5tPV40TVcWE3q9VRCakZS2TuZ//4MB1RW7tdeM01B6HZfOvvC7Wnd487X3rakF192oKpHtPF5n7Y7qRMaeMfnGfBksHGIOcCYwRt59+uOedat4FmBpZub8N7oDTz5wGZ++nQrceeusj48lJqNq9/xawshhBBCWEuJCro7dOjA1KlTCQsLw9/fn/vuu4/hw4ezZs0aazdNlEJnj0QzaWIqNWqoYbht2kBysuVfJyUphX59Urh63RQ4790LP/ygyuv/CGfAUw3J0qmMVI/32ka7dqoHW683/Rcc1mMLox7eSKCPabmk9eFNCWlfi8/Gb7R8w4VVrV5wkAM3h08/9owXSVeSWLUKtm5V+4ODYcUqB7z9vazbUMDJzYmP34kCwE6bwYS3K9zVearU9OX5gZux0egYPWgjn/3SHo1NPgt8A3YOdrw1uxPfLWvP0JfblYifhRBCCCHEnSrxc7qvX7+Ou7t7gXV0Oh06na6YWnTnsttWkttYlsSfv8w7rxzj27/DjFmWAY4ehZ9+0vP004Ufsr1t5SE2rk7guTcaU8m3Yq79Br2BpwaGc+BMOwAqV7rExQQ1v3TC+AycknfzxCvNSM9UGZ4f7ryNb/5sTqZOz4gRGhYssKGyZxJff3yU3o+1AWCG3sA/87fz6ttVORMXgN6gZexHHQhslUVAgLqOVv26l11bk3lgoDdNOwYXGLiIkmnvYVPgGn3Vn3HPbGTX0ZqAWoJr0iQdGg1Y+mPjbj+PBo1qRUDtAzi72tO4XfBdf57N/C2Mad+k4uQWhgGDfC6WUvJ3rZzQ6dAaizqLfyDJdSQsQa4jYQm3XkeWvp40BoOhxE4aPXfuHP3792fcuHEMyk7Xm0NKSgoRERFWaJkoCS4cv8LqPzNZuqEJKRlONAg8TWDVqyzZ1IrElIrGejY2BmOG5No1EvhtwSk0NhoMegPXLl2noo9bnkHr4U0XeOq1nmTp7OgSsoOPvrXLVWfjH1GMndYPAFfH6/zy7VZmzg1l/cbcmdR6ttzCOzPssLU33es6f94BH58MHBxy/zfMSM1g/mcpzP3rPgBcXHTMn3eYtb/FMHdJT2O9RoERDHowkm7/Z+++46qq/weOvy4bBGUIiIKAA1BRwb23aVaaVmrlSsvSSjNLrWxomQ0zKxs29JeWZX3TrFw5cm8FEQdulgjIVEDGvff3x4F7uCxB2b6fj4cPz/iccz8XDvee9/l8Pu/PE26YmVf752gi18svN2X3bvsi97VqGsGKX+IxqVZ9kYQQ9xqTjAwCe/YEIGjPHnTW5TctoRBC1AQtWrTAxsbmrs9TKUH3okWL+O6770oss3HjRpo2bWpYj42NZcyYMXTq1IkFCxYUeUxe0O3j41MuP4yKotVqOXnyJK1bt+bWzVts+uUkVyOzuHYNklNz76pNLGnQqhMzZ+qpU6fo8+i0OkP24nvZ1avw1JgbbC8mYMlja3WDmROOMnFWFx4fmc7+o04AbPn1KP1GBPDCqH0sW9ebfh3O8b9/m1I3X4/Z04cu0nOgKynpai+LjT8f4b5R7QzrseHxtG5rQeJNZR7lNV/u55FnO3MpNAL/Dg3JyrE0lH20735W/dMOc8vCgXtJ9HoYNcqEtWuVhwJmptmGbuoFLZj2H7MXlz6btKhaTZqYEBFRdA+F9SsO8sDYjhXyuvk/j0zzZy8TogzkOrpHpKVhmtvbUJuSQrE3KHdIriNRHuQ6EuWh4HWUnp7OuXPnyi3orpRmsYkTJzJ8+PASy3h4eBiWY2NjGTduHIGBgbz77ru3Pb+pqWmN+COLuRRHjx4mRCV0L7rAH3D0KKxfD2ZmkHA1kbkvhnIw2IWYREfiU5xo2fgSm7fZ0qiZW+VWvpo4eRKGDIGoKHvDNnPTLBztkolNVrp1azQ6JgzZx/tf+NLAuy8A0ycEsf9oNwC+/EJL2Ekl4AbYcdSH+++HzZvB3h6uXY7joYdtjAJugNfm1uW+kRpMzZQHHzOeuUTiTeWcjw/Yx8ipyu+1eVtvZo7bycLlfQBlrPby9V2MWrjL4v/+D86eVbrH5wXcFmaZvDj6AHuP1ufQWSXJ1p+bXXj9s+r/dyAgMREilCHSdOumR5t4yvB77NIilIfGda7wIQM15XNTVG9yHdVy+X63pqamRuvl+zJyHYm7J9eRKA9511F5X0uVEnQ7Ojri6OhYqrJ5AXerVq1YuHAhJrWkf2VWRhYjn0wmKqHkLMQbN8L06fDy5HCGPKDjXLRxy2VoeHMeHHSW3UdssXO0q8gqVzv//guPPgo3bijr7g1u8vL4o4x53h9nDxdiLsVy6mg03r5ONG3b0+jY4U93xP3tq0QlNOTv/R3ZeNB4nMahQ9C7lw6vukfYdtSf9EwlgA9segaNBo5faMGJy778vDKNcRPrsP6Hg/y2Qwm4newS+Gy5r9H55n3Vnbp1d2JXV8OUt3reVQ8FOzv480/o2FFPSoqGxi6x/O+nBDoO7ANAG+9znLziw9HzLUiMScLRzeGOX0tUjuAgPaAE1e3ba3juSSv6Doon7ZY1Sz5FxugLIYQQQtQi1WoAaGxsLGPHjqVhw4bMnj2bxMREwz5nZ+cqrNnd0ev0LJ1/k8NhSqIsL5dI3psTgZuHDQ71rTEx1XD+sg1PPO1BdjZ89RX83w/1Sc9UunGZmuTg5hBH2i1rktIcCL7kx+ghR1i/pwNm5rX/5nzfPyEseDeTTYfV7rYdO8Jff9nSoEEfwza3Jq64NSk8lhqULMhTx5zj9c8aotebkKNVguBxDx5j8+H2xMVByEkTQlAn//WoH80/WxwIO5lEv9yOGm+8XYetW1JY/1dLQ7nP3z2Ls0f3Qq8359M+lJfmzeHECR2rVkXw3HONqV9ffZ/39bjKySs+6PUmbP/zLI9N6VpurysqRvC/u4A+AAQ0j6Bl52ZcuHQDnVZLPeeqnR5MCCGEEEKUr2oVdO/bt4/w8HDCw8Pp1cu4hTcsLKyKanX3vlt4gNVbBwJgbZHOut/TCehlHKS17QnpwPjxynpewN3C4yIbN1ni1cqdM4cv0q2fhuQ0ezYe6shLM2Dp0sp8J5UrPTWdx4ec5K99nY22DxsGq1dDWYdXPPNKa+Z/lcGtbCURzH0djrJ8bSDnL0L//spYcQBX+ziGdA/jrQ+9adi0AQ2bNuD++2HTJoiKgp9+U7udD+l8hMdf7HZX77O03N3h/vsTcXBobLR94JC6fPKTsvzvwRY8NqVSqiPuQnCI+tEb4K/MY3ev9VwRQgghhLhXVKu+2yNGjCAsLKzIfzXZwu/UlsfvPwoioJdvkeXGjYO338wxrPcNCGL/0fp4tXIHoEWnpqxbeQVzcx0AX34Ju2rJ9M3nz8PXX+kJD4sDlO74jww8ZRRwN3aO4uvPUvjjj7IH3AD13Z2Y/uQhAHwaXWb1+iaYmpvi5wfHj8MPP8DRg+lcvV6f5f/0NPzcAT780Hgom61NBmMG7WXVumZV3hW457B2WObmbPt3pz3Vdz4CkSf4rDJ8wcw0m1adm1RxbYQQQgghREWqVi3dtVWfviasXq1n7gsneWJ6MUnUcr39jimt3A5wIyWHMdM7Y2FtYXyuEQF8/jlMyW3NnD8ftm+vqJpXjrg46NwZkpI0WJnb8epTOzlzzpLNh5WHFXWtU1jydghjXupS5uzfBb3/fS9GjjuDX3tPbOqqkburK0ycCFB0NN+6NWzdCvv3Q9eu0KOHNRYWPe6qLuXFxgZ69oRt25TkXOfOgW/Rz3VENXAr7RZnIr0BaNn4EpY28ssSQgghhKjNJOiuBCtW6Hn22WC6dGl727IaE81tx+Q+/TQsXqy0Du/YAXv36OnRs+aO7X7zTUhKUpZvZVvz7rd9DPusLdLZsCacHg/1LPrgMjIxNaFd3xZ3dGzfvsq/6ui++5SgG5SHAxJ0V1+nDl0mR6tcgwF+8YD8soQQQggharNq1b28NrOyKr8+v2Zm8MYb6vr8l0/c1fmys+HJJ8HbGw4evMvKFePiiXDWLN3P7Ak7GdnvAH8tV7p5BwdD3hTuVpbZmJlmG44xN81i3YrT9HioTcVUqhYZOFBd/nd9jNG+8HAl8VyfPnDzZuXWq7SS41KY8shuPn+jloyXKEHwoeuG5YA2OSWUFEIIIYQQtYG0dNdQTzyuZ/6cSC5da8zWowEc2HiSrkNa39G53pt+gNWrldb1119XWs/Lg14PW389xnvvm7EntC3gadj3+3/w8o6dHIvqhV6vPPuZ/645Q/td4vWX4zh10YWP373OoCc6lU9lark2bcDFPoG4ZCf+22tLVkaWYWjC888r878DrFwJU6dWYUWL8crTJ/jhbyV5Yp/7z9Gmh08V16jiBAfrDMsBHeuVUFIIIYQQQtQG0tJdQ5lbaHh9Wrhh/ZVX9YQdu3Tb4zJuZHDtchx6ndLyfvjfUyxYpk7FtXu3noSEu6/f0aPKOO1BT7TPDbgLW/xzH3btUi7Bpk1h2jTwbd+EP3Z14WxUEx56SgLu0jIxgYGdzgJw85YdBzafBmDzRi0bNqjl/ttR/bKsXbscx6pNasK8AzuuVmFtKl7waXvDckAP76qriBBCCCGEqBQSdNdg42Z0xtM5CoD9p9vg16EJPfxD2PTTEaNyQUHw1BPXae11Hjt7c9yauNDR7wy/f32AsRNt0OrUDg9arcYoSCvOsR1n+GHhHhZM28n00btY8touYsPj0evhm2+ge3c4kq8afu4XeWfKTv7+v8MseW0X5qZZRuf7ZN5lQwZucWfuG6gG1JNfrMeVU1HMeC7cqMzOrYmGBy53q6jzRJ2PYce6MNLSSn+eLxeeJitH/eUHBdfejyWdVseJi0qg7ekchYOrfdVWSAghhBBCVDjpXl6DmVtZsGzJNR6e4GSYe3rfqTYMGQsfBe/klY96878/NIwdC5mZ9YH6hmOPnW/JyHzdjBs6xXE1QZnGaN2vCYwb51Ts6/61/BDDJnUutP3Vj7Np3SyKoDB1qq3WreGtl8IYPrYZpuZNDdu79A7lsTEORF5vxANdjjD08Q53+mMQuYZPbMvbH0dyJc6Dc9He+Le/SVqmrVGZ66lOnDp4Hv9uzUt1zrg4+PVXDEF0WlQIJ4JucTzMg7RbNox9MJiF37TH1sGWnz/dx+TXAkjPdMPCQhlDPno0TJgAmmLy/KWlwVe/GV9LQacdy/jOa44je69zI0P5OwvwjQbcSz5ACCGEEELUeBJ013CDnuhARM/rrFp6iB9+ded0RDMAZn3Sh007w/jvmJoZ2cw0m1aNL6HTazh5RR0za2WewdaNafQdnEJcUj22bLcmPTXdaEqtPDqtjtfnFR0U5WjNjQLul16Cjz4Cc/PC2Zk7D/LnVNgNjuwIousg/yqf67o2sHO0Y+fOFPr3C+fiNU+jgPvxAfv4ZZsyXd1/G6+WKujW6+Hhh+HAgfxbjZPaLf2tNxt3h9MjMJiVm9Qp1LKy4N9/lX/R0TB3btGv8eOPkJhibbQt5FJTcrJyMLOo2R9PH8zYyeo/G/Lem0kMnag8WHjnAxfD/vsHaauqakIIIYQQohLV3n6c9xBnj/q8/GEfQi83Zd7UnYbt+QPuCRMgNUVD8CVfTlxszoYfj9DT/wROdgksXxREy07eDO0ZAkBGlg1bfz9Z5Gut++4QpyKUgK1dszOs++4QO9cGM+epnbg5XAOgjvUt1qyBTz8F8xKm1bZztKPfo4FY21kXX0iUiWcLd3btscDP/aJh2/ghe3n1DbXnws49pevHv3ltTIGAW1XPJgUr8wwALl3zNAq4+3WNwcND7Xq+cKGOmMvXC51Dq1WukTytvCMAZdq4sGNXSlXH6iA+8jpfzN1FxNlow7bQ/ed5bUkfTl7xYfSU1pw6cIG9e2HzZmW/pydMeLVbFdVYCCGEEEJUJgm6axGNiYa3vuzDjx/vNRozPW8eLF8O1nXMDOWGjOvI7pNtuZ7qxOPTlJv/4Y9YGY5ZtzabgnRaPfM/UoO3Be+k8fDTnek9PICFy/sQca0++/45yYVTqYwcWVHvUtxOo2Zu7NpXl+E9D/Jg18MsWtaCtj19cKijTIa+87gPOq2uxHPodXrmzVUz6i14N4f162HDnze5dDKCpBt1CTkUS7eWIYYylua3+P79PWzf70Z4uIYXpirXYHq6Ce+8fNro/DGXYpkwMpILF5T1/v3hyaFqIsCgg7F39TOoLOmp6fTqlsK0Bb3p0RNuJN4A4MP5av0zsmwYORrmzFZbtt96C8lhIIQQQghxj5CguxYa90oPdm5NZ8IE+PNP5Qa/uDG1+fV7pA22VkrQ8PfuluRkGc8h/Pc/GkIuK93SO/qcYtDj7Y32m1mY0e2B1jTwdkFULZfGzqzd3YW/93eivrsTJqYm9Ao8B0DiTUdO7j9vVF6v03PqwAVD0Lh1zXEOnfUHwN/zPHNeM2HoUBgyzBZv/8ZoTDQ0D/Rid3ArvnxrFxMe2MOBf68w6bWegHK9vTUnFTvrVAC+X9+dM4cvcjPpJh/M2IlPKxt+WutheP1ZsyCwh5dhPSiiZmSunzP5CGejlFwFkdcbMf+lY1wOjeSXrV2Myp2OaMa+/aYA+PjAuHGVXlUhhBBCCFFFJOiupbr1tWfFChg2rPTHWNWxZEg3pVt54k1HPn19L9ejrqPX6bl4Qce8eWrZtz7ykXHYNUzfnrcMyzs3XTMsB+2+RO+2J/Dv1ozGjbV8/sYu5r2njgt4c9Z1TEyL/qgwNTdl6rzerPinJ4F9/Iz2OXvUZ84zxwHQ6U0ZOVKHl2cmry3pw81bdgDY26WxbBncdx8E9vRS63SihHEJ1cTWX4/xxZreRts+/bkHU57NNMwIMHbwXmwsjVO5z3s7B7OaPVxdCCGEEEKUgQTdwsjD+YL0WZ/0waWxI/Vsb9CsuQlBQcr2du3ggaHVPygSxvoOcTMs/7fHirNn4ZlnoH0fb/aEBgCQnGbP9Pd7s/+0kjCtZeMLPPps4Uz1pfXSu51o6BgDQGh4cxJuKMMTTDRanhuxm3OnMpg8WSnr6gpuuVUMClISuVVXSbHJPPV8Q8N6++ZK93mtzowt+5VkhnWss1iyvCVfvRtkKNfa6xwjR8nHrhBCCCHEvUTu/oSRYRMCaNVY7Xqs15twI6OuUZl33y1dd3VRvfh3bYaTnTJO++99HWjRAr7/HvR65ZeZlwgvv7kz44pt5S4Nm7o2zH/lgmHdRKNlzKC9nDxwma//6IWzR32j8u3aKf8nJ8OVK3f8shVuxsRQohOVJwT9A4+z55g3zRpGGpV5dooFjm6OjH+1B4te3cmgjkdZ/bPmrn6eQgghhBCi5pFOjsKITV0bgs55sX9jMBvXJ7N5txupaTa0aZ1DYA9v+veHnj2rupbiTpiYmtA78Dxrdzuh05sattetC2/NzeTFFxw5sfc006ZpOXi2NZ18Qxk55c5bufNMnN2DzFu7iInRM+F5b5q27VFs2cA2t9iwQUnoF7TrPN7epZtPvDLt2pHFjxuV91DPJoUVvzTA2s6aL5e7M2iwUsbcHGbMUI+Z+VEfZlZBXYUQQgghRNWToFsUYm5pTu/hAfQeDh9WdWVEuRr5mI61u5Vlf3+YNAnGjgUnJyWVdseBLdl/Ss/54Mt4tfDB1Ny0hLOVjsZEw9R5vW9fEAj0CgaUJGRB+6MZMaF6Bd3Z2TD1RQvD+oevn8XDV3kwcd8gDTNnwmefKb1B3N2LO4sQQgghhLiXSNAtxD1k5NSuNG5yEms7W9r28C5ymIDGRINPO+/KrxwQ2K2RYTnopE2V1KEgnVaHRqNBY6JhyRI4nTv7WadO8PQc454AixbBxx/L8AshhBBCCKGSoFuIe4jGREPXIa2ruhrF8mrpjn2dZJLT7Ak651FsOb1OT/iZaDx83MqlNb6gC8Hh/PXLZTZurcvuEH/qWKUT2Pwyh8JaA2ZoNPDVV2BaxEtLwC2EEEIIIfKTjD5CiGpDY6IhoNllAK4munE+6EqhMtmZ2QzvfRhvf3fGPXCwXF//6sVrjB+yl+aBnsz8qA/bg9qRrbUgOc2e/4IDSc9QnlNOnQrt29/mZEIIIYQQQiBBtxCimhnYO8Ww/OYrV4326XV6Xhh9gPV7lW7dq7d2Z/vvx+/6NbXZWj58eSc+rWxZuck40Vtj5yjDtGcAnm5JvPfeXb+kEEIIIYS4R0jQLYSoVl54qx3OdeMBWLOjG0e2njbs+/jV3Xz7Zy+j8rNet0an1ZV4Tm22lowbGUXu0+vhuSfDmPNpH9IybQGwr5PMgmk7OX3oIleuNSI6wY1rl+PZ81cIx4+Bvf1dvEEhhBBCCHFPkaBbCFGt1HWqy1vT1ED71VeyyMnW89lnMHuxmgW9gX0sAMcvtGDNl8V3M486H0ObZpepU8+SLi1CefeF/zi24ww6rQ69Hl55Bb7/vSWgzCM+9dFdnD+r5fXP+tCiU1M0JsogbVcvZ3o81AZHN4cKeNdCCCGEEKK2kqBbCFHtTH69K83crgCwKyQAn2YZvPSSun/+tAOs/DrKsP76Ag8y0zMLnScuIp4BfTM4HdEMvd6EQ2f9eevLvnTo34KG9a9zX59kFi9Wymo0elZ/e4Uvf+9NfXenCnx3QgghhBDiXiJBtxCi2rGwtuD9N9Vx1Jcj1OnDpk2DuUu6MnB0e+7rcBSAK3EePPvkBcLC1HMkx6UwqG8CYdFNALC2SDd6jdhkF7bttjesf/uthlFPN62AdyOEEEIIIe5lEnQLIaqlR5/tQmf/K4b1du1g71747DN1Wq4PP7FDo1HGc//4Zyv8/CAgAFq0AA9PU4Iv+QHQyDGG08cTCT8TzdfzdvNQt8PYWKljvD/5BJ5+urLemRBCCCGEuJdUu3m6n3vuOc6ePUtCQgL16tWja9euvPLKK7i6ulZ11YQQlUhjouGv7V4sXgytW8Pjj4NJgceEAb18+fiVnbz2aXeyc8wBOHEib6+SFM25bjzbNmfg1Upp8X7urUY89xbcytCz/wDY2kKnTpX0poQQQgghxD2n2rV0d+nShSVLlrB582Y+//xzIiMjmT59elVXSwhRBVxc4IMP4MknCwfceWZ+1IfoaFM++QRatVK22dhAU48EhnY/xH+bU/Dr2KTQcVbWGvr1k4BbCCGEEEJUrGrX0j1hwgTDcqNGjXjmmWd4/vnnyc7OxtzcvMhjtFotWq22kmpYdnl1q851FNWfXEfFc3SC6dO1TJ8OmZlgaQlgD3QA5GeWn1xHojzIdXSP0GoxNSxqoZx/33IdifIg15EoDwWvo/K+njR6vV5frmcsR8nJybzzzjvExsbyyy+/FNqfnp7OmTNnqqBmQgghhBC1m0lGBoE9ewIQtGcPOmvrKq6REEJUrhYtWmBjY3P7grdR7Vq6AT7++GN+/vlnMjIyCAgI4JtvvimxvI+PT7n8MCqKVqvl5MmTtG7dGlNT09sfIEQR5DoS5UGuI1Ee5Dq6R6SlGRbbtGkDdeqU6+nlOhLlQa4jUR4KXkfp6emcO3eu3M5fKUH3okWL+O6770oss3HjRpo2VabrmTRpEo8++ihXr15l6dKlzJ49m2XLlqHJS1lcgKmpaY34I6sp9RTVm1xHojzIdSTKg1xHtVy+362pqanRevm+jFxH4u7JdSTKQ951VN7XUqUE3RMnTmT48OEllvHw8DAsOzo64ujoiLe3N02bNqV3794EBwcTGBhodIxOp0wVlJGRQXWWNyYgPT1dPgzEHZPrSJQHuY5EeZDr6B5x6xb4+qrLxTR+3Cm5jkR5kOtIlIeC11FefJkXb96taj2mG+Dq1av07duXlStX0rlzZ6N9CQkJXLlypWoqJoQQQgghhBCi1vLy8sLJyemuz1Otgu4TJ05w8uRJ2rdvT926dYmIiOCzzz4jISGBDRs2YGFhYVQ+JyeHlJQULC0tMSluPiEhhBBCCCGEEKKUdDodmZmZ1KtXDzOzu+8cXq2C7rCwMBYsWEBYWBjp6ek4OzvTs2dPpk6diqura1VXTwghhBBCCCGEKJNqFXQLIYQQQgghhBC1ifTJFkIIIYQQQgghKogE3UIIIYQQQgghRAWRoFsIIYQQQgghhKggEnRXgp9//pl+/frRunVrHnvsMUJCQqq6SqIa++KLL/D19TX6N3jwYMP+zMxM5s2bR+fOnQkMDOTFF1/k+vXrVVhjUR0cOXKE5557jh49euDr68u2bduM9uv1ej777DN69OhBmzZtmDBhQqEpF5OTk5k5cybt2rWjQ4cOvP7666SlpVXiuxBV7XbX0Zw5cwp9Pk2aNMmojFxH97Zly5bxyCOPEBgYSNeuXZk6dSqXLl0yKlOa77GrV68yefJk2rZtS9euXfnwww/JycmpzLciqlBprqOxY8cW+jx66623jMrIdXRvW716NQ899BDt2rWjXbt2jBo1il27dhn2V+ZnkQTdFWzjxo0sXLiQ559/nnXr1uHn58ekSZNISEio6qqJaqx58+bs3bvX8G/16tWGfe+//z7//fcfS5YsYdWqVcTFxfHCCy9UYW1FdZCeno6vry9vv/12kfu/++47Vq1axTvvvMNvv/2GtbU1kyZNIjMz01DmlVde4cKFC6xYsYJvvvmGo0ePFrqBEbXb7a4jgJ49exp9Pi1evNhov1xH97bDhw/z5JNP8ttvv7FixQpycnKYNGkS6enphjK3+x7TarU8++yzZGdn8+uvv/LBBx+wbt06Pv/886p4S6IKlOY6Ahg5cqTR59GsWbMM++Q6Eg0aNOCVV15h7dq1/PHHH3Tp0oXnn3+e8+fPA5X8WaQXFerRRx/Vz5s3z7Cu1Wr1PXr00C9btqwKayWqs88//1w/dOjQIvelpqbqW7Vqpd+0aZNh24ULF/Q+Pj76oKCgSqqhqO58fHz0W7duNazrdDp99+7d9d9//71hW2pqqt7f31//zz//6PV69ToKCQkxlNm1a5fe19dXf+3atcqrvKg2Cl5Her1eP3v2bP2UKVOKPUauI1FQQkKC3sfHR3/48GG9Xl+677GdO3fq/fz89PHx8YYyq1ev1rdr106fmZlZqfUX1UPB60iv1+vHjBmjf++994o9Rq4jUZSOHTvqf/vtt0r/LJKW7gqUlZXFqVOn6Natm2GbiYkJ3bp1IygoqAprJqq78PBwevToQf/+/Zk5cyZXr14FIDQ0lOzsbKNrqmnTpjRs2JDg4OAqqq2o7qKiooiPjze6buzs7Gjbtq3hsygoKIi6devSunVrQ5lu3bphYmIiQ2KEkcOHD9O1a1cGDRrE22+/TVJSkmGfXEeioBs3bgBQr149oHTfY8HBwfj4+FC/fn1DmR49enDz5k0uXLhQeZUX1UbB6yjP33//TefOnXnwwQf55JNPyMjIMOyT60jkp9Vq2bBhA+np6QQGBlb6Z5FZubwLUaSkpCS0Wi1OTk5G252cnAqNSxEiT5s2bVi4cCHe3t7Ex8fz5Zdf8uSTT/L3339z/fp1zM3NqVu3rtExTk5OxMfHV1GNRXWXd20U9VmUN3bp+vXrODo6Gu03MzOjXr16cm0Jg549ezJw4EDc3d2JjIxk8eLFPPPMM6xZswZTU1O5joQRnU7H+++/T7t27fDx8QEo1ffY9evXjW5yAcO6XEf3nqKuI4AHH3yQhg0b4uLiQlhYGIsWLeLy5cssXboUkOtIKMLCwhg9ejSZmZnY2Njw5Zdf0qxZM86cOVOpn0USdAtRzfTu3duw7OfnR9u2benbty+bNm3CysqqCmsmhLjXPfDAA4blvMRFAwYMMLR+C5HfvHnzOH/+vFFeEiHKqrjraNSoUYZlX19fnJ2dmTBhAhERETRu3LiyqymqKW9vb/78809u3LjBli1bmD17Nj/99FOl10O6l1cgBwcHTE1NCyVNS0hIKPTURIji1K1bFy8vLyIiIqhfvz7Z2dmkpqYalUlISMDZ2bmKaiiqu7xro6TPovr165OYmGi0Pycnh5SUFLm2RLE8PDxwcHAgPDwckOtIqObPn8/OnTv58ccfadCggWF7ab7H6tevXyiDcN66XEf3luKuo6K0bdsWwOjzSK4jYWFhgaenJ/7+/sycORM/Pz9WrlxZ6Z9FEnRXIAsLC1q1asWBAwcM23Q6HQcOHCAwMLAKayZqkrS0NCIjI3F2dsbf3x9zc3Oja+rSpUtcvXqVgICAqqukqNbc3d1xdnY2um5u3rzJiRMnDJ9FgYGBpKamEhoaaihz8OBBdDodbdq0qfQ6i5rh2rVrJCcnG24+5DoSer2e+fPns3XrVn788Uc8PDyM9pfmeywgIIBz584ZPSjcv38/tra2NGvWrFLeh6hat7uOinLmzBlADYbkOhJF0el0ZGVlVfpnkXQvr2BPPfUUs2fPxt/fnzZt2vDjjz+SkZHBiBEjqrpqopr68MMP6du3Lw0bNiQuLo4vvvgCExMTHnzwQezs7HjkkUf44IMPqFevHra2trz33nsEBgZK0H2PS0tLIyIiwrAeFRXFmTNnqFevHg0bNmTcuHF8/fXXeHp64u7uzmeffYaLiwsDBgwAlOQhPXv25M0332TevHlkZ2fz7rvv8sADD+Dq6lpVb0tUspKuo3r16rF06VIGDRpE/fr1iYyM5OOPP8bT05OePXsCch0JpSvwP//8w1dffUWdOnUM4x7t7OywsrIq1fdYjx49aNasGbNmzeLVV18lPj6eJUuW8OSTT2JhYVGF705UlttdRxEREfz999/07t0be3t7wsLCWLhwIR07dsTPzw+Q60jAJ598Qq9evXBzcyMtLY1//vmHw4cP88MPP1T6Z5FGr9frK+A9inx++uknfvjhB+Lj42nRogVz5841dIERoqAZM2Zw5MgRkpOTcXR0pH379syYMcMwPikzM5MPPviADRs2kJWVRY8ePXj77belq9Q97tChQ4wbN67Q9uHDh/PBBx+g1+v5/PPP+e2330hNTaV9+/a8/fbbeHt7G8omJyfz7rvvsmPHDkxMTLjvvvuYO3cuderUqcy3IqpQSdfRO++8w/PPP8/p06e5ceMGLi4udO/enenTpxsNmZLr6N7m6+tb5PaFCxcaGhxK8z0WHR3NO++8w+HDh7G2tmb48OHMnDkTMzNpL7oX3O46iomJ4dVXX+X8+fOkp6fj5ubGgAEDmDp1Kra2tobych3d215//XUOHjxIXFwcdnZ2+Pr68swzz9C9e3egcj+LJOgWQgghhBBCCCEqiIzpFkIIIYQQQgghKogE3UIIIYQQQgghRAWRoFsIIYQQQgghhKggEnQLIYQQQgghhBAVRIJuIYQQQgghhBCigkjQLYQQQgghhBBCVBAJuoUQQgghhBBCiAoiQbcQQgghhBBCCFFBJOgWQgghhBBCCCEqiATdQgghhBBCCCFEBZGgWwghhBBCCCGEqCASdAshhBBCCCGEEBVEgm4hhBBCCCGEEKKCSNAthBBCCCGEEEJUEAm6hRBCCCGEEEKICiJBtxBCCCGEEEIIUUEk6BZCCCGEEEIIISqIBN1CCCHEPeDQoUP4+vpy6NChqq6KEEIIcU8xq+oKCCGEEFVt7dq1vPbaa8XuX7NmDQEBAZVXoRogJiaGP/74g507dxIeHo6JiQk+Pj5MmTKFbt26FSofGhrKF198QWhoKOnp6bi7u/PYY4/x5JNPYmpqCkBSUhJ//PEH//33HxcvXiQnJ4cmTZowYcIEhgwZUuicWVlZfPbZZ6xfv57U1FR8fX156aWX6N69e4W/fyGEEKK0JOgWQgghck2bNg13d/dC2xs3blwFtanetm/fznfffceAAQMYPnw4OTk5rF+/nqeeeor333+fRx55xFA2NDSU0aNH4+XlxTPPPIOVlRW7d+9mwYIFREREMHfuXACCg4NZsmQJvXr1YsqUKZiZmbFlyxZmzJjBhQsXmDZtmlEd5syZw5YtWxg3bhxeXl6sW7eOyZMn8+OPP9KhQ4dK/XkIIYQQxdHo9Xp9VVdCCCGEqEp5Ld3/+9//aN26dVVXp0IcOnSIcePGsXLlSjp37nzX5zt//jxOTk44OjoatmVlZTFs2DDS09PZtWuXYfubb77JunXr2Lt3L/b29obtY8aM4cyZMxw7dgyAyMhITExMaNSokaGMXq9nwoQJHD9+nEOHDmFjYwNASEgIjz32GLNmzWLSpEkAZGZm8uCDD+Lk5MSvv/561+9RCCGEKA8yplsIIYQopc8//xw/Pz8OHDhgtP3NN9/E39+fs2fPAmq35xEjRtC+fXsCAgJ44oknOHjwoNFxUVFR+Pr68sMPP/Dzzz/Tv39/2rZty8SJE4mJiUGv1/Pll1/Sq1cv2rRpw5QpU0hOTjY6R79+/Xj22WfZu3cvw4YNo3Xr1gwZMoR///23VO/pxIkTTJo0ifbt29O2bVvGjBljCIJL0rx5c6OAG8DCwoLevXtz7do1bt68adh+8+ZNLC0tqVu3rlF5Z2dnrKysDOseHh5GATeARqNhwIABZGVlERkZadi+efNmTE1NGTVqlGGbpaUljz76KEFBQcTExJTq/QshhBAVTYJuIYQQItfNmzdJTEw0+peUlGTYP2XKFFq0aMEbb7xhCCr37NnDb7/9xtSpU/Hz8zOc5/fff6dTp0688sorvPDCCyQmJvL0009z5syZQq/7999/s3r1asaOHctTTz3F4cOHeemll1iyZAl79uzhmWeeYeTIkfz33398+OGHhY6/cuUKM2bMoFevXsycORNTU1OmT5/Ovn37Sny/Bw4c4MknnyQtLY0XXniBGTNmkJqayvjx4wkJCbmjn2F8fDzW1tZYW1sbtnXq1ImbN2/y1ltvcfHiRaKjo/nll1/YunUrkydPvu05r1+/DoCDg4Nh25kzZ/Dy8sLW1taobJs2bQz7hRBCiOpAxnQLIYQQuSZMmFBom4WFBSdPngTA3NycDz/8kBEjRvDBBx8wa9Ys3njjDfz9/Y2Cx3r16rFjxw4sLCwM20aOHMn999/PqlWreP/9941eIzY2ln///Rc7OzsAdDody5Yt49atW/zxxx+YmSlf10lJSfz999/MmzfP6NxXrlzhiy++4L777gPg0UcfZfDgwSxatKjYpGJ6vZ533nmHzp078/3336PRaAAYPXo0DzzwAEuWLGH58uVl+vmFh4ezdetWBg8ebEiOlvfeL1y4wJo1a/j9998BMDU15c033+Txxx8v8ZzJycn8/vvvdOjQARcXF8P2+Ph4nJ2dC5XP2xYXF1emugshhBAVRYJuIYQQItdbb72Ft7e30TYTE+NOYT4+PkybNo1PPvmEsLAwkpKSWL58uSEwBiWgzAs6dTodqamp6HQ6/P39OX36dKHXHTx4sCHgBrW1dujQoUbnbdOmDf/88w+xsbF4eHgYtru4uDBw4EDDuq2tLQ8//DDfffddscHpmTNnuHLlClOmTDFqzQfo2rUr69evR6fTFXr/xcnIyGD69OlYWVkxc+ZMo32mpqZ4eHjQo0cPBg8ejIWFBRs2bOC9997D2dmZAQMGFHlOnU7HK6+8QmpqKm+++abRvlu3bhk9eMhjaWlp2C+EEEJUBxJ0CyGEELnatGlTqkRqkyZNYsOGDYSEhPDyyy/TrFmzQmXWrVvH8uXLuXz5MtnZ2YbtRWVHd3NzM1rPC8CL256SkmIUdHt6ehpaqvN4eXkBEB0dXWTQfeXKFQBmz55d3Nvkxo0b1KtXr9j9ebRarSHD+HfffYerq6vR/m+//ZaVK1eyZcsW6tSpA8CQIUMYO3Ys8+bNo0+fPkYPF/K8++677Nmzhw8//NDQdT+PlZUVWVlZhY7JzMw07BdCCCGqAwm6hRBCiDKKjIwkPDwcgHPnzhXav379eubMmcOAAQOYNGkSTk5OmJqasmzZMqNkYHnyd8XOr7hW5vKYeCTvHLNmzaJFixZFlsnLFH47c+fOZefOnSxatIiuXbsW2r969Wo6d+5sCLjz9O/fn4ULFxIdHY2np6fRvqVLl7J69WpmzpzJww8/XOiczs7OxMbGFtoeHx8PYNQVXQghhKhKEnQLIYQQZaDT6ZgzZw62traMHz+eb775hkGDBhnGUwNs2bIFDw8Pli5datQC/fnnn1dIncLDw9Hr9UavldeSXTAbeJ68lnJbW1u6det2x6/94YcfsnbtWl5//XUefPDBIstcv34dnU5XaHteD4CcnByj7T///DNffPEF48ePLzbRmp+fH4cOHeLmzZtGydROnDgBUOyDBCGEEKKySfZyIYQQogxWrFhBUFAQ8+fPZ/r06QQGBvLOO++QmJhoKJPXcp2/RfrEiRMEBwdXSJ3i4uLYunWrYf3mzZv8+eeftGjRosiu5QD+/v40btyY5cuXk5aWVmh//vdTnO+//57ly5fz3HPPMX78+GLLeXt7s3//fqOx41qtlk2bNlGnTh0aN25s2L5x40bee+89HnroIV577bVizzl48GC0Wi1r1qwxbMvKymLt2rW0bdu2UNd8IYQQoqpIS7cQQgiRa/fu3Vy6dKnQ9nbt2uHh4cHFixcN82/369cPgA8++ICHH36YefPm8dlnnwHQp08f/v33X55//nn69OlDVFQUv/76K82aNSM9Pb3c6+3l5cUbb7zByZMncXJy4o8//iAhIYGFCxcWe4yJiQnvvfcezzzzDA8++CAjRozA1dWV2NhYDh06hK2tLd98802xx2/dupWPP/4YLy8vmjRpwvr16432d+/enfr16wPwzDPP8OqrrzJy5EhGjhyJlZUVGzZs4NSpU7z00kuYm5sDEBISwqxZs7C3t6dr16789ddfRufM+z0AtG3blsGDB7N48WISEhLw9PRk3bp1REdHs2DBgjv6OQohhBAVQYJuIYQQIldx3b8XLlxIw4YNmT17Ng4ODrz++uuGfV5eXrz88sssWLCAjRs3MmTIEEaMGMH169dZs2YNe/fupVmzZnz88cds3ryZw4cPl3u9vby8ePPNN/noo4+4fPky7u7ufPrpp/Ts2bPE4zp37syaNWv46quv+Omnn0hPT8fZ2Zk2bdowatSoEo89e/YsoHRjnzVrVqH9K1euNATdQ4cOxcHBgW+//ZYffviBmzdv4u3tzbx58xg9erThmAsXLpCdnU1iYqLRzzjPwoULjRLIffTRRyxZsoS//vqLlJQUfH19+eabb+jYsWOJdRdCCCEqk0ZfHtlYhBBCCFEl+vXrR/PmzVm2bFlVV0UIIYQQRZAx3UIIIYQQQgghRAWRoFsIIYQQQgghhKggEnQLIYQQQgghhBAVRMZ0CyGEEEIIIYQQFURauoUQQgghhBBCiApSo6cMy8nJISUlBUtLS0xM5PmBEEIIIYQQQoi7o9PpyMzMpF69epiZ3X3IXKOD7pSUFK5cuVLV1RBCCCGEEEIIUct4eXnh5OR01+ep0UG3paUloPwwrK2tq7g2xdNqtZw7dw4fHx9MTU2rujqihpLrSJQHuY5EeZDr6B6RkQHduyvL+/ZBOd9ryXUkyoNcR6I8FLyOMjIyuHLliiHevFs1OujO61JubW2NjY1NFdemeFqtFgAbGxv5MBB3TK4jUR7kOhLlQa6je4ReD2FhyrKVFZTzvZZcR6I8yHUkykNx11F5DWGWgdBCCCGEEEIIIUQFkaBbCCGEEEIIIYSoIBJ0i1ovMSaJhS/tZNtvx6u6KkIIIYQQQoh7jATdotZb8OoJXv+sDwNHtWPhvFT0+sJlfli4B1/3y/zfR3srvX5CCCGEEEKI2kuCblHrnThta1h+/Z26TJsGubkSDOZ+1Ixz0d5Me7sN6anplVxDIYQQQgghRG0lQbeo9eKS6hqtL10K06ap6xk3MriW7AbAjVt1+XNFUKFz6PUwaRL4+sLhwxVaXSGEEEIIIUQtIkG3qPVikxwAsLK4Rd4MAN98A6mpynL0xTij8j/+VHg+vr17YflyOHdOCdqFEEIIIYQQojQk6Ba1mjZby/VURwBae13kiceVfuU6HYSfTwYg8mKS0THbjgUSfSHGaNu6depyRLiu4ioshBBCCCGEqFUk6Ba12vXoRHR6pXnbxTENL5s9hn3hoecBiAq/aXSMTm/KTytSDet6nZ61/8s0rF+9EF6RVRZCCCGEEELUIhJ0i1otLlptxXatn4mnl6lhPeKSkjAtMq5+oeN+XOdryHIevDuM8Ei1y3l0ggt6XREp0IUQQgghhBCiAAm6Ra0WG622Yru6aGncpI5hPTxcCZyjUv0M2xyVnuicOQPHjinL634x7mqenlmH1ISUCqqxEEIIIYQQojaRoFvUarHRGYZlV1fwbO5gWA+PsgAgKkot/9JL6vLXXyv/r93sXui80Zeul2s9hRBCCCGEqA3mzJnD1KlTDetjx45lwYIFlV6PQ4cO4evrS2pq6u0LVzAJukWtFnst27Ds0sCCxr5uhvWIq3YAREYq62Zm8MILYG2trC9fDrPG7+RURPNC570aXvV/vEIIIYQQQpTWnDlz8PX1xdfXF39/fwYOHMjSpUvJycmp0Nf94osvmD59eqnKVqdAuTxJ0C1qtTh9D8Oyq09LrOpY4WqvTBEWHquM5c5r6W7YEBwcYNEi9fiPV/YxLHu5RBqWo8PTK67SQgghhBBCVICePXuyd+9etmzZwlNPPcXSpUv54YcfCpXLysoqt9e0t7fH1ta23M5XE0nQLWq12Hgzw7Krhz0AjV3iAYhJciUlPoXruT3FPRyvADB1qtLCXdDUsRcNy1ejK/aJoBCietHrYcECGDsW4uKqujZCCFG0rCyIjlb/6WSWU1GAhYUFzs7ONGrUiCeeeIJu3bqxY8cOQ5fwr7/+mh49ejB48GAAYmJimD59Oh06dKBTp05MmTKFqHxjM7VaLQsXLqRDhw507tyZjz76CL3eOOFwwe7lWVlZfPzxx/Tu3dvQ4v77778TFRXFuHHjAOjYsSO+vr7MmTMHAJ1Ox7Jly+jXrx9t2rRh6NChbN682eh1du3axaBBg2jTpg1jx44lOjq6Qn6Gd8Ls9kWEqLliY9VlV1flf8+GqRw5B3q9CYe2nQc6AODueBXwAmDhD72IjtnHz/92B6C11zl6DawPnyjniL6qqZw3IISoFvbuhblzlWUPD3j//aqtjxBCFHTxInTuDAkJ6jY/PyUxrI1N1dXrnnFmMZxdfPtyju2g91/G23YNhcTjtz/W72Vo8fKd1a8YlpaWJCcnA3DgwAFsbW1ZsWIFANnZ2UyaNImAgAB+/vlnzMzM+Oqrr3j66af566+/sLCwYPny5axbt47333+fpk2bsnz5crZu3UqXLl2Kfc1Zs2YRHBzM3Llz8fPzIyoqiqSkJNzc3Pjiiy948cUX2bx5M7a2tlhZWQGwbNky/vrrL+bNm4eXlxdHjhzh1VdfxdHRkU6dOhETE8MLL7zAk08+yciRIwkNDeXDDz8s15/V3ZCgW9RqeUG3qamamdzTXZ1ze9+uG4Zlj0ZqNxoTUxOW/9kRHt7Hvwd9WPBWMg291IRqV6+pU4gJIWq/9evV5WMHbwB2VVYXIYTIyYFbtyB/j90VK4wDboCzZ2H7dnjoocqt3z0pOxUyStGyesujiG3xpTs2u/zGOev1eg4cOMDevXsZM2YMSUlJ2NjY8N5772FhoSQbXr9+PTqdjgULFqDRKA1OCxcupGPHjhw+fJgePXrw448/MnnyZO677z4A5s2bx969e4t93cuXL7Np0yZWrFhBt27dAPDwUH8m9erVA8DJyYm6desCSsv4smXLWLFiBYGBgYZjjh07xpo1a+jUqRO//PILjRs3NrSMN2nShHPnzvHdd9+V28/sbkjQLWq1uKvKzbGz0y1MTJQnZZ6eaiv13iNOhmV3d+PWawtrC37a0j13zZnszGw0Gh16vQnRcXLDLcS95J9/1OXQEzeRoFsIUVXi46FDB+X/HTsgr0HxwAG1TPv26tSn4eGVX8d7knldsG50+3JWzkVvK82x5nXLXq8Cdu7cSWBgINnZ2ej1eh588EFefPFF5s+fj4+PjyHgBjh79iwRERG0a9fO6ByZmZlERERw48YN4uPjadu2rWGfmZkZ/v7+hbqY5zlz5gympqZ07Nix1HUODw8nIyODiRMnGm3Pzs6mRYsWAFy8eJE2bdoY7Q8ICCj1a1Q0CbpFraXX6Ym7rnxwuNYJB3wB8AzsYChz6Iw6R7eHV8mt1+aW5rg4ZRB73ZqrN3zuuF6JMUnYu9TDxFRSKghRE5wPiiAsrLFh/WqiG0nXknBo4FDCUUIIUTE+/xwiIpTlZcuUoFurhcOHlW2NGsHHH0O/fsq6BN2VpMVddP0u2N28AnXu3Jl33nkHc3NzXFxcMDNTw0HrvCl8cqWnp9OqVSsW5c8ynMsxrwtpGeV1Fy+L9HQlgfGyZctwzRsvmiv/Q4LqTO76Ra2VHJ9CVo4SSLs6qd3IGzetY1hOy1D/UN29bt9y1aix8mEUE2uOVlv2Oi15bReuHra0a36erIzyywophKg4G367XGjbqSMRVVATIcS9Lj0dvv5aXd++XUn0GBoKN28q27p2hcbqc0IJuoURa2trPD09adiwoVHAXZRWrVoRHh6Ok5MTnp6eRv/s7Oyws7PD2dmZEydOGI7Jycnh1KlTxZ7Tx8cHnU7HkSNHitxvbm4OKAna8jRt2hQLCwuuXr1aqB5ubm6GMidPnjQ6V/56VTUJukWtFRuRaFh2cVLHcXt6Fl3eo1n9256zYUPlf61W6dZVFj9/eYoZH/QmR2vOicu+7PkntGwnEEJUiX+2FH4gFxqUUgU1EULc61atMh63HRkJFy4Ydy3v2lVJ+Jg7BFeCbnHHHnroIRwcHJgyZQpHjx4lMjKSQ4cO8d5773Ht2jUAxo0bx3fffce2bdu4ePEi8+bNK3GObXd3d4YPH87rr7/Otm3bDOfcuHEjAI0aNUKj0bBz504SExNJS0vD1taWiRMnsnDhQtatW0dERASnTp1i1apVrFu3DoDRo0dz5coVPvzwQy5dusTff/9t2FcdSNAtaq24aPUP3tU527Bsbw92Be6hzUyzcfEofdANylQcpbVtGzw1o6XRtl3byi8ZhhCiYqQmpLI7xB8AUxN1qsDQ0KLHqgkhREXR6eDTTwtv3769cNBtYQG5DYCGruhClJW1tTU//fQTDRs25IUXXmDIkCG88cYbZGZmGubdnjhxIkOHDmX27NmMHj2aOnXqMHDgwBLP+8477zBo0CDeeecd7r//ft58800yMjIAcHV15cUXX+STTz6hW7duvPvuuwC89NJLTJ06lWXLljFkyBCefvppdu7cibu7kui4YcOGfPHFF2zfvp1hw4bx66+/MmPGjAr86ZSNjOkWtVZsTIZhOf/wD40GPN2SCb1hb9jWyDEWU3N3bqeRazqgzLtx9WIM7du73faYM2dgxAjIzjZO1LbrgH2R5bMzszkfHI5vO29MzU1ve34hRMXZ+vspsrVdARjZ7xC/bFOSK4aG1avKagkh7kGbN0NYmLLcqJH68H/7dsjrRWthAXk5rzw94epVuHZNyXR+B0NpRS3zwQcflHmfs7NziVNvmZmZ8cYbb/DGG28UW2bVqlVG65aWlrz22mu89tprRZZ//vnnef755422aTQaxo8fz/jx44t9nb59+9K3b1+jbY888kix5SuTtHSLWiv2qjpm2rWB8fMlT8dzRuvuLomURkOrY4bl6LPnS3XMvHlwI3dI+dCh0KSB0s/r0Fk/bt1UHwwkx6Xw8Ss7adIonlZdmjFq4OFSnV8IUXH++Udt3R7/lCUN7JV5CEMve6DXGbd263RKUqPff6/UKgoh7hGL800B/cUXSs89gC1b4HzuLUm7dmCZmxc2/7juyMhKqaIQohgSdItaKzZWvSF2cTPOxti40S2jdQ/v0k3B0Kix+pj4arTutuXjotNYu1aph7Mz/PIL9Omg9PPKzLbi4L/KI+uNK4/g4WnCrE/6EJWg9GH/Y1dXLl2ULqxCVJWrF6+xYY8yw0Edy5v0HuaPfxOlaSnhhhNxEdeNyr+/QM9zz8HIkfBX5SWiFULcA/75R2nRBmjWDIYNgz59lPUbaq5YunZVl/PnsJFx3UJULQm6Ra0VF69e3q6N6hjt82xsHDC7+3mV6pwNPdXgPDrm9l2/V3xy2NCtfOLYVGxsoHdvtZv5rm3J3Eq7xVPTvLh5q3CyppWrNIW2CSEqll6nZ/WSffi3tSQ+VZlPdWDHUKzqWOHvq97dhh5Rm45iLsXywftqz5V33lEyCgshxN2KjIT8PWpfew1MTKB//8JlJegWonqSoFvUWrHX1Xm3XT3sjfZ5ehvP6efhUbpzNvJWk61djS15cJROq+PbX5oY1p8ZlwRA7we8DNt2HajLL0uPEJei3Nj39D/Bjr8jDRlHV66UG3chKpNeD089pefJGd1JSlPm4W5gH8vCxS4A+LdWvzZPnVQTNL79chhpt2wM60FBSsuUEELcjexsePxxSMwdBffww/DUU8pyWYJuSaYmRNWSoFvUWrEpLoZlZ3cno32eTY1bld1vn0MNAKeGjliYKdOPRceVnEhp229BXLqmfOPd1+EoTdsqy54t3PF0jgLgwKkWLPqygeGYjxeZ0vdBDwYMUNYvX4a9e0tXNyHE3fv0U/hxpfrV+PiAfYSeMsevo/IAzb+7v2Ff6LXOyv/7z/PDX0qCtfwZzue9Flto3LcQQpTF22/Dvn3KsqcnLF+uTgXm56dmKAflXib//YzM1S1E9VEpQffPP/9Mv379aN26NY899hghISEllt+0aRODBw+mdevWPPTQQ+zatasyqilqmdib3gA4OoK5pbnRvsY+zkbr7o1uPz4bQGOioaFjHABXE5xKLLvsG7UV7Nlncoz29e6mTBd2K9ua05HNAejWMoTOg5Qb+vzdyH5cWrqEbUKIu3P4MMyera6v+vYaq7d2x6mho2Fby0AHw3JoqPL/qzOS0emV4SbvTdtLQIt4AI6dcmXTT0crvuJCiFopLg4++khZNjODX38FB/UjCI0G+vVT1/O3coN0LxeiOqnwoHvjxo0sXLiQ559/nnXr1uHn58ekSZNISEgosvzx48eZOXMmjz76KH/++Sf9+/fn+eef59y5c0WWF6I4cUpsbDRdWB43bxfMTdXs5h7140p93ob1lW7iCTecuJWWWWSZqxevsX5vB+W1HK7x0Pj2Rvv7DGtZ6JgZL6QZloc/rMfWWln/7W9X0lPTS10/IUTZJSdkMWoU5OQ+H5s9G8Y806BQOTs79UY2NBQWvbqLzYc7AtDYOYrp8zvz1oyLhvLz3reW1m4hxB3ZuRO0WmX5+eehS5fCZe67T13u2dN4X926aoZzCbqFqFoVHnSvWLGCkSNH8sgjj9CsWTPmzZuHlZUVf/zxR5HlV65cSc+ePXn66adp2rQpL730Ei1btuSnn36q6KqKWiQtTfkHRQfdJqYmNK6vDHAyN83CpbFz4ULFaOiiBsdHtp+ls18oPo0uc+mkOmBq5dKzaHXKNGWTHj1bqKW9d2/jc3q5RPLwpI6GdZs6Gh7rFwTAjYy6/LkiqNT1E0KU3fOPH+HKFWW5a1d4993iy/rn9jC/cQNeXaT+MX8wNwJrO2uGTexEay/lQfHhMH8ObAo1lMnOzGbL6qP88vl+fvl8P2u/PciNxBsIIURB+Tt6Dh5cdJnHH4dnn4UxY2DSpML78x4SRkWpAbwQovKZ3b7IncvKyuLUqVM8++yzhm0mJiZ069aNoKCig4jg4GAmTJhgtK1Hjx5s27at2NfRarVoq/EnSV7dqnMda5urVwGU7p4uLjq02sItTc+OiWTOYm8mjzgAJj1K/ftp2EBt3R72hAdJaUrX0wVv7ObbdY0A+HW9Oshq3POehc7duDG4u5sQFaUMzJo28RIa04ZG5cZMtGHFBmX548+dGPKkcmMu15G4G/fi59G5c7B4sYYHHtDz0EOF9yfFJvPLNqVfpoNtCj+tqoOJiabYG9SWTRPYgIvRtref+4/HpvQ0/FynP3uNp1/zAeCPX6/TebCy/fXJe1m0sq/RsW5zrvHPphzadijd1IWlkZmeyXsvHaJOHZj9SU80JuU7E8K9eB3dk7RaTA2L2nKP2uQ6KtmuXSaABlNTPV266Ir88ZuYwJdfqusFy3h4mHDihIbsbIiO1tKoUYVWuUrIdSTKQ8HrqLyvpwoNupOSktBqtTg5GY99dXJy4tKlS0Uec/36derXr1+o/PXr14ssD9SYrucnT56s6irUeqf2RWPnYEFGugYYBIB19lGCgwtP79Xv8brsHnYYKxtbgoODS/0atrYphuW8gBvg920BTNp/mOtRNzhxWenv1aH5CVJzcggOTix0nh493Pn1V1ccHbNpN7huoTrYuevwaXiRc1ebEnzJj8eH7OOdz83kOhLl4l66jmbMaMqePfb834oc/v59F86N7Y32H90SiV7/MACP9d9HUrIrScHFn8/NJhJQyptotCx46W8GPunBiZAThjJN2ytJ1bQ6M9Zt9ebx40Fk3crm29/bFTpfTFIDevXX8sknF+jQ4ebdvdlcu/8XzsLlIwBwbbCGwEHNyuW8Bd1L19G9yCQjg8Dc5ZCQEHTW1hXyOnIdFZaUZMapU20B8PNL5+LFs3d0HhsbD8h9SLht23natk0r+YAaTK4jUR4q6jqq0KC7svj4+GBjY3P7glVEq9Vy8uRJWrdujanp7ed2Fnfmq3f2MO29oWg0OoZ1P2zY3qxRGgEBvcrtdU738IfvC2+/kVGXy8e0nD+ndiV/fHhisa/93XcwbJiOdu1MaNq0TZFlfv3lHH0Gp5CaUY/NR7rjMm8LH3/XDlMzc2zq2WFhUeRhQhTrXvw8On9Wyd+QozVj3Sozvvo9wGj/z4tTDcuDhjgQEGC8v6AmHk1YtuoSiTfsWPbJRYY+VUTzOdC7zQl2BLfjcqwXphkZXAlOJDVDmfWgX8Bxhg5O4Jd/fDkU2pi0NFOmTfPh9991PPDAnb/XPH/8Xx3D8oWzdXlqdsnvqazuxevonpSmBmht2rSBOnVKKFx2ch0Vb+1adXnwYOvbfi4Vp317Db/9pixbWvoQEFD7ckzIdXR7LVsWziWU39SpU3nhhRcqqTbVU8HrKD09vVwbdis06HZwcMDU1LRQ0rSEhIRCrdl56tevX6hVu6TyAKampjXij6ym1LMmCj9zldc+VhKX6fUm/LlXzTbSwM2sXH/ujb3Uc1lbw7xXLjLr3aYArFptRXhCCwA0Gh2jnvEr9rVtbWH06JJfK7BXC9atDGLw6FZkay1YuXkQK3PnFLexgZ9/VubsLIlep2fvPyFY25jTYUDJH7ri3nGvfB4lJMC1eLV1bsVfXXnjfCyN/Roatu0+oiZ+6P2g721/Lg4uDpyJsCcnOwdzyyIyG+Ua/tBNdgQry+t/ieXQcTVgefNNE/qMGMjTc2HUKNiwAbKyNLz8silDh5bxTRYh/qY6b1DwWecK+13fK9fRPSvf79bU1NRovXxfRq6jgvbsUZf79jW54x+9t7e6HBV15+epCeQ6Kt7efPPPbty4kc8//5zNmzcbttnY2Bh+dnq9Hq1Wi5lZrWibLbO866i8r6UKTaRmYWFBq1atOHDggGGbTqfjwIEDBAYGFnlMQEAABw8eNNq2f//+O37CJ2o/vR6mvNyAtEzbIve7upVvc3D37tCnDzRoAH/8ATPf9sbLJRKALUc6cPaSMpyiR5d0GjVzK+FMpdPv0UD+75Mjhbanp8P8+bc//r+1wfQa1pbO9/ly/L8zd10fIWqSU6eM17O1Fnz4pjoNX0p8CkEXfAFo7XXOaHqwkmhMNIUSJBb08NjmhuUf13rz7xGla7mncxS9him9W+rUgT//hLZKL1IuXoSbN0o3hWFJrl1XA/zjYZ6SQV2IGiYviZqJCfTocefnkWnDBICzs7Phn52dHRqNxrB+6dIl2rVrx65duxgxYgStW7fm2LFjzJkzh6lTpxqdZ8GCBYwdO9awrtPpWLZsGf369aNNmzYMHTrUKJgXqgp/hPHUU08xe/Zs/P39adOmDT/++CMZGRmMGKGMNZs1axaurq7MnDkTgHHjxjF27FiWL19O79692bhxI6GhocwvTXQh7klr1sCmzcrzo4ZuObw4cjevf94HvV7Z5uZhV66vZ2YG//0HOp3yZQgmjBt+gfnLPIzKjR5T9EOAO/HE9O5otXv56RcTTDTmBF30ITaxHkFBSpIoH5/ij93192kgEJ3elN+XHaVd3xblVi8hqrvQ4ylAPaNt3//ZhdcvxNComRt7N51Dp1dmDujdKQYo4Y+pjNybu9HJN5TDYf5ciVPvfMc+fAETU7Ul2swMApuc5sQJpSfKhaDzBPTyvavXvnZNTZwWn+rM1Usx5fIQUAhR8RISICREWQ4MhHr1Si5fksaN1WUJuivO77/DW28ps1pUFjs7ZaaNRx8tn/N98sknzJ49Gw8PD+rWLV1iz2XLlvHXX38xb948vLy8OHLkCK+++iqOjo506tSpfCpWS1R40D1kyBASExP5/PPPiY+Pp0WLFnz//feG7uIxMTGYmKgN7u3atWPRokUsWbKExYsX4+XlxZdffolPSVGFuKdos7W8PHYvh04oLcpnrrYClBvMpV+aMXx4P5r4HODlN70I8ImkXd8OFVKPfJctY59rwvxl+ffpeeSR8s0W/MT0rrTsHUxAQABLlpjyyivK9jVr4M03iz8uMk6dDm37UQm4xb0ldO8JQMmr0KN1KHtP+pOVY8mHc8/x+a9u7Nqujlnt07f8kyQMvz+Bw2HG28ZN8SpUrrlHHJAbdJ9K5G7TUFyLNH7YELQ3whB030y6ibWtNabm0g1TiOoof9fyglOMlpWLC1haQmamBN0V6eOP4eyd5bq769ctr6B72rRpdO/evdTls7KyWLZsGStWrDD0YPbw8ODYsWOsWbNGgu4CKqWz/pgxYxgzZkyR+1atWlVo2/3338/9999f0dUSNdTfPx7l8zWFv4UefhiGD1eWR07tymPP6dGYVE7LTrMAT7q3DGLfaeVDp1/vW7i6VkyWV4CRIzEE3b+uvsWbcy1BU3SQHxmnzh5w7FIgyXEp2LvcxWNzUW0lXE3kt+9CSUnWgYkZtt49eOyxoueqv1eEnlOv9R/+rw6B3dJIz6zD1//rxuT959l1SM0X0uuB5kWd4q6MeK4Xry1R17u1v07zQK9C5Zr5qAH/+bDMQvvLQq/TE3vd+PPn+JEMHpwAG1ceYfikNtSrl83zL5oydSo4Oxd9HiFE1cg/P/fdBt0mJkpr9/nzStCt1xd7uyDuwqxZSgNIZbd0v/pq+Z2vdevWZSofHh5ORkYGEydONNqenZ1NixbSyFPQvTlCXtRoJ45nFNrWurXxPJVAuc9LezsTx95k32vK8pOPpQAVF3R7eED39rHsO+bK6bNWhB44h3+3onuDRMY6GJZ1elN2/nWWh5/uXGF1E1Vn8uPnWLvbuIn0r7/g33+rqEJVTK/Tc+qyMuyjoWMMPu28eXncTt77rg85WnOempBJ0EU/AFo2voCzR/lPq+Xjq6FlSzh9WlkfP7nopKDNW6ljyc9fuLsW6KS4FLK19kbbgkKsAPjoE3OyciyJT4B33oEPPoA5c5RukXIjLkT1kBd0azTQs+fdn8/TUwm6b96E5GRwcLjtIWWSnQ0ZGVDKHsm10qOPll+Lc1WxLjAloEajQa83zgeSk5NjWE5PTweULuauBZ7uW8j0OoVUaCI1ISpC2Hk1edGpgxfQ65WxTw0blnBQJZjwancWTNvJuy/sZNxklwp/vdH3q/2Yfl1xtcgyep2eyOvGH4TbD3oWWVbUbNmZ2Ww6WHjquUOHqqAy1cS1K3Ek3lSCWf8m0QC88WkXmje8DMDR8/5odcqz595dUyqsHs8+q/zv5qb0UilKszaNDMvnw+/uzvVaeEKhbcfD3Im+EMPuk8bXyK1bSvC9/Pu7T94mhLh7aWkQHKwst2lTPgFy/mRqly7d/fnyS0uDFi2gfn3jFvqiZGTA3r1KI0m+ZNqimnJ0dCQ+Pt5o25kzakLepk2bYmFhwdWrV/H09DT65+YmOUQKkqBb1DhnLys30SYaLU1be9ymdOUxMTXh9c/6MPeLPpiYVvyf1qMTW2Ci0QKwZoNXkdmJExMhPdN4XtXt+xtUeN1E5QvZd4GMLBsA+gcep6WP0sctNVUZy3cvCj0cZVj2970JgFUdK779onCA3Xt4+wqrx4svwuHDcOIE2NsXXcbO0Q5X+zgALkTd3d9obFRqoW0R8e5881GYIcHkc48d4cUX89XxhUxOHbhwV68rhLh7YWFKF3CAdu3u4AQZ1+D6QYhcB2nKIO78UzTnJWgrL9u2KbMuZGfD0qVFl4mNhf79lZbwnj3hhRegb18ICirfuojy1aVLF0JDQ/nzzz+5cuUKn3/+OefPq7N/2NraMnHiRBYuXMi6deuIiIjg1KlTrFq1inXr1lVhzasn6V4uahS9Ts+5KCXQ9naNwtLm3m21beDtQp+A4+wIaseFGC+O7zxD+37GY2giowr3Fz1zBmJilFY3UXsc+C8OUH7/w4bcYMcpO06fU/bFx4O7e/HHVgeHDyut8uPHl18XxdDgm4Zl/9Zql+0+IwKYNDqCH35V0/re7bjJkmg00LHj7cs1d48hNtmFa8mu3Ei8gZ3jnc28cC1aHYJjaZ5JZrYlAJ+uUpPaTHvFgRadIDs5nG9WeZKRZc3I0XDkZDo2dW3u6HWFEHdAr4P0SLhxATJiOHuwLaCMrfWz/RvOR0HzKcbHHHkeUkLB1AZMrcHMBm7FQfIJ5f88nb+HppMMUxKC2opeXvKfb9s2yMlRZmTIb8EC2LHDeFtOjpJ5e+3a8q2PKD89e/Zk6tSpfPzxx2RmZvLII4/w8MMPc+7cOUOZl156CUdHR5YtW0ZUVBR2dna0bNmS5557rgprXj1J0C1qlOiL10jLVKJFX8844N4NugFGjbjJjtwnxf/7KbZw0B2pLltbK127QPnye/LJSqqkqBQHDqkf5137OHMy5hagjOONj07G3d2+aioG6LQ6wo5dxr2ZS5GB5LJlMHWqMg1fWFjxrSVldeq02uOkVaDx/Nsff9WYf/5TWmA6dIAG1aADSHPPVPaGKssXQqIJ7ON3R+e5djXbsNy7SyL/7lE+M9NuKcF0G+8wWnRSpiRb/KUL+/eGEXLZl9MRzZg+djffrb/L1OlCiNtLDEJ/+iMuHz+Bt9MZQ06FM1vnkxd0t7D4Fs6GQbPnjJMuJB6HhIO3f42MGACjoPvE/sugawwm5TN7wYkT6nJysvIAtVs3dVt6OqxcqSxbWir3Hhs3wrVrsG6d0vLepvDIKFGBRowYYZi6GaBz586EhYUVWXbatGlMmzat2HNpNBrGjx/P+PHjy72etY10LxcVLjEmiUWv7iR0//nbF76NsOAYw7Jfs7QSSt4bHh6nBtk79hdO0JQ/6H7kEXV5+8bEiqyWqAIHQpQeIFbmGbTt0QwXE/WGLO5i1XYbfmHUXlp2bop9fRsCmoQx9dHd/PTpPi6djOCdKbt47jkl4AblJkxfeKTEHQk9rw6GbNnR+AGdgwPs2wfz5sHq1eXzenereTM1Qc3500l3fJ5rseoP8P4BhVPpjh6q5oCwtrNmzRpzbCyVz9Pv/+rF1l+P3fFrCyFKKfUMk9/sR9Pppxn7tTqTz5lo9Xvdr+FZpYv4jQL3T7pbRZ/Tsj649ofmU6HtAmUZZbx1I7csAIJPO6A/UcI8o2WUP+gG2LLFeH3NGkjJHdHz+OPwww9K8sY8775bblURolqToFtUuEeHXOHVRX0Y+EBdbqUV80VRSmdD1e6ivn5y+bo0dqZlYyWgOnbejxuJxjfYkWHqzfXIR7KxslAG927fml7kGHBRM8WGx3M5Vukq3cH3HOZWFji7qK0i8bFVO6j7n11NASV7/onLvnz9Ry/Gvtydpm0aM+8b437dV69C2OmsEs8XGwtDhsCIEUoSn6LotHpOXVECbW/XCGwdbAuVadpUydrdvPxnCrsjzXytDMsX7mLasNg4tddD374mWFoa7x81sYnRul/HJix5Uw20n5tRn/TU9Dt+fSHE7SXZPsr/7ZkAwJqDo8nwngPtFnM2sQcAFubZeA9+GYbHQN0Cs5MMPg6jbsGjSfBwNDx4DoZfhRFx0H8bdPwSWr0Ozl0NhwS0Uu4PUtLtidj9szLm+y6lphZOzFYw6F62TF3OSyo5ebI6leX//gehoXddFSGqPYlaRIU6/O8p/gtW5q6+luzKll9P3OaIkoWFq1nBfVvdw3NT5NO7oxJYa3Vm7Ntk3D0o4sxlw3LzRpH08Fe+2SLi3bkYElF5lRQV6sBW9a6nazulhdTFVc3yH3ctu9AxlSnppvK3amqSY0j+V1CX1uq1uv23A8WeS6/T8+wT59i0SWkV/+qrostFnIvl5i2lK7t/05iiC1UzzQO8DcvnE+98Wr9r8Wrw7t7UkdYt1QC6Y/MQmrQpPCzn6dd60rtNMACXrnnyzouH7/j1hRC59HpICobjM+HkPKNdGzZbkKNVPqdztGYEs5CcZjM4F6GMdfHxNces5RSwdCx4VqWruaklWNiDTUOo2xys3Uqc969tJyfD8omItrDnEdj3BKSeK/aY2ykqKduRI5CQO4HCiRPqDBpt20Ln3I81a2tlXus8CxbccRWEqDEk6BYV6tOPjLMEr/k1p5iSpRMWo45x9O3StoSS947efdRWrV3bbxrti4xRW/c8fFzp3kltCT99/FrFV05UigMhXoblrj2UcbvODdTAq8CMH5UqO0tvCH47tYkl+Xo62347zvzndzK40xHaeIfx21cHWLpE7QWz/T+lafZW2i1G9DpIu2ZnOLDxJABrvz3I+h1qq8+PPxbdHf3UJXWQtn9nrwp4Z+WvWWu1zucvW5dQsmTXUpT5E83NsnBwtaddQzWD0agHwos8RmOi4dsV9bA0V34Pi3/qQdDOs0ZlPvpI6RUwaBDMn6/h6FHbchsKIESNln0DojfA8VdgS2f4xw/+aQF/ecOmQDi7GELnK2OxcxVMIHb4sNJqnJ37jNTvzlI6FMsomVp4AKCH8F9gQwvY1huOvQSXVhbx3lIhp+ieL/mTqNXPHeGm0ykJ1aBwK3f+ZwLPPQcuue0oa9YovZyEqM0k6K5k27bB3LlK98jaLuJsNL//18lo21972pKeeudjsc/m3gPWqweuDYp/onsv6f1AM8PyrmPGLViRccoTcoc6SdSpVwd3DzVxSkz0PTqPVC108IQ6F3vXh5S/OZeG6gOXuPjySZhzJ5JT1L9Th4aNsHO0o/9j7XhzaR82HerIiUu+PDalKwE9fXCoo7TS7zzuizZby/KPDrFuTxeCLrag//Cm/PzpPl583dvo/KdOwfHjFJK/u2Kr9q6FC1RDtrZqQrfzd5ECIzZVCbpdG1hgYmrCk894YGaaTQP7WMbO6FLscT7tvJn7rJILQKsz4/mpag+JmBhlHOaFC/DvvzB/vgnPPefLgnertheFEFXu2g5Y7wm7HoSzn0DCYUgNg9Szhim7ANCYQsy/gJJcbPNm49McPqze44Ay93V5CghQl0+kjlHGf4OSPT1uN4R9BsemFz7w2HT4zRZ2DITwNaBV7x3yj+fOPwXhli3KOO6fflLW69QpnLzVxgYmTcqtgh727Lnz9yZETSBBdyVKTIRhw5RuNHPnVnVtKt7ShefR6pRWWFsrpYU1LdOWDWuu3NH50tMhIrdHtK9vib2o7ikNvF3wbaa0Th057W0Y46rT6ohOUIINDxdlCpEGjdTBnddidJVbUVEhsrOV7nwAXl5q0Obc0N5QJj7RotLrlScpXz4wB4fiy5mam9K3vTI8IinNgeO7zrFkZaBhf0aWDWNe7k5MkvIGneqqc1GvXGbcffz0KZ1RBnR//7t4A5Usb3x5XJwyXrKstFrlWFCvhV7D2nL1cgqXIuri0ti5xONnfdSNFh4XAThwpjUh+5Tl378NLrJV++fva0bXfSEqjJWLMm1Xfub1wLyu8s+5O3T8GoZfg1ZKBrF//1VnE8lz+LAypWee8g66mzZVAl2AE5d8YOglJdlanXwP682LmKYw+yagh2vbYN9oWOcGOx+Ck/MJPqL0ZtRolBkorHI7WP39tzIrxI3cznVPPFH0VJD5p2rcu/fu36MQ1ZkE3ZXov01xpOf20Mkb41Jb3bgB365VWtwszW/x7ScXDft+3dzqjs6Zv+XH1/euqlfr9O6nfNPl5MCB3OGwseHxZGuVYKtxA+WL0c1D/UKNuSZ//rVBSIh689ZVzZlD/UZqhBufWHXzLpc26Abo30dtQXnlNVvOX1Hu0qwtjO9Oba1u8N+/aVhaKK2sq9eYk5WhJF/b908IPbrcICpKKRsQUMOC7iZqN/sLJ8veJer6dTUTvGu+Bn5nj/pY292+y7qFtQUvPH3dsP7jH0rStV/XqL0lNq+7RrtmygOS81e9jRI2CnHPsfeH+/aD52jo+Qc8ch0eS4bHUpR/A/dC8+eMxmbn71punftneeGCMqNCnvLuXm5qCq2Vmci4eBFSM+yUZGvDrsCIeOi3VQnCC72/NlAnXw+jrCS4+g85wfMJPa3cYzTziKe+5QVDEH39uvJ+QOnBM3Nm0XXq2hVMcm9FJOgWtZ3cdVeiHX+qySrOn9cZboxqox9+gJSbyo3+mBFXeWxygGHszsaNSgvO9agEtv12vNRZcsP2qcmVfN3ufvqx2iT/0+KdO5X/I86rN84eDZUbeTdPNeqJiSuQ0ljUSAd2qr/n/EG3uaW5obt2XHLVJR1Muq4GkbcNuod6GJZ3H1WX1/xuyUuP7zKsvz/zOK07uzGsx1EArqfWZ+PPQXz73m4GjGhO0s16ALRvl8OWLcrNZk3RzF6d6u180KUSShbtWr5UDXc69/io5ztjnpuH7+fVGi6ejObAGeVuvbXXOQY93IAH+qmB9vb1Za+nEDWSXgeJx+DicuPtdTyh+y/gMQIsnYo+Nld2ttISDGBnBxMmqPs2bVKXK6JxIX8X85Mn8+2wqg8NBoD32MIHtX4Thl6A/jvA60mwUD7Iz19rzq1s5YlBgNt/cG07gwYZH9qtGxw7Vvx7qVtXnaM7JESdWiwzU7mXKW52CiFqIgm6K9GOQ40Ny7dumRBx8WYJpWuu2FiYP19df2luE8zM4LHHlPVbt2Bo33N4NLFh4Kh2+PtcZ9e64Nue9+wptRXMz/t6CSXvPfmD7l27lD6gkZfUvqke7soTHheP+mg0ynJMfOEplETNc2CLmrG+a9too30u9krQHZ9ym2i3AiVdVKeicsjeXWJZn0BvGjkad1f29YUHHjRh8U+92LjqCOu+O8QL83sBMH68mkRwzAutePbNXoabwIHtj/Hf1gzDw76aormv+jAs6FgmS9/cxfOP7eJyaGSpjo89E2xYbmB1Z/PwODnBQw/lni8WJj+jJsAcPVS5xvoOtjds274DUcPpdXo+fmUnc57aScaNjCLLZGTAa6/Bd98VnbywVks+CcFzYL0XbO4AhycrLb53YNcuSE5Wlh94AHr2VPfl5P6peXqqXcHLk1EyteAyHKgxAde+0O0neCQBHjpPsOX36nm9ToHnaJ58Eho2BBsbPR+/tIHdHz6FT9Z7SjK2YnTvrvyv08HB3GeOU6ZA374wYEAZ6ihENSdBdyVJiErm/FXjBEBhR84WU7pmmz5d7VI6ZozatXP0aLXMruM+hpvjy7GN6TMigJee2FXslz1A2Hl1CiTfNvXLvd41WaNG0MxT+VI7fDCLjBvpRIarDyk8PJWfnZmFGc51lbk8riXaV3o9Rfk7dNIdACvzDNp2Mh6v6+ygDKi7kVGXW2lVkzgvKUEN2BwcSv7K0Zho6N/5otG2l15Suh9qTDTcP6YjDz/dGY2JktDhvtGBNLBXumCnZaoPkSY/vJt/9rTGzrGI8YnVXHN/tQvqh//Xhxff681X/+vN4ME53Eq7VcKRimtR6sNcV/uEO67H+PHq8o5D6pjPUROV77EuA/2wsVSaobYfboZed69FYbXLgU2hzPqkDx/+Xx9mT9pXZJlPPoEPPlDmWP7jj0quYFXQ6yByLWzuCBvbwOkPIT334ZdeC1e3lHx8MfJ3LR8+HDp1KlymvMdz5zFKplbCDK6pqUoytILjzgFlALddM05c7a6ed8iDYFEPFxe4cgWux8MrnR/BNOL/IORN2NhWSdZWhB491OW9eyE6GlbmJlE/eBBu1s72KXEPkqC7koTsu1Fo29lTta/fzIaVR1izRll2coLFi9V93bpBY7WxH1urG7TxVlvpPvulN88/frTYc4ddUVrrNBodzdp6FFvuXtW7jfINmpVjycF/zxKZr2HMw1sNSNwcEwG4luQsN8o1XMLVRC5eUwKids3PY25lnDDNpak6KDA+sWqGEyQlqeNoHJxun9Ctfz/1mnS0TWTcuOLLmlmYMeYhNfNQQ8cYNq46wrJ1vbCwrrrkcXejWRv3Irefi/bm/ZcPFrkvv2sx6jzoDRrd+c/g/vvB2dl4DFSH5qdp2tYLUMZ+d22p9E+NSWpA2DHpYl6TnQ5WH9B8vbY3545fLlTmn3/U5dmzISurMmpWBeJ2w6kPYGNrZS7rxHz3JRozcLtfSYzm2ueOTr91q/K/hYXyd9akCTgWmIq7ooLu1q3VJLQlBd2PPQaDB1Pi52/+lvK2/Toals3NwdpGA9b5xrekXYFtfSD4NeVhRj4Fg+4fflASQua5cqX4OghRk0jQXUkOHyk8pjIsrGal3z667TQ71wajzdYWuf9m0k2mvuJmWF/8QTLO+RreTEyUOXWHDdXy8au7iYrQEnS+OZ/O2YWVufI4deWmroSfiS54avQ6PWGRSqDt5RKFVR2rQmXudX36qn/O//v1BhHX1C7FjZup3+hu3kp2pWytBQl33hAmqoEj/6mBTqe2hbs6OjdQA+28jNaVLSkp35Rh9W8f+A8e6WeY7WDGhJDbdrGc+0kg4+7fy8wxOwk9bc39YzqWfEA1V6deHTo0Pw2AuWkWjw/Yh5mpkjDug+U9OHWq5ONjY9WHFg0a3Xn/VHNzeGKA8Rw+o4YZX0Rd2quJ3rb/HXXHryWqXnS+r90crTlzXiqcxO9kvtEKly7BV19VQsWqwsUf4MRrkHJa3eYQCB2+hOEx0HejkhjNuuxJE+Lj1QRj7dsrY7o1msKt3eWdRC2Pra2SxRyUoHv5cmX8dH4pKeqDge3biz9XXtDu5KT0tiukx/9g4H5wzus/r4fTHyhTkOUbn+DurnSnByXJ8HffGZ/mcuHnP0LUSBJ0VwK9Ts/eEy0BsDBTP93CLtWcMbV/fn+ITvf50feRAPw8I/l63u5CCdA+mnOUiHillWZg+2OMnViv0Hn69IE/15vyyke9qOdsj4mpCS8t7M2cp5V07lqdGV8svFDouKuXrnHzltJV1M/zHpjk/A7cP6oFdSyVflg/rO/M8UtKlniNRk+j5uo3opunvWE55lrNevAjjB3er/a769TFvND+/OOZ4+Mro0aFJSWrWcwc6t8+CHRp7MzhXXGs++4Qry/pddvy9Zzr8ePGHixa1QcHV/u7qWq1sWmHK79+sZ8rYYms3tqd2ZNDAMjOMWPyZEpMwnktTr0OXN0LfwaXxfjJxgPiR05qbrQe0FV9re07JTFjTRZ1w3hWkXV7urDnrxKaQoH587JJiq9GPfbKMtA8+wZc+RX2jwVdgbnm7XzU5frdoM8mGHwMfKYqCcfuQv6Za/InviwYdFdUSzdAx9znkpmZyjzZnp5qd25QEp/l/SiTktRpv/KLjVWTNrZtW8wUrk4dwLkr9P8PAj5U5ikHOLcUQt81KprX2p2RgWHmiTzS0i1qCwm6K0HY8UuGuWX7tQvByU5pXgwLdyvpsGojOS6FqbM80euVy+VCjBdT3+lFW784Yq8od/LabC0//E9JT2lmms3XP9Q3jLssjSlzWmFproxX/O6PQG6kGLemhx5WH8P7Ni1dtvN7jVNDR6aOUrrBZWZbcfmKkmTK1VWDhaX6p54/o3H+TMei5jl8XA1iO/Uu3NSQv6dJWVq6jx6FzZvLJ1lSUooamDm4lO5BY4tOTXn46c6YmN6bX1H13Z0Y9UI3GjZV/ljnLm5vmL97//7CLUH5XbuuTgvWwNOx+IKlENDLj+6tlIB/SOcjNPYzvsY8/Z1xtFWGq/x33K/YXlCi+ou6Xnj+9pkzMtHFHS603d9dGVaQlGzOgqe+hf+GwPmvIeovZQz0pZUQvaHwi5x6Hw5PgZPzldbkxGOgzVI+aJJD4MxiOP4KJBwpXaX1ekgKhtD3lORm54toes/I95BelzsOe+8o+MMZ9j8OV36C2P+Mj3F/GLqthiEhynRfDQcXE1WW3QF1EpYqC7rnz1eTl4ESQD/zjBpcHy7wK48sIodj/q7p+ZOzFcnEFFrOgs75Mr6ffBvOfWlYzd/FvCBp6Ra1xb15R1PJ/vtHnVqlf680fD2UADI60Y0biUU8QqxCep2ed1/Yyaj++zmxRxlv/dqUE4aHBvXrqlnDL8R4sfgdpa/j9v8FczVReYhwf+fjNG3rSVm4NHZmzIPKuVLT67L8/4zn+Plvq/pz6ty1cIueULzybiusLYwfSngUGP7ulu9ZT4xxomhRg+h1eg6fVpJaOdkl0KR140JlXGzVX3D8+dv0S84VEqLcDN5/P/xvdfEZZ0srKVVtAXVwubuW13uVlRUsW6auf/CBmuW4oNgEpUeQtUU6dg53l0hOY6Lh7+2NWf/DIX7ZUHjOHxNTE/q2V74nktPs2fb3VaKiIF2ei9Y4ea2LFhZ6/D2VKTmPXOrEHz8ZNzva2elZP3uMYUjYF1umknj+IByZCruHKWOgD46Hs4spJPJPuPCNEnAdeho2d8BkrT1tLw7AdEs7CJoJZz+BGwV6u6WeVwL7o9Mg7AsIXQC7H4Y/G8GmQCVRV+IxuLLa+LikYKXM376wMQDWe8DOwRDxG+jy9aku+IDAvhV4PQ72rcst2M6TP+ju0kVdzh90OzlB/QrMFdusmTJ2+sABtQ5ZWbA7N89Z/tZ4uH3QnT85W4majIN2+a6LiN8M47sLBt318n1VSEu3qC0k6K4EO3ap44/7P+CKr3eKYf1ccPUaB7fjjyDe+rIPv+3oRod+zXl2spZv1ipdPOtY3uTYoUyObD1t6Ca/7PdAbibdZOX/qVl1x4+9swnIZ7zb3rC8ZIlxIo3t+1wNy/2GGXdxFCqXxs5Mecz4MXWhoNtJvf5izknyo5oq/EwU8alK61SnFpeK7FnibKd2ZYiLLF3/8hXf3jQEdH+tCrnreialKi2v5qZZ2NhZ36a0KE7fvkpiI1BuQv/8v6J/N9eSlNZtV/uEMvU2Ko6Dqz1DJ3amrlPRc733vV/tgj74EQ88PJSkUNu33dn3gKgaeWO6GzXSsGih+pD7rS/7GpXr11dPk1FfMXa40vyYlWPJ2atFDEBOOKK0LOd3q/BTXo0uCzNtivFGu2bG66mnIWYTnPsCjk2DkLkQtR4yCpxPlwk5uem2czJg/5NKlvEb5yD5hHF5S2do/rzS9bndJ4XrXwFyctRWZHd35V8eZ2d16rAhQyqlOnTpAq++qq7njd8u2NIdEVH4WKMkardr6c7Pbwa0eh2s3aD7GmUqMqBlS7C3V4vNmAGmuW0v0tItagsJuivB/lPKF5KjbSJte/ri66N+EYWdTKyqahXp/35Qmyhyckz49ju1xXnBKyE09mtEhwEtGTNY+VROSa/HZ/NOsHZnIAAOdZJ4cFy7O3rtVq1g0CBl+coV+PNPZTkpNoVjF5SfYWuvc7g0LtwNTqhefbeloRUCwKOe8dR0bnXDDcsxl0o396+ofg79p/7uOrUrelylS0O1O3f8ddMiy+Sn08Fv6+oY1g+cuPtZApJuKnVwsE0plyDwXvbyVHWMwOLF6s8yKyOLtJQ0sjKySLjhBEADx+RKqdN9I7wwKXAnkZkJUydEkJ2ZXfRBolpJS80yTPPp7q5n0OPtuK+v0sslItbBqOygwSbg3J3mHVoatkU1/gkCF0HbBcrY3XafQo/fgALjU+47CIMOQ6+/lDJeY9Db+ZFtao++4QPQ/jPosxnqtSIzE9LyPtZuFvNw2LwuuA2GDkth2BUYfBTMch/smZiD15Ng5QImFmBqBWZ20PAB6LkWHo6CjkuVDOQmZnf18yut0FD1PeXvWp7nn3+UBGbfflsp1QGUPDt5jfnbtysPX65eNS5TVNCd19Jtbn4HXeHbvKeMkc+XiM7EBPr3umE45zPPqLPdSNAtaovK+aS5xzVrUY/YfTB+vB4TUxP8WqmtPWFnKvem5MqpKLatv8zD41pS393JaN+NxBuG4NnKPINsnRVarfJp3LEjvDCvm6HsjNcasDx3+pC3vuiKTqfcdT1+fwiWNr3vuH4vv6zMDQnw+WdaHnnElJ376xnGlvbvK2MGb6eBtwvPDv2Lz/4YCoCXayygtkQ0aGxvWL4WK131a6rDx9Ru25261imyjHNDe8NyXMLtE13t3QtXr6rB3MVrnsRFxN/Vg66km0oLqYPtDUAemN2NAQ844+95ntDw5hw405oDG09iYqrhkSeciE915JmRp4EAABrUr5wEV02awE8/KQ9JdToIOhDDxWg3zkV7sWzBbl6Yf/tkeKJqRV+IBpShKu5WB4BuLPqsrtJtuECHhbwH4/lbaaOSm0CLmbd/IZtGyr98dFotIcHBBAQEYJrbtHnzpjK11bVrsGED9Ov7EniOVrqd37gAppbg2EFpEdcU03ZkYqa0qLZ6/fb1qiTFjefOU7cuDBhQefUBpVdKu3ZK8rSQEONp4fIUDLpv3YKzuc/yW7ZUpj4rE41Gaek2Omk8nwzqjxtvMvjxQBo2bIaXlxJwp6RAcrJxS7gQNZG0dFeCDRt0/N//neH9RfYA+LZRbzzDLhZ9s1xRHnogg2fe6Em7wFucPmQ8bup/358gPVOpz4SHjrB/v4aePZXxOqtWqV19APy7Nee++5TlvIAbYNzTxoF8WQ0cCH4+Stf13XtMOXP4ktGUFf1HVGB2kVpk7pLudPE7SRvvMEY9Y9z1z81LHSwWE3/nUwqJqnX4gjoco+OAov8unBo6oNEod83xSbf/Xa/5v8IzAxzcdudDEHJy4EZGbtDtJgH33dKYaHh5ijpk4IXpZvQb5k10ohtZOZZ8uTrAsK+BV+X9vB9/HNasgd9/h9Ur1Knr3lnSipT4lBKOFNVB1OVkw7K7mzL5duvW8NRTxuWaNlEeskCBoLucR8kdOKD0drt1C6ZMgeyc3CDNpSc0fQq8noC6PsUH3NXU7YLuqtK/v7q8aFHh/QWD7lOn1OF/pR7PfTsn3sDT/iRfjBrJA/hD+Bq8vdXd0totaoOa9YlVQ9nagr9/Oua5jYpNWntgaqo03Z6Nr7w5ZW8m3SQ0XBkPHXm9ET3ua8S+fer+lavVBwDjn3GkUyclsUZQEPgWzqHDyy8br/s2ukSnga0KFywDjQYmD1e/mb5dEmkIuk1NoZc0mpRKfXcnDpxpzYlLvrg1cTXaZ1PXhrrWyo1wTIIktqqJcnKUlgkAb29wblh0VnAzCzMcbZUgKC6p5N91TlYOv/9R+CvhwN6MIkqXTnKyuuzgfHdJvYTiiRc74WqvdDM/fqGF4UFpQa55k/FWsk4DW/L4gP0AJNxwYuGsoCqpR22UlpLGsnd3c2Tr6dsXLoPocLVXRCN3tafL/Plgky8NQ/5W2PzzMpd30J2aL3/juXMlZ+uvSfKCbgsLCAys2rrklz/ovpCvLSbvnrVg0F2mzOWl5TkK6uY+PNZlwr7ReNfZZdgtydREbSBBdxWwsDKnSRPli+3cuZLnXC1P0ZeM5wxKSrVmwABlfsYrp6LYeUL5FvBpdJnO990+eL7vPqVrUZ7xjyeXy5jN8dPbGqYP+35dO0M3pk6dlO5X4u65OSrT1sUkVmCKVFFhTp1S5jMF6Ny55LIu9skAxKc4lFhu558hhsRs3VqqSboOHLO/02oaxokCOJT88qKULG0sef5J46Drsb4H2Lc7i1b5Prb9/Su5Yvm8v6Sx4TN8yc9d+PnTfTK++y7dSrvF4B4XeO6tXgwY1oiEq+WXDyYqQk2F795YHYbSsKGS0CrPQw9htC9PXhK28lJwXui331a6GNdk8fFqQNu+PVhWo2nte/Qo3EW8USN1rHZkpPF96h0nUStJg/5wfzA0mWjY5JWjPm2Rlm5RG0jQXUX8cnv8ZmSU/1Pi4kRfVr+1rCyVLmS3bsH48dB7oNpSNm5EeKmCZ40G3n9fSYDRsCE8NfPOEqgV5OjmwMj+ynzTN2+prWP9+2aVy/kFNHBSmhJu3rLjZtLNKq6NyE+vV4ZzrFlTfJn82WULzu9akLO9cgeblmlLemrxczn9+pPa2vXSC2k0dlY+mI6ENScnq5j5qW5Dgu6KMWVOa9wclG7m00bt4tetnenW04KjR2HpUli8GB5+uOrq59XKnelPHAQgM9uKMS93p6l7HF++vQudVrKal5U2W8uYB4LYG6pEOKkZ9diz7fptjiq9qGj1+97dy7jXzOzZ6nLffInMrayUjNtQ/vcwNwt8JV2/Dh9+WL6vUdnyT8OVf6qw6sDGpnB3986d1URm2dnKXN55KqSlG8DUAjp/D23fB8DbWY20r1yWfD6i5pOgu4rk764dFlY5rxkdod5Uz5922Gi8VkSMPQAajY6xU0s/JdewYXDpEpw8CQ0a3L58aT33QuGusP3bl2+XunuZm7MafF27Un43b+LubdoE48bB6NGwbVvRZbb9dsywXFzm8jwuTmr38PjoolvHsjKyWLtDaRqtY3mTB55sS9fWSp/C9Mw6hOy7UORxt5N0VZ2ix8Em4Y7OIQqr7+7EqTNWhB27zGe/9sbEVPkqt7KC559XWifNqjhN6tzF7ekXeNywHnm9ES/M783Gn45WYa1qHr1Oz4yxe/ljl3FUtDfEp9xeIypGndbUvalxXhbTEiY9yBvXffWq8RSfd6tgSzfAp58WPV90aa1YoYw/fvZZNQlYZaqu47nz5O9iDsrD3LygG9Qu5nq9GnS7uytzipcrjQZavQbdfsHLVe1CcfnYUXU6OCFqKAm6q4ivl3oDevbAiRJKlp/8Xci8vc1Yvhz++AOcndWWh74BwTT2a1TU4cXy9FQyYJanrvf74+953rBuZZ5Bl0GSRK28uLmqvQZiImt4v71a5sgBNYjevLnw/nPHL/O/7QEAONkl0L5DyVOBOTup3Xrjo4v+XS9+fT9JaUpT9NCeJ7Cpa0PXzupxB3bGFXnc7SRFqi0VDpqTd3QOUTQHV3t82nnfvmAVsXO0Y9vRQHauDWZg2z2G7Xt3Vk5W9dri968P8MUaZUYQUxP1O3zv3vJ7jeg4pUeZiUaLa2OX25RW5Y3rzsmBuDv7iChS/qC7Qwfl/1u3lCz5ZaXXw1tvwcSJSrD47bdKt+kHH4Tz529/fHnZv19drslBd3i42tW/3JKoFcVrNG5Dv8bCTEmseyXSBk4vrMAXFKLiSdBdRXw91P5YoUGVE/RE55sKqFFuF7IRIyD0aBITHthD++an+fgT6+IOr1QaEw3PjVXnk+7R8hhWdarRIKgazi3fbB0xkXITXJ1EBKutg0UlMVswNxqdXgm0X5l0Eqs6VoXK5OfipmYtj0sqnMzsQnA4875UBoabaLTMfE15gta1jzre/+CRO/tcSEpUgwQHx9vPEy5qF42Jht7DA1jxhzrY/HiUZMMsi/Xr1bmuv56/3zDO9tgxSC9+tEiZRMUrf+tujnGYWZT+7zR/BvPyHNedP+h+6SV1uawPGnJyYPJkePfdwvs2bFACzaJa1ctbVpbavbxxY+OfW3XRsaOS9BeUxuYOHYoOuiusa3kRTNzvx7Ox0oXicoIv+lZvV+wLClHBKjToTk5OZubMmbRr144OHTrw+uuvk5ZW8g3+2LFj8fX1Nfr31ltvVWQ1q0Rgz6aGRDMbdjevlHFu0TFq0NrIW22admnsxIp/enL0XEva9a0+rcljX+qEt6vyST/5WblhL08NGqrXwrUEySpdnURcVYPkY8GWZN1SW5wvBIfz8xZlQKCjbSLPv9m+0PEFOft1MCzHpzc22qfX6Xl2YgK3spWgevrje2jfT/kMCOjZHCtL5YbnwLk7m2UhKVH9XHNwKutkrqK2aNjEEZfcBtSgYFP0+pLLC9XZy8p3tYlGy7gZneneXdmekwNHjtz9+bMysohNVn457s5lGwJSUdOG5Q+E27XDcO3s21e2xLOvvw7ff6+uf/SRMiVWXr0jI+GNN+6+vrcTFKQmvuzRo+Jf706YmysPKAAeewzs7IoOuvMnUavQlu5c3s2U78O0DAsSkuQ+UNRsFRp0v/LKK1y4cIEVK1bwzTffcPTo0VIF0CNHjmTv3r2Gf7NmzarIalYJWwdbBrRXMgRHJ7pxdPuZCn/NvC5kGo0ON+/qP2duXae6nDrvTPSFazw2pRr2x6rB3NqoP8+YjNZVWBNRUESs+kAsM9OEoF1q0of350ag1SmDdWdMCMHO8fYPTFzy9RYt2AX0x0X72BGkJED0dI5i/lI1QLewtjB0Xb948c66jxolUnOSnir3Ko1GnSLp+vXKSx5a0+m0Os5GKpFPkwaRWNpY0qOjGhjvXbv7rl8j5or6h+3uWrZm34oKuvMnUrOzUwPVlBRl5obSSE2Fr75Sls3N4Zdf4NVXYeZM2LULrHM77yxdCgcPll/di5J/atbqGnSD8kAiPBx+/VVZr+qWbgAvL3VZMpiLmq7Cgu6LFy+yZ88e3nvvPdq2bUuHDh2YO3cuGzZsIDZ/GsQiWFlZ4ezsbPhna2tbYvmaavjQTMPy2l/iK/z1om8qLViuztmYW5pX+OuVB2s7axo2LccMbQIo0L08pvhyonLpdXoi4oyv9wM7lZvsy6GRrNykPCyxr5PMi2+VbqJX53zP1+LzfczcSNEy8z11XqmvF8dg62D8WZt/7OGePZRZUrLaMuHgbFNCSVHbtcs3uUWQTN1dKpHnrhrmYW/hrdw39eisRqR7D979cLCoRDVybtSibD3dKmqu7vwt3ba2GFr3ofRdzFevhryOlRMnKokp8zRpAvPmKct6PTzzjJK08r334OWXy/+hUP46V+egW6NRAm1N7khENzc1kV7Blu46daBp04qvk3e+tBWGubqvH4I9j8ItSQIrapYKy28aFBRE3bp1ad1abUXr1q0bJiYmhISEMHDgwGKP/fvvv/nrr79wdnamb9++TJ06FWvr4r9ctFot2vJMnVnO8upWsI4PPO6DyRtadHpT1m315L3snHKZ57ooOTlw7ZryjKWRh0W1/nmJohV3Hd0JpfVT+Ta9elWPVqbxqRbioxK4lW2cyGj/IXNe1Gr5ZP4ltDoPAKaPDcLWsVeprgUlu6zyu46N1RmO+Wm1CYk37AEYOSiU+x5vV+h8PXvCokXKsZ9+ksWwoSZl+oxKSlG/Yuo62cjnTi1S1s+jtv5ZgPI9fnTHKR54wK+iqlZrnDql/mx9m2Wg1WrxbNmIBvaxXEt2Zf9JH7JuZWFqfufdbiMiNOS1vzT0qlv496nVYmpY1BqlKVce3ip7o6J0aLVlHzdQ1HWUmmoCKJ8z1tba3Id/yuvs2aNj8uSSX0evh2++Uc/x9NPaQtnVp02D1atNCA7WEBoK+W9JY2N1rFxZPmMg9HrYu1epS716evz8dOWa6b0iaTTQqJEJEREaIiL0REbquHxZ+T20bq1Hr6/499K4sXp9XryoQ3fuOzTHXkCjz0GfFIKu90aw9S7X+yNx7yp4HZX39VRhQff169dxLJDS2szMjHr16hEfX3yr7oMPPkjDhg1xcXEhLCyMRYsWcfnyZZYuXVrsMefOnSu3elekkycLZ+/t1jKSvac6cC7am42/baaRX8V0+46LM0enawNAnTopBAdfrJDXERWvqOuorPR6MDcPJDvbhCtXMggOrvjhDeL2LgXHAfcbbTsY0phD+w6x6p8AAKwt0un3iBnB+QfXlSDleibQDYCYU4c4edICvR6++CKLvK+AYeNMijxfgwbQxMuHS1fs2HfAgp+/+hv/Hg1L/X7iE9WvmOi4CBLSS+7lJGqe0n4e2ZknAkpkc/RAUqmv33vZ9gPqAzgbT0/Dz6xTy5v8td+V1Ix6/PPrJjxblz7jeEGHD7sAysO8nJwrBAcnGe03ycggr09NSEgIunwNIGlpJpC79+zZNIKD7/xeLP91FB/fErDG0lJHaGgwJiZgaRlIZqYJ//2XTXBwaInnCg214cQJpdW+Vas0NJqzFHW5zZxpw/jxfuh0xg8Sjx/PIDi4fOYVCw+3JD5e6VHk759KSMidTb9YVRwdfYiIsOP6dQ1vvx0HKN3k/P1jCA6u+G5y2dk2gPK7PHbsOmd71qOZqQMWOfFobp5Ht7kL592/IMNKmUKvPO6PhKio66jMQfeiRYv47rvvSiyzcePGO67QqFGjDMu+vr44OzszYcIEIiIiaNy4cZHH+Pj4YGNTfbsuarVaTp48SevWrTEtMOnlI0P3sDd3jNKJg5Y8MDqg2POE7DuHvVOdMk/pBXD4sLrcsmVdAiojA4YoVyVdR3fCzSmZiGuOJMdlyvVQTVw5WjgzUmSCO1t/PU9qhjJ3/ej7jtG9b7dSn1ObrcXUJAetzozQS954e1jw96ZYzp1TPjM7ddIzapRvscfPm7afsS/3BGDFcne2v9Cm1K99I12Zk8fMNJvO3TpVWE8eUfnK+nmka62jrnUKqRn1OHmxCQEBrpVQy5rt22/Vv5f7BjUmIEC5B+rbew9/5U5BdfWiNcPGBtzxa6xapb5G9+6eBAR4GhfIl/y2TZs2Sr/ifOrV05OSoiElxfaOvkeKuo5yckxyz60xnLNrVw07d8K1a5Y4OgZQzO0gAEuXqu9pxgzrYusVEAA5OXpWrYLmzfX89puGpCQNSUk25fadGBSk1uX+++1q3HdtixYawwOLNWuUoU8ajZ7XXnPF07Pi/4bzD4W7ccMZ3y6PQVpn9LsfQJN6BnNtAi3iZpHd/wAnz8eW2/2RuDcV/DxKT08v14bdMgfdEydOZPjw4SWW8fDwoH79+iQmJhptz8nJISUlBWfn0rfmts3N1BAeHl5s0G1qaloj/siKqufwsc2ZkTv14J+bG/BmMe/jq7d38fz83lhbpHPhdHyZxzlfu3AZUAbHuLskY2pazhNri0pTXte7m/1VIq45Ep/igC6n5ozzr+n+7//g6FFl7liXAg1U0RFqngeP+tFEXlcesC38QR0I+Nw0pzL9/k1NTRnU8QgbD3UkJqkB787YyaUbatfe557TlHi+x1/oxrufXOZctDe7QgLZ+1cwvYcHlOq1k24oY8Qd6qRgZl7/NqVFTVTazyNTU1MCm19mV0gAUQkNSbx6HWcPuSZKcjZfY2urVqaG8bU9B7hC7n3DvgMWvHAX3wdXz10ElMG5no2yMTUtMAVhvnObmpoarYOSTC0lBaKiNJiYmBrGA5dV/usoL5GanZ362dSzJ+zcqWw/eNDUaKxvfsnJsGaNslyvHjz+uEnBKhuZMEH5BxqCgpQGirg4DTqdKeal+ErU6ynxPeefn7tXr5LrUh155nsGk56uvNEhQzQ0aVI5b8TNTUl6l5EBly7lXg91vWHgXth5PyQcRpMRhfnhsWD/QY2JB0T1lncdlfe1VOZEao6OjjRt2rTEfxYWFgQGBpKamkpoqNoN6ODBg+h0OuVpaSmdOaN0ey1LoF6TeLZoRLtmyns8fqEF4WcLd788uu00Ly1QMhplZNmwe+OlMr9OVFiEYblRndN3WFtRm7jVVxPyxEZIQpLKEHn5FpMm6fnyS1i4sPD+iAh1HOHIwecNy5lZyt1fYNssOvYv+7R+n33jgpW5MmfN57/0ZMtmewDq1c0mX+eiIpmamzL3ZXUS3vnvGo//12ph+3Yl621BSWnK6zjY3Sy8U9xzAlulGJaD9hZxwQgjZ84onwcNGoC9vbq9bY/m1LFU/qZ2HG3OpZMRRRxdOlFX1Mm+G5a9E50hmdqtW8azFdyNvERq+XPo5k9AVlIytVWr1Om5xo2DsnSCzMvGrtffPsHo1avg5wfNm8O1a8WXy6urhYUyF3ZNU1Rb17PPVt7razTgn5vv8/x5ZSYNACwdodefYK00hWvidtIo/svKq5gQd6DCspc3bdqUnj178uabbxISEsKxY8d49913eeCBB3B1VbqkxMbGMnjwYEJClKmzIiIi+PLLLwkNDSUqKort27cze/ZsOnbsiJ9f7U26MmKY2rq16Evj7jop8SmMGluHbK06x210SjGPeEsQHa3ezDdqfPcZT0XN59FIve6C9kZWYU3uHaf2hxrGDx7872qh/RHR6rRaI8cWftD43FSLO+qi3SzAk7efPwSATm9KZrbSmjXu/v2luil9/IUuNHO7AsCOoHYc26HmAPjy80wGDID27ZUWrzxaLaSm57Z0u3uVuc6i9mnXQW01CDpStump7jUJV5OIj1f+1ls0Nn5AYWZhRu8A5eF5XIozbTo68vW83WWawzpPVLzS6825bjyWNla3KV1YeU8blpWl/ANlurA8XbqASe4da0lB99q16nLevNOllT8be3R08eVAmV4rLEwJAn//vegycXFKoAjQoQNYlf3HW+U8PAqvDxlSuXV49FF1Oa8XA6AE3D3+BybKQ+kGSavQXPnZ6Fi9XkkkLER1UKHzdC9atIgmTZowfvx4Jk+eTLt27Zg/f75hf3Z2NpcvXyYj97Gkubk5Bw4cYNKkSdx///18+OGH3HfffXzzzTcVWc0qN+q5AEOXo6VL4bPPlOWcrBwmjz7FpWvGY6yiE90oq+gYdSRBI+96d1xXUXsMHKQ+fFn3R2YJJUV5Cb+ktiqFXqhf6CY5Ik1pCtFo9AT08jEEugC2tnoef/zOX3vmB91p4x1mtO3Z6aVr2jKzMGPaRPXGf/8OdW7fjb8oCUcSEuDg3gzD9uRk9XgHhzuosKh1AruoD5WPn7AooeS96eDmUI5sVYLps8fVB6F+HoV7BSz+sj5eLkqZtExbpr7TiylTyvZ62mwtMUnKGBd35zvr7VTeQXf+6cLyB91166rzQp88afz5kic9Xe3O3aSJ2kJaWqUNujMy4Mcf1fULxeRGqynzc5ekYEv3008XGmFQ4UaOVJeNgm4A527QbolhVXN0CtxSvp+SkqBNG6WLemjJufeEqBQVGnTb29vzySefEBQUxLFjx1i4cCF18iXhcHd3JywsjM6dOwPg5ubGTz/9xKFDhzh58iT//vsvs2bNqrXzdOdp1gy++kpdnzFDz/Sxx/FpfJXfdigJkyzM1KDoTr7YomPVn3ujJrWzq74om4Ej2xi6KP61uyU5WfI4uKJduaxG2TfTLAp1yY6IVB6ONWigwcLKnK5t1G6jY0bdNLoJLStzS3O++yYHjUapQ6/WwbTq2qzUx3fopuaBCD2ltraHXlTvVE+Eqk05+buaStAtAPw6eBuGOQSdLfvD49psy+qjdBvSkq6DffjvjyDOhKjdRlr4FZ6+yrd9E0LO2PPs8N2Gbd9+C5Fl6LQUF3mdHK3SSujumnpH9a6soBvUwFWvN27RzrNvn9pK3r9/2V+7tPOO/+9/kD9lUXFB97Zt6nJtCLpNTWHSpMqvg5eX0tMBICQEckedotcrwxpoPgVd0+fQaSzRdf8NrJQHSd9+qwTb168bPySpjXbtUuai37WrqmsiSlKhQbcovcmT4c03lWW9XsPnP7XjcqzyaafR6Fix+ISh7O26PRUlOt4eAFurG9R1qnu31RW1gFUdK4Z0y22lvOHE3n/kUXBFC480zswTckANqjMz1XGEeTc6wx9RWgMtzTN58cW7z/zd6b5W/P71IZ68bysrVpctmWKrzmqPm9Bz9gAkxSYb9bwJPqHWUYJuUZCZhRltmiiDMs9f9SY14c4Cvdpo0cfZ6PUmaHVmvP/eLc6eUeeHbdG66IYHO0c7vlnbi7mvqQ/lf/ut9K956qh6M+Hudme9ncrSJbs0buZL/1Aw6H7wQXX5pZcKB7vbt6vLdxt0l/Reli0zXr9YxAyscXGwYoWybGVVc4PuevWULO8AY8YY/4wqU/7cI2vWKL0N7r9fSab/4Uca9O0/54znSnAbDIBOpwTdec7U8llRp0xRfi5Tp1Z1TURJJOiuRubNg6eeNM5EMqjjUXauO8kTL3bCyUnZFh2VXabz6nV6oq8rrduNnOJl2h5hMPxhtQVl7W9qy8rNpJvodYVbV4Ti2I4zDO50lM5+oXT2C6VvQBAbVxae7qugK9HGD7xOHlCTIua/ycsLuh+e1Jm9f4cQtDeKlm3Lp8fPw093Ysb7jni2KNvdU12nujR2Vpp/Qi97otfpOXXYOIHTCfXZIElX1NTLDqblN+WGqNkCW6pNhMF7L5fp2K1blcDr+++VVq7a4kJwONuCuxrWtwV35c8dPoZ1v3YNSzx+3FNqLohffy396/70ozrcpXefMk9mA1RsS3fBTo733Qdjx6rlRo1SHlbmyR909+tX9tcuTdAdGmrcbRzg0iUlh0V+ixapCd2ee67mPnjUaOC//2DTJvj666qrx2OPqVnif/kFnngCtmxRgus5c+CH5abcsmxqKL9tm/J7yXO2fKZdr5a0Wsib1er8+ZI/G2/dqpw6iaJJ0F2NaDSw7Adb3ntxJzOe2EnI3nNsPtyBXsOUgUyN6ioZOa5G69FpS58xJTUhlbRM5durkUtyuddb1FxDnvDH3FTpj/fn9mbodXreenYndZ1sGNbzsATexXj5pUy2HOnA4TB/Dof5s/NEIFNfuX132SvXjId2hJxSb5Yjzqj9Qhs3UB6AaEw0dH+wDS06NaU68G+iJH9LzahH9KUkTgUbPyQMO5tDxg3lTjMpVg2uHKwKJ40T96b27dUBoUdCyjbUafJk2LABnnkGBncOJjKsdlxX335a+OHDxatKoG1rdYNGt5kitHlzCAxUlo8ehYunE277mjeTbvK/7QEA1LNJYdhT7cpW6VyV2b0clKF4PrnPI44fh9mzleWkJDh2TFlu0wbuZMKb0gTd+Vu586YUy842fu/x8fBlbiJtS0t49dWy16U6sbeHwYOVqbuqSqNG0KuXsnzuHPz5p/H+qVM17N2rPtQu2Bvh8uXaG3DGxakPfbKzjYc+5NHpYMAA5eFPaR7M6fXKzzj/EAlx9yTormbMLc154/M+LP65D627+xjta+ScDEC21oLr0bf/Us0TfSlePYdregklxb2mXv269G+vzB4Qeb0Rkx4+yLvf9kGvN+Hv/Z3550e19VavL78pYWqynKwcDp/1LbQ9KqFBiQ8pMtMziUkyvnk+eV6dqDvijDrAu7Fd8N1XtAK06qJ+JoVecCT0pPF+rc6MU4eUACIpUc0R4OAo86YKReeHuhuWD4cat+AmxSajzdYWPARQxipfuaKu/3skAP/AOmz66fY9TKqzzPRMVvypZPwyN82iXj3jB+p+HpGl6p02eqga9a1ZdrKEkoq1PwQbHsaPuu8EVnXuLLW2g4MajFVG0G1rq3Sht8x9XvnZZ0oPiJ071Ra+O+laDkpX5Xq5eWaLCrrT0mDlSmXZxgbGj1f35e/qvnixktQNlAdFDUvuqCBKqeD0lmZmMGyYsqzVapgzpwlbtijTua1fb/x3pNOprcG1TcFrtajp7kJClJ4gt24p12Te32pGhtIlfeRIZex7nhUrYPhwGDhQebglyocE3TVIowZqZuDoS2UIui8nq+dwk2RZwtiIx9Q+fCv+7mq0b/5CW/Q6PTqd0q3P0RFmzarsGlYvpw9f5la2cpc5qt9++gUq30hanRnpN4p/qBURVvib8Fy0l6FlOCJc/dts7F0955bxb2dvWA4NhdBzhfNDnDiifDYlJao3PQ5O5oXKiXtTy5bq3MmHD6vbf//6APXd7OjcKqzIpI4HDqjLeckAUzPqMXdezU60uu6HY1xPrQ/AI32O8txzxrdlLZoW0WxVhJGPqctr/r59r5sfV6tzBY5/+s77Pms0agtxeYzpvl3Q/f/s3Xd4FNX6wPHv7qYQCCmENEijpQAhofcqIEVFsSs/G/beC17btXv12rvitV7lqqgoCjZApJdQQ4AASUgnpJCe7O7vj8Pu7GY3vcP7eR6ezM7Mzp6E2d1557znPaCqmP/739rjG2+EZcu0x00NukHruU9Pd0zTXbUKik6WIbj4YjVNooVlXHdenpqFBtTc3Kf792VLOv98+8rpixergnqWYLy83MDcuQbOPBOMRvU+6uGpXSvvW7ueU1HNm13Ogm7bMe0nTsCtt6re8csuU8MG/vc/VScBVDHCJ57Q9v/zzxZv8mlLgu5OpHcv7SI2PaXhBWiOZmvfXL1D5eJX2Dvn/6KtY6UsPLuoK58tBwby82db+Pe/4fOT01++9pqRE8eLOV1t3a9V/B4+IQivbpXWx4XHap97+Mh+x4tnk9lA4hbVM5yapn0ch/XrmMUObafg2bXLzK5DYQ77JCSozym7Qmp+HfMmgmh7Li5asHLkiEqNBHj1FSMms4GtBwayfdVeh+et/10bfvHZf0rp1UNdWR5M72WXYfLsnauYMXwrezfWUlK6g3nnAy34veHmrtx6K7i4aN/1MZFlzp7mIGJQCGOiVQ/3zsNRJG5yUt3rpNRU+DNB5aMP6H2UsbMbObdWDZZAtbBQC0qbqq5CarZuugkmT1bLhw5pRcsMBpg4semvb7mBUF7umNmValPCYsIE6Gcz6sfS0/3++9rvsHChffq9aJ6AAHjqKVXz5K23VEeAXq8qk8+erX0GWKYH0+nMPHLph9b1ib//AtvuAVPj6iJ1dDVvdmVlOe5Ts5Dc99/DlCn2afqff66Gp3z8sf25vnNnS7VUSNDdifQO0f670lMbPjgl/YSWCts7fnwde4rTUWAgjLc5La65Bj5+VbvoveOhIB56SPtCq6gw8MtX9acvtpUDB+C11yA7u/Z9Vn2bwDv/XEN5SfMHdW3Zqt2hGDGlL95eWq9cYV5Jrc9LSda29QvSUsl3blbBeGqGdvEdNkBLO+9IYmK0YjZ//mEi74Sq7jisv/aNvmOvDwD5Bdrnla9/Ow4GFB3OqFHa8ua/CynIKWTDwTHWdXsSHCO39Wu0Qo+zzjQRE66C7qIybwpy1bajSWksenUKv20bzhP32QfdK/+7lU//vbZR9VBaW9LWQ6zeGQ9AVO9DTD43jpAQuHi6ljI/cEjDb8BdfK52Y++rj2qfO+yzz9QsKQBX3BjS7OKqtsFnUlKzDlVnITVbOp2qTu3ubr9+1Cg1p3dT1TWuO8OmhECvXmq6VwtL0P3HH9q6u+5qejuEcw8+CCkp2M1J7+6u0skfeCCVrl21a5XZs3Wcedut1sf7MqNh37/hj+lQ5iQy7aQakl7urJDc2rWO6+6+G555xn7drpa83CtNhyP/bcEDdi4SdHcivUO1C9f0ow2/cLB9Q7bXdA+iY3vhBZX2eeON8M47cO7CkcRGqAFQBzNCqa62vyhb+m3HuXCdP9/EHXfA6NHOv2ySd6Qw86KB3PTYJN58YkOzX2/LFm152DDwDhlgfVxUVfsb7Eixlrp/9iwtqNi1UwXtqVkqxdPDrRS/Xo2bzquteHhAv3B1VZx2VMvzmzQyh9Ce6oNmR3IEZpOZ/EItq8bXv3OnAIuWNSr6gHV54y/b+f3bvRhNWvXs3bvs08vLS8rZdkDVE4jqfYgegV6E99ZuYqUkqTtu+xK0O2+b92n1B3b9vZ/Zl8dzxT0T+Mf12rzW7e2XX7UMkGsvTbUGv0//uzcjBuxl9qjNzL5saIOPd+HCSGvq/be/OB9IbDbbz1m8YEETGl7DoEHa8p49zTtWQ9LLLSIj4R//sF/XnNRyqDvornktFRqqMjdApZdXV2vDIHr3tg/KRevS6+HCC3NJSDBx9tnqeua556B/dFdcXFQgnpgxUO2cswZ+GQY5TqLOTqghQbelp9vVFebMsd+2eLEqxgjw11/2tTMA9u5V53azVJfA9gfgh36w/goobtzMFacKCbo7kd59vK3L6RkNL0wkQbeoz9ix6mLp7bfVh7LeoOfR+4/Z7TNuTCW+3VS+3Y9/x1JR2rR5XVtSaVEpu3erj7GUFPVlUjO9cemHm6gyqvmuE9Y7+TZqhKoqbVqsyEhVdMc7MNC6vbCk9jTqlDQtqDjnYu2NuDOxO2aTmdQcdZww/6wOPa3f4BDHq+rBY8KJG6A+aIrKvDmy9yg5eVrPvW9Ax0yXF+1j1FjtBvKm7Z6s+MU+3XN3kv1Nmm2rDljfw2Pj1HkWEa4VXDuyvwCAQwe0mgqHc/uSn63Wr/w+A5NZfWf+6+Px7FzbMSoqrd2qBcYzLp9kXQ6PCWHz/oEs3zgSNw+3Bh+vd/9gBoerLtd9aRFOx8YfPqwVlJo8GSIimtZ2W7bDTiypvU3VmKAb1Jhp26B/+vTmvX5jerpdXKBPH/U4OVl9N1hSy8ePx2HYlmh9ffvCDz+o65nYWHU906+f+o9Iyo7F6BaqdizLhB2LTom5B+sLum2nFBswQHWsWC5b/vUvuPpq1fFSkyUQr6hQGYVNlvEL/DQYEl8AUwWYq2Hvc804YOclQXcn0rtvT+vy0ayGp2ump6sPFb1ee6MJUZ/5149hSB+VK+jbLZ//fpTLWRNVwHWizIs/vt2J2ax6GkaOhI0bG3bc7CO5FOQU1r9jA2QezrV7nJCgiq1UasOs+XFVH+21TzTvrtOejSnWeWGHx6kLfG/tXhiFdfxatnePR03wxd9LtX3XoVDyswuslYTDgjp2ifjBMY4p+oNHRxA/WAt4XnvmEH/tVlMdBnjn4ukjPd1CEx7TmwBvdf5v2tuPFevtZ+rYfcj+fbphjVYMaewY9X0W0Ue7iXUkWZ2Tycn2GTiWecA3bdUC12qjK9ddW1lrlfS2YjZr6Z1eXjA4tmUux/qHqhTzKqMbafsdbzIe3qNFjqOG1T4cpjHaM+h2c1PVzCdMgFtu0aaVairboLtmgSpLcOPuroqKgtabXVIC33yj7TthQvPaIVpOTIz6WV6uJ3XwNgicCu7+MP6LU+LOSH1jug8f1q6JYmJUhsbevepG0b33qvXz5tnXQpg+Ha64Qnvc6HHdpmo4+j38cSasmg0lR9R6vTvE3A9Dnm7kAU8NEnR3In7Bvri7qouL9BzvevZWMpOz2LNLvdt6+x+3pkIJUR+9Qc9PK7x46rZVrF+dT1h0b+afr6UML/26jNdfh6efVinXttUua/Pbkm30i/YgKMSdw7trH3PYUJmpBY6v8Rssuk7l+OXnw9q92vyz2UXO7zqZjCbefXINn7/8d53Tfm1Zo1UXGdFHlV62HT/YkKDb3x+6eeqI7ad+/+yCANb/qo0/DevVsaf1GzzEsRjjwIEQN1QbXPnKfydblx+7Y2+H7rkXbU+n1zFq4Mmp5Up8Sc2xn0ovPS+YggLt8fpN2rk1dpraN7y/FpGlnCyRcCjfPhV7+yb1hty0O9Ru/aakwbz1ROuklm77M5Gnb19FbtqxOvc7dEi7OB471r4qc3P076PdFEvem+uwPWWPVmAtvPsWh+1NERSkBaHNDbobWkjN1sCBKi32jTeaH0M1pKe7Vy/tdWzHs3/6qbYsQXfHYQm6ARIP9YSpK2HGWuh6alS5q6+n27aIWnS0+tmjh8oKsNDp1PR73t5q6rznnoPYvlrtmQaP6zab4MC78ENfWHMuZK3UtgVOhTm7YOjz0KVnrYc4lUnQ3Yno9Dp6+6kxa+l5/g16zguPJFFRpS5YLp4pJQhF44QMCObh16YQNVx9Os+8KBYPNxUULvk1jvvu0wLUXVvrnsYu81A2l1/Xm5IKTyqquvDjl7VX122ojFStp+b8mftxd1O9V29/NYTjmfmsWKFNHQKQne98apxv3tvIjY9OYsHd43npgdW1vt6WLdrvO2KcOpZ3V+0qsdBZ2VCgsryKjAzVCxcRoto8ZKLWPTTvGm3umdCQ9u2Bq8+gYfZF3sLD1cVx/FjHMaRjB+3jxkebUUpYnLJGDXO8udTFZnSG7djg9TsjAOjuUcTAUSrKiYjys24/kqa+45JT7W9Gb0twJSfLyJEcFXT36qGN+V700jDSD9Y/3OTPb7YT3zeJh69dVe++VZVmzrowkH+8PoUzJh2nqkJLmy/IKbSrqL72jwLrcksGaP36a9H7wX2Os0ykHNE+X8L7tkyBQ51OS/FOT8fuhkljNbSQWmupLeguL4fjJ+vU2c67bTtu29Iz3r27Sm0WHYMl0ISTAajeBbzss2swGSG7882NdeKE/XsGHINu2yJqtjcgAKgshOSPYO1FDI1MIzlZdRAMHw5D+mmdDDt3NHBQ9+FP+PildfS5fjVTnvqTRV89zfLEqzCO/A9M+x28BtR7iFOZBN2dTO8IdaFfUOJDaT0dYlmHc3jna1Um1sOtlHv/OajuJwhRj65eXZk1Wt28KSz1prJS61Y4muNHUZ7z+WKMVUYWXJBOjk1Pc0ZG88dSZRzVLmrPm5XL9ef9BUBpRTfee2EHP/1kv39uoZ/T6sUb1mpvpodeHs/GFc67a7buVndndToTQyeqGxHeOu0brehootPnHT2QicmkPm7DvdXfLzZOS3m13Bhwdy1n7vyOWbncInJoOC4G7e8+OFr97frGhuLZVRvn7+oK738Vjd4gXzPC0ahxjhHVVVdpy5Ye07SkDNKPq3mnR0UfxOCqgspefYNwcVEB5JGCWMxmba5ki+3JA9i0RQtCL7smkBvOUzfVisu78+mbdZfaPrLnKPOviGDH4Sie+XAKR/YcrXP/PXt1ZOapLt9dRyJ58YG/AUjclEzkgEoGjenP+8+qDJm1P2o3wScMa4EJrk/qH93Nunww2TG1zba2RHh/nxZ7XdsU8+YUU2vvoNvfX312gX3QbTue2zYwt+3pthg7Fskq7EBsA01nVbwp3Au/ToDfp0HOX23WrpZQs5cb1HuoxGbkiF1Pt8+fcOhjSHoD1l4MS4Ng4zWQ+j/I/h0/P+h5shM6vJ+ndfrYnZuy4YSTjhJjjdo+EZfz+HdPcyS3D6sTp/DsD4uY+9RHLHz6ylMilb+55Gqok+kdoeWyOnuz2Xrpsb2UV6k72TdesInAiIb1jgtRl/nn1d4Tm7gl1en6Z+/+iz+2D7Nbl36s+elFtoF7r7Cu3PFQH2v13tc/ieLnn+0De5PZQF6G43zZyana1V210ZVLrvCmINf+9nFFaQU7Dqlujajeh+neQ+U+evtqqa+FRc4/Uo8kaVkAEaHqS2riRO07qGtXuPW6Y+zZnM2I6QPr/qXbmZuHG1HBWrAyOEhVhNcb9MTGaX+LBx6wL3AkhK2RU+2jlV694OKLtceWoHv9b0es68aO0G7qubi5EBKiAuqU9G7k5zsWUdx3OIBVq7THo0bB3Y9oOZWrE2vPwqiqqOKSCwooKNWyYzavqXtIzKZN9o+feGsMq5cmcObcLuQWqe/fx98YSWUlrN2mIjcXQxWjJjjPwGmK/sO0br3konEO21MztKA8LLLliry01LhuS9Dt4dE+gater/Vk1xZ019bTbSGp5R1LlDZrrsN81QBk/QZ5J2c22XgtGGufWrSqSg1lKG/+7KMtorY4wDbpLnGzFixHZ58FG66CrbdB6hL737XGDQe9sYDYMDV9bEpObwq/GgY/9FfB+qq58F0YLB9iV4yurMKVI9mOaftLlmCth2M2q+n0oqOdT1t2KpOgu5Opa7yRrZzUXN5aMhKALq5l3PdkzZwSIZrmrMsH4+aiPj29PAq5/RJtCp69CY5FwBI3JfPYm+ri1hIQA2SUNj//LiNLG1/cK8KbfnHhnDtBXflmHA8mL8/xzmp2mmMbDx21v+g9khPKtTd52hU23b3hkLWC8ohBWv6WVw8tRbO2oDslWUvzDA9XbRowAFasUHPNpqXB6+/1pF9ceK2/a0cyqLfWlTUoUhvIfsst6kbCpEnw8MPt0TLRWfQI9qV/oFYSd+bk4/a9pVtVKvj6v7WsirETtIARtMrb+fmwfaPj+9pkgk8+0R6PGgUD4kMJOjmEfO3fhlqnwnn4+r/ZuG+w3bqtm+qesaFm0F1R1YUp8+NJO6Z9cWdk6Hjr1WL2HVU3HYYPSKKrV1daSkhEV2tP7cGDjttTslRPvHfXQrz9G1YbpiFsb7C1RNDd0PHcrcFynXXsmBYo1DYLTJ8+jh14EnR3LF5e2v+Z057uAbeA3xi1fGI/7HJeoMZohLPOUt9vo0c3bxhFs5RlQ/KHsPoc0r+7xbra3U2rIGtJMTebYV+K+sAL80uhW5caKbLuPSHyVpixDka9Z78tcCqx47Q0/N1pg6E4WQXrGcuhNE39vQq16wHbz5xzzlH/AMrKtOn0du2CV16BpCT44oum/Qk6Kwm6O5mGBt0vP76H0gp1gXL9/E0E95Wy5aJl+AR48+ELWzhz5BZ+/PIIZ83TLoT37nHsBV/6eZp1up5FC9fQ9eT1ZX2ZGgA/f7aZEL9M7r58ldPtGTnaxWqvPqon6e77HMcp9g7Ugt7skj5228wmM4cyVddFoHcWvj7qKvybb3TWLwmAreu0okQjhmm/p7ef9vsXFjkWGQM4cljbP6K/1r4ZM+C667QiRJ3F9LNVuq+roZKJ80Za119+uept/OMP+/G5QjgzOkabuuvMkVvp2ROCfFSwvXuPHrMZVm6Jt+4zZoZ9t6LtdFd/Lte6IsOCtRtBuSfftgEBEBamAqTJJ+v8FRfD9u32bTIZTbz+j9X865MpAHZDKbYcqnvObMsMDgaDmXB/+1T0nl5atsuiR7U3x4QRdRdcayyDQSuQlJxsPyOSyWgiLVe9d8MDndefaKpTMegGrYe7tp5ud3dVDdrCxUXd3BEdiyXFPC9P+0yw0htg9AegP/n9vfc52HwrVNsHqE8/DStP1gXbuRPOPVe7KdNoxkooPqL+laQ6vJaD0nRYe5HqaV4apHrk05dx1Kaoclyo9mFmCbqzs6HghLpGie6bD0OegpFvwdhPYNpvcF4GjHgd/Meqv0MNQ0ZoHRK78ueBweaL3dUbeo6Dcq1Wxn7tI52RI+GCC7THv/+ufv74o7ZuYMdO7GtxEnR3Mr39tYuJ9H21T5z37UrVY+ZqqOT+pyJr3U+Iplhw13h+2TSCiefEMXCEdgWyd79jj83vf2lDIq6+tY/1gsX2IqY2Lz5XRPrxYF7+Ygr5WY5p4Rm56gvHs8sJa7r3+LlDGDFgr3Ufnc7EFVdoXRHZufY5izmpudbpuoZGpfHc89r25cu1/TZt0o5hKaIG4O2npaYXFTsPum3HUUYMaLlU0vZy9X3j+PL1daz+IYmIQfapZJ6eLVeJWZzarru9N11cy4gOSeasq8YCMKiPuhuXW+TPfz8uZO8B9R4fN7KQHsH2753wMO1m1u+rtJtZ58/JpqbRMfutPZKWoBtgtU3dxJQUmDl2P7c/re3wr/vWEaziVLbs8K51Wt8Tx4vZs0dl8sRG5fPuK1pQ69c9j7//LGTECPW4rFz7PJgwuWWKmdmyjDMuK7MvqpR5ONuarRMW1DLTNlr07Ik1g6A5Y7ot1cvbYzy3hbPOjdp6usE+xXzoUFX9WXQsDsXUavIZBLGPa48PvAm/DIf0n6CqiFWrHGdoWb0arrzSjMmxTEztTFWw7xX4NhB+6KP+fR8OX/vA79Nh38uQ8bPj2HLX7mrcdbH9uOr0Qm2Yzog+2mwElvRy2981Zlw8DH4YBtwEff4Pgs7QbjTUwrYg4M7q++HCIpi7B+alwgX5MPNvdZyTbIPuyEg4Q9vkNOieO7fOlz/lSNDdyfT20Ur4px9w3lVYXlLBwYwwAGL7JNO7f3CbtE2cnnr1DcLLQ13A7TlkX8G6rAz+3qPmaw4PyKRvbJj1gqWoyH56GGcOZmlXM1mpjumjmcdVBeNeflpvkU6v4+5btAB9dGQCg+O1q6CcHPtjJO/RLtD7hpVZ06EAfvlF/TQZTfz8t2qLu2s58RO1L7pu3p4Y9Kp3vLDY+QX0kaPaFWR4dJDTfToTFzcXLr51HGPnSIle0XSTz4snN9vIniN98PRV75HB0Vothbtsslbuut8xFTqim5aKsnlvmHX5vPPMdkNZAEbFanf5pkzWIufVP6p8yO3bYcgQ+H2zdnV+x6WruePpSdZgubDQsVibxbbVBzGb1SXVqMjdnHnZCF57eDXnjN/Irz/kEjmsL3ff5Xh1Pv5MJ5W4mql/iPaZlpyg3ZxP3a99ToaHlLX461qGB+TmOn7ONkRlpTafcEfp6bYE27X1dIN9MTVJLe+YbIupJSTUstPAh2DEm1pvbtE+WH0WuYsHcNklldbg+ooroGsX1cX91Vc6nlnwHKwYA3+dr3qj/7oA1sxXU2btfcH+NXY/CdvugqoC+/WmKsj+HbbdDavmwLZ77Le7ekH3SDB4qFT4gQ/BzA2kd7nGusuIc+dbly032+qsXN4AtkH3rl2oIN17IHQLdVoY7YBNX2BkpHqvWG54bNqkpkrccHL4/KBBanjG6USC7k6mdx8tDzU9y93pPvu3p1jTeQf2q3saJyGaS6fXMTBcFVBLyQ2hOF+LpNetg4pKdS6ecVYwOr2OXl6HrNszDmiFiWreLa4sq+Toca0XNee4fUBbfMJMUZm6EO8VZt8tcsGNozlz5BbcXct57BETATYFwbNrdIIdyomwLvcbFERQEMTFqYvybdvM5Kblsfm3vWScrKA8Y8ROunlrQbxOr8PLQwUKhSW1BN2ZqmhcD8/j1h55IQR4+nraVbgfPFhbzjmmemUjIlQqZ03h/bT3odGk9R7HjgwiOuSQ3b6jxmnvu+hoCPBWOaZrNvljrDJy111aIbaQoBOs/O9WXvliMjq9juHajH5s3er899j0d4H2WqPUxehtT03m+7WjGTpFXXVecL6RED/tZnlU8D78Q1t+vtp+PbUr7YO7tB73lGTthkZ4WPNnj6ipuSnmtpXLO1PQbRuYTJ3aeu0STTd+vLb8ww+17KTTQeTNMGsb+GqFX+//7wtkZqvPojPOgMWL4aunF6PXqUyb91deCnkbIe1b1Rud9g0cXQpHv4e8GoUeIm9TadkAwbMh7CIIPR+61ajnYnKSt37G76qn+cz1EP8M9BxNerr6rNHrYeh4rYPNEnQ7m6O7MXx9IeTkZdiuXdSa6WNh29NtyQCx9HYbjfDQQ9oxTrdebpCgu9Pp1VeLHo5mO/9W2rtPC8YHxnTsOX/FqWFg/wLr8r6tWgVzSzoRaB+8vX207emH1E2hrVtVauLkyao6KEBqUqb15hFAdpH9lU5mlnaX1TKe28LV3ZWfNwynrNydWZePINBP69XJPpRit29yqvY+6jdUDcU4c5jqQTObdfz67T6WrtS+EM87x/HL0Kurmp+jsMQxJ7K6spqjeap3OyLIMe1VCKEZFO/jsO6OO5xXso6IcgxYe3gexyfAm6HR9u+1kdO07kidXsekoaqHu6jMm9f/lWFNMx8wAHbv686MS7RI29LTDbDlL+djoTdt1b53R092XkPF1d2V2xbssj4eP6wBY2yaoH+UNszn4AHtGiAlXbtJEd7HjZbW3ArmHTHotsy9bQm+vb0d08evvhquvVYFFGed1TZtFI0zZIjWq7pqlTbnulPeMTBzPYz/ClO/W1iWoHqQvbzgs8/U8KmzZpcycoCa9i/teCjllc47wTDX6E3o4q/Gj5+5CaYuhwlfwcSv4ZzDMHcvDHtFpblH3up4rK4hao5xG5bzMjDQvraAs6C7KT3doP52oDJ9Up1PUGNlCbp799aGiNimmC9Zoi2fju8VCbo7GTcPN/y91B369Fzn1Zf2pmoBwsApk53uI0RLGjRQu7Dbm6BlV9gG3dOmqZ+9emnBckaqClbffauC3FxYs0b9Azi8z77AUM10Rdueh2AnIyh0eh06vXqtwB7a1Vx2iv2BDtl0iFkKEJ05R+ux/uUX+HaZugLU6+HsaxzzB709TwbdpY5XihmHsq29cC09jlKIU82g0fY9Pl7dSrjmGuf7hgwIsvY2WfQNVkHxsDjtRltkcBK+gT52+02eoFX6vf8x7QPkkUdUYGVreKz2vt2yNhNnNu5W6e3d3IuJGVl7yviNj4xjaL9EfLvlc9OdrTPUpP9gP+ty8mEtuE4pirMuhw0d3eKv29y5ujtK0B1ucwru26d65izfNzXHc4MKLt5/H555RqYi7qh0Oph/MvvaaIRly+p5gsENwi9ib7c3yCtUJ+OUKVrdAmLuod8IVVjRbNZzeEQhzEtRY53PTYNz0+G8TBiz2PHYYReA30j7dTqdCvaj74DYx6D/dfX+TtXVWuZe796qIKtl5gLLmG5LenmPHmoO+qaIj9eWba/pasrP14rURdqUkpoyRV072fL1VfPZn24k6O6EevdUQU1mfgDGKsee7L1aDanTrjKgaB8Dh2o9TnvT1KdtQe4JtmxReUSDBmlfVr1DtcIdGemqW3vfZi0dMnGPWnfoQInda9QVdNdM96vJr5ef9eI857h9N4XtGE1L0D1+zkC6uqvX//qPYdZxShMngn+A41WVdzd1gV9R1YWKsiq7bakp2p3usNBa5icSQgDg5edFmJ+WjXLtuZvx8nK+r6u7K7397Hue+4UWADBspHbjbFR0EjVNnqUF2lXV6qZY/z6lXHqp4+sEhXkT4qc+cLbu74fJaN97lXkoxzot2Iiogxhca68k6OXnxbaDMeQc786I6a3zBR0R09v6eXcwzce63raXKrxPy1c7tL3eaEpPt22Nj/YspBYWhnVI0rp1KpgoPVlcur7vGtFxnXeetrx0acOes2qVtjxliv022wJ6Bw+7Q7cwNda5awh07QUeQeDm08TW1i8rSxuW17u3itst11mZmeqayZKpER3d9BtCZ5+tLX/1Ve372Y7nHjBAW/b1hWHD7PedPdt59tKpToLuTqh3gBp4ZjS5kJPmON2I5Q6zu7sWRAjRmgaO07o49h5WqZWrf0jEZFKf8tOGalNZ2I6/Ts9Q25NStSuZxCQVlB8+ZH9hm51lP5go46A2NrJXQHmd7TO4GujppfLJsvPtu7EOHVABc2CgyZo26N7VnalD1RuprFK7eLfcKa/JO3yIdblmBfO041rOV+gwqbIjRH1GDlYBrkFfzW2L+te5b0SQ/fw//fqoHuyJ545m+rCtBHjncvtDjscYNKY/ft3ta548fOO2Wi8ER8SoiPVEmRcHdxyx27Z51WHr8qj4gjrba+Hi1npXnG4e7oT5q7/hwfTemE3qszPl5L0MNzeVjtrSvLxUwAoq6K5v/GdNHaWnW6fTCqIVFsKvv2rbJOjuvMaO1c77FSugpETdvP+//1NDA6qd3BO3nd1gco3EUdsCerbzU7cVZxX1LVl/ubnw7bfa9kmTmv46o0dr2R+//+5kyrWTalYut2WbYg6n53hukKC7UwoJ1gKMo8n2Fw2VFSYOHFDfdNHRMnWPaBuhoVrPhCXT4o9ftfTOM6ZoqZy9+2jT/mRkuVGQU0hOoZb3tG+Pet6hFPsxUjn77AuSZCRpt1V7dXfsyaop0FdVP88u6Gm9CC0tKiUzRwXV/fzsu2bOPMOxuq+zYk4AXt7aR2lhjQzyNK1WnN2YKyGEc8+/2ovr5q3hf+9sIWJgSJ37RoTYT4HQt5/60nNxc+HXrcPJOt6TkTMce5T1Bj2Thmjjq/v4H+LyO2pPuR4er33vbvnLPsV803rts2LUmFrGdraxfr3VlXFhqTfHs/Ixm7WgOyzMMd2zpVh6u4uK7Kcra4iOEnSDfRVy2949Z+nlonPQ67Xv8PJy9f86c6Yap/3cc/Dkk/b7m83acDdvb4iLs99u29Nd26wGramuoNtshnfe0bbX1mHQEDodXHyxWjYa4ZtvnO/X0KBbr4dZs5rens5Mgu5OKCxU6wFMTba/wj+w/TBGo+o9HBiyHyHagk6nFek4dEhNFfb7etUloNcZmXy2VjYz2KboWXp2N5K2p9kdK3GnOqcPF9rnI+Xk2VcGz8zWepR7hfvU20bLuO7KancKj6lskUO7tW+tvqFFdvufOT/M7vHwqIPWXpyabMeA1hV01/Z8IYSmX1w47303ifOuG1PvvuE1hmz0i7KP1ix1HZyZPVtS6wzOAAEAAElEQVS7BHr4rnRc3Wufs3bEGC1DZ8sm+yEkm7Zrrzlqasd4k/eP0G5GJO/OoCCn0BrUhvU82mqva1shOan+e6F2OlLQbVvtevlybVl6ujs32xTz66+3rz3w5JPwxx/a4337tGFtEyY4dmLZpZfX0tNdVgYVTgqRO5OdDQsWwH33Oc7m4kxdQTfAjh3qZ0iIfTHIprjkEm25thTzuoLuCRO09/SUKWqM+elIgu5OKKKvdmFw5JD9u3nvdm3g68A+rVMZVQhnLD0cZjP866Ft7ElVg3pGRCbiE6BFpV26dbGmdWYc8yVpV4HdcTLzgyjMLeTQEfseo+zj9mnhGTlahd7gPvVPuxPYU+uNyjmqXv/QPq2Eab8+9hfvA+IjiPDX0kbPm3Gk1mPbBt1F9rG79HQL0Yoi+thfxvSNb/i8ONfcP56nb1/Faw+v5poH6h76MXxShHV5y04tW8dYZWRTorr6DvTJITSyY0Rl/fpqV+0HEwtJSdLGvof7HWm1142K0pY7c9A9dCh4nLzPaxs0SU935zZ1qvZ9bTxZEslSfMxshssv14qT1ZVaDqowmSXDz7ane+dOuOsulZbt5aX2sR2iAPDbbyr92xJcG42qN/nzz+HFF+seO23hLOgOclKb8dxzm1/gLz5eG6e9erV9TR0LS9BtMDjOv+3hoXrIb77Zvgf+dCNBdycU3k+7wj+SZT8wa+8u7dthYKzzOYOFaA2DgjZblx97VeulPmu6Y92BXn4ng+7jASTudRxItWl1hsOUHjmFvnaPM475AODdtcBu3uzaBPTUXif7qLq6S96vBeJ9+9mPsdTpdcybrsZx6nVGLriq9gIJ3gYtOC9Ms7/STNur0uANBiPBQS0/N64Qp7OI/tp73821mt7hXRr8XIOrgUWvTuG2pybX2SMO4B/ak3B/1UO87UA/qivV58mOnXoKS9V38oRRBfUep630j9L+Dgf3V5F6sMD6ODys9Qo6Nifo7iiF1EAFYmOcJFpIT3fn5uZmP1VV164qhXzGDPU4K0uN8a6utg+6axZRAxXIWnq7jxxR052WlKh9X3kFNm1Sx6muhjfe0J63ZYt6vfPPh0svVTd1nnzS/vU+/rj+3+WoTcKKZS5tZzO5NCe13EKn03q7zWb4+mv77WazFnT36aP+zjXNmAFvvmlfZO10I0F3JxQxVCtalVJgP/He3iTtTB84LAAh2oqzSvnnjN/Ivc86jpPsHaBysCur3Vm3xcdh+/LljrlVJ8q8KDuhgmSzyUxGnkpTD+6R57CvM7aFg7LTVSnaQ4e1C+R+0Y4lkh97OY4Hr17Fl29uImp4HUG3i1YWuDDbvspIara6WdDLNwuDS8e4IBfiVBEeO8i6HNHHpVXrmIwdot7nJRWebFypilesXqO9pyefFen0ee2h/yDtAy85px8ph7Qx6eERrVfEzTbo3rev9v2c6Ug93WA/rttCero7vxtvVOOK3dxUj/KYMfDpp1ov8a+/wq23akFw9+4q88EZSzG16mo1O8CGDaravYWlh3nLFm3dL79oy0uWwLhx8M9/2h/311+d9ybbsp3u1Fl6OYCfn5p1pSVYxnUDfPml/bbMTHXDARxTy4VGgu5OKDhYS4c5csR+295kFYi4GirpFyu5rKLtDJsQhqtBFUzz6VbAp//+m+/WjMKju2PGRa8w7YpqQ2KMw/blv/k4fY3cdNX9fSL/BCUVqiukl3/D5r4ODNKuxrOzVDuTj2gp6n0HOpbz9Q304dnFU7jwpronlPTy1i5iCwu0afzKTpRxrEilvocGNOzmgBCi4cL6dqHnydElI0fWvW9zzZyhvbdXLFOfRfWloLaXvnFafudfW0Ots0IAhPWrPzOoqYKDtYC5M6eXg2PQrdO1TtV30bYmTFC9sgcPar3egYEqkLRcW7/7rlYIcPz42qe3qllMbe1a7fHHH2s95BkZ2vE22deEZds2rdK/pRfYZFIF3mrz6aewfr1a7t1be7/UDLrPOaflpuYaNAgGn+zzW7/ePr29rvHcQiNBdyek12sFmVJStDdrVUU1SUdVXf/I3im4up+Gk+CJdhPcN5Cli3fw+E2r2J1QxoK7xteaatk7Rht3WVmtxm77dNNuD+9P07oTfLoVWJez01SAnXFIS1nvFVDaoPYF9tKCf8v48EPpfgB4uJUSFNH0zBDvHtoFbWGhlkJ+9GC2dTks+ARCiJbl5gbffw+PPgovvNC6r3XmBdoV9or1AzCZtOrGPXpoF6QdQbduqgcN4PBhePdbLVc6vH/rVTHS6bTe7iNHVJXohupoQfeYMfZV3gMDtaBMdG79+jnWWJk8GT76yHHfum6m1Zw2zDbonjzZvoDZ1q3qet0SdHt6qp5oixkz4KeftMcff6z2z8+Hl15SY6Krq9XNrJtu0vZ7/nltuWbQbVs4riXYpuZv1kYUStDdQK0WdL/99ttccsklxMXFMaKBZfPMZjOvvvoqEyZMYMiQIVx11VUcqdmVKwCIiFA/i4qgoEAtJ+9Mpcqo0ssH9a9lIj0hWtHcK0by2FtT6N3fycAiG87GxU0ZmkRX9xKH9aNitLKgOZlqe0aK1rvdK6hh4xMDYrTPoZyqeIzVJg5nq+C+b1B6s8ZievtqRd9sC6mlJWs3EkJ721c8FkK0jHHj4IknWn+8ba9+wcQOVFHk5t29WfXTUWsq6aSJxlabhqupPvxQjVkFMJlU43Q6E6GRdX8+N5cl6Dab4cCBuve11dGCbi8v+2miZDz3qe/yy+2DWKg76Lbt6d63T+t9DglRnWO24c+WLSoF3VKobfx4+Ptv9XPqVNV7PWCAlmGxdy8sXao+3+69Fy64QL3e2WdrqdxXX63abBEQoKW0d+umjVVvKcOHa8vbt2vLEnQ3TKt9RVRVVTFr1iwuvfTSBj/n/fff59NPP+Xxxx9nyZIleHh4sHDhQioaWm//NBLuq53hR3aqZbvK5VGVDs8RoqNwNi4uZngIUSGpDuvHDNeq6+RkqgvezDQtOG/ohZDdmO5syEjOsvay9ws9XsuzGsa7h1a0qLBI+1hNO6y1UyqXC9H5nTlHvdfNZnjkMe29PjlmbW1PaTfR0fDWW/brgn0ycfNwUuWoBTW1mFpHKqRmYTt1mIznPj3cdx/cc49ajo+ve9iKbU/3d99pwfCECSr4rdnTbZtaPmqUeq+sXaumKrNco1xxhbbP+efb10ZISdFuZMXEwOuv27fH1VUF5aDGrndpeF3JBrEd2y5Bd+O1WtB9++23c9VVVxHZwL++2Wzmk08+4aabbmL69OlER0fzwgsvkJOTw2+//dZazey0IgK1CgspB9St9r27tDyugbHuDs8RoqNwFihHDQ0huo998OvhVsqQeO1czs5SYyozsrV1vUIadgEZYJM9np0NyUlaQNw3rBE5kE54+WpjJAtPaMM6UlO0XvjQiBb+9hNCtLkzz9SW123XPsgmz3IyV08HcOWVcMVcLQ80LLD1a0s0da5u257ujhJ0247rlp7u04NOp6btOnwYNm6se0x0SAi4n7wcsZ0e1HLe9OkDvicnXtmyRR3PYtQo58e86CLHYHnAAJgzR3vcpYsqAtfNSXmGb79VQXBrDLfp21ebcm3bNvXTbNZSzT095eZUXTrMoN+jR4+Sm5vLOMsgJKB79+7ExcWxfft25s6dW+tzjUYjRqOx1u3tzdK2lmxjWIRWFOpwchlGo5HdiVrwERXXo0P/TUTjtcZ51F6CfI8B9hVp+vc3khJZCTb32CICM+nZJ8z6OKsyDqPRyNEyLccpcODwBv1NDAbw9dWTn68jO9vM6u3aLeq+I4c16+/q6auNFy884WY9VupR7b5mrwjPDvF/dyqdR6L9nK7n0dix4OGhp6xMG47i062AQaP7dNi/xWv/iWTfhN1sShrM5Rccb1w7jUYM1kWjNrlxHVTKrXpWYqIJo7H2qRJtz6MTJ/SADg8PMzqdqSEv1epmzoTQUD0ZGTBvXsdok3DUGp9Hluy0+g7Zp4+effvsh6eNHWu0Pm/YMD2//64jKwu+/94M6E6uNzo9tqcnzJun46uv1PXDyJFmfvjBhL+/Sjn/6ScdZ5xhZuDA2tvWt68KhlvjfI2L07NmjY70dMjMNJKfD1lZ6v0+frwZs7nzvk9qnkct/ZneYYLu3Fw1BtnPtqrAycfHjjnO82trv21eQwe2a9euFjuWwV0b07pvXykJCQms3x8PgJtrFWW6AhISElrs9UTH0ZLnUXsxVhsx6P0wmrSPoMrKXXTrZd+9ERqYTV6JF6Bune4/bCIhIYHExD6AKgaUX7ifhISGDafo0a0X+fnBZKWX8847esAdvd5M38jDJCQ0fcy1sdoIqM+u/CIX63vvSJpWdaek6liHek+eCueRaH+n43k0KtaH1Zu0m3ZjBu5h156Oncny+sdGTuT9iU+gV6M+h/RlZVgySnfu3InJw3E2iprKy3XodEMxm3Vs315GQkL9c4ft2rWLvLzBgDseHtUkJOxscBtb21df6ThxwoCfXzUd6CNcONEen0f+/v3Yt8/H+rhbNyPV1QnWcyU0tBeg6igcPKgC7uDgCjIzd1srmte0YIEbycnhhIZWcPfdR0lPN1mrhVvGabfXuRgSEoKl0+Sbbw6RmekGqCLOAwakk5CQXfuTO4nWOo8aFXS/+OKLvP/++3Xus3z5cvrZDnJoA5GRkXS1VAvpgIxGI7t27SI2NhZDC00i2qOLv3U551gPQkLiSU1Txx46zIURoxpWvE50Hq1xHrWnYN9sjuapfL2AnlVMmhRLjx7AP7R9BvSpYvJkbUqxysoexMf7UFqq9SCfccZAGnAdCEBv310kHw2mtMKD0iy1btYsmDVrUN1PbADPLicoLu9Ocakn8fFqup7MY2oiTXfXciZOn9CsYm0t5VQ7j0T7OJ3Po3PP+Msu6D5jciXx8WPqeEYnVqINwxkyZIjzfFYnwsLU+NOjR7sSFxdvLe5Uk+15VFGhblL6+roQHx/f3JaL00h7fh4NHarjr7+0x+PH6xk+PN76ePZs+M9/7J8zYYJrned4fLx6HnTD0sHQUcycqeOLL9RyUVE/Dh/Wtl18cTDx8a1bqLE11TyPSktLW7Rjt1FB9zXXXMN59dSfD21itSB/fxVE5uXlEWAz+DIvL49o2wFCThgMhk7xpd+S7Qwd0AsXQxXVRleOZPiwebN23HHjdJ3i7yGaprOc7/Xp5ZdrDbqjgvZgMMQTHQ16vclaabdfXzM9ehhwc4PKSsjNVef20aPqGD4+4OnZ8L9FYM8yh3U33dQy7xfv7pUUl0NhRU/r8dLyIwAIDS7BxdWvjme3vVPlPBLt63Q8j2afH8Zdz2qPp5wZeOr+DWx+L4PBYPe4LtHRKuguKtJx7JiBjz6CN96Af/4TFi509jIGiotVZO7pKdcwomna4/PIMre2xcSJ9uevs7Hbo0frG/pW6nBsi8MlJOhZt04td+0Ko0cbOu3vZctyHrX0udSoQmo9evSgX79+df5zc2taVcyQkBD8/f1Zb6m3DxQXF7Njxw6G2pbLEwC4uLkQ4qe66lKyA7H5szF2bDs1SohG6O2rFQOMClM5Vu7u0C9Um2arT38PdDoI8FcFyXKyyslJPUZKito+aEDjqo4H+tunoYcGnzh5N7n5vHqqoLqw1Ef9LISiE6rnJrRfxwq4hRBNFzm0D30DVfeOT7d84idJud6abCuYv/02LFoEGRlw223alEm2KivVP+gY04UJ0VC204aBffE9gPBw+/m4ofYiap1BVJRW6G3FCqxp7+PHyzz29Wm16uUZGRkkJiaSkZGB0WgkMTGRxMRESmxSlWbNmsWvv/4KgE6n44orruDtt9/m999/Jykpifvvv5+AgACmT5/eWs3s1CKC1Vj3/BJfVnyXbl0/dkztRUuE6Ch6+WilPqPCtXnloyO05b5R6uorwEPNkZF7zIV1K5Ot28dGN27cX4C//Xvj2vO2tthdWUtFz+JiVbzEtpKpTBcmxKlDp9fx3uv5zBq1mcUvJ+Hi1mHK43QYtkH3P/+pLZeVwUsvOe7f0eboFqKhbEfUurg4BtQ1pw7T62HYsLZpW2twcdHmry8q0tbXNZ+5UFrtm+K1115j6dKl1sfnnnsuAJ988gmjR48G4PDhw5yw+aS97rrrKCsr49FHH6WoqIjhw4fzwQcf4O4u0185E967BHao5a17VaGpEL8MQkJlXgvR8UXG9YYVajl+Qrh1/Q3XnODXdWWMGbiPwePUJ3tgDzWBq9Hkwk/LtN7qsRMaV7zIdq5ug76ahXdF1b5zI1mCblAXkBJ0C3HqOuPCYZxxYXu3ouOKquOj9c031VzI/lppGgm6RacVEaEqjhcXw+jRKs26puHDVa8wwODBDS6N0GENHWo//RlI0N0QrRZ0P/fcczz33HN17pNUYwJHnU7HHXfcwR133NFazTqlRIRVO6wbOyQFkKBbdHxX3T+RHXv/IsDfyBmXaJ/Wc68YyfHzyujSLd5aeCygpzaP9rI12tXc2Ol9GvWawb21j7yzh/9C7/5nNbX5DmyD7sJCSDuYh6WieWiINk2IEEKc6mqW4nF1VdNv/fQTlJbCv/8Nz9qMiz9yRFv28mqTJgrRIlxdYfFi+PJLePhh5/vY9nSPHNk27WpNNXvqPTxOjd+rtbVaerlofREDHWegHzuqoh1aIkTjefl58eGyiTy7eIpDVW+P7h526wJ6anMlZheoQovh/kcJ7ms/13d9pp4XT3RIMj7dCnjsxQH1P6ERvKq3WpcL0w6QZjPlRFi3LS36WkII0ZH16qV6/ywWLYJ33gFL2Z833oC8PG37229rl6MTJ7ZRI4VoIRdeCN98U3va+KxZKiXbxwduuqlNm9YqapbaGjtW1eQRdZOguxMLH+wYNIyd0rMdWiJE6wp0EluPHZLa6ON4+nqy+1AEeYVexE9qudRyAO+uWn5k4fFS0tK1XvXQfj4t+lpCCNGR6XQwd65aHjIEHnoIQkK0yuXFxfDCC2o5Pd0Ny2jEwEC4+OK2b68QrcnDA7Zvh5wclWre2Q0erMZ2W0hqecNI0N2JRUTYP3ZzqWDopJbtvROiIwgIchwJM2ZUVZOOZXA1oDe0/Eeft7dWpK2ooIK0TG1gV+iAAGdPEUKIU9Z778Hy5bBundYL9uCDWoXjF1+E1avhyy8DMJlUZtOtt0qPmTg16XSnTnXvLl1g4EDtsQTdDSNBdycWEgJ6vXahP3zAfty7yreVOPUEBDkWTOtoWR3e3lo6fGF+FalZPQDo7lGEt793bU8TQohTkpcXzJ5tXzQqLAweeUQtm0ywYIGeH35Qn+VdusCNN7ZDQ4UQjXbOOepneDiMGdO+beksJOjuxFxdoXdQqfXx2GF5dewtROcV2NvT7nEX1zLiJ3asrA5vH23usdzsatKOBQEQ6p/TXk0SQogOZ9EimDZNLWdm6igpUZ+dV14JPTvWvVQhRC0efRRWroT16yU7paEk6O7kIrprxZvGjpX5ucWpKSDEx+7x8MgDuHm4tU9jauHlo+WNfbwkgIoq1TsfH5XdXk0SQogOx2CAzz6DgBqjbu68s12aI4RoAldXmDEDgoPbuyWdhwTdnVx8vAq03VwqGD8rup69heic/Hv3sHs8dmzH++jy9tVu9W5PjrEuX3uDk0k7hRDiNBYcrAJvnU5dw8yda3aYZkwIIU4lrTZPt2gbDz83kC7uqxg/yYPgfqPbuzlCtArXLm706GHi+HEVbI+dPbidW+TINui2iOx9mCnnxbd9Y4QQooObMQO+/dbEN9/k8q9/+QOGep8jhBCdlQTdnVxghD8vfDylvZshRKsLCNBz/Lha7ohFO7x7OPZo33B5Cjp9n3ZojRBCdHxnnw2hoen4+/u3d1OEEKJVdbwcTSGEcGL2bPVz6lTo1at92+KMl183u8furuVceceQdmqNEEIIIYToKCToFkJ0Ci+9BNu3q3lfOyJvfx+7xxdeYMavVw/nOwshhBBCiNOGpJcLIToFnQ7i49u7FbVz93DF3R0qKtTjG2/xaN8GCSGEEEKIDkF6uoUQooXEnCxaPnQojBvXvm0RQgghhBAdg/R0CyFEC/nqK/jmG7jsMtUzL4QQQgghhATdQgjRQiIj4aGH2rsVQgghhBCiI5H0ciGEEEIIIYQQopVI0C2EEEIIIYQQQrQSCbqFEEIIIYQQQohW0qnHdJtMJgDKysrauSV1MxqNAJSWlmIwGNq5NaKzkvNItAQ5j0RLkPPoNFFeDlFR2nILV4iU80i0BDmPREuoeR5Z4ktLvNlcOrPZbG6RI7WDvLw8jhw50t7NEEIIIYQQQghxiomIiMDPz6/Zx+nUQXd1dTWFhYW4u7uj10umvBBCCCGEEEKI5jGZTFRUVODt7Y2LS/OTwzt10C2EEEIIIYQQQnRk0j0shBBCCCGEEEK0Egm6hRBCCCGEEEKIViJBtxBCCCGEEEII0Uok6G4Dn3/+OdOmTSM2NpYLL7yQnTt3tneTRAf2+uuvExUVZfdv1qxZ1u0VFRU88cQTjB49mqFDh3Lbbbdx7Nixdmyx6Ag2b97MjTfeyIQJE4iKiuK3336z2242m3n11VeZMGECQ4YM4aqrrnKY/aGgoIB77rmHYcOGMWLECBYtWkRJSUkb/haivdV3Hj344IMOn08LFy6020fOo9Pbu+++y/nnn8/QoUMZO3YsN998M4cOHbLbpyHfYxkZGVx//fXExcUxduxYnn/+eaqrq9vyVxHtqCHn0f/93/85fB49+uijdvvIeXR6++KLLzj77LMZNmwYw4YN4+KLL2b16tXW7W35WSRBdytbvnw5zz77LLfccgtLly4lOjqahQsXkpeX195NEx3YgAEDWLt2rfXfF198Yd32zDPP8Oeff/LKK6/w6aefkpOTw6233tqOrRUdQWlpKVFRUTz22GNOt7///vt8+umnPP744yxZsgQPDw8WLlxIRUWFdZ97772XgwcP8tFHH/HOO++wZcsWhwsYcWqr7zwCmDhxot3n07///W+77XIend42bdrE5ZdfzpIlS/joo4+orq5m4cKFlJaWWvep73vMaDRyww03UFVVxZdffslzzz3H0qVLee2119rjVxLtoCHnEcBFF11k93l0//33W7fJeSSCgoK49957+fbbb/nmm28YM2YMt9xyCwcOHADa+LPILFrVBRdcYH7iiSesj41Go3nChAnmd999tx1bJTqy1157zXzOOec43VZUVGQeNGiQ+eeff7auO3jwoDkyMtK8ffv2Nmqh6OgiIyPNv/76q/WxyWQyjx8/3vzBBx9Y1xUVFZkHDx5s/vHHH81ms3Ye7dy507rP6tWrzVFRUeasrKy2a7zoMGqeR2az2fzAAw+Yb7rpplqfI+eRqCkvL88cGRlp3rRpk9lsbtj32KpVq8zR0dHm3Nxc6z5ffPGFediwYeaKioo2bb/oGGqeR2az2bxgwQLzU089Vetz5DwSzowcOdK8ZMmSNv8skp7uVlRZWcmePXsYN26cdZ1er2fcuHFs3769HVsmOrqUlBQmTJjAGWecwT333ENGRgYAu3fvpqqqyu6c6tevH7169SIhIaGdWis6uqNHj5Kbm2t33nTv3p24uDjrZ9H27dvx8vIiNjbWus+4cePQ6/UyJEbY2bRpE2PHjuXMM8/kscceIz8/37pNziNR04kTJwDw9vYGGvY9lpCQQGRkJD179rTuM2HCBIqLizl48GDbNV50GDXPI4tly5YxevRozjrrLF566SXKysqs2+Q8EraMRiM//fQTpaWlDB06tM0/i5o/07eoVX5+PkajET8/P7v1fn5+DuNShLAYMmQIzz77LH369CE3N5c333yTyy+/nGXLlnHs2DFcXV3x8vKye46fnx+5ubnt1GLR0VnODWefRZaxS8eOHaNHjx52211cXPD29pZzS1hNnDiRGTNmEBISQlpaGv/+97+57rrr+OqrrzAYDHIeCTsmk4lnnnmGYcOGERkZCdCg77Fjx47ZXeQC1sdyHp1+nJ1HAGeddRa9evUiICCApKQkXnzxRQ4fPswbb7wByHkklKSkJC655BIqKiro2rUrb775Jv379ycxMbFNP4sk6Baig5k8ebJ1OTo6mri4OKZOncrPP/9Mly5d2rFlQojT3dy5c63LlsJF06dPt/Z+C2HriSee4MCBA3Z1SYRorNrOo4svvti6HBUVhb+/P1dddRWpqamEhYW1dTNFB9WnTx++++47Tpw4wYoVK3jggQf47LPP2rwdkl7einx9fTEYDA5F0/Ly8hzumghRGy8vLyIiIkhNTaVnz55UVVVRVFRkt09eXh7+/v7t1ELR0VnOjbo+i3r27Mnx48fttldXV1NYWCjnlqhVaGgovr6+pKSkAHIeCc0///lPVq1axccff0xQUJB1fUO+x3r27OlQQdjyWM6j00tt55EzcXFxAHafR3IeCTc3N8LDwxk8eDD33HMP0dHRfPLJJ23+WSRBdytyc3Nj0KBBrF+/3rrOZDKxfv16hg4d2o4tE51JSUkJaWlp+Pv7M3jwYFxdXe3OqUOHDpGRkUF8fHz7NVJ0aCEhIfj7+9udN8XFxezYscP6WTR06FCKiorYvXu3dZ8NGzZgMpkYMmRIm7dZdA5ZWVkUFBRYLz7kPBJms5l//vOf/Prrr3z88ceEhobabW/I91h8fDz79++3u1G4bt06PD096d+/f5v8HqJ91XceOZOYmAhowZCcR8IZk8lEZWVlm38WSXp5K7v66qt54IEHGDx4MEOGDOHjjz+mrKyM+fPnt3fTRAf1/PPPM3XqVHr16kVOTg6vv/46er2es846i+7du3P++efz3HPP4e3tjaenJ0899RRDhw6VoPs0V1JSQmpqqvXx0aNHSUxMxNvbm169enHFFVfw9ttvEx4eTkhICK+++ioBAQFMnz4dUMVDJk6cyCOPPMITTzxBVVUVTz75JHPnziUwMLC9fi3Rxuo6j7y9vXnjjTc488wz6dmzJ2lpafzrX/8iPDyciRMnAnIeCZUK/OOPP/LWW2/RrVs367jH7t2706VLlwZ9j02YMIH+/ftz//33c99995Gbm8srr7zC5ZdfjpubWzv+dqKt1HcepaamsmzZMiZPnoyPjw9JSUk8++yzjBw5kujoaEDOIwEvvfQSkyZNIjg4mJKSEn788Uc2bdrEhx9+2OafRTqz2Wxuhd9R2Pjss8/48MMPyc3NJSYmhn/84x/WFBgharrrrrvYvHkzBQUF9OjRg+HDh3PXXXdZxydVVFTw3HPP8dNPP1FZWcmECRN47LHHJFXqNLdx40auuOIKh/XnnXcezz33HGazmddee40lS5ZQVFTE8OHDeeyxx+jTp49134KCAp588kn++OMP9Ho9M2fO5B//+AfdunVry19FtKO6zqPHH3+cW265hb1793LixAkCAgIYP348d9xxh92QKTmPTm9RUVFO1z/77LPWDoeGfI+lp6fz+OOPs2nTJjw8PDjvvPO45557cHGR/qLTQX3nUWZmJvfddx8HDhygtLSU4OBgpk+fzs0334ynp6d1fzmPTm+LFi1iw4YN5OTk0L17d6KiorjuuusYP3480LafRRJ0CyGEEEIIIYQQrUTGdAshhBBCCCGEEK1Egm4hhBBCCCGEEKKVSNAthBBCCCGEEEK0Egm6hRBCCCGEEEKIViJBtxBCCCGEEEII0Uok6BZCCCGEEEIIIVqJBN1CCCGEEEIIIUQrkaBbCCGEEEIIIYRoJRJ0CyGEEEIIIYQQrUSCbiGEEEIIIYQQopVI0C2EEEIIIYQQQrQSCbqFEEIIIYQQQohWIkG3EEIIIYQQQgjRSiToFkIIIYQQQgghWokE3UIIIYQQQgghRCuRoFsIIYQQQgghhGglEnQLIYQQQgghhBCtRIJuIYQQQgghhBCilUjQLYQQQpwGNm7cSFRUFBs3bmzvpgghhBCnFZf2boAQQgjR3r799lseeuihWrd/9dVXxMfHt12DOpFjx47x2muv8eeff1JQUIC/vz9jxozhmWeese4zbdo00tPTnT4/PDyclStXWh9/8cUXbNiwgZ07d5KZmcl5553Hc8895/C8zZs38+GHH5KYmMjx48fx8vIiOjqam2++meHDh7f8LyqEEEI0kQTdQgghxEm33347ISEhDuvDwsLaoTUdX2ZmJpdeeikAl1xyCYGBgeTk5LBz5067/RYtWkRJSYnduoyMDF555RXGjx9vt/6DDz6gpKSE2NhYcnNza33tI0eOoNfrueSSS+jZsydFRUX88MMPLFiwgHfffZdJkya10G8phBBCNI8E3UIIIcRJkyZNIjY2tr2b0Wk8+uijGAwGvv76a3x9fWvdb/r06Q7r3nrrLQDOPvtsu/WffvopvXr1QqfTMXTo0FqPeeGFF3LhhRfarbvsssuYPn06H3/8sQTdQgghOgwZ0y2EEEI00GuvvUZ0dDTr16+3W//II48wePBg9u3bB0BlZSWvvvoq8+fPZ/jw4cTHx3PZZZexYcMGu+cdPXqUqKgoPvzwQz7//HPOOOMM4uLiuOaaa8jMzMRsNvPmm28yadIkhgwZwk033URBQYHdMaZNm8YNN9zA2rVrmTdvHrGxscyZM8cuZbsuO3bsYOHChQwfPpy4uDgWLFjA1q1b631ecnIya9asYeHChfj6+lJRUUFVVVWDXhPgxx9/JCQkhGHDhtmt7927NzqdrsHHseXh4UGPHj04ceJEk54vhBBCtAYJuoUQQoiTiouLOX78uN2//Px86/abbrqJmJgYHn74YYqLiwH466+/WLJkCTfffDPR0dHW4/zvf/9j1KhR3Hvvvdx6660cP36ca6+9lsTERIfXXbZsGV988QX/93//x9VXX82mTZu48847eeWVV/jrr7+47rrruOiii/jzzz95/vnnHZ5/5MgR7rrrLiZNmsQ999yDwWDgjjvu4O+//67z912/fj2XX345JSUl3Hrrrdx1110UFRVx5ZVXOqSIO3suQM+ePbnyyisZMmQIcXFxXHvttRw9erTO5+7du5fk5GTOOuusOvdrCMv/WXJyMv/+97/Zv38/Y8eObfZxhRBCiJYi6eVCCCHESVdddZXDOjc3N3bt2gWAq6srzz//PPPnz+e5557j/vvv5+GHH2bw4MFcf/311ud4e3vzxx9/4ObmZl130UUXMXv2bD799FO7ImMA2dnZrFy5ku7duwNgMpl49913KS8v55tvvsHFRX1d5+fns2zZMp544gm7Yx85coTXX3+dmTNnAnDBBRcwa9YsXnzxRYcx0xZms5nHH3+c0aNH88EHH1h7ly+55BLmzp3LK6+8wuLFi2v9Wx05cgRQvfyxsbG8/PLLZGZm8sYbb3D11Vfzww8/4OHh4fS5y5YtA+Ccc86p9fgNdccdd7B27VpA/f9cfPHF3Hzzzc0+rhBCCNFSJOgWQgghTnr00Ufp06eP3Tq93j4pLDIykttvv52XXnqJpKQk8vPzWbx4sTUwBjAYDBgMBkAF0EVFRZhMJgYPHszevXsdXnfWrFnWgBtgyJAhgApKbY87ZMgQfvzxR7KzswkNDbWuDwgIYMaMGdbHnp6enHvuubz//vvk5ubi7+/v8JqJiYkcOXKEm266ya43H2Ds2LF8//33mEwmh9/forS0FAB/f3/ee+89635BQUHcfffd/Pjjjw5jri1/j59++omBAwfSr18/p8dujHvvvdeajv/dd99RVVVFdXU17u7uzT62EEII0RIk6BZCCCFOGjJkSIMKqS1cuJCffvqJnTt3cvfdd9O/f3+HfZYuXcrixYs5fPiw3VhnZ9XRg4OD7R5bAvDa1hcWFtoF3eHh4Q7joCMiIgBIT093GnRbeqofeOCB2n5NTpw4gbe3t9NtXbp0AdQNA9vAfNasWdx///1s27bNadC9adMmsrOznWYVNEVMTIx1+ZxzzmH+/Pk89NBDvPbaay1yfCGEEKK5JOgWQgghGiktLY2UlBQA9u/f77D9+++/58EHH2T69OksXLgQPz8/DAYD7777LmlpaQ77W3rFa6qtl9lsNjej9fbHuP/+++0CV1tdu3at9fkBAQGAGtNty2Aw4OPjQ1FRkdPnLVu2DL1ez9y5c5vS7Dq5ubkxbdo03nvvPcrLy603BoQQQoj2JEG3EEII0Qgmk4kHH3wQT09PrrzySt555x3OPPNM63hqgBUrVhAaGsobb7xh1wPdWr2vKSkpmM1mu9ey9GT37t3b6XMsPeWenp6MGzeu0a85aNAgQI1Ht1VZWUl+fj49evRweE5lZSUrV65k1KhRBAYGNvo1G6K8vByz2UxJSYkE3UIIIToEqV4uhBBCNMJHH33E9u3b+ec//8kdd9zB0KFDefzxxzl+/Lh1H0vPtW2P9I4dO0hISGiVNuXk5PDrr79aHxcXF/Pdd98RExPjNLUcYPDgwYSFhbF48WJKSkocttv+Ps6MHj0aPz8/li1bRkVFhXX90qVLMRqNTgP51atXU1RU5DA3d1Pk5eU5rCsqKmLlypUEBwfj5+fX7NcQQgghWoL0dAshhBAnrVmzhkOHDjmsHzZsGKGhoSQnJ1vn3542bRoAzz33HOeeey5PPPEEr776KgBTpkxh5cqV3HLLLUyZMoWjR4/y5Zdf0r9/f2sBspYUERHBww8/zK5du/Dz8+Obb74hLy+PZ599ttbn6PV6nnrqKa677jrOOuss5s+fT2BgINnZ2WzcuBFPT0/eeeedWp/v5ubG/fffzwMPPMDll1/OvHnzyMjI4NNPP2XEiBF2Pf8Wy5Ytw83NjTPPPLPW4/7xxx/W+c6rqqpISkrirbfeAtSc5JZp2a677joCAwOJi4vDz8+PjIwMvv32W3Jycnj55Zcb9HcTQggh2oIE3UIIIcRJtaV/P/vss/Tq1YsHHngAX19fFi1aZN0WERHB3XffzdNPP83y5cuZM2cO8+fP59ixY3z11VesXbuW/v37869//YtffvmFTZs2tXi7IyIieOSRR3jhhRc4fPgwISEhvPzyy0ycOLHO540ePZqvvvqKt956i88++4zS0lL8/f0ZMmQIF198cb2ve+655+Lq6sp7773HCy+8gJeXFxdffDF33XWXwzj14uJiVq1axZQpU+wqtde0cuVKli5dan28d+9ea8X3oKAga9B9/vnn89NPP/Gf//yHEydO4OXlRVxcHC+99BIjRoyot+1CCCFEW9GZW6IaixBCCCHaxbRp0xgwYADvvvtuezdFCCGEEE7ImG4hhBBCCCGEEKKVSNAthBBCCCGEEEK0Egm6hRBCCCGEEEKIViJjuoUQQgghhBBCiFYiPd1CCCGEEEIIIUQr6dRThlVXV1NYWIi7uzt6vdw/EEIIIYQQQgjRPCaTiYqKCry9vXFxaX7I3KmD7sLCQo4cOdLezRBCCCGEEEIIcYqJiIjAz8+v2cfp1EG3u7s7oP4YHh4e7dya2hmNRvbv309kZCQGg6G9myM6KTmPREuQ80i0BDmPThNlZTB+vFr++29o4WstOY9ES5DzSLSEmudRWVkZR44cscabzdWpg25LSrmHhwddu3Zt59bUzmg0AtC1a1f5MBBNJueRaAlyHomWIOfRacJshqQktdylC7TwtZacR6IlyHkkWkJt51FLDWFuk4HQn3/+OdOmTSM2NpYLL7yQnTt31rrvt99+S1RUlN2/2NjYtmimEEIIIYQQQgjRolq9p3v58uU8++yzPPHEE8TFxfHxxx+zcOFCfvnll1rz4z09Pfnll1+sj3U6XWs3UwghhBBCCCE6tcpKcHNr71aImlq9p/ujjz7ioosu4vzzz6d///488cQTdOnShW+++abW5+h0Ovz9/a3/evbs2drNFEIIIYQQQohO6447oHt3eOON9m6JqKlVe7orKyvZs2cPN9xwg3WdXq9n3LhxbN++vdbnlZaWMnXqVEwmEwMHDuTuu+9mwIABte5vNBqtefgdkaVtHbmNouOT80i0BDmPREuQ8+g0YTRisC4aoYX/v+U8Ei1BziOlogLeeEOPyaTj5ZfN3HSTqb2b1KnUPI9a+nxq1aA7Pz8fo9HokEbu5+fHoUOHnD6nT58+PPPMM0RFRXHixAkWL17MJZdcwk8//URQUJDT5+zfv7/F294adu3a1d5NEKcAOY9ES5DzSLQEOY9ObfqyMoaeXN65cyemVpopRs4j0RJO9/Po8OEumEyDADh0SMfff++kWzcJvBurtc6jDle9fOjQoQwdOtTu8Zw5c/jyyy+58847nT4nMjKyw1cv37VrF7GxsVJVUTSZnEeiJch5JFqCnEeniZIS6+KQIUOgW7cWPbycR6IlnC7nUXU1bNgAMTHgrCxWWpr9Y4NhCPHxbdK0U0LN86i0tLRFO3ZbNej29fXFYDCQl5dntz4vL6/B47RdXV2JiYkhNTW11n0MBkOneJN1lnaKjk3OI9ES5DwSLUHOo1Oczf+twWCwe9yyLyPnkWi+U/08WrQIXngBIiNh506oOX10crL94z17DIwf37zXLCmBxx+HiAi4+WY4HWpbW86jlj6XWrWQmpubG4MGDWL9+vXWdSaTifXr19v1ZtfFMlG5v79/azVTCCGEEEIIIToksxk++UQt798PzupR1+yUrWOG5gZ77TV48UW49Vb417+af7zTWatXL7/66qtZsmQJS5cuJTk5mccff5yysjLmz58PwP33389LL71k3f+NN95g7dq1pKWlsWfPHu677z4yMjK48MILW7upQgghhBBCCNGh7N4NWVnaY2fVyQ8csH/cEkH3hg3a8kMPwapVzT/m6arVx3TPmTOH48eP89prr5Gbm0tMTAwffPCBNb08MzMTvV6L/YuKinjkkUfIzc3F29ubQYMG8eWXX9K/f//WbqoQQgghhBBCdCi//mr/eP162LoVhg/X1tUMunftUj3kzUkJ371bWzaZ4OKLYds26N276cc8XbVJIbUFCxawYMECp9s+/fRTu8eLFi1i0aJFbdEsIYQQQgghhOjQVq50XPfmm7B4sVouLYWjR+23FxSodaGhTXvN4mKoOdlUTg6cey78739qnLdouFZPLxdCCCGEEEII0Xjl5bB6tVoODgZvb7X8xRdgqVV98KDz5zYnxXzvXm153jwIC1PLW7bA4MHw6qtwmk+N3igSdAshhBBCdHBVFVWs+GILv3y+heOZ+e3dHCFEG1m7VgXeALNnwzXXqOWKCvjwQ7Vsm1oeE6MtNyfotk0tnzIFvv9eSysvKYE774RzzlEp7KJ+EnQLIYQQQnRwrzz8N7MuH8HsBSPw6+VLZO/DvPPPNe3dLCFEK7NNLZ85U03dZfH22yrotQ26L7hAW26poHvwYIiPV73fN92krV++3L7Am6idBN1CCCGEEO3gu+/g448blqL540ofu8cHMvpw8+MTOHSwulXaJoRoH+Xl8M478NNPKqC2BN06HZxxBvTvDzNmqHVHjsD27fZB91lngaurWt61q+ntqBl0A3h5wVtvwZVXattyc5v+GqcTCbqFEEIIIdrYT18kcd55cNVVsHRp/fsnpqi8Ts8uJxgcoQZwms163n5Xq4n739fWMSJyL0veXNcaTRZC1FBdDY88AiNGwLfftswx33hD9SafdZYKrnfsUOuHD4eTkz9xcuZlQKV9287RHRMDAweq5X37VBp6U1iCbj8/CAy032b72DKuXNRNgm4hhBBCiDZkNsPTT1VaH+/YWlrn/sfSj5Nb5A/AyOiD/LGpP25uatuHH6rKxQe2H+HKu0ew9cBAbn4oCpPR1GrtF0LAiRNqTPNTT6npuy66SAXAjVVzTPTff2vLv/+uLc+cqS2fc462/N13Wk93YCB07w5DhqjHRiMkJja+TXl5kJmplgcPdpx2zBL8Axw71vjjn44k6BZCCCGEaCEVpRV88uJaRg0vo1s31QN2662qF8x0Mg7++8edrE+MtT4nJ8+jzmMmbtXmAorpX4S/P1xyiXqcn6+qGN99Sw5VRhWJ553wY8+GQ84OJYRoAUePwoQJ8PPP2jqjUc1j/eefjvvv3Qu//WYfYGdkqF7p2Fj73uJ9+5y/pm3Q3asXjBqllnfuhOxstTxggPppCbot2xtrzx5t2ZJabkuC7saToFsIIYQQogV88uJawnoVceV9E9i8zYPSUtUD9uabcP75sODiE5iMJp5/ttzuedk5ulqOqCTuLLQux0Srn7feqm1/6L5iflw/yu45q7f1sy5//vLfXHzGOvasr2VeISFEg23fDqNHa8Gsr6+qKg4qlfucc1SAbfHGGyqwnjEDPvpIW//66yrA3rMHvvxSrauq0qb/ioyEG24AvR7GjIHx4+3bMW+eY9siI9XPWO2eXpPGdduO57Y9loUE3Y0nQbcQQgghRDOVFpVyw6Lh5BT6W9cFB5vs0jL/+3V3zp+yySFAzsmpe86dxL1aqnjMkO4AjBwJo+PV1e6xAk+H56z5S71wVloJV947miV/jOPRB+XqWIjm+PFHmDhR9VID9O0L69ertPKzz1briotVgH3ttXD77XDbbVqWy1tvqZ9mM/zvf9pxLQH84cNqnDioauHvvAMFBSrl3EUr3wDAuec6ts9ZT/f69Y3/PZ0VUbMlQXfjSdAthBBCCNFM61fso7xKpYmPitrN2mU7ST+qIz8f/vP+CQx6dSX93doxDs/NPpxW57ETj/axLscM62VdvvWKJLv9xsbswstLBfCrV6sL+2++74rRpK7Wk490acJvJoQA+PRT1btcUqIejx0LGzZAVJSqFv7VV3Dmmdr+H36oerNtbd2qercTEiA5WVtv6Y22TS2PilI/u3dXvd01xcSoSua2LEF3cDBEn8yKWbdOG5/dULa944MGOW63DbqlkFrDSNAthBBCCNFMq38rsi7ffkMh488agk6vw9sbrry2O/95caPd/r7d8gnzV2O1cwp86zx2YkoYoKbrCe4bZF1/4Q0jCPBW8/XodCZef93AhAmqhzsnB5KS4H9fa13tWUW9EEI0Xl6eGtJh6bG+6CL44w/w1xJb8PBQ81a/9ZYKlC1cXOzHY3/+uX0vN6gg12SyD7otQXNtdDrHFHNL0A1w4YXqp9kM33yjrV+6FJ55pvaq5maz1tMdEgI+Po77+Plpy9LT3TASdAshhBBCNNOaDT7W5Ulz+jhsX3DXeF57eLX18Z1X7iAiSF2tFpd3p7SoxOlxi4shNVUtx8TYVxF27+rO4teOEN93H689/BfDzxjI5AnalfSSDxJZs0bbP7fQD2NVAyYFF0LY+de/oOjkfbXLLoP//he6OEkc0evVdF979qj9RoxQxdb+8x+tt/qzzxyD7uJiNed2kk3ySn1BNzimmNv2fFuCboAlS9TP1avVdGMPPwxPPOH8mBkZKqUdnKeWgwrELb+PBN0N41L/LkIIIYQQojblJeVsSFRXyH0CUwmNCnO6321PTaZ/9GbSjpSx8IGJ7D5zk3VbTlo+EYO6OTzH9iI8JsbxmHOvGMncKwDU608aegBQV8ovvNXHrlqyyWwg92gOQX0CGvX7CXE6y8qC115Ty25u8NxzztO9bYWGqh5tW2ecAb/+qoJrZ3btsu/pthRFq8vYsWqasOxs6NcPunbVtg0erFLUk5Jg7VoVTD/8sLb988/h6aftb+SZzfYV2WsLuvV61dudmytBd0NJT7cQQgghRDNs+i2JiirV7TV5eEqd+85eMJLr/zEJg6uBgJ7aXN056QVO90/cU21dHjiw/rYMnxpFN/diAErKHLvistLy6z+IEMLqueegrEwt33ijCqibYsECx3VTp2rLO3dqQXdICHg61kd0YDDAJ5+oIm5vv22/TaezTzG/8Ub7OcBTU2GTdt+PJUtU8bbrrtPW1RZ0gzauW4LuhpGgWwghhBCiGdb8pgWykyY1/HmBAVpV8uz0Uqf7JK5Za12OCT1c7zFd3V0ZNzip1u3ZR080vIFCnObS0rRgtmtXeOihph/rvPPUuG8LvR4ee0x7/McfcPy4Wm5IarnFzJnwww+qYnpNtinmy5Y5brekuX/7rZpj3HZO73794Kyzan9dS9BdUgLl5bXvJxQJuoUQQgghmmH1eh/r8uQ54Q1+XkCgwbqck+X8qjVxv9ZbHRNT93zeFpPG2gfW/l651uWsdLk6FqKhnn0WKk8mpNx2GwQF1b1/Xbp3ty98NmmSmnvbMjZ8tVbywVq5vLliYx2PFROjTT/29ddqirJFi7Tto0er1PO9e+0LptUkFcwbR4JuIYQQQogmqqqCdYlxAPQOLKbPoIbnngYGu1mXs7NMTvdJPKzKI7u7lhMxsGHHnjzDvhr69RftsS5nZVbX3F2IU1JCAnz5pfN/W7ZgV+/AmeJiNU0YqFTv++5rfpuuuUZbXrBABb+WKbls29OYnu662KaYW7zwghpfDpCSAnfcodWOmDRJzet92WVq/Hpd6qtgXl6ubiRIL7gihdTawIoV8P77YTz/fMOKIgghhBCic9i6FUpLVQ/05DM80TWiOyMgWCuclpPjuL2qooqDmaooW1RICgbXhnV/jZoeTTf3YkoqPBkQnMyZZ/vy9AdqW1ZWw3rLheiMqqrU9Fivvqrm0K7LsGEq4Lz4YnB3d9y+ZIkKvEEFoXX1+jbUjBkq6M/Ph6uvVutiY9XniK2WCrpBTW/21FNqecwYmDtXFV5bsUKte+stbd8nn7QvrFYX257umkF3To4K4JOS4MorVfX20530dLeB667T8d13/sw/Mx2T0fmdbCGEEEJ0PrYpoZMnN+65gSHaZL7ZuY7dSgd3pFJtdAUgpk/D8zfdu7rzwb92MnPEFj54u5igvloPeVblsMY1UohOorwchg+HSy+tP+AG2LZNBYSDB2vTgdn68ENteeHClmvnxReromaWCuhDhjju05JBd2wsvPKKGlP++ecqqD73XC3F3GLmzMbVpKgt6C4ogDPP1HrPv/++/qyC04H0dLeBfj0TycgYxJ4jYSz/bBNnXTmqvZskhBBCiBZgG3Q35oIVICAs0LqcUxnrsD0xIRfoB0BMVKXD9rpccts4LrlNLZ+wGeKdfby78ycI0cn9+aeadssiNlb1UNsWLwOoqFC92Jbe5YMHVSEy2+riiYmwbp12nJEjW6/dNYPubt2gd++WfY077lD/LPz8VIq5pbcbVC93Yzgb011aqiqpJyRo2woKVM96c8bDnwok6G4Dd99+gr+uVcvPv+jOWVe2b3uEEEII0Xwmo4l1a0oBTwL8q4iKcm3U8z19POjSRfXQ5eQ7BsMJW7XBkDGD6hlgWdfreKrKy6Wlas5hIU5F69ZpedGvvAK33157qvR998F//wuXX64er1xpH3QvXqwtL1zY8JTrpqgZdEdFte7rWVx4oRZ0n3MOjGpkn6Cznu677lJzgteUmChBt6SXt4G5/zecmJD9AKzdHce6n3bV8wwhhBBCdHT7tx2hsERNpjsuamujL5R1Ogg82dmdnW2/LXVfOq98qqWCDxvf9K4vnU674JWgW5yq/v5bewNecEHdgatOB+efr3qVQQXdlhToykr4+GO17ObmfH7tluTvr30OQMumltdlwQKVcj52LLz2WuOf7yzo/vZb9bNrV7jhBm17YmLT23mqkKC7DegNeq65dK/18fPPOp+LUwghhBCdx6bVGdblUcObVqI3IED9PHYMjEa1bDaZuf6KTE6UeQFwzVl/0T++4VORORMUUAGoAk4VZVXNOpY49ezYAdddB2vWtHdLHDVkPHBVlY7Nm9VyRETD0rPd3WHKFLWcna2lpv/4I+SenGXv3HNbpoBafWx7u1tqurD6uLurIHndOghvwsdLzaDb8g9UwbbLLtO2S9AtQXebmXheMCF+6sv5h79Hs3fjwXZukRBCCCGaY9Mmo3V51HivJh0j0F8Fw2YzHMsqAeCjj8ys2DwCgN49MnnpQyeVlhopyG27dTk7JbeOPcXp6Prr4YMPVA9xVQe6J/PQQ6q3eeJE+N//1JzSziQleVBWprq2J0xo+PHPPFNbXrlS/bSt5t2SBdTqYht0t1VPd3PVnDLMUjgN1O8QE6M9lqBbgu424+Lmwp3XaGfjfXfkSyVzIYQQohPbmOBvXR4xpV+TjhFg2GRdzjmSTno63HW3dnn23hv5+AR4N72RJwX6a4XYstMKHLZXlFZQkFPY7NcRnU9pqZq3GlQP719/tW97LBYvhueeU4H22rVq6quQEBg6VP2bMgU2blT7JiR4Wp83fnzDX2PmTG155UpVXO3339Xj/v1h+vTm/x4Ncc01KoiNjoY5c9rmNZvL2xsMBrWclwf79mnboqNV2rwlMJegW4LuNrXwvqH4e6m7y8s3juS5u1fX8wwhhBBCdETlJRXsONQfgOiQZLz9mxYYB/prveXZ6cW89542fdFVV8GcSwc2t6kABAVqN/qzjhbbbTt2NI/w3oUEh7ix5be9NZ8qTnEJCWCy6Qf6/vt2a4rV9u1w882O67OzVXsTEtTMAVddpdq+Y4cWdDempzsyEsLC1PKaNfD449q2++7TpvVqbQMHQmYm7NmjCh92BjqdlmJ+7Jh90G1JkR948uMrIwMKT/N7ehJ0t6HuPbrz2Tup6HTqk+2R1yfx27dJ9TxLCCGEEB3NjrUHqTKqiuKjYjObfJyAAK3aU05GmV0v4xNPNPmwDoKCtUu+rAz78effvfcn2QUBlFd58L8Pdrbci4pOwdLLbfHdd+07r/Lx46rIWYUaecFNN8Fvv6mpqLp1U2ORLcHwvn1qDLYl6Pbx0QK9htDptN7uigp1LFCFza64omV+n4ZydW27IL+l2AbdNdPLwT7F3BKU5+fbT+12uuhk/7Wd38xLh/PEzapKhcls4NIbIklLa+dGCSGEEKJRNv2VZ10ePdJYx551CwzWphlLP1rFhvVq0GpYmNnaA9cSgnq5W5ezMu2Ht63frE1kfCi1W8u9qOgULPNVW6SmqsJqbe3oUVi0SPU+Hz6s1o0aBS+/rOaU/uEHKC5WU+z98IP2vHvu0XP8uHofjRvX+MDVNsXc4o47oEuXJv4iHY2xotUObQm6S0tVdgKoyuUhIWq55rjusjKV/j9kCLzxRqs1q0Nqk6D7888/Z9q0acTGxnLhhReyc2fdd1F//vlnZs2aRWxsLGeffTarV59aadgPvzqJOdMLADh2TMfDD7dve4QQQgjROJu2GKzLoyb617Fn3QKCtSv7FX94UVbuAsD46M1Nb5wTQSFazmp2jv1cSut3a+WSD+X0bdHXFR1fzZ5uUL3dbemLL6BPH3j2WTU+GFRA9/XXqme7pjlzYPBgtXz4sHY+N2Y8t8UZZ9hPL9a9u+pd79CqiiDtOzj8KSQvhn0vw7orIMlJJPvXfFgWBZtugvSfoLrMcZ9qJzMrJS+GX0bA9vsgd73TZthWMD96VP2MjNRufNQMun/8URvfnZxc/695Kmn1oHv58uU8++yz3HLLLSxdupTo6GgWLlxIXl6e0/23bdvGPffcwwUXXMB3333HGWecwS233ML+/ftbu6ltRm/Q8+lXPvTooR5/9RXk5LRvm4QQQgjRcJt29wLAzaWCIeP7N/k4gb27W5dX7dBKGE8Y4+TCuBmCwrQx51k5btblgpwCEo9q7T+U1fT5wEXnU1ysBUGhodr6th7X/fTTWmVyFxc13dS6dfZtsqXTwf33O65vzHhuix49YORI7fENN6g09Q7pRDJsvROWhsBf58H6K2DjQth2Nxz5FDJ+tN/fVA05f8GJ/XDwHVh9FnzTE/44E/6+DDbdACvHwS/DHMcUZP0Gx7dC4ovw6zj46wIoPmy3i7Pp1Gyrr9cMuj/7THs8d27T/gSdVasH3R999BEXXXQR559/Pv379+eJJ56gS5cufPPNN073/+STT5g4cSLXXnst/fr1484772TgwIF8Zvu/dAro0UObhqCyEj54vx0HzwghhBCiwfKPm9mf3geAoVFpuHm41fOM2gWE+FiXjSYX6/L46UFNPqbT1wnVuqSyjmkp5Bs323cjFpT4kJ9d0KKvLTquhAQt1po9G0aM0NanpLRNGw4cgL0n6/fFxanX/fxzGDCg7uddcgl2QzBcXc12wXNjXHON+unvD3fe2bRjtKqMn2F5HCzrD0mvQvUJ5/sV7LQPnstzwCcWdNpnC8ZSyFoJKf+Fg+/BsfVQlAQFNcYUVByzf5z2DfwYA1vvgkJ1p8a2p9vCNugODVXj8AE2b4aff1bLwcEwdWoDfu9TiEv9uzRdZWUle/bs4YYbbrCu0+v1jBs3ju3btzt9TkJCAldddZXdugkTJvDbb7/V+jpGoxGjsenjqVqbpW0123j99fDii3rMZh1vv5LNPXf74uLWqv8lohOr7TwSojHkPBIt4XQ/jzZuAlDp5SOn9m3W38EnwBu9zojJrKWre3kUEjOyT4v+fV27uOLTrYCCEh+y8rytx/57o2Pu7oHdOQzv2R2MRiytMhqN0ML/36f7edQRbNqkw9IHN2yYid69YcsW9XjpUhO33aYFcCUlcOSIKlSm0zk5WC2ys+HSS/X4+8Nnn5lwdbXfvnSp1oZLLjERGGhu0Kmm18Odd+q4+25L+824uZmadJouXKh6ZUNDISioxU/1+pnNUJCArigJyrMx9xwHfrZ3EFwxFGjDc80GD8zhl4PPENC7gt4ds1eMemxbit49EM5YA1XFkPMHuvRl6DJ+RFeRa//y3oMxleWCl80vPvlnKM9Fd3Qput2Po6vIAVMFJL0CSa9g9huNH68Co+2ONWCACaNRO2+io/Vs3aojK0vb5+KLTUDD/p/bSs3Po5b+XGrVCC8/Px+j0YhfjdwDPz8/Dh065PQ5x44do2eN2yZ+fn4cO3bM6f5Ap0k93+WkVN+ZI8r5ZfN4jh4L4sN/fcfoubXk0QhxkrPzSIjGkvNItITT9Tz64YcgQKVhBwSkkJBwvFnH6+kVSk5hgPXxyOhEdu1xreMZTRPo462C7vyeJCQkAPDbb/0B++nO/txiwOCTgL6sjKEn1+3cuROThwet4XQ9jzqC336LANR1uqfnPnx8zMAgAL74opiJEw8AKvX78ssHkpzswa23HuWqq7Ib/BqvvtqbNWtU5saIESnMmJFvt/2//40E1DCLyMi9JCQ0vPDXyJF6QkNjSEvrwuTJR0lIyK3/SbXo1k1VTj/evLdz45hN+BSvJvD4J3iWa++D9J43keWnfQboTF2J03Wh3L0v+Z7TOOZzLkaDD5TYHKsQSKtrQuwwcLsFwm/CxViA3lSKwVSCUd+NSrcQyAQyE5w8bxT60CUEH19MQP5/0ZurVJvyNuJ//A1qBt2wj4QEbXhMQEAElnPMYsQI+306ktb6PDolulUjIyPp2rVrezejVkajkV27dhEbG4vBYLDbdsdd2/jlMrX89dIwbng4rh1aKDqDus4jIRpKziPREk738ygtTRudd8EFYURGNq/MeIDPIbuge9LYMuLjm5gnW4egfkaS0qGkohv9+8fTtSvs3es40tBs7kN8vFl1bZ40ZMgQLU+0hZzu51FHcOiQ+v93czMzf34Urq7Qt6+ZQ4d0bNvWnbCweHr0gD/+gORk9X+0cWNvXnkluEHHN5th3TrtHEtPjyA+Ptz6OCcHdu5U26OjzcybF+NwjPps325k1ardnH12JAZDB69JYDZB9h/ocv9CV7gLjm9FV5busFuwr4Gg+Hj7lUOy6eLSjWCgYX/9ljYBc8ULmFK+QHfoI3SFu/ALC3HY6+yzo7ANy8aN01nTygFiYsxcfHFUo7Il2kLNz6PS0tIW7dht1aDb19cXg8HgUDQtLy/PoTfbomfPng692nXtD2AwGDrFh7Wzds68aDhR9x0iKb0vfyYMY9+mgwwa2/SCLOLU11nOd9GxyXkkWsLpeB4lbjrELz+HAwZ69IDoaEOzLx4D+4az22b87MRpPq3ydw3upR3z2DEDFQU5FJ4M9kNDsU5heuSIHoMBsGlDfr6Bf9xvoH9/uPfelm3X6XgedQRFRWCJKeLidHh4qP+Dc8+Ff/8bjEYdK1YYWLAAli3TnpeYqEOvb9h5v2ePfZXqv//W255W/Pyzlg09b56uSeeBjw9ERFR0jvNo3dWq4JkzPrEQsQA8eqP3ibV7/wFg8Gr99tWnayDE3AXRd8Kxdfjv6GG3OSwMume+A+GXgrvaNmiQ/SEWLNDh4tJx/58s51FLn0utWkjNzc2NQYMGsX69VmbeZDKxfv16hg4d6vQ58fHxbNiwwW7dunXriK95t+cUoTfoueUqbaLuJR8fbcfWCCGEEKI2ZpOZu249TrVRXYzdtvBoi/TWBARphdgM+mpGTY9s/kGdCAzUlrOyYMOv+6yPLz1zm3XZ2QjAa66Bd9+F++7T5uMVndv27VrNreHDtfXz5mnL33+v9rGtZl5crN2gqU/NKug7dsCJE863n3tuw47ZaZiqwFhpvy70XPvHLt0gaCZMWQ6zd8DA+6HP5eA7hA5NpwP/8fj1tc9MiI7Igi23wrIBkPQ6mKrsKpiDqkx/Omr16uVXX301S5YsYenSpSQnJ/P4449TVlbG/PnzAbj//vt56aWXrPtfccUV/PXXXyxevJjk5GRef/11du/ezYIFC1q7qe1mymwtSeRoese98yOEEEKczn78eDMrNqvyzqE907n/Hz3qeUbDBPYsty4P659EN++WTeO2CLIpiJ6VBTZ9Isw9y4CXpwoQDiU6zmP6+x/asqXStOjcbOfntlQtBxg3TpsK6uefYdMmSE21f+6ePQ17jZpBt8kElr610lL49Ve1HBQEo0Y1vO0dWmU+7H0evo+AtG/tt/WeB+GXwLjP4eyDcGERTFsBvWY3rjpdB1EzETnaa4VaqDwOW2+HnwbTz30ZPXqouztTpkBERJs2scNo9aB7zpw5PPDAA7z22mvMmzePxMREPvjgA2u6eGZmJrm5WtGDYcOG8eKLL/LVV18xb948VqxYwZtvvklkZOvc9e0IgsK0L+2s3C7t2BIhhBBCOFNRWsFdi7Su4hcfT6GrV8vUkwnooY2dHj+89sKxzRXkpY0dzUrcxfoEddPfoK9mxNQB9A1QXdwpmb5UV1bXepy2mkpKtI78fHjpJZVCbmEbdLu4wNlnq+WSEudTaDXkxktGhgrYwT6eXLtW/Vy5EspO1tI6+2xVjbzTMpshdz1suhG+C4WEB6EsA1K/st9Pb4Dx/4WIy6B7P9B15l8aunfHrhp99PR5KkXe4sR+XNefwzeL7ubOG3NYvLjt29hRtEkhtQULFtTaU/3pp47jGmbPns3s2bNbu1kdhl+vHhj01RhNLmTlebZ3c4QQQghho+xEGXdesZnkrEkATB6SwIU3jW2x4w8do1X2nXtFyxdQswjyzsRSdf3Vtz05mKkKWsX1PUBXrxj6hhSQcAiqja4cPZBGeHgPnPW91ez1FJ3Hzz/DhRfa1cjDz09NA2Zr3jz4z3/Uco1Rn0DtPd1790JhIYwZAz/8oK2/8krteH//rX7+97/a9k6ZWm6sgGPrIPNXNYf1iZpFt3Sgd1cBeSfsxW4InU71dmdmqsdRsT4w7lOIuh223Q256g7LlOBXmBL8KmRfBYFPQdde7dbm9nJKVC/v7PQGPQHeOWTmB5F13Ke9myOEEEKIk9Z8v4Nrb/biQIYKuPU6I6++4YFO33IX0WeeCZ99Bm5uMH1W683GEhTa3bp8IKOPdXnC8Bwghr7hWpr7ocRcEhJ6cO7Jx349oPTkVErS0915PfOMfcA9axY8+SQOc2fPmAFdukC5dkowcKDWw+2sp3vfPoiLU9OLzZmjetQtbrsNfvsNjh5VQfz+/fD112qbvz9Mm9Yyv1+byVkLf54JxlLHbYau0PcqiLoTvAa0dcvanG3QHR19cqXfSJi+RqXXJ9wPxYcAMxz6CFKXwNnJ4BFY2yFPSZ07p+EUEtSjAICcwp6YjKa6dxZCCCFEqzGZ4JcfCpgzZjOTz42zBqhuLhW88djfxE2MatHX0+ng8stVD2RrGhAXgpdHofVxN/di5o7ZxH1PqiF8fftpl4WH9hfz8cfac998UwVhID3dnVV+Pqxbp5YjIiApSfV826aWW3TrBjNn2q+77DJtPO7evVoRNosfflABN8Dy5VrNgNBQGDoUJkxQj0tK4KqrtKrlt9+unVsd0rFNUJphv65buGPAHTgVxnwE87Ng5JunRcANMPZk0s+gQRBsO5eZTgdh58PcvTD0JXD1Vut7zzvtAm6Qnu4OIyjEE5JVStfxvGp6Bsj9ECGEEKKtJSbC/Pmwb58PoKV6j43ZxYf/6UrMqEnt1rbm6ubdjU1/HWLLmt3EjvRn0Oh+GFy16lV9B2i97Bs2e/D779pz585V0wHt3696uk/hjNlT1ooVWqA7fz7UVy5p3jz7FPF581QgfeSIqkB+9KgKqC0sY7WdHUeng/Hj4csv1TpLQN6tG9x8c5N+ndZXngObb1ap4wMfgPjntG1dQ8A3HnziIGgGBE0/LQNJgFdeURkTY8fW8plgcIeYu6HvlbD7KYi+q62b2CFIZNdBBPXVJpfPypF7IUIIIUR7ePlllSZrEe5/lDcfXc1fOwYSM6pf+zWshUQN78vld41nyIRIDK72M6b0i9FKEX/y41BsE+/0ehV0g+qptE0dFp3D8uXa8pw59e9vW9ysb1/Vk2k757LtuG6TSRur3aMHXHedWjYY4Oqr1bKlp9vWDTeo/Tuc1G/gp0Eq4AZI/hCMNrn2Oh3M3g5j/6Om+DpNA24ADw847zz72RGccveD4S9Dt7A2aVdHI0F3B1Fz7kwhhBBCtL2dO7Xlb7+uJDk9mJufmOwQoJ6KwqJ7odcZAaiqduwACA/XlmVcd+diMqlUcgBPT5g4sf7n+PurMeBRUepmlE5nX3DNdlx3UhIcPznmf8IEeO89lRWRlATDhqn1sbGq2rWFqyvc1ZE6Pc0mSP8Rfp0Iay+AipMzCbj3hLhnwGlZQSEaRoLuDqLm3JlCCCGEaFtmsxZI9OkD553vdloE2xZuHm6E9syodXuYTQeVjOvuXDZvhmMnY8gZM1TRvoZ44AGV+XHOOepxbT3dtqnl48ernwMGQD+b5BCDQRv/C6qOQYiW6Nl+Kgth/1uwPBZWn22tuA1A6HyYuwf6X6fSpIVoIgm6O4igAKN1OSslrx1bIoQQQpz6zGaVbrt6tbbu6IFMTpxQy4P6pDt/4imub+/a5wmXnu7Oq7Gp5bWxVqfGvqfbkloOztPILSzBu7s73H9/09vRon6fCltugUKbX8grBsZ/BRO+hi4B7dc2ccqQoLuDCOqyy7qcnbSrjj2FEEII0Vw//qiKg02ZAlu3qnV7NmuB9sDQA+3TsHbWV5tJDB325amlp7vzaqmg29PTeQVzS0+3uzsMH17782+4Ab75RlVRj4lpejtaVMTl2rL/eJj0PczdDeEXSbVA0WKkYlcHERTmZV2WQmpCCCFE61r21VFA5bb+9JMKFPbuLLZuHzjo9Pwu7jtiKCxVy5Mn68AmE0B6ujunrCzYskUtx8dDr17NO97AgaqCeVERpKeDiwskJ6ttI0eqwLs2Li6qcnq7MRnBVAkuHtq6PleqeaT7Xw++ce3XNnFKk57uDiIw1M+6nJXrUceeQgghhGiu9WvLtOV1qkz3nr3a+O1BQztiSeXWZztn8//9n82Ggx8SElRi7fiTnu7O45dftOXm9HJb1BzXbZtabhnP3SEV7IKVY2H7Pfbru/RU82pLwC1a0el5G7cD8u7phbtrORVVXcjK86r/CUIIIUQDmU1mdHpJk7QozC1kT6pW4WnDRj0mE+w56GtdFz0i3NlTT3kzZqjK02YzXHwxcO3JDVvvwG3/YwT7p5CR4yU93Z3Ihg3a8qxZzT+ebQXznTshM1N7XNd47nZhNqux2oc/hn0vg7kajm+G8EshoAEl3IVoIRJ0dxA6vY4gn2Ok5IaQle9b/xOEEKKVbF+1j8Lj5UyZH9/eTREtYNPKPZx3aQ9CA/L4Y2Nfunp1BaCqSk0hFBdnnzZ8Otj8ZzJm8zDr44ICSNqSzN4UNWg5IiANT5/Qdmpd+9LptDmWKamxsaqAMK89ZOSMJTsbysuhS5e2bqForDyb+ryW8djNYdvT/Y9/2E8DNm5c84/fLGYTFCXB8a1wfAtk/Awn9tvv4xUNeqlELtqWpJd3IEF+BQDknehBVUVV+zZGCHFaSliTxNiZEUw9P57/fXS4vZsjmqmksIRLr/Qk43gwG/cNZumH263bnnwS5s1Tc+im2xTqXvVtAnPHbOb7Dze2Q4vbxvo1RQ7rvv4kjRNlKtNsYB+Zu9NBn8tBZyC8p9bFnZZqX2htwwaYPRs+/bStGyfqYpk/G6BHC4yaGDpU/QOorNSC+oEDW+b4TWY2w0+D4aeBsP7/IOlV+4Bb5wKDH4HZCdBzVLs1U5yeJOjuQIL8VAEXs1lP7lGZNkwI0fbefDGLiirVdfXOf2SalM5u0Q1bOJSldWP/8Ycau2w2wyefqHXHj8ODD6j1qfvSOWdBX5ZvHMkVt0VTWVbZ5m1uC+s3d3NYt/h/Wrr5oKiaXbyCUe/C2E8J80uzrkpdtVgrXw08+KAaP3zNNdqc0KL9WYJuNzfo2rX5x3NxUeO4H3xQzb1t0e6p5Tod9BhRY50eAibD8Fdh3mEY8k+Zb1u0Cwm6O5BAf+3iJis1vx1bIoQ4HRXnF/Plr1rK7aq1XcnJaccGiVoV5BSStPWQw/ojR1SV4vJyWPP9Dl77arLd9j82RQBw8KB99enPPtez7qddXH9FprW3t6jMmw0bTK31K7Qbs8nMhj39AfDtdhyDvhqAIzlaOvnpWrm8XhGXEj5Cq5SVsuVv+Ot8qCwEVFEtgOpqWLKkPRoonLEE3T16tNwMWB4e8OyzsHkzTJ4MAwbAHXe0zLEbpDARNt0IphqZoWEXQu9zIO5pmLoC5ufC9FUQdTt0DWnDBgphT4LuDiQoULu4yUorrmNPIYRoef97bzvF5drgPJNJx9Kl7dgg4VRxfjGDYkqJHtGX5+9eZV3/228QFaWm7PHygrmXDrBu83ArBVRgeXh3Gis/X+dw3HMu7cWKzfa9RCt/P/UG7O7ffpj8ElU7ZULcAWIjDjrsc7pWLm+IsOHaoN3UvDA4uhRSv6KgwL53+7PP2r5twjnboLulDR0Kq1bB/v32BdZaTWkGbLwelsfCwXch6XX77SFnw+TvYdAiCJ4J7vJeFh2DBN0dSFCw9t+RlXlqpvQJITquDz/1dlj3vyWnXk9nZ7fulyQyjgcD8NArk1jxxRbSkjK49IJCKk9+dVRVQXGZyiMdP2gnD167yfr8P5YdYeVvWk5ooLcav5x3Qpu60mLlytb6LdrPhj8yrMtjR5YydqhjOkfMiLC2bFKnYjdX9/EBEHo+9LuOgzXuXaxfD4cckzFEG6ushOKT/TjtOt66ufITYPOtsKw/JL8PZqNaf/g/au5tITo4Cbo7kKCBWlpnlrEjT3QohDjV7Nt8iL/3DAFgUNgB+oarntE//zSTmyaDMzuSxIPaeGSzWc9lN/TlvLMLOFaobpoMii4lJkZtDw6Gj76JYcZcLaBesWEgf2xVXVIB3rl88YHNfD/AlXPWMkSdCmzZYl/5+FSwfr12I2nsJB/GjrO/FAoPB09fz7ZuVqdhG3SnmufDmMWg0zkE3QCff9527RLO5duMVuyUQffR7+Hn4fDzUDjwJhjL1HpXL5VCPnMD6A11H0OIDkCC7g4kKET7ks/ObseGCCFOOx++nmpdXnhpOhdOVZWrTWYDSz/e217NEk4kpkfbPT5e3IOtB1QQHRGQxpo/Kti7V/VupaTAgChXRsyIxfPkV8w3P/awDiOYMXo/0y4YyuUz/wYgzP8oLy8ezMyZal+zGX7//tSakHn9HpV2r9cZGTF1AGOn2U8N1iYpsp2Yt7cavgCQctRDBT/gNOj+7DO7OmuiHbR05fI2U54Day+GNedC/jZtvcEDou6As5NVCrlLC1SGE6INSKWQDiQwUFvOqjFbSeq+dC49P4+ULP+6D2LoAm415vmuyGlY6o2bNxhsPrzM1VCeW//zALr4q6kYLKpLoMpxShYHegO416iQXHkcjBX1P9elK7jWSIctz4SGfMG7+4LeZqyiqQIqjte+vy2PIMCmEklVkfp962NwA7ca6ZsVuWCqrv+5rt3BpRtVVbG4uupVWlV5AytcdekJOlftsbHUWvSmTjo9dAm0X1eVD9Xl9T/XxQNcfezXlWc17OrLzUd9qVqYKqGigV1tHoHY3UusPgFVDaiPoHcF95726yqPgbEBU/e5eoKLzSSlmKCsgXfN3P1A76Y9NpZBZUH9z9PpoEuQ/bqqAqguq/+5BneqdCfPI4uKHHLy1ThNV0Ml/3drLClJ2Tz/H7X5f0u7cf0/6j+0aBt7be6BhPmnk5rbGwB313K++bKYHsEqiOxmU6Db1RUmTYLly9VYfYuZM9R78qMfRnH5/zYzYnIffAN9mDn2IC+iio2t/C6Vi64J5+nHC/l8iTeRkTBypI6goG7ExbXyL9tC8rML2PZXGlWesew+qFLzhwwx4+nrST/vbvT0OsaxIvUZMDDGjN1nvHAQHg67dkFaGphMoNfbB93Bfvlk5vmyfz9s3QojRtR+LNG6Om3QXZmverktegyHftdC+KXqelWITkaC7g6krqD7xiszWLd3ZBOP3NRpf1yA4CY+t9vJf03RnG+FprbXvRnP9Tr5rynquYniwBKgGWh6e7ue/NcUvvXvUqug+ndxyo2m/67dT/5rip717+KUnqa31+Pkv6bwOfmvKbTPiHkTt9IzZCx+vXrQJzCVw9lh/JkQx7GjefQMcRzzK9peYqL6GRwM339ZzJTZhZwo8+Tdp7cwbGrtc/ZMm6aCblsz5qteX1d3V2Yv0L5jJszoTRfXMsqrPFi5vi8f/2st/3higvX1v/9eD0STmWniHx38hkxu2jH6R7lSVBZrt37sOHUJpNPrGBu9m2WbpgAwaEA+zfseOvWFhamgu7JSZeYFB8PBA9VYLisfmPM4d376KqB6uyXobj+2w0M6VdDtFaWm90p8AYa/poLtliq9LkQ7kKC7A+nWDbp3q+REiRtZKblYArKffjTz8yZ1MdTFtYyeXnVMJ2boAm41PlXLs7WCE3Vx8waDTaBsrmpET3dAjZ7u4gb2dLs46enOa2BPdzfHnu6yDOf71uTew0lPd0N7U4Ox7+kubGBPt7uTnu6cBvZ0e53s6a7C1dUVzCb1/9oQXfyd9HQX1P88nd6xN7UyXxtPVReXrrX0dDegKJebr5Oe7gaOKfYIwrGn+0T9z9O7gnuNGyAVx9Rr18fVE1xsb7qYoCyr1t3tuPuB3ma+UGOZ+hvXR6eDLjUC+6oCqC6t/7mGLlTpPNV5ZDmPT35G9PY/zrMv91Ivoddx4axDvPBxGEaTC999spdrF00E1JRLq7/bQa8IbyKH9an/NUWLOXZMqxAdEwPxk6LYn5hLSVEGfQbXPUnutGn2j2Mj9hPcN9Lpvh7dPZgUt4WVW0aQdqw31z3k/Abhl1/qOnzQ/ecP+ykqG+ewfvZsbXnOXD3LNqmU8/GjipGgu279+2vLO3eeDLqT1TVAsE8GV078mPv/+wKV1e589d8K/v1vd/QyoLFddIqe7qL9sPtJGPWOuraziL4b+l6lrjGF6OQk6O5ggrzTOVHSh6wc1aNZWQl33a0FeB+9mcEl1/Vr5FED69/FKVegVxOf63nyX1M0pzetqe11b8ZzvU/+a4qGf5EYjUYSEnYRHx+PwWCg6e1tbk93U3u7m9PT3dTftb16upva3tbv6VbnUYLNeQTaZ4R9u8+/zJ8XPlbL3//ozrWL1PLHL/7N1Q9MwN21nJT9uQRGNDZjQzRV4vpdgOqxjQk5CPQnIKxhf/+4ODUvdX6JuvKeOSEdcB50A8ycWszKLWq5yqi+k66bt4a7n5vE+eeWsTfJgz17dORn5eMb1JwsmNaVekS7eXbB7FSihoUxeDCcdZa2z7UPjsPN7S/C+nYjctgwJ0cRtkaP1pbXr4dx47RaNP1juuMT4MPM2JX8uP1ssnLcSfj2Y4adf4X0VLaDDh10VxaoKb/2PK06P7oEwrAXte16Fwm4xSlD7jt2MEE9VO9wUZk3ZSfKePVVOHBAbZs4ES6+trEBtxBCNM2IM2II9lW99r9uGUJxvhof/8Y7KkukoqoLW1cltVv7TkeJOwqsyzHh6Y16rl4PU+O0gkQzZ9U9B/fMefY3YYYP2Mtrn48iOhqmD91oXb9upZMKWq0gNxfeew8yGpjQZJGapgV6d91SwFNPwSWX2Md/Lm4uXPPgRKZfJAF3Q4wdqy2vXw/Jydrj/tHdYdZW5k4+bF3301cHYe0FDcuAE43200/wv/+p8fU1dbig22yC1K9h9Tz4NhB2PaoCblBjuBtSm0SITkiC7g4msKeWHrpuRRJPPqk+QXU6ePVVuUkshGg7eoOeeVP3AyrAXvm/3SRuSmbrYW2AZm7R6TfOu7qymitmr2X26M3kZTSwAGMLSdyrXVXHDGl8Fse9Dwfi75XLrFGbmXZh3XVCBo8dQJ9AVdW+h+dxvl7qRZduKlAfN0EbsvL36gYMr2mm6mo44wy44QbVQ92Yitip6drNhdD+Tc1gEbbCwyHoZPLSxo2wf7+2rX9/wN2POXfcYl23PGEOpH0Lv4yEQpkNoSUtWaLeExddpILvmjpU0F2RB6vOgrUXQvoP2hAunQFi7oM5CaoQqxCnIAm6O5igAC0Nbu5l0Zw4of6LrrsOhg5tr1YJIU5X8+ZrQxG+/66az99Ps9ueWxnT1k1qdz99tJpPf5nAL5tG8t7Ta9v0tW3n6I4Z2vhhDGPnxJKd35OfN47Exa3uEWY6vY6v/1vCXZetYvWKPCIGhVi3jZsZYV1eu6n1U8s/fzeFXbvU8vbt8Pff2rY1a+DhhyG9lo7/tCxVc8Ggrya4j6SqtgSdDsaMUcuFhfDjj9o2y3jvsAgDgwer5Y3Jo8kt6gklh6W3uwWVlsI992iPExIc9+kwQXfuevh5GGT+rK3zCIaoO2H2Dhj6gv14biFOMRJ0dzBBgdrt+4oqdXc+uk8OzzzTXi0SQpzOpp4XS3cPdZH849pYPv/BfohLTgNnrjuVJOzVajjs2lH7FHqrlybw4NWrmBKXQJBvDgvP/guzqXmTFiceUd2L3l0LCOrTtHodOn3DU6aGTY3h359PYfC4AXbre/UNIiJAzd+9OSmSyrIGFL9sosqySp540r7NH36ofqanw6xZ8MwzcO+9zp+fmqPGvPf2y6r3RoNoONsU82+/1ZZti6zNmaN+ms16Vhy8DvOwV3ngX2OIiHDeKysa5/nn4ehR7XHNmW+gAwXdB9+FUpU5g7s/TPoe5qXB8JfBZ1A7NkyItiFBdwcTFGywezw1fjvr1rvhd/plcAohOgD3ru7MPkMF3cdPeHMkJ9Rue24DJzg4lexO18b9JmYOcbrPS/evYsr8eJ7/zxRW74wnuyCAxT9OZHcdQXp9igtKSM1Vvc0xYWmNCp5bw6hBaix3eZUH21btr2fvpvvoxQ0czg6zW7fky3KK8op4+p5tlJ0cArpzp+NzS4tKrfNvhwU2cIYK0SC2QXeJzQiDfjb35SxBN8Dy9Cf5bMONvPACpKTAs8+2fhtPZSkp8MIL9uvqCroNBvBq6uymjWGshJQljmNAAtTsF/iPh9nbIeQc0Bscny/EKapVg+6CggLuuecehg0bxogRI1i0aBElJXWP/fq///s/oqKi7P49+uijrdnMDmXsNG0aoKvm/sUv6wbhG+jTfg0SQpz25l0aUuu20zLo3qN9dSYdDcNktK9etGf9QRa9PLbm09S2pKaPV0zalmpdjulX0OTjtJS4OG06vrV/tE5AW15SzpOvaL3sEwaryLq0vAvP3reN97/W5t5OTTU7XOcfPahNrRgWXNwqbTxdDR8OLjUSB/z9wdtmMo9x47THP/9i4I47tRtFKSmgS3qVkJyXGzdIXwBw331QXuMeXl1Bt69vK9YFMhkhZw1svhW+D4O/L4bMlfb7BE6D+OfgjD+ha+9WaogQHVerBt333nsvBw8e5KOPPuKdd95hy5YtDQqgL7roItauXWv9d//997dmMzuUgaP7s2nlXv74ejuLf5iAm4dbezdJCHGamzMHXFy0i2IPt1J0OhVo5h5qvR7Ojqi8XJtRAqCssispidpg4urKaq66spLKajX/+k3nr+G9Nwqs2xMTm/7aiTu0PNGYaGPTD9RCBg3XCpT9vaHuSuhN9c5TG0k/rm5GnzN+I6+8qhVwe+6jKVQbtcfFxToK86vtnp96UJv3PrR3Vau08XTVtauahs6WbWo5gKsrzJyplgsKIF/77yAz04R5230E5n+ObsuNYLL/vxO1W7VKVSsHCAiA7idrKmZnO+5rCbpbJbW8JBV2PgY/RMBvk+HAm1B+shG7/2m/r2cfGPgA6F0dDiPE6aDVgu7k5GT++usvnnrqKeLi4hgxYgT/+Mc/+Omnn8h29qlgo0uXLvj7+1v/eXo2db7nzmnkjIFMPX9ou6cOCiEEgI8PTJmoTeNy7qTt9PBUV885eadXpdmkPeUYa8S7idu07qUXH1jLlgMDAYgOSebfH49i8gwfbd/mBN17tKAxJrZrHXu2jV6Rfvh0KwDg7539mj1e3Zn/LtXGVv3zWR+GTYkmrm/t09Sl7j1s/zhXKzYX1r+9SzefesbWSOioGXSDfYq5LaNRT3ahqkugP/QhrD4HqiQboT7V1XDHHdrjZ56BkJPJSDV7uqurVaE7aMGg21QFaUvhzznwfYQKrkttBpbr3SH0fBj2cgu9oBCnhlarKLJ9+3a8vLyIjdVSv8aNG4der2fnzp3MmDGj1ucuW7aMH374AX9/f6ZOncrNN9+Mh0ftF3ZGoxFjzaugDsTSto7cRtHxyXkkWkJTz6OLLu3Cb3+q5StvCmb7vgLyTviRW+h7Wp2TO1dvASbYrduzs4QzjUaSth7msTdUFKLXGfng3WJcu7gSHm7EzU1PZaWOxN2lGI3uTXrtxP1ab3JknH+7/t2NRiN6g55xg/ezfOMocov82bf1IJHD+rTo62QcU5FCoE8Og8f1x2Q2sfCyTG5/Ksq6T6B3FtmFqsDc4QPHGTRW+7scydaqlfcePOi0OldbhNGIwbpopOYdp9GjdbzxhtZ/07evCaPR/uaL6unWxu7272/m4EHVqZDa+wOCys5Fb66CzJ8x/zYZ08QfwCOoNX6bU8K77+rYuVP9zYcPN3PFFSY++0xPYqKOkhIoLDRi6avKywPL397X14zR6GQib4CyTDi+BV1RIhi6grsfZjcfFUB79oduWk0F3c5H0Cc+b/d0s04PQbMwh1+KuddZ4Hqy672N3m9yfSRaQs3zqKXPp1YLuo8dO0aPGrfVXFxc8Pb2JreOQYBnnXUWvXr1IiAggKSkJF588UUOHz7MG2+8Uetz9u/vHOmNuyzznQjRDHIeiZbQ2PMoPh4eeMCf7t2r6Rmej9/JgjwlFZ5sXLce964NHwpjMprQGzpnHc9NGwsd1iXsrCYhIYH/vJhJZbXq6rth/gq6BAaScHIOn36B3iSm9Wf/AQNbNm/BxbXxX78JqaoH3d21ioKKXBIS2naOcGcGDSpk+Ua1/NX3VZytT2ixY5tNZnKL1JxTPbvnk5CgpquLm2zA/flyKqq6EOCdw02Xb+Dxt84FYFdCJiFDtDbs2BEOqEJqZWVJJCSUIRpOX1aGZbbSnTt3YqrRAdK9uxugda64uh4hISGfmubMiWD5cj8uuCCHnj2rOHhQjen9OzkS31Fv0C/9XlxMJ9Dlb6Pq57EcCH2LStdgh+Oc7goLDTz88GAsiao33ZTEzp0luLv3AdQ1959/JhIaqmYTSElxB07O28ZxEhKOWI/VJ2MR3cr3oDeV4Wqs/bMkvectZPldbX3cpWI4llrjFS5BHPM+lzzvs6lyDYR8ID+5RX7XppDrI9ESWus8avS3/osvvsj7779f5z7Lly9vcoMuvvhi63JUVBT+/v5cddVVpKamEhYW5vQ5kZGRdO3a/ql2tTEajezatYvY2FgMBqnUKJpGziPREppzHg2zFu0OJ8h/k3V9cI/ehEU3rDDOA1ev4c0vx/D8fRu55Z8TG/X6HcGRtK0O6w4fDSQ+fiAbd2gBySP/Gk5AWE/r40F9N5KY1p/Kane8XXsyID6iUa9bWQlp6epCOyrGheEjhjftF2ghlvNo1uVT+NditS4tM4r4+JZLMT9x/IR16sxAvxLi4+Ot2z55ZSMf/ceVBx92oay0N7yl1hef8Lbbr6REu7kzfXoUvq0/pfipxab47ZAhQ6Cb/TzKcXEQEGAmJ0f1XE+bFk58fLjDYb77DnJyjAQF+fHRR9rQOVfXCIq7Dsc0/S/Ma89BV5pKl6o0BmfehGnKL+AV3Tq/Vyd15506CgvVOX3ppSauukoVGYyK0rFihdrH1zeG+HigOJmKxL+xBN39+/sSH+9jPZb+eDm6E7VMbm8juHcYQdHxNmviMXk8gNl/Ii6BMwjSG2jvvAS5PhItoeZ5VFpa2qIdu40Ouq+55hrOO++8OvcJDQ2lZ8+eHD9uf+esurqawsJC/P39G/x6cSerdKSkpNQadBsMhk7xJuss7RQdm5xHoiU09zzy99PGF+dlFtNnUP3H+m3JNl76dCoAz7wZw21P6jtM7YpPXlzLx1905dFH9Ew+L77W/XYnq9637h5FeHU3kp7jS2JGFCdOGNh6MAaA2MhjBNeYQzsmqgJWq+X9O44RPdx+vvP6fP+9Gp8JEBur6zCfASNH6tHrwWSCrVv1OGtW2Ykyrr9wKzuStFTvUbHZvPXV6DqLhR7PKgJ8APDvUW73O1908zguulktJ209ZF2fdtTNbr+0lCrAFU9P8PMztF715lOVzd/SYDDg7D946lT46ivo0gUGDjQ4PQcMBuh98r5cqM2sg5mZKoA0+A5GN2Mt/DkDipLQlR3F8McUmPYb+MY5HvB0U1XE4e17efvt0YAqYvfCC3oMejPsepxerjOB8QAc2/w5htJXIH87BTtnA6qX2s+7HIPBpoPK3Q+6BIDOFboPAL+R4BsPZiNU5EFlAZgq0fuPdfx/H/pca//GTSLXR6IlWM6jlj6XGh109+jRwyFt3JmhQ4dSVFTE7t27GTxY3WXbsGEDJpNJ3S1toMSTVWcaE6gLIYRoXf49tbGBuVl1TwUJUFVRxR33aZPEZhcGkpFWSu/w9s9SKsgp5LqHRlJZ7U7OXfvZVct95RPHT1jnKR8ckYJnSCzpv0JBoRtLloDJdLK3b3ZPh+fGDNKCy8TdZZzTiPaZTWaefx5AHf/qq+vcvU117QqDBsGuXbB7N5SVQc0SLJ+/voXPVthnNew6Esngf67m/9m77/iazj+A45+bjSyJJBJJREIGMuw9q2ipVvdCS6ulpUvR6qDLqA50qbba6qDLr6gOo9TeQYgYCRGJLNmJjHvv748j99ybHTL5vl8vr5x7znPOfW6cnHu+53me7/Ps3AHlHjvpoprN2qVF+ZnHvdqp7WyxCWriVb1OT+y5IsASb+cYNJqaHW8uFPPmKfM/Dx1qOl1YeVoZdYqJjzfa0MwLhvwH/w6DtHBAT/E5f8MpSIfk7XBxEyRugvSjfPz9u2i1PQFlujBPT5TEcxFv0DL7LMVB98WIPeBxCIBL2er9upN9FmB0ve3/W518FCGEotYG1fn5+dGvXz9effVVjhw5woEDB3jzzTcZMWIEbm5KC0BiYiLDhw/nyBFl3s3Y2Fg+/vhjIiIiiIuLY9OmTcyYMYNu3boRGChdjIQQoqFwdVVvhpMv5lda/tM3dnI81jS18f7w+g+4AX7/5qhhiq+Ic/5cOJ1QZrnj+84Zljv6pxEUpG77+GN1efDg0vsGhapZuCOjqve8e8Oqg4SHK7/vLl30ZR6/PnXtqvzUauHw7tKzkxw4oHY5t7FUx1TP/bQ92WnlZ6tOvuxrWHZp37/cck3tm+Jsp8wTfj5R/T2nxqdyuVB5AuDtllLJpxBXy8cHPv8c7r67auWNg+4LF0oE1TauyjzOrW6DwZuhedUbaRo1XRHErYHd42Fde/ilOWy9DaI+hPSj5OY34cstEwCwtoannrqy3+UkAFo6qmnLL15JKohTNy45PmJY7+Rh2vtGCFG3ajWTzcKFC/H19WXcuHFMnDiRzp0788Yb6rx9hYWFxMTEkJenfAlbWlqya9cuJkyYwC233ML8+fMZOnQon332WW1WUwghRDW5uKlzrSYnVTy/bkpcKq8vKt1FdP/+Gq/WVfn5N9Ns4ht+KzsR0NEDaoKojh30JkH3lWfHmJlB/zLiw4DO3oa5zSPPOFarfvPfVQOTGY8daHBdpLv67DYsH/j3RKntR6McDcsJcQXcN3gnAEkZLiyZU/5JYJxz1dWt4g/t7aoEH3GpLdEWKhlnY0+pB/BylwRqDYWjo9obwqSlu5iVIwxYc+ME3ACbb4b/bofo5ZBZcl5BDT+Ev0R6rpKQ4P77wdD5s0lLGPgXLftPMZS+2GwC3B4Lw/dyyWqIYX2tzNMthKiyWsteDuDo6Mh7771X7nZPT0+iotT5Nt3d3fnuu+9qs0pCCCFqgEtLtQ9xUlLFZee8EEF6jtKNeHCX42w+oGThPlA6J1mdS0/K4J99pg8E/tmg4ZHppctGRKhd6jt2sse8jFFPXcIu4+hoU2p9E7um+LjGEpPoTWSsN3qd3mQ8e0ZyBn+uPMZNd/jj4qV2T9+/8TibDykZ7Nq6n+XOCZ1KHbu+delhZ1jef8D0Wb5eD0dilB4O3i5xOLp6Mmd+S37urkWnN2fBV92YNFsJxEoyDrorG2Hm7Z7JoTOg1VmQcDYBz3buxJ7JVLd7lTNVkqhzGo3S2n36NFyoPI+XQq+Dg9PAd6wy7vh602oEJG1RljUW0LwTtOgJboPQuw7kowVqBsCnnzbaz6IZeAzDzejPLjHTA67kuzNOrSRBtxD1q3HO2SKEEKJeubZWp/NJLmhfYdlf/lGGBzW1zuG7n5xpcSWm3L9fj15Xc9mur8aaFREUak2TeW042AVdGTFaRJQaXHbs7kmQb+mpkQaH7C61rliQj9IFNCvPngtn1O6giWeT6RqaxgNTe3PLTUnojObSnf+2OkXZtEmxmFs2vCRBIX38sDBXxlzvP2aax/jcOcjKVYYRhHRTEqkFdPVl7B3KA/f0rGZ88EHZxzV+mFNp0N3qsmH5/JUW7vNn1dZt79YN7/d2IyvuYp6ZqSE3t5JbUb0O9jwOUR/Appvg0qHar2BNKcqBvETlX+YpOL4A/uwEqftMy7UZB56jYcA6uCcThu+FrovBazTb9zbn8GGlWI8e6nAOYy4uSi8bgIvqpUWCbiEaEAm6hRBCVJuLtxpcJWe5llsuLTGdi+nKWMKu/qdw93Wja3tlvuXkZA3nT5bVv7Tu/Pyb2mLv7akEbimXbLgyvbaJiGhPAFzsk3H1dsHFszlOtqazdNw0zK70jlcEtcs1LEceVMaNpydlMGzwJU4n+ABw4FR7/vhW6XIdsfMUv25VshW7OSYx7vnu1ftwdaSJrQ0dWytd8o/H+pKbqSbWM57uNCRMfbjx2nvtsbwyQuH99yGj9PTnJJ88Ylh2dah4TnLv9u0My7EZSr//2Fij7b62JXcR9ch4XHdSkmX5BQG0eZB5ZdhCwSXYfBMkbqm1ul0TvR50WrjwB2y9HX62h9UtlX/r/CF8hpIk7uyPpvvZuCiJzVqNAAvTTIQffaQum7RyGzE3Vx9MSdAtRMMkQbcQQohqc1bzVZl0Ay4pcv95w3JQW6W7bxd/dcz0/v/Ol9qnrmRkwD/7le7arVzTeXG6GhT+849p2eRkSExXHi5cmZADjQaCWscZyliaF9Dn1iDKE9Re/cqNPFZIbmYuIwef43BMgEm5+e8p3dNffykVvV7Z54UJx7FpVrrbekPRtaPSLK3TmxO+Tf3/PaLGzQQHq8tt2sDDDyvL2dllDzVITlIT9FXW0u0V4GFYjo1TgrjYC+r/p5efRBwNiXHQnZxc/rRxgNKFetBf0KK38rogDTYPgaiPlCC3PlxOhqRtpdef/wVWWsDWkXBhjdJKX5ac6LLXl5CWBr9dSTLu6gr33FN+2ZZXnoNevKj+WoyD7rKGcAgh6o4E3UIIIarNwkJtOaloTHdkQkfDclA3ZW7qrj3Ulpz9ey6X2qeurFkDBQXKuOq77ndk+C3qV2LJoNu4xbZjFzUCbO+jDkrt1W4PTe3Lz8ge1FONOndEhnFL35PsOKYki3KxT8avpZIdfcexEBbPjeW3/5TpgVo6JvLUaw2zlbuYcZfX/TvVbvfGQXfJ2UI7GQ1PL2tsb3KaMjDV3KyI5m6OFb6/t7e6XNzCHRuv9jrwbNcS0XBUq6UbwNJOCbzdhyuv9Vo4MAW23w0xKyA7pmoBeEEaJGyAU58prdHZZ8sPjIsV5UHiVoh4CzYPg19d4TdX2NgfsksEz/klemQ0aQWtRoHn7Ur38ZA34bZT0P9/ldcV2LsXiq7kqbz3XiVzeXmKg+7CQiVYBzXodnQsc4p1IUQdqtVEaqJhmzlzJpmZmXzyyScAjBkzhsDAQGbNmlWn9dizZw9jx45l37592NvbV76DEKJBcHXVc+mShuRkLVD2HV3kCTVZWFAX5U676wA1QjpwpO67/WoLtaz/8Shz54VSPA/wPfeAn5/SAhsTA9u368jJuEwzByWINs603rmzuhzknw9/KMuDe5c91ZihbJiaDOmnX6yBMADsm2Tw1/9SOHranUcmKtufeVn9Hc16+gRN7cufz7oh6NLLKPnbQfVcOLLrHNAaK8si/P1NbzlaOcQAytzZcYd2wpjeJtuT0pRJn53t0jArK2udEeOg+/yVzhPnk5Q6tXRMxLqpTJfUkJi2dFch6AYl8B6wDg6/DJELlHXnf1P+Ady0GdwGqeUTt8KhFwEd6AqgMBNyzpU6LJYOcOdFMDfqSXJuFaQdUlqzL+0DXTnzxCf8De0mqa/Nm4BDe7BrB74TwOMWMCv/VjstDdatU+a3B7Czg5EjlZ+gBN3FevUq9zCAGnQDJCYqD0WLg27pWi5E/ZOguwGaOXMmq1evBpRp1Nzd3bn99tt58sknsbCovf+yJUuWVPn4EigLIVwsjnCCULKzzcnLvkwT29LdnyONZr8pnmKrlV9L3ByTSEx3Zf8J31KZvCuTkQHTpyutPvPnq9MPVbpfcgbL3w9nydc+RF8MM6xv1Qp691a6iw/tHsHSmI4UFpqxdc1xbh2jNOEaB93Grbr3TOrBvK+S0evh0Rf7VPj+zZuDm5tyQ1zMzTGJtT+l0HlQezr2gVfegDi1xzreLnE8/lLPqn3AehTc2w9L8wIKtVYcuJJM7XLOZU7GKePgO3ifwsLCtOu9Z0t1jHvcedOgRq/Tk5yhRAqujmlAxUF3y5ZgYaGjqMiM2FMpFOY7EJ+mBNrebsmABN0NiWlLdyXdy42ZmUOn+UoG831PKoF0MfNmpmXzEpSAuTJNvUwDboBjcyH9cNnlbVzBIRgcOoB9oOk237HKvyrQ62HUKNi+3XT9XXfBL78oy8ZBd/dKOru4GZ3iFy9CQIDa4m08HEgIUT8k6G6g+vXrx9y5cykoKGDr1q288cYbWFpa8sQTT5iUKygowMqqGl9YFXCUAT9CiGpwcVKzQyfHXcI70KNUmeKg29YWPJX4C42Zhi4B51i/x5VL2U6cPX6eNh29qvSeOh2MGQNr1yqvLQrief+z0u9rLOtSFi9POsjy37uQk2/aYuznB598omb+HTo4m6WrlOV//szh1jHK8oGdKUALmjbVEhiotuR6tnMnNj4fM3MzLK0rb7Hr0EENuju0Ps0ff9rQOkjJ/m5lBS+8AM89p5Z/7bkYrJt6Vnrc+mbd1JoQ3+McONWeyDhfstOyOBkeh06vBNrB/qml9vE0Gmd9IcG032xORg6XC5VeEC7Nc6iMuTm0ah7PuWRPYs9riLtggV6vPMjx9nevZG9R16rdvbwknweULtupe5TW6JRdYF0istRdyQmgMQczKzCzBocgcOqqtEbnxELGMSV4Lsnc6EmeXTtw6Qeu/ZSftr7KE7prtGZN6YC7eH12NjRrBnv2KOucnJRrVUWMW7ovXoTMTAyzMEhLtxD1T4LuBsrKygqXK5ljHnzwQTZu3MjmzZuJiYkhMzOT4OBgvv/+e6ysrNi8eTMJCQnMmzePHTt2YGZmRpcuXZg1axaeV+5ytVotCxYs4Ndff8Xc3Jy77roLfYnxTyW7lxcUFLBo0SLWrVtHamoq7u7uTJw4kV69ejF2rPIkt1u3bgCMHj2aefPmodPpWLZsGatWrSIlJQUfHx8mT57M8OHDDe+zdetW3nnnHRISEggNDWX06NG1/vsUQtQ8F+cCw3JyfEapoDsvK4+zZ60BMwLb5qDRqC1RXcNyWH/lhnL/trgqB93z56sBN8CHn7fkrpFH6DMypNx9Hh51nDU7TIPtoV33M3WKnlse7mYIuAEG3xGE2ZPKHNL/bFeun5cS0oi+oHRVDvM5hoWF6XtZN61goGUJL7wAx45B//6wbKkPDs1Nv4YfewzefhtSUqCd32XGPt/wW7mLde2YwoFToNebcWhPOmeOqIF2SMeiUuXdvF0xNytCq7MgLtG0x1TyhUvAlaDb6OFORbzdUjmX7ElqljMfLSkElGDOP1ia+Road3clbtXrK27pzs+Hhx6CrCxYuVLpLWJg0VTpTm7cpdyY7zhoM/bqAuTg2aC7DM49oEnN5wPQ6eDVV9XXr76q9Kb5809lTPbWrcoDuuIkld27V/4xSgbdqUbPuSToFqL+3ZhBd+T7cOL9yss5dYYBa0zXbR0Flw5Wvm/g8xD0/NXVrwzW1takp6cDsGvXLmxtbVm+fDkAhYWFTJgwgbCwML7//nssLCz45JNPeOyxx1izZg1WVlZ89dVXrF69mnfeeQc/Pz+++uorNmzYQM+e5d/QTZ8+nfDwcF555RUCAwOJi4sjLS0Nd3d3lixZwpQpU/jrr7+wtbXFxkbpmrV06VLWrFnDnDlz8PHxYd++fbz44os4OTnRvXt3EhISePrpp3nooYe49957iYiIYP78+TX2exJC1B1XF61hOTmhdGtk1KFY9HolM3dQy3BA7X7dtUdTWKosH9ibzz2TTPcta/7uzesu8MorrSgehw1KgPfoE3YcPpHH8X1n+fX7RELCrLh/ijI++PC2KNbsUKbdamKVyyO37efpF1vRvkcZk90Cjq4O9Ag8yq7IYCLP+3H+ZAInDsYDXZR6B5eem7s6br0VEhKKb6BLfwXb2sLff8OqVfDkkzZYVj2er3ddhnQCZWQUG3d5kXVGTTIV0rn0VGrmlua4N48nLtWDuJQWJtuS49Vuwy7O5YynLcHbIxsilOUPFyu/W0tLePzx6nwKURcsLZVs3ImJFY/pXrkSfv1VWf7mG3j22Wq+0dW2SHsMu7r9qujnn9XkjN27w5w58PvvStANSiLHHKNLamVdy6F00C3ThQnRsNyYQXdhJuSVkSq1pMtltLxcTq7avsbjjK6BXq9n165dbN++nYcffpi0tDSaNm3KW2+9ZehW/vvvv6PT6Xj77bfRXPmCmTt3Lt26dWPv3r307duXb775hokTJzJ06FAA5syZw/ay+jVdERMTw59//sny5cvp3Vu5efXyUn8fDg5XEtw4OxvGdBcUFLB06VKWL19Opytpab28vDhw4ACrVq2ie/fu/Pjjj3h7ezNz5kwAfH19OXnyJMuWLauR35cQou64uKhNxMmJpbOQR4arTS1BAaaBU9cBrQ3LB46oAZlOq+PuQXtZva2sB4JqN+tXX9Gx4Zdj7D4RzKn4Nvi3iScuNQhQujM3abqH2yf0YMGbKYAS+C+Yvo+n36w8IdnQAansutItfsNvZ0i8qLbSdu1+7SmAK4sDOnc2TdbWWPS/Sf1/fOcd8HLxN7wO6eld1i54uqQSl+pBUkYLCvIKsGqifK8lJajjvV1dqjYtlLen2vNCp1N+yY8/Dj4+Vf4Iog61aqUE3amplhQV6crMrr3NaFau48frrm61qagIXntNff3WW8o1YdAgZZiEVqsE3ZZGzyKqG3QnJkrQLURDc2MG3Zb2yjQOlbEpI3GLjUvV9rW8tuRiW7ZsoVOnThQWFqLX6xk5ciRTpkzhjTfewN/f32Qc94kTJ4iNjaVzibu0/Px8YmNjycrKIjk5mdDQUMM2CwsLOnbsWKqLebHIyEjMzc0N3cer4ty5c+Tl5TF+/HiT9YWFhQRdyaB05swZQkrMGxMWFlbl9xBCNBwubupdYdLF0t2HI4+pQVD7YNNsZ+6+bjjbpZKa5cyJc+qY2wObT5QTcKtu6XWU2XOCeXBUM8L6XCa/0Ia4VNOu7U9O88HbL5JVm5RW7hb2KYx/sWrXs6EjnZnzmbL8z0YziorU5uaufWV8cHkCApTu8++9pwQWMQnK78rVIRk3n7ITobVyy4YTSo+FhLNJtA5SHqwkXzSao9u1arObenmbRm021lpmzZJ5khqqVq3g4EHlAUliomkG+mI7dqjLp07VXd1q03ffwcmTynL//jBkiLLs4AA9eyqf+cQJpZt5sarcipVMpCZBtxANy40ZdAddQ9fvkt3Na0mPHj2YPXs2lpaWuLq6mmQVb1IiVW9ubi4dOnRg4cKFpY7jdJVX2uLu4tWRm6u0TCxduhQ3N9NMsTWV7E0I0XC4uqvXieKxh8YiT6rBalAn11Lb/dtq2XUI4lI9yMlREgdFHlbvFH1bnsOtuWmvIT/vDBZ/0xEzMwjs5svc57fw/PyBgJIhu1mTfPZGdeRiuhsDRtih1SnXzikPR9DUfmCVPlf3m4Owb5JBZp4DG/YE0sxGGVNsa5OFfyefKh3jRjV3rpJx2biFMtg3lvKyj3u6q8F13JlLatCdq/aEcPEqfe6UxbuN6Xfj5Lu34eExsGoVF3XOOJnahQulg+7kZCX4LHa9BN1ffqkuv/mmac+XoUPVBw1nzig/fXyUrviVad5caR0vLJSgW4iG6MYMuhuBJk2a0Lp168oLAh06dODPP//E2dkZW9uy57x1cXHh8OHDhpbroqIijh07Rvv27css7+/vj06nY9++fYbu5cYsr/R70mrVMZ1+fn5YWVkRHx9P93L6Qvn5+bF582aTdYcPlzMthxCiQXNxV683ySmlWxQjo5VxulYW+fiWkSjNP8SVXYeU5dOnITQUTkSqLeZLFiQbpuwqz3PzBtKpezhW1ub0uqUj8dEX6dD5MhlZNmTlKnNsN7XO5alZ5SdaK8nCyoKbukayeltPLmU7cSlbWd+pbTTmlqEV73yDs7RUxqN37pDExTQlUggJKn+4ladRYvYL57INy8m5agTm4ldiWqZyePs5GJabWWcz450yslKLBsM46I6PL719507T1xcuQG4uNG1au/WqbadPKz9btlRauo0NHQqvv266ripdy0EJ3lu2VOapv3jRtDu+SQI6IUS9qFqfLdGg3XbbbTRv3pxJkyaxf/9+zp8/z549e3jrrbe4ePEiAGPHjmXZsmVs3LiRM2fOMGfOHDIzK7oR8mT06NG8/PLLbNy40XDM9evXA9CqVSs0Gg1btmzh0qVL5OTkYGtry/jx45k7dy6rV68mNjaWY8eOsWLFCsO84/fffz9nz55l/vz5REdHs3btWsM2IUTj4uLhaFhOvmTam6WooIiTF5QHh+08YrGwKv2MNyBAXY6KUn6eiFdXBnaqWlfugXeG0XtEMBozDa3auvPhYtOeOo8/YYOzR/WaeoYOKSi1rmvItSVRu1G4u8NPXyfQzDobjUbHvWPKn2O7lZd63sTFqr/zpCS1TFVa+QACu7bBx/U8AK9O3o+rd8Vze4v6ZdrSXTrRgXHX8mLFAWtjlZ+vBMQAZbWrdO0KJWdvrWrQDeq47qQk+OzKEBlLS+jSpdpVFULUMAm6rwNNmjThu+++w8PDg6effppbb72VWbNmkZ+fb2j5Hj9+PKNGjWLGjBncf//9NGvWjJtvvrnC486ePZthw4Yxe/ZsbrnlFl599VXy8pRulm5ubkyZMoX33nuP3r178+abbwLw7LPPMnnyZJYuXcqtt97KY489xpYtWwxTl3l4eLBkyRI2bdrE7bffzsqVK3nOeFJaIUSj4eyhNp8kXWpmsi064jyFWiWgCvJNKXN/fzXPlmGMY/H4bmtraB1UhfwZZRg3TskSDmBjA8+/UP2vuqGjfUqt69r9KuYTvkH1GxXKqeM5nD2eQM/hHcst59lO/T+Oy1Jbpo2HK7hUMXa2tLYkPMKeg/+eYPrCyhPmifpl3Mvh4481tG0Lvr7q3NRl5Xotvk40VufPq8tlBd0WFnDTTabrevSo+vGLg269Xp2j+/XXwcOj/H2EEHVDupc3QPPmzav2NhcXlwqn3rKwsGDWrFmGObjLsmLFCpPX1tbWvPTSS7z00ktlln/qqad46qmnTNZpNBrGjRvHuHHjyn2fQYMGMWiQ6byad911V7nlhRANk6W1JU7Ni7iUZkFygelQlchDSUAbAIL888vYGwLaaQGlW3rUwfMUFXkZWrLataPMbMZVodEoU/J88YXSSlRWgqbK+AZ74+dbyJloNdDu2k/uXKvD3det0jKegWrkcSFVja6Tk4oAC8zMqjce1cHFgU4DHSovKOqdcUv3yZNqS/fEibBrlzJvdUmNfVx3bKy6XN51aehQdZo0c3O4MhlMlRhnMAdlFoTp06tXRyFE7ZCWbiGEEFfNxVV5dpucbPp1EhmRZ1gO6lB2IkW/NgVoNEpzzMnjGcTEqBl7A6s2jLdcTZvC1KlKNuCrNXSYGnDbN82mbWjV8myIqjNugYuLU5eTYxMAJeu8mdypXJd8fcHJqfQMKkeOwIwZ6rXAeIKTxh50nzunLpeXtse4E2KHDkqCyaoyzmFraQnLl5tOPSaEqD/yVSaEEOKqFXf9zcqCy0ZTdUee9zEsB4U5l7lvE7smeLdQMiidjPMk8kiOYdu1Bt01Ydgwdblzd1vMzOUrs6ZZW6vnkHHQnZShnDMu9jKO/nplYwPbt+uYPTuGvXu1rFunbvvoI3X5kUfU5cYedFelpbtNG3jsMSXYfvHF6h3feMjOq69CSNXzRwohapncQQghhLhqxkmujMfhnjAKuv27GmVMKyGgtZJVKD3Hke1r9qnr3Y7WWB2v1k03qeNO7767futyPfP0VFo74+N16Iq05GTkkFegpKh2aZ5d0a6ikfP3h5EjL9G5s5KHoV+/0mWGD1e7TTf2oLsqLd0Ay5ZBRgY8/HD1jn/PPfDyy/DWW1DOyEAhRD2RoFsIIcRVa+mktkTGRal3lNHRyk9Pz4qn+PH3VVu312xSm34CA69yQHcNsrWF8HA4cAAmT67v2ly/WtkoD1uKisxIOp9Ccpw6wbCL0+XydhPXGY1GCRaNtWihBObt2imvExOhgolXyvXtt0rL8oIF117Pa1GVlu5iV5PTwsYG3n4bZs1SkrIJIRoOCbqFEEJcNd/mhw3L0UeV/sGZmZByJWG5r2/F+wcYdYeMuqAWDuhcel7v+uDsrCQj0pSe0UjUEE93NbCOO5NCcrwaVbm2KD11m7h+9e+vJBIr1qeP8rdXHHRD9Vu7MzJgyhQlc/irr0JBBaeUVlu9Y1emqMj0dXFLt51d6anBhBDXNwm6hRBCXDU/f3VO7DOnlcxHMWfUO9fKgm7/9ral1nk4XcTOya5mKigaPM9W6vkSdzabpIRcw2uXFqUTbYnr29tvg9WV3Iv33KP8vJag+7PP1NbxggI4dqzscuPGKYHwkiXVO355PvpIybw/dKgSzOt06pRh3t7yIE+IG40E3UIIIa6aX5A6n9OZGKU/Y7TRXD++zSsem+0fUnpaqcDW8TVUO9EYtPJU0ytfiL1M8kW15dvFRSKTG03XrrB7N/z5Jzz4oLLOOEFYdYLuy5fhww9N1x06VLpcfLzSBT07W5n1YNmyalfbQKtVjjFlipJgcsMG2LsXkpIg/8rsiRWN5xZCXJ8k6BZCCHHVfDuocz6dibUHIPqUGjT5elU8ANM70ANrS9Nxu4F+WTVYQ9HQefqog/7j4vQkJ6kt3y4ty55uTlzfOnVSEqgVtwZXtaU7NxcWLYJ//lFer1gBFy+aljl4sPR+p0+bvn7iCfjpp+rX+9w5uOOO0q3l+/ZVbzy3EOL6I2kWhBBCXLVmjra0dEzkYrobZy4ordbRMep23wD7Cvc3Mzejncd5Is6pd9XG47zF9c+zjYNhOS7eAq1WHQjr2rJJfVRJNDB+furyyZPKXN4TJijzUn//PTg4gF4Pd90Ff/2llLvjDoiIKH2ssoLuM2dMX+v1SubwFSugRw/o21cZb17enPHbt8P778PvvyvdyEvauxfc3dXX0tItxI1HWrqFEEJcE79WSlPSxXQ3cjJyiI5VWy5927esdH//1qkmrwM7lh7nLa5frfzUeecuJDYlKUVtD3DxkHNBKDMgFE/fd/y4Mk56/3744w8YP14Jkr/6Sg24Af73P7UFe9AgZf5rgMOHSydMMw66g4OVn4WFsG6dknxt0CAIDFRasLNKdMT56y9lqrPVq9WA29FRWW9trbzeu9e0pVuCbiFuPBJ0NzABAQEV/ltSUxk+hBCihvh5q3eh0REXiL7QAoCm1jm4ereodP+A3t1MXgd2qjxQF9cPOyc77JtkAHDolB+/bett2Oba2qO83cQNpnhcd1aWMnVYsd9+g2nT4Pnn1XXNm5vuO3260mUdlC7oJ0+abjcOun/8EV54oXR28VOnlLHaPj6mLei//aYuu7vDm29CVBQMG6bMfFC8r/FYculeLsSNR4LuBmb79u2Gfy+//DK2trYm68aPH28oq9frKSo5H4UQQtQxvzbqdejUsUucTVQCJd+W8WjMKk+E5R+gTkjbxCoXz3buFZQW1yPPFskApOc4kJWl3Jrcdhu0aFnBJO/ihmI8rhuU4LfY+++rGcofeUQJcseNU7qD33abaQAMpZOpFQfdGg20bQsLF0JqqhI8f/01DB6slr10Cb78Un29fbvy08JCCeZfeQVcr3Te6N5dLbd2rbosLd1C3Hgk6G5gXFxcDP/s7OzQaDSG19HR0XTu3JmtW7dy5513EhwczIEDB5g5cyaTJ082Oc7bb7/NmDFjDK91Oh1Lly5l8ODBhISEMGrUKP4y7oclhBBXya+tmn36vy35FBQpfSp9PS9Vaf+AAKPldoWYmctX042mlWuGyes77lBaHIUoFhioLvv5wc6dSoBrzMMDPvgAnJ2VYDk7G9asUYJp46C75Lju4qDb01PtEm5mprSujxsHmzYpgXrxmO7Nm5WfqakQGaksd+oEtiVGQxgH3cUPBSwsTMd3CyFuDLWWSO3TTz9l69atREZGYmlpyX6jKWTKo9frWbx4MT///DOZmZl07tyZ2bNn42P8OPMa/fwzvPZa6TE5tcnOzoxHHnEkLKxmjvfee+8xY8YMvLy8sLevOElRsaVLl7JmzRrmzJmDj48P+/bt48UXX8TJyYnuxt8KQghRTX7t1b6cG3arWdB8vS+XVbyU9u2hWTPIyYEefR0q30Fcd8L6tGHDAWX5hRdg/nwwN694H3FjGTMGvvtOmcP7+++VwHX2bNizR5mWC+Dzz027hTcxysNX3L0cTFu609OV1mswTdhWUliYErjv368kcktOVqY2K9a3b+l9yrq98vSUc1uIG1GtBd2FhYUMHz6csLAwfvnllyrts2zZMlasWMG8efPw9PRk0aJFTJgwgfXr12Nd/OjxGr37Lpw4USOHqgYNK1a0ZNq0mjna1KlT6dOnT5XLFxQUsHTpUpYvX06nK986Xl5eHDhwgFWrVknQLYS4Jn6d2xuWj8eoTTi+vlXb38FByfq7dSs8/XRN1040BjNfd6KZkxIYjRpV37URDZGzsxLwGjM3h19+UebiDgqCESPK379lSyVQT0hQWrr1eqUF3Hg8d0VBNyjdzIvrsGULHDigbivrtszPTxlfnpamrpPx3ELcmGot6J46dSoAvxlnmKiAXq/n22+/ZdKkSQwZMgSABQsW0Lt3bzZu3MiICq6kWq0WbclUlOWYNg1ef92sTlu6bW1hzJiLaLVe1dpPdyUNZvFnK37dvn17k8+r1+vR6/XlrouOjiYvL49HH33U5PiFhYUEBQVV+Xcn6lfx/5P8f4lrURvnUfPmSo+erCzT8dut21pX+X0GDlT+KXWrsaqJWlLT55GDg9pVWP7/GxCtFnPDorbG/3Nq4jxq1gxmzSo+XsVlw8LMSEjQkJ4O0dFafHzg1CkNxaMt27TRodXqy91/wABYsED5jWzapCMiQgMo172ePbVlvn+3bmb88496bfT2rvg9RPXJ/ZGoCSXPo5o+nxrMPN1xcXEkJyfTu7eatdTOzo7Q0FAOHTpUYdB9smQaygr4+Sndk+rD0aPp1SofGxuLVqslPDwcgNNX5r44ffo0CQkJhnJpaWlkZ2cbygFcvHjRsK54v2nTptG8REpPS0tLk/1Ew3f06NH6roK4DtT0eeTuHkRWlmnSK61NkVxfrnNyPbq+meXlUdwr+8iRI+ia1M686XV1Hnl4eABKb5zffjvL4MHpbN/eEmgFgLn5WcLD08rd397eDHPzMLRaDWvXFpKSYglo8PS8zMWLx7h4sfQ+3t7ugJqF38oqkfDw+Jr7UMJArkeiJtTWedRggu7kZCVzqbOzs8l6Z2dnUlJSKtzX39+fpk0bboZTrVbL0aNHCQ4OxrwaA3liYmIwNzcn7Mpg8IKCAgCCg4NNxnK3bduWvXv3GsoBpKSkYGtrS1hYGO3ateOtt96iWbNmDB8+vEY+k6h7V3seCWGsts6jjh3NSk3Dc/PIXtTSPbqoZ3I9ukHk5BgWQ0JClGblGlTX59Ett6iZx9PS2hAWpicvT22FHjy4NWFhFacW79kTduyA+Hh12OPgwVYm92DGRo6EL75QX3fv7kZYmGuZZcXVkeuRqAklz6Pc3NxqNexWplpB98KFC1m2bFmFZdavX49fZYNiapi5uXmj+COrbj3NrqTJLN7H+LXxcXr16sVXX33F2rVrCQsLY82aNZw6dYr27dtjbm6Ovb0948ePZ968eQB06dKFrKwsDh48iK2tLaNHj66pjyjqQGM530XDVtPnUdsWx4AOhtceHmBrK+fp9U6uR9c5o/9bc3PzWssAVlfnUZcu6vLhw2aYm0N0tLrO39+80o94001K0G2sb1+zcvfr1cv0tY9P+WXFtZHrkagJxedRTZ9L1Qq6x48fX2mA5uVVvXHLxVxcXABITU3F1VV9Apiamkqg8TwRopR+/foxefJk3n33XfLz87nrrru44447TJ7OPPvsszg5ObF06VLi4uKws7Ojffv2PPnkk/VYcyHE9cLPK9XkdVWTqAkhRF1p3RqcnJRs5Tt2QH6+mkjNyck083l5Bg+GN94wXVdW5vJirq7KnOJnz6p1EELceKoVdDs5OeHk5FQrFfH09MTFxYVdu3YRFBQEQHZ2NocPH+aBBx6olfds6O68807uvPNOw+sePXoQFRVVZtmpU6cakteVRaPRMG7cOMaNG1fj9RRCCF9/0wlqfVtfBmzqpzJCCFEGjUbJcL5iBWRkwOrVEBenbKtqJ82ePZWpyPLylNdOThAQUPE+w4bB0qXQooUSgAshbjxmtXXg+Ph4IiMjiY+PR6vVEhkZSWRkJDlG44OGDx/OhiuTK2o0GsaOHcunn37Kpk2biIqKYvr06bi6uhqymQshhGiY/Nq7mLz2td9dTkkhhKg/Dz2kLr/9tjJ1GFQ96La2Nm3Z7t0bzCq5m543D5YsUeYTt5FnkULckGotkdrixYtZvXq14fUdd9wBwLfffkuPHj0AJVFYltHcXY8//jh5eXm89tprZGZm0qVLF7744osam6NbCCFE7fDyd8fCvJAirSUAvm0t67lGQghR2k03gZsbJCZCRIS6vjrpiAYPVgJoKHt+7pIcHeHpp6tVTSHEdabWgu558+YZEneVp2RXaY1GwzPPPMMzzzxTW9USQghRCyysLPBpcYrTie2A0t3NhRCiIbCwgPvvh0WLTNdXJ+h+9FFYvhx0OmVZCCEqU2vdy4UQQtxYAj3PGJbbdpApcYQQDdPDD5deV52g280NTpyAkyeVZSGEqIwE3UIIIWrES3NaEdomilcnbsGtjXt9V0cIIcrUpUvp5GfVne1Wo1H+CSFEVUjQLYQQokb0HhFMeHQAbywdWN9VEUKIcmk0pgnVrK3BXZ4TCiFqkQTdQgghhBDihmIcdPv5VZ6BXAghroVcYoQQQgghxA3F1xeeekqZc1vy9wohalutZS8XQgghhBCiofroIyWLubl5fddECHG9k5ZuIYQQQghxQ5KAWwhRFyToFkIIIYQQQgghaokE3UIIIYQQQgghRC1p1GO6dTodAHl5efVck4pptVoAcnNzMZd+TOIqyXkkaoKcR6ImyHl0g7h8WZ3Q+vLlGp+YWs4jURPkPBI1oeR5VBxfFseb10qj1+v1NXKkepCamsrZs2fruxpCCCGEEEIIIa4zPj4+ODs7X/NxGnXQXVRUREZGBtbW1pjJBItCCCGEEEIIIa6RTqcjPz8fBwcHLCyuvXN4ow66hRBCCCGEEEKIhkyah4UQQgghhBBCiFoiQbcQQgghhBBCCFFLJOgWQgghhBBCCCFqiQTdQgghhBBCCCFELZGguw58//33DB48mODgYO655x6OHDlS31USDdiSJUsICAgw+Td8+HDD9vz8fObMmUOPHj3o1KkTU6ZMISUlpR5rLBqCffv28eSTT9K3b18CAgLYuHGjyXa9Xs+iRYvo27cvISEhPPLII6WmXExPT+eFF16gc+fOdO3alZdffpmcnJw6/BSivlV2Hs2cObPU9WnChAkmZeQ8urEtXbqUu+66i06dOtGrVy8mT55MdHS0SZmqfI/Fx8czceJEQkND6dWrF/Pnz6eoqKguP4qoR1U5j8aMGVPqevTaa6+ZlJHz6Mb2ww8/cNttt9G5c2c6d+7Mfffdx9atWw3b6/JaJEF3LVu/fj1z587lqaeeYvXq1QQGBjJhwgRSU1Pru2qiAWvXrh3bt283/Pvhhx8M29555x3+/fdfPvzwQ1asWEFSUhJPP/10PdZWNAS5ubkEBATw+uuvl7l92bJlrFixgtmzZ/PTTz/RpEkTJkyYQH5+vqHMtGnTOH36NMuXL+ezzz5j//79pW5gxPWtsvMIoF+/fibXp/fff99ku5xHN7a9e/fy0EMP8dNPP7F8+XKKioqYMGECubm5hjKVfY9ptVqeeOIJCgsLWblyJfPmzWP16tUsXry4Pj6SqAdVOY8A7r33XpPr0fTp0w3b5DwSLVu2ZNq0afz222/8+uuv9OzZk6eeeopTp04BdXwt0otadffdd+vnzJljeK3VavV9+/bVL126tB5rJRqyxYsX60eNGlXmtszMTH2HDh30f/75p2Hd6dOn9f7+/vpDhw7VUQ1FQ+fv76/fsGGD4bVOp9P36dNH/8UXXxjWZWZm6jt27Khft26dXq9Xz6MjR44YymzdulUfEBCgv3jxYt1VXjQYJc8jvV6vnzFjhn7SpEnl7iPnkSgpNTVV7+/vr9+7d69er6/a99iWLVv0gYGB+uTkZEOZH374Qd+5c2d9fn5+ndZfNAwlzyO9Xq9/+OGH9W+99Va5+8h5JMrSrVs3/U8//VTn1yJp6a5FBQUFHDt2jN69exvWmZmZ0bt3bw4dOlSPNRMN3blz5+jbty833XQTL7zwAvHx8QBERERQWFhock75+fnh4eFBeHh4PdVWNHRxcXEkJyebnDd2dnaEhoYarkWHDh3C3t6e4OBgQ5nevXtjZmYmQ2KEib1799KrVy+GDRvG66+/TlpammGbnEeipKysLAAcHByAqn2PhYeH4+/vT4sWLQxl+vbtS3Z2NqdPn667yosGo+R5VGzt2rX06NGDkSNH8t5775GXl2fYJueRMKbVavnjjz/Izc2lU6dOdX4tsqiRTyHKlJaWhlarxdnZ2WS9s7NzqXEpQhQLCQlh7ty5tGnThuTkZD7++GMeeugh1q5dS0pKCpaWltjb25vs4+zsTHJycj3VWDR0xedGWdei4rFLKSkpODk5mWy3sLDAwcFBzi1h0K9fP26++WY8PT05f/4877//Po8//jirVq3C3NxcziNhQqfT8c4779C5c2f8/f0BqvQ9lpKSYnKTCxhey3l04ynrPAIYOXIkHh4euLq6EhUVxcKFC4mJieGjjz4C5DwSiqioKO6//37y8/Np2rQpH3/8MW3btiUyMrJOr0USdAvRwAwYMMCwHBgYSGhoKIMGDeLPP//ExsamHmsmhLjRjRgxwrBcnLhoyJAhhtZvIYzNmTOHU6dOmeQlEaK6yjuP7rvvPsNyQEAALi4uPPLII8TGxuLt7V3X1RQNVJs2bfjf//5HVlYWf//9NzNmzOC7776r83pI9/Ja1Lx5c8zNzUslTUtNTS311ESI8tjb2+Pj40NsbCwtWrSgsLCQzMxMkzKpqam4uLjUUw1FQ1d8blR0LWrRogWXLl0y2V5UVERGRoacW6JcXl5eNG/enHPnzgFyHgnVG2+8wZYtW/jmm29o2bKlYX1VvsdatGhRKoNw8Ws5j24s5Z1HZQkNDQUwuR7JeSSsrKxo3bo1HTt25IUXXiAwMJBvv/22zq9FEnTXIisrKzp06MCuXbsM63Q6Hbt27aJTp071WDPRmOTk5HD+/HlcXFzo2LEjlpaWJudUdHQ08fHxhIWF1V8lRYPm6emJi4uLyXmTnZ3N4cOHDdeiTp06kZmZSUREhKHM7t270el0hISE1HmdReNw8eJF0tPTDTcfch4JvV7PG2+8wYYNG/jmm2/w8vIy2V6V77GwsDBOnjxp8qBw586d2Nra0rZt2zr5HKJ+VXYelSUyMhJQgyE5j0RZdDodBQUFdX4tku7ltezRRx9lxowZdOzYkZCQEL755hvy8vK4884767tqooGaP38+gwYNwsPDg6SkJJYsWYKZmRkjR47Ezs6Ou+66i3nz5uHg4ICtrS1vvfUWnTp1kqD7BpeTk0NsbKzhdVxcHJGRkTg4OODh4cHYsWP59NNPad26NZ6enixatAhXV1eGDBkCKMlD+vXrx6uvvsqcOXMoLCzkzTffZMSIEbi5udXXxxJ1rKLzyMHBgY8++ohhw4bRokULzp8/z7vvvkvr1q3p168fIOeRULoCr1u3jk8++YRmzZoZxj3a2dlhY2NTpe+xvn370rZtW6ZPn86LL75IcnIyH374IQ899BBWVlb1+OlEXansPIqNjWXt2rUMGDAAR0dHoqKimDt3Lt26dSMwMBCQ80jAe++9R//+/XF3dycnJ4d169axd+9evvzyyzq/Fmn0er2+Fj6jMPLdd9/x5ZdfkpycTFBQEK+88oqhC4wQJT333HPs27eP9PR0nJyc6NKlC88995xhfFJ+fj7z5s3jjz/+oKCggL59+/L6669LV6kb3J49exg7dmyp9aNHj2bevHno9XoWL17MTz/9RGZmJl26dOH111+nTZs2hrLp6em8+eabbN68GTMzM4YOHcorr7xCs2bN6vKjiHpU0Xk0e/ZsnnrqKY4fP05WVhaurq706dOHZ555xmTIlJxHN7aAgIAy18+dO9fQ4FCV77ELFy4we/Zs9u7dS5MmTRg9ejQvvPACFhbSXnQjqOw8SkhI4MUXX+TUqVPk5ubi7u7OkCFDmDx5Mra2tobych7d2F5++WV2795NUlISdnZ2BAQE8Pjjj9OnTx+gbq9FEnQLIYQQQgghhBC1RMZ0CyGEEEIIIYQQtUSCbiGEEEIIIYQQopZI0C2EEEIIIYQQQtQSCbqFEEIIIYQQQohaIkG3EEIIIYQQQghRSyToFkIIIYQQQgghaokE3UIIIYQQQgghRC2RoFsIIYQQQgghhKglEnQLIYQQQgghhBC1RIJuIYQQQgghhBCilkjQLYQQQgghhBBC1BIJuoUQQgghhBBCiFoiQbcQQgghhBBCCFFLJOgWQgghhBBCCCFqiQTdQgghhBBCCCFELZGgWwghhBBCCCGEqCUSdAshhBBCCCGEELVEgm4hhBDiOrJnzx4CAgLYs2dPfVdFCCGEEIBFfVdACCGEqCu//fYbL730UrnbV61aRVhYWN1VqJH44Ycf2L17N0eOHCEhIYHRo0czb968MstmZmby7rvvsmHDBi5fvkxwcDAzZ86kQ4cOJuXy8/P5+uuv+f3337lw4QL29vZ06tSJKVOm0K5dO0O5pKQkvv32Ww4fPkxERAS5ubl8++239OjRo9R763Q6Vq1axcqVK4mNjaVJkya0b9+eyZMn07lz55r9pQghhBBVJEG3EEKIG87UqVPx9PQstd7b27seatPwffHFF+Tk5BAcHExycnK55XQ6HRMnTiQqKooJEybQvHlzfvjhB8aMGcNvv/2Gj4+Poey0adPYvHkz99xzDx06dCAxMZEffviB++67j7Vr19KqVSsAYmJiWLZsGT4+PgQEBHDo0KFy33/BggUsX76cUaNG8eCDD5KZmcmqVasYM2YMP/74IyEhITX2OxFCCCGqSoJuIYQQN5z+/fsTHBxc39VoNFasWIGHhwcajYZOnTqVW+6vv/7i0KFDLFq0iOHDhwNwyy23MGzYMJYsWcJ7770HQGJiIv/88w/jx49nxowZhv27du3KuHHj2LBhA4888ggAHTp0YM+ePTg6OhqOX5aioiJ+/PFHhg0bxrvvvmtYP3z4cIYMGcKaNWsk6BZCCFEvZEy3EEIIUcLixYsJDAxk165dJutfffVVOnbsyIkTJwAoKChg0aJF3HnnnXTp0oWwsDAefPBBdu/ebbJfXFwcAQEBfPnll3z//ffcdNNNhIaGMn78eBISEtDr9Xz88cf079+fkJAQJk2aRHp6uskxBg8ezBNPPMH27du5/fbbCQ4O5tZbb+Wff/6p0mc6fPgwEyZMoEuXLoSGhvLwww9z4MCBKu3bqlUrNBpNpeX+/vtvWrRowdChQw3rnJycuOWWW9i0aRMFBQUAZGdnA9CiRQuT/V1cXACwtrY2rLO1tcXR0bHS9y4qKuLy5culjuns7IyZmRk2NjaVHkMIIYSoDRJ0CyGEuOFkZ2dz6dIlk39paWmG7ZMmTSIoKIhZs2YZAsRt27bx008/MXnyZAIDAw3H+fnnn+nevTvTpk3j6aef5tKlSzz22GNERkaWet+1a9cauls/+uij7N27l2effZYPP/yQbdu28fjjj3Pvvffy77//Mn/+/FL7nz17lueee47+/fvzwgsvYG5uzjPPPMOOHTsq/Ly7du3ioYceIicnh6effprnnnuOzMxMxo0bx5EjR67lV2kiMjKS9u3bY2ZmensRHBxMXl4eMTExgNKNv2XLlixfvpzNmzdz8eJFjhw5wuzZs/H09GTEiBHVfm8bGxtCQ0NZvXo1a9asIT4+nhMnTjBz5kzs7e257777auQzCiGEENUl3cuFEELccIq7LhuzsrLi6NGjAFhaWjJ//nzuvPNO5s2bx/Tp05k1axYdO3Zk4sSJhn0cHBzYvHkzVlZWhnX33nsvt9xyCytWrOCdd94xeY/ibtV2dnaAMgZ66dKlXL58mV9//RULC+VrOS0tjbVr1zJnzhyTY589e5YlS5YYWpLvvvtuhg8fzsKFC+nTp0+Zn1Wv1zN79mx69OjBF198YWixvv/++xkxYgQffvghX331VXV/hWVKTk6ma9eupda7uroCSlK0gIAALC0tWbJkCS+88AKTJk0ylOvQoQMrV67E3t7+qt7/3Xff5bnnnuPFF180rPPy8uLHH3/Ey8vrqo4phBBCXCsJuoUQQtxwXnvtNdq0aWOyrmTrrL+/P1OnTuW9994jKiqKtLQ0vvrqK0NgDGBubo65uTmgBNCZmZnodDo6duzI8ePHS73v8OHDDQE3YBhjPGrUKJPjhoSEsG7dOhITE02CRVdXV26++WbDa1tbW+644w6WLVtGcnKyoXu2scjISM6ePcukSZNMWvMBevXqxe+//45Opyv1+a/G5cuXTR4SFCtel5+fb1hnb29PUFAQw4cPJzQ0lNjYWJYuXcozzzzD8uXLTbqYV1WzZs1o27YtYWFh9OrVi+TkZJYtW8ZTTz3F999/j5OT09V/OCGEEOIqSdAthBDihhMSElKlRGoTJkzgjz/+4MiRIzz//PO0bdu2VJnVq1fz1VdfERMTQ2FhoWF9WdnR3d3dTV4XB+Dlrc/IyDAJulu3bl1qbHVxRvALFy6UGXSfPXsWwCRhWUlZWVk4ODiUu72qbGxsDOO2jRWvKw6ks7KyeOihh5gwYQLjx483lOvYsSNjxozh119/5cEHH6zWexcVFfHoo4/SvXt3Xn31VcP63r17M3LkSL788kuTFnAhhBCirkjQLYQQQpTj/PnznDt3DoCTJ0+W2v77778zc+ZMhgwZwoQJE3B2dsbc3JylS5dy/vz5UuWLW8VLKq+VWa/XX0PtTY8xffp0goKCyizTtGnTa34fUBKhlTWlWFJSEqB2M//7779JSUlh8ODBJuW6d++Ora0tBw8erHbQvW/fPk6ePMnMmTNN1vv4+ODr68vBgwerdTwhhBCipkjQLYQQQpRBp9Mxc+ZMbG1tGTduHJ999hnDhg0zycz9999/4+XlxUcffWTSAr148eJaqdO5c+fQ6/Um71Xckl08r3VJxS3ltra29O7du1bqVSwwMJADBw6U6q5+5MgRmjRpYujSn5qaCoBWqzXZX6/Xo9PpSq2vivKOCUor+NUcUwghhKgJkr1cCCGEKMPy5cs5dOgQb7zxBs888wydOnVi9uzZXLp0yVCmuOXauEX68OHDhIeH10qdkpKS2LBhg+F1dnY2//vf/wgKCiqzazkoXba9vb356quvyMnJKbXd+PNcq+HDh5OSkmIyjdmlS5f466+/GDRokGFsd3GX+PXr15vsv2nTJnJzc8ttka9Iecc8duwYMTExV3VMIYQQoiZIS7cQQogbzn///Ud0dHSp9Z07d8bLy4szZ84Y5t8u7gI9b9487rjjDubMmcOiRYsAGDhwIP/88w9PPfUUAwcOJC4ujpUrV9K2bVtyc3NrvN4+Pj7MmjWLo0eP4uzszK+//kpqaipz584tdx8zMzPeeustHn/8cUaOHMmdd96Jm5sbiYmJ7NmzB1tbWz777LMK33fz5s2GuckLCwuJiorik08+AZT5w4unUBs2bBhhYWG89NJLnD59mubNm/Pjjz+i1WqZMmWK4XiDBg2iXbt2fPzxx8THxxMaGsq5c+f4/vvvcXFx4e677zZ5/+L3On36NKB06y+eY3zy5MmA8nChT58+rF69muzsbPr06UNycjLfffcdNjY2jBs3rsq/ZyGEEKImSdAthBDihlNe9++5c+fi4eHBjBkzaN68OS+//LJhm4+PD88//zxvv/0269ev59Zbb+XOO+8kJSWFVatWsX37dtq2bcu7777LX3/9xd69e2u83j4+Prz66qssWLCAmJgYPD09+eCDD+jXr1+F+/Xo0YNVq1bxySef8N1335Gbm4uLiwshISFVmr/6n3/+YfXq1YbXx48fN2Rnb9mypSHoNjc35/PPP2fBggWsWLGC/Px8goODmTt3Lr6+vob9rays+P777/nkk0/YsmUL69ato1mzZgwZMoTnnnuuVJbx4occxX799VfDcnHQDUpw/uWXX7J+/Xq2bduGpaUlXbt25ZlnnjF5fyGEEKIuafQ1kaVFCCGEELVq8ODBtGvXjqVLl9Z3VYQQQghRDTKmWwghhBBCCCGEqCUSdAshhBBCCCGEELVEgm4hhBBCCCGEEKKWyJhuIYQQQgghhBCilkhLtxBCCCGEEEIIUUsa9ZRhRUVFZGRkYG1tjZmZPD8QQgghhBBCCHFtdDod+fn5ODg4YGFx7SFzow66MzIyOHv2bH1XQwghhBBCCCHEdcbHxwdnZ+drPk6jDrqtra0B5ZfRpEmTeq5N+bRaLSdPnsTf3x9zc/P6ro5opOQ8EjVBziNRE+Q8ukHk5UGfPsryjh1Qw/dach6JmiDnkagJJc+jvLw8zp49a4g3r1WjDrqLu5Q3adKEpk2b1nNtyqfVagFo2rSpXAzEVZPzSNQEOY9ETZDz6Aah10NUlLJsYwM1fK8l55GoCXIeiZpQ3nlUU0OYZSC0EEIIIYQQQghRSyToFkIIIYQQQgghaokE3UIIIerFnr8jeP3JLcSfuVjfVRFCCCGEqDWNeky3EEKIxinuZDw33e5DTn5Hok7tZOWmlvVdJSGEEEKIWiEt3UIIIerc9KdiyMm3BeBktE0910YIIYQQovZI0C2EEKJObV97hB839jG8zshrXo+1EUIIIYSoXdK9XAghRK2KiTjP8iVn6BDShFvH9mDKKwEm29NzHOqpZkIIIYQQtU+CbiGEELWmIK+Am2/WcebiQAAsn4PCQmuTMhm59uh1ejRmmnqooRBCCCFE7ZLu5UIIIWrNsnm7OHOxteF1YaG6zdUxDQCtzoKcjJy6rpoQQgghRJ2QoFsIIUStyE7L5s3FQYbXD96ZhJOTsvzUU9A3JMqwLT0lq66rJ4QQQghRJyToFkIIUSsWvb6fxHRXAO4euIvvf3Xl4kWIi4MlS8ChhZ2hbEaWVX1VUwghhBCiVknQLa5Kfm4+Oq2uvqshhGigUuMvseCLTgCYmxXx1kI3ACwtoVUr0GjAsXUHQ/n0POd6qacQQgghatbMmTOZPHmy4fWYMWN4++2367wee/bsISAggMzMzDp/75Ik6BbVFrHzFC1d83BzusT857fIWEwhRCnzXzpCZp6SlfzRkTsJ6OJbqoyDUdLy9PQ6qpgQQghxg5o5cyYBAQEEBATQsWNHbr75Zj766COKiopq9X2XLFnCM888U6WyDSlQrkmSvVwAoNPqOLE/mmMHk4k4nI+5OTz3ZhfsnOxKlZ03J4n0nHYAzPxgIO9/lcxzj+7jwak98W5jU9dVF0I0MMnnU/h4VTcArC0v8/rCdmWWc3RUlzMy6qBiQgghxA2uX79+zJ07l4KCArZu3cobb7yBpaUlTzzxhEm5goICrKxqZuiXo/EX/g1Kgm6BTqtjUKcj/Hc0DGhrWL99zwHW7wzFwko9TdIS0/n1384m+ydluPDShwN56UPo3Ruefx7uuqtu6i6EaHg+mB1Bbv5AACbeuQfPdgPKLGf8HZyepkM6XwkhhBC1y8rKChcXFwAefPBBNm7cyObNm4mJiSEzM5Pg4GC+//57rKys2Lx5MwkJCcybN48dO3ZgZmZGly5dmDVrFp6engBotVoWLFjAr7/+irm5OXfddRd6vd7kPceMGUNgYCCzZs0ClIB+0aJFrFu3jtTUVNzd3Zk4cSK9evVi7NixAHTrpjy8Hz16NPPmzUOn07Fs2TJWrVpFSkoKPj4+TJ48meHDhxveZ+vWrbzzzjskJCQQGhrK6NGja/33WVUSdAvC/4u6EnCb2nCgC8+N2cqSVeoN8w+fHOZyofL63sE70QCrNvc2bN+5E3bvhjNnwMenlisuhGhw0tLgo5U9ALA0L2D6m/7llnXQHQZCAcg49R8wsPYrKIQQQtSGyPfhxPuVl3PqDAPWmK7bOgouHax838DnIej5q6tfOaytrUm/MsZr165d2Nrasnz5cgAKCwuZMGECYWFhfP/991hYWPDJJ5/w2GOPsWbNGqysrPjqq69YvXo177zzDn5+fnz11Vds2LCBnj17lvue06dPJzw8nFdeeYXAwEDi4uJIS0vD3d2dJUuWMGXKFP766y9sbW2xsVF60S5dupQ1a9YwZ84cfHx82LdvHy+++CJOTk50796dhIQEnn76aR566CHuvfdeIiIimD9/fo3+rq6FBN2Cw8fVgZV39lzP4KHNeO7tXhRqrfjopwG0b/8fk17vj16nZ9mKloayr7zRguA+/rx9+Bwrf3Pg25WOnDwJOh2sXQtTptTHpxFC1KfFiyErtwkAj94TjWe7wHLLOjqoT8JlTLcQQohGrTAT8i5UXu6yVxnrkqu2b2HNjXPW6/Xs2rWL7du38/DDD5OWlkbTpk156623DN3Kf//9d3Q6HW+//TYajQaAuXPn0q1bN/bu3Uvfvn355ptvmDhxIkOHDgVgzpw5bN++vdz3jYmJ4c8//2T58uX07q003Hl5qb8ThysJX5ydnbG3tweUlvGlS5eyfPlyOnXqZNjnwIEDrFq1iu7du/Pjjz/i7e3NzJkzAfD19eXkyZMsW7asxn5n10KCbsHhUx6G5Ulv3sqQIdC06TbGz+wHwJQ3etPcaSftOjTncIwy526PwAiC+3QEwC+0NbNC4ba7IFRptOKP31KYMqVF3X4QIUS9ysyEDz9Uls3NYeY75QfcAA7OTQzLGZnStVwIIUQjZmkPTVpVXs7Gpex1VdnX0r769Sphy5YtdOrUicLCQvR6PSNHjmTKlCm88cYb+Pv7m4zjPnHiBLGxsXTubDq0ND8/n9jYWLKyskhOTia0OAAALCws6NixY6ku5sUiIyMxNzc3dB+vinPnzpGXl8f48eNN1hcWFhIUpMQmZ86cISQkxGR7WFhYld+jtknQLTh8WF0u/pt5dEY/jh/bwsIVA9HqLHhgam8C/LIN5SY8nFbqOMHB4OmSQlxyC7bssCUnI4dmDs1qu/pCiAbis8/UFusxY6BNm4rLOzqr14f0DPk6EkII0YgFXUPX75LdzWtRjx49mD17NpaWlri6umJhoX7/NmnSxKRsbm4uHTp0YOHChaWO4+TkdFXvX9xdvDpyc3MBpYu5m5ubybaaSvZW22q1aSE9PZ0XXniBzp0707VrV15++WVyciqeXmrMmDGGVPbF/1577bXarOYNTa+HI0eUZXd3cDF6+Dbvy35MuG2b4XXUGVsAmjUt4v5JYaWOpdHAiL7HAcgvtGHTr8dqrd5CiIZn0yZ1ecaMyss7utgaltOzGseXphBCCNGYNWnShNatW+Ph4WEScJelQ4cOnDt3DmdnZ1q3bm3yz87ODjs7O1xcXDhs1IJXVFTEsWPlxwD+/v7odDr27dtX5nZLS0tASdBWzM/PDysrK+Lj40vVw93d3VDm6NGjJscyrld9q9Wge9q0aZw+fZrly5fz2WefsX///ioF0Pfeey/bt283/Js+fXptVvOGduFcHpcuKcslemRgbmnOsv/1Zd7b+Sbr77vfosypxABuHak+vVq/7nKN1lUI0bBdPHUKAEuLQgICKi9vb3Qdyciyrq1qCSGEEOIq3HbbbTRv3pxJkyaxf/9+zp8/z549e3jrrbe4ePEiAGPHjmXZsmVs3LiRM2fOMGfOnArn2Pb09GT06NG8/PLLbNy40XDM9evXA9CqVSs0Gg1btmzh0qVL5OTkYGtry/jx45k7dy6rV68mNjaWY8eOsWLFClavXg3A/fffz9mzZ5k/fz7R0dGsXbvWsK0hqLX+fGfOnGHbtm388ssvBAcHA/DKK68wceJEpk+fXqprgDEbGxtDKvuq0Gq1Jk9DGpriujXEOh7cchhQsguGeB9Bq+1Qqsy0GRa0aavlscfM0Ong2Wd1lPdRBt4RiPWTl8kvtOGP/9pSVFiExkxTi5/gxtGQzyPReNTmeZSYpiQ/cbVPQadzrXwHM7BrkklWnj3p2U3l3G5E5Hp0g9BqMTcsain3y/+qDy/nkbh2ch5VnV6vR6/Xl/m7KmublZUV33zzDe+//z5PP/00OTk5uLm50bNnT5o0aYJWq2XcuHEkJSUxY8YMzMzMGD16NEOGDCErK8twrJLHfvXVV/nwww+ZPXs26enphinDtFotLVq04Omnn2bhwoW89NJL3H777bzzzjtMmTKF5s2bs3TpUs6fP4+9vT3t27c37Ofm5saiRYuYN28e3333HcHBwTzzzDO88sorVYoVS55HNX0+afTljXK/Rr/88gvz58836TpQVFRESEgIixYt4uabby5zvzFjxnDq1Cn0ej0uLi4MGjSIyZMnlxpjAEr//sjIyNqo/g3j548uMP/rUQB8MOt/9BtdRkbFK3JyzDAzgyZNdBUec8bjhWw6pATyv339J94dq3DzLYRo1LRFOnr16oxOb06Y7zG++KlqPV3uGNaSuNRWuDe/yNoNVcjcKoSoM2Z5eXTqpyRVPbRtG7oy7sWEEOJ6FhQURNOmTa/5OLXW0p2SklJqgL2FhQUODg4kJyeXu9/IkSPx8PDA1dWVqKgoFi5cSExMDB999FG5+/j7+9fIL6O2aLVajh49SnBwMObm5pXvUIfmn1O7jg++NYgOYW2v+ZijbtnGpkPKcuRBG0Y9HHbNxxQN+zwSjUdVzyOdVoeZedVHICXFpqLTK8dzb5FLWFjnSvZQONpGE5cK6Tn2hIVVvYeTqF9yPbpBGOXhCQkJgWY1mxxVziNRE+Q8EjWh5HmUm5vLyZMna+z41Q66Fy5cWOl8Z8V98q/GfffdZ1gOCAjAxcWFRx55hNjYWLy9vcvcx9zcvFH8kTXEeh49pXTzt7LIJ6iLX43Ub+T9vjzzjrK8fpMzLzewz9zYNcTzSDQ+5Z1HlxLS6NP9EolpTvz7ZxKh/aowOBtIiU8HlF4tbi6Xq3yOOtopGUnzCpqiLSjAqokkVGtM5Hp0nTP6vzU3Nzd5XbNvI+eRuHZyHomaUHwe1fS5VO2ge/z48YwePbrCMl5eXrRo0YJLxRm6rigqKiIjI6Na47WL5307d+5cuUG3uDp5WXmcvOADQIfWMVhaVzynblX5BnsT6HmGE3F+7DregfD/ogjrX7UbdyFE/frmOytOxPkB8NqMY/y+s2p/u4kX1CkF3VyqPg7KoaUHRCjLGZlmuEjvVSGEEEJcZ6oddDs5OVVpXrZOnTqRmZlJREQEHTt2BGD37t3odLpSE5dXpHjMdnUCdVE1Ebtj0OnbAxAamAzUTNANMO7u87z0oR86vTkTJujZc1yPhaUkVBOiofv1d3WozrrdvTgXGUfrIE8A8vPBykqZHrCkxAt5huUK8mSW4uimXtvTMy1wqca+QgghhBCNQa1NGebn50e/fv149dVXOXLkCAcOHODNN99kxIgRhszliYmJDB8+nCNXJoqOjY3l448/JiIigri4ODZt2sSMGTPo1q0bgYE1FxBeD3Izc9Fpy09odjr8HK9O3MLBf8tPNHd4X6phOTS44uRo1fX8O73p2FqZPujg6UDee18CbiEauoQE2LlT/VvV6c357N3TAOzeDa1bQ9u2kJFRet/Ei4WG5ZYellV+T0dHdbms4wohhBBCNHa1Ok/3woUL8fX1Zdy4cUycOJHOnTvzxhtvGLYXFhYSExNDXp7SQmJpacmuXbuYMGECt9xyC/Pnz2fo0KF89tlntVnNRmfTzwdxamFGqN8ZcjJySm0/uuMkPfvb8taygdx5nx16XdkJ6o8cUQPt0K72NVpHqyZWfPmtA2Zmynu//jrUYC4CIUQtWL0aSs5n8cWvHUmIu8y990JiIkRHw//+V3rfxER12c2j6n3EHRzU5fT0alVXCCGEEKJRqLXs5QCOjo6899575W739PQkKirK8Nrd3Z3vvvuuNqt0XXj7TWUe7Ihz7fht2VbGTBtg2Ba59ww33dqc1CxnAM4lexIfnUCrtu6ljnP4uHq3G9KrdY3Xs3t/V559Ft5/X+mW+sQT8O+/Nf42Qoga8uu3ZwEfAMLanSX8lA8pmS3o2TWZ84k2hnJlPUBLTFa/Ttxa2VX5PR2b5QBKRuSMxBSgRfUrLoQQQgjRgNVqS7eoeeci4/j3aG/D65W/qC1Kp8PPcdPwZiRnmo5/P35KDa737IEHH4TgYD3bjwUD0MopAWePysfpX4033wRfX2V5yxY4eqRmu7ELIWpG8vlUtu5Txm77ucey5L1Mw7bYRNNrStTOPaX2T8xXc3W4+bSs8vs66A4altNjyx8OI4QQQgjRWEnQ3ch8/9lpk9f/7O9EarySJX7C2DQS0pSb3WY2uYYyx6KUxEg6HYweDT/+CBERGnQ6JRV+r961N966aVN4bqo6F/iK97fV2nsJIapHW6glO03JOv77iuNodUpr9V1Do+kzIpgQnyiT8hqN8tDs5NnmpY6VeEkZomJuDk5u1Wjpbq5OyZGeJg/lhBBCCHH9kaC7EdHrYcVfvU3WFWkt+W15BP/9fpj/joYB4NfyHL/8VGQoc+yY8vN0VD4JCcqyhQV06ABjx8KCxVVvlboa99+VhYW5kmTp+7X+aAvV6YROn4bffoM3Xk5i+rgtxJ1KqNW6CCEURQVF9A05jp2TLX06HOGDpeoQlLsedEFjpmHqxCTDuin3bSWgVQwApy54lUrkWDym29UVzKrxzeLoZG1YzsgoO/+EEEIIIURjVqtjukXN2r8fTpy0AqCVewEXEpTllb/aYvabGmTPnh5Hn4HqGO3ioHv/P/uBPgC8/twJXllQNxnhW3i24Naee1izowfxl9zZ/NtBhtzbmQkTYPny4lKugCu7Dh5m29HS48+FEDVrz4ZIdp8IA2DncbVruFeLC3Qbokwl+Oj0PqRd2kJhIbwwtzf33HyIE3F+XC5swvmT6lRiOh0kXYnPqzNdGICDUdCdniGzHAghhBA1LSAgoMLtTz/9NFOmTKmj2tyYJOhuRFasUJdnz7Fk3mvnOHOxNZsPdTas92t5jvuf6oGFFXh764mN1XAsohC9zoID+9QpfbqEZNVl1Rn7sI41O5TlFV/nEhFvHHCrtkeEsmv9UXrdGlyn9RPiRrNtY1qZ6++/9RQas1YAmJmbMe3dgYZtAX55cOXv+OThREPQnZacR1GRkl/CzaUAsKpyPRxbqPOCZ2SaV1BSpdPBkiVgbQ0TJ1avZV0IIYS40Wzfvt2wvH79ehYvXsxff/1lWNe0qfpdrNfr0Wq1WFhImFiT5FalkSgsVMZiA9jYwD33anjgtphS5V6aGouFlfJH0sH9AACZWZbER19k/xFHQ7ku/X1qu8omRo7thGOzdAB+2dyZGdPVBwAvvgjPj48wvH5vQXad1k2IG9F/R9XW7TVf7WX2pC288vgW5nzUo9x9/APUoPjkcfXvNPHsBcOym/neatXDwUkd/52eWbX5vZcuhWefhUmTlNkRhBBCCFE+FxcXwz87Ozs0Go3hdXR0NJ07d2br1q3ceeedBAcHc+DAAWbOnMnkyZNNjvP2228zZswYw2udTsfSpUsZPHgwISEhjBo1yiSYFyp5hNFI/PXjYVJSQgG4/XZlbtv7n+rJW8vUMt5ehYx5Vr1h7uCfzZ9Xkgwf3XOBg6eUriXeLnG4envWWd0BrJvacN/QPSxdPYC8AvVp2rQpqSxY4Ex+bjt++C2Ri+lurP6vO9FHY/EN9q7TOgrRmORk5NDUrikas+p3yS4qgp37lRkL3N1h5CPdue3RyvcL6GhvWI4ymjYsMU7tOePmWkR1OLqqQXdGlnUFJRV6PSxerL5+7ZV87hhykbZhNT/toRBCCFEVP/8Mr70GWXXYkdTOTpkl6O67a+Z47733HjNmzMDLywt7e/vKdwCWLl3KmjVrmDNnDj4+Puzbt48XX3wRJycnunfvXjMVu05I0N1IfLtczUY+5rYIoCMdQm3o2BEirjQSz5hpiZU6gxjtO6r/vat/ySX7snJz2yUwDqjboBtgzPjmLF2tvu7mf4y357cDwLqpNVPGHmfWYjd0enM+fDuGxSsl6BaiLL9/uYd7nwyjR+ARNh/oYOjdUlUnTzYlO1sJ1vv3B00V43b/EA/1GNHNDMuJ8XmG5eqO6bZpZoO15WXyC21Iz2pSafnNm+HECfV1Xr41jz9yiU0HvDAzl85bQtwotFplqIllFTrInDoFX34Jt90GffrUft3Ejefdd02/m+ryfWsq6J46dSp9qvEHUlBQwNKlS1m+fDmdOnUCwMvLiwMHDrBq1SoJukuQoLsRSEtMZ+0O5WR2dUhm6N1qMoTZs5U/tp49Yfx40/06hKnT+qz6R+1K2rXT5Vqtb3l63xpMQKtooi74Ytckkx9/ssWqiTr284kZobz1WS55BU356n9dmJOYTnM3x3qpqxAN2XdfJlNQZM22iFB2rd1Bv7uqdxd58KCtYbl//6rv5+rdAvsmGWTmOXAy1tWwPjFBHS7i5l61LuLGHJpmkZRhQ3p2s0rLfvyO8tARwMbqMpcLbNhyuBNfzP2Pia9U48MIIRqtyEjlvqdVK9iwQflZkccfh61blQDlo4+UoSlC1KTp0+HVV+u+pfvFF2vueMHB1cundO7cOfLy8hhfIgApLCwkKCio5ip2nZCguwEqKFCe3trYKK9/XnaE/ELlZvKBW49jaT3AUPauuyA7G6ysSj/tDeqqdrfMyHU0LHfpYUt90Jhp+OUnLV98tJUxj7niF2r6B+ns4cSjo7byyS8DyMm35fP5W5jx/sB6qasQDVlyuvo3vPHvXPrdVb39j+xXp/saMKCCgiVozDQEeMWx76QDZ5M8uZxzGZtmNiQmqlN9ubnbVK8ygKNtNkkZLmTkVnxtijsZz+//KtcNd6ckvlx8gVsfVh5ITnsnjNHjUnDxalHt9xdCNC5ffQWZmcq/J5+ENWvK77Fz+TLsuJIAUqeDyZOV6UoXLADzquVuFKJSd99dcy3O9aVJE9PeZhqNBr3edCrPoiJ1CFlurtILd+nSpbiV6OZmZVX1hKo3CumL18BEndDj66uMs9y5U1m3YpWDYfvYx11L7dOsWdndq+ycbPF2iSu1vkv/NjVW3+rq2LsdH/4wgC6Dy34C9uzL6oOCf7ZUbTyJaDjWfbOXOZO3cCmh7MzYomakZqvXgY07qtefW6fVceiQ8rflbJ9OdR9G+wcpORn0ejPORCt3rIlJ6p2rm6ddmftVxMHdC1AeDup05ZdbuvAkOr3yXhPvPc4tD3XikRHbAMjKs2f9ynro2yeEqHOnT6vL69bBqlXllz18WMljYez992HWrNqpmxDXCycnJ5KTk03WRUZGGpb9/PywsrIiPj6e1q1bm/xzd5fpf0uSoLsBuZyTz/0jz3DhAqSnw/33w4FtcWyPUBKotfc+TacB1Ztbu0ObBJPXrV3iaOHpXFNVrnHtOvngYq/8gR+PqaS/mGhQLpxO4K7HQpn96UCGD4wnLyuv8p3EVUnJUv+G95xoT2Zq6f5s4eFKF8pHHoFH7o7mmfu3cnzPaSJ2nyYtRxl60i/kRLWn2/LvrD60izqlPO1LTFEToLl5Ni+1T2UcmyudrvR6pedOWQryClj2szJ/uIV5IROnKdfCcePVIH/HjgoidiHEdcM46AaYMgVSUpRrSHq68rPYXqMJFW6+WW3dLmvaUiGEqmfPnkRERPC///2Ps2fPsnjxYk6dOmXYbmtry/jx45k7dy6rV68mNjaWY8eOsWLFClavXl3BkW9MEnTXo6KCInIz1QRp0yfsJvxMW8Pr8+fhphFqV8mxd8VVO1Nxh4Ack9dd25+/ytrWnfY+yvRDF9PduJQkgVtjsWdbGgVFSvC172QHHr3jEHqdvpK9RHXpdXpSs9TAVquzYOtO09blggIYNQo++wy++Qa++dWXxasG0H1AS955Ld1QbkDf/Gq/f4CaUoKTVzKYJ6Yq3cLNNFpatHKq9jEdHdXl9PSyy6z8eC+J6UoL/+j++/HwawlA9yH+WJgrY8q3H5QHdUJc7/R6OHPGdF1KCnTpAs2bK/8GDVJbt/ftU8u9/Tb0uDLJS1KS0vVcCFG2fv36MXnyZN59913uvvtucnJyuOOOO0zKPPvss0yePJmlS5dy66238thjj7FlyxY8Pes+YXNDJ2O660nWpSwGdI/j0JkgegUdpWenVJasGgiAteVlmjazIC3dgowsZXykRqPjoUkBFRyxbMYZzAG69vMop2TD0aF3e7YeUZaPRTWhX+ke9aIBOhTd3uT1qs298Ry3hfYdzDkWocXDA559ux/mljKI7lpkpWVRqDUderFxo5KVt9iqVcpDu5Jy8m35ZWsvw+v+Q6v/x+Xvry4bgu40ZQhMC/tLmFu6VPuYDuoIGjIySm/XFmp5+0M1oJ76nJpwral9U7q0i2DPiY5EnvcjJS61QffmEUJcm4QEyLvyPL5bN6XVOy0NYmPVMlu3wrZtSvBd3NJtaQkhIeDlpZaLi4O2aluHEDeEO++8kzvvvNPwukePHkRFRZVZdurUqUydOrXcY2k0GsaNG8e4ceNqvJ7XG2npridvv3CAQ2eUwZS7IoP54IeBhm3vvbSHr78xDZYHhYbj2a764yM6dDJtderSv+HPZdshWE2+cOxYPVZEVEt4eOl17303kAkv9eP97wcy7d2B/LBkV53X63qTmlY6UdnGjeqyXqfnvbnqmPqff4bIA/HcN2ibyT72TTII7etPdbVrpy5HHUlFr9OTmK70yHFrfnVj+R0tzxmW0+POltr+82d7OHlB6dY+ICScvreFmGzv2zXFsLzznxL9ToUQ1xXjruW9esHnn6tdxp2Mbnl+/115iFccS4SFgbW1adBd1sNJIYSoDRJ014NTh87ywXe9ytx2R9/dTH69P6NGwZT71Jvk8WOvrpt1UDfTR7hdulzVYepUhw7q8vHj9VcPUT3FQbe9Pcx7bkuZZfbt1dZZfa5XKWmlM4IePw7x8cry5l/DORypdD/vFpLMXXdBYGcPftjQh5cnbDHsM6Tb8avqdWBrC62clFwRJ0/pycjUGIYVuPle3UM9B/MYw3L6xSSTbTqtjrcWqq3nr75Setx2n/7qg4gd/8mQFCGuZ8Zdy9u2VTJGp6QoQ1POnAGLK20Wv/8O+/erZbt1U356e6vrjFvHhRCiNkn38nrw/KyWhpvUlyds4cEJnvyyIo7CQpgxv4th3PbC5T3wbLUFKysNDz5zdfPP2jla0bEjRERAx46mT4EbqvZGvZSlpbtxSElRuumB0powfeEA7B3+48gRaOVRxKsfDQYgOrPsh02i6lJT1WVraz35+cr1YtMvhxkzNZT33lPT9L7w+Ck0GiVgNTM34+0vBtKt927+WneJGW92vOo6+Htf5MIld1IyW3DiSAag9A93c7eueMdyODqquSoy0gtMtv3vy30ci1UGYfYKOsrguzqV2r/PMLX5fftJmatbiOuZcUt3cddw47wQAwcqvX/OnlWmFivWvbvyU1q6hRD1QYLuOvbnn7DuT6VVppV7Pi+92xXb5rZ06FV6UJFVEyumvzfwmt/z22+VZEqPPHLNh6oTLi7g0jyH5LRmHDuUAsi8uw1d+L9HAKXLb1jARTRmLZn0uhL86PXw9hdKwproszJv47UyDrpHDEnhtz+UoHrt/3Lx8gznzz1Kc05rlzjumti91P63jeuGV2g43oFXn3TMv00W/4Yryx+/n4Qh6K7e7GUGjk7qV1H6JbU3RGQkzH7P1/D61Zcul5lM0tXbGX9/ZYz5vv1m5OVBielGhRDXCeOg28+v9PZRo9QhNz/+qK4vbumWoFsIUR+ke3kd0unguefU1wsWWmPb3LbW37dTJ/jwQ6UFsrHo4K1kaEpMa0Fq/KV6ro2oTPhe9f+oU1vTMbUaDfheiZtiYqhwHmZRuZQ4tfv1yFFNaGqtzFDw87+9GHRXmGHbsxNOY2FVO89V77xHTWT23e9qK/PVBt0OjpaG5bQ0PZ9+qlyv2reHoyeVhwpdOlxk+ENdyz1G377Kz8JC0y6lQojrS3H3cjMz8PEpvX3UKHW5eOowOzt15gXpXi6EqA8SdNeh8HA1oUevXvDAA/VanQatg3+mYfn4fnkU3dCFH1GDprCepbNXFwfdly/DxYt1VavrU2q0mujAw/YEN3eLKFXGsVk6E17sXGt1GPpAFybe8V+p9W72CVd1PEdntVv6O5/3YPJkOHxY3W5rCx9+1rLCKROLg26A7duvqhpCiAZOr1dbulu3BqsyOk+1bl26kaFLFzXZWosWYHMlDYS0dAsh6kqtBd2ffvop999/P6GhoXTtWn7rhDG9Xs+iRYvo27cvISEhPPLII5w9e7a2qljntqxVWwAfekhpARRla99e/eUcCy9jDiHRoISfUKaesjQvoH23NqW2+3plG5ajI+LqrF7Xo5RU9bLt7NqUxcs8mXLfVh68eQcP3ryDR0ZsY+2Psdg52VdwlGv3wTdd6eB9ymSdm92FqzqWg5PaF/xyobrcowd88IHysNI4qC5Ln97qnPA7/jpVQUkhRGOVmqpOK1hW1/Jit99u+rq4azko917FUwhL0C2EqCu1FnQXFhYyfPhwHqhGc+6yZctYsWIFs2fP5qeffqJJkyZMmDCB/Pz82qpmndq6QQ0eB3WXPk0V6RCqBgzHjukrKCnqW15WHifilEC7fesYrJqUbnrwdVT7+0YfOVtXVbsupaapXcadW9rhHdiKxSsH8P0/ffj+nz4sX9ev1JRataGpfVNW/gg2lmq28JZedld1rOYupsNsWrvE8e/vp9i9G559Fjw8Kj9Gu3bgYp8MwI4DLpw5fK6SPYQQjU3JzOXlMe5iDmoStWLFXcwzM9UgXgghalOtBd1Tp07lkUcewd+/avPA6vV6vv32WyZNmsSQIUMIDAxkwYIFJCUlsdF4EtpGqqiwiP8OBwLg5phEUBevSva4sXXopv5+jp2s3RY7cW0idseg1SmBYKegpDLL+LZTWy+jzxSVWUZUTYrRPN0tPBzrryJAx97tWDb/IE2scukZeJSQPu0q36kMnu3cGRR2CDONlgm3beNIpD0DR1XvWBozDX1DlTvy9BxH2oa1pqv/cX75VOaGF+J6UVbm8rJ06mSaMM24pRvKTqa2YQO8+CJcuLoOO0IIUaEGk708Li6O5ORkevfubVhnZ2dHaGgohw4dYsSIEeXuq9Vq0Wob7vy/Wq2Ws0dSyMpTgscBnU+j0ztDw61yvWvu7oirQzJJGS4cP9uqQf//1pXi30FD+10c3JNsWA4NKftvsbW/g2H5TIxFg/sMjUlqupLEzNK8gCZ2Tar9u6zp8+iBqT25bUw2zRyC0KO/6uP+vacj2emZ2Dv3vur6PTIe1u4spEir5Bg4cKo990yGlbod3P1kz6uqlyhbQ70eiRqm1WJuWNRCDf9/V/c8OnlSQ3F7UZs22gqrM22ahmeeMePWW/W0aqUzKduqlXqcs2e1eHrC6NFm5ORoOHtWx8qV0sOuMZHrkagJJc+jmj6fGkzQnZys3Lg7OzubrHd2diYlJaXCfU+ePFlr9aop4XvU/7jQkCTCw8PrrzKNRICXnqQMFxLTXdm2aSt2zrWf6b0xOHr0aH1XwcSe3Wr3Ymf3rDLP7XydOkTk9Llmcv5fg5QMdwBa2F/i8JGrb5JpaOeRwTWMsWwVbMm6n//jvz+y+WNzWw7HdADg0ec7YWbzF75hLWuokqJYgz2PRI0wy8uj05XlI0eOoKulufiqeh7t3+8DKPeJhYUnCA+/XG7ZPn3g33/NsbXVmiRmBNBoWgCtAdi5M47Y2HxycpSemX/+qWf//nAsGswdsqgquR6JmlBb51G1LikLFy5k2bJlFZZZv349fhVlt6gF/v7+NG3atE7fszq0Wi3TDxYaXo9+KBj/MJ/6q1AjERy4nW1XEjPrc+wIuym0fitUz7RaLUePHiU4OBjz4jSsteDs8Tg+WRDNrXfYM/COsErLnzDKpj3inr44uJQ9HKClYyIX0904l+hOWFjpDOeiCvR6UrOUa4mzfRZhVzEPYF2dR/UmDIaMgjk6PRNu38a3f/Yjr6Apz07vzK6dOlq1lcC7Jlz355FQ5OQYFkNCQqBZswoKV191z6NLl9RRkbfeGsjV3vqZzqLhRZLRyKicHHMKCsKoYg5g0QDI9UjUhJLnUW5ubo027FYr6B4/fjyjR4+usIyX19WNVXZxUW7CU1NTcXV1NaxPTU0lMDCwwn3Nzc0b9B9ZQV4BuyODAfBwSiCws2+FU98IRceOGvhFWT5xJJtBoxvu/3Fdqu3z/ZmJifyxexBf/pZBwkWlC3N5UpJ1HI5WBta1cYvFqaV3uWV9PZSgOyGtJfk5uTS1b0p+vjKNmIPa+xy9Tk9SbApO7o5YWluWe7wbUW5mDpcLlZveFo7Z13QeNPTr5jUzh89/6c6Z7kfYcSyE+EvujL03nC2HW9V3za4r1/15dKMz+r81Nzc3eV2zb1O18yg6Wvnp4QF2dldfF+P5vS9cMCMx0XT7v/+a06+f6Tq9Hj75BFJS4OWXwVK+nhocuR6JmlB8HtX0uVStRGpOTk74+flV+M+qrEkTq8DT0xMXFxd27VKT3mRnZ3P48GE6depUwZ4N377NUeTmKzfKg7udkYC7ijp0VW+O537RG+k1VPsK8grYfLAjABm5Duz6+0S5ZS9dgpuHmpGbrwTlvUMr7hfcxjPLsHw2Mp5DB/U4OYGjozJ9y9Ch0KtnIQ62WbRs40LngLOkxl8q93hZWeVuum6lxKcblp0dy+9WKRTWTa1Z/acHXi5Ks9bWI2GkJhXUc62EEMX0esjOrtqtaGYmhhbpipKoVYVx+9DZs7B7t+n2svL3bt8OTz8Ns2fD4sXX9v5CiBtPrWUvj4+PJzIykvj4eLRaLZGRkURGRpJj1FVp+PDhbNiwAQCNRsPYsWP59NNP2bRpE1FRUUyfPh1XV1eGDBlSW9WsE1v/STMsDxooyTmqqtdQP4KClOXzcRb06QN//VW/dbreHfg3irwCtb/ev/+UPZdKRgYMGwbFQ7M9PPS8+YFvhcf29VGHWESfuMTCl/aQm6u8vnBByRy7e4+lIeFgxLl23HVLLAV5pkGSTgcTJoC9PTz3XDU/YCOXmpRrWG7hJMFjVbh4tWDYKDfD69gLV/dgWAhRs3Q6uOkmMwYPDuP77ytvjDCeLszPOwu0Ja6BRXmQ+C/kp1Z6LHt7tYfV7t2lpw3btQuys03XbdumLn/3XaVvIYQQJmot6F68eDF33HEHS5YsITc3lzvuuIM77riDiIgIQ5mYmBiyjJqrHn/8cR5++GFee+017r77bnJzc/niiy+wtraurWrWiS071L6zg0b61F9FGhlLS9i8WZ3qIysLRo7U88Onx+q3Ytex/zaaJi38d6dTqTL5ufmMHKFl/5Wpt93cYPNmDW3au1d4bF8/dTRLRHguv29VWtStLS/TvLn6MMrHPQnHZumA0jI5+b496HXq9tdfh6++UpY/+khP5iX1Qd71LiVfnUbL2b9HPdakcfFurd7Qx8bWY0XEVclMzazvKohrtG8fPP88REaq644fh//+06DTaVi0qETQrc2HtMMQ8x0cmgHb7ub0Ly8ZNrctmAsZJe4F0sJh02D4tQX83Qvi/1aa0stR3NpdYBS7F+eJKyqC//4zLX/woLocHg4nyu8IJoQQpdRa0D1v3jyioqJK/evRQ71RjIqK4s477zS81mg0PPPMM+zYsYOjR4/y9ddf06ZNm9qqYp05fFYZk97aNY42HWV+7upo2RK2bIG77lJea7Uaxj4dwC+f7qzXejVWBQXw5pvw9ddl34tsPd7H5PXeE4HkZKhBrV6nZ+Ld+9i+Qxnn0qIFbNoEAQGVv7dvgJ1h+dMf25OTr2SjH3vrXlJTNSQmKt0HY+Jd+fOXOKwtle7TX67tx/RHtnLhdDw//ABvvaUes6hIw4afb5xxB6lGDTgt3GzKLyhMeBulGigv6Nbr9KTGXzJ5wCPq38IXt+DoYssjI7bXd1XENXjgAfjgAxg/Xl1nPInFwYMapet4QQasaw8/NYM/w2DXGIhcAOd/5X9bOhrKB3lEQm6JP+Z0oxTlqbthy3DY2B/i1pZuFcf0ulBs0iR1uWQXc+OgG2DlyjI/qhBClKnWgm6humWkcnP8wiy3SkqKsjRtCj/9BE/er/SS0OoseGBKN37/ck+psvm5+eTn5pdaLxTvvQevvQaPPgqrVplu02ph+07TrreFWit2rFcf5y+YtpVv/+wLQBOrPP76o5AOHar23r6dQwzLsYlqssT7H7ZFowFXV7C7Epf3HN6R5QvVO5yFKwbi5d+SsWOKSh13/brCUuuuV8azJ5aYXVFUwCToPlv6HAJ4aNhOWrRy4o2nt9ZRrURVLF3RCr3ejG/W9+VyjuQxaIzS09Wu4Xv3qgnRS84c+c8/gKU9XE4Even8uEkZLvy85x4AnO3TuWWEDViV6InlGAz+U8ChvboueTv8NwpWu8PeJ+HSIcOmknl/LS1h2jTQXGl0Nw6609IgJsa0/MqVFTakCyGECQm668Dy5Xq2bz/I5Kfk1321zMzg4+/aM+E2ZVBVkdaSe57oxMF/1b5qe/6OoHlzLe39LnI+Kr6+qtqg/fpjumH5xRdNZoPh8GE1OZmDndoq8O+/ys/fv9zDSx/2N6xfsSicLt2rnr7Vo5WGknkW3RyTGHB72VPBPTC1N+88s8XwWq83Q6tTuqiPe/gyTayU8c3rt/uj0+qqXI/GzLilW4LuqvNyUecDig3fW2p7XlYeP25Uenm89Xkfzhw+V2d1E+UrLISYZLW327kTcl1vjE6fVpd1Ojj4zVvwuy+H/jbtv/333ygRr1NXcAwBn4cgbB4M+IMvLp6gUKt8gUx40hGbIT+Ca4n04i59oOtiuPUo9FkF9kYz3xRcgtNL4a/OcOhFoHTQ3bkzuLtjmCrs6FF1arFDhyglKopS838LIUR5JAqsAxoN2NjI49BrZWZuxtJfezNmuNLNsFBrxfy31CR1r87KJ6+gKdEXW/PE2AvSTbSEhOhEDhx1NLyOi4N576jBtfH4talT1FaGf490ISE6kUeeCUCvVy4Zbz69hbue7FWt9zczg5KjRe4dFom5ZflTMrz04UBO7I9mzuQtBHoqTSUje+3l88/NuKmL0vPhYrobh7ZGVasujVXKGfUhUwvbypMFCYVnG3Xu+Nh4u1LbY04kG5aLtJa89mJcndRLVCwmBsODNoDoSDnnG6PTp0y/i/ftvIQ+O4bws6bdpP7+WwnKGfQX3HoYen8H7WdQ5HYrny1XWrU1GnjyyUreUGMGre+FWyNgwDpo/QCYG0196aIE6yW7l/e68pVmnLt382blp3HX8u7d1WXpYi6EqCoJukWjYm5pzrJfu+HqoNwk/7a1GwnRiZw8GMOGA10M5f7c240fFsm4b2N//Xyy1Lp339URE6GMi9v6R7Rh/T33N6H9lR56+/fDow/Ek57jqGwbtItZiwZcVR18SyQ4v39M6URtJQV08eW1jwdy/Jwvly6ms2Z7N6yaWDFiuNrV9I9fEys4QvVlZSnzhzc0qQnqFGrODtkVlBTGbJrZ4OaotHbHJrUotT060fTu+4cNfQj/78Z4kNOQnTpl+jrmVG7ZBUXDdTmZUxt/NFm190x34jL8uZRt2l0nOflKl3ONaVK1devg/JUZKUeMKP3wtlxm5tBqBPT5Ae5Mgm6fgMcIaDUSKN3S3bun8hDaOOj+4w/lp3HQ/fbb6nTl0sVcCFFVEnSLRse6qTWP3a1kLS3SWvL5wkg+WVg6O9IzrweSFJtcav2N6o8/1RajQWFKn7j8QhueeSKBooIitu1Rsuw72V6iQ3sdgwYpZbVa+HtvJwBc7JP59LuAq55r3tdJTXrm7XyOnsOrOCAc0JhpaO7maHjvW+/1M2xbv7l0IHW1Nm4EFxclOZxxt8iGIDVdncmhhYdj/VWkEfJ2Va4FCWluFOab5gGIji5dftZ0yZhd30oF3TES3TQq8X/D+mBOnTTNo7AvfiThHup3gbOz+vf499+lD/Pxx+ryU09dZV0sbaHdJBi4TmkJp3TQ3SuzFxx/lz5dUmjeXFn3v/8pU4cVB91WVjBggBqYnzunTHcphBCVkaBbNEpPTGuHmUbpAr10ZSBf/64EhTaWeYzoqYzZTM1yZsqjp6SbOVCQV8A/e5UA19kuld/+9jG0/K3d2YNO/jGkZimtDv1CT2JmbmYIuo199M4pnD0qb50uj6+b+nDkviF7MTO/+kuQd2ArOrZW7sr3RrUn+XxKJXtU7nLOZSY+mkl+vpLletSo0vO31qeU9GYAmJsV4dDCvpLSwpi3uxJE6/VmXDht2jPCOOi2tFBau9bv6cZ/v8uAzfp0Mso0mVZMbOOePvSGotfDySVwOZHTiW1NNkXH2rLxXzXBx/33qzkX/vpL+ZmVpcyFfdttakKztm1h6NCaq6KnJ2g0yv2Bl3Msns0OQvh0rNe7c2/fPwHIzYVvv4WTVzqKhYQoCdcefFA9zsMPK8G3EEJURIJu0Sh5B7ZiVJ99ACSktSQjVwlAHhh5iq9WtcHJVumG+9Pm3rz26o2T3drY5cvKE3qA7euPkZWn/I6G9zqBo6sDH889g0ajJCCLOKfO/9y/j9KvekB/04cVt/fdwz2TqjeOu6S7HgvF2S6VFvYpTH712o4FMGLQBUAJpP5cVfGkqXq9kvTmlVeU6WseGHmGB4bs5O2pWwzTor330m5i4tRgNjIS7r9fmbNVW6glKTa5Xh/ipGYo06w526VddW+DG5V3K3VWg9jTpmODjYPu16ZEGJafnGJLbqZ0aa4vp/aGm7yOjnOsl3qIq6DRQK9voKkXp5JK92hasUJdHjw4jbZtlevqzp3KDBteXjBmjNK1vNjkyUpukJpibQ2PPqpBo9HzzH2bgSvXVH0RYzu/aSg3+7V8Qxfyzp2Vnw8+CIMHK8vJycrDgeJEpEIIURYJukWj9dQUq9LrZoXg6u3Cp/PUAOytd6x488r3Z1FBEbEnLlBUUPa0QdeLM2egVSslE+uPP8L6/6nNtSNGKDcWdz3Zi/9+j8C3pekj+v43K9N5tXDR0CtI6QLo0DSDT75ufc2BXusgT+ISmpGQ7IhPB89rOhbAiNHNDct//Fn25Uyv0/P5Zzrat4ewMGU83sqVsPIPP1Zu6s0rSwYysNs59m04zjufdwOUluTmjso58tdfENDqDHa2+bi1diHQ+yw71h255rpfjZRM5fM620vX5+ry9lbP3dho0/Hw0ceUrNjWVkXMmBtCmK9y/Yg878ezjx4zlMvPzSctMb32KysAOHXedJrNmIvu9VQTUSWXld5GGRlXxjlbO5PefTcpGcrQJeOh2mlXcqA2a6bHyyufoUOVqLaoCN5807SHUatW8NJL19C1vAJffgmZmRpe+PgRGHEcgl6EJq3o1W4Xfm7K+KLkVLWHRSelUx0WFvDzz0rrOyiZzh966EoiOCGEKIME3aLRuunuTgS0UVusevSALldyqd37VG+WLFa7Jr72GrT3S8LWtojWQa3o3v7UdT2t2OzZcOmS0tL94IOw9FclmDTTaBl2T5ChXN/bQjh83Jkn7/wPc7MiBoSE02lAgGH7N9/b8dL4LWz7JxEPv5Y1UjebZjZYWFlUXrAKeg3vgH0T5e5s+5HAMst89Np/PDHJjBMVNITvP9WeHsMCyc1Xum8/dc8OflttgYW5cg5FJ/mRV9AUgJMX2tBvVEdmPLKlTueEv5xzmZx8paW7hSRRqzbvNuqNc+xZtfeLXqc3tKC2cT2HpbUFP660oqm10vth2W/d+PpreOf53bi75uLiYcv0cVtkzuhadjnnMrEpHibr0nMcSU/JKWcPUW+KcmDvE/BHe157KRtHR7j3XmXT6Xj1/3BAGfk3Q0KU1uvioLuYuTk8+ihs26YM9XnnHUpNOVlTbG2vLDgEQqcFcPs5NIP/YczN/5YqW9zSDeDkpLTEOyjPFFi7FtasqZ06CiEaPwm6RaOlMdMwdZqa/fSZZ0y3Pz3FnPffV19HRruSX2gDwKEzQfToZcaBzZFcb06Hn+OHH0wft2fnKcFkr/bHcHJvbrLNtrktn/7an/SUy/x7KNRkCq92nXx458uBBPfxr/2KXwULKwu6dleCqfgUJ+JLPEf5+4f9PPtOX8Prfn21fPKJMj4v5sQldqw7ireLMj1U8XRoznapzF4UysCB8MXcXViYF6LR6GjnEUOQ1xlD2QXfDOS2/hHUldQEdXo8Z8e8Onvf64W3r9G0YefVr77Ec8mGByq+rZRhKYHdfFnyvvpg49FHYdYHPUnLaY5WZ8G73w6kW4fzkuG8Fp05Emf4mzQWc75ZPdRGlCtlD6wPg9Of8/uOXrw5T4lgf/kFzp41TUY5bBiGBGXFwsKUYHvIEAgNVQLwMWPgxAn46ivo27dmu5RXiZk5uN/MmNmPmaw2N4fgYNOiAQFKa3mxb76pg/oJIRolCbpFozZpEixZAsuWKWNvS3ruOXj3XeVL29xcR5DXGVo5JQDKWPD+t3oz89Et/Lh4JxE7r4+ka3NfjUWnU/60+3Q1Hbs6YsilsnYBlOC7MY4T7trDxrB84IC6PnLvGe57vB06vfIQ4aXxW/hvmzmTJkG7duAT4ETvEcHs2WNFN3+1C/HbLx6juZsjAONe7EtqYh45GfmcvNCGo2d8mPvsFizNlWRbGw504dLF9DLrpdfpuWQUKF+r1IvqgMEWTgUVlBRl8fZ3MSzHXlDn7I0+riZV822tjt9+dJIbDzxgegwzjdbwfx9xrh3dB7dhw8oDiIrFn7nIa09sYfLd//HRq1vZ8lu4IY9CeU5GqNeuZk3U872sTPPXo8zUTPKyGujDNb0eMk/BkddgQx/IPk1caivGL/vKpNimTaYZ6P39oVs300OFhio/bWyU63dGhpK4rK1p7rV64eunoU8f9XX79tCk+NKRsheSdwFw++3Q8kpHsD/+gFSZTl4IUQYJukWjptHA00/DY4+VmtrTYNo0pat1To4Zx2P9CD9sRZ8Oypjc3PxmzP96IA8+05vgPu3o3C6KtT8nN9p5N89FxvHtnz0BcGyWzh/rLfj50904NkvHvflFHpkaVMkRGp+uXdXl4qC7ML+Q0XdqyMhV+v3d0Xc3b33ev8z9W7ZxZcu+Nrw9dQsfvbaVibP6mWy3d7aniZ1yp2Vuac7MDwbyyMg9hu2nDl8odcz4Mxfp3SECZ4/mvDttyzV8OlXKRTVIcXaSgYPV5eLZAmsrZZx+bFaoYX30SXV8vG8b9Q9fo4HPPoPu3ZXl+++H40fzObD1LKFtlBbuQq0VDz/pzcUYNfuyUCXFJvPCw1vwC3Lgzc8H8umv/Zny1gAG3RVGW59sUuPLfwh46oQacA7qpU79GBNTq1VuEPZtOI57K3Pa+aRz9lhcfVdHFfUxbBkBvzrDOn+IeBP0WrQ6Mx5etqbUvNsbN5q2dLdtW1bQrf7NmZsbdfVuIMaOVZeLx3OjzYfd45QHDvunYKHP4qGHlE2FhbBqVZ1XUwjRCEjQLW4IDg5KplKAFp7ObNzjz7hbt5cqFx4dyKh7XejZE6JK9BwtyCsgO61hj6Wd/2o0RVpLAKY+HI6DiwN3P9mThEQbYi+2wN3XrZIjND7F4/gB9u9Xfm5fF0HUBV8AQtpEsWJNxwqnJ2tq35SXFw3kqTkDqtTa799ODXpPnTY97uFtUfTooWP3CaUf4uKv/WukB0VqlqNh2bml3TUf70ajMdPg3VrJJXDuvJXhwVr0aXV8t2+7Jib72Nsr2ZTz8pSEhAEdmhLcx5+9x9pwS3dl9oSkDBfG3nMenVYehBi7cDqB9h3NeP/7gVwubFJq+8V0NzZsLP9v0vjvathQNfHljRB0//7TRXLzm3HhkjuPPxTdcHpghc+A+PVQYNSDR2POkiN/sPWoMtjZywvsrlyeNm1Sp9oC8PMzDbrNzaFjxzqo9zV44AGlhbtpU5gw4crKM19A5glADyc/gj86MGbYf4Z9jDOzCyFEMQm6xQ3JppkNX//Rl3ORF1jz1V7eeeZfOrdVx3fv3at0GSu6cq+XnZZN79DT2DnZsnrZ7nqqdcUunE7gy997AGBrk8Uzr6uteTWZvKyhadMGmtsrrWIHdipTev29Tk19++KUFGyb12zzSbvevQ3Lp5LU3gObN0PfYV7EparJg+JSPThzJJZrlZrfxrDcwr9LBSVFeby8lJ/Z2Wp25Oiz6t+Fb2DzUvuYm6sP7IpZNbHi6599aOmodE3fcKAL7834r9S+N7K/fj5NapbS8mljmccLD29hy2/hTBmj5kE4n+hY7v4nY9Qx+ENvVR8yxYQfr/nKNjBJiWqQvfFwf75+t/QD4vpwMu8OXvxhAZ9tmQYeIyHkTbglnF93DTeU+f57GDRIWU5OVr5LATw8oFkzpedIsYAAo+7aDZSdnZKZPDkZ+hd3lmr7BHR6D8yvVD73PKHJAwjxU2YC2b3b9GGDEEKABN3iBucd2IrbHu3OSx8OYn9UIKt/0+Hnp2yLilKTorwzbR8HTrUH4M33veqpthVb+FoUBUVKdPDU/QdKJUy7Xmk00LWdciN+Mc2F+OiL/P2fmml96F01nwTOP9DSsFx8c6XXK8McsvOUpFzF2a8B/v3DdFq2q5GSoi47O5dfTpTP21tdjr3yHCQ6Vg3o2rT3oKpcvV347vMLhrnuX/6wD0d3nqmRel4PIo6qLf+/fRXBwhUDGTA6jAcmqU2bsRU8izoVp/wNuzok065Dc5pYKePto8/ZlL9TFeVm5pKZ2nCn3UtJN00W9/ybwSScrbn8EFery5QVLPzjRSYte5dwx7XQ8RX0Dh05diUlRqtW0K+fkhStWPEUWsVjtN3dldZjc3NlaFhjYGamtHSrKywg6HkYEQEtbzasHtNjiWH5u+/qsIJCiEZBgm4hrtCYabhjtBlff62umz0rg4idp3nvW7Vl89CJVqW6nte3pHNJLP1VaUJoYpXL83M61HON6laXEDXJ2B8rTxEerUwf1rltJK7eLuXtdtV8fdWMusWJgi5eVLu+dgotYM0Ktanj3y3mXC29Ts/X7+7i3XfVIKZFi6s+3A3N20NNlBZ7Qkl1Hx2vzEvv6pBc7R4RN93TmZmPbgOgSGvJ+8t8a6imjV9ElPowo3Pf1oblsh58lJR1KYuENCXobueZgMZMQ5uWyv/X2SSPa+rKf2JfNJ4e+bTy1HBiX8PMypacZtr8m57jyFPPN692rhG9Tl/huPmStIVaLsYkKd3Z048Su2eDSWCs06tDb3YpOcRITFTn3G6vPJc2CbqLtWunLv/wA2RmKolQGzVbXxj0N/T8BiwdeLD3D5hplGkmv1l+maNHabT5YW5EGRnw4ovw7LPwxRdKj4XMhvtsTjRCEnQLUULfvjDyJiXDeVyiAwOHNze0IBdraIlS3nv9uGHaoyfv3lsrgWZDVjxtGMD8j9Qb/GH9E8sqfs2sraH1lbc5eVK5sQoPV7ffdLMV/Ud1pJm1kgPg3/1tqz0us6igiI0/HWRU3308Or0XmZnK5bptWwgLq4EPcQPytlUzjcceP83lnMtcuOQOgK/7xas65qzFAwzz9K5cqZHMxVdEnFX+QFrYp5hcj1q2BAsL5W8hNrrsDOanY9RmRf+OSo+dNh5K8JhfaMPFs6aJ63RaHSlxqSZ/Y4X5hXw65z9enrCF9CR1uMmM55JJy2lO9mU7fv7m2od91IbkNOWBRROrXFxclAcMq1fDzJnVC+IeHr6TFq2cePDmHZVmQk9LTMfHPRF3X1ccbTPp3q2Qdn37s/xrtYy10TzZR5RcpIZWboAOV571BgYq3cmNlcxGbtJy3JhpNOA7FobuxsOrGUM6bgQgNs6GkBDldyKt3o3Dyy/DwoWwaBE8/jj06qXkA2rdGkaMUKaGKyys/DiickVFkJVVebnrjQTdQpTh7dlZhm6jxeMSXezV/r0//thwnmCnxl/i45VKCm9ry8tMeyOwnmtU97r0U7v8RycaBd231V4X+3atlKzCWVmQdC6ZQ4fUbWFhYGltSb9QJU/AxXQ3og5ULQNUQV4B08dtoZVrGjff15l1u9RBkOPuS2b//uvohrWOebdRf3Gx53ScPWOURK2N9qqO2ayZMo83wOXLytzCNxJtoZbP3/qP5x/aQvJ55RqZkgIXLynXzY6hzUySE5qbQ6vmSsb/2LP5ZR7z1Bm1Z0i7UOVvu423GjTGRKpBd3ZaNv1DI3DxcmZw53C2rz3CiX3R9Ak5yeTZ/Zn71UDuviUGnQ52/nGUNTt6GPY9dOTau6rXhuQMRwBaNk9h6VL1Nm3BAnj9tap98aQlpvPDBmW+qx839mFQ9zMknk0ut/z/vj5qyEWRmefAvtOdSz1sLg60AQ4fVn6WFXRrNKVbu41buq9LDoEwbDfTH/4Ha8vLhtWRkcq843//DRTllr+/qFdFRfDTT2Vvi42F9euV4WNBQcpDFO3VfV0IlAcXN92kJCpdubK+a1O3JOgWogwhff15aOhOk3UfzI6ib19l+cQJOHogve4rVoZFH1wmJ1/pFjvh9j14+LWsZI/rT+ugVjjbmTYx2tnp6TW89rrZt3NXu6aeOppA+Fb17rNTiDKv8KC+RuO6N1Qt8/2XC3bz7rcDScpQWwddHZJZvWwPX690MbSqiurzbqc+hImNsyI6Tu0C7dsl7KqPO3myuvzppxXfkCUmwgsvXLkJb+QSoy8xuGskT7zanw9+GMjrzym5FYwDsY6hpTNlebdU/lYvZTuRnV66tds4CZX/lZQMxtO5xZxSmkh0Wh0PjzrGjmMhAGw53Il+o0II7uXFvpPq3/6mg2HMn6dn5kzTbunhJ6s+hr+uFBVBWo5ynrq4WjJ6tDJ1XbE339Lw1pQtpfYr2dK//1/T/AJ7TnSkR/d8zhwuO7/EgQPq78bVQQnObW2ymfa02lvI0xN8fJTlI0eU8dplBd1QOuhuCPNu1zprZ26aNo9z/37PR++nY5Rvk4mPF5H1gz8cnAb5Ve/yL+rGtm1q3pRBg9TW7t69leCw2JkzykOUiRPrp57Xg99/h/+u5B3d3TDzEtcaCbqFKMecd72xslBaYnq3P8KDz/TmgdFqC8vKT8PrqWaqAwdg0efKjaOlpZYZb94Idzalacw0dA00bUkePFiDlU3tZWz3b6fe4J48lkF4hNKKamOZh3+AcmkddLua2fzf8JAqHffrH50My6P77ebnT3YRE9uMOx7rUcFeoiq82qkPpGITbIk2GtLrew3Dsdu1g6E3K0FLTAz89f2+Msvp9XDnnfD++3DHHUoA3litXLKLe8f0YscxdZaEv7crvUwi1ATlZU4J5e2uPoA6f7L0L6E4TwKoLaRt2qrBe/E0b7NeKuL37aX/LoqnTWzjEo1Go/ydznoFtkWEmpSLSfQ26XreEFy6BPorY6dbeClDH554AhYvUq83r340kBXvKxnNtYVaJty2DRcvZx4custQZt8ute+mpbnyEPBcsicvv1D2MIr9R9XsjCdPWZGdlk16hhVz5plOMxl65VeYkwPR0XDcKJl8kHq546abTI9/QwTdAGaWuPWZwFPPObJ9u5rJPfa8BbO+nw4n3oO1beHEB8p836JB+PVXdfnxx2HqVPj8c9ixA9LTYft2GDxYLfPVVzfG9IW14eOP1eWRI+uvHvWh1oLuTz/9lPvvv5/Q0FC6du1apX1mzpxJQECAyb8JhokRhahbvsHe/L0qklce38Lvf7dCY6bh7rs1hkQpK//wrdf5U3//XZnCpDjRxyOPmOMd2Kre6lPfuoSYtiQPG1a779cuSO2qfPCgO0rRxgABAABJREFUntMJSsAR3CbaMD1bp95uhqfkW7YoQVdhfiGXEsrORBx1IJq9UUqUEuobxW//9eTuSb1oai/9yWtCU/umtLgyTOT4WS82rFez5FxL0A3w1APqeHHjmwpja9fo2HmlA83ly6Y3enq9EoQ3lGErFbkQncaj07obetgUi05sTeyJuMqDbk+1W3/smdJ/C5GHlEBco9EbgrU2AY6G7Qcj7HnjDZj3rjLI2Nxcyx/f7OOredvwcT2PuVkRU+/bSsTplrzyihLA6o2SgPm2VMdyHzmkdgVuCJKNeoC7GKXmmDJVw/zntxpePzajG9vXHmHCHbv4al0/AFZu6s3FBOUE2ntQfUjxz0/HaNZU+Z3vPWM0Z9cVhfmFhJ9RftHtPGJwcHGgmaMt5lZWpcqGGD07PHwYk8zljo7qNg8PKL71CwpShmHcaDQaWLZMnRbtow1PsyOqtzLP+cHn4c9OkFr2AzpRi4pyIWkbXFgPSdvQpRzit9+Uh6ZWVsr4bWMaDfTpo8w7/9pr6noZq199x44p90KgTBlY8uHc9a7Wgu7CwkKGDx/OAw88UK39+vXrx/bt2w3/3n///VqqoRCVG3hnGG9+PpAWnkorgKu3Czd1DgeUVpJ9G+tnztjP3viP0aP15F4ZItanjzLe70bWtYfp+MzaDrr9g10Ny6s3tUOvVy6nYUFq10ELC3Vu1+RkeG7sftxdMnHzsuWzN0rP67ziMzUYGHt3Qi3V/MYW5K2MJ07Lac6aP9V+g9cadI94uDOtXZRx/n/t60L0UdMkXdpCLS8/Y9o0svIbtefM1KlKkrEHH1SnWWqovv6xOYVaJSC7a+Bepo3ZYtj279qzROxS+4d3aF/6w3i3Vm89YqNNx7lqC7WGzOd+Lc8Z8he0ae9uKPP7f515/XV1nw8+MOfWsd14dEY/ohM8SU+5zKKVA2hq35TXXlOuj8W6BJ5lxuvqw8lDJ0xbcutbeUE3wIvv9ueJ0f9n777jqir/AI5/Lpc9BBniQNwgMgT3XpmamZrazpHa0FIrK82WlqWmDTUrs7KyofUrK9NMLfdeqCgOREAcCCogQ8a95/fHkXu4MgRkyvf9evny3HOec+5z4XDu+Z7neb6Pet3IzLah5/1+fLumi1mZf/9THy7sPaamia9hl0S3QS3xD1Bb/6OidKTe1KP/2J5IMrLU62drv8KvOy1zdRZYt07LXO6fz0ie77+HV1+tfuM2c2vSBN59V11WFAvGfvsL2YYbPbCSw2FdRzj0Ohgyq9SDtyrFkAkX/1W79q9tB784w4ZusPle2NCNXZ88y4UL6jWpz13pZt3JbzZ2rBqEA3z3XeX5XaWnqzOoVJb6JCTkX5dPP9WWx4/XfpbVRZkF3RMnTmTUqFH45AzIKiJra2s8PDxM/5xlAKOoZB4ept0kfv91QiEl80qIvcyLj23i50U7bl24AMmXk5n8XmtTy82jj6pPYHO3MlRHbbppcxE1qxt920HUrTTwq4elXm09On9FCwhCQsy/aXK6FwLM/74Nl6+5kW2w4tnpnVn7wz7TNqPByPd/qK1NFjoDjz7TogxrX319/qUDLbwjzNZZW2ZSt87t3a3orfQ8/ah6XEWx4LfvzKej+mH+To5GNzFbt3VPLWJPXeDoUfjkE3Xd8uXw8bu3P697WTEa1Sy+oLZEv/9Va+4bqo2V37gJwiLUB1JebudxqZn3NsO7odYKGxNtPgA+MuysaSaGwKZaV+gabjVMvRRymzzZfL5nnYXObOo3S0t1iqqmTcHRET5Z2pBWbbREbblnHagM4s9r3cI93M3PSZ2FjoU/daRXyAFA60af24YNcO70ZdM1qW3z01joLcy6ft885eW+o9rY9psfXt4sd9D9yy/acn5Bt68vvPeeeet4dTRxIrS70cHgeHRdVmafANfW6grFAEffhX97MPLx69SuDa+8UnF1rVIyk+Dcaoj4Et3Rd/G69CG6/RP5+qNjTJ6sDtUAIOp7+K+32rX/yl5Qss0O8+ueoablYQ/c1Lsj/APY0B1Cp8Gpz6lv+JGendTrUEQE7N5ZcRnVTp5U7/98fdVrW5066rlWGrKy4K231Gn9Fi6EjRvJ87CuoP0eeUR9YNixo5r/KEdysvqgAtRksCNGlE5dq5KyG/BYQnv27KFjx47UqFGDDh068Pzzz1OzZuEZiA0GA4ZKnEowp26VuY6i6AaN9OfZN9O5nmXH938FMSs5FVuHomXBfXPiAT5beTeWK7Lo3O8CtRvWuvVON+ScPzGn4kjLUDOU92+3i2+/bYtOJ9k06zSuxdDuO/l9a1teGh+FweBVpu+n0+toXPssJ881Mlsf2MbZ7G+9W5dMIG8yKaOi56Enm7G9ySn82jZm82aF6Hi1zne3C8PDO6BMrhnV/Xrk26YRe45c581nN/LRD91RFAuCm5wEnd9t/w0NetSLafPV5dXrnXnhxgEz0jJ48/2GpnJ9Wu9l3f62ACxfcoL9Zz3J/Qx86ow6dOkYRuueuSKl25R4KQlbB5siX6sK8u+/cOaMGrS2b5+Ml5cdtT2aYWulXhN/3xRAUpoLAAGNz2Ew5G1JrtdYa0qKPmtpdi6G7joPNAQgsEW62baxQ48we2lPfLzjeGC4Bw8+qODvf+ueAfXqwZEjaquKpaXaKqTXW2Aw6AgNVTDcxrzfpe3Syf1ADwDclG0YDJ3MtltYWrD8T286tYsi4kJDLHQGvpq7h/FvdCA9XceGDQoDBriYyrfuUguDwUDz5jpyzrGwMCMtW+ZKunZI6/sd3Kul+bXBYEBvWjTQoIEBR0cLUlJ0plZuAD8/IwZD8R9cVZfr0dtvQ79+6k9y3ueNuH/rNiyOz0Z39F10SjbXzx/gh+XqQ5SPP1Z47jkjXmX7FVZ1GTLRRXyG7thMdJnqSWgBeAJrNt7DmLnqA2sbGyPvvKOA593oc+2u1PBDce8EdvVQslP59eBIACz12dx7n87sXLS4sB7dpS1wSeuZNtx/JP9t/waAb9/6gvZPTUXxmYQSkKv7DcDZ38CpKdTwh8zLkH4BjJlgXw9sPMFCT0nFx0OPHhZcuGDeVPz55wrTpxtvuxFm7lwdb79t/sC0Th2F/fuN1CrgtjU7Gx5/XMf//qfut3u32gjx7rsKvXsr/P67jpQUddtjjxlxclIq3X3rzdej0r4uVaqgu2vXrtx99914eXlx9uxZPvzwQ5588klWrFiBXl/wyXkyd6rTSuzIkSMVXQVRSu7rnMQvm3pxNbUmS95fSdf7vW+9E7BuhxqgZRus2PjXLvy6FG2/3I4djgDUoNur7lUOHQot9jHuVK9+YM2LaXuxsXcktByasBrVuW4WdOt0RnSOqWbvrWCkR0sjmw+35b6OW3liXDpffuLA6t1dSU53ZtDgq0x94S/+2NoJUPuTdr3PqczrX92vR48+X4M2ndewcxP0HmhFaOjtJzVSdAqNPaOIjGvItrAAtm/eiYOzHauXniU6fjAAvVvt5LmXkll3Y+TVom8aEXPT3N5ZBmseHe7ANz/tws7p9qe1OrbjPKNf6EetGgn8uGI/jq55B9gqCqSmWmBjo2BlpQZPRoORnX+dY99ee+4ZmIlPuzp8+GFDQB1uM3hwAkeOJALQ3g82H25tCrgBGnnH53sep2WmA74ARMXampXZtV37YdSqk2S2bdizNRgwcjs29jboLGLJyip5S3WDBi2IjLQjLExh756DWFmrN4RWVgo2NhXXRzMqUsszkK1cKfA68OnnSfz+3VHadjIQ2L0eLVsms2uXM7GxOj5fFA+oSQM9vDMIDQ3F3toSUJupd/+zHX9/LU/Eli3NAfWcsLQ8TGio9hDCIj2dkBvLhw8fxmhnR+PGvhw+bD6e39LyJKGhRWgKK8Cdfj1yc4Nmzfw4dcqePXt0fLssiuDg+7D3bkqT2Bc4caEuRqN6n5udreONN+KZNOlcBde6crG/Ho5zylZck//GNutsnu2Z2VY8v+xj0+tt25IJDVWz+Nd1fYJ0m6YkO7THoHchMVHP0T0OHD7sSPRFdwDatE0lOjqC6JyORoqC39Uz3JxRZWi7Xxn/zaekZ9rz864H+fjx57l88SIXskNNZXTGTIIjhmOhZKCgQ4f5NUVBT7pNEy66juSq092gK3rHY6MRXnihKRcuqD2BbWyMODgYuHLFiuxsHZ9/Hk2/fvnnjSmK7GxYsCAQMG/1v3BBx5Qp+Z+XBgNMn96Qv/92M1t//bqOyZPz9iHv1es4oaHpedZXFmV1PSpW0D1v3jyWLFlSaJk1a9bQpEmTQssU5N5c2QtyEqn17t3b1PpdEB8fH+wr8cS1BoOBI0eOEBgYWOjDA1F1PDPhEL9sUpf/WuPNhBnBt9znXMRFTsdpYwmzM90JDr71fjlyziMHO+2iVqeObbGOIUqXn89W/tF6iNOsbjQduuTNprx+r0J6Sir2NdTxlz37pdC93QkOnfElMq4hT01taCrr5KQwcWID7O0b5DlOaZDrkSY4OJgHnyzdY97bYysLVzQk22DFxeMW3D82iId+dTdtnzW3BiHd2xHyejgHT/sRFa/9nqdPiWHN78nsORHA6YuN+Oiti/y4NsCUmK+kXhp5nWyDFeev1iFibzijpgTnKfPppzomTrTAxUXh/sEKbX3D+PRzO8Ki1Rb5n9ZnMWfyNjb9pwZb7m7ZdOuWZDqP7hqmY/Nh82O2bedU4PXJ2T6JpDRnziXUIjhYuy6+dzbTtNzr3kB8ghve1mcvSAf/SCIjm5GdbYHVdXsuX/Nl0CAL6taFrVuNeFbQUO+l17WEkAEtGxEcXMC0h8HQK1fCp8E9wti1Sw2q/92kVf6BBxri5QVOei3HwPkYK9PvJTMTTp9Wb/h9fRW6dLmpL3iuPqVBQUHg4ECHDjqzObsBBg1qVqLpDKvT9WjaNB1PPKEu//WXL6NGGYFgSO3MkSXmw1H+/NOTBQs8cHLKc5hqS3diExbRX5heK+hQGjwKHl0wWHvw2vv1OXVRG9IaH++c6/qjxS6HD8PAgRakpZkHgyNH5nO9CjmGIf08XNmPLvMKZCXjkHmVwT2O8NO69lxJcWP1iScZ3MEfz6a59r20BYtT6oPcmwNudZ0B+4yTNL7wGoYmLaDefUX+OXz8sY7t29W/2Vq1FA4cUAgPt+Duu9XtR440ZOrUkt8//PEHxMWpf4vduys89JDCCy/oyMjQ8dtvnsyb54GbeWzN5Mk6/v5brZO1tcIPPxjZskXHwoV5HyZ066bwwEAPsHHNs62i3Xw9SktLK9WG3WJ9k48ePZr777+/0DL169e/rQrdfKyaNWsSHR1daNCt1+urxMW6qtRT3FrPwSE0raN27/v3YGuij8XQOLDwVuvt/0QD2s3luQTPEp0PyYlad5eaNS3knKpAvr7mXyghvhfQ6xvlLagHp5ra3ZOzuzN/rkmhV89oTl80/3IcNkyHk1PZ/07lelQ2BgxyZOEKdfnvNQZqOB/i9EU1jXPvVvtp00sdy/nwoDgOfqh1H6/pcJUXXnZh+GMQ3D6Za+k1+G1LR8YM3s63f3VAb1Wy39XRo7DpqJZJbPNWa8ZMMz+WosCcOepyYqKOpd/oWIp58JVtsGLy+1qCguF9t2JtXcN0Ht11l3lmX4CgNu4FnmPeteI4EuVMbIInOiyw0Ks3wIdPqWOR7azT8GnZsMzO0VbNz/HjKnU+soO7rjLvWz3Xr6vTYH34oZ5588rkbW8p4Yo2Trt2Pecif/4+fW2YOltdzsn3Ubs2eHvr0emgib+3aQhA+JlapuMeP3iJjAy1v2jr1rq875frtV6vB72em+MSLy9wdb2931N1uB49+ii89hqcPw9//KHjzBm9mp2/RiPCr5h/byQl6fhmKTz/wp39M8lX1jWI+Rnq9AX7XH3sawZqy7W6o2v1ITrXVgCcjzXw6bfmh4mM1AF6bj6tfvsNUxLaHE2bwiOPWOQpC4BjffVfLiNfhJ/WqcvfH/+EIb437ePsA60+hksbIfUs2HqCfV3QWUH6OUg5DUnHwKUl+voDzVu6j89Xx8I4NgWXQHDQ3nv7djU5YY7vvtNRr56eWrXUvD6JifD33xYYDGom9pL47DNteepUHf366Th6VJ2VIzVVx8KFet55Ryuzdas6rzmow3d++UXHwIF6hg2DBx6AFSvU2ToAnJ1h0oCl6P94CgafBTstH05lknM9Ku1rUrESqbm6utKkSZNC/1mX9Lecj4sXL5KYmIjHzSk8hahgOgsdYx6KMr1euvD0LffZstk8eUdMYvGSDOZIuqIdp2bNaviFXIk0C6pr9jo4KLOAknl5N69HWIQnv3+5m4fvOYq9Pbi7w5QppV1LUZ66DQzA3kZtHfx7uy+ffKJ11R3/jDZV1oOjzScunjTiEDXcatA40Jufl5zE2lJtJflhXWfG3r8D403jjr/9Fl54Ac7dogdq7myxAP/tbZJnqsND284UeJz2zcMY2X9bnvVPPGt+7rdtaz4tlE5nxK9Nwa0t3r7qA8jMbBsuxatBYmpSKqcvqg8v/RtElfhBQ1EEt9XGlc/4uIVZcrHPFmWSEFu8JJmlJeGKNpzAw6vwfDa5tezqg5uT+TiFdiFJpuzAeis9vvXV1u6IC95kpqvXqn0btQ/epkHREnzmTqYG+SdRE3lZW8OECeqyosBHH2nbcs93nuPj2RfJvpZ3Hvs7kqKo03jtegJ+qw27x0LkN+Zl3NpCl//BgBNw10a4EXCD2osgLc38epGZmf/1MfeUhgsXwoED6s+/OD017rpLm13g33/zySthXw+aT4Juv8M9+6HnGmj/JbT7DLr/Cf3DoOc6aLMwb9fy8Dlc3jSD58ee5PXHvuXwR3eTtfFh3p60jx49FLJufI28/LI2S4uVlTbVWXIybN5MiZw4oSZjBDXzfp8+6vIrr6jvAbBggRrcg5ofY+xYbf85c2DgQO11165qktAvv1T/ffABeAf4qgkEY3LNmVlNlFn28vPnzxMeHs758+cxGAyEh4cTHh5Oaq6uSv369WP9+vUApKamMmfOHEJDQ4mNjWXnzp2MHz+eBg0a0LVr17KqphAlNnKCH3oLNQD++s/2HDkCRw6ms/aH/XzwyiaeHLSFD6dsMt3gbt5rPod2TEyeQxZJYqJ2w+zimjd7rSg/zVqZB07B7d0KKJk/WwdbBo1pz09r/ElOhkuX1EykouqydbCldxv1ri4usRard6lpi+u7n+O+kW1M5Rr6e9Gj5UFA7Wo98a1g07Z+j7Xhf18cMmXH/2Z1V2ZO1BL5hIXBqFHw8cfQrp3CwS3m2dhz5M4Wm+Pc5TpEHDK/+Kz+RcuWPnfKLv73s4G3ntnM6m/3svOoP9+s7sKC1zZjoVN72XQNOESL9ubnvpUVdOmiXZuaeJ4pdH5578ZahJ5zLTy2J9o09V6gz5X8dis1LTtqDwRiL5kHt2nXrfloetHH9ClGhcvnS6e+8Ynqz8VKn2nWO+ZWLPQW3NXWPC152yYHzV63aKw+SDAYLTkVqv7Q9+/Xfmet2xdtMu3AQPPXEnQX3dNPaw+nvv1WDQxBm+/czg76dlMjxehL9fj1jSlwZAZkJedztDtA2nk4Ohv+8lWn8Yr8Bgw3mqFPfw1KrmjWuiZ4D4UaPmZzTe3aBcuWqdeNmjUVRo7UdonI59KYE3Tb2anTVoWEaAFlUVlaQpcbs/UlJ5tn6S4SnQ7q3A21bopvslMh/QIf/v0i89c+z7t/vE7LF9dTa8BnvLWgDdnZ6ufu1vYCM183fzA4aJC2/Mcfhb99ejokJeVdn/sh7bhxYHEjSvT2xvRzTU5WH1aAmiAwp/d1+/YwaVKugyWfhH2T1PnQc3PvCJ49wco8L0R1UGZB94IFCxg8eDALFy4kLS2NwYMHM3jwYMJyPWI6c+YM166p02Po9XpOnjzJuHHj6NevH6+99hr+/v788MMPpdp6LkRpqdPYkwH3qH1mzsfZExQEQa3suOfx1rw0twdf/tmNye/34PuPt3MpJp7ws+a5DkocdOe6ULq43X6SJVFyXl5gm+tXENwjsODCt6DXV785K+9U996XN9h8+pFTecZm//BrHd56ZhMbV1+gpqeL2bb7nmjH8k/2mR7sff5Tc1Nrd+4bqvPndXTpU4c/v96d5z2XLYOUG0OEnRy0RHEbV5tPSbbmX21s3bDhXgx9QM/0z7rTf0RbdBbqSTlhZnc2/R7G1Cc2sezn/B8u9WyhNa8EeB3Ot0wO71yjcXKuhYf3aS21gQFlm9bW3csNL7fzZus6+x/CSq9GQQt/bM3VuMRbHsdoMPLw3Ttxr+fK1Cc23Xa94hPV5jYP5yumn31R9e5l3puqXSfzm9oWzbWeFsdC1QnB94Wp+QZ0OiMhXYs2z6KTk9oKZjquzG5YZDVrwuDB6nJqKuzfr3a9PX2js5yfH7z8snZrvmDNk3BkOvzZGKJ+Kvf6lgljlprZe9MA+KM+HHoVrp3Stls5Q7Nx0OVnoPC/AaNR6z0AMH26QvtcaVVO39QJMS1NW+fvrwWVJZH7fXbtKvlxzFhYQ+8t7I5/wmx1Ypr6YFBvkc0b97/N+ucaYG007wXRr5/WpfzPPwues/v8eXUaPzc3+PtvbX1KCnzzjbpsa4sp/0COqVO10SZvvqkOX5k7V31tZaVOJanPvAiR38LGe9QHKScXwOHXzSujs4C7/oPGo4r4Q7mDKFVYamqqsm/fPiU1NbWiq1Ko7OxsZd++fUp2dnZFV0WUsr//VhT1alLwv+ZeEcrP313Ms97RUVGMxqK/V855NHbQZtMxDm09UXYfThRJt27q78LHp6JrUjRyPSp7Z8+a/61b6TOUi2culehYAzruNh1nz7qjiqIoSseO+V9r2vkeUT6cslE5sDFcObzthOLnfca07YsPT5uWH75ru+n4CbEJioUuWwFFaeF9qsj1yu88OrzthKLTGRRQlPcnbyx0/x9+0Or9wQfqukmjT5rWbfh5f9F/SCV0X4dtpvfT6QzK4W0nlKcGa9fX6eMK/wyKoiizX9hoKu9kl6RkZ5b878poMCpW+gwFFKVl4+PF3j/ySIzZ+XD5/BWz7f/7bIdp24zxG5XrqddN7+dXv4DffUqKdsCUFNPqIUO01Tt3FruqJtXxevTFF9rPbvZsRQkN1V4PH67eFwT4Z5rWHXu/uaL8gPpv99OKkp1e0R/h9kR8pX2e3P829FKUyO8VJavo9/RffaX97Jo0SVOuX89W1q3T1r3yinn5ffu0baNG3d7H2LRJO9ZTT93esXIzGhXF3V09bo0aitKtm1H9G210Qdk9u5/6s1rhqCiGm/5mrp1R+vVMMNXpwH5DnmNnZytKz55avUNCtPvQRYu09aNH51+3ESPy/+55e9w6RVkTnP/vdbmdolw9Uno/oDJ08/WotOPMMmvpFqI66NdPfbo3dqz27+UxB/h27jY6+qndE4/HNmHam1rLl4212tqQkgKJccWf1iExWWstc3EvWndAUXa+/FJNjvPLLxVdE1FZeHmZj3t9YNBVPBuWLDfJoAHXTct/rK9LQuxldu1SW7x9fQw8fJc2DnfPiQBenNODVj2bE9TFh/CYhgB0DTzEqPH1cbRVe5Zt3N/UNOxl7c/hGBW1+eLeHrElqmOOwM4+rFi0m3cnbuLZN9sVWta7ttZlJ+aI2rf2SFQz7Vjdgm+rLkURHKj9bIf3Xk9gZx+mvtPQ1Lvg4++CSUtOK2h3dq0N47X5XUyvr6XX4NiRkk+Dk5SQTJZBbarycEm5Rem8GgXUx99bbTEMbnwc1zrm3eZbtNIm2D123JpNvx8xvV/rFheL9V7PPAP29moX27Zti13Vaq17d21582atazmora86HYx9Uuvv/NWB97UCEYthXUe4sr8canobMi5DxJewsT+ETjPf5v0gWN3IqWBfHwLehIGRcNe/0OgxsCzabESJiWrra46XX47B0tK8F8bNLd25x3MHBBT94+SndWutpXx33o5GJXbhAiTc6Dnevj1s3qzj2jUIi6hNu5f/gru3Qbsleef53juOgQ1fN7385JUVXNnwMlz8D4zqNW3WLNi4Udvl4EG17gaDeY6B3L0HALWbv+E6H38ML70EPXqAu7vaG6mH30amdLgXroaa7+PQEELmwuBYcLnNH/YdolLN0y1EVTR6tPpPoyb3qOO1nz435uKNiFLH5ul0cG+nw/y2Sc1gHHPqEjVrFz1ZDkCiadZUcPF0L6SkKA/NmsHMmRVdC1HZDBkChw6py8+9VPL5pwY80QXdjd55f/ztgl+dbSiKGugN7LCV2V93o+vbm/liWW0Onck/IcCEcWlY2VjRNSiUv/e0JS6xFsf3ncavXRNWr9G6b/Yf5FLieuZ4YFzBM43k5l03BVC7UsecvoaiYJqGqlYtqOVZ9m0Cjz3diE+XX8be5jozF6pDQxoFePNgr+38tKEziakuhG49Qqd78w4bSbyUxCMjnTEYzW+jdux1JLBVnuJFknA+kZyfiYfr9ULLFuTnn3X8+OUmHnsy70wyTVt6Y6nPIttgRfgZN96brT0gGDioeEnr7r4bLl8GGxsZFlNczZqBpyfExcG2bWpX3xw54+Mff1xNXpWZCd9uGMB7by7F+vA4MFxXg5u1baH3FqjVJd/3KBeKotZHyVb/JZ+EuH/h4ga4tEVNlqUWNN/PyhFafQR29aB277zBYxG9/TbEq6MkGDpUoU0b9UGVt7c65jo7O++Y7tIMuh0d1WMcPgxHjqgNKY6lMEw553sDtIe32nH14NEZbn6Ge/4fuLCWga3qMn6pmn78638fYdmmodzl/y/tfD/Czase0xc8zM0jixd9dIWhvY4QEaE+DeoVcojghInw9zU1l0BWMmQlQctZ1PR70dSlHKORlG9ccLBJ0a4Brq2hzj1q5nn3jiX+3d6pJOgWooz0frAV7aaHseeEdmVv2RKC/K7x2yb1dUxEEi2LmScw8Zo6iNjCAhydbUqptkKI0vTSS+rfqI8PFDLj5S3VrmNB+/bqmMGwMFj0tdZaee9gZyz0Foyf0Z3xM+D43kj+910MMWe1m6pWrWDY0+pFple3VP7eo67fuMmCZsHZrN2pDsh1tk+i873llxGrbmNPLHQGjIqemIs1iIvTWndyByFlybd1Y85dzMDKpiYWeu1n1joki59uZPA9czKZTvfm3fflJw8RdakbAF7uccQmqA9Wdu5Uk2XlphgVvpm7jdCDRt76KChPC3SO+FRteiT3JiX7XbRo35SZNyW5y2FlY0WzuqcJP9uEI1HNTEnrfOtFMmRs4T0T8mMrKUVKRKeDbt3U3lHXrsHy5dq2nPHxbm5w//3qdEsJCTr+PDqKYX1bw7aHIDkcaoaAR6fyq3R2KujtzDNtn/oU9j13633zSwLXZHTedcVw/bqW9MvWFt5/38jVGx0HLS2hYUM14I6IUJ8N5ASFpRl0A3TooAbdRqM6Pj93L4aSynn4CHlnCiiQUxMInk29zESG99/LsjVq95MsgzVrD9/D2sP3mBWfMgWWLIErV+DnlU6E7dZmc3ip91T1ocnNErYDL2qvLaxwrN8S7BtA3XugTh+wrZV3P2EiQbcQZURnoeONV9O4b5S2rltXBe962pO/mKjid0XMmarB2fn2koAIIcqOvT28/vqtyxXFoEFaop6dYepUg872SXTqb37X2LxtY15vW3AyrJ5DW8ON+ac37m1E0NqDXE1Ve870aX8MK5vbeDpQTJbWltRzO8fZhHrExHlw5JABUK+NN2fHLks29nkfXDZuZmdajjydlWe70WDklw3q3bCTXTL/rs8msL3aKrkjn1m33nxmMzOX9AAgJXUrX63K/0lr/GXtu8GjnksxPkXRtWh2jfCzkHt04WsvnkdvVbQkaqJ05ATdANE38hra26vBYo6xY9WgG9RhTMOGBcI9oWqw69raPABWFNg1Sm09rtUVnJrd2K5TAyHLYg5FS4uFuM2QsFP9l3gI7jmozhudw6FRwfs7NALvYeD9ALi2KbhcCZ05Axk3ckMOGgQNGmAKukGddzsiQk1Wd+mS2rMAtKDbxQXqms96WCLt28MXX6jLu3eXTtCdX0v3LTk1hRbqfKPf/gUT9sGKnzJZsTyb2Avm3fW7dVOYOVOH0agmQsvMsiI0Wv0eaFHvKP1arlUL6izB2hksa4CVE1jnk0Dz7rzTSYqCSdAtRBm6d3hbQqYf5GCUekHr3iYKZ7tcU+VEF5BeshA5QbeLSylUUAhR6Q0cCK++ar6uJEFycFsnXFzUa8jvv8MfK7XW1HvvKdts4fnx9rzM2YR6xCd78OkbfwEDAAhsGAlUXBDYuLnWEh0Zlbd75In9USSlqfXr1Tocn+D2tG6ttnKfOgXxF9LxqKMG7u9M2GIKuAF+3hDMgqRUHJzV74GUqylY6C2wr2Fv6ioL2hzApc2vUzD8p71uXDuaR57rUDZvJgqUX3Dm52f+IL1XLzUIj4qCdevULP/e3tbQ/Pm8O8dvgzM35gc8Nst8m84CarQAt3bqXNeNRpiPm07YAymRkB6rZhGP22ieTdxUbqd50O3cHDy6gt7mRoDmCp7dwfMucGxcpuMOIiO15WbN8m5vmquzR0SEGnQnJkLsjbQVAQGlU70Ouf50SiuDeU7QbWVVsilEdTo1z0Lbtta8P8+aiAg4ejiDsF2RZKQk8+J77bG0VKcEmzfPPLH4i684oRtyUQ22LWTsSGmTdjIhypDOQscnn1ji4pBIO98w+g+tg3dTbXqemNjiTYenGBXTPN0ujqm3KC2EuBP4+UHTeubTW5UkSNbr1RY2UMc75iTRsrG6zj0Plf8E8d51rpmWf987wLQc6J+RX/Fy06hFHdPy6Zgaebbv3qT9Ljq0UXsrdWyhTdS7a62aRHPuXHjzk25m+6Zcd+L3r0MBiAiNxrfpNdw9IGzHKVP3eii7oPvm6b1enRCTZyo7Ufb8/dXpw25el5uFBYwZoy4ritraXaDY3wvephghKQwiv4b9E0F304OkPU/Bjkfg4MsQ8UU+AbcOnAPU6axyc2wMd2+BXuuh59/Q+Qdo+pTa1bmEwVpCQsFTXeWWO+hunM/zudzJ1HLGdedOWFcaXcsBmjeHGjcuEbt2qXXPzlaToZXE9etw4oS63KKFNgVYSeUMcbp/mA1vzPNj5uftcb1xC9qoEfTvr5WtVQsee8ob7DxBbysBdxmQoFuIMtbp3kAuJ9Vg9/EAbB1s8WqqJVWKuVC8rBuZ6ZlkZ6t/ti76k6VaTyFE5aTTwaCe5n/vJQ2SX3pJ7cZqaQkBPpd5qNcO/vgmjFreZRTlFaJt67xdt7sGHCKkm0+51yW3Gm5OuDur2dUjLzXJs333IW3cYvsuauKzTm20vq07tqYRFqaOm8zxeD+t3/myn9Qu7a9OjOT8lTqkZ9rz+YcxxJ/RIgkP53zGwZaC3EG3t7fCiBfLcVywMLGwgK43jTLIb77zUaO0uZHnz1eT1+Wr1Qcw+Jw6t7XvJGjwKDR4RM0U7tJSC7RdWqot07nZq7kEFAWi470xKNbg0QUC3oCe/8Cwq3DvkTKfV/m999TA7557bh143yrozt3SnZPBvLTHc4P6e8zJ3n/hAvz7r3rsunXhk0+Kf7yjR9VM4lCMruW3YdIkbfn55yVPQ1mTx5tClIPcSXrsnOyo5RzPpSQPYuKKl308NVHLaOviVLGtQUKI8jNomAsffK8ut22yj1reJRsn2bUrJCWpiX+srd2Aigu6xr3RAZ1uM4mJCgFBNvi3roVv60Cz62VFaezrTMIeOBfnyPXr5jeju46pDwV0OoU2d6nNkx3v1sa37tzvwrHXtMBh2jR45+0ObKt7lqhL9Vm/L4Q/v97N/7b2NO2zYVcD2gedJ6dbvbtTPJC3lf12BQaq0/1s3w4ff6zD2layC1eUbt3gzz+11ze3dIM6/eATT6it3MnJMGcOvP9+3nIA2NdVx1B7P5B3W3aamvXcmPe+QWk4gr+OjeaNT3pyKLwmTZsaeestCx7ppQX8ZW3dOnXqTYB//jEfh52f4gTdOS3dZRF0g9rF/N9/1eW+fdVrK8D06erMNvY3evKnpqrZ1uvXL/jnWqIkarfh7rvVvAGXLsH48WX/ftWdBN1CVADvWmrQff6KJ9mZ2UXu3peWnGlarumct5VICHFn6tQ/kN6t9rPlcACvTL69v33LSvLNb+tgy/OzSiHzUBlo3Bj23Mj0HhWldiMF9cb5iNp7nIAAHU4uav/Puk1q08Ajluh4L7aFBWC4cfNcr56aUM9Cb8Hwwad554v6GBU9D48PNnu/E+eaYmOtDRnwqOtSJp/LwgL++w+ysm6/66q4PTeP684v6AZ46y1YtkxNHLZwIUycqAbjxWJpn2+28127YNKkB03nOkBEhAXDh6stz4sWQc+eeXYr1PXrkJ6et/t8QeLiYMQI83VFDbqtrfNPiNaokdpDSFHyb+ku6GddEu3ba8s5ATeovRK++06d0/7sWTU4P39efYDXooUafOf04G7RQv09506iVl6zODz4YPm8j5Du5UJUCO86atdBo6LnfGRckfdLTdZutl2cyz/xkRCiYuit9Kzb24qkRIVhRZwLW5Rc7jGhuVvV9u/Xun/mvtkG6BgUA2A2d/f06WB3Ixn68GcamtanZ+TNmn74xjzrOp0R19ouJa36Lel0EnBXBsHB2vzL9vZqBu78eHnBhAnq8vXr6vzUJXHhghrgKoqaaf+116BzZ8wC7jpaOgPCw9WW0CVLivce9eurD5tyMq+DGoC+/DK884764CqH0agG3HE33QZdulTweyiKmr0c1ERz+bUa29io9QBt2rCch2W1a4N78ToZFirPdSDX5fmjj9TP+MwzasAN6u/wwAH44w81oeXvv6sPOKZOLWHmclFlSNAtRAWo3yzXuO6LroWUNJearAXakr1ciOpFZ6HD1kEG3ZWH3F1WI0+mmZZ379KuwR1uSvrdqYN5DwSfelGMGqkNTm0W0pAOfkfNyowblTfjkpvTFfRW0u37TmdpqQailpbq2NrCpgCdOlVL2PX11+o0WYMHw+TJ5kFsQb7+Wg2Ea9dWx003a6YGejkts4GBavB37pzaEyIncDQY4Kmn4JVXzFtxC6LOK662dD/2GPz2m5rRv2NHNVP2m2+qDxt27FCD/X791K7lNyss6I6P1z5zfl3Lc+R0Mb9yRU1OljMevjS7loP68xw9Ws02PmkSbNmi9Q44eVJ9qLBmjfq6Zk01I3l+v+uPPtKmHKxTp+ySKYqKI0G3EBXAu4U2/i/mvF0hJc2lJGs3cC4ukllSCCHKQmN3LXFd5L69puVdq7Xl9q3Mk5117GF+l/zuaxewtDK/To94TsuWFRQEH33qjqPtNbMy7jWSSl5xUaW8+SakpKgBcGHc3NQAHdRA+M8/1ZbSDz+8dcKuw4fV8bo5OQYSEtTpx0AN+GfOVFteBw1Se0H07Albt8KLL2rHmDsXhg2DtLS8x89t40Zt2WCAhx5SW4JP5UqIHhEBXbqo69evV9fpdOrY9RyFBd23Gs+dI3dvlZyeAlD6QTfAV1/BtWvw8cfqz3TyZG3bDz9oy998A8ePqw8NLlxQ/82dq23PvDGCUFq570wSdAtRAby9teWcL7+iSMl1b+biKi0hQghRFhr7OJiWI6O13gW7w9Q+wI621/ALcDDbp2XXZtSpeRGAtj5HGfp03vmvHx+uo1UrtafS55+DjZ0V3YPDzcp41EwprY8hqgCbvCMN8vX882or8c22bCl4n9RUePhhdTw4qGOHc7qQt2mjtja/9lrePA96PXzwAXz6qdZ9e+VKdRz6hQtqIP/mm2qdrt5I3G8wwObN5sfJzta2+/trvUNyZydv2BD+9z945BFtXWkE3bmTqW3YoC23a1fwPrcj9+/xnnu0PBA5HnoIBg5Ul21t1V4HtWurAfp995mXLa/x3KJ8VZJ0KkJULyUPurXnZC41ZVCeEEKUhXpNamOlzyTLYE1krJoRKvbUBc5dUSOWdn6n0Fu1MtvHysaKv369yt8rj/PM1CB0Fnl7Izk5qePCjUati2nvfjVYvUsr41EzvWw+lKjSHB3VFun4ePX8CQhQu0zv3asGsflNq/z88+rYbFAD9l271OAwI6Nowf64cWpg+8ADakvuvn1qkrKMXEnQr16Fb7+F0FB1ZgSA++9Xcxn8+KP6uk8f+Pln9TPMnauO7XZzUwP+J55QcwzkHs9c2kE3gIODGuA+kE9y99JmYaH2FHjqKfW1qyssWJB/WZ1O7f7fsqU27ltauu9M0tItRAXwrq895o05VdDEm3klX7MyLbu4FfHxuBBCiGLRW+lp6HkOgMgLdVGMCrv/jTJtbx+S/zzarXr68dqCHrjVLTxXR+4xnb2HmjeJebhlIkR+dDp1DHHt2tr80PHxEB2dt+ySJepUY6AGnMuXa4F2UVvXQZ0Ga/t2rbEg46ZZx/73PzUgz921vHdvNRD/4gu1Dn/9Bc7Oaqv51KnqOOvoaHj6aS2pX61a2v6lEXT36QM+PmqSusmT1eRrM2aU3+wNw4er3ejt7WHpUvPPdzN3d/WhhKen+jAlp0Vc3FmkpVuIClCrloK1ZSaZ2TbERFwG3Iq0X1Kqo2nZxa3oY8GFEEIUT+N6lzl1vhGpGY7Exyawa4cWDHfoXHrXX39/8PTIIC5ejYQ83IuQsUpUe23bwtq16vLevWo37RzffqsGtDk++URN4FVSgYGwe7faSrxtG3Ttqq7fulUd5/3bb+ZBd8+eanD75JP5Hy+/oD93RvGiBt2NGhVcztERjh1Tl8trvvHcbG3Vn4/BULT379wZYmMrz5SOovRJS7cQFcBCb0F9d3XsX8ylQiajvElcVqBp2aV+s1KvlxBCCFVjby1r1OmjF/lnqzafUvtehTSxFZNOB727XTW9dq9lVUhpIVQ5Ld1gPu3X8uVqNu2ccdOTJ8PIkbf/frVrq+PH09PV/+fM0bZ9/bUaYOaUu3k8c1FYWandsKFoQbe7u5bRvSB6fcUE3DfXoagk4L6zSdAtRAXxrn0FgKQ0Z+LPJhRpn5QU7ertUlOylwshRFlp3Ehrcf7ys6scifIBoJ1vGJ4NS3c+n0EP1TYtB/TsXKrHFnem3EH33htJ9ffsgccf16b3mjBBHUOd33jvktDp1BZcUJOi5Yyb3rJF7WIO0KNHyd8vpwt2QUF3RobaGgyFdy0XojKSoFuICtImSJsW5t/fTxZSUnPtmhp06/Vq1ykhhBBlo3EzLWv50r+0QHjyhPzHc9+OYcNg8WJ1HG6vXqV+eHEHql0b6tdXl/fvV7sxf/SR+j+oSbzmzy+9gPtmOp06bvlmOXNUl0RO0J2Skv/0ZNHRWgu+BN2iqpGgW4gK0neA1i9q7dqijeHLCbpdXMrui1QIIQQ0bl7TtKwo6u1SA49YhjxZ+nMO6XRqkDR2rFzbRdHlTH+VkgI7dqhjq0Hter1gQdmfS48/nnddaQTdoCaIu1lRk6gJURlJ0C1EBelyrz/2NqkArNvZFMWo3GIPSEtS04a62F8p07oJIUR118ivdp51z4+JwNJaBl6KyiF3F/MXXoDMG7n+RowoXobykmrcWM3QnaNevbxTdRXHrTKYS9AtqrIyC7pjY2OZNm0avXr1IigoiN69e7NgwQIyMwufCiMjI4MZM2bQvn17QkJCmDBhAgkJRRvvKkRVYmNvQ8+QowBcuFqbIztOFVpeMSokpToA4GJ7sczrJ4QQ1ZmzhzNuNbX5kZxrZDLm5VaF7CFE+coddO/fry2PGVN+dRgxQlvu2fP2Wtcl6BZ3sjILuiMjI1EUhbfffpvVq1fz6quvsnz5cj766KNC93vvvffYuHEjH3/8McuWLePSpUs899xzZVVNISpU37vSTcv//H6+0LKpSakYjGoLi4vj9TKtlxBCCGjcVGsufOppa5xcb5EuWYhy1Lp13iC3Uydo0aL86vDIIxASos7Dfbu36xJ0iztZmfWR6tatG926dTO9rl+/PmfOnOGnn35iypQp+e5z7do1fv31V+bNm0fHjh0BNQjv378/oaGhBAcH57ufwWDAkJM5ohLKqVtlrqOoGL0He8G76vLaf2vwYiHnyOW4RMAZAJcaGXI+iRKR65EoDdXlPGrVSsfevRbY2Cg8+6yRO/zj5mUwoDctGijtH0B1OY/KiqMj+PpacPy4FnmPHm3EYLj1cLXSYmenZk3Pzlan/bqdX6U6V7d6xl28mPdzREZaADosLRXq1NH+HuU8EqXh5vOotM+nch2YdO3aNZydnQvcHhYWRlZWFp06dTKta9KkCXXr1i006D55smiZnyvakSNHKroKopJRFIUGHjFEx3uz7WggO3cexs4u/6RqMcfigQYA2NqkEBoaWn4VFXccuR6J0nCnn0cPPKDHwsKD4OAUEhJSqG6j3SzS0wm5sXz48GGMdnZl8j53+nlUlpo0acjx424AODgY8PE5TGho0ZKzVjZJSY6ALwBHj8YTGhpr2qYocOpUMKCndu0Mjhw5mmd/OY9EaSir86jcgu7o6Gi+//77Alu5ARISErCysqLGTbPdu7m5EZ9fGsMbfHx8sLe3L7W6ljaDwcCRI0cIDAxEr9ffegdRrfQbbGDxEsjMsuLKlSDuvTf/csnRoaZlz1pWBT6EEqIwcj0SpaE6nUc9elR0DSpQaqppMSgoCBwcSvXw1ek8Kit9+uhYvVpdfuQRHZ06BVVshW6D+TMdD4KD3U2voqIgLU09R1q2tDG7B5LzSJSGm8+jtLS0Um3YLXbQPW/ePJYsWVJomTVr1tCkSRPT67i4OMaOHUu/fv148MEHi1/LW9Dr9VXij6yq1FOUr3799Sy+8Se1YYOegQPzL5eUmGVarumCnEvitsj1SJQGOY/ucLl+t3q93ux16b6NnEcl9cgj6vzc16/DlCkWZfUrKhd16mjL8fHmn+Vorobtli11+Z4vch6J0pBzHpX2uVTsoHv06NHcf//9hZapX7++aTkuLo4RI0YQEhLCO++8U+h+7u7uZGVlkZycbNbaffnyZTw8PIpbVSGqhF69wNJSHQ/1999qF6r8sn8mXdGCbpeaMtufEEIIUd15eEBEhHrfYFHFbw1cXLT7oZsTqeXu8RsYWK7VEqJUFDvodnV1xdXVtUhlcwJuf39/Zs2ahcUtrgYBAQFYWVmxc+dO+vbtC6hZ0M+fPy9dacUdq0YN6NwZNm9WvzjD9l4ksF3e+WGTrmoJHVxqypNcIYQQQpRZB4Ryp9OpGczPn5egW9x5yuyZWFxcHMOHD6dOnTpMmTKFK1euEB8fbzY2Oy4ujn79+nH48GEAnJycGDp0KLNnz2bXrl2EhYUxbdo0QkJCJOgWd7QH+seYlpd/cdy0nJ0NsbFq63diopbF08XVulzrJ4QQQghR1nKmDbt0Sb33yXEjVMDaGnx8yr9eQtyuMkuktn37dqKjo4mOjjabOgzgxIkTAGRlZXHmzBnS07W5iqdNm4aFhQUTJ04kMzOTLl268NZbb5VVNYWoFIY9aMfEqQaMip7lqxsx06j2MX/wQVi5El56CbKzvE3la3q6VWBthRBCCCFKX07QnZ0NiYlQsyZkZEBOPis/P3VqMiGqmjILuocMGcKQIUMKLePl5WUKwHPY2Njw1ltvSaAtqhXPhh70CtnPhgOtibzYgH3/HuNCegtWrlS3f/xRNr3vqmsq71K/cQXVVAghhBCibOQE3aC2dtesCeHh2vzf0rVcVFVVPOWCEHeOh4elmZZ/WJrAtGnatmyDJWvXaXNpuLiUY8WEEEIIIcrBzUE3aF3LAYKq7oxoopqToFuISuL+UQFY6TMB+GRFJ7PpMW4mQbcQQggh7jT5Bd2SRE3cCSToFqKScK1Tk77tQgEwGLWRH77esWblLC0V7O3Ls2ZCCCGEEGXvVkG3tHSLqkqCbiEqkYcfyDJ73a/TcT6Zaz5vhov91Xzn8RZCCCGEqMoK617u6gp16pR/nYQoDRJ0C1GJDBwZhK2Vls3/vXfhrmEh+NaLNK1zsbtcEVUTQgghhChTNwfdly/DhQvq68BApNFBVFkSdAtRiTi5OvH2xN3YWafx5tObCOnRHJ2FjvEjtXm8XRwSK66CQgghhBBl5OagW7qWizuFBN1CVDIvz+tBWoY9Mz7vYVo38vlgXByuAuDbLKOCaiaEEEIIUXY8PLTlS5fMM5dLEjVRlUnQLUQV4OzhwtqV55j6xJ/M/axZRVdHCCGEEKLU2duDo6O6HBMDmzdr2yToFlWZ5a2LCCEqgza9/LB0zaCWt3tFV0UIIYQQokzUqgUpKRAVpf7LERBQUTUS4vZJS7cQQgghhBCiUggOzruuTRutBVyIqkhauoUQQgghhBCVwsKF0LIlXFVT2eDgAKNGVWiVhLhtEnQLIYQQQgghKoW6deHNNyu6FkKULuleLoQQQgghhBBClBEJuoUQQgghhBBCiDIiQbcQQgghhBBCCFFGqvSYbqPRCEB6enoF16RwBoMBgLS0NPR6fQXXRlRVch6J0iDnkSgNch5VE9evg6+vtqzTlerh5TwSpUHOI1Eabj6PcuLLnHjzdukURVFK5UgV4PLly0TlnsBPCCGEEEIIIYQoBQ0bNsTNze22j1Olg+7s7GySkpKwsbHBwkJ6ygshhBBCCCGEuD1Go5GMjAycnZ2xtLz9zuFVOugWQgghhBBCCCEqM2keFkIIIYQQQgghyogE3UIIIYQQQgghRBmRoFsIIYQQQgghhCgjEnQLIYQQQgghhBBlRILucvDDDz/Qq1cvAgMDeeCBBzh8+HBFV0lUYgsXLsTX19fsX79+/UzbMzIymDFjBu3btyckJIQJEyaQkJBQgTUWlcHevXt55pln6NKlC76+vmzYsMFsu6IozJ8/ny5duhAUFMSoUaPyTLmYmJjI5MmTadWqFW3atGHatGmkpqaW46cQFe1W59HUqVPzXJ/GjBljVkbOo+pt8eLFDB06lJCQEDp27Mj48eOJjIw0K1OU77Hz58/z1FNP0bJlSzp27MicOXPIzs4uz48iKlBRzqPhw4fnuR69+eabZmXkPKrefvzxR+677z5atWpFq1ateOihh9i8ebNpe3leiyToLmNr1qxh1qxZPPvss6xcuZLmzZszZswYLl++XNFVE5VYs2bN2LZtm+nfjz/+aNr23nvvsXHjRj7++GOWLVvGpUuXeO655yqwtqIySEtLw9fXl7feeivf7UuWLGHZsmVMnz6dn3/+GTs7O8aMGUNGRoapzEsvvURERARLly7l888/Z9++fXluYMSd7VbnEUDXrl3Nrk8ffvih2XY5j6q3PXv28Nhjj/Hzzz+zdOlSsrOzGTNmDGlpaaYyt/oeMxgMPP3002RlZbF8+XJmz57NypUrWbBgQUV8JFEBinIeATz44INm16NXXnnFtE3OI1G7dm1eeuklfvvtN3799Vc6dOjAs88+y6lTp4ByvhYpokwNGzZMmTFjhum1wWBQunTpoixevLgCayUqswULFigDBw7Md1tycrLi7++v/P3336Z1ERERio+Pj3Lw4MFyqqGo7Hx8fJT169ebXhuNRqVz587Kl19+aVqXnJysBAQEKH/99ZeiKNp5dPjwYVOZzZs3K76+vsrFixfLr/Ki0rj5PFIURZkyZYoybty4AveR80jc7PLly4qPj4+yZ88eRVGK9j22adMmpXnz5kp8fLypzI8//qi0atVKycjIKNf6i8rh5vNIURTl8ccfV2bOnFngPnIeify0bdtW+fnnn8v9WiQt3WUoMzOTo0eP0qlTJ9M6CwsLOnXqxMGDByuwZqKyi46OpkuXLtx1111MnjyZ8+fPAxAWFkZWVpbZOdWkSRPq1q1LaGhoBdVWVHaxsbHEx8ebnTdOTk60bNnSdC06ePAgNWrUIDAw0FSmU6dOWFhYyJAYYWbPnj107NiRvn378tZbb3H16lXTNjmPxM2uXbsGgLOzM1C077HQ0FB8fHxwd3c3lenSpQspKSlERESUX+VFpXHzeZRj1apVtG/fngEDBvDBBx+Qnp5u2ibnkcjNYDCwevVq0tLSCAkJKfdrkWWpfAqRr6tXr2IwGHBzczNb7+bmlmdcihA5goKCmDVrFo0aNSI+Pp5Fixbx2GOPsWrVKhISErCysqJGjRpm+7i5uREfH19BNRaVXc65kd+1KGfsUkJCAq6urmbbLS0tcXZ2lnNLmHTt2pW7774bLy8vzp49y4cffsiTTz7JihUr0Ov1ch4JM0ajkffee49WrVrh4+MDUKTvsYSEBLObXMD0Ws6j6ie/8whgwIAB1K1bl1q1anHixAnmzZvHmTNn+OSTTwA5j4TqxIkTPPzww2RkZGBvb8+iRYto2rQp4eHh5XotkqBbiEqme/fupuXmzZvTsmVLevbsyd9//42trW0F1kwIUd3de++9puWcxEW9e/c2tX4LkduMGTM4deqUWV4SIYqroPPooYceMi37+vri4eHBqFGjiImJwdvbu7yrKSqpRo0a8fvvv3Pt2jX++ecfpkyZwvfff1/u9ZDu5WWoZs2a6PX6PEnTLl++nOepiRAFqVGjBg0bNiQmJgZ3d3eysrJITk42K3P58mU8PDwqqIaisss5Nwq7Frm7u3PlyhWz7dnZ2SQlJcm5JQpUv359atasSXR0NCDnkdC8/fbbbNq0iW+//ZbatWub1hfle8zd3T1PBuGc13IeVS8FnUf5admyJYDZ9UjOI2FtbU2DBg0ICAhg8uTJNG/enO+++67cr0USdJcha2tr/P392blzp2md0Whk586dhISEVGDNRFWSmprK2bNn8fDwICAgACsrK7NzKjIykvPnzxMcHFxxlRSVmpeXFx4eHmbnTUpKCocOHTJdi0JCQkhOTiYsLMxUZteuXRiNRoKCgsq9zqJquHjxIomJiaabDzmPhKIovP3226xfv55vv/2W+vXrm20vyvdYcHAwJ0+eNHtQuGPHDhwdHWnatGm5fA5RsW51HuUnPDwc0IIhOY9EfoxGI5mZmeV+LZLu5WXsiSeeYMqUKQQEBBAUFMS3335Leno6Q4YMqeiqiUpqzpw59OzZk7p163Lp0iUWLlyIhYUFAwYMwMnJiaFDhzJ79mycnZ1xdHRk5syZhISESNBdzaWmphITE2N6HRsbS3h4OM7OztStW5cRI0bw2Wef0aBBA7y8vJg/fz61atWid+/egJo8pGvXrrzxxhvMmDGDrKws3nnnHe699148PT0r6mOJclbYeeTs7Mwnn3xC3759cXd35+zZs8ydO5cGDRrQtWtXQM4joXYF/uuvv/j0009xcHAwjXt0cnLC1ta2SN9jXbp0oWnTprzyyiu8/PLLxMfH8/HHH/PYY49hbW1dgZ9OlJdbnUcxMTGsWrWK7t274+LiwokTJ5g1axZt27alefPmgJxHAj744AO6detGnTp1SE1N5a+//mLPnj189dVX5X4t0imKopTBZxS5fP/993z11VfEx8fj5+fH66+/buoCI8TNXnjhBfbu3UtiYiKurq60bt2aF154wTQ+KSMjg9mzZ7N69WoyMzPp0qULb731lnSVquZ2797NiBEj8qy///77mT17NoqisGDBAn7++WeSk5Np3bo1b731Fo0aNTKVTUxM5J133uG///7DwsKCPn368Prrr+Pg4FCeH0VUoMLOo+nTp/Pss89y7Ngxrl27Rq1atejcuTOTJk0yGzIl51H15uvrm+/6WbNmmRocivI9du7cOaZPn86ePXuws7Pj/vvvZ/LkyVhaSntRdXCr8+jChQu8/PLLnDp1irS0NOrUqUPv3r0ZP348jo6OpvJyHlVv06ZNY9euXVy6dAknJyd8fX158skn6dy5M1C+1yIJuoUQQgghhBBCiDIiY7qFEEIIIYQQQogyIkG3EEIIIYQQQghRRiToFkIIIYQQQgghyogE3UIIIYQQQgghRBmRoFsIIYQQQgghhCgjEnQLIYQQQgghhBBlRIJuIYQQQgghhBCijEjQLYQQQgghhBBClBEJuoUQQgghhBBCiDIiQbcQQgghhBBCCFFGJOgWQgghhBBCCCHKiATdQgghhBBCCCFEGZGgWwghhBBCCCGEKCMSdAshhBBCCCGEEGVEgm4hhBBCCCGEEKKMSNAthBBCCCGEEEKUEQm6hRBCCCGEEEKIMiJBtxBCCHEH2b17N76+vuzevbuiqyKEEEIIwLKiKyCEEEKUl99++41XX321wO0rVqwgODi4/CpURfz444/s2rWLw4cPc+HCBe6//35mz56db9nk5GTmzp3L+vXruX79OoGBgUydOhV/f39Tmd27dzNixIgC3+/5559n3LhxAAwfPpw9e/bkW87S0pKjR48W+5hCCCFEeZKgWwghRLUzceJEvLy88qz39vaugNpUfl9++SWpqakEBgYSHx9fYDmj0chTTz3FiRMnGDNmDDVr1uTHH39k+PDh/PbbbzRs2BCAJk2a8P777+fZ/88//2Tbtm107tzZtO6ZZ55h2LBhZuXS09N56623zMoV55hCCCFEeZKgWwghRLXTrVs3AgMDK7oaVcayZcuoW7cuOp2OkJCQAsutXbuWgwcPMn/+fPr16wfAPffcQ9++fVm4cCEffPABAO7u7gwaNCjP/osWLaJhw4YEBQWZ1uUXLP/xxx8A3HfffaZ1xTmmEEIIUZ5kTLcQQghxkwULFtC8eXN27txptv6NN94gICCA48ePA5CZmcn8+fMZMmQIrVu3Jjg4mEcffZRdu3aZ7RcbG4uvry9fffUVP/zwA3fddRctW7Zk9OjRXLhwAUVRWLRoEd26dSMoKIhx48aRmJhodoxevXrx9NNPs23bNgYNGkRgYCD9+/dn3bp1RfpMhw4dYsyYMbRu3ZqWLVvy+OOPs3///iLtW69ePXQ63S3L/fPPP7i7u9OnTx/TOldXV+655x7+/fdfMjMzC9z38OHDREdHmwXSBfnrr7+wt7fnrrvuKrRccY4phBBClBUJuoUQQlQ7KSkpXLlyxezf1atXTdvHjRuHn58fr732GikpKQBs3bqVn3/+mfHjx9O8eXPTcX755RfatWvHSy+9xHPPPceVK1cYO3Ys4eHhed531apVpu7WTzzxBHv27OH555/n448/ZuvWrTz55JM8+OCDbNy4kTlz5uTZPyoqihdeeIFu3boxefJk9Ho9kyZNYvv27YV+3p07d/LYY4+RmprKc889xwsvvEBycjIjR47k8OHDt/OjNBMeHk6LFi2wsDC/vQgMDCQ9PZ0zZ84UuO+ff/4JcMsA+cqVK+zYsYO77roLe3v7QssW9ZhCCCFEWZLu5UIIIaqdUaNG5VlnbW3NkSNHALCysmLOnDkMGTKE2bNn88orr/Daa68REBDAU089ZdrH2dmZ//77D2tra9O6Bx98kHvuuYdly5bx3nvvmb1HXFwc69atw8nJCVDHQC9evJjr16/z66+/Ymmpfi1fvXqVVatWMWPGDLNjR0VFsXDhQlNL8rBhw+jXrx/z5s0rcMyyoihMnz6d9u3b8+WXX5parB9++GHuvfdePv74Y77++uvi/gjzFR8fT5s2bfKsr1WrFgCXLl3C19c3z3aDwcDff/9NUFAQDRo0KPQ91qxZQ3Z29i0D6eIcUwghhChLEnQLIYSodt58800aNWpktu7m1lkfHx8mTpzIBx98wIkTJ7h69Spff/21KTAG0Ov16PV6QA2gk5OTMRqNBAQEcOzYsTzv269fP1PADZjGGQ8cONDsuEFBQfz111/ExcVRv3590/patWpx9913m147OjoyePBglixZQnx8PB4eHnneMzw8nKioKMaNG2fWmg/QsWNH/vjjD4xGY57PXxLXr183e0iQI2ddRkZGvvvt3LmThIQEnn766Vu+x19//YWrq+stE6MV55hCCCFEWZKgWwghRLUTFBRUpERqY8aMYfXq1Rw+fJgXX3yRpk2b5imzcuVKvv76a86cOUNWVpZpfX7Z0evUqWP2OicAL2h9UlKSWdDdoEGDPGOrczKCnzt3Lt+gOyoqCoApU6YU9DG5du0azs7OBW4vKltb23zHbeess7GxyXe/VatWodfr6d+/f6HHP3v2LAcPHuTxxx83e0hxO8cUQgghypoE3UIIIUQBzp49S3R0NAAnT57Ms/2PP/5g6tSp9O7dmzFjxuDm5oZer2fx4sWcPXs2T/mcVvGbFdTKrCjKbdTe/BivvPIKfn5++Za51djoovLw8Mh3SrFLly4BWjfz3K5fv8769evp2LEj7u7uhR5/1apVwK3HaBfnmEIIIURZk6BbCCGEyIfRaGTq1Kk4OjoycuRIPv/8c/r27WuWmfuff/6hfv36fPLJJ2Yt0AsWLCiTOkVHR6Moitl75bRk16tXL999clrKHR0d6dSpU5nUK0fz5s3Zv39/nu7qhw8fxs7OLk+XfoD//vuP1NTUImct9/b2Jjg4uNByxTmmEEIIUdYke7kQQgiRj6VLl3Lw4EHefvttJk2aREhICNOnT+fKlSumMjkt17lbpA8dOkRoaGiZ1OnSpUusX7/e9DolJYXff/8dPz+/fLuWAwQEBODt7c3XX39Nampqnu25P8/t6tevHwkJCWbTmF25coW1a9fSs2fPfMd7r1q1Cjs7O7Ox6vk5duwYp0+fZsCAAbesR1GPKYQQQpQHaekWQghR7WzZsoXIyMg861u1akX9+vU5ffq0af7tXr16ATB79mwGDx7MjBkzmD9/PgA9evRg3bp1PPvss/To0YPY2FiWL19O06ZNSUtLK/V6N2zYkNdee40jR47g5ubGr7/+yuXLl5k1a1aB+1hYWDBz5kyefPJJBgwYwJAhQ/D09CQuLo7du3fj6OjI559/Xuj7/vfff6a5ybOysjhx4gSffvopoM4fnjOFWt++fQkODubVV18lIiKCmjVr8tNPP2EwGJgwYUKe4yYmJrJ161b69OmDg4NDoXUoatfy4hxTCCGEKA8SdAshhKh2Cur+PWvWLOrWrcuUKVOoWbMm06ZNM21r2LAhL774Iu+++y5r1qyhf//+DBkyhISEBFasWMG2bdto2rQpc+fOZe3atezZs6fU692wYUPeeOMN3n//fc6cOYOXlxcfffQRXbt2LXS/9u3bs2LFCj799FO+//570tLS8PDwICgoiIceeuiW77tu3TpWrlxpen3s2DFTdvbatWubgm69Xs8XX3zB+++/z7Jly8jIyCAwMJBZs2bRuHHjPMddu3YtWVlZt2y9NhqNrF69Gn9//3yPU5JjCiGEEOVFp5RGlhYhhBBClKlevXrRrFkzFi9eXNFVEUIIIUQxyJhuIYQQQgghhBCijEjQLYQQQgghhBBClBEJuoUQQgghhBBCiDIiY7qFEEIIIYQQQogyIi3dQgghhBBCCCFEGanSU4ZlZ2eTlJSEjY0NFhby/EAIIYQQQgghxO0xGo1kZGTg7OyMpeXth8xVOuhOSkoiKiqqoqshhBBCCCGEEOIO07BhQ9zc3G77OFU66LaxsQHUH4adnV0F16ZgBoOBkydP4uPjg16vr+jqiCpKziNRGuQ8EqVBzqNqIj0dOndWl7dvh1K+15LzSJQGOY9Eabj5PEpPTycqKsoUb96uKh1053Qpt7Ozw97evoJrUzCDwQCAvb29XAxEicl5JEqDnEeiNMh5VE0oCpw4oS7b2kIp32vJeSRKg5xHojQUdB6V1hBmGQgthBBCCCGEEEKUEQm6hRBCCFHqFAWysiq6FkIIIUTFk6BbCCGEEKXq3Dlo2hTq1oXjxyu6NkIIIUTFkqBbCCGEEKXqpZcgMhISEmDlyoqujRBCCFGxJOgWQgghRKnZsgWWL9deXz2xteIqI4QQQlQCEnQLIYQQosQUo4LRYATAkGVg4oRss+1JSUpFVEsIIYSoNCToFkIIIUSJpF9Lp2vQEaysFO5qdYCnhuzg0GHz2UgTk6v07KRCCCHEbZNvQiGEEEKUyOfv7mX70Z4A/HewFRzMWybpmnU510oIIYSoXKSlWwghhBDFlpqUzqzPW+a77aG7dpiWE6/ZlleVhBBCiEpJWrqFEEIIUWwrv7zKlRRXAB7rs50Xprjyy7I4srLgrfmtWFM/mWvpNUi8Zl/BNRVCCCEqlrR0CyGEEKJY4qLjWfKb2q3cSp/J2/Pq07qXH7OX9uCD73tQw60GLg7XAEhKdajIqgohhChnU6dOZfz48abXw4cP59133y33euzevRtfX1+Sk5PL/b1vJkG3EMJM7KkLvDZ2E79/uduUkVgIIXKbNc+Z1AxHAJ4eupPGgd55yrg4pgKQmFqjXOsmhBAif1OnTsXX1xdfX18CAgK4++67+eSTT8jOzr71zrdh4cKFTJo0qUhlK1OgXJok6BaimklNvo4hy1Dg9icePs97X/Xg/ifb09rnJKuW7kExypQ/QgjV2bOw+Et1nLaDg5HX3w/It5yzYzoA17PsyEjLLLf6CSGEKFjXrl3Ztm0b//zzD0888QSffPIJX331VZ5ymZmld912cXHB0dGx1I5XFUnQLcQdLjsb5s2De+6B+vXB0dkWH+9YYo6fy1M2IjSaDQdam16HRjZn4Oh2+HhF88ZTmzi6M6I8qy6EqITefx+ysnQATJgAng3c8i3n4pRhWk5KuLNaLIQQoqqytrbGw8ODevXq8eijj9KpUyf+++8/U5fwzz77jC5dutCvXz8ALly4wKRJk2jTpg3t2rVj3LhxxMbGmo5nMBiYNWsWbdq0oX379rz//vsoinljzc3dyzMzM5k7dy7du3c3tbj/8ssvxMbGMmLECADatm2Lr68vU6dOBcBoNLJ48WJ69epFUFAQAwcOZO3atWbvs3nzZvr27UtQUBDDhw/n3Lm897oVRRKpCXGHW7ECXn7ZfF3kxQYM7H+CbftTcKypPXn8eoWXadndKZ6Eax4ARFxoyMwlDZm5BF4dvYn3vupRHlUXQlQyFy7AkiXqsp2dgeefL7isc+26puWkVAdqlW3VhBCiYoV/CMc/vHU511bQ/U/zdZsHwpUDt963+Yvg92LJ6lcAGxsbEhMTAdi5cyeOjo4sXboUgKysLMaMGUNwcDA//PADlpaWfPrpp4wdO5Y///wTa2trvv76a1auXMl7771HkyZN+Prrr1m/fj0dOnQo8D1feeUVQkNDef3112nevDmxsbFcvXqVOnXqsHDhQiZMmMDatWtxdHTE1lbtWbV48WL+/PNPZsyYQcOGDdm7dy8vv/wyrq6utGvXjgsXLvDcc8/x2GOP8eCDDxIWFsacOXNK9Wd1OyToFuIOt22btuzsrGChXOdqsh2Hzvjy+MDd/LapLRZ6C7Kz4Ztv9QBYWsKRE+7sWr2bBYus2XSoJYqidoyZ/0Nb3lxwHVsHmQZIiOpm3tSdZGR0BGDYsHjc3T0KLOtSV3uIl5hiV+Z1E0KICpWVDOlFaFm9Xj+fdfFF2zer9HoNKYrCzp072bZtG48//jhXr17F3t6emTNnYm1tDcAff/yB0Wjk3XffRadTezjNmjWLtm3bsmfPHrp06cK3337LU089RZ8+fQCYMWMG23LffN7kzJkz/P333yxdupROnToBUL++9jNxdnYGwM3NjRo11JwgmZmZLF68mKVLlxISEmLaZ//+/axYsYJ27drx008/4e3tbWoZb9y4MSdPnmRJzpPiCiZBtxB3uMPbTwC+AERHKVw4dYEOPdxISnPmj23teXXMJmZ/3Z2//9Zx4YK6z333Qe06OgaPbc/gsXAhMo4xj8Tw9562pGU4sGXVQfo8HFJhn0kIUf7izybw+YogAGyt0xn+aCxQcNB9474JgBuNKEIIceeyqgF29W5dzjaf66atR9H2tbr9xJSbNm0iJCSErKwsFEVhwIABTJgwgbfffhsfHx9TwA1w/PhxYmJiaNWqldkxMjIyiImJ4dq1a8THx9OyZUvTNktLSwICAvJ0Mc8RHh6OXq+nbdu2Ra5zdHQ06enpjB492mx9VlYWfn5+AJw+fZqgoCCz7cHBwUV+j7ImQbcQdzCjwcjhU2oXzwYesTi7eOHctjE/f7mf/o+3xGC05P1ve5CSupnotK7kpHkYM8b8OHUae/LE2AT+3qO+Xr0jmD4Pl9/nEEJUvI+mh5GW0QOAJ+/fjauHU6HlXVy05aSksquXEEJUCn630fX75u7mZah9+/ZMnz4dKysratWqhaWlFg7a2Zn3SkpLS8Pf35958+blOY6rq2uJ3j+nu3hxpKWlAWoXc09PT7NtuR8SVGZlmkgtMTGRyZMn06pVK9q0acO0adNITU0tdJ/hw4ebUtnn/HvzzTfLsppC3LHOhJ0l5bp6Y9zSR+u21OeR1ix4fbvp9af/687qNerloF49hb598x6rz4P+5FyXV6/RUcADTCHEHUgxKny+Qm3JsLbM4KUZzW65T+5EaomXrpZZ3YQQQhSdnZ0dDRo0oG7dumYBd378/f2Jjo7Gzc2NBg0amP1zcnLCyckJDw8PDh06ZNonOzubo0ePFnhMHx8fjEYje/fuzXe7lZUVoCZoy9GkSROsra05f/58nnrUqVPHVObIkSNmx8pdr4pWpkH3Sy+9REREBEuXLuXzzz9n3759RQqgH3zwQbZt22b698orr5RlNYW4Yx3ec8G03NI/zWzb+Bnd+eb9bVjpzaeEeOLebeR3DXZ2hi5d1OXTp+HkyVKvrhCikkqMT+Jqak0AugWFUa9p7Vvu42zUkgIlRVWeGx8hhBBFc99991GzZk3GjRvHvn37OHv2LLt372bmzJlcvHgRgBEjRrBkyRI2bNjA6dOnmTFjRqFzbHt5eXH//fczbdo0NmzYYDrmmjVrAKhXrx46nY5NmzZx5coVUlNTcXR0ZPTo0cyaNYuVK1cSExPD0aNHWbZsGStXrgTg4YcfJioqijlz5hAZGcmqVatM2yqDMgu6T58+zdatW5k5cyYtW7akTZs2vP7666xevZq4uLhC97W1tcXDw8P0r7rP6yZESR06cN203DIkb3eekS93Yf0vx6jpoLZC6S2yeeK5BgUe7957teUb10YhRDUQF3PFtFynVnqR9nGpqXX5kzHdQghR9djZ2fH9999Tt25dnnvuOfr3789rr71GRkaGKT4bPXo0AwcOZMqUKTz88MM4ODhw9913F3rc6dOn07dvX6ZPn84999zDG2+8QXq6+t3i6enJhAkT+OCDD+jUqRPvvPMOAM8//zzjx49n8eLF9O/fn7Fjx7Jp0ya8vNSknXXr1mXhwoX8+++/DBo0iOXLl/PCCy+U4U+neHRKQaPcb9P//vc/5syZY9Z1IDs7m6CgIObPn1/gL2P48OGcOnUKRVHw8PCgZ8+ejB8/Ps8YA1D794eHh+Pj44O9vX1ZfIxSYTAYOHLkCIGBgej1+oqujqiiSnIeDeuxl9+3qVM2HN9/mqYtG+ZbLuJQNAtnn6V7TyuGPNW+wOOFH1MIDFKbwe9qe4J/djYt3ocQFU6uR6IkNv9xiLuGqol0Jg/fyHtfdr7lebR73TE69w8E4NkHNjP/py7lVl9RSlJT0d/IiGdISgIHh1I9vFyPRGmQ80iUhpvPo7S0NE6ePImfn1+pxJlllkgtISEhzwB7S0tLnJ2diY+PL3C/AQMGULduXWrVqsWJEyeYN28eZ86c4ZNPPilwn5NVpJ/rzeMMhCiJ4pxHoSfVcS4ONikkZ18hNDSxwLJPTFGfWIaGhhZYRjEqNKzlQdSlBmw50IidW3dh5yRTh1VFcj0SxXH00FlADbptbZNN509h59HlpARADbrjE7ILvbaIyskiPZ2ceSoOHz6MMZ8GkNIg1yNRGuQ8EqWhrM6jYgfd8+bNu+V8Z2tuo9/pQw89ZFr29fXFw8ODUaNGERMTg7e3d777SEu3qA6Kex4lX04m6pI6BjOw0RlatW51iz2Kpn+3bXz6vwZkGay5eELH/WODS+W4onzI9ah6y8iA+fN1BAQo9O9f9P22/3bNtNzMx5XAwMBbnkd1amoP2NMzHCvV1C2iiHIlvw0KCpKWblEpyXkkSkNBLd2lpdhB9+jRo7n//vsLLVO/fn3c3d25cuWK2frs7GySkpLw8Ch4Xs+b5cz7Fh0dXWDQrdfrq8QfWVWpp6jcinoeHdtzFlCD7pZ+V0rt3BswyJ5P/6cur/rDyLCn5ZyuiuR6VD1Nf+0acz92wsICDhyAXFOrFurSJW25Tj1707lT2Hnk6uliWk66ZiPnW1WU63em1+vNXpfu28j1SNw+OY9Eacg5j0r7XCp20O3q6lqkedlCQkJITk4mLCyMgIAAAHbt2oXRaMwzcXlhwsPDAYoVqAsh4NBebYqelkX/k7ulHoMCcLS9Rsp1J75f25EJG47RpneL0nsDIUSZMBqM/PBdCuCE0QiLFsEXXxRt37jURqZlT2/3Iu1j62CLjdV1MrJsSUwpm27JQgghRFVQZtnLmzRpQteuXXnjjTc4fPgw+/fv55133uHee+81TWoeFxdHv379OHz4MAAxMTEsWrSIsLAwYmNj+ffff5kyZQpt27alefPmZVVVIaocxahwPfV6oWUOnw02LQe1r1tq723nZMdrz+wHwKjoGf2kJZnpmbfYSwhR0XatPcr5K3VMr3/4QcsqfvHMJaaP28SutWH57huXos1q4Nmk4BkObuZsr3ZLT0op3W7JQgghRFVSpvN0z5s3j8aNGzNy5EieeuopWrVqxdtvv23anpWVxZkzZ0wp4q2srNi5cydjxozhnnvuYc6cOfTp04fPP/+8LKspRKVy7BhMmQKHCpjWNv5sAl0Cj+BSE37/cneBxzkU7mxaDurSrFTrOHl2Z0KaqL1QjkT5MOflHaV6fCFE6fv1p8tmr9PS4JulCqlJqfTomsKMz3sw6GFPsjKy8uybM9OnTgfuRWvoBsDFMQWAxFSnEtdbCCGEqOrKLHs5gIuLCx988EGB2728vDhx4oTpdZ06dfj+++/LskpCVGqKAkOHwvHj8MsvEBEBFrkejaVcSaXfA4kcOqP2F/9ssZ7BY/Mex2iEnOSLjRuDUynf71rZWPHVlzra3pWNwWjJO593YujwCFq0lynEhKiMFKPCr+vUv08LnQGjoo5V+/SDsxz+N5oT57oCcCnJgzNHz+DTqpHZ/jlBt7s7WFqCwVC093V2SAMgOd0Jo8GIhb5Mn/ULIYQQlZJ8+wlRiezcqQbcAGfOwI7Vh03bEi8l8cIzrhw642tadzSyntn+memZ7NtwjE+m7zYlnS1qoqTiCunRnFdGbQMgy2DNay8llM0bCSFu24FNx4mO9wLgrlah9Aw+CMCpc94sXd3VrOyJSBez14pRIS5OAeDG6LAic/Fqoh5DseBaitxyCCGEqJ7kG1CISuS778xfL1+mJkNTFBh6zzkORgaYbT93pQ6Jl5IAdYowv8YXaHt3Cya9095Uphh5C4vtzQUdqFPzIgB/7WpLgsTdQlRKv/4QZ1oeOiiNZ58uOCfEyeiaZq+vXb3G9es6ADxt8x/zXRAXN1vTcs74cSGEEKK6kaBbiEoiIy2TFSuMZut+WdeC7Mxs/voLNh8KBMDD+TJ3hRwwlTm2NwaANT+GEXnRPMGRo6ORBx8suzrbOtjy+Ci173p2tp4VK/Ivl5oKWXmHiQohykhWFsyZAzNnwtEwhV//Ua8NFjoDg0c0Z9DottRzvWAqH+ITZVq+eVrSi9HaWHDPmknFqoezllqCpOLtKoQQQtwxJOiuZvauP8YrIzcRdTS2oqsibvLXsgMkJpr/SV5K8mDjb4eYOVNb9/mXNRh4zzXT62OHEgHYt0fLID7xoc2s/WEf0aczaFHGs3mNGK1lJc5pqVeMCis+2cF9nfbQyPMsjo7g5lZwcjghROn64QeYOhXeeAMCAnWcPKeO0e4aeATPBh5YWlvy7tTTALRpdow//tayo+VKtQJAXGyyadnTo3hPz1xctGVp6RZCiIrh6+tb6L+FCxdWdBXveGWaSE1ULif2R9LjvgakZbTgj3/PcORUJtZ21hVdLXHDsu91puUnB21hyR/dAHjhtdocjVTXN2uWxsDBNmxWtMxoR4+qYy33HXYxrZs2uwWeDctnbvuAAAgOhtBQ2LNHvWHf9ed2Rr3SxazctWvw+uuwalW5VEuIau2ff/JfP/Q+rbl55MtdGDQyCQfnZljZWFGrFly6BCePZwLad0PcuTTTcnHHdDtbnQfUKQuTzp0BGhVaPkdGWgZWNlaSeE0IIUrBtm3bTMtr1qxhwYIFrF271rTO3t7etKwoCgaDAUtLCRNLk3ybVRPXU6/z0ANZpGWorZInzzViwZsyzVNlkRB7mTU7QwCoU/MiHy5thaOt2pqdO1namDEX0OnAv4M2BdjR+K4YDUYOnGoMgJfb+XILuHOMGKEtv/XiSZ59I9j02skuGXtbtRX+r7+0RHFCiLKhGBW2bFEfxtnZQaeWUQA0rh3NY8+aJ3lwqeWMlY0VAD6eRwG4EGfNtStab5q4i1ovGs/axbsJc9GfMi0nXjhXpH2+eX8btg429O94IN/py4QQQhSPh4eH6Z+TkxM6nc70OjIyklatWrF582aGDBlCYGAg+/fvZ+rUqYwfP97sOO+++y7Dhw83vTYajSxevJhevXoRFBTEwIEDzYJ5oZGgu5p4Zcxus6zXAG8vasXFM5cqqEYitxVLwsgyqC1Ljw04jmNNRwZ1O2xWprlPFj17JgLg6eWEq6u6/uhRHadCo7iWXgOANn4x5VbvHI88lIXeIhuAFWt8SM1wBGD0gK0kpTgx4x2t1eyjj8q9ekJUK5FHojl/Xu0507XtJbaHNiT58jVORNfDtU7NAvfzaXDFtHwyVBuCFHdRMS171rEpVl2ca2pBeuKVW88zlpGWwZT31O+qf/a2Ye5Myc4ohKj8fvkF/PzAy6v8/vn5wf/+V3qf4YMPPmDy5MmsWbMGX1/fW+8ALF68mN9//50ZM2awevVqRo0axcsvv8yePXtKr2J3CAm6q4E/f89i4YruANhYXadv230AXEuvwasTThS2qygny352My2PeFrtivnwo1ZmZV59ahd6dWpddDpMY7XPn4d/V2s3pm1CCs5KXFZq17WiT5uDZuuae51mwfet0FnoePJJba7w777JJP6s3EgLUZD9/4UzZdQmTh2MKtH+m/8+a1ru1vIYAE6uTlhaF95K7euTbVo+GXbVtBx3SbtV8PRyoDhcXLXrWFKSsZCSql+X7ONSktZTZ8b7daR3jBCiUIoC6ekVG9LMnav25Dt3rvz+HT+uvm9pmThxIp07d8bb2xuX3Ak5CpCZmcnixYt577336Nq1K/Xr12fIkCEMHDiQFQVl1q3GpLN+NfDSK9pNz4fT9vLAGD+aNU8iKc2Zb1Z3Zdy6o7Tr41+BNazeTuyPZPdxdSqwlo1OENhZfbrY58Fgak2K51KSB03rRPHQ+HaEHdOm6/H3h5whOt/9Usu0vnV7x/KrfC4jHs/i7xsPNm2srrPiJwMOzuoNurMzPDn0AB9+04rrmdZ8OiuMtz7tUSH1FKKye/hxOyIu9GDr7gPsCG9Y7P23bNXyQ3Tr7Vrk/Xz87EzL6rhuVVyC1rrtWd+lWHVxcdX2TUzUFVJStegLJ7PXmZkwZgxs3QoW0kwgRLUQFQVffQXDhkHLloWXNRigd28LduxoyZQp8PbbasNEeXvlFTVx5bVrty5bWpyc4OWXS+94gYGBxSofHR1Neno6o0ePNluflZWFn59f6VXsDiFB9x0uKgpO3RhS16EDjHurKzodvP38Jia91wOA2bMy+a1PhVWx2vt+cQygjsce8cAFQA26re2sWfXzJZZ/e5RnX2mUp5XK3ycJUOfj2R3W0LS+dbeGVITBo1sRMj+csKgmfD5zH0FdzBOpTZpSi/nfZWMwWrLoB39emZOOnZNdAUcTonrKysgm4kJDAHYeb0X82QQ86rsXvtNNNu9TpwezsbpOu95F6yII4BOYK4P5Ke1hbVyClmCnllfx6uLsqu2blFx41By65QQ7jqljzlt4R5Bp3YSICB07dsCnn8JzzxXrrYUQVdSECWoOmI8+grAwaNiw4LKhobB5sw7QMXMmRETA0qVga1tOlb1h2DD1X1VmZ2d+T6bT6VAUxWxddrbWIyotTU2yuXjxYjxvyrJpbS2Jmm8mz43vcBs3asv9+2tP/8a92ZmazmpLxo7wEHL/Ta1csotZz2/iemr5d1O+0125cJXXn9zEb1/sAsBoMLLs96aAOn/uo8+YPxls18efD3/oQZOWDfIcy9/7dJ51DRpQ7Bv00mLrYMu+E77EX0jPk7kcwLu5Fw/0VJvC45M9WPXdwTxlROWWna22PIqyc+Vyttnr//44WUDJ/MUcP0fUpfoAdPA7jo190cdgNwmsj4VOHXd9Mlob+x13VX245+p4BSvb4t1IubhrQXdislUhJWHRB3Gm5QljzvHll1pz1VtvZGLIuvWYcCFE1bdLvUUiNRWefhpuivvM3Dx0ePlyuOsuSE7Ov7woOldXV+Lj483WhYeHm5abNGmCtbU158+fp0GDBmb/6tSpU97VrfQk6L7DbdyoXal69tTWW9lY0ba9evMUFwdnbwwBDN9zmmFPt2Xa/B5MeFSSIJSm7MxsBveJ4d0vezD06Q6s/m4v2/46QnS8FwB92h6gdqOiz8fTorVXnnWtW5dadUvEQm+Bs4dzgdsffUxrrQ89INFbVXLqFLi7g68vHDtW0bW5c11ONG+e2bA+O99yhiwD0eGxRB2NJSoKbjQ4sPXvKFOZ7h0Ti/XeNvY2NKylJlA7GeuFYlS/P+Kuqdea4mYuB3B217qLJyYXHLBfjUvkh7VtAHXGg8eea0X37jCouzqk5kqiNWG7ThW4vxDizpCUBAm50r6sWwfffVdw+b17tWW9Xr1m7dgBMu307evQoQNhYWH8/vvvREVFsWDBAk6d0q7Djo6OjB49mlmzZrFy5UpiYmI4evQoy5YtY+XKlRVY88pJgu47mGJU2Pj3RQDs7bJo1858e9u22nLOReuflWcxKmq2rq9Xdeb43sgiv9+VC1eZPm4Tf369+7bqfaeaOWkbW8O0wUmjJjRi3kKtVXrEY8ULQj0beODqeMVsXZs2t1fHshbQVnvyefSEdC2vSpYuVW+GoqLgvvvMb4pE6bl82fz1+p2N87TypFxNoWXTSBq28KJRgBeNGqnzZ3/1FWzerLUGd7urRrHf37eBOqPFtfQaXIy6REoKpKWptwqeXsU/nlNNR3Q6NYFaUkrB/T2/+SiU9Ey1VXzkgIM4uarBes/O2g9k2/q4fPcVQtw5TuftxMcLL6gt2O+8o45hzl0m5/5Vr1dYtUpL1nhQOtPdtq5duzJ+/Hjmzp3LsGHDSE1NZfDgwWZlnn/+ecaPH8/ixYvp378/Y8eOZdOmTXh55W0Yqu5kTPcd7PShaGITGgLQucVhrK3Nm0FzB+F798LQobBlu3ZTZFT0vPHKJX7Z2DjPsa+nXsfGzgadhdr9Lz1NoV+PC+w92QPLJVlEdIylgV/1/YPLyoIPPlD/v39gFpcjj/LO4q5mZRKS3Vn1r7rs5GRk0KiQYr2HzkKHf8OzbA3TEiVV9qC7gV897G1SSctw4Ojp2hVdHVEMB7efBdRuy5GRMPT+TNavU3vNJCUk41Kr4B4OouhufpgRHe9F5JEYmgR5m9Z9NXc/R2O6m5VLSYGxY8HWWr2wW+qz6Ni3ebHf36dxqikh4slDF/AK0nrfeBa9I46Jhd4CZ/tEElNdSEyxz7dMRloGH3ypjT0fN7meabnLXbXgPXV52w5Lni1+FYQQVUjugNrBQe1ifvUqPPKItn77drU1OyVF63nVtGk6PXrYoNOp3dHPnkUUYMiQIQwZMsT0un379pw4kf9sRhMnTmTixIkFHkun0zFy5EhGjhxZ6vW800hL9x3g2pVrpm6AuW1co83X3LNL3nSKbdtoTwT3bDiB0WBkS2gzszL/29TBrOsOwO5/wvCue43argn88NF2FKPC6DE69p5U57DKNlixfuWZ2/lIVd7rr8Orr8Kbb0JgsBW9H/A39SCY/Pgm6rleMCs/bJgF9jXyvyEtjL9PotnrVoHlmDazBCz0Fvh5RwMQGVef9GvpFVwjUVShh827Bm/ZZk1A4yhcayRR09OZLgGHZcxtKbh8KW+Plw1/RJuWszOz+fgr7UHoAz130bevVvZ6pvrgtK3P8RJdU3x8tHHUJ4+nE5ercbkkQTeAs6OaHyQpPf9M6t9+Z8G5y2ovmPs67aZF+6ambS27NMPBJgWArQcb5/tdJ4S4c0REaMvvv68Oa7rZzp1qUH3gABhv3Mr6+6dibQ21bzzPj4nJu58QFUmC7irul8924lrLlk7+YWRlZJlt27hJb1ru2S/vVatOXQtT8LfvWB2O7org8jV1vmgHWy0YmjZN2yf9WjrDRzsQn+zBpSQPHn+xMy2bX2L5cvNjb9xUfU+tkyfVjJu5ZRvUBEI9Wh5kztdd+eHbVCwstJvH4cNL9l4t/LQHJ408InGr7VRI6crBv6naJV5RLDi+P/oWpUVlcPHMJS4mqhFXkzpnsbVWrw+nLvqQmOoCwPajQRzYlP+TclF0Ccd35Fm34T+tU9rKr/aaEqX1a7eXn//rwNq18MknmF1TurW/nOc4ReHbPsi0fOJyR+KitAeEnm4pJTqmy4274MTUvL0hsrJg1hwtwdrrs8x7VllaW9LRXz2vzl2pQ8yJcyWqgxCiasgddHfoAP/8oyZTe/NN89buP/80T6LWokUqAPXVyyNxcZL4U1Qu1TcyukN8NN+SbIMVu44HsuobrUlaMSr8t09ttXa0vUbrnvlPG9POXw16rqXXYMlC7ebqtWf20fjGvc+GDfDll+ryjIm7OXW+kdkxjpxSb8Z1OgVrywwANu5rUm1bJF6YlEHWjecfA++9Tmf/wwA0rh3N9/+rjd5KT/cBTZk7V4eFBfTqBd27F3LAQvgHaDerrRsfut2qlwt/Py0x1NGDJQsMRPkK3aH10xt812m++zjU9Lee0woJEHkisbyrdse5eUw3wH8HAjAY1Ov6Bwu0B2uTJ2sPVp99Flb9moyr4xWc7JJ54jnvvAcqAp9ALWv5yZMQF6ElzfG0KtkgSecbsXZmJly/aVKMH35Q8wQA9OkD7bp55Nm/czutB8+2tfKgTog7We7u5U2aQKtW8PnnMGMGTJmibfvjD/Mkav7+ajZJ7xuXPkWBc/KMTlQiEnRXYVfjEtl9spXp9VdLtQDs+L5I4hJrAdA16DhWNvlP1dK2lXYH9PXv2pjv3v3deOcdrdyTT8KYgVuZ9506FZS1ZQbzXt6EW01t/zlzdNzVSg0wL1ytzckD1a+L+erv9rJmrTpFj5eXkR9X2LItLIjES0kcO12bek21RGIvvghXrqgPNSxK+JfYeWBb/L1PYaXPZOzE+qXxEcqcf4h2U380Om++AFH5hO7Tgp7gVlY8MK4jceeuczUuiaUfHTFti4yQZoXbdfmKFkj7NFZ/7leSnQgNhR1rDrP7eAAAQY1OcNcw8zwQ/Qc7c+6iPXFxVvi2LtnfVr16kDNVa1gYXLyg9abxrFv06cdyc3HRlhMTtWWDAd57T3s4+8Yb+e/fpaeWwG3bNhnCIMSdLKel28NDe2AHQPx2ghqfoUED9Zq0aZORLRvVe1B7e4VGjdQeWPVz3QpJF3NRmUjQXYVt+C3cNE4YYO2eVpw9cR6AjatjTet7dk0t8BjtOmutJqkZjgA42qYQ0t2HRx6B557Tyn69qisGo9rN8Y1ndjL5/R6EHbPlzTfh66/hpZfM32vjmuqVxSIzPZMXXtW68c+dsgcHB3XZ2cM53/lynZ21udNLwsbehkMRjUmIu07fRyt5FrUbWnTWMrgfOyPzOFYFucdzB7dXH+a51HLGpZYzjX1dTNsiz8hXyu1KuKr9rB9+SLs4THgum6ee0bqZTx4fb0pkmZutgy12TiWfGcDCAlre+BM9cwY+/SnQtM2zrmOJjpn7xjkxES7FxLPorc10CzzIqVPqZ+jRA7p0yX//9r2bobdQe8hs2y/XDCHuKJlX4folMGaTnq61TjdpkqtMdjqs74JuVWMG+n4CQFaWBRfj1RwWIf6XsbwxXVjuoFuSqYnKRO6QqrB//jafv9Wo6Plm4UkUo8Jfa7UEOr36F5z9pnX3pnnWde7ugKW1JTodLFgAH7++yzTlC6gtLK+83wlQE1bMmAFPPKEGjz37aV0D/9tU8Jysd6JfPt9r6nrfNeAQD41vXy7vq7fSU8Ot+FP5VJQGDcD+xul59GjF1kUUzcETaqBjY3Wd5m0amm1r7K8FQZFnSxaUCc3lRC1gfugR7Rq6c5clx875A1DX9QIPP9suz76l5Z131OFCAPFJbqb1nvVLlqHeBa03xKzJO/Bu6sRzb3dnR7jWUv/GiwXfHTu5OhHc5CQAR2OacDUusUT1EEJUIgm7YPMg+J8r/OYJy62I/FS7rjXNfXuapjUkDWr9R55DtXf/libnXoS0c6bu5SBBt6hcJOiuohQF/jnYGQBrqyxTUPzVz035aNoW/t6jTsLtXiOB4K4+BR7HpZYzPvXMu4F366a1nuh0MOmdDvz+5V6c7ZNwtk/im68VrO3yD6hDuvvibJ8IwKb9TavMuO79+2HSJPhuyRWS4pNKdIz1G7TP+tabhnxboYTaktZCTXRPZCSkpVVsfUThUq6mcOp8AwACG57G0tp8qEpNTxdcHBIBiLwgrZC3KyFJ7X1Uwy4JvwBrBgww367TGXl3yukCr8GloXdveGXkljzra9V3y6f0rbnYaQPVv1vTiYwsbWrK5l6nWfbhdnrdV/jwmC5t4gE1AePOzSW7RgshKoH47fBvL1jXEc79abYp4pz2HWLW0q23Bd8XoP5QunXT4eJk3oOzbZO9uKRuxWJDR+rX0YY9SvdyUZmUWdD92Wef8fDDD9OyZUvaFHHyYEVRmD9/Pl26dCEoKIhRo0YRlZNhRZgJD4fYWPXX17OXFX3bHgDUOV0nz9Gycs1/+wR6K32+x8jRLsA800R+Sb0Gjm7PufOWnL9gRUiPgud+1VtZ0i1YzTQbn+zB0V0RBZatLMLC1K6NCxbAyKdc8axnw5BuuzixP7LIx1CMChv3NgTA1iqdLvf6l01l7xD+N348igLHw0qWEVmUjyM7z6Ao6rUm2C//xHeNm6njKGIu1TElERQlczlZ7bXiXiMRnU7N0HvmDJw8ns3JA1FcirnKqFcK6Iddit75vBPtm4eZXjvbJ2LrYFvIHgVzvqmBXKcz8tyDmzm09STHohvz+Audb3mMzvcGm5a3hTYoUT2EEBUsYgms7wJxG7V1dvWg7r3g1oHTyR1Nq81auh3qQ+sPoev/sOq3gf73OZgdto2fmmBRaf4S9Rtp1ylp6RaVSZkF3VlZWfTr149Hcuf3v4UlS5awbNkypk+fzs8//4ydnR1jxowhIyOjrKpZZa1dqy337Qtjn62dp8zr4/by6KRb38y0ba0lprG1yaagZyQOzg5Fmve1Z3fteBt3lXBi13ISHw/33QcpueK+jCxbVm7twFNPJBf5OGeOniUm3guATgHh+Y7fFhr/OgdMy8e2V42s69VV6N6rpuWQ4Px7rjRuqrZ+G43SsnA7DFkGrqSoiQbdnNWLkk4HDRtCM19LmoU0xN2rZK3NxWVlY8VPvzhTw05tVQ5sXPKs4c2aa13mG9eOZssfYSxc0Z2gLj5F7hHUuacWuX/xBUx56ToHNx0vcZ2EEGXMkAGZiebrvO4Hyxu5hJyaQfuvYGAk9PgL+u4kwnqqqWjTvKMfTQYO1JZdXaHhyD+JdX8OpdkEPD3B6kaHrLNnte+sjIy8sycIUZ4sb12kZCZOnAjAb7/9VqTyiqLw3XffMW7cOHr37g3A+++/T6dOndiwYQP33ntvgfsaDAYMhsqb0TSnbqVZx7VrLQD1ZqV3bwNNm9bB4yWF+Hh13ZAhCm/Ob1Wk92zdSUum1sHnIJaWrbidqnYb2h5mqcv/bXVi/KTK+bvJSMvg/sFWREWpV+eQlll09t3Od6tCSE53ZltYIAnnL1PT0+WWx/p3VRSgDiTq0SmpTM7HsjiPKoqvr5blOuxI5h3xmaqK4p5HB457mZYD2zjnu1/DhjpynuFGRBho2PC2q1ktXb54BUVR82K4OadV+N+Ft19dNv9zih++PMCIp+uZ1ac451HfR4KZc3QjigLPTGuFY02vYn82T0/w87MgPFzH5cvw/ge2vP9Bc559YDMf/9BZhvOUFYMBvWnRwG3dHOR7+Dvne03cYMxCd+YbdMfeQ6nTH6XNIm2bVU10Qe+C3hal4QiwuBGG3Pj9nzql3ds2bGgo8HTr0wccHCxITdXRrZuC0cqZOLdR1DIa0esMeHlZcOaMjpgzaShbRnLW82PadK1HZibs2mWkWbMy/Pyiyrr5elTa16UyC7qLKzY2lvj4eDp16mRa5+TkRMuWLTl48GChQffJkyfLo4q37ciRI7cuVAQZaZls3dwKsMGzVjoZGcc4dgzGjHFn9uwGtG59jRdeiODwYeMtjwVg6ZZNW59DHDzdgqFDzxEaensdIIxGcHZuSVKSJRs2GFizJpy6dSvfVELzX7/M9h19AHB3z2Tme8fx9HQiK3M7i3/vj1HR89MXW+l0i7GGAOvWaUntmrRIITQ0tKyqXWrnUUWydta6FhwKsy7Tn5fIX1HPox2H1eEkOp2CUsOY7+/KysodULv8btkSi7t7QmlVs1q5EHEZUK9JTg7XKsffhT08PLEGmeRfn6KeR3c9qnabj4iOgBI2mr/2mh2LFtVjz54aGAzqjfmiX7rjWvN3Bj1VNaZMrGos0tPJSXd3+PBhjHYlz4xfmDvhe63aU7JxS15DnctfYZOlDltUTn/FMeVeMq3q5ip44z7/cFieQ4SHBwA2ODgYiI0NLXSe7blzndi+3ZmHH77EkSPqPWbOeVSzpg9nzjiReM2B1Ii1LF+8iPh4tTVo9ux4JkyQCbxFwcrqelRpgu74eDVJipubedc5Nzc3EhIKv4Hz8fHB3v7W3Z4risFg4MiRIwQGBqLXFz6+uij++Wk/1zPV7ssD2u8lJETtQh4cDFOmGHB0tEenCyrWMXeEKVy7eo0abvfddv0A7rlHx/LlkJJiydjRzfh92Sna3d2iVI5dGn7+dBfL1qo3t7bW6az63UjbDupA44FD97P4d7Vc6AFXxr8RXOixFKPCjiPq+Wtvk8r9I3qXSZKj0j6PKpIx0IiDTQqpGY6cPFuf4OB6FV2laiM728CuXUfp2NH/ludRdjZERqoP4Zo2hc5dWuZbLj72ck7nFrIvxRMcHJJvOVG4tBTt4WQdnxYEB3sUUrpiVcT1KDgYHn4Y4uONLJ31H9MW3A3AzCUDad1hDwNGtC2XelQrqVrCqqCgIEzzYJaSO+l7rdpSFHQxK9CFTUeXYp7HR1e3Ly2aN1O7kt9CZiZcuKB+3/j6WhASElxo+eBgeOopAPc855Gfn44DN0axnb1cn10ntWtD2CHnSn1tFRXn5vMoLS2tVBt2ixV0z5s3jyVLlhRaZs2aNTQxSzlY9vR6fZW4WJdWPTet19I997vHyuyYLi4lPKgeataqeXsVy2XOHDhwAE6ehEsJtvQa2JRfluxnwMiym+amqM6EneWZKQGm15+9s58OnbXERD0HBWJrlc71LDvW7WiKhc6i0K6LJ4/Gc/6KmnGzS+Bx7Bxbl13lqTrne2H0ej0tGpxk70l/zsR5kZF6vUj5AsTtURQYPNiCf/4JZtEihXHjCu/Vcvy4NgYuJERX4HnXrGG6afnM6cwqf35WlMRkrRXRo35tqsKPsSKuR7Vrw6vz7+Z6xibeXtwDRbHg8fH+7Gp+Bv+OhQwEFcWX63er1+spq5PyTvheq5auHoJ9z0H8NvP1tftA0Nvo3NtT1N9qbKzaUxKgSZOCv28Kk3Me5Z42LMZmPDsjtARtBw7ZkHhqN27NO+bZPzkZHB3VWVZE9ZVzHpX2NalYQffo0aO5//77Cy1Tv37Junh5eKhPnS5fvkytWrVM6y9fvkzz5gVny66Owo5rT5o73t2w4ipSCG9v2LkThvY+yqaD/lzPsmP0xEZceNRwy2zqZSkrI4tHHkgiOV09Tx+9ezsjXzJPNmfnZEf34H38s7cNsZfrEr4nghYdmvLn17vZszOdl98LwdlDS+qzcaf2xLRnv1qIomnR9Cp7T6pTAK37+QiDx5bPvObV2YkTsHat+gDpkw+uMG5cwUm5sjOzefO5UEDNrBgcXPBxvZvXxUJnwKjoiTzrAkDU0VgWvBeBgwMEBFnT2LcG0XG1CYtwJy4Oxo2DoOJ1yLnj5e7U5Vbwr0bc8NaiboSf3MkvGzuSct2J6dPC+GWjBN1ClIuj78HhN0DJNZTRsycEvg21ij/DwunT2nJhSdSKInfQvfXSBC4maq8VxYKNi+czbNIZaPioaf2aNTB4MDRvDrt3QxmNpBDVWLGCbldXV1xdXcukIl5eXnh4eLBz5078/PwASElJ4dChQ8XKgF4dHDujtqrWsEuibuO8WcsrC1dX+Gd7M+5qd4htYS2JT/YgMiyKZiENK6xOc1/Zzu7jPQBoUjuaz34KzLcVu2+vFP7Zqy6vXRnLhbPJDBqjBoVJyZtZuEKbV21jrpkveg6QcYVF1bGDkW/XqMsPPhPCl4nbGPFS2U+FVJ1tyTX18rHTbsRFxePZMG83O0OWgeH99/DbJnXsna2tgQceKPhhmZWNFd4eZ4m6VN80V/eoRxPYfLhHgfv88gvs2QONG+fd9vOiHRw6mMnU91vj5OqUt8Ad6nKuGdnc3SuuHlWFhd6Cb35vyV8eaaRn2nP0tDz0FKLc2NbRAm6nZtB6PtS9x7TZaIR589TOES++qM7EUJiIXD3Tb7fDbO72vxUr8m7fcLgHw3Y8Bgm7IWQu6K356ivIyoIjR9SpGh966PbqIMTNyqwDxfnz5wkPD+f8+fMYDAbCw8MJDw8nNdf4oH79+rF+/XoAdDodI0aM4LPPPuPff//lxIkTvPLKK9SqVcuUzVxAalIq0TempmrRIKbSZ2y1trOmZydtyqGj++MqsDawap3WfPTTd6nUcKuRb7m+92sZm39f48JTE7X9Vm9uZFpWFNi0SV12coLWZduz/I7yxEsduKed+mQjy2DNyJe78OYzW1Hyn5VKlILNm81fb/rrVJ4yRoORMYN3svxfNeC2tszg968O3rLloXE9Na/B1dSahG45webDwYWWv3wZ7rtPIemK+ZSQS97dwkPPdeK9r3rw1oT9hb/pHebyWS25j5tzWiElRQ77GvZ4e1wEIOaSJ4pRLiBClDpDBmRdM1/X8DGo4Qct3yO7zxFSne8x2/zbbzBlCrz0kvqQ9VZyB92329KdO+iOiMi7fcPRG3HFlX2mpwEHtJlMWb789t5fiPyUWdC9YMECBg8ezMKFC0lLS2Pw4MEMHjyYsDAtW+GZM2e4dk37I37yySd5/PHHefPNNxk2bBhpaWl8+eWX2NjInMc5ju/XJsFt0TSx4ipSDP6BWlKxY0cq9kYyNl4Nnms5x9O2kMRufm2bUN9TbXbaGhZM5MUGpm1n4ryJDo8FIPyYQtyN5whdu4JlpUlNWPlZ21nz59YQnn1AiwTfWdyVadOQwPs2pFxNyTfwUIwKmzdlma3779/sPOXeGreFb9eoPQ6s9Jn8+uUh+j7a5pbv27i+lpF+9gytyXZk/23MnLCJsQO3MGPCHn7+We2+B3DsmI6H7zlMdqZaj02/hTL+LW2c3W/bOlercyEhSutf6WZ3tgJrUrV411Yf7KZmOHL1UlIF10YUx99/w4IF9bhwoaJrIgoUtwnWBMGBF83X662h/xHSGr1Ki0Ab3N1hW66h3bmX//jj1m9z8KC2fLst3bm7l+fQ6SDkRo7P03FNOZPcHjr/BBZWXLkCUVFa2TVrIDHx9uogxM3KLESYPXs2s2fPLrTMiRMnzF7rdDomTZrEpEmTyqpaVUJWRhYZaRk41nTMs+1YqHYz69e8asxr6d9K6756NLz0s3oXlSHLwIWravfDeu4JQMHZK3UWOvre58aXX+a/feOqKEb5efHX0i2A2tW8V7dUoHQzu97pLK0tWbi8G02bbuGFWd0AmD0bbGxg+vSKrVtVNPuFTbz6cQ8evXs736/tZNYTJurYWc6dN78T2bjHfDjEj/O3M3NJDwAsdAaWf3qAASM7FOm9GzfSxvX9vFHb54336tOkZQOzsiEh0L71Na4kO7F2T1sCGkcytF8Mn68IIttgZSoXHWPFsWPg71+kKlR5l69q10f3OtWnW/3t8q6bCjc6RcScjMO1tkueMp9+ChcvwrRpYGtbvvUT+UtKggcftCA9vTY2Nka++KKiayTMZFyBgy9D5Nfq62snodEIqNVVK2OhZ/NmOHWj09SSJdDlxiix3EH0unVqd/OCEpQdP64Nf2raFOrd5oQmzs5qQrQU7VkwAQEwZIhWr391WxjrYJ2nrqBmUv/9dxg16vbqIURukp+vkok9dYH6ta9Sr56BVd/sybM9/KjWMtUisGpke24W7I3eQq330YiKG6h46WwCBqP6nKlerWu3KA19+5q/HtQt1LT8341x3L/+pXU7H9xP5iYuCZ2Fjuff68Znn2nrZsxQg+/czoSd5cXHNrFrbd65PYWa+GzOF+qUXj+u78wvn+002755TUyefU6db8S5CLWJadfaMEa/rI2P+GDKNoY8VbSAG6BxUy1gVBT1q6Wtz9E8ATeoN1W/Lj2NpV5teT9xrjHvfdWDKylqzhDXGsmmsqtXF7kKVV5Copa5x6126c0mcafz9q1jWj6bUDfP9j174Nln4Z134LXXyrNmojDHjkF6uvpg8ODByj1UrlpRFDjzA/zVXAu4Adw6gHXevE6nco1S2rtXO0RoqLY+ISFvYJvbp59qy+PG3Xr8963odOZdzAE6doTco1U3bNS+s3J3Lc8hXcxFaZOgu5JZ+O4J4hJrkZzuzLAnW7L2B/MxjcdOajdlfq3q3Lx7pWRjb0OzutEAHI9tgCGrYlroY89pp7tX/VtnUO/dW31SCtCqFfz4lx921mr3+I17GxNz/Bx7TqhTj7VsdCLf4EIU3TPPwPz52utp0xSOHzgPqF/gQx9x5qMfe3DX4EZEHskbQFZ3O9ceJTFNC9Remt6AtGRtOMeWLVo/7c4ttOvKxlWRxJ9NYPAjtcjIUpsAxw7cwqR3uxXr/Rv7uuRZ9/Dg+ALL9xgSzN8/HqFbYCg6ndZK3sI7gvXrtb/V6hR0X05Se8o42KRg6yipc4uqfgttDuCYC3l7COS++V+0CGLk8lEp5J7+NnfXXlGBUiJhYz/Y+Thk3Lh+W9WANougz3ZwydvtKPeY6ePH1Wm3oqLU/3P7558C3jIFvv1WXbazgyeeuP2PAXm7mHfqBG3aQI0bqXz++0+bouzAfq1BK+c+b8MGiC/4K0yIYpOguxLJysji2z+0ccaZ2Tbc/0QL/v1FezwYHusDgJ1NOg38brP/TTnyb3IJgIwsW05XUMB07rLWnbxe4K0znrm4qBksp01Tx53ZO9nQOSAcgNjLdZk7I9ZUdmh/GZBWGiZOhGmT1SEUiqLj0/fVR+jbt8PBMPWbMi3DgadGJkjCpJusXnnV7PXZhHrMmaO93rJfvQOxtsxg5Ajt3N34n5GJT5wkLlEdetE9KJRFyzsUO0ljY/+8Myk8ONa30H16P9iKzYeDiTkRx4dTNvHyiE1s2OhEq3aONGum3g1t327galxisepSVSUkqVMRutVIrNiKVDFmc/Lm8/VyJkxbmZEBM16Q3jKVQe4W0oQEHddu3QFNlKVTi2F1AFxcp62rPxTuDQef8aDLP2TI/XtUFNi/P/9W7bVr83/b77/XAvRHH4WapdTJJ7+WbktL6NlTfR0fD4cPq8sHDqoNMTZW1xl3l9rtzmCAX38tnboIARJ0Vyqrlx0w3fjmPGm7nmXHwBF+RESoNwsRMerVqHkLOyz0VefX5++nJXA6Fm5VSMmyc05LDFzk8UI9e8K770LO1PE9BzQ0bfvsZy1wHzpcpgorLS+9rDed/9/+GUzK1RQWLTIv8+/BVix9f1s+e1dfqzeqJ7VOZ8TSUg1Y3//QnqgoOBdxntM3kgG2b34c/061sLZUs4YvX9/alKnc1fEKK/6oh7Vd8XMvuNauSQ0HbXaKrl0VvJoVrTeOV7M6vDC7B+9/24M6jT0BuLfNVgAMBj3rfgkvdn0KcnxvJM89uJltqw6X2jFLg2JUuJLiAoBbDYk+iuNWQXfk0Viz19+s9CN8T2QZ10rcSu6WboAz+/bDqc/g9FKI/hniNkJmYoXUrdqJ/hn2PgOGdPW1fX3o9id0/R/Y5x2ykdvN2cH37jXvXZJj5868rd+KYt61/Nlni1/1guQOut3coNmNDjF3362t/+UXuHYNTp5UHzIHNT3P8C7LTNuXf3up9Cokqr2qE7VVA19+pbUsrfg8jIGddwOQdt2WJUvUp4k5XWFaFJx4u1Jq0UPrqno0yquQkmWnJEH3zXr208Zw54wP96t/mhbtbzPVpjCp6enCo33V7s/J6c7Me/O46WmzvZ3WBezFd4I4f/piRVSx0ok5fo6waPWOop3vMSZNUi/t16+rc41+94V249CtwxVs7K3p2OIYAGkZWm6Ij9+NzXfe7qLQWeho3ExLJPjww7c3KO/ewVo34TVrSmdISvq1dO4ZYMWiX7rTe6gPe9YdLZXjlobky8mmJHLuLjJdWHF45fpKiTmdnGd75FkXs9dGRc/rL8vNdEXL3UIKcGbV27B3POweDdsfgn97wf9qwiof2PYQxP5ZMRWtDrwGg+eNJuBm4+Heo+B13y13y8qCM2fM190cdPfvr/6fna126c6RkQFff63Oiw1qS3ROdvHSkPthXMeO2jjxYcPUucMBli0zb5Vv1bUhLbsH4VvnOACbd9Xi13fmwDVtZgkhSkqC7gqUmZ5JylU1teK5iAv8vVttOa3vfo7+j7fmq1+D0evVLrTLl8PRXPeHfn7lXt3bkjv78NEKus89d07rjlzSoLtNG3C4KUH50H4ytU9pe/ZFLfCb8Ukbsm50lJj0vCXD+20HICnNmVEPnSMzPbMiqliprPlZuyG4964E3ngDPNUGY/bsgWlzg03bu/RSExX06JRodox+/eDxCUG3VY9WrdT/bW1h6NDbOhTd7gvA0VZt8f17uy9Gg/EWe6gunrnEif1RnDihtsDknnJs3qu7ibqkNn9kZNky6CF3Yk9VjqEhCecTTctuLhkFFxR52Nmp00ACxESm5NkeeUEd+lDbJY7aLuocj79t6cDWPytXb4dq4cYfpKLkE3THN8p/n2unIOZnNXt2blnXYNdoSKw8D8+qDEUxvzjqraHrr9DpR2i7CKyKNntCdLTaDTu3PXu0QLZGDTVfS45//lHHfY8Zo35HjR2rbRs/voSfpQAtW2rLuROoeXpqiXLPnoWPPtK2tWptga7jUiY9ttu0bvjMCRz45FE4MgOMVWPWIFE5SdBdDrZuhfnz6xF5SgsOLp+/Qmu/aJxcHRnWP5a3Z1piVNRHb6OHnUJvpcfd04a771YfzcXEwNdfal20q1pLt4+PNod1RQXdsUe0x5letdNLdAwrK3U+7tyGPl41EtpVJSE9mtPR74jZOgsLA0+PzeCjr/xMN9jr97fmoT4HyMrIyu8wd6z4swk8/+hmfpy/HcWosHqddoPUf4gnzs5qPoIGN+X2s9Rn0amvOs66+wOdTesdHWHx4tvPGDtzJkydqr53TtBfUtZ21tzdVr1YxCd7sHfDsQLLnj99kY+mbqJ98zDqNK5F8zYNad5c7U7o7w8nTqi9AWYtaWe238VETwYOsuCnn9Ss1i+8AHu3Xbm9ipfQ5TgtWHR3rV7nc2nwrqVeE85f8SQrQ+sRk3gpyZQV36/hed58XpuqdPhYVxJlXu/ykRoDh16D/3qDonDhAqSm/p+9+46Luv4DOP46DnAhoIADFXABCiq4t2aWpmaOMls2bGk2/aVmSxuO0krLyqys1FIrtVyl5d4jceJGESegiAIy7r6/Pz7efe9YgnIMeT8fDx587zs/x324u/f38/m8P/a7HL/aQSXsavEVhE+CwGHg1Qqcyqgd3DO1NiQehOMzYVkorL0Pzv0DJrlhdUMJe2HVXRCz0H69ayUIeChfp8p84wTU99WY6yM6wsKgSxdwvT5i6ccf1Xvy99+rKeMsmjSBBx7I16VvKDxcXef991VGdFuPPaYvL1qkLzdtCjgZeX7iIB7ro25mp6SVp/fHv3N23ddwfhVC3DStBEtKStJ27NihJSUlFXVRclWrllkDTfOtfFY7ffSsZjaZtXvbbtH0W436j8Fg1k4cPG899ocfsu4DmnYw4nwuVyyeGjRQZS9Txqylp5kK/fpBNY5poGkVylzRzCbzTZ9n4jvR1tehTpWjt3Su/MjIyNB27NihZWRkFMr1itrsTzbY1fne7bZYt61dFKGVc02ybru/wypt1o8Z2ogRmvbss5p24EARFrwQ3Ndef/94tu96rVw59R5TzfuKZsrQ/7cuX9a0wX22Wvft3OQ/az26di1D69RJ08qU0bSffy6655KbGR+us5Z97NDV2e7zx3dbtLIuydm+T1p+KlXStPaND1gfP95jvVan2sls93UyZGhvPr1aS01OLdTnunTOPmsZ3n0+++danBS396N+HTdZ/34nDsRY1/+3OtK6fvC967T01HStfWiE/t7ReZNmNpm1w4c17bXXNG3yZE1LLdyXvni7elX/57h6Ne/HZaRqWuxmTdv7vqYta6ppc9B/Tv+lrV6d9X+vV68czmVK07SESE1LS7Rff+wH+/POQdPmVdC0Nfdq2oGPNe3sv5qWeukmn/htKPmspm15WtN+dlJ/q4V+mpaev+/Py5dr2vDhmnbmjHo8dar++lWpkvU1fekltV+XLlm3VayoaY89pmlLltz6/1x+34+SkzXN3d2+PM7OmpaSou+TkqJpbVpnWLd3CD+imQvn654oIpnrUUHHmdLSXQjC6qvpss5crMZ991zko/+tZfGmVtnue/fdBvyDqlgf9+kDrq723SpdjGnUbZB1rsTirmEt1TUsNdXA8b0nC/36luzlNbxj852Z2Vb3u/RW8od6n7qlc4mc3f9cc3zc9XGXL7zgbF3ueF8T/px1kDIu1wD4bf0dPPa4kY8+gm++gdatYeXKQi9yodi9/hB/bNDfP75Z2N46122P3m52CRbd3eHbhS1Z8ctOXh+0hhk/6O8bzs6wZg0kJMBD+WvcKDR39NQH5W3fVT7L9l1rDvLQ0FCupevTa4XVOcigHpt5/HEIDlbrLl2CDXtUK5m3exyfzWzE4hXVrFPH2DJrRj78tjOtQo8X6tR08SZ9DI53w/xN1ybAr4bewhl9JN66fPygntW/Tm0Tzq7OzPnVm0oV1Prf1rSha9hGGjTQ+OQTGD4cWrbUsxqLfDCnq/md/+0Kv3nCijaw5224ZDMJspMLXN6fbQtp5rHBdsd4BGft8ux3PzT9FMrZjBfLSILTi2HX67DqTjUmfFU3+67UpU1GMux9HxbXg2Pfgnb9O6XBCa7m9EfPas0aNT578mTVKwjsW7offDDrMWFh6vd99+nrKlWCCRPg7Fn46Sfo2VNvCS8s5cqpsd22QkLU0CiLsmVh4SKjdWz4+l317OfzztxFX4gbkKC7EEz/thx+Pmrc744jDRn1aWfrtl+/3snHH4O3t/oHf/NN+2M9PKBHy2126wJrnMTZ1ZmSJqT2Gevy/p3nC/XaifGJXL2mPrBr+CTc0rkatw9kzmcbefvZNYye3PLGB4ibUqZ8GT5+S92oubftVroOsM+w0nVAUxbN3GfNwm0rMRHuucfM1++tK7J54R3lg3dy7v7cs2f26+8a2IyPfuxMvbCsc8nbfskobuo08sOzQgIAOyLty34u6gK973cnOVUlWejbYQuR246z61gwPy5tww8/wNat0L2b/U3LcSMO4FnFg4aNXFm1SmXLHTcO/lxkYuzQtTgbVdfuiOPBjHr5NIUlLk5f9vKWj+b8sstgbjOu+/hR/f2hTj31zd4vuAbffap3M1+1tz0mk37zdPduaNHCxGdvrHVgiUswTYM0+2758bEmrv7eRs3vfP5fPQu2ReVm0Ph96H0cGryWY9CdrxjGuQIEvwK9j0G7uVB7EJTNZlyLW4D92Jn0K7DjZTi9BEy3cU4Q0zWVCX5xIOx9R92QADXvdtgE6BWZ7bzb2YmLg0ce0V+f5ctVYjTbzOUPP5z1OEtitOeeg/feg0mT1Os8cmTW/DiFbdAg+8eWnCS2qlaFt97SH8+aZbPx+ExY2xuuxWU5TohsFUh7eREpKd3LMzIytAU/LdfcyibadWV59eHVNvvk3HNr7ucb7Y67v/Omwil4AZv3hf483h+2ulCvfWDrUeu1H+22oVCvXVCKW3fOwpKemp5rF/51f0RoLzywRvvovQva0qWa1qePfZexcq5JWrP6+7Vn+6zV9m06UoglL3j7txzRDAaTBppW1fO8tnzuPq1SJdW13M1NdSe/kZJWj7o23WF9LU8fPatpmqalXE3RWgXvta5vFbxXS7maku3x6anp2ksPrtEMBpN2d/PtWkZa7s9756oDWhmXFA00Lbjm0Wz3SUvTtE8+0bS33y64rshvvqnX2b//LphzOlJxq0e/faV3Lx//ymrr+uf7rbWu3/r3PrtjhvTXt3lUSNRGj9a00FD794+5n28s5GdSzNh2L//3IU1b2kjT5rmp7slpl7Vt2zStWzd9lwCf49q9Tf/Q/h07UNM2PqppR6Zr2tWTWU573336MbVr68NDzp27xfKaTZp2aY+mHf1e07YP07Qloaqbu61Le/Xu6L9W1rQtgzXtwGRNOzFP7ZvPLtf5deiQpr3wgqatWuXAi0S8pWnzPey73v9s1LRtQzUt5UK+TmU2a9q992btHr55s6bVq6dZP3/MZk3z9ta3u7gU3lCNm3k/Mpk0zc9PL+/nn2e/36VLahgWaJqPj3r/1xIOaNrccurvusBX086tKZDnIYqWdC+/Tfg19GH2l/sxGFSrS9N6kYyf0ca63WjM+a5fr8eaUL6MnnGkYWDJnE4mpKnebf7AwcKdqzvmeIJ1uaavJCkqSZxdnXPtwt+hdxO+mN+J19/2oUcP+O03GD5ovXV7Slp5dh5pyDeLOtKoXR0euXsjh//Le5e64mTcO+ewvG2//swBuj8YwvbtBkaOhMWLyba7dEnXrLE+Z/WOtWpYyqzPtrH1YCigZntYtKwKZStk32Tv7OrMlLmduByXxF9bm2F0MeZ6vaZ3NKC+r+qZdOxsrSw9JS5fVj0KXntNJeiZPv2mn5qdeL1HNN7eBXPO0sSvrl75o0/pX22OR+vDEuo0rGZ3zGezWjPp9TVMen0NUcdMfPgh7NgBw5/abd3n2REhRO0rxTNU2CaOOvGLSsKVcZULl33o21d1xf/7b5tdYmuz+L/eDJj6M+bWs6Des1DBL8tpLS3dZcpohIfrPRNy7GKeVwYn8GwEdZ+E5p9Dz70qGZutZJvXM+0iHPsOdg1X05StaAO/usOyMNj2XJYW/YLwyiswbZrqqp1di3+BMKdBuk3Za9wLPfaqzORl8zct5BdfqM+XzJYv11+vevVUZ4KWNp3/GjYs/G7j+eHkBE89pT9u3z77/Tw9oXdvtRwbCytWANcugLOaCYSUM7CqC+wZA+aM7E8iBNK9vFD1GtSCJT/sZOQTa1i20psy5cvk6bgKHhXo3VL/4GvQoGSOIa4f5mfturn/WOF+qzwdrXd1q1GjZP79RN4YjTDpxw78+uVm+rTfQn3fKOvNLk1z4ueV7WjUypd1f+hfrNNT0xn38hq+eHstmrl4jtE6susEv6xUN+q8Ksbz/OjmANStq8bHde5chIVzoOat3azLOw8GALB0hb5u9rdxVKtdJfNhWVSsXDHP+RcC/VV3wXSTKycP6l3MTxzPoG1b+3wBy38vmIAs7piend2rYta5pkXu/OrrgUT0af0GzPFzarxvxXKJePna50JxLefK8I86M/yjzlSq6glAmTLw8YzGPHyXmpowMcWDhx64XOpmSLA6kumuksEZKtbnw5Vfs2ipfqPD31/l0rAMV4mPN3A+h1FkJpPeLbluXahVSx8CcMtBd3YyT8vg0x46/gH+D4Exa64INBMk7IZTC7KOIz+zHM6vVePXb5Il0L52TU2ZZc7bbIjZ08xwYYPKDm+r9mOq+33AY9B1HXT6Ezxyn2tW0+DCBfsu/iYTvPOO/njaNH155kx9urB69dTvFi307QU557ajjBoFY8fCDz/o48+zY9sV/aefgKqdoMduqHqnWqmZYd9YWN0dUuOzPYcQEnQXsh6DWjBhZmeqBuTvTuPrY+tRocxVAqqc4p5HmjmodI7lWs6V+r7qg+FQjH+hjrU9HaPffazhl7ebHaJku39IGxaub83h07VJjE/m4/+twdtdBVNpGWV48dWy1rmf335+I29O7cyLH3Ri0XdbczttkRn/9inrtIKvPbmXCp5uNzji9tDs7ubW5R37q5KWBv/+p77N+VROpn2vRgV+zfp19CDgyF6VzC/pchKdWl/gQKaZy9Zv9SyQgCw+Vr+mt498NOeXTy1va36H6HOegAoITpxTUzrWCXTL800Xg5OBr35pRJ1qqmfF1oOhvDNkY8EXurhLjYezNs3YXdfBgCtw72F2nO9nXf3ll3D4MGzerOZftojOIQ/hqVOQdn0odf364Our1/3jxwvyCeTApSLU7A3tfob+F6DrWmg7B8ImQt3B4NlYtZhX76Z+29o9Gv7tDAuqwqZBKjDPSMr2MjmJjdWX161TyT9zpZkh+TRcPgCxm+HUIoicpFri/6gN/3SAo5lO4hkK/S5A25+gSodsT2s9vQZ//QWtWqkxzE8+qW87flwl2wTo1UvNpW0JsE/Z3G+sX1/97tJFX5d5etXiqEwZdVPh8cdz369bN/C5/rX9jz+u/03KVYc7/oYm48BwvQfV+X/h75aQsM+RxRYllHyylxBN72hA/EUXDkdXw8PHo6iLc9OCA9SnTWp6WbsWJEc7fUav6jX8K+ayp7gduVVy438fd+Z4VBma11dR056oIOZ+e4wju07w6Wx9qMfs2UVVypydOAGz/lbzantWSGDY2yWgCaGABARA5esNlDt2qC/2V6+q4Onue8rbZWsvKPUD9S7ohw+oL9SrFuwnOtYXgMB6qXQOV3OIX71WkZ2rD2U9ST5E7TvFwZMqOCzjco3y7kWcYagEcjI6Ucv7HADRF1Q38pgYlewJoE6d/NUTdy93fvnxqrV31kc/dCBqX0zBFbgkiP7VvrusV1MwlkXTYN/1mMLPT82BbOlGbJfQLoeg+/BhfblePY0aNQqupfv8eXjpJfj11zwe4FwBqnSEgIeh4Qho9a1qwbz/MoR/bL+vZobE6//raZfgxCxY3x9+91YJtaJm3zAxW1qa/fzUACNGwKloDa4cy3rAgY9hYQ1YVBOWhsDKtrC+r8rOfvQbSL7+Rz75S9YsdM7ZtOJnsnq1Co7vuQe2b1frZs9WrfCA3U1GS8t1165Zz2MJxDt2hBkzVO8r27mwSzoXF32Wj9RUNYwNACcjhLwBd66Bstd7XF09DitaQ9QsyW4u7EjQXYKUKV8GlzKFOxa6oAXVu2ZdPrTbsRnMExIg/XoDVMxZvbthjTpeDr2uKL4qVq7IhA/1OvjWxPq8PCSOtAy998PSzWEkxhX8OL5bMXEiZGSot+uXXzbi7l1yb7zll8EAza537rlwAb77Tt/WrZtjrhkYonebPXK9G2zETj2XxvsvbeHh/noXwlXLby57rWbW+Hbcehq38OTsJRUo1q56WqYhvEl+gSpz9eVkdy5ftm81rVMn/+dreXcIbwxWLdxmzcj0yUdvcMRt5kT2dyBjYtQMEQChofbbatXSl3MKum3HMQcGgq+vHqjmJ+hOSVE/tgYNgs8/V5m2L1zI/rg8cXFTLZm2zBnQ/AvwHwjONjfvTdfUNGWbH4M/a8OBidmPBTdnEB+XtS/5lSvw+L1bufZ7qGrRtmW6BtfOZVvE6f8+y5vzx3GxwgPQaKw+FVg2EhPhjTfUePIZM2DRItUq3aULbMzUicNkgv3qnqL1N6gptSD7oNvS0g2qy/zIkSpQvZ3Y3kQYORJefFH97TQNqNIeuu1QWfpB9X7Y827WLP6iVJOgWxSqoGB9qrND+/PXJSs/fv5ZdZNq0kR9oJ1OUl1QjUYz1fzz17Vf3F7ufKCp9UtDVBQs39rcbntqeln++HFvEZQse6dPw/ffq2U3N3hpeOnrqdHc5iX6+We95eDuux1zvfqN9Xl/j5wLAmDXHv3GXVi7WtzRU5/CbPWG/L0mezceZvTgNdT1PcUzb3awTmcYUOUUP353LfeDRY78auuv0alTtx50A7zwRgguRhUUfvt7I64llZLXRzOrsc+ZA0/0Vm7IGnTnpaXbNuiuV0/D3d2Ep6f6v84cdGdkwMcfw+jRcFL19ictDd5+W02p2qABHLveQLxq1fUkV6gb7jt33uhJ5pPRFeo+Be1+gf6x0PkvqPe8/d8o5QxEjFK/bS1rAnNdiP0pzLqqf4vfqO6p9lu9pzX3T/mVtCOZmuj9HgCnMlC9O9R5EoJehkbvsbXcXzz//XTG/fEGrV+fz1HTo6rVNQfjx6vW5ylT4NlnoW9f1cpt0aAB9O+vP959PeWJbdDdsKH6fccdWYfJW1q6b2fNmun1/eJFlWCufXsYNuz6DhVqQdf1UPtxwACtZ+apt4EoPSToFoUquLGndfngIcdUv8hIdac1LU0tz5kDp8+VA6BaNacbZi8Wt79x47KuG3q/Pifv3F+LT8rVjz7Sxz8OG6Z3tS5NmtePtC5b5lMOb5xC1Wym5C0IVf29qXg9jj58SrVARxxWXcsrlLlKvcb+1G3sR00v9YV5474GpCZnnS8+O1PfXEvj9oGM/74zUef1COXp3uvYE+lJy7vzNm+uyCpzwHd8m56foU71szd1zqoBPjzQRfW7jb/ixfyvduS6vyndxOXYy8U2IWOeGZzICJ3AR5H60Ilz1xtcbzXotu1eHhiofteurR+TYdOj/dVXVffr8eNVa+qQISph2wcfqMD65EkYOFB1+X3jDfvr7NqVh+d5s4xlwLcbtPwK+sSoceE1+wAGlSk8c9IyJ/WZEpuo3/SvX+0Iv7/SnwplVPb2pRG9GDjqAWsPPQA8gqF/HNyxHFp/D80+g0Zvs/aI3s3nyBH1N9mwIefirlmT/fp69dTc03v3qr+txZ496rcl6DYa9deqcmW99xGomXeq2U8McFsyGGDuXHXDooxNaqAvv7TJ7u5cDtr8cD3JWif7E2SkSHfzUk6CblGogprqrUOH4lsX+PmvJV1j4APX7Lqcff3ZBWs3sxo1sj9OlC4tWsD99+uP2zU6yOdzO1DLRw15WLGzhd0UTkXl7LHTfPO1CubKldN47bUiLlARadY6a0tyt2aOS3hnMOjdJU+cgNjTl60BcpO6x3FyNmJwMnBHC9WUmpJWnm3/HLzheU0m+OjbJtbHTgYTdzXbyfLZO5jxR0cqVi59vRgKUpag+5ierLOO/823UA99SX9dps3OOQO02WSm3x078KziwadvrM1xv5Lg8GHVijf2ff1romUca25Bd/XqKkCDG7d0u7npwVpAgPptMukJur76SrUmWqSnw9dfZw2md+yAO++Ebdvs10dE5Pj0CpbBSY0L77gQeh1UCdkyq9wUKrcgVmtrXeVT04s2vdqw9Ls1lCunuoYv/KsGTz1lH5v9usiNV17Rb3pA1ucaH6/+BrY3NCwyMvS/Rc2aMHWqupnx00+qYeLRR9Vr1kR/a2L3bvVaHLz+tla/vn2gadvF3DJdWGkQEgILFqihCx9+qK8fMiTTWH3PTAk+zSbY8ABsHJjvxHvi9iFBtyhUlapUtGaAPHSk4FsTX39qK3v228/Xu/tQFesHmATdwmLiRFUfqlSBr38OxsnoxMAnVNNpRoaBBQuKtnzHdp+kc6c0rqWpbzrPP7DD+r9T2vgF1bBmnrfofq9jx7Vbgm6zGRb+ouefCGt4ybp8R2f9m/Hqv/X1OVmzBk5f8FTHtorm7ImLrNjRjO6PNM/1OJE3flX1O2Und27leIwam28wmPEP9r3p87bt0YgmIao1cttuL3bk0Nj929db+HOjmhP6wy8bkZaSe1Kt4urIETWkY2um+1rr1qnflqDbyQmCg+33cXbWP2ezC7rT0rLO7QxQu7b+vxQVBf/8o8bMWgwYoFpULRo2VFNWWcYNZx6XDIUYdNtyD8x+aq6W06H7NmJ937eu8mnzLDT7hE6P9OLPP52sQe3s2XpvrE8+Uc99yhTV4m9hSXpWoQLcdZdaTktTLbGZHTigJ0Zr1079XT/5RI1RdtZH/OHtDb7X/01271bd9lOvd+AJydQBxzboth3PXVq4u6ueFd27q8enT9u/PlnsfRfOLIXo+bCiLVx1xNx4orhzWND91VdfMXDgQJo0aULz5nn7QjFq1CiCgoLsfgbbzj8hbguWD+mzZ/VkLAXhi7fX8sV81Z2nrEsKLwzYlGWfGtUkqYVQ6tRRXRNjYvTWmoED9e3ZfXkpLBuX7KFVBzcOn1Z9Lqt6XmDEGP8bHHX7MjgZaBZ0wvrYrewV2nR3bDdsS1dKgPm/6d9Mw8L0Jp07etW2Lq/e6MHx42re18mT9flrbf30k7489H9+VPErpXdRHMSvmt7U9NmPjdl9XA00rel1ljLlb36qSIOTgRde1qfos52r2CI9NZ23xuljey9e9eKfhXrX7DmfbmT4o2uIiykGXWhu4NMPTnLlilquV1dfv2GDCuwsGa3r1YNy5bIeb+lxEBcHycn22w4e1P83LGOEQe9eDmoYTc+e+n7/+x/Mm6eC8Q8+gEmT1HjtJ55QN09ttWunzxV95AjW51FcxNncO7S9idq1K/zyi/74rbdUUrjhw/V1y5apm4Dnz+s3NJo3h88+0/eJ1EfiWNneJLrR13FLa/elS/r4eLB/rUBlKW/bVr3+Tz2V+zlvVwYDTJ+uemyAmvrNdpy8Ha9WevK9hD3wdws4t6pQyimKD4cF3enp6XTv3p2HLDn286hDhw5s2LDB+vPJJ584qISiqAQF6cuHbm2mHUCNoXt54Fpe/EAfP/PpW9v54PMQyrnaf+LXLFs852AWRcNotM+wGh6u37VfvVrdGMoPzazd8pfq6IOnubNfIPFXVJb9hn5H2bw+lWq1q9zSeUu65g1OWpe7hKzGtZxjx93X995jXV69Tb/hEd5Kn/0gIKQmAVVUX9j1exsRFKQxcaIKEkY9t9vufElJ8PvvatnTU815KwpWYNMAml2fEvBaejlS01Wvpzq+sbkdlicPP6wSd4G6IZeUqYfozI83c+RMbbt1c/9SXUy3/LWPR19rxydzOtOn+2ky0nPOMl3UkhOT+fk3TwDKl73GmtV6C/TlRNW11tJqmrlruYVtN3/buZxBjR22aNxYXw4I0K8TGannsejVSyUAAxWkvvmmCkTLXu/Q9sor0KOHfp7x4/WprUAfm1xc2M7R7e1tv61vX/t8I7Nm2W+Pj1ct0JZWblA3GOrV01usbaf4srBNKGc7Fjs7tq/Jzz/ry5lbul1c1E2Y+Hg13Vhp5ednf+PntddyGLZd816+ijnE67/NIOlaeUiNh9V3w4kivLsvCp3zjXe5OS+99BIAC/LZR9PV1RWffPahNJlMmLJrVigmLGUrzmUsTPXrpAIqo2Pk9qM0bVo79wNykZGWwf137mbJZj3gHvXkap5+owMGJwP3d9nMrL/aW7dVr2Essa+D1KPCMWCAgQ8/dELT4KdPt/G/8Tf4lmLj2b4b+X5xR0Y9uZoPZnS8qesvmnWE1HTVP7NL2H/MXxaAZxWPAnvdS2o96nCPH1xvKe59v6fDy1/XpsukWVODVI1OGQQ397e7ducWJ/lhaS1MZmewiaUmfdeEoLpreXKEev/5fU4sSUlqAOsDD5hxcdGybQ0vKYprPVq9tRZvDlnD5/M6W9fVrnXllstZtqx6b5gxw4lr1+Cfpefo1V99V0lOTGbsp/Vt9jVx7ZqRRYs0rl418/4Y/ebvxv2NeXeMmffeK15/N4tfv9nJ5eQOADzQZTvuHk3stk+ZogGqt0fDhmZMpqwRRs2aBixtOlFRJrvM1hER+raGDfXvbg0bmnBycsJsVueuXl3jkUc03n5bnT+3l2/OHJgyxUBIiEbbtrBnj36N//4z07p18UledeGCE5a/X+XKpizP6/XXYf9+A3Pm6G1iTZpo7N6tjlmxwny99V5tb97chNEI9eo5cfCggUOHNNLSzNZx9QDbt+vXbNIk6zVtNWqk/+02b9bXBwdnf5yra+6vTWEpyvejZ56B7793YudOAxER8M8/Jrp0sd8nIgKGDq8OPE2awZsp/fuCZkLb/ChmnKBW/2zOLApb5npU0PXJYUH3zdq2bRtt2rTB3d2d1q1b88orr1CpUqVcjzmcXeaIYmiv7S3eUsyTGOA+AP5bf5CQVjc/J/L6hdEs2dwXAGdjOh++uoQ7B/qxe49qZbq7RwKz/tL315wTiCiSgV4FR+qRY7VpmgKoQOnb2d7c+cCuPM2bnHLlGj8saQfAT4sCuf+FiJu6fnS03h9y4MBTnDijwZlcDrhJJa0eedU18OEri0hJNtDojuoO/z9Od86a7CaoxnEOHbPvrxrcoSosVcsVKpjo3PwAS9eqFs6hb7ehrNsyGrT15YcvMwAVdLdpsZuIiOLb2pkfxbEePf56RZq1/pP3JjTmfII3XboVzPt+o3qpgEqEtfCH3dSsq5oqF3wVw5mL6jOtZ6v1OFVpwOLF3ly5YmD4C5Es29rS7jzjxxvw8ztC8+ZXb7lMAMeOlWX+/CrcffdFmjXL3znT0gwkJzvh6am+XM6YqU9xdHfPy+zZswebhmO2bNHfC93cooiISMhyTicnb0D1Dtm48RQ+Pnrvn02b6gEe1/fbz969KlX3pUt7GTfOk0OHytO6dSJhYVcxGu2nF8uNpedIRASUL18BUOPYVq2Kp23bHDK6FYGoqEBAdTM+e3Y3ly5lvSEwdKiBo0frsW1bRZ588hz33HORBx5QTc1//HHl+jh49TcsX/4AERFpVK9eh4MHK5GaamDZskhq1VKDsTMyYPfucMCAn981oqL2Z7meLVfXsoB9s7bRqJGcvJuIiOJz8yInRfV+1L9/JXbuVPMSjh17lcqVj9ptX7BA/5+Ysfxehg14lPqm2Rg0E06bHuaY70QuV+xcyKUWOXFUPTJommPz1y9YsIBx48axI6fMIzaWLl1K2bJlqVmzJqdOneKTTz6hfPnyzJs3D6PtbbvrkpOTiYyMJDAwkPLli+9ceCaTib1799KoUaNsn0dpcyTiBA2aq4Fi93faxNx/W930uUY9tY5JP90BwA8fr+fRV9vabdfMGg39jnPknBqgGbnjGPXDAm76ekVJ6lHhubv5blZFNAVg1YL/6Ni7yQ2OgL9+3kmvQerLtcFgJulKGq5lXW5wVFbDH1vPlF86A7BucQRt72mU+wH5JPUo76pWSrB28wd4eGAqP822v1dtNsPUqQbS0+GppzS8vOCVhzdY80u4OqfSrWUESzc3x6wZqVP1JIdO1cjTjZzirCTUI82scS3pGuUqZjPw+CZcTUiiSrUypGWUoZb3aY6fqUpqSir+Na8Rf8ULJ4OJXRuOcvpyPXr0yPo3adn4HNv2qBsvvr4aO3eabzk5oqZBWJgT+/cb8PbWiIkx2yXHsvjn1/9YuiiJFq2cuffRUHCpyNSpBj791MCVK/Dum5fp3zOOkFaqWTq45jH2HvfHkJKM8Xq/+gpcJRk9m9nevSYaZJMzbOlSuO8+9fzfesvMmDH618yAACdiYgx4emrExpoxmwu+HiUlgaenE5pmoFkzja1bzRw+DNOmGRg4UKNNmwK5zE1p0kS9VuXLayQm5nzjzWxW4+Hd3NRrHBDgxOnTBsqV0yhbFi5dMuDjo3HmjBmDAd5+28D48aqFeuFCE/feq84TEQHNm6u/68CBZmbPzv0rf0YGeHg4kZqqvz8FB2vs21e8bxIW9ftRRgYEBTlx8qT6u2X+33j1VQOff673Xhg3zsTIzk/jFPWDdZ2p+x7wyDR4XhSqzPUoOTmZw4cP06BBgwKJM/PV0j1p0iRmzJiR6z7Lli2jbt26ue6Tk549e1qXLYnUunbtam39zonRaCy2H/q2Sko5Ha1eI39cjGmkm1w5dNL7lv4mJ6L1TOXt7/LLei4jjHsnnodeTKdT470EhYeX+C+7Uo8c7+knU1j1slr+4Ztk7uh747/3xg36B6qmOXH+RBwBITXzfe3LifrbspePm8Nea6lHN1a/xhniD+pBd9PmZcjyFmO0T3YE8Omsdhw+vpMVO5qRllGGxZv0G4uP9Y3C2eX2SYpXrOuREdw83W68Xx55eLnTOUy9rqfiahC57TC7tsQSf0X1cBnQZSuN27alYQZ4e2UQF6//L1evdI7VGzzp3Rf+/RfOnDHQo0sc/64uQ6WqnjddplWLY9i/X73PxMUZ2L3bSEv7hnUunU+g3xMNSU6tAPOg7MgUylXQuJSgv27vvOfJjC/13h1PP3QKZ5e6kJb9a+vqCkFBxiz/D2CfFO30aSfrPpcuqcSVoLoxOzsbrV2TC7IeuburRIiHDsG+fQZSU4306gXHj6tx0idOwA06UDqMZUy3j48h1+drNOo5BEAlWvvxR0hJMVinRG3RQv0NwX58/aFDRvr0Ucu206s1b+6U7euV+bohIfDff/q6kJDcy1qcFNX7kdEIL7+MdVrPKVOM2IZLmcfaf/GFkeGvfourZoITs8C7DcZKoaVn7rVizlKPCrou5SuR2lNPPcWyZcty/alVq1aBFa5WrVpUqlSJkydP3nhnUWI4uzpTz1dlVzl82g9T+s2PmYg6fb2bmsGEXw5Twtw/pA1XLptYuaPkB9yicPQd3IxKFdQUUL+uakrChRsPgVi7zz4tbPTRm0uolnBZbx339C64gEHkX/0A+9c9LCxvxzm7OvP7iiCGP7qGqp4XrOtdjGk89vzN57AQRa/n3Xr37aW/nWHaPL1B4MVXVbdhZ2fVi8vWiOcOUr5iWWbNUuOVAXZFVqV7pxgS47NO43E59jIpV24828aXk+0zlWWXPXnFrwdUwH3dtfRyXEpQNwSMRr3l81ScyiXhbEznsWG5zw4QHGyfhNKW7ddA22nDbHtsNirYDjxZWP5XU1PVTbHjx9XjxET4/HPHXjsnZrNKPAZZk6jdiO0UXRa2N1dss4vbZjC3TaKWx4mE7ObrhqxJ1ET2Bg9WN3xA3dw5r880mSXoPnMG5v1qhNYzocl4aPy+fcCtabDxETi1yOHlFoUnX0F35cqVqVu3bq4/rq4Fl1H23LlzJCQk5Duxmij+gvzV7d7U9LJEHzp90+c5fk6lSa3pfQ6XMjl35S1boawE3CLPylYoy6O9VNrblLTy/PKVfSbqtDSVldfSSpOcbJ9RFiD6+M2N10ww6VmHbqUFTNy6wHoZdo8zfxnNjVslNybN6szpC16s+m0X7z6/hiWz9lK3ye3Tyl0a9RwQYF3+fFYI27arr1FhYdCmhx5JDnzU3brs436BZ99QEVL16vDv4nNU8VCfgdsOhXJPxxN2AfbWv/fhU70ctWok8898mybHTGKOnGXR+hZ261b/mTXHzdKletfg3u224lPpKi4u8MgjEBlpYP6Xmynrol//vvY7bjidXU6Zy0G10Fa8PjtSUQXdthnMv/7afttnnxXsdKV5demS/pmR36+1d96ZdV0Lm5c+KEiP2WwDPMvIToPB/m+Sm8zvc5mnCxPZc3eHZ59Vy6mp8NVXavnSJX0mFNubLZMng2YwQsgoqJbpBT6/Gk7+DOv7wv4Jji98YdE0iJwMf7WAjNI3ha/Dpgw7c+YMkZGRnDlzBpPJRGRkJJGRkSTZzLPRvXt3Vq5cCUBSUhITJ04kIiKCmJgYNm/ezNChQ/H396dDhw6OKqYoIsH1r1mXD0acz2XPnF2+DJeuqJbAOiHZt3ILcbOeHqbPufvB1Prc33kzfe6KJiQEKlRQU4Xcc49qvdi6FdLT7Y+PPpFpRR4lpKjuzK6uKvgXRad+kH4jr2blmHy3TgEYXYzc0T+cMV915u6H8p4JXxRPdZv4E1RDNZueidcjpxdesG+o6tC7Mb3abMPZmM7UD45S3l0fD9igWXX+XZaAV0XV7LnpQGOmj9tm3T7tswTSTa7EX/HinkfC+Pbb7MvyzaRDKmu+jQ07fUlP1d97TOkmlm9SScXcyl7h15XhnItzIzUVZs9WUyQ+MKQNq/88hp9PDBXLJfLmmOz7Xvvqb4m5Bt0Ggz5tWHS0PoVSTtOFOUJ2vVIsLfOXLsGXX+btPJoG330Ho0ZlnSYuv2ynC8tv0F29eta/uW3QXa6c3q0/MlKVOy1NnzItMFBvhb2RzK+NtHTn3Usv6e8Dixer3/ttctc98IDeQ2H3bliV01Tdpxfry7vfgIhROcxFVsIYDHBmGVzcoW4qlDIOC7qnTp1Knz59+Pzzz0lOTqZPnz706dOHffv2WfeJioriipr7AKPRyOHDhxkyZAjdu3fnzTffJCQkhDlz5hRo67koHoKC9S8Kh/Yn57JnzqKi9OXataUVWxSsxu0DaRGoPi3PXKzO72vb8Mc/fhw4oJKmAKxcCYsXJrN2bdbjo0/d3NtrQoL67ekpw7uKWmBDvXt/mP+uXPYUpUmPzvZduj084KGH7PdxMjqxeFNLrqU4MfBF+wSfAKFt67N4rj4twYIlnoB9kAyQkeHEM8/Ac8/B7ggNzay+eKelpPHNfNUEaXTKoHMTVT+TUt3Y/s9B6/Hb/40kLlHdLbqrxX5cy7ni5JT1vaV191COxVQjLr4s4Z2DyU4nfWbOXINu0IPu1FQ92LSdM/tGx9+qzEG30ajmGLc878mT8xZEf/MNPP20mov5449vrUxxcfryzXTgtO1iHhCQ9RyWxF1Xr6qx8/v26fOd57VrOdi3dDs7q4Bd5E2tWnovjogI1ThkG3SHhNjnAPnmmxxO1PQTaGIzafuBibD1aUi/ksMBxUzKeTg4Bf69E0yp9tuCrifMSSh+M184msOC7gkTJnDo0KEsP61a6QllDh06RL9+/QAoW7Ys3333HZs3b2bfvn2sWrWK999/H++baVoQxV5QqJ4h5NDhm4ss7IPuWy2REFmNfTsZV2f7DwwXFwgM1O84f/DGCdb+eSDzoURfvrnmAdugWxStJp0a0alxBOVckxn6WrWiLo4oJnreV9Hu8ZNPaFSokP2+RpecE/G06dGIwBrqg2zj/lDiYuLtgmQvD70P9DffQFi4gYb+x+nfaTPd2+7nfEIVAPp02M4jA/ThLKv/1vNJLF2gR3o978m9942zqzOu5XJu5Hj+eZVNOyQk+zHGtixBN+it3ZY2F3//vLe63qyqVVXrsMXgwWpasQcfVI/j4nIJeK7btw9eeUV//O+/t1Ym25bum/lqa/s3b9Ei63bbbuAHDsA2vfMEzfLRyaZyZb11u3lz1etK5J3l5pTZDBs32nf3b9gQ+vSBKupfl4UL7W/GWBkMEPIGtPgSyxzrHP8eljSAUwuKX6u3psHlA3DgY/inEyzyhf9egfOr4Mxy+319e0KvQ9Dss6IoaZFyWNAtRG6CwvWszpFHb+7TV4Ju4Wj3PNqCi3EZxBw5q36OJ5KUBAcjIayOak3acaQha3apbzt+PjGUKaOOjT7vldNpc2Q2mbl8WX2YenoU7ylaSgMnoxOrdzXh4kUn7nk0m2+5olTq0CuUimX1gHjoE6dy2Tt3992pEsWaNSNLfo5k2UI9MpswYjdffmkf9ByMqcuCdW1YHaEP0H3hxbJ06aVHuas36J+py1ZXtS7fM6D+TZcTVAAWF6darMvdYBa2zEH3yZNwvWOjw7uWW1hGJpYrB++8o5bffFPfnttkPMnJMHAgXNNHwrF9u95yfDNupXs5qKC7RQs1vGnIkKzbMwfd06frj1u3zt+15s6Ft96CH37IfzlLu44d9eV167K2dLu6wuOPq8fp6SrpWo7qD4G2s8F4fahZymlY3x8W14fjPxR00fPn6gk48BGs7Q0LqsDSEIgYARfWgWbz/SV2g/1xTkZwL53dJyToFkWicvVK1PRSXes2HmhkTTKRH8e3bbEu16l+rqCKJoSdCh4VqFGvuvqp7Y6LCxicDLz1+qUs+3ZudsKauffkyfzfjL5yMRFNU3e1PbWcEyiJwmNwMsjYemHHtZwr/3vqPwwGM0P6r6N+mN+ND8rBfQ9Uti7/ucSZpav0HhU9HqzPkCEqaeO0adChSWSW43u12UbnvmHUDvXDz0fNx7VxXwNSk1M5G5PKf0dVn+PwupH41r313hplyoBTHr45Zg66CzOJmsUnn6gge8UKqKESsxMaqgf9R47oic0yGz7cPlgC1VV+Vw6jTBIS7AP07Nxq0F2mjMofEhcHd9yRdbvtvNDTpqnuzaBuluQ36A4NhfffVwnaRP7YpqGyDbq9vfUW7qee0vf59tsbfFcIeBh67ofq9+jrrh7D2gLuaGmXIH67fTdxTYN/74CIkWr8eWqm5vqK9SFktCp300mFU84SQIJuUWQee1w1CWZkGHO945yTqBN6tz0Z0y0KW99nWhHid8RuXceOZuuXzatX1Xiu/EiI1cdrebrfQpOKEMKh3pnWmaTLqXz5W8cb75yL1t1C8HFX0djyLU2yDZKrVIGhQ2FdRAMSLlzm9NFznD56jvMnY1m8qSUGJwMGJwN3tDgBqCnBtq48yLK/y1iv07Nv/nve3IrMQbfteO7CCrpr1IAPPoD27e3X162rfmdk6POG24qO1jOelysHL76ob9u8Oev+8+era/n5ZX8+i1sd0w2q13HZHO4B2gbdx47py2+9JflBClPVqmpKPVBd/M9dbxOyTUgXHKzXywMHYMsWcudWBzovhfbzwas1GMuDR6YhbOlXIflM9sfnx7U4OPK1Go/9uzf8Vhn+bgkpNq1jBgPUeUJ/7FpZdRtv+in0Ogz3HoYmH4KHpL63JUG3KDLPv+xlvWM+fbqe/dlsMhMXc+M5jqPOqBaCsi4pVAuo4qhiCpEtJ6MTbw6PtVvXsbuf/ZfNY/mbNuxSnJ5U0NM9I5c9hRBFrVzFG/SxzgOji5FeHQ4BKli26Nkl+1k9PHw88K1bDd+61bJM63VHZ315yuQr1imLAHr2L9zPyNxaugure3lO6tTRly3zd9vauFFffvVV+1bJTfbTr7NgATz8sOqOHhub+zjxW23pvhF3d71F36JxY7j33oK/lsidpYu5bU+KzFOvPf20vvzdd3k4qcEAfg9At80w4ApUbqpv0zTY8QIsqgG/+8A/d8CR6XmblutaHMT8AbvfglV3wcLqsH2IGo+davNd3JSpK0edp6DxB9AzEvrHQeclEPwKuN/aMJbbmQTdosj4+ekfBmfOwB9/wOmjZ2lS9xhV/Cox65MNOR6rmTWizqlpwgKqnpE5uEWRGDCkFQ1qqSaFwBpR1Gvij1/Zddbt0fuydgfNTUKc/gEpY7qFKB3uG5A1q1aPvvnPtHXHvXpykwXr27Nzp1r29s4+8ZYj1aiht64uWgTz5qllV1c1TVlRulHQvXWrvtyhg+pq7XZ9IgPblu7Fi9W4b9vAatYslUAL1NRkw4erlnC49URqeZE5sHvzzbwNBxAFq2M2HWAyT712//16QsG5c/WcB3licFI/Fke/gaif1HJqHFxYA9ufhz/8YPfbELspa9AMkHQSFlaDdX1g/4dw7h/QbG74l6sOVTpD3WfA1cP+2Aq1IPRN8AiWrhR5JP+Koki98IK+/NGYGO7snMK+k/XRNCdm/5LzOMpzJy5YWwXq1Ljo6GIKkS2ji5GVq8rz3gtrWPi7CYOTAT8//cMnOioPd5ltJFzUx0xJ9nIhSoeu/YPtugx7u8fRsmuDnA/IgV9wDRrXPmS3zmCA119XU2YVJhcX8FX3xe2C0pYt9fmyi4pt0G3bDdvCtqtvy5Zq2izL3MoxMWqMfUSECposPfQsr9+JE3pL+aBBalz5ww+r4N4SdDs7O+793TboDg6G/v0dcx2Ru7wE3RUq6FMNJiXdOJt+rqp0UFNxVb0Tyvnq61PjYP8HsLId/OoO6x/IVAj/rN3Uy9eCBq/DPbugz2nouhpafaMC8FuwapWaxzy7/7nSwvnGuwjhOHfeCYF+5zgcXY3t+2vabTt9wSOHoyAq8gKgsrLW9ru5eb6FKAg16lXn7S/0DyO/2uWty9En89danXBRn9LHs5LcExWiNKhQAe66S7WcAnTv7pLrVGO5mTfPhVnT1+DlBaF3tKdxmDPVimi2u1dfhTfeUAFpSIia/9l2juKikltLt22ytMBANX0WQNu2KmgA1dr97bd6JvOHH4Zu3fSM1D/9pG52LFmiHptM8PffetDt7e24hsHWrWHKFLX89tuFf7NFKLVqqVl1bGfZyRx0AwwbpoJtTYPx41WXc4+cv/rmzKOh/RRcF3dC5CcQPQ80E0nXyvP1v89z8EJzBr+fKbFe4IuQeBB82kLlFlC+ZoFX0C1b4O671f/C6dPw++8FevoSQ4JuUaScnGDoI4d4ZXzWbwWn43Me9BR1WJ+upXZAMZuvUJRqfvUrWZdPnc5fk07CJb1JqFJl+bYkRGnx4IN60N3/oZv51q0Et6jDhy3q3HjHQjB8uAoqXF2LV+9Tf39VHk3LGnRHROjBtG1g0ratvvzRR1i77teuDTNnqhbvF15QCTR//dV+DDvAypV6IjVHjOe2uP9+uHDBvhVVFI2OHfWg29s7+9c9NBQeeQRmz4b4eJg8Gd57rwAuXrkZtJtDSvBEvp4czYSvQ7hwSb2vfPsP9OihrtOsGVDv6dzPdYsSElRdtPR4iczfqLvbijSliCL3xKtheJRXaZ5rVD5LcK0TACQkeXI1MT3bY6KO65mda9eT6XxE8VGrvn4DKfqsW76OTUjQbyB5VnbNZU8hxO3k4Ydh6lT48ku4776iLk3BKVOmeAXcoMpU83rHusxBt+147lat9GXbANwScIOaVsvVVQW5lq7cly/bnwfUtGWWKcUcNZ4bVNf1l16CwYOL39+9tOnUSV/OrpXbYuxYfcjFJ5/A+exzKObbhg0Q2rImr41vaw24LZYtU1PJjR2bv6lN4+Lg5Zfh+++zHnfmjJ7PwELT4Lnn1LALiwsX8vc8bicSdIsi5+Hjwd8LTvHu82vYvEmjaYcA67bTZ7NvKTwepXfSqBPk6eASCpF35d3L4+2umjSiz+dvmp6Ey/q3JM/KcjNJiNLCYFBTUw0ZIsFSYbBMGxYfbz+1o+14btugu1Il+ym5QGUGt21NHjQo63Us49qTkvR1jmzpFsXHnXfqwXS7djnvV6cOPPusWk5KgtGjVY+L3bv1Xhc3snEjPPYYjBihhje8/rpqabe9qfTgg2roQa1a+roxY1S9TU3NcspsjRmjbg4OHqymotM0lbn/wQdV8sSQEDVNGqgp+SZO1BMJWsTHq22lkXQvF8VCq26htOqmlmvaDO0+fRqCgrLuHxWjtyDWbnhryR2EKGh+VWKJS/TmdHw1MtIycHbN21ttwmW9S7mnd/lc9hRCCHGz6tSBNWvUclQUhIWpZUsLddmyWac2a9PGvmvshx/aZwbv3Fl9f7HM1d2ihQpOnn/e/jwSdJcOfn5qVp5du+yTBmfnrbfUMIXkZNWK/P33an3t2mqoQoUKOR97/Djcc0/O2c/btoWvvtLr83PPwccfwzvvqKB59mw4eRIWLgSvG7QTLF+uL48bp4ZVrF2rB9oHD6rrPfOMyoFw+LC+f9Wqeit+XBxFlmuiKElLtyh2bOeZtHx4ZRYVHwxAJfdkPHxufvybEI7gV001nZjMzpyNyntfqgSj3rTi6Vsjlz2FEELcrOySqcXG6svNmmXNsm47rrtdO+jZ0367k5MKsi0mTFAJ8jKToLv0uOce1XJ9o+Ro1arBa69lXR8VpSfwy05ampq2LruA29VVtTSvW2d/A6lMGRXk//YblFOTALF+vRpCYRskX7yobgJYREdnHY7x8cd6wG1hMsHXX9uf6/XXoVcv/XFp7WIuQbcodmxbum2D7isXr3D2+HnS0+HUmevThdWX1kBR/PjV0PtqRR+Jy/NxCYn6tzxPL+leLoQQjpBd0G07Dtsuu/N1Dzygus9WqwbTpmU/DODNN9W43D/+gC5d1HUCAuz3kaBbZOedd9SNmueft7+hs317zse89Za+vV49lTF/0iTVDXzXLtXdPKcM9v36qVZqS4vz0aOqN8eYMar+e3mp+nvqlNq+erV+bOZeIDVrwo4dKjmbs03Hvk6dVND/0UdQpYq+vrQG3dK9XBQ7NSufBlQr3+mITUBbLp69RMOG6ZxPqEqDWscxm9UnZu3aRVdOIXLi56dnGIk+nkQuw7nsXLqkfpcpg928vUIIIQrOjYJu2/HcFu7usG+fasnLKZBxcVFTpdnq2lVNMWbhyERqouRycYGRI9XyyZOwdKlaztySbPHXX6ql2XLs3Lmqh0bmHhi5adFC1ftevVQ39osXVXI1i/PnVdf0cePsg+6pU1VQ/+abag77OXNU/oJmzaB3bzWO+8474Y479JtTEnRLS7cohmrU1KtlzBn1yfbvooOcT1D/sZGn9E9LCbpFceTXpIl1OTqlTZ6PS0hQvz09C7Y8QgghdNkF3bZJ1LJr6bbI79zXXbvaP5aWbnEjfn56Pdm+PWum8M2bVc8LiwkTrk//dZPX2rABunfPfvvs2SoruSXoLltW/X+88or6zrJ6tZ4wEKBJE5XvoEsX+94gEnRL0C2KoWr+VTA6qdSGMefdAYjcl31qxfDwQiuWEHnmV0+fqzs6Ou/HJVxU9dzT7WpBF0kIIcR13t7gdj0f6/HjKpuypUWxenX7YW63qksX+8cSdIsbMRhUCzKo1mfbsdTbt6sA+er1rwn33acC4Fvh7g6LF8MXX6hW7QMH1FzeoLqXz5ypf5dp1071xoOseQ9yI0G3BN2iGDK6GKleSf1Hno5TqRQPHNTnLF7y43Y+/sjM1Klw//1FUkQhcuXnpy+fPJm3Y0zpJhKvqk8yT5cTBV8oIYQQgApqLK3dJ06opFKJiepxu3YFO22bj4+eHR3sgw8hctKihb5sGbe9dy/cfbdeV7t2Vd3KnQogmnN2VlnW33hDTY9nOwXeiBH68h133Nz5JeiWoFsUUzV94gE4n1CFtJQ0IqNU8O1sTOfuB8P43+tOvPhi/u6yCVFYqlbVp/jYsUN1zbqRxIt6+lHPitccVDIhhBCgB93p6SrQsHjuuYK/1qhRqlvugAESdIu8sbR0g94L48UX9WFonTurhH2Oyv/Su7dqAQfV2m4hQffNk6BbFEs1qurda08dPsuhGH8A6vtG41JGIm1RvDk5wR0d1Fwb58/Dng2Hb3AEJMTaBt1pDiubEEII+3HdJ06o340bqwRQBe3BB1Xr5Lx5BX9ucXvK3NJ9+LDKNg5Qv77qDl7egRP4lCtnP24cVGOCbbnywzaBoATdQhQjNX31oGP936dITVe38hrWKaX/qaLE6dZcn+fj70Vnbrh/QlySdbmSZ7pDyiSEEEKxDbothg8v2K7ltqRnnsgPb289WfDOnTB9ur7t+ef1nASOZNvFHKB9+5uvx87OahoykKC7wMXExDB69Gi6dOlC48aN6dq1K1OnTiUtLfcWnNTUVMaOHUurVq0IDw/nxRdfJC4u7/PcittDzRp6qsaV/+ifgA0Cs0+oJkRx061fgHX5r1UeN9w/IT7FuuzpkYf+6EIIIW5a5qDb1xcGDiyasgiRHUurckqKmhseVND72GOFc/327cHfX398s13LLSxdzCXoLmDHjx9H0zTee+89li5dyhtvvMHcuXP59NNPcz1u3LhxrF69ms8++4xZs2Zx4cIFhg0b5qhiimKqRi09cdrKbQ2syw1D5VaxKBnqhflTp5rKorZxXwhXL+WekdySuRxkyjAhhHC0zEH3iy+Cq2v2+wpRFGzHdade/4pw332FlwHfyQkGD9YfWzKa3yxL0J2UpH5KG2dHnbhjx4507NjR+rhWrVpERUXxyy+/MNIy+3smV65c4ffff2fSpEm0aaPmth03bhw9evQgIiKCMNv0j+K2VjNA7zcTe7mydblB26ZFURwh8s1ggG7tTvLV7/6km1xZvSiCe59smeP+CRf1LuWelWTkjxBCOJK/v3qf1jQ1VtURCdSEuBXZjZ9++unCLcPIkSpZW5060KjRrZ3LNplabKyecLa0cFjQnZ0rV67g4ZFzN8t9+/aRnp5O27Ztrevq1q2Lr69vrkG3yWTCZDIVdHELjKVsxbmMxU31utWyrDMYNOoFu5bav6PUo5Lnru6ufPW7Wv5rWQo9BuX82l26mGFddvc0Oux1lnokCoLUo1LCZMJoXTRBAb/eRVmPXFzguecMzJhh4L33NNzdtYJ+eqKQ3K7vR02agJOTE2azGmbp56dxxx3mQq2nRiO89ppavtXr+vgYsHSyPnfORK1at3a+gpa5HhV0fSq0oPvkyZPMnj07x1ZugLi4OFxcXHC35Ki/zsvLi9jY2ByPO3z4xpmBi4O9e/cWdRFKjLQ0A2A/r4avbxqHDu0rmgIVI1KPSg6feiacjelkmFz4a70/EREROe57Kkbva5WSGp/rvgVB6pEoCFKPbm9OKSmEX1/es2cP5nLlHHKdoqpHTz8NTzyhkjw5+C1XFILb8f2odu2GHDum/u+6dz/L3r1ni7hEN89kqg74ArB163FcXBKLtkA5cFQ9ynfQPWnSJGbMmJHrPsuWLaNu3brWx+fPn+fpp5+me/fuDBgwIP+lvIHAwEDKOzJv/i0ymUzs3buXRo0aYTQab3yAAMDHRyM2Vk+iFhbmWqqHGEg9Kpnahexh7Z5wjp8PoKJRo24jv2z3+8EmZW5wSF3Cwhpku9+tknokCoLUo1LCZuBl48aNC7w/qNQjURBu53rUs6eBqVPB1VVj1Kiq+PlVLeoi3bTGjfXvOW5udQkL03LZu/BlrkfJyckF2rCb76D7qaeeom/fvrnuU8umv8D58+cZNGgQ4eHhvP/++7ke5+3tTXp6OomJiXat3fHx8fjkkjXAaDSWiH+yklLO4qJmTTXmw6JhQAxGYzHri1IEpB6VLN3uuMzaPWr5n4XRBIbVzna/y056vgKvOqE4+iWWeiQKgtSj25zNa2s0GnHUG5PUI1EQbsd6NHYsVK8OLVsaqF27ZD+3ajYjR+PinBz+PedmWepRQdelfAfdlStXpnLlyjfeET3gDgkJYfz48Tg55Z4cKDQ0FBcXFzZv3ky3bt0AlQX9zJkzpbqFs7SqWcPErl16hW/odxKQoFuULN37VGP0FLW85O8KDB2b/X4JCfqyZC8XQgghhKcnjBpV1KUoGLaJ1ErjtGEOS5F7/vx5HnvsMapXr87IkSO5ePEisbGxdmOzz58/T/fu3dmzRzUDVaxYkf79+zNhwgS2bNnCvn37GD16NOHh4RJ0l0I1XDfaPW7QpFIRlUSIm9ekQyC1qsQBsHJnM+Ljs9/PNujOJd+kEEIIIUSJU9qDboclUtu4cSMnT57k5MmTdlOHARw6dAiA9PR0oqKiSElJsW4bPXo0Tk5OvPTSS6SlpdG+fXveffddRxVTFGM1a5jtHjdoLq3couRxMjrx4CBvJk2CjAwDCxbAM8+AZtb4/O11nDih8f6XLUhIUGMly5ZVP0IIIYQQtwsJuh2kX79+9OvXL9d9atasaQ3ALcqUKcO7774rgbagZi29a3mNSjG4e9UswtIIcfMGDoRJk9Ty3Lkq6P71q828PK4TAGa3syScTwZ8qOSWAHgWUUmFEEIIIQqeh4eaqi89vXQG3Q7rXi7ErapRPd263LDGgSIsiRC3pmlTqFdPLa9eDadOpvPWOD2jyMy5VYm73tLtWS6H/udCCCGEECWUwaC3dkvQLUQxEtouFFfnVADadyi0KeWFKHAGAwx8UA2X0DTo3+0YR87UsW5PTHQiJU1Ne+jpllwkZRRCCCGEcCTboFsrXjOGOZwE3aLYqla7Ckvn7GfyiDUMH9+qqIsjxC0Z2PO4dXn7oeAc9/OseK0wiiOEEEIIUagsQXdGhn0C2dJAgm5RrHUd0JTXJnamgkeFoi6KELckpE09Qv2P2K3r034LbdrY7+fpnlaIpRJCCCGEKBylOZmaBN1CCFFIBvY+bV12Mpj44CNvXhhs/6nj6WEq7GIJIYQQQjicBN1CCCEc7qFn6lDGRXUff6LnJkLa1OP+hzzwcdc/eTwrJBZV8YQQQgghHEaCbiGEEA5Xp5Eff809yJTRa/lqvspTUKZ8GZ7pvda6T2Vvl6IqnhBCCCGEw5TmoFtSQgshRCHq3C+Mzv3s1738YWcWrDlGYnJ5+g7KOcmaEEIIIURJJUG3EEKIIlPFz4fIUz6Y0k0YXYxFXRwhhBBCiAJXmoNu6V4uhBDFhATcQgghhLhdVaumL1+5UnTlKAoSdAshhBBCCCGEcKiaNeGRR6BSJXjooaIuTeGS7uVCCCGEEEIIIRxu9mwwm8GplDX9lrKnK4QQQgghhBCiqJS2gBsk6BZCCCGEEEIIIRxGgm4hhBBCCCGEEMJBSvSYbrPZDEBKSkoRlyR3JpMJgOTkZIxGyU4sbo7UI1EQpB6JgiD1qJS4dg2CgvRlg6FATy/1SBQEqUeiIGSuR5b40hJv3iqDpmlagZypCMTHx3PixImiLoYQQgghhBBCiNtMQEAAXl5et3yeEh10Z2RkcPnyZcqUKYNTaRyRL4QQQgghhBCiQJnNZlJTU/Hw8MDZ+dY7h5fooFsIIYQQQgghhCjOpHlYCCGEEEIIIYRwEAm6hRBCCCGEEEIIB5GgWwghhBBCCCGEcBAJuoUQQgghhBBCCAeRoLsQzJkzhy5dutCoUSMeeOAB9uzZU9RFEsXY559/TlBQkN1P9+7drdtTU1MZO3YsrVq1Ijw8nBdffJG4uLgiLLEoDrZv387zzz9P+/btCQoK4p9//rHbrmkaU6ZMoX379jRu3Jgnnngiy5SLCQkJDB8+nKZNm9K8eXNGjx5NUlJSIT4LUdRuVI9GjRqV5f1p8ODBdvtIPSrdpk+fTv/+/QkPD6dNmzYMHTqU48eP2+2Tl8+xM2fO8Oyzz9KkSRPatGnDxIkTycjIKMynIopQXurRY489luX96J133rHbR+pR6fbzzz9z77330rRpU5o2bcqDDz7I2rVrrdsL871Igm4HW7ZsGePHj+eFF15g4cKFBAcHM3jwYOLj44u6aKIYq1+/Phs2bLD+/Pzzz9Zt48aNY/Xq1Xz22WfMmjWLCxcuMGzYsCIsrSgOkpOTCQoK4t133812+4wZM5g1axZjxoxh/vz5lCtXjsGDB5Oammrd53//+x9Hjx5l5syZfP311+zYsSPLFxhxe7tRPQLo0KGD3fvTJ598Yrdd6lHptm3bNh555BHmz5/PzJkzycjIYPDgwSQnJ1v3udHnmMlk4rnnniM9PZ25c+cyYcIEFi5cyNSpU4viKYkikJd6BDBgwAC796MRI0ZYt0k9EtWqVeN///sfCxYs4Pfff6d169a88MILHDlyBCjk9yJNONT999+vjR071vrYZDJp7du316ZPn16EpRLF2dSpU7XevXtnuy0xMVELCQnRli9fbl139OhRLTAwUNu1a1chlVAUd4GBgdrKlSutj81ms9auXTvt22+/ta5LTEzUQkNDtSVLlmiaptejPXv2WPdZu3atFhQUpJ07d67wCi+Kjcz1SNM0beTIkdqQIUNyPEbqkcgsPj5eCwwM1LZt26ZpWt4+x9asWaMFBwdrsbGx1n1+/vlnrWnTplpqamqhll8UD5nrkaZp2qOPPqp98MEHOR4j9Uhkp0WLFtr8+fML/b1IWrodKC0tjf3799O2bVvrOicnJ9q2bcuuXbuKsGSiuDt58iTt27fnzjvvZPjw4Zw5cwaAffv2kZ6eblen6tati6+vLxEREUVUWlHcxcTEEBsba1dvKlasSJMmTazvRbt27cLd3Z1GjRpZ92nbti1OTk4yJEbY2bZtG23atKFbt268++67XLp0ybpN6pHI7MqVKwB4eHgAefsci4iIIDAwEG9vb+s+7du35+rVqxw9erTwCi+Kjcz1yGLx4sW0atWKXr16MXnyZFJSUqzbpB4JWyaTiaVLl5KcnEx4eHihvxc5F8izENm6dOkSJpMJLy8vu/VeXl5ZxqUIYdG4cWPGjx9P7dq1iY2NZdq0aTzyyCMsXryYuLg4XFxccHd3tzvGy8uL2NjYIiqxKO4sdSO79yLL2KW4uDgqV65st93Z2RkPDw+pW8KqQ4cO3HXXXdSsWZNTp07xySef8MwzzzBv3jyMRqPUI2HHbDYzbtw4mjZtSmBgIECePsfi4uLsvuQC1sdSj0qf7OoRQK9evfD19aVKlSocOnSISZMmERUVxRdffAFIPRLKoUOHGDhwIKmpqZQvX55p06ZRr149IiMjC/W9SIJuIYqZTp06WZeDg4Np0qQJd9xxB8uXL6ds2bJFWDIhRGnXs2dP67IlcVHXrl2trd9C2Bo7dixHjhyxy0siRH7lVI8efPBB63JQUBA+Pj488cQTREdH4+fnV9jFFMVU7dq1WbRoEVeuXOHvv/9m5MiRzJ49u9DLId3LHahSpUoYjcYsSdPi4+Oz3DURIifu7u4EBAQQHR2Nt7c36enpJCYm2u0THx+Pj49PEZVQFHeWupHbe5G3tzcXL160256RkcHly5elbokc1apVi0qVKnHy5ElA6pHQvffee6xZs4Yff/yRatWqWdfn5XPM29s7SwZhy2OpR6VLTvUoO02aNAGwez+SeiRcXV3x9/cnNDSU4cOHExwczE8//VTo70USdDuQq6srISEhbN682brObDazefNmwsPDi7BkoiRJSkri1KlT+Pj4EBoaiouLi12dOn78OGfOnCEsLKzoCimKtZo1a+Lj42NXb65evcru3but70Xh4eEkJiayb98+6z5btmzBbDbTuHHjQi+zKBnOnTtHQkKC9cuH1COhaRrvvfceK1eu5Mcff6RWrVp22/PyORYWFsbhw4ftbhRu2rQJNzc36tWrVyjPQxStG9Wj7ERGRgJ6MCT1SGTHbDaTlpZW6O9F0r3cwZ588klGjhxJaGgojRs35scffyQlJYV+/foVddFEMTVx4kTuuOMOfH19uXDhAp9//jlOTk706tWLihUr0r9/fyZMmICHhwdubm588MEHhIeHS9BdyiUlJREdHW19HBMTQ2RkJB4eHvj6+jJo0CC++uor/P39qVmzJlOmTKFKlSp07doVUMlDOnTowNtvv83YsWNJT0/n/fffp2fPnlStWrWonpYoZLnVIw8PD7744gu6deuGt7c3p06d4uOPP8bf358OHToAUo+E6gq8ZMkSvvzySypUqGAd91ixYkXKli2bp8+x9u3bU69ePUaMGMHrr79ObGwsn332GY888giurq5F+OxEYblRPYqOjmbx4sV06tQJT09PDh06xPjx42nRogXBwcGA1CMBkydPpmPHjlSvXp2kpCSWLFnCtm3b+O677wr9vcigaZrmgOcobMyePZvvvvuO2NhYGjRowFtvvWXtAiNEZq+++irbt28nISGBypUr06xZM1599VXr+KTU1FQmTJjA0qVLSUtLo3379rz77rvSVaqU27p1K4MGDcqyvm/fvkyYMAFN05g6dSrz588nMTGRZs2a8e6771K7dm3rvgkJCbz//vusWrUKJycn7r77bt566y0qVKhQmE9FFKHc6tGYMWN44YUXOHDgAFeuXKFKlSq0a9eOl19+2W7IlNSj0i0oKCjb9ePHj7c2OOTlc+z06dOMGTOGbdu2Ua5cOfr27cvw4cNxdpb2otLgRvXo7NmzvP766xw5coTk5GSqV69O165dGTp0KG5ubtb9pR6VbqNHj2bLli1cuHCBihUrEhQUxDPPPEO7du2Awn0vkqBbCCGEEEIIIYRwEBnTLYQQQgghhBBCOIgE3UIIIYQQQgghhINI0C2EEEIIIYQQQjiIBN1CCCGEEEIIIYSDSNAthBBCCCGEEEI4iATdQgghhBBCCCGEg0jQLYQQQgghhBBCOIgE3UIIIYQQQgghhINI0C2EEEIIIYQQQjiIBN1CCCGEEEIIIYSDSNAthBBCCCGEEEI4iATdQgghhBBCCCGEg0jQLYQQQgghhBBCOIgE3UIIIYQQQgghhINI0C2EEEIIIYQQQjiIBN1CCCGEEEIIIYSDSNAthBBCCCGEEEI4iATdQgghRCmwdetWgoKC2Lp1a1EXRQghhChVJOgWQghR6i1YsICgoKAcfyIiIoq6iMVSXFwcb7zxBm3atKFx48b07duX5cuX57j/smXLePDBBwkLC6N58+YMHDiQzZs357j/jh07rK/BxYsXcy3Lk08+SVBQEO+9995NPx8hhBDCEZyLugBCCCFEcfHSSy9Rs2bNLOv9/PyKoDTF29WrV3n44YeJi4tj0KBB+Pj4sHz5cl555RUyMjK499577fb//PPPmTZtGt26daNv375kZGRw+PBhzp8/n+35zWYzH3zwAeXLlyc5OTnXsqxYsUJujAghhCi2JOgWQgghruvYsSONGjUq6mKUCHPnzuXkyZP88MMPtGnTBoCHHnqIAQMGMHHiRLp164arqysAERERTJs2jVGjRvHEE0/k6fzz5s3j7Nmz3H///fz000857peamsqECRN4+umnmTp16i0/LyGEEKKgSfdyIYQQIo+mTp1KcHBwli7Rb7/9NqGhoRw8eBCAtLQ0pkyZQr9+/WjWrBlhYWE8/PDDbNmyxe64mJgYgoKC+O6775gzZw533nknTZo04amnnuLs2bNomsa0adPo2LEjjRs3ZsiQISQkJNido0uXLjz33HNs2LCB++67j0aNGtGjRw9WrFiRp+e0e/duBg8eTLNmzWjSpAmPPvooO3fuvOFxO3bsoHLlytaAG8DJyYl77rmH2NhYtm/fbl3/448/4u3tzaBBg9A0jaSkpFzPnZCQwGeffcZLL72Eu7t7rvvOmDEDTdMYPHjwDcsshBBCFAUJuoUQQojrrl69ysWLF+1+Ll26ZN0+ZMgQGjRowJtvvsnVq1cBWL9+PfPnz2fo0KEEBwdbz/Prr7/SsmVL/ve//zFs2DAuXrzI008/TWRkZJbrLl68mJ9//pnHHnuMJ598km3btvHKK6/w2WefsX79ep555hkGDBjA6tWrmThxYpbjT5w4wauvvkrHjh0ZPnw4RqORl19+mY0bN+b6fDdv3swjjzxCUlISw4YN49VXXyUxMZHHH3+cPXv25Hpseno6ZcuWzbLesm7//v1212nUqBE//fQTrVu3pmnTprRv357Zs2dne+4pU6bg4+PDwIEDcy3DmTNnmDFjBv/73/+yLYsQQghRHEj3ciGEEOK67Lo+u7q6snfvXgBcXFyYOHEi/fr1Y8KECYwYMYI333yT0NBQnn32WesxHh4erFq1ytq9GmDAgAHcc889zJo1i3Hjxtld4/z586xYsYKKFSsCajzz9OnTuXbtGr///jvOzurj+tKlSyxevJixY8fanfvEiRN8/vnn3H333QDcf//9dO/enUmTJtGuXbtsn6umaYwZM4ZWrVrx7bffYjAYABg4cCA9e/bks88+4/vvv8/xb1W7dm02bdrE6dOnqVGjhnW9pZXcMlb78uXLXLp0if/++48tW7YwbNgwqlevzoIFC3j//fdxdna2C64PHjzIvHnz+OabbzAajTleH2DChAk0aNCAnj175rqfEEIIUZQk6BZCCCGue+edd6hdu7bdOicn+05hgYGBvPTSS0yePJlDhw5x6dIlvv/+e2tgDGA0Gq0Bo9lsJjExEbPZTGhoKAcOHMhy3e7du1sDboDGjRsD0Lt3b7vzNm7cmCVLlnD+/Hlq1aplXV+lShXuuusu62M3Nzf69OnDjBkziI2NxcfHJ8s1IyMjOXHiBEOGDLFrzQdo06YNf/zxB2azOcvzt7j//vuZO3cur7zyCm+88Qbe3t4sX76clStXAnDt2jUAaxK0hIQEPv30U3r06GF9zvfeey9fffWVXdD94Ycf0rFjR9q3b5/tdS22bNnCihUrmD9/fq77CSGEEEVNgm4hhBDiusaNG+cpkdrgwYNZunQpe/bs4bXXXqNevXpZ9lm4cCHff/89UVFRpKenW9dnlx29evXqdo8tAXhO6y9fvmwXdPv7+1tbqi0CAgIAOH36dLZB94kTJwAYOXJkTk+TK1eu4OHhke224OBgJk2axLvvvstDDz0EgI+PD6NHj2bMmDGUL18egDJlygCql0C3bt2sx1vGf3/++eecOXMGX19fli1bxq5du1i8eHGOZQLIyMjgww8/5L777rPeoBBCCCGKKwm6hRBCiHw6deoUJ0+eBODw4cNZtv/xxx+MGjWKrl27MnjwYLy8vDAajUyfPp1Tp05l2T+nbtQ5tTJrmnYLpbc/x4gRI2jQoEG2+1gC55x0796dLl26cPDgQcxmMw0bNmTbtm2AHvR7enpSpkwZ3N3dszxPLy8vABITE/H19eWjjz6iW7duuLi4EBMTY90GcO7cOdLT06latSqLFi0iKiqKsWPHWvezSEpKIiYmBi8vL8qVK5ePv4gQQgjhGBJ0CyGEEPlgNpsZNWoUbm5uPP7443z99dd069bNOp4a4O+//6ZWrVp88cUXdi3QjprS6uTJk2iaZnctS0u27XhrW5aWcjc3N9q2bXvT13Z1dbVrbd60aROA9ZxOTk40aNCAvXv3kpaWZjcW/cKFCwBUqlQJgLNnz7JkyRKWLFmS5Tp9+/YlODiYP/74g7Nnz5Kenm5tYbe1aNEiFi1axLRp0+jatetNPy8hhBCioEjQLYQQQuTDzJkz2bVrF1999RWdO3dm69atjBkzhubNm1O5cmVAb7m2DYR3795NREQEvr6+BV6mCxcusHLlSmvgf/XqVRYtWkSDBg2y7VoOEBoaip+fH99//z29evWiQoUKdtsvXrxofT55deLECebOncsdd9xhNzb+nnvuISIigkWLFjFgwABAza+9ePFi6tWrR9WqVQGYNm1alnMuXbqUZcuWMXHiRKpVqwZAjx49sm2df+GFF+jUqRMDBgyQbudCCCGKDQm6hRBCiOvWrVvH8ePHs6xv2rQptWrV4tixY9b5t7t06QKoDNp9+vRh7NixTJkyBYDOnTuzYsUKXnjhBTp37kxMTAxz586lXr161sRiBSkgIIA333yTvXv34uXlxe+//058fDzjx4/P8RgnJyc++OADnnnmGXr16kW/fv2oWrUq58+fZ+vWrbi5ufH111/net0ePXrQvXt3qlevbn2Onp6ejB071m6/gQMH8ttvv/Hee+8RFRWFr68vf/zxB2fOnOGrr76y7pddy7RlirWOHTtabwLUrVuXunXrZlummjVrSgu3EEKIYkWCbiGEEOK6nLp/jx8/Hl9fX0aOHEmlSpUYPXq0dVtAQACvvfYaH374IcuWLaNHjx7069ePuLg45s2bx4YNG6hXrx4ff/wxf/31l3XMc0EKCAjg7bff5qOPPiIqKoqaNWvy6aef0qFDh1yPa9WqFfPmzePLL79k9uzZJCcn4+PjQ+PGjXnwwQdveN3g4GAWLFhAXFwclSpVonv37rz00kvWsdoWZcuW5ccff+Tjjz9mwYIFJCcn06BBA6ZPn37DMgohhBAlnUEriGwsQgghhCgSXbp0oX79+kyfPr2oiyKEEEKIbGSfFlUIIYQQQgghhBC3TIJuIYQQQgghhBDCQSToFkIIIYQQQgghHETGdAshhBBCCCGEEA4iLd1CCCGEEEIIIYSDOHTKsO3bt/Pdd9+xb98+YmNjmTZtWq5zZ27dupVBgwZlWb9hwwZ8fHyyrM/IyODy5cuUKVMGJye5fyCEEEIIIYQQ4taYzWZSU1Px8PDA2fnWQ2aHBt3JyckEBQXRv39/hg0blufj/vrrL9zc3KyPM8/3aXH58mVOnDhxq8UUQgghhBBCCCHsBAQE5BiL5odDg+5OnTrRqVOnfB/n5eWFu7v7DfcrU6YMAH5+fpQtWzbf1yksZrOZo0ePUq9ePWmRFzdN6pEoCFKPREGQelRKpKRg7NgRANO6dVCuXIGeXuqRKAhSj0RByFyPrl27RnR0tDXevFUODbpvVp8+fUhLS6N+/foMGzaMZs2aZbuf5R8rOjq6MIt3044ePVrURRC3AalHoiBIPRIFQerR7c0pJYXwQ4cA2HX4MOYCDrotpB6JgiD1SBSEzPWooG7kFKug28fHh7FjxxIaGkpaWhq//vorgwYNYv78+YSEhOR4XGBgIOXLly/EkuaPyWRi7969NGrUCKPRWNTFESWU1CNREKQeiYIg9aiUSEqyLjZu3BgqVCjQ00s9EgVB6pEoCJnrUXJyMocPHy6w8xeroLtOnTrUqVPH+rhp06acOnWKH374gY8//jjH44xGY4n4Jysp5RTFm9QjURCkHomCIPXoNmfz2hqNRrvHBXsZqUfi1kk9EgXBUo8Kui4V+4EPjRo1KjHdx4UQQgghhCgJzp6FsWNh69aiLokQt79iH3QfPHgw2+nChBBCCCGEEDfn+edhzBjo3RsyMoq6NELc3hzavTwpKcmulTomJobIyEg8PDzw9fVl8uTJnD9/no8++giAH374gZo1a1K/fn1SU1P59ddf2bJlC99//70jiymEEEIIIUSpkZgIy5er5QsXIDoabEZ4CiEKmEOD7n379jFo0CDr4/HjxwPQt29fJkyYQGxsLGfPnrVuT09PZ+LEiZw/f55y5coRGBjIzJkzad26tSOLKYQQQgghRKmxYgWkp+uPjx2ToFsIR3Jo0N2qVSsOXZ9qIjsTJkywe/zMM8/wzDPPOLJIQgghhBBClGp//mn/+OhRuOuuoimLEKVBsR/TLYQQQgghhCgYJhMsW2a/7tixoimLEKWFBN1CCCGEEEKUEps3Q3y8/ToJuoVwLAm6hRBCCCGEKCUydy0HCbqFcDQJuoUQQgghhCglFi9Wv52coFo1tXzsGGha0ZVJiNudBN1CCCGEyNWoUaMYOnSo9fHjjz/OTz/9VOjl2Lp1K0FBQSQmJhb6tYW4HRw5AgcPquW2baFpU7WcnAznzhVduYS43UnQLYQQQpRQo0aNIigoiKCgIEJDQ7nrrrv44osvyMjIcOh1p0yZwgMPPJCnfSVQFqL4sLRyA/TuDXXr6o+li7kQjiNBtxBCCFGCdejQgQ0bNvD333/z5JNP8sUXX/Ddd99l2S8tLa3Arunp6Um5cuUK7HxCiMLx99/68r33StAtRGFx6DzdQtxOVq+Gffvg6adBvmsKIYoLV1dXfHx8AHj44Yf5559/WLVqFVFRUSQmJtKoUSPmzJmDq6srq1at4uzZs0yYMIGNGzfi5OREs2bNePPNN6lZsyYAJpOJjz76iN9//x2j0Uj//v3RMg32fPzxx/Hy8iIsLAxQAf2UKVNYsmQJ8fHxVK9enWeffZY2bdowaNAgAFq0aAFA3759mTBhAmazmRkzZjBv3jzi4uIICAhg6NChdO/e3XqdtWvXMm7cOM6ePUuTJk3o27evo/+cQty2MjJg40a17OsLQUFqfm4LCbqFcBwJuoW4gfh4eOkl+Pln9Thy71W+/MataAslhCgckZ/AwU9uvF/lptApU0rgtb3h4n83Pjb4NWjw2s2VLxtlypQhISEBgM2bN+Pm5sbMmTMBSE9PZ/DgwYSFhTFnzhycnZ358ssvefrpp/nzzz9xdXXl+++/Z+HChYwbN466devy/fffs3LlSlq3bp3jNUeMGEFERARvvfUWwcHBxMTEcOnSJapXr87nn3/Oiy++yF9//YWbmxtly5YFYPr06fz555+MHTuWgIAAtm/fzuuvv07lypVp2bIlZ8+eZdiwYTzyyCMMGDCAffv2MXHixAL7OwlR2uzaBUlJarljRzAY7Fu6bQNwIUTBkqBbiFwsWQKDB8OFC/q672a68Pao81SvU7XoCiaEKBzpiZBy+sb7XauVzbrYvB2bXjBjnTVNY/PmzWzYsIFHH32US5cuUb58eT744ANcXV0B+OOPPzCbzXz44YcYDAYAxo8fT4sWLdi2bRvt27fnxx9/5Nlnn+Xuu+8GYOzYsWzYsCHH60ZFRbF8+XJmzpxJ27ZtAahVS/97eHh4AODl5YW7uzugWsanT5/OzJkzCQ8Ptx6zc+dO5s2bR8uWLfnll1/w8/Nj1KhRANSpU4fDhw8zY8aMAvl7CXE7S0uDKVPAzw8efFCtW79e396xo/pdu7YKvjVNWrqFcCQJuoXIwexPN/L4/9pgNtunPkjLKMOU9yOZMFOCbiFuey7uUK7Gjfcr65P9urwc6+Ke/3LZWLNmDeHh4aSnp6NpGr169eLFF1/kvffeIzAw0BpwAxw8eJDo6GiaWlIWX5eamkp0dDRXrlwhNjaWJk2aWLc5OzsTGhqapYu5RWRkJEaj0dp9PC9OnjxJSkoKTz31lN369PR0GjRoAMCxY8do3Lix3XZLd3YhRO4+/xxGjFDLNWpA+/awbp2+3RJ0ly2rtsfESNAthCNJ0C1ENn6atIEnRrRF01TAfe+9MGZULG06uZOWUYav5oXzxkeX8fDxKOKSCiEcqsEtdP3O3N3cQVq1asWYMWNwcXGhSpUqODvrH+2Zk50lJycTEhLCpEmTspyncuXKN3V9S3fx/EhOTgZUF/OqVe1vYNreJBBC3JwFC/TlGTPU9GCWlm4vL7h+bwuAevVU0B0fDwkJ4OlZmCUVonSQ7OWiVDl8WCVC++ADOHQo+33mfLrRLuB+4YF1/PEHNG3rw6Ae2wBITPHg6/G7CqvYQgiRo3LlyuHv74+vr69dwJ2dkJAQTp48iZeXF/7+/nY/FStWpGLFivj4+LB7927rMRkZGezfvz/HcwYGBmI2m9m+fXu2211cXACVoM2ibt26uLq6cubMmSzlqF69unWfvXv32p3LtlxCiOzFx8OWLfrj336DrVvh4kX1uEMHcLKJACSDuRCOJ0G3KDUuxqVz113w3Xfw9tsQHAyNGsHSpfo+pnQTL78bbA24X3xwDZ/P7cD1oY+8/m5NDAYzAJ/NbMC1pGuF/TSEEOKm3XvvvVSqVIkhQ4awY8cOTp06xdatW/nggw84d+4cAIMGDWLGjBn8888/HDt2jLFjx+Y6x3bNmjXp27cvo0eP5p9//rGec9myZQDUqFEDg8HAmjVruHjxIklJSbi5ufHUU08xfvx4Fi5cSHR0NPv372fWrFksXLgQgIEDB3LixAkmTpzI8ePHWbx4sXWbECJnK1aA2aw/Tk6Gl1/WH1u6lltI0C2E40nQLUq0hAuXGdJ/Ha89soa0lJznoDWbzDzeexfR0fbr9+2DJx5LQTOrsYrRh04Tf8ULgC7h/zHl504YnAzW/QOb1qZfx60AnEuoyozxWwv4GQkhhOOUK1eO2bNn4+vry7Bhw+jRowdvvvkmqampuLmpWRmeeuopevfuzciRIxk4cCAVKlTgrrvuyvW8Y8aMoVu3bowZM4Z77rmHt99+m5SUFACqVq3Kiy++yOTJk2nbti3vv/8+AK+88gpDhw5l+vTp9OjRg6effpo1a9ZYpy7z9fXl888/599//+W+++5j7ty5vPrqqw786whxe1i+POs6244oEnQLUfgMWk6ZUUqA5ORkIiMjadCgAeXLly/q4uTIZDIRERFBWFgYRqOxqItz20hLg+53pbB6nRqz+NHwNbw+qXO2+340fA0jP1HbvD0u8/poD76YfIFTF6oAcDLyDH7Bviz7aTs9H1fJgEY9uYbx32c9345/DtDiroYAVChzlb07EqgdWrMgn1q2pB6JgiD1SBQEqUelRFISXL8Zw9WrUKFCgZ5e6lHBM5uhalWIi1MvXc2acPCgvr1iRdXN3HYkys6d0Ly5Wh48GL79tnDLfKukHomCkLkeFXScKS3dokTSNHj2WawBN8BHM0K5eulqln23/LWP0Z+1B8BgMDPnq6OMGAEP3XPAus/+HWpan8h9SdZ1DRpmPzayedeGPN1bpQBNSnVj8GOxmE3mbPcVQgghhCgsO3aogBuga1cVRNtq184+4AaZq1uIwiBBtyiRPvgAfvzRfl1cojfT3t+RZd+pky9jMqtPmLeeWcfdDzUDICRU/9TZv1sF25EH9TukDZrknMl38vdh+PnEALA6IpyvJkXnuK8QQgghREExmeDxx+Huu+HUKftt11MpANCjBzz6KNg2/mbuWg4qW7ll8oK9e1UiNiFEwZKgWxRr+/fDokX2CUE2b9J45x398Ydvx+JkUFlxP/62EVcuXrE7x5GTlQBwMph467O21vUhTb3060SqT6TIY/oUYMHNauVYLncvd7774oL18Yj3Ajh+PO/PSwghhBDiZqxZAz/9BCtXqpZs24GituO577kHqlVTvy2yC7pBzeMNqut5nz5wTfLEClGgHBp0b9++neeff5727dsTFBTEP//8c8Njtm7dSt++fQkNDeWuu+5ige1Eg6LU0Mwa095dR5MmGn37wocf6ts+H6PPg/HhBxqj3/PhobvUuvgrXnzx3k67c5087wNADa9zuJbT539t0Nzfmol8/5HKaGaNyJMq0K7pdYaKlSvmWsauA5oy5Hl1fHIyjBhxk09WCCGEECKPbKc8XblSTQkGcOGCnjCtcWM1nhtgwgQIC1MBetu2ZGvqVBWgA2zYAE89Zd/gIYS4NQ4NupOTkwkKCuLdd9/N0/6nTp3iueeeo1WrVvzxxx88/vjjvPXWW6xfv96RxRTFTHpqOkPuX8+w9zpiMqnM4ZMnQ2IixJ6K4/fVTQHwdo9j+KsqY/k7432trd2Tvmtsbe1OupxEbKIKuv2rxdldp7x7eWpXVf2yDpz058IFjUtJqlU8uEHeEnFM/MjJ+iH1+++wadPNPmshhBBCiBuLirJ//OqrKuAeNkxv9e7RQ98eEgK7dqkEaQYD2fL3h8WLodz1VDm//KKG8gkhCkb2maIKSKdOnejUqVOe9587dy41a9Zk1KhRANStW5edO3fyww8/0KFDhxyPM5lMmEymWy6vo1jKVpzLWFxoZo2+nXexdIt9/6fLl+Hrr81wfi9pGXcA8Ph9+3Au0wGTyUTdJn48dPdm5vzdnotXK/Pvoi3c+3gLjh84A9QHwL/GlSyvQUidcxw/509SqhvL/zgPVAUgOMwnT69X+fLw7rsGhgxR96+GvxjP+i0edtOMFRSpR6IgSD0SBUHqUSlhMmG0LprUYOICPb3Uo5tx7JgToH/POH0a6tfXSExU64xGjQcfNOf75QoPhzlzoH9/JzTNwAcfaDz0kJk6dQqw8A4g9UgUhMz1qKDrk0OD7vyKiIigTZs2duvat2/PuHHjcmVHzzoAAQAASURBVD3u8OHDjixWgdm7d29RF6FYOXs0ng1/XePOvm5UrqHGUu9ec5qlW3oDUMblGkMf2cynP6gge9KkDCo61bYef0evdCIiIqyPm4XHMedvtbxz63lqNYlg1/oYLEG3d6UEu/0B/Gvqrd+zftIzl7u5nSIiwr5lPCfh4VDXvw7HTlZiy39efDN+Ea165jwe/FZJPRIFQeqRKAhSj25vTikphF9f3rNnD+Zy5XLd/2ZJPcqf/fsbAOUxGjWMRo20NCdrwF2+vIn334/CZLpMpq88eeLnB4MG1eDHH6uRnm5g2LDLjBsXdeMDiwGpR6IgOKoeFaugOy4uDm9vb7t13t7eXL16lWvXrlG2bNlsjwsMDCz283Tv3buXRo0ayfyB10UfPM3dT9fm4tXKLP73KP8dqoWzqzPvDtPvKn330Q4GvtiR45fM/PGHE7GxrsQSAMCd4Tvp3r+L3TnTYl1hglo+f74SYWFhbFmsJ1VrGFqRsLAwu2NatNwE89Xyhu1+1vVdu9YkLCzvc29Pemc7fQe3BuCz6U3Y87/quJRxyfPxeSH1SBQEqUeiIEg9KiWS9JvRjRs3dsg83VKP8kfT4Nw51bvO3x8eeQTef19tCwjQWLgQGjWqncsZbuyTT2DpUo24OAMrVlRm7FgPWrS41ZI7jtQjURAy16Pk5OQCbdgtVkH3zTIajSXin6yklNPR0lLSePj+y1y8qoLcA6fq8cOkDXTpVZOlW1oC4OcTw4NDW2M0Ghk1JJI//mhgd47nnknL8rcMDteD5qMXgjAajZxKbmddV7txgyzHNGrmo5crXf93CA1xwmjMexfx+55oRacpEazdE8aRM7X5c+YmBryQQ7aSWyT1SBQEqUeiIEg9us3ZvLZGo9F+7qkCvYzUo7y6eFHluAGoXdvAW28ZSE6GK1fggw8M+Pjc+t+xcmV491148UX1eORII2vW5DwevLiQeiQKgqUeFXRdKlZThnl7exMXZ9+lNy4uDjc3txxbuUXJ88Yzm9hysJHdunentWXCmLPWx8MGHcXZVQXBrbs1oGPof9ZtVdzPc98TzbKct1JVDywdJQ5Hq7HZJ6L11uaA4CpZjgluUR8nJ81unWeFBKpk3TVXBicDI4anWx9v3piey95CCCGEEPlnm0StTh1wdYVJk2D6dPDxyfm4/HruOaivRuexbh38+WfBnVuI0qhYtXSHhYWxbt06u3WbNm3K0iVYlDwR6w6xa/MFdu40M+3XzgC4OqcS3jiFrf95cv68E9//qcbzl3NNZvDwJnbHvzHKzLpH1fKzD0biWq5zttcJDIS4OJVU5OpVOHFC3+bnl3X/chWM1KkDR4/q6xr4ncLg5Jnv59iyi55pZMfe/B8vhBD5ERQUlOv2YcOG8aKlqUoIcVs4flxfrn1rvchz5eKiphrr3189fuIJNT1Z8+aOu6YQtzOHBt1JSUlER0dbH8fExBAZGYmHhwe+vr5MnjyZ8+fP89FHHwEwcOBA5syZw0cffUT//v3ZsmULy5cvZ/r06Y4spnCwsUPXMOarzoD9F8TJo7bQbVAnGjaEjAx9/aCe26lc3T7rffdHmjPrwkaiT6Tz+kftyElgoD5t19GjcPKkWq5eHcqUyf6YkJBMQXfdhLw9sUy8a3oRUOUUJy7UYteRupjSTRhdpJuTEMIxNmzYYF1etmwZU6dO5a+//rKus811omkaJpMJZ+dida9dCJFPtkG3o7OK9+0Ld98NK1ZAQgLcdZdaLs7ju4UorhzavXzfvn306dOHPn36ADB+/Hj69OnD1KlTAYiNjeXsWb1Lca1atZg+fTqbNm3ivvvuY+bMmXzwwQe5Thcmir/5KxplWffCA2t5YWxH6teH55+33/bi6zWyPc+jr7Zj9JTOuSYoCwzUl/f+l8i5c2o5oGZS9geggm5bDYJvfoqAZg1iAEhKdePQfyUj26cQomTy8fGx/lSsWBGDwWB9fPz4cZo2bcratWvp168fjRo1YufOnYwaNYqhQ4fanefDDz/ksccesz42m81Mnz6dLl260LhxY3r37m0XzAshik7m7uWOZDDA779Dx+uzuFoC7+3bHXtdIW5HDr3l3apVKw4dOpTj9gkTJmR7zKJFixxYKlGYNA1OnPUCoEa1JL775CChLXypUU9vyX7nHZg9W72Z97jrMiFt6t309er77AdUFP3Pb3uA9gD4u+8Gsk9sFlL7NKAH+g0a3Xwm/Obhqfy+Vi3v2HCehq1u/rkIIYrWr7+q96crV268b0GpWFFlIr7//oI53+TJkxk5ciS1atXC3d09T8dMnz6dP//8k7FjxxIQEMD27dt5/fXXqVy5Mi1btiyYggkhbkphdS+3cHODZcugVy9YswYuX4aePWHr1sK5vhC3C+lnJhwqLg6Sk9VyaJMKdHsoawI0Hx/YuFF1WXriCY9bul5gsN4KvnKLHvAG+KXleExI0FW7x8FNqt709Zu3rmhd3rk9g0E3fSYhRFH7+GM4eLBorltQQfdLL71Eu3Y5D8nJLC0tjenTpzNz5kzCw9UMzbVq1WLnzp3MmzdPgm4hipgl6K5YEby8CueaFSrAkiXQo4dKqhYbq5Y3bYJKlQqnDEKUdBJ0C4eyTWSW2x3Rhg3Vz62q11ifW/vspWrWZf+AnEdSBDX1x8lgwqwZKeNyjYCGeZ+fO7OmHW2SqR30v+nzCCGK3ogR8Pbbhd/S/frrBXe+Ro2yDu/JzcmTJ0lJSeGpp56yW5+enk6DBg1yOEoIURhMJj1XTZ06hTuFV4UKsGgRtG2rbkYePAj9+sHff6sM6kKI3EnQLRwq6lg6oFqfAwIcf73y7uWp5X2aU3H248ID6ubcZbxshbJ0DvuPVbuacmfTvRhdbj5DSOXqlahTO4PjUc7sOhxARgbY5i1KSlLds9zd1QeXTCcpRPF1//0F1+JcVMqVK2f32GAwoGn20yRm2GSyTL7eNWn69OlUrWrf68dVvlkLUaRiYvTEs0XRtbtSJVi6FFq3Vq3da9bAlCkFe6NQiNtVsZqnW9x+TmzfaF0O8NxfKNesX+t8lnX+9Svnesy8P/2Z+/kmZi289THYzZqrKDslRe+aevXSVT4avpbafkn06qWSktSoAUOHQmTkLV9SCCHypHLlysTGxtqti7R5E6pbty6urq6cOXMGf39/u5/q1asXdnGFKBCLFkFoKHz2WVGX5NYUZubynNSpA7/9pj+2zBgjhMidBN3CoU6c1KtYQICWy54FJ7D21Szr/IOrZbOnzrumFw8Oa0vl6rc+OMl2DssdO2D7ygPUrZ3CyE86EXuxgnXb+fPw1VcqAE9NveXLCiHEDbVu3Zp9+/axaNEiTpw4wdSpUzly5Ih1u5ubG0899RTjx49n4cKFREdHs3//fmbNmsXChQuLsORC3LzRo2H/fnj1VdUduqQqzMzluWnTRu/afvp00ZVDiJJEupcLhzpxSu/aWLvBzScoy4/A+ma7x1U8Yinv7lMo1wb7oPuvpam8vdqTC5fV9Q0GMw/0iCHd1Y/ly01cu2YkLg72bjxM8y6BOZxRCCEKRocOHRg6dCgff/wxqamp9O/fnz59+nD48GHrPq+88gqVK1dm+vTpxMTEULFiRRo2bMjzmed3FKIESE0Fm+rN4MGwbx94ehZZkW5aYWcuz4mLC1SpohoPzpwpunIIUZJI0C0cKuqM6tZdzjUZn5rehXLNwIYV7B77V70AFF7Q3TTcjKUTybzfygC+ALQK3sfMH8vRoGVdAKaMXs8r4zsD8N+m8xJ0CyFuWr9+/ejXr5/1cW5Tdr700ku89NJLOZ7LYDDw+OOP8/jjjxd4OYXIC01TP04F0B/z6FGVgMzi9Gl47TX4/vtbP3dhKw7dyy1q1FBB97lz6u8rOWqEyJ10LxcOo5k1TpxXAWdA1bMYnAonzWb9UPsAO6BGYqFc18KzkhP1qp+wW+fjHsuCJd7WgBsgvKWndXnXrsLpei+EEEIUZ7Gx0Lixmg5rzZr8HXvxInzwAaxapa/LLm/KzJlq7umSxrZ7eWEkp81Njev5ak0mFXyL0ic9vahLULJI0C0c5kJ0HNfSVffyAN+LhXbd2iE1MDrp2Xj9axX+u0LzBqesywaDmZ9nnMK3rv248rD2et+wXQdyT/QmhBBC3O40DYYMUd2/ExJgwID8dV8eM0ZN89erF8THq3W2Qfc99+jLJTHjtqWl29cXypYt2rL4+urL0sW89Jk9W83E07+/+r8VNyZBt3CYE4f0W5+1ayUX2nVdyrhQx/+a9XFAy46Fdm2LTp30d6B3nltH1wFNs+zj7u1B3Wpqws09x+tgSjdl2UcIIYQoLebPh99/1x/HxsJDD+nTZN3I2rXqd0oKbNmili2ziABMnKjnXTlwAE6cuOUiF5qrV+HCBbVc1F3LQW/pBkmmVtrExMDzz8O1a7BgARw7lr/jly2DESPU0ITSRIJu4TBRh/Vu3QH+hXsbLLChm3XZ379QLw3A4JFtePf5NXz2xlrentohx/3Cg9Xt4ZS08hz6LyrH/YQQQojClpamLzu6NevcOTWNpoW7u/q9bh28886Nj09Ls2/V3rZN/basc3KCwEDo3VvfZ+XKWytzYdq5U18uyiRqFhJ0l16vvQZJSfrj/Ex9e+kSPPAAfPyxuglWmkjQLRzmxHH90zqgbplCvXarVuq30ajGhhU2lzIujPmqMy+P64TRJefsIuGN9bnCdm2SQVFCCCFu3pa/9vFEzw1sWrq3QM731Vf6cn4D1M2b4eGH7cdX58TSrfzi9ZFoDzwAy5eD8/V0v+PH3/g8Bw/ajzHdvh3MZr2lu04dKFMG7r5b36ckTR82ebK+3LVr0ZXDQrqXl04rVsCvv9qvO3Ag78fv3QvJ1zu/5rUHy+1Cgm7hMHZzdNfzKNRrv/IKjBunur34+RXqpfMlvIWeaX3Xf5KRQgghxI2ZzRARobpRW5yMjOGuvv78uKw9Tw8pXyDXmT9fX16/Pn/HDh0Kv/yixmWn6veXuXpVld225XzRIvUD4OMD06ZB27Yq2LY9n+15Mtu92/7x9u0QHa3/jRo0UL+bN4dKldTyv/+WjC/++/fD4sVquWZNGDiwaMsD0tJdGqWmwrBhWdfnJ+i23bdhw1svU0kiQbdwmBNXWlqXa4fWKtRrV6wIb7xh342sOGraXu/7vmu/exGWRAghREkxZgyEh6tA8tgxMJvMPPXIBa5eqwhA5Km6JF2+tVwqR49ChE0gu2NH3o81mfQv1/Hx8Ndf+vo77lBlf+ghdfMgJcWJ117Tv45Om6YCb1DdWNu0UcuHDsEnn+R8zcxBd1ycfl3Qg26jUW8pTkhQwXlx9/HH+vKrr4Kra9GVxUKC7tLn00/hyBG13KoVGK5PSiRBd95I0C0cJipapdasUAG8qlUs4tIUT1UDqlC9ksok8d/hOmhmSQEphBAiZ6kpGXz+ufqsOHkSOneG0UMiWLXLPmHnkd2nsjk67zJ3If3vP/v5rnNz5oz9ePA5c9TvxYv14H3ePBg1ysB331Xj1Cn17f3uu+H++/XjnJzgyy/1+brff1895+xkDroBfvpJX7YE3ZbrWKxYkbfnVFROndL/fpUqwTPPFG15LCpVUt31QbqXlwYXLqgepKD+H7/5Rk/oFxmZ95wPEnQLUcDMZv2DMSBAvxsmsgoPuQxAQpInJ09IBnMhhBA5Wz5nJwkJ+odqTAxMnJF1hoyDu+Nv6Tq2XcsBriblvUUrKlNe0MWLITERpkyxX//JJ0789JOaTtPVFb74Iuv3hbAwvUtrSopq6c1M07IPujdv1pdLatD96ad6F/gXXlA9+YoDg0Fv7ZaW7tvf++/DlStq+emnVb4kS9CclKRuDuWF5T3E21vv0VJaSNAtHOL8eX3sVUBAkRal2AvvFGRd3rXbuQhLIoQQoribM8dsXa7ibT/IOaimHu0ejK7BzTp8WI27zswyDdeNWOaTtrh2TXWJX7NGPXa3GU1lNqsoe8QIqF8/+/O99x5UraqWFy6EH3+0337unJpeDHJOnhocrC/7+emPt25V3cyLo/Xr4euv1XLZsvDii0VbnswsQXdCgp4cS9x+Dh/W62GFCjB2rFq2vZGVlxtyCQlw9mzWY0sLCbqFQ5yIPGtdrl0rKZc9RXi4vrxrV9GVQwghRPF2OfYyizeqD40qHrFE7DLQuLYaZFm32klmza9i3fdQzM3Pl5m5a7nF1q15Oz5z0A2qxdbiww/h9df1xwEBGm+8kfP5PDzsx3M/8wysXq0/tm3lvuuurAlUq1dX57DVrZv6bTLlLcN6YVu3Du65R08E99xzUKVK7scUNttx3dLF/Pb1xht6b4vXX4dqqnOKXffwvATdtlOLlbau5SBBt3CQE/v0u+0BFUtAlpIiJEG3EEKIvFjw/R5S01W+lAe776d6TVc2R9Tg9+lb2LS1PE2aVcB4fZZKy1RZNyNz13KLvAbdtt3LK1Sw3+buDo8/DhMmwPDhZkJCkpgzx0z5GyRcf+gh1b0a1NRgffvqX+Jtg+4mTaBlS/tjs2tVK85Th61dqwJuy1zI3burv1dxYzttmHQxvz2tW6dmAgIVbA8frm/Lb9BdmsdzQyEF3XPmzKFLly40atSIBx54gD179uS474IFCwgKCrL7adSoUWEUUxSgqGM2c3TXKdw5ukua2rXBw0NloNi1I+UGewshhCit5szTI9hHnvQGoLx7efo925oqfj64ukLdumr7oUMqv0p+7VwbheVrWsvQs3bb9u9XY7NvxLal+/nn7bcNHqzGJTs5wcSJGj/+eJBWrW58ToMBPvsMevZUjy9fhh491NzemYPuFi3sj80u6O7USc8C/u+/N75+YTl/Hvr00btr33OP6lJftmyRFitbksH89hYfD489pj8eOxbc3PTHtkM2JOi+MYcH3cuWLWP8+PG88MILLFy4kODgYAYPHkx8fM4JPtzc3NiwYYP1Z7VtHyJRItjN0R3oWXQFKQEMBgivvReA0+fKcSE6rohLJIQQorg5c+wcqyLCANWVvOVdIdnuZ/kinJICMSfVDfBdaw7y6ag1XLl4Jddr7N98lB736d+q+4d+ardd0/I2dZilpbtaNZV0ycJgyH6e37xydoa5c/UeYidOwMsv60G3i4t6/pmDbtvgwKJCBb1F/Nix4tM9euRIfYx59+7FN+AG6V5+OzObVY+U6Gj1uF07eOop+30qVtSHchw4cOMM5qU96HZ41qaZM2cyYMAA+vfvD8DYsWNZs2YNv//+O88++2y2xxgMBnzykdLOZDJhyus8FkXAUrbiXMaCFhHpZV32D65Sqp77zQhreJE1EWp5x/ooug2slGWf0liPRMGTeiQKgtSjwvfL9Eg0TQ2mfLj3ccxaTcjmzx9YZR/QBID9myLwqBjEXb19iL8SzOr1W1m4rnm259+3D+7q7U/sZRcAmgbs5MmOM2Gu/X6bN5vp1Cnnb9fJyXD2rOrjHhCgUb++mb59nVi40MCzz5rx99esU4/dTD0qV04FomFhTiQkGJg9W9/WsKGG0WgmLAwMBic0TSVpCww0ZTvdWfv2BjZsUI0Ea9eaGTCgaKft3LABfvxR/e08PTW+/96Ms3Pep2orbCq5nSrvqVNmTKai+fvJ+1HB+/hjA0uXqv8Nb2+NOXPMGAxZ62KDBk5ERxu4fBlOnzZRvbq+bf9+mDfPwFNPaQQEwIEDToABd3eNKlXMxa5eZ65HBV2fHBp0p6WlsX//fp577jnrOicnJ9q2bcuuXAavJicnc8cdd2A2m2nYsCGvvfYa9XNKaQkcPny4QMvtKHv37i3qIhSKxLgkdhxpD0Co/0FOnk3i5NkbHFTK1fK7ZF1ev+osVYMjcty3tNQj4VhSj0RBkHpUeP7+V2/ubN45nYjs0osDPp7RWILubZvOcOL4GeKv9AFg8aZW/DFrOf6N7DNyXblipH//EC5eVAF3eL0DfDnlAKlJbamAfd/rjYu3cPCOU1wrUy/b6x8/XhZQrfCVKl0kIuIEr79u4NFHXalVKzXbrOg3U49efbUy775b225dzZrqegABAQ2JiioHgNm8n4iI9CznqFHDHVDfLxcujCMw8NbmNr8VGRnw9NMNADW4/bnnTnHmTGyxbkG+fNkVUENADxxIICIiKvcDHEzejwrGjh1uvPVWIAAGg8a77x4lLi6RuGw6Ynp71wTU1AKLFx+jZUvVmyYuzpkBA0JITDTy888p/PDDQaKjVRcVf/8kdu8+VCjP5WY4qh45NOi+dOkSJpMJLy8vu/VeXl4czy61JVC7dm3GjRtHUFAQV65c4fvvv2fgwIEsXbqUapZ0eZkEBgZS/kYZOIqQyWRi7969NGrUCKMlw8ltbP6XW9A0dXese6ezhIV1LOISFX/OKW5wPUnKsShvwsLCsuxT2uqRcAypR6IgSD0qXJpZY/cxdXPWq2I8Pe7vgsHJkO2+yWeNMEktnz9fiagT9iMJf/vZnVnLw+zW/fyzgYsX1X7Nm2v8tTwQz0pBkHQfoNJ+e5RLIDmlAv8drENQPSMGL5tzxG/FcCkCrVJTTp/S+40289tPuNMycEmBWmao3AIt4BHr9lupR02awPbtGkuW6H+HTp0qERbmCcCwYQaGD4euXTW6dg3JMv83qPHvL7+sYTYbiIz0ISzMK+tOhWTKFANHj6rXoFkzjffeq4HRePPTvhUG2277SUmVCAvzyHlnB5L3o4ITGQkjRzphMql/mDfe0BgypE6O+3fqZGDOHLWcllaPsDANTYO+fZ1ITFTnOHGiHL//3sR6TPPm5bP9nlvUMtej5OTkAm3YLXaTAoeHhxNuk845PDycHj16MHfuXF555ZVsjzEajSXin6yklPNWrfxbz9zSradHqXjOtyqkZV3KuqRwLb0cEYeq5/o3Ky31SDiW1CNREKQeFY4zJ+O5cFkNu2saeAJnl2Y57tuwqT5f1oEjHhw4YR+4zf+3FeMOniEgpJa+n81YyzFjDHh5X/96aPPaNm+SyOItNTh/uRoxV30IqGLzup9dCvvHAXDy72HA5wDU0WbiFPmDvp//Q1B3kF15vBIW4Ry1Fafy1cGtLng2ItsIORvffAMhIXDpemex8HAna5Ffew0eeQR8fAw4OWVfRz09oWlTNU593z4DCQlGvIog7k5Ph3Hqz4fBAF9+acDVtfj/X1WoAJUrq2R2Z88aivy9QN6Pbs3583DvvSpJIahEhWPHOpHbnzTEJrXEwYNq359+giVL7Pf7/HMnm2NyP2dRs9Sjgq5LDk2kVqlSJYxGY5akafHx8Xh7e+fpHC4uLjRo0IBoy0h+UaxpZo0Vm1WXs3KuybTvWQozJdwEZ1dnGtVWvT+OnKl9w2Q3QgghSo//DuiRYNN2vrnsCV6+lfF2V/1A1+9tRGyiCtZdnVMBMJmdmTzV3e6Yff/pQ5xCQ7M/b+suejC/7K9MX0YT9dag4xf0VrE6VTL1aqwQYP/YlIbfhY9x2vkCrO8Hy5vAyvZwduWNszKh5t/+8UeVUblFC+iYqWNd1aoqS3pubI/ZsOGGl3SIdetUpmiA/v2zTnlWnFmSqZ05k6eXTBRT165B794qOSFAWBjMm6eSF+bGdmaAbdvgr7/gpZf0dX5+WY8pjUnUwMFBt6urKyEhIWzevNm6zmw2s3nzZrvW7NyYTCYOHz6cr8RqpVVGWgbbVx4g6XJSkZUhctsxTl9UWRQ6he2nbIVimnKzGApvqN+c2r2xaMdFCSGEKD7++09fbtques47Xhfsp+ZvMmt6cDzutS2UL696on03y4PYWH3/fRFXAXArexW/WtlHTvfeqy9nmcc75A1o+hkEPEbU5abW1XV6joAu/8Jdm9RPvaftj7u0Eyct1X5d3CZYfTesaA2Rk+By7mmR770XYmPVF37LFGD50aGDvrxuXf6Pz6/t29Uc47Z/Q8s8yAAPPOD4MhQkS9Cdlka2Y35FyfDVV+p/CNRrumSJ/fRgOalUCWvytP/+U1PcWVrKH30UZs3KekxpDbod3r38ySefZOTIkYSGhtK4cWN+/PFHUlJS6NevHwAjRoygatWqDL8+2/oXX3xBWFgY/v7+JCYm8t1333HmzBkeKGnvQoUoIy2D2Z9t4YNPa3HsXENC/Y8QcaQORpfC77vx92p9PM/ddxRd8F8SNW2qwSK1vGvrJdrfm+vuQgghSgm7oLtpzvtZBNe5zIZ9+mODwcxjLzQkJs2Jzz5T04l99RW88w5cuXiFExdUV/PQgCgMTo2yPWdoKAQFqfm/162Ds2f1L9tUbqp+gOMqfsfFBXxb9LQkt85exUCO1viUOr4VcEq9ACd/VkE2QPw29bPrdXCrB3eth3LXc/ukJcD51ZB4EK5GUTbpBKRdhPREyEiGKh0hbCJUqJXTla3at9eXLUF3fLya9qxZszz3dM+zV16BTZtg6VI1DVP16rBokdpWpowKWkoSX5uOF2fOgLSRlTxpafDJJ/rjRYvsp4O7kY4dVau4rerVYcoUNfygSxdYtUqtL18eat343/K25PB5unv06MHIkSOZOnUq9913H5GRkXz77bfW7uVnz54l1uZ2a2JiIm+//Tb33HMPzz77LFevXmXu3LnUq5d9lszSLD01ne8nrCfI/zRPjmzPsXP+AOw7WZ8dqyKLpEwr1unvtnc/0iGXPUVm4a30IRe7IrL+a057Zz2vPqGx5e99WbYJIYQo/iLWHeKx7hu4t+02Th/N+7QelqDb3R3q5JzTyCoo0Gz3uE0bJ6r4+fDqq/q6ZcvU7/3bTlrXhQZeIicGAwwYoJY1DX7/XS2bzbB6tRoPqmlgyZMbEMCNx22W8eKyWwe0Ok9B6JvQYy+0m6fGddtyrQRlq+qPo2ar7ui7R8OxGXBuJVzcCVeOQMppOPkLLG0AkZ+AOSPXInh76+NS//sPfvlFlb1FC/jyS/t9Dx/O2zzlOUlPh5079eXPPlOti5YM5XfdpeY+Lklsg7PTp4uuHOLm/fILxMSo5XvvhebZzyqYo6lTYeJENcf8yJHw9tuwZo0KuAHGjtX3bdjwxkM+bleFkkjt0Ucf5dFHH81226xM/Q5Gjx7N6NGjC6NYJZZm1vjh4w28/6k/UeezD2yXr65Kq26FU5bVCyIoU9ZIeOcQ1q5Vn7A1akDD0GKcJaEYatSmDkanDExmZ/477G+37a85O3h5XGcAHnoyjkMn1FylQgghir/9m4/y1og4Fm1oDQQBMGPyGsZ8deOu4rGn4jl1So3pDg9NxMnJ/QZHQHCo/Ywulq7hfn5qDGZkJOzcaeZqwjW78dyNQnMflDtgALz/vlqePx9eeAGefFIlTqpRA/75B5Kud3LLy82BLAxO4D9A/SQehjPLIOYPCHrJvsm5ejZfcAxGcHEHczpkXIWMJDg4CeoOBtfcs2p37KjmFDab4eGH9fWLF6vnCOpmQmioCpaXLlVJpnJz4AAMGaJa0j/8UK2LjIRUm97006dDYqL++Hon0BJFgu6SzWyGjz7SH48cmf9zVKkCI0bkvL19e3j1VdUaPmpU/s9/uyil9xpKtq/GruOpUR2IOq9nJ+ja9D9+nbHf+njZqsLp3/PT5I3c+UA47e9tjG/Vq6SkqPV3313wXbJud+UqliM4SLVO7I/ys34wJ1y4zNMv6Z9qpy54M3VqUZRQCCFEfl06n0DrLlWvB9y6qJN5a/fYteGEdblpwH8572gjuElVu8e9e+vLHRvtBiAjw4ktKw6yb5/eKh4anntAHxKiJ07asEG1YP30k3p8+jQMsklMXrt21uPzxT0Qgl+BrquhVl/7bRXrQei7qlW823boHwcD0+H+i9DnFNQfChjUOHPbgDs9EVa0gx0vwrHv4VIEmNKyJGCziLTpNLjibzPp16f6/uGbBDg8TY05j/kTEg+pIN9m7PmkSaq7+rhxsGePWvdfppfvyhWVgR1U69+9JXBYmQTdJdvSpfrsBe3aqR9H+OQTVT/693fM+UsCCbpLoLUbXKzLdzXbycYle1m5syn3Px1Ck+vT4G3fDhcuOL4sq1bry5eTbcZz3+34a9+OwpupLDAZGequO8CrT+2xJqezGDdOEpYIIURJsH3VMa5eU32Gq3jow+nOnM9bd6X/tumzWYQ3y1ugHtCwBuXLqQixbh2TXYbhjm2vWpfXr7rM3oN6f+bQljVzPW/mLua23UZBffewuKmW7rwyGKDxGNUi7tUcynjpd/pdPaHFNOi5D/wy5QO6FKEStR3+ArYOhuXh8GtFOmbYt5y7u10DIDoarl7/c+1fvda6fcVKyNj6shpvvu4+WBIM891grjMcUtOl2U7DtvarifDvnfz3ezZZpa7rFLIFb5eD9iuTTkLcFkjYV2xTg9e0qTKWLsqi5JgwQV/+P3v3HdfU1QZw/JeE7WCLguAGByLuPapWrdUO7d6t3Xa+7Vu7x9uh3dPu1g5rq621dVWtrXsPEFHELYqDIUPZJHn/OJCbkDBlyvP9fPh4c1dO8HBzn3vOeU5VWrlFxUnQ3QDtP6ZasQ36QpZsiGDQ5drYJ+vuTsuX13xZ4o94WZbdnFUzd2AgjBtX8+99MbJO6h8VBQu+2sx3S9QQgubuGYwYehpQ3dFee60uSiiEEKIy9uzSgubpT+/D3SUbgFMp5XcTB9i5y9Wy3Gtgywod4+TixAcfOtOvH3wy02DT82zoOK0Jeu1mL2IPq6xG/s2TaRFSfi85R3ltO3e2X3fBLd0XyrOrfZc7q6nNLEz5BOpXMOOGaQzouIkFj1/F5P6LLJvj49W/e/ZrDQsZ2V5sOjDQ/lxmExjUrC0HDmir1+5sD2f+Zed+7ZcyOvxvm0Ov7vkTuNv2UGDf+7BiICztDgvbw67nIC1GvU9ZMvaplvxtD8Kq8bA0EhYEwr9jVQK6agzgraeEOnas9P1E/RMdrZL6gRprffnldVqci16tjOkW9vLy4PrrVVejefNgwIDyjwF1nTxwuhMA7dsV4uxqOyXXZZfB9OlqeemCZG69tea6mZtNZuKPq0ecIf4niN3nyfatZ+kU7oOXV4297UXNOuh+9r/pJKVpFePdF3bRuqcXWyYFkJOj49NPjbilLMHgVsaNm6sfeJWYdDVlExjzHO9vrXkouFulJS3MgtRtpe9vza8/GKxacbJPwLmD5R/n5A6+/W3XpcWorLTl8QiCZp1s151ZXf5xoJL2uGrz4JJ/Vr1vRbQYbntjd+6g+rzlcfEG7x6261K3qd9zeZq2hyZWdzrGPPX/WgEm796cSQ0kIECnkpnknFJdI8ujdwH/Qbbr0vdAXrLj/a25tQTPEnflSevBXHaCIwA8u9gmUMrPhLSKdbHFfzDotZ5BZB2F80fLP865Gfj0tl2XFgX5GeUf2yRE/f8UMxkheV1FSgvekaqVrlhuMmTsKW1vjU6vsjVby4xX/7flKeUa4e6Sx033tqd9dweTrIpK2ZPQwbLcrZcfrXxSOXzag1PpAWUcpdkZp67D7i7ZhPVuW+H3vece9VNScFgg7QISOHImhPWx4RQa1d9I9w7HgfLvGbp1Uz/FvbH69FFJkwYMgFirPJ812tJdVR3vhuBJqsU7bSecjVL/ZsYzbeJbTJuoBrceONMFUE8X9u1TWcz3JNh+oKWn32PonfFwbr/6e8tLhoJz4B7E2bNw1upra+2+YRhNeqKPRQLQtuUZpj+2npV3X2rZ56phUep7wYZV21jWUdjzhvpxKrpG+Q2EoInqO1dnte+uZ+HEAvvPn3MKTq8A/6Gq636rseDUpFK/wpK8vaFJEzWWPyHhgk4lapn13+sddzTeBGe1RYLuOvLuu/Dnn2r50ann2LKjYukqT53SkpR0CrOfA3vgQPBscp6MrKYsX+FEYX4hTi5OFOQV4OzqbLf/hUhJTCU9S2XcDg1OoplPay6RFu4L0jPSRPGXbFKal2X9lUO2cMeTg9gVs4vHH8rgjbe9KCgw8OZPVzg+UZkcPJ2vkCbAiCoe27ropyoiqngcVL28PhdwbMein6roW8XjXKlcea2vN62KfqqiWxWPAxhS/i4ONafq/zdti36qomf5uzhkoOrl9b+AY8MoTthVeeoa8duSeKIPV/EUwmLPEW1+nK4Du9CqAxw+DWczm5ObC272X+UW6UkZlplJerQ/hJOL4+m8KmtY72McWRpiCbgBwkPPlXGErcceUwF9QIBqOGjSRGX6th4bXS+DbgBXH2g5Uv0UKzgP6TEq87lbKzo7h8IctSkuTg3nsv5OBli6pS/T2zm+Zh/YYvs6KTOAxW6ZZOWpALfXoAD6THmFG1bCL7/ANddA8F0OHs61GAaY1NRop//WWrgLz0HSavWzdzq0vRUG/aAd59vXNujWO4OhCRSkq9fJ69RP5/9Ar3fL+m2VS6eDNm1Ud/qEBNU4JDl9GoZTVs9l27QpfT9RPeSZRh04dsy2a/DWnc3YUsFpoPZb9YwKDbXf7uQEY/urFrq0LG8WfLONScM24+6h47m7V1foPf78ZgszHl9NVkbZLW7x0Scty2EdKv5lLUrn5a2nc+tDltetfU/yyYtrmLeiJzq9+hb773+hXYA8ThZC1KxdR8LIOZdT18Vo0MxmbWxvSIiaDsp6XuPTp8s+Pnr9Ectyr/AK9PipoGFD7bsXh3eveKQ0ZYpqJdu7V+tGPnQoPPigttygerw5N1U9eUKuhRZD6NKzhWVTXJzt+OxiMTGlJw6z7lpe7IOZWoty8VzrP/6ouvj++COOI9Xgq6D3B3DJMrgqEXp/CK2vAo8SD7GtHyAABF4OkW/BqNUw6Qxcn6uSzQ36CZpb9TpqfaXtcel7YHEX2PYQHP+jYj2v0LqY5+ZCcgU6P4n64aR2G29zXRI1Q1q668Bjj+STk+Nis+6jdzP4qQJTfJUXdANcNtbEvKJJ6K97UGvVfHPWEB6YdorWnUpv1YpeG8/V9/TFbNZjMq3m2Q9HlLpvfKzW1TKslLKIyvty5nk++XAjlwwv5M4n++Pqoa6ERqMRgGY+zYjeo2fnmmhMpnLGZbl42nZ1BZWQxVRQfkE8WoObVVdDY44aJ1YRnt3AYFXHc5JUC0J5DK5qHJ61c4dUxtnyuPpBk2DbdWejyj8O1O/IOsNtfiacP1T6/ta8I21vlrITIbcCWQydmkLzEt3hM+LAmFv+se6BtmP/jPkV64YMGJt24tDRk3To0AGDwQC5KZB9vPwDdU7gXaKV7fwRyE8v/1gXH2ha4jF6WgyYjeUf26SNapkqVpjleFymI17dQW/1NZdzCnLKiXJADY0o2R0+c3/FbkDdA2yHZZiMqgWtIpp1Ujf/xfLTKtYdXqdT9dDa+QTITy3/WAfXiOn/WcfKXSqXxImDZ+jUs2355xEOnTihTQlVPBd0K6uv4JMn1ZzQpdm5Jd2y3KtX9bWTDBsbAs/YrgsfElnh43U67fNY+/hjuPdex2O8G5J27cDVVQ0F3LdP60oPKlt3cbD9119w9932xzsKulev1paLg24nJywJcMvl3lJNnRb2iHqdcwpOLYcTf0DgBNt9vSPUjzUd0PYmCLletZqfWgZ+JYYMnV6pWtUz98GBmWDwUEF+m+vU9cnVT13P9bbhg/W47oQENYWUqP8k6K5dEnTXsqU/bOOPhao7UkCACWPOWVIy/Zj3bz/ePnSawA5lJ0nZvzWG4u62oW0zAPu5J8ddGwoOMhAaTU589mY8r39detD99QeHMZtVl8S1WwMoa8b0/fu1RB6h3ZqWsaeojKFX9GBoOb3Gm/s2Z8SkyCq+Q3j5uzjkTtW72LYo+qmKDuXvUqqqlrf5BRwbVPRTFV3K38UhFypaXqPRiE/0OSIjwWAA8Cv6qYoLyZRU1WEDTaj6/82FdKWv6pNFA1Uvr3fRT1WEFP1U3rIeRlaqWaVIOHi2VoLupIRk3npuDwMHuzL5/qoOgal/9uzKBtSc2eFFl17roPtUOcPuDxzUAu3uvX3K2LNyOvRoQ0uvM5y2GlferZzpwipCr69EEFmPGQyqYWP3bhVA79qlbXvsMdXjDGDp0ooH3daKg+4L4t4K2t+hfipDb4DAceqnpJxENd958QNRYzYcm6N+iun0EHIDDP7Jssq6a3JCghrnL+o/66C7VVW/GkWFSffyWlSYX8gj07TA493norjvOtWtvNDozOdvxZV2qMWBfVpXv07tHLe6tGzXgoFddlteXzdyI04G1bL5xR/DLHNpl5SblcucFVrirugjZY8HjE/TBm+F9e5Uxp5CCCEaipAQrefG8SPZtfKebz67h3dnj+D6qX05EnPxDCTfs3arZblba9VHObCZllTy1O4tdsdYSzmrjbluGeJVbeXS6XUM66X15mkTnEfzC4+5LyrFrfUFBbB4sbb+jjvAr+g55cqVkJ9vf+zBov9inc5+3uPAQDUWvl7q+Zaa63z4Iuh4r2rVLslssu2RQ4kM5ltWwtE5FUvYKupUcdDt5QXuFZvBUFwACbpr0fK5UZaEKMO6R3PT1F48MC3MEhB//ks4uVlldy3df0xd6d2cc2jdqfRW8Vk/NuE/N69m2U/bmfvPIK67XnVqSE3VM2eO42MWfreTtCytVeXMGX2ZT+Hj49WNmZsbhHSUb2shhLgYhLTTMnslHKtAhvlqEL9HTYZsNDnx54/lP4CuC7EbD3DTpRtY8NXmCh+zZ6/BstytaORMK19taNbJ42WPmU/J0ZoQ/QKr2uvBsWFDtGFG4aEVyMzfyFjPbV7cnbxlSxVwF0+Leu4cbNhge5zZrLV0h4TApZfabq+WVu6a5NwcgiZAvy/g6lMwbCF0eRLa3a66sXv3Ak/boUZtWqZZlhNidsPGm2FhB9g/s2JDpkSlGY1q6ENBBUYLOmI2az1taqVruTEfMg+oIW2NlATdteiH77Txt/99Ih+dXkdQx1ZcM0JNw5Sc6c+vX2wv9fjC/EIOnVJjVjsFHUdvKP2/L6x3e96dPYKxN6k+Po8+qrVcfPSR4ykav/vBPrt5dHQpZSmEQ0UPyTt1kmkGhBDiYhHS0cuynHDcUPqO1Sg1S+sFtmhlxeairk1mk5mbbzbx88rB3Ppw+Q/Ii+05qAXKXfqqALpViPaQ+tSZsn+/KVlF04W5g0dzj8oWu0xjruuBwaBuBoZeKoNwS+riYLRP8Tj2cVY9s9essd0nNRXS09Vyp062Gd2hAQTd1gwu0Hoi9HwbBn4HIxbBZTsg7CGb3UL4zbJ8LKXoQVFOImx/CP5sBzEvVmwqTVFhTz6p6ujo0baB9x9/wLXXwrZyZnjNyMDS87VGgm6zWSXm2/cBrL4c5vvA4lDY81q5h16sJFSqJZkpWSxcr+Z9DfBKYtyN2lX3nvu1Ph0bN5jsji12bN9JCowqOVVomwokyLHSr582F3hMDKxZbRt1Jx48xfJt9t8EUVsdJ7A6elT7Iy8toZsQQoiGJ6STlkAx4WT1BnqlSc3S3nPt7gjSU2yHT5mMJr6asZ1xY80sWVIrRbKxekE0MUfVkKusvKZErztYzhEqUN97TAUg7QISaOKpslcHttNyKJxKKrtPZ2rRV72vb1VKXbZO3bxYtEjH++/Dww9X//kbOkfJ4IqDbusu45s22e5jPZ67Uyfo3x+crdo0GlTQXUGBfS9Dr1f3lQl5l0CQVWKa3NMQ+yr82Ra2OJg4XlTamTMwc6ZaXrsWpk9Xy2vWwOTJ8Ntv2kwCpSk3idq5g5C6XbVMl2ypczR0IO4dWHcNbLwNNtwIf7SGpeGw83E4uVRLRGooY47Ei5wE3bVk7cKzloD51ol7cXLRcthFDNAGwxw61sTu2GIHdmsZkTu1r/xYmUce0ZZnvmrbov7jzHhMZvXE/ZqROyzro9c4zogcv03LHhzWLs3hPkIIIRoe7wBvPFzVDdLxM1618p4pGdr7FBqdWbZS+y48vDuB0X2iufeZPixfoeOeexz31qpJH31g+527bX35D74T4hM5n9sMgG7ttaz53gFeuDqrlvKTyaUPzTKb1fzQoI0hrm6XXaYSg3nUzrOVBiUszH4Wr+Kgu00bLfHU5s1gsmovKRl0e3hAX6vpvC/GoNvZszVBQeqXlXDaG4b/CeN2QvBklZgNVHI2RwFX9glV2U1GNbNKbf9xN0CzZtm2br/6KixfDjfeqNXFnTvV8IfSOAy6zWY4tQL+GQmLOsHyvvC7P/zqCQtaw4Ig+L2l+in5/5R9Eo7Ph6M/wrFfIOek7Xa3lhA8CXx6V/lzN3QSdNeS35dqzcF3TrWdX9E30Ifm7mo81cET/pRm/17tyX9oWOW7/F0zyYhPUzXP59qdbTEXTTdlNpn57lct8H/jHV/cnFWfk+h4x938bOboDqjYVEVCCCHqP51eR0jLdAASUoJr/B64ML+Q9GzbmTgWLVL/zv98E937+rIqWotUTp2CwzWYa23tn7u4JDKKR29YQ152HkeOwJ8b+tvss3V7+d/Be7ZpSVG6hWkJ6XR6Ha281WTGp86WnpH8XKbJcmNdU0G3KJ27u/10bsVBt04HA4uS7Gdm2s7jXTLoBnjxRQgOVo0fwSVmtrxYFCdTS06G7GzApycM/Q2uPAbhL6mpFEOutT0o+wT8EQw/6+EXJ/jFBea6wnx/WBQKqyfAruchYT4UlBFB1iOJiSrBnqn0jqsXxGSCr76yXVdYqIY8WOdhMplg61ZK5TDoPv03rBoLZ1aVeINzarhAzknIPQMF6fZBdZMSs2UYPKDVZdDrPRgfA1efhKHz7etAIyJBdy2IXhtPzFGVQaVfWCxd+3e02a7T6+gQqP5SEpKDKMh3fIez3+pCHtrNfqqw8ji7GugVegSApAx/Th9VLef7th8mPlHN0zo8IppOPdsS0V4N2D5wsh3nztpf6PYf0KpOaHj1JncRQghRt0LC1LR32bkunD1bs++VdiYds9n2dmTpUohas59bHokkO0+1ehv0WlK3jRtrpixfvraWUZO7snpXTz6aO5xJI2N4951CzGbbJs9tseUPgtwToz0o79bddobWVr7pAKRk+pGf4yD9NZBy7Lhl2U+/w+E+omaV7GJuPTf5QKuZ7azro6Oge+xYNZXWhx9WfxnrC+sM5sePW23wCIKIl+HKBPAfYnvQyb/sT2QqgLwUOHcATi6BPa/D+msgv0SvynqYoO3cORg0SCXPe/75mnmPlSu1h44jRkBEyenYrS5VJYc+WDuVqF1PLdOFtRwNzYtmLmraETrcDS0vVXO0e7Qu+gkG335QUCL5Yqf74arjMCEexu9WWfAvWQqdHwev7vbdRhohCbprwQ9fat3C77zJ8d1Lh56qkhtNBo4lOK6Y+w9rUzSE9qha1oOe4VoAHbVBXRW3RmsB/LjR6iYhsotWzpiNR+zOE3+4mWU5rGdV5yQWQghRH1nfQCck1Ox7pWbad7FOT4dRE1qQW6DGPF8/ciO/zdX6U5Z1M1nS+fNw5ZUqYPrPf9SxJVuhjAVGHrlhDfe9MIxCozYAd+mWvsz8VAXMrq7QKUj9MuIT25ORXHbG7z1xWqDdraftoOxW/lpAfvpYssPjU05r39d+XufLfC9RM6yTqQUGqqmVig0apC1b18fioFuvh3btarR49UrJubrt6A1qjm9rrr4q0PMbCP6D1Y93JDRpB07afSY+fe1bUtddA/NbwI7H4XztTDP488+qTnz6aenbiz/7zJlFLf7VqTCbzz/UrhcPXbmA716ag5OTuqDp9fD119ruG1ccgoNfqkR2G2+DNVeof7c/wsmNsy37WVq6dXqIfBuG/AoT9kH/r2DkCpi4XwXUVx2HqxJg7Bbw7GpbNoObCsqbh4JXOBhcq/nDN3xO5e8iLtQfq3sA4Oqcy/X3RTjcp0MHLdA+dAg6drTf58BxlV3U0yMDv6CqZVWJ7OUMP6jl6O3nGX8rbN2l9VvrO15lB+nZE/ijaL+taQyeYHue+AT1WMy/eTLeAaV3iRdCCNHwWHeBPX686DuhhqSmu1iWAwPNnDypvg/TznsB0LNDHN8t7EW+0Q2dTg0l3LTuHNDMwdnsvfzEARYuVE2Oe/fC+++r8br//ANBRc+Mv3htPR/PHW455uYxG/hjTQ+y8rSH3TffDO7njnCgaDjW9tWHGHVt6QN09xxQXcd1OhOde7ex2RYYoI0RP3UsjZDO9g+vU05r04n5+co417pgHXRbt3KDGpvt7KzG1hYH3WazNkd3mzbg4kKjYTNX97EKHhQ8Sf04YjZD1jFIiwZnB3/r5w5AXjLEf4A+/kM6NBmCrsm10GKIalnVV2+Ic+IE3HUX5ObC44+r8dPeJTp6fvGFtpyZCQsWqOvGBcmMh4Tf4PRKTu4/wsJlqoK19DrFFT7X4ZxbyLfP5fHen3fy+ONw663w9NNmkpN1bN7pjWnz/ZYkd9ZOJs2zLNskUms98QILLEojLd21ILiDFwD33Z6Cd4CXw32sg+ziqbis5eaYOZasxoKHtklBp69aN42eA7Ux2tG71VMo62kF+qgZxojsp40zi4q2rSbnzp7jVJo6T2hwGRN5CyGEaJBsWrqPOO7+XF2Kk4UB3Hhdnk038ubuGfw63wO3Jm40bw7d26meVzF7PDh3tvzW39iNB/jga/vmxvh4+Hi61jr23S/aw+evXl/H7OWD+WveIZq4au/x8MPQt7/WerMt1nEvL7MZli8zs+dYWwDaBxy3m+6rVSvtJvhkguPPkZKkBeZ+/tI1sy5ERmrLJR88ublpSdHi41Wm+eRkFWyB1rW8sSi3pbuydDpo2haCr4KWo2y3mc3QtL0lMZsOM15Z69DvfASW9YL5vrDlbkhab5/wK+5d2HIvbJ4C6ybDv2NUa3l2iTHKJbz4ogq4AfLzVYZwa9u3q+Rl1r77Tv2bcfwglw48RMfWZ/jmpfmY930Mh76F+E9g75sQ8xLsfFLL8F1s7VWwuDPEPA9Jq/l21S0YTephwpTh3+DspK6Vt14VT1QU3HZbUb6BfuqBXVqWD/tPO55i6GSaFmlbupeLGiUt3bVg4UITCxce4KabSr8Cd+igLRc/JbV26LDOct0I7dXBfocKCu3ZFneXbHLyPYja14q8PNi1S20LCwPPop7mEYPao9cZMZkNRMfZtqrvjz4BqMe/Ye3K7l4nhBCi4Qnx2g+om7WEnRuBETX2XqlWicA7dXZjeI+d/Buloplv39tLhx7a4NmBPY4Tc7gdJrOBbf8eYOQ1pTfBm01mpt6fZblJferOjXQe3J977jVjNDkxZ64rb3xo4ljcSbbtV82YPTvEcfezQwEYekUP/ll5jlfegDFjVADm4jIAnlTn37o7AIA9mw7ywxcnyMvXQbNQNu9qxZYtOkAF2pG97LtZtmqv3eWeymzvsPwpydrDB18/Z4f7iJrVuzc89xzExaks7yUNGgRbtqjlzZttu583tqC7NoekoNPBJX+p6awOfYV5/0x0OYna9oJMOPSN+hm1CgJGaNtOLrFPFHb6b9UNu8sT0PkJcLHNmxQTowXQxX76Ce65BxXU5yTyxbsFgHrAp9erISz//AMJW1bwyrTjrNw8BYC7/zeZeQuW8+WUe2njX+IX1flxcLKaxahZmM3mv+O0Vui7Hw+D9r+DMQea2yYfGDjIhYVFUytuLPiczsOzoElb1Z2/IAPyznLyGZVF3NdXDZ0RNa9WWrp/+uknRo4cSffu3bn22muJiYkpc/+//vqLcePG0b17dyZOnMiaNWtqo5g1xtMTunfPwlBGstMOIdqT7kPbdtpt36/N0HVB82IbnA10b6ee7h881ZYNK0+TX9SIYT2lhUdzD0KDjgKw+2gHCvK0sXRrlp+xLIeFGqteGCGEEPVSSButX2zCiZrtI5t6Qusx5euZzcwvvLhmxCa+nbGOyfcPtNl34EDttmXT2rIf+s7+YANrd0cC0KHlMV75uBd3TjEwpk8UAMdTgli/eDe/LtFarK+7OtPmHP2HNGPpUi3gCguDZkU9Xbdtg4zkDEaPb8Zb34/gw5+H8+GXrSxBGKguyS+/aT8LSGBn7Wb6VHoLh+VPTdVa6PwCGu/ctnVJp4PXXoP58x23BlonU9u0yXEStcaiSt3LL5SbH3R7BtOEQ8S1+QFTz/ch5DpwKhoW4tEa/IfaHlOyNbmYMVvNJz7fF5b1g7Pavfi0aVqDuV6v7nvXrIHj826HP4LInNOVnxeooZbNPHJ46im1r9kMdz07km/XTLF5qxW7xxLxTAx7T3SxWU9hiUHgbW9U49l7vgtXHOLoOTWLgo8PtB1+LQRfDW1vAh/bYS6DhmhtqpsOj4Cgy8GrG7i3hOZhmP0GcuqMuq47nKNb1IgaD7qXLl3K9OnTmTp1KgsWLKBz585MmTKFVOtH21Z27tzJE088wTXXXMMff/zBqFGjmDp1Kvuto86LUFCIOy5OqivZoQT7sSurrB7KXeiFvGdXLUnaNx9qfdn7dbJ9GBIZpoLr/EJX9m0/gtkMrz+2gSfeGmHZp1f/0ucYFUII0TC17hRgWT5+umkZe164lMPxlmVf53g6923Pr6sGcue0oXb7DhqtTbm5cWsTu+35OfksmrWV28ev54FnIy3rP347GbcmKnC9+Qatu/xP32Uw71et6/a199tODVaSwaBaP0GN8bzv5kOcTg+w2697d/j1V9VCFh5ufx7rAO5kKb1aU1K1J/V+Le0/q6h71kH3okUwY4b2urEF3c2bay39NdXSbTarJIt29E5ku3XFHPowDJkLk07DwB8h4lWVwM3akHlwWZTKsH3VcZVVPfQR0BUFqmYjnN0GrmrIycqVsGyZ2tTG7yhPT9T+k39eEAA5p/hp482W/A+3XrKQBx/UknX/868WAE+dkkzrQNVHPTPHk/+tW6qm0RqxDEavVZnerXlHwrit0OU/FLq1J7GoMd+6K78jffqAU9HbOprpIS0N8opGr0jX8tpT40H3rFmzuO6665g8eTIdO3bklVdewc3Njfnz5zvc/4cffmDo0KHcfffddOjQgccee4yuXbsye/Zsh/tfLAzOBtoFqL+mw6eDMFulVo3deIBPP1VP1tzcYPhwh6eoMOsxSvNXa5PU9+1nWx169tBuTIaOb0vXrvD8h4Mt6267bD2jyujaJ4QQomFya+pOC0+VJTfhTM1OEp16tuLBZccebfBrrgaBb97TAbNJaw02GU0MiTzAFXf144e/hlhugq8eupnLbulj2e/KO3rg4apau376qxc7imbj6t3bdqhXaax7hc39W7Uwubtks+LnHWxafZaYGIiOhmuuUd1MHbG+0T1VSmqUlLNaDwO/VvKAuz5q3VpLOhgTo8Z2g0rQd6H3ag1RcWv38eM1M0/13Xer5GUvv1zOjk5NoN0t0P4O+21N2qhg1itctYQ3CYY+H8KEOFL8nyLfo4fap0kIsbFw003aoa9f9xx3Dptlef3TxptJPNeZ91Zo84Pd98IlBAfD6NG2bzt2LHz8lT+xe91oUdS55be/2nJCNwkCx0KLoeBkm/vBWmIiGIs6l5YXdHt4aPf6e/faP6hwOEe3qHE1OqY7Pz+fPXv2cN9991nW6fV6Bg0aRFRUlMNjoqOjueOOO2zWDRkyhJUrV5b6PkajEaOx/nZzLi5beWXsGJxCfGJ7cvI9OHEwkcAOLbUxaUZ1UzLt0UQCAlpyIR83op92A5VXoJ78OxkK6D6onU0ZB4ztBO+p5YxMFzKKet3pdGZef2QV/317GCazCervr/6iUtF6JERZpB6JigppkUxShj8nzwaQl5OLk4s2rrg661FqmnZerxZNyj3ngG6HWbzJj7PnfYjbfpCw3moc5cFdxyxjs0ElYbv20l289UV3m3O6N3fnymGb+fnvwTbZya+5xoTRWH6W8D6h8YDtdDnP37+FkdcOK3plxGymzO9pLy9wdtZTUKDj5PEcjEb7LvwpaVqXci//ZnXzN2s0YrAsGsv+UFU6fcO/Hg0YoOP4ce3pSrduZhYsMOHmVu2/rnovOFhPTIyOggJITDRWa0BnNsPs2XpAx1tvmXn0URPNi55FVbYenTqltcbn58O//+qYP78De/e+iZfXDB55KJ+RXkauuUZPSopqsh48qJDr3p6J3tmDfnONbN1qICahB5HP77XsM3CgmW59fDEajdx2m46//1b1wtPTzBdfmDCZoGlTuOceHa+/rsdohJkzTbz2WvnXHTU3t/prDAkp/1o1YICO7dvV+2/caGTsWG2bmkddnatly4pd9xqDkvWouq9LNRp0p6WlYTQa8fW1TcTl6+vL4cOHHR6TkpKCn5+f3f4p1ulNS2goXc93795d5vZWLbQu92uW76TLoEDW/JbA2t1XA9A+4ChjJ5wiOvr0BZXD3EyHXm/GZNK61IW32c++A7k2+3n4wLRpRtau9eTwYXfOnHGhadNCXn75KCNGeLIrZtcFlUNUTXn1SIiKkHokytPSLwsOgMlsYM3yVfgGe9vtUx316EyqFnAmJh0nKbPs77jwzqdZXDRF05LfYskxqLHdB3ecBlRSsquHruap6W44uzXhSOJhSLQ9xyWjUvj5b9t1XbvuITq6/Eztnr7pWAfdoYGHGHWDB9HR0eUeay2geUtOpAZx6vg5oqOP221PTlNDzZq4nif+ULzd9tqgz8mhuD9bTEwMJnf3Gnmfhnw9CgvzBdoCMHRoOq++eoTMTBOVrA4XBQ+PYEA14/7zzwG6dy9l/HQVZGfryc9XtTEnR8d77x3nqqtsh6pWpB7t3NmUBx/sRGGh424o6ek6/veaK/97TVvXrVsWr71+gJg4FYQNG+bP1q2qWb844A4MzOOJJw4QHa36bbdvr6N791D27/fg2WePkJKSbpmpYehQJwyGCIxGHZ99ZmLChBjc3MoOfNet86E4UZvBkEh0dFKZ+7dq5U3x9fCPP84QEKB1qdmyRauzJtMJoqOT7U/QiNXU9eiiyF4eGhqKh0fpXTLqmtFoZPfu3XTv3h1DGdnUwrutg4VqOS/Lk7aB7Rj/mZaZ4qO3z9BvYL9qKVNoKOzbp73u1yOVyMjBdvtZT5Fx7pwRJycd7u7206+ImlfReiREWaQeiYrq0GYdFAW3rjpfIiMjLNuqsx6lnz8KQFO3c/Qd0LfsnYH0y2FGUQ/P/ft9+E9RP8rTR7Q+k+E9vOk7wMFg6iLdunTj2deTSTmnkh/1C93F5ZeXvr81c4SZFp5JJGWo4OKjd8/Sp1+fco6yF+gXx4nUIJIz/ejWpTnOrrYZylNzVf9cPz8dkdbjwmpTlhY0RUREQJPqHVt+MVyPwsOheXMTXl5w++3NMBgiyj3mYtWrl45ff1XLrq6hREZWXwvq8RLPpf75pw0vv6z69le0HhmNMGWKnsJCx1PwRUaa2b0bjEZte79+Zv76yw1Pz+6WdYGB8P77Zst+Q4eamTfPCX9/28RoO3dCfr4ZV9e2du913XVmfv5ZR0aGE3Fxkdx5Z9m/qyVLtDINGhRIZGTZ3Qi8vVXmfYCDB1sRGanlnvjrL+vPF0RkpOPpDxubkvUoOzu7Wht2azTo9vb2xmAw2CVNS01NtWvNLubn52fXql3W/gAGg6FBXKzLK2fHztqX2ZFDJj57I4akjBGAGpN2+a0Dqq0sPXvaBt39++nK/R1aT4Uh6k5Dqe+ifpN6JMpjPW4w8Ui2w/pSHfUoNVP1EfVtloHBYJ9ItKQBoztbprTcucff8v4Z+cGWfXw79ihzxhCDh4HrL13LzN/HAHDdxKSKfw4DvPz4Pp55y5WHb45i7A0jKnZcCYH+5yEezGY9KYlptO6kDfQ2myE1TZXHN6BJmZ+lRlm9scFgoKYK0pCvRwYD/Pe/dV2K+qGdVZvM7t16brxRLWdmwqOPgr+/SjZXWq6DsmTaTizApk06Dh40EGY1q1Z59Wj2bG2a3NBQuOwytdypE1x1FQQF6Th8GN54A+bMUePy587V0by57TlbtYKnn4b334c774T33tPh4uL4fZ1KibQeewx+/lktf/yxnilTtORrjlg/dGjXzlDun2K7dtC2LRw9Chs26MjNNViemZ3RJiGidevyz9XYFNej6r4m1WgiNRcXF7p168amTZss60wmE5s2baJnT8cJuCIjI9m8ebPNuo0bN9bdU95a1LGr1g1/3wFXPv1Jzbun1xl5Z2b1Zjoo+evsO9Q++6oQQojGK7iNNnlrwrGCMvasOrPJTOo51W3d1/NchY5p4tmEFp7q4fyZNB/L+rQ0bR9v+57wdv77Wlc6tDxGZPt93PXf8lvYrT3w0jDSzjXn1S9HVOo4a60CtK7sp46m2WzLyNDGA5fR5iBEvTJsmBZQz56t1eEXXlDzXL/9NsybV7Vzp6XZr/v++4ofn5MDz2v5zvj8c/jgA/UzdapKfgfQvj18/bXq5PHXX1jGjZf02mtw7hx88gm4VGFWxX79oH/RZAkxMbB2bdn7W2eELy+RGqgAfox6pkh+vu35rROpSfby2lPj2cvvvPNO5s2bx4IFCzh06BAvv/wyOTk5TJo0CYCnnnqKd99917L/bbfdxrp16/j22285dOgQH3/8MbGxsdxyyy01XdQ617ZrEDqd6k72x7q+nEpTc3teMXgb7buHlHVopUW217pLNHE9T9d+FUjZKoQQotEI6aC1Oicc17NnRwoLvtpMblZuGUdVTkZKJkaTagry86r4+E/fQBWJpmZpD4zParNh4uNT8gh7bbq05kBiCFGHOuMd4FXh9y6m05fRLFUBga209M6njts+cLDu8CdBt2goWrWCcePU8vHjarrbzEyYpSX8Zu7cqp3bUdD9ww+2yerMZtXrYMwYOHTIdt8PP1TT/AFcfjlccknZ71dWq3OxqrTYW3v0UW35ww/L3rd47nMPDyiRKqtU1snTli/Xlq2D7pYtK3YuceFqPOgeP34806ZN46OPPuLKK68kLi6Or7/+2tJd/NSpUyQnawP4e/XqxTvvvMPcuXO58sorWb58OTNnziQ0NLSmi1rnXD1cCfZTfwnFNyEAjz7uVtohVdazv48lwO/TIRqDs/QtEUIIoQnprD3s/erPoYT38WPSvQO479rt1fYeqafSLcu+XnkVPs7XT31n5eZCdrZal3ZWu/uuSEs3XHjgfCFaBWrfu4nHbT97SqI2LM/P83ytlUmIC3XnndryrFmqhfuc1TOlv/6y7ypeEdZBd3Gv38RE+NsqIeL69fDOO2rdHXeoIBwgORmmT1fLej28+Wbl378mTJ6stTT/+afqCu6I2ay1dLdpU7EHAgAjR2oPBlas0NYXB93+/lVrpRdVU+NBN8Att9zCqlWriI2N5ddff6VHjx6WbT/++CMzZsyw2f+yyy5j+fLlxMbGsnjxYoY3oskOO7S3ndgwol08w6/qUcreVecf7MerD60lsv0+/vdG+WPohBBCNC4tWje33JBZJx76a0OYzfzYFyIlSeti7etTWOHjrFt6itPGnN2vDWXzcU2gvuvYWfvuLTmLaspRrZnOT199DzmEqGkTJ2o9TX7/XY17tpaXB4sWqeXNm1UiurvvLn96Neug+9prtWXrLuYrV2rXqfXrVSAL8PDDWqB/113QTZtZsE65uMCDD6plkwlmznS8X3Ky6h4PFetaXszLS+vCHheneh+YzWrKNJA5umtbrQTdouI6lOhG/sg9STX2JP65j0YQdagzw66s/qBeCCFEw6bXqzGaoFpWmripu77kTH9OHDxVxpEVl1rQybLs13lQhY9zGHSna9m/ffyqv4dYdes7KhQngxorv36nbfbglDPawwg/v7prjReislxd4eab1XJurtZ6G2RVxefNUz1UbrwR9uyBb76Br74q+7zWQfctt2i9WZYuVWOWQc23bW3aNJWsrLhLu48PvPpq1T5XTbn3Xq21uXgseUnFXcuhckE32HYxX7FCXS8LilJ0SNBduyTormc6dtSWfb1zuemhyk9DIoQQQlSHBQtUq9SJE/DozVss63esPVEt57ceu+zr71z6jiX4uR21LKcePQhAWqYWaHsHeF5w2WqaR3MPenVU82/HHe9A6kltUHpKstbq79ei4r8XIeqDO+6wXzdzptaVetkyeOYZ2+7Uzz6rWnRLYx10t2gB48er5cxMlSTs/Hk9W7faHrN/P9x6q/b6k0/q3xjmFi3gppvUcno6/Pij/T4XEnQXJ1MDFXRbj+2WJGq1S4LueibcaprQ+x5ww72Ze90VRgghRKPWtClMmKBaRHr3076Pdm6vnmRq1jOKVjQ5EICvddCdmATA2Uw1H04T1/O4uLs6OqzeGdJHe+qwcZUWcdg8jGgh9wGiYenZEyKspitv315dR4q7hefnw0cf2R6Tlqam4SpNydkJJk7UXi9ZoiMqqpll3uxBVp1mirutT5oEN9xQhQ9TCx55RFv+6CNtLHox66A7pJJ5lfv2Bc+iZ5BLl6qu/MVGjqzcucSFkaC7nhk3TmUzvPtu9dRPCCGEqA/6DGttWd6xq3pygVgH3ZXJ0l2cSA0gNUW1CqedawqAd9MqZGmqI4Mv62xZ3rBbm3A4JVX7fH4tm9RqmYS4UDodTJmivX7oIZX87Lrr7PedMkWbluvbb2HjRsfnLBl0jxunzYG9eLGOrVu1a9KTT9q+l58ffPZZxROQ1baePWHoULUcF2f/O7iQlm4nJxg9Wi2fP6+6/APcdpvWwi5qhwTd9YzBoOYM/OorLJPYCyGEEHUtODQQ/+aqNXb7vnbVkkwt5eAey7Jvk9Qy9rTl66+l3E1NMYHZzNnzXgD4NK/YfN/1weDRWl/X9eu19alpWpdyv1alTBQsRD324IOqC/mzz6pEZgADB9qO7Q4OVlNlvfaatu7hh+1besE26PbyUq23xXmWjxzRsXSp6iqj18OIESpbeYsWarz011+r5frsttu05Q0bbLddSNANtl3MQU2X9tVX9fchxMVKgm4hhBBClEun19G781EAUs/5knoiw26f7Oyyx2WWlHpGa5X29c6p8HHWXa5TUnXknM8hr0CN6fZuVvHz1LWAAC2Xy7ZtWitUSrr2+XxbVXD+MyHqEScneOMNeP11rUVar7dtXX3/fdXA9MAD2vDKnTvh9Gn78xUH3c2ba1OGXXGFtj0jQ71J796qJbx9e4iPVwHrlVdW84erAQMGaMvbttluKw66nZyqlvzMuldA584wf75MFVYXJOgWQgghRIX06aGl1j0YY9uinJYGoaGqRWnyyF3sWrev3POlpmvJz/wCKx5c+gY01c5x1omzZ7QHAD6e1TPevLYMGaL+zc+HHTvUckq6+nzN3DNx9WgY49OFqIiXX1Yt4LNmqXHWoALC4u7VYNuyW6w46Pa2ukxYj+suNmqUtuzlVf8Sp5WmSxeth2tpQXfr1toDh8oICVEZ3J94Av75x/Z3KGqPBN1CCCGEqBDrZGrxcU422379FRIT1fLvq3oQOawz14zYRGZq6WOsU9LVXaarcy4ezTwqXA7fllqX69R0F86e0R4A+HgVVPg89cHgvlrW8vULVL/SlEyV+civeXpdFEmIGuPhoVrA77jDtntz27bacsmg22x2HHS3a2ebgBhsg+6GxGBQrfSgPn+Syg9JZqbKag5V61pebNIkeOcdmSasLknQLYQQQogK6TNcS50bdbCLzbYFC+z3n79mIJ+/sbPU86VmquRHvs3S0OkrPsDQO8BLO0e6B2kpWpdyby9Thc9THwzpm25Z3rDJCWOhmbPnVWTh59lwxqcLcSGsA8qSQXd2tja3dMlWWuvWbldXM4MH10z5akPfvtpycWv3hY7nFvWHBN1CCCGEqJCgDi0JCFBZjmIOtLEkPMrIUN0WAYKDzbz71GrLMStWOU4EZjaZST1XHFxWLuO4k4sT3k1U01dqRlPO5ne0bPNp26lS56prYb3b4dtMJZHbENOJs2fNmEyqD6lvu85lHSrERaOsoLtk5nJr1uO6Bw0C9wY8w5510F0857gE3RcPCbqFEEIIUSE6vY7evVWLdGamE0ePqvVLfjloaYm6+modj08fToj/CQA2xHYhN8t+nHVWRpYl+ZmvZ3aly+LbXI3jTj3nSdp5bboP7wbWf1Kn1zE44iAAZ8/7sG75Ccs2P/8qDOAUogGqatDdvz/ccIMJH58Cpk1rWL1cSurXT1uWlu6LjwTdQgghhKiwPn205eLEX7//rKUsnzTmGDq9jlH9jgCQW+DOxr/iLNs3LtlN7MYDpJ5Ot6zz9ap88jNfX9XMnp7lRXKSNseQj0+lT1XnhgzQusc/9oSWOK0yc5cL0ZAFBGgZtSsTdOt0MHu2meXLYyzzUTdUbduCr5r5jG3b1Fh2CbovHhJ0CyGEEKLCipP9AGxel0nOuRz+2hwBgF/zFIaMaQ3AqFHaLcY/y1Sr9LyZGxk8oTs9h7Xl128PWrb7+VQ++ZlvSDvL8qHD2njwhhh03/ZQN1p4qgcXx5MDLOsl6BaNhV6vsmyDCjSt5+ouK+gudjHMOa3TaV3MU1Lg0CFYulTb3r593ZRLVA8JuoUQQghRYX17al3BP/m8KY/euo3sPNW9+8rhcRicVZfokVdqY6v/2eCH2WTmtXdUFFlodOaZ97WMR74+le8WWtwiBHBgrzYm3Lt5XqXPVdcC2vqzcO4Z3Jxt5xj3c3cwd5IQF6niltxz57SM3VCxoPtiYd3F/OGHYc8ebX27do6PEQ2DBN1CCCGEqLBWwR7cP2kNoILnr/4cZtl29TXavNut2regW8gBALbFd+HPb7ey+2ioZXuh0dmy7NvKq9LlsAm692st5T4eSZU+V33Qf2w4P32yC51OewDh53GyDkskRO0qbVx3Ywq6rZOpLVumLb/zzsXRmt+YSdAthBBCiEr58KeB3DBqpc26Zu6ZjJocYbNu1CAVNJrMBu57svS+kb4dIytdBuug+0SS9sK7heNs6Q3BpHsH8N60dQC4u2QzeGyHOi6RELVHgm7boLvYlVfC0KG1XxZRvSToFkIIIUSlGJwN/OcNT+6csM6ybsLg3bg1cbXZb9RV2pRXSRn+AAT6nOLDl2zn7q7K2GVfnf3833qdkea+zSp/snrksenD2bvlEIf3nadluxZ1XRwhao0E3SqhXPHYdgCDAd58s+7KI6qPU10XQAghhBANj96g54v5Awidtpqdu1x561P7luzh4wLQ68FkNWT7wZvjeejFESxcr83t3bZt5d/fz8d+7LZ303T0Bl8HezcsXfpJC7dofCToVvr2hYQEtXzvvRAWVrflEdVDgm4hhBBCVIneoOfp90eUut3TE/r1M7N5sxqM6Oqcy73/DUevhzlz4NlnoWNH6Nq18u/t6+9mt8676Tmg4QfdQjRGEnQr994L8+dDhw7w0kt1XRpRXWo06E5PT+fVV19l1apV6PV6xowZw3PPPUeTJk1KPebWW29l69atNuuuv/56/ve//9VkUYUQQghRA0aN0rF5s1q+6fL9+Aercd8tWsDXX1f9vL4BHnbrfJqfr/oJhRB1qnVrLD1jSgu6vbxqvVi1bswYSE1V85Y3bVrXpRHVpUaD7ieffJLk5GRmzZpFQUEBzz77LC+++CLvvvtumcddd911PPLII5bX7u7uNVlMIYQQQtSQO+6ATz5RmXeffjOi3P0ryrelfcI07+a51XZ+IUTtcnaGwEA4cULrXg1a0N2sGTg1kj66Pj51XQJR3Wqs6h46dIh169bx22+/0b17dwCef/557r33Xp566ikCAgJKPdbNzQ1/f/+aKpoQQgghaknHjpCYqBICudn3CK8y35Zedut8PBveHN1CCE2bNiroTkqCnBxwd9eC7sbQtVxcvGos6I6KiqJ58+aWgBtg0KBB6PV6YmJiuPTSS0s9dtGiRSxcuBB/f38uueQSHnzwwTJbu41GI0ajsVrLX52Ky1afyyjqP6lHojpIPRLVobL1qDjYrs5q5+LhgrtLNjn5Wjdzb69CqdvVyWjEYFk0Vu9/IHI9EvZCQnRs2KAmVzpyxEhoKKSl6QEd3t5mjEaT3TFSj0R1KFmPqrs+1VjQnZKSgk+JvhFOTk54enqSnJxc6nETJkwgMDCQFi1aEB8fzzvvvMORI0f45JNPSj1m//791VbumrR79+66LoK4CEg9EtVB6pGoDnVdj3ybteREqhZ0uzhnEh0dXXcFusjoc3LoWbQcExODqYaG+9V1PRL1h5tbINAKgFWrDnH2bBb5+aoWOjmdJzq69Ht+qUeiOtRUPap00P3OO+/w1VdflbnP0qVLq1yg66+/3rIcFhaGv78/d9xxBwkJCYRYT1xnJTQ0FA8P+4Qq9YXRaGT37t10794dg8FQ/gFCOCD1SFQHqUeiOtSXeuTneYATqdrr1j3HEBnZSAZ91oasLMtiREQElJEItyrqSz0S9UffvjpmzVLLTk4dCQ42W7YFBzclMjLS7hipR6I6lKxH2dnZ1dqwW+lvprvuuourr766zH2Cg4Px8/Pj7NmzNusLCwvJyMio1HjtHj16AHDs2LFSg26DwdAg/sgaSjlF/Sb1SFQHqUeiOtR1PfL1zLZ97e+KVOtqZPXLNBgM1NQvt67rkag/2rXTlo8f15OZqb328dGVWU+kHonqUFyPqrsuVTro9vHxses27kjPnj3JzMwkNjaW8PBwADZv3ozJZFJPSysoLi4OQBKrCSGEEMKGb+uWEKW9loy/QjRsJefqbmxzdIuLl76mTtyhQweGDh3KCy+8QExMDDt27ODVV1/l8ssvt2QuP3PmDOPGjSMmJgaAhIQEZs6cSWxsLCdOnOCff/5h2rRp9O3bl86dO9dUUYUQQgjRAPm2DrR5LUG3EA2bdadWCbrFxaRGBz698847vPrqq9x+++3o9XrGjBnD888/b9leUFDAkSNHyMnJAcDZ2ZlNmzbxww8/kJ2dTatWrRgzZgwPPvhgTRZTCCGEEA2Qr6/ta+8m6YBXHZRECFEdmjQBPz9ISZGgW1xcajTo9vLy4t133y11e+vWrYmPj7e8btWqFbNnz67JIgkhhBDiIlEy6JZ5uoVo+Nq3V0F3QgJs2aKtl6BbNGQ11r1cCCGEEKIm+Xrm2rz2DvCso5IIIarLtddqy99+qy1L0C0aMgm6hRBCCNEg+Rq0+VTdXbJxa+JWh6URQlSHKVOgeCbg/HxtvQTdoiGToFsIIYQQDZJfS3fLsneTtDL2FEI0FN7ecNttjtcL0VBJ0C2EEEKIBsk3oJll2afJ2TosiRCiOj38sP06CbpFQyZBtxBCCCEaJL/A5pZl32apdVgSIUR16toVLr3Udp2XV50URYhqIUG3EEIIIRokT39vbrp0A86GfO66q0YnZBFC1LJHHtGWmzYFZ+e6K4sQF0q+oYQQQgjRYP20YjBfn8vBvdmQui6KEKIajR8PnTvDvn2q5VuIhkyCbiGEEEI0aO7N3MvfSQjRoOj1sGQJ/PILXHddXZdGiAsjQbcQQgghhBCi3mnfHp59tq5LIcSFkzHdQgghhBBCCCFEDZGgWwghhBBCCCGEqCESdAshhBBCCCGEEDWkQY/pNplMAOTk5NRxScpmNBoByM7OxmAw1HFpREMl9UhUB6lHojpIPWokcnMhLExb1umq9fRSj0R1kHokqkPJelQcXxbHmxdKZzabzdVypjqQmprK0aNH67oYQgghhBBCCCEuMm3btsXX1/eCz9Ogg+7CwkIyMjJwdXVFr5ee8kIIIYQQQgghLozJZCIvLw9PT0+cnC68c3iDDrqFEEIIIYQQQoj6TJqHhRBCCCGEEEKIGiJBtxBCCCGEEEIIUUMk6BZCCCGEEEIIIWqIBN214KeffmLkyJF0796da6+9lpiYmLoukqjHPv74Y8LCwmx+xo0bZ9mel5fHK6+8Qv/+/enZsycPP/wwKSkpdVhiUR9s27aN+++/nyFDhhAWFsbKlStttpvNZj788EOGDBlCREQEd9xxh93sD+np6TzxxBP06tWLPn368Oyzz5KVlVWLn0LUtfLq0dNPP213fZoyZYrNPlKPGrcvvviCyZMn07NnTwYOHMiDDz7I4cOHbfapyPfYyZMnuffee+nRowcDBw7kzTffpLCwsDY/iqhDFalHt956q9316MUXX7TZR+pR4zZnzhwmTpxIr1696NWrF9dffz1r1qyxbK/Na5EE3TVs6dKlTJ8+nalTp7JgwQI6d+7MlClTSE1NreuiiXqsU6dOrF+/3vIzZ84cy7Y33niDVatW8cEHH/Djjz+SlJTEQw89VIelFfVBdnY2YWFhvPTSSw63f/XVV/z444+8/PLLzJs3D3d3d6ZMmUJeXp5lnyeffJKDBw8ya9YsPv/8c7Zv3253AyMubuXVI4ChQ4faXJ/ee+89m+1Sjxq3rVu3cvPNNzNv3jxmzZpFYWEhU6ZMITs727JPed9jRqOR++67j4KCAn755RdmzJjBggUL+Oijj+riI4k6UJF6BHDdddfZXI+eeuopyzapR6Jly5Y8+eST/P7778yfP58BAwYwdepUDhw4ANTytcgsatQ111xjfuWVVyyvjUajeciQIeYvvviiDksl6rOPPvrIfMUVVzjclpmZae7WrZv5r7/+sqw7ePCgOTQ01BwVFVVLJRT1XWhoqPnvv/+2vDaZTObBgwebv/76a8u6zMxMc3h4uHnx4sVms1mrRzExMZZ91qxZYw4LCzOfPn269gov6o2S9chsNpunTZtmfuCBB0o9RuqRKCk1NdUcGhpq3rp1q9lsrtj32OrVq82dO3c2JycnW/aZM2eOuVevXua8vLxaLb+oH0rWI7PZbL7lllvMr732WqnHSD0SjvTt29c8b968Wr8WSUt3DcrPz2fPnj0MGjTIsk6v1zNo0CCioqLqsGSivjt27BhDhgxh1KhRPPHEE5w8eRKA2NhYCgoKbOpUhw4dCAwMJDo6uo5KK+q7EydOkJycbFNvmjVrRo8ePSzXoqioKJo3b0737t0t+wwaNAi9Xi9DYoSNrVu3MnDgQMaOHctLL71EWlqaZZvUI1HSuXPnAPD09AQq9j0WHR1NaGgofn5+ln2GDBnC+fPnOXjwYO0VXtQbJetRsUWLFtG/f38mTJjAu+++S05OjmWb1CNhzWg0smTJErKzs+nZs2etX4sufKZvUaq0tDSMRiO+vr426319fe3GpQhRLCIigunTp9OuXTuSk5OZOXMmN998M4sWLSIlJQVnZ2eaN29uc4yvry/Jycl1VGJR3xXXDUfXouKxSykpKfj4+Nhsd3JywtPTU+qWsBg6dCiXXnoprVu35vjx47z33nvcc889zJ07F4PBIPVI2DCZTLzxxhv06tWL0NBQgAp9j6WkpNjc5AKW11KPGh9H9QhgwoQJBAYG0qJFC+Lj43nnnXc4cuQIn3zyCSD1SCjx8fHccMMN5OXl4eHhwcyZM+nYsSNxcXG1ei2SoFuIemb48OGW5c6dO9OjRw8uueQS/vrrL9zc3OqwZEKIxu7yyy+3LBcnLho9erSl9VsIa6+88goHDhywyUsiRGWVVo+uv/56y3JYWBj+/v7ccccdJCQkEBISUtvFFPVUu3bt+OOPPzh37hzLly9n2rRpzJ49u9bLId3La5C3tzcGg8EuaVpqaqrdUxMhStO8eXPatm1LQkICfn5+FBQUkJmZabNPamoq/v7+dVRCUd8V142yrkV+fn6cPXvWZnthYSEZGRlSt0SpgoOD8fb25tixY4DUI6H53//+x+rVq/n+++9p2bKlZX1Fvsf8/PzsMggXv5Z61LiUVo8c6dGjB4DN9UjqkXBxcaFNmzaEh4fzxBNP0LlzZ3744YdavxZJ0F2DXFxc6NatG5s2bbKsM5lMbNq0iZ49e9ZhyURDkpWVxfHjx/H39yc8PBxnZ2ebOnX48GFOnjxJZGRk3RVS1GutW7fG39/fpt6cP3+eXbt2Wa5FPXv2JDMzk9jYWMs+mzdvxmQyERERUetlFg3D6dOnSU9Pt9x8SD0SZrOZ//3vf/z99998//33BAcH22yvyPdYZGQk+/fvt3lQuHHjRpo2bUrHjh1r5XOIulVePXIkLi4O0IIhqUfCEZPJRH5+fq1fi6R7eQ278847mTZtGuHh4URERPD999+Tk5PDpEmT6rpoop568803ueSSSwgMDCQpKYmPP/4YvV7PhAkTaNasGZMnT2bGjBl4enrStGlTXnvtNXr27ClBdyOXlZVFQkKC5fWJEyeIi4vD09OTwMBAbrvtNj777DPatGlD69at+fDDD2nRogWjR48GVPKQoUOH8sILL/DKK69QUFDAq6++yuWXX05AQEBdfSxRy8qqR56ennzyySeMHTsWPz8/jh8/zttvv02bNm0YOnQoIPVIqK7Aixcv5tNPP6VJkyaWcY/NmjXDzc2tQt9jQ4YMoWPHjjz11FP897//JTk5mQ8++ICbb74ZFxeXOvx0oraUV48SEhJYtGgRw4cPx8vLi/j4eKZPn07fvn3p3LkzIPVIwLvvvsuwYcNo1aoVWVlZLF68mK1bt/LNN9/U+rVIZzabzTXwGYWV2bNn880335CcnEyXLl14/vnnLV1ghCjp8ccfZ9u2baSnp+Pj40Pv3r15/PHHLeOT8vLymDFjBkuWLCE/P58hQ4bw0ksvSVepRm7Lli3cdtttduuvvvpqZsyYgdls5qOPPmLevHlkZmbSu3dvXnrpJdq1a2fZNz09nVdffZV///0XvV7PmDFjeP7552nSpEltfhRRh8qqRy+//DJTp05l7969nDt3jhYtWjB48GAeffRRmyFTUo8at7CwMIfrp0+fbmlwqMj3WGJiIi+//DJbt27F3d2dq6++mieeeAInJ2kvagzKq0enTp3iv//9LwcOHCA7O5tWrVoxevRoHnzwQZo2bWrZX+pR4/bss8+yefNmkpKSaNasGWFhYdxzzz0MHjwYqN1rkQTdQgghhBBCCCFEDZEx3UIIIYQQQgghRA2RoFsIIYQQQgghhKghEnQLIYQQQgghhBA1RIJuIYQQQgghhBCihkjQLYQQQgghhBBC1BAJuoUQQgghhBBCiBoiQbcQQgghhBBCCFFDJOgWQgghhBBCCCFqiATdQgghhBBCCCFEDZGgWwghhBBCCCGEqCESdAshhBBCCCGEEDVEgm4hhBBCCCGEEKKGSNAthBBCCCGEEELUEAm6hRBCCCGEEEKIGiJBtxBCCCGEEEIIUUMk6BZCCCGEEEIIIWqIBN1CCCGEEEIIIUQNkaBbCCGEaAS2bNlCWFgYW7ZsqeuiCCGEEI2KU10XQAghhKhrv//+O88880yp2+fOnUtkZGTtFaiBCAsLc7j+iSee4N5777W8/vjjj/nkk0/s9nNxcWH37t2lnn/79u3cfPPNAGzatAkfH58LPqcQQghR2yToFkIIIYo88sgjtG7d2m59SEhIHZSmYRg8eDBXXnmlzbquXbs63Pfll1/Gw8PD8tpgMJR6XpPJxGuvvYaHhwfZ2dml7leZcwohhBB1QYJuIYQQosiwYcPo3r17XRejQWnbtq1d0F2asWPH2rRWl2Xu3LmcOnWKa665hh9++KFazimEEELUBRnTLYQQQlTQRx99ROfOndm0aZPN+hdeeIHw8HD27dsHQH5+Ph9++CGTJk2id+/eREZGctNNN7F582ab406cOEFYWBjffPMNP/30E6NGjaJHjx7cddddnDp1CrPZzMyZMxk2bBgRERE88MADpKen25xj5MiR3Hfffaxfv54rr7yS7t27M378eFasWFGhz7Rr1y6mTJlC79696dGjB7fccgs7duyo1O8lNzeXvLy8Cu17/vx5zGZzmfukp6fzwQcf8Mgjj9C8efNqOacQQghRVyToFkIIIYqcP3+es2fP2vykpaVZtj/wwAN06dKF5557jvPnzwOwbt065s2bx4MPPkjnzp0t5/n111/p168fTz75JA899BBnz57l7rvvJi4uzu59Fy1axJw5c7j11lu588472bp1K4899hgffPAB69at45577uG6665j1apVvPnmm3bHHz16lMcff5xhw4bxxBNPYDAYePTRR9mwYUOZn3fTpk3cfPPNZGVl8dBDD/H444+TmZnJ7bffTkxMTIV+ZwsWLCAyMpKIiAjGjx/PokWLSt131KhR9O7dm169evHkk0+SkpLicL8PP/wQf39/brjhhnLfv6LnFEIIIeqKdC8XQgghitxxxx1266wTczk7O/Pmm28yadIkZsyYwVNPPcVzzz1HeHi4TeIwT09P/v33X1xcXCzrrrvuOi677DJ+/PFH3njjDZv3OHPmDCtWrKBZs2aAGs/8xRdfkJuby/z583FyUl/XaWlpLFq0iFdeecXm3EePHuXjjz9mzJgxAFxzzTWMGzeOd955h8GDBzv8rGazmZdffpn+/fvz9ddfo9PpALjhhhu4/PLL+eCDD/j222/L/H317NmTyy67jNatW5OUlMScOXN48sknOXfuHDfddJNlv+bNm3PLLbcQGRmJi4sL27dvZ86cOezevZv58+fTtGlTy7779u1j7ty5fPnll2WOz67MOYUQQoi6JEG3EEIIUeTFF1+kXbt2Nuv0ettOYaGhoTzyyCO8++67xMfHk5aWxrfffmsJjEEl8yoOGE0mE5mZmZhMJsLDw9m7d6/d+44bN84ScANEREQAcMUVV9icNyIigsWLF3PmzBmCg4Mt61u0aMGll15qed20aVOuuuoqvvrqK5KTk/H397d7z7i4OI4ePcoDDzxg05oPMHDgQP78809MJpPd57f2yy+/2LyePHkykydP5v3332fSpEm4ubkBcPvtt9vsN3bsWCIiInjyySeZM2eOzQOL119/nWHDhjFkyJBS37ey5xRCCCHqkgTdQgghRJGIiIgKJVKbMmUKS5YsISYmhv/85z907NjRbp8FCxbw7bffcuTIEQoKCizrHWVHb9Wqlc3r4gC8tPUZGRk2QXebNm0sLdXF2rZtC0BiYqLDoPvo0aMATJs2rbSPyblz5/D09Cx1e0kuLi7cfPPNvPTSS8TGxtKnT59S9504cSJvvvkmGzdutATIS5cuJSoqqswu6mVxdE4hhBCirknQLYQQQlTS8ePHOXbsGAD79++32/7nn3/y9NNPM3r0aKZMmYKvry8Gg4EvvviC48eP2+1fWjfq0lqZqyNpWPE5nnrqKbp06eJwH+upuCqq+EFBRkZGufu2bNnSZr+33nqLsWPH4uzszIkTJwDIzMwE4PTp0xQUFBAQEFCpcwohhBB1TYJuIYQQohJMJhNPP/00TZs25fbbb+fzzz9n7NixlvHUAMuXLyc4OJhPPvnEpgX6o48+qpEyHTt2DLPZbPNexS3ZQUFBDo8pbilv2rQpgwYNqrayFD9UKG8aL7PZTGJios2c3qdOnWLx4sUsXrzYbv+rr76azp078+eff1bqnEIIIURdk6BbCCGEqIRZs2YRFRXFZ599xogRI9iyZQsvv/wyffr0sQSaxS3X1oHwrl27iI6OJjAwsNrLlJSUxN9//20J/M+fP88ff/xBly5dHHYtBwgPDyckJIRvv/2WCRMm0KRJE5vtZ8+eLTNwdrT9/PnzfP/993h7e9OtW7cy950zZw5nz55l6NChlnUzZ860e58lS5awdOlS3nzzTVq2bFnpcwohhBB1TYJuIYQQosjatWs5fPiw3fpevXoRHBzMoUOHLPNvjxw5EoAZM2Zw1VVX8corr/Dhhx8CMGLECFasWMHUqVMZMWIEJ06c4JdffqFjx45kZ2dXe7nbtm3Lc889x+7du/H19WX+/PmkpqYyffr0Uo/R6/W89tpr3HPPPUyYMIFJkyYREBDAmTNn2LJlC02bNuXzzz8v9fiffvqJlStXcskllxAYGEhSUhK///47J0+e5K233rLJrn7JJZcwfvx4QkNDcXFxYefOnSxZsoQuXbpw/fXXW/YbPXq03fsUT7E2bNgwmyC7oucUQggh6poE3UIIIUSR0rp/T58+ncDAQKZNm4a3tzfPPvusZVvbtm35z3/+w+uvv87SpUsZP348kyZNIiUlhblz57J+/Xo6duzI22+/zbJly9i6dWu1l7tt27a88MILvPXWWxw5coTWrVvz/vvvl9vi279/f+bOncunn37K7Nmzyc7Oxt/fn4iIiHID1169ehEVFcVvv/1Geno67u7uRERE8PrrrzNw4ECbfSdOnEhUVBTLly8nPz+fwMBA7r77bu6//37c3d2r9Jlr4pxCCCFETdCZqyMbixBCCCHqxMiRI+nUqRNffPFFXRdFCCGEEA6UPvmmEEIIIYQQQgghLogE3UIIIYQQQgghRA2RoFsIIYQQQgghhKghMqZbCCGEEEIIIYSoIdLSLYQQQgghhBBC1BAJuoUQQgghhBBCiBrSoOfpLiwsJCMjA1dXV/R6eX4ghBBCCCGEEOLCmEwm8vLy8PT0xMnpwkPmBh10Z2RkcPTo0bouhhBCCCGEEEKIi0zbtm3x9fW94PPUu6B727ZtfPPNN8TGxpKcnMzMmTMZPXq0w31dXV0B9ctwd3evzWJWitFoZP/+/YSGhmIwGOq6OKKBknokqoPUI1EdpB41Ejk5MHiwWt6wAar5XkvqkagOUo9EdShZj3Jycjh69Kgl3rxQ9S7ozs7OJiwsjMmTJ/PQQw+VuW9xl3J3d3c8PDxqo3hVYjQaAfDw8JCLgagyqUeiOkg9EtVB6lEjYTZDfLxadnODar7XknokqoPUI1EdSqtH1TWEud4F3cOHD2f48OF1XQwhhBBCCCGEEOKC1buguyqMRqPl6UR9VFy2mipjfj44O4NOVyOnF/VETdcj0ThIPRLVQepRI2E0YrAsGqGa/7+lHonqIPVIVIeS9ai669NFEXTv37+/rotQIbt37672c65b58nTT7cnLCybGTMO06JFQbW/h6hfaqIeicZH6pGoDlKPLm76nBx6Fi3HxMRgqqH8OVKPRHWQeiSqQ03Vo4si6A4NDa33Y7p3795N9+7dq32syeOP68nL0xET05T77+/O0iVGOneRJu+LUU3WI9F4SD0S1UHqUSORlWVZjIiIgCZNqvX0Uo9EdZB6JKpDyXqUnZ1drQ27F0XQbTAYGsQfWXWX83xGHps3u1heJyToGDYoiyXzjjNgXHi1vY+oXxpKfRf1m9QjUR2kHl3krP5vDQaDzevqfRupR+LCST0S1aG4HlV3XaqedGyiwgrzC8nOzK6Wc61duJuCAtWqrdebADh7zpOxk4LZu+WgZb992w4z4/HVHIk9Xi3vK4QQQgghhBCiYupd0J2VlUVcXBxxcXEAnDhxgri4OE6ePFnHJbtw+Tn5jO4bSxNPD358b/0Fn2/lcq3b19fTNzKy504AMnM8mXiVMyknUln203Z6Dw3gmQ9G0G+YL0ePXvDbCiGEEEIIIYSooHoXdMfGxnLVVVdx1VVXATB9+nSuuuoqPvroo7otWDX48o0trImJBOC/r4aSl513QedbuaEVADqdiatuD2fhqjAi2+8D4PDpNgwfnMbE23uQnafGYKWkeTBxIpw7d0FvK4QQQgghhBCigurdmO7+/fsTHx9f18WodtnpOfzv4wjL6zPpLfj5k/Xc8dSQKp3v9JEkdh8NBaBPpzi8A7oBsHBpc/oOSOJMegv2JnS07O/qkk9evguxsXDTTfDHHzU2NEsIIYQQQgghRJF619J9sZr7eQZnz/vYrHv/c3/MJnOFz5GeriUS/XfhAcv60UOSLcvBYYH88XMSrs65lnVTr11DdJQBLy/1evFieOONSn8EIYQQQogLYjLBqVN1XQohhKhdEnTXgqN7T/D1n6MAcHXOpWuISnIWcySMf5cmVegcW7eCvz+0bauW//5bC9ZHX+Zps++AceEs/H4PY/psZ+aLa/j4l2F07mrgt9/AYFDHfTXzLJgrHvALIYQQQlyoK66AwEB46626LokQQtQeCbprwYtPniSvwA2Ax27ezEvPatnL3/ssoELn+ObrQgoLISUFxo0zs3hdFwDcnHMYdFkXu/3H3Nib5dv68OArw9HpVYbzUaNgREQUAMfP+HBsX+IFfS4hRMNlNpl5+s7VDAmPYeOS3XVdHCFEI3DuHCxZopa//bZuyyKEELVJgu5a8E90PwB8m53lmbd6MmlKBCEhatvSpbBvX/nn2LD8iGU5LU1HSqYvAEMj9uLWxK3CZRk6INOyvG7ZsXL3N5kgJ6fCpxdCNBBr/z7Dm9+NYMOeCMZe05atK/bUdZGEEBe5ZG00HPv3S2JXIUTjIUF3LZj2tI4uXbL46RdXPP09cXKCRx/Vtl97LZw4Wvrc3Wln0tmT0MnhtktHVO4ba+hIrSv6urXGMvddtgyCg1U3sN3SECbEReWzWa0sy+dzmzF2UhC71tknsTx1+AwnD52uzaIJIS5SSVYj6sxmiI6us6IIIUStkqC7FjzyiJkff9zH6LFai/Tdd0NQkFqOjYVBfdOI23rI4fGbV2hJ024dv5UeYeoGWKczcdmkoEqVpf+loTgZCgBYt8PxsYX5hTw7ZTWXXQYnT6oEbnPnVupthBD1WHKyM3/8obNZl57lxaUTfDi654RlXdzWQ7QN86J9Fy+2LI+t7WIKIS4ySSXS2ERF6RzvKIQQFxkJuutI8+awejW0b6NauI+nBDF4pI/DwHvD2izL8oTxhaxc6czTd67mh3c3ET7IcQt4aZp4NqFXR9WaFXe8AyknUm22m01mrhgaxfRvR9isT5Th30JcNP74w4/CQnWz++jD+QzorLqyJGf68/6r2jXot+8Ok1/oSl6BG/99PLNSsy0IIURJ1t3LAaKi7PfJyYFJk1Ti2JEj4f77YfZsyf0qhGjYJOiuQx07woZV5+nZIQ6AtCxvXn7mjN1+G7ZpXcIHjWmHX2tfpn87glseH1yl9x3aN8WyvH7ZQZtt6xfH8NfWvgAY9IWW9RJ0C1E/HYw+xjN3rWb179EV2r8gr4Dff1fTF+r18J8nXVi4ohU6nQmA9TtaWPbdGtXcsrwubhAr5+2svoILIRqdirR0v/ceLFgAx47BqlXwxRdw663w88+1VEghhKgBEnTXsZbtWrB6SxAtPNXj39/X9OXUYS3wLsgrYEtcGAAh/ido3amVw/NUxtAR7pbldatts6Tt2JRuWX7/mQ24ueQBkBjvuOu7EKJmxe84zIkDjie1/eWTzfQc6MOMWSOYcFNH0pMyyj3fou93kJyshrpccVkmISHgH+xH12D1N77rcCeyMrIwm2HLvs42x77wiqu0dgshqqxkS/fevZCbqwXeZ87AjBmOj5Vs50KIhkyC7nqguW9z7r5GZQ4uNDrz1btxlm3Raw+Qk+8BwOAe5Wcbr4ghl2ld0tdt87fZFrXLYFkeNLIFQT5q/Hhiil+1vLcQjdH06TB4MOzYUbnjPntlLV36tqVNWAseuWG1Jag+flx1ubzx4QGcz20GQFZeU37/Nqb8c36pPXR78BYtX8TASBXYG01ObP/3AEePQnK6p82xW/aFs3T29sp9CCGEKFKypdtk0nHwoHZNevllOH9eLT/wAJw9C+3bq9f//gunHD9/FEKIek+C7nrivic7odepbOJf/BJGQZ5KdrZxlfZYePCgQofHVpZvoA9dQ1S38p0Hwzifdt6yLSpOdS11MhTQrX97gvzTAMjI9iQrI8v+ZEKIMp0+Dc89Bxs3wtSpFT/u71928PD/BmE26zGZDXw8dwRhYYVE9igkJER1uSxpzrwmZZ4zPSmDVdG9AOgUeIRR1/a0bBs4UGtt2rQ2nS1btOP6RKRZll/4X1NMhWXPfCCEEI6UbOkGiItT1629e+Grr9S6Zs1UAO7tDTfdpNaZzTBvXu2UUwghqpsE3fVESOcgJg5WLUgnz7Zi4Sy1vGGzi2WfwaNaVtv7De2rEqgZTU5s3qJutnOzctmboB4pdwk+glsTV4ICtEA78VCS/YmEEGWKidESAG3ZArE7zpZ7TPyOw1w7pSNGkxOA5YFcUrovu2KcLPu5ucHXX5ro0FL1glkV3cNmeEpJB2O05AzD+x5Hb9C+AgaODLQsb4ptbxN0v/KGF706qh44UYe6cPnoJFK01BBCCFEhJVu6AfbtU735pk0DY9HzvKefhhZF6SWKg26AOXNquIBCiBphNMKhQ407IaIE3fXI1KnazfSnX7piNsOGXe0AaOaeSfeBHavtvYZe3d+yvG6Tesq8Z8sRy01+zy7qmzGoVYFlv8Qj6dX2/kI0FrG7Cmxef/1u2ZPex209xMQrdGRkq67dEwdt4dDuU0wevsmyT58+8MorsGcPTLlHz01XHAHAZDYw7+t9pZ770L50y3KHdrat1WG92+Plpb4NN+0KsQm6+w/Q8fb0XEvwv2xNKyIjYf36Mj+KEELYKA66vbxUIkdQQfeff8Lixep169bw2GPaMV26QI8eannrVnXjLoRoOMxmGDtWJZB+7bW6Lk3dkaC7Hhl1bU86Baqb53+jenHpqDxOnlWt2wN6Z2FwNpR1eKUMHaot//OP+jdqs9Z01bOHurkOCtK6nJ44ll1t7y9EYxG7ZrPN6x8XdSc3K9duv/PnYdpDR4kYFMKBk+phW/e2+/lpUVfadmvNb6sHsn/nUU4dTWPbNnjxRW2s441Tgi3nmfO7r2W55BPlg/vzLcsdQl1ttukNOgYMUH/vycmwebPKZt6xTQa+vjDymp4sn7ubFi3U+sREuPRSOHECIUQDZDLB7bdDr16qBbmmW6DMZq17eZs20LkoT+OhQ248+KB2O/rmm+DhYXusdWu3ZDEXomFJT9dijZ9+qtOi1CkJuusRvUHPg7clWF7/s0q7KR48+sKzllsLCdG+8DZuVBlDo6K0b9zIvqqVLShE696eeNy2xU4IUb49B71tXp8978OCb2yn3jpwAMLD4a2ZbSk0OgPQoeUxFi72oJlPM8t+nXq2pWUb2/MBdOnXgcj2qoV7a3w4q5Ykct110LQpvPWWtt/Bw1pvmvadvezOM2CAtmw2q6+H/mGxlnWjr40kOlpv2S83F6KjS//sQoj6a+2Sg/zwg5or++ab4ZJLVO+ZMmXuVz9VkJEBBUW3Ef7+KtgHKCzUc+aMeuA3cSLceKP9sTfcoC3XxgMCIUT1OX5cWz5wALIbaRueBN31zH3P9uPqoZtp1kzr+uniAtddV/3vdfXV6l+zGRbOPkDUsV6WbZFDVEtbUEhTy7rEk/bzaQohSmcymthztC0ALk55lvVff+dmWT52DEaNUv8CuLoaefG+1eze34K23VpX+L1uuvq0ZXnkhCB+/VV9sU1/Pd8yzdehY1oA3yE80O4cAwfan7d/X9sEjq1awV13aOtOHHSQGUkIUe+tX2HbTWXNGoiMhFlflXJH/M8YWBwGex3M6fXvGFg7Cfa+BUlrodA+8ap1ErUWLaB3b9vtXl7w+eegc3CrERICQ4ao5bg4lStDCNEwWAfdJlMFHu5dpCTormfcm7nz+9oBZGQYOHUK1q2DgwfVmKbqdvU4be6N+XMziNmrAux27cCrRVFLd3utVS3xlG13VCFE2Y7FJZKVp/6uxvaLthk+svSHbcRtPcjo0SbLF1L37hAba+CVz0fg3sy9tNM6dMM9oQ7Xp2e6WOb5PpgYAEALzySbFvRi/fsa0elMtuuG2U8XGOQeZVlO3NtIvz2FaOA2bNVmO2gdpB6kFRbCXfd68MajqzEbC+CoVV/ulI3qX70LNswmFWifWADR02DlcPjVE/7qBVsfgD3T4eCXJMVqSSBatNBauot99BEE2j8LtLBufFi1qlIfVQhRh6yDbmi8D80k6K6ndDpo2VI92Q0OLn//qugzpCWtfU8CsHxbH7KKHkxHRmr7tGrbwrKcmGR/ky6EKF3sNu3BVvcuOdx9wzHL68tv70vX/h05eFBdhkND4e+/VaKRqggOC2TsWNWirddDpxAtR0PMlkSyMrI5laZyRLRrmejwHJ7eBroGa1mKXJzy6DHEvkCt22vzdyeerL5cE0KI2mEymtgUqx7UBXglsX+/gYce1HI+PPfRCB6Z8B3mzffYHtg8DFqMsF2XnwZ6J9t1ZiOkRcHBz2HXs7D1PpLXvWPZXNy9vEULdc2aONHMLbeUXWbr4S8yrEWIhkOCbkWC7kZMp9dx9egDdut7alP34uLuQgtfFY0nZlZf9nQhGoM9MVo3zW7dnbn94W40d8+w269NyyRWroSAgAt7vx9+0PHJJ7BrF7zyhDbuMmZnFoePaj1VWrZxc3Q4AAMjtAcDPdtE4eph38MlqL3W+p14pnIt8kKIurdn80HLDAmDIw7j7qHjo4+dmfH4ass+nyy7h+UxY7SDhvwCl++FtjfYnszVF67JgPGx0P8b6HAPeHUHbPuJJ53XWhBatFA5J1b8spUZz6xk7s8FDruVW+veHQxFz/iiosreVwhRf0jQrTiVv4u4mF19bXM+nmu7zjroBggKaUJSKpxOcsVo1L70hBBli93rbFkO7+1PQFt/dmw8xpJ50ew/APGHmuHmWsiHX7Sslh4tLVrA1KlqWXdO66USE+tMlyPaH27Ldp4lD7UY0DeXr4um7ukf4bhF3KelN67OueQVuJGYVPq5hBD108Z/TwGqpXtQfzWbgk6vY9p7I3Dx2MZ/Xu8LwPqTtzKOFeqgoAmgU201ZjNs2AAdOqg8D+gN4NVN/XS4S+1fkAnpuyE3GfKSSdrRz/L+/v7q3wjdq/QIX4J5XR/o9wX4lOhzbsXNTQ21i42FvXshLw9cZdSbEPWeo6DbbHacv+FiJi3djdzQid3xbZZqsy4yzDYxUuuiXE5Go8pyLoSomNiDqkXYoC8krFcbADpGtuHRN4Yz89fhrNzZi8Wb+tEhIqTa3zu0VxtL8raY/QEcPKhta906r5SjYNJ9Q2jjf4Kmbue46/Fwh/vo9DqCfNXFIDHVv/oKLYSoFRs2ag/hBo+0zdsw+d6+luW9mVc7PP6DD9TUoxERkJlZyps4Nwf/wRB8FXS8h+TCHpZNLYqfCZ5VMznozm6H5X1hx+MOk7AVKx7+VljYeJMxCdHQlJxa9OxZOHmybspSlyTobuScXJyYOGyv5bVfs2SCOth+AQcFacuJjhu+hBAlFOYXsu+4CrRDg4467KZdk5xdnekaohK3xSe2ZU+slnE8ONh+nvBi3gFeHDzRkqQkJ3oMDSt1vyC/dADSs7zIzqy5+T8K8go4n3a+xs4vRGO0IVp1rXF1zqXXcNskjMHB0KwohUtcnP2xBQXaVIQpKSrreUUkJWnLLVoAZhPmHtPJcWmvVppNEP8B/D0Uso47OoVNTzzpYi5E/Wc22wfd0Di7mEvQLbj6Kq1/R892u9Hpbft7BLXSkqskHpLpgYSoiEO7E8grUGOnwzsmlbN3zYgIU8nUjCYnlizUAu3WQaW3dIN6GFde9vSgAK01KvFQzXy+tDPphIacxi/AiQ2LG+E3tBBVZDLBDz/A7bfbJx07fSSJw6fVA8G+YfG4uNtmI9fpoFs3tZzgIPb94w84rc1QyIYNFSuT9ZRh/v6ATo+57S3Etf0JU8QbYCi65qRFqVbv5E1255CgW4iGJSUFcotuP6y7k0vQLRqlMTf2oVvIAXQ6E7fd4SBpkusWy3Ji3F677UIIe7GH21iWu/UuYx6cGhQRrrVuJ6epqcs8PdLx9Cws7ZAKs3kYdyQdUAncxoyBDz+84NMD8MvMbRxNCiavwI1335AHfkJUxM4dZgYNUgH3Dz/Arbeq1qZiG1doMxQM7pPm8BzhjkeWADBzpu3rigbdxS3drq5aSzqAWeeMuctTMG47NO2gVuaegX9GQNw7YDJa9rWeXUUymAtR/1mP5+6npXWQoFs0Tm5N3Ija35aTh1K45fHBdtuDQjwsy4knzHbbhRCQm5XLsp+289YTqzkQdZTYvdqYyfABbeukTBG97Kf56xB4yq43S1XYDDs5plq9X3pJTXv2+ONw6lQpB1bC70u8Lct/bR8k3cyFKMdnr6ylT1/Yoj0rJzYWdmzQeqNs2KU9EBw83ANHSgu69+yx706+bZtKalae4pZuf/9SEih5doWxWyDgEvXalA9R/4XERZZdvL2hTVHxd+1SLfrW/v1XJVsbMwaWLtW2m82Qk2P78EEIUcPMZo7v3m15OXo0OBWl8JagWzRazq7OtGzXwuG2oLZWc/KekoT3QliL3XiAq4duxtfXyGW39GHaeyPo1jeQrz9Lt+xTVqtRTYoYYJ+grUOw45atygoK1rqkJhYlRInaoVq/zWbYumzHBZ0/7Uw6q3dpiZdyC9xZPLsRfksLUUHnzp7jiTf6YDariNbLS2sh/uETbXD2hp1az5uBl2tJ06yVds369FNtuanqPENeHuzcWXbZTCYt6G7h+FZDcfWFS5ZD5ycAHQSOh9ZX2uxS3MX8/HlsEkQmJMA118C+ferh3+WXq27yAwaAjw94eMCNN6ox6UKIGpadCP+M5PiqLyyrOgSeoUsXtbxvX8Ue1l1MJOgW5QrqoGUnTjzt+Km4EI3VlLvy+GP9ALLzmljWFRhdOHHGCwBXVzMdOtRN2QLa+tOihdFmXYe21fMtFxQeaVlOzB9MZiYknNAC8W0bz13Q+Rf/FEuh0dlm3bw/fS/onEJczH77KpqcfPUdfd3o7eyPPY+rsxpMOWdpOPk5+aSnawFyWBj4+Tvu9VI8ptvauXOquzqoAPaFF7RtGzeWXba0NDUDCmjThZVK7wy93oHRa6Hfl3bN4o7GdRcUqIA6rcQzxX37VKt/erp6PXcu3HabVhYhxIXJzVW9aX7/HWbMgLvugqsvO8PKNx+BpNUcT9XmQw32PkxEhFouLFR/n42JBN2iXJ5+zfFwVd1HE5NlTl4hihXkFRB1UGX+beJ6njsvX8djN67B2aCNd+7SRWfpTlUXIiIMNq87dDKUsmflBLWxGnaSCHt359ts3xbd9ILOv+AP7ZfmZFB3yH9tCOO89DAXwqEfftb+5h5/wh3/IE+uGqoi7NRzvvw1J4r/PG62tPRecknp5woIAN8Sz7h++QXL398tt8Bll2nbyhvXbZ1ErcyWbmsthoBHkO269D30bBtteVk8rvvFF7XAv21bVdahQ7XDQkLAxUX7HPfdZ981XQhRcRs2QNeu6gFc9+4weTI88wzMmgV/LAvglg9nYjLpOJ6hzYIS3GugJeiGxtfFXIJuUS41J68aDyZz8gqhObgrgQKjupMbP2g33y4eyvtzhrN7ywkuHxyDl5eZ//63bsto/QUH0D7swoLhYoFWueESEyF2zRab7dviOmA2VW0AZfb5QpZtUQX3b57MlCmqpSs3FxYvrlp5hbiYHd1zgtW7VBNwaNAR+o/pCsDtd2q9RZ58IYBZ36m/pWbN1A1yaXQ6+y7ms2dryw88oFrDPYuew2/YUPZ4abvpwqoiPRb+uYTIc9daVkVFqZv8GTPUaycn1Zp9/fWwdq0K9rOy4NgxmD9fG0/6zTcqB4UQovLMZnjoITWlYGl/92cyWhKT+xAnTJdb1gUHI0G3EOUJ8k8H4FxOc86dvbBuo0JcLPbu1O4ku3XWum2H9W7P4vURnD2r46ab6qJkmpJBd8duAdVyXhcX7eb5xAmIjbVtNkrL8uZQTEKVzr1ipZOlm+yV49K5/gbtq+rXX6tWXiEuZj9+pg1uvn3yMUuyxEuv60lLrzMAHDzV1rLPe6+fJsQ+5YONkkH39qI0DZGR6kevh4ED1bqkJDh0iFLZTRdWFfEfQV4yrb0O4tssFVBjt++6S9tl+nTbDMl+fqolDmDCBPXgQF90OXnnHa3buRCi4jZv1nqZBATAzZNO8srkF/nloeuZNnGGZb9/Mz7keKJ68FecV6FnT+3hV05OLRe8jknQLSokKCDbsixzdQuh7DneybLcrZf9eGOHGXprWUSXTMuym3MOrUpJmFgVQf5qAOWpU0Zi4prbbd+2NrFK512wQFu++vZODBumBfhLl5o5n5Hv+EAhGiGzycwPv7cFQKczccsD2nXJycWJmyfE2ex/ae8dTJla/sM3R+O6QU1FVmyw1YQnZY3rrpaW7r4zIXACOh30bKO6zVt3Eb//fvjPf8o+xfXXq1Z6UD1n5sypYlmEaMSspw18802Y/VtLXnxwC9cPnMetV2jXm3/+1ZFYdBvQurX6NyAAvvhC/S0++mgtFroekKBbVEhQKy3d54miOXmFaOz2HvKzLHcd1L0OS1K6Lt1cLGPMO7U8gN5QfZf9oOYHADAaDWza09lu+7YtlQ+OCwpgUdEMQc2awahRYDDApMtVy1Zuro5fv9ha9UILcZHZ9FespRX7kshoQjrbjoO+/X5tLEgz90y+nt2yQtMGOspgbjBg03tn0CBtuaxx3dXS0q13hiHzIOASerXV0qU3aWJi9mz47DOtFbss996rLX/9dRXLIkQjlZSk9Tjz8VHBMzo9DPwB+n1B17tmWR6s/f23NltAsJZPjbvuUrkVOnWiUZGgW1RIUJD2Bf3V3M4y5YYQqDlrAZyd6++Xh1sTN/738Eba+J/g+WnVm4UsqKXWNyy3wB2A8DYHLOu2xXjbHVOexQsLLRmIL78cXF3V8s1Xa63mL7/Tltys3CqUWDQmCxeq7sYX47Q0x4+rMZVDh8KE67Ug+/absu327T44lCdvXU37lseY/UmcXVBeGkct3ZddZttS3b+/CsTBPuiOi4MnnoAdO6qppRvAyR2G/cn912yiW+tYRnRZxfY3L+Xmq45X+BQREdC3aKa0qKjypzsTDUdOjpoLukUL27nqRfX55ss88ouep0+ZAm5uRRvcA6Djvej0ekuSRutYwTrobqwk6BYVMm5yCIaiDMLzfvdg4kQki7Bo1AoKID5eLYeGqsC7vnr6/REcTWrNdVMHlb9zJQQF2qf/HdH/JO0C1FjuHfs7UZhfWKlzfvqGllnljtu18w+ZGMG4ftsASEhuzUcvbq5KkUUjsWMHXHUVPPssPPdcXZem+t17r+riuX49pGX5ANDU7RyTpkQ63P/tH0Zw6FQbrrirf4Xfw8cHWrW0XWfdtRygSRM1vhvUQ8h169TymTMqO/p778GwYbBqlXbMBQXdAM7NaHfDt8R+fiOrnh9JZ+9/YdWlkJtU/rFF7rlHW/7qqwssj6g3fv5Zxz//qJ4VTz5Z16W5+BiTtvP5RymAGspy/51nHe43cqT9Ogm6JegWFRTaqx2/ztNbWp2WL1fdPrPtH6oL0SgcisuwPMXt2rVuy1JXglrbz4XWrZuOvt1OAJCT78HerYcrfL747YdZubMXAB1bHeXSS223v/2+F3qdevj3+mc9STmRWsWSi4vdJ59oWXW//x5Ly8zF4MgRWLZMe93KL4MRPaL4+fM4mnpXz+wExayvbd5eMHGi/T433qgt33STCnhuuUUF3qDuE/bu1fapcvdya64+MHIFNO2oXmfGw6pxUFixm5IbblAPDECN687KqoYyiTplNsNnn2m9Mtevb3zZsWtMYQ5ETWPJW6+RkKx6ylwW+TftvaMd7u5oOkIJuiXoFpVw9SQdK1ZoU4Rs3Qoz36z4DbUQF5M9m7RkId0CNtVhSepOUIi73brwnl70HaDd+G/b07rC5/vsXS3b+QO3HrUbfx4+qBN3TlDZmjJzPHn1ydjKFlk0AqmnMvnlF62XREoK/PXjxZMH4NtvtDl6Xn8dTiZ7siq6JxNu71fGUVVjHXRfc4023MPaY4/BiBFq+cQJ1fK9cqXj83l4aMHuBXNvBaNWgkdxhqZLQGeo0KHNmqnAGyAzE377rZrKJOpMbGwToqJscxV8+mkdFeZikr4b/oqEuLf4fetVltUPPhMOLR00aQMdO2qJ04pJ0C1Bt6ikYcPgn5VmdDp1Q/PuR01lbKVolPbu1up9o23pbutpt65bvxD6jtHmKdsW5VGhc2VlZPHdwkhAZVm/47EeDvf73/ud8HBVzVKf/jaII7EVH8spGodZ7+0kN9f29ub77+2HQlRUwr5EsjPrR7euwvxCZn2umpANBjN33FGz7zd2rLY8ZYrjfQwG+OknNT0XwMmT6l+dDhYvVvcNxaqlldtakzZwyXK4ZAX0ehcMDp4KlOLuu7Xl776r5nKJWjdvnn3lmj0bMjLqoDAXi8SlsGIQnNsPQNxJdbOj05m55PLSc0PodPZdzEsG4Y2RBN2i0nr30TFpmGo1OJPeglnvXDwtCEJU1J59Lpblbr2q+06yYQjqYPu5A31O4R3gRe/eWhbhzZu1br5l+enjHWRkewFw09jt+LRynIQtsENLHr9Vje0uNDqzbP6RKpdfXHxMRhOfzW5nee3lobLyLd7Yi9STjscfluXTVzbSpksQg3smkHOu7ieVXf7LThJT1UDrywdsJTCwnAMukHU30e5lTNAQGAg//GC77oUXVDLERYu0qcUmT67+MuLZFVpdWv5+JfTvr1rkQHVFzswse39RfyUnw8qV6jvDxwfuvFOtz8qyr5eiguLehbUToVAlcDJ79SI+uTcAISE6PMp5nl6yi7kE3RJ0iyp65kWtheutT9tVOlmSEA1d8XRhToYCOkW2qePS1A0vf0/cXbQWwPBw1bWvaVOt9X/XLnjk9jiMBcZSz2M2mfn0W23e4Acf9yt1X4BLx3tZlvfFVSCiF43G8p93cPi0+nu8tPcOpkzaBUCB0YVfvthdqXMVFMD/PlWJx6IPd+bz1+s+HfJXX2n1/e4p5U/7VZsuu0x1dweVxO7FF9Vy8+YqwdqhQ/DOO7VUmPTdkJtc5i46HYwbp5YLC22TvYmGZdYsHQUFKqS56y6VNb/Yp59W7MFvZX3xBXTurFrTGzyjg6QXZ3eAuaiHUPA1nIlYR0amGr7R2X6GUDvWQbe/v1WW80ZMgm5RJb1HdmFs3+0AHE0K5peZdX8zIkRtKcwvJP6EurEPDTqGs2s9Tl1eg3R6Ha39zlheh/fRUh1Pm6bt98mPXbhx7Fbysh3P3ZR46DS7joQB0Dd0D71Hdinzfbv00pr34g5Wb+IoUbOyM7N5b9pqfnxvfY2c/9NPtbvrqQ8U2sxR/f0vZT/MKWnJEjiTpI0RnvF5N7Iy7DNubdumxjW/+UYOf3y9hcO7E+z2qQ6nDp9h8UbV0hToc4rLbu5VI+9zIZ59ViVO+/13bSoxUAFu+/bq3xplNsP+mbC8HyzpBgllD9a27j6/fHkNl03UiC1b4OOPVcXS6czcf7+a7m74cLV93z5tXunqYjKp77j4eHjwwQbaSyLvLByZDesmw189wFTiwXhxroRuz8GQucQf0pq2KxJ0t2mjepOAmtpQSNAtLsCzz2mBxhOvhDKmzw7103cnY8aop97SrUdcjA7tTiC/UI0d7Nah7NaUi11QS+0Jebcu2pf2LbfA958dx6BXvWB+XTWQ68dGYzbZNzkc2qNN9TO4d0q57+kf7I93UzVQb19ixyqXXdSu1JNnGT3gEE+8NYLbnhjCtr/3ln9QJZw+ksSSzX0ACPE/wYTb+tB9cCiR7fcBsG1/N/ZuOVjh85WcSiopw59PXtlms27+fHVD+eGH8PRz7lx9T386RITw1O2rL+izOPLx63EYTWrGgDsnxePkYj97QH3g7l4LwXVpMvZAzItgzIW8ZFh/LWy+0z6gKDJihDbdowTdDUtqqpr6bcAAOHVKVbhx46BDB7V96lRt35tuqt770WPHtLHi587BN99U37lr1LlDEPcerBwBv7eATbfC8d8hcx+cXGq7b8h1cOlG6PEa6PTs26dtCgur2NstXAhz58KsWdX2CRo0CbpFlQ2dGMHgbmo+hqQMf/7e0Vv9bO/F33+rKU3uuAPi4so+jxANzZ4dWpDYNcxx621jEdxN+/YNj7DNHHzb/cEs+j7Kkvjsz/X9mfWWfQvn0QPnLMvt2tlttqPT6+gSoYa4HD/tyfnzVSm5qE0JBzMZ0j+NTXHawOCt66v3gdXqxQcxm9VtzU0TDmJwVvXx9uu03hhPPpKGyVh+UrXjCWbLtFz+foWWqere+iqCzFTVrPXpTBPXXgt5Di4Bb/8wgpkvrbmQj2Nj4bdbmDFLZSTT64zc9Uj7ajv3RcUrHC7fA62v1tYd/g52Puawj3HTptp488OH4WDFn8mIOlRYCKNHw9dfa+s6dcpm5kztb3vyZC1DvdGo5ph/663qef/dJUaqfPSRKlO9lJ8O+z+Fv3rBoo4Q9QQkrQGz1YMoV3/IT7M9zrcP+A+0vLQOuivS0g3QogVcd50aYiIk6BYXQKfX8e67erybpJW6j9kMb75Zi4USohbsidEyl3eLqHi23IvR3XeDry+MHw99+thvv+yWvsz9Yo/l9eP/i+B4/EmbfY4c1u5W2nW0n4bMEesvfeubAVH/JCXBoBHN2Heig836/fHV+z6rV2n1aOSYZpbl2x6JoIWnCvD/2tqXd6etK/dc3729FlPR/fvUqTpuHqumBTx73odLBiTSNfgAUx/SW+K4226DOV8e5tEbtUD70dcG8/cvOy70YxGzfj83PdjN8kDh5QfX0r57yAWf96Ll3hKGzoeBs0FX1Btg/yew1/HNiHQxb3hWroToaLXcvDm8/76JH3+MI8Tqz0KvV1n1H3pIWzdtGqxde+HvXzLoPnoU/vjjws9b7cwmWBoB26dCWpTttqYdofMTmEauwXzVSWh/m83mwkLbBwnxVtfrirZ0C1sSdIsL0n9sOElnm5GZes7m5/RplUESYPZsM0fjTtdtQYWoRnslc7nFsGEqqFqyRMtYXtKE2/tx22WqhTszx5N7b0u06WZ+JEubU6htRMW+zbtYDfuWoLt++/JLSExU3T9DWmoZxPcfqdh0chW1aquaCNbZkM+gy7SnMj6tvPnxM22c9bMfDGLzitKbNE1GE9/MVQ8IdDoTd914hhenB1uGSuw82IW4E5208z2rppy68Z72fDBnuKVrudHkxHV3dyB+x+Eqf6akhGQmTvIgK0/lLrhh1Aae/2hElc/XaOh00O5m6G/V73fXM6rVuwQJuhue77/Xlr/7Dh5+2IyTg9EWer1qhX76aW1dhRLmmU0qGd+pFZC4xG5z7E77xqb3ZqRCWgwUljHLQcE5NQ3X6X/gfNWvC3ayE+HQN7DjMdseHTo9BF+jvfbpA5FvwuVxMHE/pwPfIXzkMPxaOBETo+22dy8EBECnTiozPGjfs82aQatW1Vf0xqTeBt0//fQTI0eOpHv37lx77bXEWNcGUa84uTjRzKeZzU9AADxyv7q5Mhp1vPNSNTdpNELfzFjPS1Oz2bVuf7Wcz2xW06Qcl2mOK8VohNXRKjW3q3MuHSOkxam0YNvaB7PCCfQ5BcCyrX357m2tm/mRo9oJ2oXZz/3tiHVLd9yegooVVNSJhQu15X/XedPMXXXP3p/Qotre4+Sh0+xPVGMT+nXeRxPPJjbbx9zYm2fuWg2oqeauu7sDX36pzSltbeW8KI4lqyRC4/ruIDgskI6RbXj8Zq3OujrnEtEunm9nrOP1123HML/x1VAmDlLJRdOzvBhzmQvH4hIBNf7zmWfU0KvT5TyLzsuDSdcYSCgqS9/QPXy7oBc6ff3KWl6vtb8NekzXXm+5G07+ZbNLjx6qGyyogCzfQSJnUX9kZGityr6+alq6suh0cPPN2uvDpcW6ZhOcWAib74IFrVQL8aqxqs6UsDtaBdbOhny6BqmeXJt2+LL5o3thXhNY2AHWXw+HvrU9MOsYrLkc/h2t9ll3DWRUcAym2Qznj6iHAEd/hkOzYM90WD4Q/mityhn/IWSXSOTY8W4IfQQu2wXjtkHXp8CzM+h0vPCCGgJ69iy89JJ2yP/+p9YdPap6C+TmqmVQ3711lrOhgauXQffSpUuZPn06U6dOZcGCBXTu3JkpU6aQmppa10UTlfDwQ9DEVQ22/OaPfpw52rgTTl2It59czX3PD2fJlqE8+nD13BG880IcQ4eqbkKLFlXLKRuFDRvgdKoXAONGZuDi7lL2AQIA7wAvvnz/hOX1u59qmc6PFE217eenxlhWRJf2Wovpvo3bq6WMovqdOqWye4MKbjp01BHaWtWDo2dal5rRvrLW/KsN+Rgx0PF83P/7bAiD+qn8AceP67jvPggKgksvVfP5Fvv5J20avLunaOMe35w1jN0bDnB493GyspzZdTiMO6fZp+U1OBv4aVFXItqph80Jya0ZPaqAFYtS6dMHZsxQLXWTxx2lIM/xAyOzGe67DzZsU13GgnzP8MdSX9ybVWz4hbDSdRqEPqyWzUbYei8YtXqn18OYMWr5/HnYuLEOyigq7NdfVRAIcOON4FKBr2DrXCGHDjnYIeu4CoTXXgmHZ0GulreF/LM2rcf5+RB/TD2l6Ry4jycv1+bB+3jFw4BZtWInzLN7wIOpxP3b8fmwNBxWT4Ttj6ggOv4T+9b1gkz4zQsWtoc1E2DjTbDlLtj1LKRutt03eYPta8+u0OdD8I6wWb17N3xr9Uxg4UJISFAPA+fP19YvWQIHDmi/AulaXnX1MuieNWsW1113HZMnT6Zjx4688soruLm5Md+6Foh6z6eVD/dfq26Gcwvc+eB/e8o5Qjjy2StreerdEZbXG/eEk56UcUHnPH0kiVfeUV0xc3Lg6qttL76idNZTj1x3W0DpOwo7l9/Wlx5FgUjc8fbkZuWSnw+JqhGwQknUirXt5Imrs7rzijtSfovp2bNYxuiK2rP4Jy1D+cSJ6t/QNqprpsls4HDsCUeHVdqqbW0tyyOujnS4j5OLE7/81ozu3W3Xr1wJc2aq+bzNJjN/b1IZ8d1dsrn8lp6W/fQGPeGDOtEuPNiSpK00zXyaseJfH0KD1BOlg6faMvYKX/ZbdVTauKstLz6gbpDPp53nkxfW8Nzdq/nurfU892SKpQutuzv8ucyfwA4tS76NqAidDnq9DyHXqmmQRiwDg20uDusu5o89Bh98oLXsifrFumv5bbeVvp+1Jk1Ud2ko0dKdvgeipqlW7TNW/c4NHtD6Suj2PETO0OarRnWzLjSqvuzduxVy45QQPJup76K/907E7N0XDEUPx3z72hbErSV0fwW6PKmWQZ375GLY/7EKonc8DAc+tz3OuTk42fbeseHVHcJfhNHrIHhShX4nTz1l+51oMqmhQF99ZTuWe80a2G71XLuiSdSEvXo330R+fj579uzhvvvus6zT6/UMGjSIqKgoh8cYjUaMRsfTQdQHxWWrz2WsKY++0ImPf8kjv9CVT3/pyTPvZFq6/W38azc/fJ3JQ08GED5Qpv1x5Oc58ODLw2zWmcwG/p6/h0n39q/yeV98fB9Zedp5jUaYMgXOnjXx+OP2GV6FYjTCb7/pAR2urmbGjzfR0P6s6/p61D00mV1HwjCZDcRGJdGsGZjNaoBYm1ZpGI0VTHOqh9CgBHYfDeXAyRBys3NLnS/9nXd0PP20nvHjzSxcKJF3ebb/G8en76dxyx3ujJzc0+E+Fa1HixZomekvH34Ao7E9nTrkw0q1Ln5vFqG9jZhNZvZuO0RwxxY09618qtvVq9XfpbOzmf5Dm5VarsBA2LEDdu6Eud8n8f5nqu4tXZTDXU8Y2bf9MIln1XjtYT324uTas8p/K37BPiz/O5cRw09YuqsDhHfOZt8BZwqNzsyYNQInp1V893sYJ1KHOzzPrFlGInvW0d+s0YjBsmikui94tXo96jdLtVq6B9p9jlGjwGDQYzTq2LULHn8cnnrKzOzZJiZPrvmiiYo5dAjWr1c1sksXMz17qu/gcutRbhLtAw2cOdOCU6fg3DkjHh6gS/gNfZyW0tzs3hpTrw+g1TgwuGnHm7HUmV27dBS3WXYbGolz7x4MHKxn2TJITm/O/vab6Ni+EDL3gqufbV1zDYCuz6nlri+gOzAT3b530OWf5VxOU175/SUCPM/wxD37MJf4LLqWY9HlJWP27A5uLUDvBk4emH37Q7NONvuW93e6YgUsW6Z+j0FBZs6cgcJCHV99ZS6aQk/rP15QAJ9+aras69TJ2ODueyqqZD2q7utSvQu609LSMBqN+Pr62qz39fXlcCkDMfbvr54xrjVtd8l0h43E5BFx/LxyNJk5nnw54w8uuT6YnHO5TLy+GxnZXqzeepif/4yScWol5OfreHCq1h1oWPdtrN2tnpou+vM87ftFV+m8J+KS+WbhpQA0c89k7LhMflugbgiffRZ694qhuacEJo5EbTdw+nQkAAMGZHDIYT+1hqGurke+oa2hKFnRkn9yCWkaA1wJQIDLRqKjK96a16H1OXYfDaXQ6MzfC/+lVQdfYtacpEWwG606qu+Qo0ddef55NQZ/6VId//4bi49PfZ3bpe4lxqdw690DyMwJZ/7qPP703Y2XV+k3HmXVo9zsfP7eFglAS68zGJqnEx0djVuQlnxwdbQPwd2jWfZjAs9/eDUh/seZM38fbh4VH7aRlOTMgQPqWtmt2/kK3RM4OcGNd5iY/ZMTyZn+rNzejW2bt7Hi59OAuoHtE5lIdPSFfy99NjOVex/1JPF0U665JpnHHjvBX98f57UvVb1/7atLSj323ntP0rHjKUum5tqmz8mh+LFLTEwMJvea6d5eu9cjq67DZiNOxgwKnXx45hlfZs1qRWKiagUvKNDx4IMmgoJ24+YmD6Prgy++aAUEAjBqVCK7dp2x2V6yHrnn7iMg7We8z62gvce3bOIWAJYt20f79rm0OR2FX9G+Z5uNISHgaYwpzSGl9Oyc//wTBKjvqSZNDhEdnUm7di2BIAB++SWBCROKh7gkYVPf7IyBtiNxKUzimRe6smRlUQLHjv9wSfNo211dHgIXwARkW61PzwJK7FsGoxEefbQLoBJZPvDAEdas8eLvv31IStKud76+BaSmqgfZ27dr683mfURH53Ixq6nrUb0LuqsiNDQUD4/qzYJanYxGI7t376Z79+4YDGV3SbsYTX08lp+LWjX+WNqOx6eH8/EL68jI9gLg4Kn2ZJ3MYMiEiNJP0ggtWgTnzqn6cuUVJr77phMtA3PJK3Bjzc6ufBvRskoPKl6cugOTWZ33mXt38N93hmG4Mp65S8MoKNDjXuBEZGTXav0sF4tZb2qJlKbcaiIyMrLuClNFdX09On0aPvxYLWdmtiFPryV96RretFK/0+5d1/JH0X9JQWZzVs45xzMfXIGzIZ8Fs6IZe0MvnnrgKIWF2kgqd/dwGuB/W61IPXmW6yf4kZmjktll5biybFkEM2bYBxwVqUeLvt9GboEK0iYMj6dXbzUhcmEh8KLaJysrkMjIVky9Xo1tTkgOJnn/cSbeEWl3vqQkmD9fx4QJZoKDtfU//6Q9RBk/vkml6tC4QZv4cZk/53ObkXHciZ1WD32uvrETkZHVMIAxEg5MhPR0E/7+voAvfft0Z+eurSzd0k8rS99t3HN3IccO53IwNYKw7t48+GAAOl0dDmOxGuweERGh+ulWozq9HpkK0W25A93ZbZgu+YfIl1vz0kuwd6+R//xHzz//6EhNdWbDhkieeEKC7rp2/jz89Ze6lut0Zp58shWtW6ueKnb1KPs4upjn0B+bYzm+fQut4c7FpbP6Hkh6GNPZwZi9e+DZYiTdK5AhLDlZ+z654or2hISoOcE/+0ytO3GiDZGRlUuw+scfsGSlVv+/XzCSR18wVShJaWX99RccOKDeq08fM0891YaBA+Hvv233++ILPTffbCYvT/ud6HRmJkzojJsbF6WS9Sg7O7taG3brXdDt7e2NwWCwS5qWmpqKn5+fw2MMBkODCGYbSjmr26BxEXQLOcCehE5s2NODuC37+ejb9jb7zP72PMOvbHy/m7L8/ru2fPc9epp5N2Ng1+2s3tWfhOTWHIw+TOe+7Us/gQP//hZluckL9kvksVcH4ORkoEenU8xF3VwmHjnPgEZYT8tjLDAy/281mMnVOZcrr3Jq0H/PdXU9so6H9uzR4xKo3cx26NSkUmXqGq6Ny9y0Pp8vf+sFQIHRhWumdOeB5Rv4d5ttl90juxMYMqQSg8cbifycfK6feIJDp227k3/6qZ4nn9TGQ5ZUVj1a8qeWNOiKK90s+1mPCTxwQM/5tEy2HdbGPq5cXshVU2zPmZOjpqc7eBDmzLFNdrVm/gZADZcZNSQdg8GnvI9rcfnlen5cVlTeP7JYtTMSAP/myfQc1hm9oXrueg0GaNnS+rWB73/rwC2TtnM2w51n/3ueK+/qV/96fFn93xoMBpvX1fs2dXA9inkaEn5R779mnBoP6+ZHRAR8+CF0766SR739tp4HHlBTJYm68/zzcKIoBcT48TratLGvLwadGcPe12HvdDBatca6eNO+RxgsUC+PHTOoqtxqlPqphNhY9W/z5tC2rQGdDgYMUH8aRiNs3Kiv1J9JaipMnVryPXQsW2aw5MGoTrNna8vPPqvD2dnAJZdAt26wpyj1UseOcPXVav2yZdr+7drpaNKk4d73VFTx9ai6r0n1LpGai4sL3bp1Y9OmTZZ1JpOJTZs20bOn47Flon7T6XXcc3Oi5fWNN5o4csb2KeC8vyPIOVfG3IaNTF52Pn/+qbp4N2+ususCDO6nzTGzfLH9PJHlmT5d6zb++jNHLJlwQ9poY2ETjlZPNuGLzYalsZxOV5HHuP67qjTuVKgxtd7eajk2Fo4maHWvbVjFgyWAzj20YUgf/jzQ0kILKnnj+z/Zj5E9FHOskiVuHF6aupHVu9R3bIBXEjdco1o4s7NVtu3KMhlNLF6rHuS5u2QzanK4ZZunpzZF0/79sG5JvKX3DcDy9fatRG+9msLBoqm1N22ClBRt2+ptan8XpzwGDK5cE8yYa7ui16nu818v6GupQ6P6Hqi2gLs0fq19Wba1D1vju3HV3f3rX8B9sQt7DJqq7rxk7oPV49U8yqgA5IYb1KaUFPjkk7opolBWr9b+D9zdVaK7kpwK09CvHQ+7X9ICbhcf6PUBXHWC9pdcb9m31GnDypGRoTJ8A4SHa1NnNWkCxSHK3r2QVsHbs8JCeOghOFPUS76jVXqj11+3nXK7OqSnO55uTaeDhx/W9ps6VWX1Hz/e9nhJonZh6l3QDXDnnXcyb948FixYwKFDh3j55ZfJyclh0qSKZeQT9c8tD0Xg4qSCudgE7a+2c2s1JjYzx5M/v7NPlBcTA/PmqUQOjcmKudFkZqo/zyvHnMa1qEGv5zAvyz7Lt/Wu1Dl3b9jPyp3qmA4tj3HTwwMt20I6aPM0JSTIjZ8jv89NtyxfO0nGBFeVTgfdO6qHcImJsHNfK8u2Np0DK3Wu0MgQdDr1IKmgUI0BdnEu5JJI22tJeJt4y/LBw46TrTVmWRnZfPqLumN0ccrjz1+SeP/jJhQP3/3s03wSD56q1Dl3/LvP8pBqdJ/deDS3HQIW2kZFzadOwcIFtg9cD55qy+Hdxy2vD8UkMP0d27nkNhfNknPiwCkOnmoLQP/O++zepzzeAV4M6qaarnLytWNHX1ax+eJFA+YRBCNXqsRqAGe3wdqrLdOJvfQSlu69b7+tAi5R+7Ky4K67tNczZtgGpwBk7KHLsVvQnflXvdYZoPN/4IqD0PlRcPKgvVXHwKoG3cWt3IDdLAiDB2vLVu2GDv31F9xyi3r4+IvqbIGXl8oUXnzeLVvUw4bq9OuvkFfUrnLTTbbTrd1zjwr0X3lFC8Avu8z2eJku7MLUy6B7/PjxTJs2jY8++ogrr7ySuLg4vv7661K7l4v6zzfQh0nDd9is6xqWzacfZFpefz/PNoHSiRMwaBBcfz28917l3zMrIwuzqWGOw/p1ntYt89rx2pjXNp2bEljUHXf1am2uyop4f7qWcOSxu4/aTHkT0klrMTx+UuaddmTfQW0s45hr5JvnQnRve9CyvD9R3QkF+pzCrUnlWik9mrvTxj/RZt299zmxZG1nRvRQgXcT1/PMnauNpDqUID0USvrty52WFt5bxm2l/9hwWraEqbeo6b7y8l14ZMoxcrO0C47JaCIro/TeSSsWacmDLh9n33smNCDOsjxnWS+77cv/UtdAs8nMI/eeIa/Atm5sXroTgNWLtbvnEYMq3/sHYPwo++NGX9OtSucSDUzTtnDJcnAp6n5z5h/V4p13lrAwuPVWtTotTVq768rzz8MRNfMeQ4eqlmE7bq0w64qu824tYdQq6PWu9v+K6mVV3IBR1aDbOr9WWUH3hhJTZRfLyoI771QtyD/9ZNsi/vHHqozPPKOte+ONqpWzND/8oC2XnG5Nr1fJdF98URtF0rEjhIZq+0hL94Wpl0E3wC233MKqVauIjY3l119/pUePHnVdJHGB7p5mO8XVf/7rwfCretAm6DwAKza25+RJbfucOVoOl9/mVa6pe86HGwgIMNMpKIGNSxpW1vi87Dz+XKOu5s3dMxhzvVb3dTq49FIVdOfkwPr1Dk9h58zJXH5arsZyezVJ547/2LaSB7YPsHSxTDglQYkjZzNUs59OZ8I3sHLdoIWt8HD73hTtWpWV4bV0XdppQy7c3Mw8+yy4N3Pnrw1dmP3eBrauOU3X/h0I8lEttQdPtirtVI3W1z9og1XvfsDLsvzUCy1o4qquz7+vHcDAiKPs+DeOd/67mg5BSVwyeiDfzHB8EVq5VmspHnO1/Rj60E5aRvSsvP+3d99xVdX/A8dfl42AAgICCoog4ADFPXCR5ja1bLlSW5qjcv6aWjma3zJLzcrMtpWlpZXmynLvjRsVB4iIAjIu9/fHR+7hskHGBd7Px4OH555z7rmfi4dz7/t8Pp/3W/ViZ9a6BfjzPzXsd+WSHazeruZ7uznFGLdvvdPTvXGDNmWm673F653ufb/pCIsGDaBu3WIdSlREzk2g8++qNjPAlfXwZxu4cYxXXtF6uxcuNK1fLEpfSgp8+qlatreHzz4j9+Ritq6c8n4TQ617oNce8OiYYxcLC/C7cyk6fbp4Q7fzC7rbt9eWs+acyHTkCLRuDV98oa2rXh0efFDr+QYYPBj878x6WLdOPa8kqHJrarlRI2hRyMGSWeeVSyh2d8w26BaVT9d7LI13zGrVgiFDwMLSgmEj1ReujAwVaGf69lttefdeS+IuFa4XY8uqAzw2qRWJKY6culyXTv0b8vbkzWRUkCpYa5fvN/Y69e90CNtqtibb771XW54/5yRpKQXfkPh4kR2p6eo4Tz58AkcX06Ga1rbWeLuqnvCoq+45ni8gLkH9zlwc4kt9rmdlF9LcOce6enduvhVVw2Zahq+xYwx43Ymp7RzsGPJcBxq1UeMQA+qo8zs2wY0bsQk5jlNVHdt5mi2H1DepRr4nadtTm3vt7uPGkv8dxM5a9WjvOx1My3saMuWdLpyPrU2GwZL/LayT45iJNxL595DqKa7veQ6/Jj459glsmHNUw8jRdmQOaFu/Hi6ciOGpyVrA/vGbJ6lTU92Z3XG0Afo0vel87nuL1w0T2qEB3q7azZtuEVVsPpMA93YQsVbVPwa4dRL+akv96tvo21etunBBVRURdy8jA3btUkP4IyJgxozc99uyRWUtB3jgAXVDDICr/0CKacLlZLtgMrr8CfZ531jNHGKenKzNoy6K/fu15exBd+3a2s267du1aZG7d6uh3KGhWgDt4ABLlkBMDHz/PfTsqR3Hysq0N7+kzrmsvdwjRmjz0Qvywguq/a+8om4aiOKTb46izFhYwMqVMHky/PUXxpIDWYe4zJ8PqalwZFe0SV1Sg8GCDb/mXTcx09nDFxg41Js0vTZEWp9hxdR3OzFiRMknpSgNP3ynDS1/8KGc80+7dzfg4KDeyK/rA+jfaR+3rucdsCQna6UsLC1h3Kutct3Pt5aaY3kl3sNkGKlQ4m6qEQCuThKw3a0mbXJ2I/rVLV6gM+xpX1xc1Fyz/3sh7480f9+bxuVTB6Pz3K+q+XS+Njz/8Ucu5EjmNXhMO3ZsOE9Q7dzHYx674M+JY6km6/7ZbDBeg7u3P5/b0whsknO6WLduWtLImzehS5dUrsSrIKh3m5088JTqbQe4dduJP77dw6nL6lxq2/CoMTFkUeksdPTurE3j6datAnxQiJLn3h567ADnO+VLnQKhehBjx2q7fPRR+TStMjlyRAXPrVrBa6/Bhg1qHvHZszn3Xb1aWzYm9Tr9BfwdAf8MMs6/L6y7mdcdGan1YNevryUEzSpziHlyspoW2aULtGypOpH0dwb3hISoQPyxx0znVGeVeaMHTH8HxZWRoQXdFhZar3phuLqqofAzZxY+UBe5k6BblKmgIJWQJDRLSe4GDaBHD7V87hx8/sEpvv0kZ128dWvz/1J+Yu9Z+vdNIjZBfZm7J2wPL4zeaNz+1VewZ8/dvoOSdS06Dn2aNszy4slL/PB3SyDn0PJMrq7w1cKz2FqrwPiPHa2IaHuO61fic32NZcvU3VRQw5h8cnY6AeDjpQXuF04U4xZwJaZP0xOfpEYfuFYvXo+s0NRwr4Gv+wWTdX7+tnnsnb9mzVSPxdGjkF/ajwB/7e/s1LHizf2tbFJTYenqcABsrNMYNi4k1/1COgSy66AHj/ffjJfLZZ4csJmxI7UbF6tWm35zXLdJG0nT7ZHwXI/pH1rHmAQP1A3Bjh21zwKAU9G1AfByucySH+qhs9DRtpUW4M95SztnunaIL+Dd5m/aW61p1Eh92e13n+S1qLIc6kL3f6HhVNXzbeNC9+5a4q6//4ZjBd//F/n45JPcA97cfq+ZAaeFBdzb3QAHZsC2kWBIh6ub4cTHRXrtrEH3qVOwbx94eamSX/Hx+T/3gw+0jpunnsp9n6xDzKdPV4nRMrm5qZ79bdsKTkiWdS71v/8W3LaC7N2r3dTo1k3NHRdlT4JuYRZem6l9+XpjbjW+XqmujBY6PdaW6kvWuq05y8gAbN8cz8CO2wlq4cvBs+oq1cD7DMvX1GfWp1149x3t2CtWlNY7KLrP5vyDW21XwkOPGHuqZ/9fpDFh0BP3780xtDzTgKF+/LX8ODWqqXSqOyMbM3vKvhz7paem89ab2iS055/Puz2+tbUvs1En44r6diq1G7EJGAzqculaQ0rblYQQf9PeZr/W7fLYs2DW1gXfgfdvoAVSJ4+r3pH161Wixs2bi/3SFdqKFRAbq35xAwdZ41anZp77Oro4svjXTkTHebJoRSfGPK8N688+/HHdOvWvTgddu+Z+PDsHO3xrar3gLcOSqV4d7u1uOg9Ip8vgq08u4eGrpr2066y18d/D2t3bLt2d82x7YQQEqBq1q1ap80lUYdaOEPYm2KgbrRYWMGaMtjlz5JgonpNaHk0GDsx9PajAPDMQb9/egOv5/4NDM7UdAsernyLI3tM9ZQpcvqyGg7/zTt7Pi4vT5mI7OKhM37nJmkzN2MxAWLRIlRqbMQOqFbLAQmbPvl4Pa9cW7jl5+fNPbXnAgLs7lig+CbqFWWjdxoJ+7bcDcDHOy1jHOyJsH+0bHwZUGZmzh017xzZvhnZdavDLljbGoKiW81VWrTTgUssZgCFDLYxfyM0p6F7ylRquvO1YCOOG7CXq2AUWr1CBh4PtLabNbpLf0+l0X1P++esKVpZqBMAv6+rl2Gf5wh2cOq0yenbrmkzLlnkfz7eh9vyo+MC8d6yC4hK0zOWudfIYKiCKJKRhksnjevVK9/UCGmljAU+dtkSvV3klfvgBRo6sIAkfStD6vw0mXxwff7xozw8OBh8fNdrmn3+0LLxXr2rzHps3V7Vg8xLoqZVyi2isSv14eVsQ6qetf+mJzUQ8EGZ83LxLoLH8ZCZb69u07SFpdUXpGTnkBva26rz74gttnrHIW2KiCqrvv18Nt86UmYnc1hYmTNDWnzpl+vw1a7Tl3s3WwJE3tRXN/wct54GFFUWRNehetUq7QQiqJzs2NvfnffIJJN35yBo1Kveh5aBGcWYG3p07qymVR4/Ck09iLMFYWFlrZN/tEPOsQXfW0USibEnQLczGa3Occ6x7ZHAS3TppxTHX/XrGZPvy5WAwqIjay+Uyc5/byNFjNgS10K6stWppQ36OHIHI/YUfOn1gSyQfvLCp0EnciiLygpbsY+majvTuozPOg5w4dBfuPgWXyAvpEEiHLDclTuw9a9xmyMhgzv+0Y7zwTP5j4nwb1TMuR0U75L1jFRR3Q+sldfX2zGdPUVghTbXuREvLjDynPZQU/ybaeLqT0XXYvl31cACcPm3BuaMX83hm5fP9/H/p2TOdm3emuUdEqJ+i0OmgY0d1bdbrYc3P6rq6/jft99itW/7HaNRQG4UTca9WNeG1F+NxcbjO0B5beOVD0+HpttVsaR5gOv2obfP4IpebE6LQbp7CZWdbHm23DICEhJIv5VQZffcd/PIL/PyzShYGanh25jDnevWyJEYjZ0+3yXxu7yx1tFotgOBni9UmPy0vI7tNq9hy6xa89VbO56SmqnJeoK57EyfmfXwLCzWkPCZGlXXt1y+PbOuF0KmT1iu+Zg3FTgackKDNRQ8IML3xIMqWBN3CbDTrFMQDXbYaH9tYpTBoVCjd+miB47q/LU2es151jmBhYeDICVemvdfF2MOd1cAILeBcsbRw9Rf2bT5O6whfnp3TmZcnHCjCOynY9SvxxCR4mKw7fFrNX6xuf4NJrxe+LkPvbvHG5dXLzxmXf/9yp3G4fdvgg3QZ2Czf4/hmGb0fFZX3flVRXJbR9q5SLaxEhLTUsuT7eMRiVbQOiyKr4V4DNzc1Ie/kZb8cQ6K3/HG2dBtgJv5evodHJrQjLV3d9Ojfz8CqVcX7YhjRQbsJuvJb1U217hdtsma3tvlnKhr3QmPaBh9kZJ9/iHhIG5d53+g2XEtwZtkf4VjZ5Dwx2oaZTn/p2ktuhIlSZOUAaTeZ0GOesbTmnDlahZWLF1Ut6fff15JlCTiuDVgxZu2+elXrMfbzU/OpM5PqZu3pTk6G9X+rKW/eLhcJ9b3zHaz1ImjwdLHb5OgIHqZfvaheXavfPX++djM20/LlGMvZ3nefVs4rL5aW+ecXKSxbW+3G5ZUral52cWzYoJW6k17u8iVBtzArM+e6Gz/U7uu4B2ePGrSMCKa6vepR+XtXIBl6dbvvyhXtQt6ypQ7nmnknvxk4WJtE8/Pqgkti3Yy7yYOP2BjnV2/fU7K1q0/s13qDbG1ME8Q9/5wBV688xi7lovf9tY3Lq9eqHmpDhoFZb2rv+f+mJOfISpydBN15k6C75AU1r4eLg/rFNmtYNonN/P3V38DFi7B8uWmG6n/+qRrflr/4LMk4Fefx/pv56Ud9oecYZtekuQXODvEA/LG1MbcTb7N2m+pKsrNOJrx7/tl6AprVZevRED7/rWOOMnz5Xa/adTCddN2lS9HbLkSh2XtCp18I9TvBO0MmG1ePfEzP1Ml6goNh1ix47jkVeAsla7K0yDuDU7JmKK9XT93sywxiT5/WenM3boTbKeo7Xe+mq9HZe0D7ryHgybtuV/ae3qefVj+ggv25c7VtcXGqZFam/PLilIaSGGIuQ8vNhwTdwqw0ahPAyi/2MHnYRhZ8pdI7WtlY0bWF6qmOTXDjwL8nANiwJsb4vIKGRtYP8TXOE9xxvAkXT17Kc19DhoGxj+7nRLQ2DikqNmct2sL697cDtA46zPBeW4w3DCIPxxu3v/jUDho1UstubvDsVOciHb9x2wB83FQQv3FfCIk3Eln7/R62HVOZiJvUPUHfEflM5r7DxQUcHFT7ok7fLGDvquV6tHbr27V6Yjm2pPKwsbfhxy/OMeGhTbzzXtkMDc7MQAxw6pRpUPfP7qqRzvXkuRrG5Xlftcq1J7mwrKwt6dVeTW+5kVSDWu4pRMWoa2V4yJFSG/Ldrrt2bba1zaBNm1J5GSE0NVtC6095tuf7jO7yKQApqZa8/a6lyfzul14y7eGtynILus9kmSGYOdQ7M+hOSVE3RCHb0PLBdeG+c1Dv0RJpV9ag28oKxo9XmcYz51wvWAC//qqGwo8erXVCdO0K4bkXYyg1vXppy8UJug0G+OMPtWxtnXdiS1E2JOgWZqfP8Fa8/WUXanprXYrdumh1o3+7U55m/S/akPGINgV3zQ7qqWVL/mVZzpJkmZa+8y9f/Wl6ZY1JcCc5qei1W3/9bDvdBjVgZ2Rjlv0RzsYVKsNQ5DGtd7tZmDUbN6pSahs3Qo0auR8rLzoLHX06qXFZqem2rFl+lvFTtN/dC8/H5OhFyvU4OvB1VZ+IUectMWRIrdpMcWePGpddLQ+XY0sql4gHwvjgu874N81Zt7s05Dcs8EhUANeiK3/W/pPRKpdEnZrRxa5rnVW/ftpyQrJ28RrYt/QyTfkEehF2J7da//4WxuGpQpQqvyHouq7m48lf0ilYqwWl02XQNEjdmL19G0aOlGHmBoPpcPGTJ9XvJLegO8Dnmsl+oCU4s7KCe4beC5Yl90eeNegePBjq1AFPT3j2WbUuNRUGDYIHHlBz0kElhPzyy7KvU+3rq+p6g8qwfu1a/vtnd/Kk9jsPD1fD60X5kaBbVAh9Hg5Ap1NB4MKv/EhLgw07VOYla8tUOkQUPIFm4KPaMOxlP9TM9Qv20R2neOYVLVNubU8tw/L5C0W72i5emMygJ1tyO037YrvzPzVMPvKkNhQ+MNQNd3eYPBkaNy7SSxj1fkDriX96ih+RF9WnWftGB3jombaFPo5PrXgAklOrEXep8gcghRUXp/3fu7rJN/yKKsDzTI51PVvvNC5vWXMyx/bK5EbMDWIT1LXSv/bVEjlmr4cb41dL3fR0sL3FoE7b+OaD/3j6lY4lcvy8rFmjMs8vXlyqLyOEKe9e2PTZzE8r7Hmw8wYGtFzBztdb8d+LIQT4q5vpW7eqTNhVWVycSuCVKS0Nzp3LFnR7X4fdz+KfNMO47tTeSOLitFJhzZurOdclqVcvFTzb26se7kwzZqiKFqCGuf/8s7btiy9UcF4eundX/xoMWkK0wpKh5eZFgm5RIfg1rk3//tp8zPfmxnPyUj0A2jY8SrXqBU9KDGnfgPqeKtHY9mNN8PGz45nBmzh3VJUhS76ZzIMPZpCUouZFP3HfZoaO0I5blHnOK1bAk2PsycgwTfy2a6/K1hF5Ts3ZtrRIx6/R3V/JI/rXx+ZOHH8tXrXZQqfn44W2herlzuTrrd1kiDpRMl/KK4O469oQXFcPuVVcUfn7mva+1vc8x5OPaylh/9mUdw32s4cvMKrvP/Rtt4Mzh87nuZ85O3VIG+0TULdkppA4uTqxc48ju/4+yrU4a37a1JZHJrQv0nWnOGrVUr1URR0ZJERJcAtuzffrO7FiyWFa1N9HtfD3WfKFtbEn9MUXVd33qup0LjkUIyOzBd3HwuD4BwR4aOPxT56xY/t2bZ927Uq+be3bqykAx46pEl+ZbGxUb/bkyab7P/cc9O1b8u0orKy1v//9t2jPlaDbvEjQLSqMrAksXn7dybjctUPhkjDpLHS8ODHKmKgtObUaH//YmeCmNXl9xm3Gj8/g0DlVv6Kx7wne/7JlsZKLpaTApEna4+fGxFDNVs0D3n20NgYDRF5W89X9fJKwsc87AVxhOTjkTCY0/uEtNO0YVKTj+PpoY+KiTt3IZ8+qJWvJMBcPp3z2FOYsIMQ0y3W/rmcJ76lN9P5nR84RM7cTb/PG+I00DKvJkt878vu21jw46Cbpqek59jV3p47FG5f965fc+Nea3q60iGiIbTXbEjumEGbPwhKavAR9joDfEMLDtXJSt2/Dgw9qmbqrmtyC7hNbt3HmqBqG72h3E1c71Qni76XdDDx12ZetWhGbUgm6QZUqy/r9LpOFhZrq9/77qlxXz56midXKQ3GD7tu3VeZyUDcps95gEOVDgm5RYXTsqIYaAaSlaT3IET2cC32MUdM7cvJANBMe2oSDrer1up1mzysz7fhsqerhtrdN5YcfdFSrXg1fH60XLCoyJtdjZvfRR9rd3G7d4N2P3AkLUJObzlzx5dCeeBIT1Z9eYOOSGzeVNculp0sMM+eF5b1zHnzraj26UWdSSqJZlULcDW1IeW4l6UTF4F7HDUc7rYe3/6DquPvUJLiO+vvcczKQxBtaorybcTdpF3qWl+d3MZkmsutEI95+x3QUS6ZLp69w/Up86byBu3TyuPY3HRAkAbIQJaK6dnN79mwtuDlyJP+azpVW8uVcg+6j/+0h6rLKN+PnfgadhSUEPE3dUWuNJSNPnqRMgu6CTJwIN2+qaSw2d98vcldq1dLykezcqeacF8bq1ZB45+OsV6/i1wsXJUf+C0SFodPB8+NMh0TaWSfTtkfDIh3Hr4kPH3zXmfPn0nlu6H9YWpomDJv/sQ2N2qjeLx/nE8b1UYcKTkkad+k6r89MMbb37bfVvy1Dtd74777U5ko3aFCkpufroYdU/Ulra1jwWU1quBU9oPet72BcjoqSRGqZ4hLU78XJPgFrW+sC9hbmSmeho1mA+jbo5hRDx35NAOjYQvW0pOut2f73WUCrYrDvdDCgpoIM674WCwv1dzFjpo5Dh0yP/9/vB/FpUBPPOva88tRGkhLMq5vr1GntRoF/sHP5NUSISsreHr6fvcQ4uu3TT+G778q5UWXFYIATC2ClH6ePxubYvPFIF9L0KoL1q28JfY9D6wVYOXlR904uzZMnYccOtezlBT4+ZdX4nMwpSM3s7U5JgT17Cvecb77Rlh95pOTbJIrOjE4pIQo2+GFbvF20GtcdGu0t9pBGl1rOvLesPXv36ujSRQXHEyeqzKOZfANrGZejLuU+b3zTin0smLmZv77dzQvPHCQ+QbVnxMNxNGum9mnRUutB/vZnrQZ3YGCxmp4rT09tztSAgcX70/YN0LKenz1vx3vvqeRu8+aVVCsrprib6gaGq2NCAXsKc/fxQnueGriZn5ZFG2+gdOyh5VXYfEBlM8xaxcDJPoEd607w5V/dmTxZTdpMTVXXivQso8wXzr+BPsOK1HRbXv+kC40bXOOPr3eV0Tsr2MmYRsZl/yZVo0SaEGXq+gGCE57g48fGGlc99UQqcdcq+U3s1Ouw5QHYORb0tzl9VBsZmFld4Gi0dv3xa9YYnLRyEpnlHG/d0hKwtWtX9tnCzVX79tpyYYaYJyTAb7+pZQ+PgsvqirJR/AKdQpQDG3sbxg87wv/NU5nIIzoXcpxNPkJC1LyX27fJUXrG2b0GjnY3uXXbifNXXHI8d8uqA3S9PxSDwTTItbdJMvZ4A7QM9zIun7mQJej2TwVKbuxSjRp3l1ioTgNtzutPm1rz40a1/NxzBrp1TqBR06qXtciQYSDuljMArtWlfnlFF9IhkIUdTO92deyl1X1+/XU4tDeBNX9q0zM+efMQzbuqbz0zZ8KqVXD0KOzaBUuWwBNPQHqqntX/mo66OXvVh77DvdhZ+xhhXYJL8V0VzqkLNQFwc4Ma7lXvb1mIUucSCt23MMJhKH8d/Jpv/htCwi0bvp/5LmNe6wHOTcq7hXcvIw2u7YIr6yFuJ9w4CrdOgUHLE3E6WnVYuLiogHrnTtND1Ktn+ji3co7lNbTcHGWf1z1pEly6pKo3DBiQc772ihWqVxxUbgErifbMgvR0iwpn/GvteaDLVu5tuYsxLzQrsePmVutVZ6HD1+MKAFFXPXPUrn5rbnKOgBtg0ogd1GmgBdqBLernWh8xsG7h5omXFdtqtng6q0QnWd9XRoaOqU8XPLy+MroVf5N0veoRda2ed3ZrUXHVrQstWqjljAz4aWV1kyoGD4/Xuhns7ODTxdp14PP3VQ33revOcO2mCmo7hewjIkyNAdRnWPHKC+U/QiI5GS6oQg351isXQtwlt7bQay9Tn440rlq6ugOsaaZ6ghNO5P1cc3fxN/jRFda2hwMvwYVf4WakFnDbuJLW7lfj3O369XMf0efnZ/o4ICDnPhJ0axo1AmdntfzffyqgjoiAV19VWclv3zbd/9tvteVHHy2zZooCSNAtKhyHGg4s39COP3e2LJOkVr6eaj727TR7Yi9eM66P3HOGVf+1AaC26yWmDN/IgPBtjH9oEy/+z7Q2tqUlhGXLa2ZnnWwSmJuLup7aXCx3dwOeLqp02O/bWvP38kJOJqpE4q5qibVcnSW5XGWk08G6dfDaa+Durq1vUldVMciufQcdTf1UIdltRxpyfPdpVm3UvjWOftKO1Vsa4+OmpsL8trU12/88lOM4ZSlrqZ7cvuAKIUqQtRNNh82kaSN1w237qbYcv+iv5jz/FgQ7nr6rwxsMqrdz8GCIji54/2JJioaESNN1Nduqnu6sLO3AuSn4Pw699hGV0Z+MOzloCxt0Z78RaG2t3QgVan555k2IK1dg3Ditlvnly/DLL9q+V6+qzzNQIwramn4dFeVIgm4hCuDrrfVuRp3QeqY/mKPVEJs48jhvLe3Cin/aMu+7ztg55Ow2b5ntu3uD2udLvZZtcYx78gbVbBPp2fEc+/bpeOsl7UN38vRqZOgz8nl25ROXrN0YcQ3IGYCJysHZGV5+WZUG/OztvUx7bCN/ra9Oteq553IYPviycXnZwihWrlTLFhbQ++FgbKvZ8tLEU8Z9XpmZy1CaMnTyiNbbLj3dQpSNEY9rCU2//Hf0nSUDOPrl3Dmh8KPJNm+G996DH3+EIUMwBrnFlnodLq2Fw7Nh8wBYURt+qQ17JpnuZ+cGAU9B3Ueg9WKVDG3wLTY77mNZ5GIy7H1MMpfnFXRnH16e/UZgWFjuow+rsqzzuj/91HTb4sXa8vLloL8z8OCRR2RevDmRUf5CFMCkbNipG7SIgLjYdJasbA2Ag+0tnphacHmu7HdtA+tey33Hcjb0uQ48Mk6PpbVKJzpkYnv+9/FR9p5qyL7TwSx7bwsjpoSXcyvLTpyWbB5XN8lcXtnZ2cGoyQX/PQ8Z04ip76Sjz7Dio2/DiL8zIKJ9ezVnGmDklHbMXXCVM9Ee/LU1gH/+UaUPy8OpXXuALgAEuOwC5AaSEKXt0UdhyhQVBC3bNYnXXzdgcXYJ+D9humPcbvijpepJtvMA/Z2b/U6B4BwCLs3AtQVYqK/tR45oT924ERYuhLF3crfFxqo5vJnDkXOlT4Grm+DiKrj0J9zMY8h73A7VrZ41cmv5gckux49D9+4queS5c6ajhXILul1doXq24irZe76ldzanrPO6s1u/Hk6dUr/HpUu19TK03LyYXzebEGbGt17O2tWLFluRnKrq9o4afAJnj4KTErUMiTN53KC++Q5VtrTWSgtZWFrw7ptab//kN4KJPnU5t6dVSiZBt2ve+4mqpVY9D3q2VtMt4hO1v//+/bV9rG2teWWWh/Hxyy+XWfNyOHlK+7j3byA1uoUoC7VqQc+eavn8BUs2Xp0GfY6CbbYPk2N3Atlr2+DiSri8Vv2c+Ah2Pg1/tYWf3GDbKIAcdbCnToX9++G551QlEx8fFYTlKfIj2NADIufnHnBbV4daEVB/ZM7h5Nn89JNWO/r99+HwYW1b/fo5S6NmD7BBlVqroxWRkPncuWjdWk1VzFSrFvzf/2mPP/8c/vc/LWldSAg0qQR5+yoTCbqFKICvn5YBLSrKQGoqzJ+vHut0MHFGwb1iAA0aO+Nkpw3xDAyyzGdv89L1/uYM6rQNgNgEN4bcfwl9mr6AZ1UOEnSLvAwfmp5jXb++pskWhw7Veno2bYKzZ8ugYbk4dU4bJh8Q4pnPnkKIkjRihLa8dCm5j/et1QWqN8y5Pqu0G+qHnEF3YiI0a6aCXr1eld5a9MZ/cGgWnPkKki6aPqF2H23Zwlr1sAeOh3ZfQt9j8MB1uOdvaDYXLPOvsLJ6tbZ87Rp89pn2uH59cHJSNwIy5RZ0g2lwLkF3Tg4OprmB3nkHJkzQMpMvWADTp5tuF+ZFgm4hCuDbQIu0oqIdWL1aS1xy332Fnx9pYWlBcz8tEVlgcMXqbfrk20Dq1FRvfOP+MN6Y+E85t6hsxJ3WEmC52l3MZ09R1fR/rDnO1a4bHzfwOkVQkOk+VlbQt6/2OCqKcnHyvBrz6Wh3E/c6buXTCCGqoH79tKHeP/0EN3OrPOk/CvochoGXYNAVGHwDBl2FezZCiw+h7sNg4wpevQAt6LayMuBb81yur/vdqjpk7HsZtg6DX+rA6S+0jU6BEPw8hP8A98dCj60cd5rHa8uGsftEEOgKFx7ExcHWrabrkpLUv5aWqscdTIeY5xV0P/+8qik9ZoyqKCFymjkTvL3h6afVXH5PT3V+AVy/Dul37gNPnw733lt+7RS5k6BbiALUDvBGp1O9V1GJrfj2G62H94kn8npW7h64X93h9nS+QljXijXup6a3K98uicHSQl3VX1vYkU0r9pVvo8pA3CUtm7urQ2w+e4qqxs7Bjofu2WZ83L/LcXQWOXuxvJy01OGXjhwok7ZllZaSxrkYbwACvC/m2kYhROmws4OHH1bLiYnw/fd57KjTgb2nmtNtXR3s3KFWZwgaBx2+VUG43zAMBi3oruubzpJJb2BrrWpGDWi5gvAgdUP8/DVf/o3UJgKfvtmBhIQsr9X8XfAdDNbVWbJE9aK++iq0aQNvvVW45Gx//ZX3fr6+Kgs5FC7o7ttXZeL++OOCX7eq6t0bLl5UvdqZAyYef9x0n/btVSUOYX4k6BaiADZ2Vnh6qqvbiRMGVv6iJi+5uabSvXvRjjV2Rke2rjnEgQOWeWZFNmfh/Zoy8xn1gZ5hsOTlGfkPO6sMrsdrl0lX94r3fyZK14QXG2Bvk4SddTKjnw3KdR/PGlpNn8tRcbnuU5qijkUba837+1wvYG8hREnLGhhlzTRdJBaWYGlLXBzG4Lm+vzUR/7eYQ4dtObw3nhXrGvL0BG0kyzdnvoQmL/Pxjo8JCAugaVPtuaB6pR97DEaNguQ7qVv0epg2TfWgXisg32vWoeXjx5tuq19fW27VSlvOXj41K8m0XXQ9emjZ4F1cVI1ua8n5apYk6BaiEHx91b/Xr+u4naYSqD0YsbXIFzYLSwva9myCu0/FHd45/d1O1Pe9BcD2Y424fbucG1TK4uK1GwuutZzKsSXCHDVqE0D0+TQunrtNw9a5zzXxqmNvXL50qaxapjl1RBuhEeBnvgkchaismjdXc64BduyAAwUMeHnxRQgKMg1qM2VNkJYZ2AY00NGomTPUCOa+4Q2xv3PJWb7Gj4O613h+4RgMBh1nz8Kff2rPnzLFNNt1ly5a4Lt6taq2EJvHAK+MDFizRi07Oqre8azT7bIG3SNGqN7XhQslM3lJs7SEX39VSfQ2btS+rwrzI0G3EIWQ20XskeEuZd8QM2BpbUmnCJVcLjUVdu8u5waVsrgbWrFQl0JkqRdVj7NHDVy98r4eePlq9XEuXSn7Sp07t2qTSP0D5GNfiLKm05n2dmdNNpbdb7/B7NkQGamC1Rs3TLdnr4OdnaOjVkXh2jXo1g1SstxrW7dO/ZueDl9/rZbt7OCbb2DDBvjjD63s19Gjam5wfHzO19m1SwvIu3dXx5g4UdueNb+Fra2q3vDUU3m/b1F8oaGqbntoaHm3RORHPn2FKARf90vZHl+gfe+KNSe7JGWtF/nvv+XXjrIQl6CGlNtZJ2PvZF/A3kLk5FW3pnH5coxdPnuWvAXvRvPy/E7Gx01b1cxnbyFEaXn0URWYAixbRq6jxJKTVUbqTLGxMGeO6T4FBd2Zr5Xp6lXTbZlB93//aQH9gAHwyCNq+d57Yds2lbALYO9e6NNHzUfPKmsvfO/e6t+nnoLRo1WS2ccey71tQlRVEnRXYdOnT2fs2LHGx8OGDWPWrFll3o7t27cTFBREQtaJRmbG1znS5PEjfU5iYVl1/3yqVtCthpS7Ot0oYE8hcufs4WxMdHQptnoBe5cMg0ElRRo72RuDQV2rRvX9h9b3Ni6T1xdCmHJxgcGD1fL16/Dzzzn3mTMHzpwxXff++3AuS4LywgTdPXuq18uk02kZwU+fVj9Zg+Y+fUyfX78+/P231uP9338webLpPlmf30slVcfGBj79FH75BWrK/T0hTFTdqMGMTZ8+naCgIIKCgmjSpAndu3dn/vz5pKfnrAlbkj788EMmZh0blI+KECiXJF8/096pR0d7l1NLzENQELg6q4Ry/22Kx5BhKOAZFVfcLTWk3NUptzovQhRMZ6HD01mNw7wUVzbF3tesMc1gO/WpY3z6a3iZvLYQIndZh5i/957p0PETJ+DNN9WylRXcf79aTklRc7wzFSbotrGBBx7QHk+cCE8+qT1et04LmnU6lYwru+BglZ08c374qlXatpgY2LlTLTdtCrVr594OIYRGgm4z1bFjR7Zs2cKff/7JyJEjmT9/Pp/lMgkoNTW1xF7T2dkZR0fHEjteZeJbX0ug1bjOIULaNyjH1pQ/CwtoF7wfgNgbzkTuPVPAMyqm5JvJJKeq4eWu1RML2FuIvHnVVFnDYxPcSLtdctftvGT9gjx7Nry5MFhKhQlRzjp21Mpn7d6tEqxt3QpLlqgh2plf6SZNUj3Gmb3FX3+t5lCDFnS7uGj1v3MzYwZ07qyGms+apeZ2Z/riCzh4UC23bq31aGfXrJnaDqpUVUyMWt6xQ9sn63GFEHmToNtM2djY4O7uTu3atXn00Udp374969evNw4JX7BgAeHh4fTs2ROAS5cuMXHiRFq2bEnr1q0ZM2YMFy5cMB5Pr9czZ84cWrZsSZs2bXjrrbcwGEx7J7MPL09NTeXtt9+mc+fOxh735cuXc+HCBYYPHw5Aq1atCAoKYvr06QBkZGSwaNEiIiIiCA0NpX///vzxxx8mr7Np0yZ69OhBaGgow4YN4+LFi6XyOyxJIR0aEFhbBZZTJsTLl1egQxstCP13rfn/HxbH9ataN4RrDcn6LIrP0037e7kSVfr13rduVdd3CwsYN67UX04IUQg6nQqmM4Pl06dVXeVRo+DkSbXOx0clHXN2VlNEMs2dq4Ly8+fV47x6uTN5e6ts1l9/DdWqQYsWUONOLtCtW7X9Mudj5yVria99+9S/mTcAwLQcmBAib2WfRtUcHH0Pjr1X8H6uzaHzStN1m/pD3J6Cnxv8PDR8vnjty4WtrS3xd9JHbt26FUdHR5YsWQJAWloao0ePplmzZnz99ddYWVnx8ccf8/jjj7Ny5UpsbGz4/PPPWbFiBbNnz8bf35/PP/+ctWvX0jaf2g1Tp05l3759vPTSSwQHB3PhwgWuX7+Ol5cXH374IePHj+ePP/7A0dERuzvZQRYtWsTKlSuZOXMm9erVY+fOnUyZMgVXV1dat27NpUuXGDduHEOGDOHBBx/k0KFDvJk5nsqMWdtas/+4F1fPX8Q3WIZoAnTo6gIfqOX//jMwqnybUyrirmuXSFcPSaImis+rlta7felcPHUCS2+Kys24mxw8UA2wpEmDWJycKm6JQiEqm44dYc8eeOghbYh2pg4dVFktBwf1+Kmn4PXXVQ/z77/DkSOqVBcUHHRnZ2kJERGwYoXp+qIE3Xv3qkzlWauWtGxZtHYIUVVVzaA7LQGSC9Ezd9snl3UxhXtuWsnMdTYYDGzdupUtW7YwdOhQrl+/TrVq1XjjjTewsVH1g3/99VcyMjKYNWsWujsFFufMmUOrVq3YsWMH4eHhLF26lCeffJJ7770XgJkzZ7Jly5Y8X/fMmTOsWbOGJUuW0L59ewB8fLTfR407t0tr1qxJ9eoqMVBqaiqLFi1iyZIlhN25Svv4+LB7926+//57Wrduzbfffouvr6+xZ7x+/fpERkayePHiEvl9lSY7Bzt8g2XiUqZWEYFYW6aSprfh372V5/dyYu9Zvv30LP4B1tQJa29c71pfanGI4vPydTYuX75euvO6d204SYZBXYPbNToCdMr/CUKIMuXnB1u2qLnaS5dCp05qSHm7dqb72dioud0LF6ps5x9+qG3LWhO7sLp1Mw26PTzUEPf8ZNYXBxV0g9bT7exc9OBfiKqqagbd1tXBvhBBgl0uk1zs3Av3XOu7y1C7ceNGwsLCSEtLw2Aw0LdvX8aPH89rr71GYGCgMeAGOHbsGFFRUTTPduVMSUkhKiqKmzdvEhMTQ9OmTY3brKysaNKkSY4h5pmOHj2KpaUlrYowbujcuXMkJyczapRpn2daWhoNGzYE4NSpU4RmKyTYLOsVXVQY9k72NG9wiO3HmnDsgj/XouOo6V02SaJKw46/DjP3jZv8sqU1BkM9APrfcw5QKV9dK+5bE2bAs6F23bsU71mqr7V1szYtol07mUUmhDmysYG331Y/+Rk8WAXdoEqNZSpOsJt9/nWvXmoKSn4aNlR1tlNS1PDy6Gi4dKeKaosWasi8EKJgVTPobngXQ7+zDzcvJW3atGHGjBlYW1vj4eGBlZX2X2VvbzrMNSkpicaNG/POO+/kOI5rMSOFzOHiRZGUlASoIea1atUy2Zb1JoGoPNo3j2X7MbX8358n6Teydfk2qJi2rDpAxMBg0vSm5+nKv+salyXoFnfDy0tbzvzCWlq27qxmXG4bUXlGoQhRFXXqpBKdxcRAWpq2vjhBd4MGas545rzwgoaWA1hbQ5Mmakj58eOwebO2TYaWC1F4cgvcTNnb21O3bl28vb1NAu7cNG7cmHPnzlGzZk3q1q1r8uPk5ISTkxPu7u7s37/f+Jz09HQOHz6c5zEDAwPJyMhgZ/YJR3dYW1sDKkFbJn9/f2xsbIiOjs7RDq873zj9/f05mJky846s7RIVS4eOtsblcdO8GdzrNLNmwa1b5dioYnjnkwBjwO3lcokuTffm2EeCbnE3yiroNmQY2HZYfRt3dYwjMKxe6b2YEKLUWVnBoEE51xcn6NbptFJkzs5wZ8ZhgTIHJBoMKtN6phYtit4GIaoqCborgX79+uHi4sKYMWPYtWsX58+fZ/v27bzxxhtcvnwZgOHDh7N48WLWrVvHqVOnmDlzZr41tuvUqcPAgQN54YUXWLdunfGYq+8UdqxduzY6nY6NGzcSFxdHYmIijo6OjBo1ijlz5rBixQqioqI4fPgwy5YtY8WdSUQPP/wwZ8+e5c033+T06dOsWrXKuE1UPB16+GOhUzdeomLq8OMf9XnpJRg5spwbVgSxsfD7H6pn0MsrgzMXXFj9TzAh9SJN9nO1PFYezROVRNag+3J06ZUMO7n/HLEJKnFa28anpNKCEJXAgw+aPra0VD3WxfHGGyqD+saN+ZccyyprMrW1a7Vl6ekWovAk6K4E7O3t+eqrr/D29mbcuHH07t2bF198kZSUFGPd7VGjRtG/f3+mTZvGww8/jIODA927d8/3uDNmzKBHjx7MmDGDXr168fLLL5OcnAxArVq1GD9+PO+++y7t27fn9ddfB+DZZ59l7NixLFq0iN69e/P444+zceNG6tSpA4C3tzcffvghf//9N/fddx/fffcdzz33XCn+dkRp8vTz4IMXtxBU+zRWltq4tx9/hOXLy7FhRfDtt5CerpaHDrXAtpod9k72fP+9JdVstTJPNd0keBHF5+GmR6dTaYcvRUYWsHfRnD4Yxa51RwDYul5L9NmuldSWF6IyyBxinqluXdUDXhwODjB6NGRJ81OgrEF3ZiogV1eoV694bRCiKtIZ8sqkVQEkJSVx9OhRGjZsSLVq1Qp+QjnR6/Xs27ePZs2aYWlpWd7NERWUuZ9H6anpfPUVjBytvgm4ucHhwyo7qjlr2VIrf3LoEDRurG37ccFWRk1qTFjAaTbsDcXCsuLfpzT386gyq+Ucw9Ub7vi4XSQqpmTmWp/af46mbWqSmOLIi+OPERd9lQU/qWzl637Ywz2DC0hNXExyHlURiYlw5+Y9t25ptaxKiJxHhff007BokVru1s20x7m03boF1atrATeo0mF//VV2bciPnEeiJGQ/j0o6zqz43yCFEGbBysaKESOtjHPPYmNh3KO7839SOTu87bQx4G7RwjTgBnhgTDuuxtiw6UCzShFwi/Ll5RoHwOXr7hgyct7vvnEjx6oCffK/MySmqKBo1ofBfPGbqjih02XQKqJB8RsrhDArWYeYBwWV7Ws7OqokbFnJ0HIhika+RQohSoxOBx9/DDVrqExqy/9uwa+fbS/nVuVt6YIo4/LwvjmTp4Gqzy5ESfB0uwlAmt6GuMvXjesz9BmMGhqHszM8+2zhj6dP0/PVKtNv38kpqrpFk7onqV7T6W6bLIQwE127qutD584wcWLZv37WIeYgQbcQRSVBtxCiRNWqBfNfP2B8/OFH1uXYmrylp6bz1apgAKws03hkdDGz0ghRSF4eycblS2evGZdnjN3Ekq9VevxFiyBLUQgunb7CL59uJykhKcfx/v5xH9FxKkOb551e9Ezt2skQSyEqE50O/vc/lQAte69zWcgedEvmciGKxuyC7gULFvDwww/TtGlTWsptNCEqpIeeaYe/5zkA1u9rxvnj0eXcopw2/LyfS9c9AejTbg/uPm7l3CJR2XnV0qLpyxdUr/d3H/7L6590Na6/fRvOnlXLGfoMOndMYuATbXhuxK4cx1u65LZx+aM5kbz4oratz8P+Jdt4IUSVllk2DFTOFl/fcmuKEBWS2QXdaWlp9OzZk0ceeaS8myKEKCadhY7hg84AYDBY8NWCks3WXBL+Wn3TuPzIQ/p89hSiZHh6ahnwL11IYte6I4yclDPR2eHD6t+Tpyw4Ee0HwDd/hHE7UQuyE64lsGKT6npycbhOn6FhvP46rFoFP/0E/fqV4hsRQlQ5zZuDxZ2ooW1b1fMuhCg8swu6J0yYwGOPPUZgYGB5N0UIcReGjdF62pb+6Jtr4qjytH5rLePyPQPKOCuNqJK86tgYl6MvpDP6SUtup6k52AF1rhi3ZQbd+/drz71124l1P2rTNn5cvJ/kVJVN9ZFeB7CtZotOB337wqBB8oVYCFGy3N1h3jzo2RNmzSrv1ghR8RSzyp950ev16PXm21OV2TZzbqMwfxXtPPJt6E2nkH1sPtiM4xfrs+2vg7Tu3qi8mwXA9Svx7D2lAu3Qesdx8QqoML/Xu1XRzqPKxMNbS8q3dHkdjl4IACDM/ygLlrjTVlX64vA/O9FPbc6ePTqy3hv/+ccUeg1V/29Lv9GSpA0d7Vrm/59yHlURej2WxkW9acKBEjm8nEcVydNPqx8o8VPhrsh5JEpC9vOopM+nShF0R0aa39DV3Bw8eLC8myAqgYp0HvXpEcXmg80AWDw/miRrPb//XhNrawODBsVgVU5XoB1rLmAw3AdAm6an2bfvVvk0pBxVpPOoskhM1ZKdZQbcAE+NOk6G7gYWOhcyDJYcOlaNffv2sWWLP+Bs3G/Vpobs2rmLyyevs/lgTwACvU9hXTOFffv2ldG7MCXnUeVmkZxMZv6sAwcOkGFvXyqvI+eRKAlyHomSUFrnUZl85X3nnXdYvHhxvvusXr0af//iJX4JDAwskaLlpUWv13Pw4EFCQkKwtJSMsqJ4KuJ5VN+nPjPmJZGcWo3v1nbk27/tuX1bjXvdvMmTbz+/jE9Q7TJv19K3tfncvfu50CxrhphKriKeR5VFYv2UHOua1D3BqMl9sLC0IMA7isiLfhy/UJ+QxpaciUw22Tf2phuJ0VF88oU2D/zxR6IIa96p1NuenZxHVURionExNDQUHBxK9PByHomSIOeRKAnZz6OkpKQS7dgtk6B71KhRDBw4MN99fHyKX67H0tKyQvyRVZR2CvNWkc4jFw8XBnb+l2/WdjDOP820bbsNLdo48uVHe+gzvFWZtmvDNhXoW+j0dOnXsML8PktSRTqPKovqLtVwcoKb2j0f/u+5q1jbqPo/jetfIfKiH7fT7Nm3+TAXrzYGVEm7dL0qvfd/r7iy47AHAHU8Exj3atty/X+U86iSy/J/a2lpafK4ZF9GziNx9+Q8EiUh8zwq6XOpTIJuV1dXXF1dy+KlKrygoPwTOo0bN47x48eXUWuEuHtPjnHgm7Vq2dERhg+H1b/e4OzFGsTdcuW+kdXZ6nWEVkWY7/355zB7NkydCk8+WbT2XL1i4NA5FeQ0DzyFs4ckbRRlx8tTz82b6oO8vuc5HhzTxritUdBtVvyjlr/5Ita4/tF7t/PtX61J09uw43A94/rZb1XHXpvaLYQQQggzZXZzuqOjo7lx4wbR0dHo9XqOHj0KgK+vLw4lPKzJHG3ZssW4vHr1aubNm8cff/xhXJd1GL3BYECv12NVXhNjhSiEzgOb8fMn24i5Zs2DT7fA2Rmuv2Jg5APb+XVLG/QZVrz0QhJ/di/c8QwZBv5vWgpXY+14/nkDw4frsLMr+HmZNm7S0jpH3CcBtyhbnl6WRJ5Qy1PHx2BlU9e4rXGIlt38+zXBxuXOnQxciT3AnztbGteFhcGQIaXfXiGEEELcPbMrGTZv3jwGDBjAhx9+SFJSEgMGDGDAgAEcOnSovJtWJtzd3Y0/Tk5O6HQ64+PTp0/TvHlzNm3axKBBgwgJCWH37t1Mnz6dsWPHmhxn1qxZDBs2zPg4IyODRYsWERERQWhoKP379zcJ5oUoTQOfaMuT01XADeBSy5kf/gqjnsd5AP7a1ZItqw7kfYAsrpyL4WqsirITE3WsW1e0tmzYoC137Vq05wpxt/r0Uf82agQjnm9psq1RmJtx+XK8VtKuaWs3BvZLMtn3nXe0mrlCCCGEMG9m10U6d+5c5s6dW2rHX74cXnnFdE5daXNysuCxx5wpqVxN7777LtOmTcPHx4fq1asX6jmLFi1i5cqVzJw5k3r16rFz506mTJmCq6srrVu3LpmGCVEENvY2vDrpHCOnqXwOL72UwYY+BnQW+RcY3r/tPOBhfPzzz6o2cWGtX6/+tbKC8PCitlqIuzNlCvTqBXXrkmOERlDzuljo9GQYssyjtUincRs/6tR34/lZiSSlONA34gIREXXKuOVCCCGEKC6zC7pL29tvw7FjZf2qOpYt82Ty5JI52oQJE+jQoUOh909NTWXRokUsWbKEsDBV/MPHx4fdu3fz/fffS9Atys3QZ9syZ94ZIi/6selAM9b/tId7BjfP9zkHdpuW91q50kB6agZWNgUnvLh4+jqRkS4AtG6t5pgLUZZ0OggJyX2bnYMtAd7q7yFTcJ0z2Dk0wM7BjjXf7+e/jdcZ90rL3A8ghBBCCLNU5YLuqVPh5ZfLuqfbwLBhl4F6JXK8kLy+seXh3LlzJCcnM2rUKJP1aWlpNGzYsETaJERxWNlY8eqUaIY8q4KM6S/asarlVTz9PPJ8zoFDppeta9d0bPntIF0GNSvw9X5ZegDoDEBEs71grEArhHlo5HfVJOhuGnQVUIn/Ot3XlE73lVPDhBBCCFFsVS7ofuAB9VOW9PoM9u2LL7Hj2dvbmzzW6XQYDAaTdenp6cblpCQ1F3DRokXUqlXLZD8bGxuEKE8PjW3LrPdOciQqgF0nGlE3KJUhQ+Gll6B+/Zz7H4h0y7FuxQ/xdBlU8Gst/U577oOPVv7EjKLiadzUgV+0fJo0DUkrv8YIIYQQokRIGpZKwNXVlZiYGJN1mVnfAfz9/bGxsSE6Opq6deua/Hh5eZV1c4UwYWltyUf/u4W9jbo5lJpmw5Il0LEjXL9uum/q7TSORqleQF/3C1hbpgKw4u8GGDJMbzxld3THKXZGqrrHzeofI6SDZC4X5qdR+yYmj5u1lJpgQgghREUnQXcl0LZtWw4dOsQvv/zC2bNnmTdvHidOnDBud3R0ZNSoUcyZM4cVK1YQFRXF4cOHWbZsGStWrCjHlguhdBnUjMhDN5g6ahs1aqjgOToavvvOdL/ju8+SplejM9qHRnFPi/0AnI+tze71R8nPlwujjMsjHrxSgq0XouQ0bmz6uGk73/JpiBBCCCFKjATdlUDHjh0ZO3Ysb7/9Ng888ACJiYkMGDDAZJ9nn32WsWPHsmjRInr37s3jjz/Oxo0bqVNHMuAK81CngRdvftaWDRu07OVffmm6z4EdV43LTUNSGdgv2fj452+vkhd9mp5lv6q6x1aWaTw6plEJtVqIkhUUpJUCq1ULatVzL98GCSGEEOKuVbk53RXJoEGDGDRIm6japk0bjh8/nuu+EyZMYMKECXkeS6fTMWLECEaMGFHi7RSiJDVrprI7HzwI27ap3u2gFvUAOLBfm98aGuZAi071ePqVDAwGC97/qjU9+++n031Ncxxzw8/7uBjXAoBebfbg4dumLN6KEEVmZwfDh8MXX8CTT5Z3a4QQQghREqSnWwhhVnQ6GNF3p/HxlwvOGpcPnPA0Loe2q0Oteu481vtfAJJTq9H3ET92rj2S45hLl2g94sOHZpRCq4UoOZ9/DrGx8Npr5d0SIYQQQpQECbqFEGZnyBN1sbRQGfiX/dqADL0KlA+cVUPEXVz01PZXAfjC5W3o1VoF6TeTq9NjoBefLbzFlStw7RrMmnKQH9erXm4Xh+v0G5F/HXAhyptOBzVrlncrhBBCCFFSJOgWQpgdTz8PerTaC6gkaRtX7Cc2ViVXAwgNtURnoeZ+29jb8NO6JnRpqva/nujC42Mc8fSE2rXhpXdCuJ2myuwN7XsA22q2Zf+GhBBCCCFElSVBtxDCLA0fqs3fXvp5IgcPattCQ033tXeyZ+X6AGPgnSklRf1rYaHnkW7/MveTVqXVXCGEEEIIIXIlidSEEGbpvpHNqTHtBjeSavDlmnB2H78I1AZyBt0ATq5O/L27KTu2JrJytQO//abqfA8aBBPH6anfoEPZvgEhhBBCCCGQoFsIYabsHOwY9+g2Zn3aBYDDp2sbt4UG3wBq5HiOhaUFbcMdaBsOs2dn3WJTqm0VQgghhBAiLzK8XAhhtmZ+3JH3/28T1e1vGNfpdBk0DpH7hUIIIYQQomKQoFsIYbYsrS2ZOLszxw+nMKznFmytbzPh4X9wqOFQ3k0TQgghhBCiUKS7SAhh9jz9PPhyjQdL0vRYWncu7+YIIYQQQghRaNLTLYSoMCytLcu7CUIIIYQQQhSJBN1CCCGEEEIIIUQpkaBbCCGEEEIIIYQoJRV6TndGRgYAycnJ5dyS/On1egCSkpKwtJThsaJ45DwSJUHOI1ES5DyqIm7fhqAgbVmnK9HDy3kkSoKcR6IkZD+PMuPLzHjzbukMBoOhRI5UDq5du8bZs2fLuxlCCCGEEEIIISqZevXqUbNmzbs+ToUOutPT07lx4wa2trZYWMhIeSGEEEIIIYQQdycjI4OUlBRq1KiBldXdDw6v0EG3EEIIIYQQQghhzqR7WAghhBBCCCGEKCUSdAshhBBCCCGEEKVEgm4hhBBCCCGEEKKUSNAthBBCCCGEEEKUEgm6y8DXX39NREQEISEhDB48mAMHDpR3k4QZ+/DDDwkKCjL56dmzp3F7SkoKM2fOpE2bNoSFhTF+/HhiY2PLscXCHOzcuZOnn36a8PBwgoKCWLduncl2g8HABx98QHh4OKGhoTz22GM5Si7Gx8czadIkmjdvTsuWLXnhhRdITEwsw3chyltB59H06dNzXJ9Gjx5tso+cR1XbokWLuP/++wkLC6Ndu3aMHTuW06dPm+xTmM+x6OhonnzySZo2bUq7du148803SU9PL8u3IspRYc6jYcOG5bgevfLKKyb7yHlUtX3zzTf069eP5s2b07x5cx566CE2bdpk3F6W1yIJukvZ6tWrmTNnDs888wwrVqwgODiY0aNHc+3atfJumjBjDRo0YMuWLcafb775xrht9uzZbNiwgffff59ly5Zx9epVxo0bV46tFeYgKSmJoKAgXn311Vy3L168mGXLljFjxgx++OEH7O3tGT16NCkpKcZ9Jk+ezMmTJ1myZAkLFy5k165dOb7AiMqtoPMIoGPHjibXp/fee89ku5xHVduOHTsYMmQIP/zwA0uWLCE9PZ3Ro0eTlJRk3KegzzG9Xs9TTz1FWloa3333HXPnzmXFihXMmzevPN6SKAeFOY8AHnzwQZPr0dSpU43b5DwSnp6eTJ48mZ9//pmffvqJtm3b8swzz3DixAmgjK9FBlGqHnjgAcPMmTONj/V6vSE8PNywaNGicmyVMGfz5s0z9O/fP9dtCQkJhsaNGxvWrFljXHfy5ElDYGCgYe/evWXUQmHuAgMDDWvXrjU+zsjIMHTo0MHw6aefGtclJCQYmjRpYvjtt98MBoN2Hh04cMC4z6ZNmwxBQUGGy5cvl13jhdnIfh4ZDAbDtGnTDGPGjMnzOXIeieyuXbtmCAwMNOzYscNgMBTuc2zjxo2G4OBgQ0xMjHGfb775xtC8eXNDSkpKmbZfmIfs55HBYDAMHTrU8MYbb+T5HDmPRG5atWpl+OGHH8r8WiQ93aUoNTWVw4cP0759e+M6CwsL2rdvz969e8uxZcLcnTt3jvDwcO655x4mTZpEdHQ0AIcOHSItLc3knPL398fb25t9+/aVU2uFubtw4QIxMTEm542TkxNNmzY1Xov27t1L9erVCQkJMe7Tvn17LCwsZEqMMLFjxw7atWtHjx49ePXVV7l+/bpxm5xHIrubN28CUKNGDaBwn2P79u0jMDAQNzc34z7h4eHcunWLkydPll3jhdnIfh5lWrVqFW3atKFv3768++67JCcnG7fJeSSy0uv1/P777yQlJREWFlbm1yKrEnkXIlfXr19Hr9dTs2ZNk/U1a9bMMS9FiEyhoaHMmTMHPz8/YmJi+OijjxgyZAirVq0iNjYWa2trqlevbvKcmjVrEhMTU04tFuYu89zI7VqUOXcpNjYWV1dXk+1WVlbUqFFDzi1h1LFjR7p3706dOnU4f/487733Hk888QTff/89lpaWch4JExkZGcyePZvmzZsTGBgIUKjPsdjYWJMvuYDxsZxHVU9u5xFA37598fb2xsPDg+PHj/POO+9w5swZ5s+fD8h5JJTjx4/z8MMPk5KSQrVq1fjoo48ICAjg6NGjZXotkqBbCDPTuXNn43JwcDBNmzala9eurFmzBjs7u3JsmRCiquvTp49xOTNxUbdu3Yy930JkNXPmTE6cOGGSl0SIosrrPHrooYeMy0FBQbi7u/PYY48RFRWFr69vWTdTmCk/Pz9++eUXbt68yZ9//sm0adP46quvyrwdMry8FLm4uGBpaZkjadq1a9dy3DURIi/Vq1enXr16REVF4ebmRlpaGgkJCSb7XLt2DXd393JqoTB3medGftciNzc34uLiTLanp6dz48YNObdEnnx8fHBxceHcuXOAnEdC89prr7Fx40aWLl2Kp6encX1hPsfc3NxyZBDOfCznUdWS13mUm6ZNmwKYXI/kPBI2NjbUrVuXJk2aMGnSJIKDg/nyyy/L/FokQXcpsrGxoXHjxmzdutW4LiMjg61btxIWFlaOLRMVSWJiIufPn8fd3Z0mTZpgbW1tck6dPn2a6OhomjVrVn6NFGatTp06uLu7m5w3t27dYv/+/cZrUVhYGAkJCRw6dMi4z7Zt28jIyCA0NLTM2ywqhsuXLxMfH2/88iHnkTAYDLz22musXbuWpUuX4uPjY7K9MJ9jzZo1IzIy0uRG4X///YejoyMBAQFl8j5E+SroPMrN0aNHAS0YkvNI5CYjI4PU1NQyvxbJ8PJSNnLkSKZNm0aTJk0IDQ1l6dKlJCcnM2jQoPJumjBTb775Jl27dsXb25urV6/y4YcfYmFhQd++fXFycuL+++9n7ty51KhRA0dHR9544w3CwsIk6K7iEhMTiYqKMj6+cOECR48epUaNGnh7ezN8+HAWLFhA3bp1qVOnDh988AEeHh5069YNUMlDOnbsyMsvv8zMmTNJS0vj9ddfp0+fPtSqVau83pYoY/mdRzVq1GD+/Pn06NEDNzc3zp8/z9tvv03dunXp2LEjIOeRUEOBf/vtNz7++GMcHByM8x6dnJyws7Mr1OdYeHg4AQEBTJ06lSlTphAa81IoAAACHUlEQVQTE8P777/PkCFDsLGxKcd3J8pKQedRVFQUq1atonPnzjg7O3P8+HHmzJlDq1atCA4OBuQ8EvDuu+/SqVMnvLy8SExM5LfffmPHjh189tlnZX4t0hkMBkMpvEeRxVdffcVnn31GTEwMDRs25KWXXjIOgREiu+eee46dO3cSHx+Pq6srLVq04LnnnjPOT0pJSWHu3Ln8/vvvpKamEh4ezquvvipDpaq47du3M3z48BzrBw4cyNy5czEYDMybN48ffviBhIQEWrRowauvvoqfn59x3/j4eF5//XXWr1+PhYUF9957Ly+99BIODg5l+VZEOcrvPJoxYwbPPPMMR44c4ebNm3h4eNChQwcmTpxoMmVKzqOqLSgoKNf1c+bMMXY4FOZz7OLFi8yYMYMdO3Zgb2/PwIEDmTRpElZW0l9UFRR0Hl26dIkpU6Zw4sQJkpKS8PLyolu3bowdOxZHR0fj/nIeVW0vvPAC27Zt4+rVqzg5OREUFMQTTzxBhw4dgLK9FknQLYQQQgghhBBClBKZ0y2EEEIIIYQQQpQSCbqFEEIIIYQQQohSIkG3EEIIIYQQQghRSiToFkIIIYQQQgghSokE3UIIIYQQQgghRCmRoFsIIYQQQgghhCglEnQLIYQQQgghhBClRIJuIYQQQgghhBCilEjQLYQQQgghhBBClBIJuoUQQgghhBBCiFIiQbcQQgghhBBCCFFK/h+INq71pnwS8gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -386,245 +406,124 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "-------------------- Running few-shot 5% --------------------\n", - "ettm2 512 96\n", - "Data lengths: train = 1607, val = 11425, test = 11425\n", - "Number of params before freezing backbone 805280\n", - "Number of params after freezing the backbone 289696\n", - "Using learning rate = 0.001\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "10e50b38e763489c81f35ddad05d7fc4", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/1300 [00:00\n", + " \n", + " \n", + " [ 338/1300 00:25 < 01:12, 13.33 it/s, Epoch 13/50]\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
10.4031000.130643
20.3400000.129244
30.2834000.128597
40.2387000.130647
50.1976000.135873
60.1785000.141251
70.1604000.143489
80.1515000.143133
90.1442000.145625
100.1413000.146513
110.1387000.148491
120.1357000.151306
130.1323000.146737

" + ], "text/plain": [ - " 0%| | 0/179 [00:00" ] }, "metadata": {}, @@ -634,19 +533,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'eval_loss': 0.1471484750509262, 'eval_runtime': 60.5888, 'eval_samples_per_second': 188.566, 'eval_steps_per_second': 2.954, 'epoch': 10.0}\n", - "{'loss': 0.1373, 'grad_norm': 0.35510241985321045, 'learning_rate': 0.0008432896416104337, 'epoch': 11.0}\n" + "[TrackingCallback] Mean Epoch Time = 0.9184207549461951 seconds, Total Train Time = 29.312633275985718\n", + "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" ] }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "29e7c75e3a8c4fb89c43dd13e8032099", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "\n", + "

\n", + " \n", + " \n", + " [179/179 00:01]\n", + "
\n", + " " + ], "text/plain": [ - " 0%| | 0/179 [00:00" ] }, "metadata": {}, @@ -656,58 +559,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'eval_loss': 0.14886648952960968, 'eval_runtime': 61.4237, 'eval_samples_per_second': 186.003, 'eval_steps_per_second': 2.914, 'epoch': 11.0}\n", - "{'loss': 0.1334, 'grad_norm': 0.27993929386138916, 'learning_rate': 0.0009101428865594462, 'epoch': 12.0}\n" + "{'eval_loss': 0.17499123513698578, 'eval_runtime': 1.399, 'eval_samples_per_second': 8166.711, 'eval_steps_per_second': 127.951, 'epoch': 13.0}\n", + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" ] }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ddc0cc071f5d43cfba902b3112002531", - "version_major": 2, - "version_minor": 0 - }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAfFCAYAAACMBK9jAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhUV96A34kSdyUGCQkagrvTIm0pbanr1nbL1o1uZbfusvVS/Vq6NVra0iLFCsU9BAmBEA8h7p6Z+f44mTkzmYmSQALnfZ48OXPvufeemblz7vm5Rq/X61EoFAqFQqFQKBQKhULR6dic7QEoFAqFQqFQKBQKhUJxrqKEboVCoVAoFAqFQqFQKLoIJXQrFAqFQqFQKBQKhULRRSihW6FQKBQKhUKhUCgUii5CCd0KhUKhUCgUCoVCoVB0EUroVigUCoVCoVAoFAqFootQQrdCoVAoFAqFQqFQKBRdhBK6FQqFQqFQKBQKhUKh6CKU0K1QKBQKhUKhUCgUCkUXoYRuhUKhUCjOU3bu3ElMTAw7d+4820NRKBQKheKcxe5sD0ChUCgUiu7IsmXL+Ne//tXs/u+//564uLgzN6AeQE1NDc8++ywJCQnk5OSg0+kIDQ3liiuu4LrrrsPe3t6sf1lZGa+99hpr166lpqaGIUOG8NhjjzFo0KBmr5GRkcFFF11EXV0dP/74I0OGDOnqt6VQKBQKxWmhhG6FQqFQKFrg3nvvJSQkxGJ7WFjYWRhN96ampobk5GQmT55M7969sbGxYf/+/bz00kskJCTwxhtvGPvqdDruvPNOkpKSuO222/Dy8uKbb77hxhtvZNmyZURERFi9xosvvoidnR11dXVn6F0pFAqFQnF6KKFboVAoFIoWmDx5srKmthFPT09++OEHs23XXnstbm5ufP311zz22GP4+fkBsHr1avbv38/bb7/N7NmzAZgzZw6zZs3i3XffNRPQDWzevJktW7Zw++238+GHH3b9G1IoFAqFohNQMd0KhUKhUJwG77zzDv3792f79u1m25966ikGDx7M0aNHAairq+Ptt9/m8ssvZ8SIEcTFxXHdddexY8cOs+OysrKIiYnhs88+43//+x8zZsxg6NCh3HrrreTk5KDX63n//feZPHkysbGx3HXXXZSUlJidY/r06fz9739ny5YtXHrppQwZMoS5c+eyZs2aNr2nAwcOcNtttzFixAiGDh3KDTfcwN69ezv8GfXu3RsQ7uQG/vjjD3x9fbnwwguN27y9vZkzZw7r16+3sGTX19fzwgsvcNNNNykvA4VCoVD0KJTQrVAoFApFC1RUVFBUVGT2V1xcbNx/1113MWDAAJ544gkqKioAYZH94YcfWLhwIf379zeeZ+nSpYwePZqHH36Yu+++m6KiIm6//XYSExMtrvvbb78Z3a3/9re/sWvXLu6//37++9//snnzZu644w6uuuoq/vzzT1555RWL49PS0njggQeYPHkyDz30ELa2ttx3331s3bq1xfe7fft2rr/+eiorK7n77rt54IEHKCsr4+abbyYhIaFNn1ldXR1FRUXk5OSwdu1aPv/8c3r37k14eLixT2JiIgMHDsTGxnwpMmTIEKqrq0lNTTXb/uWXX1JWVsbChQvbNAaFQqFQKLoLyr1coVAoFIoWuOWWWyy2OTg4cPDgQQDs7e155ZVXuPzyy3n55Zd59NFHeeKJJxg8eDB33nmn8RgPDw82bNiAg4ODcdtVV13FnDlzWLJkCS+++KLZNXJzc1mzZg1ubm6AiIFevHgxNTU1/PTTT9jZiUd4cXExv/32G88884zZudPS0nj33XeNluQFCxYwe/ZsXn/9dSZMmGD1ver1ep5++mnGjBnDp59+ikajAeCaa67hoosu4r///S+ff/55q5/Z2rVrefDBB42vBw8ebIzFNpCfn8/IkSMtjvX39wcgLy+PmJgYY98PPviARYsW4erq2ur1FQqFQqHoTiihW6FQKBSKFvj3v/9Nnz59zLY1tc5GR0dz77338sYbb5CUlERxcTGff/65mZBpa2uLra0tIATosrIydDodgwcP5siRIxbXnT17tlHgBoiNjQVg3rx5ZueNjY3l999/Jzc3l9DQUON2f39/LrjgAuNrV1dX5s+fzyeffEJ+fr4xttqUxMRE0tLSuOuuu8ys+QDjxo3j119/RafTWbz/powZM4YvvviCsrIytm/fTlJSEtXV1WZ9ampqzJQEBgzbamtrjdtef/11QkNDufLKK1u8rkKhUCgU3REldCsUCoVC0QKxsbFtSqR22223sWLFChISEnjwwQeJioqy6PPzzz/z+eefk5qaSn19vXG7tezoQUFBZq8NAnhz20tLS82E7vDwcKOl2oAhI3h2drZVoTstLQ2ARYsWNfc2KS8vx8PDo9n9AL6+vvj6+gJCefDRRx/xt7/9jTVr1hiv26tXL6sZyA3bHB0dAYiPj+fXX3/l//7v/1oV9hUKhUKh6I4ooVuhUCgUik4gMzOT9PR0AI4dO2ax/9dff+Wxxx5j5syZ3Hbbbfj4+GBra8vixYvJzMy06G+wijelOcFTr9efxujNz/Hoo48yYMAAq32cnZ3bfd5Zs2bx1ltvsX79eq655hoA/Pz8yM/Pt+ibl5cHSDfz1157jZEjRxISEkJWVhaA0Qqfn5/PyZMnCQ4ObveYFAqFQqE4UyihW6FQKBSK00Sn0/HYY4/h6urKzTffzEcffcSsWbPMMnP/8ccfhIaG8t5775lZoN95550uGVN6ejp6vd7sWgZLtiGbeFMMlnJXV1fGjx/faWMxuIqXl5cbt/Xv35+9e/dauKsnJCTg5ORkdOnPyckhOzubGTNmWJz3rrvuws3NjT179nTaWBUKhUKh6GyU0K1QKBQKxWnyxRdfsH//fj788EOmTp3Kzp07efrppxk5ciTe3t6AtFybCsIHDhwgPj6+Syy1eXl5rF271ij4V1RU8MsvvzBgwACrruUgEp6FhYXx+eefc/HFF+Pi4mK2v6ioyPh+rFFUVISXl5eFW/vSpUuN5zcwe/Zs/vjjD9asWWOs011UVMTq1auZNm2aMbb72Wefpaamxux8O3bsYMmSJSxatIi+ffu25eNQKBQKheKsoYRuhUKhUCha4K+//iIlJcVi+/DhwwkNDeXEiRPG+tvTp08H4OWXX2b+/Pk888wzvP322wBMnTqVNWvW8M9//pOpU6eSlZXFd999R1RUFFVVVZ0+7oiICJ544gkOHjyIj48PP/30E4WFhbz00kvNHmNjY8Pzzz/PHXfcwcUXX8zll19OQEAAubm57Ny5E1dXVz766KNmj1++fDnfffcdM2fOJDQ0lMrKSrZs2cLWrVuZNm0a48aNM/adNWsWcXFx/Otf/yI5ORkvLy++/fZbtFot99xzj7HfxIkTLa5jqPc9atSoNsXbKxQKhUJxNlFCt0KhUCgULdCc+/dLL71EcHAwixYtwsvLi8cff9y4LyIiggcffJAXXniBlStXMnfuXC6//HIKCgr4/vvv2bJlC1FRUbz22musXr2aXbt2dfq4IyIieOqpp3j11VdJTU0lJCSEt956i0mTJrV43JgxY/j+++/54IMP+Prrr6mqqsLPz4/Y2FiuvvrqFo8dMWIE+/fvZ8WKFRQUFGBnZ0efPn3417/+xQ033GDW19bWlo8//phXX32VJUuWUFtby5AhQ3jppZeU9VqhUCgU5xQafWdkXlEoFAqFQtFtmD59Ov369WPx4sVneygKhUKhUJz3qNobCoVCoVAoFAqFQqFQdBFK6FYoFAqFQqFQKBQKhaKLUEK3QqFQKBQKhUKhUCgUXYSK6VYoFAqFQqFQKBQKhaKLUJZuhUKhUCgUCoVCoVAouogeXTKsoaGB0tJSHB0dsbFR+gOFQqFQKBQKhUKhUJweOp2O2tpaPDw8sLM7fZG5RwvdpaWlpKWlne1hKBQKhUKhUCgUCoXiHCMiIgIfH5/TPk+PFrodHR0B8WE4OTmd5dE0j1ar5dixY0RHR2Nra3u2h6Pooaj7SNEZqPtI0Rmo++g8oboaJkwQ7a1boZPXWuo+UnQG6j5SdAZN76Pq6mrS0tKM8ubp0qOFboNLuZOTE87Ozmd5NM2j1WoBcHZ2VpOBosOo+0jRGaj7SNEZqPvoPEGvh6Qk0e7VCzp5raXuI0VnoO4jRWfQ3H3UWSHMKhBaoVAoFAqFQqFQKBSKLkIJ3QqFQqFQKBQKhUKhUHQRSuhWKBSdTk0NfPopvPoqVFWd7dEoFAqFQqFQKBRnjx4d061QKLoXBmH7pZfg5MnGjXo9jy7SnNVxKRQKhUKhUCgUZwtl6VYoFFSVVbHiq91kJ+d0+BwNDTBuHNxzj4nADWz6ZW8njFChUCgUCoVCoeiZKKFboTiPqS6v5r//2kRkeDkX3zyKkaNsqKuu69C5khIbiI+Xr21tGgDYezQMvU7fCaNVKBQKhUKhUCh6HkroVijOU/b9mUi/iBIeeHkKp0oCADhVEkBW8qkOna8k/Yix/c+rdzAt7gAAuSX+nEzp2DkVCoVCoVAoFIqejhK6FYrzkKqyKq65oRfZRUEW+8qKqzt0ztKiWmPbz7uGEbFlxtd7/8rs0DkVCoVCoVAoFIqejhK6FYrzkKcW7uL4yT4AxPU9yuWTdxj3lRZ2UOguqTe2PTw0jBjlaHy9b7dKYa5QKBQKhUKhOD9RQrdCcZ6x/c983vpmMgCO9jV8+50Dw8f6GPeX1Vtav9tCWWmDse3uYcOIib2Nr/cecO7gaBUKRU+irAwylWOLQqFQKBRmKKFboTiPqKmBWxf6odeLn/6z92yn/6i+uIf0M/Ypqw/o0LlLS3TGtoenHX0Gh+HpUgKIZGoGVn29mz++2dOhaygUiu5LSQlERUFYGPz++9kejUKhUHRPVq2C774Dvcoxe16hhO7zmMcee4yFCxcaX99444288MILZ3wcO3fuJCYmhrKystY7K06Ljz+Go0dFe9QoHQ++NAkADw/Zp6NfQ2mpbHt4O6Kx0TA8OgWAnOJAclJy+emj7cy9cRSzrx/J+qX7OnYhhULRLdm4EfLzRfu1Z5S5W6FQ9Hz27YPLLxdCcmewbRvMnQvXXgs//tg551T0DJTQ3Q157LHHiImJISYmhsGDB3PBBRfw3nvv0dDQ0PrBp8G7777Lfffd16a+SlDumaxeLdsffGCDnYMdAO7ucrup8NweSss0xraHVy8ARgwxSaa2OZ2XXnUwvv72y8KOXUihUHRLjsgCBvy1J5S0w1lnbzAKhULRCTz8MPz8M9x8MxQVnf75vvlGtpVH0PmFErq7KZMmTWLLli388ccf/O1vf+O9997js88+s+hXV9exmsrW8PT0xNXVtdPOp+heNDTAli2iHRAAI0bIfe5u0seprKhjSc/Kym3l+bwbhe5RUsh++x079qbKi67ePljV71YoziEOHzZ//c3HyWdnIAqFQtEJ6HSwpzEarq4Ofv319M6n18Py5fK1YU2mOD9QQnc3xcHBAT8/P3r37s11113H+PHj2bBhg9El/MMPP2TixInMnj0bgJycHO677z5GjhzJ6NGjueuuu8jKklYGrVbLSy+9xMiRIxkzZgyvvvoq+ibBJE3dy+vq6njttdeYMmWK0eK+dOlSsrKyuOmmmwAYNWoUMTExPPbYYwDodDoWL17M9OnTiY2NZd68eaw2Na8CmzZtYtasWcTGxnLjjTeSnZ3dJZ+hwpz9G5MoLxftKePL0UjDNB6ao8Z2WdruDp2/tNxens9bKG9GTOlr3LZu33Cz/tlFQRzaV9yhaykUiu7HkYRys9dLloUqxZpCoehy9Hqoq9O03rGdpKdjXDcBLF16euc7cMA80WRKCuTknN45FT0Hu7M9gLNC4ptw9M3W+3kPhynLzbdtmgdFbYhF7f8gDHiwY+OzgqOjIyUlJQBs374dV1dXvvjiCwDq6+u57bbbiIuL43//+x92dnZ88MEH3H777SxfvhwHBwc+//xzfv75Z1588UUiIyP5/PPPWbt2LWPHjm32mo8++ijx8fE8+eST9O/fn6ysLIqLiwkKCuLdd9/lnnvuYfXq1bi6utKrl7BsLl68mOXLl/PMM88QERHB7t27eeSRR/D29mb06NHk5ORw9913c/3113PVVVdx6NAhXnnllU77nBTNs+mPHCAGgKlD9wOTjfvcvZyM7dIyWzpCabksEebh6wZA5OBAPDyad1lf/ac3Q0Z26HIKhaIboa3XcjTJfElxNCuSfRsTGTF9wFkalUKhONfRamH2bBs2b47j22/1XH555507IcH89bp1UFwMXl4dO9/y5Zbbtm6FBQs6dj5Fz+L8FLrry6C6DdbVmlAr2/Lbdmx958Q66/V6tm/fzpYtW7jhhhsoLi7G2dmZ559/HgcH4br766+/otPpeOGFF9A0mi9feuklRo0axa5du5g4cSJffvkld955JxdeeCEAzzzzDFta8GtJTU1l1apVfPHFF4wfPx6A0FD5eXg0Zt7y8fHBvTEguK6ujsWLF/PFF18wbNgw4zF79+7l+++/Z/To0Xz77beEhYUZLeN9+/bl2LFjfPLJJ53yeSmaZ+MWWbZryuzeZvvcvVyM7bIKezpCqV4I9Pb2Onq5CCWMRgPDh8Off8p+f5t/gC9+GQqIDJ6PPNKhyykUim5E6uEsaurDAVGKsLZezAFff5qnhG6FQtFl7NkD69drAA2vvNK1Qnd9vRCcb765Y+ez5p6+ZYsSus8Xzk+h294dnHq33q+Xn/VtbTnW3r31Pi2wceNGhg0bRn19PXq9nosvvph77rmHZ599lujoaKPADXD06FEyMjIYPtzcfbe2tpaMjAzKy8vJz89n6NChxn12dnYMHjzYwsXcQGJiIra2towaNarNY05PT6e6uppbb73VbHt9fT0DBohF14kTJ4iNjTXbHxcX1+ZrKDqGtl7L5gNCKPZzL2DAqL5m+919ZCx/WYUDHaGsUljL3d1t0JgErowYpuXPP4X13MmhitfeD2NTgnCr2rJFuG65uXXokgqFoptwZN8pQAjdd1y2k4+XjaWuwZFvVw3gtboGY9JGhUKh6Ew2bpTtXbs05ORAUFDnnLup0A3Cxbyp0K3Xi5KJLVnAs7JEJnSA6Gg4flwcp+K6zx/Oz6fggNNw/W7qbt5FjBkzhqeffhp7e3v8/f2xs5NflZOTk1nfqqoqBg0axOuvv25xHm9v7w5d3+Au3h6qqkQCrsWLFxMQYF7r2VRJoDjzxG8+Rlm1UHxMGX4cjY2v2f5eLr2wt62jXutAaUX7v3uQLuSm5ccARo2R7uo3zTuET/Bo5syB998XWuMN6+q59LKOWdcVCkX34HBCtbE9YaI9Obn7+GnTOHJL/Fn97S4uvnn0WRydOVt/T6ChXseUy+LO9lAUCsVpsmmT+evff4c77uiccx84IP736gU+PpCdDWvWiPWO6Vrnyivhp5/glVfg0Uetn+u332T7+uuF8H7oEOzfr4wP5wsqkVo3xcnJifDwcIKDg80EbmsMGjSI9PR0fHx8CA8PN/tzc3PDzc0NPz8/DhhmD6ChoYHDTVPNmhAdHY1Op2P3butJtezthZCk1WqN2yIjI3FwcODkyZMW4whqVDtGRkZy8OBBs3OZjkvRNWz6I9fYnjrZMuO9xkaDu7PIFlJW6WyxvzX0+uaF7vnzRY3LGTPgmffEwnv2dBnkvWrJ9nZfT6FQdC+OHJXPqYHDfLnxRrm8eOpZd7T1WmuHnXF2rz3CxEtimXp5HD+8v+1sD0ehUJwGDQ2webP5Nmtx0x2hshKSGwswDB4sXcANLuYG8vOFwA3w2mtiTNYwPWbePJg4UbR1Oti5s3PGrOjeKKH7HOCSSy7By8uLu+66iz179pCZmcnOnTt5/vnnOXXqFAA33XQTn3zyCevWrePEiRM888wzLdbYDgkJ4bLLLuPxxx9n3bp1xnOuXLkSgN69e6PRaNi4cSNFRUVUVlbi6urKrbfeyksvvcTPP/9MRkYGhw8fZsmSJfz8888AXHPNNaSlpfHKK6+QkpLCb7/9Ztyn6Do2bpHeEVNnWw+PcHeuBKCsqv1Cd3VFnfFB4+FSYbbPwUE8kNatE6XKAKbNsMPBrhaAVVv6qgzHCkUP58gJHwBsNFqih4VxyS2jGBaZCEB8Sn/+7/2Uszk8IxtWnjS2H/p3KFVlHSuRqFAozj7790OF+ZKDdeuEwAxiX3EHi6QcPiwMCgCxseZx16ZZzOPjZbugwNzd3UBZGWzYINqhoTB0qBS6QbmYny8oofscwMnJia+//prg4GDuvvtu5s6dyxNPPEFtba2x7vatt97KvHnzWLRoEddccw0uLi5ccMEFLZ736aefZtasWTz99NPMmTOHp556iupq4UIYEBDAPffcwxtvvMH48eN57rnnALj//vtZuHAhixcvZu7cudx+++1s3LiRkJAQAIKDg3n33XdZv349l156Kd999x0PPPBAF346CtN4bl/3AgaOibTaz8NFLD5Lq9qfj6CsQD7V3PXNe1AYcPFwYcrQQwBk5Iew7oc2VARQKBTdEl2DlsQMEc8dFZxBL5de2Nja8NZrtcY+T7zcz6z0ztki8ZgMn8kqCuWNx3edxdEoFIrTwVTAdXMTmv+aGli7Fg4ehKgo8PODZpw2W8Q0njs2FsaPl7Hi69YJizcIwd8Ua2XF/vMfUecbhJVbo1FC93mJvgdTWVmp37Nnj76ysvJsD6VFGhoa9Hv27NE3NDSc7aEoejAdvY/2/ZmoF/pavf6KKdua7Td5yH5jv5rKmnZd4+ieE8Zjb5y9uU3HvP/vjcZjXBzL9X/9Gt+uayo6hpqPFJ2B6X10IiHd+FueP3G7Wb/LLtMb9z3+ePuvs3fDEf21M7fof/9yV6eMe0z/g8bxgF7v7Fihzzp+slPOfU5SUSE/rIqKTj+9mo8Up8PcufL2vP/+DGP7ssv0+r595b5Fi9p/7nvukcdv2CC2XXut3LZnj+U20Ot9ffX6+np5ns2b9XqNRuzr1UuvP3ZMbNfp9PqQkMY1kIteX1d3ep+F4vRpOh91tpypLN0KxTnOV19UGttTJlrGcxtwd5X7ygrbV/KutFAmUfJwb1vs5u2PjWPuGKF+rqx1Zc5VkWz5zUqqUIVC0a05sjfH2B7Uv9ps36uvQmMKEN54AzIz23fuBx514dt1E7juH9HUVtW2fkAL6PWQmGleuaGq1oUn7jthtm3nH4cI8cnhskk70Gl1p3VNhULRNTQ0SAuxv7+eBQvycXYW/uA//ywqpBjIzbVyglYwTTdkKLozdqzctr0xHU1TS3dBAfz1l2hXVcGtt0o39eefh379RFujgQkTRLuyEvbubf8YFT2LLhW6S0pKeOihhxg+fDgjR47k8ccfp7KyssVjbrzxRmJiYsz+/v3vf3flMBWKc5Zjx+C9b0QpOSeHaq74W0yzfT1Coo3t0uoW6l5YobSoRp7HvW3x2Q5ODvy0fgizR0vB+6Krw8nLyG/XtRUKxdnlcKJJErXB5pUqoqLgnntEu7YWVq1q+3n1ejhwVFRaKKv2YPvqxNMaZ06OTBQ5ZlQ9Xi4iLObLlRM5uPWYsd8L/84juyiIX7aMZetv+62eS6FQnF3i40WsNMDkyXp69dJz4YXW+zamN2qRqir46CMhyOv10r28d2+RuRxg3DjZf8cOISwnJYnXNiYSlcHF/KmnRGkwEAL7/febX3PKFNn+xz/EGBTnLl0qdD/88MMkJyfzxRdf8NFHH7Fnz542CdBXXXUVW7ZsMf492lz+fYVC0SIPPwwNDRoAHlnUi+DIwGb7uvt6GttlFe2rJlhWIq3k7u6aNh/Xy6UXP28YwgUjhIq3rNqDpZ8dade1FQrF2eXIqRHG9sDxQy32Xzghy9hO37ujzectLITSCpnYcd2qko4NsJFEE5l9/ER7nvinzD/xw+8i70htLWw4OMG4feum9nn9KBSKM4NpqbDJk8X/Sy6RSn8bG2FNhrZZut97D+66CyZNEjHYJSViu8HKDSIBmqGi7o4dIm7cYMVesEDuW7ZMnOvNN8VrR0f44guwlRVUAbjhBmn5PnBAlDrTt81uoeiBdJnQfeLECTZv3szzzz/P0KFDGTlyJE8++SQrVqwgt5W7v1evXvj5+Rn/DMnAFApF21m3TtaFDA6GRxe1LAy7m+RPayGxvVVKS2SNDA/PtgvdIATv1/8rC1Qu/cWjhd6CqrIq/vxpP5WlLXvOKBSKrsdQfdLGBmIGWz6vQ3tLt/CM9Gbq6VjBUK7HwLotvh0an4GjR2V7wAC4/oGJxkX5ryuEcL9lC1RWOxr7bdnhclrXVCgUXYNpErUpU4SkeumlesLCxFz03/9CYKOdoS1Ct2kW8sbcwIC50O3gACMadYwnToia3QYmToS5c0U7L09YzQ28+CL07295TTc34Qrv0jjNfPMNvP1262NV9EzaZ85qB/v378fd3Z0hQ4YYt40fPx4bGxsSEhJazJz922+/sXz5cvz8/Jg2bRoLFy7Eycmp2f5ardasXnR3wzC27jxGRfenrfdRdXk129ckcv8T/QBPAF54QUevXnpaOtTNTYNBD1dcrG2xb1NKiuVC2s3Dtt33+sAxfYnuncqx7D78dTCW7IwqAns7Ntv/2jkHWb5tDHPH7GL51hHN9lNYouYjRWdguH/q67UkJtoAGvr21ePgoLOYO4L7SmE546Rrm++9pKMA0jS0O2kARaeK8PBrXTFnjSNH5BzXr58WPz8YPdqGnTs1HDwIyclaVqyQfQC2Hoymvq4eG9vzNAWOVmv8BrRaLe16MLTp9Go+UrSfykrYvFnMO76+emJitBw6BG5uWg4cgKIiCA+Hzz+3ISdHQ16envp6nZkLeFOKi8X5mjJ4sA6tVpqfx4zRsHWrONEnn+iNx8TGavH21rBsmbxIr1563n1Xzy23NL/+6t9fWMGvukr80h5+WM9FF+no29d6f0XX0XQ+6ux5qcuE7oKCAry9vc0vZmeHh4cH+fnNx2xefPHFBAcH4+/vT1JSEq+//jqpqam89957zR5z7NixZvd1Jw4ePHi2h6A4B2juPmqob+C1x6r4fds4autHGbcP6l/MoEEpZlpca1QVOwBCSXZ0/x7Cwto+PWRny0KZVTUFxLd2MStMn67n2JI+6PU2vPdhPgsWFFjtV5RdyvJt0wFYuXM0f63ZiLu/m9W+iuZR85GiM1izJomqKjFv9O5dSnz8Cav9vFz6UlzpRUauV5vnhwPrcoCLja91elt++PQvRs0J7dBYD20GEEo6bcN+4uM1jBwZyM6dvQFYvDibX3/1A6SSv6TSkxU/rCZ0gF+HrtnTsamuZlhjOyEhAV0LBpDTQc1HivaweHEQpaXBAIwaVcShQ2mA+X1UXAxOTlGABw0NGv766yCens0LUdnZMYClp469fSLx8TJvTUCAJyBKr2ZlmQrpCYSGgpfXYIqL7QkPr+GVV04QFVVjlpTNGn37wtVXh/L99/5otRq++SaDiy8uavkgRZfRVfNRu4Xu119/nU8++aTFPitXruzwgK6++mpjOyYmBj8/P2655RYyMjIICwuzekx0dDTOzs5W93UHtFotBw8eZMiQIdg2DehQKNpIa/fRL5/u4qdN08y2ebkU8+l/sxg+PK7V8x/6c5ux7aavJi5uUpvH9rVeFuCN7h9OXNyQFnpb5/b74KMlor1jRxjPPx9itd+7P202e515xJbrL4xr9/XOV9R8pOgMDPdRQ75cjI4bVkVcXJzV/mH+yRSnepFdGMSQQUHY2rd+772RV2Ox7VCCF3f8y/o1WiM5Ow8AX/cCpk4TouSdd8L774v9K5f1IiXFUqg8ecKJS67t2DV7PCbJb2NjY6UfbCeh5iNFe8nKgq+/FtZkOzs9b7zhSWTkEKv3UVSUxphl3N9/CAMHNn/e+npxTjc3PXfdpef11zWMHg2XX97fzELu7w+LFpkfGxmpZ+JE4Ye+dSvs3avjkkvscXW14lPeDNddB99/L9o1NeHExVmXeRRdR9P5qKqqqlMNu+0Wum+99VYuu+yyFvuEhobi6+tLUZG5lqahoYHS0lL8/NquMR46VCRlSU9Pb1botrW17RGTdU8Zp6J709x9tHplvbG9YOp2Lp2n48IrovEPa5sA7OUtsw6Xl+vbda+WVcqFqrevS4fu8+HDRabj5GT46y8NhYW2+Ptb9vtxXazZ6z/+sOGmh9Tvqr2o+UjRGRzaJ71chkWlYWsbbLVfWFApB1KhXutAQfapFpM6GjiRIdzINRodNhodWp0d67eHdOi+Lc0v5WRREAD9w7KxtRUu70OGQN/ALFJOhXAkRU44c8bsYdXOkQBs327LwvP1t2Lyvm1tbS0zQXXaZdR8pGgbTz4J1Y2VCf/5Tw0DBtgaXbeb3kdBQfK4ggLbFm9fQ+I0Ly8Nr7yi4eGHRdZyGxvzg0JDxZ9p+cNhwzTG6w4YIP7ai+kxJ07YdNVPTdEGDPdRZ89J7Q5S8vb2JjIyssU/BwcHhg0bRllZGYcOHTIeu2PHDnQ6ndCWtpHExnSj7RHUFYrzDb1Oz+qtUQD0sq/mq+Vx3PDABPzD2v67cfeUQndpafuSoZXajTG2PUIi23WsAY0GrrxStHU6+Pmneos+2dmwdbd52MofO/qjrVfxgArF2eDg4V7G9tAxzQvSYb1l/e6M49ZDR5pyPEu4fYf6nmRMf1HV4GhWJNnJJ9s9zqP75Ap5QGSpsa3RwKXTky36P/GkA04Oon7Plv3h7b6eQqHofHbtgq+/Fm0vL2itIFJAgGy3lkytWFQQxNNT/Pfzo9kYcNPSYQDNOPi0i4gIsGs0hfaQqFlFO+myzCCRkZFMmjSJp556ioSEBPbu3ctzzz3HRRddREDjryA3N5fZs2eT0FgMLyMjg/fff59Dhw6RlZXF+vXrWbRoEaNGjaK/tbR/CoUCgMM7kskqFBamKXGHcXJrf9ydu5dcPJeVt29qKJVrWDw8Oz6tXHm5FLSXfmIZU7NsmWzb2AhBu7Dch71/nl79XoVC0TESkoWg3cu+mqihzbtDhoXKREQZJ1ovj1CUU0xxpRcAUSF5zJwkPefW/2I9brwljiaUGNsD+uvM9s27wjwxm697AePmDGbMAFGANy0vlKzjOe2+pkKh6FxMKwg/8ww0SR1lganQ3VKt7poaUS4QpNDdEmPHmr8eNsx6v/Zgbw99+oj28eOqdNi5SJem43z99dfp27cvN998M3feeSfDhw/n2WefNe6vr68nNTWV6kY/EXt7e7Zv385tt93GnDlzeOWVV7jwwgv5yDTv/jlOTExMi3/vvvvu2R6iohuy+udsY3vOzI6V0XL3knkR2it0G0qMaTRwOhX+4obbERmYDsD6/cO5YMRetv6eYNy/dKnse8+Nsp73ql/aZjlTKBSdR21VLcdPCivw4IgUbO2bj1gLi5CeNBlpda2eO/mgtGb3i6hg5kXS9Xvd/pHtHmviEVlhof9g87jkCRcNxsul2Pj6wjFJ2NjaMHGSvXHb1j1WYl0UCkWXcOAA3HQTrFolt2VkyNrc/frBP/7R+nnaaukulj9/vLxaP29XWLoBoqPF/6oqONl+hx5FN6fLspcDeHp68sYbbzS7PyQkhKSkJOProKAgvjb4jZynbNmyxdheuXIl77zzDqtXrzZuM00Yp9fr0Wq12Nl16deo6AGsWi+LbM++omOZfT185L1VWu7QQk9LDJZuN7fm3bHagsZGw723pnHfi2Ihv27fCNZdAheM2MvCf+jYsmUkoKF/f3jocV/e/lIct3qjP//p+GUVCkUHyEwsRq8XP/jYmJYz7Yb1lRUGMjJbD185frjE2I6K1DFm1kBcXERer5+XO5GRAc2kebFK4nHp/TNgWJDZPntHe+ZOOML/1kwAYM4csX3ixYOhsXDKlm22XH1t26+nUCg6zn33CQH755+F8OnmBr/9JvffeKOwDLdGW4VuQzw3tM3SPWyYqNldVyfc0IOCWj+mLURHw4oVon3sGPTu3TnnVXQPztPCk90XPz8/45+bmxsajcb4OiUlheHDh7Np0yYuv/xyhgwZwt69e3nsscdYuHCh2XleeOEFbrzxRuNrnU7H4sWLmT59OrGxscybN89MmFf0XMrL9Gw+KPIk9AnIIHpYnw6dx91HCu5lFe0UuguE1O3hXNpKz9a557nJ/N+rW+jbaPEGWLt3BJfdMQq9XizWr5yVRGh0EIP7CQv3zqMDKCw87UsrFIp2kJokw0Fih+ha6AlhMXJVmlE6qNVzJx+X546KccLBQSy0ASoq4I472ud+mZgqLNVODlWE9bdM9vbwE754uxYxLDKRy26NA4QLqaZRP2CiD1coFF2IXo+xxFZFhRC8AX79Vfa59NK2nasjQndbLN2OjsLV3clJZDLXtC8NTrP06yfbKq773OO8M5EuXSoSL5SXt963s3Bzs+GWWzw7zf3kjTfeYNGiRYSGhuLu7t76AcDixYtZvnw5zzzzDBEREezevZtHHnkEb29vRo8e3TkDU5wV/tyoob5B/JTnXOKBxqZjs7+jsyMOdrXUNThSVtmr9QNMKC0XKmcPx1zAo+XOraCx0XDzIxO57t56vv7vZp57K5zUXHOT1pVXivc4+1JfDr0Oer2GNWvgWmWJUijOGMnHHY3toSNbfhYF9fHF1ha0WsjI9W393ClyedJvkA8AL78srF3Z2bBmDXzxXjq33tN6krPaqlpSTgkPoJiQDGxsLXPExE2OIa9Ii42tl3EO9fCA2FghACQkCAHgdMJnFApF6xQVmQvBX38thOyNG8Xr8HBRdaAtiOzjIjlrW93L22LpBnjuOXj66c5N6G9wLwcR1604tzjvhO7XXoOjR8/0VTUsWRLIww93ztnuvfdeJkyY0Ob+dXV1LF68mC+++IJhjdkeQkND2bt3L99//70Suns4pjFPs+ednsDr4VxGfpkfpZVtr3tfX1tPdZ3o7+5iWVe3o9g72vO3RZO44f56vnpzM8//N4K0vFAmDEpg8DjxxJ0zB15/XfT/73/1DIlIZfC4vp02BoVC0TxHT8g45yFjWxZ+bW2Fq2RGhvhrjePpnsZ238HCx9LDAz7+GC66SGx/YJEnF87OIaRfy76dyQcy0epEdYcBfZt3ibFWOzxucCUHDrig00Ha0QIGj2xdYaBQKDpOcpNiAuvXwxdfQH2j88u8eW23LNvaCvfv3NzOdS83PX9nYip0K0v3ucd5J3Q/+ig89dSZtnTrufHGU0BEp5xvSFtVfI2kp6dTXV3Nrbfeara9vr6eAR0pJqjoNuj1YIgScHCAadNO73zuLtXkl0FZdds8KADKCssBkULUw7X29AZgBXtHe2771yRuvL+OhK1HGDwu2miJmjgR3N1FIrdduzTETojgymnbePvTKAL7qMRHCkVXodfpOZwuFFy9vXPwCW49qDEsTAjchYUiNtvFpfm+yXnCGh0SWIaTm5yP5s6Fm+du5cuVEyir9uDhfxzmu/Xy2huXxbNjcwn/+NcwPP2FEnLPURlyMzC2fabqUOfdwFQAMo6kKqFboehimlp4dTp44gn5et689p0vIEAI3Hl5Ys1kTWBvbyK1rqJ3b+jVS2RTV0L3ucd5J3QvWCD+ziRarY74+JJOO5+Tk3k5KI1Gg75JcFtDg8zUWlUlao0uXrzYWK7NgIND+2J3Fd2LxIRS0tLEwnLSpNN3fXQPDIMcKKv2bPbh1JTSwkqMQrebZW3tzsLByYGRMweab3OAzz6Du+/Wk5urQa+34YcN47G5YxvfrlNCt0JhoL5e/J47K+9mVqaOksaSXrEDy4G2CN16QEwqmSmV9B9iXeouLobCIjHQfgMsFYBvfT6IFdEFFJT5snxLHDWVNfRy6UVuWj5zromhpt6J9Iy/+PCnyQCs2yDNUVPmD23P2yQ0TKa+yUyvbqGnQqHoDJpaukFk8wbh7TJlSvvOZ1j21tUJi7Y1obqjlu7OxsZGxHUfPAgpKdDQ0HlztuLsoxKpnQN4e3uTn59vti0xUdYtjoyMxMHBgZMnTxIeHm72F9RZKRcVXU7hySLiN2RRVy3L7fz48X5j++IZLRShbCMejd7p9fVC09oWSouqjG13t4YWenYNCxZASnIDbzy6ETtbIfQnHFcCt0JhYMcOUc920CARl9wZJBySguzQidEt9JSE9dpsbGccaj7Oy3TRHRVlud8rwJNLJolnXHWdM38tPwzAb98coaZeKKV/XDsAbb0WvR7WrRPHubjAmDFtGqqR0Aip5M7MaDlZnEKhOH1Mf//+TR7lc+a0LWu5KW2p1d1dLN0gXczr6yE9veW+ip6FErrPAcaOHcuhQ4f45ZdfSEtL45133uG4iX+Oq6srt956Ky+99BI///wzGRkZHD58mCVLlvCzIS2koluj0+qYPK6c2x+9lPtv2mXcvnSFrCdxxeWnvyA0zctnqL3dGmVF0vrj4X52FqXOrvY8+MpUIgMzAUjPDUSva0dqY4XiHEWv03P/PTVUVAh3xbVrO+e8CQnSDSY2tm3HmJb4ykitaraf6aLbNJuvKXMukuafVb8JTcKvv0sBuaDcj+1/lZCYKBfaU6YI75j2ENrX09jOzLZuctr3ZyKP3LSRxF0n2ndyhUJhgenvv2kupPa6lgMEBsp2c3Hd3cXSDeZznkqmdm6hhO5zgEmTJrFw4UJee+01FixYQGVlJfPnzzfrc//997Nw4UIWL17M3Llzuf3229m4cSMhISFnZ9CKdpGemE1Stoif/Hz5eLJTyzi6J5VD6WJ2Htv/IKExlmVw2ktHhO7SYml59zi9PG6nTUSwqBVcWetK4cmW6wYrFOcDa77by849shpBUlLnnPfgQdlus9DdRwrFGenaZvslJ2Qa21F9rXvPzLx8IDYacY7Vm0OoLK1k3R7zfCfL//Bh3Y+HjK9nTG+/UjC0nzS1ZeZYusM31DUwb4EHry+Zyp23dZIbgUJxHmMQNEND4ZZbZLIyOzuYPbv952tL2bDuJHSrZGrnLipSoBtz+eWXc/nllxtfjxkzhqRmVkz33nsv9957b7Pn0mg03Hzzzdx8882dPk5F13N4bw4gSt40aO1572N7XCr2ASJB0JXzOqdItYfmGCBm/NLsVOjXes3v0hIZx+3h0UnFKjtIeO8q2C3aaUdz8Q3xOavjUSjOJnqdnmeedzTbdjpCd3ZyDr9/e5y6Wj3b/hwE+OLgoCc6um2/+7BIqZXLzG4+7e/x+HQM811UYAqGOckUrwAPxg1MYOvhWI5mRfLpK5uoqTcP9ly+HKJ9pEV95phkq+dqCQ8/D9ycyiivdicz19LvdO2yJLKLRN3xQylhFvsVCkXbKSoSfyBCS/z8YOFCePdduOOOjrl+t0Xo7o7u5SCE7vp6UaVm8GDoq4qz9GiU0K1QdDFVZVU8c+8uovrZcPu/JnWojvaRBHNXzMWLIdA11Ph6wd+a8cFsJ+72JzEsSssKijEI9S1RWiItVu6eZ3dKiQiXlqy046WMnHkWB6NQnGXW/bCP7YkjzLYlxWcDva0f0AI6rY4ZU6tJyp5stn1Q6DHs7WPadI6waLn6zTjZfOryQ8eFssxGoyVySPPeWHOmF7FVhHPzn7dlgjRXlwYqKu1ISoJUO7Hd3yOfweOsBIi3gVC/PI5kuJNVEIBepzebw7/+bZCxXVLlRXV5NU5uTtZOo1AoWuGESYSGIZ/DO+/Af/4jam53hPZYum1tW66qcCYwdS9PSBAlEteuFfHtqang3PaKropuhnIvVyi6mJce3sWrX07lzicn89O3HXN5PpxoLswWF0NiZiQAY/ofIqx/+xfR1jBzLy+pa76jCWV1MmDKw8+7U8bRUSL6ygwraSltG79CcS4irNzy96DRCIVUUnLHBMJ9fx41hriYcvGMk20+h4efB+5OpQBknLI+V9RW1XIoTcxt/UNTcXZvfoU5e75cTZdWeQLg7FjJokdlPoe6BmHpnzHqGDa2HVvyhAaUAFBT70RBtvQqKi+HpmlRctLMk5oqTo/KSlEKc8yY5pNgKc4dTGOYTYXPjgrc0D5Lt5dX22uAdxV+fjJUb/NmmYcjLw+ONp9/UtEDUEK3ottxcOsxPn1xM5WllWd7KJ3C6g2exvajT3oas4KXF5Xz2UubObzdSn2MJhxJbl6YvfKSgtMdohEPTzkllBa3LRN5qV76QnmEnd267xFRbsZ2esZZHIhCcZb569cDbD0sgq0HhiUzdegBAIoqvCnIan84yqpf8oztu674i6/e2MJnry/nif+Ob9d5wvzFeTILAtFpLWOsD+1IoV4rsp2NGNiylDVsSgz+HuZC7qzRB7n6Ksskih2J5zYQGiQ9jTKT5fV+/hmqm1QRy0kv6fB1FJYsXw4bN8KuXfD662d7NIr2smYN/PKLKNfVFlqrXNAR2mPpPtvx3CCE/uhmomCys8/sWBSdixK6Fd2KssIypszy444nJvH43/ec7eGcNmWFZexLkcl9UtNseecdKDxZzORR2dz++CQmX+hNaX5ps+fQaXUkZohYwb4BaUyZVGu2/4qbO+nJBLi7yzjLstLmEx2ZUmoy9LOeSC1GJj1KO6niuU8XnVbH47dt5NGbN1JT2cYacopuwZoVJcb2ontOMSBKZkYULubtY9UG+Xta9FxfrrtvHEOn9sbOoX0hJaGBYly19b145qkqrr4a3npL7t+7TQq1I4a1rPizsbVh1mzz68+7REe//g70DzHPJD5zfuuhMs2OOUQK7Jkyxxtff20p3J/MPDeUxd0F00RS33wD2rY9lhTdgJ9/hlmz4LLLICYGPvtMxCe3RFcI3b6+0nptTejW6eQ6pjsI3dC80J2VdWbHoehclNCt6FZs/DWR4kqRxeLbVQPR1vfsJ+yWFUno9OYJg55/Xs/MSbnEp/QHhOXpmw8ONHuOjKMnqax1BSA6LJv7b95n3DeqXwIRgzovA727p3RHLStrm2XIVOg2dU8/GwREBODgIBbCaSWDz+5gzgF+/GgHL30+lde+msrT/9x6tofTpdRW1XJkZ/I5U2pu/0EZmDjloghiTBZxSYeaV/JZoyinmJ1HBwIwIPQE4QM6PueEBUvT8LMvufLDD/Dgg6KWOMDevbLv8LGtZzSac6nsY2MDF90iLO/zpqUYt0cFHD+9MY+YaGxnlglvnpMnTrF+veUcmZOlwlo6kxT5NZKTAxs2dP019XpYsEDE0J6J652L6PXw4ovydVoa3H67qHSQltb8caZCd2Rk54zFzk4I3mA9RKG8XAjecPaTqBkwFCByc4Mnn5TblaW7Z6OEbkW3Yt0aaU3LL/Nj55ojZ3E0p8+mDdLqERkuysmUl2uMAreBj7/yb3axf2RvjrEd1aeEi24cybUztxLgmccrL3WuUsLdS2Y6bnOdbpN+Z9vSbWOrITxcqLTT0sSDX9Fxth0dbmy/9b+JpB7KbKF3z2b+tAQGjY3i9ku3nO2hdArxx0WiRS+XYsJiehMzSArhSUfbN2+s/emoUXk4Z/Lp3QPR/awr8377Tfzfe1isjjUaHcMmtb7qvvBCsagGmDhRxEMCzL9G5pq4cFLb486tERourekGS/e3i4+i04nPZPzABOP+nJyOu7ErLDnRpPT5kiVdf82DB+GnnyA/H+66S1nXO8LWrbCn0VnRNPHX0aMiRj893fpxhpju3r07N2GYwcU8N9dyXdCdyoUZWLAAjhwRn9PVV8vtytLds1FCdw+ioa7hnLHCNMe6bebWiOU/dk4prLPFxh2+xvbPP9bi5iJdwwM88xgQKlYU8Sn92bvBuoLh8Anp1hnRtwEbWxu+WTuBU8X+TLtiWKeO18Nb1vMtLWu+pI8ppemyYK+HW9viwLuSiAjxv6JClh5RdIz4g/J+qGtw5NF75BO/rrqOovw6iopEEpqerOAozS9l9a5RAHz++yR+/HD7WR7R6ZGblk9OsRA64/qlobHREDNUCqFJJ9qXTM3UtXz2xW4t9Gydvz0Yx81zt3D1zN1mMbqrf8mhrrqOg6lC0I7pnYqrl2ur5/PxgS++gMsvF2WFDIybO4SX7t/INTO28eQr/Zs/QRsIlYUijEL3d7/IUJZHHpDW+5OnpLeQ4vQxtXQDLFsmkqt1JYdkaXeOHYPvvuva652LmIaMfPghbNsmXMxBKMSnToWMJnlXSkqgoDFFTWe5lhswCN11debeedC9yoWZMmCAGE+IybJYWbp7Nkro7iEc3Z1CaEAhcVHHqCqrstpHqxXaxbZaKLsb2ck5xozcBn5dF9pM7+5PeVE5e4+Lxd7AsGSGjPThlUd2AhDsncOff5Tz4D+kBebj96wrGI5kyIzBgYM7pzRYc7h7ycV4WXkbhe4KIZg5OVRh73j2qxAahG5oXpuusCQ7OYddaw4bFXt6PcTHm/f5ceM4ln64nQeu24SXVz0+/g74+IC3N0yZ0vZkOd2N4wfMVzILH4vqULKx7kL8PvmMGDZIrDDD+gfTy14Ih0dT/Vo8vqayho3L4ikvKkeng9XbhG+6s7OWSZecXtiGV4An/7diIt+tHcVDD8GwSFE4fN+RINb/dMCYbXzEwJyWTmPGDTcIy2RsrPn2x96ayrfrxhPUN8D6gW3EdNGbmQnFuSXsTRZze2yfJKbMk2XDcqpjmx6u6CBVVcKl3JTKSpGYqys50kT//dxz54a1e/9+OHl6Th9tIjVVfkeBgXDNNTBuHPz5p7ngPWOG+I4NmHo19OvkpU5LydS6o6XbFA8PafU3tXTX18OmTT13zX8+ooTuHsIPH2zlVEkACakxrPpspdU+Tz8t3OsmTJDxKT2JDessraRHsyI5ltgzV/JbVyWh1QkhdOposai/6z+TSY5PJynZjQGjI7nmrmG49ioH4Ju14ygvtzyPYQGg0eiJiOjaZFbu3tKyVFbRNotNaaV4Grg7V3TJmNpLuK+UtNP2Nx8rr5AUnixi0FBnxswaxJI3Rex2Wpq0CLi5yN/gVQvH8d9vp1BVa17MdPNmy/JJPYVjh4vNXueX+XHPLUlnaTSnT/zxcGM7bsYYQCQdiw4RpqUTp0Kpr20+o9Ftl+1l2hVx9O9XwQevJBsXqdOm2dLLxbHZ4zrC7ClSqnrpDU9ju7UkamcSZ2fw8RTm1czjuWxZeQy9Xiyfpo09haefK46NH0tOwVlObHEOkZoq26bxvV9/3bXXbSp0JyXBDz907TW7mi+/hOHDYdiwrreWvvuuXIP+85/gIIoREBQkBG9DkrDkZFhpspw1LRfW2ZbuQOno0+OEbo1GKv5Mv7uFC4XHwOzZPdvT7HxCCd09hOIq6d53/Jh1ifqPP8T/Q4dELNKZ4OSJU8wcvo+/X/bXabu+r9surdoXz5YC3G8rHU7rvGeLTeulBD1lqhRgI4eGG90mXb1cuf4GIZhXVtlbuLHp9XIBEBEBvXp17czq7iNdR0vr2+ZlUFYl3ouHS/fI2hvhJ1XBacdLzt5AehCblx+gtEoE5C/5UlhD4/+SK6B77tYS28dcCHVyqGLWtCKmTZPbPn6/Z6rcj6VbZrr/bv14fvl051kYzemzf79sx42U3isxEcJ636C1J/Ww9eDA0vxSftgwGoCTRUHc87hc/c6Z0/ljnXOpLIe4OV6at4ZfOK7zL3YahHoLv/LsAm82rJXu5FOmOaLRQHCweG1qSXz5gY1E906lb2AGfQMzmDg4gaS9Tfylz3P0eqiqsr4UNbV8Xned9GJas6Zra3YfPmy5radbuz/6SPzPy4NXXum665SUwKefinavXvCPf5jvDwqCt9+Wr1evlu2uyFxuoCVLd3d1Lzeld2/xv7xcWrZXrBD/t2+3VBQpuidK6O4hlNmPNraTs4Os9slMlUJeXp7VLp3O8w/sYP3+4Xz8y2R2r01o/YBm0Oth3TrRdnaGF1+VFtfly093lGeHjTvkLD/louafIHf8Qy6Kn30Wvvu62pi1PTO9gYpG/cPAgV0zTlMcetnTqzGMt6ze+n1mik6ro6xaCOoeLtbDHs40Ef2k4qClLKkKySGTRebmpElUl1ezf5tUqY/oe4CP3qvD3akUJ4cqHrphI6lJlaze4M369RAVLlYBGza7kxzf83z6j+fKmN/HF8ocBW+907lW3TOFISzA0RH6m4Qzx0RLhW3ScevKzNXfH6ZBa93LpSuE7nGzB+LhbJlNfdjI7vXZhwaKMTZo7Vn6h0wFP3muUBQENU6XRUVQWwunUvN4/O3JHD/Zh9TcMFJzw9h6OJbnnzgD/r09BL0e5s61Yfr0ofz4o+V+03juqCi4/nrR1ung11+7Zky1tVL4i4sTnoMAiYk915OnsFDUOTfw8cdd42au08Hf/obRY+/GG2XWcFOmTMG4zli9WlppTS3dne1ebhBaAVatMt/X3S3dYBnXXVZmHnrRU9fJ5xtK6O4hGKxQAMnplsll6qrryC2U7p55OV1fU1evh1V7pxhf56SXdPhcR4/Kh8DkyTBkiIz92bJFJtfoKVRUwO5jorRM/8gSAiL8m+07YgSMEjmcyMqCa290YkhkGn/+tJ8jW+ON/Qb2PjOqTEPZr7bECZUXlRvdLD1cu0cd54j+Ml41LbNtCaPq6+E//4E33jg/3bQOHZPWxtr6XmxbnUj8IfnZDRsfzLi5Q8jM1FBcbMvrS6YSECE+Z40G7lwgy9h9+raJT2grrF8P995rmaH4TGOoBazRwFOvDyYqKA2A7YlDjEqvnkJFhXw/gweDvYn8HDNRlr5KyuyNNZYvlz+AyyfvQKMRgvqg6BL69rV6yGlh52DHzFGJZtuio89++cGmhAbL+S27SEjYQyKO4dNbeEkEBcgQjJyMcg7uzDTOjS6OFdhohCJ1876IMzTi7k9aGqxdq6GhwYavvrJcjprOC5GRcOml8vX69V0zpmPHpGv0oEHw2GNy359/ds01u5q1a81DDmtr4dVXO/86L70kY7k9PeHxx633c3LC6CGVnS2yxdfXS29NOzuIdF4Lm6+EOhOFnF4HRfsg82eotlJwuwVmz5bVVf7v/2CffGT1KEs3iHWiaf16UEJ3T0EJ3T0E0/ja41mBFvtz0vKMD3iAvKP7LPp0NklJkHZSzlAlpW1LvGWNdaula/LMmeL/vHniv04HK5edIX/5NlJbK7THzbFtG2i1onTV1As8Wz3f999LjTpAYmYks68ZyPvvyyflwKgzk9jJ8GBqmuHTGns2ylVRWO/uYekO6hOAva1YAKfntK2G2ZIlwsvg4Yflg/984lD2ULPX61eXsT9JhBd4OJcQMVC03X3ccXS2tEDefO8g42f+xc+DqKtuPQ+DVgtXXSXi/+6993TfQcfR6+UCJjwcejlpmDkvDID6Bls2bz57Y+sIBzcfMiqOhkWbpwc2KDJBzN8rvtrNoPBk/nnlJvQ6PfW19azcJpKCeTiX8t2aEfz5UwL3XbuJbz7rOvepObPM48tHjOiyS3WY0BBLbdzUMdJcGOwgM97nHE/jSILU1rzz9H6mDBWeYOn5IWSmdo+58mxjam215p1naunu21fEJBsskevXd03uGlPX8kGDhOKqpTH2BJpadgEWL7ZMUne613jqKdHWaOCbb8yTmjZl9mzZXr0afv9dun1fOmkPLrsuhKpMcDB5hmf+DKtHwObL4ddQ2Hot5LVtgvbxkePT6+HBB6WCvSdaupOapBzZubNrQy4UnYMSunsIZWXygX+yKIjKUvP42awT5rWR8k41nyTHQHJ8Okve3EJFccdMOU0n8uKijgc8rftJ1uiYOUWYWOfNkkLm8m+SLY45W1RXi8VrQABs2GC9z9atsj1livU+pvTpIxJRrfslhbH9hXtrXYMjv2+XYQUD4rybO7xTkZZufatx+utWSXP4jBndYzqxsbUhzE+sJtJOBbbJcr3FpDTzn7/3PPfo06GuzvIB/sPKCLIKRZBqXFQqGhtNi+fwD/Nj/uS9AOSV+rH8//a2et2CAlnSbdOGarT1ZydxVn6+9OowJPiZeYG8lw1hL11BSV4pS97cQsbRzststH+HnDfj+pl7HZgK3b8vr2H+rXEcyYjigx+nsPTD7Wz5/SAllZ4AzB1/CHtHe6ZcFsd/v5lC7MRouorZV5qH34yIabu3xJkiNMzS5X7KVKmACgqUE01OZgWHj8h7aNAwLybOlpnAtu7sxALEPRhToc9aHhqDpdvJSSTCsrWVFtKiIsvqCp2BaWzswIHgb+Kk1hOFbp1OKpJdXODuu0W7pgZee61zrpGfL2LuDc/aZ59tPRTFdP+qVcLl3cAdo58QjeCLoEHmT8DfZDGlq4f072DdZDjwVJvGeffdMiHfpk3SKm9q6e6uQndTS3fTZ7ZeLxQXiu5N91glK1ql7KR58pWUQ+aLtMxUc8E5L69lSaOmsobJ0x256aGJPHxbx6zipgkwAIqLO+aX21DXwMZ9IvDQ172AIcOE+/y4yZ74ugu/8tU7hlBT2T3cl3fsEKWotFqhzbXGXhOZY8yYtp1Xo4EZl/Zl84EBXDnNsk5w/2FnpnyaJ8Iio9VqqChpWSGzfqt05Z5xadctyttLRJAQPMqqPSjJa91kH79fCnzbN5V01bC6JUlJ0NBE3j1xKsLYjhvUtuRod/5DCiAffNwLnbZlM5TpArayxolDO86OYu3YTpmLIjpQmLynTRO/R+haofvuGw9x00MTmXVBzWknojQQf0AqSIaNNlfUubvL2ONTeb3MYrcXPRvKD9/I3/u8eS0rWjqT3lFBDAmV38PwwUUt9D47hPa1DOuafJEMPA3uLT29TmbVcSRZWugGjAxjwlTpL2+q5DufMbV0NxW6dTqZvbxvX/l7NHjCQde4mJtaugcOFDlmXBu/+p4odMfHSwvy9Onw5JNCiQEiuVpn1Dz//HNpLb700ubdyk3p108KwFu26PnjD/G8CPdN44LBa8HODZyCwLaXPKiXL8Q8ANH3gKNJsPjh5yG39ZvB0RFef12+fvhh4bVoaunuru7lrVm6QbmY9wSU0N1DKKs014wfP2y+KMnKMHfnzMtv+av9a/lhcoqFm/pP6wa0ukBuSlVZFZv+NL9mSUnHFmn7Nx2jrFosUKaNOI6NrRi7rb0tF08UsX6Vta78+bOwhhflFDNuwEEGhx8n/q/OL+tTW1XLwa3Hml0EFxXKzyp5/zGrffbuKAHAy7O+RRcra9g52PG/VSNZMFUK3hH+mcaM512Nr4dceBecLGm2X3FeBXuOi7j1IRHHjDG+3YGIELmSSDt6isrSStKaydZcV1PPocPy97LnWL8WyymdaxySTiY4OVq6hcfFtS1sZPoVcfQNFF4Cf8YP45IJeyk82bzw1DSD7I6N7YvR6yyOHZZKmX4hwvTm7S1dnBMSIC/bSi2/00Sv0/PHdqGoOpoVSdbxzvH1jE8UMcYajY7Y8X0s9sf0NlduGEoWpuWF8tGyyQDY2TYw++pBFsd2JbdeL8xNwd45jLlgwBm9dlsIjTRXYAwaBH6hcuEfFCKf0Tk5eg5nic8vJLAMdx93xo0Dm8ZpRgndAlNLd1WVxkwAzM4WXjiAWS4BU6G7owqxd98V2eZNrasGDJZuR0d5XYO1+3SF7sOHYeNG8bdtm3x/XYmpcWTOHOGhN3++eF1dLQwIp4NOJ7OVgxBqbdooWcy+QBhSGho0xvDIO6Z9gk3wBXDRIYi6XWpbDIx4E0a+A/OzYLC0cNvsvBVbbesK4ksvFWW2QIQvLF/eRe7lnZwcxszSvXsNSfvEF2dnJzOzr11rXvdc0f1QQncPoazavCZuclK12eusbPOJKbegFy2xeqt8ihWU+5Gw9XgLvS3Z+MthauvNs98WdzCme9Ma+SSbNsVc2Jk3X1pilv8sZpM3/32AHUeHcDijHzMu8uPA5s4TvCuKK5gQd4LYidHcMd/6yqi4RP5sktPcLPafPHGKU4WeAAzvc9DimdEW7B3t+Wb1SG6f9xeuvcp5dOGZc7f09ZHfQUFO88LGn1tcjQ/KmTO711QSES5DHd77sBdBIQ5EDgninSc2WfRN3J1Cfb0cf3WdMwlbu084Q1dzaJNMa3vz1ZarymHjrKSftYKNrQ0vPpFtTLy1cucohg2tZs866wkA844dMnu9fUfH5g9tvZYvX9vCmm9bd2m3xvFj8l6JHijn2RkjZXKvDcsO0tnkpudTUC4VVQk7T9/FvKGugYOpYm7vF5xuVVE3tJ+8znUzN7NlTbYxyZeBqdPs8PRvWz6EzuLe5yexfdUhDhxwwNm9+7lf944MMN7bIBfuBoLC5LNg32FvY46TQUOFhdvdHWJjxf6DB/WUFrctHEun1fHla1vYtqLz78GzTdMM2qZCrWk8t2mN7n79pNVv82bhJt0e9HqRNDMnRyT+MqWuTmbQ7t9fuLODFLqLikTCr47wxhsiPnzaNPE3YQJceGHHztUeTMMADXHUYWFy2+nGdW/cKLO9z5jRjlJfxz5gjts1ZptsbRr4232DYNpqcAlr5kBDZ0cY8jQEzABAU51NWO7LrV5Wo4FHH5Wv//xTupc7O8ua4m2iJh923QW7/i7+tt0EayfCsgD41haWesAvYbA8CsqarLHLjkH8v6CmbZocf395P2bm+3MsQzw7+oZXG/Mf1dRYKqKOHIH335cZ5RVnl+61UlZYRafVUV5tnso1ucw8UDjrpPlMkVfU8qJl1XpzH5p1v7Vv5l21wlKdVlzasXraG7fIhe6U2cFm+y5YMBhHe/FUXb4xmqqyKj76fohxf1GFNzMu8iVhi3WLc3vQ6/TctiCBvcdFba7PfptktU5vUaoUIrKLgqgqM/fP2vuXTF40IrbjdYvtHe355NfJlFa4cNd/Jnf4PO3Fz1cuLPNzmvc9M53cZ17WyUU1T5PwPnbG9uffh1NeYY9Ob8sDL01k3Q/m4RTxOyyDCXds7IF+hB3k0CGpkV+4UGjODdjb1jFgZNtTVl9993j++GY/fu7iM80s6M3VN7pY9aTJyzRPDLjjQLBFH1O0WrjvPrj9dmGhMfDFa9u45dGJzL5+GIm72p8G/dgJqaCMjpUBnDOnyYusW9v5BXoPbDdPcnZg7+n7eSbtTaOmXviOxsVYn9MfeTaaq6Zv45mFG/lyxTiGTurPHfO3mvUxLOLOJDa2NoydPRjfEMua6d0BBycHAjzkXNE0V0dwH6mc+itehtqYlnqcOFzU+tbpNOxYZVJMvQVeffgvbnl0ItMu68+hhJ5RKLqtCc6aCnymLuZNk6gZ0Giktbu6WtQobg95eVLIauptc+yYrMVt+r2ZxnV3tJLK0qWW2zZtMn+fnU1Jifx8YmJE7hgQ8fEGTjf51iefyPadd5rsqCuFo2/Dylj40ccy7tpjIFP7rzWu7wAunltH8ITrLK3bzaGxgXH/B/aeAHiXr0GT/l2rh02cKAXYjRulpbvdVm4bB0j+CJI/Fn9pSyB/a6MgrYf6MpEMruIE1Da5cYrj4cjLQiA/8hpoa8V2vR7KT0DKl7D7n6ATsV+2tsI7A+Bw9iCq68QaP8ZjHZeGyxT7v34v1y4pKSK88e67m3w3jXRFIkJFyyihuwdgLa72eLL5V5d5ytzimlfcfL2VtDRRosuU9X+5WO3bHKs3hwNgZyvVviXl7a+rqq3XsvmAWKD4ueczYFSk2X5XL1dmDBca/pNFgTzw90wKy33Mrl1Y7sOMi7w5lXp6gtIbizbxw4bxZtv+8UgfinKKzbYVnTS/zomD5haqfbvl4nnEqI4pIkwxuNufKXz95PUK8mqb7WcQuu3sRJm37kREf8sM/wA6vS3X3B5u5mq+f7/lQnb7TjuLbecqB5NFkK9rr3IGjQxm7Bj5eQwKT8HBqX338AXXjGD/3gYGhKUBkHIqnKwMyyRpTfNOJGX3pSineXf01avhnXfgs89E5l0Dvy8Twrteb8OO1e23Bh5LF/OJvW0d4f2l4D9hzgDjgnDtjj6dFnNtIGGf+byecPj054qE3XJuihti3Xe1d1QQ368fz7/fn4qdg7jPn317MO7ucgV2ySWnPZRzkohQOR82nfO8A71wsBP7q2qkIsdM6B4mFS1bNraewFSv0/P5DxEA1NXb89Z/u389w88+Azc3mbCrJZoK3aaW7qblwkw5nbhu01jY6mpzd1zTJGqDTKIrTjeZml4vr+vtDbNmyX3rfjoMex+ErN9ESaxOZN06qUQwTVzWWUJ3QQEsWybavr6NJd1Kj8Luu+GXENh3P5QchLoi0Dd5BvhPwSUkjsnDpX/7nXd1wMPFOQRGfwRAuVMceo+BrRwg7k9D+FBiolS+tCh06/VQZ74WxMED7K14BDkFgddwcI+BXoHg4A1ac+9UKhpv8IZyiH8UfnCF753E329RsOMWOP4BZMni8AYXc9NcHDFBR5ne+22cHcW68+sfPNj57ZfotDpuvx1jyculS+XvrbJSeFr4+YkcRYozhxK6ewBlRZYWkOQm3q9Z+ebWgbyS5jNdN02ABvDXgYHUVjUvYJldOz6d5JwIACYMOmz8sReXW7pat0b8ZhnPPWV4stUsyZdeJCerj7+T6XfXLE0yZvouKPNlyfsdr2O9fuk+Fr0xyfh6cLhwBcot8ef+W83PW1Rs/rNJPmIuKOw9IB8cwydYr4XbnfH1kxN6Qb71jNIZGdINb+xYmWimuxAzMsqoyXZ0hMUf6Zg7ZjcglDSXX1pOdbm4r+IPy4emoezVjoQQzgcqiitIzRVufIMj0rCxtTGz8A4b2LEydb2jgrj46gjj68RjlgJlXr6lO/nOdc1bqk0X4etXid+cXqdn6zFZa+94xaymh7WITqsj+aT4riODMrG1l8oWJzcnJgwWv/2M/BB+/XwXby7ayDtPbOqUmP+E44FNXged9jlTT0hBO7p/25Wg/qHefP65Db17wyOPtFzq53zm4f+EERgo3FMNcZQGNDYagrwsJbJBA6QSa8IsabLdsqt19/2Ercc4fjLC+Pp/39h1aTKvH34Q8c5NEyu2lYYGkUSrqkq4tJrGylqjre7lTevDT58u2+2N626agMq09GfTzOUGTlfozsuTn8WIESK7t4F1Px2GpLfgr3mwciic+AxS/wdHXoWDz0JBx6UiQ3ZuMC/RFWQy1ZyO0P3VVzIu/ZbLjuC4dRasGADH34cGE6WSS7gQRE3RaOCCLTzxSgxBQbBggbkyol2EX4126lqOhX4CnrFtOsQ0PMRwv7eYRO3oW7BiiLBQm3LBVphzQPxddBiuLIfLTsKcvXDxUbg8BxYUQuB08+P63ARRdwKNa159A2hrQNdkHX7ic2MzxMqyJCYkAyeHGv45831AVL254u4LeP6ZKrO68lotfPGFaH/wgcgpUFQk2oozhxK6ewClBZZCd1aWdLGsr9OTU2y+AqisdbUoK2Zg1c9ylh0SKdzdqmpd2PFHotX+TVm3XGom58wowctXuDMW17fdDdXApj+kf9fUydYtMxdfZ5kVe9IkmHbZYL78n7TQr1rfsRhEvR7+cZ8POr0QAp66cyOr17ni4SwSLC1ZPYGVP0rLaFGJeemY40fNg8r2HhVCjIdzKZGxrcQldUP8AqWVxloZF4D1P+wxtmdO7X6ZO/z9RXKXW24R9Svv/LsN/1seTVRQGgD7Twzg7X/vQK/TE58sfO5CfE4yZoD4DZw4FU5eRsdqw1eVdY/P4/ffRYzdihXN9zmyO83YHhwttPiXXelqTIRz4XXjrRzVNgaY5MJq6lkDkFdoKYhv39K8i7WpVeyvzbZo67Uc259qFhednObUrjFmHc8xumNHh1v6jc6cLMNDLrtjDA+9OpX7XpzCG49ttejbXhLS+pu9TsqKaHd8alPSM+QjPaJf++bDK64Qz5VXXz29MZzLXHGFuA9fecX6/iCfEottA/pJ4SOkXxDhfuJZsjMxptV69ku/MjcF19bChx+2b8xtJT4err4a7r0XvvyyY+dYu9ZcKD1woPm+tbWyZKAB0+eNQcmm0VgqgYKCpCV69+7WhXtTmgrdpu7iTTOXGzAVupu6pLf3mjExQvD2cBM/9g2Hp6PTNQpepYdg5+2w/QaIXwQH/wOJb7T/gojP15DN2tNTllqDNlq6dVooToDcjZD9O2T8CCf/gIo0QKybzMp8xcyHU2vkBltniPoHzD0El6ZBzL2W19BomDJFKF+WLpUu3x0iYFrb3dKxzMkAzVi6awvh4HOw/2Gozoa1k6DKRFvkOQi8YsWfx0Cwb6MFwrk3jF4Mc/ZD6ALwHCoUBp5DIGgWxD4HM/6EScuMh/S2YsPpf/07cFUVL3xzI5OGpwGQXRTMf56zHMcnn4jYbtNScbt3t224is5BCd09gLLiaqvbTxwUD+RTuTLzoyn5WcUW2+qq61i/SfwY/T2LeOgf0t1t3aqSNo0n6ah0cRs7yRMvL3Ht9jz4DGzcIq3CU2ZZj+kMjgxkVPRhs20PPCD+94vrQ98AoQTYcnAQ5UXtzxZx8CAk5wh3+bFDMnj6g8n0jgrirX/LEjYffy1VjEWl5knqkk/Iz/5Uah4ni4RGd3h0Sqv1jbsjvoFysi4otD5FrFsjtbEzx3TPpGO33CI0u0OHitee/h789EOdMRnSx99GknIwg9IqIZzERWcxdpj8zexc3/5guzvn/4WLhzPP/nPj6Q7/tKirg5tuEnXkr7lGa5ZFPCcHtmxxp74eDu2T2wcPEr/r2FgR5/bTT3DV1R2/f/ubyJSJVvR5eUWWIS079jbvLXMqRSq+yqo9iN98jC1rzEM7mnoAtcaxBLmCju5rOc/OvMjfYhvAL6vbllyuOerqLD8TnU5jZmnrCGlZcj4NjwlooaeiKwjyM1caBXufskhIN3GYeF5V1zmz/6/mc5HodXqWrhLPJY1Gh62t+H1+8G5Vl5TP3LtHujZv/N363KfXi+RlBi+npnz9tfnr/S2ErVtL4GXN0t27N/SykhfW4GKu0zVfutMaLQndht+fg4OJS3tDJQEuMpGphaX71Ho49DxsuRq2XCVcxRNfh4PPwI6/wbopJH3zoLF7TIwQLqdPFxJmYYUvB5yXgO846wMOv7rtb86ENWtk8qxLLzVPEGYqdFtNpKarh00XwaqhsH4abLoEtlwJG2dDyv8BYt1k+CynDNhIdFDjTeHaF4a9AZdlwegPhVB6Nqgvb9Fdf8IEyyzrRkt3QyVkrxQKkF9C4OC/gcZ1b/8Hwbnl/CPtwmsoTFoKc+Nh7gGYmyASyQ1+EgKmgp1UJFu1dPfXgJ0T9u5BLF0ZQe9gczeVO+6QXg5paXDNNebKraNHobT1qqqKTkIJ3T2AshIp4BjcXwGSE4TAnGW9EhJ55ZZxrVtWHKayVghVs8Ye4YLLZLDU+m1tW6SlZMgnYOTgAKN2sKqqfSUwtA16Nh8Q7uK+7gUMHBPZbN95F8pZom9ErTHRj8ZGw+xpwj+sXuvAhk3ts3SBeW3D6+8MM8ZQ3/zwRGxsxERr+hkXl5lfIzndJGvt5jRje8SQnjmT+QbJfAAFRZbWSL1Oz4bdInGaa69yRnfD8j7NETsxmgtGiERqqblhvPGc9NoYNqSSsRPkvb19SzXZyTk8ecdGfvqo9Ww965fu45NfRaDnBz9OaKV317J+vUwWVFFhy5v/Fiangnw9Y8bYcP/9/Zg924adu6Q79eBh8j6eNAkuv7ztpV+sYWrpTjxoGb9qyDvh41ZIkJcwt+w8EtVs+cJTaearw01/5LKlicH5+PH2VWo5nijH1S/a8s2OnDGAe67eRL/gVBZM3U6or5gIdh8b1CElo4GjR2UWZFPjTEKC9f5tJa1YLHBdnGrxCW4+xEjRNQQPNHdtHdTHMiP9xAnS3Xzrhuazch3afpxj2cILZ9LgBBbMEc/7vEJnvn2v881T6Wnyh7N/n/WEbT/+KGLZ4+JESS9Tysvh55/Nt8XHm7zQaUXG5saEUdaEvfw88dsvK5PCcNN4bgM33STbL70kLLttoTn38vo6PceOic8gJiwbu00z4ZdQ+MEV/9TbjP3z0psMPPE1SHgKMn6AjKXCVXz/I3DwaSGg5v1FUqYU0mIaI+RmXCA95taduF64Kc/8S2TkHv4WTPgORn8MwXNbfU96vai5/cYbcl4xTdy2YIF5f3d3qciwsHTr9bDnXvZsLeC+r/7LzuTR5vsdPAHzsnfzpyeL8l3T18LFx2DAg+BwFgten9oAv/cXGcRXj4bNC2Dr9bDjVtj1D9hzL+7JDzNisLk3m6fjSdhwIfzoLZQOJz4TLt8AaER98CFPn/G3Y6CppdvLS8TSGwgIgJ+W2RkVLKGhooSbaRK1lSstz7u3Y4U/FB1ACd09gLJSGT84pI8MbDS4NWdmyr5uJoaivALLZFCrlktBcM4cG4IjAxkQWQLArqP926TxSskSizkHu1qC+waYxcEUWxrXmyXhoIaSysZ47on1LSYMu/auIbi4iAfyk/92NHNDmnP9cGN79Zr2J8AyFbpNEwjZ2Grw9RUrYlPNYFG5udvO8UyprNi7S7oWDx95+omRzga+wfILzS+2TGxSWlDGqRLxnkf1T8be0d6iT3fmztvk72nxMikcx41wYtzMCOPrH9YOJW6EAy98OpWr/zmKnJTm/Qq19VoeXCQtt7l59maxgp3N/v0iK+mdd1rXUv/4o/nrd78ZQeHJIu65bgcnT4p7etMmDR//LN3HB48K7dQxenpCoJf44SQesrQi55aIPBQBXsWMGy5W2GXVHiz5KJ3LJ+9gTP9DHN4uTdenCsyt4Bu3OLF1v7nqv6IC8rLaruw6liQFjeiBllZ2jY2Gd76bwrHsPiz9cxyXXy+up9Np2LhR9quqkglrTCnKKTbmDjDFVLieMUO2W3LHbQ2dDtKzhEIwoq9jj/Sy6ekEhZrPlwOjLW+KoSPl/JqRYbHbyNKvpAvrlZeW8sDd0ovrrY8COj2xX3qmfKgezepj9b41JC2rqhKu5Kb8/LN5VQEwEbrztsCKgfB7jMjoTDOW7kN/wp57SUmSz9Gm8dwGhg+Xz+usLBmv2hJ1dZbZwgsKgLzNnPpqLA0N4jcT5bkTctdDlVCy+btL83ZeaRMvF8+hrV43KVcqYwxCt0W9cY0G/CfBkP9A//uFhTvqDrAzuadqCmDbDVBmrjn4/Xe46y54+GF48kmhgPj1V7HP3R0uuMB8PBqNtHZbCN3H3qfkwLfMeXUV7/xxHxOe3caru9eii31VCNa+YwFzoXviLbdD7LMQOBNsTsdHvBMo3g8bZkB14++naDdk/gTp30DKF5C8GI69C0ffYEqfn8wO9Sz6Ek6tBZ2J9cjeHWLuh0uOi/rgHakB20k0tXTHxFgOZ8wYkbfpzjvhjxVVuGc8z8WDvrHIQWG6blcu5mcOJXT3AMqQJqPhw+WElnxC/NpMrbDDhsl2Uzeouuo6fl0v3dUuXCD8P2fO9QRAq9WwybKMsRl6nZ6UU0Jr2ycgGxtbG7wc5Mqh5GTbS4+ZLlqnzG45iVDkQB927bJh0yb429/M902bJl2nVq1qn6Xr5Ek54QwdCuHh5vsNsVx5efK8ReXm7oJZhcHGBcreA9IKPmLi6SdGOhs4ODni7iYeOgV1MRb7M49L4TO8d+sZeLsb8/42kgBP8eMwxPEDxI0LJjgykNBQodw5kelFQZkQDLU6O44daP7e/vzVrSSkmn9W1lyqO4u334Zdu0SM1vDhsM+kClp9bT2//GzuYlZe7c5lszL5bp11F0Y/93wCwk/PZdoa/cPE5JRf5mfm4l5ZWklVrVBS+HuVM3bWYOO+W+7uw8+bx7IraTDvviYFj1NF5paT9XsHc/xkH4trJh9It9jWHMeLRhjb0XGt51+wWCgjrNahoSLu1FSY/v3LXQSEutKvTwmH4s3j/BPWbTa2b1ggJ+qErc347baBvDxp7VOJ0M4OwU28TgcOtFxieflJ5VxxqXUlsV6nZ+lKoQTTaHRcfksMY2YNZtwAkTj0YFo0K5Z07ko5/ZB0ddfq7Di0I9WiT6rJpqYLdVPXcudGOfHwYT212x6AdZOh/Bj08odeIgdD0yRqAHklXnDsXU6sft+4rTlLN4h62wZefLF1a/eJEzKbt4HCQsC1D6dypIdNoGejJOrgDb7j8B8ik2DlFTRRModfA+O/hYuOwLwUYa0e/y1M/kUk11pQQlKZKMjt7CwFp+ho83rjrVrqixNg5WBI+x9su1G4gDdi6mHw+uvwwgvCWwCEa7mjlZyKhmRqhYUmHooZP8K++3j+lyeNuTK0WlsW/Xcm8x57hOLQZy2EbhcX4fnQbfAaBmM+FR4Crn0xJiqzwtSLIswP7RsnGs5hEPV3EU89PwtGvAVuLdyIZ4imlu4Yy+UZINbEi98uYEByFCQ8hf3hR7j1FvPknx99JNu7dnXyQBXNooTuHkBZjaexPWKS/NUlpwuLa9Y+uYAbPlgubJsK3Q/ctN24SJ0w6KDR/dB0IblhQ8tjyTtVb1ws940QM7WnnXwSF+e23bxnKuBbS2rRlIEDrZemcnGR29PTLd3HWuK3L2Qd7ksvtvSN9/cVT8KaGqgoraWuuo6KGkuLWMoJIZHvPSFqiLs5VxI1NNyiX0/B109oMfILLZ/WmSekJTG0d8+oG2uKvaM9t8w3D551dyqlzyCxAho3zvq0mHvSeoK0ssIynnzN0sX+8GErnTuJ3ONSok9JgXHj4LN3xSp2w08HKCoWi/nJIzONISmbD0mLzJ1Xb8PNTWqnBvfN7BIN/oAoaZ07uk9qB/MypUuMv08145oJZ0zJEHONtl5rYWEyzEMAHs4lxnZyYhltQa+Hw0liDnVxgaA+rdeHnjJFJvsxCN3PPy8SQhUWijJJej1Ul1ez8OHeNGjtyS4MYvqFTmb3Q8IRqZybOUNrVAIdOOrdYQtmWppsK6H77BDURM86KM4ymZ2Xn3x+FJda9xI6vCOZo1likT9h0EGCI4VZctFDcg565gXXTrV2Z2SbB07H77J0fTe1Epsu1E+elFbwvn3hskvEOBsaNBzZuBFjPKz7AOFmTjPu5WVCy52SKBcvzVm6QSQku+gi0c7MhP/7v+b7gvW1QUEB4BzCKb0UrAOHXwyX54us0xduw2fWO8bp0SKm23sYRFwDHgPAtY+wVkdcAyGXglcsdXgYP7foaBmy0+56425RsjxV0W44/CIg5hvTijQ6HTz3nHzd1LXc+B5Nog+N76mumOM5fXnnD5H0zN5ePhZWrIC//120MzKkh+XYsaJsaLci8jaYugLmnYCrKuHSDLgkWShG5sTDhTthyu9MXDDDLITKM2Y6jP5EKE9GfwShl4F9+6vydBVNlXrNCd0A9PIF71GiXX2S26d+in3jdHPllSIppMEzVlm6zxxdJnR/+OGHXHPNNQwdOpSRI0e26Ri9Xs/bb7/NxIkTiY2N5ZZbbiHNdCVxnlJmsoYMj3TB21UI1ga35qyT0lo3IlYmcslLlRboL17ZzAc/TgHA0b6Gt96SD3tT63hz8eEGUjOky3SfocJS7uUlNcTFBdaTvmUmnbSI1dzaGI/p7W1eE7MjmJbDWPXtoTYft/w3+ROYN92yXJGfjQx2yc84RXGuddfV42nO5OVBVo5Q8Q8f5XLG62t3Jn6NCaGLiy3Lx2Smy+84NKxnvsfbHzDPiB8XB5rGp69hkWJrC9PHyZVhbo71MlEvP7qPvFLxgfUNlr56R3ZZWoo6i5Jic2VHXR3ccV8gK7/azdLv5Pdz3x3Z3HLxTrO+l4zfyR0PObBqZT3uzkIonje7/QkI28KA/lIoSEyQv508E2WOf5ALI0dKq09oqN5Y7zgz1xOA/KxCM6+Eplw7Vyohjh9rW72j7duloDpyZNt0Dm5uMHa0uA+SkmDXnxl8/718j5s3w7LPEnjziZ1kFkgFaX6+hunTZaKmhGTxZr1diwjuG8jQKDFXF5b7cCq1A+mRgbSjUhoID+t5yrBzgSBfc4XPgBGWIRue/jJnRkmZ9bJuf/wiA6avnFdibM/722ji+opSAHuOD2TV13uaHtohtPVaMgvMNQbWkqCZOrIdOCCts99+K4Q9gBsmfMlwO2mCjk+PA1snGP4mTF9vdD82tXTb24uD8yqC0OvhRK60KrZk6QZLa3e99WkaaEHoBnKDXjJuC4wME0JLI7a2Mna2vSXDUlKkdb2pkGQaWtJq6TM7Zxi3hMpaN3KKA+HQc1C4mwMHmkmGhpivLrzQ+r7AADlvGY/veyuP/riYeq1Y5y1aJLwHDXl7li0T2du3muTSmHB205e0jp0TuIQKS7XHAJG4zHc09L4IDy97s/Wvl68jRN1+9l3km6FXL/MY7haFboC4l0Ej1jV9K55gxS+VPPccfP65uKcNtcozM0+vdFxLlJeLe2jRIuH6HhJimfvhfKLLVsz19fXMnj2ba6+9ts3HfPLJJyxZsoSnn36aH374AScnJ2677TZq25oh4xzFVOh2d4eo3uJplVnQm+qKGjJzpCZuWKzMapqbKlSRe9Yd4a6nRhm3f/jcbkbOlPUw3F3lU6rslEmAuBWs1c708pKr1ZIiS2vxQ7fsJqx/MPMmygVC0akS48MubkDhaSVsApgzSbqUrlrRtvuloriC9fuEZTrYO4fhU/tb9PH3k59N3slyiorle+3lKPclJ8Mek/WPYTLrqRgmdr3eMk4/M0MqT0IjLGO+ewJRscFmtV7jRkmL1IIFoszY8ePw6D1yZZiba2lVqq+tZ/EPIl7Pwa6Wbz6X1qEj8UUW/TuL0gphKXV2rGTh38VvXq+34bq7ovlpg7inXRwrmHNtLI+/0Ac7W3GverqU8P7/haCx0TB2nC0nkurY8lsC9zw7sUvG2X+InJuOJkpBMK9MlvnyjxlKr17i97NuHSQna4gMEtq/jPxA9Do9pzLkZzmmv6VS7aa/SxNAckrbcil88ols33prmw4BYEasXHHecIPWGAdq4KHHvXjpY6FotrVpYPBA8f3k5Yn6wpv/yBaLZiA2Mh2NjYbYATJMI2FnK5rPZkg7IL03ItyUv+DZIDhAPv8CPXPwDrJMJuXo7IhTL/F7LG7oZ/U8BZXyfh4yRipvNDYa/v1YifH1My86dYq1OyctjwatudU9/kjLibDq62UOAtOkXdcPfYG4cKms3l98A1x0CPo/YCbMmAqKffuK30hdnS1lrnNIyetrsq/lsY8aBXPmiHZGBi2GyFkTug25N07lykVI0/hXsB5q1haalgszxVTo/vFHmW28OcocRjPs6RRC783k+21XwPYbWb1S3nN//ztGaybAvHnWM79TsJPAcll7ziBw/bnJll+2iwdjUJAQlGbNgn/8Q+zXauH775vEc3fNo+OMYboOsFaSq7thGtfdqtDtMQAibhTtumIuCH2TJ58E18a0RKNNcuSdtrW76qTwvti/iFMbXuPxO7YxNi4PLy89c+eKUpS7dokEjK+8VN++H9E5RJc5hdx7r3BPWbZsWSs9BXq9nq+++oq77rqLmY0+N6+++irjx49n3bp1XGTwIbKCVqtF2zRQpxthGFtHx1iSWwwIKcjFqZqo8BJ2NU7kCduTycpvTEjkmUdQH6kGyyvshVar5a6FUFsvZt67rtjETQ9PNBuLk5O8+csLS9Bqmy+HkJyswaCriYjQotWCu6d8kBYV1Jude/VqePNLIfCv2DGagpOFeAV4khSfCXgCEOl7GK329NSl0cN6E+qbTWZBbzYdGExZURkuHpYliUz544eD1NYLv9ZLphxDp/eHJl+Rn68UME9lV1DnLBciw4bbGV3Cjh3TsXMnGD6b0aO1FrFjp8vp3kftwcejEhAWmVMZBXh7myT/yZLTRnAft27922uJhQthwwZx706ebP59GZQmRWlSqZCTa2vxXtcu3U9RhXhyXTZlDyNnjsXXvYCCMl8Op/buss+mtFKMy9OlnP++40POkR38vHmssfwZwNzxCTg4jyG0fxCfvbKNJd8489jjEBA+hLyDp9BqtXgFeTI2yBPomvsqeqhcvSYedzZe49QpOY/4+urQavX4+sowk7DAYhIzhQt5fnY+2RnSSj5jYj7Hs4ooqhDhMYMG6Ykb64+NRotOb0tyhqfFezmy8wTPP1XAJZfouPaecZTklfH9t05ALzw99Vx+ua7Nv9dpsz14drFoG8J17G3rGBZ5lF3HYknPl9bNOy/byrMfTWTWLD379mnIzYULLpFu7LEDStFqtQyOlXNo/J5yZl7d/u8iNV0KDaF9Xbr8d3km56OegmeAh/E5NHlYClqt9ZJzXt52VJ+E4nJnq59fuSbK2Hby72PW5+KbRxD7YhIJaTHsShrMyv/tYvZ1p6flTUnMBcwt3QkpfairqcNWq6U5u9/OnTp699azc6foERt2gOig4/gEyHlzf850tE46i2DqkydtAA0ODnrCw2tIShLHnOr9JifyhOTo5lSGp+1JtFrrygkDN9ygYdUqcf+vXatj2jTrC/qjR8U1AeN8UXCqCq3WkZwcOSf5+Vk+v/38xLHV1VBWpjUKLq2RmCjP26+fmOsM+PvDyJE27NmjISkJ5szR8/vvOrOEuKb8+KOG4xlijffQ/95g/shIVv2YDojP58EHtQQFaXj6aXG966+pRFt4vDGWvnEuzl6OzfbrCOx1o/G8J0+KcT37rPx8nn9eh5OTHq0WrrsOXn5ZfMdLlugbY8A12NjoGTWq7XNnV9LR+eihh+D4cRvCw/UMH67vFu+lJYYP1xAfb4Ofn54+fdrw2Q98HJu0r9HoteiPvokuaqExA71Y54jvdccOHXPndlAQLj2CzcZZaGqEJu2GF9ey/vD4ZrsnHa5A91M0xL2Cvs/NHbtmF9H0Purs51u3icTIysoiPz+f8ePlF+Xm5sbQoUPZv39/i0L3sWPN17rsThw8eLBDxxWmVQDCNfxU+nb6R5fBGrHv7VdPkVMsLLTB3nmkZNbgYDeEugZHThW6sGXzfvYcF1aXmN7HufmhXsSb1fEQuDjGUFnrSmmFo9X9BvbtDgCEqq2uLon4+Grq6mUcd0ZGmfH4igobbrttEJg8stf9toN+IwPZsTkTEBY5f/+iFq/ZVqaOLGTJ6t7UNTjy4+d/MHRay2rLH5dKV/xR40qsjsHWXi72kxJzcCxPBcSCKCIij+3bxYNs3R+lpGcJgcfHp56wsIPEx3eNJq+j91F7cKk9BYjf3IFt26lDKmLSs6RLZGlNPvHxPS+ZGoi41+ee86a2VkN4eCHWbsHiqjJoTGSYnWNjcY98s0TeH5Mn5xMfH09MCBQc8SWnOJCtf27GxavzvQFKK4WK28O5jISD2TzwdANHbkomKVsu1idPyTOOd9BUZ16eKrYb7p8zcR/pdXpce7lTUePGkdQA43gOHAgExO+zsjKV+PgSs+P8vKR7xeZ1u0lJlN4rTk6ljB98iN93iEQO/ftlcSQpjzA/X9Lywkk+Gcz+ffvNsnc/cJctmxPG88MGKCv7haICqK6dD8Dlk9aQlNT2JHJOAQ24OFYYSy8CXDZ5M9fcXMeCvw0yusF7OJdw5R0a0tPjee01W+79eyCHkwONClCA3iHFxMfH4+4nf0N79uk7NB+mpEsTV7W+c+bUtnAm7qOexNuv57F3yx6mXebe7HfQq9dAwImiIp3VPhkZ4RgU7VlZR7G3N6/Lfectmdz9tJgDnn3BgcCB1q/TVvbtygTizLZV1rryxy9/EBLiwjCrR8EffxSTm1sBiPwlUyYVcqjPT9TahxEYWMupU47s369j3754C2+2zMxYwB4fnzp8fKTX2F/7NaQXRADQNyCd44f3UeVkXv+8KX5+doDIWfH779VcdZVwwd+40YMXXghn2rQS/vWvDI4cGQrY0ds7mwatLbmlgeTm1hMfn0hSUl9AKJeLio4QH2/utWdv3wfwbjzvEUJC2lYfdft2+V1CEvFNkio++KAT//hHNGVldmzdqmH69CrefjsZZ2fL0omffx4FiHVGdnEIb616gG0JEQD07X2K8vLsxhh3b9zscplTNg7+AD0ayp1HUO0Yg3/xt2jQEeQpXQ3i43PYt+8UO3bEAbYEBNQxZMhBs2diTMwAkpKc2bNHzqvR0VWcOHG0TZ/DmaIj89GTT4r/p1M94kxx3XW2uLn5MnJkOYmJ1vPMNCXcbS6+Zb+hqS8h96/HyfEVNcRcXOwB4an355/lxMcnt3AW6zjVJNEv65/YaksAYcDekTzWuL9feB5xo2HEiHK++SaAhARXSqq8KCrUU5pVSElpfLuveSboqudatxG68xtrMvn4mCez8fHxoaCgwNohRqKjo3F27r5urlqtloMHDzJkyBBsbZvTGTdPTZ0Mrho5Jo4xEzS89lkZ5dXufL9+mnGRFxZUwbDho/D3yCWrMJiCUi9q66SGeMZcP0aOtu6r5e6cT2WtKxU1LsTFNR9EVZKRgEHonj0zDHdvJ8oz5SSs1bkR15jK8u9/15Cba/6krS51Jy4ujt8+lT7zw0cGGI85HWbN2s6SxoQi6clu3PyAOGdpKXzyiYaxY/VGVyi9Ts+fe4XLqotjBdf8fSa9XCz9sNL2yAertt4TT0/5+Y0b58fq30oorvAkNUNagu++6TijR7deRqS9nO591B7CQv8ytnvZ+5h9PyfLhKDp7lzJ+CnNZMDqIci3Zb1cVkNdAxqNDr3ehqIyT+LiZAhCfW09q7aJh56zYyU33jMTZ3cnhvTfwtZGT19NtRtx04Z06pgb6hqorBWKD0+3WuN3s2xZKmOninnBtVc5N90z3aq3x5m8jwD6hyax5/hA0vNDiYn0wcnNCVsbqZAaPTrCIvttv6i/jIpFG6039bUyTn3AoAA8I6L5fYd4fdmC3sTFBdMvNJ60vHBKqzwJ8QvFL1QsdCsqYEeinIcWvTQDfw/prn7PI+EMiWvZktaUKXF7WblT+uY98mQgw6b059aft/JpY632p/65n8kzZebHP/8s5sIpR4lPkffQlAv7ERc3gIExddjdVk+D1p6jaaHExbXiU2uFrLw0AJwcqpg0Y2KXlww70/dRTyEuDubd0HKfwEAbUlKgutqWQYPizFyCARwc5P06cmR/QptMT7FDYvnoi+McSu/HrqQ4XG3SiYptUk+oHfzxlXwex0YIKzpARb4rsXObn79SUrwxCKIA1909hQGNkWyjRtnw229QWWmLh0cc9fXw668arr1WT2AglJSIeyY83B5PT5mHoaysH1pdYxzq0Giix8lQuJaIjdWTkKAhMdGZsLA4PD3hiitsKC7WsGyZHxde4E1pqbhmTNBRTpUEklsaSEmFWJPU1MjPfNq0gRZu2f37a4xl0nx8BrY5Y3d+vjzvxRdHW1ix4+IgKgpmzdJTXKxh/3433n9/KP/7n7nSvqQEdu0yX089ufR5tDqxjJ87LoG4OOGvPmwYoA1A/5MNGr0ODXrcq/bgXiVj4Pxj5BpFownC0zOQmhrx+YwZY8/w4eZv8PbbNTzyiPnYZ8506pS1W2dwPs1HwiOsHdVxot5Av3IlGr2WoNL/ETDpOXD0Qa8Hf389eXkakpLcGTo0ru35VHUNaJLeRJPyKhqDwO01nOzAN40K6dmT0/n912pw6wf4kJ6uMVb4SCoYw9hrLgXXs58V3pSm91FVVVWnGnbbJXS//vrrfGIaCGeFlStXEtla5otOxtbWtkf8yDo6zrIKaVn08vPA1t6W2y/byFvfTDVLLhQaXIutrS3+XqVkFQaTX+bDnt3yFzR6gifNXd7duYqcYiircmlxjCknhbucr3sBXn5iUevjJy0+JSV22Nrasu6nI3z2meXD8thRLba2tpxIlauM6MG+nfL9Tbggwtjeuc/NeM5//xvef1+U60hNFS5dh3YeJ7dELLSnDjuCi/toa6ckIFgKLQUFGpxL5EPPx8eGfr2z2JXkadzmaF/Dwvv9uvR+PBP3u5+/nBoK8xuM19PrIStPLLJC+7g0ez+dK9g62eLrlk9+mR+5xR5mn/uGzRhdnC+elIibl/AoGTQQaIyqOZpQxqRLOvdDKikuA8Sc4OFWYxzTwNFRrFl2iDdfLeemm21x97Z+Txvf2xmaNwdEFrPnuIg5P3Ewm6GTYshP3AYIr6Zgzzxsbc0XEOERcn7ISqslt9jT+Do41JWLZ/hw+LiIV7zmGhtsbaFfnwrWNoaSph7JIzBCeKFs22aeXKmixs1YgWBs/4PETWq/UmTm1CpWNuanmxIbz8jpcQC8+fkw7O74Cy9PHfc9P8ns8/UL8WXdZhtmTEziQGoMAZ55DB0fha2tLU6uTgwOFwL5kYy+lBdW4Olvmfm6OfQ6PWm5whslIiAHO/sz9wzuKc/f7oS3Ry2G33BZUR3+wU5m+01rvnt62lrMs7a2ttxwbS2PvSxer90aTkxz5mgTSvJKaagTAq6rl4tR0ZyZJZ9rl16YQ8LHQug+kBTEtVa+W4ML/dGjkJIi1hjBwTB6tK3Roj1sGPz2m2gvXmzLxx+L9/X77/Ddd/JcQUEavL2l0G0qWEZFO7b5GTNzpijZp9dr+OsvW/z9RTUTAw/eXweIzzkmKIkGuwDIhqoqDXV1tsYEaR4e4OJieVHTOO/CQsvvpDkM6/XgYPFdWmPUKJHPYsYMIVz/8IMNzz8vhHEDK1bIeczGRiSuMwjcAHMvrDH/Hdo6Q8hlYNsLCndBuUk5woGLCPZ+1vgyN9fGrMTlkCEai9/09deLGG+diQF+0iSbbrcGUPORFTz6QZ+bIeVzNA2V2B5/G4a+AIh7b8UKKCrSkJ5u23ziwvoyUbPcgI0NpP4f1JeI177j0UxdSepO+dyKjgvH1lMeYhqDfrz3Cia4689q3fOWMNxHnX0vtSt91a233srKlStb/AttqpJtI36N6ZILCwvNthcWFuLr23bXv3ORskrxYHRxrMDWXtwA9z43wcJdKyREzIb+3uKJrdXZ8cdqGY8wuoU1uJuzcF8rr3ZrNjFLbVUNWYVicdw3SKY69DIRug0lUD54W2rOH7lXWpWSksV7SU6XP8zIIZ2TvSJ8QG9j6Z0dh/uh0+rQ6+GXX8T+qipYsVxYzNb9JhNkzZxqPeM6gH9vqZbOK7Cj6Kgsz+Ztm0hUmHk28xtm78Y/zI+ejl+ATEZVkC+fsgUFonwaYGF9OVcJ8BPeDrmlAWa5P5b+JCfjK/8uKzQMjJMPpiOHLV0ET5fSQpltx8MkCSLA2NmD+WHDOC6+uWWB+0wyIEaOMTFBzE15RdKM5N/b0hof1lduy8jQc6pWShSB/Qfj6AgffghvvSVLeEVFyi8nOVH+Lk2zAhuytRu44+aS9r2ZRq68LQZ3p1JsbRp45mm53c3bjQ9/msyLn03FzsFSp+0T7M3mPcF8+uJmNqwuM/OumTxKZC3X6W3ZsqoddQ+BvMwCauqFQBER1HUJ/BSdg5deZi0qtpJ6uiJbJgt0cbIeUzj7GlnbftWqlq+XnpjF1KHxeAV44Bfqg1+oDz4+WlZ8JcaRniU9BeffLM8bn2zpceHiWMFFF4t7W6/XGDOYX3IJZmsS06zQb74pFQnbt5sn4goK0uPlJeeIHTvkPrMkahWpkPwx5G+FvL/g+GLY+yDs+jvs/iczwxcbu65bB0u+Ml/HVNVKxUbMsHB8+sqSKYWFMpmYaSktU/xNwvPbmsG8sFAmamst6dXw4fDYY6Kt18Pbb5vvN01W99Zb5vscHfVMuXomFkz6EcZ/DRcnwazdMORpmPQTxL2Mf4D8snJy4JBJfsohVvSQQUHm5WWhB2QuV0gGPymqCKCBqH8YN5vKBbve+zssC4I14yHlS9DWQkUabLsJVjXR6mk0oqQaQO95MO0PcPDguIlux1RpBNDPxKHs+HG6rcDdlbRL6Pb29iYyMrLFPweHtmWObUpISAh+fn5sNylWWFFRwYEDBxg2rA0q3HOYsirxQHR3lurviL72XHaZeb+QUPHZ+/vI+Met28XD0c2t5Unf3VVIUjq9LVVl1uOn0o+eRK9vdPsKkUK1l2kJlHIxhmPpIkzA0b6GF15xNZYASkoXCpTj2cIqE+JzEie3zgkN0NhoGDtYlGkqrfLg6J5Ujh0T2RINLP9SBO2s22hSJ/eS5hPH+YdI17m8QhGDZ8DbS0dUH/NM6Q/8q5kndg/D1yQRjml0h6E2J5xHQneEUArV1tkbKwk0NMiyF87OMHeu7D9ohHTzPHK8jdl22kFpoYzj8nBvW3mss0n/sXIFdzRfJHzKKxKfi6N9DW5ellmDwvrLmyujYrhZpuOAQOsP6qgYec8eN1HqGYRujQY2rC4zllz0cC7l6ruGt/PdCEL6BZGWqifzeCFTLotr17Fu3m7c9q9JDBxjviKZOkN6NG1a37ZYPQPpSVIKiAht37GKM4+nhxSkSwosv6+KSqG8drSvwd7RuqUlNlbW7f3zT6kMPXIEHn0UPvpIZM7+7YtdDBvlwqaEOLPjq2pdeOu/4tzpp0R4VC/7aoaN9TFWr4iPB8rNS2n2DatkzBTL9N7z5pm/bsnr+J13ZDsoCLy85DyWISudSqtbVbYQrnf9HdZOhHVTYPc/IOktIYgf/4BJrg9hbysUpKtXw9If9cb3pNGYKz9jpl+Er6+cRzIyZOZwa5nLoWNCd0uZy61xxx3ieQLwxRfC6g0iRG5NY7hN795w993mz5ypUzU4u7ewjtJowGckDPkPhF4OgKOjKNcKQuFgGsI6eLCVcwA3mIRN9OnTM7J9Kxpx7QMzN8Hgp0QJtUZMK+0cSg2DmlNQsB123AK/hsHvMZC2BCpSoKpJZY3ou0X98ym/gr14piebhIX3axK1FW1SqbWHpOLqdLqsZNjJkydJTEzk5MmTaLVaEhMTSUxMpLJSCnSzZ89mbWOQjEaj4aabbuLDDz9k/fr1JCUl8eijj+Lv72/MZn6+UlYlrD7uzuYP5wceMO8XEiH6BfjJB5hWKx4sIwfntViWy83FpGxYkXWhOyVRWlD6hMtYZ2d3F+xsxTWLq4PQ6/SkGlwd/U9i38uBfsHiSZp8MpTCk0UUlguhPCqkYzVpm2PcKGm13vHnSdb9dMRs/5rdQygrLGNTvEiOFeCZx6CxTdRxJnj4uhsf5PnFLhQVS+uVt78rUf3kg/vC2HUMGte+2NDuim+QFBbzC6Wrb2a6vE/OG6HbZBGW23i7btwolREXXSQXSgD+Yb5Gwe5wSuevSkqLZFIlD/fOt6R3NgPiZJ4OgwtjXoknAP4ehVZjj0OipHdTRo670Qrl7m7+WZvSb4wUoJMLhKCfl5FvjCEbMbSCEZN6s2FlPrfP+4tflqS2WuGgJbwCPAnq28wKvQNMmitXJBsPjmqhpyVpx6VlPyK8+98T5ztentIKW1xQY7G/olp4QLj2aj6BmEYDs2eLdnU1/PWXELxnzYLXXoO77oL+/WHeraMprhRCdahvNheP24WHs7hfth3uT111HekFIhFaWFAZGhuNUWDOzYVT384xu27kQH9GNbk9nZ3NSy8BhIfL+s4gavQa2LlTtoOCMHMvN6VvX0BbAxvnwKm1zX4WID6rsTHxAKSlQUljKNiVY5Zy68VbzPrGxJjXOz5iskzoTEu3qdDd37IiqQXe3nBzYzLnykpZ1nD5chozhsMVVwiPgmeeAYON66ab2jaepgQ1RvWYCt329pbCkoHLLpPPw0sv7dg1FWcRn1EQ+4zZJlNvkvSSQeBkEupVkwe6xhvPwQtqm+TXcg4R9c9NMBW6m1q6IyLArnEJrYTuTuadd95h/vz5vPvuu1RVVTF//nzmz5/PIRMfltTUVMpNChPecccd3HDDDfz73/9mwYIFVFVV8emnn+Lo6GjtEucFep2OsmphSXZ3MXeDHj8eRg2XgnifQWKBb/pwMDAq+ojlRhNMa3WXlzQjdB+T2/tGSu27xkaDl7f4JRXXBJGfVUBVrVjM9uktfKtiIsT/ugZH1i2T2S77RbRSmLKdjJ0sE5pt3w7rVpmfv6rWhZf+k2uM6Zw5Ia/FhEMaGw1+HmLseSVeFJdJTw7vAHfmXBOLv0c+veyrefbVc8PKDeDXW36OBcXy95exd5uxHeraA1J9dgLWhO4fP5O/pwULzPtrbDQMjBAuAdlFQZTml7TpOnv3ihqzrZWvLK2VP3DPwM4T+rqKyEj5oE1MBJ1WR36pEMT9vUqtHuPoKBe/GRnS9TMoyGp3APpE2hm91QwP/g2/Sl+3GXEiidDQSTF88utkpl4e16H301X49vY2unXuS3Ch1PpHY5W0FKkEDe9z/j4vewpeJiWwiwsts2BX1AhPLNdezYc+Acy+UAqrq/63l8/fyyarmTLvl03aQcJhV37bNpp5k4WEVV3nzOofT1BZJRSr4TFiPjG1Uh9INzd7RkZp6N8fs5JZs2ZZ1oPWaITgD3DxxbBhg3ChbkpT93IDtrYQFoaISb5gG0xfDyPfg34LhYVt5PswYwPMiYfZe2Hs/zHzIsvFz40PTOT5jycbx+viIs5rmrPX1LW6q4Tutli6Ae67T7bffVe45f/vf3LblVeK/yNHCuXFmjWipFdHMLzX6mqpEI2JkcJ8U1xdYetWEZP/wgsdu6aiexEWJtsZuvkwPxsu2AqhC0BjI1zSBz0O81LAK67V8xncy21theLNFDs7KeQnJ5vnBzhf6LLs5S+//DIvv/xyi32STGckhLX7vvvu4z7TWec8p7K0Er1eCIjuruauzBoNfPSJM7ffLrTMYdEiltg/wPJrHT225YWYm6u8+8uKLDXvAKmpUhroG2PuNuvpCfn5wh0qNTEXEGOJCBGLhpioGmhMiL1ihbxWVGTn/upGTovC1qYBrc6OLYcGk3PKUq/05scRxvbMBc34UZngH+LLySLILw+gsERo+jQaHR6+7tja25KaUYVOq8XVq/Vz9RQ8fN2Nn2NBsTQtZmbKeyA0pJsXtOwkzITunHrAnm07xG/Mzraei2brAfNVyqB+pWxpXMglHqxi7HTPFq+RkCBiq3Q6EZ9psGBZo7RehkN4hA1oxzs5O9jbCyvPoUPCopRytASdXvg1+ns1b8kLCxPC9kmZfoFA9ywM1ROa4ugojklPl0L3urXyHp05x93qcd2JqVOFxUmnE4tbUxfSlkjLlOEyEf26//s83/H0ks/okiJLgbOiWsy5rk4tC90XTKvE1sYFrc6O39f6ULNCKpAfW6TnwAE9Jw5mcPct6dz97GSjgnnqFL2x0sdXS6WUaVgkjxwof2erD17MLEMpAYQSzdZWuKVu2iS2NWf1fPFFePhh6cZ85ZWwb595n6Ag0Gp1ODjoqauT4w8LQ2Z1t3eFwOnirzm8hzNzPvznNfNzT7+0L7a2wl376adh4UIxflNL9+HDst1Z7uV6vUwkBzBoUPN9TYmJEd5TK1aIcC5PT1niPChIGFsMnG7icFMFg0EAas613EBkJM0n21L0OFxchAKqsLAx8aBGA37jxV9tIdjYmydQawG9Xj57+/TBoioDCBfzY8dEjqWTJyGk40UXeiRdZulWdA6lhTKO293FUiM+fLh4iL3+utzmP8gyu8WoqWEW20xx95Rq6vIq6wJ6Srrc3re/ebIwg+a+tBROHJXW5T4RYiaP6S8XGat2xBnbUQM9WxxXe3HxcCF2qLDCH03xorRKxHZeNHY3Tg7CK6CuXs4EM2a0fk6/ANG/vh5STwlTm6dzqTGpnbO7M65enR+7ezaxsbXBx03USs4vlRNuZrYULkMjvSyOOxcJsJerxFOHtqPT6kg+KZ4UkYGZuLhbmgUGTpYro8OpzecMMLDsfznGRU9rSZEMcX4gMu32BGZMFnOCVgvffCCDB/19a5s7hLAQS2Ek0C3DSk+JwS2yuBhSDueydkcfQMTGTpjT/RUUU6bI9saNbT8uvVL67kYMOTdCXM5lvHzkM6i42Ny1RdegNZbccXVu/vcB4OnvwdgBwusmOSeCrEIx11w8bhcvvaxh5SobkrIiuOf5KWYeXVOukPPTb3/IedwgdM+9IhinXuL391P8LWbXNAhc8+eL/z4+IolacxgEbrD0CgIhSGo0lh56HRHsRo3CrCTXddfJRIsLFgjF38KFctwGTIXu5izdrq7Smt8WoXvbNum2PnFi+8KxTEMHtSa67VtuocUwwfZi7b22JnQrzj0Mv/vsbJGvxoijT5sFbhC/C0PCxKau5QbO97huJXR3c8qKpdXZ3a1tSZP8A8zdpQM88wiNbnnh795XpjAs01t/2qVkiYeznW09If3MZ2uD0K3Xw4EEub1PlBDUY8bJbA0FJVJA7Tc6rsVxdYRx4yzdxeddVM0Fo8yL3UdHt+1BaLoYKCgTKwgvt7Jmep87+HmUAPI9A2Sekt9dSFT3d23uDAL8pTdG7ikd2cmnqK4Tlqjo8HyrxwwcLJVMR1qO7ABg0x+yGkDCAUth0xRTt+OeInTPmSC9mr5aFmFs+/s2P6eFOm2z2BYY0PJnMyg81dgeOcaBjHyhHJk4+AhObk7NHdZtmCzLerNxjQhrSTucxZI3t1BW2Pyck5Ym/vfqBf5Byr28u+PlI7+j4mLzfVXlMmTM1dlS0d6UOdMts9X/59mWlcB9o2yNFqY6k0sYXE3d3G2Yf5lQDBQWmS8TDcLwPfeIJIV79pgL1i0RFWVunbW3l8JvU6HbLHN5G7G3h2nT5GvTxF9NMbV0myZqbE7o1mikFdwQZtQSH38s23fe2Xp/U6ZPx5got08fuPVW+PZbePbZlo9rL0roVoAUurVa88TD7aWlzOUGLDKYn2coobubU6brY2y792lbcp2mD69RA9JajFsGc+2wSZi9Eb1OT0qOsPKG+520KIfjqZfxvfvipeWvT6OrY8wg6wvejjxYW2PsWMttMy+NYN5F5guYmTNaCZ5txFqMvLdb826x5wq+EWJ1VVXrTFXjOjCzsUa3j1thy9lSzyECQ+QCNjfPlmMJUkCO7mvd/dPUlXDv3pbPX1NZw/Yj0gqbcNC+xbju0mIpePYUoXvKpYONniYnTslAL2u/LQNhVhRiQYEth6M89IgjIT7CH92QPApgxuSeoSTz84NB4SkA7Dvower/7WHISA9uemgiD98Wb/UYvV4K3eHh52UVlh6Hp6+cO0tKzZdh5cVS6HZrg9A9e7658nPumN2MnDmwxWM0GnOvCgPhHrJYszWB1dZGCua2tsJTLCKi1SGaYYhJBiH0GSy3TSvDdtSF+fnnheD93HMtu1+bWrpNac69HOR8VVBgboGuqoJ774Unn4TaWqFI+eEHsc/T07qFvyU0Gli2TJw3JQU++wyuuUbmxugsrOXIsFYuTHFuYxp7bVrbvr20lETNgLJ0K7oFJXmlpB22zIBSZrJW9PBqmwXDr0mZ6NEmydaaw93Eg6TMyvq0qFhDWbVY4feNsXQ38XKV5rf9xyOM7Yj+QpXq5WU5ruBgEU/S2YwbZ/66T0AGfYeEcfG1/c1Kh8wctqtN5/NzsVT9eXuc+2V5/Pzl9FBQANp6LdmF4vsM9bNu4T0XCQj1NLZzCxw4nihDPvpFW59CAwOlQmnTJkjca1mL18DONUeprZfhHUVFcPLEqWb7l56QZRU9bZKb7ded6OXSi6nDDltst5Z/wkBYn14W2wKDWl51hsYEsz/ekdmjd5ttt5ZgqbsydbRIwqfV2TH3xuHGpI8rN1uXQgoKMCrF2isAKc4OXn5SkVdcah74WFEqFXmuLq17tw2bEoO/h5yP//Ns25ShU6dabguPktr3Cy+0fGabxVl3EFMB1LTklL+/uaaxowr5IUNE0rYnn2y5X1Mh30Bzlm6QQrdeL+tvgxD0331XJBdbsEDEjxtKuN14Izh10Mmmo8e1labv1dlZzSHnI10hdDeXAV8J3YqzTn5mATHRdUTFBvK/t7aa7TMVgN3bGFrh6AieztJnbdS41uONTS3d1oTulBTZ7hNjGcvr5SnVvoZyYK69yvEJln5nTUtmNKcJO10iI8HXTZY2mDk2DYCACD/GDRAu5va2dUyd17Z0ov7OKRbbvD1at0D0dEwXJQUFcCo9D61OCD2hge1IrdzD8QuRJpHcQheOJUnFTfRAyxrTICwVd98pf4Nvv9D802XTuhKLbQe2N5OCGCgtl6teDx9LwbS7MmempaLKP7L5+OOwvpafbWDv1lehviE+rNg2ghfv24i7UymXTtzJiOltqNfTTZgyTXoK6fXyEZ1d1Jvck5ZJLtMOyfkpIuCkxX5F98PLX97bxWXmv+GKUvkdu7q0nmjUxtaGFxcdxcO5lIdv3MjoC9uWsWvKOPMHvY1GS2+TkCE7O7j2WvNjOsMzLTpauFu7uMA//ym3NxXwuzpZl4eH9fjolrxvrCVTq6wUNdEN/P67SB5n4I47Tm+cXUlToXvQoM6NGVf0DMwymLecNqVF2mLpDg6WyiTlXq44I2jrzbM+L//6CHmlfmh1dix8YjBZx6VVrCNCN4C/h8z0MWpa609Kd80JY7s8dYfF/lQZKmn1wevpaenT2Ce8wcytPSbUXJDo57O/1XF1BI0GxvaTlq6Z06U77vsf9mLehJ18+vIuvAI823Q+/0BLDwPv8yDlYlOhOzNZqvZDg61nuD8XsXe0x8dNvPfcIg+OpUhLUvTQ5n0Rb7vNBjcn8QP+asUoCrMLrfbbuM3SRzxhX4WVngJzodu60N8dmbMgwmJbQETzn5+hGoMpgaFte782tjb8679TKS5345fNY7Cx7TmPuikXma9WHO1lMq298ZZKlv1b5bwa5X8emg56IC4ertjaCstuiSbObF+FTpp/XQPbJuXe9q9JlFR68NpXU9s8hqgBbgR7y7VGb59T2Duam7FvvNH8mD596BQWLxZrG1MX9qZCd1eEnpliY2PpYu7j07Il35rQ/dVXlnH5hvCgsWO7t7t2U6FbxXOfn7Rm6c7OhuuvF94jLZX5MgjRNjbNe0zY2Egr+IkTTRK3nQf0nJXIOcLVM7bh4VbNL5/uNG7btE9ae8qqPbjzhiz0OjFrl2XJBETudm3PcHDJDPEwnTN6t5m1uTncXOTCrqzEMmOqabZOa3FAXt6Wt1JTi3hMsLkrbFR411lLb/ibEGSCvXOYfb2MhY+bHMOvW8Zw08MT23wuvyBLdz3v0JazwZ8L+DmlGdv5xw+RmSqD/UND2hYPf64Q4CVWVbklPhzLEKtDZ8dKgvs274vo7uvBrfOFYqm6zpnFrx606FNbVcv2w8IK62gvFRkJh5oplAqUlEtrr1sPypofFRdOZKD5E70lq5JfiK/ZZwIQGNrGjE2N9CRh24B/mB+XjBfPh1mj9vDB+1JxaS0/wNZt8j1OmNZMoKqiW6Gx0eDlJb7X4mJzhXVFrVQsufp3nXJXY6NhyjBpagr3SbXoM2IERJs4o3SmINzUomo6F/j4nJl8FU1dzFtyLQdLoVung7ffltvefNPcJby9CdTONN7e5koGJXSfn7QkdFdXi+oE33wjwieWLZP79HqRpb+w0LxcWHh487XeQQrdDQ0yH8n5Qs9bkfRgMo5m8cOG8VTWuvLsC2Km0+th405zKXbVrlF89YZwMy/LlZpod/u2uw6+9uUUjuw8wfLNw9rU36xkWIXlbVGUIR/IPm4lFvu9vC1jLZtqxWMGmguvUdFd5xp79d3jSY5P5+hxV9x9Tq9urX9vy+Pbmq21J+NrEstekF1IZppUxoSGtzCjnoMEeAuFQ3WdM8k54gnVLzgLTSu+ePf+q48xj8B7S/pTV20elrBr3VFq6sUq7fIpe7G3FfsTjllaeQ2UVoj+bk5lxrJ1PYU5k9PMXje1bpmisdEQ5ifnP1ubBnx7nwc/POCnDcM5svMEq3aMYOIU+VtrWuMYYMt+kXHO0b6G4VOjLTsouiWGih9NraQVJk4url2sU5s6VsaCh/lahrRoNMLCZaArhTI/P6nI7Wort4Gmlu72CN1Ll8LPP0NSo11kyhRR6uv334Vr/OzZlu753Q2Nxvw9K6H7/MTHR8Tzg7nQrdcLxdF+E6fUt96S7UWLYMIEGDYMjh6VnrnNxXMbOJ/jupXQfQZJTZLupfvThpOZoSctDTJF3hwC/aVV576nh5CTkmvuXu7ZdkFHY6NhwOhIiyzjzeHmJQXisnJL/6qiLBno4d3L8uHsaSW2tKl7ScxQ8xV2v8FdW+c5cmg4bt6n737rZ2Wh79W1Q+8W+PrL77SgQEdmlSwrFzqgiwPuuhkBPjK5kSHONjrCuru4KX2HhDF/okjYl1McyHfvmyfv27hGrrgvuEDPwDARn3s0qw+1VdZr9JZWiuyDHs7Nu6B3V+ZcJOcZT9eyFrXhAGEB8vPx98jvcUqGjmLvaM+A0ZFobDRERcmcG3v3mnuYnDxxipTGbPCjY5JwdFblwnoKnp7if2mpucvmmRS659w4jl72Ym6beIH1sqL33CPbpuW4OhtTgfZMCd1NLd0tZS4Hc6F02TLzTOyG2trTpwuL36pVsq53d0YJ3QqNRlq7MzJkeMS778LXX5v33bYNdu0SpVDffFNsy8yEq66SfVrL12QqdJ9vcd1K6D6DpCebl5n67XcNGzfK1/+8pxc3zNoCQGmVB0veT6S0TH5F7l5dN4O7e8s04uWVVoTuYrnY9fa3dLf28rVMcNQnzFxo6DMoBDtbGV8dObh300O6Ja6eLsaFiQFvz5brBZ8L+AXJeyK/wJbMHPm9h0afHzW6DQT4W37f/caMttLTkgcelr+NB58dYFalYNM26UUxdW44sTEiAaBWZ8eR3WlWz1daJSQwT9eeV7Zu6vxBxt9Sb8/WM7aEBsvka4G+Pe/9dgY2NjCsv/ByyszUkJ8pk0RuXSM9kCaOLrY4VtF98XISxZ71eigrlKE7FYXye3Tt1bW5M0Jjgtn6RxpLP9jOHf8ab7WPo4kepyuTbMXFQUyMuMZ113XddUxpr6U7Lk7EcBtcyA3CSWQkXHxxpw/vjGCwxl94ofXQQcX5gSGZWnU15OcL6/aDD8r9V1wh22+9BQ89ZF4279D/s3fW8VEc7x//3F3c3Z2QBBIiEJzgVqDQlpa6UoMq3+qPukOVljptKVCDFoq3QFuCOwQICQkh7u4hcre/PyZ3c5u7+F0u8rxfr7wyuzuzO3c3uzvPPBbPy+0J3eqacNJ0E3ojI00cMWD7diB2L/drnjQJeOFVLsycOmuKyiquqbax71gqkK5gaWupMoOtrNHUlpSWc5WUg4uWlGFOmn3zdxE7hxibGiMqIAEAEOSRAqs+4o8qkUrgYifWajrIElup3X9wcue/c3GpsSqqpUQiTvUyEHAdpPkWCQrpmBXJhHnhKh/dkipH3LSgCnVVdSgvB44msEjDPs7Z8BvqhfAw/oy4cFIzLVvDtUbUNbB7zdZKe47w3oyFjQU++r+TCPZMxasvtp8728eLfx9u3gPAvKQVRgzmM5MzB9NV5cMHubvChEl6yL9I6A17Ix68tKygXFWuzo5Tla2aLui9H8OnDMHNS8Z22CpOXxgbAxcvAvn5wPz5PXPNzvp0Ayy43MmT4mwsTz/N8pb3RZYtA3JzmWZeohkPlxggqPt1Z2YCP/zAhernnmMab6U72MaNwN9/s7K2tL/tCd1Dh3Jz9u6mIOxrkNDdg2RkiV9q//0H7NvDVrLNTOoxaqSAkGh/mJsw7c7ZRA9UVqtHKtbfpEoqk8LKjNm1VdZoaq1LK/g+bVG/7Zw1BXG/IZrLpmu+N8Pjiw5gw1rtprO9FWc7sYCgTdvf33Dy4ELOvpNDcfo0W9Z3c2s7SEZ/xC1Ac5UhqIPusxKpBOu2hKiCiJ27OgTTx2chIEBAXT1b4Jo8ww4SqQThw7k7xIXzco1zVRTxcWhr1bfuISVL35iEy9kBWPSYds2aOj5R3JrAzXfgBgkbEc3fA2dOcPvjI2fYLEgiUWDsrHYc6YhehZ0tX1AqL+a/aVUVl3ysbQfWjNTYuO04D7qmpaa7PfNyJWFhwKlTwKuvAm+8ASxZovu+9STu7pQqbKDTMpiaUqg2MmJRy83M+DgX1LycvvsOmDtXfK72fLrt7Zng/swzzC98IEG3WQ+SkSMWmhsbgbwy9pQfOzQBpmYSGJkYIXIQWwFPLfBFRj5/K+jCP7ktbMyZ+WZVraZAWVbF9lmbV2pdEbd1EgvdDlalsNGSzigiJhirN07qcC7R3oKLvdi0VZu2v79hbm0OS9PmhZg6WwgCmww++KAhe2UYtE3G2nuxqGPvaoutmxtU3+fRi0GqqMXGxsD9DzGrj/Ax3qo2FxI175+KEj45t7Xu/7niA0P4s6i1FCQDgRET+AKmMm1YVWkVzqUEAwDCfFM6nAKR6B3Y23FH7rJibrVSXcOFbiubAba62cN0RdOtxMqKCdyvvtp3tdwEoURd6P73Xx6JfPx4nq546VKxwmXsWODWW1kKQGW2AVPTjqUWnDcP+PDDgefSQEJ3D5Ke59TqscnjuJn5iKlDVeWETBZRxNykViOHpq6xtmAa9so6TY16aRW76xystJuEyoxlsLXly1/+7vl66KHhcHETLzTYu/ZAPpNegJNNuaoskzZh5UvJeP11g3XHYLQUuu1tajW0JO0RNm4wfviYOz7JZMB99wGJicDkyc3X8XNRWVVcyNRcmKpo4LNCW6/+H6k6JoZFT505c2Au9igJGu4HKzPm93vmMksjdeKfK1AIbLY/YUReq22J3ol6MM6yYm61Uq2WPcTKlgLj6ZPuCN0E0Z/wUcuCqx48bfZsXnZ1Be65h29/8gl3N/zzT/a+Xr1aHAeCEGNYJ54BhLxJjqxitqQzxPsqcoqdUFnHBbdJ0+1U5RHRmsumNhbVAPRr0mxjyVbbq69ZQSFXqHLcCgoBpdWsfw42Va01h51tEyoq2MKAv6f+cnAbAucgnnrN0rQaphZ9wx+9u0wZlYYfd3nB0yEPv/1YhAnXhxu6SwbB1VkOgN+XQR6pkEg6H+p10dIxMPUE4uJYsKCW2nKJBAgfYYN//wUKi01RUCAW+Cuq+dvM1rUH7TANhFTKVtEHOlKZFFGBqTgUH4HMIi8U55Ti8AXuVDp+sp3hOkd0CTt7LlyXl/FAjdW1fFpmZavp6kXojq6alxNEf0Nd012lNs2/7jpxvU8/ZXWHDwdGj+b7p0zRb3aD/gJpunuI8vwqNMmZQBrkW4zrxl5SHTM1vobRM/kEasQIzfY2FvqP3GvtaAeApUSqqeamb9Xl1aq+O9i0HrzJ3oZHWm0Zubyvo57OxL4VbX9/5NvNY3Bg63lcTrEesAI3ALg4i/2rB/uWd/lcCxYAr73Wunl6RAQvnz8vPlahtpalTDlEDAyGDytXlc8cTMPh43wRdsL1EVpaEL0Ze0duuVZWqva+rVEXuvt/7BBDoq7plko1Nd8EMVDw8NB0k3B3B8JbTPssLJiP95w5Pde3/gQJ3T1EZiF3XPAb6o35c7lQOibwBMwseTqwIUM08zva6Nedm13D1UtVrlJ78ZcW8Jm+g13rwrS9OU9l4+crtFqvL+LizD9PW9r+/oaxqTEmLojoM5Hm9YWJuQnsLUtV20GBTW3U7h7qUXHT0sTH1IVu24Hh4UA0o24B9dgyWxw6xJ5JXl5i00Cib2DvyK1WytSyvVXXcqdJKzuKSK9P1DXdLi7km00MXIyM2LtEndmzKaK9riGhu4fIzeNmYn5DPDDv3hHwdGB+ePfcI/4ZjIyAiKAc0T4bjw5EJugmNmqxwSrVlLmlJXwV3sG+dWHaTjinKvv79i9Nt7Mj/zwONrVt1CT6K662BapyUIj+AhypL/AU54kXeMrzuO+urfnAsbgggGi1YGpXCwLR0MBmQ+PH08SoL2LnwFfWyyv4D1hdx54txrIGmJhTIDV9Ym/PUxZ5eBi2LwRhaNRNzAFN03Ki+5DQ3UPk5fGXp68vYONog/hEC1w6noIHXozRqD8i6Kpo26YHgmVbq2nTRUJ3PVej2Ae1nubHP4C9vSQSBYaMHKTz/hkSF+OLqrKDSaoBe0IYCnWhe3CI/nwtnY15sLWi5LOiYxVZSaqyrTQJxMAhJDoA91x3GBIJXwR1d2dpV4i+h70z12KXlXPLsuo6JoxbmenfpWygI5UCy5czLTfdR8RAR91iSiYDZswwXF/6KxRIrYfIy+OmZMrUN3YutrBz0W4jOmKEBPiDb/eE0G1jrYByHaaqvA4AEyzUTd8cHFpvv+ztaJRUH8boUQr4hU/UX0cNQNDIYNiYV6CyzhYjxg7cfMEDmdGjgAOJgLNNEUJGBevtOs4efPWrqFj8iBaZl9tTiNCBhEQqwbrdE/BDoxyAHJBIIZVJSMvdR1FP8VZWx8NmV9ex9661RQ0AexD65fXXWYwNuo+IgY66pnvMGIobow9I6O4hirIqAbAoHczfue0n/IjxLqLtnvDftK47CGAyAKAy4zyAMQCAUu7K2qbQ7TXYHT/u6p9J92wcbXBwTxLOn7iIWx4Z3X4Dot/x6qcjMWToYYyMcYOFjf4ihzt58Il2cZlYsK6o5E6Htg4U2XggIjMmx9P+gK0zf6mXy7llWFUjC6Ft5UShtHsKErgJAhikZqBKpuX6gYTuHiI/h2mQbcwrYGfXvtp66KgAmBpfQ30jMzWzkZ8DENV2o25iY8PfPFUVPFBUR4Xu/k5ETDAiYvSn4SR6N5a2lrjv+Ql6v46dsw2MZI1okhujqEwcSKmiij+y7ZwoyBJB9FVkMmbBVlnJrckUCqCmhr2HrayN22hNEAShWxYuBH74gT2HliwxdG/6J+TT3QPImxTIKmZROnxdCyCRtr+samxqjAgfni/IxqSgjdq6wdqWa1AqK3iKpNIrp1VlB9MsvfeDIAYyEqkETtZspauoXGziUlHFY0PYOg3siPIE0dexbzZqUQrddXWA0BxH0Ypub4IgehAbG+DQIeDIkYGtYNMnJHT3AHlphWiUs8myn0dZO7U5IwLUhG6jnDZq6gYbW76yXlXFIyiXFvHc3A62refpJghCNzjbMeftokoHCAp+L5ZXMZNyiUQBKzualRNEX0bpM1lWxoTt6mp+jIRugiCI/gUJ3T1ARnKRquznfa3D7SbP4w4Wg0fp17QcAGzsuNAtil5ezvfbu/RAwnCCGOA42bHIxfWNZqgu5zPxihomdNuYV0Eqo8c3QfRl7I1SAACNjUBdVS2qS0pUx6xkuYbqFkEQBKEHyKe7B8hI4ZNmFkStY9z82BR8nBsLmUyCqQs104rpGmtbnje0sopP6Esr+H4HtYirBEHoB2cHblFSnFsOawe22FVRw9RftpZVAHoguiJBEHrD3qIYQCAAoKywAtUllQBYdgwrIQUAJY8mCILoL5DQ3QNkpDWqyn6DzNqoKUYqk2LZisl66JF2bBx436qqudBd1mzSamp8DebWFDGZIPSNsyN/ZhTlVsI/jJUrapnwbWdFOXwJoq9jZ8Pv87LCGlRX1Ku2rSw7vkBPEARB9H7IPrEHSM/kAcp8A3uvdsrajkdDrqzmJuWllWyi72BVTqk1CKIHcHZSqMpF+bUAgPq6RlU2A1vLjrupEATRO7G34wFLy0tqUV3ZoNq2tiahmyAIoj9BQncPkJnDhVm/kN6be9PGkUduqapRE7qr2UKBg3VVj/eJIAYizkGRqnJRE4vnUFHF70lb3/Ce7hJBEDpGGb0cAMqKr6Gqgmu+KZAaQRBE/4LMy3uA9DwWe9/KrAoObvbt1DYcFtYWkErkUAgyVFYzjdq1mmuorWeLBg42tYbsHkEMGJw8+HOiqIQ9psvL+XFbOzI5IYi+jp3afVxW0gAFN3CBlTXpRAiCIPoT9FTvAXJK3QEAfq75HcrRbSgkUonKpK1KMhgAUFZQoTruYEcmrQTREzg783JxMftfwW9F2PZeLxWCIDqIvQPXe5SWyFFdxc3Nraxl2poQBEEQfRQSunuAiZNNAQAL7wswcE/ax9qGTQIqm01ZSwu4Sbm9bYPWNgRB6BZ1obuoOeMgCd0E0b/w9OWuZ5mZAqqruR+3lTUZIhIEQfQnSOjuAbZuVWDr1ot4+WVD96R9bGzY/6pmWbus1k51zMHNWbMBQRA6x9mBL3AVZWQBACoyL6v22clSe7xPBEHolsBhPMZLSro5qnl2UVjZGGtpQRAEQfRVSOjuAYyMAC+vhj4R+VspdFdXA3I5UFrjpDrm4B9ioF4RxMDCwZE/LIpymYq7orBItc/WJLvH+0QQhG7xCHCFmXEdAOBKphOqa/h9b2VjYqhuEQRBEHqAhG5ChLVpmapcXV6H0lJ+zMHBAB0iiAGIsakx7C3ZvVhUzlbCyst5lCVbOzI9JYi+jlQmxSBfpt5OLfRHxTW+yG1lR+HLCYIg+hN6E7q/+uor3HbbbYiIiEB0dHSH2rz44osIDg4W/S1evFhfXSS0YANuwlpVWk5CN0EYCGe7cgBAcQVz4K4o5/6etvZkekoQ/YHBYcxtq6FBist5oar9Vm5+BuoRQRAEoQ/0pi5pbGzE7NmzERkZiT/++KPD7WJiYvDee++ptk1MyMSqJ7G2alKVK0trUVp0DQBLH0ZCN0H0HM52lUjOASrrbFFfW4/SMm56amtvZsCeEQShKwIDefnCBV62tu75vhAEQRD6Q29C95NPPgkA2LJlS6famZiYwNm5cwG75HI55HJ5+xUNhLJvvbmPSqyteB/LS2tQknwCwCQAgI0kEXJ5kIF6RvSlcUR0Hye7OlW5IKsYl5L5LNxviHOXxwGNI0IX0DjSDQEBEiiNDmtr+X5zczl6xVcrl0OmKsqh607ROCJ0AY0jQhe0HEe6Hk+9zjHw5MmTGDt2LGxsbDBmzBg8/fTTsLe3b7NNcnJyD/Wue1y8eNHQXWgXqYSHT01KSENBEc9NVFqeg7i4Wm3NiB6kL4wjovtYW/J0faeOnUfclbEAAHf7fOSV5SCvLKdb56dxROgCGkfdQwIrAMGifTKZgISEuF4RfFVaV4eo5vKFCxegMDfXy3VoHBG6gMYRoQv0NY56ldAdExODGTNmwMvLC1lZWfj444/x0EMPYePGjZDJZK22CwoKgoWFRQ/2tHPI5XJcvHgRw4YNa/Nz9Ab+ca9Ula2tnFFTx837R40fATsXG0N0i0DfGkdE9/HyPKgql+VZoayGLT5GBWUiMnJEl89L44jQBTSOdIODmebimbV5DaKiInu+M9qoqVEVw8PDAUvLNip3HhpHhC6gcUTogpbjqLa2VqeK3U4J3R9++CHWrFnTZp3du3dj0KBBXerM3LlzVWVlILXp06ertN+tIZPJ+sRN1hf6aWvHY+tVVyhQWsEWM6QSOexdbCGVUcB7Q9MXxhHRfVxcuJrr33/5ozoyrFYnvz+NI0IX0DjqHr4hXjA1vob6Rh6nwcq0EjJZL4lervbbymQy0bZuL0PjiOg+NI4IXaAcR7oeS50Suh944AHceOONbdbx9vbuVodansve3h4ZGRltCt2E7rC25kOiskKO0iq2qm1vVQ6pzNFQ3SKIAYeTC78X/znJYylEjjA1RHcIgtADUpkUAW45SMziygor87o2WhAEQRB9kU4J3Q4ODnDowRDW+fn5KC8v73RgNaLr2NjxVERVVQJKq5hPt4N1JQASugmip3B242acxVU8f2/UOC9DdIcgCD0x2Ke4hdBdb8DeEARBEPpAb7bCubm5SExMRG5uLuRyORITE5GYmIgaNf+g2bNnY9++fQCAmpoarFy5EnFxccjOzsaxY8ewdOlS+Pr6IiYmRl/dJFpgbct9uFNTBZTX2AEAHGxqWmlBEIQ+cA6O0thnbQ0EDNOdNRFBEIYn0E+s2bayIKGbIAiiv6G3QGqfffYZ/vzzT9X2DTfcAABYv349Ro8eDQBIS0tDVRWL0CuTyZCcnIytW7eiqqoKLi4uGD9+PJ566inK1d2DBEe6QyqRQyHI8MOuKar99jZk7kYQPYk2A5+ICEBKYRUIol8ROFh8U1tbNhioJwRBEIS+0JvQvWLFCqxYsaLNOklJSaqymZkZvv/+e311h+gg7gGuePPZRLz8wRDRfgdbmgQQRE/i5KS5LzKyx7tBEISeGTxEHDTNyqLJQD0hCIIg9AXpTAgN/m/FEDQbJqhwsKdJAEH0JBYW7E8dEroJov8RGOoi2raylBuoJwRBEIS+IKGb0EAqBdatA0JCFKp9Dn5DDdgjghiYONuWiLajAtMM1BOCIPSFd5A7TIy4H7eVpaKN2gRBEERfhIRuQis2NsDWrVL4+gKWlsCieyiCPEH0NM5WBaqykawRoSM9DNgbgiD0gcxYhgCXVNW2lZVgwN4QBEEQ+kBvPt1E3yc4GEhKAgQBMDMzdG8IYuDhZFelKg/1ugJTC7I4IYj+SGCYKy7nsrKVi49hO0MQBEHoHNJ0E21iakoCN0EYCmerfFU5kkzLCaLfEjjUQVW2ch/URk2CIAiiL0JCN0EQRC/F2SpPVY4MKWijJkEQfZnQUF52czNcPwiCIAj9QOblBEEQvZSIiWHADlaevHC0YTtDEITeuPNOIDYWkMmAuXMN3RuCIAhC15DQTRAE0Uu5/YnRqK09CDcPU0RNIaGbIPor5ubATz8ZuhcEQRCEviChmyAIopdibGqMR1+daOhuEARBEARBEN2AfLoJgiAIgiAIgiAIQk+Q0E0QBEEQBEEQBEEQeoKEboIgCIIgCIIgCILQE33ap1uhUAAA6urqDNyTtpHL5QCA2tpayGQyA/eG6KvQOCJ0AY0jQhfQOBogXLsGBAfzskSi09PTOCJ0AY0jQhe0HEdK+VIpb3YXiSAIgk7OZABKSkqQnp5u6G4QBEEQBEEQBEEQ/Qw/Pz84Ojp2+zx9WuhuampCRUUFTE1NIZWSpTxBEARBEARBEATRPRQKBerr62Frawsjo+4bh/dpoZsgCIIgCIIgCIIgejOkHiYIgiAIgiAIgiAIPUFCN0EQBEEQBEEQBEHoCRK6CYIgCIIgCIIgCEJPkNDdA/z888+YOnUqhg0bhltuuQUXLlwwdJeIXszq1asRHBws+ps9e7bqeH19Pd544w2MHj0aUVFReOKJJ1BcXGzAHhO9gVOnTuHRRx/FhAkTEBwcjH/++Ud0XBAEfPrpp5gwYQLCw8Nx3333aWR/KC8vxzPPPIPhw4cjOjoay5cvR01NTQ9+CsLQtDeOXnzxRY3n0+LFi0V1aBwNbL755hssXLgQUVFRGDt2LJYuXYrU1FRRnY68x3Jzc/Hwww8jIiICY8eOxcqVK9HU1NSTH4UwIB0ZR3fffbfG8+jVV18V1aFxNLD55ZdfcP3112P48OEYPnw4br31Vhw4cEB1vCefRSR065ndu3fjvffew2OPPYY///wTISEhWLx4MUpKSgzdNaIXM3jwYBw+fFj198svv6iOvfvuu9i/fz9WrVqFDRs2oLCwEI8//rgBe0v0BmpraxEcHIzXXntN6/E1a9Zgw4YNeP3117Fp0yaYm5tj8eLFqK+vV9V59tlnkZKSgrVr1+Lrr7/G6dOnNSYwRP+mvXEEADExMaLn08cffyw6TuNoYHPy5Enceeed2LRpE9auXYumpiYsXrwYtbW1qjrtvcfkcjkeeeQRNDY24rfffsOKFSvw559/4rPPPjPERyIMQEfGEQAsWrRI9Dx6/vnnVcdoHBFubm549tlnsWXLFmzevBljxozBY489hitXrgDo4WeRQOiVm2++WXjjjTdU23K5XJgwYYLwzTffGLBXRG/ms88+E+bPn6/1WGVlpRAaGir89ddfqn0pKSlCUFCQcO7cuR7qIdHbCQoKEvbt26faVigUwvjx44XvvvtOta+yslIICwsTdu7cKQgCH0cXLlxQ1Tlw4IAQHBws5Ofn91zniV5Dy3EkCILwwgsvCEuWLGm1DY0joiUlJSVCUFCQcPLkSUEQOvYei42NFUJCQoSioiJVnV9++UUYPny4UF9f36P9J3oHLceRIAjCXXfdJbz99tuttqFxRGhj5MiRwqZNm3r8WUSabj3S0NCAS5cuYdy4cap9UqkU48aNw7lz5wzYM6K3k5GRgQkTJmDatGl45plnkJubCwCIj49HY2OjaEwNGjQIHh4eiIuLM1Bvid5OdnY2ioqKROPG2toaERERqmfRuXPnYGNjg2HDhqnqjBs3DlKplFxiCBEnT57E2LFjMWvWLLz22msoKytTHaNxRLSkqqoKAGBrawugY++xuLg4BAUFwcnJSVVnwoQJqK6uRkpKSs91nug1tBxHSnbs2IHRo0dj3rx5+Oijj1BXV6c6RuOIUEcul2PXrl2ora1FVFRUjz+Lup/pm2iVsrIyyOVyODo6ivY7Ojpq+KUQhJLw8HC899578Pf3R1FREb744gvceeed2LFjB4qLi2FsbAwbGxtRG0dHRxQVFRmox0RvRzk2tD2LlL5LxcXFcHBwEB03MjKCra0tjS1CRUxMDGbMmAEvLy9kZWXh448/xkMPPYSNGzdCJpPROCJEKBQKvPvuuxg+fDiCgoIAoEPvseLiYtEkF4Bqm8bRwEPbOAKAefPmwcPDAy4uLkhKSsKHH36ItLQ0fP755wBoHBGMpKQk3Hbbbaivr4eFhQW++OILBAYGIjExsUefRSR0E0QvY9KkSapySEgIIiIiMGXKFPz1118wMzMzYM8IghjozJ07V1VWBi6aPn26SvtNEOq88cYbuHLliiguCUF0ltbG0a233qoqBwcHw9nZGffddx8yMzPh4+PT090kein+/v7YunUrqqqqsGfPHrzwwgv46aeferwfZF6uR+zt7SGTyTSCppWUlGismhBEa9jY2MDPzw+ZmZlwcnJCY2MjKisrRXVKSkrg7OxsoB4SvR3l2GjrWeTk5ITS0lLR8aamJlRUVNDYIlrF29sb9vb2yMjIAEDjiOC8+eabiI2Nxbp16+Dm5qba35H3mJOTk0YEYeU2jaOBRWvjSBsREREAIHoe0TgiTExM4Ovri7CwMDzzzDMICQnB+vXre/xZREK3HjExMUFoaCiOHTum2qdQKHDs2DFERUUZsGdEX6KmpgZZWVlwdnZGWFgYjI2NRWMqNTUVubm5iIyMNFwniV6Nl5cXnJ2dReOmuroa58+fVz2LoqKiUFlZifj4eFWd48ePQ6FQIDw8vMf7TPQN8vPzUV5erpp80DgiBEHAm2++iX379mHdunXw9vYWHe/IeywyMhLJycmihcKjR4/CysoKgYGBPfI5CMPS3jjSRmJiIgAuDNE4IrShUCjQ0NDQ488iMi/XM/fffz9eeOEFhIWFITw8HOvWrUNdXR1uuukmQ3eN6KWsXLkSU6ZMgYeHBwoLC7F69WpIpVLMmzcP1tbWWLhwIVasWAFbW1tYWVnh7bffRlRUFAndA5yamhpkZmaqtrOzs5GYmAhbW1t4eHjgnnvuwVdffQVfX194eXnh008/hYuLC6ZPnw6ABQ+JiYnBK6+8gjfeeAONjY146623MHfuXLi6uhrqYxE9TFvjyNbWFp9//jlmzZoFJycnZGVl4YMPPoCvry9iYmIA0DgimCnwzp078eWXX8LS0lLl92htbQ0zM7MOvccmTJiAwMBAPP/883juuedQVFSEVatW4c4774SJiYkBPx3RU7Q3jjIzM7Fjxw5MmjQJdnZ2SEpKwnvvvYeRI0ciJCQEAI0jAvjoo48wceJEuLu7o6amBjt37sTJkyfx/fff9/izSCIIgqCHz0io8dNPP+H7779HUVERhgwZgpdfflllAkMQLVm2bBlOnTqF8vJyODg4YMSIEVi2bJnKP6m+vh4rVqzArl270NDQgAkTJuC1114jU6kBzokTJ3DPPfdo7L/xxhuxYsUKCIKAzz77DJs2bUJlZSVGjBiB1157Df7+/qq65eXleOutt/Dff/9BKpVi5syZePnll2FpadmTH4UwIG2No9dffx2PPfYYEhISUFVVBRcXF4wfPx5PPfWUyGWKxtHAJjg4WOv+9957T6Vw6Mh7LCcnB6+//jpOnjwJc3Nz3HjjjXjmmWdgZET6ooFAe+MoLy8Pzz33HK5cuYLa2lq4u7tj+vTpWLp0KaysrFT1aRwNbJYvX47jx4+jsLAQ1tbWCA4OxkMPPYTx48cD6NlnEQndBEEQBEEQBEEQBKEnyKebIAiCIAiCIAiCIPQECd0EQRAEQRAEQRAEoSdI6CYIgiAIgiAIgiAIPUFCN0EQBEEQBEEQBEHoCRK6CYIgCIIgCIIgCEJPkNBNEARBEARBEARBEHqChG6CIAiCIAiCIAiC0BMkdBMEQRAEQRAEQRCEniChmyAIgiAIgiAIgiD0BAndBEEQBEEQBEEQBKEnSOgmCIIgCIIgCIIgCD1BQjdBEARBEARBEARB6AkSugmCIAiCIAiCIAhCT5DQTRAEQRAEQRAEQRB6goRugiAIgiAIgiAIgtATJHQTBEEQBEEQBEEQhJ4goZsgCIIgCIIgCIIg9AQJ3QRBEARBEARBEAShJ0joJgiCIIgBwIkTJxAcHIwTJ04YuisEQRAEMaAwMnQHCIIgCMLQbNmyBf/3f//X6vGNGzciMjKy5zrUB8jLy8PmzZsRGxuLjIwMSKVSBAUFYcmSJRg3bpyobmFhIdavX4/z588jPj4etbW1WL9+PUaPHq1x3rvvvhsnT57U2D9hwgR8//33rfbnq6++wqpVqzB48GDs3Lmz+x+QIAiCIHQECd0EQRAE0cyTTz4JLy8vjf0+Pj4G6E3v5t9//8WaNWswffp03HjjjWhqasK2bdtw//33491338XChQtVddPS0rBmzRr4+fkhODgY586da/Pcbm5u+N///ifa5+Li0mr9/Px8fPPNN7CwsOjehyIIgiAIPUBCN0EQBEE0M3HiRAwbNszQ3egTjB49Gvv374eDg4Nq3+23344FCxbgs88+EwndoaGhOHHiBOzs7PD333+3K3RbW1tjwYIFHe7LypUrERERAYVCgbKyss5/GIIgCILQI+TTTRAEQRAd5LPPPkNISAiOHTsm2v/KK68gLCwMly9fBgA0NDTg008/xU033YQRI0YgMjISd9xxB44fPy5ql52djeDgYHz//ff4+eefMW3aNEREROCBBx5AXl4eBEHAF198gYkTJyI8PBxLlixBeXm56BxTp07FI488gsOHD2PBggUYNmwY5syZg71793boM50/fx6LFy/GiBEjEBERgbvuugtnzpxpt93gwYNFAjcAmJiYYNKkScjPz0d1dbVqv5WVFezs7DrUHyVNTU2oqalpt96pU6ewZ88eLF++vFPnJwiCIIiegoRugiAIgmimuroapaWloj91zemSJUswZMgQvPTSSyqh8tChQ9i0aROWLl2KkJAQ1Xl+//13jBo1Cs8++ywef/xxlJaW4sEHH0RiYqLGdXfs2IFffvkFd999N+6//36cPHkSTz/9NFatWoVDhw7hoYcewqJFi7B//36sXLlSo316ejqWLVuGiRMn4plnnoFMJsNTTz2FI0eOtPl5jx07hjvvvBM1NTV4/PHHsWzZMlRWVuLee+/FhQsXuvQdFhUVwdzcHObm5l1qD7DPExkZieHDh2P8+PFYtWoVGhsbNerJ5XK89dZbuPnmmxEcHNzl6xEEQRCEPiHzcoIgCIJo5r777tPYZ2JigosXLwIAjI2NsXLlStx0001YsWIFnn/+ebz00ksICwvDww8/rGpja2uL//77DyYmJqp9ixYtwnXXXYcNGzbg3XffFV2joKAAe/fuhbW1NQBAoVDgm2++wbVr17B582YYGbHXdVlZGXbs2IE33nhDdO709HSsXr0aM2fOBADcfPPNmD17Nj788EOMHz9e62cVBAGvv/46Ro8eje+++w4SiQQAcNttt2Hu3LlYtWoVfvjhh059fxkZGdi3bx9mz54NmUzWqbZKvL29MXr0aAQFBaG2thZ79uzBV199hfT0dKxatUpU97fffkNubi5+/PHHLl2LIAiCIHoCEroJgiAIoplXX30V/v7+on1SqdgoLCgoCE8++SQ++ugjJCUloaysDD/88INKMAYAmUymEjoVCgUqKyuhUCgQFhaGhIQEjevOnj1bJXADQHh4OABg/vz5ovOGh4dj586dKCgogLe3t2q/i4sLZsyYodq2srLCDTfcgDVr1qCoqAjOzs4a10xMTER6ejqWLFmi4Qc9duxYbNu2DQqFQuPzt0ZdXR2eeuopmJmZ4ZlnnulQG220XJC44YYb8Morr2DTpk247777VFHky8rK8Nlnn2Hp0qUaZu4EQRAE0ZsgoZsgCIIgmgkPD+9QILXFixdj165duHDhAv73v/8hMDBQo86ff/6JH374AWlpaSLTaG3R0d3d3UXbSgG8tf0VFRUiodvX11elqVbi5+cHAMjJydEqdKenpwMAXnjhhdY+JqqqqmBra9vqcSVyuRzLli1DSkoK1qxZA1dX13bbdIb7778fmzZtwtGjR1VC96pVq2Bra4u77rpLp9ciCIIgCF1DQjdBEARBdJKsrCxkZGQAAJKTkzWOb9u2DS+++CKmT5+OxYsXw9HRETKZDN988w2ysrI06rdmit2allkQhG70XnyO559/HkOGDNFap6MpuF5++WXExsbiww8/xNixY7vdt5YoFx8qKioAsAWDTZs2Yfny5SgsLFTVq6+vR2NjI7Kzs7sUvI0gCIIg9AEJ3QRBEATRCRQKBV588UVYWVnh3nvvxddff41Zs2ap/KkBYM+ePfD29sbnn38u0kB/9tlneulTRkYGBEEQXUupyfb09NTaRqkpt7Kywrhx47p87ZUrV2LLli1Yvnw55s2b1+XztIVyoUJpRl5QUACFQoG3334bb7/9tkb9adOm4Z577sFLL72kl/4QBEEQRGcgoZsgCIIgOsHatWtx7tw5fPXVV5g8eTJOnDiB119/HdHR0SqhUKm5VheEz58/j7i4OHh4eOi8T4WFhdi3b59K8K+ursbWrVsxZMgQrablABAWFgYfHx/88MMPmDdvHiwtLUXHS0tL2/WV/u677/DDDz/g0Ucfxb333tvtz1FdXQ0TExNRkDhBEPDVV18BACZMmACApSv74osvNNqvWrUKNTU1eOmll0Tm9wRBEARhSEjoJgiCIIhmDh48iNTUVI39w4cPh7e3N65evarKvz116lQAwIoVK3DDDTfgjTfewKeffgoAmDx5Mvbu3YvHHnsMkydPRnZ2Nn777TcEBgaitrZW5/328/PDSy+9hIsXL8LR0RGbN29GSUkJ3nvvvVbbSKVSvP3223jooYcwb9483HTTTXB1dUVBQQFOnDgBKysrfP31162237dvHz744AP4+fkhICAA27ZtEx0fP348nJycVNtffvklACAlJQUAM8FX5gNfunQpAODSpUt45plnMHfuXPj4+KC+vh779u3D2bNnceuttyI0NBQA03hPnz5do0/r1q0DAK3HCIIgCMJQkNBNEARBEM20Zv793nvvwcPDAy+88ALs7e2xfPly1TE/Pz/873//wzvvvIPdu3djzpw5uOmmm1BcXIyNGzfi8OHDCAwMxAcffIC///4bJ0+e1Hm//fz88Morr+D9999HWloavLy88MknnyAmJqbNdqNHj8bGjRvx5Zdf4qeffkJtbS2cnZ0RHh6OW2+9tc22ly9fBsDM2J9//nmN4+vXrxcJ3coFCSWbN29WlZVCt4eHB0aMGIF9+/ahuLgYUqkUAQEBeOONN9rtD0EQBEH0ViSCLqKxEARBEARhEKZOnYrBgwfjm2++MXRXCIIgCILQQseSbxIEQRAEQRAEQRAE0WlI6CYIgiAIgiAIgiAIPUFCN0EQBEEQBEEQBEHoCfLpJgiCIAiCIAiCIAg9QZpugiAIgiAIgiAIgtATfTplWFNTEyoqKmBqagqplNYPCIIgCIIgCIIgiO6hUChQX18PW1tbGBl1X2Tu00J3RUUF0tPTDd0NgiAIgiAIgiAIop/h5+cHR0fHbp+nTwvdpqamANiXYW5ubuDetI5cLkdycjKCgoIgk8kM3R2ij0LjiNAFNI4IXUDjaIBQVweMH8/KR44AOp5r0TgidAGNI0IXtBxHdXV1SE9PV8mb3aVPC91Kk3Jzc3NYWFgYuDetI5fLAQAWFhb0MCC6DI0jQhfQOCJ0AY2jAYIgAElJrGxmBuh4rkXjiNAFNI4IXdDaONKVCzM5QhMEQRAEQRAEQRCEniChmyAIgiD6AIJCQFNDk6G7QRAEQRBEJyGhmyAIgiB6OddqrmHO2NOwt63DXz+dMnR3CIIgCILoBCR0EwRBEEQv56WHj+DvkyNRfc0an602dG8IgiAIgugMJHQTBEEQRC8mdkscPvl1imo7Ka37qUsIgiAIgug5SOgmCIIgiF5KRQVw71NDIAj8dZ1e7Ie6qjoD9oogCIIgiM5AQjdBEARB9FL+9z8gM1ucI1QQpEi5kGWgHhEEQRAE0VlI6CYIgiCIXkhNDbBuHStbWwMPLjynOpZ0ocRAvSIIgiAIorOQ0E0QBEEQvZC0NEAuZ+UFC4BZ066pjl1OqDdQrwiCIAiC6CwkdBP9krKCciy9+SC+eeugobtCEATRJdKSq1XlQYOA4HAeQC3pipEhukQQBEEQRBcgoZvol7zy2Gl8tXkiHn11Iq6cSzd0dwiCIDpN6ukzqrK/zRkERvhAIhEAAEnF0YbqFkEQBEEQnYSEbqLfIW+U4/d9w1TbF45TwCGCIPoeqam8HBBoDHMrM/j5SQAAl5PNIAgG6hhBEARBEJ2ChG6i33Fk10UUVrqqtlOuyA3YG6C+th5fv3kQ+347035lgiCIZtKyzFTlgKHOAIDgYLZdVQXk5xuiVwRBEARBdBYSuol+xx+bxdtXUmSG6UgzX755DEtem4jZd0TiwuFkg/aFIIi+Q2q2AwDA1Pga3P3ZQqJS6AaApCRD9IogCIIgiM5CQjfRr1AogC37I0X7UjKsDdOZZvbtbQQAKAQZvv7wqkH7QhBE30BQCEjN9wQA+LnkQipjr+uQoEZVncunMwzSN4IgCIIgOgcJ3US/4sQJICdHvC8l21V75U7y4v2xGB96ARePdFxbLSgEnL4aodr+ee841FTU6KQ/BEH0XwoyilDXYAEACPDkObmDXeNV5aSz6T3dLYIg+hH//ANERQGvvQaKEUEQeoaEbqJfsXmz5r6cUnfUVtZ267yXj1/Eyh8n42hCOFa91XGhOzOtDkWVLqrtyjpb/P7NuW71hSCI/k9aYoGqHODLn1/Bke6qctJVix7tE0EQ/YeqKuCuu4C4OODNN4Hlyw3dI4Lo35DQTfQbBIWAzZvZUq2RETB3Gp+0Xk0z7da5zxzlmqbsisEdbnc6TnNSvGadTbf6QhBE/yc1qVJV9vfj+939XWFtzo5dztCNFQ9BEAOPDz8ECvg0CStWsH0EQegHErqJfsPZ2MtIT2fpdKZMqMSoiWoRzFO7F0zt/HleLqxy63C706d52diI+WIeTQjHpWMp3eoPQRD9m9Sr3Hc7YDBfNJRIJQj2ygYApBd64VrNtR7vG0EMdJqagOefB154gZX7AkVFQH09K+fmcgFbqiYJPPccsH59z/eNIAYCJHQT/YYtv/Al24VT4zBYTSGd0k0Z93yClapcVGbVRk0xp07x8v/u55L7d6uzu9chgiD6NWnpfKEwIMRedCzYvwwAIAhSpJzP7NF+EQTBXNk++AB4/31g7VpD96Z91q0DPDwANzfW5xdfBGqbvVYef5yZlyt56imgocEw/SSI/gwJ3US/Yfs/LNKvRKLAgrtCEBjIj1250r1zx13xVZULi6QdCjgiKAScPs0qursDz78xCKbGTCu1/u8JKC3tXp8Igui/pFaNV5X9Q31Ex0QRzM+XgCCInuXsWV7+80/dnPPiReCll4D0dN2cT0lyMrBkCdPIl5cz7fyGDeyYjQ3wyivAyy8DCxawfeXlwMGDuu0DQRAkdBP9hNSLmYjPYKrt0cGX4ObvgsBBXDJOic/v8rnz0wpRWOGs2m5slKCipP0I5CnnM1BRwczdo4dkwMHdHotuNQEAlJYZ4Y47ALm8y90iCKIfk5rGXs+OjoCNg7noWPBQbm5+OaG+R/tFEASQmMjL//7LgpJ1h8JCYOJE4N13geuvZ+lPdUFTE3D33UBdnfbjL70EODkBEglwxx18/7Zturk+QRAcErqJfsG2n1NV5QWzmebH3kECR2tWTrnSden2/DFN883CzKJ2250+lKsqjxySBgB4510pnJvl9z17WJoOgiAIderrgexmD5SAAM3jYSN4RoTte501KxAEoVcuX+blhgb2Pu8Ozz7LNMwAEB8P7NrVvfMpee894ORJVh48mKVVnTuXbY8ZAzz5JK87ezZgbMzK27ZRCjGC0DV6FbrLy8vxzDPPYPjw4YiOjsby5ctRU9O2hvDuu+9GcHCw6O/VV1/VZzeJfsD2v21V5QW3e6vKgZ55AICsYk/UVbWy1NsO589Ua+wryq3UUlPM6ZPcKSp6jCUAwNsb2LgRkDW7a77zDrD1+zNd6hdBEP2TzEw+4dUmdIdEByBqEFO1nUoOxYk98ZqVCILQC/X1QGqqeN/27V0/3/793Nxbyfvvd+1cggBs3Qo8/TQwZQrwxhtsv0zGrjFqFLBzJ1BRARw4AJiZ8bY2NqwNAGRliQPIEgTRffQqdD/77LNISUnB2rVr8fXXX+P06dMdEqAXLVqEw4cPq/6ef/55fXaT6OOU5pXh0MVhAIBA93SERPNZaqBPhaqcGp8jard1KxAeDnz9ddvnP3/RWGNfYR6LQNLUBNx6KzB1KpCUJK5z6jwPfhQ9yV9VnjJF/EJ9cJkf6mvJRJQgCEbqeT6j9/cs0zgukUrw+IPcl3v1Wl+NOgRB6IeUFE3XsF27uhbFvKEBWLqUb5s3e5IcPgwcPdr58/3yC3DjjcCnnwKxsbyfy5cDo0fzejY2gImJZnulXzdAJuYEoWuM9HXiq1ev4tChQ/jjjz8wbBgTiF5++WU8/PDDeP755+Hq2np+UTMzMzg7d9xkTi6XQ96LnWOVfevNfeztyBvlWHrrcaRnWeLNd4wxemao6tiOn+MhV8QAAOZPS4NC8Aaav+pB/lzbnHypGCGjuPC7/P8kSLwsxTPPCHjgAYVK+9ySuBQ/jX35ufWQy+XYuaUUmzaxsTpjhoCDBxXw9mb9PXtlEADA1zkbDh7uot//yScE7PvtDP4+NRolVY44e/AiRs0Y2vZ3QOOI0AE0jno/KfGZANjioZ/9Rcjl4zXqLFoyHM9/qEBJiRSbtlhhZY4cbh3IZvjff8Dbb0sxfLiADz4QIJF0rY80jgYIcjlkqqJc54FI+uI4SkgA0PytSCQCBEGC0lLg4EE5Jk3q3Lk++ECCy5eZ/mv0aAGLFwt4+GG2/f77AjZv7rhzd1MT8NprUgD8pnZ3F3DHHQKWLxc69NPNmQMoP9v27QJefllHzuV6pi+OI6L30XIc6Xo86U3oPnfuHGxsbFQCNwCMGzcOUqkUFy5cwIwZM1ptu2PHDmzfvh3Ozs6YMmUKli5dCnNz81brJycn67Tv+uLixYuG7kKf5eTuLHy//QYAwIHrG/Hsvbtw0yPukMqk2PInfylEjapGXFycatvOkWu6z57Kh08UO9Z4rRFJSSMBALW1EuzcmQhfX01tc329BEmZURr7U69WIC4uDudiswGwpeGsLAmmTGnAd98loSIrDzX11wEAIgZfRVxcgcY5xo7Kw9/NKcX+2XUVJs4dy9FB44jQBTSOei8J8dwNy8yyXPRMU2fePE+sW+eGxkYJ3nqrAA89lNfqOZsa5fjmG2/8uM4NgiDBwYMSREYmIiystlt9pXHUv5HW1UH5Brxw4QIUbczFukNfGkf//ecGgGVLmTy5HPv3M6u2778vhq1tx9OB1tVJsXLlMABSSKUCnnwyEf7+1+DsHIaiIhNs3w5s3ZoIP7+OWcJt3+6Iq1f9AAAjRlRhxYpU2Nsz9fulSx3uFkJCQnD5siXOnpXg778vwc2tsf1GvYS+NI6I3ou+xpHehO7i4mI4ODiIL2ZkBFtbWxQVtR6Eat68efDw8ICLiwuSkpLw4YcfIi0tDZ9//nmrbYKCgmBhYaGzvusauVyOixcvYtiwYZC1pk4l2uSzV/jEsElujBU/zMf+uHLMmGON/84yX21H6xLc8uBMGJnwYV1fyE3DC4vsERkZCQCIP5YChcB/C7l8CJoPiThzBpDL2apxcGAtklLYOLtWb4PIyEj8XCH27U5PN8dNC4JRVRuu2jd2lEJ1XXWuzTHCa1+w8tVUR6111KFxROgCGke9n4Lik6ry+Knh8A/z1lrv1VeBDRsEKBQSbN/ujk8+cdVqMlpZUok5k7Jx/LK7aH9+fjDuuqtr0ZJoHA0Q1OLwhIeHA5aWOj19XxxHlZVck/zqqzY4dEhAU5MEx4+7ICLCqcPWI99+K0FVFdNq33WXgFtvDQYAPPusBC+8AAiCBA89FIpFiwTcfbeAMWNaP1djI7BoEfcY/egjC0yYENb5Dwfg1lslKl/wtLQwzJ7NnxHXrgElJYCnZ5dOrTf64jgieh8tx1Ftba1OFbudFro//PBDrFmzps06u3fv7nKHbr31VlU5ODgYzs7OuO+++5CZmQkfHx+tbWQyWZ+4yfpKP3sbTQ1N2HWYmV4byxrQpDCCIEhx4qwdTpwFACsAwNwZlTA1dxS1DY7wUpWvplurvv+kFrltEy5Jccstmm/KeLX4RDOmNSIphZWLik0gk8mQlcujkNjaylFRIUNljVgTMH2uq9bffXhMEIxkjWiSG+N0vFuHxwaNI0IX0DjqvaRm2wEAZNIm+A3xavV3CghgPph//gnk5Umw/ceLuHVJpEa9T145j+OXJwMApFImpAPA4R0X8cILEd3qK42jfo7abyuTydCqH1a3L9N3xpEyfotUCowdK8PEicxtIzVVgsuXZQjrgKwrCMAXX/Dtp56Sqr7aRx8FPvqIpRErK5Pgm28k+OYb4JtvgIcf5m3q64GyMsDVlflyK4O7TZ8OTJrU9e/yhht4ALbt26V4/HFWbmoCZswAjh0DVq0Cnnqqy5fQG31pHBG9F+U40vVY6nQgtQceeAC7d+9u88/b2xtOTk4oLS0VtW1qakJFRUWn/LUjItiEICMjo7NdJfoJx/6+hJIqJkzPn3AG//4RD39/TT+j2x/y19jn6OEAe0sWiCglm6fZSYgXm3LHHzih9drqVp0zZvHcuIWlTLDOyrdW7fv371r4uWTD3KQWI4Mu4cH5B7H1uxOInq7dV9vc2hxhvlcBAIlZAagubz/3N0EQ/Z+0fKaR9nbKE1nuaOOx+7JU5V9/0W6Guus/HkPl8PY4ONkUs3KcLxTyvuGzSRC9AYWCpwsLCABMTcXBx1pL9ZWXB7z4IvDXX2w7NpabfI8bBwwfzuva2ACHDrG82erW/MuXc8OD3FwgMBBwdwccHIBly3g9pcDcVSIiAD8/Vv7vPyA/n5X37mUCN8CsbCoqtDYnCKIVOi10Ozg4YNCgQW3+mZiYICoqCpWVlYhXUxUeP34cCoWCmSh1kMRElhalM4I60b/Y9juP3rtgvhxTbgpHSooUKSnAli3AW28Bv/3GckxqI9CT5cvOLPbAtZprAIDEZLENZnyK9vF1/iB3hBo33gjmJszMvbCUadczC5wAAG52BRgxxhppBV6oqTPHyaRQrNk2EQsWj9Y8qRojhxUCABSCDHGHrrZZlyCI/k91WTXKa+wAAL5uJW1XBjD5Og+42rHnyJ4T4aguE6c4LMwswtmUIQCAqEGJGDs3CjERzGSnvMYO8cdSdNh7gujf5ORwwTckhP1nwccYrRl6PvMMsHIlq/vee8Dq1fzYE09o1g8KAn7+GSgoYJpngJl1r13Lyi+/DGQ3u4+XlwOVzZ5uM2cyIb47SCTAnXeyslzOtOgAsH49r1NZCXz7bfeuQxADDb2lDBs0aBBiYmLwyiuv4MKFCzhz5gzeeustzJ07VxW5vKCgALNnz8aFCxcAAJmZmfjiiy8QHx+P7Oxs/Pvvv3jhhRcwcuRIhCifbsSAQlAI2PavHwBmajn3dha1XCoFBg1iqTFefpml7WqNYH8mtAuCFBfOMqE54apYyL6S66sSyNWvff4KM0/3cMiHk4sRXOzYuQorndFQ14D8cqY993YpVrWTSDseDjg6mpdPHSltvSLRY8gb5fju3UPY+yvlTyd6npzUQlXZy6196xeZsQw3TmWqt2uN5tj9ywXR8X2buT/azBgW0HHieP6sO7Sv9eBrBEGIadYDAeBCd2AgE5IB4MgRZvKtjkIB/P03316+nLmEAExTvXBh69eztgZef51vf/wxcPYs8OOPbNvCgvtXW1szwV4X3H03L69fzwT7rVvFdVatYinPiIHDtWvADz8AX33FxnppKYvmv3Ej8Pbb7Njp00Bt9+Jz9lv0mqf7ww8/REBAAO699148/PDDGD58ON58803V8cbGRqSlpaGujgXCMjY2xrFjx7B48WJcd911WLlyJWbOnImv20ukTPRbLp/JQEqeHwAgZthFOLjbt91AC2PncLutQycd0NTQhOQccXwAucIIl8+IXRjy0wtRUWsLABg2iC0pu/iyt1tJpR2yrhRCENgt5OMuDqjWUaLHc+H/9FnNfOBEz7PqpUN46KUYXHdnJBJPkvUB0bNkp5aryp7uHYsafPNtVqry5i3iY3v28iBIs+ax51nMDG5ufvAwPXcIoqMoTcsBYMgQXp47l/2Xy4F9+8RtLlzQFMSVPPooYNzOLRgRAcyaxcppaUxbLjTf1m+8wTTepaVMK95OPNYOExzM83qfP8+UG/XN3itKN9fcXKYFT0gAJkwAfHzELnlE/+OTT4DFi1lu+QkTAEdHIDQUuO024JVX2LGRIwFbW+CDDwzd296H3qKXA4CdnR0++uijVo97eXkhSRmRAoC7uzt++uknfXaJ6GMotdwAMH9+1xLKTpzKI9sfOgRcPyULDU2a/t/xZ4oROTFYtZ2RXASATU4DfNiynUuzW7hCAcSd5oK2t0fXlnvDxgyCqfE11Dea4VSCb5fOQegOQSHg25+YP61CkOGfbakYMmqQgXtFDCSy07mKwMurY8+8SQvC4WhdgpIqR+w6Eo66qjqYW5tDIRew9zhTwVmaVmP8HGYpFDFhMKzNK1FVZ4ND5wIgKIROWegQxEBFXehWN8CcM4cJJADz6160iB/bv5+XZ84E/v2XCefGxuLAaG3x/PPAnj2sXNCcgdTPD6ogZ/ad10e0y733Aieaw92oB31btYqbxC9fzrTgzbozPPss8M8/uu8L0TuIje1YvaYmYMUK4Lnn9NqdPodeNd0E0V22b+flBfdFdukcQ4fyF9Lhw8ClMzxlXfTgBFU5/oJYq5SRwoVqXx8WbEg9tMCZ0zwAkY9P19LumJibIGIYy6N5JccL5eVdOg2hI07sTUByHl94OXay96YiJPonOSVOqrKXX8fSMxmZGGHBJPYsq6m3wp6NzMT84tFkFDS7wEwZngATcxNV/XFhzOw8r8wNVy9k6qz/BNGf0WZeDgAxMYBVs8HJX3+xhXkl6oLKhx8yU/N584B16wA3t45dd8oUYMQI8b533wXMzLTX1wW33gqNFIShocBjjzEtJ8ACxCkFboAtKJw9q78+EYZFqSe1smJWGpMnswWmt98Gfv+dLTx5N2e4LC1l5ugEh4RuotdSVAQcP87KYWEsUmhXkErZCxFggUg2b+VRyBfN5/6TFxPFE9zMdK699vVnbx6lphsAzlzgJp3evl1/840cy89z5gzQUNeAk3svobG+Y6alhO5Yv9FBtH3sgvY0hQShL7Ir+UzeKyK6jZpibr6VP4M2/8GeHXu2cn/tWdPqRPUnjuUB1w7tIaGbIDqCUtPt4sKihisxNWWpugA2dzl9mpXlcuDgQVZWmuJOnw7s2AHcfnvHryuRiLWGI0e2HctGFzg4ANdfL953zz2afQGAUaN4mcyK+yd1dUBm86ti6FDm171/P/Pnfukl4OabgaefZmNTSWGh1lMNWEjoNiC1lbVIi89qv+IAJSGB+y1Nndq9c00cnq4q//FPqKo88+YhsLUoBwDEp7qL2mRkcnNL30EsNZiLGQ9KdCbBQ1X2Ce9AYs5WUA+mtn5NCcIHZ2P0rFAsmk6BvHqS+nrgt23iMZBe6I38NHprEIyygnJkXs7R6zWUEYkBHiCpI0xbGAFbC5bDZ8ehMDTU1WPPfhvV8Zk3iheQYqZxe9SDh7rWV4IYSJSX8/RZ6v7cSpR+3QCPYn7+PFQWbJMnMyVAV7n5ZmDJEhadfN267p2ro9xzDy+rRzWfN4/59UZFsaBwsbHcEnDTJuZ7TvQvrl7lc3Jl4EBtuPKQISpXCIJBQreBqKmoQejgEgQM88Yvnx7RWictPgtP33EAL94fC3mjvId7aHiyEtNVZT/PrgUqUxIzlkcBrm9goQykUiA40hVh/iyAWmaRFypL+HUysnmCTJ8g9jZxseECWEkZt7vyDuDa6s4iEro3OiIph6n0dx4bgYY6Cg3aU+zcyYPdSKXcNvD4vzR7GGhs3Qo88giQmsr3ZV7OQeiQa/Ab6o6Nnx/V27WVQrdMJp68tIeJuQmuj7kIAKiotcOYsRIcvhQJAPBzK8DgSD9R/ZHTgmFqzGz/Dp0hiw6CaI/WTMuVXHcdLyvzdaublk+e3L3ry2TAl1+yqNHahH59cN113Mrwxhv5QqBUyvy8z55lKc3MzYEnn2THFAoWZZ3oX6iF4Oqw0E2abjEkdBuI//5VIL2QOT78vkksUBdnl+DpOw4gONIVn/46CSt/nIw/vjlhiG4alKzL6aqyt/Wl1it2gKhJQbA0FeevDQhg/lBhQRWqfZdO8AjmGXl2AABjWQPc/ZlduYu7phm5sXHnJsctGTIEsDDXNCVvkhsj+VyGlhaEPlDPQfrInemq8vEjdZqViX5LZSXT5nz7LTB7Ns/J+9RDWcgrc4MgSPH0KwEa+bB1hVLo9vDgUYI7yh13cdeZc+dN0NDAXvGzFrhqBEozszTDqGFMbXc135c0EgTRDuoB0cLDNY97evLo4adPA5cuiYXuKVP02Tv9YGzM/LR//JFp19ti6VKWwgwAvv8eKC5uuz7Rt0jmhp4IDm69Hmm6W4eEbgOx/xDXjCZmeKnKOSl5GBqqwKe/TkKjnGtSDx4YeP692Tl8kugdYN2tcxmbGmNsaJJo39Ch7H9YNDcpvpjBl+8yC5tzcDvnQypjt4qzu2ZgIy+v7pl5yWTApGFxvF8+KapyvFrQN3UEhYCmhqauX5QAADTWN+L8oWT8+N5e7N7NtNuensBLr/Lf+dilNpZ0iX5HfDzPMXrlCvD8s43YsfYkth4eo6qTX+6Gjz7ppETcAepr61HUfMt72Xd+wW32HdH47t1DiB4hXsidP197/ehJfqpyfHynL0cQA4pt23h5zhztdW64gZdnzwYOHGBlZ2c+5+hr+PmxSOZW7Rj0OTgADz3EynV1zMyc6D+oC91tabrVYx+R0C2GhG4DEXuAC5QpeT6or2UJEHf9dgVFlcyU2dykFhIJEwSOJY3QPIkOOfBnHN5/JhYXDie3W7enyMrlWmXvQMdun2/i2CrR9tAgpsEMGzdYtS8+kWmKKsoVqKi1AwD4qkUmd/Gy0zivj1tJt/v29ToPvPpILA5sPY8Vr5fy/lyoF9XLSS7BKw8fhL9bDqysmvDnmuPdvvZAJftKHgI8ixA5MQj3L5+Jpib2OLzrxnR4BrrCz4/97qfiPdBE6xsDhovH0kXbX35tjPuf0kwb9/5H5sjL09jdLXJTuS2ep0Nup9tLpBIs/r8YnDotQ2Iiiyj75Zdis1d11IWAS90zJiKIfk1eHnDyJCuHhzNBVBv/+x8wfDgrZ2czyxmAmZZLBkBWvhtv5OWrVw3XD0L3qAvdgwe3Xo803a1DQrcBKCsD4uL4tlxhhCtxLCTg+fNcwNu+4TJCQ9lPdCHBSmXmqGuKc0ox+9ZgvPDxZETEBCHcPxmfvBhrcH/irHxbAICRrBGuPi7t1G6fmKl2ou2hbixQWSiPq6bS9mRk8lvDZwjPn+3sKY5uDQDeNoka+zqLT4gn3vh6MiYuiEDYSDXNeyJPWfXITUew4I6ZeO+HKcgo8kJ9oxk++8JU2+mIDvDha8nILvEQ7bO1qMCjjzKf/zFj2Ayprg64cKHHu0cYiPiTmhrmkiq26Dct6iwef4w9o2trgdde0+21s1P5gpuXe/eevyEhLKLskiWtT/bVn30kdPc/MjOBr79mWTuIjiMILOL4hg1QLbju2MGPL1jQeltra5YyrKVQ0l1/7r6CevDHHP3GnCR6GKVPt5cXYNlGNksSuluHhG4DcHBHoioCoJLE88z5JS6BR5SNnjwIY8eyslzOU1DomuNn7XGtkQcNu5gehP+tnIxVL+svWFBHyCpiGn8PhwLIjLtvyjl6RjCMZXwiOySCCdDOzjxXZlwce+FmqM27fbnMDVMLU1W0cyU+XrpVg/oO8VT5n8enswgm2Vfy8P32iRp1TyQGU2qxLlBdVo21WyMBAGbGdVixLBZ//XQa6WmAXyhz91DeewBPXUf0f+KTeMTv8UPjVGUTo3p8scYer74mgU1zle+/F3B0n+7SbWWn85VVLy+hjZq6QaTpPkuSWX8iI4NpXJcsAW6/jUx1OsqZM8CMGcCkSSxy98MPs/3qpuVtCd0AM6/dt4/FZVAybZru+9obURe6cztvrEP0UkpK+OJdW6blAAndbUFCtwGI/VsznF/CxXoo5ApcSPUHAPg6Z8POxRZjuBshjh3TT39OneZqED9X/pT8619bnV+rtrIWm78+hh8/OIoffwQ2b4ZWDX5tZa1Ku+TtUqpZoQuYW5tjbPBZAGwCHTKCR+wdMZxNSsrKgLSEglaFbgBwti0XbXv76PY2ksqkCA1nGu7UHGfU1ACxO3kY5VunHcHcMczOra7BAnEHr+j0+gOB9avOoLKOje87Z5/GCx9Pxuw7o2Hnwse8utAd++81fPJiLML9k/Hi/bE93FuipxAUAi6msueCm10BNm5zhbs9Czb2xuPHEDzCH87OwP/9H6uvUEgw83oH7PlFNyuiOVl8UdDLx6SNmrrB1hbwcmTP/EuJMggKTUH/x/cPIyIgCb+tNuwiLNFxrl0DFi7kk+R9/xjh/KGkthsNUIqKmAvGI48AY8awbCL//suPr13LIpEr93l6cvPxtvD1ZYHX7rgDWL267cBTBqWhDEh4H4h7ETj1OHDiIeDyp0DZBUBQtN++BebmgH2z7og03f2HK2rTzPaEbisrNg4Ail7eEiNDd2AgEntCM9R1QpIp0uKzUH2NSXgRQTkAvMTatthC4MXum1m3RF2D/t8xD0wdk4X0Qm8cTwhBfW09TC1aN2FuamLaYXd38Qrnmf8S8fRTDRg7vAxvfD4a5tbmSL+UjZkzG3Eld6zoHIsWARs3is+bnVIAgC1AeLvpLkrwh6ts8NL/ncEtN9bAyp5rjqN9DmMXJgMATsdeRWaKCQD25mgpdLvYVyJFzZfTx88cuiZsmBQnT7FyQgIQu5+//BY/bIrkFEvsata+HokPxsgZOu9Cv0VQCPh8LQ9e+MRz2u+piAjAzKQB1xpM8PsWM/zePD4u/hiEe5dcxZBRmn6+RN+mIKMYJVXMwiYsIAeegcNxMb4UOanJCJ8wWVXv6aeBPdsKEHvcFTX1Vph3TwTWFhzBXcvGd+v66sEjvfy6noawM4QG5CK7xAPlNXbISyuAxyD+flI0ybHsjVCU19rj8eXFuPmRJhiZ0LRBl6TFZ6Guph5DRwfq5HyCwKJInzkj3r/6g0J8F9NbJT/DoFAws++EBM1jDg5AafN6/6JFQH1zeJX58zvumx0UBPz8s0662j2a6oC09UD6BkBqAkz7jx+TmgAXXwPk1zTbmToC3guBgMWA48gOf3APD6bAyMlh43Eg+LL3dzoaRA1gv7erK5CeTprulpCmu4cpzSvD+TQ2YsN8r6jMnROuOuF8Cte8Roxi9s7BQQLsLFlKq2PHJVo1Ed1BEIBTzcKdoyMLDhIznKl5rzWa48x+7avj8fHAsmXMt2PkSCAiQkBWBjdzfuLxJhyOj8AH6ycjOiwHm744inExRriS669xru3bgcYWFtJZV8tUZW9P3fmWj5wxFHtPj8BDL4lNtaPHcN/pUycakHHxsmrb10lsPuriUCva9h6ke4uAYcN4OT4eiD3FxoaJUT3GzgzB+Dk8SeeRo7qPotyf+fePc0jMYgJzTNh5RLQyETUxAUYMvqz12LZfs/TWP8JwxJ/iv+uwEBYBydHDAeETxLMMMzPgr39ssXASMz9qkhvj7v+NR/zR7lmdZOdy7bZngGb8CH0QGsQXNS+dFqumEhIlKK9li48l1U449jc5fuuS5LNpCIlyQeiYQBz4M04n51zz7hGsXcvK5uYCrM3ZOP7572iU5unGaqy/cPSopsAdGAh8+ikTGEePZvtq1V757ZmW9yquFQIXXgO2+QCnHgWKjgA1Ld5dRpaA63Tt7etLgJRvgb2jgd3hQO5fHbqsUgFTX88XLoi+jXqO7o5YbSgjmJeUgALRqkFCdw9zcFcyBIF97TMm5GKwJxPoknN8cOYMF6gjJzD1qlQmweihbCJXWOGMtEu6nexnJReoUtRER9VBIgEmxvB+HPxH84m5dy8zr1q1iq9ilZRI8M3bR9hnSVLgWCKXGhMyA3Hr4+OQV8YWEkI8r+Cr1/7FhAns+LVrwPnz4muo+zZ6e+t/mTR6op+qfPqCLTJyeYoyr0CxJrRlBHOfoG4k6W6FsDBe3r2b5dEFgKghGTC3NsewYSxgCwAcOQKNGAFE66z+nI+nJ5bWtlETmDONj/+Jamndtu/pfjT9mooavPZoLB5acBBlBeXdPh/RfeLP8QwHYcPaXswyszTDxn2jcO+cw6p9/+3qnhNjdgF/7nj4696qSRuhYfxzXooTZ3g4dlw8Rdj2exkI3fH7N2fQ0MQsyf74sftuQqV5ZXjuHf7y+G6NgAcWMJeqa43m+P4jigipzm+/8fIHH7BI41euAE8+yRbWvv5anA7U2rqHA6IJAlB5BUj7CUhYCaRtAApigaKjQOk5zfqVyUBZHFB4CDjxMLDVB4h/E6hXS5ht5qzZLuoDYNp+YNYpYOYJYPgngNcCJpArqYhHR0UG8uvuHQgCy61+zz1iobkrdEbTDXC/bkGASsYgSOjucWL/4yY8U6aZY2gAG40NTabYspnnVo2I4G3GRnNNxPH/OiZ0H911EY/edLDd1fNT+7mv8Eh/Zq8cM4s/MQ8dsxDVb6xvxBOPlKg00yYmAqQS1u+1W4LR1NCEDT/xYWVtLp7EjQm5iMMnHfHo69OwaBHff/w/sYYlq8BOVfb2M4O+cfN3Ufk2nkkehPR8NuF1syuAmaX4+s6DQlRla/NK2DrrXtMdNoSnCvtzCx8X4WOYyalMBpW/f14eM+Mh2ufkSWDH4UgAgKdzCW54ILrN+s+uGIefVx3B4R0XcOBCJEJ92MT4+OVQFKR3/U1y/lASosPy8eY3k/Hd9on47I24Lp+L0B3xl/izK2xE+wsrMmMZbr+TPx+Kijq3+pWezib4Bw+y7Zwipt12tSuEibn+fboBYGgk16gnJIoXOFsGENz2r5/Ora0GMrGnvFXlkwkBnW5fUSFecP3ktfOqWBX3zT2EO+6U4rHnuX/UlxsGQd4ob3maPktVlaaVXEdpagJ+/52VzcyYT7e1tbhOZCS7P5XMng2Y6jthSMkppp3ePxvY7AjsDAKO3c18ro/dA/w7Bdg3Hkh4T7Ptf9OAv6KAfyYCV9cAiuZ5hEQG+N4BzD4NzDii2c42BHCdDDhGA06jgJCngYlbgRvzgNHfAY5jAOcYwH2muF3uX2wRoIVpunoAOfLrNgwKBUtfd999LAq/Mg5JV1EK3UZGrafLU4eCqWmHhO4eZv9xpu2VSuSImRuMoaN5XonLycYAWBACfzUr7LEx/E1w7GjbdhpNDU149ZFYxFw/FN/8ORE33+eFpobW25w+yYW76NFMwA6K8oeLLRMoDl8IFr2kv333GJLT2WR0fHQx8vMluH48cwrPLXXHzvVnsX49qyuVAhcummDZHbGwNq/EbdOO4p/jAXD0YJO8scPS+ef6h5cBIKuKa8q9o0a3+Zl1xcihzOqgqs4GBeVM6PZ10xSsXJz5LMfHWT9PE1d3Ezhasyg4cgXXRI0YwRcxxo/ls40ju7uftqy/k5gIzJkDCAITLJY+7QhjU+M225iYm+COp8Zj/LxwAMCCGWwGIQhS7PgtrUv9WPPOQYya6ofL2dwn/PiZNvJvED1G/BWePSJ0lG8bNTnO7vy3Kyru+CtVEFhO29WrgeuvB8pLm5BXxp47Xs7F7bTWHUNHcsHv0hU70bGWwTtT8vxw+XQqiO5TX1uPI5f4ey4uPQz1tfVttBCzZg0LWDVxIlBezrTcn/7EInwZyxrw+gdsEjE4yh+zRzEfsvRCb+xcr6c0KD3M6dNsYh8QwPyHO8v+/TzI07x5mgK3kjffZNptd3eWgk+nNNUBihaLIDk7mXY6bw8LctYalVpcn6QtFuqMbYCQZ4D5qcD4nwGHEZ1zsDa2BgYtBmYdAybv0mx77jm2CPC7LbB3HHD+JaAun9KGGZiGBuCuu5g1qpLupD1VKHggtUGDmODdHiR0a4eE7h6kvLACF9KYM0RUYBLsXGwxJNJJo154aJ3IpGn09EGQSFggrWPnnHHxSDLeWp6Hn34S+0okn03DpKgEvPXtZCgEJqgVVzrh3IFktMbp8/xNM3Iy8xuWSCWIGcneRpV1trh4kQmZFUUVeH0VzzHz8TsFsLcHHnqId/apl/2Q2ewCPXMm4DfIFB//PBnlVVb49Z9xsLTlE9SIMR4wM64DABy/yANbAUCWmkLfS3xIb0RHaQYS8fWo1NjnYs8FX2+3cr30RSKVIMxfbNVgaipg2DBudj8+9KKqfOQ/st9pi8zUOsycyaP5TprEVoE7y4LbedyF7UdHdbr9pWMpeOSVCSqTUiXnkn3JR8DAKOQKxKf5AQAC3DJEz6q2cPbgli5FJR3XTh88yIJQAsys9cv3LkGuYLMZT9+eCaIGADaONvB2YjPjS+m+Kk12WUEFErWs5VE8A91w6t8k1DVwS7KGJlOcP5zS4fbffMMeGYcPA/OnZeCd586jqo7lsntg/nH4DlELFvkYb7f2x253vVewfj1QVwdkZ4vTebWF+iP21195+bbbWm9jbc0E9NxcsQVilxAUTJN9/iXgr+HA79ZARYs4CY5qSgZTZ8BjHhD+FjDuV2b2HfI/YPBSYPASzfP73gYEPgoEPQFEfw7ckAUM/xCw9NGs21mMW6xKlF/ifVc0AMXHgEvvAjsC4dnIv1wyL+95HnlEPL4BZlXVVauQ7Gx2rwEdj8KvLnS3FsF8IE55SOjuQeJP8jxUo8KZJkM9T6qSCK9Tom1bZzsM8WbahTNXhiJ8QhBefc8dd9/NXgIbNwJLbjmGoSO9cTQhXON8sXu0j3hBIeB0EtO2udvnw2OQu+rYxOtDVeWDh9lEcOWL51BcyRYJbpt2FKNmsjqzbx+uMs3OLOB+iPfey68llWkONWMzE0QHswWB1HxfFGZywVEpdJuYsDzaPUH0GM2lbh8tQdxcnPlKhz79zYeFVIi2x4xugqkpf0qNnj5YZdp/5Kyb3vrR17lWcw3XTclBdjbbjopikzSzLngtRE8JgHvzbbJvn/Z0d23x7ac5qpgOi68/hIkj2DOhoNwF+fmd7w+hOzJSqlFTz4TdsEEd/zGcPLl5dnFZxwfV6tXi7U/WcM26V5AOJsmdIDSAPb8ram2Rm8o++4l/uI/x3DH8nbTt7+7HMyCA2HMhGvtOHuqYhYNCAdGCyKGzvvj458kAmJZ7+bvizAqz7xwBe0umNT0e798vXATUNXdHtFhMt+Tdd5llwO23M0Fwyxa239qaWUDpFUEArq4FtvkCe0Yx4bTsHCDIgVLxfA/O45iAPT8VuKkAmLwDCHsZ8LuNmX0P/wgY+YV2oTviHWDUV0D0Z0DQY0zTrS8sfYGxPwEB9wHWak6+TTXwrPpQtZmT3ffHWl+ivh4qa1MzMy4ky+Vdd0PsrD830LamOz0dmDWL1dm7t2t96quQ0N2DJJznWtPQUPYgCgoSB+oAgIgITUFubESexj6ARd687Tbg6z/GqrQkfi5Z+GHFIVWd/Ye4xiYri92QlZXA1QuZKK+xAwBED8kQnTcmhpcPHQLij17BJxvYCqyJUT3eXcVNEmXGMiy+RaxNt7GswYL57T9sxw7n5lPH/+Fmi0qh28tL8/vRF9GTNX3qfH01f4sxkxxU/brlkbZ9grtDWJj42pOHHhZtWztYIyKAfe/xGYGoKBIL6QRjy3dnkJDJ0vEE+pTir79YfuKuIJUyU2CABQDct6/jba/VXMOGnWxRzMy4Dh+sGYZRU7igdS6O8qoYkvhkPkENi+lAIt5mzK3MYGnK4m4UlXdMQ52VnIetW8U5cIsr7FTlnrLuURIaxFePLp1iAvjxwzyWyJ23NyLMlz1rTiSFIj+Nkq92l9iDmlYRJy5pZvfQRnq6OKK2OosXHIdPiKdon1QmRXQIe78WlLsg52rfXuETBOAiN/RqV+h+/31mGl5RwYKnBQWxMgDccAPPKawXajKB2OuAEw8AtdlqBySAbRggaeHiZGLHBGwr/96da8vYCvC/ExizFrg+CbghBwh6HJAYwcOOq7dzLp4E5LrLQEO0TWoqW5QDmPvSwoX8WErHDWlEdEXoduH6N5HQ/dtvTFm4dy8LsLZzZ9f61FchobsHSczkL9TQ5uA1ZmZAgI9YXRYxUjNVzKLbLVQm5mOHXMT7zx3F2DFiXyAr8xq8+VgsLl62x33PTYCbHRvphy4ORVOjgKYmYNo0poEeOxbYs51rlkdG1YnOFR4O2DTPQfftbULMTGdca2RvpsdvPQb/MG9R/QeeGqzqHwAsmnYG5hbtvzDGjOeaoWOHWR+qSqtVL0Rvx0xtzfSCg7s9AtzE1/MN0HwbW1gw/5bcXGCGHvNjh0XZibYnztCUFMePYJNfQZDi+L7uR7/tj6z/mZtyr/kkXbQC2xXUU8Z01KwRADZ/dwFlNcxn+JZpZ2DvaoeoKH78nJZgtETPER/Py8Mi2vb1b4mzPXuGF1V1bHB9tTIJcjl7/Xo6aQqwPS50q0cwv8yEwWOn+QLC2Gk+mD+dTaQFQYqdv3YzFO4AoKkJePhhNvl0si2Hk00JQrxScWJPPOrruaDo6SnAxIQtUJ+81DELh0uH+MNi6qg0mBgxX3Cm5dae7zs6grtFnTrStxdoc3PFqagSE1tPTfX998ALL4j3qVsotWVa3i0UTUDSZ8CuMOafrcRtJjBqDQtSNvciEHCPnjrQw1h4ANGrgbkJcBkyBjIpswjMLXUFZGoLTNeKgYL9QMVloDqNRVyvSAAaq1s5MdEZ1AXkwYNZCjwlV7o4Rbx6VXzOjqBN0/3qq8zSpLJZ/+jvz1IPDyRI6O5BLqVxQTV0Ag+gMtSTz/YkEgWGjfXTaDvz9hFIPpuF9IRsHE0YhufeH4cjR2XYsoWZafzvf8DVVDO88vlkWNlbQSKVYPIU9vNW11ni7DkJ/vrpjOqmS0gAnnqTz/ijx4j9F2UyYPz4Zl/uSiOuER+cgNc+1dQC+YR4YvbIM6rtexZ3TJU4dhr/rMfOsGtkp/BlMW+HnhO6AWBkaLZo23ewndZ6ZmbotvDWHuqBnMyM6zB6uqYzzfgJXDg4tJ+/tOpr63H37MNYOOn4gE5HlXs1H/tOs3Hu55KFiQsiu33OqVMBS0u24LXzz/IOm2qu+XOkqvzgo2xFi4Tu3oO65kw9ZV9HcPZmD4OSCmvI2wkOfa3mGtb8wS5gJGvE5p80hW5PD4XGPn0SGsPH5qWcYVDIFTiRwGZXrnaF8B3iiQW38gfe5gM9E9yyryIIwEMPsWBnRUVASaUdSqockZQTgFvusse+3TW41hxCZPp0CaKi2AJ1cnLHgoJdiuNC8wO35WLXz5cwe9QprPv4NLyDPbS2iZ7O5xynr2iatvcltAWFOnpUc9+uXWzhQ8nzzzPFgxIHB2B6Kymqu83VNcCZp4Cm5sUOc09g0k5g6h4g8EHAXM8TCENhMxiyqX/C3ZVpt3PKWywkFR0C/p0K7BoCbA8AdgYDu0KBP+yAPWOBuOVA4UHNAHNEh1AXrIOCxEJ3VzXd6q5vnp6t11OnpdBdWgq8/Tbfd+edLKaJf8eMe/oNJHT3IAkJ7L+zs9hPechgvuw62O1KqwF8AiN9RcFRJBJmPvL338BHHwEubuK8spNn8Yvs3w+sWSOOYi6X8/rRkzRH/sQhYputmdGnsf+ED2wctfsJffG9G2aNPI3XHo3FhHmavuXacB/kBl9nZkt+KmkwmhqakHW1XHXc27PtaO26JnrWGNG2PnJwdxQ7F1uMG8pmFzdMPKeRugwAJs7hJvG79/O+frfyOH7aMwFbDo7By69baLQbKPz81WVVUMF7bkzRGlugs5iZATGhLPdtcYUd8tLaD82ZnAwcOMAm1sHBQMx8dn8EBQEWFkxoP3dSM2gf0TNUllTi1AmmLTQy6rgJnRLl81wQWte4Kfnti9Oq2Bi3TDmJ0bPCMDlCvOLiZZ+hraneGDKMP1suXQIun05FRS1bOB0blgqJVILoaUPg3bxuvGefCVIpiLlWBAF47jngxx/ZtpEREOiZo8pGkVXsibvv5hGNJk8SMFptDeNUCxdfbSRc5uGDQ0c4Yfqi4fjrxEjc/uS4VtuMnMB98U/3oQDmdXXAY4+x1EdKk3r1BTIlLU3Mm5pYui+lqe2yZcCKFcys9aOPmLXft9+yuDF6IeABwLpZLTjoQWDuJcBzrp4u1vvw8GbzjsJCqTiAV512V0kIcqDkOEuF9s8kYJs3IO94NH+CoS50Dx4s1kzrQuh262D4IHt7wLhZJ1RQwDJhKAOnPfgg8NNP3Jp2IEFCdw9RUSFDfj6bdIeGio8NDeSr1hE+53V2zcmTefm3Xxqw6xjzP3a1K4SdHdfO+TpnwtlbM4r6/EVuKhOhO2YcwY6D4bCyb91n0T/MG3+fjMbrX02GRNpxX6Qxw5jQXVtviYtHU5CVzp3VvH16dohGj+TXs7Fugp2L7nNwd4Zd+32xa90pfLdZe9hUj0FuiB7MVnPOXR2CzMssCvEf23hQuO9+MBJFg1cnJyUP1WXdM+ta98Fh3DrtKM7817vSlgkKAet+58uydz/a+Ty4rREyiI/R5PP8jfT3z6excNJxHNouvo+/+46XH3yQu+rJZEC4D7N0uZppQ375PUxDXQM+XX4AAf6NSEllbggh/kWdnoirL6IWtxML65dN3GXliWVs1nHvHeJ70HOQC3oSa2vAp1khdfYs8OxT5apjY0YylaxUCjz6KNsnCMBXX/Vif1MD8vGLh/HRR6wslTIfxivZnjhzog425uz+VlqOAcDk0TkYpZYI4eTR9qMzXkphArRUIkfIiI6ltvPy4n6Wp0/3ncjBr78OfPklsG4dDz6oTdPdUujesgWqhaEpU4APP2TPXamUWQYePSr2d+0Uiibmq110BEj9ETj3AnDhdXEdmSnzd55xFBi9BjAx7Fyip1FqRAUByFOXs+0jgSHPAn53sWjrfnezsk0L6wubIew7VCfuRfaX+xdQ387q5gClpdDt6gpYNuvxuit0W1iwlMYdQSLhz5uCAvH9OWtW1/rRH9CbRPPVV1/htttuQ0REBKKjOxZsShAEfPrpp5gwYQLCw8Nx3333Ib2r4fZ6GWkpfILSUuieMH8EjGRsKXDG9bqLQh0UxFel4i6YqDR+j952CTt3CDA3ZT7U18Wka20/dHQgjv6VhN0bTmHDX2NhYq6fg2DlNAABAABJREFUJeGxo/ky6PEDhcjK5GZFXr5dCDHdDUaopbH0D+hAMkI9Y+diizn3jGwzfdH8mdw8dfvPKSjMLMLBC1xIb2iQ4r33NNtt/voYvAa7Iyy4HLldDKyTn1aIxS+Owab/xmHiHB/89VMH1DTNVJdV4393xmLFsli9RNONO5iES5lsmXfc0AsIjOzY5LQjBIfw+znpEtNQCwoBDzzhhS0Hx+CuxfZQyJmKpaGBa72MjcVR/QEgcii3J71wrGu5v4mucf+CU3j6vUkoqWJCjLGsAc8/2nl/ZSe1NcuiNrL3NTU04dglpkb3cMjDmNnMzHzhg5EwN2ELOQ5WJR1OV6ZLxo9n/xsagL9O8Hf22Ek8d/lDDwGmzfPgtWslqKujdXt1ygsrsPxjbqr/9ddcsPMd4oXP3hCraP2cM+A31Aujo/hi24m9LVJItUAhVyAxkz3LBrlnarWA0oZEAoxs7lppKZDWBx418fHAxx/z7R072H+l0G1kBJX1xalTbOwCTNB7/33e7qWXdBCQtSYDuLQC2B0JbDRlkcj3TQCO3w8kvs9ya1ckiNs4jwecx3bzwn0TdTNkUdow53FA1AfAuA3A+F+BcetZeV4icGMuMHY94L0Q8L1dfEKFHLjyDZCwEoidA2x2BLYPAo7cCRQewoCmLg/I/w/I2Y3kRPYecbSrhX3DAUgUDSoT87Q0cZrhVhEEoPIKi7if9Dnyc5nFgZubWmy/9N+YRcJfw4HYuWzhKW0DUHqW5Z8HF7qLilhqQyXKd81ARG9vzMbGRsyePRu33357+5WbWbNmDTZs2IDXX38dmzZtgrm5ORYvXoz6+r5vYpKfwG3xhnqIX7wBw3yw/89E/LzqCO5/rnXzsM4ikQBTxpW02KfAA08NxvgJUsQdzcd37x7Cym8jWz3HqJmhuO6ukToxy22NMZO42ds/Rz2Rlc3N3r0DenZ12NoaePFF5uv17LM9eukus+A27sO3bbc1tq5PVC2wKPnuOyArUyzYfvI5m9hnFHnhgduzuyT4/rv1iipqfm29JebfP1yVrqI91n50Bp/8Mhn/t2oy1n94oNPXbo9133Kz73tvL9fpuYOGckuC5CQmXOenFSCvjK1yZRb74OhupsH++6eTKkHshvmNGinwRH7dJ3TbT6J1ks+m4Zd9/O1/+/QjuHwuH3f/b0Knz+VsxM3DixJPtFrv4tEUVF9jY2d8RLrKIsjawRrvLDsJO8tyvPCwFtvZHuDzz5kVhlTKFz1l0iZET+H2ic7OwG23sedEebkEBzf3bMyNjiAILFCPITS5O366iIYmtirx8IJYPPSQ+Pg9z4zHjRP47HPyKPb9DQqxUaX0OpnQdkqvtPgsVX7v0ID2XVvUiQ7j9U/91fEFUkOgUABLloiFhGPHmNbs8mW2HRICTJrEyteuMSsNgLnTnWkOMTN8OIvDgYoE4PIq4Ni9THDeZAVssgE2OwN/ejEBbudQIPZ6cUcEBau/zQ84/39A+Xm2TwMBSP5CVx+/z+OhFlogJ6eDjczdAf+7gZg/mN+7OpWXgcZy8b7qVCDjF+CfiZAemAOLuni9+YK3li2gx6jNBfL2AclfAo0sTkBSEvD008CRHWeA/6ahdu/NyMlnz4Yg5zjg38nAH/YItI4FwO6ljJaeS8oHZVMdkLUVOHoPsNUT2BkEnHgA9cefQWk5e6aJTMuvFTDf+7JzQO5utvB07B7g7xHA71bAjiC4mrMFbLmcx1zw94cq7epARG+qvCeffBIAsEWZDLEdBEHA+vXrsWTJEkxvjmzx/vvvY9y4cfjnn38wd27rvjByuRzy9qLXGBC5XI7Uq9ykMCSkUaO/Y+eEYqxafV0xMfISft0yUbU9e+RpeA4eAblcjkERPhgU4aPza3aW8AmBsLFRoLJSii17B8HemkslHv4OPd63t94C3nyTLVr0pmGl/B5afh9DRwfAzzUX6QUeiL0Qieq6y6pjs6eV4+9/7dDYCLyz7Ai+2MRGWVFWMY4m8GhRe05F48s3Y/HoKzHoDPv+EU8+mppkuPdeoLpagUceaXvWe/Y0f4u99bEXbnuiHkYmunkkNdY34pddQwEApsbXsHBxmE7H0aAwPkaTUy0gl8sRdyILAH8r/brVBWPnyLFuHb/u3fPPQS4fITpX+EiuSTwbJ9P7eG9tHOmC8sIKfLPiPCZMs8f4ucPab2BA1nyaDoDFsnj3qf14/iP2nOzK9+JoyyNDF+TXtXqOw//mA2BmlOPG1IvqPflODJ54S4BEGmOQ57GtLdPMPnF/Cl5+rhy7j4/AE7cdhqmluD9L707GunVDAAC/bA7BM+/pN+5G5uUc/Lj6Kubd4oLhk9sOANbYCEyfLsWRIxI42ZYj3D8VY6Ir8Ny7UbB2sG6zrS7YvIU/v+6431br7/jlhsHInJGAtHw3PPm8k6rOqKFXsedUNAornJF6iWnAtXHxdB4ApukeGtL6WNPG8JA0ACz2x6kT1bj50Q60lcshUxXlOn8pqj+Ptm0Djh2TIDiYmbQePixe7FcogE8+UaCxke0fNkyBsWOBn35i24f2V2CU+Ud4/9kZANi77NlnFVAoBEji34E04xfNDjRViTYFYxsoWnxGaVMN1J0pBNtwwMofgoUPYOkLwSaEmUdb+PSuSYMBcXeXQKnXy8pSQC7v5iqYdQgwPxuSokNA8VFISk8D5XGQyJlWVZK/F0OwF0LBc5AvyNVpurWvv5bgyScluO02AevX9+BqnrwekuwtkFz9ln1u5W67KMBxFO6/X4pjxyT49adpyF0lRUoBj5o22K3Zzlxei8H2xwBMBgAkJcnh58cvIY2dBVRdARpKIGnSdG0prOSuTq6uAuTNFnwSmRWkAASJFJKWi1CCAqi6AlfZMQAsALDythg7Rg55dbPpg4kDIOtZa9b2aDk/0vW72PD2s81kZ2ejqKgI48ZxTa+1tTUiIiJw7ty5NoXuZPUY+b2UK+lcmyuxrEZcXFyPXNcrSGwlcP28XMTFyVqpbTiefNIRb7/tBwAoq2J+juYmtcjMz0BWYe/TphiSi1qiyIyZ4oX034CmJimOJzJh08c5C8+9kIcjR0NQVWeDH7aNwo07YuHkbYf/NmZCEG4UneP5FSPhO+RfuA1iY7W9d5agEPDfCSa0mBnXYe68cmz+ky1hPv64BBUV6Zg5s/VQvJczuIB6tSAQ7624guvni4OJVZVW478/yhA+ygT+kdqD2mVnm+DQITvMmlUKBwcmAFw6WoSiytkAgFkjTyA91wrI1dq8SwgKBSxM7VFbb4nL6U6Ii4vDsQM5ALhp6W9bHbHwlqPYcYRFSXK1LYBLkKBx7wuWDZBJmyBXGOFsglOPPRu0jaPu0NTYhCfuNcOp5Clw+KEUO3adgKmlafsNDUBTQxPWbWWLTsayBoyZLe3W9y4HH+dpVytbPdeBg3zC5jmopsd+605hCrz2mRFeajwLI2NrjT7K7IBRwXE4mRSJS1nB2PjtdoSO1x7S9szebNRUCoi5yatTcT7UWf5oPfaenoKvfyvE1p0n23Rz2rvXHkeOsNgNxRV2+C9uOP6LA0pKduOhl/QbFLOu6hr+PskW1NzsCmDh3tTq7/vVzwpIJKlQSCWqOkOD8rCnWfn815ZzGNugPTjAiSPcncjZtaJTY8jK5Ro/z1nN31Yb0ro6KI1xLly4AEUnklpLFXUwbiqGXGqFJiO+uGjUVAyXso2QCvWQCI3wEZrw0x8jsXjF/2k9z7335mPdOva++OILBZTCnKNjLhwdKwAwn72jf+7HiOrD2HPuTQCAh0c9AgLiERcH2DcMhTKqhwAZ6o09IUhkkAoNkAgN7L+iERUNdkhr8b0EwBumplKUWU9DqfUsNJioLYjUNf8VlAMo7/B309+pq7MGwFxp4uIKERfXUXV3ewwGpIMBp3sBxyY4Vv4F95I1MG1kL/haOOLyeXFMFaOmYjTJ7AGJ5txXIjTCtCEDCokZGow9AImmVed774VBoTDFL79I8Mgj52BpqefsEoIAh8rd8CpaBWO55hwq89K/uCq3wPHjLCBrYYk5/il7FZk1/BnnFOiFEpu5sK45gUA37swdG5sDV1fuAxVWkgDTJnFwO7nEHNXmkai2GI4z5dxV0cioCHFxLECQRAgFBh+FIDGGcVMBzOuvwrwhFWb1V1m5/gpcbTUtcfy9LkO2nb17r3iuQqVV5y3LegJdz4+U9Bqhu6jZ/tLR0VG039HREcXtRKYJCgqChUXvjdAsl8uRlFUOAHCxLcLE6T3n0BARLsDXORsZRV5wt8/H/c/MhrFp53LQ9gSRkUBBgQJr1vAHnrdTLqKGR7XeaIAhl8tx8eJFDBs2DDKZ+OXxwAMsYI86C2ekYNLUiXjizoN497spaJSbYPdGGT7+KRJvPstXFyeEnsfhSxGorbfE9bfNBADIZAIeeUTAZ5+1vqp7JS4dWSVs8jFhWAJ+2xSJ5csV+OADKQRBgtde80OETwlm3aaZYg4AruaKA6Fs+CkQL/6fQhXxEgAeuP4o1v91A+x+LkdqqqAROb+mWoH5842QmyvB2bNe2LePvQx//ZVP8G++wwmRkbpPkRPkeQVxqSFIK/BB6BAPfJ4jtj8rLTXG6o880ChnQsIdcxMQPXKitlNhiHcq4jMGIzErEEOCGmFqoT9hta1x1B3ee/oATiWzBYbSageYKewREdnJMOA9xB9fn0BRJbNWWDDxDCbO6N6L/1oBf5Veq7dBZGQkGusbsfnb0/AJtMK465jW/1Qim9xYmNbg+tun9cpncUd44tFjuLs5v+ob70bgr78VGDRMnBpo14ZTeGQ5S2r/iSQWT7zVthVNQ10Dfl59CpGjHRE1id+vccns/V9Y4YKsCylY+Ehkq+d48kn+/nC0LlH56v++bww++tG0w/7PXWHTl8dR38jOf8PUyxg+onNjKmnUNeBnVq6rskVkZKTWeh/ncMF54owQRER2MHFuM95OOcgq9kTc1WCEDzNr33VMLal1eHg4j8qkjbo8SNI3QJKzDahOhaSezesUgx6GEPmlWr18yLbPVm0mZA/Bk59o90u65aYafPWVM7ZsEVBVJUF1Nb/XZkUm4TqHlbC12ISKWjtsPXUDtp66QXX8hReMER0dyTbqfaDIsITgNA6wDYVxKxo2W0FAZMsV54i9gEQCN6jbMhFtYab29TY1uSAy0rn1ys3U1AC//SaBhQUwbJiA4GCI5gPaiQbkL6Ap9QdUJ/8Oa48R4ntHUEC6ZzhQXwzB+xbALhyozQJqMiCpiAcqLkKiYMEA5AtyADMuuEr/m4rM5Dzk5HDFnlP5KQSHhAH2wwGpHp7fdfmQnlkKSf520W7BOhiCxxzAOgg+rtNwdOcgCAIfp+frXkGj2ncePWMK7K6bDAgC/B3qgDVsf329FyIjlVHuFJAWeUGovgZITSC4z4XgfSPgMg1WMhNYAYDatCY01AmRkWIZrTWEuly4nNEMDL3wJkeg2ds2IMAf8Ijs0Pl6ipbzo9raWt0qdoVO8MEHHwhBQUFt/qWkpIjabN68WRgxYkS75z5z5owQFBQkFBQUiPY/+eSTwlNPPaW1TU1NjXD69GmhpqamMx+jx8nPKBCY44QgTIk82+PXP7gtTrhr1iHh0PbzPX7tznDtmiCMGtmk+q6mRZ40dJd6FU1NTcLp06eFpqYmjWMNDYJgZyeovjtAEI7svCAIgiAUZRUL5iY1AiAIFqbVQvbVUsHcnNVxdaoVKksqhcEeqaK2yr8LF1rvz5evH1DVW7HsP0EQBEGhEIQHH+TtLUyrhTP/JWi0Lc0v03q9H37gdeRNcsHRqkh1bP2HhzTO88Gz+0XtU1PZ/tBQti2RCEJxcSe+5E6waOoR1XWTzlwVRgbFa/1Myr+4g5dbPdfdsw+p6p3dr/l96ZK2xlFXOXNGEIyMmkSfd8u3x3R2fl0zY8RpVT/3bTzT7fNdOZeuOt/t0w8LgiAIX7waKwCCYCRrEM4fShKyMhr5eyAqrtvXNCT1tfVCkCd/ZrjYFgpn9yeqjivkCiFqUILoeHV5dZvnfOwW9n1ZmVUKZQXlgiAIQmVJpWhMXT/ueKvtz57l9UJD2bPozpmHVft+XnVYNx++FW6ZclR1rX9/7/x7/uC2OFX7p2+PbbVeZECiAAiCVNIk1FVf6/R1bow5prpO4smU9htUV/MvtrrFb6iQC0LZRUFI+lwQ9s8ThF9kgvAzNP9OP92inUIQNtkJws8QytfYCEHul1WXWDjyd+GjO5cJ98asFR6d9qVQmp4kCIIg3HST5jM16zNPQfgZwuzw3RrHwsI0u0v0HBUV/LeYMqVjbe64Q/wbmpoKwptvdqxtq++1zD+1j8mWf1vcNU96cKGw7tG7RX3a93/TWP2NloLw7wxBiH9HEMrihbffFoTAQEHYvl2tvbxJEErPC0LuXkEovyQIDZVtf4iM3wXhdwdxvw7cKBzbdUYIDlYIDz4oCHI5q3rvveLvau5cQbj/fr59Vu0RlJ0trtcZvv2Wt/322861/ekncR9tbAShqaZEEA7exP5KTnfuhD1Ay3GkazmzU9GxHnjgAezevbvNP29lKMlO4twcXaikRBz4q6SkBE7qoWH7IAlnslXl0KCez8UbMz8CG/6egAnXdyx3tqEwNQU2/y6HlyPTBl1/naEjV/QdjI2BObN5FHgP+xyMmc1M7py8HLH4Bma3WFtviVtvrkYdc4PC9TeYw9rBGlu3yHHdqFMYOywVQ4bw865Z0/o1/93PV3mnzWGrwxIJ8wu9adJJ1fUefIiZ86qTHMfvicgg7j7w1ltQ5fSMP3YVJdX83v/td7H2t6aiBu9/K04FsGkTCxRyqTkA8JgxgGPHFmY7TdCgBlU58VwRLmX4AQC8HPM00mqE+ychIia41XNFhvPv59zxdnJO9TKuXQPuvpv586uTeuVaKy0MS9rlYuw7w8yA/V0zMXVhZLfP6exppyoXlTJ1w+Gj7Ptokhtj5atpOHKMa+jGz+ndz+L2MDE3wd5/jDHUm2kACiucMWmOhypV3va1J3DuKn+QFFY446u3Ww/clX4pG99sYa5l1descT6e3etX48U+IX+dGI7CTO3h4Ve/zs//+OPsWfTwUn4jrlmrP2u4uqo67D7KrBkcrUswcX7n4xl4BTioyjn52k3o5XLgcg7TbAd6l8CsC+4bI4fz+/LUoVZyJneUU0uB3cOA048DuTsBQc3/0cILcJ7A0kI5jkZFBfDvv80RxiUSYMrfEKYfwX1/piE5jz0bI4bVY/0mD/zvBTv8+OqP+OqpT2Bvx56NLT0M7SzK4OnATJZvnbxftX/MGOCLL1iKoraU8oR+sbHh6aVyO+DalZIC/PqreF99PUsZ10Is6BwmdoDXDYBU2z0lYb74PrcCgY9qHnYcidirYje8nNJmLXFTDZC/Dzj/EqpOr8arr7LP8MorAIqPA//NBP6wB/6KAPbPhHzHMNw7bQvGh5xExpZngMzfgdps8fXM3YGGZgtAU2cgZgswcQs++H44kpIk+O47YN8+JsLu3StuevAgDzAIQBWxHGBB7ZReIZ1NG6aeo9u1kx46Li7i7bFjAZmFAxCzmf05jNDesB/TKaHbwcEBgwYNavPPpLMJTpvx8vKCs7Mzjh07ptpXXV2N8+fPIyqqb5sYJ5zngnZoKOU2bQsvXxMkXrHG+UPJePJt7aa4hHYWTOF5sm+cellkNvi/VwIglbAJ0ZFzfGFs/nz2f+joQOw+MRJHLwTgyBHAzIyZlW/4sRZ1VXUa15I3KbD/DJso2VmWI2oSFyhlMuDnXeEI92eRK89dHYIv3xAnUU2+VK4q331DKmbMYOW0NGDv7+xzxP4lflPvPR2JEjWT9C/ePKUyEVby6y8K7NrFt+fM0ei6zggO44GZ9h5wRG09m+GNGJKJG6aJ32z33tL25HZYFD9X0mX9BqbSNatXAwnNmXIcHfjCT1p673zWff8TX8h58I58nWRmsHG0gbGMLcIUlbFxkFzKUwVtPDANv2zgi4jjJ/TO76YzeA12x1c/FGB8KBO0q+psMO82P5yNTcLrH/pr1H//21DUVNTg4kXgppuAhx8GqpvTk7+zPBVNcr6Il5TCFi5SLoldUJrkxvj1d01Jqji7BL/8xQRdW4sK3HUHG4cx14cj2JPZMsaej8KVc+nd+9Bq1NcDBw4AiYnA7l8uoqaeSRg3TE7oUkBIjwA+Q83O154MNy0NuFbPFnNCR3Qtl3v0GLXn1t42KmpD0eLZ5DhSvG3uCYS+BFyfAtyQBcw4xNJC+d2Gm24Cpk8Hbr65ua7TaBy6PA5bd7PFBnt7AVu2msLCbxww7FVgeixwfTJgy2KUXHed+FLhQ6shiXofmLQT933yHs6eBa5eZRHOly5lQh9hWJRpwzoSvfyjj3gg7QULoMpdr1BA9E7vNK6TgYl/4tqcQtyxMQ2LNiSjMmoXcF0ccEslMC8Rl51+Q57Tq5pth76A/VfEQne2xWMsnZk5D89+vuoeKJrdvC9eBGpKS5hArhakb+fZeVh/6F4cTRqFlV8NAg4vAs4+I76e83jAbSbLWz73EuDNrq2el/7zz9k18lpMKaqqgOPHWdnNjWXiUSKRcCE8NbWDacOaURe63TrpW9FSSB/IqcJU6ERfroWcnBwhISFBWL16tRAZGSkkJCQICQkJQrWavc+sWbOEvXv3qra/+eYbITo6Wvjnn3+Ey5cvC0uWLBGmTp0qXLum3YSqr5iXL705VmVecXDbOUN3h+ijtGcW3FjfKNw165Awcdg5ISclT+P4bdOOiEx9zM0FobZW+7XunntGVW/Dx5pmmadPyVXHb5oWr/UcR3ZeUNWxNq8Q9enlh/5THdvx4wlh27qLqu375x4UBEFsBqn8++arBkEQBKGqtEpwsilqNiGXC35eFao6Q3wzuInVGXmb32l3OHGC98vdnX8fLz8WJ+xad1K1LZU0CXmpBW2eKy0+S1X/xmmJbdbtLro2L7/5Zv497PijVFW+blTvdA+JjGz+XaSCkJOju/N6OOQKAPuvUDBTOm1uBhKJIJSX6+66hkI5jqrKqoRZI0+pPp+FaY2qHB2aI9yq5oYxe8JVwdSUfxczxmcJiSevCkayBtF3tGwZu8aKZfs1vr/hw5n5+tdvHhDmjjkhPDDvoHDzZG7aveyO/aJ+qrugPH/vfo3P0RUUCkG4/nrtv+/uDV0f98pnmo9zltbjW7fy67z8cteuUVFcIViaVqnO8/fPp1qtW51zWfj1xY9UF21K2iauUHVVEGLnC0LCR8xUVK79mZKSIv6O9u9n++fO5fvWrm3/WT18OK//+OMd/cSEoZgyhf9eFRWt18vPF1TPBSsrQSgrE4TDh3nbm25q/1rtvdfWr+fne+klvv/339kz2clJELJa3HZpaZr396OPNh9UKAShMkUQkj4XPlslfn4d+PMsN1k/uFAQzr0gPDSfz3kCXFLY8V0Rmh2VN4o2a2pY/9TfH0uWiF1pWvYxJkbztDfeyI8r3fA6grpbR0ZGx9sJAvtd1fv177+da28I9G1erjeh+4UXXtDq8338OPfJCgoKEjZv3qzaVigUwqpVq4Rx48YJYWFhwr333iuktjE6+orQPTnirGrQFeeUGLo7RB+lu8LSmf8SRA/ABdeVtlr34LbzqnoTh53TOL5yJT/PF1+0fs0H53O/70VTj6j23zK/ULU/6WyWUFddJ1iZMf9NB6sS4VrNNcHBqkQABMFYVq+qq/QNe+dJPpG+ffph4ZMXYzVePO72eYJCrujSd9URSku1T7p/+00QGq41CN5O2QIgCAsnHW33XE2NCsHYWCEAgjBsmN66zK6lY6E7Zvw11WevqVao4gcEe17Vyfl1jZcX66ubm27PG+F/WTVe8/MUWsdGT/y+PYX6OKqpqBHGDT2v8Vl37hSES8evCBKJvNXvw9aiXGPfnDnsGg/dzP2c7Wy5T/z4MO3xEyQSuZASly7qZ2FmkeoZ4mJbKNTX1nf7s/+6rqLVz9Kd8yvHkJGsQZA3aQqh77zDr/Xrr13vvzLegPI5WZIrfhfUVtYKj9/8j2BlVilYgPt0//T8Z1rPd/WqINx9tyD8/LP2661eLf6eJk0ShIsX+bab2zWhrq7959HLL/M2nfUvJXqeu+7iv1dCG6FK1H/XZ55h+5qaBMHZme2ztBSEurq2r9Xee+3xx/k1nJ3Z+ZqaBCEoiO9/+21xm7VrNe/xefM0z63uSw0IwgcrGwShJocJ5gL75+kprnPlz7cF4eTStj+UIAinT2t/bir/1BfilH+LF2ue57nn+HE1XWe7jBvH27Wi/2yVpia2uA0IgkzWN2Is9FmhuyfoK0K3c/Pqtatd29ougmgLXQhL0yO51umH92JbraeQK4QQrxRV3cunrwoN1xqEi0eShZ8+PiwMC+MT4MutxwcTinNKVNobQBD2bz4nCIIgRESwbSMjFgROEASRRuyDF0+oyjdMOCYMHsxXed9edlKQSppUk+zEk1eF7Cu5GhP7xdcf7PL31FGUkwL1v/hmxf+Vc+nCmncOCqX5ZR06V3Awa29urnpX6wVdC93KIHw2FkyVEeqTLACCYGpcp1VwMDTW1ux7Dg7W7XmnD+fB2XZtrVaVZTJxgLlHb9duGdLXaDmOSvPLhLChdarPOXIkH8e3Tz8s+g7uvrVMtTijLrBaWLB7eJBvlSAIYk3Zm280adxrLf9ujNEevE89yNkzT9UIjY1aq3WI8sJywc0uX3W+2bPZWHK2KxW+eetA108sCMKcaXwxMj9P89658+Zi1fG2gly2h0KuEFkn3HpznejYPdfxwI7qQvd147VHpVRqrI2NBaGoSPP47Nmav5XyHcAErcwOPY/y8tii1fDh/cNapL/zwgv8N167Vvt7rapKEOzt+XxAXdusLszu2tX2tdp7r40fLx5/69YJwpYt4n1hYeI2LYOVAYIQFaV57qgocZ1bbhEfP39e8zxtKSvU+fHH1p93vr7sO3V1Fe9fsULzPOoB0Tp6bUEQhIAA1sbevuNt1FF+N9Omda19T9OrAqkRXcPKgeWnjBnft3w1if7Hx587wcsxF+OGXsCiJdGt1pNIJXjw9izV9qTpVrCyUmDY+MG463/jcTGe+Sx6eQFBbWSFcvRwwMr/477mP6+rhEIBXLnCtgMCeEqQhTdzP9e3VvNARFPmeuO221hZEICXPxkJhcD8Gp+87RBCRgbAM9AdE4epOT4BmDNP/+mYglvERjM25t9HYKQvHlweA3tXuw6da3Bz5p+6Ok1/rd5MfhmLVOdmz6Ld+A9iwZ3qG82Ql6vnfKadRN6kQFWzm52tZbVOz+3kxX1sj/2Tqio/fm+qKp4CAIwfWa7T6/YW7F3tsGefGYYPBxwcmK+/MvPSO5/4wMc5G94uRdi5E1j/mx02f58AIxmPAbDs3nMI8WBxINIyzVFfW4+rV5vPbQ8sWSoTpQ9ytSvEjh9P4sSeS/j27YP4+IVY/PCHWhRINZY8xnPpfPSpBSZOZP7RXeHlx+OQX86cFRfEnMJff7EARoVl9nj45e7FIfEaxGNUZOdoTs+SLzAHS4lEgcEB9V2+jkQqwQ+/esHelgVV2/iHGZYvZ76eX75xCOv/YunOzIzrcP8N/Ll64IgZMjLE5yor477hjY3AiRPi47W1wP79rCxV+0jKVMr29gIWLOhY8Eg3N+bfeuYMYGvbsc9KGA6lTzcA3H8/EBICfPYZe48r+eEHNoYA4M472ZxCiTLmDABs29b1fsjlQMuU9KtXA++/L94XH8/+ANZH5bg1M+P+ydktYp81NPA2SlreA9p80vfs6Vjf1dNFBwSIj82cyZ6xkyeL9yvnEuqoB1brTDC1guZU253151byxx/AqlXAunVda9/v0InobiD6iqb73LkmYenSbCErS3cpeoiBhz5SPbWFulmmtj+JRBA+/rj989RU1AhmxrUCwPxdMzO46a26qVZVWbWG9gtgq8SXLmle/9m794s0qV+/yU3ZjWX1QkVxG05kOuKBG8+K+jRsWNdV1E8/zc8TG6vDTrZAl+OopoL/XjFhcYIgCMKTT/LPcVD/xgadoqyAmzLPjG7dl7UrPPEE/9xTR3ErkV3rTqo0vTJpo5B5WYeO5AaktXGkUGjXaCnkCg3Lh42fHxEsTauEMN9kobywXLhjBteIn4lNUfkyjhzJ6j//vCBIJArh+onxQkFGYaf6++HbhYJMpqZZt2XPls5wat8llUWNhWm1kJGY3bkTtMMbb/D+bWvhPq2QKwQ7yzKm4WrF57uz/Pab+Jk6PLxK5F+/8fMjopRhFqjWMMFdt058jldfFR/fsUPN+mgxt+hR/i1fLu/R9xrRc6SmarcG27eP11E3X25pvVFdLQhmZuyYuztPl6WNtt5riYltW8ioPxeU/t6pqWrP86mCMHYs31Y3dT93Tvs589TC6kyYwPdbWrL/VlaCUN8BT5RZs3hb9XsJEIQ//mB1vv5avF+bFUxmJj/e0bRhVVW8TUfTvvV1SNPdDxg2DHjggXy4uxu6JwTRcZy9nbDsrqMAAKlEjiHeV3HbtKN496lY7Pz1KrKzgWXL2j+PhY0Fpg5nS8G5pe7Y9CPXoKtrya3sLDF7tFhb7egIhIUBQ4cCUYHJqv0fPheLD9ZPFkWeXnh/KEyNmeZmStQF2DjqP3xtkF+FaDvM/WSXzxXolq4qpxw73uXz9CQFmTyXi5szi86tvhrfVW2ivqgo4dFkba0b26jZeZzVAumfuMhVPEHhLvjip1A8d08sNn5xCt7BHlpa9x8kEq7hFu2XSjQixS96bByKS4xwITUQts62CB7Mf5M9u+tUGrFBg9j/lSuB6moJth8IhYuPOHNBezzzkjOOHAH8mwOrV1QAd95cjGs1HU9t9+ZrVVBOm15//BR8QjzbadE51DWDLSM+l+SWorzGDgAw2LtAJ9e79Vam7ZM1Z/s7e8FKFUX+2btjseixcRpt1q8Xayo3bxYfb6nl272bl+fPB15VCxJtago8/rgAon/i78+0qj/8II5crRwzJSU84vaQIWyurI6lJVSZTfLygNOnu9aPc+d4OSRE8/jKldwK49df2fiOjeXHJ08Wa+DVU6Cpn1s9YvjJ5qlAaSlwlE2jEBwM3HADK1dX88/eFkotur09S5un/B5NTYFp03j/1FHXaivx9AQsmrMmKi0N26M7kcsJ7ZDQTRBEq6z4YRLy04pQXdGAhMxB+PWfcfi/VZMx97ZB8OiE7DDnBjtVefW3vBzsKJ6hLbxRLtqeNIm/DNevk2Dx9Yew48eTeOb9yRrXcPJyxMavzuPB+Qfx+bdOGsf1QfBQM9F2WIhmerWOMtiHC7ApyV0/T09SkM0XHdxcWMosf7VsUampLVsYlvJinrZLn0J3TR0bF0ayRvgN9YS9qx3eXzcZCx8dq73xAMbM0gwSKZPSg4fwlKO71IS1QPd0VdmiG+m2R49mZqbhYUzQjr/ihFeWsJlvfW09/lxzHKf/SdDaVlAIOHyerRI62xTh6Xd0n//G05Xf9znJmaJjyef5TH+wf43Orvncc8Dhw4C/H3d/mxJ5Du99N0Fr/eRkLlhXVWmayZ48yYVyQeCmtSYmwNSpTNBXCgnLl2vm8iX6FzY2zLT877+ZoAgA27ezsbFnD1SptlrmYVeiCxPzs2d5+e232WK+Em9v4Mkn2dgE2Dvrzz/FpudTpoiFbvUFMXWh+667eFkpdO/dK/6Ms2bxOu2ZmJeV8WuFhbHFzB9/BBYvBn77DbCzY8eCggAfH15W5uRWRyrlZuepqcwVpD1I6NY9JHQTBNEqEqkErn7OMLfW8hTvBHNv405GGTlcAx0UYiqqN++uMFW+YwCYPJbn6Q0bNxjfbY/BvHtHtXqdBYtHY822iRgc5det/naUoGFi4T4sousSQWAYl9qupJq1UbP3kJ/NJ/+uLmymHeDPNVepCbrRyOmKilIu1Nja6Nbf3NlRcxbj75rdpZzNA5WQCD4bPnaJ+2cPcsvWVr1L2NgAP32dCRMj5hP90U8T8cbSWIT4F+Kmh8dg5Iyh+OXTIxrtUi9moqyGxWcZHZoGY1Pdx4zwtOdWQDlXxM7TVxL4AtfgQN1qh8eMAc6dqsXyxbF47JYD+GO3X5vjdv169n/XLpavXJ2yMqh88RMSgMzmtYPJkwErK6ZV//tvICMDeOUVnX4MohdjZcU1s7m5zC9f3dd5zhzt7a6/nlvOrF2r6VPdEdSF7vHjgYce4tvLlrFYLMq4MQCwcCGL0wAwK5tRo8RWKOp9UPcVf+QRXlYuTLX8jErNPdC+0K3uKx4Wxv4HBgLffcc15gD7ftatAxYtAr79tvXzKS0Lm5o6ZoVGQrfuIaGbIAi94+fHTMRbEhQhfpLbOtti5ohTqu2p40taNulVDBrmDYmEC29hI7vuQ+IT7KEKLJWS6dDtvvUE+bl8xu3mzmxU/X24Nrn3Cd28v7oOxORkdElj32DvjgWIIhiDI7xVZWWwRAAYFGKtrXqXGTY+CG8/dQwAIAhSvP7VZKQX8mvf+8wo/LXhlKjNqYNcvRUdWQt94BXI1b7ZeZaiY1eSuSY6aGg31P2tYOtkg3e+m4zPN02Cg7u91jrmzWuBv/3GAiypm5ZPmcLLrQkcSkxNmWZOmxsC0X9ZsICX//yTLb4AzCx7gnbDCri6cu1wXh4LHlbciceqIHBttJsb+3v5ZeC++4AnngAee4wdu+kmiAI1Akzg3ruXWWmoa7qVQrdCwYVub28gPBwqN9JTp1gQQeVntLICYmLY9SMi2L6zZ4Giotb7ri50tzS9b8nkycDGjcw6sDXU3fmSk1uvp4SEbt1DQjdBED1Cy5VsS9NquPu7atRbucoVMWHn8dKDsQgdqyUMZy/C1MIUga4sFKi1WSX8hnbdx9PIxAgBbkzTlZLrCUHR+30dC/L5goOrB5uRW9pawtWuEACQltc5v1t9U1HOtdFK0zxd4exhpbEvKEA/wll/xcLGAj7OmqqswDDdz/j+914MYsLOi/YFuDHtcpPcGAsfjsIRNYX36ZPcAmfkGLFArCvsnG1hbsLGTE6ReFXoSio3vR8c1jPuMy1RCk1lZUzAUArVjo7As8/yekrT2u3b+b7WzIeJgcO8eby8ejXzdwaYIN1S4FVn7Voe1yExkc0lqqpar69ORgaPjj58OPtvacnO+dlnTKAGmM/07Nm83fDhwJEjPEaJNvPy1FTej6gotog0qtkQr6KCWZAoFwhmzODXUi4iCAKwb1/rfdem6e4O6tlWSOg2DCR0EwTRI8yd3SDaDvLKUvlyqhM6NhAHL0bg7TWTe6hn3eOdV0sQ6nMFH74UpxEoqrMEejHNfk29FfLTC3XRPb2SX8A/r5snF0T83ZiGO7fUHXVVvcc/vbyMxwywtdOt2bezh53GPm2pW4i2CfYRW0dYmNbAzU/3jr8yYxl+/sMZUyLPYVrUWezbeBbJmV64ZSqTGOuuGWH+fKC8nNU/dd5O1XbERD+d9wdg7jyejuy+zykWC9bJ6cz6RSZtgn+ol0bbnmD5cp46qbCQpTcEmKnrWLVwBSdPsqBXykWLIUO0B3ciBhYeHlwoVRea21uQcXNjwqm6Fvnxxzt2TXXTcqXQ3RrvvQdERjLf7NhYPtYB7ZpudX/uqCj2f/Rovk+Z7svSEnjpJb5f3a/7r79a74+60B0a2nbfOwJpug0PCd0EQfQI4ydIYGPO/RKD/UrbqN13uGXJWMRnDO52jl4ACPTjmtGU+Pw2avYOCoq49s3Nl5ukBnhXqsrpibnoLVSUc828rb1ufXId3OxFrgYAMHiIpvabaJuQQHH+9EHuOVoX53SBd7AH/jsXhX/ODsf0RcMhM5Zhw+5RKt/T0lIWvEneJOBsCltB8XbKgauf/iw4PJ3LAQCVdbaoLmPfhaAQcCWHzfr9XHL04k/eEQYNYnmyW1ot3Xwz0xQqJ/XnzrGAVUqefrrHukj0ctQDoym57rr22/n7Mx9om+aQMBs3dkzbrU0wbo3QUFZ/wwZxJHIAouxDSqFb3Z9bee5RLULOODszAX7ECL5vwgR+/r//ZnnEWyIIXGj38AAcdOBxpr4InJTUfn0SunUPCd0EQfQIxqbGmBn+j2o7yDunjdoDE3VtUEpiZesVewn5jXwm4eLNBZEAP27GnXa59yyuVKhleLO1N229YheQGcvgaC3+rEHhFJq5swQHiwXsQV49O35MTYE33+TbmzcDSckSVNcxS46RY/W7kOLpyoMT5qQyrXd+Zjlq6tl1g3wMawHj4gLs3AmsWsXMyq+7Dpg+nR1TChz19TzStIsLcM89Bukq0QtR9+sGmDDaUYFu2DAeIby+XpyOrjU6o+luCxMTrvluS9M9ciSPF+Lnx6w9oqM1z6UMqFZczDT3LcnL42bx7flzdxQHB8Cp2YCmM5pumUwc8Z3oOiR0EwTRYyy8k79dR072M1xHeimDh/AASSlXmtqo2TsoKGQaNwcHwMSMm2v7B/AgWKlXeo9fc0UNN4G3c9R9hHhn23JV2dSkEd5B/Tsntz4IHjdStD3Ir+N5tHXFmDFQpUTcs0eO//ZxF4nosTqOwNcCLw++YJWdylaJrmRyK5LBI7QkGu5hJBLgqadYEKjduwGj5lu/pZYPYPXM+kYyBqIHCA3lftJA61HLW2PhQl7+44/26yuFbnt7wNe3c9dqidLEPD+fCf1KYdnBgQVSA5gm/u+/WcqxEydadzFS/9zaFg907c+tROnXnZvLcoW3hVLodnFhgjfRfUjoJgiix7j1sXH47KUD+HT5Acy9e2T7DQYYgaFcM9rb04YJAn8pu7aIhxcQxG3zUlN7T0C4CiM+5my9g9uo2TWcbLmWclCgDFIjmql0lpBQcXrCwME9H+JaKgVumsZmvQ0NMqxcyd0GRur5seXpyT9vTgYbT+paqcFDdRvJvTu0jD6u7s8KMF/WJUt6rj9E70ciEQvOLTXf7TFxIte67t7NIoS3Rl4ef0cpA511B6XQLZezCP7KIGmTJ4vPPWYM8NxzbeegVzepV4/y39DAAhC+8w7fp0uhW92v+8qV1uspFCxDAUCm5bqEEogSBNFjSKQSPPF2GzktBji+Qzwgk8khl8uQUqwjmzI9UV3NJzwtX8oBQ7mpeVpm71k8UAbFAgBbO90Lc84OXCM6OOAaAN2ndurveHoClub1qKlj5v+DggzjF7/whiZ8voGV1dN3qftm6gNPbx4nISebWbuoT457c3C+iAgWhbqxWVn/8MNMw0gQ6rz8/+zdd3hT1RvA8W+SDlq66AAKLRQKHdDF3lO2ylJxoKiAAwG34hYUBRc/RFARFQcoogjKEnGwN1Ioq+yy6aCLtnQk+f1xaW5Dd5s2He/neXg4yT335qS9Te57zznveU1ZKzo4uPR/TzY2MGKEslZ1eroyz3vEiILr5h3+XZ6h5bnyrtX94Ydq+d57S3+sRo2UGwH79im98ZcuKUHu7bfnX4vckp85eYPu6OjC57lfvar8jkCCbkuSnm4hhKgibO1tadZM6R09ccYJY9XpJM7nyll1DfUG9ZLMtjX2b4itTslWf+pC1bnqzjunOzchjyV5eagZ+gOalXBNG2FGo4GAFuoQa/9Q6wzR73F7KF4u5ovotvBLrfAgsrGf2pN9Ic4NMA+68140VzX29upIABsbSaAmCubiArNmwSOPlG3/kg4xt9R87lx5M5jnDv92cir7cnh59/vuO6XXP2/A7eWl9Hhbak43lDyDuSRRqxgSdAshRBWSm0wtNVVZlqequnxKTYTX0N58vWOdrY6m9ZWs5UcvtGTbtkptWqFyg+66ddV5qJbk5aEGiy2bVv1EeFXVsDuU3u3WraFpkHcxtSuGzlbHiL5HzJ5r7x9V4a/buFUrU/l8WgQAxw8oV+J2tnqaNKnwJpTLrFnKeswLF1Ll2yqqp7591WRlq1Yp86sLUprM5SXhU8BKfcOHg4ND/udLIu+87pdegrNnlXKbNsr7unBBWabPkkq6VrcE3RVDgm4hhKhCzDKYn7BeO4pz5YI6f7lhw/xd8v27XwIgK0vLLbfAypWV1rRCJccp6WDd6iYXU7NsevVXukFtdNn0HVC3mNqiMK+/riQh2rHDugl87hhl/jts3zarkJqW09Bbi/bGldmFC2DQGzhxVpnE2rzBmSqf0KhTJ+VvPTfLtBCWZmenLj2WkgJ//VVwvdye7rp1LTMto6Cg+557yn68jh3zZwVv0ED5+7n1VmWqhqX5+6vzzyXornwSdAshRBXSwl9dtPPUkUQrtqRoly+pAUiDhvm7jd/7srNpKaHr15V5dz/+WFmtK1hSqjJf1rVOXDE1y6bfqLbsXn+YgzvPWW1YdE2g1SoXpE5WXua8z8gw6tVVlyzr0NWtwl/T1lZNTHjhApw/fonr2UpXWssm8RX++kJUB3feqZZ//TX/9qtX4cwZpRwRYZmbd3nndIOSryB36a+y0Olg0CD1sY0N/Pxz/texpDp11Czu0dEUOoUtJkYtS9BtORJ0CyFEFeJtu9NUvhK9v4ia1nX5kvpt3bBx/mRpzi4aVq9Wk8zo9TDh8RwyUjPy1a0M2ZnZpGcqPZeudSuuDe37tSKwXfPiK4oqz9beltG3KkPKPZwTaNencrKY5V50X7kCR/apc0wCmlvnb0eIqmbAADWQjozMvz3vc5YYWg75g+E771R63ctj9Gi1/NFH0KNH+Y5XErnzulNSCp/CtmePWg4Lq/g21RYSdAshRBVS31vNeB0XV3UzqV2JVb8+GvgUvIyRnR0sWgTDBylj1ZJTbFj53b4C61a0lAQ1sZmrc+Wv/Syqp5lftOerGZvZuC6Ruq6VM2WgsZvSzWQwwGdz1TWRWgbIJZsQoPTY5g73Pn06/3ZLJ1EDZZh63kSK5RlanmvwYGXps3Xr4Mkny3+8kihuXrfRqEzvAWXufFVO3ljdyCe4EEJUIfUbqWNqY+Oq7qqOl+PsTeWGvm6F1tNqYfK4S6bH335fARPVSiA54Zqp7OqcXURNIVR1Xesy9qUetO7SovjKFtLY7Yyp/Nu2bqZyy+Cqs0a3ENbWrJnyf2Ki+coUYPnlwnKFhyv/N20KvSy0+ungwUrPfWUpLoP5hQvKEmagrEaglUjRYuRHKYQQVUh9HzdTOTbBvvCKVnYlQen102gMePl4FFm394hwfD2VbOfrdrfh8umKmVNdlOQEtcfQzSWn0l9fiJIKDsr/XOsmx+k2pFX+DULUUrlBN+Tv7c7t6bazg1YW/LP58kt44w0lu3hVT2pYmJvX6r7ZTnWGGx07Vnx7apOq240ihBC1kHvDemg1egxGHbFXrZxJqgiXr7oB4Ol8FRs7zyLranVaHhh2nHe/aozeYMOP8w/xzMzeFd/IPJIS1CHlri6GSn1tIUpj7AsduHJlA9euaQgL1xLWwZOwbi2wtbfOKBEhqqK8QfeZM+Dnp5SvXVODydBQy2YB9/eHadMsdzxr8PdXy7nJ5vLatUstd+pU4c2pVSos6P7ss8/YuHEjR44cwdbWlj15Z+UX4qWXXmL58uVmz3Xv3p2vvvqqopophBBVitZGh6dLHLHJXsQmuVi7OQUyGoxcSVIC7YbuV4Gig26AMROa8O6Nj/Jvl3rzzMwKbGABkhPVxVxz13gVoipydHHk7S96W7sZQlRp5j3dGlPQfeCAmpXbkkPLawpfX2XZMKOx4PnweXu6O3SovHbVBhU2vDw7O5tBgwZxb27q2hLq0aMHW7ZsMf2bNWtWBbVQCCGqpvpuylJhccnuGA1VL5la8tUMMrOVjOUNPNKLqa0IbNecTkEHAdh/OpD9mwsY11aBkhPVedyubppKfW0hhBCWdXNPd668SdQslbm8JrGzU5PQ3dzTrdermct9fcHbu1KbVuNVWE/3kzfS8P1a0AJ6RbCzs8PLy6tU++j1evR6ffEVrSS3bVW5jaLqk/Oo9qhf7xrEQEaWIylXk3CqZ7kESpY4jy5cUeeaNwgKK/GxHrg7np03huZ998VF3u9aecmpkhLVedwurjr5Oyon+TyqJfR6dKaiXrkqt+jh5TwSZdOkCXDj7Dx1SnlOr9ezd6+G3D7F8HC9pU/ZGqFpUy3nzmmIj4fkZD1ON2ayRUVBWpryM+3Y0YheX7umYt38eWTpz6UqN6d7165ddOnSBRcXFzp37szTTz9Nvbw5+gtwrKD0e1VQVFSUtZsgagA5j2o+N+cUU3nbht3Ub+Zu8dcoz3m0d68ToKw7otXGEhl5oUT7hXTTYmeTSVaOPb//3ZT7ClpgtYKcvKwuxXYtO5PISnztmkw+j2o2bUYGuZ2FBw4cwODgUCGvI+eRKC2DAezs2pCVpSU6Wpk+FBUVxbZtwYAjOp0Ro3E/kZFVb7SYtbm4+AFKAtR1647i76/kPFmxwgPwA6Bx4wtERl6xSvusraI+j6pU0N2jRw/69++Pj48P586dY9asWTzyyCP89NNP6IpIExgQEICjo2Oh261Nr9cTFRVFaGhoke+jsr3yyiukpKQwd+5cAB588EGCgoJ4+eWXK7Udu3bt4qGHHmLHjh24uFTNOaxVQVU9j4TlNfLebCq7ONYnIiLEYse2xHl07Jg6PDskpD4RESUfnRThf4Rd0SGcvOyHfxMPnN0rJ1ncIle1zcGdehMRUSkvW2PJ51EtkZZmKoaFhSmLFVuQnEeiPJo10xAdDZcv18FohMDAUE6dUjKnBQVB587hVm5h1dSmjYY1a5RynTpBpu/Dzz9XvyeHD/cmIqJ2jS+/+fMoPT3doh27pQq6P/zwQxYsWFBknTVr1uCfNzVeKdx6662mcmBgIIGBgfTr18/U+10YnU5XLT6sS9rOvAnlbG1t8fb2ZtiwYTz++OPY2FjuPolGo0Gj0ZjaNHfuXGxsbErUxp07dzJmzBh2795d7kBZe2MRwOrye7Q2+TnVfA2C1OwvCTnhFbI0yc3nUVZGFumpGbjVLz7LWFyeFb8aNdKWqn3hQVfZFQ1Go5bDBzLoekvlZDVLTVXL7u66arvcS1Ujn0c1XJ7frU6nq7B1kuQ8EmXRrJmSqTw9XcPVqzYcOqQjJ0cJHNu00cg5VYjmzdXyuXPq9+Hu3cr/Wi106FB7vydzP48sff6UKoIbO3YsI0aMKLKOr69vuRp087Hq1atHTExMkUF3TdSjRw9mzJhBVlYWGzdu5K233sLW1pbHHnvMrF5WVhZ2dnYWeU03NzeLHEcIUT71G6s3suIqYUnruHPxdO10jbNx3nw+fTMPT+lRZP0jW3YCyloiDZ3PASX/3A+/pQv8ppT3H2tI11vK2OhSSk5Wy5K9XAghqr+8ydQuXbLjwAG1p7aWhQ2lkpvpHdQM5mlpypxugJAQTPO8heWUKuh2d3fH3d3ycwsLc/nyZZKSkkqdWK0myJtQ7r777uOvv/7in3/+4fTp06SkpBAaGsrixYuxs7Pjn3/+4dKlS8ycOZOtW7ei1Wpp164dr776Kj43UhTq9Xref/99li1bhk6n44477sBoNJ/n8sADDxAUFMSrr74KKAH9xx9/zKpVq0hISMDb25tHH32ULl26MGbMGAA63FhPYMSIEcycORODwcCCBQv46aefiI+Px8/PjyeeeIJBgwaZXmfjxo28++67XLp0ifDw8GJv5AhR29Svr5ZjYyv+9V6ccIQTl5RAe/zLXXGtt4ORj3YmLQ0WLwZ7exgzRllmJPVqKotXBQPgYJdO+y6lG+kS0VZdNHX/fvX5zb/vZ/PfiTz+Ujju3kXn8SiLpCQjoFyQyf1FIYSo/vIGjxcu2LNzpxp09+xZ+e2pLgrK/P7ff8o8eYCOHSu9SbVChc3pvnjxIsnJyVy8eBG9Xs+RI0cAaNKkCXVvzAkaNGgQzz33HP379yctLY25c+cycOBAPD09OXfuHB988AFNmzalR4+ie11K7cgsOFqCpcjc20Kv382f2zgUrv5XcP28gp6F4GfL1r4C2Nvbk5SUBMD27dtxcnJi4cKFgLI827hx44iIiGDx4sXY2Njw6aefMn78eH7//Xfs7Oz4+uuvWb58Oe+++y7+/v58/fXXrF+/ns6dOxf6mi+++CKRkZG89tprBAUFcf78eRITE/H29uaTTz5h8uTJ/PHHHzg5OVGnjrJ80Pz58/n999+ZNm0afn5+7N69mxdeeAF3d3c6duzIpUuXmDRpEqNHj2bUqFEcPHiQ9957z2I/JyFqgrz3GSs66N78+36+Wa1+xhqMOu6d2Ibndm5g4cqOXI5T8mXEx8Nzz8G3//uP1IxeANw/eA9u9Ut3ZRMWppZzg+6rlxIZPMqftEwnTp/ZxILfLH+1lHz2MNAajcaAs5OG3ABcCCFE9ZQ3eLxwwZ6tW5VyvXrQqpV12lQd+PgoQ8gNBjXo3rVL3d6pk1WaVeNVWNA9Z84c07xkgOHDhwPw3Xff0enGb/P06dOk3phop9PpOHbsGCtWrCA1NZX69evTrVs3nnrqKYsNnzbJToGMEmTbvV7AkMnrcSXbNzul+DolYDQa2b59O1u2bOH+++8nMTERR0dHpk+fbvq5/PbbbxgMBt555x00GuVCcsaMGXTo0IFdu3bRvXt3vv32Wx599FEGDBgAwLRp09iyZUuhr3v69GnWrl3LwoUL6dq1K2A+dcD1xvhMDw8P05zurKws5s+fz8KFC2lzY3FEX19f9u7dy08//UTHjh358ccfadKkCS+99BIAzZs359ixY8XmChCiNqnvng4owW7sqZNA2fJkFCc7y8iEJ9XESK2anODw2RZk5dgz4+veZnXffBPuutPA3IXq58DkFxqW+jWdnZX5ZKdOwYEDRvQ5sH7ZYdIyuwHw24Yg5usNaHXasr2pQiSnKT9P5zqpaHUyvlwIIaq7vEH3li2uJCQo18A9eihBpSiYra0SeJ89qwbdO3eq26Wnu2JUWNA9c+ZMZs6cWWSd6OhoU7lOnTp89dVXFdUcc7Yu4NC4+Hp1ChjWXserZPvali+52IYNG2jTpg3Z2dkYjUZuu+02Jk+ezFtvvUVAQIDZjYijR49y9uxZ2rZta3aMzMxMzp49S2pqKnFxcYSHq1kcbWxsCAkJyTfEPNeRI0fQ6XSm4eMlERMTQ0ZGBmPHjjV7Pjs7m+BgZTjqyZMnlQyoeURIGmEhzNT3zDaVY88nF1GzfP43W8OhGGWt7PYtD7Ml0p9RA3by+1b1Nncz32ucPudEWhoMuCWN6AtKBpZeYZGEdoso0+uGtzjDqVN+pKdrOHngNOv+UNcCjUupT+SmI7TtE1z2N1aA5DTl5oJr3WuABN1CCFHd5Q26DxxQJyFbeoBsTeTnpwTdCQlKotHcnu66daF1a6s2rcaqUkuGVZrgcgz9vnm4eQXp1KkTU6dOxdbWlvr165tlLXe4aZ3M9PR0WrduzYcffpjvOGWdg587XLw00tPTAWWIeYMGDcy2WXy0ghA1mIuHi2k967hEyy7Rkys2FqZNU8parZHPFzbA3tGeJWvDeOmRjVyJs+Wp55wJ7hpKYKCR2FgN0SedTftPnpBR5tcO9z/D8htrge7feZl121uYbV/325UKCLqVtrs5pRVTUwghRHXg7q6Mnsq7OgXIfO6S8PODTZuU8q5dEBOjlNu1q7BFCmo9GXxRRTk4ONC0aVMaNWpU7DJhrVu3JiYmBg8PD5o2bWr2z9nZGWdnZ7y8vNifJ2tRTk4Ohw4dKvSYAQEBGAwGdueuH3ATW1slGZJerzc95+/vj52dHRcvXszXDm9vb1Odmxedz9suIQRotBq8XK8CEJtUdK+s0WAkclM0qVdTi6x3s7lzNdy4T8Zjj2lo180DAAdnBz5e0oslf3ely5BQ3Nxg1uvmf7O+nhcYNrbko2BuFt5WvXH4ww8aLl41Xwt03b9uZT52QTLTM7merbymq1PZbxYIIYSoOjQa895uUHpqb8xwFEXI+3P76Se1LEPLK44E3TXA7bffTr169ZgwYQJ79uzh3Llz7Ny5k+nTp3P58mUAxowZw4IFC/jrr784efIk06ZNIyWl8HnnPj4+jBgxgldeeYW//vrLdMw1a9YA0LhxYzQaDRs2bODq1aukpaXh5OTE2LFjmTFjBsuXL+fs2bMcOnSI77//3jS//5577uHMmTO89957nDp1ipUrV5rN/RdCKOq7JQEQl+KBQV/wNBCjwcj4YVto0yuQXh3Po8/WF1jvZulpRj77TJn7ZmMDL79cdP37ngilb4SaQHLC6OPY2JV9oFR450am8m9b83/Dbz0cnq/nojyS49XPOlenTMsdWAghhFXdHHR36aLMWRZFy5v5/ddf1bIkUas4EnTXAA4ODixatIhGjRoxadIkhgwZwquvvkpmZiZONxbaGzt2LEOHDmXKlCncc8891K1bl/79+xd53KlTpzJw4ECmTp3K4MGDef3118nIUHqJGjRowOTJk/noo4/o2rUrb7/9NgBPP/00TzzxBPPnz2fIkCGMHz+eDRs2mJYua9SoEZ988gl///03w4YNY8mSJTzzzDMV+NMRonqq764Mg87R25IUV/C87k9e38TXq5TJa/tOBrPrryMlOvbfS86TmKgE3aNHG/EtZpltjVbDl9970THwIAPa72HSG+1K+C4K5tfKBxcH5T0ZjerXUJ+e1wHIydGwYUO5XsJMcoI6pNzVObuImkIIIaqTm4NuGVpeMnmD7oQEtSw93RVHYywsk1Y1kJ6ezpEjRwgODsbR0dHazSmUXq8nMjKSiIgIdDJRQpSRnEe1y5jBW/j+j+4AHNl9mqD25lcWm37bT9+RrdEb1B7n1x7ZwNtf9C7yuNfTrxPQNJ5z8cqNsKhtJwnpUjHZ0YvSI3Q/Ww6qyR19fGDuXLix0AUTJyqPLWHPX4fp0F9ZP2bCHZv49Be5Kisv+TyqJdLS4MbNe65dU8buWpCcR6K85syBp55SH//7L/TubbXmVBtnzuS/YdGwIVy8qAzbr41u/jyydJwpPd1CCFEFeXmoQ8XjLppPBblw4hJ3PdjILOAGWL2p+OD558/3mALuWzvvskrADRAenGT2eOBA6NNHGe4OsG6d5V4r6ep1U9nN1VBETSGEENVJ3sDR1tYow6NLyMcnf8K0jh1rb8BdGSToFkKIKqh+fXUQUuzFdFPZaDAyfvR5YpOVJQ37td1LRIgyAXpftC8XLyr1Lp26wpxXN3L26AWzfT+aqy6F+OJL9hX5FooUEWH+9TNwILi4QNcuys2GEyfgVNR5i7xW8lV1HrerrBYmhBA1Rt5h0u3bw00L/IhC2NgogXdecsOiYknQLYQQVVD9Buot6Ngr6jzkZfN38McuJXN4Y/dL/PibH7ePUJfyWrsWMtOv06PbdZ56txf33qFO1jpz+Dz7TwcC0CHgED1uD6vot1Go8A4eprJWq+eWW5TywDabTc+v+/WURV4rmVamsqtPgEWOKYQQwvpatYJ27ZSb1I89Vm1nzFrFzcPLZT53xZKgWwghqqD6jdVAOjbZE1DWIn36LXUe9JwZMXj6eDBkiLrf6tUwd+oOTl5uCsC2w2EkXL4GwI5/zpnqDekbi0ZrvXFkIZ2b4WCn9OB3DojE3V15vv9t9U11Nm+xzBzP5Ay1e9vVu1ERNYUQQlQnOh1s22Zg/fr93H+/BN2lkXeUAECHsq8EKkpAgm4hhKiCvAIiTOXYTKWn9s034cJlJZnHkJ6nGTFeGQvWoQN4KnE569cbmP5puNmxtu1WEiFt36b2mHfsZtmESKXl4OzA1x9GMqLHDuZ+prYlvHsLbHVZAOw72tAir5WcJ/m7m5tFDimEEKKK0OmgXr0cazej2skbdAcFyfSriiZBtxBCVEH11Q5f4uJg/374+GPlcZ068MnCZqaeap0OBvWOBeDaNS1JafXMjrVli/L/jn2epuc63dKi4hpfQvdM7sqvmzrTpneQ6Tk7BztC/E4CEH2hGWnJaYXtXmJJSWpZLiqEEEII86BbhpZXPAm6hRCiCvJS850RGwtvvAGGG4m3X38dmjc3r39rz+Nmj+1t1YzdW7dCRmoG+04q85mDGh/HrX7VjT7bBMcDyhreUdtPl/t4ybHqvHZXJ1mnWwghhOjeXc1gnrtcp6g4EnQLIUQVVLeuuiTu/kg9v/+ulH184Lnn8tcfcGcrtBp1mbEXHtphCsz37IFtf54iR28LQNtWZyqw5eXXJkJd1mvfzqvlPl7yefWGhKtDfLmPJ4QQQlR3/v6wdy/8/bcE3ZVBgm4hhKiivFziAEhKVhOKPTMuGvsCVvpy967H4E57AfCud5kXZ7ajW4dEADIzYd5CNYFYUJs6Fdjq8mvTSR0ev29f+Y518eRlth5Q1yJ383QuorYQQghRe4SHQ9++sj53ZZCgWwghqqj6LlfMHrs6JvPIk96F1l+4tDnz3tjI9q05OLs70611lGnbijVupnJAW3eLt9WSwro2Q6NRerv3HfYssu71tOu88+QGvv1gS75tWRlZ3DU01rSm+W1dduFUz8nyDRZCCCGEKIKNtRsgzAUGBha5fdKkSUyePLmSWiOEsKb67ulmj5+45z+c3fsUWt/L15MnpvUyPe52ize8oZSNRuU2touLkebNrxe0e5Xh7O5MC+/THL/YjKgzzcnJysHGruCvqy/e3clrn/QGoFnAfnoOUzO3P/vgdrYdVn4evp4X+Pqn5gUdQgghhBCiQknQXcVs2aL21qxZs4Y5c+bwxx9/mJ5zdHQ0lY1GI3q9Hhsb+TUKURPVr3fNVLazyeTJ11qVav9Wnfxxq5tEUpqb6bkOHUBbDcY4tQmO4/jFZmRm1+HooVRC2hQ8LPyfLWpCuCVfnzUF3T/N3ca8n5WA2972Or/+mIyXb+l+fkIIIYQQllANLr1qFy8vL9M/Z2dnNBqN6fGpU6do27YtGzduZOTIkYSGhrJ3715eeuklnnjiCbPjvPPOOzzwwAOmxwaDgfnz59O3b1/CwsIYOnSoWTAvhKh66nuoPd0P9ltDw2YNSrW/VqelS2vzrOadO2RYpG0VrU0/df2SfQcLDriNRth5LMz0ePmmjhhy9BgNRqZ/qKZ///St3bTvJwG3EEIIIayj1nWR/vyzsvROamrlvaazs5aHHnIjIsIyx/voo4+YMmUKvr6+uLi4lGif+fPn8/vvvzNt2jT8/PzYvXs3L7zwAu7u7nSUxfmEqJL6D23Me4sMuDikMmVm2zIdo1unNNbuUh93bhVFdfjob9NGLe/bB3nuIZqcPw+XL6v3ji8nNWDb2v3Y2Oo4GBMCQJfgKMa+1KOimyuEEEIIUaiqf+VlYR98AEePVvaravj++4Y8/7xljvbkk0/SrVu3EtfPyspi/vz5LFy4kDY3rmR9fX3Zu3cvP/30kwTdQlRRfe9sw4n9Z6nr7EADv6ZlOka33m7wifq4Ux9/zl6JsUwDK1Dem5SRkQXX2bUr/3O//JhESoqa7f3Rh5It2i4hhBBCiNKqdUH3iy/C669Xdk+3kQceuAz4WeR4oaGhpaofExNDRkYGY8eONXs+Ozub4OBgi7RJCFExmoc2Kdf+HfsFYKvLIltvR1CjI7h7B1SLoLtBA/D2hkuXYN8+A0aDBo3WfE2TnVvTAUez535eF0hShgcALg7J3PVYG4QQQgghrKnWBd133qn8q0x6vYHIyCSLHc/BwcHssUajwWg0mj2Xk5NjKqenK/NC58+fT4MG5nNC7ezsLNYuIUTV4+jiyIdTNrJgcSPeeSPF2s0plTYtjnHpUgBJSVpijpzHr7WP2fZdfx8DIgBoFxDN3mOBXLza0LR99GgddV3rVmKLhRBCCCHyq7BEaufPn+eVV14xJe7q168fc+bMISsrq8j9MjMzmTZtGp06daJNmzZMnjyZ+Pj4impmjeDu7k5cXJzZc0eOHDGV/f39sbOz4+LFizRt2tTsn7d34Wv+CiFqhiff6UXUmZYMHdvJ2k0plTaBF03lfdvOm23TZ+vZE90CgCZe55nwUGy+/R95QtbkFkIIIYT1VVjQferUKYxGI2+99RarV6/m5ZdfZsmSJfzvf/8rcr93332Xf//9l9mzZ/P9998TGxvLpEmTKqqZNULnzp05ePAgK1as4MyZM8yZM4fjx9WMxU5OTowdO5YZM2awfPlyzp49y6FDh/j+++9Zvny5FVsuhBCFa9PO3lTesdV8bfHDu06SlqkE1Z1CzjHsgVbotOoIn3btjGbJ2IQQQgghrKXChpf37NmTnj17mh77+vpy+vRpfvzxR6ZMmVLgPqmpqSxbtowPP/yQLl26AEoQPmTIECIjI4koJP23Xq9Hr9db/D1YSm7bSttGg8Fgtl/ex3mP1bVrVx5//HHef/99srKyGDlyJEOHDuX48eOmepMnT6ZevXrMnz+fc+fO4eLiQqtWrXj00Uer9M9OqMp6HgmRV3U6j7oObI5Wo8dg1LF8fVPeyc4xzevevuESEABAh7aZ1PN2o3dEFH//FwHAuLF69HpNIUcW5VWdziNRDno9OlNRDxb+fct5JCxBziNhCTefR5Y+nzTGmycDV6D//e9/bN68mV9//bXA7du3b+ehhx5i9+7dZkth9enThwcffJCHHnrIrH56errZMGohhBA1yzMPGdl8sD0Av373B01aKetvf/xqAt+vGwDAok9WEtSlEXv31GXipABatsxg/vxjODoarNZuIWoCbUYGbXooS+7t27wZw005ZYQQoqYLDg7G0dGx+IrFqLREajExMSxatKjQXm6A+Ph4bG1t86097eHhkW/Ocl4BAQEW+WFUFL1eT1RUFKGhoeh0uuJ3EKIAch4JS6hu59Fdwzez+aBS3rfFnqH3RQBw4NgJAHTaHG6/rxd1XesSEQEPPmREo6mDThdmnQbXEtXtPBJllJZmKoaFhUFdyyYmlPNIWIKcR8ISbj6P0tPTOXbsmMWOX+qg+8MPP2TBggVF1lmzZg3+/v6mx1euXGH8+PEMGjSIUaNGlb6VxdDpdNXij6y6tFNUbXIeCUuoLufRyAcDeXK6Uv71Dx/e0ulIS04j6oySRC2k6Ulc3ANN9avBW6pRqst5JMooz+9Wp9NV2B+YnEfCEuQ8EpaQex5Z+lwqddA9duxYRowYUWQdX19fU/nKlSuMGTOGNm3a8Pbbbxe5n6enJ9nZ2aSkpJj1dickJODl5VXapgohhKjmGrfwpmurA2w7HMahsy2J3nOKS2dTMBgjAOgYdgUILPIYQgghhBDWVOqg293dHXd39xLVzQ24W7duzYwZM9Bqi06WHhISgq2tLdu3b2fgwIGAkgX94sWLhSZRE0IIUbPdcdtVth1Wyp/PvsTaDepSh507S7I0IYQQQlRtFbZk2JUrV3jggQfw9vZmypQpXL16lbi4OLO52VeuXGHQoEEcOHAAAGdnZ+644w5mzpzJjh07OHjwIK+88gpt2rSRoFsIIWqpkWNamMqzF3cj+kJzAFo2Os2ox2RdMCGEEEJUbRWWSG3r1q3ExMQQExNjtnQYQHR0NADZ2dmcPn2ajIwM07ZXXnkFrVbLk08+SVZWFt27d+fNN9+sqGYKIYSo4vxa+9A+4hp7Ip1MzzVumM6ff9riVM+piD2FEEIIIayvwoLukSNHMnLkyCLr+Pj4mALwXPb29rz55psSaAshhDC5424n9kQqZXd3+PNvR/xaVd1VK4QQQgghclXY8HIhhBDCUsaPh6Ag8PWFNWugVStrt0gIIYQQomQqbZ1uIYQQoqw8PeHIETAYoJicnEIIIYQQVYpcugghhKg2JOAWQgghRHUjly9CCCGEEEIIIUQFkaBbCCGEEEIIIYSoINV6TrfBYAAwW3KsKtLr9QCkp6ej0+ms3BpRXcl5JCxBziNhCXIe1RLXr0NgoFrWaCx6eDmPhCXIeSQs4ebzKDe+zI03y0tjNBqNFjmSFSQkJHDmzBlrN0MIIYQQQgghRA3j5+eHh4dHuY9TrYPunJwckpOTsbe3RyvZdYQQQgghhBBClJPBYCAzMxNXV1dsbMo/OLxaB91CCCGEEEIIIURVJt3DQgghhBBCCCFEBZGgWwghhBBCCCGEqCASdAshhBBCCCGEEBVEgm4hhBBCCCGEEKKCSNBdCRYvXkzfvn0JDQ3lrrvu4sCBA9ZukqjCPvnkEwIDA83+DRo0yLQ9MzOTadOm0alTJ9q0acPkyZOJj4+3YotFVbB7924ef/xxunfvTmBgIH/99ZfZdqPRyMcff0z37t0JCwvjoYceyrfkYlJSEs899xxt27alffv2vPLKK6SlpVXiuxDWVtx59NJLL+X7fBo3bpxZHTmParf58+dzxx130KZNG7p06cITTzzBqVOnzOqU5Hvs4sWLPProo4SHh9OlSxfee+89cnJyKvOtCCsqyXn0wAMP5Ps8euONN8zqyHlUu/3www/cfvvttG3blrZt23L33XezceNG0/bK/CySoLuCrVmzhhkzZjBx4kSWL19OUFAQ48aNIyEhwdpNE1VYy5Yt2bJli+nfDz/8YNr27rvv8u+//zJ79my+//57YmNjmTRpkhVbK6qC9PR0AgMDefPNNwvcvmDBAr7//numTp3K0qVLcXBwYNy4cWRmZprqPP/885w4cYKFCxfy+eefs2fPnnwXMKJmK+48AujRo4fZ59OsWbPMtst5VLvt2rWL0aNHs3TpUhYuXEhOTg7jxo0jPT3dVKe47zG9Xs9jjz1GdnY2S5YsYebMmSxfvpw5c+ZY4y0JKyjJeQQwatQos8+jF1980bRNziPRsGFDnn/+eX799VeWLVtG586dmThxIsePHwcq+bPIKCrUnXfeaZw2bZrpsV6vN3bv3t04f/58K7ZKVGVz5swxDh06tMBtKSkpxtatWxvXrl1reu7EiRPGgIAA4759+yqphaKqCwgIMK5fv9702GAwGLt162b88ssvTc+lpKQYQ0JCjKtWrTIajep5dODAAVOdjRs3GgMDA42XL1+uvMaLKuPm88hoNBqnTJlinDBhQqH7yHkkbpaQkGAMCAgw7tq1y2g0lux7bMOGDcagoCBjXFycqc4PP/xgbNu2rTEzM7NS2y+qhpvPI6PRaLz//vuN06dPL3QfOY9EQTp06GBcunRppX8WSU93BcrKyuLQoUN07drV9JxWq6Vr167s27fPii0TVV1MTAzdu3fnlltu4bnnnuPixYsAHDx4kOzsbLNzyt/fn0aNGhEZGWml1oqq7vz588TFxZmdN87OzoSHh5s+i/bt24eLiwuhoaGmOl27dkWr1cqUGGFm165ddOnShYEDB/Lmm2+SmJho2ibnkbhZamoqAK6urkDJvsciIyMJCAjA09PTVKd79+5cu3aNEydOVF7jRZVx83mUa+XKlXTq1InbbruNjz76iIyMDNM2OY9EXnq9ntWrV5Oenk6bNm0q/bPIxiLvQhQoMTERvV6Ph4eH2fMeHh755qUIkSssLIwZM2bQrFkz4uLimDdvHqNHj2blypXEx8dja2uLi4uL2T4eHh7ExcVZqcWiqss9Nwr6LMqduxQfH4+7u7vZdhsbG1xdXeXcEiY9evSgf//++Pj4cO7cOWbNmsUjjzzCTz/9hE6nk/NImDEYDLz77ru0bduWgIAAgBJ9j8XHx5td5AKmx3Ie1T4FnUcAt912G40aNaJ+/fpER0fz4Ycfcvr0aebOnQvIeSQU0dHR3HPPPWRmZuLo6Mi8efNo0aIFR44cqdTPIgm6hahievXqZSoHBQURHh5Onz59WLt2LXXq1LFiy4QQtd2tt95qKucmLurXr5+p91uIvKZNm8bx48fN8pIIUVqFnUd33323qRwYGIiXlxcPPfQQZ8+epUmTJpXdTFFFNWvWjBUrVpCamsq6deuYMmUKixYtqvR2yPDyClSvXj10Ol2+pGkJCQn57poIURgXFxf8/Pw4e/Ysnp6eZGdnk5KSYlYnISEBLy8vK7VQVHW550ZRn0Wenp5cvXrVbHtOTg7JyclybolC+fr6Uq9ePWJiYgA5j4TqrbfeYsOGDXz77bc0bNjQ9HxJvsc8PT3zZRDOfSznUe1S2HlUkPDwcACzzyM5j4SdnR1NmzYlJCSE5557jqCgIL777rtK/yySoLsC2dnZ0bp1a7Zv3256zmAwsH37dtq0aWPFlonqJC0tjXPnzuHl5UVISAi2trZm59SpU6e4ePEiERER1mukqNJ8fHzw8vIyO2+uXbvG/v37TZ9Fbdq0ISUlhYMHD5rq7NixA4PBQFhYWKW3WVQPly9fJikpyXTxIeeRMBqNvPXWW6xfv55vv/0WX19fs+0l+R6LiIjg2LFjZjcKt23bhpOTEy1atKiU9yGsq7jzqCBHjhwB1GBIziNREIPBQFZWVqV/Fsnw8gr28MMPM2XKFEJCQggLC+Pbb78lIyODkSNHWrtpoop677336NOnD40aNSI2NpZPPvkErVbLbbfdhrOzM3fccQczZ87E1dUVJycnpk+fTps2bSToruXS0tI4e/as6fH58+c5cuQIrq6uNGrUiDFjxvDZZ5/RtGlTfHx8+Pjjj6lfvz79+vUDlOQhPXr04PXXX2fatGlkZ2fz9ttvc+utt9KgQQNrvS1RyYo6j1xdXZk7dy4DBw7E09OTc+fO8cEHH9C0aVN69OgByHkklKHAq1at4tNPP6Vu3bqmeY/Ozs7UqVOnRN9j3bt3p0WLFrz44ou88MILxMXFMXv2bEaPHo2dnZ0V352oLMWdR2fPnmXlypX06tULNzc3oqOjmTFjBh06dCAoKAiQ80jARx99RM+ePfH29iYtLY1Vq1axa9cuvvrqq0r/LNIYjUZjBbxHkceiRYv46quviIuLIzg4mNdee800BEaImz3zzDPs3r2bpKQk3N3dadeuHc8884xpflJmZiYzZ85k9erVZGVl0b17d958800ZKlXL7dy5kzFjxuR7fsSIEcycOROj0cicOXNYunQpKSkptGvXjjfffJNmzZqZ6iYlJfH222/zzz//oNVqGTBgAK+99hp169atzLcirKio82jq1KlMnDiRw4cPk5qaSv369enWrRtPPfWU2ZQpOY9qt8DAwAKfnzFjhqnDoSTfYxcuXGDq1Kns2rULBwcHRowYwXPPPYeNjfQX1QbFnUeXLl3ihRde4Pjx46Snp+Pt7U2/fv144okncHJyMtWX86h2e+WVV9ixYwexsbE4OzsTGBjII488Qrdu3YDK/SySoFsIIYQQQgghhKggMqdbCCGEEEIIIYSoIBJ0CyGEEEIIIYQQFUSCbiGEEEIIIYQQooJI0C2EEEIIIYQQQlQQCbqFEEIIIYQQQogKIkG3EEIIIYQQQghRQSToFkIIIYQQQgghKogE3UIIIYQQQgghRAWRoFsIIYQQQgghhKggEnQLIYQQQgghhBAVRIJuIYQQQgghhBCigkjQLYQQQgghhBBCVBAJuoUQQgghhBBCiAoiQbcQQgghhBBCCFFBJOgWQgghhBBCCCEqiATdQgghhBBCCCFEBZGgWwghhBBCCCGEqCASdAshhBC1wM6dOwkMDGTnzp3WbooQQghRq0jQLYQQotb79ddfCQwMLPRfZGSktZtYJcXHx/Pyyy/TpUsXwsLCGDFiBGvXri12v4cffpjAwEDeeuutQo/7xhtv0KNHD0JDQ+nbty+vvPJKvnrbtm3jgQceoFOnTrRv354777yTFStWlPdtCSGEEBZlY+0GCCGEEFXFk08+iY+PT77nmzRpYoXWVG3Xrl3jvvvuIz4+njFjxuDl5cXatWt5+umnycnJ4fbbby9wvz///LPImxiXLl3i3nvvBeCee+6hQYMGxMbGcuDAAbN6f//9NxMnTiQiIoLJkyej0WhYu3YtU6ZMISkpiYceeshSb1UIIYQoFwm6hRBCiBt69uxJaGiotZtRLSxZsoSYmBi++eYbunTpAsC9997LqFGjeO+99xg4cCB2dnZm+2RmZjJz5kzGjx/PnDlzCjzuG2+8gU6n45dffqFevXqFvv7ixYvx8vLiu+++M73O3XffzeDBg/n1118l6BZCCFFlyPByIYQQooTmzJlDUFAQ27dvN3v+9ddfJyQkhKNHjwKQlZXFxx9/zMiRI2nXrh0RERHcd9997Nixw2y/8+fPExgYyFdffcXixYu55ZZbCA8PZ+zYsVy6dAmj0ci8efPo2bMnYWFhTJgwgaSkJLNj9O3bl8cee4wtW7YwbNgwQkNDGTJkCH/++WeJ3tP+/fsZN24c7dq1Izw8nPvvv5+9e/cWu9+ePXtwd3c3BdwAWq2WwYMHExcXx+7du/Pts2DBAoxGI+PGjSvwmCdPnmTTpk2MGzeOevXqkZmZSXZ2doF1r127hqurq1lgb2NjQ7169ahTp06x7RdCCCEqiwTdQgghxA3Xrl3j6tWrZv8SExNN2ydMmEBwcDCvvvoq165dA2Dz5s0sXbqUJ554gqCgINNxfv75Zzp27Mjzzz/PpEmTuHr1KuPHj+fIkSP5XnflypX88MMPPPDAAzz88MPs2rWLp59+mtmzZ7N582YeeeQRRo0axb///st7772Xb/8zZ87wzDPP0LNnT5577jl0Oh1PPfUUW7duLfL9bt++ndGjR5OWlsakSZN45plnSElJ4cEHH8w3nPtm2dnZBQa3uc8dOnTI7PmLFy+yYMECnn/++UKD4tybGZ6enjz44IOEhYURHh7O+PHjOX/+vFndjh07cvz4cWbPnk1MTAxnz55l3rx5HDx4kPHjxxfZdiGEEKIyyfByIYQQ4oaChiTb2dkRFRUFgK2tLe+99x4jR45k5syZvPjii7z66quEhITw6KOPmvZxdXXln3/+MeuFHTVqFIMHD+b777/n3XffNXuNK1eu8Oeff+Ls7AyAwWBg/vz5XL9+nWXLlmFjo3xdJyYmsnLlSqZNm2Z27DNnzvDJJ58wYMAAAO68804GDRrEhx9+SLdu3Qp8r0ajkalTp9KpUye+/PJLNBoNoMyjvvXWW5k9ezZff/11oT+rZs2asW3bNi5cuEDjxo1Nz+f2kl+5csWs/syZMwkODubWW28t9JhnzpwBlJEDoaGh/O9//+PSpUvMnTuXhx9+mN9//x0HBwcAnnjiCc6fP8/nn3/OZ599BoCDgwNz5syhX79+hb6GEEIIUdkk6BZCCCFueOONN2jWrJnZc1qt+aCwgIAAnnzyST766COio6NJTEzk66+/NgXGADqdDp1OBygBdEpKCgaDgZCQEA4fPpzvdQcNGmQKuAHCwsIAGDp0qNlxw8LCWLVqFVeuXMHX19f0fP369enfv7/psZOTE8OHD2fBggXExcXh5eWV7zWPHDnCmTNnmDBhgllvPkCXLl347bffMBgM+d5/rjvvvJMlS5bw9NNP8/LLL+Pp6cnatWtZv349ANevXzfV3bFjB3/++SdLly4t8Fi50tPTAfDy8uKLL74wvXbDhg159tlnWbVqFXfddReg3Azx8/Nj4MCBDBgwAL1ez9KlS3nhhRdYuHAhERERRb6WEEIIUVkk6BZCCCFuCAsLK1EitXHjxrF69WoOHDjAs88+S4sWLfLVWb58OV9//TWnT582m5dcUHZ0b29vs8e5AXhhzycnJ5sF3U2bNjX1VOfy8/MD4MKFCwUG3bm9ylOmTCnsbZKamoqrq2uB24KCgvjwww958803TdnGvby8eOWVV5g6dSqOjo4A5OTk8M477zBs2DDTzYTC5A47HzRokFmwP2jQIF588UX+++8/U9D91ltvsX//fpYvX26qO3jwYG677Tbeeecdfv755yJfSwghhKgsEnQLIYQQpXTu3DliYmIAOHbsWL7tv/32Gy+99BL9+vVj3LhxeHh4oNPpmD9/PufOnctXP7dX/GaF9TIbjcZytN78GC+++CLBwcEF1skNnAszaNAg+vbty9GjRzEYDLRq1Ypdu3YBatC/YsUKTp8+zbRp0/LNy05LS+P8+fN4eHjg4OBA/fr1AWVOd146nQ43NzdSUlIAJVHdsmXLGD9+vNnPyNbWlh49erB48WKysrLyZU8XQgghrEGCbiGEEKIUDAYDL730Ek5OTjz44IN8/vnnpiHOudatW4evry9z584164EubJms8oqJicFoNJq9Vm5Pdt751nnl9pQ7OTnRtWvXMr+2nZ2dWQ/2tm3bAEzHvHTpEtnZ2abe8LxWrFjBihUrmDdvHv369aN169ZA/vngWVlZJCYm4u7uDkBSUhI5OTno9fp8x8zJycFgMGAwGMr8noQQQghLkqBbCCGEKIWFCxeyb98+PvvsM3r37s3OnTuZOnUq7du3NwWFuT3XeQPh/fv3ExkZSaNGjSzeptjYWNavX28K/K9du8aKFSsIDg4ucGg5QEhICE2aNOHrr7/mtttuo27dumbbr169ano/JXXmzBmWLFlCnz59THPjhwwZUmBP+sSJE+nVqxejRo0yBe2dOnXCw8ODlStX8vjjj2Nvbw8oQ/X1er0pkPfw8MDFxYX169fz5JNPmnq009LS+Pfff2nevLksGyaEEKLKkKBbCCGEuGHTpk2cOnUq3/Nt27bF19eXkydPmtbf7tu3L6Bk5R4+fDjTpk3j448/BqB37978+eefTJw4kd69e3P+/HmWLFlCixYtTMnCLMnPz49XX32VqKgoPDw8WLZsGQkJCcyYMaPQfbRaLdOnT+eRRx7htttuY+TIkTRo0IArV66wc+dOnJyc+Pzzz4t83SFDhjBo0CC8vb1N79HNzY1p06aZ6vj7++Pv71/g/j4+PmaZxu3s7HjxxReZMmUKo0ePZtiwYVy8eJHvv/+e9u3bm24q6HQ6xo4dy+zZs7n77rsZNmwYBoOBX375hcuXL/PBBx+U5scnhBBCVCgJuoUQQogbChv+PWPGDBo1asSUKVOoV68er7zyimmbn58fzz77LO+88w5r1qxhyJAhjBw5kvj4eH766Se2bNlCixYt+OCDD/jjjz9Mc54tyc/Pj9dff53333+f06dP4+Pjw//+9z969OhR5H6dOnXip59+4tNPP2XRokWkp6fj5eVFWFgYd999d7GvGxQUxK+//kp8fDz16tVj0KBBPPnkk3h4eJT5vQwfPhxbW1u++OIL3n//fVxcXLj77rt55plnzOa+T5gwAR8fH7777jvmzZtHVlYWgYGBzJkzh4EDB5b59YUQQghL0xgtkY1FCCGEEFbRt29fWrZsyfz5863dFCGEEEIUoOC0qEIIIYQQQgghhCg3CbqFEEIIIYQQQogKIkG3EEIIIYQQQghRQWROtxBCCCGEEEIIUUGkp1sIIYQQQgghhKgg1XrJsJycHJKTk7G3t0erlfsHQgghhBBCCCHKx2AwkJmZiaurKzY25Q+Zq3XQnZyczJkzZ6zdDCGEEEIIIYQQNYyfnx8eHh7lPk61Drrt7e0B5Yfh4OBg5dYUTq/Xc+zYMQICAtDpdNZujqim5DwSliDnkbAEOY9qiYwM6NZNKW/dCha+1pLzSFiCnEfCEm4+jzIyMjhz5owp3iyvah105w4pd3BwwNHR0cqtKZxerwfA0dFRPgxEmcl5JCxBziNhCXIe1RJGI0RHK+U6dcDC11pyHglLkPNIWEJh55GlpjDLRGghhBBCCCGEEKKCSNAthBBCCCGEEEJUkGo9vFwIIYQQQoiKlpkJP/yg/P/ooyCL5gghSkOCbiGEEDWaPlvPoZ0nCWjThDp161i7OUKIambdOnjySTh2THkcHw+vvWbdNgkhqhe5TyeEEKJGe/vJzYT3CCA88BJx5+Kt3RwhRDVx7RrcfTcMGqQG3AAffABXr1qvXUKI6keC7hoq/nwC/3tpA9F7T1m7KUKIWiIjA+bNg//+q5jjG/QGMtMzS73fN8v8ATh2oRkjBl8s0zGEELVLbCz06QNLl6rPubkp/6ekwIcfWqVZQohqSoLuGuh62nV6dk3i2fd6M+Q2HQa9wdpNEqLGOrr7FJPv3sg372+p9cHc6KEnmDQJBgxQLkot6fLpWJp5X8TXO4V/ftlX4v0unDcQE+drerz1UBiP3rkbo8Fo2QYKIaoFvR4OHlRuEhbm5EllefI9e5THrq7w3XcQGQl2dspzH3+sBOZCCFESEnTXQG9O3MGRc0rPzqnLTdnz9xErt0iImik9JZ3+g+swd2kvHp7SHT/fa7zzDqSlWbtllW/nukMs/6sFAAkJsHmzZY+/4KPDnI3zIS7Fi6H3t2Tb6qgS7bd1W/6vue/WdueDFzZatoFCiCovMxMGDoTQUPDwgKFD4csvlefz1hkwAE6cUB43bgxbtsADD0DTpkoSNYD0dJg5s/LfgxCiepKgu4bZ8cdBPvyuh9lzq3+Ns1JrhKjZZr26i/MJjUyPL1/14LXXYMQIMNayjtQ3XjPvNvrnH8sef+mqxqZyWqYTg+9qwt6/Dxe739atannc3adN5Vc/7sbhnScs2kYhROXLzIRvvoFt24quZzTChAnw99/K44wMWLkSHnlEDaQB9u6FUzdm5gUFwfbtEBKibn/lFahzIx/jp5/CuXMWeytCiBpMgu4aJCM1g4fGO2Iw6syeX72xWamO89Pcbbw9aQMZqUWMvRKihkm8kkRacsm7qC+fjmXmgvYA6LQ5DO2+F61WibTXr4cVK/LvYzQYWfb5dsaN3MfDD8PDD8M770BysiXeQcXSZ+v56MUNfDF9U74pK5t+28+fe9qbPWfJoPvwzpMcjGlp9lxKhiudB7YkKCCLoUPhq68K3jdv0P3BZ814eewGAHL0tkx8LFWGmQtRjWVmwvDhymdpr16wr4iZJx9+CAsXKuU6daBhQ3XbunVq+cABtTxpEviqs1MA8PZWns99/fvvh5yccr0NIUQtIEF3DTLzhZ1EX2gOQIeAQ4QGKZMq9x5tyuXLJTvGss+3c8/krrwxrzfPPLi7opoqRJVyYMsxGjexo4lPJqeizpZonzeeOUpaphMAj43cym+b2/HLLxrT9hdfhKwstb5Bb+DZ+zdx54QufL28Dd98o/TOvPYa9OgBFy5Y8A1VgFkvb+b5D3rz2Os9+fBD9X0aDUazpXPs7PSAMvcx4fI1i7z2z9+qXUnvPLmBHiH7ASVwjj5ux8qVMH688pp5XUtKJzJSuUHQujXUqwevz+5E84YxAGzY34bFH28jOxs+efsQd/XZzp6/iu89F0JYX04O3Hsv/PGH+vj55wseZbRmDUyZoj7+9lvlM7dXL+XxlSuYrpOi8sxcCQ0t+LVfflkNxjdtgrfeKt97EULUfBJ01yBLVyvfADptDt98Z8/tI11M29auLX7/uHPxTJjSwvT4q9+7cHJ/jMXbKURVs+zbk2RkOXL1mjvvvRRZbP2orcf46vduALg4JDN1VmtA6XHJvYg7cQI+e3snAJnpmdw3YAezf+xV8PGioEu7q1V2uHNWRhazFwaaHr/yqjqUc+mn29l8MByAwManeGK0uq7OhhXK1evVq0oSorImHfp5nfraYyYFsmpDM56+dyNhzU+ZhnmCkhwpr53ro9Hrla+57q2UlOoOzg7MfV9tyHNvh9CmDTz5Rmt+2dCFJ5/Ul62RQohKo9fDgw/C8uXmz//zD6xenb/+1KlqMD51KowaBVottGun1sm9aVeSoNvdHZYsAd2NgYXTp8Nff5XhjQghao0qF3Tv3r2bxx9/nO7duxMYGMhf8ilWIglxORw9ryRPa9fyKK06teDWW9XtBX0J3WzSQ8eIS/EyPc7R2/LWyzJZSdR8JxIiTOXv1vc3reWclgYffZT/YmraqwmmaRyvPL4PL19PADQa+Oi962q9/wUw5aENhLa8yE//dAWUm2LzXv+bw4eV5DzNmilXgueuuNP9Fg9ijpyvqLdZZj99touLV71Nj/V6DffcY+T5MZu4Z3JX0/PTXrrMgL5q7/bff2VjMMDgwcoF8rBhpX/tQ4fg0Cnltbt1uIpPS29cPFz43w+92H+yOd99p9a9eNF8360b1HH73Tqnm8qDH+jAyD7KONTYRFcOHVL32XMskOtp6u9QCGE9OTmwYAHMnQuGPLNaPv8cfvhBKdvZwVNPqdteeAGys9XHRiMcvjGApVkzeOMNdVtEhFrev1+pmxt0N26sjI4pTNeuyvSg3NcYPVqymQshClflgu709HQCAwN58803rd2UamXbDhtTufsgJfju1Em5Gwvw559GsrMKXzrs58+2s/RGUODudBV3p6sALPqjC0f2J1VImzdsgHvugdtvV/498ADs3JZV7H5CWNrx82pAeT3bgc9mHsRggLvuUoYrDhmiZrK9lniNVdvaANDALZYnp3UyO1a7TnV4YJAykTgxrR7vf9ub4xeVvAqO9mn8tnAfT7x1C8HBypI02zel0bbFEVP9L/9XtXq7jQYjs+Z5mh63bK7kejh3TsNH3/c0PX9n7+3cNaEz3YcEYaNTrnj/2eHD99/Drl1KnZ07lYy/pfHzz2p51P3u+bY3qqfOnblwYI/Ztq27nE3lbv2bmG2b/W0b6tZVH9vZKm3O1tuxf0vV+h0IURtdvAi33KIkOZs8GWbPVp7X683XyP75Z/jf/5QgGODoUSUjea4rV9QVJQIDlZujufIG3ZGRypDzpCTlcWG93Hm98IJyUxGUgDvvEHYhhMirygXdvXr14plnnqF///7Wbkq1kjdZULeeDoAy7GlQH6XHLjVVw5aV+wvcN+HiVSa+pA4rn/vOUV58VOn6MRh1TH3XzeLtXfFdNP36GfnpJ1i1Svm3aBF076nhg+c3ytriolKduCnGmre4Ne+8nW2alpGdDYu/Urow1v56gcxsZUzzyFuO4uDskO94785pjoOdGl1qNAZ6hOxnw8oYbh3TwaxuAx8nlq9Up4Js3+NCVfLvr5FEngoCoGPgQf7dWAdPT3XSpI0umw9f2MDSvzuj1WlxdnemY6ByEyH6QnNeeF4drm00QvTuY5SU0QhLlypljQbuuCN/ncbeagajixfU7i19tp7th5Tkaw3drtCstXk2JF9fJXPxnXcqF+gfTtlh2rZ7S0KJ2yiEsLw//1QC4k2b1OdmzIDUVGVI+ZkzynODBinLfmk0yqikXG++qS4DdvKk+ry/v/nrBAWp627v31+yoeV5abVKcjY3N+XxN99YfrlEIUTNYFN8lapPr9ej11fdeXi5bavINm7erAWU27edO+vJfanB3Y/yw7LuAKxakUTP4fnb8PLLetOw8hE9dnDXhI6kZ2iYtchIbKyGpUvhpZf0hIVZpq1//LCXu8eFo9dr8m3L0dvy4ke92Lh1F98s86deAzfLvGgNUBnnUW2UkACJieYZ/2OTvXhjqnm9xd+l8epbOfz6l5pFe9h9jQr8fXg3r8/qJftZsTSFiDY6Bo8KwMtXWXOmoPqNWzaksfslLlz1ZueRlmRdz0Jna96mQ4dg1CgtISHw448GtGW8ZVra82jWR2og+/TEZBp6G/jh82hGj/WivlsS8z9Lp/PAHhiMBrhxyD5dE9h2YzhnXLz5+zi4N5aw7jdd+Rbi8EE9R44oV8Tduhlp2NDAzc2u30Tt/b5wxcn0vvZvPUZqRjAA3cNPYTB6mtqXq2dP5R/A7r/cTM/v3K1jgvydFUk+j2oJvR6dqagn3x9gOeXk6MnJMT+PDh6E227Tkp1tfo0QHw+zZxtYs0ZD7vXOU0+p1zsdOsDQoVp+/11DXBzs36+nXTs4flxDbh9Ts2YG9Hr1pqFWC61ba9m3T0N0tJHt242muiEh5nUL4+kJ06drmDRJ2e+JJ4zs3m3A1raMPxRRavJ5JCzh5vPI0udTjQi6jx0rec+JNUXlvYVqQVmZBvbsaQdo8PG5zqVLh7h0Sdnm01qPVqPHYNSxaGVrBq3eiHtj1zxtqsuX3ytJipwcM3jixQz2H1B6xO+/vz6zZim9Q598EsvEiTdNmCyFmKhYTh+9zpnTdny5vC9ZOfYAjOy3mwlT7MCoZ+VXF/lk6RCMRi2rd3TkjkG7+WCBEZ2Nrpij1y4VdR7VVof3GwCl97l1YDyHoj3Nttexu871rDocv9iMn778g5UrlVE4Li45uDVOJvLmlNk3uDSBMc8rw5svJJznQkLRc7XbBV3jwjZvrl13ZtWStTQNrW+2/YUXmhMdXY/oaPjmmxO0bVu+zOA3n0eZaZlkpmXhUl8dkn3hWAKrdwwAwNfzPM072BAZGYm7H6xcdwobW+Ur5OafQcuQwtu2Z1cSrQr5md1s9cJzwHAAurbZR2RkwRfAHs5+JKR6cCHezdSWtb+eA5Sgu1XwlUJ/TyZO2djqssjW27Eryrv4+gKQz6OaTpuRQZsb5QMHDmBwyD+yp6zS07U880wLIiPbMnXqGQYPVqa1vfJKM7KzlZtp3bolM27cJcaPD8Rg0PDOO5CZqQTcLVqk4+l5xGzVAj+/BoAPAOvWnUWnu8q2bd5AIwA0mlNERpqv0ejj05R9+zwxGDR8+20moIxksrU9SmRkyZZO7dABWrUK4vDhuhw8qOHlly9y//0ywbuyyeeRsISKOo9qRNAdEBCAo6OjtZtRKL1eT1RUFKGhoeh05Q8gjUbYvh0aNQI/P9i29iBZWcod1j4dLxORd5IScFuXPfy+rROxyfV56TlvNuzywdHFkZwcGD9ei9GofIG9Nd2ePoPVOZpeXjBrllI+d64hERHmQUBJTZ+8iamfDc73/J29trPo97bY2CmnYZ++4Qy6fQ8PTPAnIdWDTVEdWPvtv7z2Sc98+9ZGlj6PhOLQhu2m8kPDjrJitTNbDynZuLu3juTeu1KYOFU5B9+bFUZamvKzHzZMS/v2ERZrR89um/j9RkbwyzGODHtAPXZSEmzdqnZtp6a2JCKibOtLF3QeJcUm07ldCmdiG/PLgr3cdmMI/I8fq2M7n3zoOO07lOxvMahlEI+9cN00DH9wx92s3aUc8+wFz3yfUYV573CmqXznMDsiIoILrNfY4wQJqR5cutqA8DBvNFoNs19VL5YHD/cnIqJVsa8X4X+U3cdac+yiP80aJ+LqVbWG+lcl8nlUS+ROhgbCwsIwS4RQDkrODC179yrXH++/78dDDzXh2jX46y/ls87Ly8jatU44OrZk0yYj33yjITNT/Rx8+eU6tGkTYXbcCxdgzpzcpjclIqIJaWlqj3m/fs1o3dq8LX36aFi5UimfPat8Zul0RoYNC8TevuTv6euvoUsXI0ajhgULfHjppUZ4eha/nyg/+TwSlnDzeZSenm7Rjt0aEXTrdLpq8UdmqXYuXAhjx4KzM+zdCzs2JJq29Wh7Fp3Oz6z+l0v86dj+HGdiffnvRDAPj9jOCy878/MKZyIjmwIQHg6TJ2vJ2zxfX2hY/zqXY+uwd+c1tBonNNr8Q8KLs2Kdd77nRvXdxver2mPnYGf2/ODRHfnVaT99RrhhMOp46/Oe9OoXRe+REaV+3Zqqupzv1cWpE+qc4JYBtrzXQ0O/kRn4el3mx+UNqOvixzPTM8nKsSfqRCNT3TvuMP97Ka+uvT3hA6W8c6eOJ/Ic/LeF/5GV1db0eP+GKHTPhpfr9fKeR8u/juLEJWU5szemOjD0QS36HD2LVyqBqq0ui4efCS/xeVfXpS5DOu9g+ebOuNVNYuFPfjQLTCcjy5Ejp+uX6DhGg5Etkc0BcHZIoW3PoEL3a1Q/lQNnlCRoiZfj8fL15HiMG6DMp4/o3rJEr9kxPJ7cKef7Np/mlrvUn3l2NowbB9HRSv6Jli0LOUgtI59HNVye361Op8NSH3qvvw6//aY+Tk3V8OKLOhwd1SzlzzyjwdlZeb0334TFi9Ws5A0bwujR+T+D887DPnpU2X7qlPpcy5a6fPu0bUs+gYEaHB1L9147dYLx45Vs62lpGjZs0HH33aU6hCgn+TwSlpB7Hln6XKpyidRE8f75R/k/NRUmTYKtO9XhXt36NcpX38vXk5XLr+PskALAso1d6DwohI8+b2qq89lnYHPTLRiNBtr7HwAgMdWZ04fKtnxYfLLSW1SvbiKrvt3NyQNn+envrvkC7lw9h4UzbaKSicRg1HHf+IbEno0r02sLUZzjJ9WJdy1DPOh2WxgpqTYcPNEYn5be1GvgxpDO+8z2cXTIYcAAy7ajbe8A7GyUnt3t+xubbVv8g3ndfVFlH+K5eTN8+mkjrlxRn1u+3s9UPnA2nC2rDvDninNcTmoAwG1d/8OjUf7M4UX5fJE/H76wgW3/JNDAz4sg3xgATlxqQmZ6ZjF7w6moGC4lNgSga8gxdLaF3yNu3EDt1b54RkmCdvKism9j98vUqVunwP1u1qGD+gW7a2uK2baln+02ZWLPzaIshCgZoxEOHICffoJnn1WSogFotUbq1lXmTf74o5KIDMDVFZ54Qt3fz08JaHNNmkSBvdBNm0LuCPjcZcJyE6k1aqRuyyu8gPuXJUmiVpARI9Ty9u2F1xNC1D5VLuhOS0vjyJEjHDmiZL89f/48R44c4eLNC7DWYufyxL5//gmrtrUDlKA2qH3zAvcJ6dqSJZ9Ho9XkTwowYUwMXboU/FrtI9QMzHs2lX79YKPBSHyKstClj1cct47pQPPQJsXsBS/P6kG/tnsBuJTYkAfuiJGM5qJCnDir5DjQaAw0D1HmAtra25rdFLrvPvOh3EM67S7w4q087B3taddS6WY9frEZ8eeV4PHiycv8GxlhVvfw2eZlWks6PV0ZFv/11948fPcFAJKT4a/tTc3qzfs4jW+XNTM9fugRV0qrfhMvnnu/N8EdlaRprfyV+Zp6gw3HI88Wu/+mP9QPuh6di56/3shb/Vy7cDqFlKsZxKco4zr9G5d8XmXHXuqonN3/mQfq8z5XH+/eUcp1z4So5caNU4Lbe+5RlvfKNWuWkWeeUf/Wc/MWTZqkBN55vfOOsoLBvffC008X/DpaLQTfmIVy8iTExSn/IH/m8lxubkpQn1dZg+7OndWyBN1CiLyqXNB98OBBhg8fzvDhwwGYMWMGw4cPZ07uJB3BueOXzB7rDUoPUNfQ42h1hf9Kh4zpwI+f7OT2rjt5bMQmPnpxA+t+2MucBY0L3ad9Z3X+1p5dpV9DOz01nevZSnTi6VbyxE86Wx2LljWhoZvSHffnnva8N2VvqV9fiOIcP6+c/76eFwvtEb3t/gic6qSaHo8YXjE3gLq0V19jxy7l73rJF0cxGpW/a51WGQqvN9hwcPup/Acoxn//QUqKMkXkzy1NOLDlGGvWQNZNf9rLNnbgt9+UGw1eXjD4noLnUpdGqyA1C/rhfcWPXMm77E7Pfm5F1m3UWP3cu3j+Oidj1Dsi/hEBJW5jYLtmONdVbmbsOtne9Py+DUfZfkS9Ct9/0CHfz0wIUbCcHGVKxs2efx4mTjQydGgCnTurNzYdHQsOquvVg19+gR9+KHpqeasb6RsMBvjjD/X5woJuyN/bXdbVWurVU5YhA+XzNqNkediEELVAlQu6O3XqRHR0dL5/M2fOtHbTqgSD3sD52IKHeXbrVHzvy6iJXfl9ayc+/7Unz77XmwH3tjMlMitIux5qD9ieA6Xv7YpPUIfuevo0KNW+Dfy8WLzgAhqNEuC8Prs9W7aUuglCFOrqpUQS05SRGC18Cu8RdXB24P4hyhDzenUTufW+kAppT5ehXU3lbXuUv7cflqsJDB8dsc1U3rczvtTH37XL/PH/Zl5h+XL1cY+2pwFl6b7cDMH33YdFlr4JDlED4cMHi49YN/+nrJxgZ5NJh1uCiqzb2Fe9WXLhvN58Xd7AkifZ1Oq0tO+oHOvCRRtyB1jNm2V+kyArS8PBgyU+rBC12rlz6lzsdu1g2TI4dgw++ECZxqbVwrx56hJbkyZRrgRkwXnuEeYmSIOig+6bczuWtacboOuNj/GcHCXvjhBCQBUMukXR4s4lmJbbCvWLpo6tehu1e996Fn+9hs3q4+OhXHnujW5e6iHe8YnqEF1P38J71AvT9862vP6ikihOr9dwzz3KuspCWMLxA+q0lZZ+RY/E+ODLtnwxfRMb18Xh6lX6G1AlkXeax/btELkpmr3HlW6bdi0Pc/f96uvu23fz3sXbvdv88eI/OrF6tfI37ekJ335nl28KykMPlf51CtKqrXrz4HB00SmBL526wolLfgB0DDpa7JzsRv7qsPCL1wLNg+6SLQlu0rGjWt69GxKvJPHDunb56u35+1DpDixELXXihFq+5RYYOTJ/IsLwcOUz7/vv4d13y/d6rfIsVLBunVouadDt7KzMDS+rmz/HhRACJOiuds6dUHtcukRc4YMpu9BoDIQ3i6ZT//IPAS1Iu2BlvlVKhisn9seUat/4PJ1xZb1z/cY7HvTurZQvXID588t2HCFuduJwkqncwr/oG0pO9Zx45NWehHYr+XDl0mrcWFk1AGDb1hy69vc1bbtvRCwR3dV51vsOlf4m264d5vPAs/V2pKcrXwND+1+kWevGDOum9qaHBV3N1wNUVv6hvtjaKMPjD18qOvP65rVq1NyjY2IRNRWNA9Sf04Wr3uUKujt0UMtffHiUN5/aT0aW0lvevqUaaO/ZKnf/hCiJvEF3ixaF12vXDu6/v/wJ0vMG3Sl58iGWdHh5SIjSA19WEnQLIQoiQXc1c+60+g3i62Ng0tu9OBt9hZ0H/QrNBl5e7SPU3vQ9m0uX0C5v0O3hUbbX1+lg3jz18Z49ZTuOqJnOnVOWaIkv/Whrjh9T5xm3DCpZhuuKlnvBlpVtYwr2mjeM4aGnw3H1dKF5QyUJ2YHTzdFn50+MWJj4C1c5dUZ5jy0axWCjyzbbPnKQkljtmRdcTFM6JtxruTHUNnY2BAYpU1mOnXQkR12pjVNRZ7mrz3ZaeMcw65Ud/PuvOr+zRx+nYo/t5aVeqF+8CCcj1XU1/ZuV/GcE5j3da7YE8clPvUyPP/9caxoJsOegV6mOK0RtVZ6bYGXRvDnYFXA5VNRr+/nBnXcqGdEnTy7f6wcHq0ngtm1TMrfnOn5cGT4fGAj9+8PHH5v/fIQQNZcE3dXMuTPqUju+TZQLWJ+W3tg7Fj1cszzad3Y2lffsyi6iZn7x59Weec96xS8TVJjAQHB0UF47avelYmqL2iIzE3r1gkcfVdauL60TZ9R5xi1alWMSoQV1D4kylXXaHJ66dyP/HXDD3Vvp2W4TqNz4Ss+sy7F9Z0p83D0b1MRrfTse4u5+O02PneukcMsdyiTGHkPDWbvoPxbN2spjr/Uoz1vJJ7cHKjtbudDMSM3gzcc30KpdfX7Z0IWTl5vy3IzOfL6sGwBarYGug4ofWaDTKev2wo2g+4xys6Je3UTqeZSu28zXFyZMwHTjIVe/tntp1zeYYF/l5xh1pkWZMsgLUduUtKfbUmxslGuGvFxdwb2IVQ81Gvj5Z2U1h3vvLd/ra7VqFvMrV+DMGTh7VllOLDBQ6UQ4dgz++ktJGNeiBbz0UvleUwhR9UnQXc2cO6feMvVtVkT6Tgtq19PPVN5zoHRDWuNPqsMxPW3L3mum00FrX6X36uSFBqQlp5X5WKLmWLIETiu5v1izOofkuKRS7X/8aicANBoj/mHFL2VXGR6e1IyRPXdwR6/t/LfxFLN/6GU2h7xNmBro7dt+ucTH3bVNnbMe3DqTZ6aoV6DDeh0wmzc98L72jH6mGxptOcZYFsBsruXviXQMPc9b83uTmV3wKIPwcC2uni4lOnbjGykjYmONnItX5nj7NyrbDbpPP4VLpxL4asYWRvTYwYD2e/jsK+WmTPsQZUWFHL0tUduki0qI4uQG3fb24ONTOa+Z97MGlF7ukgwZL2jt77LIO8R8zRro1w9WrFB7vbU3XX1//LGabE4IUTNJ0F3NnLugjplq4m/5xGkF8fL1oGlDpcf6v1OtTetolkR8gnqKeTYoeRbhgoQGKOv8Go1aDu86U65jierPaIRZs9THeoMNfy8/WqpjHD+u/O/jo6FO3YqZnlFaTvWcWLaxM79s6EJY9/y9vG06q/M09p0sOqt3Xrv3qX9/AeFORPQM5IePtzHxro3M/rpVEXtaTt4L4aderMfBGCWbko0um+cf2MCGP1PMhncPGlTyYzeyV7LEGY0aDEald9vfN6nMbW3g58XYl7rz66bOrNvdnhYRSmal9m3VD8A9W8swp0GIWsRgUIdPN2+eP9isKAUF3ZUpb9D99NPqd03DhjBzpjId6uBB6NlTef76dYiKyncYIUQNIkF3NXPusjq/0adl6ZbgKo/23ZT5i2npNkRHl3y/+Kt5lgzzdi6iZvFCQ9SL3ai9ksSotvv7zwwOHDB/bt3aopeiunTqCh0DD9HI/TJPj95C4o0cXTdn0q3K2vRR17LZd7hkiRKMBiO7DitJ2OrVTaS+n3LD7t4nuzJ3aS88GhUx7tKCgn3y9wz7N4whcnMMH3zXm179Xdi+XRnB8O678PLLJT9244b5l0z0b2b5xbTbd1N/5nv2yleoEEW5eFEJKKFyA9/gm/LKVnbQ3amT2rOem7/Cy0tJrDZlirKed+vWypDzXDcv6SiEqFnkiqGaORerXPB5ucRRx8mhmNqW0769Wt64seT7xSeqw0Y9G5WvZz60rRq0Rx0o3dJlouaZ9Ub+6Qp/bG2O0WAsoLYyf3j4kDh2H2vNpcSGfPxDd9O2yphnaCne3tDgxv22ffvMk/QU5mz0BWKTlRtnHVudsPiw8ZJqGe6DTqtmUGvf8jDbdjrSuov6C9Bq4e67lYDbuRT36Rp55/9B+LcoZxrkAoR38ze9hz2H6hdTW4jaLW+SsMr8nLV2T7erq3kb7OyU4eV+fub1OnVSyzt3IoSowSTorkZycuBiojJX0bdx2ZOSlcWAAWr5iy9KdqEPEJ+k9MzXsc3A0bmcw8s7qssCHThasnmeomY6vPMEa3cpazv51T9Hnwhl0eqzcT5E7z2Vr77RYGTsiH3sig4p8HgtfeMKfL6qatNG+f/qVXVOe1F2bzhnKrcPL3o98opk72jPfQN2AHB71538u7MJ9ZtYJgt4o8Y2+Z7zDyw+83lpOTg7ENJUiSQOxfiTnpK/h10IoajsJGq5WrY0X3qssoNuML9u+uor6No1f52ICCXxG0hPtxA1nQTd1cilS6DXK78y34BKykZyQ9u26lI6kZGwbc2hIuvnik9WgmNPl8Ry967Vb1qf+q5KcBR10reY2qIm+9+76tJ1T409xa39k02P//j1vFldo8HImxM2suRv5Yqnrv01/vxxL6+O34CnSzyN3S9x1x2VexOrvLp1U8sbVp8ttv6uHer7a9+l8kbIFOTb1d24cOIyv2/thFM9ywXFjZvkf1/+rStmCk77kFhAySOwf8uJYmoLUXvlDborM/C1szOfNmSNoPuNN+D115Ue7vvvL7iOg4O6RviRI+brigshahYJuquRc2pnFb5WiDkn3X/YVJ43O6nY+kaDkfhUZa6op6tlvklCmys/hLgUL66cqV69k8IyYs/G8f1a5Q6Qi0MyY59vw6AR6k2odf+oIyqitp+md8R+3v6iN6AsA/XDp4fof087pi/oTWyiBzGX69M0uHJvYpVXnw5nTOV/Vp0rvOINuyLdTOUOvZpWQItKTqPV0Mi/ocWP26ipq9lje9vrFfI6AO07qF+dOyKrxlJzQlRF1urpBrj1VuX/4ODKy5qel5sbvPUWDBtWdL3cDg2jEfbsqfBmCSGsRILuasTaQfddY5vj6aJk6/3l3w5cORNbZP2Uq6nk6JVEap5ullniKzQo1VSO2ll8D5+oeT6dcci0xNQjd+zDxcOFVp38aeyuLA+1MbI1l89n8NRT0KaHH5uiIkz7vv/cJoaOVSfRabQadLaWn/db0Tr0akxde2WY+D+7/Qudxw5KEqM9x5RFa309L9DQr2bOQ27sbz5MvXnD82h1FfMV12OkOtTg9/WNKuQ1hKgJcud063TQtJLv9737LqxbB5s2VV7W9LLIO69bhpgLUXNV4Y8hcbNzp9TeYmsE3XXq1mH8HUryqmy9HQs+KnqIefzFJFPZs55lhu+GhqmnbNS+1CJqipooIzWDT39oDYBOm8OTryrjBzVaDYO6KV0qGVmO+AfYMmcO6PXKlIYW3mdY/e1unv+gt1XabWl2dWzpEa4sj3YpsSHRewuf2L1uHaRdV4Ze9+1rnQRqlcHV0wUHO3V+tX+zilv0tlUrdejqpk0QJ4NuhMjHaFR7uv38wNa2yOqWk5kAhmzs7JR51Z5VfDBK3mUSJZmaEDWXBN3VyLn9+0xlX5cjVmnD4y+0QKtRlu76/IcgcrJyCq2bcEW9APb0sMwFcGhHb1M56lzBSbFEzbX4kz3EpSg9mnf12UWToMambQMHq4m00jOUsoMDTH8ri6jjDRkypkPlNraC9e2hjh4paoj50qVq+e6Ham6vrEaroZG7Gv36twkuonY5X0sDI0cqZYMBVq6ssJcSotqKi4PUG/fGyz2n2miE9ItwYQ0c/xwOToe9T8Opb8zrXfkXlnnCrw1g56NwZYOyX8YVyK6aE6YDA8HlRm5Y6ekWouaSoLsSrFwJr7/ux9Gj5TvOuYv2pnITf+tk724a7MNtXZVJRxeuejN14pZC68ZnB5nKnoEdC61XGq07tzCtfRl1rIrfvhYWZdAbmfW5GjQ+O8XNbHu/kcHY2agjKu64Q0lM8+rrdtSpW4eapu8QdZj4PxvtANBn69m66gDXEpWh5xkZ8PvvSh03N7jllspuZeVq7JVoKvv7VWxyvNygG+DXHy5X6GsJUR1ZZD534gHYei8sbwgrGsPGW2H3BDjwOkR/DLE3rWHq0RG0tpCVCCcXwN99lP2WN4SfXeHfIZB+vuDXshKtFjrcuCd88SKcr1rNE0JYiATdleCJCRrWrvXggZHl+yQ9d1kJtLUaPY2aV0xW3pKY8rKjqbf7nS97s/h/WwusFx+vlj0bWCZjsqOj+uV98CDo9ebbc3KUdcRfeEH5Env88ZIvbyaqtnU/7uHIOaW7pEfIfjr0N1+ItV4DN76fvZd7B+xk3R8Gfvml8ucQVqaIHgG41U0C4N+9geRkGxjR9wDdbw+jZ4dzXE+7zh+rrnHtxgphI0YoGX1rskYt1V+4f8uKfbPt20NjL+VDbv3GeqQkyHQXIfIq1xrdyYdhyyhYGw4xS+B6ITlkbOuZP7apC753ga6QJUovrYXVoXDmhyp1cSDzuoWo+STorgRN3JSh4PuONWX/5ugyH+dcnNKz610vFhu7/GvSVpaut4Yy6yW1h3vclHZsXxOVr55Z0G3BTunQUOX/69fNv9QPbDmGv08cvXvDhx8qWUDnz4fduy332sI6jEaY8ak6cuLZp64XWG/UxK78sK4TAwbW/I82na2O3m2Uz5Or19x58L4kVm5RFvDedzKYaZN3sHT+AVP9USNqflDYpZdyAe7gAO07VOz8da0WRvRR8lpk5diz5of8n4FC1GblWi4sZimc/Vl9bOsGDftB8AvQ6Uvo+Rv03wJBz+Tft9tiuCMWuv4Afg+AzwhoPBQcbkxPy06C/56DnGulbFTFkXndQtR8Nf/KtAp44C51nuG3n18q0zEy0zO5kqQMJ/WtH19M7Yr35PSePDp8EwCZ2XUYMboBiVeSzOpUdNANsPOfGACup13n3tFazl7xyld/99bkfM+J6uX332HzdmcAAlpkcfuD7a3coqqhby91CPUPv7ibbXv/mx6s2KQE4fXqJnLLgJo3xP5mjz8OP/4IW7ZA/UpI0j5ylDrNZ/mKin89IaqTEg0vz0mjXsp6SIsxf77ZA8r/dRpA29kw8hL0XQ9t3gf/ceAzFLy6Qd1Cssra1AW/e6Hrd9DzV+j1G9x6CJrep2zv/DXYOpfn7VlU3qBberqFqJkk6K4Eox4NMc01Xby6NdmZpU8qduHkFVPZ19v6d2c1Wg1zl3ShbxsluduVpPosWlLXrE78KXUSu4dzksVeu2PAQVP56RecObk/hqmTdnD4rPKt3so/ljemXDXV+e+fA/mOIaqP7Gx48UX18cz37arlMl8Voe9tjfM9FxagfFYYjDquZyvTOkb2PYitfWWlDrYeOzu45x5o27ZyXq/H7aF4OCcAsHprGNfTCh6BIURtdPy48r9GA82b59lw7RTsfQb+6ID2V3eaX3oZzemF5js7+0O3n2DoSQh6CnQWuGloV0/pBR+4GxoNNt8Wuwk23Kb8b4Vh597e6qo0e/bknzonhKj+JOiuBO7e9RjUcQcAsclerFuyr5g98jt3Qg0ifRtVbIKgkrK1t+XjbyNMj7/93vyi3nzJsAyLve7Au4IZ1FEZM371mjv9Bmj54NseANjZZPLTd8lMeaWOad753kM1c13i2uLzz4wcO6aUe/SA4cOt2pwqpVXH5tR3VUfS9OwJuyI9aN/ysFm9u+6xTE4FYc7GzoahPZWfdVqmE38vkyHmQgAkJ8O+G5c6zZtDndyY+doZWNsOomfD1T1ojMr3tKagOdZNRyk91pbmUcBIqcPvw8XV8Fcv2Hi7cmOgkuX2dl+7piQBFULULBJ0V5Jbb0sylb/9pvS3MM+dUZcH8vWtOmvthoRqaNdOKe/dqyQ3yxWfqF7oe3jflOykHHS2OpasCqBVE2Xs2plYXwxGpedz6sTthHRtiaOLI8G+ypfmobPNpQeqmkqKTWba6+r0gFmzMGWvF8qIk9FjnABo0AB++AHsHWz49ns70+gaD+cE+t4Rbs1m1miDb1Xza+zZkVZETSFqjz/+UBKbAtx6640nDdlKJvLsJFM9o0tr4lzvwNDh80pvo0l2KiTluWF2cTWsbg1RbytrfleSvMnUZF63EDWPBN2VJLyPt6lH6vctbbl6KbGYPcxF/qcOSfdtWrVSED/0kFr+9lu1HJ+sBAN17a/h4GTZ+aSuXq6sXGVnGtoJ0CHgEC+83930uF1rZZhtjt6Wg9sr/661KL93X9hHQoobAKOH7Ke9TOXO5933HVi9GqKioPGN0eatOrXg5/mR9Gu7l+/mnqoVQ8utJbS9upLEoaP2RdQUovbIXaoQYOjQG4UDr0OCMuoPp+Yw4jKGwfs52/BlaNDXendUbZ1h6Ano/C043FiWUn8dot5Q1vv+dxAc/0wZel6BZF63EDWbBN2VxMZWx+hblW7grBx7lnxe8nnGSUmwYLlyC9TOJpNuA0ubBrRi3Xsv2Noqw8IWLUwiJ0u5vR2frCQZ8nRJqpDXbR7ahOWLzlOvbiIN3GL59vs6Zlnd20aoIwr2brd+8jlROpdOXeGTH5Xz3t72Ou9+JOuyF6ROHRgyBLxuyiE4dGwn1u9tx5AxHazTsFqiRXgT06iCQyfzJ3IUorbJzoY1a5Syq6sy7YXouXD4PeVJrS10WwIO1lv6NB+tLTQfA7cdhaBnQXMjb4hRD5fWwe4nYNv9FdqEdu2UVRFAerqFqIkk6K5EDzzW0FT+bU3J5ynNnQspacpQ7YfuiqFhs6o1R9nDA27ruheAywlurF+6D4PeQEKqkk3Z0y2lwl67x9Bwzl+0J+aCK8EdzW9GtOuiDmn/778Ka4KoIO++fNSUCGziqB00CcqfNEwIa7OxsyHQR8m8fOxCU7Kulz5RphCWYjDA5cvWXYJ6yxalswBg8GCwtQXi8vQSh88Ejyp6M9DWGdp+BEOilOXJ6jZVtzlVbIeHkxO0bq2UDx6ENJmtIkSNIkF3JQrt0hIvF2WI+Z6jzTEaiv9WTEuD2bOVslYLL74dUIEtLLuHxqi9yt8szCYpNtk0z9rTLb1CX9vRxRF7x/zDOsO7NUejMQCw95D0klYnMUfOM39ZF0CZnjDl3dZWbpEQhWvtr4ykydHbcvyQLFEoKl9Gagbz395Mq+AcvL3hiSes15aVK9WyaWi59yDlf9+REPR0ZTep9FyDleXJhp6GATuh/Vxo+bh5HUM2nF5s0TscufO69Xo1EZ0QNU52qrVbYBUSdFcijVZD+wjl1uXVa+6cOVP8Pl98AQk3pi3fey/4V62R5SaDR7c13VD4bXNbovedN23zrGedbOvO7k4ENDoDQNRpf7IysqzSDlF60186RbZeyV3w1P17qN9Ehu2Kqqt1TzXZwOFTcoNPVJ7Ys3G8+fgGmvik8fgbPYg+pkyx+vJLtbe5UhiNkJ2K8VoMv/+iXLTY2MCgG7E2jW+HXqug+8+gqUaXnhoNeHaEgInQ9G71eaMRdk+A7ffDrkeVANwC8s7rvnmIeU4OPPUU3HILphU9hKg29Nfh/G+wcZiSK+F6XPH71DA2xVcRltS+lx9rb4yy2rNXQ7PmhdfNTM/kw/f0gCMAL71U8e0rK1t7W+6/7RD/+6E3mdl1eHe6ukSYp0eO1drVrtUloi80JyvHnsO7jhLRK8hqbRElcyIyhoWrugLg6pjM8+9EWLdBQhSjdaia3PLQIbjrLis2RtQK8ecTeHniIb5f25HM7N75tufkwKpVcL+lpyHrsyDlCCRGQuJ+SD1O4uU4Fqy8hYYu52jqGcPJcxsB6Nk9i3r1bvxt1PGCxrcWftzqJn4HnPxKKZ/8EtLPQ/elyvD0csibwfzmZGpvvQVz5ijl++5TgnKdrlwvJ0TpXI+Dy38pN5nsXMHWFWxdwC0ctHlOxkt/QsoxyLkG168ofy+J/4EhT+fXmUUQ9EzlvwcrkqC7kuXNvrxnT9EXZ79+uZeLV5TgY/igy4SENCy8chUw8cVmzP7RgNGoZdV29Xatp4f1Jpe1jcjhh/VKee/OVCJ6Wa0pogRSElK47+5r6A3KR9NzD++jXoPe1m2UEMVonWf2w6FDxdc/FXWWhk09cXRxrLhGiRrt6XFHWfxnT9NjnTaHu2/ZSbf+vkx8sQkAv/5aAUH3lX9hwyCzp6Z8OZ8F/z6ar+rQXkeBMAs3oIrw6qIkg9s+RgkkLv2hrPHdZ51yg6GMWrUCR0dITzfv6f7rL5g+XX28dy/Mn2/daQSihks9CbEbICcDclLh8nqI3QhGQ/66d2cAeYLuU99CzA+FH9uhMegsu6pRdVCNxvjUDDcH3UX5+y91nvTEhy9WUIssxz+8KSN65F/nwrNh+e78lke7PsGm8n8xVTRxiwCU/AW39k9k9zElgmnkfomnprW1cquEKF7z5mB3o0OvuKD7/ec24B/WhO5tY8hMt87UG1H97YxSEkva6LJ5/oENnD4cy+I/u/HYs02o76WMLvtjzXXSUyycjateRL6nth3vVmDV28fU0IA7V9O7oe9fYHcjaWviPvinP2ReLfMhbWzU68SYGLhyRUmMd//9+aeOv/KKsl2IMstOgZilsP91iNtuvi3jIuwcD3snw/5XlBtuBQXcWrv8AbRjAYlvnQOg+cPQey0Mi4GWEyz3PqoJ6emuZI0agbe3gUuXtOzdfR2D3h6truC1KTf/5wOArS6LboODC6xT1Tz7giO/3rSUpWdgO+s0BmjTVc30vnev1ZohinH9OgwfDlv2KZliPZwT+HNVGi4e3tZtmBAlYGMDQc3iOBDtxfFj2WRlGLFzsMtXL+HiVd6ap1xR7zsZzIIZG5n0tgy/qc3+/HEvqclZjHy0MxptydapzkjN4NRlXwDCmx/ng+96m7bpdDC82za+WNGTjMw6rPtpByMe6Vy2xmWnQtoF8+ccGkCLx8HZH9zCyXZsxbGHlLWtPTygQQM4fBjGjlVuRtV49XtA/23wTz/IuABJ+5XA+5a/wc6tTIfs2BE23biOmjMH/vhDDa4HDlR+xt99B8nJ8NxzMG+eZd5KdabXw7VrWpKTZch9sYxGZW716UUQt1Ed8h3qAXZd1HraNpDuCuS521O3OfgMBUdfJWDPSlaW1bs5f6j7A9C6HdjUVaZcuIZAHQ91eyo4OKg3q2sLCbqtoH2zPay81JHk1DqcPBBDyzZN89W5ciaOYxeaKfUDonFwDq3sZpZJ1yGhdAo6yM6jIabnPK2YV8jVFVq0gBMnIDISNv+VRI9+btZrkCjQ558rw+cAXF2N/LnqOq27tLBuo4Qohda+xzgQ7UWO3pZj+04Q0jX/+TvnrQOkZfY2PX5nXjBjp+hxdJKrxNpoySfbuPdJZQrZFwmbeOTVnsXsoTgWeRaDMRCAVv75e1VH3OnIFyuU8q/LchjxSBkaZzQoQ6fPbc6/reNnpuLxw8q63AD9+sGSJcp8cpvadHXpGgS3/KMML79+WZm7+u9A6Ps32DqV+nB553W/+65a9vZWgm2NRskQn5gIixcr/4QOaGPtRlQTGmD4jX9FcQKSyvgaoTf+Fc7VFX78UVlWsLaQ4eVW0D5CXUJrz+YLBdbZvPakqdyzU0KFt8lSNFoNz04yX5fbmkE3qF9gmZnQs78bDwzawqVTMiarKtmyRS0vW6ahbXdZk1tUL62D1ezFh/7Ln5U1JSGFOYsizJ67nFifTz+XgLs2unw6lomvBJoev/OxH9mZJcuAfXifek3QKih/otK+I8NwcVC6nlZuDiX1airvPbuBO3rtIGprydJeH1s5j6O7jkBm0dcfeadTtGql/F+rAu5cLgFK4F3nxui6hF3wX9mSROXNYJ6reXP47TeoXx+8vGDGjHK0VYgqIDkZ1q61disqV238aLS69p2d4FOlvGdXNvcWUGfzRnWuX48+dSunYRYy8pGONH3nKjGX3AHlS8Kapk1Thrvlrnm5aF13fgtJYdqTG5g0rRu29rbWbaDg6FHlfzs76CWjbUU11DrMwVQ+FJV/rvbn7/5HUlpvAHq3PcLGfcEYjTBzJjz2GDhbL/WFqGRGg5HHx5zm6jW1SzMmrgk/fBbJg09HFLv/4TM+pnKr8Pwnjp2DHbf32M3iP7uRnO5K82bxxKf0BuDkQ6fZd0zpLS3MrnX76TbycXL0k9n9WgfaU3gCmrxBd96EgrWSa7Ayx3t9T6jbFEKnlekwvr4wZAisWQNdu8KzzyrTr/IOm37kEYiNha1bLdP06s5oNJKamoKzswuaok7u2shogJSjkH5WfU5rB66tb9wkss7Pq1Ej5dyuTSTotoJ2PdXh5HujXAuss3mPEqlqNAa6DQqolHZZio2dDZ/Md2fMGOWLwtpBt78/7N4NX0zfxKsfhJKYVo/UDBeefa83X/14nIVfZtOhfyvrNrIWy8nK4Xi0HrCnZZNYbGysfMIIUQat2zUwlQ9H25tty0jNYNbXymeMRmNg/gJ73pqlDAtNSICPP4bXXqvU5gorWvzxNn7boiQfc66TQup1FwBmfB7B/ZOLn5N6OKaJqdyqe8E5U0aM0LL4T6Ucn6ION9t/ohlr1sCtRaze9f6MdHL0ys3oleffoz23FN6Ww2q51gfdAG6hcMtf4NxSWUqpDHKHj1+9WvhIQa0WXn+9HO2sYfR6A5GRJ4iIiEAnk7rNpZyAPzpCzo2kik3ugvafQh0rD0OthWR4uRU0aOqFr6cyrHzvMX8MevNsgMlxyUSeUoadhfkdx61+wYF5VXb77coXxsKF1m6JQqeDCW/25NhRA48M24RGo/zMD51tych73TAarLesWW135vAFsnKUICWo8cliagtRNTUP8aWObQYAh06a3zj6ZtZuriQpz93VZwcBbZvz5ptqcPXRR0auZxSQFVbUOAkXrzL5dTU6/XbOYXremModHQ3Llxd/jNxA194emjUruM6ge8Ooa3/N9Di4yRlT+Z138mfCznX++CVWbFZX+th7uuhVP3J7uu3slPwpAnBvV+aAO5dWa/2peaKGcAmAjl+C1h46fgHdfpKA20ok6LaS9sHnALh23Zlj/50x27Zt3TGMRuVX06PD5cpumsVUxRE+nj4efLGiJzvXHaVZA2WozfmERlw+E2vlltVeR/er8+uDWl63YkuEKDudrY4g3xgAjl9sarYc2LKV6o3TKa8pywu1bAn3jlKC9KQkDb99taMSWyusZcEHB0hKcwPg3n5bGfFIZ155Rd3+7ruFB8QAWVlKYlCAoKDCe8XrutbluzkHGdZ9Jz98vI2Dp5qaeqK3b4eNGwveb/4H0egN6iDI//YVfpmYlQXHbkwRDwyspXO5SyL7GuyeCOnnrd0SURsYDWC4KT+E3z0w9AS0eKRqXpzXEhJ0W0n7NmpwsWfLJbNtm7c7mso9etWyfPqVpEP/Vozod8r0OGqnfBlay9GDamLBwGCZXy+qr9YtlKRTeoMNx/YpAXhWFmw7rKxX7Ot9jTa9gkz1H77jqKn87fdy7td0+hwjny1uCSjTDKbPUpb9GjAA2t0YJb5vH2zYUPgxThy9Ts6N3GmtipkVNfLRzqzY3Il7n+yKVqfh5ZfVbe+8lZ6vflZGFgt+Nj9ockq+aibHj2NqiwwtL0TKMfijHRz/FLaNBkP+xHdCWIwhB7beA3uezL/N0Sf/c6JSSdBtJe07q8lPdmw3/xDetF/99upxW/VYKqw6Cg1Tb8tH7Usttn5aGpyX2NzijkarXTVBoe5WbIkQ5RPSSu1d2P6PMkpp927IyFB6Fnrd4mS2FnPv4eE08VI+VNbtbiurKtRwq1ZrOBunrMwwpOtBmocqc7M1Gpg0Xs14v2tt4YnLDm/dZyq38t5fqte/+25o7qfc8P/rX0d2rT9stn3Zgj2maRC2NsUHh5JErQTsPUB/4wZH7Cb471l1bq0QlmQ0wI6xcPZnOPE5nPrO2i0SN5Gg20o69WuBjU65QFuzqZlpTvH168pFGijzo7yblH6NR1Eyoe09TOWoQ0Un3oi/cJU24Vn4+irrZArLiT6tzn0LbCt3YkX11e9WdS73yrV1APNey969zetrdVrGDFfGChuMOhZ9egSA1FRYvx7S83dGCivKylJ+n5s3w5UrRQ8DL8i8eWp54qthZtvCAuNN5ejDGYUe4/BBddpCcMvSnSA2NjBl3C7T4/lzzJcDm/eFer3x4qSClzPNS4LuErD3gK4/gubGNcaxT2BFEzjwRrHLsQlRYkYj7H0KznyvPNbagb3M265qJOi2ElcvV3qFRQFw+koTDkUpAfj27coXO0CPHtZqXe3QqoMfWq2SvCjqQtHJYiY9eJTjJ5Wh/tOnG0t9sSUKd/Ss0vPTyP0SLh7lSz4jhDW17RNEI69EAP7a14G0NPO5szcH3QBjJviZyt/+3JjDhwy0bq0MOX744YptryidV16BPn2gZ09o2BA8PMwD6aJERys3UkBZUWPgQPPtARG+at3ThSdPPXxUnXLWqm3pV3oY80xHbHXKRcb2/Y1Mzx88CFsPKTcCWvud5rnXmxS4f14SdJdQ/e7Qdpb6OOsqHHwb1kZAYulGKwhRoAOvw7G5SlmjU5KlNR5i3TaJfCTotqKhD4SYyr+vVr5Iv/taHXZ0S+GrdAgLcHB2oGVL5U/g0NE6prlpN/vlsx389HdX0+PjxzXskJxHFhF/PsG0nE1Q00vF1BaiatPqtNw+UkmUdv26hjWrcti6WRnO29g7k+bN8+/Tso0f3VofAJTVFDq2z+CckmeTn3+GM2cqo+WiJFasMH+cmAjPP5dFWnLxw4U/nafeqZ0wQclOnZdTPScauyufgdHnGhd6nMOnlM9LG102LcKLD4xvVqduHcKbK6Mrjp5vRkqCMmk794YAwPinmlHPXUNAMauV5gbd9vbKjQRRhMAnYcgB8HsANDemtqWfh/Xd4eJa67ZNVG+HP4BD76iPOy8E3+FWa44onATdVnT7cPWO9e+/Q3J8Ckt/Vh67OmcxYoSVGlaLhN6YMp+ZqWaEzSvuXDxPvJT/auKbbyq2XbVFdKQ6hDHIv/h59UJUdUOHquVpU7NIv64MM+8duqfQpLEP3ptkKqddr2sqG43w1VcV0UpRWtfTrnP6tB6A+h7pBPkpc/avZ9rx1y8Hi9z3WuI1vvlKWb6rTh1DoSMYAm/ceExI9SDh4tV823Oycog+3xSAgMYx2NqXLflehzBlKLvRqGXvBmWZxq1b1e19+ij/d+xY+DEyM5VEalB0FnWRh1sodP1OySLtceOHm3MNNt8J1+PM6+oz8+8vxM1OfAGRL6qP28+FZg9Yrz2iSBJ0W1GzZmrQt3Mn/G/aMdIzlQuu0QO34+hYxM7CIkLz5KmLisq/ffJDx4hL8QJgcKe91K2r9Fb89JOejGuyvFV5HY1KNpWDAq3YECEspG9fTJ/dh46qH+K9eha+DveoR8NNa3wD9Arfj06nfNYsXJBKTpZkPLa245FnMRiUyLJ/u318OO2cadvvK7KK3HfRJ/+Rkq4kTx3dfwvuheSLDGyurqsdvS//nOrTh86TlWMPQKvmcfm2l1THjuql366tyRiNatDt4gIhNwbhdShi1tWxY6BX7kEUm0Vd3KRuU7jlX/C9Q3ncaQHU8VK3X/4LVgXC1X0F7y8EwNllsOtx9XH4OxAw0XrtEcWSoNvK8vaKTP80wlR+ZHLDym9MLRQaog75i9oRY7bt5P4YfvpHGVbu4ZzAwiVNuPNWpXcjOVnH79/8V3kNraGOXgk3lYMkiZqoAerUgYED8gfJvYf4FlBb4erlypsTd+Jon8ajwzfx5/Zgbu2pDL25cMWZP36UzxprOxKpJjoLDsym74gQHO2VYeUrNwWjzyn4porRYGTe196mxxOf9SqwHkBggPp9FH0wKd/2w/+p2e1bBZa9J7RjL/X6Yvd/9pw+fIXLylcbnTsZTb3WRfV0y3zucrJxhO5Loe968LtPfT7pEGy+A9Ji4K8ecGGN9dooqq6cDNg9AbjxmRH8ArR6uchdhPVV2aB78eLF9O3bl9DQUO666y4OHDhg7SZViKED1LvVeoMyz6d9y8NE9JRuv8oQ2vysqRy1y3xO8c/fnDaVXxgfRQM/Lx4cpdaRdXULZzQY+WzaJp5/YAOpVwsfNn70pJo4LaiDTAoUNcPQLuZJH7zrXaZFeNMi93npf71JTXNg/vKe2DnY8ciDiaZtCxZI5kZrO3JI7c0ODqmDg7MDAzoow6PiUjzzLb+Va/PKAxyMUdbm7hIcRZvewYW+RmBrdWpB9FF9vu2Ho9TREK1C7PJtL6nAts1wqqN8Lu861ISt646btnVruclUjogAmwKGjefkwG+/qY8l6C4jjRYa9jN/rk59cL3xA81Jg023w7FPK79tomqzcYAev4JXD/AZARHvUej8JVFlVMmge82aNcyYMYOJEyeyfPlygoKCGDduHAkJNW95hfbdPGjoZr426yNj4gupLSyteaivqbci6oS32balKxuYyqPGKgFhr+ERNPVShhWu292WiycvV1JLq5dl83fwxNSefLSoN5PuLzw769Gjyv9160LjwnMHCVGt3HpvEBqN2vPZu91Js/W5C6PVqV/Jg+5ta0qstXp7O/mssbIj0WqQGxyh9FYPvU1dl/33nwv+3p77sbqs18RHUop8jcBw9Tsn+kQds205WTn8ukbNVh4cUfblgHS2OtoHKiMpzsU3Ztly9QZy9z7OpnKdOupQc4ADB+DUKWXO95IlynM2NtC+fZmbIm5Wxwv6/g1N7lIeGw2wZyLse0EpC5GrfnfotxG6LpKAu5qwsXYDCrJw4UJGjRrFHXco812mTZvGhg0bWLZsGY8++mi++nq9Hr0+/13hqiK3bYW18bYeh/nyRoBX1/4aox4Lq9Lvp6YJ8TvNrugQTl3xJeVqCnVd63Ji/xn2nVR6JDoEHKJJcJDpd/LA8ONMX+CLwajj69lHeHl24cMFLam486iqyMyEKe9FmB5/t7Y7k/4+RNveQfnqnT6tBTQEBhoxGg1U8bdWI1SX86g6c29Uj64tt7H1WHcAena7Vuqft0an4eE7jjJ9gTd6gw2fzjzCtM8r57OmJGrbeXTklAegZA1vFtIYvV7PoFEBaF42YDRq+f0vH6br9ezfD//8o2HIECPOtpdZvkmJSOu7xjFifJsif16NWzTA3vY6mdl1iI7xMqv7/nuZ7DmuTJ4O8jlJcMdm5frZtw9PZsON+6G/b1Umb+u0ObTv42923HbtDHCjXpeukHdlcJ3OyOzZRry9jWX+7K5t51GJaOyg82I0jk3RHv1Qee7IhxhTT2Ho9K3SyynM1OrzSGOPXDxZxs3nkaXPpyoXdGdlZXHo0CEee+wx03NarZauXbuyb1/BSSWOHTtWWc0rl6iCMnUBHbqm8OVKpTys5zZOnvWAswVWFRWgZdOr7IoOwWjUsvaXzbRo15Bf5p0HlN7tAT1PEBmpJk3r0l+P9ks9BqOOWQsj6DliO3VdK+9LsLDzqKpYtKg+p2LM568+93QGs77eZ9bbF3M8E71emTPv5ZVAZKT5nHpRsar6eVTd3XZbPFtngYNdOv5tbYmMjCz1MboPNqD5Ugnq3v2qF54NfqPHiNIvE1WRqvt5dP3adQx6I45FfIbrc/REX1DWsG7e4CyHjiSZtnUMuMjO6DYcPteCcWOOs+inFuj1Gl54AfwbZJCjV3qR7x28kyPHvAs6vJlm3l4cPduEE5easmdPJDY2cOJEHaa+rdwE1moNvPnaUQ5EJRV9oGI0ClB7t41GZYRFmN9Rjp8xnyseGFjwZWKDBlnMmHGKsLA0ynBq51Pdz6OKcQ+eDWxpcuV9NOjRnP+VjPjjnGz8ETk2hWTjq+Vq+nmkMVzHqLGXnu0KVlHnUZULuhMTE9Hr9Xh4eJg97+HhwalTpwrcJyAgAMcqnOpbr9cTFRVFaGgougLW1QgLDePAfxs5ecaR9z4NwbtZgwKOIipK+3abWfynUk6OcyIiIoLxe9W05g9PDsevdZ4gMgLuG7CdReu6k5hWj39+zub1uV0qvJ3FnUdVQUICfPONcgGn0Rhp6BbLpcQGbD7YnvMHdnD7Q2o63NN7dprKXZpHERHRs9LbWxtVh/OoJggPCye83W58m7sR3KFX2Q4SAS8+tJH3FvbBaNTy/IzbWdpkN8PGFZHhqpLUhPPo8M6TdO0XgotjKmt+vZJvNE6uk1HnyMxWhnu3ah5HRIT6OTZ88CZ2Rivlb39oab7flRYAaDV6nn4jHN+ARsW2KbidlqNnITvHBje3CJo2hcce05KdrVxkP/MM3DV+UKnf683c3eHZ18yf694hnoiIHmbPhbdIgylKedRdBqLPG4mIMDJtmg53d/P3WxY14TyqWBEYLnVFu+1eNDnXcLoeRVj8cxgG7AGt/Lxy1YrzyJCNduudkHEZQ9jb0KC/BN8WdvN5lJ6ebtGO3SoXdJeFTqerFn9khbVTp9Mxd2kZL8pEuYW1dTWVD0XByZM6Ig8ov6eOHcE/zC/fPlPf8+XH9TnoDTb879u2TH49GY9GlXPnuSqf7+++C0lJSvnBBzXc3uU0dzym3ESa8mYDbr3fYFpb9uhBNTFRUKs6VfY91VRV+TyqEXQw+L4i1lwqoRlf9iYpaRPzl/dEb7Dh3olt+dv7EN1vD7NAI8uvOp9Hv3x3gaycAOJT7Ll3rC3/Relwcclf7/iBOMAPgOCA62bvd9i9TXh5tnn90aONbFwXy/l45bPvrj478QvuWqI2BeWJ+0+c0LFmDezdq26bPl1rkTWx/fygfn2IjVWf697DLv/vMk8mtYULtVBXA1j+Qr86n0cVzuc26L8FNtwKGRfRhE9HZ1v2RHo1WY09jwzZsOMBuLgaAN22e2DYGbCrZ9121VC555Glz6Uql0itXr166HS6fEnTEhIS8PQse+IQIQoT2kntxf75z0AmPaSOqBg1quB9/MObMvb2bQCkZLjy4Ws1M7t+aWxcHsm8ucpSSY6OMH06jBjfiR4hyoTAYxeasWSe2ru9/6C9qRzWsT5CiPw0Wg2f/tydBwZtASArx553p5d9uSihOn5SHWJ98qwrjzwCxgISxR+JSjOVg1ub91UEtW9Ou5ZK5nLPetf54w9YtEjDqfPuLP10Ox88v4Evfyn5DZLAPAuX7N+XzXvTlSz2Go2Rb75RkptZgkaTf0mwbgObWebgwvLqhcPAHUrSLJ+hxdcXNYchB7aNhnO/KI+19tD9Zwm4q6EqF3Tb2dnRunVrtm/fbnrOYDCwfft22rRpY8WWiZrKy9eTJl7nAbiU2JD125ubtt15Z+H7vTbTHzsb5eJ3zg8duHKu6My01d369XDffbBgXhIZ166bbTu5P4aRY5qQo1cuSKc8dpDGjZWA4c031EQUmzaq2Vf3H1PWinWwSyegjV/FvwEhqimtTsvXv3WmgZuSIXvzoQhy8i8FLkrpxFnzi9alS+HTeQaMBvPI+8jlCFM5uK2P2TaNVsPKPzz49oMtHIpMZeBA5Xlbe1vumtCF5z/ojVM9pxK3KW/Q/dGHWVy5qrRxZN8oOnUq8WFKpEOE+p3V1PMMjVsUP+dcWJGjj/ma3rlOfAFZifmfFzXDf8/C2Z+VstYeev4G3gOs2yZRJlUu6AZ4+OGHWbp0KcuXL+fkyZNMnTqVjIwMRo4cae2miRrqi9mXCfUzn7fRowc0LWJp3SZBjXnsDmU93vTMurz2VgHjEmuI336DIUPgxx/h0UluNG2cyhuPbeDvn//j6O5T3HZbDlevKcPrB3XczSsz1TGSnQcEotUogfeeg0qPdurVVE5cUn64IX6n0dnWwOFgQliQjZ0NvQcqo72updny339WblA1ZzQYOX5BWafQ3lYdOTBpspaWjc/yzH0bObpbGfV05KSbaXtQe798x/Ju3oAxz3enfpPyZ5cPbH7NVL6arK7b/eprlh9O3LGlupxjt9YHLX58UQmOfAS7HoP1PSHjkrVbIyztwio49olS1tpBz+XQaKB12yTKrEoG3UOGDGHKlCnMmTOHYcOGceTIEb788ksZXi4qzMD72nPgdABnDp9n7swzvPQSLFpU/H6vzOqK841lTb/8EvIM0Kgx1q1Thtnn7VmLS/Hi7S96029UW4I7NufoeSXTe6smJ1iyKgAbO3UIZl3XurRqoly8HoxpQUa6kajtZ0wZcyOCzaeSCCEK1ru3Wt640WrNqBGuXk4kKc0NgO4hh5g0Sd128nJTZv/Yi3Y9GnBo+wmOHFGe9/UFp5J3WpdJvfpOeLnEmT03uONu2hSS5K08+t7Vie4h+3F3usqTL/tZ/PiigmUlwZEbS4olH4Q/u0HqSas2SVhQxiXY8bD6uO3/oNFg67VHlFuVDLoB7r//fv79918OHjzIzz//THh4uLWbJGqBpsE+TJzix4wZ0KQEK/M0bGTL9Onq4wkTqFHDPreuPsSIEQaybuQ8u2PYNe65ZRs6bf436eGcwMpVdrh6uebb1r6n8sPM0dtwIErD/j3qULiI8AImUQoh8umVJ9/mhg1Wa0aNcPyA2ivYwu8as2fD558Z6R1xwPT5lp5Zlzvv1pmSQwYHV07bAn0vmj1+5TX7QmqWj52DHZujwom96kqngSEV8hqiAtm5Qf/NUNdPeZx2GtZ3h0TJMVPtGQ2wfQxkKlOK8BkGLSdYt02i3Kps0C1EdfHEExARoZT374d579ecRdYnP6UlI0P5mBg5Epb84sSPf3Xl1KErzH97E8/dv4Hbu+7kljb/sXbZFZqHFnynon0n9aJxzx7M1nWN6CjJQIQoiaAgJeM0wJbN2eRk1aA7fJXsRJ61tlu2MKDTwWOPa/h3Xxix51MJ8lF6DI+eU5OLBQVWzg3CwCYXTOWewVsrPFO9TO+pxpxbKJnNXVsrj69fhr96Qdw267ZLlE/6BfV36NAIOn4py4PVABJ0C1FONjbw2Wfq49enu3Hp1BXrNchCrpyJY99JpWunddNT/Pij8l5Bmc/+6Gs9+fD73vy+tRN//deWDv1bFXqs9u3V8p49EHnEw/Q4tItkzBWiJDQa6BUeBUBKqi2Rmyy3fmhtczw621RuEehgts3dux7ffJlhykWRK9hzS6W0rWtPZ1P59akORdQUAnBsDP02gceNTHvZSfBPP7j8l1WbJcqhri+0/QjQQJfvoY5Mr60JJOgWwgI6d4ZHhm0CIDXDhdeeqv4XwxtWHTeVb+97Frty5PEJC1MD9p07jUSdUeaAt/A+g7O7cxF7CiHy6t3lqqm88c/YImrWbHv+OszLYzdwIjKmTPufOKUuF9YyxCPf9k4DQ3jxoc1mzwWHVs5n1QPPdGb+25v47aud9BvVtlJeU1Rz9u7Q9y9o2F95rM+ADbfBhTXWbZcoGYNe+ZdXi8eUmykN+1qnTcLiJOgWwkLendsaV8dkABau7sb+zdFWblH5/PO3OnS174DyXWw6OEDrFkpyoCNHNGRkKovNRnSWJWqEKI1eg9UlqzZscbRiS6zHaDBy12gnZi7szeMPl+3Gw/EEZQlSjcZA8xCfAutMnduFVr7KzUd72+uEdCpBog8LsLW35dHXejJ0rIXXCBM1m60T9FoJPsOVx4ZM2PME6DOL3E1YWVYSbLwNDrxu/rxGA/W7W6VJomJI0C2EhXj6ePDaE/sAMBq1PPdUWr71XquTf3YqF5i2uiy6DSl/BqH2LY/mey68bcUkCBKipmrVsTmeLjfW694fiD5bX8weNU/ilSTOxCqfTzuPBpXpc/bEaeWGha+vljp16xRYx97RnrV/OvLIsE1897//8GjkXvZGC1EZdPbQfSk0GQV16kPvtcpzouoxGuDsMvijA1z6Aw7PgDM/WrtVogJJ0C2EBU2e1oVmDZREan/va8uaRXus3KKyOXv0Aicu+QHQpdVhHF3K36PWvn3+C+PcBHRCiJLRaDX0bqv0vianu7J/S/WfylJap49cNpWvXXfm/PHSrU+ckACJNxZQaNGi6LpNghrzxYqejJrYtbTNFMI6tLbQ9f/s3XdYVEcXwOHfUqUrCCiKYgNsCPaCNRpLjLFFTaIpmqaxpGtMTNRoNDEmsaQQo6Yn6mfsLZbYe2/YCyKIiCBIZ3e/P0Z2WQFFXfp5n2cfb5l77yxclz13Zs78AY/vAZe7HpjrdYVTJ2Gk10HYIljdALb3hdvn1HZbN7CT3n8lmQTdQpiRrb0tU8eFG9bf+8i1WGYY/m/FRcNyh+A4s5yzccvsiUAk6BbiwbUNTjMsP/e8DeNe3Vzsh7M8iItXTWc8CD34YEH3uXPG5Vq1zFEjIYoYCytw9DHdlpEI/7aAmH2FUiUBRK5XLdvb+6m51TO5NYfO+8CzXaFVTeQ/CbqFMLOnh7agRW2VYTj0Sg2W/1z8Wrs3/Wdc7tDFPFN61W9ZA2tLY7Dg6pJEpUpmObUQpUqnnt6G5VPhNZg0px2BbfxYPm9PIdaq4Fy8VsFk/dTxhAc6/uwR4zzYtWqWvu75opQ6+A7E7IX/Ostc3gUtZh9saA//PQ6xB43b3ZqrIQCP7wRHmcmlpJOgWwgz01ho+OQjY+KShQuKV3cuvU7Ppr3VAbCzSaJZJ3+znNfW3pYAH+O47kCfEzLtpBAPwa9RdeZ/vp3GtU6abP/hd5/CqVABu3jRdD301IN9kJw7ZOySX7Nc8XsoKsQD02kh/s7f37RYNaXYrdDCrVNpotfC9c3G9bINjMG2VxeZg7uUkKBbiHzwWN8GuDnFALBiRwOS4pNyLBcWBhlFrPf5uWMRhMd4AdA64CQ2duZLwtK4prE7VWCN0jcWVQhzefH9YPadqUPEuWt4V0oBYP02T8NY5ZIsW9B9zuWBjj97/t7ThQlR4lhYqszm5Vuo9dRoWNsQ9rwMcccKt26lgVszcG0MjjXVePuuByXYLoUk6BYiH1jZWNO70wUAklIdWPNv9uy4M2ZA1arQqhVoi1APx027jX2+Ozz+YF9m76d1Z+PUPC06+pj13EKURhVrVODp/urzJSMDli4t3PoUhIsXTJ9UhoblPOVXbs6Fqc+1e00XJkSJY+0E7VZDuTtzv2tT4PxcWB0AO56FjOTCrV9JkJEEZ76D3S+BPkvyWI0G2i6HJ0+Dz7OgkfCrNJLfuhD5pN/QJoblhYuy/1f75Rf1gbx3LxwrQg+a/8s6nrunebMMDRjeinGvbubj1zbT6+XmZj23EKVVv37G5YULC68eBUGn1XPpomnQfT2uPDdv5v0cZ8PVg0Xv8hG5ThcmRIlkUxYe2wj+b4O1s3H75b9g02OQcqPQqlZsaVPh5gE4PBaWesP+N+DCz3DxN9NydhUl2C7l5LcvRD5p1w7K30nYvXIlJCYa96UkpnDsqPGL47ZtBVu3ezlzp9e3pSUEBZn33JbWlkwMaceEH9phaW1p3pMLUUo1bQpV1LTVbNigIybyVuFWKB9du3Sd1PTsgXJoHoen3oyMJTZRJYesWfm6OasmRPFgUxYaToee4dBoJlg5qu03dkHkukKtWrGgTYHIf+HAW7AmCBY6wtrGap7ttCxP/2L2Fl4dRZEkQbcQ+cTKCvr0UctJSbB6tXHf0R3nydAaxxUWpaD7+p3voR4e6j0IIYo2jQae7nIegIwMC5b+XHIzE18MNQbKZWyNsyHkNeg+e/SqYbmWz22z1UuIYsfaCfxGQKdtqhW27lio9lxh18p8MpLhylI4Mk5N1XW383Ph0p9wdRXEHQddutqeHg+X/lJdxHc8A2l3PcTc94bKAH/6G4g9DPosPW8srMFnEHTZD01m59MbE8WVfKUWIh89/TSEhKjlhXNO8PTTdQHYv8O0C9e2jTHoda5oLAo3qYZep+d6lA6wxMM1AXAq1PoIIfKmX58Upv+olv9a5ICj007mzCuDo0M6M36sRNXaJWPs8sWz8Ybl9k3DWbNNzbSQl6Bbr9Pz9RfG42vWKF4zSwiRL8oFQtfDYOtuuv3GHrj0O5RvBe4twaFKYdTuwej1ELEGLv4KV1eouckBMt6Cip1My+19/a6A2QacfCHhDOiMD/RofFfwbJ9lrlONBTjXAdeG4NoIqjytHmAIkQNp6S7FxowZw7BhwwzrgwYNYvLkyQVejz179uDn50d8fPz9CxczbdvocHdWAfaqLdW4HataVvYfMP2vd+2mG+eOXC7w+t0tLvoW6Rmq27en3elCro0QIq+adKxDVfdwADYeasiAES3ZeKghy7Y3I7CJI8vm7i7kGubdqlXg5QUjRmTfd/F8umG5W8c4w/Kpvff/vPp0xBYWbGoJgIPtbfq+WPOR6ypEiVDGI3sm7ci1cGY27HwGllVV45W3D4DTM9UYZl0RmnpFr8f59g4sNrSAzd3g8t/GgBvg9jnT8tok04AbVKB967hpwA2q9Tqrsg2g+ksQvBD6xMATx6DFL+A3UgJucU8SdBdBY8aMwc/PDz8/P+rVq0enTp2YPXs2Gfk8t9SsWbMYNWpUnsqW5EDZnKysLejTUc2lm5xmz9q/Vca0/Sc8s5Xdtu5KgdYtJ1FhxvFIHm4phVgTIcSD0Fho6Nf1XI774hLL0vPl5rz7VopJQt3CFhNxk/ee38y8qabjaya8f5HISJg9G87d9ZYuXjJ20GvVxh4nO/U3KPSs3T2vtfCvND75rh2gspb/+d0JfOqWjNZ/IfJF9E7T9aRwCFsAB0apMcyLXGBZdQhblP1YfQH1Ikk4B4fex2JNfWpdHYXm5n7jPhtXqD4YWi+BRt+YHqexguY/Q6MZUO8TqDoAnP1Vy7VdJfAdDh02Qo8LxjHvmar0gebzVKu2Tdl8foOiJJHu5UVU69atmTJlCmlpaWzZsoWJEydibW3Na6+9ZlIuLS0NGxsbs1yzbNmyZjmPMNWnvyM//KOW//lHR7fnkjhxuQYAttYphqRA27bD4MKq5B1RVxMMy57uRegpthDivl4eVZXZfyeRnGbPE833MmyohvnzM/jfZjU37/RvylDTD15/vZArikom+cRjEew51Q6ABk1DadShNnHXb3Eg1NiNdd06qJmlQfpiuINhuXrdCvh7X2Hfmbpcul6Z5IRk7JyyB9+RkfDCYOPfyc/f3kqPwe3M/p6EKFGCF6gu5jd2QPQOiNlj2nqsTYLEi3DzoApAM6XHw+oGUKkH1HhJdV83B20q6FJNs64nR0LoNEza6MsGQL2PoXKP7K3UmSxtofoL2bfrtGpOcyHygbR0F1E2Nja4u7tTqVIlnn32WVq2bMmmTZsMXcK///57goOD6dKlCwCRkZGMGjWKxo0b07RpU4YOHUp4eLjhfFqtlilTptC4cWOaNWvGF198gf6uJo+7u5enpaUxbdo02rZta2hxX7RoEeHh4Tz//PMANGnSBD8/P8aMGQOATqcjJCSEDh06EBAQQI8ePVi7dq3JdbZs2ULnzp0JCAhg0KBBXL16lZKs7VP1KecQC8DKHfXZs/40Or36UH+6w35srVWL8tYDhT9e6npkkmHZM3tjvBCiCPNtWI3L55K4eu4aK3c1pdvzTVi4sTkzJ583lHn3Xbh4sRAriRpbPbjnQfacqmfYtmxBFABbV54yfD4C3PXng4sRatxpOYdYXNzLUruG+mzV6y04fSgsx+tt2gQpdzruPPesjne/aGuutyJEyWVTFrw6Q8BENc1Y3ziVIKzRTKjSH+wrg4UtpCeYHnd+LiRegjMzVXbvNUGqS3pqzMPV48LPsMIXFtrD8Umm+8q3AJty6DUW3LZrgLblQuh6SLVG5xZw34sE3CIflc6W7tCv4NRX9y/n2lBNZp/Vlh7qqd79+L8Ntd9+uPrlwNbWlri4OAB27dqFo6Mj8+fPByA9PZ0hQ4YQGBjIH3/8gZWVFd999x0vv/wyy5cvx8bGhnnz5rFkyRI+++wzatSowbx581i/fj3Nm+c+V/L777/P4cOH+eijj/D39yc8PJzY2FgqVqzIrFmzGDFiBGvXrsXR0ZEyZVRrbUhICMuXL2fChAn4+Piwb98+3nvvPVxdXWnatCmRkZEMHz6c5557jn79+nH8+HE+//xzs/2ciiJrW2uebHOCX9cEk5DszBdfGFuQW7XUcfnqabYdb8CFa1WJOH8NrxoVCq2uUZHG8ZIenqXz40GI4szdu7zJusZCw4ixNTh+GX78UU1dOHgwbNwIu9ccY9EfN+nQyY4nX2r60Ndcvhz274dRo8DN7f7lJ0/S8teGlibbVm/yYCKwaYPpsJb//oPUVLC1hfTUdK7cUGMmq1W8BpTD3zcD1qiyoYdjCGyT/Xqnswz37tffQqbKFeJhWFipZGGujVTW89ykRIFlGTW1FqgM3wdGwaH3oEIncA9WwXL5ZqrcvZyYAkfGGtcTzmSvU5vl6BxrcTo0nEDvQJkLWxRZpfNbdXo8JOehdTXFO4dt0Xk7Nt08Y531ej27du1i+/btDBw4kNjYWOzt7Zk0aZKhW/myZcvQ6XRMnjwZzZ1EGFOmTKFJkybs3buX4OBgfvnlF1599VUef/xxACZMmMD27dtzve7FixdZs2YN8+fPp2VL9eXI29v483BxcQHAzc0NZ2fV1SctLY2QkBDmz59P0J0Jnr29vTlw4AALFiygadOm/PXXX1SpUsXQMl69enXOnDnDnDlzzPLzKqp697Hm1ztfDNfubWLY3rhlecKvXGfbcbW+bc0F+g8vvKBbZS5XPL3u88dQCFFsfPml6qp9+TJs3gx+Xmc5F1UfgG8XphHW7joVqnk88HmvnI+jb99ypKdbsGYNbNkC9va5l1+3DsZ9or56aDQ63JxuciO+PAfO1SHyQhQbd3qZlE9MhB2rjtOhdz2unIlEp1c9gqpVigOgdj1jd/LQE3clQLoja9Dt5/fAb1EI8SACp0KdMSqZ2YX5xvmqdWkQsUq9QAXvnfcZE7hpUyDhrFq2coBzc+DkVON5ywWBUw7/gT2CQasFwrPvE6IIKZ1Bt7WzSpRwP2Xcc96Wl2Ozjjl5CJs3byYoKIj09HT0ej3du3dnxIgRTJw4EV9fX5Nx3KdOnSIsLIyGDRuanCM1NZWwsDASEhKIjo6mQYMGhn1WVlbUq1cvWxfzTKGhoVhaWtKkSZMc9+fk8uXLJCcnM3iw6cjk9PR0ateuDcD58+cJCAgw2R8YGJjnaxRXj/cLwP6NRJJSjeMRrS3TqN+yBjHXk+AntW3b1nT6Dy+kSgJR141PiD28HO5RUghRnDg5wdw5GXR8XP3ZPxdVy7AvXWvDmoWneWn0gwfdW5afID1dNS/v3w8vvgh//w0WOTQ2pafDm28a1z/7zILEC8eZNKcdAL/MCuX4ZbVsodEaupmvW36DDr3h4jXj395q9aoCUDvI+Hf65GnbHOt4+uBFoBpWVlqqV5fuo0LkO5uyUOt19Yo7oYLvS7+rVvBMNV4xzZi+ezBc/ivn8wV+DnXez9cqC5HfSmfQXfsRun7f3d08nzRr1ozx48djbW2Nh4cHVlbGX5WdnWmimKSkJOrWrcuXX36Z7Tyurq4Pdf3M7uIPIilJjQcOCQnB864BweZK9lZc2TnZ0bX5LhZvaWHYFuB/E1v7CrTo7Gv4grl1X+FON3H9hvH35OldtvAqIoQwu8c6WTG83xZmL1Rjmqt5hnExSrUcr1pjxUujH/ycO+7qMLVoEfj7w8SJ2cvOmQOnTqnlli1h9GjYvcaNSXc6Ok39MdBQ9sXuO5m/shV6vQVrt1bkc+DiZWPAXK2OahGvUb8KdjYqedy+k9l7p+m0Os6Eqb9H1T3DsLau9uBvUgjx8MrWhYZfQtA01T08eqdKylb9pbvKBeQcdDf5DmoNLZi6CpGPZOBDEWVnZ0fVqlXx8vIyCbhzUrduXS5fvoybmxtVq1Y1eTk5OeHk5IS7uztHjhwxHJORkcGJEydyPaevry86nY59+/bluN/aWiWo0Gq1hm01atTAxsaGiIiIbPWoWLGiocyxY8dMzpW1XiVZ716mU2g0DlbdyJ3dnGlQXY1TOn65JskJyQVet0xRMcbWbfdKeRicKYQoVmb82Zr/fb+Lzf8c5kyYF66OaprAf/fWJT01/T5HZ7fzkPpst9BosbBQPac+/RRmfbTVpNytG/F8MjbOsD59umrkatqpDuWdb6gySWUN+/s/Y0+jmipCP3rRj4jz10wSwFW7Eztb2VjR1F99foZFVyb8bKTJdcPPRpKcpvq7+1W9/sDvTwhhJhoNOPupjOZNfwDLuxpjPNqAz0Co8TJUfQaqPgvt1kjALUoMCbpLgCeffJJy5coxdOhQ9u/fz5UrV9izZw+TJk3i2rVrADz//PPMmTOHDRs2cP78eSZMmHDPObYrV65Mr169GDt2LBs2bDCcc/Xq1QBUqlQJjUbD5s2buXnzJomJiTg6OjJ48GCmTJnCkiVLCAsL48SJE/z2228sWbIEgAEDBnDp0iU+//xzLly4wIoVKwz7Sronnq2HtZXxS23Wnvv16qsWHL3egnPnC++/5fV41b20nGMcNnalu3eCECWRhaUFfV5vQdtegVjZWNGlRSgACcnObF95/IHOlRibxIkw1U09qOZpvpxmfLA4cnIbxg7ZjF6nAvGp7x/kxq2yAPTvcpLMHJ6W1pZ0aXHK5LzWlmm06uZPl3bGIPnfxedyDLoBWjWJMyzvWGeamv304WuGZb8ahfdAUwhxH+4toeVv0GwOtPoTWv0BXl0Ku1ZCmI0E3SWAnZ0dv//+O15eXgwfPpxu3brx4YcfkpqaiqOjIwCDBw+mR48ejB49mgEDBuDg4ECnTp3ued7x48fTuXNnxo8fT9euXRk3bhzJyepLi6enJyNGjGD69Om0bNmSTz/9FIA333yTYcOGERISQrdu3Xj55ZfZvHkzlStXBsDLy4tZs2axceNGnnrqKf7++2/eeuutfPzpFB0u7i481tE4hUXWoNuvsa9h+fS5nMclFoSoW6obpmflsoVWByFEwXniCePyquUPFpSePnDTsBzcOJo337Rg7JDNhm1T5rWjfdARWtc/wvRfVUJOG6tUpkxzMjlPt0EtTNab1w7FwcWBzk8ah0d98qUPq5beMqz7+BjLB7cva1jecby2aR1P3DYs+/nLeG4hhBCFRF+MJSYm6vfv369PTEws7KrcU0ZGhn7//v36jIyMwq6KKGT79+v1dero9a+9ptfrdMbtixbp9aBekyblfGx+30eJicY6tGmTL5cQRYB8Homsbly9qbew0OpBr69dW3f/A+7IyMjQj+y/wvCZsfC7nYZ9sz7arNdotIZ9WV/vPf9ftnPFxOj1FhY6Q5lPhu/V6/V6fXpqut7FPi7bOXw8wkyOj43V6zUata9hQ9NzD++32XDc1mWH8/z+xB23bxt/8Ldvm/308nkkzEHuI2EOd99H5o4zpaVbiALUqBGcOAE//GCatDPrNDZZp7cpSNezDHe8Kw+eEKKEcvMqR/Pm6qtAaKjGpAv33W5GxvLf4kNo01UujwPHjIkfWz1u7O89/NO2LPpuD2WsjS3nXq6RDHhsJx9/0zjbeV1doUUL4wdih6dVNyArGyte7XvIsN3WOoUG1U4zc6rpuO2yZaFuXbV85AjcNjZuc/q8o2HZL9B0OjIhhBCioEjQLUQRULMmaDRq7OPp47fuUzp/RGWZycPjwWcOEkIUU1m7mN9J25GNXqenS7sIOvQN4unH9pGWnMaBs3UA8PG4gleNCibl+7zeggun4jn43yniYxK4GlORvza0xLGcY06n5733wMYGWrVSmc0zTZ3XhpN7znPxeDhJyTYcvuDHky81zXZ8q1bqX60W9uwxbj99J3N5WYc43CuXv89PQgghhMgfEnQLUQTY2UFV93BATamTmXyoIF0/bcwi71nm1D1KCiFKEpNx3aty/uw5tvMs+86o5uQl25rz5vP7SElX01e2CgzL8ZiK1T0JauePk6tTjvuzeuopiI2Fbdsg64QdFpYW1G5aA5+6lbGwzP0rS2bQDbBj/VUAkuKTCItW+UT8vMPRWGhyOlQIIYTIdxJ0C1FE+FVVTc3xyS5EXb5R4NePCjdms/csK1PrCFFaBARAJS81s8K/67Qs/Wl3tjLrlkaYrP+4pI1hObhVhlnqYW9vOuzmQbRqZPzM3L5BZSw/e+SKYZuvT+H0IBJCCCFAgm4higy/6saBiKePRNyjZP64HmWcc92jQuFlUBdCFCyNBl7rtQMArc6K/kODWPvHfpMyazc553p8qycC87N6eVLN340KZdWDy90na6FN13L6sjE5hV+9+7e2CyGEEPlFgm4higg/P2MTz+njuc+hnl+ioozX9/SyL/DrCyEKz4cz2jCoy3YA0jJs6fVSXTb/cxiA27G32X5MdS2v7HYVrwqphuNcXPTUDXIp8PreTWOhITjwAqDmHD+26xynL5Y17PdrFlBINRNCCCEk6BaiyPCrZ0wwdPqU7p5l/561k6F9tnLltPlaxK/fMM4h7lEp91YtIUTJY2FpwbxlzenbbhcAKel2DBjiReKtRDYvP0lahur90r3teebMNfaEad0aLIrIN4lWzdMMyzs2XjOZCSLrDBFCCCFEQbO6fxEhREHwa2Ccfuf0+dxbmkP3nufZUc3R6y1ISd3G/JXmmQYnKsbOsOxZxc0s5xRCFB9WNlb8sboRccEH2HCwEVFxHsyesJnwq8ZeMF262dCtG8yZo2PhwjimTXMBLAuv0lm06uAOU9XyJ1/Xw945FbBFo1EzRAghhBCFpYg8nxZCVKpZAQdbNa779GX3XMvN+PIWer36r7vzYN7m9kpPTb9vRvSom2rMo51NEg4uDnk6rxCiZLGxs2Hm92Wx0KgcD5//2IDl2wIBsLJMp31PNU3YSy/pmTLlIrVqFVZNs2vUwZ8WtY8BEJPgxpWrqkW+alU9dnb3OlIIIYTIXxJ0C1FEaCws8K2ssu1ejKpMWnJatjI3b1rx26rGhvWz12pxO/Z2tnJZXTgWhneFWKpXDCfi/LVcy12PKwuAZ9kYmVpHiFKsdtMaDOyiupnHJpYjLFKN2W7VSoOzW9EdemJhacGaLVVo1+CQyXY/90O5HCGEEEIUDAm6ixg/P797vmbNmlXYVRT5yM/nJqAyCJ8/Fp5t///+505qqjEg1ustOLLjwj3P+ecPp4iK8+DSdW++GL03xzIZaRnEJLgC4OkqU+sIUdp9PMUbK8t0k22duxT9EWku7i6s3VmHfu13GrY1Cij4xJRCCCFEVkX/L2gps337dsPy6tWrmTlzJmvXrjVss7c3jvXV6/VotVqsrOTXWFL41UqDjWr59MkUajc17ktJgUWLsnc7P7Qnllbdcz/nyVPGBGlzV7Vn/PVblPUwzTZ84+pN9HrVVd3DNfHh34AQokSo0aAqg5/cyo9LjfNxd+lSiBV6ALb2tvy1vjmtx2/hzFl459MGhV0lIYQQpZy0dBcx7u7uhpeTkxMajcawfuHCBRo2bMiWLVvo3bs39evX58CBA4wZM4Zhw4aZnGfy5MkMGjTIsK7T6QgJCaFDhw4EBATQo0cPk2BeFA1+LZoYlk9H1THZ98cvScTGqgDar2ayYfuhw/f+b3zykjHR2u0UJ+Z8kb2rpUkStcrlHqzSQogS6aOpNbGxUWO7K1SABsUodrWwtGD4p22Z+XdbXCvKZ5oQQojCVeqaSBctgo8/hoSEgrumk5MFL75YlsBA85xv+vTpjB49Gm9vb5yd8za+LiQkhOXLlzNhwgR8fHzYt28f7733Hq6urjRt2vT+JxAFwmTasCzT3WSkZfD1lOuASnYWEqKhQ0ctOr0lh0LL53o+rRZOX61usm3mz768OTkda1tjC/j1WCfDskdN30d8F0KIksDbz4tff4WZM2HMmKIzNZgQQghR3JS6oHvaNDh1qqCvquG33yrw7rvmOdvIkSNp1apVnsunpaUREhLC/PnzCQoKAsDb25sDBw6wYMECCbqLEN8s8W7WoPvb8Ts4Fd4WgOC6R2jboQF+lc8TeqUGxy/VIC05DRs7m2znu3QJUlKtTbaFx3ix6IcdPDvKeA9FRRn3e3qa5a0IIUqA/v3VSwghhBAPr9QF3e+/D+PGFXRLt55Bg64BPmY5X/369R+o/OXLl0lOTmbw4MEm29PT06ldu7ZZ6iTMw9ERvL3hyhXYtUvP0rkHaNquMuO+CTKUmfqF+jfI/xqhV2qQrrXh5IHLBAZXzXa+kyeNy62bx7Ftd1kAps925ZkRekOW8uvXjeUk6BZCCCGEEMJ8ilzQ/f3337NlyxZCQ0OxtrZm//79Zj1/377qVZC0Wh2HD8eZ7Xx2d004qtFo0OtN52DOyMgwLCclJQGqi7nnXRGVjU321lFRuEaOhPfeA71ew3Nv1KaJ31kSkgMBGNT5X5p3fgyAoDY1+XO9OubQ2aoEBmc/V9ag+7U3XEiKCeXA2docPFebbduhzZ0cSVHhCWR2XffI29TfQgghhBBCiDwociO00tPT6dKlC88880xhV6XYcHV1JTo62mRbaGioYblGjRrY2NgQERFB1apVTV4VK1Ys6OqK+3jnHXimk5ruJinVgS1HAwFwc4ph8Du2hnJBLYwPUA7lMg3tyePGhy9162l4+2M/w/r06cZyV48fNix72p9/hNoLIYQQQgghsipyLd0jR44E4J9//inkmhQfzZs3Z+7cuSxdupTAwECWL1/O2bNnqVNHZb92dHRk8ODBTJkyBb1eT6NGjUhISODgwYM4OjrSq1evQn4HIiuNBuYuDuJC0+PsOVXPsH3qBydwcjUmWgsy9jg3BN16nR69Xo+FpXqednLPGaAOGo0Ov1p66ta1ZPQHEB4OK1bAmTNgp49g8ebGANhYpVLFV/qXCyGEEEIIYS5FLuh+GFqtFq1WW9jVyFVm3R60jjqdzuS4rOtZz9WyZUtef/11vvjiC9LS0ujduzc9evTg7NmzhnIjRoygXLlyhISEcOXKFZydnalTpw6vvvpqkf7ZlVY29jYsXulGyxbhhEVXpk39wwx8syknTp4w/L5cXKBqVQsuX9Zw+LCeozvP8uwzGqLiyvHvimjqt6hJaFgVAKp5hmNTphKgZfhwDWPGWKDXwzff6Ei4cIGUdNU3fVi/Xdg5t5Z7ogR72M8jIbKS+6iU0GqxNCxq1ZQYZj293Efi0cl9JMzh7vvI3PeTRn/3YOAi4p9//uGzzz6755jupKQkk27UQpQ0CTdvc3RbLI0ec6eMY5ls+0e/VZ6N21QCNQfb2ySmqpbwnsGbef0dLV16qfHfnRvvYPIP6viEBEu6datPcrIlttYppKar7eUcYlmy5BiOrg4F8daEEEIUcRbJyQS1bg3AoW3b0N2VU0YIIUq62rVrY29v/8jnKZCW7i+//JI5c+bcs8zq1aupUaPGQ53f19fXLD+M/KLVajl27Bj169fH0tLy/gcIkUXrDurfnO6j1vW2GoLuzIAbYPXuFvS9tM+wHlA3jcDA5ob1l5/ayay/WxsCboBxww8T3KFNfr4VUQTI55EwB7mPSonERMNiQEAAOJj3oazcR8Ic5D4S5nD3fZSUlMSZM2fMdv4CCboHDx5833HD3t7eD31+S0vLYvGfrLjUUxRtWe+jhk0c4HvjPie7eBKSnUnLsGXSdGOSvLp1rU3uvTfHVuXbBVp0erWtZsVLvPFJK7k/SxH5PBLmIPdRCZfld2tpaWmybt7LyH0kHp3cR8IcMu8jc99LBRJ0u7q64urqWhCXEqJUaf2EH+Wdb3AjvjwDO29n5DuuNH1cJdA7FW7sOVIn0PT/X/X6VejVZheLt7QA4IsJ17Cx8ymwegshhBBCCFFaFLlEahEREdy6dYuIiAi0Wq1hzHaVKlVwMHO3JiGKu7IeLhw/Es2Vcydp1KEVGgsNAXVuc/Sko0k5/0bZe5J892tN7F/bToP6GfQc0ragqiyEEEIIIUSpUuSC7pkzZ7JkyRLDes+ePQH49ddfadasWSHVSoiiy9PHHU8fd8P6iy878vbbxv3e5a/i5Fop23EeVdz5dY17tu1CCCGEEEII8ylyQffUqVOZOnVqYVdDiGLr2Wfhvff0aLUaAOpUiwSyB91CCCGEEEKI/GdR2BUQQpiXpyd07XDTsF6nVnwh1kYIIYQQQojSTYJuIUqgV18zZlxsGSzzqgohhBBCCFFYilz3ciHEo3uyT1n++GYHtxO09H41uLCrI4QQQgghRKklQbcQJdSzo1oVdhWEEEIIIYQo9aR7uRBCCCGEEEIIkU8k6BZCCCGEEEIIIfKJBN1CCCGEEEIIIUQ+KdZjunU6HQDJycmFXJN702q1ACQlJWFpaXmf0kLkTO4jYQ5yHwlzkPuolEhJAT8/47JGY9bTy30kzEHuI2EOd99HmfFlZrz5qDR6vV5vljMVgpiYGC5dulTY1RBCCCGEEEIIUcL4+Pjg5ub2yOcp1kF3RkYGt27dwtbWFgsL6SkvhBBCCCGEEOLR6HQ6UlNTcXFxwcrq0TuHF+ugWwghhBBCCCGEKMqkeVgIIYQQQgghhMgnEnQLIYQQQgghhBD5RIJuIYQQQgghhBAin0jQLYQQQgghhBBC5BMJugvAH3/8QYcOHahfvz5PP/00R48eLewqiSJs1qxZ+Pn5mby6dOli2J+amsqECRNo1qwZQUFBjBgxghs3bhRijUVRsG/fPl5//XWCg4Px8/Njw4YNJvv1ej0zZswgODiYgIAAXnzxxWxTLsbFxfHOO+/QsGFDGjduzNixY0lMTCzAdyEK2/3uozFjxmT7fBoyZIhJGbmPSreQkBD69OlDUFAQLVq0YNiwYVy4cMGkTF7+jkVERPDqq6/SoEEDWrRoweeff05GRkZBvhVRiPJyHw0aNCjb59HHH39sUkbuo9Ltzz//5Mknn6Rhw4Y0bNiQ/v37s2XLFsP+gvwskqA7n61evZopU6bwxhtvsGTJEvz9/RkyZAgxMTGFXTVRhNWqVYvt27cbXn/++adh32effcZ///3HN998w2+//cb169cZPnx4IdZWFAVJSUn4+fnxySef5Lh/zpw5/Pbbb4wfP56FCxdiZ2fHkCFDSE1NNZR59913OXfuHPPnz+eHH35g//792b7AiJLtfvcRQOvWrU0+n7766iuT/XIflW579+7lueeeY+HChcyfP5+MjAyGDBlCUlKSocz9/o5ptVpee+010tPT+fvvv5k6dSpLlixh5syZhfGWRCHIy30E0K9fP5PPo/fff9+wT+4jUaFCBd59913++ecfFi9eTPPmzXnjjTc4e/YsUMCfRXqRr/r27aufMGGCYV2r1eqDg4P1ISEhhVgrUZTNnDlT36NHjxz3xcfH6+vWratfs2aNYdu5c+f0vr6++kOHDhVQDUVR5+vrq1+/fr1hXafT6Vu1aqX/6aefDNvi4+P19erV069cuVKv1xvvo6NHjxrKbNmyRe/n56e/du1awVVeFBl330d6vV4/evRo/dChQ3M9Ru4jcbeYmBi9r6+vfu/evXq9Pm9/xzZv3qz39/fXR0dHG8r8+eef+oYNG+pTU1MLtP6iaLj7PtLr9fqBAwfqJ02alOsxch+JnDRp0kS/cOHCAv8skpbufJSWlsaJEydo2bKlYZuFhQUtW7bk0KFDhVgzUdRdvnyZ4OBgHnvsMd555x0iIiIAOH78OOnp6Sb3VI0aNfDy8uLw4cOFVFtR1IWHhxMdHW1y3zg5OdGgQQPDZ9GhQ4dwdnamfv36hjItW7bEwsJChsQIE3v37qVFixZ07tyZTz75hNjYWMM+uY/E3RISEgBwcXEB8vZ37PDhw/j6+lK+fHlDmeDgYG7fvs25c+cKrvKiyLj7Psq0YsUKmjVrRvfu3Zk+fTrJycmGfXIfiay0Wi2rVq0iKSmJoKCgAv8ssjLLuxA5io2NRavV4ubmZrLdzc0t27gUITIFBAQwZcoUqlWrRnR0NN9++y3PPfccK1as4MaNG1hbW+Ps7GxyjJubG9HR0YVUY1HUZd4bOX0WZY5dunHjBq6urib7rayscHFxkXtLGLRu3ZpOnTpRuXJlrly5wldffcUrr7zCggULsLS0lPtImNDpdHz22Wc0bNgQX19fgDz9Hbtx44bJl1zAsC73UemT030E0L17d7y8vPDw8OD06dN8+eWXXLx4kdmzZwNyHwnl9OnTDBgwgNTUVOzt7fn222+pWbMmoaGhBfpZJEG3EEVM27ZtDcv+/v40aNCA9u3bs2bNGsqUKVOINRNClHZPPPGEYTkzcVHHjh0Nrd9CZDVhwgTOnj1rkpdEiAeV233Uv39/w7Kfnx/u7u68+OKLhIWFUaVKlYKupiiiqlWrxtKlS0lISGDdunWMHj2a33//vcDrId3L81G5cuWwtLTMljQtJiYm21MTIXLj7OyMj48PYWFhlC9fnvT0dOLj403KxMTE4O7uXkg1FEVd5r1xr8+i8uXLc/PmTZP9GRkZ3Lp1S+4tkStvb2/KlSvH5cuXAbmPhNHEiRPZvHkzv/zyCxUqVDBsz8vfsfLly2fLIJy5LvdR6ZLbfZSTBg0aAJh8Hsl9JGxsbKhatSr16tXjnXfewd/fn19//bXAP4sk6M5HNjY21K1bl127dhm26XQ6du3aRVBQUCHWTBQniYmJXLlyBXd3d+rVq4e1tbXJPXXhwgUiIiIIDAwsvEqKIq1y5cq4u7ub3De3b9/myJEjhs+ioKAg4uPjOX78uKHM7t270el0BAQEFHidRfFw7do14uLiDF8+5D4Ser2eiRMnsn79en755Re8vb1N9ufl71hgYCBnzpwxeVC4c+dOHB0dqVmzZoG8D1G47ncf5SQ0NBQwBkNyH4mc6HQ60tLSCvyzSLqX57OXXnqJ0aNHU69ePQICAvjll19ITk6md+/ehV01UUR9/vnntG/fHi8vL65fv86sWbOwsLCge/fuODk50adPH6ZOnYqLiwuOjo5MmjSJoKAgCbpLucTERMLCwgzr4eHhhIaG4uLigpeXF88//zzff/89VatWpXLlysyYMQMPDw86duwIqOQhrVu3Zty4cUyYMIH09HQ+/fRTnnjiCTw9PQvrbYkCdq/7yMXFhdmzZ9O5c2fKly/PlStXmDZtGlWrVqV169aA3EdCdQVeuXIl3333HQ4ODoZxj05OTpQpUyZPf8eCg4OpWbMm77//Pu+99x7R0dF88803PPfcc9jY2BTiuxMF5X73UVhYGCtWrKBt27aULVuW06dPM2XKFJo0aYK/vz8g95GA6dOn06ZNGypWrEhiYiIrV65k7969zJ07t8A/izR6vV6fD+9RZPH7778zd+5coqOjqV27Nh999JGhC4wQd3vrrbfYt28fcXFxuLq60qhRI9566y3D+KTU1FSmTp3KqlWrSEtLIzg4mE8++US6SpVye/bs4fnnn8+2vVevXkydOhW9Xs/MmTNZuHAh8fHxNGrUiE8++YRq1aoZysbFxfHpp5+yadMmLCwsePzxx/noo49wcHAoyLciCtG97qPx48fzxhtvcPLkSRISEvDw8KBVq1aMGjXKZMiU3Eelm5+fX47bp0yZYmhwyMvfsatXrzJ+/Hj27t2LnZ0dvXr14p133sHKStqLSoP73UeRkZG89957nD17lqSkJCpWrEjHjh0ZNmwYjo6OhvJyH5VuY8eOZffu3Vy/fh0nJyf8/Px45ZVXaNWqFVCwn0USdAshhBBCCCGEEPlExnQLIYQQQgghhBD5RIJuIYQQQgghhBAin0jQLYQQQgghhBBC5BMJuoUQQgghhBBCiHwiQbcQQgghhBBCCJFPJOgWQgghhBBCCCHyiQTdQgghhBBCCCFEPpGgWwghhBBCCCGEyCcSdAshhBBCCCGEEPlEgm4hhBBCCCGEECKfSNAthBBCCCGEEELkEwm6hRBCCCGEEEKIfCJBtxBCCCGEEEIIkU8k6BZCCCGEEEIIIfKJBN1CCCGEEEIIIUQ+kaBbCCGEEEIIIYTIJxJ0CyGEEEIIIYQQ+USCbiGEEKIU2LNnD35+fuzZs6ewqyKEEEKUKhJ0CyGEKPX++ecf/Pz8cn0dPny4sKtY5O3fv9/w87p582a2/atWraJXr17Ur1+f5s2bM3bs2GzlUlJSGDt2LN27d6dRo0YEBQXRo0cPfvnlF9LT0+95/Y8++gg/Pz9ee+01s74vIYQQ4lFZFXYFhBBCiKJi5MiRVK5cOdv2KlWqFEJtig+dTsekSZOwt7cnKSkp2/4///yTCRMm0KJFC8aMGUNUVBS//vorx48fZ9GiRdja2gIq6D537hxt2rShUqVKWFhYcOjQIaZMmcLRo0eZPn16jtc/duwYS5YsMZxHCCGEKEok6BZCCCHuaNOmDfXr1y/sahQ7CxYsIDIykr59+/Lrr7+a7EtLS+Prr7+mSZMmzJ8/H41GA0BQUBCvv/46CxcuZNCgQQCULVuWhQsXmhz/zDPP4OTkxO+//86YMWNwd3c32a/X65k8eTJPPfUUu3fvzsd3KYQQQjwc6V4uhBBC5NHMmTPx9/dn165dJtvHjRtHvXr1OHXqFKACzRkzZtC7d28aNWpEYGAgzz77bLagMDw8HD8/P+bOncsff/zBY489RoMGDRg8eDCRkZHo9Xq+/fZb2rRpQ0BAAEOHDiUuLs7kHB06dOC1115j+/btPPXUU9SvX59u3brx77//5uk9HTlyhCFDhtCoUSMaNGjAwIEDOXDgQJ5/JnFxcXzzzTeMHDkSZ2fnbPvPnj1LfHw8Xbt2NQTcAO3bt8fe3p5Vq1bd9xqVKlUCID4+Ptu+ZcuWcebMGd56660811kIIYQoSBJ0CyGEEHfcvn2bmzdvmrxiY2MN+4cOHUrt2rX58MMPuX37NgDbtm1j4cKFDBs2DH9/f8N5Fi1aRNOmTXn33XcZPnw4N2/e5OWXXyY0NDTbdVesWMGff/7JoEGDeOmll9i7dy9vvvkm33zzDdu2beOVV16hX79+/Pfff3z++efZjr906RJvvfUWbdq04Z133sHS0pJRo0axY8eOe77fXbt28dxzz5GYmMjw4cN56623iI+P54UXXuDo0aN5+pnNmDEDd3d3BgwYkOP+tLQ0AMqUKZNtX5kyZQgNDUWn02U75ubNm0RGRrJ+/XrmzZtHpUqVqFq1qkm527dv8+WXX/L6669nawEXQgghigrpXi6EEELc8eKLL2bbZmNjw7FjxwCwtrbm888/p3fv3kydOpX333+fDz/8kHr16vHqq68ajnFxcWHTpk3Y2NgYtvXr14+uXbvy22+/8dlnn5lcIyoqin///RcnJydAjZEOCQkhJSWFxYsXY2Wl/lzHxsayYsUKJkyYYHLuS5cuMWvWLB5//HEA+vbtS5cuXfjyyy9p1apVju9Vr9czfvx4mjVrxk8//WRohR4wYABPPPEE33zzDfPmzbvnz+vUqVMsWLCAH3/8EUtLyxzLVK1aFY1Gw8GDB+nTp49h+4ULFwyJ1G7dukW5cuUM+9avX8/bb79tWK9Xrx6fffaZ4eeQ6dtvv8XW1jbH35sQQghRVEjQLYQQQtzx8ccfU61aNZNtFhamncJ8fX0ZOXIk06dP5/Tp08TGxjJv3jyTgNDS0tIQhOp0OuLj49HpdNSrV4+TJ09mu26XLl0MATdAQEAAAD169DA5b0BAACtXriQqKgpvb2/Ddg8PDzp16mRYd3R0pGfPnsyZM4fo6OgcW4FDQ0O5dOkSQ4cONWnNB2jRogXLli1Dp9Nle/9ZTZ48mTZt2hAcHJxrGVdXV7p27crSpUupUaMGnTp1Iioqik8//RRra2vS09NJTU01OaZZs2bMnz+f+Ph4du3axenTp0lOTjYpc/HiRX777TemT59u8gBCCCGEKGok6BZCCCHuCAgIyFMitSFDhrBq1SqOHj3K22+/Tc2aNbOVWbJkCfPmzePixYsm013llB29YsWKJuuZAXhu22/dumUSdGe2Jmfl4+MDwNWrV3MMui9dugTA6NGjc3ubJCQk4OLikuO+1atXc+jQIVasWJHr8ZkmTpxISkoKn3/+uaF7fI8ePahSpQr//vsv9vb2JuXLly9P+fLlAfVA4ocffuCll17i33//NbyXyZMnExQUROfOne97fSGEEKIwSdAthBBCPKArV65w+fJlAM6cOZNt/7JlyxgzZgwdO3ZkyJAhuLm5YWlpSUhICFeuXMlWPreu2bm1Muv1+keovek53n//fWrXrp1jmbuD4ay++OILOnfujLW1NeHh4YAx0dm1a9dIT0/H09MTUA8Lvv/+eyIiIrh69SpeXl5UqlSJAQMG4OrqmmMCtqw6d+7M119/zcaNGxkwYAC7du1i27ZtzJ4923BtgIyMDFJSUggPD6ds2bI4Ojrm/QcihBBC5BMJuoUQQogHoNPpGDNmDI6Ojrzwwgv88MMPdO7c2TCeGmDdunV4e3sze/ZskxbomTNn5kudLl++jF6vN7lWZkt2Zubvu2W2lDs6OtKyZcsHvmZkZCQrV65k5cqV2fb16tULf39/li1bZrLdy8sLLy8vQAXox48fz1NLdWb384SEBMO1AYYPH56tbFRUFI899hgffPCBjPUWQghRJEjQLYQQQjyA+fPnc+jQIb7//nvatWvHnj17GD9+PI0bN8bV1RUwtlxnDYSPHDnC4cOHDUGnOV2/fp3169cbAv/bt2+zdOlSateunWtW73r16lGlShXmzZtH9+7dcXBwMNl/8+ZNw/vJybfffptt26pVq1i9ejWff/45FSpUuGedp0+fjlar5YUXXjC5Zrly5bJ1lV+0aJGhzgDNmzfP8frjxo3Dy8uLoUOH4uvre8/rCyGEEAVFgm4hhBDijq1bt3LhwoVs2xs2bIi3tzfnz583zL/doUMHAKZOnUrPnj2ZMGECM2bMAKBdu3b8+++/vPHGG7Rr147w8HD+/vtvatasSVJSktnr7ePjw4cffsixY8dwc3Nj8eLFxMTEMGXKlFyPsbCwYNKkSbzyyit0796d3r174+npSVRUFHv27MHR0ZEffvgh1+M7duyYbVvmdGht2rQxCdh//PFHzpw5Q4MGDbC0tGTjxo1s376dN99805A0DmD58uX8/fffdOzYEW9vbxITE9m+fTs7duygffv2tGjRAjBtMc/qs88+o3z58jnWTQghhCgsEnQLIYQQd+TW/XvKlCl4eXkxevRoypUrx9ixYw37fHx8ePvtt5k8eTKrV6+mW7du9O7dmxs3brBgwQK2b99OzZo1mTZtGmvXrmXv3r1mr7ePjw/jxo3jiy++4OLFi1SuXJmvv/6a1q1b3/O4Zs2asWDBAr777jt+//13kpKScHd3JyAggP79+5utfr6+vqxfv55Nmzah0+nw8/Pjm2++oWvXriblGjVqxKFDh1i1ahU3btzAysqKatWq8cEHHzBw4ECz1UcIIYQoSBq9ObKxCCGEEKJQdOjQgVq1ahESElLYVRFCCCFEDnKffFMIIYQQQgghhBCPRIJuIYQQQgghhBAin0jQLYQQQgghhBBC5BMZ0y2EEEIIIYQQQuQTaekWQgghhBBCCCHySbGeMiwjI4Nbt25ha2uLhYU8PxBCCCGEEEII8Wh0Oh2pqam4uLhgZfXoIXOxDrpv3brFpUuXCrsaQgghhBBCCCFKGB8fH9zc3B75PMU66La1tQXUD8POzq6Qa5M7rVbLmTNn8PX1xdLSsrCrI4opuY+EOch9JMxB7qNSIjkZWrVSyzt2gJm/a8l9JMxB7iNhDnffR8nJyVy6dMkQbz6qYh10Z3Ypt7Ozw97evpBrkzutVguAvb29fBiIhyb3kTAHuY+EOch9VEro9XD6tFouUwbM/F1L7iNhDnIfCXPI7T4y1xBmGQgthBBCCCGEEELkEwm6hRBCCCGEKARpaYVdAyFEQZCgWwghhBBCiAIUFQV9+6oe+x98kHu5fftg1ixISiq4ugkhzE+CbiGEEEIIIfLJH39AlSrQrBlMmAAhIVC3LixeDFotfP01pKdnP27/fpXHbuRIGDKk4OsthDCfYp1ITQghhBBCiKIqJARef10tX7kCe/dmL5OaCseOQcOGxm23bkH//sZg/O+/4c03VeAuhCh+pKVbCCGEEEIIM5sxwxhw58THx7icNRjX6+HVV+HCBdPy77+v9gkhih8JuoUQQgghhDCjH39ULdOZ3n8fLl9WLd+DB8P//gd//mncnzXonjMHFi5Uyy4uUK2aWt66FVauVOO7Q0Jg2jRJxCZEcSHdy4UQQgghhDCTw4dhxAjj+iefqJdGo1qwX31VbU9OBisryMgwBt1JSfDuu8Zj581Trdt9+6r1YcNUd/ToaLWeng5jx+b7WwLU+PPoaKhQoWCuJ0RJIi3dQgghhBBCmEFCghqLndkCPWIEjB+vAu672dlBQIBaPnlSHbtunfoX4NlnoXdv9WreXG0LDzcG3KBavLXafHs7BjodtGkDFStC27awfr10dRfiQUjQLYQQQgghxCPS61VL9Jkzar1hQ9UF/F6aNjUee+AALF1q3DdwoPpXozE9j0YDHh5qOSwM/v3XLNW/pwMHYOdOtbx1Kzz+OLRooR4CCCHuT4LuUmzMmDEMGzbMsD5o0CAmT55c4PXYs2cPfn5+xMfHF/i1hRBCCCHMYckS+P13tezkBAsWgK3tvY/JDLpBBbUrVhiP79DBuC84GJYvh4kT4dQpNe47048/mqf+97J2bfZte/bAyy/n/7WFKAkk6C6CxowZg5+fH35+ftSrV49OnToxe/ZsMjIy8vW6s2bNYtSoUXkqK4GyEEIIIYTRzz8bl3/4AWrWvP8xWYPub7+F2Fi13K1b9oD9ySdh3Djw9VX7vbzU9hUrICLikap+X1mD7lmzjOO6161TwbcQ4t4k6C6iWrduzfbt21m3bh0vvfQSs2fPZu7cudnKpZkxbWXZsmVxdHQ02/mEEEIIIUqD1FTYuFEte3rCgAF5O87fHzK/emUNnHv2vPdxVlYwZIha1mph/nyVkG39emM38Ps5fx6GD1eZ0u81Pjs2FnbvNtZ3+HDV4p7p00/zdj0hSjMJuosoGxsb3N3dqVSpEs8++ywtW7Zk06ZNhi7h33//PcHBwXTp0gWAyMhIRo0aRePGjWnatClDhw4lPMtAG5ehNcUAAQAASURBVK1Wy5QpU2jcuDHNmjXjiy++QH/XJ+zd3cvT0tKYNm0abdu2NbS4L1q0iPDwcJ5//nkAmjRpgp+fH2PGjAFAp9MREhJChw4dCAgIoEePHqy9q0/Sli1b6Ny5MwEBAQwaNIirV6/my89QCCGEEKIgbN2qMo8DdOkCFnn8hm1pCU2amG6ztoauXe9/7JAhxgRtX38N3t5qrHWrVtC9u3FseW5eflm1rvfvD716wbVrOZfbuFElUgP13gBeeAGqVFHLq1apMd9CiNyVzinDQr+CU1/dv5xrQ2i73HTblh5w8+D9j/V/G2q//XD1y4GtrS1xcXEA7Nq1C0dHR+bPnw9Aeno6Q4YMITAwkD/++AMrKyu+++47Xn75ZZYvX46NjQ3z5s1jyZIlfPbZZ9SoUYN58+axfv16mmemw8zB+++/z+HDh/noo4/w9/cnPDyc2NhYKlasyKxZsxgxYgRr167F0dGRMmXKABASEsLy5cuZMGECPj4+7Nu3j/feew9XV1eaNm1KZGQkw4cP57nnnqNfv34cP36czz//3Gw/JyGEEEKIgrZmjXG5W7cHO7ZpU/jvP+P6Y4+p+bnvp2pVFQSvWQMxMab7Vq1SCdbGjIEJE7JnT790CTZvNq4vWwbbt6ux4wBlysDIkdCypWnX8s6d1b82NvDBBzB0qFqfOBG++UZNl+biYjoeXQhRWoPu9HhIzkPraop3Dtui83ZsunnGOuv1enbt2sX27dsZOHAgsbGx2NvbM2nSJGxsbABYtmwZOp2OyZMno7nzqTplyhSaNGnC3r17CQ4O5pdffuHVV1/l8ccfB2DChAls37491+tevHiRNWvWMH/+fFq2bAmAt7fx5+Fy56+Bm5sbzs7OgGoZDwkJYf78+QQFBRmOOXDgAAsWLKBp06b89ddfVKlSxdAyXr16dc6cOcOcrBlBhBBCCCGKkdWr1b+WltCp04Mdm3VcN9y/a3lWI0caA34rKxXwHzgAV6+qObw//VR1CX/2WdPj/vzTuGxhoVqyY2JU8J1p3To4dEj9CyoQb9vWuP+ll2DSJHWt5cvVK9OsWaobuhBCKZ1Bt7Uz2FW6f7ky7jlvy8ux1s4PXq8sNm/eTFBQEOnp6ej1erp3786IESOYOHEivr6+hoAb4NSpU4SFhdGwYUOTc6SmphIWFkZCQgLR0dE0aNDAsM/Kyop69epl62KeKTQ0FEtLS5rc3efpHi5fvkxycjKDBw822Z6enk7t2rUBOH/+PAGZk1LeERgYmOdrCCGEEKJ4SElRGb3nzVPB24cfwltvFXatzO/CBTh9Wi23aAHlyj3Y8VmDbo0Gnnoq78d26aISqV27Bj16qKnEEhNh8mSYMkWV+fBD6NPHmJhNr4c//jCeY/dumD49+9juuDjVXT1ztGLbtmpu8Uy2tqolfcSI7PV67z3o2FEF/EKI0hp0136Ert93dzfPJ82aNWP8+PFYW1vj4eGBlZXxV2WX9RMPSEpKom7dunz55ZfZzuPq6vpQ18/sLv4gku4MZgoJCcHT09NkX9aHBEIIIYQo2RYuhNdfN2bjBnj7bdUlundv817r2DFwdzdm1DaX1FQ17/bx4yrg7NZNjZe2tjYt9yhdywEqVYK6deHECdW1/EHfR/fupusODvDZZ6rF+99/VVfy774zPvA4cgROnlTLrVqpMeV//62mHktOVq/HHlMPE86eNZ43s2t5Vq+8osaz79+v3kNqqkrmlpICgwappG53/7yEKI0kkVoRZWdnR9WqVfHy8jIJuHNSt25dLl++jJubG1WrVjV5OTk54eTkhLu7O0eOHDEck5GRwYkTJ3I9p6+vLzqdjn379uW43/rOJ6hWqzVsq1GjBjY2NkRERGSrR8WKFQ1ljh07ZnKurPUSQgghRPE3erRpwJ3phReMAZ85zJ4NAQHqlSV/rFmMHKla6ffuhWnToH17lTzs1CnTcpldyyFvCdDuptGo1upvv4Xffnu0Omf1+efGsdyTJqmWazDOJQ4wcKBx2dlZZV738VFB+N3BcmYStaxsbdUDlgsX1HtYuhT8/NS+/ftVi3tWN2+qBG5TpxqTswlRGkjQXQI8+eSTlCtXjqFDh7J//36uXLnCnj17mDRpEtfupKJ8/vnnmTNnDhs2bOD8+fNMmDDhnnNsV65cmV69ejF27Fg2bNhgOOfqO39ZKlWqhEajYfPmzdy8eZPExEQcHR0ZPHgwU6ZMYcmSJYSFhXHixAl+++03lixZAsCAAQO4dOkSn3/+ORcuXGDFihWGfUIIIYQo/qKjVesqQK1aKmFX5pji27fVmOXhw6F1awsGD/bjt980OU5ZpderxFx3Pas3CAtTwX3mNT/5xHzv4ccf1etu166pObgzJScbk6BVrAhZRvI9kGrVVKu6OVvrAwPhuefU8s2banx3Rgb89ZfaZmUFTz+d87FNmqigPVOVKnnrKm5vrx4cWFqq9UmT1O8w05tvwty5KgnbV3nIaSxESSFBdwlgZ2fH77//jpeXF8OHD6dbt258+OGHpKamGubdHjx4MD169GD06NEMGDAABwcHOt0n08f48ePp3Lkz48ePp2vXrowbN47k5GQAPD09GTFiBNOnT6dly5Z8emeSxjfffJNhw4YREhJCt27dePnll9m8eTOVK1cGwMvLi1mzZrFx40aeeuop/v77b94qiQO8hBBCiFIq6/RR3burrtlz5hgD0rNnVavurl0ajh515KWXLOjZUwW0t25BaKgaY1y3LgQFqeOyts5mevNN4zRdAD//nHuA/iB27TJNAvbtt+r6mYFk1mzeW7aowBtU1/K7s4QXtkmTVKZxUEFuhQrG+cC7dgU3t9yPffNNlZ3cxUUF7Hl9b02awEcfqWWtVo0pB/UgJmsCtw8+gD17HuTdCFF8afS5ZdIqBpKSkggNDaV27drY29sXdnVypdVqOXz4MIGBgVhmfmIL8YDkPhLmIPeRMAe5j0qJxES48/Ce27fVYOE8mDzZGHT9/ruxtfXiRWjcWLW6PigHBxXMZ3ZdXrXKOJZZozEmAOvWTe27W3r6vccWZ2TAjh2qFfZ//zMG0iNHwowZarl1azWtVuZ78fGBV19VDxRAHdenz4O/t/z24YdqjPfdFiyAfv3uf7xe/+APE1JTVS+HK1fU+o4dqoV99mzTcj4+Ksmei4v6mT/M13n5PCr6PvsM5s9XOR2CgtT/pSefLFoPqe6+j8wdZ0pLtxBCCCGEMJusLd2NGhmXq1WDfftUt+1NmyA6Wsu0aefx8Mi9/edORzkSE1WAmJICkZGmGbN/+gkyZzVdvVqNR/7nHxg3Dp54Ary8VGtvixZq3LFer8aVv/uuCgA8PdX+du1U1+jMgLtNG8iaozbrmOZ16yAtDRYvVusODjmPeS4KJk1SvQCeeMKYfdzfXwU9efEwgZGtLXz8sXH9zTfV7wnUzypzcpxLl6B6dVUvBwf1ICVLuiBRApw/rx78nDsHGzeq/1NPPaV6s5QmpTN7uRBCCCGEyBeZQbejI/j6mu6rXl29QAVX7dvHMXCgjvHjLdm9G8qXV12ga9WCZ55Rmb2bNlVB8tGjKkg+e9YYmLVvr+aLtrJSSdpAHZeT3bvVtFoVKqiu7LkpV05l3p440bR1vHNnYwv+2rXqgUBmq32PHnnuCFDgNBr1s3nhBfVA4eRJqFHDdPqv/PDCC2pc+Llz6mFLpldfhVGj1O8yNtY04d6qVeqhzNCh+Vs3UXB+/jnn7SkpBVqNQidBtxBCCCGEMIsbN1SCM1BBlUUe+lS6u5smJ7vbggWqZTQlxTRzeNmyaiosjUZ1Yf/qKzUd1t3KlVNlL15U61kDbktL1RJesaJKFta7N/TqBTnNnNqwoXoocOOGarHLOhtqboF+UWNnZ9r7ID9ZW8OECcbhBZnb3n5bPbD4+28VmGdkqAchx4+rMh98oH4Pd80+K4ohrdYYdFtaqoz2EREqc/19UkuVONK9XAghhBBCmEVuXcsfRb16KplZpkqVVHfVI0eMGbUtLeGPP9T80k88obqW//OP6r4cE6O6uC5frlrNQU0xNmMGREWphwR79sCiRSp4zingBvUAIXOu6oQENVUWqID+8cfN815Lmv79VUK8TIMGGYcMPP64GioQHa0S4GX2VLh1C95/v+DrKsxvwwbjVH7duqmM+t26qWEEtraFWrUCV2Rbuv/44w/mzp1LdHQ0/v7+jBs3joCAgMKulhBCCCGEyEV+BN0AgwdDnTqqtbt1a2Mm8azq1lVf8nPz5JPqlZl07WHGKnfurIL7rPr0KX0BRF5ZWsI336gHIc7OMHZs7mW/+AKWLVPzif/6q/qdt21bUDUV+WHuXOPy4MGFV4+ioEi2dK9evZopU6bwxhtvsGTJEvz9/RkyZAgxMTGFXTUhhBCiRAsJUdMI9etn7I4rSqezZ43LWedavpf8CroBmjdXyc4eNUG1RvPwWZNzatEeMODR6lPSdeyoehycPq3GkufGwwOmTDGujxpFjvO3i6IlIUENFYiMNN1+4wYsXaqWPTzUg5fSrEi2dM+fP59+/frR5868CxMmTGDz5s0sXryYV199NVt5rVaLtginOsysW1Guoyj65D4S5iD3kbgXvR7Gj7fg5k0NixbB8uU6hvdei4V1GQ4ddyEh0ZbJk1Np/WR9QO6jkkyvh6FD9WQ2HHfooGfqLB2DB+vvGbAeOGABaHBw0FOjhu6emaiL4+dR+fLQsKEFBw+qH4Knp542be79PoUKuuD+mckHD4aQEAsOH9Zw5AicPq2lVq17H1Mc76OSZOhQDX/8YYG7u549e3RUqaK2//67hvR01b47cKAOCwt9kf5/cvd9ZO77qcgF3WlpaZw4cYLXXnvNsM3CwoKWLVty6NChHI85c+ZMQVXvkRw7dqywqyBKALmPhDnIfSRycvFiGa5dMw7ATE21YPpf3UzKvPnOKX72UfeP3EfFl16nZ+mcq1y8ZM8r79ng5Oposn/lSld27fYwrKemaXjtNQtWrrzB6NFhlCmTvQkyLs6Sy5cDAahV6zbHjuXt+1lxu48aNPDi4MGKALRtG82xY1cKuUYlS+vWnhw+rAZ+z517lQEDovN0XHG7j0qC27ctWLiwAQDR0RqeeCKFOXNOc/26DVOn+gIq22Dz5qEcPlw80pXn131U5ILu2NhYtFotbm5uJtvd3Ny4cOFCjsf4+vqaZdLy/KLVajl27Bj169fH8lH7RIlSS+4jYQ5yH4l72bXOGCQ1DkrkyFFr0rU2JmWOX/anknsUV6PD5T4qxv73w24mz3kKgAztTv78N9Cw7+ZN+PZbCyAp23ErVpQnLMyNBQt01Kxpuu/ff43Lbdo4EBgYyL0U18+j99+HhQvVQ4ePP3bD39/tPkeIB6HRwKxZavnkSW8CAyvds3xxvY9Kgr/+MrZmA4SGOjBpUhD79kFMjOoN0qaNnt69/Qurinl2932UlJRk1obdIhd0PwxLS8ti8Z+suNRTFG1yHwlzkPtI5GTrhjjD8vfTrlCuvB3/rQqjYuUy/LMohXkrWwOwe8NFvBtYy31UTKUlp/HRZGMgs+i/5ow/cJHaTdWA248/TCE6ugxZmzPmzYXBIyApCY4c0dCsmSXTp6vptVxdVZms474bN7bI89jr4nYf+furaY80GnByKj71Li6CgoxzqW/erCE93TLXjPJZFbf7qCRYssS4bGGhpgJbu9Y4/qRePfjjD02x+r1k3kfmrnORS6RWrlw5LC0tsyVNi4mJoXz58oVUq4Lj5+d3z9eszEd/QgghhBnpdXo2H1BNl852twhqU4saDary8tjWPPF8E7r3sDaU3b45ubCqKczgx892cS7Sx7Cu11sweZyavHrjokOE/KR6NzjaG8c09u8Pe/eCn59av3ULXn5ZzbHdooX6cv3RR8ZrFNRc0IXF2RmcnAq7FiWTRgNduqjlpCTYvr1w6yNylpQEa9aoZXd3+O030/2dOqnfXeYUcaVdkQu6bWxsqFu3Lrt27TJs0+l07Nq1i6CgoEKsWcHYvn274TV27FgcHR1Ntg3Okm9fr9eTkZFRiLUVQghRUpzYfY7oeHcA2gSextLa9Cl/cBdjX+Jte90LtG7CfOJj4pk4s45h3ckuHoC/NjRnya9n6fNidfR69fXww2fmmxxbty7s2wdPP23cptPB7t1w4oRaBvD0NAbnQjyMzKAbYN26wquHyN3atZB85/lrz57w7LPw1Vfg5aUyz69aBS4uhVrFIqXIBd0AL730EgsXLmTJkiWcP3+e8ePHk5ycTO/evQu7avnO3d3d8HJyckKj0RjWL1y4QMOGDdmyZQu9e/emfv36HDhwgDFjxjBs2DCT80yePJlBgwYZ1nU6HSEhIXTo0IGAgAB69OjB2rVrC/rtCSGEKKI2r4kwLLdvnX0sr7t3eWp7nwfg4Dk/Um6nFljdhPlM++Cg4eFK/w47GftGKAA6nSW9X6jFrST1LfnJhst5o/lb2Y53coIFC2DzZnjnHdXVGsDaWnULHjIEVq9+9Gm9ROnWsaNxWjf5ulo0LV5sXL4z4RRvvQVXr6q52a2tczys1CqSY7q7devGzZs3mTlzJtHR0dSuXZuffvrJLN3LFy2Cjz9Wc8oVFCcnC158sSz3ySeSZ9OnT2f06NF4e3vj7Oycp2NCQkJYvnw5EyZMwMfHh3379vHee+/h6upK06ZNzVMxIYQQRd65w5fxrOKKk6tp39j/ttoaltt3rZDjsW2CtYT+BRlaa44cd6N5cL5WVZhZ7I1UvvpV/c23tkxj8leV8KhelWnzVPK0TA2rH+XPN57FkpwnSdZooG1b9fryS4iJUcG4jU2OxYV4YG5u0LQp7NkDx49DeLh0Uy5KUlNh5Uq1XLYstG9fqNUpFopk0A0wcOBABg4caPbzTpsGp06Z/bT3oeG33yrw7rvmOdvIkSNp1apVnsunpaUREhLC/PnzDV30vb29OXDgAAsWLJCgWwghSom/Z+3kmZEtcXW8yer/HadZ53oA6LQ6Nh/0BaCsQxwBwb45Ht+muy8hf6nlQ4dlQGtxs3SFLUl3Oii83P88NRrUBuDtt43jsb29YeUWPxwPVoAb5/N0XjdJ3i3yQZcuKugGGD8ewsJUAP7pp6pHhSg8GzZAvBqZQo8e8sAtL4ps0J1f3n8fxo0r6JZuPYMGXQN8zHK++vXrP1D5y5cvk5ycbDIeHCA9PZ3atWubpU5CCCGKvr8Xqj6/N2+70rGXLavX6mndRsOxnWe5eVsNwm0bdBpLq2Y5Ht+6tXH50CEJuoubRYuMy8+PMP79HzUKdu6EqCj4+WeoWNkW0sbB5heNB6TfBhwKqqpC0LkzTJiglufONW4fOhSaNVPJ+0ThyJq1PLNrubi3Uhd09+2rXgVJq9Vx+HCc2c5nZ2dnsq7RaNDrTbuAZU2wlpSkxuaFhITg6elpUs5GHk0JIUSpcfi0l2H5drIDnbvA2LFwfHu6YXv71im5Hu/tDT4+cOkSHD/uQGqqHnv7XIuLIuTmTVi/Xi1XqaKClkyOjirpkQmf58BxInBBrcedgLJZvkPcOgnJ18ChKthXBktbhDCnpk2hXDmIjTXdnp6uWrp37pTcAYVBr4d//1XLZcqoLOXi/opkIjXxYFxdXYmOjjbZFhoaaliuUaMGNjY2REREULVqVZNXxYoVC7q6QgghCsHNyFguR3ubbEtOVr2/FqwzNhm1y2U8d6Y2wap/cmqqBfv/O2f+iop8sWypnszn8X37GpNU5crCCuplmQPM7a45wM7PhU2PwYqasMAOVjeAQ6Mh6j/QpSPEo7K0hOnToUYNeO45FehlZsXfuxdmzlQB4KlTEBpqjz7nFATCzM6ehStX1HKbNnBXW6DIhQTdJUDz5s05fvw4S5cu5dKlS8ycOZOzZ88a9js6OjJ48GCmTJnCkiVLCAsL48SJE/z2228sydo/RAghRLGzc9UxFv+wC2269p7ljuy8ZFh+tdd2evXKXqa+zxnqt6x1z/O0rr3XsLwlS8ZzUbQtDDlkWO7XN4/TjVbtZ1y2uKtzZOLlLCt6iDsKoV/Axg6wxAv2j4Abe5FISDyKl16Cc+fg999Vi+rcucYHRh9+qALyevUsGTSoNjNm3O9JkjCHDRuMyx07Fl49iptS1728JGrdujXDhg1j2rRppKam0qdPH3r27MmZM2cMZd58801cXV0JCQkhPDwcJycn6tSpw+uvv16INRdCCPEozh+5TJsetdHqrPgjdQfPjso9yebhfbcMy82a6nhptOqeGREBZCRjnXiUdj38sbC89/P4Nl0qw4dqeeIPwTg7b2HkpDZoLOQLb1F1MzKWDQdUPpgq7uE0bVbp0U9atT84VlfBd8IZiD0CmdnOU2/AmdnqVWc0BE41HpcWB7cvQtmAR6+DKHVatYI33oDZs1VPnYsXjftmzdLw9tt56MUhHokE3Q9Hgu4irHfv3iZzkzdr1ozTp0/nWHbkyJGMHDky13NpNBpeeOEFXnjhBbPXUwghROHYs3IrWt0gtbzmwL2D7qPGP/mBzcqj0agvsIodkHPytLvVCvShb/ud/O+/lmRorXlzSlt27tnJvH8a4OAiibaKoqW/HCdDq7LgPd35HBoLM8y9VOVp9cqUEg3X1kP4UghfDro7adLd7rqvbuyBzV3A1h1NpZ64pNaBWMCuPGisITVavTSW4CnzEInsPvtMdTU/c0bNBe3oqCc2VsPlyxr27VNjwUX+0Gph0ya17OYGDRoUbn2KEwm6hRBCiGIqLMLRsBwZd++x2IdCPQCwskynbrPqD31NjYWG31c1osILq5i96AkAFm5qid2z2/l5lUzcXRQt/Mc46PLpgeXz5yJl3MHnWfVKuwVX/gdX/gGPtqblMu5MH5MajcWFOdQEuJrD+coFQdeDptvCFkF6PFTsrJK3iVLJyUmN6T5+HOrXhwUL9Lz6qmreXrhQgu5HpderqdocHNTPN6sDB+DWnU5Tjz0GFjJQOc/kRyWEEEIUU2HXXAzLkXFeuZZLSUwl9Eo1AOpUuYCtfZlHuq6VjRUvjq7Akp9241hGBVG/rA5m67Ijj3ReYX63Y2+z8aBqjqriHk7TTnXz/6I2LlBjCLRbBbaupvscq0PlXmB5v+xLOfQRDv0S9rwMS71hVX3YPwou/QW3L8jY8VLGxUX11HF2hqee0mNpqX7/ixaV7lshLQ2OHVP/PqwNG6BFC2jYUD3YuHtfJula/mCkpVsIIYQopsJSjK2I127lHnSfPKEnQ2sNQGD9R/g2dpcnX2zCF+E7GDa+DQDDRtpzqEs61rbWZruGeDT7/ztHhjYQgK7BF8zTtfxRuDaENv9ARiLa8FVEn1qNR1kbLDLiQJcGtu7q5exrelzKDYjZZ1y/dVy9zsxU67bu4NZUdWf37gll72qiEyWWmxs0bRrPrl0uhIWpVvBm9xgtk5SkMnBfuwbR0Sq4rFPHuD81VXVfb9BATa9XXCQlQYcOqpXa3R0GDYIePdS490N38ih+9JHady9r16p/MzJgwQLT+dAl6H54EnQLIYQQxVTYFeMktZGxHrmWO3zc2LId2M68wcirY1sx74+T7D9bhxNhtZjx0WZGTm5HaKhqjfLxMevlxAPavS3OsNyseRHq4GjlAN59uBpTA/fAwPtPuGxTDh7fCRFrIXItxOzFkLgN1DjwiFXqZeUgQXcp07FjLLt2qZ4/ixblHnSfOAEtW0J8vHGbRqOC0U8+gcuX1ZR6hw6Bl5cKzu3tC+ANPCK9Hl55RQXcoB4mfPWVemWVkADz5t37XKdOGZfXroVPP1XLSUmwY4darl4dqlUzT91LCwm6hRBCiGLqcpZZmxJTHbkdm4BjOads5Q4ZZ4siMNC8dbC0tuT776Dp4zr0egvGzmjD2BmQfmeq5qfb72Lat954+3qxcdEhFv2dSAVPHR990xIbOxvDeeLiVFdRGSNoXnv2Gx+4NG9XsRBr8ogsLKF8c/UKGA+pN1XgHbNHJWeL2QNpN8HWDWq+anrs/pEQtQlsyoJ1OdX9Xa8HvVZFXLYeYO+lWsoleVux1K5dHFOm6MnI0LBwIUyblnMW81mzTANuULfCp5/Cf/+p7tRxcWp7RATs2qXGLhd133wDf/6plsuUAZ0u5y7mK1aofff6nA0NNS7v3w/Xr4OHB2zfbjyntHI/OAm6hRBCiGLo1q3sXx4jryRSK4eg+/Bh43J+ZJtt3LEOQ1+M4Lv5XqSnm36bW/RfC1Y0SMbdJZIrNxoZth86tpdF6wOwtCnDBx+oL40BAepLrq2t+etYGul1enYfV81RLva38GtUgpqmbF3Bq4t6gYqcbp9Xwbi1o2nZhHNw68T9z1nz1exB9+4hYO0MZTxUF3aHKlAuUK3fS9QWFejrUgEL0FioYxx81MvKQc19buWoHhQUVbp0SLqqehKkRKsHFu65z5JQWFxctDz2GKxbB1euqBbf5s1Ny2i1sHSpWi5TBt59V7XefvONCkS3b89+3i1bcg66k5PhyBFo1EhlUC9M//0H771nXP/jD2jTRgXhx49DzZoq2N6+HW7cgIMHoXHjnM+VnAyXLpluW78ennsOVq82bpOg+8FJ0C2EEEIUQ2GnIgHTlstrtypQ665yOq2OI4e1gDVVq+pxdc2fSWwnTfdi5yE4ehT8/SGgThKb1idy/ZY7Kel2XLlhOjf0yl1NebLNQVLsGrB9h+pafOgQ/PPrJZ55xSdf6ljaXDkTwbU49XNv4n8eC8uGhVyjfKTRgFNNyP7MCSyswdIetEn3PofdXXkRMhLhQi59ce0qgUNV43rHzeo6ma79Cyc+u3+9K3aB9mtMtx14E+KOq4zw1s6gsVJzn6dch/Q40CZDRjL4DlPzoGdKv62yxluXVcGxdVnVum9TFqycVW+B3OgyIP40xB6Em4cg7qh6iJEUBnqdsVz1wdmD7uU11cMDx+rgWE1llrcpB9Yuauq3jNvqZ+ndxzSxXlosxJ0AZz/1Xh9R37561q1Tn29Ll2YPunfuhKgotdyli7Hb9JNPwoABpvsyxzVv3pzztfr0gTVrICgIVq5UXdELyxtvqAcKAB9+CJmzDWedSdjZ2fhQYe3a3IPu06ezJ6Jbt079jObPV+u2tsWj9b+okaBbCCGEKIbCTodzd9AdGZm93IVjV0i4rYKDwCoHgFy+bT2icuVU0JyRAVZWAPbcik7n07c3M+OvVuh0FnRucpBO7RMZ901jElMd2XAwexD447exEnSbyZ4jxmnkmrUqBgNT80vbZepfbZoKWtPjAY0KCPVaSLkGyRHgXNv0uFsncz9n8lX1ypR0RQWdmRzy2KsgOYf50iJWQ8LZ+x9r7WK6nnwVdr+Ue3mnWuDRTvUOqNzLtP/1+tYQs/v+17T3Nl3XpqjgHCDuPrMXuDYyDbqjd8EWNe0gtu5Qth7YVzH2KrC0Uw8yrOyh0pPq4cE9dO1qjBYzxzZntXixcblPH+Nyu3aq9ffbb9UDw4EDVevwhQvqPMnJYJcl2f7VqyrgBvWZ16yZagW+e3qtgnDunLE7eOPGMGFCzuU6dzYur1unxrDnJGvX8qzlf/rJ2LNq0CBwdc1eTtybBN1CCCFEMRR2MTnbtpyC7sO7IoA7QXfd2/lcq8yAW3Fxd+HL39ox+rMbALh7NwGgWetjdH26CvHJKmioXFmPRWoEYdGV2HwkiDMHL+LbsAR1hc4HV69ChQr3zj+2Z59xZ7NO/gVQqyLO0gYsPbJ3DXeqkXN518bwVBgkXrrTvfo6xJ+B2EPqlX7LWPb2JdOgu2JnaLtSdSNHr7ppJ0eocklXVLdzXQZY39U0n34b0hNyfw+ZrfaWZVQLcVZpt3I+JlPCWfUK/we8e5vuK1s3e9Bt7QKONVTrdRlPFQh79zQtk5GoWv1TokCfce/rZySaridlSUqRGg1R/+V8nMYK+lw33ZZ6U9XPwlK1xOt1VKgAlStDeLiaTzrr2GW9Hv75587bsobu3U1P5+UFkycb19u2VUF3WpoKvNu1M+5bc1fHhPBwCA5W21u2vOdPwOzWrTMu9+2b++dBtWrg56dasnftUuPWy5bNXi5rEjUnJ5V47fp1lWQu09tvm6PmpY8E3UIIIUQxFHZZl23btWvZyx0/mmpYbtDw0ebnflju3uVN1ls+UZ9NK0N5562LVK1ux5c/+vHrtLO8O011hZ7zTRjTfq3Gr7+qL8L168OQIfD44/dPcl2chO49T0pSOkHt8h4Qpyal8epQa379VUObNqr7a04Jo8C0te9eUyiJXGg04OCtXnfT61Wwl/nD19yVmSq34+7H2hF6RaikcOnx6qVLA9vy6mGBlUPuxzpUgSbfqeA7PS7Lv3Gqe3rcERX8p8ZARpJqQc7k+Zi6VrmGUC4IXIPuP24d1Hj0XuGg00JyuJozPTnqznVj1c/IylHV26mm6bEu9cB3ONwKVdO/pUTlfA3PDqq7elbbesH1rQBYAg3RwEVnGldaQHh4ZxIS4Oy6X/Br0RjK1mXfPjXWG1TX6JwCzqzatjV2p96yJfegu3p1FZzHx6tu3lmTVhaEzG7wYNqanZPOnVXQrdXCxo2mrf2ZsrZ0Dx4MM2ao5dt3ntc+8QTUrp39OHF/EnQLIYQQxVBYePbsPZEnDwFBJtuuRRmDAZ9aZfO5VnnXqENtNmfpjfrCyPqM/TqVtAxbfl5Wl9qf72TIGNVsdOaM6hpaqRJM/PAmL71WDo1F/oxNLyj71p8kuFsN0jJs+WXadp5/N/i+x8RGxdHr8UtsORoIwNatakojX9/sZdPTVeZhUK1cHnmIn8QD0Nzpnp5f57Z1e/AEa3YVoNbQ3PdnJMGNnXBjtwrkyRJ0+zyjXg/LwlKNcc86zv1+PFqrV6bUm6qrf0q0avnWpqp6lq2X/dj4UyarGvSQfovGVbaydI+KPvev/Be/qtehbF3TruVtd0OcAzj5qd4POWjb1ri8ZYtxOS1NJRYDNT/44cOqlfvoUbUcGlpwQWlqqkqiBqrXy/2SZHbpAjPvTGu/bt29g25raxg2zBh0Z3rnnUerc2kmQbcQQghRDIVFOmbbdi1Sm21bVLTxS6VHZZds+4uK8pXd6N12J39vbMmN+PIMGVM+W5mrV2HIMFe2rtzOd381xN65+I5THvdhEmkZKk378HEBtOl6BZ+6xpZRnVbH5iVHWPRXAjfj1Ne1Aycrcf5aoMl5du3KOeg+tiuMlJQqADRrkgbkHFyIUsTKHip0VK+iyNZVve73MaVLh/Kt7oyH16BHQ1JiPPbWGTT2O2cotv9CY54rVxe93jie28JCz1Nln4TVN1RXfefa4N4aqr+ghhPc6bng4wNVq6ppGXftUgGura2apzrhTu//Ll1UF+yXXoK33lLbFiyA8ePV8sWLqhW8Q4fce6M8ih07IPFOj/3One9/jbZt1XtITVUt5NevQ0iIasUeP14F2mfOqLK1aqnPlVq11IM9UEnjsrb4iwcjQbcQQghRDIVFqVaw8s43uJXoTLrWhsgb2VM3X79pDEzdKxXhqYmAV4fa8fdG021D+26n88Bg5vyoZ9Vq9a3yl9XBHAo8zbIVDvjUrVwINX00e9YdZ90+Y0K7hBRnXhiSzqYdcOt6LD9MPcLchdW4cC0ox+PL2CSTkqYyO+3eDS+8kMM1/rsE3Am6q+8C2mYvJERxZGENbf4xrOq0Wk4dPkxgYCCNWljCJLV9/41nwNWGo0fh/J1cb22bRuLufOPOgekqS3vcUTj7LbjUBbdmaio3t6a0bTuEX3+FlBTYuxdau3zCmnmtgMcB6PZ4EmBPv35qnLNeD3/9pcY/X76sgtRbt2DcOJg4UV1Sr4dFi1SLsqcnVKyoXhUqqJfNXc/G4uLgl19UkrRWdyWNf5Cu5QD29moqsfXrVVf7KlVUAA7g6KgyuGfOw53ZWt+tm7G1+913H+DhgV6vhhckXVE5CjISIS1G5USwsIZ6H+bxRCWHBN1CCCFEMZORlsHVGJWZuqrHda7HpXLlRiWu3cyeUjbqpmo2KucQi41duWz7i5J2vQKpWfES5yJ9ABjYeTuz/26JhSU89ZSGv2bu5OX3G5CU6sDRi34M7H+U7cfzFnTrdXqWL0lm/CR7tFr44YeCT3qUaeInxiR4ttYppKaXYeseN554AnZsteF2crtcj21YM5Sff3cisGUldDoNuzdeJjNRXlZ79hq/HTdvW7QftghhLuXLq1bqS5fg4MkKaK3UfNWZ+vTWQIMpxmA7/pTKYA9qLvfM+dyTwg1BN6gu5q2DFrN689MAaDQ6OidXgTVV8KrQkbYtxrB5pytnzqhu5p99pgJugKlT4fnnVUb0n39WY6Vz07QpfPedmv/7wgUV9J4+reYVP3MGvLOkCchMoqbRQKdOefv5dOli7B6fakz3wdy5EBBgXM8Muj/+WCWKq14d+ve/z8mvb4Xzc9XPMOGcaaLBrOwrl8qg2+L+RYQQQghRlERciEKrU8/Nq1SMp6JbLADR8W5kpJlmEL5+SwXaHmVjC7aSD0FjoWH2lzfw8bjCa722Mm9ZMywsjV9VnhnZkn1bIqnqHg7AjhMBHNiUwxw3dzmx6xydmx6kZ197Dh+GY8dUV8uZM7PPSZvf9m8MZfUelcW9ins4K1dYGlqP1q2D28kqUZZGo+Pxxvv5e9ZOLp0M53LoVcLPRrL/tD/1m1WmftXTABw9V5nbsdmz0u8+opLSWVumEdi6Zrb9QpRUmXNQJyXBiRPw++9q3coK+r1YEeqOgVZ/whPHoe9NaPZT9rnH0+JMxnVv3AiXrzpzIlyNL29WYw9uTjEqi33oNAb4f2Ao+9aI2/zvf8Zj09NVK/HFi6ZzZ+dk716V9HDkSDXP+Gn135yUFPjxR2O5iAg1jhygSRP1sCEvevQwJqO0t1et3aBa5r/7zlguM+h2dYX//Q+++OKuJJa3TqnkeVklhcPFX+HmgdwD7sxyd2eyLwWkpVsIIYQoZsLOxgAqqKpSORWtTgOnQa+3ICrsOpVqqlbw5IQkEpKdAfB0jS+s6j6Qzs825uKzADlnfq7TrCYfvbmNVz5ULdzffX2DuR1U6/9zXfey5WBNOrc4w5DXnHBxLcNn42NY9F9z9HrTdoaMDBg1CvZuPMtvS2rmW2I2nU61qm/cqL7AHtpo/LL5wfALdOxcmXfegS+/VNtsbPQMeWo3731ciWr1cp9TvXngdY5c9Eent2T/f2dp19vYFf3ErnOcvqoC7Ua1TlPGoRAmEBaikDRujCHo/fxzFaCCyrzt7n5XYWtnqDFEvZIjVTI3fQZYWFPdWSVvvHpVzRLQ+Ng2w2HdOkRD2QaGucn7NF3M8F9mk6G1ZssOY74Na2sVdC9bBieOpXL7tsrj0PfJG3QJvkjk1XQiI7Rci9Jw9HJdzoWVQ6uFWbOyv685IamMG3keGxsN6xbbAT5A3rqWZ6pZU2VfP30a+vfTseW/dJ4eoOr077/Gcv5uO+G6TmWcL+OpMtvfPADRO+DK/1Qvgcc2g2eWJxNl73zOaCzUfOuONcDRR03tZuWoftaONdRUdxaFM5NGYZKgWwghhChmwiKM47SrVLEkJcXYT/BaWKwh6L4eHktmhmIPt+zzehdXz7zRkHcn3+JWkgt/rmvMl1FxzPniMAs3tQPg1zUe/Lom+3FV3cOZ9mk0+y8E8cUXatsfy2vx7O/76PZ8E7PXMzlZdSvN2uoFKpCu7BbBS++qebw++0xlF09JgSFDNHh5tbjvuVu00BCyRC3v2nqLdlmmXZ7/XTiggu5net80wzsRovhonOVZVdau5c8/f58D7Sqq1x0aVL6Ezz5T6zdijE293V7tAY16qEzrUZsof3UFnepvYs1hYwQcFAQjRhi7k5+7oIJbH/eLzO3RAGf7BMgyOibdsxeTt/3D5MnqoSBAu3q7sbO8yZoj3YiKtmXJxAn0a76Qf+YvJzPo7uL6Olx53HTu9Ru74dJfahq39NuQYXx1yrhNJ49E2JDIk5ZVcHO7TEyM6Y/C72oniElSK1YOKvM9d3ULuvy3adDt7A9dDqjkdFZ29/lhlz7SvVwIIYQoZsJijd2FqzQOpmIF45zdkVeMXY2v365kWPb0yzJgr5hzcHHgxacOA5CSbsdHb13ik+9a51rewyWaL97ZTOh5N55+LYjPP4cZk84Y9u/Z+ehdHW/H3qZfh13YWqfSuv4RpgxfxWOtIu8KuI0mvnceW3v1JdzaGt57TyVc8vLK2/Watzf+bnfvN37BTU9N59fldQGwsUrluTeklVuULg0bZt/m6qpauh/UpEmwdKnqwp3J21sF1ACUcYeq/aHl7wwY2c7k2BkzVNDepPYFwzaNRscvr72gAu67WKdfYfx42LMH+vWDDz+EtR88xXtPTDOU+W7DMEI2vsbKQ08CUN4pmqZuP6k52bOKPwVnZsKVf+Dav2qquLijah71lOuG7t22mpsMHGh6aNWKN3Aok2TckJFItoDbrTm43fWg0sIaXBtKwJ2LItfS/f3337NlyxZCQ0OxtrZmf+Ykk0IIIYQAICzMuFylCsRUNLbAXLuaYliOijKW8/ByKIiqFZih73gz4y+1/N1fgYbtw184R4vAKOb/VobIG868NiiCl0c3xc6pncnxXbvZMOojtXzs5KN1dYy8EEX3zjc5eE61UG8/3oDtx42T5jo6wq+/QjXvZCJPHaesaxladMv9IUFe1AryoZxDLLGJ5dh1rDp6nR6NhYaVvx4kOl61oPdscwA3r0LKFidEISlXTnWjPmecPYxnnlHTZT0ojQaeekqNhV6/XmUMf/ZZsMih2bJnH1vcR0N0tLpe6zv/xWd8Hk3rXlXRai1599l1tHmiFlgFgn0lsPNSc5s7+UEZD0A9NFiw4M5JbyyjXeto/P+O5dSFcmw91ZadZ43jz2e8+jlWllqo+LhpZRxrZK+ghS1YO6qu3pkvayeGDNYzY4ZxeI2/rxbqfqTGZSecg9vnVddwtybg2gQ826tu4+KBFLmgOz09nS5duhAYGMj/cns8LIQQQpRiWYPuqlXhWiXjPDOREcbkNtevG8t5ehZEzQqOX6PqPBZ0kI2HjM1a1arB1G9r4uBQk2ffzNxaK8fjq9fzxs4mieQ0e46dq/DQ9Ti55xxdnyxDWLTKPGRlmU6G1tqw38s1ilXryxPY0BKwI7CxebqxW1ha0LzuOdbsbUJ0vDsXT4RRvX4V5s03fnkePETm5halU+PGpkH3fbuW34dGA48/rl65cXaGrVvhwAHVUp2pxZPN2LZNjQ3v3bsrWHTN+4XLN0cDDHvTmIQtQ6vCt7ffhme//BKS3lIBfFblgqDjFnDwuTOm2kFNhZaD+qifV2Y7Z+0gT2jwad7rKPKkyHUvHzlyJC+++CK+vr6FXRUhhBCiSMoMum1tVWKgCtWM4xCvJRn/fpq0dHsUVO0KzrA3LE3Wf/wRHPLYoG9pbUmdqpcAOH+tCom3HryLefSVG3Tq5kBYtBqYWdU9nCM7LnP+aBizPtrC2CGb2btHdyfgNr/mjY113r3xChHno1m9uxGgxox3fDrneb6FKOmyjuv29zftHp6f/P3huefUkJGsWrSAvn1zbiHPi+efN/1s69BBJYkDsgfcoFq0PdqAQxWwcck14M708svG5Zy654tHV+Rauh+GVqtFq9Xev2AhyaxbUa6jKPrkPhLmIPdRyRB2IRFwxtv9Onq9Gx7VjF+6ImIrGn6/UWfPAKoFtrxzDFptWbNcv6jcR08MrEfQt3oOHdLwxhs62rfX8yBVqlcrhgNnVdb3Y3su0uSx2nk+VqeDF/tdIuKm+nYfVCOUFevKUsGnGgBDxxt/J/n1c2rSygHuTPOzYo0t2065obuTpf2FPhfBwvPRrq3VYmlY1PJAP9w8nb5o3EeieMvpPmrTBrhz9w4ZokOnK+C5Ac3M0RFGjtQwZYoFNWvq+eMPHRqN+f5LvvgiXLyoITUV+vZ9sM/RkuLu+8jcn0slIug+c+bM/QsVAceOHSvsKogSQO4jYQ5yH91fWpqGTz7xITTUnvffv0LLlkVjyq3EW8ncSgwGwKvcZQ4fvkJ6ugZQzRPnzydy+LCa3DX8fDyZQXfCzYMcPuxq1roUhfvo668tuHrVFl/fZA4ffrBjq1Q2puzdtuEs1m6p9yht6vffPVi9WwXc7s7RfDHjGtfikrh2OOLBKvEIHCqkotHo0Ost+Ptf0+nFmnRz5vCD/kDuYpGcTGZb+dGjR9HZ5U+CpKJwH4niL+t9ZGEBU6aU48YNa1q3vv7Anw1FUa9eULeuHVWrpnL1qo6rV817/qefVv+ePGne8xY3+fV5VCBB95dffsmcOXPuWWb16tXUqJHDoP888PX1xd7e/v4FC4lWq+XYsWPUr18fS8v86WImSj65j4Q5yH2UN3qdnuefPMT69SpIff/9mqxcqaNdu8KtF8D0941zxVbzTiEwUCXKcnPTExOjISHBgcDAQADiEg4byrZo2wRnNyez1KGk3EfR7XTwo1qOuFrO8HO7n717YfZsYz/Rn3+8SfsubfKhhvdXv+pZjl7yM9nWs6ee7t3rPPrJE43d1wMCAvLedz+PSsp9JApXbveR8b9zHqcEKAak63f+ufs+SkpKMmvDboEE3YMHD6ZXr173LOPt7f3Q57e0tCwWH9bFpZ6iaJP7SJiD3Ef3Nm7oZv5a186wnpKioWdPSzZuhKZNC69ei3/YxZivjcHdgGftDL/HihUhJgYiI8FCY4HGQkPUTWcAylgnU7a8CxoLTY7nfVjF/T4KbF7VsHz8lFOe3oteD8OGGefRHTMGuvX3u/dB+Wj2jBQmTjqJS5U6NGwIjRrBY49pzPN7yXIOS0tLk3VzKu73kSga5D4S5pB5H5n7XiqQoNvV1RVXV/N2aRNCCCHyw7yp25g0px2g5lRtWC+eA8fKcvs2dOmUxM4N1/BvUr3A67Vn3XEGjgxEf2fM7vihm+nyXDvD/gq2hzlOIKmpGm7duEVZDxeux5UFwKNsDBqLygVe56LOs6o75Z1vcCO+PMcu5O3h/87tWg4fVl/GAgNh4sR8rGAetO7RgPU9CrcOQggh7q3IZS+PiIggNDSUiIgItFotoaGhhIaGkpj44FlFhRBCiNxs2gT9+8Ocry+QmpRGRloGY17azJAPjPMnfzV6G9v2lKVtW5WEJzbeniEv3kan1RVoXVMSU+j9rBsp6WpM7fNdt/Px7LYmZSq63zYsR166gTZdy4149cDbs9ytgqtsMaKx0FDfX32/iIrzIPr6/ZMtfffpbsPyO2/psmUpFkIIIe5W5ILumTNn0rNnT2bNmkVSUhI9e/akZ8+eHD9+vLCrJoQQooRIS4MBA2DhQnj17erUrHKD1g1C+fzndoYyI/tvYdTkNtjZwYp/EqnldRGAnScD+OXLHQVa342LjxFxU00LFlzvCHMWN83WVbyCR4Zh+dqVeGIib6LTqxZZD1d5cJ2b+lm6mB87fu/u91GXolm0Sc09VN75Bn37pOVr3YQQQpQMRS7onjp1KqdPn872atasWWFXTQghRAmxZg1ERxvXw2O82H2qPgBWlul8PWYL3/zZxhDYOrk68u30m4by702uQ0zETQrK8iXJxmu/lYKNnU22MhWNU3UTGZ5E1JVYw7pn+bxn5S5t6tc3Lt8vae3cr0+QrlU/+yG9j1PGoUw+1kwIIURJUeSCbiGEECK//fKLcbmJvzE7qZdrJJuXhvLmlLbZWpI7DWhE/w47AYhJcGPsGwXTA0un1bNii0rUVcY6mY596+dYrpK3MRA/dyad6xHG7uYe7qVw0tU8ulfQrdPq2LjoIMd3niUjLYMf/qwFqLH+r73zcDOuCCGEKH0k6BZCCFGqxMTAypVquUIF2HnMlyPbzvDTZ9s4csSGVt0Dcj32qx+r42Sn5uuesyyY3WvzP/A+cFBDZKwnAJ2Cr2HvnPMUmQ1bVTIs7zngQFSEsXXc09O8WctLkrp1jcvHDpj2XpjwxlY69mtI/Va18HKP5coN9TPu1mw/1eo9/KwrQgghShcJuoUQQpQqf8/aTnq6Wn7umXSsrCAg2JchH7SmfGW3ex7rVaMCE0cdAkCvt+Dl12xJS87fcb3LlxuXezxbLddyNQKq4OYUA8Cek9WJiitv2OfhZZ75uUsiR0eoXiEMgBOhNiZJ8lZu9DQsR8e7G5aHDZWHGEIIIfJOgm4hhBClyi9/lTMsv9Dn4gMfP3xCKxrVOgnAibBaTHlnp9nqlpOsQXf37rmX01hoaFbnAqC6v+86Ymz59qjdML+qVyLUrxkJQGKqI5dOhgMq2d6xy6pbv51NEjZWalx8M//jdH5Gfp5CCCHyToJuIYQQpUbo3gvsO6P6EwdWP0X9Vr4PfA4rGyvmzrXEylI1l0/+sSXHd541az0zXboER4+q5WbNVHf4e2nWyJilfO16W8Oyp2dOpUWmgDrGrvj7t6qg+8QJSE9XX5N6P23PzRsZHNgUyoadPlhaWxZKPYUQQhRPEnQLIUQpkZ6azvihWxkxSMPONfdJ01xC/fpDmGH5hX5RD32eBq39GP2SmjYsXWvDkDd90D5CrrILx8KYPHIzO1YeNdm+Yp6xFb3HEyn3PU+zVo6G5YTbxgmkPTwevm6lQfNWDoblHdvUw5SDB437GzUCBxcHGravjWM5x7sPF0IIIe7JqrArIIQQIv9dPRdJ/57R7DjRHoD+z1/j5KlblPVwKeSaFZyMtAx+Xaa6C1taZPDs67Uf6XwffdOcxZsTOXXOgb37rHn+eZUV3eoh/rL273Ob/WfbwSxoU/8wo4ancCs2nZBfjE3bPR67AtS653madvTLtk2jgfLlcygsDFp0Nv5cdxxUY7ezBt0NpTe5EEKIRyAt3UIIUcJtXHSQho2t2HHCmJU7MrYC7796pBBrVfBW/36AiJtqMuvuLQ/gUfXRmn/LOJRh7i8OhiD7zz9hwAA1FvhBhJ+NZP/ZOob1rccC6fNacwaPac2JMBUMVvMMo27zmvc9VzkPJ/zuirvLu9zCUnpD31M5z7LUraKGCBw+78vt2Nsc3GnsCREYWEgVE0IIUSJI0C2EECVU4q1ERvTbQsd+Dbl+S7XeeZe/imOZBADmLGvDpmXnC7OKBerHOcaM06+9Zp4/fy1bwuLFYHNniuzFi6Fvh/1kpGXk+Rwbthh7G9jZJGXbb2WZztiRl7PNG56bZs1M1z1drue5LqVZq4YqmZpWZ8Wudac5clJlfK9Z8RIupadDiBBCiHwgQbcQQpQQFy7A22/DK6+oV4O68cxe1Naw//HG+9l3wJrRr2w0bHvl7RokZY/zSpywU1dZs6cRAFXcw3m8v/n6C/fooTKMlymjBnWv2NGY+dPyntH8303GebfXrrNl0Xe7GNF/C1+8s5kNCw8SdeU2L49tnefzNW9uuu7hmpDnY0uzVq2MX4nmzkklOU39XhrWjiisKgkhhCghZEy3EEKUEC+8ANu3Z92iulLb2SQx9d19DJ/YGj16Og+sxNoD6ezYac2FCzB+PHzxRWHUuODMm3EWnV5NofVyv3NYWlc26/k7d4Zl8w7S+dkmAHw2sxovvpuOta31PY/T6WD9erXs5AQtWlli3a4FfYc+fF2aNUoByhjWPd2Scy8sDFp18jYsL97SxLDcsEH+zsMuhBCi5JOWbiGEKAHCz167K+BWWja8zuFdUYyc3BYLS/WRb2FpwY9zLLC9M6PU11/D8eOPXofUpFT+W3yInauOkXgr8f4HFJCMDJj7T30ALDRaBr+ZPdmYOTz+TBO6NN0HwKXr3vz29e5sZbTpWjYuOsi1i6rL95EjcOOG2tehA1jfO0bPk/oNLCljbQy0Pdzz3tW9NKtevwqeZdXvJUNr/EU0bOpUWFUSQghRQkjQLYQQJcCy308blt988SjHjsH587B9vwe+DatlK+/nBx98oJYzMmDYK7fQ6/QPdW29Ts+K+XupVzOSDn2DaNW9Pk7l7KhT5Ty/TMvhSUABW7sWwq+7AdC9w1Uq1ayYb9f6+BNjC/PkGVVMxnanp0PPnlo69mtIo8ZaboTH8O/ic4b9jz9unjpY21rTqNoBw7pHudvmOXEJp7HQ0Kqda7btQcE+BV8ZIYQQJYoE3UIIUQIsXWmcO/ilIWWoVw+qV1fTReVm9GioUV3NSbxttwu/fbXjga8bfeUGXZsfoMfgppyL9DFs1+stCL1SgxffD+a3rwov8I6JUe8z06tvVcnX67XoVp+ODVXAe+FaVf6YoVq7tVoYNAhWrlYZ1yJuVuStl0P5d3W84dhOwQ8/b/jdmtc5Y1j2LF8KBu2bSavWpqPuqriHU76yWyHVRgghREkhQbcQQhRzsVFxbD6ipgOr5hlG/Zb3nss5U5kyMHuicdqwdz/149zhy3m+rl4Pg160Yd2+xoZtresd4eUeW2lQzdjyPuT9pmz+53Cez2su8TG36dJFz8mTat3fH7p0yf/rfvyJMXAbO7UGY4dsZlDfCBYsMC33+7pgNh9uAICPxxVq1nu0KcyyemZECyw0WmysUunwdPP7HyAAaNXKdL2hX3jhVEQIIUSJIkG3EEIUc6v+PGEYg9qr44U8Ty0F0OW5xvRpuwuA6Hh3agVV5bGGB1n8w677djf/5x9Yt8kZAHfXRBZ+t4stRwKYs6wNh8758nrvrQCka23o9Xx1ToXqHubtPZTkhGSebH+O/fvVz6JiRVi5kgKZr7p1jwa0DzwEqBbtKfPa8ddSLwCsrGDI08YHEjq9qtDjLS8+0O/tfhp1qM3l09e5dDqOavW873+AACAoCMrYGocENGyQUoi1EUIIUVJI0C2EEMVE6N7zRF+5kW370mXGj/Ke/co98Hm/DqlKxXLXDOubDjWk79AWTB61JddjEhJg1Cjj+g9zHHh6aAtD4Kix0DDrr5Z0baYSi8UlOvPcQAv0Dzds/IGkJafRt9Nxth4LBMDVOYH166FGjfy/dqavZ9pTxd20lVSjgd9/hzl/+xq6oGd6vLMZMqjdpXKtilSs7mn285ZkNjbQtJax90fDRgXwlEYIIUSJJ0G3EEIUAz9O2kqdZjWoXVfDmYMXDduTE5JZs1t1LXd3jqZl13oPfG5vPy8OH7bks1GbqVnxkmH7x9+2YdWv+3I8ZuIEPVevquWuXaFXr+xlrGysWLDan9r+av7qgwfhxIkHrt4D0aZrGdR9P6v3qCmfnOziWfu/K9Stm7/XvVuD1n5culaJy6FXWfrTHj77+DobN0L//uqBxI+/uGNvqzK8W2i0dOhVu2ArKHL1dE+VeK6cQyytnggo5NoIIYQoCSToFkKIIu7quUjemRwEQEyCG/2fTiUlUXV73fC/YySlOgDQo+0pLK0frmXOo4o7H3zTjjPhVZkwbDOgkqE9N9SXs4cumZQ9vvMsX3+tAmlbW5g1K/eEbU6uTrw+1FinRYtyr8OjtoLrtDpe77uDhZtaAlDGOpkVf1ygSac6j3bih6Sx0FDFvxJPDWnGBxM8aN/euK9avSr8PusYtb3P88W72yjnWbZQ6iiyG/pxMBsXHeLQvkTKergUdnWEEEKUABJ0CyFEEffOaxe5nWKcK/jwBX/efUfLib1hfDixrGF7zz62j3wtjYWGcbPa0ruNyrp9K8mFnv2cuJ1l1qlPx0Wj1alkYWNHnL1vt+0+fYxB+aJF2YPriAjo3BmcneG1V7VcOHblnufT62HJEpg/Hw4dguTbafw1cycNapzjp+VtALCyTGfxT8dp2yswz++9oPV6pTknw2rwzhftCrsqIgtLa0s69A2iau3KhV0VIYQQJYQE3UIIUYSt//sAC+603Lo6xmBro6b4+jbEgaBgb45d8gWgQtkoHutd3yzX1Fho+HlJXepUuQDAyXNuTJ2q9l08foX//dcMAA+XaN4ff/8kXZUqQXAL1TIfGgondp017PvvP5W86t9/4fZt+HGOJb6BFXmh2/Ycx6+npcELL0Dv3jB4MDRsCPZONjw7qiXHL6ufhUaj4/dv9tHt+SaP9HMQQgghhDAHCbqFEKKISk1K5Y13XA3rX350km9mGBNupaer5mP/yudZvSQWOyc7s13bydWJf9b5YH3ncl99pVqkZ3x2wZBxe8SgE5RxKJOn8z3dfo9hedGvajD4N2O30rGjnuvXTctqdVb8uiaY5k0TOX3ggmF7bNQtOj+WyG+/5X6dFrWPsWHhEfoPb5mnegkhhBBC5DcJuoUoYBkZ9y8jROSFKDo1O8XZiGoAtKp7lBfebcVrr0G/fqqMRgPvvqPn0Clvgtr5m70Ofv4WvPGGWk5OhjdHpvHTP40AsLNJYugHeU8y1eclPzQaNWXYotWVmTF2C29NaYNOpx4cPP44nA1NYeIbmynnEAvAhWtVadG2HD9/sZ3RL24mqH48m7er8etlysDYsTCw73UCq5/iyZZ72PS/Q+w4Xo8OfYPM9SMQQgghhHhkVoVdASFKkqgo9a9nLrP0/PLDNUaNqUDduvDnn1C1qtp+5XQEf885Qy1/Ozr2qYtjOceCqbAokrZsgf59HIiKaQCohGDf/VAGC0v1nPTPP1Xg7e8PdetqAJt8q8tHH6mx07duwaLFNoZrvfjkfty82uT5PF41KhBc9wjbjjcg9EpN3pxS07Bv7BsnmTijDpaWZRg3ux0vjYrkic6nOXrRj9jEcrw0OtjkXO5lY1mxthzNmgF43HkJIYQQQhRNRaqlOzw8nLFjx9KhQwcCAgLo2LEjM2fOJC0trbCrJsR9bdgA1apB9eqwZ0/2/Qtm7+SlYR7cugU7d0Lz5nBgv555U7dRL8iB96e3o9crzXB1t6FTowMsmbMbva4AJjUWhSot2fTzbdcu6NgRomLUg5fKbhH8t/w8AcG+hjKWlio5WUFMg+XmBmPejjPZptHoeOvDKg98rn4947Jt++iVzUyeXQfLLEnXK9eqyLZ9FencZH+267YPPMTuLfF3Am4hhBBCiKKvSAXdFy5cQK/XM3HiRFatWsUHH3zA33//zddff13YVRPFmE4Hp09DfHz+XePi8Sv0732L5GRISoI33lDXzbT6130MfLMJer3xv9y1a9C0mZ4hH7QmPtk4LU261oYNBxvR+9XmdGx8iGM7zuRfxUWhSU5IJrD6aSq4J/Lf4kOAysr93nvGIQidHkvl4CEbmnd58Lm3zWnUW7ZUcg03rPdouYdaQT4PfJ4+L/kbupgDjOy/hYk/tM2xrLObMyu2NeDT4Zt56Ylt/PbVDqIu32TToSCqB1R94GsLIYQQQhSWIhV0t2nThilTphAcHIy3tzePPfYYgwcP5t9//y3sqoli6NKJcMaPS6ZaNdUNt0ULSEw0/3WS4pPo1SOJmwnGwPnAAfjlF7W86X+H6PNyPTK0KiPVC9120qqVasHW6Yz/BQd12c4bT2/Bx8M4XdKmQw0JbF2Dr8dsMX/FRaFat+AoR+50n37+1fLEx8Szdi3s2KH2+/vD6rW2uHuXL9yKAnZOdkz7JAwAa8s0xn7s/FDnqVjdk2F9t2Gh0TK83xa+/qM1GotcJvgGrG2t+WhWO+atbM3At1oViZ+FEEIIIcSDKvJjuhMSEnBxcblnGa1Wi1arLaAaPbjMuhXlOpYk0Vdu8Mnbp/hpabAhyzLAyZPw2286Xnkl7122d645xpZ1sbz+QQDlPMtm26/X6Xm57yGOXGwFQIVy17kWq8aXjh2Thl3iPl58uxGp6SrD89Ptd/Lj4saka3UMGaJhwQILKrjF88O0k3R/vgUA3+j0LJ+/i3c/rsTFqCro9Ja880UbfJplUKWKuo/W/nmAvTsSeaKvOw3b+t8zcBFF04HjxsA1/KY3o1/dwt6T1QE1Bdf48Vo0GjD3x8bDfh71e6MZVWoewd7RhoBW/g/9eTbjr2Cm/piMnVMwevTyuVhMyd+1UkKrxdKwqDX7B5LcR8Ic5D4S5nD3fWTu+0mj1+uL7KDRy5cv07t3b0aPHk2/zHS9WSQlJREaGloINRNFwdUzMaxbnM6KzQ1ISrOjrs8FfCrdZNnWZtxKKmsoZ2GhN2RIrlktlr8WnEdjoUGv0xN3PYGyHk45Bq3Ht17l5fe6kqG1pkPgbr74yTpbmS3/C+Odqb0AcCyTwB8/7WDGnCA2bcmeSa1r0+188o01VjbGZ11Xrtji4ZGGrW32/4ZpyWnM/zqJOf88BoCDg5b5c4+z/q8I5izraihX3yeUfk+eptOzFbGyLvLP0cQdb79dg61by+a4r26NMOb/FY1FkeqLJIQobSySkwlq3RqAQ9u2obMz37SEQghRHNSuXRt7e/tHPk+BBN1ffvklc+bMuWeZ1atXU6NGDcN6VFQUAwcOpGnTpkyePDnHYzKDbl9fX7P8MPKLVqvl2LFj1K9fn5TbKaz56xgRV9K4dg3i4u98q7awpULdprzzjh4Hh5zPo9PqDNmLS7OICPg/e/cdV1X9P3D8ddkgqICAKNMBqIi499Y0G6aVNlxpWWppZqmVVtqwYWZlw4b+srKsb5qZoxy5cYOIAzdLBGTKkHHv/f1x4B6uDEHZvp+Phw/P+JxzPxcO9573+Xw+789TY66zvYSApYCt1XVmTTjCxNndeHxUJvuPOALwz69HGDAykOdH72P5ur4M6HSW//3bnPqFesyeOniB3oNdSM1Ue1ls+vkw94zuYFiPi0igbTsLktKVeZTXfLGfh5/tysWwSPw7NSEnz9JQ9pH++/nx7w6YWxYN3Euj18Po0SasXas8FDAzzTV0U7/Zu9P/Y86SsmeTFtWrWTMTIiOL76GwfuUB7hvbuVJet/DnkWnh7GVClINcR3eJjAxM83sbalNTKfEG5TbJdSQqglxHoiLcfB1lZmZy9uzZCgu6q6RZbOLEiYwYMaLUMu7u7obluLg4xo0bR/v27Xn77bdveX5TU9Na8UcWezGeXr1MiE7sWXyBP+DIEVi/HszMIPFKEvNeCONAiDOxSQ4kpDrS2uMiW7bZ0rSFa9VWvoY4cQKGDYPo6IaGbeamOTjYpRCXonTr1mh0TBi2j/c+96Wxd38AZkwIZv+RHgB88bmW8BNKwA2w44gP994LW7ZAw4Zw9VI8DzxkYxRwA7w6rz73jNJgaqY8+Jj5zEWS0pVzPj5oH6OmKr/Xlu28mTVuJ4tW9AOUsdor1nczauEuj//7PzhzRukeXxBwW5hl88JjQew90oiDZ5QkW39ucea1T2v+34GApCSIVIZI06OHHm3SScPvsVurMB4Y17XShwzUls9NUbPJdVTHFfrdmpqaGq1X7MvIdSTunFxHoiIUXEcVfS1VSdDt4OCAg4NDmcoWBNxt2rRh0aJFmNSR/pU5WTmMejKF6MTSsxBv2gQzZsBLkyMYdp+OszHGLZdhES25f8gZdh+2xc7BrjKrXOP8+y888ghcv66suzVO56XxRxgzzR8nd2diL8Zx8kgM3r6ONG/X2+jYEU93xu3NK0QnNmHD/s5sOmA8TuPgQejbR4dX/cNsO+JPZrYSwLdvfhqNBo6db8XxS778vCqDcRPrsf77A/y2Qwm4He0S+XSFr9H5FnzZk/r1d2JXX8OUN3rfUQ8FOzv480/o3FlPaqoGD+c4/vdTIp0H9wMgwPssJy77cORcK5Jik3Fwtb/t1xJVIyRYDyhBdceOGp570or+QxLIuGHN0k+QMfpCCCGEEHVIjRoAGhcXx9ixY2nSpAlz5swhKSnJsM/Jyakaa3Zn9Do9yxamcyhcSZTl5RzFO3MjcXW3wb6RNSamGs5dsuGJp93JzYUvv4T/+74RmdlKNy5Tkzxc7ePJuGFNcoY9IRf9eGzYYdbv6YSZed2/Od/3dyjvvp3N5kNqd9vOneGvv2xp3LifYZtrMxdcmxUdSw1KFuSpY87y2qdN0OtNyNMqQfC4+4+y5VBH4uMh9IQJoaiT/7o3iuHvf+wJP5HMgPyOGq+/WY+t/6Sy/q/WhnKfvX0GJ/eeRV5v7if9qCgtW8Lx4zp+/DGS557zoFEj9X3e0+sKJy77oNebsP3PMzw6pXuFva6oHCH/7gL6ARDYMpLWXVtw/uJ1dFotDZyqd3owIYQQQghRsWpU0L1v3z4iIiKIiIigTx/jFt7w8PBqqtWd+3ZREKu3DgbA2iKTdb9nEtjHOEhr1xsygfHjlfWCgLuV+wU2bbbEq40bpw9doMcADSkZDdl0sDMvzoRly6rynVStzLRMHh92gr/2dTXaPnw4rF4N5R1e8czLbVn4ZRY3cpVEMPd0OsKKte05dwEGDlTGigO4NIxnWM9w3vjAmybNG9OkeWPuvRc2b4boaPjpN7Xb+bCuh3n8hR539D7Lys0N7r03CXt7D6Ptg4fV5+OflOV/D7Ti0SlVUh1xB0JC1Y/eQH9lHru7reeKEEIIIcTdokb13R45ciTh4eHF/qvNFn2rtjx+92EwgX18iy03bhy8OT/PsN4/MJj9Rxrh1cYNgFZdmrNu1WXMzXUAfPEF7Koj0zefOwdffaknIjweULrjPzz4pFHA7eEUzVefpvLHH+UPuAEauTky48mDAPg0vcTq9c0wNTfFzw+OHYPvv4cjBzK5cq0RK/7ubfi5A3zwgfFQNlubLMYM2cuP61pUe1fg3sM7YJmfs+3fnQ2pufMRiAIhZ5ThC2amubTp2qyaayOEEEIIISpTjWrprqv69Tdh9Wo9854/wRMzSkiilu/Nt0xp4xrE9dQ8xszoioW1hfG5Rgby2WcwJb81c+FC2L69smpeNeLjoWtXSE7WYGVuxytP7eT0WUu2HFIeVtS3TmXpm6GMebFbubN/3+y97/owatxp/Dp6YlNfjdxdXGDiRIDio/m2bWHrVti/H7p3h169rLGw6HVHdakoNjbQuzds26Yk5zp7FnyLf64jaoAbGTc4HeUNQGuPi1jayC9LCCGEEKIuk6C7CqxcqefZZ0Po1q3dLctqTDS3HJP79NOwZInSOrxjB+zdo6dX79o7tnv+fEhOVpZv5Frz9jf9DPusLTLZuCaCXg/0Lv7gcjIxNaFD/1a3dWz//sq/muiee5SgG5SHAxJ011wnD14iT6tcg4F+CYD8soQQQggh6rIa1b28LrOyqrg+v2Zm8Prr6vrCl47f0flyc+HJJ8HbGw4cuMPKleDC8QjWLNvPnAk7GTUgiL9WKN28Q0KgYAp3K8tczExzDceYm+awbuUpej0QUDmVqkMGD1aX/10fa7QvIkJJPNevH6SnV229yiolPpUpD+/ms9fryHiJUoQcvGZYDgzIK6WkEEIIIYSoC6Slu5Z64nE9C+dGcfGqB1uPBBK06QTdh7W9rXO9MyOI1auV1vXXXlNazyuCXg9bfz3KO++ZsSesHeBp2Pf7f/DSjp0cje6DXq88+1n4tjkPDrjIay/Fc/KCMx+9fY0hT3SpmMrUcQEB4NwwkfgUR/7ba0tOVo5haMK0acr87wCrVsHUqdVY0RK8/PRxvt+gJE/sd+9ZAnr5VHONKk9IiM6wHNi5QSklhRBCCCFEXSAt3bWUuYWG16ZHGNZffkVP+NGLtzwu63oWVy/Fo9cpLe+H/j3Ju8vVqbh279aTmHjn9TtyRBmnPeSJjvkBd1FLfu7Hrl3KJdi8OUyfDr4dm/HHrm6ciW7GA09JwF1WJiYwuMsZANJv2BG05RQAWzZp2bhRLfffjpqXZe3qpXh+3KwmzAvacaUaa1P5Qk41NCwH9vKuvooIIYQQQogqIUF3LTZuZlc8naIB2H8qAL9OzejlH8rmnw4blQsOhqeeuEZbr3PYNTTHtZkznf1O8/tXQYydaINWp3Z40Go1RkFaSY7uOM33i/bw7vSdzHhsF0tf3UVcRAJ6PXz9NfTsCYcLVcPP7QJvTdnJhv87xNJXd2FummN0vo8XXDJk4Ba3557BakA9+YUGXD4ZzcznIozK7NyaZHjgcqeKO0/0uVh2rAsnI6Ps5/li0Sly8tRffnBI3f1Y0ml1HL+gBNqeTtHYuzSs3goJIYQQQohKJ93LazFzKwuWL73KQxMcDXNP7zsZwLCx8GHITl7+sC//+0PD2LGQnd0IaGQ49ui51owq1M24iWM8VxKVaYzW/ZrIuHGOJb7uXysOMnxS1yLbX/kol7YtogkOV6faatsW3ngxnBFjW2Bq3tywvVvfMB4dY0/Utabc1+0wDz7e6XZ/DCLfiIntePOjKC7Hu3M2xhv/julkZNsalbmW5sjJA+fw79GyTOeMj4dff8UQRGdEh3I8+AbHwt3JuGHD2PtDWPR1R2ztbfn5k31MfjWQzGxXLCyUMeSPPQYTJoCmhDx/GRnw5W/G11LwKYdyvvPa4/Dea1zPUv7OAn1jALfSDxBCCCGEELWeBN213JAnOhHZ+xo/LjvI97+6cSqyBQCzP+7H5p3h/HdUzYxsZppLG4+L6PQaTlxWx8xamWexdVMG/YemEp/cgH+2W5OZlmk0pVYBnVbHawuKD4rytOZGAfeLL8KHH4K5edHszF2H+HMy/DqHdwTTfYh/tc91XRfYOdixc2cqAwdEcOGqp1HA/figffyyTZmu7r9NV8oUdOv18NBDEBRUeKtxUrtlv/Vl0+4IerUPYdVmdQq1nBz491/lX0wMzJtX/Gv88AMkpVobbQu92Jy8nDzMLGr3x9P7M3ey+s8mvDM/mQcnKg8W3nrf2bD/3iHa6qqaEEIIIYSoQnW3H+ddxMm9ES990I+wS81ZMHWnYXvhgHvCBEhL1RBy0ZfjF1qy8YfD9PY/jqNdIisWB9O6izcP9g4FICvHhq2/nyj2tdZ9e5CTkUrA1qHFadZ9e5Cda0OY+9ROXO2vAlDP+gZr1sAnn4B5KdNq2znYMeCR9ljbWZdcSJSLZys3du2xwM/tgmHb+GF7eeV1tefCzj1l68e/ZW3sTQG3qoFNKlbmWQBcvOppFHAP6B6Lu7va9XzRIh2xl64VOYdWq1wjBdp4RwLKtHHhRy+XqY41QULUNT6ft4vIMzGGbWH7z/Hq0n6cuOzDY1PacjLoPHv3wpYtyn5PT5jwSo9qqrEQQgghhKhKEnTXIRoTDW980Y8fPtprNGZ6wQJYsQKs65kZyg0b15ndJ9pxLc2Rx6crN/8jHrYyHLNubS4302n1LPxQDd7efSuDh57uSt8RgSxa0Y/Iq43Y9/cJzp9MY9SoynqX4laatnBl1776jOh9gPu7H2Lx8la06+2DfT1lMvSdx3zQaXWlnkOv07NgnppR792381i/Hjb+mc7FE5EkX69P6ME4erQONZSxNL/Bd+/tYft+VyIiNDw/VbkGMzNNeOulU0bnj70Yx4RRUZw/r6wPHAhPPqgmAgw+EHdHP4OqkpmWSZ8eqUx/ty+9esP1pOsAfLBQrX9Wjg2jHoO5c9SW7TfeQHIYCCGEEELcJSToroPGvdyLnVszmTAB/vxTucEvaUxtYQMeDsDWSgkaNuxuTV6O8RzCG/7WEHpJ6Zbe2eckQx7vaLTfzMKMHve1pbG3M6J6OXs4sXZ3Nzbs70IjN0dMTE3o0/4sAEnpDpzYf86ovF6n52TQeUPQuHXNMQ6e8QfA3/Mcc1814cEHYdhwW7z9PdCYaGjZ3ovdIW344o1dTLhvD0H/XmbSq70B5Xp7Y24adtZpAHy3vienD10gPTmd92fuxKeNDT+tdTe8/uzZ0L6Xl2E9OLJ2ZK6fO/kwZ6KVXAVR15qy8MWjXAqL4pet3YzKnYpswb79pgD4+MC4cVVeVSGEEEIIUU0k6K6jevRvyMqVMHx42Y+xqmfJsB5Kt/KkdAc+eW0v16KvodfpuXBex4IFatk3PvSRcdi1TP/eNwzLOzdfNSwH775I33bH8e/RAg8PLZ+9vosF76jjAubPvoaJafEfFabmpkxd0JeVf/emfT8/o31O7o2Y+8wxAHR6U0aN0uHlmc2rS/uRfsMOgIZ2GSxfDvfcA+17e6l1Ol7KuIQaYuuvR/l8TV+jbZ/83Ispz2YbZgQYO3QvNpbGqdwXvJmHWe0eri6EEEIIIcpBgm5h5KFCQfrsj/vh7OFAA9vrtGhpQnCwsr1DB7jvwZofFAlj/Ye5Gpb/22PFmTPwzDPQsZ83e8ICAUjJaMiM9/qy/5SSMK21x3keebZopvqyevHtLjRxiAUgLKIlideV4QkmGi3PjdzN2ZNZTJ6slHVxAdf8KgYHK4ncaqrkuBSemtbEsN6xpdJ9Xqsz45/9SjLDetY5LF3Rmi/fDjaUa+t1llGj5WNXCCGEEOJuInd/wsjwCYG08VC7Huv1JlzPqm9U5u23y9ZdXdQs/t1b4GinjNPesK8TrVrBd9+BXq/8MgsS4RU2b1Z8ia3cZWFT34aFL583rJtotIwZspcTQZf46o8+OLk3MirfoYPyf0oKXL582y9b6WZODCMmSXlCMLD9MfYc9aZFkyijMs9OscDB1YHxr/Ri8Ss7GdL5CKt/1tzRz1MIIYQQQtQ+0slRGLGpb0PwWS/2bwph0/oUtux2JS3DhoC2ebTv5c3AgdC7d3XXUtwOE1MT+rY/x9rdjuj0pobt9evDG/OyeeF5B47vPcX06VoOnGlLF98wRk25/VbuAhPn9CL7xi5iY/VMmOZN83a9SizbPuAGGzcqCf2Cd53D27ts84lXpV07cvhhk/IeGtiksvKXxljbWfPFCjeGDFXKmJvDzJnqMbM+7MesaqirEEIIIYSofhJ0iyLMLc3pOyKQviPgg+qujKhQox7VsXa3suzvD5Mmwdix4OiopNLuPLg1+0/qORdyCa9WPpiam5ZytrLRmGiYuqDvrQsC7b1CACUJWfD+GEZOqFlBd24uTH3BwrD+wWtncPdVHkzcM0TDrFnw6adKbxA3t5LOIoQQQggh7iYSdAtxFxk1tTsezU5gbWdLu17exQ4T0Jho8OngXfWVA9r3aGpYDj5hUy11uJlOq0Oj0aAx0bB0KZzKn/2sSxd4eq5xT4DFi+Gjj2T4hRBCCCGEUEnQLcRdRGOiofuwttVdjRJ5tXajYb0UUjIaEnzWvcRyep2eiNMxuPu4Vkhr/M3Oh0Tw1y+X2LS1PrtD/alnlUn7lpc4GN4WMEOjgS+/BNNiXloCbiGEEEIIUZhk9BFC1BgaEw2BLS4BcCXJlXPBl4uUyc3OZUTfQ3j7uzHuvgMV+vpXLlxl/LC9tGzvyawP+7E9uAO5WgtSMhryX0h7MrOU55RTp0LHjrc4mRBCCCGEEEjQLYSoYQb3TTUsz3/5itE+vU7P848FsX6v0q179daebP/92B2/pjZXywcv7cSnjS2rNhsnevNwijZMewbg6ZrMO+/c8UsKIYQQQoi7hATdQoga5fk3OuBUPwGANTt6cHjrKcO+j17ZzTd/9jEqP/s1a3RaXann1OZqybqeVew+vR6eezKcuZ/0IyPbFoCG9VJ4d/pOTh28wOWrTYlJdOXqpQT2/BXKsaPQsOEdvEEhhBBCCHFXkaBbCFGj1HeszxvT1UD7lZdzyMvV8+mnMGeJmgW9ccM4AI6db8WaL0ruZh59LpaAFpeo18CSbq3CePv5/zi64zQ6rQ69Hl5+Gb77vTWgzCM+9ZFdnDuj5bVP+9GqS3M0JsogbRcvJ3o9EICDq30lvGshhBBCCFFXSdAthKhxJr/WnRaulwHYFRqIT4ssXnxR3b9wehCrvoo2rL/2rjvZmdlFzhMfmcCg/lmcimyBXm/CwTP+vPFFfzoNbEWTRte4p18KS5YoZTUaPau/ucwXv/elkZtjJb47IYQQQghxN5GgWwhR41hYW/DefHUc9aVIdfqw6dNh3tLuDH6sI/d0OgLA5Xh3nn3yPOHh6jlS4lMZ0j+R8JhmAFhbZBq9RlyKM9t2NzSsf/ONhtFPN6+EdyOEEEIIIe5mEnQLIWqkR57tRlf/y4b1Dh1g71749FN1Wq4PPrZDo1HGc//wZxv8/CAwEFq1AndPU0Iu+gHQ1CGWU8eSiDgdw1cLdvNAj0PYWKljvD/+GJ5+uqremRBCCCGEuJvUuHm6n3vuOc6cOUNiYiINGjSge/fuvPzyy7i4uFR31YQQVUhjouGv7V4sWQJt28Ljj4PJTY8JA/v48tHLO3n1k57k5pkDcPx4wV4lKZpT/QS2bcnCq43S4v3cG0157g24kaVnfxDY2kKXLlX0poQQQgghxF2nxrV0d+vWjaVLl7JlyxY+++wzoqKimDFjRnVXSwhRDZyd4f334ckniwbcBWZ92I+YGFM+/hjatFG22dhAc/dEHux5kP+2pOLXuVmR46ysNQwYIAG3EEIIIYSoXDWupXvChAmG5aZNm/LMM88wbdo0cnNzMTc3L/YYrVaLVqutohqWX0HdanIdRc0n11HJHBxhxgwtM2ZAdjZYWgI0BDoB8jMrTK4jURHkOrpLaLWYGha1UMG/b7mOREWQ60hUhJuvo4q+njR6vV5foWesQCkpKbz11lvExcXxyy+/FNmfmZnJ6dOnq6FmQgghhBB1m0lWFu179wYgeM8edNbW1VwjIYSoWq1atcLGxubWBW+hxrV0A3z00Uf8/PPPZGVlERgYyNdff11qeR8fnwr5YVQWrVbLiRMnaNu2Laamprc+QIhiyHUkKoJcR6IiyHV0l8jIMCwGBARAvXoVenq5jkRFkOtIVISbr6PMzEzOnj1bYeevkqB78eLFfPvtt6WW2bRpE82bK9P1TJo0iUceeYQrV66wbNky5syZw/Lly9EUpCy+iampaa34I6st9RQ1m1xHoiLIdSQqglxHdVyh362pqanResW+jFxH4s7JdSQqQsF1VNHXUpUE3RMnTmTEiBGllnF3dzcsOzg44ODggLe3N82bN6dv376EhITQvn17o2N0OmWqoKysLGqygjEBmZmZ8mEgbptcR6IiyHUkKoJcR3eJGzfA11ddLqHx43bJdSQqglxHoiLcfB0VxJcF8eadqtFjugGuXLlC//79WbVqFV27djXal5iYyOXLl6unYkIIIYQQQggh6iwvLy8cHR3v+Dw1Kug+fvw4J06coGPHjtSvX5/IyEg+/fRTEhMT2bhxIxYWFkbl8/LySE1NxdLSEpOS5hMSQgghhBBCCCHKSKfTkZ2dTYMGDTAzu/PO4TUq6A4PD+fdd98lPDyczMxMnJyc6N27N1OnTsXFxaW6qyeEEEIIIYQQQpRLjQq6hRBCCCGEEEKIukT6ZAshhBBCCCGEEJVEgm4hhBBCCCGEEKKSSNAthBBCCCGEEEJUEgm6q8DPP//MgAEDaNu2LY8++iihoaHVXSVRg33++ef4+voa/Rs6dKhhf3Z2NgsWLKBr1660b9+eF154gWvXrlVjjUVNcPjwYZ577jl69eqFr68v27ZtM9qv1+v59NNP6dWrFwEBAUyYMKHIlIspKSnMmjWLDh060KlTJ1577TUyMjKq8F2I6nar62ju3LlFPp8mTZpkVEauo7vb8uXLefjhh2nfvj3du3dn6tSpXLx40ahMWb7Hrly5wuTJk2nXrh3du3fngw8+IC8vryrfiqhGZbmOxo4dW+Tz6I033jAqI9fR3W316tU88MADdOjQgQ4dOjB69Gh27dpl2F+Vn0USdFeyTZs2sWjRIqZNm8a6devw8/Nj0qRJJCYmVnfVRA3WsmVL9u7da/i3evVqw7733nuP//77j6VLl/Ljjz8SHx/P888/X421FTVBZmYmvr6+vPnmm8Xu//bbb/nxxx956623+O2337C2tmbSpElkZ2cbyrz88sucP3+elStX8vXXX3PkyJEiNzCibrvVdQTQu3dvo8+nJUuWGO2X6+judujQIZ588kl+++03Vq5cSV5eHpMmTSIzM9NQ5lbfY1qtlmeffZbc3Fx+/fVX3n//fdatW8dnn31WHW9JVIOyXEcAo0aNMvo8mj17tmGfXEeicePGvPzyy6xdu5Y//viDbt26MW3aNM6dOwdU8WeRXlSqRx55RL9gwQLDular1ffq1Uu/fPnyaqyVqMk+++wz/YMPPljsvrS0NH2bNm30mzdvNmw7f/683sfHRx8cHFxFNRQ1nY+Pj37r1q2GdZ1Op+/Zs6f+u+++M2xLS0vT+/v76//++2+9Xq9eR6GhoYYyu3bt0vv6+uqvXr1adZUXNcbN15Fer9fPmTNHP2XKlBKPketI3CwxMVHv4+OjP3TokF6vL9v32M6dO/V+fn76hIQEQ5nVq1frO3TooM/Ozq7S+oua4ebrSK/X68eMGaN/5513SjxGriNRnM6dO+t/++23Kv8skpbuSpSTk8PJkyfp0aOHYZuJiQk9evQgODi4GmsmarqIiAh69erFwIEDmTVrFleuXAEgLCyM3Nxco2uqefPmNGnShJCQkGqqrajpoqOjSUhIMLpu7OzsaNeuneGzKDg4mPr169O2bVtDmR49emBiYiJDYoSRQ4cO0b17d4YMGcKbb75JcnKyYZ9cR+Jm169fB6BBgwZA2b7HQkJC8PHxoVGjRoYyvXr1Ij09nfPnz1dd5UWNcfN1VGDDhg107dqV+++/n48//pisrCzDPrmORGFarZaNGzeSmZlJ+/btq/yzyKxC3oUoVnJyMlqtFkdHR6Ptjo6ORcalCFEgICCARYsW4e3tTUJCAl988QVPPvkkGzZs4Nq1a5ibm1O/fn2jYxwdHUlISKimGouaruDaKO6zqGDs0rVr13BwcDDab2ZmRoMGDeTaEga9e/dm8ODBuLm5ERUVxZIlS3jmmWdYs2YNpqamch0JIzqdjvfee48OHTrg4+MDUKbvsWvXrhnd5AKGdbmO7j7FXUcA999/P02aNMHZ2Znw8HAWL17MpUuXWLZsGSDXkVCEh4fz2GOPkZ2djY2NDV988QUtWrTg9OnTVfpZJEG3EDVM3759Dct+fn60a9eO/v37s3nzZqysrKqxZkKIu919991nWC5IXDRo0CBD67cQhS1YsIBz584Z5SURorxKuo5Gjx5tWPb19cXJyYkJEyYQGRmJh4dHVVdT1FDe3t78+eefXL9+nX/++Yc5c+bw008/VXk9pHt5JbK3t8fU1LRI0rTExMQiT02EKEn9+vXx8vIiMjKSRo0akZubS1pamlGZxMREnJycqqmGoqYruDZK+yxq1KgRSUlJRvvz8vJITU2Va0uUyN3dHXt7eyIiIgC5joRq4cKF7Ny5kx9++IHGjRsbtpfle6xRo0ZFMggXrMt1dHcp6ToqTrt27QCMPo/kOhIWFhZ4enri7+/PrFmz8PPzY9WqVVX+WSRBdyWysLCgTZs2BAUFGbbpdDqCgoJo3759NdZM1CYZGRlERUXh5OSEv78/5ubmRtfUxYsXuXLlCoGBgdVXSVGjubm54eTkZHTdpKenc/z4ccNnUfv27UlLSyMsLMxQ5sCBA+h0OgICAqq8zqJ2uHr1KikpKYabD7mOhF6vZ+HChWzdupUffvgBd3d3o/1l+R4LDAzk7NmzRg8K9+/fj62tLS1atKiS9yGq162uo+KcPn0aUIMhuY5EcXQ6HTk5OVX+WSTdyyvZU089xZw5c/D39ycgIIAffviBrKwsRo4cWd1VEzXUBx98QP/+/WnSpAnx8fF8/vnnmJiYcP/992NnZ8fDDz/M+++/T4MGDbC1teWdd96hffv2EnTf5TIyMoiMjDSsR0dHc/r0aRo0aECTJk0YN24cX331FZ6enri5ufHpp5/i7OzMoEGDACV5SO/evZk/fz4LFiwgNzeXt99+m/vuuw8XF5fqeluiipV2HTVo0IBly5YxZMgQGjVqRFRUFB999BGenp707t0bkOtIKF2B//77b7788kvq1atnGPdoZ2eHlZVVmb7HevXqRYsWLZg9ezavvPIKCQkJLF26lCeffBILC4tqfHeiqtzqOoqMjGTDhg307duXhg0bEh4ezqJFi+jcuTN+fn6AXEcCPv74Y/r06YOrqysZGRn8/fffHDp0iO+//77KP4s0er1eXwnvURTy008/8f3335OQkECrVq2YN2+eoQuMEDebOXMmhw8fJiUlBQcHBzp27MjMmTMN45Oys7N5//332bhxIzk5OfTq1Ys333xTukrd5Q4ePMi4ceOKbB8xYgTvv/8+er2ezz77jN9++420tDQ6duzIm2++ibe3t6FsSkoKb7/9Njt27MDExIR77rmHefPmUa9evap8K6IalXYdvfXWW0ybNo1Tp05x/fp1nJ2d6dmzJzNmzDAaMiXX0d3N19e32O2LFi0yNDiU5XssJiaGt956i0OHDmFtbc2IESOYNWsWZmbSXnQ3uNV1FBsbyyuvvMK5c+fIzMzE1dWVQYMGMXXqVGxtbQ3l5Tq6u7322mscOHCA+Ph47Ozs8PX15ZlnnqFnz55A1X4WSdAthBBCCCGEEEJUEhnTLYQQQgghhBBCVBIJuoUQQgghhBBCiEoiQbcQQgghhBBCCFFJJOgWQgghhBBCCCEqiQTdQgghhBBCCCFEJZGgWwghhBBCCCGEqCQSdAshhBBCCCGEEJVEgm4hhBBCCCGEEKKSSNAthBBCCCGEEEJUEgm6hRBCCCGEEEKISiJBtxBCCCGEEEIIUUkk6BZCCCGEEEIIISqJBN1CCCGEEEIIIUQlkaBbCCGEEEIIIYSoJBJ0CyGEEEIIIYQQlUSCbiGEEEIIIYQQopJI0C2EEEIIIYQQQlQSCbqFEEKIu8DBgwfx9fXl4MGD1V0VIYQQ4q5iVt0VEEIIIarb2rVrefXVV0vcv2bNGgIDA6uuQrVAbGwsf/zxBzt37iQiIgITExN8fHyYMmUKPXr0KFI+LCyMzz//nLCwMDIzM3Fzc+PRRx/lySefxNTUFIDk5GT++OMP/vvvPy5cuEBeXh7NmjVjwoQJDBs2rMg5c3Jy+PTTT1m/fj1paWn4+vry4osv0rNnz0p//0IIIURZSdAthBBC5Js+fTpubm5Ftnt4eFRDbWq27du38+233zJo0CBGjBhBXl4e69ev56mnnuK9997j4YcfNpQNCwvjsccew8vLi2eeeQYrKyt2797Nu+++S2RkJPPmzQMgJCSEpUuX0qdPH6ZMmYKZmRn//PMPM2fO5Pz580yfPt2oDnPnzuWff/5h3LhxeHl5sW7dOiZPnswPP/xAp06dqvTnIYQQQpREo9fr9dVdCSGEEKI6FbR0/+9//6Nt27bVXZ1KcfDgQcaNG8eqVavo2rXrHZ/v3LlzODo64uDgYNiWk5PD8OHDyczMZNeuXYbt8+fPZ926dezdu5eGDRsato8ZM4bTp09z9OhRAKKiojAxMaFp06aGMnq9ngkTJnDs2DEOHjyIjY0NAKGhoTz66KPMnj2bSZMmAZCdnc3999+Po6Mjv/766x2/RyGEEKIiyJhuIYQQoow+++wz/Pz8CAoKMto+f/58/P39OXPmDKB2ex45ciQdO3YkMDCQJ554ggMHDhgdFx0dja+vL99//z0///wzAwcOpF27dkycOJHY2Fj0ej1ffPEFffr0ISAggClTppCSkmJ0jgEDBvDss8+yd+9ehg8fTtu2bRk2bBj//vtvmd7T8ePHmTRpEh07dqRdu3aMGTPGEASXpmXLlkYBN4CFhQV9+/bl6tWrpKenG7anp6djaWlJ/fr1jco7OTlhZWVlWHd3dzcKuAE0Gg2DBg0iJyeHqKgow/YtW7ZgamrK6NGjDdssLS155JFHCA4OJjY2tkzvXwghhKhsEnQLIYQQ+dLT00lKSjL6l5ycbNg/ZcoUWrVqxeuvv24IKvfs2cNvv/3G1KlT8fPzM5zn999/p0uXLrz88ss8//zzJCUl8fTTT3P69Okir7thwwZWr17N2LFjeeqppzh06BAvvvgiS5cuZc+ePTzzzDOMGjWK//77jw8++KDI8ZcvX2bmzJn06dOHWbNmYWpqyowZM9i3b1+p7zcoKIgnn3ySjIwMnn/+eWbOnElaWhrjx48nNDT0tn6GCQkJWFtbY21tbdjWpUsX0tPTeeONN7hw4QIxMTH88ssvbN26lcmTJ9/ynNeuXQPA3t7esO306dN4eXlha2trVDYgIMCwXwghhKgJZEy3EEIIkW/ChAlFtllYWHDixAkAzM3N+eCDDxg5ciTvv/8+s2fP5vXXX8ff398oeGzQoAE7duzAwsLCsG3UqFHce++9/Pjjj7z33ntGrxEXF8e///6LnZ0dADqdjuXLl3Pjxg3++OMPzMyUr+vk5GQ2bNjAggULjM59+fJlPv/8c+655x4AHnnkEYYOHcrixYtLTCqm1+t566236Nq1K9999x0ajQaAxx57jPvuu4+lS5eyYsWKcv38IiIi2Lp1K0OHDjUkRyt47+fPn2fNmjX8/vvvAJiamjJ//nwef/zxUs+ZkpLC77//TqdOnXB2djZsT0hIwMnJqUj5gm3x8fHlqrsQQghRWSToFkIIIfK98cYbeHt7G20zMTHuFObj48P06dP5+OOPCQ8PJzk5mRUrVhgCY1ACyoKgU6fTkZaWhk6nw9/fn1OnThV53aFDhxoCblBbax988EGj8wYEBPD3338TFxeHu7u7YbuzszODBw82rNva2vLQQw/x7bfflhicnj59msuXLzNlyhSj1nyA7t27s379enQ6XZH3X5KsrCxmzJiBlZUVs2bNMtpnamqKu7s7vXr1YujQoVhYWLBx40beeecdnJycGDRoULHn1Ol0vPzyy6SlpTF//nyjfTdu3DB68FDA0tLSsF8IIYSoCSToFkIIIfIFBASUKZHapEmT2LhxI6Ghobz00ku0aNGiSJl169axYsUKLl26RG5urmF7cdnRXV1djdYLAvCStqemphoF3Z6enoaW6gJeXl4AxMTEFBt0X758GYA5c+aU9Da5fv06DRo0KHF/Aa1Wa8gw/u233+Li4mK0/5tvvmHVqlX8888/1KtXD4Bhw4YxduxYFixYQL9+/YweLhR4++232bNnDx988IGh634BKysrcnJyihyTnZ1t2C+EEELUBBJ0CyGEEOUUFRVFREQEAGfPni2yf/369cydO5dBgwYxadIkHB0dMTU1Zfny5UbJwAoU7opdWEmtzBUx8UjBOWbPnk2rVq2KLVOQKfxW5s2bx86dO1m8eDHdu3cvsn/16tV07drVEHAXGDhwIIsWLSImJgZPT0+jfcuWLWP16tXMmjWLhx56qMg5nZyciIuLK7I9ISEBwKgruhBCCFGdJOgWQgghykGn0zF37lxsbW0ZP348X3/9NUOGDDGMpwb4559/cHd3Z9myZUYt0J999lml1CkiIgK9Xm/0WgUt2TdnAy9Q0FJua2tLjx49bvu1P/jgA9auXctrr73G/fffX2yZa9euodPpimwv6AGQl5dntP3nn3/m888/Z/z48SUmWvPz8+PgwYOkp6cbJVM7fvw4QIkPEoQQQoiqJtnLhRBCiHJYuXIlwcHBLFy4kBkzZtC+fXveeustkpKSDGUKWq4Lt0gfP36ckJCQSqlTfHw8W7duNaynp6fz559/0qpVq2K7lgP4+/vj4eHBihUryMjIKLK/8PspyXfffceKFSt47rnnGD9+fInlvL292b9/v9HYca1Wy+bNm6lXrx4eHh6G7Zs2beKdd97hgQce4NVXXy3xnEOHDkWr1bJmzRrDtpycHNauXUu7du2KdM0XQgghqou0dAshhBD5du/ezcWLF4ts79ChA+7u7ly4cMEw//aAAQMAeP/993nooYdYsGABn376KQD9+vXj33//Zdq0afTr14/o6Gh+/fVXWrRoQWZmZoXX28vLi9dff50TJ07g6OjIH3/8QWJiIosWLSrxGBMTE9555x2eeeYZ7r//fkaOHImLiwtxcXEcPHgQW1tbvv766xKP37p1Kx999BFeXl40a9aM9evXG+3v2bMnjRo1AuCZZ57hlVdeYdSoUYwaNQorKys2btzIyZMnefHFFzE3NwcgNDSU2bNn07BhQ7p3785ff/1ldM6C3wNAu3btGDp0KEuWLCExMRFPT0/WrVtHTEwM77777m39HIUQQojKIEG3EEIIka+k7t+LFi2iSZMmzJkzB3t7e1577TXDPi8vL1566SXeffddNm3axLBhwxg5ciTXrl1jzZo17N27lxYtWvDRRx+xZcsWDh06VOH19vLyYv78+Xz44YdcunQJNzc3PvnkE3r37l3qcV27dmXNmjV8+eWX/PTTT2RmZuLk5ERAQACjR48u9dgzZ84ASjf22bNnF9m/atUqQ9D94IMPYm9vzzfffMP3339Peno63t7eLFiwgMcee8xwzPnz58nNzSUpKcnoZ1xg0aJFRgnkPvzwQ5YuXcpff/1Famoqvr6+fP3113Tu3LnUugshhBBVSaOviGwsQgghhKgWAwYMoGXLlixfvry6qyKEEEKIYsiYbiGEEEIIIYQQopJI0C2EEEIIIYQQQlQSCbqFEEIIIYQQQohKImO6hRBCCCGEEEKISiIt3UIIIYQQQgghRCWp1VOG5eXlkZqaiqWlJSYm8vxACCGEEEIIIcSd0el0ZGdn06BBA8zM7jxkrtVBd2pqKpcvX67uagghhBBCCCGEqGO8vLxwdHS84/PU6qDb0tISUH4Y1tbW1Vybkmm1Ws6ePYuPjw+mpqbVXR1RS8l1JCqCXEeiIsh1dJfIyoKePZXlffuggu+15DoSFUGuI1ERbr6OsrKyuHz5siHevFO1Ougu6FJubW2NjY1NNdemZFqtFgAbGxv5MBC3Ta4jURHkOhIVQa6ju4ReD+HhyrKVFVTwvZZcR6IiyHUkKkJJ11FFDWGWgdBCCCGEEEIIIUQlkaBbCCGEEEIIIYSoJBJ0izovKTaZRS/uZNtvx6q7KkIIIYQQQoi7jATdos5795XjvPZpPwaP7sCiBWno9UXLfL9oD75ul/i/D/dWef2EEEIIIYQQdZcE3aLOO37K1rD82lv1mT4d8nMlGMz7sAVnY7yZ/mYAmWmZVVxDIYQQQgghRF0lQbeo8+KT6xutL1sG06er61nXs7ia4grA9Rv1+XNlcJFz6PUwaRL4+sKhQ5VaXSGEEEIIIUQdIkG3qPPiku0BsLK4QcEMAF9/DWlpynLMhXij8j/8VHQ+vr17YcUKOHtWCdqFEEIIIYQQoiwk6BZ1mjZXy7U0BwDael3giceVfuU6HUScSwEg6kKy0THbjrYn5nys0bZ169TlyAhd5VVYCCGEEEIIUadI0C3qtGsxSej0SvO2s0MGXjZ7DPsiws4BEB2RbnSMTm/KTyvTDOt6nZ61/8s2rF85H1GZVRZCCCGEEELUIRJ0izotPkZtxXZplI2nl6lhPfKikjAtKr5RkeN+WOdryHIesjuciCi1y3lMojN6XTEp0IUQQgghhBDiJhJ0izotLkZtxXZx1uLRrJ5hPSJCCZyj0/wM2xyUnuicPg1HjyrL634x7mqemV2PtMTUSqqxEEIIIYQQoi6RoFvUaXExWYZlFxfwbGlvWI+ItgAgOlot/+KL6vJXXyn/r93iVuS8MRevVWg9hRBCCCGEqAvmzp3L1KlTDetjx47l3XffrfJ6HDx4EF9fX9LS0m5duJJJ0C3qtLiruYZl58YWePi6GtYjr9gBEBWlrJuZwfPPg7W1sr5iBcwev5OTkS2LnPdKRPX/8QohhBBCCFFWc+fOxdfXF19fX/z9/Rk8eDDLli0jLy+vUl/3888/Z8aMGWUqW5MC5YokQbeo0+L1vQzLLj6tsapnhUtDZYqwiDhlLHdBS3eTJmBvD4sXq8d/tKqfYdnLOcqwHBORWXmVFkIIIYQQohL07t2bvXv38s8///DUU0+xbNkyvv/++yLlcnJyKuw1GzZsiK2tbYWdrzaSoFvUaXEJZoZlF/eGAHg4JwAQm+xCakIq1/J7irs7XAZg6lSlhftmU8deMCxfiancJ4JCiJpFr4d334WxYyE+vrprI4QQxcvJgZgY9Z9OZjkVN7GwsMDJyYmmTZvyxBNP0KNHD3bs2GHoEv7VV1/Rq1cvhg4dCkBsbCwzZsygU6dOdOnShSlTphBdaGymVqtl0aJFdOrUia5du/Lhhx+i1xsnHL65e3lOTg4fffQRffv2NbS4//7770RHRzNu3DgAOnfujK+vL3PnzgVAp9OxfPlyBgwYQEBAAA8++CBbtmwxep1du3YxZMgQAgICGDt2LDExMZXyM7wdZrcuIkTtFRenLru4KP97Nknj8FnQ6004uO0c0AkAN4crgBcAi77vQ0zsPn7+tycAbb3O0mdwI/hYOUfMFU3VvAEhRI2wdy/Mm6csu7vDe+9Vb32EEOJmFy5A166QmKhu8/NTEsPa2FRfve4ap5fAmSW3LufQAfr+Zbxt14OQdOzWx/q9BK1eur36lcDS0pKUlBQAgoKCsLW1ZeXKlQDk5uYyadIkAgMD+fnnnzEzM+PLL7/k6aef5q+//sLCwoIVK1awbt063nvvPZo3b86KFSvYunUr3bp1K/E1Z8+eTUhICPPmzcPPz4/o6GiSk5NxdXXl888/54UXXmDLli3Y2tpiZWUFwPLly/nrr79YsGABXl5eHD58mFdeeQUHBwe6dOlCbGwszz//PE8++SSjRo0iLCyMDz74oEJ/VndCgm5RpxUE3aamamZyTzd1zu19u64blt2bqt1oTExNWPFnZ3hoH/8e8OHdN1Jo4qUmVLtyVZ1CTAhR961fry4fPXAdsKu2ugghRF4e3LgBhXvsrlxpHHADnDkD27fDAw9Ubf3uSrlpkFWGltUb7sVsSyjbsbkVN85Zr9cTFBTE3r17GTNmDMnJydjY2PDOO+9gYaEkG16/fj06nY53330XjUZpcFq0aBGdO3fm0KFD9OrVix9++IHJkydzzz33ALBgwQL27t1b4uteunSJzZs3s3LlSnr06AGAu7v6M2nQoAEAjo6O1K9fH1BaxpcvX87KlStp37694ZijR4+yZs0aunTpwi+//IKHh4ehZbxZs2acPXuWb7/9tsJ+ZndCgm5Rp8VfUW6OnRxvYGKiPCnz9FRbqfcedjQsu7kZt15bWFvw0z8989ecyM3ORaPRodebEBMvN9xC3E3+/ltdDjuejgTdQojqkpAAnTop/+/YAQUNikFBapmOHdWpTyMiqr6OdyXz+mDd9NblrJyK31aWY83rl79eN9m5cyft27cnNzcXvV7P/fffzwsvvMDChQvx8fExBNwAZ86cITIykg4dOhidIzs7m8jISK5fv05CQgLt2rUz7DMzM8Pf379IF/MCp0+fxtTUlM6dO5e5zhEREWRlZTFx4kSj7bm5ubRq1QqACxcuEBAQYLQ/MDCwzK9R2SToFnWWXqcn/pryweFSLwLwBcCzfSdDmYOn1Tm63b1Kb702tzTH2TGLuGvWXLnuc9v1SopNpqFzA0xMJaWCELXBueBIwsM9DOtXklxJvpqMfWP7Uo4SQojK8dlnEBmpLC9frgTdWi0cOqRsa9oUPvoIBgxQ1iXoriKt7qDr983dzStR165deeuttzA3N8fZ2RkzMzUctC6YwidfZmYmbdq0YXHhLMP5HAq6kJZTQXfx8sjMVBIYL1++HJeC8aL5Cj8kqMnkrl/UWSkJqeTkKYG0i6PajdyjeT3DckaW+ofq5nXrlqumHsqHUWycOVpt+eu09NVduLjb0qHlOXKyKi4rpBCi8mz87VKRbScPR1ZDTYQQd7vMTPjqK3V9+3Yl0WNYGKSnK9u6dwcP9TmhBN3CiLW1NZ6enjRp0sQo4C5OmzZtiIiIwNHREU9PT6N/dnZ22NnZ4eTkxPHjxw3H5OXlcfLkyRLP6ePjg06n4/Dhw8XuNzc3B5QEbQWaN2+OhYUFV65cKVIPV1dXQ5kTJ04YnatwvaqbBN2izoqLTDIsOzuq47g9PYsv796i0S3P2aSJ8r9Wq3TrKo+fvzjJzPf7kqc15/glX/b8HVa+EwghqsXf/xR9IBcWnFoNNRFC3O1+/NF43HZUFJw/b9y1vHt3JeFj/hBcCbrFbXvggQewt7dnypQpHDlyhKioKA4ePMg777zD1atXARg3bhzffvst27Zt48KFCyxYsKDUObbd3NwYMWIEr732Gtu2bTOcc9OmTQA0bdoUjUbDzp07SUpKIiMjA1tbWyZOnMiiRYtYt24dkZGRnDx5kh9//JF169YB8Nhjj3H58mU++OADLl68yIYNGwz7agIJukWdFR+j/sG7OOUalhs2BLub7qHNTHNxdi970A3KVBxltW0bPDWztdG2XdsqLhmGEKJypCWmsTvUHwBTE3WqwLCw4seqCSFEZdHp4JNPim7fvr1o0G1hAfkNgIau6EKUl7W1NT/99BNNmjTh+eefZ9iwYbz++utkZ2cb5t2eOHEiDz74IHPmzOGxxx6jXr16DB48uNTzvvXWWwwZMoS33nqLe++9l/nz55OVlQWAi4sLL7zwAh9//DE9evTg7bffBuDFF19k6tSpLF++nGHDhvH000+zc+dO3NyURMdNmjTh888/Z/v27QwfPpxff/2VmTNnVuJPp3xkTLeos+JiswzLhYd/aDTg6ZpC2PWGhm1NHeIwNXfjVpq6ZALKvBtXLsTSsaPrLY85fRpGjoTcXONEbbuCGhZbPjc7l3MhEfh28MbU3PSW5xdCVJ6tv58kV9sdgFEDDvLLNiW5Ylh4g+qslhDiLrRlC4SHK8tNm6oP/7dvh4JetBYWUJDzytMTrlyBq1eVTOe3MZRW1DHvv/9+ufc5OTmVOvWWmZkZr7/+Oq+//nqJZX788UejdUtLS1599VVeffXVYstPmzaNadOmGW3TaDSMHz+e8ePHl/g6/fv3p3///kbbHn744RLLVyVp6RZ1VtwVdcy0S2Pj50ueDmeN1t2ckyiLJlZHDcsxZ86V6ZgFC+B6/pDyBx+EZo2Vfl4Hz/hxI119MJASn8pHL++kWdME2nRrwejBh8p0fiFE5fn7b7V1e/xTljRuqMxDGHbJHb3OuLVbp1OSGv3+e5VWUQhxl1hSaArozz9Xeu4B/PMPnMu/JenQASzz88IWHtcdFVUlVRRClECCblFnxcWpN8TOrsbZGD2a3jBad/cu2xQMTT3Ux8RXYnS3LB8fk8HatUo9nJzgl1+gXyeln1d2rhUH/lUeWW9adRh3TxNmf9yP6ESlD/sfu7pz8YJ0YRWiuly5cJWNe5QZDupZptN3uD/+zZSmpcTrjsRHXjMq/967ep57DkaNgr+qLhGtEOIu8PffSos2QIsWMHw49OunrF9Xc8XSvbu6XDiHjYzrFqJ6SdAt6qz4BPXydmlaz2ifp4dxwOzm51WmczbxVIPzmNhbd/1e+fEhQ7fyiWPTsLGBvn3Vbua7tqVwI+MGT033Iv1G0WRNq37UFNkmhKhcep2e1Uv34d/OkoQ0ZT7VwZ3DsKpnhb+vencbdlhtOoq9GMf776k9V956S8koLIQQdyoqCgr3qH31VTAxgYEDi5aVoFuImkmCblFnxV1T5912cW9otM/T23hOP3f3sp2zqbeabO1KXOmDo3RaHd/80syw/sy4ZAD63udl2LYrqD6/LDtMfKpyY9/b/zg7NkQZMo6uWiU37kJUJb0ennpKz5Mze5KcoczD3bhhHIuWOAPg31b92jx5Qk3Q+OZL4WTcsDGsBwcrLVNCCHEncnPh8cchKX8U3EMPwVNPKcvlCbolmZoQ1UuCblFnxaU6G5ad3ByN9nk2N25Vdrt1DjUAHJs4YGGmTD8WE196IqVtvwVz8aryjXdPpyM0b6cse7Zyw9MpGoCgk61Y/EVjwzEfLTal//3uDBqkrF+6BHv3lq1uQog798kn8MMq9avx8UH7CDtpjl9n5QGaf09/w76wq12V//ef4/u/lARrhTOcL3g1rsi4byGEKI8334R9+5RlT09YsUKdCszPT81QDsq9TOH7GZmrW4iao0qC7p9//pkBAwbQtm1bHn30UUJDQ0stv3nzZoYOHUrbtm154IEH2LVrV1VUU9QxceneADg4gLmludE+Dx8no3W3prcenw2gMdHQxCEegCuJjqWWXf612gr27DN5Rvv69lCmC7uRa82pqJYA9GgdStchyg194W5kPywrW8I2IcSdOXQI5sxR13/85iqrt/bEsYmDYVvr9vaG5bAw5f9XZqag0yvDTd6ZvpfAVgkAHD3pwuafjlR+xYUQdVJ8PHz4obJsZga//gr26kcQGg0MGKCuF27lBuleLkRNUulB96ZNm1i0aBHTpk1j3bp1+Pn5MWnSJBITE4stf+zYMWbNmsUjjzzCn3/+ycCBA5k2bRpnz54ttrwQJYlXYmOj6cIKuHo7Y26qZjd3bxRf5vM2aaR0E0+87siNjOxiy1y5cJX1ezspr2V/lQfGdzTa32946yLHzHw+w7A84iE9ttbK+m8bXMhMyyxz/YQQ5ZeSmMPo0ZCX/3xszhwY80zjIuXs7NQb2bAwWPzKLrYc6gyAh1M0MxZ25Y2ZFwzlF7xnLa3dQojbsnMnaLXK8rRp0K1b0TL33KMu9+5tvK9+fTXDuQTdQlSvSg+6V65cyahRo3j44Ydp0aIFCxYswMrKij/++KPY8qtWraJ37948/fTTNG/enBdffJHWrVvz008/VXZVRR2SkaH8g+KDbhNTEzwaKQOczE1zcPZwKlqoBE2c1eD48PYzdPULw6fpJS6eUAdMrVp2Bq1OmaZs0iNnirS09+1rfE4v5ygemtTZsG5TT8OjA4IBuJ5Vnz9XBpe5fkKI8pv2+GEuX1aWu3eHt98uuax/fg/z69fhlcXqH/P78yKxtrNm+MQutPVSHhQfCvcnaHOYoUxudi7/rD7CL5/t55fP9rP2mwNcT7qOEELcrHBHz6FDiy/z+OPw7LMwZgxMmlR0f8FDwuhoNYAXQlQ9s1sXuX05OTmcPHmSZ5991rDNxMSEHj16EBxcfBAREhLChAkTjLb16tWLbdu2lfg6Wq0WbQ3+JCmoW02uY11z5QqA0t3T2VmHVlu0penZMVHMXeLN5JFBYNKrzL+fJo3V1u3hT7iTnKF0PX339d18s64pAL+uVwdZjZvmWeTcHh7g5mZCdLQyMGv6xItoTJsYlRsz0YaVG5Xljz5zZNiTyo25XEfiTtyNn0dnz8KSJRruu0/PAw8U3Z8cl8Iv25R+mfa2qfz0Yz1MTDQl3qC2bp7IRpyNtr353H88OqW34ec649mrPP2qDwB//HqNrkOV7a9N3sviVf2NjnWde5W/N+fRrlPZpi4si+zMbN558SD16sGcj3ujManYmRDuxuvorqTVYmpY1FZ41CbXUel27TIBNJia6unWTVfsj9/EBL74Ql2/uYy7uwnHj2vIzYWYGC1Nm1ZqlauFXEeiItx8HVX09VSpQXdycjJarRZHR+Oxr46Ojly8eLHYY65du0ajRo2KlL927Vqx5YFa0/X8xIkT1V2FOu/kvhjs7C3IytQAQwCwzj1CSEjR6b0GPF6f3cMPYWVjS0hISJlfw9Y21bBcEHAD/L4tkEn7D3Et+jrHLyn9vTq1PE5aXh4hIUlFztOrlxu//uqCg0MuHYbWL1IHOzcdPk0ucPZKc0Iu+vH4sH289ZmZXEeiQtxN19HMmc3Zs6ch/7cyjw2/78LJo6HR/iP/RKHXPwTAowP3kZziQnJIyedztYkClPImGi3vvriBwU+6czz0uKFM845KUjWtzox1W715/FgwOTdy+eb3DkXOF5vcmD4DtXz88Xk6dUq/szebb/f/Ili0YiQALo3X0H5Iiwo5783upuvobmSSlUX7/OXQ0FB01taV8jpyHRWVnGzGyZPtAPDzy+TChTO3dR4bG3fIf0i4bds52rXLKP2AWkyuI1ERKus6qtSgu6r4+PhgY2Nz64LVRKvVcuLECdq2bYup6a3ndha358u39jD9nQfRaHQM73nIsL1F0wwCA/tU2Ouc6uUP3xXdfj2rPpeOajl3Vu1K/viIpBJf+9tvYfhwHR06mNC8eUCxZX795Sz9hqaSltWALYd74rzgHz76tgOmZubYNLDDwqLYw4Qo0d34eXTujJK/IU9rxrofzfjy90Cj/T8vSTMsDxlmT2Cg8f6bNXNvxvIfL5J03Y7lH1/gwaeKaT4H+gYcZ0dIBy7FeWGalcXlkCTSspRZDwYEHuPBoYn88rcvB8M8yMgwZfp0H37/Xcd9993+ey3wx//VMyyfP1Ofp+aU/p7K6268ju5KGWqAFhAQAPXqlVK4/OQ6Ktnatery0KHWt/xcKknHjhp++01ZtrT0ITCw7uWYkOvo1lq3LppLqLCpU6fy/PPPV1Ftaqabr6PMzMwKbdit1KDb3t4eU1PTIknTEhMTi7RmF2jUqFGRVu3SygOYmprWij+y2lLP2iji9BVe/UhJXKbXm/DnXjXbSGNXswr9uXt4qeeytoYFL19g9tvNAfhxtRURia0A0Gh0jH7Gr8TXtrWFxx4r/bXa92nFulXBDH2sDblaC1ZtGcKq/DnFbWzg55+VOTtLo9fp2ft3KNY25nQaVPqHrrh73C2fR4mJcDVBbZ1b+Vd3Xj8Xh4dfE8O23YfVxA997/e95c/F3tme05ENycvNw9yymMxG+UY8kM6OEGV5/S9xHDymBizz55vQb+Rgnp4Ho0fDxo2Qk6PhpZdMefDBcr7JYiSkq/MGhZxxqrTf9d1yHd21Cv1uTU1NjdYr9mXkOrrZnj3qcv/+Jrf9o/f2Vpejo2//PLWBXEcl21to/tlNmzbx2WefsWXLFsM2Gxsbw89Or9ej1WoxM6sTbbPlVnAdVfS1VKmJ1CwsLGjTpg1BQUGGbTqdjqCgINq3b1/sMYGBgRw4cMBo2/79+2/7CZ+o+/R6mPJSYzKybYvd7+Jasc3BPXtCv37QuDH88QfMetMbL+coAP453IkzF5XhFL26ZdK0hWspZyqbAY+05/8+Plxke2YmLFx46+P/WxtCn+Ht6HqPL8f+O33H9RGiNjl50ng9V2vBB/PVafhSE1IJPu8LQFuvs0bTg5VGY6IpkiDxZg+NbWlY/mGtN/8eVrqWezpF02e40rulXj34809op/Qi5cIFSL9etikMS3P1mhrgHwv3lAzqQtQyBUnUTEygV6/bP49MGyYAnJycDP/s7OzQaDSG9YsXL9KhQwd27drFyJEjadu2LUePHmXu3LlMnTrV6DzvvvsuY8eONazrdDqWL1/OgAEDCAgI4MEHHzQK5oWq0h9hPPXUU8yZMwd/f38CAgL44YcfyMrKYuRIZazZ7NmzcXFxYdasWQCMGzeOsWPHsmLFCvr27cumTZsICwtjYVmiC3FXWrMGNm9Rnh81cc3jhVG7ee2zfuj1yjZXd7sKfT0zM/jvP9DplC9DMGHciPMsXO5uVO6xMcU/BLgdT8zoiVa7l59+McFEY07wBR/ikhoQHKwkifLxKfnYXRtOAe3R6U35ffkROvRvVWH1EqKmCzuWCjQw2vbdn9147XwsTVu4snfzWXR6ZeaAvl1igVL+mMrJraUrXXzDOBTuz+V49c537EPnMTFVW6LNzKB9s1McP670RDkffI7APr539NpXr6qJ0xLSnLhyMbZCHgIKISpfYiKEhirL7dtDgwally+Nh4e6LEF35fn9d3jjDWVWi6piZ6fMtPHIIxVzvo8//pg5c+bg7u5O/fplS+y5fPly/vrrLxYsWICXlxeHDx/mlVdewcHBgS5dulRMxeqISg+6hw0bRlJSEp999hkJCQm0atWK7777ztBdPDY2FhMTtcG9Q4cOLF68mKVLl7JkyRK8vLz44osv8CktqhB3FW2ulpfG7uXgcaVF+fSVNoByg7nsCzNGjBhAM58gXprvRaBPFB36d6qUehS6bBn7XDMWLi+8T8/DD1dstuAnZnSndd8QAgMDWbrUlJdfVravWQPz55d8XFS8Oh3a9iMScIu7S9je44CSV6FX2zD2nvAnJ8+SD+ad5bNfXdm1XR2z2q9/xSdJGHFvIofCjbeNm+JVpFxL93ggP+g+mcSdpqG4GmX8sCF4b6Qh6E5PTsfa1hpTc+mGKUSNcCMeEvZB+iWwD2DPvt6AJZA/xWhWLBydAQ3agF1LMG8I5vXByglsm4NJybfzzg2TsbRsSHa2RoLuSvTRR3Dm9nLd3fHrVlTQPX36dHr27Fnm8jk5OSxfvpyVK1caejC7u7tz9OhR1qxZI0H3Taqks/6YMWMYM2ZMsft+/PHHItvuvfde7r333squlqilNvxwhM/W9C2y/aGHYMQIZXnU1O48+pwejUnVtOy0CPSkZ+tg9p1SPnQG9L2Bi0vlZHkFGDUKQ9D96+obzJ9nCZrig/yoeHX2gKMX25MSn0pD5zt4bC5qrMQrSfz2bRipKTowMcPWuxePPlr8XPV3i7Cz6rX+/f/Vo32PDDKz6/HV/3owef85dh1U84X0ua9lcae4IyOf68OrS9X1Hh2v0bK9V5FyLXzUgP9ceHaR/eWh1+mJu2b8+XPscBb3T4BNqw4zYlIADRrkMu0FU6ZOBSen4s8jhKhEeVlwdhlc+A6uGydr2vXH/4CHgfygOzkUIn8Hfi96HhNLaNAaTK3Augn0/p/x7pCX8bCfw7mrPkRcykKvNUdjeneO1a1Ms2crDSBV3dL9yisVd762bduWq3xERARZWVlMnDjRaHtubi6tWkkjz83kr07UOsePZRXZ1rat8TyVQIXPS3srE8ems+9VZfnJR1OBygu63d2hZ8c49h114dQZK8KCzuLfo/jeIFFx9oZlnd6UnX+d4aGnu1Za3UT1mfz4WdbuNm4i/esv+PffaqpQNdPr9Jy8pAz7aOIQi08Hb14at5N3vu1HntacpyZkE3zBD4DWHudxcq/4abV8fDW0bg2nTinr4ycXnxS0ZRt1LPm583fWAp0cn0qutqHRtuBQKwA+/NicnDxLEhLhrbfg/fdh7lylW2QJz+2EEBVJp4VLP0DoG5AVU2yRXad6AMrfZO/eQNypUs6XDcnByrJ1MZNwZ0bj2SiCc1d9SM+0JiXofex7zb3DN2EsNxeysqCMPZLrpEceqbgW5+pifdOUgBqNBr3eOB9IXl6eYTkzMxNQupi73PR030Km1ylCgm5R64SfU5MXnTxwntZdK2f+2fKa8EpPrsbuRKeDcZMrboqykjx27xn2HVU+5H5deYV3igm69To9UdeMPwi3H/DkoacrvXqiiuVm57L5QNGp5w4erIbK1BBXL8eTlK5c//7NYgBXXv+kG2s2XuLcFW+OnPM3lO3bPbXS6vHsszBjBri6Kr1UitMiQL1ZPhdxZ3euVyMSgYZG246FuxFzPpbdJ4yvkRs3lODbrYmOSc9Uam5VIUT6Jdg/Bq7tL7RRA426g1NPsGtJRnQwIeGNAQgIAHt7oMEL4HovpJ6EzCjITVP+ZUZCygmlpVyvU6J0bQ6YFgp47APxdMuGMGX14q4/6OjbB5x6VMhbyshQEkFGRsLWrfkt8yXIyoKjR+H4ceWYO0kQJyqfg4MD586dM9p2+vRpzM2V+/DmzZtjYWHBlStXpCt5GUjQLWqdM5eUFiETjZbmbd1vUbrqmJia8Nqn/ars9R6Z2IoZ72rR6U1Zs9GLt3X6Iq37SUmQmW08r+r2/Y2rrI6i6oTuO09WjtKda2D7Y8RmtOTUWTvS0iA7Gywtq7mC1SDsUDSQH3T7pgNgVc+Kbz5Ppf/DxmX7juhYafV44QXo3h28vKBhw+LL2DnY4dIwnrgUZ85H39nfaFx0WpFtkQlufP3hTvR6ZcjNc48exrxxZz7/PL+Oz2fTzT+GNt1rxkNMIeqkq9uMA+6mD0C796Ch+gAwPE2ZlQWgQ4f8jSZm0MBP+Vcc7Q0l6DazKbqv/Qe0HgzkJ5QOjfSn4/4nYdhxZVz4Hdq2TZl1AWDZsuKD7rg4eOIJ2L0bChpKzczg0CElUZyombp168b333/Pn3/+SWBgIH/99Rfnzp0zzPlta2vLxIkTWbRoEXq9no4dO3L9+nWOHTuGra0tIwrGfAqgkqcME6Ki6XV6zkYrgba3SzSWNndhJJGvsbcz/QKPA3A+1otjO4tm8IiKLtpf9PRpiI2t9OqJKhb0X7xhefiw6/i0VrP2JyRUR43K59Ah+PxzSCsaL962sJB0w7J/W7XLdr+RgUx6LNKobGmtM3dKo4HOnW89drqlm/KHeTXFhetJtz8w8GqMOgTH0lwdH/7Jj2pLxPSX7fnsM3hurJJZKSvHmlGPQWZa5m2/rhCikLwsyIgy3tb8aXAbDvW8YeB/0Pcvo4AbjJNx+ZUQYxdhalV8wJ2vYEpCgJCIQMi4DHsfg5STJR1SZiEh6vK2bWpQXdi778KOHcb78vKUzNui5urduzdTp07lo48+4pFHHiEjI4OHHnrIqMyLL77I1KlTWb58OcOGDePpp59m586duLm5FX/Su5gE3aJWiblw1TAft69n/C1K132jR6pBxf9+iiuyP6rQ933hoTo7dlRmrUR1CDqodlzq3s8JJ4cbhvWEmJRqqJFKp9Vx+tCFEgPJ5cuVluDp0+G11yrudU+eUr/i2rQ3nn/7oy89DAnmOnWCxjWgA0hLT/WJw/nQ4sd6lsXVK7mG5b7dkgzLGTeUm/IA73BadVFatJd84UyAt5Je/VRkC2aMPXLbryvEXUuvVwLYUx/C9kGwrin8ZgNbOoCuUKSp0UDXFTAsBFz6odfDxYtqyzYoD8YLVFQuqsJB9/Go/Obz2M2wyR+CZ9/RuY8fV5dTUpQHqIVlZsKqVcqypSVMnKh+3q5bp06NJqrOyJEjOXJE/azv2rUr4eHhxU4TNn36dPbt28eRI0d49dVXmT9/vlESbI1Gw/jx49myZQthYWEEBQXx/fff07lz5yp5L7WJBN2i0iXFJrP4lZ2E7T9368K3EB6iNtH6tcgopeTd4aFx6jfyjv1FEzQVDrofLtSddvumpCJlRe0WFKr0ALEyz6JdrxY4mxww7Iu/cL66qgXA86P30rprcxo2siGwWThTH9nNT5/s4+KJSN6asovnnlPmvQflJuymvC23LeycmkSwdWdPo3329rBvHyxYAKtXV8zr3amWLdSb83Onkm/7PFfj1B/gvYOKPuh47MErhmVrO2vWrDHHxlL5PP3urz5s/fXobb+2EHedtLOwuZ0SwIbMgbjtkJX/N5Z9DeJ3Gpe3dDB06548GZo3h7Fj1d2Fg+4yt3TfQqNG0DQ/bURIdDf0poWGnTW6aWz3mU9hfTP4nwP8Vh/W1IPf7WH3SLj0M+QY578oHHQD/POP8fqaNZCaf8jjj8P33yvJGwtIa7e4W0jQLSrdI8Mu88rifgy+rz43Mm7c+oBSnAlTW3Z9/eTydfZworWHElAdPedXpCUxKly9uR71cC5WFkpX0+1bM9HrKiiyEdUuLiKBS3EeAHTyPYu5lQVOzurQgoS4O5uC6k79vas5oGTPP37Jl6/+6MPYl3rSPMCDBV8b9+u+cgXCT+WUer64OBg2DEaOVJL4FEen1XPyshJoe7tEYmtvW6RM8+ZK1u6WFT9T2G1p4WtlWD5/B9OGxcWrvR769zcpMp5/9MRmRut+nZuxdL4aaD83s5F0MxeiLLITYecwJZlZYZZOSnI0rydBU/xsBMnJ8H//pyyvWaMkGQO1e7mFBXh7V1xVAwOV/1PTzInsEAMdloLLQGh6v3FBbRZkXIKcZMi7DtpMyE2B6HUQNAbWOsG/PeHkItLSlJb6wm4OupcvV5effVb5f/JkdSrL//0PwsIq6E0KUYNJ1CIq1aF/T/JfiJIl42qKC//8evwWR5QuPMLZsOzb5i6em6KQvp2VwFqrM2Pf5nCjfZGnLxmWWzaNope/8s0WmeDGhVDjMa2i9graqt71dO+gtJA6u6hZ/uOv5hY5piolpyt/q6YmeZhotMWW6dZWvVa3/xZU4rn0Oj3PPnGWzZuVVvEvvyy+XOTZONJvKOPa/ZvXjiQGLQPVO+xzSbc/rd/VBDV4d2vuQNvWagDduWUozQI8ixzz9Ku96RsQAsDFq5689cKhImWEEIVoc2DPw5Cen0XMriV0+ATuPwsPx8M9+6HHT+DSv9jDN25Uxzjn5Sljo/Py4Gz+lN0+PkqysYpi1MX8dAPwmwEDtylJ2gqzcgLLRmDbAuq3ggb+ynoBXa6SDO5aULFdww8fhsTE/Nc5rs6g0a4ddM3/WLO2Vua1LvDuu3f+/oSo6SToFpXqkw+NuyGt+bWYDBvlEB6r9rXy7daulJJ3j7791C/MXdvTjfZFxaqte+4+LvTsoraEnzp2tfIrJ6pEUKiXYbl7L2XcrlNjNfCqzkRquTl6Q/DbJSCOlGuZbPvtGAun7WRol8MEeIfz25dBLFuq9oLZ/p/SNHsj4wYj+xygQ4vTBG1SWpLWfnOA9TvU6fF++KH47ugnL6qDtP27elXCO6t4LdqqdT53ybqUkqW7mtoEAHOzHOxdGtKhiZrEYfR9EcUeozHR8M3KBliaK7+HJT/1Ivim5Iwffqj0ChgyBBYu1HDkiG2FDQUQota5uBLidynLVi4wYBv4vQj1y9Z1Zu1a4/VDh5RW49z8Z6QV1bW8gFEytZBSCjafBA8nwIPn4P5TcN8JGHEVBu4EnxfALv/z17mP0Xka5cflOp2SUA2KtnJrCuV2fe45cM5vR1mzRunlJERdJkF3Fdu2DebNU7pH1nWRZ2L4/T/jefv+2tOOzLTbH4td0O2qQQNwaVw0M/fdqO996hQ/u44at2BFxSvJo+zrJVOvQT3c3NVubrEx1dvlWFScA8fVudi7P6D8zTk3UR+4xCcU372xKqSkqn+n9k2aYudgx8BHOzB/WT82H+zM8Yu+PDqlO4G9fbCvp7TS7zzmizZXy4oPD7JuTzeCL7Ri4Ijm/PzJPl54zbi/5cmTcOxY0dct3F2xTUeXogVqIFtbNcHQuTtIgRGXpgTdLo0tMDE14cln3DEzzaVxwzjGzuxW4nE+HbyZ96ySC0CrM2PaVLWHRGysMg7z/Hn4919YuNCE557z5d23q7cXhRBVJjPaeL3FM9DmNSVzeJ8/oZ5H2U+VCVu2GG87dMg4c3lFJVErUNC9HIqOw74lE1Nw6QudPoMHwmFELDR7yug8L4xXe9r988tRUvcs4KcflD7z9erpefJJ41Pa2MCkScqyXg979pSzTkLUMhJ0V6GkJBg+XOlGM29eddem8i1bdA6tTmmFtbVSWlgzsm3ZuObybZ0vMxMi83tE+/oaPzG9mzX2dsa3hdI6dfiUt2GMq06rIyZRCTbcnZVM742bqoM7r8bqqraiolLk5ird+UCZB7ogaHNq0tBQJiHJosrrVSC5UD4we/uSy5mam9K/o3LTlpxhz7FdZ1m6Sp3ANSvHhjEv9SQ2WXmDjvXVTN+rlht3Hz91UseyZeq6v/GMPDVawfjy+Pjbmz5Nq1WOBfVa6DO8HVcupXIxsj7OHqXPWzb7wx60cle6ywadbkvoPmX5929Cim3V/vm72tF1X4jbdv2CMr3WX82UpGkFNCbQ7l24Pxwalfwwqzj//quO4S5w6FDlZC4v0Ly5EujCbQTdN7NuDJaOhpZujUbP1C7TsTJX3tSGHR50evQJrmcqPXae6PU79fOKPh0tPFXj3r13WCchajgJuqvQf5vjycwfWlcwxqWuun4dvlmrtLhZmt/gm48vGPb9uqXNbZ2zcMuPr+8dVa/O6TtA6UqclwdB+cNh4yISyNUqwZZHY6Wbv6u7Ondz7FX5868LQkPVm7fu3dXtjZqqEW5CUsnzt1a2sgbdAAP7qb0vXn7VlnOXlbHg1hbGd6e2Vtf5798MLC2UVtbVa8zJyVKSr+37O5Re3a4Tnd8oFRhYy4LuZmo3+/Mnyt8l6to1NRO8S6EGfif3Rljb3brLuoW1Bc8/fc2w/sMfStK1X9eovSW2rLtKhxbKA5JzV7yNEjYKUWfcSIAj02FjK4hco4xlPl7MnIblaOEuULhrecF0nufPKzMqFKjo7uWmptC2rbJ84cLtPdQrLC9P7VHUooWGRg/9Rt+Oyr3etetOnI9TniDaWl1n1qD58E9XOPWB0Xig7t3BJP9WRIJuUdfJXXcV2vGn+oT03Dmd4caoLvr+e0hNV270x4y8wqOTAw1jdzZtUj7sr0Unsu23Y2XOkhu+T02u5Ot659OP1SWFnxbv3Kn8H3lOvXF2b6LcyLt6qlFPbPxNKY1FrRS0U/09Fw66zS3NDd2141OqL+lg8jU1iLxl0P2gu2F59xF1ec3vlrz4+C7D+nuzjtG2qyvDeynzjF5La8Smn4P55p3dDBrZkuT0BgB07JDHP/8oN5u1RYuG6lRv54IvllKyeFcLpWq43bnHR0/rinl+Hr6fV2u4cCKGoNPK3Xpbr7MMeagx9w1QA+3t68tfTyFqHL0e0sLh0o9weBr81RzOfq4E26BkJHfpf8dzGubmwoYNyrKdHUyYoO7bvFldrozGhcJdzE+cKLFYmZw7BzduFDqvRQOGjDJ+wtmjcypHPxuHb5OzoM+DkLkQ8Ythf/36EBCgLIeGqlOLZWcr9zIlzU4hRG0kQXcV2nFQfRp644YJkRfSSylde8XFwcKF6vqL85phZgaPPqqs37gBD/Y/i3szGwaP7oC/zzV2rQu55XnPnFRbwfy8r5VS8u5TOOjetUu5IYi6qD7GdndTnvA4uzdCo1GWYxOKTqEkap+gf9RxdN3bxRjtc26oBN0JqbeIditR8gV1Kir73N2llvVp701TB+Puyr6+cN/9Jiz5qQ+bfjzMum8P8vzCPgCMH68mERzzfBuend+HG7lKs9Hgjkf5b2uW4WFfbdHSV30YFnw0m2XzdzHt0V1cCosq0/Fxp0MMy42tbm8eHkdHeOCB/PPFweRn1ASYjz2oXGP9hzY0bNu+A1HL6XV6Pnp5J3Of2knW9axiy2Rlwauvwrff3nHcWfPEboW//ZR/QePg3JfKdFkApjbgPx8ePA8+0+54bNuuXZCSoizfdx/07q3uK8hm7umpdgWvSGVOplYGhY8vOO+TT0KTJkrdP/oIdgc1wGfiGmXsOxrwHg8eo43O07On8r9OBwfynzlOmQL9+8OgQXdWRyFqEgm6q0hidArnrhgnAAo/fKaE0rXbjBlql9IxY9SunY89ppbZdczHcHN8Kc6DfiMDefGJXSV+2QOEn1OnQPINaFRiubtR06bQwlMJsg8dyCHreiZREepDCndP5WdnZmGGU31lLo+rSQ2rvJ6i4h084QaAlXkW7boYj9d1slduGq9n1edGRvUkzktOVAM2e/vSv3I0JhoGdr1gtO3FF5XuhxoTDfeO6cxDT3dFY6Lc9N7zWHsaN1S6YGdkqw+RJj+0m7/3tMXOwY7apqW/g2H5g//rxwvv9OXL//Vl6NA8bmTcKOVIxdVo9WGuS8PE267H+PHq8o6DaoLG0ROV77Fug/2wsVSaobYfaoFeV9eisLtL0OYwZn/cjw/+rx9zJu0rtszHH8P77ytzLP/xRxVXsKz0egj/DOJ23bpsYeYN4PpZ420aM2jxrBJsBywE84rpMVS4a/mIEdClS9EyFT2eu0BZk6mlpSnzbd887rywwscXnNfZGS5fVoa5vPxyfi8jUwtl7PugndBthZKUrZBevdTlvXshJgZWrVLWDxyA9LrZPiXuQhJ0V5HQfdeLbDtzsu71m9m46jBr1ijLjo6wZIm6r0cP8Cg09MnW6joB3mor3ae/9GXa40dKPHf4ZaW1TqPR0aKde4nl7lZ9A5RvwJw8Sw78e4aoQg1j7t5qQOLqkATA1WQnuVGu5RKvJHHhqhIQdWh5DnMr44Rpzs3VQYEJSdUznCA5WR1HY+9464RuAweo16SDbRLjxpVc1szCjDEPqJmHmjjEsunHwyxf1wcL6+pLHncnWgS4Fbv9bIw37710oNh9hV2NVedBb9z09n8G994LTk7GY6A6tTxF83ZegDL2u3trpX9qbHJjwo9KF/Pa7FSI+oDmq7V9OXvscpEyf/+tLs+ZAzk5VVCx8tJoIPUUbO8HwbNBd9M0pXo9pF+E1NPG2xt1gUY9wLmvEiD2/1eZNqvL12DtWqFV3LpV+d/CQvk7a9YMHByMy1RW0N22rdpQX1rQ/eijMHQopX7+FtfSDWBuro5TN+LcR0k+V1hKGL16qL+jvXuV4Yla9WOMy5dLroMQtYkE3VXk0OGiT0jDw2tX+u0j206xc20I2lxtsfvTk9OZ+rL65bTk/RScCjW8mZgoc+oOf1DLR6/sJjpSS/C5lnwyd5ch4+Wqzd2JOB1z86nR6/SERymBtpdzNFb1rIqUudv166/+Of/v1+tEXlW7FHu0UL/RXb2V7Eq5WgsSb78hTNQAh/9TA50u7ZKL7HdqrAbaBRmtq1pycqEpwxrdOvAfOsrPMNvBzAmht+xiOe/j9oy7dy+zxuwk7JQ1947pfEf1rW71GtSjU8tTAJib5vD4oH2YmSpjSt9f0YuTJ0s/Pi5OfWjRuOnt9081N4cnBhnP4TN6uPFF1K2jmuht+4abplMStUpMoa/dPK05c1+8WqTMiUKjFS5ehC+/rIKK3cr185CdpK7r9eA/T5nG6/RHsGMgnP8GQt+EfU/Aeg9lrPb+MUX7yA/4V2mNbfMauA4Gi4YVXt2EBCVhGkDHjsqYbo2maGt3RSdRK2Brq2QxByXoXrFCGT9dWGqq+mBg+/aSz1UQtDs6Kr3tyi3lJGztiduFB/D0VB7wHTyoDF8o7NKl2zi3EDWQBN1VQK/Ts/d4awAszNRPt/CLtWdM7Z/fHaTLPX70fzgQP88ovlqwu0gCtA/nHiEyQWmlGdzxKGMnNihynn794M/1prz8YR8aODXExNSEFxf1Ze7TSjp3rc6MzxedL3LclYtXSb+hdBX187wLJjm/DfeObkU9S6Uf1vfru3LsopIlXqPR07Sl+o3o6tnQsBx7tXY9+BHGDu1X+9116WZeZH/h8cwJCVVRo6KSU9SuhPaNbh0EOns4cWhXPOu+PchrS/vcsnwDpwb8sKkXi3/sh71Lwzupao2xeYcLv36+n8vhSaze2pM5k0MByM0zY/JkSk3CeTVevQ5c3Ip+BpfH+MnGA+JHTWpptB7YXX2t7TslMWNtFn3deFaRdXu6seev0FKPWbjQeHaCKqPLhej1sPMB2OAD574y3h+9HvT5fyTxu+HQsxC2UEngVTDXdvIxiNlgfJxZvUqveuGZawonvrw56K6slm6AzvnPJbOzlXmyPT3V7twAR4+qzyOSk5XZaG4WF6cmbWzX7jaGuevyYM9IyE2D2C308lK6UWRlYZh5ooC0dIu6QoLuKhB+7KJhbtkBHUJxtFOaF8MjKrbLUmVJiU9l6mxP9Hrlcjkf68XUt/rQzi+euMvKnbw2V8v3/1NSbZqZ5vLV940M4y7LYsrcNliaK+MVv/2jPddTjVvTww6pj+F9m5ct2/ndxrGJA1NHK93zs3OtuHRZSTLl4qLBwlL9Uy+c0fhq0cYMUYscOqYGsV36Fm1qKNzTpDwt3UeOwJYtFZMsKTlVDczsncv2oLFVl+Y89HRXTEzvzq+oRm6OjH6+B02aK3+s85Z0NMzfvX9/0Zagwq5eU/t1NvZ0KLlgGQT28aNnGyXwGtb1MB5+xteYp78TDrZKK+N/x/xK7AUlar7oa0Xnb5/1iik6bdEPgYI8LcnJ8O67lVipjAillfrgM7B7BOwdpcyX/acb7H4IrvwN6JWkZ9r8vu4ajZLsbOBOsC6m+dXUBhoPgoC3wb5d0f2VLEidhKXagu6FC9XkZaAE0M88owbXhw4Zl48qJodj4a7p7W7nx2hiBl2+AQulR16vZptKLCot3aKuuDvvaKrYf3+rU6sM7JOBr7sSQMYkuXI9qZhHiNVIr9Pz9vM7GT1wP8f3KOOtX51y3PDQoFF9NWv4+Vgvlryl9HXc/r8QriQpDxHu7XqM5u08KQ9nDyfG3K+cKy2zPiv+zzjRxn9b1Z9T1+5FW/SE4uW322BtYfxQwv2m4e+uhZ71xBoniha1iF6n59ApJamVo10izdoWnSvW2Vb9BSecu0W/5HyhocrN4L33wv9W3+FErkBymtoCau98Zy2vdysrK1i+XF1//301y/HN4hKVHkHWFpnY2d9ZIjmNiYYN2z1Y//1BftlYdP4iE1MT+ndUvidSMhqybcMVoqMhU56L1joFrYsWFnr8PZUpOQ+fbcMfnxu3BtvZaVm//D+sLJUHLJ9/riMp/hb5aeL3wsn34ewXcO5rOLccLq6C6/lJE/V6pUX65qd8Ba3UF76D6D8h8ndlvuwbhZ4g2riB73RlOqrCnLrDsOPQ5Vvo/DX0/RvuDYFHkmHAVqULer3y3adUhMJBd7du6nLhoNvRERpVYq7YFi2UsdNBQWodcnJgd/7kEoVb4+HWQXfh5Gzl4tIX7gmCRj3o5Ws8SXcDOzVppLR0i7pCgu4qsGOXOv544H0u+HqnGtbPhtSscXA7/gjmjS/68duOHnQa0JJnJ2v5eq3SxbOeZTpHD2ZzeOspQzf55b+3Jz05nVX/p35Ajh97exOQz3y7o2F56VLjRBrb97kYlgcMN+7iKFTOHk5MedT4MXWRoNtRvf5iz0ryo9oq4nQ0CWlK61SXVheL7VniZKd2ZYiPKlv/8pXfpBsCur9+LL17aVkkpyktr+amOdjYFZddR5RF//5KYiNQbkL//L/ifzdXk5XWbZeGieXqbVQSe5eGPDixK/Udi8/c3P9etQv60IfdcXdXkkJt33Z73wOiehSM6W7aVMPiRerDtjc+62FUboDPBppdHsDYHt8DkJNjwpkv71G6ef/bE7b1V4PpAle3wfFX4cjzcHgKHH4ODoyHDS0w2ehL68uPYfrfAIj9x/g4x2LSegOYWIDHo9BvEzx4CVrPAbNihq5YOkKLp6Hls9D0PqVl27T6Eizm5amtyG5uyr8CTk7q1GHDhlVNfbp1g1deUdcLxm/f3NIdGVn02JKSqJVbfV8YvJfWoxfQsJ56bzJz8CJMTZSbQGnpFnWFBN1VYP9JJSOGg20S7Xr74uujRpPhJ5JKOqxa/N/3ahNFXp4J33yrtji/+3IoHn5N6TSoNWOGKp/KqZkN+HTBcdbubA+Afb1k7h/X4bZeu00bGDJEWb58Gf78U1lOjkvl6HnlZ9jW6yzOHkW7wQnVK2+3NiSmA3BvYDw1nWv9CMNy7MWyzf0rap6D/6m/uy4dim9pcm6idudOuGZabJnCdDr4bZ06rjHo+J3PEpCcrtTB3ja1QoLAu9lLU9UWviVL1J9lTlYOGakZ5GTlkHjdEYDGDilVUqd7RnphctOdRHY2TJ0QSW52bpXUQdyZjLQcw9hsNzc9Qx7vyD09lEgnMt64yXVIgBIYt2x8zrAtOqkpXD8H1/ZD/E7Q3ZSZKzeVkmjSL2Cdkx+kn15s2J6dDRkmLaHDUhi8Fx6KgeER8MA5ePga9PoNmtyrdFOuJcLCICP/o7pw1/ICf/+tJDD75puqq1O/fup47O3blYcvV64Ylyku6C5o6TY3r4Cu8BoNJl4PM3CI0jPH3DSHZwZ8i4ejcq9y6ZLMsiLqBgm6q0CLVkqXyvHj9ZiYmuDXRm3tCT9dtTcll09G8917e7gWXTRt9fWk64bg2co8C1NT9YOuc2d4foH6xHvmq+rA4Dc+705WjvKU+fF7Q7G0uf2EOi+9pC5/9qnycGLn/gaG8eQD+8uYwVtp7O3Msw9uNax7uRgnnmvs0dCwfDVOuurXVoeOqn9nXboXnwDIqUlDw3J84q3/LvfuhStX1GDuwlVP4iPvLANbcrrSQmpvW7OG0tRGg+5zMnT9DTrdlqBNJzj4TxjN3BJxaGTGS0+fMpRt3KhqpqRs1gx++glGjYJHHoHmTZUhDWdjvFj+btAtjhY1Qcx5NWeKm5XyO1v8tXeRhykAQzrsh9av4tZenVw5+kZ3JVt4AZObPmtaTIbea6HbD9BtJXRdoUzL5dwXvUYJmvUOnaHlc6DXk56uZO9u5GTCjiszwKkn2DSBeh5g1wLM72zYRHUpaTx3gfr1YdAgZThJVXFwgA757SShocbTwhW4Oei+cQPO5D/Lb91amfqsIny8xITnn4d1K07QpHEeXk7KC6emakhJqZjXEKI6SdBdBTZu1PF//3ea9xY3BMA3QG2pDb9Q+dkyC3vgviyeeb03Hdrf4NRB4yzh//vuOJnZSn0mPHCY/fs19O6tjNf58UcwLdRQ5t+jJffcoyzrdOplNO5pxzuq3+DB4OejPCXfvceU04cuGk1ZMXBkJWYXqUPmLe1JN78TBHiHM/oZ47lHXL3UlovYhNufUkhUr0Pn1eEYnQcV/3fh2MQejUbp5puQfOvf9Zr/KzozwIFttz8EIS8PrmflB92u0kPlTmlMNLw0RR0y8PwMMwYM9yYmyZWcPEu+WB1o2NfYq+p+3o8/DmvWwO+/w+qVajrrt5a2ITWh5FZOUTNEX0oxLLu5KgnJ2raFp54yLte8mY5mEzdC4Hu4dRuuHm87E0ZnwWN5MCoTbL2ND2zQCtxHQLNx0GwCNH9KmZZr0E50IxI43nwLukH7weMR0GgIClJ6u924AVOmQG4d6TBxq6C7ugwcqC4vXlx0/81B98mT6vC/2x7PXQxPT/j8c7hvXEe4NwTvgBaGfdLFXNQFEnRXAVtb8PfPxDy/UbFZW3dDK/KZhKqbUzY9OZ2wCGU8dNS1pvS6pyn79qn7V61WHwCMf8aBLl2UxBrBweBbNIeOUas0gG/Ti3QZ3KZowXLQaGDyCPWb6ZulUYag29QU+tx6BiGBkv046HRbjl/0xbWZi9E+m/o21LdWboRjEyWxVW2Ul6dM6wLg7Q1OTYrPCm5mYYaDrRIExSeX/rvOy8nj9z+KfiUE7c0qpnTZFG6dsHeqna1TNc0TL3TBpaHSzfzY+VaGB6U3cymYjLeKdRncmscH7Qcg8boji2YHV0s96qKM1AyWv72bw1tP3bpwOcREqL0imrqpPV0WLgSbQmkYBg0yURKXYTwvs2GKJxNTMLMGTTluLc3tyDNrZDTnVFqh/I1nz5aerb82KQi6LSygffvqrUthhYPu84XaYgruWW8Ouu84c3lZ2DTBu4066N2QTE2bXWxxIWoDCbqrgYWVOc2aKV8wZ8+WPudqRYq5aDxnUHKaNYMGKfMzXj4Zzc7jyreAT9NLdL3n1sHzPfcoXYsKjH88pULGbI6f0c4wfdh36zoYujF16aJ0vxJ3ztVBGV4Qm1SJKVJFpTl5UpnPFKBr19LLOjdMASAh1b7Ucjv/DDUkZuvRWk3SFXS04e1W02gOX/vSX16UkaWNJdOeNA66Hu0fxL7dObQp9LFdMK1TdXhvqYfhM3zpz934+ZN9Mr77Dt3IuMHQXud57o0+DBrelMQrFZcPJjpSzfzt5qF2DW/SBGbOVMs98ABG+wrEqL3TK8TN80K/+Sak1vIOEwkJakDbsSNY1qBp7Xv1KtpFvGlTdax2VJTxfWqFJVG7BS8vdfnSRS2EvglbOkBe1QydEaKiSdBdTfzye/xmZRV6SlzJYi6p31pWlkoXshs3YPx46DtYbSkbNzKiTMGzRgPvvQcmJsoX8FOzbi+B2s0cXO0ZNVCZbzr9hto6NrB/ToWcX0BjR6UpIf2GHenJ6dVcG1GYXq8M51izpuQyhbPL3jy/682cGip3sBnZtmSmlTyX068/qTcyLz6fgYeT8sF0OLwleTklzE91CxJ0V44pc9viaq90M58+ehe/bu1Kj94WHDkCy5bBkiXw0EPVVz+vNm7MeOIAANm5Vox5qSfN3eL54s1d6LSS1by8tLlaxtwXzN4wJcJJy2rAnm3XbnFU2UXHqN/3bl7GvWbmzFGX+/dXl62slIzbUPH3MOk3fSVduwYffFCxr1HVCk/DVXiqsJrAxqZod/euXcEjfxbK3FxlLu8CVdLSjdKLq8DlQ7shbCGknoKjL1beiwpRiSToriaFu2uHh1fNa8ZEqjfVC6cfMhqvFRnbEACNRsfYqWWfkmv4cLh4EU6cgMaNb12+rJ57vmhX2IEdK7ZL3d3M1UkNvq5erribN3HnNm+GcePgscdg27biy2z77ahhuaTM5QWcHdXu4QkxxbeO5WTlsHaH0jRazzKd+55sR/e2Sp/CzOx6hO47X+xxt5J8RZ0n3N6maPJGcXsauTly8rQV4Ucv8emvfTExVb7Kraxg2jSlddKsmpM6z1vSkQHtjxnWo6415fmFfdn005FqrFXto9fpmTl2L3/sMo6K9ob6VNhrRMeqmbvcmhvnZTEtZdKDgimvrlwxnuLzTt3c0g3wySfFzxddVitXKuOPn31WTQJWlWrqeO4ChbuYg/IwtyDoBrWLuV6vBt1ubsqc4pXFqKU7rTOY5Q+lufAdXPqp8l5YiEoiQXc18fVSb0DPBB0vpWTFKdyFzNvbjBUr4I8/wMlJbXnoHxiCh1/T4g4vkaenkgGzInW/19+QpReUbOrdhkgStYri6qL2GoiNquX99uqYw0FqEL1lS9H9Z49d4n/bAwFwtEukY6fSpwJzclS79SbEFP+7XvLafpIzlKboB3sfx6a+Dd27qscF7Ywv9rhbSY5Ss9/Ya07c1jlE8exdGuLTwfvWBauJnYMd2460Z+faEAa322PYvnendA0tj9+/CuLzNX0BMDVRv8P37q2414iJV3qUmWi0uHg436K0qmBcd14exN/eR0SxCgfdnTop/9+4oWTJLy+9Ht54AyZOVILFb75Ruk3ffz+cO3fr4yvK/v3qcm0OuiMi1K7+FZlErTiurmq398vRttDxc3Vn0Filu7lees6I2kOC7mri6672xwoLrpqgJ6bQVEBN87uQjRwJYUeSmXDfHjq2PMVHH1uXdHiV0phoeG6sOp90r9ZHsapXgwZB1XKurupybJTcBNckkSFq62BxSczenReDTq8E2i9POoFVvdLnl3F2VbOWxycXTWZ2PiSCBV8oA8NNNFpmvao8QeveTx3vf+Dw7X0uJCepQYK9w63nCRd1i8ZEQ98Rgaz8Qx1sfixasmGWx/r16tSdXy3cbxhne/QoZJY8WqRcohOUv3VXh3jMLMr+d+qm5rmq0HHdhYPuF19Ul8v7oCEvDyZPhrffLrpv40Yl0CyuVb2i5eSo3cs9PIx/bjVF585K0l9Qhg526lR80F1VXctBGbro6aksX7oEeu8J0HySWiBsIex6AHJSKrciQlSQSg26U1JSmDVrFh06dKBTp0689tprZGSUfoM/duxYfH19jf698cYblVnNatG+d3NDopmNu1tWyTi3mFg1aG3qrTZNO3s4svLv3hw525oO/WtOa/LYF7vg7aJ80k9+Vm7YK1LjJuq1cDVRskrXJJFX1CD5aIglOTfUFufzIRH8/I8yINDBNolp8zsWOf5mTn6dDMsJmR5G+/Q6Pc9OTORGrhJUz3h8Dx0HKJ8Bgb1bYmWp9BkNOnt7sywkJ6mfa/aOFTSZq6h1mjRzwDm/ATU4xBS9vvTyQnXmkvJdbaLRMm5mV3r2VLbn5cHhw3d+/pysHOJSlF+Om1P5hoAUDh4rclx34UC4QwcM186+feVLPPvaa/Ddd+r6hx8qU2IV1DsqCl5//c7reyvBwWriy169Si9bXczNlQcUAI8+CnZ2xQfdhZOoVXZLN6jjujMyIDFJA12+hcAP1Qz5VzbBf0Mhr4KeQAlRiSo16H755Zc5f/48K1eu5Ouvv+bIkSNlCqBHjRrF3r17Df9mz55dmdWsFrb2tgzqqGQIjkly5cj205X+mgVdyDQaHa7eNX/O3PqO9Tl5zomY81d5dEoN7I9Vi7kGqD/P2Ky21VgTcbPIOPWBWHa2CcG71KQP782LRKtTBuvOnBCKncOtH5g4F+otenMX0B8W72NHsJIA0dMpmoXL1ADdwtrC0HX9woXb6z5qlEjNUXqq3K00GnWKpGvXqi55aG2n0+o4E6VEPs0aR2FpY0mvzmpgvHft7jt+jdjL6h+2m0v5mn0rK+gunEjNzk4NVFNTlZkbyiItDb78Ulk2N4dffoFXXoFZs2DXLrDO77yzbBkcOFBxdS9O4alZa2rQDcoDiYgI+PVXZb26W7rhpnHdl1A+TFq/Av3/Acv8AeWJBzEJehL0t5fwU4iqUmlB94ULF9izZw/vvPMO7dq1o1OnTsybN4+NGzcSVzgNYjGsrKxwcnIy/LMt6PNSx4x4UJ1vcO0vCZX+ejHpSguWi1Mu5pbmlf56FcHazpomzSswQ5sAbupeHltyOVG19Do9kfHG13vQTuUm+1JYFKs2Kw9LGtZL4YU3yjbRq1Oh52sJhT5mrqdqmfWOOq/UV0tisbU3/qwtPPZwzx7KLTlF7aFi72RTSklR13UoNLlFsEzdXSZRZ68Y5mFv5a3cN/Xqqkakew/c+XCw6CQ1cm7aqnw93Yqdq7sCFG7ptrXF0LoPZe9ivnq10joKynjuxx5T9zVrBgsWKMt6PTzzjJK08p134KWXKv6hUOE61+SgW6NRAu2CKdNdXdVEeje3dNerB82bV36djDKYXy60o/EgGLAdzPIfPKdfxExbBWMFhLgDlZbfNDg4mPr169O2rdqK1qNHD0xMTAgNDWXw4MElHrthwwb++usvnJyc6N+/P1OnTsXauuQvF61Wi7YiU2dWsIK63VzH+x73weR1LTq9Keu2evJObl6FzHNdnLw8uHpVecbS1N2iRv+8RPFKuo5uh9L6qXybXrmiRyvT+NQICdGJ3Mg1TmS0/6A5L2i1fLzwIlqdOwAzxgZj69CnTNeCkl1W+V3HxekMx/y02oSk6w0BGDUkjHse71DkfL17w+LFyrGffJzD8AdNyvUZlZyqfsXUd7SRz506pLyfR+38cwDle/zIjpPcd59fZVWtzjh5Uv3Z+rbIQqvV4tm6KY0bxnE1xYX9J3zIuZGDqfntD7+KjNRQ0P7SxKt+0d+nVoupYVFrlKZceXir7I2O1qHVln/cQHHXUVqaCaB8zlhba/Mf/imvs2ePjsmTS38dvR6+/lo9x9NPa4tkV58+HVavNiEkRENYGBS+JY2L07FqVcWMgdDrYe9epS4NGujx89NVaKb3yqTRQNOmJkRGaoiM1BMVpePSJeX30LatHr2+8t+Lh4d6fV64cNM1Vt8fev6OSfjH5Hb5ibzwKPmOEXfk5s+jir6eKi3ovnbtGg43pbQ2MzOjQYMGJCSU3Kp7//3306RJE5ydnQkPD2fx4sVcunSJZcuWlXjM2bNnK6zelenEiaLZe3u0jmLvyU6cjfFm029baOpXOd2+4+PN0ekCAKhXL5WQkAuV8jqi8hV3HZWXXg/m5u3JzTXh8uUsQkIqf3iDuLWLIfHAvUbbDoR6cHDfQX78OxAAa4tMBjxsRkjhwXWlSL2WDfQAIPbkQU6csECvh88/z6HgK2D4OJNiz9e4MTTz8uHiZTv2BVnw85cb8O/VpMzvJyFJ/YqJiY8kMbP0Xk6i9inr55GdeRKgRDZHgpLLfP3ezbYHqQ/gbDw9DT+zLq3T+Wu/C2lZDfj71814ti17xvGbHTrkDCgP8/LyLhMSkmy03yQri4I+NaGhoegKNYBkZJhA/t4zZzIICbn9e7HC11FCQmvAGktLHWFhIZiYgKVle7KzTfjvv1xCQsJKPVdYmA3Hjyut9m3aZKDRnKG4y23WLBvGj/dDpzN+kHjsWBYhIRUzr1hEhCUJCUqPIn//NEJDb2/6xeri4OBDZKQd165pePPNeEDpJufvH0tISOV3k8vNtQGU3+XRo9cICbl53rhGUP89CFe2V8T9kRCVdR2VO+hevHgx3377ballNm3adNsVGj16tGHZ19cXJycnJkyYQGRkJB4eHsUe4+Pjg41Nze26qNVqOXHiBG3btsX0pkkvH35wD3vzxygdP2DJfY8Flnie0H1naehYr9xTegEcOqQut25dn8CqyIAhKlRp19HtcHVMIfKqAynx2XI91BCXjxTNjBSV6MbWX8+RlqXMXf/YPUfp2b9Hmc+pzdViapKHVmdG2EVvvN0t2LA5jrNnlc/MLl30jB7tW+LxC6bvZ+xLvQFYucKN7c8HlPm1r2cqc/KYmebStUeXSuvJI6peeT+PdG111LdOJS2rAScuNCMw0KUKalm7ffON+vdyzxAPAgOVe6D+fffwV/4UVFcuWDN8bOBtv8aPP6qv0bOnJ4GBnsYFCiW/DQgIUPoVF9KggZ7UVA2pqba39T1S3HWUl2eSf26N4Zzdu2vYuROuXrXEwSGQEm4HAVi2TH1PM2dal1ivwEDIy9Pz44/QsqWe337TkJysITnZpsK+E4OD1brce69drfuubdVKY3hgsWaNMvRJo9Hz6qsueHpW/t9w4aFw1687ERhY/MTgRtdRTjwmB8ag67Qc7FpUeh1F3XHz51FmZmaFNuyWO+ieOHEiI0aMKLWMu7s7jRo1IikpyWh7Xl4eqampODmVvTW3XX6mhoiIiBKDblNT0woJQipbcfUcMbYlMxcpy39uacz8Et7Hl2/uYtrCvlhbZHL+VEK5xzlfPX8JUAbHuDmnYGpawRNriypTUde7a8MrRF51ICHVHl1e7RnnX9v93//BkSPK3LHONzVQxUSqeR7cG8UQdU15wLboe3Ug4HPTHcv1+zc1NWVI58NsOtiZ2OTGvD1zJxevq117n3tOU+r5Hn++B29/fImzMd7sCm3P3r9C6DsisEyvnXxdGSNuXy8VM/NGtygtaqOyfh6ZmprSvuUldoUGEp3YhKQr13Byl2uiNGcKNba2aWNqGF/be5AL5N837Auy4Pk7+D64cvYCoAzO9Wyai6npTVMQFjq3qamp0TooydRSUyE6WoOJialhPHB5Fb6OChKp2dmpn029e8POncr2AwdMjcb6FpaSAmvWKMsNGsDjj5vcXGUjEyYo/0BDcLDSQBEfr0GnM8W8DF+Jej2lvufC83P36VN6XWoiz0LPYDIzlTc6bJiGZs2q5o24uipJ77Ky4OLF0r+rAEzJxXTfo5B4ANP/BsKgnRJ4i3Ir+Dyq6Niy3InUHBwcaN68ean/LCwsaN++PWlpaYSFqd2ADhw4gE6nU56WltHp00q31/IE6rWJZ6umdGihvMdj51sRcaZo98sj207x4rtKRqOsHBt2b7pY7teJDo80LDetd+o2ayvqEtdGakKeuMhr1ViTu0fUpRtMmqTniy9g0aKi+yMj1fFqo4aeMyxn5yh3f+3b5dB5YPmn9fv0a2eszJU5az77pTf/bGkIQIP6uRTqXFQsU3NT5r2kTsK78G3j8f9aLWzfrmS9vVlyhvI69nbpRXeKu077NqmG5eC9xVwwwsjp08rnQePG0LChur1dr5bUs1T+pnYcacnFE5HFHF020ZfVqZaalL8TnSGZ2o0bxrMV3ImCRGqFc+gWTkBWWjK1H39Up+caNw7K0wmyIBu7Xn/rBKNXroCfH7RsCVevllyuoK4WFspc2LVNcW1dzz5bda+v0YB/fr7Pc+eUmTRKlZMCefkXUFYMbO8P12U4pagZKi17efPmzenduzfz588nNDSUo0eP8vbbb3Pffffh4qJ0SYmLi2Po0KGEhipTZ0VGRvLFF18QFhZGdHQ027dvZ86cOXTu3Bk/v7qbdGXkcLV1a/EXxt11UhNSGT22HrladY7bmNQSHvGWIiZGvZlv6nHnGU9F7efeVL3ugvfePE5KVIaT+8MM4wcP/HelyP7IGHVarVFjiz5ofG6qxW110W4R6Mmb0w4CoNObkp2rtGaNu3d/mW5KH3++Gy1cLwOwI7gDR3eoOQC++CybQYOgY0elxauAVgtpmfkt3W5e5a6zqHs6dFJbDYIPS6bh0iReSSYhQflbb+Vh/IDCzMKMvoHKw/P4VCcCOjvw1YLd5ZrDukB0gtLrzal+ApY2VrcoXVRFTxuWk6P8A2W6sALduoFJ/h1raUH32rXqcsG802VVOBt7TEzJ5UCZXis8XAkCf/+9+DLx8UqgCNCpE1iV/8db7dzdi64PG1a1dXjkEXW5oBdDiawbw8D/oIESqeszosn7dyAkVsCk9kLcoUqdp3vx4sU0a9aM8ePHM3nyZDp06MDChQsN+3Nzc7l06RJZ+Y8lzc3NCQoKYtKkSdx777188MEH3HPPPXz99deVWc1qN/q5QEOXo2XL4NNPleW8nDwmP3aSi1eNx1jFJLlSXjGx6kiCpt4Nbruuou4YPER9+LLuj+xSSoqKEnFRbVUKO9+oyE1yZIbSFKLR6Ans42MIdAFsbfU8/vjtv/as93sS4B1utO3ZGWVr2jKzMGP6RPXGf/8OdW7fTb8oCUcSE+HA3izD9pQU9Xh7+9uosKhz2ndTHyofO25RSsm704EtYRzeqgTTZ46pD0L93Iv2CljyRSO8nJUyGdm2TH2rD1OmlO/1tLlaYpOVMS5uTrfX26mig+7C04UVDrrr11fnhT5xwvjzpUBmptqdu1kztYW0rMoadGdlwQ8/qOvnS8iNVlvm5y7NzS3dTz9dZIRBpRs1Sl2+ZdANYOUEA7eTbNqdgLmhuD51mLDvn4aQV0F7o9LqKcStVGrQ3bBhQz7++GOCg4M5evQoixYtol6hJBxubm6Eh4fTtWtXAFxdXfnpp584ePAgJ06c4N9//2X27Nl1dp7uAi1awJdfquszZ+qZMfYYPh5X+G2HkjDJwkwNim7niy0mTv25N21WN7vqi/IZPCrA0EXxr92tycvJq+Ya1X2XL6lRdnqGRZEu2ZFRysOxxo01WFiZ0z1A7TY6ZnS60U1oeZlbmvPt13loNEod+rQNoU33so9169RDzQMRdlJtbQ+7oN6pHg9Tm3IKdzWVoFsA+HXyNgxzCD5T/ofHddk/q4/QY1hrug/14b8/gjkdqnYbaeVXdPoq347NCD3dkGdH7DZs++YbiCpHp6X4qGvkaZWhK24uabdV76oKukENXPV64xbtAvv2qa3kAweW/7XLOu/4//4HhVMWlRR0b9umLteFoNvUFCZNqvo6eHkpPR0AQkMhf9Qper0yrKFYVs58c+5fwqLbcu26Ez/sHgOn3ofNHSDxSFVUu0rt2qXMRb9rV3XXpIz0d+c0tZUadIuymzwZ5s9XlvV6DZ/91IFLccqnnUajY+WS44ayt+r2VJyYhIYA2Fpdp75j/TutrqgDrOpZMaxHfivldUf2/l36NCzizkVEGWfmCQ1Sg+rsbHUcYcGNzoiHldZAS/NsXnjhzjN/d7mnDb9/dZAn79nKytXlS6bYpqva4ybsbEMAkuNSjHrehBxX6yhBt7iZmYUZAc2U8ZXnrniTlnh7gV5dtPijXPR6E7Q6M9575wZnTqvzw7ZqW3zDg52DHV+v7cO8V9WH8r/9VvbXPHlEvZlwc7293k7l6ZJdFumF0j/cHHTff7+6/OKLRYPd7dvV5TsNukt7L8uXG68XN844Ph5WrlSWraxqb9DdoIGS5R1gzBjjn1FVKpx7ZM0apbfBvfcqyfQ/+KBoeZ0Ovlmp/t2cvtJaWUg7Ddt6Q1bdmr5yyhTl5zJ1anXXpIwyIiEv49bl6hgJumuQBQvgqSeNM5EM6XyEnetO8MQLXXDMnykhJjq3XOfV6/TEXFNat5s6Jsi0PcJgxENqC8ra39SWlfTkdPS6oq0rQnF0x2mGdjlCV78wuvqF0T8wmE2rbj1m7HKM8QOvE0FqUsTCN3kFQfdDk7qyd0MowXujad2uYnr8PPR0F2a+54Bnq/LdPdV3rI+Hk9L8E3bJE71Oz8lDxgmcjqvPBkm+rKZetjetuCk3RO3WvrXaRBiy91K5jt26VQm8vvtOaeWqK86HRLAtpLthfVtId/7c4WNY9+vQpNTjxz2l5oL49deyv+5PP6jDXfr2K/dkNkDltnTf3Mnxnntg7Fi13OjRysPKAoWD7gEDyv/aZQm6w8KMu40DXLyo5LAobPFiNaHbc8/V3gePGg389x9s3gxffVV99Xj0UTVL/C+/wBNPwD//KMH13Lnw/ffG97Xbtim/lwJnUgaBfQdlpdUrYF13pizUaqFgVqtz50r/bCyxZ0BVs/WCjLsvmaYE3TWIRgPLv7flnRd2MvOJnYTuPcuWQ53oM1wZyNS0vpKR40qMHp227F0z0hLTyMhWvr2aOqdUeL1F7TXsCX/MTZX+eH9ub4Fep+eNZ3dS39GG4b0PSeBdgpdezOafw504FO7PoXB/dh5vz9SXb91d9vJV46EdoSfVm+XI02q/UI/GygMQjYmGnvcH0KpL8wqq+Z3xb6Ykf0vLakDMxWROhhg/JAw/k0fWdeVOMzlODa7srYomjRN3p44d1QGhh0PLN9Rp8mTYuBGeeQaGdg0hKrxuXFfffFL04cOFK0qgbWt1naa3mCK0ZUto315ZPnIELpxKvOVrpien87/tgQA0sEll+FMdylfpfFXZvRyUoXg++c8jjh2DOXOU5eRkOHpUWQ4IgNuZ8KYsQXfhVu6CKcVyc43fe0ICfPGFsmxpCa+8Uv661CQNG8LQocrUXdWlaVPo00dZPnsW/vzTeP/UqRr27lUfat/cG+FShCU3+h6ATsvAf77xTp22Vnd3jo9XH/rk5hoPfSig08GgQcrDn7I8mNPrlZ9x4SESty0vA85/W/RpgPXdN8RIgu4axtzSnNc/68eSn/vRtqeP0b6mTikA5GotuBZz6y/VAjEXE9RzuGSWUlLcbRo0qs/AjsrsAVHXmjLpoQO8/U0/9HoTNuzvyt8/qK23en3FTQlTm+Xl5HHojG+R7dGJjUt9SJGdmU1ssvHN84lz6kTdkafVp74ediF3XtFK0Kab+pkUdt6BsBPG+7U6M04eVAKI5CQ1R4C9Qy2bnFZUmq4P9DQsHwozbsFNjktBm6u9+RBAGat8+bK6/u/hQPzb12PzT7U7K3F2ZjYr/1Qyfpmb5tCggfHNv597VJl6pz32oBr1rVl+opSSirXfhxgexo++5zhW9W4vtba9vRqMVUXQbWurdKG3zH9e+emnSg+InTvVe/rb6VoOSlflBvl5ZosLujMyYNUqZdnGBsaPV/cV7uq+ZImS1A2UB0VNSu+oIMro5uktzcxg+HBlWavVMHduM/75R5nObf1647I6HZw9bw4+08DkpgnYT38Iux4Abe1MKHvztVrcdHehoUpPkBs3lGuy4G81K0vpkj5qFFwrlEtx5UoYMQIGD1Yebt0WvQ5ityrj6A9NhkurjPdb1NLuH3dAgu5apGljNTNwzMVyBN2XUtRzuEqyLGFs5KNqH76VG7ob7Vu4yBa9To9Op3Trc3CA2bOruoY1y6lDl7iRq9xljh6wnwHtlW8krc6MzOslP9SKDC/6TXg2xsvQMhwZof5tenjXzLll/Ds0NCyHhUHY2aL5IY4fVj6bkpPU4MHe0bxIOXF3at1anTv50CF1++9fBdHI1Y6ubcKLTeoYFKQuFyQDTMtqwLwFtTvR6rrvj3ItrREAD/c7wnPPGd+WtWpeTLNVMUY9qi6v2XDrFqQfVqtzBY5/+vZvfjUatYW4IsZ03yroBiWL+ZIl6vpzz8GGDer67QbdoLbcx8T8P3v3HRbFtT5w/Lu7FFEEFGlSVaSoKPZeYuym9+IvzfTee73JTUxPTO839SbeJCbRmMQ0TayoESs2VEC6SJEOu/v747A7u+yC9CLv53l8mJ2ZnT3g7O68c97zHseOuVWroKimDMGFF6ppEi0s47rz8tQsNKDm5u7q35ct6dxz7Sunf/ihKqhnCcbLyw3Mn29g9myt57e3TemSPdqIJ01+Iux4DDJWwN5XWqnlrav2zS5nQbel+Byo99jNN6u/0SWXqGED//ufqpMAqhjhE09o+//5ZyMbVHEMdj0NywbCn7PgeE3ue+J9UF1W/3NPchJ0dyLBfbWL2PSUhhegOZKtfXMFh8rFr7B3xv/FWMdKWXh2U1c+m/cP4qfPNvPSS/D552rb4sVGjh8rpqvask+r+D1yUiBePSqtjwuP1j338OF9jhfPJrOBpM2qZzg1Tfs4DhvQMYsd2k7Bs2OHmR0Hwxz2SUxUn1N2hdR8O+ZNBNH2XFy0YOXwYZUaCfDqK0ZMZgNb9g9i66rdDs9b/7s2/OKz/5TSt7e6sjyQ3tcuw+SZ21cxc+QWdm+so6R0B/P2+1rwe92N3bn5ZnBx0b7rY6MadpEaMTiEcTGqh3v7oWiSEpxU96qRmgp/Jqp89IHBRxg/t5Fza9ViCVQLC7WgtKnqK6Rm64YbYOpUtXzwoFa0zGCAyZOb/vqWGwjl5Y6ZXak2JSwmTYIBNqN+LD3d772n/Q4LF9qn34vm8feHp55SNU/efFN1BOj1avq2uXO1z4CdNTVhdTqtQDHYB55W5TlgqrnJt/MpKO18Q1Zq3+zKynLcp/bv/v33MG2afZr+55/D5gQjHz+/xu5c357YiAyA9OXw4yDY9hAU2wyq7z0SZvwFLu04RqEDkKC7EwkO0f670lMbXg0h/biWChscP7GePUVXFBAAE21Oi6uugo9f1S56b3sgkAce0L7QKioM/PzVidMX28r+/bB4MWTXU4x01beJvP2vvygvaX4Vkc1btDsUo6b1x9tL65UrzKu7GmdKsrZtQKCWSr59kwrGUzO0i++wgVraeUcSG6sVs/nzDxN5x1V1xxGR2jf6tt0+AOQXaJ9Xvfy69hetsDdmjLa8aW0hBTmFbDgwzrpuV6Jj5Lb+L63Q45zZJmLDVdBdVOZNQa7admRvGg++Oo3f/hnJE/fYB90r/7uFT19a06h6KK1t75aDrN4eD0B08EGmnjWMkBC4cIaWMj9oaMNvwF14lnZj76uP6p477LPP1CwpAJddH9Ls4qq2wefevc06VL2F1GzpdGqKNHd3+/Vjxqg5vZuqvnHdGTbxWN++arpXC0vQ/ccf2ro77mh6O4Rz998PKSnYzUnv7g7ff2/ivvtS6d5du1aZOxdmz9b2c9rTHTQLBl6vlquLIfH+1ml4K2pIermz333NGsd1d96t5+nFoXbrdqw/COW5jjvbqjgGGxaqNP1yy8WYDgJnwcSvYNYG8Iqq9xBdgQTdnUhwqHbhmn6k4RcOtm/I9pruQXRszz2n0j6vvx7efhvOWjiauAiVEnQgI5TqavuLsqXfdpwL13POMXHbbTB2rPMvm+RtKcy6YBA3PDaFN57Y0OzX22wzxeeIEeAdMtD6uKiq7jfY4WItdf/0OVpQsWO7CtpTs1SKp4dbKb59GzedV1vx8IAB4eqqOO2Iluc3ZXQOoX3UB8225AjMJjP5hVpWTS+/zp0CLFrWmJj91uWNP2/l9293YzRp1bN37rBPLy8vKeef/eqCLTr4IL0DvAgP1m5ipexVF3l7ErU7b5v2aBd4O9buY+6l8Vx21yQevlab17q9/fyrlgFy9cWp1uD33y8FM2rgbuaO2cTcS4Y3+HjnL4yypt5/+7PzgcRms+oZtFiwoAkNr2XwYG15167mHash6eUWUVHw8MP265qTWg71B921r6VCQ1XmBqj08upqbRhEcLB9UC5al14P55+fS2KiidNPV9czixap/wPL/5HTnm6AoU9q44sPfwq56+vYsWM6YdBtqiZpl+qtdnU1Mm+afT76hx+qYowAf/+t43BOuN323an9qP5lOpQ5ucACMFXBijg4+KG2ru88OCMZpv8C4ReAvmmzI5xsJOjuRIL7eVuX0zMaXphIgm5xIuPHq4ult95SFVn1Bj2P3nvUbp8J4yrp1UPl2y1fG0dFafsXHSktKmXnTvUxlpIC8+Y5pjcu/SCBKqOa7zpxfR1fGg1UVaVNixUVpYrueAdoU48UltSdRp2Spn3pnHGh9kbcntQTs8lMao46TphfVoee1m9IiONV9ZBx4QwbqD5oisq8Obz7CDl5Ws99L/+OmS4v2seY8doN5IStnvzys/00mDv32t+k+WfVfut7ePwwdZ5FhGsF1w7vKwDg4H6tpsKh3P7kZ6v1K7/PwGRW35nPfzyR7Ws6xhR2a7ZogfHMS6dYl8NjQ9i0bxArNo7GzcOtwccLjgxiSLjqct2TFuF0bPyhQ9r0QlOnQkRE09puy3bYiSW1t6kaE3SDGjNtG/TPmNG8129MT7eLC/Trpx4nJ6vvBktq+cSJOAzbEq2vf3/44Qd1PRMXp65nLJkYe/c6Tu0GgLsvDH1Ke7zpho6fZm6qgsNfwoarSN9rn9WTmYlK7V7SE5b0xPjfHtb3/ED/Pbx9zngCvFUO+vMLHuTKBcU895zjSwwcoDIDK6q6sX9ftRqj/cs4WHcZVNlcaOldIeJSteziCWPfh6nLwbNfS//WnZ4E3Z1IcP8+1uUjWQ1P10xPV+k2er1KJRaiIc65dhxD+6lcwV498vnvR7mcNlkFXMfLvPjj2+2YzaqnYfRo2LixYcfNPpxLQU7hiXdsgMxD9ilPiYmq2EqlNsya5au0D/7s482767RrY4p1XtiRw9QFvrd2L4zCen4t28rLYyb1ws9LtX3HwVDyswuslYTDAjt2ifghsY4p+kPGRhA/RAt4Fj99kL93qqkO/b1z8fSRnm6hCY8Nxt9bnf8Juwfwy3r7tMOdB+3fpxv+0gqHjh+nvs8i+mk3sQ4nq3MyOdk+A8cyD3jCFi1wrTa6cs3VlXVWSW8rZrOW3unlBUPiWuZyLDJUpZhXGd1I2+d4k/HQLi2YGDOi7uEwjdGeQbebm6pmPmkS3HSTNq1UU9kG3bULVFmCcHd3rUCXpTe7pAS++Ubbd9Kk5rVDtJzYWPWzvNx+XL6dyGvBJ04tF2xT45KdTXPVnswmyN8OO56E78Nh3cVw8CPS0+xvWmZloaZBqy6G6mIOZYdSWa3GYcT2TSLU9wi7nxtE8sv9uXvuIshdy5ln2tdCmDEDLrtC60TYnjpUTf2Vt1FlAxTWylePuQMG3gjzd8GAhXLHqQ4SdHcivkG9cHdVFxfpOd4n2FvJTM5i1w4VgQT7HbOm2QhxInqDnh9/8eKpW1axfnU+YTHBnHOuljK89OsyXnsN/v1vlXJtW+2yLr8t+YcBMR4EhrhzaGfdYw4bKjO1wPE1foMHr1HpYfn5sGa3Nv9sdpHzu04mo4l3nvyLz19eW++0X5v/0r6xR/VTpZdtxw82JOj284MenjriBqjfP7vAn/W/aneqw/p27Gn9hgx1LMY4aBAMG64Nrnzlv1Oty4/dtrtD99yLtqfT6xgzqGZquZJepObYT6WXnhdEQYH2eH2Cdm6Nn672DY/UIrKUmhIJB/PtU7G3Jqg3ZMJO+zGKCXuH8OYTTgY0toB//kzi37euIjftaL37HTyoFTwaP96+KnNzRPbTbool73Ych5mySyuwFt5zs8P2pggM1ILQ5gbdDS2kZmvQIPj7b1U1vLnX+g3p6e7bV3sd2/Hsn36qLUvQ3XFYgm6oJ8Vc7wLjPgb3mgneqwrVNFfH99vvd3QjHPkBkj+CpBdgx78g7Vsoc1K9rC7GSjj4iSo2tvPfkPQSpH4N5U4+M8xmNe3Wmovg2wD4aRjseNQu1Tv9mP1NysxMwOAG3oPBezBJRfOt22JGR8Ko1+k96T76z70TzkqFvrPR6dT0e97eauq8RYtUpoDFjuOXQA+bnuuiWn9IjyAY/Qb0cCyuKjQSgnUiOr2OYN9sDmaFk57n16DnPPfIXiqq1AXwhbO2A9Nar4HipBMyMIiHFmvTz8y6IA6Pm0opq+zOkl+H8fFPZkBdfezYkgf41nmszIPZXHpNsLVHd/mXydzyVGid+zdERqrWU3PurH0sXzWAikoDb301lAcX5bNydS+MRu3eYna+86lxvnl3I9c/qrpIMjNWcffz05zut3mzFpCPmqCO5d29GFC/U2FWFhDo8LzK8ioyMgyAnoiQEqAHQycP4Y+tavuZV2lzz4SGtG8P3IkMHmFf5C08XF0cx493HEM6fvAern+0GaWExUlrzIhSltcaOtmtm+qNApUeainwuH57BAA9PYoYNEZFORHR2mfN4TQVlCen2t+M/ifRlZwsI4dz1OdM397ZZBxTN94efHEE51yRSXBk/dNr/fnNVu64pzvzp2fy7/en1btvVaWZ084PIDMvlq+W7WPLHm9c3dVNqoKcQjIO5TJorOoaXfNHAeADtGyANiBSi94P7CmmdrZ1ymHt8yW8f8sUONTpVIr333+rQLWgAHx8mnashhZSay11Bd3l5XCspk6d7bzbtuO2LT3jPXvaByyifcXEaMtJSWoYmlO9h8NpSbD1bjj4H/CKdiz+teY8KK1jQvruoeDmA3p3GPIohJxuv71gF+Rvhe2PQskh58cIvwgm/ld7vOMx2Pmk4346PQSfyfHAGzlebj98KzMT6BEO89UdsD02k0HEToiHqHinLz18uBomYTZDnz72061tP3ammhS9ukTdiPCoO2vw44/h8cfVtcGECerzbfbslrux2JlJT3cnExyhLvQLSnwoPUGHWNahHN7+WpWJ9XAr5e5/Da7/CUKcQHev7swZux2AwlJvKiu1boUjOb4U5TmfL8ZYZWTBeenk2PQ0Z2Q0P20r44iWVnX2nFyuPftvAEorevDuc9v48Uf7/XMLfZ1WL96wRnszPfDyRDb+4ry7ZstONcRDpzMxfHJ/ALx1WppV0RHnt9GP7M/EZFIft+He6u8XN0xLebXcGHB3LWf+OR2zcrlF1PBwXAza331IjPrb9Y8LxbO7Ns7f1RXe+yoGvUG+ZoSjMRMcI6orrtCWLT2maXszSD+mAuMxMQcwuKort779A3FxUQHk4YI4zGZtrmSLrckDSdisXeldclUA1529GoDi8p58+kb9pbYP7zrCOZdFsO1QNE9/MI3Du+q42K6xa7eOzDx1pbrjcBQv3LcWgKSEZKIGVjJ4XCTvPaMyZNYs32593qQRLTDBdY3ImB7W5QPJjv0qtrUlwiN9Wux1bVPMm1NMrb2Dbj8/9dkF9kG37Xhu28DctqfbYvx4JKuwA7Ht6XZawdyWuy+M+whOWQkxdzlud6u7Y4HSNCjYAcc2q55yu21HYMUQWP9/dQfcAB61bl6HXagtu3pB8Bkw4hU4PRmmfEu6ybGIwfHjariDhW3vvu0NCGd8fVXADSpotrwHt1s+rlx6QK946FZ3x9/jj6vMvtWr4ZlnYP58NX2ekKC70wmO0O5o1U59qu3Fx3ZTXqXuZF9/XgIBEQ3rHReiPuecXXdPbNJm5wOmnrnzb/7YOsJuXfrRPk73bQzbwL1vWHdue6CftXrva59E89NP9oG9yWwgL8NxvuzkVO3qrtroykWXeVOQaz/ndkVpBdsOqm6N6OBD9Oytch+9e2mpr4VFzj9SD+/VxqRGhKrAdPJkLUWxe3e4+Zqj7NqUzagZg+r/pduZm4cb0UFasDIkUFWE1xv0xA3T/hb33Wdf4EgIW6NPsY9W+vaFC22uLy1B9/rfDlvXjR+l3dRzcXMhJEQF1CnpPcjPdyyiuOeQP6tWaY/HjIE7H+lvfbw6qe4sjKqKKi46r4CCUi07ZtNf9Q+JSUiwf/zEm+NYvTSR2fO7kVukvn8ff300lZWw5h8VubkYqhgzyXkGTlNEjtCuqpOLJjhsT83QgvKwqJYr8tJS47otQbeHR/sErnq91pNdV9BdV0+3haSWdyzR2qy5daeX1xY0EyKvcVhdFX49f1f9h/Kh78CkJTD5Gxh0H/hNBrfeYOiueqENteayy/nb/nHgTJjyPUxdBhP+C7H3QK8Rar0tn8Eq+J/0NZybB1O/h5jbwDMCqDsOsJ2ruzFBty29XsvYSEmpf/icRVmZff0aiyVLsNbDMZvVdHoxMc6nLTuZSdDdydQ33shWTmouby4ZDUA31zLueTK27p2FaITTLh2Cm4v69PTyKOTWi7QpeHYnOhYBS0pI5rE31MWtJSAGyChtfv5dRpY2vrhvhDcDhoVz1iR15ZtxLIi8PMcBftlpjm08eMT+ovdwTihX3+BpV0Nl54aD1grKowZr46m8emspmnUF3SnJ2kDF8HDVpoED4Zdf1FyzaWnw2rt9GDAs3OnzO5rBwVpX1uAo7Zv4ppvUjYQpU+Chh9qjZaKz6B3Ui8gAbbzkrKnH7HtLt6jpv9av1bIqxk/SAkbQKm/n58PWjY7va5MJPvlEezxmDAyMDyWwZgTImrUGqh0LfAPw0LVr2bhniN26LQn1z9hQO+iuqOrGtHPiSTuqfXFnZOh489Vi9hxRNx1GDtxLd6/utJSQiO7WntoDBxy3p2Spnnjv7oV4+zWsNkxD2N5ga4mgu6HjuVuD5Trr6FEtUKhrFph+/RzHkUvQ3bF4eWn/Zyfs6a6H0Qin3Xk9U664nLGXXkuB1/kQeg7EL4KZf8F5eXBhCVxshNDz7J/czR9Czlbrp/8G01dCyBkQfBpEXATDn4O5W6DvHMcXHvEChJ3rdNot2/PSds56y7RhZrP2O4eFqfHajWE7TKIh72vbz5wzzlD/QAXjlun0duyAV15R1eS/+KJx7ensJOjuZBoadL/8+C5KK9S769pzEgjqL2XLRcvw8ffmg+c2M3v0ZpZ/eZjTztQ+xXfvcuwFX/p5mnW6ngcX/kX3muvLE2VqAPz02SZCfDO589JVTrdn5GgXq337qZ6kO+9xHKcYHKAFvdkl9tNYmE1mDmaqrosA7yx6+air8G++0Vm/JAC2rNOKEo0aof2e3r7a719Y5FhkDODwIW3/iEitfTNnwjXX2I+d6gxmnK7SfV0NlUw+c7R1/aWXqt7GP/5Q43OFqM/YWG3qrtmjt9CnDwT6qGB75y49ZjOs3Bxv3WfcTPtuRdvprv5coXVFhgVpN4Jya962/v7qolOnU1NlgSratXWrfZtMRhOvPbya5z+ZBmA3lGLzwfrnzLbM4GAwmAn3s09F7+OlZbs8+Kj25pg0qv6Ca41lMKhpk0Abn2lhMppIy1Xv3fCARhR+aoCTMegGrYe7rp5ud3c1X7eFi4u6uSM6FkuKeV6e9pnQWP/+N6xcqZa3b4ezztJuyjiofScm8FSY8i1M/p9abiG2FfaHDdOWLUF3djbWopSN6eW2GDpUW96x48T779M+0hk9Gs6zuffw++/q5/Ll2rpBHTuxr8VJ0N3JBPtpFxPpe/bXud+3K1WPmauhknufiqpzPyGaYsEdE/k5YRSTzxjGoFHaFcjufY49Nr//rQ2JuPLmftYLFtuLmLq8sKiI9GNBvPzFNPKzHNPCM3JVT41nt+PWdO+J84cyaqBWOUSnM3HZZdoXYHau/d3inNRca3G34dFpLHpW275ihbZfQoJ2DEsRNQBvXy01vajYedBtO44yYmDLpZK2lyvvmcCXr61j9Q97iRgcYrfN01MKpoiGuebWYLq5lhETksxpV4wHYHA/dTcut8iP/35cyO796j0+YXQhvYPs3zvhYdrNrN9XaTezzp2X7fBaY2P3Wa+DLUE3qHGHFikpMGv8Pm79t7bD8/esI6im1trmbd51ziB0/Fgxu3apTJ646HzeeUULan175rH2z0JGjVKPy8q1z4NJU1ummJktyzjjsjLt4hsg81C2NVsnLLBlpm206NMHawZBc8Z0W6qXt8d4bgtnnRt19XSDfYr58OGN700Ura92MbXGWrXKcYaW1avh8stVRk17sT0vLZ8voKWX2/6usU1IeLXt6d6+ve79LGyD7qgoONXm/oKzoHu+Vli9S5Cgu5MJ9kmxLqfvd95VWF5SwYEMVbY/rl/yCauzCtEcffsH4uWhLuB2HbQvAlJWBmt3qduv4f6Z9I8Ls16wFBXZTw/jzIEs7WomK9UxfTTzmCpq0tdX6y3S6XXceZMWoI+NSmRIvHYVlJNjf4zkXdoFev+wMms6FMDPP6ufJqOJn9aqtri7lhM/WRuP2sPbE4Ne9Y4XFju/gD58RLuCDI9xrG7e2bi4uXDhzRMYP09K9Iqmm3p2PLnZRnYd7odnL/UeGRKj1VK4wyZr5Y57HVOhI3poqSibdmtT1Zx9ttluKAvAmDjtLt+0qVrkvHq5yofculX16vy+Sbs6v+3i1dz27ynWi9nCQsdibRb/rD6A2awuqcZE7WT2JaNY/NBqzpi4kV9/yCVqRH/uvMPx6nzibCeVuJopMkT7TEtO1G7Op+7TPifDQ8pa/HUtwwNycx0/ZxuislL9g47T020Jaurq6Qb7YmqSWt4x2QaciYmNe25uLlxyiRZcX3YZ1oy9r76Cp59ukSY2SV1Bt+Vmm206fXOD7ob0dO+36QuMilLvFcsNj4QENVXiBlUGhsGD1fCMrkSC7k4muJ+Wh5qe5e50n31bU6zpvIMG5DndR4iWotPrGBSuCqil5IZQnK9F0uvWQUWlOhdPPS0InV5HX6+D1u0Z+7XCRLXvFleWVXLkmNaLmnPMPqAtPm6mqExdiPcNs+8WOe/6scwevRl313Iee8SEv01B8OxanWAHcyKsywMGBxIYCMOGqYvyf/4xk5uWx6bfdpNRU0F55qjt9PDWgnidXoeXhwoUCkvqCLozVdG43p7HrD3yQgjw7OVpV+F+yBBtOeeo6pWNiFCpnLWFD9Deh0aT1nscNzqQmJCDdvuOmaC972JiwN9b5Zj+leCHscrIHXdohdhCAo+z8r9beOWLqej0OkZqM/qxZYvz3yNhbYH2WmNUl/otT03l+zVjGT5NXXWed66REF/tKjk6aA9+oc0vKFnbgD7alfaBHVqPe0qydkMjPKz5s0fU1twUc9vK5Z0p6LYNTE45pfXaJZrOMv0gwA8/NO65996rBbGnngoffqiCbX3NR9V777VMG5vCcn7q9SrLwsLS3qYWUbPo1QtCai7DduygzkwfC9uebksGiKW322iEBx7QjtHVerlBgu5Op29/LXo4ku38W2n3Hi0YHxTbsef8FSeHQZEF1uU9W7QK5pZ0ItA+eIN9tO3pB9VNoS1bVGri1KlQVTOEMnVvpvXmEUB2kf2VTmaWlu5tGc9t4eruyk8bRlJW7s6cS0cR4Kv16mQfTLHbNzlVex8NGK6GYsweoXrQzGYdv367h6UrtQJnZ5/hOIjLq7uan6OwxDEnsrqymiN5qnc7ItAx7VUIoRkc7+Ow7rbbnFeyjoh2DFh7ex7Dx9+b4TH277XR07XuSJ1ex5Thqoe7qMyb157PsKaZDxwIO/f0ZOZFWqRt24O0+W/nY6ETtmjfu2OnOq+h4uruyi0LtO6iiSMaMMamCSKjtWE+B/Zr1wAp6dpNivB+brS05lYw74hBt2XMrCW48fZ2TB+/8kq4+moVUJx2Wtu0UTTO0KFar+qqVdqc6ydiMsGyZWrZyws++0wNnzrtNDVmGVQh1PLyFm9yg1jOy4AA+9oCzoLupvR0gzauu7AQUp1PUGNlCbqDg7UhIrYp5kuWaMtd8b0iQXcn4+bhhp+XukOfnuu8+tLuVC1AGDRtqtN9hGhJgwdpF3a7E7XsCtuge/p09bNvXy1YzkhVweo7b1aQmwt//aX+ARzaY19gqHa6om3PQ5CTERQ6vQ6dXr1WQG/tai47xf5AB206xCwFiGbP03qsf/4Zvl2mrgD1ejj9Ksf8QW/PmqC71PFKMeNgtrUXrqXHUQpxshk81r6Cv1ePEq66yvm+IQMD0evsbyz3D1JB8Yhh2o22qKC99Arwsdtv6qRK6/K9j2kfII88ogIrWyPjtPft5jWZOLNxp0pv7+FeTOzoulPGr39kAsMHJNGrRz433N46Q00ih2hzCScf0oLrlCKt0lLY8LEt/rrNnau7owTd4Tan4J49qmfO8n1Tezw3qODivfdUmnHt+lmiY9Dp4Jxz1LLRqAXSJ7J7tyq+BjBtmla3ALRhBWYzHKpn6u3WUl2tZe4FB6uCrJaZCyxjui3p5b17qznomyI+Xlu2vaarLT9fK1IXZVNKato0LSvAolcvNZ99VyNBdycU3Ed9AmTm+2OscuzJ3q3VkOpylQFF+xg0XOtx2p2mPm0Lco+zebPKIxo8WPuyCg7Vio1lpKtu7T2btHTIpF1q3cH9JXavUV/QXTvdrzbfvr7Wi/OcY/bdFLZjNC1B98R5g+jurl7/6z9GWMcpTZ4Mfv6OV1XePdQFfkVVNyrKquy2paZoefNhoXXMTySEAMDL14swXy0b5eqzNuHl5XxfV3dXgn3te54HhBYAMGK0duNsTMxeaps6Rwu0q6rVTbHIfqVcfLHj6wSGeRPiqz5wtuwbgMloPxYm82COdVqwUdEHMLjWXUnQy9eLfw7EknOsJ6NmtM4XdERssPXz7kCaj3W9bS9VeL+Wr3Zoe73RlJ5u2xof7VlILSwM65CkdetUMFFaqh6f6LtGdFxnn60tL13asOesWqUtT5tmv822gJ6z6flaW1aWNiwvOFjdWLBcZ2VmqmsmS6ZGTEzTbwidfrq2/NVXde9nO5574EBtuVcvGDHCft+5c51nL53sJOjuhIL91cAzo8mFnDTH6UYsd5jd3bUgQojWNGiC1sWx+5BKrVz9QxImk/qUnz5cm5fHdvx1eobavjdVu5JJ2quC8kMH7S9ss7PsBxNlHNDGRvb1rz+3y+BqoI+XyifLzrfvxjq4XwXMAQEma9qge3d3Thmu3khlldrFu+VOeW3e4dq8GrUrmKcd03K+QkdIlR0hTmT0EBXgGvTV3PJgZL37RgTaz/8zoJ/qwZ581lhmjNiCv3cutz7geIzB4yLx7Wlf8+Sh6/+p80JwVKyKWI+XeXFg22G7bZtWad1cY+IL6m2vhYtb611xunm4E+an/oYH0oMxm9RnZ0rNvQw3N5WO2tK8vFTACiroPtH4z9o6Sk+3TqcVRCsshF9/1bZJ0N15jR+vnfe//AIlJerm/f/9nxoaUO3knrjt7AZTayWO2hbQa4+g21lFfUvWX24ufPuttn3KlKa/ztixWvbH77/XPeVa7crltmxTzKFrjucGCbo7pZAgLcA4kmx/0VBZYWL/fvVNFxMjU/eIthEaqvVMWDIt/vhVS+88dZqWyhncT5v2JyPLjYKcQnIKtbynPbvU8w6m2BcKzNmTYPc4Y692W7VvT8eerNoCeqnq59kFfawXoaVFpWTmqKB6gK9918zsUx2r+zor5gTg5a19lBbWyiBP02rF2Y25EkI49+yrfbnmzL/439ubiRgUUu++ESH2UyD0H6C+9FzcXPh1y0iyjvVh9EzHHmW9Qc+Uodr46n5+B7n0trpTrkfGa9+7m/+2TzFPWK99VowZ57zAaVsbEKyujAtLvTmWlY/ZrAXdYWGO6Z4txdLbXVRkP11ZQ3SUoBvsq5Db9u45Sy8XnYNer32Hl5er/9dZs9Q47UWL4Mkn7fc3m7Xhbt7e9vNgg31Pd12zGrSm+oJusxneflvbXleHQUPodHDhhWrZaIRvvnG+X0ODbr0e5sxpens6Mwm6O6GwUK0HMDXZ/gp//9ZDGI2q93BQyD6EaAs6nVak4+BBNVXY7+tVl4BeZ2Tq6VrZzCCbomfp2T3YuzXN7lhJ29U5fajQPh8pJ8++Mnhmttaj3Dfc54RttIzrrqx2p/CoyhY5uFP71uofWmS3/+xzwuwej4w+YO3Fqc12DGh9QXddzxdCaAYMC+fd76Zw9jXjTrhveK0hGwOi7aM1S10HZ+bO1S6BHrojHVd31zr3HTVOy9DZnGA/hCRhq/aaY07pGG/yyAjtZkTyzgwKcgqtQW1YnyOt9rq2FZL3nvheqJ2OFHTbVrtesUJblp7uzs02xfzaa+1rDzz5JPzxh/Z4zx5tWNukSY6dWA1JLy8rgwrH2qtOZWfDggVwzz0Nm/u7vqAbYNs29TMkxL4YZFNcdJG2XFeKeX1B96RJ2ntZu9TaAAEAAElEQVR62jQ1xrwrkqC7E4ror10YHD5o/27evVUb+DqoX+tURhXCGUsPh9kMzz/wD7tS1aCeUVFJ+PhrUWm3Ht2saZ0ZR3uxd0eB3XEy8wMpzC3k4GH7HqPsY/Zp4Rk5WoXeoH4nnnYnoI/WG5VzRL3+wT1aCdMB/ewv3gfGRxDhp6WNnj3zcJ3Htg26i+xjd+npFqIVRfSzv4zpH9/weXGuunci/751FYsfWs1V99U/9GPklAjr8ubtWraOscpIQpK6+g7wySE0qmNEZQP6a1ftB5IKSdmrjX0P9z3caq8bHa0td+age/hw8Ki5z2sbNElPd+d2yina97WxpiSSpfiY2QyXXqoVJ6svtRxUYTJLhp9tT/f27XDHHSot28tL7WM7RAHgt99U+rcluDYaVW/y55/DCy/UP3bawlnQHeikNuNZZzW/wF98vDZOe/Vq+5o6Fpag22BwnH/bw0P1kN94o30PfFcjQXcnFD5Au8I/nGU/MGv3Du3bYVCc8zmDhWgNgwM3WZcfe1XrpT5thmPdgb6+NUH3MX+SdjsOpEpYneEwpUdOYS+7xxlHfQDw7l5gN292Xfz7aK+TfURd3SXv0wLx/gPsx1jq9DrOnKHGcep1Rs67ou4CCd4GLTgvTLO/0kzbrdLgDQYjQYEtPzeuEF1ZRKT23ndzrSY4vFuDn2twNfDgq9O45amp9faIA/iF9iHcT/UQ/7N/ANWV6vNk23Y9haXqO3nSmIITHqetREZrf4cD+6pIPVBgfRwe1noFHZsTdHeUQmqgArFxThItpKe7c3Nzs5+qqnt3lUI+c6Z6nJWlxnhXV9sH3bWLqIEKZC293YcPq+lOS0rUvq+8AgkJ6jjV1fD669rzNm9Wr3fuuXDxxeqmzpNP2r/exx+f+Hc5YpOwYplL29lMLs1JLbfQ6bTebrMZvv7afrvZrAXd/fqpv3NtM2fCG2/YF1nraiTo7oQihmtFq1IK7Cfe271XO9MHjfBHiLbirFL+GRM3cvczjuMkg/1VDnZltTvrNvs4bF+xwjG36niZF2XHVZBsNpnJyFNp6kG98xz2dca2cFB2uipFe/CQdoE8IMaxRPJjLw/j/itX8eUbCUSPrCfodtHKAhdm21cZSc1WNwv69srC4NIxLsiFOFmExw22Lkf0c2nVOibjh6r3eUmFJxtXquIVq//S3tNTT4ty+rz2EDlY+8BLzhlAykFtTHp4ROsVcbMNuvfsqXs/ZzpSTzfYj+u2kJ7uzu/669W4Yjc31aM8bhx8+qnWS/zrr3DzzVoQ3LOnynxwxlJMrbpazQ6wYYOqdm9h6WHevFlb9/PP2vKSJTBhAvzrX/bH/fVX573JtmynO3WWXg7g66tmXWkJlnHdAF9+ab8tM1PdcADH1HKhkaC7EwoK0tJhDh+237Y7WQUiroZKBsRJLqtoOyMmheFqUAXTfHoU8OlLa/nurzF49HTMuOgbpl1RbUiKddi+4jcfp6+Rm666v4/nH6ekQnWF9PVr2NzXAYHa1Xh2lmpn8mEtRb3/IMdyvr0CfHjmw2mcf0P9E0p6eWsXsYUF2jR+ZcfLOFqkUt9D/Rt2c0AI0XBh/bvRp2Z0yejRrftas2Zq7+1flqnPohOloLaX/sO0/M6/t4RaZ4UACBtw4sygpgoK0gLmzpxeDo5Bt07XOlXfRduaNEn1yh44oPV6BwSoQNJybf3OO1ohwIkT657eqnYxtTVrtMcff6z1kGdkaMdLsK8Jyz//aJX+Lb3AJpMq8FaXTz+F9evVcnCw9n6pHXSfcUbLTc01eDAMqenzW7/ePr29vvHcQiNBdyek12sFmVJStDdrVUU1e4+ouv5RwSm4unfBSfBEuwnqH8DSD7fx+A2r2JlYxoI7JtaZahkcq427rKxWY7d9emi3h/elad0JPj0KrMvZaSrAzjiopaz39S9tUPsC+mrBv2V8+MF0XwA83EoJjGh6Zoh3b+2CtrBQSyE/ciDbuhwWdBwhRMtyc4Pvv4dHH4Xnnmvd15p9nnaF/cv6gZhMWnXj3r21C9KOoEcP1YMGcOgQvPOtlisdHtl6VYx0Oq23+/BhVSW6oTpa0D1unH2V94AALSgTnduAAY41VqZOhY8+cty3vptptacNsw26p061L2C2ZYu6XrcE3Z6eqifaYuZM+PFH7fHHH6v98/PhxRfVmOjqanUz64YbtP2efVZbrh102xaOawm2qfmbtBGFEnQ3UKsF3W+99RYXXXQRw4YNY1QDy+aZzWZeffVVJk2axNChQ7niiis4XLsrVwAQEaF+FhVBQYFaTt6eSpVRpZcPjqxjIj0hWtH8y0bz2JvTCI50MrDIhrNxcdOG76W7e4nD+jGxWlnQnEy1PSNF693uG9iw8Yn+sdrnUE5VPMZqE4eyVXDfPzC9WWMxvXtpRd9sC6mlJWs3EkKD7SseCyFaxoQJ8MQTrT/etu+AIOIGqShy085gVv14xJpKOmWysdWm4WqqDz5QY1YBTCbVOJ3ORGhU/Z/PzWUJus1m2L+//n1tdbSg28vLfpooGc998rv0UvsgFuoPum17uvfs0XqfQ0JU55ht+LN5s0pBtxRqmzgR1q5VP085RfVeDxyoZVjs3g1Ll6rPt7vvhvPOU693+ulaKveVV6o2W/j7ayntPXpoY9VbysiR2vLWrdqyBN0N02pfEVVVVcyZM4eLL764wc957733+PTTT3n88cdZsmQJHh4eLFy4kIqG1tvvQsJ7aWf44e1q2a5yeXSlw3OE6CicjYuLHRlCdEiqw/pxI7XqOjmZ6oI3M00Lzht6IWQ3pjsbMpKzrL3sA0KP1fGshvHurRUtKizSPlbTDmntlMrlQnR+s+ep97rZDI88pr3Xp8auqesp7SYmBt58035dkE8mbh5Oqhy1oKYWU+tIhdQsbKcOk/HcXcM998Bdd6nl+Pj6h63Y9nR/950WDE+apILf2j3dtqnlY8ao98qaNWqqMss1ymWXafuce659bYSUFO1GVmwsvPaafXtcXVVQDmrsereG15VsENux7RJ0N16rBd233norV1xxBVEN/OubzWY++eQTbrjhBmbMmEFMTAzPPfccOTk5/Pbbb63VzE4rIkCrsJCyX91q371Dy+MaFOfu8BwhOgpngXL08BBi+tkHvx5upQyN187l7Cw1pjIjW1vXN6RhF5D+Ntnj2dmQvFcLiPuHNSIH0gmvXtoYycLj2rCO1BStFz40ooW//YQQbW72bG153Vbtg2zqHCdz9XQAl18Ol83X8kDDAlq/tkRT5+q27enuKEG37bhu6enuGnQ6NW3XoUOwcWP9Y6JDQsC95nLEdnpQy3nTrx/0qpl4ZfNmdTyLMWOcH/OCCxyD5YEDYd487XG3bqoIXA8n5Rm+/VYFwa0x3KZ/f23KtX/+UT/NZi3V3NNTbk7Vp8MM+j1y5Ai5ublMsAxCAnr27MmwYcPYunUr8+fPr/O5RqMRo9FY5/b2ZmlbS7YxLEIrCnUouQyj0cjOJC34iB7Wu0P/TUTjtcZ51F4Cex0F7CvSREYaSYmqBJt7bBEBmfTpF2Z9nFU5DKPRyJEyLccpYNDIBv1NDAbo1UtPfr6O7Gwzq7dqt6j7jx7RrL+rZy9tvHjhcTfrsVKPaPc1+0Z4doj/u5PpPBLtp6ueR+PHg4eHnrIybTiKT48CBo/t12H/Fov/E8WeSTtJ2DuES8871rh2Go0YrItGbXLjeqiUW/WspCQTRmPdUyXankfHj+sBHR4eZnQ6U0NeqtXNmgWhoXoyMuDMMztGm4Sj1vg8smSnneiQ/frp2bPHfnja+PFG6/NGjNDz++86srLg++/NgK5mvdHpsT094cwzdXz1lbp+GD3azA8/mPDzUynnP/6o49RTzQwaVHfb+vdXwXBrnK/Dhun56y8d6emQmWkkPx+ystT7feJEM2Zz532f1D6PWvozvcME3bm5agyyr21VgZrHR486zvNra59tXkMHtmPHjhY7lsFdG9O6Z08piYmJrN8XD4CbaxVlugISExNb7PVEx9GS51F7MVYbMeh9MZq0j6DKyh306GvfvREakE1eiRegbp3uO2QiMTGRpKR+gCoGlF+4j8TEhg2n6N2jL/n5QWSll/P223rAHb3eTP+oQyQmNn3MtbHaCKjPrvwiF+t773CaVnWnpOpoh3pPngznkWh/XfE8GhPnw+oE7abduEG72LGrY2eyvPaxkeN5f+IT4NWozyF9WRmWjNLt27dj8nCcjaK28nIdOt1wzGYdW7eWkZh44rnDduzYQV7eEMAdD49qEhO3N7iNre2rr3QcP27A17eaDvQRLpxoj88jP78B7NnjY33co4eR6upE67kSGtoXUHUUDhxQAXdQUAWZmTutFc1rW7DAjeTkcEJDK7jzziOkp5us1cIt47Tb61wMCQnB0mnyzTcHycx0A1QR54ED00lMzK77yZ1Ea51HjQq6X3jhBd57771691mxYgUDbAc5tIGoqCi6W6qFdEBGo5EdO3YQFxeHoYUmEe3dzc+6nHO0NyEh8aSmqWMPH+HCqDENK14nOo/WOI/aU1CvbI7kqXw9/z5VTJkSR+/ewMPaPgP7VTF1qjalWGVlb+LjfSgt1XqQTz11EA24DgQguNcOko8EUVrhQWmWWjdnDsyZM7j+JzaAZ7fjFJf3pLjUk/h4NV1P5lE1kaa7azmTZ0xqVrG2lnKynUeifXTl8+isU/+2C7pPnVpJfPy4ep7RiZVow3CGDh3qPJ/VibAwNf70yJHuDBsWby3uVJvteVRRoW5S9urlQnx8fHNbLrqQ9vw8Gj5cx99/a48nTtQzcmS89fHcufCf/9g/Z9Ik13rP8fh49TzogaWDoaOYNUvHF1+o5aKiARw6pG278MIg4uNbt1Bja6p9HpWWlrZox26jgu6rrrqKs09Qfz60idWC/PxUEJmXl4e/zeDLvLw8YmwHCDlhMBg6xZd+S7YzdGBfXAxVVBtdOZzhw6ZN2nEnTNB1ir+HaJrOcr6fSF/fXGvQHR24C4MhnpgY0OtN1kq7A/qb6d3bgJsbVFZCbq46t48cUcfw8QFPz4b/LQL6lDmsu+GGlnm/ePespLgcCiv6WI+Xlh8BQGhQCS6uvvU8u+2dLOeRaF9d8Tyae24YdzyjPZ42O+Dk/RvY/F4Gg8HucX1iYlTQXVSk4+hRAx99BK+/Dv/6Fyxc6OxlDBQXq8jc01OuYUTTtMfnkWVubYvJk+3PX2djt8eO1Tf0rdTh2BaHS0zUs26dWu7eHcaONXTa38uW5Txq6XOpUYXUevfuzYABA+r95+bWtKqYISEh+Pn5sd5Sbx8oLi5m27ZtDLctlycAcHFzIcRXddWlZAdg82dj/Ph2apQQjRDcSysGGB2mcqzc3WFAqDbNVr9ID3Q68PdTBclyssrJST1KSoraPnhg46qOB/jZp6GHBh2vuZvcfF59VFBdWOqjfhZC0XHVcxM6oGMF3EKIposa3o/+Aap7x6dHPvFTpFxvbbYVzN96Cx58EDIy4JZbtCmTbFVWqn/QMaYLE6KhbKcNA/viewDh4fbzcUPdRdQ6g+hordDbL79gTXufOFHmsT+RVqtenpGRQVJSEhkZGRiNRpKSkkhKSqLEJlVpzpw5/PrrrwDodDouu+wy3nrrLX7//Xf27t3Lvffei7+/PzNmzGitZnZqEUFqrHt+SS9++S7dun78uLqLlgjRUfT10Up9Rodr88rHRGjL/aPV1Ze/h5ojI/eoC+tWJlu3j49p3Lg/fz/798bVZ29psbuyloqexcWqeIltJVOZLkyIk4dOr+Pd1/KZM2YTH768Fxe3DlMep8OwDbr/9S9tuawMXnzRcf+ONke3EA1lO6LWxcUxoK49dZheDyNGtE3bWoOLizZ/fVGRtr6++cyF0mrfFIsXL2bp0qXWx2eddRYAn3zyCWPHjgXg0KFDHLf5pL3mmmsoKyvj0UcfpaioiJEjR/L+++/j7i7TXzkTHlwC29Tylt2q0FSIbwYhoTKvhej4ooYFwy9qOX5SuHX9dVcd59d1ZYwbtIchE9Qne0BvNYGr0eTCj8u03urxkxpXvMh2rm6DvpqFd0TXvXMjWYJuUBeQEnQLcfI69fwRnHp+e7ei44qu56P1jTfUXMh+WmkaCbpFpxURoSqOFxfD2LEqzbq2kSNVrzDAkCENLo3QYQ0fbj/9GUjQ3RCtFnQvWrSIRYsW1bvP3loTOOp0Om677TZuu+221mrWSSUirNph3fihKYAE3aLju+LeyWzb/Tf+fkZOvUj7tJ5/2WiOnV1Gtx7x1sJj/n20ebSX/aVdzY2f0a9RrxkUrH3knT7yZ4IjT2tq8x3YBt2FhZB2IA9LRfPQEG2aECGEONnVLsXj6qqm3/rxRygthZdegmdsxsUfPqwte3m1SROFaBGurvDhh/Dll/DQQ873se3pHj26bdrVmmr31Ht4nBy/V2trtfRy0foiBjnOQD9+TEU7tESIxvPy9eKDZZN55sNpDlW9PXp62K3z76PNlZhdoAothvsdIai//VzfJ3LK2fHEhCTj06OAx14YeOInNIJX9RbrcmHaftJsppwI67G5RV9LCCE6sr59Ve+fxYMPwttvg6Xsz+uvQ16etv2tt7TL0cmT26iRQrSQ88+Hb76pO218zhyVku3jAzfc0KZNaxW1S22NH69q8oj6SdDdiYUPcQwaxk/r0w4tEaJ1BTiJrccPTW30cTx7ebLzYAR5hV7ET2m51HIA7+5afmThsVLS0rVe9dABPi36WkII0ZHpdDB/vloeOhQeeABCQrTK5cXF8Nxzajk93Q3LaMSAALjwwrZvrxCtycMDtm6FnByVat7ZDRmixnZbSGp5w0jQ3YlFRNg/dnOpYPiUlu29E6Ij8A90HAkzbkxVk45lcDWgN7T8R5+3t1akraiggrRMbWBX6EB/Z08RQoiT1rvvwooVsG6d1gt2//1aheMXXoDVq+HLL/0xmVRm0803S4+ZODnpdCdPde9u3WDQIO2xBN0NI0F3JxYSAnq9dqE/cuA+3LvLt5U4+fgHOhZM62hZHd7eWjp8YX4VqVm9AejpUYS3n3ddTxNCiJOSlxfMnWtfNCosDB55RC2bTLBggZ4fflCf5d26wfXXt0NDhRCNdsYZ6md4OIwb175t6Swk6O7EXF0hOLDU+nj8iLx69hai8woI9rR73M21jPjJHSurw9tHm3ssN7uatKOBAIT65bRXk4QQosN58EGYPl0tZ2bqKClRn52XXw59Ota9VCFEHR59FFauhPXrJTuloSTo7uQiemrFm8aPl/m5xcnJP8TH7vHIqP24ebi1T2Pq4OWj5Y19vMSfiirVOx8fnd1eTRJCiA7HYIDPPgP/WqNubr+9XZojhGgCV1eYOROCgtq7JZ2HBN2dXHy8CrTdXCqYOCfmBHsL0Tn5Bfe2ezx+fMf76PLupd3q3Zoca12++jonk3YKIUQXFhSkAm+dTl3DzJ9vdphmTAghTiatNk+3aBsPLRpEN/dVTJziQdCAse3dHCFahWs3N3r3NnHsmAq2x88d0s4tcmQbdFtEBR9i2tnxbd8YIYTo4GbOhG+/NfHNN7k8/7wfYDjhc4QQorOSoLuTC4jw47mPp7V3M4Rodf7+eo4dU8sdsWiHd2/HHu3rLk1Bp+/XDq0RQoiO7/TTITQ0HT8/v/ZuihBCtKqOl6MphBBOzJ2rfp5yCvTt275tccbLt4fdY3fXci6/bWg7tUYIIYQQQnQUEnQLITqFF1+ErVvVvK8dkbefj93j888z49u3t/OdhRBCCCFElyHp5UKITkGng/j49m5F3dw9XHF3h4oK9fj6mzzat0FCCCGEEKJDkJ5uIYRoIbE1RcuHD4cJE9q3LUIIIYQQomOQnm4hhGghX30F33wDl1yieuaFEEIIIYSQoFsIIVpIVBQ88EB7t0IIIYQQQnQkkl4uhBBCCCGEEEK0Egm6hRBCCCGEEEKIViJBtxBCCCGEEEII0Uo69Zhuk8kEQFlZWTu3pH5GoxGA0tJSDAZDO7dGdFZyHomWIOeRaAlyHnUR5eUQHa0tt3CFSDmPREuQ80i0hNrnkSW+tMSbzaUzm83mFjlSO8jLy+Pw4cPt3QwhhBBCCCGEECeZiIgIfH19m32cTh10V1dXU1hYiLu7O3q9ZMoLIYQQQgghhGgek8lERUUF3t7euLg0Pzm8UwfdQgghhBBCCCFERybdw0IIIYQQQgghRCuRoFsIIYQQQgghhGglEnQLIYQQQgghhBCtRILuNvD5558zffp04uLiOP/889m+fXt7N0l0YK+99hrR0dF2/+bMmWPdXlFRwRNPPMHYsWMZPnw4t9xyC0ePHm3HFouOYNOmTVx//fVMmjSJ6OhofvvtN7vtZrOZV199lUmTJjF06FCuuOIKh9kfCgoKuOuuuxgxYgSjRo3iwQcfpKSkpA1/C9HeTnQe3X///Q6fTwsXLrTbR86jru2dd97h3HPPZfjw4YwfP54bb7yRgwcP2u3TkO+xjIwMrr32WoYNG8b48eN59tlnqa6ubstfRbSjhpxH//d//+fwefToo4/a7SPnUdf2xRdfcPrppzNixAhGjBjBhRdeyOrVq63b2/KzSILuVrZixQqeeeYZbrrpJpYuXUpMTAwLFy4kLy+vvZsmOrCBAweyZs0a678vvvjCuu3pp5/mzz//5JVXXuHTTz8lJyeHm2++uR1bKzqC0tJSoqOjeeyxx5xuf++99/j00095/PHHWbJkCR4eHixcuJCKigrrPnfffTcHDhzgo48+4u2332bz5s0OFzDi5Hai8whg8uTJdp9PL730kt12OY+6toSEBC699FKWLFnCRx99RHV1NQsXLqS0tNS6z4m+x4xGI9dddx1VVVV8+eWXLFq0iKVLl7J48eL2+JVEO2jIeQRwwQUX2H0e3XvvvdZtch6JwMBA7r77br799lu++eYbxo0bx0033cT+/fuBNv4sMotWdd5555mfeOIJ62Oj0WieNGmS+Z133mnHVomObPHixeYzzjjD6baioiLz4MGDzT/99JN13YEDB8xRUVHmrVu3tlELRUcXFRVl/vXXX62PTSaTeeLEieb333/fuq6oqMg8ZMgQ8/Lly81ms3Yebd++3brP6tWrzdHR0easrKy2a7zoMGqfR2az2XzfffeZb7jhhjqfI+eRqC0vL88cFRVlTkhIMJvNDfseW7VqlTkmJsacm5tr3eeLL74wjxgxwlxRUdGm7RcdQ+3zyGw2mxcsWGB+6qmn6nyOnEfCmdGjR5uXLFnS5p9F0tPdiiorK9m1axcTJkywrtPr9UyYMIGtW7e2Y8tER5eSksKkSZM49dRTueuuu8jIyABg586dVFVV2Z1TAwYMoG/fviQmJrZTa0VHd+TIEXJzc+3Om549ezJs2DDrZ9HWrVvx8vIiLi7Ous+ECRPQ6/UyJEbYSUhIYPz48cyePZvHHnuM/Px86zY5j0Rtx48fB8Db2xto2PdYYmIiUVFR9OnTx7rPpEmTKC4u5sCBA23XeNFh1D6PLJYtW8bYsWM57bTTePHFFykrK7Nuk/NI2DIajfz444+UlpYyfPjwNv8sav5M36JO+fn5GI1GfH197db7+vo6jEsRwmLo0KE888wz9OvXj9zcXN544w0uvfRSli1bxtGjR3F1dcXLy8vuOb6+vuTm5rZTi0VHZzk3nH0WWcYuHT16lN69e9ttd3FxwdvbW84tYTV58mRmzpxJSEgIaWlpvPTSS1xzzTV89dVXGAwGOY+EHZPJxNNPP82IESOIiooCaND32NGjR+0ucgHrYzmPuh5n5xHAaaedRt++ffH392fv3r288MILHDp0iNdffx2Q80goe/fu5aKLLqKiooLu3bvzxhtvEBkZSVJSUpt+FknQLUQHM3XqVOtyTEwMw4YN45RTTuGnn36iW7du7dgyIURXN3/+fOuypXDRjBkzrL3fQth64okn2L9/v11dEiEaq67z6MILL7QuR0dH4+fnxxVXXEFqaiphYWFt3UzRQfXr14/vvvuO48eP88svv3Dffffx2WeftXk7JL28FfXq1QuDweBQNC0vL8/hrokQdfHy8iIiIoLU1FT69OlDVVUVRUVFdvvk5eXh5+fXTi0UHZ3l3Kjvs6hPnz4cO3bMbnt1dTWFhYVybok6hYaG0qtXL1JSUgA5j4TmX//6F6tWreLjjz8mMDDQur4h32N9+vRxqCBseSznUddS13nkzLBhwwDsPo/kPBJubm6Eh4czZMgQ7rrrLmJiYvjkk0/a/LNIgu5W5ObmxuDBg1m/fr11nclkYv369QwfPrwdWyY6k5KSEtLS0vDz82PIkCG4urranVMHDx4kIyOD+Pj49muk6NBCQkLw8/OzO2+Ki4vZtm2b9bNo+PDhFBUVsXPnTus+GzZswGQyMXTo0DZvs+gcsrKyKCgosF58yHkkzGYz//rXv/j111/5+OOPCQ0NtdvekO+x+Ph49u3bZ3ejcN26dXh6ehIZGdkmv4doXyc6j5xJSkoCtGBIziPhjMlkorKyss0/iyS9vJVdeeWV3HfffQwZMoShQ4fy8ccfU1ZWxjnnnNPeTRMd1LPPPsspp5xC3759ycnJ4bXXXkOv13PaaafRs2dPzj33XBYtWoS3tzeenp489dRTDB8+XILuLq6kpITU1FTr4yNHjpCUlIS3tzd9+/blsssu46233iI8PJyQkBBeffVV/P39mTFjBqCKh0yePJlHHnmEJ554gqqqKp588knmz59PQEBAe/1aoo3Vdx55e3vz+uuvM3v2bPr06UNaWhrPP/884eHhTJ48GZDzSKhU4OXLl/Pmm2/So0cP67jHnj170q1btwZ9j02aNInIyEjuvfde7rnnHnJzc3nllVe49NJLcXNza8ffTrSVE51HqampLFu2jKlTp+Lj48PevXt55plnGD16NDExMYCcRwJefPFFpkyZQlBQECUlJSxfvpyEhAQ++OCDNv8s0pnNZnMr/I7CxmeffcYHH3xAbm4usbGxPPzww9YUGCFqu+OOO9i0aRMFBQX07t2bkSNHcscdd1jHJ1VUVLBo0SJ+/PFHKisrmTRpEo899pikSnVxGzdu5LLLLnNYf/bZZ7No0SLMZjOLFy9myZIlFBUVMXLkSB577DH69etn3begoIAnn3ySP/74A71ez6xZs3j44Yfp0aNHW/4qoh3Vdx49/vjj3HTTTezevZvjx4/j7+/PxIkTue222+yGTMl51LVFR0c7Xf/MM89YOxwa8j2Wnp7O448/TkJCAh4eHpx99tncdddduLhIf1FXcKLzKDMzk3vuuYf9+/dTWlpKUFAQM2bM4MYbb8TT09O6v5xHXduDDz7Ihg0byMnJoWfPnkRHR3PNNdcwceJEoG0/iyToFkIIIYQQQgghWomM6RZCCCGEEEIIIVqJBN1CCCGEEEIIIUQrkaBbCCGEEEIIIYRoJRJ0CyGEEEIIIYQQrUSCbiGEEEIIIYQQopVI0C2EEEIIIYQQQrQSCbqFEEIIIYQQQohWIkG3EEIIIYQQQgjRSiToFkIIIYQQQgghWokE3UIIIYQQQgghRCuRoFsIIYQQQgghhGglEnQLIYQQQgghhBCtRIJuIYQQQgghhBCilUjQLYQQQgghhBBCtBIJuoUQQgghhBBCiFYiQbcQQgghhBBCCNFKJOgWQgghhBBCCCFaiQTdQgghhBBCCCFEK5GgWwghhOgCNm7cSHR0NBs3bmzvpgghhBBdikt7N0AIIYRob99++y0PPPBAndu/+uor4uPj265BncjRo0dZvHgxf/75JwUFBfj5+TFu3Diefvpp6z7Tp08nPT3d6fPDw8NZuXKl9fEXX3zBhg0b2L59O5mZmZx99tksWrTI4XmbNm3igw8+ICkpiWPHjuHl5UVMTAw33ngjI0eObPlfVAghhGgiCbqFEEKIGrfeeishISEO68PCwtqhNR1fZmYmF198MQAXXXQRAQEB5OTksH37drv9HnzwQUpKSuzWZWRk8MorrzBx4kS79e+//z4lJSXExcWRm5tb52sfPnwYvV7PRRddRJ8+fSgqKuKHH35gwYIFvPPOO0yZMqWFfkshhBCieSToFkIIIWpMmTKFuLi49m5Gp/Hoo49iMBj4+uuv6dWrV537zZgxw2Hdm2++CcDpp59ut/7TTz+lb9++6HQ6hg8fXucxzz//fM4//3y7dZdccgkzZszg448/lqBbCCFEhyFjuoUQQogGWrx4MTExMaxfv95u/SOPPMKQIUPYs2cPAJWVlbz66qucc845jBw5kvj4eC655BI2bNhg97wjR44QHR3NBx98wOeff86pp57KsGHDuOqqq8jMzMRsNvPGG28wZcoUhg4dyg033EBBQYHdMaZPn851113HmjVrOPPMM4mLi2PevHl2Kdv12bZtGwsXLmTkyJEMGzaMBQsWsGXLlhM+Lzk5mb/++ouFCxfSq1cvKioqqKqqatBrAixfvpyQkBBGjBhhtz44OBidTtfg49jy8PCgd+/eHD9+vEnPF0IIIVqDBN1CCCFEjeLiYo4dO2b3Lz8/37r9hhtuIDY2loceeoji4mIA/v77b5YsWcKNN95ITEyM9Tj/+9//GDNmDHfffTc333wzx44d4+qrryYpKcnhdZctW8YXX3zB//3f/3HllVeSkJDA7bffziuvvMLff//NNddcwwUXXMCff/7Js88+6/D8w4cPc8cddzBlyhTuuusuDAYDt912G2vXrq33912/fj2XXnopJSUl3Hzzzdxxxx0UFRVx+eWXO6SIO3suQJ8+fbj88ssZOnQow4YN4+qrr+bIkSP1Pnf37t0kJydz2mmn1btfQ1j+z5KTk3nppZfYt28f48ePb/ZxhRBCiJYi6eVCCCFEjSuuuMJhnZubGzt27ADA1dWVZ599lnPOOYdFixZx77338tBDDzFkyBCuvfZa63O8vb35448/cHNzs6674IILmDt3Lp9++qldkTGA7OxsVq5cSc+ePQEwmUy88847lJeX88033+Dior6u8/PzWbZsGU888YTdsQ8fPsxrr73GrFmzADjvvPOYM2cOL7zwgsOYaQuz2czjjz/O2LFjef/99629yxdddBHz58/nlVde4cMPP6zzb3X48GFA9fLHxcXx8ssvk5mZyeuvv86VV17JDz/8gIeHh9PnLlu2DIAzzjijzuM31G233caaNWsA9f9z4YUXcuONNzb7uEIIIURLkaBbCCGEqPHoo4/Sr18/u3V6vX1SWFRUFLfeeisvvvgie/fuJT8/nw8//NAaGAMYDAYMBgOgAuiioiJMJhNDhgxh9+7dDq87Z84ca8ANMHToUEAFpbbHHTp0KMuXLyc7O5vQ0FDren9/f2bOnGl97OnpyVlnncV7771Hbm4ufn5+Dq+ZlJTE4cOHueGGG+x68wHGjx/P999/j8lkcvj9LUpLSwHw8/Pj3Xffte4XGBjInXfeyfLlyx3GXFv+Hj/++CODBg1iwIABTo/dGHfffbc1Hf+7776jqqqK6upq3N3dm31sIYQQoiVI0C2EEELUGDp0aIMKqS1cuJAff/yR7du3c+eddxIZGemwz9KlS/nwww85dOiQ3VhnZ9XRg4KC7B5bAvC61hcWFtoF3eHh4Q7joCMiIgBIT093GnRbeqrvu+++un5Njh8/jre3t9Nt3bp1A9QNA9vAfM6cOdx77738888/ToPuhIQEsrOznWYVNEVsbKx1+YwzzuCcc87hgQceYPHixS1yfCGEEKK5JOgWQgghGiktLY2UlBQA9u3b57D9+++/5/7772fGjBksXLgQX19fDAYD77zzDmlpaQ77W3rFa6url9lsNjej9fbHuPfee+0CV1vdu3ev8/n+/v6AGtNty2Aw4OPjQ1FRkdPnLVu2DL1ez/z585vS7Hq5ubkxffp03n33XcrLy603BoQQQoj2JEG3EEII0Qgmk4n7778fT09PLr/8ct5++21mz55tHU8N8MsvvxAaGsrrr79u1wPdWr2vKSkpmM1mu9ey9GQHBwc7fY6lp9zT05MJEyY0+jUHDx4MqPHotiorK8nPz6d3794Oz6msrGTlypWMGTOGgICARr9mQ5SXl2M2mykpKZGgWwghRIcg1cuFEEKIRvjoo4/YunUr//rXv7jtttsYPnw4jz/+OMeOHbPuY+m5tu2R3rZtG4mJia3SppycHH799Vfr4+LiYr777jtiY2OdppYDDBkyhLCwMD788ENKSkocttv+Ps6MHTsWX19fli1bRkVFhXX90qVLMRqNTgP51atXU1RU5DA3d1Pk5eU5rCsqKmLlypUEBQXh6+vb7NcQQgghWoL0dAshhBA1/vrrLw4ePOiwfsSIEYSGhpKcnGydf3v69OkALFq0iLPOOosnnniCV199FYBp06axcuVKbrrpJqZNm8aRI0f48ssviYyMtBYga0kRERE89NBD7NixA19fX7755hvy8vJ45pln6nyOXq/nqaee4pprruG0007jnHPOISAggOzsbDZu3Iinpydvv/12nc93c3Pj3nvv5b777uPSSy/lzDPPJCMjg08//ZRRo0bZ9fxbLFu2DDc3N2bPnl3ncf/44w/rfOdVVVXs3buXN998E1BzklumZbvmmmsICAhg2LBh+Pr6kpGRwbfffktOTg4vv/xyg/5uQgghRFuQoFsIIYSoUVf69zPPPEPfvn2577776NWrFw8++KB1W0REBHfeeSf//ve/WbFiBfPmzeOcc87h6NGjfPXVV6xZs4bIyEief/55fv75ZxISElq83RERETzyyCM899xzHDp0iJCQEF5++WUmT55c7/PGjh3LV199xZtvvslnn31GaWkpfn5+DB06lAsvvPCEr3vWWWfh6urKu+++y3PPPYeXlxcXXnghd9xxh8M49eLiYlatWsW0adPsKrXXtnLlSpYuXWp9vHv3bmvF98DAQGvQfe655/Ljjz/yn//8h+PHj+Pl5cWwYcN48cUXGTVq1AnbLoQQQrQVnbklqrEIIYQQol1Mnz6dgQMH8s4777R3U4QQQgjhhIzpFkIIIYQQQgghWokE3UIIIYQQQgghRCuRoFsIIYQQQgghhGglMqZbCCGEEEIIIYRoJdLTLYQQQgghhBBCtJJOPWVYdXU1hYWFuLu7o9fL/QMhhBBCCCGEEM1jMpmoqKjA29sbF5fmh8ydOuguLCzk8OHD7d0MIYQQQgghhBAnmYiICHx9fZt9nE4ddLu7uwPqj+Hh4dHOramb0Whk3759REVFYTAY2rs5opOS80i0BDmPREuQ86iLKCuDiRPV8tq10MLXWnIeiZYg55FoCbXPo7KyMg4fPmyNN5urUwfdlpRyDw8Punfv3s6tqZvRaASge/fu8mEgmkzOI9ES5DwSLUHOoy7CbIa9e9Vyt27Qwtdach6JliDnkWgJdZ1HLTWEuU0GQn/++edMnz6duLg4zj//fLZv317nvt9++y3R0dF2/+Li4tqimUIIIYQQQgghRItq9Z7uFStW8Mwzz/DEE08wbNgwPv74YxYuXMjPP/9cZ368p6cnP//8s/WxTqdr7WYKIYQQQgghRKdWWQlubu3dClFbq/d0f/TRR1xwwQWce+65REZG8sQTT9CtWze++eabOp+j0+nw8/Oz/uvTp09rN1MIIYQQQgghOq3bboOePeH119u7JaK2Vu3prqysZNeuXVx33XXWdXq9ngkTJrB169Y6n1daWsopp5yCyWRi0KBB3HnnnQwcOLDO/Y1GozUPvyOytK0jt1F0fHIeiZYg55FoCXIedRFGIwbrohFa+P9bziPREuQ8Uioq4PXX9ZhMOl5+2cwNN5jau0mdSu3zqKXPp1YNuvPz8zEajQ5p5L6+vhw8eNDpc/r168fTTz9NdHQ0x48f58MPP+Siiy7ixx9/JDAw0Olz9u3b1+Jtbw07duxo7yaIk4CcR6IlyHkkWoKcRyc3fVkZw2uWt2/fjqmVZoqR80i0hK5+Hh061A2TaTAABw/qWLt2Oz16SODdWK11HnW46uXDhw9n+PDhdo/nzZvHl19+ye233+70OVFRUR2+evmOHTuIi4uTqoqiyeQ8Ei1BziPREuQ86iJKSqyLQ4cOhR49WvTwch6JltBVzqPqatiwAWJjwVlZrLQ0+8cGw1Di49ukaSeF2udRaWlpi3bstmrQ3atXLwwGA3l5eXbr8/LyGjxO29XVldjYWFJTU+vcx2AwdIo3WWdpp+jY5DwSLUHOI9ES5Dw6ydn83xoMBrvHLfsych6J5jvZz6MHH4TnnoOoKNi+HWpPH52cbP941y4DEyc27zVLSuDxxyEiAm68EbpCbWvLedTS51KrFlJzc3Nj8ODBrF+/3rrOZDKxfv16u97s+lgmKvfz82utZgohhBBCCCFEh2Q2wyefqOV9+8BZPeranbL1zNDcYIsXwwsvwM03w/PPN/94XVmrVy+/8sorWbJkCUuXLiU5OZnHH3+csrIyzjnnHADuvfdeXnzxRev+r7/+OmvWrCEtLY1du3Zxzz33kJGRwfnnn9/aTRVCCCGEEEKIDmXnTsjK0h47q06+f7/945YIujds0JYfeABWrWr+MbuqVh/TPW/ePI4dO8bixYvJzc0lNjaW999/35penpmZiV6vxf5FRUU88sgj5Obm4u3tzeDBg/nyyy+JjIxs7aYKIYQQQgghRIfy66/2j9evhy1bYORIbV3toHvHDtVD3pyU8J07tWWTCS68EP75B4KDm37MrqpNCqktWLCABQsWON326aef2j1+8MEHefDBB9uiWUIIIYQQQgjRoa1c6bjujTfgww/VcmkpHDliv72gQK0LDW3aaxYXQ+3JpnJy4Kyz4H//U+O8RcO1enq5EEIIIYQQQojGKy+H1avVclAQeHur5S++AEut6gMHnD+3OSnmu3dry2eeCWFhannzZhgyBF59Fbr41OiNIkG3EEIIIUQHV1VRxS9fbObnzzdzLDO/vZsjhGgja9aowBtg7ly46iq1XFEBH3yglm1Ty2NjteXmBN22qeXTpsH332tp5SUlcPvtcMYZKoVdnJgE3UIIIYQQHdwrD61lzqWjmLtgFL59exEVfIi3//VXezdLCNHKbFPLZ81SU3dZvPWWCnptg+7zztOWWyroHjIE4uNV7/cNN2jrV6ywL/Am6iZBtxBCCCFEO/juO/j444alaC5f6WP3eH9GP258fBIHD1S3StuEEO2jvBzefht+/FEF1JagW6eDU0+FyEiYOVOtO3wYtm61D7pPOw1cXdXyjh1Nb0ftoBvAywvefBMuv1zblpvb9NfoSiToFkIIIYRoYz9+sZezz4YrroClS0+8f1KKyuv07HacIRFqAKfZrOetd7SauP9dvI5RUbtZ8sa61miyEKKW6mp45BEYNQq+/bZljvn666o3+bTTVHC9bZtaP3Ik1Ez+RM3My4BK+7adozs2FgYNUst79qg09KawBN2+vhAQYL/N9rFlXLmonwTdQgghhBBtyGyGfz9VaX28bUtpvfsfTT9GbpEfAKNjDvBHQiRubmrbBx+oysX7tx7m8jtHsWX/IG58IBqT0dRq7RdCwPHjakzzU0+p6bsuuEAFwI1Ve0z02rXa8u+/a8uzZmnLZ5yhLX/3ndbTHRAAPXvC0KHqsdEISUmNb1NeHmRmquUhQxynHbME/wBHjzb++F2RBN1CCCGEEC2korSCT15Yw5iRZfTooXrAbr5Z9YKZauLgtcu3sz4pzvqcnDyPeo+ZtEWbCyg2sgg/P7joIvU4P19VMb7zphyqjCoSzzvuy64NB50dSgjRAo4cgUmT4KeftHVGo5rH+s8/HfffvRt++80+wM7IUL3ScXH2vcV79jh/Tdugu29fGDNGLW/fDtnZanngQPXTEnRbtjfWrl3asiW13JYE3Y0nQbcQQgghRAv45IU1hPUt4vJ7JrHpHw9KS1UP2BtvwLnnwoILj2Mymnj2mXK752Xn6Oo4opK0vdC6HBujft58s7b9gXuKWb5+jN1zVv8zwLr8+ctrufDUdexaX8e8QkKIBtu6FcaO1YLZXr1UVXFQqdxnnKECbIvXX1eB9cyZ8NFH2vrXXlMB9q5d8OWXal1VlTb9V1QUXHcd6PUwbhxMnGjfjjPPdGxbVJT6Gafd02vSuG7b8dy2x7KQoLvxJOgWQgghhGim0qJSrntwJDmFftZ1QUEmu7TM/37dk3OnJTgEyDk59c+5k7RbSxWPHdoTgNGjYWy8uto9WuDp8Jy//lYvnJVWwuV3j2XJHxN49H65OhaiOZYvh8mTVS81QP/+sH69Sis//XS1rrhYBdhXXw233gq33KJlubz5pvppNsP//qcd1xLAHzqkxomDqhb+9ttQUKBSzl208g0AnHWWY/uc9XSvX9/439NZETVbEnQ3ngTdQgghhBDNtP6XPZRXqTTxMdE7WbNsO+lHdOTnw3/eO45Br66kv1szzuG52YfS6j120pF+1uXYEX2tyzdfttduv/GxO/DyUgH86tXqwv6b77tjNKmr9eTD3ZrwmwkhAD79VPUul5Sox+PHw4YNEB2tqoV/9RXMnq3t/8EHqjfb1pYtqnc7MRGSk7X1lt5o29Ty6Gj1s2dP1dtdW2ysqmRuyxJ0BwVBTE1WzLp12vjshrLtHR882HG7bdAthdQaRoJuIYQQQohmWv1bkXX51usKmXjaUHR6Hd7ecPnVPfnPCxvt9u/VI58wPzVWO6egV73HTkoJA9R0PUH9A63rz79uFP7ear4enc7Ea68ZmDRJ9XDn5MDevfC/r7Wu9qyivgghGi8vTw3psPRYX3AB/PEH+GmJLXh4qHmr33xTBcoWLi7247E//9y+lxtUkGsy2QfdlqC5LjqdY4q5JegGOP989dNshm++0dYvXQpPP113VXOzWevpDgkBHx/HfXx9tWXp6W4YCbqFEEIIIZrprw0+1uUp8/o5bF9wx0QWP7Ta+vj2y7cREaiuVovLe1JaVOL0uMXFkJqqlmNj7asIu3d358PFh4nvv4fFD/3NyFMHMXWSdiW95P0k/vpL2z+30BdjVQMmBRdC2Hn+eSiqua92ySXw3/9CNyeJI3q9mu5r1y6136hRqtjaf/6j9VZ/9plj0F1crObc3muTvHKioBscU8xte74tQTfAkiXq5+rVarqxhx6CJ55wfsyMDJXSDs5Ty0EF4pbfR4LuhnE58S5CCCGEEKIu5SXlbEhSV8j9AlIJjQ5zut8tT00lMmYTaYfLWHjfZHbOTrBuy0nLJ2JwD4fn2F6Ex8Y6HnP+ZaOZfxmAev0pw/cD6kr5uTf72VVLNpkN5B7JIbCff6N+PyG6sqwsWLxYLbu5waJFztO9bYWGqh5tW6eeCr/+qoJrZ3bssO/pthRFq8/48WqasOxsGDAAunfXtg0ZolLU9+6FNWtUMP3QQ9r2zz+Hf//b/kae2Wxfkb2uoFuvV73dubkSdDeU9HQLIYQQQjRDwm97qahS3V5TR6bUu+/cBaO59uEpGFwN+PfR5urOSS9wun/Srmrr8qBBJ27LyFOi6eFeDEBJmWNXXFZa/okPIoSwWrQIysrU8vXXq4C6KRYscFx3yina8vbtWtAdEgKejvURHRgM8MknqojbW2/Zb9Pp7FPMr7/efg7w1FRI0O77sWSJKt52zTXaurqCbtDGdUvQ3TASdAshhBBCNMNfv2mB7JQpDX9egL9WlTw7vdTpPkl/rbEux4YeOuExXd1dmTBkb53bs48cb3gDheji0tK0YLZ7d3jggaYf6+yz1bhvC70eHntMe/zHH3DsmFpuSGq5xaxZ8MMPqmJ6bbYp5suWOW63pLl/+62aY9x2Tu8BA+C00+p+XUvQXVIC5eV17ycUCbqFEEIIIZph9Xof6/LUeeENfp5/gMG6nJPl/Ko1aZ/WWx0bW/983hZTxtsH1n5eudblrHS5OhaioZ55BiprElJuuQUCA+vfvz49e9oXPpsyRc29bRkbvlor+WCtXN5ccXGOx4qN1aYf+/prNUXZgw9q28eOVannu3fbF0yrTSqYN44E3UIIIYQQTVRVBeuShgEQHFBMv8ENzz0NCHKzLmdnmZzuk3RIlUd2dy0nYlDDjj11pn019Gsv2GVdzsqsrr27ECelxET48kvn/zZvxq7egTPFxWqaMFCp3vfc0/w2XXWVtrxggQp+LVNy2banMT3d9bFNMbd47jk1vhwgJQVuu02rHTFliprX+5JL1Pj1+pyognl5ubqRIL3gihRSawO//ALvvRfGs882rCiCEEIIITqHLVugtFT1QE891RNdI7oz/IO0wmk5OY7bqyqqOJCpirJFh6RgcG1Y99eYGTH0cC+mpMKTgUHJzD69F/9+X23LympYb7kQnVFVlZoe69VX1Rza9RkxQgWcF14I7u6O25csUYE3qCC0vl7fhpo5UwX9+flw5ZVqXVyc+hyx1VJBN6jpzZ56Si2PGwfz56vCa7/8ota9+aa275NP2hdWq49tT3ftoDsnRwXwe/fC5Zer6u1dnfR0t4FrrtHx3Xd+nDM7HZPR+Z1sIYQQQnQ+timhU6c27rkBIdpkvtm5jt1KB7alUm10BSC2X8PzN927u/P+89uZNWoz779VTGB/rYc8q3JE4xopRCdRXg4jR8LFF5844Ab45x8VEA4Zok0HZuuDD7TlhQtbrp0XXqiKmlkqoA8d6rhPSwbdcXHwyitqTPnnn6ug+qyztBRzi1mzGleToq6gu6AAZs/Wes+///7EWQVdgfR0t4EBfZLIyBjMrsNhrPgsgdMuH9PeTRJCCCFEC7ANuhtzwQrgHxZgXc6pjHPYnpSYCwwAIDa60mF7fS66ZQIX3aKWj9sM8c4+1tP5E4To5P78U027ZREXp3qobYuXAVRUqF5sS+/ygQOqEJltdfGkJFi3TjvO6NGt1+7aQXePHhAc3LKvcdtt6p+Fr69KMbf0doPq5W4MZ2O6S0tVJfXERG1bQYHqWW/OePiTgQTdbeDOW4/z99Vq+dkX3Dnt8vZtjxBCCCGaz2Q0se6vUsATf78qoqNdG/V8Tx8PunVTPXQ5+Y7BcOIWbTBk7OATDLCs73U8VeXl0lI157AQJ6N167S86FdegVtvrTtV+p574L//hUsvVY9XrrQPuj/8UFteuLDhKddNUTvojo5u3dezOP98Leg+4wwY08g+QWc93XfcoeYEry0pSYJuSS9vA/P/bySxIfsAWLNzGOt+3HGCZwghhBCio9v3z2EKS9RkuhOitzT6Qlmng4Cazu7sbPttqXvSeeVTLRV8xMSmd33pdNoFrwTd4mS1dq32BjzvvPoDV50Ozj1X9SqDCrotKdCVlfDxx2rZzc35/Notyc9P+xyAlk0tr8+CBSrlfPx4WLy48c93FnR/+6362b07XHedtj0pqentPFlI0N0G9AY9V1282/r42Wecz8UphBBCiM4jYXWGdXnMyKaV6PX3Vz+PHgWjUS2bTWauvSyT42VeAFx12t9Exjd8KjJnAv0rAFXAqaKsqlnHEiefbdvgmmvgr7/auyWOGjIeuKpKx6ZNajkiomHp2e7uMG2aWs7O1lLTly+H3JpZ9s46q2UKqJ2IbW93S00XdiLu7ipIXrcOwpvw8VI76Lb8A1Ww7ZJLtO0SdEvQ3WYmnx1EiK/6cv5h7Vh2bzzQzi0SQgghRHMkJBity2MmejXpGAF+Khg2m+FoVgkAH31k5pdNowAI7p3Jix84qbTUSIFuW63L2Sm59ewpuqJrr4X331c9xFUd6J7MAw+o3ubJk+F//1NzSjuzd68HZWWqa3vSpIYff/ZsbXnlSvXTtpp3SxZQq49t0N1WPd3NVXvKMEvhNFC/Q2ys9liCbgm624yLmwu3X6Wdjffcli+VzIUQQohObGOin3V51LQBTTqGvyHBupxzOJ30dLjjTu3y7N3X8/Hx9256I2sE+GmF2LLTChy2V5RWUJBT2OzXEZ1PaamatxpUD+/ff7dveyw+/BAWLVKB9po1auqrkBAYPlz9mzYNNm5U+yYmelqfN3Fiw19j1ixteeVKVVzt99/V48hImDGj+b9HQ1x1lQpiY2Jg3rwWPHB1CVQca8EDary9wWBQy3l5sGePti0mRqXNWwJzCbol6G5TC+8Zjp+Xuru8YuNoFt25+gTPEEIIIURHVF5SwbaDkQDEhCTj7de0wDjAT+stz04v5t13temLrrgC5l08qLlNBSAwQLvRn3Wk2G7b0SN5hAcXEhTixubfdtd+qjjJJSaCyaYf6Pvv260pVlu3wo03Oq7PzlbtTUxUMwdccYVq+7ZtWtDdmJ7uqCgIC1PLf/0Fjz+ubbvnHm1ar9Y2aBBkZsKuXarwYb2qS2H/27DqdFh7CWx7BPa8AokPOO6bthS+6QM/j1H7FR9sWIOSP4Bdi+DYP2B23kmo02kp5keP2gfdlhT5QTUfXxkZUNjF7+lJ0N2GevbuyWdvp6LTqZP3kdem8Nu3e0/wLCGEEEJ0NNvWHKDKqCqKj4nLbPJx/P21ak85GWV2vYxPPNHkwzoIDNIu+bIy7Meff/fun2QX+FNe5cH/3t/eci8qOgVLL7fFd9+177zKx46pImcVauQFN9wAv/2mpqLq0UONRbYEw3v2qDHYlqDbx0cL9BpCp9N6uysq1LFAFTa77LKW+X0aytW1niDfWAlHN8C2h+D7MNh0A2Qsh5T/wq6n4J87YPezUFlg/7ysXwEzHNuk9vshElafCek/QvFhMFWrnvDa/+HH98O2B+DnkbA0GDbfCqXpDs2yDbprp5eDfYq5JSjPz7ef2q2rkKC7jc26eCRP3KiqVJjMBi6+Loq0tHZulBBCCCEaJeHvPOvy2NHGevasX0CQNs1Y+pEqNqxXg1bDwszWHriWENjX3bqclWnfc7V+kzaR8cHUHi33oqJTsMxXbZGaqgqrtbUjR+DBB1Xv86FDat2YMfDyy2pO6R9+gOJiNcXeDz9oz7vrLj3Hjqn30YQJje+dtk0xt7jtNujWrYm/SEszVcG3frByPOx6Giry6tjRDEfX26/yigGfOPt90n+A1afBD/3gSzf4xhcKa2W4hJytLZdnwb7XYFkkbL0HyrWaEJagu7RUZSeAqlweEqKWa4/rLitT6f9Dh8Lrrzf4L3BSaJOg+/PPP2f69OnExcVx/vnns317/XdRf/rpJ+bMmUNcXBynn346q1efXGnYD706hXkzCgA4elTHQw+1b3uEEEII0TgJmw3W5TGT/erZs37+QdqV/S9/eFFW7gLAxJhNTW+cE4EhWs5qdo79XErrd2rlkg/m9G/R1xUdX+2eblC93W3piy+gXz945hk1PhhUQPf116pnu7Z582DIELV86JB2PjdmPLfFqafaTy/Ws6fqXW9Txgo4+DFsuR3+uct+m94VvGy673UuELEAZm+C+UkwdTmM/QBmrYeAU+2fO/gBmLcdzs6AYU+DR+2y7jU93Nl/2q/2iYORiyH4dDDU3JQzlkPSC7C0L/wxGw68R5/eWq2II0fUz6go7cZH7aB7+XJtfHdycoP+MieNVg+6V6xYwTPPPMNNN93E0qVLiYmJYeHCheTlOb9L888//3DXXXdx3nnn8d1333Hqqady0003sW/fvtZuapvRG/R8+pUPvXurx199BTk57dsmIYQQQjRcws6+ALi5VDB0YmSTjxMQ3NO6vGqbVsJ40riypjfOicAwbcx5Vo6bdbkgp4CkI1r7D2Y1fT5w0fkUF2tBUGiotr6tx3X/+99aZXIXFzXd1Lp19m2ypdPBvfc6rm/MeG6L3r1h9Gjt8XXXqTT1NpPxE6yIgw1XwN5X4dAnjvuEngMR/wej34YzD8OET8F3FHjHQPB8GHAV9BkHBjfH5wJ4BKkA/MxDMOlriL5DHbPXcOg9Glx72u/v0h2ib4GpP8CZqRBzJ+hr7n6YqyFrJSRci69ui8NL2VZfrx10f/aZ9nj+/Ab9dU4arR50f/TRR1xwwQWce+65REZG8sQTT9CtWze++eYbp/t/8sknTJ48mauvvpoBAwZw++23M2jQID6z/V86CfTurU1DUFkJ77/XjoNnhBBCCNFg+cfM7EvvB8Dw6DTcPOq40G0A/xAf67LR5GJdnjgjsMnHdPo6odqkullHtRTyjZvsuxELSnzIzy5o0dcWHVdiojacd+5cGDVKW5+S0jZt2L8fdtdkNw8bpl73889h4MD6n3fRRdgNwXB1NdsFz41x1VXqp58f3H57047RYFXHIfNX2Plv+H06rJqnxlBbVByFqiL75wy6ByZ8AgOvg+7NuDGmd4Wwc2HkSzD5G5j7D8xJgP6X1/2cbn1gxItwxgGIvRt61EzqrXOhT//BDrvbBt2hoWocPsCmTfDTT2o5KAhOOaXpv0Zn5HLiXZqusrKSXbt2cd1111nX6fV6JkyYwNatW50+JzExkSuuuMJu3aRJk/jtt9/qfB2j0YjR2PTxVK3N0rbabbz2WnjhBT1ms463Xsnmrjt74eLWqv8lohOr6zwSojHkPBItoaufRxsTAFR6+ehT+jfr7+Dj741eZ8Rk1tLVvTwKiR3dr0X/vq7dXPHpUUBBiQ9Zed7WY6/d6Ji7u39nDiP79ASjEUurjEYjtPD/d1c/jzqChAQdlj64ESNMBAfD5s3q8dKlJm65ResUKimBw4dVoTKdzsnB6pCdDRdfrMfPDz77zISrq/32pUu1Nlx0kYmAAHODTjW9Hm6/Xcedd1rab8bNzdSk03ThQtUrGxoKgYEtfqorxgp0+xaj2/00uurjDpvNfSZiGvywSiXXdW+lRjSDexAMXQRxz0D+P+iKkuid4VhqfWBoDkajNol3TIyeLVt0ZGVp+1x4oQlo2P9zW6n9edTSn0utGuHl5+djNBrxtZ09HfD19eXgQecl648ePUqfPn0c9j969Gidr9NZUs93OCnVN3tUOT9vmsiRo4F88Px3jJ1fRx6NEDWcnUdCNJacR6IldNXz6IcfAgHV2+Tvn0JiYvPmwe3jFUpOob/18eiYJHbscq3nGU0T4OOtgu78PiQmJgLw22+RgP10Z39uNmDwSURfVsbwmnXbt2/H5OFBa+iq51FH8NtvEYC6Tvf03IOPjxlQvZdffFHM5MmqB7a6Gi69dBDJyR7cfPMRrrgiu8Gv8eqrwfz1l8rcGDUqhZkz8+22//e/UYBKb46K2k1iYkWDjz16tJ7Q0FjS0roxdeoREhNzT/ykOvTooSqnH2udaa3Rm8oYfOhl3GoF3BUugaT73Ux+z9mQpYOsXKDpv0fbMABDKClJAfrZbYnKPZfDf59Oged00Onw94/Aco5ZjBq1h8TElh1C01Ja6/PopOhWjYqKonv37u3djDoZjUZ27NhBXFwcBoPBbtttd/zDz5eo5a+XhnHdQ8PaoYWiM6jvPBKioeQ8Ei2hq59HaWna6LzzzgsjKqp5Zcb9fQ7aBd1TxpcRH9/EPNl6BA4wsjcdSip6EBkZT/fusHu340hDs7kf8fFm1bVZY+jQoVqeaAvp6udRR3DwoPr/d3Mzc8450bi6Qv/+Zg4e1PHPPz0JC4und2/44w9ITlb/Rxs3BvPKK0ENOr7ZDOvWaedYenoE8fHh1sc5ObB9u9oeE2PmzDNjHY5xIlu3Glm1aiennx6FwdBBahJUFqBLfhdz1K1g0Iol6nq/gDnhCszhl0LATMy+o3DxjCRcpye8nsN1VJlOZksc5L+F7hlrMPuOwzRsERMm9LKmlQPExpq58MLoRmVLtIXan0elpaUt2rHbqkF3r169MBgMDkXT8vLyHHqzLfr06ePQq13f/gAGg6FTfFg7a+esC0YSfc9B9qb358/EEexJOMDg8U0vyCJOfp3lfBcdm5xHoiV0xfMoKeEgP/8UDhjo3RtiYgzNvngM6B/OTpvxs5On+7TK3zWor3bMo0cNVBTkUFgT7IeGYp3C9PBhPQYDYNOG/HwDD99rIDIS7r67ZdvVFc+jjqCoCCwxxbBhOjw81P/BWWfBSy+B0ajjl18MLFgAy5Zpz0tK0qHXN+y837XLvkr12rV629OKn34CU80MdmeeqWvSeeDjAxERFR3jPCrPUcXQ9r2uxmX3GQOBNhXF+y+APqPRecfUfYxOJCDA/nFYQA7d3VUPti5vA4Y/pjHY9DjwmHWfBQt0uLh03Pe75Txq6XOpVQupubm5MXjwYNav1+aMM5lMrF+/nuHDhzt9Tnx8PBs2bLBbt27dOuLj41uzqe1Gb9Bz0xXaRN1LPj7Sjq0RQgghRF3MJjN33HyMaqO6GLtl4ZEW6a3xD9QKsRn01YyZEdX8gzphe4GclQUbft1jfXzx7H+sy85GAF51FbzzDtxzjzYfr+jctm7ViqiNHKmtP/NMbfn779U+ttXMi4u1GzQnUrsK+rZtcPy48+1nndWwY3Y4ZjPkrIG1l8B3IWoubUshtMyV9vvqdKri+Emi1ghiYob5wZTvwVub4iy2+3/t9rnkkrZoWcfT6tXLr7zySpYsWcLSpUtJTk7m8ccfp6ysjHPOOQeAe++9lxdffNG6/2WXXcbff//Nhx9+SHJyMq+99ho7d+5kwYIFrd3UdjNtrpaicyS94975EUIIIbqy5R9v4pdNqrxzaJ907n24d4scN6BPuXV5ROReeni3bBq3RaBNQfSsLLDpE2H+aQa8PNWcuweTHOcx/f0PbdlSaVp0brbzc1uqlgNMmKAFUz/9BAkJkJpq/9xduxr2GrWDbpMJLH1rpaXw669qOTAQxoxpeNvbnbESjm6ErffCsoHw22RI+S+YqtR2vSsMuAYir23fdray2onIMTE6CDkD5m5Tc4d79meAfzK9PVXW87TYP4kwftAOLW1/rT6me968eRw7dozFixeTm5tLbGws77//vjVdPDMzE71ei/1HjBjBCy+8wCuvvMJLL71EREQEb7zxBlFRrXPXtyMIDNO+tLNyu9WzpxBCCCHaQ0VpBXc8qHUVv/B4Ct29Wmb8qH/vEkB9/08cWXfh2OYK9ErHUgAuK2kH6xPVTX+DvppRpwykv/9BEotjSMnsRXVldZ0XiW01lZRoHfn58OGHKoXcwjbodnGB00+H//xHDet3NoXW7t1qirH6ZGSogB1UB6+lV33NGpg5E1auhLKaWlqnn66qkXcaKV/Ahisd17v7Qv+rIPpW6B7S9u1qYz17gqsrVNXca7BOF6Z3UXOH97sM19Sv+eah+/h+9WBuPf1zCPujzuOdzNqkkNqCBQvq7Kn+9NNPHdbNnTuXuSd6J59EfPv2xqCvxmhyISvPsfS+EEIIIdpP2fEybr9sE8lZUwCYOjSR828Y32LHHz5Oy9Gcf1nLF1CzCPTOxBJ0v/qWJwcyVemmYf33090rlv4hBSQehGqjK0f2pxEe3htn2fO1ez1F5/HTT3D++XY18vD1VdOA2TrzTBV0g9Yzbauunu7du6GwEMaNgx9+0NZffrl2vLVr1c//2mQdd9jU8pI0lS4+5GH7+bF72nQG6gzgPxX6Xwlh59kVTjvZ6XSqt9tSUC06utYOeheIuIhp913AtIuWAHeBq1dbN7NDOCmql3d2eoMef+8cMvMDyTrm097NEUIIIUSNv77fxtU3erE/QwXcep2RV1/3QKdvudK7s2fDZ5+BmxvMmNN6s7EEhva0Lu/P0Kb5mTQyB4ilf7iW5n4wKZfExN6cVfPYtzeU1kylJD3dndfTT9sH3HPmwJNP4jB39syZ0K0blGunBIMGaUMLnA0x2LMHhg1T04vNm6d61C1uuQV++w2OHFFB/L598PXXapufH0yf3jK/X4tK+QoSroOqQhVwD3lY2+YVDeEXQeAsCD4dutVd8PlkZxt0x9Q1XF2nh4iL2qxNHVFnSuQ4qQX2LgAgp7APJqOpfRsjhBBCdGEmE/z8QwHzxm1i6lnDrAGqm0sFrz+2lmGTa3fnNI9OB5deqnogW9PAYSF4eRRaH/dwL2b+uATueVL12vUfoF0WHtxXzMcfa8994w0VhIH0dHdW+fmwbp1ajoiAvXtVz7dtarlFjx4wa5b9uksuUc8DFXRb0sUtfvhBBdwAK1ZoNQNCQ2H4cJg0ST0uKYErrtCqlt96q3ZudQjlubD+clh7kQq4AVK+tP+F3X1h4n9hwJVdOuAGGF+T9DN4MAQ1bCa5LkmC7g4iMESllVcbXTmWJ0G3EEII0R6SktTF49wzffhpo5bqPT52B4lrj3DDY1PasXXN08O7Bwl/5/HZS2vZ9vc+Co97sHz9GEIGqivl/gO1XvYNmzz4/XftufPnQ1jNdOQpKY4Bl+j4fvlFC3TPOQdOVC7Jtoq55fHgwWr5+HHVa21rzZq6j6PTwcSJ2jpLQN6jB9x4Y8Pa3+qKD8Gmm+H7cDj0ibY+/CKY+TcdbmLpDuKVV+Dbb1Umg/yJ6iZBdwcR2F8rtpCVI1n/QgghRHt4+WWVJmsR7neENx5dzd/bBhE7ZkD7NayFRI/sz6V3TGTopCgMrvYzpgyI1XrsPlk+HNvEO71eC7pLSuxTh0XnsGKFtjxv3on3ty1u1r+/CrgtQTfYj+s2mbSx2r17wzXXqGWDAa6sqTdm6em2dd11av92YzJC6tewaj4si4T9b4CxprqbS08Y/ylM+ALcerVjIzs2Dw84+2z72RGEIwm6O4jac2cKIYQQou1t364tf/t1JcnpQdz4xFSHAPVkFBbTF73OCEBVtWMHQHi4tizjujsXk0mlkgN4esLkySd+jp+fGgMeHa1uRul09gXXbMd1790Lx2rG/E+aBO++q8Zt790LI0ao9XFxqtq1hasr3HFH836vZtPpIfEByFgB5pq7TIbuEH07nLYb+i2Q7lvRIiTo7iBqz50phBBCiLZlNmuBRL9+cPa5bl0i2LZw83AjtE9GndstPd0g47o7m02b4GjNbHQzZ6qifQ1x330q8+OMM9Tjunq6bVPLLWnkAwfCAJvkEINBG/8Lqo5BSHvPqqXTQf8r1HL3MIj7F5yVCiNf7hJTfom2I0F3BxHob7QuZ6XktWNLhBBCiJOf2azSbVev1tYd2Z/J8eNqeXC/9PZpWDvrH1z3POHS0915NTa1vC621alte7otqeXgPI3cwhK8u7vDvfc2vR1NZjaplHJbAxbC9F/hzEMQ94gqkiZEC5Ogu4MI7LbDupy9d0c9ewohhBCiuZYvV8XBpk2DLVvUul2btEB7UOj+9mlYO+uvzSSGDvtqadLT3Xm1VNDt6em8grmlp9vdHUaOrPv5110H33yjqqjHxja9HU1SkgJ/zIB/7rCvBOgRCIEzVKq5EK1Ezq4OIjBMmyheCqkJIYQQrWvZV1rp5R9/VD93by+2rhs0uGt+F/cfNdy6PHWq/VhW6enunLKyYPNmtRwfD337Nu94lnHdRUWQnq6On5ys1o0erQLvuri4qMrplnHebaK6DPa/BT/GQfafsO812PtKGzZACOia3ygdUEColsqSlevRji0RQgghTn7r15Rpy+tMgJ5du7Xx24OHt2dJ5fZjO2fz//0fYEm/L00nJDAEna47ZrP0dHcmP/+sLTenl9ti8GCt53zXLijW7lXZTQvWrqrLIG8jpPxXzbFdVaRt6x4KPkPbr22iS5Kgu4Pw7uOFu2s5FVXdyMrzOvEThBBCiAYym8zo9FKB16Iwt5BdqVqFpw0b9ZhMsOuANi1QzKhwZ0896c2cqSpPm81w4YXA1TUblkXj1g2CeueSkddHero7kQ0btOU5c5p/PNsK5tu3Q2am9ri+8dxtYt+bcPhzOLYZTJWO2/tfBSNeAjfvtm+b6NIkvbyD0Ol1BPqo4iVZ+TIXoBCi/WxdtYdV3ya2dzNEC0lYuYsQvyzGxe6ktKjUur6qCn74oWumCW/6MxmzWbsEKiiAvZuT2Z2iBi1H+Kfh6dOjnVrXvnQ6NcfytdeCrsTx5Ajrpca6Z2dDeXlbt040RZ5NfV7LeOzmsK1g/vDD8Mkn2uMJE5p//GYpOQxH19kH3C49VIXymWth3AcScIt2IUF3BxLoWwBA3vHeVFVUtW9jhBBdUuJfexk/K4JTzo3nfx8dau/miGYqKSzh4ss9yTgWxMY9Q1j6wVbrtiefhDPPVGMr020Kda/6NpH54zbx/Qcb26HFbWP9X0UO677+JI3jZSrTbFA/mbsTgG7+2nLIGdAtkPA+WiCelmz/d9ywAebOhU8/basGioawzJ8N0LsFRk0MH67+AVRWakH9oEEtc/wGKz6oza1tEX6R+tlzoOrVHv8pnJ0F4z4Cv/a+IyC6Mgm6O5BAXzUoxmzWk3tEpg0TQrS9N17IoqKqGwBv/8f/BHuLju7B6zZzMEtLk/7jD3WBajZrvVPHjsH996n1qXvSOWNBf1ZsHM1lt8RQWeYkPfMksH6TYy/2h//T0s0HR5e0ZXM6LhebGjMTv4CZfxMWqEVwqT/cpypC17j/fjV++KqrtDmhRfuzBN1ubtC9e/OP5+Kipgi7/34197ZFm6WWm6pg1zOwfBAceMd+W6/hcNYROH2f6tXutwBcPduoYULUTYLuDiTAT7u4yUrNb8eWCCG6ouL8Yr78VSspu2pNd3Jy2rFBok4FOYXs3XLQYf3hw6pKcXk5/PX9NhZ/NdVu+x8JEQAcOGCfVv7Z53rW/biDay/LtPb2FpV5s2FDrV6kk4DZZGbDrkgAevU4hkFfDcDhnFDrPl21cvkJ9YwkfOI51ocphypgRTxk/Q6ooloA1dWwZEk7tE84ZQm6e/dWwwdagocHPPMMbNoEU6fCwIFw220tc+x6HdsKv4yBbQ+CqQK23gslNlX9dDroHtwGDRGicSTo7kACA7SLm6y04nr2FEKIlve/d7dSXN7T+thk0rF0aTs2SDhVnF/M4NhSYkb159k7V1nX//YbREerKXu8vGD+xQOt2zzc1FjuwzmhHNqZxsrP1zkc94yL+/LLplF261b+3q11fol2tG/rIfJLVO2UScP2ExdxwGGfrlq5vCHCogOty6l5YYAJPPtTUGDfu/3ZZ23eNFEH26C7pQ0fDqtWwb599gXWWlRZJhz8D6y5CH4ZDfmJar1OD5HXgXufVnphIVqOBN0dSGCQ9t+RlXlypvQJITquDz51LC7zvyUnX09nZ7fu571kHAsC4IFXpvDLF5tJ25vBxecVUlnz1VFVBcVlKo904uDt3H91gvX5fyw7zMrftJzQAG81fjnvuDZ1pcXKla31W7SfDX9kWJfHjy5l/HDHdI7YUWFt2aROxW6u7rKpMPZ98OzHgVr3Ltavh4OOyRiijVVWalN6tel465ZQmg5rLoSlfWHDlZD6FZiNaptPHMzaACNeAJcWyJkXopVJ0N2BBA7S0jqzjB1lokMhRFewZ9NB1u5S85YODttP/3DVM/rnn2Zy02RwZkeSdEAbj2w267nkuv6cfXoBRwvVTZPBMaXExqrtQUHw0TexzJyvBdS/bBjEH1tUl5S/dy5fvG8z3w9w+bw1DK2ZwnbzZvvKxyeD9eu1G0njp/gwfoL9pVB4OHj2kjGgdbENulMrpkHY+QAOQTfA55+3TZtE3fJtRit2qqDbWAm/jIXUWuMUXL0h7l8wezP4jm6ftgnRBBJ0dyCBIdqXfHZ2OzZECNHlfPCaNiZu4cXpnH+KqlxtMhtY+vHu9mqWcCIpPcbu8bHi3mzZr4LoCP80/vqjgt27Ve9WSgoMjHZl1Mw4PGu+Yr5Z3ts6jGDm2H1MP284l85aC0CY3xFe/nAIs2apfc1m+P37k2tOsfW7VNq9Xmdk1CkDGT891G57q6XIniS8vdXwBYCUFG2AsLOg+7PP1Dkk2k9LVy5vMwY3GHSvWnbvA4Mfgplr4NyjEPeI2i5EJyKVQjqQgABtOavWbCWpe9K5+Nw8UrL86j+IoRu41ZrnuyIHTMYTN8DNGww2KTrmaijPPfHzALr5gc7mdKougSrHKVkc6A3gXqtCcuUxMFac+Lku3dUdT1vlmdCQL3j3XqC3GatoqoCKY3Xvb8sjELCpRFJVpH7fEzG4gVut9M2KXDBVn/i5rj3BpQdVVXG4uupVelV5AytcdesDOlftsbEUKgtP/DydHroF2K+ryofqBkzM6uIBrj7268qzGnb15eYDBpuKuaZKqGhgV5tHAHb3EquPQ1UD6iPoXR3HhFUeBWMDpu5z9QSXnjYrTFDWwLtm7r6gt7lwMJZBZcGJn6fTQbdA+3VVBVBdduLnGtyp0tWcRxYVOeTkq6lUXA2V/N/NcaTszebZ/6jN/1vag2sfPvGhRdvYbXMPJMwvndRcVTTI3bWcb74spneQCiJ72BTodnWFKVNgxQo1Vt9i1kz1nvzohzFc+r9NjJraj14BPswaf4AXUMXGVn6XygVXhfPvxwv5fIk3UVEwerSOwMAeDBvWyr9sC8nPLuCfv9Oo8oxj5wGVmj90qBnPXp4M8O5BH6+jHC1SnwGDYs3YfcYLB+HhsGMHpKWByQR6PRw4oP3dgnwyyCzoy759sGULjBpV//FE6+kUQbfZrHq0/afWXGPVGHijul6JugncO2rjhWgYCbo7kPqC7usvz2Dd7qam0TR12h8XIKiJz+1R868pmvPB2tT2ujfjuV41/5riBDdRHFgCNANNb2/3mn9N0evEu9Qp8MS7OOVG03/XnjX/mqKphVn0NL29HjX/msKn5l9TaJ8RZ07eQp+Q8fj27U2/gFQOZYfxZ+Iwjh7Jo0+I45hf0faSktTPoCD4/stips0t5HiZJ+/8ezMjTql7zp7p01XQbWvmOarX19XdlbkLtO+YSTOD6eZaRnmVByvX9+fj59fw8BOTrK///fd6IIbMTBMPd/AbMrlpR4mMdqWoLM5u/fgJ6hJIp9cxPmYnyxKmATB4YD7N+x46+YWFqaC7slJl5gUF2fd033f6s9z+6asAfPZ+DqNGyfSD7cV2eEiHDLrzNsE/d0DuWhhwNYx9T9umd1G92kKcBCTo7kB69ICePSo5XuJGVkouloDsx+VmfkpQF0PdXMvo41XPdGKGbuBW61O1PFsrPFEfN28w2ATK5qpG9HT71+rpLm5gT7eLk57uvAb2dPdw7Okuy3C+b23uvZ30dDe0NzUI+57uwgb2dLs76enOaWBPt1dNT3cVrq6uYDap/9eG6ObnpKe74MTP0+kde1Mr81Vv7Im4dK+jp7sBRbncejnp6W7gmGKPQBx7uo+f+Hl6V3CvdQOk4qh67RNx9QQX25suJijLqnN3O+6+oHfXHhvL1N/4RHQ66FYrsK8qgOrSEz/X0I0qnac6jyzncc1nRLDfMZ55ua96Cb2O8+cc5LmPwzCaXPjuk91c/eBkQE25tPq7bfSN8CZqRL8Tv6ZoMUePahWiY2Mhfko0+5JyKSnKoN+Q+ifJnT7d/nFcxD6C+kc53dejpwdThm1m5eZRpB0N5poHnN8g/PJLXYcPuv/8YR9FZRMc1s+dqy3Pm69nWYJKOZ84phgJuusXGaktb99uCbprern9S7n8lK+597/PUVntzldfGXnpnk/RD/i/dmpt19bherpNRjjyHWT+BNl/QrFNtb3kD2DQfdAzss6nC9FZSdDdwQR6p3O8pB9ZOapHs7IS7rhTC/A+eiODi64Z0MijBpx4F6dcgb5NfK5nzb+maE5vWlPb696M53rX/GuKht/9NxqNJCbuID4+HoPBQNPb29ye7qb2djenp7upv2t79XQ3tb2t39OtzqNEm/MItM8I+3afe4kfz32slr9f7s7VD6rlj19Yy5X3TcLdtZyUfbkERDQ2Y0M0VdL6HYDqsY0NOQBE4h/WsL//sGFqXur8EnXlPWtSOuA86AaYdUoxKzer5Sqj+k665sy/uHPRFM49q4zdez3YtUtHflY+vQKbkwXTulIPazfPzpubSvSIMIYMgdNO0/a5+v4JuLn9TVj/HkSNGOHkKMLW2LHa8vr1MGGCVosmMro7PueuYtbbCSxPmExWQRCJX77MiDlbYPjz6ianaDMdKuguz4V1l0DWb47bvKJh+Evg2dhrXCE6Bymk1sEE9la9w0Vl3pQdL+PVV2H/frVt8mS48Gr5MBJCtI1Rp8YS1Ev12v+6eSjF+Wp8/OtvqyyRiqpubFm1t93a1xUlbSuwLseGpzfquXo9nDLsH+vjWXPqn4N71pn2N2FGDtzN4s/HEBMDM4ZvtK5ft9JJBa1WkJsL774LGQ1MaLJITdNuXN9xUwFPPQUXXaQSRixc3Fy46v7JzLhAAu6GGD9eW16/HpKTtceRkYDXQOZfru30Y+J82PsqrJwIBTvbrqFdxI8/wv/+p8bX19Zhgu6cNfDTcPuAW+8G/lNg1BswbwcEz7N/YwpxEpGgu4MJ6KOlh677ZS9PPqk+QXU6ePVV+SwSQrQdvUHPmafsA1SAvfJ/O0lKSGbLIa0qUm5R1xvnXV1ZzWVz1zB37CbyMhpYgLGFJO3WrqpjhzY+i+PuhwLw88plzphNTD+//johQ8YPpF+Aqmrf2/MYXy/1olsPFahPmKT1Vq5d3YDhNc1UXQ2nngrXXad6qBtTETs1Xbu5EBrZ1AwWYSs8HAJrkpc2boR9+7RtltTzeadpyZQrts1XC8c2wcH/tE0ju4glS9R74oILVPBdW8cJuldBWc2Nwm4BMHkpnFcAM1ZD1I2SASFOehJ0dzCB/loa3PxLYjh+XP0XXXMNDB/eXq0SQnRVZ56jDUX4/rtqPn8vzW57bmVsWzep3f340Wo+/XkSPyeM5t1/r2nT17adozt2eOOHMYyfF0d2fh9+2jgaF7f6R5jp9Dq+/m8Jd1yyitW/5BExOMS6bcKsCOvymoTWTy3//J0UduxQy1u3wtq12ra//oKHHoL0Ojr+07JUzQWDvpqgflLQqyXodDBunFouLITly7VtlqA7LAyGDFHLGw+MJdc8Hjz7w9An2raxJ7HSUrjrLu1xYqLjPm0edJuq4eAnYKo1+0evmiwS/6kwdyuEnqVmOhGii5Cgu4MJDNBu31dUqbvzMf1yePrp9mqREKIrO+XsOHp6qGEvy9fE8fkP9kNccho4c93JJHG3VsNhx7a6p9BbvTSR+69cxbRhiQT2ymHh6X9jNjVv0uKkw6p70bt7AYH9mlavQ6dveMrUiFNieenzaQyZMNBufd/+gUT4q/m7N+2NorKsAcUvm6iyrJInnrRv8wcfqJ/p6TBnDjz9NNx9t/Pnp+aoMe/BvlknvNEgGs42xfzbb7Vl2yJr8+apn2azjl+MqzBP/Yn7HupBRITzXlnROM8+C0eOaI9rz3wDbRR0V+ZDyhJIuB6WDYQNl8P+t+z38R0FI16B6b/VFKQVomuRoLuDCQwy2D0+JX4r69a74dv1MjiFEB2Ae3d35p6qgu5jx705nBNqtz23gRMcnEx2pmvjfpMyhzrd58V7VzHtnHie/c80Vm+PJ7vAnw+XT2ZnPUH6iRQXlJCaq3qbY8PSGhU8t4Yxg9VY7vIqD/5Zte8EezfdRy9s4FB2mN26JV+WU5RXxL/v+oeymgkVtm93fG5pUal1/u2wgAbOUCEaxDboLrEZYTDA5r6cJegGWPGzG5/9EMVzz0FKCjzzDFCWSXDu4obN4iHspKTAc8/Zr6sv6DYYwKups5vWpeIYJD4IS0Ng7YVw4B0oOay27XjCfmaXbv4Qc5uatUaILqhVg+6CggLuuusuRowYwahRo3jwwQcpKal/7Nf//d//ER0dbffv0Ucfbc1mdijjp2t3/66Y/zc/rxtMrwCf9muQEKLLO/PikDq3dcmge5f21bn3SBgmo331ol3rD/Dgy+NrP01t29v0dMq9/6Ral2MHFDT5OC1l2DBtOr41f7ROQFteUs6Tr2i97JOGqMi6tLwbz9zzD+99rc29nZpqdhjrfeSANrViWFBxq7Sxqxo5ElxqxU9+fuBtM5nHhAna459+gttu07alHK5G/8cpBB77BP1f86C0kRXyurh77oHyWvfw6gu6e/VqwbpAVUWw41/wQz/Y/YyaitRC7wqBM2DqcjW1qxACaOWg++677+bAgQN89NFHvP3222zevLlBAfQFF1zAmjVrrP/uvffe1mxmhzJobCQJK3fzx9db+fCHSbh5uLV3k4QQXdy8eeDiokUzHm6l6HQq0Mw92Ho9nB1Rebk2owRAWWV3UpK0wcTVldVccXklldVq/vUbzv2Ld18vsG5PSmr6aydt0/JEY2OMTT9QCxk8UitQtnZD/ZXQm+rtpzaSfkzdjD5j4kZeeVUrtrToo2lUG7XHxcU6CvPte0xTD2jz3ocG1xpjKpqle3c1DZ2tyFrTK7u6wqxZarmgAPK1/w4ys/QYi1WNCF32H/DTUDjyfes1+CSyapWqVg7g7w89a2oqZmc77msJulsstTx3LXzfD3Y8poJvUFXII6+HaT/Defkw/Vfwc37jUYiuqtWC7uTkZP7++2+eeuophg0bxqhRo3j44Yf58ccfyXb2qWCjW7du+Pn5Wf95ejZ1vufOafTMQZxy7vB2Tx0UQggAHx+YNrnM+visKVvp7amunnPyulYhnL27yjHWineT/tG6l164bw2b9w8CICYkmZc+HsPUmT7avs0JundpQWNsXPd69mwbfaN88elRAMDa7QOaPV7dmf8u1cZW/esZH0ZMi2FY/7qnqUvdfcj+ca5WbC4ssr0nKT75jK8VV9UOusE+xdyW0agna9CvVLrUFLeryIO/zoKt94HZydxXAlCV/G0zBp5+GkJqkpFq93RXV6tCd3CCoNtUrYLpPa/AgffhyDLIXaem+cr5235f7yHass4AA66B0/fDmLeg72zp3RaiDq02sGLr1q14eXkRF6elfk2YMAG9Xs/27duZOXNmnc9dtmwZP/zwA35+fpxyyinceOONeHjUfWFnNBox1r4K6kAsbevIbRQdn5xHoiU09Ty64OJu/PanWr78hiC27ikg77gvuYW9utQ5uX31ZmCS3bpd20uYbTSyd8shHntdRSF6nZH33ynGtZsr4eFG3Nz0VFbqSNpZitHo3qTXTtqn9SZHDfNr17+70WhEb9AzYcg+VmwcQ26RH3u2HCBqRL8WfZ2MoypSCPDJYciESExmEwsvyeTWp6Kt+wR4Z5FdqArMHdp/jMHjtb/L4WytWnnwkMFd6lxtEUYjBuuikdp3nMaO1fH661r/Tf/+JoxG+5svqqdbq1cTGWnmwAHVqZBWNo6jEV8wtPQ19Bk1vdxJz2Eu2odp3McSwDnxzjs6tm9Xf/ORI81cdpmJzz7Tk5Sko6QECguNWPqq8vLA8rfv1cuM0XYozPH96Pa/ga70COSsQldV4PT1zK5emM6xqcZm8EQXex8UbMc8+BHoWXOnpZ0/j2x/CtEUtc+jlj6fWi3oPnr0KL1r3VZzcXHB29ub3HoGAZ522mn07dsXf39/9u7dywsvvMChQ4d4/fXX63zOvn2dI71xh2W+EyGaQc4j0RIaex7Fx8N99/nRs2c1fcLz8a0pyFNS4cnGdetx797woTAmowm9oXPW8UzYWOiwLnF7NYmJifznhUwqq9UF6HXn/EK3gAASa+bwGRDgTVJaJPv2G9i8aTMuro3/+k1MVT3o7q5VFFTkkpjYtnOEOzN4cCErNqrlr76v4nR9Yosd22wyk1uketX69MwnMVGlIg+basD92XIqqrrh753DDZdu4PE3zwJgR2ImIUO1NmzbFg6oQmplZXtJTCxDNJy+rAzLbKXbt2/HVKsDpGdPN0DrXHF1PUxiYj61zZsXwYoVvpx3Xg59+lRx4EAwAOvWpTBtmg9bPR/Gz38goTkvocOELv07ypePIznkJapc/Frr1+t0CgsNPPTQECyJqjfcsJft20twd+8HqGvuP/9MIjRUzSaQkuIOqPeQjlzrewigR9kOYlLrvra2MFeXWz/HNKdCt1MhuRiova39yPWRaAmtdR41+lv/hRde4L333qt3nxUrVjS5QRdeeKF1OTo6Gj8/P6644gpSU1MJCwtz+pyoqCi6d2//VLu6GI1GduzYQVxcHAaD4cRPEMIJOY9ES2jOeTTCWrQ7nEC/BOv6oN7BhMUEN+gY9135F298OY5n79nITf+a3KjX7wgOp21xWHfoSADx8YPYuE0LSB55fiT+YX2sjwf330hSWiSV1e54u/ZhYHxEo163shLS0tWFdnSsCyNHjWzaL9BCLOfRnEun8fyHal1aZjTx8S2XYn782HHr1JkBviXEx8dbt33yykY++o8r9z/kQllpMLyp1hcf97bbr6REu7kzY0Y0vVp/SvGTi03x26FDh0IP+57nYcPA399MTo7quZ4+PZz4+HCHw3z3HeTkGAkM9OWjj7Shc66uEcA24oYOxWAYjilzGvp1F6OrPk6PiiTiMq/FNGcHuHatYYZ1uf12HYWF6py++GITV1yhigxGR+v45Re1T69escTHA1XHqUhaiiXoHuBzgPj4sdrBjneHmtqMZrdemANmQMB0MJuhIkdVJtcbwNCN+Lj4Nvn9mkquj0RLqH0elZaWtmjHbqOD7quuuoqzzz673n1CQ0Pp06cPx47Z34Wvrq6msLAQP7+G37UcVlOlIyUlpc6g22AwdIo3WWdpp+jY5DwSLaG555Gfrza+OC+zmH6DT3ys35b8w4ufngLA02/EcsuT+g5Tu+KTF9bw8RfdefQRPVPPjq9zv53JqqhXT48ivHoaSc/pRVJGNMePG9hyIBaAuKijBNWaQzs2ugJWq+V9244SM9J+vvMT+f57NT4TIC5O12E+A0aP1qPXg8kEW7bocdassuNlXHv+Frbt1VK9x8Rl8+ZXY+stFnosqwjwAcCvd7nd73zBjRO44Ea1vHfLQev6tCNudvulpVQBrnh6gq+voeWqN3cVNn9Lg8GAs//gU06Br76Cbt1g0CCD03PAYIDgmvtyoTazDmZm6q3HNhgMEDIfZq2D1adBSQq6qJsxdPN2PGAXdOgQvPWWuqnVvTs895z2fusbUAGoYStHDyZj6PEaHPyYgu2TgCsB8DVvxMAIMNQMU+nZH2ZtALfe6Dz7oTsJpvKS6yPREiznUUufS41+h/Xu3dshbdyZ4cOHU1RUxM6dOxkyRN1l27BhAyaTSd0tbaCkmqozjQnUhRBCtC6/PtrYwNys+qeCBKiqqOK2e7RJYrMLA8hIKyU4vP2zlApyCrnmgdFUVruTc8c+dtRxX/n4sePWecqHRKTgGRJH+q9QUOjGkiVgMtX09s3t4/Dc2MFacJm0s4wzGtE+s8nMs88CqONfeWUjntzKuneHwYNhxw7YuRPKyqB2CZbPX9vMZ7/YZzXsOBzFkH+t5vZnptZ57JwsrRK5X5+6K4+HDgy0Lqdmaj2iZpOZ1JRqwJUw30PodC073lwoixap+Z9nzbKfLqwuwTZJMRnOZgnzGQKzNsKhjyH2nhZrZ6dkqoKs3yD9R/6fvfsOj6LqAjj823QgjYQkJCQhJJACpNB7FQEVUewNUFAUBLEgoIiCDVBQARuiomIBC3wUsYAI0nsLhJpACCG9F1J29/tjyE42mwqpcN7nyZPZmTuzN8lkds7ce8/95N2OaLVjAGW6sKLkaWjzaH7xGWAZAHFbF4K10vUjJUu9X3fq+owacAOYW0OzYi3fQogaVWOD6vz8/OjTpw8zZ87k6NGjHDhwgLfeeos77rgDNzelBSA+Pp6hQ4dy9Kgy72Z0dDSffPIJ4eHhxMTE8M8//zBt2jS6dOlCYGBgTVVVCCFEFbm6qk2GiXF5FZb/7M2dnIg2Tm28/3DdB9wAa749ZpjiK/yCP5fOXi613Il9FwzL7f1TCQpSt33yibo8cKDpvkGhahbuiFNVe969ceVBDh9Wft+dOulLPX5d6txZ+a7VwpHdprOTHDigdjm3sVTHVM/5rC1ZqWXPnZ14xdew7NK2b5nlGts3xtlOmSf8Yrz6e06OTeZKgfIEwNstqYKfQlwrHx/44gu4777KlS8edF+6VEbXg0Zu0Haq6cTSmeeuqY4NgjYfUg5AzFo4swT2PAmrmsOW28kJ/5qv/laeBlpbFfLss8X2yzxDcwf16UXc1aSCmDcmpdEww3on15trpgkh6psazWQzf/58fH19GT16NOPGjaNjx468+eabhu0FBQVERUWRm6t8CFtaWrJr1y7Gjh3Lbbfdxrx58xg8eDCff/55TVZTCCFEFbm4qfMjJyYUllMSkmKSeWNhqMn6/furvVrX5JdVxtnEN64q/cb+2AE1QVT7dnqjoPvqs2PMzKBvKfFhQEdvw9zmEeccq1S/ee+rgce0Jw/Uuy7SnX12G5YP/HvSZPuxU46G5csx+Tw4cCcACekuLJ5d9klQPOeqq1v5P7S3awIAMcnN0RYoGWejz6gH8HKXBGr1haOj2hui1JbussT+Bb+3hWNvKuOObzSb+sCfneG/u2DfM3DuK8hXhmn+uPMR0nKUhAQP3XUZo86fujya+6hT48Xp+0OnxTDiEil2DxnWV9s83UKIa1KjAzgcHR1ZsGBBmds9PT05dUqdb9Pd3Z3vv/++JqskhBCiGrg0V1tNEhLKLzv7pXDSspVuxAM7nWDzASUL9wHTnGS1Li0hnb/3GT8Q+HujhsenmpYND1e71LfvYI95KaOeOoVdwdHRxmR9I7vG+LhGExXvTUS0N3qd3mg8e3piOn+sOM4td/vj4qV2T9+/6QSbDykZ7Fq7n+eesR1Mjl3XOnWzMyzvP2D8LF+vh6NRSg8Hb5cYHF09mT2vOb901aLTm/Pe110YP0sJxEoqHnRXNMLM2z2DQ+dAq7Pg8vnLeLZxJ/pchrrdS+Z9ri80GqW1++xZuHSpkjtlR8O2EaDLh2NvQOZZ6LoELBpo661eb9qK7z4Ukvcar7Nogt5jOB/vnG9YNXGql3EZp0643b0Mxisv43V9IEAZzlE8tZIE3ULUrYY5Z4sQQog65drS3bCcmN+23LK//q0MD2psnc33PzvT7GpMuX+/Hr2ublus1i4Pp0BrnMxr48FO6EqJ0cJPqcFl+66eBPmaTo00MGS3yboiQT5xAGTm2nPpXJxhffz5RDqHpvLwcz257ZYEdMXm0p33jjpF2ZTx0Zhb1r8kQSG9/LAwV8Zc7z/e3GjbhQuQmaMMIwjpoiRSC+jsy6i7lQfuaZlN+PDD0o9b/GFOhUF3iyuG5YtXW7gvnldbt71b1r/f282sqIt5RoaGnJxK3Io28YaQt9XX55fDxt6QfaHsfeobbZ4yPvvgFFjnDzklnji0GgVe90Hwm9DtSxjwF9yTwHb9jxw54QhAt27qcI7iXFyUXjYAceqlRYJuIeoRCbqFEEJUmYu3GlwlZrqWWS41Po24NCWPR2f/M7j7utG5rTJXbGKihounq9K/tPr9skptKfP2VAK3pBQbTKalBcIjlcxFLvaJuHq74OLZFCdb41k6bhliZ7rjVUFtcgzLEQeVceNpCekMGZjC2cs+ABw405bfv1O6XIfvPMNvW5VER26OCYx+sWvVfrha0sjWhvYtlS75J6J9yclQE+sVn+40JEx9uPH6grZYXh2h8MEHkG46/TmJp48all0dyp+T3LttG8NydLrS7z86uth2X5lyqj4pPq47IcGy7ILFBb0IvX8Gi6vTlqUehHVtYNMAOD4XLqyEdNPhDSb0emX8dE3KjoZD02B1C1jZCFZYw8+NYfOtcHIBZJ2F058Y72PnB31+geCZ4DcW3AeDRWM+LjaV9sSJpb+dubn6YEqCbiHqJwm6hRBCVJmzmq/KqBtwSRH7LxqWg1or3X07+atjpvf/d9Fkn9qSng5/71e6a7dwTePlqWpQ+PffxmUTEyE+TXm4cHVCDjQaCGoZYyhjaZ5Pr9uDKEtQW/UjN+J4ATkZOQwbeIEjUQFG5eYtULqnv/FKMnq9ss9LY09g08S023p90bm90iyt05tzeJv69z2qxs0EB6vLrVrBY48py1lZpQ81SExQE/RV1NLtFaCOaY2OUYK46Evq39PLTyKO+qR40J2YWPa0cSa871emubK9OuWergAStsCRV2DHQ3BpnXH5wmz4vT38cwtsuxf+7Aq/OsFKa/ijIxx/FzLOXPsPkhNjui5mLaz1hYj3IDcWtFeUbvH64t1nNJATbbpvCampsGqVsuzqCvffX3bZ5lefg8bFqUPeiwfdpQ3hEELUHgm6hRBCVJmFhdpyUt6Y7ojL7Q3LQV2UG+XO3dTW5f17rpjsU1vWroX8fGVc5b0POTL0NvUjsWTQXbzFtn0nNQJs66N2Ee3RZg+N7cvOyB7UXY06d0SEcVvv0+w4rkyh6WKfiF9zpavsjuMhLJoTzar/ugPQ3DGeZ1+vn63cRYp3ed2/U+12XzzoLjlbaIdiw9NLG9ubmKq0aJqbFdLUzbHc9/f2VpeLWrijY9VeB55tmiPqj2tq6S7i2B6G7oOA58HWt8TGEsNVrsRD+nGI3wwXV0HKPihIU7alHoIjM2C9P2zsW3rwXZAFiTvg1Meweyz80UlpvV7lDr86w5pWkJdsvE9uLOiVZH6YWYFjCDQNA6dOShfynj/BvYnQs+IcRnv3QuHVPJUPPADW1mWXLQq6CwqUYB3UoNvRsdQp1oUQtahGE6mJ+m369OlkZGTw6afKfI4jR44kMDCQGTNm1Go99uzZw6hRo9i3bx/29vYV7yCEqBdcXfWkpGhITNQCpd/RRZxUkwUFdVLutDv3UyOkA0drv9uvtkDLhp+OMWduKEVzX99/P/j5KS2wUVGwfbuO7PQrNHFQgujimdY7dlSXg/zz4HdleWDP0qcaM5QNa2pY/vlXayAMAPtG6fz5vySOnXXn8XHK9smvqr+jGRNP0ti+7Pms64NOPYolfzuongtHd10AWmJlWYi/v/EtRwuHKECZOzvm0E4Y2dNoe0KqMumzs10qZqVlrSumeNB98WrniYsJSp2aO8Zj3ditKj+OqGHGLd1VDLoBrJpCpw+Vr8xzEP8vFGaCS2/jcvmpytzU2qKHexplfLiFrRKMF0k9rExTVtzmIRC3EZNAvqSY/yndwQ3vmQI2btBmPLR+xvS4xaSmwvr1yvz2AHZ2MGyY8h2UoLtIjx7lV6N5sedK8fHKQ9GioFu6lgtR9yToroemT5/O6tWrAWUaNXd3d+666y6eeeYZLCxq7k+2ePHiSh9fAmUhhIvFUU4SSlaWOblZV2hka9r9OSJCXS6aYquFX3PcHBOIT3Nl/0lfk0zeFUlPh6lTlVafefPU6Ycq3C8xnWUfHGbxNz5ExoUZ1rdoAT17Kt3FB3cNZ0lUewoKzNi69gS3j1SacIsH3cVbde8f3425Xyei18MTL/cq9/2bNgU3N+WGuIibYwLrfk6i44C2tO8Fr70JMcV6rHq7xPDUK90r9wPWoeCeflia51OgteLA1WRqV7KvcDpGGQffzvsMFhbGXe89m6tj3GMuFhht0+v0JKYrkYKrYypQftDdvDlYWOgoLDQj+kwSBXkOxKYqwY63WyIgQXd9YtzSXYXu5aWx81O+SuPUCR7IgcIsNRg2v3qdyoqC6F8h8mtoPhgsS9zLZJ3FJODWmIGNO5hZABpo7AlWJSLagOeh7XSlbDn0ehg+HLZvN15/773w66/KcvGgu2sFnV3cip3icXEQEKC2eBcfDiSEqBsSdNdTffr0Yc6cOeTn57N161befPNNLC0tefrpp43K5efnY2V1nR9YVznKgB8hRBW4OKnZoRNjUvAO9DApUxR029qCpxJ/oTHT0CngAhv2uJKS5cT5Exdp1d7LZN/S6HQwciSsuzp00yI/lg8+N33f4jJTMnl1/EGWrelEdp5xi7GfH3z6qZr5d/DALJasVJb//iOb20cqywd2JgHNaNxYS2Cg2pLr2cad6Ng8zMzNsLSuuMWuXTs16G7X8iy//2FDyyAl+7uVFbz0Erzwglr+9ReisG7sWeFx65p1Y2tCfE9w4ExbImJ8yUrN5PThGHR6JdAO9k822cez2DjrS5eN+81mp2dzpUDpBeHSNJuKmJtDi6axXEj0JPqihphLFuj1yoMcb3/3CvYWte26updXlUYDlnbKV3G2raDtyxA0BbSlzOOuMQenLuDUAZpe/XIMBouyh5AAFW+/au1a04C7aH1WFjRpAnv2KOucnJRrVXmKt3THxUFGBoZZGKSlW4i6J2O66ykrKytcXFxo0aIFjzzyCD179mTz5s1Mnz6dCRMm8Nlnn9G7d2+GDh0KwOXLl5k8eTKdO3ema9eujB8/nphizSVarZY5c+bQuXNnunXrxnvvvYdeb/wEd+TIkbzzzjuG1/n5+bz//vv069eP9u3bc+utt/LLL78QExPDqFGjAOjSpQsBAQFMnz4dAJ1Ox5IlSxg4cCAhISEMHz6cP//80+h9tm7dypAhQwgJCWHkyJFcqvREnUKI+sTFWc0AnBhrmn46NzOX8+eVu77A1tlG09J2DlMDqf3bSklGVIZ589SAG+CjL5qzY/3RsncAHht+go9/7kd2ntqVfXDn/az/dh+nT8PgwWrZgXcHYaZRxmP+vV0JdlMupxJ5SemqHOZznJIdgqwbW1cq4AYlqHZzU7qz7zjkQ8sg44D6yScxTKnWxu8Ko16s/63cRTq3TwJArzfj0J40ju5TA+2Q9oUm5d28XTE3U9bHxBu3MiZeUjNAFX+4Ux5vN+X9kjOd+Xix+n7+wdLMV9+4u6vTVJfX0p2XB/fdB0OGqK221U6jKT1QHnYKhu5V5gNv8ww061bpgLoiOh3MnKm+njkTbrtNWS4ogK1blen2ipJUdu1qOq13SSWD7uRiz7kk6Bai7t2cLd0RH8DJDyou59QR+q01Xrd1OKQcrHjfwBeV6S2qibW1NWlpaQDs2rULW1tbli1bBkBBQQFjx44lLCyMH374AQsLCz799FOefPJJ1q5di5WVFV9//TWrV6/m3Xffxc/Pj6+//pqNGzfSvXvZN3RTp07l8OHDvPbaawQGBhITE0Nqairu7u4sXryYSZMm8eeff2Jra4uNjdJda8mSJaxdu5bZs2fj4+PDvn37ePnll3FycqJr165cvnyZiRMn8uijj/LAAw8QHh7OvHnzqu33JISoPa4uWsNy4mXT1shTh6LR65XM3EHNDwNq9+vO3RrDEmX5wN487h9vvG9p83dvXn+J115rQdE4bFACvCeetuPIyVxO7DvPbz/EExJmxUOTlPHBR7adYu0OZdqtRlY5PH7nfia+3IK23UqZ7BZwdHWgW+AxdkUEE3HRj4unL3PyYCzQSal38PXd+d9+O1y+XHQDbfoRbGsLf/0FK1fCM8/YYFlO4qT6ptOgDqCMjGLTLi8yz0UatoV0NJ1KzdzSHPemscQkexCT1MxoW2JshmHZxbmg5K6l8vbIgnBl+aNFyu/W0hKeeqoqP4WoDZaWSjbu+Pjyx3SvWAG//aYsf/stPP987dQPqDjKvQ6//KImZ+zaFWbPhjVr4I8/lHV//w3ZxS6pFXUtB9OgW6YLE6J+uTmD7oIMyK1E6+qVUro7Xkms3L4FGRWXqQS9Xs+uXbvYvn07jz32GKmpqTRu3Ji3337b0K18zZo16HQ63nnnHTRXPyTmzJlDly5d2Lt3L7179+bbb79l3LhxDL7apDN79my2l9av6aqoqCj++OMPli1bRs+eys2rl5f6+3BwuJrgxtnZMKY7Pz+fJUuWsGzZMjpcTUvr5eXFgQMHWLlyJV27duWnn37C29vb0DLu6+vL6dOnWbp0abX8voQQtcfFRe0slRhvmoU84rDa1BIUYBw4de7X0rB84KgakOm0Ou4bsJfV20p7IKi2Cs98TcfGX4+z+2QwZ2Jb4d8qlpjkIEDpztyo8R7uGtuN995KApTA/72p+5j4VsUJyQb3S2bX1W7xG1edIz5ObTXt3PX6UwBXdC/fsaNxsraGou8t6t/x3XfBy8Xf8Dqku3dpu+DpkkxMsgcJ6c3Iz83HqpHyuZZwWR3v7epSQSKrq7w91Z4XOp3yS37qKfDxqfSPIGpRixZK0J2cbElhoa7U7NrbtqnLJ07UXt1qUmEhvP66+vrtt5VrwoAByjAJrVYJui2LPYuoatAdHy9BtxD1zc0ZdFvaQ6MWFZezKSVxi41L5fYtmZCjirZs2UKHDh0oKChAr9czbNgwJk2axJtvvom/v7/ROO6TJ08SHR1NxxJ3aXl5eURHR5OZmUliYiKhoaGGbRYWFrRv396ki3mRiIgIzM3N6dKlS6XrfOHCBXJzcxkzZozR+oKCAoKuZlA6d+4cISXmjQkLC6v0ewgh6g8XN/WuMCHOtPtwxHE1CGobbJztzN3XDWe7ZJIznTl5QR1ze2DzyTICbtVtPY4xa3YwjwxvQlivK+QV2BCTbDyu+5kpPnj7RbDyH6WVu5l9EmNertz1bPAwZ2Z/riz/vcmMwkK1ublzbxkfXJaAAKX7/IIFSmARdVn5Xbk6JOLmU3oitBZuWXBS6bFw+XyCobt9YlyxObpdKzcSzsvbOGqzsdYyY4bMk1RftWgBBw8qD0ji440z0BfZsUNdPnMd02nXJ99/D6dPK8t9+8KgQcqygwN07678zCdPKt3Mi1TmVqxkIjUJuoWoX27OoDvoOrp+l+xuXkO6devGrFmzsLS0xNXV1SireKMSqXpzcnJo164d8+fPNzmO0zVeaYu6i1dFTo7SMrFkyRLc3IwzxVZXsjchRP3h6q5eJ4rGHhYXcVoNVoM6uJps92+tZdchiEn2IDtbSRwUcUS9U/RtfgG3psa9hvy801n0bXvMzCCwiy9zXtzCi/P6A0qG7CaN8th7qj1xaW70u8MOrU65dk56LJzG9v0r9XN1vTUI+0bpZOQ6sHFPIE1slDHFtjaZ+HfwqdQxblZz5igZl4u3UAb7RlNW9nFPdzW4jjmXogbdOWpPCBcv03OnNN6tjD8bJ9y3DQ+P/pWruKh1xZOpXbpkGnQnJirBZ5EbJej+6it1+a23jHu+DB6sPmg4d0757uOjdMWvSNOmSut4QYEE3ULURzdn0N0ANGrUiJYtW1ZcEGjXrh1//PEHzs7O2NqWPueti4sLR44cMbRcFxYWcvz4cdq2bVtqeX9/f3Q6Hfv27TN0Ly/O8mq/J61WHdPp5+eHlZUVsbGxdC2jL5Sfnx+bN282WnfkyJGKf0ghRL3j4q5ebxKTTFsUIyKVcbpWFnn4lpKd3D/ElV2HlOWzZyE0FE5GqC3mi99LNEzZVZYX5vanQ9fDWFmb0+O29sRGxtGu4xXSM23IzFGSHjW2zuHZGSHlHqc4CysLbukcwept3UnJciIlS1nfoXUk5pah5e98k7O0VMajd2yXQFyqEimEBJU93MqzWB65SxeyDMuJOWoE5uIXWKn39vZzMCw3sc5i2rvtKlttUQeKB92xsabbd+40fn3pEuTkQOPqyWVWZ86eVb43b660dBc3eDC88Ybxusp0LQcleG/eXJmnPi7OuDt+06bXXl8hRPWQ7OU3gDvvvJOmTZsyfvx49u/fz8WLF9mzZw9vv/02cXFxAIwaNYqlS5eyadMmzp07x+zZs8nIKO9GyJMRI0bw6quvsmnTJsMxN2zYAECLFi3QaDRs2bKFlJQUsrOzsbW1ZcyYMcyZM4fVq1cTHR3N8ePHWb58uWHe8Yceeojz588zb948IiMjWbdunWGbEKJhcfFwNCwnphj3ZinML+T0JeXBYRuPaCysTJ/xBgSoy6dOKd9PxqorAztUrit3/3vC6HlHMBozDS1au/PRIuOeOk89bYOzR9WaegYPyjdZ1zmkptIn31jc3eHnby7TxDoLjUbHAyPLnmO7hZd63sREq7/zhAS1TGVa+QACO7fCx/UiADMn7MfVu/y5vUXdMm7pNk10ULxreZGigLWhystTAmKA0tpVOneGkrO3VjboBnVcd0ICfH51iIylJXTqVOWqCiGqmQTdN4BGjRrx/fff4+HhwcSJE7n99tuZMWMGeXl5hpbvMWPGMHz4cKZNm8ZDDz1EkyZNuPXWW8s97qxZsxgyZAizZs3itttuY+bMmeTmKt0s3dzcmDRpEgsWLKBnz5689dZbADz//PNMmDCBJUuWcPvtt/Pkk0+yZcsWPK82Z3h4eLB48WL++ecf7rrrLlasWMELxSelFUI0GM4eavNJQkoTo22R4Rcp0CoBVZBvUqn7+6t5tgxjHIvGd1tbQ8ugSuTPKMXo0UqWcAAbG3jxpap/1A0e4WOyrnPXGp5P+AbSZ3goZ05kc/7EZboPbV9mOc826t84JlNtmS4+XMGlkrGzpbUlh8PtOfjvSabOrzhhnqhbxXs5fPKJhtatwddXnZu6tFyvRdeJhuriRXW5tKDbwgJuucV4XbdulT9+UdCt16tzdL/xBnh4lL2PEKJ2SPfyemju3LlV3ubi4lLu1FsWFhbMmDGDGTNmlFlm+fLlRq+tra155ZVXeOWVV0ot/+yzz/Lss88ardNoNIwePZrRo0eX+T4DBgxgwIABRuvuvffeMssLIeonS2tLnJoWkpJqQWK+8VCViEMJQCsAgvzzStkbAtpoAaVb+qmDFyks9DK0ZLVpQ6nZjCtDo1Gm5PnyS6WVqLQETRXxDfbGz7eAc5FqoN25j9y5VoW7r1uFZTwD1cjjUrIaXScmFAIWmJlVbTyqg4sDHfo7VFxQ1LniLd2nT6st3ePGwa5dsH+/6T4NfVx3dLS6XNZ1afBgdZo0c3O4OhlMpRTPYA7KLAhTp1atjkKImiEt3UIIIa6Zi6vy7DYx0fjjJCI817Ac1K70RIp+rfLRaJTmmNMn0omKUjP2BlZuGG+ZGjeG555TsgFfq8FD1IDbvnEWrUMrl2dDVF7xFriYGHU5MfoyoGSdN5M7lRuSry84OZnOoHL0KEybpl4Lik9w0tCD7gsX1OWy0vYU74TYrp2SYLKyiuewtbSEZcuMpx4TQtQd+SgTQghxzYq6/mZmwpViU3VHXPQxLAeFOZe6byO7Rng3UzIonY7xJOJotmHb9Qbd1WHIEHW5Y1dbzMzlI7O6WVur51DxoDshXTlnXOxlHP2NysYGtm/XMWtWFHv3alm/Xt328cfq8uOPq8sNPeiuTEt3q1bw5JNKsP3yy1U7fvEhOzNnQkjl80cKIWqY3EEIIYS4ZsWTXBUfh3uyWNDt37lYxrQSAloqWYXSsh3Zvnafut7tWLXV8Vrdcos67vS+++q2LjcyT0+ltTM2VoeuUEt2eja5+UqKapemWeXtKho4f38YNiyFjh2VPAx9+piWGTpU7Tbd0IPuyrR0AyxdCunp8NhjVTv+/ffDq6/C229DGSMDhRB1RIJuIYQQ16y5k9oSGXNKvaOMjFS+e3qWP8WPv6/aur32H7XpJzDwGgd0VyNbWzh8GA4cgAkT6ro2N64WNsrDlsJCMxIuJpEYo04w7OJ0pazdxA1Go1GCxeKaNVMC8zZtlNfx8VDOxCtl+u47pWX5vfeuv57XozIt3UWuJaeFjQ288w7MmKEkZRNC1B8SdAshhLhmvk2PGJYjjyn9gzMyIOlqwnJf3/L3DyjWHfLUJbVwQEfTeb3rgrOzkoxIYzqjkagmnu5qYB1zLonEWDWqcm1mOnWbuHH17askEivSq5fyv1cUdEPVW7vT02HSJCVz+MyZkF/OKaXVVu3YFSksNH5d1NJtZ2c6NZgQ4sYmQbcQQohr5uevzol97qyS+SjqnHrnWlHQ7d/W1mSdh1Mcdk521VNBUe95tlDPl5jzWSRczjG8dmlmmmhL3NjeeQesruZevP9+5fv1BN2ff662jufnw/HjpZcbPVoJhBcvrtrxy/Lxx0rm/cGDlWBep1OnDPP2lgd5QtxsJOgWQghxzfyC1PmczkUp/Rkji83149u0/LHZ/iGm00oFtoytptqJhqCFp5pe+VL0FRLj1JZvFxeJTG42nTvD7t3wxx/wyCPKuuIJwqoSdF+5Ah99ZLzu0CHTcrGxShf0rCxl1oOlS6tcbQOtVjnGpElKgsmNG2HvXkhIgLyrsyeWN55bCHFjkqBbCCHENfNtp875dC7aHoDIM2rQ5OtV/gBM70APrC2Nx+0G+mVWYw1Ffefpow76j4nRk5igtny7NC99ujlxY+vQQUmgVtQaXNmW7pwcWLgQ/v5beb18OcTFGZc5eNB0v7NnjV8//TT8/HPV633hAtx9t2lr+b59VRvPLYS48UiaBSGEENesiaMtzR3jiUtz49wlpdU6Mkrd7htgX+7+ZuZmtPG4SPgF9a66+DhvcePzbOVgWI6JtUCrVQfCujZvVBdVEvWMn5+6fPq0Mpf32LHKvNQ//AAODqDXw733wp9/KuXuvhvCw02PVVrQfe6c8Wu9Xskcvnw5dOsGvXsr483LmjN++3b44ANYs0bpRl7S3r3g7q6+lpZuIW4+0tIthBDiuvi1UJqS4tLcyE7PJjJabbn0bdu8wv39WyYbvQ5sbzrOW9y4Wvip885dim9MQpLaHuDiIeeCUGZAKJq+78QJZZz0/v3w++8wZowSJH/9tRpwA/zvf2oL9oAByvzXAEeOmCZMKx50Bwcr3wsKYP16JfnagAEQGKi0YGeW6Ijz55/KVGerV6sBt6Ojst7aWnm9d69xS7cE3ULcfCTormcCAgLK/VpcXRk+hBCimvh5q3ehkeGXiLzUDIDG1tm4ejercP+Anl2MXgd2qDhQFzcOOyc77BulA3DojB+rtvU0bHNt6VHWbuImUzSuOzNTmTqsyKpVMGUKvPiiuq5pU+N9p05VuqyD0gX99Gnj7cWD7p9+gpdeMs0ufuaMMlbbx8e4BX3VKnXZ3R3eegtOnYIhQ5SZD4r2LT6WXLqXC3HzkaC7ntm+fbvh69VXX8XW1tZo3ZgxYwxl9Xo9hSXnoxBCiFrm10q9Dp05nsL5eCVQ8m0ei8as4kRY/gHqhLSNrHLwbONeTmlxI/JslghAWrYDmZnKrcmdd0Kz5uVM8i5uKsXHdYMS/Bb54AM1Q/njjytB7ujRSnfwO+80DoDBNJlaUdCt0UDr1jB/PiQnK8HzN9/AwIFq2ZQU+Oor9fX27cp3CwslmH/tNXC92nmja1e13Lp16rK0dAtx85Ggu55xcXExfNnZ2aHRaAyvIyMj6dixI1u3buWee+4hODiYAwcOMH36dCZMmGB0nHfeeYeRI0caXut0OpYsWcLAgQMJCQlh+PDh/Fm8H5YQQlwjv9Zq9un/tuSRX6j0qfT1TKnU/gEBxZbbFGBmLh9NN5sWrulGr+++W2lxFKJIYKC67OcHO3cqAW5xHh7w4Yfg7KwEy1lZsHatEkwXD7pLjusuCro9PdUu4WZmSuv66NHwzz9KoF40pnvzZuV7cjJERCjLHTqAbYnREMWD7qKHAhYWxuO7hRA3hxpLpPbZZ5+xdetWIiIisLS0ZH+xKWTKotfrWbRoEb/88gsZGRl07NiRWbNm4VP8ceZ1+uUXeP110zE5NcnOzozHH3ckLKx6jrdgwQKmTZuGl5cX9vblJykqsmTJEtauXcvs2bPx8fFh3759vPzyyzg5OdG1+KeCEEJUkV9btS/nxt1qFjRf7yulFTfRti00aQLZ2dCtt0PFO4gbTlivVmw8oCy/9BLMmwfm5uXvI24uI0fC998rc3j/8IMSuM6aBXv2KNNyAXzxhXG38EbF8vAVdS8H45butDSl9RqME7aVFBamBO779yuJ3BITlanNivTubbpPabdXnp5ybgtxM6qxoLugoIChQ4cSFhbGr7/+Wql9li5dyvLly5k7dy6enp4sXLiQsWPHsmHDBqyLHj1ep/ffh5Mnq+VQVaBh+fLmTJlSPUd77rnn6NWrV6XL5+fns2TJEpYtW0aHq586Xl5eHDhwgJUrV0rQLYS4Ln4d2xqWT0SpTTi+vpXb38FByfq7dStMnFjdtRMNwfQ3nGjipARGw4fXdW1EfeTsrAS8xZmbw6+/KnNxBwXBHXeUvX/z5kqgfvmy0tKt1yst4MXHc5cXdIPSzbyoDlu2wIED6rbSbsv8/JTx5amp6joZzy3EzanGgu7nnnsOgFXFM0yUQ6/X89133zF+/HgGDRoEwHvvvUfPnj3ZtGkTd5RzJdVqtWhLpqIsw5Qp8MYbZrXa0m1rCyNHxqHVelVpP93VNJhFP1vR67Zt2xr9vHq9Hr1eX+a6yMhIcnNzeeKJJ4yOX1BQQFBQUKV/d6JuFf2d5O8lrkdNnEdNmyo9ejIzjcdvt2xtXen36d9f+VLqVm1VEzWkus8jBwe1q7D8/esRrRZzw6K22v841XEeNWkCM2YUHa/8smFhZly+rCEtDSIjtfj4wJkzGopGW7ZqpUOr1Ze5f79+8N57ym/kn390hIdrAOW61727ttT379LFjL//Vq+N3t7lv4eoOrk/EtWh5HlU3edTvZmnOyYmhsTERHr2VLOW2tnZERoayqFDh8oNuk+XTENZDj8/pXtSXTh2LK1K5aOjo9FqtRw+fBiAs1fnvjh79iyXL182lEtNTSUrK8tQDiAuLs6wrmi/KVOm0LRESk9LS0uj/UT9d+zYsbqugrgBVPd55O4eRGamcdIrrU2hXF9ucHI9urGZ5eZS1Cv76NGj6BrVzLzptXUeeXh4AEpvnFWrzjNwYBrbtzcHWgBgbn6ew4dTy9zf3t4Mc/MwtFoN69YVkJRkCWjw9LxCXNxx4uJM9/H2dgfULPxWVvEcPhxbfT+UMJDrkagONXUe1ZugOzFRyVzq7OxstN7Z2ZmkpKRy9/X396dx4/qb4VSr1XLs2DGCg4Mxr8JAnqioKMzNzQm7Ohg8Pz8fgODgYKOx3K1bt2bv3r2GcgBJSUnY2toSFhZGmzZtePvtt2nSpAlDhw6tlp9J1L5rPY+EKK6mzqP27c1MpuG5dVgPaugeXdQxuR7dJLKzDYshISFKs3I1qu3z6Lbb1MzjqamtCAvTk5urtkIPHNiSsLDyU4t37w47dkBsrDrsceBAK6N7sOKGDYMvv1Rfd+3qRliYa6llxbWR65GoDiXPo5ycnCo17FakSkH3/PnzWbp0abllNmzYgF9Fg2Kqmbm5eYP4J6tqPc2upsks2qf46+LH6dGjB19//TXr1q0jLCyMtWvXcubMGdq2bYu5uTn29vaMGTOGuXPnAtCpUycyMzM5ePAgtra2jBgxorp+RFELGsr5Luq36j6PWjc7DrQzvPbwAFtbOU9vdHI9usEV+9uam5vXWAaw2jqPOnVSl48cMcPcHCIj1XX+/uYV/oi33KIE3cX17m1W5n49ehi/9vEpu6y4PnI9EtWh6Dyq7nOpSkH3mDFjKgzQvLyqNm65iIuLCwDJycm4uqpPAJOTkwksPk+EMNGnTx8mTJjA+++/T15eHvfeey9333230dOZ559/HicnJ5YsWUJMTAx2dna0bduWZ555pg5rLoS4Ufh5JRu9rmwSNSGEqC0tW4KTk5KtfMcOyMtTE6k5ORlnPi/LwIHw5pvG60rLXF7E1VWZU/z8ebUOQoibT5WCbicnJ5ycnGqkIp6enri4uLBr1y6CgoIAyMrK4siRIzz88MM18p713T333MM999xjeN2tWzdOnTpVatnnnnvOkLyuNBqNhtGjRzN69Ohqr6cQQvj6G09Q69vyCmBTN5URQohSaDRKhvPlyyE9HVavhpgYZVtlO2l2765MRZabq7x2coKAgPL3GTIEliyBZs2UAFwIcfMxq6kDx8bGEhERQWxsLFqtloiICCIiIsguNj5o6NChbLw6uaJGo2HUqFF89tln/PPPP5w6dYqpU6fi6upqyGYuhBCifvJr62L02td+dxklhRCi7jz6qLr8zjvK1GFQ+aDb2tq4ZbtnTzCr4G567lxYvFiZT9xGnkUKcVOqsURqixYtYvXq1YbXd999NwDfffcd3bp1A5REYZnF5u566qmnyM3N5fXXXycjI4NOnTrx5ZdfVtsc3UIIIWqGl787FuYFFGotAfBtbVnHNRJCCFO33AJubhAfD+Hh6vqqpCMaOFAJoKH0+blLcnSEiROrVE0hxA2mxoLuuXPnGhJ3laVkV2mNRsPkyZOZPHlyTVVLCCFEDbCwssCn2RnOxrcBTLubCyFEfWBhAQ89BAsXGq+vStD9xBOwbBnodMqyEEJUpMa6lwshhLi5BHqeMyy3bidT4ggh6qfHHjNdV5Wg280NTp6E06eVZSGEqIgE3UIIIarFK7NbENrqFDPHbcGtlXtdV0cIIUrVqZNp8rOqznar0ShfQghRGRJ0CyGEqBY97wjmcGQAby7pX9dVEUKIMmk0xgnVrK3BXZ4TCiFqkATdQgghhBDiplI86PbzqzgDuRBCXA+5xAghhBBCiJuKry88+6wy57bk7xVC1LQay14uhBBCCCFEffXxx0oWc3Pzuq6JEOJGJy3dQgghhBDipiQBtxCiNkjQLYQQQgghhBBC1BAJuoUQQgghhBBCiBrSoMd063Q6AHJzc+u4JuXTarUA5OTkYC79mMQ1kvNIVAc5j0R1kPPoJnHlijqh9ZUr1T4xtZxHojrIeSSqQ8nzqCi+LIo3r5dGr9frq+VIdSA5OZnz58/XdTWEEEIIIYQQQtxgfHx8cHZ2vu7jNOigu7CwkPT0dKytrTGTCRaFEEIIIYQQQlwnnU5HXl4eDg4OWFhcf+fwBh10CyGEEEIIIYQQ9Zk0DwshhBBCCCGEEDVEgm4hhBBCCCGEEKKGSNAthBBCCCGEEELUEAm6hRBCCCGEEEKIGiJBdy344YcfGDhwIMHBwdx///0cPXq0rqsk6rHFixcTEBBg9DV06FDD9ry8PGbPnk23bt3o0KEDkyZNIikpqQ5rLOqDffv28cwzz9C7d28CAgLYtGmT0Xa9Xs/ChQvp3bs3ISEhPP744yZTLqalpfHSSy/RsWNHOnfuzKuvvkp2dnYt/hSirlV0Hk2fPt3k+jR27FijMnIe3dyWLFnCvffeS4cOHejRowcTJkwgMjLSqExlPsdiY2MZN24coaGh9OjRg3nz5lFYWFibP4qoQ5U5j0aOHGlyPXr99deNysh5dHP78ccfufPOO+nYsSMdO3bkwQcfZOvWrYbttXktkqC7hm3YsIE5c+bw7LPPsnr1agIDAxk7dizJycl1XTVRj7Vp04bt27cbvn788UfDtnfffZd///2Xjz76iOXLl5OQkMDEiRPrsLaiPsjJySEgIIA33nij1O1Lly5l+fLlzJo1i59//plGjRoxduxY8vLyDGWmTJnC2bNnWbZsGZ9//jn79+83uYERN7aKziOAPn36GF2fPvjgA6Ptch7d3Pbu3cujjz7Kzz//zLJlyygsLGTs2LHk5OQYylT0OabVann66acpKChgxYoVzJ07l9WrV7No0aK6+JFEHajMeQTwwAMPGF2Ppk6datgm55Fo3rw5U6ZMYdWqVfz22290796dZ599ljNnzgC1fC3Sixp133336WfPnm14rdVq9b1799YvWbKkDmsl6rNFixbphw8fXuq2jIwMfbt27fR//PGHYd3Zs2f1/v7++kOHDtVSDUV95+/vr9+4caPhtU6n0/fq1Uv/5ZdfGtZlZGTo27dvr1+/fr1er1fPo6NHjxrKbN26VR8QEKCPi4urvcqLeqPkeaTX6/XTpk3Tjx8/vsx95DwSJSUnJ+v9/f31e/fu1ev1lfsc27Jliz4wMFCfmJhoKPPjjz/qO3bsqM/Ly6vV+ov6oeR5pNfr9Y899pj+7bffLnMfOY9Eabp06aL/+eefa/1aJC3dNSg/P5/jx4/Ts2dPwzozMzN69uzJoUOH6rBmor67cOECvXv35pZbbuGll14iNjYWgPDwcAoKCozOKT8/Pzw8PDh8+HAd1VbUdzExMSQmJhqdN3Z2doSGhhquRYcOHcLe3p7g4GBDmZ49e2JmZiZDYoSRvXv30qNHD4YMGcIbb7xBamqqYZucR6KkzMxMABwcHIDKfY4dPnwYf39/mjVrZijTu3dvsrKyOHv2bO1VXtQbJc+jIuvWraNbt24MGzaMBQsWkJuba9gm55EoTqvV8vvvv5OTk0OHDh1q/VpkUS0/hShVamoqWq0WZ2dno/XOzs4m41KEKBISEsKcOXNo1aoViYmJfPLJJzz66KOsW7eOpKQkLC0tsbe3N9rH2dmZxMTEOqqxqO+Kzo3SrkVFY5eSkpJwcnIy2m5hYYGDg4OcW8KgT58+3HrrrXh6enLx4kU++OADnnrqKVauXIm5ubmcR8KITqfj3XffpWPHjvj7+wNU6nMsKSnJ6CYXMLyW8+jmU9p5BDBs2DA8PDxwdXXl1KlTzJ8/n6ioKD7++GNAziOhOHXqFA899BB5eXk0btyYTz75hNatWxMREVGr1yIJuoWoZ/r162dYDgwMJDQ0lAEDBvDHH39gY2NThzUTQtzs7rjjDsNyUeKiQYMGGVq/hShu9uzZnDlzxigviRBVVdZ59OCDDxqWAwICcHFx4fHHHyc6Ohpvb+/arqaop1q1asX//vc/MjMz+euvv5g2bRrff/99rddDupfXoKZNm2Jubm6SNC05OdnkqYkQZbG3t8fHx4fo6GiaNWtGQUEBGRkZRmWSk5NxcXGpoxqK+q7o3CjvWtSsWTNSUlKMthcWFpKeni7nliiTl5cXTZs25cKFC4CcR0L15ptvsmXLFr799luaN29uWF+Zz7FmzZqZZBAuei3n0c2lrPOoNKGhoQBG1yM5j4SVlRUtW7akffv2vPTSSwQGBvLdd9/V+rVIgu4aZGVlRbt27di1a5dhnU6nY9euXXTo0KEOayYakuzsbC5evIiLiwvt27fH0tLS6JyKjIwkNjaWsLCwuqukqNc8PT1xcXExOm+ysrI4cuSI4VrUoUMHMjIyCA8PN5TZvXs3Op2OkJCQWq+zaBji4uJIS0sz3HzIeST0ej1vvvkmGzdu5Ntvv8XLy8toe2U+x8LCwjh9+rTRg8KdO3dia2tL69ata+XnEHWrovOoNBEREYAaDMl5JEqj0+nIz8+v9WuRdC+vYU888QTTpk2jffv2hISE8O2335Kbm8s999xT11UT9dS8efMYMGAAHh4eJCQksHjxYszMzBg2bBh2dnbce++9zJ07FwcHB2xtbXn77bfp0KGDBN03uezsbKKjow2vY2JiiIiIwMHBAQ8PD0aNGsVnn31Gy5Yt8fT0ZOHChbi6ujJo0CBASR7Sp08fZs6cyezZsykoKOCtt97ijjvuwM3Nra5+LFHLyjuPHBwc+PjjjxkyZAjNmjXj4sWLvP/++7Rs2ZI+ffoAch4JpSvw+vXr+fTTT2nSpIlh3KOdnR02NjaV+hzr3bs3rVu3ZurUqbz88sskJiby0Ucf8eijj2JlZVWHP52oLRWdR9HR0axbt45+/frh6OjIqVOnmDNnDl26dCEwMBCQ80jAggUL6Nu3L+7u7mRnZ7N+/Xr27t3LV199VevXIo1er9fXwM8oivn+++/56quvSExMJCgoiNdee83QBUaIkl544QX27dtHWloaTk5OdOrUiRdeeMEwPikvL4+5c+fy+++/k5+fT+/evXnjjTekq9RNbs+ePYwaNcpk/YgRI5g7dy56vZ5Fixbx888/k5GRQadOnXjjjTdo1aqVoWxaWhpvvfUWmzdvxszMjMGDB/Paa6/RpEmT2vxRRB0q7zyaNWsWzz77LCdOnCAzMxNXV1d69erF5MmTjYZMyXl0cwsICCh1/Zw5cwwNDpX5HLt06RKzZs1i7969NGrUiBEjRvDSSy9hYSHtRTeDis6jy5cv8/LLL3PmzBlycnJwd3dn0KBBTJgwAVtbW0N5OY9ubq+++iq7d+8mISEBOzs7AgICeOqpp+jVqxdQu9ciCbqFEEIIIYQQQogaImO6hRBCCCGEEEKIGiJBtxBCCCGEEEIIUUMk6BZCCCGEEEIIIWqIBN1CCCGEEEIIIUQNkaBbCCGEEEIIIYSoIRJ0CyGEEEIIIYQQNUSCbiGEEEIIIYQQooZI0C2EEEIIIYQQQtQQCbqFEEIIIYQQQogaIkG3EEIIIYQQQghRQyToFkIIIYQQQgghaogE3UIIIYQQQgghRA2RoFsIIYQQQgghhKghEnQLIYQQQgghhBA1RIJuIYQQQgghhBCihkjQLYQQQgghhBBC1BAJuoUQQgghhBBCiBoiQbcQQghxA9mzZw8BAQHs2bOnrqsihBBCCMCirisghBBC1JZVq1bxyiuvlLl95cqVhIWF1V6FGogff/yR3bt3c/ToUS5fvsyIESOYO3duqWUzMjJ4//332bhxI1euXCE4OJjp06fTrl07o3J5eXl88803rFmzhkuXLmFvb0+HDh2YNGkSbdq0MZRLSEjgu+++48iRI4SHh5OTk8N3331Ht27dTN5bp9OxcuVKVqxYQXR0NI0aNaJt27ZMmDCBjh07Vu8vRQghhKgkCbqFEELcdJ577jk8PT1N1nt7e9dBbeq/L7/8kuzsbIKDg0lMTCyznE6nY9y4cZw6dYqxY8fStGlTfvzxR0aOHMmqVavw8fExlJ0yZQqbN2/m/vvvp127dsTHx/Pjjz/y4IMPsm7dOlq0aAFAVFQUS5cuxcfHh4CAAA4dOlTm+7/33nssW7aM4cOH88gjj5CRkcHKlSsZOXIkP/30EyEhIdX2OxFCCCEqS4JuIYQQN52+ffsSHBxc19VoMJYvX46HhwcajYYOHTqUWe7PP//k0KFDLFy4kKFDhwJw2223MWTIEBYvXsyCBQsAiI+P5++//2bMmDFMmzbNsH/nzp0ZPXo0Gzdu5PHHHwegXbt27NmzB0dHR8PxS1NYWMhPP/3EkCFDeP/99w3rhw4dyqBBg1i7dq0E3UIIIeqEjOkWQgghSli0aBGBgYHs2rXLaP3MmTNp3749J0+eBCA/P5+FCxdyzz330KlTJ8LCwnjkkUfYvXu30X4xMTEEBATw1Vdf8cMPP3DLLbcQGhrKmDFjuHz5Mnq9nk8++YS+ffsSEhLC+PHjSUtLMzrGwIEDefrpp9m+fTt33XUXwcHB3H777fz999+V+pmOHDnC2LFj6dSpE6GhoTz22GMcOHCgUvu2aNECjUZTYbm//vqLZs2aMXjwYMM6JycnbrvtNv755x/y8/MByMrKAqBZs2ZG+7u4uABgbW1tWGdra4ujo2OF711YWMiVK1dMjuns7IyZmRk2NjYVHkMIIYSoCRJ0CyGEuOlkZWWRkpJi9JWammrYPn78eIKCgpgxY4YhQNy2bRs///wzEyZMIDAw0HCcX375ha5duzJlyhQmTpxISkoKTz75JBERESbvu27dOkN36yeeeIK9e/fy/PPP89FHH7Ft2zaeeuopHnjgAf7991/mzZtnsv/58+d54YUX6Nu3Ly+99BLm5uZMnjyZHTt2lPvz7tq1i0cffZTs7GwmTpzICy+8QEZGBqNHj+bo0aPX86s0EhERQdu2bTEzM769CA4OJjc3l6ioKEDpxt+8eXOWLVvG5s2biYuL4+jRo8yaNQtPT0/uuOOOKr+3jY0NoaGhrF69mrVr1xIbG8vJkyeZPn069vb2PPjgg9XyMwohhBBVJd3LhRBC3HSKui4XZ2VlxbFjxwCwtLRk3rx53HPPPcydO5epU6cyY8YM2rdvz7hx4wz7ODg4sHnzZqysrAzrHnjgAW677TaWL1/Ou+++a/QeRd2q7ezsAGUM9JIlS7hy5Qq//fYbFhbKx3Jqairr1q1j9uzZRsc+f/48ixcvNrQk33fffQwdOpT58+fTq1evUn9WvV7PrFmz6NatG19++aWhxfqhhx7ijjvu4KOPPuLrr7+u6q+wVImJiXTu3NlkvaurK6AkRQsICMDS0pLFixfz0ksvMX78eEO5du3asWLFCuzt7a/p/d9//31eeOEFXn75ZcM6Ly8vfvrpJ7y8vK7pmEIIIcT1kqBbCCHETef111+nVatWRutKts76+/vz3HPPsWDBAk6dOkVqaipff/21ITAGMDc3x9zcHFAC6IyMDHQ6He3bt+fEiRMm7zt06FBDwA0YxhgPHz7c6LghISGsX7+e+Ph4o2DR1dWVW2+91fDa1taWu+++m6VLl5KYmGjonl1cREQE58+fZ/z48Uat+QA9evRgzZo16HQ6k5//Wly5csXoIUGRonV5eXmGdfb29gQFBTF06FBCQ0OJjo5myZIlTJ48mWXLlhl1Ma+sJk2a0Lp1a8LCwujRoweJiYksXbqUZ599lh9++AEnJ6dr/+GEEEKIayRBtxBCiJtOSEhIpRKpjR07lt9//52jR4/y4osv0rp1a5Myq1ev5uuvvyYqKoqCggLD+tKyo7u7uxu9LgrAy1qfnp5uFHS3bNnSZGx1UUbwS5culRp0nz9/HsAoYVlJmZmZODg4lLm9smxsbAzjtosrWlcUSGdmZvLoo48yduxYxowZYyjXvn17Ro4cyW+//cYjjzxSpfcuLCzkiSeeoGvXrsycOdOwvmfPngwbNoyvvvrKqAVcCCGEqC0SdAshhBBluHjxIhcuXADg9OnTJtvXrFnD9OnTGTRoEGPHjsXZ2Rlzc3OWLFnCxYsXTcoXtYqXVFYrs16vv47aGx9j6tSpBAUFlVqmcePG1/0+oCRCK21KsYSEBEDtZv7XX3+RlJTEwIEDjcp17doVW1tbDh48WOWge9++fZw+fZrp06cbrffx8cHX15eDBw9W6XhCCCFEdZGgWwghhCiFTqdj+vTp2NraMnr0aD7//HOGDBlilJn7r7/+wsvLi48//tioBXrRokU1UqcLFy6g1+uN3quoJbtoXuuSilrKbW1t6dmzZ43Uq0hgYCAHDhww6a5+9OhRGjVqZOjSn5ycDIBWqzXaX6/Xo9PpTNZXRlnHBKUV/FqOKYQQQlQHyV4uhBBClGLZsmUcOnSIN998k8mTJ9OhQwdmzZpFSkqKoUxRy3XxFukjR45w+PDhGqlTQkICGzduNLzOysrif//7H0FBQaV2LQely7a3tzdff/012dnZJtuL/zzXa+jQoSQlJRlNY5aSksKff/7JgAEDDGO7i7rEb9iwwWj/f/75h5ycnDJb5MtT1jGPHz9OVFTUNR1TCCGEqA7S0i2EEOKm899//xEZGWmyvmPHjnh5eXHu3DnD/NtFXaDnzp3L3XffzezZs1m4cCEA/fv35++//+bZZ5+lf//+xMTEsGLFClq3bk1OTk6119vHx4cZM2Zw7NgxnJ2d+e2330hOTmbOnDll7mNmZsbbb7/NU089xbBhw7jnnntwc3MjPj6ePXv2YGtry+eff17u+27evNkwN3lBQQGnTp3i008/BZT5w4umUBsyZAhhYWG88sornD17lqZNm/LTTz+h1WqZNGmS4XgDBgygTZs2fPLJJ8TGxhIaGsqFCxf44YcfcHFx4b777jN6/6L3Onv2LKB06y+aY3zChAmA8nChV69erF69mqysLHr16kViYiLff/89NjY2jB49utK/ZyGEEKI6SdAthBDiplNW9+85c+bg4eHBtGnTaNq0Ka+++qphm4+PDy+++CLvvPMOGzZs4Pbbb+eee+4hKSmJlStXsn37dlq3bs3777/Pn3/+yd69e6u93j4+PsycOZP33nuPqKgoPD09+fDDD+nTp0+5+3Xr1o2VK1fy6aef8v3335OTk4OLiwshISGVmr/677//ZvXq1YbXJ06cMGRnb968uSHoNjc354svvuC9995j+fLl5OXlERwczJw5c/D19TXsb2VlxQ8//MCnn37Kli1bWL9+PU2aNGHQoEG88MILJlnGix5yFPntt98My0VBNyjB+VdffcWGDRvYtm0blpaWdO7cmcmTJxu9vxBCCFGbNPrqyNIihBBCiBo1cOBA2rRpw5IlS+q6KkIIIYSoAhnTLYQQQgghhBBC1BAJuoUQQgghhBBCiBoiQbcQQgghhBBCCFFDZEy3EEIIIYQQQghRQ6SlWwghhBBCCCGEqCENesqwwsJC0tPTsba2xsxMnh8IIYQQQgghhLg+Op2OvLw8HBwcsLC4/pC5QQfd6enpnD9/vq6rIYQQQgghhBDiBuPj44Ozs/N1H6dBB93W1taA8sto1KhRHdembFqtltOnT+Pv74+5uXldV0c0UHIeieog55GoDnIe3SRyc6FXL2V5xw6o5nstOY9EdZDzSFSHkudRbm4u58+fN8Sb16tBB91FXcobNWpE48aN67g2ZdNqtQA0btxYLgbimsl5JKqDnEeiOsh5dJPQ6+HUKWXZxgaq+V5LziNRHeQ8EtWhrPOouoYwy0BoIYQQQgghhBCihkjQLYQQQgghhBBC1BAJuoUQQtSJPX+F88YzW4g9F1fXVRFCCCGEqDENeky3EEKIhinmdCy33OVDdl57Tp3ZyYp/mtd1lYQQQgghaoS0dAshhKh1U5+NIjvPFoDTkTZ1XBshhBBCiJojQbcQQohatX3dUX7a1MvwOj23aR3WRgghhBCiZkn3ciGEEDUqKvwiyxafo11II24f1Y1JrwUYbU/LdqijmgkhhBBC1DwJuoUQQtSY/Nx8br1Vx7m4/gBYvgAFBdZGZdJz7NHr9GjMNHVQQyGEEEKImiXdy4UQQtSYpXN3cS6upeF1QYG6zdUxFQCtzoLs9OzarpoQQgghRK2QoFsIIUSNyErN4q1FQYbXj9yTgJOTsvzss9A75JRhW1pSZm1XTwghhBCiVkjQLYQQokYsfGM/8WmuANzXfxc//OZKXBzExMDixeDQzM5QNj3Tqq6qKYQQQghRoyToFtckLycPnVZX19UQQtRTybEpvPdlBwDMzQp5e74bAJaW0KIFaDTg2LKdoXxarnOd1FMIIYQQ1Wv69OlMmDDB8HrkyJG88847tV6PPXv2EBAQQEZGRq2/d0kSdIsqC995huauubg5pTDvxS0yFlMIYWLeK0fJyFWykj8xbCcBnXxNyjgUS1qellZLFRNCCCFuUtOnTycgIICAgADat2/Prbfeyscff0xhYWGNvu/ixYuZPHlypcrWp0C5Okn2cgGATqvj5P5Ijh9MJPxIHubm8MJbnbBzsjMpO3d2AmnZbQCY/mF/Pvg6kRee2Mcjz3XHu5VNbVddCFHPJF5M4pOVXQCwtrzCG/PblFrO0VFdTk+vhYoJIYQQN7k+ffowZ84c8vPz2bp1K2+++SaWlpY8/fTTRuXy8/OxsqqeoV+OxT/wb1ISdAt0Wh0DOhzlv2NhQGvD+u17DrBhZygWVuppkhqfxm//djTaPyHdhVc+6s8rH0HPnvDii3DvvbVTdyFE/fPhrHBy8voDMO6ePXi26VdqueKfwWmpOqTzlRBCCFGzrKyscHFxAeCRRx5h06ZNbN68maioKDIyMggODuaHH37AysqKzZs3c/nyZebOncuOHTswMzOjU6dOzJgxA09PTwC0Wi3vvfcev/32G+bm5tx7773o9Xqj9xw5ciSBgYHMmDEDUAL6hQsXsn79epKTk3F3d2fcuHH06NGDUaNGAdCli/LwfsSIEcydOxedTsfSpUtZuXIlSUlJ+Pj4MGHCBIYOHWp4n61bt/Luu+9y+fJlQkNDGTFiRI3/PitLgm7B4f9OXQ24jW080IkXRm5l8Ur1hvnHT49wpUB5/cDAnWiAlZt7Grbv3Am7d8O5c+DjU8MVF0LUO6mp8PGKbgBYmucz9S3/Mss66I4AoQCkn/kP6F/zFRRCCCFqQsQHcPKDiss5dYR+a43XbR0OKQcr3jfwRQh68drqVwZra2vSro7x2rVrF7a2tixbtgyAgoICxo4dS1hYGD/88AMWFhZ8+umnPPnkk6xduxYrKyu+/vprVq9ezbvvvoufnx9ff/01GzdupHv37mW+59SpUzl8+DCvvfYagYGBxMTEkJqairu7O4sXL2bSpEn8+eef2NraYmOj9KJdsmQJa9euZfbs2fj4+LBv3z5efvllnJyc6Nq1K5cvX2bixIk8+uijPPDAA4SHhzNv3rxq/V1dDwm6BUdOqAMr7+m+gYGDm/DCOz0o0Frx8c/9aNv2P8a/0Re9Ts/S5c0NZV97sxnBvfx558gFVqxy4LsVjpw+DTodrFsHkybVxU8jhKhLixZBZk4jAJ64PxLPNoFllnV0UJ+Ey5huIYQQDVpBBuReqrjcFa9S1iVWbt+C6hvnrNfr2bVrF9u3b+exxx4jNTWVxo0b8/bbbxu6la9ZswadTsc777yDRqMBYM6cOXTp0oW9e/fSu3dvvv32W8aNG8fgwYMBmD17Ntu3by/zfaOiovjjjz9YtmwZPXsqDXdeXurvxOFqwhdnZ2fs7e0BpWV8yZIlLFu2jA4dOhj2OXDgACtXrqRr16789NNPeHt7M336dAB8fX05ffo0S5curbbf2fWQoFtw5IyHYXn8W7czaBA0bryNMdP7ADDpzZ40ddpJm3ZNORKlzLnbLTCc4F7tAfALbcmMULjzXghVGq34fVUSkyY1q90fRAhRpzIy4KOPlGVzc5j+btkBN4CDcyPDcnqGdC0XQgjRgFnaQ6MWFZezcSl9XWX2tbSver1K2LJlCx06dKCgoAC9Xs+wYcOYNGkSb775Jv7+/kbjuE+ePEl0dDQdOxoPLc3LyyM6OprMzEwSExMJLQoAAAsLC9q3b2/SxbxIREQE5ubmhu7jlXHhwgVyc3MZM2aM0fqCggKCgpTY5Ny5c4SEhBhtDwsLq/R71DQJugVHjqjLRf8zT0zrw4njW5i/vD9anQUPP9eTAL8sQ7mxj6WaHCc4GDxdkohJbMaWHbZkp2fTxKFJTVdfCFFPfP652mI9ciS0alV+eUdn9fqQli4fR0IIIRqwoOvo+l2yu3kN6tatG7NmzcLS0hJXV1csLNTP30aNGhmVzcnJoV27dsyfP9/kOE5OTtf0/kXdxasiJycHULqYu7m5GW2rrmRvNa1GmxbS0tJ46aWX6NixI507d+bVV18lO7v86aVGjhxpSGVf9PX666/XZDVvano9HD2qLLu7g0uxh29zv+rD2Du3GV6fOmcLQJPGhTw0PszkWBoN3NH7BAB5BTb889vxGqu3EKL++ecfdXnatIrLO7rYGpbTMhvGh6YQQgjRkDVq1IiWLVvi4eFhFHCXpl27dly4cAFnZ2datmxp9GVnZ4ednR0uLi4cKdaCV1hYyPHjZccA/v7+6HQ69u3bV+p2S0tLQEnQVsTPzw8rKytiY2NN6uHu7m4oc+zYMaNjFa9XXavRoHvKlCmcPXuWZcuW8fnnn7N///5KBdAPPPAA27dvN3xNnTq1Jqt5U7t0IZeUFGW5RI8MzC3NWfq/3sx9J89o/YMPWZQ6lRjA7cPUp1cb1l+p1roKIeq3uDNnALC0KCAgoOLy9sWuI+mZ1jVVLSGEEEJcgzvvvJOmTZsyfvx49u/fz8WLF9mzZw9vv/02cXFxAIwaNYqlS5eyadMmzp07x+zZs8udY9vT05MRI0bw6quvsmnTJsMxN2zYAECLFi3QaDRs2bKFlJQUsrOzsbW1ZcyYMcyZM4fVq1cTHR3N8ePHWb58OatXrwbgoYce4vz588ybN4/IyEjWrVtn2FYf1Fh/vnPnzrFt2zZ+/fVXgoODAXjttdcYN24cU6dONekaUJyNjY0hlX1laLVao6ch9U1R3epjHQ9uOQIo2QVDvI+i1bYzKTNlmgWtWmt58kkzdDp4/nkdZf0o/e8OxPqZK+QV2PD7f60pLChEY6apwZ/g5lGfzyPRcNTkeRSfqiQ/cbVPQqdzrXgHM7BrlEFmrj1pWY3l3G5A5Hp0k9BqMTcsainzw/+aDy/nkbh+ch5Vnl6vR6/Xl/q7Km2blZUV3377LR988AETJ04kOzsbNzc3unfvTqNGjdBqtYwePZqEhASmTZuGmZkZI0aMYNCgQWRmZhqOVfLYM2fO5KOPPmLWrFmkpaUZpgzTarU0a9aMiRMnMn/+fF555RXuuusu3n33XSZNmkTTpk1ZsmQJFy9exN7enrZt2xr2c3NzY+HChcydO5fvv/+e4OBgJk+ezGuvvVapWLHkeVTd55NGX9Yo9+v066+/Mm/ePKOuA4WFhYSEhLBw4UJuvfXWUvcbOXIkZ86cQa/X4+LiwoABA5gwYYLJGANQ+vdHRETURPVvGr98fIl53wwH4MMZ/6PPiFIyKl6VnW2GmRk0aqQr95jTnirgn0NKIL/qmz/wbl+Jm28hRIOmLdTRo0dHdHpzwnyP8+XPlevpcveQ5sQkt8C9aRzrNlYic6sQotaY5ebSoY+SVPXQtm3oSrkXE0KIG1lQUBCNGze+7uPUWEt3UlKSyQB7CwsLHBwcSExMLHO/YcOG4eHhgaurK6dOnWL+/PlERUXx8ccfl7mPv79/tfwyaopWq+XYsWMEBwdjbm5e8Q61aN4Ftev4wNuDaBfW+rqPOfy2bfxzSFmOOGjD8MfCrvuYon6fR6LhqOx5pNPqMDOv/AikhOhkdHrleO7NcggL61jBHgpH20hikiEt256wsMr3cBJ1S65HN4lieXhCQkKgSfUmR5XzSFQHOY9EdSh5HuXk5HD69OlqO36Vg+758+dXON9ZUZ/8a/Hggw8algMCAnBxceHxxx8nOjoab2/vUvcxNzdvEP9k9bGex84o3fytLPII6uRXLfUb9pAvk99Vljf848yr9exnbujq43kkGp6yzqOUy6n06ppCfKoT//6RQGifSgzOBpJi0wClV4uby5VKn6OOdkpG0tz8xmjz87FqJAnVGhK5Ht3giv1tzc3NjV5X79vIeSSun5xHojoUnUfVfS5VOegeM2YMI0aMKLeMl5cXzZo1I6UoQ9dVhYWFpKenV2m8dtG8bxcuXCgz6BbXJjczl9OXfABo1zIKS+vy59StLN9gbwI9z3Eyxo9dJ9px+L9ThPWt3I27EKJuffu9FSdj/AB4fdpx1uys3P9u/CV1SkE3l8qPg3Jo7gHhynJ6hhku0ntVCCGEEDeYKgfdTk5OlZqXrUOHDmRkZBAeHk779u0B2L17NzqdzmTi8vIUjdmuSqAuKid8dxQ6fVsAQgMTgeoJugFG33eRVz7yQ6c3Z+xYPXtO6LGwlIRqQtR3v61Rh+qs392DCxExtAzyBCAvD6yslOkBS4q/lGtYLidPpglHN/XanpZhgUsV9hVCCCGEaAhqbMowPz8/+vTpw8yZMzl69CgHDhzgrbfe4o477jBkLo+Pj2fo0KEcvTpRdHR0NJ988gnh4eHExMTwzz//MG3aNLp06UJgYPUFhDeCnIwcdNqyE5qdPXyBmeO2cPDfshPNHdmXbFgODS4/OVpVvfhuT9q3VKYPOng2kAUfSMAtRH13+TLs3Kn+r+r05nz+/lkAdu+Gli2hdWtITzfdNz6uwLDc3MOy0u/p6Kgul3ZcIYQQQoiGrkbn6Z4/fz6+vr6MHj2acePG0bFjR958803D9oKCAqKiosjNVVpILC0t2bVrF2PHjuW2225j3rx5DB48mM8//7wmq9ng/PPLQZyamRHqd47s9GyT7cd2nKZ7X1veXtqfex60Q68rPUH90aNqoB3a2b5a62jVyIqvvnPAzEx57zfegGrMRSCEqAGrV0PJ+Sy+/K09l2Ou8MADEB8PkZHwv/+Z7hsfry67eVS+j7iDg7qcllal6gohhBBCNAg1lr0cwNHRkQULFpS53dPTk1OnThleu7u78/3339dklW4I77ylzIMdfqENq5ZuZeSUfoZtEXvPccvtTUnOdAbgQqInsZGXadHa3eQ4R06od7shPVpWez279nXl+efhgw+UbqlPPw3//lvtbyOEqCa/fXce8AEgrM15Dp/xISmjGd07J3Ix3sZQrrQHaPGJ6seJWwu7Sr+nY5NsQMmInB6fBDSresWFEEIIIeqxGm3pFtXvQkQM/x7raXi94le1Rens4QvcMrQJiRnG499PnFGD6z174JFHIDhYz/bjwQC0cLqMs0fF4/SvxVtvga+vsrxlCxw7Wr3d2IUQ1SPxYjJb9yljt/3co1m8IMOwLTre+Jpyaucek/3j89RcHW4+zSv9vg66g4bltOiyh8MIIYQQQjRUEnQ3MD98ftbo9d/7O5Acq2SJHzsqlcupys1uE5scQ5njp5TESDodjBgBP/0E4eEadDolFX6PnjU33rpxY3jhOXUu8OUfbKux9xJCVI22QEtWqpJ1fM3yE2h1Smv1vYMj6XVHMCE+p4zKazTKQ7PT55uaHCs+RRmiYm4OTm5VaOluqk7JkZYqD+WEEEIIceORoLsB0eth+Z89jdYVai1ZtSyc/9Yc4b9jYQD4Nb/Arz8XGsocP658P3sqj8uXlWULC2jXDkaNgvcWVb5V6lo8dG8mFuZKkqUf1vmjLVCnEzp7FlatgjdfTWDq6C3EnLlco3URQigK8wvpHXICOydberU7yodL1CEo9z7igsZMw3PjEgzrJj24lYAWUQCcueRlksixaEy3qyuYVeGTxdHJ2rCcnl56/gkhhBBCiIasRsd0i+q1fz+cPG0FQAv3fC5dVpZX/GaL2So1yJ41NYZe/dUx2kVB9/6/9wO9AHjjhZO89l7tZIRv5tmM27vvYe2ObsSmuLN51UEGPdCRsWNh2bKiUq6AK7sOHmHbMdPx50KI6rVnYwS7T4YBsPOE2jXcq9klugxSphJ8YmovUlO2UFAAL83pyf23HuJkjB9XChpx8bQ6lZhOBwlX4/OqTBcG4FAs6E5Ll1kOhBBCiOoWEBBQ7vaJEycyadKkWqrNzUmC7gZk+XJ1edZsS+a+foFzcS3ZfKijYb1f8ws89Gw3LKzA21tPdLSG4+EF6HUWHNinTunTKSSzNqvOqMd0rN2hLC//Jofw2OIBt2p7eCi7Nhyjx+3BtVo/IW422zallrr+odvPoDFrAYCZuRlT3u9v2BbglwtX/49PH4k3BN2pibkUFir5Jdxc8gGrStfDsZk6L3h6hnk5JVU6HSxeDNbWMG5c1VrWhRBCiJvN9u3bDcsbNmxg0aJF/Pnnn4Z1jRurn8V6vR6tVouFhYSJ1UluVRqIggJlLDaAjQ3c/4CGh++MMin3ynPRWFgp/yTt3A8AkJFpSWxkHPuPOhrKderrU9NVNjJsVAccm6QB8Ovmjkybqj4AePlleHFMuOH1gveyarVuQtyM/jumtm6v/Xovs8Zv4bWntjD7425l7uMfoAbFp0+o/6fx5y8Zlt3M91apHg5O6vjvtIzKze+9ZAk8/zyMH6/MjiCEEEKIsrm4uBi+7Ozs0Gg0hteRkZF07NiRrVu3cs899xAcHMyBAweYPn06EyZMMDrOO++8w8iRIw2vdTodS5YsYeDAgYSEhDB8+HCjYF6o5BFGA/HnT0dISgoF4K67lLltH3q2O28vVct4exUw8nn1hrmdfxZ/XE0yfGzPJQ6eUbqWeLvE4OrtWWt1B7BubMODg/ewZHU/cvPVp2lTJiXz3nvO5OW04cdV8cSlubH6v65EHovGN9i7VusoREOSnZ5NY7vGaMyq3iW7sBB27ldmLHB3h2GPd+XOJyreL6C9vWH5VLFpw+Jj1J4zbq6FVIWjqxp0p2dal1NSodfDokXq69dfy+PuQXG0Dqv+aQ+FEEKIyvjlF3j9dcisxY6kdnbKLEH33Vc9x1uwYAHTpk3Dy8sLe3v7incAlixZwtq1a5k9ezY+Pj7s27ePl19+GScnJ7p27Vo9FbtBSNDdQHy3TM1GPvLOcKA97UJtaN8ewq82Ek+bbomVOoMYbdurf97Vv+aQdUW5ue0UGAPUbtANMHJMU5asVl938T/OO/PaAGDd2JpJo04wY5EbOr05H70TxaIVEnQLUZo1X+3hgWfC6BZ4lM0H2hl6t1TW6dONycpSgvW+fUFTybjdP8RDPUZkE8NyfGyuYbmqY7ptmthgbXmFvAIb0jIbVVh+82Y4eVJ9nZtnzVOPp/DPAS/MzKXzlhA3C61WGWpiWYkOMmfOwFdfwZ13Qq9eNV83cfN5/33jz6bafN/qCrqfe+45elXhHyQ/P58lS5awbNkyOnToAICXlxcHDhxg5cqVEnSXIEF3A5Aan8a6HcrJ7OqQyOD71GQIs2Yp/2zdu8OYMcb7tQtTp/VZ+bfalbRzhys1Wt+y9Lw9mIAWkZy65Itdowx++tkWq0bq2M+np4Xy9uc55OY35uv/dWJ2fBpN3RzrpK5C1Gfff5VIfqE128JD2bVuB33urdpd5MGDtoblvn0rv5+rdzPsG6WTkevA6WhXw/r4y+pwETf3ynURL86hcSYJ6TakZTWpsOwn7yoPHQFsrK5wJd+GLUc68OWc/xj3WhV+GCFEgxURodz3tGgBGzcq38vz1FOwdasSoHz8sTI0RYjqNHUqzJxZ+y3dL79cfccLDq5aPqULFy6Qm5vLmBIBSEFBAUFBQdVXsRuEBN31UH6+8vTWxkZ5/cvSo+QVKDeTD99+Akvrfoay994LWVlgZWX6tDeos9rdMj3H0bDcqZstdUFjpuHXn7V8+fFWRj7pil+o8T+ks4cTTwzfyqe/9iM7z5Yv5m1h2gf966SuQtRniWnq//Cmv3Loc2/V9j+6X53uq1+/cgqWoDHTEOAVw77TDpxP8ORK9hVsmtgQH69O9eXmblO1ygCOtlkkpLuQnlP+tSnmdCxr/lWuG+5OCXy16BK3P6Y8kJzybhgjRifh4tWsyu8vhGhYvv4aMjKUr2eegbVry+6xc+UK7LiaAFKngwkTlOlK33sPzCuXu1GICt13X/W1ONeVRo2Me5tpNBr0euOpPAsL1SFkOTlKL9wlS5bgVqKbm5VV5ROq3iykL149c+qkHl9fZZzlzp3KuuUrHQzbRz3larJPkyald6+yc7LF2yXGZH2nvq2qrb5V1b5nGz76sR+dBpb+BOz5V9UHBX9vqdx4ElF/rP92L7MnbCHlcumZsUX1SM5SrwObdlStP7dOq+PQIeV/y9k+jao+jPYPUnIy6PVmnItU7ljjE9Q7VzdPu1L3K4+DuxegPBzU6cout2T+aXR65b3GPXCC2x7twON3bAMgM9eeDSvqoG+fEKLWnT2rLq9fDytXll32yBElj0VxH3wAM2bUTN2EuFE4OTmRmJhotC4iIsKw7Ofnh5WVFbGxsbRs2dLoy91dpv8tSYLueuRKdh4PDTvHpUuQlgYPPQQHtsWwPVxJoNbW+ywd+lVtbu12rS4bvW7pEkMzT+fqqnK1a9PBBxd75R/8RFQF/cVEvXLp7GXufTKUWZ/1Z2j/WHIzcyveSVyTpEz1f3jPybZkJJv2Zzt8WOlC+fjj8Ph9kUx+aCsn9pwlfPdZUrOVoSd9Qk5Webot/47qQ7tTZ5SnffFJagI0N8+mJvtUxLGp0ulKr1d67pQmPzefpb8o84dbmBcwbopyLRw9Rg3yd+woJ2IXQtwwigfdAJMmQVKScg1JS1O+F9lbbEKFW29VW7dLm7ZUCKHq3r074eHh/O9//+P8+fMsWrSIM2fOGLbb2toyZswY5syZw+rVq4mOjub48eMsX76c1atXl3Pkm5ME3XWoML+QnAw1QdrUsbs5fK614fXFi3DLHWpXyVH3xlQ5U3G7gGyj153bXrzG2taetj7K9ENxaW6kJEjg1lDs2ZZKfqESfO073Y4n7j6EXqevYC9RVXqdnuRMNbDV6izYutO4dTk/H4YPh88/h2+/hW9/82XRyn507decd19PM5Tr1zuvyu8foKaU4PTVDObxyUq3cDONlmYtnKp8TEdHdTktrfQyKz7ZS3ya0sI/ou9+PPyaA9B1kD8W5sqY8u0H5UGdEDc6vR7OnTNel5QEnTpB06bK14ABauv2vn1quXfegW5XJ3lJSFC6ngshStenTx8mTJjA+++/z3333Ud2djZ33323UZnnn3+eCRMmsGTJEm6//XaefPJJtmzZgqdn7Sdsru9kTHcdyUzJpF/XGA6dC6JH0DG6d0hm8cr+AFhbXqFxEwtS0yxIz1TGR2o0Oh4dH1DOEUtXPIM5QOc+HmWUrD/a9WzL1qPK8vFTjehj2qNe1EOHItsavV65uSeeo7fQtp05x8O1eHjA8+/0wdxSBtFdj8zUTAq0xkMvNm1SsvIWWblSeWhXUnaeLb9u7WF43Xdw1f+5/P3VZUPQnaoMgWlmn4K5pUuVj+mgjqAhPd10u7ZAyzsfqQH1cy+oCdca2zemU5tw9pxsT8RFP5Jikut1bx4hxPW5fBlyrz6P79JFafVOTYXoaLXM1q2wbZsSfBe1dFtaQkgIeHmp5WJioLXa1iHETeGee+7hnnvuMbzu1q0bp06dKrXsc889x3PPPVfmsTQaDaNHj2b06NHVXs8bjbR015F3XjrAoXPKYMpdEcF8+GN/w7YFr+zhm2+Ng+UBoYfxbFP18RHtOhi3OnXqW//nsm0XrCZfOH68DisiquTwYdN1C77vz9hX+vDBD/2Z8n5/fly8q9brdaNJTjVNVLZpk7qs1+lZMEcdU//LLxBxIJYHB2wz2se+UTqhvf2pqjZt1OVTR5PR6/TEpyk9ctyaXttYfkfLC4bltJjzJtt/+XwPpy8p3dr7hRym950hRtt7d04yLO/8u0S/UyHEDaV41/IePeCLL9Qu407FbnnWrFEe4hXFEmFhYG1tHHSX9nBSCCFqggTddeDMofN8+H2PUrfd3Xs3E97oy/DhMOlB9SZ5zKhr62Yd1MX4EW6nTtd0mFrVrp26fOJE3dVDVE1R0G1vD3Nf2FJqmX17tbVWnxtVUqppRtATJyA2Vlne/NthjkQo3c+7hCRy770Q2NGDHzf24tWxWwz7DOpy4pp6HdjaQgsnJVfE6TN60jM0hmEFbr7X9lDPwTzKsJwWl2C0TafV8fZ8tfV85mum47Z79VUfROz4T4akCHEjK961vHVrJWN0UpIyNOXcObC42maxZg3s36+W7dJF+e7tra4r3jouhBA1SbqX14EXZzQ33KS+OnYLj4z15NflMRQUwLR5nQzjtucv64Zniy1YWWl4ZPK1zT9r52hF+/YQHg7t2xs/Ba6v2hbrpSwt3Q1DUpLSTQ+U1oSp8/th7/AfR49CC49CZn48EIDIjNIfNonKS05Wl62t9eTlKdeLf349wsjnQlmwQE3T+9JTZ9BolIDVzNyMd77sT5eeu/lzfQrT3mp/zXXw947jUoo7SRnNOHk0HVD6h7u5W5e/YxkcHdVcFelp+Ubb/vfVPo5HK4MwewQdY+C9HUz27zVEbX7fflrm6hbiRla8pbuoa3jxvBD9+yu9f86fV6YWK9K1q/JdWrqFEHVBgu5a9scfsP4PpVWmhXser7zfGdumtrTrYTqoyKqRFVMX9L/u9/zuOyWZ0uOPX/ehaoWLC7g0zSYxtQnHDyUBMu9ufXf436OA0uU3LCAOjVlzxr+hBD96PbzzpZKwJvK8zNt4vYoH3XcMSmLV70pQve5/OXh5HuaPPUpzTkuXGO4d19Vk/ztHd8Er9DDegdeedMy/VSb/HlaWP/kgAUPQXbXZywwcndSPorQUtTdERATMWuBreD3zlSulJpN09XbG318ZY75vvxm5uVBiulEhxA2ieNDt52e6ffhwdcjNTz+p64tauiXoFkLUBeleXot0OnjhBfX1e/OtsW1qW+Pv26EDfPSR0gLZULTzVjI0xac2Izk2pY5rIypyeK/6N+rQ2nhMrUYDvlfjpqgoyp2HWVQsKUbtfj1seCMaWyszFPzybw8G3Btm2Pb82LNYWNXMc9V77lcTmX2/Rm1lvtag28HR0rCcmqrns8+U61XbtnDstPJQoVO7OIY+2rnMY/TurXwvKDDuUiqEuLEUdS83MwMfH9Ptw4ery0VTh9nZqTMvSPdyIURdkKC7Fh0+rCb06NEDHn64TqtTr7XzzzAsn9gvj6Lru8NH1aAprLtp9uqioPvKFYiLq61a3ZiSI9VEBx62J7m1S7hJGccmaYx9uWON1WHww50Yd/d/Juvd7C9f0/EcndVu6e9+0Y0JE+DIEXW7rS189HnzcqdMLAq6AbZvv6ZqCCHqOb1ebelu2RKsSuk81bKlaSNDp05qsrVmzcDmahoIaekWQtSWGgu6P/vsMx566CFCQ0Pp3Lns1oni9Ho9CxcupHfv3oSEhPD4449z/vz5mqpirduyTm0BfPRRpQVQlK5tW/WXc/xwKXMIiXrl8Ell6ilL83zadmllst3XK8uwHBkeU2v1uhElJauXbWfXxixa6smkB7fyyK07eOTWHTx+xzbW/RSNnZN9OUe5fh9+25l23meM1rnZXbqmYzk4qX3BrxSoy926wYcfKg8riwfVpenVU50TfsefZ8opKYRoqJKT1WkFS+taXuSuu4xfF3UtB+Xeq2gKYQm6hRC1pcaC7oKCAoYOHcrDVWjOXbp0KcuXL2fWrFn8/PPPNGrUiLFjx5KXl1dT1axVWzeqweOArtKnqTztQtWA4fhxfTklRV3LzczlZIwSaLdtGYVVI9OmB19Htb9v5NHztVW1G1Jyqtpl3Lm5Hd6BLVi0oh8//N2LH/7uxbL1fUym1KoJje0bs+InsLFUs4U397K7pmM1dTEeZtPSJYZ/15xh9254/nnw8Kj4GG3agIt9IgA7Drhw7siFCvYQQjQ0JTOXl6V4F3NQk6gVKepinpGhBvFCCFGTaizofu6553j88cfx96/cPLB6vZ7vvvuO8ePHM2jQIAIDA3nvvfdISEhgU/FJaBuowoJC/jsSCICbYwJBnbwq2OPm1q6L+vs5frpmW+zE9QnfHYVWpwSCHYISSi3j20ZtvYw8V1hqGVE5ScXm6W7m4Vh3FQHa92zD0nkHaWSVQ/fAY4T0alPxTqXwbOPOgLBDmGm0jL1zG0cj7Ok/vGrH0php6B2q3JGnZTvSOqwlnf1P8OtnMje8EDeK0jKXl6ZDB+OEacVbuqH0ZGobN8LLL8Ola+uwI4QQ5ao32ctjYmJITEykZ8+ehnV2dnaEhoZy6NAh7rjjjjL31Wq1aLX1d/5frVbL+aNJZOYqwWO/jmfR6Z2h/la5zjV1d8TVIZGEdBdOnG9Rr/++taXod1DffhcH9yQalkNDSv9fbOnvYFg+F2VR736GhiQ5TUliZmmeTyO7RlX+XVb3efTwc925c2QWTRyC0KO/5uP+tac9WWkZ2Dv3vOb6PT4G1u0soFCr5Bg4cKYt90+AFbod3PdM92uqlyhdfb0eiWqm1WJuWNRCNf+9q3oenT6toai9qFUrbbnVmTJFw+TJZtx+u54WLXRGZVu0UI9z/rwWT08YMcKM7GwN58/rWLFCetg1JHI9EtWh5HlU3edTvQm6ExOVG3dnZ2ej9c7OziQlJZW77+nTp2usXtXl8B71DxcaksDhw4frrjINRICXnoR0F+LTXNn2z1bsnGs+03tDcOzYsbqugpE9u9Xuxc7umaWe23k6dYjI2QtN5Py/Dknp7gA0s0/hyNFrb5Kpb+eRwXWMsWwRbMn6X/7jv9+z+H1za45EtQPgiRc7YGbzJ75hzaupkqJIvT2PRLUwy82lw9Xlo0ePoquhufgqex7t3+8DKPeJBQUnOXz4Splle/WCf/81x9ZWa5SYEUCjaQa0BGDnzhiio/PIzlZ6Zv7xh579+w9jUW/ukEVlyfVIVIeaOo+qdEmZP38+S5cuLbfMhg0b8Csvu0UN8Pf3p3HjxrX6nlWh1WqZerDA8HrEo8H4h/nUXYUaiODA7Wy7mphZn21H2C2hdVuhOqbVajl27BjBwcGYF6VhrQHnT8Tw6XuR3H63Pf3vDquw/Mli2bTvuL83Di6lDwdo7hhPXJobF+LdCQszzXAuKkGvJzlTuZY422cSdg3zANbWeVRnwmDQcJit0zP2rm1890cfcvMb8/zUjuzaqaNFawm8q8MNfx4JRXa2YTEkJASaNCmncNVV9TxKSVFHRd5+eyDXeutnPIuGFwnFRkZlZ5uTnx9GJXMAi3pArkeiOpQ8j3Jycqq1YbdKQfeYMWMYMWJEuWW8vK5trLKLi3ITnpycjKurq2F9cnIygYGB5e5rbm5er//J8nPz2R0RDICH02UCO/qWO/WNULRvr4FfleWTR7MYMKL+/o1rU02f75PHxfP77gF8tSqdy3FKF+ayJCXqOBKpDKxr5RaNU3PvMsv6eihB9+XU5uRl59DYvjF5eco0Yg5q73P0Oj0J0Uk4uTtiaW1Z5vFuRjkZ2VwpUG56mzlmXdd5UN+vm9fNHL74tSvnuh5lx/EQYlPcGfXAYbYcaVHXNbuh3PDn0c2u2N/W3Nzc6HX1vk3lzqPISOW7hwfY2V17XYrP733pkhnx8cbb//3XnD59jNfp9fDpp5CUBK++Cpby8VTvyPVIVIei86i6z6UqJVJzcnLCz8+v3C+r0iZNrARPT09cXFzYtUtNepOVlcWRI0fo0KFDOXvWf/s2nyInT7lRHtjlnATcldSus3pzPOfLnkivoZqXn5vP5oPtAUjPcWDXXyfLLJuSArcONiMnTwnKe4aW3y+4lWemYfl8RCyHDupxcgJHR2X6lsGDoUf3AhxsM2neyoWOAedJjk0p83iZmWVuumElxaYZlp0dy+5WKRTWja1Z/YcHXi5Ks9bWo2EkJ+TXca2EEEX0esjKqtytaEYGhhbpMpOoFWZDfqpy4HIUbx86fx527zbeXlr+3u3bYeJEmDULFi2qVJWFEMKgxrKXx8bGEhERQWxsLFqtloiICCIiIsgu1lVp6NChbNy4EQCNRsOoUaP47LPP+Oeffzh16hRTp07F1dWVQYMG1VQ1a8XWv1MNywP6S3KOyuox2I+gIGX5YowFvXrBn3/WbZ1udAf+PUVuvtpf79+/S59LJT0dhgyBoqHZHh563vrQt9xj+/qoQywiT6Yw/5U95OQory9dUjLH7t5jaUg4GH6hDffeFk1+rnGQpNPB2LFgbw8vvFDFH7CBS07IMSw3c5LgsTJcvJoxZLib4XX0pWt7MCyEqF46HdxyixkDB4bxww8VN0YUny7MzycX4kqJjE9+CL86wRofODgFkvaUGoDb26s9rHbvNp02bNcuyMoyXrdtm7r8/fcVVlcIIYzUWNC9aNEi7r77bhYvXkxOTg533303d999N+Hh4YYyUVFRZBZrrnrqqad47LHHeP3117nvvvvIycnhyy+/xNrauqaqWSu27FD7zg4Y5lN3FWlgLC1h82Z1qo/MTBg2TM+Pnx2v24rdwP7bZJy08N+dTiZl8nLyGHaHlv1Xp952c4PNmzW0aute7rF9/dTRLOGHc1izVWlRt7a8QtOm6k2Rj3sCjk3SAKVlcsKDe9Dr1O1vvAFff60sf/yxnowU9UHejS4pT51Gy9m/Wx3WpGHxbqne0EdH12FFxDXJSM6o6yqI67RvH7z4IkREqOtOnID//tOg02lYuLCcoFuvh6zznN25w7Cq9ZW34N/boKBEZKy9mrQzJxpOLoC/u8MqN9j+IJxZAlfUwdtFrd35xZ5fFuWJKyyE//4zPvTBg+ry4cNwsuyOYEIIYaLGgu65c+dy6tQpk69u3dQbxVOnTnHPPfcYXms0GiZPnsyOHTs4duwY33zzDa1ataqpKtaaI+eVMektXWNo1V7m566K5s1hyxa4917ltVarYdTEAH79bGed1quhys+Ht96Cb74pvffd1hO9jF7vPRlIdroa1Op1esbdt4/tO5RxLs2awT//QEBAxe/tG2BnWP7sp7Zk5ynZ6EfdvpfkZA3x8Ur3wahYV/74NQZrS6X79Ffr+jD18a1cOhvLjz/C22+rxyws1LDxl5tn3EFysrrczM2m7ILCiHexVANlBd16nZ7k2BSjBzyi7s1/eQuOLrY8fsf2uq6KuA4PPwwffghjxqjrik9icfCgxiiZGQC6Qoj8Btb5w9pW/O/H84ZNQR4RoC+ExG3G+9i1Bpc+oCmWsigvEaJ/hn3PwJqWsG8CZEUaXReKjB+vLpfsYl486AZYsaKMH1YIIUpRY0G3UN02TLk5fmmGWwUlRWkaN4aff4ZnHlJ6SWh1Fjw8qQtrvtpjUjYvJ4+8nDyT9UKxYAG8/jo88QSsXGm8TauF7TuNu94WaK3YsUF9nP/elK1890dvABpZ5fLn7wW0a1e59/btGGJYjo5XkyU+9JgtGg24uoLd1bi8+9D2LJuv3uHMX94fL//mjBpZaHLcDesLTNbdqIrPnlhidkVRDqOg+7zpOQTw6JCdNGvhxJsTt9ZSrURlLFneAr3ejG839OZKtuQxaIjS0tSu4Xv3qgnRS84c+fffxV5EfgO/t4PdT0DWWRLSXfhlz/0AONsmcduAeAh6GZr4GB/EdzTc+h/cEw/dvoIWd4JlsRk1tFfgzGcQ/jYl8/5aWsKUKaC52uhePOhOTYWoKOPyK1ZUOHRcCCEMJOiuBcuW6dm+/SATnpVf97UyM4NPvm/L2DuVp9qFWkvuf7oDB/9V+6rt+Sucpk21tPWL4+Kp2Lqqar32209phuWXXzaaDYYjR9TkZA52an+7f/9Vvq/5ag+vfNTXsH75wsN06lr59K0eLTSUzLPo5phAv7tKnwru4ed68u7kLYbXer0ZWp3SejH6sSs0slLGN2/Y7o9Oq6t0PRqy4i3dEnRXnpeL2oQWfXivyfbczFx+2qT08nj7i16cO3Kh1uomylZQAFGJam+3Cyflut4QnT2rLut0aovxoUPG5f76q9iLqO8gU52q58t9b1OgVT5Axj5ti83wndDhPXAIKv1NrZ3Abwz0Wwv3JsPgPRD4IljYAhoIetkk6O4YnIF7c71hqrBjx9SpxUrWFeDUKUzm/xZCiLJIFFgLNBqwsZHHodfLzNyMJb/1ZORQpZthgdaKeW+rSepmzsgjN78xkXEteXrUJekmWsLlyHgOHHM0vI6JgbnvqsF18fFrz03SGpb/PdqJy5HxPD45AL1euWS8NXEL9z7To0rvb2YGJUeLPDAkAnPLsqdkeOWj/pzcH8nsCVsI9FSaSob12MsXX5hxSyel50NcmhuHtp6qUl0aqqRz6kOmZrbJ5ZQUxXm2Ulu6omPtTLZHnUw0LBdqLXn95ZhaqZcoX1QUhgdtAJERcs43RMWDblDGd+v1pi3df/2lBOUANL9V+e7an8L+//H5pnGAcj/1zLNVHFpjZgHNukLHBXB3NPRaAQ5BJt3Le7h+BX92ZlCoOnZ882ble/Gu5V27qsvSxVwIUVkSdIsGxdzSnKW/dcHVQblJXrW1C5cj4zl9MIqNBzoZyv2xtws/LpRx38X9+ctpk3Xvv68jKlwZ5Lr190jD+vsfakTbtsry/v3wxMOxpGU7KtsG7GLGwn7XVAffEgnOHxppmqitpIBOvrz+SX9OXPAlJS6Ntdu7YNXIijuGql1Nf/8tvpwjVF1mpjJ/eH2TfFmdQs3ZIauckqI4myY2uDkqrd3RCc1MtkfGG999/7ixF4f/uzke5NRnZ84Yv446k1N6QVGvlfw77v3rCDHfDyOlxIyQiYnFAnGfx2DIXhj0L+v39uHi1Rkp77jD9OFtlVg1hZYPAJi0dPf03wmpBxnkOtOw7vfv9kH6CaOg+5131OnKpYu5EKKyJOgWDY51Y2uevE/JYF6oteSL+RF8Ot80O9LkNwJJiE40WX+z+v0PtcVoQJjSJy6vwIbJT1+mML+QbXuULPtOtim0a6tjwAClrFYLf+3tAICLfSKffR9wzXPN+zqpSc+8nS/QfWglB4QDGjMNTd0cDe99+wN+hm0bNpsGUtdq0yZwcVGSw5VsoalryWnqTA7NPBzrriINkLerci24nOpGQZ5xHoDISNPyM6ZKxuy6ZhJ0R0l00xCV/DvuO2zL4SPqZ4ibQ5xh2dDFvIkXOCtTl3zyibrvs89WX71KBt09OivjrXr576BpE+WJwP+2tCXrt64c3K7cY1hZQb9+UDST7YULynSXQghREQm6RYP09JQ2mGmULtBLVgTyzRolKLSxzOWO7sqYzeRMZyY9cUa6mQP5ufn8vVcJcJ3tkln1l4+h5W/dzm508I8iOVMZJNwn9DRm5maGoLu4j989g7NHxa3TZfF1Ux+OPDhoL2bm134J8g5sQfuWyt3c3lNtSbyYVMEeFbuSfYVxT2SQl6dkuR4+3HT+1rqUlNYEAHOzQhya2VdQWhTn7a4E0Xq9GZfOGveMKB50W1ooQy427OnCf2tkwGZdOn1Ka/Q6KrphTx96U9JpOXvsstGqyAQ/NoXfang98balhuU//1S+Z2Yqc2Hfeaea0Kx1axg8uPqq5umpJk3z8gLPkRtg+Dmse33MA4MOAJCT14Tvto3idIwnACEByVhawiOPqMd57DEl+BZCiPJI0C0aJO/AFgzvtQ+Ay6nNSc9RApCHh53h65WtcLJVnlL/vLknr8+8ebJbF3flCmRd7YG8fcNxMnOV39HQHidxdHXgkznn0GiUAXThF9T5n/v2UvpV9+tr/LDirt57uH981cZxl3Tvk6E42yXTzD6JCTOv71gAdwy4BCiB1B8ry580Va9Xkt689poyfc3Dw87x8KCdvPPcFsO0aAte2U1UjBrMRkTAQw8pc7ZqC7QkRCfW6UOc5HRlmjVnu9Rr7m1ws/Juoc5qEH3WeGxw8aD79UnhhuVnJtmSkyFdmuvKmb2HjV5HxjjWST3EdTjzGWfOWZisXr53omG57f0jaN1aua7u3KnMsOHlBSNHwvr16j4TJii5QaqLtbUyk4dGA5MnX11p6wutn2LUVPWhwKzVbxnymXTsqlyDH3kEBg5UticmKg8HihKRCiFEaSToFg3Ws5OsTNfNCMHV24XP5qoB2NvvWvHWW8pyYX4h0ScvUZhf+rRBN4pz56BFC3B3h59+gg3/U5tr77hDCdbufaYH/60Jx7e58SP6vrcq03k1c9HQI0jpDu7QOJ1Pv2l53YFeyyBPYi434XKiIz7tPK/rWAB3jGhqWP79j9IvZ3qdni8+19G2LYSFKePxVqyAFb/7seKfnry2uD/9u1xg38YTvPuF0p3R3KyQpo7KOfLnnxDQ4hx2tnm4tXQh0Ps8O9Yfve66X4ukDOXndbaXrs9V5e2tnrvRkcbj4SOPK1mxra0KmTYnhDBf5foRcdGP5584biiXl5NHanxazVdWAHDmovE0m1Fx7nVUE1EV6enqOOc057EkZboAGB7yAqSmKtfrJk30eHnlMXiwskNhIbz1lnEPoxYt4JVXqrdreZGvvoKMDHjpJeP1PXqA39URTInp6lQRHTorvS0sLOCXX6C1n/JQ/9gxePTRYonghBCiBAm6RYN1y30dCGiltlh16wadruZSe+DZnixepHZNfP11aOuXgK1tIS2DWtC17ZkbelqxWbMgJUVp6X7kEVjymxJMmmm0DLlfnWKl950hHDnhzDP3/Ie5WSH9Qg7ToV+AYfu3P9jxypgtbPs7Hg+/5tVSN5smNlhYmbZ8XIseQ9th30i5O9t+NLDUMh+//h9PjzfjZDkN4fvPtKXbkEBy8pTu28/ev4NVqy2wMFfOocgEP3LzGwNw+lIr+gxvz7THt9TqnPBXsq+Qnae0sjSTJGpV5t1K7ZocfV7t/aLX6Q0tqK1cL2BpbcFPK6xobK30fli6qgvffAPvvrgbd9ccXDxsmTp6i8wZXcOuZF8hOsnDaF1atiNpSdll7CHqg9dnXMHRER5QcpVx9nwjw7Z+/UxvOUNClNbroqC7iLm50gq9bZsy1OfddzGZcrK62NqartNolJb2kjp2VJedGl1m/cRuODRRmrjXrYO1a2umjkKIhk+CbtFgacw0PDdFfQJt6B521cRJ5nzwgfo6ItKVvAJlqpFD54Lo1sOMA5sjuNGcPXyBH380ftyelasEkz3aHsfJvanRNtumtnz2W1/Skq7w76FQoym82nTw4d2v+hPcy7/mK34NLKws6NxVCaZik5yILfEc5a8f9/P8u70Nr/v01vLpp3D6NESdTGHH+mN4uyjTQxV1H3S2S2bWwlD694cv5+zCwrwAjUZHG48ogrzOGcq+921/7uwbTm1JvqxOj+fsmFtr73uj8PYtNm3YRfWjL/5CouGBim8LZVhKYBdfFn+gPth44gmY8WF3UrObotVZ8P53/enS7qJkOK9B547GGP4ni4u62KQOaiMqVJjDmoU/8ta7ymfsr7/C+fPGySiHDIGmxh8/hIUpwfagQRAaqgTgI0fCyZPw9dfQu3f1dimvipJBt7k5BAcXW3H4FQJcD/HVk48bVn27NK02qiaEaIAk6BYN2vjxsHgxLF2qjL0t6YUX4P33lQ9tc3MdQV7naOGkJHW5nNqcvrd7M/2JLfy0aCfhO2+MpGtzZkaj0yn/2r06G49dvWNQSmm7AErw3RDHCXfups7ZeuCAuj5i7zkefKoNOr3yEOGVMVv4b5s548dDmzbgE+BEzzuC2bPHii7+ahfid14+TlM3RwBGv9yb5PhcstPzOH2pFcfO+TDn+S1YmivJtjYe6ERKXFqp9dLr9KQUC5SvV3KcOmCwmVN+OSVFabz9XQzL0ZfU1rfIE2pSNd+W6vjtJ8a78fDDxscw02gNf/vwC23oOrAVG1ccQJQv9lwcrz+9hQn3/cfHM7eyZdVhQx6FspwOV69dTRqp53tpmeZvRBnJGeRmNoCHa3o9RP9KzDcDGPPaEKNN//xjnLnc3x+6dDHePTRU+W5jo1y/09Phu++UpGl1zdcXevVSX7dtC40aFSvgNQKcOnFXpzU0d1TuK37/qzHJOxeBXvqZCyGMSdAtGjSNBiZOhCefVLOQljRlitLVOjvbjBPRfhw+YkWvdsqY3Jy8Jsz7pj+PTO5JcK82dGxzinW/JDbYeTcvRMTw3R/dAXBsksbvGyz45bPdODZJw71pHI8/F1TBERqezp3V5aKguyCvgBH3aEjPUaZBu7v3bt7+om+p+zdv5cqWfa1457ktfPz6VsbN6GO03d7ZnkZ2yp2WuaU50z/sz+PD9hi2nzlyyeSYsefi6NkuHGePprw/Zct1/HSqpDg1SHF2khu6qnLxbIa1lTJOPzoz1LA+8rQ6Pt63lfqPr9HA559D167K8kMPwYljeRzYep7QVkoLd4HWisee8SYuKqGWfoqGJSE6kZce24JfkANvfdGfz37ry6S3+zHg3jBa+2SRHFv2Q8AzJ9WAc0APderHqKgarXK9sG/jCdxbmNPGJ43zx2PqujplSzsOmweh/e9BHvtgHilZzkabN20ybulu3bq0oFv9nzM3L72rd10aNUpd7tChxEbPu2DIPiwGbeDRgcq8YQVaK1YuPQkbQmH/c3D+R8hLRgghJOgWNwUHByVTKUAzT2c27fFn9O3bTcodjgxk+AMudO8Op0r0HM3PzScrtX6PpZ03M5JCrSUAzz12GAcXB+57pjuX422IjmuGu69bBUdoeIrG8QPs3698374+nFOXfAEIaXWK5Wvblzs9WWP7xry6sD/Pzu5XqdZ+/zZq0HvmrPFxj2w7RbduOnafVPohLvrGv1p6UCRnOhqWnZvbXffxbjYaMw3eLZVcAhcuWhkerEWeVcd3+7ZpZLSPvb2STTk3V0lIGNCuMcG9/Nl7vBW3dVVmT0hId2HU/RfRaeVBSHGXzl6mbXszPvihP1cKGplsj0tzY+Omsv8ni/9fDRmsJr68GYLuNT/HkZPXhEsp7jz1aGT96YGVdQH2TYC/e8FvrrChPcRvZvFfk9ga0R8AL88C7K5env75RxnKU8TPzzjoNjeH9u1rr/rX4uGHlRbuxo1h7NhSCmg04D6YkTPUbjHLt4+E9HA4vRh2Pgo5pg9mhRA3Hwm6xU3JpokN3/zemwsRl1j79V7enfwvHVur47v37oW77lIyqQJkpWbRM/Qsdk62rF66u45qXb5LZy/z1ZpuANjaZDL5DbU1rzqTl9U3rVpBU3ulVezATmVKr7/Wq6lvX56UhG3T6m0+adOzp2H5TILae2DzZug9xIuYZDUBVEyyB+eORnO9kvNaGZab+Xcqp6Qoi5eX8j0rS82OHHle/b/wDWxqso+5ufrArohVIyu++cWH5o5K1/SNBzqxYNp/NVLnhurPX86SnKm0fNpY5vLSY1vYsuowk0aqeRAuxjuWuf/pKHUM/uDb1YdMUYdPVH9l65mEeDXI3nSkL9+8b/qAuC6cPmfFy7P9+HxFMOSpvQ9+O/CoYfmHHy0ZMEBZTkxUPksBPDygSROl50iRgIAS3bXrITs7JTN5YiL0Lb2zFAChHS0JCVGWd5/twenLV6fhbBoGTUOMC8f9A8n7aLBd6oQQ10SCbnFT8w5swZ1PdOWVjwaw/1Qgq1fpDNOEnDoF336rLL87ZR8HzrQF4K0PvOqotuWb//op8guV6ODZhw6YJEy7UWk00LmNciMel+pCbGQcf/2nZloffG/1J4HzD7Q0LBe15Oj1yjCHrFwlKVdR9muAf383npbtWiQlqcvOzmWXE2Xz9laXo68+B4mMVgO6Vm09qCxXbxe+/+KSYRqkVz/qxbGd56qlnjeC8GNqy/+qr8OZv7w//UaE8fB4tWkzupxnUWdilP9hV4dE2rRrSiMrZbx95AWbsneqpJyMHDKS6++0e0lpxsniXnwrmMvnqy8/xLXq1Nud+b+/xPhln3M47lZw7Yc+dC7H45QxPi1aQJ8+SlK0IkVTaBWN0XZ3V1qPzc2VoWENgZmZ0tJdkeKJ175POQr9/4ROi4wL6fVw4Hn4qyts6guph6uzqqIihbmw8zFY5w+rPWBdAPzRCbY/CGeWQOY5eRgiaowE3UJcpTHTcPcIM775Rl03a0Y64TvPsuA7tWXz0MkWJl3P61rChQSW/KY0ITSyyuHF2e3quEa1q1OImmTs9xVnOBypTB/WsXUErt4uZe12zXx91Yy6RYmC4uLUrq8dQvNZu1ztV/nvFnOulV6n55v3d/H++2oQ06zZNR/upubtoSZKiz6ppLqPjFXmpXd1SKxyj4hb7u/I9Ce2AVCoteSDpb7VVNOGL/yU+jCjY++WhuXSHnyUlJmSyeVUJehu43kZjZmGVs2Vv9f5BI/r6sp/cl8knh55tPDUcHJf/czKlphq3Pyblu3Isy82rXIsoNfpyx03X5K2QEtcVILSnV2nJXr7b0x8Vn3T4r3cdzX6GwZtId55GqmpypCctspzaaOgu0ibNuryjz8qc2OPH1+lH6fee+QR9XPh2+9tOJY8BL2LcY4QUg8qXc8BErfDn51g30TIT6vVut7QdIWQexnST0LqUeNt5jYQtwkyzyhlMk8rf5Pon0nfOpWXH17F83cu5cuX5rN73S4y6u+zOdEASdAtRAm9e8OwW5RMpDHxDvQf2tTQglxk5cq6qFnZFrxxwjDt0TP37a2RQLM+K5o2DGDex+oN/pC+8aUVv27W1tDy6tucPq08GD98WN1+y61W9B3enibWSg6Af/e3rvK4zML8Qjb9fJDhvffxxNQeZGQol+vWrSEsrBp+iJuQt62aaTz6xFmuZF/hUoo7AL7ucdd0zBmL+uGg5OtjxQoNyZIzCYDw88o/SDP7JKPrUfPmYGGh/C9ER5aewfxslNqs6N9e6bHTykMJHvMKbIg7b5y4TqfVkRSTbPQ/VpBXwGez/+PVsVtIS1CHm0x7IZHU7KZkXbHjl2+vf9hHTUhMVR5YNLLKwcVFecCwejVMn161RrjHhu6kWQsnHrl1R4WZ0FPj0/Bxj8fd1xVH2wy6BobTZsAwln2r5riwLjZP9tGrscxxdeIH2l191hsYqHQnL65kNvLKtBw3NB4e6gOH6GhlDvJ27eD774sVsvOHbl+C3dWnEHodnPlESbyWuKvW69xg6fVwaT3sfQZ2jsRsx4O0uTges/VtYKWN0or9exBsGWq8n0YDzborwXdjT7BqChrlofirK99l/u8vs/D3cTz1wRR6DO+Bg4PyWX/HHfDV/MMU/HUrbOoP2+5VHpaEvwPnvoJLGyBpDyRsV76LchUWQmZmxeVuNBJ0C1GKd2ZlGrqNFo1LdLFX+/f+9FP96YGUHJvCJyuU7n3WlleY8mZgHdeo9nXqo3b5j4wvFnTfWXNd7Nu0ULIKZ2ZCwoVEDh1St4WFgaW1JX1ClTwBcWlunDpQuQxQ+bn5TB29hRauqdz6YEfW71IHQY5+MJH9+2/MG9ba4N1K/cVFX9Bx/lyxJGqttNd0zCZNlHm8Aa5cUeYWvploC7R88fZ/vPjoFhIvKtfIpCSIS1Gum+1DmxglJzQ3hxZNlcRS0efzSj3mmXNqz5A2ocr/ditvNWiMilCD7qzULPqGhuPi5czAjofZvu4oJ/dF0ivkNBNm9WXO1/2577YodDrY+fsx1u7oZtj30NHr76peExLTHQFo3jSJJUvU27T33oM3Xq/cB09qfBo/blTmu/ppUy8GdD1H/PnEMsv/75tjhlwUGbkO7DsTavKw+WixRsMjR5TvpQXdGo1pa3fxlu4b2dSpxjkgIiKUbud//XV1haUd+I2F249B6Bwwv3pNyomGTX3gxHsy3VhlHJkBW++Es0vg/PdoYn7DPmcfmuwo0Be7luenm+7b9Qu4Lx3uvgj3pcCDVygcuIefDzxR6ltFR8OGDfDky2EEjf6M71d5or3wP+VhydHXYM+TsPUO+Lu78jfcU0rGvV2j4c/O8Hs72BACf3SEbfdB8v7q+X00BHo95MRSUAC33KIkKl2xoq4rVbsk6BaiFCG9/Xl08E6jdR/OOkXv3sryyZNw7EBa7VesFAs/vEJ2ntItduxde/Dwa17BHjeelkEtcLYzbmK0s9PTY2jNdbNv4652TT1z7DKHt6p3nx1ClHmFB/QuNq57Y+Uy33/13m7e/64/Celq66CrQyKrl+7hmxUuhlZVUXXebdSHMNExVkTGqF2gfTuFXfNxJ0xQlz/7DLTlxO/x8fDSS8Vuwhuw+MgUBnaO4OmZffnwx/688YKSW6F4INY+1DRTlndz5X81JcuJrDTT1u7iGa/9r6ZkKD6dW9QZpYlEp9Xx2PDj7DiuJKracqQDfYaHENzDi32n1f/9fw6GMW+ununTjYOZw6crP4a/thQWQmq2cp66uFoyYoQydV2Rt97W8PakLSb7lWzp3/+vcX6BPSfb061rHueOlJ5f4sAB9Xfj6qAE57Y2mUx5Rn1Y6OkJPj7K8tGjynjt0oJuMA2668O827XhllvgwgX4+GMolm+TceNKtOyZW0O76TAsAlyu3ljotXB4GuwcKYF3Eb1e6Q5+bpnx+pYPGVqojYpb2kPTDtBiOLQapTzgKNlCYuMK5sW6bZhZsC2iK0mpygOQAQNg4fwsnnpSR8+eSnBY5Fx8a0Z+9j3jvvyi7DprS+lVkhYOKQcg/QSkHYPUQ3DxN/iri/L3zjhzY//NUw7Axl6w3p81q7X8dzXv6O76mZe4xkjQLUQZZr/vjZWF0hLTs+1RHpnck4dHqC0sKz47XEc1Ux04AAu/UG4cLS21THvrJrmzKUFjpqFzoHFL8sCBGqxsai5ju38b9YP89PF0DocrH9g2lrn4ByiX1gF3qZnN/z1cIoNtGb75ycmwPKLPbn75dBdR0U24+8lu5ewlKsOrjfpAKvqyLZHFhvT6Xsdw7DZtYPCtyg1TVBT8+cO+Usvp9XDPPfDBB3D33UoA3lCtWLyLB0b2YMdxdZaEv7YrvUzC1QTlpU4J5e2uPoC6eNr0l1CUJwHUFtJWrdXgvWiatxmvFLJmu+n/RdG0ia1cItFolP/TGa/BtvBQo3JR8d5GXc/rg5QU0OuVngHNvJShD08/DYsWqtebmR/3Z/kHSkZzbYGWsXduw8XLmUcGq92T9+1SIzxLc+Uh4IVET159qfRhSQsLSQABAABJREFUFPuPqdkZT5+xIis1i7R0S2bPb2VULvTqrzA7GyIj4USxZPJB6uWOW24xPv7NEnQDuLnBs8/C9u0YMrlHR8OMGaUUbuINt/wL7WYAV3uEXPgRLq2rrerWTzotRP+qBKWbb1V+J8U1DYGQt6DnjzDsNNo7z3O49b/oRiTDbQeh3xro8S10XqR0vajAb7+py089Bc+9ZMsXS83YsQPS0pS/5cCBalD89daxRAUcgj6roctn0P518J8IQVOg9TOmb2DtDBozsLAF80bGDwzOfw/r/eFnW0iPMN4v+yKkHFKmnWuIQXluvDIE4M8ukLQLCrP5ZJH6oHXYsDqsWx2osaD7s88+46GHHiI0NJTOnTtXap/p06cTEBBg9DW21IkRhah5vsHe/LUygtee2sKav1qgMdNw330azDRKM9aK333rdP7UNWuUKUyKEn08/rg53oEt6qw+da1TiHFL8pAhNft+bYLUrsoHD+o5e1kJOIJbRRqmZ+vQ083wlHzLFiXoKsgrIOVy6ZmITx2IZO8pJUoJ9T3Fqv+6c9/4HjS2l/7k1aGxfWOaXR0mcuK8Fxs3qFlyrifoBnj2YXW8+CeflF5m3VodO692oLlyxfhGT69XgvD6MmylPJciU3liSldDD5sikfEtiT4ZU3HQ7al2648+Z/q/8H/27juuqvp/4PjrctlDthMRF4gIgnuvLM3M3U4tbVlpw0qzcrTUsqG2/Fo2raxfaTmyzNx7oaI4ERBFBBWQDfee3x9H7uGyNyjv5+PBw3PP+ZxzPxcP5573+Xw+70/4ITUQ1+kUU7DW3M/FtP1gWD3efBPmva+2Vun1BtZ+u49l87bhU/88eoscpty3hbAzDXn9dfWGOzeQBWjRUBvLfeRQRuk+dDWJz9MD3DNPao7JU3TMf3GL6fVj0zqzffURJo7YxbI1arKunzf24FKsegLtPag9pPjnl2M42Ku/871n88zZdUN2ZjahZ9VfdOvG53D2dMbBxRG9dcHu90F5nh0ePqy1dDdpAi4u2rbGjSH31s/fXx2GUdfodLB0qTYt2iefwI4dhRS0sIT2b0Pv30FnCcHvgdfwaq1rrZF2EY6+BX82h+33qC2kAJkJBcsGvAo+D0C91mDvhUHvVKoAOz+jEX7/XV22tlbHb+el00HPnrBxowUzZ2rrf1gXDE1HQOunIGgOdFoMIe9D25cLvkmfVXB/Ntx7He5Lg3vToONCsNYesmNIV8eZ53X2S1jfAVZ5we8NYMeDEPEtxP4DF/+GS/9Bdi0bHG3MVuu37R613meWAOp16di1u9i8Q70p8vMr+HDuVldlQXd2djaDBw/mgQceKNN+vXv3Zvv27aafDz/8sIpqKETJ+o0K5q3/9cPDS20FqO/tyW0dQgG1lWTfvzUzZ+wXb25l5EiFtBvJmHv2VMf71WWduprfIFZ10O0bWN+0vHJjaxRFvZwG+2vZgi0ttbld4+PhhXH7aeSZTIOmjnzxZsF5nb//QgsGxo2JraKa123+3up44muprvz5l9ZvsKJB910Pd6CZpzrOf/2+jkQcNU/SZcg2MOM5894YP3+r9ZyZMkVNMvbgg9o0S7XVNz+5km1QA97R/fby0tjNpm2bVkcStkvrHx7QtuCH8W6m3XpER6SZbTNkG0yZz1s2jDLlL2jetpGpzB9bOzBrlrbPRx/pGTKuM49O601ErBeJCRks/Lkv9vXsmTlTvT7m6tgmkmmztIeTh040KP0HrwZFBd0AL7/fhydHqteNrBwb+o/059t1vczKbPxPDTr2HVfTxNezS6LP8PYEtFNb/yMjdaTm69F/fG8Emdnq9bOjf/HXnfZ5Ogv88w9cu/HMJKCQkTw//ACvvlr3xm3m1bIlvPOOupw7rWROTuFlFa8RxHU9g+KfL2hLu3hztnKWlmKEi+th60j4wxuOzoS089p21xAIeL3Knkju3g2xN077O+4w706e32OPaXH9d9+VoUqW9mpLdy69NfhNgWFnIPBNaDxUHWZg5WS+X0aepJGZCRD1E+x+BDYNUpPE/XcbrPImff98LsUq5vWp7ie4kT/Cv33hV2cS/nwQJfr/QLlxsls6QsgCPjv2h6n400+X6xnJTa3Kgu4pU6bwyCOP4Js7IKuUrK2t8fT0NP04ywBGUcvcP0a7SfxhWSFPX4uREHOFFx/azC+f7iy5cBGSryQz9d2OppabBx+EjRvNWxnqok59tLmIWjeOqnAQVZJm/k2w1KutRxevagFBSIj5F11u90KAhT904sp1d3IMVjwzuyfrl2tJVIwGIz/8obY2WegMPPhU2yqsfd31xZcOtPU+Y7bO2jKLxo0qdoOit9Lz5IPqcRXFgt+/M5+OavnCXRyLamm2btve+sScjuXYMbUVDNQA5eN3Kj6ve1UxGuGrr9RlnU7hva86cvdobaz8ps0QdkZ9IOXlfhEX14K3Gd4+WitsdJT5APiIsPOmmRgCW2ldoeu51zP1Ushr6lTz+Z51Fjqzqd8sLdUpqlq1AkdH+ORrHzp00rp25p11oDaIv6i1Wnl6mJ+TOgsdi3/qzoCQg4DWjT6vf/+FC2evmK5JnducxUJvYdb1O/+Ul/uPaWPb8z+8zC9v0P3rr9pyYUG3nx+8+65563hdNGUKdLnRweDECTUTfWHGj4eGLZvxyiv5Nmy5G/5sBRf/qtJ61gijQZ0re/OdELMqTxI0HTS+C/r/DYMPgPfoUkdoy5ap14WrpZwtL2+PozFjii/btKn2nX7mDOypaKJya1cIfAP6rYbbtxXcXr8vtHoCGt0JluYB+anY1jz4yXL8ntuNY9eXadRYx5QpNzZmXoU/W0LodLXLelkC8Ix4sq9FMmtaPJMmXmXxggQ2/RVPavRBNbA++iYceLFgV/j0WLIv7uSBhV/h+VQC3Wft4kRCT2g7DYaeJLnJVL77Xr322tvDuHFl+D3dIqpuwGM57d27l+7du1OvXj26devG888/j6tr8RmIDQYDhuIy19Sw3LrV5jqK0hs+PoBnZqaTkW3HD2uCmJuciq1D6bLgzpxykM9X3o7limx6Do6loU/9kne6Iff8iT4dR1qmmqF8SJfdfPttZ3S64pM31QWNWtRndN9drNrWmZeejsRg8Cp5pwrQ6XW0aHieUxfMxzwGdnI2+1vv0ysLKJhMyqjoue/x1uxoeRr/zi3YskUhKl6t8+1dwvD0blcl14y6fj3y69ScvUczmPnMJj5a3hdFsSC45SnQ+Vf4b2j4g17MWKgur93gzAs3DpiZlsnM93xM5e7ouI9/DnQG4OelJzlwvgF5n4FPn9OIXt3D6Ng/T6RUQYmXk7B1sCn1taooGzfCuXPqjVPXrsl4ednR0LM1tlbqNXHV5nYkpbkA0K7FBQyGgi3JTVpoTUlR5y3NzsXQ3RcBHwAC26abbXts9FHmfd0fX+847hnryb33KgQElNwzoEkTOHpUvWe3tIT0dNDrLTAYdISGKhgqMO93Zbt86gDQDwB3ZTsGQw+z7RaWFvz8pzc9ukRyJtYHC52Br97fy9NvdCM9Xce//yoMHepiKt+xV30MBgNt2ujIPcfCwoy0b58n6dphre938ID25tcGgwG9adFAs2YGHB0tSEnRmVq5Afz9jRgMZX9wVVeuR2++CYMHq7/JBQsURo40msWQGRmwfLkFoOPjjxWefdaIlxdwLRT9NfUhi7L5LpTAN1H8p9+cTYSGTDVLe+50aTdYWLvljmZHsWuM0vxRlBYT1fHuUKquP7nnz5o1RiZOVH/PNjZG3nqr+HNSUeC339Tfu6Wlwl13GUv8HnjoIR3//af+LX37rZHOnauwRbnpPeoPqN22r+xGF7+D+AQL+j3/DLHx5s3yX3yhMHu2Edf45ViknoPj8+H4fBRLR3Bqg1LPF5z8UOq1UVvVbTzVngR5WPzhwwcrJ/Pminlm6xu5ZBP67mBTokWDZx9w1BpWc+p1Zexny/l1z70A7DnbjZBp23jnHYWBFgqrVhlJSVF/bw89ZMTJSal19635r0eVfV2qVUF37969uf322/Hy8uL8+fN8+OGHPP7446xYsQK9vmCWwlyn8qY6rcWOHj1a01UQleTunkn8unkA11JdWfreSnqP9C55J+CfnWqAlmOwYtOa3fj3Kt1+eR0/cgZQg26vxtc4fDi0zMe4Vb36gTUvpu3Dxt6R0GpowmreKMMs6NbpjOgcU83eW8FIv/ZGthzpzN3dt/HopHS+/MSBtXt6k5zuzPAR15j+whr+2NYDUPuT9r7bqcrrX9evRw8+X49OPdexazMMHGZFaGjh01eVhaJTaNEgkog4H7aHtWPHll04ONux9uvzRMWPAGBgh108+1Iy/9wYefXpN82Jzje3d7bBmgfHOvDNT7uxc6r4tFbHd15kwguDqV8vgR9XHMDRreAAW0WB1FQLbGwUrKzUm0ijwciuNRfYv8+eO4dl4dulER9+6AOow21GjEjg6NFEALr6w5YjHU0BN0Bz7/hCz+O0rHTAD4DIGFuzMrt3aL+M+o2SzLaNeaYeQ8fvwMbeBp1FDNnZ5W+pbtasLRERdoSFKezbewgrax0pKRZYWSnY2NTcwPrICC3PQI5ytcjrwGdfJLHqu2N07mEgsG8T2rdPZvduZ2JidHzxaTygJg309M4kNDQUe2tLQG2m3vP3DgICtDwRW7e2AdRzwtLyCKGhWpBjkZ5O7i35kSNHMNrZ0aKFH0eOmI/nt7Q8RWho4fOul8atfj1yd4fWrf05fdqevXt1fPvtaYKDtd/XqVN2GI1q76acHB1vvBHPc89dwC7jBE3tOuCUfhAdCrqjb3Dt3H9EN5hGjqVHTX2c4ikK9pkncE3+G9eU/7DOjgMUdBhJt27OcZ9fzB4aNCYAewdL4p1HkeTYCwyWcPoqUMqm6huys3VMmWIA1B4g27cnExp6ttCyiYl6jh1z4MgRR6Ki1F4hnTolExV1hqgSOhq1amWBjU17MjMt+OknI+PGHcHaurquGU4YjYN54Y1WpoDbxsaAg4ORq1etyMnR8cUXUUzoeJCG6NGhBo26nBS4th/dNfMpyhKchxHVcKbZurYGez7792nyi01szIK1L/Heg9MAiDp7nGvx6pSOBgPMntWGv/aYD3fJyNAxdWrBB0QDBpwgNLSQLO+1RFVdj8oUdC9YsIClS5cWW2bdunW0bNmy2DJFuStP9oLcRGoDBw40tX4XxdfXF/taPHGtwWDg6NGjBAYGFvvwQNw8npp8mF83q8tr1nkzeU5wiftcOHOJs3HaWMKcLA+Cg0veL1fueeRgp2WZbdTItkzHEJXL33cbf+f5DmvdOIpuvQpmU96wTyE9JRX7euoXUv/BKfTtcpLD5/yIiPPhiek+prJOTgpTpjTD3r5ZgeNUBrkeaYKDg7n38co95l39trF4hQ85BisunbBg5GNB3PebdnM89/16hPTtQsjr4Rw6609kvPb/PHtaNOtWJbP3ZDvOXmrOR7Mu8eP6dqbEfOX10vgMcgxWXLzWiDP7wnlkWnCBMp99pmPKFAtcXBRGjlDo7BfGZ1/YERaltsj/tCGb+VO3s/k/NdjycM+hT58k03l02xgdW46YH7NzF6cir0/O9kkkpTlzIaE+wcHadfHd81mm5QF3BeIb7FOhz16UbgERRES0JifHAqsMe65c92P4cAsaN4Zt24w0qKGh3l9naAkh27VvTnBwEdMeBsOAPAmfRvQLY/duNajeuFmr/D33+ODlBU56LcfAxWgr0/9LVhacPau2Pvn5KfTqla8veJ4B4EFBQeDgQLduOrM5uwGGD29drukM69L1aMYMHY/emAp6zRo/HnlEe7gRHm4emPz5ZwMWLfLEySkYlHsxhs9Dd3QWOhRcUzbhkrYDxWcsSpup4FS2YZxVQlHQnfoYruxBd2UPurxjsvOwyzpHcJPrUL9PnrVqXOFY6B6lYzAYePnly0RHaw8p4+OdC73+HDkCw4ZZkJZm/jsfP77o61V+o0bBTz9BUpIlFy+2Z8SIClS+jD7+WMeOHerfbP36CgcPQni4Bbffrm4/etSH+tO/xJjxLrqoH9HFbYTrpyD1HLp8uQHcra/imu8z/7HhDc5fURuE+nUI594BO3hh0Tgys6z57L/neenttrg3cqaZkx/NbNT70alTdfy1Xq2TtbXC8uVGtm7VsXhxweFFffoo3HOPX2X+SipN/utRWlpapTbslumbfMKECYwcObLYMk2bNq1QhfIfy9XVlaioqGKDbr1ef1NcrG+WeoqS9R8RQqtGave+jYc6EnU8mhaBxbda7/g7CtBuLi8kNCjX+ZCcqHV3cXW1kHOqBvn5mX+hhPjFotc3L1hQD06u2ngsZw9n/lyXwoD+UZy9ZB5cjxmjw8mp6v9P5XpUNYYOd2TxCnX5r3UG6jkf5uwlNY3zwA4H6DSgIwD3D4/j0Ida93FXh2u88LILYx+C4K7JXE+vx+9buzNxxA6+XdMNvVX5/q+OHYPNx7RMYlu2WTNxhvmxFAXmz1eXExN1fP2Njq8xD75yDFZMfU9LUDB20DasreuZzqPbbsMssy9AUCePIs8x7/pxHI10JiahATossNCrN8BHTqutTnbWafi296myc7RDmwv8uFrt5npo9zUWfKsnI0OdBuvDD/UsWFAlb1uihKvaOO2GTZxL/fnvGGTD9Bu9QXPzfTRsCN7eenQ6aBngbRoCEH6uvum4Jw5dJjNTHebUsaOu4Pvlea3X60GvJ39c4uUFbm4V+3+qC9ejBx9Upw27eBH++EPHuXN6U3b+8HzDY5OSdHzzjZ7nnwfQq+N+3TrAzocgOwmdMQtdxFcQsQyajoL2c9Us3lUpKwli/4a4jdBgADS7z3z7kdfBmK/HkM4SXNqp/6KDer7o7TzMzqvKEBsLX37ZyGxdRIQO0Bd4q99/x5SENlerVvDAAxalrtb48WrQDbB8uZ7Ro8tX77LasUNNTpjru+90NGmip359Na9PYiL89ZcFBgNYOzSCtlPVHwBDBlw/A8kn1PHYOSnoXNsX+Lv7fOMU0/K0d/wZPNifY+nqrByp6dYs/m0ob72lld+2DRbeGFZlaQm//qpj2DA9Y8bAPffAihXq8AkAZ2d47rlCrjO1TO71qLLrWaZEam5ubrRs2bLYH2tr65IPVEqXLl0iMTERz/wpPIWoYToLHRPvizS9/npx4V2Y8tq6xTxlaXRi+Z5OJ13VjuPqWrsvXLe61kGNzV4HB2UVUbIg7zZNCDvTgFVf7uH+O49hbw8eHjBtWmXXUlSnPsPaYW+jtg7+tcOPTz7RWhaefkqbKuveCeYTFz837jD13OvRItCbX5aewtpSvXld/k9PHhu5E2O+ccfffgsvvAAXLhRfn88+M3/9376WBaY6PLz9XJHH6domjPFDthdY/+gz5ud+587m00LpdEb8OxXdW8PbT30AmZVjw+V4NUhMTUrl7CX14WVAs8hyP2gojeDO2ljIOR+3NUsu9vmnWSTElC1JZmVJuKq11Hl6FZ/PJq/2vX1xdzIfp9AlJMnUi1dvpcevqdrafSbWm6x09Vq1f5P2wTs1K12Cz7zJ1KDwJGqiIGtrmDxZXVYU+OgjbVve+c5zffxxvkznTe6CoSfA/xWwyj1/FTj/e8Gd0y6oWc8zr6jJysojI0GdlirsHfjvDvjdE3bcB2f+BzF/FCxvfaOrg6UDNBwIXZbAqEtw5yEYvA8G74UeP4BLYPnqU4wZM3SkpZlfL7KyCr8+5p3ScPFiOHhQ/f2XpafGbbdpswts3Fj5M05cuQLPPw+vv662zGdnq3kB+vVTlwFeflmbpcXKSpvqLDkZtmwp5KB6W/UBiPcY9SFOyHzwedCsyMmTajJGUDPv33GHuvzKK+p7ACxapAb3oObHeOwxbf/582HYMO11795qktAvv1R/PvgAvMs+qvKWUWXZyy9evEh4eDgXL17EYDAQHh5OeHg4qXm6Kg0ePJgNGzYAkJqayvz58wkNDSUmJoZdu3bx9NNP06xZM3r37l1V1RSi3MZP9kdvoX4jLvuzK0ePwtFD6axffoAPXtnM48O38uG0zaYb3C37zOfQjo4ucMhSSUzUbphd3ApmrxXVp3UH88ApuKt7ESULZ+tgy/CJXflpXQDJyXD5sprxV9y8bB1sGdhJvauLS6zP2t1q2uKmHhe4e3wnUzmfAC/6tT8EqF2tp8wKNm0b/FAn/u9/h03Z8b9Z25u3p2hTzIWFwSOPqDflXbooHNpqno09V3KyOq1NXheuNOLMYfOLz9pftUGM70/bzf/9YmDWU1tY++0+dh0L4Ju1vVj02hYsdOrNe+92h2nb1fzct7KCXr20a1PLBueKnV/eu4UWoedeC4/vjTJNvRfoW7bxnGXVvrv2QCDmsnlwm5ZhzUezSz+mTzEqXLlYOfWNT1R/L1b6LLPeMSWx0FtwW2fztOSdWx4ye922hfogwWC05HSo+ks/cED7P+vYtXSTaQfmi5kk6C69J5/UHk59+60aGII237mdnRZIRUWZZ9ZWCzRUg6Xh0RA8D2wbQtPRBVu5N/aHVU3gNw/4tR5s6AUHnodzP0DSCW0KsvxZra/sg4NTYW07NcjePFhtwb60QU3kZSq3t+CH6/QJ3HkYxiTCgA1q1m2bsn0nlsfu3fD99+p1w9VVYfx4bduZQi6NuUG3nZ06bVVIiBZQlpalJfS6MXw5OVnNSl+ZPvxQbT1+5x31IVf9+jBrlvYQpk8fePtt832G55na/Y9CnonklZ4OSUkF1+d9SDtpEljciBK9vTH9XpOT1YcVoD4IyO193bUrPPdc6T5fXVVlQfeiRYsYMWIEixcvJi0tjREjRjBixAjC8jxiOnfuHNevq9Nj6PV6Tp06xaRJkxg8eDCvvfYaAQEBLF++vFJbz4WoLI1aNGDonWqfmYtx9gQFQVAHO+58uCMvvd+PL//sw9T3+vHDxzu4HB1P+HnzXAflDrrzXChd3CueZEmUn5cX2Ob5LwjuV/4n+Hr9zZmQVhR0190Fg80nHzhdYGz28t8aMeupzWxaG4trAxezbXc/2oWfP9lverD3xU9tTK3deW+oLl7U0euORvy5rODcNd9/Dyk3hgg7OWjdPjetNc8UtG6jm2l5zFgvRt+jZ/bnfRkyrjM6C/WknPx2XzavCmP6o5v5/pfCb6T7t9WaV9p5HSm0TK68rR2518Ij+7WW2sB2VZvW1sPLHS/3i2bregYcxkqvRkGLf+zItbjEEo9jNBi5//ZdeDRxY/qjmytcr/hEtbnN0/mq6XdfWgMHmPem6tLDfJRs2zZa0HQ8VM1AvD9MzTeg0xkJ6V26eRadnNRWMNNxZXbDUnN1xTT+NzUVDhxQu96evdFZzt9fbcHMtWhREQeydlanYhp+Tg128zPk6eZtSIP4HXByIewaC2v91UB8hQNcPWC+3+UtcOJDSDpW8JgOPuA7WZ3Ga8jhgtu97wHXILCovhzNRqPWewBg9myFrnnSqpzN1wkxLU1bFxCgBZXlkfd9du8u/3EKk38qstyWZb0e3ngDNmxQe07kNXiwtu7PP4ueJeziRXUaP3d3+CvPLHQpKfDNN+qyrS2m/AO5pk/XRgXMnKkOX3n/ffW1lZU6lWQt7zVe46os6J43bx4nT54s8NM1z1l68uRJRo0aBYCtrS1fffUVu3btIiwsjP/++4+33noLD49amp1RCOCpZ0tO/fHuR43YsqVg36Po6LJNnZgrMUm7qrm4F5yKSlQfCwtt/lVfX/VLSIghD5k/fLHSZ/HYiwWbAxu3bMjsz/sR0q9NoccZ/VR37uyqThcUe60hB/5Tm1PWrjUvl5bpwPCJXenaJoyPpm/m0OYTHN1xik/fizSV+eAtrZ/lps3aTfGVC1fYHa7Wra33GXwCip5qr/ew9sxd1o9m/oWXGTK6MTqdeq3r0bf4rtGFBd1Hz2h/QEEdS9/KW14hrc+ZlnU6I58vsePRu9W75+vp9Vg0J7TEY7z/8lZ++U+d1uuzFR0wZJf/YYFiVEhIVh+AeLoU0gxVgoHDzfNJdOpn/qDXP8DGtBwelklmWiZHItQeC228InByK/3vPG8Xc2npLpu+fbXlrVvVLr253ZMDAmDAAGjXTn29c2fB8d5m9LZgV0jWv8ZDwGskNBoMDoXkGclJVYPxjDjz9Q1vZOPSWYB7F/B7Hrr/oHZrHxYBnRZBozvULuS1wDffwP4byUxbtkznyScV0zh5KNjSHZ5nyurc33F5deumLVd4vu48FAUO33imUa+e2qoN6gOZnTvV1uXC2iKdnNRzB+D8+cJndjAY4OGH1d+LwaDmGMj9fXz3ndqKDWr+ATc3831btoSHHtJex8VpU9W+8YZcB0qjVk0ZJsTNZvBg9enerl3aOlflIO3apPHFMmd2hQdyIqYlM2ZeN223sc4mM8uKlBRIjLuGa8PSj9sDSEzW/mxdPGrHF19d9uWXajfBe++t6ZqI2sLLSw1Kcm+c7hl+jQY+5UuHPXxoBmtuXF/+2NCY5v5X2L3bFbDAz9dASNM9/LxRDfr2nmzH3vnAfPNj9A48zCNPt+XFGddJyXBi04FWKEYFnYWO9b+EY1TUfpJ39YsBzLuNl0VgT19WfLqL0ycyeWZml2LLejdMAtRW3eijx4AAjkZqXWQD+wSXux6lFRyYweobLVRjB24gsOcgpjvb8tWfORiMlnz8XTAvz0srspv87vVhvLZQmyLneno9jh9NIbBD+fIwJyUkk2240dLtklJC6YKat2tKgPdpjkW3JrjFCdwamT/Maduhvmn5+AlrNq86SrZBHfLQse0lyvJ//9RTsH49dOigjucXpZc36N6yBfLmHw4IUHs8PfYYN5KoqfcYZU7s1+Vz89eZV9RW7av71S7kiUfAwgbI15vCJQh6/wb1+4FNvqirlklMVFtfc738cjSWlq3MemHkb+nOO567okF3x47qg3ejsXKD7thYSLiRUqJrV/jnH7UV2t6+5Jb5YcPUv0tQx1K//7558Dx3LmzapL0+dEite+fO5jkG8vYeyOvjj9Wu7vv3q7/LhAR1nLnkoikl5SaWmpqq7N+/X0lNTa3pqhQrJydH2b9/v5KTk1PTVRHV6J+f9ivqM0TtR6dTlFH9tPWhW0+U+ni559HA/mmm/ZOuZlThJxC3IrkeVY85c7S/+507y3+c2IsGRadTj9OunaL88OE203FfHrdJMeQYlE9nblbaNz9R4HqT+/PLZ2oF7uyy17Tu+J4ziqIoygMDt5vWbfrtUKnrVdHzKCo8xvS+I3vvUoxGRfHwUF/Xr1+uQ5bZif1nFXenBKWpR4wSfeKCaX3e38mONUcK3fdaXKLiUz+6wO/6iy/KX5/ThyJNx3lg4PZyHePY7tPKa49tMv3/5pWVkaVY6rMUUJSg5ieUPoGHCpwjBaSkaB8uJcVsU3q6ohiN5aqmSV28HhmNitKggfordXJSlGnTtF/x6tVqmYQERbG2Vtd5eChKZmbN1rk2euEF7fc2erTRdB5lZyuKpaW6vn17831eeknbZ/36itchKEg9loWFoly/XvHjKYqirFun1fGll8q2b0yM+fXIykpRBg9WlJkzFWXhQkXR6wt+Pzz8sKKsXKm9HjCg9O93/XrFrwG1Sf7rUWXHmVXWvVyIum7gvR3o4hdmtq59ewjy11q9o8+UvQth4nV1ELGFBTg625RQWghRE156Cd56S50upZgZL0vUsJGFaexgWBh8ukxrrbxrhDMWeguentOX0Ag/wvdG8NazahLH3J/P52xlzJNqP8gBfbREpps2W5CTlcP6XeqAXGf7JHreVX39Axu3aGBKzBZ9qR5xcVrrTlBQMTtWIr+OLbhwyZHIS41o6qdlY+8Yoo19PncqudB9X378MJGX1SZKLw+ti27eXk+5FKPC1/O38dz9W7gae63I+sSnat32PVqW7/+ibddWvL20H/5dWhbYZmVjRevGal/+o5Gt2Xo0GAC/JhGMeqz4ngmFsbWVPBTlodNpXYavX4eff9a25Y6Pd3eH3Bl6ExLUMbpCk5GhJf2ytYX33tOG8Flago+PunzmjPkwvsps6Qati7nRqI7PrwxH8qTDyD9TQEmaNIGxY7XX2dlqy/ebb6pJznK7g0+bprWA//ILzJmj7fPSS6V/P0dHuQaUhQTdQlQRnYWON141nwyyT28F72bamOzoyPQyHzc3oYazc8WSgAghqo69vTrdS2UMO8iblXZXmDrVoLN9Ej2GmN81tuncgtcX9+N/q/qYfp6a2ceUkKv/6I6mspv2NWf3+qNcS1WHt9zR9ThWNtU3G4KltSVN3C8BEB3nydHD2ljo/Nmxq5KNvQ0WevMLaYvWWq6MiLPZ+XfBaDDy67/q3bCTXTIbN+SYxljuLGTWrZlPbWHC9N4sWtGXl58IK1jghvgr2neDZxOXMnyK0mvbWn3om7fN5bUXL1bp9GyioNygG9Qs5aBeM3KDRTCfiunLL6ulWjeNc+cg80auuOHDoVm+2Qlzx3WnpqqzguTKDbpdXKCx+ayH5ZI3mVpldTE/nCdHXVmDblCHu+3dC1OnqkOd8svNfD5xovo6K0sb/922rTpsUlQNuWUXogrdNbYzIT7atC19O0WaT5UTVfZMarlBt4tLBSsnhLgp5J33NFd5guTgzk6m68aqVTBglNaaetedVZstvDDeDdRs5fHJnnz2hpZGN9AnotrrkleLNlqejYjIgsHoyQORJKWpY68HdAzHN7gJHW88zzh9GuJjtYepb03eyttL+5le//JvMKlJWo+DlGsppCWrD2fj47X3yJ0DuLL59wg2e92iYRQPPNut8MKiyuQd153L39/8QfqAAVoQ/s8/5Z/x5FYUkecS0bp1we2FJVNLTISYGHW5XbvKaaHNm0ytsjKY5wbdVlblm0JUp1PHaC9YoD7QOXkSfv9dbe1+7TVYuVLtDTBpUsHfwYsvSst1VZKgW4gqpLPQ8cknlrg4JNLFL4whoxvh3UrLahEdU7bp8BSjYpqn28UxtYTSQohbgb8/tGpiPr1VeYJkvV5rYcvJgWyDev2xscrgzvuqf4J470baUJtV+4aalgMDMgsrXm2at21kWj4bXa/A9j2btf+Lbp3UALt7W22i3t3r1Tm+338fZn7Sx2zflAwnVi0LBeBMaBR+ra7j4QlhO0+butdD1QXd+af3enVydIGp7ETVCwhQpw/Lvy4vCwutNVJR6kZrd0JC6WZ1yRt0tyhkpru8ydRyg+5jeWZBq4yu5QBt2qgZxkENuhVFvbbGxpbveBkZapAM6t9qRWdMtrBQZ1YZOVLNMP7221q38ubNYcgQrWz9+ubZyUXlk6BbiCrW465AriTVY8+Jdtg62OLVSstiHB1btiy3WelZ5OSof7Yu+lOVWk8hRO2k08Hw/uZ/7+UNkl96Se3GamkJ7XyvcN+AnfzxTRj1vasoyitG544Fu273bneYkD6+1V6XvOq5O+HhrObbiLhccGz0nsPauPquvdQW7x6dtLHaO7elERZmntH34cFav/Pvf1Jzcbw6JYKLVxuRnmXPFx9GE39OiyQ8nQsfS15ReYNub2+FcS/2qJL3EcWzsIDevc3XFTbf+SOPaHMfL1wIV64ULFNZFEVtGTVUf6cXAN59Vw387ryz5MC7pKA7b0t3bgbzyh7PDer/Y272/thY2LhRPXbjxmr28LI6dkz7/Zena3lZPfectvz88+r4eFF1JOgWohrkHTNo52RHfWe1H2F0XNnmoU9NzDAtuzjVbGuQEKL6DB/jYlru3HJ/uYPk3r0hKUkd63j0pDs/b+zBoAc7VVIty2bSG934aPoWZj21mV8/28XxPWfZHBpYK8YXt/BTg+kLcY5kZJhv231cfSig0yl0uk1tnux+uzYX8q4DLmbz386YAd+u6YZP/fMAbNgfwp/L9vB/2/qb9vl3dzPio7UWdA+nPH3NK1FgoDrFj5UVfPyxDmvbmv9d11V9zDtBFDrPsZcXPPqoupycDPPnFyxTUYoCq1dDSIjanb1NG/jhh+oNvv/5R5sz+u+/zcdhF6YsQXduS3dVBN1g3sV80CCtpXr2bEjLk9YnNRUiI4v/vVYkiVp53H67muxz8WKZ9qs6SNAtRA3wrq/eUF282oCcrJxS75eWnGVadnUu2EokhLg19RgSyMAOB7C2zOSVqRX727e0rHi3xcpg62DL83P7MvvzfoyZ1B3/Li0LJDWrKXlv5CMjteXUVDiq9h6nXTsdTi7qL7Jxy4Y081QHjG4Pa2fKNt2kiZpQz0JvwdgRapObUdFz/9PBZu938kIrQk9oD1I8G7tU5scxsbCA//5T5/3NzY4takb+cd2FBd0As2aBzY2JShYv1sYlV4bdu9WgcdgwbSzxmTNqBuzAQPM5nUsrIwOuFZ2kv4C4OBg3znxdaYNua+vCE6I1b66NTS6spbuo33V55E2mZtSSqHPlCnz3nbp8/rzazbt5czXjd8eOMGKE+jc4cqT6wCEryzyJWnXN4nDvvfDss5KYtzrIr1iIGuDdSO06aFT0XIyIK6G0JjVZu9l2ca6hPmBCiGqnt9Lzz74OJCUqjJlUgTnIRKnkHROat1XtwAGtpSrvzTZA9yA105XBqI2Rnj0b7G4kQx/7lI9pfXpmwekej5xThwzodEbcGrqUt+ol0ulqx0OXui44WA3AQB3ykT8Ddy4vL5g8WV3OyFATYpVHbKwa4CqKGuC99hr07Klmus7VSEtnQHi42hK6dGnZ3qNpU/Vh04oV2vorV+Dll9VpFFPzpKMxGtWAOy7fbVBxQbeiqNnLQW2Z1xfSWcPGRq0HaNOG5T4sa9gQPMrWybBYBa4DeS7PH32kfsannoKLNzqyZGTAwYPwxx9qQstVq9Su9dOnVzxzuajdJOgWogY0bZ1nXPclt2JKmktN1gJtyV4uRN2is9Bh6yCD7qpD3pbuiFNaH9E9u7VrcLd8Sb97dDPvgeDbJJJHxmuDU1uH+NDN/5hZmUmPFMy45O50tVZ0sRdVy9JSDUQtLdWxtcW1NE6friXsWrZMnSZrxAh1WqjUUuRUXbZMDYQbNlTHTbdurQZ6uS2zgYFq8HfhgtoTIjdwNBjgiSfglVfMW3GLsmKFmgwtPV1NyvX772pG/+7d1WzaM2eqDxt27lSD/cGD1a7l+RUXdMfHa5+5sK7luXK7mF+9qnb5zh0PX5ldy0H9fU6YoA7ZeO452LoV+t8YOXLqlPpQYd069bWrq5qRvLD/648+0qYcbNSo6pIpipojQbcQNcC7rTb+L/qiXTElzaUkazdwLi4yr4MQQlSFFh5a4rqI/ftMy7vXastdO5gnO+vez/wu+Z3XYrG0Mr9Oj3tWy5YVFAQffeaBo+11szIe9ZLKX3FxU5k5U+3q/+67xZdzd1cDdFAD4T//VFtKP/yw5IRdR47A009rOQYSErTpxywt1YzWBw+qgbxOpwaM27ap00flev99GDPGfIxyYfJ2RzcY4L771Jbg06e19WfOQK9e6voNG9R1Op02dh2KD7pLGs+dK29vldyeAlD5QTfAV1/B9evw8cfq73TqVG3b8uXa8jffwIkT6kOD2Fj15/33te1ZN0YQSiv3rUmCbiFqgLe3tlyWuTdT8tybubhJS4gQQlSFFr4OpuWIKK13wZ4wtQ+wo+11/Ns5mO3TvndrGrleAqCz7zFGP1lw/uuHx+ro0EHtqfTFF2BjZ0Xf4HCzMp6uKZX1McRNwKbgSINCPf+82kqc39atRe+Tmgr33w+ZN/Kutm2rdSHv1EltbX7tNTVQzEuvhw8+gM8+07pvr1ypjkOPjVUD+Zkz1Trljt82GGDLFvPj5ORo2wMCtN4hebOT+/jA//0fPPCAtq4ygu68ydT+/Vdb7tKl6H0qIu//4513qgnp8rrvPnXsPKhZwhs2VH+mToW77zYvW13juUX1kskZhagB5Q+6tedkLq4yKE8IIapCk5YNsdJnkW2wJiJGnVA55nQsF66qEUsX/9PorTqY7WNlY8Wa367x18oTPDU9CJ1Fwd5ITk7quHCjUetiOnBwPdbu1sp4uqZXzYcSNzVHR7VFOj5ePX/atVO7TO/bpwaxukI6vz3/vDo2G9SAffduNTjMzCxdsD9pkhrY3nOP2pK7f7+aDCwzz+Qp167Bt99CaKg6MwKoycHs7ODHH9XXd9wBv/yifob331fHdru7qwH/o4+qOQbyjmeu7KAbwMFBDXDvuafkz11RFhZqT4EnnlBfu7nBokWFl9Xp1O7/7dtr476lpfvWJC3dQtQA76baY97o06WfeDP5upVp2cW9lI/HhRBClIneSo9PgwsARMQ2RjEq7NkYadreNaTwebQ79PfntUX9cG9cfK6OvGM6B442bxLzdM9CiMLodOoY4oYNtfmh4+PV+bXzW7oUvvxSXXZwgJ9/1gLt0raugzoN1o4dWmNBZr7ZSv/v/9SAPG/X8oED1UD8f/9T67BmDTg7q63m06er46yjouDJJ7WkfvXra/tXRtB9xx1qxnB7ezXYPncO5swp2KpfVcaOVbvR29vD11+bf778PDzUhxINGqgPU3JbxMWtRVq6hagB9esrWFtmkZVjQ/SZK4B7qfZLSnU0Lbu4l34suBBCiLJp0eQKpy82JzXTkfiYBHbv1ILhbj0r7/obEAANPDOJi1cjIU+PUmSsEnVe586wfr26vG+f2k0717ffqgFtrk8+URN4lVdgIOzZo7YSb98OvXur67dtU8d5//67edDdv78a3D7+eOHHKyzoz5tRvLRBd/PmRZdzdITjx9XlwjKcVzVbW/X3YzCU7v179lSng6uuhwKi+klLtxA1wEJvQVMPdexf9OUGJZTWxGUHmpZdmrau9HoJIYRQtfDWskadPXaJv7dp8yl1HVBME1sZ6XQwsI82sbFHfatiSguhym3pBvNpv37+Wc2mnTtueupUGD++4u/XsKE6fjw9Xf13/nxt27JlaoCZWy7/eObSsLJSu2FD6YJuDw8to3tR9PqaCbjz16G0JOC+tUnQLUQN8W54FYCkNGfizyeUap+UFO3q7eIq2cuFEKKqtGiutTh/+fk1jkb6AtDFL4wGPpU7n8/w+xqaltv171mpxxa3prxB974bSfX37oWHH9am95o8WR1DXdh47/LQ6dQWXFCTouWOm966Ve1iDtCvX/nfL7cLdlFBd2am2hoMxXctF6I2kqBbiBrSKUibFmbjqlPFlNRcv64G3Xq92nVKCCFE1WjRWsta/vUaLRCeOrnw8dwVMWYMLFmijsMdMKDSDy9uQQ0bQtOm6vKBA2o35o8+Uv8FNYnXwoWVF3Dnp9Op45bzy52jujxyg+6UlMKnJ4uK0lrwJegWNxsJuoWoIYOGav2i1q8v3Ri+3KDbxaXqvkiFEEJAizaupmVFUW+XmnnGMOrxyp9zSKdTg6THHpNruyi93OmvUlJg5051bDWoXa8XLar6c+nhhwuuq4ygG9QEcfmVNomaELWRBN1C1JBedwVgb5MKwD+7WqEYlRL2gLQkNW2oi/3VKq2bEELUdc39GxZY9/zEM1hay8BLUTvk7WL+wguQdSPX37hxZctQXl4tWqgZunM1aVJwqq6yKCmDuQTd4mZWZUF3TEwMM2bMYMCAAQQFBTFw4EAWLVpEVlbxU2FkZmYyZ84cunbtSkhICJMnTyYhoXTjXYW4mdjY29A/5BgAsdcacnTn6WLLK0aFpFQHAFxsL1V5/YQQoi5z9nTG3VWbH8m5XhYTX+5QzB5CVK+8QfeBA9ryxInVV4dx47Tl/v0r1rouQbe4lVVZ0B0REYGiKLz55pusXbuWV199lZ9//pmPPvqo2P3effddNm3axMcff8z333/P5cuXefbZZ6uqmkLUqEG3pZuW/151sdiyqUmpGIxqC4uLY0aV1ksIIQS0aKU1Fz7xpDVObiWkSxaiGnXsWDDI7dED2ratvjo88ACEhKjzcFf0dl2CbnErq7I+Un369KFPnz6m102bNuXcuXP89NNPTJs2rdB9rl+/zm+//caCBQvo3r07oAbhQ4YMITQ0lODg4EL3MxgMGHIzR9RCuXWrzXUUNWPgCC94R11ev7EeLxZzjlyJSwScAXCplynnkygXuR6JylBXzqMOHXTs22eBjY3CM88YucU/bkEGA3rTooHK/gXUlfOoqjg6gp+fBSdOaJH3hAlGDIaSh6tVFjs7NWt6To467VdF/ivVubrVM+7SpYKfIyLCAtBhaanQqJH29yjnkagM+c+jyj6fqnVg0vXr13F2di5ye1hYGNnZ2fTo0cO0rmXLljRu3LjYoPvUqdJlfq5pR48erekqiFpGURSaeUYTFe/N9mOB7Np1BDu7wpOqRR+PB5oBYGuTQmhoaPVVVNxy5HokKsOtfh7dc48eCwtPgoNTSEhIoa6NdrNITyfkxvKRI0cw2tlVyfvc6udRVWrZ0ocTJ9wBcHAw4Ot7hNDQ0iVnrW2SkhwBPwCOHYsnNDTGtE1R4PTpYEBPw4aZHD16rMD+ch6JylBV51G1Bd1RUVH88MMPRbZyAyQkJGBlZUW9fLPdu7u7E19YGsMbfH19sbe3r7S6VjaDwcDRo0cJDAxEr9eXvIOoUwaPMLBkKWRlW3H1ahB33VV4ueSoUNNyg/pWRT6EEqI4cj0SlaEunUf9+tV0DWpQaqppMSgoCBwcKvXwdek8qip33KFj7Vp1+YEHdPToEVSzFaoA82c6ngQHe5heRUZCWpp6jrRvb2N2DyTnkagM+c+jtLS0Sm3YLXPQvWDBApYuXVpsmXXr1tGyZUvT67i4OB577DEGDx7MvffeW/ZalkCv198Uf2Q3Sz1F9Ro8RM+SG39S//6rZ9iwwsslJWabll1dkHNJVIhcj0RlkPPoFpfn/1av15u9rty3kfOovB54QJ2fOyMDpk2zqKr/omrRqJG2HB9v/lmO5WnYbt9eV+j5IueRqAy551Fln0tlDronTJjAyJEjiy3TtGlT03JcXBzjxo0jJCSEt956q9j9PDw8yM7OJjk52ay1+8qVK3h6epa1qkLcFAYMAEtLdTzUX3+pXagKy/6ZdFULul1cZbY/IYQQoq7z9IQzZ9T7Boub/NbAxUW7H8qfSC1vj9/AwGqtlhCVosxBt5ubG25ubqUqmxtwBwQEMHfuXCxKuBq0a9cOKysrdu3axaBBgwA1C/rFixelK624ZdWrBz17wpYt6hdn2L5LBHYpOD9s0jUtoYOLqzzJFUIIIUSVdUCodjqdmsH84kUJusWtp8qeicXFxTF27FgaNWrEtGnTuHr1KvHx8WZjs+Pi4hg8eDBHjhwBwMnJidGjRzNv3jx2795NWFgYM2bMICQkRIJucUu7Z0i0afnn/50wLefkQEyM2vqdmKhl8XRxs67W+gkhhBBCVLXcacMuX1bvfXLdCBWwtgZf3+qvlxAVVWWJ1Hbs2EFUVBRRUVFmU4cBnDx5EoDs7GzOnTtHero2V/GMGTOwsLBgypQpZGVl0atXL2bNmlVV1RSiVhhzrx1TphswKnp+Xtuct41qH/N774WVK+GllyAn29tU3rWBew3WVgghhBCi8uUG3Tk5kJgIrq6QmQm5+az8/dWpyYS42VRZ0D1q1ChGjRpVbBkvLy9TAJ7LxsaGWbNmSaAt6pQGPp4MCDnAvwc7EnGpGfs3Hic2vS0rV6rbP/4oh4G3NTaVd2naooZqKoQQQghRNXKDblBbu11dITxcm/9bupaLm9VNnnJBiFvH/WPSTMvLv05gxgxtW47BkvX/aHNpuLhUY8WEEEIIIapB/qAbtK7lAEE374xooo6ToFuIWmLkI+2w0mcB8MmKHmbTY+QnQbcQQgghbjWFBd2SRE3cCiToFqKWcGvkyqAuoQAYjNrIDz/vGLNylpYK9vbVWTMhhBBCiKpXUtAtLd3iZiVBtxC1yP33ZJu9HtzjBJ+8bz5vhov9tULn8RZCCCGEuJkV173czQ0aNar+OglRGSToFqIWGTY+CFsrLZv/u+/AbWNC8GsSYVrnYnelJqomhBBCCFGl8gfdV65AbKz6OjAQaXQQNy0JuoWoRZzcnHhzyh7srNOY+eRmQvq1QWeh4+nx2jzeLg6JNVdBIYQQQogqkj/olq7l4lYhQbcQtczLC/qRlmnPnC/6mdaNfz4YF4drAPi1zqyhmgkhhBBCVB1PT2358mXzzOWSRE3czCToFuIm4OzpwvqVF5j+6J+8/3nrmq6OEEIIIUSls7cHR0d1OToatmzRtknQLW5mliUXEULUBp0G+GPplkl9b4+arooQQgghRJWoXx9SUiAyUv3J1a5dTdVIiIqTlm4hhBBCCCFErRAcXHBdp05aC7gQNyNp6RZCCCGEEELUCosXQ/v2cE1NZYODAzzySI1WSYgKk6BbCCGEEEIIUSs0bgwzZ9Z0LYSoXNK9XAghhBBCCCGEqCISdAshhBBCCCGEEFVEgm4hhBBCCCGEEKKK3NRjuo1GIwDp6ek1XJPiGQwGANLS0tDr9TVcG3GzkvNIVAY5j0RlkPOojsjIAD8/bVmnq9TDy3kkKoOcR6Iy5D+PcuPL3HizonSKoiiVcqQacOXKFSLzTuAnhBBCCCGEEEJUAh8fH9zd3St8nJs66M7JySEpKQkbGxssLKSnvBBCCCGEEEKIijEajWRmZuLs7IylZcU7h9/UQbcQQgghhBBCCFGbSfOwEEIIIYQQQghRRSToFkIIIYQQQgghqogE3UIIIYQQQgghRBWRoFsIIYQQQgghhKgiEnRXg+XLlzNgwAACAwO55557OHLkSE1XSdRiixcvxs/Pz+xn8ODBpu2ZmZnMmTOHrl27EhISwuTJk0lISKjBGovaYN++fTz11FP06tULPz8//v33X7PtiqKwcOFCevXqRVBQEI888kiBKRcTExOZOnUqHTp0oFOnTsyYMYPU1NRq/BSippV0Hk2fPr3A9WnixIlmZeQ8qtuWLFnC6NGjCQkJoXv37jz99NNERESYlSnN99jFixd54oknaN++Pd27d2f+/Pnk5ORU50cRNag059HYsWMLXI9mzpxpVkbOo7rtxx9/5O6776ZDhw506NCB++67jy1btpi2V+e1SILuKrZu3Trmzp3LM888w8qVK2nTpg0TJ07kypUrNV01UYu1bt2a7du3m35+/PFH07Z3332XTZs28fHHH/P9999z+fJlnn322RqsragN0tLS8PPzY9asWYVuX7p0Kd9//z2zZ8/ml19+wc7OjokTJ5KZmWkq89JLL3HmzBm+/vprvvjiC/bv31/gBkbc2ko6jwB69+5tdn368MMPzbbLeVS37d27l4ceeohffvmFr7/+mpycHCZOnEhaWpqpTEnfYwaDgSeffJLs7Gx+/vln5s2bx8qVK1m0aFFNfCRRA0pzHgHce++9ZtejV155xbRNziPRsGFDXnrpJX7//Xd+++03unXrxjPPPMPp06eBar4WKaJKjRkzRpkzZ47ptcFgUHr16qUsWbKkBmslarNFixYpw4YNK3RbcnKyEhAQoPz111+mdWfOnFF8fX2VQ4cOVVMNRW3n6+urbNiwwfTaaDQqPXv2VL788kvTuuTkZKVdu3bKmjVrFEXRzqMjR46YymzZskXx8/NTLl26VH2VF7VG/vNIURRl2rRpyqRJk4rcR84jkd+VK1cUX19fZe/evYqilO57bPPmzUqbNm2U+Ph4U5kff/xR6dChg5KZmVmt9Re1Q/7zSFEU5eGHH1befvvtIveR80gUpnPnzsovv/xS7dciaemuQllZWRw7dowePXqY1llYWNCjRw8OHTpUgzUTtV1UVBS9evXitttuY+rUqVy8eBGAsLAwsrOzzc6pli1b0rhxY0JDQ2uotqK2i4mJIT4+3uy8cXJyon379qZr0aFDh6hXrx6BgYGmMj169MDCwkKGxAgze/fupXv37gwaNIhZs2Zx7do10zY5j0R+169fB8DZ2Rko3fdYaGgovr6+eHh4mMr06tWLlJQUzpw5U32VF7VG/vMo1+rVq+natStDhw7lgw8+ID093bRNziORl8FgYO3ataSlpRESElLt1yLLSvkUolDXrl3DYDDg7u5utt7d3b3AuBQhcgUFBTF37lyaN29OfHw8n376KQ899BCrV68mISEBKysr6tWrZ7aPu7s78fHxNVRjUdvlnhuFXYtyxy4lJCTg5uZmtt3S0hJnZ2c5t4RJ7969uf322/Hy8uL8+fN8+OGHPP7446xYsQK9Xi/nkTBjNBp599136dChA76+vgCl+h5LSEgwu8kFTK/lPKp7CjuPAIYOHUrjxo2pX78+J0+eZMGCBZw7d45PPvkEkPNIqE6ePMn9999PZmYm9vb2fPrpp7Rq1Yrw8PBqvRZJ0C1ELdO3b1/Tcps2bWjfvj39+/fnr7/+wtbWtgZrJoSo6+666y7Tcm7iooEDB5pav4XIa86cOZw+fdosL4kQZVXUeXTfffeZlv38/PD09OSRRx4hOjoab2/v6q6mqKWaN2/OqlWruH79On///TfTpk3jhx9+qPZ6SPfyKuTq6opery+QNO3KlSsFnpoIUZR69erh4+NDdHQ0Hh4eZGdnk5ycbFbmypUreHp61lANRW2Xe24Udy3y8PDg6tWrZttzcnJISkqSc0sUqWnTpri6uhIVFQXIeSQ0b775Jps3b+bbb7+lYcOGpvWl+R7z8PAokEE497WcR3VLUedRYdq3bw9gdj2S80hYW1vTrFkz2rVrx9SpU2nTpg3fffddtV+LJOiuQtbW1gQEBLBr1y7TOqPRyK5duwgJCanBmombSWpqKufPn8fT05N27dphZWVldk5FRERw8eJFgoODa66Solbz8vLC09PT7LxJSUnh8OHDpmtRSEgIycnJhIWFmcrs3r0bo9FIUFBQtddZ3BwuXbpEYmKi6eZDziOhKApvvvkmGzZs4Ntvv6Vp06Zm20vzPRYcHMypU6fMHhTu3LkTR0dHWrVqVS2fQ9Ssks6jwoSHhwNaMCTnkSiM0WgkKyur2q9F0r28ij366KNMmzaNdu3aERQUxLfffkt6ejqjRo2q6aqJWmr+/Pn079+fxo0bc/nyZRYvXoyFhQVDhw7FycmJ0aNHM2/ePJydnXF0dOTtt98mJCREgu46LjU1lejoaNPrmJgYwsPDcXZ2pnHjxowbN47PP/+cZs2a4eXlxcKFC6lfvz4DBw4E1OQhvXv35o033mDOnDlkZ2fz1ltvcdddd9GgQYOa+liimhV3Hjk7O/PJJ58waNAgPDw8OH/+PO+//z7NmjWjd+/egJxHQu0KvGbNGj777DMcHBxM4x6dnJywtbUt1fdYr169aNWqFa+88govv/wy8fHxfPzxxzz00ENYW1vX4KcT1aWk8yg6OprVq1fTt29fXFxcOHnyJHPnzqVz5860adMGkPNIwAcffECfPn1o1KgRqamprFmzhr179/LVV19V+7VIpyiKUgWfUeTxww8/8NVXXxEfH4+/vz+vv/66qQuMEPm98MIL7Nu3j8TERNzc3OjYsSMvvPCCaXxSZmYm8+bNY+3atWRlZdGrVy9mzZolXaXquD179jBu3LgC60eOHMm8efNQFIVFixbxyy+/kJycTMeOHZk1axbNmzc3lU1MTOStt97iv//+w8LCgjvuuIPXX38dBweH6vwoogYVdx7Nnj2bZ555huPHj3P9+nXq169Pz549ee6558yGTMl5VLf5+fkVun7u3LmmBofSfI9duHCB2bNns3fvXuzs7Bg5ciRTp07F0lLai+qCks6j2NhYXn75ZU6fPk1aWhqNGjVi4MCBPP300zg6OprKy3lUt82YMYPdu3dz+fJlnJyc8PPz4/HHH6dnz55A9V6LJOgWQgghhBBCCCGqiIzpFkIIIYQQQgghqogE3UIIIYQQQgghRBWRoFsIIYQQQgghhKgiEnQLIYQQQgghhBBVRIJuIYQQQgghhBCiikjQLYQQQgghhBBCVBEJuoUQQgghhBBCiCoiQbcQQgghhBBCCFFFJOgWQgghhBBCCCGqiATdQgghhBBCCCFEFZGgWwghhBBCCCGEqCISdAshhBBCCCGEEFVEgm4hhBBCCCGEEKKKSNAthBBCCCGEEEJUEQm6hRBCCCGEEEKIKiJBtxBCCCGEEEIIUUUk6BZCCCGEEEIIIaqIBN1CCCHELWTPnj34+fmxZ8+emq6KEEIIIQDLmq6AEEIIUV1+//13Xn311SK3r1ixguDg4Oqr0E3ixx9/ZPfu3Rw5coTY2FhGjhzJvHnzCi2bnJzM+++/z4YNG8jIyCAwMJDp06cTEBBgKrNnzx7GjRtX5Ps9//zzTJo0CYCxY8eyd+/eQstZWlpy7NixMh9TCCGEqE4SdAshhKhzpkyZgpeXV4H13t7eNVCb2u/LL78kNTWVwMBA4uPjiyxnNBp54oknOHnyJBMnTsTV1ZUff/yRsWPH8vvvv+Pj4wNAy5Ytee+99wrs/+eff7J9+3Z69uxpWvfUU08xZswYs3Lp6enMmjXLrFxZjimEEEJUJwm6hRBC1Dl9+vQhMDCwpqtx0/j+++9p3LgxOp2OkJCQIsutX7+eQ4cOsXDhQgYPHgzAnXfeyaBBg1i8eDEffPABAB4eHgwfPrzA/p9++ik+Pj4EBQWZ1hUWLP/xxx8A3H333aZ1ZTmmEEIIUZ1kTLcQQgiRz6JFi2jTpg27du0yW//GG2/Qrl07Tpw4AUBWVhYLFy5k1KhRdOzYkeDgYB588EF2795ttl9MTAx+fn589dVXLF++nNtuu4327dszYcIEYmNjURSFTz/9lD59+hAUFMSkSZNITEw0O8aAAQN48skn2b59O8OHDycwMJAhQ4bwzz//lOozHT58mIkTJ9KxY0fat2/Pww8/zIEDB0q1b5MmTdDpdCWW+/vvv/Hw8OCOO+4wrXNzc+POO+9k48aNZGVlFbnvkSNHiIqKMguki7JmzRrs7e257bbbii1XlmMKIYQQVUWCbiGEEHVOSkoKV69eNfu5du2aafukSZPw9/fntddeIyUlBYBt27bxyy+/8PTTT9OmTRvTcX799Ve6dOnCSy+9xLPPPsvVq1d57LHHCA8PL/C+q1evNnW3fvTRR9m7dy/PP/88H3/8Mdu2bePxxx/n3nvvZdOmTcyfP7/A/pGRkbzwwgv06dOHqVOnotfree6559ixY0exn3fXrl089NBDpKam8uyzz/LCCy+QnJzM+PHjOXLkSEV+lWbCw8Np27YtFhbmtxeBgYGkp6dz7ty5Ivf9888/AUoMkK9evcrOnTu57bbbsLe3L7ZsaY8phBBCVCXpXi6EEKLOeeSRRwqss7a25ujRowBYWVkxf/58Ro0axbx583jllVd47bXXaNeuHU888YRpH2dnZ/777z+sra1N6+69917uvPNOvv/+e959912z94iLi+Off/7ByckJUMdAL1myhIyMDH777TcsLdWv5WvXrrF69WrmzJljduzIyEgWL15sakkeM2YMgwcPZsGCBUWOWVYUhdmzZ9O1a1e+/PJLU4v1/fffz1133cXHH3/MsmXLyvorLFR8fDydOnUqsL5+/foAXL58GT8/vwLbDQYDf/31F0FBQTRr1qzY91i3bh05OTklBtJlOaYQQghRlSToFkIIUefMnDmT5s2bm63L3zrr6+vLlClT+OCDDzh58iTXrl1j2bJlpsAYQK/Xo9frATWATk5Oxmg00q5dO44fP17gfQcPHmwKuAHTOONhw4aZHTcoKIg1a9YQFxdH06ZNTevr16/P7bffbnrt6OjIiBEjWLp0KfHx8Xh6ehZ4z/DwcCIjI5k0aZJZaz5A9+7d+eOPPzAajQU+f3lkZGSYPSTIlbsuMzOz0P127dpFQkICTz75ZInvsWbNGtzc3EpMjFaWYwohhBBVSYJuIYQQdU5QUFCpEqlNnDiRtWvXcuTIEV588UVatWpVoMzKlStZtmwZ586dIzs727S+sOzojRo1MnudG4AXtT4pKcks6G7WrFmBsdW5GcEvXLhQaNAdGRkJwLRp04r6mFy/fh1nZ+cit5eWra1toeO2c9fZ2NgUut/q1avR6/UMGTKk2OOfP3+eQ4cO8fDDD5s9pKjIMYUQQoiqJkG3EEIIUYTz588TFRUFwKlTpwps/+OPP5g+fToDBw5k4sSJuLu7o9frWbJkCefPny9QPrdVPL+iWpkVRalA7c2P8corr+Dv719omZLGRpeWp6dnoVOKXb58GdC6meeVkZHBhg0b6N69Ox4eHsUef/Xq1UDJY7TLckwhhBCiqknQLYQQQhTCaDQyffp0HB0dGT9+PF988QWDBg0yy8z9999/07RpUz755BOzFuhFixZVSZ2ioqJQFMXsvXJbsps0aVLoPrkt5Y6OjvTo0aNK6pWrTZs2HDhwoEB39SNHjmBnZ1egSz/Af//9R2pqaqmzlnt7exMcHFxsubIcUwghhKhqkr1cCCGEKMTXX3/NoUOHePPNN3nuuecICQlh9uzZXL161VQmt+U6b4v04cOHCQ0NrZI6Xb58mQ0bNphep6SksGrVKvz9/QvtWg7Qrl07vL29WbZsGampqQW25/08FTV48GASEhLMpjG7evUq69evp3///oWO9169ejV2dnZmY9ULc/z4cc6ePcvQoUNLrEdpjymEEEJUB2npFkIIUeds3bqViIiIAus7dOhA06ZNOXv2rGn+7QEDBgAwb948RowYwZw5c1i4cCEA/fr1459//uGZZ56hX79+xMTE8PPPP9OqVSvS0tIqvd4+Pj689tprHD16FHd3d3777TeuXLnC3Llzi9zHwsKCt99+m8cff5yhQ4cyatQoGjRoQFxcHHv27MHR0ZEvvvii2Pf977//THOTZ2dnc/LkST777DNAnT88dwq1QYMGERwczKuvvsqZM2dwdXXlp59+wmAwMHny5ALHTUxMZNu2bdxxxx04ODgUW4fSdi0vyzGFEEKI6iBBtxBCiDqnqO7fc+fOpXHjxkybNg1XV1dmzJhh2ubj48OLL77IO++8w7p16xgyZAijRo0iISGBFStWsH37dlq1asX777/P+vXr2bt3b6XX28fHhzfeeIP33nuPc+fO4eXlxUcffUTv3r2L3a9r166sWLGCzz77jB9++IG0tDQ8PT0JCgrivvvuK/F9//nnH1auXGl6ffz4cVN29oYNG5qCbr1ez//+9z/ee+89vv/+ezIzMwkMDGTu3Lm0aNGiwHHXr19PdnZ2ia3XRqORtWvXEhAQUOhxynNMIYQQorrolMrI0iKEEEKIKjVgwABat27NkiVLaroqQgghhCgDGdMthBBCCCGEEEJUEQm6hRBCCCGEEEKIKiJBtxBCCCGEEEIIUUVkTLcQQgghhBBCCFFFpKVbCCGEEEIIIYSoIjf1lGE5OTkkJSVhY2ODhYU8PxBCCCGEEEIIUTFGo5HMzEycnZ2xtKx4yHxTB91JSUlERkbWdDWEEEIIIYQQQtxifHx8cHd3r/Bxbuqg28bGBlB/GXZ2djVcm6IZDAZOnTqFr68ver2+pqsjblJyHonKIOeRqAxyHtUR6enQs6e6vGMHVPK9lpxHojLIeSQqQ/7zKD09ncjISFO8WVE3ddCd26Xczs4Oe3v7Gq5N0QwGAwD29vZyMRDlJueRqAxyHonKIOdRHaEocPKkumxrC5V8ryXnkagMch6JylDUeVRZQ5hlILQQQgghhBBCCFFFJOgWQgghRKVTFMjOrulaCCGEEDVPgm4hhBBCVKoLF6BVK2jcGE6cqOnaCCGEEDVLgm4hhBBCVKqXXoKICEhIgJUra7o2QgghRM2SoFsIIYQQlWbrVvj5Z+31tZPbaq4yQgghRC0gQbcQQgghyk0xKhgNRgAM2QamTM4x256UpNREtYQQQohaQ4JuIYQQQpRL+vV0egcdxcpK4bYOB3li1E4OHzGfjTQx+aaenVQIIYSoMPkmFEIIIUS5fPHOPnYc6w/Af4c6wKGCZZKuW1dzrYQQQojaRVq6hRBCCFFmqUnpzP2ifaHb7rttp2k58bptdVVJCCGEqJWkpVsIIYQQZbbyy2tcTXED4KE7dvDCNDd+/T6O7GyYtbAD65omcz29HonX7Wu4pkIIIUTNkpZuIYQQQpRJXFQ8S39Xu5Vb6bN4c0FTOg7wZ97X/fjgh37Uc6+Hi8N1AJJSHWqyqkIIIarZ9OnTefrpp02vx44dyzvvvFPt9dizZw9+fn4kJydX+3vnJ0G3EMJMzOlYXntsM6u+3GPKSCyEEHnNXeBMaqYjAE+O3kWLQO8CZVwcUwFITK1XrXUTQghRuOnTp+Pn54efnx/t2rXj9ttv55NPPiEnJ6fknStg8eLFPPfcc6UqW5sC5cokQbcQdUxqcgaGbEOR2x+9/yLvftWPkY93paPvKVZ/vRfFKFP+CCFU58/Dki/VcdoODkZef69doeWcHdMByMi2IzMtq9rqJ4QQomi9e/dm+/bt/P333zz66KN88sknfPXVVwXKZWVV3nXbxcUFR0fHSjvezUiCbiFucTk5sGAB3HknNG0Kjs62+HrHEH3iQoGyZ0Kj+PdgR9Pr0Ig2DJvQBV+vKN54YjPHdp2pzqoLIWqh996D7GwdAJMnQ4Nm7oWWc3HKNC0nJdxaLRZCCHGzsra2xtPTkyZNmvDggw/So0cP/vvvP1OX8M8//5xevXoxePBgAGJjY3nuuefo1KkTXbp0YdKkScTExJiOZzAYmDt3Lp06daJr16689957KIp5Y03+7uVZWVm8//779O3b19Ti/uuvvxITE8O4ceMA6Ny5M35+fkyfPh0Ao9HIkiVLGDBgAEFBQQwbNoz169ebvc+WLVsYNGgQQUFBjB07lgsXCt7r1hRJpCbELW7FCnj5ZfN1EZeaMWzISbYfSMHRVXvyuGyFl2nZwymehOueAJyJ9eHtpT68vRRenbCZd7/qVx1VF0LUMrGxsHSpumxnZ+D554su69ywsWk5KdWB+lVbNSGEqFnhH8KJD0su59YB+v5pvm7LMLh6sOR927wI/i+Wr35FsLGxITExEYBdu3bh6OjI119/DUB2djYTJ04kODiY5cuXY2lpyWeffcZjjz3Gn3/+ibW1NcuWLWPlypW8++67tGzZkmXLlrFhwwa6detW5Hu+8sorhIaG8vrrr9OmTRtiYmK4du0ajRo1YvHixUyePJn169fj6OiIra3as2rJkiX8+eefzJkzBx8fH/bt28fLL7+Mm5sbXbp0ITY2lmeffZaHHnqIe++9l7CwMObPn1+pv6uKkKBbiFvc9u3asrOzgoWSwbVkOw6f8+PhYXv4fXNnLPQW5OTAN9/qAbC0hKMnPdi9dg+LPrVm8+H2KIraMWbh8s7MXJSBrYNMAyREXbNg+i4yM7sDMGZMPB4enkWWdWmsPcRLTLGr8roJIUSNyk6G9FK0rGY0LWRdfOn2za68XkOKorBr1y62b9/Oww8/zLVr17C3t+ftt9/G2toagD/++AOj0cg777yDTqf2cJo7dy6dO3dm79699OrVi2+//ZYnnniCO+64A4A5c+awPe/NZz7nzp3jr7/+4uuvv6ZHjx4ANG2q/U6cnZ0BcHd3p149NSdIVlYWS5Ys4euvvyYkJMS0z4EDB1ixYgVdunThp59+wtvb29Qy3qJFC06dOsXS3CfFNUyCbiFucUd2nAT8AIiKVIg9HUu3fu4kpTnzx/auvDpxM/OW9eWvv3TExqr73H03NGykY8RjXRnxGMRGxDHxgWj+2tuZtEwHtq4+xB33h9TYZxJCVL/48wl8sSIIAFvrdMY+GAMUHXTfuG8C4EYjihBC3Lqs6oFdk5LL2RZy3bT1LN2+VhVPTLl582ZCQkLIzs5GURSGDh3K5MmTefPNN/H19TUF3AAnTpwgOjqaDh06mB0jMzOT6Ohorl+/Tnx8PO3btzdts7S0pF27dgW6mOcKDw9Hr9fTuXPnUtc5KiqK9PR0JkyYYLY+Ozsbf39/AM6ePUtQUJDZ9uDg4FK/R1WToFuIW5jRYOTIabWLZzPPGJxdvHDu3IJfvjzAkIfbYzBa8t63/UhJ3UJUWm9y0zxMnGh+nEYtGvDoYwn8tVd9vXZnMHfcX32fQwhR8z6aHUZaZj8AHh+5BzdPp2LLu7hoy0lJVVcvIYSoFfwr0PU7f3fzKtS1a1dmz56NlZUV9evXx9JSCwft7Mx7JaWlpREQEMCCBQsKHMfNza1c75/bXbws0tLSALWLeYMGDcy25X1IUJtVaSK1xMREpk6dSocOHejUqRMzZswgNTW12H3Gjh1rSmWf+zNz5syqrKYQt6xzYedJyVBvjNv7at2W7nigI4te32F6/dn/9WXtOvVy0KSJwqBBBY91x70B5F6X167TUcQDTCHELUgxKnyxQm3JsLbM5KU5rUvcJ28itcTL16qsbkIIIUrPzs6OZs2a0bhxY7OAuzABAQFERUXh7u5Os2bNzH6cnJxwcnLC09OTw4cPm/bJycnh2LFjRR7T19cXo9HIvn37Ct1uZWUFqAnacrVs2RJra2suXrxYoB6NGjUylTl69KjZsfLWq6ZVadD90ksvcebMGb7++mu++OIL9u/fX6oA+t5772X79u2mn1deeaUqqynELevI3ljTcvuANLNtT8/pyzfvbcdKbz4lxKN3baewa7CzM/TqpS6fPQunTlV6dYUQtVRifBLXUl0B6BMURpNWDUvcx9moJQVKiqw9Nz5CCCFK5+6778bV1ZVJkyaxf/9+zp8/z549e3j77be5dOkSAOPGjWPp0qX8+++/nD17ljlz5hQ7x7aXlxcjR45kxowZ/Pvvv6Zjrlu3DoAmTZqg0+nYvHkzV69eJTU1FUdHRyZMmMDcuXNZuXIl0dHRHDt2jO+//56VK1cCcP/99xMZGcn8+fOJiIhg9erVpm21QZUF3WfPnmXbtm28/fbbtG/fnk6dOvH666+zdu1a4uLiit3X1tYWT09P009dn9dNiPI6fDDDtNw+pGB3nvEv92LDr8dxdVBbofQWOTz6bLMij3fXXdryjWujEKIOiIu+alpuVD+9VPu4uGpd/mRMtxBC3Hzs7Oz44YcfaNy4Mc8++yxDhgzhtddeIzMz0xSfTZgwgWHDhjFt2jTuv/9+HBwcuP3224s97uzZsxk0aBCzZ8/mzjvv5I033iA9Xf1uadCgAZMnT+aDDz6gR48evPXWWwA8//zzPP300yxZsoQhQ4bw2GOPsXnzZry81KSdjRs3ZvHixWzcuJHhw4fz888/88ILL1Thb6dsdEpRo9wr6P/+7/+YP3++WdeBnJwcgoKCWLhwYZH/GWPHjuX06dMoioKnpyf9+/fn6aefLjDGANT+/eHh4fj6+mJvb18VH6NSGAwGjh49SmBgIHq9vqarI25S5TmPxvTbx6rt6pQNJw6cpVV7n0LLnTkcxeJ55+nb34pRT3Qt8njhxxUCg9Rm8Ns6n+TvXa3K9iFEjZPrkSiPLX8c5rbRaiKdqWM38e6XPUs8j/b8c5yeQwIBeOaeLSz8qVe11VdUktRU9Dcy4hmSksDBoVIPL9cjURnkPBKVIf95lJaWxqlTp/D396+UOLPKEqklJCQUGGBvaWmJs7Mz8fHxRe43dOhQGjduTP369Tl58iQLFizg3LlzfPLJJ0Xuc+om6eeaf5yBEOVRlvMo9JQ6zsXBJoXknKuEhiYWWfbRaeoTy9DQ0CLLKEYFn/qeRF5uxtaDzdm1bTd2TjJ12M1IrkeiLI4dPg+oQbetbbLp/CnuPLqSlACoQXd8Qk6x1xZRO1mkp5M7T8WRI0cwFtIAUhnkeiQqg5xHojJU1XlU5qB7wYIFJc53tq4C/U7vu+8+07Kfnx+enp488sgjREdH4+3tXeg+0tIt6oKynkfJV5KJvKyOwQxsfo4OHTuUsEfpDOmznc/+rxnZBmsundQx8rHgSjmuqB5yParbMjNh4UId7dopDBlS+v12/H7dtNza143AwMASz6NGrtoD9vRMx1o1dYsopTzJb4OCgqSlW9RKch6JylBUS3dlKXPQPWHCBEaOHFlsmaZNm+Lh4cHVq1fN1ufk5JCUlISnZ9HzeuaXO+9bVFRUkUG3Xq+/Kf7IbpZ6itqttOfR8b3nATXobu9/tdLOvaHD7fns/9Tl1X8YGfOknNM3I7ke1U2zX7vO+x87YWEBBw9CnqlVi3X5srbcqIm96dwp7jxya+BiWk66biPn280oz/+ZXq83e125byPXI1Fxch6JypB7HlX2uVTmoNvNza1U87KFhISQnJxMWFgY7dq1A2D37t0YjcYCE5cXJzw8HKBMgboQAg7v06boaV/6P7kS9RveDkfb66RkOPHD+u5M/vc4nQa2rbw3EEJUCaPByPLvUgAnjEb49FP43/9Kt29canPTcgNvj1LtY+tgi41VBpnZtiSmVE23ZCGEEOJmUGXZy1u2bEnv3r154403OHLkCAcOHOCtt97irrvuMk1qHhcXx+DBgzly5AgA0dHRfPrpp4SFhRETE8PGjRuZNm0anTt3pk2bNlVVVSFuOopRISM1o9gyR84Hm5aDujautPe2c7LjtacOAGBU9Ex43JKs9KwS9hJC1LTd649x8Woj0+vly7Ws4pfOXWb2pM3sXh9W6L5xKdqsBg1aFj3DQX7O9mq39KSUyu2WLIQQQtxMqnSe7gULFtCiRQvGjx/PE088QYcOHXjzzTdN27Ozszl37pwpRbyVlRW7du1i4sSJ3HnnncyfP5877riDL774oiqrKUStcvw4TJsGh4uY1jb+fAK9Ao/i4gqrvtxT5HEOhzubloN6ta7UOk6d15OQlmovlKORvsx/eWelHl8IUfl+++mK2eu0NPjma4XUpFT69U5hzhf9GH5/A7IzswvsmzvTp04HHqVr6AbAxTEFgMRUp3LXWwghhLjZVVn2cgAXFxc++OCDIrd7eXlx8uRJ0+tGjRrxww8/VGWVhKjVFAVGj4YTJ+DXX+HMGbDI82gs5Woqg+9J5PA5tb/450v0jHis4HGMRshNvtiiBThV8v2ulY0VX32po/NtORiMlrz1RQ9Gjz1D264yhZgQtZFiVPjtH/Xv00JnwKioY9U+++A8RzZGcfJCbwAuJ3ly7tg5fDs0N9s/N+j28ABLSzAYSve+zg5pACSnO2E0GLHQV+mzfiGEEKJWkm8/IWqRXbvUgBvg3DnYufaIaVvi5SReeMqNw+f8TOuORTQx2z8rPYv9/x7nk9l7TElnS5soqaxC+rXhlUe2A5BtsOa1lxKq5o2EEBV2cPMJouK9ALitQyj9gw8BcPqCN1+v7W1W9mSEi9lrxagQF6cAcGN0WKm5eLVUj6FYcD1FbjmEEELUTfINKEQt8t135q9//l5NhqYoMPrOCxyKaGe2/cLVRiReTgLUKcL8W8TS+fa2PPdWV1OZMuQtLLOZi7rRyPUSAGt2dyZB4m4haqXflseZlkcPT+OZJ4vOCXEqytXs9fVr18nI0AHQwLbwMd9FcXG3NS3njh8XQggh6hoJuoWoJTLTslixwmi27td/2pKTlcOaNbDlcCAAns5XuC3koKnM8X3RAKz7MYyIS+YJjhwdjdx7b9XV2dbBlocfUfuu5+ToWbGi8HKpqZBdcJioEKKKZGfD/Pnw9ttwLEzht7/Va4OFzsCIcW0YPqEzTdxiTeVDfCNNy/mnJb0UpY0Fb+CaVKZ6OGupJUgq265CCCHELUOC7jpm34bjvDJ+M5HHYmq6KiKfNd8fJDHR/E/ycpInm34/zNtva+u++LIew+68bnp9/HAiAPv3ahnEp9y3hfXL9xN1NpO2VTyb17gJWlbi3JZ6xaiw4pOd3N1jL80bnMfREdzdi04OJ4SoXMuXw/Tp8MYb0C5Qx6kL6hjt3oFHadDME0trS96ZfhaATq2P88dfWna0PKlWAIiLSTYtN/As29MzFxdtWVq6hRCiZvj5+RX7s3jx4pqu4i2vShOpidrl5IEI+t3djLTMtvyx8RxHT2dhbWdd09USN3z/g860/PjwrSz9ow8AL7zWkGMR6vrWrdMYNsKGLYqWGe3YMXWs5f4jLqZ1M+a1pYFP9cxt364dBAdDaCjs3avesO/+cwePvNLLrNz16/D667B6dbVUS4g67e+/C18/+m6tuXn8y70YPj4JB+fWWNlYUb8+XL4Mp05kAdp3Q9yFNNNyWcd0O1tdBNQpC5MunAOaF1s+V2ZaJlY2VpJ4TQghKsH27dtNy+vWrWPRokWsX7/etM7e3t60rCgKBoMBS0sJEyuTfJvVERmpGdx3TzZpmWqr5KkLzVk0U6Z5qi0SYq6wblcIAI1cL/Hh1x1wtFVbs/MmS5s4MRadDgK6aVOAHYvvjdFg5ODpFgB4uV+stoA717hx2vKsF0/xzBvBptdOdsnY26qt8GvWaInihBBVQzEqbN2qPoyzs4Me7SMBaNEwioeeMU/y4FLfGSsbKwB8GxwDIDbOmutXtd40cZe0XjQNGpbtJsxFf9q0nBh7oVT7fPPedmwdbBjS/WCh05cJIYQoG09PT9OPk5MTOp3O9DoiIoIOHTqwZcsWRo0aRWBgIAcOHGD69Ok8/fTTZsd55513GDt2rOm10WhkyZIlDBgwgKCgIIYNG2YWzAuNBN11xCsT95hlvQZ489MOXDp3uYZqJPJasTSMbIPasvTQ0BM4ujoyvM8RszJtfLPp3z8RgAZeTri5qeuPHdNxOjSS6+n1AOjkH11t9c71wH3Z6C1yAFixzpfUTEcAJgzdRlKKE3Pe0lrNPvqo2qsnRJ0ScTSKixfVnjO9O19mR6gPyVeuczKqCW6NXIvcz7fZVdPyqVBtCFLcJcW03KCRTZnq4uyqBemJV0ueZywzLZNp76rfVX/v68T7b0t2RiFE7ffrr+DvD15e1ffj7w//93+V9xk++OADpk6dyrp16/Dz8yt5B2DJkiWsWrWKOXPmsHbtWh555BFefvll9u7dW3kVu0VI0F0H/Lkqm8Ur+gJgY5XBoM77AbieXo9XJ58sbldRTb7/xd20PO5JtSvm/Q9amZV59Ynd6NWpddHpMI3VvngRNq7Vbkw7hRSdlbiqNGxsxR2dDpmta+N1lkU/dEBnoePxx7W5wr/7Jov483IjLURRDvwXzrRHNnP6UGS59t/y13nTcp/2xwFwcnPC0rr4Vmo/3xzT8qmwa6bluMvarUIDLwfKwsVNu44lJRmLKan6bel+LidpPXXmvNdIescIIYqlKJCeXrMhzfvvqz35Llyovp8TJ9T3rSxTpkyhZ8+eeHt745I3IUcRsrKyWLJkCe+++y69e/emadOmjBo1imHDhrGiqMy6dZh01q8DXnpFu+n5cMY+7pnoT+s2SSSlOfPN2t5M+ucYXe4IqMEa1m0nD0Sw54Q6FVj75icJ7Kk+Xbzj3mDqPxfP5SRPWjWK5L6nuxB2XJuuJyAAcofofPdrfdP6jl0dq6/yeYx7OJu/bjzYtLHKYMVPBhyc1Rt0Z2d4fPRBPvymAxlZ1nw2N4xZn/WrkXoKUdvd/7AdZ2L7sW3PQXaG+5R5/63btPwQfQa6lXo/X38707I6rlsVl6C1bjdo6lKmuri4afsmJuqKKan69H9OZq+zsmDiRNi2DSykmUCIOiEyEr76CsaMgfbtiy9rMMDAgRbs3NmeadPgzTfVhonq9sorauLK69dLLltZnJzg5Zcr73iBgYFlKh8VFUV6ejoTJkwwW5+dnY2/v3/lVewWIUH3LS4yEk7fGFLXrRtMmtUbnQ7efH4zz73bD4B5c7P4/Y4aq2Kd98OSaEAdjz3unlhADbqt7axZ/ctlfv72GM+80rxAK1WAbxKgzsezJ8zHtL5jHx9qwogJHQhZGE5YZEu+eHs/Qb3ME6k9N60+C7/LwWC05NPlAbwyPx07J7sijiZE3ZSdmcOZWB8Adp3oQPz5BDybehS/Uz5b9qvTg9lYZdBlYOm6CAL4BubJYH5ae1gbl6Al2KnvVba6OLtp+yYlFx81h249yc7j6pjztt5nyLJuyZkzOnbuhM8+g2efLdNbCyFuUpMnqzlgPvoIwsLAx6fosqGhsGWLDtDx9ttw5gx8/TXY2lZTZW8YM0b9uZnZ2Znfk+l0OhRFMVuXk6P1iEpLU5NsLlmyhAb5smxaW0ui5vzkufEtbtMmbXnIEO3p36SZPXF1VlsydoaHkPdvauXS3cx9fjMZqdXfTflWdzX2Gq8/vpnf/7cbAKPByPerWgHq/LkPPmX+ZLDLHQF8uLwfLds3K3CsAO+zBdY1a0aZb9Ari62DLftP+hEfm14gczmAdxsv7umvNoXHJ3uy+rtDBcqI2i0nR215FFXn6pUcs9f//XGqiJKFiz5xgcjLTQHo5n8CG/vSj8FuGdgUC5067vpUlDb2O+6a+nDPzfEqVrZlu5Fy8dCC7sRkq2JKwqcfxJmWJ0+8wJdfas1Vs97IwpBd8phwIcTNb7d6i0RqKjz5JOSL+8zkHzr8889w222QnFx4eVF6bm5uxMfHm60LDw83Lbds2RJra2suXrxIs2bNzH4aNWpU3dWt9STovsVt2qRdqfr319Zb2VjRuat68xQXB+dvDAEM33uWMU92ZsbCfkx+UJIgVKacrBxG3BHNO1/2Y/ST3Vj73T62rzlKVLwXAHd0PkjD5qWfj6dtR68C6zp2rLTqlouF3gJnT+citz/4kNZaH3pQorebyenT4OEBfn5w/HhN1+bWdSXRvHnm3w05hZYzZBuICo8h8lgMkZFwo8GBbX9Fmsr07Z5Ypve2sbfBp76aQO1UjBeKUf3+iLuuXmvKmrkcwNlD6y6emFx0wH4tLpHl6zsB6owHDz3bgb59YXhfdUjN1URrwnafLnJ/IcStISkJEvKkffnnH/juu3yFTn0Ku8bDzofZt1lLHqvXq9esnTtBpp2uuG7duhEWFsaqVauIjIxk0aJFnD6tXYcdHR2ZMGECc+fOZeXKlURHR3Ps2DG+//57Vq5cWYM1r52ke/ktTDEqbPrrEtAIe7tsunQxb2Xo3Fm9mAHs2wfe3vD3yvMYlZYALFvdk6n7ImjTuUWp3u9q7DUWvXmYDp3tGDaha2V+lFvC289tZ1tYP9PrRyY3p3vnTNPrcQ+VLQht0MwTN8erXE3Rxmx26lThalapdp21J5/HTkrX8pvJ11+rN0NJSXD33bBnjxqEi8p15Yr56w27WqAo5mMUU66l0C04lmPR2tSBjo7w8cewZ4vWGtzntnplfn+/ZpeJiGvG9fR6XIqMw6l+A9LS1OfzDbzKfjwnV0d0OiOKYkFSStH9Pb/5KJT0rH4AjB96CCc3Nfln/55X+GOLWmb7hjja925T5joIIWohRYHrp+DKfsi6BoY0yEnjbJgr8JxZ0RdeULCx0XH6tNqC/VTIYVqiRuL7dk4DwFJv4M/VCkOGqKHNIelMV2G9e/fm6aef5v333yczM5PRo0czYsQITp3SemA9//zzuLm5sWTJEmJiYnBycqJt27Y89dRTNVjz2kmC7lvY2cNRxCT4ANCz7RGsrc2bQbt00Zb37YPRo2HrDu2myKjoeeOVy/y6qWDQnZGagY2dDToL9U4wPU1hcL9Y9p3qh+XSbM50j6GZf8GW2LoiOxs++ED9d+SwbK5EHOOtJb3NyiQke7B6o7rs5GRk+CMhZXoPnYWOAJ/zbAu7eYLuZv5NsLdJJS3TgWNnG9Z0dUQZHNpxHlC7LUdEwOiRWWz4R+01k5SQjEv9ons4iNJLyJfYPyrei4ij0bQM8jat++r9AxyL7mtWLiUFHnsMbK3VC7ulPpvug8oeoPq2SDUlRDx1OBavIK33TYPSd8QxsdBb4GyfSGKqC4kp9oWWyUzL5IMvtbHnk6Y2MS33uq0+vKsub99pyTNlr4IQojZKOQtrCl6jzu4ZQ27Q7WCTQmqmI9eu6XjgAa3MjsBp7Jy+lJQMB45fUKdyCWx6mAGZj6HTHUBRdKYenKKgUaNGMWrUKNPrrl27cvJk4bMZTZkyhSlTphR5LJ1Ox/jx4xk/fnyl1/NWI93LbwHXr143dQPMa9M6rctN/14F0yl27qRN37L335MYDUa2hrY2K/N/m7uxb5/5fnv+DsO78XUauiWw/KMdKEaFCRN17DulXvhyDFZsWHmuIh/ppvf66/DqqzBzJgQGWzHwngCMijrf19SHN9PELdas/JgxFtjXK/yGtDgBvolmrzsEVmPazHKw0Fvg7x0FQERcU9Kvp9dwjURphR4x7xq8dbs17VpE4lYvCdcGzvRqd0TG3FaCK5cL9nj5948o03JOVg4ff6U9CL2n/24GDdLKZmSpD047+54o1zXF11drUj91Ip04bZh1uYJuAGdHNT9IUnrhmdS//c6CC1fUXjB399hD266tTNva92qNg00KANsOtSj0u04IUYsZDXBpI1zear7esSXYuBcofuaS9vf/3iPv4eFa8D5h19GWnG9/koP11pvurbq02ItN2iEaOqv3V9Hn0tX3FqKWkKD7Jvfr57twq29Lj4AwsjOzzbZt2qw3LfcfXLAfaKPGFqbgb//xRhzbfYYr19ULoIOtdpGbMUPbJ/16OmMnOBCf7MnlJE8efrEn7dtc5uefzY+9aXPdPbVOnVIzbuaVY1C79vdrf4j5y3qz/NtULCy0m8exY8v3Xm39tQcnzT0jcG/oVEzp2iGg1VUAFMWCEweiSigtaoNL5y5zKVGNuFo2Oo+ttXp9OH3Jl8RUFwB2HAvi4ObCn5SL0ks4sbPAun//0zqlrfxqnylR2uAu+/jlv26sXw+ffILZNaVP1ysFjlMafl2DTMsnr3QnLlJ7QNjAPaVcx3RpqPZqSUwt2BsiOxvmzteGPr0+17xnlaW1Jd0D1PPqwtVGRJ+8UK46CCGqWdJxCJ0Of/rAfwPhyCzz7Tod+D0P7d+B7j9A79+h33rO6LWu5d0em8Xf/9rx5JNqI0be1u4/N/uyN1JL2hrodxGApu5qE3dcgg1ZCfKdJGqPuhsZ3SI+WmhJjsGK3ScCWf2N1iStGBX+26+2WjvaXqdj/8KnjekSoAY919PrsXSxdnP12lP7aXHj3ufff+HLL9XlOVP2cPpic7NjHD2t3ozrdArWluoY5U37W9bZFokXnssk+8bzj2F3ZdAz4AgALRpG8cP/NURvpafv0Fa8/74OCwsYMAD69i3mgMUIaKfdrHZscbiiVa8WAf5aYqhjh8oXGIjqFbpT66c34razfPdxqOlvPbcVEiDiZGJ1V+2Wk39MN8B/B9thMKjX9Q8WaQ/Wpk7VHqw+8wys/i0ZN8erONkl8+iz3gUPVAq+gVrW8lOnIO6MljSngVX5Bkk634i1s7IgI9+kGMuXq1NbAtxxB3Tp41lg/55dtB4829fLgzohai1DJpz+HNZ3grUBcHw+pKnJGbm8GVLz/f22ex0CZkDzh6DpSGg8iLMXtaFnLVvr6dABvvgC5syBadO0Xf/4A7OemO6978PQdx3ejVMB9cH+hdS2VfRBhSg7CbpvYtfiEtlzqoPp9VdfawHYif0RxCXWB6B30AmsbAqfqqVzB+0OaNkqbcz3wCHuvPWWVu7xx2HisG0s+E59qmhtmcmClzfj7qrtP3++jts6qAFm7LWGnDpY97qYr/1uH+vWq1P0eHkZ+XGFLdvDgki8nMTxsw1p0kpLJPbii3D1qvpQw6Kcf4k9h3UmwPs0VvosHpvStDI+QpULCNFu6o9FlS5Jn6hZofu1oCe4gxX3TOpO3IUMrsUl8fVHR03bIs5IRvqKunJVC6R9W6i/96vJToSGws51R9hzoh0AQc1PctsY8zwQQ0Y4c+GSPXFxVvh1LN/fVpMmkDtVa1gYXIrVetM0aFz66cfycnHRlhMTtWWDAd59V3s4+8Ybhe/fq7+WwG37dukuKkStYzRAxDewxg/2PQ1XD2jbdHpoPBR6/QK2JY9ROXNG/dfTU3tglysoSJ0aFWDzZth6o8e6vb1C8xYZ0PAOmnbUpuqJjs6zszEHNg2GC2vK/PGEqAwSdN/E/v093DSWBWD93g6cP6l2r9m0Nsa0vn/v1CKP0aWn1mqSmukIgKNtCiF9fXngAXj2Wa3sstW9MRjVbo5vPLWLqe/1I+y4LTNnwrJl8NJL5u+1aV3dymKRlZ7FC69q3fjfn7YXBwd12dnTudD5cp2dzbMSl5WNvQ2Hz7QgIS6DQQ/W8ixqN7Tt2d60fPyczON4M8g7nju4q/owz6W+My71nWnh52LaFnFOvlIqKuGa9ru+/z7t4jD52RyeeErrZj716XhTIsu8bB1ssXMq/8wAFhbQ/saf6Llz8NlPgaZtDRo7luuYeW+cExPhcnQ8n87aQp/AQ5w+rX6Gfv2gV69Cd6frwNboLdQeMtsPyDVDiFol7SKsD4Hdj5q3ZLt1hI4LYeRF6LcavO8BfdEzGACkp8OFGyNIWrYsuF2ng2HD1OXsbLh0SV0OCQHLG5fHpt7addEsmVrUCoj9G7bcDVtHQWrdukcVNU/ukG5if/9lPn+rUdHzzeJTKEaFNeu1BDoDhhT9ZLFj31YF1vXs64CltSU6HSxaBB+/vhudTmvtCGp+klfe6wFAw4Zql59HH1Uvhv0Ha10D/9tc9Jyst6Jfv9hn6nrfu91h7nu6eqZN01vpqede9ql8akqzZmB/4/Q8dqxm6yJK59BJNdCxscqgTScfs20tArQgKOJ8+YIyobmSqAXM9z2gXUN37bbk+IUAABq7xXL/M10K7FtZ3npLHS4EEJ+kJTpq0LR8Gepd0HpDzJ26E+9WTjz7Zl92hmst9W+8WPQNsJObE8Et1SlqjkW35FpcYrnqIYSoArYNQO+gvW40GAbvV3/8poBt/VIfKiJCW25V8PYUgOHDC67r3FnrMeOdZ2SNWdB9eYu2HLMS1vpD+IdqC7gQ1UCC7puUosDfh3oCYG2VbQqKv/qlFR/N2MpfezsD4FEvgeDevkUex6W+M75NzLuB9+mjPSXU6eC5t7qx6st9ONsn4WyfxDfLFKztCg+oQ/r64WyfCMDmA61umnHdBw7Ac8/Bd0uvkhSfVK5jbPhX+6yzZhoKbYUSakta2xvDrCIiIC2tZusjipdyLYXTF9X+fIE+Z7G0Nh+q4trABReHRAAiYqUVsqISktTeR/XskvBvZ83QoebbdToj70w7W+Q1uDIMHAivjN9aYH39pgUzDZeGi502UP27dT3IzNZau9p4neX7D3cw4O7ih8f06hQPqOM0d20p3zVaCFEJsq6pY7dzWeih29fg0R1u2wz9/1Jbucsht2s5FN7SDdCnj/mQFYDOnbXlpnkuJWbdy7ssgR7LtYcAOalwaKo6/jxhT7nqK0RZVFnQ/fnnn3P//ffTvn17OpVy8mBFUVi4cCG9evUiKCiIRx55hMjcDCvCTHg4xMSo/339B1gxqPNBQJ3Tdep8LSvXwjdPorfSF3qMXF3amWeDLSyp17AJXblw0ZKLsVaE9Ct67le9lSV9gtVskfHJnhzbfabIsrVFWJjatXHRIhj/hBsNmtgwqs9uTh6IKHHfXIpRYdM+HwBsrdLpdVdA1VT2FhFw49ejKHAirHwZkUX1OLrrHIqiXmuC/QtPfNeitdrKEX25kSmJoCifK8lqrxWPeonodPDnn2o371Mncjh1MJLL0dd45JUi+mFXore+6EHXNmGm1872idg6FN81tCj5x2XqdEaevXcLh7ed4nhUCx5+oWeJx+h5V7BpeXtos3LVQwhRAdnX4eBUWNkEovJNWePcBm7fAQ3KmRX2hrNnteWiWrqtrGDIEPN1nTppjR55g26zlm6dDnwehKEnoPUk4EbDSOJh2NBTHZMuRBWqsqA7OzubwYMH80De/P4lWLp0Kd9//z2zZ8/ml19+wc7OjokTJ5KZmVnyznXM+vXa8qBB8NgzDQuUeX3SPh58ruSbmc4dtcQ0tjY5FPWMxMHZoVTzvvbvqx1v0+5yTuxaTeLj4e67ISVP3JeZbcvKbd144tHkUh/n3LHzRMd7AdCjXXih47eFJqDRQdPy8R03R9b1uip03zXTckhw4T1XWrRSW7+NxnwtC6JMDNkGrqaoiQbdndWLkk4HPj7Q2s+S1iE+eHiVr7W5rKxsrPjpV2fq2amtyoEtyp81vHUbrct8i4ZRbP0jjMUr+hLUy7fUPYJ69tci9//9D6a9lMGhzSfKXSchRBlcWKtmIz/xIRjS4dRi9al5XhVJUHND3pbuooJu0MZ1A7i5YZptB6BBAzUwB/OgOzPzxuwJ1q7Q+TO4Yxe4BqsbFYM6Jv3YuwU/lxCVxLLkIuUzZcoUAH7//fdSlVcUhe+++45JkyYxcOBAAN577z169OjBv//+y1133VXkvgaDAYOh9mY0za1bZdZx/XoLcp/SDRxooFWrRni+pBAfr64bNUph5sIOpXrPjj20ZGrdfA9hadmBilS1z+iuMFdd/m+bE08/Vzv/bzLTMhk5worISPXqHNI+m55+O/hudQjJ6c5sDwsk4eIVXBu4lHisjasjAXUgUb8eSVVyPlbFeVRT/Py0LNdhR7Nuic90syjreXTwhJdpObCTc6H7+fjoyH2Ge+aMAR+fClezTrpy6SqKoubFcHdOq/G/C2//xmz5+zTLvzzIuCebmNWnLOfRoAeCmX9sE4oCT83ogKOrV5k/W4MG4O9vQXi4jitX4L0PbHnvgzY8c88WPl7eU4bzVBWDAb1p0UCFbg4KPfyt8712S0o5h8Xh6ehifjOtUvR2KO7dUbLTQV+5DQynT2v3tj4+hiJPtzvuAAcHC1JTdfTpo2A0aueRXg9eXhacO6cjOlrBYDBy4QJ06mRBVhbs3m2kdWvAtRMM3I0u9CUsTn+ifrbL2zD6vqR2mRd1Tv7rUWVfl6os6C6rmJgY4uPj6dGjh2mdk5MT7du359ChQ8UG3adOnaqOKlbY0aNHSy5UCplpWWzb0gGwoUH9dDIzj3P8OEyc6MG8ec3o2PE6L7xwhiNHjCUeC8DSPYfOvoc5dLYto0dfIDS0Yh0gjEZwdm5PUpIl//5rYN26cBo3rn1TCS18/Qo7dt4BgIdHFm+/e4IGDZzIztrBklVDMCp6fvrfNnqUMNYQ4J9/tEQcLdumEBoaWlXVrrTzqCZZO2tdCw6HWVfp70sUrrTn0c4j6nASnU5BqWcs9P/KysoDULv8bt0ag4dHQmVVs06JPXMFUK9JTg7Xa8ffhT3cP6UeWRRen9KeR7c9qHabPxN1BsrZaP7aa3Z8+mkT9u6th8Gg3ph/+mtf3FxXMfyJm2PKxJuNRXo6uenujhw5gtGu/Jnxi3MrfK/dSiwMKTS6uoz6135Cp2hjhpLtuxDVYAZZFl5wNLzS3zc8vB1gg4ODgZiYUFMm88K8/74TO3Y4c//9lzl6VL3HzD2PXF19OXfOicREHTt3HuG33zyJv9Ebcd68eCZPznNg3XgaeIBryiZOOb6G8Yici3VdVV2Pak3QHR+vJklxdzfvOufu7k5CQvE3cL6+vtjbl9ztuaYYDAaOHj1KYGAgen3Fn579/dMBMrLUp4tDu+4jJETtQh4cDNOmGXB0tEenCyrTMXeGKVy/dp167ndXuH4Ad96p4+efISXFkscmtGbV96fpcnvbSjl2Zfjls918v169ubW1Tmf1KiOdu6kDjYeNPsCSVWq50INuPP1GcLHHUowKO4+q56+9TSojxw2skiRHlX0e1SRjoBEHmxRSMx05db4pwcFNarpKdUZOjoHdu4/RvXtAiedRTg5ERKgP4Vq1gp692hdaLj7mSm7nFnIuxxMcHFJoOVG8tBTt4WQj37YEB3sWU7pm1cT1KDgY7r8f4uONfD33P2Ysuh2At5cOo2O3vQwd17n4A4iyS9WmAQ0KCsI0D2YluZW+124ZcRux2PsYujStb7Zi44nSfh4OPuNoWwndyAuTlQWxser3jZ+fBSEhwcWWDw6GJ54A8ChwHvn76zh4YxSbq2sQUVFaY1JYWINCrq0hYMgiSF+3Zt0R5vKfR2lpaZXasFumoHvBggUsXbq02DLr1q2jZVEpB6uIXq+/KS7WlVXPzRu0dM+D77QyO2b+jI6lpgfX+q4Vq1ge8+fDwYNw6hRcTrBlwLBW/Lr0AEPHV900N6V1Luw8T01rZ3r9+VsH6NZTS0zUf3ggtlbpZGTb8c/OVljoLIrtunjqWDwXr6pZm3sFnsDOsXxZO0vrZjnfi6PX62nb7BT7TgVwLs6LzNSMUuULEBWjKDBihAV//x3Mp58qTJpUfK+WEydujIEDQkJ0RZ53rX3STcvnzmbd9OdnTUlM1loRPZs25Gb4NdbE9ahhQ3h14e1kZG7mzSX9UBQLHn46gN1tzhHQvZiBoKLs8vzf6vV6quqkvBW+124JigLh8yE34LawhjYvoAuYgc6qaqcmjYlRe0oCtGxZ9PdNcXLPo7zThl24oGf3bu31wYM6EhP15GvjA70dycng6KjOskLqedg1Ftq9AQ1vK3NdxM0r9zyq7GtSmfoRT5gwgXXr1hX707Rp+bp4eXqqT52uXDHPjnvlyhU8PDzKdcxbVdgJ7Ulz99t9aq4ixfD2hl27oF+IOhFzRrYdE6Y0x5Bds+O2sjOzeeCeJJLT1aQ8D96+g/EvmSebs3Oyo2+wWu+YK40J36um0/xz2R5ef3xzgSnFNu3Snpj2H1z6+Sjrurat1ARdimLBP79Id67qcPIkrF+vQ1F0fPLBtWLL5mTlMPPZ/abXwcFFl/Vu0xgLnfq3HXHeBYDIYzG8+NBm3nhiMys+2cm+DWH83w8JzJ4NkybBkSMV/DC3oLydugrcEIoCZn3ah3v67wIgJcOJ2TPia7hGQtzkdDrotgwsnaBBfxgaDsHzoIoDbihd5vLSyht0b9sGly5prxUFNm0quM+6deDhoX7XpSddg82D1bm9/xsIO8dBhlxfRMWUqaXbzc0NNze3KqmIl5cXnp6e7Nq1C39/fwBSUlI4fPhwmTKg1wXHz6mtqvXskmjcomDW8trCzQ3+3tGa27ocZntYe+KTPYkIi6R1iE+N1en9V3aw50Q/AFo2jOLznwILbcUeNCCFv/epy+tXxhB7PpnhE7sCkJS8hcUrtGkx8l68+w+VcYWl1b2bkW/Xqcv3PhXCl4nbGfdS1U+FVJdtzTP18vGz7sRFxtPAp2AXZkO2gbFD9vL7ZjXHhq2tgXvuKfqJr5WNFd6e54m83NQ0V/cjDyaw5Ui/Ivf59VfYu9c862yuXz7dyeFDWUx/ryNObk4FC9yi8j5zlmfNJbPQW/DNqvas8UwjPcueY2floacQZaIokHEZ7PLMNOPQDAbthnptQFf+HD9GIyxYoHaOePHFkpObl2aO7tLK2/63YkXB7f/+C2PGmK/76ivIzoajR+HPVTnc1zhP78/I7+HiWghZAC0eqZRM7aLuqbIpwy5evEh4eDgXL17EYDAQHh5OeHg4qXnGBw0ePJgNGzYAoNPpGDduHJ9//jkbN27k5MmTvPLKK9SvX9+UzVxAalIqUTeSQbRtFl3rM7Za21nTv4fWonbsQFwN1gZW/6M1H/30XSr13At/ejtopJaxedU6F56You23dktz07KiwObN6rKTE3Ss2p7lt5RHX+rGnV3UJxvZBmvGv9yLmU9tk9k6qtCWLeavN685XaCM0WBk4ohd/LxRDbitLTNZ9dWhElseWjRRWwGupboSuvUkW44EF1v+yhW4+26FpKvmU0IufWcr9z3bg3e/6sesyQeKf9NbzJXzWnIfd+e0YkqKXPb17PH2VJuxoi83QDHKBUSIUkmNhs1DYEMvdQ7uvJzblingzskxG/4PwO+/w7Rp8NJL6kPWkpR2urDSyBt05z1urn//LbjuoDaTKT+v8oSBW6HL/8DKRV2ZdRX2TICN/SH55kjgLGqXKgu6Fy1axIgRI1i8eDFpaWmMGDGCESNGEBYWZipz7tw5rl/X/tAff/xxHn74YWbOnMmYMWNIS0vjyy+/xMZG5jzOdeKANglu21aJNVeRMggI1BJTHD9aszeSMfFq8FzfOZ7OxSR28+/ckqYN1GanbWHBRFxqZtp2Ls6bqPAYAMKPK8TdeI7QuzdY1prUhLWftZ01f24L4Zl7tEjwrSW9mTFDpsmsiJRrKYUGHopRYcvmbLN1/23MKVBu1qStfLtO7XFgpc/ity8PM+jBTiW+b4umWkb6eXO0JtvxQ7bz9uTNPDZsK3Mm7+WXX6CNmhCd48d13H/nEXKy1Hps/j2Up2d1N+37+/aedepcSIjU+le6250vpqTIy7uh+mA3NdORa5eTSigtapO//oJFi5oQG1vTNalDFCOc/kKddzt2PaScgX1Pl/twaWnQtq3aO2f7dm193uU//ij5OIcOacsVbenO2708l04HITdyfJ49C+fOaduuXoXISO31unWQmGQBrR6HoSeg2YPaxstbYH0HOLe8YpUUdU6VBd3z5s3j5MmTBX66du1qKnPy5ElGjRpleq3T6XjuuefYsWMHR48e5ZtvvqF58+aFHf6Wlp2ZTcq1lEK3HQ/Vbmb929wc81oGdNC6rx4Lr7nMkIZsA7HX1O6HTUqY0khnoWPQ3UUPqty0OhKANV9r/XUH9EktorQoiqW1JYt/7sNHr2q/x3nzYM6cGqzUTWzeC5txcnPk4cE7CwTekcfPc+Gildm6TXvNh0P8uHAHby/tB4CFzsDPnx0sdfLDFs21KQp/2dTNtPzGu015bVE/lv7Rh5mLunDPPbB6NbjVUx+4rt/bmXYtonntsc2MHu9NjkGrY1S0FcePl+rtbwlXrmnXR49GdadbfUV5N9auvdGnCu9N9dlnMHOmlhhQ1LykJLj3Xgu++64hb75Zu3vt3TISdsM/3WHfJMi5cZ9p1xia3V/uQ27ZAqdPq39beXMt5w2i//lHS5JWmBMntOFPrVpBkwpOaOLsrCZEy6tdO8gTcrBxY+F1BTWT+qpVN17YNYCey6HfenC4EZPkpMKuhyH01YpVVNQpVRZ0i/KJOR1L04bXaNLEwOpv9hbYHn5Ma5lqG3hzZHtuHeyN3kKt97EzNTdQ8fL5BAxGtSm6Sf3rJZSGQYPMXw/vE2pa/u/GOO7f1miB+YjBMjdxeegsdDz/bh8+/1xbN2eOGnzndS7sPC8+tJnd68MQBeVk5TD/f+qUXj9u6Mmvn+8y275lXXSBfU5fbM6FM2oT0+71YUx4WRsf8cG07Yx6oluBfYrSopUWMCqK+tXS2fcYLds3K1C2VSv47euzWOrVlveTF1rw7lf9uJqi5gxxq5dsKrt2bamrcNNLSNSyl7s3rLzZJG513n6NTMvnExoX2L53LzzzDLz1Frz2WnXWTBTn+HFIT1eD7UOHJOiuUikRsHOsGnBfyXNv2fIxuOsYNLmr3Ic+nWeU0r4buXAUBUJDtfUJCQUD27w++0xbnjSp4kOmdTrzLuYA3btD3tGqebuY5+1anuvnn/OtaDwI7joKLR698SYW0GhQgf2EKIoE3bXM4ndOEpdYn+R0Z8Y83p71y83HNB4/pd2U+XdolH/3WsnG3obWjaMAOBHTrMYymMdc0E53r6YlTwMwcKD2pLRDB/hxjT921mr3+E37WhB94gJ7T6pTj7VvfrLQ4EKU3lNPwcKF2usZMxROHLwIqF/gox9w5qMf+3HbiOZEHC0YQNZ1u9YfIzFNC9Remt2MtGRtOMfWrVrLd8+22nVl0+oI4s8nMOKB+mRm2wLw2LCtPPdOnzK9fws/lwLr7h9RdLbXfqOC+evHo/QJDEWn05pA2nqfYcMG7W+1LgXdV5LUmSkcbFKwdbQrobTI1bRta9NydGzBHgJ5b/4//RSi5fJRK+Sd/jZv115RiTIuq5m3V/tC5A/aeucAGLARui4Fa5cKvUXeMdMnTkBysvr/mZxsXu7vvwvfPyUFvv1WXbazg0cfrVB1TPJ3Me/RAzp1gno3Uvn895/W+p436La7cen991+Iz/8VZumgZnfv/h20nwcN+lVOZUWdIEF3LZKdmc23f2jjjLNybBj5aFs2/qo9HgyP8QXAziadZv4V7H9TjQJaXgYgM9uWszUUMF24onVzbxJYcsYzFxf480+YMUMdd2bvZEPPduGAOpXY+3NiTGVHD5EBaZVhyhSYMVUdQqEoOj57T32EvmMHHApTvynTMh14YnyCJEzKZ+1K8ynAzic0Yf587fXWA+odiLVlJuPHaefupv+MTHn0FHGJ6tCLvkGhfPpztzInaWwRUHAmhXsf8yt2n4H3dmDLkWCiT8bx4bTNvDxuM/9ucqJDF0dat1bvhnbsMHAtLrFMdblZJSSpUxm610us2YrcZPLeXBcWUJ8L01ZmZsKcF6S3TG2Qt4U0IUHH9ZI7oImysnSA2L9AudHYYe0KnT6BO0Oh4YBKeYu8/4+KAgcOFN6qvX594fv/8IMWoD/4ILhWUiefwlq6LS2hf3/1dXy8NnVlbtBtY6O2tAMYDPDbb0UcvPlYaPuy+TrFCCc+VrueC1EICbprkbXfHzTd+Oa2qGZk2zFsnD9nzqg3C2ei1atRm7Z2WOhvnv++AH8tgdPxcKtiSladC1pi4FKPF+rfH955B+rfmImm/1Af07bPf9EC99FjZaqwyvLSy3rT+f/tn8GkXEvh00/Ny2w81IGv39teyN5119pN6kmt0xmxtFQD1vc+tCcyEi6cucjZG8kAu7Y5QUCP+lhbqlnDf97Q0ZSp3M3xKiv+aIK1XdlzL7g1dKWeg3az0bu3glfr0vXG8WrdiBfm9eO9b/vRqIU6dc1dnbYBYDDo+efX8DLXpygn9kXw7L1b2L66dk0UrhgVrqa4AOBeT6KPsigp6I44FmP2+puV/oTvjajiWomSnMqXADpvYisAshLh4no4Mhv2PAY7HoStIyDphHk5QwakREoGzqxrEPOn+TpLB2jzIli7QeCbMCwCfJ8Bi8rL+po/O/i+fea9S3Lt2lWw9VtRzLuWP/NMpVXLLOh2d4fWNzrE3H67tv7XX+H6de1cDAqCsWO17QW6mBcnfAEcfAH+7gJJdSgZiSi1mydqqwO+/EprWVrxRRjDeu4BIC3DlqVL1aeJuV1h2hadeLtWattP66p6LNKrmJJVpzxBd379B2tjuHPHh/s3PUvbrhVMtSlMXBu48OAgtftzcrozC2aeMD1ttrfTchq8+FYQF89eqokq1jrRJy4QFqXeUXTxO85zz6mX9owMuO8++O5/l01l+3S7io29Nd3bqjcFaZlaboiP34kpdN7u0tBZ6GjR2sH0+v77KzYo764RWjfhdesqZ0hK+vV07hxqxae/9mXgaF/2/nOsUo5bGZKvJJuSyHm4yHRhZeGV5ysl+mxyge0R513MXhsVPa+/fLlAOVG98raQApwLj4ezX6kB9toA+D9X2HwnhM1R10f9BDF/QE6+h1LxO+HP5rCqCWwbDeEfwMW/4NoRyLx66wbjiqI+bDi3HPY8Dquaqp8/zfwhE35TYHgkBL5R4a7k+WVnF3xYkj/oHjJE/TcnR+3SnSszE5YtU+fFBrUlOje7eGXI+zCue3dtnPiYMerc4QDff2/eKt+hA7RvD343Omlt2VJMa3deWYlwbK66nHQc1neGU5+prd9C3CBBdw3KSs8yZSm/cCaWv/aoLadNPS4w5OGOfPVbMHq9+mXx889wLM/9ob9/tVe3QgICtOVjNXSfe+GC9sVb3qC7UydwcDBfN3qwTO1T2Z55UQv85nzSiewbHSWee96SsYN3AJCU5swj910gKz2rJqpYq6z7RZtq6q7bEnjjDWigNhizdy/MeD/YtL3XADVRQb8eiWbHGDwYHp4cVKF6dOig/mtrC6NHV+hQ9Lm7HY626s31Xzv8MBpKd/Ny6dxlTh6I5ORJtQUm7/32glf3EHlZbf7IzLZl+H0e/D979x3W1PUGcPwbArgQUMCBCrgAxYF7j1pXrbWO1tplh11WO23V2qWtVdvaoXbZZYe22qG2rrb2596j4sSNDFEEFFFARpLfH8fkJmwwYcj7eR4ebu48IYck7z3nvCfmRNkYGpIQm2RZ9vJMz3tHkUOVKmoaSICo0zln/jh9Tg19qOMZRx1Pld186abObP6zbPV2qEhMplyC7pUzVMB96pv8Wwqzzx+dsE39TjsH0Uth30tq/uk1reF3r+vB6N1w9CMwluFZX0wmuBavWu5zs28ibLwT/u0NK4LgV3d1s2H7A3Dqa9Wt2ZSlujhbc64GLo6ZDSEyUnXDtrZrlxbIururfC1mf/+txn2PGaM+ox57TNv2dPFnLctV69basnUCtdq1tUS50dHw0UfatrZtVXD+3HPaugcfzD3Rmg1XT+i/HTxbqseGVNgzDv7tlbNnhqiwJOguAZs3w5w59Th9QgsOEmMv0q5ZJNVrunHXoBjemu6M0aRuvT161wn0Lnq8a1eiXz91ay4qCr79WuuiXd5augMDtTmsSyvojjmo3c6sXyetWOdwcVHzcVsb8UD5SGhXnrTpHUyXZgdt1jk5GXjysXQ++qaZ5Qv22r3tuKf/f2SmZ+Z2mptWfHQCz9+3kZ/mbMVkNLHqH+0L1aDhtfHwUPkI/LPl9nPWZ9J1gLqF3+vubpb1bm4wf/6NZ4ydPh0mT1bXNgf9xeVaxZV+HdSbRXyyD7v/zftLeOyp83w0eQOdgg9Rt1EtgtsHEBysuhOGhMCxY6o3wMyvbKc/O59UmyF3OvHzzyqr9QsvwO4tF2+s4MWUGKcFi941K1Z9tge/Wuo9IfZibTLTtR4xSRcuW7LiNwuI5Y3nj1m2PfhYTZJkXu+SZTTA6R84t+4jUrINfT19yaqZU+cMNdtD4DPQ9Se4bT8MOQXDzoFna9sD3RpBnX7g4p77NdPOQvRvcPJLcMqWRDV6GZz/F1KiS7dFPG49/NUeltaCJVVgaZ2craRxG+Dsn2qe6CvHtSm/zPRVoOk4CLRz9JqP7DdOQH1fjbne2B4aCn36gOv1EUvff6/ek7/9Vk0ZZ9a6Ndx9t33L1qaNus7bb2vjtM2su5BbpgZDu3H81FPaPmlpMGQIBc8l7xEM/XdCE6u7DPFb1M2fY5/cvD0uRKHZb1CHyNPo0U5ER9fhf6vOs3vXZeo2rM0jd5/gUKSas/z3NVrfOJ3OxCPPaxH1qFFa8ol//tXGQjdvdAGoVSLltwdXV/UFODwcjh0zkZVpwtmlZO/5nL3gCajMwO41quW/cz5u6RjNX3+p1rJGtU7RunugPYonshn3eDLbX9QeD+6yB/9GnYBK/Pr9fgaOrEZaRlWWb+nMff3Wc+djPTl4WE9SEjz/fPnrDVIUj993ij+29IKfYePGLfzvPxVA1/G+SpteKqju2FEliXnxoV18s1wFm91bHKKah2rN7tpNT69esGMHfPllzkyvxVG3LsyceePnMRs0MJNlamg3f/+ZQKdcZmf589ud3PNUK65l9s71HOHhqmthSINk0jJUF5eHBm1h839+nD7vx77w2tx3n7b/3DkevDJmA2/M7Vqsse3FlWA146CXl3w5Kyq/upfZc0J1HY89fdaSaDTiyDlAJahr1OAqj7/SlZ9+28+WQ62JjK/P4/ds55f/debkKR1ffKF6QY0frwUJwo7OrVWt0EkHOB5xX47NEam9ocWbKsFXzfbgXMhpUQPuUz9GAyQfUVNipUSqbtZXI+DiHhWg1r0t57E7HobM60MSnKuDe6Aa/+zqCa5e6rF7M6jT13YcdGYypERB9Sagr1zUv4R2jgtb4OQXcHaF7Tadc84WfWerGQ2cq0NVX6gWAN5dwKcbeHVyWIu22V9/qazeEyao93vr8dy1asGFbKM2QkNV78Du3VXX8jSr9o7q1WHoUDUEql8/x/zP5ZUJ/c47VSu89RhzZ2c1lzeoG9Bffqme3/btanjiPfeo7ub53px2rgIdPwf/kbDzCbh6EowZsPcZiN8Mnb52+Gskyi4JuktAaNNIoqMDiL1YhztvO8Jdg4+yYlvvXPft31+Hf5AWTA8dCq6uRjIytDdfF30GjZvVdHCp7a95g+OEhweSnq7j9MEzBLZtWKLXN2cvr+cdj87JrdjnGdgvjUlvqeV7h0Sjc5Lx3I5w15PteWHqBeKT1f/DuHHa21XPO1vz54//MfiB5qRnVua3zbfw22bt2MWL4bffbBOm3Cz2bz7GH1s6WR5/uay7ZXnQEDebhhx3d/h6WUfuWbyXtWuu8MQL2v+cszNs2KDGfVcu5ndGR7vldj+4Pq/y7n05v4Dv23CUe59uwbVM7ctoaKOjtAq+hM6nCzt3qq6Mly7BlkvqLoy3ewIfL2hJbFwVunTPmdjHaNLzzte9WbXuKL8vr0qjlna4G1EIiQZtDI5386JN1ybAr57WJT/qRKIl6D59VMvq36ihAWdXZxb96k1o+0tcSqnBbxu60Dd0CxuPdMNgUN+mf/hB/bS6sdEWFZvJpALfC5sgfpP6fUVrFj0RkfPGd8QFP2g1tfjXdNKr7r3mLr5mRgNcPpRzPHNWqhZwgxorftF2mlaLO6OgmlVmrriNsGkIOLlAjXbXg94OKkB3D8w7EDcZVRf6pINw6b+crdkezVWG8Uq55Nbo9ov67eKmuoyXsA0b1Phsk0m1ZC9ebNvSfc89MG+e7TGhoer3nXdq47lr1IBJk9TNrezD9UpKlSpqbPe332rrQkJsPwsrV4Zly9QN7Kgo1Wv1v/+gXcGT30DtW2DQAdg/BY59rNZF/QLV/KHNe/Z8KqIcke7lJWD+11Xw81HjfvecaM7kj3pbtv36xV7efx+8vdU/+Kuv2h7r4QGDOu6yWRdYLxJn1/J3vySkYaxl+fDeuBK9dnJiMlevqbuL9XySbuhcrboHsujjrbz+xAamfNCx4ANEsVSqWon3X1MpRe/oupO+I20zrPQd2ZblCw5ZsnBbS06G224z8sVbm0ptXnhHmf5G3t2fb7899/X9RrXjve970yQ051zyZTXgBmjU0g/PakkA7Am3Lfv5iAsMucud1HT1rW1Yjx2E7zrNvlPBfL+qC999Bzt3wsABtl9qZ0w8gmctD5q3dGXdOpUtd8YM+HO5gWlPb8RZr7p2h50OZvJzZykpNi3d3vLRXFQ2GcytxnWfPqm9PzRqoprS/ILr8c1HWjfzdQe7WwJugP37oUMHAx+/stGBJb65JCaq+ZYxXIOt98Mffmq88Y6H1Bhtq4Cbmu04UenVHOeIiHBQD1wnPdRorQKe7NrNg2Yvge8g1Wqcl5RI28fm52PMhMQdcPQD2DpKdSX+pRr8WgN+94ENg22P0znBub9V67t1wF3FFzovgNsOQL8t0HNZzjJUqa1+SiHgTkiA++/XXp81a1RiNOuW7vtydl6wJEZ78kl46y2YPVu9zpMmlV7AbTZ6tO1jc9dya7Vrw2uvaY9//LEIF3CuAu0+gh7LwMVD3ZBp8UaxyipuDvLJXgJq+Xnz8QeHLUmBzF64bwN3PdmOl16C8+fVm1r28cIAo+6x/dLYrFFCzp3KgZCWWt+hwwfySBTiIGdPxVuW69W+8czA9z3Xjbfm96aqeyG7v4lieejl7mSmZ/HH5o65TpE38P72/Pv7UcbdvZH33opn1SrVOwTAYHBi7Js9qe6WTvvAIzw5bBOHt5/McY7y5MjOk/y+UbVy1/a8wJrFh6lRQ30LcnOzTRZzM9A56WgfpJLEnU+qbclWfy3lGkMHXSAm0ReATsGH+GlNKMEdGtkc7+4OK/408uw9G9HpjPRvv4dHJ2pj2du1g08+gVdegTvu1PPGp73YufYklVzU+9PBE7kP4cnMVMl33ngDMuyUxy8xUVv28sp7P5E7v4BKluXoSO1FOR2hvW80CvKwLA97vDNjR2yyPPaodoUpU7TupRkZel6Y1Ysln2xzYKnLKZNRTU21aSi7v32LgQNVw0H16tCwSWWGvPAw63Y3tT3GyUW1BndZCAN2cfysFgA3bKj6HKem5uye7FDOVSFoPLR5H3qvgjsjYFQW3JUEd0aqxFidF0CziTlbrt2DwP8+qJ7L8DKTETKTID0BMnPmDDh+uQ/jv5vH+siHIXA8dP8N7jgBjR7OOea8DDCZ4NFHIVZrNyE5Gfbs0Vq63dygUydVD8xcXLT8Q5Uqweuvq27pHtq/Yanq0cP2Zl1uQTeoseaVrr+9/PQTlsSuhdZgKNz2n7qR4lL8XpbiJmAqx1JSUkx79uwxpaSklHZR8pWVlWXas2ePafm32006ncEEJlPbJkdM11KuFer4q0lXTVUrXTWptz6T6Y0n/nVwiR3j0LYTludwb98tJXrtf37eY7n25EfWl+i17cVcj7Kyskq7KGVaVpbJNGH0Jsvrbf2j0xlM9/XbYjq293RpF7NY7u+/2fJcZr+83mQymUwnT5pMkyaZTOvXF+4c5a0eTXp4veU5//HNDpPJZDJ9OX2jZV0D7xjTudNxBZ4nOTHZZDQYC3XNFv7HTWAyuejTTVkZtn+npCSTqV8/rU7NnVv055Sbp57Szrl3r33O6UhlrR7t+ueQ5e83dsRGy/r+7Xdb1sdHJ9gck56abpr98nrT7JfXmy6ev2QymUyma9dMpgmPhlmOca+SZDp9MKokn0rZcvWqVjGTk0ymk9+YTCuCTXGf+ZiGtl+a6/ssmExe1eNNhrX9TKYDb5lM59ebTJmpNqdt3lztV6mS0TR8+AXLcdu3l87TvCFpcSZT9HKT6eB0k2nrAybTmg4m04ogk+mPRibT5nty7H5b/1QTmEyVK5tMx4+XQnmLaO7c3F/jN94wmfR6tRwaqvYdNEjb3rp1yZWxuO9HU6dq5d23L+/97r5b22/lyhsrq0VKtMm0cZjJlHreTicUNyp7PbJ3nCkt3SVo8OgOrPxuL5Me3sDqtd5Uqlqp4IOAah7VGNJRm9ywWbMbTDFcSpqG+lm6bh4+5V3A3vZ1NkrL3lGvXvn8+4nC0eth9vc9+PWz7QztvoOmvhHodKq3iMnkxE9ru9Gyky+b/thvOSYzPZMZz23gk9c3YjKWzSRWJ/ad4ee1XQDwqp7IU1PaA9C4McyaBb17l2LhHKh9Z61lYO/RAABW/aOtW/h1AnUaFpxUsnrN6uicCve/H+ivehNlGlyJPKp1MT9zOouuXWHtWm3fNb/bZ8rAhFNadnav6jnnmhb582uqjYGNOqu1Sp4+r8Z2V6+SjJevbS4U1yquTHivNxPe602N2p6AatF6/6tW3NdPTU2YnObBvXdfrnAzJORqbTfYOQaSj/LOH6+yfM8wyyZ/f+jcWRuuknjFm7iQf9Tc0LV72yQBMxi0bsmNG0ODBtoQgOxzPpcLlWtB/TuhxavQ9UcYuAsGH1XZ1rsvzrH7idPqb3Htmpoyy1hGpnI2mVRPA+su/gaD6tFj9umn2vKCBdp0YU2aqN8dOmjb7TnntqNMngzTpsF332njz3Nj3RX9hx/scOHMq7DxDohZBv90gqRDdjipKOsk6C5hg0Z3YNaC3tQOyCVJRj5entaEapWuElArmtvuL0wWh7LHtYorTX2jADgW41+iY23PxmhTyNTzK9zNDlG+3TW2C8s2d+b42YYkJ6by/ksb8HZXwVRGViWeeaGyZe7n15/ayqtze/PM9F4s/2ZnaRY7TzNfj7ZMK/jiIwep5lkxuqm169/esrzncG0yMuB//6lvcz41U+k+uGVehxZb00ZaEHDioOrvmnI5hV6dL3Ak28xlm3d62iUgS4zXruntIx/NReXTwNuS3yHqvCegAoIz59WUjo0C3Qp900XnpOPzn1vSqI4ax7vzaAveGLvV/oUuD6znjE7S5vvcE93HsvzZZ3D8uMryPGaMtntUVO6njI7WhmU0bQq+vlrdP33aLqUu0+K10W5s2qSyZJcmk0llJe/USY1hts74ffo0JCWp5cGD1Vza5gA72up+Y9Prown6aNUi1+GSZU2lSuqmwkMP5b/fgAHgc/1r+x9/aH+TYks7q+ZkB5Uv4O9OsO9lSCvZfEeiZMkneznR9pZmJF504XhUHTx8ysiAmGIIDlBvMumZlW1akBztbKxW1ev5y3QNFY1bDTdeer83pyMq0b6pipoORASx+OtTnNh3ho8WdrHsu3BhaZUyb2fOwI9/q7HIntWSGP96OWhCsJOAAKh5vYFyzx71xf7qVRU89b+taq5j/W9U00BtXOXxI2oy4XVLDxMVr8aQBzZJp3cbFYBcvVadveuP5TxJEUQciuZopAoOK7lco6p7KWcYKoec9E408FZj/qMu1AFUhuWs6/dbGzUqWj1x93Ln5++vWnpnvfddDyIOxdivwOXF4Rm2j2u2w3TrZg7FqJtdfn5qDmTzdE82Ce3yCLqPH9eWmzQxUa+e/Vq64+Lg2Wfh119v7DyOkpFhOz81wMSJtgFsSVq/XgXHt90Gu3erdQsXqlZ4wOYmo7nlOrfcIeZAvGdP+Oor1fvKei7s8s7FBe69Vy2np6vZUW6IexAM2AU1rzeiGVIhfDb8GQB7noPUkvt+LEqOBN3lSKWqlXCp5FLwjmVYUBPtrvmx/Y69o5eUpCW8iDmndTes10iyFFVU1WtWZ9Y7Wh187d2mPDc2gYwsrffDqu2hJCfkTH5Tmt59F7Ky1Nv1c8/pcfcuvzfeikqn06ZouXABvvlG2zYgl3m77SEwxN2yfOJ6N9iwvVoCxref3cF9I7TMZ+vWFC+5pclo4usZm2nVwZNzl1Sg2LD22UK3yApbfoG1Abic6s7ly7atpo0a5XFQPjr2D+GVMaqF22jSM/+D8p2IschSY+H4Z9rj9nOh/05iMrpbptozJ54za2A1q1ZeQbf1NFOBgeDrqyW+K0rQnZZmO+8zqG7A8+apTNslmpStkKwTJppduaJaWq8VMb/s/PlqxpuLeU9oYZGcrBJGPv+8CoqXL1et0n36wNZsnTgMBjh8vVPDYa1zAyHXZzXMLehuapU377HHVHZyl/L9dTUH65sIkybBM8+ov12xM+5X9YW+myDwWXC6/h3EcA2Oz4U/G8GusTmz5t8sHDJNQdknQbcoUUHB2lRnxw6nOOw6P/2kukm1bq0+0M6mqLvyer2ROv5F69ovbi633t3W8qUhIgLW7Gxvsz09szJ/fH+wFEqWu7NntblE3dzg2QkVr6dGe6uX6KeftA/r/v0dc72mrepZlk+cDwJg3wHtxl1otwbccruWfXn9lqK9Jge3HmfKmA009o3m8Vd7WKYzDKgVzffflOzMDjcTv4baaxQdfeNBN8C4V0Jw0aug8OvfW3ItpQK9PimRaryyWeNHwUnPIavhp9mD7sK0dFsH3U2amHB3N+Dpqf6vswfdWVnw/vswZQpEXo8/MjJUJmwPD2jWDE6pCQ5Ytw7++UctZ2bC3jym3C5N1l3LR4yAuqqDC+vXq3mjCzsbws6d8NRTarrDzp1tp+7KzcyZqvV5zhx44gkYNkxd06xZM1Ues/3XU55YB93mTOS33KJuhlozt3TfzNq10+r7xYtq5ovu3dV848XmXBXaz1GZ84NfBP31GXGMGXDyC9jx6A2Xu0y5chLCpsCqZmpcewUjQbcoUcGtPC3LR485pvqFh6s7rRkZannRIjh7XiUuqVPHCb1L2ZuSQ5SsGTNyrnv6Lm1O3sW/uubcoZS89572RWz8eK2rdUXSvmm4Zdk8n3KbVmnUru2Y69X296b69Tj6eLRqgQ47rrqWV6t0lSat/Gncyo/6XmoOna2HmpGemnO++NzMfXUjrboHMvPb3kTEaRHKY0M2cSDck479Q+z4TCqW7AHf6V1afoZGdc8V65y1A3y4u4/qd5t4xYtfPt+T7/6GTAOX4y+X2YSMRZFVowvvHTpgeXxe9d6/4aDbunt54PUZtxo21I7J0lKw8MILqvv1zJmqNXXsWBVkTp+uAuvISBg1SnX5feUV2+vs21eIJ1nCrIPupk3h99+1+apXrVLPpTBTUm20mkL+xAn1N9myJe/9N2zIfX2TJmru6YMH1d/W7MD1l90cdOv12mtVs6bW+whU+evUKbjM5Z1OB4sXqxsWlaxSA332GaxYcYMnr1IX2n4Ad56B5pPB2U1Ns9du7g2euJSZTHDpAByarsatr2gKR2ZC8jGIKqNjQBxIgm5RooLaaq1DxxI72/3811KuMeruazZdzr74+IKlm1m9erkfJyqWDh1Uq4JZt5ZHmbe4Bw181JCHf/Z2yLUbYEk7d+osX36hgrkqVUy8+GIpF6iUtOucsyV5QDvHJbzT6bTukmfOQPzZy5YAuXXj0zg569E56bilg2pKTcuoyq5/jxZ4XoMB3vu6teWxk85Av3Z7WbNwD1/90ZPqNSteLwZ7yhF0n9KSdTbyL34L9dPPaq/Lpwub5bmf0WBk+C178KzlwUevbMxzv/Lg+HHVijdtutY7zTyONb+gu25dFaBBwS3dbm5asBYQoH4bDNr45s8/V62JZpmZ8MUXOYPpPXvg1lth1y7b9WFheT69UmMddPv4QJcuKtiucj25+7Jlak5s6963v/6quoWbb3pAzueamKj+BtY3NMyysrS/Rf36MHeuupnxww+qYeKBB9Rr1lp7a2L/fvVaHL3+tta0qW2gad3FvEmTnC3fN6uQEFi6VA1deOcdbf3YsTnH6hdLZR8Inanmie/5J3hmuwl7cR9cK95wphKTlQqxf8Pu8fBHAKxpDQdeh0SrSqvTw9VTpVbE0iJBtyhRNWpVt2SAPHbC/q2JLz+6kwOHK9us23+sluUDTIJuYfbuu6o+1KoFX/wUjJPeiVEPq6bTrCwdS5eWbvlO7Y+kd68MrmWobzpP3b3H8r9T0fgF1bNknjcbeIdjx7Wbg26jEZb9rOWfCG1+ybJ8S2/tm/H6v7X1edmwAc5e8FTHdori3JmL/LOnHQPvb5/vcaJw/Gprd8oi9+7kdIwam6/TGfEP9i32ebsOaknrENUVctd+L/bk0dj92xc7+HNrJwDe+awlGWmF7Ctcxpw4oYZ07Mx2X2vTJvXbHHQ7OUFwsO0+zs7a52xuQXdGhtaF3DpYa9hQ+1+KiIB//1VjZs1GjtRahEF1dV6wQBs3nH1cMpSPoBugVy/4808tqF24UOuN9eGH6rnPmaNa/M3MSc+qVYN+/dRyRoZqic3uyBFtvHi3burv+uGHaoyys3ZPBW9v8L3+b7J/v+q2n369A09IttjPOui2Hs9dUbi7q54VAweqx2fP2r4+N6xSTfAdaLvOkA5b7latxf/2gtWhsKolHHoHjCU3G1CBziyCDQPhxKeQmu1NwLMVhL4HQ2Og9fTSKV8pcljQ/fnnnzNq1Chat25N+/aF+0IxefJkgoKCbH7GWM8/IW4K5g/pc+ewJGOxh09e38gnv/QCoLJLGuNGbsuxT706aTnWiYqpUSPVNTEmRmutGTVK257bl5eSsnXlATr1cOP4WdXnsrbnBSZO9S/gqJuXzklHu6Azlsdula/QZaBju2Gbu1IC/PKb9s00NFRr0rllcEPL8vqtHpw+reZ9/eADbf5aa9bzuz79kh+1/CroXRQH8aujNTV9/H0r9p9WA03re52jUtXiTxWpc9Ix7jltij7ruYrNMtMzeW1GXcvji1e9+HeZltV+0UdbmfDABhJiykAXmgJ8ND2SK1fUcpPG2votW1RgZ85o3aSJ1kJrzdzjICEBUlNttx09qv1vmMcIg9a9HNQwmttv1/Z76SVYskQF49Onw+zZarz2ww+rm6fWunXT5oo+cQLL8ygrEqzuHVrfRO3bF37+WXv82msqKdyECdq61avVTcC4OO2GRvv28PHH2j7h2kgcC+ubRAV9HTe3dl+6pI2PB9vXClSW8q5d1ev/6E027LiwdDqVzM7t+lvDl1/ajpO3u+PzVOtwZhJc2ARJ++HyITjwmgpyr8UXeAq7yUpT3cM33wUJ2e7O1eqpLTu5QJ3+0P4T1XV+0H5o/jJUqQDjEXLhsKA7MzOTgQMHcq85x34h9ejRgy1btlh+PvzwQweVUJSWoCBt+diNzbQDqDF0z43ayDPTe1nWffTabqbPC6GKq+0nfv3KZXMOZlE69HrbDKtt2mh37devVzeGisJkNN3wl+qoo2e5dXggiVdUlv3mfifZvjmdOg1rFXDkza19My2La5+Q9bhWcey4+6be2ljW9bu0Gx5tOmmzHwSE1CegluoLu/lgS4KCTLz7rgoSJj+53+Z8KSlq/CaAp6ea81bYV2DbANpdnxLwWmYV0jNVr6dGvjf+ZfS++1TiLlA35FKy5QFd8P52TsQ2tFm3+C+VwHPHX4d44MVufLioN0MHniUr03jD5XGU1ORUfvrNE4Cqla+xYb3WAn05WXWtNbeaZu9abmbdzT/7VFgHrXJUtmqlLQcEaNcJD9fyWAwerBKAgQpSX31VBaKVr3doe/55GDRIO8/MmdrUVqCNTS4rrFu6vb1ttw0bZptv5McfbbcnJqoWaHMrN6gbDE2aaC3W1lN8mVknlLMei50b69fkp5+05ewt3S4u6iZMYqKabqyi8vOzvfHz4ot5J+b+/HN4+eWc7x2FFvAANHoYdNdfbCdX4PpN4PP/wl/t4PinkJLHuI7iMGbB1TMQtxFO/6DGZm97AJbWhi0jIfp3OPun7THVA1VG9u6/wYhE6PM3BI6DahW34cDMueBdiufZZ58FYGkR+2i6urriU8Q+lAaDAUNuzQplhLlsZbmMJalpo3RAZWgM332Stm0b5n9APrIysrjr1v2s3K4F3JMfWc9jr/RA56Tjrj7b+fGv7pZtdevpy+3rIPWoZIwcqeOdd5wwmeCHj3bx0swCvqVYeWLYVr5d0ZPJj6xn+lc9Cz4gF8t/PEF6puqf2Sf0P35ZHYBnLQ+7ve7ltR71uM0PrrcUD7nL0+Hlb2zVZdJoUoNU9U5ZBLf3t7l27w6RfLeqAQajM1jFUrO/aU1Q4408MlG9//y+KJ6UFHV3/+67jbi4mHJtDS8vymo9Wr+zAa+O3cC8Jb0t6xo2uHLD5axcWb03fPWVE9euwb+rzjN4hPqukpqcyrSPmlrta+DaNT3Ll5u4etXI21O1m79bD7fizalG3nqrbP3dzH79ci+XU3sAcHef3bh7tLbZPmeOCfMX/ebNjRgMOSOM+vV1mNt0IiIMNpmtw8K0bc2ba9/dmjc34OTkhNGozl23ron77zfx+uvq/Pm9fIsWwZw5OkJCTHTtCgcOaNf47z8jnTuXnaR2Fy44Yf771axpyPG8Xn4ZDh/WsWiR1ibWurWJ/fvVMf/8Y7zeeq+2t29vQK+HJk2cOHpUx7FjJjIyjJZx9QC7d2vXbN065zWttWyp/e22b9fWBwfnfpyra/6vTUkpzfejxx+Hb791Yu9eHWFh8O+/Bvr0sd0nLAyeflq9KBkZRj78sBh10tUHOnwNba8nOtBXhgubcNp+L7prcZAaDXvGY6hUFyrf+FhKp81D4dxqdKb8bxKa4rdizP53b2PVYFoWKkghZa9H9q5PDgu6i2vXrl106dIFd3d3OnfuzPPPP0+NGjXyPeZ4bpkjyqCD1rd4KzBPYoA7Afhv81FCOhU/+8TmZVGs3D4MAGd9Ju+8sJJbR/mx/4BqZeo/KIkf/9L2NzknEVYWB3oVgdQjx+rSNg1QgdLXC7259e59hZo3Oe3KNb5b2Q2AH5YHcte4sGJdPypK6w85alQ0Z2JNEFusU+WrvNUjr8Y63nl+OWmpOlreUtfh/8eZzjmbI4LqnebYKdv+qsE9asMqtVytmoHe7Y+waqNq4Xz69S5UdltNs66+fPdZFqCC7i4d9hMWVnZbO4uiLNajh16uTrvOf/LWrFbEJXnTZ4B93vdbNkkHugKw7Lv91G+smiqXfh5D7EX1mXZ7p8041WrGihXeXLmiY8K4cFbv7Ghznpkzdfj5naB9e/tMmXPqVGV++aUW/ftfpF27op0zI0NHaqoTnp7qy+VXC6patvW//TIHDhzAquGYHTu090I3twjCwpJynNPJyRtQrVpbt0bj46P1/tm2rQngcX2/wxw8qFJ1X7p0kBkzPDl2rCqdOycTGnoVvd52erH8mHuOhIVB1arVADWObd26RLp2tWPL3w2KiAgEVGK+c+f2c+lSzuDr6ad1nDzZhF27qvPII+e57baL3H23amr+448r18fBq79h1apHCAvLoG7dRhw9WoP0dB2rV4fToIEajJ2VBfv3twF0+PldIyLicI7rWXN1rQzYNmvr9SZSU/cTFlZ2bl7kpbTej0aMqMHevWpewmnTrlKzpu0cbkuXav8TX31lYujQg7i72yOgc8el3nc0jH2F6mlhABw+V4nMhDDLHnrDFVyy4rnm2jBnxjuTgarXjuKWtp8LNUZqreiA7zUf6uYRcBucqnHJrQ8X3W/jStV2ZTOBwg1wVD3SmUyOnaF86dKlzJgxgz15ZR6xsmrVKipXrkz9+vWJjo7mww8/pGrVqixZsgS99W2761JTUwkPDycwMJCqVavmcsaywWAwcPDgQVq2bJnr86hoToSdoVl7NVDsrl7bWPy/TsU+1+RHNzH7h1sA+O79zTzwQleb7SajieZ+pzlxXg3QDN9ziqahAcW+XmmSelRy+rffz7qwtgCsW/ofPYe0LuAI+OunvQwerb5c63RGUq5k4FrZpYCjcprw4Gbm/NwbgE0rwuh6W8sinyM/Uo8Kr3aNJEs3f4D7RqXzw0Lbe9VGI8ydqyMzEx591ISXFzx/3xZLfglX53QGdAxj1fb2GE16GtWO5Fh0vULdyCnLykM9MhlNXEu5RpXquQw8LoarSSnUqlOJjKxKNPA+y+nY2qSnpeNf/xqJV7xw0hnYt+UkZy83YdCgnH+Tjq3Os+uAuvHi62ti717jDSdHNJkgNNSJw4d1eHubiIkx2iTHMvv31/9YtTyFDp2cueOBFuBSnblzdXz0kY4rV+DNVy8z4vYEQjqpZung+qc4eNofXVoq+uv96qtxlVS0bGYHDxpolksy91Wr4M471fN/7TUjU6dqXzMDApyIidHh6WkiPt6I0Wj/epSSAp6eTphMOtq1M7Fzp5Hjx+HTT3WMGmWiSxe7XKZYWrdWr1XVqiaSk/O+8WY0qvHwbm7qNQ4IcOLsWR1VqpioXBkuXdLh42MiNtaITgevv65j5kzVQr1smYE77lDnCQuD9u3V33XUKCMLF+b/lT8rCzw8nEhP196fgoNNHDpUtm8Slvb7UVYWBAU5ERmp/m7Z/zdeeEHHvHla74UZM4xMnGjH8MtkhIu70SUdwNToMZvgWrfvRZyOz8VUqRZ4dcJUyRtcqkPaOXRx/0OXcREAw4D/VKIzs0v7cdo1BqoFYKrmB1X9MVXzh6p+4NFctbTfZLLXo9TUVI4fP06zZs3sEmcWqaV79uzZfPXVV/nus3r1aho3bpzvPnm5/fbbLcvmRGp9+/a1tH7nRa/Xl9kPfWvlpZyO1qSlPy76DDINrhyL9L6hv8mZKO2fvns/v5zn0sOMNxK595lMerU6SFCbNuX+y67UI8d77JE01j2nlr/7MpVbhhX89966RftANZmciDuTQEBI/SJf+3Ky9rbs5ePmsNda6lHBmtaLJfGoFnS3bV+JHG8xettkRwAf/diN46f38s+edmRkVWLFNu3G4oPDInB2uXnGtpXpeqQHN0+3gvcrJA8vd3qHqtc1OqEe4buOs29HPIlXVA+XkX120qprV5pngbdXFgmJ2v9y3RrnWb/FkyHD4H//g9hYHYP6JPC/9ZWoUduz2GVatyKGw4fV+0xCgo79+/V0tG1Y51JcEsMfbk5qejVYApUnpVGlmolLSdrr9sZbnnz1mda747F7o3F2aQwZub+2rq4QFKTP8f8AtknRzp51suxz6ZJKXAmqG7Ozs97S89Se9cjdXSVCPHYMDh3SkZ6uZ/BgOH1ajZM+cwYK6EDpMOYx3T4+unyfr16v5RAAlWjt++8hLU1nmRK1Qwf1NwTb8fXHjukZOlQtW0+v1r69U66vV/brhoTAf/9p60JC8i9rWVJa70d6PTz3HJZpPefM0WMdLmUfa//JJ05MmKD+j+xUAqjVVf1YuxoBJz8HQJd+AWJXkNc3YP2lPeBl1a/Fuy0MUhWofH9rLjpzPbJ3XSpSIrVHH32U1atX5/vToEEDuxWuQYMG1KhRg8jIyIJ3FuWGs6szTXxVdpXjZ/0wZBa/i03E2evd1HQG/PKYEuausV24ctnA2j3lP+AWJWPYmHbUqKamgPp1XVuSLhQ8BGLjIdu0sFEni5dQLemy1jru6W2/gEEUXdMA29c9NLRwxzm7OvP7P0FMeGADtT0vWNa76DN48Kni57AQpe/2/lr37VW/xfLpEq1B4JkXVLdhZ2fVi8vaxCePUrV6ZX78UY1XBtgXXpuBvWJITsw5jcfl+MukXSl4to3PPrDNVJZb9uR/fj2iAu7rrmVW4VKSuiGg12utbdEJahyosz6TB8fnPztAcLBtEkpr1l8DracNs+6x2dK+HXhyMP+vpqerm2KnT6vHyckwb55jr50Xo1ElHoOcSdQKYj1Fl5n1zRXr7OLWGcytk6gVciIhm/m6IWcSNZG7MWPUDR9QN3fitJkmcwTdsbEqI7/DOVWC1jPA93Zwcc+53cUDGoyADp9BnX4lUKCKrUhBd82aNWncuHG+P672u23D+fPnSUpKKnJiNVH2Bfmr273pmZWJOna22Oc5fV6lSa3vfR6XSnl35a1crbIE3KLQKlerzAODVdrbtIyq/Py5bSbqjAyVldfcSpOaaptRFiDqdPHGayYZtKxDN9ICJm5cYJMsm8fZv4zmx62GG7N/7M3ZC16s+20fbz61gZU/HqRx65unlbsiun1kgGV53o8h7NqtvkaFhkKXQVokOeoB7Quuj/sFnnhFRUh168L/Vpynlof6DNx1rAW39TxjE2Dv/PsQPnWr0KBeKv/+YtXkmE3MiXMs39zBZt36P3PmuFm1SusaPKTbTnxqXMXFBe6/H8LDdfzy2XYqu2jXv7P7ngKns8srczmoFtrq6v5DqQXd1hnMv/jCdtvHH9t3utLCunRJ+8wo6tfaW2/Nua6D1UsfFKT1KLYO8MwjO3U6279JfrK/z2WfLkzkzt0dnnhCLaenq2zloF5380wo1jdbPvgg70zndlPVF5q9BL1Xqkzid0bBoEPQbxsM3AMjEqDHb9B0LLgFOLgwwmFThsXGxhIeHk5sbCwGg4Hw8HDCw8NJscqVP3DgQNauXQtASkoK7777LmFhYcTExLB9+3aefvpp/P396dGjh6OKKUpJcNNrluWjYXH57Jm3y5fh0hXVEtgoJPdWbiGK67Hx2py70+c25a7e2xnaL4qQEKhWTU0VctttqvVi507IzLQ9PupMthWFlJSmujO7uqrgX5SepkHajbz6NWOK3DoFoHfRc8uINkz9vDf97y18JnxRNjVu7U9QPdVsGpuoRU7jxtnmKOoxpBWDu+zCWZ/J3OknqequjQds1q4u/1udhFd11ey57Ugr5s/YZdn+6cdJZBpcSbzixW33h/L117mX5cvZx1TWfCtb9vqSma699xgyDazZppKKuVW+wq9r23A+wY30dFi4UE2RePfYLqz/8xR+PjFUr5LMq1Nz73vtq70l5ht063TatGFRUVpgkdd0YY6QW68Uc8v8pUvw2WeFO4/JBN98A5Mn38BUT9dZTxdW1KC7bt2cf3ProLtKFa1bf3i4KndGhjZlWmCg1gpbkOyvjbR0F96zz2rvAytWqN+HrXLX3X231kNh/35Yt64EC+fkDNUagGcI+HSBmu3UOlFiHBZ0z507l6FDhzJv3jxSU1MZOnQoQ4cO5dChQ5Z9IiIiuKLmPkCv13P8+HHGjh3LwIEDefXVVwkJCWHRokV2bT0XZUNQsPaPfuxwaj575i0iQltu2FBasYV9teoeSIdA9WkZe7Euv2/swh//+nHkiEqaArB2LaxYlsrGjTmPj4ou3ttrUpL67emZM9GoKFmBzbXu/aH++/LZU1Qkg3rbdun28IB777Xdx0nvxIptHbmW5sSoZ7KNswRadG3KisXatARLV3oCtkEyQFaWE48/Dk8+CfvDTJiMKoLNSMvgy19UE6TeKYverVX9TEl3Y/e/Ry3H7/5fOAnJ6m5Rvw6Hca3iipNTzveWzgNbcCqmDgmJlWnTO5jc9NJm5sw36AYt6E5P14JN6zmzCzr+RmUPuvV6Nce4+Xl/8EHhgugvv4THHlNzMb///o2VKSFBWy5OB07rLuYBATnPYU7cdfWqGjt/6JA233lhu5aDbUu3s7MK2EXhNGig9eIIC1ONQ9ZBd0iIbQ6QL78s0eKJUuawoHvWrFkcO3Ysx0+nTlpCmWPHjjF8+HAAKleuzDfffMP27ds5dOgQ69at4+2338a7OE0LoswLaqFlCDl2vHiRhW3QfaMlEiKnaa+n4uqcbrPOxQUCA7U+YdNfOcPGP49kP5Soy8VrHrAOukXpat2rJb1ahVHFNZWnX6xT2sURZcTtd1a3efzIwyaqVct9X71L3ol4ugxqSWA99UG29XALEmISbYJkLw+tD/SXX0JoGx3N/U8zotd2BnY9TFxSLQCG9tjN/SO14Szr/9bySaxaqkV6t9+Wf+8bZ1dnXKvk3cjx1FMqm3ZISO5jjK2Zg27QWrvNbS7+/oVvdS2u2rVV67DZmDFqWrF77lGPExIKDngOHYLnn9ce/+9/N1Ym65bu4ny1tf6bd+iQc7t1N/AjR2CX1nmCdkXoZFOzpta63b69PZN9VQzmm1NGI2zdatvdv3lzGDoUaql/XZYts70ZI25uDgu6hchPUBstq3P4yeJ9+krQLRzttgc6cDEhi5gT59TP6WRSUuBoOIQ2Uq1Je040Z8M+9W3HzyeGSpXUsVFxXnmdNk9Gg5HLl1VA7+lRtqdoqQic9E6s39eaixeduO2BXL7ligqpx+AWVK+sBcRPPxydz975u/NWlSjWaNKz8qdwVi/TIrNZE/fz2We2Qc/RmMYs3dSF9WHaAN1xz1Smz2Atyl2/RftMXb2+tmX5tpFNi11OUAFYQoJqsa5SwCxs2YPuyEi43rHR4V3LzcwjE6tUgTfeUMuvvqptz28yntRUGDUKrmkj4di9W2s5Lo4b6V4OKuju0EENbxo7Nuf27EH3/Pna486di3atxYvhtdfgu++KXs6KrmdPbXnTppwt3a6u8NBD6nFmpkq6JioGCbpFqahZtwb1vVTXuq1HWlqSTBTF6V07LMuN6p63V9GEsFHNoxr1mtRVPw3dcXEBnZOO116+lGPf3u3OWDL3RkYWPUnKlYvJmEyq54enKe8ESqLk6Jx0MrZe2HCt4spLj/6HTmdk7IhNNA31K/igPNx5d03L8p8rnVm1TutRMeiepowdq5I2fvop9GgdnuP4wV120XtYKA1b+OHno+bj2nqoGemp6ZyLSee/k6rPcZvG4fg2vvHeGpUqgVMhvjlmD7pLMoma2YcfqiD7n3+gnkrMTosWWtB/4oSW2Cy7CRNsgyVQXeX35THKJCnJNkDPzY0G3ZUqqfwhCQlwyy05t1vPC/3pp6p7M6ibJUUNulu0gLffVgnaRNFYp6GyDrq9vbUW7kcf1fb5+usSSKgmygQJukWpefAh1SSYlaXP945zXiLOaN32ZEy3KGnDHu9EiN8Jm3U9exotXzavXlXjuYoiKf6KZdnT/QaaVIQQDvXGp71JuZzOZ7/1LHjnfHQeEIKPu4rG1uxonWuQXKsWPP00bAprRtKFy5w9eZ6zJ88TFxnPim0d0Tnp0DnpuKXDGUBNCbZz7VFW/13Jcp3bhxW9582NyB50W4/nLqmgu149mD4dune3Xd+4sfqdlaXNG24tKkrLeF6lCjzzjLZt+/ac+//yi7qWn1/u5zO70THdoMakV87jHqB10H3qlLb82muSH6Qk1a6tptQD1cX//PU2IeuEdMHBWr08cgR27EBUABJ0i1Lz1HNeljvm8+dr2Z+NBiMJMQXPcRwRq1oIKrukUSeglqOKKUSunPROvDoh3mZdz4F+tl82TxVt2rBLCVpSQU/3rHz2FEKUtirVC+hjXQh6Fz2DexwDVLBsdnuf3Gf18PDxwLdxHXwb18kxrdctvbXlOR9csUxZBHD7iJL9jMyvpbukupfnpVEjbdk8f7e1rVu15RdesG2V3GY7/TpLl8J996nu6PHx+Y8Tv9GW7oK4u2st+matWsEdd9j/WiJ/5i7m1j0psk+99thj2vI33zi+TKL0SdAtSo2fn/ZhEBsLf/wBZ0+eo3XjU9Tyq8GPH27J81iT0UTEeTVNWEDtWJmDW5SKkWM70ayBalIIrBdBk9b++FXeZNkedShnd9D8JCVoc+XKmG4hKoY7R+bMqjVoWNEzbd1yh5bcZOnm7uzdq5a9vXNPvOVI9eppravLl8OSJWrZ1VVNU1aaCgq6d+7Ulnv0UF2t3a5PZGDd0r1ihRr3bR1Y/fijSqAFamqyCRNUSzjceCK1wsge2L36auGGAwj76plLB5jsU6/ddZeWUHDxYi3ngbh5yb+iKFXjxmnL702N4dbeaRyKbIrJ5MTCn/MeR3n+zAVLq0CjehcdXUwhcqV30bN2XVXeGreBZb8b0Dnp8PPTbgBFRaTlc3ROSRe1TOmSvVyIiqHviGCbLsPe7gl07Nss7wPy4Bdcj1YNj9ms0+ng5ZfVlFklycUFfNV9cZugtGNHbb7s0mIddFt3wzaz7urbsaOaNss8t3JMjBpjHxamgiZzDz3z63fmjNZSPnq0Gld+330quDcH3c7Ojnt/tw66g4NhxAjHXEfkrzBBd7Vq2lSDKSk3//Rh69apecxz+5+rKCToFqXq1lsh0E8NeNl9uD7HzmqfhmcveOR1GBHhFyzLDf2KN8+3EPZQr0ldXv+kN807NQHAr2FVy7aoyKK1Vidd1Kb08awhb89CVATVqkG/ftrjgQNd8p1qLD9LlrgwZcwGPpi4gb/XZBEbCxMn2qecRfXCCyrArl5dJfJ68kn49tvSKYu1/Fq6rZOlBQaq6bMAulpNtb59u/qbmjOZ33efbabwH36ALVtg5Ur12GCAv//Wgm5vb8eNsbZOmPb66yV/s0UoDRrknFUne9ANMH68Vhdmzix6HpjCSklRc9M//njpjB/fsQP694d580rv/agscC7tAoiKzckJnr7/GM/PzJlV9Wxi3oOeIo5r07U0DJC0j6Ls8Gtaw7IcfbZoTTpJl7QmoRo15duSEBXFPfeo7soAI+7N+4ZzQYI7NOKdDo0K3rEETJigggpX17KVyMvfX5XHZMoZdIeFacG0dQBrHXS/9x6WrvsNG8KCBarFe9w4lUDz119tx7ADrF2rJVJzxHhus7vuggsXbFtRReno2VOb2tbbO/fXvUULuP9+WLgQEhNVYPzWW/YrQ1qaSgo4a5aqF6CypQ8apK5TlPnbiyspSdVFc4+X8KKNurupSFOKKHUPvxCKR1V1e69ezXMENzgDQFKKJ1eTM3M9JuK0ltm5YROZzkeUHQ2aajeQos65FenYpCTtBpJnTdd89hRC3Ezuuw/mzoXPPoM77yzt0thPpUplK+AGVab69dVy9qDbejx3p07asnUAbg64QU2r5eqqglxzV+7Ll23PA2raMvOUYo4azw2q6/qzz8KYMWXv717R9OqlLefWym02bZo25OLDDyEu9xyKRbZliwrqX3xRC7jNVq9WU8lNm1a06coSEuC551SPlezHxcZq+QzMTCbVw+XMGW1d9rJUJBJ0i1Ln4ePB30ujefOpDWzfZqJtjwDLtrPncm8pPB2hddJoFOTp4BIKUXhV3avi7a6aNKLiijZNT9Jl7VuSZ025mSRERaHTqampxo6VYKkkmKcNS0y07dJr3fXWOuiuUcN2Si5QmcGtW5NHj855HfO49pQUbZ0jW7pF2XHrrVow3a1b3vs1agRPPKGWU1JgyhTV42L/fq3XRUG2boUHH1Rdt3/4QeVx6NnT9qbSPffAnDmq67vZ1Kmq3qan5zhlrqZOVTcHx4xRU9GZTCpz/z33qOSJISFqmjRQU/K9+66WSNAsMVFtq4ike7koEzoNaEGnAWrZfAca4OxZCArKuX9EjNaC2LB5XQeXToii8asVT0KyN2cT65CVkYWza+HeapMua13KPb2r5rOnEEKI4mrUCDZsUMsRERAaqpbNLdSVK+ec2qxLF9uuse+8Y5sZvHdv9f3FPFd3hw4qOHnqKdvzSNBdMfj5qVl59u2zTRqcm9deU8MUUlNVK7I590HDhmqoQrVqeR97+jTcdlve2c+7doXPP9fq85NPwvvvwxtvqKB54UKIjIRly8CrgHaCNWu05Rkz1LCKjRu1QPvoUXW9xx9XidOOH9f2r11ba8VPSIA6OUeV3vSkpVuUOdbzTJo/vLKLSAwGoIZ7Kh4+xR//JoQj+NVRTScGozPnIgrflypJrzWtePrWy2dPIYQQxZVbMrX4eG25XbucWdatx3V36wa332673clJBdlms2bZJsgzk6C74rjtNtVy7VHA19Q6dVQ38OwiIlTwmpeMDDVtXW4Bt6uramnetMn2BlKlSirI/+03qKImAWLzZjWEwjpIvnhR3QQwi4rKORzj/fe1gNvMYFDjyK3P9fLLMHiw9riidjGXoFuUOdYt3dZB95WLVzh3Oo7MTIiOvT5dWFNpDRRlj189ra9W1ImEQh+XlKx9y/P0ku7lQgjhCLkF3dbjsK3HcJvdfbfqPlunDnz6ae7DAF59VY3L/eMP6NNHXScgwHYfCbpFbt54Q92oeeop2xs6u3fnfcxrr2nbmzRRGfNnz1bdwPftU93N88pgP3y4aqU2tzifPKl6c0ydquq/l5eqv9HRavv69dqx2XuB1K8Pe/ao5GzOVh37evVSQf9770GtWtr6ihp0S/dyUebUr3kWUK18Z8O2AV25eO4SzZtnEpdUm2YNTmM0qk/M7FMyCFEW+PlpGUaiTqeQz3AuG5cuqd+VKmEzb68QQgj7KSjoth7PbebuDocOqZa8vAIZFxc1VZq1vn1VxmgzRyZSE+WXiwtMmqSWIyNh1Sq1nL0l2eyvv1RLs/nYxYtVD43sPTDy06GDqveDB6tu7BcvquRqZnFxqmv6jBm2QffcuSqof/VVNYf9okUqf0G7djBkiBrHfeutcMst2s0pCbqlpVuUQfXqa9UyJlZ9sv1v+VHiktR/bHi09mkpQbcoi/xat7YsR6V1KfRxSUnqt6enfcsjhBBCk1vQbZ1ELbeWbrOizn3dt6/tY2npFgXx89Pqye7dOTOFb9+uel6YzZpV/Om//PxUpvOBA3PfvnChykpuDrorV1b/H88/r76zrF+vJQwEaN1a5Tvo08e2N4gE3RJ0izKojn8t9E4qtWFMnDsA4YdyT63Ypk2JFUuIQvNros3VHRVV+OOSLqp67ul21d5FEkIIcZ23N7hdz8d6+rTKpmxuUaxb13aY243q08f2sQTdoiA6nWpBBtX6bD2WevduFSBfvf414c47VQB8I9zdYcUK+OQT1ap95IiayxtU9/IFC7TvMt26qd54kDPvQX4k6JagW5RBehc9dWuo/8izCSqV4pGj2pzFK7/fzfvvGZk7F+66q1SKKES+/Py05cjIwh1jyDSQfFV9knm6nLF/oYQQQgAqqDG3dp85o5JKJSerx9262XfaNh8fLTs62AYfQuSlQwdt2Txu++BB6N9fq6t9+6pu5U52iOacnVWW9VdeUdPjWU+BN3GitnzLLcU7vwTdEnSLMqq+TyIAcUm1yEjLIDxCBd/O+kz63xPKSy878cwzRbvLJkRJqV1bm+Jjzx7VNasgyRe19KOe1a85qGRCCCFAC7ozM1WgYfbkk/a/1uTJqlvuyJESdIvCMbd0g9YL45lntGFovXurhH2Oyv8yZIhqAQfV2m4mQXfxSdAtyqR6tbXutdHHz3Esxh+Apr5RuFSSSFuUbU5OcEsPNddGXBwc2HK8gCMgKd466M5wWNmEEELYjus+c0b9btVKJYCyt3vuUa2TS5bY/9zi5pS9pfv4cZVtHKBpU9UdvKoDJ/CpUsV23DioxgTrchWFdQJBCbqFKEPq+2pBx+a/o0nPVLfymjeqoP+potwZ0F6b5+Pv5bEF7p+UkGJZruGZ6ZAyCSGEUKyDbrMJE+zbtdya9MwTReHtrSUL3rsX5s/Xtj31lJaTwJGsu5gDdO9e/Hrs7KymIQMJuu0uJiaGKVOm0KdPH1q1akXfvn2ZO3cuGRn5t+Ckp6czbdo0OnXqRJs2bXjmmWdISCj8PLfi5lC/npaqce2/2idgs8DcE6oJUdYMGB5gWf5rnUeB+yclplmWPT0K0R9dCCFEsWUPun19YdSo0imLELkxtyqnpam54UEFvQ8+WDLX794d/P21x8XtWm5m7mIuQbednT59GpPJxFtvvcWqVat45ZVXWLx4MR999FG+x82YMYP169fz8ccf8+OPP3LhwgXGjx/vqGKKMqpeAy1x2tpdzSzLzVvIrWJRPjQJ9adRHZVFbeuhEK5eyj8juTlzOciUYUII4WjZg+5nngFX19z3FaI0WI/rTr/+FeHOO0suA76TE4wZoz02ZzQvLnPQnZKifioaZ0eduGfPnvTs2dPyuEGDBkRERPDzzz8zyTz7ezZXrlzh999/Z/bs2XTpoua2nTFjBoMGDSIsLIxQ6/SP4qZWP0DrNxN/uaZluVnXtqVRHCGKTKeDAd0i+fx3fzINrqxfHsYdj3TMc/+ki1qXcs8aMvJHCCEcyd9fvU+bTGqsqiMSqAlxI3IbP/3YYyVbhkmTVLK2Ro2gZcsbO5d1MrX4eC3hbEXhsKA7N1euXMHDI+9ulocOHSIzM5OuXbta1jVu3BhfX998g26DwYDBYLB3ce3GXLayXMaypm7jOjnW6XQmmgS7Vti/o9Sj8qffQFc+/10t/7U6jUGj837tLl3Msiy7e+od9jpLPRL2IPWogjAY0FsWDWDn17s065GLCzz5pI6vvtLx1lsm3N1N9n56ooTcrO9HrVuDk5MTRqMaZunnZ+KWW4wlWk/1enjxRbV8o9f18dFh7mR9/ryBBg1u7Hz2lr0e2bs+lVjQHRkZycKFC/Ns5QZISEjAxcUFd3OO+uu8vLyIj4/P87jjxwvODFwWHDx4sLSLUG5kZOgA23k1fH0zOHbsUOkUqAyRelR++DQx4KzPJMvgwl+b/QkLC8tz3+gYra9VWnpivvvag9QjYQ9Sj25uTmlptLm+fODAAYxVqjjkOqVVjx57DB5+WCV5cvBbrigBN+P7UcOGzTl1Sv3fDRx4joMHz5VyiYrPYKgL+AKwc+dpXFySS7dAeXBUPSpy0D179my++uqrfPdZvXo1jRs3tjyOi4vjscceY+DAgYwcObLopSxAYGAgVR2ZN/8GGQwGDh48SMuWLdHr9QUfIADw8TERH68lUQsNda3QQwykHpVP3UIOsPFAG07HBVBdb6JxS79c9/vOKmVucEhjQkOb5brfjZJ6JOxB6lEFYTXwslWrVnbvDyr1SNjDzVyPbr9dx9y54OpqYvLk2vj51S7tIhVbq1ba9xw3t8aEhpry2bvkZa9Hqampdm3YLXLQ/eijjzJs2LB892lg1V8gLi6O0aNH06ZNG95+++18j/P29iYzM5Pk5GSb1u7ExER88skaoNfry8U/WXkpZ1lRv74a82HWPCAGvb6M9UUpBVKPypcBt1xm4wG1/O+yKAJDG+a632UnLV+BV6MWOPollnok7EHq0U3O6rXV6/U46o1J6pGwh5uxHk2bBnXrQseOOho2LN/PrY7VyNGEBCeHf88pLnM9snddKnLQXbNmTWrWrFnwjmgBd0hICDNnzsTJKf/kQC1atMDFxYXt27czYMAAQGVBj42NrdAtnBVV/XoG9u3TKnxzv0hAgm5RvgwcWocpc9Tyyr+r8fS03PdLStKWJXu5EEIIITw9YfLk0i6FfVgnUquI04Y5LEVuXFwcDz74IHXr1mXSpElcvHiR+Ph4m7HZcXFxDBw4kAMHVDNQ9erVGTFiBLNmzWLHjh0cOnSIKVOm0KZNGwm6K6B6rlttHjdrXaOUSiJE8bXuEUiDWgkArN3bjsTE3PezDrrzyTcphBBCCFHuVPSg22GJ1LZu3UpkZCSRkZE2U4cBHDt2DIDMzEwiIiJIS0uzbJsyZQpOTk48++yzZGRk0L17d958801HFVOUYfXrGW0eN2svrdyi/HHSO3HPaG9mz4asLB1Ll8Ljj4PJaGLe65s4c8bE2591IClJjZWsXFn9CCGEEELcLCTodpDhw4czfPjwfPepX7++JQA3q1SpEm+++aYE2oL6DbSu5fVqxODuVb8USyNE8Y0aBbNnq+XFi1XQ/evn23luRi8AjG7nSIpLBXyo4ZYEeJZSSYUQQggh7M/DQ03Vl5lZMYNuh3UvF+JG1aubaVluXu9IKZZEiBvTti00aaKW16+H6MhMXpuhZRRZsLg2Cddbuj2r5NH/XAghhBCinNLptNZuCbqFKENadGuBq3M6AN17lNiU8kLYnU4Ho+5RwyVMJhgx4BQnYhtZticnO5GWoaY99HRLLZUyCiGEEEI4knXQbSpbM4Y5nATdosyq07AWqxYd5oOJG5gws1NpF0eIGzLq9tOW5d3HgvPcz7P6tZIojhBCCCFEiTIH3VlZtglkKwIJukWZ1ndkW158tzfVPKqVdlGEuCEhXZrQwv+Ezbqh3XfQpYvtfp7uGSVYKiGEEEKIklGRk6lJ0C2EECVk1JCzlmUnnYHp73kzboztp46nh6GkiyWEEEII4XASdAshhHC4ex9vRCUX1X384du3EdKlCXfd64GPu/bJ41ktubSKJ4QQQgjhMBJ0CyGEcLhGLf34a/FR5kzZyOe/qDwFlapW4vEhGy371PR2Ka3iCSGEEEI4TEUOuiUltBBClKDew0PpPdx23XPv9GbphlMkp1Zl2Oi8k6wJIYQQQpRXEnQLIYQoNbX8fAiP9sGQaUDvoi/t4gghhBBC2F1FDrqle7kQQpQREnALIYQQ4mZVp462fOVK6ZWjNEjQLYQQQgghhBDCoerXh/vvhxo14N57S7s0JUu6lwshhBBCCCGEcLiFC8FoBKcK1vRbwZ6uEEIIIYQQQojSUtECbpCgWwghhBBCCCGEcBgJuoUQQgghhBBCCAcp12O6jUYjAGlpaaVckvwZDAYAUlNT0eslO7EoHqlHwh6kHgl7kHpUQVy7BkFB2rJOZ9fTSz0S9iD1SNhD9npkji/N8eaN0plMJpNdzlQKEhMTOXPmTGkXQwghhBBCCCHETSYgIAAvL68bPk+5DrqzsrK4fPkylSpVwqkijsgXQgghhBBCCGFXRqOR9PR0PDw8cHa+8c7h5TroFkIIIYQQQgghyjJpHhZCCCGEEEIIIRxEgm4hhBBCCCGEEMJBJOgWQgghhBBCCCEcRIJuIYQQQgghhBDCQSToLgGLFi2iT58+tGzZkrvvvpsDBw6UdpFEGTZv3jyCgoJsfgYOHGjZnp6ezrRp0+jUqRNt2rThmWeeISEhoRRLLMqC3bt389RTT9G9e3eCgoL4999/bbabTCbmzJlD9+7dadWqFQ8//HCOKReTkpKYMGECbdu2pX379kyZMoWUlJQSfBaitBVUjyZPnpzj/WnMmDE2+0g9qtjmz5/PiBEjaNOmDV26dOHpp5/m9OnTNvsU5nMsNjaWJ554gtatW9OlSxfeffddsrKySvKpiFJUmHr04IMP5ng/euONN2z2kXpUsf3000/ccccdtG3blrZt23LPPfewceNGy/aSfC+SoNvBVq9ezcyZMxk3bhzLli0jODiYMWPGkJiYWNpFE2VY06ZN2bJli+Xnp59+smybMWMG69ev5+OPP+bHH3/kwoULjB8/vhRLK8qC1NRUgoKCePPNN3Pd/tVXX/Hjjz8ydepUfvnlF6pUqcKYMWNIT0+37PPSSy9x8uRJFixYwBdffMGePXtyfIERN7eC6hFAjx49bN6fPvzwQ5vtUo8qtl27dnH//ffzyy+/sGDBArKyshgzZgypqamWfQr6HDMYDDz55JNkZmayePFiZs2axbJly5g7d25pPCVRCgpTjwBGjhxp8340ceJEyzapR6JOnTq89NJLLF26lN9//53OnTszbtw4Tpw4AZTwe5FJONRdd91lmjZtmuWxwWAwde/e3TR//vxSLJUoy+bOnWsaMmRIrtuSk5NNISEhpjVr1ljWnTx50hQYGGjat29fCZVQlHWBgYGmtWvXWh4bjUZTt27dTF9//bVlXXJysqlFixamlStXmkwmrR4dOHDAss/GjRtNQUFBpvPnz5dc4UWZkb0emUwm06RJk0xjx47N8xipRyK7xMREU2BgoGnXrl0mk6lwn2MbNmwwBQcHm+Lj4y37/PTTT6a2bdua0tPTS7T8omzIXo9MJpPpgQceME2fPj3PY6Qeidx06NDB9Msvv5T4e5G0dDtQRkYGhw8fpmvXrpZ1Tk5OdO3alX379pViyURZFxkZSffu3bn11luZMGECsbGxABw6dIjMzEybOtW4cWN8fX0JCwsrpdKKsi4mJob4+HibelO9enVat25teS/at28f7u7utGzZ0rJP165dcXJykiExwsauXbvo0qULAwYM4M033+TSpUuWbVKPRHZXrlwBwMPDAyjc51hYWBiBgYF4e3tb9unevTtXr17l5MmTJVd4UWZkr0dmK1asoFOnTgwePJgPPviAtLQ0yzapR8KawWBg1apVpKam0qZNmxJ/L3K2y7MQubp06RIGgwEvLy+b9V5eXjnGpQhh1qpVK2bOnEnDhg2Jj4/n008/5f7772fFihUkJCTg4uKCu7u7zTFeXl7Ex8eXUolFWWeuG7m9F5nHLiUkJFCzZk2b7c7Oznh4eEjdEhY9evSgX79+1K9fn+joaD788EMef/xxlixZgl6vl3okbBiNRmbMmEHbtm0JDAwEKNTnWEJCgs2XXMDyWOpRxZNbPQIYPHgwvr6+1KpVi2PHjjF79mwiIiL45JNPAKlHQjl27BijRo0iPT2dqlWr8umnn9KkSRPCw8NL9L1Igm4hyphevXpZloODg2ndujW33HILa9asoXLlyqVYMiFERXf77bdbls2Ji/r27Wtp/RbC2rRp0zhx4oRNXhIhiiqvenTPPfdYloOCgvDx8eHhhx8mKioKPz+/ki6mKKMaNmzI8uXLuXLlCn///TeTJk1i4cKFJV4O6V7uQDVq1ECv1+dImpaYmJjjrokQeXF3dycgIICoqCi8vb3JzMwkOTnZZp/ExER8fHxKqYSirDPXjfzei7y9vbl48aLN9qysLC5fvix1S+SpQYMG1KhRg8jISEDqkdC89dZbbNiwge+//546depY1hfmc8zb2ztHBmHzY6lHFUte9Sg3rVu3BrB5P5J6JFxdXfH396dFixZMmDCB4OBgfvjhhxJ/L5Kg24FcXV0JCQlh+/btlnVGo5Ht27fTpk2bUiyZKE9SUlKIjo7Gx8eHFi1a4OLiYlOnTp8+TWxsLKGhoaVXSFGm1a9fHx8fH5t6c/XqVfbv3295L2rTpg3JyckcOnTIss+OHTswGo20atWqxMssyofz58+TlJRk+fIh9UiYTCbeeust1q5dy/fff0+DBg1sthfmcyw0NJTjx4/b3Cjctm0bbm5uNGnSpESehyhdBdWj3ISHhwNaMCT1SOTGaDSSkZFR4u9F0r3cwR555BEmTZpEixYtaNWqFd9//z1paWkMHz68tIsmyqh3332XW265BV9fXy5cuMC8efNwcnJi8ODBVK9enREjRjBr1iw8PDxwc3Nj+vTptGnTRoLuCi4lJYWoqCjL45iYGMLDw/Hw8MDX15fRo0fz+eef4+/vT/369ZkzZw61atWib9++gEoe0qNHD15//XWmTZtGZmYmb7/9Nrfffju1a9curaclSlh+9cjDw4NPPvmEAQMG4O3tTXR0NO+//z7+/v706NEDkHokVFfglStX8tlnn1GtWjXLuMfq1atTuXLlQn2Ode/enSZNmjBx4kRefvll4uPj+fjjj7n//vtxdXUtxWcnSkpB9SgqKooVK1bQq1cvPD09OXbsGDNnzqRDhw4EBwcDUo8EfPDBB/Ts2ZO6deuSkpLCypUr2bVrF998802JvxfpTCaTyQHPUVhZuHAh33zzDfHx8TRr1ozXXnvN0gVGiOxeeOEFdu/eTVJSEjVr1qRdu3a88MILlvFJ6enpzJo1i1WrVpGRkUH37t158803patUBbdz505Gjx6dY/2wYcOYNWsWJpOJuXPn8ssvv5CcnEy7du148803adiwoWXfpKQk3n77bdatW4eTkxP9+/fntddeo1q1aiX5VEQpyq8eTZ06lXHjxnHkyBGuXLlCrVq16NatG88995zNkCmpRxVbUFBQrutnzpxpaXAozOfY2bNnmTp1Krt27aJKlSoMGzaMCRMm4Ows7UUVQUH16Ny5c7z88sucOHGC1NRU6tatS9++fXn66adxc3Oz7C/1qGKbMmUKO3bs4MKFC1SvXp2goCAef/xxunXrBpTse5EE3UIIIYQQQgghhIPImG4hhBBCCCGEEMJBJOgWQgghhBBCCCEcRIJuIYQQQgghhBDCQSToFkIIIYQQQgghHESCbiGEEEIIIYQQwkEk6BZCCCGEEEIIIRxEgm4hhBBCCCGEEMJBJOgWQgghhBBCCCEcRIJuIYQQQgghhBDCQSToFkIIIYQQQgghHESCbiGEEEIIIYQQwkEk6BZCCCGEEEIIIRxEgm4hhBBCCCGEEMJBJOgWQgghhBBCCCEcRIJuIYQQQgghhBDCQSToFkIIIYQQQgghHESCbiGEEEIIIYQQwkEk6BZCCCEqgJ07dxIUFMTOnTtLuyhCCCFEhSJBtxBCiApv6dKlBAUF5fkTFhZW2kUskxISEnjllVfo0qULrVq1YtiwYaxZsybP/VevXs0999xDaGgo7du3Z9SoUWzfvj3P/ffs2WN5DS5evJhvWR555BGCgoJ46623iv18hBBCCEdwLu0CCCGEEGXFs88+S/369XOs9/PzK4XSlG1Xr17lvvvuIyEhgdGjR+Pj48OaNWt4/vnnycrK4o477rDZf968eXz66acMGDCAYcOGkZWVxfHjx4mLi8v1/EajkenTp1O1alVSU1PzLcs///wjN0aEEEKUWRJ0CyGEENf17NmTli1blnYxyoXFixcTGRnJd999R5cuXQC49957GTlyJO+++y4DBgzA1dUVgLCwMD799FMmT57Mww8/XKjzL1myhHPnznHXXXfxww8/5Llfeno6s2bN4rHHHmPu3Lk3/LyEEEIIe5Pu5UIIIUQhzZ07l+Dg4Bxdol9//XVatGjB0aNHAcjIyGDOnDkMHz6cdu3aERoayn333ceOHTtsjouJiSEoKIhvvvmGRYsWceutt9K6dWseffRRzp07h8lk4tNPP6Vnz560atWKsWPHkpSUZHOOPn368OSTT7JlyxbuvPNOWrZsyaBBg/jnn38K9Zz279/PmDFjaNeuHa1bt+aBBx5g7969BR63Z88eatasaQm4AZycnLjtttuIj49n9+7dlvXff/893t7ejB49GpPJREpKSr7nTkpK4uOPP+bZZ5/F3d09332/+uorTCYTY8aMKbDMQgghRGmQoFsIIYS47urVq1y8eNHm59KlS5btY8eOpVmzZrz66qtcvXoVgM2bN/PLL7/w9NNPExwcbDnPr7/+SseOHXnppZcYP348Fy9e5LHHHiM8PDzHdVesWMFPP/3Egw8+yCOPPMKuXbt4/vnn+fjjj9m8eTOPP/44I0eOZP369bz77rs5jj9z5gwvvPACPXv2ZMKECej1ep577jm2bt2a7/Pdvn07999/PykpKYwfP54XXniB5ORkHnroIQ4cOJDvsZmZmVSuXDnHevO6w4cP21ynZcuW/PDDD3Tu3Jm2bdvSvXt3Fi5cmOu558yZg4+PD6NGjcq3DLGxsXz11Ve89NJLuZZFCCGEKAuke7kQQghxXW5dn11dXTl48CAALi4uvPvuuwwfPpxZs2YxceJEXn31VVq0aMETTzxhOcbDw4N169ZZulcDjBw5kttuu40ff/yRGTNm2FwjLi6Of/75h+rVqwNqPPP8+fO5du0av//+O87O6uP60qVLrFixgmnTptmc+8yZM8ybN4/+/fsDcNdddzFw4EBmz55Nt27dcn2uJpOJqVOn0qlTJ77++mt0Oh0Ao0aN4vbbb+fjjz/m22+/zfNv1bBhQ7Zt28bZs2epV6+eZb25ldw8Vvvy5ctcunSJ//77jx07djB+/Hjq1q3L0qVLefvtt3F2drYJro8ePcqSJUv48ssv0ev1eV4fYNasWTRr1ozbb7893/2EEEKI0iRBtxBCCHHdG2+8QcOGDW3WOTnZdgoLDAzk2Wef5YMPPuDYsWNcunSJb7/91hIYA+j1ekvAaDQaSU5Oxmg00qJFC44cOZLjugMHDrQE3ACtWrUCYMiQITbnbdWqFStXriQuLo4GDRpY1teqVYt+/fpZHru5uTF06FC++uor4uPj8fHxyXHN8PBwzpw5w9ixY21a8wG6dOnCH3/8gdFozPH8ze666y4WL17M888/zyuvvIK3tzdr1qxh7dq1AFy7dg3AkgQtKSmJjz76iEGDBlme8x133MHnn39uE3S/88479OzZk+7du+d6XbMdO3bwzz//8Msvv+S7nxBCCFHaJOgWQgghrmvVqlWhEqmNGTOGVatWceDAAV588UWaNGmSY59ly5bx7bffEhERQWZmpmV9btnR69ata/PYHIDntf7y5cs2Qbe/v7+lpdosICAAgLNnz+YadJ85cwaASZMm5fU0uXLlCh4eHrluCw4OZvbs2bz55pvce++9APj4+DBlyhSmTp1K1apVAahUqRKgegkMGDDAcrx5/Pe8efOIjY3F19eX1atXs2/fPlasWJFnmQCysrJ45513uPPOOy03KIQQQoiySoJuIYQQooiio6OJjIwE4Pjx4zm2//HHH0yePJm+ffsyZswYvLy80Ov1zJ8/n+jo6Bz759WNOq9WZpPJdAOltz3HxIkTadasWa77mAPnvAwcOJA+ffpw9OhRjEYjzZs3Z9euXYAW9Ht6elKpUiXc3d1zPE8vLy8AkpOT8fX15b333mPAgAG4uLgQExNj2QZw/vx5MjMzqV27NsuXLyciIoJp06ZZ9jNLSUkhJiYGLy8vqlSpUoS/iBBCCOEYEnQLIYQQRWA0Gpk8eTJubm489NBDfPHFFwwYMMAynhrg77//pkGDBnzyySc2LdCOmtIqMjISk8lkcy1zS7b1eGtr5pZyNzc3unbtWuxru7q62rQ2b9u2DcByTicnJ5o1a8bBgwfJyMiwGYt+4cIFAGrUqAHAuXPnWLlyJStXrsxxnWHDhhEcHMwff/zBuXPnyMzMtLSwW1u+fDnLly/n008/pW/fvsV+XkIIIYS9SNAthBBCFMGCBQvYt28fn3/+Ob1792bnzp1MnTqV9u3bU7NmTUBrubYOhPfv309YWBi+vr52L9OFCxdYu3atJfC/evUqy5cvp1mzZrl2LQdo0aIFfn5+fPvttwwePJhq1arZbL948aLl+RTWmTNnWLx4MbfccovN2PjbbruNsLAwli9fzsiRIwE1v/aKFSto0qQJtWvXBuDTTz/Ncc5Vq1axevVq3n33XerUqQPAoEGDcm2dHzduHL169WLkyJHS7VwIIUSZIUG3EEIIcd2mTZs4ffp0jvVt27alQYMGnDp1yjL/dp8+fQCVQXvo0KFMmzaNOXPmANC7d2/++ecfxo0bR+/evYmJiWHx4sU0adLEkljMngICAnj11Vc5ePAgXl5e/P777yQmJjJz5sw8j3FycmL69Ok8/vjjDB48mOHDh1O7dm3i4uLYuXMnbm5ufPHFF/led9CgQQwcOJC6detanqOnpyfTpk2z2W/UqFH89ttvvPXWW0RERODr68sff/xBbGwsn3/+uWW/3FqmzVOs9ezZ03IToHHjxjRu3DjXMtWvX19auIUQQpQpEnQLIYQQ1+XV/XvmzJn4+voyadIkatSowZQpUyzbAgICePHFF3nnnXdYvXo1gwYNYvjw4SQkJLBkyRK2bNlCkyZNeP/99/nrr78sY57tKSAggNdff5333nuPiIgI6tevz0cffUSPHj3yPa5Tp04sWbKEzz77jIULF5KamoqPjw+tWrXinnvuKfC6wcHBLF26lISEBGrUqMHAgQN59tlnLWO1zSpXrsz333/P+++/z9KlS0lNTaVZs2bMnz+/wDIKIYQQ5Z3OZI9sLEIIIYQoFX369KFp06bMnz+/tIsihBBCiFzknhZVCCGEEEIIIYQQN0yCbiGEEEIIIYQQwkEk6BZCCCGEEEIIIRxExnQLIYQQQgghhBAOIi3dQgghhBBCCCGEgzh0yrDdu3fzzTffcOjQIeLj4/n000/znTtz586djB49Osf6LVu24OPjk2N9VlYWly9fplKlSjg5yf0DIYQQQgghhBA3xmg0kp6ejoeHB87ONx4yOzToTk1NJSgoiBEjRjB+/PhCH/fXX3/h5uZmeZx9vk+zy5cvc+bMmRstphBCCCGEEEIIYSMgICDPWLQoHBp09+rVi169ehX5OC8vL9zd3Qvcr1KlSgD4+flRuXLlIl+npBiNRk6ePEmTJk2kRV4Um9QjYQ9Sj4Q9SD2qINLS0PfsCYBh0yaoUsWup5d6JOxB6pGwh+z16Nq1a0RFRVnizRvl0KC7uIYOHUpGRgZNmzZl/PjxtGvXLtf9zP9YUVFRJVm8Yjt58mRpF0HcBKQeCXuQeiTsQerRzc0pLY02x44BsO/4cYx2DrrNpB4Je5B6JOwhez2y142cMhV0+/j4MG3aNFq0aEFGRga//voro0eP5pdffiEkJCTP4wIDA6latWoJlrRoDAYDBw8epGXLluj1+tIujiinpB4Je5B6JOxB6lEFkZJiWWzVqhVUq2bX00s9EvYg9UjYQ/Z6lJqayvHjx+12/jIVdDdq1IhGjRpZHrdt25bo6Gi+++473n///TyP0+v15eKfrLyUU5RtUo+EPUg9EvYg9egmZ/Xa6vV6m8f2vYzUI3HjpB4JezDXI3vXpTI/8KFly5blpvu4EEIIIYQQ5cG5czBtGuzcWdolEeLmV+aD7qNHj+Y6XZgQQgghhBCieJ56CqZOhSFDICurtEsjxM3Nod3LU1JSbFqpY2JiCA8Px8PDA19fXz744APi4uJ47733APjuu++oX78+TZs2JT09nV9//ZUdO3bw7bffOrKYQgghhBBCVBjJybBmjVq+cAGiosBqhKcQws4cGnQfOnSI0aNHWx7PnDkTgGHDhjFr1izi4+M5d+6cZXtmZibvvvsucXFxVKlShcDAQBYsWEDnzp0dWUwhhBBCCCEqjH/+gcxM7fGpUxJ0C+FIDg26O3XqxLHrU03kZtasWTaPH3/8cR5//HFHFkkIIYQQQogK7c8/bR+fPAn9+pVOWYSoCMr8mG4hhBBCCCGEfRgMsHq17bpTp0qnLEJUFBJ0CyGEEEIIUUFs3w6JibbrJOgWwrEk6BZCCCGEEKKCyN61HCToFsLRJOgWQgghhBCiglixQv12coI6ddTyqVNgMpVemYS42UnQLYQQQoh8TZ48maefftry+KGHHuKHH34o8XLs3LmToKAgkpOTS/zaQtwMTpyAo0fVcteu0LatWk5NhfPnS69cQtzsJOgWQgghyqnJkycTFBREUFAQLVq0oF+/fnzyySdkZWU59Lpz5szh7rvvLtS+EigLUXaYW7kBhgyBxo21x9LFXAjHkaBbCCGEKMd69OjBli1b+Pvvv3nkkUf45JNP+Oabb3Lsl5GRYbdrenp6UqVKFbudTwhRMv7+W1u+4w4JuoUoKQ6dp1uIm8n69XDoEDz2GMh3TSFEWeHq6oqPjw8A9913H//++y/r1q0jIiKC5ORkWrZsyaJFi3B1dWXdunWcO3eOWbNmsXXrVpycnGjXrh2vvvoq9evXB8BgMPDee+/x+++/o9frGTFiBKZsgz0feughvLy8CA0NBVRAP2fOHFauXEliYiJ169bliSeeoEuXLowePRqADh06ADBs2DBmzZqF0Wjkq6++YsmSJSQkJBAQEMDTTz/NwIEDLdfZuHEjM2bM4Ny5c7Ru3Zphw4Y5+s8pxE0rKwu2blXLvr4QFKTm5zaToFsIx5GgW4gCJCbCs8/CTz+px+EHr/LZl26lWyghRMkI/xCOfljwfjXbQq9sKYE3DoGL/xV8bPCL0OzF4pUvF5UqVSIpKQmA7du34+bmxoIFCwDIzMxkzJgxhIaGsmjRIpydnfnss8947LHH+PPPP3F1deXbb79l2bJlzJgxg8aNG/Ptt9+ydu1aOnfunOc1J06cSFhYGK+99hrBwcHExMRw6dIl6taty7x583jmmWf466+/cHNzo3LlygDMnz+fP//8k2nTphEQEMDu3bt5+eWXqVmzJh07duTcuXOMHz+e+++/n5EjR3Lo0CHeffddu/2dhKho9u2DlBS13LMn6HS2Ld3WAbgQwr4k6BYiHytXwpgxcOGCtu6bBS68PjmOuo1ql17BhBAlIzMZ0s4WvN+1Brmsiy/csZn2GetsMpnYvn07W7Zs4YEHHuDSpUtUrVqV6dOn4+rqCsAff/yB0WjknXfeQafTATBz5kw6dOjArl276N69O99//z1PPPEE/fv3B2DatGls2bIlz+tGRESwZs0aFixYQNeuXQFo0ED7e3h4eADg5eWFu7s7oFrG58+fz4IFC2jTpo3lmL1797JkyRI6duzIzz//jJ+fH5MnTwagUaNGHD9+nK+++soufy8hbmYZGTBnDvj5wT33qHWbN2vbe/ZUvxs2VMG3ySQt3UI4kgTdQuRh4UdbeeilLhiNtqkPMrIqMeftcGYtkKBbiJueiztUqVfwfpV9cl9XmGNd3IteLisbNmygTZs2ZGZmYjKZGDx4MM888wxvvfUWgYGBloAb4OjRo0RFRdHWnLL4uvT0dKKiorhy5Qrx8fG0bt3ass3Z2ZkWLVrk6GJuFh4ejl6vt3QfL4zIyEjS0tJ49NFHbdZnZmbSrFkzAE6dOkWrVq1stpu7swsh8jdvHkycqJbr1YPu3WHTJm27OeiuXFltj4mRoFsIR5KgW4hc/DB7Cw9P7IrJpALuO+6AqZPj6dLLnYysSny+pA2vvHcZDx+PUi6pEMKhmt1A1+/s3c0dpFOnTkydOhUXFxdq1aqFs7P20Z492VlqaiohISHMnj07x3lq1qxZrOubu4sXRWpqKqC6mNeubXsD0/omgRCieJYu1Za/+kpND2Zu6fbyguv3tgBo0kQF3YmJkJQEnp4lWVIhKgbJXi4qlOPHVSK06dPh2LHc91n00VabgHvc3Zv44w9o29WH0YN2AZCc5sEXM/eVVLGFECJPVapUwd/fH19fX5uAOzchISFERkbi5eWFv7+/zU/16tWpXr06Pj4+7N+/33JMVlYWhw8fzvOcgYGBGI1Gdu/enet2FxcXQCVoM2vcuDGurq7ExsbmKEfdunUt+xw8eNDmXNblEkLkLjERduzQHv/2G+zcCRcvqsc9eoCTVQQgGcyFcDwJukWFcTEhk3794Jtv4PXXITgYWraEVau0fQyZBp57M9gScD9zzwbmLe7B9aGPvPxmfXQ6IwAfL2jGtZRrJf00hBCi2O644w5q1KjB2LFj2bNnD9HR0ezcuZPp06dz/vx5AEaPHs1XX33Fv//+y6lTp5g2bVq+c2zXr1+fYcOGMWXKFP7991/LOVevXg1AvXr10Ol0bNiwgYsXL5KSkoKbmxuPPvooM2fOZNmyZURFRXH48GF+/PFHli1bBsCoUaM4c+YM7777LqdPn2bFihWWbUKIvP3zDxiN2uPUVHjuOe2xuWu5mQTdQjieBN2iXEu6cJmxIzbx4v0byEjLew5ao8HIQ0P2ERVlu/7QIXj4wTRMRjVWMerYWRKveAHQp81/zPmpFzonnWX/wLYNGd5zJwDnk2rz1cyddn5GQgjhOFWqVGHhwoX4+voyfvx4Bg0axKuvvkp6ejpubmpWhkcffZQhQ4YwadIkRo0aRbVq1ejXr1++5506dSoDBgxg6tSp3Hbbbbz++uukpaUBULt2bZ555hk++OADunbtyttvvw3A888/z9NPP838+fMZNGgQjz32GBs2bLBMXebr68u8efP43//+x5133snixYt54YUXHPjXEeLmsGZNznXWHVEk6Bai5OlMeWVGKQdSU1MJDw+nWbNmVK1atbSLkyeDwUBYWBihoaHo9frSLs5NIyMDBvZLY/0mNWbxvQkbeHl271z3fW/CBiZ9qLZ5e1zm5SkefPLBBaIv1AIgMjwWv2BfVv+wm9sfUsmAJj+ygZnf5jzfnn+P0KFfcwCqVbrKwT1JNGxR355PLVdSj4Q9SD0S9iD1qIJISYHrN2O4ehWqVbPr6aUe2Z/RCLVrQ0KCeunq14ejR7Xt1aurbubWI1H27oX27dXymDHw9dclW+YbJfVI2EP2emTvOFNaukW5ZDLBE09gCbgB3vuqBVcvXc2x746/DjHl4+4A6HRGFn1+kokT4d7bjlj2ObxHTesTfijFsq5Z89zHRrbv25zHhqgUoCnpbox5MB6jwZjrvkIIIYQQJWXPHhVwA/Ttq4Joa9262QbcIHN1C1ESJOgW5dL06fD997brEpK9+fTtPTn2nfvBZQxG9Qnz2uOb6H9vOwBCWmifOof3q2A7/Kh2h7RZ67wz+X7wbSh+PjEArA9rw+ezo/LcVwghhBDCXgwGeOgh6N8foqNtt11PpQDAoEHwwANg3fibvWs5qGzl5skLDh5UidiEEPYlQbco0w4fhuXLbROCbN9m4o03tMfvvB6Pk05lxX3/65ZcuXjF5hwnImsA4KQz8NrHXS3rQ9p6adcJV59I4ae0KcCC2zXIs1zuXu5888kFy+OJbwVw+nThn5cQQgghRHFs2AA//ABr16qWbOuBotbjuW+7DerUUb/Ncgu6Qc3jDarr+dChcE3yxAphVw4Nunfv3s1TTz1F9+7dCQoK4t9//y3wmJ07dzJs2DBatGhBv379WGo90aCoMExGE5++uYnWrU0MGwbvvKNtmzdVmwfjnekmprzlw7391LrEK1588tZem3NFxvkAUM/rPK5VtPlfm7X3t2QiP3yiJiajifBIFWjX94qles3q+Zax78i2jH1KHZ+aChMnFvPJCiGEEEIUkvWUp2vXqinBAC5c0BKmtWqlxnMDzJoFoaEqQO/alVzNnasCdIAtW+DRR20bPIQQN8ahQXdqaipBQUG8+eabhdo/OjqaJ598kk6dOvHHH3/w0EMP8dprr7F582ZHFlOUMZnpmYy9azPj3+qJwaAyh3/wASQnQ3x0Ar+vbwuAt3sCE15QGcvfmOlrae2e/U0rS2t3yuUU4pNV0O1fJ8HmOlXdq9KwtuqXdSTSnwsXTFxKUa3iwc0Kl4jj3fecLB9Sv/8O27YV91kLIYQQQhQsIsL28QsvqIB7/Hit1XvQIG17SAjs26cSpOl05MrfH1asgCrXU+X8/LMayieEsI/cM0XZSa9evejVq1eh91+8eDH169dn8uTJADRu3Ji9e/fy3Xff0aNHjzyPMxgMGHq5l6wAAQAASURBVAyGGy6vo5jLVpbLWFaYjCaG9d7Hqh22/Z8uX4YvvjBC3EEysm4B4KE7D+FcqQcGg4HGrf24t/92Fv3dnYtXa/K/5Tu446EOnD4SCzQFwL/elRyvQUij85w+709Kuhtr/ogDagMQHOpTqNeralV4800dY8eq+1cTnklk8w4Pm2nG7EXqkbAHqUfCHqQeVRAGA3rLokENJrbr6aUeFcepU06A9j3j7Flo2tREcrJap9ebuOceY5FfrjZtYNEiGDHCCZNJx/TpJu6910ijRnYsvANIPRL2kL0e2bs+OTToLqqwsDC6dOlis6579+7MmDEj3+OOHz/uyGLZzcGDB0u7CGXKuZOJbPnrGrcOc6NmPTWWev+Gs6zaMQSASi7XePr+7Xz0nQqyZ8/OorpTQ8vxtwzOJCwszPK4XZsEFv2tlvfujKNB6zD2bY7BHHR710iy2R/Av77W+v3jD1rmcje3aMLCbFvG89KmDTT2b8SpyBrs+M+LL2cup9PteY8Hv1FSj4Q9SD0S9iD16ObmlJZGm+vLBw4cwFilSr77F5fUo6I5fLgZUBW93oRebyIjw8kScFetauDttyMwGC6T7StPofj5wejR9fj++zpkZuoYP/4yM2ZEFHxgGSD1SNiDo+pRmQq6ExIS8Pb2tlnn7e3N1atXuXbtGpUrV871uMDAwDI/T/fBgwdp2bKlzB94XdTRs/R/rCEXr9Zkxf9O8t+xBji7OvPmeO2u0jfv7WHUMz05fcnIH384ER/vSjwBANzaZi8DR/SxOWdGvCvMUstxcTUIDQ1lxwotqVrzFtUJDQ21OaZDx23wi1restvPsr5v3/qEhhZ+7u3Zb+xm2JjOAHw8vzUHXqqLSyWXQh9fGFKPhD1IPRL2IPWogkjRbka3atXKIfN0Sz0qGpMJzp9Xvev8/eH+++Htt9W2gAATy5ZBy5YN8zlDwT78EFatMpGQoOOff2oybZoHHTrcaMkdR+qRsIfs9Sg1NdWuDbtlKuguLr1eXy7+ycpLOR0tIy2D++66zMWrKsg9Et2E72Zvoc/g+qza0REAP58Y7nm6M3q9nsljw/njj2Y253jy8Ywcf8vgNlrQfPJCEHq9nujUbpZ1DVs1y3FMy3Y+WrkytX+HFiFO6PWF7yJ+58Od6DUnjI0HQjkR25A/F2xj5Lg8spXcIKlHwh6kHgl7kHp0k7N6bfV6ve3cU3a9jNSjwrp4UeW4AWjYUMdrr+lITYUrV2D6dB0+Pjf+d6xZE958E555Rj2eNEnPhg15jwcvK6QeCXsw1yN716UyNWWYt7c3CQm2XXoTEhJwc3PLs5VblD+vPL6NHUdb2qx789OuzJp6zvJ4/OiTOLuqILjzgGb0bPGfZVst9zjufLhdjvPWqO2BuaPE8Sg1NvtMlNbaHBBcK8cxwR2a4uRkslnnWS2JWjl3zZfOScfECZmWx9u3ZuaztxBCCCFE0VknUWvUCFxdYfZsmD8ffHzyPq6onnwSmqrReWzaBH/+ab9zC1ERlamW7tDQUDZt2mSzbtu2bTm6BIvyJ2zTMfZtv8DevUY+/bU3AK7O6bRplcbO/zyJi3Pi2z/VeP4qrqmMmdDa5vhXJhvZ9IBafuKecFyr9M71OoGBkJCgkopcvQpnzmjb/Pxy7l+lmp5GjeDkSW1dM79odE6eRX6OHftomUb2HCz68UIIURRBQUH5bh8/fjzPmJuqhBA3hdOnteWGN9aLPF8uLmqqsREj1OOHH1bTk7Vv77hrCnEzc2jQnZKSQlRUlOVxTEwM4eHheHh44OvrywcffEBcXBzvvfceAKNGjWLRokW89957jBgxgh07drBmzRrmz5/vyGIKB5v29Aamft4bsP2C+MHkHQwY3YvmzSErS1s/+vbd1Kxrm/V+4P3t+fHCVqLOZPLye93IS2CgNm3XyZMQGamW69aFSpVyPyYkJFvQ3TipcE8sG+/6XgTUiubMhQbsO9EYQ6YBvYt0cxJCOMaWLVssy6tXr2bu3Ln89ddflnXWuU5MJhMGgwFn5zJ1r10IUUTWQbejs4oPGwb9+8M//0BSEvTrp5bL8vhuIcoqh3YvP3ToEEOHDmXo0KEAzJw5k6FDhzJ37lwA4uPjOXdO61LcoEED5s+fz7Zt27jzzjtZsGAB06dPz3e6MFH2/fJPyxzrxt29kXHTetK0KTz1lO22Z16ul+t5HnihG1Pm9M43QVlgoLZ88L9kzp9XywH1U3I/ABV0W2sWXPwpAto1iwEgJd2NY/+Vj2yfQojyycfHx/JTvXp1dDqd5fHp06dp27YtGzduZPjw4bRs2ZK9e/cyefJknn76aZvzvPPOOzz44IOWx0ajkfnz59OnTx9atWrFkCFDbIJ5IUTpyd693JF0Ovj9d+h5fRZXc+C9e7djryvEzciht7w7derEsWPH8tw+a9asXI9Zvny5A0slSpLJBGfOeQFQr04K33x4lBYdfKnXRGvJfuMNWLhQvZkP6neZkC5Nin29pj6HARVF//vbAaA7AP7u+4HcE5uFNDwLaIF+s5bFz4Tfvk06v29Uy3u2xNG8U/GfixCidP36q3p/unKl4H3tpXp1lYn4rrvsc74PPviASZMm0aBBA9zd3Qt1zPz58/nzzz+ZNm0aAQEB7N69m5dffpmaNWvSsWNH+xRMCFEsJdW93MzNDVavhsGDYcMGuHwZbr8ddu4smesLcbOQfmbCoRISIDVVLbdoXY0B9+ZMgObjA1u3qi5LDz/scUPXCwzWWsHX7tAC3gC/jDyPCQm6avM4uHXtYl+/fefqluW9u7MYXewzCSFK2/vvw9GjpXNdewXdzz77LN265T0kJ7uMjAzmz5/PggULaNNGzdDcoEED9u7dy5IlSyToFqKUmYPu6tXBy6tkrlmtGqxcCYMGqaRq8fFqeds2qFGjZMogRHknQbdwKOtEZvndEW3eXP3cqCattLm1z12qY1n2D8h7JEVQW3+cdAaMJj2VXK4R0Lzw83Nn17anVTK1o/7FPo8QovRNnAivv17yLd0vv2y/87VsmXN4T34iIyNJS0vj0UcftVmfmZlJs2bN8jhKCFESDAYtV02jRiU7hVe1arB8OXTtqm5GHj0Kw4fD33+rDOpCiPxJ0C0cKuJUJqBanwMCHH+9qu5VaeB9lugE23HhAY3z7jJeuVpleof+x7p9bbm17UH0LsXPEFKzbg0aNczidIQz+44HkJUF1nmLUlJU9yx3d/XBJdNJClF23XWX/VqcS0uVKlVsHut0Okwm22kSs6wyWaZe75o0f/58ate27fXjKt+shShVMTFa4tnS6NpdowasWgWdO6vW7g0bYM4c+94oFOJmVabm6RY3nzO7t1qWAzwPl8g1mzaIy7HOv2nNfI9Z8qc/i+dt48dlNz4Gu117FWWnpWldU69eusp7EzbS0C+FwYNVUpJ69eDppyE8/IYvKYQQhVKzZk3i4+Nt1oVbvQk1btwYV1dXYmNj8ff3t/mpW7duSRdXCLtYvhxatICPPy7tktyYksxcnpdGjeC337TH5hljhBD5k6BbONSZSK2KBQSY8tnTfgIbXs2xzj+4Ti57arzre3HP+K7UrHvjg5Os57Dcswd2rz1C44ZpTPqwF/EXq1m2xcXB55+rADw9/YYvK4QQBercuTOHDh1i+fLlnDlzhrlz53LixAnLdjc3Nx599FFmzpzJsmXLiIqK4vDhw/z4448sW7asFEsuRPFNmQKHD8MLL6ju0OVVSWYuz0+XLlrX9rNnS68cQpQn0r1cONSZaK1rY8NmxU9QVhSBTY02j2t5xFPV3adErg22Qfdfq9J5fb0nFy6r6+t0Ru4eFEOmqx9r1hi4dk1PQgIc3Hqc9n0C8zijEELYR48ePXj66ad5//33SU9PZ8SIEQwdOpTjx49b9nn++eepWbMm8+fPJyYmhurVq9O8eXOeyj6/oxDlQHo6WFVvxoyBQ4fA07PUilRsJZ25PC8uLlCrlmo8iI0tvXIIUZ5I0C0cKiJWdeuu4pqKT33vErlmYPNqNo/9a18ASi7obtvGiLkTyZLfKgG+AHQKPsSC76vQrGNjAOZM2czzM3sD8N+2OAm6hRDFNnz4cIYPH255nN+Unc8++yzPPvtsnufS6XQ89NBDPPTQQ3YvpxCFYTKpHyc79Mc8eVIlIDM7exZefBG+/fbGz13SykL3crN69VTQff68+vtKjhoh8ifdy4XDmIwmzsSpgDOg9jl0TiWTZrNpC9sAO6Becolc18yzhhNN6p6xWefjHs/Sld6WgBugTUdPy/K+fSXT9V4IIYQoy+LjoVUrNR3Whg1FO/biRZg+Hdat09blljdlwQI193R5Y929vCSS0+an3vV8tQaDCr5FxZOZWdolKF8k6BYOcyEqgWuZqnt5gO/FErtuw5B66J20bLz+DUr+XaF9s2jLsk5n5KevovFtbDuuPLS71jds35H8E70JIYQQNzuTCcaOVd2/k5Jg5MiidV+eOlVN8zd4MCQmqnXWQfdtt2nL5THjtrml29cXKlcu3bL4+mrL0sW84lm4UM3EM2KE+r8VBZOgWzjMmWParc+GDVJL7LoulVxo5H/N8jigY88Su7ZZr17aO9AbT26i78i2OfZx9/agcR014eaB040wZBpy7COEEEJUFL/8Ar//rj2Oj4d779WmySrIxo3qd1oa7Nihls2ziAC8+66Wd+XIEThz5oaLXGKuXoULF9RyaXctB62lGySZWkUTEwNPPQXXrsHSpXDqVNGOX70aJk5UQxMqEgm6hcNEHNe6dQf4l+xtsMDmbpZlf/8SvTQAYyZ14c2nNvDxKxt5fW6PPPdrE6xuD6dlVOXYfxF57ieEEEKUtIwMbdnRrVnnz6tpNM3c3dXvTZvgjTcKPj4jw7ZVe9cu9du8zskJAgNhyBBtn7Vrb6zMJWnvXm25NJOomUnQXXG9+CKkpGiPizL17aVLcPfd8P776iZYRSJBt3CYM6e1T+uAxpVK9NqdOqnfer0aG1bSXCq5MPXz3jw3oxd6l7yzi7Rppc0Vtm+bDIoSQghRfDv+OsTDt29h26qDdjnf559ry0UNULdvh/vusx1fnRdzt/KL10ei3X03rFkDztfT/c6cWfB5jh61HWO6ezcYjVpLd6NGUKkS9O+v7VOepg/74ANtuW/f0iuHmXQvr5j++Qd+/dV23ZEjhT/+4EFIvd75tbA9WG4WEnQLh7GZo7uJR4le+/nnYcYM1e3Fz69EL10kbTpomdb3/ScZKYQQQhTMaISwMNWN2iwyPIZ+w/z5fnV3Hhtb1S7X+eUXbXnz5qId+/TT8PPPalx2unZ/matXVdmtW86XL1c/AD4+8Omn0LWrCratz2d9nuz277d9vHs3REVpf6NmzdTv9u2hRg21/L//lY8v/ocPw4oVarl+fRg1qnTLA9LSXRGlp8P48TnXFyXott63efMbL1N5IkG3cJgzVzpalhu2aFCi165eHV55xbYbWVnUtrvW933fYfdSLIkQQojyYupUaNNGBZKnToHRYOTR+y9w9Vp1AMKjG5Ny+cZyqZw8CWFWgeyePYU/1mDQvlwnJsJff2nrb7lFlf3ee9XNg7Q0J158Ufs6+umnKvAG1Y21Sxe1fOwYfPhh3tfMHnQnJGjXBS3o1uu1luKkJBWcl3Xvv68tv/ACuLqWXlnMJOiueD76CE6cUMudOoHu+qREEnQXjgTdwmEiolRqzWrVwKtO9VIuTdlUO6AWdWuoTBL/HW+EySgpIIUQQuQtPS2LefPUZ0VkJPTuDVPGhrFun23CzhP7o3M5uvCydyH97z/b+a7zExtrOx580SL1e8UKLXhfsgQmT9bxzTd1iI5W397794e77tKOc3KCzz7T5ut++231nHOTPegG+OEHbdkcdJuvY/bPP4V7TqUlOlr7+9WoAY8/XrrlMatRQ3XXB+leXhFcuKB6kIL6f/zySy2hX3h44XM+SNAthJ0ZjdoHY0CAdjdM5NQm5DIASSmeRJ6RDOZCCCHytmbRXpKStA/VmBh496ucM2Qc3Z94Q9ex7loOcDWl8C1aEdnygq5YAcnJMGeO7foPP3Tihx/UdJqurvDJJzm/L4SGal1a09JUS292JlPuQff27dpyeQ26P/pI6wI/bpzqyVcW6HRaa7e0dN/83n4brlxRy489pvIlmYPmlBR1c6gwzO8h3t5aj5aKQoJu4RBxcdrYq4CAUi1KmdemV5Bled9+51IsiRBCiLJu0SKjZbmWt+0g56D6WrR7NKoexXX8uBp3nZ15Gq6CmOeTNrt2TXWJ37BBPXa3Gk1lNKooe+JEaNo09/O99RbUrq2Wly2D77+33X7+vJpeDPJOnhocrC37+WmPd+5U3czLos2b4Ysv1HLlyvDMM6VbnuzMQXdSkpYcS9x8jh/X6mG1ajBtmlq2vpFVmBtySUlw7lzOYysKCbqFQ5wJP2dZbtggJZ89RZs22vK+faVXDiGEEGXb5fjLrNiqPjRqecQTtk9Hq4ZqkGXjOpH8+Esty77HYoo/X2b2ruVmO3cW7vjsQTeoFluzd96Bl1/WHgcEmHjllbzP5+FhO5778cdh/XrtsXUrd79+OROo1q2rzmFtwAD122AoXIb1krZpE9x2m5YI7sknoVat/I8padbjuqWL+c3rlVe03hYvvwx1VOcUm+7hhQm6racWq2hdy0GCbuEgZw5pd9sDqpeDLCWlSIJuIYQQhbH02wOkZ6p8KfcMPEzd+q5sD6vH7/N3sG1nVVq3q4b++iyV5qmyiiN713Kzwgbd1t3Lq1Wz3ebuDg89BLNmwYQJRkJCUli0yEjVAhKu33uv6l4NamqwYcO0L/HWQXfr1tCxo+2xubWqleWpwzZuVAG3eS7kgQPV36ussZ42TLqY35w2bVIzAYEKtidM0LYVNeiuyOO5oYSC7kWLFtGnTx9atmzJ3XffzYEDB/Lcd+nSpQQFBdn8tGzZsiSKKewo4pTVHN2NSnaO7vKmYUPw8FAZKPbtSStgbyGEEBXVoiVaBHv/I94AVHWvyvAnOlPLzwdXV2jcWG0/dkzlVymqvRsjMH9N69j2ms22w4fV2OyCWLd0P/WU7bYxY9S4ZCcnePddE99/f5ROnQo+p04HH38Mt9+uHl++DIMGqbm9swfdHTrYHptb0N2rl5YF/H//K/j6JSUuDoYO1bpr33ab6lJfuXKpFitXksH85paYCA8+qD2eNg3c3LTH1kM2JOgumMOD7tWrVzNz5kzGjRvHsmXLCA4OZsyYMSQm5p3gw83NjS1btlh+1lv3IRLlgs0c3YGepVeQckCngzYNDwJw9nwVLkQllHKJhBBClDWxp86zLiwUUF3JO/YLyXU/8xfhtDSIiVQ3wPdtOMpHkzdw5eKVfK9xePtJBt2pfase0eYbm+0mU+GmDjO3dNepo5Iumel0uc/zW1jOzrB4sdZD7MwZeO45Leh2cVHPP3vQbR0cmFWrprWInzpVdrpHT5qkjTEfOLDsBtwg3ctvZkaj6pESFaUed+sGjz5qu0/16tpQjiNHCs5gXtGDbodnbVqwYAEjR45kxIgRAEybNo0NGzbw+++/88QTT+R6jE6nw6cIKe0MBgOGws5jUQrMZSvLZbS3sHAvy7J/cK0K9dyLI7T5RTaEqeU9myMYMKpGjn0qYj0S9if1SNiD1KOS9/P8cEwmNZjyviGnMZrqQy5//sBah4DWABzeFoZH9SD6DfEh8Uow6zfvZNmm9rme/9Ah6DfEn/jLLgC0DdjLI+2mgm3czfbtRnr1yvvbdWoqnDun+rgHBJho2tTIsGFOLFum44knjPj7myxTjxWnHlWpogLR0FAnkpJ0LFyobWve3IRebyQ0FHQ6J0wmlaQtMNCQ63Rn3bvr2LJFNRJs3Ghk5MjSnbZzyxb4/nv1t/P0NPHtt0acnQs/VVtJU8ntVHmjo40YDKXz95P3I/t7/30dq1ap/w1vbxOLFhnR6XLWxWbNnIiK0nH5Mpw9a6BuXW3b4cOwZImORx81ERAAR444ATrc3U3UqmUsc/U6ez2yd31yaNCdkZHB4cOHefLJJy3rnJyc6Nq1K/vyGbyamprKLbfcgtFopHnz5rz44os0zSulJXD8+HG7lttRDh48WNpFKBHJCSnsOdEdgBb+R4k8l0LkuQIOquAa+F2yLG9ed47awWF57ltR6pFwLKlHwh6kHpWcv/+nNXe2751JWG7pxQEfzyjMQfeubbGcOR1L4pWhAKzY1ok/flyDf0vbjFxXrugZMSKEixevB9yND7F2Uj+q6XMOeVq7NpmBA0/lWc7TpysDqhW+Ro2LhIWd4eWXdTzwgCsNGqTnmhW9OPXohRdq8uabDW3W1a+vrgcQENCciIgqABiNhwkLy8xxjnr13AH1/XLZsgQCA29sbvMbkZUFjz3WDFCD2598MprY2Pgy3YJ8+bIroIaAHjmSRFhYRP4HOJi8H9nHnj1uvPZaIAA6nYk33zxJQkIyCbl0xPT2rg+oqQVWrDhFx46qN01CgjMjR4aQnKznp5/S+O67o0RFqS4q/v4p7N9/rESeS3E4qh45NOi+dOkSBoMBLy8vm/VeXl6czi21JdCwYUNmzJhBUFAQV65c4dtvv2XUqFGsWrWKOuZ0edkEBgZStaAMHKXIYDBw8OBBWrZsid6c4eQm9stnOzCZ1N2xgb3OERras5RLVPY5p7nB9SQppyK8CQ0NzbFPRatHwjGkHgl7kHpUskxGE/tPqZuzXtUTGXRXH3ROulz3TT2nh9lqOS6uBhFnbEcS/vaTOz+uCbVZ99NPOi5eVPu1b2/irzXBeEY+Avu1lOEe1bNIvQJHj3rQunVojvm0zazH9rZtW4PQUM88n9eN1KPWrWH3bhMrV2oF6dVLu9748TomTIC+fU307RuSa3kbN4bnnjNhNOoID/chNNQr504lZM4cHSdPqtegXTsTb71VD72++NO+lQTrbvspKTUIDfXIe2cHkvcj+wkPh0mTnDAY1D/MK6+YGDu2UZ779+qlY9EitZyR0YTQUBMmEwwb5kRysjrHmTNV+P331pZj2revmuv33NKWvR6lpqbatWG3zE0K3KZNG9pYpXNu06YNgwYNYvHixTz//PO5HqPX68vFP1l5KeeNWvu3lrllwO0eFeI536iQjo2p7JLGtcwqhB2rm+/frKLUI+FYUo+EPUg9KhmxkYlcuKyG3bUNPIOzS7s8923eVpsv68gJD46csQ3cfvlfJ2YcjSUgpIG2n9VYy6lTdXh5O0ONdyBiFaBapNr7bWDF4TuJi9MRE6MnIAA1iNOYDk6VMEe1kZHauRrXOoU+9iBkXIbGj9gW9NoFSLuAzpiBPvU0+pTTYMoEnx5QqWah/i5ffgkhIXDpemexNtW/Qb9lJdRsy4vPTOD++93w8dHh5JR7HfX0hLZt1Tj1Q4d0JCXp8SqFuDszE2bMUMs6HXz2mQ5X17L/f1WtGtSsqZLZnTunK/X3Ank/ujFxcXDHHSpJIahEhdOmOZHfnzTEKrXE0aNq3x9+gJUrbfebN8/J6pj8z1nazPXI3nXJoYnUatSogV6vz5E0LTExEW9v70Kdw8XFhWbNmhFlHskvyjST0cQ/25sAUMU1le63V8BMCcXg7OpMy4aq98eJ2IYFJrsRQghRcfx3RIsE23bzzWdP8PKtibe76ge6+WBL4pNVsO7qnA6AwejMB3PdbY459J82xKlFi+sL+srQeYFlfefGOyzLq1dfX8i4CEuqwGJX+KMhrBvA6a3/WPZrFP8YbB4BOx8FY5ZtQSMXo1/TkrYnuqJf3Qw23g6bhsLSWvBvb9j/GhyYCufW5nySGZfg+GfUPXUP3499FLfKV+jQaBc9q46Ds3/Cwamwtju1axlxKuCbbk+rznhbtuS/r6Ns2qQyRQOMGJFzyrOyzJxMLTa24ERaouy6dg2GDFHJCQFCQ2HJEpW8MD/WMwPs2gV//QXPPqut8/PLeUxFTKIGDg66XV1dCQkJYfv27ZZ1RqOR7du327Rm58dgMHD8+PEiJVarqLIysti99ggpl1NKrQzhu05x9qLKotAr9DCVq5XRlJtlUJvm2s2p/VtLd1yUEEKIsuO//7Tltt3q5r3jdcF+qo+30aS11Mx4cQdVq6qeaN/86EF8vLb/obCrALhVvopfA6vIqUYry+IdPbRxjpZ5vDOv3yA2ZUHKGTj/DxEnUy37NaplNZQw46JtIRPymPTbZIALG+HwO3BoGpz/13b7/tdhWT3YMw6ifuGOkAXEf+7Drrc74epsNW676VjQWX3NzUpRLe7Z9OihLW/alHuRbMtnguQTcOobOPEFXNiS63kBSD4OF/fC1TOQnggJO9n9++8Mu2U/v7z1EfyvD6xpx9LPtVl67r67EGUoQ8xBd0YGuY75FeXD55+roBnUa7pype30YHmpUQNL8rT//lNT3Jlbyh94AH78MecxFTXodnj38kceeYRJkybRokULWrVqxffff09aWhrDhw8HYOLEidSuXZsJ12db/+STTwgNDcXf35/k5GS++eYbYmNjubu8vQuVoKyMLBZ+vIPpHzXg1PnmtPA/QdiJRuhdSr7vxt/rtfE8/W8pveC/PGrb1gTL1fK+nZfofkepFkcIIUQZYRN0ty14/+BGl9lySHus0xl5cFxzYjKc+PhjNZ3Y55/DG2/AlYtXOHNBdTVvERCBzqllruds8eRigr5W839v2gTnzkFddx3U6gWZl+FqBGRe5vQFNf7TxTkT3/a3g3sAVPIGfRXbE9a+BVNWCqmJJ6ji0xwn90DISoPYlXDlRN5PTl8ZDFYJ3vRVqVy/I3h3Vj9V6kHkz9D4Mdvjon5TLe4126syu3oC0L2WBzAOgE2bjJCVTuLlKkREQLt2oIvfDOsHqudQuRaknYO0XCaldq4GQ06rfcyOz4Pjn9js9vzULWw70ZpVm5vR7ePZ1PU8x/IN6m9eqZIKWgDY+yJcWA+GdPW38x0IfiPBsxV5DqjPLvMKJB+DK8fVTRGPEKh3h+3NiBvka9XxIjYWpI2s/MnIgA+19A0sX247HVxBevZUreLW6taFOXPU8IM+fWDdOrW+alVo0CDnOSoChwfdgwYN4uLFi8ydO5f4+HiaNWvG119/belefu7cOZys+v4kJyfz+uuvEx8fj4eHByEhISxevJgmTZo4uqjlTmZ6Jj9+tIN35vhx+nx3y/pDkU3Zs+4QnQa0yOdox/hnk/Zu2//+HvnsKbJr00kbcrEvLOcH4qdvbOa3P92Y+e4hug1qnWO7EEKIsi1s0zE+mBFPUrIrX/zQgHpNCm61Bi3odneHRnnnNLIICjTaPO7SxYlafj688AJ8/LFat3q1CroP74oE1PeFFoGXyIvOScfIkfD226qx9/ffYfx4f4x9NrBxIzRvY6KWRzynn1Bd4QMauqDv8kXehWzyGMaGj3A0LEwlVTKPn2z3oWohvnoa0IFbw2zHPQ7HPgb/e6HRQ+DZGpyyfZ31ymVatLh1YDJC4i71c503EFK/F4djWvDfXhM/f7CaJ6aP4OpV+OQTGPdEKBivQWoUx09VIjmtDu0b5RJ0Z6WQowNpVdvoIjPLmb1n1Hj8TIMrH//1PCM6LiM2UX3+9+un5j7GaICI71Q3erNL/8HhGVCtoQqeqzeFGq2hwXBwqa72Sb8Ip7+DhG1wKQyu5pJl3rMVtHoL6g0pfPCeD+vg7OxZleBOlC8//wwxMWr5jjugfe6zCuZp7lx1M/Di9c4srq6qlbvm9dQM06ZpQXfz5hQ45ONmVSKJ1B544AEeeOCBXLf9mK3fwZQpU5gyZUpJFKvcMhlNfPf+Ft7+yJ+IuNwD2zXra9NpQMmUZf3SMCpV1tOmdwgbN6oPzXr1oHmLMpwloQxq2aUReqcsDEZn/jvub7Ptr0V7eG5GbwDufSSBY2fUXKVCCCHKvsPbT/LaxASWb+kMBAHw1QcbmPp5wUF3fHQi0dEqkG3TIhknJ/cCjoDgFrYzutxxveeUn58agxkeDnv3GrmadM1mPHfLFvkPyjUH3aC6mI8bB488ohIn1aun499/a5FyvZNbYW4O5Mk9UP3kpnItGBYLTi5FO6dbE/BoDpeP5NjUM3gTh2NaYDTpuW/yCMv6FStg3LjqUHcQp4/E0WLSFjINrqya8SqDhriBiwckHYTLByEjyaZMR47A2MfG0j2oJe+MWQAZSYTHdiE9Uxt2N3/TSyT7vmR5fL0TKCSHXz+fq/rJSgGuvzYpEerHzJihbkQApEbBvgn5/x2SDqix80NOgduNvEhK9qBblC9GI7z3nvZ40qSin6NWLZg4Me/t3bvDCy+o1vDJk4t+/ptFmcteLgr2+bRNjHurl826vm3/48mxlf7P3n2HR1F9DRz/bjY9hIQUAgmEnlBD6L0ISBNUEHsXO9ZXf2IXK9gVRcWGBVGwoDRFUXpvIQRCL4EQSCGF9GR33z9usrObTdmETSPn8zx5mJ25M3s3TGbnzL33XK69R6URXPFfIDNqoC7fvbuRO55Srew+nunk5Kju5aNHO+QBaoPi4e1Bx/B89sXCvuOh5OWprmZpienc/Yj2rXYqMYDZs6t2YRRCCFGzUs+l0X9EEJm51j32jp+07xZs94YTgAq6e7beBQyvcJ+O3YOsXl95pbY8tNseYmO7U1joxJa/DxATo7WKd+1RfkDfpYsWtG/YoFqwvvtObYuPh9tu08q2aVP6MRyisgE3QLcX1E/OWUjdrSV2K7zA0FNOfLrKdpfY2KKF4Uv5+wAUGNTLb3a/zvhnyn+7d96BdZu9Wbd5HNc/Po6ICNj1jXWZCxd0fP5F0Udy0h6O4NsVbjRoN1I5Z+HUbxC3CFK2giFXrXdpDK1v0g7YJBKCRqhWfb2natX27QLe4eAeCIc/Va38jdrbBtzHvoOCNPDvpx5OFLeeV0CC7vpt+XJt9oJBg9RPdXjvPesu7A2RBN310NoN2pfN5b12MuNlVwZeoQZ5df8Y9uyB7dshMVE9fapO/2m5P0jPthjPPbp63/dS1aOXK/tiobAQ9u1T3XUevyua+PPWPRreeAOmTgU7JwEQQghRS7b/d5TMXNWluKlPknnqrzPn7OuutGubNptFj1723ba17hyCp0cB2TkutGtroFMnrefZ0IGZzC1KhLb+v3T2HtC+u7v2bVHucXU61dr98suqi/nLL1tv375dW76olu7q5NEMPMZZrRp6K2DRAte4MWRkQFwcZGaqhFL79mnb//5bfU+Xl9nZchq2tWtRQfeusssPG1biO92y5cKjGYQ9qH5MRsg5o8Zq5yWrseSWen1Q9CE6Q8mp0trcDvHLIPuUbQUOvAdpe7TXXq0gaKQaA978ctv3KdLC4pQp7qIs6o9Zs7RlacypXg20V339duik+sLWOxWyfGMEA6/Qkp6MH6+VW7my+uty8LivedndRSU2CQ6GsWOr/70vRZZJ/XfvhsVfbOGb5SrgbuyRzvAhZwF1M/Daa7VRQyGEEJWxb48WNM98+gAeriq7d0Jyxd3EAXbtcTMv9xzQzK59nF2d+eBDF/r2hY/n6K3ityFjtSbodVt8iTmmxh0HNk6iaWjFWbBKy2vbsaPtumpt6Xaw4GAVfPTvD4sXq2m7ih1U05RbBd3p6WAxMU+pDlvkgivOim4ZdI8aZV1+0iQ7K6tzAs8W0GwktLredrtvN/VT2tzkOh20mKiCd0s5CdYBN0DWSTj2NayfBD/7wuIW8GdPSN5mVcxySijLOdpF3RcVBZs2qeXOneGKK2q1Opc8aemuJXl5cP316gK8aJG60NvDZILDZzsA0LZNIS5u1lNyjRsHM2eq5RWLk7j11upLI2kymjh4Sj3iDA08TcwBH3ZsO0+Hrn74+lbb217SLIPuZ/+XRmKqdmK8+8IeWvTwZevkIHJydHzyiQH35OXo3cu5cXMLUN3ULCVvVtlQK9I4DDws0pIWZkHK9rLLWwroZ52pNvs0XDhS8X7OHqprm6XUaNupZkrjGaISy1g6t6bi/UDdoLhp8+CSf169rz2aDrNukbhwRH3eirg2UUlwLKVsLxq7V4FGbcHL4k7HkKf+X+1gbNKLcynBBAXpVDKTnATVYlIRJ1cIHGi9Lm0f5CWVXt6SezPwKXFXnrhBTTNUEZ9O4G7RVTY/QyUUskfgIOtuqFkn1NQ9FXHxBr9e1utSd5c9LZAlr1DrbptGAyStt6e2qmtoUUZlAHKTIH1fWaU1OidoOtR6XcZB9X9bkTKuER6uedx0b1vaditlklVRKfvi2pmXu/QMoLlfCsfOepKQFlTOXppdseo67OGaTXiv1na/7z33qJ+SWoYH0yYojuPnQtkQ05VCg/ob6dbuFFDxPUOXLuqnOAjt3RvWrFH3MTEWGdPrbEt3GaZP11r6LAPmAwdUFvN9Jf4UV6ywnm7M0vnzWlIpUEG3waCCHIDWrdW92iqLLu1XX32RH+BiuDeDcXvg3GpIj1HXndQoLUu8qVBlbM+Jtxk72ER/GC/3ELJyPYk7kgqHfgSv1irbugOzpAvHs/x7veOOhpvgrKZI0F1L3n0X/vhDLT867QJbd9o3diYhAXOSkg7htnNgDxgAPl6ZpGc1YuXfzhTmF+Ls6kxBXgEublUYA1WO5PgU0rJUX6iwlol4+7XgMmnhvig9Io0Ud0BJTPU1r79q8FbueHIge6L38PhD6bzxti8FBXre/OHK0g9UrgFVrJ0X9owlLF2Lop+qiKi4SJmGV3E/v4vYt33RT1X0qeJ+blSuvpbXm+ZFP1XRpYr7AQyuuEipGlP1/5vWRT9V0aPiIqXSU/X6Bl7EvuEUJ+yqPHWN+GX5QaKOVVBUVGjfcS2DdecBnWjeDo6dhfMZjcnNBXfbr3KztMR0jp5ViTW7tz2Ks2vp03lV1tBeJzm+ItQccAN0DbtQzh7WHntMBfRBQarhwMsLPvlETR1UrL4F3ZYsW+5jY9X804mJ1mVWrNAaOUqyDNpB7btsmXb/1rOnelhxww3w008wZUotT6Ok06k52S3mZacwR40Nj18CyVsgN1E9ZHW3HreoOzmfVv7XsT++C3Hx7pi2T1NxeZMe0PNdCLqsZj+LsFuCxXPZVq3KLiccQ55p1IKTJ627Bm/b5c3WlTFl72Dh0CFtOayUxJ7OzjCmn2qhS81qwuKvtjN56BY8PHU8d/cau97jj6+2MuvxNWSll9/idjDqjHk5vJ39X9aibL5NnOjYQpvio4X/GT5+cS2L/u6Bzkk9Xf7f/6BNUFxtVVEI0UDsOR5OzoWciguKMplM2tje0FA1HZTlvMZnz5a/f9QGLUt1z6529Pix09AhtlnKu3azP/vp1KmqlWz/fq0b+ZAh8OCD2nJ97vHWqZO2HBtrPT67WHR02YnDSgbdoE3VBtpc699/r1q/S0zkUzc4e0DIFdB3LozfA5MT4IZ88CzR+yVlO6H+6p4kt8CDpIyi3hKpu+HfEbBmIiSuV38Mok45o93GW12XHMqQD2f/raaD1y/S0l0LHnskn5wcV6t1s99N5wc7pviqKOgGGDfGyKKi+fCue1Br1Xxz3mAemJ5Aiw5lt2pFrTvIpHv6YDI5YTSu4dkPh5dZ9mCM1tUyvIy6iMr7fE4mH3+4icuGFXLnk/1w81RXQoNBpU319vMmap8Tu9ZGYTRW8CXm6mOboTQtBowFFVfEs4XKdlrMkAPpB+z7ED5dQG9xjuckqm5pFdG7qaypli4chYKMivd1CwCvEk0F53dXvB+o35GrlkyI/IzS5zctTZNI6+522fGqRaAizo2gcYnu8OmxWlba8ngEg4dF11RDvn3dkAFDow4cPXGGdu3aodfrITe59KQ6JemcoUmJVrbM42pam4q4+kGjEo/RU6PBZKh4X69W4OanvS7MUnP42sO3m/X8vTkJKgtwRfQett3hMw7Z1/XfI8h6WIbRoKbosYd3B3BppL3OT7WvO7xOp85DS5lxkJ9S8b6lXCNm/t96Vu1R/WZPHzlHhx6tKz6OKNXp0yoHB6gu2QDNLb6Cz5xRXY3Lsmtrmnm5Z0/HtZMMHRMKJbJvdx0caff+Op32eSx99BHce2/pY7zrkzZt1OwheXmqe7ll1/KQEC3Y/vNPuPtu2/1LC7rXrNGWi4NuZ+d6Nq91ad3Fhy8ntEcyFF3m4prNpan7K6p7OsCZZeon8i3o/L8aq6qomMOC7sIcuHBQ3VvqnNR9TMp2Nezt3L+QlwLjY1Qm/QZMgu4atuK77fy+RHUhDQoyYsg5T3JGAIv+68vbR88S3K78JCmHtkVT3N02rHU64GNTZuy1YVBKBkKD0ZlP3zzI61+WHXR/+cExTCbVJXHdtiDKmzH90CFtmpGwLo3KKSkqY8iV3RlSQa/xxv6NGT45sorv0LXiIqXyoOpdbJsW/VRFu4qLlKmq9W18EfuGFP1URaeKi5TKFXvrazAY8Iu6QGQk6PUAAUU/VXExmZKqOmzAi6r/31xMV/qqPlnUU/X6Nin6qYrQop/K+6u7gVVFOZXijpyvkaA7MS6Jt57bx4BBblxzf1WHwNQ9+/ZkA2rO7K5Fl17LoNuye2dpDh/RgpxuvfzKKVk57bq3opnvOc5ajCvvUsF0YfZwcqpnQWQZ9HrVsLF3rwqg91jkGHvsMdXjDFQXc3uDbkvFQfclQaejVZj2gD7ONIneY66EE9/DnueLxoE7QegU6/1yE1WQ5lnV70txsSyDbvN1yWSChJVw8EMoSAff7uqhrntT1VjQ/HJtJ5MJ/h4I57dX/BD9xHyILGM8RgMh3ctrUGF+IY9M1wKPd5/bzX3XqW7lhQYXPnsrtqxdzQ4f0Lr6dWhTeqtLszZNGdBpr/n1dSM24axXLZtzfx9KThm9BXOzclnwt5a4K+p4+eMBD6Zqg7fCe3Uop6QQQoj6IjRU67lx6nh2jbznm8/u4935w7l+Wh+OR186A8n3rdMyPXdpofooB3trSSUT9m4td//k89qY62ahvg6rl85Jx9CeWm+eVi3zaHzxMfclpbi1vqBAjccudscd2tReq1ZBfr7tvkeK/ot1Ott5j4OD1Vj4S4lNBnMnPbS9A648BgO+h07ToVGJh7QHP4Q/QmHNBIh5DWLfgYMfwZHP4di3cHIRJG+1r6ebqJLioNvXFzzcTZC4Dv69DNaMg4S/VEv1kc9g+/2wfjLsfNT6ADqdeqBSXsDt7AWtboDmdnTnvcRJS3cNWrlwN0fPqqB2aLcobprWkzPHzvLmvAIVdP/UlWffy8Xdq+ysKodOqiu9u0sOLTqU3So+73svPn9/DaPHN2LMTQO5+WYTCxZASooTCxao8VglLflmF6lZWnbic+ecSEiwfipv6eBBdWPm7g6h7eXbWgghLgWhbbTvoLiTdmSYd4CD+zIB1SPrj+9jeeztupeFK2bTYd54KZFrr9Mz6R77phzZt1+btqlL0ciZ5v7a0Kwzp8ofM5+cow3LCAiuaq+H0g0dXGAeitY1LJ2q90a6NFmO6y7uTt6smQq4x46F+fPhwgXYuBEus8gVZjJpLd2hoXD55apMsUuqlbuIZRKuOMuUM3pXaHOL7Q7GQjg2T805fma5+ilLl+eh+6sOq+ulwmBQ51m7duBShTzJJpPW0ya4WR4s6ahm+Ch3p1KCa/9+auiVXw/VEm4yAjrVlTxgAPh0tR7m1YBJS3cN+u4bbfzt/57IR+ekI6R9c6YMV9MwJWUE8vPcHWXuX5hfyNEENWa1Q8gpnPRl//eF92rLu/OHM+am3gA8+qjWcjF7dun5LL75zvavtnh6C5u6FMLRoofkHTrINANCCHGpCG3va16OO1XKXL/VICVLC/iWrrJvLuqaZDKauPlmIz+uGsStD3clN8uO3AvAviNaoNypj4pMmodqD6kTzpX/+03OKpouzAM8G3tWttrlGn1dd/R6dTMw5HIJuEvqVMpon+Jx7GMtZmpZu9a6TEoKpKWp5Q4drDO6w6UZdFd6rm5jHrS7FzztSNneuESvy9Ro2PEIHJwNZ1balwflEvTkk+ocHTVK9cYo9vvvcO21sL2CGV7T0zH3fA0OcbaemtW7AwxaCFNSYdRa6PURRM6CTqWMye/5LoyPgv7zoPdH0GcO9PkYOjyguqVLwG0mv4kakpGcxZIN6sl4kG8iY2/Urrr33O/BT0WJ/TZtNHLr/5V+jJMHzlBgUFe2sFZ2JMix0LevmkNzyxaVcXPtGhPDL9MC8fgjCazcbvtNsHtbBuPG2bZinzih/ZGXldBNCCFE/RPawWJ85hnHBnplScnS3nPd3gjSkrPwDfAyrzMajHz19i5+Xd2Lhx/RccUVNVItszWLo4g+ocbmZ+U1Imp9DP3Hlp8fw2Q0sf+kCrTbBMXh5aO+v4PbaDkUEhI9yj1GStFXvb9/VWtetg5dfFm6FA4eVMnPhLXSksEVB92WXcY3b7YuYzmeu0MH6NdPtUQW3zNdikF3cLBqfDEaS7R0l8XZCyJmQNcXIGUb5CWrQNyQV/RvLhRmqoSmfr2s9z2/HQ59pL12bYIu9Aa88ntDfhvwcFzugzqpMItzB6KZ83FfQM+6dWrquhdfhLV/JXDNNU0xGvWciNrL9rlPqmSZWXGQdRwKLqjkpC0nc8bpJVQ+GAgO0UPLa1Qi2NY3Q+sbwamoIa7pUPVTlhLztouySdBdQ9YtOU+BQZ3ct07cj7PrcPO2iP7aI8KjJ71K7mp2eG8ixYlxOrTNq3QdHnlEBd0Ac17dwfDLtDmBv59zEKNJ9SOfMmInv/ynLnJRa/dR2rzOB7cfojixUHibVKqe7EcIIURd0iSoCZ5uWWTneXHqnG+NvGdyuvY+hQYX/lrlwg03qNfH9sZx923JrI5SPbei96ruvjV5rzf7A+vv3O0bUug/tozCReIOxpOZ2wKALm3PUvz93STIFzeXXPIK3DmTVPbQLJNJzQ8N2hhiRxs3Tv0IW+Hh6hyz7BlYHHS3aqWG3iUkqPsqo1Hr8Vcy6Pb0hD59YNMmte5SDLpdXFRW91On7Ay6iznpIbCSiRMvHLF+nZ+K05FP6QgQNxVcfKBxR2h7J7S/V7tQnPoN0vaqmU7cAtVY5IIMFYj69YKmgytXj5qUHQ+n/4DTi+HcGub98QQFhdrv7dVX1cOdO+8KwmhUJ+Kuo525cHwT3h6Z1sfKOACH5nDG60nMQXcw0O8rCaCrmXQKriG/rdCag++c1sJqm3+wH4091BivI6cDKcuh/VritLDwynf5mzLZgF8j1X1k3a7WmIqmmzIZTXzzsxb4v/GOP+4uqs9J1MHSu/lZzdEdZN9URUIIIeo+nZOO0GZpAMQlt6z26XUL8wtJy7aeiWPpUvXvr59tplsff1ZHaZFKQgIcq8Zca+v+2MNlkbt59Ia15GXncfw4/LGxn1WZbTsq/g7et11LTd4lXEtIp3PS0bxJEgAJ58tulbuQYTS3jlZX0C3K5uFhO51bcdCt08GAopgnI8N6Hu+SQTeoVsiWLVXjR0s7elTXR8VdzJOSILs68y92ehJGrVfdmVvfqqZ4tFSQDilb4cQP1kFk2j7YOwN2PAQbr4cN18LWqbDrMVg1BDbdAnnnuVjx8SrBntFosdJkUtO1JvytpoE0GcvaXTHkQeYxOPIlrBoGv7eAHdPg7CqMBgNfrL7HqnhhoRrykJCghXVGk55tR/tqhTyC1cMIvQcUpHNm62/mTcHBSMBdAyTorgFR6w4SfUJlUOkbHkPnfu2ttuucdLQLVl/OcUkhFOSXfodzyOJCHtbFdqqwiri46ekZdhyAxPRAzp5Qcwkf2HGMg/Eqac2wiCg69GhNRFs1YPvwmTZcOH+hlLpop05YV2nlFkKIS0louJrGJzvXlfMXfx9artRzaZhM1rcjK1bA7rWHuOWRSLLzVA8wvZOW1K241dDRPn9tHSOv6cyaPT2YvXAYk0dE8+47hZhM1jek22MqntR2X7T2oLxLN+uOhc390wBIzgggP6eU9NdA8slT5uUAp532fgThQCW7mFvOTT7AooHW8nwsLegeM0a1AH/4oePrWFdYjus+darschfNzV+1Sre9AwZ+B5PPYuzzOcmNJ2JqOhy8irKkhz9SooLXlH/cEz/A8i4Qv6Jy9TEaVPftjENcuAADB6rkec8/DyRugOgXYUVXWNENVo+BJW1gkTcsaa9+/mgLGSXmmEvZCkvawbZ7VEZxC6uO3MKxRDWV6vAhOUSUmH1Tp9NiiM2uS2HiEbg+BybFw4RYuC4LJp0hwe1Gc7myEiYLx5KguwZ893miefnOm0q/e2nXQyWKMBj1nIwr/WnToWPaXNhh3as2i32PrloAvXujuipui9IC+LGj1E1CZCetntGbjtsc5+Axb/NyeA+ZY1EIIS4lljfQleouWgUpGbZdrNPSYOSEpuQWqFas60ds4peFWragkuNoy5OZCVddpQKm//s/ta+xREOTocDAIzes5b4XhlJo0JKKrtjahzmfqIDZzQ06hKhfxsH4tqQnpVOefbFaoN2lh/Wg7OaBWkB+9mRSqfsnn9W+rwN8M0stI6qXZTK14GA1tVKxgdpkL1bnY3HQ7eQEbUrMknUpKzODeXVzaYyp7V2cbP4SxstWwVXHYOwuaHG1dbnGnWDYUuj/DfR4GyLfhD6fQY93wcVXlck9CxcOWu93fjdsvRvWTOTHp6bTqcUhPrn3GfijjfpZ5AF/tIKtU/nxR+2zz5kD2VEfQcyrkL7f+piGbDVePfOoGmt94ZD19rwSeZsah0PXl2BcFJ9Ff2te/dCjHnzzDTgXXWqcnODLL7UYYtM2T/BuB3qLWZF0OvBozplzWr6O4KqFFKKSJOiuAb+v6Q6Am0su198XUWqZdu20P5KjR0stwuFTKruoj2c6ASFVy6oS2VO7mYjaob7Et+3R+q31Ga+yg/Tooe0TtS3V5jgH49RjscDGSTQJ8q1SXYQQQtRNll1gq7XVCkhJczUvBwdrrTSpmb4A9GgXyzdLejJitIe5B+Tm9bY9sMoy44nDLFmiugC//74Kljp31qaBApj72gY+WjjM/Prm0RvxcrMOdG++GUYP1B5C71hTxpd1kX2HVddxnc5Ix16trLYFB2ljxBNO2n7HAiSf1aYTC/Cv5j7+olSWQbdlKzeosdnFUzUVB90mkzZHd6tW4OpKg1HpDObVya+HbdZsnQ5CJkDb21UX9c5PQYf7oNP/wRX7ILgoO2Ozy633u3AIjn7F6b27ueuDGRyID+PxeTNITUxTU2wZix4Gpu5m7lzt7zQjAxb/ZdEoFTgEOj4BLa6CRu3B1U+12rsFQG6i1Vvi6gchV0L44zB2B1wRCxEzOJPTnSVL1EWwWTO48kp1v/711xAZCfPmwZ13QmDRSNXifAOlOaONEpWgu4ZI0F0DWrbzBeC+25PLDFDbW/Q4Ly3ozs0xcTJJjQUPa5WMzqlqYy96DNDGaEftdQOspxXorfLUENlXG2e2O8r6NLlw/gIJqeo4YS0TEEIIcWmxauk+Xnr3Z0cpThYGcON1eVbdyBt7pPPzr564e7nTuDF0a6OC3uh9nlw4X3Hrb8ymw3zwpW1z48GD8NFMbWD4Nz9pD5+/eH0981cO4s9FR60C74cfhj793Myvt8eU3svLZIKVf5nYd7I1AG2DTtlM99W8uXZzfiau9M+RnKgF5gGBMt6yNkRGasuWjREA7u5aUrSDB1Wm+aQkFWyB1rW8oai1lm5H8AxWreCj1oNPiacrBvXw68VfXzH3vMkvdOOXXXep4Ng3AlpcxY78V9m1y/rv9JttT0KfT0kffpLL31pH++ve4avDv2OaeBimpMA1yXBNErS70/o9g4bBsD+g13sqyVvR08avv1bzcwNMnao99Ln1Vti9G267zTrfQGoqHCrRiF7MMuiW7uU1Q4LuGrBkiZF58w7w9pyyz+p27bTlI0dstx89pjOPKQvr2c62gJ3CerTGw1VluNh9oDl5ebBnj9oWHg4+RT3NIwa2xUmn/rKjYq1b1Q9FnTYvh7cpv3udEEKI+ifUV7tTi9tVTQOoi6RY9KTs0NGdYd2jza+/fm8/7bprd/MDuqtmd6NJz/b/SoyDLMFkNDHt/iwMRtXi9dSdm/j6S4M5qF+w0A2jwcjxmNNsP6RutHu0i+XuZ4cAMOTK7vy7ysS4caqFPDIS+ozrbz7+tr1BAOzbfITpd6zhsZvW8th9CQwYAGPH6cjJV4F2ZE8tUC/WvK12P5CQ0bbU+icnaQ8f/ANcSi0jqlevXvDcczB5Mjz2mO12yy7mW7aUPp67oajJISnVQqdTY8VLJhRrcRXRoQf5Zp11YPxD7LsqcB6/B4b+zty1j5u3FWey/3dTMHFu9/N/L4SyapVqVLv7bpX0rCq9Af75R1u+++6yy5WVb8BScdDt76+GzojqVyNB9w8//MCIESPo1q0b1157LdHR0eWW//PPPxk7dizdunVj4sSJrF27tiaqWW18fKBbtyz05SQ7bReqPek+un2XzXbLJ1UXMy+23kVPtzbq6f6RhNZsXHWW/KJGjD7aDGJ4NvYkLOQEAHtPtKMgTxtLt3blOfNyeJih6pURQghRJ4W20vrFxp2u3j6yKae1HlP+PtnMmevLlOGb+XrWeq6533o6oQEDtNuWzevKf+g7/4ONrNsbCUC7Zid5+aOe3DlVz+jeuwE4lRzChmV7+Xm51mJ93aQMq2P0G+zNihVawBUeDt5FKU22b4f0pHRGjffmrW+H8+GPw/jw8+Zs3art36ULzHjTdhaQ4I7h5uWEtKal1j8lRWsNDwhyL7WMqF46Hbz2Gvz6a+mtgZbBzebNEnQXq/Xu5Y7k2oTpr4eZG76KA+q1a7WhNxkZ8OOPatnbG556Si2bTHDXXaqF2tLff0NEhHXWe3ucOKH+9fOzzaxvqax8A8VMJjULBEjX8ppU7UH3ihUrmDlzJtOmTWPx4sV07NiRqVOnkpKSUmr5Xbt28cQTTzBlyhR+//13Ro4cybRp0zhUVv+IS0RIqAeuzqor2dE4b5vtq1dryxd7Ie/RWUuS9tWHWl/2vh2sH4ZEhqvgOr/QjQM7jmMyweuPbeSJt4aby/TsV/Yco0IIIeqnFh2CzMunzjYqp+TFSz6mJS7ydzlIxz5t+Xn1AO6cPsSm7MBR2pSbm7Z52WzPz8ln6bxt3D5+Aw88G2le/9HbSbh7qcD15hu07vI/fJPOop+1lq1r77eeGqwkvV61fgKcPg333XyUs2lBNuW6dYOff4boaOja1fY4lgGcZTdPS8kp2pP6gGa2n1XUPsuge+lSmDVLe93Qgu7GjbVEc9XV0m0yqSSLNWnVKvjrL7XcqhU8/bS2rTjQ/uEHyCrKjXjrrfDgg1qD+b//auWnTYMWRZewjAx45RX761FYqOWhaNWq/LK9e2vJ1Upr6U5Nhbyi0SvStbzmVHvQPW/ePK677jquueYa2rdvz8svv4y7uzu//vprqeW/++47hgwZwt133027du147LHH6Ny5M/Pnz6/uqtYqvYueNkHqr+nY2RBMFpkPYjYd5pNPVIuyuzsMG1bqIexmOUbp1zW9zMt9+lqfDj26azcmQ8a3pnNneP7DQeZ1t43bwMgpJQY5CSGEqPfcG3nQ1Edl1Y47V72TRKectz+4bN+9FQGN1SDwLfvaYTJqrcFGg5HBkYe58q6+fPfnYLLy1MOCSUO2MO6W3uZyV93RHU83dYf8w5892Vk0G1evXtZDvcpi2Sts4T9qUK+HazZ//7iTzWvOEx0NUVEwZYrWKlaS5Y1uQhmpUZLPaz0MAprLA+66qEULLelgdLQa2w0QEnLx92r1UXFr96lTZSfwuhh33w1NmsCMGY4/Nqj8EvkWKSxiYuCmm7TXr7+uEpUV++EHFQi/95627r771DkxapT1sceMgY8+UsdsWtS55Zdf1MM7e8THa+O5Kwq6PT21e/39+20fVEgStdrhXHGRqsvPz2ffvn3cd9995nVOTk4MHDiQ3bt3l7pPVFQUd9xxh9W6wYMHs2rVqjLfx2AwYDDU3W7OxXWrqI7tWyZzML4tOfmenD4ST3C7ZtqYNIO6KZn+aDxBQc24mI8b0Ve7gcorUE/+nfUFdBvYxqqO/cd0gKILSXqGK+lFve50OhOvP7Ka/709FKPJCHX3V39Jsfc8EqI8ch4Je4U2TSIxPZAz54PIy8nF2VUbV+zI8yglVTuub1OvCo/Zv8sxlm0O4HymH7E7jhDeSyVKO7LnpHlsNqgkbNdevoe35nazOqZHYw+uGrqFH/8ZZA7MAaZMMWIwVJwlvHfYQaCz1brn79/KiGuHFr0yYDJR7ve0ry+4uDhRUKDjzKkcDAbbLvzJqVqXct9A79r5mzUY0JsXDeV/qCodvv5fj/r313HqlPZ0pUsXE4sXG3F3d/ivq85r2dKJ6GgdBQUQH29waEBnMsH8+U6AjrfeMvHoo0YaFz2Lqux5lJCgtcbn58N//+n49Vcd+/fr8PU18cgjJkaMMDFlihPJyarJetAgE9ddZ8TJCfr2dWLbNh3R0RAZaTKXGTDARJcuRgwGuO02Hf/8o84LHx8Tc+caMRqhUSO45x4dr7/uhMEAc+YYee21iq87x44BRX+NoaEVX6v699exY4d6/02bDIwZo21T3eLVsZo1s++61xCUPI8cfV2q1qA7NTUVg8GAv791Ii5/f3+OHTtW6j7JyckEBATYlE+2TG9aQn3per53795ytzdvqnW5X7tyF50GBrP2lzjW7Z0EQNugE4yZkEBU1NmLqofJW4eTkwmjUetS17XVIQ4czrUq5+kH06cbWLfOh2PHPDh3zpVGjQqZMeMEw4f7sCd6z0XVQ1RNReeREPaQ80hUpFlAFhxWScvWrlyNf8smNmUccR6dS9ECzvjEUyRmlP8d17XjWZYVjVNc/ksMOXo1tvvIzrOASko2acganprpjou7F8fjj0G89TEuG5nMj/9Yr+vceR9RURVnavfxT8My6A4LPsrIGzyJioqqcF9LQY2bcTolhIRTF4iKsp2XLSlVDTXzcsvk4NGDNttrglNODsX92aKjozF6eFTL+9Tn61F4uD/QGoAhQ9J49dXjZGQYqeTpcEnw9GwJqGbcf/89TLduWeXvUAnZ2U7k56uzMSdHx3vvneLqq62HqtpzHu3a1YgHH+xAYWHp3VDS0nS88orOqut3ly5ZvPbaYaKjVRA2dGgg27apZv3igDs4OI8nnjhMVJTqt922rY5u3cI4dMiTZ589TnJymnmmhiFDnNHrIzAYdHz6qZEJE6Jxdy8/8F2/3g9QDxj1+niiohLLLd+8eROKr4e//36OoCCtS83Wrdo5azSeJioqqdxjNTTVdT2q1qC7poSFheHp6VlxwVpiMBjYu3cv3bp1Q19ONrWuXdbDErWcl+VD6+A2jP9Uy0wx++1z9B3Q1yF1CguDAwe01327pxAZOcimnOUUGRcuGHB21uHhYTv9iqh+9p5HQpRHziNhr3at1kNRcOum8ycyMsK8zZHnUVrmCQAauV+gT/8+5RcG0q6AWfPU8qFDfvxfUT/Ks8e1PpNduzehT/9SBlMX6dKpC8++nkTyBTWhbd+wPVxxRdnlLZkiTDT1SSQxXQUXs989T+++vSvYy1ZwQCynU0JIygigS6fGuLhZZyhPyVX9cwMCdERajgurSVla0BQREQFejh1bfilcj7p2hcaNjfj6wu23e6PXR1S4z6WqZ08dP/+slt3cwoiMdFwL6qkSz6X+/bcVM2aovv32nkcGA0yd6kRhYelT8EVGmti7FwwGbXvfvib+/NMdH59u5nXBwfD++yZzuSFDTCxa5ExgYCer4+3aBfn5JtzcWtu813XXmfjxRx3p6c7ExkZy553l/66WL9fqNHBgMJGR5XcjaNJEZd4HOHKkOZGRWu6JP/+0/HwhREaWPv1hQ1PyPMrOznZow261Bt1NmjRBr9fbJE1LSUmxac0uFhAQYNOqXV55AL1eXy8u1hXVs31H7cvs+FEjn74RTWL6cECNSbvi1v6l71gFPXpYB939+uoq/B0WJ8gQtau+nO+ibpPzSFTEctxg/PHsUs8XR5xHKRmqj6i/dzp6vW0i0ZL6j+qIk86A0aRn175A8/un57c0l/Fv373cGUP0nnquv3wdc34bDcB1ExPt/xx6mPH4AZ55y42Hb97NmBuG27dfCcGBmXAQTCYnkuNTadFBG+htMkFKqqqPf5BXuZ+lWlm8sV6vp7oqUp+vR3o9/O9/tV2LuqGNRZvM3r1O3HijWs7IgEcfhcBAlWyurFwH5Sme/7zY5s06jhzRE65NBFDheTR/vjZNblgYjBunljt0gKuvhpAQHceOwRtvwIIFalz+woU6Gje2Pmbz5iqh2vvvqzHe772nw9W19Pd1LiPSeuwxLRHbRx85MXWq7WxlliwfOrRpo6/wT7FNG5Xh/MQJ2LhRR26u3vzM7Jw2CREtWlR8rIam+Dxy9DWpWhOpubq60qVLFzZb5Ks3Go1s3ryZHj1KT8AVGRnJli1brNZt2rSp9p7y1qD2nbVu+AcOu/HJDx0BcNIZeGeOYzMdlPx19hlim31VCCFEw9WylTZ5a9zJgnJKVp3JaCLlguq27u9zwa59vHy8aOqjHs6fS/Uzr09N1co0se0Jb+N/r3WmXbOTRLY9wF3/q7iF3dIDLw0l9UJjXv18eKX2s9Q8SOvKnnAi1Wpbero2HricNgch6pShQ7WAev587Rx+4QX45ht4+21YtKhqx05NtV337bf275+TA88/r73+7DP44AP1M22aSn4H0LYtfPml6uTx55+Yx42X9NprcOECfPwxuFZhVsW+faFf0WQJ0dGwbl355S0zwleUSA1UAD9aPVMkP9/6+JaJ1CR7ec2p9uzld955J4sWLWLx4sUcPXqUGTNmkJOTw+TJkwF46qmnePfdd83lb7vtNtavX8/XX3/N0aNH+eijj4iJieGWW26p7qrWutadQ9DpVHey39f3ISFVze155aDttO0WWt6ulRbZVusu4eWWSee+dqRsFUII0WCEttNaneNOObFvZzKLv9hCblZuOXtVTnpyBgajagoK8LV//Kd/sIpEU7K0B8bntdkw8fMruYetVp1acDg+lN1HO9IkyNfu9y6mcyqnWcoOwc219M4Jp6wfOFh2+JOgW9QXzZvD2LFq+dQpNd1tRgbMm6eVWbiwascuLej+7jvrZHUmk+p1MHo0HD1qXfbDD7VM4VdcAZddVv77ldfqXKwqLfaWHn1UW/7ww/LLFs997ukJJVJllckyedrKldqyZdDdrJl9xxIXr9qD7vHjxzN9+nRmz57NVVddRWxsLF9++aW5u3hCQgJJSdoA/p49e/LOO++wcOFCrrrqKlauXMmcOXMICwur7qrWOjdPN1oGqL+E4psQgEcfdy9rlyrr0c/PHOD3bheF3kX6lgghhNCEdtQe9n7xxxC69g5g8r39ue/aHQ57j5SENPOyv2+e3fv5B6jvrNxcyM5W61LPa3ff9rR0w8UHzhejebD2vRt/yvqzJ8drw/ICfDJrrE5CXCzLKbXmzVMt3Bcsnin9+adtV3F7WAbdxb1+4+PhH4uEiBs2wDvvqHV33KGCcICkJJg5Uy07OcGbb1b+/avDNddoLc1//KG6gpfGZNJaulu1su+BAMCIEdqDgb//1tYXB92BgVVrpRdVU+1BN8Att9zC6tWriYmJ4eeff6Z79+7mbd9//z2zZs2yKj9u3DhWrlxJTEwMy5YtY1gDmuywXVvriQ0j2hxk2NXdyyhddYEtA3j1oXVEtj3AK29UPIZOCCFEw9K0RWPzDZll4qE/N4ZbzY99MZITtS7W/n6Fdu9n2dJTnDbm/CFtKJufWxx1XfuO2ndvyVlUk09ozXQBTo57yCFEdZs4Uetp8ttvatyzpbw8WLpULW/ZohLR3X13xdOrWQbd116rLVt2MV+1SrtObdigAlmAhx/WAv277oIu2syCtcrVFR58UC0bjTBnTunlkpJU93iwr2t5MV9frQt7bKzqfWAyqSnTQObormk1EnQL+7Ur0Y38kXsSq+1J/HOzh7P7aEeGXuX4oF4IIUT95uSkxmiCalnxcld3fUkZgZw+klDOnvZLKehgXg7oONDu/UoNutO07N9+AY7vIeZofUaG4axXY+U37LLOHpx8TnsYERBQe63xQlSWmxvcfLNazs3VWm9DLE7xRYtUD5Ubb4R9++Crr+CLL8o/rmXQfcstWm+WFSvUmGVQ821bmj5dJSsr7tLu5wevvlq1z1Vd7r1Xa20uHkteUnHXcqhc0A3WXcz//ltdLwuKUnRI0F2zJOiuY9q315b9m+Ry00OVn4ZECCGEcITFi1Wr1OnT8OjNW83rd6477ZDjW45d9g90KbtgCQHuJ8zLKSeOAJCaoQXaTYJ8Lrpu1c2zsSc926v5t2NPtSPljDYoPTlJa/UPaGr/70WIuuCOO2zXzZmjdaX+6y945hnr7tTPPqtadMtiGXQ3bQrjx6vljAyVJCwz04lt26z3OXQIbr1Ve/3xx3VvDHPTpnDTTWo5LQ2+/962zMUE3cXJ1EAF3ZZjuyWJWs2SoLuO6WoxTeh9D7jj4e1Re5URQgjRoDVqBBMmqBaRXn2176NdOxyTTM1yRlF7kwMB+FsG3fGJAJzPUPPheLll4urhVtpudc7g3tpTh02rtYjD6mFEU7kPEPVLjx4QYTFdedu26jpS3C08Px9mz7beJzVVTcNVlpKzE0ycqL1evlzH7t3e5nmzB1p0minutj55MtxwQxU+TA145BFtefZsbSx6McugO7SSeZX79AGfomeQK1aorvzFRoyo3LHExZGgu44ZO1ZlM7z7bvXUTwghhKgLeg9tYV7euccxuUAsg+7KZOkuTqQGkJKsWoVTLzQCoEmjKmRpqiWDxnU0L2/cq004nJyifb6AZl41WichLpZOB1Onaq8fekglP7vuOtuyU6dq03J9/TVs2lT6MUsG3WPHanNgL1umY9s27Zr05JPW7xUQAJ9+an8CsprWowcMGaKWY2NtfwcX09Lt7AyjRqnlzEzV5R/gttu0FnZRMyTormP0ejVn4BdfYJ7EXgghhKhtLcOCCWysWmN3HGjjkGRqyUf2mZf9vVLKKWnNP1BLuZuSbASTifOZvgD4NbZvvu+6YNAora/rhg3a+pRUrUt5QPMyJgoWog578EHVhfzZZ1UiM4ABA6zHdrdsqabKeu01bd3DD9u29IJ10O3rq1pvi/MsHz+uY8UK1VXGyQmGD1fZyps2VeOlv/xSLddlt92mLW/caL3tYoJusO5iDmq6tC++qLsPIS5VEnQLIYQQokI6Jx29Op4AIOWCPymn023KZGeXPy6zpJRzWqu0f5Mcu/ez7HKdnKIjJzOHvAI1pruJt/3HqW1BQVoul+3btVao5DTt8/k3t3P+MyHqEGdneOMNeP11rUXaycm6dfX991UD0wMPaMMrd+2Cs2dtj1ccdDdurE0ZduWV2vb0dPUmvXqplvC2beHgQRWwXnWVgz9cNejfX1vevt16W3HQ7excteRnlr0COnaEX3+VqcJqgwTdQgghhLBL7+5aat0j0dYtyqmpEBamWpSuGbGHPesPVHi8lDQt+VlAsP3BpX9QI+0Y5505f057AODn45jx5jVl8GD1b34+7NyplpPT1Ofz9sjAzbN+jE8Xwh4zZqgW8Hnz1DhrUAFhcfdqsG7ZLVYcdDexuExYjusuNnKktuzrW/cSp5WlUyeth2tZQXeLFtoDh8oIDVUZ3J94Av791/p3KGqOBN1CCCGEsItlMrWDsc5W237+GeLj1fJvq7sTObQjU4ZvJiOl7DHWyWnqLtPNJRdPb0+76+HfTOtynZLmyvlz2gMAP98Cu49TFwzqo2Ut37BY9StNzlCZjwIap9VGlYSoNp6eqgX8jjusuze3bq0tlwy6TabSg+42bawTEIN10F2f6PWqlR7U509U+SHJyFBZzaFqXcuLTZ4M77wj04TVJgm6hRBCCGGX3sO01Lm7j3Sy2rZ4sW35X9cO4LM3dpV5vJQMlfzI3zsVnZP9AwybBPlqx0jzJDVZ61LexNdo93HqgsF90szLGzc7Yyg0cT5TRRYBPvVnfLoQF8MyoCwZdGdna3NLl2yltWztdnMzMWhQ9dSvJvTpoy0Xt3Zf7HhuUXdI0C2EEEIIu4S0a0ZQkMpyFH24lTnhUXq66rYI0LKliXefWmPe5+/VpScCMxlNpFwoDi4rl3Hc2dWZJl6q6SslvRHn89ubt/m17lCpY9W28F5t8PdWSeQ2Rnfg/HkTRqPqQ+rfpmN5uwpxySgv6C6ZudyS5bjugQPBox7PsGcZdBfPOS5B96VDgm4hhBBC2EXnpKNXL9UinZHhzIkTav3yn46YW6ImTdLx+MxhhAaeBmBjTCdys2zHWWelZ5mTn/n7ZFe6Lv6N1TjulAs+pGZq0300qWf9J3VOOgZFHAHgfKYf61eeNm8LCKzCAE4h6qGqBt39+sENNxjx8ytg+vT61culpL59tWVp6b70SNAthBBCCLv17q0tFyf++u1HLWX55NEn0TnpGNn3OAC5BR5s+jPWvH3T8r3EbDpMytk08zp/38onP/P3V83saVm+JCVqcwz5+VX6ULVucH+te/xjT2iJ0yozd7kQ9VlQkJZRuzJBt04H8+ebWLky2jwfdX3VujX4q5nP2L5djWWXoPvSIUG3EEIIIexWnOwHYMv6DHIu5PDnlggAAhonM3h0CwBGjtRuMf79S7VKL5qziUETutFjaGt+/vqIeXuAX+WTn/mHtjEvHz2mjQevj0H3bQ91oamPenBxKinIvF6CbtFQODmpLNugAk3LubrLC7qLXQpzTut0Whfz5GQ4ehRWrNC2t21bO/USjiFBtxBCCCHs1qeH1hX8488a8eit28nOU927rxoWi95FdYkecZU2tvrfjQGYjCZee0dFkYUGF555X8t45O9X+W6hxS1CAIf3a2PCmzTOq/SxaltQ60CWLDyHu4v1HOMBHqXMnSTEJaq4JffCBS1jN9gXdF8qLLuYP/ww7NunrW/TpvR9RP0gQbcQQggh7Na8pSf3T14LqOD5iz+GmrdNmqLNu928bVO6hB4GYPvBTvzx9Tb2nggzby80uJiX/Zv7VroeVkH3Ia2l3M8zsdLHqgv6jenKDx/vQafTHkAEeJ6pxRoJUbPKGtfdkIJuy2Rqf/2lLb/zzqXRmt+QSdAthBBCiEr58IcB3DByldU6b48MRl4TYbVu5EAVNBpNeu57suy+kf7tIytdB8ug+3Si9qJJ09KzpdcHk+/tz3vT1wPg4ZrNoDHtarlGQtQcCbqtg+5iV10FQ4bUfF2EY0nQLYQQQohK0bvo+b83fLhzwnrzugmD9uLu5WZVbuTV2pRXiemBAAT7JfDhS9Zzd1dl7LK/znb+byedgcb+3pU/WB3y2Mxh7N96lGMHMmnWpmltV0eIGiNBt0ooVzy2HUCvhzffrL36CMdxru0KCCGEEKL+cdI7MffX/oRNX8OuPW689YltS/awsUE4OYHRYsj2gzcf5KEXh7Nkgza3d+vWlX//AD/bsdtNGqXhpPcvpXT90qmvtHCLhkeCbqVPH4iLU8v33gvh4bVbH+EYEnQLIYQQokqc9E48/f7wMrf7+EDfvia2bFGDEd1ccrn3f11xcoIFC+DZZ6F9e+jcufLv7R/obrOuSaMLQP0PuoVoiCToVu69F379Fdq1g5dequ3aCEep1qA7LS2NV199ldWrV+Pk5MTo0aN57rnn8PLyKnOfW2+9lW3btlmtu/7663nllVeqs6pCCCGEqAYjR+rYskUt33TFIQJbqnHfTZvCl19W/bj+QZ426/waZ1b9gEKIWtWiBeaeMWUF3b6+NV6tGjd6NKSkqHnLGzWq7doIR6nWoPvJJ58kKSmJefPmUVBQwLPPPsuLL77Iu+++W+5+1113HY888oj5tYeHR3VWUwghhBDV5I474OOPVebdp9+MqLC8vfyb2SZMa9I412HHF0LULBcXCA6G06e17tWgBd3e3uDcQPro+vnVdg2Eo1XbqXv06FHWr1/PL7/8Qrdu3QB4/vnnuffee3nqqacICgoqc193d3cCAwOrq2pCCCGEqCHt20N8vEoI5G7bI7zK/Jv52qzz86l/c3QLITStWqmgOzERcnLAw0MLuhtC13Jx6aq2oHv37t00btzYHHADDBw4ECcnJ6Kjo7n88svL3Hfp0qUsWbKEwMBALrvsMh588MFyW7sNBgMGg8Gh9Xek4rrV5TqKuk/OI+EIch4JR6jseVQcbDvytHP1dMXDNZucfK2beRPfQjm3HclgQG9eNDj2PxC5HglboaE6Nm5UkysdP24gLAxSU50AHU2amDAYjDb7yHkkHKHkeeTo86nagu7k5GT8SvSNcHZ2xsfHh6SkpDL3mzBhAsHBwTRt2pSDBw/yzjvvcPz4cT7++OMy9zl06JDD6l2d9u7dW9tVEJcAOY+EI8h5JByhts8jf+9mnE7Rgm5XlwyioqJqr0KXGKecHHoULUdHR2OspuF+tX0eibrD3T0YaA7A6tVHOX8+i/x8dRY6O2cSFVX2Pb+cR8IRqus8qnTQ/c477/DFF1+UW2bFihVVrtD1119vXg4PDycwMJA77riDuLg4Qi0nrrMQFhaGp6dtQpW6wmAwsHfvXrp164Zer694ByFKIeeRcAQ5j4Qj1JXzKMDnMKdTtNcteowmMrKBDPqsCVlZ5sWIiAgoJxFuVdSV80jUHX366Jg3Ty07O7enZUuTeVvLlo2IjIy02UfOI+EIJc+j7OxshzbsVvqb6a677mLSpEnllmnZsiUBAQGcP3/ean1hYSHp6emVGq/dvXt3AE6ePFlm0K3X6+vFH1l9qaeo2+Q8Eo4g55FwhNo+j/x9sq1fB7ohp7UDWfwy9Xo91fXLre3zSNQdbdpoy6dOOZGRob3289OVe57IeSQcofg8cvS5VOmg28/Pz6bbeGl69OhBRkYGMTExdO3aFYAtW7ZgNBrV01I7xcbGAkhiNSGEEEJY8W/RDHZrryXjrxD1W8m5uhvaHN3i0uVUXQdu164dQ4YM4YUXXiA6OpqdO3fy6quvcsUVV5gzl587d46xY8cSHR0NQFxcHHPmzCEmJobTp0/z77//Mn36dPr06UPHjh2rq6pCCCGEqIf8WwRbvZagW4j6zbJTqwTd4lJSrQOf3nnnHV599VVuv/12nJycGD16NM8//7x5e0FBAcePHycnJwcAFxcXNm/ezHfffUd2djbNmzdn9OjRPPjgg9VZTSGEEELUQ/7+1q+beKUBvrVQEyGEI3h5QUAAJCdL0C0uLdUadPv6+vLuu++Wub1FixYcPHjQ/Lp58+bMnz+/OqskhBBCiEtEyaBb5ukWov5r21YF3XFxsHWrtl6CblGfVVv3ciGEEEKI6uTvk2v1ukmQTy3VRAjhKNdeqy1//bW2LEG3qM8k6BZCCCFEveSv1+ZT9XDNxt3LvRZrI4RwhKlToXgm4Px8bb0E3aI+k6BbCCGEEPVSQDMP83ITr9RySgoh6osmTeC220pfL0R9JUG3EEIIIeol/yBv87Kf1/larIkQwpEefth2nQTdoj6ToFsIIYQQ9VJAcGPzsr93Si3WRAjhSJ07w+WXW6/z9a2VqgjhEBJ0CyGEEKJe8glswk2Xb8RFn89dd1XrhCxCiBr2yCPacqNG4OJSe3UR4mLJN5QQQggh6q0f/h7Elxdy8PAeXNtVEUI40Pjx0LEjHDigWr6FqM8k6BZCCCFEvebh7VFxISFEveLkBMuXw08/wXXX1XZthLg4EnQLIYQQQggh6py2beHZZ2u7FkJcPBnTLYQQQgghhBBCVBMJuoUQQgghhBBCiGoiQbcQQgghhBBCCFFN6vWYbqPRCEBOTk4t16R8BoMBgOzsbPR6fS3XRtRXch4JR5DzSDiCnEcNRG4uhIdryzqdQw8v55FwBDmPhCOUPI+K48viePNi6Uwmk8khR6oFKSkpnDhxorarIYQQQgghhBDiEtO6dWv8/f0v+jj1OuguLCwkPT0dNzc3nJykp7wQQgghhBBCiItjNBrJy8vDx8cHZ+eL7xxer4NuIYQQQgghhBCiLpPmYSGEEEIIIYQQoppI0C2EEEIIIYQQQlQTCbqFEEIIIYQQQohqIkF3Dfjhhx8YMWIE3bp149prryU6Orq2qyTqsI8++ojw8HCrn7Fjx5q35+Xl8fLLL9OvXz969OjBww8/THJyci3WWNQF27dv5/7772fw4MGEh4ezatUqq+0mk4kPP/yQwYMHExERwR133GEz+0NaWhpPPPEEPXv2pHfv3jz77LNkZWXV4KcQta2i8+jpp5+2uT5NnTrVqoycRw3b3Llzueaaa+jRowcDBgzgwQcf5NixY1Zl7PkeO3PmDPfeey/du3dnwIABvPnmmxQWFtbkRxG1yJ7z6NZbb7W5Hr344otWZeQ8atgWLFjAxIkT6dmzJz179uT6669n7dq15u01eS2SoLuarVixgpkzZzJt2jQWL15Mx44dmTp1KikpKbVdNVGHdejQgQ0bNph/FixYYN72xhtvsHr1aj744AO+//57EhMTeeihh2qxtqIuyM7OJjw8nJdeeqnU7V988QXff/89M2bMYNGiRXh4eDB16lTy8vLMZZ588kmOHDnCvHnz+Oyzz9ixY4fNDYy4tFV0HgEMGTLE6vr03nvvWW2X86hh27ZtGzfffDOLFi1i3rx5FBYWMnXqVLKzs81lKvoeMxgM3HfffRQUFPDTTz8xa9YsFi9ezOzZs2vjI4laYM95BHDddddZXY+eeuop8zY5j0SzZs148skn+e233/j111/p378/06ZN4/Dhw0ANX4tMolpNmTLF9PLLL5tfGwwG0+DBg01z586txVqJumz27NmmK6+8stRtGRkZpi5dupj+/PNP87ojR46YwsLCTLt3766hGoq6LiwszPTPP/+YXxuNRtOgQYNMX375pXldRkaGqWvXrqZly5aZTCbtPIqOjjaXWbt2rSk8PNx09uzZmqu8qDNKnkcmk8k0ffp00wMPPFDmPnIeiZJSUlJMYWFhpm3btplMJvu+x9asWWPq2LGjKSkpyVxmwYIFpp49e5ry8vJqtP6ibih5HplMJtMtt9xieu2118rcR84jUZo+ffqYFi1aVOPXImnprkb5+fns27ePgQMHmtc5OTkxcOBAdu/eXYs1E3XdyZMnGTx4MCNHjuSJJ57gzJkzAMTExFBQUGB1TrVr147g4GCioqJqqbairjt9+jRJSUlW5423tzfdu3c3X4t2795N48aN6datm7nMwIEDcXJykiExwsq2bdsYMGAAY8aM4aWXXiI1NdW8Tc4jUdKFCxcA8PHxAez7HouKiiIsLIyAgABzmcGDB5OZmcmRI0dqrvKizih5HhVbunQp/fr1Y8KECbz77rvk5OSYt8l5JCwZDAaWL19OdnY2PXr0qPFr0cXP9C3KlJqaisFgwN/f32q9v7+/zbgUIYpFREQwc+ZM2rRpQ1JSEnPmzOHmm29m6dKlJCcn4+LiQuPGja328ff3JykpqZZqLOq64nOjtGtR8dil5ORk/Pz8rLY7Ozvj4+Mj55YwGzJkCJdffjktWrTg1KlTvPfee9xzzz0sXLgQvV4v55GwYjQaeeONN+jZsydhYWEAdn2PJScnW93kAubXch41PKWdRwATJkwgODiYpk2bcvDgQd555x2OHz/Oxx9/DMh5JJSDBw9yww03kJeXh6enJ3PmzKF9+/bExsbW6LVIgm4h6phhw4aZlzt27Ej37t257LLL+PPPP3F3d6/FmgkhGrorrrjCvFycuGjUqFHm1m8hLL388sscPnzYKi+JEJVV1nl0/fXXm5fDw8MJDAzkjjvuIC4ujtDQ0Jqupqij2rRpw++//86FCxdYuXIl06dPZ/78+TVeD+leXo2aNGmCXq+3SZqWkpJi89REiLI0btyY1q1bExcXR0BAAAUFBWRkZFiVSUlJITAwsJZqKOq64nOjvGtRQEAA58+ft9peWFhIenq6nFuiTC1btqRJkyacPHkSkPNIaF555RXWrFnDt99+S7Nmzczr7fkeCwgIsMkgXPxazqOGpazzqDTdu3cHsLoeyXkkXF1dadWqFV27duWJJ56gY8eOfPfddzV+LZKguxq5urrSpUsXNm/ebF5nNBrZvHkzPXr0qMWaifokKyuLU6dOERgYSNeuXXFxcbE6p44dO8aZM2eIjIysvUqKOq1FixYEBgZanTeZmZns2bPHfC3q0aMHGRkZxMTEmMts2bIFo9FIREREjddZ1A9nz54lLS3NfPMh55EwmUy88sor/PPPP3z77be0bNnSars932ORkZEcOnTI6kHhpk2baNSoEe3bt6+RzyFqV0XnUWliY2MBLRiS80iUxmg0kp+fX+PXIuleXs3uvPNOpk+fTteuXYmIiODbb78lJyeHyZMn13bVRB315ptvctlllxEcHExiYiIfffQRTk5OTJgwAW9vb6655hpmzZqFj48PjRo14rXXXqNHjx4SdDdwWVlZxMXFmV+fPn2a2NhYfHx8CA4O5rbbbuPTTz+lVatWtGjRgg8//JCmTZsyatQoQCUPGTJkCC+88AIvv/wyBQUFvPrqq1xxxRUEBQXV1scSNay888jHx4ePP/6YMWPGEBAQwKlTp3j77bdp1aoVQ4YMAeQ8Eqor8LJly/jkk0/w8vIyj3v09vbG3d3dru+xwYMH0759e5566in+97//kZSUxAcffMDNN9+Mq6trLX46UVMqOo/i4uJYunQpw4YNw9fXl4MHDzJz5kz69OlDx44dATmPBLz77rsMHTqU5s2bk5WVxbJly9i2bRtfffVVjV+LdCaTyVQNn1FYmD9/Pl999RVJSUl06tSJ559/3twFRoiSHn/8cbZv305aWhp+fn706tWLxx9/3Dw+KS8vj1mzZrF8+XLy8/MZPHgwL730knSVauC2bt3KbbfdZrN+0qRJzJo1C5PJxOzZs1m0aBEZGRn06tWLl156iTZt2pjLpqWl8eqrr/Lff//h5OTE6NGjef755/Hy8qrJjyJqUXnn0YwZM5g2bRr79+/nwoULNG3alEGDBvHoo49aDZmS86hhCw8PL3X9zJkzzQ0O9nyPxcfHM2PGDLZt24aHhweTJk3iiSeewNlZ2osagorOo4SEBP73v/9x+PBhsrOzad68OaNGjeLBBx+kUaNG5vJyHjVszz77LFu2bCExMRFvb2/Cw8O55557GDRoEFCz1yIJuoUQQgghhBBCiGoiY7qFEEIIIYQQQohqIkG3EEIIIYQQQghRTSToFkIIIYQQQgghqokE3UIIIYQQQgghRDWRoFsIIYQQQgghhKgmEnQLIYQQQgghhBDVRIJuIYQQQgghhBCimkjQLYQQQgghhBBCVBMJuoUQQgghhBBCiGoiQbcQQgghhBBCCFFNJOgWQgghhBBCCCGqiQTdQgghhBBCCCFENZGgWwghhBBCCCGEqCYSdAshhBBCCCGEENVEgm4hhBBCCCGEEKKaSNAthBBCCCGEEEJUEwm6hRBCCCGEEEKIaiJBtxBCCNEAbN26lfDwcLZu3VrbVRFCCCEaFOfaroAQQghR23777TeeeeaZMrcvXLiQyMjImqtQPREeHl7q+ieeeIJ7773X/Pqjjz7i448/tinn6urK3r17yzz+jh07uPnmmwHYvHkzfn5+F31MIYQQoqZJ0C2EEEIUeeSRR2jRooXN+tDQ0FqoTf0waNAgrrrqKqt1nTt3LrXsjBkz8PT0NL/W6/VlHtdoNPLaa6/h6elJdnZ2meUqc0whhBCiNkjQLYQQQhQZOnQo3bp1q+1q1CutW7e2CbrLMmbMGKvW6vIsXLiQhIQEpkyZwnfffeeQYwohhBC1QcZ0CyGEEHaaPXs2HTt2ZPPmzVbrX3jhBbp27cqBAwcAyM/P58MPP2Ty5Mn06tWLyMhIbrrpJrZs2WK13+nTpwkPD+err77ihx9+YOTIkXTv3p277rqLhIQETCYTc+bMYejQoURERPDAAw+QlpZmdYwRI0Zw3333sWHDBq666iq6devG+PHj+fvvv+36THv27GHq1Kn06tWL7t27c8stt7Bz585K/V5yc3PJy8uzq2xmZiYmk6ncMmlpaXzwwQc88sgjNG7c2CHHFEIIIWqLBN1CCCFEkczMTM6fP2/1k5qaat7+wAMP0KlTJ5577jkyMzMBWL9+PYsWLeLBBx+kY8eO5uP8/PPP9O3blyeffJKHHnqI8+fPc/fddxMbG2vzvkuXLmXBggXceuut3HnnnWzbto3HHnuMDz74gPXr13PPPfdw3XXXsXr1at58802b/U+cOMHjjz/O0KFDeeKJJ9Dr9Tz66KNs3Lix3M+7efNmbr75ZrKysnjooYd4/PHHycjI4Pbbbyc6Otqu39nixYuJjIwkIiKC8ePHs3Tp0jLLjhw5kl69etGzZ0+efPJJkpOTSy334YcfEhgYyA033FDh+9t7TCGEEKK2SPdyIYQQosgdd9xhs84yMZeLiwtvvvkmkydPZtasWTz11FM899xzdO3a1SpxmI+PD//99x+urq7mdddddx3jxo3j+++/54033rB6j3PnzvH333/j7e0NqPHMc+fOJTc3l19//RVnZ/V1nZqaytKlS3n55Zetjn3ixAk++ugjRo8eDcCUKVMYO3Ys77zzDoMGDSr1s5pMJmbMmEG/fv348ssv0el0ANxwww1cccUVfPDBB3z99dfl/r569OjBuHHjaNGiBYmJiSxYsIAnn3ySCxcucNNNN5nLNW7cmFtuuYXIyEhcXV3ZsWMHCxYsYO/evfz66680atTIXPbAgQMsXLiQzz//vNzx2ZU5phBCCFGbJOgWQgghirz44ou0adPGap2Tk3WnsLCwMB555BHeffddDh48SGpqKl9//bU5MAaVzKs4YDQajWRkZGA0GunatSv79++3ed+xY8eaA26AiIgIAK688kqr40ZERLBs2TLOnTtHy5YtzeubNm3K5Zdfbn7dqFEjrr76ar744guSkpIIDAy0ec/Y2FhOnDjBAw88YNWaDzBgwAD++OMPjEajzee39NNPP1m9vuaaa7jmmmt4//33mTx5Mu7u7gDcfvvtVuXGjBlDREQETz75JAsWLLB6YPH6668zdOhQBg8eXOb7VvaYQgghRG2SoFsIIYQoEhERYVcitalTp7J8+XKio6P5v//7P9q3b29TZvHixXz99dccP36cgoIC8/rSsqM3b97c6nVxAF7W+vT0dKugu1WrVuaW6mKtW7cGID4+vtSg+8SJEwBMnz69rI/JhQsX8PHxKXN7Sa6urtx888289NJLxMTE0Lt37zLLTpw4kTfffJNNmzaZA+QVK1awe/fucruol6e0YwohhBC1TYJuIYQQopJOnTrFyZMnATh06JDN9j/++IOnn36aUaNGMXXqVPz9/dHr9cydO5dTp07ZlC+rG3VZrcyOSBpWfIynnnqKTp06lVrGciouexU/KEhPT6+wbLNmzazKvfXWW4wZMwYXFxdOnz4NQEZGBgBnz56loKCAoKCgSh1TCCGEqG0SdAshhBCVYDQaefrpp2nUqBG33347n332GWPGjDGPpwZYuXIlLVu25OOPP7ZqgZ49e3a11OnkyZOYTCar9ypuyQ4JCSl1n+KW8kaNGjFw4ECH1aX4oUJF03iZTCbi4+Ot5vROSEhg2bJlLFu2zKb8pEmT6NixI3/88UeljimEEELUNgm6hRBCiEqYN28eu3fv5tNPP2X48OFs3bqVGTNm0Lt3b3OgWdxybRkI79mzh6ioKIKDgx1ep8TERP755x9z4J+Zmcnvv/9Op06dSu1aDtC1a1dCQ0P5+uuvmTBhAl5eXlbbz58/X27gXNr2zMxMvv32W5o0aUKXLl3KLbtgwQLOnz/PkCFDzOvmzJlj8z7Lly9nxYoVvPnmmzRr1qzSxxRCCCFqmwTdQgghRJF169Zx7Ngxm/U9e/akZcuWHD161Dz/9ogRIwCYNWsWV199NS+//DIffvghAMOHD+fvv/9m2rRpDB8+nNOnT/PTTz/Rvn17srOzHV7v1q1b89xzz7F37178/f359ddfSUlJYebMmWXu4+TkxGuvvcY999zDhAkTmDx5MkFBQZw7d46tW7fSqFEjPvvsszL3/+GHH1i1ahWXXXYZwcHBJCYm8ttvv3HmzBneeustq+zql112GePHjycsLAxXV1d27drF8uXL6dSpE9dff7253KhRo2zep3iKtaFDh1oF2fYeUwghhKhtEnQLIYQQRcrq/j1z5kyCg4OZPn06TZo04dlnnzVva926Nf/3f//H66+/zooVKxg/fjyTJ08mOTmZhQsXsmHDBtq3b8/bb7/NX3/9xbZt2xxe79atW/PCCy/w1ltvcfz4cVq0aMH7779fYYtvv379WLhwIZ988gnz588nOzubwMBAIiIiKgxce/bsye7du/nll19IS0vDw8ODiIgIXn/9dQYMGGBVduLEiezevZuVK1eSn59PcHAwd999N/fffz8eHh5V+szVcUwhhBCiOuhMjsjGIoQQQohaMWLECDp06MDcuXNruypCCCGEKEXZk28KIYQQQgghhBDiokjQLYQQQgghhBBCVBMJuoUQQgghhBBCiGoiY7qFEEIIIYQQQohqIi3dQgghhBBCCCFENZGgWwghhBBCCCGEqCb1ep7uwsJC0tPTcXNzw8lJnh8IIYQQQgghhLg4RqORvLw8fHx8cHa++JC5Xgfd6enpnDhxorarIYQQQgghhBDiEtO6dWv8/f0v+jh1Lujevn07X331FTExMSQlJTFnzhxGjRpValk3NzdA/TI8PDxqspqVYjAYOHToEGFhYej1+tqujqin5DwSjiDnkXAEOY8aiJwcGDRILW/cCA6+15LzSDiCnEfCEUqeRzk5OZw4ccIcb16sOhd0Z2dnEx4ezjXXXMNDDz1UbtniLuUeHh54enrWRPWqxGAwAODp6SkXA1Flch4JR5DzSDiCnEcNhMkEBw+qZXd3cPC9lpxHwhHkPBKOUNZ55KghzHUu6B42bBjDhg2r7WoIIYQQQgghhBAXrc4F3VVhMBjMTyfqouK6VVcd8/PBxQV0umo5vKgjqvs8Eg2DnEfCEeQ8aiAMBvTmRQM4+P9bziPhCHIeCUcoeR45+ny6JILuQ4cO1XYV7LJ3716HH3P9eh+efrot4eHZzJp1jKZNCxz+HqJuqY7zSDQ8ch4JR5Dz6NLmlJNDj6Ll6OhojNWUP0fOI+EIch4JR6iu8+iSCLrDwsLq/JjuvXv30q1bN4ePNXn8cSfy8nRERzfi/vu7sWK5gY6dpMn7UlSd55FoOOQ8Eo4g51EDkZVlXoyIiAAvL4ceXs4j4QhyHglHKHkeZWdnO7Rh95IIuvV6fb34I3N0PTPT89iyxdX8Oi5Ox9CBWSxfdIr+Y7s67H1E3VJfzndRt8l5JBxBzqNLnMX/rV6vt3rt2LeR80hcPDmPhCMUn0eOPpcck45N2K0wv5DsjGyHHGvdkr0UFKhWbScnIwDnL/gwZnJL9m89Yi53YPsxZj2+huMxpxzyvkIIIYQQQggh7FPngu6srCxiY2OJjY0F4PTp08TGxnLmzJlartnFy8/JZ1SfGLx8PPn+vQ0XfbxVK7VuX1/O3MSIHrsAyMjxYeLVLiSfTuGvH3bQa0gQz3wwnL5D/Tlx4qLfVgghhBBCCCGEnepc0B0TE8PVV1/N1VdfDcDMmTO5+uqrmT17du1WzAE+f2Mra6MjAfjfq2HkZedd1PFWbWwOgE5n5Orbu7JkdTiRbQ8AcOxsK4YNSmXi7d3JzlNjsJJTPZk4ES5cuKi3FUIIIYQQQghhpzo3prtfv34cPHiwtqvhcNlpObzyUYT59bm0pvz48QbueGpwlY539ngie0+EAdC7QyxNgroAsGRFY/r0T+RcWlP2x7U3l3dzzScv35WYGLjpJvj992obmiWEEEIIIYQQokida+m+VC38LJ3zmX5W697/LBCT0WT3MdLStESi/y05bF4/anCSeblleDC//5iIm0uued20a9cStVuPr696vWwZvPFGpT+CEEIIIcRFMRohIaG2ayGEEDVLgu4acGL/ab78YyQAbi65dA5VSc6ij4fz34pEu46xbRsEBkLr1mr5n3+0YH3UOB+rsv3HdmXJt/sY3XsHc15cy0c/DaVjZz2//AJ6vdrviznnwWR/wC+EEEIIcbGuvBKCg+Gtt2q7JkIIUXMk6K4BLz55hrwCdwAeu3kLLz2rZS9/79Mgu47x1ZeFFBZCcjKMHWti2fpOALi75DBwXCeb8qNv7MXK7b158OVh6JxUhvORI2F4xG4ATp3z4+SB+Iv6XEKI+stkNPH0nWsY3DWaTcv31nZ1hBANwIULsHy5Wv7669qtixBC1CQJumvAv1F9AfD3Ps8zb/Vg8tQIQkPVthUr4MCBio+xceVx83Jqqo7kDH8AhkTsx93L3e66DOmfYV5e/9fJCssbjZCTY/fhhRD1xLp/zvHmN8PZuC+CMVNas+3vfbVdJSHEJS5JGw3HoUOS2FUI0XBI0F0Dpj+to1OnLH74yQ2fQB+cneHRR7Xt114Lp0+UPXd36rk09sV1KHXb5cMr9401ZITWFX39OkO5Zf/6C1q2VN3A9kpDmBCXlE/nNTcvZ+Z6M2ZyCHvW2yaxTDh2jjNHz9Zk1YQQl6hEixF1JhNERdVaVYQQokZJ0F0DHnnExPffH2DUGK1F+u67ISRELcfEwMA+qcRuO1rq/lv+1pKm3Tp+G93D1Q2wTmdk3OSQStWl3+VhOOsLAFi/s/R9C/MLeXbqGsaNgzNnVAK3hQsr9TZCiDosKcmF33/XWa1Ly/Ll8gl+nNh32rwudttRWof70raTL1tXxtR0NYUQl5jEEmlsdu/WlV5QCCEuMRJ015LGjWHNGmjbSrVwn0oOYdAIv1ID743rsszLE8YXsmqVC0/fuYbv3t1M14Glt4CXxcvHi57tVWtW7Kl2JJ9OsdpuMpq4cshuZn493Gp9vAz/FuKS8fvvARQWqpvdRx/Op39H1ZUlKSOQ91/VrkG/fHOM/EI38grc+d/jGZWabUEIIUqy7F4OsHu3bZmcHJg8WSWOHTEC7r8f5s+X3K9CiPpNgu5a1L49bFydSY92sQCkZjVhxjPnbMpt3K51CR84ug0BLfyZ+fVwbnl8UJXed0ifZPPyhr+OWG3bsCyaP7f1AUDvVGheL0G3EHXTkaiTPHPXGtb8FmVX+YK8An77TU1f6OQE//ekK0v+bo5OZwRgw86m5rLbdjc2L6+PHciqRbscV3EhRINjT0v3e+/B4sVw8iSsXg1z58Ktt8KPP9ZQJYUQohpI0F3LmrVpypqtITT1UY9/f1vbh4RjWuBdkFfA1thwAEIDT9OiQ/NSj1MZQ4Z7mJfXr7HOkrZzc5p5+f1nNuLumgdA/MHSu74LIarXwZ3HOH249Eltf/p4Cz0G+DFr3nAm3NSetMT0Co+39NudJCWpoS5XjssgNBQCWwbQuaX6G99zrANZ6VmYTLD1QEerfV942U1au4UQVVaypXv/fsjN1QLvc+dg1qzS95Vs50KI+kyC7jqgsX9j7p6iMgcXGlz44t1Y87aodYfJyfcEYFD3irON22PwOK1L+vrtgVbbdu/Rm5cHjmhKiJ8aPx6fHOCQ9xaiIZo5EwYNgp07K7ffpy+vo1Of1rQKb8ojN6wxB9WnTqkulzc+3J/MXG8AsvIa8dvX0RUf83PtoduDt2j5IgZEqsDeYHRmx3+HOXECktJ8rPbdeqArK+bvqNyHEEKIIiVbuo1GHUeOaNekGTMgM1MtP/AAnD8Pbduq1//9BwmlP38UQog6T4LuOuK+JzvgpFPZxOf+FE5Bnkp2tmm19lh40MDCUvetLP9gPzqHqm7lu46Ek5maad62O1Z1LXXWF9ClX1tCAlMBSM/2ISs9y/ZgQohynT0Lzz0HmzbBtGn27/fPTzt5+JWBmExOGE16Plo4nPDwQiK7FxIaqrpclrRgkVe5x0xLTGd1VE8AOgQfZ+S1PczbBgzQWps2r0tj61Ztv94RqeblF15phLGw/JkPhBCiNCVbugFiY9V1a/9++OILtc7bWwXgTZrATTepdSYTLFpUM/UUQghHk6C7jgjtGMLEQaoF6cz55iyZp5Y3bnE1lxk0spnD3m9IH5VAzWB0ZstWdbOdm5XL/jj1SLlTy+O4e7kREqQF2vFHE20PJIQoV3S0lgBo61aI2Xm+wn0O7jzGtVPbYzA6A5gfyCWm+bMn2tlczt0dvvzcSLtmqhfM6qjuVsNTSjoSrSVnGNbnFE567StgwIhg8/LmmLZWQffLb/jSs73qgbP7aCeuGJVIspYaQggh7FKypRvgwAHVm2/6dDAUPc97+mloWpReojjoBliwoJorKISoFgYDHD3asBMiStBdh0ybpt1Mf/K5GyYTbNzTBgBvjwy6DWjvsPcaMqmfeXn9ZvWUed/W4+ab/B6d1DdjSPMCc7n442kOe38hGoqYPQVWr798t/xJ72O3HWXilTrSs1XX7okDt3J0bwLXDNtsLtO7N7z8MuzbB1PvceKmK48DYDTpWfTlgTKPffRAmnm5XRvr1urwXm3x9VXfhpv3hFoF3f3663h7Zq45+P9rbXMiI2HDhnI/ihBCWCkOun19VSJHUEH3H3/AsmXqdYsW8Nhj2j6dOkH37mp52zZ14y6EqD9MJhgzRiWQfu212q5N7ZGguw4ZeW0POgSrm+f/dvfk8pF5nDmvWrf798pC76Ivb/dKGTJEW/73X/Xv7i1a01WP7urmOiRE63J6+mS2w95fiIYiZu0Wq9ffL+1GblauTbnMTJj+0AkiBoZy+Ix62Nat9SF+WNqZ1l1a8MuaARzadYKEE6ls3w4vvqiNdbxxakvzcRb85m9eLvlE+cihfPNyuzA3q21Oeh39+6u/96Qk2LJFZTNv3yodf38YMaUHKxfupWlTtT4+Hi6/HE6fRghRDxmNcPvt0LOnakGu7hYok0nrXt6qFXQsytN49Kg7Dz6o3Y6++SZ4elrva9naLVnMhahf0tK0WOOHH2q1KrVKgu46xEnvxIO3xZlf/7tauykeNOris5ZbCg3VvvA2bVIZQ3fv1r5xI/uoVraQUK17e/wp6xY7IUTF9h1pYvX6fKYfi7+ynnrr8GHo2hXemtOaQoMLAO2anWTJMk+8/bzN5Tr0aE2zVtbHA+jUtx2RbVUL97aDXVm9PJ7rroNGjeCtt7RyR45pvWnadvS1OU7//tqyyaS+HvqFx5jXjbo2kqgoJ3O53FyIiir7swsh6q51y4/w3Xdqruybb4bLLlO9Z6pLejoUFN1GBAaqYB+gsNCJc+fUA7+JE+HGG233veEGbbkmHhAIIRzn1Clt+fBhyG6gbXgSdNcx9z3bl0lDtuDtrXX9dHWF665z/HtNmqT+NZlgyfzD7D7Z07wtcrBqaQsJbWReF3/Gdj5NIUTZjAYj+060BsDVOc+8/stv3M3LJ0/CyJHqXwA3NwMv3reGvYea0rpLC7vf66ZJZ83LIyaE8PPP6ott5uv55mm+jp7UAvh2XYNtjjFggO1x+/WxTuDYvDncdYe27vSRUjIjCSHqvA1/W3dTWbsWIiNh3hfVc0dsmUStaVPo1ct6u68vfPYZ6Eq51QgNhcGD1XJsrMqVIYSoHyyDbqOxeh/u1WUSdNcxHt4e/LauP+npehISYP16OHJEjWlytEljtbk3fl2YTvR+FWC3aQO+TYtauttqrWrxCdbdUYUQ5TsZG09Wnvq7GtM3ymr4yIrvthO77QijRhnNX0jdukFMjJ6XPxuOh7dHWYct1Q33hJW6Pi3D1TzP95H4IACa+iRataAX69fHgE5ntF431Ha6wBCP3ebl+P0N9NtTiHpu4zZttoMWIepBWmEh3HWvJ288usb8sM5RLJOoNW2qtXQXmz0bgm2fBZpZNj6sXu3QqgkhqpFl0A0N96GZBN11lE4HzZqpJ7stW1Zcvip6D25GC/8zAKzc3pusokTlkZFameatm5qX4xNtb9KFEGWL2a492OrWKYe7bzhpfn3F7X3o3K89R46oy3BYGPzzj0o0UhUtw4MZM0bdJDs5QYdQLUdD9NZ4stKzSUhVOSLaNIsv9Rg+TfR0bqllKXJ1zqP7YNsKtWirzd8df8ZxuSaEEDXDaDCyOUY9qAvyTeTQIT0PPajlfHhu9nAeuWENphyL5unj8+GvvrDlTtsDJm2EtH1QkGm7rbiIxaGKu5c3baquWRMnmrjllvLrbDn8RYa1CFF/SNCtSNDdgOmcdEwaddhmfQ9t6l5cPVxp6q+i8fgMx2VPF6Ih2BetddPs0s2F2x/uQmOPdJtyrZolsmoVBAVd3Pt9952Ojz+GPXvg5ScOmddH78ri2Amtp0qzVu6l7Q7AgAjtwUCPVrtx87Tt4RLSVmv9jj9XuRZ5IUTt27fliHmGhEERx/Dw1DH7IxdmPb7GXObjny9j5WvTtJ223Q/nt4PJiI31U2BFV/jZG34NhH9HQtSzEPcrxC+HU4tJPKD1kGnaVOWc+PtvIzNmHGfhQmOp3cotdesG+qJnfLt3l19WCFF3SNCtOFdcRFzKJl3bmI8WWq+zDLoBQkK9SEyBs4luGAzal54Qonwx+13My117BRLUOpCdm06yfFEUhw7DwaPeuLsV8uHcZg7p0dK0KUwrukfWXdB6qUTHuNDpuPaH26yNT8ldzfr3yeXLoql7+kWU3iLu16wJbi655BW4E59Y9rGEEHXTpv8SANXSPbCfmk1B56Rj+nvDcfXczv+93geADQf7M5YV1jt7BKspTTdCu3bQvGk+5J7Ttuclw7n/1I+FxJ3PAeoGIzBQrevaFQoLz+PqGlphnd3d1VC7mBjYvx/y8sBNRr0JUeeVFnSbTKXnb7iUSUt3AzdkYjf8vVOs1kWGWydGalGUy8lgUFnOhRD2iTmiWoT1ToWE92wFQPvIVjz6xjDm/DyMVbt6smxzX9pFVHzDWVlhPVuZk7dFHwriyBFtW4sWeWXsBZPvG0yrwNM0cr/AXY93LbWMzklHiL+6GMSnBDqu0kKIGrFxk/YQbtAI67wN19zbx7y8P6G7tiFwMIxaB5Ez+eADNfVoRARkpBdAl+eg9a0QOAQ8Sp9tJemCdq1oWvxM8MIhmid/Bjln7Kp38fC3wsKGm4xJiPqm5NSi58/DmRMZtVOZWiRBdwPn7OrMxKH7za8DvJMIaWf9BRwSoi3Hl97wJYQooTC/kAOnVKAdFnKi1G7a1cnFzYXOoSpx28H41uyL0TKOt2xpO094sSZBvhw53YzERGe6Dwkvs1xIQBoAaVm+ZGdU3/wfBXkFZKaWPU5UCFF5G6NU1xo3l1x6DrNOwtiyJXgXpXCJPT9C23DZn9B0CAUF2lSEycmwdqMXdH8VBn4Hl6+DSWfg6tMw5Dfo9gpEvAqRb5LodLn5UMVBt+7I5wSnfInTsnaw+XZI3VNuvS174kkXcyHqPlPGUU6XMuVw9IbYWqhN7ZKgWzDpaq1/R482e9E5Wff3CGmuJVeJPyrTAwlhj6N748grUGOnu7ZPrKB09YgIV8nUDEZnli/RAu0WIWW3dIN6GFdR9vSQoCzzcvzR6vl8qefSCAs9S0CQMxuXNdBBYEJUgdEI330Ht99um3Ts7PFEjp1VDwT7hB/E1cPVartOB126qOW4UzrrDcDvv8NZbYZCNm4spQKeIdByEnR7Abo+D52fIim/s3lzYCBgLEQX96M6tLEAjn8Hf0bCjkfBUPo1SoJuIeqJgguw+XaSF/QnN08NtbOcHSV614XaqlmtkaBbMPrG3nQJPYxOZ+S2O0pJmuS21bwcH7vfZrsQwlbMsVbm5S69ypkHpxpFdNVat5NS1dRlPp5p+PgUlrWL3awexh1PA1QCt9Gj4cMPL/rwAPw0ZzsnEluSV+DOu2/IAz8h7LFrp4mBA1XA/d13cOutavxksU1/azMUDOqdWuoxupY+sgSAOXOsX5cadJeieMowN7eilnQnZ4yXbyPB705Mrtr0pByaDX8PhAtHbI5hObuKZDAXoo46vxP+7AnHv+NUipawpm8n7W86OnFUbdSsVknQLXD3cmf3odacOZrMLY8PstkeEuppXo4/7dh5O4W4VORm5fLXDzt464k1HN59gpj92pjJrv1b10qdInraTvPXLjjBpjdLVVgNOzmpWr1feklNe/b445CQUMaOlfDbcu1G/M8dA6WbuRAV+PTldfTuA1u1Z+XExMDOjVpvlI17tAeCg4Z5Upqygu59+2DtWut127erpGYVKZ4yLDDQIoGSZwhnAqdhnHgCerwNTkUP/lN3wZ89VKt3uvawv0kTaFVU/T17VIu+pf/+U8nWRo+GFSu07SYT5ORYP3wQQlST9P2QqQLsU+naMLVRk8JwLkrh3RAzmEvQLQA1/rNZm6albgtpbTEnb4IkvBfCUsymw0wasgV/fwPjbunN9PeG06VPMF9+mmYuU16rUXWK6G+boK1dy9JbtiorpKXWJTW+KAfS7p2q9dtkgm1/7byo46eeS2PNHi2JU26BB8vmN8BvaSHsdOH8BZ54ozcmk4pofX0N5m3ffayNn9y4S+t5M+AKLWmapbKuWZ98oi03Up1nyMuDXbvKr5vRqAXdTUu71XD2gk5Pwpgt4F00xrwwU7V6b77dqmhxF/PMTKwSRMbFwZQpcOCAevh3xRWqm3z//uDnB56ecOONUGA7vFQI4UhtboU2t4FfH04FfWRe3a6deigG6u/Unod1lxIJukWFQtppGUfjz5b+VFyIhmrqXXn8vqE/2Xle5nUFBldOn/MFwM3NRLt2tVO3oNaBNG1qsFrXrrVjvuVCukaal+PzB5GRAXGntUB8+6aLG6+17IcYCg0uVusW/eF/UccU4lL2yxdR5OSr7+jrRu3gUEwmbi4ql8OCFV3Jz8knLU0LkMPDISCw9F4vxWO6LV24oLqrgwpgX3hB27ZpU/l1S01VM6CANl1YqZpEwtgd0OFB0BfllWh/n1WR0sZ1FxSogDq1xDPFAwdUq39amnq9cCHcdptWFyHExck9s4uYn9/lt19NzJoFd90FkybBqoy5cPkGTiVqyZlbtlQzHoCageDAgVqqdC2RoFtUyCegMZ5uqvtofJLMyStEsYK8AnYfUa0yXm6Z3HnFeh67cS0uem28c6dOOnN3qtoQEaG3et2ug76MkpUT0spi2Ek87N+bb7V9e1Sjizr+4t+1X5qzXt0h/7kxnEzpYS5Eqb77Ufube/wJDwJDfLh6iIqwUy748+eC3fzf4yZzS+9ll5V9rKAg8C/xjOunnzD//d1yC4wbp22raFx3kkVKhlJbui25eEOfOTApHnrNhlY3WG22DLqLx3W/+KIW+Ldureo6ZIhWLjQUXF21z3HffbZd04UQ9tu4vpDO7ZLwbBFJt+ue4JopOp55BubNU8kWb7ndHaPO1WqObsugGxpeF3MJukWF1Jy8ajyYzMkrhObInjgKDOpObvzAvXy9bAjvLxjG3q2nuWJQNL6+Jv73v9qto+UXHEDb8IsLhosFW+SGi4+HmLVbrbZvj22HyVi1AZTZmYX8tVVVPLBxElOnqta43FxYtqxq9RXiUnZi32nW7FHRaFjIcfqNVpnCb79T6y3y5AtBzPtG/S15e8Mzz5R9PJ3Otov5/Pna8gMPqNZwn6Ln8Bs3lj9eOtFigoMKg+5irk0g/GFwsbhmmUxEOr9mfrl7t7rJnzVLvXZ2Vq3Z118P69apYD8rC06ehF9/xfwA9KuvVA4KIUTlmTKO8tCdx4g9FojJVHooee6cCqot5+iWoFsIO4QEpgFwIacxF843vDT/QpRm/y7tTrJLR63bdnivtizbEMH58zpuuqk2aqYpGXS37xLkkOO6umo3z6dPQ0yMdbNRalYTjkbHVenYf69yNneTvWpsGtffoH1V/fxz1eorxKXs+0+1wc23X3PSnCzx8ut60Mz3HABHElqby7z3+llCbVM+WCkZdO8oStMQGal+nJxgwAC1LjERjh6lTJYt3eV2L6/I/lm0OP8C/t5qOsR//lHdWYvNnAl9+2qvAwJUV3iACRPUgwOnosvJO+9o3c6FEHYwmeDoV2yZfS9RR1UvvyCfs9w8PoqXXyrkp59g+nSt+H//YW7pLs6r0KOH9vArJ6eG61/LJOgWdgkJyjYvy1zdQij7TnUwL3fpaTveWHfxScIvWkSnDPOyu0sOzctImFgVIYFqAGVCgoHo2MY227evi6/ScRcv1pYn3d6BoUO1AH/FChOZ6fml7yhEA2Qymvjut9aAmgf3lge065KzqzM3T4i1Kn95r51MnVbxw7fSxnWDmoqs2CCLCU/KG9ddpZbukkwmOL8DnQ56tFKDuS27iN9/P/zf/5V/iOuvV630oHrOLFhQxboI0dDkJsK6q2Hr3cz5607z6jdfzWD+8khenOHM9derKQqL/fuv6gkH0KKF+jcoCObOVX+Ljz5ac9WvCyToFnYJaa6l+zxdNCevEA3d/qNagpDOA7vVYk3K1qmLq3mMeYdmh3HSO+6yH9L4MAAGg57N+zrabN++tfLBcUEBLF2qlr29YeRI0Oth8hUpAOTm6vh57raqV1qIS8zmP2PMrdiXRUYR2jHEavvt92tjQbw9MvhyfjO7pg0sLYO5Xo9V752BA7Xl8sZ1O6SlW6eDgT9C8Hh6ttbSpXt5GZg/Hz79VGvFLs+992rLX35ZxboI0ZCcXgorukH8EhLTA/l567UA+PmZuP6eMKuinTtrD9b++UebLaClNl03d92lcit06ECDIkG3sEtIiPYF/cXCjjLlhhCoOWsBXFzq7peHu5c7rzy8iVaBp3l+umOzkIU00/qG5RaoTMNdWx02r9se3cRmn4osW1JozkB8xRXgVjRt782TtFbzGe+0Jjcrtwo1Fg3JkiWqu/GlOC3NqVPw0EMqWdiE67Ug+/absm3KdhsUxpO3rqFts5PM/zjWJigvS2kt3ePGWbdU9+unAnGwDbpjY+GJJ2DnTge1dAPoXWHIr9x/QwxdWsQwvNNqdrw+iJvH2z84NCIC+hTNlLZ7d8XTnYn6IycHRo1S59jWrRWXF3Y6/o1q6Qa+2vAI+YXqi3nqVB3u7tZFdTotSaNlrGAZdDdUEnQLu4y9JhR9UQbhRb95MnEikkVYNGgFBXDwoFoOC1OBd1319PvDOZHYguumDay4cCWEBNum/x3e7wxtgtRY7p2HOlCYX1ipY37yhnbzfMft2vEHT4xgbN/tAMQltWD2i1uqUmXRQOzcCVdfDc8+C889V9u1cbx774U5c2DDBkjN8gOgkfsFJk+NLLX8298N52hCK668q5/d7+HnB82bWa+73XrKbLy81PhuUA8h169Xy+fOqRvv996DoUNh9Wptn4sKugH07rS5/jNivn6Q1c+PoGPgVvhvFKTHVrxvkXvu0Za/+OIi6yPqjB9/1PHvv6pnxZNP1nZtLiF95oJ7EIagK/lsvcrAqNOpIR2lGTHCdp0E3RJ0CzuF9WzDz4uczK1OK1eqbp/Ztg/VhWgQjsamm5/idu5cu3WpLSEtbOdC69JFR58uKl1pTr4n+7cds/t4B3ccY9WungC0b36Cyy+33v72+7446dTDv9c/7UHy6ZQq1lxc6j7+WMum/e23kH8JpQE4fhz++kt73TwgneHdd/PjZ7E0auKY2QmKWV7bmvjCxIm2ZW68UVu+6SYV8Nxyiwq8Qd0n7N+vlbmoRGrFnL1g+HLwL3qIkJekAu8s+5I33nCDemAAalx3VpYD6iRqlckEn36q9crcsKHhZceuMpMJzu+C6Jfg31HwzxDr7e4BMGY7yzN/J+6U6toybhy0bVv64UqbjlCCbgm6RSVMmqzj77+1KUK2bYM5b9p/Qy3EpWTfZq1VpUvQ5lqsSe0JCfWwWde1hy99+ms3/tv3tbD7eJ++q90wP3DrCZvx510HduDOCSpbU0aOD68+GVPZKosGICUhg59+0npJJCfDn99fOnkAvv5Km5vr9dfhTJIPq6N6MOH2vuXsVTWWQfeUKdpwD0uPPQbDh6vl06dVy/eqVaUfz9NTC3Yvmos3XPYXNFEP6sg5A5tvLX/usiLe3irwBsjIgF9+cVCdRK2JifFi927rXAWffFJLlanrTCbIPAEnFsD2abCkDfzVC2JegXP/QvImKCzxJMqrJb8t1n6/Dz5Y9uHbt9cSpxWToFuCblFJQ4fCv6tM6HTqhubd2Y1kbKVokPbv1c77BtvS3drHZl2XvqH0Ga3NU7Z9t6ddx8pKz+KbJZGAyrJ+x2PdSy33yvsd8HRTNwOf/DKQ4zGnKllrcamb994ucnOtb2++/dZ2KIS94g7Ek51RN7p1FeYXMu8z1YSs15u4447qfb8xY7TlqVNLL6PXww8/qOm5AM6cUf/qdLBsmbpvKOaQVm5Lrr5w2Upo1A682qhusHZOG3H33dryN984uF6ixi1aZHtyzZ8P6em1UJm6Kvs0/Hc5/BakAu1NN8PhTyDrpHU5t6a261B5GsB63HZpdDrbLuYlg/CGSIJuUWm9euuYPFS1GpxLa8q8dy6dFgQh7LXvgKt5uUtPR99J1g8h7aw/d7BfAk2CfOnVS8sivGWLXQ1P/PDRTtKzfQG4acwO/JqXnoQtuF0zHr9Vje0uNLjw16/Hq1x/cekxGox8Or+N+bWvp8rKt2xTT1LOnK/08T55eROtOoUwqEccORdqf1LZlT/tIj5FDbS+ov82goMr2OEiWd5YdytngobgYPjuO+t1L7ygkiEuXapNLXbNNY6vI+4BKvAesxV8bGdRKEu/fqpFDlRX5IyM8suLuispCVatUt8Zfn5wZ9GMVllZtudlg1Lyy9fVD879p4ZjWNI5Q7PR0OdTuCoOJieAj3Vrgsmk5bEJDVW9VspTMiiXoFuCblFFz7yotXC99UmbSidLEqK+K54uzFlfQIfIVrVcm9rhG+iDh6vWAti1q2phatRIa/3fswceuT0WQ4GhzOOYjCY++VqbN/jBxwPKLAtw+Xhf8/KBWDsietFgrPxxJ8fOqr/Hy3vtZOrkPQAUGFz5ae7eSh2roABe+USNGY461pHPXq/9dMhffKGd73dPta9Ft6aMG6e6u4NKYvfii2q5cWOVYO3oUXjnnWp6c+924F7i4WfOOchNKr08qjVu7Fi1XFhonexN1C/z5ukoKFAhzV13qaz5xT75xL4Hv5U1dy507Kha0+sMQx6c+h223Q9/9lTzalty9gTvDuDeVAXZ3WbAZX/DlBQYsRI63A9epfcDP3dO6zXQ0Y5nW5ZBd2AgNlnOGyIJukWV9BrRiTF9dgBwIrElP82p/ZsRIWpKYX4hB0+rG/uwkJO4uNXh1OXVSOeko0XAOfPrrr21VMfTp2vlPv6+EzeO2UZedulzN8UfPcue4+EA9AnbR68Rncp93049tea92COOTRwlqld2RjbvTV/D9+9tqJbjf/KJdnc97YFCqzmqv/2p/Ic5JS1fDucS9ebXsz7rQla6bcat7dvVuOY338jh9y+3cmyvfcm8Kivh2DmWbeoFqF4l427uWS3vczGefVYlTvvtN20qMVABbtu2dvf8vnjGAth4nRqnmrK9zGKW3edXrqyBegmH27oVPvpInVg6nYn771fT3Q0bprYfOAA//+zY9zQa1XfcwYNqbHOt9JIwFkLaXji9BA5+BFvuVN3G10+CI3MhdTckb7R94jBmG0w+p4Lsbi9B88vBpXGFb1fcyg32Bd2tWqneJKCmNhQSdIuL8OxzWqDxxMthjO69U/302cXo0eqpd4Pu1iMuWUf3xpnnqezSruyWlIYgpJmWFrpLJ601+5Zb4NtPT6F3Ur1gfl49gOvHRGEy2jY5HN2nTeI7qFdyhe8Z2DKQJo3UI/cD8e2rXHdRs1LOnGdU/6M88dZwbntiMNv/2V/xTpVw9ngiy7f0BiA08DQTbutNt0FhRLY9AMD2Q13Yv/WI3ccrOZVUYnogH79sHcD9+qu6ofzwQ3j6OQ8m3dOPdhGhPHX7mov6LKX56PVYDEY1Y8Cdkw/i7Go7e0Bd4OFRg8F1WWJeg8R1kH0K/r0MkjaWWmz4cG26Rwm665eUFDX1W//+kJCgTrixY6FdO7V92jSt7E03OfZ+9ORJrdX3wgX46ivHHdsuCX/Dr/6wIgLWXQU7H4Fj30CBxQB2nRO4N4f8EsNq7AiwS3PggLYcHm7fPkuWwMKFMG9eld7ykiNBt6iyIRMjGNRFzceQmB7IPzt7qZ8dPfnnHzWlyR13aIkXhLhU7NupBYmdw0tvvW0oWnbRvn27Ruittt12f0uWfrvbnPjsjw39mPeWbQvnicMXzMtt2thstqFz0tEpQg1xOXXWh8zMqtRc1KS4IxkM7pfK5lhtYPC2DY59YLVm2RFMJnVbc9OEI+hd1Pl4+3Vab4wnH0nFaKg4qdqpOJN5Wq7AgELzVHVvfRFBRopq1vpkjpFrr4W8Ui4Bb383nDkvrb2Yj2NlyddbmTVPZSRz0hm465Ey5uoRSof7IbBoIHlhFqweB8m2PfIaNdLGmx87BkfsfyYjalFhIYwaBV9+qa3r0CGbOXO0v+1rrtEy1BsMao75t95yzPvvLTFSZfZsVSeHyk+Ds//CvjcgscT3pncHKCiled3ZG9rcBsOWw5R0uGIvuPk7pDqWQbc9Ld0ATZvCddepISZCgm5xEXROOt5914kmXqllljGZ4M03a7BSQtSAfdFa5vIuEaXModOA3H03+PvD+PHQu7ft9nG39GHh3H3m14+/EsGpg2esyhw/pt2ttGlvOw1ZaSy/9C1vBkTdk5gIA4d7c+B0O6v1hw6WsUMVrVmtnUcjRnubl297JIKmPirA/3NbH96dvr7CY33z9jqMRffv06bpuHmMmhbwfKYfl/WPp3PLw0x7yMncc/O222DB58d49EYt0H70tUH889POi/1YRG84xE0PdjE/UJjx4Dradgu96ONe0jyaw4hV0Oxy9brwAqweA+dt/z+ki3n9s2oVREWp5caN4f33jXz/fSyhFn8WTk4qq/5DD2nrpk+Hdesq+WZGA1w4Akmb4PQfcG61TdB94gT8/slfcHIRnFsL6fsh8zjkJKj9dk+HZZ0gv0Qq9cxjsOUuOPAB7Hwc1k1SY7F/8YNfmqi55/c8B6cXW+/n1Rr8ekPLKWpcdv9vYOQauCYRBnwLIePBxb6hV0Zj6WPeCwutHyRYdi+3t6VbWKubfZNEvdFvTFcSzxeSk3nBan12gTedO8P58zB/vokZ08/RulOzMo4iRP2yXzKXmw0dqoIqp3Ie4U64vS+3LdzAd38OJiPHh3tvO8SKzc3ROakugceztDmFWkfY923eyWLY94EDpQf8om74/HOIj1f/16HNzhN31g+AQ8ftm07OXqu3qQRALvp8Bo7Tnsr4NW/C95/uZMxN6m/12Q8GMmT0EfqPLn1ogtFg5KuF6gGBTmfkrhvPkXd1Sxb8XYjB6MyuI9Y5B559Fl57DXS6ttx4T1vcXNfw1rfDMRidue7udmzpcIzwXlVrmU6MS2LiZE+y8tQN9A0jN/L87OFVOlaDo3eHob/D2glwbrXqevvf5TByNTTRpiQcMwaeeUYtr1xp3S1Z1E3ffqstf/MNXHmlyRyEW3JyUq3QjRrBrFlq3erV1tPY2TDkq7mqTy+B1F1q3LTBYuaCVjcSE2M7X9Z7HzdmSsC48iueeQT8emmvj/8Ax+zoe51SopeGTgdjy85VYK+zZ9XUXufOqd9LRNFsn/v3q2EzjRvDtm0qEVrxw21vb2je/KLfukGqsy3dP/zwAyNGjKBbt25ce+21REdH13aVRBmcXZ3x9vO2+gkKgkfuV+NIDAYd77zk4CaNBuirWRt4aVo2e9YfcsjxTCY1Tcopmea4UgwGWBOlUnO7ueTSPkJanMoLuIt9MK8rwX4JAPy1rQ/fvK11lzt+QjtAm3Dbub9LY9nSHbuvwL6KilqxZIm2/N/6Jnh7qG6Rh+KaOuw9zhw9y6F4NTahb8cDePl4WW0ffWMvnrlrDaCmmrvu7nZ8/rk2p7SlVYt2czJJzW8zts9OWoYH0z6yFY/frJ2zbi65RLQ5yNez1vP669ZjmN/4YggTB6qb5LQsX0aPc+VkbDygxn8+84waenX2bPmfKS8PJk/RE1dUlz5h+/h6cU/zwyphB2dPGLYUAosyOeWnqtbDtBhzke7dVTdYUIFHfn4pxxF1Rno6/P67Wvb3V9PSlUeng5tv1l4fO1ZGwczjsGWqSka2Zjwc+QxStlkH3ADOjcwt3S4u2kwdmw8PZMvhfuVUxEll1LcUv7SUcnrVkt10OHR4EPp/C/2+LucTVt0LL6ghoOfPw0svaetfeUWtO3FC9RbIzVXLoL57az1nQz1VJ4PuFStWMHPmTKZNm8bixYvp2LEjU6dOJSUlpbarJirh4YfAy00Ntvzq976cO9GwE05djLefXMN9zw9j+dYhPPqwY+4I3nkhliFDVDehpaVc90XpNm6Esym+AIwdkY6rh2v5OwgAmgT58vn7p82v3/1E6/lyvGiq7YAA1SJhj05tteQwBzbtcEgdheMlJKjs3qCCm3btdYS1UOfBiXMtysxoX1lr/9OGfAwfUPp83K98OpiBfVWvrFOndNx3H4SEwOWXq/l8i/34gzYN3t1TteSAb84byt6Nhzm29xRZWS7sORbOndNt0/LqXfT8sLQzEW3Uw+a4pBaMGlnA30tT6N1btbh9+y1cM/YEBXmlPzAymeC++2DjdtUrIMT/HL+v8MfD277hF8KCsxcMXw4BA9TrvGT4byRkHAbUQ8PRo9WmzEzYtKmW6ins8vPPKggEuPFGcLXjK9gyV8jRo2UU2nIHHPsaCtKs1zdqDy2vgfDHIOI18kNuNXe17tgRnnxSK/rR9q+h4xPQ9g5odQO0uFr9238eTDqrun1bGrVW9cbo/61avuokXJ8LVx2HUauhzxxoexs0Dqv4Q1bS3r3wtUUsv2QJxMWph4G//qqtX74cDh/WuqBL1/KLYKqDpkyZYnr55ZfNrw0Gg2nw4MGmuXPnWpXLysoy7dixw5SVlVXTVayUwsJC044dO0yFhYW1XZUa98Qtq03qT9VkevrO1bVdnXrpkxlrzb9DMJmcdIWm1HNpF3XMhGPnTF5uF8zH1OtNpq++clCFL3EPPaT9X/zwQ23XpvJq+3rUvc0B83mck5ljysszmXQ69fvs08f+4xTmF5rcXHJMYDJ1anmkwvIpKSaTwXARFRdW7D2PPn97n/nv5fnn1bobR20wr9u/teL/O3vcc4/2d/nP8tQyy8XFmUzdupmsrqlgMn3+ZpTJZDKZjAajKcTvjAlMJg/XLFNuVm6V63T2eKIpLOSYzXtZ/hR/L144f8H00fNrTM9OXW2a9+Z60zP/l2Qu4+FhMu3YXksnb2amVtnMTIcfvkavR3lpJtOffUymHzCZ/hlmMuVfMG/6/nvtY3bvbjK9/77JdPx49VdJVN7gwdr/1bZtap0951FQkNqnedMsk2ntVSZTzBvWBZK3m0w/6EymhY1Mpg03mUynfjeZ8jNsjrNnj/b+N91kMuXkmEw+Pup1YKDJZDQ67rNWp7Fjba9Hzz1nMr3yivU6FxeT6euvtdevvVbbNa8+Jc8jR8eZdW5Md35+Pvv27eO+++4zr3NycmLgwIHs3r271H0MBgMGg6HUbXVBcd3qch2ry6MvdOCjn/LIL3Tjk5968Mw7GeZuf5v+3Mt3X2bw0JNBdB0g0/6U5scF8OAM68FHRpOef37dx+R7y+nGVIEXHz9AVp52XIMBpk6F8+eNPP54KRk1BKB+T7/84gTocHMzMX68kfr2Z13b16NuYUnsOR6O0aQnZnci3t5gMqkBYq2ap2Iw2Jnm1AnCQuLYeyKMw2dCyc3OLXO+9Hfe0fH0006MH29iyZKKM1c3dDv+i+WT91O55Q4PRlzTo9Qy9p5HSxdr+T6uGHYYg6EtHdrlwyq17uD+LMJ6GTAZTezffpSW7ZvS2L/yqW7XrFF/ly4uJvoN8S6zXsHBsHMn7NoFC79N5P1P1bm3YmkOdz1h4MCOY8Sf7wDA0O77cXbrUeW/lYCWfqz8J5fhw06bu6sDdO2YzYHDLhQaXJg1bzjOzqv55rdwTqcMK/U48+YZiOxRS3+zBgN686IBR1/wavR6pG8Ew1agi3kFU8Tr4ORh/jwjR4Je74TBoGPPHnj8cXjqKRPz5xu55prqr5qwz9GjsGGDOiM7dTLRo4f6Di73PDIa4OyftA0I59y5jiQkepJ99G/cXZpgsizv2wMGLYKgUeCiJWIsec7v2aOjuKNwly5GXFxMDBjgxF9/6UhKgkOHDLSvwi3thQvwyis6goLgiSdM1dqF+++/4a+/1O8xJMTEuXNQWKjjiy9MRVPoaW9eUACffGIyr+vQwVDv7nvsVfI8cvR1qc4F3ampqRgMBvz9rVPc+/v7c6yMgRiHDjlmjGt121sy3WEDcc3wWH5cNYqMHB8+n/U7l13fkpwLuUy8vgvp2b6s2XaMH//YLePUSsjP1/HgtAjz66HdtrNubx8Alv6RSdu+UVU67unYJL5aojK6entkMGZsBr8sVjeEzz4LvXpG09hHApPS7N6h5+zZSAD690/naJn91Oq+2roe+Ye1gKIMwcv/zSW0UTRwFQBBrpuIirI/4WK7FhfYeyKMQoML/yz5j+bt/Ilee4amLd1p3l59h5w44cbzz6tBdytW6Pjvvxj8/Bw9t8ulI/5gMrfe3Z+MnK78uiaPP/z34utb9o1HeedRbnY+/2yPBKCZ7zn0jdOIiorCPURLPrgmyo+W3aL46/s4nv9wEqGBp1jw6wHcPe0ftpGY6MLhw+pa2aVLpl33BM7OcOMdRub/4ExSRiCrdnRh+5bt/P3jWUAF3b0j44mKuvjvpU/npHDvoz7En23ElClJPPbYaf789hSvfa7O+9e+sE3KVOzee8/Qvn1CqUmiaoJTTg7Fj12io6MxelRP9/YavR453Q4xtufIM8/4M29ec+Lj1YwUBQU6HnzQSEjIXtzd5WF0XTB3bnMgGICRI+PZs8d6jLTleeRkyKRp2k8Epi3GtfAcbX2/ZzMqGciJpNYEBZzlhM0fVhtILv97/d9/QwD1PeXldZSoqAzatGkGhADw009xTJhQ+hCX8jz3XBtWrlTDSQoLjzF2bNkzA10MgwEefbQToBJZPvDAcdau9eWff/xITNSud/7+BaSkqAfZO3Zo602mA0RF5XIpq67rUZ0LuqsiLCwMT0/HZkF1JIPBwN69e+nWrRt6vb7iHS4x0x6P4ceiVo3fV7Th8Zld+eiF9aRn+wJwJKEtWWfSGTwhouyDNEBLl8KFC+p8uepKI9981YFmwbnkFbizdldnvo5oVqUHFS9O24nRpI77zL07+d87Q9FfdZCFK8IpKHDCo8CZyMjODv0sl4p5b2qJlKbeaiQyMrL2KlNFtX09OnsWPvxILWdktCLPKc68rXPXRpX6nXbrvI7fi/5LCjIas2rBBZ754Epc9PksnhfFmBt68tQDJygs1NKXeHh0pR7+t9WIlDPnuX5CABk5KpldVo4bf/0VwaxZtgGHPefR0m+3k1uggrQJww7Ss5eaELmwEHhRlcnKCiYysjnTrldjm+OSWpJ06BQT74i0OV5iIvz6q44JE0y0bKmt//EH7SHK+PFelTqHxg7czPd/BZKZ6036KWd2WTz0mXRjByIjHTCAMRIOT4S0NCOBgf6AP316d2PXnm2s2NpXq0uf7dxzdyEnj+VyJCWC8G5NePDBIHS6oIuvQ1VZDHaPiIgAL69yCldebV+PAMhNQhf1PyKfeY+XXnJm/34D//d/Tvz7r46UFBc2bozkiSck6K5tmZnw55/qWq7TmXjyyea0aKF6qlidR6Y8dEc+QRf7Nrp8LRdU26Zaw93h5j8TPi6MSF3lU1slJWn7XHllW0JD1Zzgn36q1p0+3YrIyMolWP39d1i5Ujv/f/qpDU891cquJKWV9eefcPiweq/evU089VQrBgyAf/6xLjd3rhM332wiL0+7z9TpTEyY0BF3d8fXqy4oeT3Kzs52aMNunQu6mzRpgl6vt0malpKSQkBAQKn76PX6ehHM1pd6OtrAsRF0CT3MvrgObNzXndith5j9tfX0KfO/zmTYVQ3vd1Oe337Tlu++xwnvJt4M6LyDNXv6EZfUgiNRx+jYp3LT0Pz3y27zTV7LgHgee7U/zs56undIYCHq5jL+eCb9G+B5WhFDgYFf/1FPyd1ccrnqaud6/fdcW9cjy3ho3z4nXIO1m9l2HbwqVafOXbU50jdvyOfzX3oCUGBwZcrUbjywciP/bbfusnt8bxyDB7dBWMvPyef6iac5eta6O/knnzjx5JMQVEbcV955tPwPLenjlVe5m8tZZp4/fNiJzNQMth/rY163amUhV0+1PmZOjprm58gRWLDAOtnV2l83Amq4zMjBaej1fhV9XLMrrnDi+7+K6vt7Fqt3RQIQ2DiJHkM74qR3zF2vXg/Nmlm+1vPtL+24ZfIOzqd78Oz/Mrnqrr51r8eXxf+tXq+3eu3Yt6ml+6MLR2D1WMg8CtknYMQ/RES48+GH0K2bGsX69ttOPPCAmipJ1J7nn4fTRbk4x4/X0aqV7fmi1+vR738f9lqk4tY5QfAVtB08EYqmuz6Z2gV9FSOgmKLE940bQ+vWenQ66N9f/WkYDLBpk1Ol/kxSUmynqYuJ0fHXX3omTqxaHcszf762/OyzOlxc9Fx2GXTpAvv2qfXt28OkSWr9X39p5du00eHlVX/ve+xVfD1y9DWpzmUvd3V1pUuXLmzevNm8zmg0snnzZnr0KH1smajbdE467rk53vz6xhuNHD9n/RRw0T8R5FzIKblrg5WXnc8ff6gu3o0bq+y6AIP6anPMrFxW+a5HM2dq3cZff+a4ORNuaCttLGzcCcdkE77UbFwRw9k0FXmM7benSuNOhRpT26SJWo6JgRNx2rnXOtz+YAmgY3dtGNKHPw4wt9AC5BZ48P4PtmNkj0afrGSNG4aXpm1izR71HRvkm8gNU1QLZ3a2Nr9tZRgNRpatUw/yPFyzGXlNV/M2Hx9tiqZDh2D98oPm3jcAKzfYthK99WoyR46o5c2bITlZ27Zmuyrv6pxH/0GVa4IZfW1nnHSq+/yXi/uYz6GRfQ47LOAuS0ALf/7a1pttB7tw9d396l7A3RDonKFQzbJC0gbYfAeYjHTpAjfcoFYnJ8PHH9daDQWwZo32f+DhAR98UE7hLs9Cs1GADlrfAhMOwbAltO2txRBlThtWgfR0leEboGtXbeosLy8oDlH274dUO2/PCgvhoYfUPNmA1Vjw11/XMoY7Slpa6dOt6XTw8MNauWnTVFb/8SWSrVs+MBWVV+eCboA777yTRYsWsXjxYo4ePcqMGTPIyclh8uTJtV01UUW3PBSBq7MK5mLitL/aji3U2JmMHB/++MY2UV50NCxapBI5NCR/L4wiI0P9eV41+ixuRQ16PYb6msus3N6rUsfcu/EQq3apfdo1O8lNDw8wbwttp83TFBcnN36l+W1hmnn52skyJriqdDro1l49hIuPh10Hmpu3teoYXKljhUWGotOpB0kFhWoMsKtLIZdFWl9LurY6aF4+cqz0ZGsNWVZ6Np/8pO4YXZ3z+OOnRN7/yIvi4buffpJP/JGESh1z538HzA+pRvXei2dj6yFgYa1U1JyQAEsWWz9wPZLQmmN7T5lfH42OY+Y71nPJbdmi/j19OIEjCa0B6NfxgM37VKRJkC8Du6imq5x8bd9R4+ybL17Uc41aw7BloC/6v49bCFvuhMIcXnoJc/fet99WAZeoeVlZcNdd2utZs6yDU0wlctA4OcPgRTA+GgZ+D97tAGhr0TGwqkF3cSs3qJ4QlgYN0pYt2g1L9eefcMst6uHjTz+pdb6+sHatdtytW9XDBkf6+WfIK2pXuekm6+nW7rlHBfovv6wF4OPGWe8v04VdnDoZdI8fP57p06cze/ZsrrrqKmJjY/nyyy/L7F4u6j7/YD8mD9tpta5zeDaffJBhfv3tIusESqdPw8CBcP318N57lX/PrPQsTMb6OQ7r50Vat8xrx2tjXlt1bERwUXfcNWu0uSrt8f5MLeHIY3efQO+itSyFdtBaDE+dkXmnS3PgiDaWcfQU+ea5GN1aHzEvH4pXd0LBfgm4e1WuldKzsQetAuOt1t17nzPL13VkeHcVeHu5ZbJwodaP8Gic9FAo6ZfPd5lbeG8Zu41+Y7rSrBlMu2U/AHn5rjwy9SS5WdoFx2gwkpVedu+kv5cmmpevGGvbeyYsKNa8vOCvnjbbV/6proEmo4lH7j1HXoH1ubFlxS4A1izT7p6HD6xa4qHxI233GzWlS5WOJeoh/94weKHqhgxw/Dv4ZxDhIce59Va1KjVVWrtry/PPw/HjannIENUybJa6B1b2hXP/Wu/k2uT/27vvuKrKP4Djn8tGRIaggIIiCE4Q98KVe6VmNjRNLUtzZDn6NbVyVLbUUltm2rS0tNRym+beWxEVFQeIigICcu/vj0fu4bJBxgW+79fLF+fec+65z8XDued7nuf5fsG5nslTXl4YOzDyG3Snza+VXdC9bVvmr4+Lg6FDVQ/y99+b9ojPmaPa+L//ac9Nn56/dmblu++05cGDTddZWKhkum++qc0i8feHgDQlwqWn+8GYZdANMGjQIDZu3MiRI0dYunQpwcHBxd0k8YCemWxa4uqlieVo2yeYalXU0K5//qtBZKS2/ocftBwuv/6St67uHz7dRuXKBmpWieC/v0pW1vjE+ET+2KzO5hXsb9H5Me3Y1+mgUycVdCckwNatme4ig6uRd/n+bzWX29nhJk+/ZNpL7lWjsnGIZcRlCUoyE3NLdfvpdHoqeuVtGLQwVa9extEUvp7XMtkyZ7V9tSkXdnYGXn0V7B3tWb2tNks+2sauzVeo08yPKq6qpzYs0jOrXZVZX32nTVZ9ZqSzcXnSG5VwsFXn52VbmtMi6Bx7Nxxn1sRN+FW5RvuOLfh6ZuYnoXVbtJ7izn0zzqEPqKllRI9LVL3YTo5aUP/3f6p3asXCXazaqeZ7uzlGGddvv9/TvWmj1svVvnP+eqe7P2I6wqJmTahWLV+7EiVVlZ7Q6ietx/vGfljTiDdH7TT2ds+ffz8JoCgyiYnw1Vdq2d4evv76/ugDgwGOzoQ1jSFmLxa7n8dCH5/tviwswPf+qSg8PH9Dt7MLulu21JbT5pxIdewYNG0K336rPVehAgwYoPV8Azz6KPip0x/r1qnXFQRVbk0t16kDjXI5WDLtvHIJxR6M2QbdovRp/5Cl8Y5Z5cowcCBYWFrw1FB1waXXq0A71Y8/ast791sSczl3vRhbVx7i6ZebEJdYnjNXqtGmd20+mLAFfQmpgrV26UFjr1PvNkewLWdrsr5zZ2157owwkhNzviHx+QI7ku6p/Yx4/DTlXUyHalrbWuPlqnrCI665Z3i9gJhY9TtzcbhZ6HM9S7v6DZ0zPFf9/s23vKrdQMvwNWqkAc/7MbWdgx0Dx7eiTjM1DtG/qjq+o2PduBUdm2E/ZdWJ3eFsPaKupOr4hNG8q9Y75O7txsKPD2NnrXq0D4TXovFDtZk4qx0XoqugN1jy8fyqGfYZdyuObUdUT3ENj/P41vPOsE1A7YyjGoYOtyN1QNuGDXDxdBTPTdAC9s/fC6NqRXVndtfxmqQkp5jO5+6cv26YoFY18XLVbt507FDG5jMJxedR6LITHFXJOJJuUONsO3p2VDcEL15UVUXEg9PrYc8eeOst6NABpkzJfLutW1XWcoD+/dUNMfQpsOcFOPg/MNy/C2JZDqt7OZfpSh1inpCgzaPOi4MHteX0QXeVKtrNup07tWmRe/eqodxBQVoA7eAACxdCVBT8/DN07artx8rKtDe/oI65tL3cQ4aQ6zrgr76q2v/mm+qmgcg/uXIURcbCAlasgAkT4J9/MJYcSDvEZe5cSEqCY3siTeqSGgwWbPzjRI7vce7oRfoO8iI5RRsinaK3YtKHbRgypOCTUhSGX37ShpYPeCzj/NNOnQw4OKgP8scGf3q3OcCdG1kHLAkJWikLS0sY/VaTTLfzqazmWF69WclkGKlQYm6rEQCujhKwPah6zTJ2I/pWy1+g89TzPri4qLlm/3s16680P5/bxuUzhyOz3K6s+WquNjz/mScuZkjm9ejIFuzaeIHAKpmPxzxx0Y/TJ5JMnvt3i8F4Du7U8kJmLyOgXsbpYh07akkjb9+Gdu2SuHpTZVzr3mw3/Z9Tve0Ad+46subHfZy5oo6l5rWPGxND5pXOQkf3tto0no4dS8AXhSgczvWgy27wvD+ZNeUuo/qsMq7+7LNialcpcuyYCp6bNIG334aNG9U84nPnMm67SvvVq6ReKUnw30A4PU9bUfd19J13kWST8QZgeg8yr/vUKa0Hu0YNLSFoWqlDzBMS1LTIdu2gcWPViZRyf3BP/foqEH/6adM51Wn17Kktp/0d5JderwXdFhZar3puuLqqofBTp+Y+UBeZk6BbFKnAQJWQJChNSe6aNaFLF7V8/jx88+kZfvwiY128dWuzvyg/vf8cvXvGEx2rLuYeCtnHq8M3GdcvWQL79j3oJyhY1yNjSEnWhlleCrvML+sbAxmHlqdydYUl889ha60C4zW7mtCh+XluXL2Z6XssXqzupoIaxuSdsdMJAG9PLXC/eDoft4BLsZTkFG7Gq9EHrhXy1yMrNE7uTvi4XzR5ztfPNouts9eggeqxOH4cskv74e+n/Z2dOZG/ub+lTVISLFrVGgAb62SeGl0/0+3qtwpgz+FKPNN7C54uVxjRZwujhmo3LlauMr1yXLdZG0nT8YnWme7TL6iqMQkeqBuCoaHadwHAmcgqAHi6XGHhL9XRWeho3kQL8Ge8rx0z7VvdzOHTZm/y+02pU0dd7PZ6WPJalGk2TtDmd/DuB4Hj6DRiiDFx1/r1cCLn+/8iG198kXnAm9nvNTXgtLCAzm2iYFM3lewOQGcJLZZA8Dtgmbvvj7RB95kzcOAAeHqqkl83b2b/2k8/1Tpunnsu823SDjF/5RWVGC2Vm5vq2d+xI+eEZGnnUm/blnPbcrJ/v3ZTo2NHNXdcFD0JuoVZeHuqdvH17sxyfL9CnRktdClYW6qLrHXbM5aRAdi55SZ9Q3cS2MiHw+fUWaqm11mWrq7BtK/a8eEsbd/LlxfWJ8i7r2f8i1sVV1oHHTP2VE//3yljwqBnH9mfYWh5qj6DfPln6Umcyql0qrtP1WX6xAMZtruXdI/339Mmob30Utbt8amiXcxGhOU8TKssuRUdi8GgTpeuTlLariDU9zPtbfZt2iKLLXNmbZ3zHXi/mlogFXZSJfbasEElatyyJd9vXaItXw7R0eoX17efNW5VK2a5bXmX8nz5RxsiYzxYsLwNI1/ShvWnH/64bp36qdNB+/aZ78/OwQ6filoveOOQBCpUgM6dTOcB6XR6lnxxmUo+atpLi7ZaG7cd1e7etuvknGXbc8PfX9WoXblSHU+ijLO0gVY/Q8OPsbDUMXKktmrevKxfJnIWpuXRpG/fzJ8HFZinBuItm8TiujMErm5QT1jaQZs/wHdgnt47fU/3xIlw5YoaDj5rVtavi4nR5mI7OKhM35lJm0wtVUAALFigSo1NmQLlcllgIbVcV0oKrF2bu9dk5e+/teU+fR5sXyL/JOgWZqFpMwt6tdwJwKUYT2Md7w4hB2hZ9yigysicO2raO7ZlC7Ro58TvW5sZg6LKztdYucKAS2VnAAYOsjBekJtT0L1wiRquvONEfUYP3E/EiYt8uVwFHg62d5g8vV52L6fNw8H8+89VrCzVCIDf11XPsM3S+bs4E64yN3dsn0Djxlnvz6e29vqImwFZb1gGxcRqmctdq2YxVEDkSf3apklvqlcv3Pfzr6ONBTwTbklKisor8csvMHRoCUn4UIA2rDeYXDg+80zeXl+rFnh7q9E2//6rZeG9dk2b99iwoaoFm5UAD62UW4e66mLa08uCIF/t+def3UKH/lp93YbtAozlJ1PZWt+leRdJqysKmIWV8W7e0KEYS+h9uzDFOM9YZC0uTgXVjzyihlunSs1EbmsLY8dqz585Y/r61au15e41PoaE+1Nh7Dygw3qo0iPPbUobdK9cqd0gBNWTHR2d+eu++ALi739lDRuW+dByUKM4UwPvtm3VlMrjx2HECO34ya20NbIfdIh52qA77WgiUbQk6BZm4+0Zzhmee+LReDq20YpjrvvjrMn6pUvBYFBfip4uV5g5fhPHT9gQ2Eg7s1aurA35OXYMTh3M/dDpQ1tP8emrm3OdxC0vTl3UsigvWh1K9x464zzIcYP24O6dc4m8+q0CaJXmpsTp/eeM6wx6PTM+1vbx6gvZj4nzqVPduBwR6ZD1hmVQzC2tl9TVyyObLUVu1Q/WuhMtLfVZTnsoKH71tPF0YZFV2blT9XAAhIdbcP74pSxeWfr8PHcbXbve4/b9ae4dOqh/eaHTQWioOjenpMDqZeq8uuFP7ffYsWP2+6hTWxuF06GzVjXh7ddu4uJwg0FdtvLmHNPh6bblbGnobzr9qHnDm3kuNydEXri4wJN9VQWE2NuWTP9fWMlIElOMfvoJfv8dli1TycJA/cpShzlXr34/Mdp96Xu6TeZzD7x/461SG+i2H9xbkh+p2ctBzatO684deP/9jK9JSlLlvECd98aNy3r/FhZqSHlUlCrr2quXVus9r9q00XrFV68m38mAY2O1uej+/qY3HkTRkqBbmI0GbQLp32678bGNVSL9hgXRsYcWOK5bb2nymg33RxpZWBg4dtqVyR+1M/Zwp9W3gxZwLl+Uu/oLB7acpGkHH16c0ZY3xh7KwyfJ2Y2rN4mKrWTy3NFwNX+xgv0tXn4n93UZune8aVxetfS8cfmv73Ybh9s3r3WYdn0bZLsfnzSj9yMist6uLIpJM9reVaqFFYj6jbUs+d6VorGyymbjAuDk7oSbm7pIDrvim2FI9NY15wq3AWZi/dJ9PDG2Bcn31E2P3r0MrFyZvwvDDq20m6ArflTdVOt+1yZrdmyefaai0a/WpXmtwwzt8S8dHtPGZT48vBnXY51ZvKY1VjYZD4zmIabTX9p3kxthopAZDIxt+5qxtOaMuf78+NpUiNrGpUuqlvQnn2jJsgSc1AasGLN2X7um9Rj7+qr51KlJdY093de2knAjynh95+UFQd17Q+tfVQ+3ff7/3suXh0qml15UqKDV7547V7sZm2rpUozlbB9+WCvnlRVLy+zzi+SWra124/LqVTUvOz82btRK3Ukvd/GSoFuYlakz3Y1fag+H7sO5khONO9Sigr3qUVm/JwB9irrdd/WqdiJv3FiHc8Wsk9/0fVSbRLNsVc4lsW7H3GbAEzbG+dU79xVs7erTB7XeIFsb0wRxL4034OqZxdilTHR/pIpxedVa1UNt0BuY9p72mf83MSFDVuL0JOjOmgTdBS+wYXVcHNQvtkHtokls5uen/gYuXYKlS017qf79t2xcLX/7dbxxKs4zvbfw268puZ5jmF69hhY4O9wEYM32utyNu8vaHaoryc46gdadss/W49+gGtuP1+ebP0MzlOHL7nzVopXppOt27fLediHyRKcjaPD7zBqhpS8fOusVJg3dRq2Au0ybBuPHq8BbKGmTpZ26PzglbYby6tXVzb7UIDY83IB+52hYF8qmr7/h7v0iKt273x/l7/OIGvL/gNL39D7/vPoHahj8zJnaupgYVTIrVXZ5cQpDQQwxl6Hl5kOCbmFW6jTzZ8W3+5jw1CbmLVHpHa1srGjfSPVUR8e6cWjbaQA2ro4yvi6noZE16vsY5wnuOlmPS2GXs9zWoDcw6smDnI7UxiFFROdciiIr2/48RNPAowzuttV4w+DU0ZvG9a89t4s6ddSymxu8OMk5T/uv29wfbzcVxG86UJ+4W3Gs/XkfO06oTMT1qp2m55BsJnPf5+ICDg6qfRHht3PYumy5Eand+natEFeMLSk9bOxt+PXb84x9bDOzPiqaocGpGYgBzpwxDer+3Vs20rmGnXcyLs9e0iTTnuTcsrK2pFtLNb3lVrwTld0TiYhS58rW9Y8V2pDvFp20c7OtrZ5mzQrlbYQwZefGi5+PYfhjaoRHYrIdH/w1iTvx2nH++uumPbxlWWZB99k0MwRTh3r7+aokromJOi7t+gOAVWu1O4FpA8+CkDbotrKCMWNUpvHUOdfz5sEff6ih8MOHa50Q7dtD68yLMRSabt205fwE3QYDrFmjlq2ts05sKYqGBN3C7PQY3IQPvmtHRS+tS7FjO61u9J/3y9Ns+F0bMt6hWc5ds/26atmSf1+csSRZqkWztrHkb9Mza1SsOwnxeZ+/9cfXO+nYrya7T9Vl8ZrWbFquMgydOqH1bjcIsWbTJlVKbdMmcHLKfF9Z0Vno6NFGjctKumfL6qXnGDNR+929+lJUhl6kTPejAx9X9Y0YccESg17mq6WKOXfcuOxqebQYW1K6dOgfwqc/tcUvOGPd7sKQ3bDAYxH+XI8s/Vn7wyJVLomqFSPzXdc6rV69tOXYBO3k1bdn4WWa8g7wJOT+FM/evS2Mw1OFKGw6Cx2ff+dLmzba96NOpyfY5wAAd++qpGtlfZi5wWCaGC0sTP1OTIJuj8uw90X8DQu07a74g2U51oWprORWVvDQQwXbtrRB96OPQtWq4OEBL76onktKgn79oH9/NScdVELI774r+jrVPj6qrjeoDOvXr+ft9WFh2u+8dWs1vF4UHwm6RYnQ43F/dDr1JTd/iS/JybBxl8q8ZG2ZRKsOOU+g6fukNgx78S8VM73APr7rDC+8qWXKreKhZVi+cDFvZ9sv5yfQb0Rj7iZrF7a7/1PD5E+FaUPhA4LccHeHCROgbt08vYVR9/5aT/zzE305dUndQm5Z5xCPvdA81/vxrnwTgISkcsRcLv0BSG7FxGj/965ucoVfUvl7nM3wXNemu43LW1eHZVhfmtyKukV0rDpX+lW5ViD77PZ4XXwrq5ueDrZ36NdmBz98+h/PvxlaIPvPyurVKvP8l18W6tsIkYGNDfz2m44BA6BPzzh2f/YC/01piX9lNQpv+3aVCbssi4lRCbxSJSfD+fPpgu6IXnDyU/zctZvaZwxDiWl5ghPhquOgYUM157ogdeumgmd7e9XDnWrKFFXRAlTSsmXLtHXffquC8+LQqZP6aTBoCdFyS4aWmxcJukWJ4Fu3Cr17a/MxP5p5k7DL1QFoXvs45SrkPCmxfsua1PBQicZ2nqiHt68dLzy6mfPHVRmyhNsJDBigJz5RzYt+9uEtDBqi7Tcv85yXL4cRI+3R600Tv+3Zr7J1nDqv5mxbWtzDt86Dn8k79K6Bzf04/vpN1WYLXQqfz7fNVS93Kh8v7SZDxOmCuSgvDWJuaENwXSvJreKSys/HtPe1hsd5RjyjpYT9d3PWNdjPHb3IsJ7/0rPFLs4euZDldubszBFttI9/tYKZQuLo6sjufeXZs/4412Os+W1zc54Y2zJP5538qFxZ9VLldWSQEAXBzU1l5F6+0oFGz39OueCRLBwzwdg58Nprqu57WRWeSQ7FU6fSBd3u6oG/p3ZxFaYfzM4jWimLFi0Kvm0tW6opACdOqBJfqWxsVG/2hAmm248fDz17Fnw7citt7e9t2/L2Wgm6zYsE3aLESJvA4o13HI3L7VvlLgmTzkLHa+MijInaEpLK8fmvbakVXJF3ptxlzBg9R86r+hV1fU7zyXeN85VcLDERXn5Zezx+ZBTlbNU84L3Hq2AwwKkrar66r3c8NvZZJ4DLLQeHjMmExjy+leDQwDztx8dbGxMXceZWNluWLWlLhrlUcsxmS2HO/OubZr3t1f4crbtqE73/3ZVxxMzduLu8O2YTtUMqsvCvUP7a0ZQB/W5zL+lehm3N3ZkTN43LfjUKbvxrRS9XGnWojW052wLbpxAlhk4HIbNo/dICxo1TnQN378KAARAfl886TyVZ/CXC13+f4enTp7Wgu7zdbVwrO0KD9/AbtNi4zZkzaqRAqsIIukGVKkt7fZfKwkJN9fvkE1Wuq2tX08RqxSG/QffduypzOaiblGlvMIjiIUG3KDFCQ9VQI4DkZK0HuUMX51zvY9groYQdimTsY5txsFW9XneT7Xlzqh1fL1I93Pa2Sfzyi45yFcrh4619YUacisp0n+l99pn2xdKxI3z4mTsh/mpy09mrPhzZd5O4OPWnF1C34MZNpU024uESxdTZIVlvnAWfalqPbsTZxIJoVqkQc0sbUp5ZSTpRMrhXdaO8ndbD27tfBdy9K1Krqvr73BcWQNwtLVHe7ZjbtAg6xxtz25lME9lzug4fzDIdxZLqcvhVbly9WTgf4AGFndT+pv0DJUAWosDodGDvwfTpWnBz7BiM67cMTs8DfRmY5H0vDg6+Div8CN9/JMPq48e1zgvf6gZ0vc9AnUlUC3AxlowMCyuaoDsn48bB7dtqGovNg/eLPJDKlbV8JLt3qznnubFqFcTd/zrr1i3/9cJFwZH/AlFi6HTw0mjTIZF21gk071I7T/vxrefNpz+15cL5e4wf9B+WlqYJw+Z+bkOdZqr3y9v5tPH5iCM5pySNuXyDd6YmGtv7wQfqZ+MgrTf+p++0udI1a+ap6dl67DFVf9LaGuZ9XREnt7wH9D41HIzLERGSSC1VTKz6vTjax2Jta53D1sJc6Sx0NPBX4x7dHKMI7VUPgNBGatj1vRRrdq4/B2hVDA6E1wLUVJCnOq3FwkL9XUyZquNIuuvK//46jHfNinhUtefN5zYRHxuPOTkTrt0o8KvlXHwNEaKUsrdXw85Ty/B99U9/fpq9GdaEwJX1xdu4wpJ4HcK+hJWBcHQa6BMJv1Yjw2abNqm53QC+ARXAQp2PrKyg2v1cmmFhsGuXWvb0BG/vDLspMuYUpKb2dicmwr59uXvNDz9oy088UfBtEnlnRoeUEDl79HFbvFy0Gtet6uzP95BGl8rOfLS4Jfv362jXTgXH48apzKOpfAIqG5cjLmc+b3zz8gPMm7qFf37cy6svHOZmrGrPkMdjaNBAbdOosdaD/OMyrQZ3QEC+mp4pDw9tzlSfvvn70/bx17Ken7tgx0cfqeRus2cXVCtLppjb6gaGa/nYHLYU5u7z+fY813cLvy2ONN5ACe2i5VXYckhlM0xbxcDRPpZd607z3T+dmDBBDR9NSlLnintpRpnPn3uLFL0VSfdseeeLdtSteZ013+8pok+Ws7CoOsZlv3plo0SaEEWtVi34/DNtlNxzXy8g5uJF2NARNnaHqDxmwzJX1/6F9Q/BssqwawQk3L82s7AmPK6dcbPU6gLHtXxpxnJhqVLLOd65oyVga9Gi6LOFm6uWLbXl3Awxj42FP/9Uy5Uq5VxWVxQNCbpFiWJjb8OYp44ZH3dom8txNtmoX1/Ne4mPV/N40p7knd2djMNRL1x1yfDarSsP0f6RIEZNaUOXJxuxYHkbAOxt4o093gCNW3sal89eTBN0+z14+9NycoIqVXLeLitVa2pzXn/b3JSXX1ZD5MaPN3DsYNmc423QG4i54wyAawWpX17S1W8VwPxlbWjzcLDxudBu2hXgO+9A/4djTaoYfPHeERq2VyNqpk6F2vcH1+zZAwsXquV7SSms2mY66ubcNW96Dm7A/k0nMAdnLlYEVBIoJ3fJQCZEYRnytAVPPqmWYxOc+HnHY+rB5dWwthWs7wAn50DkGki5m/WOzJkhBa5uUD9TefWE7kcIj1LD+FxctJJXaVWvbvo4s3KOxTW03BxlNq/78mV4+204dCjj9suXq15xULkFrKwybiOKngTdosQZ83ZL+rfbTufGexj5aoMC229mtV51Fjp8Kl0FIOKaR4ba1e/PTMBgyPhn9PKQXVStqQXaAY1qZFofMaBa7uaJFxXbcrZ4OF8BMPlcer2OSc/nPLy+NLpz8zb3UlSPqGuFrLNbi5KrWjVo1Egt6/Xw24oKJlUMHh+jdTPY2cFXX2rngW8+Ud0329ed5fptFdS2qX+ADiFqDGCK3oo3Xy3+ERIJCXBRFWrItl65EKJgTJqkLS/a/zaUS5O56+pG2DsWNnVTc6HNVUoixOxXc7WvrDNd594abCtC+RpQewJ03gHtVpJsH2Ccu12jRuYj+rLq6U5Lgm5NnTrg7KyW//tPBdQdOsBbb6ms5HfT3bf58UdtOfXmjyh+EnSLEsfByYGlG1vw9+7GRZLUysdDzce+m2xP9KXrxudP7TvLyv+aAVDF9TITB2+iT+sdjHlsM699bFob29ISQtLlNbOzTjAJzM1FNY9o47K7uwEPF1U67K8dTVm/NJeTiUqRmGvaBZGrsySXK410Oli3TvUauLtrz9erpqoYpNeylY5gX9V7veNYbU7uDWflJu2qcfgIO1ZtrYu3mxpu+ef2puz8O2NioaKUtlRPZhe4QoiCFRys/gHsPODOycAwaPYNOKZJ5mLjogLXtA6/A/8+Csc+gLOL4dIqFfgatCHrBoOqkvLooxAZScG4GwWX18LxWfDfU/BXffilPKxpqOZqH51uur2FFXQ7BL3CIOQDcFPXQxER6uYl5D7oTn8j0NpauxEq1Pzy1JsQV6/C6NGq5BnAlSvw++/atteuqe8zUCMKmptejopiJEG3EDnw8dJ6NyNOaz3Tn87QaoiNG3qS9xe1Y/m/zZn9U1vsHDJ2mzdOd+1es8qFQq9lmx+jR9yinG0cXUPPc+CAjvdfP2VcN+GVcuhTylYJlJgE7caIq3/GAEyUDs7O8MYb6oLx6w/2M/npTfyzoQLlKmSey2Hwo1eMy4vnR7BihVq2sIDuj9fCtpwtr487Y9zmzamZDKUpQmHHtN526ekWomgMGaItf7fEGvyGQo/j0GkbNPsagt7J+KJLK+DCr3BgEmwfDJt7qMD396qw+wW4+Adblu3io4/g119h4EAtyM2Xs9/Dci9YVgk2dob9E+HcErh1BAxpklZEbYW4dLVTy3mBTseWLbB4sWpH2hrdWQXd6YeXp78RGBKS+ejDsiztvO6vvjJd9+WX2vLSpZByf8T/E0/IvHhzYn5X/EKYGZOyYfdrV8dE32PhiqYAONje4dlJOZfnSn/XNqDa9cw3LGaDxrci9rYdq7dUw8sLBo5rSYifGkJ7ILwWiz8qJUlgcilGSzaPq5tkLi/t7Oxg2IQQZi5sh2eNylluN3BkHSwt1AXpZz+GcPL+7IuWLdWcaYChE1vg66VGivyz3Z9//y3UpmfrzB5tlIq/i/kkdxOiNHvySTXSDbSgFAtLcG8JfsMg4AXTF+iT4U54hv0AkHAZTn8OW/pw7K+Fxqc3bYL584HkOxCzl+hrydy8mUWD9PcyPmfloPadns4KnOtD9aeg4UfQOxwcMha3PnkSOnWCwYNh+vScg25XV6iQrrhK+p5v6Z3NKO287vQ2bFA1zvV6WLRIe16GlpsXCbqFyIFP9Yy1qxd8aUVCkqrbO+zR0zhXyjkpUeP6MSaPa9Yw36HKltZaaSELSws+fE/r7Z/wbi0iz1zJ7GWlkknQ7Zr1dqJsqVy9El2bqkD2Zpz299+7t7aNta01b06rZHz8xhtF1rwMws5oX/d+NaVGtxBFoXJl6NpVLV+4oALkbFlYQ79r0O0AtFgCjWZD/SlQpRdYaH+36UtyTZoEBzcdZPzALXh46vD2iuPMtwNgYzfYMRQOvw0nPoaVNSF6p+l7ujQAa2eo1A4Cx0HzhdB1Hwy4A90PQcvvoNZ4KFeVzPz2m1Y7+pNP4OhRbV2NGhlLo6YPsEGVWquaZvcynzujpk21Gzigjq3//U97/M038PHHqpY3qAR29eoVbRtF9iSfnRA58PHVMqBFRBhISoK5c9VjnQ7GTcm5lxugZl1nHO1iuX1X3eINCLTM4RXmo/0jDenXZgfLtjQnOtaNgY/sZ91ud5PgvLSSoFtkZfCge/y1w/S5Xj0NgDaeb9AgmDFDlfPbvBnOncs4tLIonDmvDZP3r++RzZZCiII0ZAj89ZdaXrQoF+WbLCzBJVj9Syv5NkSuglvHCb/bw2RVXBw06NwKUN2hdxKsWPBrY95/cnLG/e97CTpt1cYdO1SD/jH5Hoe8apW2fP06fP219rhGDXB0VCVNr9y/V59Z0A0qOE9N9ihBd0YODmrY/Z77A5VmzYKOHeGDD1Tpynnz4HaaAiuzZhVPO0XWpKdbiBz41NQirYhIB1at0hKXPPxw7udHWlha0NBXG+IZUKtk9TZ98WMAVSuqD77pYAjvjivGsbJFKCZcS4Dlancpmy1FWdP76YY4l7thfFzT8wyBgabbWFlBz57a44h0UyKLStgFlSGuvN1t3Ku6FU8jhCiDevXSMk//9ptpYJQn1o5Q7TEImkL49TqAOr/4ZBzxDcBPOx5Hr88kkLYqD8lpKirodKDTcfKkSia5d2/umxQTA9u3mz4XH69+WlqCt7daTjvEPKug+6WXVE3pkSNVRQmR0dSp4OUFzz+v5vJ7eKjjC+DGDRV8A7zyCnTuXHztFJmToFuIHFTx90KnUyWCIuKa8OMPWk3KZ5/N2776P6K+AD2crxLSvmSN+6no5cqPC6OM81jfnh/K5uUHirdRRSDmspbN3dUhOpstRVlj52DHYw9pXd29251EZ5HxItfTUUsdfvlYJkVVC1lyYjLno7wA8Pe6lGkbhRCFw84OHn9cLcfFwc8/P9j+DAZt3nS1arBwIdjev4ffpw+0bq2WL1z3YZvnDTVUPXQ54ZW/I7bZNujwN9iYTolbuFD1or71FjRrBu+/n7vkbP/8k/V2Pj4qCznkLuju2VP1hn/+ec7vW1Z17w6XLqle7dSBCc88Y7pNy5bq5okwPxJ0C5EDGzsrPDzU2e30aQMrfleTl9xck+jUKW/7GjUllO2rj3DokGWWWZHNWetewUx9QfVw6w2WvDHFpphbVPhu3NROk67uJe//TBSusa/VxN4mHjvrBIa/GJjpNh5OWk2fKxExmW5TmCJORBprzft538hhayFEQUsbGKXNNJ0fMTEQe7+jukYNNVz9yBE1l3r5ctULmuqHX53AJZjPV/bBv9NTBHdsaXwtqF7pp5+GYcMg4X7qlpQUmDxZ9aBezyHfa9qh5WPGmK6rkWbaeZMm2nL68qlpSabtvOvSRZuy5OKianRbS85XsyRBtxC5kDp868YNHXeTVQK1AR225/nEZmFpQfOu9XD3LrnDO1/5sA01fO4AsPNEHe7eLeYGFbKYm9qNBdfKjsXYEmGO6jTzJ/JCMpfO36V208znmnhWtTcuX84kSXBhO3NMG6Hh72u+CRyFKK0aNoQGDdTyrl1wKIcBL6+9BoGBpkFtqjNaJUJjYOvvD3XUiHMeflglJgNVPurwYTV022BQOSX+/lt7/cSJptmu27XTAt9VqyA0FKKzGOCl18Pq1Wq5fHnVO552ul3aoHvIENX7On++ZCYvaJaW8McfMH68StSX1XQDUfwk6BYiFzI7iT0x2KXoG2IGLK0tadNBJZdLSsrb/K+SKOaWVizUJRdZ6kXZ41zJCVfPrM8Hnj5afZzLV4s+f+nu7dokUj9/+doXoqjpdKa93WmTjaX355+q9NapUypYvXXLdH36klzplS+vVVG4fl0l20pMc69t3Tr18949+P57tWxnBz/8ABs3wpo14K5SQHD8uJobnFkJsj17tIC8Uye1j3HjtPVp81vY2qrqDc89l/XnFvkXFAQffaR+CvMl375C5IKP++V0jy/SsnvJmpNdkNLWi9y2rfjaURRiYtWQcjvrBOwd7XPYWoiMPKtVNC5fibLLZsuCN+/DSN6Y28b4OLhJxWy2FkIUliefVIEpqJrdmY0SS0iAsWO1x9HRqvpBWjkF3anvleraNdN1qUH3f/9pAX2fPvDEE2q5c2fYsUMl7ALYvx969FDz0dNK2wvfvbv6+dxzMHy46m1/+unM2yZEWSVBdxn2yiuvMGrUKOPjp556imnTphV5O3bu3ElgYCCxaScamRkf51Mmj5/oEYaFZdn98ylbQbcaUu7qeCuHLYXInHMlZ2yt1RX25egKOWxdMAwGlRRp1AQvDAZ1rhrW81+adq5bJO8vhDDl4gKPPqqWb9yAZcsybjNjBpw9a/rcJ5/A+fPa49wE3V27qvdLpdNpGcHDw9W/tEFzD9MKZNSoAevXaz3e//0HEyaYbpP29d26qZ82NvDVV/D771BR7u8JYaLsRg1m7JVXXiEwMJDAwEDq1atHp06dmDt3LvdSawEUkjlz5jAu7digbJSEQLkg+fia9k49OdyrmFpiHgIDwdVZJZT7b/NNDHpDMbeo8MTcUUPKXR3zW+dFlHU6Cx0ezmoc5uWYoin2vnq1aQbbSc+d4Ks/WhfJewshMpd2iPlHH5kOHT99Gt57Ty1bWcEjj6jlxEQ1xztVboJuGxvo3197PG4cjBihPV63TguadTqVjCu9WrVUdvLU+eErV2rroqJg9261HBwMVapk3g4hhEaCbjMVGhrK1q1b+fvvvxk6dChz587l60wmASUlJRXYezo7O1O+fPkC219p4lNDS6BVt+oR6resWYytKX4WFtCi1kEAom85c2r/2RxeUTIl3E4gIUkNL3etEJfD1kJkzbOiyhoeHetG8t2CO29nJe0F8vTp8N78WlIqTIhiFhqqlc/au1clWNu+XZXs6t5d5UkBePll1WOc2lv8/fdqDjVoQbeLi1b/OzNTpkDbtmqo+bRpam53qm+/VQnWAJo21Xq002vQQK0HVaoqKkot79qlbZN2v0KIrEnQbaZsbGxwd3enSpUqPPnkk7Rs2ZINGzYYh4TPmzeP1q1b07VrVwAuX77MuHHjaNy4MU2bNmXkyJFcvHjRuL+UlBRmzJhB48aNadasGe+//z4Gg2nvZPrh5UlJSXzwwQe0bdvW2OO+dOlSLl68yODBgwFo0qQJgYGBvPLKKwDo9XoWLFhAhw4dCAoKonfv3qxZs8bkfTZv3kyXLl0ICgriqaee4tKlS4XyOyxI9VvVJKCKCiwnjr0pF69Aq2ZaELptrfn/H+bHjWtaN4Srk2R9Fvnn4ab9vVyNKPx679u3q/O7hQWMHl3obyeEyAWdTgXTqcFyeLiqqzxsGISFqee8vVXSMWdnNUUk1cyZKii/cEE9zqqXO5WXl8pm/f33UK4cNGoETvdzgW7frm2XOh87K2lLfB04oH6m3gAA03JgQoisFX0aVXNw/CM48VHO27k2hLYrTJ/b3Bti9uX82lovQe2X8te+TNja2nLzfvrI7du3U758eRYuXAhAcnIyw4cPp0GDBnz//fdYWVnx+eef88wzz7BixQpsbGz45ptvWL58OdOnT8fPz49vvvmGtWvX0jyb2g2TJk3iwIEDvP7669SqVYuLFy9y48YNPD09mTNnDmPGjGHNmjWUL18eu/vZQRYsWMCKFSuYOnUq1atXZ/fu3UycOBFXV1eaNm3K5cuXGT16NAMHDmTAgAEcOXKE91LHU5kxa1trDp705NqFS/jUkiGaAK3au8Cnavm//wwMK97mFIqYG9op0rWSJFET+edZWevdvnz+JlUDCm+Kyu2Y2xw+VA6wpF7NaBwdS26JQiFKm9BQ2LcPHntMG6KdqlUrVVbLwUE9fu45eOcd1cP8119w7Jgq1QU5B93pWVqqmt7Ll5s+n5ege/9+lak8bdWSxo3z1g4hyqqyGXQnx0JCLnrm7npn8lxU7l6bXDBznQ0GA9u3b2fr1q0MGjSIGzduUK5cOd59911sbFT94D/++AO9Xs+0adPQ3S+wOGPGDJo0acKuXbto3bo1ixYtYsSIEXTu3BmAqVOnsnXr1izf9+zZs6xevZqFCxfSsmVLALy9td+H0/3bpRUrVqRCBZUYKCkpiQULFrBw4UJC7p+lvb292bt3Lz///DNNmzblxx9/xMfHx9gzXqNGDU6dOsWXX35ZIL+vwmTnYIdPLZm4lKpJhwCsLZNITrFh2/7S83s5vf8cP351Dj9/a6qGtDQ+71pDanGI/PP0cTYuX7lRuPO692wMQ29Q5+AWdY4BbbJ/gRCiSPn6wtataq72okXQpo0aUt6ihel2NjZqbvf8+Srb+Zw52rq0NbFzq2NH06C7UiU1xD07qfXFQQXdoPV0OzvnPfgXoqwqm0G3dQWwz0WQYJfJJBc799y91vrBMtRu2rSJkJAQkpOTMRgM9OzZkzFjxvD2228TEBBgDLgBTpw4QUREBA3TnTkTExOJiIjg9u3bREVFERwcbFxnZWVFvXr1MgwxT3X8+HEsLS1pkodxQ+fPnychIYFhw0z7PJOTk6lduzYAZ86cIShdIcEGac/oosSwd7SnYc0j7DxRjxMX/bgeGUNFr6JJElUYdv1zlJnv3ub3rU0xGKoD0Puh84BK+epacj+aMAMetbXz3uWbHoX6Xtu3aNMiWrSQWWRCmCMbG/jgA/UvO48+qoJuUKXGUuUn2E0//7pbNzUFJTu1a6s624mJanh5ZCRcvl9FtVEjNWReCJGzshl0136Aod/ph5sXkmbNmjFlyhSsra2pVKkSVlbaf5W9vekw1/j4eOrWrcusWbMy7Mc1n5FC6nDxvIiPjwfUEPPKlSubrEt7k0CUHi0bRrPzhFr+7+8weg1tWrwNyqetKw/RoW8tklNMj9MV66sZlyXoFg/C01NbTr1gLSzbd5czLjfvUHpGoQhRFrVpoxKdRUVBcrL2fH6C7po11Zzx1HnhOQ0tB7C2hnr11JDykydhyxZtnQwtFyL35Ba4mbK3t6datWp4eXmZBNyZqVu3LufPn6dixYpUq1bN5J+joyOOjo64u7tz8OBB42vu3bvH0aNHs9xnQEAAer2e3eknHN1nbW0NqARtqfz8/LCxsSEyMjJDOzzvX3H6+flxODVl5n1p2yVKllahtsbl0ZO9eLRbONOmwZ07xdiofJj1hb8x4PZ0uUy74P0ZtpGgWzyIogq6DXoDO46qq3HX8jEEhFQvvDcTQhQ6Kyvo1y/j8/kJunU6rRSZszPcn3GYo9QBiQaDyrSeqlGjvLdBiLJKgu5SoFevXri4uDBy5Ej27NnDhQsX2LlzJ++++y5XrlwBYPDgwXz55ZesW7eOM2fOMHXq1GxrbFetWpW+ffvy6quvsm7dOuM+V90v7FilShV0Oh2bNm0iJiaGuLg4ypcvz7Bhw5gxYwbLly8nIiKCo0ePsnjxYpbfn0T0+OOPc+7cOd577z3Cw8NZuXKlcZ0oeVp18cNCp268RERV5dc1NXj9dRg6tJgblgfR0fDXGtUz6Omp5+xFF1b9W4v61U+ZbOdqeaI4midKibRB95XIwisZFnbwPNGxKnFa87pnpNKCEKXAgAGmjy0tVY91frz7rsqgvmlT9iXH0kqbTG3tWm1ZerqFyD0JuksBe3t7lixZgpeXF6NHj6Z79+689tprJCYmGutuDxs2jN69ezN58mQef/xxHBwc6NSpU7b7nTJlCl26dGHKlCl069aNN954g4SEBAAqV67MmDFj+PDDD2nZsiXvvPMOAC+++CKjRo1iwYIFdO/enWeeeYZNmzZRtWpVALy8vJgzZw7r16/n4Ycf5qeffmL8+PGF+NsRhcnDtxKfvraVwCrhWFlq495+/RWWLi3GhuXBjz/CvXtqedAgC2zL2WHvaM/PP1tSzlYr81TRTYIXkX+V3FLQ6VTa4cunTuWwdd6EH45gz7pjAGzfoCX6bNFEassLURqkDjFPVa2a6gHPDwcHGD4c0qT5yVHaoDs1FZCrK1Svnr82CFEW6QxZZdIqAeLj4zl+/Di1a9emXLlyOb+gmKSkpHDgwAEaNGiApaVlcTdHlFDmfhzdS7rHkiUwdLi6EnBzg6NHVXZUc9a4sVb+5MgRqFtXW/frvO0Me7kuIf7hbNwfhIVlyb9Pae7HUWlW2TmKa7fc8Xa7RERUwcy1PnPwPMHNKhKXWJ7XxpwgJvIa835T2crX/bKPhx7NITVxPslxVEbExcH9m/fcuaPVsiogchzl3vPPw4IFarljR9Me58J25w5UqKAF3KBKh/3zT9G1ITtyHImCkP44Kug4s+RfQQohzIKVjRVDhloZ555FR8PoJ/dm/6JidnRHuDHgbtTINOAG6D+yBdeibNh8qEGpCLhF8fJ0jQHgyg13DPqM97tv3crwVI6++PgscYkqKJo2pxbf/qkqTuh0epp0qJn/xgohzEraIeaBgUX73uXLqyRsacnQciHyRq4ihRAFRqeDzz+Hik4qk9rS9Y344+udxdyqrC2aF2FcHtwzY/I0UPXZhSgIHm63AUhOsSHmyg3j8/oUPcMGxeDsDC++mPv9pSSnsGSl6dV3QqKqblGvWhgVKjo+aJOFEGaifXt1fmjbFsaNK/r3TzvEHCToFiKvJOgWQhSoypVh7juHjI/nfGZdjK3J2r2keyxZWQsAK8tknhiez6w0QuSSZ6UE4/Llc9eNy1NGbWbh9yo9/oIFkKYoBJfDr/L7VzuJj43PsL/1vx4gMkZlaPO434ueqkULGWIpRGmi08HHH6sEaOl7nYtC+qBbMpcLkTdmF3TPmzePxx9/nODgYBrLbTQhSqTHXmiBn8d5ADYcaMCFk5HF3KKMNi47yOUbHgD0aLEPd2+3Ym6RKO08K2vR9JWLqtf7pznbeOeL9sbn796Fc+fUsj5FT9vQePo+24zxQ/Zk2N+ihXeNy5/NOMVrr2nrejzuV7CNF0KUaallw0DlbPHxKbamCFEimV3QnZycTNeuXXniiSeKuylCiHzSWegY3O8sAAaDBUvmFWy25oLwz6rbxuUnHkvJZkshCoaHh5YB//LFePasO8bQlzMmOjt6VP0MO2PB6UhfAH5YE8LdOC3Ijr0ey/LNquvJxeEGPQaF8M47sHIl/PYb9OpViB9ECFHmNGwIFvejhubNVc+7ECL3zC7oHjt2LE8//TQBAQHF3RQhxAN4aqTW07boV59ME0cVpw3bKxuXH+pTxFlpRJnkWdXGuBx58R7DR1hyN1nNwfavetW4LjXoPnhQe+2du46s+1WbtvHrlwdJSFLZVJ/odgjbcrbodNCzJ/TrJxfEQoiC5e4Os2dD164wbVpxt0aIkiefVf7MS0pKCikp5ttTldo2c26jMH8l7Tjyqe1Fm/oH2HK4AScv1WDHP4dp2qlOcTcLgBtXb7L/jAq0g6qfxMXTv8T8Xh9USTuOSpNKXlpSvkVLq3L8oj8AIX7HmbfQneaq0hdH/91NyqSG7NunI+298WW/JtJtkPp/W/SDliRt0HDXIv//lOOojEhJwdK4mGKacKBAdi/HUUny/PPqHxT4ofBA5DgSBSH9cVTQx1OpCLpPnTK/oauZOXz4cHE3QZQCJek46tElgi2HGwDw5dxI4q1T+OuvilhbG+jXLwqrYjoD7Vp9EYPhYQCaBYdz4MCd4mlIMSpJx1FpEZekJTtLDbgBnht2Er3uFhY6F/QGS46cKMeBAwfYutUPcDZut3Jzbfbs3sOVsBtsOdwVgACvM1hXTOTAgQNF9ClMyXFUulkkJJCaP+vQoUPo7e0L5X3kOBIFQY4jURAK6zgqkkveWbNm8eWXX2a7zapVq/Dzy1/il4CAgAIpWl5YUlJSOHz4MPXr18fSUjLKivwpicdRDe8aTJkdT0JSOX5aG8qP6+25e1eNe92y2YMfv7mCd2CVIm/Xog+0+dzde7nQIG2GmFKuJB5HpUVcjcQMz9WrdpphE3pgYWmBv1cEpy75cvJiDerXteTsqQSTbaNvuxEXGcEX32rzwJ95IoKQhm0Kve3pyXFURsTFGReDgoLAwaFAdy/HkSgIchyJgpD+OIqPjy/Qjt0iCbqHDRtG3759s93G2zv/5XosLS1LxB9ZSWmnMG8l6ThyqeRC37bb+GFtK+P801Q7dtrQqFl5vvtsHz0GNynSdm3coQJ9C10K7XrVLjG/z4JUko6j0qKCSzkcHeG2ds+H/42/hrWNqv9Tt8ZVTl3y5W6yPQe2HOXStbqAKml3L0WV3vvfm67sOloJgKoesYx+q3mx/j/KcVTKpfm/tbS0NHlcsG8jx5F4cHIciYKQehwV9LFUJEG3q6srrq6uRfFWJV5gYPYJnUaPHs2YMWOKqDVCPLgRIx34Ya1aLl8eBg+GVX/c4twlJ2LuuPLw0Aps9zxGkzzM9/7mG5g+HSZNghEj8taea1cNHDmvgpyGAWdwriRJG0XR8fRI4fZt9UVew+M8A0Y2M66rE3iX5f+q5R++jTY+/2Tnnfz4T1OSU2zYdbS68fnp71fAXpvaLYQQQggzZXZzuiMjI7l16xaRkZGkpKRw/PhxAHx8fHAo4GFN5mjr1q3G5VWrVjF79mzWrFljfC7tMHqDwUBKSgpWxTUxVohcaNu3Acu+2EHUdWsGPN8IZ2e48aaBof138sfWZqTorXj91Xj+7pS7/Rn0Bv43OZFr0Xa89JKBwYN12Nnl/LpUmzZraZ07PCwBtyhaHp6WnDqtlieNicLKpppxXd36Wnbzn1fXMi63bWPgavQh/t7d2PhcSAgMHFj47RVCCCHEgzO7kmGzZ8+mT58+zJkzh/j4ePr06UOfPn04cuRIcTetSLi7uxv/OTo6otPpjI/Dw8Np2LAhmzdvpl+/ftSvX5+9e/fyyiuvMGrUKJP9TJs2jaeeesr4WK/Xs2DBAjp06EBQUBC9e/c2CeaFKEx9n23OiFdUwA3gUtmZX/4JoXqlCwD8s6cxW1ceynoHaVw9H8W1aBVlx8XpWLcub23ZuFFbbt8+b68V4kH16KF+1qkDQ15qbLKuToibcfnKTa2kXXBTN/r2ijfZdtYsrWauEEIIIcyb2XWRzpw5k5kzZxba/pcuhTffNJ1TV9gcHS14+mlnCipX04cffsjkyZPx9vamQoUKuXrNggULWLFiBVOnTqV69ers3r2biRMn4urqStOmTQumYULkgY29DW+9fJ6hk1U+h9df17OxhwGdRfYFhg/uuABUMj5etkzVJs6tDRvUTysraN06r60W4sFMnAjdukG1amQYoRHYsBoWuhT0hjTzaC3uUbeZL1VruPHStDjiEx3o2eEiHTpULeKWCyGEECK/zC7oLmwffAAnThT1u+pYvNiDCRMKZm9jx46lVatWud4+KSmJBQsWsHDhQkJCVPEPb29v9u7dy88//yxBtyg2g15szozZZzl1yZfNhxqw4bd9PPRow2xfc2ivaXmvFSsM3EvSY2WTc8KLS+E3OHXKBYCmTdUccyGKkk4H9etnvs7OwRZ/L/X3kKpW1bPYOdTEzsGO1T8f5L9NNxj9ZuPMdyCEEEIIs1Tmgu5Jk+CNN4q6p9vAU09dAaoXyP7qZ3XFloXz58+TkJDAsGHDTJ5PTk6mdu3aBdImIfLDysaKtyZGMvBFFWS88podKxtfw8O3UpavOXTE9LR1/bqOrX8epl2/Bjm+3++LDgFtAejQYD8YK9AKYR7q+F4zCbqDA68BKvFfm4eDafNwMTVMCCGEEPlW5oLu/v3Vv6KUkqLnwIGbBbY/e3t7k8c6nQ6DwWDy3L1794zL8fFqLuCCBQuoXLmyyXY2NjYIUZweG9WcaR+FcSzCnz2n61AtMImBg+D116FGjYzbHzrlluG55b/cpF2/nN9r0U/aawc8WfoTM4qSp26wA79r+TQJrp9cfI0RQgghRIGQNCylgKurK1FRUSbPpWZ9B/Dz88PGxobIyEiqVatm8s/T07OomyuECUtrSz77+A72NurmUFKyDQsXQmgo3Lhhum3S3WSOR6heQB/3i1hbJgGwfH1NDHrTG0/pHd91ht2nVN3jBjVOUL+VZC4X5qdOy3omjxs0lppgQgghREknQXcp0Lx5c44cOcLvv//OuXPnmD17NqdPnzauL1++PMOGDWPGjBksX76ciIgIjh49yuLFi1m+fHkxtlwIpV2/Bpw6cotJw3bg5KSC58hI+Okn0+1O7j1HcooandEyKIKHGh0E4EJ0FfZuOE52vpsfYVweMuBqAbZeiIJTt67p4+AWPsXTECGEEEIUGAm6S4HQ0FBGjRrFBx98QP/+/YmLi6NPnz4m27z44ouMGjWKBQsW0L17d5555hk2bdpE1aqSAVeYh6o1PXnv6+Zs3KhlL//uO9NtDu26ZlwOrp9E314JxsfLfrxGVlKSU1j8h6p7bGWZzJMj6xRQq4UoWIGBWimwypWhcnX34m2QEEIIIR5YmZvTXZL069ePfv20iarNmjXj5MmTmW47duxYxo4dm+W+dDodQ4YMYciQIQXeTiEKUoMGKrvz4cOwY4fq3Q5sVB2AQwe1+a1BIQ40alOd59/UYzBY8MmSpnTtfZA2Dwdn2OfGZQe4FNMIgG7N9lHJp1lRfBQh8szODgYPhm+/hREjirs1QgghhCgI0tMthDArOh0M6bnb+Pi7eeeMy4dOexiXg1pUpXJ1d57uvg2AhKRy9HzCl91rj2XY56KFWo/44EH6Qmi1EAXnm28gOhrefru4WyKEEEKIgiBBtxDC7Ax8thqWFioD/+I/aqJPUYHyoXNqiLiLSwpV/FQAPn9pM7o1VUH67YQKdOnrydfz73D1Kly/DtMmHubXDaqX28XhBr2GZF8HXIjiptNBxYrF3QohhBBCFBQJuoUQZsfDtxJdmuwHVJK0TcsPEh2tkqsBBAVZorNQc79t7G34bV092gWr7W/EufDMyPJ4eECVKvD6rPrcTVZl9gb1PIRtOdui/0BCCCGEEKLMkqBbCGGWBg/S5m8v+iaOw4e1dUFBptvaO9qzYoO/MfBOlZioflpYpPBEx23M/KJJYTVXCCGEEEKITEkiNSGEWXp4aEOcJt/iVrwT361uzd6Tl4AqQMagG8DR1ZH1e4PZtT2OFasc+PNPVee7Xz8YNzqFGjVbFe0HEEIIIYQQAgm6hRBmys7BjtFP7mDaV+0AOBpexbguqNYtwCnDaywsLWje2oHmrWH69LRrbAq1rUIIIYQQQmRFhpcLIczW1M9D+eR/m6lgf8v4nE6np259uV8ohBBCCCFKBgm6hRBmy9LaknHT23LyaCJPdd2KrfVdxj7+Lw5ODsXdNCGEEEIIIXJFuouEEGbPw7cS362uxMLkFCyt2xZ3c4QQQgghhMg16ekWQpQYltaWxd0EIYQQQggh8kSCbiGEEEIIIYQQopBI0C2EEEIIIYQQQhSSEj2nW6/XA5CQkFDMLcleSkoKAPHx8VhayvBYkT9yHImCIMeRKAhyHJURd+9CYKC2rNMV6O7lOBIFQY4jURDSH0ep8WVqvPmgdAaDwVAgeyoG169f59y5c8XdDCGEEEIIIYQQpUz16tWpWLHiA++nRAfd9+7d49atW9ja2mJhISPlhRBCCCGEEEI8GL1eT2JiIk5OTlhZPfjg8BIddAshhBBCCCGEEOZMuoeFEEIIIYQQQohCIkG3EEIIIYQQQghRSCToFkIIIYQQQgghCokE3UIIIYQQQgghRCGRoLsIfP/993To0IH69evz6KOPcujQoeJukjBjc+bMITAw0ORf165djesTExOZOnUqzZo1IyQkhDFjxhAdHV2MLRbmYPfu3Tz//PO0bt2awMBA1q1bZ7LeYDDw6aef0rp1a4KCgnj66aczlFy8efMmL7/8Mg0bNqRx48a8+uqrxMXFFeGnEMUtp+PolVdeyXB+Gj58uMk2chyVbQsWLOCRRx4hJCSEFi1aMGrUKMLDw022yc33WGRkJCNGjCA4OJgWLVrw3nvvce/evaL8KKIY5eY4euqppzKcj958802TbeQ4Ktt++OEHevXqRcOGDWnYsCGPPfYYmzdvNq4vynORBN2FbNWqVcyYMYMXXniB5cuXU6tWLYYPH87169eLu2nCjNWsWZOtW7ca//3www/GddOnT2fjxo188sknLF68mGvXrjF69OhibK0wB/Hx8QQGBvLWW29luv7LL79k8eLFTJkyhV9++QV7e3uGDx9OYmKicZsJEyYQFhbGwoULmT9/Pnv27MlwASNKt5yOI4DQ0FCT89NHH31ksl6Oo7Jt165dDBw4kF9++YWFCxdy7949hg8fTnx8vHGbnL7HUlJSeO6550hOTuann35i5syZLF++nNmzZxfHRxLFIDfHEcCAAQNMzkeTJk0yrpPjSHh4eDBhwgSWLVvGb7/9RvPmzXnhhRc4ffo0UMTnIoMoVP379zdMnTrV+DglJcXQunVrw4IFC4qxVcKczZ4929C7d+9M18XGxhrq1q1rWL16tfG5sLAwQ0BAgGH//v1F1EJh7gICAgxr1641Ptbr9YZWrVoZvvrqK+NzsbGxhnr16hn+/PNPg8GgHUeHDh0ybrN582ZDYGCg4cqVK0XXeGE20h9HBoPBMHnyZMPIkSOzfI0cRyK969evGwICAgy7du0yGAy5+x7btGmToVatWoaoqCjjNj/88IOhYcOGhsTExCJtvzAP6Y8jg8FgGDRokOHdd9/N8jVyHInMNGnSxPDLL78U+blIeroLUVJSEkePHqVly5bG5ywsLGjZsiX79+8vxpYJc3f+/Hlat27NQw89xMsvv0xkZCQAR44cITk52eSY8vPzw8vLiwMHDhRTa4W5u3jxIlFRUSbHjaOjI8HBwcZz0f79+6lQoQL169c3btOyZUssLCxkSowwsWvXLlq0aEGXLl146623uHHjhnGdHEcivdu3bwPg5OQE5O577MCBAwQEBODm5mbcpnXr1ty5c4ewsLCia7wwG+mPo1QrV66kWbNm9OzZkw8//JCEhATjOjmORFopKSn89ddfxMfHExISUuTnIqsC+RQiUzdu3CAlJYWKFSuaPF+xYsUM81KESBUUFMSMGTPw9fUlKiqKzz77jIEDB7Jy5Uqio6OxtramQoUKJq+pWLEiUVFRxdRiYe5Sj43MzkWpc5eio6NxdXU1WW9lZYWTk5McW8IoNDSUTp06UbVqVS5cuMBHH33Es88+y88//4ylpaUcR8KEXq9n+vTpNGzYkICAAIBcfY9FR0ebXOQCxsdyHJU9mR1HAD179sTLy4tKlSpx8uRJZs2axdmzZ5k7dy4gx5FQTp48yeOPP05iYiLlypXjs88+w9/fn+PHjxfpuUiCbiHMTNu2bY3LtWrVIjg4mPbt27N69Wrs7OyKsWVCiLKuR48exuXUxEUdO3Y09n4LkdbUqVM5ffq0SV4SIfIqq+PoscceMy4HBgbi7u7O008/TUREBD4+PkXdTGGmfH19+f3337l9+zZ///03kydPZsmSJUXeDhleXohcXFywtLTMkDTt+vXrGe6aCJGVChUqUL16dSIiInBzcyM5OZnY2FiTba5fv467u3sxtVCYu9RjI7tzkZubGzExMSbr7927x61bt+TYElny9vbGxcWF8+fPA3IcCc3bb7/Npk2bWLRoER4eHsbnc/M95ubmliGDcOpjOY7KlqyOo8wEBwcDmJyP5DgSNjY2VKtWjXr16vHyyy9Tq1YtvvvuuyJRnxYiAAAD20lEQVQ/F0nQXYhsbGyoW7cu27dvNz6n1+vZvn07ISEhxdgyUZLExcVx4cIF3N3dqVevHtbW1ibHVHh4OJGRkTRo0KD4GinMWtWqVXF3dzc5bu7cucPBgweN56KQkBBiY2M5cuSIcZsdO3ag1+sJCgoq8jaLkuHKlSvcvHnTePEhx5EwGAy8/fbbrF27lkWLFuHt7W2yPjffYw0aNODUqVMmNwr/++8/ypcvj7+/f5F8DlG8cjqOMnP8+HFAC4bkOBKZ0ev1JCUlFfm5SIaXF7KhQ4cyefJk6tWrR1BQEIsWLSIhIYF+/foVd9OEmXrvvfdo3749Xl5eXLt2jTlz5mBhYUHPnj1xdHTkkUceYebMmTg5OVG+fHneffddQkJCJOgu4+Li4oiIiDA+vnjxIsePH8fJyQkvLy8GDx7MvHnzqFatGlWrVuXTTz+lUqVKdOzYEVDJQ0JDQ3njjTeYOnUqycnJvPPOO/To0YPKlSsX18cSRSy748jJyYm5c+fSpUsX3NzcuHDhAh988AHVqlUjNDQUkONIqKHAf/75J59//jkODg7GeY+Ojo7Y2dnl6nusdevW+Pv7M2nSJCZOnEhUVBSffPIJAwcOxMbGphg/nSgqOR1HERERrFy5krZt2+Ls7MzJkyeZMWMGTZo0oVatWoAcRwI+/PBD2rRpg6enJ3Fxcfz555/s2rWLr7/+usjPRTqDwWAohM8o0liyZAlff/01UVFR1K5dm9dff904BEaI9MaPH8/u3bu5efMmrq6uNGrUiPHjxxvnJyUmJjJz5kz++usvkpKSaN26NW+99ZYMlSrjdu7cyeDBgzM837dvX2bOnInBYGD27Nn88ssvxMbG0qhRI9566y18fX2N2968eZN33nmHDRs2YGFhQefOnXn99ddxcHAoyo8iilF2x9GUKVN44YUXOHbsGLdv36ZSpUq0atWKcePGmUyZkuOobAsMDMz0+RkzZhg7HHLzPXbp0iWmTJnCrl27sLe3p2/fvrz88stYWUl/UVmQ03F0+fJlJk6cyOnTp4mPj8fT05OOHTsyatQoypcvb9xejqOy7dVXX2XHjh1cu3YNR0dHAgMDefbZZ2nVqhVQtOciCbqFEEIIIYQQQohCInO6hRBCCCGEEEKIQiJBtxBCCCGEEEIIUUgk6BZCCCGEEEIIIQqJBN1CCCGEEEIIIUQhkaBbCCGEEEIIIYQoJBJ0CyGEEEIIIYQQhUSCbiGEEEIIIYQQopBI0C2EEEIIIYQQQhQSCbqFEEIIIYQQQohCIkG3EEIIIYQQQghRSCToFkIIIYQQQgghCsn/AR5eAIH9wGYQAAAAAElFTkSuQmCC", "text/plain": [ - " 0%| | 0/179 [00:00" ] }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'eval_loss': 0.15104010701179504, 'eval_runtime': 61.1394, 'eval_samples_per_second': 186.868, 'eval_steps_per_second': 2.928, 'epoch': 12.0}\n", - "{'loss': 0.1322, 'grad_norm': 0.20345133543014526, 'learning_rate': 0.0009598575589172004, 'epoch': 13.0}\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mfewshot_finetune_eval\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtarget_dataset\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m64\u001b[39;49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[5], line 113\u001b[0m, in \u001b[0;36mfewshot_finetune_eval\u001b[0;34m(dataset_name, batch_size, learning_rate, context_length, forecast_length, fewshot_percent, freeze_backbone, num_epochs, save_dir, prediction_filter_length)\u001b[0m\n\u001b[1;32m 103\u001b[0m finetune_forecast_trainer \u001b[38;5;241m=\u001b[39m Trainer(\n\u001b[1;32m 104\u001b[0m model\u001b[38;5;241m=\u001b[39mfinetune_forecast_model,\n\u001b[1;32m 105\u001b[0m args\u001b[38;5;241m=\u001b[39mfinetune_forecast_args,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 109\u001b[0m optimizers\u001b[38;5;241m=\u001b[39m(optimizer, scheduler),\n\u001b[1;32m 110\u001b[0m )\n\u001b[1;32m 112\u001b[0m \u001b[38;5;66;03m# Fine tune\u001b[39;00m\n\u001b[0;32m--> 113\u001b[0m \u001b[43mfinetune_forecast_trainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;66;03m# Evaluation\u001b[39;00m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m+\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m20\u001b[39m, \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTest MSE after few-shot \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfewshot_percent\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m% fine-tuning\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m+\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m20\u001b[39m)\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:1885\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1883\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n\u001b[1;32m 1884\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1885\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1886\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1887\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1888\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1889\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1890\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:2311\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2308\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol\u001b[38;5;241m.\u001b[39mshould_training_stop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 2310\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_handler\u001b[38;5;241m.\u001b[39mon_epoch_end(args, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol)\n\u001b[0;32m-> 2311\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_maybe_log_save_evaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtr_loss\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgrad_norm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepoch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2313\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m DebugOption\u001b[38;5;241m.\u001b[39mTPU_METRICS_DEBUG \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mdebug:\n\u001b[1;32m 2314\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_torch_xla_available():\n\u001b[1;32m 2315\u001b[0m \u001b[38;5;66;03m# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)\u001b[39;00m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:2721\u001b[0m, in \u001b[0;36mTrainer._maybe_log_save_evaluate\u001b[0;34m(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2719\u001b[0m metrics \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 2720\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontrol\u001b[38;5;241m.\u001b[39mshould_evaluate:\n\u001b[0;32m-> 2721\u001b[0m metrics \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mevaluate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mignore_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2722\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_report_to_hp_search(trial, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mglobal_step, metrics)\n\u001b[1;32m 2724\u001b[0m \u001b[38;5;66;03m# Run delayed LR scheduler now that metrics are populated\u001b[39;00m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:3572\u001b[0m, in \u001b[0;36mTrainer.evaluate\u001b[0;34m(self, eval_dataset, ignore_keys, metric_key_prefix)\u001b[0m\n\u001b[1;32m 3569\u001b[0m start_time \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[1;32m 3571\u001b[0m eval_loop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprediction_loop \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39muse_legacy_prediction_loop \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mevaluation_loop\n\u001b[0;32m-> 3572\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43meval_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3573\u001b[0m \u001b[43m \u001b[49m\u001b[43meval_dataloader\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3574\u001b[0m \u001b[43m \u001b[49m\u001b[43mdescription\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mEvaluation\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3575\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# No point gathering the predictions if there are no metrics, otherwise we defer to\u001b[39;49;00m\n\u001b[1;32m 3576\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# self.args.prediction_loss_only\u001b[39;49;00m\n\u001b[1;32m 3577\u001b[0m \u001b[43m \u001b[49m\u001b[43mprediction_loss_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompute_metrics\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 3578\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3579\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_key_prefix\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_key_prefix\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3580\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3582\u001b[0m total_batch_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39meval_batch_size \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mworld_size\n\u001b[1;32m 3583\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmetric_key_prefix\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m_jit_compilation_time\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m output\u001b[38;5;241m.\u001b[39mmetrics:\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/transformers/trainer.py:3747\u001b[0m, in \u001b[0;36mTrainer.evaluation_loop\u001b[0;34m(self, dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix)\u001b[0m\n\u001b[1;32m 3744\u001b[0m observed_num_examples \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m 3746\u001b[0m \u001b[38;5;66;03m# Main evaluation loop\u001b[39;00m\n\u001b[0;32m-> 3747\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step, inputs \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(dataloader):\n\u001b[1;32m 3748\u001b[0m \u001b[38;5;66;03m# Update the observed num examples\u001b[39;00m\n\u001b[1;32m 3749\u001b[0m observed_batch_size \u001b[38;5;241m=\u001b[39m find_batch_size(inputs)\n\u001b[1;32m 3750\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m observed_batch_size \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/accelerate/data_loader.py:451\u001b[0m, in \u001b[0;36mDataLoaderShard.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbegin()\n\u001b[1;32m 450\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_epoch(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miteration)\n\u001b[0;32m--> 451\u001b[0m dataloader_iter \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__iter__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 452\u001b[0m \u001b[38;5;66;03m# We iterate one batch ahead to check when we are at the end\u001b[39;00m\n\u001b[1;32m 453\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:439\u001b[0m, in \u001b[0;36mDataLoader.__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 437\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterator\n\u001b[1;32m 438\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 439\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_iterator\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:387\u001b[0m, in \u001b[0;36mDataLoader._get_iterator\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 385\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 386\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcheck_worker_number_rationality()\n\u001b[0;32m--> 387\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_MultiProcessingDataLoaderIter\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1040\u001b[0m, in \u001b[0;36m_MultiProcessingDataLoaderIter.__init__\u001b[0;34m(self, loader)\u001b[0m\n\u001b[1;32m 1033\u001b[0m w\u001b[38;5;241m.\u001b[39mdaemon \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 1034\u001b[0m \u001b[38;5;66;03m# NB: Process.start() actually take some time as it needs to\u001b[39;00m\n\u001b[1;32m 1035\u001b[0m \u001b[38;5;66;03m# start a process and pass the arguments over via a pipe.\u001b[39;00m\n\u001b[1;32m 1036\u001b[0m \u001b[38;5;66;03m# Therefore, we only add a worker to self._workers list after\u001b[39;00m\n\u001b[1;32m 1037\u001b[0m \u001b[38;5;66;03m# it started, so that we do not call .join() if program dies\u001b[39;00m\n\u001b[1;32m 1038\u001b[0m \u001b[38;5;66;03m# before it starts, and __del__ tries to join but will get:\u001b[39;00m\n\u001b[1;32m 1039\u001b[0m \u001b[38;5;66;03m# AssertionError: can only join a started process.\u001b[39;00m\n\u001b[0;32m-> 1040\u001b[0m \u001b[43mw\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1041\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_index_queues\u001b[38;5;241m.\u001b[39mappend(index_queue)\n\u001b[1;32m 1042\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_workers\u001b[38;5;241m.\u001b[39mappend(w)\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/process.py:121\u001b[0m, in \u001b[0;36mBaseProcess.start\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _current_process\u001b[38;5;241m.\u001b[39m_config\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdaemon\u001b[39m\u001b[38;5;124m'\u001b[39m), \\\n\u001b[1;32m 119\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdaemonic processes are not allowed to have children\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 120\u001b[0m _cleanup()\n\u001b[0;32m--> 121\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_popen \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_Popen\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sentinel \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_popen\u001b[38;5;241m.\u001b[39msentinel\n\u001b[1;32m 123\u001b[0m \u001b[38;5;66;03m# Avoid a refcycle if the target function holds an indirect\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;66;03m# reference to the process object (see bpo-30775)\u001b[39;00m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/context.py:224\u001b[0m, in \u001b[0;36mProcess._Popen\u001b[0;34m(process_obj)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[38;5;129m@staticmethod\u001b[39m\n\u001b[1;32m 223\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_Popen\u001b[39m(process_obj):\n\u001b[0;32m--> 224\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_default_context\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_context\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mProcess\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_Popen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprocess_obj\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/context.py:288\u001b[0m, in \u001b[0;36mSpawnProcess._Popen\u001b[0;34m(process_obj)\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[38;5;129m@staticmethod\u001b[39m\n\u001b[1;32m 286\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_Popen\u001b[39m(process_obj):\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpopen_spawn_posix\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Popen\n\u001b[0;32m--> 288\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mPopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprocess_obj\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/popen_spawn_posix.py:32\u001b[0m, in \u001b[0;36mPopen.__init__\u001b[0;34m(self, process_obj)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, process_obj):\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fds \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m---> 32\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mprocess_obj\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/popen_fork.py:19\u001b[0m, in \u001b[0;36mPopen.__init__\u001b[0;34m(self, process_obj)\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreturncode \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfinalizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m---> 19\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_launch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprocess_obj\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/tsfm_public/lib/python3.10/multiprocessing/popen_spawn_posix.py:62\u001b[0m, in \u001b[0;36mPopen._launch\u001b[0;34m(self, process_obj)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msentinel \u001b[38;5;241m=\u001b[39m parent_r\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(parent_w, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwb\u001b[39m\u001b[38;5;124m'\u001b[39m, closefd\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m f:\n\u001b[0;32m---> 62\u001b[0m \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetbuffer\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 64\u001b[0m fds_to_close \u001b[38;5;241m=\u001b[39m []\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] } ], "source": [ @@ -744,16 +608,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "b4eff2e1-acfd-4c5b-8463-e084ba831cdf", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-4186912:t-22963135206144:data_handling.py:load_dataset:Dataset name: ettm2, context length: 512, prediction length 96\n", + "INFO:p-4186912:t-22963135206144:data_handling.py:load_dataset:Data lengths: train = 33953, val = 11425, test = 11425\n", + "WARNING:p-4186912:t-22963135206144:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "ettm2 512 96\n", - "Data lengths: train = 33953, val = 11425, test = 11425\n", "++++++++++++++++++++ Test MSE zero-shot ++++++++++++++++++++\n" ] }, @@ -764,7 +635,7 @@ "
\n", " \n", " \n", - " [179/179 00:01]\n", + " [179/179 00:02]\n", "
\n", " " ], @@ -779,12 +650,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'eval_loss': 0.14195680618286133, 'eval_runtime': 1.6748, 'eval_samples_per_second': 6821.788, 'eval_steps_per_second': 106.88}\n" + "{'eval_loss': 0.14195680618286133, 'eval_model_preparation_time': 0.0022, 'eval_runtime': 2.453, 'eval_samples_per_second': 4657.53, 'eval_steps_per_second': 72.971}\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAfFCAYAAACMBK9jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwU6R8H8M+yhCAliAiiYgEqIIqKhWJ3+/PsvPNOz/bObj3z9Ow4Tz3r7O7GBCwQAzFREURCujae3x8jM6wssMSyxPf9eu2L2ZlnZp7dh92d7zwlYowxEEIIIYQQQgghJN9paToDhBBCCCGEEEJIcUVBNyGEEEIIIYQQoiYUdBNCCCGEEEIIIWpCQTchhBBCCCGEEKImFHQTQgghhBBCCCFqQkE3IYQQQgghhBCiJhR0E0IIIYQQQgghakJBNyGEEEIIIYQQoiYUdBNCCCGEEEIIIWpCQTchhBBCeD4+PrC3t4ePj4+ms0IIIYQUC9qazgAhhBBSVBw7dgwzZszIdPvBgwfh4uJScBkqApKTk7Fw4UL4+/sjNDQUcrkcFStWRO/evTFgwADo6OgopI+NjcXKlStx+fJlJCcnw8nJCdOnT0ft2rUzPceHDx/QuXNnpKam4siRI3ByclL3yyKEEEJURkE3IYQQkkPjx4+HjY1NhvWVKlXSQG4Kt+TkZLx+/RrNmzdHhQoVoKWlBV9fXyxduhT+/v5YtWoVn1Yul2PUqFEIDAzEyJEjUaZMGfz3338YPHgwjh07BltbW6XnWLJkCbS1tZGamlpAr4oQQghRHQXdhBBCSA41b96calNVZGpqikOHDims69+/P4yMjLB3715Mnz4dFhYWAIALFy7A19cXa9euRYcOHQAAHTt2RPv27bF+/XqFAD3NrVu3cPv2bfz444/YvHmz+l8QIYQQkkPUp5sQQgjJZ+vWrYODgwO8vLwU1s+ZMweOjo548eIFACA1NRVr165Fr1694OrqChcXFwwYMADe3t4K+wUHB8Pe3h7bt2/Hvn370Lp1a9SpUwcjRoxAaGgoGGPYuHEjmjdvDmdnZ4wePRrR0dEKx2jVqhV+/vln3L59G927d4eTkxM6deqES5cuqfSaHj9+jJEjR8LV1RV16tTBoEGD8PDhw1y/RxUqVADANSdPc/HiRZQtWxbt2rXj15mZmaFjx464evVqhppsiUSCP/74A0OGDKFWBoQQQgotCroJIYSQHIqPj0dUVJTC4+vXr/z20aNHo2bNmpg1axbi4+MBcDWyhw4dwpgxY+Dg4MAf5/Dhw2jYsCF+++03jB07FlFRUfjxxx8REBCQ4bynT5/mm1sPHz4c9+7dw8SJE7FmzRrcunULP/30E/r27Yvr169j+fLlGfYPCgrCpEmT0Lx5c0yZMgVisRgTJkzAnTt3sny9Xl5eGDhwIBISEjB27FhMmjQJsbGxGDp0KPz9/VV6z1JTUxEVFYXQ0FBcvnwZO3bsQIUKFVC5cmU+TUBAAGrVqgUtLcXLEycnJyQlJeHdu3cK63ft2oXY2FiMGTNGpTwQQgghmkDNywkhhJAcGjZsWIZ1urq6ePLkCQBAR0cHy5cvR69evbBs2TJMnToVs2bNgqOjI0aNGsXvY2JigmvXrkFXV5df17dvX3Ts2BF79uzBkiVLFM4RFhaGS5cuwcjICADXB3rr1q1ITk7G0aNHoa3N/ax//foVp0+fxoIFCxSOHRQUhPXr1/M1yX369EGHDh3w559/omnTpkpfK2MM8+fPh5ubG/755x+IRCIAQL9+/dC5c2esWbMGO3bsyPY9u3z5MiZPnsw/d3R05PtipwkPD0f9+vUz7FuuXDkAwJcvX2Bvb8+n3bRpE6ZNmwZDQ8Nsz08IIYRoCgXdhBBCSA7NnTsXVapUUVj3fe2snZ0dxo8fj1WrViEwMBBfv37Fjh07FIJMsVgMsVgMgAugY2NjIZfL4ejoiOfPn2c4b4cOHfiAGwCcnZ0BAN26dVM4rrOzM86cOYOwsDBUrFiRX1+uXDm0bduWf25oaIgePXpg27ZtCA8P5/tWpxcQEICgoCCMHj1aoTYfABo3boyTJ09CLpdneP3fc3Nzw86dOxEbGwsvLy8EBgYiKSlJIU1ycrLCTYI0aetSUlL4dX/++ScqVqyI//3vf1melxBCCNE0CroJIYSQHHJ2dlZpILWRI0fi7Nmz8Pf3x+TJk1G9evUMaY4fP44dO3bg3bt3kEgk/Hplo6NbWVkpPE8LwDNbHxMToxB0V65cma+pTpM2IvinT5+UBt1BQUEAgGnTpmX2MhEXFwcTE5NMtwNA2bJlUbZsWQDczYMtW7Zg+PDhuHTpEn/eUqVKKR2BPG2dnp4eAMDPzw8nT57Ev//+m22wTwghhGgaBd2EEEKImnz8+BHv378HALx8+TLD9pMnT2L69Olo06YNRo4cCXNzc4jFYmzduhUfP37MkD6tVvx7mQWejLE85F7xGFOnTkXNmjWVpjEwMMjxcdu3b4+//voLV69eRb9+/QAAFhYWCA8Pz5D2y5cvAIRm5itXrkT9+vVhY2OD4OBgAOBr4cPDwxESEgJra+sc54kQQghRBwq6CSGEEDWQy+WYPn06DA0NMXToUGzZsgXt27dXGJn74sWLqFixIjZs2KBQA71u3Tq15On9+/dgjCmcK60mO2008e+l1ZQbGhqiSZMm+ZaXtKbicXFx/DoHBwc8fPgwQ3N1f39/6Ovr8036Q0ND8enTJ7Ru3TrDcUePHg0jIyM8ePAg3/JKCCGE5AUF3YQQQoga7Ny5E76+vti8eTM8PDzg4+OD+fPno379+jAzMwMg1FynD4QfP34MPz8/tdTUfvnyBZcvX+YD//j4eJw4cQI1a9ZU2rQc4AY8q1SpEnbs2IEuXbqgdOnSCtujoqL416NMVFQUypQpk6FZ++HDh/njp+nQoQMuXryIS5cu8fN0R0VF4cKFC2jZsiXft3vhwoVITk5WOJ63tzf27NmDadOmoWrVqqq8HYQQQkiBoKCbEEIIyaGbN2/i7du3GdbXq1cPFStWxJs3b/j5t1u1agUAWLZsGXr06IEFCxZg7dq1AAAPDw9cunQJv/76Kzw8PBAcHIwDBw6gevXqSExMzPd829raYtasWXjy5AnMzc1x9OhRREZGYunSpZnuo6WlhcWLF+Onn35Cly5d0KtXL1haWiIsLAw+Pj4wNDTEli1bMt3/1KlTOHDgANq0aYOKFSsiISEBt2/fxp07d9CyZUs0btyYT9u+fXu4uLhgxowZeP36NcqUKYP9+/dDJpNh3LhxfLpmzZplOE/afN8NGjRQqb89IYQQUlAo6CaEEEJyKLPm30uXLoW1tTWmTZuGMmXKYObMmfw2W1tbTJ48GX/88QfOnTuHTp06oVevXoiIiMDBgwdx+/ZtVK9eHStXrsSFCxdw7969fM+3ra0t5syZgxUrVuDdu3ewsbHBX3/9BXd39yz3c3Nzw8GDB7Fp0ybs3bsXiYmJsLCwgLOzM3744Ycs93V1dYWvry/Onj2LiIgIaGtro0qVKpgxYwYGDRqkkFYsFuPvv//GihUrsGfPHqSkpMDJyQlLly6l2mtCCCFFlojlxygrhBBCCCnUWrVqhRo1amDr1q2azgohhBBSotA8G4QQQgghhBBCiJpQ0E0IIYQQQgghhKgJBd2EEEIIIYQQQoiaUJ9uQgghhBBCCCFETaimmxBCCCGEEEIIUZMiPWWYVCpFTEwM9PT0oKVF9w8IIYQQQgghhBQMuVyOlJQUmJiYQFs789C6SAfdMTExCAoK0nQ2CCGEEEIIIYSUULa2tjA3N890e5EOuvX09ABwL1JfX1/DucmaTCbDy5cvYWdnB7FYrOnskHxC5Vp8UdkWT1SuxReVrQYkJQFNm3LLd+4AargWo3Itnqhci6+SVrZJSUkICgri49LMFOmgO61Jub6+PgwMDDScm6zJZDIAgIGBQYn4BywpqFyLLyrb4onKtfiistUAxoDAQG65VClADddiVK7FE5Vr8VVSyza7rs7UEZoQQgghhBBCCFETCroJIYQQQgghhBA1oaCbEEJIofHM6zUW/uqJj4Ehms4KIYQQQki+oKCbEEJIoSCXydG1py7mbfJAM3c5YiNjNZ0lQgghhJA8o6CbEEJIoeB94RnehVUCAHwIt8HEoY81nCNCCCGEkLyjoJsQQkihcOKk4vOdZ91xcruPZjJDCCGEEJJPKOgmhBCicYwBx687ZVg/akpVhH8M10COCCGEEELyBwXdhBBCNO7ZM+D1a27Zw4OhaxOuhvtLjAV+HvgGTM40mDtCCCGEkNyjoJsQQojGnTghLPfsKcK2fVVR1jgCAHD8ViPsXXNHMxkjhBBCCMkjCroJIYRo3PHjQk12jx6Apa0Ftix/xa8bO6cOPn6QayBnhBBCCCF5Q0E3IYQQjfrwIhiPHokAAPWcYlGJG8AcvX9pjMEdbgMAYhONMHyEFuQUdxNCCCGkiKGgmxBCiEad2POGX+7Z4qHCtnX7GsPGhlu+ehVYtqwgc1a0yWVyhAXRIHSEEEKIplHQTQghRKOOnzXml3v0t1HYZmomxs6dwvNZs4B5M+NoYLVsMDlDuwZ+KF/FAj92uwVpqlTTWSKEEEJKLAq6CSGEaExkSBRu+jsDAKpbBaF2o+oZ0rRpAyxaJDxfuNQI4/vfhFxGbc0z43/nJa761gMAbD/tjt6tHiI5IVnDuSKEEEJKJgq6CSGEaMzpvc8hZ2IAQM+2QRBpiZSmmz0b+OvPVP75hkMtMKSTFyQpkgLJZ1Fz+lCowvNTd9zQsWkAYiNjNZQjQgghpOSioJsQQojGnDitwy/36GueZdqJU3Sxa+VtiLW4ptL7LjVFTw9fJMUlqTWPyoS8+YzwjxEFfl5Vnb5cll820EsAAHg+rotWjUMR/oWa5hNCCCEFiYJuQgghGpEQk4CLPlzTckvTL2jUoXa2+wz5rRmObXsIPR2uqfRZ74Zo3+QlYsJj1JrX9O6c8Uclu7Ko5Qi88g0qsPOqKvRtGO4FOgIAnKsE4vqpIJgbRQIAHr6yh3tzET58UP14Xuee4Njf3tSPnhBCCMklCroJIYRoxMWDT5As0QcAdPd4AS2xaj9J3Ua44cKBFzDS55pK33paB/Mm+KkrmxlsXRcOmVwbEbFlMW/K2wI7r6rOHvnEL3dtHYqG7Wrj5uVoVCjPtQgIDASaNgVev87+WHfPPoF715ro/XMjbJh7U11ZJoQQQoo1tQbd0dHRmDJlCurVq4f69etj5syZSEhIyHKfwYMHw97eXuExd+5cdWaTEEKIBpw4Loyo3bOPfo729ejlgutnPkFHzPXzPn+zUr7mLTNMznD5vlAjf8DTA899VIheC9DpO/X45W79bQEAtdyq4Y63PmrU4NYHBwNDhgAsi8prJmf4faocMrk2AGDF5qrUh54QQgjJBbUG3b/99htev36NnTt3YsuWLXjw4IFKAXTfvn1x+/Zt/jF16lR1ZpMQQkgBk6QynL7NNS030o9Fy57OOT6Ga6uacK0RCAB4+akKIkOi8jWPyjy9H4rP0eX554xpYeHML2o/r6qSkoDLl7nl8uWB+h62/LbKlYHbt8EH3l5ewL51DzI91qmd93D3eR3+eXBURRw5kPWNc0IIIYRkpK2uA7958wa3bt3CkSNH4OTkBACYPXs2Ro0ahalTp8LS0jLTfUuVKgULCwuVzyWTySCTyfKcZ3VKy19hzyfJGSrX4ovKVr2uewLR8dz83J3aRENbr0Ku3utG9SLh/YJbvnPpJToPbpBl+ryW68Vb5TOsO3S9EWbeDURtt4zTnRW0S5eApCRuNPhOneRgjCH9SzU3B9asSkbnbqUBANMWVkDXgTEwLGOocBxpqhTT55fF91ZvMMH/BsogUj7IvEbRZ1YDZDKI+UUZoIb3nsq1eKJyLb5KWtmq+jrVFnT7+vrC2NiYD7gBoEmTJtDS0oK/vz/atm2b6b6nT5/GqVOnYGFhgZYtW2LMmDHQ18+86eHLly/zNe/q9OTJE01ngagBlWvxRWWrHv/8UxFAOQCASxMp/Pz8cnWcqjWi+eWLVxkqOKl2nNyW6/Hj1QGYAAB+aO+NgxcbgTEtzJ36GXPWxufqmPlp165KALib1rVrv4WfX8YB5iytgQ4NknHhflOERFlh7tgzGPK7lUKay/99xIvgHgCARg6++MrsEBhYGg8eiLBr1yu4uBTeGm/6zBYcraQk1P227O/vD3kW12p5ReVaPFG5Fl9UtorUFnRHRETAzMxM8WTa2jAxMUF4eHim+3Xp0gXW1tYoV64cAgMD8eeff+Ldu3fYsGFDpvvY2dnBwMAg3/KuDjKZDE+ePIGTkxPEYnH2O5Aigcq1+KKyVR+ZDLhzh+vdpKvL8PPPlWFsXDlXxyprao/xC7jlgE+N4OIiz+bcuS/XlBTA15fLt7U1w9//1cL1quH4EmOBk3daYH7SSzg1rpar15Ef5DI5vG9EAwBKlZLhp5+qILOfxjVbguDsloJUqR62HmuDsTNCUdWR6xefGJuIbv9a82mXLxchKFofQ4dyz8+cscewYVm/z5pAn1kNSDdOj7OzM1C6dL6fgsq1eKJyLb5KWtkmJiaqVAGc46D7zz//xLZt27JMc+7cuZwelvfDDz/wy/b29rCwsMCwYcPw4cMHVKqkfKAcsVhcZAq1KOWVqI7Ktfiiss1/t29KERLCtU9u106EMmVy//5WrmaIChWAT5+A+/dFAMRQpbhyU64+PlyfaQBo21YEYzNjTPvZE1NWeAAAFq+pgSPNNNfu2vd6IEKjagEAWrs8gpFR5k3t7etVw6RB17H835ZIkZTC1LFfcPxWFQDAxoUPERLlAQDo3swHzbu5oVEqMGMGEBICnDwJBD0LQTXnimp/TblBn9kClO59FovFUOnDl+tTUbkWR1SuxVdJKVtVX2OOB1IbMWIEzp07l+WjYsWKKFu2LKKiFAe1kUqliImJyVF/7Tp1uEFc3r9/n9OsEkIIKYQObrzLL/f/X2Kej9e4Mfc3Ph54+jTPh8vU5f/u8MttW3I1fL/MbgJLS24I8KNHRXj8WH3nz87pI2H8crfOSdmmn7XKFeVNuX1O3HbDlUOPEBkJLPvHDQCgJZJhyZ/mAABdXWDsiGAAAGMirF1S+KZKI4QQQgqrHAfdZmZmqFatWpYPXV1d1K1bF7GxsXia7grI29sbcrmca4KkooCAAADIUaBOCCGkcJKmSnH4Mlcbq6+biG5d895MOS3oBgCvO+pr9nz5Rhl+uU0L7maBgZEupk8XarcXLFDb6bN16rLQL7tLf7ts0xuZGWPZTKFJ3MTfjbBwgRwx8Vy/3OG9X6JWusHhfh5TGgZ63M2GHSdcEf0lY39xQgghhGSktinDqlWrBnd3d8yZMwf+/v54+PAhFi1ahM6dO/Mjl4eFhaFDhw7w9/cHAHz48AEbN27E06dPERwcjKtXr2LatGlo0KABHBwc1JVVQgghBeTa0ceIiOVGxe7S9HGGUbNzo3G9r/yy15m7WaTMvciQKDx8zf0OOVcJhKWtcCP4558Bq2/x7vHjgN/Dgp/L+mNgCPzecvlzrfEc1tUyjrKuzODJTdHQnrs5/uxDDaxbz10WlCoFLFhTUyGtmVUZDOvKTTGWkGKIbSt88yv7hBBCSLGm1nm6//zzT1StWhVDhw7FqFGjUK9ePSxcuJDfLpFI8O7dOyR96ySno6MDLy8vjBw5Eh07dsTy5cvRrl07bNmyRZ3ZJIQQUkAO7BOak/frlz/9n+s1NICudgoAwNvfOpvUuXPtZCAY434y2zYNVdimrw9Mny48nz/xkVrykJUz+1/xy93aqj5vuJZYC+vWZlw/cSJQoULG9RNmCGOrrPvXDpKUgr/BQAghhBQ1ahu9HABMTU2xatWqTLfb2NggMDCQf25lZYW9e/eqM0uEEEI0JCUxBceuc92LjPRj0bF/nXw5rp6BHupVfwLvF054+akqIkOiYG5tlv2OOXD5ohBctu2YsXZ+1I8SLF8QiZCo8jh52w0TB9zAyp1NoKOnk6/5yMyp88Iw5V3/p1otdxq39o4Y0uE2dl9oBgAoU0aOadOU35O3q1cFXZv44PRdNwRHWuPI1rvoP75J7jNOCCGElABqrekmhBBC0lw88Bgxidwc1z1a+EPfKP/m9G1cL5Jf9r7yJt+OCwBMznDpblUAgK52Cty71MqQppSBDhb9LtQ2r93fAm0bPsOXD5lPkZlf4r/G49oj7maGjXkIXJrb5/gYyzbWgHX5VADA8uVaMDXNPO3kKXr88uoNpmByluPzEUIIISUJBd2EEEIKxIH9Un65X3+9LFLmXOOmuvyy162ELFLm3OvH7/E+3AYA0MzpGQyMlU9+PWK6O7YuugkdMRe83vB3gWs9Ce5ffp6v+fne5SNPkSrl3s+uHq8h0sp5s32rqpbwf6qLwEDgp5+yTtuiRx3UrcYNcvrgVS3cPfckx+cjhBBCShIKugkhhKhdYmwiTt3iamPLlP6KNv/Ln6blaRq1tuWXvR4a5+uxL58Qpqxs2yI2y7SjZjfHjVOBsCrzGQAQHGkN985VsXP5rXzNU3qnTgojtnftkfvWA+bmgF32g55DpCXC+FFCy4Kzx6OySE0IIYQQCroJIYSo3dl9j5GQwvWF7t36KXT1dbPZI2cq2lujghk3wNm9gBqQSWT5duzL14Ra+XbdymWbvnEnJzx8IELT2tzMHCmSUhgx3R2TB3rme1Ps+HjglBc3Z1pp/RS07OmUr8fPTNte1fhlH9/8vclBCCGEFDcUdBNCCFG7A8fM+eV+g0qr5RyNnYMAAPHJRnjqnT/9uqWpUlx7yE2dVdY4Ai7NVZu+0qqqJa7dd8Cv/7vBr/vrPw9cOvAw233/XXEbZY0j8dtgz2zTbtgAREVxzcl79tZDqdKlVMpfXlWoboUKFlxt972XzpDl3z0OQgghpNihoJsQQoooX88XOL7NG3KZPPvEGhQbC5y9xbVbtiybBI8e+du0PE3jhin8stf1z/lyzPsPxIhN4gZ/a900Alpi1X82dfV1seFQC6yZcY1fN215XcizKK73AcEYPdsVkXHmWLXXA5f2Zx6kx8UBK1dyy1pawKxZKmctX7i5czdS4hO0ERBQsOcmhBBCihIKugkhpAjav+4uXFvZodeoRti6+Lams5OlkyeBlG/x8P/66UOsI1bLeRq3EGrTvbzz5+ft8hVhULK2vVWr5f7euEUecK3HTTn22F+M/fszT/v7rx+RLBH6ZU+cZprpXNjr/4xE1Lfu1P37Aw65y16uubkJyz4+BXtuQgghpCihoJsQQoqYUzt8MHhSQzDGfYXvO19PwznK2oEDwnK/fuo7Tz0PO+jqcCOke73On7mjL18Wltu2zd0xtMRaWL5CmK979mzhJkR6nsf8cPh6Y4V1AR+rYdOCuxnSxkbG4s9VXPlraTHMnZu7vOVFo0bCcm6D7sCHb9HW9SGmDMr//u6EEEJIYUFBNyGEFCFXDz9C31/qQCbX5td53S/N13gWNpFhSbh0iQumKlYEGjfOZoc80DPQQz1X7n159UoLkZHZ7JCNuDjA25tbtrMDKlXK/bFatwbateOWg4KALZukCtulUmDCPKGqekwfoS/4vLUuCP8YoZB+/YJH+JpQBgAwsN1dlUYdz2+uroBYzJWtz+2YHO+fFJ+Cnj0kuPLIFav3eeD+FfVOrUYIIYRoCgXdhBBSRHhfeIrug+2QIuEGyypjFA8AkMtFuHhRkzkDor/EYMUUT8wcqfj4pcdlSKVcE+0fekRCS82/OumD+rSAObeuHXsG6bfYuG2bvI8UtmyZsLxoXixiwoVA9Z9/AP+nXLm6Osdi/QF3DOvMTTMWk2iCOROEgDQmPAardnD94sVaUsxZUiHPecuN0qUBx8qvAQBPXxgi/mt8jvafPVcXAcH2/PMHdyKySE0IIYQUXRR0E0JIEfD4ViA69rHhp93q3tQb+w8KI1WfO6epnHGG9nqBaas9sHSH4uOIdzc+Tb8eX9Sej/RNnr288nasfbuEObk7NMx+1PHs1K0LDGjHtcOOjDPDn7MeAQC+fuWanKdZu8kYWmItLF1vD8NScQCAv0+4w8+P275ugS9fyz2ogzdq1LXNc95yq1GdEACAnInx4Pprlffz9AT+WiNSWOf3WKQ8MSGEEFLEUdBNCCGF3MtH79CuqxmiE0wBAK3rPsKBiy5o2VobRkZc894LZ5PydW7qnLh58jFO3XHLMk3T2v6o56H+kb4aNxL6BXtdeZfr40SFfsXJW1xfeQvjcLTvVzfPeQOARX9aQUecCgBYvbshQt+GYd5cxjeFHzAAaNqUWy5fpRzmTOGCWsZEGD+ea1Gw+l8XAGm13BXzJV+55eYmXEb43I5WaZ/YWGDYMIB914XbL8BcaXpCCrutW4EaNYAdOzSdE0JIYUVBNyGEFGJJcUlo31EbX2IsAACNaz7Biat2KFW6FHR1gbaufgCAiK/6uH/1RYHnjzFg2hxT/vmCMZ64dsRX4XH7tD+u3rOHSEv9NZkVK4lQwSwUAHDvcdlc34jYv8UfqVI9AMCgLs+go6eTzR6qqepUCaP7cFXwiSmlMeyHj9i0icujgQHD8uWK6SfMsUf16tzyrVtA5/ax/M2XIR29UK1O5XzJV265eVjxyz4PVJsjfNKvX/H+PbfcvDlQrTz35Mm7qpCmSrPYk5DCJzUVmDwZeP0aGDWKRvInhCinnX0SUtKd2uGDx4+S8OusOjCzKqPp7BBSopz87z2CvnA1xHWqvMDZ6xVhWMaQ396pXTyOeXLL546Ho1GHgs3fiROA9xMu8KtlG4yZf7lDW1c9U4KpqrFzEI54WiE+2Qh+twJQxqI03gZE4O3LeLx5LQMQh5rra8LAyCDTY+zcb8EvDxttna/5m72yNnaeikVckjEuPajPr5/xy2PY2LgopNXTA/76C+jalXt+14+r2dYWSzB7qWYDbgBwqF8VxvoxiE0ygfdTWzAGiLK4t3J65z3s2NsQAGBoyPDvvyJMGxmCN58rI1mij8CHr1G7cfUCyj0heXf/PpCYyC3LZMCQIYCvL2CQ+dcLIaQEoppukqXnPq/R88f6mLvRA83cohD8KlTTWSL5iKboKfz2nhaaZK9Zo4UylqYK2zv2rcEvn71mWVDZAsCNuD1jhvB82TobjQfcANC4oTAfV/3WNVHNuRLa/lAPP89pjhW7WmLFrm6Y8Vtspvs/ufMSD1/VAgDUqx4A52b5OzS4RcWymDpSsY+4bbmPmDLfXmn6zp2BDt/dTBnayRtVnfIwnHo+0RJroWFNri936NfyWf5GhH+MwI+TqvDP18zyQZUqQF1nobz8vMPUl1lC1OD6dcXnL18C06drJi8F4ckT7vtoxYqMXUQIIZmjoJtkadeWYMgZdxEd8LEamjWV4ZVv7vtJksJj/7q7KGMUi17NvREZUkjnmyrhwsOBCxe45YoVgeZdMgZ/1tXKo261AADAo9c1Efq24IKWnTuBwEBuuVkzoEuXAjt1lpq0LJttms07LfEuk6+yfzeH8MvD+6ln8LdJixvC0lQ49qpFn6BvpK80rUgE/LUyEdpiCQCulnvWElu15Cs33OrF8cs+V4OUpmFyhl8Gvea7SXRpfA8jpnLjALjUL82n830kUV9GCVEDT09hWVeX+7t+PXD1qkayo3YTJgAXLwLTpnE3FyjwJkQ1FHSTTMnlwL6zzgrr3ofboFlLQ/h6FnzfUZK/Fqwoj5hEExy/1Qj16ybA72agprNEvnPwINdcEQAGDkSm0211aikE2hcOvyyAnAGJsYmYNzuZf758edbNiguSW7vaGN75FixNv6Be9QD08fDC1KGe2LLwJkb0+wgAkEhEmDMn476SFAn2nqkNANDVTkH/0U5qyWNpk9LYtfEDqpV/j/E/3EDPH7MeiM7B0QAb53uhskUwVk+/iyqOmh1ALT23JkI7Wh+vFKVpjv3tjWM3uaHlzY0isW2fLd/H36WJ0Eze77mJGnNKSP5KSQHu3OGWK1UCVq4Utg0bBkRHayJX6hMRAdy4ITxfsQJYulRz+SGkKKE+3SRTN24An8LNAADNXEMQGxUH/3f2+BJjAY9Oujhz4DHcu9Xh00dFSHD9yANcu5qK0DA9pcd0rJmMOeua5tugRCR3gp4FI/BTVeH5l4po0jYR25bdwcBJTTWYM5Le3j1ypN0bHTQo83Sdepjjj3+45bPndTB8mvrztnbuPYR+8QAA9OgcgyZNCk+wJNISYccZ92/Pyils6/tVhqPnpYiJ0ca+fcCUKdxUXmnO73uELzFcANyt2SOYWzeGurQfUB+vBwCAan2zR81ujlGzAcBGbXnKDbfWQpNxH9+M434wOcPCFWb8883LX6J8FeF9tapaDpYWyQgLLwW/9y7Z9gsnpLC4dw9I/nbvsWVLYOxY4NQprpY7OJirFd61S7N5zE+nT3MVMunNmgUYG3OvnRCSOarpLoFWT/OEm8NT3Dr1OMt0e/cKy7/+Zg1PL0s0qeUPAIhNMkG7PnbYsPgppk8H6tcHypbTRp/RjbHpSAscv9VI6WPR3x6YPvKOOl8eUcHFY2/55dJ68QCApFQDDJrcFBMnSCGhFp4a98r3HXzucV/RLo4JqF0787Ru7WrBzJDrInDpXi1IUvJegK9fcyNLd+gAHNgTh5REoQYzMiQKy/7mIlUtkQxL5kbk+XwFxdgY+PFHod/x9LGKc0vv3C3cEBw+nO5Lq6JcJQtUsfwAAHjwyiHD98f5vQ/g/47rr97Q/in6/Nzo+0PApR438nlkpAjBwerNLyH5JX3Tcg8PrjXSzp2Aybd7kLt3A8eOaSJn6nHihLA8YICwPG5c8bq5UBwwBvz+O3d9Xly7OhQ1FHSXMB8DQzBlhQfuBTqi/3ALJCckK02XlAQcOcItGxkB3boBZSxNceluNXRoeB8AkCzRx7g5jli+HHj4kJtHVhWr93ng+D8Ps09I1ObCJV1++eKRt/ix203++dp12mjbFgij8Yw0at/fQfzyoI73s0wr1hGjQ2OuX3dckjHunH2Wp3MzxjWNvHWL67vXf4gRKpSPx5RBnnhx/y2WTPVHbBJ3VTmi6x3UbFgtT+craL17h8PW+ttNirvVceXQIwBcH/ozd7ibCVZlo9Eun+bmLgncmnN9tZNS9PD0qeK2pSuF75sZvyUonTrOxUVY9vPL/DySFAmuHn6Ew5u9cPgwFB6n9n9EYnRSHl4FITmTfhA1Dw/ub8WKXJ/uND//XDx+TxMSgEuXuOXy5YE9e7ha7jQjRgBHj2ombySjs2eBP//krs+7dgVu3sx+H6JeFHSXMEdPGfPLn6Ks8c8y5RNKnjkWi9hvg/v27i1MfVHapDROetZBv9YZa6udnYHJvwTj7K77CH4VipA3YQqPVdOEjkDDf6uHt28zHIIUAEmKBFcfciMzlzWOQOOOjth2wh1b10ZA51sl340bQKdOGZuRkYLB5Ax7T3DN/0UiOfr/7JDNHkDnTsLy2RPReTr/gQNCP8U0kXHmWL3PAzUbVsVf/zUHAJTSScL8VTWUHKFw09VlWDhFuDExfXYpyGVy7NsHSKVcQDh4hCm0dammW1VuTYRB4NLPU3z7tD9uP+W6IdWq9BrdhjdQun/6Jv5ZBd0zf7qDNn3roe+YxujbFwqPXoNtMWGUKeQy+uIiqomO5qbku3cv5/smJwNeXtyyrS33SDNoENCrF7ccEcE1My/qLl4UmtJ3787V6i9axNVyA9z1Qv/+XDqiWTKZ4gj6SUncQKcPHmguT4SC7hLnyElDhedLN9kpre3euzmAXx7UL1Fhm66+Lvaeb4RVf8rw66/A/v3cXdzHj4FVm23QaUgDVKhuBauqlgqPSUua439dPgMAYmJE6NuXG4SEFCyvW0mIS+JuvrRvFAgtsRYgEmHU+LK4eROw/jYl8aNHwOEDyltCEPXyvvAUbz5z/Xxb1/WFdbXy2e7Tvm9NiERcsHHOu16uz50Qk4DfJ8Xzz1csjsGAtnegpyP8LzDG/XRMHOSDCtWtcn0uTeo3thHqVOEGD3z4qhYOb/bBv/8K24cN00i2iiy3dOPApQ+6ly4TlqeN+8x93yjh4iy0Sfe9oXxQR2mqFDuOOyvdxu/71hHn/6OWVEQ1s2cDkycD7dsD8fHZp0/Px0cIQtNqudOIRMCWLYAF1wAEBw9yU20VZcePC8s9enB/RSJgzRrh+1Ii4Wq86Ya9Zu3eDTz7dl9Z/G0Wz7g4rrvYs7w1hCN5QEF3CfLpU8baq5AoK2xb6q2wLiI4kr9otzYLhUerjIOiiXXEmDxFjA0bgH79gHLlMiTJQKQlwj/7yqN6de75w4fcIEbqtPevO7A2+4x5v3iq90RFyMXrQmuH9v0Va50aNVLsl7Vg+ifIJLKCyhr5Zu9OYQq3Qf1Uay5rbm2GRo24Wtrnr4wRFJQxTfSXGHwNi87yOMt+v49PYdzNuc7tovH7LBPsu9QUn4IS8df0G6hVkesDXcP6HaYtK7rNr7XEWli+WJjqauwsOzz+NsyFmxtQs6aGMlZE1a0LvqWMjw83h9Djx8C5u1yQXMnyC/qPy3yE9urVtWCglwAA8HuqfOq0W6f9ERXPDcjWuMZdrFoF/jFxpNB0au1aXaX7E/K9a9e4v9HROQ9G0vfnbtky43YLC2DmTOH5ggU5zV3hIZEAZ85wy8bGQKtWwjYtLWDbNqDxt7ERQ0KADx8KPo+Ek5QEzJ0rPD97lhufBQAiI4G2bYE3bzSTt5KOgu4SJP1dyu6dYvjlpZsckBQnXNgf3v4MUhl39TSgcyDEOuJ8y4OxMdf3Tu9bHL9xI3Boa9YDuuXF4lVWCP1aHov+bo63T+hXABDmfQaAdh0zXpy2bg00rc0NmBfwsRoObVbeBYGoR2pSKg5edAQA6OsmoueIrGv20uvcWegre+6csD7kTRhG974JC2sD2FTWwdEtXkr3f/c0GCv/5Qa50hGnYvXSr/w2c2szTFzaAk+DquHd02A8fFIWpuUKz4jludGunyta1eX6c0fEmvPrhw+lkQRzqlQpwKUmN+94QIAI0V9isCxdLfdvs8plOWuFWEeMOlW5wPldWCVEf4nJkOb4YeEmyfhxXA1l2mPVVlvUsOYmXr/mV4+mQCTZSkwEAtP9mwQEZJ5WGWX9ub/3889c/2eA6+/8WH2XO2p144Yw/VnnzsJ85Gm0tYEWLYTnz58XWNbId9avBz8YZZcuXCuO06e5AdUAIDQUaNMGhX7ASqmUy/enT5rOSf6hoLsEObJHGLF30TIT9HTnarhDv5bH30uFwGrvIVN+edBP+d901MUFWLdOeP7jpCp45RuU7+dJSUzBqxCuiS5jWti8kjqRh4VxzcYBoF49wNIyYxqRCFgwT8o/X7jSssjXdiclAfPmcU2uCruLB/wQGccFgN3d/WBsbpzNHoJO6fp1nzsHfA2LxvThnqheywhbjjWHVKaDxJTS6DumIbavznhV9PvYj0iRcKNITxhwF3b1qmRII9ISwba2DYzMjHL4ygofkZYIy5aXUlhXSicJP/ROzGQPkhU3ByFqObAzBIcOccsWFsDIkdnv71JLuMnz+G6QwjYmZzhxlWsmpSNORacBjgrbtcRamDDyPf98zfLwHOaelDRPnig2g85J0J2cDHh/ayRYtSo3R7cy+vqKfWuLam23sqbl36tVS1imoFszoqKEedO1tIRlY2OuwiVtFpSgIK7GOzJSI9nMllzOjRvQrRtXEcSYpnOUPyjoLiHCgsJx8z4XYdnZBMPREZi/RJg3ddnmmkiKS8TbJx9w9zlXs+ZY+RWcm9qpJT8//QQMbMe1dY9LMka3bjIc3+adL1MdpXnp+x5yJtTSbz9WB4mxJfti+vLpL/xy+/aZp2vVuy7cHblb8i+Cq+HABu/MExcBy5cDCxcCQ4cC3rcLdz/1vXuFGx6DhuRsPnsXF8Dq232yy5dSUbUaw/J/PZCUyo2EqC3mPl9yJsaPU2ph5Uph3+tHfXH0Btc+0NL0C+b8lft+4UVJg7a10NdDGNa1Z4sHRb4GX1MaNRK+b39fWIUPaCZMEAbjzIrCYGr3ohW2PfJ8gY8RFQAArV39ld6MGjyxHsqU5gL3/y42ROjbYjBkNFGb7wfsy0mg6OUljEmTWS13mlGjhO/l48ezHihQ3eTynPe3lsuBkye5ZV1doGNH5eko6Na8ZcuEFglDhwKO6e5NmpsDly8D1b5NNvLiBdc1pzBaulRorScScY/igILuEuL47gB+8KP/dXgNkQhwbmaH3i24Zqafoy2x5Y972LtFqA0e3DtY6dQu+UEkArYcqAMHG65jyYvgaug1qhEqlY/CrB898e7pxzyf47mv4tzBXxPK4MCmkj3AzoXDr/jlDi0+Z5pOpCXCgvnCL/PCVdaQSaSZpi/MGAP27BZq6veuK7zN5WPCY3DqFhd5lDWOQLsfXHK0v0gEdGrKdUxMlegiOqEMAEBXOwUT+9/Ap7fRmDTUj08/dSowYwY3QNX4KcIgi0unB+aohr2oW7a+CmzMQ2CkH4sZ85U0/yAqcWtZkV+OT+RaEBgZcgNuqsKlYVl+2c9f8fLkxAHh+6pnV+U3T0ublMagLtzNXIlMFxuX5rC9MClRvg9+c1LTnV1/7vT09bnv2TTz56t+nvz06hVQoQLg5MQNqqWqBw+EJr5t2nDTyCrjkG6SjcIQdEdEcFOcKXu8epX9/kXNhw9CK1I9PeWtKqysgPPnhedeynuaaZSnp9AnXSQCNmzQaHbyFyvCEhIS2IMHD1hCQoKms5ItqVTKHjx4wKRSqUbO37ruQ8aFH4z53njBr/e/HcivL2chZdXKBzGAMZFIxj68+KT2fAXce8PsKrzh85D2EIlkrF39++zKoYe5Pvbcn69nOG5d+49MLs+//Oe0XK9cYWzvXsY08W8gk8pYWeNwBjBmpB/DUpNSskwvl8lZcydf/r3bs/p2AeU0f927p/g/UM7kC5OkSLLdTxOf2R3rgvh8ju3rmatjnNzuzR9DSyRlI7rcZO8Dgvntcjljixd/97lw+MQv16/xjMmksvx6SYVOZuWaFJ/EkhOSNZSr4kEukzNzowiF/62pQ6+rvH9ibCITa0kYwFidqi8UttWu9JL/bQh9G6Z0f6lUyi6dusa0xakMYMzMMJIlxKj3+uDuWX+2a+UtlpqcqtbzFFrx8UJhx8er5RTq+i52c1P8HtTSYiwpSbV93d2F/T5+zD59UhJjFSoI+zzM/aVNro0dK5z/v/9U32/6dGG/bduyTmtry6UzMmLZXmup8zc2NJQxU1PF8lW8xmTs4sV8P61GDRsmvL7ff886rZUVl87MLPtyyo3clu3nz4yVLy+8jgUL8j9v6qBqPEo13SVA+McIeD7mmoxXK/8edZoJTcadmtrhf71TAQBfwsX8NEUedfxQ0d5a7XlzaFAVz99VxoV9D9CruRfEWlxtKmNauPSgPtr3c0bQs9yN9vA8VBiAytqCG5THN9CG74eVH/bsEWHRosoICck+rZcX14dm0CAoTE1UUHw9XyAilqtJau36HDqlsh7hl6vtFp4v/NMa0tSiV9t9YL9iZ6AvMRbwPOGvodxkbe+JyvzyoJ+r5uoYXYc1xJxRnhjd+yaeegdh+2l3VHKowG8XiYBZs4BNm4QmW74vhM/6ujWyTKd1Ks5KlS4FPYOMMzUQ1Ym0RGjoIIxMpaeTjIlzVR8GXt9IHw423GBoz99XQWoS99v0yjcIzz5w88E3rvkU5atkPl2GmbUxfmjDtWaJijfDnrXqm5jW5+JTuHetiaG/N8PAjg9ofvAiRCYD/L/7GZDLgZcvs983MVGYFq96dcDGJvt9SpXSbG03Y9wo1mlUeZ1pTpzg/opEQNeuWadNa2IeF6fZAbCOHhWaWSvDGDBtWvHpK/zkiTDzjKmp4jgCyjh/uzyOioJK168FQSYDBg4EPn9r1NSmDXetUpyUvCurEujkngDI5NoAgD4d3mVoMj5vgW6G/hKDfkgoqOxBrCNG+wH1cfRGY3x8FYklEzxha8FdeMnk2jh+InfHff6a67OupwcsWCL00dy4Ma855oSGAj/+KMLJk2UxalT2zfBXrhS+4I8dy5885MSFk0J/7g7tVJsg3aOXCzzq+AIAXoVUwX/rilbfbrlMjoO7v2RYf2Bvwf1/qyoiQhgNt3p1oGG6pro5IdISYeFWD2w60hw1G1bLNN3o0cC+PXK+nzcADGp/G407OeXqvIQAQCNXoen3sA7XYVU1Z831XRy4z6tEpovn97nfgRPnhWbnPTt9VbpfehN+L8Mv//V3ZbXMGSyRAD/95sD/th6+3hgLfr2ZzV4kp758ATp10sKYMTXwNfuiV9mrV9wAm99TpYm5lxeQyt0PyrY/d3o//igE6KdPc822C0pgIPDunfBc1ebVL15wDwBo2lT54KvpFZZ+3elvMEyYwDVXTnukNYP38xNuKBR1M2YI15czZgBmZlmndxbqpDLcfNKURYuAq1e5ZSsrYN8+YY7x4oKC7hLgyAlhztM+AzPWENSuDfTtKzzX00lG75GqT1OUn6yqWmLGGg+cuyxcNJ26osJt5O9IJMKdXHt77u5Z2pfQ4cPcKN559egRIJNxwfaFC1rwu/Ei07Rvnn3BiRPCLVXP6xKkJKoW+OaXC9eF97R9L9VrURcsEL4mFq224Wu7ZRIZPgZ+wo3jfji/9z6SEwrfAGV3zz3Bp0juKqFV3UcwLMV1ZDt6zYmvRSss7twRfjS7dSuYgUP6D9TCqX/9UNY4AtWtgrBiUw31n5QUa0PGOqC8aRhsy33E7FUuOd7fxVm4CeTrzY1AfvyMMN5Aj1HNsz1GPQ8HeNTjatwDgysr9GHML6tXA0+eaiusW7jVA/vX3c3/kxWw+K/xuLT/IeK/xms0H4xxgeqlSyLcu2eMtWvz70vR11dYdnUVllUJutP3585J0K2npzhvd0HWdqefQhJQPehOH5T27Jl9+sIQdCcmCjewK1QA/vqL69+c9kg/gOj8+TkfWK6wOXlSuMlgYwOMG5f9PnXqCMuFIei+coUb7BbgRl3fvx8ol3mDpiKLgu5CKDIkCovGeuLOmbx/EqJCo3D1EffpqmwRDNdWypv6zZ3L/aMDQO9uCTCx0OzovQ7OpqjOzQ6DW7eQ4zvcr19zc/wB3I+Avr4wZU1qKvDPxrzPk/D9F9WyhVGZpl27KACMCRcMiUk68LpQcIP8xITHwOs5N1eEfYW3sK2tei1q8+51+LmMX4faoqm7GPb2gEFphkoOFeDRywWdBjfAsO6P1JL3vDiwJ5pfHjE4Ed2bc4UWnWCKy4cL14Spt24KN2Xc3QvuvB0HNUBouCleBlfOca0kId+zrW2Dj2HmeBtqA5saOZ9ysq6bUEXj97oaQkOFqZkcHYHqNVQLvCbNs+eXV6/OcTay9PatMEiRlhbwY58n/Lbhv9WD94Wn+XvCAtan/Qu0H+CKfj01O/r7zp1cjXCa//4T5Vtz4PSDqPXvLyyrEnSrMj93ZkaMACp++/k9exa4fz9n++dW+ppfgKuUUOW9VGWqsPQKQ9Dt6clN6QZw02h+fwO7c2egQQNu2d9f8TUWNXFxwNixwvPly7nr3ewUppru0FCuYizt/3HxYsU534sTCroLGblMjh7tP2LuRg949KiJM7vu5el4p/Y8g1TGTTvUp/3rTEcjr1WL+1KeORPY+I95ns6ZH9L3HZLJuPkFc+L5I2GO1rQfgdG/MIhE3Kd6y6aUPPdP9vdTrCk9fN0Nr/3eZ0gX/SUGO064Zlh/+Vx0ns6fE1ePC10MOrh/yPH+81cKzZTv3RPh5UsgVaJYy3PwahM8vFZ4RguWpkpx+BJX+KV0ktBtqDN+6C9MwXXgv4JtaZCd2+eE965pk4K99a6tq622mQpIyZOX/6c6HsLVoF+gFU6dEi7GVLnoT9OlC/gbt9euAY/z6R4bkzOM/jmVb5o8bhzw90FHjOx6CwCQIimFHv3L4cMLDXZozYOY8BhcesBNF3j2RjW8fZvNDmoSFMQ1C07v7VtRvo3Jkj7o7tMH0Pn205BdoJiQANz7dllWowZXk5oT39d2Dx4MhKt5SvnYWK7yIr3o6OznaP70SXitzs7cfOTZKQxBd/obDJ06ZdwuEim2MuBru+VSgBWtau/Zs4Hgb8MetWuneAMpK/b2wv+8poPuqVO5biQANx3dtGmazY86UdBdyPyz5DZuP+VqpqUyHfT5yRnXj/pmmj41KRUTB9xAGcNo9G3lhcCHir+QR44LAwP1GVj2+90VdOgA/PEHNwhDYdCtm7B86mgO5rcA8NzrGb9cy5KbJqxKVRE6N+JuKwdHWuP0rrx1qPL3Vgxe5UyMFfMzBt3bVvgiIYVrHtnTXbhiuHzLIk/nz4mL54UbBO07l87x/u6tTRS6IJQuDTjVjEf3Zj7o2kSYgmv+7JyVkzp5nvDHlxjuPe7cxA9GZsZo19cFpqWjAQAnbtRBUpySTn0akBibiIevuKbdDjZvYFGOvppJyVS2rNDv1c8POLZXCF5Vad6aRksLmDRJeP7XKknmiXPgv3VeuHSFG4TSxoZh0SJuHIVNB93QwtkPABAWXQ7dOsVrvHl2bnhffoX0Y+zu25e748jlXLc1S0vFmmFV9x02DIj/9vZVrSpUye7dm7v8pMeY0LzcwjwFlWIWoEZ17ib8y5dCKzllvLy47mtA9lOFZWbECC7oAbi+1u3bZz3oV15dvSrkOb3smpinzc0NqH7Dy8hIqMl//rzgBypjTGhKr6MDtG6tPF3HjoCbG7f89ClwbMtt4FBp4LAJcLsf8P4gINHc9YxMxpVPVk3f798H1q/nlvX1gc2bVe+WpqsL1PzW8PXFC2HO+ZwKC8tbd83gYODAAW7Z3BzYvVtodVssFdBo6mpR3KYMC3nzmZkYRGeY2qC0XhzzOv9UafomtR4rpBVrSdjIrjfZh8AQ9vUrYzo6MgYwZlM2pMhNA5SaypipUQIDGDMxiM7RlCz9Wt/h35PnPq/59Rf23efXt6qrOGdHSgpjN28yduQIYzExWR8/KT6Jn9qmWvm3zFifKzdd7WT26XWo8BqSU5mNuTAdU+DDt8zJNpCf+iYyJErl15RbcpmcVbL4yADG9HSScj2FjkTC2IsXjIWFKU4xkZyQrPAa7116lk85z5uRXW/yeTq86S6/fkQXYf2RzXcz3b8gpwy7duQRn6cfu91U+/lKMk1P30iy17Wr4vSRAGOVyoXmeAqi+HjGTIwl/FSBeRUZEsUsjL/weTu5y19he8SnSFbd6h2/vVtTbyZNLVr/Z99PtWlnl82UQplMGeblJayuXz9neVi9Wti3cmXG3r+XMj09GT/FUUrWs10qerubsdArjMW9YUyazFjkA/bp2nr++G0dLzL2n5j17iXl1718yRh7f4gx3xmMRT9XONzMmbmbditDtt4qTiHWpInaZlxjI0cK52nbVljetSvr/fr0yd0UZ+3bC/uFhmaeTh3fxc+fC+du0+bbytQYxiIfMPZuP2P+Cxm7M5ixyEfs/HkhrWPNBCbbI2JsH4THfj3Grndh7PUOxoLPMhawmrEPxzKe1OcXxm79jzv2h2OMxb7K8zxcAwdy+WrQgLEPHzJul0gYc3ER8r98ec7PMWiQsL+fX87337WLMV1dbvq19u25a+fUb5fpqpbttGlCHubMyXkeCguaMqwImjitDGISub7UA9vd4WsQE1IM0bFPBfjfFuZ4uHv2CVzrM9x9rjjgmUyuje2n3VHDsQz6dAyCRMIVce8B5YvcNEA6OkBHNz8AQEyiCW6fUb2f3PO3XBN5bbEE1etU4te3/aEeqlsFAQCu+dbDye0+WD3NE53c7sPMNBnNm3NNzX79NZvj3wvim2vXr/UGv/zA9WdOleph9XxhQLUjW+8jOJKbjqlrEx/Y1auCtk25+RkY08K1E5kPvpZfXjyJw4dwruqoRZ2nMDA2yNVxtLW5u/PlyineTdUz0MPMca/55/PnZD0y+MmTXPO6tCZRWZFKuf6YM2YA7zM2IshUalIqjl7jRuE2LBWHTgOFUUP6DRRe/4ETBdfaICu3r8fwy+7u1MyblGwuLsJy2mVKj5aBOR5csHRpwKkS1+rpS4wFEmMTs9kja7+PeorwWO47o1dzb3QbojjSv7m1GU6flMPEgPs8n7rjhnHji9a0RHfuGSs8f/kSeOAVm+PjXLsmLD94oDhwWVaeP1ecWuvff7km3B4e0QC4KY4ydDdL/AQ8WQRE+CiulyYBXkOAa22AU9WAg6WAC/Xhd14YVcylsh9gbI+atYRhkgMCAHw8BjxfClyoB3w4zG/LS3/u9KpU4QaPKvutAeLdu1xLjtzWOGYmfc2vvj4wapSwLbua7iffhirQ05XCWbwUeDwbeDgJuPczcHcwcKs3cL0DcLk5ELCK30+hifnjTFp7MAakRKFUypuMTbrf7eOOe6sP4PMj8GgKV76B64A3O4A324HXf3O10d85u/0qv9ypyirgmCVXe32hPnC3P/BkLhC0B/h8Be3bA40acWmfBhjgyJNxgE668YzkKUDIGcBnBHCjM/BoMvBud8bXEnKG+x95Mhe41Qs4XQM4XxeIfpIxrQpu3hRamNy/zw30l37wPgBYu1boIuHsrNiqR1V56de9Zg0wdCg3RhJjwMWL3LVzxYrc5/fNm+yPER8PbN3KLevqAmPGfJdALgVkhW+A3rwoWlFYESaTZb393Dng0BGuyZq5mQRrtjvg0CVhAKvoBFO07VIGLx+HYfP6JHh0t0fo1/IAgIplP8HzmB8Wj/OEsT73Y58iKYWr3rb88fv8r2heyCs2MVfth1+aKkVgcGUAgF2F99DRE/rxaom18OtQIXrr8aMbpqzwwPl7DZCQVIpff/x41k3M/O9H8Ms1qidg/Jya0NPhvhy2HnFFVOhXMDnD6g2mfLrJU7im/m07CiPxXr6UP00es3LhmnAR1b6XrVrOMeJ3N1QsyzUDPefTAD4Xld8g+XfFbfToASxdCjRuLExFokxKkgQ//MAwZQqwbBlgZwdMnAh8+ZR9k81Lh/wQnWAKAOje3F/hRkPLXnVgYc5d2Zy5UR1xhaBF/C1vI365WfvKGswJIZrnUiXj2BA9/mesJGX2KlsL3xfvX4TmOk83jvthxxluhEMj/Vis2678c+rQoCqO7HwDsZj70d+8RYzp04tG4C1NlcL7uV2G9XvXqxgxp3P1quLzbduy30ciAYYMEQLPiROFwLZjR6ED8t69AKSJQPAp4EZ34GQlLuB5uUHxgAlBSs/jG1SXX67rVgZwWYmaDkIBBQQA+PptEABZMnC7L/D0D8TFMn7gM3t7blqjvHBwAC5dAky+xXmXLwP9+mV97ZFTjx9zA1UBQKtWgFO6+0T8XN2MAV9uAUH7+W1JSUJQXtPqCbSfzQSe/QEEruEC3qC93I2J0ItA+C0gVvgxVwi6908HztQSgvRLTYCTVYCD+hCfKIfaQT8Ayd9N65kcxh3341EuwH6xmivfhxMAn5FcIH7vZ+DJ/Ayv99xVYSDGTnZ/Zzx2mog7EImEAREBYMGZtZD1iABaXQVq/AroW2fcL/a7ixZJPJCspFN+9GPgQgMgcH2OPvxp84enFx7OzVm9Zg23PSiIG/wY4CpAtm0T+mfnRG6CbsaAOXMUg/y0G0cA19R82TLA3l6MBROlSH60Ani5CQj6Dwg5D4R7ASEXgTc7sGtbLN+tYsAAoLzoBnDcGjhsChzQBQ7oAPd+yfkLK8Qo6C4APj6AlZUW+vcsj2tK+mcnJCje4Vn9lw7K2pijVOlSOHnVDo0cuLtlX2IsUK9pOYwZrw+JjAvQPer44sFDXbTo6YJZ6zzw9rUcvw/xRCld4e6QlRXQpIl6X6O6dPihNj+P8OnrtmDy7L+83j0LRoqEC6BrVc34ZThskgsM9DLWxlqV+YyKNtyvXUIC188nM/7+wl2UqnZA+coWGNGNG3EkPtkIG//ww52zT/DgFffr41L1BVr04Gpbm3etBV1t7qrispdttq8nL0JDuS/ANB26Z92vP7f0DPQwa7xwa3P+3Ix3J2+f9seomQ3558HB3CjdyuYqjYuKR+dmT3DsmHCzKDWVu7tbrTrDvF88ERuZ+U2YA/8JNzP6DVD8NdLW1cb/fuBugCQnA6dOZf/61EmaKoXXM+5C19osFFVq53yKPEKKk7oNFMedMDOMgnvX3M0fb1tJ+C4Iepn5DBNZkcvk+GW8cGNs6e++qFA984irTd962LVLzNfMr1jB3Wgs7J7cfc2PP9K+wQP+RvL+c7UhSVE9EkxK4qZATG/vXu53NStLlgAPuSFY4ODAPU/TqFEsLMpyeTh1IhUxe6oAN7sDn04JNaUfjwHSdCfRKwvU3wjU/A2o2BswawDY9IRf3Ag+iUufn4AKnVCzlvBbExAAwOMsYDtQOJb/bNz8ezUfEGfWVzin6tblKl0Mvt0XPnECGD48/6ax+n5QsSpVhD6zr14BkKVygeyV5sCjiXzagAAhD04VVaixlQqtSBSC7k+1gNgAIUiP8OJuhsjTVeknf3czTFmwq8x3NeQxMcCtJ9z3RDXL17Czfssdq1wLoNpIwGUZ0OwI0PEx0OQ/AEDbtsL18fPnwOGj2kD5VkCDDUCPj0A7L8BxDlBrBtBoF9B4j2IedAyBvvFA5wCg2SHAcS5gws0UA3kK8HA8cKNL5sH/d06cEGZrqFmT6+8PcBV3kyYBgwYBo0dz06IBXKvMhg2VHipb6YNuVQaalMu58y1eLKybN/kNwsKEmm7tdOPrnr7thllz9YEHvwJ3BwKenYDLTQDPDpB5/YQ164TWJXwQnxQKSGIA+bfvbVneWicVOupq375p0yb2ww8/MGdnZ+bq6qrSPnK5nK1Zs4Y1bdqUOTk5saFDh7J3795lmr6o9OletUqxj/bPPW+wmAih0/CUSSn8ttatM3YFifr8lTnbf1E4BsDYpB9fMUmKROk5gz9I2S+/MFazJmOHDqnz1alfSxehv+sz79fZpj/xjzeffu7P15Wm2b3qFnOs/JJ1a+rN1s26zp55v2JymZytXiXn9920/GWm52hd7yGf7urZ60wqlbK3Tz7w/bzNjSJYh4b3+DS7V93O9DW99gvK0fuhKkmqjLVoIbyeTp3UchpeSmIKq/yt7zjA2N103aXf+L9nZY3D+W3GpRP5ZUNDObt2UijXiE+RrKH9E367gX4q+/lnxgwMFP//zY0i2Opp11lSfJJCPhITZMxQP54BjJmW/spSEjN2ALx5UzhOly7KX09B9f19cPU5n5e+rTLvY07yB/XpLvzkMjkzMfjKfy6Gdrql0n7KynbbHzf442xe4Jmr/Lx8JPTTdq3xTOV+2lu2KH5nrZvrnavzF5T1sz35vK6d6cn6eNzln5/bc0/5Tkr6dF+9mr5PvrC8fXvm5378mDGx+NvYNGLG7t8Xtkk/32JJhyuzce3WCsf6abjQ9/ZYBcYez2UsXrXf0urVuWPo6zOW9q+SkCDktUGDbwnlcsaeLuXPM7njn/z5jx5V6VQqu3SJ6x+bdvylS/PnuE2aCMdMu5yuWlX47ZVf8lDsx5z4mTHG2L//CvutmP6IsY8nGQu9zNiXO4xF+TIW85KxhGDGUqK4vvLpLlyjooR9Wzg9YOw/bcVzHDFn7Iwjk19pwyJOd2bSqO/GgZEmcceN/8DY1yeMhd1iLPgMY2/3MvZqK2OvtjH2ejtjHxQL4cgR4bzjfk1RuV/15cvCfg4OORwzQBlpEmMPJiq85thD9dnaNTLm65v5bhIJY/b2Ql5OneL+P2fMUPweSXtUqJD9+ENZkcsZK1uWO5alZdZpU1IY69dP8fxrB49j7GR17vV+8/kzY8sGLWaldIRrvKszWyqW/z6wE5O68dv5vveRjxg7bsPYaXvGztVl7FIzxvxm5/4FFiBV41G1Bd1r165lO3fuZEuXLlU56N66dStzdXVlly9fZgEBAeyXX35hrVq1YsnJyUrTF5WgOzaWsRYuzxT+WStZfGSX9j9gD689Z1oibgAPPT05N4CHEp8/M1ajhvBDsW9fwb4GTfprunAhsGzS9WzTL5kgDARzYP2dHJ3L6/xTft/BHZRf6MnljA8gy5l8UbjIG9judoYvRqsyoRkCv/R53LzgRo7yqKqZI68rfDmHh6vlNAr+3iAMBNiuHbcu+ks0q1XpFb++resDFvFFwtzdhfdITyeJnfjHmwW/ClFIa1r6K7t7lhusKCQ4lY3pc4Npi1MV3t+KZYPZ9qU3+RtQ6X94R/Z9pTSfMpkwiI2OjpxFfcn4HVJQwdmaGcL/9/rZuQsKiOoo6C4aWtQUvr9O/J37oPvS/gf8caYNu56rvNw86Sfc7B6Qs2OsWKH4e7BzuWqvRRP6txF+vx5ceaZwA3tA29vKd1ISdKcfbGz8eGG5USPlh5DLmcIN4nlTFUffkkY9ZWwfmM/CBnyalo63GfP+iQvGZMorH5SJiRHy4+amuK1KFW69kdF38dqHo4wd0Gd1Kvl+u5EgY5HvXqh8TlWdOMGYlhaXBxMTxr5+zdvxIiKE49WqJazv0EF4D0I3WnKB0IFSjD1bzlhqLGOMsSlThDTnz+f83FZW3L5lyzLGJImMffVnLP49Y1LhWii/v4tHjMhdnuVyxpo1E/atUoWx3buFGzK59ukcY0fLMflesHbNP3+7zuduSimzdauQh2bNFP8HjxxhzNBQ8bvkmJIx3XKqVSvheJ8/K08jkXCVNmnpxFoStmf0QOGG19cnijuEe7FVC98I8Y51HIu+t5Gxx/MYuz+eMb+ZrEXDYH772bN5fx2apvGgO83Ro0dVCrrlcjlr2rQp++eff/h1sbGxzNHRkZ05c0bpPmkvMjY2lkml0kL9SEpMYgvHHmel9eIUPjTpa/8WTfTJ8hgREVK2bZuMBQZq/vUU5CPQ9y3/HjWt7Zdt+oHtb/HpfW8G5OhcCbEJTFc7mQGM1bB+qzRN8JtQ/vit6z1gDx48YCkpKUwqlTLfO+8zBN1/jL+W4Rjel4Sa3J4dP+coj8+eSVnt2nLWsqWc+fkpT3Nmt4/CF+QNz+QCKaukJCmztRUunq5fS2EdGgg1/g42r1lESCSTSqUsLk7KOrf8oJBPqzLCe1ve9LPS8gv0fcsGtLvFj2qc/tiHt9xhvXoJ6y9cyDyvE0d/5tNtW+KZYXtKSopC2arr0aeFMNL+g2vPC6ScSvKjoMqVHnl7bJjDBd3VygexuK9xuS7bgAev+c9X31Z3cpWXgxuFz+jSiRm/z7N7zBol/CZpiaTs0Kbc5UPdj7RZLgz04llSQhJLjEtkZoaRDGBMXzeBff3yNeN+6aJYaUwMk0qlrGFD4Tfg40cpc3YWnj96JGVSSSqTRj1hste7mOzeeHZo9kx+e3XLlyzRZ7ZiuSYns9QD5kx6vimrUTniW+ArZ+/e5fw1enoKo5SPGiVT2Naxo5DPoCDF/UKfC63b6tk+YPLDZZg0+mW+l8Hw4cLv15w5smzTx8Zy14bKtu3ZIxxr8mThWGNHCi3Sbs5pxuRHyjFpmOL/ZNu2wnvx/n3OX0erVsL+oaHK0+Tnd3FqqpSVL8+dU19fzuLjc7b/zZtSpqsr5BlgzNFRzo4flzKJJA95i//Edi2/qHDc0qXl7PZtxXQxMVJmZSWc/9atjMfy95cyOzsuzQ8/ZP+/ocpj/PhsrpcSvrDdf3nxaUrpJLLTUzoz+X9aTHZvPJMmKflOkEpZUlIKc3WN5fcbOlTIr4+P8Bl0cJCz1NT8/Qxp4hEbG6tS0K2dfQP0ghEcHIzw8HA0Sdf52MjICHXq1IGvry86d+6c6b4v+dEgCrdOwyqivoc3ls43wa2nDQAAEbFcH9taFV+ibV8Gv7ThCDNRty4QFyeMWlhSOFSQ4sWnGrj73Ak3L9+CsYVhpmmfvSoDANASyZCsFZ3te/o9l2pi3At0wauQKrh15QaMyiqe67HnJwDcCG/VK4cBsMQTfphPwN3dGLdumXJP9WRo1M0oQx5ExnKYmEgRE6ONK7fN8fChH8RiqGTKaEM8e2aPZ8+A+vVF+PHHUAwb9pnvSxMZHI2hv7rw6aePOIvShjYF9j8zaJA5Fi+2BQB06SxDQhL3v25mGIVVq98iKMQM4AZwx5wlMuhPf4UjN1pBJtfmBwesYhmEjRteQWZgprT8Ji/RR+/+F7F1owkuPeC+M14EV8P/fqnGpzEzk8DU1D/T1924bijWoAsA4L+DpVC3nfKEfNmqAZMz3PLj8mysHwOZQVyO/19J7qizXEneNepuhJP2F2BWwQiBbyKy3yGd9GUrSZYA4D5jbz+WztXnKzBA6I+prROT42P0+LEUPodewPbTHSBnYgwcVx97tS+gWr3yOc6LuoSHpOJDeGMAgGuN53gWwHX87eoegV3n2yMp1QA7Vl9Eiz6VFPbTSkpC2rBk/v7+iJWVxoMHLgCAqlWTEBb2HB06WMDfn9tv85xT2DRoGLTl3JgcSaml8PsWYeC81YMmQ/opFM/FPRTOI6p6EkyrFFp1SMGrrQBjIqxeHYqhQ3M2SfDZsxYAuLyYmX2En5/wv2VuXgEAVyZnzrxBo0bCKJtXrpjyy61rX0VkqaZ4/yoGEPnl6PzZ6dFDF7t3O0ImE2H1aoaWLZ/A2Fj5SLzv3+vhp5/skZAgxuzZ79Gxo+KYBf/9ZwuAm8nFzu4V/HzjYBZ7FjWkXwGsAQA8DW8K0wpTkfpRD/govBZfXycAujA2luLLl8cIVzJWWFYsLCoCKAcAOHXqNVxdMx8ANT++i1+80Mfnz1xn8vr1Y/DihQrDZ6djYADs2KGPDRsqwNvbBADw9KkIPXuK4ewcj/Hjg+Hiks2gBEpER4sxYanihO4JCSJ06pCCfzY9RNVaXGf+HTvKIzS0AgCgZcuv0Nd/q/Ta5d9/RXjzRh81aiTmyzWdqak5AFsAwIULIShbVviuq/T5D5SNOYkje47x6w6O+wEtG7/Fi/K7kKhVE3iW+fs8f74u+vWrhYQEMXbt0oKT02t4eMRg/nxbpP1f9ur1Af7+Oft+L9JyVm+dc6rWdD98+JDZ2dmxsLAwhfXjx49nEyZMULpPUarpTn9HLzUllW2c78kMSwl3gW6c9NV4HgvzY+rQa/x7tWP5zUzTpaZImL4u15fEroLymursHpMGCOc6scMrw/YVU4Tt25d5ZrhTe+uWcBfv118zvxvZp49wh/HOHdXyduuM4rzsaY+6TvHs4fXnLCkhSWHu9q5NvFlqiqRAyyopScqqVlW8Y6wjTmFXjz7MpMxS2di+QlNSx8ov2cdXn1Q+3/Xjvqxpbb8M78mYMVnfCZakSlhVyyC+9un9i2CF7QVRI/rihfC/0t49qEDLqaQ+qKa7+D4yK1trsxC+9Uxujjv7V6GW8/TurFukZfZITUllQzvd5I/j7ujLJKkF+92c1WP/fuH3aOYU4X26cdKXX9+u/v2M+35X0338eMbfv4gIKdPX534TTAy+soQd+nzfzgW95wjHb+DLpP5LM9S6pi/XwEDh+E5O8gz5+fBBypYskbFDh5S/zvQ1yd//7v79t7Dtr78Ufz9GjRK2ndu0i0lTk9RWFiNHCueaNUv571hyspQ1aKD4O7tmjZA2JUXKzM257UZGcpaUJGWyO0MZ2wd2fmp7fp/fpyRmOHZYmPAeu7tnfI9VeWzcKLyGDRuUv4b8/C5esEA438aNeasFvnxZsbUGwJiWFlfrndNjDR0q5KtHD7lCC4ByJl/Yc6/H7PNnKTM2lvPnefpUfZ9zhUf8J+ZzTmjFM2Sw4veRzG8Oi9lmxPR0khjAmFWZECZ5uoZJU7Mvr7Sy/ftvCX98Cws5u39fyrS1uddqbi5ncXEF9FrV/FC1pjtHQffKlSuZnZ1dlo/XrxUHuiqIoLuw9+lmTHnflaDnH9nicdfZxf8eaDBnRcPt00Ig2bv9m0zTvX0rfEn26BKbq3Md3iQMHjNz5PUM2wcPEr5E79/6pLRP0vHjjP3xB2NJSRl25/39t5DXhQtVy1u7+kL/xDZNPvIDzwCMaYtTmbujEHxWtvjIIkOiVH/h+WjHn48UfrC2L72ZZXq5TM4OrL/D/hh/nUV9/prj88llcnZm1z3mZBv47YeLsQcqfKzmjBKC/SmDritsU/aZzW87dqTrhvCH2k5D0imIciWakVnZNq7pz3/OEmMTc3zcUaOEz+nDh7nPX2pyKrOrIHSXOrMrk8HJ8kCaKmUpiSncI4Xxj9TUrPdL3/f63DlhvVwmZ1Us3/M3J0PefNfx87s+3RMmCE+PHxXKYdgwYf2usaMZu9GDvb+8gemX4gI8bW3Gnj/P5DV9V67pBwd7/JhLExnJ2NSpjJUqJWxT1ue1Xj3G/0Z8f+l4546w7y+/KG5LG3xNR4fvuv7d+xCk8sBd2Xn3jns/uICZe23fW7w44813gLF587hs3L0rrOvd+9tOb3Yytg/szV9V+G29emU8tqensO+vv+buNdy4IRxj7FjlafLzu7hRI+F8QUF5PhyTy7nruFq1hOMaGgr/b6q4dk3Y18SEsZAQxuKik1kje+H6qKL5Bzagh9DN7qef8pjp7MikjAUdZOycC2P7wBJ3luLHlarr/N0H4ssd9t/vvwvlOCabL5F00spWIpGybt2E98HISFieMyeHr68QU0uf7sjISPb69essHynfDfunatD94cMHZmdnx55/9607cOBAtmjRIqX7FPWgm6hOmiplZc1T+S++TMbWY2fOCB/omTNzd67gVyH8MVq6PMqwvU4dbptYzFh8fO7L9d07Ia/ujbIfgvLOGeHCsbLFR5aSlMru32fMsUbGke11xCnM+8LTHOcpv0hSJPyF7pxR1wvsvDKpjF28yJi3ioMEf373hR9ls7RenMJNioL4zKYf+OWGesbTI9+h7+LiK7Oy7d9JGCDzxZO4HB+3e3fhcxocnLc8Ht0q9I90rPxS5ZHQsyKXydm1I49Y/za3FUYNTv8Qibjvm8yuy11dhbTfD+CV/ubk6mnXFTemD7rjYpmTXTgfoH/12cQnSx/QNm3KZSL9aMgTJ2b++r4v102b0rdo4m5YmphkfM3fj+6cmiqMEO7gkPE86Ufdbt5cWP/+fbrfanclGfz6lLFDpoz5/MxYYihjknjVA6CUrxlG/2ZM8UbPrFmKuz16JATlWlqMDRmi+LrHDrjPZg46zD/fsSPtjUxi7GobJnl1gOnocLWNTk4Zs7V+vXCsLVuyfxnKhIcLx2jVSnma/PouDg8XRp6vXTtPh8pAKmWsb1/htVSqlPmAY+klJQmDHwOMbd4sbIsK+cLqVA3M8P+qr5fMPp34lTGfXxh7uiTjQZ8uYezOYMZu9mHsalvGLjRk7JQdY0ctuYHw9usxdq09Y+/2Z9xXJmHs7W7GTjtkGEncwZqbQUVXV8ok341J2KuXkD9Pz5y8b0LZfv4sjJKe9tDVZSw0NPvjFBVFdiC17enmlIiLi1NpIDUKukuGoUOFD+yFC8rTpB8pdu/e3J+rYtlgPhBLPy1baip3pxvg7oDmtVxrVOQGDtMWp7LYyKxr5tu6CrXc2/4Qao6TE5LZnFHX+OnKAG5EbE1LTU5ln9990XQ2sjWmjzB6+IIx1/n1BfGZTftR1tFhLDHnFXAkF+i7uPjKrGzTT7lz8WLOj5u+Fi27GuPsyGVy5uYgDKT574rMRzOXShn77z/Gtm1j7MoVriVX+ovisPdf2PLJ11kN67cZLuAze9w4HZjhPPHxwnRdyoKWFw+EkYjr1Q7LuPO3jWG72vHpGlT1YexkNcZk3Bsml3PHTh/MpS2XLZv1SN3fl2tEhBB0fv/Q01MMdtLXsj5+LKzv31/5uSwtue0WFsK6nTuF/ebP/24HSQJjxytlCGTYPhFjB40YO2bN2MmqjB2zyhgMxb1TTH9An7HDZoyddmDvL2/iA2NDQ+41M8YFc+nfx1k/3WLsajv21/DZCu9D+uuBkJCMrzNtaip9fW42j/TSB/x3cjYBjAILC+4Y5csr355f38V79gj5nTo1T4dSKjGRm0Yu7RyNGmXdipExrhY3LX2TJhnf47CQJGZX8ZNCmc3svlj4fzij5IN4yV3J/5mSx73Rivu92cl9Fr9Pd64uYw8msr6dhO+PZ+lmb4uLE1qOlCuXs9Hcvy/b9LPKAFzLl+JE1XhUS119xUNCQhAQEICQkBDIZDIEBAQgICAACQnCQAQdOnTA5cuXAQAikQhDhgzB5s2bcfXqVQQGBmLq1KkoV64c2rRpo65skiKka1dh+fRp5WmePxeWa9XK/bkaOX0AACSkGOKptzBQRGAgIJFwy87OuT9+mrZugQAAqUwHN04HZJruzhl/XH7oCgCoYvkBQ6c04rfpGehh4daWuH/1NYZ2uo1VUz0xfnHzvGcuj3T0dGBpa6HpbGTrt3lVIdaSAgDW7XFCQkzOB0vJjbD34Xj1iltu4JoKff0COS0hJU7lysJyUFDO9w/7NlaXmRmgo5O3vIi0RFi+RMo/n7OiCpITkjOkk8vkGNHdBwMGAD/9BLRpA1StCujrA9UqfEbT2v6wqWqCaas98CqkCr+fuVEkmjv5oXmdZ2jeHGjeHKjnkspvX7ooJsO57l18DNm3sbqaumYcMcvetSoa1OUGwnr0rByeP5UA4V7A213Ak/l8upt3hUFHWzWNBNrfA7S4N0wkAkaNEo75yy/C8h9/AKamyt8vZczNgU6dFNdpaQEjRgAvXwKXLnEDYwHAxo2Ajw+3nH7gKRcX5ceuWZP7Gx4OREZyy1evCttbtfpuB20DwGUp/zoFDJDGAUkhQPxbICkUkHxVTCJLUkwvSwJSo4DYF6j0ZQxGemwHAMTHA6tWcanmzgWePfv2Gir7Ym6zVsDnS5jYZjF2/TKE/y2TybmRVevVlcPKKuPrrFGD+5uUBHz6pLgt/bhmjo4Z91VV2jXY589AVFTWafPi3Dlh+fv/i/ygrw+cPAnY2HDPvb2BkSO58FGZ58+BZcu4ZW1tYOtW7v8zvXJWpXDlthUqWXGfRwvjL5jaZYWQQNso44HFet+tEAE6xoBBJcDUCTD4lkGbnorJQs4B8ekGPLNwB1peAjo8BFz/Qp2mwveHv7+Q7Px5IPnbV1OvXlB5sF9levcGBg/mlrW1gcmTc3+sokxtQfe6devQo0cPrF+/HomJiejRowd69OiBp0+f8mnevXuHuDhhdMiffvoJgwYNwty5c9GnTx8kJibin3/+gZ7e9/9opCRq1w7Q1eWWT52UgckzfuM9v/cOACASMdjbZfKNqILGDVP4ZW/Pz/yy/y0hMHaulflonKpq21743758PinTdPPmCRdpsyd+gI5exiu/uh4O+PdsM0xe7gGRlijPeSspqjhWRL823FVZZJw5/ln+oEDOe+ei8CPYzOFugZyTkJLI1lZYznHQzRjCQrjvZkvTL9kkVk2Lni7o3OgeAOBjRAVs3Kz4fc7kDOP738Lus24Z9pVKgbch5XH3uTMkMl1+fau6j3Bg/V18+myIG/4uuOFXGzduADduAN7eWqhsEQwAuHCvAXw9Xygc866nEAw2cQxUmudBw4SAes9uBlxuAngPA57/ya/3DPDgl1sP7gjomSkeYxBQqpTicV1cuAAmp8aOFZZ79waePgW2bwcqVeLKe8ECbhtjXLAvkagWdKe/WR8QwO1/7Rr33MAAcMtYJIDtAKDNTaDqCKBCN8CyFWDWADB24AIhPXPur5au4n5iPcCqPVCuBWDekAucDKsD4H6/Z3ZdAF1t7lpk/Xo5jh8H/vz2dutqp2DP6MHQ1f5WC6BXFkP+9xnHVu2Fnq4w2nnnLsov89OCbgD8zd+09yvtMr1yZcDYWPn7pIrv30t1kEiACxe4ZRMTIN0ESPnKygo4dUq4mfPff9zNou/J5cL/GwBMm5b5jYuKlUTwfmiCFcsZrt80hMnAQKDrK6DDI8Dt74w7NNwGdHkJdP8A9IkG+kuB/8UAPd4Dnfy59e3vA5YeivvVns39Ld8GaO0JtL0JWLXl7oRBsQIpfdB95Iiw3KdPJm9MDvzzD7B5M3dTzMkp78crkgqo5l0tqHl5ydO+hTC38ol/vBS2yWVyfkT4qpZBeTqP13mh+d+Q3u/59dOGCX3bzuy6l+dyjf7ylW8GVrPia6Vpbp4UBpGrWv49S02WKE1Hcu/JnZf8e2xj/omlJKao/TM7sb/QrP30vz5qOQfJiL6Li6/MyvbFC6FZ44C+ObteiIuK4/f1qJNxjI/c8r/3hYlEXPPhMmUUm1fPHCn8zoi1JGzOhOfst9+4/pUudWTMWD+aa/Jp8oVNG3advfLN/vduw1zh+6ZvK8U2wx0b3uO3ZXassDChCbqBAWOvNjblmqhuF9qM1rb+wPfXzOyybNAgxWamN7MeY5Mxlnm5Pn7Mla0yEgljLi7CeZYvZ8zDQ3j+3Zi9vPT9mf/+m7GAAOF5hw7Z5zVfxLxgzPsnxvbrsjFtNvDnT+u3DDC2csBvXF9ev9mMxb1R6BN+/TrXpLt8ea4/ujKbNyvvt51+rJkuXfL2Mr5/L7+XH9/F6buO/O9/ecisio4fV/z/nTaNsUmTuHEfnJ25rgBp26pXL0TdxqIDMt2UfsyCzp25dQkJjJUuza0zN2cZ+npnp6T9zhaaPt3qREF3yXPiHx/+y8HB5rVCf+v3AUL/mC6N8xbEJCfJmK4ud0FUo4awPv3FyYfAkHwp1/Qj6wY+fJthe6u6wnQ1O5dn3v+P5E3XJt78+7zjH6naP7P1azzjz6epUeZLIvouLr4yK9vEuBShf2WtHAw/zBh77RfE7/tD6zx0cFUi/Tgl06dz65ZNuq5wUb9rZcbvfLlMzqK/RDOZVJZhW2YSYxNZORNu0E0tkZS9fPSOMcYNPmla+isfxMtlmQ8ANnp0un6qdT8x6dO/GHspdNY0QDwDGGvRIvN83L4tHOOHH1TLe24/s/fucQONpfVdTguIrK0z3+fKFSF/kyYxtmFDukB3ZY5On3eJoezjhaVMV1em8D/h7s6YNOQGY9KUTHdNTc26D2761zllirD+1Clh/YwZecv+1avCsZQNlJfX7+Jz54Tja2sz5lNA966XLlU+nsD3jytXCiY/eSWXCwMRVqzIrTt2THgdP/6Y82OWtN9ZjffpJkQdug1vgCa1uPYvL4Kr4d8/vfhtzx+G8su17BLzdB69UlpwdeWa3rx6BUREcOv9X3N9ZsqU/gqb6uXzdI40bZtH8suODSugbysvXDn4EHKZHDevROOabz0AQHWrIAya2Cizw5A8mrG0Jr+8fKWY7+OoDvFf4+H7xg4A4Fj5FcysyqjvZISUcPqGunzT8KDPORtnIiw4ll+2tJDka74WLgTSes+tWQPMH3cf0//y4LdvmHsDQ35rlmE/kZYIJhYm0BKrfgmnb6SPicO4zsByJsbKBdy4JQH33iI6wRQA0MTpTZZdk1as4PqVA8BdX2v8eWYiYN0hQ7rWrTPPR9OmwM6dXLPbbdtUzn6uNGggNENPSuL6RgOZNy0HhD7dANckOq1pOaCkP7e66ZeHTfvpGDVKKOfSpYF//wXEVs0BsW6mu+roZN0HN7Pm5en7c+e1CXD65uXpx9vJDx8/ct0V0ixbBjRsmL/nyMy0acDQoRnX6+hw72u7dsCOHVl/DgoTkUhoYv7xI9f/Pr+blhMOBd2kSBFpibBiufB83qrqSIzlAuznT4Q+1rVqa+f5XI0bC8ve3kBkSBQ+RXEjkjhXe59v/aZ/GG4DPR1utAqJTBeHrzdG236uqFE1CT+PM+XTzfk9Atq6eX9dRLnGzY3RogW3HBjIDZySXvjHCEwe6Alrs8+YOtQzT+fyvvySH+immWtoNqkJIXllW54LukOirJCSmJJNakFYiDCwomU5lq95qlRJCAqTk4EFGxrw25ZM8MSvC1rk6/nGzKoLY31u4KZdZ90Q8uYz7lwN4bc3bZRxQLf0DA2B3bv5rqCYM0cxSEuTXbAxbBgXJBkpGSsqvy1eLAyAlSaroNvKSujH/PQpcP06t2xmlvV+6jRjBmBtzQ3GtXmzcOMjL2xshP71L18K6/Mz6La05N43IGdBt1wOhIZy9azKSCTADz8Ig7N161awA3OJRFz/5L17ub/XrwPv33M3dl6+BC5eBIYPL7j85If0/brv3xcGKy5TRgM3m4oxCrpJkdO0izO6N+MGvgqJssK6edyANM+fC//OtVzMlO6bE+mDbq9bCXji/YF/7lwz4wiwuVXLrToCHoVj2jBPlDMRRo59+6E0Xnwb76ZGDWDAuPr5dk6i3IwZwvLy5VpgDIiNjMX80Z6oaqeHv/7zQOjX8li52wOvfN/n+jy3rwu1Z+7N8zAkKCFEJZWthc/cx0DVb3SFhQojf1uWz//P6oypKTAxUPw9mTbMEzPWeOT7uUwsTDCmny8AIFWqh9XzX+Cul/C72cTDPNtjNG0KTJ3KLUsk3Mjq6RkacjXMhYWREbBhg+K6unUzTy8SCbXdwcHA16/ccsuWGUegLijW1tyI5UFBwgjQeaWlBVSrxi2/fQu+ZVda0K2jA9jb5+0cIpFQ2x0cDMTGZp0eABISgBYtuNfcrBlw82bGNDNnAl7fGjna2nI1/6ICHjtWWxsYOJAbBNDDg7uBlpfRvTUtfdC9ahWQNsZ19+55n7GBCCjoJkXSkj/NoSXifiWW/V0XkSFReP7alN/u4Foxz+do3EAYTdzr0ks8fihcGDk75+9Hp4pjRSzb6YGPoSY4vMkb7dwV5/CYN4/7kifq1a6dcEH28KEIG+ZFwq6GDAu2eCA+WbFa5t99pXN9nls+wpCwzdrb5vo4hBDV2FYUguegV6rPXxT2Wc4vW1qXyiJl7piX08OMn33556N738TS7flbw53exLm1+ZZVWw7Xx1UfbrogPZ1kuLa0U+kYCxYItaBPnipua9688F2kd+/OTXkEcM35099QVyZ9E/M0mq7tMzUFKub9skaB3bfiTk0FPnzg/gZ+G7zewSF/yjEnI5jL5cCQIcDt29zzu3e5ALxTJ2Hk+VOnhBHcdXSAQ4e42liSN+mD7m8zOQOgpuX5jYJuUiTVcquO4V24aZZiEk2wZKo/nr+vBACoZBEMI7O8t1urUFkfNuZc07t7ATXwyFeIep3r570mXRldfV30Gd0IF29WwJs3wPLlwK5dwIABajkd+Y5IBMwYLVxF7jrXDhGxZQEA2mIJRnT2hFjMtXnbfbBsrvp9R3+JgdczBwDc/2olhwp5zzghJEu2VYTLnaDXCVmkVBT2RdjP0jr3N9qy8ttyd6ydeQNbFt7EhoPN1Drlo6WtBUZ041qHJaQYIjiS+/6pbxcIPQPVpmfV0wP27FEelBXWfqx79nB90k+dAipk85WbPlBMU1hfV15836/7xQtuSjog/6Z0ykm/7tmzgWPHMq4/f567Gd63r2Jf6j//LFytKooyZdOamZgAbdoUfF6KMwq6SZE1f1V1lNLhaqPX7m+GmEQTAECtKvnXR7axM9eEOCHFECdv1AYAiERy1HazzbdzZKZqVa4Z35AhBd90qiTrNawm7Cq8VVg3oO0dBDwIwfYzHujYkSuM4GDg6tWcH/+flX5ISuUm++zS4k02qQkh+aFyFX1++X2QVOX9wsKFwaosK5rmZ5Z4Yh0xxv/RAj/PaZ6jwdFy6/f5VSAWK94xbOL6NUfHqFNHmAs7vcIanBoYAL//zrVmys73Nd0VKgi1wsXJ90F3fvbnTqNq0L17N7B0KbespQWcOcMNuFepkpDm8GEgOppb7t0bGDcuf/JIuG4had0N0nTrJgz0SPIHBd2kyLKpYYUJA7m+3WmDUgFArRqq12Jkp3FDYcCdmERTAEB1q/cobaKeGg+ieWIdMf79OwGOlV+hS6NbeHg9APsuNUV1l8oAuEGA0uzcmbNjSyTAuoPu/PMJMyplkZoQkl9s7YU2qEEfVG83GxZpwC+Xq6ieFk4FrYpjRfTrp9gBtWmrcjk+zu+/A27pRowua55/wZomfR90t25dPG98pw+6X75Uf9Dt7698cLTbtxXHBlizBujcmfutffmSe26RbtKBqlWB7duLZ5loUvom5gA1LVcHCrpJkTZtWV2UMVIcnaNWHZN8O35jj7IZ1jnbRypJSYqTxp2c4PemKuZvMEAdd8Uqjq5dAfNv4w0dPyZD9BfVB9U7ehT4+FHr23EY7OpVybc8E0IyV9nBil8O+qR696OweFsAgIlhIkqVzv8+3Zoyfbri88YdlbSpzoa2tuK0X926aW6wsfxka6tYw6fp/tzqUhA13dbWwmjwly4B9epxI7DHfPvZ/PRJF336aCH125ALo0cLI/oDXDlMmAC8ecPVhA8dyo0ObpJ/l3nkm/RBt6Ghaq1CSM4Ug69HUpKVsTTBzLnGCutqNctiaNIcqtu8BnS1FaeXcfagUcRLMl1dYGA3bmLTlFQxDmx5rNJ+jAGrVwvPJ02i2/SEFJTSJqVhYczNDvH+c8abqZkJi+J+XyytDbJJWbQ4OgrzHLdsCZTLeUU3AMUmqX/8kfd8FQZiMTeQWJrC2mQ+r6ysuHm/AcWg28Qk/wZtE4m4gdDS+PkBY8ZwwfhPP4kwaVJ1RERwv4WtWwNr1yqvwTYy4m4U/fsvUL16/uSNKEofdHftKkwpR/IPBd2kyBs7VviB0NJSPvJobukZ6MG1xkuFdd83wSElz7AhQn/Inf9lP80OwI3Eev8+t+ziwk0zQggpOJWrcNWXn6Ks+Zq1rCQlCVPnWFqqMWMasn074O0NnDuXP8czNs4+TVExfjxXyzpsWMZ5vosLkUio7X77Fvj4kVt2dMzfptu7dnHzWTdM1xUhMRHYuVMLb99yYy3Y2XF9tgvbyPclSYcOXNmbmnJdR0j+o6CbFHmlSgH79nGjWC5fzn1h5KfG9RSbk1PQTep6OKBOFW5ulXuBtfHcJ/sB0VbPvs8vT55M/dEIKWi2NbioUC4XITg4+/RhYcJy+fJqypQG6eoCbm5Uo6XMiBHcDZecjttR1KQF3XJhZjylI1nnha4uN5+1jw/g68vVdKe/QVOmDMOZMzT1l6YZGACPHwPh4VnPZU9yj4JuUiy4uwP37gG//Zb/x27cVOjcZWiQAlvb/D8HKXqG9/vML/+76WOWad88fo/jN1wBAFZlPuOH/+VirjFCSJ6k/+4OCso+fdinZH65ONZ0k6yVhFrX9P2606hzMDwXF2DjRiAkBPjnHzn69v2Ca9fkSvNBCp6WFjdWA1EPCroJyUbjtpX5ZSfbl8VioBiSdwNGO0JbLAEA7DlVE9LUzKchWrc0CIxx/zhjB7+AbilxpmkJIepRWfgqx/v32acPCxTGa7AU3VJDjgjRrIIOutOULg0MG8YwderHYjHiPSGqoPCBkGxUqG6N8T/cgKXpF0ybnKjp7JBCwqKiObo2eQgA+BxtiYsHfJWmi/4Sgx0n6wEA9HUT8fM06p9AiCbYVojnl4P8X2aRkhMWKgyiaWmpZK4jQoo4ZfOPUxBMiHpQ0F2CTZ8+HWPGjOGfDx48GH9oYPhRHx8f2NvbIzY2NvvEGrL2QAuERlqg+0g3TWeFFCLDhwtfoTt3KK/p/melL+KTuSmKhnV9AHPr4jHXLyFFja1lKL8cFPgl2/Rhn4WOrpZWelmkJKRo+r6mu0IF6ltNiLpQ0F0ITZ8+Hfb29rC3t4ejoyPatm2LDRs2QCrNvPlqfli/fj0mTJigUtqiECjnN5EWjXxFFHUYUA/lTLhpiE7ddkXEpyiF7ZIUCdb9K1zVTJhRTIfBJaQIqOwgjIb2/lPpbNN/DhMukSwrZJ+ekKKmbFnFOa+plpsQ9aGgu5Byd3fH7du3cfHiRQwfPhwbNmzA9u3bM6RLVWXeExWZmprC0NAw345HSHGno6eNwd2eAwAkMl0smfUe585xU/CcO/wBy6bcwceICgCALo3vwd61qiazS0iJZmRmBDND7sZYUKhFtunDwoWRtCxtTNWVLUI0Jv20YQAF3YSoE41RV0jp6urCwoK7KBgwYACuXLmCa9eu4d27d4iNjYWTkxP27dsHXV1dXLt2DaGhoVi2bBnu3LkDLS0tuLq6YtasWbD5NsGkTCbDihUrcPToUYjFYvTu3RuMKfZRGzx4MBwcHDBr1iwAXEC/du1anDlzBpGRkbCyssKoUaPQuHFjDBkyBADQoEEDAEDPnj2xbNkyyOVybNu2DQcPHkRERARsbW0xZswYdOjQgT/PjRs3sGTJEoSGhqJOnTro2bOn2t9PQtRl2C8VsGoPt/zXrrr4a1falkrfHpzJU0rAULiEFHK25cMQ9doMwZHlIU2VQls388ugsAgDftmyknlBZI+QAlejBvDgAbdMQTch6lMyg+6A1cCL1dmnM6sHtDiluO5GNyDqUfb7OkwGak7OXf6U0NPTQ3R0NADAy8sLhoaG2PltAkmJRIKRI0fCxcUF+/btg7a2NjZt2oQff/wRp06dgq6uLnbs2IHjx49jyZIlqFatGnbs2IHLly+jUaNGmZ5z6tSp8PPzw+zZs+Hg4IDg4GB8/foVVlZWWL9+PcaNG4cLFy7A0NAQpb5N9Ll161acOnUKCxYsgK2tLe7fv4/ff/8dZmZmaNiwIUJDQzF27FgMHDgQffv2xdOnT7F8+fJ8e58IKWiOTarD3Z3h1q3Mux80sHsGj54uBZcpQohSla1i8Og1IJNr49Prj6hcq2KmacO+cpMJG+nHQt/IONN0hBRlLVoA+/dzU6S5u2s6N4QUXyUz6JbEAkmfsk+XrOTHODlctX0l+dPXmTEGLy8v3L59G4MGDcLXr19hYGCAxYsXQ1dXFwBw8uRJyOVy/PHHHxCJuAv/pUuXokGDBrh37x6aNWuGXbt2YdSoUWjXrh0AYMGCBbh9+3am53337h3Onz+PnTt3okmTJgCAihWF98PkWycgc3NzGBtzFyOpqanYunUrdu7cibp16/L7PHz4EAcPHkTDhg2xf/9+VKpUCdOnTwcAVK1aFS9fvsS2bdvy5f0iRBMOHRJh/34gPj7dythXQNInGBgAA36pSWMCEFII2FYU5t4OCozMJujmBj20NI0CQEE3KZ5GjACMjLh57NPPZU8IyV8lM+jWMQb0K2SfrpSSPl+lLFTbVydvP9Cenp6oW7cuJBIJGGPo0qULxo0bh4ULF8LOzo4PuAHgxYsX+PDhA+rVq6dwjJSUFHz48AFxcXEIDw9HnTp1+G3a2tpwdHTM0MQ8TUBAAMRiMd98XBXv379HUlISRowYobBeIpGgZs2aAIA3b97A2VlxyiQXFxeVz0FIYVS+PDBp0vdra3x7EEIKC1tb4eZX0Ot4tMgkXXJCMmISuZvLlmYlZ8BQUvLo6AADBmg6F4QUfyUz6K6Zh6bf3zc3VxM3NzfMnz8fOjo6KFeuHLS1haLS19dXSJuYmIjatWvjzz//zHAcM7PcTU+U1lw8JxITuTmst27dCktLS4Vt6W8SEEIIIZpQuarw2xb0LvMZQb58jATA3WC3NE9Ud7YIIYQUcyUz6C4C9PX1UblyZZXS1q5dG+fPn4e5uXmmo49bWFjg8ePHfM21VCrFs2fPUKtWLaXp7ezsIJfLcf/+fb55eXo6OtygUDKZjF9XrVo16OrqIiQkBA0bNlR63GrVquHatWsK6x4/fpz9iySEEELyyNbOlF9+/0GcabqwGOHGsWX16urMEiGEkBKApgwrBrp27YoyZcpg9OjRePDgAT5+/AgfHx8sXrwYnz9/BgAMGTIE27Ztw5UrV/DmzRssWLAgyzm2bWxs0LNnT8ycORNXrlzhj3nu3DkAQIUKFSASieDp6YmoqCgkJCTA0NAQI0aMwNKlS3H8+HF8+PABz549w549e3D8+HEAQL9+/RAUFITly5fj7du3OH36NL+NEEIIUafK9sJc3UHhWfTnDhfqJCwrlVVrngghhBR/FHQXA/r6+ti7dy+sra0xduxYdOrUCbNmzUJKSgpf8z1ixAh069YN06ZNQ79+/VC6dGm0bds2y+POnz8f7du3x/z589GxY0fMmTMHSUlJAABLS0uMGzcOq1atQpMmTbBo0SIAwMSJEzFmzBhs3boVnTp1wo8//ghPT09+6jJra2usX78eV69eRffu3XHgwAFMytgZlhBCCMl3puVMYGrKLQeF22aaLixMWP6utxQhhBCSYyKW2UhaRUBiYiICAgJQs2ZNGBgYZL+DBslkMvj5+cHFxQViceZN2kjRQuVafFHZFk9UrsWXqmXr4gI8fgxoawPJyYCypEuWALNmccvHjgE9e6onz0VeQgKQ1q0tPh4oXTrfT0Gf2eKJyrX4Kmllq2o8SjXdhBBCCCkx0qZFkkqBkBDlacLeBvHLluYJas8TIYSQ4o2CbkIIIYSUGOnnIg4KUp4m7J0QjVuaRKg1P4QQQoo/CroJIYQQUmJUNn3BL79/4KU0TVikMDWnZSVzteeJEEJI8UZBNyGEEEJKDNsK0fxy0NsUpWnCoowBAAZ6CTAso3wqTkIIIURVFHQTQgghpMSwrWHKLwe9Vz7IT9jXMgAAS9PIgsgSIYSQYo6CbkIIIYSUGJXthTnAgoIzjrYtSZEgKt4MAGBZJqbA8kUIIaT4oqCbEEIIISVGGUtTmBlGAQAevawCmUSmsP3LR2HgNMuyiQWaN0IIIcUTBd2EEEIIKTFEWiK0dA0EAHxNKINHnoEK28M+RvPLlmWV9/kmhBBCcoKCbkIIIYSUKG1bS/jly2e+KGwL+xTPL1uWkxdYngghhBRfFHQTQgghpERp28OWX758w0RhW1iIULttWV5UUFkihBBSjGlrOgNEkb29fZbbx44di3HjxhVQbgghhJDip6pTJVQt/x5vP1fGnae1ER+dAENTblC1sChhijBLKz1NZZEQQkgxorage/Pmzbhx4wYCAgKgo6ODBw8eZLvP9OnTcfz4cYV1zZo1w/bt29WVzULn9u3b/PK5c+ewbt06XLhwgV9nYGDALzPGIJPJoK1N904IIYSQnGjb+D22Hq8MiUwXN88GoNPAOgCAsFQXPo1l7UYayh0hhJDiRG3NyyUSCTp06ID+/fvnaD93d3fcvn2bf6xevVpNOSycLCws+IeRkRFEIhH//O3bt6hXrx5u3LiBXr16wcnJCQ8fPsT06dMxZswYheP88ccfGDx4MP9cLpdj69ataNWqFZydndGtWzeFYJ4QQggpSdp2teKXLz+owy+HhQlpLC1BCCGE5JnaqkjHjx8PADh27FiO9tPV1YWFhUWO9pHJZJDJZNknBHDkCDB/vhbi4nJ0ijwxMgLmzZOjRg2onE+AC5QBYZ+056tWrcLvv/8OGxsbGBsbgzHG13qn+X7dli1bcObMGcybNw+VK1fGgwcP8Pvvv8PU1BQNGjTIr5da4qS9vzkpV1I0UNkWT1SuxVdOy7ZF16rQ0mKQy0W4fJlBJuN+Yz9/1gLA9eUuW1YG+lfJgkwGMb8ogzreLPrMFk9UrsVXSStbVV9noWuXfO/ePTRu3BjGxsZo1KgRJk6ciDJlymS5z8uXL1U+/sKFDnjxonRes5ljixenYtcu4MmTJyrv8+HDB8hkMvj5+QEAXr9+DQDo3LkzDAwMEBUVxT8SEhL4dAAQHh6O+Ph4+Pn5QSKRYOvWrZgxYwYMDQ0RGRmJKlWqoEmTJti6dSt0dHTy86WWSDkpV1K0UNkWT1SuxVdOyrZmTQc8e1Yaz56JcPnyM1hYSPD+fS0A+tDVlePtWz+IaCy1TGklJaHut2V/f3/I9fXVdi76zBZPVK7FF5WtokIVdLu7u6Nt27awsbHBx48fsXr1avz00084ePAgxGJxpvvZ2dkp9HXOyrx5wLx5rMBrumfP1gUAODk5Zfla0nv37h3EYjFcXFwAAKmpqQCArl27wjJdmzczMzNoa2vz6QDg/PnziIyMhIuLC169eoWUlBQsX75c4fgSiQQ1a9ZU2I/kjEwmw5MnT3JUrqRooLItnqhci6/clG23biI8e8Ytf/7siLZtGWIjYwHoo7xZNOrWdVFbfouFhAR+0dnZGSid/5Ua9Jktnqhci6+SVraJiYkqVQDnKOj+888/sW3btizTnDt3DtWqVcvJYXmdO3fml+3t7WFvb482bdrwtd+ZEYvFKhdq377co6DJZFrw88tZXrW0uC73aenTnhsaGioc4/t03PlkEIlEEIvFSEnhpj/5+++/FYJ1gGvOXxI+EOqWk3IlRQuVbfFE5Vp85aRs27eVYulS7jf06hF/DBrgiIgYbgoxS+NQiMVmastnsZDufRaLxQrP8/9U9Jktjqhci6+SUraqvsYcBd0jRoxAz549s0xTsWLFnBwy22OVKVMG79+/zzLoLunMzMzw6tUrhXVpo8YDQLVq1aCrq4uQkBA0bNhQE1kkhBBCCp3GjeQorRePhBRDXLljhfDgSDDG3Zy2NE/IZm9CCCFENTkKus3MzGBmVnB3fT9//ozo6OgcD6xW0jRq1Ajbt2/HiRMn4OLiglOnTuHVq1eoVasWAK5mfMSIEVi6dCkYY3B1dUVcXBwePXoEQ0PDbG+kEEIIIcWRrr4uWrg8xjmfBvgcbYlrJ+8A+BZ0l03RbOYIIYQUG2rr0x0SEoKYmBiEhIRAJpMhICAAAFCpUiWU/tbnp0OHDpgyZQratm2LhIQEbNiwAe3bt0fZsmXx8eNHrFy5EpUrV4a7u7u6slksuLu7Y8yYMVi5ciVSUlLQu3dv9OjRQ6F/wcSJE2FmZoatW7ciODgYRkZGqFWrFn755RcN5pwQQgjRrLYtE3HOh1vee0CXX1/eUqqhHBFCCClu1BZ0r1u3DsePH+ef9+jRAwCwe/duuLm5AeAGCov7NqKZWCzGy5cvceLECcTFxaFcuXJo2rQpJkyYAF1d3QzHLwl69eqFXr168c/d3NwQGBioNO348eP5adqUEYlEGDp0KIYOHZrv+SSEEEKKqnbdKwDLuOVL9+vx6y0tadhyQggh+UNtQfeyZcuwbNmyLNOkDyBLlSqF7du3qys7hBBCCCEZ1GxYDdZmoQiJsoKcCQPiWFqVzBv+hBBC8p+WpjNACCGEEKIpIi0R2jZ6k2G9pbX65pwmhBBSslDQTQghhJASrW2bjE3JLW1MNJATQgghxREF3YQQQggp0dr0tMuwzrISzdFNCCEkf1DQTQghhJASzdLWAs5VhHFmdHUkMLWgmm5CCCH5g4JuQgghhJR4bT3i+eVyltoQadHo5YQQQvIHBd2EEEIIKfHa/uDKL9N0YYQQQvITBd2EEEIIKfHc3QFzc265Th3N5oUQQkjxorZ5ugkhhBBCigoDA+DiReDaNWDYME3nhhBCSHFCQTchhBBCCABXV+5BCCGE5CdqXk4IIYQQQgghhKgJBd2EEEIIIYQQQoiaUNBNCCGEEEIIIYSoSZHu0y2XywEASUlJGs5J9mQyGQAgMTERYrFYw7kh+YXKtfiisi2eqFyLLypbDUhOBuzthWVR/k+1RuVaPFG5Fl8lrWzT4tC0uDQzIsYYK4gMqUNkZCSCgoI0nQ1CCCGEEEIIISWUra0tzNPmnVSiSAfdUqkUMTEx0NPTg5YWtZQnhBBCCCGEEFIw5HI5UlJSYGJiAm3tzBuRF+mgmxBCCCGEEEIIKcyoepgQQgghhBBCCFETCroJIYQQQgghhBA1oaCbEEIIIYQQQghREwq6C8C+ffvQqlUrODk54X//+x/8/f01nSWSQ1u3bkXv3r1Rt25dNG7cGGPGjMHbt28V0qSkpGDBggVwc3ND3bp1MW7cOERERGgoxyQ3/v77b9jb2+OPP/7g11G5Fk1hYWH47bff4ObmBmdnZ3Tt2hVPnjzhtzPGsHbtWjRr1gzOzs4YNmwYzYZRBMhkMqxZswatWrWCs7Mz2rRpg40bNyL98DRUtoXf/fv38csvv6BZs2awt7fHlStXFLarUobR0dGYMmUK6tWrh/r162PmzJlISEgowFdBlMmqbCUSCVauXImuXbvCxcUFzZo1w9SpUxEWFqZwDCrbwie7z2x6c+fOhb29Pf7991+F9SW9XCnoVrNz585h6dKl+PXXX3H8+HE4ODhg5MiRiIyM1HTWSA7cu3cPAwcOxKFDh7Bz505IpVKMHDkSiYmJfJolS5bg+vXrWLNmDfbs2YMvX75g7NixGsw1yQl/f38cOHAA9mlzzn5D5Vr0xMTEoH///tDR0cG2bdtw9uxZTJs2DSYmJnyabdu2Yc+ePZg/fz4OHToEfX19jBw5EikpKRrMOcnOtm3bsH//fsydOxfnzp3Db7/9hn/++Qd79uxRSENlW7glJibC3t4e8+bNU7pdlTL87bff8Pr1a+zcuRNbtmzBgwcPMHfu3IJ6CSQTWZVtcnIynj9/jtGjR+PYsWPYsGED3r17h9GjRyuko7ItfLL7zKa5fPkyHj9+jHLlymXYVuLLlRG16tOnD1uwYAH/XCaTsWbNmrGtW7dqMFckryIjI5mdnR27d+8eY4yx2NhYVrt2bXb+/Hk+zevXr5mdnR3z9fXVUC6JquLj41m7du3YnTt32KBBg9jixYsZY1SuRdXKlStZ//79M90ul8tZ06ZN2T///MOvi42NZY6OjuzMmTMFkUWSS6NGjWIzZsxQWDd27Fg2ZcoUxhiVbVFkZ2fHLl++zD9XpQzTvof9/f35NDdu3GD29vbs8+fPBZd5kqXvy1aZx48fMzs7O/bp0yfGGJVtUZBZuX7+/Jm5u7uzly9fspYtW7KdO3fy26hcGaOabjVKTU3Fs2fP0KRJE36dlpYWmjRpAl9fXw3mjORVXFwcAPA1Z0+fPoVEIlEo62rVqsHa2hp+fn6ayCLJgYULF6JFixYK5QdQuRZV165dg6OjI8aPH4/GjRujR48eOHToEL89ODgY4eHhCuVqZGSEOnXq0HdzIVe3bl14e3vj3bt3AIAXL17g4cOHaN68OQAq2+JAlTL09fWFsbExnJyc+DRNmjSBlpYWdeErYuLj4yESiWBsbAyAyraoksvl+P333zFy5EjUqFEjw3YqVyDzGbxJnn39+hUymQzm5uYK683NzTP0ByZFh1wux5IlS1CvXj3Y2dkBACIiIqCjo8P/aKQxNzdHeHi4JrJJVHT27Fk8f/4cR44cybCNyrVo+vjxI/bv34/hw4fjl19+wZMnT7B48WLo6OigZ8+efNkp+26m/vqF26hRoxAfH4+OHTtCLBZDJpNh0qRJ6NatGwBQ2RYDqpRhREQEzMzMFLZra2vDxMSEvpuLkJSUFPz555/o3LkzDA0NAVDZFlXbtm2DtrY2hgwZonQ7lSsF3YTk2IIFC/Dq1Sv8999/ms4KyaPQ0FD88ccf2LFjB/T09DSdHZJPGGNwdHTE5MmTAQC1atXCq1evcODAAfTs2VPDuSN5cf78eZw+fRqrVq1C9erVERAQgKVLl6JcuXJUtoQUIRKJBBMmTABjDAsWLNB0dkgePH36FLt378axY8cgEok0nZ1Ci5qXq1GZMmUgFoszDJoWGRmJsmXLaihXJC8WLlwIT09P7Nq1C+XLl+fXly1bFhKJBLGxsQrpIyMjYWFhUdDZJCp69uwZIiMj0atXL9SqVQu1atXCvXv3sGfPHtSqVYvKtYiysLBAtWrVFNZVrVoVISEh/HYA9N1cBK1YsQKjRo1C586dYW9vjx49emDo0KHYunUrACrb4kCVMixbtiyioqIUtkulUsTExNB3cxEgkUgwceJEhISEYMeOHXwtN0BlWxQ9ePAAkZGRaNmyJX8t9enTJyxfvhytWrUCQOUKUNCtVrq6uqhduza8vLz4dXK5HF5eXqhbt64Gc0ZyijGGhQsX4vLly9i1axcqVqyosN3R0RE6OjoKZf327VuEhITAxcWlgHNLVNWoUSOcPn0aJ06c4B+Ojo7o2rUrv0zlWvTUq1eP7/ObJigoCBUqVAAA2NjYwMLCQqFc4+Pj8fjxY/puLuSSk5Mz1KSIxWJ+yjAq26JPlTKsW7cuYmNj8fTpUz6Nt7c35HI5nJ2dCzzPRHVpAff79+/x77//okyZMgrbqWyLnu7du+PUqVMK11LlypXDyJEj8c8//wCgcgWoebnaDR8+HNOmTYOjoyOcnZ2xa9cuJCUloVevXprOGsmBBQsW4MyZM9i0aRNKly7N9z8xMjJCqVKlYGRkhN69e2PZsmUwMTGBoaEhFi9ejLp161JwVogZGhry/fLTGBgYwNTUlF9P5Vr0DB06FP3798eWLVvQsWNH+Pv749ChQ1i4cCEAQCQSYciQIdi8eTMqV64MGxsbrF27FuXKlUObNm00nHuSlZYtW2LLli2wtrbmm5fv3LkTvXv3BkBlW1QkJCTgw4cP/PPg4GAEBATAxMQE1tbW2ZZhtWrV4O7ujjlz5mDBggWQSCRYtGgROnfuDEtLS029LIKsy9bCwgLjx4/H8+fPsXXrVshkMv56ysTEBLq6ulS2hVR2n9nvb57o6OigbNmyqFq1KgD6zAKAiKXdHiZqs3fvXmzfvh3h4eGoWbMmZs+ejTp16mg6WyQHvp+7Oc3SpUv5GygpKSlYtmwZzp49i9TUVDRr1gzz5s0rMc1miovBgwfDwcEBs2bNAkDlWlRdv34dq1evRlBQEGxsbDB8+HD07duX384Yw7p163Do0CHExsbC1dUV8+bNQ5UqVTSYa5Kd+Ph4rF27FleuXEFkZCTKlSuHzp0749dff4Wuri4AKtuiwMfHR+mASz179sSyZctUKsPo6GgsWrQI165dg5aWFtq1a4fZs2ejdOnSBflSyHeyKtuxY8eidevWSvfbvXs33NzcAFDZFkbZfWa/16pVKwwZMgTDhg3j15X0cqWgmxBCCCGEEEIIURPq000IIYQQQgghhKgJBd2EEEIIIYQQQoiaUNBNCCGEEEIIIYSoCQXdhBBCCCGEEEKImlDQTQghhBBCCCGEqAkF3YQQQgghhBBCiJpQ0E0IIYQQQgghhKgJBd2EEEIIIYQQQoiaUNBNCCGEEEIIIYSoCQXdhBBCCCGEEEKImlDQTQghhBBCCCGEqAkF3YQQQgghhBBCiJpQ0E0IIYQQQgghhKgJBd2EEEIIIYQQQoiaUNBNCCGEEEIIIYSoCQXdhBBCCCGEEEKImlDQTQghhBBCCCGEqAkF3YQQQgghhBBCiJpQ0E0IIYSUQD4+PrC3t4ePj4+ms0IIIYQUa9qazgAhhBBS2Bw7dgwzZszIdPvBgwfh4uJScBkqAkJDQ3H06FF4enri/fv30NLSgp2dHUaPHo0mTZoopP3y5Qt2796Nx48f4+nTp0hMTMTu3bvh5uaW4biDBw/GvXv3Mqxv1qwZtm/fnml+Nm/ejDVr1qBGjRo4c+ZM3l8gIYQQkksUdBNCCCGZGD9+PGxsbDKsr1SpkgZyU7hdvXoV27ZtQ5s2bdCzZ09IpVKcPHkSw4cPx5IlS9C7d28+7bt377Bt2zbY2trC3t4evr6+WR67fPnymDx5ssK6cuXKZZr+8+fP2Lp1KwwMDPL2ogghhJB8QEE3IYQQkonmzZvDyclJ09koEtzc3HD9+nWYmZnx6/r374/u3btj3bp1CkF37dq14ePjA1NTU1y4cCHboNvIyAjdu3dXOS/Lly9HnTp1IJfL8fXr15y/GEIIISQfUZ9uQgghJJfWrVsHBwcHeHl5KayfM2cOHB0d8eLFCwBAamoq1q5di169esHV1RUuLi4YMGAAvL29FfYLDg6Gvb09tm/fjn379qF169aoU6cORowYgdDQUDDGsHHjRjRv3hzOzs4YPXo0oqOjFY7RqlUr/Pzzz7h9+za6d+8OJycndOrUCZcuXVLpNT1+/BgjR46Eq6sr6tSpg0GDBuHhw4fZ7lejRg2FgBsAdHV10aJFC3z+/Bnx8fH8ekNDQ5iamqqUnzRSqRQJCQnZprt//z4uXryImTNn5uj4hBBCiLpQ0E0IIYRkIj4+HlFRUQqP9DWno0ePRs2aNTFr1iw+qLx16xYOHTqEMWPGwMHBgT/O4cOH0bBhQ/z2228YO3YsoqKi8OOPPyIgICDDeU+fPo3//vsPgwcPxvDhw3Hv3j1MnDgRa9aswa1bt/DTTz+hb9++uH79OpYvX55h/6CgIEyaNAnNmzfHlClTIBaLMWHCBNy5cyfL1+vl5YWBAwciISEBY8eOxaRJkxAbG4uhQ4fC398/V+9heHg49PX1oa+vn6v9Ae71uLi4oF69emjatCnWrFkDiUSSIZ1MJsOiRYvQp08f2Nvb5/p8hBBCSH6i5uWEEELI/9m77/iazj+A4597b4aECCJ2xI4REVtsSkttWqqDGj8ttVqKWjWLltZqSxVtVY0WVaNW7T1DEFsiVkREIju59/z+OHKvK0NCbub3/XrdV557znPOec59csf3PM95nmR8+OGHiZbZ2Njg4+MDgLW1NbNmzaJr167MnDmTUaNGMW7cONzd3RkwYIBxG0dHR3bv3o2NjY1xWffu3Wnbti0rVqzgq6++MjtGYGAgO3bswMHBAQCDwcDixYuJjo5m3bp1WFmpX98hISFs2rSJyZMnm+3bz8+PBQsW8PrrrwPw1ltv0aZNG2bPnk2jRo2SPFdFUZg0aRL169fn559/RqPRAPDOO+/Qrl075s6dy7Jly9L0+vn7+7Nz507atGmDTqdL07YJXFxcqF+/PpUqVSIyMpLt27fz448/4ufnx9y5c83yrl69mrt37/LLL7+81LGEEEIIS5CgWwghhEjGxIkTKVu2rNkyrda8k1ilSpUYOnQoc+bM4fLly4SEhLBs2TJjYAyg0+mMQafBYCAsLAyDwYC7uzsXL15MdNw2bdoYA24ADw8PADp27Gi2Xw8PDzZv3kxgYCAuLi7G5UWKFKF169bG5/ny5aNz584sWbKEoKAgnJ2dEx3T19cXPz8/Bg4cmOg+aC8vLzZu3IjBYEh0/smJiopi2LBh5MmThxEjRqRqm6Q8f0Gic+fOTJgwgbVr1/Lhhx8aR5EPCQlh/vz5DBo0KFE3dyGEECIzSdAthBBCJMPDwyNVA6n169ePLVu2cO7cOT777DMqVKiQKM+GDRtYtmwZN2/eNOsandTo6MWLFzd7nhCAJ7c8NDTULOh2dXU1tlQnKFOmDAB37txJMuj28/MDYPTo0cmdJk+ePMHR0THZ9Qn0ej2ffvop165dY8mSJRQtWvSF26RFnz59WLt2LYcPHzYG3XPnzsXR0ZH3338/XY8lhBBCvCoJuoUQQohXFBAQgL+/PwBXrlxJtH7jxo2MGTOGVq1a0a9fP5ycnNDpdCxevJiAgIBE+ZPrip1cK7OiKK9QevN9jBo1iipVqiSZJ7VTcI0fP569e/cye/ZsvLy8Xrlsz0u4+BAaGgqoFwzWrl3L2LFjefDggTFfTEwMcXFx3L59+6UGbxNCCCHSgwTdQgghxCswGAyMGTOGfPny0bt3bxYtWsQbb7xhvJ8aYPv27bi4uLBw4UKzFuj58+dbpEz+/v4oimJ2rISW7JIlSya5TUJLeb58+WjYsOFLH3vWrFmsX7+esWPH0r59+5feT0oSLlQkdCMPDAzEYDAwbdo0pk2blij/a6+9Rq9evRg3bpxFyiOEEEKkRIJuIYQQ4hUsX76cM2fO8OOPP9K8eXOOHTvGpEmTqFOnjjEoTGi5fjYQPnv2LN7e3pQoUSLdy/TgwQN27txpDPzDw8P5+++/qVKlSpJdywHc3d0pXbo0y5Yto3379uTNm9ds/aNHj154r/TPP//MsmXL+Pjjj+ndu/crn0d4eDg2NjZmg8QpisKPP/4IQOPGjQF1urLvv/8+0fZz584lIiKCcePGmXW/F0IIITKSBN1CCCFEMvbv38+NGzcSLa9VqxYuLi5cv37dOP92y5YtAZg5cyadO3dm8uTJzJs3D4DmzZuzY8cOPvnkE5o3b87t27dZvXo1FSpUIDIyMt3LXaZMGcaNG4ePjw9OTk6sW7eO4OBgZsyYkew2Wq2WadOm8b///Y/27dvTtWtXihYtSmBgIMeOHSNfvnwsWrQo2e137tzJN998Q5kyZShXrhwbN240W9+oUSMKFy5sfP7DDz8AcO3aNUDtgp8wH/igQYMAuHDhAiNGjKBdu3aULl2amJgYdu7cyenTp+nRowfVqlUD1BbvVq1aJSrTr7/+CpDkOiGEECKjSNAthBBCJCO57t8zZsygRIkSjB49moIFCzJ27FjjujJlyvDZZ58xffp0tm7dyptvvknXrl15+PAha9as4eDBg1SoUIFvvvmGbdu2cfz48XQvd5kyZZgwYQJff/01N2/epFSpUnz33Xc0adIkxe3q16/PmjVr+OGHH/j999+JjIzE2dkZDw8PevTokeK2ly5dAtRu7KNGjUq0/rfffjMLuhMuSCRYt26dMZ0QdJcoUYLatWuzc+dOHj58iFarpVy5ckyePPmF5RFCCCGyCo2SHqOvCCGEECJLaNmyJRUrVmTx4sWZXRQhhBBCAKmbbFMIIYQQQgghhBBpJkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiL3dAshhBBCCCGEEBYiLd1CCCGEEEIIIYSFZOspw+Lj4wkNDcXW1hatVq4fCCGEEEIIIYTIGAaDgZiYGBwdHbGySj60ztZBd2hoKH5+fpldDCGEEEIIIYQQuVSZMmVwcnJKdn22DrptbW0B9STt7OwyuTQp0+v1XLlyhUqVKqHT6TK7OCKdSL3mXFK3OZPUa84ldZsJoqKgUSM1fegQWOC3mNRrziT1mnPltrqNiorCz8/PGJcmJ1sH3Qldyu3s7LC3t8/k0qRMr9cDYG9vnyv+AXMLqdecS+o2Z5J6zbmkbjOBosDly2o6Tx6wwG8xqdecSeo158qtdfuiW53lRmghhBBCCCGEEMJCJOgWQoh0EBub2SUQQgghhBBZkQTdQgjxCkJC4L331F6Vw4dndmmEEEIIIURWI0G3EEK8pH37oEYN+OMP0OthwQKFh3dCMrtYQgghhBAiC5GgWwgh0iguJo5xg87QooVCQIBpucGgYfPKC5lXMCGEEEIIkeVI0C2EEGlw9YwfjTyu8NWPNVEUDQDuVSKM6//eZJ1ZRRNCCCGEEFmQBN1CCJFKe9d7U9OrMCeuVAPAShfHjKkRnD6Th6IFHgCw43h1IsMiM7OYQgghhBAiC5GgWwghUmnEaFsiYvIBULHETY5su8qY8XmxttXRsdklAKJi7dmx1icziymEEEIIIbIQCbqFECIVggIecvpaFQCquFzn9Hln6rSqalzfuWseY3rj3zJ/mBBCCCGEUEnQLYQQqbB74xVjukPLAPIVzGe2vmU3D/LleQLApv1ViY+Nz9DyCSGEEEKIrEmC7lxszJgxDBo0yPj8gw8+YPr06RlejmPHjuHm5kZYWFiGH1uI1Nq10xREt2rjkGh9nrx5aOuldisPfuLEoa0yirkQQgghhJCgO0saM2YMbm5uuLm54e7uTuvWrVm4cCHx8ZZtOVuwYAHDhg1LVV4JlEVuohgUdh4pC4CtdTSN21VNMl+nDoox/ffaxxlRNCGEEEIIkcVJ0J1FNWnShIMHD7J9+3b69OnDwoULWbp0aaJ8sbHpd+9ogQIFyJcv34szCpHLXD/rj3+QCwCN3S9i52CXZL43362GlS4OgI27y6IYlCTzCSGEEEKI3MMqswsgkmZjY4OzszMA7777Lrt27WL37t3cvHmTsLAwqlevzsqVK7GxsWH37t3cu3ePmTNncujQIbRaLbVr12bcuHGUKlUKAL1ez9dff826devQ6XR069YNRTEPCD744AMqV67MuHHjADWgnzdvHps3byY4OJjixYszYMAAvLy86NWrFwB169YFoEuXLsycORODwcCSJUtYs2YNDx8+pEyZMgwaNIg2bdoYj7Nv3z6++uor7t27R40aNejSpYvFX08hXsXOf009Olo1S753R8GiBWhe4xS7TtfmZmBpfM7G4lHTJiOKKIQQQgghsqjcGXT7fguXvn1xvkK1oNk/5sv2dYRHp1+8beXPoMpnL1e+JNja2vL48WMAjhw5Qr58+Vi+fDkAcXFx9OvXD09PT1auXImVlRU//PAD/fv3559//sHGxoZly5axYcMGvvrqK8qXL8+yZcvYuXMnDRo0SPaYo0aNwtvbm/Hjx1O5cmVu375NSEgIxYsXZ8GCBQwZMoRt27aRL18+8uRRR25evHgx//zzD5MnT6ZMmTKcOHGCzz//nEKFClGvXj3u3bvH4MGDee+99+jevTvnz59n1qxZ6fY6CWEJu055GNOtu7mlmLdzb3d2Pf2I+HuTDR41LVkyIYQQQgiR1eXOoDsuDKLuvDhftEsSy4JSt21c+tzrrCgKR44c4eDBg7z//vuEhIRgb2/PtGnTsLFRW9A2btyIwWBg+vTpaDQaAGbMmEHdunU5fvw4jRs35tdff2XAgAG8/vrrAEyePJmDBw8me9ybN2/y77//snz5cho2bAiAi4vp9XB0dATAycmJ/PnzA2rL+OLFi1m+fDk1a9Y0bnPq1CnWrFlDvXr1WLVqFaVLl2bMmDEAlCtXjitXrrBkyZJ0eb2ESG96PezeraYLFQJPr+Ip5u/YxZbBT4dG+PtvmDjRsuUTQgghhHgVwcEwcCDcvg1Dh0L37qCVm5DTVe4Muq3zg13JF+fL45z0stRsa50/7eV6xt69e6lZsyZxcXEoikL79u0ZMmQIU6ZMoVKlSsaAG+DSpUvcunWLWrVqme0jJiaGW7du8eTJE4KCgqhRo4ZxnZWVFe7u7om6mCfw9fVFp9MZu4+nhr+/P1FRUfTt29dseVxcHFWqqPMbX79+HQ8PD7P1np6eqT6GEBnt1Cl42smEli1Bp0s5v4sL1K6tbnfmDNy6BaVLW7yYQgghhBBp5u8PbdrApUvq8yNH4JtvYMYMaN0anrbniVeUO4PuKq/Q9fv57uYWUr9+fSZNmoS1tTVFihTByspUVXZ25oM4RUZGUq1aNWbPnp1oP4UKFXqp4yd0F0+LyMhIQO1iXrRoUbN1z14kECI7+e8/07dN69ap26ZzZzXoBtj4RwBDxiTRa0YIIYQQIhN5e8Obb8K9e+bLT5+GN95QGxtmzoQ0tMGJZEjHgSzKzs4OV1dXSpQoYRZwJ6VatWr4+/vj5OSEq6ur2cPBwQEHBwecnZ05e/ascZv4+HguXEh+HuFKlSphMBg4ceJEkuutra0BdYC2BOXLl8fGxoa7d+8mKkfx4sWNeXx8fMz29Wy5hMhqdq83vU9atdSnkNOk85uPjem/1wald5GEEEKIbG3fPvjyyzKcTsUwSeLlREfDtWtgMCS9/r//oGlTU8BdqRKsXAk1nxmLZvduqFcPevaEiAjLlzknk6A7B+jQoQMFCxZk4MCBnDx5koCAAI4dO8a0adO4f/8+AL169WLJkiXs2rWL69evM3ny5BTn2C5VqhRdunRh7Nix7Nq1y7jPrVu3AlCyZEk0Gg179+7l0aNHREREkC9fPvr27cuMGTPYsGEDt27d4sKFC6xYsYINGzYA8M477+Dn58esWbO4ceMGmzZtMq4TIquJiYzhkE8lAMoWvUW5Ci/oW/5UNU9HyhfzB2DfWQ8e3X9sqSIKIYQQ2UpsLPTooWXLFifefFNLcHBmlyjn2bsXKlZUH8WKwbvvwvLlEBCgrv/jD2jbFp48UZ83aACHDqn5Tp6EVaugfHnT/lavhlGjMvw0chQJunMAOzs7fv/9d0qUKMHgwYN58803GTduHDExMcZ5t/v27UvHjh0ZPXo077zzDnnz5qX1C/rKTpo0iTfeeINJkybRtm1bJkyYQFRUFABFixZlyJAhzJkzh4YNGzJ16lQAhg8fzqBBg1i8eDFvvvkm/fv3Z+/evcapy0qUKMGCBQv477//6NSpE6tXr+bTTz+14KsjxMu7dCyI2HhbAFp7+aV6O41WQ6fXbgKgN1ix5Y/ke5UIIYQQucnevfDwoXrr1sOHGkaPztzyJCc8HL79Fn77DZIZAinLiY2FL75Qu4Xfvq0uCwpSg+i+fdUxZipUgPfeg7g4dX3Hjmqrd+HC6nOtFt55By5ehB9+AHt7dfmPP8KxYxl/TjmFRkluJK1sIDIyEl9fX6pUqYJ9wn9EFqXX6/H29sbT0xPdi0ZiEtmG1GvOpdfrGdx9O4vWvwnA2h+O8PZAr1Rvf+CfszTtpA5e2KbeCbYeqYNGK6ORZDZ5z+ZcUreZICICnl7cJzwc8uZN90NIveY8H38MixebL9u/H5o0yZzyJOXaNXV8loQ7MUeOhK+/ztqDil25ogbTJ0+allWpogbfCS3azxswAL7/HlK6k3XOHPX8AWrUUPefUv7c9p5NbTwqLd1CCJGMQ6fLAqDRGGjZKeX5uZ/XsK07RQs8AGDb8brM/GxfupdPCCGEyE70enU6zed99JHaSpsVbNumDhz27NBHs2ero3lnRYoCS5eq92InBNzW1upFgvPn1enADh6ESZOgUSN1FhatFqZOhUWLUg6gAYYNU4NtgLNnYd48i55OjmXRoPvx48eMGDGCWrVqUadOHcaOHUvEC+7C/+CDD3BzczN7TJSJboUQGezBrSB8/NSp7mpVuIRTibTNBKCz1jF/2jXj87HzmrNm4eH0LKIQQgiRrRw5AoGBarpJk8fUrat2uPX1VaepykyKoo7U/eabpqlCn94dCcC4cWp368xy/74a8H7+OfTqpY4u7ukJxYtD//7wdBIhKlVSX+fPP1eDa2trNdj+8ks1+A4Jgbt3Yfz41LXcW1nBTz+Z8k6cqE4zJtLGokH3yJEjuXbtGsuXL2fRokWcPHkyVQF09+7dOXjwoPExSu7cF0JksN0bTQFzq0YPXmof3T9pyPShe43Pe39Wi0Obz71q0YQQQohsaf16U7pVqxB+/NFAQg/kadPUbt2ZITwcevRQ74dOuPG2Uye1tfvrr035PvlEHeE7o507B9Wrw/Dhaqv7ihWwY4fa8pxwEQPU7uKnT0Pt2snvy8EBnpvZ94Xq1YNBg9R0ZCQMGZJ97nPPKiw2T/f169c5cOAAf/31F9WrVwdg/PjxDBgwgFGjRiWax/lZefLkwdnZOdXH0uv1ZlNXZUUJ5cvq5RRpI/Wac/33n2mOjZZt8r10HY+a3ZjrN/ezbFNTYuLy0Ondkhw69JAKVQumV1GNQoPCWL/ch/V/22FjrWfxH+UoXNIp3Y+Tncl7NueSus0Eej06Y1Kv9h1O90NIveYUigLr12sBDVZWCk2ahFK9up4hQzTMnaslOhoGDlT4919Dht47HRgIbdpo8fExHfTLLw2MG6eg1cJnn8GjRxpmzlTbKnv3Vsib10CHDhlTPm9veOMNLcHBiV8Ua2uFIkXA1RVGjDDQqZO63BJvlylT1Pq7d0/Dpk2wfr2ezp0T58tt79nUnqfFBlL766+/mDVrltk8z/Hx8Xh4eDBv3rxkR87+4IMPuHr1Koqi4OzsTIsWLRg0aBB2dnaJ8ibcuC6EEOlJMSh0bVuMgOBS5LGOYvdub2zsbF56f/FxekZ/BPvO1QOgdOloli27RIECr/6FFBur4fSeIHZsycP2E/WJictjXPfe6zv59Ku0dYsXQojU0kZFUfPp6FdnDhzAkMRvNSESXLpkx/vvVwWgQYNQFi5Um7UjI7W8/XY1AgPV79lp027Qpk1IhpQpOlrDgAFuXLyoDgKYN6+eqVNv0rRpqFk+RYGvv3bhzz+LAGBjY2DmzBt4eYVhbW25Jl9fX3s++aQiYWFqO6m7eziDB9/BySmeQoXiyJ9fn6EXKHbtKsCYMepcYkWKxPLnnxfImzeZicBzmRcNpGaxlu6HDx9SqJD5jz0rKyscHR0JCgpKdrv27dtTokQJihQpwuXLl5k9ezY3b95k4cKFyW5TqVKlbDF6uY+PD9WrV88VI/nlFlKvOdOVM34EBKs3cjWqfpF6XvVeeZ/rtoXStHk4F6/k49atPEyaVIPt2w3Y2r7c/hQFZszQ8N13GkJCkv7GXfNfc6bY3sO1SslXKHnOIu/ZnEvqNhM8M06Ph4eHxUYvl3rNGdatM31Xvf+++r+SUK+LFkGXLuq6+fPL8tFHrhRM/w5hZvR6db7wixfVcpUqpbBtG1SuXDbJ/CtXgpWVgVWrtMTGavnsswpYWytUrgzVqyu4u6t/mzeH9Lj+dPw4DB6sJSxMLZ+Xl8KWLXbkz1/h1Xf+kmrUgL17FbZt0/DggQ3r1tXg22/NLzok9569dQsKFID8+TO40BYWGRnJlStXXpgvzUH37NmzWbJkSYp5tm7dmtbdGvXo0cOYdnNzw9nZmQ8//JBbt25RunTpJLfR6XTZ5oM4O5VVpJ7Ua86y51g5Y7rV6zbpUrdOxQuxdQfUr692ZTt4UMPw4Tp++unl9rdypTqYybOc8wfxTtuLRERoWba5CfF6a2ZP8uOHv5L+7MzN5D2bc0ndZqBnXmedTmf2PP0PJfWa3SWMWq7RQOfOGu7fN9Vr585q0L1hAzx4oGHCBB0//mjZ8owaZSqTgwNs3aqhWrXk/8d0Ovj1V3X6rc2b1WVxcRp8fDDrmu7qCnv2QNmkY3czDx+CwQBOTuZvnyNHoE0bCAtTnzdpAlu2aHBwyPz3wA8/QLVqEBUFCxdq6dEDGjZMnO/Z9+ySJeoI9UWKwO7dULVqBhfaglL7uZTmoLtv3750SbgUlQwXFxcKFy7Mo0ePzJbHx8cTGhqapvu1azwdo97f3z/ZoFsIIdLT7j2mL8/XuqbfN4OrK2zaBM2aqV9WS5ZAt9d8eKNH9TTtJypKHewlwTvvQK9OvrTqUgFr22YE333E2vJPCI92YOnG+oy/fp8S5Yul23kIIYQQaeHrqz5AHUm7WDF1NO5nzZ8PO3eqg5otXgz/+x/UqvVyx/vjD3Xe6u7dkw7wfvgBvv1WTet08Ndf6kBlL2JtDevWqVN0HTigDnB2+TLEx5vy+PtDq1bqSOHFiye9n5gYNQj97Te155pWC87O6gBnRYuqQXd4uJq3RQv1t4MFOpK8lLJl1ZHQx4xRLxj07AlnzkChZO5mO30aBg9WzzMwEFq3Vl+b1FyUyEnSPHp5oUKFKF++fIoPGxsbatasSVhYGOfPnzdue/ToUQwGg9oFKZUS7tlOS6AuhBAvS1Hg8NOZvfLm1RvnpkwvdevC3G9N387/G1yIsOAnadrHd5MuEBCgptu2hVWroO07VbC2tQbAqUQhBvU4BUBsvC3fTLicPoUXQgghXsKGDaZ0165J5ylVytSDS1FefoTsbdvgvfdg8mS1RfbNN2HXLtO+tm5V953gxx/h9ddTv38bGxg4UA3sz59Xg+OzZ9URxauoM41y44a6z+faHwEIDVXL9OuvpjIZDGpAeu6c6cIDqAHq5s1ZJ+BOMGKE2voOarfxDz9Muq7CwtQLH8/OwX73rnpe9+5lSFGzDItNGVa+fHmaNGnChAkTOHfuHKdOnWLq1Km0a9fOOHJ5YGAgbdq04dw5dQqdW7du8f3333P+/Hlu377Nf//9x+jRo6lbty6VK1e2VFGFEMIoIMD0RVCtWoRFekv+b4COljVPq8d7WJLRA86ketv7N4OYMV/t9aPT6Zn9TdK/SEZMqYadjTpp5+K/m/Dg5WY9E0IIIV7Zs1OFpdRhdtgwcHNT04cPw++/p+04igITJpgv+/dfNcirUUOdC7xHDzXIBRg9Wm1RfxW2tuDhAe+/rwbMZcqoy8+fV4PrhAAa1ICzaVO1izWo9363batO8VWqlNqSnqB9e9i4EbLisFVWVupFB6enE6Rs2gTffWeeR1HU1/b6dfV5nTqmixLXryd/USKnsug83bNnz6ZcuXL07t2bAQMGUKtWLaZMmWJcHxcXx82bN4mKigLA2tqaI0eO0K9fP9q2bcusWbN4/fXXWbRokSWLmaW4ubml+FiwYEFmF1GIHO3odtOMCB7ujy1yDI1Ww8+/OZPXVv0mXrS+Kbv/Sl3g/eVnvoRHOwAwoPNBqlZLehC1IqWd+WiAui4qSsucOelQcCGEECKN/P3hlNr5ilq1TEFpUmxsYN480/NRo0z3NafGpk1w8qSaLltWva0rgY+Pur+EIPjtt+Grr1K/79QoWVINvBNmRj52DDp3VruT+/qCl5famg1qwLpnj9ryfvKketE/JgZCQtTW43/+SZ8B2SylVCm1dT/B6NHq+SZYvFjD2rVqukABWLtWnVs8oU6SuigRE6PeZ//22+pr+dlnlj6LDKRkYxEREcrJkyeViIiIzC7KC8XHxysnT55U4uPjU8z34MED4+OXX35RatWqZbYsPDzcmNdgMChxcXGWLrpIQWrrVWQfn767R1GvzyrKTzP/tmjdLhi/13isskX9lSePnqSY3+fQFUWriVdAURzsQpVA/wcp5r9zR1FsbNT9582rKA8fpmfpsyd5z+ZcUreZIDxcMX6IPfP7JD1JvWZ/331n+jeZNk1d9qJ67dTJtM3Ikak7jl6vKDVqmLbbuFFR4uIUZe1aRfHyMi0H9XlkZHqcXdLOnlWUAgVMx3vtNUUpWND0vGxZRbl82XLHz0ijR5vOy9VVUYKC4pXff7+g2NoajMs3bDDlv3pVUYoWNX9t9uxRlI8+Mn+NQFEcHTPnnNIitfGoRVu6Rdo5OzsbHw4ODmg0GuPzGzduUKtWLfbt20fXrl2pXr06p06dYsyYMQwaNMhsP9OnT+eDDz4wPjcYDCxevJiWLVvi4eFBx44d2bZtW0afnhBZ3tEzTsZ0xVoFLHqsQZOa0LS6NwA3A0szduCpFPOPHB6KQVH7u4/7+DRFSqc81kWJEtCvn5qOiDBvPRBCCCEywrp1pnS3bqnb5ttvMU6pOXcuXLr04m02bFDvrQa1K3OHDmo36LffVruqHz6s3nvcu7flW5E9PNQW7ISu4f/9p7Zgg9raf/gwVKpkueNnpKlT1cHxQO3V0Lu3li++KEdMjNrbbtgwtbU/QYUKaot3gQLq8//+UweLW7zY9BqBOrBcTurga7F5urOqP/9UB2l4krZxi16Jg4M6mEP58umzvzlz5jB69GhcXFzIn8rJ7hYvXsw///zD5MmTKVOmDCdOnODzzz+nUKFC1Kv36nMQC5ETxETGcOqq+i1YscRNHArls+jxtDotS38riEf9SKJi7Vmwphlvv3uWJh0Tj962beVJtp+oA4Cr822GTW2QqmOMHg1LlijEx2uY/+0TRgzR4+hcID1PQwghhEjS/ftw6JCarlIFUjtEU7lyalfwqVPVkcGHDVMHSNMkfUcVer06onaCKVMS5/XyUh8ZxctL7Srdvr1pILHWrdWLEA4OGVcOS7O2Vgd09fRU79HeulUD5AHUix9ff514m4SLEq1aQWSkabm9vXrP//vvq+usclCkmoNOJXW++SZ1V8vS2+zZ2nSbb3Do0KE0SriklAqxsbEsXryY5cuXU7NmTUCd1u3UqVOsWbNGgm7xSuJj47lxPoCKnmXQaJP5NswmvA9cJTbeHYAGHncAy99MVcHTlemf7uWzWc0B6PuxA8fqhVKomKMxT3xsPCPGFjA+nznhFnnylkrV/l1doXf7Eyz9ux6hEQ4smLKX8Quap+MZCCGEEEnbuNE0qnVyo5YnZ8wYdYTvW7fUltGNG81bTJ+1di1cuKCmvbzUOa6zgtat1cD7yy/V6UKnT1fvW89pXFzU6c/atzcty59fYc0aTbLn6+UFW7ao920XK6aOON+pE+SzbHtHpsl1QfeoUeqohhnd0j1ypCHd9lc9NRMJPsPf35+oqCj69u1rtjwuLo4qCcMICvHUqd2+zPsmmA4ddbw9MOVLwr7Hr9O5q5Yrd8rStt4J1vxbGYdC2ffy7dF9D43p+vXjU8iZvoZObcKf//hwxLc61+6Vw6m4Gix7eKjzhobfPMrFW40BaFDZhx6fpO1S/ReTivLLP/HoDVZ894sHwyY/ydb1JIQQIutTFHWE6wRpDbrt7WHOHLV7OMCnn8IbbyTuFh4fD5MmmZ4n1cqdmdq2VR85Xbt28PnnagMnwM8/GyhXLuUpYJo3V+fxzg1yXdD91lvqI6Pp9eDtnT77snvu00aj0aA8NzlefLwpYIh82m9j8eLFxunaEtjkxMtt4qUpBoX3e9tw6XZjVmyDdzcc4oeV7jg6OybKu3HpMT4YUoUnUeotDv8er0uLBhfZssOZomVSvtc4qzpyzPR+qN/UGYjOkOPqrHUs+zUvNRtFER2nvr/9/dXHpk0AjY1558wmzT0Kytdw5d3XD7JiW2MehRdi5cL9fDyxaTqegRBCCGFu3TrYv19NlysHTztbpkm3btCypTrFlp+fGtjNnq3eF53gjz/gyhU13bQpvPbaKxddvKSZM6FmTQNhYVfp2rVCZhcnS5GB1HKAQoUKERQUZLbM19c07VH58uWxsbHh7t27uLq6mj2KFy+e0cUVWdip3b5cum0afOCPnY2oUe0JBzedMy4z6A1MGriXzv3rGwNu4/ZXq+LVIIqrZ/wyqsjp6qiPCwD2thFU98rYL4vKdctxYu9tPurhQ8OGSXev6t7yMA3bpa2nS4JPRxc2ptesl1ZuIYQQlhMaCkOHmp5//fXLtT5rNOpgWgn39u7Zo85p/c47cO0axMWpLdsJslord26j1UL37gp16oS/OHMuI0F3DtCgQQPOnz/P33//jZ+fH/Pnz+fq1avG9fny5aNv377MmDGDDRs2cOvWLS5cuMCKFSvYsGFDJpZcZDWrfnlgTGs1egD8g0rRrFM1Jg48xKNH0KVzPJMXNTfm69HyMMd3XKSU011AHYW7YfN8HN97J0PL/qruXb+Pf5AadNd1u4qVTcZ3BHJvWJFFq6tz6JD6g+XGDfUetilDDjN50F5+/vPlAm4Az6ZuVCxxE4B952pw70ZgehVbCCGEMDN+PNy7p6bbtUt71/JnVa2qjjZetqxp2Zo16sBsr78O16+ry157Tb1vWoisSILuHKBJkyYMGjSIb775hrfeeouIiAg6PzfSxPDhwxk0aBCLFy/mzTffpH///uzdu5dSpVI3GJPI+fRxelb/6waAtS6WU3uv0cRdnXvDoOiYuqgRJUrAP5vVLthajZ5Zn+1j1U4v6rauypEjGtxd1Ys9D8MK06JdCbZsyZxzeRlHd/sZ0w1qPc60ciTQatUfGB07woT5DZn4ffNXug9bo9XQo50/AIqi5a9lmTCipBDilYWHhPPrNwc5sfNiZhdF5DLx8XDkiDr95KkUZrg8cQK+/15N29vDwoWv3vrctq06EPL8+epUUgnl2bvXlOfZFm8hsppcd093dtK1a1e6PnNpsH79+ly+fDnJvEOHDmXos/14nqPRaOjduze9e/dO93KKnOHAjjvcfVQagDb1vfFsWo89p/XMGrmHid83Ra/XEROj5i1QAFb/9oQ3OpguKZeqWJwDx0Pp0u46e0+WJzJSQ6dOMGgQDB9moFz5rH2N76iPqzHt1dg+E0tiOT0+LMm0JWp6zd8FGTItc8sjhEibf5YdY/DoUgQ8bIxWa+Dvv9W5iIWwBEWBq1dh5071sWcPhIWp63Q6dS7tIUPMA+r4ePjoI9OI5ZMmQZky6VMeGxv1eB9+qB579mwIf9qLuU0baNgwfY4jhCVk7V/BQogM88fG0sb0u73VgdN01jrGzmvB4UNa4zzz7u5w8iS80aFAon0UKOLItoPl6d5dfa7Xq/diVagI3Zod5dDmcygGJdF2WcHRs6bxDeq3y5nT6Lk3rEjV0tcAOHTBg4DLd9O8jwsXoEED9YePXp/eJRRCJOX21Xt0bXqUTv3qE/CwJAAGg5Z33km5xVGIF1EUdb7k775Tp+jq00ftDl6nDpQoAW5uMHiweqtTQsAN6uf/sGFq/uhnxhxdsADOnFHTHh4wfHj6l9nBQZ2C6/p1tcy9esHy5el/HCHSk7R0CyGIjYW//lLTefNCh/fczNbXq6/hwgU4dw48PcHaOvl92drCqlXqF/Xs2RAVpXZnXr+/Aev3Qz2384wc9oS3PmqQZeb1jo9Xu8OBekW+WLGcG1D2aH+bL39QB4n7c8V9PptWIk3bf/wxHDumPqpWhYEDLVFKISwrIjQCnyM3qd3CDWvbFD7QMpk+Ts/3kw4y7ttahEc3MC4v7hTMvWAnIiPVeXGPHYPSpVPYkRDJmD5dnUo3NZycoFUrNej9+Wd12a+/qhdj169XnyfsS6OBxYtT/r3wqooUgRkzLLd/IdKTtHQLIdi+HUJC1HSnTmrg/TxbW6hbN3VfoFqtem9VQAB8NfYmxQveN647ftmd7oO8+HbMvnQq/as7d069OADglbYpsLOdHv3KGdOrd9RKIWdix4/DwYOm51+MjpYB2US2o4/T06rBDbzauvPxW0czuzjJ8ve9TYNqlxn2VTPCo9XxHIo4BvHHvMNcv1XI2JX2/n1o1yaSsOCwFPYmRGLHjpnPb/0srRaKFlUHJ5s5U+1R8eABrF4NS5aof+2f3ol18qTaMt6zJ0REqMs+/ljtFSWEUEnQLYTgj5WmZt13302//To5wRfTy+J3pxC/fnOQGmVNYxJs3511pq06uu+RMZ3TfyS41SpNjRpq+sQJdYT01Joz6brZ89Anefj0f9eTyS1E1rRq4VGOXlJnAli+pRE3fG5lcokSu+Fzi6bN4OTVqsZlAzrv59Jla3oObYidvYaNGzHe9nPe156321whLiYuk0osspvwcHj/fVOvroEDYdcu8PFRg+u4OPWCzq5dMHq0Oi+29pmooUcPOHzYdL/2gwdw6JCaLlYMvvoqQ09HWELgXri9CW79CXc2Q9hl0MdmdqmyLeleLkQuFx4SzsYNWsAep4KxvP66Tbofw8bOhl4jG/PBZwqFHR/xKLwQF26mrVvzqwgJfMz0kd64uGgYOq1pom7tR3dcBBoD0MDjDlAyw8qWGXr0gLPqwPSsXaveE/cifhcC+GtbGQCKFAxBH28g+IkTa3Y35MOVJ2nzXh3LFViIdBIfG8/kb0zvb0XR8v2sG8z5PWP6ZkeEqs2AeR2T6E701NVzgbRoac2dYHWciQrF/fjlpzAatW9qlq9wYdj6dxheXvE8Ci/EjpN1+KTHfhavb5Jlbt0RSdPr1d5V+fJlXhlGjFDnuQaoV08dkTytXcFr1FBbud95Rw3OE8ydqw64KrKA68vBfzXYFFAf1k//okCEP4T7QYQflOoMNWeZb3uoB0Q/MF+m0UHespC/EjhUBMdqUKwV5CuLSJm0dAuRy/3z61miYtU+Ym+3OGrR+680Wg1VywQAcPdRcR4/CLXcwZ6Kjoimw2v+zPm9OcNnNGP++P2J8hw5q06dZ2sdjWd9Z4uXKbP16GFKr1mTuoHt5k2/jkHRATD43bPMHu9rXDdoRBEiwyLTtYxCWMKK33Vcu1fGbNnSDTUJDwm3+LH9LtzGpWQshQpb8dl7e3l4OzhRnkuXoFmbIsaAu2rpaxw4ZE+j9h5J7rOSe37+XhmAjZU6tcSSjU355vOsc+uOSEyvV0fazp8fli3LnDJs2gQ//aSm7e3h999f/t5rJyf491+1NdzODvr2xTiYqrAwgx5CfcHvDzg9AvYnMRl66AW4vwNurYVrP4Hv13B2LJwdpz6/vwOeXIEnScyOpM2TeJmih/BrcHcrXJ4HxwdAwAbzPPpYrOJD0ucccxBp6RYil/tjjembtmcvR4sfr2qFUA6eV9O+J2/h9WZ1ix3LoDfQp9MpDl1oZFz2+ddeNGxxkbqt1W6bD28HG3+E1654BRu7pH/c5iTlykGdmpGcPGOPt7eGK6dvUqlW8lepHz8I5ecNtQGws4lk4JjqOJUoxC8rvdl3zpObgaWZ9ulevlraPIPOQIi0i4uDKVNNLcB13K5y8nJFQiMd+W3uPgZNbpbC1q9u8ZxrhEQ0B+C7P5qzdEMon/fby/CpdclXIC8XLqj3zwYGqmWsXvE+u3Y5UqR0yhcCm3SswfLZh3hvuPo5N3ZuY7r3vU2ZaqUseTriJe3da2oVHjlSDVDTu8XbYFAHMktqbuzAQOjXz/T8u++gYsVXO56VlXrf91dfmXdBzzUM8RB1FyJvq3/RgG0hKNrCPF/YVYi+BzEPISZY/RsbAlpbsM4HVvnAygEKuEOhWub7v71B/RsXCiFnIcQbHp8D/XMXvCPvgv0zPQnjHr+4/Dp7kmyHrfwpxEeALg/EPoYnV58G6FfU5QkKP3df3qMT1LjeGiW4JpR4HYq/AYUbgs72xWXJwSToFiIXC74TzPYTNQEo5XSXxu0tFwAnqFZVgb/V9MWzj/F603LHmvDRflb/19xsWZzehu7vO3DGJ5QCRRw5tvsG4ARAg5q558psj9eOc/JMcwDWLPNnQgpB98/fnCE8Ws3bu/1JCpdSu7ku+jk/Hl6xxOlt+ObXRrzb7yruDV/x15sQFrJ8Ofj5qenXX4dZ4wzUfBpnL1hWio8nGtDqLBMxKAaFNVvLmS0Li3JkwsLmLPz9AUM+PMe8lQ0IClKjJE9P2LmzGIULp27/7w5rhPfpvXzzW3P0BisWz7nGjGUSdGdFK1aY0iEh6ijg6TWtVmys2oL91VfqRaa33oL33lPnr9Zq1enB+veHoCA1f/v28L//pc+xIZcE3IF7IOBviLqtBtmRtyH6PigG83z5ykHH58Y8OfI+BB9/8THchj8XdMfBwVR2HwjxNg+66y6GmrPVoDnusfo39rHaYp3XFfKWAVunpK/QVB6e9DEUBaLuqcH3o1NQsKbZas0j9Rw1j8/A4zNwcZYa2Bdtrl6IKFQXCtVWLzTkIrnh7SGESMZfy84Tr1dbunu2u2KxH5zPqupZwJi+6G+5+yiXfX3M2PKq1ehZt/goDSr7AOD3wIW+b19CUeDIAdPVWq9G6X8/e1bVvZ8pOF6zKfl72ONi4pi3vJLx+fCxLsZ05brl+KL/YQDi9dZ8PCAKg96QaB9CZLaYaIVp00zPp0wBz6ZuNK3uDcCl2+XZuea0xY5/8ugTbgaqn3deVXwY0Hk/Om08AIGPizB+rpcx4K5dG/77j1QH3AlGTK6KtU4d5Ojnde5ER0S/YAuR0SIjYd0682Vz5qjB8qswGGDlSqhcGYYMgXv34OFDWLQImjRRezeNGwfTpsHmzeo2RYrA0qVJx1q5VvQDuLcTfGfD4Q9gqyfEP9eSHOINV+ZDwHo1gI66mzjgBrBKahqYVL6prZ8baFabTBtpvvLg0g08pkGzzdA1CEo+15Kh1an3cOcrAwU91cDXpTOU7gZOdSBP4bT/E2g0amBftDlUGQFWdubr8xQjwray+TJ9pNol/czn8F9z+MsR9ndOvO/Yx0m/njmAtHQLkYv98aepO3nPPsUy5JhVG9Uwpi/4uVrkGLt2wUfj6hmfzx17kK4DmlGn6R0864QQElGQDfvrs3AhHD2V35ivQasyFilPVlS6ckm8qvhwxLc6F25V5MKRa1TzqpAo358/Hud2sNpttUPD47jVrme2/os5DVi16SZX75bl0AUPls7cz//GNU20HyFe1ZNHT/huwimW/1WeJ1H2phUaHVgXwNZWS/PmpVi0SJ1H+Fk/z9hPQIDarN2uHdSvry4fNjiG/R+p6flLXXkjHWdveNaa9abPmb4DC9N/SHU+O3WDcSMCWbfPNE9h/TrRbNuZ56UGoSpapghvtTjEql2NeBhWmL9+OsT7nzZ68YYiw2zcqI4a/qzbt2HVKujdO+37UxTYtg2++MI0OGaCPHkg+ul1F3//xKOJL12qBt65giHePHDVR8O+ThAXBvFh6t/YUIh/knjb0ItqcJrA/tkeJBqwKwZ2pdTl9qXAvqS63KZg4n2V6gz5q6jBt21htYXZpqDakh3/BOLCIT5cbQV+lsYKas5Rz0FrC45VoEANsLH8LYEvQ3HtyaWQKnhWLoEuaA/c2w73dqg9AoyZDGCVP/HGG8uqr0GeolCiLdRfknEFtzQlG4uIiFBOnjypREREZHZRXig+Pl45efKkEh8fn9lFEekoO9frrUt3FPUrW1Eql7qmGPSGDDmuwaAojo7qcV1c0n//588rSv78ivHchn3oa7b+n98uGNdZWxuUPNaRCihKyUJ3zfJl57pNrblf7DW+FhMG7Em03qA3KLUqXDTm2bv+TJL72bX2tDFPfrvHyoVTDyxb8FeQG+o1p4mJjFHmj9urOOd/YPw/S+lRpYpBOXNab9w+MixSKVHornH9yb3+xnVxMfFK6VJRxnWXL6d/+fV69bMOFMXKSlGCg83XH9t+XnnntUPK/zrtU0Ifhr7SsQ78c9Z4Ll5Vzr3SvlIlPNz0woeHW+QQOek9++abppdr+vRn/2fV/5O0CAlRlNatE///t2qlKCdPKkpYmKL89puivPGGomi15nk++sgip5cmFqtXg0FRgo4pyunPFWVHE0X5q7Ci+Ex9Lo9eUVZqFGUlKT/+sFIU/z/Nt40KUpQHhxQl3F9R9LHpW/YcIsm6NRgUJcRHUa79rCjHPlKUrTUV5cqPz20YZf76738rYwv+klIbj0r3ciFymfBw2LrxCUN7nzMue7dTQIZNMaPRQLVqajogAMLC0m/fQUFqK1bCPjt1gjk/m3dx6vBBVT77TE3HxWmIjlO7RTWo7p9+Bckm3u7nhkajduNas8U1UdfwfX97c/paFQBqV7xI0041Eu0D4LW3a9Kr7UFAvU+1XTdnAgMtWHCRKxj0BlZ+d4jKZe8zdHozgsLUAcV02ngqFPczPUrepkIFsLVVR+L39dVQv348347ei0Fv4KcZx7n7SB0NvHPjo9RuZrqtxcpGx+ChphF6Fy5M//M4elT9rANo3RoKFTJfX+/1aqza1ZCf/m5KfqckWn7SoFG76lQvcwWAI77VOXM094xTkVkUBZYsgRYtTF23kxIYCNu3q+nSpdWpGhurM1Xi65vyts+LiFDvx96507Ssdm31+c6datrBAT74QG0Jv3NHncarZUvo1Uvt0p6jKAo8PK52Xf6nLOyoD77fQNABdbCy0Ivm+TVaUxduq3xgVwLyV1bvN3YbDg2WQ9sz0D0cSr9lvm2ewuDcEPKWBq0Fp3vJaTQadYC48v2g3iJoexoqfmyeJz4SirdR7xG3K/6010DOId3LhcgFTh19wpYdDuzaBUeOQHy8A9DGuL5n/4ydX7FqVTis3grMpfPR1GuYxLQUL2H6+Hv4+6s/rmvXVu9x0+kS55sxAw4dgmPHTMu86uW++x9LlC9GE3dv9vt4cuVOWYo7BfFa3Su07lyO1p2KM+db03XZEYMfp3hh5vuVnpxvFsZpn/z4+UGHDuoovfb2yW4iRLKuXIHub8Vx1se8e3SPloeZOrsEFWuWSbTN+fMGunWL4coVe2LjbBjxdXO2/XeKc9erGPNMnlEo0Xb9+sGXX6rzJi9fDlOngmM69tpcsyIEULuaPjtdnyVotBoGfRTNwC/U5z8sLciSBilvI15edDR8/DH8+qv6/NQpuHwZihdPnHfNGnW6MFAHN9Nq1Wm2DqrXK5k5U/3cfNHttbGx0K2b+h0G6r3/33+vDpqW3EBmxYrBsGHqI0d5dApu/q6O7B2RzIVzuxJgncQbutMtNeDWJvEjQWQO20LQ4t/MLoXFWKyl+8cff+Sdd96hRo0a1KlT58UbAIqiMG/ePBo3boyHhwcffvghfglDjQohXsrEj/ZSx8uBL7+EAwcgPt60TqvRM6znPip4Wube6uRULXHemL548GS67DP4TjBLflVbiezyxLFxI+RNYhwTABsbWL0aCjiaXowGTRP/GM8Ner9ruoftQagzq3Y1ou/g4ri4wOZDast2KeeHvPVR3RT3k69gPjZty4/L03HWTpyA9983/cgUIrViYtSg4qyPaXqZ1+uc5OR/vqz+r2GSATdAlSrwy3JfRnxgmqd656naBD5Wb1x9u8URPBpXSrRdoUJq6x+oPYF+meebKM/L0sfp+XONOoe2jXU8nTsp6bbv5Lw/2MN4T/vKlfD4scUPmSsFBKiDlCUE3ABPnqgt2El5dtTy999X/775Jri7q+kjR0wBeHL0ejVgT2gxz58fduxQpx3LFSOHK8+9f4KOwOW55gG3RgfFXof6P0PXB9DlDtT7MfG+bBwl4BYZymJv0bi4ONq0aUPPnj1Tvc2SJUtYsWIFkyZNYu3atdjZ2dGvXz9iYmIsVUwhcrQ1Cw8z9afmZssqVoSBA2H9yvs8vPeEuX9Ydm7apFStbHpPXzgfn0LO1Fs4/RyRMWqU3b/TYUq+oFdSmTKw9qfzlHK6S7dmR/Bq654u5chuPvy8EctmHqBjo2M42CXd13/YqMJY2764G12JErBli2kQqw0bYFSfF/yKFEl6dD800YBLucX06XD+6XW5ihXi+e/P02w/UYfaLaukvCFgYwuzljdm55rTlCh0z7hcozHw5fTk57seMtDU02XBj/bpNgr/wc0+3AtRB6lsU+8UjgUsfxtPvnymQbmiouCXXyx+yFxn/36oUwdOPr1mbG+vBsAAv/1m6smV4NIlU95atdTeXqAGyqNGmfLNnJn8MRUFPvoI/vpLfW5np37e1qyZ/DbZXsQtuLkCjvWHfyqq3cWfVaKt+tcs0A6EltvVbsx5Up7jXoiMZLHu5UOHDgVg/fr1qcqvKAq//fYbAwcOpFWrVgB8/fXXNGzYkF27dtGuXbtkt9Xr9eizeHNKQvmyejkzWlhwGEtmeVPSxZp3hni9eIMsJivX69kDV+g70nQP7pgh1/jf8LK4Ghu11S+jzCh75ZpFjemLV+xfuQwRoRHMX6Geq04bz/DxZVK1z5bdquPXDaAoCorZNlm5btNbr5EN6TVSnR7s+IEAdh0qyX//aTh+HGrUgP79Dalusa5aVe1G2aGDBr1ey7crGlOuzF4+/rKJZU8ildKjXvVxehZNPYyTsxU9PmmQruMhKAaFMf0OMGdFCwDs7RWKFlVHGS5qfxnXIvf5ZFRpKtTI2N4pGcXbG2bM0AIarKwUVq/RUKNGjVTV17N126JbDc54PeKT3odZv7c+I3rtp3K9psnup7K7Na1qnWLX6dpcv+/Kpt+O0r5Xyr07UmP176HG9NtvxWXY58mAAbBwodqK98PCOD4ZpEGrs0DAr9ejMyb1Funakhmfxb6+8McfGhQFihbl6XtQfS/u3q1hxAgN8fHq61m2rMK6dQYOHNAwbJjaljVkiMKRIwbj7U2//aYhoZ3rvfcM6PWmFtu334bx47XcuqVh61Y4c0aPh4d5eRQFPv9cw9Kl6j6srRX+/NOAl1f27U1kVq+Pz0P4dTQxQRDzAJ5cRxO0H03ETbNtDHe2oDg9c8uJfRlovAGcG5uPFp5dX5QcIjf9foLUn2eWuaf79u3bBAUF0bBhQ+MyBwcHatSowZkzZ1IMuq9cuZIRRUwXPj4+mV2ELMPHJy8TxxUj4K7649LKfgsVamfMtFXpLavV65NH4fR5v4yx5bdHy//o9oEjISHehGSBcXUUg4KDXX6eROXnwo1ieHt7v9L+Ni8L4FF4ZwC6Nt1PSIwjId4PX72gZL26tbS8haFTpwd06qTO/arVwvXradtHkSIwbegtvviuCwBDpzUhzvAPjTu5vHSAev16Hk6ccOCNN0IoWPDVe0e8Sr3++1sAE+Z3BuDmjb9p29sl5Q3S4J8lAcxZ0dn4PDJSw82bcPMmQGWgMiu3POL3X/ZQpEwSU9JkY/Fxev73bgHi49Uu4H363ENR7pHWj4dn63bMN7aMjD2JlU3+F37OvPXWbXadVqfq+WlxPKU80njg58THxbNul9qkmcc6ijKemlf+rEuL+rVKcOx0ca5et2blwn+o3iz9ByXSRkWR0NB67tw5DHZ2KeZ/FRnxWRwdrWHZsuL89ltR4uNf3Bm0fv0wpk+/gcGgp359qFixClev2nP6tIbJk2/TtetDDAb45Rd3wBatVqFaNR+8vc0/w7p3d2b2bHWAv3HjHjN1qh8Ajx5ZcfWqHfv2FWDtWvU2CY1GYcqUmxQrFpLm90aGUQzYxt3GLuYKdjHXsIu5ic4Qhk7/BEVjxWXXX4xZfXx8KHv3Cwo92Zn8/gADVjy6ewl/g/dza1wgyB/IfYOhZnW57ffTi2SZoDsoKAgAJycns+VOTk48fJjyj+dKlSphn8VH69Hr9fj4+FC9enV0SY3slIvEx8OMGRqmTdOg15t+gPucsOetfp6ZV7CXkBXrNT42nvaNz+P3QG0Jq1PxIks3NCBP3vQZrCy9VC3ty7HL7vgHlaZi2QLkdUz6Buz9/5wl+EE0nfrURatL/CMoLiaOLmtNF2vGTilBdc+Kr1y+rFi32Ymnpychj3bz9a8tMSg6Pp3eBfffrzL843v0/KQOtva2L97JU//+cZJe/SsSE2vDX3+5sGuXgTJlXq5cydXrrl3qiMAdO754IKPR/U1dj6f+2JY33jNQq47NyxXoGX//fJypP3U0PveqF8njJ3YEBsKjR6ZCPQovxJiRLhw4VTzZ9012NH3ofnxuqvPAV694n3nzimJjU/QFW5m86nu2erXqjP3qEY/CC3HctzI1PAq8Ui+GXX+eNo643q6hN15NMnZEs8/6HaPHaXVEr40bivDBMM/0P0hEhDHp4eGR/EAaryBRvT65ps73GxMMih50NqDNA7qnD62tOuexXSl1hOkEcWFoD70NPJ05C8WU1uVh55mGDPruY67fSd3/3GefGfjqq7xYWVU3Llu8WB0hXE2XZvjwUly4APfuqf+PrVtDq1aJb2WqWBGWL1cIDtawY0chYmMLcf48BAYm/v9btEihXz9XIIXeLo9OoQk9D5G3ICIATeQtiAxQnxtiQGsDWluUUt1Q6v1ktql2fweIC1VfR60NWOVFscqrDjr2zF+lRAdwqGDaMPw6mosz0YRegNDzaPSRSRZN0dri6elpVq9W+krwXNCtaG3BqT5KkaYozk3BqQEFrezJWZcac6bc9vspMjIyVQ3AaQq6Z8+ezZIlKU9SvnXrVsqXL5+W3b4ynU6XbSo1O5XVEvwuP+T9fk4cOpT4i2TXQWemZdPXJivV65iPDrDrdHMAijgGsX5TAfLmz3o/zKtWCOHYZTV99cxtar9WNVGeM3sv0apbDQyKjn5bDrDk78aJfgSv/OEIAQ/VeVfaex3Hs0m9dC1nVqrb7GbG0ubcun2Y1f+pPZjO+1ek/xcVGTfrAZ+8d5yPR7vj7FI4xX1sWn6ctwZ4EhuvBrV+fhpatNCxZw+8yldNQr0qBoVJgw8z5Ue1y+KaNeqgRMmJCI3gwHlT38/YeFt6vgenT5vu6XwZx3de5IOhNUiYyXPiR3uZvKi56TixcMf3Gm3e1HDlbnnO+bkx4O3DrNrplWHT/VmSz6GrTFus1oFOG8/yRSHY2b1cz6eXfc/qdDrqVb3BtuOFeBhWmFuXblGueukXb5iMv1ZFGdM9epDhnyNd+tWlxIR73H1UnH8O1eXutUBc3Eqk70GeOSedTpf0dBFpFR8Fj8+pI1Nb54fSPY371+l0cLgHPD774v3U/AaqjHxmvwYI/C9RtsDQInz2+7f8cfg94zJrawOjRmlp2lSd6ivwxi0CffYTGFmBWI0TPbsE0aldBDzJr049ZZ0frAvQokU+evaEVasgOFjDpEk64uJMx/rgA02S/wf588PQoeoo+nq9hv8SFxONxsDsd0cxoPDvsM1ZvV/Z1hnyFIE6C8wzX/oaAtYl/9roo0EfjUaJSVxnj06o02w9e+yk9pHXBQq4mZ7HhcDN5ckfE0CjQ2OdDx3xoFNDEJ1Oh7ZUB7Avrp6LrTPYFUdTsAbo8iR9bJEt5JbfT6k9xzQF3X379qVLly4p5nFxebluds7O6tXg4OBgihQpYlweHBxM5cqVk9tMZCOr5h/m4zHVCItSP0K1Wpg4EdYsvY5vQHlOXK7C4wehFCiSjnO15DKr5h9m9ormAFjp4vjz17u4uCU9t3Jmq1rFAFvU9IUzj6j9WuI8a369j0FR3/9LNzWhwIf7+OaXpsYgw6A38PUCU6vE6C+yVmt+bqfVaVm5vQFvLTnCtwvycviiGqwGPi7CxO+L8NVPUQwYEMP4L21xTmK8m79/Pkb3j2sSp1cDbjvbGKJibAkIgGbNYPeOSCpVffleTopBYdz/9jFjWXPjshUrUg669268SGy8+b2+16/D//6njoj/olbypPhduE2Ht52JilXP5f03DjLpB/MBDm1soGyNCvy94Tr1m4fxJCo/a3Y3pPaovXw+u3kSe80+4mPj6dsnzljPoz48SO2WzTOlLA1qh7PtuJo+tuf2SwfdcTFxrN+ttmjmtQ2n3XsZ/zlsbWvNgB6XmfRjcQyKjp/mXGHqT+kcdL+smGB17uSouxB5B6LuqH/DfCH0gtqCDVCorjHoNrJN+ULdgUuNKZL/AW6V7z+3JvGbc/u513lnwWoeR5raTxu7HWDxL0Wp2uCZke6vbIaKn5hvvCeJg+crxzffXOeff9ROAIsWgZ2dAdCSN6+Bzq38Ieppi7w+FsIuPX348sn7H7F4cRXu3lV35VQwlholDlDdxQcPl3M0qnQItxJXIBqIDoSE4QK0tlB7njr3dAL7JP5vdfZqy79VPjDEqi3e9qUS5zPEJV6WFP1zgxzrnum9lK8cFPCAAjWgoAc4Vge7YuqxEz4kn70PtsQb6kOIHCxNQXehQoUoVMgy0+qUKlUKZ2dnjhw5QpUq6gil4eHhnD17Nk0joIus6chWH94dZrpfv2yZOH5faU3DhhBy+Ta+q8pjUHTs/ecSnfvXz8SSZl8Xjlyj3+eexufffXGYpp0yfmTy1KpWwxQsXbyQ9D26W/aY34M4Z0UzChbYy7j5zdX1v53kwi21ZbtRtbM07pA1LzDkZlqdlm4fe9HtYzi67Tzffv2EdXvrYVB0RMfZMf97WPYrfP45fPaZOvIywF8/HqHnkDrE69VR03u2Osw3y+rxRlu4cAHu3IHmjcPYvf0+leuWMx4vJjKGf//wZtVfDtyLrMonn6gDFT0/nY5iUBjVb5/xIlWCnTvVaaMSyvG8bVtMXSa/nejD5HnVCQ2FtWuhRQt1zt60ePwglDfbxvAgVP3x27S6Nz+vr5ts63WVeuVZseCY8XNyzLdN8Kxzitbv1E7bgTPBlSvqNEtFi0IRp1icCuvQWeuYM+YgJ682B6CKy3Umzs+8iaXrN8oHT2cXOnY0jp5DX24/u/705lG4enGmQ+Nz2Odv+IItLON/IyozdXE8eoMV3/1WB7cqh3j/00Yv3vBl6GMg4iFE3lWD6WcfNb4C+2c+z2/9BSdS8WZ5fC5xEOjSFQrWAFsn0FirrbaGGNBH8/3qegz+pjtWOj1/LDzN27We2c6mILwdBmhAo2H/AR2d+9kSHa2+1woWNPDN5ED69LRHW+C5BqTIgNS9BtaOlCwJ48fDF1+o42JERKgfPt1qrSDvfx8mu6lTPXe8vatw6RJUqADFHB+h+buVGkw7uKmBdExeiAmC6CD1nEH9Gx0Eds90i3fpAvnKQl5XNdC2L62ef2quCr4Vol70MMSodaqPhLhwiH/2EQFOzw006OAGbb3V41q/QrcfIXIoi93TfffuXUJDQ7l79y56vR5fX3Xey9KlS5P36T0/bdq0YcSIEbRu3RqNRkOvXr348ccfcXV1pVSpUsybN48iRYoYRzMX2deGNcHGdI+Wh/lprTv5ndQf063b2DFvlbpu5/ZoOvfPjBJmf4vm3iEqVr2/6sM39/PJ5KaZXKKUVa1d3Ji+eCXx4Dt+N+I576/em+3kEEzwE3W8h/ELmlOg4D4+mdyMmbNN240ZGZ1oHyJradDGnbVt1Jbd+TNusHhDEyIjNYSHq90qv/9eYcLHhylQAD4cWR+9Qf2K+qDNIZb/0wCdtdqtvFWzUM75OnIvpBjNX3/Ari1XeRQUycpfQvlzZ3VCIkwX7g4cgK+/hhkz1PspQQ24R/Q6yPzVzY35qpR/hO/1QsTEqHPgduuW9DlsO6DeR2mli6PfUFfKeELXruq64cNiaVD1Jp5NTV0uH9wKYs1PF9m8PS9K3goUdSlgHA25aIFH/DLfF98ANQiqVPImG7a7vvB+90796jPxxF6mLG6OQdHRo385TlZ7ta7QlhQbC8OHw49mU+XaoNXoKZw/iEfh6vlrNXqW/RSVqeNP1Gtpumfh6BmnFHKmbM0qUytgj3cyr3tlifLFeO+Ng/z2b2MiYvLxwWeN+PffQ/yw0h1H55frVaYo4O8PPqfD8P13JwkzXnnPaYGn27mkNyrf3zzoti+ZdD6NDhyrQqHaULCW+vf52W0rDUpy0/v34YtFajper6Pn4LroC8A77yTsW6N2BQdOnYL2nSD66ddGhw7w889aihQpDhR/ftfgOQOqfQEh5yDsIsQ+hrgwiHsC8WFqOiYYHNXeDZ9+CsuWwdWrpl283+j3pM85QZgvzhV4ptdPMXjjODhWA6vnevQoihr4xgQBSuLW/yJN1MfL0GhAYwVaK/UeblLZ2GZlp14MEUIkTbGQ0aNHK5UqVUr0OHr0qDFPpUqVlHXr1hmfGwwGZe7cuUrDhg0Vd3d3pXfv3sqNGzeSPUZERIRy8uRJJSIiwlKnkW7i4+OVkydPKvHx8ZldlEzxep0TT0crUZQ71+6ZrQsLDlOsdLEKKEqlksnXd1aUler1jdaxxtc48NajzC7OC+nj9Upe2ycKKEr5Yn6J1i9cqBjPZ9rkKOXrEXuMz0FRhn3oa0xXc72m6OP16Vq+rFS3OdXdu4ry8ceKotMpZnX77KNPuwNKfKx5HTy8E6zULH/RmEej0Se7/bOPlo0eKof/Paf0bf+v2fLFU/cr27aZnn/Q+UqS5b16xs+Yp5nHGePyIR+FGJdXLHFDuXv9vvL7tweVNvWOKzptXKrKVjh/kHLNO/H7IDn6eL3SoeFR4/bVy1xWwh9nve/CezcClcY1LqfqNRjx/p5XOlZ6vWcrlrihgKLYWEUr0RHRad4+OlpRHPNFKqAo+e0eK1HhUa9Unlf15NET5YM2B8xea1fnAOXg5gup3oc+Xq/8tCheadxYUfLnN+3HnnDjk3KOV5XAH5wVZSWJH36rnyvUdUU5OVxRLn6jKDf/UOLv7lOmTXioDBsap0RGmmdNbb327p34f0qrVZQVK8zz+foqSuHCpjxt2ypKTEyqX4pU27LFdIzihUOU+IN9FeVgT0XZ10VRdrdVHyeGKMqVHxTl/m5FiXqQ/oXIwuQ7NufKbXWb2njUYkF3RpCgO3sw6A2Kc/4Hxh+WBr0hUZ7G7t7GLyd/39uZUMqXk5XqtXJl9fWzs1MUQ+KXOEuq4xH8NGgyJPqh1bat6QfLmTPqsi/67knyx/pvv6ZvwK0oWatuc7orVxSl+9uJg9MBnfclezHl0f0QpU7FC4m2sbcNV957/aCydcVxZcumOMXTM/kgT6PRK8tmHVAURVFiovVKfvtQBRSlYN5HSmx0bKJjLpy4z7jtV8P2GJdHR0QrtZMoS2ofttZRyqHN59L8uj1+8FhxK3nduJ8SJQzKiBGKcvp01vgMOLb9vFKy0F3TedoalE8+UZQ+fRTlzWY3lDoVzysuhW8rdjYRSuvaJ5WI0Ff7Lk+v9+yzAeqxfQ/TvP2zwdYHPR6/UlnS0x/zDimO9o+fCUgNysSJihIXl/J2Zw9cVhpUPpfk/+6zQbc94crrdc8o+mNDFeX8DEW5/qui3N2hKCHnFSUu5bqdNcu0z1GjzNelpl4PHzZtX6CAeQCu0SjKsmVqvps3FaVkSdO6Jk0UxZI/IUeNUpQSJRRl7VrLHSO7ku/YnCu31a0E3VlMbvsHfNbd6/eNX3Ctap1MMs/kQbuNeZbO2J/BJXx5WaVeDQY12AY1+M4unv1hdPq0aXl4uKLY2qrLS5Y0BRAGvUEZ2G2f2Y++0qUVJTZxfPTKskrd5iYndl1UWtc+qdhaRymf99rzwt4Ljx88VlrVOqlY6WKVtvWOKyvnHlTCH4eb5dHrFeWPPxSlnMtjs/8brSZeWfHtQbO877x20Lj+vz9PK8/r8Not0//r3ktm666f81fy2z1OFJSUdg5Qvui7W/E5dFl5FGxQfH0VZe9eRVmzRlHmf+WnTB60Rzm2/fzLvWCKovgev6445Et8waJqhWBl+tA9ys3zAS+971exbOZ+xcYq2liekoXuKsf33bfoMdPrPbtwXoyx3PPnp337gQNN9bBhwysVJd35XQwwu8gNilKqlKJ8/rmieB/0M7soHv44XPm8155EvTVKl1aU9u0V5YsvFGXt95fMgm5QlOnT01YmX1/T5z0oSsGC5oHwi+o1Pl5Ratc2bb9ggfqd8ckn5u+JWbMUpUIF0/OaNRXlcda5JpLryHdszpXb6laC7iwmt/0DPmvriuPGL7mRH+xJMs+hzaar6D3bX87YAr6CrFKvDx6Yfki88UamFiVNnm3d+P130/J/1gaaWjsHmG+jj9cr7/aMf6UfxamRVeo2N0rLrQIGvSFV+WMiY5TvJ+5Vihe8pzjYhSor5x1MlGf1AlPQPaTHXrN10dGKkjevuq5okfgkj/nPsmOKvW24UjDvI2VA533K/o3e6X7bQ1JOn1aUjh0Vxdo66Zb0gd32vXIrcmrp4/XK4O57zY7fxP2Mcv+m5bvOptd79sQJU9nfey9t2xoMiuLiom5rY6MoT568UlEsIj42Xpk6xZDkbR3VSl9Rvhq2R1m94JDi6hxgtq5yqWvK3n+e+34ON7V0530adGu1irJvXyrLEq8oXl6Jy7F48bN5Uq7Xn34ybVe9uqnl3mBQlOHDk35PuLmp35si88h3bM6V2+o2tfGo9sV3fQvxarxPRhjTnjWtk8xTt1VlHBzU6SN2HauEwZAhRcsx/H3vGtOuJUJTyJm1VH1mau6LF03pzX9cMqbbt7xtto1Wp+WXX3XMng3ffAOfPDeLi8j+tLrUfzVptJpU5bexs2HQ5GbcCizM9h0X6PFJ4hGy277jjrUuFoCNu8ujGBTjukOH1CmAAN5oo0vymB361OPRIyuCQvKzeENTmnSskaZzeVk1a8LGjXDvnjpYWeMGEWbrf1zXlDru9/Def9niZfnlm0MsXNvM+PyTt/ex63hVipZJYk64LMrDA2yfjmV39GjatvU5FUrA04GuW7RIfhT8zKSz1jF+gobDh6F9e7B6ZkjdC7cqMnZec94Z0hD/IHVEfVvraKZ8sgfvy6Vo1qFS0jsFxo5V/xoM0LMnBAW9uCzz58ORI2q6aFHz5YqS9DbPevRIHSU8wYIFpvPRaODbb9WZEZ5VurQ6S0FS0xQKIYSlSNAtLM7bxzQSr2eDoknmsba1pkULdYTXoCDw8cmQouUY/hf9jenS+c5kYknSpmpl0zydF4/fBEAxKGzZr45abmsdTcs2iUdOtbaGESNg5MjEU0EJkRKNVoONnU2S6/IXdqRlLXX05VtBpcyC1G3bTPneSGE6WVt7W3TWmTNatZOTOmXZgSN5uXn+NpMH7cXORp3izDegPPValmXOqL0Y9ImvaoaFxLJp+XE2LDlKZFhkovWpoRgU5v1UxPj8p2n7Wbi2WbKvd1ZlYwO1nk41df06PHyQynmLgS2/mz5/2zW/ld5FS1f16sGmTerFmh+mnaJh1cQjj7eseZpzR+8xYWGLF46qP3o0tGyppu/ehV69SPEC+rVrMG6cmtZo4M8/odHT2cwuXIDdu198DhMnQvDTyVHeeQeaNTNfr9HArFkwYYL6XZEQcLu4JN6XEEJYkvxcFRZ39koxQA2g3GqXSTbfszPD7dxp4ULlMP43TdPTuJZNujdBVlSmrMYYFFz0VZs1zh68wp1H6pQtLWv6kNfRPtnthUhvndubAs6/V983prdtVVvANRrT1GNZWZlqpZj4fXNOH7xPzfLqlJ1xehtGftOcNvXPcOtyIAcOqFO1NWoEhZyt6di3Hl0HNKBCmTAWT91PXEzqg02Aw1t9OHdTnS6tfuXz/G9c1p62MCUNql0zpo9v8071dpt3mi4StmuXniWynMKFYeC42hy64MH1c7eYOngvHRoeY8W3h9h1siaVapVN1X50Oli5Eoo8ve6ybZs6XV9SDAbo1w+iotTngwdDkyYw9Jl50efPT/l4Z8+apqGzt1d7PiVFo4EpU+DOHXUKr0rJN9YLIYTFSNAtLCoiAq7cKQNA9aoxWNkkPzX8s0H3rp3Svzwtbj3ToOJa3iHzCpJGWp2WKqXVVvprd12Jjohm85/3jOvbtYnKrKKJXKrje6Zf5Bt3qBcM716/j88FtbW2jvv9bNUttXLdchw5V47Pe+01Ltt5qjaulYvStKkajBw+DHq9xrj+XkgxPp7YlGrlbrP2+8NJtown5Yf5T4zpT/73OL1OIVPUr/HAmD52OCKFnCYPbwdz1LcaAFVcrmfZedNTUq56acYvaM4/h+rz/qeN0Gg1L97oGcWKqYG35ulm48errdHPzlcN8MMPsH+/mi5bFmbMUNNdukAptVc7mzapPQ2SoigwZIipJX38eNN2KZXNJnt1uhBC5CASdAuL8vEBRVG/fWvUcUwxb+XKULJoOAD790YTExmTYn5h4n87jzHtWqlwJpYk7aqWV/sGGhQdV87cYssuJ+O6dj3KZVaxRC5Vonwx6rmdB+DszcrcPB/A9nWmVs82XpeS2zTLsrW35etfm7Nr7WlKFLqXZJ4qVWDIh9fp0viAcdnVu2XpMbgh9apc4r8/T6d4jAeBCn/uqQ+Ak0Mwb39UJ93KnxnqtzAFzEdPpe5C5rY/L2FQ1FsL2rcIsEi5soNWrdQgGECvh6lT1dblevXU1utjx2DMGFP+pUshb141bW0NgwapaUWB779P+hhz5sCBp/+qFSrAZ59Z5lyEECK9SNAtLMrb25T29Ew5r0YDrWqrG0TF2nP434spbyCM/O+pFzR02nhKlCvygtxZS9XK8cb0vm33OHZZbSlyd71KmaovaLoQwgI6t3loTG9ceYNt2033aL/RwSmpTbKF196uxTkfW957/RDlivnzXo9wfvkFAgLUgQznLy/P+gNNOPLveZp5eBu3O3W1Kq261+K32QeT3ffPSzXExas9mfp9EEaevHmSzZsduFYpSRFHdSSw477lU9Xav2WLqVW4fZcClipatvDll9Cnj6nFG+DECRg2DBo0MA1K+PHH6oBzz/rf/yDP03+fpUvhyRPz9cuWmQ+ONm+eaeA7IYTIqiToFhaVlqAboFUr0zf0rn+zzyjcmc0/UB2grpTT/RS78GdFVavbGdNzfy5DwqQK7VrcyawiiVyu87umUZbW7a3NzmOVAXC0D6X+61Uyq1jpwqlEIX7f3ojr91z5fXU+evdO3C23QRt39pypwdYVJ6hR1jSY3JCJ1bl9NXFLuV4PixapaY0GPh6ZunuAszKNVkMD9xsAPI4owFVvvxTzx8fGse2oOh1DgbyPafhmNUsXMUvT6dTgOCAAZs9O+vu/dOmk7/kuXBjee09Nh4XBihWm3wV//aUG5QkmT4Y330zfsgshhCVI0C0syvuQaVRtD48X52/VuaIxvfNANrpxMhOFhzzhUbg6eI9rsYcvyJ31VKtdzJi+EehqTLfvmnjUciEyQuW65Y2DLR08mo+QiIIAtK53Mdtd1HpZGq2Gtu/X5fTVirz/htrCHRblyEcD4hNN5bRlC8Zpst58U71HNyeoX9s0qN6xPXdTyAmHt17gcUQBANo0uIiVTfYZ0NKSSpZUZ5o4c0YdkXzsWChXznTvt0MyPfefHVBt4UINBgPs2AHvvmu6j3v4cHVUciGEyA4k6BYWo4/T43NVvb+4fDF/8ud/8TbFyhbB3VUdceXk1SqEBD62YAlzBv9Lgca0a8nwTCzJyylbrRS21tFmywrmDaHBG1WT2UIIy9JooFOnxMvbvB6feGEOp9VpmfeLO8UKqWMvbN3rwooV5nm+/+6RMZ1wP25OUL+xaRySY8f0KeSEzRseG9Pt2qVigulcqGpVmD5dHRzt3j1o3Dj5vB4e0Ly5mr5yRcOSJcV56y0tcU8H1P/wQ/W+bk3axnkTQohMI0G3sJhr5/yJjFFHR/F0S7mV4FmtGqp5FUXLno3Zb9CijOZ/NcSYLl0q+wUFOmsdlUv5my1r2zD3tCiKrKlz58TL3nirQoaXIysoVKwAi5aZ7mUfNkwNmgCunvFjx161V0rZUmG0aZMZJbSMui0roNGozapHvVMeK2PLHrWPvlajp83blS1ettzg2dbuJUtKEBmpRthdu8KSJeq820IIkV3IR5awGO8jpjluPatHp5DTXOs2pnmZd26PTdcy5UT+d/MZ065lsmegmjCCeYJ2PeVHq8hc9etD0aKmwbOqlb5CqYrFM7FEmatTJ+jZU00/fgwDB6qjSy+a42fMM7DH6RwVCOV3yk9VF3XOqnM3KxD1JOkpDG9ejeRigHpBpkGVCxQulX0H28tKOnYEV1fzZa1bwx9/gFX2/KoTQuRiOejrUWQ13qdNAXONWnlTvV3TDlWw0ql9yHYedkExSFe9lPg/Ng3s5Fo3hf56WVjVKqaum1qtQptO8qNVZC6dDjrW22N8nh2nCktv8+dDkacNvhs3wvKvD7Hsb08AbK2j6TO8euYVzkLqe6gXj+P11pzefyPJPFu2my4Ut++WvWaPyMp0Ohg82PS8fn2F9etlpHIhRPYkQbewGO8LpkDbs2Hqp37KVzAfXlXU6cKu3y9LvZqPWLUK471cwtytW6b0860C2UW1Fk2M6YYNNRSSMdREFtDvk6JoNXp02njeH+SW2cXJdIULw/fzTK29/b/wMg4e9k7rkzmyhbd+i5LGdMJ0hs/bvNmUbv92sSTziJczZAh8/LGBzp2D2LzZQL58L95GCCGyIgm6hcV4XykNQKF8j9LcLfPtTo+N6ZPnnHj3XShfXp165PHjZDfLlfyfuR26dOnMK8eraNwY44+pPn0ytyxCJKj/hjsXT/hz6dQdPJtK0A3w1jt2vNX8CIBxej+AQcMKZlaRLKr+a+WM6aNHE68PD4c9TztEuLiAu3sGFSyXsLWFhQsVxo+/RcGc+S8mhMglJOgWFhHoF8T9x+rc0Z4V/dBo0zbE6OApTVk59xA1q5ru9Q0IgM8/B5eS0cwYvle6nT+VEHQXKQJ2dinnzaqcneHcOdi7V4JukbW41S5HBc9s2oXEQr7/tQJODqbP5toVL1K3Vc6cbaBaNbB/2nv82LHE6//bEU3s0zup2reX0bSFEEIkTYJuYRFnj5j6PHtWDUvz9hqthneHNeLUeSf27IEOHUzrwiPzMHZec5Z/fTAdSpq9xUbFcveuOtiTa5E7mVyaV1O2LDRrJj9ahcjqipR2ZuH0y8bnIwY/TvOF1ezCygrq1lXTt27B/fvm6zf/etyYbtf6ccYVTAghRLYi4z8Ki/A++cSY9qz58v9mGo06V2fz5nD5MsyZdJUlqysCMPjL2tRreg33hrlzGh+A29fuoyhqn3LXwreAkilvIIQQ6eCdIQ1xLnaaqMh42vdumNnFsaj6tSPYt08do2T5jN2Uq5iHwHtxBAYqbNijDh5nZxNJy1YywpcQQoikSdAtLML7pqmroWeD9BlYxs0NflpVEW3MPhZvaEZUrD3d39FwwieCvI6pHx09J/G/EgyoQXfpkjK9mhAi47z2dq3MLkKGqO/mAzQAYOz8lknmaVnrPHYO9TKwVEIIIbIT6V4uLML7kjptio0NVK6Xvi3R3/1ajxpl1el7fAPK88m7Z9J1/9mJ//UIYzq7jlwuhBBZWaPXy2NjFZPselvraIYN02VgiYQQQmQ30tIt0l1kpNoVHNRBaKyt03f/dg52rP3LhtqNnhAe7cCvWxvT/OuDfDgqe85R/Sr8/eKNaddyeTKxJEIIkTMVLePMn4uP8c/fsRRw1FO0KBQtZkXREnkoWsqBslWK4ehcO7OLKYQQIguzWND9448/sm/fPnx9fbG2tubkyZMv3GbMmDFs2LDBbFnjxo1ZunSppYopLOD8eTCoY3vh6WmZY1SqVY7FMw7x3qeNAPhkYk3qNbtG1fq56/7uWwGm1hXXigUyryBCCJGDdexbn459M7sUQgghsiuLBd1xcXG0adMGT09P/vrrr1Rv16RJE2bMmGF8bmNjY4niCQs6e/wRUAiwXNAN8O7wRuzdu58lG5sSGZOXt7vD8XOR5HW0t9xBsxj/O6Z72V3dimZiSYQQQgghhBBJsVjQPXToUADWr1+fpu1sbGxwdnZO0zZ6vR69Xp+mbTJaQvmyejnTw5m9PkAzAKqXuYJeX95ix/r2l1ocrXkFH79KXLxVgaED7/DTiowbQTaz69X/vnpxw8EuDIdC+XLF/1dGyey6FZYh9ZpzSd1mAr0enTGpBwu89lKvOZPUa86V2+o2teeZ5e7pPn78OF5eXuTPn58GDRowfPhwChYsmOI2V65cyaDSvTofH5/MLoLFnT6f35i2yheIt/eTFHK/umlfBfNu31JERNuzbFVJOvbwoVSpjB3JOzPq1aA3cCvIA4DShe9x9lx4hpchN8gN79ncSOo155K6zTjaqChqPk2fO3cOg52dxY4l9ZozSb3mXFK35rJU0N2kSRNat25NqVKlCAgI4Ntvv+V///sfa9asQadLfmTQSpUqYW+ftbsU6/V6fHx8qF69eornkt0Z9AbO+6mjvJYteouGzSw/f6unJ4y5DhMmqM9Pn65G+/aKxY8LmVuv924GEhuvtuqXKRmKp6cM5JOecst7NreRes25pG4zQYRpBg0PDw/Im/7Td0q95kxSrzlXbqvbyMjIVDUApynonj17NkuWLEkxz9atWylf/uW6E7dr186YdnNzw83NjVatWhlbv5Oj0+myTaVmhbIa9AYe3QuhcCmndN/3jXMBRMSUAcCz0l10utLpfoyk9OkDX36pDuC2YoWWL78EbQZOiJcZ9Xr7vqMxXbpCgUz/v8qpssJ7VqQ/qdecS+o2Az3zOut0OrPn6X8oqdecSOo158otdZvac0xT0N23b1+6dOmSYh4XF5e07PKF+ypYsCD+/v4pBt0i9W743OKtLhGcuV6FVrVOMfMbe2q3rJIu+1YMCjMnBgBlAKjhHpUu+02NkiWhdWvYvh1u3oQDe6No1tJy3dyyArNB1NwrZWJJhBBCCCGEEMlJU9BdqFAhChUqZKmyJHL//n0eP36c5oHVRNJ2rj5Fj/7lCIlQW593na5Nndege8vDTP2mOJVqlTXLrxgULh67zq5NdwgPVxg0zpOCRQsku/8Zn+5j2ebmANhaR9Ojj6ulTiVJvd+LYvt2NdD+9duTNGvZJNm8N88HsHLxdd77qDxl3dPvQlFG8vc3pV0z9qUWQgghhBBCpJLFOuDevXsXX19f7t69i16vx9fXF19fXyKeuf+nTZs27Ny5E4CIiAhmzZqFt7c3t2/f5siRIwwaNAhXV1eaNEk+eBIvphgUZn++lzbvehISoQ5Kp9PGG9ev3d2QqnVd+LjfE86dgxUroFfXm5QsHIh7wwoMn9GM8QuaU9czlAtHriZ5jFXzDzNufnPj89++O03luuUsel7P69wZ8tuFArB2V03CQ5IeWCzqSRQtWmqYsLA5Ld50JirjGuTT1a1bprQE3UIIIYQQQmRNFgu658+fT+fOnVmwYAGRkZF07tyZzp07c/78eWOemzdv8uSJOrK1TqfjypUrDBw4kDZt2jBu3DiqVavGypUrZa7uVxAZCe918OXz2c0xKOo9B+29jnPP7zELxu+jiGMQAHqDFYuXOVCjBvTqBSs2lOVeSDGzfV2/70r9FsVZv/iI2fKDm87x4QjTIF4zhu+l+yeWH0DteXYOdrzzxlkAImLysX6pd5L5vht/DP+gUgD4B+Rh7twMKmA687/22JiWoFsIIYQQQoisyWKjl8+cOZOZM2emmOfy5cvGdJ48eVi6dKmlipMr+flBly7g7V3VuGzCgL1M+qEpWp2WwVOb0fvTJ3w3YS+zVzThyRPzgQDy5gmnWQ1fWjaNYOX6opy5XoWImHx0+9iLcSf3MvmHJtzw09G5TzVi49Vt+3fcz+g5zTLyNM307l+Qn/5W07+szEuvkebrA/2CmPGT+SjfM2ZA375QtGjGlDG9+F9+ABTAxiqGYkWtseA1NCGEEEIIIcRLkl/pOZSfHzRuDN7e6vN8efVsWHKUKYubo9WZqt2hkAMTv2/O9es6Ro+Gdu1g/HjYtw8ehdix5WhdRnzdnENnyvD+GweN203/uTkdm5ym3Zt6goPVgLt1g2v8sNYLjVaTgWdqzqutOxVL3ARgj3dN/H1vm62f+Kkv4dEOADjmiwTgyRN15PPsxj9QvUrgUvi+WZ0KIYQQQgghsg75pZ5Brl6FkJCMmRb9vl8wrVsr3LmjPq9YEY4d19G5f4Nkt3F2hpkzYfNmmDoVmjYFmzymlm87Bzt+29qIb0fvNd4PvvVYXa5eU/O4u8Of2ypgbWttuRNLBY1Ww4dv+Rmf//b9NWP6/OGr/LyxEQAOdmEc3BuFgxp/s2SJPtn71bOixw9CCYtSpwxzLR6cyaURQgghhBBCJEeC7gzwzz9QpYqOnt0r4Hfx9os3eAUhgY95vUUw166prc2VK8OhQ1C16gs2TAWNVsOnM5uzffU5nBweGZcXKwZbtoCjYwobZ6APBlVCozEA8Ou6sigGBYCRw0ON97WP/eg07rWd+GLQRQAMBh0jhz/OlPK+DP/L943p0iUiUsgphBBCCCGEyEwSdGeAu36PAXgYkpdRg+9a7DgRoRG0axGAj586Z3PpokHs2KG2Yqen196uxUlvB9q2hVq1YOtWKF06fY/xKlzcSvJazTOAOvjboS0+bFt5ku0n6gDg6nyb4dPUVv/h48pS2lm9ELLteF22/3EycwqdRv5XQ41pVxd9JpZECCGEEEIIkRIJujPAu+9pKVrgAQDr93uxa+3pdD9GTGQMXV67xBHf6gAUcQxi178RuFhoCuoy5azZuhVOnYKaNS1zjFfx4fumecB+XhTGyLGmZvgZ42+RJ28eQO02P2OcacLrEV84Eh9rmk4tq/K/EW1Mu5bRpZBTCCGEEEIIkZkk6M4A+Z3yM+ML00jtQ0fmJy46Nt32Hx8bz7ttz7DzlDoqt6N9KDs2PaJizTLpdozspku/mjjYhQHw69bGXLhVEYD6lc/zzmAvs7zvDPainps6ld2FWxVZ9vXhjC3sS/C/pRjTruXzZWJJhBBCCCGEECmRoDuDvD+8AXUrqXNI+wZUYMGXyQd2QQEP+Xb0Xk7t9k3Vvkd+eIj1+9Xu0va2EWxd60+NJm6vXuhszD5/Xrp3iUy0/NvZSqLR1bU6Ld/ONnXRnjC7Ck8ePbF4GV/FrdumuetdKxbKxJIIIYQQQgghUiJBdwbR6rR8PuqucYCvSQtqce9GYKJ8l07coG7taEZ83ZwW7UsSFPAwxf0GXL7LwjXqiNzWuljWL/OlYTuP9D+BbOjDgcXMnr/dMYiG7aonmbdR+xp0a3YEgAehzswafcri5XsV/nfVYdc1GgMulYpncmmEEEIIIYQQyZGgOwOV8yxC/47qXNdPovIzZrD5FFWHt/jQqGUB/INKGfMsnH4+xX0u+OoKeoM6Fdnovod54906Fih59tSoEVSooKZtbGDmdymPKDdrXgmsdWq3/x9W1SA6IjrF/JkpYY7u4gUDsbGzeUFuIYQQQgghRGaRoDuDTZ1fmYJ5QwD47d/GHN7iA8DGpcd4rUsFHoWbdxVe8HsNwkPCk9zXtUR7OwABAABJREFUk0dP+OkvdRQzW+toBo+tZsGSZz8aDaxaBd26wZ9/QrlyKecvX8OV7q+dACAkoiB/L0v/Ae/SQ3Q0BD5WLyC4ViiQuYURQgghhBBCpEiC7gxWuKQTU0ecMz4fMtyKH7430HVAXaLj7AB4reZp3mqudnUOiSjIkllJT2O19GcDoZHqqNzvtzlB0TLpPDdYDlCnDvz1F3TsmLr8/QbYG9NL/6xkoVK9mlu3TOnSZe0yryBCCCGEEEKIF5KgOxN8NK4RHmXV0cxPX6vCJ4O1GAxqVbz3+iG2HnJn8kxTAP3tz5WIjTIf7Tw+Hub+YJoG69MJFTKg5Dlfs841KFdGfa13HSiMn1/mlicp/qYZznB1zbxyCCGEEEIIIV5Mgu5MYGVjxYK5+kTLR31u4LetXtjY2VC1fgU6NjoGwO3gEvzxh8Es7/r1puCrTRuoVlcG00oPWp2Wvv1N90gvX56JhUnGtQvBxrQE3UIIIYQQQmRtEnRnkqYdq/Lee2pao4F582DW11q0OlOVjJlSxpieNTsPhqdxt6LAnDmmfY0YkQEFzkU+/BC0T6th+XLQJ74+kimiI2KYNHAvwz83zctdpvijTCyREEIIIYQQ4kUk6M5ES5bA/Pmwfz8MHZp4vVfLojRpoqYvXYJNm9T04W2XOH5cTXt4wGuvZUx5c4uSJdXeAwABAbBrw4102/eKFfD11xATk7bt9qzzpobbXSYvak5svC0AlUtdp0kz63QrmxBCCCGEECL9SdCdiezsYMgQaNw4+TxjxpjSM2c+beWe8di4bMTAADQay5Uxt+r37j1jeukPiedTfxnbt0OvXjB6dNIXWZLy8HYwH7Y7SMu3PLlypywAVro4xvTZy6kLxXEo5JAuZRNCCCGEEEJYhgTdWVzbtlC9upo+ehSWf32Ivw/WA6B4wfu807toJpYu52rfrTDO+R8C8Pf+2jy8HfyCLV7su+9M6Z9+gv/+Szn/uYNXqFrNwK9bTVdlvKr4cHrfTWYsa459fvsUthZCCCGEEEJkBRJ0Z3EaDYwedN34fMDY+iiKWm1Del3Cxs4muU3FK7DJY02vThcAiNPb8Pv3519pf5dOXGf7dvNl/d+7l+wc7MF3H9Gpmx1BYeoo9o72oSyasp+DPtWo3ihrTmUmhBBCCCGESEyC7mygR19XyhQJAEBvsALA3jaCj0bXyMxi5Xj9BpcyppeuKoFiUF56Xwu+vm1M57OLAMAvsDhffHwqUd74OAPvdLiJ3wMXAOpUvMil8zF8NKGp2UB7QgghhBBCiKxPfsFnA1Y2VowYYD6YV99OJylUvGAmlSh3qFKvPF5VfAA471+RE7suvtR+Hj8I5ddNtQHIaxvO3s23sLOJBGDh2mbs33jWLP8XY7XsOq3mL+IYxIYtBSlWtsjLnoYQQgghhBAiE0nQnU30/bwuhZ/eY6zRGBg+tkzmFiiX6PfBY2N66Y8vd1/3sjlniIhRp/nq3eEUtVtW4avPThjX9/24AJFhahD+xx8we7a63MrKwF8r7lOqoszBLoQQQgghRHYlQXc2YZ/fnt++v0mNspf5bswBytdwzewi5QrdP/Ikr6163/Wq7Z5EhEakaXt9nJ6Fv5YzPh8ySu0yPmRKYxpWPQfA9fuujB94HG9v6N/ftO28eVqadKj+aicghBBCCCGEyFQWC7pv377N2LFjadmyJR4eHrRq1Yr58+cTGxub4nYxMTFMnjyZ+vXrU7NmTYYMGcLDhw8tVcxspe37dfG+4cawr5pldlFyDYdCDvRofQaAJ1H5+eunM2nafvNvJ7kZWBqAN+qepHJdNQDXWetY9ms+bK2jAZi7qiltW4cRFaVu17cvDByYTichhBBCCCGEyDQWC7pv3LiBoihMmTKFLVu28MUXX7B69Wq+e3bepCR89dVX7Nmzh7lz57JixQoePHjA4MGDLVVMIV6o38cFjOmv5rkQFZn6AdXmf29tTA8dYr7OrU45pgw5CoCiaLn/MD8A9esrfP89Mv+6EEIIIYQQOYCVpXbctGlTmjZtanzu4uLCzZs3WbVqFaNHj05ymydPnrBu3Tpmz56Nl5cXoAbhb775Jt7e3nh6eia5nV6vR6/Xp/s5pKeE8mX1corE6r1eBa8qPhzxrc6VO65MmGhg1iwDkHK9+hy+yu4ztQCoWOImrXvUSJRv2DQv/tp8gRNXqgFQrEAga1coWFs7I/8qmUveszmT1GvOJXWbCfR6dMakHkt8cUm95kxSrzlXbqvb1J6nxYLupDx58gRHR8dk158/f564uDgaNmxoXFa+fHlKlCiRYtB95cqV9C6qxfj4+GR2EcRLGDHRQM9eBuLitHz3nYbq1S/j7h5pXJ9Uvc6bHgxUBuC9Lmc55/MoyX2P//Ih/xvkTFy8Nd9+dYKgsOIEed+xyHmItJP3bM4k9ZpzSd1mHG1UFDWfps+dO4fBzs5ix5J6zZmkXnMuqVtzGRZ0+/v78/vvvyfbyg3w8OFDrK2tyZ8/v9lyJycngoKCkt2uUqVK2Nvbp1tZLUGv1+Pj40P16tXR6XQv3kBkKZ6e8OV1GD8eDAYNX39dmRMnDFhZJV2vwQ8V/tobD4CDXRjDvmyOQyGHZPd9o300Br0B+/xtM+BsRGrIezZnknrNuaRuM0GEaXBRDw8PyJs33Q8h9ZozSb3mXLmtbiMjI1PVAJzmoHv27NksWbIkxTxbt26lfPnyxueBgYH079+fNm3a0L1797Qe8oV0Ol22qdTsVFZhbvRo2LABTp2Cixc1TB99lSlzKwKJ63X5LxAVo769+va4QwHnKinuO2/+9P+hItKHvGdzJqnXnEvqNgM98zrrdDqz5+l/KKnXnEjqNefKLXWb2nNMc9Ddt29funTpkmIeFxcXYzowMJBevXpRs2ZNpk6dmuJ2hQsXJi4ujrCwMLPW7uDgYJydndNaVCHSlZUVLF8OtWur3cxn/VCBzp190RYwz3f2LCxYoKY1Ghg8LuWAWwghhBBCCJFzpXn08kKFClG+fPkUHzY2NoAp4K5WrRozZsxAq035cO7u7lhbW3PkyBHjshs3bnD37t1k7+cWIiNVrw7j/7cPAL3Biv79rYmPVbuR3zwfwPtvHKJmTYU7T2/JbtcOKlTIrNIKIYQQQgghMpvFpgwLDAzkgw8+oHjx4owePZpHjx4RFBRkdm92YGAgbdq04dy5cwA4ODjQrVs3Zs6cydGjRzl//jxjx46lZs2aEnSLLOOLOY2oUfYSAOf83Fj+TTDD3z2Am2dRVu5ohKKoc325usILZsgTQgghhBBC5HAWG0jt0KFD+Pv74+/vbzZ1GMDly5cBiIuL4+bNm0RFRRnXjR07Fq1Wy9ChQ4mNjaVx48Z8+eWXliqmEGlmnceG5csU6r4Wj95gxeINb5qtd3IIZtwEOwYOsSdPnkwqpBBCCCGEECJLsFjQ3bVrV7p27ZpinlKlShkD8AS2trZ8+eWXEmiLLK1m8yqM6buX6T83Ny6zt43gs14nGDm9Jo7OWXs0fSGEEEIIIUTGsFj3ciFyugnzvHiz/nEc7MIY2G0f130jmPpTcxydk5+LXgghhBBCCJG7ZNg83ULkNLb2tmw8UAtvb29q1mqcK6ZFEEIIIYQQQqSNtHQL8Qo0Wg0arSaziyGEEEIIIYTIoiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkKy9T3dBoMBwGzKsaxKr9cDEBkZKff+5iBSrzmX1G3OJPWac0ndZoLoaHBzM6U16X+7ldRrziT1mnPltrpNiEMT4tLkaBRFUTKiQJYQHByMn59fZhdDCCGEEEIIIUQuVaZMGZycnJJdn62D7vj4eEJDQ7G1tUWrlZ7yQgghhBBCCCEyhsFgICYmBkdHR6ysku9Enq2DbiGEEEIIIYQQIiuT5mEhhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESC7gywcuVKWrZsSfXq1Xn77bc5d+5cZhdJpNHixYvp1q0bNWvWxMvLi0GDBnHjxg2zPDExMUyePJn69etTs2ZNhgwZwsOHDzOpxOJl/PTTT7i5uTF9+nTjMqnX7CkwMJCRI0dSv359PDw86NChAz4+Psb1iqIwb948GjdujIeHBx9++KFMQZkN6PV65s6dS8uWLfHw8KBVq1Z8//33PDsmrNRt1nfixAk+/vhjGjdujJubG7t27TJbn5o6fPz4MSNGjKBWrVrUqVOHsWPHEhERkYFnIZKSUt3GxcXxzTff0KFDBzw9PWncuDGjRo0iMDDQbB9St1nPi96zz5o4cSJubm788ssvZstze71K0G1hW7duZcaMGXzyySds2LCBypUr069fP4KDgzO7aCINjh8/znvvvcfatWtZvnw58fHx9OvXj8jISGOer776ij179jB37lxWrFjBgwcPGDx4cCaWWqTFuXPnWL16NW5ubmbLpV6zn9DQUHr27Im1tTVLlixhy5YtjB49GkdHR2OeJUuWsGLFCiZNmsTatWuxs7OjX79+xMTEZGLJxYssWbKEVatWMXHiRLZu3crIkSP5+eefWbFihVkeqdusLTIyEjc3N7788ssk16emDkeOHMm1a9dYvnw5ixYt4uTJk0ycODGjTkEkI6W6jY6O5uLFiwwcOJD169ezcOFCbt68ycCBA83ySd1mPS96zybYuXMnZ8+epUiRIonW5fp6VYRFvfXWW8rkyZONz/V6vdK4cWNl8eLFmVgq8aqCg4OVSpUqKcePH1cURVHCwsKUatWqKf/++68xz7Vr15RKlSopZ86cyaRSitQKDw9XXn/9deXQoUPK+++/r0ybNk1RFKnX7Oqbb75Revbsmex6g8GgNGrUSPn555+Ny8LCwhR3d3dl8+bNGVFE8ZIGDBigfPHFF2bLBg8erIwYMUJRFKnb7KhSpUrKzp07jc9TU4cJn8Pnzp0z5tm3b5/i5uam3L9/P+MKL1L0fN0m5ezZs0qlSpWUO3fuKIoidZsdJFev9+/fV5o0aaJcuXJFadGihbJ8+XLjOqlXRZGWbguKjY3lwoULNGzY0LhMq9XSsGFDzpw5k4klE6/qyZMnAMaWs/PnzxMXF2dW1+XLl6dEiRJ4e3tnRhFFGkyZMoVmzZqZ1R9IvWZXu3fvxt3dnaFDh+Ll5UXnzp1Zu3atcf3t27cJCgoyq1cHBwdq1Kghn81ZXM2aNTl69Cg3b94E4NKlS5w6dYqmTZsCUrc5QWrq8MyZM+TPn5/q1asb8zRs2BCtViu38GUz4eHhaDQa8ufPD0jdZlcGg4HPP/+cfv36UbFixUTrpV7BKrMLkJOFhISg1+txcnIyW+7k5JTofmCRfRgMBr766itq1apFpUqVAHj48CHW1tbGL40ETk5OBAUFZUYxRSpt2bKFixcv8tdffyVaJ/WaPQUEBLBq1Sr69OnDxx9/jI+PD9OmTcPa2pouXboY6y6pz2a5Xz9rGzBgAOHh4bRt2xadToder+fTTz+lY8eOAFK3OUBq6vDhw4cUKlTIbL2VlRWOjo7y2ZyNxMTEMHv2bNq1a0e+fPkAqdvsasmSJVhZWdGrV68k10u9StAtRJpNnjyZq1ev8scff2R2UcQrunfvHtOnT2fZsmXY2tpmdnFEOlEUBXd3dz777DMAqlatytWrV1m9ejVdunTJ5NKJV/Hvv/+yadMm5syZQ4UKFfD19WXGjBkUKVJE6laIbCQuLo5hw4ahKAqTJ0/O7OKIV3D+/Hl+++031q9fj0ajyeziZFnSvdyCChYsiE6nSzRoWnBwMIULF86kUolXMWXKFPbu3cuvv/5KsWLFjMsLFy5MXFwcYWFhZvmDg4NxdnbO6GKKVLpw4QLBwcF07dqVqlWrUrVqVY4fP86KFSuoWrWq1Gs25ezsTPny5c2WlStXjrt37xrXA/LZnA19/fXXDBgwgHbt2uHm5kbnzp3p3bs3ixcvBqRuc4LU1GHhwoV59OiR2fr4+HhCQ0PlszkbiIuLY/jw4dy9e5dly5YZW7lB6jY7OnnyJMHBwbRo0cL4W+rOnTvMmjWLli1bAlKvIEG3RdnY2FCtWjWOHDliXGYwGDhy5Ag1a9bMxJKJtFIUhSlTprBz505+/fVXXFxczNa7u7tjbW1tVtc3btzg7t27eHp6ZnBpRWo1aNCATZs28ffffxsf7u7udOjQwZiWes1+atWqZbznN4Gfnx8lS5YEoFSpUjg7O5vVa3h4OGfPnpXP5iwuOjo6UUuKTqczThkmdZv9paYOa9asSVhYGOfPnzfmOXr0KAaDAQ8Pjwwvs0i9hIDb39+fX375hYIFC5qtl7rNfjp16sQ///xj9luqSJEi9OvXj59//hmQegXpXm5xffr0YfTo0bi7u+Ph4cGvv/5KVFQUXbt2zeyiiTSYPHkymzdv5ocffiBv3rzG+08cHBzIkycPDg4OdOvWjZkzZ+Lo6Ei+fPmYNm0aNWvWlOAsC8uXL5/xvvwE9vb2FChQwLhc6jX76d27Nz179mTRokW0bduWc+fOsXbtWqZMmQKARqOhV69e/Pjjj7i6ulKqVCnmzZtHkSJFaNWqVSaXXqSkRYsWLFq0iBIlShi7ly9fvpxu3boBUrfZRUREBLdu3TI+v337Nr6+vjg6OlKiRIkX1mH58uVp0qQJEyZMYPLkycTFxTF16lTatWtH0aJFM+u0BCnXrbOzM0OHDuXixYssXrwYvV5v/D3l6OiIjY2N1G0W9aL37PMXT6ytrSlcuDDlypUD5D0LoFESLg8Li/n9999ZunQpQUFBVKlShfHjx1OjRo3MLpZIg+fnbk4wY8YM4wWUmJgYZs6cyZYtW4iNjaVx48Z8+eWXuabbTE7xwQcfULlyZcaNGwdIvWZXe/bs4dtvv8XPz49SpUrRp08funfvblyvKArz589n7dq1hIWFUbt2bb788kvKli2biaUWLxIeHs68efPYtWsXwcHBFClShHbt2vHJJ59gY2MDSN1mB8eOHUtywKUuXbowc+bMVNXh48ePmTp1Krt370ar1fL6668zfvx48ubNm5GnIp6TUt0OHjyY1157LcntfvvtN+rXrw9I3WZFL3rPPq9ly5b06tWLDz/80Lgst9erBN1CCCGEEEIIIYSFyD3dQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBC5FLHjh3Dzc2NY8eOZXZRhBBCiBxLgm4hhBAiCevXr8fNzS3Zh7e3d2YXMUt6+PAhX3zxBV5eXnh4eNClSxf+/fffF27Xp08f3NzcmDJlSrL7nThxIk2aNKF69eq0bNmSsWPHJsp3+PBhPvjgA+rXr0+dOnV46623+Pvvv1/1tIQQQoiXZpXZBRBCCCGysqFDh1KqVKlEy0uXLp0JpcnawsPDeffdd3n48CG9evXC2dmZf//9l+HDhxMfH0+HDh2S3G7Hjh0pXsS4d+8ePXv2BOCdd96haNGiPHjwgHPnzpnl+++///jkk0/w9PRkyJAhaDQa/v33X0aPHs3jx4/58MMP0+tUhRBCiFSToFsIIYRIQdOmTalevXpmFyNbWL16Nf7+/vzyyy94eXkB0LNnT7p3786sWbN44403sLGxMdsmJiaGmTNn0r9/f+bPn5/kfidOnIhOp+Ovv/6iYMGCyR5/5cqVODs789tvvxmP06NHD9q2bcv69esl6BZCCJEppHu5EEII8Qrmz59P5cqVOXLkiNnyCRMm4O7uzqVLlwCIjY1l3rx5dO3aldq1a+Pp6cm7777L0aNHzba7ffs2bm5uLF26lJUrV/Laa69Ro0YN+vbty71791AUhe+//56mTZvi4eHBwIEDefz4sdk+WrZsyUcffcTBgwfp1KkT1atX580332THjh2pOqezZ8/Sr18/ateuTY0aNXj//fc5derUC7c7efIkhQoVMgbcAFqtlrZt2xIUFMSJEycSbbNkyRIURaFfv35J7vP69evs37+ffv36UbBgQWJiYoiLi0syb3h4OI6OjmaBvZWVFQULFiRPnjwvLL8QQghhCRJ0CyGEECkIDw/n0aNHZo+QkBDj+oEDB1KlShXGjRtHeHg4AAcOHGDt2rUMGjSIypUrG/fz559/Uq9ePUaOHMngwYN59OgR/fv3x9fXN9FxN23axB9//MEHH3xAnz59OH78OMOHD2fu3LkcOHCA//3vf3Tv3p09e/Ywa9asRNv7+fnx6aef0rRpU0aMGIFOp2PYsGEcOnQoxfM9cuQI7733HhEREQwePJhPP/2UsLAwevfunag79/Pi4uKSDG4Tll24cMFs+d27d1myZAkjR45MNihOuJhRuHBhevfujYeHBzVq1KB///7cvn3bLG+9evW4evUqc+fOxd/fn1u3bvH9999z/vx5+vfvn2LZhRBCCEuR7uVCCCFECpLqkmxjY4OPjw8A1tbWzJo1i65duzJz5kxGjRrFuHHjcHd3Z8CAAcZtHB0d2b17t1krbPfu3Wnbti0rVqzgq6++MjtGYGAgO3bswMHBAQCDwcDixYuJjo5m3bp1WFmpX+EhISFs2rSJyZMnm+3bz8+PBQsW8PrrrwPw1ltv0aZNG2bPnk2jRo2SPFdFUZg0aRL169fn559/RqPRAOp91O3atWPu3LksW7Ys2deqbNmyHD58mDt37lCyZEnj8oRW8sDAQLP8M2fOpEqVKrRr1y7Zffr5+QFqz4Hq1avz3Xffce/ePRYuXEifPn34559/sLOzA2DQoEHcvn2bRYsW8eOPPwJgZ2fH/PnzadWqVbLHEEIIISxJgm4hhBAiBRMnTqRs2bJmy7Ra845ilSpVYujQocyZM4fLly8TEhLCsmXLjIExgE6nQ6fTAWoAHRYWhsFgwN3dnYsXLyY6bps2bYwBN4CHhwcAHTt2NNuvh4cHmzdvJjAwEBcXF+PyIkWK0Lp1a+PzfPny0blzZ5YsWUJQUBDOzs6Jjunr64ufnx8DBw40a80H8PLyYuPGjRgMhkTnn+Ctt95i9erVDB8+nC+++ILChQvz77//snPnTgCio6ONeY8ePcqOHTtYu3ZtkvtKEBkZCYCzszM//fST8djFihXjs88+Y/Pmzbz99tuAejGkTJkyvPHGG7z++uvo9XrWrl3L559/zvLly/H09EzxWEIIIYQlSNAthBBCpMDDwyNVA6n169ePLVu2cO7cOT777DMqVKiQKM+GDRtYtmwZN2/eNLsvOanR0YsXL272PCEAT255aGioWdDt6upqbKlOUKZMGQDu3LmTZNCd0Ko8evTo5E6TJ0+e4OjomOS6ypUrM3v2bL788kvjaOPOzs6MHTuWSZMmYW9vD0B8fDzTp0+nU6dOxosJyUnodt6mTRuzYL9NmzaMGjWK06dPG4PuKVOmcPbsWTZs2GDM27ZtW9q3b8/06dP5888/UzyWEEIIYQkSdAshhBDpICAgAH9/fwCuXLmSaP3GjRsZM2YMrVq1ol+/fjg5OaHT6Vi8eDEBAQGJ8ie0ij8vuVZmRVFeofTm+xg1ahRVqlRJMk9C4JycNm3a0LJlSy5duoTBYKBq1aocP34cMAX9f//9Nzdv3mTy5MmJ7suOiIjg9u3bODk5YWdnR5EiRQD1nu5n6XQ6ChQoQFhYGKAOVLdu3Tr69+9v9hpZW1vTpEkTVq5cSWxsbKLR04UQQghLk6BbCCGEeEUGg4ExY8aQL18+evfuzaJFi4xdnBNs374dFxcX/s/efYdFcbwBHP/eHUUQRAWs2AsWQLD33ntNTOyaqFFjoiZqEk1i7O2XxGjUJGrUFEtiNPYWu9h77wWxIChIkXK3vz9W7zgpgnIc4Pt5Hh73dmd35xiBe3dm3pk9e7ZZD3RSy2S9rps3b6Ioitm9nvdkx59vHd/znnInJydq1qz5yve2s7Mz68Hev38/gPGad+/eJTY21tgbHt/q1atZvXo1c+bMoXHjxpQvXx5IOB88JiaGR48ekTt3bgAeP35MXFwcer0+wTXj4uIwGAwYDIZXfk9CCCHEq5KgWwghhHhNixYt4vjx48ydO5f69etz8OBBvv76aypXrmwMCp/3XMcPhE+ePMmJEycoUKBAmtfpwYMHbN261Rj4h4eHs3r1asqWLZvo0HIALy8vChcuzMKFC2ndujXZs2c3Ox4SEmJ8Pyl148YNli1bRoMGDYxz41u2bJloT/rgwYOpV68eb731ljFor1atGq6urqxdu5aBAwdib28PqEP19Xq9MZB3dXUlR44cbN26laFDhxp7tCMiItixYwfFixeXZcOEEEJYhQTdQgghRDJ2797NtWvXEuyvWLEihQoV4urVq8b1txs2bAioWbnbt2/PuHHj+P777wGoX78+W7ZsYfDgwdSvX5+AgACWLVtGyZIljcnC0lLRokX54osvOH36NK6urvz9998EBwczefLkJM/RarVMmDCB999/n9atW9OxY0fy5s3L/fv3OXjwIE5OTsybNy/Z+7Zs2ZLmzZuTP39+43vMmTMn48aNM5YpUaIEJUqUSPR8Dw8Ps0zjdnZ2jBw5klGjRtGtWzfatWtHYGAgS5cupXLlysaHCjqdjr59+/Ldd9/x9ttv065dOwwGA3/99Rf37t1j+vTpqfn2CSGEEGlGgm4hhBAiGUkN/548eTIFChRg1KhR5MqVi88//9x4rGjRogwfPpyJEyeyYcMGWrZsSceOHXn48CHLly9n7969lCxZkunTp7Np0ybjnOe0VLRoUcaOHcu0adO4fv06Hh4efPvtt9SpUyfZ86pVq8by5cv58ccf+e2334iMjMTd3R0fHx/efvvtl963TJkyrFq1iocPH5IrVy6aN2/O0KFDcXV1feX30r59e2xtbfnpp5+YNm0aOXLk4O2332bYsGFmc98/+OADPDw8WLJkCXPmzCEmJgZPT09mzZpFs2bNXvn+QgghxOvQKGmReUUIIYQQGUbDhg0pVaoU8+fPt3ZVhBBCiDde4ilQhRBCCCGEEEII8dok6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCZE63EEIIIYQQQghhIdLTLYQQQgghhBBCWEimXjIsLi6O0NBQ7O3t0Wrl+YEQQgghhBBCiPRhMBiIjo7GxcUFG5ukQ+tMHXSHhoZy48YNa1dDCCGEEEIIIcQbqmjRori6uiZ5PFMH3fb29oD6Jh0cHKxcm+Tp9XouXbpE6dKl0el01q6OSCPSrlmXtG3WJO2adUnbWkFUFNSqpW7v2wcW+Cwm7Zo1SbtmXW9a20ZFRXHjxg1jXJqUTB10Px9S7uDggKOjo5Vrkzy9Xg+Ao6PjG/Ef8E0h7Zp1SdtmTdKuWZe0rRUoCly8qG5nywYW+Cwm7Zo1SbtmXW9q275sqrNMhBZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCpKmoKFi1Cj77DE6dsnZthLCuTD2nW4g31dOnYGcHslKeEEIIITKKp09h0yZYsQLWroXwcHX/nDmwcydUrGjV6glhNfKRXYhM5sABcHODokVh7d+PrV0dIYQQQrzhDh6Ebt3A3R06dIA//zQF3ABPnkDz5nDpkvXqKIQ1SdAtrC7qSRQGvcHa1cg0vv4aIiLg9m1o2zknvVru5dH9x9aulhBCCCHeMAcPQosWUL06/PGHeaCdKxf07Qs1a6qvg4KgaVO4c8c6dRXCmiToFlb172o9+fLpKVkwgKDbD61dnVTbsvwYf3wbyKXjN9LlfleuwObN5vuWbKyNV7ko1i85nC51EEIIIcSb7dAhaNlSDbY3bTLtfx5ob9wI9+/DggWwfj34+KjHb95UA++QEOvUWwhrkaBbWM2uXfBWVy1hkU5cv1+Yb78+Y+0qpcqRbedo1b0S//u9DRWqF2Jkr52EBYdZ9J7z5+mN260a3CaHQygAgSH5ad2rCn1a7+Hxg1CL1kEIIYQQmcujRzBlCgwfDr/8Av7+EPoKHxeCg6FVK6hWTQ2snytSBH7+Ge7dUwPt5s3B1lY9ljOn2mFQvLj6+tw5aNNGS1SUhCHizSH/24VVHD8ObdpAdLTGuO/HZX48CXlixVqlnMEAgz8rgaKoP0KxejumL6mPZ8kolszYa5Hh8lFPolg4Xw3q7ewMLFpeiDPHI2hW5YixzK/r6+Dr9YSLR66l+f2FEEIIkfmsWwfly6tZxL/9Ft5/Xx3ynTMnFCoEzZqpgXhKDBoEGzaYXhcpAj/9pM7Vfu89NclrYvLlgy1bIG9e9fXBgxpGjSpOTMxrvTUhMg0JukW6u3zyDs2bKzx5Fl87ZosGIDTShV+mHbVizVJu4UI4dMQegLw5H2Jv+xSAe4/z0uvT2tTyOsvetacIC36CYlDS5J4r5x8lJDwXAF3q++PuDoU8C7DxQCV+nrgHZwc1IL8Z5EHtRjk4su1cmtxXCCGEEJYVGwvz58PIkXD3btpc89Ej6NVL7eRI6poBAWow/P776pDx5EREwL//qtsuLqZg+/33kw624ytRQu3xdnFRX+/f70KHDlqCg1P+noTIrCToFq9EMSj8PHE3Xw3cmaq52IFX79G0qYEHD9Qe7po1YdfGQOPx//1Smtjo2DSvb1oKCYHRo02vx00J5vThu7SvfcC478AFb+q09cHFzRkHBz2FC0OlSmqykc8+g8jI1N937gIX4/agoc7GbY1Ww3uf1+HMsSdUKHYRgIdhbjRoU4j//jqe+hsJIYQQIt1s3arOeR44EKZPh7p1Xz/Z2IYN4OUFS5aY9rVsqQ4JnzULBgyA2rXV3u7n/vwz+Wtu3qwuCQbQtWvKg+34KlRQlxLLlk15dk0Nfn7qcHchsjIJusUrmTpiF/3H1OWb+fXx9Y1lz78nX3rOo/uPadboCTceFALAq/gt1q2DyvWL0abmQQACgguwbM5LHrVa2Zgv9Mansm+/baBy5XCKexXmnz3V2fzHUcp4XDUrHx1jw+3bcOyYmmxkyhT16XBqHN95gQMXvAHwKXaRGi28E5QpXKYgOw/ko46X2hbhT51p8a43q1YlvF5o0GOWzNjLh2/vYvvKY6mrjBBCCCFe27Vr6vJaTZvChQum/VeuQIMGEBiY9LlJMRjUgLpVK9P5OXLAokXqMPPmzeHDD2HePNizR63D87nXf/2lnp+U1atN2x06pL5uz9WpA//+ayBnTrWT5fZt9UHDzJmgpM3gQJFJjB49mkGDBhlf9+jRg4kTJ6Z7PQ4ePIinpydhYZbLzSRBt0i1Tb8f4fPv6xpfB4bkp0GH8kwZeSzJX9an9l6iVYPbnLlZCoCieW6zeYsdudTR0nw6Kpux7PQf3JMdkh10+yH6WH2Sxy3p2I5zzJuv9tI7OSlMm2Zez6bvVOLUlcLMHbebtxvtp6HfMbzLPiFvXtDpTGX3bzybqvvO/e6BcXtQn3totJpEy+XM48Lm/aWNDzFiYm3o0kWdqxUaFMrS/+2lba2D5CngQK9PazN7RT3a9vAk5O6jVNVHCCGEEK8mIgLGjoVy5cwD2erVTcnGLl9+tcB7xQrzB/vNm8PZs9C7N2gS+eiQKxc0bqxuBwSoS4AlJjZW7aEGNYhv0CB19XpRw4bwxx/nqV1b/WwUFweffALt2klm84xg9OjReHp64unpiZeXF02aNGH27NnExcVZ9L4//PADH330UYrKpkegnJYk6BapcvXkTd4ZUNKYQKyIewAAeoMNn02vSJs28PDZaPOYqBiW/bCfOt4nqVCnNP7n1d7ZPC5BbN1soECJfMbr1m7tQ/UypwE4faM0m/9MOLdbMSh8NXAn+YrkokrZS8REpW/2DYPewOBBeuN7/3LIMQoWTFjO1t6WgV/WZdm2mmw/VpFT55y5dw+iIvTGud8nzzqm+L6hQaH8vqkSAM4OYXQbUjHZ8g7ODqzaUYlevdQ/ZAaDOgQsT4Fs9BxRm7X7qxETZ28sHxmdnWXzTqW4PkIIIYQwiYtTl8JKSS9taKgaXE+YANFqShvy5VOHge/bBzt3mgLvS5fU4DY1c7zjLys6c6Y6zNzDI/lzunQxba9cmXiZ3bvh8WN1u1Wr1A8rT0yePLFs22bgs89M+9auBT8/OJo5UvxkaXXq1GHv3r1s3ryZPn36MHv2bBYsWJCgXEwaZsPLmTMnTk5OaXa9jMSiQffhw4cZOHAgtWvXxtPTk23btr30nIMHD9KhQwfjU5VViY2NFVYRERpBh/bRPI7ICUC72ge5fDsvXw7YiUaj/qXZsAH8/BQ+7b2XwgUe887Qmuw9U8F4DfccQWxaHUxJ3yJm19ZoNYwcHmF8PX2m+X9NxaAwpv8uvplfH4Oi4/jVsuxem75LjC2esc84xLuMx1U++jLhEO/k2NrbUL7IdQAuBxYhIjTiJWeolnx/gsjo7AD0bH0cp1zOLzkDbOxsWLhQw/Dhpn3xA+0Cue/Su9Ue4+vFy11TVBchhBBCqO7fV4PnokXVry5d1B7hpBgM0LMnnHn28cXWVk2cdukS9OgBWq2aTXzHDihWTC3zPPC+dy9lddq9W/3X3l7NNJ5Y7/aL2rUDGxt1O6kh5v/8Y9pu3z5ldUkJGxuYNEmda+767KPIrVtQvz7891/a3Ueknp2dHe7u7hQsWJB3332XmjVr8t9//xmHhM+dO5fatWvTvHlzAO7evctHH31EtWrVeP/99xk8eDABAQHG6+n1eiZPnkzlypWpVq0a06ZNQ3nhSdWLw8tjYmKYPn069erVM8aGK1euJCAggJ49ewJQpUoVPD09Gf0s4ZLBYGD+/Pk0bNgQHx8f2rZty6b4i8kDu3btolmzZvj4+NCjRw/uvG4ShRSwseTFIyMj8fT0pFOnTgwZMuSl5W/fvs2AAQPo2rUrM2bMwN/fnzFjxuDu7k6dOnUsWVXxEopBoV/Hk5y+URMAz4LXWLK6LLb2toybV5/anaBbNwgKgoAADTMW1zY7v1zhKwzufYceH1XEOXeZRO/RtncVSn19ncuBxfjveEWO/neeSg3LohgUxg7YxaQF9c3Kb1gTRuO3LPJ2E3h0/zGjJpnqPft/j7FzKIFen7ph7hU8gzl2BRRFy5kD16nWzCvZ8opBYe4S0yPqD4YVSPG9tFqYMUNdnmPMGHDLFUWXBofo0i0XNVt6odXl52TJ8xy/WpZDF704f+gqZauWSNX7EUIIId4kigL798OcOWqAGj/I/vtvddmsRYvUv8EvmjDBlP07Vy51TnX58gnLFS6sBt7168ONG3Dxohp479kDbm5J1y0gQJ2jDeo62tmyJV02vty51SHmmzap86sPHVJ74+O/5+fD4O3s1CHraa15czhxAt5+W/3+hoeryWf//BM6dkz7+1nV+f/Bhf+9vFzuilDvX/N9u9pCSApy8ZQZDmWHv7xcKtjb2/P42XAHf39/nJycWLRoEQCxsbH069cPX19fli5dyuXLl9m5cyfvvfce//77L3Z2dixcuJB//vmHSZMmUaJECRYuXMjWrVupHv8/2wtGjhzJiRMnGDNmDGXKlCEgIIBHjx6RP39+fvjhBz788EM2bdqEk5MT2Z79h58/fz7//vsv48aNo2jRohw+fJhPP/2U3LlzU7VqVe7evcuQIUPo1q0bb731FmfOnGHq1Klp+r1KjEV7uuvVq8ewYcNo0qRJisovW7YMDw8PRo8eTYkSJejevTvNmjXj119/tWQ1RQrMnPaU5f+pAbezQxir/4EcrjmMx5s0UX9Z1jVN9UanjaNzfX92/H2CM9dLMGhcPZxzJ91Lq7PV8ckHt42vp88roQ4p/2AnE3+pb9yv0aiPYNcfSvqHNK19OfQkQWHuAHRpsJ9GXSq90nUqVDAF6ScPv3zS0q7VJzl/Ww2E63qfoHyNUqm6n0ajPkUPC4OAuw58v6wetdv4oNWpP/q93jLNFV/8q2Xn6QghhBCZ2b59ULGimvX7zz9NAbdWa+opXrJEnZv84lDzdevgq69M5ZctSzzgfq5IEXWoedGi6usLF2DatOTr97yXG6BevZS+K1VyQ8yPHDFlU2/cWJ3TbQkeHrB9O7Rtq76OicGYlyZLiQ2DqDsv/3oalPDcp0EpOzc27eY5K4rC/v372bt3L9WqVQPA0dGRCRMmUKpUKUqVKsWGDRswGAxMnDiR0qVLU7BgQSZOnMjdu3c59GwtusWLF9O/f3+aNm1KiRIlGDduHM7OSccF169fZ+PGjUyaNIkmTZpQqFAhatSoQcuWLdHpdLg8W3vO1dUVd3d3nJ2diYmJYf78+UyaNIk6depQqFAhOnbsSNu2bVm+fDkAf/75J4ULF2b06NEUL16ctm3b0uF1MgOmkEV7ulPrxIkT1KhRw2xf7dq1mTRpUrLn6fX6VPc4prfn9cvo9UzMtm0w6gvT49LFs85RqmKVBO8lb151rccFCzSEPdbzTsf7eJSqCoBBMUAK3nq3oVUY+4PCgwcaVv5ti8vbh/npL1O2jh/G7GT5znrs3QuXrmTj4kU9JUumzftMSsDlu8z9qxYAjvYRTJtTKEF7prRdvSqafrmcOKG89Lw5i/IYtwe8F/HK/39sbdUPAC+e/nb/Mnwy3UBcnJala0rzzXd6dLpXukWWk5l/ZkXSpF2zLmlbK9Dr0Rk39Qn/yKTJLSzXrooC16+rwd7L5iifOgXNm2sJDzeN13ZzU+jbV2HAAIXjx+Gtt7QYDBq+/RZcXQ2MHq1G3pcuQbduWkA9d8IEA40aKS/9dnl4qJ+rypRRr7t2rcLkyUmnF9+5U8Pz/rRatfSpao42bcDGRktcnIa//lKYOtVgHJq+apXpum3bGtDrXz/FeFLtamurJoPr31/DkiVaY16aoCADn36qpGi4fEansXFC45BIUqAX2btheOH7o7V3gxScq9g4obzGz4yiKOzcuRNfX1/i4uJQFIVWrVoxaNAgY7Ct0+mM7Xf+/Hlu3bqFn58foA7x1mq1REdHc/PmTby8vAgKCsLb29t4jkajoXz58iiK6fOwoijG12fPnkWn01GxYsVEf/4Nz+ZBxI8Dr127RlRUFH369DErGxsbS9myZdHr9Vy5csWsHgA+Pj4JrpVSKS2foYLuhw8f4vbCuBk3NzfCw8N5+vSpcdjAiy5dupQe1UsTp0+ftnYViI6M4dHdJ+Qr8fJ5vA8f2vD22+UxGNTfcu+/H0hhP1tOnDiR5DnPHoLxMAIenrif6vp16pSPuXMLYjBo+Omvqsb94wb/Q432hbn4+A5796pDrn/55Q5duybyJDANLZl+F72hNQD9O/5HcGQBgk88MCuT0na1dTEt0H38bI5kv48PH9rwz0b1l4BrrkhKVLFJtvyrqlXLnl27chIYqOGnn65Ro0bmyAKZXjLCz6xIe9KuWZe0bfrRRkXh92z71KlTGBwcLHavtG7XBw9smTixCPv2uVCgQDSzZl2maNHoRMs+fGhDr15lCQ9XHzGULh3Ju+/ep0mTR9jbKzx6pPZIf/65KxMmFAVgzBgtUVE3ado0hN69yxAWpn5vGjV6RJMm10jNn3Nvb09OnnTiwgUN69adw8Mj8cRVW7eWAxzQ6RSyZz/FiRPJrP+ViCpVSuLv78KtWxp+//0SXl7qZ5bly9XrajQKxYqd5sSJtBsZl1S7DhkCBkNBfvtNTbr7+edazp27x0cf3ckCgXcDKJzC9O8v/kdx/hpentoHohI5NxVCQkIoW7Ysffv2xcbGhly5cqHT6bh06RIhISHExMSYfSa9desWRYsWZfDgwQmulSNHDmM7X758GRsbU/gZGhqKoijGa4WHhxMUFMSJEycIDAxEURROnjxpds5zV65cAdT/Q9mzZzfb98knn5Dr+RJJz9jaqvFLaGgocXFxZvW/fv16gmultQwVdL+q0qVL4+iY8mzQ1qDX6zl9+jTe3t7orNiVGBMVQ/3KVzl0sQYfvr2Tb39Peq68YlDo0EFLaKj6dLNlS4U5c/Ki1ea1aB3HjYMlSxQiIky/Vb//fAeDv1HHG733Hsyere4/ebIQU6ak4GnhK3oa8ZQ/NqpJ32x0sQwfV5ECxU1Z11+lXQu7B3AryIOzN0vg4+1gHOr9olmzNOj1zx52DMhG5aqVX/PdJG7oUNi1S93eu7cEH3wgi2RCxvmZFWlL2jXrkra1gghTQlAfHx+wwIfVtG5XRYHfftMwbJiGx4/Vv7GBgfYMHFiedesMVH7hT21EBAwYoOX+fbVslSoK//1nj4NDYaCwWVlfX3B0NPD55+rf9cmTC7N5c2GuX1fPLV9e4e+/c+Dk5JuqOnfpouHkSXX75s3ytG6d8O/0gwdw44b6/alcGWrU8EnVPQD69NHg769unzrlSffuChcvwvXr6nVr1IBGjZLPRZNSKWnXRYugXDnT9/O33/JRtmweRo2SzymWljt3bmxsbIxJ0hI75uvra9xXt25dDh8+TO3atXFwcEi0bd3d3YmMjDSeFxcXR0BAAOXKlTPuc3Jywt3dHV9fX9zd3fnf//5HTEwMlV/8wQRjErby5cuTM2dOAEqVKsWECRPInj17onUH8PPzY8eOHWb1/+9Z1j5vb29ypHL+RGRkZIo6gDNU0O3m5sbD5+tNPfPw4UOzyfGJ0el0meYPrLXrOn/iIQ5dVCf6/LC8PtVr7OPdj2olWvb3WftYt149licPLFmiwdbW8nV3d4eBA9WlLgC+H7OXoeNNTwR9fKBQIYXbtzXs2qnnaXg02V0s81Rq5bzjPAxTk8J1rn+YQqVqJlouNe1aodQdbgV58CQqB7cv3qK4d+FEy8Wfm/XOO1qLDftu3VrNGBocDGvWaHjyKIqcbin/fq5ZcJA//9Az+itXfOt6WqaSVmTtn1lhGdKuWZe0bTqK933W6XRYcn5SWrTr3bswYIBpven4Hj7U0LixjjVr1DWkQc3i3bu3afmqIkVg7VoNTk5J12P0aPXv6cyZYDBoOHJE3Z8zJ6xercHFJfXvoXVrNSEqwMaNWoYOTVhm3z7Tdr16mlf6XnXsCB98oM4S+PtvLTNmmH+vOnZ8tesm52Xt+tlnavK4gQPV9vj+ey2ffJI2S5aJpGk0GjSaxNs7sWPt2rVj0aJFDBkyhCFDhhASEsLRo0fZvn077733Hvny5aNnz54sWLCA4sWLU6xYMX799VeePHlidq341y5cuDAdOnRg7NixjBkzBk9PTwIDAwkODqZly5YUKlQIjUbD7t27qVevHvb29uTIkYO+ffsyZcoUACpVqsSTJ084duwYTk5OdOjQgXfffZdff/2VGTNm0KVLF86ePcuaNWuAV/s9k9LyGWqdbl9fXw4cOGC2b//+/WZPIkRCsbFw9uzLp1IFB4Yw7ocKZvsGjPbh0rHrCcreu/6AD8eWM76e979A41IO6WHSJPjuO3UJiaHjzTOhazTQqpqalCEm1obtf1tm6TBFgR/+MCVMGzo8JeN5Xq5C+Sjj9skDgYmWMegN7NmjDgvLnRu80ubBcqLs7KBb52AAnj7VsGJeyhfH3PPvSTq+X5nl/9WkR08tikGePgshhMgYDAY1AD5/HhYuVBOXxQ8iu3VTs30/TwL7PGP289VqR482LZWVI4eaDC3vSwb7aTQwfTr06mW+7/ffeeUcND4+UPDZoL4dO8wGGBi9ThK151xdoVEjdfvmTTWB2vOs5ZC2S4WlxvvvQ6dO6vaDB6YM8CLjcHBw4LfffqNAgQJ89NFHfPrpp4wdO5bo6Gjjutt9+/albdu2jBo1iq5du5I9e/aXJtv++uuvadasGV9//TUtWrRg7NixREWpn6Pz5s3Lhx9+yMyZM6lZsybjx48H4OOPP2bQoEHMnz+fli1b8t5777Fz5048ni1YX6BAAX744Qe2b99Ou3btWLZsGcOGDbPgd+cZxYLCw8OVc+fOKefOnVNKly6tLFq0SDl37pxy584dRVEUZcaMGcqnn35qLH/r1i2lQoUKytSpU5UrV64ov/32m1K2bFll9+7diV4/IiJCOXLkiBIREWHJt5Em4uLilCNHjihxcXFpfu0ePRQFFKVRgxglOjI6yXJD3tqpqKGkorg4PjZuVyh5TYmKMpUz6A1K+9r+xuNdG+1L8zq/rn8XHjTWb0CHXRa5x759ivEelSrGKga9IUGZV2nXlfOPG6/71agHiZY5s/+SsUy7xtdf9S2k2NH/zhnvV6PsqRSdE3T7oVIwd6DxPFCUY4efWrim6ceSP7PCeqRdsy5pWysIDzf9AQgPt8gtUtOuQUGK8s47iuLlpSh58yqKTqeY/Y16/pUnj6L884/pvMhIRWnb1nRcq1WUd981vdbpFGXTptTVOzZWUXr2VJRs2RRl1qzUnZuY99831Wft2oTHfXxMdX/8+NXv8/PPpvt0727a9vZ+9WsmJrU/r1u3murSpEna1kWkrTftd3FK41GL9nSfOXOG9u3b0/7Zo7HJkyfTvn17Zs2aBUBQUBB37941li9UqBDz589n//79xmEKEyZMkDW6k3HrFvz2m7q9fYctw3r6J1ru3MErxgzc2e3DObz3EWU8rgJw8kox4j/gWT7Hn9V71eW43HME8cOvGW/IcMOO5bG3fQrA+t0lLdLD+sMPpu0Ph9qg0aZN5o4KDXyN2ycvuidaZtcmUw943Yo30uS+yfGrVwbvoup8FP/z3omOfojPoDfQs9M17oTkN9u/9A97i9VRCCGESM7MmepSXmfOwP37iY8AfOcdOHfOvNfWwUFdY/t577TBAH/8YTo+ezY0a5a6utjYwOLFEBUFH36Y6reSQKtWpu31682PhYTA83xkvr7wbCWlV9K+vWmWwPPPl8/3W1PDhlC8uLq9datpPXIhMguLBt3VqlXj4sWLCb6ej7OfMmUKS5cuTXDO6tWrOXPmDNu2baNjx46WrGKmt3Sp+VqQP/5Vj4VT9iQo98lHj9Eb1Cn8o98/Qim/oqxc44aDg3ryvHnqEg33bwQx5AtTkP3jlCu4eaTjuPIUyu6SnQZ+6l+YgOACnN5/OU2vHxgIf/2lbru5wdtvp921S5Qw5ZpJKrHk7r22xu16TfMkXigNabQaer9lCvQX/3gz2fLTP93NxkNVAMjjEoSdnfr/6I8/IE6W+xZCCGEF27aZtgsVgkqVoHlz6NEDhg+HzZvVv1OJTZezsVGHoA8fbr5/+HB1PrG1NWpkmse8YYP5Z799+0yvnw+Vf1VubqY57fFZO+jWatVh5s8tWGC9ugjxKjLUnG6ROoqiPkV90Qdjq3Joy1nj640bYeNBNetfIbc7jJikrunlVdGFH34w9d6+957Cu53uEvxE/WvUpYE/nT8wXzc9I2nZxLT81oa/E58b/armTzpiDB4HDIBk8vilmlYL3t7q9o0bEBpqflwxKOw6VgIAZ4cwKtQpnXY3T0a3D8qh06pvesnq0uhjE08SsG/dKb74Xp1nr9EY+H3+LVq1Uv8f3b8P27enS3WFEEIIo9BQOHZM3fbyUkcCHjmifgZaskTtBW/aNPlraLUwY4ZatkABGDwYpk2zfN1TwsnJNFf71i01l89zz1cggdcPugG6dDF/Xbgw+PklXjY99e6tPhwB9QFJbKxVqyNEqkjQnYn5b77I5WcdvA0bwqDO6m/dmDh7Or6Tm/s3goiNhREjTOdM/V9OHJxN62j27asmEgF48kTDf8fUJSbccjxk9q+vmPEjnbR6u5hxe/22XMmUTJ3oyGjm/aYuE6bTxjHwvciXnJF6FeLlszt1+JHZsSsnb3DvsZqppZb3RWzs0meRgbxF89CimvqJJSC4ADv+OZmgTHBgCF17uxlHTXzx3m4av12JHj1MZZb+lLYPQIQQQoiX2bdPHRYOUL/+q19Ho1F7twMC1GHlGSkRflJDzOMnUUuLGZkdOpi/7/btyRBrY+fLB+3aqdv37qmJ7YTILCTozsR+nXffuN273Sm+XVKDWuVPAXAnJD9vtb3DnNl6zp9Xy1SvDl27my8FpdHA3LlQurh5Ksw5ky6Rp3Di840ziuLehY3z0vef9SLk3uM0ue7K+Ud4EKq+9471DuNRNO3XgK9QyJQh/OSuU2bHdm0MMG7Xq5lIilIL6tXD1Ls9fJQTXw3cyYo/Ijh7FqKfKvTufIWA4AIA1PU+wVez1R7vli0hl3M4AP+sdyH8UXi61lsIIcSbbedO0/arZu+OLyMEmS+KH3Rv2KD+++SJqYe/fHl1ePjrcnODBqaVWunQ4fWvmVb69zdt//ST9eohRGpJ0J1JRT2JYvkWtbvUKdsTOvYqgZ2DHX+tzUeB3Gpyut2nfRk23PSo8rvvEv8j4uwMKxffIZutmoK/c31/umTgYeXxtax3GwCDomPLynMvLW/QK/jvVxg+XJ0fNXw4HDiAWSK2H+abMpB8+HHaB9wAFXxNC0yePGXeKLv3mF7XbZy+8+nb9KpIruxqz/vpG6X5Zn593u6WHS8vcMwO6/yrAupIiD9W5TX2wtvbw1uN1b/6kdHZ+WfRiXSttxBCiDdb/KA7LYZYZ0QlS0KpUur2vn3w6BHs329KGJcWDxue++YbdV3yd97JWN/Pxo2haFF1e/NmdZrey8TFwcGDMHWq+uCifn11nv6sWeqUuHv3zOfIC2EJEnRnUqsXHScsSg0OuzQ6QXYXtQc7X7E8/P17MHY20Wblu3VTqFYt6ev51C7NoR23WThlD7+tr5hmmbotrVV7U4C8fr0h0TKKQeHApjOM6L6TovkCqVlLw7ffwn//wbffQo0aUCRvICO672ThlD0cuqguiu1b/AK1W/tYpN7eNYoat09eMA+sdx9Vh7Y72EVSuWH6Zo63d7Rn+hdnyG6fsKfaYDD9n1g69zYFS5pnLu/RN6fp+B8OCCGEEOkhLMy8tzeP5fOPWs3z3m69Xs3iHX9oeVoGxzVqqAHtH3+oc90zivgJ1RQl6YRqly6p8/FbtoRcudTRnqNHqyMEdu2C+fPho4/UID5/frV3/623IDLtZxQKAUjQnWn9utS0NFOvfs5mx6o392LOuEPG1w52kUz+8j4v412rNH1G1cHeMfMs+1S7VXmcHZ4AsOlwZbPlQSJCI5j+yU6K5rtDjRZe/O/3+tx+WDDR69x+WJD//V6ffp+ZJkN9+H6QxR4+OOd2pkQ+NUP4mRvFjEnLbp4P4GZQIQBqlL+AnYNdktewlH6f1eFxWDYuHr3OqkUXGD8eunZVk7+5u6sJZpq/mzCjSs2W3hTLewuA7cd8Cbx6L72rLoQQ4g20b5+pt/d15nNnBi1bmrbXr0/7JGqZQZ8+pjnnCxaYr5oSEwNjx0K5cjBqlJpILzwFM95CQmDlSnXKpRCWIEF3JnTnyl22HfUFoFjeW9Rpm7A39r3P6/DN4J0Udg9g3sRjFCqdL51rmT7sHOxo0sIJgIch2Th8WA22Z3y6k2KFIxk5sz63gjyM5W10sbSocYZFi+D6dVi0CFrUuoiNzjwFpqtzMO8MrmzRulcorU4DiIpx5PIJNQDfvSXIeLxejdBEz0sPNnY2lK5YjA69yzBmjLru6alT8OBBwuVUntNoNXRvpy6caVB0/Dn/QjrWWAghxJsqredzZ2R165qWHV2/Hg4962MpVUrtsX0T5M8Pbduq23fvmpLKHTsGlSvDhAnma7Tny6d2HsybBxcvqsPy9+2Dn3+Gjz+GJk1MZRculKHmwjLSJy2ySFNL51zEoKi/WXt2uIZWVzjRcmNn12fsbACPRI9nFa1aaVi1St0eOeQ2F69k40FofeNxjcZA08rHeLtTFO16epE7v5fxWO/e0Lu3JyF3H7FmyRlWrMrG1QA3Jo25h4OzZee1V/B6yqpnw8JOHrxHmSrF2XXa1INct1X6LBWWlnoMLMr4Z4lNlv6VnxEZZKkVIYQQWdebFHTb26tB4urVEBxs2v+m9HI/178//POPuv3jj2rAPWmSqdfbxkYdTt69O5QunTCnUc2a6tdzdevCnj1w7pw6/7t69fR5H+LNIUF3JqMYFBb/Vcj4uueg4lasTcbQooVpe89R0/dGozHQtZE/Yyfmo2zV5Hutc+fPRZ9Rdegz6vmeYskVTxMVKpqStJ08HsPbmOZm2dlBtQaJD4XPyEr5FaVamTMcvODFyeuenN53Ce9ame/hgRBCiMzhyRM4+mxBkHLlsvZ87udatlSD7viy+sOGFzVpoiZ6u3kTtmxRv56rUAF+/RV8fVN+vb591aAb1CHrb2rQ7emZfC6hIUOG8OGHH6ZTbbIWGV6eyRzaepYLASUAqOdznOLeifdyv0ny54eKFU2v1WB7P2f8r/HH1lqUrVrCepVLRoUaBYzbJ89m5+5djOuuV60KDpk0F1mPLqZH77/9fMeKNRFCCJHVvUnzuZ+LP6/7uTetp1ung/feM99nYwNffaUOuU9NwA3QpYu6mg/AsmUQkb4rtmYYe/fuNX59/vnnODk5me3r27evsayiKMTFn1AvkiVBdybz60+PjNu93pW1kJ+bMgXKloV3Otzj9L5r/LmtJuWqlbR2tZJVpExBXBzVedsnL3tYLANpenu7v5dxjvzva8sYk8QJIYQQae1NGlr+XMGC5kFl4cJqr++bpm9fU6Ds46MG219/rY4WTK3s2dV536AmXlu5Ms2qmam4u7sbv5ydndFoNMbX165do2LFiuzatYuOHTvi7e3N0aNHGT16NIMGDTK7zpIlS+jVq5fxtcFgYP78+TRs2BAfHx/atm3Lpk2b0vvtWZUML89Enj6FZf/VBsAx21M6v+9r3QplIE2aqPNwIPMkjNNoNVQocZ3dp325E5KffxaeAHwBqFcrCsicXd1uHq60qHaItfurcickPzt3xNCoqe7lJwohhBCpFD9795sSdIPa233ihLr9Jr3v+AoUUOdfX7igLqX2KsF2fH37qsnVQB1i3rv3a1cxgZUr4csv1WkR6cXZGcaPh86d0+Z6M2fOZNSoURQqVIgcOXKk6Jz58+fz77//Mm7cOIoWLcrhw4f59NNPyZ07N1WrVk2bimVwEnRnIv/+C48fq5kgOnXJhnPubFaukXhdFWoUYvdpdfvv7eUB0GnjqFE9cw/X6THUj7X71e2fFtjRqKl16yOEECLrCQ+Hw4fV7bJlIW9e69YnPb3zjroOdVxc2gVTmVHZsupXWqhWTc0LcO4c7N2rrvVdOo3T0kyfrj4kSG/Tp6fd/5OhQ4dSq1atFJePiYlh/vz5LFq0CD8/NWFwoUKFOHr0KMuXL5egW2QsiqJmZ3zOEk/fRPqrUNUVnmX7jtPbAlCp1AWcc3slc1bG16adLa6uambVFSvUZcaqVbN2rYQQQmQlb+J87ue8vNTh1I8fv3nv3VI0GujXD0aMUF8vXKhOX0xLI0eq64ind0/3p5+m3fW8vb1TVf7mzZtERUWZzQcHiI2NpWxaPTHJBCToziT++uMxu3blBKBECfkFm1VUqJBwX92qD9O/ImksWzZ1XtXzBJfDhins26sOqRdCCCHSwps4nzs+P7+XlxGp0707jBqljiBYvFhd89smDaOlzp0z/8gEhxcy/Wo0GpQXFjfXx1soPTIyElCHmOd9YTiK3evOCchEJJFaJhD+KJzhH0UaX8+cCVppuSyhfPmEbVm3gWPihTOZAQNMQ778/TUsn+Nv3QoJIYTIUt7U+dzCcvLkgbZt1e1792DjRuvWJzPInTs3QUFBZvtu3rxp3C5RogR2dnYEBgZSpEgRs6/8+fOnd3WtRnq6M4GJI44QEFwfgBbVjtK2bSXrVkikGQcH8CzxhPOX1fSbGo2B2i2zxrrWtrYw8+vrtHxbXfN85DdFaNc7CgfnzJkgTgghRMYRfz53mTKQL6PlUdVHw9N7EP0QDHGg6MHRA7LHW+pVMcCD3aDRgkaH2hemgD4S4iIhLsK0XaAFOMdblSUuCmJDwS4X6OzT+91laX37wqpV6vaCBdCmjXXrk9FVr16dBQsWsHr1anx9fVm9ejW3b9/GxcUFACcnJ/r27cvkyZNRFIVKlSrx5MkTjh07hpOTEx06dLDyO0gfEnRbUdSTKNYuOY53lbxJriV98eg1Zi6pCYCdTTSz5rmhkRG6WUoFj6Ocv1wfAJ/Cp8iV19eq9UlLLd4qRvOZh9l0qAq3HxZk5uc7GfNDfWtXSwghRCa3f786BBgyQC/3he/h8QmIDISndyEqEKKDE5bzGgs+35he66Nhe4OU3cNlq3nQ/WAn7Hy2YLfOUQ2+7XKBfW713xxloHhfyJE1HuSnp2bN1MzogYGwbp3a453hHupkIHXq1GHQoEFMnz6d6OhoOnbsSJ06dXj0yLTM8ccff0zu3LmZP38+AQEBODs7U65cOQYOHGjFmqcvCbqt5OLRa3TpHMfpGzWx0cXy47jdvP+F+eLMikFh6MAQYvXFAfi0tz8lfetbobbCkiqUCWLZDnW7nu95ni8bllXMnJWLrTXj0BtsmPJzZfp+fI8CJeSvlxBCiFcXf2i5RfPcKIraYx12Uf3S2kCJfuZlri+BR8defi3DiyuTGFJeD7vc5q9jTAEN+kiIioSoO/EKrIFzUyFfY6j5J2RzS/m93nA2NmrC4kmT1ER9S5embSKyzKJjx4507NjR+LpatWpcvHgx0bJDhw5l6NChgDqf+8SJE/jGW0xeo9HQq1cvs7W73zQSdFvBn7P203+UN+FP1SHFcXpb+o+py7kLB5i+qLoxYcM/vxxiyxE15XNh9wA+n/lmpNR/07Tu7ssX8/QYFB1vv5+5s5Ynply1kgzstIs5K+sREe3EFx8dZ9E6CbqFEEK8ujRPohZxSx3q/fQeRN1Te6ufXIKwSxAXL9W0U/GEQXcuH1PQrbUHh/zgUED9N1se0NoBWnB/YZkljQ2UG60OPVcM6r9owMYRbLKrPdjPt51LmZ+bLS8UbKsG3zEhz/59BPqoF97XTbX3W6RKnz5q0A3qEPNPPkFGmorXki5B9++//86CBQsICgqiTJkyjB07Fh8fn0TLrlq1is8++8xsn52dHadPn06PqlpUTFQMg7rs5ad/TH8d8uZ8wP3HeQD47rfqXAyGP/8EW00kw8YUNJb73/gAHHN4pHudheV51SzFucPXiI3W41UzdcswZBZf/8+L3zc85nFEThZvqMWQ/85TqeGbs0yEEEKItBMRoS6XBeDpCanKxRQdDPd3qnOkbeIlLg0+CP49Xn5++DWIfQK2zqZ9ZUdC6aGQvYg6tDul0ZnOHnwnp6Ly8eRrpH69SP8Unj6AWyvh8lwoNUidM/6cosDOVpDLFwo0B7caoLV9tTpkYSVLqg9zdu2CixfV6QypWJpaiAQsHnRv2LCByZMnM27cOCpUqMDixYvp168fmzZtwtXVNdFznJyc2LRpk/G1Jgs8Wrpy8iYDe7hw6kY5476eLfby459+/DlnDx98VYu4OC0bN0LNmlDD8xy3gioD0KTSUTq+L4scZ2WelYpbuwoW5ebhylcf7mLYlHooipZhH8Ww66QiS4gJIYRItVTP5466Cxe+hbtb4PFJdV/DrerQ6+eyJTYCSwPZi0IOT9OXs6famx2fSwZ6iKzLpiZrKzsCygxLOKQ99Bzc3ah+nZsMNs7q9yF/U8jbUO1RzwKfu9NC376maQyLF0vQLV6PxYPuRYsW8dZbb9GpUycAxo0bx86dO/n777/p379/oudoNBrc3d0tXbV0c/GCQpU6eXkSmR2AbLZRzPnmCH1G1kaj1fDe53UoWRM6dYKQEDh3Ds6dUwNuW10MP8zPJcGJyPQGfVmDuUuvcelOcfacqcCqn/zpNLCGtaslhBAik5k927Sd7HxuQxxcmg2nvjQfIg5w7z/zoDtHGaj0vTpsO1s+9V+nomoQm1lptKB7YR3kkCPmr+OeQMA/6heAQ0E1+M7XEIq8m/D8N0inTjB4sJopf/ly+P57ddUZIV6FRYPumJgYzp49y4ABA4z7tFotNWvW5Pjx40meFxkZSYMGDTAYDJQrV47hw4dTqlSpJMvr9XqzRdgzmtVrNMaA27PgNZb9GYN3zZoYFAM8q3adOuqT2/bttVy4YAqwh3XfR0nfuhn6/b3JnreLtM/L6ex0TP3mAR36qb3683+xo/37Gff7Jm2bNUm7Zl3Stlag16MzburVrFNpfgvzdt27F/79V71rgQIKrVsbEr9t0F60Rz9EE2qanqiggVx+KHnqoeRvYV5f29xQcnBiFUiz95IhFOkOeZugubcV7m5Gc28Lmph4mdaj7sCNpSiB6zEU7max958Zfl6zZYPOnTX8+quWsDBYtcpA166KtauV4WWGtk1LKX2fGkVRLPa/5/79+9StW5dly5bh5+dn3D9t2jQOHz7MypUrE5xz/Phxbt68iaenJ0+ePGHhwoUcPnyY9evXk++FfP2RkZGcP3/eUtVPM0FBtnz7rQeFXAPoM+AJ2ZySfmr65ImOL0flYs+hIpTMf41f/7ybbHkhMhPFoNCxZT5uP/TA1iaObdtPkz17KrK3CiGEyDC0UVH41akDwPE9ezBYuBtQUaBvX09On3YCYMyYG7Rvb740l01cMAWDfsAtbJ3pPDQ8dGlPoNsHxNlIUjEzih7HpxdwjjyMc+QRnKOOo1WieeTUgGsFp5sVdQ1dy1PbQkQ4VHhjhqAfPerEgAGeAFSvHsrs2VesXCORUZUtWxZHR8ckj2e47OV+fn5mAbqfnx8tW7Zk2bJlfPzxx4meU7p06WTfZEbQsKGe06dj8faugk6nS7bs9j0Gju44TSmfguTMUySdaihehV6v5/Tp03h7e7+0XYWqTRf4cS7Extlw/74P8VajyFCkbbMmadesS9rWCiIijJs+Pj6QPXua3yJ+u/77r47Tp9W2LVsyjLEdlmDjXACleB/TCXc3obsaL+DOVRFDpR/I7VoNCbeTUgnoBoCij0EfcpAcWnt8XX1NRWKfoP13Bpq4CJQcZVE8OqC41QTX6mCXM9V3zCw/rz4+MGWKwvXrGg4dyoG7uy8FC778vDdZZmnbtBIZGcmlS5deWs6iQXeuXLnQ6XQEB5s/hQwODsbNLWXrBdra2lK2bFlu3bqVZBmdTpdpGjUlddXpdFRvljWzWGdVmen/oLW1aasG3QAbNujo0sW69XkZadusSdo165K2TUfxvs86nc7sdVozGHR88YUpC/eUtt2xu7AW8tSDUu+ZCnq0gkId4d52qDAJTckB6LTy/yHFdA6Qr37C/df/gjj1IYsm7Dyac89HmmrApRy41QT3muDiBbkrpbgnPKP/vOp00LMnjBsHBoOGP/7QMXq0tWuVOWT0tk0rKX2P2pcXeXV2dnaUL18ef39/4z6DwYC/v79Zb3Zy9Ho9ly5dylKJ1YR4k9Wvb+oMWb8+602XE0IIkbY0hmgWTtnNpUtqIFfbcw9tKq5VDz69l/CEyrOh9UUoPQgk4E4bRbtBjaXgXueFAwqEnoWrP8OBPrC9fsJzAzdByLH0qKVF9Oxp2l68WJ3mIERqWXx4eZ8+fRg1ahReXl74+PiwePFioqKi6PhsTOnIkSPJmzcvI0aMAGD27Nn4+vpSpEgRwsLCWLBgAYGBgXTJ6N1hQogUyZYNmjSB1ashKAgO77pD9YYyVksIIWJi4Mi+R+z45yQ79zlz8Hwpyhe5ycZdhcmZx8Xa1Utbhjh1zezoIPXLxhlcK5uXufgDmvDrFD23ipbfHTDunvbOSDT5m0DJ/uBUIuG1HVKzcLdIERsHKNZd/YoMgKB9ELQfHu6HR8dBefYE3alEwl7uS3MgcJ2aFb3sJ5C/efrX/zUULw5168Lu3XDhgrpGfDVZyVekksWD7pYtWxISEsKsWbMICgqibNmy/PLLL8bh5Xfv3kWrNXW4h4WFMXbsWIKCgnBxcaF8+fIsW7aMkiVLWrqqQoh00qbueVavVtc1XfvHZQm6hRBvpNjoWI4cjGLnvhzs2AH79kFkZC6gvrHMgQvejB++k5m/1U/qMhlb0H41QIu4qX5F3oTIOxDzCIjXZViwLdRbY37u5blow84ze+1Y7oeqyXQ71tlPjcHfgZtEPVbj6AFF3la/QB12HnwEgg+CrXPC8uFX1X/v/6d+uZRH4zkcjVIu/er8mnr3VoNugF9/TV3Qffcu/PmnulJRlSqWqJ3IDCyavdzSnmcvf1m2uIxAr9dz4sQJfH1934j5DW8KaddXc+/6A/IXzwOAT7GLnLzmaeUaJSRtmzVJu2ZdmaFt42LiOLrjAjs2PWTnPif2nipDRLTTS8+z0cVy9lAApSsWS4dapkJEBDg9q/+5X8EQCOU/My9z9GO4+P3Lr+VWA0Pj/WjjT3zc6MeDG3coMfwq4U+d0ekUzp3TULp0GtVfWJ6iwNVf4Px0eHLZ7FCMjTs2FcahLdU/w08DePIE8uWDyEjImVMNpLOlYHGhrVuhWzd1ZJ9OBwsXmg9Xz4oyw+/itJTSeNSic7qFECIx+YrloarnGQBOXffk1oUAK9dICCEs6971B5T0uEf15l589l19Nh+unCDgLlhQ/YD+y7dXuHLiJmP77wQgTm/Lp0MfWKHWLxETatr27w0nP1eHjMeXvaj5a60dZC8GrtWgQGso3puwQmOoNPxf7OygTBno1Am+/BKW3V7OJ/+dIPyp2nvav78E3JmORgMl34dW56HOP2rCtWfs4oLQHh0EW2qoPeUZmLOz+v8S4PFj+Pff5Mvr9er/4WbN1ID7+b5eveC77yxZU5FRZbglw4QQb4bWjR9y6KK6ve7Pqwwa5/Ha14yNjmX+hP0459DRc0QtNNo3Yx1RIUTGt/iHc9wMqm+2L3+uezSofJUGnatTv6GOEsbpsOqUupFTXFnw110CQ/Lz775qbF95jEZdKqZ73RMVGwa72yXc//g05K1vel2gJWTLB9mLqF8O+UBj3ufzxzw4dlbdvnhR/Vq1CsAUYWfPrvDVV/I7PdPS6qBQe/UraD/Kualo7jyLXEMOw67W0O4G6FLQfWwlvXvD0qXq9uLF8NZbiZe7dw/efRd27DDtK1UKLj/r6B82DB4+hPHj35jlzgXS0y2EsJI2XfIZt9dtev3pIYpBYUCnA3w4oR69R9bms367XvuaQgiRVtZvzWXc/u6zXVw6doM7D/Py+5ZavNdfR8mSCT+AO+VyYvJnV4yvh410Qh+bAZZ8iH0CO5qb906WHwN110CuCuZlc5SGol3BvQY4FkgQcAOsMy2rjZ1d4rccPlwhb940qLuwPveaGGqv4mKhn1BylFf3VZicoQNuUFdfKVxY3d60SR1i/qL//gNfX1PArdPBlClqArZx40zlJk6EDz6QFVzeJNLTLYSwigp1PCmY+y53QvLz33FvIh6Hkz3ny+c2JmXqiJ0sWt/A9PrX+ri772TEtPqvX1khRJZyZNs5Nq15QK8hpSnkWcDi93t0/zH7z6nBRemC1/loUr0Un9t9WC1++OksRy6X5/SN0iyYuof+Y15ctikdxT6BnS3gob/5fq/RpvUgUyEyErZvV7cLFICbN+H6dTh3Ds6ehXPnDNjYPOCzz2Tp2Kwm3LEihupH0AWsVJckiy/mMcSGqqMjMgitVp2PPWECGAzw++/Qt6+aYG3nTvXr5ElT+YIFYdkyqF1bff3ll+DmBkOGqFPd58+H4GD4/nuLLnGf7vR6CA624f7913tftraQO3fa1cvaJOgWQliFRquhdb3LzP8nP9Gx2dj29wHa9av+StdaOdefz75rkGD/J9Pr4+oZRe9+Dq9bXSFEFjF//G4Gf10TvaEc8/68x6ETcRTwsOzHoS0rz6E3qHNZW9a9BaQ8IZpWp+XbmXrqtFVfj/m+Om9/CC7WWEEsLgJ2tlKzkQPY5QIevdYlt2+Hp0/V7datwcZGHYpbqhS0awd6vcKJE3ews5OgO0vS2kKxHgn3H/0Ybq+CSt9B8T4ZZhz286AbYMwYGDky8XW7mzVTh6K7v/DfdtAgNZDs0QPi4uCvv9SvrEUHVHhpqZTo3RsWLUqTS1mdDC8XQlhNm/amYHjtmthXusbBzWfo+ZGv8fXEoTv5ZvBO4+v3Bji8NOGJECLri4uJ4+N3dzHwy7roDWqQfSc4H23a2RARYdl7r19v+lTeqn0iSyq9RO02PrzVVs3GFPTQlkmTzI/HRsey5c+jfNZ3JxuWHH6tuiZFUSB630cQtEfdYZcL6q1L/qQUWLvWtN2mzWtfTmQFd9bB9cUQ9wQO9oNdbSHqnrVrBagPg2rVUrejo80Dbq0WKlVSE6Vt2JAw4H6ua1f1/30GX3gpQ1i7Vh1VkBVIT7cQwmoadvDC4f1IomIcWb+nNAa9Aa0u5c8Cb5wNoO3beXkaqwbvvVvt4bNv1WGbQUTzwxx79Ho12cmWLVC3rkXehhAigwsNCqVr60tsOmQa1u3iFEFoeHaOHVOTHq1aZZkhngYDbDxcFQAnhwjqtC7/SteZ+r07azarH/S/+w769o7l5olTrFwWwar/vAgJr6SW+9XAqpiDtH8v7dax1uvVrOorVvzMzD5FGdZ8BjTcCvZlXuu6imKaz50tGzRsmAaVFZmfex21d/vasy7OwHWwwQuqzIXCXaxbN9Rh4i1aqP9//fzUud7166vrcOfMmbJrNG8Oe/fCrFnw6PUGi2Q4iqIQGhqKi4sLmtcYoWBnpw7f12aRLmIJuoUQVuPg7EDjygdZu78a9x7n5eihCKrUSNmcwNBQaN0pJw9C1Xng9SscZ/7KasaM5d/Nsif4Efzxh/ohtU0bhV0b7+Bb8/WzpAshMo+rJ2/Spk0c529XAdQ1r+eNP0CNdnWoUQPCwtTlf0aNghkz0v7+hw/Dw2BbABo3y479K/ZuFS0Kw4fD5MkQEwPlvLQYDJUSlFMULd2GeLG7+HkqNSz7GjU3mTABli8H0DDu788ZOK4FDrkr8bpDBI4dMyWjatxYev7EM3YuUH0heLSHQ+/D0wfqUnR734KiPaDKHLBN/YiRtNK0qRooK8rrTfPw88s6Q6fj0+sNnDhx9Y1ZpzulssizAyFEZtW6m7dxe92mlAXccXFq7/XZi2rAXdrjNn9vLIqdgyntrVar/jFr3lx9HRamoXkrO+5dz4Br3QohLGLfulNUq+PE+dslAMjtFMK2lWfp91kdypVT51I+/0w4cybMH5/2qx6sX2/abtXq9a712WcYM3gbDKYPs472EbzdcD9tah4EIDI6O2065+L25eDELpMqO3aYZ10ODdWyZm/CYP9VxM9a3rp1mlxSZCUebaHlWSjU2bTvxlLYWNHq63rnyGGlvAoi05KgWwhhVa3ambo24s/tS87ixepwcQBXV1i/oxC58+dKUM7OTv1QXcPnOgD3H+fhg57XUAyJZD0RQmQpty7coU3XQgQ/cQWgjMdVDu19Qr0OvsYyTZrAj7NNa/YM/roWW/48mqb12LDBtN2ixetdy9kZ5k67go0uFkf7CN5quJ+/5voT9EDDsu01WbnVl9peavrku4/y0bpzbp48efX73b8RxLtvhSVIFLV48Wu8iXji/85/3QcSIovK5ga1V0CN38DmWe92+BXYUgOCLZO/QAhLkKBbCGFVBQtCxYrq9vHjcOdO8uUVBb791vR6+XIoWTLp8tmzw5p1zrjnUJMQrd5bneVz/JM+QQiR6cXGQteeOXgUoT6Ma+h3jAPHXClRIeHyQ/0H6vikx04A9AYbuvQryVn/KwnKvYq71x9y9FkM7+ur/r57XR16liT4fhTBwTqWb69Jp4E1cMyhPry0d7Tnn40eFC8cDsCpUxq6dlVHB6WWPs5A9063ufcwBwCNG0RRtKh6bMuWl/+ufpnAQIzfGz8/8JCZPyIpGg0U6wYtT4Crmh+BvA0hd9qMuBAiPUjQLYSwuvgZa9csu5ts2a0rT3P2rLpduzY0avTy67sXcuPHKaYP0UO+8OT+jaBXqaoQIhMYMwb8D6u9YkXzB/H3phK4uOdMsvyUBXVoX/sAAGFRLoweEZIm9di04rxxu1W1A2lyTYAcrjnIlj1bosfcPFxZv9nJmNBpwwYYMSL195g8bDfbjqlPRPPlvM9vC8Pp2VM9ZjDAb7+9QsXjiT/sXoaWixRxKg5N9oL3OKixGDQSxojMQ/63CiGsrm0zU+rO6dPiiI6MTrLs/2aYjg17/0aK79H5gxp0aaD2cAc/cWVQr6syzFyILGjDBpg2Td22tYXlq93JmSf5yZc6Wx2/rfMmfy51WaLtR714GvH0teuyfqMpX23LNinLWZEWypRRs7HbPLv9rFkw5+t9KT5/1+qTfDWnDgBajZ4/fgkkb1F3Y9AN6hDzxNYnTqn487llqTCRYlpb8P4SHPKZ7394EM5Oeb3/lEJYkATdQgirq1gjF00rq0lRbjwoxNzxifcInTtwhc2HKwNQLO8t2r1TKFX3mf1rSdxyPARg1e7qrJyb9DDzh3eCiYvVJ3lcCJG4iNAIrpx5SFhY+n/+fRgYQ58+po82U6dC1aopOze7S3aa1bwMQFSMI/s3nn/JGcmLeRrLlkPq8mC5nUKo1rTca10vtRo0gJ9+Mr3+ZFJFQu6+fG2ioNsPebdfHgyKmqjty4F7aNDJD4ASJdRlkQDOnzcND0+tqCjYulXdzpdPXdtYiFf29AHs6QQnP4M9HSE2zNo1EiIBCbqFEBnC1JnOaDQGAMbP9ubxg9AEZb6bEmjcHtrnOjrb1C1FkaewO3MmXTK+Hvx5aR7cMh9mvnvNSRr6HSdfkTwM6u5I+KPwVN1DiDfZ+UNXyZMXSnm74eKirr3s4QEVKxpoVuUI00bstNgIk7iYOMaNsic4WF02sG1b+Pjj1F2jaVPT75Qt6xP+DkqNfevP8CRKnQ/dvMb5VP++Sgt9+sD77dSM7E9jHVj+0+mXnjOw+xUCQ/ID6lz4Md/XMTveu7dp+1WHmO/YoQbeoCZQyyrr8AorubsVop59PghYDZuqQOg5q1ZJiBfJrzkhRIbgW9eTbk33AxASnpupo4+bHQ+6/ZAlG9QuqxwOofT9pOIr3afLBzXoVE/t4X4Y5saQ3upc772742hU8Tj12ldgxwm1V+fYVS8+ee/kK91HiDfR/O8CiIw2DaOOiVETbh0/rmXLkcqM+l99fv9+v0Xu/fXg/fifV38vFM5zj0ULFTSa1F2jUftSxu2te/O+Vn3WrzYF7a1apbIiaWjwCNMw3F//zJ1s2cvHb7Bqd3UA8rgE8fvfHgkeFnTpYlpP+6+/Xq1O8bOWy3xu8dqKdYN668A2p/r6ySXYXBVuLJPh5iLDkKBbCJFhjJ9ZFDsbdc72d79VI+CyKanavKlniI5VEwe91/E4OVydX+keGq2GOb+WxNVZXb925Y4aVK5koE49G/477peg/C9r6rJmwcFXupcQb5pNu9UpHzptHI0axOLjow4f1ukMxjJjJhdJk/nS8W3+4whTFjUAwEYXy/Jfg8jtmvpAN09hd/xKqMPKj10pS9Dth69cp/U71e+FVqOnWZeyr3yd11Whjie+xS8AcOiiF+cPXU2y7Pz/3TBuf/LeWfIVy5OgjLMzdOyobj96nPr6KIppPre9PTRunPprCJFAwZbQ/AjkrKC+jouA/e/A6kJwaCDcWQdxUdato3ijSdAthMgwipb3YMjbai/001gHvhqu9kJHR0Yz53d1PqRWo+fDz5JZIywF8hZ1Z/Zk0wfPo8dMvwpL5LvJ4ul7+fHrXcZ97w0vwb3rD17rnkJkddfP3ObineIA1Ch3lm3/2XLyJNy9CzHR0LTSIQBuBnnw4zdpl8k78OpdenxgWgps0sd7qd7C+5Wv16T2feP29g2v9nN/7fRtLgSUAKB62bO4Fsj1yvVJC73fNr2nxXNvJ1om6kkUC/9RAxZ726f0+Tjp72H8IeapdfIkBASo2w0agJPTq19LCDPOJaDpfija3bQv6g5cmQ+72sDjl0+vEMJSJOgWQmQon0/zwcVRHZb56/qanPW/wrI5h7j/WO1x6VT/EEXLv/6Crm8PqkqHDqbXxYvDokVw4VZhen5Sm/c/r0WransAdRh63643Jdu5EMnYuPKacbtFQ/OEXVqdlqn/czHmbZj4o0+ieRtSKy4mjnc73iMozB2AppX38/Gk2q91zaYdTQ/1thx8teRnG1aYvhetGqfN8mOv490PymOjiwVg6b+e6BNJErlihcG4rvlbjY7g5uGa5PUaNIBCqctjaSRZy4VF2ThCjSVQ80/I3wK09ur+bHnAtbJ52bgIGX4u0o0E3UKIDMW1QG4+G6DO5zYoOkYNf8T/5pqGOA77JG26RTQaNQnQjBnw++9w4YLae2Njqw5J1Wg1jBinkC+n2kO08VAV5n6zN03uLURWtHGrg3G7RYd8CY6reRvUkSwh4bmZMup4gjKpNW7IXnadUqeFeLgG8tmkWLS61/toU6upB9meLYG9deurfSbfsMXRuN2yU/7Xqk9acC/kRqsaxwAIDMnP1hUJv/c//mSaiz9odPIPG7RazJYPS43487lbtXq1awiRLI0GinaFBhugczDUXQO+0xKu6+3fG7Y3gJBjVqmmeLOkS9D9+++/07BhQ7y9venSpQunTp1KtvzGjRtp3rw53t7etGnThl27diVbXgiRtQwdVw0PVzUT6foDVTh13ROAamXOUKPlqw8bfZGjI4wYAe++q67n+6Icbtn5ZdYN4+sRU2tz4UKa3V6ILONpxFP+O6Yuj5U35wMq1PFMtNz4/xUx5m34/vdq3L4YmGi5lNi24hgTf6kLqHPIf1/4AOfcr/9QLls2qFdP3Q4IINU/8+HhsOOk+iCgoOs9KtQu/dp1Sgu9epqeHixeFGN27OhROKSO/sfXF6rVTT7hGkCvXuavk3s4oSiwdy+8847pPj4+UKRI0ucIkSZssoNHWyj+wn/YB3vh9l/wYBdsqqwG4CHH4fEZeHRSDcQfHoLQ11s6UIjnLB50b9iwgcmTJzN48GD++ecfypQpQ79+/QgODk60/LFjxxgxYgSdO3dm9erVNGrUiMGDB3Pp0qVEywshsh4HZwe++exugv3DP4pJpLRlNX+3MoP7qBMQnz7V0K2bmpFZCGGyd/05Y9by5jUvodUlnsSsaDkPPuwaL2/DiKSTeiXn7rX7dOtfCEVRP8ZM/GgPtVql3QO5Jk1M21u2pPy8e/fUxGBPo20AaNkhLxqt9TKXx9eqe0VjAsl/dlc0G94/d66p3KBBpCjre6lSUL2a6fXmzRAcDAZTzjwiIuDnn8HPT13fe9ky07HnydiEsAolFpyeTyVR4Ppi2FQRNnjDRl/YVAm2VIOjH1mzliILsXjQvWjRIt566y06depEyZIlGTduHNmyZePvv/9OtPySJUuoU6cO7733HiVKlODjjz+mXLly/Paqi0EKITKlnh9XwsvL9LpwYej43qstE/a6ps32oEwZdfvYMfj4I4XoSIm8hXhu479hxu0WLZL/aPH5tArkzP4YgMUbanJm/+UEZQx6A2f9r5itYPCcXg/d+rnyIFSdx92i6mE+nV7vNWqfUNNGscbtrctTNvT0xOEIqlaFg88WO3B0hKEfZYyAG8DOwY5uLc8AEB2bjRV/q2PoHz8I5Y/f1febI4c68ielusfLV9WpM7i5gZ2dmrHex0ddo71/fzV52nNubvDFFzBy5Gu/JSFeXd4G0OosVPzWtNRYYpS4hPsuzlbXBjckzI0gRFJsLHnxmJgYzp49y4ABA4z7tFotNWvW5PjxxOdynThxgt4vpMWsXbs227ZtS/I+er0evT5j/8d/Xr+MXk+ROtKuljV5MrRpo64RO2yYAY1GIb2+1fHb1t4eliyBmjW1xMVpmDtPw7Z/7zBz0n1adq+SPhUSaUJ+Zi1j427T8lgN25dO9vvrkicHo/vvZvS3DdS8DePy8u8Gtfyj+49Z8v0p5i4txpW7ai9UiXw3qV/lJvXqa6jXqhgL/ijAjp3qx5cCeSNZuLwwCkqatm3Z8hry5bzPvcd52XmsNFHhkdg52CdZfs3Cw/T40JtIdeQ8Hh4Kq1cbKFuWdPudlRLdh9dk1nJ1e9ESO/r11/Prd8eJelofgJ7tzpItW5kU17ldOz18aL5Pr4f799Wv+KpWVRg0SKFzZ8U4Zz4l95Gf2awpY7SrDkp9CIXfRXNlLoRfA40NaHSgffavcymU+HWMeYT2+CdoDNEo2YujeI9DKfx2wvnib7CM0bbpJ6Xv06JB96NHj9Dr9bi6mmfAdHV15dq1a4me8/DhQ9zc3BKUf/gw6bUyM9PQ89OnZbmCrEja1TLy54dZs3Lw6JENtWuHcOJE+tfhedtqtTBihDvTpxfCYNBwObAYbXsXo9nsfXz4aTj5Sri95EoiI3mTf2b/+suNQ4dy0KPHfby9I177encDbTh/W11qqornWW7dj+XW/ZvJnlOnQzby/faEe0HObNiSg/FfHOfaiSD+3lmLyOgGZmWv3ivC1bVFWLAWGGHar9UqfD3+NneCw7kTHGDcn1ZtW9fvMSt25CUi2om/Fv1LuZoFE5RRDAqr5t1hyqI2xqHu3uUfMX3mLSDOKr+zkqPRQsmSZblyxZEDBzSs/ucccxeb0pA3aXabEydSvoa6NiqK57O/mzcL5t6TOB49siEkxJbHj23QahUaN35Ely5BlCsXCaR+jvxzb/LPbFaWcdq1NST2XC0C4v8guz5eTVGD+nRNE3ENzYEeRB4fzx33IYQ51kjZ3Iw3RMZp24zBokF3eildujSOjo4vL2hFer2e06dP4+3tjU6ns3Z1RBqRdrU8X9/nW4XT9b6Jta2vL3RufY9hHzxg7xk1yNh8pBb/vRvDx9338cWMijjlkkVnM7I3/Wf21i2YOlWLomjYvTsnkyYpDBumvNbnxIMHTSe3fKd8vJ/Z5E2coqFfP3V73FS/BMfrVziOXq/hwPlyxOrtEhwfN06hb1/T8l5p3bYtW+5nxQ51+/wJZ94d5Gt2XB+rZ0Dng/y6vp1xX9fG+/h5ZQUcnL3IqPr31xiHdn83w4NLgeoyYfUrHKdV1ybJnJmICNNDmxUrckJ2UwZ05VlmNY0mF/Dq65S/6T+zWVWmbVd9WfSBPmivzEXzQP0F4Rh9iVIBQ1Hy1MPgMwlcq73kIllbpm3bVxQZGZmiDmCLBt25cuVCp9MlSJoWHBycoDf7OTc3twS92smVB9DpdJmmUTNTXUXKSbtmXS+2beXa+dl9Mh/LZu/n03HFuBOSn1i9HdMXN+D46aNsOVwxwyROEkl7U39md/59GEVRp0TExWkYOVLDnl0x/PpzBLnzv1pgtHmzabtVKx0p/bb26gXffQfxO0OcHcLo1eY4g0Z4ULaqGohHhkVyYMtZdm4NZeeJcpy8kIf27eHzz7VoExnRmVZt27RjafhU3d62Nw+TXrjm6D57+HV9fePrbwbvZMysehn+579HD/jsMwW9XsPeg6Y2/+D9qNR/3+KV1+l0pLjxX8Gb+jOb1WW6dtU5QtEu6te9bXBiNIQcBUDzYBe6bbWgUEfwmQguZaxcWevKdG37ilL6Hi06AcHOzo7y5cvj7+9v3GcwGPD398fPL+FTbQBfX18OHDhgtm///v34pvTRuRBCWJhGq+GdoTW5cMWZL97baVwCaduxSuxdl/ySiEJY047t0Qn2rV1vR8UKERzcfCbV14uJge3b1e08edQs1Sml08GCBVC8uDqKZM70QO4EaPhheT3KVi1hLOeYw5GGnf34Zn59dh/MQ2goLF5MogF3WspfPC/eRdXeiyOXyxIcGGI89tOE3cxYWl99H9o4lv2wn7Gz62f4gBvUJGctqpv/nsqX8z7t+1a2Uo2EyKTyNYZmh6DW8niZ0IHbq9TlyISIx+Kz/vv06cOKFSv4559/uHr1Kl9//TVRUVF0fLZWxMiRI5k5c6axfM+ePdmzZw8LFy7k6tWr/PDDD5w5c4bu8VNkCiFEBuCUy4kJP9fnl6mHjfv+Nz3KijUSImmKQWHH4eIAONpHsOafWFxzqv9fbwZ5UKdVaWZ8upPbFwNRDMksuhzP3s23jSOMmzVLfSBcpQpcvQrHj8OgTwrgnNs5dRewsKa11XXEFUXLf2suArB12VEGfVXTWGbO1/t5e0jNRM/PqHp1izR7/V6X89g5JBzCL4R4CY0WirwFrc9BlR8hW171q8wwa9dMZDAWD7pbtmzJqFGjmDVrFu3ateP8+fP88ssvxuHid+/eJSgoyFi+YsWKzJgxg+XLl9OuXTs2b97MnDlzKF26tKWrKoQQr+TtD6qSP9c9ANbsq8rVk8knkRLCGq6eukVAcAEAanldoG17W44feETNcmqvZ6zejk9n1KdwmQLkdAqjRtnTvNd2D9+O3smhLWcTvebGlaZ1tlvUPGf5N5HOmrQw5WjYsimWs/5X6Ny3JHqDOjtveLedDBhb11rVe2VtelUkV3a1516r0dN/hHzGEuK1aG2h1AfQ9irUXw822c2Pnx4PZydBzGOrVE9YX7okUuvevXuSPdVLly5NsK9Fixa0aNHC0tUSQog0Yedgx4c9L/D59/lQFC2zftDw/S/WrpUQ5nasvwkUAaBBbXVd7UKeBdh5zJ0v+u9k+pL6xrJhUS4cuODNgQvAWmAqDHwvnFk/OmFra7rmxl1qRm+tRk/TNnnT542kozqty2Fv+5To2Gxs2FuabW85EhaVA4B2tQ8ybVEdK9fw1dg72jN3ylE+n1iQD7pfp5BnfWtXSYiswSY75K5kvi/iFpydCIZoODcVSg0Cz4/BIev9zhRJk0XlhBAiDQwYVQGHbHEALFhWmMePrVsfIV60Y6cp2UuDZqbkpLb2tkxbXJ89/57i0547aVntMEXcAxKcP+8XJ1q0gEeP1Ne3LwZy9lYpAKp6nsO1oGuCczI7xxyO1PZWe/ADQ/JxI0ANuCuWvMjv67zQ2WbeJEFvD6nJ1btF+GR6fWtXRYis7d42MMSo27FhcG4K/FsUDg+G8BvWrJlIRxJ0CyFEGsidPxe9equDhyIi4Bfp6RYZiGJQ2HFETfTjlO0JlRomzKpbu40P0xbXZ/2BKtx44EFY8BMObj7LtC/OY/dsuu/27VC9Oly6BBtXXjGe26LhwwTXyyqaNjOf6+zhAWt3lia7S/YkzhBCiHhK9IXWF6HEe+owdAD9U7j8I6wtCf69IOyydesoLE6CbiGESCMff2za/uEHiIuzWlWEMHPx6DXuPVaHMtbxuYCtve1LzgDn3M5UbVqeTyeU5b//wN1d3X/pElSrHMmchaahkc3b5bFIvTOCpm+Z1tx2coJ166BAwYyfpVwIkYHkKAXVfoa216HMcNOcb0UP15fA+jJwfJR16ygsSoJuIYRII56e0KqVun3rFqxacs26FRLimR3rTcPFG9SJSPX5tWrBoUPg9Sz+fPzEkVPXPQFwy/GQyo3Kpkk9M6IKFeCjj8DbG1avVl8LIcQrcSwIFWdCu5vg/TXY5VL3KwbIXsSqVROWJUG3EEKkoWEfmgKa/02PTKakeFOc2X+Zut4nGfP+TqvVYcduU892g+av1itdtCjs36fQusZhs/3Nql9Eq8u6Hyc0GvjuOzh1Cho1snZthBBZgr0reH8F7W6AzwTIWQFK9DMvExkI4fLwPqvIun8lhRDCCho2ccSnmLqe78ELXvhvOG3lGglrG/9FIHvOVGDiL/U5uTv9l9UyGGDHqaoAuDhF4FfP85Wv5ZxDw+pdFfmkx07jvm49ZH1nIYR4JbY5wOsLaHEcdPbmx05/CWs94dAHEHnHOvUTaUaCbiGESEMarYZhA4OMr7+dEW7F2ghrUwwKu0+Y1kDesOp+utfh7Fl4GKwm+avbIPtrZ9zW2eqYvqQ++9ef5r+/jtOie5W0qKYQQry5NC/kiQi7BNd+BSUOrsxTE64d+wSeZt2klVmdBN1CCJHG3hlShbw5HwDw986q3DibcPkl8Wa4cQPuPc5vfL1xe+50r8OOHabtBg3S7ro1WnrToJNf2l1QCCGEKlteKP8F2Dipr/VP4cJM+Lc4nBwD0cHWrZ9INQm6hRAijdk72jPoXXUYsUHR0aZVFIO77OLHr3axa/VJHsqD6jfGvv3mvRf7z5UnNCg0XetgqaBbCCGEhdi5gM84Ndt52U9Al03dH/cEzk6ENUXhxGfwNCjZy4iMQ4JuIYSwgA9Ge2Fv+xSAMzdL8eNf9Rj8TT3qd6iAuzsULAh//23lSgqL27fP/LXeYMO2v9NvXrdBb2DXf1EA5M6t4OOTbrcWQgjxurK5gd90aHMFSn1gWuc7LhzOTYH/moCiWLeOIkUk6BZCCAtwL+TG7K8PUyD33USPBwZCv37w4EE6V0ykqxeDboCNG9JvAfeTey7xKMwBgHpeh9HKX30hhMh8HAtClR+fBd+DQPssgWWZjxPOBxcZkvz5FUIIC3nv8zrcCc7PwzuP2L3mJHPH7WZI72vGtY5DQ2H0aOvWUVjO4wehnDmj9kCULaMnm63a47xpX0kUQ/r0TOzYeM+43aDO03S5pxBCCAvJXhiqzIG218BrLBTtZn48+Ajs6QRB/tapn0iSBN1CCGFhrgVyUadtBQZ+WZcfFhVn2zZwcVGPLVqELCuWRR3cdhlFUXsgGvnso4HfGQDuhOTn9P7L6VKHHXscjdsNWhZIl3sKIYSwMMeC4PONabj5cxdmwu1VsLUmbKkFt/8Bg946dRRmJOgWQoh0ljcvfPO5aVz5kI9s0MfKH8WsZt+uJ8btWrVtaN401vh6407LB8BxMXHsPqGuye2e4yHlq5ew+D2FEEJYSVwUBMWb0/RwP+zpCOvKwOW5EBdpvboJCbqFEMIaBn2cG59iFwE4dqUsP01KZPKvyNT2HXYxbtdqWpQWPWsaX2/a7mTx+x/fdYmwKLUODSpfQqOVeX9CCJFl2ThAm8tQfRG4lDftD78ChwfBmsJw6it4KslkrEGCbiGEsAIbOxtmf2eaY/vFdG8eBsi6m1lFXEwcB8+VBqCQ2x0KeRagVCko8ayzee9eCAuzbB12bLpv3G5QL/2StwkhhLASnT0U7w0tT0P9jZC3kelYdDCc+QZWF4bQ81ar4ptKgm4hhLCSOm0r0L3ZXgAeReTis8Hpt5SUsKyTey8TEa32ZtescNO4v0UL9d+4ONi+3bJ1+G+Ps3G7QSsPy95MCCFExqHRQIHm0GgbND+mJlzT6NRjOUpDjjLm5a8ught/QGRg+tf1DSFBtxBCWNG0H0vh7KB2eS5YW4tDW80D73v3YPnSMBZM3sO96zIkLLPYt93UVrWqm3qZnwfdABtXXrfIvaOjYUz/PWw94gdA/lz3KO1XzCL3EkIIkcHl9oOav6kZz8uMgPJfJFxm7PTXsL8brCkEe7tCyHGrVDUrk6BbCCGsKH/xvIwbegwARdEyeFAsK369y6BBULYs5M8PXXvm4L3P61C4VE7ebbKPfetOpduSU2+69UsOs+n3I6k+b/8BU0bZWo3cjdv168Zhb6tOK9i4xT7N2/HYMahcGSb+XAeDovZq9Ol4QeZzCyHEmy57Yag4A4q8bb4/4iZE3lK3FQPcWg6bKsKO5nB/JyjyeSMtSNAthBBWNmRcLcoXVpeQOnKlAm/3yc/cuXDhgnm5WL0df26rRe02PlQsdZGfJ+4mIjTCCjV+M6z45RKte1WhRffKrPrpQMpPVBT2nSwKQHb7cHxqlTIecnSyoV4FdemwgOACnD1wNU3qGhMDX34JVavCGfXy2OjiGDdoJ1/PqZUm9xBCCJEFZcsLDbdCuc8gWx7T/rubYXsD2FITbq6AmFDr1TELsGjQ/fjxY0aMGEHFihWpXLkyn3/+ORERyX9A7NGjB56enmZfX375pSWrKYQQVmVrb8uc7xL+btTpoHp1GD1Kz8h+h3HL8dB47MS1MvQfU5fCHtH8u/BgelY30zq89Rw1yl2gfbN8nNh9MdmyigITvi9ufP3lhJwY9IYU3efWxUACgtUlwaqXu4SNnY3Z8RaNTW29cdWdlFY/SecPXaVKhWDGjwf9s5XnKlSAw4fgyzn1sbW3Tf4CQggh3ly6bJCvMfhOgrY3oMqPkD3elKTgA7DvbdhS3WpVzAosGnR/8sknXLlyhUWLFjFv3jyOHDmSogD6rbfeYu/evcavkSNHWrKaQghhdfU6+DLny100r3qY0X12sml9NI8fg78/TJ6iY+ovVbgd6MTiGfuo6nnGeF5IeG7av1eFaSN2ypDzJERHwxfv76ZG89IcvlSegOCCfPRhbLLfr82b4fQZU7B89nYZ/v4pZQ839u3XGbdrVkmYorxF50LG7U3/OSc4nhqKQaFjJzh1wRUAGxv46is4dAh8K9q85GwhhBAiHhsHKPUBtLkENX+HnN6mY3nqJyy/vzvs7wGnvobrSyFoPzy9L0PSE2Gxv8hXr15lz549/PXXX3h7qw02ZswY+vfvz8iRI8mbN2+S52bLlg13d/ckjwshRFY0aFw9Bo1L+ni27NnoOaIWPUfAkW3nmDDuCWv2VkNRtIz6X33OXzrIvL+qYW+ffnXO6I4ehd694cyZumb7952twKY/DtOie5VEz5s2LeG+b6a60am/Aa0u+efV+47lM27Xal8nwfHSfsUolvcW1+8XZs8pL56EPME596sF32cPXOFCgDp8vUT+AFas86BixVe6lBBCCKHS2kDRd6HIO3BvK9xZDwVbm5d5+gBu/J7gVB3gq3FE+6AUOJcApxJQ+kPIXihB2TeJxYLu48ePkyNHDmPADVCzZk20Wi2nTp2iSZMmSZ67du1a/v33X9zd3WnQoAGDBg3CwcEhyfJ6vR798zF1GdTz+mX0eorUkXbNujJ62/o18OSvegqTPt7BVz82AODXddW43Ejhr78MxH9uqY/Vc3zPJfx3PCRvflu6DKxm9cRaN2/CypUamjdX8PJK++vHxMCECRqmTtWg16vv1dYmlra1DvP3rpoAjBnnRJO34xJ8L474P2bHDrXnuFQpBVfdGQ5c8ObMzVL8NX8/nQZUS/be+/ZpAQ0ajUKVaon/H2pW6zrzVhUmVm/HtlXHaNsn8eD/ZTavDgDUoHtwz8tUqJCfDPpf1uIy+s9slqTXozNu6rHEfz5p16xJ2jUTydNI/QLzn/EH+9ElfgY6JRIen1S/AH3R3pDNdK7mxu9ozk8FhwIoDup0LE1cOBi/IlDyt0DxmWCBN5S2Uvp/2GJB98OHD8mdO7f5zWxscHFxISgoKMnzWrduTYECBciTJw8XL15kxowZXL9+ndmzZyd5zqVLl9Ks3pZ2+vRpa1dBWIC0a9aV0du2Vd8c5HJfzcgpLXkabce+fRoqVYpjzMcHCLzymMPH3PA/60VYlCmyvROwmgZvWe+Js6JA9+5luXjRkS++UOjb9y59+97D1jZthqOFPYzgw4/Kc/aiq3Ff6dKRjPv6CiVK2HKl61lOXi/PsStlmT9pDdVbm69hPeWzJ0B9AN7qfJViua5zYKT6APmbqbkpVvlYkr3dERFaTp3yBaBkySiuXz+faDnfyo9hlbq9+u9QCvudeKX3uml7NuN2ca8YTpx4tetkJRn9ZzYr0UZF4fds+9SpUxiS6SB5XdKuWZO0a2ZWCE2pvdjH3sE+NgD7mADzf2MD0aBHQcPJK6Eo2hPGM/M/3EuBsHMQdo6kugAe6fNw3XAiiaOZj0ZRUjfofsaMGfz888/JltmwYQNbt27ln3/+YfPmzWbHatSowYcffsi7776bovv5+/vTu3dvtm7dSuHChc2ORUZGcv78eUqXLo2jo2Nq3ka60+v1nD59Gm9vb3S6pJ4LicxG2jXrymxte+QIdOyoJTDw5T3Yhd0DOH81N/aO1hmHvmf7Ixo0czPbV6FcKAvnBFKhTunXuvbDO8E0rfeIUzc8AbCxUfj8c4XPPlOwtVXbdfG3G+k/uh0AZQtd5cSlQuhs1Ta+duYWZfwKY1B05HEJ4totR+wd7KntfYGDF9UHFyvm+tPx/aqJ3n/bxic0b5MTgIEDDcyenfif2IjQCNzz2hMTZ09h9wCu3smX6tEHTyOe4u6uISrGkQK573LznrvVRzBYU2b7mc0SIiLQubgAoA8NhezZ0/wW0q5Zk7Rr1mVs2/Jl0UUHQuRtyGM+xUtz6nM0l2ah0T9N9BqK1h7Foz1KjYTD1zOayMhILl26RNmyZZONR1Pd0923b186dOiQbJlChQrh5uZGSEiI2f64uDhCQ0NTNV+7QoUKANy8eTNB0P2cTqfLND+wmamuIuWkXbOuzNK21aqpybPatVPnMcfnniOI+pWucD3AhSOXy3EryIOF03YxZHw9q9R1/rRLgHnQffKcC9UaOzJ2wB4++1+tV8q4HRwYQrP6poC7QO77rNvihl8l8/bza1iQmuVOsf+cD+dvl2D5j/voMVxdVuv7ibcwKGrW1qE9z5I9R30AvhrzlJY91PMnTMtNp/c1ifZ2H9hwgue95LV8bqDTFU9QBiBH7hzUq3CUrUcrcSvIA/+NJ6nTtkKq3u/BLZeIilH7GZtUv4qNbf5UnZ9VZZaf2Swh3vdZp9OZvU77W0m7ZkXSrlmXztYeXbaS4FIy4UG/qeA7BWIeQdRd0OjA1glsnMAmOxqtbZI94BlNSv//pjp7ee7cuSlRokSyX3Z2dvj5+REWFsaZM6YsuwcOHMBgMODj45Pi+50/rw7Nk8RqQgiRvIIFYfdu+OQTeKdLOHO+3MVZ/yvcf+TGiv9qMG+e6U/YxNlliAyLTPc63r8RxN87KwPgluMh+/fE4FUiEIA4vS1f/VifauWvcHDzmeQuk0BwYAiNagdx8vrzgPsuO7dFJgi4ATRaDd+MizW+/vo7L2Jj4WFAMAvXqHOrs9uH88FnpiC4+buVjFnjT133ZM3CQ4nWY98hU0K0WnXskq1zr26mJ/w/Lk3kQ8lLbFlvWjO1adPM8vFECCGEADQasM8NOcuDSxlw9AC7nKDNmstcWmzJsBIlSlCnTh3Gjh3LqVOnOHr0KOPHj6dVq1bGzOX379+nefPmnDp1CoBbt24xZ84czpw5Q0BAANu3b2fUqFFUqVKFMmXKWKqqQgiRZTg6wvTp8McKJwaNq0e56iWNQ44rNSxLx7oHALj3OC9zZiU+rMuSFnx7lli9Goz263iGGrXtOHLKlS/e24lOGwfA8atlqd7ci1bVD3N467mXXjM4MITGdR4YA+78ue6xY+tTSvkVS/Kc+h18aVzzNgDXbruwcCHMmXSaqBh1aNj7HY+SO38uY3mNVsNXX5i+X+Nm+WJ4YdlufayeA+dKGetQtFzBZOvdeWBV3NzU4ed/r8nO/fsvfatmtu41rQLSuMPrDcsXQgghhOVYdJ3uGTNmULx4cXr16kX//v2pWLEi33zzjfF4bGws169fJyoqCgBbW1v8/f3p168fLVq0YOrUqTRt2pR58+ZZsppCCPHG+GZaXjQaNdCb8m1uwhIuI20x+lg98/9Ue3Q1GgMDRpQAwN7Rngk/1+fA5kuUK3zFWH7DwSpUbVqO1jUOcWRb4sH3w4BgmtS9z4lr6oNZNeCOpHTFpAPu5yZ+a0omN368gR9+U5Ol6bRxfDy2RILyLbpVorKfGnifPJONf/81P37mwBWeROUAoFaF6y+dX23vYEvfvmqZ2FhYsOClVTYKuv2QY1fKAuBb/AJ5CstoMCGEECKjslj2coCcOXMyc+bMJI97eHhw8eJF4+v8+fPz22+/WbJKQgjxRitfrRjdusFvv0FICHz7LXz1Vfrce8NvR7kVpCYga1H1CMW8zJORVW5cjuMXYvh15m4mzirOrSA1q/j6A1VZ3wQa1Q7CMZc7QUHw4AEE3YvgSaQroGYpz5fzPju2RuJZKfF51C+qWhXatoV//4U7d7TG63RtfJAiZWslKK/Ravh6fDZaP1uq9MMhccwZf5IHj5x48CgnD5+Y7lurekyK6jBggDoyQVFg/nwYNSpl02K3b3rM83nxTevcBWQ0mBBCCJFRWbSnWwghRMbz9ddg8+yR68yZEBycPvedG29O+aBBiZexc7Cj/5i6XLrhztxxu/FwDTQe277XnbVr4cABuHYNnkSaMiXny3mfHVsiUhxwPzd+PMae/+c+HeOWRGlo2RIqq1PSCbhjw7ZjlTh13ZN7j/MSpzfNQ2vQMl+K7l+8ODRvrm7fugUb/ziZovO2+JvmgDfpXC5F5wghhBDCOiToFkKIN0yJEtC3r7r95AlM++x4mlw3MiwSxZD4ElnXTt9i0+FKABRxD6D5O5WSvZa9oz0Dv6zLlVuu/Pj1bjzyR5gdz50bPIs+oI7XSfq23sPenU8pUyV1ATeAjw+83fqW8XXTSoeoUMczyfIaDcyYAbbx8rzY2UTj4RqIX4nzNK18hDlf7kr2Gi8a1OOqcfvHOS/vIVcU2LpV3c6WDWo3zpv8CUIIIYSwKgm6hRDiDTR2jIK9rRrg/bDYk7vXUpnF6wULp+zBKWc2qpc7y60LdxIcnz/zGoqi/skZ8O4V47rYL2PvaM8HX9Xl2s3sXLwId+9CTIzaO3/heh52n67AgrV1KFGhyCvXfeJEDflz3cMp2xMmTnF6afl69eDePbh8GUKDQnkabcfthwU4dqUsmw9XZtC41C3F1qJzUYq4BwCw6VAlrp2+nWz5CxcgQC1O3bpq4C2EEEKIjEuCbiGEeAN5FNLwQWd/AKJiHJn02YVXvlZYcBifTiyPomg5dNGLqjVsObDJtOTX04inLPzHCwBbXQz9hpdP9T1sbaF0aciXz7yXOS0U9y7M5evO3A3UULlxyoZq584NJUtCDjeXlyZMexmdrY4B76oJ5BRFy/z/XU22/NYtprTpTZu+1q2FEEIIkQ4k6BZCiDfUZ1PKkd0+HID5f9dg1he7iIuJS/V1Zn9zjJDw3MbX9x/noX7bkvw5az8Af6008DBMnSfducHhDJlpO7tLdpxyvbyX21L6DS+PrU4debBwlRfRkdFJlt2y7Khxu0mD9F/2TQghhBCpI0G3EEK8ofIUdufjHkcAiNXb8dGkeviWus72lcdSfI0nT2DmoooAaDV6qpVRe7ijY7Px7kc1Gdt/Jz/+5GAsP2i0JP1KTJ7C7nSqr7bFwzA3/pp/JNFyMVEx7DyuLhWWN+cDvH3t062OQgghhHg1EnQLIcQbbOz3Nejbeo/x9dlbpWj8VkU61/fnxtmAl54/ezaEPFHXpn631Vl2HyvNe213G49P+Lk+/v7q8GsvL6jVMFcav4OsY9BQUzb2H39xTrSM/6ZzRESrPfJNql167aHtQgghhLA8CbqFEOINZu9oz4K1dTiw6QxVSp817v97Vw3K+rkyaXwUSuIJydVe7pnqtlYLY2b4YOdgx0//1OHb0bvQavRm5QcNUrN/i8TVbu1D+cKXAdh/zoeTey4mKLN1w2PjtsznFkIIITIHCbqFEEJQrZkXB86VZeGUPeRxCQLgaawDX3zpwBdfJH7OnDmmNb7feQc8n62SpdFq+HhyPdb+egzn7OrcZBcX6N7d0u8ic9NoNQzqbVqXfNr4IGJjzcts2W2aD9+4fan0qpoQQgghXoME3UIIIQDQ6rT0GVWHS5ftGNZ9HxqN2sU9eTJ8+6152fBH4cyYrkaEWi2MGZPwei17VuHwUXtGjYING8A58RHTIp7uQ/2Mye3+2FqbMmVg0SKIjYWQu484clmdz+1d9BL5i8v63EIIIURmIEG3EEIIMy7uLvxvaS1++ME0Fnz4cFiy0JQp+8cJRwgOUdfueqfzY8qUSfxanp4wZQrUrGnRKmcZOVxz8M1HpiRq165B375QtiyMHHrPuNZ509qBSV1CCCGEEBmMBN1CCCESNXgwfPWV6XXf921Yt/gQ4Y/Cmf6Luu62RmNgzCchVqph1jR8an327gijSRPTvqtXYcFfZY2vm7Sw3vJmQgghhEgdCbqFEEIk6auvYPB76sRtvcGGLu97M+Dtk8Z1t99p7E+ZKsWtWcUsqVb9HGzZAnv2QOPG5sfsbZ9Sp7UsvSaEEEJkFhJ0CyGESJJGA7Pm5aJro/2Amlztj621nh0zMGZCPmtWL8urXRu2boXd66/RyO8YWo2eYd0P4JjD0dpVE0IIIUQK2Vi7AkIIITI2rU7L4rWVeVTvCJsPVzbu79rIn7JVa1mxZm+OOi2Ls60lxETFYOdQ39rVEUIIIUQqSE+3EEKIl7JzsOPvrWWpXuY0ADa6WMZMkOzZ6c3Owc7aVRBCCCFEKklPtxBCiBTJ7pKdzXuL8Mu0nfhWcaFcNT9rV0kIIYQQIsOToFsIIUSK5XDNwfCp9a1dDSGEEEKITEOGlwshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWkqnndBsMBgCioqKsXJOX0+v1AERGRqLT6axcG5FWpF2zLmnbrEnaNeuStrWCp0/B09O0rdGk+S2kXbMmades601r2+dx6PO4NCkaRVGU9KiQJQQHB3Pjxg1rV0MIIYQQQgghxBuqaNGiuLq6Jnk8UwfdcXFxhIaGYm9vj1YrI+WFEEIIIYQQQqQPg8FAdHQ0Li4u2NgkPYg8UwfdQgghhBBCCCFERibdw0IIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiATd6eD333+nYcOGeHt706VLF06dOmXtKolUmj9/Pp06dcLPz48aNWowaNAgrl27ZlYmOjqacePGUa1aNfz8/Pjwww95+PChlWosXsVPP/2Ep6cnEydONO6Tds2c7t+/zyeffEK1atXw8fGhTZs2nD592nhcURS+//57ateujY+PD71795YlKDMBvV7Pd999R8OGDfHx8aFx48bMmTOH+DlhpW0zvsOHDzNw4EBq166Np6cn27ZtMzuekjZ8/PgxI0aMoGLFilSuXJnPP/+ciIiIdHwXIjHJtW1sbCzTp0+nTZs2+Pr6Urt2bUaOHMn9+/fNriFtm/G87Gc2vi+//BJPT09+/fVXs/1vertK0G1hGzZsYPLkyQwePJh//vmHMmXK0K9fP4KDg61dNZEKhw4dolu3bqxYsYJFixYRFxdHv379iIyMNJaZNGkSO3bs4LvvvmPp0qU8ePCAIUOGWLHWIjVOnTrFsmXL8PT0NNsv7Zr5hIaG8s4772Bra8vPP//M+vXrGTVqFC4uLsYyP//8M0uXLuXrr79mxYoVODg40K9fP6Kjo61Yc/EyP//8M3/++SdffvklGzZs4JNPPuGXX35h6dKlZmWkbTO2yMhIPD09+eqrrxI9npI2/OSTT7hy5QqLFi1i3rx5HDlyhC+//DK93oJIQnJt+/TpU86dO8cHH3zAqlWrmD17NtevX+eDDz4wKydtm/G87Gf2ua1bt3Ly5Eny5MmT4Ngb366KsKjOnTsr48aNM77W6/VK7dq1lfnz51uxVuJ1BQcHK6VLl1YOHTqkKIqihIWFKeXLl1c2btxoLHPlyhWldOnSyvHjx61US5FS4eHhStOmTZV9+/Yp3bt3VyZMmKAoirRrZjV9+nTlnXfeSfK4wWBQatWqpfzyyy/GfWFhYYqXl5eybt269KiieEX9+/dXPvvsM7N9Q4YMUUaMGKEoirRtZlS6dGll69atxtcpacPnv4dPnTplLLNr1y7F09NTuXfvXvpVXiTrxbZNzMmTJ5XSpUsrd+7cURRF2jYzSKpd7927p9SpU0e5dOmS0qBBA2XRokXGY9KuiiI93RYUExPD2bNnqVmzpnGfVqulZs2aHD9+3Io1E6/ryZMnAMaeszNnzhAbG2vW1iVKlKBAgQKcOHHCGlUUqfDNN99Qr149s/YDadfM6r///sPLy4uhQ4dSo0YN2rdvz4oVK4zHAwICCAoKMmtXZ2dnKlSoIL+bMzg/Pz8OHDjA9evXAbhw4QJHjx6lbt26gLRtVpCSNjx+/Dg5cuTA29vbWKZmzZpotVqZwpfJhIeHo9FoyJEjByBtm1kZDAY+/fRT+vXrR6lSpRIcl3YFG2tXICt79OgRer0eV1dXs/2urq4J5gOLzMNgMDBp0iQqVqxI6dKlAXj48CG2trbGPxrPubq6EhQUZI1qihRav349586d46+//kpwTNo1c7p9+zZ//vknffr0YeDAgZw+fZoJEyZga2tLhw4djG2X2O9mma+fsfXv35/w8HBatGiBTqdDr9czbNgw2rZtCyBtmwWkpA0fPnxI7ty5zY7b2Njg4uIiv5szkejoaGbMmEGrVq1wcnICpG0zq59//hkbGxt69uyZ6HFpVwm6hUi1cePGcfnyZf744w9rV0W8prt37zJx4kQWLlyIvb29tasj0oiiKHh5eTF8+HAAypUrx+XLl1m2bBkdOnSwcu3E69i4cSNr165l5syZlCxZkvPnzzN58mTy5MkjbStEJhIbG8tHH32EoiiMGzfO2tURr+HMmTMsWbKEVatWodForF2dDEuGl1tQrly50Ol0CZKmBQcH4+bmZqVaidfxzTffsHPnThYvXky+fPmM+93c3IiNjSUsLMysfHBwMO7u7uldTZFCZ8+eJTg4mI4dO1KuXDnKlSvHoUOHWLp0KeXKlZN2zaTc3d0pUaKE2b7ixYsTGBhoPA7I7+ZMaNq0afTv359WrVrh6elJ+/bt6dWrF/PnzwekbbOClLShm5sbISEhZsfj4uIIDQ2V382ZQGxsLB9//DGBgYEsXLjQ2MsN0raZ0ZEjRwgODqZBgwbGz1J37txh6tSpNGzYEJB2BQm6LcrOzo7y5cvj7+9v3GcwGPD398fPz8+KNROppSgK33zzDVu3bmXx4sUUKlTI7LiXlxe2trZmbX3t2jUCAwPx9fVN59qKlKpevTpr165l9erVxi8vLy/atGlj3JZ2zXwqVqxonPP73I0bNyhYsCAAHh4euLu7m7VreHg4J0+elN/NGdzTp08T9KTodDrjkmHStplfStrQz8+PsLAwzpw5Yyxz4MABDAYDPj4+6V5nkXLPA+6bN2/y66+/kitXLrPj0raZT7t27fj333/NPkvlyZOHfv368csvvwDSriDDyy2uT58+jBo1Ci8vL3x8fFi8eDFRUVF07NjR2lUTqTBu3DjWrVvHjz/+SPbs2Y3zT5ydncmWLRvOzs506tSJKVOm4OLigpOTExMmTMDPz0+CswzMycnJOC//OUdHR3LmzGncL+2a+fTq1Yt33nmHefPm0aJFC06dOsWKFSv45ptvANBoNPTs2ZO5c+dSpEgRPDw8+P7778mTJw+NGze2cu1Fcho0aMC8efMoUKCAcXj5okWL6NSpEyBtm1lERERw69Yt4+uAgADOnz+Pi4sLBQoUeGkblihRgjp16jB27FjGjRtHbGws48ePp1WrVuTNm9dab0uQfNu6u7szdOhQzp07x/z589Hr9cbPUy4uLtjZ2UnbZlAv+5l98eGJra0tbm5uFC9eHJCfWQCN8vzxsLCY3377jQULFhAUFETZsmUZM2YMFSpUsHa1RCq8uHbzc5MnTzY+QImOjmbKlCmsX7+emJgYateuzVdfffXGDJvJKnr06EGZMmX44osvAGnXzGrHjh3873//48aNG3h4eNCnTx/eeust43FFUZg1axYrVqwgLCyMSpUq8dVXX1GsWDEr1lq8THh4ON9//z3btm0jODiYPHny0KpVKwYPHoydnR0gbZsZHDx4MNGESx06dGDKlCkpasPHjx8zfvx4/vvvP7RaLU2bNmXMmDFkz549Pd+KeEFybTtkyBAaNWqU6HlLliyhWrVqgLRtRvSyn9kXNWzYkJ49e9K7d2/jvje9XSXoFkIIIYQQQgghLETmdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCPGGOnjwIJ6enhw8eNDaVRFCCCGyLAm6hRBCiESsWrUKT0/PJL9OnDhh7SpmeEeOHDF+v0JCQhIcX79+PR06dMDb25vq1avz+eefJyj39OlTPv/8c1q3bk2lSpXw8/Ojbdu2LF68mNjY2GTvP2bMGDw9PRkwYECavi8hhBAiNWysXQEhhBAiIxs6dCgeHh4J9hcuXNgKtck8DAYDEyZMwNHRkcjIyATH//jjD8aNG0eNGjUYPXo09+/fZ8mSJZw5c4aVK1dib28PqEH3lStXqFu3LgULFkSr1XL8+HEmT57MqVOnmDlzZqL3P336NP/884/xOkIIIYS1SNAthBBCJKNu3bp4e3tbuxqZzvLly7l79y6dO3dmyZIlZsdiYmL49ttvqVKlCosWLUKj0QDg5+fHwIEDWbFiBT169AAgZ86crFixwuz8d955B2dnZ3777TdGjx6Nu7u72XFFUZg4cSLt2rXjwIEDFnyXQgghxMvJ8HIhhBDiNcyaNYsyZcrg7+9vtn/s2LF4eXlx4cIFQA00v//+ezp27EilSpXw9fXl3XffTRAUBgQE4OnpyYIFC/j9999p1KgRFSpUoG/fvty9exdFUZgzZw5169bFx8eHDz74gMePH5tdo2HDhgwYMIC9e/fSrl07vL29admyJVu2bEnRezp58iT9+vWjUqVKVKhQge7du3P06NEUf08eP37Md999x9ChQ8mRI0eC45cvXyYsLIwWLVoYA26ABg0a4OjoyPr16196j4IFCwIQFhaW4NiaNWu4dOkSw4YNS3GdhRBCCEuRoFsIIYRIRnh4OCEhIWZfjx49Mh7/4IMPKFu2LF988QXh4eEA7NmzhxUrVjBo0CDKlCljvM7KlSupWrUqn3zyCUOGDCEkJIT33nuP8+fPJ7jv2rVr+eOPP+jRowd9+vTh0KFDfPzxx3z33Xfs2bOH999/n7feeosdO3YwderUBOffuHGDYcOGUbduXUaMGIFOp+Ojjz5i3759yb5ff39/unXrRkREBEOGDGHYsGGEhYXRq1cvTp06laLv2ffff4+7uztdu3ZN9HhMTAwA2bJlS3AsW7ZsnD9/HoPBkOCckJAQ7t69y9atW1m4cCEFCxakSJEiZuXCw8OZMWMGAwcOTNADLoQQQliDDC8XQgghktG7d+8E++zs7Dh9+jQAtra2TJ06lY4dOzJlyhRGjhzJF198gZeXF/379zee4+Liwn///YednZ1x31tvvUWLFi1YunQpkyZNMrvH/fv32bJlC87OzoA6R3r+/Pk8ffqUv//+Gxsb9U/4o0ePWLt2LePGjTO79o0bN/jhhx9o2rQpAJ07d6Z58+bMmDGDWrVqJfpeFUXh66+/plq1avzyyy/GXuiuXbvSqlUrvvvuOxYuXJjs9+vChQssX76cn376CZ1Ol2iZIkWKoNFoOHbsGJ06dTLuv3btmjGRWmhoKLly5TIe27p1K8OHDze+9vLyYtKkScbvw3Nz5szB3t4+0XYTQgghrEGCbiGEECIZX375JcWKFTPbp9WaDxQrXbo0Q4cOZebMmVy8eJFHjx6xcOFCs4BQp9MZg1CDwUBYWBgGgwEvLy/OnTuX4L7Nmzc3BtwAPj4+ALRt29bsuj4+Pqxbt4779+9TqFAh4/48efLQpEkT42snJyfat2/Pzz//TFBQUKK9wOfPn+fGjRt88MEHZr35ADVq1GDNmjUYDIYE7z++iRMnUrduXWrXrp1kmdy5c9OiRQtWr15NiRIlaNKkCffv32f8+PHY2toSGxtLdHS02TnVqlVj0aJFhIWF4e/vz8WLF4mKijIrc/36dZYuXcrMmTPNHkAIIYQQ1iRBtxBCCJEMHx+fFCVS69evH+vXr+fUqVMMHz6ckiVLJijzzz//sHDhQq5fv2623FVi2dHz589v9vp5AJ7U/tDQULOg+3lvcnxFixYF4M6dO4kG3Tdu3ABg1KhRSb1Nnjx5gouLS6LHNmzYwPHjx1m7dm2S5z/3zTff8PTpU6ZOnWocHt+2bVsKFy7Mli1bcHR0NCvv5uaGm5sboD6QmDdvHn369GHLli3G9zJx4kT8/Pxo1qzZS+8vhBBCpBcJuoUQQog0cPv2bW7evAnApUuXEhxfs2YNo0ePpnHjxvTr1w9XV1d0Oh3z58/n9u3bCconNTQ7qV5mRVFeo/bm1xg5ciRly5ZNtMyLwXB806ZNo1mzZtja2hIQEACYEp3du3eP2NhY8ubNC6gPC+bOnUtgYCB37tyhQIECFCxYkK5du5I7d+5EE7DF16xZM7799lu2b99O165d8ff3Z8+ePcyePdt4b4C4uDiePn1KQEAAOXPmxMnJKeXfECGEECINSNAthBBCvCaDwcDo0aNxcnKiV69ezJs3j2bNmhnnUwNs3ryZQoUKMXv2bLMe6FmzZlmkTjdv3kRRFLN7Pe/Jfp75+0XPe8qdnJyoWbNmqu959+5d1q1bx7p16xIc69ChA2XKlGHNmjVm+wv8n737jq/5egM4/rm52QlBxA6JkZgRexNbrdo6bNWWolot2tKiVI226ECtH60WLYrao/YekcQeCWImCLKTe+/vjyP3ujIkZHver9d95bu/594jcZ/vOec5xYpRrFgxQAXoAQEBqWqpTuh+/vjxY+O9AYYOHZro2Dt37tC8eXM+++wzGesthBAi00nQLYQQQrykxYsXc/LkSebMmYOPjw+HDx9m/Pjx1KxZkwIFCgCmluunA+FTp07h6+trDDrT0927d9m2bZsx8A8PD+eff/6hQoUKyWb1rly5MiVLlmTRokW0b98eBwcHs/337983vp+k/Pzzz4m2bdiwgY0bNzJ16lSKFCmSYpm/++47dDodffv2Nbtn/vz5E3WV/+uvv4xlBqhbt26S9x83bhzFihVj8ODBeHh4pHh/IYQQIiNI0C2EEEKkYM+ePVy5ciXR9urVq+Pq6srly5eN8283a9YMgG+//ZZOnToxYcIEZs2aBYCPjw9bt27lgw8+wMfHh+DgYJYvX07ZsmWJjIxM93K7ubnxxRdf4O/vj7OzM6tWreLevXtMmTIl2XMsLCyYNGkSgwYNon379nTp0oXChQtz584dDh8+jKOjI3Pnzk32/BYtWiTaljAdWuPGjc0C9l9//ZULFy5QtWpVtFotO3bsYN++fYwYMcKYNA5g3bp1LF++nBYtWuDq6kpERAT79u1j//79NG3alHr16gHmLeZP++abbyhYsGCSZRNCCCEygwTdQgghRAqS6/49ZcoUihUrxujRo8mfPz+ff/65cZ+bmxsff/wxkydPZuPGjbRt25YuXboQGhrKihUr2LdvH2XLlmX69Ols3ryZI0eOpHu53dzcGDduHNOmTSMwMJASJUrwww8/0KhRoxTPq1OnDitWrOCXX37h999/JzIyEhcXF7y8vOjZs2e6lc/Dw4Nt27axc+dO9Ho9np6ezJw5k9dee83suBo1anDy5Ek2bNhAaGgolpaWuLu789lnn9GrV690K48QQgiRUTSG9Mi8IoQQQohso1mzZpQrV4558+ZldVGEEEKIV17yE20KIYQQQgghhBDipUjQLYQQQgghhBBCZBAJuoUQQgghhBBCiAwiY7qFEEIIIYQQQogMIi3dQgghhBBCCCFEBsnRU4bFx8fz8OFDbGxssLCQ5wdCCCGEEEIIITKHXq8nJiYGJycnLC2TD61zdND98OFDgoKCsroYQgghhBBCCCFeUW5ubjg7Oye7P0cH3TY2NoB6k3Z2dllcmpTpdDouXLiAh4cHWq02q4sj0onUa+4ldZs7Sb3mXlK3WSAqCho0UMv790MGfBeTes2dpF5zr1etbqOioggKCjLGpcnJ0UF3QpdyOzs77O3ts7g0KdPpdADY29u/Ev8AXxVSr7mX1G3uJPWae0ndZgGDAc6fV8u2tpAB38WkXnMnqdfc61Wt2+cNdZaB0EIIIYQQQgghRAaRoFsIIYQQQgjxytLpIC4uq0shcjMJuoUQQgghhBCvnGvXYORIKFAASpWC69df/FoGA/j6wsOH6VY8kYtI0C2EEEIIIYTIFfR6WLMGvvkG/vlHBdYGg/kxJ09Cr15QujR8/z08egS3bsGCBS92z5gY6NkTqlWDcuXg4sWXfhsil8nRidSEEEIIIYQQAuDSJRg0CHbtMt/u7AzVq6ug+Phx2LEj6fP/+QcmTEjbPR89gs6dYedOtR4SAq+/DocOQd68aX0HIreSlm4hhBBCCCFEjhUfDzNmQJUqiQNugHv3YNs2mDbNPOB2doavvlLBOICfH1y5kvr73rkDTZuaAu4EZ89C796q1V0IkKBbCCGEEEIIkUP5+0P9+vDppxAdrba5ucGcOfD559CmDbi4mJ9Tpgz88ovqej5+vOoanuCff1J338BAaNgQTpxQ6wUKwLJlkC+fWl+3Tl1bCJDu5UIIIYQQQogcxmCAyZNVd/D4eLVNo4Hhw2HSJHB0ND/25k01ltvBARo3hqenkO7UCcaMUcv//AMff5zyvU+dUsH87dtqvUQJ2LoVKlSAggXhtddUK/fXX4O3N3Tpkk5vWuRY0tIthBBCCCGEyDHi4qB/fxg3zhRwV6gA+/fDzJnmATeoYLx4cWjfXnUHfzrgBvD0hPLl1fK+fXD3bvL3PnVKBe0JAXeFCnDggPoJ0KoVTJ1qOr5PH9UanyAyElavhrffBg8PlfBN5H4SdAshhBBCCCFyhMhIlbhsyRK1rtHAF1+oVux69V78up07q58GA6xfn/xxo0ap5GkAdevC3r3g6mp+zMiRKqgGiIhQidV++w26dVNd3bt2hT/+UFnOv/hCXUPkbhJ0v8LGjBnDkCFDjOu9e/dm8uTJmV6Ow4cP4+npyaOEv2BCCCGEEEI84/59aNkSNmxQ69bW8Pffqju5jc3LXbtTJ9NycuO6T5xQ3cgB3N1h+3aVjO1ZGg3Mn68ypoMa/92nD6xapR4aPGvoUFOLfW7k66umZytfHj77DI4dSzyNW24nQXc2NGbMGDw9PfH09KRy5cq0bNmSn376ifgM/m388ccf+fDDD1N1rATKQgghhBAiswQHq27dBw6o9Tx5YPPm9BsvXbMmFCumlrdtg8ePEx8zbZpp+ZNP1Pjw5NjZqfnCn03i5uKipjXbvNkUlPv5wbx5L1f+7GzkSPXg4fx5+PZbqFVLPbT4+GNVn69ClncJurOpRo0asW/fPrZs2UL//v356aefWLhwYaLjYmNj0+2e+fLlw/HZQTBCCCGEEEJkoXPnoEEDOH1arRcuDLt3q/HZ6cXCwtTaHRMDW7aY7798Gf76Sy27uKgx5c9TsqS6TseO8MEH8N9/KqHbr79C69bw44+mY8eNg9DQdHkr2crZs4mnVAO4ehV++EHVa7NmSfcAyE0k6M6mrK2tcXFxoXjx4rz11lvUr1+fnTt3GruEz5kzh4YNG9KmTRsAbt26xYcffkjNmjWpXbs2gwcPJjg42Hg9nU7HlClTqFmzJnXq1GHatGkYnunX8Wz38tjYWKZPn06TJk2MLe5//fUXwcHB9OnTB4BatWrh6enJmCcpH/V6PfPmzaNZs2Z4eXnRsWNHNm/ebHaf3bt307p1a7y8vOjduzc3btzIkM9QCCGEEELkbJGRqkv5tWtqvXRplTAtYW7t9JRSF/MZM0wtsh9+qFqyU6NaNVi7Fn76CXx8wPKpuaPq11fzeQM8eKDGd+c2c+aYlseNUw8cWrUy/xx2735+xvic7tWcMuzs93Du++cfV6A6NFlnvm13R7h/4vnnlv8YKqTfvx4bGxvCwsIAOHjwII6OjixevBiAuLg4Bg4ciLe3N8uWLcPS0pJffvmFd955h3Xr1mFtbc2iRYtYs2YN33zzDWXKlGHRokVs27aNunXrJnvPUaNG4evry9ixYylfvjzBwcE8ePCAokWL8uOPPzJs2DA2b96Mo6Mjtra2AMybN49169YxYcIE3NzcOHr0KJ9++ikFChSgdu3a3Lp1i6FDh/L222/To0cPAgICmPp0ikchhBBCCCGeWLZMdS0HqFpVdcsuUiRj7tWkCTg5wcOH8O+/EBurxo3fuQNPvnbj6AhPpUR6aVOnqgD/8WM1DnzQINXVPTcIDzclvLOzg48+gvz51Xu8f189jBg6VD1YmTcPWrRQyeZyo1cz6I57BFGpaF2Ndk1iW0jqzo1Ln7HOBoOBgwcPsm/fPnr16sWDBw+wt7dn0qRJWFtbA7B27Vr0ej2TJ09Go9EAMGXKFGrVqsWRI0do2LAhS5Ys4d1336VVq1YATJgwgX379iV738DAQDZt2sTixYupX78+AK5PpWZ0cnICwNnZmbx58wKqZXzevHksXryYak8eP7q6unL8+HFWrFhB7dq1+fPPPylZsqSxZbx06dJcuHCB+fPnp8vnJYQQQgghcgeDAWbPNq0vXJhxATeoALtdO5VZ/OFD1QLbsqUqQ0yMOua991TgmF6KFoWvvlJjxA0GGDZMteRb5IL+yMuWmTK9v/WW+edWoIDqoq/XwzvvqG3vvKMeOLi5ZXpRM9yrGXRb5QW74s8/ztYl6W2pOdcqb9rL9ZRdu3ZRrVo14uLiMBgMtG/fnmHDhjFx4kQ8PDyMATfAuXPnuHbtGtUTsjE8ERMTw7Vr13j8+DEhISFUrVrVuM/S0pLKlSsn6mKe4OzZs2i1WmrVqpXqMl+9epWoqCgGDBhgtj0uLo4KTyYvvHz5Ml5eXmb7vb29U30PIYQQQgjxati9GwIC1HK9elCjRsbfs3NnFXSDaoGuUwd+/lmtW1mp1tr0NmwYLFigxq4fOqSmF+vb17Q/KkoF4kFB0KiRmlc8PcXFqe7dly6pqc569lTv9WUYDKbPDZLvHTBggMoCv3y5etDx1luq3l/2/tnNqxl0V3iJrt/PdjfPIHXq1GH8+PFYWVlRqFAhLJ8a+GD3zCCSyMhIKlWqxIwZMxJdp0CBAi90/4Tu4mkR+SQDwrx58yhcuLDZvqcfEgghhBBCCPE8TycaGzYsc+7ZurWafiwmRgXdbm4qGATo1QuKp6LtLa2srVVr+pMOqYwapZKw7d+vkpAdOGBqaQcVeA8cCN27g739y99/7lw15hxU9/3PPoMRI1Q38Lwv2I64fz/4+6vlunVNmdqfpdGo+x8+rDKcHzyoWv6/+ebF7ptd5YKOC7mTnZ0dpUqVolixYmYBd1IqVarE1atXcXZ2plSpUmavPHnykCdPHlxcXDh16pTxnPj4eE4npIBMgoeHB3q9nqNHjya53+rJ4yedTmfcVqZMGaytrbl582aichQtWtR4jH/Cb+ATT5dLCCGEEEKIq1dNycyKFIGuXTPnvnnyqLHFoDKNjx+vljUa+PTTjLtvy5am6c/u3lUZvceNUxnPnw64AfbuhX79VNf0wYPh+PEXv294OHz9tfm24GDV3d3VVT0A8PODCxcSv54t19PmzNEYl583Bt7JSbV0J4Q8336rWr9zEwm6c4EOHTqQP39+Bg8ezLFjx7h+/TqHDx9m0qRJ3L59G4A+ffowf/58tm/fzuXLl5kwYUKKc2yXKFGCzp078/nnn7N9+3bjNTdu3AhA8eLF0Wg07Nq1i/v37xMREYGjoyMDBgxgypQprFmzhmvXrnH69Gl+++031qxZA8Abb7xBUFAQU6dO5cqVK6xfv964TwghhBBCCFBZrxOyhQ8erFqDM0vnzqblhKmsXn8dnoyWzDDffQdJdTYtVUp1w5440bwMjx6pVuKaNWHs2Be758yZEBKilps1gw4dzK8/fbpKYOfpmfhVvDhs3Zr4mqGhlqxerYLuggVVi/zz1K5tat02GFRW97t3X+w9ZUcSdOcCdnZ2/P777xQrVoyhQ4fStm1bvvjiC2JiYozzbg8YMICOHTsyevRo3njjDRwcHGjZsmWK1x0/fjytW7dm/PjxvPbaa4wbN46oqCgAChcuzLBhw/juu++oX78+Xz95RDZixAiGDBnCvHnzaNu2Le+88w67du2iRIkSABQrVowff/yRHTt28Prrr7N8+XI+yojBMUIIIYQQIkeKilKZvEGN7X333cy9f4cOqmX7aaNHZ/x93dxg6VKoVQveeEN9Bpcvq7HcCxeqlu/Tp1XX7QEDzLuWT56sxoKnRWioCqoBtFr1oGPdOjhzRiU1e96Djnv3oH17+PNP8+1r1xYkLk59gAMHJv0gISkjR6ru/QC3b6uHLbmFxpBcJq0cIDIykrNnz1KhQgXs02NAQwbS6XT4+vri7e2NVqvN6uKIdCL1mntJ3eZOUq+5l9RtFoiIUPMngeqj6uCQ7rdITb1GRJjGvu7bB+XKwaxZLz4WVWS859XrwoWmjNZvvw2//57JBUSNm06Y6KdJE9i1K/PL8DyPH8MPP6gx0KDGou/bl/opxz75RLWugxq//euv5vtv31YJ3i5eTHzu5cvq9y7BrFkwfDjExOgoVUrHnTvWaDRw5UraspHfuaNa1u/cUd3OHzxI/AAkO0ltPPpqJlITQgghhBA5lq+vapHbsUMlXoqLM+3bvx+OHlXzLOfGqYeyo/h49bkXKaIeerzMdFcGg3kCteHDX758L6J3b1PQ/fnnWVOG58mTB778Em7cUAFzTIzqGn/06POnVrt+3ZQ8zdZWXedZRYok321dp1Mt0Qk9Ej78UAXK1avDnTuqibxdu7T/DhYuDFu2qHHmnTpl74A7LSToFkIIIYQQOcaOHaZEV8k5fVqNEV27Vk01lRPs3g2nTqkW3mzegdNMSIgK9BJaPR0dwdtbBV/Vq6tpvipVSn3wtHev+hxA1WHt2hlS7OcaNEh1ry5Y0JRVPLv68UdTt/PgYOjWTfX8SKl7+MSJpkRow4bBk5GgqabVwrx5KkieNElt++YbyJPH9MTlgw/S+EaeqFoV/v77xc7NrmRMtxBCCCGEyDH+9z/z9TJlVIC0fLmadsjDQ20PCYGmTU1zLmdnq1apsn74oQpgn5ocJls7c0bNY/10N+PwcNVCPHu2yrBdpQr075/6a2bFNGFJ0WhU+du3z7oypJa1tQpSE6Yz278/5c/u3DlYtEgtOznBmDEvdl+NRrVIz55teqjy+LFaKFPGkO0fVmQmCbqFEEIIIUSOoNPBpk1q2dFRzet76ZLqWtuzp2oVPXRIZWEG1ZL39ttq2ieDAe7fV9Mr/f03TJsGH32kElelNPVRRtu1C956S5UPVDbozz7LuvKk1tatqhdBYKBaL1pUPTBIqjvxkiVqiqnnuX4dEia1KVw4dVmvhVKkiJpizcZGrf/6q8psnpRx40yZ4T/9FAoUeLl7Dxumkqk9mVEYgPfeM7zUMIPcRj4KIYQQQgiRIxw+rDImg8pynFSAlz8/bN6sWr8TTJiggnRnZ5Vkqnt3lY165kzo2xfc3dXcwGFhqS9LcLAKJvv2hbp1XyzZ16lTaiqq2Fjz7dOnZ+8W+jlzoG1bNaUUQLVqcOQIrF6tgvB799Q8y336mJ+TmusmtPK/954pgBSpU7OmaYw1qGC4Xz/VEr1vn0q8duyYqet24cKqd0V66NkTNmyAkiUNVKkSzjvv5Nhc3RlCxnQLIYQQQogc4d9/Tcspdfu1slLjTcuXVxmaDQbTfMtJuXVLtS5PnqzGVI8YoeZGjopS2ZPDwtTP4GDVMr1jR+KMzocPq5baMWNSN345MBDatDEFru3aqbHqCTOpDhyo5kKuUeP518osjx+rxFqzZ5u2vf66euCQkMgeVMtp8+ZqbPfKlRAdDYsXq7G/ySW5Dw83Zc+2tFRBt0i73r1VosHvv1cJ7pYsUS9Q/y6f/vzHjTOvt5fVsiVcvqzn1Knz5M3rnX4XzgUk6BZCCCGEEDnChg2m5ddeS/lYjQY+/lhl0x4xQm1zdzd/5cmjgsE1a1RgHh6uWr9nz1aBe1q7nX/+ucrg/P33KWfwDglRLfW3b6v1unVVcGpnBwEBasqs6GjVXfvYMShUKG3lSC/R0So7/M6d6kHDkSPm481HjYIpU5J/r87Oar7p//0PHj5UXZATpgJ71uzZpl4MPXtCsWLp+lZeKVOnqn/LCxea11fCv3FQ//6f7g2SXnJLtvH0JkG3EEIIIYTI9q5dAz8/tVy7tuoamxodOqhXctq3V63WP/ygAvDoaDXeNaWA29JSBcrNmqkW3QMHTOOwZ82Cu3dVoJlU9ujwcNU1O6GlvHx51YKfkLH8559VgrKDB1XLebduqqt2Utd69Ei1mCe8rlyBoCCVHKtDB9V6nlJL5r17qtvxjRuqJT/hFRam3sOxY+rzSOr9z52rWuOfZ8gQU/K7n39O+pyHD2HGDLVsYaFaYMWLs7RUPT1mzlQPcU6cML0Sfod++SXl7OYifUnQLYQQQgghsr2nW7nTO6N0uXIqCJkwQf1ctUq12OXPr1758qmfBQqo7t6NGpkHs40bq4cAgwaplsU//1QB7apV6rhHj9SUYDt3qgD70iV1XvHiak5iZ2fTtWxs1Hk1a8LNm2oKrXfegQYNzIPrhLHTyVm2TM2/3Lo1dO2qgnBLS3W9hJZrX19TArfUKF9ePWgYOFBNB5YatWqp19Gj6n6HD6v1p/3wgwr2AXr1Ut3qxcuzszN9/gkS5rR/OumZyHgSdAshhBBCiGzv6aC7XbuMuYeLC3z1lXqlVf/+ak7nHj1U6/DWrVC/vmrBPnYs8TRg+fKphG8lSya+VtGiqst748aqxf2339QrraKj1Vzla9eqIMtgUON8U8vVVbXkN2+upjRLmJIqrYYMMU0b9vPP5tO+3b+vgm5QDwW+/PLF7iFSR4LtrCFBdzbj+ZxHe0OHDmVYVk5aKIQQQgiRySIjVcssqLG+1aplbXmS06EDbNumfoaFgb9/4mM0GjW39ezZULly8teqXVt1Ee7XL+lrlCihxuWWLm0ao166tMrofv68ylC9Zo1p3HhCC+fT1/D2Vi3XVaokbtXPly/9kmz17AkjR6oAe+VKlZ09wYwZpmRy/furedeFyG0k6M5m9u3bZ1zeuHEjs2fPZvPmzcZt9gkDfgCDwYBOp8PSUqpRCCGEELnXzp2mscXt2mXvZE0NG8KePSoz+c2baluFCqq1uFkz8PFRQW1q9O2rAt8TJ1SLeEJgXbJkyuNxixdX9/rxRzU2fNUq2LgRtFp1/+bN1c+nu7VnJDs7GDBABdixsbB4sYZWrdS48Vmz1DHW1iozuhC5kURr2YyLi4txOU+ePGg0GuO2w4cP06dPH3799VdmzZrFhQsXWLhwIWvWrOHRo0f88ssvxnMnT57MuXPn+O1JXyS9Xs/8+fNZsWIFoaGhuLm5MWTIENq0aZO5b1AIIYQQIo02bTJF2ek9njsjVKmiElgdOqRak4sWffFrde2qXi9Cq1UPARo2NHXhzirvvw/ffae6uM+bp6F5c5g2TWOcym3QoKS72guRG7xyQfdff6mxIo8fZ9498+RRiTnSq7vMd999x+jRo3F1dSVv3rypOmfevHmsW7eOCRMm4ObmxtGjR/n0008pUKAAtWvXTp+CCSGEEEKkM4MBNmxQQbeNjWqlzQny53/+tGavkjJlVOv/pk1w9aqGtWsLMneuqldbWzXdmhC5VbYNupctW8bChQsJCQmhfPnyjBs3Di8vr5e+7vTpcO5cOhQwjWbMsGDOnPS51vDhw2nQoEGqj4+NjWXevHksXryYak8GQbm6unL8+HFWrFghQbcQIpGQEJX4xlofQp+uV2nRvRpaK21WF0sIkY0YDJDQ/vy//0Gv91QirPR28aIdwcHqTk2bgoND+t9DZI4hQ1TQDTB1akl0Oo1xu8zLLXKzbBl0b9y4kSlTpjBhwgSqVq3KkiVLGDhwIJs3b8b5JQefjBql5v7L7JbuTz7Rp9v1qlSpkqbjr169SlRUFAMGDDDbHhcXR4UKFdKtXEKI3GP0aJWEB1z4Y7ULJUcEM6DbRfoP96BkefP0tbHROq4Fa7lzR3WpTGUHHCFEDjdtGox+svzBUJg8U/Xse+MNNddyetm718m4nBO6lovkvfYalCoFV69iDLgdHNT/OULkZtky6F68eDE9evSg65MBLBMmTGDXrl2sWrWKd999N9HxOp0O3bPzMCSjc2f1ymw6nQ5/f1JdTlDjsBPOfXrd2to60XX0er3Ztri4OGOitcdPnjDMmTOHQoUKmZ2X1LVE6iV8dvIZ5j6vct2Gh8PKlRaY2rDgWkgJxs8pwYS5elrVPEbRQlEEXnck8JYLwfeK8uTPExUrGjh2TJ9igp+s9CrXa24ndZu5FizQMPFrU9ANau7pt9+GKVMMTJyop0OHl094ptPp2L/fFHS3aaNLNPWWyFnee0/D55+bnsp88IEeZ2eD1Gsu8ar9LU7t+8x2QXdsbCynT5/mvffeM26zsLCgfv36nDx5MslzLly4kFnFe2n+Sc0dkYxr166h0+nw9fUF4NKlS8ZrODzVtyo+Pp6rV68ajwM4fvw4Wq0WX19foqKisLKy4tChQzRq1CjRfe7cufNib0YYpaVeRc7yKtbtv/8WICLCHYD61a/ioLnJjhO10Ru0GAwWbDlaM9lzz5zRMHduII0bP8ys4r6QV7FeXxVSt6lz4cgt/vwtL+06PKBmqxJpOnfXLidGjSqD7VPbalR/xN4T6rtJQICGLl20VKwYwZAhN6hT5/ELB98PHlji76+GF5YuHUVY2Bme+rojcqBatSyxsqpCXJwFDg46Wrf2x9f31QjQXiXyt9hctgu6Hzx4gE6nS9SN3NnZmStXriR5joeHh9lUWtmRaun2p0qVKmi1qRsXGRgYiFarxdvbG1APJEB1L386gVp4eDj//vsvV69epWrVqqxfv56bN29SoUIF47kDBgzgzz//xNXVlerVqxMeHs6JEydwdHSkU6dO6flWXykvUq8iZ3iV6/aTT0zL384sQf36JQi+eIulP11k0V9lCbrratzvnOce7kXukLeYGzt3q7/DBw+WZvhwQ2YXO1Ve5XrN7aRuU+/M4cu8N7Icj6PysvlILPtqXaBG09QNN9u7F8aOtUCvN4+i//vPgR2HdIwbZ8GRI2rfmTMODB3qQePGBr7+Wk8a0tEYLVliwGBQ1+va1cb4vUbkbHPm6PnhhygmTLCmSZO0DZsU2dur9rc4MjIyVQ3A2S7ofhFarTbHVGpaymrxZEBUwvFPrz99jSZNmjBkyBC+++47YmJi6Nq1K506deLChQvG4z766COcnZ2ZP38+wcHB5MmTh4oVK/L+++/nmM8uO8tJ/wZF2rxqdRt0Jphdu1SrV7ky0TRsaItGA6XKl2DcTyX4YpYe3z1n0Vpa4F6xKHmdnQFn4uKgWDEDoaEa1q+LJyIsmrzO2Xdw96tWr68SqduUPbgTRpdu1jyOUr+fcTpr3urjxImzFuR1Srk52t9fDdFLmC/7zTeA5WpZq9XSqpWWli3h33/VfMt+fmrfnj0amjTR8tprMGkSVK+e+vJu3mzKidOxowVStblDv346vL3P4e3tLb+vudSr8rc4te8x2wXd+fPnR6vVcu/ePbPt9+7do2DBgllUqqzRpUsXunTpYlyvU6cO58+fT/LY4cOHM3z48GSvpdFo6Nu3L3379k33cgohco+lP18CVNDdr90hNBofs/0WWguqJ9EiZmUFb7Q4xE/L6xEdY83qhUfoN6phxhdYCJFqujgdb3W8yKVbtcy2X77lyuAh8PvvyY/BvnpVTfcUFqbWW7dGzcqy3Pw4jQY6dIB27UzTtCY0Am3apF4dO6ppv6pXh6pVVcLZZxkMcPs2bNmiCpQ/v4G6dV9ygLgQQmSRdMwtmT6sra2pVKkSBw8eNG7T6/UcPHjQON2VEEKI9KfXGfjfqtIAaDR6en/gmabz3+5r+ub8+/LsPeRHiFfR54P2svmICrgL5g3lv3/OkjevGgryxx+wZEnS5x3feZYmDaO4eVOt16qlZjewskr+XhYW0LMnnD4NCxdCyZKmfevWwYcfQqNG4OQE5cvDm2/C0KEqO3mlSiqjdbFi8OiRCrTbtDFkyHRkQgiRGbJd0A3Qv39/Vq5cyZo1a7h8+TLjx48nKirKrNVXCCFE+tr3rx+Bd9Q34xbVT+LqUTRN59dpVYkyRa4CsNPXm5uXb6V7GYUQL+bP2QeYtsQHAK1FPH8tDsbn9Qr8+qup9fiDD+DZDnULp+ylQRt3rgbbAeDhARs2gKNj6u5raQkDBqjW7h9/hCJFzPcbDOqey5fDzz+ra585A1FR5sd1754980QIIURqZMtnhm3btuX+/fvMnj2bkJAQKlSowIIFC1657uVCCJGZ/jf/sXG5X++YNJ+vsdDw9uuBTJxXCoPBgj/nnWfktLQF7kKI9Hfiv3MM/NTbuD7z8/34dGkCqNbo7dthwQKIjISer9/m0PF8AAx/+wjz1zY2nle38mX+3lwGFxdArwO/r1JdBhsb1ZL97rtqrPeJE6aXnx/EPPUnx9YW3NygdGlwc9NTvHgQHTqUeolPQAghsla2DLoBevXqRa9evbK6GEII8UoID4tg5XZvAPLaPaRT/xcbzvP2u6WYOE8tL1tdmJHT0qmAQogXcvcudOpTlqhY9ZVvQPu9fDChsdkxs2bB/r3RnD1vy6nzRXi32z7OXi7AsYum4z7ovpvvl9TF2u7JhnMz4Ox3aS6PtTXUrKleCeLi4OxZCA9XwXaRIqp7OoBOZ8DX9wEajQTdQoicK1t2LxdCCJG5Vi/0JSJG9Rft2coP+7x2zzkjaR7V3anlcRqAk5crcPrgpXQroxAi7YYMgevBKuCuWzWYX1bURmNhnpDM3h5WLLyGjZVKS/7b5oYcu1gRADvrSJZ+t4+fVjbB2s5GnaCLhgu/mN9oc03wHQN396lW8DSwsgIvL6hfX43jtpBvp0KIXEb+rAkhRC4SGwvdu0PTprB3Z3iqz/vf76bEZ/0G5XupMvTqFmpcXrYg+KWuJYR4cX5+sGqVWi5UCFZvKoGNvU2Sx1Zp4MEPXxwx21amyFUO7bhO74+fmYlAawttjkPx9qZtD8/BmamwvRGsLgQHekPgMoh7lJ5vSQghciQJuoUQIhdZsUJlFd61Cxo3d2Roj908vv84xXOCzgTzn6/qTl6uWCD1Xqv8UmXoOagiWot4AP5YXxa9Tv+cM4QQGWHiRNPyF19A0eekWHh/XCMGd92D1iKeLo0PcexUPrwaJjOLgW1BaPBn0vti70PQ73CwF8SYTwHL3X1w+hu4uhLun4S4lP8+CSFEbiBBtxBC5CKbN5uv//xXEyqXf8iWP44le87SJfHG5X7dribqeppWhd1caFnzJABXQ0qwf0PAS11PCJF2/vsvGFu5ixSBQYOef47GQsMvfzfmcVgcq3bXJV8hp+ec8NTfitcDoe4ScO0Glk+mD7SwAntX83NuboRTX8D+nrC5OvyVF1YXgW0N4fA7qtt66BHVhV0IIXKJbJtITQghRNro9bB1q1q2tYnHghgiYxy4FlKCNm+XoM/v+5j2iydOLqb5tA0aG5b87QaARmOg99CK6VKWt980sPlJT9VlG6rQqGO6XFYIkUpfjwsFPAAYPegEdnbVU32uXZ4XyOlg6wLOfaB0H9DFQsgeeHQBLJ75qhmeRJ6H6DvqFbIfWKi2uTSClnvSXg4hhMiGpKVbCCFyiRMHQgl9Mpz6tbaW+B+9R/NqJ4z7l25qSBF3F+wcbY0vewcNV66o/S1aaHAtVyhdytLpndrYPxkmvvIvDbGx6XJZIUQqnD54kb931QWgcL67vPdp+cwtgNYairQAjyGJ91WZCA3/gqrfQOkBKri2S6Lfe/4kZlD4rw0ceR+urYKY++lfbiGEyCDS0i2EELnE5hUBgA8AretfpHSVcmw75sqiqXsZOcmLh5EpdxXt3z/9yuLoCJ06wR9/wIMHsGkTvP56+l1fCJG8r8eGYDCUA2DUu2ewy+OTtQV6mlN59XpWXDiE+cP94/DgOBRtab4/4hrc2qKWL80DjQXk8waX+lCwHhSsDw6lzLu8CyFENiFBtxBCZLJH9x5xcs8V6rethJWNVbpdd8uu/Mbl1q+p7qEaCw0DP2vEaz1u8/WoU5y7nMf8pPzegIZ69aBnz3QrCgC9eqmgG2DOjxG0bqHF1sE2fW8ihDBz5vAlVv6nWrkLOYXw/he1srhEqWTlCC711CspD/3VGHF9nFo36OHBCfW68JPaZltEBeAN/gRt0lnahRAiK0jQLYQQmcigN9C8XjDHLnozrOduZi9vki7XfRgSxsEzlQDwLH4Ft0qlzfYXK1OEOauKpMu9UqtlS3Bx0RMSYsGWHQ6ULXmLL0dcpP+oeun6sEEIYTJp7B0MhrIAfDroNPZ5fbK2QOmlWDvo9gDu7oFb2+DOdggLAAymY6Jvw50dYGFtfq7vGLi5CZwqQYGa4FxLdV+3cszUtyCEeHVJ0C2EEJnoVuAdjl1Uyco27SqWbtfdsfosOr1qIWrT+DpQOuUTMoGlJUz75AD9R6s5fm/cL8p7XxZl2i9XGT8qmDeH1kVrpc3iUgqRe5w7epnlO9TfAZe8IQwem0NauVPL0gGKvaZeALFhEHoYQg+q171D4FgmcRfzB34Q9uR19ck0ZxoLyFtBBeF5PcG+BBSolXTXdyGEeEkSdAshRCbyPxwMqBbnwBB34mLi0qXVd/OmOONym3b2L3299NJvVEOq17/AuDEPWLe/DgCXb5ei98elmDLzEnNmR9D49apZXEohcodJY29hMJQB4JN3TuPg5JO1Bcpo1vmgWGv1AtDrVGv3sww60FiCIf6pbXp4eFq9ElQZD1W+Mq1HBsOO5qqruoWN+qm1A/uSkKcs5CmnfjqWAatnhu4IIcRTJOgWQohMFHC1jHFZp7fk6tmrlPUu9VLXNOgNbN6vrmtjFU3jDpVe6nrpzauhB2v3weEtAYz9PIbtJ2oAcOZaWdr0iGT7an/qt6uSxaUUIme7cOIKf25TrdwF84YyZGzNLC5RFrDQgn3xxNubbVFjwcMC4P4xuHdU/QzzNw/E7UuYnxcfAY8vpO7ebY5DgdRPyyaEeLVI0C2EEJnI/3x+s/WLAXdfOug+d+wK10NV0N2kagD2ebPnl+06rSuzrTX8t+okn4214vC5ykTF2tO+Zwn27bhExTpls7qIQuRY3812Qm9QwzVGDgjAMb9PlpYn27GwggLV1KvsILVNF60C8chrEHEdCjYwP8egA6t8oI9RL4M++es7upuvX14M52c+yaz+5JWnnGRXF+IVJUG3EEJkIn9/8/VL5yJf+pqbV18HVNDdpnn4S18vozXtWo3dr8XQvtFxtp+owYOI/LTuqOPAMXB1zerSCZHzxMfDqn+dAXCw1/HBuBpZXKIcQmsLzjXVKylOFaH7A9O6Ph7iwyH8Cjy+BOGX4PFFiLoD1uYPVAnZZxpHfmme2mZdAArWfRKE1wXnupLMTYhXhATdQgiRSXQ6OHPGfNvFSy9/3S07TV/aWncukcKR2YeNvQ2rt3ngU+csJy5VIPhuQdq0gb17oUCBrC6dEDnL3r1w755abttOS54CMr44Q1hYqnHkBao/vyt5XJhK1vZ063jsfbi5Ub1A7S/3AdScnVElFkJkExZZXQAhhHhVXD77gOho822XAl8u6VlUpIHdp7wAcC14gwq1yjznjOwjT4E8bNxRhDJl1JQ/Z85Ahw4Q+fKN/0K8UlavNi136ZJ15RBPabQKuoVBsx3gNQmKtQcbZ/NjDHqwe2YqR308HOgDF36GB74qOZwQIseTlm4hhMgk/vvOAfXMtl267Z70wam0e4+G6Fg1J23rto5oLHLWeMHCJfOzZQs0aAB37sCBA/BG18d8NPA8gZeiCLyiI/CqFYHBeYiIsqF141sMHF4Kj+opf27xsfHERMXg4OSQSe9EiKyh1+lZsyoesMbaGtq2zeoSCSOrPFCkmXoBGAwQfllNbxZyAEIPgEsj83PCTkHQb+oFYJlHdUUv1Bhcu4JThcx9D0KIdCFBtxBCZBL/UzGJtgXeLEh8vJrT+kVs2WJabtPR6QVLlrXKlIFNm6BJE3j8GNZvzsP6zUmPsTwV6Mm0JdDY6xTvfFyZrt212NurwMP/wEV2brjFjt327DlVnqhYOz56excTfqqDXR67FMtw4UQg8XE6SeYmcpyj289w41ZlAFo2uE7evJIYIdvSaJ5MNVYW3HsnfUzIAfP1+Mdwe5t6+Y0Dp8pQsgeU6qHmFxdC5AjSvVwIITKJ/xlb47JXZRWAx8fD1asvfs3Nm9VPrRaaN3+Z0mWtatXgn1WxWFsmfjCRwEJj6ma5x68qffppKVpUtewVdonGu7EnH0/1YcOh2jyOyku8zorpS32oWv42e9aeSvKap/aep2ODw3jWcKdKPXdW/3oo3d+bEBlp9Z+hxuUurYKyriAifZR7H1ofheozwbUb2BU13/8wAPy/hC11QBdrvi88SE1zJoTIdqSlWwghMknA5UIA2FlH0rqNLX4BavvFi6q1N62uXo7i3DnVglu3LuTLl04FzSLNWlqz8Y8TLFkUiYtzPO7uGtzL2ePumR+3CsUID4vgt59Os+BPV84Fqw/s0SPVSg7mY+ML57vLg3AnYuNtuHjTnSadYEi33Uz6WY1/P38eJo48zYrNpjnN9QYtwz4rRavu4Tjml4zCIvsz6A2s3uoGqIdSHXtVzNoCiZdnYWXKqF7+Q9UlPSIQgtfDtZWqSzqAa2fQWpufu7UORN9VWdKtC6h5y7FQCds0FmrZylGNMS/sYzov5j48OAF2JdRc5ZJRXYh0J0G3EEJkgqjHUVy6qebjrlgyCM/ypi/Hly7qoU3aOx5t+fMo0BiANo2DgZyRuTwlzbtXp3n3pPfZ57Vn5DQfPv7WwMGDehYstGDFCpV4zcnJgE+VYzRrHEnz9sWpWKcM548HMrBfOAfOqED7l7+bsH5fGJW83di61QK93hRwW2h06A1abt4vyuSRu5iyyCfj36wQLyng4EUu3fIAoElVPwqWqJbFJRLpTqMBx9IqAC//oZpP/Prf4FzH/DhdtAq4QWVJj72f/DV1z2T0fHASdrY0rVs5qeDbvgTYFgGbgmDrAjYu4N73STAvhEgLCbqFECITnDkahN6gEuBU9rhPuWLXATX28uL+vTCsSZqvuXmrqZWjddNH6VLOnEBjoaF+Aw31G8Ds2XDrFri7a7C0rGV2XPlapdnjq+Pn8bv57LuaRMY4cP12Pq5vNh3jku8hn7/vS8uOxane2JXYeBu+W1qf/kMDn5usTYistnrZDUAF3V3avzp/A15pDq5Q/qPE23VR4PY2RF6HiGtqLLhBDwbdk59PlvUxKoh+WnSI+XrcQ3j4EB6eNt9uYQOl+5tvu7IEQvZC3vKQtwI4uoO9q0oiJ4QwkqBbCCEygf+xe8blKpXiKethCpgvBaWc5CspcTFx7DimgviCeUOp0az8yxcyB3J0hHLlkt+vtdIyfHITOrx5nXeHxrN9t0o2ly+fgU8/1TB8uBOOjuqBx6f9djF5gQ9xOms+HBzKxoNuOS4bvHi1rN5czLjcqY9HFpZEZDnr/FD/9+cfp4sBzTNf/50qQMXREBls/tI/k2PDpqBqeX/arc1wdXni+1jlUw8I7F3BviQUaQ4lu6XpLYkcSh+HZXyoemgTHwYx99Qr9j5YWKup8/J4QsHaWV3STCVBtxBCZIIA/3jjcpVqjhR1L4S9TQSRMQ5cvO6S5uud3H2BR1Gqe3TL2uex0DZIt7LmRu6VXdn6H6xapePw4RuMGVMcZ2fzLpKfzajF0n9ucD20OJuP1GL9/w7TcUCdRNeKfBTJvG+OYDBA09eKULWRBxZayUsqUrZ95Qm+mmCJTm/B+q1FcHEt+PyTUnDpZBB+gSp7dZ3yAZQoVzk9iilyO61N4m35q6rX0wyGJ8HSXdUSHhOiWsuf9fBs0veJC4OwMAjzV+saTaKg2/3mZ2gi84OVPVjYgtYWtHZqXLsuSiWF00WC91SwLWQ6MXCZSiYXH6n262NBY6XOs7B+8tNKdZNvc+zJePYnHl2A+HD1kMI6H1jmle7yz2PQQ0yoGr4QE6J+RoeoOvX4wPzYPV3QBq+hKsDlFK5Z6g0o+Kf5tn9KgT5aTZNn6QhFW0K16en8ZrKOBN1CCJEJ/M+ZEtNUqV0CjYWGssWC8Qv0JPBOCeJj47G0Tv2f5Etnw4zLNarFpWdRcy2NBjp3Bnf3EPLlK55ov4OTAzPGn6LnULVvxERvWr0Ftqak8/juOc9bvSw5e91HbZgGBZwiaNrCgWbNVAZ5D4/EjUEie1m2DH7/HT76CFq1yth7BQbCyHdOs2ZndeO22V/v4utffV7qumuWBQFuAHRpG5rSoUKknUYDtgXVK6XZKFvuhUfn4dFZ9TPiGkReU93cI6+D/sn/T3me6YkRc48Cj7fB41SUpfwn5kG3PhrCrzxz0DPj1EGNR9c880A0YJJpDnQANGCVVwXgGit1bV2MyiLvNdH83L3dVFBvVwzsi4Olg+kaPPVHv2RXFdQnuL4GfEerBxkWlqqngUabeNnCFpptwczlhXB7uzou4Xitvbr30y/HMqb54BNEBqtr2jin7T+lx5fg5mYI81PzxocFqIcbz7IrmjjotrRPfFxSrJ0Tb4u5+yTfwJPcBHlzV+8dCbqFECIT+F9xA6CA432KuBcGoFzJ+/gFQrzOiqtnr1KmaqlUX+/KJVOgXbqcbQpHirToPrgec/8I5b8DBQm8asP06TBunJoHfNYXexjzXT1i481biu4/dGDVKli1Sq1XqmRgwoe+dBnoLd3Ts6E9e6BPH9DrYft2+HPxXbr1KvT8E9MoIgKmToVp0yAmppLZvlWbXfn6Ja+/eoPpS2vnXm4veTUhXpBVHlO29WcZ9KpVNOKqSsr2tMcXUn+PZwM+KyfV1T0h+LSwUsG9Pk61ehue/HRMIi9HVPCzhVRj2OMemm+ODTNf1+sg+B81Lv558lWGgnWfuoUeHl98/nnaJIaa3TuSdPf9ZxVrnzjo3t4Uwi+pHgQJ3fwdnvy0yqPqJuoWVBwD+Z76GxWyH44Pe/49o0PUg4SnA3qnShic6/Iw2oq8LqWxsC2ogn4bZ5VRXx+relDke6ZnjkEPjmVVL4T4xxD3WLV45yISdAshRAa7dw9u3VddSat42xoDsbLuMbBbHXPpdEiagu7AIFN3OHfP/CkcKdJCY6Hhx18LUrUq6HQwZQq0ahzKl58EsfWYj/E479Ln6NP9NnsP2PKffx3CwkxfOk6f1tDt3WpUn3aWyeMjaP1mDQm+s4l79+Dtt1XADRAfD2/0LcDSewd468P6abrW3Wsh/LfuIlcuxSbaFxunZeH6hly/bqr3ws6PcLB6wJXbpTh7vQxnDl+iYp2yL/Q+blyP59C5KgBUcbtAuWq5q0VI5BIaC7Arol7Pcq7DqTJbqFyhDFpDrGrh1EWpn/pY1WKaEFQ7uJmfW7Jb6saHGwyJt5XorFrdY8NUF/jYB2o59oEKqLW2KmGc9TP/r8aEpC7gBtUV+2m2LupBgUb7JLFdPOjjTcsJnh1rD6m/Z1LTvOmezNmui1ZBf3KBv2tn86A7n5f5fscy6jOzKww2hVSvA9tCKpu9Qa/eV4JKn6EvP4rLvr54e3uDNpVd9zUW0M7ffFtSwxlyMAm6hRAig/k/9f9IFW9T16tyHqb/jC6ejaB1Gq4ZGOxgXHavkMQXGvHCKlWCoUNh1iyIioK6PgUB0/jbT3rvYtLcetjYl+cjVHDu6ws7dsDq1QYOH1aB1olLFXitFzT89hTfTIZGHasmeT+ROQx6AwO6niY4WLWw5M8Xx4MwK3R6S3p/VIe42H30/bRhsuc/egS7N91g59qL7DhYDP8gD+D5+RisrGDECBg7Ni+Lvz3JiCnq4dqq34JfOOj+Z53p61vXN5PopilEdqexIN7SWQXUqQ3M0nyPJB52eqaiBTcpdkWgRzhE3oSoJy9dNGB48uJJkG8AJ/OeLRRqDN3Dkr6uwfBUlvn4xPu9p0KlL55kno9XrfjxkWq8u/EVDo5uic8t1vZJUryEjPbhSZch6rb5ulNFqDVXBd/5KmddJvpnhwbkcBJ0CyFEBgsIMC1XqWJaLlshr3H50qUknsin4MoN1R22gON9nFwKvFT5RGLjx8Off8Ldu6ZtRfPfZskvN2j5ho/ZsVot1KihXp9+ApuXHeWLCY6cvKyyy+8LqErj1+HtVvtZ8m9dtFaZk7QnLiaOu9dDKVa6iLS0Az9/tYd1u1Wmeuf80fiesmbSh3uYt6YxeoOW/qPrExe3l3c+b2Q85/o1A6vXaFi9GvbvB52uOJA4H0By2rSBmTPBU+U7o0vfcoyYopb/3liUcS/4XlavNi13kaBbiMxh6QB5y6lXetFonrQUawHrxPsTuma/iDoLTMuGJ93oE8bcx4WrBwm2RVSX86dpbaDcey92T5EsCbqFECKDPd3SXfmpYUzlqhQ2Ll8MdCC14mLiuB5aFAD3orcBCbrTW758MH3cefoOU9FSxwaHWbi8LAVL1EjxPI2Fhtd616L1W3pW/3qQcd8U4lxwGQCWbW1Awyl7eP/Lxhla9nPnYOFCWPI/CAktShMvXyZPtqBBe6/nnptb+e45z8hvTWMsl8z0o4Rrbeb83Qjrt3bz44omGAwWDPqiEaEhu7CwgFUbCnLkfNIZwS00OmqUO0fzBnepWdsWK+vELTIlvKpTrYaVWWObq2cx6pQP4PC5yvgFenLhRNrngw8Nhd1PhqWULWv+N0UIIZKk0ahkcdb5IP+r+39BVpKgWwghMpj/gYuAejJeuZKBhCynRd0LG6cNuxSc+ifZ169boDeo1lJ3j3zpXFqRoM9QT5zzHsVgMNCud+00tRZbaC3oNrgenQbGs3CqKdD+bJoXnfuEUNgt7dPEpSTiYQR/LXvEgj+Ksn9/wlYrAHb7edOwA7xW+yiTvnWketMK6Xrv7C7iYQRvvGVlTIA34s3dtOujWrw1Fhpm/dEYa6tdfPe7DwCfzfRJ8jqenirTefOa52jSpij5ClUCKiV5bEq6tQ/l8Dm1vGrpVT5LY9C9dkUoOp0a7tCli2TKF0KInCB3dZYXQohsxqA3EHBZtWiXcrlOXifTN2SNhYayblEABN51Iz6J4VxJufJUErXSlYqlX2FFIu361KJ937QF3E+ztLbkvXGN6dt2HwBhEfn45P3zKZ5z/z7MmQObNkF4MkPwAKIjolm/+Aj92u2jaFEd/T94OuAGa2sDroXvGdc3HalFjWYV6OZzkDOHL73Q+8nOIiMhJiZxPQ17+wTnb5QGoHrZs3y7oK7Zfo2FhulLmvD5wF2Jzq1a+gITJ+g4fVr1IJg9G17vU558hVKaQyllXfuWMS7/vb1ims6NjYpl6jemOZa6dHj0wuUQQgiReaSlWwghMtC18zd4HKWmSqlS9hZgPnaqbKWC+J2HuDgLrl2D0qWff83AQNOye9oayUQWmT63POsqPOBBRH5+39KQ/psf0axN3kTH3QkKoUnLPJy/pKaBs7SEunWhed3rNGt4H696buxYfYZVq/T8u78Kj6NqJ7pGxYowaBD06qUhX14nln6/lwnfu3MtRP07XLW7Hmvq6Vg26wBvDEtbxu7sKCjQwCefalizxgK9vjq2tgbyOTwkv30ojnbRHL2gxmg72j5m+Uo7bOxtEl1DY6Fh0q9NKOG6hw2bbWlcP5Iuvd0p653+WcHdK7tSvWo0J07ZcuJ0IQIDU/97/POEA1y86QNA4yq+1K4vyfmEECInkJZuIYTIQP5HbhqXK5ePTLS/7FPJiy+lsvHxyhXTsgTdOYOLa0GmfnbauD5kRF5iYsyPuXfzPi2bPjAG3KCmtNq3DybMcKVJp6rkL+xEt8H1+HN7Ax5HmYJ2R9vHDOywh4PbrxEQoLJlFyyoWtoHjGnEhSAXfhy7m8L5VGY4vUHLT/OSmGImB4l8FMmX7+2iQvk4Vq0CvV61ckdHa7h9z4mz18tw9IKp+/ecb/woV80t2etpLDQM/qox/x6szajvfCjrnfop/NKqW09THSfM7/48ocH3mPBjNQA0Gj0/zLKRBHlCCJFDSNAthBAZyP+kKdCuUtUq0f5yTyVBvZjMFJrPCjwdbFwu7ZbKPukiyw38rCH16qnl8+dh+nTTvochYbT2uf1kGipwLXiL997Vm/37eFY+hzD6tt3HukVHCAm1YsG6xtRtXjLJMb429jYM/boJV646UrZoEACHz1Ug/EEK/dez0Nat0KMHvNk9kumf7GLHX8e5f+s+oIZsrPz5AOXLPODrX32IjlUZfwsVMlCt2mOqVDFQwiUUBxvTexvWcze9PmqQJe8lKV27mpb//jt153z1UQAPI1W39n5t979yY/OFECInk+7lQgiRgfxPm6YAqVIzcfKssqV1qKlC4JLfdZ7tfp6UwAthQAk0Gj0lXXXIn/KcwcJCjdWuUUPN7T15Mrz5JhQuEE5bn2scv6gyyhbNf5ud22Ip662ei18PimHnX0fZsRPOXi6Ad4VQuvW0p2lnL6ztkp9XOin2ee1p1eAql/52I15nxZ71vrTtUyvd3+uLunIFPv4Y1q5N2GLPcnyM+0u5BOPkGIFfoKlbvKU2jhF9T/H5jGpcuXIBb29vtFqVaCw2Kpa42DgcnJpk3ptIBQ8P8PICPz84fBiuXQyjZLl8yR5/+uAl5q1WDw0cbMKZPDv9u70LIYTIONLSLYQQGSjgkvryb6mNw7O6W6L95UqaJoK+6HcrVde8cqsIAMUL3E5yfKrIvqpWhQ8/VMvR0TC492U6NrvIgTMq4C6YN5Ttm8LNuja7utnQ99OGLN3UkKMXKjJ/bWNav1UTa7sk5nRNhWYtTdPT7Tjm+eJvJh1FhIUzdtB/VKyofyrgTuxqSAn8Ak1lblP7KP6Hgpm+sCZ5Ew+Rx9rOGgen1E/Hl5m6trlmXF696FSyxxn0Bj4eHoZOrx6uff7eMYqWLpzs8UIIIbKfbBd0z5kzhzfeeIOqVatSs2bNrC6OEEK8sLiYOM5ddwPAs3hQkkFSUfci2FmrLuiXrhd87jUf339M6CN1XOlid59ztMiOxo+HEkVU1+dtB8vwn68ap5vPIYxt6+9RsU7ZFM5+eU271TR2Qd+5N4lINRMZ9AaW/7gfzzKPmbygKTEx6mtJ0aKwdCn4HbzO/6btY3jP3TSsfMrYZbxMkaus/98RNh6sSfmaOTOxQbcuccblv9fnT/a4Tb8fY+sx9X2olMt1PppUJ8PLJoQQIn1lu6A7Li6ONm3a8Oabb2Z1UYQQ4qWcPx5EnE4F2lXKhSR5jIVWQ9liaoz2ldsliI9NeYx24BlTa7i7a/YcjytSlicPzJoQYL7N7hFbVt/Au3HGtzwXKADVVJyPry+Ehmb4LZMUHxvPe1328ubwBty4XxQAK20sYz4K5fx56N0bqtR1pe+nDZm1vAl7/avy8LEdd66GcPFGyZeayi07qFinDBVcLwNw4Exlbl6+neiYuJg4Pv7c2bg+7avr2OWxy7QyCiGESB/ZbiDg8OHDAVi9enWqz9HpdOh0uowqUrpIKF92L6dIG6nX3Cs96vbU0buAyoRVuWJ0stcq63of/yCI01kTdDYI98rJj+u+fO6+cdm9VKz820uj7PI727F/TTosOcz6A3Wws45k3R+XqdHcK9PK1bSphhMn1HP3HTt0dOuWKbc1io6Iplc7f/7Z19i4rX3dw0z/qSDlvN0AHUl+FBbgXLwAeoMentmfXeo2Lbq2ucak+WUwGCxY/b9zDB5vnvfh55kPjHOMN6h4ii7v1s5e70+ne5KR4snnngFly4n1Kp5P6jX3etXqNrXvM9sF3S/iwoULWV2EVPP398/qIogMIPWae71M3e4+YeouXqBYPL6+vkkeV6zwPePynu1+PIy/l+RxAL7HTa1heZweJntNkbLs8Ds7+ls99df8Q8Va9uRxdc7UuixVKi8JD4T+WXaGsmVjM+3ekWFRfDbcjv1n6gKqdXvq6I007uJKBGEv/Tlkh7pNreoNomG+Wl75jyNeTQ8Scu0RQXdcCb6dj0WLihqPHT4imFN+2Wu2AouoKJ50msDPzw+9Xca1wuekehWpJ/Wae0ndmssVQbeHhwf29vZZXYwU6XQ6/P39qVKlClqt9vkniBzhValXg97AnIn7WLkmPz07P+C9cQ2w0Ga70SnpKj3q9tZ902fUslvzZOfUrlJ1HzyZNijqYV68vb2Tveb/7j82Lteo64a3t9cLle1Vld1+Z+vWf/4xGaFcmThGfhxLXLw1x4874u1dMlPueyvwDu26PcYvSHWjd7AJ5+/FZ2nZo8NLXzu71W1qVPUyUPazIC7dcmNvQE2aNE/6uN699XQd0CZzC5caERHGRS8vL3BI/6R1ObFexfNJveZer1rdRkZGpqoBOFOC7hkzZjB//vwUj9m4cSNlypR5oetrtdocU6k5qawi9XJzvT5+DAM6n+TvHT4A7DsN/245xv9WlKSIe6GsLVwmeNG6XbcO/vtPLTs6QunSWiySeU7hWdHJuHzpkibF+wVdNz1gLFe5aK79d5fRcvPvbGrkzaelbvlT7A2oysWb7ty8dBNXz2IZes+LAfdp3SKewDsq4C6YN5RNq+5Ss0X6TlmWo+pWC93aBPHtYrdkDylSBKZMsSBbvqWnCqXVasnIQuaoehWpJvWae70qdZva95gpQfeAAQPo3Llzise4uj5/blohROY6exa6dIFz56qZbd9ytCZe3iEs/vEo7bLRHL/ZgS5Ox5eD9/LNQh/jts6dSTbgBihbxTT9z6WglLtnBt5QWY5trKIp4pb7H3qIjNOs4QP2PsnntmPtFfqNyrig+8IFaNgsPyEhBQA13/bWzXF4VK+YYffMKT6eUJl9R09x/Y4z7sVCcC8RQemKLrhX9aR0aTWfdwY0IAshhMhEmRJ0FyhQgAIFCmTGrYQQ6WTlShgwwNR70ClPDGMGHmTW/ypwO6wwIY9caN/XhQ/+3c30hbUloy4QGnyPN1+/yvYTPsZt3bvDzz+nfF6x0oWxs44kKtaeS9edkz3OYIDAu+oBpVuhm1hoS6dHscUrqvlr+ZkwVy3v/A/6jcqY+xgM8M47EBKiMo1XLnuLLZstKVamRMbcMIdxcS3IXv+E/A/ymQghRG6U7QZl3rx5k7Nnz3Lz5k10Oh1nz57l7NmzRDw1bkgIkXHiYuIYOdCPnj1NAXeVKnDshA1jfvDBz09L+3pHjMf//FcTalUO5uyRy1lU4uzhyLYzVK8WzfYT1QHQWsTz3WeHWbFCTRGVEgutBWWK3gDgyh1XdPGGJI+7excio20BKF3FLd3KLl5NdVpWwN5G/ZLvOFIGgz7pf3cva8kS2LtXLZcpA3uOFKVYmSIZci8hhBAiO8p2Qffs2bPp1KkTP/74I5GRkXTq1IlOnToREBDw/JOFEC9Mr9Pz15yDeJW9xveLTMm5evWCQ4egbFm17uJakHX7avHzl7uxtYoC4PS1cjRrk4fASzFZUfQst2ruQRq1LcP10OIAFHIKYcffAXz8TR00qZxGuKy3yrIWG2fN9eCkT7pyxbTsXjrb/fkWOYy1nTWNq54B4Ob9opw/Hpju97h3K4xPP9Ub13/+GfLnT/fbCCGEENlatvvW9u2333L+/PlErzp16mR10YTIkVavBjs7KFkSRoxQLU5PTylo0BvYuPQoNT3P02NIPc4Fq4SGVtpYfv7hAUuXwrOTA2gsNAyZ0IRju29QudRFAG4/KETrtjaEhGTSG8smIh9F8t4oD2LjbQCoX9GPE8fiadLZO03XKedhGu1z8WLSxwQ+FRMllwldiLRo1sjUi2zHv8Hpfv0x7/sRGqq+avToYaB163S/hRBCCJHtZbugWwiRfh7de8T77zwmOhquX4dZs6BxYyhRNIoh3fbw+w/7aVjFn3Z9a3HycgXjeQ0q+bF/0yWGjMifYkttpXpl2XXAmfLlogEVLLZrB+HhGf3Oso8lPxzj3mM1Drtd3SP8d6w8xcsWfc5ZiSX0JAC4dCnpY54OukvLcG6RDpq3MyXx27nLOl2vfWCDPwvWNQYgj90jfvgmNF2vL4QQQuQUEnQLkYtNHX2CkAeJBxTfDrFjzqrG9P64AQfOmLqSVy97lo2/HWWvXxVqtUxdVmHnYgXYst2W4qpnNUePQteuEBuTMeNDsxNdnI4ffjXNvPD1lLxY271Y4FKunGk5uZbuK0ePGpfdi957ofsI8TTvxp4UcLwPwH/HPdHF6Z5zRurExcTx/lAb4/qkj05SrIxLulxbCCGEyGkk6BYilwq+eIvvl6phGVbaWE7sC+a336DT6zrjWOwEFVwv8/ecgxw7X57XetVCY5HKgchPlCwJmzdDvnxqfetWGNDxAHqdPsXzcrr1S45x8abq592s2gmq+ZR/4WuVdTPVyak9p5M8JvCqqQu6e5lMmXxC5HIWWgua1jgPwIOI/Pgej0yX684etx//IA9APcwb8lXDdLmuEEIIkRNJ0C1ELvXlR5eIjlPTeA3teYBqDUrQqxes+UdLyB0dK346wKi+u1g2cz/+l93o+n69NAfbT6tcGdatA1ubOACWbW3AqH570uW9ZFczfjU1T3/y8cu1EJYoZYtboesA7PH14P6tB4mOCbypphXK7/CAfIWcXup+QiRo1rW6cXnHnuek2n/K/v0qM/nJkxAba9p+/fxNvppdEwCNRs/cXwxYWmvTrbxCCCFETiNBtxC5kP/+C/xvYwMAnOwf8sV0L7P9jvkd6fFBfab+z4e3PmyA1ip9vhA3agTLfz6BhUYFoN/97sPUj3ely7Wzm0OHYP/RAgBU9AinzVs1X+p6GgsNXVqqadfidVb8u8y8tTsuJo5rIcUAcC96+6XuJcTTmrcydQPfuTN15xw5ovJD9OsH1auDoyPUqBbDoNf38Ha3ECJiHAEY3HVvqoeqCCGEELmVBN1C5EKjPn6IwaB+vb8YfBLnYgUy7d6vD6zDvEkHjOtjfvDhx7G7M+3+meW770zLn4xxfKleAgm6vGGqp9Vrrcz2Xb9wC71BPRxxL/7wpe8lRAIPD4w5GfbuNW+1Ts4fc06jf2r0SFwcnPC1YcG6xuwNqApA4Xx3mfyzd/oXWAghhMhhJOgWIpfZvvIEm4/UAqCkSzDDJtTN9DK883kjpozYZVwfPrkJC77Zm+nlyCiXL6up2ACKFIG33kqf69Z7rTJF8t0BYMthL8IfmNLAXzlryvxculR0+txQCECjgebN1XJkJBza8/yHOhu3qnkEtRbxvP1mHBUrgoWFeQ6HmRMvyTAIIYQQAgm6hchV9Do9n35mmlR78mdXsXWwzZKyjPnBh7GDdhnX3x3bgGU/7M+SsqS3mRPPGVv5hg0DG5uUj08tC60FnZqppFbRcXZsXu5v3Bd40RSAu5eWP90ifTWrHWRc3v7XyRSPvXgyyJhAsGHlAH7/w4rTp+HR/SgObPDnl/F72LDkKG8Mq5+RRRZCCCFyDPnmJkQusmzWAXyvqAza1cqc5a3h9bK0PBPnNuHjt3cBYDBY0PeTOqyaezBLy/Sy7t96wKIVapowe9to3n8vfadG69Ldwbi8erWp5TDwimm5dDl7hEhPLduYHs79vckVgz75f9cb/7pqXG7bIsy47ODkQL22VRj8VWPa9qmVIeUUQgghciIJunOBqMdRHN12hriYuKwuishC0dHwxXfVjOvTp0Rhoc3aX3GNhYYZS5swuKvKYq7TW/LmsBpsWJeKQaPZ1NxvTxEZowLjga8fpoDzy4/lfppPZy/yOYQB8O/+KsRExgBwJcg0/7d7eed0vacQxcoUoWHlUwCcvV6GgIPJTBYPbNxmejDUrluJDC+bEEIIkdNJ0J2DxUbF8vNXuyld8hG1W1WkfpWLhN2VBEuvqpkz4fpN9WW4TZMbNO9ePeUTMonGQsNPKxrSr50a0x0Xb03XHtYsXQqG9G0kTrNzR69Qr4I/zauf4Kcv93DzcspZwWMiY5i9VGVittDoGPGFe7qXycrGio6NAwB4HJWXHX/7ARB4Iy+gpmAqVb5Yut9XiDc6hxmXV/zvZpLHRISFs8u3CqByRlSsUyYziiaEEELkaBJ050Dx8bD45xt4lLrL0IlNuB1WGIBjFyvyWpNrPL7/OItLKDLbjRswaZJatrCAaT8Wz9oCPcNCa8GCNfXp2S0KgJgY6NsX2rWDa0HxWVau4YMfcOhcFXaerM6wrxtTvGwRGjSA77+HoCC4fyeSA5v8WfbDfiYN20WPVr7cCSsEQFefI5SuUjJDytW1mylz+ep1asD4lRA1J3jxQg+xsU+nQeRCPKXbgArG6f6W/+ueZBfznWtOExuv/v21bXQlXbL2CyGEELmdZVYXQKSeXg9//QVffQXnz5sHVfY2EUTGOHDoXBU6NjvJhj2e2OeVcZ+vik8/hYgItfzee1ClStaWJylaKy2//WGHjT0sXaq2bdoElSpEM23MCd4b2zBTu8Nf8r3KtuM1Em0/cEC9Ro7UAo2SPX/k6DwZVraW3b1wGBZHRKQVa3d7MSMMQu+rQMfdI3+G3Ve82gq7FaKp93F2nKzB5dulOP7fWWo2r2B2zIb1Mcbltu2zJkmjEEIIkdNIS3cOEB0RzfzpAVSsCG+8AefPm/a1rnWMo9vPcmBbMPkdHgCw61Q1urQ4YxwLKnK3PWtP8eefatnZ2dTinR1ZWcGSJbB2LRQtqraFRzsyZHxjmlbz4+LJoEwry/yZgcblYT138+X7e6lUKXX93Qd22Eud1pUzqmjY5bGjbTvV2h0aCr/9Ztrnnv492oUw6tk1wri8Yskds30GvYGNe1V3churaJp1qZSpZRNCCCFyKgm6s7F7N+8zadguShV/zLujKpsF240awZ7dBjYfqUnN5hWo2siTLWtukcfuEQBbjtakZ2tf4mJ0WVR6kRniY+MZ9pGptWny59coUCALC5RKHTvCmQAd73TcY9y2x98brzqF2bb8eIbfPyYyhkVrVNBspY1l7LSKTJjTiIAADWfPqgcXPj4GGtcLZki33cz4dBer5h3m5O7zhN19yIJ1ybeAp5cuXUzLP/xgWi5dOsNvLV5hXfpXxlKrknKu2FQOvc6UNf/0oYtcD1W9rHy8A3BwckjyGkIIIYQwJ93Ls1BkJCxYACFXLkFksNm+23cs+GNLDSJjfMy2N2kCn30GrVqBRmM+lq5Wy4psXOFH6+5liIxxYO2+OvTqA3/8AVptRr8bkRXmfr0fv8AmAFQve5Z3hnlkcYlSL18BLfPXNuaNv04waFhBAu+UJDrOjrfeK8WpWrcpVqZIht17zcLjhD5Scwh39TlGoZKm+YTLl4cvvoAxY/T4+t7B27sh2iz4BWrbFqytITYWAk2N8tLSLTKUc7ECtKxxlE1HanE9tDiHNvtTv50ar7JhpymBX9vW0VlVRCGEECLHkaA7C40cCXPnApR98kqahUZHt6aH+WRMPmq1rJjiNRt28GLdbydo18uLmFhLVq4ER0cV3Gsk302uEnI9lHE/VDWu/zQrHq1Vznu60rx7dfxbRdC9lfqiH/qoIL27n2DrYZcMez9zF5jyHbw3JHvmPsibF1r6hLFhaz6z7e75A4CM69ouxBvdo9l0RC0v/8eZ+u3U8sZtjsZj2vZtmAUlE0IIIXIm6V6eRW7cgIULUz7G3iaCYT13c8nvJit21H9uwJ2geffqrF5jidWTBMiLFqmWO5G7fD70DGER+QDo23Yf9dpmw+xpqeTg5MDSVaUpVuAWADtPVmfqJ3sz5F5nj1xht583AJ7Fr9CkU9WUT8hCXZr6J9pWuoLM0S0y1uv9q2NtrfIb/PVvMXQ6CAuD/fvVfg8PKJv8c2IhhBBCPENaurPIzJkQp4bN8U6fh/Rsd9lsv1arwbuhO/kLN3mh67dtC8uWQc+eai7kKVOgiHYfw7/OXq0T4eEqg3VUlOo2W7q0SrBlIY+DUnRs+xkWrld1mcfuEd/+lHO6lSenYAln/ljgS7OuhdAbtHz5U0N8Wpm6tqaGXg/bt6tW4rp1kz7m12WuxuX3el1DY5F9B0l37FURi8916A2qxd/GKpqi7oWzuFQit3NydqBtW/jnH7h9G/bsUQn9dE9ShLRtm6XFE0IIIXIcCbqzQFjIY+bNcwAssLGBSdOcKFy4errfp3t3CAmBDz5Q6yMm16dQoQO8Max+yidmMIPewJFtp1nwy32Wb69NeKT5tDM21nGUcgmmdPFQ2rWKZMj4Rpk6lVR2p9fpGTpMj8GgPpMJw09QxN0nS8uUXpp09mbsu7uYOM8Hnd6SN98phu8ZyJ+KWbJu3YJ+/WDrVrU+ezYMG2Z+TFQU/G+p6gJiYwN9P8n4hGgvo2AJZ5pUPcF/vurvQ6mCV7HQemZxqcSroGdPFXQDrFgB0feCADdAgm4hhBAirSSSyQJzJh/n8WP10ffvHUHhDGy4GjIExr27CwCDwYI+H9Vk+8oTGXfDFNy7eZ9Zn+/Gq/Ql6rapzIJ1jRMF3AAxsVZcuOHO5iO1GDapCe3rH+f+rQdZUOLsJ/xBOANf38/hc2pMb8WSlxg6oUEWlyp9jZvdkEZV/AC4dtuZd95RvTVS8u+SI3hVjjEG3ADDh8OC6X5mx/31l+omC9CjBxQomP3HwHd57bZxubTLlSwsiXiVdOgA9k/SHfz9VxybtqkVB9sIGjfSp3CmEEIIIZ4lQXcmi3ocxawlamy2hUbHJ0NDM/yeE+Y0YdDramqmOJ01nfuW4/jOsxl+36ftXuNL6bJaRkxpQsDVcsbteewe8W7vm/zwgwqSOnSAyu5B2NuY5orddKQWNbzDObnrXKaWObs5dgyq17blfxtMrbOzZzzCysYqC0uV/iytLVn2b2Vj6/bq1TBvXtLHRj2O4oPuu+nQrzah920AlTgwwbujK7Psh/3GdZW4UHn//fQuecboMrC68fehbgO7LC6NeFU4OEB7nyAA7t234u7DQgC0qBmAja18dRBCCCHSQv7nzGRLZx3nTpj68tKt6WHKVC2V4ffUWGj4ZWV9Xm94GIDw6Dy07VKQFT8dIOR6xgf9p/aep+Pb7jyKcjJua1DJj8VT93LrpgXzlhZjxAiYNQvWrQP/K26ER9qzbcUJCuZV5Qu660r9VqVYPDVjkmtlZzodfPst1KsHFy+pESGOto/57fv9NO+e/sMSsgPXkhYsXmxaHzZMT41yZ+ne9CCj+u5i7sQ9/D3nIDUr3+CXv015Dzr6nOfKFRjZ/ySgenf0/aQOq+YexG/fRQ4eVMdVqWKgXr3MfEcvrliZIvy3Loj5k/fy6be1s7o44hXyRqfbiba1bR2TBSURQgghcjYZ052JdPE6vp/rZlwfPTYVA1XTiaW1JX9u9KJV/VPsC6jK3YcuvDHMBYZBVffzNGthTfPX3WncGPLkSb/7Bp0Opk3HfMaAu2WN48z6JR8VanuleJ7GQkOLHtU5UfUm3V4/zZHzlYiOs1TWv6YAAQAASURBVGPAmEYcOrSH2cvqYGNvk34FzaaCL96i9zvO7NpjbdxWuzYsW6yjbMXc1a38Wa+/DkOHwk8/QXy8BScuVeDEpaSPtbOO5PsvjvHe2EZoLGD6Am8iH+1hzqrGamz40BrU8jT1lHiv6xE0mjqZ9E5eXu1WlajdKqtLIV41r71ZlTwfPuJxVF7Ttu6StlwIIYRIK2npzkSHN97k8m3Vst2yxnGqN62Qqfe3y2PHuu2lqF7WvGv5qUBPfpjvTvv2UKiQyqz+vDG0qRFyPZTWreO4HaYGrdcpH8CaHeWpULtMqq/h6lmMPSfKMrjrHuO2X/9pTKu6Z4mP1b18IbOxVXMP4lXN1hhwazRq6rd9+6BsxXxZW7hMMn06fPQRlCoWhoUm6fqu6n6e43tv8f6XjdFYqMnoNRYaflrRkH7t9gFqWMWBM+pBj71NBL2GlM+cNyBEDmbraEenhkeN614lT+HqWSwLSySEEELkTBJ0ZxKD3sCi301jmUeP1mRJOfIXzsehgLJs+v0Yn/bZRfWyZ9FoTElxoqNVkPP+u3HExcS98H3Cw6Fdl3xcuOEOQPkSl9mwoxgOTg5pvpaNvQ2//N2Y/03bh61VFAB7/L1ZvjL7J8F6ERFh4Qx6fQ/dBtfjQYTqDVGiSDj//QeTJmGcf/1VYGsL338PQTfyER2l55LvVbatOMGvk/bw2YBdzPt6D4cD3JJ8kGOhtWDBmnr0bH7AbPubrU7g5OKU6HghRGJv9TX9rnRoJQkthRBCiBch3cszyfa/T+J7pRYANcqdoVnXallWFisbK9q8XZM2b6v1+3cj2LXPgXXrYMkSte3XBVZcPnGCvzaWIX/htAUosbHQrRscPab+eRUv9IAt22xwLlbgpcrd99OGFK0QRusOKpnUpEnw5pugzUWx9/GdZ3mrjw0XbjQ2buve9CDz/qxA/ld8emYrGyvKVC2VpjwIWistv22oRXSLw6zdVwetRTwffOySgaUUIndp/WYNJh3eRWCQlk+/ybr/t4QQQoicTFq6M8mM6aaPevRHD43dYLODAoUc6NIF/vc/+P13sLaKB2DHierUrxnK5VNXU30tgwEGDoQtW9R6vnyweUd+SpYvkS5lbdU+H42fxKPnz6v5Y3MDvU7PtJG7qNeqDBdulAbAwSacRd/uZcX2uuQvnC9Ly5eTWdlYsXJrNf43bR/bVvpTzUe6lguRWhoLDV/M9mHBukbSQ0QIIYR4QRJ0Z4LjO8+y42QNAMoWDaLLO9k3A/Hbb8PO1WdwyRsCwLngMtRp5MietadSdf4vUy/x++9q2dZWZSOvXDl9y/jVV6blr782oItP+5yxwRdvsfrXQwQcuIhBnw4D2F/QvTtRLJ66l8ZVAxj9vQ9xOjV+u2a5M5w8GEr/0Y2y1QOanMrazpq+nzakaRb2MBFCCCGEEK8m6V6eCf47Vtq4PHLwVbRWbllXmFRo0N6Lw/uv0b7dJc5cK8u9x8606JqH1QuP0L5v8g8MrvhfY9T4osb1P/6ARo2SPfyFNW0KDRsa2LdPw7lzGv6ac5A3htVP1bl3gkKY8vkZ5vxVl9h4VVaP4oF0faswXXvaU726Slj2MqIjolnw7WH8/DWUKK7HvYwl7uXy4l7BhaLuhbkbYsGaNbBqFezaZYtOZ/qQNBo9Y/rvYcIvDXLd/NtCCCGEEEK8iiTozgTtO9qw5DcDhQvfp8+I7NvK/TT3yiU5cOwhPdsdY8vRmsTprHlrcHkOV7icZNIqvU7PgF73iYwpCcDgrrvp3LlJouPSg0YDX314mpb7VBP61zMK0WOIHgtt8h03HtwJY/rnvsxaVovIGPNyXbjhzpTpMGU6uLmp8ehDh0KpNE6hbtAb+HfJUT76vDCXbyf93m2soomNt8FgSIjsTRF+6SJXWfjzA3y6+KTtxkIIIYQQQohsS7qXZ4Ly5cHXV8/UqUHY2Fs//4RswsnFiX/3edO96UEAHkfl5fXOFjy4E5bo2F/G72W3nzcAboWuM21+9QwtW/Mulahf0Q+AM9fK8vfcQ0keF/EwgknDduFeWsOURT5Exqjs6XbWkbzXeQ+Nq/iaZW8PCoIZM6C8ZyzjB+8i8lFkqspz/lQobesdo+OA2sZp4ZISE2f7VMAN7u7wydA7HNwUwMVgV3y6eKfqfkIIIYQQQoicQVq6RYosrS353z9VuVjtHL5XynPxpjtvdTzKv/uqo7VSacMvn7rK6Ok1jecs+iUEx/yuGVoujYWGr8bG0fottT5xmgvd3jdv7T5+OII3u9zl4k0f4zZryxje63qIz6dUoIi7ysh257aBf9bC33/Df/+BTgfRMdZMmOvD4lXBzJhwim7v1U1ybHVoKMyaVZw//yxEfLwpvbhP1ZOM/cJA+KM4Ai9FExhoIPC6HVduFsYqnxvt2kHXruDtDRpNYeAVT00uhBBCCCFELiVBt3gu+7z2/POvIzXrhhL6qCCbj9Ti8zGRTP3OXnUr7/2AyBjVujuk226ads2YbuXPatmzOnUn+nPoXBVOXyvH6l8P0m1wPfR61Vo9dqwDcXFqnnCtRTx92x7ky2nulKpgXr7CRTS89x68954Kor8ddZJZSysTr7PiWkgJegwpgc+8k0yebMnDB9GcOBLBST8bTlytTWCQFihivJZrwRt8N/FaskG6EEIIIYQQ4tUiQbdIlVIVSvDXYl9a9MiPTqdl2vf2eNeEkIC97PFXQax74WtM/bVGppVJtXbH8FovtT5xmjN12+vp28+CnTtNx9Usf4WlSwxUqP38rG4FC8KMRdV4Z/AVPhxyn63HVAv+rlPVaNA++fNsbQ2M+hRGf1IA+7zFX+ZtCSGEEEIIIXIRGdMtUs2nizezZmmN6wMG6Bkzo5ZxfdEv93HM75ipZWr9Zg1qewYA4B/kgUe5OGPArdHAZ5/BAb/SSSZ/S0n5WqXZfLgGaxcepnSRpOcpd7CLpX59A2+9dYeAAD0TJmqwz2v3Uu9HCCGEEEIIkbtIS7dIkyFD4ORJWLgQoqMtAHsAhvbYjU+XzOlW/jSNhYavPo+iXV+1HhVjA0Dx4vD77+Dj83LX7jigDq16RvPzhF0cOGyLe8loqte0onr9opTzLgUWenx9g3FzK/jyb0YIIYQQQgiR62SroDs4OJhffvmFQ4cOERoaSqFChejYsSPvv/8+1tY5J+t3bqbRwM8/w5kzcFAlNad0kat8+2vNlE/MQK/1qkmtyac5eqESAF1bnObXFZUoUCB9rm/rYMvIaT6MTGKfTqdLn5sIIYQQQgghcqVsFXRfuXIFg8HAxIkTKVWqFBcuXGDcuHFERUUxevTorC6eeMLGBlb9baB1wyvcDM3HssWPcXBK46TW6UhjoWH533mY9tUeGjfR8uaw+mhk4IQQQgghhBAiG8hWQXfjxo1p3Lixcd3V1ZXAwED+/PPPFINunU6X7VscE8qX3cuZWoUKw4nzpZ5k6M6X5e+rVMXi/PyXSmCmN+ghk4qT2+pVmEjd5k5Sr7mX1G0W0OnQGhd1as7NdL+F1GtuJPWae71qdZva96kxGAyGDC7LS/nhhx/Yu3cvq1evTrQvMjKSs2fPZkGphBBCCCFebRZRUVRrpGYGObl3L3o7SSYqhHg1VahQAXt7+2T3Z6uW7mddvXqV33///bldyz08PFJ8k9mBTqfD39+fKlWqoNVqn3+CyBGkXnMvqdvcSeo195K6zQIREcZFLy8vcHBI91tIveZOUq+516tWt5GRkVy4cOG5x2VK0D1jxgzmz5+f4jEbN26kTBnTtE537tzhnXfeoU2bNvTo0SPFc7VabY6p1JxUVpF6Uq+5l9Rt7iT1mntJ3Waipz5nrVZrtp7+t5J6zY2kXnOvV6VuU/seMyXoHjBgAJ07d07xGFdXV+PynTt36NOnD9WqVePrr79O9hy9Xg9AVFRU+hQ0AyX094+MjHwl/gG+KqRecy+p29xJ6jX3krrNAtHR4OlpWtZo0v0WUq+5k9Rr7vWq1W1CHJoQlyYn243pTgi4K1WqxPTp01OsrHv37hEUFJR5hRNCCCGEEEIIIZ7i5uaGs7NzsvuzVdB9584devfuTbFixZg6dSoWFqZ5n1xcXBIdHx8fz8OHD7GxsTE7VgghhBBCCCGEyEh6vZ6YmBicnJywtEy+E3m2CrpXr17NZ599luS+8+fPZ3JphBBCCCGEEEKIl5Otgm4hhBBCCCGEECI3kT7ZQgghhBBCCCFEBpGgWwghhBBCCCGEyCASdAshhBBCCCGEEBlEgu5MsGzZMpo1a0aVKlXo3r07fn5+WV0kkUbz5s2ja9euVKtWjXr16jFkyBCuXLlidkxMTAwTJkygTp06VKtWjWHDhhEaGppFJRYv4tdff8XT05PJkycbt0m95kx37tzhk08+oU6dOnh5edGhQwf8/f2N+w0GA7NmzaJhw4Z4eXnRr18/mYIyB9DpdMycOZNmzZrh5eVFixYt+Pnnn3k6PY3UbfZ39OhR3n//fRo2bIinpyfbt28325+aOgwLC2PkyJFUr16dmjVr8vnnnxMREZGJ70IkJaW6jYuLY/r06XTo0AFvb28aNmzIqFGjuHPnjtk1pG6zn+f9zj7tyy+/xNPTk//9739m21/1epWgO4Nt3LiRKVOm8MEHH7BmzRrKly/PwIEDuXfvXlYXTaTBkSNHePvtt1m5ciWLFy8mPj6egQMHEhkZaTzmm2++4b///mPmzJn89ttv3L17l6FDh2ZhqUVa+Pn5sXz5cjw9Pc22S73mPA8fPuTNN9/EysqK+fPns2HDBkaPHo2Tk5PxmPnz5/Pbb78xfvx4Vq5ciZ2dHQMHDiQmJiYLSy6eZ/78+fz55598+eWXbNy4kU8++YQFCxbw22+/mR0jdZu9RUZG4unpyVdffZXk/tTU4SeffMKlS5dYvHgxc+fO5dixY3z55ZeZ9RZEMlKq2+joaM6cOcPgwYNZvXo1P/30E4GBgQwePNjsOKnb7Od5v7MJtm3bxqlTpyhUqFCifa98vRpEhurWrZthwoQJxnWdTmdo2LChYd68eVlYKvGy7t27Z/Dw8DAcOXLEYDAYDI8ePTJUqlTJsGnTJuMxly5dMnh4eBhOnjyZRaUUqRUeHm5o1aqVYf/+/YZevXoZJk2aZDAYpF5zqunTpxvefPPNZPfr9XpDgwYNDAsWLDBue/TokaFy5cqGf//9NzOKKF7Qu+++a/jss8/Mtg0dOtQwcuRIg8EgdZsTeXh4GLZt22ZcT00dJvwd9vPzMx6ze/dug6enp+H27duZV3iRomfrNimnTp0yeHh4GG7cuGEwGKRuc4Lk6vX27duGRo0aGS5cuGBo2rSpYfHixcZ9Uq8Gg7R0Z6DY2FhOnz5N/fr1jdssLCyoX78+J0+ezMKSiZf1+PFjAGPLWUBAAHFxcWZ1XaZMGYoVK4avr29WFFGkwcSJE2nSpIlZ/YHUa061c+dOKleuzPDhw6lXrx6dOnVi5cqVxv3BwcGEhISY1WuePHmoWrWq/G3O5qpVq8ahQ4cIDAwE4Ny5cxw/fpzGjRsDUre5QWrq8OTJk+TNm5cqVaoYj6lfvz4WFhYyhC+HCQ8PR6PRkDdvXkDqNqfS6/V8+umnDBw4kHLlyiXaL/UKllldgNzswYMH6HQ6nJ2dzbY7OzsnGg8scg69Xs8333xD9erV8fDwACA0NBQrKyvjfxoJnJ2dCQkJyYpiilTasGEDZ86c4e+//060T+o1Z7p+/Tp//vkn/fv35/3338ff359JkyZhZWVF586djXWX1N9mGa+fvb377ruEh4fz2muvodVq0el0fPTRR3Ts2BFA6jYXSE0dhoaGUqBAAbP9lpaWODk5yd/mHCQmJoYZM2bQrl07HB0dAanbnGr+/PlYWlrSp0+fJPdLvUrQLUSaTZgwgYsXL/LHH39kdVHES7p16xaTJ09m0aJF2NjYZHVxRDoxGAxUrlyZjz/+GICKFSty8eJFli9fTufOnbO4dOJlbNq0ifXr1/Pdd99RtmxZzp49y5QpUyhUqJDUrRA5SFxcHB9++CEGg4EJEyZkdXHESwgICGDp0qWsXr0ajUaT1cXJtqR7eQbKnz8/Wq02UdK0e/fuUbBgwSwqlXgZEydOZNeuXSxZsoQiRYoYtxcsWJC4uDgePXpkdvy9e/dwcXHJ7GKKVDp9+jT37t2jS5cuVKxYkYoVK3LkyBF+++03KlasKPWaQ7m4uFCmTBmzbaVLl+bmzZvG/YD8bc6Bpk2bxrvvvku7du3w9PSkU6dO9O3bl3nz5gFSt7lBauqwYMGC3L9/32x/fHw8Dx8+lL/NOUBcXBwjRozg5s2bLFq0yNjKDVK3OdGxY8e4d+8eTZs2NX6XunHjBlOnTqVZs2aA1CtI0J2hrK2tqVSpEgcPHjRu0+v1HDx4kGrVqmVhyURaGQwGJk6cyLZt21iyZAmurq5m+ytXroyVlZVZXV+5coWbN2/i7e2dyaUVqVW3bl3Wr1/PP//8Y3xVrlyZDh06GJelXnOe6tWrG8f8JggKCqJ48eIAlChRAhcXF7N6DQ8P59SpU/K3OZuLjo5O1JKi1WqNU4ZJ3eZ8qanDatWq8ejRIwICAozHHDp0CL1ej5eXV6aXWaReQsB99epV/ve//5E/f36z/VK3Oc/rr7/OunXrzL5LFSpUiIEDB7JgwQJA6hWke3mG69+/P6NHj6Zy5cp4eXmxZMkSoqKi6NKlS1YXTaTBhAkT+Pfff/nll19wcHAwjj/JkycPtra25MmTh65du/Ltt9/i5OSEo6MjkyZNolq1ahKcZWOOjo7GcfkJ7O3tyZcvn3G71GvO07dvX958803mzp3La6+9hp+fHytXrmTixIkAaDQa+vTpw5w5cyhVqhQlSpRg1qxZFCpUiBYtWmRx6UVKmjZtyty5cylWrJixe/nixYvp2rUrIHWbU0RERHDt2jXjenBwMGfPnsXJyYlixYo9tw7LlClDo0aNGDduHBMmTCAuLo6vv/6adu3aUbhw4ax6W4KU69bFxYXhw4dz5swZ5s2bh06nM36fcnJywtraWuo2m3re7+yzD0+srKwoWLAgpUuXBuR3FkBjSHg8LDLM77//zsKFCwkJCaFChQqMHTuWqlWrZnWxRBo8O3dzgilTphgfoMTExPDtt9+yYcMGYmNjadiwIV999dUr020mt+jduzfly5fniy++AKRec6r//vuP77//nqCgIEqUKEH//v3p0aOHcb/BYGD27NmsXLmSR48eUaNGDb766ivc3d2zsNTiecLDw5k1axbbt2/n3r17FCpUiHbt2vHBBx9gbW0NSN3mBIcPH04y4VLnzp359ttvU1WHYWFhfP311+zcuRMLCwtatWrF2LFjcXBwyMy3Ip6RUt0OHTqU5s2bJ3ne0qVLqVOnDiB1mx0973f2Wc2aNaNPnz7069fPuO1Vr1cJuoUQQgghhBBCiAwiY7qFEEIIIYQQQogMIkG3EEIIIYQQQgiRQSToFkIIIYQQQgghMogE3UIIIYQQQgghRAaRoFsIIYQQQgghhMggEnQLIYQQQgghhBAZRIJuIYQQQgghhBAig0jQLYQQQgghhBBCZBAJuoUQQgghhBBCiAwiQbcQQgghhBBCCJFBJOgWQgghhBBCCCEyiATdQgghhBBCCCFEBpGgWwghhBBCCCGEyCASdAshhBBCCCGEEBlEgm4hhBBCCCGEECKDSNAthBBCCCGEEEJkEAm6hRBCCCGEEEKIDCJBtxBCCPEKOnz4MJ6enhw+fDiriyKEEELkapZZXQAhhBAiu1m9ejWfffZZsvtXrFiBt7d35hUoB7h16xarVq1i165dXL16FQsLCzw8PBg8eDD169dPdHxAQAA//vgjAQEBREZGUqJECbp3787bb7+NVqsF4MGDB6xatYr//vuPy5cvEx8fT+nSpenXrx9t27ZNdM3Y2FhmzZrF2rVrefToEZ6enowYMYIGDRpk+PsXQgghkiNBtxBCCJGM4cOHU6JEiUTbS5YsmQWlyd527NjB/PnzadGiBZ07dyY+Pp61a9fSv39/vvnmG7p27Wo8NiAggDfeeAM3NzcGDRqEra0te/bsYfLkyVy7do2xY8cC4Ovry8yZM2ncuDGDBw/G0tKSLVu28NFHH3Hp0iWGDx9uVoYxY8awZcsW+vTpg5ubG2vWrOHdd99lyZIl1KxZM1M/DyGEECKBxmAwGLK6EEIIIUR2ktDS/ffff1OlSpWsLk6GOHz4MH369GHp0qXUqVPnpa938eJFnJ2dKVCggHFbbGwsr7/+OpGRkezevdu4fdy4caxZs4Z9+/aRL18+4/ZevXpx9uxZjh8/DsD169exsLCgePHixmMMBgP9+vXjxIkTHD58GHt7ewD8/Pzo3r07o0aNYuDAgQDExMTQvn17nJ2dWb58+Uu/RyGEEOJFyJhuIYQQ4gXNnj2b8uXLc/DgQbPt48aNo3Llypw7dw4wdXvu0qULNWrUwNvbm7feeotDhw6ZnRccHIynpycLFy5k2bJlNG/enKpVqzJgwABu3bqFwWDg559/pnHjxnh5eTF48GDCwsLMrtGsWTPee+899u3bx+uvv06VKlVo27YtW7duTdV7OnXqFAMHDqRGjRpUrVqVXr16GYPglJQrV84s4AawtramSZMm3L59m/DwcOP28PBwbGxsyJs3r9nxLi4u2NraGtddXV3NAm4AjUZDixYtiI2N5fr168btmzdvRqvV0rNnT+M2GxsbunXrxsmTJ7l161aq3r8QQgiR3iToFkIIIZIRHh7O/fv3zV4PHjww7h88eDAVKlTgiy++MAaVe/fuZeXKlQwZMoTy5csbr/PXX39Ru3ZtPvnkE4YOHcr9+/d55513OHv2bKL7rl+/nj/++IPevXvTv39/jhw5wogRI5g5cyZ79+5l0KBB9OjRg//++4+pU6cmOj8oKIiPPvqIxo0bM3LkSLRaLR9++CH79+9P8f0ePHiQt99+m4iICIYOHcpHH33Eo0eP6Nu3L35+fi/0GYaEhGBnZ4ednZ1xW+3atQkPD+fLL7/k8uXL3Lhxgz///JNt27bx7rvvPveaoaGhAOTPn9+47ezZs7i5ueHo6Gh2rJeXl3G/EEIIkRVkTLcQQgiRjH79+iXaZm1tjb+/PwBWVlZMnTqVLl268O233zJq1Ci++OILKleubBY8Ojk5sXPnTqytrY3bevTowWuvvcZvv/3GN998Y3aPO3fusHXrVvLkyQOAXq9n3rx5REdHs2rVKiwt1X/fDx48YP369UyYMMHs2kFBQfz444+0atUKgG7dutGmTRtmzJiRbFIxg8HA+PHjqVOnDgsWLECj0QDwxhtv0K5dO2bOnMmiRYvS9PldvXqVbdu20aZNG2NytIT3funSJVasWMFff/0FgFarZdy4cbz55pspXjMsLIy//vqLmjVrUqhQIeP2kJAQXFxcEh2fsO3u3btpKrsQQgiRXiToFkIIIZLx5Zdf4u7ubrbNwsK8k5iHhwfDhw/nu+++4/z58zx48IBFixYZA2NQAWVC0KnX63n06BF6vZ7KlStz5syZRPdt06aNMeAGU2ttx44dza7r5eXFv//+y507d3B1dTVuL1SoEC1btjSuOzo60qlTJ+bPn59scHr27FmCgoIYPHiwWWs+QL169Vi7di16vT7R+09OVFQUH374Iba2towcOdJsn1arxdXVlYYNG9KmTRusra3ZsGEDkyZNwsXFhRYtWiR5Tb1ezyeffMKjR48YN26c2b7o6GizBw8JbGxsjPuFEEKIrCBBtxBCCJEMLy+vVCVSGzhwIBs2bMDPz4+PP/6YsmXLJjpmzZo1LFq0iMDAQOLi4ozbk8qOXrRoUbP1hAA8ue0PHz40C7pLlSplbKlO4ObmBsCNGzeSDLqDgoIAGD16dHJvk8ePH+Pk5JTs/gQ6nc6YYXz+/PkULlzYbP+vv/7K0qVL2bJlCw4ODgC0bduW3r17M2HCBHx8fMweLiT4+uuv2bt3L1OnTjV23U9ga2tLbGxsonNiYmKM+4UQQoisIEG3EEII8ZKuX7/O1atXAbhw4UKi/WvXrmXMmDG0aNGCgQMH4uzsjFarZd68eWbJwBI83RX7acm1MqfHRCQJ1xg1ahQVKlRI8piETOHPM3bsWHbt2sWMGTOoV69eov1//PEHderUMQbcCZo3b86UKVO4ceMGpUqVMtv3008/8ccffzBy5Eg6deqU6JouLi7cuXMn0faQkBAAs67oQgghRGaSoFsIIYR4CXq9njFjxuDo6Ejfvn2ZO3curVu3No6nBtiyZQuurq789NNPZi3Qs2fPzpAyXb16FYPBYHavhJbsZ7OBJ0hoKXd0dKR+/fovfO+pU6eyevVqPv/8c9q3b5/kMaGhoej1+kTbE3oAxMfHm21ftmwZP/74I3379k020Vr58uU5fPgw4eHhZsnUTp06BZDsgwQhhBAio0n2ciGEEOIlLF68mJMnTzJx4kQ+/PBDqlWrxvjx47l//77xmISW66dbpE+dOoWvr2+GlOnu3bts27bNuB4eHs4///xDhQoVkuxaDlC5cmVKlizJokWLiIiISLT/6feTnAULFrBo0SLef/99+vbtm+xx7u7uHDhwwGzsuE6nY9OmTTg4OFCyZEnj9o0bNzJp0iQ6dOjAZ599luw127Rpg06nY8WKFcZtsbGxrF69mqpVqybqmi+EEEJkFmnpFkIIIZKxZ88erly5kmh79erVcXV15fLly8b5t5s1awbAt99+S6dOnZgwYQKzZs0CwMfHh61bt/LBBx/g4+NDcHAwy5cvp2zZskRGRqZ7ud3c3Pjiiy/w9/fH2dmZVatWce/ePaZMmZLsORYWFkyaNIlBgwbRvn17unTpQuHChblz5w6HDx/G0dGRuXPnJnv+tm3bmD59Om5ubpQuXZq1a9ea7W/QoAEFCxYEYNCgQXz66af06NGDHj16YGtry4YNGzh9+jQjRozAysoKAD8/P0aNGkW+fPmoV68e69atM7tmQj0AVK1alTZt2vD9999z7949SpUqxZo1a7hx4waTJ09+oc9RCCGESA8SdAshhBDJSK7795QpUyhWrBijR48mf/78fP7558Z9bm5ufPzxx0yePJmNGzfStm1bunTpQmhoKCtWrGDfvn2ULVuW6dOns3nzZo4cOZLu5XZzc2PcuHFMmzaNwMBASpQowQ8//ECjRo1SPK9OnTqsWLGCX375hd9//53IyEhcXFzw8vKiZ8+eKZ577tw5QHVjHzVqVKL9S5cuNQbdHTt2JH/+/Pz6668sXLiQ8PBw3N3dmTBhAm+88YbxnEuXLhEXF8f9+/fNPuMEU6ZMMUsgN23aNGbOnMm6det4+PAhnp6ezJ07l1q1aqVYdiGEECIjaQzpkX1FCCGEENlCs2bNKFeuHPPmzcvqogghhBACGdMthBBCCCGEEEJkGAm6hRBCCCGEEEKIDCJBtxBCCCGEEEIIkUFkTLcQQgghhBBCCJFBpKVbCCGEEEIIIYTIIDl6yrD4+HgePnyIjY0NFhby/EAIIYQQQgghRObQ6/XExMTg5OSEpWXyoXWODrofPnxIUFBQVhdDCCGEEEIIIcQrys3NDWdn52T35+ig28bGBlBv0s7OLotLkzKdTseFCxfw8PBAq9VmdXFEOpF6zb2kbnMnqdfcS+o2C0RFQYMGann/fsiA72JSr7mT1Gvu9arVbVRUFEFBQca4NDk5OuhO6FJuZ2eHvb19FpcmZTqdDgB7e/tX4h/gq0LqNfeSus2dpF5zL6nbLGAwwPnzatnWFjLgu5jUa+4k9Zp7vap1+7yhzjIQWgghhBBCCCGEyCASdAshhBBCCCGEEBlEgm4hxEsJOHCRycN3cfPy7awuihBCCCGEENlOjh7TLYTIWvdvPaBxq4I8iCjH7gPH2XqsSFYXSQghhBAi11m2DH74AWJiEu8rUACmTYM6dTK/XCJ1JOgWQryw6V+c4kGEDwA7TngTeuMBBYvnz9pCCSGEEELkIg8ewDvvQHR08seMHg27dmVakUQaSfdyIcQLuR0Ywuw/ahnX9QYtm3ZKwC2EEEII8Tx378L06XD69POP/eMPU8BtbQ0ODqaXRqO2HzkC8fEZV17xciToFkK8kCmfnyEyxsFs2/r1WVQYIYQQQogc4tEjaNQIRo2CZs0gIiLl4xcsMC0fPQrh4aZXz55qe1RU6gJ4kTUk6BZCpNn18zeZ+3ddAOysI3Fy0gOweTPExmZlyYQQQgghsi+DAfr3hwsX1Prdu7BoUfLHnzgBvr5quVYt8PIy31+7tmn5yJF0LapIRxJ0CyHS7OvRl4iNtwFg+FuHad9e/Sl5/Bj27s3KkgkhhBBCZF/ffQerV5tv+/775LuGP93K/c47ifdL0J0zSNAthEiTS75XWbS+PgB57R4y6puqdGinN+5fv+REVhVNCCGEECLb2rULxowxrZctq34GBcGqVYmPj4xU47kB7O3hjTcSH1OtGmi1almC7uxLgm4hRJqMH3MTnV5NfDCy/wkKFC1A6+aPsdTGAbB+W0EMekNWFlEIIYQQIlu5cUONv9bp1PrYsTB3rmn/9Omq6/nTVq2Chw/Vco8ekDdv4uva20Plymo5IOD548NF1pCgWwiRagEB8MdWNZbbOc99RkysAUC+Qk40qhIAwJXbJTl37EqWlVEIIYQQIjuJjVVB8927ar1VKxg/XiVRq1ZNbTt+PPGUX8/rWp4goYu5Xq/GgIvsR4JuIUSqffklGAxqborRX+Qlr7PpkWv71o+My+tXBGd62YQQQgghsqNPP4UDB9RyyZKwbJnqEq7RqH0Jpk83LV+4AHv2qOXy5aF+/eSvL+O6sz8JuoUQqXL8OKxZo5aLFIEPhlma7e/Qs5Rx+d+t+dJ07UcPDXRufAQv9wsc3XbmZYsqhBBCCJHlDAb4+WeYPVutW1vD339DwYKmY7p3h1JPvkJt2gT+/mr56YzmAwea5uNOytNB99Gj6VN2kb4k6BZCpOiK/zXGDtpF+5ahxm1jx6oxRE8rV80Nz+KqW/n+05W5d/NBqq4fHg6vtdXwz97a+Ad50K6bC1f8r6Vb+YUQQgghMltkpJoabOhQ07bZs9W0X0+ztISPPzatz5gBcXGwZIlpf58+Kd+rYkXT9zJp6c6eJOgWQiQS9TiKZTMP0KzaScp4lWTyAh9uP1CPZd3ckh9X1L6pCpb1Bi2bVzy/xToyEjp0MHW5Agh55ELb1+K5fyt1QbsQQgghRHZy8SLUq2cKnAE++QTefTfp4wcMgPz51fIff8Cvv8Lt22r99dehUKGU72dpCTVUmh0CAyEk5OXKL9KfBN1CCCOD3sCPY3dTrGgMvT6qz3++1Yz7tBbxdPC5wPbtYGOT9PkduuQzLq/fkEI/KCA6UkenTqakIfny6SlXLAiA8zdK06XNVWIiY178zQghhBBCZLI1a6BmTfDzU+sODvDnn2q8dnJdxB0dYcgQtRwfDyNGmPYNHJi6+0oX8+xNgm4hBACP7j2mZ4tDDJ/chLCIfMbt5YoFMmXELq5fvMe6/zwoUyb5a9RvW4l8DmEAbD5YibiYuCSPi4mMoWuzE2zbptbz5IEtWyzYskVLISf1eHa3nzfvdDkq048JIYQQItuLj1dJ0bp0gUdPcstWqKAC4KTm137WsGGmRo34ePWzRAmV6Tw1nu62Ll3Msx8JuoUQBBy4RK2qofz1Xz3jtrdb7Wf3P6c4f92NMT/4ULR04edex8rGitfqnQbgYaQT+/4NSHRMXEwcb7Q+ycbD6n8HB7tYNm9WT2jdK7uyfuUd7KwjAfh9S0PGD9mdHm9RCCGEECLDTJqkxmMneOMNFfxWqJC68wsXTjx2u39/leU8NSSDefaWKUH3smXLaNasGVWqVKF79+74JfS3SMamTZto06YNVapUoUOHDuzeLV+6hcgov/8OdVq6c+GGOwBO9g/5Z8Fhft/SgMavV0VjkXI38We172hrXF6/t7LZvsunrtLZ5yT/7FNzfdtZR7Jh2RmzaTBqt6rMsp/80Gj0AEyc58OS6fte5K0JIYQQQmS4iAiYNUstW1rCjz+qsdmOjmm7zsiRpi7oGo0a651abm6mrOhHjqjM6SL7yPCge+PGjUyZMoUPPviANWvWUL58eQYOHMi9e/eSPP7EiROMHDmSbt268c8//9C8eXM++OADLly4kNFFFeKVEhOjxg/17g2RkeoxatXS5zl+IIzXB9Z54eu+1quG8ansvxutALh6NphBr+/Bs3pxNhxSj2JtrKJZ99s5mnT2TnSNzoPqMuPTPcb1dz6rw6HNiVvNhRBCCCGy2m+/QViYWu7VS2UsT2mKr+R4esKHH6rl999XgXRqaTSm1u5791RCNZF9WD7/kJezePFievToQdeuXQGYMGECu3btYtWqVbybRAq/pUuX0qhRI955kh55xIgRHDhwgN9//52JEydmdHGFeGV89BHMmWNaH9DfwE+z3bBzTCZLWirlzw8NG8Lu3Sp7Z6/XjrBymzdxuhLGYwo43mfZ3Cu06FEz+fJNacLlK7v55e8mxOusGD7KhUOtwCKFR4W6OB0/j9/HlWT+o6la1YK3h9fB2s76Rd+eEEIIIYSRwWCahxtg+PCXu97338O4cZAvX9rPrV0bNm5Uy0ePQunSL1cWkX4yNOiOjY3l9OnTvPfee8ZtFhYW1K9fn5MnTyZ5jq+vL/369TPb1rBhQ7Zv357sfXQ6HTqdLl3KnFESypfdyynSJivq9cGdMD7ofZ7iRWKYPK/uCwWQt6/eZ8ECZ8ACGxsDP/5oYMAAA2CZLu+lbVsNu3er6HjZZtMgo7x2D/m43wmGj/cmr3O1597r+6V12XPyJgGXi3HUvzDLl+vp2TP5/lLjP9jDpPlNk7/gnzBh1gPGTrSkd28Dlin8BcxOv7NTp2o4cEDDrFn6ND31Follp3oV6UvqNgvodGiNizrIgM9e6jV3yk31um0bnD2rfhMaNjTg5aV/6V8FJycVzKf1OmraMFWWQ4f0dOuW+X3Mc1PdpkZq32eGBt0PHjxAp9Ph7Oxstt3Z2ZkrV64keU5oaCgFEwYkPHV8aGhosvfJSV3P/f39s7oIIgNkZr0unHKHlTvbAnD9zn5Gf2ub5i5Mf868SVxcBwB6dT9H9eqR+PqmXxnLlLEBTOO5HWzCGdhpF10G5sWxQF6uXL8C11N3rXc/zGt8avzJJ3G4uZ3GxibxfyLXAu7y7aIWz73e1Vv5GTQIvv46mkGDbtGq1f0Uk5Rk9e/sjaBYvvhCJbiLjn7E1KlJ/+0UaZPV9SoyjtRt5rGIiiJhYkk/Pz/0dnYZdi+p19wpN9Tr5MllgHwAtG9/BV/fsCwri52dFvAGYNeuCHx9sy5Gyg11m54yvHt5ZvDw8MDe3j6ri5EinU6Hv78/VapUQZvaNIQi28uKet1+8Jpx+e8dDaiwTs9XX6X+SWZMZAy//+sKqLm3vxjjQMnyHulaRm9vGDxYz5rVet5quY9Pv66Ai+trL3yt9esNbNum4dYtG/bu9eaTT8zfb3w8vN/rGvE6NYb8wzd30aN3AbNjHt57zKz5pdiyR3Vzv3bNlnHj3PlzST6mfXmRNm/VMDs+u/zOXjlqSkG6f58jZct6pzkxizDJLvUq0p/UbRaIiDAuenl5qQmJ05nUa+6UW+r14kXYt0+Vv2RJAyNGuKXYiy4zuLsbCAzUcP68I5Ure2d6eXJL3aZWZGRkqhqAM7Qa8ufPj1arTZQ07d69e4lasxMULFgwUat2SscDaLXaHFOpOamsIvUyq17PHw/k4k13s21ff21B2bKJp5lIzuoFJ7gT1hCAzo2P4l6p3nPOeDG//AK//GIB+Lz0tWbMUMG3wQBTJscy8O0ICpYw9aD54Qc4dk59LhVLXmbqgnrY2Ccem/5aL9i/H8aOhV3/Z+++w5uq3gCOf9N0t1AolL1HyyyljLL3ngIKqGxwgApOwC3+FBygAoogS8AFypAle++9y6aUvdvS3Sb5/XFobkN3Sbp4P8/Th5Pk3puT3pLkveec992i7jt1viDdB/lzueFtSlYqnmSf7P4/e+ZkjLkdHePA6tXw/PPZ1p08I7vPq7AdObdZKNHvWa/Xp7+2UaaeSs5rXpTbz2vi3DivvabDySn7X0v9+iqJWlSUjtOn9dSqlT39yO3nNr3S+xptmr3c0dGR6tWrs3v3bvN9RqOR3bt3U7t27WT38fPzY8+ePRb37dq1Cz8/P1t2VYhcYeXCy+a2f7Wb5vawYVoQmRqT0cTknwuab496O2fPEEng6wuDn78NQOhDZz5/V8tkfu6cSjgCKnPn7D/LJRtwJ2jcGDZvho0bwb+KmjVgMNqzYekF272AJ3DqtOWa/UWLsqkjQgghhDALC4O5c1XbxUV9F8sJpF53zmTzkmGDBw9m0aJFLF26lAsXLvDZZ58RFRVFz549ARg9ejSTJk0ybz9gwAC2b9/OnDlzuHDhAlOnTuXEiRP069fP1l0VIsdbsbaAuf37r5GMGKHacXHQo2s4gftSDxx3/3eCA+eqA1C7YiCNO/vaqqtW97/Pjbg6qamMP//TiLOHLmE0wksvQXS02mbUKGjQKH1XHFu1gu/G3zff3rI1Zxa0DLxoOU3+v1UxhN0NzabeCCGEEALg11/h4UPV7t8fPD1T3TzLSNCdM9k86O7UqRNjxoxhypQpdO/encDAQGbNmmWeLn7jxg3u3Llj3t7f35+JEyeycOFCunfvztq1a/npp5/w9rbumlMhcpsHt0LYcUIlJ6tUPAifOuWZPBk6tY8CICTcnU5dHbkVdCfFY0z57qG5PeqVe+jsMlFEMpuUqFiM9wbvByDe4MDYN28x8+vDbN2qHi9XDr74ImPHDGhXBWcH9fvbsr+c9TprJYY4A6evlLW4LybOieULJDmJEEIIkV2MRpg6Vbv9xhvZ15fH1a6trfSQoDvnyJKl9f369UtxpHrBggVJ7uvYsSMdO2Yu6ZIQedWahacwGBsB0LVlEDq7ctjbwcI/DTSte5ojF6sQdLs0XdufZM0WezyLF7TY/+q5G/yzRV3+LOJxh76vpVwjO6d6d0I9Zvx1i5shRVm6vQFr9kaaH5v5iwk3t4xdRHB2c6Zh9cNsPlKboNulCTp5lXLVS6W9Yxa5fPoa0XFlACjpeZ1r90sAsPBvR/q9lfJ+Dx9CeDgUT7pEXQghhBBPaPVqOH9etVu3hho1Ut8+K7m5qf4cPQonTqh8hzbIcSgyKE9kL8+tYqNiWTzzALdvxiV5zMEBOvetSNmqOScAENlrxQqt3aWHh7ntXtCdlWs9aNDgOlfvlWD/2eo0bXCeNeuiKO1TwrzdtK/OYDCqKOzVvidwck2lnnUO5V7AjS9GH2LYB0UBiIpVa9KHdNlOm7ZNM3XMFo1C2XxEtbesCmJQDgq6Tx26Baigu3/3Myz4V8e1+8VZu8+PB7dCKFi0QJJ9zp1T69bv3FGj/61aQavmMbRsfJ8SFSUKF0IIIZ7UlClaO6GsaU5Sv74Kuo1GOHwYmjTJ7h4Jm08vFyn77PVdvDCqEW9OaJ7k57XPm9OsOcTFJA3IxdMnPs7Ef7vVWmwP11CadrW8pFqyUnFW/xtOEQ81tfxUcCUaNtZxcre6DBv1MIpf/q4JgIM+lldHV8vC3lvXoHcbUaPsOfPtYgVuMXFWzUwfr0U7bUbAlq1P1DWrCzyuleOpXtOR59qrkhRxBkf+nZd0irnJaOL1gedIWLETFARz5kC/gU6UrFScKqUuMmbQFsIfhGdF94UQQog859QpWL9etStUgM6ds7c/yalXT2vLFPOcQYLubBIdEcOMRaknsQq+U4oLx65kUY9ETrZzl46QCDW63aFVCA5ODkm2qdnYm11bI6lYTGU4v3avOE3aFmb78mP88ZcT9x6qElu9W++neIWiWdd5K9M76Jk8MRx7fRx2OgMzJgUlO+KbXgFtc+667lOntclI1fwK0meAViZt4WLnJNsvnbmHdbsrA+DuGovTY0ncz1yrwDfzWhDgd5PT+y/apM9CCCFEXjZnjtZ+4w2bVsrLtMTJ1LZvz75+ZNauXVC3LkyYkN09sR4JurPJsuWO3A9XaQ7b+23izym7zD+9W+0yb3fuxN2UDiGeIitXau0ufcqmuF3FWmXZtdeVOpVPARASUYC2z3rz6SdaredR4+qntHuu0erZ2hzdeZmjOy7SbUjAEx3LydWJRjUCAbh8pxSXTly1RhetIvBSEXPbx78sAe2qU8ZL9W/DQT/uXdeyr0eERvDmR2XMt+d9d5CQENi0CT4acYDG1Y9hr1czZ04FV6JeMy8W/aS91wghhBAibf/9p/61s1NZy3OiGjXgUc5q1q5V67pzkxEj4ODBvBV0y5rubDJ7jpbwaez3rWjRQnss3niARZtU++yVYlnbMZEjJazntrODtHIMFinjxZa9LvRqd5B1B+oQE+fMtUclvRs0gHoNko6S50bVAipZ7VgtGoWx6bBqb9kQTvkckBDFZIJTV1TVhnJlYnHzUFlQenc4z8QFpYg3OLD01xMM+6AZAOPf2c+Vuy0AaFf3AD1eaoDODlq2hJYtVdK8s4cu8WyvOI4HeRMenY8+rzdi186tfDO7IY4ujkk7IYQQQgizK1fU9HJQo8mFCqE+sE1GsHtsyPv8L6B3A0cPcPAAOyfQO4KdI+gcVFvnAE6FVTsxkwli7kLUNYi8pv0bfRNiQyEuDBzyQZOFlvsFToQba9E7FOCZRm8wa3kzoqJU4P2oWnOOd+GCWo8OUKVK9vbFmiTozgaXLsGGDapdqRI0b275eOUGWlbpc9fLIKzr/n2YOBF27IB334Vu3bK7R6k7dw7OnFHtRo0evcGnwb2gOyu2+zL0mZ38trax+f5Ro2zUyVyuRfca8JNqbzlchcHZ2x0Arl/X6n9Wra59GPfuX4SJj4o+LFzsxrAP4NzhICbOawioNftTZxRKthyct3959hyN5NU+O1iwRmVVmfxnc/YdOc6ifwtTqrIkWhNCCPGUMZkg4hJE3QKvhpaPnfoa7h8Gx4Lg5Mm6FU2BDgC0998B2ybBvb1Q4xOo/Kq2nzEe9r2SvudvvQmKJkpue20lbHsGTIbU93PySnrfgyNwUwUZvao8ZNZydWF+8W836Nkzd3zGL16stXv1yr5+WJtML88Gc+dq7aFDQffYd+PKlbX22bNZ06fcwmCA3bth40a4eBHiMpBnLjQUPvsMypdX01W2b4cXX4jlwa0QW3XXKlbO0RbjdO2Q/gRYjs4OzFvViLFjDNjZqSuyeenNy5rqNyuMi4tqb9miPn+zW8KVdIBqifLe1W1dlfJFgwHYdNiP29fCeeOVu8TGqwXc7w7cibd/+RSP65rflXmrGjP982042qtlB7sDa+Jfz4n9+3LACxdCCCFsyWSEkBNwdhrs6AvLSnFqWhdO/5lMLc6w0xC8EM5Ph5PjWbsyzPxQ+yLvwdVlEHVDBd6JxT9Mf390j81ANMSkHXADxIUmvS9Wu69V9U14uIYAsHKNKzF7PwBjzk/QnFeDbhnpzmKGOANzp98HvNDrTQwcmHQ0ytNTjWbeuydB9+N++tHEqDe135mdHZQuDeULnaF88duUL2egfEUHylfOR/mqRShWrghR4VFM/Ww/38wJ4EGYi8XxwiMcmT5hF+//0CKLX0n6rVjjbm53bXsLcE9548fY6XVM+ErP6DHg4aF+XyIpJyc1i2DjRggOVrNRyqa8dD5LBAZq7apVtbbOTkfvZ8L4egYYTXqGDAhn7X41O6Z04Wt8+F3aa/Z1djpe+bgZdRqe4tkX8nP5TinuhHrSoqX6sOvQwdqvRgghhMhGhli48R8E/a5GgmMfmB9ae6wdXSauRIeJHfUN1G+QaJq4U2FzM96gZ8OJNgAUcH1AvQr71QMO+UH3WEhl5wQN5mpTweNCwRijgl5j7KN/H7WdHxuxdsgHBf3BuQi4lgSXktq/LsXVqLuDh9rucc2Xq4A/NgTHmLt0++0gC9a3JizKgw3/HKVzSBNo/Ce4V3iiX6etXLmiZVv39VUzgvMKCbqz2LpFh7l6RyV+6txgP8WLJ/8F2dtbjeheuwYRD+NxyyenCmD17wcBbfq90QiXL8Plyz5swSfJ9k4O0TjaG3gY1cJ8n7099O0Vxh+L3DCa9EyZV5W3x0fj5Jo0G3RmREdEM2boXs5ecuWnWUWpUDPzSwRCboey/bhaYFyh2GWq1M3cm2TBgmlv87Rr0UIF3QBbNpsYOCg7ewOndh4GagNQrXIYkN/8WJ9XavD1DNVetUnL+/Dd58G4eZRM93PUbVONg0fu06t3OFt3uhMZCV27wuzZMGCANV6FEEIIkc3u7oEtnSH2fpKH4uLtGbVgKvEGNdo89UcDCxok2qDGx1B5BMQ+YP8uAw8iVBLkNk1uYd9oJhQOgPxVQPfYqIa9K1QYlLn+Fm+nfjJDp1MXARzyg1sZeo0wsuBRebPF+3vRufZQWFsful1U2+QwS5Zo7bw0yg0yvTzLzZ1tNLeHDkl5Kqe311Fz+/yRCzbtU24SfFNFj472MfTqZcLfHwoWNKa4fUycMw+j1JuKnc7AgJ4XOH0aFvyVn57N1aW0myFF+W2ydYoYhtwOoV2DM0xZ2Jw1++rR99mHGOLSMUUoBWsXnTR/EHRtGZTsOl1hHS2aaKk9tyzenY09UQIDtXNdtYrl37ifn+UyFIA2/gfp9UoDMqpQCU/WbHDn2WfV7fh4GDgQvh57BJNRppsLIYTIJUwmCL+opo4n5lENDJHabUdPKNUdak9i5q3znLnubX5oyVK9OZ8KoAJT9/Lg6c/aA1rx6w69q0DFwerYjwfcOUi79na4qTys/HuoB3Hx9lD1PcuA2xCrRuNzgLw6tRxkpDtLhd1+yPKdKqlV8YI36dSvTorbVi6rTXs5d+I+tZravHs5nslo4sodVUKpXNHr/PNPwrpVO0LvhHIp8CaXzjzg0oUYgoLgUrALl64V5G6YB63qnuOT8cWpUq+i+XjvvZ+Pf7ao9sRpJRk82oidPvk3ziPbzrBx5Q2eebE8FWslP+/46rkbdGwbzonLtcz37T9bncnfR/D2aLdMveaVK7Vgq8szyUwjElZTP8ABF8dIomJd2bK/bLYHnKculwLUe0WBIpZVDHQ66N0bvvxS3XbQxzJ1esFMX5Rxdoa//lKJ9n56lFBu7Nd+XA/ayve/N03x/0VioaEwfbqaSVK+/KOfsgYKeObAAqZCCCFyn9DTcGPNoxu6R0mRdBB9G+7vh/sHIOYeFG8PLddo+znkh3IvQnwUlO8HxdqCnT2hofDpN5ZPERkJ//wDg5PJqLp2rdZu397aL842XFygc2dYtAjuPyzI1rjfaFP1OcuNbq6D7T3BqxkUawVu5cC1lPpxKQF668wETcvNmyrJMYCPj2U+m7xAgu4stHFpqHnUclCPQOwdW6a4rXcVLVvx2dMxKW73NAm5E0p4dAEAyhR9AGjJojy8PPDz8sCvWUp7F0lyT/12NWhW8wjbjvtx+mpFVs7bm2zN5yPbztCwTRmi43wYMymewS/e4aP/eVms+T219wKdu7tx5a4afvR0v8eDiIKYTHZ89Jkb3XtBxYpJDp2q+Nh4Vu9U7zj5XUJp1jUH1LHKwxxdHGlc4wQbDvlz5W5JLp4Myra+3Llyj7thah1Z1XLXgaSlA/v3V1n4Y2LgvddvUqXek63P0uth6lQoke8CH36l/linLGzOrTu7+H1NAHqHlINnk9FEn2djWbvB6fGjUsAthArFb/Dm8Hv0f7vJE/VRCCFEHndzE1z+Cx6ehSaL1LrmBPcPwKFkkp097t5+NeqdOFNxwKwkm331Fdy9q9q1amllqubPTxp0P3igrTWuVg1KlcrAa8pmvXqpoBtg8YE+tBn62AbXVqn15bc2qp/HORVWmdKLd4A631k+tm+4Wq+ud1Lr2O2c0Nk54PVAB/fjoZA/2KWvVO2yZVoi2169kiaazu1y7nyIPMZkNPH3Ki1oGvJ6ytmFASrX0OpCnT0v10YAgs/eMrfLlIhIZcv0G/1urLn97fdJr+Q9uBVCrz7ORMepBGwGoz2zFnhRuTK8/roq63R273Wat/Piyl21lrZCscvs3R7O66+r/15RUfDSSxnLiB31MIrxb+3gfrhaO9S+wSmpo5wFWjTWpldtXR2cbf0IPHTV3K5WOfkMqD4+KtP6woXwxffWKS2o08EHEyoy5+sd6O3iAVi4qRHTxu1Idb8lv+xJJuBWQiIKcOh8VYaMDuDquRtW6acQQog8Jvo27HwRNrWGCzPh9lYIy2A2YScvKNEJvN9QCcpSERwM33+v2o6OsHSpyqcE6rM1KMhy+w0bVB4hyD2j3Ak6dVIz2kC9TsPjqx5dS4JbKnFJzF0IC4So60kfu7oMLv8JF3+F8zPg7BTsTk+izO2J6Nc3gL89YH0zuLoizX7m5anlIEF3ltn13wnOXlejRy1qHaZS7XKpbl+pppYM6VxQzkt0kB2Cz2tlEEqXyvw66cQ6vliXaqXPA7DjRC32rNHWARkNRvo/c46LN9WQdqWi58ifT5VaiItT03C9vXUMebMNDyLUWnP/SoHs2u1CJb+yjB+vZcDevBlmz0o76o6JgZ8m3aJi2VA+ndbCfH/3rimvWxfW06KddrFr67bse3sMPKb9rVetkvJ2DRqoaebWvho8eHQTFv9y0Hz7/Yl1CDp5NdltI0IjeOtjLej/eNRZ/vc/GDIEWtY9T/GCNwGINzgw+X9nrNtRIYQQuZvJBBfmwMoqcPkPy8cigixvezWBxn9Boz+h0R/Q6Hf103QpdA+CnregxSrw/UyNvKbiww/Vdy6AkSPVkqiBA7XHFyyw3D43Ti1P4O6u9fnWLdi167ENanwE3S5A51NqdoH/d1DlbSjTGwo3AtfSj5KzJVM9x5jGbFxDFNzZbrmmHuDeAVjXCHY+D0fGcu/QIjZvVt+Ty5WD2rUz9VJzNBlCzSJzZmijVUMHRqaypeJe0J0Snje4fr84Z6+WsGXXco0rQVHmdpmy1vnTtdPb8e5rNxgyVtUk+HZCOIsflUsa/+Y2Vu1pAYCn+302bHYhfzEHJk2CH36AiAiIjrYD1Ch4G/+DLFnvTT5Ptfba3R1++UV7o3vnzQg6tnxIyUrFk/QjLg7mzYP//Q+Cg4taPPbyM9t4fqRMy80K9Vr74OoUQWSMG1v2V+RN47Vs6cepU9oFmmq1PLKlD92HBvDq6m1MX9KMiBh3Xhl0mjV7SyZZNz7+nX1cuauWyrSre5Bx3/knyilTiVtBdyjrHU1MnDMz/vHno0mheHhlz2sSQgiRczjFBmG35R01qp3A0RNqfwule4HjY58V7uXUzxM6eBB++021PT3hgw9Uu39/+OgjdR1g/nzV1unU7TWPlog7O0OzFJcy5ly9esG//6r24sXQ9PFcUTodeFRVPxnR6QQYo1VtcWMMGGIwxIVz7eRaSjlfxe7ebnXxpHBDy/0enoW7u9UPsHzrIAyG3qqv9ZegO3lKBfzFWmX8xeZQMtKdBcLuhfH3Rn8APFxD6TXMP137eZdWI0R3wwrz4FaIrbqXawQHa4FImQquVjvuC2/UN4/GLd1en3MnH7Duz4N88pN6V9XpjPz5yyXKVi1FwYLwxReqjvM774Czo7rC93zbnazaUdMccCdo1w4G9ToHQFikOyMGBVsk6Lp67gZfvLkXb28TL72kpjsl6NF0D8d2nGXG0mbpSmQlnpxa130agGv3i3M76EEae9hG4DntanJV//SXALO2r3/xo1QhNZ1s3YG6zJ+00+Lxs4cu8e2vKjmkgz6WqTM8kwTlRct5MbCzWgj3MCo/v3x9OAt6LoQQIseKDcFuWxeqXeqLLnHAXe5F6BIIFYckDbitxGRS398SfPqpVla1dGlo9SjGO39eGxE+dUqV8AVo3lwlJ8ttunYFh0dLq5csydiSx1S5llA1vz2qQkE/VUKtSAvuFOyDqeEC6H4JetxQo+WJRd+2uLl4nzafvFe1b+HYx3D4HfIS+SafBRbPv0JkjMpe/ULHI7jkS9//Vu/y2uj4uaPZM+KWkwRf1RIxlKlkvcLTTq5OjBpyCQCTyY73xjrxwivlMJnUf49xI7bR7nnLTPNeXiqJVdC5UBbP/Y/5qwJSXHM9aWphihZQby7Ldwbw++Rd/PPzbjoGHKCsTxE+nhxAUJAWqHTqBAcOwJJtDajZ2DvZYwrbadFY+393bI+WOyA+Np59604y43/bOHc4yKZ9OBWkZrd4ut+nSJnCNn2u1OQvlJ/p32nvPW+Nq87NS+pv2WQ0MfLVe8QZ1N/9uwN34e2f/Jqwdz4ujU6nlkhMnutDbFTqa+2EENnnVtAdfvt+J/dvPNlFxxMn4M8/tSm84ikS9xBubYHAibCjD5z+3vJxh/xweyt2qNwhuJWHFmug0W+WidNsYMUK2Poozq9UCV591fLxAQO09vz56t/cPLU8QYEC0Lq1al+5Avv3Z+GTuxRLug6uypvQOxK6nCGszjrWn1TTTEt43iCg4l61TaGMl0HNySTozgKRjtUB0NsZGPZG0izEKalcSVvHe+5kiLW7lesE39BGkUtVSv/vMT1e+agh+R4d/t+Vrtx7qNb2dm6wnw8npzyPqHDJQpStWSTVUk2exQvy0wSt1nr/txvz3IiGrNlXF6NJZYTW6Yy0bw87d8KqVVAn5WpywsZattfWdW/YUorJk3V06waFChkJaF+dVz9phn+jQqz/62AqR8m8sHthXLunliBULXs122uzdx5QjxfaqhHuBxEFeWPYFQCWzd7L2v11AShd+BofflcvxWN4+5ene2M12n3tfnH+/HGvjXsthMisPt2v0f/txtSuFcHlwORzOaTl6lVo2BBeeAG6dIHoaCt3UuQskdfh4jzYPRBWVlXJsza2hMPvQfAiuLXZcnudHeSvisHODWOVd6HzCShh+2g2Lg5Gj9Zuf/21SqKWWM+emOtaL1yokuHmhaAbLJOTJU5alm3sXSC/NysPtiU2Ti0b7fl8Mey6n4WGC6DCwDQOkLtI0J0FXnkFJk828sPki9RqUind+3lX1UbEz56Js0XXcpUroSqjVOGCUbjmt+7cngIF4OWXLe8rXzSYBcsqW2Vqd69XG9Kz2Z4k95f1uspnw7dw6eR11qyBRo2e+KnEE6rbugquTmqEe+Ohurzzjh0rVkBYuPbJHB6dj879avLH5J0pHSbTAgO1v7dqVXNGAr0fZvtQOL+qq/LPpjr8Pj+GNz/U6qV8/79g3DxSr0X/3ljt8W9/LJbtddCFEEmFPwhn23FfAILvlKJVK0Omqg588w2Eh6v2hg0qkJER7zzo4nxYVROWlYQ9g+DSfAg7DTz2/h5+IcmuxuZrOFJpM6ZaX4G99ZYMpubvv+HMo3yeTZpAjx5Jt3F3h2efVe3QUBV4b9umbpcqBVUzuOQ5J+neHewefcVYvPjJppjfvaum2rdpo/1fzyyLrOXP6iBfJVVPvbCMdIsMsreH114z0bBhWNobJ1LZXwvQz4Y83Ym04uPh2g0V9JQpb5vFNKNGqXMF4OxsZPGiGAoWLWC14//0awWqlr6Ak0M0fVvvYv3CQ1y8UYJPp7WgbNVcVPAxj3NwcqBZ/btJ7i9c2ETvNgdoX+8AAHEGR158szHfjdli1ecPPJ9oPXcjP6seO7O8ShdmylQtE2z/QQ4E31F/s23rHKTny2l/MDbqXJNG1Y4BcDK4Mv+teMJPaSGE1R3bdcm8tArg4s2ytG4ZzY2Lt1LZy9LNmzBzpuV9//0HffqokUaRCxhi4c5uCPwODr4Nu/rBpnZw/9Bj20VC6AnL++wcwLMuVB4OAbOh0zHoeDTpczh5kijrZpaYlahU9//+l3Llj8RZzEeP1mZqtG+fu2tHe3mpQBngwgU1uzKzJk1SFyM2boS//sr8cSIi1PtDQv+SJHjLQyR7eQ5WoWoh7OxUXcBzT3mt7hs3tLqCZaxTkjiJ0qVhxgyYOxfef9+O2s0qW/X4xcoX4cSlwuh0OnR2MqSdk038uSxxo0zExobSo0d+2rSxo3p1HXZ2dTHEGXitzzZmLFXLDt75pgXXr2/hm1+tk/Du1CmtXa3aEx/Oavr2z8cff8PKlZi/lKvkaQXTPQV+9FhXnnm0Xu7bH/LRqbuteiuEyIzD++6b23q7eAxGe85eK0+blufZskOPV+m0c0xMmqQFKR07qvWzkZEqc/KLL8Iff2gXuEUOERcO9/bA7e2qvNPdParU0+PCXwHPRMmAi7cHdFConmoXa6faaZTryg4XLqjyrQCVK2vBZ3KaN1ffNYOD4c4d7f7cPLU8Qa9e2u+haVOoWFElj2vZUv0US8fqTYPBsqTavn0wbFjm+rNmjZrCD/DMM6DXZ+44uYGMdOdgTk5aneezZ62YaTAXSpzVu3TplLd7UkOGwPbtKpmZLdjp7bJ9ja5IW/XqsHatke+/v8DIkSZq1tSmZOkd9Pz8T1M+G77FvP2k31owoNNuqyQICwzU2jlpGptOBz//jDn3AcDbA/biU6dCuo/R9cVK+Pio9pYtKmGgECLnOHxY+1r4++R9lPVSa7pPBVeiTeeC3LuX+v53b0by8zR1hdzJMY7Zs1XiKmdn9fjff8Og3lcx3D0GBlnonaLI63B1ORz7FLZ0hiXFYHER2P8aPEhm1Dgj4h8rW2sywfLysKktnPhcrb9OLuAGiLHMOI17eXj2HrTfC76fQ5EmOTLgBpgzR2sPHZr6iLWdnSof9vh9bdrYpm9Z6dlntTXroC5GzJyp8i8UL65yCl28mPoxNm3SsrnDk32WW0wt75XydnmBXGvM4by9VXmqhw/h9m0oWjTtfTLr5k211qVpUy3AyCmunLkBqORSZUrGADnzTV08HXR2Oj6d1oLiJbYx/JPGGE16fl/XmPD2B1iype4T/f85dUL9fbu72/YCU2aUKqVqzw8YADVrwkdTMjYPzM5OlWpJyJ/w7bdqvZwQImc4crkmoJJ7dulfi3rN79G8zX2u3vbk2HE97drBxjVhFHjwGxhjLRdzrmvMD/N7ExGpih4Paz6T4l6DKV7chaVL1XrS2Fj4fWkpHO+vY9ZLdbDzqAQeNcCjOhSoAa5lACM4FVbrOh/RGWPQnZ4EkcEQcRkiL0NEMBjjVCbsxD/VP7Ss7Rt9G64sUY85F1XP4VYa9M5p/0JuboLw82o/pyIqs7ZzEbB3t8484/hI0LtYHuvQO3D6u+S3PzdN/RQKAO/XoHz/5LczHz8C7h9UI9d396jR7PxVofVGbRudDgrUtEx25lYWvJpBkabgUU177Q75kz6Ho/WqydhKfDz8+qtq6/WW08dTMmAAfPmldjsgQCstlpsVLarqlP/5pxrx3r3bctnHoUPw4Yfq8ZTMm2d5+/hxNbvFOR3/pRKLiVGz50DlVmrZMmP75zYSdOdw3hUeshY1tHT2cDBFO9hmbvXt21C7tgq8x42DTz6xydNkWvDJM5iDbveDgEzPFtnv5Y+aUaTYXp4f4Ut0nAv/bq/Ll1/Cxx9n7nhRD6O4dFldUKpS8hw6nXWXOFhD376q3qeTU+amiPbvr34/t27BP/+YuHj8GhVqSk4DIbJbXBwcP10AAG9vO9w83KhQ041NO6BZM/X94NAh6NDZiXUvjyW/60NINFgdcu0SU9e+BqilJ6O7fAUPaoFXYzp0gH/+gZ49DMQb9MzdOoRGlXcxrOVslXjryj+WnSk/ABpq3+xNOnt0xz4EU3zSjhsiIfqmdtv7dcvHw87C/uFJ93MuogJwlxIQfUsF4W22WG4T9BtcnJt0XzsHcCigAk7HglCyC9T4yHKb29vA3g3s80HUdXWRIDIYIq+o9sPzKsFYj+uqpFKC/D5Jn8+xIBhi1GsFuLcXrpSwDLpDA9VItckEmNTxQ46CyfDY7ytGbZM40C/ZDfJV1gJtNxut48sma9bA9euq3aVL+qZQe3urDPy7d6vbeWFqeQIfH/jsM/UTGanqkW/apGazhYSoGSnjx0P5ZKqAhoWpOt+JxcfD0aPqwkRGrF+vBhUBunVLmkk+r5GgO4er7HkIUAtPzh25TFMbBd1jxqgPVIDJk9Vtpxw0mBx8RftwKF0hmSutQmSTZ4YFsMzjLB37VMZk0vHpp1CvHnTokPFjnTkcjMmkvnBVq3ALyHlBN1hOTcsoZ2d4Y+h1PhpfAqNRR+NmDhRwt8xsW8A9ktFvR9DjpbyVuVSInOz0aTUSDeoifILKlVWypBYt1PrWvfud6By2iv9Gd8SdCPN20zcOJyzKA4CBvS5RZuBaiwCya1dYMPUEz4+oBcB/p55nWOvfwJhMWvPHA0WdHlxLQ8QlddvOQQXMemeIC1M/8Q/BZEw6GhuXQhLb6NvqJ4HeRe2fOLlX9O2k+4EaYY+5o35AjdQ/blsPiL2f9P7HhZ6wDLoLNYCiraFQXfCso5KSuZVTryPodzg/A0KOQaVXkr6ey2lktHLIDwX9ID4cHBKtFaryZtr9zMVmz9baGVl7/PrrKujW67WM5nmNq6uaNt+mjfp8/vRTtWb7++9hypSk2//zj7YGu2BBePBAtQ8cyHjQ/TRNLQcJunM872rat9uzZwypbJl5u1cf49dffc2379+HZX/dpc/AtBOmZJXga9qclTKVC6WypRBZr/1z3nxxTk3JMplUsqCDB6FcuYwdJ/DIXUB9Sa3qk8yITh4x/HUXJkwKJyLGnZshRbkZknTdTK9XjCwI38mLbzXOhh4K8fQ5fFhr+/lZPlatmir91bKl+o6w40xTus26wMppW3GlDwA/bf0QUAHK+xN8wCPpczz3ci2GvqtG1w7faA29w9Vob8gJFXzG3FUBtmfdJPsa601H7+CuAlCXYkkzX5tMaiTY7rHhsgI1ocFciA1JNOJ8RY06R11XgTaoke+Ye+DsleiFj4ZS3bUAPfqWWtcc+0AdL/YBxIUmnWJtjEs74Na7qqnbxse+2xX0hdYbkm7v6AHeI1RW8PsHVECeWJLp7jp1MaBwAyjcUP2bv0qWZwzPbjdvqrwCoNYsZ+SC+PPPg6en+qmezHWVvGbECPjqKxVUz56tAvBCj33lnj9fa48bByNHqvb+/Rl7rrg4lVwRVJm2du0y3+/cQoLuHK5yTe3L6NkLGVwskQ6GOAMj3kg6n2PWlMs5Kui+clN9etvr4yhWtkg290aIpMaOhT171If7/fvwbOcb7NhXEGc3y/+3JpP68rp9u5qu1qiR9l3p1AltYVW1mrYpjZcTeBYvyORPt/Pxt5WJjLF8nUaTjodR+TGZ7BjwTgMci4Tw3IsFsqejQjxFjuy9B6hv2IlHuhP4+qrpoK1bqymom3cXpe87nVn+6PH7D1Qw98ILUCGF/Ip6PdSqpUYPL12CkDB7ChTweTQinsZQV9HWqac21unUdO7HuZWGCoOS38cYpwJpR8/ka0UXaaZ+HgkOVuWRunfHnBQSoyHptHdjHNT4RB07LkxNYXcro60ndy2j1q1nZl247lG28Md51oNuFwGd2sbR03I0+yk1b55W/Wbw4Iwti9LpMjdrLbcqXFglmfvxR3Vh7Oef4aNEqyYuXVLVCED9/b/0Erz9tppentFkalu2aKPknTtnfD14bvR0Xe7KhcpWKYGDXs33Ohds/RHe6V/s4MjFKgDUKn+aisWCANhwqA6XTlyx+vNlVvBtFWiXKnQTvUMericgci07O3UFuGIFFTgfPFWckS/us9hm69IjNKt1knbtVI3QJk1UhvJvvzFwK+g2gWe1NR1Va9swa2IOMPT9ply/X4yQCA+Ln9DwfAzvtQ0Ao0nPC4MKmK+GCyFs5/BOrUyIX/WHyW7j76/WxyZUMdi4yfJxnQ4++CD150k8in70CRNxPzE7B3AtlXzAnYxXXlHL7+rWVRdZ1TH0STN227uC7zioPx0a/wH+E8FnJJR+Ro1QO3tZv+CzvYvKJu5eTiVCk4Abk8lyavmQIdnXl9zi7be1ZMpTp2rl/8CyTNjAgSpQ9n00UTYw0DKvYlqetqnlIEF3jqd30FOxuAp+z18vhdFgtNqx71y5w0eTaplv/zQllqF9gsy35069kMxeWS/8QTj3wz0BKF00HeujhMgmBQrA4l8v4uKokt3M/LcZc77azu7Vx2njf4gWPf3YcdxyjtqZMzB6jJ5SlQqyapcfAE4O0ZSv/nQmF9PZ6fhxYROG9lf/1+Pj4bnnYPXqbO6YEHmYyWjiyHmVNamE5w2KlEw5YAsIUP8fk8vt8NxzUKVK6s+VeBT9yJFMdDYbJUzBDw9XI6AHD2Zvf0Tqtm+Hc+dUu2VLVZNapK58eW39+u3b2nRyk0lr63TQr59q1320EsRotFyikhqDAZYuVW1nZ+jY0Tp9z+kk6M4FvMveBSA6zoWr525Y7bhjR5wmJKIAAAM7badxF18GvlEFvZ2aJjV3sTeGONusI8+IK+dumdtlimfgMpoQ2aBWUx9mTDhkvv3yhw1p1LkmGw/7m++rUjqIryaYaN5c2y/e4EB0nJpq7V0yGHvHp3f1j53ejhlzPc11UuPioGdPWL8ihaRGQuQgJpP6QjlrlvoimhtcDrxm/j5Q2zvtWW5Nmjyqv/3YAO+HH6b9XIlHutP7JT0nMBhUIrkEoaFqHWq2j9aLFCUe5R46NPv6kdu8957WnjRJ/e3v3KlqegO0aqWVNK2bKP1CeqeY79ypAnpQF6/c3Z+8z7mBBN25gHeFKHP77LFbqWyZfrtXH2fOSlVj18M1hK9/UpemS1QsRqcG6tLt1XslWPfXoRSPkVWuXAgxt8uUikt5QyFyiP5vN2HEs2rhk8GoBc8Vi11m/qQdnLhQmjFjdWzZAufOmnh/6HaKF9RK3jSpc/PxQz519HqYMwd691a3Y2Kg+7PufDRsI5sXHyE6Ijr1AwiRDc6fV19Ie/ZU6x2nfp1zlmml5vCuq+a2X43IdO3TsiUsWqTdfqa7NtU0NTVrakuzc1PQff9+0oso9++rrM+nTmVPn0TKEkpfgZqF1rNndvYmd6lbV1UrADh7FpYvt6zNnbjOeb1E6QXSm0ztaZxaDhJ05wqVvbXTdC7wyUd6DXEGXh+lBQKfv3mUouW0bJ3DEl0NnDUr+0e6gy9pXwDKlJU/WZE7fD+/Ic19jwBQuvA1Zn65ncCgEvR/u4lFXoJKlXWMn9WU4JuFWTVvPz9+spWvZvhlT6dzGHt7+O036NFeBQRRsa58Obs1rZ71o0BBaO1/iC9HbuHABvnGK7JXfJyJr79WAeWWLdr9U6cYrboszFaOHNQuYtWuk/56oa1ba+3p09O3j7OzymUBKliNSaZiWE50K9GYR69e0OBRRcO7d9Xv4ezZ7OmXSN6ff2qlrV58EVzybm5Smxg9WmuPH69dYHN3t7yAUb26lgQtPSPdRqNW59vBQdVNf1pIBJMLeFfTak6ePWN64uP9Mn4nh86rTzzf8mcY8allSZ5O/fwpVkB9uizfWYdbQXeSHCMrJS4XVrqcvGuK3MHRxZEN+2twbMdZzl0uzLAPmuLg5JDi9vaO9nQaUI/XxjUnfyGpRZ/AwQH+WlqEF9rutLg/Js6ZTYf9+WhqC+q1rcak0Vuyp4PiqXd4y2nqVz3D2LGWSYcALtwsy/qF2T9jLC2Hj2ufrX4NS2TqGPkykLcrYYp5fDycPJmpp8tytxOtbqlYEf77D+o8qtp186aa4XDxYvb0LbH4eDX1f8EClW36aZXZ2txC6dABatRQ7QMHIOxRuftnn7XM5+DgoP1/PndOzTBIzf79cPXRxJo2bdQshKeFBN25QGXfYub22Wuln+hYq/6N5J3x2gKMH3+ITrJ21N7RgUE9AgG1znTBT9n7iXglUpu7Usa3VipbCpGz2DvaU7OxN06u6R85Ekk5ujjy+7rGXD13gwXf7WRw5+2U8bpqsc3UXythMj75RUkhMuLrt7dQr3UlDl9QS7R0OhNvvgnzv9eGfKb/HJ/C3jnHkbMqcWN+l1DK13iy7xnpkRuTqSUOuosWVcHCunWqBBrAtWtqRDW7GAzwxx+qpnq3bjBggCrdVr68Ws/822+qj0+Dw4e1JHd16iStOy/SptPBu+8mvT/x1PIEidd1p5Vc8GmdWg4SdOcKJSoWw/VRNYtzN1IofpkOc+ZA916uRMWqgw3qvJ2m3ZIPYoe8Uc7cnvVnmWz9MhusVTGhTPmkNcWFEE+HkpWK0++txsxZ2ZSgmyW5cCyYxtWPAXD5Tin2rc8lQ2YiTziy7Qxjv29hzttQo+w5dm++w/ffw/Mj/CjhqRKfLt9Zz6pJUK3t3vX7XLlbEgC/Spew09v+q2FuTKaWeHp5EVXFFE9PVbu8UiV1e8+ejNcrflJGowpkfH1V0J+QrTtBUJD6/te/P5QqpZLgJf5elRclXuogCdQy7/nnoWRJ7XbZstCsWdLt0ptMzWTSgm69XtW7f5pI0J0L6HRQubJqX7yoMvlmhMkEX36p3ngMj5Zo9+56k+mL6qe4T+Xa5czrUc9cq8CuHbGZ6Ll1JHw45M8PHh7Z1g0hRA6is9NRoWYZhvQLNd+38N8i2dgj8bRZ+bcWSA/vtY2DgWUJaK7+Bu0d7Xmp9xlA1ZufOelMtvQxPQ7vCDK3/aqFpryhFSUOunPrSHcCLy9VuzvBzz9nXZ/Wr1cjuc8+a5nMrUUL+PRTlezO6bGJVjt3QqNGcOJE1vUzK4WFwe+/q7a7u1baSmScoyOMGqXdHjBAq+GdWHqTqR09qi3BaN4cChe2Tj9zCwm6cwlvb/WvwaCuWqaXIc7A64Mu8dFH2n0jR8Kfy4qlOeV12Miy5vasudkzPdZkgiuPkr+Wtv2MNyFELtNjaB0cHNRMnL9XFMk1JZpE7rd2S0Fze/S4Cji6WM7EeukdH3MJzpmLqhAXkzOrbxw5os1kq+2vT2VL6/H0VKNm6vlzR2m15Ea6Ezz/vDYo8Oef8OCB7fuzahW0b2950aJhQ9i4ETZvhs8+g02b1BrbTZvgo4+gXDm13bVrasR72zbb9zOrLVgAERGq3a9fxnINiKRGjoRXXlG/y8QXlxLz8dHWeac20v00Ty0HGwfdISEhvPPOO/j7+1O3bl0++OADIhL+J6Sgf//++Pj4WPx88skntuxmrpAQdEP6k6lFR0TTp+0+ps0vb77v66/hhx+Sv1L1uF4vFDR/iCxapCVRyEp3rtwzZzYt43U96zsghMjRCnq50q6dDlDJWXbvzuYOiadC6J1Qdp+qDoB3yUuUq14qyTYlKxWnayO1wPHGg2Isn5vF847T6fDlOua2X4saWfa8CaPd4eFa/d+cLPFI9+NBt5ubGgUElTF7/nzb9uXWLRg8WA1MAPj7w+rVahS7VSvLbZ2d1Yj3//4H+/Zpo5IJdcYTB0K5nclkOdNg+PDs60te4eSkpusvWGCZQC0xvV5LKnj5smU9+8QS/tZ0OujRw/p9zelsGnS/++67nD9/nrlz5zJ9+nQOHDiQrgC6d+/e7Nixw/wzOnHe+qdU5WLnze1zO9O+NGk0GOnV+jiLtzYEwF4fx7xf7jF6tPpjTw8XFy0pSGQkzJie9eXDgs9ql5bLFDyfypZCiKdVQi1vgIULs68f4umxaVmgeS13+yYpL5AdPkJLVPrzLzkzoWLCSKmDA1TzK5Blz5vbkqklDrq9vJI+/uqrWnv6dC0gtjaTCYYM0QKbrl3V6GLHjml/v/PyUqPgHTuq2zEx8NxzMG2ato3RCNevqwB+8WJttmFusGOHlg2/UaP01Y0X1pHWuu7AQPUD6twUL541/cpJ7NPeJHMuXLjA9u3b+eeff6hZsyYAH330ES+//DKjR4+maOIFMY9xdnbGK7l3tBQYDAYMhuyvJ52ahP5ltp8Vy2szBM6cTfs4P7y/jdV7WwLg6hTBopkn6fBCnQw//5AhMG2amm72/vsmapTaT7s+/hnsfeYFXQgxt0uXynnn+UnPq8i55NzmHl26gKOjHbGxOv5ZGMXEb/QWtdATk/Oad2XluV3zn1Zcuk0HpxSfs2UvXyoWu8yFm2XZeNifwAMX8K5dzub9S6/ISDh92g7QUb26Cb3eSIZ+fQYDenPTQEZ2VgGR2vvgQSM9eyYfpeaU/7O3bqnfU6FCJnS6pL8nHx9o1syObdt0nD4NGzcaaNnS+v2YNk3H6tVqzKxoURMzZhgzND3f2VnVSX7lFR3z59thMsFrr8Hvv5u4e1eNVMbEaNF70aImAgON5LdyJUtbnNdp03QkjCe+8ooRg0EqWmQVf3/td3/ggImuXS3P7YwZ2uM9euStc5Pev2GbBd2HDx8mf/785oAboFGjRtjZ2XHs2DHatm2b4r4rVqxg+fLleHl50bJlS0aMGIFLKlXtz549a9W+29Lx48cztV+cvRZ0B5534Ugql4UvH7/NB99r84t+/HIDxaqVSnWf1Azom5/5f1XGYLSnzzAf5sevo3T1rElYdPyoNkfFxS0006/B1jJ7XkXOJ+c2d2hR14l1u2pw47YLC2euoFqj1GsNy3nNu2x9bk1GE2t3qGVbjvYxFK5gTPWzqW/Xq3w5Uy1gHv+9I2++nfK2We3ECVeMxqoAlC59jyNHLmdof7uoKBIGrI8dO4Yxle9qj3N0dADUUOT27Q85ciT12WzZ/X/25k0/QE/+/NEcOXIq2W3aty/Itm2qyszXX4dSsKB1C2VfvOjMe+9VNd/+4IPzXL8exvVMrL574w3Q60swd64acty1K/lh8lu3dPzxxwUaNHiYqT6nxVrn9f59e/75R8UcHh7xVKp0zCJfgbAtNzcnQC1P2bQpnK5dtXN78KA7U6aodbL29kaqVDnBkSM5M8eFLdks6L579y6enp6WT2Zvj4eHB3dSmuwPdOnShRIlSlCkSBHOnDnDxIkTuXTpEj/++GOK+3h7e+OaUFMrhzIYDBw/fpyaNWui12c8UYnJaKKg2wMeRBTkdHA5KpR2IH+hpJcdox5GMaCHB7Hxahrb2/02M+DNLk/U95lzDTy8toel2xvwMCo/b7xdi127TZSoUCztnZ/Q76HaQnK/emXw88tZdbqf9LyKnEvObe7S/7ndrNul2ru25OeFEX7JbifnNe/KqnN75lQUl++4A9C05gkCGgekun3pcdWYON9ETIyOVf+V4ucZJchAbGpT+9ZoRXVbNTbil9GCxony9Pj6+qa86DMZJhN4epq4f1/HxYv5U3zunPB/NiICoqPVc5cp45xiX6tVg8mTTdy+rWPLloIULephtWm0MTEwbJideRT6tdeMvPZa5svIAsycCbVqGXn3XR3x8TpcXU2UL68SrsXGwvr16rkiIirh52fdANba5/Wbb3TEx6uR1GHD7AgIyFnfF/O6WrWgQAETISE6zp9XCaFq1qxJWJieHj3sMJnU39Lnn0OHDtWzs6tWFxkZma4B4AwH3RMnTmTmzJmpbrN69eqMHtasT58+5raPjw9eXl4MGjSI4OBgypQpk+w+er0+13x5ynRf9eDvfYmNhwtyK6QIrRqeZvX6WIpXsJym/8GrBzl1pTkAtcqfYfyMRk/8u9Hr9fy20pcW9U6y/2x1rt4rQfeOgWzb74F7QfcnOnZarlx3NrfLe3vl2POcm/4GRcbIuc0dug+ohfPoKKLjXFiysRpTDSbsHVP+iJPzmnfZ+txu2Kx97rV/1ifN5ypS3IXevVUiogcPdCxerGfgQJt1L0OOHow2t+tUvYFen8FZbIleu16vt7idHn5+KrP2zZs67tzRUyyVa/nZ+X/27l2tXbSoLsV+uLio8qwTJkB8vI5ff9VbVI95Ep99pq19r1YNvv3WLqO/7mSNGqXy95hMULiwzrwu/MgRbd39sWPWea7kWOO8Go3qAkKC4cNt11+Rsrp1YcMGuHFDx+3bDtjZ6XnjDb05L0Dz5jB6dN47N+n9+81wIrUhQ4awevXqVH9Kly5N4cKFuX//vsW+8fHxhIaGZmi9dq1a6krV5csZm/KUF337nSue7up3euRiFRo1jOXsIW3q0prfDzB1oQq4nR2i+OMPfZplwdLLNb8rK9YWoVwR9T/n8IWq9O10ivjYeKscPyXBN1StB53OSMmKKecBEEI83fJ55qNzoyMA3A71Yuu/x7K3QyLPWrtWa7fvkr4Lz4mTbGVlHee0HAnUZiTWalw+lS1tI7ckU0upRndyXn5ZS2j2yy8ZWuaeok2bYOJE1XZwUHWorTlbonBhlWQtcSK2qlXB/tF1y6NHrfdciVkr2dzatXDp0dfh9u2hYkXrHFdkTOJkaqdOufLHHzr++kvd9vBQWf3zWsCdERkOuj09PalYsWKqP46OjtSuXZuwsDBOnDhh3nfPnj0YjUY1BSmdAh+lustIoJ5X1W5RhZ2bQijrdRWAoNuladwyH/vWneTOrXgGva7V1f52zD6qNahk1ecvWs6LVctj8HANBWDVnvq82W8nJmP63jUvHL3M5cCrGXrO4FvqvBcrcDtJDVQhhEis93Pae9GiP8KzsScir4qJgS1bVLt4cUiUtiZVDRtqmZT37oWXu21g//pT6f78tAVDnIFjF9X05IrFLie7ZM3WEs/SPnw4y58+3VKr0f24cuWgUyfVvnJFlfJ6Eg8fwsCBWoA6YYLl781WnJzUiDqorNPR0alvnxEmE7z3no5mzfz46ad0ltRJhZQJyxkSB90bNxbkjTe0czt9OqQwYfmpYbOSYRUrVqRp06Z8/PHHHDt2jIMHD/K///2Pzp07mzOX37p1iw4dOnDsmBqRCA4O5qeffuLEiRNcvXqVjRs3MmbMGOrVq0eVKlVs1dVcpUq9CuzabU/NcmrtwN2wwrTsVp4u3fTcClEBasf6+3ltXDObPH+1gEosmXcRB30sAD/93Zx/ZuxJc7/dq49TuXZpvH29OLHrXLqeKyYyhpsh6m+lTNG7aWwthHjade5XC1cntcZ08cbqxMU8fYlahG3t2BRKZKRqt2uX/hKcOh289rwWVc5c0Yb67apRq+I5Jn+wlbtX79mgt6k7e/gSUbEqH07tKpnIxGUFuXGkO62gGywDvyed2fDLL3D10XhF69bw1ltPdryMeDTZFIMBTiWfOy5TFiyA77+3IypKz+ef655oxDs4GFatUu1SpaBzZ+v0UWRcQg14gP/+K0RYmHqD7N8f+vbNpk7lIDat0z1x4kQqVKjAwIEDefnll/H39+fzzz83Px4XF8elS5eIiooCwMHBgd27dzN06FA6duzI119/Tbt27Zg+fbotu5nrlKhYjG17i9Lc9wgAkTGu7Nun/rC9vEzM+bsyOrsnv3KYklbP1mbGl3vNtxf8lvaf0ZwZDzCZ7IiNd2L2j+n7cL92IVGN7uK2yZophMg73Dzc6NJYzYO897AQmxbbaE6keGqt/UsLnNs3vZahfYe9V4v3BmwxXxgCOB7kzZsTmlOyvDuv9NhGTGRMKkewrsO7tc9Yv5pZ97yJ+fioElaQs0e6MzK9HKBDByj7aPLhmjXa1OeMiouDH37Qbk+dCnY2/eZuKfGIurUuily6BK+/rt2+d09nrt+cGb/8grlk2ssva1PiRdYrXTppDfty5SCVXNhPFZv+1y1QoACTJk3i8OHDHDx4kAkTJuCWKLNlqVKlOHPmDAEBKvNn8eLF+e2339i7dy/Hjx9n3bp1jB49Gnd32ybryo0KFPFgza4qPNs9zOL+OXN0FCtTwObPP/DdxhQroD6wNxz0Iyoy5cuURoORldt8zLeXbKiYril1wde1v5Uy5XNIqlchRI7Wp4/2sbboz6hs7InIbYwGI4O7bKdQvvss+G5Hstus3a5SUet0Rtq2d052m5TY6e34Zl4Lbl43MvPL7TSsqpVKio134pdlzZjwzu5M9z+jDh/UZoLUrpv+rOPWZG+vTdE/f15Npc6JMjK9HNS61VdeUW2TSSVBi89ECpy//tJGubt2Veuss1LCSDdYZ113fDz065f0PG/dmrnjPXwIs2aptl6vktiJ7KPTWY5229mZ+O03rF7jPbfKwutlwtqc3Zz5a3F+3ntPJSj49FPo8mTVwdLNTm9H5y7qcmJUjBObNqc8sn5o82nzNHGA4DulOLAx7cuawbcKmdulff0y31khxFOj4/O1cHdW3+iWbK5JbFRsNvdI5BY/fLCNX1c15X64J0NH12f3asv6wdcv3OTYJXUBuW7lQAqXKpTcYdKUzzMfwz5oyq5TNTm55zzv9NuCvV4FwF/NbsCFo1mTOHb3IS2Jml/j0lnynMlJmGJuMsGxHJr/MKPTywGGDFFJz0AlkGrf3vI4aTGZ4NtvtdvvvZf+fa3F2kH3hAmw61FpRw8PbfBl27aMHys+Hvr00S6IPPMMlCjx5H0UT6ZxY609dqzJ4vbTToLuXE6vh2++gZAQdSU1K3XppX3hWLEi5e1W/JP0U2bxH2l/8iSUGABJviCESB+XfC50a6q+uYdEFGD9WlnXLdJ2dPsZ3v+uofl2nMGR5/oX5nbwHfN96xafN7fbN7+DNVQLqMTEBS1484WdAMTEOfPmayFWOXZqFk/fzc6TKrNbWa+rFC+ffdVBckMytYxOL0/Ybto0LVvzpk3g768FnWlZuxaOP7ruExAATZqkv7/WUrgwlCyp2keOPFm28b17Ydw41bazg2XLjLi6qtTu27Zl7NgmE7zxBvz3n7pdoACMH5/5vgnrGTkShg41MnToDT7+OPsSReZEEnSLTGvbVmW3BFi5MuU3zJUbtU8oO516g128tX6ab7DBwVpbgm4hRHr1eVXLzvTnP1k3bfb0/ov4lj9LQJUT/PjxVh7cCsmy5xaZFxUezYv9VM4RgPwuqkLHtfvF6dv9qrk05tp12lem9l09kx7oCXzyQx1KeN4EYOXOWqxcadXDW7h/H177sJr59tefBNs0D0xackMytYTRVBcXcMvAW8qwYbB5s8p0D3DtmqpVPHly2kFm4lHu0aPTn7TP2hIuioSGWn4vy4jwcDWtPKF82kcfQdOmUKuWqjJx/TpcvJj+402apLJhg5pNsGwZeHtnrm/CutzdYcYME8OHXzfP9BCKBN0i09zcoFUr1b52DY7sj0iyzbVrcOi8WoRU2+cqzVuoT43zl1zNV3BTEnxJS+xSOvtmvgkhcpn2nV0pWFC1lyyBsLDUt7eW0Z+V5HiQN/vO1OCNL5pTvLQzL7Tdyca/D2E0GLOmEyLDxr5yhJPBlQGoVf4Mxw4+pHhBFQBvPlKbj0aexhBnYP0+NbU8v0soAe2su7g2n2c+Jk0tbL49ciRE2SglwTvvwK37HgB0a3qE3iMaprGHbdWsqQWUOX2ku2jRjAe/TZvCoUMq2AY1LfrNN1U255TWsB86pEbGASpVgu7dM9Vtq0g8xTyzF0XefFOt2Qc1av/xx6pdu7ZW2jG967r/+cdyqv2cOdrvVoicTIJu8US6tNayi6yYtz/J44mv1nftU4pevbQ/ucWLUz/2lTPqkqqTQwxehWWKihAifZyctPIkUVFpv9dYw/XrsHqtk8V9MXHO/LmhMW16+1Op5FXmfLXd9h0RGbJ2LUz5owEAzg5R/P67nrJVS7Fo3m3zOuuvZ9TgkzG3uPdQLalqXTcQByfrD+H0ed6eli1V+9IltXTM2tatg19/Ve38+WHan37ZOsoN6gK+z6NcqydOqIzdOUl8PNx7VNEtveu5H1esGGzYAGPGaPctWgQtWlgmaUuQeJT7nXe0KerZ4UnXdS9dCrNnq7abG/z2m5Zh3N9fu+qQnnXde/ao8lMJxo1TI+hC5AYSdIsn0qWzlo5z5QavJI9bBN1doUcP7XZqX4RNRhOXbxcDoIzX9Wz/UiCEyF0GDtTa86bfSHXb8HDo1QvatFFTbzNj3jxt6uSQfg948/mtFMqn1V6+dKsMwz5ozJUz2VMPWSR15w4MGqTd/ubLcKo3rARAk66+TPwq0vzY+O+1DE3t29omOZ9Op0pCJQQkX31l5NLJjJUlS014uCqplGDiRG29bnZLmGIeG8sTlY+yhbt3tangmQ26QZ3Xr75SU6E91EQDDh2CRo3g3Dltu0uXVEAOqvxS4vey7JB4zX1mgu7E+YamTFEj9wmqVYvE2Vn9ctMKui9cgG7dIDpa3R44UBsxFyI3kKBbPJEyVUriW/4MAPvPVufGRe2SbWSkurIL6iqvv7/KLNmokbrv5Ek4czj5LxShd8MIj86nnqPoA9u9ACFEnlS/PviUUcH21n3FuXTiSorbTpyopqFv3KjaGWUyaSM5AB99XpDv/2jOtZvuLJq2m7qVTz3azo6d64LSPF5EaATLZu3lVpB1knWJpEwmeOkluKlmkdOhA7z+ruWF45HveNCnT9J92/esYLN+Va8Oo95QQ73R0Xa8+cpVqx37g1f2cvlRYvSWLdV645wiJydTy0wStdR07w67d2u5ai5eVBmfDxxQt7//Xqs7/frrah15dqpYEVxdVTuj08ujotTsBVDLCAYPtnzc0dHEo6rBXLpkmUA3sfh49Xu78+gtsWVLVZ87u9a5C5EZEnSLJ9a1tTaKtHrhWXN70+Jj5iuSXTrHY/for61Xa20x9+JfE13eTST4rBa8ly4Rmew2QgiREp0OBvY4Y7694OcLyW4Xdj+KyZO15SupVWJIydZ/T3Dh0eFbt4by5VXbydWJ54Y3ZNxHWr6LvbvTnjs7vO9herwUQOvmIbIW3EZmfXuMf/9V7cKFYe7cpF/gdTpVA7haNe3vw6fUJcpVL2XTvn36UbR5TfnynQGsnr/viY+5c+UxfvxTFdB1cYph5sycFbDUrau1N2/Ovn4kJ6M1utOjalWVxTyhRvmdO2qq+Z9/ahfwXFxgxAjrPN+T0OvBVyW65+LFjOXIOHlSu4BQt27yf3NNm6ZdOmzFCnUsUL+7JUvA0TH9/RAiJ5CgWzyxrs9qyV9WrNbeBVcsCdG2aXTQ3O7Zp4C5vXh18peNr1wMNbfLlIpPdhshhEhN/xHe6HTqG9/8JeUxGZPmhvjp872EhGjfBE+cgKBTGZvSO3t6iLk9rNeRJI8HtKlobu89knrWa0OcgWVb1Dfck8GV2f3fiTSf/5cvtlHX+xS/frMjfR1+ykWERjD6c60kxuzZajZWctzdYckSHR75VGLPgb1sX0M7n2c+Jn2mpXIeOaYoMZExqeyRuuiIaIYNd8NkUl/5vhi1m4oV09gpizVurH7XAKtXa0s1coLM1OhOj5IlVZDZrJm6HREBL7ygZgkCDB2qLgjlBInXdWeklnribRMC98elJ+j++Wet/f33qkSYELmNBN3iidVrU40iHmrOz/r9NYiOiMZkNLFym8oG6+QQTeteNc3bl6temjqV1HTLQ+erJjvtM/iSlra1TNlszCAihMi1SnmXoHVtNVf1ws2y7Fpt+W0xIjSC7+bWSLLfyj/PJ7kvJSG3Q/hnUx0ACro94JkBVZJsU6iEJ5VKq/fIQxerE5vKkuBjx3U8jM5vvr3wt9SX19y/8YA3xgVw8Fw1Bo9pwqevbkn24oLQ/DXtECERBQB4vs1OunVLfXsfHwg8EsK6Pw8y+tumtu8g0Pf1hjT3PQKov911CzOxmPaRb8fs4fRVFWXX9znBqC+y5jVkhJMTtGun2nfuwL4nH9y3msQj3daYXp5YgQIqmV+vXpb329nB229b97meRGbXdSfeNqWgu0EDLY9BckH3uXOwfr1qV6yoytUKkRtJ0C2emJ3ejs5NTgMQGePG5qXHObz1NNfvq8KUrf2P4+bharFPr87apeMl8y2nfcZExrBitbaIqUx5y32FECK9BryoXcCbNyvU4rEZ4/dzN0wNJdWpdNJ8/8q16S/E+8dPR4mOU+9X/bscw9nNOdntApqp9cIxMXapfmndsdPyY/nvtVUwxKU87PfX9GPm+tIAn89owatD7hMvE4RS9PPcQub2m+8VSNc+xSsUpW3fOugdsuYisM5Ox5tvaKPbWzdlfpnVwhUqW5reLp5Zsx2z7DVkVJcuWjszyzxsxVYj3QmcnWHhQnjtNe2+557TlqnkBJktG5aekW43N6inVj5w+rTl7xtgxgyt/cormJcqCpHbyJ+usIou3RJNK18WxYq/tUvDXTomLTbaa0BZc3vxSu0LUNi9MDo3Ocl/+9Q7sJtTOLWblLNBj4UQT4OeQ2vj7qzK0ixcV4uoh+r9KCo8mm9/0Wotz5vvROnCalr55sM1eXg/hQK6j5n1u/YtfOjrxVPcrkEDrb13b8rH2/5YVbGbIUXZsfJ48hsD8xYmnX/6y7xCPPus7eo852b715/i4LlqAPhXCqRem2rZ3KOUNemgpXneti9pdZD0eHj/IaeuqFFu3/LnqNnY2yp9s4VOnbQ1v4krn2Q3aydSS45erzLX//orjBoFP/1km+fJrMS11NM70m0yaUF3iRKpT5VPmGIPlqPd0dEq3wKoNdyJqw0IkdtI0C2sot1z1XG0V1flV26tyIoN2hfRLs9XTrK9t395apRVSdR2B9bk2vkb3LwJzVvas/GwP6Bqpv758ykKlyqUZH8hhEgPNw83nm19BICwKA+Wz1ffGH+duJ+bIeobdK/mu6nesBJdW6hp5bHxTmxYfDLZ4yV2aHMghy+owL2e90l8m6Qc0CRk6AVVazY5JhPsSGZZ9sLfk89cdPrAJfadqQ5ArfJn+HP2NRwelY/+998nK4GW3YxGdXHC2v3/ebJWxm344Ls5uhxl4VKFqF5GfU4eOu+T7gtBiR3ccsG8lru+b87Ohl+0qKo6AHD8OOZM69nNFonUkqPTqTJYP/wAhXLY1x53d63U1/HjpGsmzbVr2v/flEa5E6QUdP/9t3aM555TJdSEyK0k6BZW4V7QnZa11WjMlbslzSMJfhVOU9o7+dGfXh21ZEUTv7hFo0Zw5LiaSu7pfp+NS8/TdXB9G/dcCJHXDRySz9xe8Jsj8bHxfDNduxj44WcFAejSXVvKsuLftLOMz56mDYEN638vlS3V9EwnJ7XWeu+OkGS3uXTqBjceFYNo1CAOZwc1VL14Q1XiY5N+y503TYtKBva+Qd8hJfnvP8j36OXu2gVNAx5w7Xzqdcozw2gw8tv3O5k1frtN1pBPmqRmB1SsCNu3Wmeu/INbIfy1Xq2/93AN5fnX/K1yXFtqXl/VdTcY7dm99kwaWye1b6e2pKJ+/Zx7gSFB165aO6eMdieMdNvZ5bxgOCslTDGPjrasK56SxFPLE09PT07jxtpIeuKgO3ECteHD09dPIXIqCbqF1XTplfQSZJfWN1Pcvle/Eub2D/P8uHRJtcuUgR07nWjUuWYKewohRPo16+5LWS9V73jdAX/++fkWV+6qda5dGu6jdguV/Kxlj5q4OqnyXqt2VEm1XFfUw0h+X+0HgKtTBH2H+6XaB0dH8K+gMpGfv1yAe9eTDuFuX63lt+hYdyedGqpR+duhXmz91zIJnCHOwG/L1ci63i6eF15VI96tW8PWrdo02FPnCzLsRevVega4e/UenRoeov/bjXnpw6bMn7TTqsc3GNRoH0BICLRta2DZrJTn5JtMqtRSz552bNhQIMXt5k8+QlSsurAyoOsR3DzSv3Y/uzRr7mBub9uU8ZHu/Ye0pV/1m6WQoj0HSRx055R13QlBd+HCahr40yqjydTSs547gYeHdvxjx+DBA/Ucu3er+2rWhEaNMtJbIXIeCbqF1XTpUzbJfV2fS3kuVo2Glalc4pLlfTXU6ExV35z/ZUgIkTvY6e0Y0EMFtEaTnokLtHTVH36ivdc4uznTtp4KjG+HerF/w6kUj7l41iFCIz0A6N3mEPkL5U9x2wQBflqgvXfjxSSP79ihBflNWhagTx9tBHnh7xEW225eepSr99SFy44BhyhaTrvoWbs27NoRR0lPNcK9Zl89Tu1Nf0b21Oxbd5I6/lGs3a8VVp77j3UzPm3cCNeva7dj4pzo9XJdpn+eNLXx5ctqLfALL8Dy5Tref78C65ckHYYzGU1MX1DafPvVt0patc+20rRjBXN765GqqWyZvH0n1Wt2cwqnar0KaWyd/WrWhNKPTtPmzfAw49cZrMpk0qaX23JqeW6Q0WRq6clcnljz5urfhGU206drj736as6qKy+sZ+zYsYxIVJC+f//+fPnll1nej7179+Lj40NYRgrRZ5AE3cJqypWDGtW1L41FC9ymbquk5XMS6Ox09O6kTY9s1kwlESqZO74LCSFykf7vNEtyXxv/QzToUN3ivq6dtHpeK/65m+LxZs0vYG4PfcUjXX1o0Mje3N67MzzJ4zsOqTc/B30s9dt40/lFX1ydowFYsqMJcYlmvM9bpvV7QP+k2c0rVHLg3ZfPmm9P/eZ6km0ywmQ0Me3TrTTpVJngO6UsHtu6ryRXklZ+zLR5v2i/d38fdWHWaNIz/NNm5pJohjgDUz7cRvXqRtasSdRPk45+Q70IPm1Za33L0sPmslnNfY9QLaASuUGJisWoVEl9ru47VixDyfFu3jCZz1XdmvdybNbyxHQ6bbQ7NhY2bMje/jx8CDGPksg/7UF3Zke6HR1V2b20JF7XvWoV/Pabaru5Qb9+6e6msJKxY8fi4+ODj48PNWrUoG3btvz444/E27g0xtSpUxk1alS6ts2KQNmaJOgWVpV4aljnFlex06f+Jzbm6zoM7bqd94dsZe0aEwUK2LZ/QoinU2VvXZLpiR9/kjQI6dxXS4a2cmPy03HPn4etR1R9b5+yN2mczqUwAS212UB7D7lbPHbnyl1zUFin8hlc87vi5uFGl26qBNm9ezo2bVLbPnwIS/5VZcIKFICugxqQnMFv+5kzt89fVYcHt0LS1c/HRYRG0L/jLl77vDlxBjVduVG1Y4x4Wbtw8NdfmTp0EmH3wli64lFuD49Idh4ux+hBW8yPfz6jBQM67aKxbyCjxjcjIkJ9xpQoAY1qqNKV9x4W4tnuIcREaiW3fv5DGyUe/lLmy29lh2bN1GuMjc1Y/er9B7Shwfotk85Ey6lyUukwW9bozm1KlgRPT9VOa6Q7OhrOPEpBUK0a5gSPqWnSRGvPnAnhj95e+vWD/GlPJBI20LRpU3bs2MHatWsZPHgwP/74I7Nnz06yXWxsbDJ7Z06BAgVwd3dPe8NcSIJuYVUDB9nh5KSuVg8bnXaSmnye+Zi1vCnjZzfH2UXmDgkhbGfgQK3dpHEszbonze5TrHxR6lVR05OPXqpC8GXLJGEGg2VCn6GvFUt3BuyyVUtSxENlkN53qqLFmvGda7Xp303qaUnZ+vTR9l+4UP37zz8Q+Shu7NuXFN87Pbw8GNTtEACRMW7MnngkXf1McPMmfPPeLmr63OP3dY3N97/5/Fa2HKrK26O1L0a//56hQ6fo71+OmtddP99uP84uOr6e24Lvx241b/Pb2sbsPV3DfHv4kPucOgX/rvWifNEgAPafrc6ofmod+I0bsHS5qqVepIiJHsNyV4LOhGm3YJlkKi2JA/SEOsi5QcuW4Poop+GqVSqTfXaxdY3u3ESn00a7b95MWk87sVOn1HslpG9qOajM5NUeVfBLfM4lgVr2cXR0xMvLi5IlS/LCCy/QqFEjNm3aZJ4S/vPPP9OkSRM6dOgAwI0bNxg1ahQBAQG89NJLvPbaa1y9quUUMRgMTJgwgbp16xIQEMA333yDyWT5Gfv49PLY2Fi+/fZbmjdvbh5x//vvv7l69SoDBgwAoF69evj4+DB27FgAjEYjM2bMoFWrVvj6+tKtWzfWJJ4SBWzdupX27dvj6+tL//79uXbNcnaULUjQLazKxwcuXoQLF6Bhw+zujRBCaPr1g+bNTRQrFsMPk1Oeatv1BS2z+cpVlgHtp59qU16LFoUhQ9L//Do7HQ1qqLXcDyIKcu5IkPmx7Vuize2mLVzM7Y4dVbkegKVL1WjnvHnaMRNfSEjOG2O0dcw/zquUbBb0xOLj1ejiM89AqVIwZmIjLt0qA4C780MWTdvN9380x8HJgYoVtVJoR4/CyYMpT8dPr3l/aENaA1/S1qm/OaE5f07ZhYNeG1HxKXmRbf8eZdpsTzw8oGDRAnz71Slz1vcZS5vx6zc7mD1bK3E0dKgOR2dtmn9ukHja7dZN0Slv+Jj9+7V2/Vx0ncHZGdq2Ve3bty1fR1bLihrduUnidd2pTTHPSObyxBJfYAJVwSAj++cagd/B0lJp/2ztlnTfrd3St2/gd1bvtpOTE3GP1jnt3r2bS5cuMXfuXGbMmEFcXBxDhw7Fzc2NBQsW8Nlnn+Hq6sqwYcPMI+Fz5sxh6dKljB8/nj/++IPQ0FDWr1+f6nOOHj2aVatW8dFHH/Hff//x+eef4+bmRvHixZk6dSoAa9asYceOHXz44YcAzJgxg2XLljFu3DhWrVrFoEGDeO+999j36ErkjRs3eP3112nZsiXLli3jueeeY9KkSVb/fT1Ogm5hdSVKQHnr5tURQogn5uoKGzcaWbnyhMX6xMelVLZo+Zx9JFyA1+vVyHNGSwgF1NEW5e7drK2z3nGgsLnduL223tjFBbp1VUNGISEwc/xOtj4a9PX2NlnU/06Ot38FOtZXUcvlO6VY/uuBZLczGU18P3YrZcoY6dZN1fk2JFoq3rr2IQ7suMNzwy2vpr7YU6tQ8cfPJ1LvTBouHg9m+wn1Dbtq6fPUbW2ZOKzvG43YsDiQLg338cUbWzhypgRNu1l+Iy9XsyjTvtBe4/CP6jB1ivqSqNPByy8/URezRdmyULroAwB27TISG512OTuT0cS+3SpAL1LESJkyNu2i1Vn+H8y+WXBZVaM7t0hvMrWMZC5PrNljqTfy7Ch3XBhEXUv7J/pO0n2j76Rv3zjrrXM2mUzs2rWLHTt2EPDoQ8fV1ZUvvviCypUrU7lyZVavXo3RaOTLL7/E29ubkiVL8uWXX3Ljxg1zsDtv3jxefvll2rVrR8WKFRk3bhz58uVL8XkvXbrEf//9x/jx42nbti2lS5emYcOGdOrUCb1ej4eHyqdSqFAhvLy8yJcvH7GxscyYMYPx48fTtGlTSpcuTc+ePenWrRsLH00X+/PPPylTpgxjx46lQoUKdOvWjR49eljt95WS3HW5VwghhLCxWrXUKO/Vq7BpE0REwI1zlxnwhpYN6OsJ8TRvnvGP0IAm+WGKau/da2AAas30ofPq2NVKn6dQScskX33aHOSPP9VQ5bvjtWU7AzvvRadLfj13YqNG6fjvRdWe8pMzPZMJPL9+Zyvv/9DC4r4SJWDQQBOD+1yjUq3klwv17q3nrffjMRjt+WNFRb4wmtI93f5x86ddBFR0OKDXVXR2SZOdNetei2bdUz/OgHcasXfPNmYsbUZ0nIv5e2unTirhZ26j00GzWqf4fV1jomJdObTlBA061Eh1nwvHgnkQptZx1694AJ0uFw11A507a+3Vq3X06pU9/ZDp5ZbSm0wto5nLEzRtqrU9PaF37/Tvm6s45AeXdGQNdk5aihdnr/Tt6/DkC+G3bNlC7dq1iYuLw2Qy0aVLF9544w0+//xzvL29cXTUShKePn2a4OBg/P39MZlMGI1G7OzsiImJITg4mIcPH3Lnzh1qJbpyY29vT40aNZJMMU8QGBiIXq+nXgbWx1y+fJmoqCiGPDYNLS4ujqpV1YXcCxcu4PvYH6ZfalfirUSCbiGEECIRnU4lc5o+XWUuXr7gJF99Y28uEfZsi928/U7awW5y6rWqhE5nxGSyY88R9S1+7/qzxBtqA9CkznXAMths37cW+V8PJSzKg+g4l0d9NNL/lfQNX7br60+VMRc4fbUiW4/5cWTbGfyaaRcQFv64yyLg7vGMkaHD7GjfHuztdUCppAd9pGg5L9rUOcDa/XUJul2a3f8dp1E6E8slZjQYmb+0gvm19RuRjnTHqZj8WwCHap9k/1kty/vwF84AT3bc7NK8mYHf16n2tvV3adAh9e33bb0KPAq6/XNX4jiAYsXUOvT9++HoUR03b6YjE5cNSCI1S1WrqqRocXEpj3SbTFrQXaxYxi5WlCyplsz8/jt88YVaapAnVX1b/WRG8+XW7UsqAgIC+Oyzz3BwcKBIkSLY22tho4uLi8W2kZGRVK9enYkTJ2IwGAgMDKRq1aro9Xo8EzLwZZBzJv4AIh8lPJkxYwZFH/tPm/giQXaQ6eVCCCHEY7o2PW5uDx1VnmOXVLBWpdQF5iyukenR3PyF8lOtjFrXfeySN1GRJnYc1L4YNGma9GPZydWJZ1oct7ivld8RSvuUSNdz6uzseGOIlsxmyhytXvPOlccY+LY2iv3lyC0sWWpH585gn87L8i/00bKE//7r/VS2TNmOlcfNa8fb+B+mVOXimTpOAidXJ/75twCF8qmkdJWKB9HhudxRJiw5zdprFz627XJNc/t9e7W1+/Ub5c5MwImnmG/fXiBb+iAj3ZYcHbVkZ6dPJ19H/eZNuPcoF2RGRrkT/Pqrml2UZ6eW5yIuLi6ULVuWEiVKWATcyalevTqXL1+mUKFClC1blmLFilG2bFnKli1Lvnz5yJcvH15eXhxNNA0iPj6ekydPpnhMb29vjEYj+1NI7ODwKC2+IdFaqIoVK+Lo6Mj169fNz5/wU7x4cfM2x49bfqYeTU8dvCckQbcQQgjxmJZdK+HiqK6YJ2TTdnd+yJLFqurCk2jQWgW98QY9hw7r2H5AC56b9miU7D59+jpZ3B7wYgYKNqOmXHt4qCl8f/zlwJ07cP5wEN1fKElMnBpNGNp1O+9/3zy1wySrx2Bfc/KyReuqExeT9prjx82fra0/HPhi+pOFpaZMlZLs3BzKRy9tYcW/xlxRpzol3v7lzZnvtx/1wRCXtDZ7YvuOaCNL9VpWtGnfbCVx6bDt2z2ypQ8SdCfV+FEhA4Mh+aoFmZ1anlg2D0iKTOjatSsFCxZk+PDhHDhwgNu3b7Nv3z6++OILbt5UuT8GDBjAzJkz2bBhAxcuXGDcuHGp1tguVaoUPXr04IMPPmDDhg1cuXKFvXv3snr1agBKliyJTqdjy5Yt3L9/n4iICNzd3RkyZAgTJkxg6dKlBAcHc/LkSRYsWMDSpUsB6Nu3L0FBQXz99ddcvHiRFStWmB+zJQm6hRBCiMe45HOhbT3LK+FzvjtB1fpPHsAENNA+enfsgN27VbtkSShbLvmP5TbP1aKgm0qm5eYUTs8hGUvp657fgWHD1Oh8TAxM+F8UnbqYuPdQZYJrW+cgP//dIFMj+Pk889Gt6REA7oYVZv3CIxnaPzIskkUb1OvJ5xJGj6G1M9yHlPjUqcD/fmlBlXoV0t44B9PZ6WhWW5WVC4vy4NjOcyluGxcTx+HzalS/YrHLeBYvmCV9tDY/P5VbAeDAgXxERGR9HxKml7u7a2XMnnbDhmntn39W08kTy2zmcpG7ubi48Ntvv1GiRAlGjRrFe++9x8cff0xMTIy57vaQIUPo1q0bY8aMoW/fvri5udE2oVRBCj777DPat2/PZ599RseOHfn444+JilIXeYsWLcobb7zBpEmTaNSoEf/73/8AePPNNxkxYgQzZsygU6dODBs2jC1btlDq0RtKiRIlmDp1Khs3bqR79+789ddfvPXWWzb87TxiysUiIiJMBw4cMEVERGR3V9IUHx9vOnDggCk+Pj67uyKsSM5r3iXnNm/KyHmdP2m7SX2lNJneemGz1fpw9KjJfNxKlbR2nz6p7/fX1J0m/0qnTPMnbc/U8168aDLZ2WnPl/BTo+xZU8jtkEwdM8G/s/eYj/dC2x0Z2vf3eQ/N+w7psi3Tfcjr/2enfrTF/Hv64f0tKW53aHOgebvn22TsXGRYeLj2hxQebvXDv/qqdvglS7L+vBYsqJ67QoUsf+ocLSBAOy+7dlk+9uKL2mNHj6Z8jLz+//Vp9rSd2/TGozLSLYQQQiTjxVGNmDR6C9+P3co3c5tY7bjVq4Obm2qfP6/dnzhzb3L6vN6Ig+eq0v/tzPWlfHno9ljZ12IFbrFqjSseXk82fbfD87XNI/HLtvkREZr+Ycl5v2trjge+6fdE/cjLmrUvZm5v25ny/Nt927U50fXrpl6XPadLnMV8/fqsLR0WGwsP1J+0JFF7TOL11j//bPlYwvRyBweoUiXr+iRETidBtxBCCJEMO70db3/dgjcnNMfe0XrFPvR6qFftcpL7m9S9a7XnSMnIQWfNbVenCFYuvk+ZKukoP5MGRxdHnmurpuNHxrjx76/pS0pz7Rps2KDa5ctDk5ZPtl4+L6vRsDIF3EIA2HakMiZj8mV29u3XgtP6TTKXNTinaN4c7O3V69ywIWuD7juJSiTLem5LvXtDwUerFhYt0hKnxcSoBGugMp3L2mwhNBJ0CyGEEFksoPoli9serqHU8Lf92tsWXSszss9WapQ9x7JfT1OnVVWrHfuFgdpo+R8r0pcpfMECMBpVe8AAsJNvJSmy09vRtNYZQK2dDzx0M9nt9h1TI+J6u3hqN8u9GdsB8uWDBo+q8507p+Ny0mtVNiNJ1FLm4gKDBql2TAzMnavap09D/KPJFZlNoiZEXiUfb0IIIUQWa9DYssZpoxpnsyS7ts5Ox+S/mnM8qDJt+9ax6rGbdq1JqZLqG/farUW4m8bAfXxsPNMmh6p+6VTQLVLXrL02K2HbgaRl1cIfmjh1RSX78y1/Hpd8Lkm2yW3atNFG9BNmRWQFqdGduldf1drTp6uLZ4mTqEnQLYQlCbqFEEKILBbQqpzF7SYNsiE1s5XZ6e14/gU1DT8+HmbOTH37f+fs58pNNTreqel5KuTuBONZonnHRPW6tyV9/NBhHUaj+mpXr1XlrOqWTbVurQXd69dn3fPKSHfqvL2hdWvVvnBBXRBJXC5MMpcLYUmCbiGEECKLFa9QlNKFgs23m7YukH2dsaKXXtKmiH/3HamWeZr8k1aDadTwUBv3LG+oXVtLwrdtW9JyTfv2ae36Abm3Lnli9eqBu7uaQbFxo7YcwdYk6E7b4wnVZKRbiJRJ0C2EEEJkg07NggAoWuA29VrnjTS/lStD376qffcuzPjqcLLbHd5ymu0n1FBY1dIXaNPbP6u6mKvZ20Pjxqp97RqM7LuV2KgY8+MWQXf9LO6cjdjbQ926DwH1N3XkSNY8r0wvT1u3blD80SqH5cth717V9vKS35kQj5OgWwghhMgG38z045cvtrFpTRjObs7Z3R2r+WB0tLn97Y8liA6PSrLNlG+11NAjh11DZ5e1malzs4QEVgA/LmpOM/9zXDlzHYB9+9QwsJsbVKuWDZ2zkfr1H5rbWbWuW0a60+bgAMOGqbbRCGFhql2rlsrTIITQSNAthBBCZIP8hfLz0ofNqBaQuzNMP656LWd6Nd8NwM2Qosz+dp/F47eD7/DHOjUMW8AthP6jrJvQLa/r2xdmfnMMJwd1cWPv6RrUrufEb9/v5PJl9bWuTtVg9HljdjkAAQFh5nZWreuWke70SbykJIFMLRciKZsF3T///DN9+/alVq1a1K1bN137mEwmJk+eTJMmTfD19WXQoEEEBQXZqotCCCGEsIEPP9PKn309rRKxUbHm2zO+OUlsvBMAw3oewc3DLcv7l5vpdDDsPV92rb1EuSJXALj3sBD9325s3qZ+1YvZ1T2bKFMmhjJl1AL27dshKunkCatLGOnW67Wa1CKp0qWha1fL+yToFiIpmwXdcXFxdOjQgeeffz7d+8ycOZMFCxbw2WefsWjRIlxcXBg6dCgxMTFp7yyEEEKIHKF2iyp0aahGuK/cLcn879Viz9ioWH7+Q61ft9MZeG1M3hrlz0r+Laty6Fg+OjfYl+Sx+g2dsqFHtqPTaVnMY2Jgxw7bP2dC0O3lJfXj05I4oRpI5vLczMfHJ9WfqVOnZncXcy2bvY2MHDmSQYMG4e3tna7tTSYT8+fPZ/jw4bRp04YqVarwzTffcPv2bTZkZWFGIYQQQjyxjz7VspNPmFqG+Nh4/vllPzceFAOge5P9lKteKqXdRToULFqA5Tvq8uXILdjpDOb7A1qWycZe2UabNlrb1l8LTSYt6Jap5Wlr2xYqqvLwODtD1arZ2x+ReTt27DD/fPDBB7i7u1vcN2TIEPO2JpOJ+Pj4bOxt7mKf3R1IcPXqVe7cuUOjRo3M9+XLl49atWpx+PBhOnfunOK+BoMBg8GQ4uM5QUL/cno/RcbIec275NzmTXJes07dNlVpW+cA6w/W5eLNsvw+ZTvTZmsZqV5/09Gq5+FpPrdjvmtKvcaHmfgttGn+kJKVm2XN78FgQG9uGsAGz5nwOpo3jwccAVi/3sT48barHfbgAcTFqVfm5WXCYMiiOmW52KxZMG6cHf36mbC3N6X5p/A0/3/NyTw9Pc1tNzc3dDqd+b59+/YxaNAgpk+fzpQpUzh79iyzZs1i2bJlhIWF8eOPPwLqnM6fP5/vvvuO+fPnA2A0Gpk1axZ///03d+/epVy5crz66qu0b98+61+klaX3bzjHBN137qhMpoUKFbK4v1ChQty9ezfVfc+ePWuzflnb8ePHs7sLwgbkvOZdcm7zJjmvWWPgoBusP6ja735ejbsP1Wd8jfIXyF/ayBEb1H96Ws+tZ0Ud46cD5LfJ7zU5dlFR1H7UPnbsGEYXF5s9182bx/HxqcqZM64cPqxj8+YTFCxom1G2oCAnoAYADg73OXIkyCbPk5fkywcTJ6p2Rv78nrb/rxs2FGD69BJERmZdpkNXVwOvvnqdNm1CMrRfcHAwBoPB/H5y/vx5AMaPH8+LL75IkSJFiI2N5f79+0RERCR530l837Jly9ixYwf9+/enWLFinD59mtGjR3P//n2qPiVTIzIUdE+cOJGZM2emus3q1aupmDDHJIt4e3vj6uqa9obZyGAwcPz4cWrWrIk+L6UUfcrJec275NzmTXJes5afnx+//HKEbcf9zAE3wKgPylPbv5xVn0vObTaIiDA3fX19Va0yK0t8Xrt0sefMGXX/7ds1adnSZPXnA630FYCPT0H8/ArY5HmeZk/r/9dXX7UjKCjr66ktXlyBd9/N2IyNS5cuodfr8fPzAyA2ViXEfO+992jdurV5u9WrV2Nvb2/eLmHk183NDT8/P2JjYxk6dCizZ882b9O+fXvu3r3LoUOHMpT/KyeKjIxM1wBwhoLuIUOG0KNHj1S3KV26dEYOaebl5QXAvXv3KJKoIOK9e/eoUqVKqvvq9fpc8x82N/VVpJ+c17xLzm3eJOc163z8oYG2fbXbhQtDv352NitpJec2CyX6Pev1emxZp0yv19O+vR2TJqnbmzbZ8cILltuEhMD06VCmDDz/fOZrRd+7p7WLFbPd36p4+v6/jhkDH38MDx+mva215MsHo0frMvx7tnuUQTBhv4TbtWrVsjiWTqdDp0t6/IT7rl69SlRUFMMSiro/EhcXR9WqVXP9+U9v/zMUdHt6elrM9bemUqVK4eXlxe7du83TDMLDwzl69GiuvwIihBBCPK1aP+dPwJfB7D2uknu9/LJKtiRERjVpAk5OKoP5+vUq4VlCYH31KnTsCCdOqNvBwTB2bOaeR2p0C1t59ln1k5u5PLaMRKfTYTJZzjpJvM45MjISgBkzZlD0sf9Qjo6ONuplzmOz7OXXr18nMDCQ69evYzAYCAwMJDAwkIhEU5E6dOjA+vXrAXXCBgwYwM8//8zGjRs5c+YMo0ePpkiRIrRJnLJSCCGEELmGzk7H9zPK4O4OFSrAyJHZ3SORW7m4qMAbVFB97pxqBwZCo0ZawA3w/vvw11+Ze56EzOUAiSZfCiGS4enpac7NleDy5cvmdsWKFXF0dOT69euULVvW4qd48eJZ3d1sY7NEalOmTGHp0qXm28888wwA8+fPJyAgAFBrBR4mml/x0ksvERUVxSeffEJYWBh16tRh1qxZODnlrXqTQgghxNOkYUMVyOj18BQNbAgbaNsWNm5U7Q0b4O5d6NJFZRwHKFBATTMHGDQISpXSAvX0kqBbiPRr0KABs2fPZtmyZfj5+bFs2TKuXLmCh4cHAO7u7gwZMoQJEyZgMpmoU6cODx8+5NChQ7i7u6e5dDmvsFnQ/dVXX/HVV1+lus2ZhGwYj+h0OkaNGsWoUaNs1S0hhBBCZAMbJrYWT5G2bbVp41OnQlAQREer23XqwKpV8OGHMHu2mobevTvs2QOVK6f/OWR6uRDp17RpU0aMGMG3335LTEwMPXv2pGnTpjxIuBIGvPnmm3h6ejJjxgyuXr1Kvnz5qFatGq+++mo29jxr5ZiSYUIIIYQQQqTGzw8KFVLJzk6f1u5v2xYWL1ZJo37+WU0/X78e7t+HTp1g926VxC8tZ8+qEXRQMzMe5fkV4qnTs2dPevbsab4dEBCQZMA0wciRIxn5aO1QQpmxhEzloAZWBw4cyMCBA23a55zMZmu6hRBCCCGEsCY7O0hUrQiAF1+ElStVwA3g4AB//w01VKltzp9XI94JI+IpiYiAXr20zNL9+knSPyGEdUjQLYQQQgghco3evbX2O+/A/PlJcwV4eKip5sWKqdu7dqkgOqXA22RSmfUTkrFVqwY//mj9vgshnk4SdAshhBBCiFyjZ09YulRNH584UY1+J6dMGTUC7uqqbi9erJKqBQUl3fann+CPP1Tb3V1t6+5uk+4LIZ5CEnQLIYQQQohcQ6eDZ56B9FSUrVMHFi3SpokfPAj+/rB6tbbNrl3w1lva7V9/hSpVrNljIcTTToJuIYQQQgiRZ3XurBKpVayobj94oO77+GO4cQOeew7i49Vj776r1nULIYQ1SdAthBBCCCHyND8/OHBAjZAn+OIL8PaG69fV7ebNYcKE7OidECKvk6BbCCGEEELkeQUKwJIl8M03qhwYQHi4+rd4cfjrL7CXYrpCCBuQoFsIIYQQQjwVdDp47z3YuFHLbG5vr0qMJdwWQghrk+t5QgghhBDiqdK8ORw5ojKWN20Kdetmd4+EEHmZBN1CCCGEEOKpU7SoZdZyIYSwFZleLoQQQgghhBBC2IgE3UIIIYQQQgghhI1I0C2EEEIIIYQQQthIrl7TbTQaAYiKisrmnqTNYDAAEBkZiT6hToXI9eS85l1ybvMmOa95l5zbbBAdDT4+Wluns/pTyHnNm+S85l1P27lNiEMT4tKU6EwmkykrOmQL9+7dIygoKLu7IYQQQgghhBDiKVWuXDkKFSqU4uO5OuiOj48nNDQUJycn7OxkprwQQgghhBBCiKxhNBqJiYnBw8MDe/uUJ5Hn6qBbCCGEEEIIIYTIyWR4WAghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLARCbqzwO+//06rVq2oWbMmzz33HMeOHcvuLokMmjFjBr169aJ27do0bNiQESNGcPHiRYttYmJiGDduHAEBAdSuXZs33niDu3fvZlOPRWb88ssv+Pj48OWXX5rvk/OaO926dYt3332XgIAAfH196dq1K8ePHzc/bjKZmDx5Mk2aNMHX15dBgwZJNYxcwGAw8MMPP9CqVSt8fX1p06YNP/30E4nT08i5zfn279/Pq6++SpMmTfDx8WHDhg0Wj6fnHIaEhPDOO+/g7+9P3bp1+eCDD4iIiMjCVyGSk9q5jYuL49tvv6Vr1674+fnRpEkTRo8eza1btyyOIec250nr/2xin3zyCT4+Pvz6668W9z/t51WCbhtbvXo1EyZM4LXXXmPp0qVUqVKFoUOHcu/evezumsiAffv28eKLL7Jo0SLmzp1LfHw8Q4cOJTIy0rzN+PHj2bx5Mz/88AMLFizg9u3bvP7669nYa5ERx44d46+//sInoebsI3Jec5/Q0FCef/55HBwcmDlzJqtWrWLMmDF4eHiYt5k5cyYLFizgs88+Y9GiRbi4uDB06FBiYmKyseciLTNnzuTPP//kk08+YfXq1bz77rvMmjWLBQsWWGwj5zZni4yMxMfHh08//TTZx9NzDt99913Onz/P3LlzmT59OgcOHOCTTz7JqpcgUpDauY2OjubUqVMMHz6cJUuW8OOPP3Lp0iWGDx9usZ2c25wnrf+zCdavX8/Ro0cpUqRIksee+vNqEjb17LPPmsaNG2e+bTAYTE2aNDHNmDEjG3slntS9e/dM3t7epn379plMJpMpLCzMVL16ddN///1n3ub8+fMmb29v0+HDh7OplyK9wsPDTe3atTPt3LnT1K9fP9MXX3xhMpnkvOZW3377ren5559P8XGj0Whq3LixadasWeb7wsLCTDVq1DCtXLkyK7ooMunll182vf/++xb3vf7666Z33nnHZDLJuc2NvL29TevXrzffTs85THgfPnbsmHmbrVu3mnx8fEw3b97Mus6LVD1+bpNz9OhRk7e3t+natWsmk0nObW6Q0nm9efOmqWnTpqazZ8+aWrZsaZo7d675MTmvJpOMdNtQbGwsJ0+epFGjRub77OzsaNSoEYcPH87Gnokn9fDhQwDzyNmJEyeIi4uzONcVK1akRIkSHDlyJDu6KDLg888/p3nz5hbnD+S85labNm2iRo0ajBw5koYNG/LMM8+waNEi8+NXr17lzp07Fuc1X7581KpVS96bc7jatWuzZ88eLl26BMDp06c5ePAgzZo1A+Tc5gXpOYeHDx8mf/781KxZ07xNo0aNsLOzkyV8uUx4eDg6nY78+fMDcm5zK6PRyHvvvcfQoUOpXLlyksflvELKFbzFE3vw4AEGg4FChQpZ3F+oUKEk64FF7mE0Ghk/fjz+/v54e3sDcPfuXRwcHMwfGgkKFSrEnTt3sqObIp1WrVrFqVOn+Oeff5I8Juc1d7py5Qp//vkngwcP5tVXX+X48eN88cUXODg40KNHD/O5S+69Wdbr52wvv/wy4eHhdOzYEb1ej8Fg4K233qJbt24Acm7zgPScw7t37+Lp6WnxuL29PR4eHvLenIvExMQwceJEOnfujLu7OyDnNreaOXMm9vb2DBgwINnH5bxK0C1Eho0bN45z587xxx9/ZHdXxBO6ceMGX375JXPmzMHJySm7uyOsxGQyUaNGDd5++20AqlWrxrlz5/jrr7/o0aNHNvdOPIn//vuPFStWMGnSJCpVqkRgYCATJkygSJEicm6FyEXi4uIYNWoUJpOJcePGZXd3xBM4ceIE8+fPZ8mSJeh0uuzuTo4l08ttqGDBguj1+iRJ0+7du0fhwoWzqVfiSXz++eds2bKFefPmUaxYMfP9hQsXJi4ujrCwMIvt7927h5eXV1Z3U6TTyZMnuXfvHj179qRatWpUq1aNffv2sWDBAqpVqybnNZfy8vKiYsWKFvdVqFCB69evmx8H5L05F/rmm294+eWX6dy5Mz4+PjzzzDMMHDiQGTNmAHJu84L0nMPChQtz//59i8fj4+MJDQ2V9+ZcIC4ujjfffJPr168zZ84c8yg3yLnNjQ4cOMC9e/do2bKl+bvUtWvX+Prrr2nVqhUg5xUk6LYpR0dHqlevzu7du833GY1Gdu/eTe3atbOxZyKjTCYTn3/+OevXr2fevHmULl3a4vEaNWrg4OBgca4vXrzI9evX8fPzy+LeivRq0KABK1asYNmyZeafGjVq0LVrV3Nbzmvu4+/vb17zmyAoKIiSJUsCUKpUKby8vCzOa3h4OEePHpX35hwuOjo6yUiKXq83lwyTc5v7pecc1q5dm7CwME6cOGHeZs+ePRiNRnx9fbO8zyL9EgLuy5cv8+uvv1KwYEGLx+Xc5j7du3dn+fLlFt+lihQpwtChQ5k1axYg5xVkernNDR48mDFjxlCjRg18fX2ZN28eUVFR9OzZM7u7JjJg3LhxrFy5kmnTpuHm5mZef5IvXz6cnZ3Jly8fvXr14quvvsLDwwN3d3e++OILateuLcFZDubu7m5el5/A1dWVAgUKmO+X85r7DBw4kOeff57p06fTsWNHjh07xqJFi/j8888B0Ol0DBgwgJ9//pmyZctSqlQpJk+eTJEiRWjTpk02916kpmXLlkyfPp0SJUqYp5fPnTuXXr16AXJuc4uIiAiCg4PNt69evUpgYCAeHh6UKFEizXNYsWJFmjZtyscff8y4ceOIi4vjf//7H507d6Zo0aLZ9bIEqZ9bLy8vRo4cyalTp5gxYwYGg8H8fcrDwwNHR0c5tzlUWv9nH7944uDgQOHChalQoQIg/2cBdKaEy8PCZn777Tdmz57NnTt3qFq1Kh999BG1atXK7m6JDHi8dnOCCRMmmC+gxMTE8NVXX7Fq1SpiY2Np0qQJn3766VMzbSav6N+/P1WqVOHDDz8E5LzmVps3b+a7774jKCiIUqVKMXjwYHr37m1+3GQyMWXKFBYtWkRYWBh16tTh008/pXz58tnYa5GW8PBwJk+ezIYNG7h37x5FihShc+fOvPbaazg6OgJybnODvXv3JptwqUePHnz11VfpOochISH873//Y9OmTdjZ2dGuXTs++ugj3NzcsvKliMekdm5ff/11Wrdunex+8+fPJyAgAJBzmxOl9X/2ca1atWLAgAEMGjTIfN/Tfl4l6BZCCCGEEEIIIWxE1nQLIYQQQgghhBA2IkG3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQQgghhBA2IkG3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQQgghhBA2IkG3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQT6G9e/fi4+PD3r17s7srQgghRJ5mn90dEEIIIXKaJUuW8P7776f4+MKFC/Hz88u6DuUid+/eZcqUKWzevJmQkBC8vLxo0KAB48ePN2/TqlUrrl27luz+ZcuWZd26debbf/zxB3v27OHYsWPcuHGDHj168NVXXyXZb//+/cyePZvAwEDu379P/vz5qVKlCiNGjKBOnTrWf6FCCCFEOknQLYQQQqRg5MiRlCpVKsn9ZcqUyYbe5Hw3btzg+eefB6Bv374ULVqU27dvc+zYMYvtPvjgAyIiIizuu379Oj/88AONGze2uH/WrFlERERQs2ZN7ty5k+JzBwUFYWdnR9++fSlcuDBhYWEsX76cfv36MWPGDJo1a2alVymEEEJkjATdQgghRAqaNWtGzZo1s7sbucYnn3yCXq/nn3/+oWDBgilu16ZNmyT3TZs2DYCuXbta3L9gwQJKlCiBTqejdu3aKR7zueee47nnnrO474UXXqBNmzbMmzdPgm4hhBDZRtZ0CyGEEJk0ZcoUqlSpwu7duy3u//jjj6lRowanT58GIDY2lsmTJ9OzZ0/q1KmDn58fL7zwAnv27LHY7+rVq/j4+DB79mx+//13WrduTa1atRgyZAg3btzAZDLx008/0axZM3x9fRk+fDghISEWx2jVqhWvvPIKO3bsoHv37tSsWZNOnTpZTNlOzdGjRxk6dCh16tShVq1a9OvXj4MHD6a534ULF9i2bRtDhw6lYMGCxMTEEBcXl67nBFi5ciWlSpXC39/f4v6SJUui0+nSfZzEXFxc8PT05OHDh5naXwghhLAGCbqFEEKIFISHh3P//n2LnwcPHpgfHz58OFWrVuXDDz8kPDwcgO3bt7No0SJGjBhBlSpVzMf5+++/qV+/Pu+++y6vv/469+/fZ9iwYQQGBiZ53hUrVvDHH3/Qv39/Bg8ezL59+3jzzTf54Ycf2L59Oy+99BK9e/dm8+bNfP3110n2DwoK4q233qJZs2a888476PV6Ro0axc6dO1N9vbt37+bFF18kIiKC119/nbfeeouwsDAGDhyYZIp4cvsCFC5cmIEDB+Lr60utWrUYNmwYV69eTXXfU6dOceHCBbp06ZLqdumRcM4uXLjAd999x9mzZ2nYsOETH1cIIYTILJleLoQQQqRg0KBBSe5zdHTk+PHjADg4OPD111/Ts2dPvvrqK0aPHs2HH35IjRo1ePnll837eHh4sGnTJhwdHc339e7dm44dO7JgwQKLJGMAt27dYt26deTLlw8Ao9HIjBkziI6OZvHixdjbq4/vBw8esGLFCsaNG2dx7KCgIKZOnUq7du0AePbZZ+nQoQMTJ05MsmY6gclk4rPPPiMgIIBZs2aZR5f79u1L586d+eGHH5gzZ06Kv6ugoCBAjfLXrFmT77//nhs3bvDjjz8yePBgli9fjouLS7L7rlixAoBu3bqlePz0GjVqFDt27ADU+enTpw8jRox44uMKIYQQmSVBtxBCCJGCTz75hPLly1vcZ2dnOUnM29ubkSNHMmnSJM6cOcODBw+YM2eOOTAG0Ov16PV6QAXQYWFhGI1GatSowalTp5I8b4cOHcwBN4Cvry+ggtLEx/X19WXlypXcunWL0qVLm+8vUqQIbdu2Nd92d3fnmWeeYebMmdy5cwcvL68kzxkYGEhQUBDDhw+3GM0HaNiwIf/++y9GozHJ608QGRkJgJeXF7/88ot5u2LFivH222+zcuXKJGuuE34fq1atolq1alSsWDHZY2fEu+++a56Ov2zZMuLi4oiPj8fJyemJjy2EEEJkhgTdQgghRAp8fX3TlUht6NChrFq1imPHjvH2229TqVKlJNssXbqUOXPmcOnSJYu1zsllRy9evLjF7YQAPKX7Q0NDLYLusmXLJlkHXa5cOQCuXbuWbNCdMFI9ZsyYlF4mDx8+xMPDI9nHnJ2dAXXBIHFg3qFDB0aPHs2hQ4eSDbr37dvHrVu3kp1VkBlVq1Y1t7t160bPnj15//33mTJlilWOL4QQQmSUBN1CCCHEE7py5QqXL18G4OzZs0ke//fffxk7dixt2rRh6NChFCpUCL1ez4wZM7hy5UqS7RNGxR+X0iizyWR6gt5bHmP06NEWgWtirq6uKe5fpEgRQK3pTkyv11OgQAHCwsKS3W/FihXY2dnRuXPnzHQ7VY6OjrRq1YpffvmF6Oho84UBIYQQIitJ0C2EEEI8AaPRyNixY3F3d2fgwIFMnz6d9u3bm9dTA6xdu5bSpUvz448/WoxA22r09fLly5hMJovnShjJLlmyZLL7JIyUu7u706hRoww/Z/Xq1QG1Hj2x2NhYHjx4gKenZ5J9YmNjWbduHfXr16do0aIZfs70iI6OxmQyERERIUG3EEKIbCHZy4UQQognMHfuXA4fPsznn3/OqFGjqF27Np999hn37983b5Mwcp14RPro0aMcOXLEJn26ffs269evN98ODw9n2bJlVK1aNdmp5QA1atSgTJkyzJkzh4iIiCSPJ349yQkICKBQoUKsWLGCmJgY8/1Lly7FYDAkG8hv3bqVsLCwJLW5M+PevXtJ7gsLC2PdunUUL16cQoUKPfFzCCGEEJkhI91CCCFECrZt28bFixeT3O/v70/p0qW5cOGCuf52q1atAPjqq6945plnGDduHJMnTwagRYsWrFu3jtdee40WLVpw9epV/vrrLypVqmROQGZN5cqV48MPP+T48eMUKlSIxYsXc+/ePSZMmJDiPnZ2dnzxxRe89NJLdOnShZ49e1K0aFFu3brF3r17cXd3Z/r06Snu7+joyOjRoxkzZgwvvvgi3bt35/r16yxYsIC6detajPwnWLFiBY6OjrRv3z7F427atMlc7zwuLo4zZ84wbdo0QNUkTyjL9tJLL1G0aFFq1apFoUKFuH79OkuWLOH27dt8//336fq9CSGEELYgQbcQQgiRgpSmf0+YMIESJUowZswYChYsyAcffGB+rFy5crz99tt8+eWXrF69mk6dOtGzZ0/u3r3LwoUL2bFjB5UqVeLbb79lzZo17Nu3z+r9LleuHB9//DHffPMNly5dolSpUnz//fc0bdo01f0CAgJYuHAh06ZN47fffiMyMhIvLy98fX3p06dPms/7zDPP4ODgwC+//MI333xD/vz56dOnD2+99VaSderh4eFs2bKFFi1aWGRqf9y6detYunSp+fapU6fMGd+LFStmDrp79erFqlWr+PXXX3n48CH58+enVq1aTJo0ibp166bZdyGEEMJWdCZrZF8RQgghRI7QqlUrKleuzIwZM7K7K0IIIYRA1nQLIYQQQgghhBA2I0G3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJruoUQQgghhBBCCBuRkW4hhBBCCCGEEMJGcnXJsPj4eEJDQ3FycsLOTq4fCCGEEEIIIYTIGkajkZiYGDw8PLC3Tzm0ztVBd2hoKEFBQdndDSGEEEIIIYQQT6ly5cpRqFChFB/P1UG3k5MToF6ki4tLNvcmdQaDgbNnz+Lt7Y1er8/u7ggrkfOad8m5zZvkvOZdcm6zQVQUNG6s2jt3gg2+i8l5zZvkvOZdT9u5jYqKIigoyByXpiRXB90JU8pdXFxwdXXN5t6kzmAwAODq6vpU/AE+LeS85l1ybvMmOa95l5zbbGAywZkzqu3sDDb4LibnNW+S85p3Pa3nNq2lzrIQWgghhBBCCCGEsBEJuoUQQgghrMhkgsjI7O6FEEKInCJXTy8XQgghhMhJwsKgYUM4dQo8PKBM8TBKe5yhTMkoypQ20qpjYQLa18jubgohhMhCEnQLIYQQ4qljMprQ2emsfty//lIBN0BoKBwPzc9x6mkbTIafPtnKiHHNrf7cQgghciaZXi6EEEKIp4bRYOS157bimT+UuV9vt/rxVy6PN7fLlAFHh7gk24z6shG7Vh1P9Tgmo4k9a05w7nCQtbsohBAii0nQLYQQQoinxpjB25j2T3NCIgowYUopqx476mEkG9bHAlC8SASXLkFUlJ4bF2+zb90pXn5mGwDxBgee7e/FzUu3kz2O0WDk9T7baNixBn4NvThz8KJV+ymEECJrSdAthBBCiFzh3j3YuBH27YMbF29jNBgztP/P47YxcUEL8+0LN8oQHRFttf5tWnqCqFhVNqtzg4PY2YGd3o5i5YtQr201flrYiBa1DgNw40Exene7QVyM5Uh4bFQsL7bfw7R/1PTzyBg3vhl3zWp9FEIIkfUk6BZCCCFEjmMymjh3OIhfv9nBSwNDqVoVCheGNm0gIABKVCyCs1M8FYtfpqXfYYZ03cWhDVcxGU3JHm/1/P28Pq6xxX1Gk56zh4Ot1ucVy7QAvks35ySP2zvas3B5KUp63gBg+4lavDd4l/nxiNAIurc4yl8bG1ns99t/9blx8ZbV+imEECJrSdAthBBCiBxl+/KjlClyA2//cgwe04RZ8z04fTrpdnEGRy7eLMuWo7WZ/19TXh7bnS6NjxC474LFdoe3nqX3y1UxmvQAlPG6an7s1OG7VumzyWhi5dbKADg5RNPm2erJblekjBeL/7iHo30MAJP/bM4fv4by4FYI7RpdYM0+lXTN2SGKtnUOAhAb78TULwNTff7dq49Tp3IgHw7bYpXXI4QQwnok6BZCCCFEjmEymhj5lhNX75WwuN/eXo1wjxoFI4Y9oEvDffiWP0MBtxCL7dbur0vNhmV584WtPLgVwtWr0OWFSkTEuAPwbIvd/DBBW0sdeNk667qPbDvDtfvFAWhV+zhuHm4pbhvQvgZTP9lrvj1shAeNG0az65QvAPldQln791l+XVgSB3u1RvznJc0ID0/+eA/vP+S5fgU5dL4q42e34NKJK1Z5TUIIIaxDgu6n2NixYxkxYoT5dv/+/fnyyy+zvB979+7Fx8eHsLCwLH9uIYQQOcvGfw5z5GIVAMoXDebLkVvYsuwkoaGwZw/88AP8NLMgK3bV5+hFHx6EFyD0bhi/T95J6UJqBNtgtGfyn82pXNlEq1Ymrl9XX3ca1rrK/OV+1Gjmb36+U5fLWKXfK/+5aW537RSV5vYvfdiUIYMNAERFQeClYgAU8bjDlv9u0qx7LUpULMaLL6rqriEhdsyenfyxPh15iGsPtIsHx/Zez+zLEEIIYQMSdOdAY8eOxcfHBx8fH2rUqEHbtm358ccfiY+PT3vnJzB16lRGjRqVrm0lUBZCCGEL336rJUf7+tNrfDC5Bc27V8fVNeV98hfKT5/XGvDn0it8NnwzLo6RANx7WJBz51Qt7goV4N/1pXDJ50L58uDoqPZNqKn9pFZuKGxud+5TMc3tdXY6fpqmp25d7b6yZY3s2BxF7eY+5vvefU/7qvb99/D4V4HDh2Hyn80s7jtxNO2gXwghRNaRoDuHatq0KTt27GDt2rUMHjyYH3/8kdnJXOKOjY212nMWKFAAd3d3qx1PCCGEyIhjO86w7oCKQssXDabnsPoZ2t/Z1ZGPpjbjzLEQnu9w2Hx/wYKwejV4eanb9vbg8yiuPXsW4pKW0s6Qm5dus+9MDQB8y5+hTJWS6euvMyxZAi1aQLt2sHOnHZVrW468V68OHTuq9uXL8M/fWqI4gwFeeQWMRp3FPsdPOmb+xQghhLA6CbpzKEdHR7y8vChZsiQvvPACjRo1YtOmTeYp4T///DNNmjShQ4cOANy4cYNRo0ZRt25d6tevz/Dhw7l6VUsUYzAYmDBhAnXr1iUgIIBvvvkGk8kyw+vj08tjY2P59ttvad68uXnE/e+//+bq1asMGDAAgHr16uHj48PYsWMBMBqNzJgxg1atWuHr60u3bt1Ys2aNxfNs3bqV9u3b4+vrS//+/bl2TUqhCCGEgIlf3jG3337pEnoHfaaOU9qnBH/8V5udO+GTT2D3bi3ITlCtmvo3Ph7On36ysmGrF2pZ3rq2vpGxvpaGzZth7VoomUKs/t57WvvbT8+ZM7T/8gvs36/ur1LFhINeXYg/cd4rQ30QQghhW/bZ3YFsEfgdnP4u7e08/aH5csv7tnaD+4fS3rfK21D17cz1LxlOTk6EhIQAsHv3btzd3Zk7dy4AcXFxDB06FD8/P37//Xfs7e2ZNm0aw4YNY/ny5Tg6OjJnzhyWLl3K+PHjqVixInPmzGH9+vU0aNAgxeccPXo0R44c4aOPPqJKlSpcvXqVBw8eULx4caZOncobb7zBmjVrcHd3x9lZlUaZMWMGy5cvZ9y4cZQrV479+/fz3nvv4enpSf369blx4wavv/46L774Ir179+bEiRN8/fXXVvs9CSGEyJ2unr3On+sDAPB0v8/gd+umsUfaGjVSP8mpVvwI4AdA4O4jVK2Z8udhWlasK2Rud+lVOJUtM6dFC6hTOZCD56py6Jw3W5Yeomrd8rz/fgFAjXLPmKHj9YFBHA/y5sy1csRGxeLoIiPeQgiREzydQXdcGESlY3Q1unQy991J375x1lnrbDKZ2L17Nzt27KBfv348ePAAV1dXvvjiCxwfLUj7999/MRqNfPl/9u47PIriDeD493LphAQICb1DEiAJCb036R1RFFSkKD/BgooiFlRQAcWGFQRBQURQQXpvAtIhQCAJLZRQkwAJ6cnd/f4YcpcjvVwa7+d58rC3O7s7x157d2be+eQTNBr15TtjxgxatGjBwYMHad++Pb/++itjx46lR48eAEydOpU9e/Zket7Q0FA2bNjAwoULaXv/F0uNGqb/DxcXFwBcXV1xdnYGVMv43LlzWbhwIf7+/sZ9jhw5wrJly2jZsiVLly6lZs2axpbxunXrcubMGebNm1cg/19CCCFKptmzbpOiUxnLxw87QRmXzhY9X0MP07jn0ycTeDSPx0lIgC0H1fRgbq4JtOzeqABqZ06jgTdevsOwV9TjWZ/pKOd8mqgoNe/4yJHQsSN41w/n5EUPUnQ2nDl2Bu+2HgVeFyGEELn3cAbdNs7gkIPxVvYZdM+yd8vZvjbOua9XGjt37sTf35/k5GQMBgP9+vXj5ZdfZtq0aXh4eBgDboDg4GAuX75M06ZNzY6RmJjI5cuXuXfvHuHh4TRp0sS4zdraGm9v73RdzFMFBQWh1Wpp0aJFjut86dIl4uPjGT16tNn65ORkGjZsCMD58+fx9fU12+7n55fjcwghhCh9oqJg7jI1JtrONpmX3sl4juuC1MjP9B1/Otgmz8fZtQtiY9Vy3/72WOWtR3y2HvtfSyZ/FMal8OpsOGj6bq7gdJtZ022Asvg0TmbpVrX+5LFYvDNp5RdCCFG4Hs6gu2E+un4/2N3cQlq1asWHH36IjY0N7u7uWFubLpWDg4NZ2bi4OBo3bsznn3+e7jgVKlTI0/lTu4vnRlycyhY7d+5cKlWqZLYt7U0CIYQQIq158+DePbU84lkbKtW2/JjkBn410VqloNNbc/p83ruEr1ljWu7XrwAqlglrW2tee+48r84wn1d81runqFilAwDe7X1gtlofeM3fcpURQgiRK5JIrZhycHCgVq1aVK1a1Szgzkjjxo25dOkSrq6u1KpVy+yvbNmylC1bFjc3N44fP27cJyUlhVOnTmV6TA8PD/R6PYdSM7Q8wMZGtQrodDrjunr16mFra8u1a9fS1aNKlSrGMidPnjQ7Vtp6CSGEeLgkJam5t1NNnFg457V1sKVB1UsABIfVQpesy2aP9Ax6A2vXqh5jNjYqA7kljXmzGeXL3DE+bu99nJFvtjM+9m5mGlseGGjZugghhMg5CbpLgf79+1O+fHnGjRvH4cOHuXLlCgcOHODjjz/mxo0bAIwYMYJ58+axdetWzp8/z9SpU7OcY7t69eoMHjyYd955h61btxqPuX79egCqVauGRqNh586d3L59m9jYWJycnBg9ejQzZsxg5cqVXL58mVOnTrF48WJWrlwJwJNPPsnFixf59NNPuXDhAmvWrDFuE0II8fBZ9ms4qZNYDBiQPsu4JTWqewuAxGR7Lp4Oy6Z0eoH7znLpksql0rntXcqWLdDqpeNU3omJo9WNagfbOOb8VAYrremnXK1akDrz5wP3t4UQQhQhCbpLAQcHB3777TeqVq3KSy+9RJ8+fXj33XdJTEw0zrs9evRoBgwYwFtvvcWTTz5JmTJl6N69e5bH/fDDD+nZsycffvghvXv3ZsqUKcTHq8QzlSpV4uWXX+aLL76gbdu2fPTRRwC8+uqrjB8/nrlz59KnTx+ee+45du7cSfXqqjtc1apV+fbbb9m2bRsDBw7kjz/+4LXXXrPg/44QQojiyqA3MGu6qeX2zYm5b23Oj4Yeicbl00dv5nr/tX9eMy73bx9QEFXK1jtfd2L1goMc/vcajdvUN9tmZaXm9QYIDYWYmEKpkhBCiGxoDJll0ioB4uLiCAoKomHDhjg6OhZ1dbKk0+kICAjAz88PrdZCWVZEoZPrWnrJtS2d5LoWL5uXHqHn8GYAtPY6yX+nvNFYafJ0rLxc299n7+WpV1X37Jmv7eStLzvn6pxtG51kX5APAOdPXKauT81c7W8Jzz0dzs9L1Jj4A1vO0rJbA8udLDbW1LQeEwNlyhT4KeQ9WzrJdS29HrZrm9N4VFq6hRBCCFEkvvsuxbj8xoSYPAfcedXI35RA7XRw7nLLbvjtEPuDVbNyo5rnikXADeBd47RxOfDw9SKsiRBCiFQSdAshhBCi0F09d511+5oDUK3CdQaNaVnodfD0r4lGowfg9LmczfZh0BuY+dpO+o5ohsGgfkYN7Zv78eCW4tPUNLD85IkS25lRCCFKFQm6hRBCCFHofvkmGL1BdT0c/VgIWpvC74boUNaBOjXUdJdB1xqS3YC7uOhYhnXfx9tfdzYG3IM77GfSp60sXdUc825Rw7gcGOJUhDURQpQGmzbBypVk+/kosiZBtxBCCCEKlV6n5+fl9QDQaPSMebV+NntYTiNfFZjGxmq4ciXzchdPhdHO/wrLtrc1rps6fid/7WiJQ1kHS1czx9xrVqSicwQAgReqZ1NaCCEyt2MH9OoFjz4KP/xQ1LUp2SToFkIIIUSh2vbnMUJvqjHQPZofpVbDogsOGzUyLZ8+nXGZf/+FFp0qEXDBCwAn+3v8M/8A73/f2WzKruJAY6XBp666e3DjbiUiwiKLuEZCiJIqbaD93nsQEVF0dSnpitc3hRBCCCFKvXk/JRmXnx+dXIQ1yT7ovnkT+vaFiEgbAOpXuciBnTcZOKb4dCl/kLdntHE58GAWzfcZ2LQJBg2C7dsLuFJCiBIlMhJWrzY9vnsXPvigyKpT4knQLYQQQohCE34lgn/+VdOEuTmH0//ZZkVan0aeaebq3n8m3fa5c03zXT/yiIGDx91p1KrousPnhLe3KQt84LGoHO8XFwfDhhlYtQqeG3EHg14GcQrxsPrjD0hKMl83Zw6cPFk09SnpJOgWQgghRKFZ9JsNyTpbAEYOOoWtg22R1sfLw/SrMuhUgtm2pCT48Ue1bGUFP/+sobxb5vOwFhc+TcsblwNP5XwatmXL4M4dVT70ankuns5dK7kQovRYuNC0/NRT6l+9Hl59VZKq5YUE3UIIIYQoFAYDzPvVxfj4uTf9iq4y95WtUJYaFa8CcPpSTbPW3T/nHuPGDbU8eDDUqlUUNcy9xq1MFT0ZUi7H+z2YKGnnuksFVCMhREly8iQcOaKWmzWD+fOhdm31ePt2WLWqyKpWYhVK0L1kyRK6du2Kj48Pjz/+OCdOnMiy/IYNG+jVqxc+Pj7079+fXbt2FUY1hRBCCGFBe/dCSIha7tgRPLzLFWl9UjWqcx2Au7HluHHxFqDm4579nakVfsLYG0VSt7xwdnWmZqVwAAIve+WoVerQITh82Hzdrn9z3kouhCg9fv3VtDxqFNjbwxdfmNZNnAiJien3E5mzeNC9fv16ZsyYwYsvvsjKlSvx8vJizJgxREZmnE3z6NGjTJw4kccee4x//vmHRx55hBdffJEzZ9KPsyqNPD09s/z79ttvi7qKQgghRJ7Mm2dafv75oqvHgxo1iDEunz5yDYD9GwM5dKYxAH51g2nfrVKR1C2vvJu5ARAdY0tYWPblf/zkcLp1uw6XkKZ9IUSBSU6G335Ty7a28OSTannwYOjcWS1fuABff10UtSu5LB50L1y4kKFDhzJkyBDq16/P1KlTsbe35++//86w/KJFi+jQoQPPPfcc9erV49VXX6VRo0b8lnr1S7k9e/YY/9555x2cnJzM1o0ePdpY1mAwkJKSUoS1FUIIIXLm7q0o/lyuMpWXKwdDhhRtfdJq2Mj0c+j08XsAfPOlKQP4hP9FoLEqWa2+Pj6m5ewSH925cYel69UNBmfHaFp5nQLg4q0aXArKQcQuhCg1Nm5UszYADBgArq5qWaNRgbbV/Y/Ljz+G69eLpIolkrUlD56UlMSpU6f43//+Z1xnZWVF27ZtOXbsWIb7BAQEMHLkSLN17du3Z+vWrZmeR6fTodPpCqTOlpJav+zqWaFCBeNymTJl0Gg0xnUHDx5k5MiRzJkzh2+++YYzZ84wf/58/vnnH6Kjo/nuu++M+86YMYPg4GB+vd8/RK/XM3/+fP78808iIiKoXbs2L7zwAj179izop/pQyel1FSWPXNvSSa5r0Vny3THiEzoD8HT/09jaelKQlyE/19bTx9m4fDrIwOWQMP7a2RJQGdYff8G/xL1mGjXSkNq2cuKEnp49M+9jvvCrABKSuwDwbP+jVChv4ECwCsJ3rA3lGY8qGe+o06E1Luoo0Aua9rjIe7a0ketafC1caAWom4wjRujM3tbe3vD88xrmzrUiJgbeflvPzz+bf7Zkdm2vXgUXF3Bysmj1C11OX8MWDbrv3LmDTqfDNfUWyX2urq5cuHAhw30iIiKoWLFiuvIRWczGnpuu51u3lmPOnKrExWmzL1xAHB11vPDCNbp1g5O5yLN/+fJldDodAQEBAJw7dw6A6dOn89RTT+Hu7k5SUhK3b98mNjbWWA4gPDycmJgY47p//vmHPXv28Mwzz1C5cmWCg4OZNGkSt2/fpmHDhgX1VB9aubmuomSRa1s6yXUtXAa9gZ8Wuxsfd33kEgEB8RY5V16urcEh1rgcGFKGLz4IIEXXD4DhfQ8QfDaToLMYs7Z2ANQk5P/tukJA94x/R+l1en5cbOpG3m1AIlGRpsGaW7Yk4NM1IMN9reLj8b+/fOLECfQODgVR9QzJe7Z0kutavNy9q2XNGl9Ag6trMu7uJ0gTXgDw2GPWLFnSmJgYa3791YquXYNo3Dgu3bHSXtuNG8vzwQd1qFw5iSVLTuPkpLfsEymGLBp0FxYPDw8cHXM2hccLL1hx8WLhdxH7++86dOt2DB8fH7TanAX8oaGhaLVa/Pz8ANVzAODNN9/kkUceMZZbv3491tbWxnKgktFFRkbi5+dHUlISY8aM4eeffzaW6dmzJxERERw9epRhw4YVyHN8GOl0Ok6ePJmr6ypKBrm2pZNc16Kxd91JTlxUAWBLz0AGPN2jwM+R32tbudxNbtytxOlLdQm6XAcAa20yE6f6U7Vu5YKursV5eaSgtUpBp7cm7Gyc2W+EtLb+eZRz1+sC0MXvKH2f6EZCTDzPT0wgMdmeAyc98POrnvFJYk03K3x9faFMmYJ+GvKeLaXkuhZP332nISVF9ZAZOVJL8+Z+GZabOlXDxIlq+ccfvdi9W4/mfnj14LW9cwe++soKnU7D1at2XLjQhBEjSs+cY3FxcTlqALZo0F2+fHm0Wm26pGmRkZHpWrNTVaxYMV2rdlblAbRabY7fsG+9BVOmwL17OSpeIMqWhTfeUC+u3NTV6v6gidTyqY+bNGlidgyNRoNGo8l0XVhYGPHx8Tz33HNmx09OTqZhw4byYVcAcnNdRcki17Z0kutaeA5uPsXgp2oaHz8/4o5F/+/zem0b1r7GjYBK3I4xDfMa2vUgNRq0K8jqFZoyZbU0qHqe4LB6nL5cB4POgLVt+p99P/1o6ho5bmwiWq2WMi5OtPIK4N+Tfpy/UYvr569R3aNq+pOk+X/WarVmjw8dghMnYNgwyGG7SJbkPVs6yXUtXtJmLR892orMLs3LL6vEmMHBsH+/huXLtQwfbl4m9dp+/DGkDQXXrLFi1KiCr3tRyenr16JBt62tLY0bN2bfvn1069YNUGOL9+3bx9NPP53hPn5+fuzfv99sXPd///2X6R3a3HrsMfVX2HQ60nXPyCuHB7pvaTQaDA/MB5I2wVpcnOryMXfuXCpVMs++amtrixBCCGEJW5cfZdAID2IT1SC+5g1O8/SEFkVcq4w18ohnR4D5ulcmliuKqhQY7/q3CA6rR2KyPedPXsCzWV2z7VfPXWfVnuaAaukfNLq5cVunNlH8e7936K49djzlkbNzGgwwYwa8955aDg1VCZeEEMXb8eOQmnKrZUto1CjzsjY28NVX0Lu3evzWWzBwYPrOLqdPQ5qUUwBs2gTx8WDB0SjFksWzl48aNYrly5ezcuVKzp8/z4cffkh8fDyPPvooAJMmTeKLNBO/jRgxgt27d7NgwQLOnz/Pt99+S2BgYKZBulDJ18LDw83WBQUFGZfr1auHra0t165do1atWmZ/VaqUvHFqQgghir+/5+yj71ONjQF35ybH2LavOvZl7Iu4Zhlr1Kmt2eNWXoG06tm4iGpTMLwbmsZmBx66mW77vC9C0OlV+8vzQ4OwsbMxbus8tKNxedd+13T7ZiQmBoYOhXffxTg3+Pr1eam5EKKwpW3lfiCndYZ69YI+fdRyWBh89pn5doMBXnvNlF+xXDn1b1wcZJEfu9SyeNDdp08f3nrrLb755hsGDhxIUFAQ8+fPN3YXv379ulnA2LRpUz7//HOWLVvGwIED2bRpE99//z0eHjm8xfoQat26NYGBgfzzzz9cvHiRb775hrNnzxq3Ozk5MXr0aGbMmMHKlSu5fPkyp06dYvHixaxcubIIay6EEKI0mjd9H0PHtyQpxQ6Age0PsGFvQ5xdnbPZs+g82Koz4cXEjAuWID5+phscgSfMn09yYjI/LfMCQGuVwtiJ5r+zWrfRYHM/Bt+5M/tzXbwI7drBX3+Zrz9xwmzotxCiGEntifv997BokVpnZ2eamzs7X34J1vf7TX/2GVy6ZNq2bh1s3qyWa9aEuXNN21atynfVS5xCSaT29NNPZ9pSvXjx4nTrevfuTe/U/goiWx06dGD8+PHMmjWLxMREhgwZwqBBg8wG9b/66qtUqFCBuXPnEhYWRtmyZWnUqBEvvPBCEdZcCCFEaZKYCJ9/Du+918a4bmTf3cxb0SbD8cTFSdqgu0oVGDK2WdFVpoB4NzcNKTt5Wt0AuXcPrlyBdX+Gc/2OGqfdv+1hqnu0NtvX0VF1Md27F86eVfPxZtU5rmNHuHJbLZctCw0bwsGD6kf9oUPQuXOBPjUhRB6dOgV//qne2/v3qx4qaQ0aBOXL5+xYnp7wyisq+E5IgEmT4PffITlZw5tvmtp2Z82C/v3V50pcHKxZoz4bHqbh/MX7G/Ah9+ijjxq74QO0atWKkJCQDMu+8sorvPLKK5keS6PR8Oyzz/Lss88WeD2FEEI8vFKSUtjxTyBLNzRhxUoNUVGmba89tZvPf22HldbiHevyzd0dXngBli5VYxVLQ8qTej41sbeJJyHZgbX/+VPe6S53Y8vd32pKjDb+lYx7IHTqpH6YA+zaFM6TI90yPVfk/YDbw0O1Yu3fr4JugH37JOgWoji4cAFatFBjqjPi5gaTJ+fumFOmqFbyiAhYvhzGjYNVq9w4e1alM+/QAR5/HDQa6NED/vkHbt2CAwegbdusj12aFP9vQSGEEEIUK/H34tm5IoBXntxJNfc79HjCj4W/mAfcn3wCXyzuUCIC7lQ//gh37sATTxR1TQqG1kZLo1oXAUhMtk8TcJv4+sIjQzLOmNSpuamv6M7VQem279tn/rhPH/VD2ssL2rTJvJwQomi89555wF21qgqIv/5a9Ui5ehVym7u6XDn1eZ/q5ZetmDdP3dTTaGD2bIzTiQ0caCr3sHUxl5ZuIYQQQmTpRugt9m46z97diew9UpGj5zxJ0fmlK1e2LAweDKNHq1bSkij1x2Fp8fr424x9O5bkFBtqVLxOjQbu1KzjQI0aULu26kpqlcl9kbadXbHWJpOis2HXoWpm2+LiVM+A4/cfvzgeZnxj6i7q4QEVKsDt26rV22Aoff+3QpQkR4+qnjwAFSuqm2H16hXM+3LMGPjhB5UBPTBQA2iN6/39TeX69VOfN3q9Cro//TT/5y4pJOgWQgghRIYSYhPo0z6IHQH+gHuGZexsEujbJoBhT9nR9xn/h24amOLuqdfaMXR8MlprLVbaWrna16m8E80bnGR/sA/BYfW4efEWlWqr18GUKXDuvKnsjBnm4zM1GmjdWmUvDw9X3Vrr1SuIZySEyIu03canTIH69Qvu2FqtatFOO4zE2dnAxx+bR/QVK6qEi7t3Q0iImufby6vg6lGclZw+X0IIIYQoVH8vunw/4DbnVf08Y/rvZvGXe7l5NZG/d7XmsbEScBdXNnY2ee7m36l1pHF517pzAPz3nxr3nlZGCZFap8nNJl3MhSg6W7aoP4A6deB//yv4c3TqBI89Znr87rsGKlVKX+5h7WIuQbcQQgghMrRqh2kaqRcGbWX1woNEXL1N0JV6zF/dgadfa4eLm0sR1lBYWqdHyhiXd+1MJj4eRo0yzcOdFRnXLUTR0+vhrbdMjz/+WE0LZgk//ABDh+oZNuwmr7yS8YfEwxp0S/dyIYQQQqSTmAgbNqjlChXg2z+7GedjFQ+Pdr090VqloNNbs+tgVaZMgdQZSVs0Bw5nvm/LlqqbucEgQbcQRWXZMjh2TC37++d8Du68cHOD3383EBAQho1NxQzL1K8PjRurqcv274ebN8mwRby0kZZuIYQQ4iGSnJhMdGR0tuV27DDN39qvHxJwP6ScXZ1pWl9NV3rqcgO+/FK1XtnZwZw52ezrDN7eavnECYiNtWRNhRAPSkyEd981Pf7008wTJxam1NZug0HN2f0wKAb/7UIIIYQoDEnxSXRuGoRLRWd++2pvlmVX/aM3LqftDigePp1ahRuXDQaVGGnatJwlQEod163TweEsWsWFEAVv7lwIDVXL3bpB9+5FW59UD2MXcwm6hRBCiIfEyp8P8d9pXwDenl6XlJSMy+l1elb/eQsAO1sdPXoUVg1FcdTpEUezx61awcSJOdtXxnULUTSio+Gjj0yPi9P0XM2bQ5Uqannr1oejF4wE3UIIIcRD4oefTEmxwiKqsHZtxuWObA/m2u3KAHRrehQnp8KonSiu2vf2xEqjA8DOzsDChRlkK484BLqkdPtK0C1E0fj8c4iIUMvDhkHTpkVbn7SsrGDAALWckACbNxdtfQqDBN1CCCHEQ+DUvnP8e9LPbN2PP2ZcdtXym8blgf0SLFgrURKUc3fh45e3U6dqOAsXamjYMINC27rAXy6wpSMEvA1X10LibTw8oHx5VWTfvpxlPRdC5E9cHHz5pVq2sVEZy4ubQYNMy//8U1S1KDwSdAshRAkVdPA8W5cfxaCXX7Eiez9+dTXdus2b4ezZ9GX/2VwdAI1GT//hORi4K0q9t2d350JYRYYNS7My6a55IV0ChO+G0zNhV39Y4Y7V4XG0apEIQHi4aXypEMJyQkJMXbYfewzq1i3a+mSkSxcoW1Yt//UXvPkmHD1aem/MSdAtjJZ8tZf/Df6XsLPXi7oqQogsGPQGvpy8C+/Wten+RFN+mPpvtvskJyYzZexO3hmzk9ionA2ekmC+9Ii5E8Oitf4AONrF8s5bptbrud+bvx7OH7/EqcsNAGjldZrKddwKr6KieNNozB/bOJuWaz0JZeqYbzfo4Nwc2pT73LhKupgLYXkXLpiWGzcuunpkxc4O+vZVy3Fxqjt8s2YqQeMHH0BwcNHWr6BJ0C0AWPvrQZ5+vR0//dORR/vdRpesK+oqCSEyEH8vnhF9/mPip53QG9Sgyo++aUh8TNZdgL98ey8fz+vMjAWd6dH2PHdu3s2y/J8/7qOq6y06+QbkOEgXxdeS745xL14FSMN7HuG1N+yxs1Wf8wvmJxF/L95YdtXvpqbIgT0jCreiomTRpPkZ2Xo+DLwAg69B+z/B42WwVskA2ngcMRbLTdB9+za0bGnFk082NAsihBBZS9ujpE6dzMsVtZkz009JeeaMmh2hYUN46aWiq1tBk6BbcP06jHrdz/j40JnG/DQ966lkhBCF78oV6NA2ht82tTNbf/OuOwtmHcx0v+ho+OyXDsbH/532pWOrcK5fuJmurE4H77wUxNDxbbhxtxL/nvTju6mHCu5JiEJn0Bv4caG78fG4V92oWBEe76Kinzux5Vk+xxQUrdpQzrg8aHjNQqunKCUcqkDNx6D5N9D/HNQfS8uBPYyN5MagO3wf6DNJn3/fzz/D0aMazp1zZNQoK/T6LIsLIe5Le5OqOHYtT1Wrlpqn+/p1mDMHOnc271Dz229FVrUCJ0H3Q06vhxEjIOK2rdn6tz9rwo3QW0VUKyFKh6T4JI7tDCY5MTlH5WOjYtm/MZAzR0PNWh4B9uxRU2wcCVRdfR3tYpn24k7j9s9+rJvpeb79Fm7fMU81HHipAe3aJnL++CXjuqgoNXfmjO/NsyR9Ns+X6MjoHD0HUfzs3xjI8VBPAFp5BdK0i7q+419xMZb5cUE5ACLCItkT6AOAR7VQvFoU419rovhzqAQt5+LS/AUaNVKrjh+H2PCrsLUDrKoNJ6dB3LUMd9+2zbS8d6+Gb7+1fJWFKA1KSkt3qooV4X//gx07VAPDl1/C0KFqnvHSQoLuh9wXX6j58QCqVoUhXQ4DEBXnwutjM8iuI4TIsSGPBNC0ixf+Hhc5tjPrwUkrftpPrRoJtOntjWezOjg6O+DmEkHT+kH07RBE165w6/59sDp19Ozbeo0p33Wmd0vVCn05vDq/zT6Q7rh376pxUqCm+Fn35zVquYUBEHqzJu0723NizxlCQtTcu+vWpZY14F39JAC3YyrwzYdH8/8fIorED79WNy6PG33XuNy6lzdN6oQAcCDYm6M7gli3NMg4bGHgI5cQoqCkTh2m08GRtZvUeO/4q3DyA1hVC3Y/Djd3GcsnJcHu3ebHePttOHeuECstRAmV2tLt6Aju7lmXLW6qVYPXXoNly+CJJ4q6NgVHgu6H2OE9EbzzjkqUpNHA4sUwZ1EdKjjdBmDp1nZs+eNIVocQQmTi6rnrrN3XEoBTlxvQqltdZry6M12+hKjwKEb23c2Q/7Um8p6r2baI6IocO9+Q9Xsakny/EfuRR+DQISt826tEV+9OsTOWnzG7Wrrjf/2Vgbt31fIzz0Cfx6qy9z9rGtdUN9Vu3K1Ex57utGyeRIiKv6hQATZt0rBydVm0Vqr75xcL/bh7Kyrf/y+icEVEwPJ/1HxNFSroGTquuXGbxkrD+NGmIQY/fh3OqvVljY8HPl6h8CoqSj2z+brPd4bqA01jwg0pcOUv2NZZBd/xN9i/XyVXArCzU/3K4+Nh9Gikm7kQWdDr4eJFtVynTvr8h6JoSND9kLp3+x7DhsaQkqLeiW+9BV27QsXqrsx697Sx3PjXXUmIlTlahcitdX+Y9xRJ1tnyzuzOdPQ7xfmTqivlztVn8G18j1/Xm8Zb92xxmGHd9tLe+zg13cKMQa+Vlbrzu3EjuKaJzdv186WTbwAAZ6/V4e8/E43bbt+4y1efxwCq5XrKFLW+Wv3K/Lu/Iq28AgGIiitHdIwaYuLtDYcOqeC+vn9tnu2jBmDejS3H1x9Ia3dJs2CBajEEGDXKCgcne7Ptw19sSlkHNXRgycbmbDroC4BbhTha9yymKW9FiWQWdAfWhY7/wIBQaPwe2FcybbzyF6xrxNY/A4yrXn01jDp1VCPB7t3w3XeFU2chSqJr10yf+8V5PPfDRoLuh9QrIwI4d702AC29Qpg2zbRt5Jttae99HIBz12szY+L+IqihECXb2g2mFujh3fdipVEt0P+d9qVJmyoMGwZdBzXgcrjq+uvsEMWvs/awYX8zft/Sjt0nm3DpVnUSEzRcCY0nIkKNcUqb4TPVux+WMy5P/8zROMfll1MCiI5TLZejBhw0+/KtUKU8W/fVoUfzw8Z1Q3qcYd8+8y/p92bUxlqrmtm/+rUpt6/fyc9/iyhEer1KTJPqf/9LX8apvBMj+gUAEJ/kSFycuhHbf5AjWhtt+h2EyCNPTyhXTi3v23d/Lt4yNaHJRzDwMrRaAHYVVYGkO2zbZJo1oWPHu8ybZ2renjxZupkLkZmSkkTtYZPBzzdR0JKT4c8l0QTsvMp6p2g02fXzqNgatGlaI2KvQMz57E9k7QiuLc3X3TkOSeY/km/e0vDLuk4AONnf4/c/7LGxMW230lox56cy+HVIJkVnw8wFbRk+QYdnQ/kBJkROxN+LZ+thlYyqcrmbLN7Qhhc3nmLEc86cv1GL2FgNf/wBoD4LOjc5xi9L3ajVsH26Y2lttFSv7ZDl+boNqk3LlnDwoEpStG4dtPaLZPZvzQCw0Sbx3ifV0u3nVK4Ma/715Zcv/qVceWseH9fGbAYggDreNRjd/19++qcj0fEufDFlJ5/M75zuWHdu3mXlwpOkpBioUduBml41qeFRCWfndEVFIdm0PJjQUC8AevSABg0yLjfutap8/6f5uoEDLVw58dCxslJ5IzZtUvkpQkPTBARaW6g3Cqr1g6OvcS9oFQcvqN8znp4GKlVKxs8PXnwRvv/e1M185051XCGESUlLovawkKC7EPzyC4wdWx4YkMcj1Lj/lxdNstz6wyfHqdck/Q/9xm3q88bI/5j5c1uSkm0Z/5JKuCbjQoTI3va1YcQnqQinb4czWGkr0bavDwEhyUx8E376SZWzs4Pp0+HVCX5YafP+5tJo4N13TYHSJ59AB4+TxCR0BuC5Qfup1bBjhvvaOtgy9r2Mt6V6d0Y9flmbSFKKHbOXtue1mSrTaKpNvx9m9MvVuHa7Q7p9XVzUlCCvvgqjRuXl2YnsrPhpP19+40hCkvlXeli46SKNG3GFzL5HGrepT0efAP496QeAg4OObt3kJqsoeG3aqKAbSNerBgB7N2j7G/+eO0SKTrUGdO1qMG6eOep71q99ntBLtuzerQLwl18upMoLUUJIS3fxJPcHC0FxzRr4bJ89PPN6+oA71ZRv2lK7tlrevh1+/71w6iVESbf2X1OTYr/HTS3MTs42zJ2rbmBNngxHj8Lrr5OvgNt4nn7goxrX2b8fvvxNvbftbBJ4Z0YmTZw5VNOrGs+PUl09Y+OsmTVLrY+LjuOlobvo9VRzrt2ukuG+UVFw4gSMHQtXr+arGiIDumQdY173Yu8pX46cbWT2d/Ou+vKp7nqNfo9nfH1SjX/+nnG5R+d7ODpatNriIZV2XPeGDZmX2xbQwrhsDLrvnsQp5CV+fqqncdvkyQZjwighhCIt3cWTtHQXgoEDITAgmr0bdlC5ciW0Vtm0IJRrorpapYq/DnFh2Z/Iyh7K+5iviwqBlPTz6zqVtaF9vzbp1qfl6KjuIvftqx5PmqSei5NT5vskxSfx0YT/iI2FTxe0w8bOJvPCQpRCBgOsXauWbW2h2+D0t5kfeUT9FSQrK3jn1WsMG1MVAJ1efbz/79EDVG/QKd/Hf/uDCsxfBImJKolRhyZnmDjJhjNXTcfu2eIwjw6I48plPZfv+XPlpgshISqpS0oK/PjRAT6e0yrfdREmpw6c526sBwAajR6tlXn2+nJlovjqo0tY21bN8jiPjm3N8DV7ORZcmekfGIByFqqxeJh17KhmR7h9G/78E77+2rzXTKrU+bk1GujUCS5fBs151UWoS+OdjO/2PT9sfZG4OA3vvRTIb39VUq3kQgizlm4JuosPCboLiZd3GRJSquPn54dWm9tue1Xu/+WFZx73U/r0gQEDYPVq9cP508kBfPSdX6blP3jxP2Yu7AxAY+/djHk7fXdTIUqz48ch7P49sq5ds75JVdAef6YS7793gbPXVaBvbxPP5OleBXLsatXghRdg9mw1jU//pzyM2xxs4/h88iHGfdARjZV5q/21SzHUqmdHis6GuUvr8d4XCdiXsX/w8CKP9u+NNy5//ua/vP5p5wdKVLz/lzUbOxuWbG5XoHUT4kH29mos9uefq+zKCxaoG/pp3bqlescANG2qgvTLl8HgMw3K1oezPzD9iXdYtv8JImMqsmSdNxO/aol/Jy/weFHltpGxcOIhltrS7e4OZcoUbV2EiXQvF9n6fJYBG2s1bdGsn7y4eCrjVveDm0/x2S+mIPvoUZlI82Fn0BuyL1TKrF1jes79+hXuubU2Wt6eYOrDPX7oAarUrZTFHrkzeTI4PJDTrYXHKY79d4PxUzulC7gBqtZy4vEuBwE17/jS7w4VWH2Kmxuht3hp6C5mv7Or0F77B86Y8na06uldKOcUIj/SZtGfMyf9nNs7dpiWzXoE2ZaHhq9D/zO49PmD955dYdw0eelHcHExbG4NR161SL2FKCx79sDzz6u8B7kVH68ayUDGcxc3EnSLbDXw0PDq8D0AJCbb8+ZLV9KVSYhNYNTzdugNplb84PNlC62Oongx6A2MHfQv7uUj+Wf+gaKuTqFa83uwcblf38K/6fDsG+2YPmEnbzyzk49/LNiu3JUrw+ujAgDQWqXw4bid7D3hgWezrL/ZX5lYzrg8e65bqbwZE34lgq6d7vH9n514dUYnfvpkd6Gcd//9GR2traFpm+xbtIUoavXrQ8/7w7JDQ02J1VKldi2HTIbhaKygam/GfTGW2rXUdIabT/Zka+D9wlW6F3ylhSgkf/wBXbrA/Pnw7LO53z9tjgMJuosXCbpFjrz3ZVPcXcIB+GtnG3atDDDbPu2VfZy+XN9sXcilvHaJFyXdqf1nmbeqIxHRFfnw44cnI9PNi+EcDG4IgE/tM9SqXfhdHK20Vrz9dWdmLeqMQ9mspxrLi6lf+7Dq5wOcOniZD37onKO8Da17Naal5ykAjod68e+q4wVer6J05+ZduneKJOhKPeO61z5uzukDWU8kfPkyvPWWeZCRG9HREBSklps0Sd8LQYjiatw40/KPP5pvS30/2NpC+8xzvWJnBx9/Yvr8mbzmD/RVB0GV3uYFw9bAzv5wbSMYpAeeKL5+/BGGD1c5UADOnlX5D3JDkqgVXxJ0ixxxdnVm+lumFrwJEx3QJauEPYd2hvHpQjXlkI02iVpuqvv51dtVuHc3ofArK4rciiXXjMvHL/lw5WxEno917fwN/vpxH1++tZNXh+/i0Y77adFcR+XK0K5d7r+QLGn9sjSt3F2vZVGy5NLaaBkwulW2rdsPmjDurnF59lel53MhOjKaXp3COB6q8mdordSvpfgkR4Y9V5OETJ5qaHAk7doZ+OwzGDwY7t3LuFxWDh1SiftAzX8sREnRty9Ur66W166FS5fUcmioKQlUmzZkm0V/2DB1wwngSGBFlt9YCQ8mqz3zLX//Y4tX89o8220NhssrTG8cIYoBgwE+/hjGj0//0jx1KnfHkunCii8JukWOjXyjLU3rq2aV46Ge/PzpXhITYeSL1Y3dyj8Y/x+P9C5n3OfMeUmY9DBascG8l8ParXnr9rpg5m7qeJXn8fFtmPhZZ2Yv7cTK3a05fETLzZvw338qw35xsWadqdWl/xDXIqxJ8fPY2BZUKX8DgFV7WmSaG6IkiY2KpV/nCxwMUWOpK5W7xZGd52ncIBKAE4G2TJ6cfr8rZ67TtVMcYWGqJ8S9e3D4cO7Pv3/tf8bl1v7F6O6TENmwtjaN7TYY4CeVmNys10e3btkfx8oKPv3U9Pjdd1WCtlT6xHtMmdOPx2b/Tch1LxZtH8jhX2fAplZwY2v+n4gQ+aTXq6lDp0wxrWtiStVBYGDujict3cWXBN0ix7Q2Wr7+wvRt9u6sRkx8NZHTp9Xjpv4pTJrVDi9vU7rm4OAHjyJKu/PHLxlb/VKlTqGVU8mJybw09F/GvN2BpBS7dNutrEy3gtety1M1C1xiXCKbD6rgq6JzBC27NyriGhUvtg62jBuuPhD0Bi3ff5p11+viLiE2gUFdg9kd6AeAa9lItq6LokkHT5b+7Yrd/Zft7Nmwfr1pvxuht3ikSwIXb9UwO17q2OzcOHDQ1KLXqmlU7g8gRBF67jkVfIMav5qUlIPx3Bno0cNU9sIFUwAfHQ2DHi/Lx3++Ylb+SGgzuH0ItneHbY9AxMOVd0QUH8nJMGqUmjov1axZalrOVCdP5u6Y0tJdfFk06L579y4TJ06kadOmNG/enHfeeYfY2Ngs93nmmWfw9PQ0+3v//fctWU2RCx0GNOGJrqp1JSK6It/PUb8sbWzgl1+tsbGzwTNNvBUSUhS1FEVp5W+h6dZt2wbZvPWNwq9E0L3lKb7/s6Nx3eh+u1ny9V52rz7BxdNXSYjT4eurth08aODm5aJv5du5KpDYRHXDqU+7YLQ2uZ0asPT73yRvbK0TAZi/wo/YuzFFXKO8SU6GoY8lsfVoMwBcHKPYvOoW3m0bAODjo6ZESjVypJ7roZFEhEXSrXMUZ6+p5odK5cKNZQ7supmrOhj0BvYHql9U5cvcoYFf7Xw8IyEKX+XK8OijavnWLfj7b9i+XT0uWxZatMjZcTQa89buadPgyBE15GLNmvTlj15L04R+c7vKeL6zP+hKz7AXUfzFx8OQIbBokXpsZQU//wxvvAGNG5vK5bWl29raNISjxDAYIPYyXP4Tjr0JV/4p6hoVKIsG3W+88Qbnzp1j4cKFzJkzh8OHD+cogB46dCh79uwx/k16cBJHUaQ++74W9jbxZuvef1/90ATwSjMtsLR0P3xWrDN1q+7aMQ6AxMScJYs6tusMzZslsOuEHwC21oksmLmbn9d0YPiEdrTv70uthtWwsbOmXzuVjMtg0LB+aS4HPVnA2n9MAWT//hJwZ8S9ZkWG91TTh92NLcein3IXaBYXS5bAmo3OAJSxj2XDn5dp2qWhWZkXX4T+/dVyeLgVzwy5RPdO4Zy6rALzmm5hHPgvCRdH1UK9/4AmV1ndL54OIzzaDYBWjc9lOF2bEMVd2oRqkyer4BugUydTK3hONGsGTz6plsPDoXlz0++P8uVh5UrT1N1HwodA29/ByZT4EF08aGU4nCgcUVHQq5fpppCtLfz1l5rDHtRrtlo1tRwYmPMUBAaDqaW7Vi3QFvefIkl31TCPwE9g10BYWQVW1YI9QyHocwhbWdQ1LFC5+EjLnfPnz7N7927++usvfO5HY++99x5jx45l0qRJVKqU+dyx9vb2uLm55fhcOp0OnU6X7zpbUmr9ins9c6Jag8q8OepfPvqpCwD+TZJ44w0tqU+tZk31ZZmSoiX46BV0uqpFWFvLKk3XtSBcu3CDfUHq/e5d6yyvvFqT7f+qbWt+OUjfvs0y3Xf5cg1jxtQnPl7dC6xS/gZ//naT1j3bZvj/27svTL+f9XbtemtGvFGw1yA319agN7B2p2p1tNEm8cgQL3lNZOLFiZX45f6QgG8W1uW513RYFeJAp4J4z+7dqyH1nvWiRda07Nkow+PNm5OE/55ort+pxLZjTY3rq5S/wZbNyVT3qEmrRsfYfLg5N++6E3r6MrUaVstRHfZtuwSoLuot/WPk9YZ8HhcJnQ6tcVEHufy/b98eGja0IihIw+XLpvVduujR6Qym45L9dZ06Ff7+24rkZNMNqMaNDaxYoadePfDyUuc5eRLiKw3FtvdgNBcWojk9HX3DSeZ1Nxjg+jqo3Dt9YjZRIB7W9+utW9C3rxXHjqnXqZOTeo127Wr+EvT2tuLqVQ137sCVKzpjEJ6ViAi4d0+9XuvUMaDTFU22/nTX1qBXU/2lir+O1Y7uaO5l3TJniDiAvgS8PnL6GrZY0H3s2DGcnZ2NATdA27ZtsbKy4sSJE3Tvnvk8imvWrGH16tW4ubnRpUsXxo8fj0MWc6GcOXOmQOtuSSdzOzijmOr5tD3HTv7LjYhyvD/5OqdOmSfKqlfJhZCr9Tl7uSJHDh9Ba126v7RKy3XNrw2/XgXUN0P39sFUrBiBvY0fCckOrNtZk6NHjmGlTd8id+6cPc880widTm1r3uAEM76MxL6SMwEBARmey7aiDjfncMKj3dh80JtD+w9hY5/99FW5lZNreyUonIu3egHQzvsYF65YQ/rp7AWgcQZ//3scO1aW4GANc+deoE2b6EKvR37es0ePegBlAXB1P01AQOY/bKa/d5XRb/TDYFA/ONycw5nz3XHu6SoSEHCbRh7X2Xw/idq6P4/SdkB4psdKa+cOU7rzmvWiM32fPIzk87jwWMXH439/+cSJE+jzMG9d375uBAXVNFtXrVoQAQHm3b1zcl2HDKnOH3+oRp3One8wdepF7t3TExAAtWvXJijIleRkDStWhODlFQ+0RFPjTwzXrOF6gPE4LjG7qX/1NRJsanK94vPcLtsDNKX7d0xReZjer9ev2/Liiw24fFn1qnBxSeGbb85SoUIcD36Eu7tXAyoDsHp1zr4nT51yBFSvq7JlIwg4dgmtPgorfSIaQzJWhkSSrCuh15pyL2l1UZSJDwQMaNCj1cVgk3IL25Sb6i/5JjYpt7DSJ3K8/mYMVqYeIa5Rq6gQvQkDWtBYYcDK+G8DfQy60EisUiK469SJS1U+MFXUoMMv9goPvqNSrMoSa9+YOIfGxNp7E2vfiJRS9N1msaA7IiKCChUqmJ/M2hoXFxfCwzP/UdGvXz+qVq2Ku7s7ISEhfP7554SGhvJd2qwCD/Dw8MAxu3kliphOp+PkyZP4+PigLfb9PXLmn92pS43TbWtY5xAhV+uTkOxABXt36njXSFemIMVFx7H+9xO06FQjxy1FBaE0Xtf8mDTJ37j89FhPmrStR7fmR1i7ryXX71TGEB2B3wPdcAE++0xjDLifekrP3DkNsXfIvvmzd7v/WLTBjZiEsty5pKXHE34F9lxyc203/27KgjWwTzx+fh0KrB6l0dtvw9Chann9+vqMG1d4d+ML4j0bFqZem5UrG2jf3jfLsn5+fpwL2sUn87vgWjaSTWsi8G1nGlN6rUcyX/+uli+cK8d4P78c1eFkyGnj8oBh7ahQpXzunkQpJJ/HRSBNsg5fX18oUybXh6hTB374wUBcnPoOcHc3MGSIl7E7eG6u6/z54OGhp1o1GDXKGSsr0/vzkUc0bNiQWm0v/Pwy6bNrMGC17WUA7JMvU+f6FGrHLMHQ+D0MNR6Xlu8C8rC9X0+fhhdeUK3XANWrG9iwQUPDhh4Zlu/SRcPixWo5Pr5e5q/XNM4EmgLzlq6raHpxEpqkO2ZldB1WQdX2phW3dqHdMSFHz6GJf0uzFmvNscVY3TiY7X6ujkmUf+C7zSq6PYak2xgqtATXFhhcW6Jxqo+TxgqnjA9TbMXFxeWoATjXQffnn3/OvHnzsiyzPm2q1lx64oknjMuenp64ubkxcuRILl++TM2aNTPcR6vVlpg3bEmqa3541k+APWr5XGAE9ZvUtti5bl0Op1fXCI6db0d112ucvZSMfZnCHZv1sFzXrERGwq5darluXfDv4IFGA/16J7B2n1q/YUUELbuZ/z+dOQN//qmW3dzgp5+scHTMWX/j/v2tWXT/R9SG1XH0Hl7w1yC7a3v3LixY3dZUp2ENHvrXQnYGD1bDUC5fho0b4fqlWKrXdc7z8WJi7nfL0ydDSpxxvaOzIzZ2Gfd+yOt79s7Nu9y6VQ4Ar1o30WorZ7vPR3M7M3hYELU83KlY3fymU5tHGhiXDwZUyFGdEuMSOXZe7degaihu1WVemLTk87gQpfl/1mq1eRpEWqECPPUUpP607NpVg3UGveNycl3LlFHdzDPSvLlpOSDAKvOqGgzQ5CMInAa31Pgozb1gNPufhqDp4P0+1HzcvLusyLOH4f169KjKsh+pZpPEwwO2bNFQs2bmzzvttGGnTmXxegXQp8BaTy5teByYCUBdh83pAm4ArSHJ/H2qzaaHoEYLDlXBzg2t9QNl9VknHzRoHdA4VEHjUDn9Ne6yATQaSkM2kpy+fnMddI8ePZrBgwdnWaZGjRpUrFiR27fNMwqnpKQQFRWVq/HaTe6/6i5dupRp0C2KH6+GppdWcGAsvSx0nkunr9C9ewpnr6kfsmGRVVm18D+eeKltNnuKBTN38+L7zXn8kSP8uq5dvhMxrVljGo/06KOmpDV9n2wA9/MnrtnqzgcP7Dfzjf8wGNT1ev11yE2nlR5DG2PzchLJOlvW7KjLbL2hUBNKJSWp7KPnzqlztmwJ9XwKr6dFSWVtDaOfus2HMypgMGhY/M1R3v66c66Po9er//9//kldYwO4GLe7OYfzzcdnefLlgvs8CDkWBpQDwLPqGVK7/2VFY6WhWdf0PTwAKlZ3pV7lS5y/UYujZxuQFJ+ErYNtlsc7vuccicmqh1Fr36uABN2iZJswQWVxTkyEYcMsc460DW1Hj2ZRUKOByo9Apa5wcwec/ADC77ciRJ2GvU/CqengNxOq9DJ92QkBkBILd05AfBjEhXHzyl0GPPUKkZEqyWzT+kFs+GA87oGR4L4N7NPERNc2woUFYF2GhsnOaDRfYTBYEbj/POycoBL+Jd2BCk2h1XzTflbWoLHmwi3THGF13S+AvTuUawI2zipRoNYeHB+IpcrUAp+p6iaSxgq0juBYHRxrqH/tK2feu6PZN+A/Cwy6+396MOjQpSRxIigU36bt0GaWEfEhfN/kOuiuUKFCum7jGfH39yc6OprAwEC8vdXctfv370ev16suSDkUFBQEkKtAXRQ9T2/TD98QCw25P30wlB697bl627zr+sJFtjzxkmXOWVqcP36JF99vTkKyA4s3tmfY74fo/XQO52fJxIoVpuXUaWAAqjeogn+9II6db8iRs424dv4GVeupQOVSUBiL16vzlitzl/H/cwSyDjjScnZ1plOTI2w92oyLt2pw+sA5Grepn6/nkVMGvYGxz+vZvl19GVWsqLJai5wZMTyOD2eo75KFf9Zi8pe5v2Gyf3/agDu98Gg3nppQAWvrfTw2rk0+amsSctLUcuDlmfNs41lp7XuF8zdqkZDswIm9p2neLes53g/8G2FcbtWy+CeZESI7jRvD8eOq51CrVpY5h4sLNGgAZ8+qc6WkZJMhXaOByl2hUhe4uQ1OfAARaspU7p6AnX2g11Go4J/FQUSpkxILsVcg9hLEXgD3LuCSZtqeuydhi7rRm6LT8sSMrVwNVwF3mwb/sXFSL5y5B3cBfaL5saNOq+myAAegfqUXOXvDg9OhVdCFbUBrdX8oliElfb0qtiE0ypSws86If6BGteyD2zI1wSePUzNrbdXfg3Q69NrwhzKwzorF+sbUq1ePDh06MGXKFE6cOMGRI0f46KOP6Nu3rzFz+c2bN+nVqxcnTpwA4PLly3z//fcEBgYSFhbGtm3beOutt2jRogVeaeehEsWep79pcsDg83nvNpqZgwehQ+9aXL1dRZ2v2gVqVLwKwJbD/lw9d73Az1laGPQGXhp7i4RkU8Kb96eVydV0RQ+6d/semzcmAVClsi7dj6Z+j5imhlr3h+kuzKwPzpOiU92VXn4qAOfyOQ+4jcfuaZqqa+2fYbneP68+fmUXvy5SAbedHaxaBfULJ94vFep4V6dzk2MAnL1Wh30bcjkZKfDnsiTjcvPm0LPLXXq2OEzPFodp4aGmkdMbtAx7uTnrFh0qkHoHB5mCXM/GBZNLpFUL0zEP7M4+kdr+s6Z+sq27lLSJWIXImKen5QLuVE3vxyQJCXC/TSd7Gg1U7gbd90CXTVDh/vuvaj8JuEuzmItwaRkcfQP+HQwbmsHfFWG5E6xrCDt7waHxcGuH+X6Ops/kt5Z+yq6gzgBULX+VFa8OwblMPFjZgdZBtQynlRJr9tC7uvpejE9yJPTW/R5NqcMaHty3zS9cuKtem87OUKFGdQl6ixmLDkj5/PPPqVu3Ls8++yxjx46ladOmTJs2zbg9OTmZ0NBQ4uPVnM82Njbs27ePMWPG0Lt3bz799FN69OjBnDlzLFlNYQEVqpTHzVn9eAy+VLBThm3dCl27wu3b6uXbzPMcu/c5M/qxs4D6kb34+5ACPWdp8ueP+9h40LxV+/DZRqz5JftkGJnZsPQkickqYB7cfm+6KaD6DTH1VFm7wQ6AG6E3mf+P+oVVxi6GCR/kvAeM2bGfqG1cXrM5+144BeG3r/by/vedjY8X/5JIWxnRkGujnjb9wPhlXvqxZ1nR6/T8tUS1+NrY6Ni8GTZuL8fGg83ZeLA5+083ZFRfle0xRWfDkOd82Lo8qz6lORNyzpQvwssv+67lOdGqo2n2h/0Hsu+AduCISlZlbw++7eplU1oIkaqpqSEw6y7mGdFooEoP6HkQ2i9X3cvTMhgg8GOIu5rveopC9mAAC7C1oxpKEPwFhP0Dd45CYmT6cvfOmT+2rwweL7Ps+iq+3DARABsbA3+trkjl8ddhWDI8mQBPxKlW5rQavg4DL0Pf09DrMD5dTQnPTlY/BkNj4Ikk6HMiXU6BlBS4dEkt160r8XaxZCjBYmNjDYcPHzbExsYWdVWylZKSYjh8+LAhJSWlqKtSaDp4BxjUt5DBcPfW3QI55s6dBoOtrcF43C5dDIaoKLXt/IlLxvWe1c4b9Dp9gZwzKyXtut69nWyoUv6G8f/puQG7jMtN6gQbdCm6PB33ia57jcfZuvxouu26FJ2hUrmbBjAYHO1iDHHRcYY3R+ww7jPxmZ35el4Na5wzgMFgZaUzhN/K+XXX6/SG4MPnM3x9ZnZtd/x9zGCjTTTW/bOJO/JV94cZgbPkAAEAAElEQVRZzN0Yg5N9tAEMhrIOUYbYqJx/lv+37rjxGvRpdTDDMilJKYYnHzG9Nh1sYw3bVxzN13s29bVmZxNvSEkqmPd9YlyCwc4m3gAGQ4OaN7MsGx5u+vxr27ZATl9qlLTP41IhJsb0goyJscgpCvK6bt1qqu7LLxdA5dK6tNxgWILB8Ie9wXDsLYMh8XYBn6B0KdL3a0KEwXDlH4PhyESDYWNLg2FLp/Rl/n1MXc/Uv9+1BsPKmgbD5vYGw57hBsOxyQbD2bkGw+3j6XY9edJgcHQ0vda+/z5v1Vy+3HSMadOyLhsaaio7eHDezldQHrbP4pzGo5J6UViMV70o47JKPpR/0z6II+l+j9KBA2H9etWNBqCuT006NVFDFUKu1mX//kwO8hCb8oE11++o4R392x7gp5UdaNZATT10PNSTf/7I2RzBaSXEJrDuPx8AKjjdpuMAn3RlrLRW9G2veh/EJZbh7/lH+XF5MwDsbBKY+GH+ho/0e1yN69frrdi4KWe3d0/uPUu35sfwal4XT49EQo5cyHafoIPnGTyiNsk61ar/v8H/8sZnnfJe8YdcGZcyPP7IcQDuxTuzckFAjvf9c4kpUefjjyZmWEZro2XRuhYMaq8+DOKTHBnwdEMCA/PWLTwlKYVz19RrzaPaZbQ2BZNx19bBDn9/dayzl92NGW4zcuCAabl16wI5vRAPDf80vcFz3dKdndOfqX91CXD6U1hdD07PgpT4Aj6RyJX4GypB2amZsOdJWOuluon/O0i1YkceVGP1H7xOtYepTPWd1qrW5ycSYNAl6L4b2i0BvxlQfyyUN++ld/euymsTd38ijWefhXHj8lb1+ymxAAjMZgTWhTQ/YerWzbycKDoSdAuL8Wxsmmkv5HKlfB8vKjyKf/eo8b+1q97hr79U98q0Rr1qCvh++VX61qR1+DB8/71adnQ08O2vjdFYaZj2gWlc7AczK6HP5ZTJW/86QUxCWQAGdDqFjV3G3WP7PVrOuPzi+82M+4wecJAqdfP3+ug30DQWfO3arMtGRsKLL4Jfx3psP6b6Gt68606fflrCr0Rkul9o4BV69HHgbmw5AHq1PMx3f7Qt1GzppdHI58sal39ZnLOp/vQ6PX9uUnOb2miTGPhs+hs9qWzsbPhjkz+9Wqox3TFx9rz8cgPOn899XUNPhRlvuHjVySIyzoPWbU1TsRzMYqTHgW2mX1aWHv8qRGlToQLUrq2WAwJMM24UiC4bwet1sLr/fZR0BwImwVoPCJ4NydFZ7y9yLjkabmxTWeR3DYT1furv3Hzzcjd3wMoqsLM3HH8bLi+D6AyGH5ZtAHEPNA7VeBR8p0K1vlCmhsoQng29HkaMUMn6QN3k+fHHvHf1rl8fbO+/nE6ezLpsaKhpuY5MaFEsSdAtLMarrWnwVHBoxSxK5szmv04bk27173Aiw6yjQx7TUEYNd+SPPyBebjAD6ofFCy9gDKg//FBDrfrqpkjv4X7GH++BgaY5s3NqxZ+mVsZHh9hlWq774z7GL4/oGBVcaa1SmDQt/7dk27aF8uXV8saNkJycvkxyMnz7rcpe+8MPqlUcwEqjfnVduFGLgT2vE38v/Ysm7Ox1HulmICxS5SfwqxvM8g2eWNvmegII8YAO/X2pW/kyANuO+XE5OPvxkAc2nTJei27Nj1O+kkuW5e0c7VixzZcuXVSywHv3rPnhh9z/CgoOuGVc9qyfcet6XqUNoNO2Zj9o/7+mse+tfCVhpBC51Ux1siI2Fs4U5Owqdq7Q9AvofwbqPAupMxDHhcHRV2FldTjyKsTL+9ZMcjREHoaLv6sM8aempy9z4Vc4PAH2j4Z13vBnOdjeDY6/C1dXw93j6i/hpvl+Lt7pj2VlCxVaqBskHVbCo+HQ9xQ4N8j3U/n+ezV9KqgbPCtWgIND1vtkxcYGGt6fbfLMGTWlXmakpbv4k6BbWIynp2k5pADymq1Zbbol3X+QU4ZlnJzg8cfVcnQ0rFyZ//OWBj98dpEjR9Sytze8+qppm0YDH31kevzhhzm/+58Un8SqXWq+4DJ2MXQfmnkyNCcn6NLFfN3TvfZTu1H+sy9bW0Pv3mo5Kgr2bLlh3JacmMySr/bSxPMWr7wCd+7HLGXKwIypdzlzLIyqFdSPoH1BPowYEIBeZ2ruv3kpnEe6JBB6UyU88ap+nk07XClbwdRCK/JOY6Vh5BD1a8FgsGLR92ez3efPJaZW5qGZdC1/kIOTHX/8YQq0Dx/OfdAdcjrOuOzV0CaLkrmXNujevy/jmQT0Oj0Hg1SK/MrlblLTo2ASuQnxMMlXMrWcKFML2vwCfY6rDOepUu7BmW9BV7A37EqMO8ch4B0VOO/si9XmVvie64l2RQXY1AL+ewoCp8G5n9Lve30jnPkGLiyEqFPAA5+RVjZqDuoHW6Pt3aDmUPCaCG0WQ5+TKhlZr4PqBkmNQWCf/0YhUI0aX31lerx0qalXRX6kdjHX6bL+LS0t3cWfNNMIi6ldW3WLSUqC4OD8HUuXrGP9XnW7z8n+Hh0HZHD38r5Ro+CXX9TyL9+eYfhwj/ydvARLiE1g/6Zg3v3IdNtzzhx19zStbt2gfXvYs0ddqz9+OsNT47L/f1u7+Ci3Y9TA0gEdjmNfpl2W5fv1g02b1LJGo+ftaQWX2b5fl0v8/nstVa/fg2nZriw/f3aYL+fV41K4eb2efRamT4eqVcsB5Vi3MoQOPZ2ISSjLXzvbMHn0TmYs6MDdu1pGPglnrqpvsHqVL7FtZxnca7ohCs6IFxvw/v2hD7+sbsq732TeHU+v0/PXZtUiobqWZ/5Z8CB3d6hVy8ClSxoCAgzokvW5GpcdfMN0U8nTv1qO98uJ2rXBvUIMt247cfC/uxj05dINXThzNJSoOJWtvJX3RTRW+R+2I8TDJrWlG1TQ/dRTFjpROR/ovAbunlIBY+hiqNILnGqbl9vUGnRxUKY2lKkDjlXByl7Nf6yxUS2zVrbg3t5sOiqSoyEqSGWxNujS/yXdUa3sKXHg/a75OS/8Apf/BodKYH//z6EqONZUXantK6XLjp2OwQDJdyEmVP3FhqpptmLvP+7wN7g0NJWPDoHTM4wPNUCGty5jL6vx1dZpmohTTDc80VhD+Sbg2kr9VWyluodnVt/2y7J+HgVkxw5T4Nujh/orCA+O6/bNpG0jbUt3QQT7ouBJ0C0sxtpajUc5fRrOntWjSzbkOfHQgc2nibynxm32bBWInWObTMt26AB1K1/hwo0abD1Qnysh16jhWbDTlmXHoDeQGJ+IfZmcjVEtKOFXIvhv83n2/hvP3sMVOHzGk6QUP+P25wb8S7t2HdPtp9HAtA+S6Npd9f+e+rENT4xJybb7dNpx8yNHZ/9cBwyAN95QXaSGDriFZ7OC6wPVq78LWqsUdHprfl3twy+rErkdY57krK3vOb6aV5+WLc339evoyfKfDtF/pD86vTWzFnWmYqX/+GVtE4LOqfEKNSpeZdt2LVXrSetiQavVsBpdO8aw/V8nzl92Zu9edRMoIwc3n+JKhPosUF3LW2RcMBPNPM5w6ZInsbFWhBw9R6NWOZ9cPeSiaUo6z2a1c3Xe7Gg00MrrFGv+a8WdmPKcDQjFo6l5c8X+HdeB+0F3Mxk7I0RepE2mltoDzKLKNYaWc6HJdEi+Z77NYIC7J1XQfTebQbsdVpoH3bePwbbO2Z9faw+N3zG/k3n7CFzLIgGKlQ04VIeqvaHF9+bbtnaBxFsqoM9qnHrMefOg2978JqFBoyXZqjw2FbzQOHtBWQ9w9oCynqB9YKhas6+h8bvqObh4mwfkBeD2bZgyBQ4dynh769bwxRfpGyzSmjfPtPz88wVXN580KUuyGtedGnRXq5Y+35EoHqR7ubAoL/djACQlWXHxdN4zmK/529SdtF+frPs+azQwcojKkqS6qxbkoK3s7VoZgEf1S7i66vjqs3sYMu4pmm8Gg+pqtGABjHnsFF7VL+BesyKDnmvFrEWd+e+0L0kppi+u2u5X+HRO5q2CXbrZ0sVP9bU7e60Ov32ddfr3G1diWL9fNRlUd73GI4/5ZVvnmjVh1SrVnf3nJQUbvJavVI723iq9Z+Q9V27HmAKkPq0OsXNFAHuO1UsXcKfq/UwLvvvgP+Pjt2a1JShIBdxVqhjYvsOWWg3z3xVeZGzU86YhIwsXZl4ubdfyzLKWZ6VZw2vG5SN7b2RRMr3UHjtVq0JZC4wuSBtI79+efmz7gQOmYQ+tO2Q9jl0IkTF3d6h+/6P82DFynTw0z+xc07dyp9xTLcxWORiukpqgLZU+KeNyD9IlQOIDSUITbmVc1njsZNVi/eB+AFGBEHU664Bba69a2tMq3wS6blFzTD96C/3j8ZysvxF9153Qah40ehOqDwQXr/St1k51oGJLcG1R4AF3VBT07KlyvRw6lPHft9/C/PmZHyMiwjSc0c1NNTAUlJxkMI+JgfD7k89I1/LiS1q6hUV51YuCnWo5+Pgt6jWplafjrN2uunJqNHr6PJF9t+cRL9Y3dVf9qzbvfG2weJbphNgEpozbzxe/dSR1Nr7X34KAU6pLd36SaaR16xa8+aaaLi3C+H3YOMOy9atcpH3TK7RrC48/74uLW9Y/1KdO1bJjoFqe9mVNnpqQjI1dxj8Glix3InXo84ihN9Ha5Kw3Qc+e6s8SBveNYpeaNQ5rbTLDexzgjXfd8WmXs9bQF97vyIXzO5m1qLNxnZubgW3bNNRvKF3KLWnwYBXI3rsHy5fDN99gTIqYSq+HP7eq2/7W2mQGjsh51/JUTVuXgW/U8uGDOp7J4X6Rkab3m1f+ZrjLVOsOzvCtWj5wQMeINNuunrvO6p2qW71Go6d5l5y30AshzDVrBmFhKvfL+fMqwWZ+6fVgldumLBtnGHAW9DpIuK66ZyfcVEGvPkn9GZJBlwQujcz3dawOHq8AetBo0//ZlAXHGqqcjbP5vm2XQLPZKvhOuAkJNyDuKsRdhtgrEHdFLTvWSF9nrSNoHcChiuoO71T7/r91TP/aV0o/Rsi2HFTuZnpcoKnj8yY2Fvr2VbO7pHrwGqbelPnkEzV8MaNW5MWLMU5n++yzpozjBaFmTZUTJyYm86A77XhuSaJWfEnQLSzK08v0Egs5FUvfPBzj4qkwAi+pb8RWnqdwr5X59ECpajWsTlf/o2w/1pRz12vz3/oTtOuXeZKv/Dq++wzPjrQm8FLndNsWLVJd7FeuNN1dz6vYqFj6dL7DkaD0B7LRJtGsQQjtmkfSrqM9bbvXo1Lt2kDtHB+/w4AmdG92hC1HmhF6sya/frGb597pkK6cwWAaNw/w7Kv+6coUhf+924pr13ZiYwNjJzagplcmfZSzMHNBRy7GJvHn37Y4O6ewcaOGhg0LZj5mkbkyZWDoUPj5Z/XjYsWiCzwzzvzXw8GDcOWmKwDdOt6lQuXc3whp2t7UDHAksFyO9ws5cRtQvSfSJoksSC261kej0WMwWLE/wN24/talW3TrEse126preRe/AMpWaJrZYYQQ2WjaVPW6AjWuO79B9zvvqCRaU6fCpEl5OICVVgXHjrn4keDSEJrPzsPJUAnHHCqrv6zoMwiMB13K2zmLmfh41SK9d6967OoKu3ZB4wfaMAYNUq+Vq1fhp5/glVfMtxsM5l3Ln3uuYOup0ajW7v374eJFdWP6wZ5WkkStZJDu5cKivHzLG5eDQ/L2clv7h2lC3X7dcz437qhnTF01F/4UladzZ0eXrOPvH8Jo3a2e8caArXUis97YxR9L9Tg6qnKHD0Nzv1j2rj1h3NegN3D++CV+nbWHcUP+5c0RO4kKz7yeumQdw/sGGgPusmX19OsHM2bAvztTiLqjY1+QD58v7szg51tTqXbeWmanfWzqkv7R13VIik/fhe3IEdMd17ZtwaOY5KqzL2PPp7905uN5nanplbdEV1ZaK5Yus2X9eh3Llp2mSZMCrqTI1Kjhpu6Ik9+1Z/tfx8y2p53ObugzeXt9u1atQG139aPx2Ln66JJTcrRf8IFTxmUv1z15Ond2nF2daVRDfd6dCK1P/L14bt+MoXuXOwSHqYC7buVLLFpexSLnF+JhUZAZzENDYeZMSEhQraEpOftIKRmsSucN56QkeOwx2L5dPXZxgS1b0gfcoG6kpJo+HeLizLf/9x8EBanlDh0sc1M27bjuU6fSb5fpwkoGCbqFRXn6m+7ahlxwzqJk5tbuqGlc7j805z82B4/2o6yDGnP051ZfkhMzmLz5Ae//byd2NoloNOToz87BlhkLBpKsU32JmtQJ4fDOS7wxqxNPPGnFf/+ZskjejCxDl0FeTHx6J0M67aeKazj1/WoxclJ75qzoyOeLO9O6eXSm84ZOfHYPq/eqeYWcHaL4b+N51qyByZOhQydrHMoWTP/11r286dNKZRO5HF6dnz9LP7b7l4WmgeqjRhXIaYsVrVZlHnVzy/41IwpO287l8K+nfr1cu1OVRx7357Xhu4i/F4/BAH/9pcpZW8PAgXk/j2/9iwDEJZYh+HBo1oXvCwk2tfh4NrRclppWvmqceYrOhh1rQ+nZrwwnQtWvuOqu19i2VUu1+hJ0C5EfaTOY5zeZ2vffY8zdEh2deTIuUTykpMCwYWqIHqiu2xs3mifYS6tJExWgA9y8CT/+aL497VjvgkygllZ247qlpbtkkKBbWJSLmwuVy90EIPhy7lse792DHYfUJ0iNaon4tM15k2oZlzL0b69SPUbHu7Bv4+ksy0deu80n8zqYJR/LKY1Gz1sjd3IgsDY+7Ux1bNJEfQF3bXocgGSdLV8u6cyKf1tz8657uuMEX65By5awYYP5+m/e3cXspSoTt7U2mb8XnsO7bQEMQsvE1I9Ng2k/+aYBCbEJxseJcYn8vki1yDs46IzzoguRXxorDas3lKOLn6mF++ulnWjufZWfPj/D5ctqXbduUKFCJgfJgcZed43Lh/fczNE+wedMN7W8/C2Xwb5VK9MNraFj6hvnE69cMYbtW5Ko3ViS+QmRX1WqQOX7b+OjR8lzwtOYmPQJtjZvzl/dhOUYDDByJKxYoR47OMDatSo7eVY++MA0RP3TT9V1B5WEbdn9GclcXEzBeUFLG3RnlMFcWrpLBgm6hcV51VLZgm9FuXHn5t1c7bt1qyk5Rb8BdrlOhtarl+mbdNOaO1mUhM1/BaM3qK5UtdzCaO110vTXSk/r1pj+/G4at/VqsZcdK48zc2Fn7BzTB+wVK8KmfY2ZMGyX2Xpnhyh6tTzERy/tZNWcLTT2VFOJREWpxB6ffqq+IFYvOMCrM0zjqud+vI9uTzTDkpp3a8SAdgcAuHq7CvNmHDBuW/3rUe7ElAPg0Q77cZEkyqIAVW9Qha2Hm/DlWzuxs1E3e05frs8Lk0w3sx4fkPV7OTsejU2fI0eO5KwvaMhF1Z3dwTaOGh6Wm4KwdWdTQB8br3rQuLrC1p1ONPCvbbHzCvGwSe1ifucOXMrjMOVFi9R3dlpbtuSvXsJytm6FJUvUsq0t/PMPdOqU5S6ACnqfeEIth4fDd9+p5d9/V2PDAZ5+uuAS5mZ0/lQZtXSnBt12duqGkiieJJGasDjPutHsVA29hBwLo3Wvcjned22aaST798/9uXs86gkT1fLGXZX4JIuy69eb5g1Z+GM4XYZklRysElAJnU5HQEAAfn5ZJ2mztrXm69870XfAES5diKNlx0o0blUPrY0pq3aX4Srr5cqVKtiePBn2rDrA9qPexmzo74zZyejJnbM8V0GZOr0cq+9/GU3/0Zsx74CjI/zyq+ljY9RzFvqGEQ81K60Vr83sTI+B53jmmWSOnTfN9WqtTWbQoPwdv65vOePy4ROu2ZZPTkzm/A2Vxdej2hWstBbKpAY0blWPMnYxxCaqKdSyGmsohMi7Zs1MXYyPHDENBcspvV7NspCqfHkVwO/fr7qZO+dtRJ2woNQx3KCmAevRI+f7fvCBmllDr4dZs2D8+MLpWg5qmjt3dzV7zYNB99GjKgM/qNdwrjPoi0Ijl0ZYnJenqbU5+MTdHO+n1+lZt04Fwo6O0KVL7s9dqbYbfh5XADh6riG3MpmaUq/Ts3GfmgfIyf4e7fpY5hdu9yeb8dw7HfBt74HWxjxBSdmyasxq2qQda/e1Ii5RdfV+8pH/+GhuR4vUKyN+HT0Z0jUAgBu3XZkzB65fuMnGg6p5oEbFq3R51K/Q6iMePo3b1Gf/yXq8M2YnVho1prp/2yNUqFI+6x2zUaZ8GepWUk1bAefrkZKc9US9F05eIUWnps7zrJPzZI55obXR0rOV+lXlVCYly7GGQoi8y28ytc2bISRELXfqBE89pZZ1Oti5M9/VExawb59puV+/3O3r5WW6xrdvw+jRptdNixZYPOlqamv3rVsYf8suXQrt2kFionrcPvcTtohCJEG3sDjPRqbxwSEhOR84dXhbEDdvqpdo9w43MpwbMSd6PWqaZzKzsVaHtwUREV1RnavFKWwdCnCSxVywsoL334d/ll7Hyf6ecX177+MsXNUUK23hvmU/nO1nHMc0cybM+fy8sQv+s4PPFnp9xMPH1sGWT+Z35vD2s3z99i5++r1gchk0a6ne4/FJjgQFZ/06Dj4eblz2apA+m39B+3FxPb57fxdHd4dlO9ZQCJE3DwbdUVFqvOz69TBnDnz0UdbBeNpW7ldege7dTY+li3nxk5JiSnJXsyZUzcMoofffV4lWAf7+27S+oKcJy0jaLubHj8Nbb8Hw4SprPqihj9OnW74eIu/kF7OwOK+Wpq6YwbfTz/mcmbV/m37o9ut4Ns/n79nTtLxpU8Zl1m81DUzu06voM1YPfLIKB3bepE+rQzzeZR//bKqBfRnLZUzOjLe3mjsZ1Dimj+e2Mm4b+aKkyBSFx7+zFxOmd6Ji9ey7g+dE07aVjMvZZS8OOW2aI8azoU2BnD8r7jXdeHFqJxnDLYQF1aihcq6Ayl5drhz4+qqcKuPGqQCrfXv499/0+4aEmBKe1qqlZlPo3NkUkEkyteLn5EnTdF9t2uTtGPXrq2GAaZUpo7KhW1raacOeego++8z0eMwY1bvCPX1+XlGMSNAtLK5mfWfs7ucXS+2KlRNrtpoSCvV9Mu8TQbdtq6aEABV06zPoSbp+pykjcO+nLJukLKcatarPuv0tWL69Da5V85GqOZ8+/NA0RkivV78oOngfp16TWkVWJyHyq1kzU6+bw4ezLhscYspj4OVbdO9FIUTB0WigefOsy8THqyD8wAHz9d9+a1p+6SUVbDs7m7JgnzmDcbYFUTyk7Vqenx5E772npq1M9eSTanigpaVt6Q6/3yal1arX4rx5GH9ni+JLgm5hcVoteNyPmc+dU118shN29joBF9QY6+YNTlOlbqVs9sicrS107aJ+YIeHQ8DuC2bbb90ydTlq0gSq1XLM87lKIy8vGD40xmzdyKeii6g2QhSMtF1Ls2vpDr6fuRzAw69GFiWFECXJ++9Do0aqBbNrV9WKOWUK/PQT9OqlysTEqOVj92cyvHsXfvlFLTs6qlbGVNLFvPhKG3TntaUb1DzYabuTjx2b92PlRqNG5o8rVlTZ2F96yTSdmSjeJOgWhcJLxc8kJ0NoaPbl1/1h6k7er1sm2c9yoWfTPcblTSvN5wZJ2+W8d+98n6pUen9SBFordbfE0S6Wx8f6FW2FhMincuWgfh0110vA0SRSkjK+G2gwQPA19QFWvWoyTuWdCquKQggLa9MGTp2Cs2dh2zYVTE+bpjJRr1ihAnFQgXaPHqrsggUQG6vWjxihspanSpsNW4Lu4iU16Lazy39yyq++go8/hj//hJYt81+3nHB2hm7d1HKTJqqxqHPnwjm3KBgSdItC4VnblPH39L6gbMtv2WYaN9n30fwPUuk1xNQVeuN288zH61eZWm379Mn3qUqlBv61+XzSXqpVuM4X7xyhbIVC6EslhIU1r6uyJCUk2XL64IUMy0REqGmAALwaWX48txCieHBwgFWrVHZoUJ8F3brB11+byrzyivk+LVqoaf5AtUJmNJytMBhynrP2oRAebppWq1kz1QMyP+zt4d134bHH8l+33FizBv77TwXcuZ3iThQ9CbpFofCtc8a4/N/2m1mWNegN7DqmMhSXK3MX/075nxO3rk9N6le5qM5/ujHRkSrQTklKYdNGNRWRi1NcvroclXavzuhEWGQVXni/8KYtE8KSmvmbkiYe3pPx51LaPBSelpueWwhRDDk5wbp1prHfN27AFTULKT16QMOG5uWtrU3Tm0ZGmrqkF6bAQGjQQP1du1b45y+O9u83LZfkGSHs7VXvDBu5/1siSdAtCkWnvvWNyzv2uWVREk4fOG+cvqtDk5B081nnVa8Oqlt5is6G7StVa/uBzae5E6tavnu2DDBLjiGEKN2atylnXD5yJOMmqeBg03LqMBkhxMPDxUUNQ/P1NV8/YULG5YtyXPe1a6rH3vnzKofO7NmFe/7iqqDGcwuRHxJ0i0LhXtONxjXVOO0jZ72ICo/KtOyujVeNy53axRdYHXr2MSVI27QhEYD1/9w2ruvds4j6gQkhioR/B9O0d4dPZjwVWcg+00S9nnXuWLxOQojip0IFFUCn3njz8zMlWntQUQXdMTHQv7+pJR5gyZK8d3Hfu1dNq9alS/rs7cVBSgosW6ZmqPHwyLpXgQTdojiQoFsUmi6tVT8nvUHLv2sznzts517TeOHOvfKetfxBnQc2wkabBMDGPXUw6A1s2Gk6fq/H8z4tmRCi5HFxc8GjmsrsePxCfZITk9OVCQ4yJVjzql9wNwGFECWLuzscPAjLl6uWb6tMfkHXr28ab7tnj2luaEvS6dRc0UePmq+/ehV27crbMT/9FMLC1PzPrVvDyJFw/Xp+a5p/cXHwww9quM+TT6qA+uxZeO21jMunpKjrBuomQrVqhVdXIdKSoFsUmq7dTJMI7tia8beQwQC7Tqq5fJydkvDrUHCBsFO5MnTwDQTg4q0a7PrnOMfOqwFZzRqcpnKd/CdsE0KULM0aqpuBicn2nDqQPplayCU1HMbRLpZq9SsXat2EEMVL2bLw+OMqAM+MRmNq7U5Kgt2783/eiAiVOT2jBGkGA7z6Kqxdqx67uKip0FItXpz78+l08O+/5ut+/VW1KM+cCQkJuT9mfoWFwUcfQa1a8OKLcOGBj+tdu9T86A8KDDTd+JBWblGUJOgWhaZTP080GtXPacf+jH+8hoSoebMB2ne0LbDx3Kl6drlnXH59kukmQJ8u+Z+WTAhR8jRvamrdPrLX/HMgMS6RCzfUvNye1S9jpZWvTCFE9tJ2Md+82XybwQDr16sAMm1X8MysWKHmhvb2hnr14J134MQJUwA+ezZ8951atraGv/+GyZPVDQKAv/6C+Fx20jl2DKLujwL09FRTLILqwv7229C4sar/r7/C9u1q/HhBBuI6HQQEwPffw/DhKtCuUUPdTIiIMJXr0QNGjzY9nj8//bHSdi0vyUnURMknvyBEoalQpTxN7mcxPx7qwe3r6cdHpu0G1alTwdeh1+AqxuXUVm6APoMrFvzJhBDFXrPW5YzLhw+bNyOdP3kFnV5lV/SsLeO5hRA507WravEG83HdJ0+qacf69lUBpI+PGnedUQu2Xq/KDBmigl2A0FCYMUPN0+ztrVp8X3/dtM+8efDII2q6s9TprO7dU1NN5caOHablCRNU9+3x401d6i9cUHUbOVKdr0EDdc5KlaBnTxWQb99ums88N6ZPV3Of+/vDSy/B0qVw+bJpu5WVqSv9pk2q5T01m/evv6reBWnJeG5RXEjQLQpVlzZqWh6DwYpdGYzr3rnTtNy5c8Gf36dtA6pUCDdb51o2khaPNMxkDyFEaebfsa6xB86RQFMytSPbg5j0qinRopdHUrp9hRAiI66uaj5oUIH2qVMqQPbzU8FoqqgoePppNTb5tunjhuhoGDxYBa+pGjUCbZrOf6dPq7HNqQH7lCkqCE719NOm5d9+y13909axSxeoWFG1OgcEmKZEy8itW6pl//33VTDu4qKmW3v1VRW4Z+fMGTX/9b175usdHdV5p0xRreq//66CcgA3N/V/lXr+B28wpAbdtramfYQoChJ0i0LVpZuDcXnHtkSzbQa9gV1bIgFwKpNC06YFf36NlYYe/c2nLOvZOrjAu7ELIUoGZ1dnPGqocd3HQ71YvzSYbk2P0PyRhqzb39JYrlkrx8wOIYQQ6fToYVpu0kQFyKmZxOvUMQWKoJKzeXvDxo0qOG3dGlavVtusrGDWLDU2+do11ZW8XTvzcz39NEydar6uc2eoXl0tb9gA4ebtDZlKTjaNQ69cWXUvT+XjA9u2qbqsXAnffANvvAFPPKGyiD841l2ngyNHVBf4nj3VsbPy7bem5S5d4Ouv4dAhuHtX3QiYNk393z3o+edNy2m7mIeHqyAd1E0QOzuEKDIyK7EoVB37emJlpUOv17LjRCuzbeeOX+J6ZG0A2jUKwNq6uUXq0KuX6oKUqk9vi5xGCFFCNO9QnZAlkJSspe9w88m43V3CmTT2FH2e7lhEtRNClETdu6uu0qCCT4AyZeC991TLr729CrZfeAHu3FGZwXv3Vq26qYm/ypWDP/5QASuooPbFF9Xf5ctqvLdWC//7n6k7eyorKzUe+rPPVAbv5cvVftk5fNjULbxLl/TH1WjUmO7GjdPvazCoLvB796q/PXtUKz+o9UuWmLfGpxUVBb/8opYdHdXY9PLls68vqO78deqoc2zaBJcuqXHgaac6k/HcoqhJS7coVC5uLjRtqlqVA4PsjUnTAHZtMGUU6dwuxmJ16N7d9CWi0Rjo+YSPxc4lhCj+UruBplW/ykXmTPuXS1fLMvGzzpJETQiRK23aqPm9U40cqVqxJ09WATfA0KGq1Tg1qAZTwN24sWrlTbstrZo1VfD+8suq63RG8tLFPO147qy6kmdEo4G6deGZZ2DOHPXc0mZBnzHDdAPiQQsXmsaujxiR84Ab1A2GMWPUssEACxaoZRnPLYoTi/2K+PHHH3nyySdp0qQJzZvnrMXSYDAwe/Zs2rdvj6+vLyNHjuTixYuWqqIoIl27mpbTjuHeucv0cuzU3TS2sqC5usKAAWp54EANFas6W+xcQojir18/lfUXoEUL+Ou3cIIv1eB/UzpiX8a+aCsnhCiR7Oxg1SqYOFHNE71wIVSpkr5c1aqq+/f336tkZACDBqmAsX79/NXBxwd8fdXy/v2mrtZZSRt0p/29llcdOpgS4545o1qwH6TTmXctf/nl3J9n1ChTorcFC9QxJegWxYnFgu7k5GR69erFsGHDcrzPvHnzWLx4MR9++CHLly/HwcGBMWPGkJiYmP3OosRIe+c09cPdoDew64gaqONoF0vzR7wy2LPg/PGH6va0dKlFTyOEKAEaNIDgYJUk6MABGPKUm+R5EELkW/v28Pnn6mZeVjQalR384kUVoK9YYZryK7+eeca0nF1rd2Ki6hYOaoquunULpg7vvmtanj49fbb29etN8253766SxuVW1aoqKzyoOb3Xr1f/l6DGtqeObxeiqFhsTPcrr7wCwIoVK3JU3mAwsGjRIsaNG0e3bt0A+Oyzz2jbti1bt26lb+o7KQM6nQ5dZv1VionU+hX3ehaGNm3A2tqKlBQNOzbdQadz5kLgZcIiVdDdtnEwVtZ+Fv2/srExje/Jz2nkupZecm1Lp8yua+3a6t/UREei5JH3bBHQ6dAaF3X5+0LN9BQPz3V1dVV/Bfk5NHQoTJpkhcGg4bffDLz3nj7dOO1U+/ZBfLy6op0769HrM5jLLA+6dIHmza04fFjD8eOwerWO3r1N1/Xrr60AVamXXtLl+WU0ejSsWaPq/+abBmJj1TFbt9aj0xXMcxHZe5jes5Dz51lsEqmFhYURHh5O27ZtjevKli1LkyZNOHbsWJZB95kzZwqjigXi5MmTRV2FYqFpPRsOhvgSElqeHRt2cHRXFKCC7qY+YQQEFGn1ck2ua+kl17Z0kutaesm1LTxW8fGkzsJ04sQJ9A4OWZbPD7muedeiRQMOHnTm/HkNv/12Fh+fjCfQXrq0ClAVgLp1LxMQEFlgdXjySRcOH1b95adMiadatRA0Gli58izbt6usbDVqJFClyqk8/wasUgXc3HwID7clJMR0Z6F69asEBNzKYk9hCfKeNVdsgu7w+3MZuLqaj+V1dXUlIiIiy309PDxwdCze07nodDpOnjyJj48PWq10W3yk3b8cvD9N941zNgQGVjRu6zO4Jn5+vkVUs9yR61p6ybUtneS6ll5ybYtArCl48/X1Vem5C5hc1/z73/80xq7Whw558MwzGbf6BgebRp2OGFGDWrVqFFgdfH3hl18MBAZqOHnSichIXypWPMHmzabhhK+/bkvTpn75Os9zz2mYMcN83ZAhVfHzq5qv44qce9jes3FxcTlqAM5V0P35558zb968LMusX7+eevXq5eaw+abVakvMRS1JdbWkrj1dmHE/u+SuHXr+PaIGDtnbxNO6e6MS938k17X0kmtbOsl1Lb3k2haiNP/PWq3W7HHBn0qua1499hi89BLEx8OyZVZ89VX6jOfx8SrZGqjpt+rWLdj/a60W3nlHTWMG8Omn1rz7rpalS1WgX7YsjB5tle+X0PPPYxZ029pCixZaS740RSYelvdsTp9jroLu0aNHM3jw4CzL1KiRt7tibm5uAERGRuLu7m5cHxkZiZeXZZNqicLXtpcXNtokknW2/L3Nmzuxal6Ntt5B2Dk2LeLaCSGEEEKUDs7OMHCgSiIbGQnz56vEbWnt2wdJSWo5t1OF5dTQofD++yqL+o4dGjSaWsTHq27go0apeuZXnToqGduWLepx06Yqk7wQRS1X2csrVKhAvXr1svyzzWyywGxUr14dNzc39qXJ7x8TE8Px48fx9/fPYk9REjk6O9Km0WkAY8AN0KljUdVICCGEEKJ0ShtkT5qkMqWnVdBThWVEq1XzlKfavl1Nxq3R5G2asMw895xpuV27gjuuEPlhsSnDrl27RlBQENeuXUOn0xEUFERQUBCxacb/9OrViy33b0VpNBpGjBjBjz/+yLZt2wgJCWHSpEm4u7sbs5mL0qVLu7vp1nUaLK3cQgghhBAFqUMH1fUa1FD8MWPMp+5KG3RbqqUb1BRmD3aK7ds3/3OSpzVkiLrJ0LMnvPZawR1XiPywWCK1b775hpUrVxofDxo0CIBFixbRqlUrAEJDQ7l3756xzPPPP098fDzvv/8+0dHRNGvWjPnz52Mn/UJKpS49yjF1jumxnR3cf2kIIYQQQogC9PnnsHEjXLkC27fD3LnwwgsqCD9wQJXx8FBzXluKrS28+Sbcn1kYMF8uCFotfP99wR5TiPyyWNA9c+ZMZs6cmWWZkJAQs8cajYYJEyYwYcIES1VLFCOtezbE3iaehGQ1xUjr1gbs7TOZPFIIIYQQQuSZs7Maz92zp3r85pvQqxeEhEBKilpnyVbuVM89BzNnGrh2TYOvr4Fu3eS3nyj9LNa9XIjs2Dna0dbzkPFxpzbRRVgbIYQQQojSrUcP05jnmBi1vH27aXthBN0ODrBli54XXrjKqlV6NBJzi4eABN2iSPXprTcu9+p4tQhrIoQQQghR+n3xhWlc9bZt8O23pm2dOxdOHTw94bnnbqQb3y1EaWWx7uVC5MRLH7bh3r2dVK+hpU3vDkVdHSGEEEKIUs3ZGebNU13LQc3RDdCoEVSqVHT1EqI0k6BbFCk7Rzs+/LFzUVdDCCGEEOKh0bOn6lo+f75pnaWmChNCSPdyIYQQQgghHjqffw7Vq5seF8Z4biEeVhJ0CyGEEEII8ZBxcYHff1ddyjt0UPNlCyEsQ7qXCyGEEEII8RDq0AGuX0cyiAthYdLSLYQQQgghxENKAm4hLE+CbiGEEEIIIYQQwkIk6BZCCCGEEEIIISykRI/p1uv1AMSnTjBYjOl0OgDi4uLQarVFXBtRUOS6ll5ybUsnua6ll1zbIpCQAJ6epmUL9FOW61o6yXUtvR62a5sah6bGpZnRGAwGQ2FUyBIiIyO5ePFiUVdDCCGEEEIIIcRDqnbt2ri6uma6vUQH3SkpKURFRWFnZ4eVlfSUF0IIIYQQQghROPR6PYmJibi4uGBtnXkn8hIddAshhBBCCCGEEMWZNA8LIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdBeCJUuW0LVrV3x8fHj88cc5ceJEUVdJ5NLcuXMZMmQI/v7+tGnThvHjx3PhwgWzMomJiUydOpVWrVrh7+/Pyy+/TERERBHVWOTFTz/9hKenJ5988olxnVzXkunmzZu88cYbtGrVCl9fX/r378/JkyeN2w0GA7Nnz6Z9+/b4+voycuRImYKyBNDpdHz99dd07doVX19funXrxvfff0/anLBybYu/Q4cO8cILL9C+fXs8PT3ZunWr2facXMO7d+8yceJEmjZtSvPmzXnnnXeIjY0txGchMpLVtU1OTmbWrFn0798fPz8/2rdvz6RJk7h586bZMeTaFj/ZvWfTev/99/H09OSXX34xW/+wX1cJui1s/fr1zJgxgxdffJGVK1fi5eXFmDFjiIyMLOqqiVw4ePAgTz31FMuXL2fhwoWkpKQwZswY4uLijGWmT5/Ojh07+Prrr1m8eDG3bt3ipZdeKsJai9w4ceIEf/zxB56enmbr5bqWPFFRUQwbNgwbGxvmzZvHunXreOutt3BxcTGWmTdvHosXL+bDDz9k+fLlODg4MGbMGBITE4uw5iI78+bNY+nSpbz//vusX7+eN954g/nz57N48WKzMnJti7e4uDg8PT354IMPMtyek2v4xhtvcO7cORYuXMicOXM4fPgw77//fmE9BZGJrK5tQkICp0+fZty4caxYsYLvvvuO0NBQxo0bZ1ZOrm3xk917NtWWLVs4fvw47u7u6bY99NfVICzqscceM0ydOtX4WKfTGdq3b2+YO3duEdZK5FdkZKTBw8PDcPDgQYPBYDBER0cbGjdubNiwYYOxzLlz5wweHh6GY8eOFVEtRU7FxMQYevToYdi7d6/h6aefNnz88ccGg0Gua0k1a9Ysw7BhwzLdrtfrDe3atTPMnz/fuC46Otrg7e1tWLt2bWFUUeTR2LFjDW+//bbZupdeeskwceJEg8Eg17Yk8vDwMGzZssX4OCfXMPVz+MSJE8Yyu3btMnh6ehpu3LhReJUXWXrw2mbk+PHjBg8PD8PVq1cNBoNc25Igs+t648YNQ4cOHQxnzpwxdOnSxbBw4ULjNrmuBoO0dFtQUlISp06dom3btsZ1VlZWtG3blmPHjhVhzUR+3bt3D8DYchYYGEhycrLZta5Xrx5Vq1YlICCgKKoocmHatGl06tTJ7PqBXNeSavv27Xh7e/PKK6/Qpk0bBg0axPLly43bw8LCCA8PN7uuZcuWpUmTJvLZXMz5+/uzf/9+QkNDAQgODubIkSN07NgRkGtbGuTkGh47dgxnZ2d8fHyMZdq2bYuVlZUM4SthYmJi0Gg0ODs7A3JtSyq9Xs+bb77JmDFjaNCgQbrtcl3BuqgrUJrduXMHnU6Hq6ur2XpXV9d044FFyaHX65k+fTpNmzbFw8MDgIiICGxsbIxfGqlcXV0JDw8vimqKHFq3bh2nT5/mr7/+SrdNrmvJdOXKFZYuXcqoUaN44YUXOHnyJB9//DE2NjYMHjzYeO0y+myW8frF29ixY4mJiaF3795otVp0Oh2vvfYaAwYMAJBrWwrk5BpGRERQoUIFs+3W1ta4uLjIZ3MJkpiYyOeff07fvn1xcnIC5NqWVPPmzcPa2poRI0ZkuF2uqwTdQuTa1KlTOXv2LL///ntRV0Xk0/Xr1/nkk09YsGABdnZ2RV0dUUAMBgPe3t68/vrrADRq1IizZ8/yxx9/MHjw4CKunciPDRs2sGbNGr744gvq169PUFAQM2bMwN3dXa6tECVIcnIyEyZMwGAwMHXq1KKujsiHwMBAFi1axIoVK9BoNEVdnWJLupdbUPny5dFqtemSpkVGRlKxYsUiqpXIj2nTprFz505+/fVXKleubFxfsWJFkpOTiY6ONisfGRmJm5tbYVdT5NCpU6eIjIzk0UcfpVGjRjRq1IiDBw+yePFiGjVqJNe1hHJzc6NevXpm6+rWrcu1a9eM2wH5bC6BPvvsM8aOHUvfvn3x9PRk0KBBPPvss8ydOxeQa1sa5OQaVqxYkdu3b5ttT0lJISoqSj6bS4Dk5GReffVVrl27xoIFC4yt3CDXtiQ6fPgwkZGRdOnSxfhb6urVq3z66ad07doVkOsKEnRblK2tLY0bN2bfvn3GdXq9nn379uHv71+ENRO5ZTAYmDZtGlu2bOHXX3+lRo0aZtu9vb2xsbExu9YXLlzg2rVr+Pn5FXJtRU61bt2aNWvW8M8//xj/vL296d+/v3FZrmvJ07RpU+OY31QXL16kWrVqAFSvXh03Nzez6xoTE8Px48fls7mYS0hISNeSotVqjVOGybUt+XJyDf39/YmOjiYwMNBYZv/+/ej1enx9fQu9ziLnUgPuS5cu8csvv1C+fHmz7XJtS56BAweyevVqs99S7u7ujBkzhvnz5wNyXUG6l1vcqFGjeOutt/D29sbX15dff/2V+Ph4Hn300aKumsiFqVOnsnbtWn744QfKlCljHH9StmxZ7O3tKVu2LEOGDGHmzJm4uLjg5OTExx9/jL+/vwRnxZiTk5NxXH4qR0dHypUrZ1wv17XkefbZZxk2bBhz5syhd+/enDhxguXLlzNt2jQANBoNI0aM4Mcff6RWrVpUr16d2bNn4+7uTrdu3Yq49iIrXbp0Yc6cOVStWtXYvXzhwoUMGTIEkGtbUsTGxnL58mXj47CwMIKCgnBxcaFq1arZXsN69erRoUMHpkyZwtSpU0lOTuajjz6ib9++VKpUqaieliDra+vm5sYrr7zC6dOnmTt3Ljqdzvh7ysXFBVtbW7m2xVR279kHb57Y2NhQsWJF6tatC8h7FkBjSL09LCzmt99+4+effyY8PJyGDRvy3nvv0aRJk6KulsiFB+duTjVjxgzjDZTExERmzpzJunXrSEpKon379nzwwQcPTbeZ0uKZZ57By8uLd999F5DrWlLt2LGDL7/8kosXL1K9enVGjRrF0KFDjdsNBgPffPMNy5cvJzo6mmbNmvHBBx9Qp06dIqy1yE5MTAyzZ89m69atREZG4u7uTt++fXnxxRextbUF5NqWBAcOHMgw4dLgwYOZOXNmjq7h3bt3+eijj9i+fTtWVlb06NGD9957jzJlyhTmUxEPyOravvTSSzzyyCMZ7rdo0SJatWoFyLUtjrJ7zz6oa9eujBgxgpEjRxrXPezXVYJuIYQQQgghhBDCQmRMtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEKXcgQMH8PT05MCBA0VdFSGEEOKhY13UFRBCCCGK0ooVK3j77bcz3b5s2TL8/PwKr0IlxO+//87+/fs5ceIE169fZ/DgwcycOTPDstHR0cyaNYstW7aQkJCAj48PkydPpnHjxmblEhMT+eWXX1i1ahVXr17F2dkZf39/Xn75ZRo0aGAsd+vWLRYtWsTx48cJDAwkLi6ORYsW0apVq3Tn1uv1LFu2jD/++IPLly/j4OBAo0aNGD9+PE2bNi3Y/xQhhBAiAxJ0CyGEEMArr7xC9erV062vWbNmEdSm+Js/fz6xsbH4+PgQHh6eaTm9Xs/YsWMJCQlhzJgxlC9fnt9//51nnnmGFStWULt2bWPZN954g+3bt/P444/TuHFjbt68ye+//84TTzzBmjVrqFatGgChoaHMmzeP2rVr4+npybFjxzI9/2effcbChQsZMGAAw4cPJzo6mmXLlvHMM8+wdOlSfH19C+z/RAghhMiIBN1CCCEE0LFjR3x8fIq6GiXG4sWLqVq1KhqNBn9//0zLbdy4kWPHjjF79mx69eoFQO/evenZsyfffvstX3zxBQA3b95k8+bNjB49mrfeesu4f/PmzXn22WfZsmULI0eOBKBx48YcOHCAcuXKGY+fkZSUFJYuXUrPnj2ZNWuWcX2vXr3o1q0bq1evlqBbCCGExcmYbiGEECIHvvnmG7y8vNi3b5/Z+ilTpuDt7U1wcDAASUlJzJ49m0cffZRmzZrh5+fH8OHD2b9/v9l+YWFheHp68vPPP7NkyRIeeeQRmjRpwujRo7l+/ToGg4Hvv/+ejh074uvry7hx47h7967ZMbp27cr//vc/9uzZw8CBA/Hx8aFPnz5s3rw5R8/p+PHjjBkzhmbNmtGkSROefvppjhw5kqN9q1Wrhkajybbcpk2bqFixIj169DCuq1ChAr1792bbtm0kJSUBEBMTA0DFihXN9ndzcwPAzs7OuM7JyYly5cple+6UlBQSEhLSHdPV1RUrKyvs7e2zPYYQQgiRXxJ0CyGEEKig7/bt22Z/d+7cMW4fN24cDRs25N133zUGiLt372b58uWMHz8eLy8v43H+/PNPWrZsyRtvvMFLL73E7du3ee655wgKCkp33jVr1hi7W48aNYqDBw/y6quv8vXXX7N7926ef/55hg4dyo4dO/j000/T7X/x4kVee+01OnbsyMSJE9FqtUyYMIG9e/dm+Xz37dvHU089RWxsLC+99BKvvfYa0dHRPPvss5w4cSI//5VmgoKCaNSoEVZW5j85fHx8iI+PJzQ0FFDd+CtXrszChQvZvn07N27c4MSJE3z44YdUr16dvn375vrc9vb2NGnShJUrV7J69WquXbtGcHAwkydPxtnZmSeeeKJAnqMQQgiRFeleLoQQQoCx63Jatra2nDx5EgAbGxs+/fRTHn30UWbOnMmkSZN499138fb2ZuzYscZ9XFxc2L59O7a2tsZ1Q4cOpXfv3ixevJjp06ebnSO1W3XZsmUBNQZ67ty5JCQk8Pfff2Ntrb6q79y5w5o1a5g6darZsS9evMi3335rbEl+7LHH6NWrF59//jnt2rXL8LkaDAY+/PBDWrVqxfz5840t1k8++SR9+/bl66+/ZsGCBbn9L8xQeHg4zZs3T7fe3d0dUEnRPD09sbGx4dtvv2XixImMGzfOWK5x48b88ccfODs75+n8s2bN4rXXXuPNN980rqtRowZLly6lRo0aeTqmEEIIkRsSdAshhBDA+++/T506dczWPdg66+HhwSuvvMIXX3xBSEgId+7cYcGCBcbAGECr1aLVagEVQEdHR6PX6/H29ub06dPpzturVy9jwA0YxxgPGDDA7Li+vr6sXbuWmzdvmgWL7u7udO/e3fjYycmJQYMGMW/ePMLDw43ds9MKCgri4sWLjBs3zqw1H6BNmzasWrUKvV6f7vnnRUJCgtlNglSp6xITE43rnJ2dadiwIb169aJJkyZcvnyZuXPnMmHCBBYuXGjWxTynypQpQ/369fHz86NNmzaEh4czb948XnzxRZYsWUKFChXy/uSEEEKIHJCgWwghhEAFtTlJpDZmzBjWrVvHiRMneP3116lfv366MitXrmTBggWEhoaSnJxsXJ9RdvQqVaqYPU4NwDNbHxUVZRZ016pVK93Y6tSM4FevXs0w6L548SKAWcKyB927dw8XF5dMt+eUvb29cdx2WqnrUgPpe/fu8dRTTzFmzBhGjx5tLOft7c0zzzzD33//zfDhw3N17pSUFEaNGkXLli2ZMmWKcX3btm3p168fP//8s1kLuBBCCGEJEnQLIYQQuXDlyhUuXboEwJkzZ9JtX7VqFZMnT6Zbt26MGTMGV1dXtFotc+fO5cqVK+nKp7aKPyizVmaDwZCP2psfY9KkSTRs2DDDMo6Ojvk+D6hEaBlNKXbr1i3A1M1806ZNRERE0LVrV7NyLVu2xMnJiaNHj+Y66D506BBnzpxh8uTJZutr165N3bp1OXr0aK6OJ4QQQuSFBN1CCCFEDun1eiZPnoyTkxPPPvssc+bMoWfPnmaZuTdt2kSNGjX47rvvzFqgv/nmG4vU6dKlSxgMBrNzpbZkp85r/aDUlnInJyfatm1rkXql8vLy4siRI+m6q584cQIHBwdjl/7IyEgAdDqd2f4GgwG9Xp9ufU5kdkxQreB5OaYQQgiRW5K9XAghhMihhQsXcuzYMaZNm8aECRPw9/fnww8/5Pbt28YyqS3XaVukjx8/TkBAgEXqdOvWLbZs2WJ8HBMTwz///EPDhg0z7FoOqst2zZo1WbBgAbGxsem2p30++dWrVy8iIiLMpjG7ffs2GzdupEuXLsax3ald4tevX2+2/7Zt24iLi8u0RT4rmR3z1KlThIaG5umYQgghRG5JS7cQQggB/Pvvv1y4cCHd+qZNm1KjRg3Onz9vnH87tQv0zJkzGTRoEFOnTmX27NkAdO7cmc2bN/Piiy/SuXNnwsLC+OOPP6hfvz5xcXEFXu/atWvz7rvvcvLkSVxdXfn777+JjIxkxowZme5jZWXFxx9/zPPPP0+/fv149NFHqVSpEjdv3uTAgQM4OTkxZ86cLM+7fft249zkycnJhISE8MMPPwBq/vDUKdR69uyJn58fb7/9NufOnaN8+fIsXboUnU7Hyy+/bDxely5daNCgAd9//z3Xrl2jSZMmXLp0iSVLluDm5sZjjz1mdv7Uc507dw5Q3fpT5xgfP348oG4utGvXjpUrVxITE0O7du0IDw/nt99+w97enmeffTbH/89CCCFEXknQLYQQQpB59+8ZM2ZQtWpV3nrrLcqXL88777xj3Fa7dm1ef/11PvnkE9avX0+fPn149NFHiYiIYNmyZezZs4f69esza9YsNm7cyMGDBwu83rVr12bKlCl89tlnhIaGUr16db766is6dOiQ5X6tWrVi2bJl/PDDD/z222/ExcXh5uaGr69vjuav3rx5MytXrjQ+Pn36tDE7e+XKlY1Bt1ar5aeffuKzzz5j8eLFJCYm4uPjw4wZM6hbt65xf1tbW5YsWcIPP/zAzp07Wbt2LWXKlKFbt2689tpr6bKMp97kSPX3338bl1ODblDB+c8//8z69evZvXs3NjY2NG/enAkTJpidXwghhLAUjaEgMrIIIYQQotB17dqVBg0aMHfu3KKuihBCCCEyIWO6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJuoUQQgghhBBCCAuRMd1CCCGEEEIIIYSFSEu3EEIIIYQQQghhISV6yrCUlBSioqKws7PDykruHwghhBBCCCGEKBx6vZ7ExERcXFywts48tC7RQXdUVBQXL14s6moIIYQQQgghhHhI1a5dG1dX10y3l+ig287ODlBP0sHBoYhrkzWdTseZM2fw8PBAq9UWdXVEAZHrWnrJtS2d5LqWXnJti0B8PLRrp5b37gUL/BaT61o6yXUtvR62axsfH8/FixeNcWlmSnTQndql3MHBAUdHxyKuTdZ0Oh0Ajo6OD8UL8GEh17X0kmtbOsl1Lb3k2hYBgwFCQtSyvT1Y4LeYXNfSSa5r6fWwXtvshjrLQGghhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuUaqFBl7ho5d2cmLPmaKuihBCCCGEEOIhVKLHdAuRlaNHoUcXZyKjO7NoxUXOXivqGgkhhBBCCCEeNtLSLUqlffuga1eIjHYB4Nz12ty7fa+IayWEEEIIIYR42EjQLUqdHTuge3eIijJff/V8eNFUSAghhBBCCPHQkqBblDh6nR6D3pDhto1/nKRPHwOxseqxnW2ycVtY6N1CqJ0QQgghhBBCmMiYblGi/PLZHsa91wwH2wT8PULxbxxN0+Y2+LepzOmjtxj2UjOSdRoA+vWDzo0P8san7QAIuxhXlFUXQgghhBBCPIQk6BYlxtLfEhk9uS0GgxUJyQ5sP1ae7ceA31JL1DOWfbxnEEtWNGT9Iq1xXdiVlEKtrxBCCCGEEEJI93JRIqxeDc+MtMNgUC/Z8mVuZ1p2RO89/L66ATY2UL22s3H91WvychdCCCGEEEIULmnpFsXetm0wdCjodOrx2DGJzPmpPDcv3eLY3kscPRjLsRN2nLnkSv9HrvHR3I5YaVWAXa1uReNxwq7bF0X1hRBCCCGEEA8xCbpFsfbf5lAGDK5NYqIapz18OPww1w6NFVSu407vOu70fjrtHh5m+7vXrIi1NpkUnQ1hN50RQgghhBBCFL3JkycTHR3NDz/8AMAzzzyDl5cX7777bqHW48CBA4wYMYJDhw7h7GyZeEH624pi69jOIPoMLk9cnAq4Bw6EX34BrTbr/dKy0lpRrcJNAMIiKmZTWgghhBBCiIfb5MmT8fT0xNPTE29vb7p37853331HSopl8yN9++23TJgwIUdlDxw4gKenJ9HR0RatU0GRoFsUS8GHLtBjoBtRceUA6N76HMuWgY1N7o9VvU5ZACKiK5KQUICVFEIIIYQQohTq0KEDe/bsYdOmTYwaNYrvvvuOn3/+OV25pKSkAjtnuXLlcHJyKrDjFSfSvVwUOzcvhtO7nw0R0aplul3jE6zcWA87u7wdr3odFziolq9ehXr1si4vhBBCCCHEw8zW1hY3NzcAhg8fztatW9m+fTuhoaFER0fj4+PDkiVLsLW1Zfv27Vy/fp2ZM2eyd+9e9Ho9LVu25L333qN69eoA6HQ6PvvsM/7++2+0Wi1DhgzBYDCYnfPB7uVJSUnMnj2btWvXEhkZSZUqVRg7dixt2rRhxIgRALRo0QKAwYMHM3PmTPR6PfPmzWPZsmVERERQu3Ztxo8fT69evYzn2bVrF9OnT+f69es0adKEwYMHW/z/U4JuUazERcfSv+ctLt5qDECTOiGs21GLMi5l8nzM++91AMLCJOgWQgghhBBFJOhLCP4y+3IVmkKn1ebrdg2A20ez39frdWj4et7qlwk7Ozvu3r0LwL59+3BycmLhwoUAJCcnM2bMGPz8/Fi8eDFnz55l586dPPfcc6xevRpbW1sWLFjAypUrmT59OvXq1WPBggVs2bKF1q1bZ3rOSZMmERAQwHvvvYeXlxdhYWHcuXOHKlWq8O233/Lyyy+zceNGnJycsLdXCZPnzp3L6tWrmTp1KrVr1+bQoUO8+eabVKhQgZYtW3L9+nVeeuklnnrqKYYOHUpgYCCffvppgf5fZUSCblFs6JJ1DO9zkkNn1Juvuus11m9xwcXNJV/HrVbNtHz1ar4OJYQQQgghRN4lR0N8Dn6QJtTIYF14zvZNLrhxzgaDgX379rFnzx6efvpp7ty5g6OjIx9//DG2trYArFq1Cr1ezyeffIJerycuLo5PPvmE1q1bc/DgQdq3b8+vv/7K2LFj6dGjBwBTp05lz549mZ43NDSUDRs2sHDhQtq2bQtAjRqm/xMXFxUfuLq6GpOfJSUlMXfuXBYuXIi/v79xnyNHjrBs2TJatmzJ0qVLqVmzJpMnTwagbt26nDlzhnnz5hXY/1lGJOgWxcbrz+xh1d5OADg7RLF+VQxV63lks1f2qrtHAeqNGRZ0Dqif72MKIYQQQgiRazbO4FAt+3L2bhmvy8m+NvnPwL1z5078/f1JTk7GYDDQr18/Xn75ZaZNm4aHh4cx4AYIDg7m8uXLNG3aFIPBgF6vx8rKisTERC5fvsy9e/cIDw+nSZMmxn2sra3x9vZO18U8VVBQEFqt1th9PCcuXbpEfHw8o0ePNlufnJxMw4YNATh//jy+vr5m2/38/HJ8jrySoFsUC1+/vYtvlqmA21qbzN+/nMenXdMCOfb/2bvvsCiON4Dj36MJCKIiFkTBBqKCYG/YYzfWmJioMWpMNMaYmMQSY4uxxRRjmj+NJjGJxkSNvcbeK2JBRcWCKCKiSIe7/f2xcsdJV47m+3mee5jbnd2dY7jjZmfmHZdS1wH1zRUSdAtpdAshhBBCiHzh+QxDv58cbm5CjRs3ZurUqVhaWlK2bFksLAzNRhsbG6O8sbGx1K5dm3nz5qHVagkMDMTT0xNzc3NKly79VNdPGS6eE7GxsYA6xLxcuXJG+1LfJMgPEr1c5Ls1q7R8MMdP//x/nx+mfb/caXADuFRz1KdDQp8yGpsQQgghhBDPCRsbG1xdXXF2djZqcKendu3aXL9+HUdHR1xdXSlfvjyurq64urpib2+Pvb09Tk5OnD59Wn9McnIy586dy/Cc7u7u6HQ6jh07lu5+y8dLGmm1Wv22atWqYWVlRWhoqP76KY8KFSro85w5c8boXKnLZSrS6Bb5KjAQXhtojqKof4qfDt/NG+P8sjgqZ8q7lcVMo74hQ8Lsc/XcQgghhBBCPM+6d+9OqVKlGDFiBMePH+fu3bscPXqUGTNmcOfOHQAGDRrEokWL2LFjB1euXGHatGmZrrHt4uJCr169mDhxIjt27ODmzZscOXKETZs2AVCxYkU0Gg27d+/m/v37xMTEYGdnx5AhQ5g1axZr1qzhxo0bnDt3jmXLlrFmzRoAXnnlFa5du8acOXO4evUq69ev1+8zJZM2uh88eMDYsWOpV68eDRo0YOLEicTExGR6zMCBA/WLsac8Jk+ebMpiinz0668QF6emBw7QMe3HVrl+DctilpQrGQ5ASLhjFrmFEEIIIYQQ2WVjY8Pvv/+Os7Mz7733Hh999BGffvopCQkJ+nW3hwwZwosvvsi4ceN45ZVXKF68OC+88EKm5506dSodO3Zk6tSpdO7cmU8//ZS4xw2HcuXK8e677/Lll1/SrFkzPvvsMwDGjBnDyJEjWbhwIV26dGHYsGHs3r1bv3SZs7MzCxYs4L///qNHjx6sWLGC999/34S/HZVGyWj2ei4YNmwY4eHhTJ8+naSkJCZOnIiXlxdffvllhscMHDgQNzc3Ro8erd9mY2OT7kLpsbGx+jkDtra2JnkNuUWr1eLv74+Pjw/m5ub5XZwCo3t32LBBTV+7Bq6uprlOI49zHLtUG41GR0KcFstilrlyXqnXokvqtmiSei26pG7zQUwMpHw/i46G4k+/vGdGpF6LJqnXout5q9vstkdN1tN95coV9u3bx4wZM6hbty4NGjRg0qRJbNy4kbCwsEyPtba2xsnJSf9Ir8EtiobAQPVn8eJQKZ2VEXKLS7lHACiKGXeuhZvuQkIIIYQQQgiRismil586dYoSJUrg5eWl39asWTPMzMwICAjIdDjB+vXrWbduHU5OTrRp04aRI0emiZKXmlarNZpEXxCllK+glzMvxcfEExxsDZhT0zUURSmHqX49FSvE69PXL4fjXL1cJrmzT+q16JK6LZqkXosuqdt8oNVirk9qMcU/canXoknqteh63uo2u6/TZI3ue/fupQkRb2FhgYODA+HhGfc0duvWDWdnZ8qWLcvFixeZN28ewcHBfPfddxkec+nSpVwrt6k9GS3veXbj7F10us4AVC17AX//2ya7Vgn7h/r0qWPB2JRPztXzS70WXVK3RZPUa9EldZt3zOLi8H2cDggIQJdJB8mzknotmqReiy6pW2M5bnTPmzePRYsWZZonJarc03j55Zf1aQ8PD5ycnBg8eDA3btygcuXK6R7j7u5eKOZ0nzlzBi8vrwI7vyEhNoHIuw8p71Y2T6536eAhfbqul8akC9OfrxWnTyfFOeTatQpDvYqnI3VbNEm9Fl1St/kgVXBcb29vk83plnoteqRei67nrW5jY2Oz1QGc40b3kCFD6NWrV6Z5KlWqRJkyZbh//77R9uTkZB4+fIiTk1O2r1e3bl0Arl+/nmGj29zcvNBUakEta2xULM18bnI62IMvPtzNh1+0Nvk1L55P0qdredmY9PdSuWoJffpWhFOuX6ug1qt4dlK3RZPUa9EldZuHUv2ezc3NjZ7n/qWkXosiqdei63mp2+y+xhw3ukuXLp1m2Hh6fH19iYqK4uzZs9SpUweAw4cPo9Pp1Luh2RT4ONJWThrqIufmjjvK6eDWAIz70o8GTf1p3dvHpNcMvFRMn/b0MW3vuouX4W8u5FEdk15LCCGEEEIIIVKYLHp5tWrV8PPz49NPPyUgIIATJ07w2Wef0bVrV8qVU4NYhYWF0alTJwICAgC4ceMG33//PWfPniUkJIT//vuPcePG0bBhQ2rWrGmqoj73rl+HOb+01D/XKea8Oqw8d2+YNsp34NUyAFiYJ1HN24Shy4GKFQ3pW7dMeikhhBBCCCGE0DNZIDVQ539/9tlnvP7665iZmdGhQwcmTZqk35+UlERwcLB+kXNLS0sOHTrEb7/9RmxsLBUqVKBDhw6MHDnSlMV87n38McTHq/df7KyjiY6343ZkeQb2Oc7mw46Ymae9NxMVEcXU0Se5HWbF98s8KV2hVI6umZyYzKVb6nSBGs43sCxW7dlfSCasraFMGbh3D0JCTHopIYQQQgghhNAzaaO7ZMmSfPnllxnud3Fx4eLFi/rnFSpU4PfffzdlkcQT9u6FlSvVtJMT7N8RT8tWsYQ9KMu24w2YM3Y3E75pbXTMmQOX6PuyJZduqdurfrqbzxcb58lK8LkQEpLcAPCsEg6YttEN4OKiNrpv3QKdDsxMNs5DCCGEEEIIIVTS7HiOaZO0jH7XsLbczJng7l2GP/4XgkajA+DTBS3Yvz5An+e3eftp3NaFS7eq6Ldt3Zvz+diBp8L0aU/3+Exy5p6KDlcBSE6Gu9fv5sk1hRBCCCGEEM83aXQ/x36ec4DTAWrEPV9fhTfeULe3e6kenw7fC4BWZ8Erg50IuXyf4W9qef2jFsQlGi/PdvJyTSJCjSPVZyXwrGEJr1p1LJ/hVWSfS2nDuPKQK/fy5JpCCCGEEEIUBh4eHpk+FixYkN9FLLRMOrxcFFyRYQ/55Ita+ufzP7uEubmH/vnkBX7sPXyK3ad9uXW/AjW8tMTHG0LiD++5Fysrhe9WtkJRzNj57wVeGtks29cPvNtQn/Zs4PqMryZ7XCrq9OmQa49okCdXFUIIIYQQouDbv3+/Pr1p0ya+/fZbtmzZot9ma2voeFMUBa1Wi4WFNCezQ3q6i7jYWFCUtNunv+/PvSg1evjL7Q7i19XDaL+5pTl/rKqAU8kHAPoGt40N/Pq/CBauaUn3nnb6/Nu3JeeoXIFBxQHQaMDD1yVHxz4tl0qGD4VbN/NmSLsQQgghhBCFgZOTk/5hb2+PRqPRP7969Sr16tVjz5499O7dGy8vL06cOMH48ePTBL3+7bffeP311/XPdTodCxcupG3btnh7e/Piiy8aNeafB3JroggbPhwWLYJSpRR83ALwrfWAevUtcCxbjO9Wqr3SNlaxzP0u/Z5m52rlWbYCOndWG+7u7vDPP+Dl5QhAi66eWFkkkJhcjO2HqqDoFDRmmizLpSjwePl1XF3B1jbz/LnFxc1woZCb6dyJEEIIIYQQwkT+/hsmT4ZHj/Lumvb28Nln0Ldv7pzvyy+/ZNy4cVSqVIkSJUpk65iFCxeybt06pk2bhpubG8eOHeOjjz6idOnSNGrUKHcKVsBJo7uICghQG9wAkZEadkXWZdcp4A/jfOOGHqVyzdYZnqdjR9i/H86fh379IPV7y7aELS3qXWXn0apcu1uJq1cVqlXPumyhoYYPG0/PHL2sZ1LRraQ+HRIqf/pCCCGEECLvfPEFXLiQP9fNrUb36NGjad68ebbzJyYmsnDhQpYuXYqvry8AlSpV4sSJE/z111/S6BaF27ffGtIl7JOIepQ2WFmlMrf4aHbWf+jNmqmP9LTvWZWdR9X09h2abDW6A0+EAs4AeHokk1d/hi7VnfTpkDvFTXqtu3chPBxq1zbpZYQQQgghRCHx8cfw6ad539P90Ue5dz4vL68c5b9+/TpxcXEMGTLEaHtSUhKeedn7ls+k0V0Ehd+M4PffSwLmlCgBISGWxEaEc+rAdU4di+ZUQDEiH1rx+SxrbEtUfKZrvfACTJyopnfsgLffzvqY80eC0De6nQ4Bfs9UhuyyL21PCZuHRMU5EHK3lMmuExQETZrA/fswYgR8O1/BwjLrYfdCCCGEEKLo6ts393qc84uNjY3Rc41Gg/JEACmt1rAkcWxsLKAOMS9XrpxRPisrKxOVsuCRRncR9L8vzpCQ0BqAof1DsLd3wd7eiU5uTnR6LXev5esLpUpBZCTs3AlaLZibZ35M4AVDA9TT2yF3C5QFF6dwzt9wIOReuWzPQc+J+Hh1GP79xyuo/fgjXDt5gr82eWBf2j5XryWEEEIIIUR+Kl26NEFBQUbbrl+/joOD+h2/WrVqWFlZERoa+twMJU+PRC8vYpISkvjhDzUSuZlGy7ujTBswzNwc2rVV72ZFRsLJPVeyPCbwsmFiuGf9SiYrW3pcyj4AID7Jhvt3HuT6+ceOicPf33jb5iMN8GsQSkjQ7Vy/nhBCCCGEEPmlSZMmnD17ln///Zdr166xYMECbt68qd9vZ2fHkCFDmDVrFmvWrOHGjRucO3eOZcuWsWbNmnwsed6SRncR88/CY4TerwDAi82PU6WO6Ru17ese0Ke3r72ZSU5V4HV1SHu5kncpXcF0w7zTkzqY2q3bxXL13P/8eIgfFqpDbqyt4ce5QZQqHgnA6WAPGjcB/70Xc/WaQgghhChcoqLgxIn0l3TNjXN36wYdOsD69aa5hhCp+fn5MXLkSL744gv69u1LbGwsfn7GU0fHjBnDyJEjWbhwIV26dGHYsGHs3r0bF5e8WTa4IJDh5UXMNz8YepHfez93G5UZeaGnG0xW0zv2OjAxk7z3b0dy96Ea0MzT9RZQ1tTFM+LiaYj0FhJmi3cunffq2RsMHVtL/3z+Z0EM/7AGbdpepUu3KK7ecSX0fgVadLBn5f+O0WVQw1y6shBCCCEKi6QkaNxYjWDduTP89Zca6Cq3fPcdbNyoprdvB29vmDABXnop6+l/QqTWu3dvevfurX/euHFjLl5Mv/No9OjRjB49GlDnc/v7++Pj46Pfr9FoeP31143W7n7eSE93EXJ4y1mOXqwDQN0qF2nVs26eXLeqV2WqlLsBwIGztYiNis0wb+AJQ0+4Z/U8DN34WOobaiEhuXPOpPgkXn0pjqg4de7KK+0O8uYHauPeo35VDh8tTpOaZwCISbCj++B67F7tnzsXF0IIIUShcfy4YcmozZvBzy/3vo8oCvzyi/G2gADo319donXJEkhMzJ1rCSFyRhrdRcj8eVH69Htv3c31IGGZeaHpNQASk4uxb8P5DPMFBjzUpz1r5v2YJ1M0upd8EcnxILWXu3qFayz8q47R796pUhl2Hq3OS20OAaBTzPn8c2265xJCCCFE0bVnj/Hz06fVnu8n48E8jcOH1RVUAOrUUc+bIigIhg4FLy81Bo8QIm9Jo7sASk5MZuufx/nnx0NpHv8uPkL4zXtpjgkJus3fu9SIgE4lwuk/Km+HL7fvYFgHfPvm6AzzBZ43NDY9vfM+mrdRo/vqs//XWfvzURat7QyAlUUCK/+Mp4RjiTT5bOxtWLG9MdXKXwdgx8n6XDxx9ZmvL4QQQojCY/duQ7qCGoKH0FBo0QI2bXq2c//6qyE9diwcOqQu59qmjWH7pUuwbt2zXUcIkXMyp7uAURQY2D2AFdsaZJjH2jKON3vv4aNpNajkoa53/cPsi2h16qf326+cw7p467worl7bHh5o3tGhKGbsOFAhw3yBQcX1ac96GeczFRenSEAN3hZy4SpQ/6nPFXj0CkM/8NQ//3riYXxbt8owv5m5GSMGBvPhF64A/DjvBt8sr/rU1xdCCCFE4ZGUBPv3q2lnZzh1Cnr0UHuoY2Kge3eYPRuqVoU7d+D2bcNPBwf45hsom0EonLg4WLFCTRcvrq4FrdFAu3bq4/ffYeBAdf/x4/AcT60VIl9Io7uAmTsXVmyrl2me+CQbFvzVip/+SWTQSzcY/XEFFq5UQ4JZmicyYpxnpsebgqNzaepVP8+JoFqcDvYg7Ho45Vyd0uQ7f8MNAHubKJyrls/jUkKpciWxtowjPsmGW+FPv0Z42LVwunS34kFMSQD6tDrEiCktszzujffrMukb9fq/bGzG5zHqP0chhBBCFG0nT6qNa4BWrdQG9M6dMGgQ/PMP6HTw8ccZH5+YqOZLz7p18PDxDL4+fcDOznh/166G9PHjT/8ahBBPR4aXFyBbtqgRJlNMHLKDeR/tNnqM6rcH22LqJ3aS1oqfV1Smbj1L7keXBuDlF05QoWq5/Cg+L7S4q0/vXBuUZn9MDFy/8zhyeZ3ieTrnPIXGTINLmTAAQsLT3hTIjphohW4d73HtrrocW90q51j8t2e2Xk/pCqV49ZUkAB4+suKPP56qCEIIIYQoZFIPLW/dWv1pY6NGMM+ssZ1i1Sp1yHh6UgdQS68Xu1QpqP54ARd/f7XXXQiRd6Snu4C4fFmNLpmynuK0aTB5cvt0806+eY/504+xYEUToqKtjfa9N72JqYuaofadHZi9VE1v36aj/2jj/alXGfCslX/rVriUjeTybTei4hyIinhECcfszy3XaqH/qxqOX1JHE1Qqc4t5397FvnTNbJ/jnTElWLJMTX//Pbz5pjoETAghhBBFV+ogaq1SzUYzM4M5c6BtW3UOdunS6nzvChWgfHn47z91jjbAhx+qQ9RTf28IDYVt29R05cqGBv2TGjRQv2/Gx8O5c5BqRSchhIlJT3cB8Oh+ND07hvLggfq8Z0+YNCnj/E6VyjBjUWtuhFjz+edQpoy6vXdvaNAw/1pvzbt4Ym0VD8COU/X1NxBSBAYa0p55PwJez6V8jD5960p4to9TFBgzBtavV5+XKKFl3ZoYSlVIGzgtM/XqGSKKBgTAgQM5OlwIIYQQhUxyMuzbp6bLlwd397R5OnaEL75QRz0OHqw+r1sXRo+Gmo/v7R88CP/+a3zcH3+oQ9NBHapulsG3+4apYuzKEHMh8pY0uvOZolMY3Oss566qAdE8PeL57beMPzBTc3CAiRPh+nW18bZ8uYkLmwXr4tb4tVJ73m+G2hj1bINxo7tWrTws2BNcnJP16ZDgB9k+7ptv4Lvv1LSFBaxaZY5X02pPVYZ33jGkf5iTdii+EEIIIYqOkych+vHiLq1b52yEm4WF2hOeYtw4w/DwJ9fmzixAWoNUMXqPHcv+9YUQz04a3fls5pg9rN6rDgl3sH3Iv3/exj6HK2nZ2qrrLlpZmaCAOfTCC4Z0jx5wJsDQ3R144KQ+7Vk942XFTK1iRcN/upDrsZnmTYhN4OSuQOaO2cTYsTr99kWLoH36o/+z5aWXoIyDGvHkn82uhF27m8URQgghhCisMhpanl3du0PLx/Fag4LU7yEAJ07A+fNqunlzw7zt9Pj6Ghr70tMtRN6SRnceuHAB6vsk0qq5Bw7F47CzjtY/Ji1oDYBGo+PPHy/hXq9K/hb2GQ0YAI6OavrSJWjcKJHfvlTHTwdeUaOFF7OMp0p164xOYXIuroZrh9xINtp35fR1Fkzawxvd9uFT9SJ2Jcyo39aTcfO7oCjq22XyJC2DBz9bGaytYVjvU4AaEG/Rl+ef7YRCCCGEKLDSC6KWExqNOvQ8xdSpEBWV/V5uAHt7w/S+M2fUud1CiLwhje48sG4dnD5rQ0yCXZpHihnv7qXLoIaZnKVwqFABjh5V76YCxCUU4/UPm/Nmj70EhVYGwL3iDcwt8y+Gn4ubYSjBrVAzYmLgty8P0rquP9V9XBn9eSt+2ejH6WAPkrWWRscO6baPqdNy523z9kfVMdNoAVi43J3kxOQsjhBCCCFEYZOcbFifu1w58PB4uvM0agQvv6ymw8NhxgzD1EJra+jXL+tzpAwxT0pSpyYKIfKGRC/PA6++Cgf3PuJyQCiaJyZrazQKXduEMuHrpxhrVEBVrQoHDyiM7r+fRWv9AFi8zrCGtWfVe0A6EUTyiEu1Mvr0mt3e/FkBHj1qliafmUaLZ6Wr+HqGUc8nmSYtHWnSqUWuLXXm6ulCt2ZHWHegMSERzqz75TC9h+df9HkhhBBC5D5/f7VXGtSh5c+yYsnMmbB6tdpoTt3z3auXGusnKw0bwm+/qenjx9WGvBDC9EzW6P7xxx/Zs2cPgYGBWFpacjwbk0cUReHbb7/l77//Jioqinr16jF16lTc3NxMVcw84eICq9ba4u8fjY+PD+bmTy6XlX8NUFOxttHwv3/9aP7FfkZMqkdcoq1+n6d7Yj6WDMpWLoOFhUJysoa7kSWN9nlUvMrgl27QplMZvJpWxbZEDaCGycoy8h0L1j2OXv7DT1b0Hm6ySwkhhBAiHzzr0PLUqlZVg7F+843x9qyGlqeQYGpC5A+TDS9PSkqiU6dO9O/fP9vHLFq0iGXLljF16lRWrlyJjY0NQ4cOJSEhwVTFFCb2+kctOLIzhBrOwfptjZoWz8cSgZm5GTVrGm4z29nB0CFaDmwIIPBGFcZ/3ZrGHetgW8I2k7Pkjhf6+VK9wjUA/jtVjw4NTjBu8G5WLLnFxYuGJUCEEEIIUTilDqL2rI1uUJeVTd2r7eyc/eCudeuq0dBBgqkJkZdM1tM9evRoAFavXp2t/Iqi8NtvvzFixAjaP/7kmDt3Ls2aNWPHjh107do1w2O1Wi1arfbZC21CKeUr6OU0hVpNqnHkVBTzp+zC2ho69PfL99/D4sWwZImGxo2hTx8FOzuA2ugUHeSgaLlRryMGBjN2rhsA20/UZ/sJ4Fd1X/HiCm3bwrx5Oqo93epk4ik9z+/ZokzqteiSus0HWi3m+qQWTPC7L+z1qtXC3r1mgIayZRVq1NA986+pZEkYP17DhAlq39mAATpAydZ5raygTh0z/P01nD+vEBWlo3g6fSHBwfDOO2Y0aqQwZYryTEPi01PY61Vk7Hmr2+y+zgIzpzskJITw8HCaNTPMrbW3t6du3bqcOnUq00b3pUuX8qKIueLMmTP5XYR8031YCQBOB5zO55Kod3mHPx7Kffnys5/vWeq1aXdrXjq6k10nvLn3qIzRvpgYDevXw/btChOGbqDzoIqYmUv8w7z0PL9nizKp16JL6jbvmMXF8ThuKgEBAehsbEx2rcJarxcu2BAVVQsAb+9ITp8OzuKI7GndWsOrr1YkKsqcbt1u4u+f/aFxbm6V8fd3QqfT8PffQfj4xKTJM3p0dQ4edGDbNg1OTkE0bx6VK+V+UmGtV5E1qVtjBabRHR4eDoBjynpTjzk6OnLv3r1Mj3V3d8fW1vRDgZ+FVqvlzJkzeHl5pTOnWxRWuVWvy3eAolO4deUWpw7d5vSNevj7azh4EO7e1RAfb8GU73uya/8pFv1aiip1KuXiqxDpkfds0ST1WnRJ3eaDGENjzdvbm3S7TJ9RYa/XXbsMXcQvvlgSHx+fXDt3SkA0KJWj4zp21PDvv2r64UN3fHwUo/3XrsGhQ4Yb/H//XZ133snd+W6FvV5Fxp63uo2Njc1WB3COGt3z5s1j0aJFmebZtGkT1fJ4HKy5uXmhqdTCVFaRfblSr+bgWrMirjUr0vPxpuhoGPfuLX74pSIAu0/74tM4mi8mHOCtSS2k1zsPyHu2aJJ6LbqkbvNQqt+zubm50fPcv1ThrNd9+wzptm3NTPkryrbUEctPnkxbpiVLQEnVDt+/X8OhQ+a0aJH7ZSms9Sqy9rzUbXZfY44a3UOGDKFXr16Z5qlU6el64JycnACIiIigbNmy+u0RERHUrFnzqc4pRGFnZwffL61In66nGDLSievhLsQk2DFyaku27jjC6t0NpeEthBBCFEDqfG41XaYM1KqVv+VJUaeOOrc7MTFtBPOkJLXR/aRZs2DjxpxfKyFBXTLN11e9phDPqxx9Wy9dujTVqlXL9GH1lO8oFxcXnJycOHTokH5bdHQ0p0+fxtfXN5MjhSj62vb15cwFB97qtVe/be3+xmxbcTIfSyWEEEKIjAQEwIMHavpZ1+fOTVZWkDLK/dIlePjQsG/dOrhzR0137w6urmp60ya18ZxTw4ZBkybQoYNJ4uwJUWiYrIssNDSUwMBAQkND0Wq1BAYGEhgYSEyq+T+dOnVi+/btAGg0GgYNGsSPP/7If//9x8WLF/n4448pW7asPpq5EM8z+9L2/LS6Jd9NNqw9cnh/dD6WSAghhCi8Hj6Ezz83HgKem3J7qbDclHq97pOp7t//73+G9KhR8OGHhuezZ+fsGrdvwx9/qOk9e+Cnn3JeTiGKCpMFUvv2229Zs2aN/nnPnj0B+O2332jcuDEAwcHBPHr0SJ/nzTffJC4ujsmTJxMVFUX9+vVZvHgxxYoVM1UxhSh0urxUBaar6WOn8nfNcyGEEKKwGjUKfv9d7fkNDISqVXPhpIoOkh5B0kN2766s39y6NXB7G4Tvh8QHkPRQzZf8yPinooMyjcFvlfF5Y0OhWGkwt86FQkLDhob0sWPQpg1cvQrbtqnbqlRR1/7284PPPoO7d+Hvv2HGDKhePXvXWLnSeG74xInQpw+UL58rL0GIQsVkje7Zs2czO4tbYhcvXjR6rtFoeO+993jvvfdMVSwhCj23WpVwtI8g4pEjxwLdUHQKGrMCMmZNiOeEvz+UKJFLX9KFELni+nXo3x+qVVPnJVtaZpw3OhpWPW7XJibCzJmweHE2LhIbCre3QNxt9RGf8jMMEiPVxrSiIyTChZ07bwAaHB0fz+f23woXvsr6GgkRabcdHwW3t0K5tuDcWX3YVclGgdOXuqf7+HH1Z+pYyW++CWZmYGMDY8aoDWadDubONe4Nz8zy5cbPo6Jg7FhD77cQzxOJwCREIaMx09DQ8yoA4VFOXL8Y9tTnCr1yB502d5cBEaKo27xZDQpUqxYE586Su0KIXDBvHhw6pPZe//135nk3boS4OMPzX39Vl8oi5gZc+h729YEtjSBsj/GBURfgyFAImARB38PN1XDvEERfVRvdio5krTn9v/+TR4/UG+I9e6oNWCxLZlwgi+JgXV592D4RlFibCHd2gDYWQjfA8XdgXVXY4AnHR0PwMnhwDnTZnzTt6Qkpq+0eO6beeEgJoGZhAW+8Ycg7cqR6kxHgl1/g1q2sz3/1Khw5oqbd3SFlReA//4QdO7JdTCGKDGl0C1EINfIrp08fO/t047S++HA3FauXp5HnBSJupXNXXQiRrmXL1J8JCbB2bf6WRQhhsHOnIf3rr5nnXbnS+HlyMswcsQrWuqq9yjdXw/1jamM6NZsK6Z/QqjTYVYfSDZmy5Tf2X/QDoHJltXcYANdXoPVm6HAYugZCzxB46SH010K/aOh9W300/c343ElRULmv2iBPLeoCXFoAhwbBpjrwdwm1cZ4N5uZQr56avnZNbXDfvas+79nTeAi4gwO8887joiTBV9norF+xwpAeMgTmzDE8f+cd9fNTiOeJNLqFKIQatjbMEzt69OnO8dMf6rC0E0G16NTmDlH3HmZxhBBCUYy/2B/YkY0uHyGEyYWFwfnzhuc7dsCtK/fh1ia4/pdR3kePYNPGJACcSoRTwkb9/7d0+4tcC3dNlVMDSQ+ML1S8MjT4HvxWq43nHtfh5XjoGwEvBrHN7Cizlr8KqD3Gf/0FpUs/PrZEDXDupM7ZdqgJthXBsgRonvg6/mSYc+sy0GQJ9AqFTieh7ufg1AI0T6wPrI2F4k8MOb+7Fw4PVXvDY24a7Uo9xHziREP6rbdIY8wYsH48nXzhQojI4l596qHlr7yi9pw3a6Y+v3QJvvhCpsWJ54s0uoUohJ4MgJJToVfucPWO4YvF8aDadHvRgtjYXCicEEXYuSPXCEs1o+PAQXMUnZLxAUKIPLF7t/FznQ5+nzQH9nSFUx8a7Vu/HuIT1AnfLzVayXud5gOQrLVk1tavwGs6dD4FryRCzfeNT2xRHNxHQqVeauO5eGUwVwP+hobCgAGG4GGzZqnLZeUajQZK+0LtifDCPuhzD9psg7qzoPJLUMoX7J4INHFrI1xdovaGr60M66rD0bfhxioa+hhWQImMVH9WqwZt26a9dNmyMHSomo6JgQULMi7m2bPqA9SGtqurOrz+xx/VHnaAWbM03LwpgZLF80Ma3UIUQuXKqUPWQA2AktO1L/dvuZpm275DxenVS4Z8CZGZneuvGz2/HVme4HMh+VQaIQSKDu78x84/0w6r/mXvYLUBHBuiBkB7LPXQ8n6tdjHm9bPYF08EYOmO3txw+BRK+YBZ9uMNa7Xw2msQHq4+79oVPvjgaV5QDliVhAovQO3x0GIldD6Ztpc8fL/x8+grcHkh7O9Lg3v105wyJYBaej76SO29B/j2W8Nw9Cel7uXu39+Q9vZWe8wBEhI0zJ1bySi6uRBFmTS6hSikGvqoy+3FxMCF49ezyG1s394kffrzcRf1AVK2bVP/QSYn51oxhShS/tuTdrmeA9tz9v4TQuSSh+dhfQ3Y2Z5dR9U70ZbmiTSoqg4BuxDqybHkr6H5CrC0B9QI2ps3q4eXLw8tJvxD6R4ree99K0CdszxrVs6LMn26obe9YkU14FhGjdc81XYHtNsFdaZA2ZZgZgjpXr1cEA62D/TPLS2NA6g92SJ2dYWBA9V0ZCSMHp32copimM9tZgYvvWS8f+pUcHFR04cOOfDHHzLMXDwfCsLHgRDiKTSqflyfPrbnZiY509p3TI2QYqbRMurD8mzcqC4LArBmDbzx0lWJai7EE5ITk9l9smaa7Qf2y3tFiHxhVxUSI7l135mgO+4ANPYK4e3RZfRZfj06Blxf1je6165VI3UD9O1rGO78/vtgr2bh55/hxo2sL5+UBGfOqEOtP/tM3WZurjY6y5TJ/Ng8Y2ED5VqD91Rovwf6RkLrTVDzA8xK16F+lRP6rL16qcPIAXVkwJoKsK8vnJulrjGeEMGsWYY56n/9lTaY5NGjauRygHbt1JF5qdnZwfz5hueDB5vx7rtqB4IQRZk0uoUopBo2K6lPHz2a/S/9D+4+JOBaDQC8qwRRoowDLVqo/zitrNS72r//W5U3uh8kPiY+V8ssRGF2YtcFouIcAOja5CjmZuqQkP0nMohmLITIFRpdAprg3+DsDOMd5tZQZRC7bhm6XNt0r8pLb1TR30hevtx42lTqoeUvv2xIly4N776rppOSYPZs40spihoA7KefYPhwNbaKvb06ZHr0aEOn8GefQYsWz/iCTcmiuLrGd70voUsAfj0a63eNGJEq350d6trjN1fB6YmwqyOsKkO5w27MHznf6JgHDwyHZTS0PLVeveCVVwzfW777Tv097tv3jK9NiAJMGt1CFFL1W1dDo1H/aR0LyP4t9UPbLqEo6lvfr6EhItQLL8DKxZf0DYnfNregWd1grp7Jxu1+IZ4D/226p09375KAT7VLAJy7UYPIsAf5VCohirCY62jOfIrX1W6YHR0CZz+D+CcmEtf7il13x+mftmmjrindu7f6PDJSDZwGauNw61Y17exsiKad4oMP1J5YUHu7g4LUoejvvgs1aoCHh9rIXLRIjafyZAyUnj1h3DgKlTEf2TFmDPzwA7RunWpHYgRY2Kc9IOY6r9UcQxefjQDcvg1jP1C/i2i1au83gJWV2rhOj0YDv/2mMHbsTWxs1LsVV69Cq1bqiAMJ6iqKIml0C1FIlXAsQU2XYABOX61OQmz2IqDtO2WIbOrX2tZoX4+BHiz/7hg2Vup/vFNXPKnftATrlhzJ8Hw6rY7oyOgM9wtRVPy3r4Q+3a57ZVo0CNc/P7Q1KD+KJETRo0uGkHWwqwusrULS6S9REh7/j9Elws01xvk1Zvpl/IoVg6ZN1fTgwYYsv/yi/ly7Vu3FBnWu8ZNzrh0dDb3diYng7g5duqg9sVeuPHFZjdoIf/lltVf8v/9g9eoCMo87B0qWhK+/fqKXG9So7X0joet5aLoMPMaoy5RZFEejgZ+GvI29dRQAS5aasX077NkDd+6oh3fpop47I2Zm0L//XU6e1OlvfigKfPMN+Piow/aFKEoK2UeDECK1Rl5qNNYkrRWn91/O1jH7jjrq0y16NEyz/6URTTn8Xwg1nNUG/YOYkvQY2pjxb+wmOVHtBb9/X52zNmgQlC+XjH1pO+pVD+T7KXu4fzvyWV+WEAVOfEw8B87WAqCyUwjVvCvT3M9Kv3//HpmQKMQzibkJAVNhrRvs7QG3N/PPkd44jwql/Mg7nFfehxcOQPXhRoddu6Y+QG1wp6wl3aaNIWDXli3qOt4ZDS1P7YMPoHjxtNstLNRzzp0LBw6oAdkuXFD/F44bpy6z9WTg8ELPzBwcPKHKAKj/tbpMWd+H0PkUlVq/yRfDvtVnffNNdQRAiv6+30L4oTTB2J5Uowbs3Qtffmmou6AgddSAzPMWRYk0uoUoxBo2MMyJOrb/XiY5VfHxapATUNfirJDBVFTvFu4cD3Ckb+tD+m1zfmmNX52TtGh4Fycnda7WsmUQHqE2PE5d8WTU9FY4u9rQv/1Btq84IcHYRJFxcHMgCUnqN8J2jYLRmGlo3qGKfv+BYyXzqWRCFBH7esPZaRB3i6RkCz74/Ute+vYf7kc7EhlTmin/zgOnZmlatrt2GdKp15c2N1dvDIM67HnBAnWFDoBKlaCxYSqzkTJlYN489TLOzjBsGKxaBRERsHOnumxWs2aGYejPHTNzdTk1r8m8OX8SrVurjerr1w1Ry+2sH9Gt0njY3gy2NIArSyE54zHj5ubqzQ5/f3VuN6jDzT/91LQvRYi8JI1uIQqxhs0Nc7mPHjfPMv/x44aorX5+mect4ViClf814evxe7AwV8fjHQ5qxIHjZdGlakvb2SnUcjNET09IsmbFf83o0L8+VSqEsmbR4ey/ICFy6ObFUHb+c4qA/ZcIv3nPZDd6/tvyUJ9u10791+lcrTxVyqkxD45eqqV/bwkhMqEo8OBM2h7QKq8DEHK/Eq2/CODrzcaLXK9apeHixbSnS93obtPGeF9KoxvUIeApy2GmN7Q8tbffVoehh4Sovbe9e6NfWlMYmJnB4sUafdC6FD0absG2WJz6JPIkHBkCq8vBocFqgDadNt3zeXjA338bery/+QYOy1cIUURIo1uIQqxui+pYmqvf9I+dzTqC8r5tofp0Vo1uAI2ZhjGzWrFn7QVcHA3HenrqGDtWncMWEaHhXHAlAvZf4v1Xd1OmhKHH/Ua4C72HN2HsgN0kJSSldwkhciQpSV0L9+MRV/ByC6JyTWfaveRLXT93ylYuQ7FiWlwcb9PA/TyDu+7n9tWwLM+ZHf/5N9Cn27xYXZ9u3k5938UnWHHyZK5cShRAv399gDd77OXCsav5XZTCQZsID85ByFq4+C2c/BD294OtjdVlqDZ5w/3jxse4vcqOmF+pNy2Yg2c9ATUY1wsvqI1zRdEwd67xIYpiaHTb2kKjRsb7PTwMc7y1qdp5/fpl/RLMzYvgcHETqFYNZjwRVL7/hy9Ck6VQqp5hY3I0BP8KO1+AtZXQnJ+Z7vnc3WHaNDWtKDBkSNqAdUIURtLoFqIQK2ZbjLpV1bncF0KqEBURlWn+fVtv6dOpg0BlpVlXL86cL86aRUe4euYm58+bMW+eOpTP6vG0Vq/m7nz1R2tu3SnBqoWHaV/PsPbnV3+0pk3DIG7dyuACQmTh0CF1Td0yZdTerC9+qsbZ6zXS5EvWWnLrfgVOBNXi100tmDnhwjNf++FDOHZKHUvq6QnO1QwLz7ZoaalPHzjwzJcSBVDYtXDe+KgRi9e1pEnr0uz851R+F6lg2+4HK21hUx3Y2xNOvAcXvoQbf0PEUXUZKoCrS40Om/NNaTq8NYjwe+qorcqVYf9++OsvHfb2j1fV+A1uGgZWceWK2hsN0Ly54f9Raq+/bvzc1TVt41w8m/feM9zccHWFFzoVg6qDodNx6HAIqg4By1RDBeJuQ9ydDM/3wQdQv76aDgxM26gXojCSRrcQhVyjemqkEUUx48SJjN/S2iQtB8+qjZSyDuHUqJP9ZcYASpZ1oOewxlSpUynTfFY2VvQe3oRtx+qxYNIefU/8gTO1qFdP7R0XIifi46FrV3VeZVSq+0oajY4mNc/w/qu7GdJtH50bHcO3WiDlSxp6t/cfL5fOGXNm7170UyratTPe17y5Ib1//zNfShRAZ4/dJFmr3lx5GFuSjq/U4Ze5UtkAKOlM59CYg5L+8GHQgI0zlGsDZQzrdR04AOPHG0acd+4MJ0+qa2GXKAEvvaTeJE5OVgNupUiJWg5ph5anePllNap5in79pAc7t5mbq/PlFy2CHTtS3fzQaKBME2jyM/QOgxZ/g0sPMLNEcX3V+CTx4fBfW7i8GAvdA5YsUYPXgTo14PTpPH1JQuQ6aXQLUcg17GSIQH7MP+PILmcPB/EwtiQAfj6X0ZiZ9luHxkzDqM9asW/jJSpVeATA3bvQoQN8/jlG88KFyMx//wQQ+TgofqlSCq++Cr//DndD4zgU6MVXf7Tm5/V+bDrSkJOXPbkdWQ6vGrcBOHPd45nXfE19o+jJRnetWoZlcQ4c0KHoMo/UKwqfoKvGSysmay15Y1wLPh2++/mtb0WBSz/A7m5pN0d1ZP6eOXSa70+rr4K5WHY1tNsJL16Bl+Og1y31eZUB+uP+/ttwjo8+gg0b1OW7UvTvf1e/nvOiRRD+eKBWZvO5U5QsabxedEZRy8WzsbNTg85Vr55BBnNrqNwXWv4LvW6D4xOR7G6shLBdcPRNWF0e77g3mTg2AlBvtgwZYpiTL0RhJI1uIQq5hqlW/UqJTJ6efdsMvX9+zfIu4lPjjnU4dcaeTp3U5zodTJoE4z54mPmBQjy29h/D38qSuUf54w947TUoUz6ddX0ea9RSnWut1Wrw93+26/+3+QEAZmYKrVsb7zMzg2Z1rwMQHm7G5dPXnu1iuUin1XH3RvankYj0Bd2tqU+3qndJn56xqDUDOh0kIfY5m3CqTYRjb8Pxd+DuXv3msWPV5Z88+kxgzP8+ZuvRuuw94cYHX/dSe7btqoJ5sTSnUxRYv15NW1jAxIlpg5yVKpXMsGFqozs2Fr791ng+t709NGhAhr74Qu3hnjfPMGxZ5KNijmmHG4Snmp+jS4Ari/mkljO1q6jBKk+eVOtPiMJKGt1CFHI1axqWLjl2LON8+w8a5p62aF/WxKUy5ugIGzeqwVE0GvWL07z5Dqz/JZO7BEKgNhzX73EHwNoyjhde8srWcalvRmX2vshK2LVwzl4qCUB990v6Xu3UmtcN1qf3bwt5+ovlovu3I2lW5zzlXJ2Y99Hu/C5OoRYUZEgv+9edbybsQaNRh+r8ub05LzS5QMiNjIZTm4apl2PMcCRS/F3Y2Z4rB3awYOsoen29Sr/rp4XqHOsnbd+uxkXIyMWL6vJQoAb4TO89BvDBB4p+uPF336nv67Aww3Ep+9Lj4gJ//aXeGBAFVLM/1DngHu/p539bWSSy5I2+mGnU99fUqVq+X5DMkSM88wgmIfKaNLqFKOTMzQ137m/cgLCQR2nyKDqFff7qmsJ21o+o2yJtACpTMzODyZPhmykB+m2vj6rBjQuhmRwlnnfHdgRy54E6L/uFhgEUd7DN4ghVdkeAZGXnOkOLq22T2+nmadGmpD5tymBq/nsv8v2UPVwPzLxh/+j+I7q0vcWRC3UA+GJRbZITZVzm00ppdFtbQ8WK8N7MVqxZdAzbYmo8jX1n6uJe05zp0/OmIbBnjT+ODlHUdr3M0jn7cn1liOnTwcZG7T2u4RqBn9dpXmpziNGv7GFU7824D1pM9Q+uMPq3BWw729HoWAsLdZj33Lnw6uMpu0lJhp7s9KTe1717xvkqVYKBA9X0gwcweLBhX0ZDy0UhotFA6fpQ/xvocQN85oB1eRpVO8b7nb8GICHBnFGjLWjSRP37rFULXntVxw8/QFxc/hZfiKxIo1uIIqBRNUNX3rH/AtPsDz53k9D76nDbZnUuYmGVSZeAib37qTe9/NSFNyNjSvFK7whZTuw5FBF6n71rTxPzMCbTfOv+NgyPfrFr9qdFeHlBsWLqqIpjBx88VRkB/tth6MFs19E+3TwN27kbAgaecs7WeXVaHT9N30tNl6u8UP8EX4/fzcXziWmWLo4Me8D3U/ZQr3ogvq08GDW9FV711RUC0hP3KI4X217WN7gB7j50Yu+6M9kqlzCWnGzova1e3TDsucfQxuzZcJ0KpdSu1rg4mDJFHXm0Yrlp5/ZPnabwIKYk529UZ8h4P6pXCuP7KXuIe/TsrY6ICDVSdGIiREfD5RuO7D9bl392N2XBX634fvPrBN1xT/fY5X+qx+/cqc7LHjHCsG/VqnQPAdT52ym6dcs4H8C4cYZRyYGp/tVJo7uIsXKAWh9Dj2Bo9D+mD/6V5u7GwQt1OvVv4M/lZrzzDrRucIWwoyshVpZJEQWTNLqFKAIaNjD0Yh09mLarZd+WG/p0i8bReVKmjGjMNPz8d03cyqrrvhwK9GLSW7nXPRgervaCiIJHm6Rl65/HebndQZxdi9OqZ126t76UaQNl7faKgBqpvPurNTPM9yRLS/Cteg6AoGslibwT+VRl3nnUFQAriwSad/FMN4+NvS31aqhzfS+EVONeyL1086W4HhhCh4b+jJjSkou3qrLjZH0+mNOamrWtqF4dRo2CZT+F0L/9QSpUsmbU9FacumK49qO4EvR9uwkfDNhjdMMqMS6Rvi+cZfdpXwD9kEyAlavSWUtJZOlG4E2SHv+Ka1S4ZrSvQftanAty5L331BFHoC5n1f9VM/y8z3BiZ9oboM/q2rkQff3qyxjuwqjprahS+RFzx+7m0f20o52y6++/0b/eMmXAoXja/xfmZsm0bJHA7Nlw+JBh+4svqpHGUzRrBuXLq+ktW9RG/JPu3zeMDnF3V+eEZ8bDA/r0Md5WsiT4+GR+nCikzK2h+pvY9vFnz5Y77Pv5e779Ft54Q61zS8OsOY6er0aTbg05/90LsKEmHHsHbv4LyZnf2BUir0ijW4gioGFLwzJex/zTBpfav98wQc+vbcm8KFKmSpUryYrfHmJhrn67m/trazb99gwTbx/7a4VCpUpQtapxL4jIX1fPhPDp8N24VQij02sNWLmzGYnJakClXf6+7Fqd/rrHV05f59wN9Vt445rnKefmlKPrNvI2NH6P705nsmkWgs/eJDisMgDNap/HtkTGQ9tbNDBc6+C29K+l6BQWfb4Xr/ol+O9UvXTzXL0K338Pg0a4sOK/ZiQkWev3NXQ/R7emhrHyX//RijaNb3DrFmiTkhnQ9QSbjqjj6u2sH7Hj7wBsrNUbcqt21JbIv08h6IwhAGUN52tp9pdytOCbb+DMGfTBIgEOnPOmYXsPPnhtN7FRmfdAh9+8x5S3d/Plx1lHQ1/2h7k+/XqX/XRtYvh7CHtQlnFftaZR3btPPXro9/8ZFsHesQMeRNsR+yie4HMhHNp8lh2rLnAvXMOefcUYN04dUZIRMzND1PD4eNi0KW2eLVtA+/jeUGZDy1ObMMH4ecuWhpseoogyM8e8Sl9aDHmHd9+FJUvg1Cn1Rs7uH+biUlqdcnMtvArNph1k5yFnCPoB9vWCVWVgd3cIWZfPL0I876TRLUQR4OpZEacS6jDcY4FV00TT3XfaAwBL80QatffI8/Klp3HHOswZa+jhHjSqKiFB6c+ZzY71S48yYICWhASIjIS33iLNUF2R977+GqrXrciMRa0JiTAMvbazNvTGffFF+kGo1i03BCjr0THz3uP0NGxsmEZx9GDOR3hsW2O4fju/zKPtN29paBwf2Jt2tMnNi6F0anyS4ZNa8ihO7Q6sVOYWW/88wbnDl/nis7u0aZM2GJSjfQRj+u8hYP8ljl6szbr9Dflu8h7DcPbT1fD1hV6dbvH3rqaAGnBuw59XaNPHl27d1RPeuwe7d+f4V/DcCwo09JLVcM+4ZefpCZs3w8aVN/CoqEYFUxQzvv6zNT6edzi4Me3w/sRE+OorqOFpzfSFrfnwi9b89mXGo34UBX5dqU4T0mgUpn9diw2HGnFqz0VeanNIH9ztQkg19m+5luPXevXMDQ6cUm/g1qkSjLe3ut3Gzhq3Wi406VSHdr1rUrJ09lu4ffsa0v/8k3Z/ToaWp6hXDzqmmkouQ8ufX1ZW0GrExxw+5YSvl/o/5WFsSTrO2cqvewepmbTxELoBIv3zr6BCACgm8sMPPygvv/yy4u3trdSvXz9bx4wbN05xd3c3egwZMiTD/DExMcrx48eVmJiY3Cq2ySQnJyvHjx9XkpOT87soIhcVpHrt0vioon4tUxRH+3vKe6/sUvz3XlDCwhT99iYN4/K7mEZ0Wp3Svdlhffla1PFXkhKScnyeHStPKMUs4/TnSXksXZr19ff866/cuHArzb6CVLeF1YEDimJmZqgPM02y0q3pEWX1/w4psVGxilvZG/p9Zw5cSnN867on9fvPH7mc4+tfPHFFf3yP5ocURclZvXZqZHhPHd12LtO8YdfCDO8zzzPKxYuKsmKFoowbpygdWt5Rihd7ZPS3ObT7XuXB3QdpzvPwoaKsXq0okycryt+/3VYSYhPSvd7hLWeVSs6xaf7mLc0TlE3Ljurz/f23Yd+wYVm+5ELNFO/Z0S/v1v/+dq8+la1jEmITlLljdxl9Jmk0WuXDgbuU2KhYRadTlA0bFMXdXUlTfzVdLivaZG265923z5CvXbu0+5fOM/y9jh2b89c6/Z1d+uNnv78rewdFRxsKFR2dZndSkqI4Oqq7ixdXlNRf1xITFaVkSXWfg4P6PD3p1au/v3reSpUU5e7d7L9GUXDk9vv10SNF6drV+P306ZANim5VBUX5A0W57298QPQNRdndXVFurFKU5PQ/Z8XTed6+P2W3PWqyRvf8+fOVpUuXKrNmzcpRo3vo0KHK3bt39Y8HD9J+KUkhjW6R3wpSvS6ZvTfNFzhQlMpOofr0Rx/ldynTigi9r1QqE6Iv45wPduXo+AMbAhTbYtH645vWuahPlykdr9y7dT/d43RanfJmjz36hsr3k3crOq1Ov78g1W1h9OiRolStavg7fHvgNeXW5TtGeeZPNDRoBr8SZrQvIjRCMTdLUkBRqlcINqqb7NImaxUH20gFFMW5dKiiKNmv1wd3HyiW5gkKKIqL461sXb+G89V034OpH86lQ40axc/i3j1F6dQp1U0NM53yzy/BRnliYtTGDihK6dI6JTG+6P49m+I92znVjZdbl2/n6NjAo1eUxjXPGNW/h/MFpaPfDaNtGo2iOJUw3LRZtfBQuucbOtRwzLJlafffu2e4yeXpmbPXqdPqFPeKhr/f9G5EpiuLRreiqDd7UrKsXm3Yvnu3Yfsrr2R8iYzqNT5eUXQ5/1gQBYQp3q9JSYryzjtPNLwn6RTl3rG0fyxnPlMb43+gKP+UUZTj7ylK5Jk057xzR1Hup/81QmTgefv+lN32qMmGl48ePZrBgwfj7p5+lMuMWFlZ4eTkpH84ODiYqIRCFC1vjPNj92p/XutwAGtLwxzCG+EV9Gk/v/woWeZKVyjFil/u64M+zf65WbYDoZ3cdYEu/SoTm6DOY3+x+RH2HK/CS73U4b337hdjwsiz6R4768OjLFrbEoAkrRXvTG/FgE4HiY7M30BzRcUH7yv6tXebNoUFS1xxrlbOKM+QD+tT0kGde/rHqrKEplo9buM2B7Q6dWh0j47haMw0OS6DmbkZDTzUQoTer8Cty9mfvrBp+TmStGrwsZ7tgrJ1/Ra+GS/lVabEPd7uvZdzgbZ0HtAww3w54egIGzfCvHnQqhWsWqWhz+tuRnlsbaF7x/sA3L+vYeeq9OfPi/QF3VTjCBQvFk2FKuWyyG2sZsOq7D9dkzkf7MbKQp3yczHUg637DDE4WrSA48fhtx8MwS5nziuRZm53bFQsK/9SJ+Xb2RnmSqfm6AhNmqjpwEAIDk6bJyPH/wvk0i11WcnWdU9RySN7UfizI3Xgs9RRzFMvFZbdoeWpFStmiGQuBKjTcxYsUKc1pfxtfDZDw5q9DdL+sdzZYUgn3IOL82GTF+zpAfdPAGqQv4oVoVo1OHEij16EKLLyb92gDBw9epSmTZtSokQJmjRpwpgxYyhVqlSmx2i1WrTa9OcEFhQp5Svo5RQ5U9DqtcWLXrR4EebffciKhUf45c+yHA+qBYCtrULTpjoKSFGNNO5UiwEvhfPbyvJEPrRi3jwd06ZlPiH7/NGrdOxZhoex6o259vVO8OemOphZmDFvViSbN2uJjrdn0Vo/Bm44TbPOhiWUli/X8MnXjdOc88/tzTlV9worV97GvZ4rUHDqtjBZ/+sxFi1Wv/0XL66wdKkOjYY0f3s2JWx4620Nc+aoEZPnz9cxc6Za72vXG+4Jdx1U76nroaHPA/573M48svMa3QY7AlnX6+od1fXpF/vYZev6H06uwOGAK8Qml8KnUSl8fBR8fBR8faGic0k0Zs2zde2cGjNGfajnTru/b4cLrFjdDIC/lsfR/uWi+Ted25/HSQlJBIe5AFCjYgg6pQbk8NQacw1j5/rRqc9lhg7W6j+PKztHM+dLW/r2VdBoQPHywXdKIKeueHIiqBZb/zrGC/0MwfZWLT7Jo+gWALzU5RrW1pXSretOnTQcPKi+dzZu1DFiRPYCWyz7+S6glu3Vfo+y/zvUajHXJ7Xp/gG2agUlS5rx4IGGdesUYmN1FCsGGzaYARrMzBQ6dMj4f1NB+z8rcocp6/XddyExUcO4cep7YdAghYMHddSqlSpTq21w9z80V39Bc2stGt3jWDi31sGtdSgVuvD9d7+g1ToRGQm9eikcOaKjbNlcL26R87y9Z7P7OjWKYtpQQ6tXr2bmzJkcP348y7wbN27E2toaFxcXbt68yVdffYWtrS1//fUX5umEpoyNjSVQQhQLkamgS9bsP1ASH59ofH0Lbi/urVtW9OlTm+RkM2xttaxde5ZSpdIPt3z/1kMGD/YkNFLtxW9S8xRfLoyjWPFi+jzrf77JtB97AlDH9QKLVzzEwtKCEyfsGDWqBklJ6j/jD4fvx835HhPmtNUHuCpeLJrPP9pBi56VKKhiY8345JMq3LpVjDlzrlKlSnyeXPfePQvOnStOxYoJVK+e9ppRdx/xSv9a3H2ofjOZMu4E3V/K/HzdunmRnGyGvX0yGzacwdJSoX37usTGmuPgkMzWrafTBBjLrqObbjJyck8A3n15A69/VCHzA4CEBA0vvPD4+iWS2Lr1FBaWhTc8ckJsIh071CE63p6SxR+wZftFLKwK3D33AufOlQi6vdwBgB7N9/DpfLtnOl9yUjJ7VoWSlARt+pSnmK3xMm4H199k9LSeAPjVOc7Xvxh65j4amsyu0+qNwmXfrsezWfo90RcvWPHaADWkePsGR5n9U9Z/t8lJWrp3rEJ4lBPFLOPZvvk4tiVtsvWazOLi8H08hOrUvn3obNI/bsoUNzZuVG94ff31ZVxd4+ndW70R6uv7iEWLLmXrekJkl6LApElV2Lq1NACVKsXz228XsLdP20Ay10bhGLWRcveXYZV8F4BkrTllR9wlMqa0Pl+9eo/44YdLT/3/SBRtnp6e2NpmvMpJjv5s5s2bx6JFizLNs2nTJqpVq5aT0+p17dpVn/bw8MDDw4P27dvre78z4u7unumLLAi0Wi1nzpzBy8sr3RsIonAqDPXq4wMv9cvvUmTNxwfefBN+/BFiY83ZuNGLefPS3hNMTkym/esX9A3uetUD2bjLDQenEkb56nxZh7VbL+B/tSZnr9dk/+pddHq9JePHm5GUpH6ZffNNHbO+b4pGA227XuPll+5w5po7MQl2jJnRk9eO7WTukhaUK1ew6lbRKbzRJ5B9+0oCsHhxLTZu1GV+UAYiQiMZOTCIyIfF8K4VhY+vOT5NylKzvhsWVhZok7Qc2XGeLWsj2XKgJicDDY3WDh0UJnwch1/rYvpy9W1zXN/g7tb0KJM+q5fl0OwBA+CXX+DRIwuO/2eJRyNPYmPV33mPHmY0aODzVK8NwMmuHExW04FBFfDy8sryPbthA4br9zSnQcP6T339gqK732GWb2/Og5iS3A3S0OU1H6P9SQlJjB92mMAgO75c4IBnw6r5U9BnkNufxxvPGDoLanlo8cmFxaAbZDKzwKu2F98tDubSrSrsO9uAuDunadqpDiFBoewOUNerr1ruOi+/1Qkz8/RnB9b1Vvjw3TvcjizP/tNeeFTTYmOfeQN685/HCY9Sh9F3b3aKZq0z/r6VRowhuru3tzcUT7tkJcCwYepUCAB//6pGvdr9+hXP9HdbGP7PipzLi3r9+29o2VLB31/DzZvWzJlTl7VrdRksMdcStNPRBf+CJnAOB0+4GjW4AU6etOf333355huT9lcWes/bezY2NpZLl7Jx4zAnE8UjIiKUy5cvZ/pISDCOALhq1apsB1JLT+PGjZXly5enu08CqYn8JvWau0JDFcXGRg1+UswqQbl5KTRNnolvGaKdV3a6qdy9EZ7h+Q5vOaNoNFo1cm6xR4pbBUOwok6d1KArqcU8jFFe77LPKAhLyZI65ZtvMo6smx/SC5p3Jm38l2wZ8oY23YBf1paxSr3q55VSxe9nGRzMr46/suWPY8rimYZyOZW4q9wJzl5Y4bOn443qdNhLhuBTq1Y93evS0+mUCqVuqxGS7WKUxMSs37OpA1b9++8zXr+A+Hex4X3zepd9RvuSE5OVV1/Yr9/v4nhLCQlK+94r6HL78/jr8YZAf0vn7M2Vc2bl51mG91D3ZocVRVGUme8ZoopPHbEry3MM7W44R3aC9vVvf0Cff+3Ph3NW4GwEUlMURYmLUxQ7OzVbqVKK4udnOOz8+cwvIf9ni6a8qtfgYEMEfVCUiROzU7gE5aNh/vpjRo1SFCurVCujLEl/hQGhet7es/kevTzFszS6b9++rXh4eCg7duxId780ukV+k3rNfR8NP6v/x/ZWrz1G+7ZuVRSNRqeAoliYJyoHNwZkeb63eu1J00j08YpToqLSz6/T6pRFn+9VilvHGB1Ts6aibNqQ//V87lCQYmMVk+Y1DR6c83NduGC8pFd2Hr7eccro0Yri6pp5vn8X5+zLe5fGR/THmmmS1RsvlnHKo8jYnL+wJ/R4MTnVF/zM37PJicmKk6N6E8DWVlFin/3yBUJcdJxSwuaBevPB9oESHxOvKIr69z7sxbQ3cXyqBipRERm8SQqo3P48HjksUv/72L8lOFfOmZWE2ATFxfGW/roBp3WKR0XD0ndXz9zI8hyr/3fI0FjotzvTvFERj/SfJ6XtIjJcoi5D2Wx0K4qi9O+f9nOiatWsI5DL/9miKS/rdccORTE3N/zd/f131sfUrJmyKoSihIcryqJFhuOLWcYrR3ekXeZSqJ6392y+Ry8PDQ0lMDCQ0NBQtFotgYGBBAYGEpNqKFKnTp3Yvn07ADExMcyZMwd/f39CQkI4dOgQI0eOxNXVFb+CGHJZCGES46ZUwN4mCoCf1zXlyunrAISGqsOQFUUdqjxzyn2advHK8nyzfvTGqUS4/rmLYygbVkdib59+fo2ZhmET/Qi8YEG3bvf02y9cgC7dzOnS+BhXz9xI/+AnzJunRj7t3x/OnMnWIZmKjYqh38sKcYnqdJqBnQ9RsqS674/fkwm9cidH55syBXSPR6VP+DCGLX8cZ9aYXfRre5AazsEAONg+5KU2h1g6Zz+hV8I4edqa+fMhKAh+XXCBmi5X0px3aPd99BiaNlBdZj78yFKf1inqcLR29c5gl825pZlp2MgwvO3YscyHuh/YdJbwCHW4fKfml8hgimqhY13cmh6t1D/Ch7EObP/7NIpOYeygvSxep/6PtTBPwrm0GuHd/2pN+nW+QHJi+nEVngdB10vq0zV83fLkmlY2Vnz4oeFvdOCrsVy8pQ71b+XtT5U6WceZaNe7FpbmiQBs2uOWJhJ6amvWF9d/nrzc+RJWNlYZ5n1WqaOYp+jWTSKQC9Nr1w6++MLwfPBguHgx4/yXL6v/80FdfaNMGXWKxIieapslIakYvfrZELbpA7i1EZLjMj6ZEClM1eofN26c4u7unuZx+LCh98Pd3V1Z9XjsYFxcnDJkyBClSZMmSu3atZU2bdookyZNUsLDMx46Kj3dIr9JvZrG1BGG4ZQDOu5TkpMVpXVrw13mLl0URZuD0V3//HhQMdMkK2VKhCun913M1jEpdXvoULLStKlx70zF0qFZ9gKePauuv5v6uO6tLyqHtzzlOHBFUYZ0M/RIele5oMRGxSoT3jqh3zb+jZ3ZPtepE4n648qWVdfVflJcdJySnJj533ZyYrLyz48HFd9q5/XlepoeUp1Wp9Srft7o97Xwsz1ZH5gNW7cazvnuu9pM37Nj+huGFC/7an+uXL+gWP/LkVTvq/3K5E8Mw/o1Gq2y/NsDSuDRK0ZTCob3PWHStZB1OkUJCFCUsLCs82Yltz+P3dzU30GJEnm7HnR0tPFwWMMQ931ZH/xYW1/D50Lg0SsZ5nvhBcP5Dxx4ysJms6c7JkYdPZL6NW3fnvUl5P9s0ZTX9arTKcqAAYa/vddfzzjvN98Y8s2ebdiecP0/pUWtY/p9LTz2Kom/WijKCmtF2dVFUS5+ryiPgk39Ugq85+09W2CGl5uSNLpFfpN6NY2H9x4qjvb39I2BAV1PGhq8FdWhXjl181KoEhn2INv5U9etTqcof/543mjY5+S3dmV6fO+OwRkOvW7ne1zZsfJElg3a1JZ9ZZhzW7zYI/0X6dArdxRL8wT9sOHsNni7NjmqP98332S7GBnSaXVK8NmbSlx03FOf48/5B4x+T6FX7jx7wRRFiYgwnLNJk4zfszqtTnF1uqmAOn3h/p3IXLl+QREfE6842KpDzM3Nkox+14tnGuYs7/nXX7GyiE/3S2duevRIUV57Tb2Gk9OzN7xz8/M4Pt4w9eIZwtI8tenTjT8zbItF5+hm1ryPDDcuv/x4V7p5bt0yvMYqVZ7yxkIOGt2Koih9+hiy29kpSkI2RrPL/9miKT/q9dEjRSlZUv37s7JSlDsZ/Itp187wd3r2rPG+O7filYplH+r3T+09WVH+wPhxfIzpX0wB9ry9Z/N9eLkQQjytEo4lGP+WOhRWUcz4faMvAObmOpYvV4d65ZRLjQqULOvwVOXRaKD/257s3J6IhXkSAPN+acjtq2Hp5j++4zyrt7oBUMEpmq+/Bpey9/X7/ztVn/b96mFvl0BTzzOM7LuXRZ/v5cTOQOKi40lOxugReCSItyfU1R//40x/aj6OLl2hajkGdDoKqMOGf/7iZJav5+DGM2w8rIZRrlTmFm+9+exraWrMNLjVdsG6uPVTn6PvWw3xqHgVgA4NjlOharlnLhdA6dJQvZI6VcD/RCLJSem/Xv+9F7kerq7L3MYngFLlSubK9QuKYrbF6NlafV9pdYbFS775WsvQCYZpXC171GXpd4YpFOPHw4oVuVuWwEBo3Bj++EN9Hh4OS+Yezt2LPIOrFx7op16413i6lQGexahRYFfc8Hfat80J7EtnMCcmHV1fqqxPb9peIt08y/9U9K9xwIC8Gebdt68h3bEjWJluNLsQadjZqaukACQmwsKFafNERcGePWrazQ3jtb2Bcs7F+GdtCczN1Wkbn62dzJGbXY0zVeiQuwUXRYI0uoUQBdI7kxvr55emmP7OXvIzxEMNXzfe7nMQgNiE4kz5IP1JYZMmxhrSI04wZgxcuWbH4pl7qV7hmn5fXKIthy948eOqlgyf1JIG7TyxtbfG0hKjR60mNYhJUNcIfqPrPgZ+0MLoemM/Ka9Pf/1ztUzn4So6hYkTDV/mp3xwBWvbgrGkh2UxS3btLc6S2fv4Y02VXD13o5pqXcUn2RASeC/dPGuWG+bE9+oek26ewq7f4MpGzz/7DN4bk7b+X32rBp9/bnj++uvg7587ZVix4CANG+o4f954+6LfK6DT5n0DNz1BJwzLv9Rw2Jvn1y9VCka9bijDsBE5u2HoUb8KVcqpN072BtTh0f1HRvuvB4Ywb1ak/vlrrz1DYXOgZ09o3lx9fR9+mDfXFCK1d94Bs8etnx9+gIQE4/3btqk3uwG6d0//ZlSTJvDpp+oOrdacgT+vJ8bPH7xngEtPqNDR+ICQtbC3J4Ssk/nfzzFpdAshCiQbexsmjQ7SP+/Q4Djjv2qZjyVSTZ5XmxI2DwH4eV1zzh26bLR/79rTbD3WAAC3sjcZNl5d89bKxoqhE1oSeM2F5d8epG/rQ1Qrfz1H165V+TIL/qiXZnvtptXp3PgYADfCXfhn4dEMz7Fj5Un2BPgAUMM5mNfH5mBN3jxQoWo53hjnRxkXx1w9b8P6hhsRFwMS082zZmtFfbrHAPdcvX5B0b5HZXx91S+Sn3yiPjIyYYIaPAjUXqFFPzzKOHM2JMQmMKrfHvqPbkZMjPr1w8sLGnsGAnA1zJX//s56pEZeCLpguHFWw8Myk5ymM/2r6swdu5s/5x/E78W6WeZPTWOmoUtLNRhiktaK/1YH6vc9uPuQrp3iuHNfXYO4Y8MTeHjkWrEzZW0N+/erIxuaNMmbawqRmqsr9OqlpsPCYOVK4/3r1xvS3bplfJ6JE6FRIzUdFKTho1l1oc4n0HINaJ5oXl389nHDuwesdoJ9fSH4d0iMTHtiUWRZZJ1FCCHyx/CJzQm5uZu74WbM/rEOZub5f5/QqVIZxg/fzcT5rdEp5owfe5/1auc3ik7hk0mGvFM/vI6VjXG0YQsrC155txmvvKs+fxj+EP/9wZw6+pBTp80JvuuGYuNifNEHZ3AsGcuX35WnuEPxdMv14UcWbH48dPOLb0vx8jsKGjPjW/SKTuGTKYbh39PH38bCKnd7lAuqhs1L69Pnz6f9HV72v87Z6zUAaFLzDM7Vso6MXxhZWcHRo3DvHpQvn3lejQa++lLHkiUKOp05+7bfBrI/xDm1B3cf0rHlTY5ebKXf9nrvy/ywrDpbfn9In7fUbQt/SuKFV3J+fkWnEH7zXqaRunMi6LLhs6ZGraeblvKsLItZ8tG81k99fJdeZfn+bzW98XBDeg6DxLhE+nS6wrkb6s27Gs7B/L7a7dkLm0PmBWNwjXhOjRkDq1ap6fnzDdMrtFrYtEndbmcHrVpleAosLWHZMvD1hdhY+PFHtWe8c+cnMiY+hKhUo+KSY+DmKvWhsYByraF8ByjrB6Xrg1n+3OQzOUWBhHCIvwuW9lDc1Xj/iTGgjQNFpz7QgWMjqDEiP0prGnk0x9wkJJCayG9Sr0VXZnUb8zBGqVg6VB9IZdeqU4qiKMqmZYbgZJ6VgnIUKO1ZPRn9O6VMqa1ZdNgo+rk2OQch4Au5mIcx+uBhtSsHpqnXuWMNgafmfLArfwpZQKX8XWk02qcOLvfhQMPvt5hlnLJ45l5Fp1UjdyXGJyrlS97RB7C7fTVnAfSOHnikNPUMUEBROjfapyQmJD5VGVNr42MI3hgRev+Zz5cfYmMVxdpafQ3OzoqiTdYpgzrv078uR/t7StCpa892kRwGUnsa8n+2aMrPetXpFKVePcOf7v7HC1UcPGjY1rt39s7144+GY8qXzyDQqzZRUUI2KMrhoYryj1PawGspj+A/0x6Xl0snPKu4cEUJP6Jory5Xbm59V9EefltRdnZWlPWeirLCxvA6j72b9ti/7NL+Pva9nPev4SlIIDUhhDAR2xK2zBhnWJ/6ownWaJN1fDLVTr9t+oRwzC3zrjtHY6bhw3cNQ9W+mJvEw4fqWqS7d2pZ/u1BJkwzRKCb8enDAjFyIK/YlrCljqtaZ4E3axDz0HjO9ppNhuHsvQa45WXRCjy/hncBNajhwa1BWeROKzEukV/X1gbAyiKBg1uDGTrBTz8Sw7KYJUP6qMOfk7WWLPkmMMNzpRYaqs41b9TcjkOB6siEzUdb8OO0Azku45OCbqpB/Erb3ad0hVLPfL78YGMDbduq6dBQeK3bWX7brMaDKGYZz7rloVT3cc3kDEIUTRoNvPee4fk336g/szu0PLW33jL0bt+5oz5XnhxwY2YJFbtC48XQ6za03wse70NxN+N8ZZ8IWnNlMawsDhtrw+7ucHw0BM5Th6tf/BYuLoCL36lzxfOCLgmiguDWJgj+I+3+I0NhW2PMDvXH5d4CzK78BLc3Q1Sg2oudIiGduCpPDslXL5hrRS8IZHi5EEI8hYHvN+WrH4M4c60Gxy/V5LXeNzl1xROAetUD6T28cZ6Xqe9bjRg/I4Qb4S5sOtKQkiVT9pgDzfT5mtQ8Q7fXG+Z5+fJbI+8wTgd7oFPM+XjYKSzK1OV2REnu3FE4fEFtFNauHEQN3xr5XNKCpYWfFfOXq+l9u2LoOihnx29YdpLwKHUCb8+WJ6jXplmaPG++X51ZS3QoihmLVlRj/Fe6DG8KxUUn8NU3VsyarSEmnXh3E79swIuvhuBW2yXtzsce3X/E4W2X8OteO03E/dioOEIinAGo4RIKlE7nDIVDly6G4bIrtqg3JjQaHb/PP0WzrgUrnoMQeenll+Hjj9V53WvWwI0bsGGDuk+jUd872aHRwM8/q/EpIiJg9Wr47Tf1hmC6zMzVxnVZP6j3pdogvbsPHp4D2yc+s6Kvqo3Vh+fVR0YqdASXF4237eoCsdfBtjIUr6z+tK2kpotXBqvSkBwNVqXAItWUq5jrcONvSLgPifchIQISIyDmJsQEg/I4EKuFHbi9ahxp7smbCCnMrdV9xV3BxhnKpP0fQPvHASs1ZoAZaMzBMv2VFworaXQLIcRTMLc054sfqtDp8T/mv9Yb5m7PmBKdL73IlsUsGDMikg+mZ9zYMDdLZu4cXZr53s+Dhg1h0Vo1vXBN6sl6mscP6PVaxr+755Vf5+r69L6jOW+A/rzEMOJjyLBi6eZxq+1Cx4bH2HK0IdfuVmLbiuN0eq1BmnwHN57h1TdK6Zd2AyhZEqZNgzM797F4rR8xCXa8Oegi245VTPfvPCToNn4tkrl2tz792h7kr/+MvwBeORMCqDdearg+yPHrLUjSazh88eFe+o5onedlEaIgKVYMRoyAqVPVudwffwxn1BUVadQIyuVgxcoKFeB//4M+fdTn77wDnp6GQGsZ0mjAoZb6SI9VKSjhqTa+dQnp51FPlHZT1Hm1AZ1ZYx3AbzVU6mV4HnMdTn2URcFRG+zxYWCTKjhIuTagS0RnW5lr4eBauxXm9tXAumzWaxKWylmwyMJIGt1CCPGUOna24IUXYPt2w7YWdU7T6dW0jYW8MmKCF8cvw+nT6peGChXUgFkVih2nQtkE6jWrQM2GRf+fW3o69K5KsWnxJCSlXUu8VCmoXx/GjLXJh5IVbOXcnKjhHExQaBWOXaxJ3KM4bOyz93u6dfk2W46qQbsqlblF+5d8M8w7fJiWLY8D7/9vYTKdnljG6ui2c3Ts60Z0vBrMzdxc4e23NUybBo6OEPlKHbbuD+FmhAs7TtZn6dx9DBlvPFzz7o1w2reJ49pddZ37lTubMXHfRer6GcJ3B52LQN/orpbx8nuFQZUq4FnpCoE3qwEwsu8ePpidSXQoIZ4jb78NM2eqqzP89Zdhe3aHlqfWuzcMHgy//AIxMdCpk7ret9ezxOSsPVF9KDqIu6M2vuNuPQ40phjGsdtUMD5OUcDcFsyKZdFYB5KijJ9bpb2xqtNpUCzsMC9RFUq4g30N9WFha5yxUk+o1BNFqyUywR9XRx+JmpiKNLqFEOIZzJ0L9eoZ/vd9PkOTr73I1tbwRzpTrSD/bgQUFK6eLhzcFsi29Rfx8CxPxRpulK9SnnLl1F4PkbEWvrcICq1CktaKY//507KnT7aO++Xbi+gU9QvhG32CMLeomGHeboPqU2HcHW5HlmfdgQaE3ojDubLauD9z4BKdejvrG9wt6pzmp18qUru+IU5BCccSTP54L2+OU3vBP/jMm04v3cG5mtoTExn2gA6t73PxlvH6WLOnRbB8h+F50IV4fdq9ZuGPJPz5p+GM/NiOF1tfZP4fzZ/LUS5CpKdcOXjlFXU4eGrduz/d+X74AYKD1cZ2ZCS88ALs2wc1nnXGksYMbJ3VR7bya6DbeUPE8NibEHNDfcTeUJ8nPlCHb9s+8Zlc3A2a/8WNcGc2763M5l1l2LHLBq0WWrfW0KWLOoe9etVnfE3PIWl0CyHEM/DxgfHjYdYsGDIEWvbwzu8iiUzU9XNHsY/Fx8cHc7kDn21+LWHpRjW9b+cDWvbM+hidDpasVXu5NRodb4yunml+y2KWDH31DjO+L49WZ8GS3yyYNAkunQzmhW4liYxRA5q1rnuKTftqptvb7tvOhQEd9/P71hY8jHVg5OALrNlTjugH0XRuHcLp4DoAuDiGEp9kxb2oMqzc2ZjP/K/rg4oFXTPMI6xRq3AGUUut15tN6PUmQA7GywrxnHjvPeNGd6VK4P2U/8ZtbNRgbO3bq0szhoVBu3bq2vSVK+dOeXNEo1GHdluXVZcjy4SiwKFD8O+/dmze3I+zZ9Pm2bJFfYB6I6FzZ3XN81atsh49LuD5CV0rhBAmMnMmREXB4sX5XRIhTMOvgyFmwb7DdpnkNNizB67eUBuw7VrF4FYr6/nywz7y0X95W7QIgs/don1HK8IelAWgcc2zrNtZPdPh7V8uqklZh3AA1u5vzG9fH6VH5/scuaA2uMs6hPPftgTeH6x+q9Qp5sz92jBMMiiinj5do17mNwqEEIVbvXrgl2oWSrduz9aAtLeHzZsNDfebN9WG9507z1ZOUwkNhdmzoWZNaN4cvviCNA1uJyeo+ESHeFAQfPsttGkDjRvDv/+qN1pFxqSnWwghcoG9fX6XQAjTqeZdmfIlw7jzoBwHz9ZEm6xgbpH5N9Offzakh76VvTeIq6s6F3LzZjWacP0mxYmMLgmAd5WLbN7tgn3pzM/l6FyK72cd46WRTgAM/tCwkkCp4pFs3xCJez13RrqUZvaSZB5FW/DrCiemzFS/WAY9XhWtbFkoUcoqW+UWQhRen3yiBh3UaGBQDldnSE/p0rBtm9qYDwqCy5fVoeZr1oDtE9OgraygTJn0z/MsFEWdarZjhxpssnz5VDFeKsCVK+pn9ObNaRvLGo0aBC5lKHn9+uq2s2fV1RA2bYIDB9QAdADHjqk93rVrw4QJ0Ldv7r+eokAa3UIIIYTIlMZMQws/M/5ZD4/i7Ag4A74Zx0TjwQNYtUpNlyoFPXtm/1pvvaV+EQT0DW73isFs21maUuVKZuscfUc0ofeGMFZvMgyptrNT2LIhHu8W7gCULOvAyHdgzhw1kNJXX6lR0G/fVvM/8zxMIUSh0LEjHD4MZmZqAzM3lCunNnj9/NQbiGfPZvyZMnBg2nnlzyIqSp3ulvIZnF1t2qhLnXXtmv6NAC8v9TFunPoZv3EjzJsH/v7q/nPnYMAAmDzZjFdeKYOnZ9qbDM8zGV4uhBBCiCz5tXfSp/ftyzzvnwuvEv84HtmAAWqAv+zq2hWcyxsi7ro6hbDjv2KUc3PK5Ki0vv+5HKUeT8m2toYNGzQ0amUc5ff99w1lW7gQjhwx7JNGtxDPj4YNc6/BnaJyZfjvP7V3OTPLlkFgYO5c88wZaNAg+w3uSpXg00/Vnu+dO9VGd3Z63kuWhNdeg5Mn1cZ3s1QrL169qmHmTFdq1DDj66/VaO5CGt1CCCGEyIbU8x73788878+LDY3moYOic3QdCwv4ZPhhQF1mbMc2LZU8shm1N5Xy5dUe82HD1C++rdJZKatcObVHCNQvhh+8fVO/r0bFWzm+phBCpFa9uvp5+c476rJiqR9Nmhjy/frrs1/r11/V+dUpU2QcHGD5cvX6//wDCxaoQ+mHDIE334StW9Vo69OnQ9WnjEau0ajD0Pfvh9271WH0KUJDNXzwgTptaMYMtXcc1J74vXth/nx1mbVmzWDyZMMqMEWVDC8XQgghRJa8vdXYBY8eqT3dipJ+wCH/vRc5edkTgPo1zlO3Qa0cX2vElJa80PMaFauVxbbE049PbNxYfWTmo7FaFv4EWp05AZcNAeNqVLwBZLzEmRBCZEe1avDdd2m3372rxpFITlZ7uz///OmWtY6Ph3ffNQ7mWq8e/P330zemc0qjUW9stmoFhw9rmTAhit271aFGERFqb/rcuWqsjCtX0h5/6BB4eKi950WV9HQLIYQQIkvm5tCsQSSgRuK9cvp6uvl+/t4Qpnfoa/ee6loaMw01fN2eqcGdXW5VzXm1w6E022vULm3yawshnl9ly6q9xKBGEd+xI+fn2LJFja+RusE9fLga6CyvGtxPatgQ5s27ir+/ltdeU+fKg3rDNr0Gd4r33lNvRBRV0ugWQgghRLb41TmtT+/beiPN/viYeP7YqK6VY20ZR/8RdfOsbM9i/NS0ky6re0kvtxDCtAYPNqRzMsT84kV1ebPOneHCBXWbjY16joULcxZHw1Tq1IHff4dLl9QbAdbWahmbNIERI+B//1Mjn/frp+aPiFB77IsqaXQLIYQQIlv82pXSp9Ob171gymEiY9Q8fdueoGRZh7wq2jOp1bg6PVsc1j93Ln0bu1LZW49cCCGeVteu4OioptesgYcPM8//4AGMHas2aDduNGxv0kQNBJkbS57ltmrV1BsBMTFqb/ehQ/DDD+q88gYN1KH3Kb+DlSvVNb+LIml0CyGEECJbGrbzwNI8EYB9J12M9u1YeZLxXxmirY14t3A0uFNM+NSw/ndN19v5WBIhxPPCygr691fT8fFqozMj//6rrqrw1VfqPHAAFxd1Pe6DB9XlvAoyM7P056w7OcG33xqejxgBkZF5V668Io1uIYQQQmSLjZ01DT3UsYxBoVW4E6xOwAs+e5OXh7qhU9RvVJ8M202zrgX8G+ATGnWozafDd+PldolPJqYTIU4IIUwg9RDzX35JP8/Zs/DKK3DvcZgMa2s14veFC/Dqq+kHtSxM+vdXh8uDGjNk7Nj8LY8pSKNbCCGEENnm1+i+Pn1g6xViHsbS68VY7kergce6ND7GtB/8Mjq8QJu+sDUBwe607eub30URQjwn6tWD2rXV9MGDhiW/UiQkwIAB6k+A7t3VOd3TpkHx4nlbVlPRaOCnn6BECfX50qWwbVv+lim3SaNbCCGEENnm18bwLW/f3kSGDrfmdLAHADWcg/ljnTvmlk+x7o0QQjyHNJrMA6pNmQKnH8ewrFNHHYJeuXKeFS/PVKwI8+YZng8fDtHR+Vee3CaNbiGEEEJkW7OONdBodAD89E8T/lqpfpWwt0ti7RptoQmeJoQQBUXqpbV++w106kcs+/ap61sDWFqq0cALQmRyUxk2DNq2VdPXr8OECflbntxkskZ3SEgIEydOpG3btnh7e9O+fXu+/fZbEhMTMz0uISGBadOm0bhxY3x9fXn33Xe5d+/p1vkUQgghRO4qVa4kdVwvA5CQVEy/fdnvlng2qp5fxRJCiEKrQgXo2FFN37wJu3ZBVBQMHAiKom6fMQPqFo5VGJ+aRgOLFoGtrfp82TLD6y/sTNbovnr1KoqiMH36dDZu3MiECRNYsWIFX3/9dabHzZw5k127dvHNN9+wbNky7t69y6hRo0xVTCGEEELkkF8D4+jeU6ZAjx75VBghhCgCnhxi/t57am8vQMuWRTO4WHqqVlXndJctC6+/XviDxKWwMNWJW7ZsScuWLfXPK1WqRHBwMMuXL2fcuHHpHvPo0SNWrVrFvHnzaNq0KaA2wrt06YK/vz8+Pj7pHqfVatFqtbn+GnJTSvkKejlFzki9Fl1St0WT1GvuaNPekh/+UdPdu+v45BOF/P6VSt3mA60Wc31Siyn+CKReiyap17S6doWSJc148EDD8uUKyclqa9PeXmHJEnW8eWH4deVG3fbpoz7U8+RGqUwnu6/TZI3u9Dx69AgHh4znep09e5akpCSaNWum31atWjWcnZ0zbXRfunQpt4tqMmfOnMnvIggTkHotuqRuiyap12fjVs+KsQPWExNrzqvvOhIQkKdfJzIldZt3zOLiSInzHhAQgM7GxmTXknotmqRejbVrV5lVq5z0DW6AsWOv8eDBffz9869cT0Pq1lie/Ze8fv06v//+e4a93AD37t3D0tKSEinx4h9zdHQkPDw8w+Pc3d2xTRn8X0BptVrOnDmDl5cX5umtDC8KJanXokvqtmiSes09vr8UrGW1pG7zQUyMPunt7W2S9YukXosmqdf0vf8+rFpleN6rl8Inn1RGoyk84cqft7qNjY3NVgdwjhvd8+bNY9GiRZnm2bRpE9WqVdM/DwsLY9iwYXTq1Il+/frl9JJZMjc3LzSVWpjKKrJP6rXokrotmqReiy6p2zyU6vdsbm5u9Dz3LyX1WhRJvRpr1gy8vSEgAMqXh//9T4OFReH8/TwvdZvd15jjRveQIUPo1atXpnkqVaqkT4eFhTFo0CB8fX357LPPMj2uTJkyJCUlERUVZdTbHRERgZOTU06LKoQQQgghhBCFgkYDa9fCihXwyitQpkx+l0jklhw3ukuXLk3p0qWzlTelwV27dm1mzZqFmVnmwdLr1KmDpaUlhw4douPjuPlXr14lNDQ0w/ncQgghhBBCCFEUuLnB+PH5XQqR20y2ZFhYWBgDBw6kQoUKjBs3jvv37xMeHm40NzssLIxOnToREBAAgL29PX369GH27NkcPnyYs2fPMnHiRHx9faXRLYQQQgghhBCi0DFZILUDBw5w/fp1rl+/brR0GMDFixcBSEpKIjg4mLi4OP2+iRMnYmZmxujRo0lMTKRFixZMmTLFVMUUQgghhBBCCCFMxmSN7t69e9O7d+9M87i4uOgb4CmKFSvGlClTpKEthBBCCCGEEKLQKzgLaz4FnU5dKD51T3lBlbJwemxs7HMRye95IfVadEndFk1Sr0WX1G0+iI8HDw9DWqPJPP9TkHotmqRei67nrW5T2qEp7dKMaBRFUfKiQKYQERHBtWvX8rsYQgghhBBCCCGeU25ubjg6Oma4v1A3upOTk3n48CHFihXLMjK6EEIIIYQQQgiRW3Q6HQkJCTg4OGBhkfEg8kLd6BZCCCGEEEIIIQoy6R4WQgghhBBCCCFMRBrdQgghhBBCCCGEiUijWwghhBBCCCGEMBFpdAshhBBCCCGEECYije488Mcff9C2bVu8vLx46aWXCAgIyO8iiRxauHAhffr0wdfXl6ZNmzJy5EiuXr1qlCchIYFp06bRuHFjfH19effdd7l3714+lVg8jf/97394eHjw+eef67dJvRZOYWFhfPjhhzRu3Bhvb2+6d+/OmTNn9PsVRWH+/Pm0aNECb29vBg8eLEtQFgJarZZvvvmGtm3b4u3tTfv27fn+++9JHRNW6rbgO3bsGG+//TYtWrTAw8ODHTt2GO3PTh0+ePCAsWPHUq9ePRo0aMDEiROJiYnJw1ch0pNZ3SYlJfHFF1/QvXt3fHx8aNGiBR9//DFhYWFG55C6LXiyes+mNnnyZDw8PPjll1+Mtj/v9SqNbhPbtGkTs2bN4p133mHNmjXUrFmToUOHEhERkd9FEzlw9OhRXnvtNVauXMnSpUtJTk5m6NChxMbG6vPMnDmTXbt28c0337Bs2TLu3r3LqFGj8rHUIicCAgJYsWIFHh4eRtulXgufhw8f0r9/fywtLVm0aBEbN25k3LhxODg46PMsWrSIZcuWMXXqVFauXImNjQ1Dhw4lISEhH0susrJo0SKWL1/O5MmT2bRpEx9++CGLFy9m2bJlRnmkbgu22NhYPDw8mDJlSrr7s1OHH374IZcvX2bp0qX89NNPHD9+nMmTJ+fVSxAZyKxu4+PjOX/+PCNGjGD16tV89913BAcHM2LECKN8UrcFT1bv2RTbt2/n9OnTlC1bNs2+575eFWFSffv2VaZNm6Z/rtVqlRYtWigLFy7Mx1KJZxUREaG4u7srR48eVRRFUaKiopTatWsrmzdv1ue5fPmy4u7urpw6dSqfSimyKzo6WunQoYNy4MABZcCAAcqMGTMURZF6Lay++OILpX///hnu1+l0SvPmzZXFixfrt0VFRSl16tRRNmzYkBdFFE9p+PDhyoQJE4y2jRo1Shk7dqyiKFK3hZG7u7uyfft2/fPs1GHK53BAQIA+z549exQPDw/lzp07eVd4kakn6zY9p0+fVtzd3ZVbt24piiJ1WxhkVK937txR/Pz8lEuXLilt2rRRli5dqt8n9aoo0tNtQomJiZw7d45mzZrpt5mZmdGsWTNOnTqVjyUTz+rRo0cA+p6zs2fPkpSUZFTX1apVw9nZGX9///woosiB6dOn06pVK6P6A6nXwmrnzp3UqVOH0aNH07RpU3r27MnKlSv1+0NCQggPDzeqV3t7e+rWrSufzQWcr68vhw8fJjg4GIALFy5w4sQJWrZsCUjdFgXZqcNTp05RokQJvLy89HmaNWuGmZmZTOErZKKjo9FoNJQoUQKQui2sdDodH330EUOHDqVGjRpp9ku9gkV+F6Aoi4yMRKvV4ujoaLTd0dExzXxgUXjodDpmzpxJvXr1cHd3B+DevXtYWlrq/2mkcHR0JDw8PD+KKbJp48aNnD9/nn/++SfNPqnXwunmzZssX76cN954g7fffpszZ84wY8YMLC0t6dWrl77u0vtslvn6Bdvw4cOJjo6mc+fOmJubo9Vqef/993nxxRcBpG6LgOzU4b179yhdurTRfgsLCxwcHOSzuRBJSEhg3rx5dO3aFTs7O0DqtrBatGgRFhYWDBo0KN39Uq/S6BYix6ZNm0ZQUBB//vlnfhdFPKPbt2/z+eefs2TJEooVK5bfxRG5RFEU6tSpwwcffABArVq1CAoKYsWKFfTq1SufSyeexebNm1m/fj1ffvkl1atXJzAwkFmzZlG2bFmpWyEKkaSkJN577z0URWHatGn5XRzxDM6ePctvv/3G6tWr0Wg0+V2cAkuGl5tQqVKlMDc3TxM0LSIigjJlyuRTqcSzmD59Ort37+bXX3+lfPny+u1lypQhKSmJqKgoo/wRERE4OTnldTFFNp07d46IiAh69+5NrVq1qFWrFkePHmXZsmXUqlVL6rWQcnJyolq1akbbqlatSmhoqH4/IJ/NhdDcuXMZPnw4Xbt2xcPDg549e/L666+zcOFCQOq2KMhOHZYpU4b79+8b7U9OTubhw4fy2VwIJCUlMWbMGEJDQ1myZIm+lxukbguj48ePExERQZs2bfTfpW7dusWcOXNo27YtIPUK0ug2KSsrK2rXrs2hQ4f023Q6HYcOHcLX1zcfSyZySlEUpk+fzvbt2/n111+pVKmS0f46depgaWlpVNdXr14lNDQUHx+fPC6tyK4mTZqwfv16/v33X/2jTp06dO/eXZ+Wei186tWrp5/zm+LatWtUrFgRABcXF5ycnIzqNTo6mtOnT8tncwEXHx+fpifF3Nxcv2SY1G3hl5069PX1JSoqirNnz+rzHD58GJ1Oh7e3d56XWWRfSoP7+vXr/PLLL5QqVcpov9Rt4dOjRw/WrVtn9F2qbNmyDB06lMWLFwNSryDDy03ujTfeYNy4cdSpUwdvb29+/fVX4uLi6N27d34XTeTAtGnT2LBhAz/88APFixfXzz+xt7fH2toae3t7+vTpw+zZs3FwcMDOzo4ZM2bg6+srjbMCzM7OTj8vP4WtrS0lS5bUb5d6LXxef/11+vfvz08//UTnzp0JCAhg5cqVTJ8+HQCNRsOgQYP48ccfcXV1xcXFhfnz51O2bFnat2+fz6UXmWnTpg0//fQTzs7O+uHlS5cupU+fPoDUbWERExPDjRs39M9DQkIIDAzEwcEBZ2fnLOuwWrVq+Pn58emnnzJt2jSSkpL47LPP6Nq1K+XKlcuvlyXIvG6dnJwYPXo058+fZ+HChWi1Wv33KQcHB6ysrKRuC6is3rNP3jyxtLSkTJkyVK1aFZD3LIBGSbk9LEzm999/5+effyY8PBxPT08mTZpE3bp187tYIgeeXLs5xaxZs/Q3UBISEpg9ezYbN24kMTGRFi1aMGXKlOdm2ExRMXDgQGrWrMknn3wCSL0WVrt27eKrr77i2rVruLi48MYbb9CvXz/9fkVR+Pbbb1m5ciVRUVHUr1+fKVOmUKVKlXwstchKdHQ08+fPZ8eOHURERFC2bFm6du3KO++8g5WVFSB1WxgcOXIk3YBLvXr1Yvbs2dmqwwcPHvDZZ5+xc+dOzMzM6NChA5MmTaJ48eJ5+VLEEzKr21GjRtGuXbt0j/vtt99o3LgxIHVbEGX1nn1S27ZtGTRoEIMHD9Zve97rVRrdQgghhBBCCCGEicicbiGEEEIIIYQQwkSk0S2EEEIIIYQQQpiINLqFEEIIIYQQQggTkUa3EEIIIYQQQghhItLoFkIIIYQQQgghTEQa3UIIIYQQQgghhIlIo1sIIYQQQgghhDARaXQLIYQQQgghhBAmIo1uIYQQQgghhBDCRKTRLYQQQgghhBBCmIg0uoUQQgghhBBCCBORRrcQQgghhBBCCGEi0ugWQgghhBBCCCFMRBrdQgghhBBCCCGEiUijWwghhBBCCCGEMBFpdAshhBBCCCGEECYijW4hhBBCCCGEEMJEpNEthBBCFHFHjhzBw8ODI0eO5HdRhBBCiOeORX4XQAghhMhPq1evZsKECRnu/+uvv/Dx8cm7AhUSf/75J4cPHyYgIIDbt2/Tq1cvZs+enW7eqKgovvjiC7Zv3058fDxeXl6MHz+e2rVr6/McOXKEQYMGZXi9MWPGMGLECAAGDhzI0aNH081nYWHBuXPncnxOIYQQwlSk0S2EEEIAo0ePxsXFJc32ypUr50NpCr7FixcTExODl5cX4eHhGebT6XQMHz6cixcvMnToUEqVKsWff/7JwIEDWb16NW5ubgBUq1aNuXPnpjl+3bp17N+/n+bNm+u3vf322/Tt29coX1xcHFOmTDHKl5NzCiGEEKYijW4hhBACaNmyJV5eXvldjEJj2bJlODs7o9Fo8PX1zTDfli1bOHXqFPPnz6dTp04AdO7cmY4dO7JgwQK+/PJLAMqUKUOPHj3SHP/999/j5uaGt7e3flt6jeW1a9cC0L17d/22nJxTCCGEMBWZ0y2EEEJkw7fffkvNmjU5dOiQ0fZPP/2UOnXqcOHCBQASExOZP38+vXv3pn79+vj4+PDqq69y+PBho+NCQkLw8PDg559/5o8//qBdu3bUrVuXIUOGcPv2bRRF4fvvv6dly5Z4e3szYsQIHjx4YHSOtm3b8tZbb7F//3569OiBl5cXXbp0Ydu2bdl6TadPn2bo0KHUr1+funXrMmDAAE6cOJGtYytWrIhGo8ky39atWylTpgwdOnTQbytdujSdO3fmv//+IzExMcNjAwICuH79ulFDOiMbNmzA1taWdu3aZZovJ+cUQgghcoM0uoUQQgggOjqa+/fvGz0iIyP1+0eMGIGnpyeffPIJ0dHRAOzbt4+VK1cycuRIatasqT/P33//TaNGjfjwww8ZNWoU9+/fZ9iwYQQGBqa57vr16/XDrd944w2OHj3KmDFj+Oabb9i3bx9vvvkm/fr1Y9euXcyZMyfN8deuXeP999+nZcuWjB07FnNzc9577z0OHDiQ6es9dOgQr732GjExMYwaNYr333+fqKgoXn/9dQICAp7lV2kkMDCQWrVqYWZm/JXDy8uLuLg4goODMzx23bp1AFk2kO/fv8/Bgwdp164dtra2mebN7jmFEEKI3CLDy4UQQghg8ODBabZZWVlx5swZACwtLZkzZw69e/dm9uzZfPzxx3zyySfUqVOH4cOH649xcHBg586dWFlZ6bf169ePzp07s2zZMmbOnGl0jbCwMLZt24a9vT2gzoFeuHAh8fHxrFq1CgsL9V91ZGQk69evZ9q0aUbnvnbtGgsWLND3JPft25dOnToxb968DOcsK4rC1KlTady4MYsXL9b3WL/yyit07dqVb775hiVLluT0V5iu8PBwGjRokGZ72bJlAbh79y4eHh5p9mu1WjZv3oy3tzeurq6ZXmPTpk0kJydn2ZDOyTmFEEKI3CKNbiGEEAKYPHkyVapUMdr2ZO+su7s7o0eP5ssvv+TixYtERkayZMkSfcMYwNzcHHNzc0BtQEdFRaHT6ahTpw7nz59Pc91OnTrpG9yAfp7xiy++aHReb29vNmzYQFhYGJUqVdJvL1u2LC+88IL+uZ2dHT179mTRokWEh4fj5OSU5pqBgYFcu3aNESNGGPXmAzRt2pS1a9ei0+nSvP6nER8fb3STIEXKtoSEhHSPO3ToEPfu3eOtt97K8hobNmygdOnSWQZGy8k5hRBCiNwijW4hhBACtVGbnUBqQ4cOZePGjQQEBPDBBx9QvXr1NHnWrFnDkiVLCA4OJikpSb89vejoFSpUMHqe0gDPaPvDhw+NGt2urq5p5lanRAS/detWuo3ua9euATBu3LiMXiaPHj3CwcEhw/3ZZW1tne687ZRtxYoVS/e49evXY25uTpcuXTI9/82bNzl16hQDBgwwuknxLOcUQgghcpM0uoUQQogcuHnzJtevXwfg0qVLafavXbuW8ePH0759e4YOHYqjoyPm5uYsXLiQmzdvpsmf0iv+pIx6mRVFeYbSG5/j448/xtPTM908Wc2Nzi4nJ6d0lxS7e/cuYBhmnlp8fDzbt2+nadOmlClTJtPzr1+/Hsh6jnZOzimEEELkJml0CyGEENmk0+kYP348dnZ2vP766/z000907NjRKDL31q1bqVSpEt99951RD/S3335rkjJdv34dRVGMrpXSk12xYsV0j0npKbezs6NZs2YmKVeKmjVrcuLEiTTD1QMCArCxsUkzpB9g586dxMTEZDtqeeXKlfHx8ck0X07OKYQQQuQmiV4uhBBCZNPSpUs5deoU06dP57333sPX15epU6dy//59fZ6UnuvUPdKnT5/G39/fJGW6e/cu27dv1z+Pjo7m33//xdPTM92h5QB16tShcuXKLFmyhJiYmDT7U7+eZ9WpUyfu3btntIzZ/fv32bJlC23atEl3vvf69euxsbExmquenvPnz3PlyhW6deuWZTmye04hhBAit0lPtxBCCAHs3buXq1evptler149KlWqxJUrV/Trb7dt2xaA2bNn07NnT6ZNm8b8+fMBaN26Ndu2beOdd96hdevWhISEsGLFCqpXr05sbGyul9vNzY1PPvmEM2fO4OjoyKpVq4iIiGDWrFkZHmNmZsaMGTN488036datG71796ZcuXKEhYVx5MgR7Ozs+OmnnzK97s6dO/VrkyclJXHx4kV++OEHQF0/PGUJtY4dO+Lj48OECRO4fPkypUqVYvny5Wi1Wt599900533w4AH79u2jQ4cOFC9ePNMyZHdoeU7OKYQQQuQ2aXQLIYQQZDz8e9asWTg7OzNu3DhKlSrFxIkT9fvc3Nz44IMP+Pzzz9m0aRNdunShd+/e3Lt3j7/++ov9+/dTvXp1vvjiC7Zs2cLRo0dzvdxubm58+umnzJ07l+DgYFxcXPj666/x8/PL9LjGjRvz119/8cMPP/D7778TGxuLk5MT3t7evPzyy1led9u2baxZs0b//Pz58/ro7OXLl9c3us3Nzfnf//7H3LlzWbZsGQkJCXh5eTFr1iyqVq2a5rxbtmwhKSkpy95rnU7Hxo0bqV27drrneZpzCiGEEKagUXIjIosQQggh8lzbtm2pUaMGCxcuzO+iCCGEECIDMqdbCCGEEEIIIYQwEWl0CyGEEEIIIYQQJiKNbiGEEEIIIYQQwkRkTrcQQgghhBBCCGEi0tMthBBCCCGEEEKYSKFeMiw5OZmHDx9SrFgxzMzk/oEQQgghhBBCiLyh0+lISEjAwcEBC4uMm9aFutH98OFDrl27lt/FEEIIIYQQQgjxnHJzc8PR0THD/YW60V2sWDFAfZE2Njb5XJrMabVaLl26hLu7O+bm5vldHJFLpF6LLqnboknqteiSus0HcXHQvLmaPnAATPBdTOq1aJJ6Lbqet7qNi4vj2rVr+nZpRgp1oztlSLmNjQ22trb5XJrMabVaAGxtbZ+LP8DnhdRr0SV1WzRJvRZdUrf5QFHg4kU1bW0NJvguJvVaNEm9Fl3Pa91mNdVZJkILIYQQQgghhBAmIo1uIYQQhUJSQlJ+F0EIIYQQIsek0S2EEKJAi46MpkeLI5SwT+aXufvzuzhCCCGEEDkijW4hhBAFVlREFJ38rrLuQGPik2z44edS+V0kIYQQQogcKdSB1IQQQhRdD8Mf0qnlDQ5f8NZvCwnPeDkOIYQQQoiCSHq6hRBCFDiRYQ9o3/wWhy94GW2/86CszO0WQgghRKEijW4hhBB5LvzmPf43Yy+bfz9G2LVwo30Rofdp1/w2x4NqAVCmxD3q1rgJgKKYcSdUm+flFUIIIYR4WjK8XAghRJ66fTWMFs3juXqnpX6bs1MU9ZuUoF49WLPSgoArngCUK3mX/zZF8eMf1TkdpOa9FWZNpSr5UXIhhBBCiJyTRrcQQog8Exn2gA5to7h6p4bR9tDwEoSuh/XrAUoAUKFUGDu3xlCzYXUq7jbkvXUrz4orhBBCCPHMpNEthBAiT8Q8jKFrm5ucva7O03Z1CqFvx8ucPOvAyWBvHj401+etWBF2bbenhmc5/fMUISF5WmwhhBBCiGcijW4hhBAmlxiXSO/2gRwKbABAWYdwtm9NpoZvawAUBa5ehZMn4eZNeOUVcHa21R+futF963oMUDzvCi+EEEKIXDd+/HiioqL44YcfABg4cCA1a9bkk08+ydNyHDlyhEGDBnHs2DFKlChhkmtIo1sIIYRJaZO0DOx2nG3HmwFQwuYhW9fdp4avhz6PRgPVqqmP9LiUuglUAuDWWX+guWkLLYQQQjynxo8fz5o1awCwtLSkQoUK9OjRg7fffhsLC9M1HxcsWJDt8+dFQzk3SaNbCCGEySgKjBxym5U71Qa3tWUcG1Zcw6dl3Rydp2KVUvr0rTDp5RZCCCFMyc/Pj1mzZpGYmMiePXuYPn06lpaWvPXWW0b5EhMTsbKyypVrlixZMlfOUxBJo1sIIYTJTJ4M//vdBQAL8yT+WXwWvxcb5vg8dqXsKGHzkKg4B26Fl8zlUgohhBAiNSsrK5ycnAB49dVX2bFjBzt37iQ4OJioqCi8vLz4448/sLKyYufOndy+fZvZs2dz4MABdDodjRo1YtKkSbi4qN8BtFotc+fOZdWqVZibm9OnTx8URTG65pPDyxMTE5k/fz4bNmwgIiKCChUqMHz4cJo2bcqgQYMAaNhQ/U7Rq1cvZs+ejU6nY9GiRfz111/cu3cPNzc3Ro4cSadOnfTX2bNnDzNnzuT27dvUrVuXXr16mfz3KY1uIYQQJvHrrzBjhprWaODXRdF0HZTzBneKimXuEXXTgZB75VB0ChozTS6VVAghhMgjgV/Bha+yzle6HrRaZ7xtz4tw/2TWx9b8ADw/eLryZaBYsWI8ePAAgEOHDmFnZ8fSpUsBSEpKYujQofj4+LBs2TKCgoLYvXs3w4YNY926dVhZWbFkyRLWrFnDzJkzqVatGkuWLGH79u00adIkw2t+/PHH+Pv7M2nSJGrWrElISAiRkZFUqFCBBQsW8O6777Jlyxbs7OywtrYGYOHChaxbt45p06bh5ubGsWPH+OijjyhdujSNGjXi9u3bjBo1itdee41+/fpx9uxZ5syZk6u/q/RIo1sIIUSu27srgTffLKZ//tVX8OobpTI5ImsuZR8QeBPik2yIDIukdIVnO58QQgiR55KiIC4ba1/GV0pnW3j2jk2Kynm5MqAoCocOHWL//v0MGDCAyMhIbG1tmTFjhn5Y+dq1a9HpdHz++efodDpiY2P5/PPPadKkCUePHqVFixb8+uuvDB8+nA4dOgAwbdo09u/fn+F1g4OD2bx5M0uXLqVZM3WKWqVKht+Jg4MDAI6Ojvo53YmJiSxcuJClS5fi6+urP+bEiRP89ddfNGrUiOXLl1O5cmXGjx8PQNWqVbl06RKLFi3Ktd9ZeqTRLYQQIlcFnbpGrxcdSEpSG90jR8J77z37eSuWj9Wnb10Nl0a3EEKIwseyBNhUzDqftVP627JzrOWzBxbbvXs3vr6+JCUloSgK3bp1491332X69Om4u7sbzeO+cOECN27coF69eiiKgk6nw8zMjISEBG7cuMGjR48IDw+nbl1DPBcLCwvq1KmTZoh5isDAQMzNzfXDx7Pj+vXrxMXFMWTIEKPtSUlJeHp6AnDlyhW8vb2N9vv4+GT7Gk9LGt1CCCFyzf3bkXTtpnA/Wm0Qd2oVyvz5zmhyYSR4xQpaffrWtSi8JIC5EEKIwsbzGYZ+Pznc3IQaN27M1KlTsbS0pGzZskZRxW1sbIzyxsbGUrt2bebNm4dWqyUwMBBPT0/Mzc0pXbr0U10/Zbh4TsTGqjfnFy5cSLly5Yz25Vawt6dllq9XF0IIUWQkxiXSu9N1gkKrAFDHNYi/VtmRW6uLVHQx/Mu6dSMud04qhBBCiDRsbGxwdXXF2dk5y2W8ateuzfXr13F0dMTV1ZXy5cvj6uqKq6sr9vb22Nvb4+TkxOnTp/XHJCcnc+7cuQzP6e7ujk6n49ixY+nut7S0BNQAbSmqVauGlZUVoaGh+uunPCpUqKDPc+bMGaNzpS6XqUijWwghxDNTdApvvXSUPQE+AJR1CGfDZhtKOObe2pkulQ13vUNuajPJKYQQQoi80r17d0qVKsWIESM4fvw4d+/e5ejRo8yYMYM7d+4AMGjQIBYtWsSOHTu4cuUK06ZNIyoq47nnLi4u9OrVi4kTJ7Jjxw5u3rzJkSNH2LRpEwAVK1ZEo9Gwe/du7t+/T0xMDHZ2dgwZMoRZs2axZs0abty4wblz51i2bJl+3fFXXnmFa9euMWfOHK5evcr69ev1+0xJhpcLIYR4Zotn7eOXjS0BdS3utSvu4upZO1evUdHNXp++FSr3jIUQQoiCwMbGht9//5158+bx3nvvER0dTfny5WnatCl2dnYADBkyhPDwcMaNG4eZmRl9+vThhRde4NGjRxmed+rUqXz11VdMnTqVBw8e4OzsrF8nvFy5crz77rt8+eWXTJgwgZ49ezJ79mzGjBlD6dKlWbhwISEhIdjb21OrVi3efvttAJydnVmwYAGzZs3i999/x9vbm/fff5+JEyea9HekUTKavZ4LHjx4wGeffcauXbswMzOjQ4cOfPLJJxQvXjzDYwYOHMjRo0eNtr388stMnz49Td7Y2Fj9nAFbW9tcL39u0mq1+Pv74+Pjg7m5eX4XR+QSqdeiS+o2Z1p5+7P3jA8Af313kH7vNMv1a4TdiqG8i/r/o0vnJDZusszxOaReiy6p23wQEwOPv1ATHQ2ZfL97WlKvRZPUa9H1vNVtdtujJu3p/vDDDwkPD2fp0qUkJSUxceJEJk+ezJdffpnpcf369WP06NH6509O1hdCCFGwXLihRlMtXzLMJA1uAKcKxbG0hKQkuBWa8wa3EEIIIUR+MNn4vCtXrrBv3z5mzJhB3bp1adCgAZMmTWLjxo2EhYVleqy1tTVOTk76R8qwBCGEEAXP/duR3H2oLm1S0zXUZNcxMwNnZzV9KxvLlArxf/buOryp6w3g+DdVWgqFQoGWooW2WHF3JviGjTHBmcCAMWUbE9jYgMEEGGMMG/IbtjGGbjDcvVBcitSQIi31Nrm/Pw5NGurQVN/P8+TplXPvPclJk7z3mBBCCJEXWKym+/jx4xQvXpw6deoYt7Vo0QIrKytOnjzJM888k+ax69atY+3atbi6utK+fXtGjBiRbm23Xq83G7kuL0rKX17Pp8gaKdeCS8o2884cuw6oKcK8qz6w6Gvm7m7FtWs6wsIgKkpPVmcUkXItuKRsc4Fej7VxUQ8WeO2lXAsmKdeCq7CVbWafp8WC7rCwsBTzstnY2ODs7Mzt27fTPK5bt264u7tTpkwZzp8/z7Rp07hy5Qo//fRTmsdcuHAh2/JtaY8OUS8KBinXgkvKNmNb95maepcpn4Cfn5/FrlXcwRWoCMCOf/dTrtLjdT+Sci24pGxzjlVMDPUfLp88eRKDBbsDSrkWTFKuBZeUrbksB93Tpk1j7ty56aZJGsr9cbz44ovGZW9vb1xdXRk0aBDXr1+nYsWKqR7j5eWVLwZS8/f3p06dOoViUIHCQsq14MrPZRsXHUdiQiJFnbN/UKPULFumMy4379KOevUsdy2fsrv592HQXdSqKPXq+Wbp+PxcriJ9Ura5ICrKuOjr62uxgdSkXAseKdeCq7CVbXR0dKYqgLMcdA8ZMoSePXumm6ZChQqULl2au3fvmm1PTEwkPDwcV1fXTF+vbt26AFy7di3NoNva2jrfFGp+yqvIPCnXgiu/le21s0G0bGXNgxhH1v7Pn7Y961n8msm/a2rVssaSL5dHedPyjcCYxy6b/FauIvOkbHNQstfZ2toaS/7zS7kWTFKuBVdhKdvMPscsB90uLi4pmo2npn79+kRERHDq1Clq164NwIEDBzAYDOpuaCadPXsWIEuBuhBCFFYfvBVI8N3mALw0tBwnGoXhWqG0Ra957pz66+gIHh4WvRQeFe2My8GB8Za9mBBCCCFENrDY6OWenp60bt2azz77jJMnT3L06FG++uorunbtStmyZQG4efMmnTp14uTJkwBcv36dWbNmcerUKYKCgti6dStjx46lcePG+Pj4WCqrQghRIOxZd5JV25sb10PvlWPQC1cw6A0Wu2ZcdDwBARoAPj5qhHFLKl/J1Hw1KEiXTkohhBBCiLzBovN0T5s2ja+++oqBAwdiZWXFs88+y6effmrcn5CQwJUrV4iJiQHA1taW/fv3s3jxYqKjo3Fzc+PZZ59lxIgRlsymEELkewa9gTHvmT7Sba3jSdDbsfFgY2Z8upMxk9qmetz9W+FMG3ccV1cdoye2QWeVtUD20onr6PXVAPApfRBo+tjPITPKVylpXA6+YZdOSiGEEEKIvMGiQXeJEiX47rvv0tzv4eHB+fPnjetubm4sXbrUklkSQogCaekP+zh6sRUAdSpfYMqX4XQZ0BiAD79rQ5sXoEED82NO7rlArxfsuXyjHQA1fY/yTL+GWbruuRO3gYdBd/WYJ3oOmeFetYxxOfhmzgwUJ4QQQgjxJCzcEFAIIYSlRUUa+HhSdeP691Mi6dy/MR+8eQmAhAQd/frBgwemY/73wx6aPeXB5RuVjNs2bsz6nJrnzsQZl31q2T9G7rOmSNEilC4eBkDw7YzHFxFCCCFE5nh7e6f7mDlzZm5nMd+yaE23EEIIy5s6zYqQu2qsjO4tDvF03yYATJxejR1H4fBhuHgRRo6Eub/E8/7gfcxc0S7Febb6Ncnytc9dMH2N+PiWerwnkEXlS90hLKI0wXfLYtAbsLKW+8dCCCHEk9qzZ49xeePGjcyYMYN//vnHuC35FM2apqHX67GxkXAyM+SXihBC5GNBQfDtt2rZxgamzTe1Ibezg2XLoFgxtb54MdSuetUs4B7afTf16qmB1vz94datrF3/bICqbbbS6aleL/VpHbNb+TIRACTqbbkdeCdHrimEEEIUdK6ursZHsWLF0Ol0xvWAgAAaNGjAzp076dWrF3Xq1OHo0aN89NFHKcbfWrx4MQMHDjSuGwwG5syZQ4cOHfD19eW5554zC+YLA7k1IYQQ+djHH8PDsSh56y3w8jH/WPf0hNmz4dVX1frFG14A2NvG8tP4wwz7pDUffQR+fmr/tm3Qr1/mrq0ZNM5dV4F2lbJBFClaKYMjskd5N9NUYcFBCZStnCOXFUIIIZ7IqlXw+efm3b0srVgx+Oor6NMne8733XffMXbsWCpUqEDx4sUzdcycOXNYu3YtEyZMoHLlyhw+fJgPPvgAFxcXmjTJeiu7/EiCbiGEyMM0g8Ynw3ayda8r3lXu0aBeIg2alqBeqyqcPx3J0qXlAShZUn2Rp+aVV2DL7/tYtLEFABVdg/jz9wgaPd0agKeegilTVNqtWzMfdAdfvkFUnBsAPpVvAjkTdHvUbwlrHubhnjsN0k0thBBC5A1Tp8K5c7lz3ewKukePHk3Lli0znT4+Pp45c+awcOFC6tevD0CFChU4evQoK1askKBbCCFE7tv6x3EmL2wHwOELsPRf0z5He9NH+ITxBlxc0u4xNOv3upQeuQODAT6ZUofSHh7GfS1bgp2dnvh4a7ZuCAXcMpW3c8dNaX2qRWf6OT2p8uVNy8HBOXZZIYQQ4ol8+CF89lnO13R/8EH2na9OnTpZSn/t2jViYmIYMmSI2faEhARq1KiRfRnL4yToFkKIPGzmjIQ090XHqSmzfDwu8+YbFUlvmI6izkWZtqRdqvscHaFFjZPsOFGfK6FuXDkVSJXaFTLM2zl/068GnxrWGabPLsmD7qCgHLusEEII8UT69Mm+Gufc4uDgYLau0+nQNM1sm15vmg0lOlrdlJ8zZw5ly5Y1S2dnZ2ehXOY9EnQLIUQedTVAz7p9aq5td5dQ/l5xD79Ddzh+3MCxUy6cCPDExjqRX2dFYmtv+0TXeqp1ODtOqOWta68yLBNB99kLRYzLNXwz168rO+RUTff1c8H0fi4cgMVL7anRxNNyFxNCCCHyIRcXFy5evGi27dq1azg7OwPg6emJnZ0dISEhhaYpeWok6BZCiDzq51+sSbp5PPy1WBo9XZNGT5v26xP06KyKYGVd94mv9VTnUnz2k1reus2aYZ9kfMy5sKbGZZ/G1dNJmb3Kl4sFVMAffNofyFpTt8xIiEugX6+7HLmozt2ywz3+/v0ErZ978tdaCCGEKCiaNWvG/PnzWbNmDfXq1WPNmjUEBgYag24nJyeGDBnCpEmT0DSNhg0b8uDBA44dO4aTkxM9e/bM5WeQMyToFkKIVBj0hly9fnQ0zJunlu3s4PV3q6RIY22bfU26Gz9dg2IOETyIKc62I9XRDBo6K126xyQNBlO6NJQq65hu2uxUspQ9DnbRxMQ7EnzDIeMDHsP4t/ay/2w74/q9qJI808eBJdP388Lw5ha5phBCCJHftG7dmhEjRjB16lTi4uLo1asXrVu35t69e8Y0Y8aMwcXFhTlz5hAUFESxYsWoWbMmb775Zi7mPGdJ0C2EEI/4e/5BXnmrFm3qxvD3bgPW1jnXXznJ779D0vfViy9CmTKWvZ6NnQ1t651j/f4m3Ap35dT+C9Rp6ZVm+ogICAlRyz4+ls3bo3RWOsqXusWl0MoE3ymd7eff9sdxJi1oA4CNdQJNfc6y97QvcQlF6DuiOd/HwjvvZPtlhRBCiDyjV69e9OrVy7jetGlTzp8/n2ra0aNHM3r0aED15/bz86NevXrG/TqdjoEDB5rN3V3YpD3qjhBCFFKzZxuIinNi06FWrFt4IMevrxk0Zn4fblwfNSpnrvtU2xjj8tb1oemmTf69mxuDj5Z3vQ9AeHQJIu9FZtt5bwfe4dXX3dA09fU4cfReth+tweCuu41p3n0XxoyBZOPECCGEEEKkSYJuIYR4REBwKePy1B9LoBm0dFJnv93rTnLyrOoL1bTuLRo3zpnrPtXN3bi8dWf6zbbP7jthXPapfMtieUpL+bJRxuXggOy5vqbB4JeCCb1XDoCnGxzjg6ltsLW3Zf7aVnzxuanLwfTp8NJLYMjdXghCCCGEyAck6BZCiGT0CXqu3q5sXD9wrg67153M0TzM/NE05/WogRfTSZm9ajevRhnn2wDs9PMhMT4xzbTnTpr6avl4XLN43h7l4R5vXA6+cj9bzjljBmzY6wuAa/EwFq/ywMpafU3qrHSMn2DFvHmQ1Ntg1SpYuehGtlxbCCGEEAWXBN3iscQ8iKF9veNUKRvEsqVxaDlbESiExQRfvkGC3nzeyCmT4tNInf0Cz4fw1y5VtV22xC1eeDOHqrlRgWWHRirIfxBTnMP/nU0z7bmLpunCfOqXTTOdpZQvb/r6Cr4WnU7KzDl+HD780LS+eJEOt6opO9IPHQrLlsYZ12f/IEG3EEIIIdInQbd4LCtmH2XHifpcveXBy/3tefFFCAvL7VwJ8eQCrqVsVr3xYGP8917I8rkWTN5N3arnqVHhcopHQ98Ipk2DyEe6I/8y9QJ6gxrj8o0Xz2DnYJfKmS3nqY5Fjctbj6Q9Qtq5q64A2NvGUsmnfJrpLKV8BdPrEhyU8ETnevAA+vWD+If3Vt57Dzr1KJVm+j597fDxuAzALv96nDl46YmuL4QQQoiCTYJu8Vj++Ms8EFi1CurUgQ3rpcpb5G8BwS7G5eqVTLWYU2e5p5Y8TZuXHWXYJy05ecWbc0GeKR7H/IvzwQdQuTJ8840aDTw2KpZfV9UG1KjZb3yQw8OCA0/1Mc1DvXW7bappEuISuBRSAQBvj2vZOnVZZpWvXMy4HBT8+F9lifGJvNjpNBce3lNp2FCVR3p0Vjre7B9kXP/lh+DHvr4QQgghCj4JukWW3b8VzubD9QAoVewuLi4q0L5xA7p11zHsud2E3w7n5tXb+O06z6alh5k/aTffvL2DtQsO5mLOhchYQIBpedib93EpqYaoXrbKievXM3eOq6eDeOn1KsYRsJ2KPKC4Q7jZI8mdOzBuHFSqmEi/TicIi1BTYPVpdxh3z3LZ86SyoEoV9QDYt0/NF/6ogFOBxib4PlXu5GDuTDw8TTXRwaH2j32edwfsZdO+WgCULJHA8uVqXvSMDHi7Lg526sVZvK4eUeFRGRwhhBBCiMJKgm6RZeuW+ht/cL/azZ9Tp3R06WLaP39da0qUcaZcFVfqt/WmS//GDPukNeNmtOP5oU3Z9feJNM4sRO5LHnR7Vk9kxFs6ABIT4fvvMz4+5kEMvXs84G6kqjHv1vwQ4ZFFCY92NnucPg2vvAJWDz+F74fb8PeepsbzjHqnWGqnzxFPPaX+xsfDnj0p95/zu21c9qmec/3dkytXyRUrKzV0eHDk481Z9tNnO5m5oi2gWhasnn+aatUyd2zJsiXo98xRAMKjnVn+87HHyoMQQgghCj4JukWW/bHa1OT0hZdL4OYG69fDr5OP4lTkQYbHr199L8M0QuSWgEtqkCydTsPNLZ6RIzUcHnbznjtX1UynRdPgrbcMHLukgkDPctdYssbbOAJ2cjVrwtKlcO4cDHrlAdZWppHCG1Q7S/POtbPvSWXRUx1M3US2/nk6xf5zp03zefvUzNk+50ls7GwoW1a9rsG3nLN8/MalR3j761bG9V+/PkC7XvWydI433zbVtv+yMO0+4EIIIYQo3CToFlkScSeCfw+pPp9uJW/QvHMdAHQ6eG1sQ04evs/Lz+ylQbWzdGl6mGHP7eKz13fww0c7jefYe+rxaqWEyAkB5yMAKF/qFvb2GqVLqxGrQTW1/vmrQ2ke++uvsHCJGojMwT6O1aviKVEm/YCwenVYuLQYF0+EMqLPTjo2PsKSpbborHTZ84QeQ4eWd43LW7enzMe586Y+3DXquqTYn1PKPxy/7cYN1RIhs66fusXLb9bEoKnn8fGQ7Qwe2zrL12/8VA0aVFMjvB+5WJMj/53J8jmEEEIIUfBJ0C2yZP1Sf+IS1FRBvZ85n6IGr0rtCvxvc0uOXqzBhgONmft3G76c044xk9pSvbqqPTtyqiyxsTmedSEy9OBuBLcj1KjcVd1CjdvfezvGWBM9Y2FVoiNSdnQ+eBBGjTKtz1tgj2+r6pm+dpXaFZi1qi3/HGpEzaaZbONsIWUqlqJOZTWy2LFLPpzaZz5X+LmAEsZlr/oVcjJrZjw81F+DQQXemXHj6i3efq8OkbGq+X6fdvuZ+Gvbx7q+zkrHm4NMTe1/mSFTOAghhBAiJQm6RZb88aephuuFl0tk6dhWrVSNWXw8HDmSnbkSIntcOWMKtKtUMHWVqFzNgb4d1CCAYRGl+WLkIdYvMj3+nrOd3r30JDycuertt+Hll3M069muU5sQADTNimYd3Fg1e//DdTgb7AVApXK3cCxeNM1zWFp5d1Mz+OCrEammiY9Xc3DPnw9v9TtE65YJBN5R0Xpjr9Ms+rtuqs3/M+ulEQ2MA+P9/m8j7t8Kz+AIIYQQQhQ2EnSLTIu8F8mmA6ppedkSt2jZJWt9Tlu2NC3v3ZudORMiewScu29crlrZvL3yh5+VNi5PW9KO7oOaGB893mxPcIi6IdW6NUydmiPZtaixk3ypW+U8AFFxTvQd0Zz3++8gODCR8AdqtHCfumVyM4uUt9tlXA4+Y2raff5oAGNHXKZRIyhWDBo0gGHD4OcVTbhysyIAFV2DWPuPK47FHZ8oD04lnejfzQ+AmHhHlvwvd/q4CyGEECLvkqBbZNqGtbHEJqgRpXo9dS7Lc/MmD7r37ExlHiIhclnARdMAYVU8zeeortfGm+4t0p/yzs3lFitXGLBNfXrrfKWUuwv7/CrQv5Np+PLvlrajbbObxnWfnJ9G3Ez58qbPoIvnYln83V7a1DmBT6OqfDvbk6NHVU33oxpW82fdmijKVcmemwZvftzQuDx7rgOalk5iIYQQQhQ6NrmdAZF//LHeVNPXZ1idLB/v7Q2lnB9wJ7wY+3bHYtAXeaJmnUJkt4ArpkHDKnsVA8xruxet9mbpzJ1ERKSMquzsoM8gT8q5FZz3tGNxRxZtaEmzCTsZ83VzEvR2BISWN+6vkctjIpavZKql/uiHdin263QaPj46GjSAhg2hQe1w6tQxcCU4nlr1amZbPmrXd6JVKzW92tmzsHs3tGmTbacXQgghRD5nsaB79uzZ7Ny5k7Nnz2Jra8uRTHTi1TSNGTNmsGrVKiIiImjQoAHjx4+ncuXKlsqmyKSoKNiwQS27ukKbp0tm+Rw6HbSsfYa1e5tyN9KFc0cu5fqAUUIkF3DNFMRVrVmWG/eCzfaXLFuCURMfb9Ct/EpnpWPEhLbUb+pPn/6lCbnrZtyX2zXdHlVLpLq9RoXLDHspkP4j6+BaIflUXs7o9XoITvWwJzJ8uGlO81kzYmndyj5XR6AXQgghRN5hsSqZhIQEOnXqxEsvvZTpY+bOncuSJUsYP348K1euxMHBgaFDhxIXF2epbIpM2rQJYh62vO3ZE2we83ZNq2am5rt7/wvJhpwJkX0CglWA5mAXTdkKpTNIXbg071KHY0dtaOvrB0Cp4vdoUC8hV/NUpaYHbiXVsOWO9lEM6rqbvev9OX21Ku9OafdIwG1ZvXtD6YdvmZV/FsGleDhPNTjGBwN2sGzGPs4fDUAzSLtzIYQQojCyWE336NGjAVi9enWm0muaxuLFixk+fDhPP/00AN9++y0tWrTgv//+o2vXrmkeq9frVe1FHpaUv7yez7SsWnoPUL8oe/bU87hPo1m7EvCdWt69x4oh+fT1SJLfy1WYGPQGrtxUTaerlgvGoFUCpGyTK13BhX8PFGf7msN4+5bF0al4rr4+1nbW7N+XyPF9B2jTxRtn1xYAGDQDpJEtS/3P2tjAa338mfRLPQDuR5Vg2/EGbDsOLFFpfCufZ968RBq0y+UmAgWUfB7nAr0ea+Oinsf+cZDuJaRcCyIp14KrsJVtZp9nnunTHRQUxO3bt2nRooVxW7Fixahbty7Hjx9PN+i+cOFCTmQxW/j7++d2FrIsLjqeDf+oPtwuxSMoWfIifn6Pdy7bkgnY28YSl1CEvcc98HvcE+Ux+bFchbm7weHEJ3YAoELZW/j7qymopGxTcvWy4m7sbe763c44cQ6oUNeWK8EBWWo2boly7fZyPMT/zbGTpTl52ZPQe+XM9p+86k2LjgmMeXkDfUaUxcY2z3wFFyjyP5tzrGJiqP9w+eTJkxgcHCx2LSnXgknKteCSsjWXZ77xb99WP95KlTJvDliqVCnCwsLSPdbLywtHxyeb9sXS9Ho9/v7+1KlTB2vrrI36ndvWzDtEVJwTAD3a+tGoUcsMjkhfY69T7Dldl4CblSlXwp5ylXN32qEnkZ/LVZjblWxwNK/6ValTp5SUbQFk6f/Zpqb7xty4GsrxfdfxOxTNqvXunLzqTaLelmlLnmPX8WAWriiHt3e2Z6HQks/jXBAVZVz09fWFokWz/RJSrgWTlGvBVdjKNjo6OlMVwFkKuqdNm8bcuXPTTbNx40Y8PT2zctonZm1tnW8K1RJ5vXIFliyBl1+GahYYl2z1nwbj8gsvOj5x/ls2vsee02r5wJar9H7TLf0D8oH89B4Uqbt2zbTsWcsNa2vVXEjKtmDKiXIt7+lGeU83uvWHD7+N56u3dzBpfiv0BhsOnSpPw4YwZQqMHAlWBWfQ+1wn/7M5KNnrbG1tbbae/ZeSci2IpFwLrscq28QosMn+m3eWlNnnmKWge8iQIfTs2TPdNBUqVMjKKY1cXV0BuHPnDmXKmGo+79y5g09uD5Gbh+n10LkznD8PCxfChQtk6xzBu/4+wdrdvgCUKHqfDr3rPvE5W7V1YMpvannv7jh6v/nEpxTiiQUEmJarVs29fIiCyc7Bjq9+bUf3PqfoP8KTC5cdiI2Ft9+G48fV57cQQghR6CQ8gOB1cG053NgC3S+BY/mMj8tnshR0u7i44OLiYpGMeHh44Orqyv79+6nxcPLXyMhITpw4kaUR0AubTZtUwA1w9Sr8sfASL73+5NXdQRdD+WD4FZZvNbWV7NXeH7sirZ/43C06Vjcu7znimmqaC8eu8NqgcKJi7XArHYlbmVjc3Qy4uVtRzt2eyIhEQkMSCEloRehNG0JDITwcOnaEzz8z4FhUqo1E1ly5YlqWoFtYSpNna3P8JHz8McyYobb99htMmAAVK+Zq1oQQQgjL0zS4f1IF2KGb4dYuMCSbqer6KvAZk2vZsxSL9ekOCQkhPDyckJAQ9Ho9Z8+eBaBixYoUfdjnp1OnTrz33ns888wz6HQ6BgwYwOzZs6lUqRIeHh5Mnz6dMmXKGEczFynNnGm+/v20ePoN0x57ftjYqFi+/+QAX89pTHScKeBuWP0Mk2ZlT4sDFzcXala4xJnAahy/7EXUgwSKFjNVzxv0Bvq/HMWh8/XUhouZP7efH/y19BqL50fRtGPtLOVLM2j8MecAmzYk8vbYMtRtLZ0tC5OA0yGAOwCVK+dqVkQB5+gI06eDHfeZNqMEAEe2nKDi0CdvSSSEEELkSVd/h5CNcOM/iL2ZehoHd9AVzO4GFqsOnDFjBj169GDmzJlER0fTo0cPevTowalTp4xprly5woMHD4zrr732Gq+++iqff/45ffr0ITo6mnnz5mFvb2+pbOZr548GsHmz+bYjF2uyd8PjjRa4aRPUrgPjZrQjOk7dGCldPIxfJ+7i4GlvylRMvVb6cbRspwZmS9TbcuiIeXv4BbPDOHQ+awFzcheCq9Cicw0+fW0H8THxmTrmdmAYL3Q4QN8RzVm4oTW9+hYhIS535yAWOSvgivqQdyt5gzw+LqMoIFrWOW9cPrLvXi7mRAghhLCwy/Ph6v9SBtyOFaD6cHh6J/QIBO9RuZM/C7NYTffkyZOZPHlyumnOnz9vtq7T6Xj77bd5++23LZWtAuWnbwMB1Q62WY1THDirAtUfpkXTqnvmzxMRAe++C/PnAxQBwEqn562+e5gwvS4ly7bJ3owDLZ8qx9yHc9fu3Qvt26vlu3fho/GmPv1bVhyjVqPyhF67S2hgJKFBsdy8oadoUR1u5W1x86mJW6USuLlB0MWbDHzpNofO18agWfP1vHZs2HaOJUusqd2ieiq5UNYuOMhr71blVnhz47aAG5VY9N1uhn3y5M3pRd4XHRHNjftlAajqfgsol/4BQmSDxu1MY6Ac9iueizkRonBKSIDt26F2bXB3z+3cCFEAaBrcOYT77V/BMMd8cMXKr8LNbWDjBGXagduz6lHMC3TmLXS3b4cRI+CFF+DLL3P2KVhKnpkyrDC6dAneeQcaNYJPP83aoJ8RdyL4bW0DABzto1izsSz1G9wg9F45/trdhMsnruFZt1KG59mx7hKDRnly7Zrpzd6uTTwzvrlKnZZts/ycMqtVK9Py3r2m5XHj4M4dtdyvHzzdVz1Ht6plMzynT/2y7D1Zisnv7WDC7JYk6m3xC/ChYds4erfbS6MGCTRoWoL6ravg7OpMRASMGRXDwsVNjedwdgwnPNoZgK9+rEL/MXHYO0pLi4LuyukQQI2FULVCRO5mRhQa7lXdKFfiJjful+XI+apohsfrGmTQGwi8EEKlGh4WyKUQBddXX6lHhQpqINoiRXI7R0LkU5EBcGUpXF2K9YOLuAH62y+D+zOmNBV7g1NVKN0crO3SPd3YsXDuHHz3nRrzRPd4vWbzFBltKpdoGgwaBOvXw/jxMHhgIvoEfaaPX/zjcSJjiwHwauejlK3sysj+5x6e24oZk66me3zMgxjefWUH7Z+rZgy4nZxg3jzYtsOOOi29HudpZVrVqlD2YRy9b58ahf3IEZgzB2Nepk3L+nlt7Gz4dGY7Dv13mdqVVGfw+ER7lv3Xkve+bUf73vUoUcaZatWgRg1YuNjBeGy35oc4dyqOzk0OA3D9tgfzpxx4oucp8oeAc3eNy1UrJ+ZiTkRhorPS0aiGmqvuflQJAvyvP9Z5Xnz6IJVretC3w34S4+X9K0RmLVum/gYGqt8gQogsiLsDF2fD5paw1hP8v4AHpoGYdNeWmae3LQ5l22YYcEdEwNGjarlq1YIRcIME3blm82bzGt4l/7Ohf5cDmfrBZNAb+GmhqVniyPdVU9g3xtbFwS4agAV/N+D+rfBUjz+2/SwNa4Xww+/tjNvatIzl5EkYOjRn3tw6HbRqogKdiAjw33uBtwYHomlq//jxUP4JZguo386HI2cqMnbQDorYxqTYf/kyhISo5WLFNOZPO8naPY0pV6UMEyaa5gf8+icvYiNTHi8KloCLpjKu6ikNgETOaVQv2rh8ZHdwlo+/G3qPP3aorjGrtjdnaI8DGPSGbMufEAVVUJBqcZhk377cy4sQ+UrwBtjVA/5yg8MjICz5P48OrUw7rpb7DK3eY9SeAXv2gOHh11hbyzW6zXESdOcCzaDx+djbKbYv+68lL3c6nOEAXv+tPMb5YNWXu13d48Za6VLuJRnUXd2qjYwtxrypx1Mcu2beQVp2rMzZQE8A7G1j+W7sTrbvtKNKlSd6WlnWsuZJ4/LwN+I4dErdSKhZ/R6jRz/5+e0d7Zm8sB3h4dYc236Oed/sZkSfnTRtEGFsQtahA5w8qWPIe77GZp2Nn6nJcy0PAhBy140586R5eUGXfI7uKl7St1bknMbNTKP2HT6U9cEb922+ZLa+eFMr3u2/G82gPXHehCjItm83X09eESKESEfwegj6GwzJvrOca0G9yfD8NQzt/+OO8/Ng5/xYp9+507Tcrt2TZTUvkaA7F2xYcphDJ9RI4HW877Fm3iHsbNT8dKu2N+fFZ46mO+r2zJmmWoyRb8aa7Xv7Y1MN+IzfqpMYb/qH+OmznfR6vTGxCapJdcPqZzi2O4h3J7fFyjrn3wotO5hGQz9wro4pn5OuYWub2hGPx87BjvrtfBj6cWtmrWrLgaPFefAA7t+HrVtTnx5qwnem5vWTJlsRHZ0yjSg4Aq6buhlUrVkmnZRCZK+GbSobl4+cyPoPlD1nGqbYNn1ZWyaO3plKaiFEkm3bzNf37cPY2k4IAejjIWCR+ptclVfVXwd3qPE+dPaDLv5QcywUrZDiNFm1Y4dpuU32j+WcayTozmGaQePzr4oZ1ye8d4HnhzZhzcKT2NuqAPqv3c3o8/Rx4qLjUhwfcPIaGw40AqBC6WCeH9LYbL93wyp0a34IgMCw8vw59xgGvYEPBuxk1MS2aJoq8lc77mHfiWrUbFrNIs8zM+q39TI2h0/y0tN7ad+7nsWvbWMDzun8vq3XtCS9e6vlmzfh558tnqUnFnEngmkf7OCvuQekliuLAoJdANXyw62KBN0i55StXIYKpVWz8qMXPLPcNHzvPtPX+DfvmTqlfj6rHT99JoG3EGl5tKY7LCxZc/OYGxCySTWjDd0CN3fC7f1w9yjcPwVxd1OcT4gCQx+n+mqvqwYHBsHVJeb7S7eAp7bB89eh/lQoWTfb+qYm789dqxaUKUA/ySTozmF/LzjM8cs1AKjveY4eQ5sA0PnVxqxddNrY/3jdvqY09w1g4ZTdRIVHGY+f9e0VY+A8/JWL2Nil7H/67numauJpCxvxcscDTFti6hTxydAdLN7YEjuH9AcysDRbe1ua1jBNG+dU5AHTfvHMxRyZSz5a4pQp8CAi7wayd0Pv0b5ZMB9Ma0ev15vx3HMGbtzI7VzlD5pBIyBUDSBQpWxwrrT6EIVboxqBgOoWdOHY1UwfFxcHh9W4j3h6wsfTGjHtgx3G/aMmtuX3H6XNrBCPunIFrl1LuX3fyrWwtprqq7qjC+zsBtufha3tYEsL+KcRbKwD255K5aT/g0tzIWgthB2CqGugj02ZToi8KjEGzs9Ug6IdHgHR6ruJ09+AIdlgzzodlG0PVlmYdimT9u5VgytDwerPDRJ05yiD3sD4SaWN619+9sBsephnX2rIht/P4Wivguzjl2sw5KPWuLnpeePlS+zaBQv+VrXc9raxvPZ+HVLTrld96tZVy0eOWrNiawtAzb39y5c7+Xpeu8ealsYS2rc0DfY2ftRR3D3zzvzItWqpactA3QGfmUdrjW4HhtGh5S2OXaph3LZ+gzW1a8Mff+RixvKJG0HRxi4XVT1SH3xQCEtq3MT0w+Wwf+l0Upo7elQF3gAtW6q/733bjk+GmqrwBr7fjFWrsiWbQuRf8eEQvBEu/AwnPmXb3IXGXU8li5/3HXOFyMsZn8+xYsptp7+GQ6/Drudhc1P4uzKscIBVJWCdN/zXFvb0hdDNT/x0hMg2hkTVmuPgMFhTHo6Ohphkg3q6d4UWv1skwE5NQe3PDTJPd446sCGYU9dUc/Am3qfp2r9RijQd+tRni4M/b460x/+q6lf8IKY4vy4rzq/LAJwAeOm5QEp7VE/1OjodvPsuDBxo2uZoH82KX/zpNihv3TZ6d2Ijrl7bjVs5PW9PbJXxATnsi7G3WbHcBYNmzbT5dXnr03CcXR9vYIhHxUbFcmp/AMcOhHHsGITdTb0ju5dnHG994kt5T5cU+25dv81Tbe5z6po3AOVKhKLZuXLzlg137sALL8ArL0Yxc3oCJcuWMDvWoDfw4O4DipcqnmduwuSGgEDTaPVVGzXIxZyIwqpRx8bwnVo+cqI4/TN53N71JwFfAFo1jwdU66WJv7bj7r2d/LK6LYl6a/r2hY8+UvMR28i3vigMDAkQdhBubFGPO4dAM9XUbd9lai47dqzqQ6rXw77TNeEFOyjVRM0lbFscDPHqoU/6Gw0uj/x+0zRTreCjEsLV48EFte7W0Xy/Pg6Ovw9lO6jHYw4+JUSWhR1UrTniwlLu83gean8GLinHDbGk5P25C1pNt3z95hB9gp6f59cyrn/5RWyagU6LrnU40Vnj0JZTzPv5Lss2NyYq1sEszahPUg+4k/TrB599Btevg6srrF9jRZMWTZ/8iWQzp5JOLFjfOrezkSbvuq682mkPize1F0IIdgABAABJREFU4l5USaaP38Hns9o91rk0Df78EzZuhGPH4PRpWxITa2Z84E74bqnG0KHqh3PFhzfYQwNu8lS7SM4GqvdCeZdQtm2JwaWiDcOHm2q5/7eiKDu2hNK1zUlu3LYn5FYxQu+U5GZ4aRL1zlRzu8rQF68ycEx93CoVvi/75COXV62ae/kQhVfDZL9psjJX8J5dpqnuWta/DqgxOnRWOn5a0ZqYYRqLFqnvmcmTVVP0ZUvjcC0nMzKIAizyKmz0hcQHqe7WNNh2ugMARR0TadfOhnr1VMuR0xeKc/+ZcEqUKpLFi2rQ4n8Qe1P1B4+9CbFJfx9uS8pPkbLmh4btgws/qYfOWgU5JepA8Rrq4VwDilYCnTROFU9AH69u/hQxDWJMcR9IiDCt2xQFjx5qcLSS9XI6hzx4YPoOrFmzYPXnBgm6c8yKnw9xLljV5LasdZJnX0y/Rk1npaNpx9o07QjfR2isWAnz5sHBgzBkCDTIoELOzg62bIENG1Rtp4dHVr9ARJLPJ1Xgf/8mojfYMH9VNT6dYchyv9/Q61G8NqIoGzYk35r5pjrx8Tpmz1bvgYEDYdAL1xkyRM+FYNUHvkLpYLb/l4BnXRU1rlwJy5bBW8NjuR9RhOC7bvy6xi3Vc18KrczHP1bm05ka3bvDsGHQsWPhqRGToFvkNhcX9d4LCIDjxyExMeP/P82gsc9f/f+XLHoPn0bmb15rGysWLoT69eH999U5t26FhnXC+OP3cJo8o274GfQGju88z/o/brJxW2keRDvy3EuVGDrMmurp39sVIudoGsTdgeirqvl30uP+KSjTFhokmw+4aEWwcTAPuov7QLlnoGR9LoRUJ/S+OwCtWltjawstWqigW9N0HDxShI6PVEZnSGcFHs+lnyYxWgXg9q7m20O3JHueelUrf+eQeRprh4eDV/1nvj38HNg4gmOFbBvIShQgidEQ+i8Erobgdar2uvki0347Z6jQB7QEqPgiuHdW7ycL2LhRtSqpUwcWLSLVWYoKcn9ukKA7RyTGJ/LVd+WN619N0GepOW+x4jqGDVPBkMEAVpmM97y81EM8Gc+6lXi20WE2HWrM9dse7N1wgtbP1c308Stn7WP4Rz7cjTQ1Y7aygpo+8TSodIiG9fU0aFaSyj6uKb4zYx5EMe9/7sya40hkJCQkqMB73jxTf7LKZQLZthWq1K5s3KbTwcsvQ5vG9xjyUghbjjZMts9AGecw3FzuYmebyKHztQHQ63WsWQNr1kD58vD999C3b5ZeqnxJgm6RFzRurN6LMTFw5tgdfJuUSjf9heNXCItQb9iWvhexsm6SIo1OB2+/rW7SvtAnkZu3bAgMK0/rLqX55LUdXA+0ZuMeL27crwGYxoQ4+y1M+Vb96HntNejV04CDo9SyiRx29xgE/Y3Vjf+oe/ck1hciU09nbd4SEJ0VVOwHcbdVoO32DDh6GHdvTxbjduigvnRbtICZM9W2ffvIetCdGTaO4FQl5fZan4BrS9UMPnQzRJxNmUYfo2opH3XkLbi5DYqUg9LNoFRT9delEdg6Zf9zEHlf/H01j3bgagj9R713kgStVV0vrJJFvC2WWvSGjcEAX36pHpoGp05Bp04wYEDKtMmblhe0/twgQXeOWL30OhdD1I+jdnWP0753/cc+V2YDbpG9Xu4Xz6aHN55/XxRO6wxuaIMaUXzkgDMs+6+lcVvZsgZmzbKic2dwdLQDMu7HPrk+fPAx/PgjzJihplNIUrXcNbZvt6GiT/lUj/Wo7sa/h8px5uAlYmMScKtUkjIVSmNjVwZQ7XYC/K8zf1FRFv5eitBQdVxwMLw2LJGez2vY2mfjpOl5UMCxU4C68VClUiLysShyQ6PKB1mB6gJ0ZNsZfJuk3+1mz+Zg4GHQ3TQ63bStW8OxfXfo+/xN9p72JT7RnvGz26Wa1tragF6vvmh27lSPEkUfMPA5P8b/WI8SZQpfFxSRjTTtYQD5QPWN1seoR2IMWvGaGGxdsE5qBHb1dzj3HTrS+1TWpT5CeKPpaR6RfH7u9u3V3xYtTNv27cv808kWtk5Qvqt6gHptIs5B+FkVgIefUX+dUpndJTpI/Y29AUFr1APUjYeilcGuJNiWUPMnuz1jOi6pHCxUqylyWEIEXFuuAu0bW0FLTJnG1hnKd1NBefIm5hYMuO/dU60zN2403/7tt9C/f8pLJx9ETWq6xWO5FW2qPhs/QZr/5Ec9BtXF4aNoYuIdWbm5NtNj4tOdcu2/lccYONyNkLumgLtPu/3MXupD6fIls3z9UqXUIEjvvQczPtvPr79XpkKZMFatLY1H9dSbjSfRWemo1Tzt+dir1qnI19NgwmTYtAnGvX8b/wuuRDyw4ci2UzTvXDvL+QXw23Wei6fv0mNIozwduAeEqBrFMs63cSrumkFqISyjURNTP+sjRzSGZJB+b7KZwFq2TznI4qPcPcuy7XBJPhi8kxkrTL9mHOyiearhKbp1jqVL32rYl3Rn8WLVoub8wxkd70c5M31ZWzbsuMpff9yidgtpdy5Scf80aGXAqbJpmyERtrSChPsQf0/94DfEG3eHRxdni/8zrD/ejU1nG3P7jurH6eYGbi5jcTf44FYilMY+5+j+9E10xaqp4LOY58O/1VQ/1EzSNFNtWvHiqvsFQIUKqoVXcDAcOKCauFpnvgdY9rItBqUaq0dGKvZ92Bz9oHlNuGaAyGTNuKq9bn5c1FU1B3PxmqoPuUtD9XraOasgPemvTdEC12x9zx5VedGpUz6tyIq5ocrX0d20Lf4eHHojZdoiZVQfbY9eaoov65ybKvj8eQf69rUytia0soJy5SAkBE6fVoF4166m9JGRpikwa9SAsmVTnjO/k6A7B7zxBsTFGbCxuUyrbqlP8yXyNqeSTjzfeh/Lt7bgbqQLW1YdpuuA1L8Qzx0OoOsrtYhPVD+iSxS9z6yvT/PSqBZPPEp4iRLw+czmfD4TIP1gO6tsbKB7d7jpf5bXxqngc/s/YTTvnLXz7Nvgz1dfxvLPIfX6DN20m3lr8+ZgeTEPYgi5q17Hqm43AAm6Re5o0LYqOp0BTbPiiH/6TcsB9hxXzWXtbOJo/FTm+hHZOdgxfXlbnu54iH27o2nToSjtnq+NQzHzpunvv69u8O3dC/Om+bNykycx8Y5cCq1M0w5RzPt2Hy+NbpHGVUShohlMy/82hbpjoOEPpm1WNnD/hFltdPBdd1YceJH1x7ux+3xrEvXmN2Vv3lQPP1yBYcbt/7TT07HJk0XCp0/D7dtquW1b09gJOp2q7V61Sv349/eHevWe6FI5o+5X6q9mgIgLcOcAhD18xASpYEwzgF0J8+PuHlXbw0+px5VFKU4NgM4G+kaCdbLBF+8cUU33i3mp2vQcmkoqO/j7Q5s26ubLyy/DggVgn9fHldQ09T8U+JeqyQ4/BT7vmY9j4FhRjRUQd1sNuufRCyr0UiPw50L5LF2q4403fIiLU795S5eG5cshKgqef16lmTLFPOgu6P25QYLuHGFrC2PGaPj5RWScWORZL79iw/Ktavn3pfF0TaU/CsA3n4cQn6haNzzT8CgLl7tTvlrL1BPnQe27VoRxann7nmJ8ksnjdv59mq8mxLH1uPkof79taM7n50Ko6OOexpG55+rZEEA12ataQf4/Re4pXqo43uUvcy7IkxMB1YhPpzXNreu3uRii+oY2rH6BIkWzdjO3++AmdB+cfhqdDlq1glat6jD+dBC9nr/G8cs1iI4rystvt+DggZ1MXdgiT7diETng8kLz9aTmzsnZlYTEKLAtwe2YqtT6aB3hUSn7GxctqsfLy5pbt+DGDdMP8CT//KN74r7WqTUtT9KyJcY57fftyydBdxKdFTj7qEfVQabtmqYGlLN6dDBdHZSoqwI47ZEXOjn7UuYBN8DFWRDwm1q2LgLFvMG5pnoUr6EGdXMop0Zpf/TYXLZzp3pJAH7/HUJDYfVqVaGRp+jjVQuGoIeBdtRV8/2PDrSn00HD6VDcG0rWz9XWCZs2waBBpiYEjRqpmXsqVlT9u2vUgLNnYfdu2L8fmjdX6Qp6f26QoFuITOvYrx4lR93jXlRJ1uxqQOQDAw6PdIe6fOIav29uBoCL013+3OxFMZdiuZDbx1e1TiUqlA4mMKw8e/xrEhcdh71j2l+cp0/DiBGwa1cts+0Odqo5vt5gw0+TLvDtorwXdAecu4sx6K6ckLuZEYVeo1qhnAvyJD7RHv/9Z2nYoUaq6fZtDiCpVUarxncsnq/KtTzYezyGES/t5rcNqtXK9GVtOeZ/gpVr3ShXpYDN6yIyJyYUTn5mWq/YF9yeSpmuR5Bxuqu/foXwKNOuKlWgWzf1aNvW2ljraDBAWBhcuKDGJAA4evTJA4nt203Ljwbdj/brHjHiiS+X+3Q6Ndf4oyr2Vg99LNw7CfeOq5HV4++rrgAJ4WrZIZXxYqKumZb1saoW9v6JlOmqj4DGs8y3Xfmf6n5Qog5YZb5bQHa5dMl8fft29f7auFF1Mch1wRvAfzzcP2nWDcNMqSZQLpX/s8ovZXt2NE11M9qyBUqWhFdeyTienzfPtDxkiBrHqMjDez5WVvDBB2oWJlC13WvWqOWC3p8bJOgWItPsHOx44blAfl1Wkug4B9augxdfNL9DPPnz6+gNlQB4Z9BJirm0y4WcPhmdlY4OTQJYtLE8sQkOHNxygjbPpz5ae0ICdO4MgYGmbZ7lrjFuzHWe7V2NqjWsiU+059c/6vP5j5E4lcxbo6kGXDANQFWlqnwcitzVqIGepf+q5SN7b6cZdO/ZmWx+7jYOqabJbg7FHFiwthXNvt7FqAnNSNDbsftUXRo0vMGubdeoVq9SjuRD5CFH3zGf47f5AiiaSiCVbH7pdetMmzduVP1qU/sRb2Wl+naXKQMVKmgEBuo4fvzJ+lrr9aYf9i4u4Otrvr9ePXBwUDMI5PhgarnFugiUbqIemVXtTSjVTA32FnEWHlxMvba8SDnz9cQYODDA2CXBqmhlPHUV0Vm3Apd64FwHilW3aHPoixdNy87OEB6uRtNu3ly9Hx99Tzy2wDXqxoU+9uHj4YCB8Xch9jbEhamm4PWngtuz5sfePWK+rrNW/bE9eqopvxxTHzg3u8TGqv+TDRvUI/kML1ZWqll+WuLjVYAO4OycyOzZOuweabD1yivw2Wdq/IS//4Zz58DDw9Sf28dH9f0uiORXphBZ8PIbnvy6TC3//ju8+KJp3/WL91m0QY0+XNwhnJGfPf4o9bmtfTtY9HC0ye3/3qPN86mn27bNFHBXqQJffnyDfgPLY2OnfoC/2mk3C9a3JjzamYXf7WTUxNy/falpcGjzaeb9fIflm01N4at65a0bAqLwadTCNMjikSOQyrA4AOw9U8+43OLZVEY0thCdlY43PmtDvSan6P1yKYLvuhF6rxwvvniZfSfzQd9IkX1CNsH1FVk6JDoa/ns4zXS5cmparsy0gm3USH3PREbquHBBNU99HCdOqNGUQTVffXQQLVtbNXXfrl1w5YpqeuyWvUOnPJb4ePj4YxX8zJmjbkTkqkp91SOJPl4F3hFnIOK8agERexNKPnKzPuKM2RgAuqirlOAqnNllSmNdBJxrQYvfoXj2z3mbVNPt4ACHDkGXLnD5sgoAW7dWTc2fSqpEjr2tAuB7fipwtnVWfeNtndVAczbFVK2/vQuUe9r8QkdGQkxwxhmKDjRfd2kI6NRzL9kQ3DqqEcftMx4s80kEB5uC7P/+U/+rqVmyJP2ge88eePBALbdoEY61dYkUaezs4J131NghAFOnqt/SiQ8HXC+otdwgQbcQWdK6tbojFxQE//6rmr8l+XZ6CRIe3uwd9eoJSpRpkzuZzAbtu1eBD9Xytj0l+CKNdH/8YVqeNg169TK/PfnOx2VZsF4t/7ikISMm5N6IsHfvwtKlMHcunDpl3hTeqcgD6rVKZf5UIXJQ/TaeWOn0GDRrDp9KfejWmBg46l8CAG9vcK1QOgdzqDTtWJtjx2/TpkUA54OrcuyCJ598At99l+NZEbkhMQoOD8/yYVu3qlo0UM3JMztydMOGGn/9paLzw4cfP+hOr2l5khYtVNANqr9pr16Pd63MSEhQgX569Ho1tdLKlWq9XDmYPdtyeXos1nZQopZ6pMehPDSapZpO3z+Jdt8fXeIjc6/rY9Ugb8mntAK1LTIAXNuoEbkfo89yYqK6mQJQrRp4ecG+XdF0f96KQ0eKEBGhbgSNHAnjx0OJC5/BpTkZn7j8cymDbutH+9CnwsqO8xfs+OlHaNZMBZ42DuXghXA1gn02WLcO1q5VTcPd3NT7x81NPe7eVUH2+vXqhlRqbGzU795Tp9QAhFu3qtYBzmnMHLlhg2m5ZctwoESq6V57Tc3IEx6uAvmkgBsKbn9ukKBbiCyxsoKXXlJ35hIT4c9VCTRtru6IJ/VjKVoUxnydN0frzqyKPh54lrvG5RuVOHC2BjEPonEoZt6BPTE+kb9WRgIlcHTU06lTymi6dgsvnml3ny07ShBw3Ym1a6FnT8vnP+JOBMd3BXDs4H2OHrfl2LVGnLtgbxxAJYlTkQe83Ok473ziQYkyVVM/mRA5xLF4UWpVuoD/VS9OXfUk5kEMDsXMm48fPqx+rIMa+Cm3lKnoyvLVtjRtrREfr+P77+Hpp1V3E1HA+U8w9est0wbYlW7yJMmblnfvnvnLNWxo+uA+cgQGpDGIaUaSD6LWoUPqaR7t153ZoPviRRW81K+v/i/TCqZv3IDffoP58+HaNfjwQ5iQxs1oTYO33jIF3KAGpPrpp1yczuxJOJQDL1NHeUNiAmcOb6JmeT3W4aeMwTiGODX4XnKX5sGlX9SydRFwcAcHN/W3iJsKUuPvQvnnwT3ZaHuJMWpqNCtbrt+sSkKCehNUd/oXVvWlTEIE24Y78tKsZaw79hx6PUyfrloyTnrnZQZX+BUrq0d+ODzq3vGU22p/puaht3ZQg9hZP3zYuUCR0mBfGmyKMaCZjkOHVJl+8QV88gn071+M7BieMjAQevc2fV9kVpkyqgVA167wzDMqwB4zRr0uCQkqsE6rtjsp6Lay0mjePO3BaYsXV2MmTJqkzrl4sWmf1HQLIYxe7pfI1KnqX2f5nHM0bQ7ff68jLk7tHz4cSrvm/3kt2ze5xuW1lYhPtGffP0d56oWGZvt3rDnJnQjVPLtbs4M4OqY+hdC7Y0uwZYda/uEHywbdwZdC6f/CDbb71QfqpZmueXON13rs54XXfHEqmX9bJIiCp1Gtm/hf9UJvsOHEoRs0e8rDbL/Z/Ny5PClCvSYlmDoV3n5brQ8cqGpM8kKTXGEhmkEFRkCi5siWu/PojGoGfOAANEtlfCdQA6Otf9jqqUgRdYMmsxom++o5ciTtdOlJTFSjJYOa/zet2vKkkZQhc/26DQaYMUM1/06qxXd2VjWmXbuqm1AuLqpl3Ny56sZD8lHZv/5aNXP+/Xc1rVJy48ap5uTJ3b6tnkeBqA3UWRFvVx7K14OKyX4YGFKJEm9uNS3rY1Wtd/J5yJMUKWcedBviISYEgEsBpubq1Ur5GccjKFokmtVjejHlzCW+nl6ZmBj1Og/7pA2/1LzKTxPP0LSpBvHhqp920iBzCRGqRr5kfXWHJHnte9WBGT79M2dU2Se5fBmGDoUvv4SPPoLBg5+sy87y5ZkPuBs2VO/Xbt3U8qOtUHr2VEE3qCb4qQXdly+rQddA1dw7O6czKj7qe+P77zH+dgbVeqsgf39I0C1EFtWtZ02NCpc5G+jJ7lP1uHziP+bMUR+2RYqo+W0LgvbtrZm3Vi1v3+XAUy+Y7/9jualZWJ/eaZ+nY0fzKSIOH1b95rKbZtAY3C+E7X4NU+yztUmkjq8N7dqpUTNr1dIBMs+wyHsaPe3Lwoe1BUfOeqQIYvZsuweoWqBWrXI2b6kZNUr1AVy3Tv1Q7d/jIpv3eWJlncm2w2k4fzSALz8OpWXzREZMKMBVH/mNzoorlTaxYLU/C1dV4d5NK5IGI3/jDTh+IfVm48ePqxZhoPrMOjqmTJMWFxfw8IglKKgIx4+rANomi79ejx419TVt1y7t1smlS6tmxxcuqGNiYzGOvPyoa9dg0CDzqY5ANZlduVI9dDqV/zupTDJgZaWC9i1bTNMqJd1gmDZN1QKCOkffvrDiYRf6VasKSNCdFqtH6nk1DRrOVIH3veOqz3hMiJqD/FFxj77QBnD0AEMCl+6Y+phXcw9S84w7lIMi5bApUo5xz8XSf7gaXTupdcGRMxVp1qsigwerADEzU4vdvKnKPKOuA0uWmJYrV4arV9XytWuq8mbiRHXTJflc1lnxv/+ZllesUP83oaGmB6j/xc6dMw50W7UCV1f1Gb9pk+rm5PDIGJ4bN5qWu3TJoHUA6ubXoEHmN5YKci03AFo+FhUVpR05ckSLiorK7axkKDExUTty5IiWmJiY21kR2eCrkds19U2gaeVdgo3Lo0YWnPINuRZhfF7Nm5vvS4xP1FyL39JA0xzsorQHdx+ke65ff9WM53qp2wWL5Hfxd7uN13Atfksb3nunNvfrXdqx7We0uOi4LJ9P/mcLprxerocOmf5XBgww36dP1Gslit5T73Hnu5rBkDt5fNTt25rmXi7GmO9JY7Y/0fkun7ymuZUMNZ5v87IjmTour5dtfnf4sKY9/bTp/Qma5kikccWRSG3t2tSP/eIL0zG//JK16yYmJmrPPHPHeLyfX9bz/s03puvPmZN+2kGDTGn37k2532DQtAULNK1YMfPXYtgwTXvpJU0rUcJ8e/KHm5umffKJpl2+rGk7dmhamTKmffb2mjZ/vnokP2bWLE2LiFD7QdPKldO0gvAWf+L/14RoTXsQoGm39mha8D+aFnZI06JvpJn8nXdMr+m2bemfets2Tatd27wcypfXtH//TfuYa9c0rW9flbZmTU1LLzTR6zXNw0OltbbWtJs3NW3fPk3r3Nn8mmXLqrRZdeqU6RxNm2b9+NQMG2Y655o1Kfd37Gjaf+xY5sr24kVN0+lMx/3+e/bkNadlNh6VoDuHyI+BguXSiWspvkxtreO0wPPBuZ21bOXjo56bjY2mPUgWV2/745jxefdqsz/D80RHa1pp53B1Lut47fq57H2dbl2/rZUqFmbM07rfDj7xOeV/tmDK6+UaG6tptrbqfVymjF5bNHW3FhWuvuNO7btofI8/3+pALufU3PY/j2k6nV79iLRK0PZv8n+s84RcvqFVLXfV7LPVq3yAFhsVm+Gxeb1s87MrVzTNycn8O8/aWtP6djUPutu3T/34Bg1MxwUFZe3aiYmJ2ttvBxqPnzcv6/lv1cp0/YsX00+b/Cbx1Kmm7ffva9r27Zr2/PPmr0PFipq2daspXUKCpu3apWkffqhptWppWtGimtatmwpUEhLMrxUUpGnNmqUdpH/1lSlt8uvu2pX11yCvyen/127dTK9fYGDG6RMSNG3GDE1zdjYvkxEjNC0y0pQuJkaVk4NDypsladm61ZSua1fzfYcPa5qvr2n/4cNZf67jxpmOnz4968enZuPGtG8IR0aabgp5eGhaQkLmy/bFF9VxdnaaFhqaPXnNaZmNR5+s/Vc6Zs+eTb9+/ahbty6NGjXK1DEfffQR3t7eZo+hQ4daKotCPDZP34o08/E32za4+wE8vNxzKUeWkTTCa2KimgoiyR/LTQNkvNAn/X47oJohDX/xmDqX3pafJl0w7rtyKpCfPttJ147RtG1rmkc1K94Zdp47D0oB8GKHfXQbmIU5R4XIQ+zt1WBMALduWTHwg1a4uyXw1gs7WfhzkDFdq2YxaZwhd7TrVZ9xw9SAWnqDDS8NdCb8dniWznHv5n2e7RBBwI1KZtsvBFfhh3H70z12wwbo0MGKRYvKmvWZFU/OoDcwuNdpIh/2KKpaVTV9Dgw0NXlOsn27akqeXHAwHFMf/zRoAOUfY5rhmjWjjMtZ7dd9+7apf7aPjxq5Oj3Jx0pYtEiNKl2tmmpa3L69mls4yaBBcPKk+cBsSSM+T5miRn2OjFTdL55/PmWz+PLl1XfeiBGkMGaM6tedpE8f0/KqVek/B5FS0nRhRYqAeyZ+qtnYqO4z/v7mYxD8/LOa033fPvVeqFlTzTsd88hH8rRp5qNyJ5e8aXn//ub7GjUyfz9s2pRxXpPTNDVGAKguDH37pp8+szp0gGIPB1Vfu9a8v/i2baa+2V26ZG1w+dmz1ft8zZqCOz+3kaWi/unTp2sLFy7UJk2apDVs2DBTx4wdO1YbOnSoduvWLePj/v37aaaXmm6Rm2aM22G642+VoAX4X8/tLGW7VatMdzY/eF+1cUqMT9TKlbihmsPZxmgRdyIyda7QgJuanU2sBprm7Hhf+2DAdq1mxYvao3f2dTpNe/dddfc4M/5Zc9N4bMmid7UbV2495rM1J/+zBVN+KNc9ezStRg1DmrVfoGn7NpzM7WymkBCXoLWsdcKYx89e357pYyPvR2rNa5w0HlvJNVDbsOiQZqVL1EDTHB0TtetpfMTu3GlqHQCa1rGjXrsTGp49T0po0z8xfddVcrurhSd/aSPNa7pB0/r3Nz/+l19MZfP551m/fmJiorZjxzFNp1P/E5n8SWm0YIHp+mPHZpxer0+/iThomqtr6k1sn8SiRZpWpIg6/6BBKZsV37+vagNB09zdH6/ZcV6Sk5/FiYmm165Wrawfr9dr2k8/pazNfrTlx+jRmtaunWnb8uUpzxUVZWo1Ury4agn4qKtXTed4tHtfRvbvNx37zDNZf67peekl07m3bDFtf+MN0/a//84f37PZKbPxqMUGUhs9ejQAq1evztJxdnZ2uLq6ZpwwGb1ejz6P39pOyl9ez6fIvN5DvPn0+3AiYpwZ3G0vFWu0KnDl27qVRtJ4i9v/Pod+sje7N5zgxn01anmnJn44OjfO1PN2rViKl57dx6KNrQmPdmbq4napptM0NWDJP5v0LJxxjobtfdI8Z2QkvPG26fPi23H+lK7QMlvKQf5nC6b8UK7NmsHJExr7/z3F/NkPWLW1AdFxRY37i9jGULe1Z557DjprHQv/V4yaDRNI1Nvy45IGjPz0NqXcXdI9Li4Oena8zv6zdQAoW+IW//4TT7W6DRix6yY/zXcnOtqad97RWLHCYHbsRb9r9OxRgYQE06hF//5rRaN691n5eyD126b9+SEydv7oFcZONbUcmjf9MkWL1je1JtDrSZq9yqWkRvQ9WL5c4+uvDcbaxLVrrQBV9dWliz7LLRH0ej1OTga8vNToyCdPakRHGzI9svNff5mu361b5q7ftauO//3P1BjUwUHD1xcaNNBo0ACef17DxYVsbVXxyiuqNvHKFTWKuqaZn9/JCZ55xooNG3SEhMDevXqzKc7ym5z8LL56FeLj1Tu1WjUNvd6Q/gGpePNNVT6DB1tx8KB5VW67dho//migdm1V67tjh7rWlCkavXsbzGp+V6/WERmp3lt9+hiws9NSvI88PKBGDSvOntVx8KDG7dsGXNL/GDX63/90gDp/v34G9Hoty881LT16wLJl6rn9+aeB9u01NA02blT/Y3Z2Gm3bGvLF92x2yuzzzHOjlx86dIjmzZtTvHhxmjVrxpgxYyhZsmS6x1y4cCHd/XmJv79/xolEvrFg1k0un4mjbe/y+Pn55XZ2LKJWxaKcvu7DsUve7Nu5j6ULTKOWt20TmqXn/XzfSBZvMpDUs0WnM9DY6yTtm1+ncVs79pyoxaxZ5UlIsOLMWWtadvJizMsb6DOiHDa2KScm/f57D65dKwtA40YR1HvaMdvLQf5nC6b8UK6ObjDqS0eGvHecPevC+HNdNY5drs2Q57Zx9kLebYf38jMXWPxPRx7EFOfL9zYweGzaedXrYdy4Kvx3UM3h5Ox4n59/OEqkVgY/v3v0ftWa3/9y5e5dW/78U8cvv1ymWTM1DHXk3SheG1ieu/dUwO3rG0nQdSvu3nfkys2KtO4Uw8R319LuhYqWf9JP6IrfTWzsrahQI2uVDpaUmJDIyAFFiE1QwxQPe24TJauWMfuMtYqJ4WFvCLp2vcmcpU4kJOj44otbvPVWCLGxOrZurQfoKF06Hisrfx73I7pq1bucP1+KhAQdf/55gZo1ozM8JjZWx+bN6vqlSiVgb38yU9cfMsSaChVK4uBgwMcnmkqVYs2ahl+/rh6W4Oiopt5LTePGLmzYUAWAX34Jw9ExKPWE+UhOfBYfPFgMHk5tV7z4Tfz8gh/7XNOnw5Il5Zg/vxwuLomMHh3EU0/dJzER/PygZEmoUcOHs2eLcvy4jjlzTJ9ZALNnVwOcAWja9CJ+fpGpXqdBAw/Oni2LwaBj3rxrPPvsvQzzlpgIv//uC1hhZ2fA0/MEfn5Zv8GQFjc3K+zs6hIfb8UffyQyZIg/AQFFCAys9TDPEVxKasdP/viezUk6TdOy7xZIKlavXs0333zDkUx0wtmwYQNFihTBw8ODwMBAvv/+exwdHVmxYgXW1il/cEdHR3P27Fm8vLxwzMr8E7lAr9fj7+9PnTp1Un0uIn8qDOX67qu7mbG8HQCr5x5g5NgqhNwti51NHKGB0Ti7Fs/S+f745QA7tyfSrLkVHV/wpnT5Umb7T5+GQa9EcvyUs3Fb7UoX6dgmiPoNbGnQshzV6lbi6DErWra0wmDQUaSIhp+fIcO+ellRGMq2MMrv5RoXHYe94xNM3poDAi+E4O1bhvhEexzto7h0NpIyFUunmnbcOB1TpqibcA4OGptWnqdV5+pmaRYv1jFkiErjVd3A8aNx6HTQpdU5dpxQIV+tihfZfsid4wcO8NmHZTl0obbx+OG9d/Ldb02wc7CzxNN9Yr9N3cuwj9tgax3PjnXnaPpsrcc+V2Cg6rOaXoPBxPhE9v1zmk1/h3P2QlGaNoxi+KeNKVHafA6gKe/uYtwMNbBHdfcrHD1VGsfij/zWiorC2ll9VgedC6dqnWIkJOhwcdG4etXA1q3Qs6f6Pxs2zMAvv2T9J2fS/+zOnXV57z0V+c6aZeCNNzI+19q10KvXk10/L7l3D9zdrUhI0FGhgsbly4ZUp2gLC1N/H537Oy/Jyc/iOXN0vPWWeqF+/tnA668/+fsgLg7s7FLvv/zHH9Cvn3pOHTpobN6sAt/QUKhUSf1uqVRJ4+LF1MsP1FSMnTqpcwwcaGD+/IzzvHkzdOmijunVS2PlyuwLuJP07GnFunXqSe/erWfXLh3jxqkn8cMPBkaN0vL992xWRUdHc+HCBWrUqJF+PJqVNutTp07VvLy80n1cunTJ7Jg///wz0326H3X9+nXNy8tL27dvX6r7pU+3yG2FoVzXzDtg7KvTtPYV43K3dgEWu2ZcdJz22evbNWurhFT7TjkViTAbrXzSpOzPQ2Eo28JIyjVnjHrR1A/43Vd2pJpmyxbTdDE2Nmp03NTo9ZrWsqXp//+bt7drQ7rtMq6Xcb6lXTkVaCzbqIgo7Y2eO80+M2pVvKBt++OYBZ/x4zlz8JLmYBdlzGePVhnPBpGWWbNMz9fDQ9Oe656gTRixTVu38IB2/miAtvi73dqLHfYap51L/nB2NmiffaZpd+6oc53YfV6ztY7TQNOsdIlpjyGQrE+3FhmpvfqqaXX2bPNphtKaTiwjSeW6a1ei8VxDhmTu2MGDTddfv/7xrp/XJJ9W6kAqkxhs3Khpjo7q8d9/OZ+/zMrJz+J33zW9ZjnxmiQmalq1aqZrHnk46+F335m2jRuX/jliY1UZgpomLjN9+AcONJ1/9eonfhqp+u030zXef1/TWrc2rSfNDFDYvmctMmXYnTt3tEuXLqX7iIsznw/3SYJuTdO0pk2basuWLUt1nwTdIrcVhnK9e+OecSqg5I/ffrP8tQ/+e0qrW+VcugPa1K31QIuPz/5rF4ayLYykXHNGyOUbWhHbaA00rYh9ghYSYr7/5rVbWrlS943/x8mnZkqN3/5Q46BqSX9B04rYRhunJ3u0bBdM3qXZ28aYfV680H6fdu1sJuYLygExkTGa7yOfbzqdXrt4/GqWz3X3VpTm7Jz+4HuZeTg5adpHHyZqdaucNm77aPD2tC/8SNB99Khp1ctLzUsNaoCwx/2pllSuERGJmrW1Op+vb2aOUwOegZq2K7ODc+Z1yefxfv9983179pgP9uXsrGlnzuRKNjOUk5/Fzz1nek2uXbP45TRNMx9AsG9fta1ePdO2c+cyPkfyac6OZXDPMDraNHe8s7Pl3u937mjG/8Py5U3LXl6mNIXte9YiU4a5uLjg6emZ7sPOLvuab924cYP79+9neWA1IUT2KVm2BA08z5lts7WF556z/LWbPFsLvwBvQi7fZMOiw3w1cgc9Wx+gkqvqx1ai6H0W/hSErW0GJxJC5Ci3qmUZMfQuALFxNkyaZNpn0BsY9MJVbtxRzZI7dojg3XfTP1/dZuV4q6+at9CgmZorLvrhOM061U71mMFjW7N/81Uae502blu1vTk+dV348uMbKab4Sc+dkLsc236WxPg05gB6DO8PPsTJK94A2Nmo+XY0zYoZ8ytk+VzfjztIeLhq8lmhgmac2ic1JYrep99T+1jy/V6ObT3FsKEGY3/lyEiY/K01J67UBKBO5QuM/6l5pvPRoAG0a6eWL1xQzWlBTbn0pL0AHR2h1sOW96dPQ3QGXbr371fThQF07Kia3RcEPXqYph5btUqFZKD6gXftaj51VXg4dOtmeh0Kq6Ruxvb2apCynDBgAJQpo5b/+ENNiZU0nkCTJuDtnfE5OnUyLf/zT/pp16+HBw+7jvfubbn3u4uL6X88ONg02F/Xrpa5XkFisXm6Q0JCOHv2LCEhIej1es6ePcvZs2eJijLNtdipUye2bNkCQFRUFFOmTMHPz4+goCD279/PiBEjqFSpEq1bt7ZUNoUQmdC++S2z9aefVoOF5BS3qmXpMqAxn85sx+pdzbh6y4O7N+4THGJH/XYyOrEQedHYCeWNgdacOaq/McCPn+xi06HGgBqpfNH8uDT7NSb35Yx6lHE2RQ8TR+2g71vpD99cv50PB87UYP6k3bgWV8fGxDvyxeRy1KwJhw5lfN37t8JpVD+Khh1qUKNyEL9NP2s2R+3j+Hv+QWatagOo0ei3rAk0vlYLFlpx717mzxUWdIcflzQCwNY6nt3/BnP/Plw8eZMVP+1j7CB1s/LDgTvYueYEt+86sey/Frz6Tkvqd6jN3HlWXLoEw4erPqpJbKwTWLxIy/IYAu+8k3Jb9+5ZOkWaGqmniV6f9mBjSZLPp/3889lz/bzAxcU0L/i1a3D0qAoqO3ZUQTbAM8+ouaQBAgKgZ0+Ijc2V7OY6gwEuX1bLVauSqc+a7ODgAG+/bcrDq6+a9j06N3daOnc2LWc0X3fS3NwAL7+cufM/rl69Um6ToDsTLFXVPnbs2FT7fB9I1gHFy8tL+/PPPzVN07SYmBhtyJAhWrNmzbRatWpp7du31z799FPt9u3baV5DmpeL3FZYynXDokNmTRDn/xqb21myuMJStoWNlGvOGjvW9Lnx5puadmTrGWNfYdC0f38/kqXzbV11TKtb5Zz26WvbNYPeYLYvo7K9d/O+9s7L2zVra1MzbA+PjJthfvb69hTNsCtX1rQ5czTtkR51mRJ4IURzcbpj6vs8YYemaZo2YoTp/FOmZP58Hw405W94751Zz1AyQYEGbXS/nVp9zzPa/37ck/EBjzQv1zTV9zR5f1bQtKCgx89T8nL9+WfTOadPT/sYg8GUB2trTQsLe/zr50W//mp6HQYMUO/HpPXmzVVRBAaq+byTtr/8snpdLOXKFU2bODHjZtBJcuqz+No102vw3HMWvVQKd++a5uROetjYaFo6oU0K1aub3sf376d9naR5yMuVU10rLCk4OGW3lOSfhYXte9YifbrzGgm6RW4rLOUacSfCOKiZtVWCFhZ8N7ezZHGFpWwLGynXnBUWZupnaGuToFV2DTD+UPtgwPZsvVZmy/b0aU1r2ND0g3HatHTyH3xHK+YQnmYf6AoVNO2Hb0K0E7vPa/GxGQ8ukZioaW2amQLunq33G28enD9vGljOw0PL1FgVN67c0hztIzXQNHvbGC3wQkjGB2WnVIJuTTMf1K1Bgye7RPJyPXTIdN7+/dM+5vRpU7p27Z7s+nnR7dumvrTJH7VrmwbD0zQ1gFfSYFygaRMmWCY/69apfsSgaaVLZ67/fk59Fm/danr+775r0Uul6r33zMsoq4H/6NGmY//4I/U08+aZ0owZ8+R5zoxmzUzX7NnTfF9h+561SJ9uIUThVMylGC8/ewCAgV32U8o9B9uWCyHyrVKlYMyQ8wAkJNpw9baaY7ix12km/pJ+03BLqVkTFiwwTfXz9YRI7t8KTzXt1HEneRCjpkV8s9cudm+P49lnTfsDA+GdT9yo29qLYsX0NPE+zfDeu5j79S62/3mcnX/5mR7b4vnwQ9h1wAWACmVuM2+FNzorlREvL+jeXXXQDQqCP2bvy/C5TBl3mui4ogC80esgHtXdHus1yW4DB5qaN3/4Yfad19cX4xge6c1EW1CblicpXdrUrzZJ1apqyigXF9O2hg3hf/8zvde/+MK8GfKT0uvh889V94Gkpu1hYaoPc16RbNrobJ1WNLPGjMFs3JnMNi1Pkrxfd1pNzJcuNS1buml5kj59TMvZ1X2kwMuhmwAWITXdIrcVpnI16A1agP/1FE06C6rCVLaFiZRrzrt7457m7HjPWCtSzCFcu+R3Nduvk9Wy7d/jojFPHw/ZnmL/zas3jbXIdjax2vVzwcZ9Bw+ajyyc1YeVlabt3p0yT9vXmEYNb1T9dLqft8GXQo0jxDvYRWmhATcz9byzVRo13Zqmajtv3XrySzxarkmtFHQ6TYuISP2Ypk1N2Qqw3OyWuWr2bNNzdHPTtMuX0047bZoprZ1d9rwmd+5oWqdOqb+/W7fO+Pic+ix+/31TvjZvtuil0vT22+r61aplfVTx6Gg1+j+o0cIf7SKQvFVJtWqW7ULwaL4GDdK0N95I2SqnsH3PSk23ECJb6ax0VKldwVgrI4QQmVGybAnGvuZnXP9lkj+edSvlXoYe+nJiEeOo4T8ubULI5Rtm+6eMO2OqRe59gAre7sZ9TZrAunVwYs9lvn1vB/2e2kd19yuZvvYXX0CrVim3t+1eg/qeZwE4crEmezf4p3mObz4+T2yCAwBvvXiIclXKZPr6OcHRESwx+UzSYGqaBseOpdwfGgoHD6rlOnWgSpXsz0NeMGCAqgVt1EjVcFetmnbad9+FIUPUcny8eu8+iePHVS160ojaVlbw7beqFQnA7t1w7lzax+ek5DXd1avnTh6+/x62bVOvS1ZHFXdwMB8t/NQp075//oHRo03rX3xhatVgaQ4OsHAh/PILMoNMJtnkdgaEEEIIUbCN/a4NZcvtpqx7EboOaJnb2QGgci0PRrywkx+XtSUm3pEJ7x9hzl/lAAi5fIOfVzYF1OjiH3+T+iwJvi098W3paVyPuBOB354rHN1/jxs3HklcujlY2+PlBYMHp54nnZWOd0bcYcB7av37qdG0SqXp5vVzwcz9qxkARe0j+fDr1KdNK4gaN1aj4YNqYt62rfn+5AFlQWxansTRMeMRrZPodDBypOpWAbBnj3mwlhX//aeaEyeNhu7qCitWQPv2aiqzpOn/5s+HqVOzfv7bt1XA3rJl9ow0nhR029pChazPxpctrKzU6/O4OnUy3eD45x91M+nUKejb1zRl19ix5iOki7xHgm4hhBBCWJSVtRVDPsp703+O+7Y289dE8CCmOPPXtuDdowF4N6zK5HEXiE1QU3qN6HsQt6rtMnW+4qWK0+b5urR5gmDvxeFNGDvxBqH3yrFmTxMun7iWomXA1x9fJj6xPACjXzmCa4XM5a8gSKrphtT7dSfvz92jh8Wzk2/UqQPFiqm5nPfuVS0FHqdW9P33TQF3kyaq/3ZSMNu/P3z0kapNX7QIvv7afBq69MTFwQ8/wMSJEBUFr7xi3lf5cTw6XZi19ZOdL7d07qz6hoO60dK/v5qiK2le7l694Jtvci17IpOkebkQQgghCqXSHqX4cKhqo6w32DDuvZsEBsKcv9QNgqJFIhn7Ta0czZOdgx0j+6u2uZpmxbfjr3F8xzk2rrrO/PkwYQIsWK/yV9whgvcn1s3R/OW2mjVNTXQPHzbf9+ABbN2qlj08oEGDnM1bXmZjA81U4whCQuDq1ayf4/hx0/zoDRrArl3mtcelS6s5wUHVWCe/AZKeDRugdm34+GMVcIMaAG7NmqznMbmQEIiJUcu51bQ8O1SvbuomsWePamlw/bpab9QIlizJufnHxeOTIhJCCCFEofXOxMaULXELgD93NufVFyOIj1dVgKNG21OmogU6JmfgjbG+ONhFA/DrmjY0aO9D174VGTYMxo+HxESVv3fes8fFrXDNJmFraxoZ/fJl1Ve5a1fVx7haNVVjCvDccznXvzW/SD6OwN69WT9+4ULT8uuvg719yjSvvWZanjcv/fNdu2ZP9+5WdOtm3vc6yVtvmUZFT8vJk7B8uamZdXK5PXJ5dtHpVG03QEKCqYWHhwesXau6Goi8T4JuIYQQQhRaRZ2L8sUY06hPu/arKcKKFYP3P8ydEYJKubswqHs6c2Khar7GvJdK1FMING5sWl64EDZuVIOq3bpl2p5U4ypMWiYbTiGrQXdcnKp9BtXS4MUXU0/Xvr2pVnbLlrRr1H/4QceLL9Zk0ybTnZHWrcHPD7p0UeshIaq5elo2blQ3W156SU1d9qiCEnSD+dRhAE5OsH49uOWNWQJFJkjQLYQQQohCbdhHzanmdtVs25gxap7x3PLNz3UZ2GUPXZsd4rXnd/H5iIPMnq2a3B48CGfOQIkSuZe/3PTCCym3WVuDu7sKwj7/HJ56Kufzldc1bWrq17xnT9aOXb8e7t5Vyz17pv3es7KCYcPUsqaZBm9LbuZM+OADKxITVRhSvjwsWwY7d0LdujB7NhRVEwfwyy+p53XPHujdGxIT1fqMGXDvnnmaixdNy/k96O7QwdSywMpK1e7XLVw9S/I9GUhNCCGEEIWarb0tX48L4cWRlQFwdjbw7ru5Wy9Roowzv21IZV4xQevWcPq06tfq5gblyqn+xPl1oKyc4uSkmuYfPapev3v3oGQmeyckb1qe1uj7SQYNUjc+9HoVdH/+uepTDqq2PPnI6WPGGPjqKyucnEzbKlZUg7AlDR722muqBjwp6PTzg27dTAO6AURGqmD9k09M2/LCdGHZpWhR+PFH9Rw//FB1qRD5i9R0CyGEEKLQ6/NmM17ssA87mzhmfn6o0NYi5xc1a6omt3XrQtmyEnBnVlITc02D/fszd0xoqGl6sgoVVK1retzdTUFhcDD8+69aXr8eBg40pRsyJJRp0zSzgDvJyJFqdHRQU4gljc598SJ07Gjq6518arHp080D8aSg28ZGBfL53ZtvqoHsXnklt3MiHocE3UIIIYQo9KysrVi+tQVxCfb0f7dZbmdHCIt4nH7dS5ao6bcABgzI3A2OpCbmAHPnqpHOX3jBNODZm28aGD48JM3jra3VQGxJNeSTJsHmzfDMM6a++82bq4C+d2+1fuuWmqoM1E2FpKC7ShXTeYTILRJ0CyGEEEIIUQhkNejWNPjtN9P6oEGZu07nzqrGG1QNd/fuplrofv1gxgwtw9Hl69SBsWPVckKCquG+ds20b8MG1ew6KQ3AtGkqsA8NhWg1AUC+b1ouCgYJuoUQQgghhCgEypeHypXV8sGDEB+ffvpDh+DsWbXcunXmBySzsTH1/dbrISJCLXfurGqjMzuv9KefgpeX+baqVVUNd1J/9IYNTQPnXboEq1cXrJHLRcEgQbcQQgghhBCFRNJ83bGxcPx4+mmzMoDao4YMMV9v2RL++APs7DJ/jiJF4NdfTetubmoqskenykpe2z1lSsEauVwUDBJ0CyGEEEIIUUhktol5TIyamgpUM+7UpmpLT9Wqag5tgPr1VTNzR8esnQOgbVtVOz5oEOzYoc77qKefVtcANTr7vHmmfRJ0i7xAgm4hhBBCCCEKieRBd3rzdf/1l2mU8D59SHWU8YwsXKiasR88+GTzyg8YoM71aFPzJDqdmkoryYEDpmXp0y3yAgm6hRBCCCGEKCRq1QJnZ7W8d68aLC01yQdQy2rT8iT29mrqL1vbxzs+K/r0USOVJ2dtDZUqWf7aQmREgm4hhBBCCCEKCSsraNFCLd+6ZT7oWJLr1+G//9Ry1arQpk3O5e9x2djA+++bb6tcOWcCfiEyIkG3EEIIIYQQhUhG/bpnzDDVgA8aRIbTe+UVgweDq6tpXZqWi7xCgm4hhBBCCCEKkaQRzCFl0L12LXz3nVq2tlb9qfMLBwcYNcq0LoOoibxCgm4hhBBCCCEKkcaNVXNsMB9M7eJF6N/ftD5pUv7rEz1qFNSurfqtJ38uQuQmm9zOgBBCCCGEECLnODpCw4ZqVPFz5yAsTNUS9+oFEREqTZ8+KftI5wclSsDJk5CQkLU5wYWwJKnpFkIIIYQQopBJ3q973z4YNgxOnVLrNWrAggX5py/3o3Q6CbhF3iJBtxBCCCGEEIVM8qD73Xdh+XK1XKwYrF6t/gohsofFgu6goCA++eQTOnTogK+vL08//TQzZswgPj4+3ePi4uKYMGECTZs2pX79+owaNYqwsDBLZVMIIYQQQohCJ3nQffmyafm338DHJ8ezI0SBZrGgOyAgAE3T+PLLL9mwYQMff/wxy5cv54cffkj3uG+++Ybt27fz448/smTJEm7dusXIkSMtlU0hhBBCCCEKnbJlU47uPXas6tcthMheFhtIrU2bNrRp08a4XqFCBa5cucKyZcsYO3Zsqsc8ePCAP//8k2nTptG8eXNABeFdunTBz8+PevXqWSq7QgghhBBCFCotW8KlS2r5qadg4sTczY8QBVWOjl7+4MEDnJ2d09x/6tQpEhISaNGihXGbp6cn7u7u6Qbder0evV6f3dnNVkn5y+v5FFkj5VpwSdkWTFKuBZeUbS7Q67E2LurBAq+9lKtlvf02bNxoRZUqsHSpAZ3OIsWYgpRrwVXYyjazzzPHgu5r166xdOnSNGu5AcLCwrC1taV48eJm20uVKsXt27fTPO7ChQvZlk9L8/f3z+0sCAuQci24pGwLJinXgkvKNudYxcRQ/+HyyZMnMTg4WOxaUq6Ws3Gj+hscrB45Scq14JKyNZfloHvatGnMnTs33TQbN27E09PTuH7z5k2GDRtGp06d6Nu3b9ZzmQEvLy8cHR2z/bzZSa/X4+/vT506dbC2ts74AJEvSLkWXFK2BZOUa8ElZZsLoqKMi76+vlC0aLZfQsq1YJJyLbgKW9lGR0dnqgI4y0H3kCFD6NmzZ7ppKlSoYFy+efMmAwYMoH79+nz11VfpHle6dGkSEhKIiIgwq+2+c+cOrq6uaR5nbW2dbwo1P+VVZJ6Ua8ElZVswSbkWXFK2OSjZ62xtbW22nv2XknItiKRcC67CUraZfY5ZDrpdXFxwcXHJVNqkgLtWrVpMmjQJK6v0B0uvXbs2tra27N+/n44dOwJqFPSQkBAZRE0IIYQQQgghRL5jsT7dN2/epH///ri7uzN27Fju3r1r3JdUa33z5k0GDhzIt99+i6+vL8WKFaN3795MnjwZZ2dnnJycmDhxIvXr10816DYYDADExMRY6mlkm6RO9tHR0YXirk9hIeVacEnZFkxSrgWXlG0uiI0Fb2/Tsk6X7ZeQci2YpFwLrsJWtklxaFJcmhadpmmaJTKwevVqPv7441T3nT9/HoCgoCCeeuopFi9eTNOmTQGIi4tj8uTJbNiwgfj4eFq1asUXX3yRavPyO3fucPXqVUtkXwghhBBCCCGEyFDlypUpVapUmvstFnTnhMTERMLDw7G3t8+w6boQQgghhBBCCJFdDAYDcXFxODs7Y2OTdiPyfB10CyGEEEIIIYQQeZlUDwshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ054D//e9/dOjQgTp16vDCCy9w8uTJ3M6SyKI5c+bQu3dv6tevT/PmzRkxYgQBAQFmaeLi4pgwYQJNmzalfv36jBo1irCwsFzKsXgcv/76K97e3nz99dfGbVKu+dPNmzd5//33adq0Kb6+vnTv3h1/f3/jfk3TmD59Oq1atcLX15dBgwbJFJT5gF6v58cff6RDhw74+vry9NNPM2vWLJKPCStlm/cdPnyYN998k1atWuHt7c1///1ntj8zZXj//n3ee+89GjRoQKNGjfjkk0+IiorKwWchUpNe2SYkJDB16lS6d+9OvXr1aNWqFR9++CE3b940O4eUbd6T0f9scp9//jne3t789ttvZtsLe7lK0G1hGzduZNKkSbz11lv89ddf+Pj4MHToUO7cuZPbWRNZcOjQIV555RVWrlzJwoULSUxMZOjQoURHRxvTfPPNN2zfvp0ff/yRJUuWcOvWLUaOHJmLuRZZcfLkSZYvX463t7fZdinX/Cc8PJyXXnoJW1tb5s6dy4YNGxg7dizOzs7GNHPnzmXJkiWMHz+elStX4uDgwNChQ4mLi8vFnIuMzJ07l2XLlvH555+zceNG3n//febNm8eSJUvM0kjZ5m3R0dF4e3vzxRdfpLo/M2X4/vvvc+nSJRYuXMgvv/zCkSNH+Pzzz3PqKYg0pFe2sbGxnDlzhuHDh7N69Wp++uknrly5wvDhw83SSdnmPRn9zybZsmULJ06coEyZMin2Ffpy1YRF9enTR5swYYJxXa/Xa61atdLmzJmTi7kST+rOnTual5eXdujQIU3TNC0iIkKrVauWtmnTJmOaS5cuaV5eXtrx48dzKZcisyIjI7Vnn31W27t3r/bqq69qEydO1DRNyjW/mjp1qvbSSy+lud9gMGgtW7bU5s2bZ9wWERGh1a5dW1u/fn1OZFE8ptdff137+OOPzbaNHDlSe++99zRNk7LNj7y8vLQtW7YY1zNThkmfwydPnjSm2blzp+bt7a3duHEj5zIv0vVo2abmxIkTmpeXlxYcHKxpmpRtfpBWud64cUNr3bq1duHCBa19+/bawoULjfukXDVNarotKD4+ntOnT9OiRQvjNisrK1q0aMHx48dzMWfiST148ADAWHN26tQpEhISzMra09MTd3d3/Pz8ciOLIgu+/PJL2rZta1Z+IOWaX23bto3atWszevRomjdvTo8ePVi5cqVxf1BQELdv3zYr12LFilG3bl35bM7j6tevz4EDB7hy5QoA586d4+jRo7Rp0waQsi0IMlOGx48fp3jx4tSpU8eYpkWLFlhZWUkXvnwmMjISnU5H8eLFASnb/MpgMPDBBx8wdOhQqlevnmK/lCvY5HYGCrJ79+6h1+spVaqU2fZSpUql6A8s8g+DwcA333xDgwYN8PLyAiAsLAxbW1vjl0aSUqVKcfv27dzIpsikDRs2cObMGf74448U+6Rc86fAwECWLVvG4MGDefPNN/H392fixInY2trSs2dPY9ml9tks/fXzttdff53IyEg6d+6MtbU1er2ed955h+eeew5AyrYAyEwZhoWF4eLiYrbfxsYGZ2dn+WzOR+Li4pg2bRpdu3bFyckJkLLNr+bOnYuNjQ0DBgxIdb+UqwTdQmTZhAkTuHjxIr///ntuZ0U8odDQUL7++msWLFiAvb19bmdHZBNN06hduzbvvvsuADVr1uTixYssX76cnj175nLuxJPYtGkT69at47vvvqNatWqcPXuWSZMmUaZMGSlbIfKRhIQE3n77bTRNY8KECbmdHfEETp06xeLFi1m9ejU6nS63s5NnSfNyCypZsiTW1tYpBk27c+cOpUuXzqVciSfx5ZdfsmPHDhYtWkS5cuWM20uXLk1CQgIRERFm6e/cuYOrq2tOZ1Nk0unTp7lz5w69evWiZs2a1KxZk0OHDrFkyRJq1qwp5ZpPubq64unpabatatWqhISEGPcD8tmcD3377be8/vrrdO3aFW9vb3r06MHAgQOZM2cOIGVbEGSmDEuXLs3du3fN9icmJhIeHi6fzflAQkICY8aMISQkhAULFhhruUHKNj86cuQId+7coX379sbfUsHBwUyZMoUOHToAUq4gQbdF2dnZUatWLfbv32/cZjAY2L9/P/Xr18/FnIms0jSNL7/8ki1btrBo0SIqVKhgtr927drY2tqalXVAQAAhISHUq1cvh3MrMqtZs2asW7eONWvWGB+1a9eme/fuxmUp1/ynQYMGxj6/Sa5evUr58uUB8PDwwNXV1axcIyMjOXHihHw253GxsbEpalKsra2NU4ZJ2eZ/mSnD+vXrExERwalTp4xpDhw4gMFgwNfXN8fzLDIvKeC+du0av/32GyVLljTbL2Wb/zz//POsXbvW7LdUmTJlGDp0KPPmzQOkXEGal1vc4MGDGTt2LLVr18bX15dFixYRExNDr169cjtrIgsmTJjA+vXr+fnnnylatKix/0mxYsUoUqQIxYoVo3fv3kyePBlnZ2ecnJyYOHEi9evXl+AsD3NycjL2y0/i6OhIiRIljNulXPOfgQMH8tJLL/HLL7/QuXNnTp48ycqVK/nyyy8B0Ol0DBgwgNmzZ1OpUiU8PDyYPn06ZcqU4emnn87l3Iv0tG/fnl9++QV3d3dj8/KFCxfSu3dvQMo2v4iKiuL69evG9aCgIM6ePYuzszPu7u4ZlqGnpyetW7fms88+Y8KECSQkJPDVV1/RtWtXypYtm1tPS5B+2bq6ujJ69GjOnDnDnDlz0Ov1xt9Tzs7O2NnZSdnmURn9zz5688TW1pbSpUtTtWpVQP5nAXRa0u1hYTFLly5l/vz53L59mxo1avDpp59St27d3M6WyIJH525OMmnSJOMNlLi4OCZPnsyGDRuIj4+nVatWfPHFF4Wm2UxB0b9/f3x8fBg3bhwg5Zpfbd++ne+//56rV6/i4eHB4MGD6du3r3G/pmnMmDGDlStXEhERQcOGDfniiy+oUqVKLuZaZCQyMpLp06fz33//cefOHcqUKUPXrl156623sLOzA6Rs84ODBw+mOuBSz549mTx5cqbK8P79+3z11Vds27YNKysrnn32WT799FOKFi2ak09FPCK9sh05ciRPPfVUqsctXryYpk2bAlK2eVFG/7OP6tChAwMGDGDQoEHGbYW9XCXoFkIIIYQQQgghLET6dAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCFFIHTx4EG9vbw4ePJjbWRFCCCEKLAm6hRBCiFSsXr0ab2/vNB9+fn65ncU8KSwsjI8//pjmzZvj6+tLz5492bRpU5rpN27cyIsvvki9evVo1KgR/fr1Y//+/WmmP3LkiLEM7t69m25eBg8ejLe3N19++eVjPx8hhBDiSdnkdgaEEEKIvGz06NF4eHik2F6xYsVcyE3eFhkZycsvv0xYWBgDBgzA1dWVTZs2MWbMGBITE+nevbtZ+pkzZzJr1iw6duxIz549SUxM5MKFC9y8eTPV8xsMBiZOnIijoyPR0dHp5mXz5s1yY0QIIUSeIEG3EEIIkY42bdpQp06d3M5GvrB8+XKuXbvGb7/9RvPmzQF46aWX6Nu3L1OmTKFjx47Y2dkB4Ofnx6xZs/joo48YNGhQps6/YsUKQkND6dOnD4sXL04zXVxcHJMnT2bYsGHMmDHjiZ+XEEII8SSkebkQQgjxBGbMmIGPj0+KJtGfffYZtWvX5ty5cwDEx8czffp0evXqRcOGDalXrx4vv/wyBw4cMDsuKCgIb29v5s+fz//+9z+eeuop6taty5AhQwgNDUXTNGbNmkWbNm3w9fVl+PDh3L9/3+wcHTp04I033mDPnj08//zz1KlThy5durB58+ZMPacTJ04wdOhQGjZsSN26dXn11Vc5evRohscdOXIEFxcXY8ANYGVlRefOnbl9+zaHDx82bl+0aBGlS5dmwIABaJpGVFRUuue+f/8+P/74I6NHj6Z48eLppp07dy6apjF06NAM8yyEEEJYmgTdQgghRDoiIyO5e/eu2ePevXvG/cOHD6dGjRqMGzeOyMhIAHbv3s3KlSsZMWIEPj4+xvOsWrWKJk2a8P777zNy5Eju3r3LsGHDOHv2bIrrrlu3jt9//53+/fszePBgDh06xJgxY/jxxx/ZvXs3r732Gn379mX79u1MmTIlxfFXr17lnXfeoU2bNrz33ntYW1vz9ttvs3fv3nSf7/79+3nllVeIiopi5MiRvPPOO0RERDBw4EBOnjyZ7rEJCQkUKVIkxfakbadPnza7Tp06dVi8eDHNmjWjQYMGtGrViqVLl6Z67unTp+Pq6kq/fv3SzUNISAhz587l/fffTzUvQgghRE6T5uVCCCFEOlJr+mxnZ4e/vz8Atra2TJkyhV69ejF58mQ+/PBDxo0bR+3atXn99deNxzg7O7Nt2zZj82qAvn370rlzZ5YsWcI333xjdo2bN2+yefNmihUrBqj+zHPmzCE2NpY///wTGxv1FX7v3j3WrVvHhAkTzM599epVZs6cybPPPgtAnz596NSpE9OmTaNly5apPldN0xg/fjxNmzZl3rx56HQ6APr160fXrl358ccfWbBgQZqvVZUqVdi3bx/BwcGUL1/euD2pljypr3Z4eDj37t3j2LFjHDhwgJEjR+Lm5sbq1av56quvsLGxMQuuz507x4oVK/j111+xtrZO8/oAkydPpkaNGnTt2jXddEIIIUROkaBbCCGESMfnn39OlSpVzLZZWZk3FPPy8mL06NF89913nD9/nnv37rFgwQJjYAxgbW1tDBgNBgMREREYDAZq167NmTNnUly3U6dOxoAbwNfXF4DnnnvO7Ly+vr6sX7+emzdvUqFCBeP2MmXK8MwzzxjXnZyc6NGjB3PnzuX27du4urqmuObZs2e5evUqw4cPN6vNB2jevDl///03BoMhxfNP0qdPH5YvX86YMWP4+OOPKV26NJs2bWLLli0AxMbGAhgHQbt//z4//PADXbp0MT7n7t27M3v2bLOg++uvv6ZNmza0atUq1esmOXDgAJs3b2blypXpphNCCCFykgTdQgghRDp8fX0zNZDa0KFD2bBhAydPnuTdd9+lWrVqKdL89ddfLFiwgCtXrpCQkGDcntro6G5ubmbrSQF4WtvDw8PNgu5KlSoZa6qTVK5cGYDg4OBUg+6rV68CMHbs2LSeJg8ePMDZ2TnVfT4+PkybNo0vvviCl156CQBXV1c++eQTxo8fj6OjIwD29vaAaiXQsWNH4/FJ/b9nzpxJSEgI7u7ubNy4kePHj7Nu3bo08wSQmJjI119/zfPPP2+8QSGEEELkBRJ0CyGEENkgMDCQa9euAXDhwoUU+//++28++ugjnn76aYYOHUqpUqWwtrZmzpw5BAYGpkifVjPqtGqZNU17gtybn+PDDz+kRo0aqaZJCpzT0qlTJzp06MC5c+cwGAzUrFmTQ4cOAaagv0SJEtjb21O8ePEUz7NUqVIARERE4O7uzrfffkvHjh2xtbUlKCjIuA/gxo0bJCQkULZsWdasWcOVK1eYMGGCMV2SqKgogoKCKFWqFA4ODll4RYQQQognJ0G3EEII8YQMBgMfffQRTk5ODBw4kF9++YWOHTsa+1MD/Pvvv1SoUIGffvrJrAbaUlNaXbt2DU3TzK6VVJOdvL91ckk15U5OTrRo0eKxr21nZ2dW27xv3z4A4zmtrKyoUaMG/v7+xMfHm/VFv3XrFgAlS5YEIDQ0lPXr17N+/foU1+nZsyc+Pj78/fffhIaGkpCQYKxhT27NmjWsWbOGWbNm8fTTTz/28xJCCCEehwTdQgghxBNauHAhx48fZ/bs2bRr146DBw8yfvx4GjVqhIuLC2CquU4eCJ84cQI/Pz/c3d2zPU+3bt1iy5YtxsA/MjKSNWvWUKNGjVSblgPUrl2bihUrsmDBArp160bRokXN9t+9e9f4fDLr6tWrLF++nPbt25v1je/cuTN+fn6sWbOGvn37Amp+7XXr1lGtWjXKli0LwKxZs1Kcc8OGDWzcuJEpU6ZQrlw5ALp06ZJq7fxbb71F27Zt6du3rzQ7F0IIkSsk6BZCCCHSsWvXLgICAlJsb9CgARUqVODy5cvG+bc7dOgAqBG0e/TowYQJE5g+fToA7dq1Y/Pmzbz11lu0a9eOoKAgli9fTrVq1YwDi2WnypUrM27cOPz9/SlVqhR//vknd+7cYdKkSWkeY2VlxcSJE3nttdfo1q0bvXr1omzZsty8eZODBw/i5OTEL7/8ku51u3TpQqdOnXBzczM+xxIlSjBhwgSzdP369eOPP/7gyy+/5MqVK7i7u/P3338TEhLC7NmzjelSq5lOmmKtTZs2xpsAnp6eeHp6pponDw8PqeEWQgiRayToFkIIIdKRVvPvSZMm4e7uztixYylZsiSffPKJcV/lypV59913+frrr9m4cSNdunShV69ehIWFsWLFCvbs2UO1atWYOnUq//zzj7HPc3aqXLkyn332Gd9++y1XrlzBw8ODH374gdatW6d7XNOmTVmxYgU///wzS5cuJTo6GldXV3x9fXnxxRczvK6Pjw+rV68mLCyMkiVL0qlTJ0aPHm3sq52kSJEiLFq0iKlTp7J69Wqio6OpUaMGc+bMyTCPQgghRH6i07Jj5BUhhBBC5BkdOnSgevXqzJkzJ7ezIoQQQhR6qQ+BKoQQQgghhBBCiCcmQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIn26hRBCCCGEEEIIC5GabiGEEEIIIYQQwkIsOmXY4cOHmT9/PqdOneL27dvMmjUr3XkyDx48yIABA1Js37NnD66urim2JyYmEh4ejr29PVZWcv9ACCGEEEIIIUTOMBgMxMXF4ezsjI1N2qG1RYPu6OhovL296d27NyNHjsz0cf/88w9OTk7G9Ufn9kwSHh7O1atXnzSbQgghhBBCCCHEY6lcuXKaMStYOOhu27Ytbdu2zfJxpUqVonjx4hmms7e3B6BixYoUKVIky9fJSQaDgUuXLlGtWjWplS9ApFwLLinbgknKteCSss0FMTFYt2kDgH7XLnBwyPZLSLkWTFKuBVdhK9vY2FiuX79ujEvTYtGg+3H16NGD+Ph4qlevzsiRI2nYsGGq6ZIK8vr16zmZvSdy6dKl3M6CsAAp14JLyrZgknItuKRsc45VTAz1z58H4PiFCxgsEHQnkXItmKRcC67CVrYZ3WDIU0G3q6srEyZMoHbt2sTHx7Nq1SoGDBjAypUrqVWrVprHeXl54ejomIM5zTq9Xo+/vz916tTB2to6t7MjsomUa8ElZVswSbkWXFK2uSAqyrjo6+sLRYtm+yWkXAsmKdeCq7CVbXR0NBcuXMgwXZ4KuqtWrUrVqlWN6w0aNCAwMJDffvuNqVOnpnmctbV1vinU/JRXkXlSrgWXlG3BJOVacEnZ5qBkr7O1tbXZevZfSsq1IJJyLbgKS9lm9jnm+Yb2derUyVfNx4UQQgghhBAiP/nrL5gxA/T63M5JwZSnarpTc+7cuVSnCxNCCCGEEEII8WT++gt69VLLBgOMGZOr2SmQLBp0R0VFmdVSBwUFcfbsWZydnXF3d+e7777j5s2bfPvttwD89ttveHh4UL16deLi4li1ahUHDhxgwYIFlsymEEIIIYQQQhQ6UVHw9tum9dWrJei2BIsG3adOnWLAgAHG9UmTJgHQs2dPJk+ezO3btwkNDTXuT0hIYMqUKdy8eRMHBwe8vLxYuHAhzZo1s2Q2hRBCCCGEEKLQ+eorCAw0re/fDxERkInZm0UWWDTobtq0KecfTiWRmsmTJ5utv/baa7z22muWzJIQQgghhBBCFHpnzsB335lvS0yE7dvh+edzJ08FVZ4fSE0IIYQQQgghRPbRNHjrLRVkA7RoYdr377+5k6eCTIJuIYQQQgghhChEli2DHTvUcpUqsGYN2NqqdQm6s58E3UIIIYQQQghRSISHw3vvmdZnzABXV2jZUq0HBMDly7mTt4JKgm4hhBBCCCGEKCS++AJu3FDLzz0H3bqp5Y4dTWmktjt7SdBdiH300UeMGDHCuN6/f3++/vrrHM/HwYMH8fb2JiIiIsevLYQQQgghRGHh5wczZ6plBweYPt2079lnTcubN+dotgo8CbrzoI8++ghvb2+8vb2pXbs2zzzzDD/99BOJSSMdWMjMmTN5O/lEfemQQFkIIYQQQoj8Q9NgxAgwGNT6p59C5cqm/fXqqWbmANu2QUJCTuew4JKgO49q3bo1e/bs4d9//2Xw4MH89NNPzJ8/P0W6+Pj4bLtmiRIlcHJyyrbzCSGEEEIIIfKGtWvVPNwAXl7m/boBrKzgmWfU8oMHprTiyUnQnUfZ2dnh6upK+fLlefnll2nRogXbtm0zNgmfPXs2rVq1olOnTgCEhoby9ttv06hRI5o0acLw4cMJCgoynk+v1zNp0iQaNWpE06ZN+fbbb9E0zeyajzYvj4+PZ+rUqbRt29ZY475q1SqCgoIYMGAAAI0bN8bb25uPPvoIAIPBwJw5c+jQoQO+vr4899xz/PPPP2bX2blzJx07dsTX15f+/fsTHBxskddQCCGEEEIIoWq5J040rU+bBvb2KdMl79ctTcyzj01uZyBXnP0ezn2fcTqXBtB2rfm2nc/B3WMZH+vzLtR49/Hylwp7e3vu378PwP79+3FycmLhwoUAJCQkMHToUOrVq8f//vc/bGxs+Pnnnxk2bBhr167Fzs6OBQsW8Ndff/HNN9/g6enJggUL2LJlC82aNUvzmh9++CF+fn58+umn+Pj4EBQUxL1793Bzc2PmzJmMGjWKf/75BycnJ4oUKQLAnDlzWLt2LRMmTKBy5cocPnyYDz74ABcXF5o0aUJoaCgjR47klVdeoW/fvpw6dYopU6Zk2+skhBBCCCGEMLd5Mxw5opbr1TMNnvaopJpuUIOpJQ/UxeMrnEF3QgTEZKJ2NbZCKttuZ+7YhOzp66xpGvv372fPnj28+uqr3Lt3D0dHRyZOnIidnR0Af//9NwaDga+//hqdTgfApEmTaNy4MYcOHaJVq1YsWrSI119/nWcfjpAwYcIE9uzZk+Z1r1y5wqZNm1i4cCEtWrQAoEIF0+vh7OwMQKlSpShevDigasbnzJnDwoULqV+/vvGYo0ePsmLFCpo0acKyZcuoWLGisWa8atWqXLhwgblz52bL6yWEEEIIIURhcf26agb+/PPwsA4sBU2Dr74yrX/6KTwMGVJwcwNfXzh5Eo4ehbAwKF06+/Nd2BTOoNu2ODiUzzhdEdfUt2XmWNviWc9XMjt27KB+/fokJCSgaRrdunVj1KhRfPnll3h5eRkDboBz585x/fp1GjRoYHaOuLg4rl+/zoMHD7h9+zZ169Y17rOxsaF27dopmpgnOXv2LNbW1jRu3DjTeb527RoxMTEMGTLEbHtCQgI1atQA4PLly/j6+prtr1evXqavIYQQQgghhID796F5cwgJgQ4dVG22tXXKdLt2wd69arlGDejZM/3zduyogm5Ng//+g379sj3rhU7hDLprPEHT70ebm1tI06ZNGT9+PLa2tpQpUwYbG1NROTg4mKWNjo6mVq1aTJs2LcV5XFxcHuv6RdK6VZaO6OhoQDUxL1u2rNm+5DcJhBBCCCGEEE/myy9VwA1qtPHx481rtJMk3zZunBowLT3PPgtTp6rlf/+VoDs7FM6gOx9wcHCgUqVKmUpbq1YtNm3aRKlSpdIcfdzV1ZUTJ04Ya64TExM5ffo0NWvWTDW9l5cXBoOBw4cPG5uXJ2drawuoAdqSeHp6YmdnR0hICE2aNEn1vJ6enmzbts1s24kTJzJ+kkIIIYQQQggAzp0zzbedZOJEaNkSHo6zDKim51u3quVq1eDFFzM+d6tWag7vmBhVe65paTdHF5kjo5cXAN27d6dkyZIMHz6cI0eOEBgYyMGDB5k4cSI3btwAYMCAAcydO5f//vuPy5cvM2HChHTn2Pbw8KBnz5588skn/Pfff8Zzbty4EYDy5cuj0+nYsWMHd+/eJSoqCicnJ4YMGcKkSZP466+/uH79OqdPn2bJkiX89ddfAPTr14+rV68yZcoUAgICWLdunXGfEEIIIYQQImPvvguJiWo5WQ9SXn0VAgNN68kmJuLjj8EmE1WuRYpAu3ZqOSQETp9+4uwWehJ0FwAODg4sXboUd3d3Ro4cSZcuXRg3bhxxcXHGmu8hQ4bw3HPPMXbsWPr160fRokV5JvnwhKkYP348HTt2ZPz48XTu3JnPPvuMmJgYAMqWLcuoUaP47rvvaNGiBV89bLcyZswYRowYwZw5c+jSpQvDhg1jx44deHh4AODu7s7MmTPZunUrzz//PMuXL+edd96x4KsjhBBCCCFEwbFxI2zapJY9PFR/7e7d1fqdO6o5eEICHD8OGzao7RUrqoA8sx6OvQyoJubiyei0tEbSygeio6M5e/YsNWrUwNHRMbezky69Xo+fnx/16tXDOrURDkS+JOVacEnZFkxSrgWXlG0uiIqCpG5tkZFQtGi2X0LKtWCScn188fFqdPHz59X6smUqyL57Fxo0gGvX1Pb334crV+DPP9X6rFkwYkTmr3P2LCT1Qn322cwH3oWtbDMbj0pNtxBCCCGEEELkA7NmmQLuli1NfbRdXGDlSng47BLTppkCbjc3eGRyoQz5+KhadFCjnz9s7CoekwTdQgghhBBCCJGDrlyBjz6CnTszf8ytWzBhglrW6WD6dPMBzpo0ge++S3ncBx+kPYd3WnQ6NXUYQGwsfPGFBN5PQoJuIYQQQgghhMhBr70GU6ZA+/bw7bdqhPCMfPYZhIer5SFDoGHDlGlGjoQ+fUzrpUvD668/Xh6fe860PHWqmuP7jz8yl1dhzqJB9+HDh3nzzTdp1aoV3t7e/Pfffxkec/DgQXr27Ent2rV55plnWL16tSWzKIQQQgghhBA5JiICduxQy5oGY8fCwIGqRjktfn4wd65aLlbMfFTy5HQ6mDdP9e8GFdA/7nAL3burEc+TumZfuwYvvKBuFPj5Pd45CyuLBt3R0dF4e3vzxRdfZCp9YGAgb7zxBk2bNuXvv/9m4MCBfPrpp+zevduS2RRCCCGEEEKIHLFrF+j15tuWLFHTdIWGmm8PCYEvv4TOnU01zJ9/DmXLpn1+Z2c4cEANrjZ48OPnU6eDb76Bkych+aRHO3eqoH748PRvFAiTTMzU9vjatm1L27ZtM51++fLleHh48NFHHwHg6enJ0aNH+e2332jdurWlsimEEEIIIYQQOSJ549/XX4elSyE6Gg4ehMaNYc0aePAAfv5ZLSfNxw1QvTqMHp3xNWxtoWTJ7MlvzZpq9PL169X84JcuqRsAv/wCZ87A339DiRLZc62CyqJBd1b5+fnRvHlzs22tWrXim2++Sfc4vV6P/tHbRXlMUv7yej5F1ki5FlxStgWTlGvBJWWbC/R6rI2L+pRVd9lyCSnXgqiwl+vWrVaADisrjW++MfD669CzpxWBgTqCg1Xg/SgrK42uXeGHHwxYW1vk3y1DXbrAU0/BzJk6vvxSR3S0jl27oE0bjQ0bDLi7F76yzezzzFNBd1hYGKVLlzbbVrp0aSIjI4mNjaVIGsPuXbhwISeyly38/f1zOwvCAqRcCy4p24JJyrXgkrLNOVYxMdR/uHzy5EkMDg4Wu5aUa8FUGMs1LMyGU6fqAlCjRjRXr54DYN48Gz74wJOTJ53M0pcqlUCPHmH07HmbcuUSuH8/9/tTP/00uLs7Mnp0Ne7ft8XfX0fTpon89NNFKlWKAwpn2aYnTwXdj8vLyyvdycjzAr1ej7+/P3Xq1CkUE8UXFlKuBZeUbcEk5VpwSdnmgqgo46Kvr+/jj9aUDinXgqkwl+uyZaY5vrp3d6BevXrG9f374Z13DCxcqKNZMxg+XKNHDyvs7MoAZXI+s+moVw8aNYIuXTSuXtURGmrPG2/UYs2aRIoUOVloyjY6OjpTFcB5KuguXbo0YWFhZtvCwsJwcnJKs5YbwNraOt8Uan7Kq8g8KdeCS8q2YJJyLbikbHNQstfZ2trabD37LyXlWhAVxnLdts20/MwzVmb/No6OMGcOzJ4NVlYAukcPz1Nq1IB9+6BTJzXYWliYjmeftWHSpOLUq1c4yjazzzFPBd316tVj165dZtv27dtndgeooPP29k53/8iRIxk1alQO5UYIIYQQQgiRHTTNNIhakSLQokXq6awsOr9U9nJzU6Ox/5+9+w6PqugCOPzb3RQIgQAhlNAhJKGFhCK9KkoRpIkoKNVCERAREAVBKVL0k6ZGEAQEKQoIAhZUepMSCL33FgghpCe79/tjyG6W9JBN47zPsw+339kdkuy5M3PmpZdUVvOICB3DhlXh7781PvnEMnXZ086mQXd4eDhXrlwxr1+7do2TJ0/i4uKCu7s7X3zxBbdv32b69OkA9OjRg2XLljF9+nS6du3K3r172bx5M/7+/rYsZo6yc+dO8/KmTZuYPXs2v//+u3lbwm70mqZhNBqxs8tRz06EEEIIIYQQjzl3Dq5eVctNmqjAOy9wcYHff4eePWHNGrVt/Xod69erub7Hj1dd0Z9mNn2OcuzYMTp16kSnTp0AmDp1Kp06dWL27NkABAUFcTPBZHRly5bF39+f3bt389JLL7Fo0SImTZr0VE0X5ubmZn4VLFgQnU5nXr9w4QK1a9dm27ZtdOnShZo1a3Lw4EHGjBnDoEGDrK4zefJkXn/9dfO6yWTC39+fVq1a4ePjQ8eOHa2CeSGEEEIIIYTt/P23Zfm557KvHLaQLx+sWgWzZplwc4sxb9+wQWVjb98eDhzIxgJmM5s2kdavX5/Tp08nu//zzz9P8px169bZrEyrV6unLQ8f2uwWiRQsCBMnQuXKmXO9L774gtGjR1O2bFkKFSqUpnP8/f1Zv349EydOpEKFCvz333988MEHFC1alGeeeSZzCiaEEEIIIYRIUsL5uZ99NvvKYSsGAwwerFG37jEOHvRl+nQ9166pfZs2qdcbb8DUqeDunr1lzWpPXb/kGTPg1Kmsv+/MmXq++SZzrjV06FAaN26c5uNjYmLw9/dn0aJF+PmpyT3Kli3LwYMHWblypQTdQgghhBBC2JDRCP/+q5aLFAE/v5SPz80cHTUGDdJ46y1YtEgF2fEjjpcsgV9+gbFjYcSIvNPFPjVPXdA9ahSMG5f1Ld0jR5oy7Xo1a9ZM1/GXL18mMjKSfv36WW2PjY2latWqmVYuIYQQQgghRGIBARAcrJZbtrRpsv8cw9ER3nkH+vVTWdk/+QTu31ezDX70EcyfDzNnQpcuoMvZidqf2FMXdHfrpl5ZzWjMvIns8+fPb7Wu0+nQNM1qW1xcnHk5IiICUF3MS5QoYXWcg4ND5hRKCCGEEEIIkaS8PJ47NQ4O8O678NprMGGCmhLNaIRLl1Rc1rmzav3Oy4F3LkpIL5JTtGhRgoKCrLadPHnSvFy5cmUcHBy4ceMG5cuXt3qVKlUqq4srhBBCCCFs5OefYeVKMGVeJ0uRCfL6eO60cHWFOXNUQ2TCBw9r18Lx49lWrCwhQXce0KBBA44dO8a6deu4dOkSs2fP5uzZs+b9zs7O9OvXj6lTp7J27VquXLnC8ePHWbp0KWvXrs3GkgshhBBCiMzy22/w8svQowe0aQO3b2d3iQRAVBTEzwpctixUqZK95cluNWrAn3/C6NGWbfv3Z195soIE3XlA06ZNGTRoEDNmzKBbt26Eh4ebp2mLN3z4cAYNGoS/vz/t2rVjwIABbN26lTJlymRPoYUQQgghRKb68UfL8l9/Qa1a1t2aRfbYswciI9Xyc8/l7W7UaaXTqQdD8f77L/vKkhWeujHduUmXLl3o0qWLeT2lKdiGDh3K0KFDk72WTqejd+/e9O7dO9PLKYQQQgghsldUFGzcaL3t9m1o3Ro+/lhNmWsn3/yzRcIHH09r1/Kk1Kmjgm9Nk5ZuIYQQQgghnnpHjsCHH8KOHVl7X01L2/jsv/+GsDC1/NJLllZETYPPPlPB3vXrtiunSJ6M505awYIQP5HS0aPqwVFeJUG3EEIIIYQQydA0mD0b6tWDzz+HZs3UNEihoba/98OHULs2FCoEu3enfOyaNZbl/v1Vq/fnn1umptq+XV3r6lXblVck9uCBpet09epQsmT2lieneeYZ9W9cXObN9JQTSdAthBBCCCFEEoKD1RzCw4ZBbKxlu7+/JRmULS1bpgKR8HAYMyb54+Li4Ndf1XKBAqpLuV6vElVt366SdwHcuQNjx9q2zMLa1q2WngpP21RhaVGvnmU5L3cxl6BbCCGEEEKIx+zZA35+sG6dZVu3biqoBdVi/MILqlU5JMQ2ZViyxLK8YwcEBiZ93M6dcO+eWm7XDvLls+xr1AgOHoQiRdT6jz/CoUO2Ka+wpmmwapVlXbqWJxbf0g15O5maBN1CCCGEEDnQrYt3CLsflt3FSFZ8NmaAr7/O2nuHhNgu0DWZYPp0aNoUrlxR24oWhQ0bYPVqFfi2amU5fuFC1eqdcNxuZjh7VgX+Cc2bl/SxCbuWJ8jBa+bmBuPGWdY/+EAFhMK2pkyB5cvVcv780Lx59pYnJ/LxAQcHtSwt3UIIIYQQIkvERscyus9W3CsXo1KFSO5cCcruIiXps88sy5Mnqy7QWSEgAEqUUHMdZ/YY0IcPVdA6ejQYjWpbkyYqidqLL6r1ihVVgO3vrxJBgUpQ9sILMGtW5gWzS5cm3vbjj2qMcEImkyXodnBQLd1JGTRIlR3gn39g8+bMKadI2rx5Kmt8wvVChbKvPDmVgwP4+qrlM2ds9zAtu0nQLYQQQghhY1HhUYzpu5V3umznyI6kp/8EuHzyGs18TzF9cQs0TU9QqBsr/E9kXUHTaOdOlVwsXsiDpINEW5g/H2Ji4O5dePVViIhI+fjLl6FvX5gwIXHAmtDFi6ordvzYaJ0OPvoI/v0XypSxPlang7fegmPH4Pnn1TaTCYYPhzffhOjojL47y7XiP0+93tJ6HR4OixdbH3vggCUr+XPPJR/YOTqqxGrxRo1SY8FF5lu2DIYMsazPnKn+D4qkJexifuBA9pXDliToFkIIIYSwsVH99zHthxb4r22GbzMvOr9wLdG42l+/34tfvQLsPVXTavu6TTmreSw8XAUQjzfozp6dNV2WE3bjPnUK3n8/+WPv3lWB6A8/wMSJ4OkJCxZYWrHjbdumEjodO6bWXVxg0yaYNCnlua3LlVMtxgmTk33/vRq7e+dOut+a2c6dcOmSWn7+efj0U8u+efOspxBbu9aynFTX8oRefhnq11fLx4+rz0Vkrg0boHdvy/pHH6X8f1RYJ1PLq+O6JegWQgghhLChTUv+Y85K68Gc6/4sQ5060LEj7N4Rw/BXt9JpQAPuh6tsVxWKX8W96E0Atgf6EHwvDRM1Z5EPP4Rz5xJvP3kS/vrLtve+elV1QU3o228trdMJRUWp+aoTlvXOHdUSXa+eZb7t775TgXl8IjJPTzW2NH6e69To9ap7/fLllgRmu3ape2S0+3vC1uw33lBTTbVoodbPnFFzcoN6yPHLL5ZydOyY8nV1OtXqGm/8+KwbFvA02LpVPdiIf6gzeLD1MAyRtIQt3Xl1XLcE3UIIIYQQNnL7UhB9h1Ywr/d8fhfuxS3J0TZsgMbNHJi1ooV5W7cWezgcWIhXX1PZhYxGAxs35YyvbFu3wpw5ajl/vsT7Z82y7f3jg01Qycvi9e8PN29a1k0m1doYP7d1qVIq83i8w4fVfNv16sHbb1u6Wb/wAuzbpwLv9Hr1VTU9l7u7Wr9yBRo3VkH94y3rKYmIUAnbQI0Zf+kltTx4sOWY+IRqJ06ohGugEr+5uaV+/SZNoHNntXzzJnzxRdrLJpIWF6eGA3TsaBla0LOn6v2h02Vv2XIDT0/LsAhp6RZCCCGEEGmmmTT6vnKJOw9UJPRiw/0s3dyI85edmTcv8ThhR/sovp6wnVV/N6BwcRc6veJq3pdw2qrs8vCh9bjUiRMty2UfvZdNmxK3RGemhEH3119bAtJ791SQHd/teuxYy1RNBQrAb7+pQHbbNkvSJrAeP/ree+q4woUzXr569VTQEN9yFxGhgvq6dVVAnha//qo+a1Ctpk5OavmllywB/YYNKqhPLWt5cj7/3NJtfvp0uHUr7ecKi7g41SuhWjXVIyG+3l58ERYtUr0PROr0evUzAio/wY0b2VseW5D/CkIIIYQQNjB3/HY271eDFUsUvsP3Kyqi0+vIl09lkj53TnWNrlb5Ls94HWPvlssM/KQZOr1qGmvY0NJy+ccf1lN0ZYdRoyzjjJs1g4EDLfveftuyPHeube6vaZbx3AUKqLHJCxaoVmxQXdu/+kq1LE+bprbp9bByJdSubSn3gQPqmPjP1t5ejcP+8suUx2+nlbu76hGQ8AFFQICaLuqVV1Rit5QknJv7jTcsy/b2ls/ZZFL/dxKO545vvU4LT0/LtcLD4ZNP0n6ugNhYNVWclxf06WPpbQCqtXvVKlVfIu3y+rhuCbqFEEIIITJZ4K6zfDC9vnl98bwrFC9n3ffX0VEFPsfPFWPfqRr4NvOy2m8wQIcOajk8HP7enELqbRv7808V5IEKeB9vxevdW81DDGpfSlnCM+rECUuLbPPmaqqhYsWsxz+PGaMeaMSbMwfat7e+jsGgxnWfPavOPXIE+vXL3LLmz6+Csu3bwc/Psn3VKvD2VmOpk3qIcvOm+qwBypdXXcYTevNNy4OBefNUN3lQAUvZsukr4yefWKY8W7AATiefVF8ksGuXqsP+/eHCBcv2Vq3Uw5Zff7X8LIi0y+vjurMk6F62bBmtWrWiZs2avPzyyxw9ejTZY9esWYOXl5fVq2bNmskeL4QQQgiRk0RFwWu9CxAdqwY9D391Ky+8VjdD1+rU9p55ed0PyX9/spVzAZfp90aY1dzP06dDpdAP4ZRlAHfRopZW2bAwFXhntoRdy5991rLcurUlO3RsrGX89MiR1gH441xcVJmrVs38ssZr2lS12s2fb2lZj4pSybXq11fJ5xJavtzSRf711xN3Ty5VCrp2VcuhoZbt6Wnljufmph5SgLpnwunERNIWLYKWLa2D7eeeU0n5/v5bPQwSGZOwpVuC7gzYtGkTU6dOZfDgwaxduxZvb2/69+/PvXv3kj3H2dmZnTt3ml///vuvrYsphBBCCJEpRo+GY+fV4FufimeZOr9Bhq/13AtOODmq9NIbtntjjE06I9e2tQF4l7nAgI47iImMyfD94p05dJHe7XbiXac0i5Y6mwPZ55+HdwZEwqkv4chHlhN29WJolw3m1Tlz0pc8LC0SThX23HPW+yZPth6r3bWrpYt5djMYYMAANdZ9xAhLS3VgoBrHmrClPmHX8tdfT/p6CROqxUvPeO6E3n0XiqiE+SxdquYqF4nFxam669dPPdgBlZBu1y41rKFJk+wtX15QpgyULKmWDxywnhYvL8iEkSspW7RoEd27d6fro8dyEydOZOvWrfzyyy+89dZbSZ6j0+lwS0v6xUeMRiPGzP7Nnsniy5fTyynSR+o175K6zZukXvOunFK3hw7B7NkGAPLl01i6pgL2+fQZLpeDkwMvPLOftTsacueBG7s2B9C4vXUPwIfBD+k5oATXg0tx+nolwl5/yJLlBgyG9N/v5sXbjB58gRV/NcSkVTRvL+xiZOgwHSNHamj39oLpscD+2jqq5VtH65p/8ldgay5cgA0/36FD16JPlL45/nOLjjaydase0OHmplG1qskqqLezU2O3Bw7UU6aMxrx5GpqW+YH/kyhYUPUS6N0bevbUc+yYjogINSZ4yxYTb76pcfSoqrQGDTQqVzYlWf6GDaFmTT2BgepzrVZNw8Mj6WNT4+QEQ4fqmDhRj9EIn39u4uuvbT/Zek75eU2LkBB47TU9f/5p+X88eLCJmTM17O1z1v+xnOBJ6rZuXT2//aYjJAROnzZmaBaBrJbW92nToDsmJobjx4/zdoLsGnq9nkaNGnE4fhBKEiIiImjZsiUmk4lq1aoxYsQIqlSpkuzxZ2yZJjOTBQYGZncRhA1IveZdUrd5k9Rr3pXddTt1ajlANRy88841Yo13MjxXc7xGDW+z9tGc0iuW3KBAaesved9Pvc31YEv/75W/FCT21SA+/PBKuuJdzaQxsKcDB85amu2KOgczoOtO2r9RlAIu+VVmcs2ZfBVWUjB4H+X40uoaw174ir8CWwMw57PjlK3sDDpLx8oCEQHYGUOIMxQmzlAYo8GFOEMh0KX8hGDlygs8fOgNgJ/ffY4eTbpJdvp09W9OH5/87bc6vviiLGvXqv8rP/6o56efLMFuixZXCAi4m+z5L75YjMDA8gA0anSTgICbyR6bmubNDRQoUJPwcAOLFsFLLx2nRInYDF8vPbL75zU1ly87MmKEB5cvq6EiBoPG6NFX6NLlLsePZ3PhcriM1G2ZMiWB0gD88ssV2rYNzuRSZR+bBt3379/HaDTi6upqtd3V1ZULCQdDJFCxYkWmTJmCl5cXDx8+ZOHChfTo0YONGzdSMr7PwWM8PT1xip9PIYcyGo0EBgZSs2ZNDBl59CxyJKnXvEvqNm+Ses27ckLdhoWE89dfzgA4O2tMmOCOs7P7E1+3bPFyjJ5hxKQZ+Gt3NWb7lDFnOD++7xzz1/kA4GAXjQkH4uJ0rFnjhoeHK1OmpL3V8vC2Uxw4Wx2AIgXuM7J/AIM+9qNg0fZJHF0bwtvAo6Db2Pw3dMF/0ibfr1QpeYaztzz553hLDHZGEqbm0e+chO7GukRX0+wLQ77ikK8kWn53cH8RrXwPc71euVDKfGy3mkupfWcpxIWBFgem2Ef/xoEWi6npr1CskeXiwYfQXfwB8pWAAhXQCpQDp/KQ3x30Nu/0mazVq2HFChPvvKMjLEyH0ajq1MFBY8SIMhQtWibZc2vUgPBwE8HB8MUXJShQoMQTlWXIEB3TpkFsrJ4//qjBl1/atrU7J/y8piYwEPr31xMSourF1VVj1SoTzZuXAZKvm6fdk9Rtx46WhI137pTH17ecDUqYuSIiItLUAJx9v2mS4efnh1+CNI9+fn60a9eOFStWMHz48CTPMRgMOfYH9nG5qawi7aRe8y6p27xJ6jXvys66/WX+EcLCVLrpVzvfxcUl7UPlUlK8rBvNfA6z9Ygf525W4Myh81SrXxnNpPHuO5HEGdXcRB8O2INn0xb06qWm15o+XY+r/WlGTfJK5Q7K6iVB5uXJHwQy8JOWKZ+Q4HM2lGwBldtD3a9498w1hn6otk+caGDNmgQ9zCMuJXkpXWwIxIbAwzPoAAqUA0NP8/5/tjqal1uX/R+6+8nPu2VwKGRVNsJOwbmvk7ipAZzKgENRsCsATuWg8TLrY+IiwJD/ibrIp6RnT5W1+ZVXLJnIO3TQ4eaW8v9hgwFmzUrxkHR5/301Dj8iAr77Ts/YsVDiyeL4NMmpv4vj4lR28pAQtV6jBqxfr6NixZxX1pwqI3Vb3zLhAwcO6DM0RCarpfU92jSRWpEiRTAYDImSpt27d49ixYql6Rr29vZUrVqVK1eu2KKIQgghhBCZYsGSwublAb3uZOq1X2prSVX9609XAVg2axfbA30BqFzyMqNnNOC119RUUvFGT/Zi/uTtqV7fZDSxYpMHAAZ9HN36VctYQXU6+gwuS/zXvHXr4KefEuyvOhp8JoHXe1DhdXBvB671wbky2BW0HJff0kMgMlLP3v0q6K5U/DwV3C6rgNneBRyLQb6SKnguUBGcPcDRuoclMfeTLqtmhPDLcP8wBO2Ee/sSH3P4A1hbCnb2gLPfwoOTYMrcQbxVqsCePWoasS5dYObMTL18mri5wTvvqOWoKDVneV6kaSqgTs1XX6n8DKAC7t27oWLFFE8RmaBoUfBQv4Y4fNiStC4vsGlLt4ODA9WrV2fPnj089yjNpMlkYs+ePfTq1StN1zAajZw5c4bmkoNfCCGEEDnU8T3n2HNS9aP2qXiaes9lMGhNxks9K/Heoymd1v3uxsA7Dxj5qSXL0JwZd8jvrMb4DhwI9y8E8NFMXwDeHtcEl8K76T640eOXNduz+RhXglQ39dZ1D+NWtl6yx6amYEH4+mvo3l2tDxmiplkqVQqo0CPlk2PDIPImOBQ2bwoIcCYmRrU0P9e2MHS5owJrXRrbjir0BNcGEHlNBdlhlyDisloOvwKxoap7up1z4nPvbIOo23BlpXoB6B3AuRIUrGJ5lWgJhdLWoyApjo4wceKjlai7at41UzQYo9W/9oWgoKfNWtxBtXbPmwfR0ar+Ro2Cx0aI5mp37qgs4w8fqvnSH58DPd6FC+oBCKiPe8ECy3zmwvbq1YNz59TDn2PHrOe5z81s3r28b9++jB49mho1auDj48PixYuJjIyky6O5DUaNGkWJEiV4/9EEi3PnzsXX15fy5csTGhrK999/z40bN3j55ZdtXVQhhBBC5CGaSSM6Mpp8BfLZ/F4L5lwHVBPNgNduotNnPABLSsUaZalV8RRHLnqz/3R13nxlD7dDGgLQpdle2vaynpbsw2m1uH97KzOXtkDT9PR734eWHe/iVjbpnoY/rbR0kXz15egnLu/LL6su0ytXwv378NZbsH59GmJGe2ewt06eu3+/JeJ5tp0rpLc6HV0ftX4/k/wxxhgwRVlvM8VCgfIqOI8LS7A9BkJPqVe8unOtg26TUQXrTu5gjIKwC/DwPISdg4fnIOIqxIRAwcrQ4LFJzXd0Vi3vjytQAUp3hDIvQfGmoLdP4weQNu7uqkv111+rmH/27AQPAlCtxDt3qnps3VpNH5ebzJsHZ8+q5RdfhH//hdq1rY/RNHj7bYiMVOvvvmvd5VnY3jPPWHrH7N8vQXeatWvXjuDgYGbPnk1QUBBVq1ZlwYIF5u7lN2/eRK+3PKkMDQ1l3LhxBAUF4eLiQvXq1VmxYgUe8X0NhBBCCCGSYDKaCNx9lp1/3mbrDge2H/bg7kNXPhqwlc++a2Gz+0ZHRLNkg2rldrSPoufgWja5z0vP3+SIv8rg/fNWFXA7OYbz1XeJkw3p9Dqm/9CcG7d2sfyvxoRHO/O/CQeY8n2LRMfGxcHqP1UCNUcHI536+mRKeefOVYHNnTvw229qDurevRMfFx2tkieFhMB770GhQtb79++3bGjVKlOKlpjBQb0S0ttDi40qQdv9w6rVO2g3PDwDYedVMB2v4GOz7IQcgd/rqGA/OhhIJjFZbEjibXrHxNsAwi/BmdnqZV8Yan4C3sPT9PbSatQo+O479X9i1iw1N7VOp+bw/uYbzBm7586Fa9dSbwk/fRoWLlRzjteokalFBVSQHBUF+fOnfJzRqMoRLzQUXngBduwAb2/L9qVLLfPBly0LkyZlfplFyuol6GTz33/qIUhekCWJ1Hr16pVsd/KlS5darY8dO5axY8dmRbGEEEIIkQcc33OOTz4MYushT+49dAW8rfZ/ubQhE77BZkl51i08SHCY6rrdtcVBipZqbJP7dHqjOp/6W28bP+g/ynq1SPJ4nV7HtHmV+LlaNDFxjsz9qTYfTAmhSInCVsfFB8YA7V80UMi1UOKLZUCxYiqA69RJrQ8bBs8+C2USJH7etw/69oWTJ9X6ypWqJTW+reXuXThzRkVUvr6QxpRAmUtvB6711Kvqo22aCSKuwcOz6lXksea4O4/meIu2zmuUSFxk4m0lWqhgXe8IBkf178PTcHur6gYPKli3d7E+7+F5OPIhuFRXXdHzl1Lj3fOXUt3T09A1vXx59WDk++/hwQMVmB47BuHh1sdFRcGGDWqO8eRomurxEBiornfmjBqzm1mio1V38aNH4eefoUOH5I/980/1kADUx6Bp6v9W69aq9b58efUz8N57lnO++Ua6lWcHPz/1u9poVC3deUWOy14uhBBCCJEeb7wRy6FzDZPdHxHlyOnTUC1zh1mbLVhkaZkc8LbtpjD1bViccuUgPrds1aoa701pkuI5ZaqUom+H7fivbcbDyELM+XQr4+e1sDomYaKzV1/N3DK/9BL06gU//qiCuAEDYPNmFbSNH68SdplMluNPnlTdeVevVq3aW7eCpj0az/1c5pbtiej0KsN6gXJQ8tnE+/OVgOLNVFdypzIqwVvBRy/nyqqruKOrCqofV+PjpO8ZEwI3NsO1X+HWn1D6Rev99w/DldXA6sTnGvJbgvAC5aHxcuv9kTcBPeRzY8wYPYsWqXrZ91huOR8fFeQCrFkDfXpFwM0/IDpItejbOT/qzl+Mo2fLEBionlLcuwcTJ5iYNdt6znb99nGQzw0cXM3n4VAEDPksDx3snMG1rnVBHp7nzw0aBw6opzNDh8TQpult7PMXADsnS28BUywYHFiwwHLqoqn/8NViHwJOFuPaNWjdIoQdy39lxOdNCQ6uBECPbmG0b2NH+scyiCfl5KR6RRw5oh7UaJpNUxlkGQm6hRBCCJFrnT54gUPn1Bd753wPebbOcZo3iaZFmxJs3OHJuPHqS/6hQ7YJui8eu8qWQ3UAlUG8eSfbdC0H9cWzRw+YPl2tz5unwyFf6l/lRn9akQW/xmE02fHV4lq891koBYuq1uzoyFjWrLEDdBQsCO2TmpL7Cc2eDf/8AzduwB9/wMiRqrt5wqlt69RR01WdPAnBwWq88OzZcOSI5dt2jgq6U1OhR+pJ49LLoTBUeFW9THGJ5xgPOZb8ucZINa487AJEJDEj0KH34fJPoDPgka84PVt8x9J/VFBfIF8Er7fcwMDnv6dG6zaUaT2CmzdV6/HD4DAK7uiS5C1XrZoEfGRen/e1jrffsfwc5ou9gu7W5tTfd/7S0Pma9bbD77Np4QvE51G4dMWB5WM+pnezJWq/7lG3lqqjuF1qCuvXq9WSJTVeK/UCbd8tQtPPdnDmphdnLxWmfsfmXL5bAYCizveY1aoqXJ2lPut4oWch8BNwdFMPBwz5UMMGHg0d0B7961QaynRW+QmyU+QtlYvAuVLakw7mECNGqPwCnTrljYAbJOgWQgghRC62+ocrgGqdGv7GP0z4+kXzvKl3EuQDO3hQtbhmtoWzzwNlAej/ykX0hvKZf5MEJkyAwoWhZk2VETwtKtYoS682O1m8qQn3w4vwzeR/GfWFOvn35Yd48EBliurU7j758xfJ9DIXKQLz51sC+oTTUTk4qGRdI0eqLsyvvQabNqmupYMHg729+sZtb6/RpEke+fadGR4PuEG1kJfvAQ+OqeRvUbdUC3bkTctyzH3V2v24qFvqX80IkTf5tld3vFzfw61QED0arKCQ00O1P8aPzp1VsrXoaNj8jyvdkyiepsHKva9YbTMadbz3Hvz+u1q3M4ak7b0m0RtA03RsCmhntW3K+rH0avIjBr1JvQ+AmHssWWKZJqxPHx32+fJR3C6Iv8a0psmnO7l6r5w54Ab4sucIirsEqRb4hMIvqgcTadH1LpAg6A4+CKFn1FR4+d1Vgj27Amm7VrzI23A/QGXhj7gOkTce/Xsdou/CS5etI9QTn8PpWaoHgVszKN4cSjSHwj45Pgh/4w2ViNHBIfVjcwsJurPAnTvw4cgwzhzSMBiOAqn80XCppqajiBd1R/1gpcaQDwpZj2Mj7DzEPkz93Hxu6kmimQb3j6R+HqgnaPYJxn/FhqonqWlRxNd6PeK66qKUGvuCqntWQqEn1dQaqXEqrZ5SxjPFwIMTqZ8H6vM1WLoaadH3MT1MQ73q7dUYq4TCL0LMg9Tv6VgUnB5LkhNyVI0nS02BClbTrhAXrsaepUXhmpYnxfDoj/bt1M+zc1JjyRJ6eAbiIlI/N39J6y8DmhFCAtNW3oJVrP+AxdxXXzpSozOo95pQxBWIvofRmErdOhRWn3FCD46r7mypcSprPZesMRJCT6d+HmTZ7widTuP5Fg/48KsWaSuXENlg5UZLkNukrXXLUp06luWDB4xA5g7qjouDhetVwGrQx9FnaNVUznhy+fPDhx+m/7wPP3VnyWYTmqbni0W1GfKZ6sb503LLnNM92p8H6iZ/kSfQrh3062edzKpBA7Ve9dHH5uKixnOPGWOZqzo2Vv3+bdgQCqQzRnnq6O3AxVu9kmOMSvp3vltTMDiZA3Qn3W0+6jTFst/gBA4uYMhHly4q6AZY+6uB7p98qeZYdyiivmfE3ONwgAPnb6tW6MY1jnHtbgku33Ljzz9h40Zo2xZuF3mNUo0+xBB3X419j74LMffU3+/4qdKM0dbfYx45EfEaV+5ZP+A6c9OL1acn06PZJlUOQMtX2qpref/+gP33YIykHLCl+kGadHcjKFjlDXiuwXne6FcQYl5J/Pc9Kg3fT0EF1Y/PFX9uPpx7LCGDfSF1rLOHqrNC3lC0LhRJ0Fvm/lE49QUE7VJ/r1NijFTfweLFz3sffQ+urVUvUEn43Bqp76WFvKBoncTfx3MAx2TyCeZWOk2L7wuR+0RERHDy5EmqVq2Kk5PtxlA9qZkz4YMPsrsUQgiRMXs2H6NBGxuknc0GRqORgIAAfH19za2hIvc6cQKqP3qe2dD3BnMW3ExUt+VLBXPlVlGc8z3kQVgB9IbMa+H57TdL8qaXXoxk3YZUUihnsx7tTrNys5rW6quvoP8bYRQvqScyxgnXgve4GVQIe8d0TEMVHg7Ojx50hIWlGhU/eKDGeJ86pb4XDR+efHK7xYvVNGMxMWp9wgQTn3ySs1vn8hSTEWKCVSBvV9CqZT02FkqUUFPBOTtDUBDke2zo85gxMG2aWvb3V70d4udt9/CAo0eNnDiR8d/FM2aoTOsAHTti7j4ePxY4fmKk7duheXO13LKlGubwuMOHoXNnsLdXXeYrVkzmpnGRqlU5Kkg9INDiH7DrsDycN6mu/+Ufa///sxHc3ZP6G6vQCxolSDJ9dy/8mXy+CnV7A+QrDu0CrYP96xvh7DcqYE8qS3688q9B42XW2w4MUw9R4htDnEqrRjaHoqn2937a/s6mNR6Vlu4s0Lo1lC0dw9XreaiPhBDiqbH1j7s0aJPdpRAisdUJ8kV1e70kcDPRMXWqnOHKrQaERRXkzKELeNerlGn3T9iCNuDtnB1wA3w0zYuVj4bQTp8OhWKOERmj5vfu9txx7B2b2fT+Li4qU3paxmj27g2entC3r0ZkZDQDBmTunNQiFXpD4u7Vj9jbq0B38WL1rOXvv61zAWgarFqllg0G6NJFTS3WrJkKgs+dgzlzdDybRP65tNq0ybI8Y4YK/PfsUZnWf/1VBdHw2M/ogKSv5ecHFy+m4f+lXX5LMrz0qjZaZZePvGF5RVxXXcUTTj33eG+0IrVVLzXNpLLnF2uogt/8pR91Uy8NjsVVfT2udHv1MhnhQSDc3vZo2rvt1ln1H79nXKSali7Jz6Cgur9zRShQETwGqN53IlUSdGeBWrXg/AUdB//bi4+PT+pPffQO1j/5pjjL2JQU6RLPMWmMIdm5Ia1ONViPD9I01e06LfT21mNDNFPautdC4nE6uey9GmNjOHrkUNrqNdF7jU1bF3GdXt03obR0owfQ2Vn/Ik5P3eT2/4cmo2VqldQkUTfGuFiOHj2act3m4bo5d+QKNRqpeWd37s25PYnE0y3+iz1A164ad+8mPqaObxRrH83edHDnzUwLuuPnngZwd4c2ueDBVM2aKjHRunUqqdnwiZahNa++njnThKUmPUmRGjaEY8dMBAQcp2RJX5uVSaRfly4q6AaVxTxh0H3ggApiQU0RFz/N26xZULu2+tM+aZIOX9+MhSEPHqhpvkC1mnt6wscfW8owaZL6f/7ggeXBXJEiqszJsXmyrjIvJb09fuq50NMQegrcHpuNwOAAL+xXw/aSynSfFnqD6j5exBe8hyVxz0bWx6c0lDDuoZqDPuTRENRy3az33w9Ad3E5bvd16C4EgIOzGppg56SGANoXUi3o8RnqnyISdGcRvUGPfT57HJ0cM9DVwo6MV1VGW9d1QEYHU+if4Nzc9V6NdoYnqNcneWovdZM6Axkfv2mP0ZjRn9m8UTfV6nvgVjScoOAC7D5dD5PJ0l0vrzHGGhn8yi5CHtgxd7EXxcq4pn6SyHbHAjVOnFDflJs0UXM/Jxl013eGOWr54IFYembS/Q/uCcFoLAyohD92ueQb1UcfqaAbIDRcdQd3L3qTJi/WTP6kbKTT5Z3sxXlJ69ZqNEF4uOraHRdn+RlI+DCse4Je1r6+8Oabau72hw91fP116Qy1dm/ZYkmM1rat5V8/P9VV/NAhlazt4kU1NR2oJIqPd4HPERJOPVeqddLHPJ53xtb3zF8K2hxU2c/jE/BFXH2U/f4ihF+yNGoUfmzo2e2t6E/NoBzAnRTK4FIN2h+33nbjDzBFqYcDTuXy3A9+LvkTIYQQIivp9DoaNyvAunVw/76OkyctY2fzmt9+DMR/repWq/X6l5Vb05gSWmSrVXO3A2qwZvcuEST30KpOswrm5YOBhTPt/qf2HDHf36fMAWyVgCyz1a0LbVre4/d/LQ+XXmlzGoN9qWwslcht8udXge7PP6uHXTt3QosW1l3L7ews3bzjTZoEK1eqVuj16105dMhEvXrpu3fCruXtHiUw1+lUa3fXrmr9s88sATck37VcJMHgCEVrJ7/fZFRj28OvWCdShrQnv3VIYpaEE1NV93dQY8dLtUk81jwXy6PtFkIIIZ5UkwS93OK78uVFR69aWhFWbWvJXysOZmNpcrdrZ2/S5pkDdGq6j7D7YTa7j2bSWLVRTdOl05no2jE02WPdyhajbLHrABw+VwmTMQ3DetLg9BlLK4x3tZw/njuhj0dYz3bwap/i2VQSkZsl7K69Zo36d/9+uPJoGvDWraFoUetz3Nzgk0/UsqbpGDUqfaGIplmC7vz5LUnSQHUpj384vGePavUGeOYZ8PFJ121ESvQG1UpevEnifT6fYWy6noslJ2Kq8zXU/hJ8JkH1seA1DCr1UV3t3Zpan6dpajq0eDHBajakPESCbiGEEElq3NiynJeD7tNnrIcPDH6/KNERaRybL8xC74XS7vmH/PFfXX7dWZ/ZEw7Y7F6Bu89y+roam92s5hHcKycx73ACdbyvAvAwshBnAy5lShlOnbe08Hj5lcmUa2aVxi/WpEOjfQDU9z5G3WdtP9WZyHvat7fMo7x27aO5uVda9ifsWp7Q4MFQpYrKJbJ1q46D6XjOGRAAtx5NKd6qlQq84+n1avjE46SVOws5uYN7O4Jd2qN5vAXe70GNj6DWZKjzFTRYBM3Wge9U6/M0I9SfD9U+hFJtVcb0on7Z8Q5sRoJuIYQQSapdG/LlU62Cu/5JYrBsHnH6senRz96oyMwxaZja5RFjrJGtawIY0n0bVT2j6NnTMs3R0yI2OpaX25wh8JKnedu3vzQwj7vMbKsWW1pqu3dKvTWkjq+ln+nBnYkznGfEqSvuAJQofIciJVwy5ZpZafVfvmxc/B8b/3ZHp89bYydF1ihUCPOY7GvXVCt3fOIye3s1PVxSHBxgxAhLAs8vvkj7PZPqWp5Q9+5QpYplvUAB6NEj7dcX2URvB+VeBt8p0HITdLkJNcZnd6kylQTdQgghkuTgAPU9jwJw8UYxrp/LnGAlJ9E0S9DtUsiIQa+ixEnf1ufisavJnhcXE8ffqw8xsOt23N2CadnVl3mrm3PqbD6WL4fly7Oi9DmDZtIY1H0Pfx6wHtN89Xo+c3bvzL7fyo0VANDrjHTtm3orbZ1nLPNHH/wvjbMEpOD+7RBuh6gu2d7lbqRydM7k6ORIuzfq4epeNPWDhUhGwi7mo0er4Bvg+edVxvDk9OqlUaSI+llctcrSJT01CYPu+CRqCRkM8OGHlvVXXoGCBdN2bZHD6PNW6jEJuoUQQiSryTMh5uVdf1zMvoLYyO3Ld3n4UC03qPOAd1/ZBUBUbH6GvZ04mNJMGivm7KZcybs81702365pxp0Hieey/fJLFdDnZiF3HjBr7DZqlD9LadebTB2+lYfBDxMd9/mIbSxYrxLROdhFM26E5dvzvHmZX66A7ac5d7MCAC18j1CiQurjkWs3rWBezoxkaqcPXzMve1XKW+MOhUiPjh0tM1ts22bZ/sorKZ+XPz906xYEgNEIs5OZFjqh4GDYu1ctV60KFSsmfdwbb8CIESqJ2+efp35dIbKCBN1CCCGS1bi5pYVw544nbyHMaU4ftrRme5UIZOIcP0oVUQMGN+yuz4ZF+8z7b128Q5fm+3h1aCNu3reMIc5nH0mXZntZPms39Z9R86UHBsJff2XRm4BMSw4GcPCfkwzouAP3svYMn9qc41eqcCO4FGNntaBCJT2TJ6vMwwA/zd7N2FktzOcu/vIgE2aUw8NDrW/Zkrj7/pNateSWebl757QlaytRwY3SJcIBOHypFqYn/LhOB943L3t75fKnK0I8geLFrZNuguol1bFj6ue+/HIQjo7q52f+fAhN5fnVn39i/tlNqmt5PINBdVlfs0YlbhMiJ5CgWwghRLIaPu+JTvdoXPfBvJfh+PQxS8utl5eOQq6F+HLiBfO2oWPciQiNYOk3F6hW0551OxuY97V95j9Wzt1N0G0jv2xrwKtDGzHyA0tStpmfh9u8/OEPwun5/C4MdnrKuV2nzTMHeL/XVr6fuoM9mwIJvZf2VthNS/4zJ9X6fkNTImOczPvi/w8EPyjAxx9DhQow7M3r9Hm/jvmYKcO20uPdRuj1MHCg5bpfT0njFDJpoJk0Vm1WzVsGfRxd+lRL87l16qsHSKGhOs6ff7JynDppGazuXaNACkcKkfcl7GIO0KYNuKQhzUHRonG8/roKukNDYcGClI9PbTy3EDmZBN1CCCGSVbi4CzUrnAUg4Lxnkt2Lc7PTpy1Nnl7VnQF4ZXBDWvkdAuDSnbJU93HkjUGVuB+uBii6FQpi9dd72LSvHt0HN8K5iLP5Gp07Q8VykQD89W8Bju48a7OyXz55jcZ+11j+l0ozf/Vuaf74ry5fLmvBgLFNadS+JiVK2TN/Vupjjv/9JYAX+9Rh/+ka5m2F8j/g3Ve2cXzvOU4duMwbnc9hePRMISQEZi8oTUycmht7QMftjPnSMndP395G8juoz+GH1eUybfqwg/+c5MKt8gC08juCW9liaT63juX5QLqyJSfl1FlLymRv3xJPdjEhcrnH5+JOrWt5QsOHW3qKzJpFsskXTSbYvFktOzsnbl0XIqeToFsIIUSKmtRR3XlNmoG9f57J5tJkrtPnLa25Xr6lANDpdcz7rgj29iogv3TZ0nr96nO7OXFcT7eBDZO8nsEAw3vtN69/OfW2LYrNrt+OUq9BPo5c9ALAyTGcwgVCEh0XFZufQSPd2b8/0S6zhw+h39ByaJr6SlCr4mm+m7SdGzftmL2iOdXqe+BZuyKL13hw6hT07Ys5+AZ4vu4Bvl7V0CoDdhFXA6+9oKYMC410YdncQxl+r9evaSxfDm+/Dd36lDVv794lIl3XydSg+7IKtPPZR1LOy/3JLiZELleuHNSvr5adnKBDh7Sf6+2tph4DlUzt55+TPu7AAbj7aBKN1q0tU5UJkVvkrbRwQgghMl3jJnZ8/eiL0M6tD2mdh6ZfOX1ZdZl3cgyndIK5nr3rVmTkSJj6aCrRkiXh22/hpZcapXrNfiPr8MmsEELCC7P8j2eYcv427pUzrzV04UJ4550axMaqILlyycts+DUO77qVuHXpNicOXuN4QBhb9ldhwxZ34uKgZ084fFi1ED3ugw/g0g2VwbpZrRP8e9AbvcEryXt7eKj7f/zxoyRpmsYn42pg72if6NjBI9z4foNanrewJG99pCWamiro6l3mTj7GlWuGROdHR+v573hpc9I0RaUhdrA30rlP9ZQ/qMfUqa0B6v4Ht18CKqRwdPJiYzGXydPThME+cdmFeNrMnw8zZsDLL6c/W/j778PGjWp55kzVUq57bBY76VoucrssCbqXLVvG999/T1BQEN7e3owbNw4fH59kj9+8eTOzZs3i+vXrVKhQgZEjR9K8efNkjxdCCGE7TV6oYF7etb9Q9hUkk8VExnDxdhkAPEtfRaf3tto/YYJqtTEa4d13oWgaZ1ZyLuLM2y9vZdoPLYg1OjB3ykmmfP/kQXd0tJoK53//g/iOas/6HWLVxooULaW6vpeqVIJSlUrw7MswMBaaNoV9++DcORg6VAXMCf35J/j7q+UCBWDRmmro0xBDVqoUP7euDsiX5DF+LbxpWDWQPSdrEnjJk52/BdC0o695/9GdZ+jYxYnLQS3S/BnY2UG9ejBihCHdU12VLKXDvehNbgSX4tCxImimxA8B0uLCBYiLU+d5VZPx3EIA1KwJS5Zk7NwWLcDPTz0YPHgQtm+HhF/7Q0Jg7VrLelJThQmR09m8e/mmTZuYOnUqgwcPZu3atXh7e9O/f3/u3buX5PGHDh3i/fffp1u3bqxbt45nn32WwYMHc+ZM3urSKIQQuUU579KULXYdgL0nPImNzhtZzC8cu4bRpJ49e1UMTrTfwUG16H7ySdoD7njvfuSFnUF9Tt+urEX4g/QlVTu5/zw/zd7NuLf+pUuzvXiXuUCBAqZHAbcyZLDG5j0+5oD7cfb2sGyZpXV70SJY/c1e8/4HD6B/f8vxM2aoYDozDX7Tksht7ixLd/B1azUatS7D5aAyKZ5vb4ihSa2zfPSRekAQEgK7d0O3bhkrTx1vNZ3ZgwgXzh9N48TAj0mYjd3bO/njhBBpo9OpKb7iqQd6cOgQvPkmlC4NR4+qbbVqqXUhchubB92LFi2ie/fudO3aFQ8PDyZOnEi+fPn45Zdfkjx+yZIlNG3alAEDBlC5cmWGDx9OtWrV+PHHH21dVCGEEMloXPsmAOHRzhw5bMzm0mSO00eDzMteHjGZeu3SHqV4rbWabux+eBEWfZH2QcSfDt5KtfqVeW1YIybNb8naHQ04fb0SRqP6k21np1qn58zVYe+Ycoe1ypVh7qxo8/pbH3hz9bRKrDai9z6uPZpu+tln1ZjpzNbt7bq4FVKf85pt9bhx/jaTJ0PnLjrCo9R4+rpVTnDg75Oc3H/B6nXqwAVCguPYEVCFSZPUOM4CT9iwXKdWpHn54M7rGbrGqVOWZQm6hcgcr7xiCaY3bFA9WurUURnNIxKkb3j33ewpnxBPyqbdy2NiYjh+/DhvJ/hLrtfradSoEYcPH07ynICAAPr06WO1rUmTJmzZsiXZ+xiNRozGnP0lML58Ob2cIn2kXvMuqVtrjV6szYo/1fL23Q741cudn0vCej113PJNroq3XabX9bDRriz5XS3/b34F3hobk6bxvz+uK59oWz77SLwr3qN6PXcGDtRo0EB1e0+Lnq8b2Pjjblb/24iQ8MK83v0i7w2/zMJfVTK4gk6RfPedA5qW9mumlZ2jHQO6HWPqwpbEGe1p2NSRKzct+3t0uc/878uRv2D+ZK+R1npJy8+sb7188I1aPvBfNN0y8IZP7j0JqCzvVSo+xGh0SvmEvMxoxGBeNGb+fyDkd3Fe9Xi96vUwZIiODz9UDxcPHLAcW7Cgxuuva7z9tkb16jb5byYy0dP2M5vW92nToPv+/fsYjUZcXV2ttru6unLhwoUkz7l79y7FihVLdPzd+JSFSchNXc8DAzNvvlKRc0i95l1St0qxYvkBNSfypk0PaN486d/huUVgYCD/nbaMs3YsGE5AQEDm3qQgtKi1j61H6nPhVjkWTP+V+u1T7k5tjIvj0m0/AMq5XWXse4co6+FEsXIuGOwMgMqGnt6iDhlrZO/Ra1y9V4ZtR/3Y/aalZX/sO39w/35Z7t9P3zXTqnkHE9MWGTFpBq7cLAyATqcxaNAN+vS5xeknnDP7cSn9zDoXt7R07z/snKE6P3HC8uAkJuYoAQFJj2l/GugjI/F7tHz06FFM+ZN/ePKk5Hdx3pSwXhs0MFCoUA1CQ1V4UqVKBN26BdG2bTBOTiZiY9P/u09kH/mZtZYnspd7enri5JSznzQbjUYCAwOpWbMmBoNkOs0rpF7zLqlbazVrQqFCGqGhOo4fL0ytWr6JssvmBgnr9WaIJeP2c12eo5ANcsSNfP8AW99Qy8tWVuTtj1LOuH3p+FVijWounNpe1xkw6sVMK8sP3x3huW7uaJrefI829f5j5OcvZiihWJr5QsfG/7FuZwMAnJ01li410aFDSaBkiqemR1p/ZksVucXN+yU5eqEKtXyc0/XeNZPG2Wtqrvqyxa7ToEmDJy53rhZuyVXg4+Pz5P3/kyC/i/Om5Or1n3/g999NNGum0bChIzpdGSDlh5UiZ3nafmYjIiLS1ABs06C7SJEiGAyGREnT7t27l6g1O16xYsUStWqndDyAwWDINZWam8oq0k7qNe+SulUMBmjYEP74A27d0nH5zAMqV0tndrEcxGAwcOaMCrZKlYIiRWxTx+16PkP1j89y/EoVdp/w4eoVjQoVkw/yLp4KJn4qK4+KUZn6f69Vl9p82G8rU75vAYCL0wPmLyuDnb3tn79/Ns2Vve1v41b4ActWFqbmM8Vtdq/UfmbreF/htz0lCQkvzOUTl6lcK3F3/uQE3QjifrgbAF7lbmMwPOUZnRJ8zgaDwXoC90y/lfwuzoser9c6ddRL5H5Py89sWt+jTROpOTg4UL16dfbs2WPeZjKZ2LNnD35+fkme4+vry969e6227d69G19fX1sWVQghRCqaVDtkXt658UQ2luTJBQdD/PNdr6SnpM4UOr2Ojj0sQd3JUym3qp4/HWZeruyR+X+iJ8xrTJdmeylW6C5L5pyiTJVSmX6PpNRoVIUb94pz5HwVmwbcaVGnlqV1Nr3J1E4dthzv7fEw08okhBAib7N59vK+ffuyatUq1q5dy/nz55kwYQKRkZF06dIFgFGjRvFF/NwAwBtvvMGOHTtYuHAh58+fZ86cORw7doxevXrZuqhCCCFS0KSJ5U/Grl0m83JMZAzH95xj84//cftSUFKn5jhnTljG9toy6AbwrOpguW8qPdDO37V0P69c3T3Ty2LvaM8v2xoQ9KAYHfvVz/Trp0Sn19m2G3sa1XnGMhzt0IH0Za0/FWiZAk0ylwshhEgrm/cpa9euHcHBwcyePZugoCCqVq3KggULzN3Fb968iV5v+SJXu3ZtZs6cyVdffcWXX35JhQoVmDdvHp6enrYuqhBCiBQ885wndoZY4oz2bNjmRbcWezh+vjhnb5THaPIAoGKp2xw7q+FUIPuDq5Sc2XcYaAqAl9thIOneV5kh4Z+vhHM8J+X8NUviUY/aHjYq0dOtdtNy5uU9J2uk69xTJy0Pm7xrFMy0MgkhhMjbsiSRWq9evZJtqV66dGmibW3btqVt27a2LpYQQoh0cCrkRG2PY+w/XYNbISX4ZVuJRMdcvFmC1T9D797ZUMB0OHMqzrzsVSUuhSOfXMKW9DMno4Dks12fO6f+tbODsmVtWqynlnvlUlSsCBcvwvZ9xQgMVIkC0+LUOUuiMG+/rOmaL4QQIvezefdyIYQQeUf3jtaJLh3to6hV8TQdGh80b/P3z+pSpd+Z85bA19PHtmOMXV2haMEH6r7H7iV7nKbB+UfTZ1WooAJvkfl0Ohg2zLI+fXrazz19Wf1fcc73EPdKmZd5XQghRN4mQbcQQog0GzapCRsX/8e6Bfs4c+gSYWH2BFzw4tcddcythXv2wNGj2VvO1Jy+pIY42RtiqFDN9tPReJa+AsDVu6UJfxCe5DF3boSbZ2Dy8NBsXqan2YABUPRR8v2ffoLLl1M/Jyo8iou31f8Vr7JXc8T4dCGEELmDBN1CCCHSzM7BjnZv1OOl/vWp4lcBOwc1VYZOB2+/bTnOf27OzexsjDNy7qbqu+3hftX8HmzJq1KIefnc0WtJHnPu8HnzcuWCO21dpKdagQLw7rtq2WiELz/an+o5587EYtLU/xXvKtG2LJ4QQog8RoJuIYQQmaJXL3DKHwvA0h81wu6HpXJG9rh3LZToWNW93Kt81mRb9/SwjBs/cyw4yWPOn7Jkxq5cyZTkMSLzDBkUS34HlcV+/uoa3L2WfNd/gFPnLYnTvBvaLvGeEEKIvEeCbiGEEJnCxQVefW4vAA8jC7Him8PZXKKk3bhg6d7t5RGVJff09LaMIT99IulW0vPnLIG5h1d+m5fpaVesuD1vdlYt3JExTsydHJji8adOWZZlujAhhBDpIUG3EEKITPPOUMuUV9/+4JrCkcnTbDyc+epFyw28vG3ftRzAy8fyWZw5l3SGtPMX7c3LlasVtXmZBIz4pDIGvXrYMedHn2TH24P1dG8SdAshhEgPCbqFEEJkmrrPVaNOlRMAHDxbjQNbTqTr/BEjwMEBqle6zqBu21k1bze3L93J1DJevmxpRfas7pKp106Oh48lWduZS4WTPObcFUtZKla3fXI3AeWrluG151XvjOCwoiyYdiDZY0+diAFU/gIPmUJdCCFEOkjQLYQQIlO93dsyrZj/nLspHGltwwb43/8gLg5OXCzNN78045UhjShZsTjeZS4wqNt2rpy6/sTlu3DV0ors5Vv6ia+XFvkLOlHOTSVQO321DJopcXP++RtqCqrSrjfJ75z8XN4ic40aZ5ky7ov5HsRGxyY6RjNpnHo0LKBiqZvkk+oRQgiRDhJ0CyGEyFSvDqpNwfwqKdhPf9TmQdCDVM8JDYVBgyzrOp11IrHT1yvxzS/N6N75fpIBa3qcuu0DQNHC0RQrk7Eu8BnhVe42ACHhhbl73TqZWujdB9wNVdOYeZS+nWVlElCjkSftG6ix3VfvluanOfsSHXPjwi3ColQiNe+ySWefF0IIIZIjQbcQQohM5VzEmV7tAgAIj3Zm2dyAVM/5aKyRa49imdat4cHdcH5fdoAxfbfSsGogdgbV+rjvVA1+XZj69E7JCQuDO3ccAfCq6pjh62SEZyVLNvczR25Y7Tt/zLJeuVzOnW4trxoz1tJ0PX1OCUxG64c+pw7fNC97eyQ/7lsIIYRIigTdQgghMt3bw0qYl79dUirF1uk9mwKZ97UOACcn8PeHgkUL8sJrdZm6sAW7T9Tkl+8OmY//6DNXjLHGDJXr7FnLspdXhi6RYZ51PM3Lp2/XsNp37mSIeblypYy9N5FxTTr40KjaUQCOX6nC6u+OWu0/dczyIMS7qnx1EkIIkT7yl0MIIUSmq9XUi4ZV1RRMgZc82fv7sSSPi4mM4c2B+dA09efo0xHHqVgx8XEd+jxjvt6JKx4sm7UnxfvHxEBwEtNhnzmjMy97eibeb0tevqUs5Tirs9p3/rxl2cPTIauKJBIYM9IyfVyPQb706QM3HzVwnz6dION9jaxJvieEECLvkKBbCCGETbzd1zKWe8Y35YhKYkrsaR/s5viVKgDUqXKCYeOSbn7W6XVMmWRpAf7kq5rExCR93ytXoFo1KFYMhgzB6r6n/7NMtuxVOWu7CScM8s+csd53/kFD83LlOjWzqEQiofZv1KV1nYPm9cWLVZ1NnQpHThYxb/f2c8+O4gkhhMjFJOgWQghhE90H1qVwYTU2du1vLlSuDLNnQ2SEajU89d95JvmrYNOgj2PBfD12DknPYQ3Qoosvzze5AsCl6y58913iYx48gHbtVMuxpsG8edCw3kPOHLoIwJlj983HepW7lSnvM63KlQPHR8PIE875DHDunGW5snfBrCuUMNMb9GzcVYtZs6BwYbUtLAzGjoXtR2sBUKTAfdzKFMu+QgohhMiVJOgWQghhE/md8/H555Y/MzduwLBhUKnMXf43Zitv9gsjJk5FoSPf2IFvc+9Urznlq3Lm5UmTIDxBY3VsdCzdnj3C8ePW5wQcK0idxsVYPmsXZy6p6cL0OqPV3NlZwWAAj4oRAJw7G2c1Lj2+e7mrqyXgE1nP3tGOoUPV2P9Bg0Cvt85F4F3uGjq9LpmzhRBCiKRJ0C2EEMJm3n4bDh2Czp0t227dd2PEtBbsPKZaDyuXvMwns+un6Xp16kC3bmr59m2YNUstayaNd7rtZctBdU3XIlGsWwfe5VVW8LCogvQc3phD56oCUKH4NRydsjZ7OYCnm0rQFRNrx5XTqmzR0Zgzt1eunOVFEkkoVkz1kgj4L5xWfpYkfo3q3MvGUgkhhMitJOgWQghhU35+sGYNBARA11aHE+33n32P/AWd0ny9zz4D/aO/XtM/jyT45n2mDN/Gwt+aAuBoH8WvS87w0ktw4IgLfdrtSHQNr/J3MvRenpSXR6R5+fQRNR/3xWPX0B41qFYunT3lEkmrWduZLQf82PzjAf43Zhvjv6qd3UUSQgiRC0nQLYQQIkvUqgU//+3H0Z1neLnlHooVustnQ7by7MvpC2S8vaFP96sAPHiYn46tr/LxnBbm/Uv+d4jGL/oAUMClAIs2NmXxjB04OVr6ontl01zLnl6WMetnTqgynEswR7eH2/FE54jspdPraNOzLsOnNqeQa6HsLo4QQohcKPmMNUIIIYQN1Gzsyap/4tdaZOgan3yi58efo4mJc2TXcR/z9s/f20r3wYmv+cbIpjzT/AID33zA9TuFeHNY1o7njudZ3TLd1OlH05edPx1h3lbZwz7LyySEEEII25KWbiGEELlOOe/SDHp5r9W2tzptZ9TM5sme412vElsO+vDThhC86iQxGXgW8PK1TDd15kIBAM5fsOyv7C0tqUIIIUReY9OgOyQkhPfff5/atWtTt25dxo4dS3h4yl36Xn/9dby8vKxe48ePt2UxhRBC5EJjp1XHtaBKbNXmmf+Yt7JRjs8s7eruSpECatqyM1dLAHDuYgHzfo8aJbKlXEIIIYSwHZt2Lx85ciRBQUEsWrSI2NhYxo4dy/jx4/niiy9SPK979+4MHTrUvJ4/f35bFlMIIUQu5Fa2GPt2XCZgzxk69q2b4hzfOYVOr8Oz7HX2nSrClaAyRIRGcP66mve5gGMYJcoXz+YSCiGEECKz2ewbyvnz59mxYwc///wzNWvWBODjjz/mrbfeYtSoUZQokfzT/Hz58uHm5pbmexmNRoxGY+oHZqP48uX0cor0kXrNu6Ruc4cKNcpQoYYan52WusoJ9epZ4T77TqnlEwcucvFWFQAqlbqBSasM8l8uQ3JC3T51jEYM5kUj2OCzl3rNm6Re866nrW7T+j5tFnQfPnyYQoUKmQNugEaNGqHX6zl69CitW7dO9twNGzawfv163NzcaNmyJYMGDUqxtfvMmTOZWnZbCgwMzO4iCBuQes27pG7zpuys11Ilgs3Lv648S6yxOgDlStwmIOBhdhUrz5Cf2ayjj4zE79Hy0aNHMdmwZ6LUa94k9Zp3Sd1as1nQfffuXYoWLWp9Mzs7XFxcCAoKSva8F198EXd3d4oXL87p06eZOXMmFy9eZO7cucme4+npiZNT2ud4zQ5Go5HAwEBq1qyJwWBI/QSRK0i95l1St3lTTqjXc8/EwWK1vDvA8mDa2zMOX1/fbClTXpAT6vapkyBPj4+PDxQokMLBGSP1mjdJveZdT1vdRkREpKkBON1B98yZM5k/f36Kx2zatCm9lzV75ZVXzMteXl64ubnRp08frly5Qrly5ZI8x2Aw5JpKzU1lFWkn9Zp3Sd3mTdlZr1Wb1Dcv7zhcwbzs4SH/1zKD/MxmoQSfs8FgsFrP/FtJveZFUq9519NSt2l9j+kOuvv160fnzp1TPKZs2bIUK1aM4OBgq+1xcXE8ePAgXeO1a9WqBcDly5eTDbqFEEKI3MLDw7IcG2v5Y125atEkjhZCCCFEbpfuoLto0aKJuo0nxc/Pj9DQUI4dO0aNGjUA2Lt3LyaTSXVBSqOTJ08CpCtQF0IIIXIqJycoWxauXrXe7lG3RvYUSAghhBA2ZbN5uitXrkzTpk0ZN24cR48e5eDBg3z22We0b9/enLn89u3btGnThqNHjwJw5coV5s2bx7Fjx7h27Rp///03o0ePpl69enh7e9uqqEIIIUSW8vKyXrezU4G4EEIIIfIem05qOnPmTD777DN69+6NXq/n+eef5+OPPzbvj42N5eLFi0RGRgJgb2/Pnj17WLJkCREREZQqVYrnn3+eQYMG2bKYQgghRJbyLH6cLVQ3r1eooAJvIYQQQuQ9Nv0TX7hwYb744otk95cpU4bTp0+b10uVKsWPP/5oyyIJIYQQ2c6z/F2r9YTjvIUQQgiRt9ise7kQQgghkuZV3XpqpcpFDmVTSYQQQghhaxJ0CyGEEFnM06e41XrlcqHZVBIhhBBC2JoE3UIIIUQWK+9dGge7aPO6h1f+bCyNEEIIIWxJgm4hhBAiixnsDXiUOGdelzm6hRBCiLxLgm4hhBAiGzSqcw+AYoXuUtmnXDaXRgghhBC2IhOUCCGEENlg6rzqeFbZSosXiuPoVCy7iyOEEEIIG5GgWwghhMgGxcq48sHMFtldDCGEEELYmHQvF0IIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWwkV4/pNplMAERGRmZzSVJnNBoBiIiIwGAwZHNpRGaRes27pG7zJqnXvEvqNhtERYGXl2VZp8v0W0i95k1Sr3nX01a38XFofFyaHJ2maVpWFMgW7t27x6VLl7K7GEIIIYQQQgghnlIVKlTA1dU12f25OuiOi4vjwYMHODo6otdLT3khhBBCCCGEEFnDZDIRHR2Ni4sLdnbJdyLP1UG3EEIIIYQQQgiRk0nzsBBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnRngWXLltGqVStq1qzJyy+/zNGjR7O7SCKd/P396dq1K35+fjRs2JBBgwZx4cIFq2Oio6OZOHEi9evXx8/Pj3fffZe7d+9mU4lFRnz33Xd4eXkxefJk8zap19zp9u3bjBw5kvr16+Pj40OHDh0IDAw079c0jVmzZtGkSRN8fHzo06ePzIaRCxiNRr766itatWqFj48Pzz33HPPmzSNhehqp25zvv//+45133qFJkyZ4eXmxZcsWq/1pqcOQkBDef/99ateuTd26dRk7dizh4eFZ+C5EUlKq29jYWGbMmEGHDh3w9fWlSZMmjBo1itu3b1tdQ+o250ntZzah8ePH4+XlxQ8//GC1/WmvVwm6bWzTpk1MnTqVwYMHs3btWry9venfvz/37t3L7qKJdNi/fz89e/Zk1apVLFq0iLi4OPr3709ERIT5mClTpvDvv//y1VdfsXTpUu7cucOQIUOysdQiPY4ePcqKFSvwip9z9hGp19znwYMHvPrqq9jb2zN//nw2btzI6NGjcXFxMR8zf/58li5dyoQJE1i1ahX58+enf//+REdHZ2PJRWrmz5/PTz/9xPjx49m0aRMjR45kwYIFLF261OoYqducLSIiAi8vLz755JMk96elDkeOHMm5c+dYtGgR3377LQcOHGD8+PFZ9RZEMlKq26ioKE6cOMHAgQNZs2YNc+fO5eLFiwwcONDqOKnbnCe1n9l4f/31F0eOHKF48eKJ9j319aoJm+rWrZs2ceJE87rRaNSaNGmi+fv7Z2OpxJO6d++e5unpqe3fv1/TNE0LDQ3Vqlevrm3evNl8zLlz5zRPT0/t8OHD2VRKkVZhYWHa888/r+3atUvr1auXNmnSJE3TpF5zqxkzZmivvvpqsvtNJpPWuHFjbcGCBeZtoaGhWo0aNbTffvstK4ooMuitt97SPvzwQ6ttQ4YM0d5//31N06RucyNPT0/tr7/+Mq+npQ7jfw8fPXrUfMy2bds0Ly8v7datW1lXeJGix+s2KUeOHNE8PT2169eva5omdZsbJFevt27d0po2baqdOXNGa9mypbZo0SLzPqlXTZOWbhuKiYnh+PHjNGrUyLxNr9fTqFEjDh8+nI0lE0/q4cOHAOaWs2PHjhEbG2tV15UrV8bd3Z2AgIDsKKJIh08//ZTmzZtb1R9IveZW//zzDzVq1GDo0KE0bNiQTp06sWrVKvP+a9euERQUZFWvBQsWpFatWvK7OYfz8/Nj7969XLx4EYBTp05x8OBBmjVrBkjd5gVpqcPDhw9TqFAhatasaT6mUaNG6PV6GcKXy4SFhaHT6ShUqBAgdZtbmUwmPvjgA/r370+VKlUS7Zd6heRn8BZP7P79+xiNRlxdXa22u7q6JhoPLHIPk8nElClTqF27Np6engDcvXsXe3t78x+NeK6urgQFBWVHMUUabdy4kRMnTvDzzz8n2if1mjtdvXqVn376ib59+/LOO+8QGBjIpEmTsLe3p3Pnzua6S+p3s4zXz9neeustwsLCaNu2LQaDAaPRyHvvvUfHjh0BpG7zgLTU4d27dylatKjVfjs7O1xcXOR3cy4SHR3NzJkzad++Pc7OzoDUbW41f/587OzseOONN5LcL/UqQbcQ6TZx4kTOnj3L8uXLs7so4gndvHmTyZMns3DhQhwdHbO7OCKTaJpGjRo1GDFiBADVqlXj7NmzrFixgs6dO2dz6cST2Lx5Mxs2bOCLL77Aw8ODkydPMnXqVIoXLy51K0QuEhsby7Bhw9A0jYkTJ2Z3ccQTOHbsGEuWLGHNmjXodLrsLk6OJd3LbahIkSIYDIZESdPu3btHsWLFsqlU4kl8+umnbN26lcWLF1OyZEnz9mLFihEbG0toaKjV8ffu3cPNzS2riynS6Pjx49y7d48uXbpQrVo1qlWrxv79+1m6dCnVqlWTes2l3NzcqFy5stW2SpUqcePGDfN+QH4350LTp0/nrbfeon379nh5edGpUyd69+6Nv78/IHWbF6SlDosVK0ZwcLDV/ri4OB48eCC/m3OB2NhYhg8fzo0bN1i4cKG5lRukbnOjAwcOcO/ePVq2bGn+LnX9+nWmTZtGq1atAKlXkKDbphwcHKhevTp79uwxbzOZTOzZswc/P79sLJlIL03T+PTTT/nrr79YvHgxZcuWtdpfo0YN7O3trer6woUL3LhxA19f3ywurUirBg0asGHDBtatW2d+1ahRgw4dOpiXpV5zn9q1a5vH/Ma7dOkSpUuXBqBMmTK4ublZ1WtYWBhHjhyR3805XFRUVKKWFIPBYJ4yTOo290tLHfr5+REaGsqxY8fMx+zduxeTyYSPj0+Wl1mkXXzAffnyZX744QeKFClitV/qNvd56aWXWL9+vdV3qeLFi9O/f38WLFgASL2CdC+3ub59+zJ69Ghq1KiBj48PixcvJjIyki5dumR30UQ6TJw4kd9++42vv/6aAgUKmMefFCxYkHz58lGwYEG6du3K559/jouLC87OzkyaNAk/Pz8JznIwZ2dn87j8eE5OThQuXNi8Xeo19+nduzevvvoq3377LW3btuXo0aOsWrWKTz/9FACdTscbb7zBN998Q/ny5SlTpgyzZs2iePHiPPfcc9lcepGSli1b8u233+Lu7m7uXr5o0SK6du0KSN3mFuHh4Vy5csW8fu3aNU6ePImLiwvu7u6p1mHlypVp2rQp48aNY+LEicTGxvLZZ5/Rvn17SpQokV1vS5By3bq5uTF06FBOnDiBv78/RqPR/H3KxcUFBwcHqdscKrWf2ccfntjb21OsWDEqVaoEyM8sgE6LfzwsbObHH3/k+++/JygoiKpVq/Lxxx9Tq1at7C6WSIfH526ON3XqVPMDlOjoaD7//HM2btxITEwMTZo04ZNPPnlqus3kFa+//jre3t589NFHgNRrbvXvv//y5ZdfcunSJcqUKUPfvn3p3r27eb+macyePZtVq1YRGhpKnTp1+OSTT6hYsWI2llqkJiwsjFmzZrFlyxbu3btH8eLFad++PYMHD8bBwQGQus0N9u3bl2TCpc6dO/P555+nqQ5DQkL47LPP+Oeff9Dr9Tz//PN8/PHHFChQICvfinhMSnU7ZMgQnn322STPW7JkCfXr1wekbnOi1H5mH9eqVSveeOMN+vTpY972tNerBN1CCCGEEEIIIYSNyJhuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRIJuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRIJuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghnlL79u3Dy8uLffv2ZXdRhBBCiDzLLrsLIIQQQuREa9as4cMPP0x2/8qVK/H19c26AuUSXl5eSW5///33eeutt8zrc+bMYe7cuYmOc3BwIDAwMNnrHzhwgJ49ewKwZ88eihYt+sTXFEIIIWxJgm4hhBAiBUOHDqVMmTKJtpcrVy4bSpM7NG7cmJdeeslqW7Vq1ZI8dsKECTg5OZnXDQZDstc1mUxMmjQJJycnIiIikj0uPdcUQgghbE2CbiGEECIFzZo1o2bNmtldjFylQoUKiYLu5LzwwgtWrdUpWblyJTdv3qRbt24sWbIkU64phBBC2JqM6RZCCCGewOzZs/H29mbPnj1W28eNG0eNGjU4deoUADExMcyaNYsuXbpQp04dfH19ee2119i7d6/VedeuXcPLy4vvv/+eZcuW8eyzz1KrVi369evHzZs30TSNefPm0axZM3x8fBg4cCAhISFW12jVqhVvv/02O3fu5KWXXqJmzZq0a9eOP//8M03v6ciRI/Tv3586depQq1YtevXqxcGDB9P1uURFRREdHZ2mY8PCwtA0LcVjQkJC+Oqrrxg6dCiFChXKlGsKIYQQWUGCbiGEECIFYWFhBAcHW73u379v3j9w4ECqVq3KRx99RFhYGAA7duxg1apVDBo0CG9vb/N1Vq9ezTPPPMPIkSMZMmQIwcHBDBgwgJMnTya674YNG1i+fDmvv/46ffv2Zf/+/QwfPpyvvvqKHTt28Oabb9K9e3f+/fdfpk2bluj8S5cu8d5779GsWTPef/99DAYDw4YNY9euXSm+3z179tCzZ0/Cw8MZMmQI7733HqGhofTu3ZujR4+m6TNbu3Ytvr6++Pj40K5dOzZs2JDssc8++yx16tShdu3ajBw5krt37yZ53KxZs3Bzc6NHjx6p3j+t1xRCCCGygnQvF0IIIVLQp0+fRNsSJuayt7dn2rRpdOnShc8//5xRo0bx0UcfUaNGDavEYS4uLvzzzz84ODiYt3Xv3p22bduydOlSpkyZYnWP27dv8+eff1KwYEFAjWf29/cnKiqKX375BTs79Sf8/v37bNiwgYkTJ1pd+9KlS8yZM4fnn38egG7dutGmTRtmzpxJ48aNk3yvmqYxYcIE6tevz4IFC9DpdAD06NGD9u3b89VXX7Fw4cIUPy8/Pz/atm1LmTJluHPnDsuXL2fkyJE8fPiQ1157zXxcoUKF6NWrF76+vjg4OHDgwAGWL19OYGAgv/zyC87OzuZjT506xcqVK/nuu+9SHJ+dnmsKIYQQWUWCbiGEECIF48ePp2LFilbb9HrrjmKenp4MHTqUL774gtOnT3P//n0WLlxoDoxBJfOKDxhNJhOhoaGYTCZq1KjBiRMnEt23TZs25oAbwMfHB4COHTtaXdfHx4fffvuN27dvU7ZsWfP24sWL07p1a/O6s7MznTp1Yv78+QQFBeHm5pbonidPnuTSpUsMHDjQqjUfoGHDhvz666+YTKZE7z+hFStWWK137dqVrl278r///Y8uXbqQL18+AHr37m113AsvvICPjw8jR45k+fLlVg8sJk+eTLNmzWjSpEmy903vNYUQQoisIkG3EEIIkQIfH580JVLr378/Gzdu5OjRo4wYMQIPD49Ex6xdu5aFCxdy8eJFYmNjzduTyo5eqlQpq/X4ADy57Q8ePLAKusuXL29uqY5XoUIFAK5fv55k0H3p0iUARo8endzb5OHDh7i4uCS7/3EODg707NmTTz75hGPHjlG3bt1kj+3QoQPTpk1j9+7d5gB506ZNHD58OMUu6ilJ6ppCCCFEVpKgWwghhMgEV69e5fLlywCcOXMm0f5ff/2VMWPG8Nxzz9G/f39cXV0xGAz4+/tz9erVRMcn1406uVbmzEgaFn+NUaNGUbVq1SSPSTgVV1rFPyh48OBBqseWLFnS6rjp06fzwgsvYG9vz7Vr1wAIDQ0F4NatW8TGxlKiRIl0XVMIIYTIShJ0CyGEEE/IZDIxZswYnJ2d6d27N99++y0vvPCCeTw1wB9//EHZsmWZO3euVQv07NmzbVKmy5cvo2ma1b3iW7JLly6d5DnxLeXOzs40atQo08oS/1AhtWm8NE3j+vXrVnN637x5k99++43ffvst0fGdO3fG29ubX3/9NV3XFEIIIbKSBN1CCCHEE1q0aBGHDx/mm2++oUWLFuzbt48JEyZQt25dc6AZ33KdMBA+cuQIAQEBuLu7Z3qZ7ty5w19//WUO/MPCwli3bh1Vq1ZNsms5QI0aNShXrhwLFy7kxRdfpECBAlb7g4ODUwyck9ofFhbG4sWLKVKkCNWrV0/x2OXLlxMcHEzTpk3N2+bNm5foPhs3bmTTpk1MmzaNkiVLpvuaQgghRFaSoFsIIYRIwfbt27lw4UKi7bVr16Zs2bKcP3/ePP92q1atAPj888/p1KkTEydOZNasWQC0aNGCP//8k8GDB9OiRQuuXbvGihUr8PDwICIiItPLXaFCBT766CMCAwNxdXXll19+4d69e0ydOjXZc/R6PZMmTeLNN9/kxRdfpEuXLpQoUYLbt2+zb98+nJ2d+fbbb5M9f9myZWzZsoWWLVvi7u7OnTt3WLNmDTdu3GD69OlW2dVbtmxJu3bt8PT0xMHBgUOHDrFx40aqVq3KK6+8Yj7uueeeS3Sf+CnWmjVrZhVkp/WaQgghRFaSoFsIIYRIQXLdv6dOnYq7uzujR4+mSJEijB071ryvQoUKjBgxgsmTJ7Np0ybatWtHly5duHv3LitXrmTnzp14eHgwY8YMfv/9d/bv35/p5a5QoQLjxo1j+vTpXLx4kTJlyvC///0v1Rbf+vXrs3LlSr7++mt+/PFHIiIicHNzw8fHJ9XAtXbt2hw+fJiff/6ZkJAQ8ufPj4+PD5MnT6Zhw4ZWx3bo0IHDhw/zxx9/EBMTg7u7OwMGDOCdd94hf/78GXrPtrimEEII8aR0WmZkXhFCCCFEjtGqVSuqVKmCv79/dhdFCCGEeOolP9GmEEIIIYQQQgghnogE3UIIIYQQQgghhI1I0C2EEEIIIYQQQtiIjOkWQgghhBBCCCFsRFq6hRBCCCGEEEIIG5GgWwghhBBCCCGEsJFcPU93XFwcDx48wNHREb1enh8IIYQQQgghhMgaJpOJ6OhoXFxcsLNLPrTO1UH3gwcPuHTpUnYXQwghhBBCCCHEU6pChQq4uromuz9XB92Ojo6AepP58+fP5tKkzGg0cubMGTw9PTEYDNldHJFJpF7zLqnbvEnqNe+Sus0GkZHQuLFa3rULbPBdTOo1b5J6zbuetrqNjIzk0qVL5rg0Obk66I7vUp4/f36cnJyyuTQpMxqNADg5OT0V/wGfFlKveZfUbd4k9Zp3Sd1mA02D06fVcr58YIPvYlKveZPUa971tNZtakOdZSC0EEIIIYQQQghhIxJ0CyGEEEKIPC0mJrtLIIR4mknQLYQQQggh8qy//4aiRdXw8+jo7C6NEOJpJEF3HnbiBHz6KQQEZHdJhBBCCCGyx4IFEB4Ou3fDxo3ZXRohxNNIgu486sIFaNgQPvkEateGd96K5d6N4OwulhBCCCFElorP9QawfHn2lUMI8fSSoDsPiomK5ZVXNEJD1bqmgf98e6p46vj6k20YY43ZW0AhhBBCiCygaXDmjGX9t98wfz8SQoisIkF3HvThgF0cOKADwN0dnJ1NANwPL8LgT5tTx+scO9YfSfP1Ni75j8/f20roPfkrJYQQQojc48YN1bU8XnQ0rFuXbcURQjylJOjOYzb8sJ8vl7UAwMEumg3rojkdcJdeL+w0H3PkohfNXqrFd5O2p3q943vO0bFPbT78qgVtml4mIjTCVkUXQgghhMhUCVu54z1JF/MHDyQTuhAi/STozkOunrlJn3c9zOszR++ldj1H3CsXZ+nvTdi54Si+lU6Z9388oyoxkSn/5fh+7jVMmprYfs/Jmrzc/iqxsbYpvxBCCCFEZkoq6N6yBYKC0ncdkwkGDoTChcHRUf3r6akyonfuDEOGwMmTmVFiIUReJEF3FoiJgS+/1LFzZyGb3SMuJo7Xut4hOKwoAJ2a7GXIp82sjmn8og8HTlWhQ6N9AASFurH+h4PJlzsyhqW/1bDatmmnF/37qz8+QgghhBA5WcIkas88o/41GmH16rRfw2SCt9+Gb7+1bHvwAM6eVRnR162DefOgTRsIC8uUYgsh8hgJurOAvz+MGqVn+PAq/PFT8kHuk5gweCc7j9UCoJzbNRb+7I1Or0t0nMHewLvv2pnX5y+0T/aavy09xN3QYgDUrnwCR0cNgKVLYdSozCy9EEIIIUTmS9jSPWGCZfmnn9J2vqbBoEFq2jEAg0HNDlOlCri4WB975Yr1PYQQKRszZgyDBg0yr7/++utMnjw5y8uxb98+vLy8CLVhlkUJurNAObeb5uUhI0tm+rjoLasOMeV71apt0Mex4of7FClRONnjn33Zj4olrgDw18HaXDp+LcnjFi6y/PeY+lkkP/2kQ/9o0xdfwIxp0s9cCCGEEDlXfEt3gQKqJbpaNbW+c6cKklOiaarbuL+/Wtfr1Xjw3btVMB8SAlFRcPCg6nIO8NVXEBBggzciRBYaM2YMXl5eeHl5UaNGDVq3bs3cuXOJi4uz6X3nzJnDsGHD0nRsVgTKmUmC7izQsXtJmvscBuDi7XJMem9/pl5/xGhnNE1V5ZThO2nYrmaKx+sNega8ch4ATdPz/axziY65cf4Wm/fVAaBsses8282Xzp2tu1aNGmPPD9N3JjpXCCGEECK7xcTAxYtq2dMTdDp49VXL/hUrkj9X02DYMPj6a7Wu18OPP0L37tbHOTpC7dowbpxaNxpVV3SjzM4qcrmmTZuyc+dO/vjjD/r27cvcuXP5/vvvEx0Xk4mZBQsXLoyzs3OmXS8nkaA7C+j0OuZ954yDXTQAMxY35tjus5ly7ZsXbhN4yRMAv8onGTm9WSpnKH2HVsWgV0+rFm5sxuMPrpbMPWVOoNany1kM9mr5zTdh0ieWAUv9xzSk1wu72PfHMTST9qRvRwghhBAiU1y4YAl+vbzUvz16WPYn18Vc02DECJgzR63rdLB4sXXA/rgPPoCqVdXy/v3WjRRC5EYODg64ublRunRpXnvtNRo1asQ///xj7hL+zTff0KRJE9q0aQPAzZs3GTZsGPXr1+fNN99k8ODBXLtm6U1rNBqZOnUqdevWpX79+kyfPh1Ns44dHu9eHhMTw4wZM2jevLm5xX316tVcu3aNN954A4B69erh5eXFmDFjADCZTPj7+9OqVSt8fHzo2LEjv//+u9V9tm3bxgsvvICPjw+vv/46169ft8lnmJBd6oeIzOBdtxJDXtnEl8s6EGe05+03I9lx1ITe8GTPPbZvOg+UAKBN89voDVXTdF6pyiV5sQP8+ivcuKFn0ybo2FHt0zRYuLqS+dg+QypZnTt2fAHunNrG7JXNMWkGlv3ZmGV/Qt0qJxjyZjCvDKpLvgL5nuh9CSGEEEI8iYTjuT1V+wQeHiqh2v79qhv4yZOWYBkgLs66hVungx9+gF69Ur6Xg4MKtJs3V+tjx6qs5u7umfVuRJ5x8ks49WXqxxWtDc3XW2/b1hGCD6V+rvcIqDoiY+VLhqOjIyEhIQDs2bMHZ2dnFi1aBEBsbCz9+/fH19eXpUuXcvbsWbZu3cqAAQNYv349Dg4OLFy4kLVr1zJlyhQqV67MwoUL+euvv2jQoEGy9xw1ahQBAQF8/PHHeHt7c+3aNe7fv0+pUqWYM2cO7777Lr///jvOzs7ky6diD39/f9avX8/EiROpUKEC//33Hx988AFFixblmWee4ebNmwwZMoSePXvSvXt3jh07xrRp0zL1s0qKtHRnoW7vFKOKu+rntPuEDwumPnnX7G3H6pmXm79QMl3nvvmmZXn+fMvyrl1w9no5AFrWO0+lmuWsztPpdfxvWVM+G7KVos7B5u0Hzlajz6gmlHUPY8LArcRGy5hvIYQQIqcyGU15updaUkE3WLdYJ2ztfvAAXnzREnADfP89PGpQS1WzZtC/v1oODYXhw9NdZPE0iA2FyOupv6KSmNcuKiht58Zm3jhnTdPYvXs3O3fupH79+gA4OTkxadIkqlSpQpUqVdi0aRMmk4nJkyfj6elJ6dKlmTx5Mjdv3mT/fjWsdvHixbz11ls8//zzVK5cmYkTJ1KwYMFk73vx4kU2b97MlClTaN26NWXLlqVhw4a0a9cOg8GAy6NMhq6urri5uVGwYEFiYmLw9/dnypQpNG3alLJly9KlSxc6duzIypUrAfjpp58oV64cY8aMoVKlSnTs2JHOnTtn2ueVHAm6s5BDfgfm/c8SpI7+3IdbF+8keawxNm2DgbbtUNnHDQZo1NY7XeVp0wbKlFHLmzZBfA+QhQstx/QbWjnJc/UGPR/PacG1G/lZ+PkO/CpbJqe8G1qMid+24Kc5+9JVHiGEEEJkjZkfbMVgp6dK6SuM7f8vAXvuoOWx+DvhdGHx3ctBjcvWPZrg5aefVA+/CxegUSP44w+13d5edSnv2zd995w2DYqpiV9YvVp9vxLCin0hyF869Vc+t8Tn5nNL27n2Tz5N8datW/Hz86NmzZq8+eabtGvXjnfffRcAT09PHBwczMeeOnWKK1euULt2berUqUPfvn1p2LAh0dHRXLlyhYcPHxIUFEStWrXM59jZ2VGjRo1E94138uRJDAYD9erVS/aYx12+fJnIyEj69euHn5+f+fXrr79y5VHmxPPnz+Pj42N1nq+vb5rvkVHSvTyLterqyxttd7JkcxNCwgsz4q1dLP+rOABXzt5n1XdHWbW+GP+dqU63FntY9XeDJKf+ArhzB06cUMt16kAKD4uSZDBAv74an36mw2SCRdN3MnxyE1atUvsLFYIuXVK+Rv6C+ek7uil9PtDY+3sgM6eFs2a76iayZ4+RND4cFkIIIUQWuX87hPGz1aTV52+VZ+rC8kxdqFqDu3dXr5op52RNXUwIhF8CnQF0dupfvZ1a1juCYzHQG570raQouZZud3do2RL++QfOnYPZs2HSJLh7V+0vWhTWrlUt1+nl6gpffmlpHR80CI4fV9nThQBUt++Mdv1+vLu5DdWvX58JEyZgb29P8eLFsbOzhI358+e3OjYiIoLq1aszc+ZMjEYjJ0+epGrVqhgMBooWLZqh+8d3F0+PiAg1Q5S/vz8lSpSw2pfwIUF2kJbubDDTv6q5W/ZPWxoz4p0bNGwI5T2L8MHM5vx3pjoAP29tyOFtp5K9zvbtluUWLTJWlv49b6PTmQD4fkUFVv4UR3i42vfqq+DklLbr6PQ6GraryaI11czbAi77ZqxQQgghhLCZJbOOEBmT+A/8mTMq+PTxgaYNQvj3l8Ppu3DoaTj0PmyuAz8Xhc1+sMkHNlaD37xgfWX4tTysLQkRj83XdXUtbO8CB9+DU7Pg6joIPgwx98loE3x8S3fJkqohIaGEXcyHD7cE3N7earx3RgLueL16QatWavnyZZgyJePXEiK75M+fn/Lly+Pu7m4VcCelevXqXL58GVdXV8qXL0/JkiUpX7485cuXp2DBghQsWBA3NzeOHDliPicuLo7jx48ne01PT09MJhP//fdfkvvt7VVvX2OCqQIqV66Mg4MDN27cMN8//lWqVCnzMYGBgVbXSlguW5GgOxu4lXVl5rgT5vX/+buzd2/Sx65ZfjvZ62xbbwnImzfL2B+kcl4laVPvIACXg8owZqRlDEi/vum/ZiHXQlR+1CP96EkXmTJDCCGEyEE0k8a3S8uY17euCeDrmVdp0cLS5Rpg577CtOrmR0vfw2z/NYkvpHGREBtmvS36rkoQdf8QkMp3CIci1usPjsO1tXD6Kzg0HHZ0ht9rY1jrhu+5Fuh/94WtHeDohMTXCr8M4VchOhiMaqaYBw/g9qOvUAlbueN17aq6kCf03HOwZw/m7zEZpdPBN9+o5Gqg8ubYeHpjIbJVhw4dKFKkCAMHDuTAgQPcuXOH/fv3M2nSJG7dugXAG2+8wfz589myZQvnz59n4sSJKc6xXaZMGTp37szYsWPZsmULV69eZd++fWx6NGajdOnS6HQ6tm7dSnBwMOHh4Tg7O9OvXz+mTp3K2rVruXLlCsePH2fp0qWsXbsWgB49enDp0iWmTZvGhQsX2LBhg3mfLWVJ0L1s2TJatWpFzZo1efnllzl69Giyx65Zs8Y8GXv8q+YT93HKefqMbEyzptaJxmrWhM/GXGXH+qPm1uc1f5RN9hrbdqjq0+uMNKmf8YQJbw6wRMb3HqouINXLnSUdQyisxA+LiIiAs5kzM5oQQgghMsHWtQGcuqaiyuY+ATTv7MvA98vy779w/brqau1V+aHl+CN+NO9Ui+dqH2TX2h1wYgb80xp+LgIXf7S+eNF6YHjU7bSwD1TqB5UHQKW+UOF1KP8qlOsOpTskHnMacz/ZMhtM4egeHIMbv8Gdf5N4U+3g13LwiyuszAfrynFmzSTz7qSC7iJFVNK0eO+8o8ZfFy6cbDHSxdPTMitMUBBs3Zo51xUiJ8qfPz8//vgj7u7uDBs2jA8++IBx48YRHR1tnne7X79+dOzYkdGjR9OjRw8KFChA69atU7zuhAkTeOGFF5gwYQJt27Zl3LhxREZGAlCiRAneffddvvjiCxo1asRnn30GwPDhwxk0aBD+/v60a9eOAQMGsHXrVso8SmTl7u7OnDlz+Pvvv3nppZdYsWIF7733ng0/nUc0G9u4caNWvXp17eeff9bOnj2rffzxx1rdunW1u3fvJnn8L7/8otWuXVu7c+eO+RUUFJTkseHh4dqBAwe08PBwW76FTBEXF6cdOHBAi4uLM2+7fVvThg3TtIkTNe34cevjm9QI0FR/Kk07se9couvdvXbXvL9OleOJ9qdHTFSMVqLwbfP1QNNmfrA1w9ebNMlynZ9+eqKi5XhJ1avIG6Ru8yap17xL6jZturfaZfkbPXtXksfExcRpS7/cqVVxv2D13QA0bW7vQZq2DPXa3NayIyxMnXx7h6ZFJf0dL0Vx0ZoWdknTbm/TtAtLNO3op5q2t79m2tJKi1xVVjP9ZK/uuev1xOeuLWcp06PXj4NeMxdtxoBZmnZknKaFXbE67do1TRs8WNOWLdM0kyn9RU7N6tWWj2fAgMy/fm4mP69519NWt2mNR23e0r1o0SK6d+9O165d8fDwYOLEieTLl49ffvkl2XN0Oh1ubm7mV7H4NJB5TPHi8NVXMH48VKtmva9Le8sT37XLriY6d/smSxNyi/pJZ0BPK3tHe/p2tnR3tzPE0mtwtRTOSFnCBIABe5+sbEIIIYTIHLcu3mHNNtWNrbhLEF0G1E3yOIO9gV7vNebExbIsnrGTyiUvm/dNWDMBo0kPTuXAuVLik4s3AUfX9BfO4AAFykPxZlDxdag5DuovwNTiT45XWoupWzh0ug6+SQyQLtMRynaFUm2gWEPQO3LmpqV527PQFjj2GYSdszqttP1O5nZqyWvVP1Yt6ZmsXTtLArU1ayBWZlIV4qll0+zlMTExHD9+nLffftu8Ta/X06hRIw4fTj45R0REBC1btsRkMlGtWjVGjBhBlSpVkj3eaDRaDaLPieLLl9ZyduxZkRGP5mlfs6k4o7+0Pm/rP1Hm5SYt8z3x++87tDwzFsdhNNnxUpMDFCvzTIavWdMrGFDTHATsvoLRmIE/vrlEeutV5B5St3mT1GveJXWbugVfHifO2BKAfl2OYXBoluLnpTPo6PleQ7oPiqNT22v8sb0Mdx+6scv1HI1bl4WICAzMAx597mn47H/+Gc6e1fHeexppSU5srleTBo4l4jdaH+T3lfV6XCSnfrIMu/MqpTKqGR3drc7VhZxAf2cr3NkKxyejudRAK/cKWrke4Fwx9cKlwtEROnTQsWKFnuBg+OMPI23bPvFl8wT5ec27nra6Tev7tGnQff/+fYxGI66u1kGXq6srFy5cSPKcihUrMmXKFLy8vHj48CELFy6kR48ebNy4kZIlSyZ5zpmEc0LkcI9ny0uJb6UwAi5U5+C5amxZ/zfFyhU279u6V00zptOZcC0fS0BAwBOXbd5nRwg46ECPd5yf6HqaSaNYQR13Hxbj8JlyHD4cYJWcJS9KT72K3EXqNm+Ses27pG6TZjTCvJ8bAuq7Q/MOxnT9rW/Q0pU/Hs2asnBlfgoUP4I+MhK/R/uPHj2K6bFphB73++9F+Phj1Tp+5swthg27nub7p7dej5yuCoDBoBFWfxYX4w5w/2wwmj7AfEzJewGUTnCO7sExdIHHIHAcYflqcNelE8GF2qHpMz7VUN26LqxY4QHAd9/dp1Spy6mc8XSRn9e8S+rWmk7TMjgPQxrcvn2bZs2asWLFCvz8/Mzbp0+fzn///cfq1atTvUZsbCzt2rWjffv2DB8+3GpfREQEJ0+exNPTE6e0zm2VTYxGI4GBgdSsWRODIW3zUk4dsZdxsxsD8MWMaIa9p56R3L8dQvEyRdA0Pb6VTnHgTPK9ALJLm2cC2HKoDgBXz96gVMUSqZyRs5lMqluYo6P19ozUq8gdpG7zJqnXvEvqNmW//QadOqnPpW1bExs2pO/rX1AQuLvr0TQdVatqBAaaIDwcg4sLAMYHD1KcjPrsWahXT09YmHoKX7iwxtWrJlKJ0zNUr5oGhQvrCQ/X4eGhceqUKfmDI2+iu/oLuisr0N1LPJWMlq8kWvXxaB5vpenej4uKUp9baKgOFxeNGzdMib5LPI3k5zXvetrqNiIigjNnzlC1atUU41GbtnQXKVIEg8HAvXv3rLbfu3cvzeO07e3tqVq1KleuXEn2GIPBkGsqNT1l7fpOY8bNVsvr1jsyYqRa3vPHOTStPgAt6t/CYPC2RVGfiF+Nh2w5pJYD916njId79hboCRiN0Lmzymr69dcqw+njctP/QZE+Urd5k9Rr3pWX69YYa2THhkC2bA6hdr18dHmrQZrP/e47y/KgQXrS+xGVLAmNGsGuXXDypI4LFwxUcbdcxGAwkNxFo6PhtdcgLMEMYyEhOn7+2UCfPmm7f3rq9fp1CA9Xy15eupTPcy4DVYepV9gluLwCLv8EIWqmHV3ULXRxIcm+t9QUKAAvvQRLl8KDBzr+/ttAhw4ZulSelJd/Xp92T0vdpvU92jSRmoODA9WrV2fPnj3mbSaTiT179li1fKfEaDRy5swZ3NzcbFXMHKtqVfB+FE/v3GmZb3Lr35HmY5q3SsOAqGzgW9sy+WXAgfBkj4uOiGbSu1tZPGNnVhQrQxYvho0b1ZPz994zcfH4jewukhBCiKeEyQQ7dsC7fS9SpvhdWnb1ZfKCFnR9uwG/LzuYpmtcugSbN6vlcuXI8Lji+CmwADZsSPt5H3wA8al8SiTo+PbNNxkrR2oSjjpMarqwZDlXgOpjoN0ReH6fSs5m7wJVBlofF3oabv4FprSN5eze3bK8alU6yiOEyDNsnr28b9++rFq1irVr13L+/HkmTJhAZGQkXbp0AWDUqFF88cUX5uPnzp3Lzp07uXr1KsePH+eDDz7gxo0bvPzyy7Yuao706GNC02DdOrW8bX9x8/6m7dLz1yTr+Daw/FUNCEx+LNScT/Ywbm4L+oxqwr+/JJ9cL7uEhcFHH1nWo6L0jHgn+V4XQgghRGaIioKxY6FsWWjWDOb+UJFbIdZDtd4aXpLQe6HJXMHiu8m7iR9M+NZbGW60tQq6169P2zlr18KcOWrZ0RH+/BNq1VLr+/fDoUMZK0tKTp+2LHt5ZfAixZ6Bpj/DS5fAofBjN5gN/z4P6yvCkY/h4bmkrmD2/POW+b9//VXVbVqZTDB/vnpwsWYNPNZ5VAiRS9i0ezlAu3btCA4OZvbs2QQFBVG1alUWLFhg7l5+8+ZN9HpL7B8aGsq4ceMICgrCxcWF6tWrs2LFCjw8PGxd1BypSxeY8mh2jDVLLtCjRyUOn1fN3zUrnsfVvXI2li55nn4VyGcfSVRsfgJOJ50AD+DntZaW+oXfBtOya1aULu2mjbvArVvWU6Ks29mAP5Yf4IXXkp5qRQghhHhSQ4bA999bb3O0j6Zdg8PcCHJm36kaXL1bmlFvbufbNc2SvU5MZAzfr1a5X+wMsfTv9RAomqEyeXlBlSpqfPbOnRAcnPKVLl+Gfv0s67NmgY8PDBxoGar17bfWXd8zQ4ZbupPyeMBtjFLdzwEirsLxyerl1gSqjoLSL/J49lgHBzVMbdEiePhQ9Tro3Dn1W9+7B2+8oYa3xdPp1GfYogW0bKnq4+5duHNHvYKC1L8VKsDbb0OhQk/y5oUQmSZLZg23kbRORp4TZHSieJNJ08q5XddA0+wMMdqPP4Rpqt1b04YMsVFhM0k9z2MaaJpOZ9QeBocm2n/zhsn8XkDTnBzDtNB7iY/LLldOXdfy2UdooGn29nHa+HcDzGX1LH1Bi46IznC9ipxP6jZvknrNu/JS3f6x/ID5742dnaZ16KBpP/6oaQ/uq/d28dhVrYDjQ/Mxf68+lOy1fpq9y3xc91a7nrhsI0ZY/m7/tCDMshIWZnVcTIymNWhg2f3yy+o7jaZpWmiophUs+Ohvv5OmhYQkf7+M1Gu7dpb7XruWkXeZAmOMpl1erWn/tte05XpNW4b1a8uzmhYckOi033+3lKlHj9Rvs3evppUrp1l9T0rvq2RJTVuyxPK55yR56edVWHva6jat8ajNu5eLJ6PTQZfnzgIQZ7Tn448t2UZbtMimQqWRXzXVB0rT9BzdfSnR/t82Wj8JjoguwM/zA7KgZGnz4dCLRMWqtKrvdt/BhK98aFxdJVY5c70iX328OzuLJ4QQIg96GPyQN4dZupHPmXmX9euhZ08oVFj1C69QvQzTRlvGcw8Y4krY/bBE1/p79SEGfljNvP7OoFRShadBwi7mCVtgH/fxx7D3UTLwihVVF+n4BuCCBaFXL7UcEQE//vjExbIS39JdoAC4Z3YeV709lOsGLX6DTtfAdzoUqmrZf/tv2OwH+wZAdLB5c6tWED+D7oYN6n0nRdNUj4CmTSE+h7Cbmxr//v77ULt2oob0ZN26pVrKmzSxTTd+IUTaSdCdC3TpUdi8fOmas3m5WfK9yXIE31qWBwQBAYmTjSQ1Hmzx8oK2LFKa7f/zOMv+VNO1FXUO5uMvfNHpdcyZ54hOp6Ye+XReXa6fu5WdxRRCCJHHjH7rMFeCygDQ0vcwbw1xTfK4geOb0qxmAAAXb5dj7EDrpGrfTdpOm1drEhJeGIAmNY7QorPvE5evcWMoUkQt//ln0sds3w7Tp6tle3tYuRIezSxmKX+C3GTffIN5zPmTiomBixfVsqdn2gPUDMlfCqp9AO2PQ5PVUKDiox0a3NgECeb3tre35OkJD1cJWh/34AG8/DIMH66mKQUVMB8+rLrjz5wJBw+qbufr1sF776mg+v33Ydo0WLhQTQ23dSt06mS57u7dULeuuoaMCRcp8fLySvE1Jz5Bg0i/LGp5t4mnoXu5pmlaXEycVtzljlWXoWrVbFDITLZ7a4i5vG++ab0vPFzT8uVT+0qVMmlepc+bj70QeCV7CvyIyWjSGlc/Yi7P7I+2Wu0f2HWbpYvYczufqi40T5OnrXvU00LqNe/KC3X77y+HrYZcnT+a8t/Ds4cvafkdws3nbN+uvjO899q/Vt8Z2jfYl6nDt3r1elRGEncvDw/XNA8Py+YZM5K/TuPGmlXZk5Leej15Mn3duDNVXJSmHZ+uaasKadr5RYl2b9liKVvXrpbt169r2vjxmlaihHX38NGjNS02NuPF+f13TfP0tL5miRKadv58xq+ZWfLCz2tedOfOHfPrhx9+0GrXrm21LSzBMBKTyaTFJvEf9GmrW+lenocY7A10annSalvzWkezqTRpV7OOi/kJc0CA9b4t6y6bs3e++KKO3t0sGcGXfnM+awqYjJ/997LruA8AXqUv8M64Rlb7J82piWtB9ah4xZbGnNgtU4gJIYR4MuEPwuk/uIh5fer7B6hUs2yK53j4lmfyh5fN6/36mejU/CD/W97CvO2917by6/Y6FCyaeT3JEnYxf9y4cXDuUTLvRo1Ua2xy4pOpQeZNH5apSdTSy+CoWr47nIeKb1jvi7hGc/0rFHeLA1RL9x9/wCuvQPny8OmnlqlhixRRvQE//xzsniDl8QsvQGCg6nXg/Kij5O3bqnXcmLbZzsRTxs3NzfwqWLAgOp3OvH7hwgVq167Ntm3b6NKlCzVr1uTgwYOMGTOGQYMGWV1nyZIl9O7d27xuMpnw9/enVatW+Pj40LFjR37//fesfnvZSoLuXKLLy05W6y0aJx67ldM4O6usmqB+6cfFWfatX2EJsju2ukCvgZ7mbttL1lREM2VSP7N0igqPYtSEMub1mZPvYu9ob3VM0VJFmDLquHl92swqxMXEIYQQQmTURwMPcOFWeUB1BR/yadM0nTd0XFUaNlTL587p+W3PM4DKVO7/2Xa+XNYCg30G5whLxgsvqO7Sj9uzB/73P7Xs6Ki6O6c0PVm3bpZxzj//rLJuP6mE04VledAdL18x0D32FfvQSOxurqJrLZWSPioK2rRR83bHfz8yGFT38kOHoEOHzCmKg4Oabuz0aTW2HmDXLkv3f5G1Vq+GqlWhTJmse1Wtqn6+MssXX3zB+++/z6ZNm/BK45x8/v7+rFu3jokTJ7Jx40b69OnDBx98wP79+zOvYDmcBN25RMvOPrg4hZjXm7XLHVOo+fmpf6OiLH8ITUYTv+1QP6T5HSJ4tn0pynq508pPtd6fv1We3buzJ+iePX4vl+6oloXnah+k/ev1kjyu/+jG1KlyAoDjV7yZ8mnOfwgihBAiZ9r121Fmr1BBdj77SBYucUFvSNtXNINBBbeOjpZthQuE8PtPgbz1sW2SvxQqpKarSigqSk0PFj82+9NPU58jO18+y5RisbFqSq0nlbClO8NzdGe26GAI2gnAKw2WJ9pdvLhKPHfpkgrCK1TI/CK4u8PSpRA/S+/48WqsuMhaM2bAqVNw/XrWvU6dUvfNLEOHDqVx48aUK1eOwvET0KcgJiYGf39/pkyZQtOmTSlbtixdunShY8eOrFy5MvMKlsPZfJ5ukTkc8jswos9uPvm6Bd1a7KFkxYbZXaQ08fW6zUpUFtaAv/+jevV6/LflBLdDagDw/DOB5C9YH4Dew2rx96OeKIuX6GncJGvLenL/eSbOU0G2Xmfki1kF0emTzsBisDcwd7aJhm3V+qefu1KomEpmIoQQthJ2P4wCLgWS/d0kcrao8CgunArlzsPilnmVbxv58Ttn4kf8TRq+jyp+LdJ1XW9v+OILNbe3lxesW6XD26d25r+BBDp0gJ0JEqlNmaK+3APUqwcjRqTtOm+9ZQkI/P1Vq6w+Dc8bIiNVa/vj3a9zREv34xyLwoun4NhnNGEWDavsZs/ZRjTw2MOQl7fR7b0uOLrZvrCNG8Po0TB1qmpd79lTJWbL/+RJ7UUajRqlhmA8fJh19yxYUP1cZZaaNWum6/jLly8TGRlJv/gnbI/ExsZStWrVZM7KeyTozkXGz2vBoA/v4ereILuLkma+nlchPug+EE5PYP3qu+b9HdvHmJe7dNUxaDCEhalMp7NmZd0fgshI6N67JBHRBQB4u8sufJqk3ELQoE0NpkwxMXas+nYwcqT6opDS+DUhhMgIzaTxbo/tzFvdnLc6bcd/bQ6fvkIkcnL/eZq1duFuaPHH9hiASgDU9z7G8Mlp61b+uMGDVdfkokXBzs4l9ROeUIcOMPpdy/pXX6l/7e1Vi3VaxyJ7eMDzz6tM6BcvwpdfqgfYyWUd1zR1/eHD1b0mTFCZ0OPvF9/SXbKkapHPMeydwW8ahkp92eE2nLvnDlPC5VF/+r/Hg/cIqP6xOs6GJkxQY8kPHYKTJ2HMGPV9S2SNbt3UKzfL/9iXc51Oh/bY9APGBEkDIh7Nj+fv70+JEiWsjnNwcOBpId3Lc5liZVxzVQuHb6Ny5uWA4yqJy/otpQHQ6Uy07+Ft3l+ggOUXUWgo/Ppr1pXzvffg2CkVcFevdJ2ZC+um6bxRozTeeee6eX3ECJjzyT6blFEI8fRaNH0H81Y3B+C7dc1Y/c2ebC6RSI+YyBh6vhbD3dBiyR5TuEAIixbnf6Lx18WLP1nirfQoXx5q1rCsG1VaFsaPh+rV03etwYMtyx98AK+9lnRLYHg49O0L/fur/cHBMHSomrt62zY15VZ8MrIc08r9OBdvDM9tpsSL34DTo+9Iplg4MQ3+fT7z5k5LhoOD6maeL59anz0b/vrLprcUeVzRokUJCgqy2nb5siXBY+XKlXFwcODGjRuUL1/e6lWqVKmsLm62kaBb2FTJisUpUVg9yQ04V54LgVc4dlllV6vvfYISFdysjk+Q6JDFc89mSRlXrlRd2kC1rK9cXxqnQk4pn5TAgAG3GD/eZF4f+ml9vv5kW2YXUwjxlDq+5xxDPrF+EDh4jAdBV+8mc4bIaSa+u5vD51U3ykolLjLqAxMzZsDixbBpExzYfo2rV+2o+kzlbC5p+rRvb73u56e6L6dXhw6qt1i8FSvUvNKBgZZtJ09C/frqM3tcYCC0aGGdfCzHBt2gmvHLdoEXT6rW7fj5vL1H2HhicaVaNTWvd7w+fdQDDCEyokGDBhw7dox169Zx6dIl5syZw9WrV837nZ2d6devH1OnTmXt2rVcuXKF48ePs3TpUtauXZuNJc9aEnQLm/OtojKV3w0txjczLpi3d3w+8RfGZs2gfHE1Bdefuytx4/xtm5bt/MkHvPmm5any3Lnpf0IPMH68xriBe83rgz9tjv9n2zOjiEKIp1hEBHTvU5LIGPUgsHCBEACCQt0Y1u90CmeKnGLXb0f5fKHqMm5viOHnFdFMm65n5Eg1dVPbtlCnaRmci9i2W7EtJAy67Qyq23dSWc1To9Opcd0//2zpEn7mTHyQrWPz5qI0aKDn+KOJQ5yd4aefVLb0OnUs19mxw7KcY5KopcTOCWp9Bu2PQ41xULZrlt16yBBo3Vot37ihuugLkRFNmzZl0KBBzJgxg27duhEREUHTptbDZIYPH86gQYPw9/enXbt2DBgwgK1bt1KmTJlkrpoHZc204baR1snIc4KnbaL4hMb0/UdT/aU0zckxzLx8bPfZJI8f99a/5mOmv7/VZuWKCo/S6lQ5br5Xz56aZjKl7xoJ69VkNGlj+1veK2jaxsX7bVN4YXNP889sXpbb6rV/f8vvEx+Py9rFY1e1IgWCzdvWLdibbWWLCo/Swh/knL+/ObFuQ++FahVLXDbX19Th/2R3kTKVMTTM/B907rSwTLnmuXOa5uenWf0tTfiqUUPTTp2yHB8Xp2nffadpxYpZH/frr5lSnOx1aJSmXdtos8tfu6ZpRYpYPrMtW2x2q0Ry4s+ryBxPW92mNR6Vlm5hc761LUkS4hOVVSp5mWr1k+5G98bAiublH1aXJiI0wiblGjNgDwfPVgOgSulrfPPNk/Xq0ul1TPquBaP7bDVv+9bflPwJQgiRguXL4Xs1pS9OTrByQzkqVC/DrE+Pm495Z2QFgm/ez/KynT54gQqlQ3AvFcvfqw9l+f1zi+G9A7h4W43bbVLjCB9Mz1sJ8BJmGU84LvtJVK4Mu3fD228n3te3L+zbZ92KbTDAm2+qlvEhQ9R6hQrQqlXmlCfbnF8IJ6fDthchcCJomf99onRp6yRqEyfafEi5EE8tCbqFzfk2TJwkoWPLS8kmhPPwLU/j6mrO7hNXPKhUPoyvPtxG5MPITCvT+oX7+OqnFgA42EWz8scwChZ88uvq9Dqmft+ckoVVt/h/DlYnOiL6yS8shHiqnD0RZhV0fPONmhYKoNfwxrRvsB+AWyEleO/9jCfeyoiYyBh6vhrFrZASPIhwodMbVTj4z8ksLUNusG7BPhb+prpYOud7yJKfij5RkrSnSb588O238OOPUKiQhpOTkQULTCxcqB5AJaVIEZgzB0JC1NRlzrmvt761W38/WtAgcAJs6wDBhzI9Kn7tNcvvlh07VEI6IUTmk6Bb2JyHT3mcHMOttnXo+0yK50wYH4dBHwfA7ZDivPd5cyqXf8Ccj7cRFR71xGX6YLxlypYvx+7Fr4V3Ckenj06v44VGKglceLQzuzYdT+UMIURmM5mydh7UzBQdEcUrHa8SFqbWe/dWY3/j6fQ6/JeWpZCz+l245KdCbNqUdeX7bNhucy8hgLCogrTtXIyzhy9l6HoPH8Ldu6rO8opbF+/w5vuW3lyzJwRQsUbZbCxR7tSzJ9y4YeLPP4/Qp0/agk1nZ3B0tHHBskKjH8H3c9A9+qp+YxP8Xgc214KTX0DkrUy5jcGg5o2ON3FiplxWCPEYCbqFzRnsDfhUtCRQc3HRaNoi5Qm4n+temyM7L/FyS8u0ODfvl2To5OZ4VIpiyZKMl+fG+Vucua66sD/jdYxBn2R+d782bSw/WpvXh2b69YUQSYuKUlPglC4Nrq6wYUN2lyj9xg3ca8507VX2GnPnJj6mtEcpvvwqn3n9rbfUdEm2tntjIFMWqNZbO0MsfpVVC3dQqBvPt7XnxvW0t8KdPQuvvw6FC4Obm0rAVeL/7d15eEzXG8Dx78xkD0mIxF57BAliFyGxq11R1dpKS6tatFpd7HvRhVKU1lLV1k9Lq6Vqi12tERH7vosQkT2Zub8/LjNGFgmZTBLv53k87tw5994zOZnJvPec855CkfiUOU0zv8O80nw3y7/ahWLIW+Ndk5JgwJs64/JgXRrvpd+HAVauVd7l4AAODnnrdyBbaDRQdSQE/QP27qb9UUfh8AhYUwqC20HM+We+VI8epmzvwcGwXfLACpHtJOgWOcLPz/QHs+2L+kxlN63WsCIrtzTkyI5TdGlsygx+9ZYbffuqa3OmpGS9Lns2mv5ANfO/bZF1z1t29Uar0QPwz/aS2X5+IYS5hDg9c+ao80GHDoUbNyA5GeZOCbd21bIk8tod5vyijgSyt01g5Yq4dIfJ9u8PrVqp21evQs+ud4i6ZbnIO+bufXq/4YJBUYdIjxu8iy27S+Bb9hQAF26WpM2LGqKiMj7P2SMX6dduJ97eBpYvN/VwGwxwK8qdY5cqsTXEj1+3+NP7/Ua0qX+QyyevWex1ZacjR9SM2+s2q0FS0cJRLPipokX+zojnRPGW0OEs1FsARRqa9it6uLnVPCB/SjodjBplejxhwjOfUgjxGAm6RY5o1K66cbtrN5ssHVs9wIvftzfg0NYTdGhqCpi/+UZdkzOrvTu7diaZ6hWY+fW4s8K9RGHqVVa/7IddrMSVcznQBSXEcygxLpF547dT8YVbvPuuuvTNo3YcLpOn8iosnBFqXB5s0Ev/UT0g/cWGNRr47jvT3NX1mwtTq/o9i82vHj4shXM3ygDgXzWUkTMDcPN05Z9NrpQtkwyo6yV36ADxj6XgSIhNIPy/M/Rvv4PKtUqydF0ABoP6FaRwYWjTBurU1vOCxxUcbM0P/vdAHXz8nFkyfWeu7fVOSUph0pi71K0LISHqPhsbWLrCDY/SRaxaN5EP2LlCxYHQaje0PwnVPgOn0upa37Yu2XKJnj2hYkV1e/Nm2LUrW04rhHhAgm6RI3r0gMmT4csv4aWXnu4cfkHe/LmlHN9/r36ZAfjnH2hU6yrnwy5n+jy7D5ruCjdonnYG9ezQpr2pe2rDVleLXUeI51VSfBJN65xi8LgmXI00JWzs3Bla1A0D1BUT9m7IG0m+khOTmbNMTcus0Rh475OyTzymTBn4/XcoVFCdxnL+5gv4ty7P/AnbsjVA/fNPWLSsEAAFnBJYtsIVGzv1g7hEhaL8u9EWDw+17M6dUN/nAv5Vj1KpxAVcne7hWMCBag0qsvjvxugN6nGFnO8y+dNLXLgA69fD/gM6Lt4qRVyCA/fvxLB2yT5KFr4OQHS8K6+PDKBjwH6un7uZba8rO4T/d4aGPqcYPbEQyeq9B3x9Yd8+aN3aunUT+ZCLF9SYBJ0uQJ1vzJ9LiYOtbeDGliyf1sYGPvvM9Fh6u4XIXhJ0ixxhYwOffgrDhz/bslygDqncuBEKF1a/UB47V5J6jRzZ9VfoE4+Nvx/PodNqz1HlkucoUurZh2Wlp00309Jn69db7DJCPLcWTtvDnuO+xscd/PdxcH8Kq1dD7x6m0SWb/4myQu2ybtWC/Vy9o9486NhoPxVqlMnUcS1bwuH/oqlXWb3RkJRiz9tjA3mt9W7u33n2bHI3b8Ibb5gefz3bIVXdKlVSP+ce9rofPVeWPcd9OXO9LNHx5jcdXZ3uMeGdYM6f1/Lp5BdSrRyh0WooUKgA7fvWI+y4E31e3Gl87q899ahW04lly6y/tJE+Wc/0D7bhF1CaAw8Sy2m1Bj79FPbvBz8/69ZP5HMaLdgVMt8XNhGub4AtzWFPP0i4naVTvvYalHvw1eXff2Hv3ozLCyEyT4JukScFBcHebXfxKqkON78dXYRmXSqzcu7uDI87sDuKZL26bngjv6sWrWOdOmoiJ1BvEjzsARFCPLuYuzFMmGXKoL1hxUH+3FWPWnXUXtTmnUyjWDbtsNzNteyiGBS+mmsKTocNz1r65TJVSrHjsBfvvWJa7+fnTY2oWz2CacODWbt4H+fDrmQ5Q7hiUHjzTYWICPVxx47qjc+01K4Nf/xhvlRTIWf1czrA5whdGu9lytBgLpyH0XOCcPV48gggN09Xlq4L4I/v/6Oo2y0A7t4vSN++0LgxHD6c/rHJicmsnLubd3tsy9RN2aw4deg8jWuEM/LLQJJS1LbyLnWWPf+cYPLkfJI9W+QtBj3cfiRKPr8U/vaGc0syfYfK1lZ6u4WwlBwJun/66SeaNWuGr68v3bt3JzQ04z9+69evp02bNvj6+tKhQwe2yaKBIg2VfAqz92AhmvkdAtTendc/qMG9iPTnT+8OMQ1B9W9Xw6L10+lMSY6io+G//yx6OSGeK1+OOsCte+p45u5N99CqZ22z50tWLIZ3qbMA7DtZhejI3L2KwJ71Yew/VQ2AGuVPEtg5659Pdo52zPo5kP99u4eCjurrPXm1PJ98HUTH/vUo71sKFxeoWxfeeguuX3/yOdctP8DaterwJE9PWLgw49FKzZqp5716NpLEuCTuxBTi5JVy7Dhag9+3N+CTr4Nw88z6dJuO/etz7JgNr3Qy3SzdtUsN9N/uf5vIa3eM+29cuMWEd4IpW+I2PYb4M2dlIE06VWPKZOWZlyUz6A18/ck2ajQoZhxlodEYGNE7mMMnSlKvZdUnnEEIC9HqoPlmNeGarZu6LzES9r4Om5tB9MlMnaZ3b3XaCqijV/bts0x1hXjeWDzoXrduHVOnTuWdd95h9erVeHt7M2DAACIjI9Msf+jQIT744AO6devGmjVraN68Oe+88w6nTp2ydFVFHlSoqBv/7PGlc4B6dzcu0Zn1v6S/LvbuRzrC/QOzJ/lIRto0jzFu/7Nsh8WvJ8Tz4NalCGb8oAbZOm0Kk78onma55g3VAE1vsGHbnydyrH5P4+svTJ8Vw9+KeKZs193ebsih3XepVTH1XPbYWDhwABYsgAEDMj6PYlCY8rmpy3bOzJt4ej75+gUKQIny7tg52mW16hlyL1GYn9eU5J9/TMsbKQrMX1yESl4aZozYztT3oylX2Z2x3wZx7Y7p98Jg0PHZKA3t20M6Xz8ANSHaldPXibl7P9Wc+LOhlwjyO8rwaYEkJKvLXlYsfoEdf4YxY1kQDs4OaZ1SiJyj0aoJ19ofhzI9TftvBcO66nB0POgzTixpZ6dOB3zo3Xdh6VI4eBDi4ixTbSGeBxpFseysqO7du+Pr68uYMWMAMBgMBAYG0rt3bwYOHJiq/LBhw4iPj2fBggXGfS+//DLe3t5MeGycS1xcHMePH8fLywsnJ8tkoc4uer2eo0eP4uvri06ns3Z18p0tvx2mVY86ALzcbDcr/q2fqoyiQPHiWm7f1lC4sMKNGwa0z3jb6UntevPiLUpWUL/41ap4nH0n0s9EnFlRt+4xe/wRypTT0XdEo2c+n0ibvGfVHAg2djbY2mdijb8cNOzVHcxZGQTAWy9tY87KtNdA/uP7fXQdpC6x894rwXy5vHGubNeLF6FSJQ0Gg5aibrc4d6kA9k7PPj7ZoDdwdPcZwkMiORaazLHLXoSfL8G5c6AoalC/beNtGjUtlObx2/88QrOXagFQ7YXTHD5dFq0ud8xKS0qC2bM1TJqQTExc2j8rrUZPp4B9lK3ozNdLfI2vuXRphRXLE2nYSP29TklKYfvao/xvRRyrt1Y1rq/tYK/Hs6gWDw8o4q5n5/ZEYhOcjed/t0cwk76tjbNr7v7+YVGxsehc1ZEL+nv3wNn5CQdkXW58z+YZ1zegPTgETaxp5RelUB0MLXerAXo6kpKgcmUtly+b3/zTaBTKlYNq1eDNNw20bfv0VZN2zb+et7aNi4vj1KlTVKlSJcN4NGtrN2VRUlISx44dY9CgQcZ9Wq0Wf39/DqczESskJIR+/fqZ7QsICGDTpk3pXicv9YIfPXrU2lXIl1xeMFDI+S53Ywuxfo8P+/fux9bBPFC4eMGW27fVpcuqVr1HaOjZbLt+Ru1as/wdQs5V49CZKmzbEIxr0YLpln2SqJvRDH+nGEcvNAXAudDfVKxd7KnPJ57seXzPJiVpWDLPhiU/V6Z0kWvMnn2GouULW7taANw8d4cFvwUC4GQfS7cBBkIertH0GI8KerQaPQZFx+Zdxc3KPdquikFhw0+Xib2vpdObxbCxteifxlRmzSqJwaC+j7t2i+D4qcyvxvBEBaFKY0eqNHakGzeAG/zxR2EmTlSzJY0afp6vllxM89DJE02JKAa8eozQo7lriH6LFlCr2n0WfmHgf8HNjPuLFLxNz7Z7afeKI0VKuwHJVKxzmlGjynH3ri2XL2to2kzHe6+s485dO9bt8uPWvTqpzp+QqOPSJbh0CdSvS+rvRRmPS0wYFUK1RiU5fT7vfP+wBG18PA/zxYWGhmJwdLTYtZ7Hz+JnVxRNiR8pHrmIYnd+RIOeq7qG3Dzy5BwHb71ViNGjy2EwmAJvRdFw7hycOwdr1+qYNOkcbdrcfaYaSrvmX9K25kn1Lw8AAEWDSURBVCz6zeLu3bvo9Xrc3c2T2Li7u3Pu3Lk0j7l9+zZFihRJVf727fQzMEpPtwBoF7CH5RsCuB/vwp3zGlr3rGn2/JFNpkUn2zSJpmZN8+efRmba9cWg7YScU+dqXg7XEtja/LopSSnMHbeb2FgYNNIH9xJpBzfnwy7TY0ARzt4wZQ0+ecSJbgOe/XWI1J7X9+zhwzBokJajR9UvWmdvlOO997Rs22lHsbKZGFtsYb3GXzQmQ3y/zz6CWjfJsHwdr+PsO+nDscuVKeZ2HY/S7qna9de5exk1qwsAjo5b+XRWxufMTjEx8Oefao+TnZ3CqAnemRrC/Sx8qqbw86ILnLlelh1hdblz9gDNupqn2j4UfILNh9Uh/GU9LzN4zIvGJcJylZrQ7EUY8ncIv/4YRYWKd3njo+Y4u7xoXqymun74q68a2LlTS4reli9/6pDqdE72sQTWCCcxScetJB8iIm2JiACDQYNWq/BG1xA+n1uOgoXb5czry+1iY42b1atXl57uXKsBhqihaI5Pp3i9aRTXPTI6JCkKlBSwN//uXbMm9Otn4PBhCA/XEB4OYWEajh+H2Fj178P48eWoVauMMX9NVki75l/PW9s+7Ol+klz4FzTrdDpdnmnUvFTXvKbLSzYs36Bur12dSNte5j/nPbtNd2sD6txBp3sh266dUbu+2KkwU39Qt//9V0ffEaZyikFhULf9LF2n9lx/vfQOk0bsYuCnjdDZmsod23OGVu2dzeYoAmzb48oY+X2yqOflPZucZGDKVC2TJkFKivlzZ2+UoX2rEwTvdcpUxmlLOXQIfllbHoAibvf5cGrtJ7ZN86Ak9j3IH7Rtjzs9yqrlH7arYlCYMcs0vPqrJTUYOj4WF/es53y4fSWSL8cepUo1G3q/n/aQ98f9+CPce5D78bXXNBQvbvnfNZ2jjvEjr/LasLIAjB1nT4tuWrN55NMnmXq1Pxp8HnvH0hav17No0rEmjdrpCQkJwdnFOc3fi9KlYevmFEYN2s7nS4KM+x1s42nnH8LL3RXa9aqBs2tds+MMBrhzB+zsNLi4yDpgZh75Oet0OrPH2X+p5+Oz2GLca0LAitT7wyfCuaXgOw683gGtKTQoUUL91+6Re0wGA7z9Nnz3HSQna+jeXceWLVCv3tNVS9o1/3pe2jazr9Gik7MKFSqETqdLlTQtMjIyVW/2Q0WKFEnVq51ReSEeat3DFwfbeAD+2Fk7VZbah5nLbXTJ1G3+7HOrM6tB66q4OKrfqjfs9UafrDc+N/L1bSxdZ/pyfiemMIPHNaGO92l2rlWHf/23O5kmrd2NAbd3qbMUc7sJwJ5j3iTFJ+XUSxH51NFdp6hf9RTjxpkC7ho1YN3vtyldRE1GFnLOm84tz5EQm2C1en78sWl79PiCmQqMW7xcy7i9aUvqxF6bVx0m5Jwp4/Td2MLMmZX199Tlk9cIaHCPqT8E0eeDAPb+E/bEYwx6A7Omm/7eDRuW5cs+tR6DG1DthdMA7Dnuy/rlB4zPnTx4jt+2qXkxirrd4vURT/ltOheysbNh2uIg/v35IIO7bWPFrN1E3NSzKrghL7/jj7Nr6p5arRaKFAEXy+feFCJn3TsBp+ZCchQcGgb/1IaIjJde1Wrh22/hpZfUx7Gx0LYtnMjduSqFsDqLBt12dnZUq1aNPXv2GPcZDAb27NmDn1/ad4tr1qzJ3r17zfbt3r07W4YCi/zN2dWZlq3Uu03Xbzmzf7/pubs3owi/VBEAvwqncHLJuekItva2tKwXDkDkfXcOblUzCn/xUTAzlgUBasKfF+uZKhxyzpvGHavz0kvQvJUtd+6rPXF1KoWzY48bLRuoX5bjk5zYv1n+0omnF/x7CHWCynD4rDcAOp3C6NHqMjEvdinCv+sScS+o3jgNPuLHa21DzG4c5ZSNG9V/AOXKwSOpQjLk7w8OD5JKb9qUernaGTNSryH1xdwi3L+f+bqdPHiORgEKJ6+WN+5bMOfJ8xzXLT/AmcvqDeVm9c5SvXrmr/msdLY6JnxmuiE+akIBY7bu6eOuoijq14P3+4fny6zcLV+pzdz/BdLzPX8KFCrw5AOEyI/s3KBcL9PjqFDY2Aj2DoCE9Kd16nTw008QFKQ+joyE1q3hyhWL1laIPM3iaUhff/11Vq5cyerVqzl79izjxo0jPj6elx7cIvvoo4/44osvjOX79OnDjh07+OGHHzh79izffPMNYWFh9OrVK71LCGHU+SVTT9aaNab9ezacNm77107/D4mltGllSkj0zx8RLPv6ECNmBBn3zRu/i3X/1WXn2lBqljcF0atXm6bMNW10ly17S1GklDuBLUzDYbcdqWbx+ov86e7NKHq9WZSkFHV+X9UXzrB302UmTFCXjQHwrluedatu4GyvLmn1+/YGDH55V6rllCxJMSh88n6E8fHEiWCfyeTeDg4Q8GAwyeXLcOaM6bnQnSf594CaQKtc0Uv0fEUNwO/cUXtyMuPQ1uMENHPh8u2SZvt/3VibexH3Mjz2y69NyR6HD85gHSsL6fJGffwqqDcBD5+twu8L/+PyyWssW98AADfnKN76tFZGpxBC5GWOxaDBYmi1Bwo90hl27gf4qzKc+Q6UtBe3d3CAP/5Q536DmnCwdWv181MIkZrFg+62bdsycuRIZs+eTadOnTh+/DiLFi0yDhe/fv06ERGmL1O1atVi5syZ/Prrr3Tq1IkNGzYwd+5cvLxybjiwyLs6dMC4DNijQffuHaZkL/4B2bt2bGa07lrRuL3gVx/6jzD9cZvwTjADR6uJmxq1r86BE5WYN/0shR/Jp9apE6zbVIiChdXxjYGdTIH2tu35f76MsIx3eh3j6oNpC838DnEwvBR1glLnOqjXqhq/Lz6JjU69efTdmiYM7RlMZERyqrKW8M+KAxwM8wCgRtV79Oz5hAMe07y5aXvLGtNNrZmTTX973n/zPGPHadE8mNY8c6ZZjqg0bVsdQlC7ksYlpmqUO8krLdSRXfFJTqxYmX4P6sEtx9kaon4OVCpxnra9UmfPtjSNVsOkMab1wcdMKcL06ZCiV28GDHk15Knmtgsh8pgiDaD1Pqg9G2wfvOeT7sC+QfBPHbi+Mc3DXFzgn3+gQgX1cXi4+n0lOWf+NAiRtyh5WGxsrHLgwAElNjbW2lV5opSUFOXAgQNKSkqKtauS7zVurCjqIFJFOX74lqIoitK05iHjvsunrmXbtbLSrtVeOGWsw8N/Q3ofVwx6Q5rlb99WlIkTFeWrrxQlOdn8OYNBUUqUUM/h7KwoSUnZ8GKEmfz+nl0xa5fx99DN+W6m3hePHgOK4uBgUPr3V5RDh1KXNegNSvh/Z5S5Y4KVd7oHK8G/H37qugb4hBiv+ft3e7J8/L5NJ4zHdw3crRw4cEA5H35JsdElKaAohQtEKjFRMYqiKErPnqbXN+PTI+me888VZxUH2zhj2QCfEOXuzSgl5LDeuK9mTfW9mpYezUw/y/kTtmX5NWUXg96gNKwSmuqzyckxWYm4HGG1ej2N/P6ezZViYky/NDExFrmEtGsOi7uuKLteU5SfMP07tzzDQ86eVZSiRU2/Ch9//OTLSLvmX89b22Y2HrV4T7cQOa1zc9P40T+WHSM5MZn/jqsjJV7wuEKpSsXTO9SiXmxtnpypRw+YtcTbLGPwo9zdYdQoNbmSzWPrDGg0prlUsbFw8GD211fkX5dPXmPwp6bkYd9OCc/U+6Lne/7MHbMNrUad052QoOGHH6BWLWjUCH78chcLJgTzSvPdFHePoGr9CrwzIZC5/wukbc9KXDt7I8t13fHnEXaG1QCgSumzdOqf9aRetZpUxM05CoCtBytj0OuZPdfR2KM7uGeoMYHWqE+S0GjU4ZQz5hYnLjrO7FyKAl9/DV16lyMhWV2T+MV6+9mwqxJunq7UqKml7oPk1yEhab83Lxy7wv+2qonKPFwi6DOsbupCOUSj1TBpQkqq/W8OtKFIKUlgKsRzx7EY+C+H5lvUIefOZaFMD/MysZchyTR9pnx5+PNP03eVadNgw4acq7IQeYEE3SLf6dTZNE9yzXp3QnedIS5R/ULtX/2StapF576mIeEtWsDSpaah8E8jsLEpmdW2P44+S9XEc8SgN/B6z+tExboB0LPFLnq+55/p4wePD+TEwcsMey8Z10dWD9u9G/p80Ii3xgbx6xZ/bkaZLzYdl+jMhA+fvI7l46ZONt2s+vi9a2h1WX/T6Gx1NK2lDiu/E1OYY//dY9EydwDs7Q0M+czXWLaqrx3dm6rJPG/d82DBFFOCw6go6NoVhg8HvV69WdazbThrgmuYJWd8803TtRcuTF2fryaexaCo00Le7X0Mx4KOWX5N2alZNz+a1jxsfGxrCx98YMUKCSGsr2hTaHMQWu4yW0YMUDOdr60Ip+eBQb1pV6+eGmw/1Ls3XLuWc9UVIreToFvkOxVqlMGnjJo4be8JX3776abxuUYNrTfRqFEjWLwYJk9W55tnNhFUegLrXjRub9tivWWcRN4ye9QONh+uDUAp92vMXZ71RHyV/Mry1Sxbrl6FBQvA1zd1mYKO0bRrsI9pw4ONS+Yt+sOfkyE3UxdOR8j2k6zfp/YCl/G4TM93G2S5rg+1aJpo3B471Y/799WguW9fLUXLuJuVHTXBw7g9fYE38ffjObT1OLVrxrF6tancyJGwfG1V7BzN80S88goUKKAmmlvxYzwxd03zpu9cv8uiNer8bUe7OAZ/moMpyzMw6RtTI/bpo65pLYR4zmk04FTCfF/0Sbi8GhJvw/7BsN4PbmwC1BuSD9f0joiAXr1An/OLXQiRK0nQLfKlzq2uGre/XtHIuO3fqnxaxXNMv37w6afgnHop2Czz8itHUbdbAOwI9SYlKfUQUSEedewYfPyl6f2wZN4NChV1e+rzOTvDwIFw5AhsWxPKh32CmTY8mP82HONOlBN/7anHyC+D+OiNQwDoDTZ8Nqlops8/bbwpo/eIQeewtbfNoHTGmnc0RZGXrqvDpjUaeP/91GV9G1Wia6CaEO1GVFF6tAnFv3U5zl1Ue7MLFYK1a9VenbRGqxQsCD1bqr3lMfGO/Drf1Is8f1qIceRN/077cS9ROPUJrMA/wIbff4fx42H2bGvXRgiRa+mcoMwrpsf3wmBLS9jWEW3MaZYsgZIPFnPYulXtaBBCSNAt8qnOr5i+2McnqF/UnZ2hesP8032j0WoIqqXOX49JKMjhbWkP3Y2MhI8+gr//zsnaidzm+nW11yExSR0mOLzvIZp3z57loDQaaNKpOtOXBjHyyyDqtaqGjZ1pOOKwyY0pVkzt+f3tN9i798nnPH34gnHes6drBAM+erZ5z15+5Sjlbj7WsWNHqFw57fKjJ5qC4bW765OYrK5VXbfqeQ4dgvbtM77em2+bsn4vXKYu8ZeQALN/VHu2tRo9748ul9WXYVFdusCYMeDk9OSyQojnlHNpaLRCHXZe+JHP5atrYV01ilz5hJ+XJxlvSI4fD8HBVqmpELmKBN0iX6oV5J3qC3b9+qkTkuV1gU1Mvdvb/r2V6nlFURO2zZihLuNx9mxO1k7kBjfO32L427coX15N7AVQrRpMmZ9z6y87F7Rh7FhTwsCRI9XfzYxMH3fJOO95WL9jOBZ8tkhQo9XQvL75G+DD96LSLV+jcWU6B5jfHXi3xzZ2HihJ2bJPvl6d5lWpUe4kAP+d8OHorlMsXw4376pD2bu2PEF539TLswkhRJ7g4Q+t90KDpeD4IBGnIRnCp9E4ri7jP1YTZxoM8Oqr6nBzIZ5nEnSLfEmj1dC5+Wmzff6ZzxWVZwS2Mc212rYrdVCycSNs3qxu6/Uwb6b1EsmJnHXrUgQjegdT3rsAX8/3JOHBtH83N/jpJ3BwyNn6DBgAlSqp29u3w/rVt9Mte+V8DEv/VudvuzjeY/BnfumWzYoWzU2RfkOvfTRq5pZh+SlfeFDI+S6FnO+y8ts9zP4lMNX87fRotBre7G3K1r5g1g1mzjQ9/+GkrM+lF0KIXEWjhfJ9oP0pqDYKtA+mAEWF8kmv1TRvrj68fh1efBFOnrReVYWwNgm6Rb7VuVtBs8eNGua/Oc9V6lbAw0W9fbw9pDL6ZFPGEoPewMiPzBPHff+jC7H3YnO0jiJnGfQGxr4VTDkvJ75YHkR8knozxtEhhQ8+UL/01KiR8/WytYUpk01B78cf3DH7fX3Ul98UIFmvBrfvvBaGq4drmuWyqmPfmlQsfgF72wQmT3vy/PAq9Spw/ZYT12460v3thlm+3mvv1MTRTl1ybN6qRsYvnE2aYFxWTAgh8jzbAlBjIrTeD26+ULw1Ou+3WL4cPB8sZHHwINSsCV99pfZ+pyc5GW5kfXVJIXI9CbpFvtWkoy9uTneNjxvUyX/BpkarIfDBvO7oeFeO7DTN6/5lzl5CjpgHFlGxbqyYI4t652cbfz3EhAVBxmRdDrbxDH81mHPhd5g50/QFyBq6doV6lcMAOHrBi59m7UlVJjJSzYgOam/8sMmNUpV5Wi7uLoSdLc6WzYdp0jFzWcPtnexxcH66YQFunq50b64mkXs4VB7gww+f6nRCCJG7FaqhBt7+P4FGQ7Fi8M8/UKmi2umRkKAmrwwKMp/ulpKijsx7800oVgyKF1cTzyYmpnkVIfIkCbpFvmVrb8vIgUfQaAwM6LADN8/s6S3LbQIDTOsYb9ugLseUGJfEZ1NMSeOmDgs2bn+zqBiK4QkTakWetXG9aXmqvm13cu5ENF/+FESxclaMth/QaDV8PsU04mT09LIkxCaQGJfIkR2nWDFrN2/2vkGc2jnMG29k/00CGzsb7J0yN0Q8OzyaUA2gilc8bdvm2OWFECJn6ezB3rQMo58fhKz9g6Ftvjbu27ED/GqksGJBAoPfMlC8OLRqBYsWwZ07apmlS6F5c5kLLvIPCbpFvvbxV0HcvxvPoj8bW7sqFhPYprhxe9tOtUduweQ9XLilBt0tah3k46+CaFjlKKD2MO5YG5rzFRU5Ytt/pih15oIqFC+f+SW6ckLQSzV5sd5+AC5FlKLCC3dxLqijZhMvXhvmz+r1xQA16eGIEdasafZo1M6XKqVMExlH9Nuf5jJjQgiRXznd38zXvYcTPCqQch7nAIhLsOfLhY34bpEttx9J8eHsDI6O6vauXWoS3GPHrFBpIbKZ/OkX+Z6zazYsip2LVWtQkcIFowDYHuZHVEQ0E+eYkjRNm6HO6R0yKNq475uv43K0jiJnREdGc+iMugaWT5nTFCnl/oQjrGPqTBc0GnVS37U7xdEbUi8r8P77UKZMTtcs+2m0GqZPuodOm0JjnyO8NrS+taskhBA5q8ZkaLKGwM5+hM57lcEt5po97WgXR7d6q/jflO+4dUvtCS/xIE/s+fNqItwNG6xQbyGykQTdQuRxWp2WwBZuANy9Z0+/Hle5HV0EgFea76Z2syoAdBtYl6Ju6rJiq7fX5crp61apr7CcXetPGucOB9a79oTS1lOjcWVG9N4OgL1tAjXLn+C1VruYMjSYP77fx/nz8PnnVq5kNmrftx6JCRqCQ3yxd7K3dnWEECJn2RWCUp2g9tcU6LqXuWt7sOnnYAZ2WM2KIa9xa54n/xvanW7truDkBLVrw759UOvBypbR0dC2LcyZY92XIcSzyGerFgvxfAoMhNWr1e0/tqpBto0umUlflDSWsXO0Y1CPcCYs8ERvsGH+9JNMWlg8rdNl2tUz11n1wynCj2t4e3hRajap/EznE88meLMpWWBg05ybt/w0pi8NYtSX0Ti7OKOz9bZ2dSxOZ6t7ciEhhHgeOBQhqHtj3CqFULPy5+jOe8HZH6DiIGORkiVh+9ZEevdKZvXaAhgM8O67EBIC33xjGoIuRF4hPd1C5AOBgan3vdV1NxVqmI/PHfShNzY6dRmx71b6kBiX9dSg16/DnLG7aex7hFKVijNsaiDfrWmCf8vSrJqXOhu1yDnbwkxDlwPbVrBiTTLHxd1FglEhhHieORYH37HQ6Tw4lTR7yvnSDFa94sHHA3Ya933/PTRsCKdP53RFhXg2EnQLkQ9Urw6F3ExrHhdwuM/oGVVTlStRoRhdA9UkVhHRRVg5f3+mr7Fpk7rMR8mS8O4Ef3aGmS/2HJ/kRPfBDZn8XrBkR7eCmBg4cFi99V+lCniWsX62ciGEECJTNI+FJDHn4NhktCQwtVljlg0bgaOD+j3nyBF1CPqqVVaopxBPSYJuIfIBrRYaVw8zPh7Rdy+eL3ikWXbIsALG7Tm/NHziuVNSYNQodTmPbdtAeSSe9i51lrFvBdO7jeku9KhvgujTdleWe9EXf76Doa9s46+l+56qB/55t3s36B/cd0lr5IMQQgiRZ9h7gte7oFFnwvau+wX7xtXAu/QFAO7fh+7dYehQSErK4DxC5BISdAuRT4z4ABxs42ngfZT3pzRIt1yjdr7UrKlGzvv269i3L/1z3jh/i5Z1jzB5sinYrlQJRn2azNFdpwi/WJ5x84JY+ncjs7XAl28IoFm9M9y6mbke73XL9tP/48bM/jWQDv3qUdQjgX7tdrJ++X75Y5pJ27aZtiXoFkIIkafZFgC/6fDiYfBQl331KX2M/eN8eNX/J2Ox2bOhcWO4ccNaFRUicyToFiKfaNyxBrHx9uwMrUrBwgXTLafRahgyRGN8/OknKWxbcyRV7/LW3w5TsxYEh6jDyHU6henT4eRJmDjZFh9/LzRajfGcH38VxG8L9uJopy5HtvtYNeo30HDyJBnSJ+v5eKyr2b57ca4sXRdA2951KVYMhgxRs5eK9AX/c9O4LUG3EEKIfMHNB1psg4bLoFBNCjjEsnxwL+b3H4Sdjfq9Zd8+6N3bfCSeELmNBN1C5CNanTZTialefRUKF1a3N2+xIahLDdzcDDSvdYhJ7wYzemAwLbpX52aUOi+4ROHrBK89y4cfgkaT/nlfGtiAHesvUsJTzaJ94QJ065bx0K+fZu3h6AUvAHzLnqJX650UdDRF2Hfvwty50KkTJCQ88aU9l+Ki49h/pBAAXiUvUPzZktILIYQQuYdGA+V6Q5tD0HofmopvMKj1T+wZ15ASnvcBNe/M99+jRt7nlkL8zYzPKaxDMUDcFbi5FU4vgEMjYHtn2FAf/igLNzZbu4YWY9Elw6Kiopg4cSJbt25Fq9XSqlUrPvvsM5ydndM9pnfv3ux7bLxrjx49mDBhgiWrKsRzxdERxoyBYcNM+xKSHdlyuBZbDpuXbVn7IMt/L4PnCxUzde7azaqw75A6Bzw8HMLCYPJkGD8+ddmE2ARGTy9rfDxrZixNuwaQEJvAPz//x8qN1fnjL0fi4iA4GF57TWHlLwbJeP2YPRtOkKxXFzQNrHMJKGvV+gghhBDZTqMB97rqv1pfUOvCz/xQXU+bjurTH3wAbRqEUyq0n5qYzTMQijZT/3evBzp7q1b/uaVPgEPvw+29EH0C9PHpl427mnP1ymEW7ekeMWIEZ86cYfHixcyfP58DBw4wZsyYJx738ssvs3PnTuO/jz76yJLVFOK5NHQoXLoES74KoW/bnbzgccXseY3GwPjBwazfUxPPF4pk6dwlS8JPP4HNg9t6U6YYCNl+KlW5byfs5VJEKQDa1DtA065+ADg4O9D5jfqs+NWRLVvAyUkt//vvGga/vEuyoz9m2ybTyIDAQLkhIYQQIp+zdYFKg2jdwY3XX1d3RUfDwLds1GHmikHtTQ0dDZuawCo32NwMjo6Ha//A/bPWrD0AJ07AO+/A+vXWrskzUgwQd00Nqi+uhCurzZ/X2sOVNXD3cAYBtwbsi4CSYunaWo3FerrPnj3Ljh07WLVqFb6+vgCMGjWKgQMH8tFHH1G0aNF0j3VwcMDDI+3My2nR6/Xo9fonF7Sih/XL7fUUWZPX27VECej1ri+93gXFoHA+/DzBf1/maKiBLj1caNJRTV7yNK/P1xdGfpjM5KkOpKRo6d9fz+7QBGztbQGIioLJCwMANcCf/LlzmtepUwf+9z/o1FEhRW/Dd2ua4PnWVsbNa/L0LzwT8lLbBu8uZNwOeLFMnqizteSldhVZI21rBXo9OuOm3rSEQrZeQto1P8rOdp0+Hf75R8v16xrW76rM0ta/0rf6J2hizz1ywQQ1CL+5FQDFIwBDs2DzE11epQaIRRqBfeFnrteTDBqkZft2Dd9+C2PGGBg9WslwCp/VRZ9EE7Ed4i5B7GU0cZcg7jLEX0FjSDYW07j6QLElZm2rdfeHq6uhQEUoUBGlYCUoWAmlQEUoWAkcS4L2QVj64Li7d8HFBXS5vC8hs7/DGkWxTNqBVatW8fnnn7N/v2kd4JSUFKpXr86sWbNo2bJlmsf17t2b06dPoygKHh4eNG3alMGDB+Po6JiqbFxcHMePH7dE9YUQ2SA5IZkBPQsTflmds/1R3z95+d2SAMydW4LFi9XJx+1bX2Tc5NsZnmvH6ssMn9zZ+HjcO2to/3ppy1Q8D0mMS6Jps1okpdhTvugFVv4dae0qCSGeE9r4ePwaqzdnD+/YgSGN72pC5ITt2115/311GlzBgin8b+UxSrheoGD8QQrGHaJA3CHsU64by0cWfJELJSaanaPauZdwSL6EgoZ4+4rEOPpx36kWSbYl0Ch6NEoKGiWFWMdqGLROpgMVJeOEN2mIj9cSFFQTvd50XOvWdxgz5gL29jk8mk9JwT7pCo5JZ7FPuoxdyk3skm9wqdinJNuYOkGL3F1FmVvTnni6FG1BjlTaarbPNvkGem0BDLoC6Rxl7pdfPJg58wX8/e8xe/aZrL0eK6lSpQpOTk7pPm+xnu7bt29TuLD5XSIbGxtcXV2JiIhI97j27dtTokQJPD09OXnyJDNnzuT8+fPMmTMn3WO8vLwyfJG5gV6v5+jRo/j6+qLL7bdsRKZJuz7Z9wvDafSiHoOi4+ufWvPawAu4larIL7+os1vs7BS+nluKsmVLZXiemjVrojEEM2xqEADjv+1IJa899Hgn/eXRnkVeadvgNSEkpajz1ALrXqZmTX8r1yh3yyvtKrJO2tYKYmONm9WrV4cMcvY8LWnX/Cm727VmTThwwMCKFVru37fh23nV+e03HzSa9qZrxl5Ec2s73D9BIbeauL1Q03SC+OvoTl4CQIOCU+JpnBJP4xm1MnXdWx8GN1/Tjmt/od3TGxyKgWMxFOfy4OKN4uINLt7gXM7Ui/vA1q2YBdwAGzYUJiqqEL//buDxAcFXr8Jvv2k4cQKGDFGoWvWpfkzqDYLIPWhuboXocDT3wuH+STSG1BlvC5ZxAo+aj7zOK3DrsdPZFQKnF8CpNMqD/3EsBXcVfKtXf6q2vXED5s5VvyOeOuVCzZo1Mz7AyuLi4jh1KvUUysdlOeieOXMmCxcuzLDMunXrsnpaox49ehi3K1eujIeHB/369ePSpUu88MILaR6j0+nyzAdxXqqryDxp1/Q1aO3Lh32D+XxJEEkp9rzZP5lqDTXEx6t/bAYP1lChQuZ+dkOnBBERsZXJi5qiKFr6vV8XvwYXqFKvgsXqn9vbdufm+8btoEBNrq5rbpLb21U8PWnbHPTIz1mn01l0HKi0a/6Une06e7aaxfzWLfjzTw2rVul45ZVHCriUV/+lxaEwNF4Nt7bBre0QFaLOVU6rzhqD+e964i1IuQ8x9yHmNJqIHeYHaO3UIdSFaoL/cgB27zY93btjOL9t9CIu3ob//tPg31Dhrz/1uHva89tvsHIl7NxpWhLt77/h+HEomP7qsOmL3A+bMzc9T5dwxfx1uteFegvUINtZDbA1tqZKPLyFoOj1EBXy1G07fTrEP5j63atX7v9ek9n6ZTno7t+/P126dMmwTOnSpSlSpAh37twx25+SksK9e/eyNF+7Rg11jeCLFy+mG3QLIXK3cXMasGbjOU5eLc++kz7se7B2d8GCCp99lrUhWRMXBHHj5na+X9uEZL0da1ZctmjQndsF7zatcR7Yrqz1KiKEEEJYkbs7fPutulQpwJAh0KwZeHpm4mAbJyjdWf0HkHQPInZBxE5IjlZ7qrW2oLEFh8dOqLUDl8pqMrGU+4+fGQxJcO8YaEzB2Y5H4vIJzdoyvH4hOsxcy9W7pbh4yYY6dVNISjGgKKlzXl+9CqM/S+brLh0e7NGomdmdy6nB/cN/Tg+m4GkfCQoL11GD/7shDw61ARcvcK0Grj7q63Auqx7r8Fh3u1MJqDgw45/jM7p8GebPf3A5J/j4Y4teLkdlOeguXLhwqmHjafHz8yM6OpqwsDB8fHwA2Lt3LwaDQR2ClEkP52xnJVAXQuQuDs4O/LAgloAO5n9ARr5xkCJF6mTpXBqthqEji/H9WvVxWLhtdlY1T0mMS2RvuDcAZT0vU6aKzHEXQgjx/OraVQ26V62CyEgYNAh+/z3LU67BzhVKtlX/PUn5vuo/gOT7cP803DuuLo8V/eD/+6fBRp3PnJICe/aoxUsWuUWZIhcp63GRfRPr0fGLPzl4vg6JyQ5ml/AuF0HnHh7MmqX2An8z14ZenrepU/5g+vXS2EAhP2jzyFLMGg1UnwwJ18G9gRqc6+zSPcXJk/Djj2qdX3lFHcZvSZMmQdKDke7vvUeqYfZ5mcWWDKtQoQKNGzdm9OjRhIaGcvDgQSZOnEi7du2Mmctv3rxJmzZtCA0NBeDSpUvMnTuXsLAwrly5wubNmxk5ciR169bF29vbUlUVQuQA/3a+DOu53fi4mNtNho2t8lTnqlyrLDY6NVNm2JmsLWeWn+zbHU9Cspq4KLDORSvXRgghhLC+uXOhyIOvBmvWwOLFOXhx24JQuBaUew1qTITGq6BdGPRIgOZqcrGQEFM6hMaNNWj8l0OtrykR0J/tS5bQs7n6XalSiYuMenkuR78KIvzvFUydCmPHqscZDBoGfb+AFH36Q5tTUhRunLukLuX1qJJtocIAcKuWZsCt18PatdC6NXh7w+TJ8Pnn4OcHjRvDr7+aAuPsdPYs/PCDuu3iAh9+mP3XsCaLJVIDdf73xIkT6du3L1qtllatWjFq1Cjj88nJyZw/f574BwP3bW1t2bNnD8uWLSMuLo7ixYvTqlUrBg8ebMlqCiFyyKR59dh3JJR9J7yZN+MCzq71n+o8do52eJU8Q/ilipy4XJaUpGRs7J6/Hu9te92M24EvPd3PUgghhMhPPD1h4UJ4OBt26FAICoLy6UznzhEajTHAfXRoeeMWHmqA/oATsGITLLgPBQqUQaN5B3jH+Pz778Py5RAWBocu1GbOzfsMey8BUmLh/hm1R/3+KY6FJtD5kxGcuV6G+VH7GfTpk6t45w58/706RP/ChbTL7Nyp/itWTB1FMGgQFC+e9R9HWiZMUHvUH77OTAyszlMsGnS7ubnxxRdfpPt8qVKlOHnypPFx8eLFWb58uSWrJISwIicXJ7Yf8UExKOhsny1I9KmqJ/wSJKXYc+Z0Et7VsqmSeUhwsGk7qNnzd9NBCCGESEvnztC/v9pzGhMDffrAtm3Zk+vv5k348kuoWBHeeCPrQ9fNgu7GaZdJL0marS189x34P1ioZPR4R7r2cKR06ULgVAqKBrFhA7z8HkRHq2VGfVWXXkMzXlzg2jVo0ECdU/2o8uVh8GB1fvXcuXDsmLr/xg0YP17tAR85Uv33LCsGHj+u3kwANdgeNuzpz5VbWWx4uRBCpEWr06Kzffa/ej7+lY3bYcfTn4+UX0Veu8vu3Woq09KloWxZ69ZHCCGEyE2+/hrKlVO3d+1Ss2I/q3Pn1IB3+nQYOFCdd6xkYVltRVF7igHc3KDaU3QYNGwIb72lbsfEqHV4aM4caNvWFHAD3L4NixZlfM6JE80D7jZt4K+/4NQp+OADePttOHpUXeqsa1fTzYuEBDX4rlJFnTuflZ/Fo8aNA8ODZPEffQSurhkWz5Mk6BZC5EkP8jMC6jCr58Xdm1GMGRRMuYo647JrgYFPkSRGCCGEyMcKFlSTgGkfRDtjxsChQ09/vrAwCAhQA++H5syB4cMzH2yeOgUREep2o0amumXV1KmmJGNr1sBvv6nZ2t991xS8Nm1qKj9zZvrzsM+fNwXlBQpAeDisXw/t2pmPDNBo1GH6q1apxwwfDjYPxkxfvKgG461aqb3WWREaqi6LBurUgCFDsnZ8XiFBtxAiT3regu57EfcYPziYcuU1TPwuiPvxLgDY2xt4800rV04IIYTIhRo1Mi07lZICvXqZ1oDOir17oUkTuH5dfVy6tOlm96xZMGJE5gLvzAwtzww3N7Un/6Hu3dXh3w99/LG6ZnmHB6uKXbliGr79uIkTTXOphw9Xe62fpHRpdYh9aCi0bGnav2kT+PlpWbAg8xO9x4wxbX/6acbD4PMyCbqFEHlS+fLg4KD+hQsLibFybSzrh2k7KFtOYdy8IO7FqWOubHTJDOqynVOhETRpYuUKCiGEELnU2LFQq5a6ffx41td+3rgRmjeHu3fVx3Xrqj3m339vCry//FKd1/ykwPvh0HJ4tqAboEcPNcM4mK5ra6tma586Ve1F/+QTU/nPP1czkz/q1ClYulTddnNTE5hlRZUqsGGDOrS8TBl1X0qKhoULS/Dvv08+fv9++OMPdbtkSTUxW34lQbcQIk/S6aBqKTUR4+lzjiTEPMWt6zwgdOcpBnzSmKhYNwB02hTe6Lid00duMv/3JrzglY8WsRRCCCGymZ2d2svr8GDp69mz1R7gf/81DcVOz//+pw6zjotTHzdrBps3q0uSvf66miX9oRkz1J7ajALvhz3d9vZQu/bTvyZQA/5vvzUlMCtcWO1p7tfPVKZhQ3UKGqgB9urV5ud4dC71hx+qgffT1KNLF/WGxqNB+88/P3ne24wZpu3Ro01tlB9J0C2EyLN8Kt0GwKDoOHEwf65T/d3s68btl5rs5eShqyz8owllq5WyYq2EEEKIvKNKFfNEan/9pfYSV6miBuH37qn7L1+GZcvUgLpsWXj5ZUhOVp/r0gX+/ts8s/iAAbBggenxtGmmtbQfd+2aaT54/fpq4P2sypdXbx589hkcPEiaI98+fWS5sClTTDcFjh6FX35Rt4sUMU/I9jQcHdU1vV1c1Av88YeGxMT0y0dFwZ9/qtseHurPPD+ToFsIkWf5VE0xbocdum3FmlhGXHQcy/+uCYCjXRw/rKpChRplrFspIYQQIg8aMkQNsEs9cs/61Cl1He+SJaFCBXjhBejbF5YsUZODPfT662qyr7R6YgcOVHucH5o4UV2e7HHZNZ/7cQEBMGlS+quYtGxpGl5/+DDGYd9jx5oC8I8/VpOoPSsHB+jYUT1pdLSGDRvSL/vbbxiD8p491REJ+ZkE3UKIPMunpinbRlhoshVrYhmrFh42zuF+ucUhXD3y4RoaQgghRA7QaNTs3ufPqwHfo9m9Y2PNs5KDGkA2awbz56vztx9m6k7L22+bD5UeMsSUnOyh7JzPnRUajfnc7qlT1V7xh0PNixdX659dunc3ja//9df0yz2a2K1Xr+y7fm4lQbcQIs/yqVvSuB12Iv+lu1y4uoFxe+BgFyvWRAghhMgfbGzgpZdgyxZ19ZO331Z7ee3s1OHZY8dCcLCaOG3zZjW5V2aW5Xz/fahTR90OCzPv/QZTT7dWq861zkldukDlyur2tm3w2mum5z77DJycsu9aLVuCi4t6x+HPP9POFn/pkvozBvDyMv3c8jMJuoUQeVapSsVxcVQnYoWdzfzyFHlBeDjs3KUukFm1KjRsW93KNRJCCCHyl2rV1OD43j2IiVED0nHj1ORjWU3qpdWq63Y/NHo03LypbkdFqctrAdSoAS45fB9dp1Ozqz90Us1DywsvwBtvZO+17OwgKCgKUH+m69enLvPzz6btXr0yd1Mjr5OgWwiRZ2m0GnzKqZOuLkaUJjoy2so1yj6LFpm233zz+fiDJIQQQliDVqsut/Ws6teH/v3V7eho07DuPXtM86dzcmj5o157zXw+O6hrZGdHQrfHtWx517j9+BBzRYEffzSv1/NAgm4hRJ7m4xVl3A7flz8ymCcmqtlTQb1j3Lu3desjhBBCiMyZOhVcH6RgWbwY9u41T6IWEGCdetnZwYgRpscVK0KfPpa5Vt260bi7q3cZ/vpLnTP/UGgoHDumbvv7qxnYnwcSdAsh8jSfaqaEHWGHo6xXkWy0euF/REaq2127Kri7W7c+QgghhMgcT081g/lDQ4aYZzO3Vk83qCPnGjZU53DPm5c9vftpUefNq9/P4uLUpdYeet4SqD0kQbcQIk/z8TNl9A47mQ3rXeQCC38w/RV8s9tRK9ZECCGEEFn19tvg66tuHzwIu3er2xUrQrFi1quXk5Nal5gYaNHCstdKK4u5Xg8rVqjbNjbqOujPCwm6hRB5mk8jb+N22FU/K9Yk8/R6NbmKoqR+7kzIRbYcVhfUrFj8AkGdfXO4dkIIIYR4FjY28M03qfdbs5f7UTmRJ6ZJE7XXH2DdOrh/X81Yfu2auq9tW56rkXwSdAsh8jSPYg7GD/WwMOvWJTOSE5N5sWUsxYqpf5BCQsyfXzTrvHH7jVcuoNFKBjUhhBAirwkMhJ49zfdZaz63NdjYQLdu6nZCAqxd+/wOLQcJuoUQ+YCPj/r/zZsQEWHdujzJjI92sXGruqb4zp1QuzYMHgx37qgB+ZI1VQGw0SXT771q1qyqEEIIIZ7BjBng7Gx6nFt6unNKjx6m7SVL4Lff1G0XF2jf3ipVshoJuoUQed7DoBtMGTEz4/hxGDTIfHkuSzq25wzjv21ots9gUJOZVKqQwKCue7kZpXbbdwo4QNGyHjlTMSGEEEJku5IlYcECcHRUl8aqWNHaNcpZAQFQvLi6vXGjOsQc1B5wR0fr1csaJOgWQuR5PhWuG7fDtu59Ynm9Hr74Avz84Lvv1Gye4eGWrCHok/X0fz2BpBR1Qcxhr+5g2jTTHfA7UQ4s/tt0C/zNgRZKKSqEEEKIHPPaa2risuXLc2YudW6i1UL37qn3P29Dy0GCbiFEPuBT8bZxO+xoYoZlz4RcJNDvBCNGqOthP/TnmuQnXufskYsM6rKdf38+mOU6fvXpDvadVLvkvUqeZ8r8OowcCSdPwqsdTpmVLeNxhZY9amX5GkIIIYTIfbTPccT16BBzgFKl1PnuzxuL/QrMmzePV155hRo1alCnTp1MHaMoCrNmzSIgIIDq1avTr18/Lly4YKkqCiHyiWr1yxi3w065pVnGoDcwZ/Q2ajQowq6jasZzjcaUPvyvFcefeJ1+vaL4bk0T2vf25czhC5mu36lD5xk9q/6DaxpYvCAGx4LquKqSJeGnP73Y/scRalU8jp1NIpM+uYhW9xz/hRZCCCFEvtCgAZQubXr86qvP500Ii73k5ORk2rRpQ8/H0/ZlYOHChfz444+MGzeOlStX4ujoyIABA0hMzLjnSgjxfHNxd+EFjysAhJ0vg2IwX4vr9pVIWtYN4d1JgcQlquO5yxe7SPDGGKqUPgPAnvBq3L56J91rXD55jZ1hNQBI1tvx0af2maqbPsVA/z73SUhWg+yhr+zAv13qZcAad6zBwdNVuB+todfwRpk6txBCCCFEbqbVQu/epu0+faxbH2uxWND93nvv0a9fP7y8vDJVXlEUli1bxttvv02LFi3w9vZm+vTp3Lp1i02bNlmqmkKIfMKnvDqv+16cG1fPmOZ4J8Qm0LHVNePa1wCDu23jSLg7TZoXpH1TNVg3KDr+WZl+b/dvS06bPV79T3G2bXtyveaO3cGuY9UBqFDsIpPnZzzyx87R7sknFUIIIYTIIz77DKZOhTVroNpzujCLjbUr8NCVK1eIiIjA39/fuK9gwYLUqFGDw4cP065du3SP1ev16PX6nKjmU3tYv9xeT5E10q65RzXvGNb9p24f+e8yxSsURTEovN75IHuOqz3HxdxusmTeJVp0VxfK1Ov1vNjZhRnL1OPW/qWh53vmbfrw/1Vr3VJd8/33FfbuNaQ7TOrs0Ut88oUpyF4w5zb2zqXk98WK5D2bf0nbWoFej864qVezVGb7JaRd8yNp1/wrrba1t4cPP3z4vDVqZTmZ/R3ONUF3xIPFdd3d3c32u7u7c/v27bQOMTp16lSGz+cmR48etXYVhAVIu1pfseJRxu09O65TrGoIK766xi+bOgDgZB/LN18cpEilooSEhBjLOhVPwc35LlGxhfj3vyoc2H8QG1ud8fmjR49y5+o9dh1rBoB3ydMYnEty6pQThw5pmDLlEu3bpx6WHhur5d23SxuHs7/ebgNuZYuYXVtYj7xn8y9p25yjjY/H78F2aGgoBguuASTtmj9Ju+Zf0rbmshR0z5w5k4ULF2ZYZt26dVSoUOGZKpVVXl5eODk55eg1s0qv13P06FF8fX3R6XRPPkDkCdKuuYdyzwGmqduXr7hzfEc8X/6kBtwajYHlc47SsW/rNI9t3WAvv25uRFRsIWKv2RDYqYZZ287/fbex7MvtrxDQtTytWqmPv5tbmOHvuuPs6mwsExMD7dtrCQ1X1wYpUyKKLxfXp2DhghZ45SIr5D2bf0nbWkFsrHGzevXqpjUQs5G0a/4k7Zp/PW9tGxcXl6kO4CwF3f3796dLly4Zlin9aHq6LPDw8AAgMjIST09P4/7IyEi8vb0zPFan0+WZRs1LdRWZJ+1qfdXqlker0WNQdPy715tfNrkan5v+wXa6vBGU7rEd2sGvm9Xt9WuiafaSqS11Oh2/PTK0vHufUvj46+jY8jp/bizOtQhXvvwsmHHz1PPHxkKnTrBzp1q+UCFY/Zcbbh7Z9UpFdpD3bP4lbZuDdOaflVjw5y7tmj9Ju+Zfz0vbZvY1ZimRWuHChalQoUKG/+zsni4JUKlSpfDw8GDPnj3GfTExMRw5cgQ/P78MjhRCCHAs6EjFEpcAuHHXg6Rk9bPojY7b+eDzjBeEbNOjClqNOifnr63mNw5vXLjFjjA1EVrlkueo1qAiANOnxmOjU9f2nv5DPa6euU5cdBwdAk8aE6y5ucHGjSAfYUIIIYQQzy+LZS+/du0ax48f59q1a+j1eo4fP87x48eJfWQoUps2bdi4cSMAGo2GPn36MG/ePDZv3szJkyf56KOP8PT0pEWLFpaqphAiH/GpkmT2uFkzhW9X+qPRajI8zr1EYfyrhQFw4koFzoRcND63elUiiqJ+VHZ78ZLxXJVrl2dwN3XYeXySEyPeOk+npsfZerAyAK6uBv79F2rXzp7XJoQQQggh8iaLJVKbPXs2q1evNj7u3LkzAMuWLaN+/foAnD9/nvv37xvLvPnmm8THxzNmzBiio6OpXbs2ixYtwt4+c+vhCiGebz7+lfn9wQqDlSvDqlUabO0z9zHXvuVddqpxN3+viWKIbykAfvunjLFM9wFVzY4Z+1V1fvzrLndjC/HL5kdWXnCMZsPKq9StW+UZXo0QQgghhMgPLBZ0T5s2jWnTpmVY5uTJk2aPNRoNQ4cOZejQoZaqlhAiH+vfH77/Hlxd4Y8/1PnUmdW+pxcff6Vu/7WrBkPQc+eODdu3q/sqVoTq9T3NjilcvBBj3t3G8Gmm4esFHO7zz/8uUr+V77O+HCGEEEIIkQ9YbHi5EELktDJl4PJlOHpUDZKzomqdEpR50Km9bRvcvw/BwW4YDOpw8m7dQJPGKPXBYxriVfI8AM72MaxfeR7/dhJwCyGEEEIIlQTdQoh8RaMB7VN8smk00L69up2cDJs2wZaNpqUIu3dP+zg7Rzs2bLBl3NvB7N1ynYAO1Z+i1kIIIYQQIr+SoFsIIR54GHQDLF2cwv6D6vj0cqXuZZiBvGy1Uoz9Nggf/0oWrqEQQgghhMhrJOgWQogHgoLAyTEFgL/W2aM3qGkvujU7nObQciGEEEIIIZ5Egm4hhHjAwQFa1j6Yan+3Xp5plBZCCCGEEOLJJOgWQohHtH/RfK3vFzyuULe5LP0lhBBCCCGejgTdQgjxiLY9zOdld215Go1WxpYLIYQQQoinI0G3EEI8okSFYtQqF2J8/NKrWVjsWwghhBBCiMdI0C2EEI/57OMEnO1jaN9gB/VbVrN2dYQQQgghRB5mY+0KCCFEbvPSwAa075PE0WNOaHVyb1IIIYQQQjw9+TYphBBp0NnqrF0FIYQQQgiRD0jQLYQQQgghhBBCWIgE3UIIIYQQQgghhIXk6TndBoMBgPj4eCvX5Mn0ej0AcXFx6HQybDW/kHbNv6Rt8ydp1/xL2tYKEhKgcmXTtib7l1eUds2fpF3zr+etbR/GoQ/j0vRoFEVRcqJClhAZGcmFCxesXQ0hhBBCCCGEEM+psmXL4u7unu7zeTroTklJ4d69e9jb26PVykh5IYQQQgghhBA5w2AwkJiYiKurKzY26Q8iz9NBtxBCCCGEEEIIkZtJ97AQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBdw746aefaNasGb6+vnTv3p3Q0FBrV0lk0YIFC+jatSt+fn40bNiQwYMHc+7cObMyiYmJjB8/nvr16+Pn58e7777L7du3rVRj8TS+++47KleuzOTJk437pF3zpps3bzJixAjq169P9erV6dChA0ePHjU+rygKs2bNIiAggOrVq9OvXz9ZgjIP0Ov1fP311zRr1ozq1avTokUL5s6dy6M5YaVtc7/9+/fz1ltvERAQQOXKldm0aZPZ85lpw6ioKD744ANq1apFnTp1+PTTT4mNjc3BVyHSklHbJicnM2PGDDp06EDNmjUJCAjgo48+4ubNm2bnkLbNfZ70nn3UmDFjqFy5MkuWLDHb/7y3qwTdFrZu3TqmTp3KO++8w+rVq/H29mbAgAFERkZau2oiC/bt28drr73GypUrWbx4MSkpKQwYMIC4uDhjmSlTprB161a+/vprfvzxR27dusWQIUOsWGuRFaGhofzyyy9UrlzZbL+0a95z7949evbsia2tLQsXLuTvv/9m5MiRuLq6GsssXLiQH3/8kXHjxrFy5UocHR0ZMGAAiYmJVqy5eJKFCxfy888/M2bMGNatW8eIESNYtGgRP/74o1kZadvcLS4ujsqVKzN27Ng0n89MG44YMYIzZ86wePFi5s+fz4EDBxgzZkxOvQSRjozaNiEhgfDwcN5++21+//135syZw/nz53n77bfNyknb5j5Pes8+tHHjRo4cOYKnp2eq5577dlWERXXr1k0ZP3688bFer1cCAgKUBQsWWLFW4llFRkYqXl5eyr59+xRFUZTo6GilWrVqyvr1641lzpw5o3h5eSmHDx+2Ui1FZsXExCitWrVSdu3apfTq1UuZNGmSoijSrnnVjBkzlJ49e6b7vMFgUBo1aqQsWrTIuC86Olrx8fFR/vrrr5yoonhKAwcOVD755BOzfUOGDFE++OADRVGkbfMiLy8vZePGjcbHmWnDh5/DoaGhxjLbtm1TKleurNy4cSPnKi8y9HjbpuXIkSOKl5eXcvXqVUVRpG3zgvTa9caNG0rjxo2VU6dOKU2bNlUWL15sfE7aVVGkp9uCkpKSOHbsGP7+/sZ9Wq0Wf39/Dh8+bMWaiWd1//59AGPPWVhYGMnJyWZtXaFCBUqUKEFISIg1qiiyYMKECQQGBpq1H0i75lVbtmzBx8eH9957j4YNG9K5c2dWrlxpfP7KlStERESYtWvBggWpUaOGfDbncn5+fuzdu5fz588DcOLECQ4ePEiTJk0Aadv8IDNtePjwYVxcXPD19TWW8ff3R6vVyhS+PCYmJgaNRoOLiwsgbZtXGQwGPvzwQwYMGEClSpVSPS/tCjbWrkB+dvfuXfR6Pe7u7mb73d3dU80HFnmHwWBgypQp1KpVCy8vLwBu376Nra2t8Y/GQ+7u7kRERFijmiKT/v77b8LDw1m1alWq56Rd86bLly/z888/8/rrr/PWW29x9OhRJk2ahK2tLV26dDG2XVqfzTJfP3cbOHAgMTExvPjii+h0OvR6PcOHD6djx44A0rb5QGba8Pbt2xQuXNjseRsbG1xdXeWzOQ9JTExk5syZtGvXjgIFCgDStnnVwoULsbGxoU+fPmk+L+0qQbcQWTZ+/HhOnz7NihUrrF0V8YyuX7/O5MmT+eGHH7C3t7d2dUQ2URQFHx8f3n//fQCqVq3K6dOn+eWXX+jSpYuVayeexfr161m7di1ffPEFFStW5Pjx40ydOhVPT09pWyHykOTkZIYOHYqiKIwfP97a1RHPICwsjGXLlvH777+j0WisXZ1cS4aXW1ChQoXQ6XSpkqZFRkZSpEgRK9VKPIsJEyYQHBzM0qVLKVasmHF/kSJFSE5OJjo62qx8ZGQkHh4eOV1NkUnHjh0jMjKSl156iapVq1K1alX27dvHjz/+SNWqVaVd8ygPDw8qVKhgtq98+fJcu3bN+Dwgn8150PTp0xk4cCDt2rWjcuXKdO7cmb59+7JgwQJA2jY/yEwbFilShDt37pg9n5KSwr179+SzOQ9ITk5m2LBhXLt2jR9++MHYyw3StnnRgQMHiIyMpGnTpsbvUlevXuXzzz+nWbNmgLQrSNBtUXZ2dlSrVo09e/YY9xkMBvbs2YOfn58VayaySlEUJkyYwMaNG1m6dCmlS5c2e97HxwdbW1uztj537hzXrl2jZs2aOVxbkVkNGjRg7dq1rFmzxvjPx8eHDh06GLelXfOeWrVqGef8PnThwgVKliwJQKlSpfDw8DBr15iYGI4cOSKfzblcQkJCqp4UnU5nXDJM2jbvy0wb+vn5ER0dTVhYmLHM3r17MRgMVK9ePcfrLDLvYcB98eJFlixZQqFChcyel7bNezp16sSff/5p9l3K09OTAQMGsGjRIkDaFWR4ucW9/vrrjBw5Eh8fH6pXr87SpUuJj4/npZdesnbVRBaMHz+ev/76i2+//RZnZ2fj/JOCBQvi4OBAwYIF6dq1K9OmTcPV1ZUCBQowadIk/Pz8JDjLxQoUKGCcl/+Qk5MTbm5uxv3SrnlP37596dmzJ/Pnz+fFF18kNDSUlStXMmHCBAA0Gg19+vRh3rx5lClThlKlSjFr1iw8PT1p0aKFlWsvMtK0aVPmz59PiRIljMPLFy9eTNeuXQFp27wiNjaWS5cuGR9fuXKF48eP4+rqSokSJZ7YhhUqVKBx48aMHj2a8ePHk5yczMSJE2nXrh1Fixa11ssSZNy2Hh4evPfee4SHh7NgwQL0er3x+5Srqyt2dnbStrnUk96zj988sbW1pUiRIpQvXx6Q9yyARnl4e1hYzPLly/n++++JiIigSpUqjBo1iho1ali7WiILHl+7+aGpU6cab6AkJiYybdo0/v77b5KSkggICGDs2LHPzbCZ/KJ37954e3vz2WefAdKuedXWrVv58ssvuXDhAqVKleL111/n5ZdfNj6vKAqzZ89m5cqVREdHU7t2bcaOHUu5cuWsWGvxJDExMcyaNYtNmzYRGRmJp6cn7dq145133sHOzg6Qts0L/vvvvzQTLnXp0oVp06Zlqg2joqKYOHEiW7ZsQavV0qpVK0aNGoWzs3NOvhTxmIzadsiQITRv3jzN45YtW0b9+vUBadvc6Env2cc1a9aMPn360K9fP+O+571dJegWQgghhBBCCCEsROZ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAW8n/MxhFDyctBfgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAfFCAYAAACMBK9jAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwU6R8H8M+yhCAliAiiYgEqIIqKhWJ3+/PsvPNOz/bObj3z9Ow4Tz3r7O7GBCwQAzFREURCujae3x8jM6wssMSyxPf9eu2L2ZlnZp7dh92d7zwlYowxEEIIIYQQQgghJN9paToDhBBCCCGEEEJIcUVBNyGEEEIIIYQQoiYUdBNCCCGEEEIIIWpCQTchhBBCCCGEEKImFHQTQgghhBBCCCFqQkE3IYQQQgghhBCiJhR0E0IIIYQQQgghakJBNyGEEEIIIYQQoiYUdBNCCCGEEEIIIWpCQTchhBBCeD4+PrC3t4ePj4+ms0IIIYQUC9qazgAhhBBSVBw7dgwzZszIdPvBgwfh4uJScBkqApKTk7Fw4UL4+/sjNDQUcrkcFStWRO/evTFgwADo6OgopI+NjcXKlStx+fJlJCcnw8nJCdOnT0ft2rUzPceHDx/QuXNnpKam4siRI3ByclL3yyKEEEJURkE3IYQQkkPjx4+HjY1NhvWVKlXSQG4Kt+TkZLx+/RrNmzdHhQoVoKWlBV9fXyxduhT+/v5YtWoVn1Yul2PUqFEIDAzEyJEjUaZMGfz3338YPHgwjh07BltbW6XnWLJkCbS1tZGamlpAr4oQQghRHQXdhBBCSA41b96calNVZGpqikOHDims69+/P4yMjLB3715Mnz4dFhYWAIALFy7A19cXa9euRYcOHQAAHTt2RPv27bF+/XqFAD3NrVu3cPv2bfz444/YvHmz+l8QIYQQkkPUp5sQQgjJZ+vWrYODgwO8vLwU1s+ZMweOjo548eIFACA1NRVr165Fr1694OrqChcXFwwYMADe3t4K+wUHB8Pe3h7bt2/Hvn370Lp1a9SpUwcjRoxAaGgoGGPYuHEjmjdvDmdnZ4wePRrR0dEKx2jVqhV+/vln3L59G927d4eTkxM6deqES5cuqfSaHj9+jJEjR8LV1RV16tTBoEGD8PDhw1y/RxUqVADANSdPc/HiRZQtWxbt2rXj15mZmaFjx464evVqhppsiUSCP/74A0OGDKFWBoQQQgotCroJIYSQHIqPj0dUVJTC4+vXr/z20aNHo2bNmpg1axbi4+MBcDWyhw4dwpgxY+Dg4MAf5/Dhw2jYsCF+++03jB07FlFRUfjxxx8REBCQ4bynT5/mm1sPHz4c9+7dw8SJE7FmzRrcunULP/30E/r27Yvr169j+fLlGfYPCgrCpEmT0Lx5c0yZMgVisRgTJkzAnTt3sny9Xl5eGDhwIBISEjB27FhMmjQJsbGxGDp0KPz9/VV6z1JTUxEVFYXQ0FBcvnwZO3bsQIUKFVC5cmU+TUBAAGrVqgUtLcXLEycnJyQlJeHdu3cK63ft2oXY2FiMGTNGpTwQQgghmkDNywkhhJAcGjZsWIZ1urq6ePLkCQBAR0cHy5cvR69evbBs2TJMnToVs2bNgqOjI0aNGsXvY2JigmvXrkFXV5df17dvX3Ts2BF79uzBkiVLFM4RFhaGS5cuwcjICADXB3rr1q1ITk7G0aNHoa3N/ax//foVp0+fxoIFCxSOHRQUhPXr1/M1yX369EGHDh3w559/omnTpkpfK2MM8+fPh5ubG/755x+IRCIAQL9+/dC5c2esWbMGO3bsyPY9u3z5MiZPnsw/d3R05PtipwkPD0f9+vUz7FuuXDkAwJcvX2Bvb8+n3bRpE6ZNmwZDQ8Nsz08IIYRoCgXdhBBCSA7NnTsXVapUUVj3fe2snZ0dxo8fj1WrViEwMBBfv37Fjh07FIJMsVgMsVgMgAugY2NjIZfL4ejoiOfPn2c4b4cOHfiAGwCcnZ0BAN26dVM4rrOzM86cOYOwsDBUrFiRX1+uXDm0bduWf25oaIgePXpg27ZtCA8P5/tWpxcQEICgoCCMHj1aoTYfABo3boyTJ09CLpdneP3fc3Nzw86dOxEbGwsvLy8EBgYiKSlJIU1ycrLCTYI0aetSUlL4dX/++ScqVqyI//3vf1melxBCCNE0CroJIYSQHHJ2dlZpILWRI0fi7Nmz8Pf3x+TJk1G9evUMaY4fP44dO3bg3bt3kEgk/Hplo6NbWVkpPE8LwDNbHxMToxB0V65cma+pTpM2IvinT5+UBt1BQUEAgGnTpmX2MhEXFwcTE5NMtwNA2bJlUbZsWQDczYMtW7Zg+PDhuHTpEn/eUqVKKR2BPG2dnp4eAMDPzw8nT57Ev//+m22wTwghhGgaBd2EEEKImnz8+BHv378HALx8+TLD9pMnT2L69Olo06YNRo4cCXNzc4jFYmzduhUfP37MkD6tVvx7mQWejLE85F7xGFOnTkXNmjWVpjEwMMjxcdu3b4+//voLV69eRb9+/QAAFhYWCA8Pz5D2y5cvAIRm5itXrkT9+vVhY2OD4OBgAOBr4cPDwxESEgJra+sc54kQQghRBwq6CSGEEDWQy+WYPn06DA0NMXToUGzZsgXt27dXGJn74sWLqFixIjZs2KBQA71u3Tq15On9+/dgjCmcK60mO2008e+l1ZQbGhqiSZMm+ZaXtKbicXFx/DoHBwc8fPgwQ3N1f39/6Ovr8036Q0ND8enTJ7Ru3TrDcUePHg0jIyM8ePAg3/JKCCGE5AUF3YQQQoga7Ny5E76+vti8eTM8PDzg4+OD+fPno379+jAzMwMg1FynD4QfP34MPz8/tdTUfvnyBZcvX+YD//j4eJw4cQI1a9ZU2rQc4AY8q1SpEnbs2IEuXbqgdOnSCtujoqL416NMVFQUypQpk6FZ++HDh/njp+nQoQMuXryIS5cu8fN0R0VF4cKFC2jZsiXft3vhwoVITk5WOJ63tzf27NmDadOmoWrVqqq8HYQQQkiBoKCbEEIIyaGbN2/i7du3GdbXq1cPFStWxJs3b/j5t1u1agUAWLZsGXr06IEFCxZg7dq1AAAPDw9cunQJv/76Kzw8PBAcHIwDBw6gevXqSExMzPd829raYtasWXjy5AnMzc1x9OhRREZGYunSpZnuo6WlhcWLF+Onn35Cly5d0KtXL1haWiIsLAw+Pj4wNDTEli1bMt3/1KlTOHDgANq0aYOKFSsiISEBt2/fxp07d9CyZUs0btyYT9u+fXu4uLhgxowZeP36NcqUKYP9+/dDJpNh3LhxfLpmzZplOE/afN8NGjRQqb89IYQQUlAo6CaEEEJyKLPm30uXLoW1tTWmTZuGMmXKYObMmfw2W1tbTJ48GX/88QfOnTuHTp06oVevXoiIiMDBgwdx+/ZtVK9eHStXrsSFCxdw7969fM+3ra0t5syZgxUrVuDdu3ewsbHBX3/9BXd39yz3c3Nzw8GDB7Fp0ybs3bsXiYmJsLCwgLOzM3744Ycs93V1dYWvry/Onj2LiIgIaGtro0qVKpgxYwYGDRqkkFYsFuPvv//GihUrsGfPHqSkpMDJyQlLly6l2mtCCCFFlojlxygrhBBCCCnUWrVqhRo1amDr1q2azgohhBBSotA8G4QQQgghhBBCiJpQ0E0IIYQQQgghhKgJBd2EEEIIIYQQQoiaUJ9uQgghhBBCCCFETaimmxBCCCGEEEIIUZMiPWWYVCpFTEwM9PT0oKVF9w8IIYQQQgghhBQMuVyOlJQUmJiYQFs789C6SAfdMTExCAoK0nQ2CCGEEEIIIYSUULa2tjA3N890e5EOuvX09ABwL1JfX1/DucmaTCbDy5cvYWdnB7FYrOnskHxC5Vp8UdkWT1SuxReVrQYkJQFNm3LLd+4AargWo3Itnqhci6+SVrZJSUkICgri49LMFOmgO61Jub6+PgwMDDScm6zJZDIAgIGBQYn4BywpqFyLLyrb4onKtfiistUAxoDAQG65VClADddiVK7FE5Vr8VVSyza7rs7UEZoQQgghhBBCCFETCroJIYQQQgghhBA1oaCbEEJIofHM6zUW/uqJj4Ehms4KIYQQQki+oKCbEEJIoSCXydG1py7mbfJAM3c5YiNjNZ0lQgghhJA8o6CbEEJIoeB94RnehVUCAHwIt8HEoY81nCNCCCGEkLyjoJsQQkihcOKk4vOdZ91xcruPZjJDCCGEEJJPKOgmhBCicYwBx687ZVg/akpVhH8M10COCCGEEELyBwXdhBBCNO7ZM+D1a27Zw4OhaxOuhvtLjAV+HvgGTM40mDtCCCGEkNyjoJsQQojGnTghLPfsKcK2fVVR1jgCAHD8ViPsXXNHMxkjhBBCCMkjCroJIYRo3PHjQk12jx6Apa0Ftix/xa8bO6cOPn6QayBnhBBCCCF5Q0E3IYQQjfrwIhiPHokAAPWcYlGJG8AcvX9pjMEdbgMAYhONMHyEFuQUdxNCCCGkiKGgmxBCiEad2POGX+7Z4qHCtnX7GsPGhlu+ehVYtqwgc1a0yWVyhAXRIHSEEEKIplHQTQghRKOOnzXml3v0t1HYZmomxs6dwvNZs4B5M+NoYLVsMDlDuwZ+KF/FAj92uwVpqlTTWSKEEEJKLAq6CSGEaExkSBRu+jsDAKpbBaF2o+oZ0rRpAyxaJDxfuNQI4/vfhFxGbc0z43/nJa761gMAbD/tjt6tHiI5IVnDuSKEEEJKJgq6CSGEaMzpvc8hZ2IAQM+2QRBpiZSmmz0b+OvPVP75hkMtMKSTFyQpkgLJZ1Fz+lCowvNTd9zQsWkAYiNjNZQjQgghpOSioJsQQojGnDitwy/36GueZdqJU3Sxa+VtiLW4ptL7LjVFTw9fJMUlqTWPyoS8+YzwjxEFfl5Vnb5cll820EsAAHg+rotWjUMR/oWa5hNCCCEFiYJuQgghGpEQk4CLPlzTckvTL2jUoXa2+wz5rRmObXsIPR2uqfRZ74Zo3+QlYsJj1JrX9O6c8Uclu7Ko5Qi88g0qsPOqKvRtGO4FOgIAnKsE4vqpIJgbRQIAHr6yh3tzET58UP14Xuee4Njf3tSPnhBCCMklCroJIYRoxMWDT5As0QcAdPd4AS2xaj9J3Ua44cKBFzDS55pK33paB/Mm+KkrmxlsXRcOmVwbEbFlMW/K2wI7r6rOHvnEL3dtHYqG7Wrj5uVoVCjPtQgIDASaNgVev87+WHfPPoF715ro/XMjbJh7U11ZJoQQQoo1tQbd0dHRmDJlCurVq4f69etj5syZSEhIyHKfwYMHw97eXuExd+5cdWaTEEKIBpw4Loyo3bOPfo729ejlgutnPkFHzPXzPn+zUr7mLTNMznD5vlAjf8DTA899VIheC9DpO/X45W79bQEAtdyq4Y63PmrU4NYHBwNDhgAsi8prJmf4faocMrk2AGDF5qrUh54QQgjJBbUG3b/99htev36NnTt3YsuWLXjw4IFKAXTfvn1x+/Zt/jF16lR1ZpMQQkgBk6QynL7NNS030o9Fy57OOT6Ga6uacK0RCAB4+akKIkOi8jWPyjy9H4rP0eX554xpYeHML2o/r6qSkoDLl7nl8uWB+h62/LbKlYHbt8EH3l5ewL51DzI91qmd93D3eR3+eXBURRw5kPWNc0IIIYRkpK2uA7958wa3bt3CkSNH4OTkBACYPXs2Ro0ahalTp8LS0jLTfUuVKgULCwuVzyWTySCTyfKcZ3VKy19hzyfJGSrX4ovKVr2uewLR8dz83J3aRENbr0Ku3utG9SLh/YJbvnPpJToPbpBl+ryW68Vb5TOsO3S9EWbeDURtt4zTnRW0S5eApCRuNPhOneRgjCH9SzU3B9asSkbnbqUBANMWVkDXgTEwLGOocBxpqhTT55fF91ZvMMH/BsogUj7IvEbRZ1YDZDKI+UUZoIb3nsq1eKJyLb5KWtmq+jrVFnT7+vrC2NiYD7gBoEmTJtDS0oK/vz/atm2b6b6nT5/GqVOnYGFhgZYtW2LMmDHQ18+86eHLly/zNe/q9OTJE01ngagBlWvxRWWrHv/8UxFAOQCASxMp/Pz8cnWcqjWi+eWLVxkqOKl2nNyW6/Hj1QGYAAB+aO+NgxcbgTEtzJ36GXPWxufqmPlp165KALib1rVrv4WfX8YB5iytgQ4NknHhflOERFlh7tgzGPK7lUKay/99xIvgHgCARg6++MrsEBhYGg8eiLBr1yu4uBTeGm/6zBYcraQk1P227O/vD3kW12p5ReVaPFG5Fl9UtorUFnRHRETAzMxM8WTa2jAxMUF4eHim+3Xp0gXW1tYoV64cAgMD8eeff+Ldu3fYsGFDpvvY2dnBwMAg3/KuDjKZDE+ePIGTkxPEYnH2O5Aigcq1+KKyVR+ZDLhzh+vdpKvL8PPPlWFsXDlXxyprao/xC7jlgE+N4OIiz+bcuS/XlBTA15fLt7U1w9//1cL1quH4EmOBk3daYH7SSzg1rpar15Ef5DI5vG9EAwBKlZLhp5+qILOfxjVbguDsloJUqR62HmuDsTNCUdWR6xefGJuIbv9a82mXLxchKFofQ4dyz8+cscewYVm/z5pAn1kNSDdOj7OzM1C6dL6fgsq1eKJyLb5KWtkmJiaqVAGc46D7zz//xLZt27JMc+7cuZwelvfDDz/wy/b29rCwsMCwYcPw4cMHVKqkfKAcsVhcZAq1KOWVqI7Ktfiiss1/t29KERLCtU9u106EMmVy//5WrmaIChWAT5+A+/dFAMRQpbhyU64+PlyfaQBo21YEYzNjTPvZE1NWeAAAFq+pgSPNNNfu2vd6IEKjagEAWrs8gpFR5k3t7etVw6RB17H835ZIkZTC1LFfcPxWFQDAxoUPERLlAQDo3swHzbu5oVEqMGMGEBICnDwJBD0LQTXnimp/TblBn9kClO59FovFUOnDl+tTUbkWR1SuxVdJKVtVX2OOB1IbMWIEzp07l+WjYsWKKFu2LKKiFAe1kUqliImJyVF/7Tp1uEFc3r9/n9OsEkIIKYQObrzLL/f/X2Kej9e4Mfc3Ph54+jTPh8vU5f/u8MttW3I1fL/MbgJLS24I8KNHRXj8WH3nz87pI2H8crfOSdmmn7XKFeVNuX1O3HbDlUOPEBkJLPvHDQCgJZJhyZ/mAABdXWDsiGAAAGMirF1S+KZKI4QQQgqrHAfdZmZmqFatWpYPXV1d1K1bF7GxsXia7grI29sbcrmca4KkooCAAADIUaBOCCGkcJKmSnH4Mlcbq6+biG5d895MOS3oBgCvO+pr9nz5Rhl+uU0L7maBgZEupk8XarcXLFDb6bN16rLQL7tLf7ts0xuZGWPZTKFJ3MTfjbBwgRwx8Vy/3OG9X6JWusHhfh5TGgZ63M2GHSdcEf0lY39xQgghhGSktinDqlWrBnd3d8yZMwf+/v54+PAhFi1ahM6dO/Mjl4eFhaFDhw7w9/cHAHz48AEbN27E06dPERwcjKtXr2LatGlo0KABHBwc1JVVQgghBeTa0ceIiOVGxe7S9HGGUbNzo3G9r/yy15m7WaTMvciQKDx8zf0OOVcJhKWtcCP4558Bq2/x7vHjgN/Dgp/L+mNgCPzecvlzrfEc1tUyjrKuzODJTdHQnrs5/uxDDaxbz10WlCoFLFhTUyGtmVUZDOvKTTGWkGKIbSt88yv7hBBCSLGm1nm6//zzT1StWhVDhw7FqFGjUK9ePSxcuJDfLpFI8O7dOyR96ySno6MDLy8vjBw5Eh07dsTy5cvRrl07bNmyRZ3ZJIQQUkAO7BOak/frlz/9n+s1NICudgoAwNvfOpvUuXPtZCAY434y2zYNVdimrw9Mny48nz/xkVrykJUz+1/xy93aqj5vuJZYC+vWZlw/cSJQoULG9RNmCGOrrPvXDpKUgr/BQAghhBQ1ahu9HABMTU2xatWqTLfb2NggMDCQf25lZYW9e/eqM0uEEEI0JCUxBceuc92LjPRj0bF/nXw5rp6BHupVfwLvF054+akqIkOiYG5tlv2OOXD5ohBctu2YsXZ+1I8SLF8QiZCo8jh52w0TB9zAyp1NoKOnk6/5yMyp88Iw5V3/p1otdxq39o4Y0uE2dl9oBgAoU0aOadOU35O3q1cFXZv44PRdNwRHWuPI1rvoP75J7jNOCCGElABqrekmhBBC0lw88Bgxidwc1z1a+EPfKP/m9G1cL5Jf9r7yJt+OCwBMznDpblUAgK52Cty71MqQppSBDhb9LtQ2r93fAm0bPsOXD5lPkZlf4r/G49oj7maGjXkIXJrb5/gYyzbWgHX5VADA8uVaMDXNPO3kKXr88uoNpmByluPzEUIIISUJBd2EEEIKxIH9Un65X3+9LFLmXOOmuvyy162ELFLm3OvH7/E+3AYA0MzpGQyMlU9+PWK6O7YuugkdMRe83vB3gWs9Ce5ffp6v+fne5SNPkSrl3s+uHq8h0sp5s32rqpbwf6qLwEDgp5+yTtuiRx3UrcYNcvrgVS3cPfckx+cjhBBCShIKugkhhKhdYmwiTt3iamPLlP6KNv/Ln6blaRq1tuWXvR4a5+uxL58Qpqxs2yI2y7SjZjfHjVOBsCrzGQAQHGkN985VsXP5rXzNU3qnTgojtnftkfvWA+bmgF32g55DpCXC+FFCy4Kzx6OySE0IIYQQCroJIYSo3dl9j5GQwvWF7t36KXT1dbPZI2cq2lujghk3wNm9gBqQSWT5duzL14Ra+XbdymWbvnEnJzx8IELT2tzMHCmSUhgx3R2TB3rme1Ps+HjglBc3Z1pp/RS07OmUr8fPTNte1fhlH9/8vclBCCGEFDcUdBNCCFG7A8fM+eV+g0qr5RyNnYMAAPHJRnjqnT/9uqWpUlx7yE2dVdY4Ai7NVZu+0qqqJa7dd8Cv/7vBr/vrPw9cOvAw233/XXEbZY0j8dtgz2zTbtgAREVxzcl79tZDqdKlVMpfXlWoboUKFlxt972XzpDl3z0OQgghpNihoJsQQoooX88XOL7NG3KZPPvEGhQbC5y9xbVbtiybBI8e+du0PE3jhin8stf1z/lyzPsPxIhN4gZ/a900Alpi1X82dfV1seFQC6yZcY1fN215XcizKK73AcEYPdsVkXHmWLXXA5f2Zx6kx8UBK1dyy1pawKxZKmctX7i5czdS4hO0ERBQsOcmhBBCihIKugkhpAjav+4uXFvZodeoRti6+Lams5OlkyeBlG/x8P/66UOsI1bLeRq3EGrTvbzz5+ft8hVhULK2vVWr5f7euEUecK3HTTn22F+M/fszT/v7rx+RLBH6ZU+cZprpXNjr/4xE1Lfu1P37Aw65y16uubkJyz4+BXtuQgghpCihoJsQQoqYUzt8MHhSQzDGfYXvO19PwznK2oEDwnK/fuo7Tz0PO+jqcCOke73On7mjL18Wltu2zd0xtMRaWL5CmK979mzhJkR6nsf8cPh6Y4V1AR+rYdOCuxnSxkbG4s9VXPlraTHMnZu7vOVFo0bCcm6D7sCHb9HW9SGmDMr//u6EEEJIYUFBNyGEFCFXDz9C31/qQCbX5td53S/N13gWNpFhSbh0iQumKlYEGjfOZoc80DPQQz1X7n159UoLkZHZ7JCNuDjA25tbtrMDKlXK/bFatwbateOWg4KALZukCtulUmDCPKGqekwfoS/4vLUuCP8YoZB+/YJH+JpQBgAwsN1dlUYdz2+uroBYzJWtz+2YHO+fFJ+Cnj0kuPLIFav3eeD+FfVOrUYIIYRoCgXdhBBSRHhfeIrug+2QIuEGyypjFA8AkMtFuHhRkzkDor/EYMUUT8wcqfj4pcdlSKVcE+0fekRCS82/OumD+rSAObeuHXsG6bfYuG2bvI8UtmyZsLxoXixiwoVA9Z9/AP+nXLm6Osdi/QF3DOvMTTMWk2iCOROEgDQmPAardnD94sVaUsxZUiHPecuN0qUBx8qvAQBPXxgi/mt8jvafPVcXAcH2/PMHdyKySE0IIYQUXRR0E0JIEfD4ViA69rHhp93q3tQb+w8KI1WfO6epnHGG9nqBaas9sHSH4uOIdzc+Tb8eX9Sej/RNnr288nasfbuEObk7NMx+1PHs1K0LDGjHtcOOjDPDn7MeAQC+fuWanKdZu8kYWmItLF1vD8NScQCAv0+4w8+P275ugS9fyz2ogzdq1LXNc95yq1GdEACAnInx4Pprlffz9AT+WiNSWOf3WKQ8MSGEEFLEUdBNCCGF3MtH79CuqxmiE0wBAK3rPsKBiy5o2VobRkZc894LZ5PydW7qnLh58jFO3XHLMk3T2v6o56H+kb4aNxL6BXtdeZfr40SFfsXJW1xfeQvjcLTvVzfPeQOARX9aQUecCgBYvbshQt+GYd5cxjeFHzAAaNqUWy5fpRzmTOGCWsZEGD+ea1Gw+l8XAGm13BXzJV+55eYmXEb43I5WaZ/YWGDYMIB914XbL8BcaXpCCrutW4EaNYAdOzSdE0JIYUVBNyGEFGJJcUlo31EbX2IsAACNaz7Biat2KFW6FHR1gbaufgCAiK/6uH/1RYHnjzFg2hxT/vmCMZ64dsRX4XH7tD+u3rOHSEv9NZkVK4lQwSwUAHDvcdlc34jYv8UfqVI9AMCgLs+go6eTzR6qqepUCaP7cFXwiSmlMeyHj9i0icujgQHD8uWK6SfMsUf16tzyrVtA5/ax/M2XIR29UK1O5XzJV265eVjxyz4PVJsjfNKvX/H+PbfcvDlQrTz35Mm7qpCmSrPYk5DCJzUVmDwZeP0aGDWKRvInhCinnX0SUtKd2uGDx4+S8OusOjCzKqPp7BBSopz87z2CvnA1xHWqvMDZ6xVhWMaQ396pXTyOeXLL546Ho1GHgs3fiROA9xMu8KtlG4yZf7lDW1c9U4KpqrFzEI54WiE+2Qh+twJQxqI03gZE4O3LeLx5LQMQh5rra8LAyCDTY+zcb8EvDxttna/5m72yNnaeikVckjEuPajPr5/xy2PY2LgopNXTA/76C+jalXt+14+r2dYWSzB7qWYDbgBwqF8VxvoxiE0ygfdTWzAGiLK4t3J65z3s2NsQAGBoyPDvvyJMGxmCN58rI1mij8CHr1G7cfUCyj0heXf/PpCYyC3LZMCQIYCvL2CQ+dcLIaQEoppukqXnPq/R88f6mLvRA83cohD8KlTTWSL5iKboKfz2nhaaZK9Zo4UylqYK2zv2rcEvn71mWVDZAsCNuD1jhvB82TobjQfcANC4oTAfV/3WNVHNuRLa/lAPP89pjhW7WmLFrm6Y8Vtspvs/ufMSD1/VAgDUqx4A52b5OzS4RcWymDpSsY+4bbmPmDLfXmn6zp2BDt/dTBnayRtVnfIwnHo+0RJroWFNri936NfyWf5GhH+MwI+TqvDP18zyQZUqQF1nobz8vMPUl1lC1OD6dcXnL18C06drJi8F4ckT7vtoxYqMXUQIIZmjoJtkadeWYMgZdxEd8LEamjWV4ZVv7vtJksJj/7q7KGMUi17NvREZUkjnmyrhwsOBCxe45YoVgeZdMgZ/1tXKo261AADAo9c1Efq24IKWnTuBwEBuuVkzoEuXAjt1lpq0LJttms07LfEuk6+yfzeH8MvD+6ln8LdJixvC0lQ49qpFn6BvpK80rUgE/LUyEdpiCQCulnvWElu15Cs33OrF8cs+V4OUpmFyhl8Gvea7SXRpfA8jpnLjALjUL82n830kUV9GCVEDT09hWVeX+7t+PXD1qkayo3YTJgAXLwLTpnE3FyjwJkQ1FHSTTMnlwL6zzgrr3ofboFlLQ/h6FnzfUZK/Fqwoj5hEExy/1Qj16ybA72agprNEvnPwINdcEQAGDkSm0211aikE2hcOvyyAnAGJsYmYNzuZf758edbNiguSW7vaGN75FixNv6Be9QD08fDC1KGe2LLwJkb0+wgAkEhEmDMn476SFAn2nqkNANDVTkH/0U5qyWNpk9LYtfEDqpV/j/E/3EDPH7MeiM7B0QAb53uhskUwVk+/iyqOmh1ALT23JkI7Wh+vFKVpjv3tjWM3uaHlzY0isW2fLd/H36WJ0Eze77mJGnNKSP5KSQHu3OGWK1UCVq4Utg0bBkRHayJX6hMRAdy4ITxfsQJYulRz+SGkKKE+3SRTN24An8LNAADNXEMQGxUH/3f2+BJjAY9Oujhz4DHcu9Xh00dFSHD9yANcu5qK0DA9pcd0rJmMOeua5tugRCR3gp4FI/BTVeH5l4po0jYR25bdwcBJTTWYM5Le3j1ypN0bHTQo83Sdepjjj3+45bPndTB8mvrztnbuPYR+8QAA9OgcgyZNCk+wJNISYccZ92/Pyils6/tVhqPnpYiJ0ca+fcCUKdxUXmnO73uELzFcANyt2SOYWzeGurQfUB+vBwCAan2zR81ujlGzAcBGbXnKDbfWQpNxH9+M434wOcPCFWb8883LX6J8FeF9tapaDpYWyQgLLwW/9y7Z9gsnpLC4dw9I/nbvsWVLYOxY4NQprpY7OJirFd61S7N5zE+nT3MVMunNmgUYG3OvnRCSOarpLoFWT/OEm8NT3Dr1OMt0e/cKy7/+Zg1PL0s0qeUPAIhNMkG7PnbYsPgppk8H6tcHypbTRp/RjbHpSAscv9VI6WPR3x6YPvKOOl8eUcHFY2/55dJ68QCApFQDDJrcFBMnSCGhFp4a98r3HXzucV/RLo4JqF0787Ru7WrBzJDrInDpXi1IUvJegK9fcyNLd+gAHNgTh5REoQYzMiQKy/7mIlUtkQxL5kbk+XwFxdgY+PFHod/x9LGKc0vv3C3cEBw+nO5Lq6JcJQtUsfwAAHjwyiHD98f5vQ/g/47rr97Q/in6/Nzo+0PApR438nlkpAjBwerNLyH5JX3Tcg8PrjXSzp2Aybd7kLt3A8eOaSJn6nHihLA8YICwPG5c8bq5UBwwBvz+O3d9Xly7OhQ1FHSXMB8DQzBlhQfuBTqi/3ALJCckK02XlAQcOcItGxkB3boBZSxNceluNXRoeB8AkCzRx7g5jli+HHj4kJtHVhWr93ng+D8Ps09I1ObCJV1++eKRt/ix203++dp12mjbFgij8Yw0at/fQfzyoI73s0wr1hGjQ2OuX3dckjHunH2Wp3MzxjWNvHWL67vXf4gRKpSPx5RBnnhx/y2WTPVHbBJ3VTmi6x3UbFgtT+craL17h8PW+ttNirvVceXQIwBcH/ozd7ibCVZlo9Eun+bmLgncmnN9tZNS9PD0qeK2pSuF75sZvyUonTrOxUVY9vPL/DySFAmuHn6Ew5u9cPgwFB6n9n9EYnRSHl4FITmTfhA1Dw/ub8WKXJ/uND//XDx+TxMSgEuXuOXy5YE9e7ha7jQjRgBHj2ombySjs2eBP//krs+7dgVu3sx+H6JeFHSXMEdPGfPLn6Ks8c8y5RNKnjkWi9hvg/v27i1MfVHapDROetZBv9YZa6udnYHJvwTj7K77CH4VipA3YQqPVdOEjkDDf6uHt28zHIIUAEmKBFcfciMzlzWOQOOOjth2wh1b10ZA51sl340bQKdOGZuRkYLB5Ax7T3DN/0UiOfr/7JDNHkDnTsLy2RPReTr/gQNCP8U0kXHmWL3PAzUbVsVf/zUHAJTSScL8VTWUHKFw09VlWDhFuDExfXYpyGVy7NsHSKVcQDh4hCm0dammW1VuTYRB4NLPU3z7tD9uP+W6IdWq9BrdhjdQun/6Jv5ZBd0zf7qDNn3roe+YxujbFwqPXoNtMWGUKeQy+uIiqomO5qbku3cv5/smJwNeXtyyrS33SDNoENCrF7ccEcE1My/qLl4UmtJ3787V6i9axNVyA9z1Qv/+XDqiWTKZ4gj6SUncQKcPHmguT4SC7hLnyElDhedLN9kpre3euzmAXx7UL1Fhm66+Lvaeb4RVf8rw66/A/v3cXdzHj4FVm23QaUgDVKhuBauqlgqPSUua439dPgMAYmJE6NuXG4SEFCyvW0mIS+JuvrRvFAgtsRYgEmHU+LK4eROw/jYl8aNHwOEDyltCEPXyvvAUbz5z/Xxb1/WFdbXy2e7Tvm9NiERcsHHOu16uz50Qk4DfJ8Xzz1csjsGAtnegpyP8LzDG/XRMHOSDCtWtcn0uTeo3thHqVOEGD3z4qhYOb/bBv/8K24cN00i2iiy3dOPApQ+6ly4TlqeN+8x93yjh4iy0Sfe9oXxQR2mqFDuOOyvdxu/71hHn/6OWVEQ1s2cDkycD7dsD8fHZp0/Px0cIQtNqudOIRMCWLYAF1wAEBw9yU20VZcePC8s9enB/RSJgzRrh+1Ii4Wq86Ya9Zu3eDTz7dl9Z/G0Wz7g4rrvYs7w1hCN5QEF3CfLpU8baq5AoK2xb6q2wLiI4kr9otzYLhUerjIOiiXXEmDxFjA0bgH79gHLlMiTJQKQlwj/7yqN6de75w4fcIEbqtPevO7A2+4x5v3iq90RFyMXrQmuH9v0Va50aNVLsl7Vg+ifIJLKCyhr5Zu9OYQq3Qf1Uay5rbm2GRo24Wtrnr4wRFJQxTfSXGHwNi87yOMt+v49PYdzNuc7tovH7LBPsu9QUn4IS8df0G6hVkesDXcP6HaYtK7rNr7XEWli+WJjqauwsOzz+NsyFmxtQs6aGMlZE1a0LvqWMjw83h9Djx8C5u1yQXMnyC/qPy3yE9urVtWCglwAA8HuqfOq0W6f9ERXPDcjWuMZdrFoF/jFxpNB0au1aXaX7E/K9a9e4v9HROQ9G0vfnbtky43YLC2DmTOH5ggU5zV3hIZEAZ85wy8bGQKtWwjYtLWDbNqDxt7ERQ0KADx8KPo+Ek5QEzJ0rPD97lhufBQAiI4G2bYE3bzSTt5KOgu4SJP1dyu6dYvjlpZsckBQnXNgf3v4MUhl39TSgcyDEOuJ8y4OxMdf3Tu9bHL9xI3Boa9YDuuXF4lVWCP1aHov+bo63T+hXABDmfQaAdh0zXpy2bg00rc0NmBfwsRoObVbeBYGoR2pSKg5edAQA6OsmoueIrGv20uvcWegre+6csD7kTRhG974JC2sD2FTWwdEtXkr3f/c0GCv/5Qa50hGnYvXSr/w2c2szTFzaAk+DquHd02A8fFIWpuUKz4jludGunyta1eX6c0fEmvPrhw+lkQRzqlQpwKUmN+94QIAI0V9isCxdLfdvs8plOWuFWEeMOlW5wPldWCVEf4nJkOb4YeEmyfhxXA1l2mPVVlvUsOYmXr/mV4+mQCTZSkwEAtP9mwQEZJ5WGWX9ub/3889c/2eA6+/8WH2XO2p144Yw/VnnzsJ85Gm0tYEWLYTnz58XWNbId9avBz8YZZcuXCuO06e5AdUAIDQUaNMGhX7ASqmUy/enT5rOSf6hoLsEObJHGLF30TIT9HTnarhDv5bH30uFwGrvIVN+edBP+d901MUFWLdOeP7jpCp45RuU7+dJSUzBqxCuiS5jWti8kjqRh4VxzcYBoF49wNIyYxqRCFgwT8o/X7jSssjXdiclAfPmcU2uCruLB/wQGccFgN3d/WBsbpzNHoJO6fp1nzsHfA2LxvThnqheywhbjjWHVKaDxJTS6DumIbavznhV9PvYj0iRcKNITxhwF3b1qmRII9ISwba2DYzMjHL4ygofkZYIy5aXUlhXSicJP/ROzGQPkhU3ByFqObAzBIcOccsWFsDIkdnv71JLuMnz+G6QwjYmZzhxlWsmpSNORacBjgrbtcRamDDyPf98zfLwHOaelDRPnig2g85J0J2cDHh/ayRYtSo3R7cy+vqKfWuLam23sqbl36tVS1imoFszoqKEedO1tIRlY2OuwiVtFpSgIK7GOzJSI9nMllzOjRvQrRtXEcSYpnOUPyjoLiHCgsJx8z4XYdnZBMPREZi/RJg3ddnmmkiKS8TbJx9w9zlXs+ZY+RWcm9qpJT8//QQMbMe1dY9LMka3bjIc3+adL1MdpXnp+x5yJtTSbz9WB4mxJfti+vLpL/xy+/aZp2vVuy7cHblb8i+Cq+HABu/MExcBy5cDCxcCQ4cC3rcLdz/1vXuFGx6DhuRsPnsXF8Dq232yy5dSUbUaw/J/PZCUyo2EqC3mPl9yJsaPU2ph5Uph3+tHfXH0Btc+0NL0C+b8lft+4UVJg7a10NdDGNa1Z4sHRb4GX1MaNRK+b39fWIUPaCZMEAbjzIrCYGr3ohW2PfJ8gY8RFQAArV39ld6MGjyxHsqU5gL3/y42ROjbYjBkNFGb7wfsy0mg6OUljEmTWS13mlGjhO/l48ezHihQ3eTynPe3lsuBkye5ZV1doGNH5eko6Na8ZcuEFglDhwKO6e5NmpsDly8D1b5NNvLiBdc1pzBaulRorScScY/igILuEuL47gB+8KP/dXgNkQhwbmaH3i24Zqafoy2x5Y972LtFqA0e3DtY6dQu+UEkArYcqAMHG65jyYvgaug1qhEqlY/CrB898e7pxzyf47mv4tzBXxPK4MCmkj3AzoXDr/jlDi0+Z5pOpCXCgvnCL/PCVdaQSaSZpi/MGAP27BZq6veuK7zN5WPCY3DqFhd5lDWOQLsfXHK0v0gEdGrKdUxMlegiOqEMAEBXOwUT+9/Ap7fRmDTUj08/dSowYwY3QNX4KcIgi0unB+aohr2oW7a+CmzMQ2CkH4sZ85U0/yAqcWtZkV+OT+RaEBgZcgNuqsKlYVl+2c9f8fLkxAHh+6pnV+U3T0ublMagLtzNXIlMFxuX5rC9MClRvg9+c1LTnV1/7vT09bnv2TTz56t+nvz06hVQoQLg5MQNqqWqBw+EJr5t2nDTyCrjkG6SjcIQdEdEcFOcKXu8epX9/kXNhw9CK1I9PeWtKqysgPPnhedeynuaaZSnp9AnXSQCNmzQaHbyFyvCEhIS2IMHD1hCQoKms5ItqVTKHjx4wKRSqUbO37ruQ8aFH4z53njBr/e/HcivL2chZdXKBzGAMZFIxj68+KT2fAXce8PsKrzh85D2EIlkrF39++zKoYe5Pvbcn69nOG5d+49MLs+//Oe0XK9cYWzvXsY08W8gk8pYWeNwBjBmpB/DUpNSskwvl8lZcydf/r3bs/p2AeU0f927p/g/UM7kC5OkSLLdTxOf2R3rgvh8ju3rmatjnNzuzR9DSyRlI7rcZO8Dgvntcjljixd/97lw+MQv16/xjMmksvx6SYVOZuWaFJ/EkhOSNZSr4kEukzNzowiF/62pQ6+rvH9ibCITa0kYwFidqi8UttWu9JL/bQh9G6Z0f6lUyi6dusa0xakMYMzMMJIlxKj3+uDuWX+2a+UtlpqcqtbzFFrx8UJhx8er5RTq+i52c1P8HtTSYiwpSbV93d2F/T5+zD59UhJjFSoI+zzM/aVNro0dK5z/v/9U32/6dGG/bduyTmtry6UzMmLZXmup8zc2NJQxU1PF8lW8xmTs4sV8P61GDRsmvL7ff886rZUVl87MLPtyyo3clu3nz4yVLy+8jgUL8j9v6qBqPEo13SVA+McIeD7mmoxXK/8edZoJTcadmtrhf71TAQBfwsX8NEUedfxQ0d5a7XlzaFAVz99VxoV9D9CruRfEWlxtKmNauPSgPtr3c0bQs9yN9vA8VBiAytqCG5THN9CG74eVH/bsEWHRosoICck+rZcX14dm0CAoTE1UUHw9XyAilqtJau36HDqlsh7hl6vtFp4v/NMa0tSiV9t9YL9iZ6AvMRbwPOGvodxkbe+JyvzyoJ+r5uoYXYc1xJxRnhjd+yaeegdh+2l3VHKowG8XiYBZs4BNm4QmW74vhM/6ujWyTKd1Ks5KlS4FPYOMMzUQ1Ym0RGjoIIxMpaeTjIlzVR8GXt9IHw423GBoz99XQWoS99v0yjcIzz5w88E3rvkU5atkPl2GmbUxfmjDtWaJijfDnrXqm5jW5+JTuHetiaG/N8PAjg9ofvAiRCYD/L/7GZDLgZcvs983MVGYFq96dcDGJvt9SpXSbG03Y9wo1mlUeZ1pTpzg/opEQNeuWadNa2IeF6fZAbCOHhWaWSvDGDBtWvHpK/zkiTDzjKmp4jgCyjh/uzyOioJK168FQSYDBg4EPn9r1NSmDXetUpyUvCurEujkngDI5NoAgD4d3mVoMj5vgW6G/hKDfkgoqOxBrCNG+wH1cfRGY3x8FYklEzxha8FdeMnk2jh+InfHff6a67OupwcsWCL00dy4Ma855oSGAj/+KMLJk2UxalT2zfBXrhS+4I8dy5885MSFk0J/7g7tVJsg3aOXCzzq+AIAXoVUwX/rilbfbrlMjoO7v2RYf2Bvwf1/qyoiQhgNt3p1oGG6pro5IdISYeFWD2w60hw1G1bLNN3o0cC+PXK+nzcADGp/G407OeXqvIQAQCNXoen3sA7XYVU1Z831XRy4z6tEpovn97nfgRPnhWbnPTt9VbpfehN+L8Mv//V3ZbXMGSyRAD/95sD/th6+3hgLfr2ZzV4kp758ATp10sKYMTXwNfuiV9mrV9wAm99TpYm5lxeQyt0PyrY/d3o//igE6KdPc822C0pgIPDunfBc1ebVL15wDwBo2lT54KvpFZZ+3elvMEyYwDVXTnukNYP38xNuKBR1M2YI15czZgBmZlmndxbqpDLcfNKURYuAq1e5ZSsrYN8+YY7x4oKC7hLgyAlhztM+AzPWENSuDfTtKzzX00lG75GqT1OUn6yqWmLGGg+cuyxcNJ26osJt5O9IJMKdXHt77u5Z2pfQ4cPcKN559egRIJNxwfaFC1rwu/Ei07Rvnn3BiRPCLVXP6xKkJKoW+OaXC9eF97R9L9VrURcsEL4mFq224Wu7ZRIZPgZ+wo3jfji/9z6SEwrfAGV3zz3Bp0juKqFV3UcwLMV1ZDt6zYmvRSss7twRfjS7dSuYgUP6D9TCqX/9UNY4AtWtgrBiUw31n5QUa0PGOqC8aRhsy33E7FUuOd7fxVm4CeTrzY1AfvyMMN5Aj1HNsz1GPQ8HeNTjatwDgysr9GHML6tXA0+eaiusW7jVA/vX3c3/kxWw+K/xuLT/IeK/xms0H4xxgeqlSyLcu2eMtWvz70vR11dYdnUVllUJutP3585J0K2npzhvd0HWdqefQhJQPehOH5T27Jl9+sIQdCcmCjewK1QA/vqL69+c9kg/gOj8+TkfWK6wOXlSuMlgYwOMG5f9PnXqCMuFIei+coUb7BbgRl3fvx8ol3mDpiKLgu5CKDIkCovGeuLOmbx/EqJCo3D1EffpqmwRDNdWypv6zZ3L/aMDQO9uCTCx0OzovQ7OpqjOzQ6DW7eQ4zvcr19zc/wB3I+Avr4wZU1qKvDPxrzPk/D9F9WyhVGZpl27KACMCRcMiUk68LpQcIP8xITHwOs5N1eEfYW3sK2tei1q8+51+LmMX4faoqm7GPb2gEFphkoOFeDRywWdBjfAsO6P1JL3vDiwJ5pfHjE4Ed2bc4UWnWCKy4cL14Spt24KN2Xc3QvuvB0HNUBouCleBlfOca0kId+zrW2Dj2HmeBtqA5saOZ9ysq6bUEXj97oaQkOFqZkcHYHqNVQLvCbNs+eXV6/OcTay9PatMEiRlhbwY58n/Lbhv9WD94Wn+XvCAtan/Qu0H+CKfj01O/r7zp1cjXCa//4T5Vtz4PSDqPXvLyyrEnSrMj93ZkaMACp++/k9exa4fz9n++dW+ppfgKuUUOW9VGWqsPQKQ9Dt6clN6QZw02h+fwO7c2egQQNu2d9f8TUWNXFxwNixwvPly7nr3ewUppru0FCuYizt/3HxYsU534sTCroLGblMjh7tP2LuRg949KiJM7vu5el4p/Y8g1TGTTvUp/3rTEcjr1WL+1KeORPY+I95ns6ZH9L3HZLJuPkFc+L5I2GO1rQfgdG/MIhE3Kd6y6aUPPdP9vdTrCk9fN0Nr/3eZ0gX/SUGO064Zlh/+Vx0ns6fE1ePC10MOrh/yPH+81cKzZTv3RPh5UsgVaJYy3PwahM8vFZ4RguWpkpx+BJX+KV0ktBtqDN+6C9MwXXgv4JtaZCd2+eE965pk4K99a6tq622mQpIyZOX/6c6HsLVoF+gFU6dEi7GVLnoT9OlC/gbt9euAY/z6R4bkzOM/jmVb5o8bhzw90FHjOx6CwCQIimFHv3L4cMLDXZozYOY8BhcesBNF3j2RjW8fZvNDmoSFMQ1C07v7VtRvo3Jkj7o7tMH0Pn205BdoJiQANz7dllWowZXk5oT39d2Dx4MhKt5SvnYWK7yIr3o6OznaP70SXitzs7cfOTZKQxBd/obDJ06ZdwuEim2MuBru+VSgBWtau/Zs4Hgb8MetWuneAMpK/b2wv+8poPuqVO5biQANx3dtGmazY86UdBdyPyz5DZuP+VqpqUyHfT5yRnXj/pmmj41KRUTB9xAGcNo9G3lhcCHir+QR44LAwP1GVj2+90VdOgA/PEHNwhDYdCtm7B86mgO5rcA8NzrGb9cy5KbJqxKVRE6N+JuKwdHWuP0rrx1qPL3Vgxe5UyMFfMzBt3bVvgiIYVrHtnTXbhiuHzLIk/nz4mL54UbBO07l87x/u6tTRS6IJQuDTjVjEf3Zj7o2kSYgmv+7JyVkzp5nvDHlxjuPe7cxA9GZsZo19cFpqWjAQAnbtRBUpySTn0akBibiIevuKbdDjZvYFGOvppJyVS2rNDv1c8POLZXCF5Vad6aRksLmDRJeP7XKknmiXPgv3VeuHSFG4TSxoZh0SJuHIVNB93QwtkPABAWXQ7dOsVrvHl2bnhffoX0Y+zu25e748jlXLc1S0vFmmFV9x02DIj/9vZVrSpUye7dm7v8pMeY0LzcwjwFlWIWoEZ17ib8y5dCKzllvLy47mtA9lOFZWbECC7oAbi+1u3bZz3oV15dvSrkOb3smpinzc0NqH7Dy8hIqMl//rzgBypjTGhKr6MDtG6tPF3HjoCbG7f89ClwbMtt4FBp4LAJcLsf8P4gINHc9YxMxpVPVk3f798H1q/nlvX1gc2bVe+WpqsL1PzW8PXFC2HO+ZwKC8tbd83gYODAAW7Z3BzYvVtodVssFdBo6mpR3KYMC3nzmZkYRGeY2qC0XhzzOv9UafomtR4rpBVrSdjIrjfZh8AQ9vUrYzo6MgYwZlM2pMhNA5SaypipUQIDGDMxiM7RlCz9Wt/h35PnPq/59Rf23efXt6qrOGdHSgpjN28yduQIYzExWR8/KT6Jn9qmWvm3zFifKzdd7WT26XWo8BqSU5mNuTAdU+DDt8zJNpCf+iYyJErl15RbcpmcVbL4yADG9HSScj2FjkTC2IsXjIWFKU4xkZyQrPAa7116lk85z5uRXW/yeTq86S6/fkQXYf2RzXcz3b8gpwy7duQRn6cfu91U+/lKMk1P30iy17Wr4vSRAGOVyoXmeAqi+HjGTIwl/FSBeRUZEsUsjL/weTu5y19he8SnSFbd6h2/vVtTbyZNLVr/Z99PtWlnl82UQplMGeblJayuXz9neVi9Wti3cmXG3r+XMj09GT/FUUrWs10qerubsdArjMW9YUyazFjkA/bp2nr++G0dLzL2n5j17iXl1718yRh7f4gx3xmMRT9XONzMmbmbditDtt4qTiHWpInaZlxjI0cK52nbVljetSvr/fr0yd0UZ+3bC/uFhmaeTh3fxc+fC+du0+bbytQYxiIfMPZuP2P+Cxm7M5ixyEfs/HkhrWPNBCbbI2JsH4THfj3Grndh7PUOxoLPMhawmrEPxzKe1OcXxm79jzv2h2OMxb7K8zxcAwdy+WrQgLEPHzJul0gYc3ER8r98ec7PMWiQsL+fX87337WLMV1dbvq19u25a+fUb5fpqpbttGlCHubMyXkeCguaMqwImjitDGISub7UA9vd4WsQE1IM0bFPBfjfFuZ4uHv2CVzrM9x9rjjgmUyuje2n3VHDsQz6dAyCRMIVce8B5YvcNEA6OkBHNz8AQEyiCW6fUb2f3PO3XBN5bbEE1etU4te3/aEeqlsFAQCu+dbDye0+WD3NE53c7sPMNBnNm3NNzX79NZvj3wvim2vXr/UGv/zA9WdOleph9XxhQLUjW+8jOJKbjqlrEx/Y1auCtk25+RkY08K1E5kPvpZfXjyJw4dwruqoRZ2nMDA2yNVxtLW5u/PlyineTdUz0MPMca/55/PnZD0y+MmTXPO6tCZRWZFKuf6YM2YA7zM2IshUalIqjl7jRuE2LBWHTgOFUUP6DRRe/4ETBdfaICu3r8fwy+7u1MyblGwuLsJy2mVKj5aBOR5csHRpwKkS1+rpS4wFEmMTs9kja7+PeorwWO47o1dzb3QbojjSv7m1GU6flMPEgPs8n7rjhnHji9a0RHfuGSs8f/kSeOAVm+PjXLsmLD94oDhwWVaeP1ecWuvff7km3B4e0QC4KY4ydDdL/AQ8WQRE+CiulyYBXkOAa22AU9WAg6WAC/Xhd14YVcylsh9gbI+atYRhkgMCAHw8BjxfClyoB3w4zG/LS3/u9KpU4QaPKvutAeLdu1xLjtzWOGYmfc2vvj4wapSwLbua7iffhirQ05XCWbwUeDwbeDgJuPczcHcwcKs3cL0DcLk5ELCK30+hifnjTFp7MAakRKFUypuMTbrf7eOOe6sP4PMj8GgKV76B64A3O4A324HXf3O10d85u/0qv9ypyirgmCVXe32hPnC3P/BkLhC0B/h8Be3bA40acWmfBhjgyJNxgE668YzkKUDIGcBnBHCjM/BoMvBud8bXEnKG+x95Mhe41Qs4XQM4XxeIfpIxrQpu3hRamNy/zw30l37wPgBYu1boIuHsrNiqR1V56de9Zg0wdCg3RhJjwMWL3LVzxYrc5/fNm+yPER8PbN3KLevqAmPGfJdALgVkhW+A3rwoWlFYESaTZb393Dng0BGuyZq5mQRrtjvg0CVhAKvoBFO07VIGLx+HYfP6JHh0t0fo1/IAgIplP8HzmB8Wj/OEsT73Y58iKYWr3rb88fv8r2heyCs2MVfth1+aKkVgcGUAgF2F99DRE/rxaom18OtQIXrr8aMbpqzwwPl7DZCQVIpff/x41k3M/O9H8Ms1qidg/Jya0NPhvhy2HnFFVOhXMDnD6g2mfLrJU7im/m07CiPxXr6UP00es3LhmnAR1b6XrVrOMeJ3N1QsyzUDPefTAD4Xld8g+XfFbfToASxdCjRuLExFokxKkgQ//MAwZQqwbBlgZwdMnAh8+ZR9k81Lh/wQnWAKAOje3F/hRkPLXnVgYc5d2Zy5UR1xhaBF/C1vI365WfvKGswJIZrnUiXj2BA9/mesJGX2KlsL3xfvX4TmOk83jvthxxluhEMj/Vis2678c+rQoCqO7HwDsZj70d+8RYzp04tG4C1NlcL7uV2G9XvXqxgxp3P1quLzbduy30ciAYYMEQLPiROFwLZjR6ED8t69AKSJQPAp4EZ34GQlLuB5uUHxgAlBSs/jG1SXX67rVgZwWYmaDkIBBQQA+PptEABZMnC7L/D0D8TFMn7gM3t7blqjvHBwAC5dAky+xXmXLwP9+mV97ZFTjx9zA1UBQKtWgFO6+0T8XN2MAV9uAUH7+W1JSUJQXtPqCbSfzQSe/QEEruEC3qC93I2J0ItA+C0gVvgxVwi6908HztQSgvRLTYCTVYCD+hCfKIfaQT8Ayd9N65kcxh3341EuwH6xmivfhxMAn5FcIH7vZ+DJ/Ayv99xVYSDGTnZ/Zzx2mog7EImEAREBYMGZtZD1iABaXQVq/AroW2fcL/a7ixZJPJCspFN+9GPgQgMgcH2OPvxp84enFx7OzVm9Zg23PSiIG/wY4CpAtm0T+mfnRG6CbsaAOXMUg/y0G0cA19R82TLA3l6MBROlSH60Ani5CQj6Dwg5D4R7ASEXgTc7sGtbLN+tYsAAoLzoBnDcGjhsChzQBQ7oAPd+yfkLK8Qo6C4APj6AlZUW+vcsj2tK+mcnJCje4Vn9lw7K2pijVOlSOHnVDo0cuLtlX2IsUK9pOYwZrw+JjAvQPer44sFDXbTo6YJZ6zzw9rUcvw/xRCld4e6QlRXQpIl6X6O6dPihNj+P8OnrtmDy7L+83j0LRoqEC6BrVc34ZThskgsM9DLWxlqV+YyKNtyvXUIC188nM/7+wl2UqnZA+coWGNGNG3EkPtkIG//ww52zT/DgFffr41L1BVr04Gpbm3etBV1t7qrispdttq8nL0JDuS/ANB26Z92vP7f0DPQwa7xwa3P+3Ix3J2+f9seomQ3558HB3CjdyuYqjYuKR+dmT3DsmHCzKDWVu7tbrTrDvF88ERuZ+U2YA/8JNzP6DVD8NdLW1cb/fuBugCQnA6dOZf/61EmaKoXXM+5C19osFFVq53yKPEKKk7oNFMedMDOMgnvX3M0fb1tJ+C4Iepn5DBNZkcvk+GW8cGNs6e++qFA984irTd962LVLzNfMr1jB3Wgs7J7cfc2PP9K+wQP+RvL+c7UhSVE9EkxK4qZATG/vXu53NStLlgAPuSFY4ODAPU/TqFEsLMpyeTh1IhUxe6oAN7sDn04JNaUfjwHSdCfRKwvU3wjU/A2o2BswawDY9IRf3Ag+iUufn4AKnVCzlvBbExAAwOMsYDtQOJb/bNz8ezUfEGfWVzin6tblKl0Mvt0XPnECGD48/6ax+n5QsSpVhD6zr14BkKVygeyV5sCjiXzagAAhD04VVaixlQqtSBSC7k+1gNgAIUiP8OJuhsjTVeknf3czTFmwq8x3NeQxMcCtJ9z3RDXL17Czfssdq1wLoNpIwGUZ0OwI0PEx0OQ/AEDbtsL18fPnwOGj2kD5VkCDDUCPj0A7L8BxDlBrBtBoF9B4j2IedAyBvvFA5wCg2SHAcS5gws0UA3kK8HA8cKNL5sH/d06cEGZrqFmT6+8PcBV3kyYBgwYBo0dz06IBXKvMhg2VHipb6YNuVQaalMu58y1eLKybN/kNwsKEmm7tdOPrnr7thllz9YEHvwJ3BwKenYDLTQDPDpB5/YQ164TWJXwQnxQKSGIA+bfvbVneWicVOupq375p0yb2ww8/MGdnZ+bq6qrSPnK5nK1Zs4Y1bdqUOTk5saFDh7J3795lmr6o9OletUqxj/bPPW+wmAih0/CUSSn8ttatM3YFifr8lTnbf1E4BsDYpB9fMUmKROk5gz9I2S+/MFazJmOHDqnz1alfSxehv+sz79fZpj/xjzeffu7P15Wm2b3qFnOs/JJ1a+rN1s26zp55v2JymZytXiXn9920/GWm52hd7yGf7urZ60wqlbK3Tz7w/bzNjSJYh4b3+DS7V93O9DW99gvK0fuhKkmqjLVoIbyeTp3UchpeSmIKq/yt7zjA2N103aXf+L9nZY3D+W3GpRP5ZUNDObt2UijXiE+RrKH9E367gX4q+/lnxgwMFP//zY0i2Opp11lSfJJCPhITZMxQP54BjJmW/spSEjN2ALx5UzhOly7KX09B9f19cPU5n5e+rTLvY07yB/XpLvzkMjkzMfjKfy6Gdrql0n7KynbbHzf442xe4Jmr/Lx8JPTTdq3xTOV+2lu2KH5nrZvrnavzF5T1sz35vK6d6cn6eNzln5/bc0/5Tkr6dF+9mr5PvrC8fXvm5378mDGx+NvYNGLG7t8Xtkk/32JJhyuzce3WCsf6abjQ9/ZYBcYez2UsXrXf0urVuWPo6zOW9q+SkCDktUGDbwnlcsaeLuXPM7njn/z5jx5V6VQqu3SJ6x+bdvylS/PnuE2aCMdMu5yuWlX47ZVf8lDsx5z4mTHG2L//CvutmP6IsY8nGQu9zNiXO4xF+TIW85KxhGDGUqK4vvLpLlyjooR9Wzg9YOw/bcVzHDFn7Iwjk19pwyJOd2bSqO/GgZEmcceN/8DY1yeMhd1iLPgMY2/3MvZqK2OvtjH2ejtjHxQL4cgR4bzjfk1RuV/15cvCfg4OORwzQBlpEmMPJiq85thD9dnaNTLm65v5bhIJY/b2Ql5OneL+P2fMUPweSXtUqJD9+ENZkcsZK1uWO5alZdZpU1IY69dP8fxrB49j7GR17vV+8/kzY8sGLWaldIRrvKszWyqW/z6wE5O68dv5vveRjxg7bsPYaXvGztVl7FIzxvxm5/4FFiBV41G1Bd1r165lO3fuZEuXLlU56N66dStzdXVlly9fZgEBAeyXX35hrVq1YsnJyUrTF5WgOzaWsRYuzxT+WStZfGSX9j9gD689Z1oibgAPPT05N4CHEp8/M1ajhvBDsW9fwb4GTfprunAhsGzS9WzTL5kgDARzYP2dHJ3L6/xTft/BHZRf6MnljA8gy5l8UbjIG9judoYvRqsyoRkCv/R53LzgRo7yqKqZI68rfDmHh6vlNAr+3iAMBNiuHbcu+ks0q1XpFb++resDFvFFwtzdhfdITyeJnfjHmwW/ClFIa1r6K7t7lhusKCQ4lY3pc4Npi1MV3t+KZYPZ9qU3+RtQ6X94R/Z9pTSfMpkwiI2OjpxFfcn4HVJQwdmaGcL/9/rZuQsKiOoo6C4aWtQUvr9O/J37oPvS/gf8caYNu56rvNw86Sfc7B6Qs2OsWKH4e7BzuWqvRRP6txF+vx5ceaZwA3tA29vKd1ISdKcfbGz8eGG5USPlh5DLmcIN4nlTFUffkkY9ZWwfmM/CBnyalo63GfP+iQvGZMorH5SJiRHy4+amuK1KFW69kdF38dqHo4wd0Gd1Kvl+u5EgY5HvXqh8TlWdOMGYlhaXBxMTxr5+zdvxIiKE49WqJazv0EF4D0I3WnKB0IFSjD1bzlhqLGOMsSlThDTnz+f83FZW3L5lyzLGJImMffVnLP49Y1LhWii/v4tHjMhdnuVyxpo1E/atUoWx3buFGzK59ukcY0fLMflesHbNP3+7zuduSimzdauQh2bNFP8HjxxhzNBQ8bvkmJIx3XKqVSvheJ8/K08jkXCVNmnpxFoStmf0QOGG19cnijuEe7FVC98I8Y51HIu+t5Gxx/MYuz+eMb+ZrEXDYH772bN5fx2apvGgO83Ro0dVCrrlcjlr2rQp++eff/h1sbGxzNHRkZ05c0bpPmkvMjY2lkml0kL9SEpMYgvHHmel9eIUPjTpa/8WTfTJ8hgREVK2bZuMBQZq/vUU5CPQ9y3/HjWt7Zdt+oHtb/HpfW8G5OhcCbEJTFc7mQGM1bB+qzRN8JtQ/vit6z1gDx48YCkpKUwqlTLfO+8zBN1/jL+W4Rjel4Sa3J4dP+coj8+eSVnt2nLWsqWc+fkpT3Nmt4/CF+QNz+QCKaukJCmztRUunq5fS2EdGgg1/g42r1lESCSTSqUsLk7KOrf8oJBPqzLCe1ve9LPS8gv0fcsGtLvFj2qc/tiHt9xhvXoJ6y9cyDyvE0d/5tNtW+KZYXtKSopC2arr0aeFMNL+g2vPC6ScSvKjoMqVHnl7bJjDBd3VygexuK9xuS7bgAev+c9X31Z3cpWXgxuFz+jSiRm/z7N7zBol/CZpiaTs0Kbc5UPdj7RZLgz04llSQhJLjEtkZoaRDGBMXzeBff3yNeN+6aJYaUwMk0qlrGFD4Tfg40cpc3YWnj96JGVSSSqTRj1hste7mOzeeHZo9kx+e3XLlyzRZ7ZiuSYns9QD5kx6vimrUTniW+ArZ+/e5fw1enoKo5SPGiVT2Naxo5DPoCDF/UKfC63b6tk+YPLDZZg0+mW+l8Hw4cLv15w5smzTx8Zy14bKtu3ZIxxr8mThWGNHCi3Sbs5pxuRHyjFpmOL/ZNu2wnvx/n3OX0erVsL+oaHK0+Tnd3FqqpSVL8+dU19fzuLjc7b/zZtSpqsr5BlgzNFRzo4flzKJJA95i//Edi2/qHDc0qXl7PZtxXQxMVJmZSWc/9atjMfy95cyOzsuzQ8/ZP+/ocpj/PhsrpcSvrDdf3nxaUrpJLLTUzoz+X9aTHZvPJMmKflOkEpZUlIKc3WN5fcbOlTIr4+P8Bl0cJCz1NT8/Qxp4hEbG6tS0K2dfQP0ghEcHIzw8HA0Sdf52MjICHXq1IGvry86d+6c6b4v+dEgCrdOwyqivoc3ls43wa2nDQAAEbFcH9taFV+ibV8Gv7ThCDNRty4QFyeMWlhSOFSQ4sWnGrj73Ak3L9+CsYVhpmmfvSoDANASyZCsFZ3te/o9l2pi3At0wauQKrh15QaMyiqe67HnJwDcCG/VK4cBsMQTfphPwN3dGLdumXJP9WRo1M0oQx5ExnKYmEgRE6ONK7fN8fChH8RiqGTKaEM8e2aPZ8+A+vVF+PHHUAwb9pnvSxMZHI2hv7rw6aePOIvShjYF9j8zaJA5Fi+2BQB06SxDQhL3v25mGIVVq98iKMQM4AZwx5wlMuhPf4UjN1pBJtfmBwesYhmEjRteQWZgprT8Ji/RR+/+F7F1owkuPeC+M14EV8P/fqnGpzEzk8DU1D/T1924bijWoAsA4L+DpVC3nfKEfNmqAZMz3PLj8mysHwOZQVyO/19J7qizXEneNepuhJP2F2BWwQiBbyKy3yGd9GUrSZYA4D5jbz+WztXnKzBA6I+prROT42P0+LEUPodewPbTHSBnYgwcVx97tS+gWr3yOc6LuoSHpOJDeGMAgGuN53gWwHX87eoegV3n2yMp1QA7Vl9Eiz6VFPbTSkpC2rBk/v7+iJWVxoMHLgCAqlWTEBb2HB06WMDfn9tv85xT2DRoGLTl3JgcSaml8PsWYeC81YMmQ/opFM/FPRTOI6p6EkyrFFp1SMGrrQBjIqxeHYqhQ3M2SfDZsxYAuLyYmX2En5/wv2VuXgEAVyZnzrxBo0bCKJtXrpjyy61rX0VkqaZ4/yoGEPnl6PzZ6dFDF7t3O0ImE2H1aoaWLZ/A2Fj5SLzv3+vhp5/skZAgxuzZ79Gxo+KYBf/9ZwuAm8nFzu4V/HzjYBZ7FjWkXwGsAQA8DW8K0wpTkfpRD/govBZfXycAujA2luLLl8cIVzJWWFYsLCoCKAcAOHXqNVxdMx8ANT++i1+80Mfnz1xn8vr1Y/DihQrDZ6djYADs2KGPDRsqwNvbBADw9KkIPXuK4ewcj/Hjg+Hiks2gBEpER4sxYanihO4JCSJ06pCCfzY9RNVaXGf+HTvKIzS0AgCgZcuv0Nd/q/Ta5d9/RXjzRh81aiTmyzWdqak5AFsAwIULIShbVviuq/T5D5SNOYkje47x6w6O+wEtG7/Fi/K7kKhVE3iW+fs8f74u+vWrhYQEMXbt0oKT02t4eMRg/nxbpP1f9ur1Af7+Oft+L9JyVm+dc6rWdD98+JDZ2dmxsLAwhfXjx49nEyZMULpPUarpTn9HLzUllW2c78kMSwl3gW6c9NV4HgvzY+rQa/x7tWP5zUzTpaZImL4u15fEroLymursHpMGCOc6scMrw/YVU4Tt25d5ZrhTe+uWcBfv118zvxvZp49wh/HOHdXyduuM4rzsaY+6TvHs4fXnLCkhSWHu9q5NvFlqiqRAyyopScqqVlW8Y6wjTmFXjz7MpMxS2di+QlNSx8ov2cdXn1Q+3/Xjvqxpbb8M78mYMVnfCZakSlhVyyC+9un9i2CF7QVRI/rihfC/0t49qEDLqaQ+qKa7+D4yK1trsxC+9Uxujjv7V6GW8/TurFukZfZITUllQzvd5I/j7ujLJKkF+92c1WP/fuH3aOYU4X26cdKXX9+u/v2M+35X0338eMbfv4gIKdPX534TTAy+soQd+nzfzgW95wjHb+DLpP5LM9S6pi/XwEDh+E5O8gz5+fBBypYskbFDh5S/zvQ1yd//7v79t7Dtr78Ufz9GjRK2ndu0i0lTk9RWFiNHCueaNUv571hyspQ1aKD4O7tmjZA2JUXKzM257UZGcpaUJGWyO0MZ2wd2fmp7fp/fpyRmOHZYmPAeu7tnfI9VeWzcKLyGDRuUv4b8/C5esEA438aNeasFvnxZsbUGwJiWFlfrndNjDR0q5KtHD7lCC4ByJl/Yc6/H7PNnKTM2lvPnefpUfZ9zhUf8J+ZzTmjFM2Sw4veRzG8Oi9lmxPR0khjAmFWZECZ5uoZJU7Mvr7Sy/ftvCX98Cws5u39fyrS1uddqbi5ncXEF9FrV/FC1pjtHQffKlSuZnZ1dlo/XrxUHuiqIoLuw9+lmTHnflaDnH9nicdfZxf8eaDBnRcPt00Ig2bv9m0zTvX0rfEn26BKbq3Md3iQMHjNz5PUM2wcPEr5E79/6pLRP0vHjjP3xB2NJSRl25/39t5DXhQtVy1u7+kL/xDZNPvIDzwCMaYtTmbujEHxWtvjIIkOiVH/h+WjHn48UfrC2L72ZZXq5TM4OrL/D/hh/nUV9/prj88llcnZm1z3mZBv47YeLsQcqfKzmjBKC/SmDritsU/aZzW87dqTrhvCH2k5D0imIciWakVnZNq7pz3/OEmMTc3zcUaOEz+nDh7nPX2pyKrOrIHSXOrMrk8HJ8kCaKmUpiSncI4Xxj9TUrPdL3/f63DlhvVwmZ1Us3/M3J0PefNfx87s+3RMmCE+PHxXKYdgwYf2usaMZu9GDvb+8gemX4gI8bW3Gnj/P5DV9V67pBwd7/JhLExnJ2NSpjJUqJWxT1ue1Xj3G/0Z8f+l4546w7y+/KG5LG3xNR4fvuv7d+xCk8sBd2Xn3jns/uICZe23fW7w44813gLF587hs3L0rrOvd+9tOb3Yytg/szV9V+G29emU8tqensO+vv+buNdy4IRxj7FjlafLzu7hRI+F8QUF5PhyTy7nruFq1hOMaGgr/b6q4dk3Y18SEsZAQxuKik1kje+H6qKL5Bzagh9DN7qef8pjp7MikjAUdZOycC2P7wBJ3luLHlarr/N0H4ssd9t/vvwvlOCabL5F00spWIpGybt2E98HISFieMyeHr68QU0uf7sjISPb69essHynfDfunatD94cMHZmdnx55/9607cOBAtmjRIqX7FPWgm6hOmiplZc1T+S++TMbWY2fOCB/omTNzd67gVyH8MVq6PMqwvU4dbptYzFh8fO7L9d07Ia/ujbIfgvLOGeHCsbLFR5aSlMru32fMsUbGke11xCnM+8LTHOcpv0hSJPyF7pxR1wvsvDKpjF28yJi3ioMEf373hR9ls7RenMJNioL4zKYf+OWGesbTI9+h7+LiK7Oy7d9JGCDzxZO4HB+3e3fhcxocnLc8Ht0q9I90rPxS5ZHQsyKXydm1I49Y/za3FUYNTv8Qibjvm8yuy11dhbTfD+CV/ubk6mnXFTemD7rjYpmTXTgfoH/12cQnSx/QNm3KZSL9aMgTJ2b++r4v102b0rdo4m5YmphkfM3fj+6cmiqMEO7gkPE86Ufdbt5cWP/+fbrfanclGfz6lLFDpoz5/MxYYihjknjVA6CUrxlG/2ZM8UbPrFmKuz16JATlWlqMDRmi+LrHDrjPZg46zD/fsSPtjUxi7GobJnl1gOnocLWNTk4Zs7V+vXCsLVuyfxnKhIcLx2jVSnma/PouDg8XRp6vXTtPh8pAKmWsb1/htVSqlPmAY+klJQmDHwOMbd4sbIsK+cLqVA3M8P+qr5fMPp34lTGfXxh7uiTjQZ8uYezOYMZu9mHsalvGLjRk7JQdY0ctuYHw9usxdq09Y+/2Z9xXJmHs7W7GTjtkGEncwZqbQUVXV8ok341J2KuXkD9Pz5y8b0LZfv4sjJKe9tDVZSw0NPvjFBVFdiC17enmlIiLi1NpIDUKukuGoUOFD+yFC8rTpB8pdu/e3J+rYtlgPhBLPy1baip3pxvg7oDmtVxrVOQGDtMWp7LYyKxr5tu6CrXc2/4Qao6TE5LZnFHX+OnKAG5EbE1LTU5ln9990XQ2sjWmjzB6+IIx1/n1BfGZTftR1tFhLDHnFXAkF+i7uPjKrGzTT7lz8WLOj5u+Fi27GuPsyGVy5uYgDKT574rMRzOXShn77z/Gtm1j7MoVriVX+ovisPdf2PLJ11kN67cZLuAze9w4HZjhPPHxwnRdyoKWFw+EkYjr1Q7LuPO3jWG72vHpGlT1YexkNcZk3Bsml3PHTh/MpS2XLZv1SN3fl2tEhBB0fv/Q01MMdtLXsj5+LKzv31/5uSwtue0WFsK6nTuF/ebP/24HSQJjxytlCGTYPhFjB40YO2bN2MmqjB2zyhgMxb1TTH9An7HDZoyddmDvL2/iA2NDQ+41M8YFc+nfx1k/3WLsajv21/DZCu9D+uuBkJCMrzNtaip9fW42j/TSB/x3cjYBjAILC+4Y5csr355f38V79gj5nTo1T4dSKjGRm0Yu7RyNGmXdipExrhY3LX2TJhnf47CQJGZX8ZNCmc3svlj4fzij5IN4yV3J/5mSx73Rivu92cl9Fr9Pd64uYw8msr6dhO+PZ+lmb4uLE1qOlCuXs9Hcvy/b9LPKAFzLl+JE1XhUS119xUNCQhAQEICQkBDIZDIEBAQgICAACQnCQAQdOnTA5cuXAQAikQhDhgzB5s2bcfXqVQQGBmLq1KkoV64c2rRpo65skiKka1dh+fRp5WmePxeWa9XK/bkaOX0AACSkGOKptzBQRGAgIJFwy87OuT9+mrZugQAAqUwHN04HZJruzhl/XH7oCgCoYvkBQ6c04rfpGehh4daWuH/1NYZ2uo1VUz0xfnHzvGcuj3T0dGBpa6HpbGTrt3lVIdaSAgDW7XFCQkzOB0vJjbD34Xj1iltu4JoKff0COS0hJU7lysJyUFDO9w/7NlaXmRmgo5O3vIi0RFi+RMo/n7OiCpITkjOkk8vkGNHdBwMGAD/9BLRpA1StCujrA9UqfEbT2v6wqWqCaas98CqkCr+fuVEkmjv5oXmdZ2jeHGjeHKjnkspvX7ooJsO57l18DNm3sbqaumYcMcvetSoa1OUGwnr0rByeP5UA4V7A213Ak/l8upt3hUFHWzWNBNrfA7S4N0wkAkaNEo75yy/C8h9/AKamyt8vZczNgU6dFNdpaQEjRgAvXwKXLnEDYwHAxo2Ajw+3nH7gKRcX5ceuWZP7Gx4OREZyy1evCttbtfpuB20DwGUp/zoFDJDGAUkhQPxbICkUkHxVTCJLUkwvSwJSo4DYF6j0ZQxGemwHAMTHA6tWcanmzgWePfv2Gir7Ym6zVsDnS5jYZjF2/TKE/y2TybmRVevVlcPKKuPrrFGD+5uUBHz6pLgt/bhmjo4Z91VV2jXY589AVFTWafPi3Dlh+fv/i/ygrw+cPAnY2HDPvb2BkSO58FGZ58+BZcu4ZW1tYOtW7v8zvXJWpXDlthUqWXGfRwvjL5jaZYWQQNso44HFet+tEAE6xoBBJcDUCTD4lkGbnorJQs4B8ekGPLNwB1peAjo8BFz/Qp2mwveHv7+Q7Px5IPnbV1OvXlB5sF9levcGBg/mlrW1gcmTc3+sokxtQfe6devQo0cPrF+/HomJiejRowd69OiBp0+f8mnevXuHuDhhdMiffvoJgwYNwty5c9GnTx8kJibin3/+gZ7e9/9opCRq1w7Q1eWWT52UgckzfuM9v/cOACASMdjbZfKNqILGDVP4ZW/Pz/yy/y0hMHaulflonKpq21743758PinTdPPmCRdpsyd+gI5exiu/uh4O+PdsM0xe7gGRlijPeSspqjhWRL823FVZZJw5/ln+oEDOe+ei8CPYzOFugZyTkJLI1lZYznHQzRjCQrjvZkvTL9kkVk2Lni7o3OgeAOBjRAVs3Kz4fc7kDOP738Lus24Z9pVKgbch5XH3uTMkMl1+fau6j3Bg/V18+myIG/4uuOFXGzduADduAN7eWqhsEQwAuHCvAXw9Xygc866nEAw2cQxUmudBw4SAes9uBlxuAngPA57/ya/3DPDgl1sP7gjomSkeYxBQqpTicV1cuAAmp8aOFZZ79waePgW2bwcqVeLKe8ECbhtjXLAvkagWdKe/WR8QwO1/7Rr33MAAcMtYJIDtAKDNTaDqCKBCN8CyFWDWADB24AIhPXPur5au4n5iPcCqPVCuBWDekAucDKsD4H6/Z3ZdAF1t7lpk/Xo5jh8H/vz2dutqp2DP6MHQ1f5WC6BXFkP+9xnHVu2Fnq4w2nnnLsov89OCbgD8zd+09yvtMr1yZcDYWPn7pIrv30t1kEiACxe4ZRMTIN0ESPnKygo4dUq4mfPff9zNou/J5cL/GwBMm5b5jYuKlUTwfmiCFcsZrt80hMnAQKDrK6DDI8Dt74w7NNwGdHkJdP8A9IkG+kuB/8UAPd4Dnfy59e3vA5YeivvVns39Ld8GaO0JtL0JWLXl7oRBsQIpfdB95Iiw3KdPJm9MDvzzD7B5M3dTzMkp78crkgqo5l0tqHl5ydO+hTC38ol/vBS2yWVyfkT4qpZBeTqP13mh+d+Q3u/59dOGCX3bzuy6l+dyjf7ylW8GVrPia6Vpbp4UBpGrWv49S02WKE1Hcu/JnZf8e2xj/omlJKao/TM7sb/QrP30vz5qOQfJiL6Li6/MyvbFC6FZ44C+ObteiIuK4/f1qJNxjI/c8r/3hYlEXPPhMmUUm1fPHCn8zoi1JGzOhOfst9+4/pUudWTMWD+aa/Jp8oVNG3advfLN/vduw1zh+6ZvK8U2wx0b3uO3ZXassDChCbqBAWOvNjblmqhuF9qM1rb+wPfXzOyybNAgxWamN7MeY5Mxlnm5Pn7Mla0yEgljLi7CeZYvZ8zDQ3j+3Zi9vPT9mf/+m7GAAOF5hw7Z5zVfxLxgzPsnxvbrsjFtNvDnT+u3DDC2csBvXF9ev9mMxb1R6BN+/TrXpLt8ea4/ujKbNyvvt51+rJkuXfL2Mr5/L7+XH9/F6buO/O9/ecisio4fV/z/nTaNsUmTuHEfnJ25rgBp26pXL0TdxqIDMt2UfsyCzp25dQkJjJUuza0zN2cZ+npnp6T9zhaaPt3qREF3yXPiHx/+y8HB5rVCf+v3AUL/mC6N8xbEJCfJmK4ud0FUo4awPv3FyYfAkHwp1/Qj6wY+fJthe6u6wnQ1O5dn3v+P5E3XJt78+7zjH6naP7P1azzjz6epUeZLIvouLr4yK9vEuBShf2WtHAw/zBh77RfE7/tD6zx0cFUi/Tgl06dz65ZNuq5wUb9rZcbvfLlMzqK/RDOZVJZhW2YSYxNZORNu0E0tkZS9fPSOMcYNPmla+isfxMtlmQ8ANnp0un6qdT8x6dO/GHspdNY0QDwDGGvRIvN83L4tHOOHH1TLe24/s/fucQONpfVdTguIrK0z3+fKFSF/kyYxtmFDukB3ZY5On3eJoezjhaVMV1em8D/h7s6YNOQGY9KUTHdNTc26D2761zllirD+1Clh/YwZecv+1avCsZQNlJfX7+Jz54Tja2sz5lNA966XLlU+nsD3jytXCiY/eSWXCwMRVqzIrTt2THgdP/6Y82OWtN9ZjffpJkQdug1vgCa1uPYvL4Kr4d8/vfhtzx+G8su17BLzdB69UlpwdeWa3rx6BUREcOv9X3N9ZsqU/gqb6uXzdI40bZtH8suODSugbysvXDn4EHKZHDevROOabz0AQHWrIAya2Cizw5A8mrG0Jr+8fKWY7+OoDvFf4+H7xg4A4Fj5FcysyqjvZISUcPqGunzT8KDPORtnIiw4ll+2tJDka74WLgTSes+tWQPMH3cf0//y4LdvmHsDQ35rlmE/kZYIJhYm0BKrfgmnb6SPicO4zsByJsbKBdy4JQH33iI6wRQA0MTpTZZdk1as4PqVA8BdX2v8eWYiYN0hQ7rWrTPPR9OmwM6dXLPbbdtUzn6uNGggNENPSuL6RgOZNy0HhD7dANckOq1pOaCkP7e66ZeHTfvpGDVKKOfSpYF//wXEVs0BsW6mu+roZN0HN7Pm5en7c+e1CXD65uXpx9vJDx8/ct0V0ixbBjRsmL/nyMy0acDQoRnX6+hw72u7dsCOHVl/DgoTkUhoYv7xI9f/Pr+blhMOBd2kSBFpibBiufB83qrqSIzlAuznT4Q+1rVqa+f5XI0bC8ve3kBkSBQ+RXEjkjhXe59v/aZ/GG4DPR1utAqJTBeHrzdG236uqFE1CT+PM+XTzfk9Atq6eX9dRLnGzY3RogW3HBjIDZySXvjHCEwe6Alrs8+YOtQzT+fyvvySH+immWtoNqkJIXllW54LukOirJCSmJJNakFYiDCwomU5lq95qlRJCAqTk4EFGxrw25ZM8MSvC1rk6/nGzKoLY31u4KZdZ90Q8uYz7lwN4bc3bZRxQLf0DA2B3bv5rqCYM0cxSEuTXbAxbBgXJBkpGSsqvy1eLAyAlSaroNvKSujH/PQpcP06t2xmlvV+6jRjBmBtzQ3GtXmzcOMjL2xshP71L18K6/Mz6La05N43IGdBt1wOhIZy9azKSCTADz8Ig7N161awA3OJRFz/5L17ub/XrwPv33M3dl6+BC5eBIYPL7j85If0/brv3xcGKy5TRgM3m4oxCrpJkdO0izO6N+MGvgqJssK6edyANM+fC//OtVzMlO6bE+mDbq9bCXji/YF/7lwz4wiwuVXLrToCHoVj2jBPlDMRRo59+6E0Xnwb76ZGDWDAuPr5dk6i3IwZwvLy5VpgDIiNjMX80Z6oaqeHv/7zQOjX8li52wOvfN/n+jy3rwu1Z+7N8zAkKCFEJZWthc/cx0DVb3SFhQojf1uWz//P6oypKTAxUPw9mTbMEzPWeOT7uUwsTDCmny8AIFWqh9XzX+Cul/C72cTDPNtjNG0KTJ3KLUsk3Mjq6RkacjXMhYWREbBhg+K6unUzTy8SCbXdwcHA16/ccsuWGUegLijW1tyI5UFBwgjQeaWlBVSrxi2/fQu+ZVda0K2jA9jb5+0cIpFQ2x0cDMTGZp0eABISgBYtuNfcrBlw82bGNDNnAl7fGjna2nI1/6ICHjtWWxsYOJAbBNDDg7uBlpfRvTUtfdC9ahWQNsZ19+55n7GBCCjoJkXSkj/NoSXifiWW/V0XkSFReP7alN/u4Foxz+do3EAYTdzr0ks8fihcGDk75+9Hp4pjRSzb6YGPoSY4vMkb7dwV5/CYN4/7kifq1a6dcEH28KEIG+ZFwq6GDAu2eCA+WbFa5t99pXN9nls+wpCwzdrb5vo4hBDV2FYUguegV6rPXxT2Wc4vW1qXyiJl7piX08OMn33556N738TS7flbw53exLm1+ZZVWw7Xx1UfbrogPZ1kuLa0U+kYCxYItaBPnipua9688F2kd+/OTXkEcM35099QVyZ9E/M0mq7tMzUFKub9skaB3bfiTk0FPnzg/gZ+G7zewSF/yjEnI5jL5cCQIcDt29zzu3e5ALxTJ2Hk+VOnhBHcdXSAQ4e42liSN+mD7m8zOQOgpuX5jYJuUiTVcquO4V24aZZiEk2wZKo/nr+vBACoZBEMI7O8t1urUFkfNuZc07t7ATXwyFeIep3r570mXRldfV30Gd0IF29WwJs3wPLlwK5dwIABajkd+Y5IBMwYLVxF7jrXDhGxZQEA2mIJRnT2hFjMtXnbfbBsrvp9R3+JgdczBwDc/2olhwp5zzghJEu2VYTLnaDXCVmkVBT2RdjP0jr3N9qy8ttyd6ydeQNbFt7EhoPN1Drlo6WtBUZ041qHJaQYIjiS+/6pbxcIPQPVpmfV0wP27FEelBXWfqx79nB90k+dAipk85WbPlBMU1hfV15836/7xQtuSjog/6Z0ykm/7tmzgWPHMq4/f567Gd63r2Jf6j//LFytKooyZdOamZgAbdoUfF6KMwq6SZE1f1V1lNLhaqPX7m+GmEQTAECtKvnXR7axM9eEOCHFECdv1AYAiERy1HazzbdzZKZqVa4Z35AhBd90qiTrNawm7Cq8VVg3oO0dBDwIwfYzHujYkSuM4GDg6tWcH/+flX5ISuUm++zS4k02qQkh+aFyFX1++X2QVOX9wsKFwaosK5rmZ5Z4Yh0xxv/RAj/PaZ6jwdFy6/f5VSAWK94xbOL6NUfHqFNHmAs7vcIanBoYAL//zrVmys73Nd0VKgi1wsXJ90F3fvbnTqNq0L17N7B0KbespQWcOcMNuFepkpDm8GEgOppb7t0bGDcuf/JIuG4had0N0nTrJgz0SPIHBd2kyLKpYYUJA7m+3WmDUgFArRqq12Jkp3FDYcCdmERTAEB1q/cobaKeGg+ieWIdMf79OwGOlV+hS6NbeHg9APsuNUV1l8oAuEGA0uzcmbNjSyTAuoPu/PMJMyplkZoQkl9s7YU2qEEfVG83GxZpwC+Xq6ieFk4FrYpjRfTrp9gBtWmrcjk+zu+/A27pRowua55/wZomfR90t25dPG98pw+6X75Uf9Dt7698cLTbtxXHBlizBujcmfutffmSe26RbtKBqlWB7duLZ5loUvom5gA1LVcHCrpJkTZtWV2UMVIcnaNWHZN8O35jj7IZ1jnbRypJSYqTxp2c4PemKuZvMEAdd8Uqjq5dAfNv4w0dPyZD9BfVB9U7ehT4+FHr23EY7OpVybc8E0IyV9nBil8O+qR696OweFsAgIlhIkqVzv8+3Zoyfbri88YdlbSpzoa2tuK0X926aW6wsfxka6tYw6fp/tzqUhA13dbWwmjwly4B9epxI7DHfPvZ/PRJF336aCH125ALo0cLI/oDXDlMmAC8ecPVhA8dyo0ObpJ/l3nkm/RBt6Ghaq1CSM4Ug69HUpKVsTTBzLnGCutqNctiaNIcqtu8BnS1FaeXcfagUcRLMl1dYGA3bmLTlFQxDmx5rNJ+jAGrVwvPJ02i2/SEFJTSJqVhYczNDvH+c8abqZkJi+J+XyytDbJJWbQ4OgrzHLdsCZTLeUU3AMUmqX/8kfd8FQZiMTeQWJrC2mQ+r6ysuHm/AcWg28Qk/wZtE4m4gdDS+PkBY8ZwwfhPP4kwaVJ1RERwv4WtWwNr1yqvwTYy4m4U/fsvUL16/uSNKEofdHftKkwpR/IPBd2kyBs7VviB0NJSPvJobukZ6MG1xkuFdd83wSElz7AhQn/Inf9lP80OwI3Eev8+t+ziwk0zQggpOJWrcNWXn6Ks+Zq1rCQlCVPnWFqqMWMasn074O0NnDuXP8czNs4+TVExfjxXyzpsWMZ5vosLkUio7X77Fvj4kVt2dMzfptu7dnHzWTdM1xUhMRHYuVMLb99yYy3Y2XF9tgvbyPclSYcOXNmbmnJdR0j+o6CbFHmlSgH79nGjWC5fzn1h5KfG9RSbk1PQTep6OKBOFW5ulXuBtfHcJ/sB0VbPvs8vT55M/dEIKWi2NbioUC4XITg4+/RhYcJy+fJqypQG6eoCbm5Uo6XMiBHcDZecjttR1KQF3XJhZjylI1nnha4uN5+1jw/g68vVdKe/QVOmDMOZMzT1l6YZGACPHwPh4VnPZU9yj4JuUiy4uwP37gG//Zb/x27cVOjcZWiQAlvb/D8HKXqG9/vML/+76WOWad88fo/jN1wBAFZlPuOH/+VirjFCSJ6k/+4OCso+fdinZH65ONZ0k6yVhFrX9P2606hzMDwXF2DjRiAkBPjnHzn69v2Ca9fkSvNBCp6WFjdWA1EPCroJyUbjtpX5ZSfbl8VioBiSdwNGO0JbLAEA7DlVE9LUzKchWrc0CIxx/zhjB7+AbilxpmkJIepRWfgqx/v32acPCxTGa7AU3VJDjgjRrIIOutOULg0MG8YwderHYjHiPSGqoPCBkGxUqG6N8T/cgKXpF0ybnKjp7JBCwqKiObo2eQgA+BxtiYsHfJWmi/4Sgx0n6wEA9HUT8fM06p9AiCbYVojnl4P8X2aRkhMWKgyiaWmpZK4jQoo4ZfOPUxBMiHpQ0F2CTZ8+HWPGjOGfDx48GH9oYPhRHx8f2NvbIzY2NvvEGrL2QAuERlqg+0g3TWeFFCLDhwtfoTt3KK/p/melL+KTuSmKhnV9AHPr4jHXLyFFja1lKL8cFPgl2/Rhn4WOrpZWelmkJKRo+r6mu0IF6ltNiLpQ0F0ITZ8+Hfb29rC3t4ejoyPatm2LDRs2QCrNvPlqfli/fj0mTJigUtqiECjnN5EWjXxFFHUYUA/lTLhpiE7ddkXEpyiF7ZIUCdb9K1zVTJhRTIfBJaQIqOwgjIb2/lPpbNN/DhMukSwrZJ+ekKKmbFnFOa+plpsQ9aGgu5Byd3fH7du3cfHiRQwfPhwbNmzA9u3bM6RLVWXeExWZmprC0NAw345HSHGno6eNwd2eAwAkMl0smfUe585xU/CcO/wBy6bcwceICgCALo3vwd61qiazS0iJZmRmBDND7sZYUKhFtunDwoWRtCxtTNWVLUI0Jv20YQAF3YSoE41RV0jp6urCwoK7KBgwYACuXLmCa9eu4d27d4iNjYWTkxP27dsHXV1dXLt2DaGhoVi2bBnu3LkDLS0tuLq6YtasWbD5NsGkTCbDihUrcPToUYjFYvTu3RuMKfZRGzx4MBwcHDBr1iwAXEC/du1anDlzBpGRkbCyssKoUaPQuHFjDBkyBADQoEEDAEDPnj2xbNkyyOVybNu2DQcPHkRERARsbW0xZswYdOjQgT/PjRs3sGTJEoSGhqJOnTro2bOn2t9PQtRl2C8VsGoPt/zXrrr4a1falkrfHpzJU0rAULiEFHK25cMQ9doMwZHlIU2VQls388ugsAgDftmyknlBZI+QAlejBvDgAbdMQTch6lMyg+6A1cCL1dmnM6sHtDiluO5GNyDqUfb7OkwGak7OXf6U0NPTQ3R0NADAy8sLhoaG2PltAkmJRIKRI0fCxcUF+/btg7a2NjZt2oQff/wRp06dgq6uLnbs2IHjx49jyZIlqFatGnbs2IHLly+jUaNGmZ5z6tSp8PPzw+zZs+Hg4IDg4GB8/foVVlZWWL9+PcaNG4cLFy7A0NAQpb5N9Ll161acOnUKCxYsgK2tLe7fv4/ff/8dZmZmaNiwIUJDQzF27FgMHDgQffv2xdOnT7F8+fJ8e58IKWiOTarD3Z3h1q3Mux80sHsGj54uBZcpQohSla1i8Og1IJNr49Prj6hcq2KmacO+cpMJG+nHQt/IONN0hBRlLVoA+/dzU6S5u2s6N4QUXyUz6JbEAkmfsk+XrOTHODlctX0l+dPXmTEGLy8v3L59G4MGDcLXr19hYGCAxYsXQ1dXFwBw8uRJyOVy/PHHHxCJuAv/pUuXokGDBrh37x6aNWuGXbt2YdSoUWjXrh0AYMGCBbh9+3am53337h3Onz+PnTt3okmTJgCAihWF98PkWycgc3NzGBtzFyOpqanYunUrdu7cibp16/L7PHz4EAcPHkTDhg2xf/9+VKpUCdOnTwcAVK1aFS9fvsS2bdvy5f0iRBMOHRJh/34gPj7dythXQNInGBgAA36pSWMCEFII2FYU5t4OCozMJujmBj20NI0CQEE3KZ5GjACMjLh57NPPZU8IyV8lM+jWMQb0K2SfrpSSPl+lLFTbVydvP9Cenp6oW7cuJBIJGGPo0qULxo0bh4ULF8LOzo4PuAHgxYsX+PDhA+rVq6dwjJSUFHz48AFxcXEIDw9HnTp1+G3a2tpwdHTM0MQ8TUBAAMRiMd98XBXv379HUlISRowYobBeIpGgZs2aAIA3b97A2VlxyiQXFxeVz0FIYVS+PDBp0vdra3x7EEIKC1tb4eZX0Ot4tMgkXXJCMmISuZvLlmYlZ8BQUvLo6AADBmg6F4QUfyUz6K6Zh6bf3zc3VxM3NzfMnz8fOjo6KFeuHLS1haLS19dXSJuYmIjatWvjzz//zHAcM7PcTU+U1lw8JxITuTmst27dCktLS4Vt6W8SEEIIIZpQuarw2xb0LvMZQb58jATA3WC3NE9Ud7YIIYQUcyUz6C4C9PX1UblyZZXS1q5dG+fPn4e5uXmmo49bWFjg8ePHfM21VCrFs2fPUKtWLaXp7ezsIJfLcf/+fb55eXo6OtygUDKZjF9XrVo16OrqIiQkBA0bNlR63GrVquHatWsK6x4/fpz9iySEEELyyNbOlF9+/0GcabqwGOHGsWX16urMEiGEkBKApgwrBrp27YoyZcpg9OjRePDgAT5+/AgfHx8sXrwYnz9/BgAMGTIE27Ztw5UrV/DmzRssWLAgyzm2bWxs0LNnT8ycORNXrlzhj3nu3DkAQIUKFSASieDp6YmoqCgkJCTA0NAQI0aMwNKlS3H8+HF8+PABz549w549e3D8+HEAQL9+/RAUFITly5fj7du3OH36NL+NEEIIUafK9sJc3UHhWfTnDhfqJCwrlVVrngghhBR/FHQXA/r6+ti7dy+sra0xduxYdOrUCbNmzUJKSgpf8z1ixAh069YN06ZNQ79+/VC6dGm0bds2y+POnz8f7du3x/z589GxY0fMmTMHSUlJAABLS0uMGzcOq1atQpMmTbBo0SIAwMSJEzFmzBhs3boVnTp1wo8//ghPT09+6jJra2usX78eV69eRffu3XHgwAFMytgZlhBCCMl3puVMYGrKLQeF22aaLixMWP6utxQhhBCSYyKW2UhaRUBiYiICAgJQs2ZNGBgYZL+DBslkMvj5+cHFxQViceZN2kjRQuVafFHZFk9UrsWXqmXr4gI8fgxoawPJyYCypEuWALNmccvHjgE9e6onz0VeQgKQ1q0tPh4oXTrfT0Gf2eKJyrX4Kmllq2o8SjXdhBBCCCkx0qZFkkqBkBDlacLeBvHLluYJas8TIYSQ4o2CbkIIIYSUGOnnIg4KUp4m7J0QjVuaRKg1P4QQQoo/CroJIYQQUmJUNn3BL79/4KU0TVikMDWnZSVzteeJEEJI8UZBNyGEEEJKDNsK0fxy0NsUpWnCoowBAAZ6CTAso3wqTkIIIURVFHQTQgghpMSwrWHKLwe9Vz7IT9jXMgAAS9PIgsgSIYSQYo6CbkIIIYSUGJXthTnAgoIzjrYtSZEgKt4MAGBZJqbA8kUIIaT4oqCbEEIIISVGGUtTmBlGAQAevawCmUSmsP3LR2HgNMuyiQWaN0IIIcUTBd2EEEIIKTFEWiK0dA0EAHxNKINHnoEK28M+RvPLlmWV9/kmhBBCcoKCbkIIIYSUKG1bS/jly2e+KGwL+xTPL1uWkxdYngghhBRfFHQTQgghpERp28OWX758w0RhW1iIULttWV5UUFkihBBSjGlrOgNEkb29fZbbx44di3HjxhVQbgghhJDip6pTJVQt/x5vP1fGnae1ER+dAENTblC1sChhijBLKz1NZZEQQkgxorage/Pmzbhx4wYCAgKgo6ODBw8eZLvP9OnTcfz4cYV1zZo1w/bt29WVzULn9u3b/PK5c+ewbt06XLhwgV9nYGDALzPGIJPJoK1N904IIYSQnGjb+D22Hq8MiUwXN88GoNPAOgCAsFQXPo1l7UYayh0hhJDiRG3NyyUSCTp06ID+/fvnaD93d3fcvn2bf6xevVpNOSycLCws+IeRkRFEIhH//O3bt6hXrx5u3LiBXr16wcnJCQ8fPsT06dMxZswYheP88ccfGDx4MP9cLpdj69ataNWqFZydndGtWzeFYJ4QQggpSdp2teKXLz+owy+HhQlpLC1BCCGE5JnaqkjHjx8PADh27FiO9tPV1YWFhUWO9pHJZJDJZNknBHDkCDB/vhbi4nJ0ijwxMgLmzZOjRg2onE+AC5QBYZ+056tWrcLvv/8OGxsbGBsbgzHG13qn+X7dli1bcObMGcybNw+VK1fGgwcP8Pvvv8PU1BQNGjTIr5da4qS9vzkpV1I0UNkWT1SuxVdOy7ZF16rQ0mKQy0W4fJlBJuN+Yz9/1gLA9eUuW1YG+lfJgkwGMb8ogzreLPrMFk9UrsVXSStbVV9noWuXfO/ePTRu3BjGxsZo1KgRJk6ciDJlymS5z8uXL1U+/sKFDnjxonRes5ljixenYtcu4MmTJyrv8+HDB8hkMvj5+QEAXr9+DQDo3LkzDAwMEBUVxT8SEhL4dAAQHh6O+Ph4+Pn5QSKRYOvWrZgxYwYMDQ0RGRmJKlWqoEmTJti6dSt0dHTy86WWSDkpV1K0UNkWT1SuxVdOyrZmTQc8e1Yaz56JcPnyM1hYSPD+fS0A+tDVlePtWz+IaCy1TGklJaHut2V/f3/I9fXVdi76zBZPVK7FF5WtokIVdLu7u6Nt27awsbHBx48fsXr1avz00084ePAgxGJxpvvZ2dkp9HXOyrx5wLx5rMBrumfP1gUAODk5Zfla0nv37h3EYjFcXFwAAKmpqQCArl27wjJdmzczMzNoa2vz6QDg/PnziIyMhIuLC169eoWUlBQsX75c4fgSiQQ1a9ZU2I/kjEwmw5MnT3JUrqRooLItnqhci6/clG23biI8e8Ytf/7siLZtGWIjYwHoo7xZNOrWdVFbfouFhAR+0dnZGSid/5Ua9Jktnqhci6+SVraJiYkqVQDnKOj+888/sW3btizTnDt3DtWqVcvJYXmdO3fml+3t7WFvb482bdrwtd+ZEYvFKhdq377co6DJZFrw88tZXrW0uC73aenTnhsaGioc4/t03PlkEIlEEIvFSEnhpj/5+++/FYJ1gGvOXxI+EOqWk3IlRQuVbfFE5Vp85aRs27eVYulS7jf06hF/DBrgiIgYbgoxS+NQiMVmastnsZDufRaLxQrP8/9U9Jktjqhci6+SUraqvsYcBd0jRoxAz549s0xTsWLFnBwy22OVKVMG79+/zzLoLunMzMzw6tUrhXVpo8YDQLVq1aCrq4uQkBA0bNhQE1kkhBBCCp3GjeQorRePhBRDXLljhfDgSDDG3Zy2NE/IZm9CCCFENTkKus3MzGBmVnB3fT9//ozo6OgcD6xW0jRq1Ajbt2/HiRMn4OLiglOnTuHVq1eoVasWAK5mfMSIEVi6dCkYY3B1dUVcXBwePXoEQ0PDbG+kEEIIIcWRrr4uWrg8xjmfBvgcbYlrJ+8A+BZ0l03RbOYIIYQUG2rr0x0SEoKYmBiEhIRAJpMhICAAAFCpUiWU/tbnp0OHDpgyZQratm2LhIQEbNiwAe3bt0fZsmXx8eNHrFy5EpUrV4a7u7u6slksuLu7Y8yYMVi5ciVSUlLQu3dv9OjRQ6F/wcSJE2FmZoatW7ciODgYRkZGqFWrFn755RcN5pwQQgjRrLYtE3HOh1vee0CXX1/eUqqhHBFCCClu1BZ0r1u3DsePH+ef9+jRAwCwe/duuLm5AeAGCov7NqKZWCzGy5cvceLECcTFxaFcuXJo2rQpJkyYAF1d3QzHLwl69eqFXr168c/d3NwQGBioNO348eP5adqUEYlEGDp0KIYOHZrv+SSEEEKKqnbdKwDLuOVL9+vx6y0tadhyQggh+UNtQfeyZcuwbNmyLNOkDyBLlSqF7du3qys7hBBCCCEZ1GxYDdZmoQiJsoKcCQPiWFqVzBv+hBBC8p+WpjNACCGEEKIpIi0R2jZ6k2G9pbX65pwmhBBSslDQTQghhJASrW2bjE3JLW1MNJATQgghxREF3YQQQggp0dr0tMuwzrISzdFNCCEkf1DQTQghhJASzdLWAs5VhHFmdHUkMLWgmm5CCCH5g4JuQgghhJR4bT3i+eVyltoQadHo5YQQQvIHBd2EEEIIKfHa/uDKL9N0YYQQQvITBd2EEEIIKfHc3QFzc265Th3N5oUQQkjxorZ5ugkhhBBCigoDA+DiReDaNWDYME3nhhBCSHFCQTchhBBCCABXV+5BCCGE5CdqXk4IIYQQQgghhKgJBd2EEEIIIYQQQoiaUNBNCCGEEEIIIYSoSZHu0y2XywEASUlJGs5J9mQyGQAgMTERYrFYw7kh+YXKtfiisi2eqFyLLypbDUhOBuzthWVR/k+1RuVaPFG5Fl8lrWzT4tC0uDQzIsYYK4gMqUNkZCSCgoI0nQ1CCCGEEEIIISWUra0tzNPmnVSiSAfdUqkUMTEx0NPTg5YWtZQnhBBCCCGEEFIw5HI5UlJSYGJiAm3tzBuRF+mgmxBCCCGEEEIIKcyoepgQQgghhBBCCFETCroJIYQQQgghhBA1oaCbEEIIIYQQQghREwq6C8C+ffvQqlUrODk54X//+x/8/f01nSWSQ1u3bkXv3r1Rt25dNG7cGGPGjMHbt28V0qSkpGDBggVwc3ND3bp1MW7cOERERGgoxyQ3/v77b9jb2+OPP/7g11G5Fk1hYWH47bff4ObmBmdnZ3Tt2hVPnjzhtzPGsHbtWjRr1gzOzs4YNmwYzYZRBMhkMqxZswatWrWCs7Mz2rRpg40bNyL98DRUtoXf/fv38csvv6BZs2awt7fHlStXFLarUobR0dGYMmUK6tWrh/r162PmzJlISEgowFdBlMmqbCUSCVauXImuXbvCxcUFzZo1w9SpUxEWFqZwDCrbwie7z2x6c+fOhb29Pf7991+F9SW9XCnoVrNz585h6dKl+PXXX3H8+HE4ODhg5MiRiIyM1HTWSA7cu3cPAwcOxKFDh7Bz505IpVKMHDkSiYmJfJolS5bg+vXrWLNmDfbs2YMvX75g7NixGsw1yQl/f38cOHAA9mlzzn5D5Vr0xMTEoH///tDR0cG2bdtw9uxZTJs2DSYmJnyabdu2Yc+ePZg/fz4OHToEfX19jBw5EikpKRrMOcnOtm3bsH//fsydOxfnzp3Db7/9hn/++Qd79uxRSENlW7glJibC3t4e8+bNU7pdlTL87bff8Pr1a+zcuRNbtmzBgwcPMHfu3IJ6CSQTWZVtcnIynj9/jtGjR+PYsWPYsGED3r17h9GjRyuko7ItfLL7zKa5fPkyHj9+jHLlymXYVuLLlRG16tOnD1uwYAH/XCaTsWbNmrGtW7dqMFckryIjI5mdnR27d+8eY4yx2NhYVrt2bXb+/Hk+zevXr5mdnR3z9fXVUC6JquLj41m7du3YnTt32KBBg9jixYsZY1SuRdXKlStZ//79M90ul8tZ06ZN2T///MOvi42NZY6OjuzMmTMFkUWSS6NGjWIzZsxQWDd27Fg2ZcoUxhiVbVFkZ2fHLl++zD9XpQzTvof9/f35NDdu3GD29vbs8+fPBZd5kqXvy1aZx48fMzs7O/bp0yfGGJVtUZBZuX7+/Jm5u7uzly9fspYtW7KdO3fy26hcGaOabjVKTU3Fs2fP0KRJE36dlpYWmjRpAl9fXw3mjORVXFwcAPA1Z0+fPoVEIlEo62rVqsHa2hp+fn6ayCLJgYULF6JFixYK5QdQuRZV165dg6OjI8aPH4/GjRujR48eOHToEL89ODgY4eHhCuVqZGSEOnXq0HdzIVe3bl14e3vj3bt3AIAXL17g4cOHaN68OQAq2+JAlTL09fWFsbExnJyc+DRNmjSBlpYWdeErYuLj4yESiWBsbAyAyraoksvl+P333zFy5EjUqFEjw3YqVyDzGbxJnn39+hUymQzm5uYK683NzTP0ByZFh1wux5IlS1CvXj3Y2dkBACIiIqCjo8P/aKQxNzdHeHi4JrJJVHT27Fk8f/4cR44cybCNyrVo+vjxI/bv34/hw4fjl19+wZMnT7B48WLo6OigZ8+efNkp+26m/vqF26hRoxAfH4+OHTtCLBZDJpNh0qRJ6NatGwBQ2RYDqpRhREQEzMzMFLZra2vDxMSEvpuLkJSUFPz555/o3LkzDA0NAVDZFlXbtm2DtrY2hgwZonQ7lSsF3YTk2IIFC/Dq1Sv8999/ms4KyaPQ0FD88ccf2LFjB/T09DSdHZJPGGNwdHTE5MmTAQC1atXCq1evcODAAfTs2VPDuSN5cf78eZw+fRqrVq1C9erVERAQgKVLl6JcuXJUtoQUIRKJBBMmTABjDAsWLNB0dkgePH36FLt378axY8cgEok0nZ1Ci5qXq1GZMmUgFoszDJoWGRmJsmXLaihXJC8WLlwIT09P7Nq1C+XLl+fXly1bFhKJBLGxsQrpIyMjYWFhUdDZJCp69uwZIiMj0atXL9SqVQu1atXCvXv3sGfPHtSqVYvKtYiysLBAtWrVFNZVrVoVISEh/HYA9N1cBK1YsQKjRo1C586dYW9vjx49emDo0KHYunUrACrb4kCVMixbtiyioqIUtkulUsTExNB3cxEgkUgwceJEhISEYMeOHXwtN0BlWxQ9ePAAkZGRaNmyJX8t9enTJyxfvhytWrUCQOUKUNCtVrq6uqhduza8vLz4dXK5HF5eXqhbt64Gc0ZyijGGhQsX4vLly9i1axcqVqyosN3R0RE6OjoKZf327VuEhITAxcWlgHNLVNWoUSOcPn0aJ06c4B+Ojo7o2rUrv0zlWvTUq1eP7/ObJigoCBUqVAAA2NjYwMLCQqFc4+Pj8fjxY/puLuSSk5Mz1KSIxWJ+yjAq26JPlTKsW7cuYmNj8fTpUz6Nt7c35HI5nJ2dCzzPRHVpAff79+/x77//okyZMgrbqWyLnu7du+PUqVMK11LlypXDyJEj8c8//wCgcgWoebnaDR8+HNOmTYOjoyOcnZ2xa9cuJCUloVevXprOGsmBBQsW4MyZM9i0aRNKly7N9z8xMjJCqVKlYGRkhN69e2PZsmUwMTGBoaEhFi9ejLp161JwVogZGhry/fLTGBgYwNTUlF9P5Vr0DB06FP3798eWLVvQsWNH+Pv749ChQ1i4cCEAQCQSYciQIdi8eTMqV64MGxsbrF27FuXKlUObNm00nHuSlZYtW2LLli2wtrbmm5fv3LkTvXv3BkBlW1QkJCTgw4cP/PPg4GAEBATAxMQE1tbW2ZZhtWrV4O7ujjlz5mDBggWQSCRYtGgROnfuDEtLS029LIKsy9bCwgLjx4/H8+fPsXXrVshkMv56ysTEBLq6ulS2hVR2n9nvb57o6OigbNmyqFq1KgD6zAKAiKXdHiZqs3fvXmzfvh3h4eGoWbMmZs+ejTp16mg6WyQHvp+7Oc3SpUv5GygpKSlYtmwZzp49i9TUVDRr1gzz5s0rMc1miovBgwfDwcEBs2bNAkDlWlRdv34dq1evRlBQEGxsbDB8+HD07duX384Yw7p163Do0CHExsbC1dUV8+bNQ5UqVTSYa5Kd+Ph4rF27FleuXEFkZCTKlSuHzp0749dff4Wuri4AKtuiwMfHR+mASz179sSyZctUKsPo6GgsWrQI165dg5aWFtq1a4fZs2ejdOnSBflSyHeyKtuxY8eidevWSvfbvXs33NzcAFDZFkbZfWa/16pVKwwZMgTDhg3j15X0cqWgmxBCCCGEEEIIURPq000IIYQQQgghhKgJBd2EEEIIIYQQQoiaUNBNCCGEEEIIIYSoCQXdhBBCCCGEEEKImlDQTQghhBBCCCGEqAkF3YQQQgghhBBCiJpQ0E0IIYQQQgghhKgJBd2EEEIIIYQQQoiaUNBNCCGEEEIIIYSoCQXdhBBCCCGEEEKImlDQTQghhBBCCCGEqAkF3YQQQgghhBBCiJpQ0E0IIYQQQgghhKgJBd2EEEIIIYQQQoiaUNBNCCGEEEIIIYSoCQXdhBBCCCGEEEKImlDQTQghhBBCCCGEqAkF3YQQQgghhBBCiJpQ0E0IIYSUQD4+PrC3t4ePj4+ms0IIIYQUa9qazgAhhBBS2Bw7dgwzZszIdPvBgwfh4uJScBkqAkJDQ3H06FF4enri/fv30NLSgp2dHUaPHo0mTZoopP3y5Qt2796Nx48f4+nTp0hMTMTu3bvh5uaW4biDBw/GvXv3Mqxv1qwZtm/fnml+Nm/ejDVr1qBGjRo4c+ZM3l8gIYQQkksUdBNCCCGZGD9+PGxsbDKsr1SpkgZyU7hdvXoV27ZtQ5s2bdCzZ09IpVKcPHkSw4cPx5IlS9C7d28+7bt377Bt2zbY2trC3t4evr6+WR67fPnymDx5ssK6cuXKZZr+8+fP2Lp1KwwMDPL2ogghhJB8QEE3IYQQkonmzZvDyclJ09koEtzc3HD9+nWYmZnx6/r374/u3btj3bp1CkF37dq14ePjA1NTU1y4cCHboNvIyAjdu3dXOS/Lly9HnTp1IJfL8fXr15y/GEIIISQfUZ9uQgghJJfWrVsHBwcHeHl5KayfM2cOHB0d8eLFCwBAamoq1q5di169esHV1RUuLi4YMGAAvL29FfYLDg6Gvb09tm/fjn379qF169aoU6cORowYgdDQUDDGsHHjRjRv3hzOzs4YPXo0oqOjFY7RqlUr/Pzzz7h9+za6d+8OJycndOrUCZcuXVLpNT1+/BgjR46Eq6sr6tSpg0GDBuHhw4fZ7lejRg2FgBsAdHV10aJFC3z+/Bnx8fH8ekNDQ5iamqqUnzRSqRQJCQnZprt//z4uXryImTNn5uj4hBBCiLpQ0E0IIYRkIj4+HlFRUQqP9DWno0ePRs2aNTFr1iw+qLx16xYOHTqEMWPGwMHBgT/O4cOH0bBhQ/z2228YO3YsoqKi8OOPPyIgICDDeU+fPo3//vsPgwcPxvDhw3Hv3j1MnDgRa9aswa1bt/DTTz+hb9++uH79OpYvX55h/6CgIEyaNAnNmzfHlClTIBaLMWHCBNy5cyfL1+vl5YWBAwciISEBY8eOxaRJkxAbG4uhQ4fC398/V+9heHg49PX1oa+vn6v9Ae71uLi4oF69emjatCnWrFkDiUSSIZ1MJsOiRYvQp08f2Nvb5/p8hBBCSH6i5uWEEELI/9m77/iazj+A4597b4aECCJ2xI4REVtsSkttWqqDGj8ttVqKWjWLltZqSxVtVY0WVaNW7T1DEFsiVkREIju59/z+OHKvK0NCbub3/XrdV557znPOec59csf3PM95nmR8+OGHiZbZ2Njg4+MDgLW1NbNmzaJr167MnDmTUaNGMW7cONzd3RkwYIBxG0dHR3bv3o2NjY1xWffu3Wnbti0rVqzgq6++MjtGYGAgO3bswMHBAQCDwcDixYuJjo5m3bp1WFmpX98hISFs2rSJyZMnm+3bz8+PBQsW8PrrrwPw1ltv0aZNG2bPnk2jRo2SPFdFUZg0aRL169fn559/RqPRAPDOO+/Qrl075s6dy7Jly9L0+vn7+7Nz507atGmDTqdL07YJXFxcqF+/PpUqVSIyMpLt27fz448/4ufnx9y5c83yrl69mrt37/LLL7+81LGEEEIIS5CgWwghhEjGxIkTKVu2rNkyrda8k1ilSpUYOnQoc+bM4fLly4SEhLBs2TJjYAyg0+mMQafBYCAsLAyDwYC7uzsXL15MdNw2bdoYA24ADw8PADp27Gi2Xw8PDzZv3kxgYCAuLi7G5UWKFKF169bG5/ny5aNz584sWbKEoKAgnJ2dEx3T19cXPz8/Bg4cmOg+aC8vLzZu3IjBYEh0/smJiopi2LBh5MmThxEjRqRqm6Q8f0Gic+fOTJgwgbVr1/Lhhx8aR5EPCQlh/vz5DBo0KFE3dyGEECIzSdAthBBCJMPDwyNVA6n169ePLVu2cO7cOT777DMqVKiQKM+GDRtYtmwZN2/eNOsandTo6MWLFzd7nhCAJ7c8NDTULOh2dXU1tlQnKFOmDAB37txJMuj28/MDYPTo0cmdJk+ePMHR0THZ9Qn0ej2ffvop165dY8mSJRQtWvSF26RFnz59WLt2LYcPHzYG3XPnzsXR0ZH3338/XY8lhBBCvCoJuoUQQohXFBAQgL+/PwBXrlxJtH7jxo2MGTOGVq1a0a9fP5ycnNDpdCxevJiAgIBE+ZPrip1cK7OiKK9QevN9jBo1iipVqiSZJ7VTcI0fP569e/cye/ZsvLy8Xrlsz0u4+BAaGgqoFwzWrl3L2LFjefDggTFfTEwMcXFx3L59+6UGbxNCCCHSgwTdQgghxCswGAyMGTOGfPny0bt3bxYtWsQbb7xhvJ8aYPv27bi4uLBw4UKzFuj58+dbpEz+/v4oimJ2rISW7JIlSya5TUJLeb58+WjYsOFLH3vWrFmsX7+esWPH0r59+5feT0oSLlQkdCMPDAzEYDAwbdo0pk2blij/a6+9Rq9evRg3bpxFyiOEEEKkRIJuIYQQ4hUsX76cM2fO8OOPP9K8eXOOHTvGpEmTqFOnjjEoTGi5fjYQPnv2LN7e3pQoUSLdy/TgwQN27txpDPzDw8P5+++/qVKlSpJdywHc3d0pXbo0y5Yto3379uTNm9ds/aNHj154r/TPP//MsmXL+Pjjj+ndu/crn0d4eDg2NjZmg8QpisKPP/4IQOPGjQF1urLvv/8+0fZz584lIiKCcePGmXW/F0IIITKSBN1CCCFEMvbv38+NGzcSLa9VqxYuLi5cv37dOP92y5YtAZg5cyadO3dm8uTJzJs3D4DmzZuzY8cOPvnkE5o3b87t27dZvXo1FSpUIDIyMt3LXaZMGcaNG4ePjw9OTk6sW7eO4OBgZsyYkew2Wq2WadOm8b///Y/27dvTtWtXihYtSmBgIMeOHSNfvnwsWrQo2e137tzJN998Q5kyZShXrhwbN240W9+oUSMKFy5sfP7DDz8AcO3aNUDtgp8wH/igQYMAuHDhAiNGjKBdu3aULl2amJgYdu7cyenTp+nRowfVqlUD1BbvVq1aJSrTr7/+CpDkOiGEECKjSNAthBBCJCO57t8zZsygRIkSjB49moIFCzJ27FjjujJlyvDZZ58xffp0tm7dyptvvknXrl15+PAha9as4eDBg1SoUIFvvvmGbdu2cfz48XQvd5kyZZgwYQJff/01N2/epFSpUnz33Xc0adIkxe3q16/PmjVr+OGHH/j999+JjIzE2dkZDw8PevTokeK2ly5dAtRu7KNGjUq0/rfffjMLuhMuSCRYt26dMZ0QdJcoUYLatWuzc+dOHj58iFarpVy5ckyePPmF5RFCCCGyCo2SHqOvCCGEECJLaNmyJRUrVmTx4sWZXRQhhBBCAKmbbFMIIYQQQgghhBBpJkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiL3dAshhBBCCCGEEBYiLd1CCCGEEEIIIYSFZOspw+Lj4wkNDcXW1hatVq4fCCGEEEIIIYTIGAaDgZiYGBwdHbGySj60ztZBd2hoKH5+fpldDCGEEEIIIYQQuVSZMmVwcnJKdn22DrptbW0B9STt7OwyuTQp0+v1XLlyhUqVKqHT6TK7OCKdSL3mXFK3OZPUa84ldZsJoqKgUSM1fegQWOC3mNRrziT1mnPltrqNiorCz8/PGJcmJ1sH3Qldyu3s7LC3t8/k0qRMr9cDYG9vnyv+AXMLqdecS+o2Z5J6zbmkbjOBosDly2o6Tx6wwG8xqdecSeo158qtdfuiW53lRmghhBBCCCGEEMJCJOgWQoh0EBub2SUQQgghhBBZkQTdQgjxCkJC4L331F6Vw4dndmmEEEIIIURWI0G3EEK8pH37oEYN+OMP0OthwQKFh3dCMrtYQgghhBAiC5GgWwgh0iguJo5xg87QooVCQIBpucGgYfPKC5lXMCGEEEIIkeVI0C2EEGlw9YwfjTyu8NWPNVEUDQDuVSKM6//eZJ1ZRRNCCCGEEFmQBN1CCJFKe9d7U9OrMCeuVAPAShfHjKkRnD6Th6IFHgCw43h1IsMiM7OYQgghhBAiC5GgWwghUmnEaFsiYvIBULHETY5su8qY8XmxttXRsdklAKJi7dmx1icziymEEEIIIbIQCbqFECIVggIecvpaFQCquFzn9Hln6rSqalzfuWseY3rj3zJ/mBBCCCGEUEnQLYQQqbB74xVjukPLAPIVzGe2vmU3D/LleQLApv1ViY+Nz9DyCSGEEEKIrEmC7lxszJgxDBo0yPj8gw8+YPr06RlejmPHjuHm5kZYWFiGH1uI1Nq10xREt2rjkGh9nrx5aOuldisPfuLEoa0yirkQQgghhJCgO0saM2YMbm5uuLm54e7uTuvWrVm4cCHx8ZZtOVuwYAHDhg1LVV4JlEVuohgUdh4pC4CtdTSN21VNMl+nDoox/ffaxxlRNCGEEEIIkcVJ0J1FNWnShIMHD7J9+3b69OnDwoULWbp0aaJ8sbHpd+9ogQIFyJcv34szCpHLXD/rj3+QCwCN3S9i52CXZL43362GlS4OgI27y6IYlCTzCSGEEEKI3MMqswsgkmZjY4OzszMA7777Lrt27WL37t3cvHmTsLAwqlevzsqVK7GxsWH37t3cu3ePmTNncujQIbRaLbVr12bcuHGUKlUKAL1ez9dff826devQ6XR069YNRTEPCD744AMqV67MuHHjADWgnzdvHps3byY4OJjixYszYMAAvLy86NWrFwB169YFoEuXLsycORODwcCSJUtYs2YNDx8+pEyZMgwaNIg2bdoYj7Nv3z6++uor7t27R40aNejSpYvFX08hXsXOf009Olo1S753R8GiBWhe4xS7TtfmZmBpfM7G4lHTJiOKKIQQQgghsqjcGXT7fguXvn1xvkK1oNk/5sv2dYRHp1+8beXPoMpnL1e+JNja2vL48WMAjhw5Qr58+Vi+fDkAcXFx9OvXD09PT1auXImVlRU//PAD/fv3559//sHGxoZly5axYcMGvvrqK8qXL8+yZcvYuXMnDRo0SPaYo0aNwtvbm/Hjx1O5cmVu375NSEgIxYsXZ8GCBQwZMoRt27aRL18+8uRRR25evHgx//zzD5MnT6ZMmTKcOHGCzz//nEKFClGvXj3u3bvH4MGDee+99+jevTvnz59n1qxZ6fY6CWEJu055GNOtu7mlmLdzb3d2Pf2I+HuTDR41LVkyIYQQQgiR1eXOoDsuDKLuvDhftEsSy4JSt21c+tzrrCgKR44c4eDBg7z//vuEhIRgb2/PtGnTsLFRW9A2btyIwWBg+vTpaDQaAGbMmEHdunU5fvw4jRs35tdff2XAgAG8/vrrAEyePJmDBw8me9ybN2/y77//snz5cho2bAiAi4vp9XB0dATAycmJ/PnzA2rL+OLFi1m+fDk1a9Y0bnPq1CnWrFlDvXr1WLVqFaVLl2bMmDEAlCtXjitXrrBkyZJ0eb2ESG96PezeraYLFQJPr+Ip5u/YxZbBT4dG+PtvmDjRsuUTQgghhHgVwcEwcCDcvg1Dh0L37qCVm5DTVe4Muq3zg13JF+fL45z0stRsa50/7eV6xt69e6lZsyZxcXEoikL79u0ZMmQIU6ZMoVKlSsaAG+DSpUvcunWLWrVqme0jJiaGW7du8eTJE4KCgqhRo4ZxnZWVFe7u7om6mCfw9fVFp9MZu4+nhr+/P1FRUfTt29dseVxcHFWqqPMbX79+HQ8PD7P1np6eqT6GEBnt1Cl42smEli1Bp0s5v4sL1K6tbnfmDNy6BaVLW7yYQgghhBBp5u8PbdrApUvq8yNH4JtvYMYMaN0anrbniVeUO4PuKq/Q9fv57uYWUr9+fSZNmoS1tTVFihTByspUVXZ25oM4RUZGUq1aNWbPnp1oP4UKFXqp4yd0F0+LyMhIQO1iXrRoUbN1z14kECI7+e8/07dN69ap26ZzZzXoBtj4RwBDxiTRa0YIIYQQIhN5e8Obb8K9e+bLT5+GN95QGxtmzoQ0tMGJZEjHgSzKzs4OV1dXSpQoYRZwJ6VatWr4+/vj5OSEq6ur2cPBwQEHBwecnZ05e/ascZv4+HguXEh+HuFKlSphMBg4ceJEkuutra0BdYC2BOXLl8fGxoa7d+8mKkfx4sWNeXx8fMz29Wy5hMhqdq83vU9atdSnkNOk85uPjem/1wald5GEEEKIbG3fPvjyyzKcTsUwSeLlREfDtWtgMCS9/r//oGlTU8BdqRKsXAk1nxmLZvduqFcPevaEiAjLlzknk6A7B+jQoQMFCxZk4MCBnDx5koCAAI4dO8a0adO4f/8+AL169WLJkiXs2rWL69evM3ny5BTn2C5VqhRdunRh7Nix7Nq1y7jPrVu3AlCyZEk0Gg179+7l0aNHREREkC9fPvr27cuMGTPYsGEDt27d4sKFC6xYsYINGzYA8M477+Dn58esWbO4ceMGmzZtMq4TIquJiYzhkE8lAMoWvUW5Ci/oW/5UNU9HyhfzB2DfWQ8e3X9sqSIKIYQQ2UpsLPTooWXLFifefFNLcHBmlyjn2bsXKlZUH8WKwbvvwvLlEBCgrv/jD2jbFp48UZ83aACHDqn5Tp6EVaugfHnT/lavhlGjMvw0chQJunMAOzs7fv/9d0qUKMHgwYN58803GTduHDExMcZ5t/v27UvHjh0ZPXo077zzDnnz5qX1C/rKTpo0iTfeeINJkybRtm1bJkyYQFRUFABFixZlyJAhzJkzh4YNGzJ16lQAhg8fzqBBg1i8eDFvvvkm/fv3Z+/evcapy0qUKMGCBQv477//6NSpE6tXr+bTTz+14KsjxMu7dCyI2HhbAFp7+aV6O41WQ6fXbgKgN1ix5Y/ke5UIIYQQucnevfDwoXrr1sOHGkaPztzyJCc8HL79Fn77DZIZAinLiY2FL75Qu4Xfvq0uCwpSg+i+fdUxZipUgPfeg7g4dX3Hjmqrd+HC6nOtFt55By5ehB9+AHt7dfmPP8KxYxl/TjmFRkluJK1sIDIyEl9fX6pUqYJ9wn9EFqXX6/H29sbT0xPdi0ZiEtmG1GvOpdfrGdx9O4vWvwnA2h+O8PZAr1Rvf+CfszTtpA5e2KbeCbYeqYNGK6ORZDZ5z+ZcUreZICICnl7cJzwc8uZN90NIveY8H38MixebL9u/H5o0yZzyJOXaNXV8loQ7MUeOhK+/ztqDil25ogbTJ0+allWpogbfCS3azxswAL7/HlK6k3XOHPX8AWrUUPefUv7c9p5NbTwqLd1CCJGMQ6fLAqDRGGjZKeX5uZ/XsK07RQs8AGDb8brM/GxfupdPCCGEyE70enU6zed99JHaSpsVbNumDhz27NBHs2ero3lnRYoCS5eq92InBNzW1upFgvPn1enADh6ESZOgUSN1FhatFqZOhUWLUg6gAYYNU4NtgLNnYd48i55OjmXRoPvx48eMGDGCWrVqUadOHcaOHUvEC+7C/+CDD3BzczN7TJSJboUQGezBrSB8/NSp7mpVuIRTibTNBKCz1jF/2jXj87HzmrNm4eH0LKIQQgiRrRw5AoGBarpJk8fUrat2uPX1VaepykyKoo7U/eabpqlCn94dCcC4cWp368xy/74a8H7+OfTqpY4u7ukJxYtD//7wdBIhKlVSX+fPP1eDa2trNdj+8ks1+A4Jgbt3Yfz41LXcW1nBTz+Z8k6cqE4zJtLGokH3yJEjuXbtGsuXL2fRokWcPHkyVQF09+7dOXjwoPExSu7cF0JksN0bTQFzq0YPXmof3T9pyPShe43Pe39Wi0Obz71q0YQQQohsaf16U7pVqxB+/NFAQg/kadPUbt2ZITwcevRQ74dOuPG2Uye1tfvrr035PvlEHeE7o507B9Wrw/Dhaqv7ihWwY4fa8pxwEQPU7uKnT0Pt2snvy8EBnpvZ94Xq1YNBg9R0ZCQMGZJ97nPPKiw2T/f169c5cOAAf/31F9WrVwdg/PjxDBgwgFGjRiWax/lZefLkwdnZOdXH0uv1ZlNXZUUJ5cvq5RRpI/Wac/33n2mOjZZt8r10HY+a3ZjrN/ezbFNTYuLy0Ondkhw69JAKVQumV1GNQoPCWL/ch/V/22FjrWfxH+UoXNIp3Y+Tncl7NueSus0Eej06Y1Kv9h1O90NIveYUigLr12sBDVZWCk2ahFK9up4hQzTMnaslOhoGDlT4919Dht47HRgIbdpo8fExHfTLLw2MG6eg1cJnn8GjRxpmzlTbKnv3Vsib10CHDhlTPm9veOMNLcHBiV8Ua2uFIkXA1RVGjDDQqZO63BJvlylT1Pq7d0/Dpk2wfr2ezp0T58tt79nUnqfFBlL766+/mDVrltk8z/Hx8Xh4eDBv3rxkR87+4IMPuHr1Koqi4OzsTIsWLRg0aBB2dnaJ8ibcuC6EEOlJMSh0bVuMgOBS5LGOYvdub2zsbF56f/FxekZ/BPvO1QOgdOloli27RIECr/6FFBur4fSeIHZsycP2E/WJictjXPfe6zv59Ku0dYsXQojU0kZFUfPp6FdnDhzAkMRvNSESXLpkx/vvVwWgQYNQFi5Um7UjI7W8/XY1AgPV79lp027Qpk1IhpQpOlrDgAFuXLyoDgKYN6+eqVNv0rRpqFk+RYGvv3bhzz+LAGBjY2DmzBt4eYVhbW25Jl9fX3s++aQiYWFqO6m7eziDB9/BySmeQoXiyJ9fn6EXKHbtKsCYMepcYkWKxPLnnxfImzeZicBzmRcNpGaxlu6HDx9SqJD5jz0rKyscHR0JCgpKdrv27dtTokQJihQpwuXLl5k9ezY3b95k4cKFyW5TqVKlbDF6uY+PD9WrV88VI/nlFlKvOdOVM34EBKs3cjWqfpF6XvVeeZ/rtoXStHk4F6/k49atPEyaVIPt2w3Y2r7c/hQFZszQ8N13GkJCkv7GXfNfc6bY3sO1SslXKHnOIu/ZnEvqNhM8M06Ph4eHxUYvl3rNGdatM31Xvf+++r+SUK+LFkGXLuq6+fPL8tFHrhRM/w5hZvR6db7wixfVcpUqpbBtG1SuXDbJ/CtXgpWVgVWrtMTGavnsswpYWytUrgzVqyu4u6t/mzeH9Lj+dPw4DB6sJSxMLZ+Xl8KWLXbkz1/h1Xf+kmrUgL17FbZt0/DggQ3r1tXg22/NLzok9569dQsKFID8+TO40BYWGRnJlStXXpgvzUH37NmzWbJkSYp5tm7dmtbdGvXo0cOYdnNzw9nZmQ8//JBbt25RunTpJLfR6XTZ5oM4O5VVpJ7Ua86y51g5Y7rV6zbpUrdOxQuxdQfUr692ZTt4UMPw4Tp++unl9rdypTqYybOc8wfxTtuLRERoWba5CfF6a2ZP8uOHv5L+7MzN5D2bc0ndZqBnXmedTmf2PP0PJfWa3SWMWq7RQOfOGu7fN9Vr585q0L1hAzx4oGHCBB0//mjZ8owaZSqTgwNs3aqhWrXk/8d0Ovj1V3X6rc2b1WVxcRp8fDDrmu7qCnv2QNmkY3czDx+CwQBOTuZvnyNHoE0bCAtTnzdpAlu2aHBwyPz3wA8/QLVqEBUFCxdq6dEDGjZMnO/Z9+ySJeoI9UWKwO7dULVqBhfaglL7uZTmoLtv3750SbgUlQwXFxcKFy7Mo0ePzJbHx8cTGhqapvu1azwdo97f3z/ZoFsIIdLT7j2mL8/XuqbfN4OrK2zaBM2aqV9WS5ZAt9d8eKNH9TTtJypKHewlwTvvQK9OvrTqUgFr22YE333E2vJPCI92YOnG+oy/fp8S5Yul23kIIYQQaeHrqz5AHUm7WDF1NO5nzZ8PO3eqg5otXgz/+x/UqvVyx/vjD3Xe6u7dkw7wfvgBvv1WTet08Ndf6kBlL2JtDevWqVN0HTigDnB2+TLEx5vy+PtDq1bqSOHFiye9n5gYNQj97Te155pWC87O6gBnRYuqQXd4uJq3RQv1t4MFOpK8lLJl1ZHQx4xRLxj07AlnzkChZO5mO30aBg9WzzMwEFq3Vl+b1FyUyEnSPHp5oUKFKF++fIoPGxsbatasSVhYGOfPnzdue/ToUQwGg9oFKZUS7tlOS6AuhBAvS1Hg8NOZvfLm1RvnpkwvdevC3G9N387/G1yIsOAnadrHd5MuEBCgptu2hVWroO07VbC2tQbAqUQhBvU4BUBsvC3fTLicPoUXQgghXsKGDaZ0165J5ylVytSDS1FefoTsbdvgvfdg8mS1RfbNN2HXLtO+tm5V953gxx/h9ddTv38bGxg4UA3sz59Xg+OzZ9URxauoM41y44a6z+faHwEIDVXL9OuvpjIZDGpAeu6c6cIDqAHq5s1ZJ+BOMGKE2voOarfxDz9Muq7CwtQLH8/OwX73rnpe9+5lSFGzDItNGVa+fHmaNGnChAkTOHfuHKdOnWLq1Km0a9fOOHJ5YGAgbdq04dw5dQqdW7du8f3333P+/Hlu377Nf//9x+jRo6lbty6VK1e2VFGFEMIoIMD0RVCtWoRFekv+b4COljVPq8d7WJLRA86ketv7N4OYMV/t9aPT6Zn9TdK/SEZMqYadjTpp5+K/m/Dg5WY9E0IIIV7Zs1OFpdRhdtgwcHNT04cPw++/p+04igITJpgv+/dfNcirUUOdC7xHDzXIBRg9Wm1RfxW2tuDhAe+/rwbMZcqoy8+fV4PrhAAa1ICzaVO1izWo9363batO8VWqlNqSnqB9e9i4EbLisFVWVupFB6enE6Rs2gTffWeeR1HU1/b6dfV5nTqmixLXryd/USKnsug83bNnz6ZcuXL07t2bAQMGUKtWLaZMmWJcHxcXx82bN4mKigLA2tqaI0eO0K9fP9q2bcusWbN4/fXXWbRokSWLmaW4ubml+FiwYEFmF1GIHO3odtOMCB7ujy1yDI1Ww8+/OZPXVv0mXrS+Kbv/Sl3g/eVnvoRHOwAwoPNBqlZLehC1IqWd+WiAui4qSsucOelQcCGEECKN/P3hlNr5ilq1TEFpUmxsYN480/NRo0z3NafGpk1w8qSaLltWva0rgY+Pur+EIPjtt+Grr1K/79QoWVINvBNmRj52DDp3VruT+/qCl5famg1qwLpnj9ryfvKketE/JgZCQtTW43/+SZ8B2SylVCm1dT/B6NHq+SZYvFjD2rVqukABWLtWnVs8oU6SuigRE6PeZ//22+pr+dlnlj6LDKRkYxEREcrJkyeViIiIzC7KC8XHxysnT55U4uPjU8z34MED4+OXX35RatWqZbYsPDzcmNdgMChxcXGWLrpIQWrrVWQfn767R1GvzyrKTzP/tmjdLhi/13isskX9lSePnqSY3+fQFUWriVdAURzsQpVA/wcp5r9zR1FsbNT9582rKA8fpmfpsyd5z+ZcUreZIDxcMX6IPfP7JD1JvWZ/331n+jeZNk1d9qJ67dTJtM3Ikak7jl6vKDVqmLbbuFFR4uIUZe1aRfHyMi0H9XlkZHqcXdLOnlWUAgVMx3vtNUUpWND0vGxZRbl82XLHz0ijR5vOy9VVUYKC4pXff7+g2NoajMs3bDDlv3pVUYoWNX9t9uxRlI8+Mn+NQFEcHTPnnNIitfGoRVu6Rdo5OzsbHw4ODmg0GuPzGzduUKtWLfbt20fXrl2pXr06p06dYsyYMQwaNMhsP9OnT+eDDz4wPjcYDCxevJiWLVvi4eFBx44d2bZtW0afnhBZ3tEzTsZ0xVoFLHqsQZOa0LS6NwA3A0szduCpFPOPHB6KQVH7u4/7+DRFSqc81kWJEtCvn5qOiDBvPRBCCCEywrp1pnS3bqnb5ttvMU6pOXcuXLr04m02bFDvrQa1K3OHDmo36LffVruqHz6s3nvcu7flW5E9PNQW7ISu4f/9p7Zgg9raf/gwVKpkueNnpKlT1cHxQO3V0Lu3li++KEdMjNrbbtgwtbU/QYUKaot3gQLq8//+UweLW7zY9BqBOrBcTurga7F5urOqP/9UB2l4krZxi16Jg4M6mEP58umzvzlz5jB69GhcXFzIn8rJ7hYvXsw///zD5MmTKVOmDCdOnODzzz+nUKFC1Kv36nMQC5ETxETGcOqq+i1YscRNHArls+jxtDotS38riEf9SKJi7Vmwphlvv3uWJh0Tj962beVJtp+oA4Cr822GTW2QqmOMHg1LlijEx2uY/+0TRgzR4+hcID1PQwghhEjS/ftw6JCarlIFUjtEU7lyalfwqVPVkcGHDVMHSNMkfUcVer06onaCKVMS5/XyUh8ZxctL7Srdvr1pILHWrdWLEA4OGVcOS7O2Vgd09fRU79HeulUD5AHUix9ff514m4SLEq1aQWSkabm9vXrP//vvq+usclCkmoNOJXW++SZ1V8vS2+zZ2nSbb3Do0KE0SriklAqxsbEsXryY5cuXU7NmTUCd1u3UqVOsWbNGgm7xSuJj47lxPoCKnmXQaJP5NswmvA9cJTbeHYAGHncAy99MVcHTlemf7uWzWc0B6PuxA8fqhVKomKMxT3xsPCPGFjA+nznhFnnylkrV/l1doXf7Eyz9ux6hEQ4smLKX8Quap+MZCCGEEEnbuNE0qnVyo5YnZ8wYdYTvW7fUltGNG81bTJ+1di1cuKCmvbzUOa6zgtat1cD7yy/V6UKnT1fvW89pXFzU6c/atzcty59fYc0aTbLn6+UFW7ao920XK6aOON+pE+SzbHtHpsl1QfeoUeqohhnd0j1ypCHd9lc9NRMJPsPf35+oqCj69u1rtjwuLo4qCcMICvHUqd2+zPsmmA4ddbw9MOVLwr7Hr9O5q5Yrd8rStt4J1vxbGYdC2ffy7dF9D43p+vXjU8iZvoZObcKf//hwxLc61+6Vw6m4Gix7eKjzhobfPMrFW40BaFDZhx6fpO1S/ReTivLLP/HoDVZ894sHwyY/ydb1JIQQIutTFHWE6wRpDbrt7WHOHLV7OMCnn8IbbyTuFh4fD5MmmZ4n1cqdmdq2VR85Xbt28PnnagMnwM8/GyhXLuUpYJo3V+fxzg1yXdD91lvqI6Pp9eDtnT77snvu00aj0aA8NzlefLwpYIh82m9j8eLFxunaEtjkxMtt4qUpBoX3e9tw6XZjVmyDdzcc4oeV7jg6OybKu3HpMT4YUoUnUeotDv8er0uLBhfZssOZomVSvtc4qzpyzPR+qN/UGYjOkOPqrHUs+zUvNRtFER2nvr/9/dXHpk0AjY1558wmzT0Kytdw5d3XD7JiW2MehRdi5cL9fDyxaTqegRBCCGFu3TrYv19NlysHTztbpkm3btCypTrFlp+fGtjNnq3eF53gjz/gyhU13bQpvPbaKxddvKSZM6FmTQNhYVfp2rVCZhcnS5GB1HKAQoUKERQUZLbM19c07VH58uWxsbHh7t27uLq6mj2KFy+e0cUVWdip3b5cum0afOCPnY2oUe0JBzedMy4z6A1MGriXzv3rGwNu4/ZXq+LVIIqrZ/wyqsjp6qiPCwD2thFU98rYL4vKdctxYu9tPurhQ8OGSXev6t7yMA3bpa2nS4JPRxc2ptesl1ZuIYQQlhMaCkOHmp5//fXLtT5rNOpgWgn39u7Zo85p/c47cO0axMWpLdsJslord26j1UL37gp16oS/OHMuI0F3DtCgQQPOnz/P33//jZ+fH/Pnz+fq1avG9fny5aNv377MmDGDDRs2cOvWLS5cuMCKFSvYsGFDJpZcZDWrfnlgTGs1egD8g0rRrFM1Jg48xKNH0KVzPJMXNTfm69HyMMd3XKSU011AHYW7YfN8HN97J0PL/qruXb+Pf5AadNd1u4qVTcZ3BHJvWJFFq6tz6JD6g+XGDfUetilDDjN50F5+/vPlAm4Az6ZuVCxxE4B952pw70ZgehVbCCGEMDN+PNy7p6bbtUt71/JnVa2qjjZetqxp2Zo16sBsr78O16+ry157Tb1vWoisSILuHKBJkyYMGjSIb775hrfeeouIiAg6PzfSxPDhwxk0aBCLFy/mzTffpH///uzdu5dSpVI3GJPI+fRxelb/6waAtS6WU3uv0cRdnXvDoOiYuqgRJUrAP5vVLthajZ5Zn+1j1U4v6rauypEjGtxd1Ys9D8MK06JdCbZsyZxzeRlHd/sZ0w1qPc60ciTQatUfGB07woT5DZn4ffNXug9bo9XQo50/AIqi5a9lmTCipBDilYWHhPPrNwc5sfNiZhdF5DLx8XDkiDr95KkUZrg8cQK+/15N29vDwoWv3vrctq06EPL8+epUUgnl2bvXlOfZFm8hsppcd093dtK1a1e6PnNpsH79+ly+fDnJvEOHDmXos/14nqPRaOjduze9e/dO93KKnOHAjjvcfVQagDb1vfFsWo89p/XMGrmHid83Ra/XEROj5i1QAFb/9oQ3OpguKZeqWJwDx0Pp0u46e0+WJzJSQ6dOMGgQDB9moFz5rH2N76iPqzHt1dg+E0tiOT0+LMm0JWp6zd8FGTItc8sjhEibf5YdY/DoUgQ8bIxWa+Dvv9W5iIWwBEWBq1dh5071sWcPhIWp63Q6dS7tIUPMA+r4ePjoI9OI5ZMmQZky6VMeGxv1eB9+qB579mwIf9qLuU0baNgwfY4jhCVk7V/BQogM88fG0sb0u73VgdN01jrGzmvB4UNa4zzz7u5w8iS80aFAon0UKOLItoPl6d5dfa7Xq/diVagI3Zod5dDmcygGJdF2WcHRs6bxDeq3y5nT6Lk3rEjV0tcAOHTBg4DLd9O8jwsXoEED9YePXp/eJRRCJOX21Xt0bXqUTv3qE/CwJAAGg5Z33km5xVGIF1EUdb7k775Tp+jq00ftDl6nDpQoAW5uMHiweqtTQsAN6uf/sGFq/uhnxhxdsADOnFHTHh4wfHj6l9nBQZ2C6/p1tcy9esHy5el/HCHSk7R0CyGIjYW//lLTefNCh/fczNbXq6/hwgU4dw48PcHaOvl92drCqlXqF/Xs2RAVpXZnXr+/Aev3Qz2384wc9oS3PmqQZeb1jo9Xu8OBekW+WLGcG1D2aH+bL39QB4n7c8V9PptWIk3bf/wxHDumPqpWhYEDLVFKISwrIjQCnyM3qd3CDWvbFD7QMpk+Ts/3kw4y7ttahEc3MC4v7hTMvWAnIiPVeXGPHYPSpVPYkRDJmD5dnUo3NZycoFUrNej9+Wd12a+/qhdj169XnyfsS6OBxYtT/r3wqooUgRkzLLd/IdKTtHQLIdi+HUJC1HSnTmrg/TxbW6hbN3VfoFqtem9VQAB8NfYmxQveN647ftmd7oO8+HbMvnQq/as7d069OADglbYpsLOdHv3KGdOrd9RKIWdix4/DwYOm51+MjpYB2US2o4/T06rBDbzauvPxW0czuzjJ8ve9TYNqlxn2VTPCo9XxHIo4BvHHvMNcv1XI2JX2/n1o1yaSsOCwFPYmRGLHjpnPb/0srRaKFlUHJ5s5U+1R8eABrF4NS5aof+2f3ol18qTaMt6zJ0REqMs+/ljtFSWEUEnQLYTgj5WmZt13302//To5wRfTy+J3pxC/fnOQGmVNYxJs3511pq06uu+RMZ3TfyS41SpNjRpq+sQJdYT01Joz6brZ89Anefj0f9eTyS1E1rRq4VGOXlJnAli+pRE3fG5lcokSu+Fzi6bN4OTVqsZlAzrv59Jla3oObYidvYaNGzHe9nPe156321whLiYuk0osspvwcHj/fVOvroEDYdcu8PFRg+u4OPWCzq5dMHq0Oi+29pmooUcPOHzYdL/2gwdw6JCaLlYMvvoqQ09HWELgXri9CW79CXc2Q9hl0MdmdqmyLeleLkQuFx4SzsYNWsAep4KxvP66Tbofw8bOhl4jG/PBZwqFHR/xKLwQF26mrVvzqwgJfMz0kd64uGgYOq1pom7tR3dcBBoD0MDjDlAyw8qWGXr0gLPqwPSsXaveE/cifhcC+GtbGQCKFAxBH28g+IkTa3Y35MOVJ2nzXh3LFViIdBIfG8/kb0zvb0XR8v2sG8z5PWP6ZkeEqs2AeR2T6E701NVzgbRoac2dYHWciQrF/fjlpzAatW9qlq9wYdj6dxheXvE8Ci/EjpN1+KTHfhavb5Jlbt0RSdPr1d5V+fJlXhlGjFDnuQaoV08dkTytXcFr1FBbud95Rw3OE8ydqw64KrKA68vBfzXYFFAf1k//okCEP4T7QYQflOoMNWeZb3uoB0Q/MF+m0UHespC/EjhUBMdqUKwV5CuLSJm0dAuRy/3z61miYtU+Ym+3OGrR+680Wg1VywQAcPdRcR4/CLXcwZ6Kjoimw2v+zPm9OcNnNGP++P2J8hw5q06dZ2sdjWd9Z4uXKbP16GFKr1mTuoHt5k2/jkHRATD43bPMHu9rXDdoRBEiwyLTtYxCWMKK33Vcu1fGbNnSDTUJDwm3+LH9LtzGpWQshQpb8dl7e3l4OzhRnkuXoFmbIsaAu2rpaxw4ZE+j9h5J7rOSe37+XhmAjZU6tcSSjU355vOsc+uOSEyvV0fazp8fli3LnDJs2gQ//aSm7e3h999f/t5rJyf491+1NdzODvr2xTiYqrAwgx5CfcHvDzg9AvYnMRl66AW4vwNurYVrP4Hv13B2LJwdpz6/vwOeXIEnScyOpM2TeJmih/BrcHcrXJ4HxwdAwAbzPPpYrOJD0ucccxBp6RYil/tjjembtmcvR4sfr2qFUA6eV9O+J2/h9WZ1ix3LoDfQp9MpDl1oZFz2+ddeNGxxkbqt1W6bD28HG3+E1654BRu7pH/c5iTlykGdmpGcPGOPt7eGK6dvUqlW8lepHz8I5ecNtQGws4lk4JjqOJUoxC8rvdl3zpObgaWZ9ulevlraPIPOQIi0i4uDKVNNLcB13K5y8nJFQiMd+W3uPgZNbpbC1q9u8ZxrhEQ0B+C7P5qzdEMon/fby/CpdclXIC8XLqj3zwYGqmWsXvE+u3Y5UqR0yhcCm3SswfLZh3hvuPo5N3ZuY7r3vU2ZaqUseTriJe3da2oVHjlSDVDTu8XbYFAHMktqbuzAQOjXz/T8u++gYsVXO56VlXrf91dfmXdBzzUM8RB1FyJvq3/RgG0hKNrCPF/YVYi+BzEPISZY/RsbAlpbsM4HVvnAygEKuEOhWub7v71B/RsXCiFnIcQbHp8D/XMXvCPvgv0zPQnjHr+4/Dp7kmyHrfwpxEeALg/EPoYnV58G6FfU5QkKP3df3qMT1LjeGiW4JpR4HYq/AYUbgs72xWXJwSToFiIXC74TzPYTNQEo5XSXxu0tFwAnqFZVgb/V9MWzj/F603LHmvDRflb/19xsWZzehu7vO3DGJ5QCRRw5tvsG4ARAg5q558psj9eOc/JMcwDWLPNnQgpB98/fnCE8Ws3bu/1JCpdSu7ku+jk/Hl6xxOlt+ObXRrzb7yruDV/x15sQFrJ8Ofj5qenXX4dZ4wzUfBpnL1hWio8nGtDqLBMxKAaFNVvLmS0Li3JkwsLmLPz9AUM+PMe8lQ0IClKjJE9P2LmzGIULp27/7w5rhPfpvXzzW3P0BisWz7nGjGUSdGdFK1aY0iEh6ijg6TWtVmys2oL91VfqRaa33oL33lPnr9Zq1enB+veHoCA1f/v28L//pc+xIZcE3IF7IOBviLqtBtmRtyH6PigG83z5ykHH58Y8OfI+BB9/8THchj8XdMfBwVR2HwjxNg+66y6GmrPVoDnusfo39rHaYp3XFfKWAVunpK/QVB6e9DEUBaLuqcH3o1NQsKbZas0j9Rw1j8/A4zNwcZYa2Bdtrl6IKFQXCtVWLzTkIrnh7SGESMZfy84Tr1dbunu2u2KxH5zPqupZwJi+6G+5+yiXfX3M2PKq1ehZt/goDSr7AOD3wIW+b19CUeDIAdPVWq9G6X8/e1bVvZ8pOF6zKfl72ONi4pi3vJLx+fCxLsZ05brl+KL/YQDi9dZ8PCAKg96QaB9CZLaYaIVp00zPp0wBz6ZuNK3uDcCl2+XZuea0xY5/8ugTbgaqn3deVXwY0Hk/Om08AIGPizB+rpcx4K5dG/77j1QH3AlGTK6KtU4d5Ojnde5ER0S/YAuR0SIjYd0682Vz5qjB8qswGGDlSqhcGYYMgXv34OFDWLQImjRRezeNGwfTpsHmzeo2RYrA0qVJx1q5VvQDuLcTfGfD4Q9gqyfEP9eSHOINV+ZDwHo1gI66mzjgBrBKahqYVL6prZ8baFabTBtpvvLg0g08pkGzzdA1CEo+15Kh1an3cOcrAwU91cDXpTOU7gZOdSBP4bT/E2g0amBftDlUGQFWdubr8xQjwray+TJ9pNol/czn8F9z+MsR9ndOvO/Yx0m/njmAtHQLkYv98aepO3nPPsUy5JhVG9Uwpi/4uVrkGLt2wUfj6hmfzx17kK4DmlGn6R0864QQElGQDfvrs3AhHD2V35ivQasyFilPVlS6ckm8qvhwxLc6F25V5MKRa1TzqpAo358/Hud2sNpttUPD47jVrme2/os5DVi16SZX75bl0AUPls7cz//GNU20HyFe1ZNHT/huwimW/1WeJ1H2phUaHVgXwNZWS/PmpVi0SJ1H+Fk/z9hPQIDarN2uHdSvry4fNjiG/R+p6flLXXkjHWdveNaa9abPmb4DC9N/SHU+O3WDcSMCWbfPNE9h/TrRbNuZ56UGoSpapghvtTjEql2NeBhWmL9+OsT7nzZ68YYiw2zcqI4a/qzbt2HVKujdO+37UxTYtg2++MI0OGaCPHkg+ul1F3//xKOJL12qBt65giHePHDVR8O+ThAXBvFh6t/YUIh/knjb0ItqcJrA/tkeJBqwKwZ2pdTl9qXAvqS63KZg4n2V6gz5q6jBt21htYXZpqDakh3/BOLCIT5cbQV+lsYKas5Rz0FrC45VoEANsLH8LYEvQ3HtyaWQKnhWLoEuaA/c2w73dqg9AoyZDGCVP/HGG8uqr0GeolCiLdRfknEFtzQlG4uIiFBOnjypREREZHZRXig+Pl45efKkEh8fn9lFEekoO9frrUt3FPUrW1Eql7qmGPSGDDmuwaAojo7qcV1c0n//588rSv78ivHchn3oa7b+n98uGNdZWxuUPNaRCihKyUJ3zfJl57pNrblf7DW+FhMG7Em03qA3KLUqXDTm2bv+TJL72bX2tDFPfrvHyoVTDyxb8FeQG+o1p4mJjFHmj9urOOd/YPw/S+lRpYpBOXNab9w+MixSKVHornH9yb3+xnVxMfFK6VJRxnWXL6d/+fV69bMOFMXKSlGCg83XH9t+XnnntUPK/zrtU0Ifhr7SsQ78c9Z4Ll5Vzr3SvlIlPNz0woeHW+QQOek9++abppdr+vRn/2fV/5O0CAlRlNatE///t2qlKCdPKkpYmKL89puivPGGomi15nk++sgip5cmFqtXg0FRgo4pyunPFWVHE0X5q7Ci+Ex9Lo9eUVZqFGUlKT/+sFIU/z/Nt40KUpQHhxQl3F9R9LHpW/YcIsm6NRgUJcRHUa79rCjHPlKUrTUV5cqPz20YZf76738rYwv+klIbj0r3ciFymfBw2LrxCUN7nzMue7dTQIZNMaPRQLVqajogAMLC0m/fQUFqK1bCPjt1gjk/m3dx6vBBVT77TE3HxWmIjlO7RTWo7p9+Bckm3u7nhkajduNas8U1UdfwfX97c/paFQBqV7xI0041Eu0D4LW3a9Kr7UFAvU+1XTdnAgMtWHCRKxj0BlZ+d4jKZe8zdHozgsLUAcV02ngqFPczPUrepkIFsLVVR+L39dVQv348347ei0Fv4KcZx7n7SB0NvHPjo9RuZrqtxcpGx+ChphF6Fy5M//M4elT9rANo3RoKFTJfX+/1aqza1ZCf/m5KfqckWn7SoFG76lQvcwWAI77VOXM094xTkVkUBZYsgRYtTF23kxIYCNu3q+nSpdWpGhurM1Xi65vyts+LiFDvx96507Ssdm31+c6datrBAT74QG0Jv3NHncarZUvo1Uvt0p6jKAo8PK52Xf6nLOyoD77fQNABdbCy0Ivm+TVaUxduq3xgVwLyV1bvN3YbDg2WQ9sz0D0cSr9lvm2ewuDcEPKWBq0Fp3vJaTQadYC48v2g3iJoexoqfmyeJz4SirdR7xG3K/6010DOId3LhcgFTh19wpYdDuzaBUeOQHy8A9DGuL5n/4ydX7FqVTis3grMpfPR1GuYxLQUL2H6+Hv4+6s/rmvXVu9x0+kS55sxAw4dgmPHTMu86uW++x9LlC9GE3dv9vt4cuVOWYo7BfFa3Su07lyO1p2KM+db03XZEYMfp3hh5vuVnpxvFsZpn/z4+UGHDuoovfb2yW4iRLKuXIHub8Vx1se8e3SPloeZOrsEFWuWSbTN+fMGunWL4coVe2LjbBjxdXO2/XeKc9erGPNMnlEo0Xb9+sGXX6rzJi9fDlOngmM69tpcsyIEULuaPjtdnyVotBoGfRTNwC/U5z8sLciSBilvI15edDR8/DH8+qv6/NQpuHwZihdPnHfNGnW6MFAHN9Nq1Wm2DqrXK5k5U/3cfNHttbGx0K2b+h0G6r3/33+vDpqW3EBmxYrBsGHqI0d5dApu/q6O7B2RzIVzuxJgncQbutMtNeDWJvEjQWQO20LQ4t/MLoXFWKyl+8cff+Sdd96hRo0a1KlT58UbAIqiMG/ePBo3boyHhwcffvghfglDjQohXsrEj/ZSx8uBL7+EAwcgPt60TqvRM6znPip4Wube6uRULXHemL548GS67DP4TjBLflVbiezyxLFxI+RNYhwTABsbWL0aCjiaXowGTRP/GM8Ner9ruoftQagzq3Y1ou/g4ri4wOZDast2KeeHvPVR3RT3k69gPjZty4/L03HWTpyA9983/cgUIrViYtSg4qyPaXqZ1+uc5OR/vqz+r2GSATdAlSrwy3JfRnxgmqd656naBD5Wb1x9u8URPBpXSrRdoUJq6x+oPYF+meebKM/L0sfp+XONOoe2jXU8nTsp6bbv5Lw/2MN4T/vKlfD4scUPmSsFBKiDlCUE3ABPnqgt2El5dtTy999X/775Jri7q+kjR0wBeHL0ejVgT2gxz58fduxQpx3LFSOHK8+9f4KOwOW55gG3RgfFXof6P0PXB9DlDtT7MfG+bBwl4BYZymJv0bi4ONq0aUPPnj1Tvc2SJUtYsWIFkyZNYu3atdjZ2dGvXz9iYmIsVUwhcrQ1Cw8z9afmZssqVoSBA2H9yvs8vPeEuX9Ydm7apFStbHpPXzgfn0LO1Fs4/RyRMWqU3b/TYUq+oFdSmTKw9qfzlHK6S7dmR/Bq654u5chuPvy8EctmHqBjo2M42CXd13/YqMJY2764G12JErBli2kQqw0bYFSfF/yKFEl6dD800YBLucX06XD+6XW5ihXi+e/P02w/UYfaLaukvCFgYwuzljdm55rTlCh0z7hcozHw5fTk57seMtDU02XBj/bpNgr/wc0+3AtRB6lsU+8UjgUsfxtPvnymQbmiouCXXyx+yFxn/36oUwdOPr1mbG+vBsAAv/1m6smV4NIlU95atdTeXqAGyqNGmfLNnJn8MRUFPvoI/vpLfW5np37e1qyZ/DbZXsQtuLkCjvWHfyqq3cWfVaKt+tcs0A6EltvVbsx5Up7jXoiMZLHu5UOHDgVg/fr1qcqvKAq//fYbAwcOpFWrVgB8/fXXNGzYkF27dtGuXbtkt9Xr9eizeHNKQvmyejkzWlhwGEtmeVPSxZp3hni9eIMsJivX69kDV+g70nQP7pgh1/jf8LK4Ghu11S+jzCh75ZpFjemLV+xfuQwRoRHMX6Geq04bz/DxZVK1z5bdquPXDaAoCorZNlm5btNbr5EN6TVSnR7s+IEAdh0qyX//aTh+HGrUgP79Dalusa5aVe1G2aGDBr1ey7crGlOuzF4+/rKJZU8ildKjXvVxehZNPYyTsxU9PmmQruMhKAaFMf0OMGdFCwDs7RWKFlVHGS5qfxnXIvf5ZFRpKtTI2N4pGcXbG2bM0AIarKwUVq/RUKNGjVTV17N126JbDc54PeKT3odZv7c+I3rtp3K9psnup7K7Na1qnWLX6dpcv+/Kpt+O0r5Xyr07UmP176HG9NtvxWXY58mAAbBwodqK98PCOD4ZpEGrs0DAr9ejMyb1Funakhmfxb6+8McfGhQFihbl6XtQfS/u3q1hxAgN8fHq61m2rMK6dQYOHNAwbJjaljVkiMKRIwbj7U2//aYhoZ3rvfcM6PWmFtu334bx47XcuqVh61Y4c0aPh4d5eRQFPv9cw9Kl6j6srRX+/NOAl1f27U1kVq+Pz0P4dTQxQRDzAJ5cRxO0H03ETbNtDHe2oDg9c8uJfRlovAGcG5uPFp5dX5QcIjf9foLUn2eWuaf79u3bBAUF0bBhQ+MyBwcHatSowZkzZ1IMuq9cuZIRRUwXPj4+mV2ELMPHJy8TxxUj4K7649LKfgsVamfMtFXpLavV65NH4fR5v4yx5bdHy//o9oEjISHehGSBcXUUg4KDXX6eROXnwo1ieHt7v9L+Ni8L4FF4ZwC6Nt1PSIwjId4PX72gZL26tbS8haFTpwd06qTO/arVwvXradtHkSIwbegtvviuCwBDpzUhzvAPjTu5vHSAev16Hk6ccOCNN0IoWPDVe0e8Sr3++1sAE+Z3BuDmjb9p29sl5Q3S4J8lAcxZ0dn4PDJSw82bcPMmQGWgMiu3POL3X/ZQpEwSU9JkY/Fxev73bgHi49Uu4H363ENR7pHWj4dn63bMN7aMjD2JlU3+F37OvPXWbXadVqfq+WlxPKU80njg58THxbNul9qkmcc6ijKemlf+rEuL+rVKcOx0ca5et2blwn+o3iz9ByXSRkWR0NB67tw5DHZ2KeZ/FRnxWRwdrWHZsuL89ltR4uNf3Bm0fv0wpk+/gcGgp359qFixClev2nP6tIbJk2/TtetDDAb45Rd3wBatVqFaNR+8vc0/w7p3d2b2bHWAv3HjHjN1qh8Ajx5ZcfWqHfv2FWDtWvU2CY1GYcqUmxQrFpLm90aGUQzYxt3GLuYKdjHXsIu5ic4Qhk7/BEVjxWXXX4xZfXx8KHv3Cwo92Zn8/gADVjy6ewl/g/dza1wgyB/IfYOhZnW57ffTi2SZoDsoKAgAJycns+VOTk48fJjyj+dKlSphn8VH69Hr9fj4+FC9enV0SY3slIvEx8OMGRqmTdOg15t+gPucsOetfp6ZV7CXkBXrNT42nvaNz+P3QG0Jq1PxIks3NCBP3vQZrCy9VC3ty7HL7vgHlaZi2QLkdUz6Buz9/5wl+EE0nfrURatL/CMoLiaOLmtNF2vGTilBdc+Kr1y+rFi32Ymnpychj3bz9a8tMSg6Pp3eBfffrzL843v0/KQOtva2L97JU//+cZJe/SsSE2vDX3+5sGuXgTJlXq5cydXrrl3qiMAdO754IKPR/U1dj6f+2JY33jNQq47NyxXoGX//fJypP3U0PveqF8njJ3YEBsKjR6ZCPQovxJiRLhw4VTzZ9012NH3ofnxuqvPAV694n3nzimJjU/QFW5m86nu2erXqjP3qEY/CC3HctzI1PAq8Ui+GXX+eNo643q6hN15NMnZEs8/6HaPHaXVEr40bivDBMM/0P0hEhDHp4eGR/EAaryBRvT65ps73GxMMih50NqDNA7qnD62tOuexXSl1hOkEcWFoD70NPJ05C8WU1uVh55mGDPruY67fSd3/3GefGfjqq7xYWVU3Llu8WB0hXE2XZvjwUly4APfuqf+PrVtDq1aJb2WqWBGWL1cIDtawY0chYmMLcf48BAYm/v9btEihXz9XIIXeLo9OoQk9D5G3ICIATeQtiAxQnxtiQGsDWluUUt1Q6v1ktql2fweIC1VfR60NWOVFscqrDjr2zF+lRAdwqGDaMPw6mosz0YRegNDzaPSRSRZN0dri6elpVq9W+krwXNCtaG3BqT5KkaYozk3BqQEFrezJWZcac6bc9vspMjIyVQ3AaQq6Z8+ezZIlKU9SvnXrVsqXL5+W3b4ynU6XbSo1O5XVEvwuP+T9fk4cOpT4i2TXQWemZdPXJivV65iPDrDrdHMAijgGsX5TAfLmz3o/zKtWCOHYZTV99cxtar9WNVGeM3sv0apbDQyKjn5bDrDk78aJfgSv/OEIAQ/VeVfaex3Hs0m9dC1nVqrb7GbG0ubcun2Y1f+pPZjO+1ek/xcVGTfrAZ+8d5yPR7vj7FI4xX1sWn6ctwZ4EhuvBrV+fhpatNCxZw+8yldNQr0qBoVJgw8z5Ue1y+KaNeqgRMmJCI3gwHlT38/YeFt6vgenT5vu6XwZx3de5IOhNUiYyXPiR3uZvKi56TixcMf3Gm3e1HDlbnnO+bkx4O3DrNrplWHT/VmSz6GrTFus1oFOG8/yRSHY2b1cz6eXfc/qdDrqVb3BtuOFeBhWmFuXblGueukXb5iMv1ZFGdM9epDhnyNd+tWlxIR73H1UnH8O1eXutUBc3Eqk70GeOSedTpf0dBFpFR8Fj8+pI1Nb54fSPY371+l0cLgHPD774v3U/AaqjHxmvwYI/C9RtsDQInz2+7f8cfg94zJrawOjRmlp2lSd6ivwxi0CffYTGFmBWI0TPbsE0aldBDzJr049ZZ0frAvQokU+evaEVasgOFjDpEk64uJMx/rgA02S/wf588PQoeoo+nq9hv8SFxONxsDsd0cxoPDvsM1ZvV/Z1hnyFIE6C8wzX/oaAtYl/9roo0EfjUaJSVxnj06o02w9e+yk9pHXBQq4mZ7HhcDN5ckfE0CjQ2OdDx3xoFNDEJ1Oh7ZUB7Avrp6LrTPYFUdTsAbo8iR9bJEt5JbfT6k9xzQF3X379qVLly4p5nFxebluds7O6tXg4OBgihQpYlweHBxM5cqVk9tMZCOr5h/m4zHVCItSP0K1Wpg4EdYsvY5vQHlOXK7C4wehFCiSjnO15DKr5h9m9ormAFjp4vjz17u4uCU9t3Jmq1rFAFvU9IUzj6j9WuI8a369j0FR3/9LNzWhwIf7+OaXpsYgw6A38PUCU6vE6C+yVmt+bqfVaVm5vQFvLTnCtwvycviiGqwGPi7CxO+L8NVPUQwYEMP4L21xTmK8m79/Pkb3j2sSp1cDbjvbGKJibAkIgGbNYPeOSCpVffleTopBYdz/9jFjWXPjshUrUg669268SGy8+b2+16/D//6njoj/olbypPhduE2Ht52JilXP5f03DjLpB/MBDm1soGyNCvy94Tr1m4fxJCo/a3Y3pPaovXw+u3kSe80+4mPj6dsnzljPoz48SO2WzTOlLA1qh7PtuJo+tuf2SwfdcTFxrN+ttmjmtQ2n3XsZ/zlsbWvNgB6XmfRjcQyKjp/mXGHqT+kcdL+smGB17uSouxB5B6LuqH/DfCH0gtqCDVCorjHoNrJN+ULdgUuNKZL/AW6V7z+3JvGbc/u513lnwWoeR5raTxu7HWDxL0Wp2uCZke6vbIaKn5hvvCeJg+crxzffXOeff9ROAIsWgZ2dAdCSN6+Bzq38Ieppi7w+FsIuPX348sn7H7F4cRXu3lV35VQwlholDlDdxQcPl3M0qnQItxJXIBqIDoSE4QK0tlB7njr3dAL7JP5vdfZqy79VPjDEqi3e9qUS5zPEJV6WFP1zgxzrnum9lK8cFPCAAjWgoAc4Vge7YuqxEz4kn70PtsQb6kOIHCxNQXehQoUoVMgy0+qUKlUKZ2dnjhw5QpUq6gil4eHhnD17Nk0joIus6chWH94dZrpfv2yZOH5faU3DhhBy+Ta+q8pjUHTs/ecSnfvXz8SSZl8Xjlyj3+eexufffXGYpp0yfmTy1KpWwxQsXbyQ9D26W/aY34M4Z0UzChbYy7j5zdX1v53kwi21ZbtRtbM07pA1LzDkZlqdlm4fe9HtYzi67Tzffv2EdXvrYVB0RMfZMf97WPYrfP45fPaZOvIywF8/HqHnkDrE69VR03u2Osw3y+rxRlu4cAHu3IHmjcPYvf0+leuWMx4vJjKGf//wZtVfDtyLrMonn6gDFT0/nY5iUBjVb5/xIlWCnTvVaaMSyvG8bVtMXSa/nejD5HnVCQ2FtWuhRQt1zt60ePwglDfbxvAgVP3x27S6Nz+vr5ts63WVeuVZseCY8XNyzLdN8Kxzitbv1E7bgTPBlSvqNEtFi0IRp1icCuvQWeuYM+YgJ682B6CKy3Umzs+8iaXrN8oHT2cXOnY0jp5DX24/u/705lG4enGmQ+Nz2Odv+IItLON/IyozdXE8eoMV3/1WB7cqh3j/00Yv3vBl6GMg4iFE3lWD6WcfNb4C+2c+z2/9BSdS8WZ5fC5xEOjSFQrWAFsn0FirrbaGGNBH8/3qegz+pjtWOj1/LDzN27We2c6mILwdBmhAo2H/AR2d+9kSHa2+1woWNPDN5ED69LRHW+C5BqTIgNS9BtaOlCwJ48fDF1+o42JERKgfPt1qrSDvfx8mu6lTPXe8vatw6RJUqADFHB+h+buVGkw7uKmBdExeiAmC6CD1nEH9Gx0Eds90i3fpAvnKQl5XNdC2L62ef2quCr4Vol70MMSodaqPhLhwiH/2EQFOzw006OAGbb3V41q/QrcfIXIoi93TfffuXUJDQ7l79y56vR5fX3Xey9KlS5P36T0/bdq0YcSIEbRu3RqNRkOvXr348ccfcXV1pVSpUsybN48iRYoYRzMX2deGNcHGdI+Wh/lprTv5ndQf063b2DFvlbpu5/ZoOvfPjBJmf4vm3iEqVr2/6sM39/PJ5KaZXKKUVa1d3Ji+eCXx4Dt+N+I576/em+3kEEzwE3W8h/ELmlOg4D4+mdyMmbNN240ZGZ1oHyJradDGnbVt1Jbd+TNusHhDEyIjNYSHq90qv/9eYcLHhylQAD4cWR+9Qf2K+qDNIZb/0wCdtdqtvFWzUM75OnIvpBjNX3/Ari1XeRQUycpfQvlzZ3VCIkwX7g4cgK+/hhkz1PspQQ24R/Q6yPzVzY35qpR/hO/1QsTEqHPgduuW9DlsO6DeR2mli6PfUFfKeELXruq64cNiaVD1Jp5NTV0uH9wKYs1PF9m8PS9K3goUdSlgHA25aIFH/DLfF98ANQiqVPImG7a7vvB+90796jPxxF6mLG6OQdHRo385TlZ7ta7QlhQbC8OHw49mU+XaoNXoKZw/iEfh6vlrNXqW/RSVqeNP1Gtpumfh6BmnFHKmbM0qUytgj3cyr3tlifLFeO+Ng/z2b2MiYvLxwWeN+PffQ/yw0h1H55frVaYo4O8PPqfD8P13JwkzXnnPaYGn27mkNyrf3zzoti+ZdD6NDhyrQqHaULCW+vf52W0rDUpy0/v34YtFajper6Pn4LroC8A77yTsW6N2BQdOnYL2nSD66ddGhw7w889aihQpDhR/ftfgOQOqfQEh5yDsIsQ+hrgwiHsC8WFqOiYYHNXeDZ9+CsuWwdWrpl283+j3pM85QZgvzhV4ptdPMXjjODhWA6vnevQoihr4xgQBSuLW/yJN1MfL0GhAYwVaK/UeblLZ2GZlp14MEUIkTbGQ0aNHK5UqVUr0OHr0qDFPpUqVlHXr1hmfGwwGZe7cuUrDhg0Vd3d3pXfv3sqNGzeSPUZERIRy8uRJJSIiwlKnkW7i4+OVkydPKvHx8ZldlEzxep0TT0crUZQ71+6ZrQsLDlOsdLEKKEqlksnXd1aUler1jdaxxtc48NajzC7OC+nj9Upe2ycKKEr5Yn6J1i9cqBjPZ9rkKOXrEXuMz0FRhn3oa0xXc72m6OP16Vq+rFS3OdXdu4ry8ceKotMpZnX77KNPuwNKfKx5HTy8E6zULH/RmEej0Se7/bOPlo0eKof/Paf0bf+v2fLFU/cr27aZnn/Q+UqS5b16xs+Yp5nHGePyIR+FGJdXLHFDuXv9vvL7tweVNvWOKzptXKrKVjh/kHLNO/H7IDn6eL3SoeFR4/bVy1xWwh9nve/CezcClcY1LqfqNRjx/p5XOlZ6vWcrlrihgKLYWEUr0RHRad4+OlpRHPNFKqAo+e0eK1HhUa9Unlf15NET5YM2B8xea1fnAOXg5gup3oc+Xq/8tCheadxYUfLnN+3HnnDjk3KOV5XAH5wVZSWJH36rnyvUdUU5OVxRLn6jKDf/UOLv7lOmTXioDBsap0RGmmdNbb327p34f0qrVZQVK8zz+foqSuHCpjxt2ypKTEyqX4pU27LFdIzihUOU+IN9FeVgT0XZ10VRdrdVHyeGKMqVHxTl/m5FiXqQ/oXIwuQ7NufKbXWb2njUYkF3RpCgO3sw6A2Kc/4Hxh+WBr0hUZ7G7t7GLyd/39uZUMqXk5XqtXJl9fWzs1MUQ+KXOEuq4xH8NGgyJPqh1bat6QfLmTPqsi/67knyx/pvv6ZvwK0oWatuc7orVxSl+9uJg9MBnfclezHl0f0QpU7FC4m2sbcNV957/aCydcVxZcumOMXTM/kgT6PRK8tmHVAURVFiovVKfvtQBRSlYN5HSmx0bKJjLpy4z7jtV8P2GJdHR0QrtZMoS2ofttZRyqHN59L8uj1+8FhxK3nduJ8SJQzKiBGKcvp01vgMOLb9vFKy0F3TedoalE8+UZQ+fRTlzWY3lDoVzysuhW8rdjYRSuvaJ5WI0Ff7Lk+v9+yzAeqxfQ/TvP2zwdYHPR6/UlnS0x/zDimO9o+fCUgNysSJihIXl/J2Zw9cVhpUPpfk/+6zQbc94crrdc8o+mNDFeX8DEW5/qui3N2hKCHnFSUu5bqdNcu0z1GjzNelpl4PHzZtX6CAeQCu0SjKsmVqvps3FaVkSdO6Jk0UxZI/IUeNUpQSJRRl7VrLHSO7ku/YnCu31a0E3VlMbvsHfNbd6/eNX3Ctap1MMs/kQbuNeZbO2J/BJXx5WaVeDQY12AY1+M4unv1hdPq0aXl4uKLY2qrLS5Y0BRAGvUEZ2G2f2Y++0qUVJTZxfPTKskrd5iYndl1UWtc+qdhaRymf99rzwt4Ljx88VlrVOqlY6WKVtvWOKyvnHlTCH4eb5dHrFeWPPxSlnMtjs/8brSZeWfHtQbO877x20Lj+vz9PK8/r8Not0//r3ktm666f81fy2z1OFJSUdg5Qvui7W/E5dFl5FGxQfH0VZe9eRVmzRlHmf+WnTB60Rzm2/fzLvWCKovgev6445Et8waJqhWBl+tA9ys3zAS+971exbOZ+xcYq2liekoXuKsf33bfoMdPrPbtwXoyx3PPnp337gQNN9bBhwysVJd35XQwwu8gNilKqlKJ8/rmieB/0M7soHv44XPm8155EvTVKl1aU9u0V5YsvFGXt95fMgm5QlOnT01YmX1/T5z0oSsGC5oHwi+o1Pl5Ratc2bb9ggfqd8ckn5u+JWbMUpUIF0/OaNRXlcda5JpLryHdszpXb6laC7iwmt/0DPmvriuPGL7mRH+xJMs+hzaar6D3bX87YAr6CrFKvDx6Yfki88UamFiVNnm3d+P130/J/1gaaWjsHmG+jj9cr7/aMf6UfxamRVeo2N0rLrQIGvSFV+WMiY5TvJ+5Vihe8pzjYhSor5x1MlGf1AlPQPaTHXrN10dGKkjevuq5okfgkj/nPsmOKvW24UjDvI2VA533K/o3e6X7bQ1JOn1aUjh0Vxdo66Zb0gd32vXIrcmrp4/XK4O57zY7fxP2Mcv+m5bvOptd79sQJU9nfey9t2xoMiuLiom5rY6MoT568UlEsIj42Xpk6xZDkbR3VSl9Rvhq2R1m94JDi6hxgtq5yqWvK3n+e+34ON7V0530adGu1irJvXyrLEq8oXl6Jy7F48bN5Uq7Xn34ybVe9uqnl3mBQlOHDk35PuLmp35si88h3bM6V2+o2tfGo9sV3fQvxarxPRhjTnjWtk8xTt1VlHBzU6SN2HauEwZAhRcsx/H3vGtOuJUJTyJm1VH1mau6LF03pzX9cMqbbt7xtto1Wp+WXX3XMng3ffAOfPDeLi8j+tLrUfzVptJpU5bexs2HQ5GbcCizM9h0X6PFJ4hGy277jjrUuFoCNu8ujGBTjukOH1CmAAN5oo0vymB361OPRIyuCQvKzeENTmnSskaZzeVk1a8LGjXDvnjpYWeMGEWbrf1zXlDru9/Def9niZfnlm0MsXNvM+PyTt/ex63hVipZJYk64LMrDA2yfjmV39GjatvU5FUrA04GuW7RIfhT8zKSz1jF+gobDh6F9e7B6ZkjdC7cqMnZec94Z0hD/IHVEfVvraKZ8sgfvy6Vo1qFS0jsFxo5V/xoM0LMnBAW9uCzz58ORI2q6aFHz5YqS9DbPevRIHSU8wYIFpvPRaODbb9WZEZ5VurQ6S0FS0xQKIYSlSNAtLM7bxzQSr2eDoknmsba1pkULdYTXoCDw8cmQouUY/hf9jenS+c5kYknSpmpl0zydF4/fBEAxKGzZr45abmsdTcs2iUdOtbaGESNg5MjEU0EJkRKNVoONnU2S6/IXdqRlLXX05VtBpcyC1G3bTPneSGE6WVt7W3TWmTNatZOTOmXZgSN5uXn+NpMH7cXORp3izDegPPValmXOqL0Y9ImvaoaFxLJp+XE2LDlKZFhkovWpoRgU5v1UxPj8p2n7Wbi2WbKvd1ZlYwO1nk41df06PHyQynmLgS2/mz5/2zW/ld5FS1f16sGmTerFmh+mnaJh1cQjj7eseZpzR+8xYWGLF46qP3o0tGyppu/ehV69SPEC+rVrMG6cmtZo4M8/odHT2cwuXIDdu198DhMnQvDTyVHeeQeaNTNfr9HArFkwYYL6XZEQcLu4JN6XEEJYkvxcFRZ39koxQA2g3GqXSTbfszPD7dxp4ULlMP43TdPTuJZNujdBVlSmrMYYFFz0VZs1zh68wp1H6pQtLWv6kNfRPtnthUhvndubAs6/V983prdtVVvANRrT1GNZWZlqpZj4fXNOH7xPzfLqlJ1xehtGftOcNvXPcOtyIAcOqFO1NWoEhZyt6di3Hl0HNKBCmTAWT91PXEzqg02Aw1t9OHdTnS6tfuXz/G9c1p62MCUNql0zpo9v8071dpt3mi4StmuXniWynMKFYeC42hy64MH1c7eYOngvHRoeY8W3h9h1siaVapVN1X50Oli5Eoo8ve6ybZs6XV9SDAbo1w+iotTngwdDkyYw9Jl50efPT/l4Z8+apqGzt1d7PiVFo4EpU+DOHXUKr0rJN9YLIYTFSNAtLCoiAq7cKQNA9aoxWNkkPzX8s0H3rp3Svzwtbj3ToOJa3iHzCpJGWp2WKqXVVvprd12Jjohm85/3jOvbtYnKrKKJXKrje6Zf5Bt3qBcM716/j88FtbW2jvv9bNUttXLdchw5V47Pe+01Ltt5qjaulYvStKkajBw+DHq9xrj+XkgxPp7YlGrlbrP2+8NJtown5Yf5T4zpT/73OL1OIVPUr/HAmD52OCKFnCYPbwdz1LcaAFVcrmfZedNTUq56acYvaM4/h+rz/qeN0Gg1L97oGcWKqYG35ulm48errdHPzlcN8MMPsH+/mi5bFmbMUNNdukAptVc7mzapPQ2SoigwZIipJX38eNN2KZXNJnt1uhBC5CASdAuL8vEBRVG/fWvUcUwxb+XKULJoOAD790YTExmTYn5h4n87jzHtWqlwJpYk7aqWV/sGGhQdV87cYssuJ+O6dj3KZVaxRC5Vonwx6rmdB+DszcrcPB/A9nWmVs82XpeS2zTLsrW35etfm7Nr7WlKFLqXZJ4qVWDIh9fp0viAcdnVu2XpMbgh9apc4r8/T6d4jAeBCn/uqQ+Ak0Mwb39UJ93KnxnqtzAFzEdPpe5C5rY/L2FQ1FsL2rcIsEi5soNWrdQgGECvh6lT1dblevXU1utjx2DMGFP+pUshb141bW0NgwapaUWB779P+hhz5sCBp/+qFSrAZ59Z5lyEECK9SNAtLMrb25T29Ew5r0YDrWqrG0TF2nP434spbyCM/O+pFzR02nhKlCvygtxZS9XK8cb0vm33OHZZbSlyd71KmaovaLoQwgI6t3loTG9ceYNt2033aL/RwSmpTbKF196uxTkfW957/RDlivnzXo9wfvkFAgLUgQznLy/P+gNNOPLveZp5eBu3O3W1Kq261+K32QeT3ffPSzXExas9mfp9EEaevHmSzZsduFYpSRFHdSSw477lU9Xav2WLqVW4fZcClipatvDll9Cnj6nFG+DECRg2DBo0MA1K+PHH6oBzz/rf/yDP03+fpUvhyRPz9cuWmQ+ONm+eaeA7IYTIqiToFhaVlqAboFUr0zf0rn+zzyjcmc0/UB2grpTT/RS78GdFVavbGdNzfy5DwqQK7VrcyawiiVyu87umUZbW7a3NzmOVAXC0D6X+61Uyq1jpwqlEIX7f3ojr91z5fXU+evdO3C23QRt39pypwdYVJ6hR1jSY3JCJ1bl9NXFLuV4PixapaY0GPh6ZunuAszKNVkMD9xsAPI4owFVvvxTzx8fGse2oOh1DgbyPafhmNUsXMUvT6dTgOCAAZs9O+vu/dOmk7/kuXBjee09Nh4XBihWm3wV//aUG5QkmT4Y330zfsgshhCVI0C0syvuQaVRtD48X52/VuaIxvfNANrpxMhOFhzzhUbg6eI9rsYcvyJ31VKtdzJi+EehqTLfvmnjUciEyQuW65Y2DLR08mo+QiIIAtK53Mdtd1HpZGq2Gtu/X5fTVirz/htrCHRblyEcD4hNN5bRlC8Zpst58U71HNyeoX9s0qN6xPXdTyAmHt17gcUQBANo0uIiVTfYZ0NKSSpZUZ5o4c0YdkXzsWChXznTvt0MyPfefHVBt4UINBgPs2AHvvmu6j3v4cHVUciGEyA4k6BYWo4/T43NVvb+4fDF/8ud/8TbFyhbB3VUdceXk1SqEBD62YAlzBv9Lgca0a8nwTCzJyylbrRS21tFmywrmDaHBG1WT2UIIy9JooFOnxMvbvB6feGEOp9VpmfeLO8UKqWMvbN3rwooV5nm+/+6RMZ1wP25OUL+xaRySY8f0KeSEzRseG9Pt2qVigulcqGpVmD5dHRzt3j1o3Dj5vB4e0Ly5mr5yRcOSJcV56y0tcU8H1P/wQ/W+bk3axnkTQohMI0G3sJhr5/yJjFFHR/F0S7mV4FmtGqp5FUXLno3Zb9CijOZ/NcSYLl0q+wUFOmsdlUv5my1r2zD3tCiKrKlz58TL3nirQoaXIysoVKwAi5aZ7mUfNkwNmgCunvFjx161V0rZUmG0aZMZJbSMui0roNGozapHvVMeK2PLHrWPvlajp83blS1ettzg2dbuJUtKEBmpRthdu8KSJeq820IIkV3IR5awGO8jpjluPatHp5DTXOs2pnmZd26PTdcy5UT+d/MZ065lsmegmjCCeYJ2PeVHq8hc9etD0aKmwbOqlb5CqYrFM7FEmatTJ+jZU00/fgwDB6qjSy+a42fMM7DH6RwVCOV3yk9VF3XOqnM3KxD1JOkpDG9ejeRigHpBpkGVCxQulX0H28tKOnYEV1fzZa1bwx9/gFX2/KoTQuRiOejrUWQ13qdNAXONWnlTvV3TDlWw0ql9yHYedkExSFe9lPg/Ng3s5Fo3hf56WVjVKqaum1qtQptO8qNVZC6dDjrW22N8nh2nCktv8+dDkacNvhs3wvKvD7Hsb08AbK2j6TO8euYVzkLqe6gXj+P11pzefyPJPFu2my4Ut++WvWaPyMp0Ohg82PS8fn2F9etlpHIhRPYkQbewGO8LpkDbs2Hqp37KVzAfXlXU6cKu3y9LvZqPWLUK471cwtytW6b0860C2UW1Fk2M6YYNNRSSMdREFtDvk6JoNXp02njeH+SW2cXJdIULw/fzTK29/b/wMg4e9k7rkzmyhbd+i5LGdMJ0hs/bvNmUbv92sSTziJczZAh8/LGBzp2D2LzZQL58L95GCCGyIgm6hcV4XykNQKF8j9LcLfPtTo+N6ZPnnHj3XShfXp165PHjZDfLlfyfuR26dOnMK8eraNwY44+pPn0ytyxCJKj/hjsXT/hz6dQdPJtK0A3w1jt2vNX8CIBxej+AQcMKZlaRLKr+a+WM6aNHE68PD4c9TztEuLiAu3sGFSyXsLWFhQsVxo+/RcGc+S8mhMglJOgWFhHoF8T9x+rc0Z4V/dBo0zbE6OApTVk59xA1q5ru9Q0IgM8/B5eS0cwYvle6nT+VEHQXKQJ2dinnzaqcneHcOdi7V4JukbW41S5HBc9s2oXEQr7/tQJODqbP5toVL1K3Vc6cbaBaNbB/2nv82LHE6//bEU3s0zup2reX0bSFEEIkTYJuYRFnj5j6PHtWDUvz9hqthneHNeLUeSf27IEOHUzrwiPzMHZec5Z/fTAdSpq9xUbFcveuOtiTa5E7mVyaV1O2LDRrJj9ahcjqipR2ZuH0y8bnIwY/TvOF1ezCygrq1lXTt27B/fvm6zf/etyYbtf6ccYVTAghRLYi4z8Ki/A++cSY9qz58v9mGo06V2fz5nD5MsyZdJUlqysCMPjL2tRreg33hrlzGh+A29fuoyhqn3LXwreAkilvIIQQ6eCdIQ1xLnaaqMh42vdumNnFsaj6tSPYt08do2T5jN2Uq5iHwHtxBAYqbNijDh5nZxNJy1YywpcQQoikSdAtLML7pqmroWeD9BlYxs0NflpVEW3MPhZvaEZUrD3d39FwwieCvI6pHx09J/G/EgyoQXfpkjK9mhAi47z2dq3MLkKGqO/mAzQAYOz8lknmaVnrPHYO9TKwVEIIIbIT6V4uLML7kjptio0NVK6Xvi3R3/1ajxpl1el7fAPK88m7Z9J1/9mJ//UIYzq7jlwuhBBZWaPXy2NjFZPselvraIYN02VgiYQQQmQ30tIt0l1kpNoVHNRBaKyt03f/dg52rP3LhtqNnhAe7cCvWxvT/OuDfDgqe85R/Sr8/eKNaddyeTKxJEIIkTMVLePMn4uP8c/fsRRw1FO0KBQtZkXREnkoWsqBslWK4ehcO7OLKYQQIguzWND9448/sm/fPnx9fbG2tubkyZMv3GbMmDFs2LDBbFnjxo1ZunSppYopLOD8eTCoY3vh6WmZY1SqVY7FMw7x3qeNAPhkYk3qNbtG1fq56/7uWwGm1hXXigUyryBCCJGDdexbn459M7sUQgghsiuLBd1xcXG0adMGT09P/vrrr1Rv16RJE2bMmGF8bmNjY4niCQs6e/wRUAiwXNAN8O7wRuzdu58lG5sSGZOXt7vD8XOR5HW0t9xBsxj/O6Z72V3dimZiSYQQQgghhBBJsVjQPXToUADWr1+fpu1sbGxwdnZO0zZ6vR69Xp+mbTJaQvmyejnTw5m9PkAzAKqXuYJeX95ix/r2l1ocrXkFH79KXLxVgaED7/DTiowbQTaz69X/vnpxw8EuDIdC+XLF/1dGyey6FZYh9ZpzSd1mAr0enTGpBwu89lKvOZPUa86V2+o2teeZ5e7pPn78OF5eXuTPn58GDRowfPhwChYsmOI2V65cyaDSvTofH5/MLoLFnT6f35i2yheIt/eTFHK/umlfBfNu31JERNuzbFVJOvbwoVSpjB3JOzPq1aA3cCvIA4DShe9x9lx4hpchN8gN79ncSOo155K6zTjaqChqPk2fO3cOg52dxY4l9ZozSb3mXFK35rJU0N2kSRNat25NqVKlCAgI4Ntvv+V///sfa9asQadLfmTQSpUqYW+ftbsU6/V6fHx8qF69eornkt0Z9AbO+6mjvJYteouGzSw/f6unJ4y5DhMmqM9Pn65G+/aKxY8LmVuv924GEhuvtuqXKRmKp6cM5JOecst7NreRes25pG4zQYRpBg0PDw/Im/7Td0q95kxSrzlXbqvbyMjIVDUApynonj17NkuWLEkxz9atWylf/uW6E7dr186YdnNzw83NjVatWhlbv5Oj0+myTaVmhbIa9AYe3QuhcCmndN/3jXMBRMSUAcCz0l10utLpfoyk9OkDX36pDuC2YoWWL78EbQZOiJcZ9Xr7vqMxXbpCgUz/v8qpssJ7VqQ/qdecS+o2Az3zOut0OrPn6X8oqdecSOo158otdZvac0xT0N23b1+6dOmSYh4XF5e07PKF+ypYsCD+/v4pBt0i9W743OKtLhGcuV6FVrVOMfMbe2q3rJIu+1YMCjMnBgBlAKjhHpUu+02NkiWhdWvYvh1u3oQDe6No1tJy3dyyArNB1NwrZWJJhBBCCCGEEMlJU9BdqFAhChUqZKmyJHL//n0eP36c5oHVRNJ2rj5Fj/7lCIlQW593na5Nndege8vDTP2mOJVqlTXLrxgULh67zq5NdwgPVxg0zpOCRQsku/8Zn+5j2ebmANhaR9Ojj6ulTiVJvd+LYvt2NdD+9duTNGvZJNm8N88HsHLxdd77qDxl3dPvQlFG8vc3pV0z9qUWQgghhBBCpJLFOuDevXsXX19f7t69i16vx9fXF19fXyKeuf+nTZs27Ny5E4CIiAhmzZqFt7c3t2/f5siRIwwaNAhXV1eaNEk+eBIvphgUZn++lzbvehISoQ5Kp9PGG9ev3d2QqnVd+LjfE86dgxUroFfXm5QsHIh7wwoMn9GM8QuaU9czlAtHriZ5jFXzDzNufnPj89++O03luuUsel7P69wZ8tuFArB2V03CQ5IeWCzqSRQtWmqYsLA5Ld50JirjGuTT1a1bprQE3UIIIYQQQmRNFgu658+fT+fOnVmwYAGRkZF07tyZzp07c/78eWOemzdv8uSJOrK1TqfjypUrDBw4kDZt2jBu3DiqVavGypUrZa7uVxAZCe918OXz2c0xKOo9B+29jnPP7zELxu+jiGMQAHqDFYuXOVCjBvTqBSs2lOVeSDGzfV2/70r9FsVZv/iI2fKDm87x4QjTIF4zhu+l+yeWH0DteXYOdrzzxlkAImLysX6pd5L5vht/DP+gUgD4B+Rh7twMKmA687/22JiWoFsIIYQQQoisyWKjl8+cOZOZM2emmOfy5cvGdJ48eVi6dKmlipMr+flBly7g7V3VuGzCgL1M+qEpWp2WwVOb0fvTJ3w3YS+zVzThyRPzgQDy5gmnWQ1fWjaNYOX6opy5XoWImHx0+9iLcSf3MvmHJtzw09G5TzVi49Vt+3fcz+g5zTLyNM307l+Qn/5W07+szEuvkebrA/2CmPGT+SjfM2ZA375QtGjGlDG9+F9+ABTAxiqGYkWtseA1NCGEEEIIIcRLkl/pOZSfHzRuDN7e6vN8efVsWHKUKYubo9WZqt2hkAMTv2/O9es6Ro+Gdu1g/HjYtw8ehdix5WhdRnzdnENnyvD+GweN203/uTkdm5ym3Zt6goPVgLt1g2v8sNYLjVaTgWdqzqutOxVL3ARgj3dN/H1vm62f+Kkv4dEOADjmiwTgyRN15PPsxj9QvUrgUvi+WZ0KIYQQQgghsg75pZ5Brl6FkJCMmRb9vl8wrVsr3LmjPq9YEY4d19G5f4Nkt3F2hpkzYfNmmDoVmjYFmzymlm87Bzt+29qIb0fvNd4PvvVYXa5eU/O4u8Of2ypgbWttuRNLBY1Ww4dv+Rmf//b9NWP6/OGr/LyxEQAOdmEc3BuFgxp/s2SJPtn71bOixw9CCYtSpwxzLR6cyaURQgghhBBCJEeC7gzwzz9QpYqOnt0r4Hfx9os3eAUhgY95vUUw166prc2VK8OhQ1C16gs2TAWNVsOnM5uzffU5nBweGZcXKwZbtoCjYwobZ6APBlVCozEA8Ou6sigGBYCRw0ON97WP/eg07rWd+GLQRQAMBh0jhz/OlPK+DP/L943p0iUiUsgphBBCCCGEyEwSdGeAu36PAXgYkpdRg+9a7DgRoRG0axGAj586Z3PpokHs2KG2Yqen196uxUlvB9q2hVq1YOtWKF06fY/xKlzcSvJazTOAOvjboS0+bFt5ku0n6gDg6nyb4dPUVv/h48pS2lm9ELLteF22/3EycwqdRv5XQ41pVxd9JpZECCGEEEIIkRIJujPAu+9pKVrgAQDr93uxa+3pdD9GTGQMXV67xBHf6gAUcQxi178RuFhoCuoy5azZuhVOnYKaNS1zjFfx4fumecB+XhTGyLGmZvgZ42+RJ28eQO02P2OcacLrEV84Eh9rmk4tq/K/EW1Mu5bRpZBTCCGEEEIIkZkk6M4A+Z3yM+ML00jtQ0fmJy46Nt32Hx8bz7ttz7DzlDoqt6N9KDs2PaJizTLpdozspku/mjjYhQHw69bGXLhVEYD6lc/zzmAvs7zvDPainps6ld2FWxVZ9vXhjC3sS/C/pRjTruXzZWJJhBBCCCGEECmRoDuDvD+8AXUrqXNI+wZUYMGXyQd2QQEP+Xb0Xk7t9k3Vvkd+eIj1+9Xu0va2EWxd60+NJm6vXuhszD5/Xrp3iUy0/NvZSqLR1bU6Ld/ONnXRnjC7Ck8ePbF4GV/FrdumuetdKxbKxJIIIYQQQgghUiJBdwbR6rR8PuqucYCvSQtqce9GYKJ8l07coG7taEZ83ZwW7UsSFPAwxf0GXL7LwjXqiNzWuljWL/OlYTuP9D+BbOjDgcXMnr/dMYiG7aonmbdR+xp0a3YEgAehzswafcri5XsV/nfVYdc1GgMulYpncmmEEEIIIYQQyZGgOwOV8yxC/47qXNdPovIzZrD5FFWHt/jQqGUB/INKGfMsnH4+xX0u+OoKeoM6Fdnovod54906Fih59tSoEVSooKZtbGDmdymPKDdrXgmsdWq3/x9W1SA6IjrF/JkpYY7u4gUDsbGzeUFuIYQQQgghRGaRoDuDTZ1fmYJ5QwD47d/GHN7iA8DGpcd4rUsFHoWbdxVe8HsNwkPCk9zXtUR7OwABAABJREFUk0dP+OkvdRQzW+toBo+tZsGSZz8aDaxaBd26wZ9/QrlyKecvX8OV7q+dACAkoiB/L0v/Ae/SQ3Q0BD5WLyC4ViiQuYURQgghhBBCpEiC7gxWuKQTU0ecMz4fMtyKH7430HVAXaLj7AB4reZp3mqudnUOiSjIkllJT2O19GcDoZHqqNzvtzlB0TLpPDdYDlCnDvz1F3TsmLr8/QbYG9NL/6xkoVK9mlu3TOnSZe0yryBCCCGEEEKIF5KgOxN8NK4RHmXV0cxPX6vCJ4O1GAxqVbz3+iG2HnJn8kxTAP3tz5WIjTIf7Tw+Hub+YJoG69MJFTKg5Dlfs841KFdGfa13HSiMn1/mlicp/qYZznB1zbxyCCGEEEIIIV5Mgu5MYGVjxYK5+kTLR31u4LetXtjY2VC1fgU6NjoGwO3gEvzxh8Es7/r1puCrTRuoVlcG00oPWp2Wvv1N90gvX56JhUnGtQvBxrQE3UIIIYQQQmRtEnRnkqYdq/Lee2pao4F582DW11q0OlOVjJlSxpieNTsPhqdxt6LAnDmmfY0YkQEFzkU+/BC0T6th+XLQJ74+kimiI2KYNHAvwz83zctdpvijTCyREEIIIYQQ4kUk6M5ES5bA/Pmwfz8MHZp4vVfLojRpoqYvXYJNm9T04W2XOH5cTXt4wGuvZUx5c4uSJdXeAwABAbBrw4102/eKFfD11xATk7bt9qzzpobbXSYvak5svC0AlUtdp0kz63QrmxBCCCGEECL9SdCdiezsYMgQaNw4+TxjxpjSM2c+beWe8di4bMTAADQay5Uxt+r37j1jeukPiedTfxnbt0OvXjB6dNIXWZLy8HYwH7Y7SMu3PLlypywAVro4xvTZy6kLxXEo5JAuZRNCCCGEEEJYhgTdWVzbtlC9upo+ehSWf32Ivw/WA6B4wfu807toJpYu52rfrTDO+R8C8Pf+2jy8HfyCLV7su+9M6Z9+gv/+Szn/uYNXqFrNwK9bTVdlvKr4cHrfTWYsa459fvsUthZCCCGEEEJkBRJ0Z3EaDYwedN34fMDY+iiKWm1Del3Cxs4muU3FK7DJY02vThcAiNPb8Pv3519pf5dOXGf7dvNl/d+7l+wc7MF3H9Gpmx1BYeoo9o72oSyasp+DPtWo3ihrTmUmhBBCCCGESEyC7mygR19XyhQJAEBvsALA3jaCj0bXyMxi5Xj9BpcyppeuKoFiUF56Xwu+vm1M57OLAMAvsDhffHwqUd74OAPvdLiJ3wMXAOpUvMil8zF8NKGp2UB7QgghhBBCiKxPfsFnA1Y2VowYYD6YV99OJylUvGAmlSh3qFKvPF5VfAA471+RE7suvtR+Hj8I5ddNtQHIaxvO3s23sLOJBGDh2mbs33jWLP8XY7XsOq3mL+IYxIYtBSlWtsjLnoYQQgghhBAiE0nQnU30/bwuhZ/eY6zRGBg+tkzmFiiX6PfBY2N66Y8vd1/3sjlniIhRp/nq3eEUtVtW4avPThjX9/24AJFhahD+xx8we7a63MrKwF8r7lOqoszBLoQQQgghRHYlQXc2YZ/fnt++v0mNspf5bswBytdwzewi5QrdP/Ikr6163/Wq7Z5EhEakaXt9nJ6Fv5YzPh8ySu0yPmRKYxpWPQfA9fuujB94HG9v6N/ftO28eVqadKj+aicghBBCCCGEyFQWC7pv377N2LFjadmyJR4eHrRq1Yr58+cTGxub4nYxMTFMnjyZ+vXrU7NmTYYMGcLDhw8tVcxspe37dfG+4cawr5pldlFyDYdCDvRofQaAJ1H5+eunM2nafvNvJ7kZWBqAN+qepHJdNQDXWetY9ms+bK2jAZi7qiltW4cRFaVu17cvDByYTichhBBCCCGEyDQWC7pv3LiBoihMmTKFLVu28MUXX7B69Wq+e3bepCR89dVX7Nmzh7lz57JixQoePHjA4MGDLVVMIV6o38cFjOmv5rkQFZn6AdXmf29tTA8dYr7OrU45pgw5CoCiaLn/MD8A9esrfP89Mv+6EEIIIYQQOYCVpXbctGlTmjZtanzu4uLCzZs3WbVqFaNHj05ymydPnrBu3Tpmz56Nl5cXoAbhb775Jt7e3nh6eia5nV6vR6/Xp/s5pKeE8mX1corE6r1eBa8qPhzxrc6VO65MmGhg1iwDkHK9+hy+yu4ztQCoWOImrXvUSJRv2DQv/tp8gRNXqgFQrEAga1coWFs7I/8qmUveszmT1GvOJXWbCfR6dMakHkt8cUm95kxSrzlXbqvb1J6nxYLupDx58gRHR8dk158/f564uDgaNmxoXFa+fHlKlCiRYtB95cqV9C6qxfj4+GR2EcRLGDHRQM9eBuLitHz3nYbq1S/j7h5pXJ9Uvc6bHgxUBuC9Lmc55/MoyX2P//Ih/xvkTFy8Nd9+dYKgsOIEed+xyHmItJP3bM4k9ZpzSd1mHG1UFDWfps+dO4fBzs5ix5J6zZmkXnMuqVtzGRZ0+/v78/vvvyfbyg3w8OFDrK2tyZ8/v9lyJycngoKCkt2uUqVK2Nvbp1tZLUGv1+Pj40P16tXR6XQv3kBkKZ6e8OV1GD8eDAYNX39dmRMnDFhZJV2vwQ8V/tobD4CDXRjDvmyOQyGHZPd9o300Br0B+/xtM+BsRGrIezZnknrNuaRuM0GEaXBRDw8PyJs33Q8h9ZozSb3mXLmtbiMjI1PVAJzmoHv27NksWbIkxTxbt26lfPnyxueBgYH079+fNm3a0L1797Qe8oV0Ol22qdTsVFZhbvRo2LABTp2Cixc1TB99lSlzKwKJ63X5LxAVo769+va4QwHnKinuO2/+9P+hItKHvGdzJqnXnEvqNgM98zrrdDqz5+l/KKnXnEjqNefKLXWb2nNMc9Ddt29funTpkmIeFxcXYzowMJBevXpRs2ZNpk6dmuJ2hQsXJi4ujrCwMLPW7uDgYJydndNaVCHSlZUVLF8OtWur3cxn/VCBzp190RYwz3f2LCxYoKY1Ghg8LuWAWwghhBBCCJFzpXn08kKFClG+fPkUHzY2NoAp4K5WrRozZsxAq035cO7u7lhbW3PkyBHjshs3bnD37t1k7+cWIiNVrw7j/7cPAL3Biv79rYmPVbuR3zwfwPtvHKJmTYU7T2/JbtcOKlTIrNIKIYQQQgghMpvFpgwLDAzkgw8+oHjx4owePZpHjx4RFBRkdm92YGAgbdq04dy5cwA4ODjQrVs3Zs6cydGjRzl//jxjx46lZs2aEnSLLOOLOY2oUfYSAOf83Fj+TTDD3z2Am2dRVu5ohKKoc325usILZsgTQgghhBBC5HAWG0jt0KFD+Pv74+/vbzZ1GMDly5cBiIuL4+bNm0RFRRnXjR07Fq1Wy9ChQ4mNjaVx48Z8+eWXliqmEGlmnceG5csU6r4Wj95gxeINb5qtd3IIZtwEOwYOsSdPnkwqpBBCCCGEECJLsFjQ3bVrV7p27ZpinlKlShkD8AS2trZ8+eWXEmiLLK1m8yqM6buX6T83Ny6zt43gs14nGDm9Jo7OWXs0fSGEEEIIIUTGsFj3ciFyugnzvHiz/nEc7MIY2G0f130jmPpTcxydk5+LXgghhBBCCJG7ZNg83ULkNLb2tmw8UAtvb29q1mqcK6ZFEEIIIYQQQqSNtHQL8Qo0Wg0arSaziyGEEEIIIYTIoiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkKy9T3dBoMBwGzKsaxKr9cDEBkZKff+5iBSrzmX1G3OJPWac0ndZoLoaHBzM6U16X+7ldRrziT1mnPltrpNiEMT4tLkaBRFUTKiQJYQHByMn59fZhdDCCGEEEIIIUQuVaZMGZycnJJdn62D7vj4eEJDQ7G1tUWrlZ7yQgghhBBCCCEyhsFgICYmBkdHR6ysku9Enq2DbiGEEEIIIYQQIiuT5mEhhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESC7gywcuVKWrZsSfXq1Xn77bc5d+5cZhdJpNHixYvp1q0bNWvWxMvLi0GDBnHjxg2zPDExMUyePJn69etTs2ZNhgwZwsOHDzOpxOJl/PTTT7i5uTF9+nTjMqnX7CkwMJCRI0dSv359PDw86NChAz4+Psb1iqIwb948GjdujIeHBx9++KFMQZkN6PV65s6dS8uWLfHw8KBVq1Z8//33PDsmrNRt1nfixAk+/vhjGjdujJubG7t27TJbn5o6fPz4MSNGjKBWrVrUqVOHsWPHEhERkYFnIZKSUt3GxcXxzTff0KFDBzw9PWncuDGjRo0iMDDQbB9St1nPi96zz5o4cSJubm788ssvZstze71K0G1hW7duZcaMGXzyySds2LCBypUr069fP4KDgzO7aCINjh8/znvvvcfatWtZvnw58fHx9OvXj8jISGOer776ij179jB37lxWrFjBgwcPGDx4cCaWWqTFuXPnWL16NW5ubmbLpV6zn9DQUHr27Im1tTVLlixhy5YtjB49GkdHR2OeJUuWsGLFCiZNmsTatWuxs7OjX79+xMTEZGLJxYssWbKEVatWMXHiRLZu3crIkSP5+eefWbFihVkeqdusLTIyEjc3N7788ssk16emDkeOHMm1a9dYvnw5ixYt4uTJk0ycODGjTkEkI6W6jY6O5uLFiwwcOJD169ezcOFCbt68ycCBA83ySd1mPS96zybYuXMnZ8+epUiRIonW5fp6VYRFvfXWW8rkyZONz/V6vdK4cWNl8eLFmVgq8aqCg4OVSpUqKcePH1cURVHCwsKUatWqKf/++68xz7Vr15RKlSopZ86cyaRSitQKDw9XXn/9deXQoUPK+++/r0ybNk1RFKnX7Oqbb75Revbsmex6g8GgNGrUSPn555+Ny8LCwhR3d3dl8+bNGVFE8ZIGDBigfPHFF2bLBg8erIwYMUJRFKnb7KhSpUrKzp07jc9TU4cJn8Pnzp0z5tm3b5/i5uam3L9/P+MKL1L0fN0m5ezZs0qlSpWUO3fuKIoidZsdJFev9+/fV5o0aaJcuXJFadGihbJ8+XLjOqlXRZGWbguKjY3lwoULNGzY0LhMq9XSsGFDzpw5k4klE6/qyZMnAMaWs/PnzxMXF2dW1+XLl6dEiRJ4e3tnRhFFGkyZMoVmzZqZ1R9IvWZXu3fvxt3dnaFDh+Ll5UXnzp1Zu3atcf3t27cJCgoyq1cHBwdq1Kghn81ZXM2aNTl69Cg3b94E4NKlS5w6dYqmTZsCUrc5QWrq8MyZM+TPn5/q1asb8zRs2BCtViu38GUz4eHhaDQa8ufPD0jdZlcGg4HPP/+cfv36UbFixUTrpV7BKrMLkJOFhISg1+txcnIyW+7k5JTofmCRfRgMBr766itq1apFpUqVAHj48CHW1tbGL40ETk5OBAUFZUYxRSpt2bKFixcv8tdffyVaJ/WaPQUEBLBq1Sr69OnDxx9/jI+PD9OmTcPa2pouXboY6y6pz2a5Xz9rGzBgAOHh4bRt2xadToder+fTTz+lY8eOAFK3OUBq6vDhw4cUKlTIbL2VlRWOjo7y2ZyNxMTEMHv2bNq1a0e+fPkAqdvsasmSJVhZWdGrV68k10u9StAtRJpNnjyZq1ev8scff2R2UcQrunfvHtOnT2fZsmXY2tpmdnFEOlEUBXd3dz777DMAqlatytWrV1m9ejVdunTJ5NKJV/Hvv/+yadMm5syZQ4UKFfD19WXGjBkUKVJE6laIbCQuLo5hw4ahKAqTJ0/O7OKIV3D+/Hl+++031q9fj0ajyeziZFnSvdyCChYsiE6nSzRoWnBwMIULF86kUolXMWXKFPbu3cuvv/5KsWLFjMsLFy5MXFwcYWFhZvmDg4NxdnbO6GKKVLpw4QLBwcF07dqVqlWrUrVqVY4fP86KFSuoWrWq1Gs25ezsTPny5c2WlStXjrt37xrXA/LZnA19/fXXDBgwgHbt2uHm5kbnzp3p3bs3ixcvBqRuc4LU1GHhwoV59OiR2fr4+HhCQ0PlszkbiIuLY/jw4dy9e5dly5YZW7lB6jY7OnnyJMHBwbRo0cL4W+rOnTvMmjWLli1bAlKvIEG3RdnY2FCtWjWOHDliXGYwGDhy5Ag1a9bMxJKJtFIUhSlTprBz505+/fVXXFxczNa7u7tjbW1tVtc3btzg7t27eHp6ZnBpRWo1aNCATZs28ffffxsf7u7udOjQwZiWes1+atWqZbznN4Gfnx8lS5YEoFSpUjg7O5vVa3h4OGfPnpXP5iwuOjo6UUuKTqczThkmdZv9paYOa9asSVhYGOfPnzfmOXr0KAaDAQ8Pjwwvs0i9hIDb39+fX375hYIFC5qtl7rNfjp16sQ///xj9luqSJEi9OvXj59//hmQegXpXm5xffr0YfTo0bi7u+Ph4cGvv/5KVFQUXbt2zeyiiTSYPHkymzdv5ocffiBv3rzG+08cHBzIkycPDg4OdOvWjZkzZ+Lo6Ei+fPmYNm0aNWvWlOAsC8uXL5/xvvwE9vb2FChQwLhc6jX76d27Nz179mTRokW0bduWc+fOsXbtWqZMmQKARqOhV69e/Pjjj7i6ulKqVCnmzZtHkSJFaNWqVSaXXqSkRYsWLFq0iBIlShi7ly9fvpxu3boBUrfZRUREBLdu3TI+v337Nr6+vjg6OlKiRIkX1mH58uVp0qQJEyZMYPLkycTFxTF16lTatWtH0aJFM+u0BCnXrbOzM0OHDuXixYssXrwYvV5v/D3l6OiIjY2N1G0W9aL37PMXT6ytrSlcuDDlypUD5D0LoFESLg8Li/n9999ZunQpQUFBVKlShfHjx1OjRo3MLpZIg+fnbk4wY8YM4wWUmJgYZs6cyZYtW4iNjaVx48Z8+eWXuabbTE7xwQcfULlyZcaNGwdIvWZXe/bs4dtvv8XPz49SpUrRp08funfvblyvKArz589n7dq1hIWFUbt2bb788kvKli2biaUWLxIeHs68efPYtWsXwcHBFClShHbt2vHJJ59gY2MDSN1mB8eOHUtywKUuXbowc+bMVNXh48ePmTp1Krt370ar1fL6668zfvx48ubNm5GnIp6TUt0OHjyY1157LcntfvvtN+rXrw9I3WZFL3rPPq9ly5b06tWLDz/80Lgst9erBN1CCCGEEEIIIYSFyD3dQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBC5FLHjh3Dzc2NY8eOZXZRhBBCiBxLgm4hhBAiCevXr8fNzS3Zh7e3d2YXMUt6+PAhX3zxBV5eXnh4eNClSxf+/fffF27Xp08f3NzcmDJlSrL7nThxIk2aNKF69eq0bNmSsWPHJsp3+PBhPvjgA+rXr0+dOnV46623+Pvvv1/1tIQQQoiXZpXZBRBCCCGysqFDh1KqVKlEy0uXLp0JpcnawsPDeffdd3n48CG9evXC2dmZf//9l+HDhxMfH0+HDh2S3G7Hjh0pXsS4d+8ePXv2BOCdd96haNGiPHjwgHPnzpnl+++///jkk0/w9PRkyJAhaDQa/v33X0aPHs3jx4/58MMP0+tUhRBCiFSToFsIIYRIQdOmTalevXpmFyNbWL16Nf7+/vzyyy94eXkB0LNnT7p3786sWbN44403sLGxMdsmJiaGmTNn0r9/f+bPn5/kfidOnIhOp+Ovv/6iYMGCyR5/5cqVODs789tvvxmP06NHD9q2bcv69esl6BZCCJEppHu5EEII8Qrmz59P5cqVOXLkiNnyCRMm4O7uzqVLlwCIjY1l3rx5dO3aldq1a+Pp6cm7777L0aNHzba7ffs2bm5uLF26lJUrV/Laa69Ro0YN+vbty71791AUhe+//56mTZvi4eHBwIEDefz4sdk+WrZsyUcffcTBgwfp1KkT1atX580332THjh2pOqezZ8/Sr18/ateuTY0aNXj//fc5derUC7c7efIkhQoVMgbcAFqtlrZt2xIUFMSJEycSbbNkyRIURaFfv35J7vP69evs37+ffv36UbBgQWJiYoiLi0syb3h4OI6OjmaBvZWVFQULFiRPnjwvLL8QQghhCRJ0CyGEECkIDw/n0aNHZo+QkBDj+oEDB1KlShXGjRtHeHg4AAcOHGDt2rUMGjSIypUrG/fz559/Uq9ePUaOHMngwYN59OgR/fv3x9fXN9FxN23axB9//MEHH3xAnz59OH78OMOHD2fu3LkcOHCA//3vf3Tv3p09e/Ywa9asRNv7+fnx6aef0rRpU0aMGIFOp2PYsGEcOnQoxfM9cuQI7733HhEREQwePJhPP/2UsLAwevfunag79/Pi4uKSDG4Tll24cMFs+d27d1myZAkjR45MNihOuJhRuHBhevfujYeHBzVq1KB///7cvn3bLG+9evW4evUqc+fOxd/fn1u3bvH9999z/vx5+vfvn2LZhRBCCEuR7uVCCCFECpLqkmxjY4OPjw8A1tbWzJo1i65duzJz5kxGjRrFuHHjcHd3Z8CAAcZtHB0d2b17t1krbPfu3Wnbti0rVqzgq6++MjtGYGAgO3bswMHBAQCDwcDixYuJjo5m3bp1WFmpX+EhISFs2rSJyZMnm+3bz8+PBQsW8PrrrwPw1ltv0aZNG2bPnk2jRo2SPFdFUZg0aRL169fn559/RqPRAOp91O3atWPu3LksW7Ys2deqbNmyHD58mDt37lCyZEnj8oRW8sDAQLP8M2fOpEqVKrRr1y7Zffr5+QFqz4Hq1avz3Xffce/ePRYuXEifPn34559/sLOzA2DQoEHcvn2bRYsW8eOPPwJgZ2fH/PnzadWqVbLHEEIIISxJgm4hhBAiBRMnTqRs2bJmy7Ra845ilSpVYujQocyZM4fLly8TEhLCsmXLjIExgE6nQ6fTAWoAHRYWhsFgwN3dnYsXLyY6bps2bYwBN4CHhwcAHTt2NNuvh4cHmzdvJjAwEBcXF+PyIkWK0Lp1a+PzfPny0blzZ5YsWUJQUBDOzs6Jjunr64ufnx8DBw40a80H8PLyYuPGjRgMhkTnn+Ctt95i9erVDB8+nC+++ILChQvz77//snPnTgCio6ONeY8ePcqOHTtYu3ZtkvtKEBkZCYCzszM//fST8djFihXjs88+Y/Pmzbz99tuAejGkTJkyvPHGG7z++uvo9XrWrl3L559/zvLly/H09EzxWEIIIYQlSNAthBBCpMDDwyNVA6n169ePLVu2cO7cOT777DMqVKiQKM+GDRtYtmwZN2/eNLsvOanR0YsXL272PCEAT255aGioWdDt6upqbKlOUKZMGQDu3LmTZNCd0Ko8evTo5E6TJ0+e4OjomOS6ypUrM3v2bL788kvjaOPOzs6MHTuWSZMmYW9vD0B8fDzTp0+nU6dOxosJyUnodt6mTRuzYL9NmzaMGjWK06dPG4PuKVOmcPbsWTZs2GDM27ZtW9q3b8/06dP5888/UzyWEEIIYQkSdAshhBDpICAgAH9/fwCuXLmSaP3GjRsZM2YMrVq1ol+/fjg5OaHT6Vi8eDEBAQGJ8ie0ij8vuVZmRVFeofTm+xg1ahRVqlRJMk9C4JycNm3a0LJlSy5duoTBYKBq1aocP34cMAX9f//9Nzdv3mTy5MmJ7suOiIjg9u3bODk5YWdnR5EiRQD1nu5n6XQ6ChQoQFhYGKAOVLdu3Tr69+9v9hpZW1vTpEkTVq5cSWxsbKLR04UQQghLk6BbCCGEeEUGg4ExY8aQL18+evfuzaJFi4xdnBNs374dFxcX/s/efYdFcbwBHP/eHUUQRAWs2AsWQLD33ntNTOyaqFFjoiZqEk1i7O2XxGjUJGrUFEtiNPYWu9h77wWxIChIkXK3vz9W7zgpgnIc4Pt5Hh73dmd35xiBe3dm3pk9e7ZZD3RSy2S9rps3b6Ioitm9nvdkx59vHd/znnInJydq1qz5yve2s7Mz68Hev38/gPGad+/eJTY21tgbHt/q1atZvXo1c+bMoXHjxpQvXx5IOB88JiaGR48ekTt3bgAeP35MXFwcer0+wTXj4uIwGAwYDIZXfk9CCCHEq5KgWwghhHhNixYt4vjx48ydO5f69etz8OBBvv76aypXrmwMCp/3XMcPhE+ePMmJEycoUKBAmtfpwYMHbN261Rj4h4eHs3r1asqWLZvo0HIALy8vChcuzMKFC2ndujXZs2c3Ox4SEmJ8Pyl148YNli1bRoMGDYxz41u2bJloT/rgwYOpV68eb731ljFor1atGq6urqxdu5aBAwdib28PqEP19Xq9MZB3dXUlR44cbN26laFDhxp7tCMiItixYwfFixeXZcOEEEJYhQTdQgghRDJ2797NtWvXEuyvWLEihQoV4urVq8b1txs2bAioWbnbt2/PuHHj+P777wGoX78+W7ZsYfDgwdSvX5+AgACWLVtGyZIljcnC0lLRokX54osvOH36NK6urvz9998EBwczefLkJM/RarVMmDCB999/n9atW9OxY0fy5s3L/fv3OXjwIE5OTsybNy/Z+7Zs2ZLmzZuTP39+43vMmTMn48aNM5YpUaIEJUqUSPR8Dw8Ps0zjdnZ2jBw5klGjRtGtWzfatWtHYGAgS5cupXLlysaHCjqdjr59+/Ldd9/x9ttv065dOwwGA3/99Rf37t1j+vTpqfn2CSGEEGlGgm4hhBAiGUkN/548eTIFChRg1KhR5MqVi88//9x4rGjRogwfPpyJEyeyYcMGWrZsSceOHXn48CHLly9n7969lCxZkunTp7Np0ybjnOe0VLRoUcaOHcu0adO4fv06Hh4efPvtt9SpUyfZ86pVq8by5cv58ccf+e2334iMjMTd3R0fHx/efvvtl963TJkyrFq1iocPH5IrVy6aN2/O0KFDcXV1feX30r59e2xtbfnpp5+YNm0aOXLk4O2332bYsGFmc98/+OADPDw8WLJkCXPmzCEmJgZPT09mzZpFs2bNXvn+QgghxOvQKGmReUUIIYQQGUbDhg0pVaoU8+fPt3ZVhBBCiDde4ilQhRBCCCGEEEII8dok6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCZE63EEIIIYQQQghhIdLTLYQQQgghhBBCWEimXjIsLi6O0NBQ7O3t0Wrl+YEQQgghhBBCiPRhMBiIjo7GxcUFG5ukQ+tMHXSHhoZy48YNa1dDCCGEEEIIIcQbqmjRori6uiZ5PFMH3fb29oD6Jh0cHKxcm+Tp9XouXbpE6dKl0el01q6OSCPSrlmXtG3WJO2adUnbWkFUFNSqpW7v2wcW+Cwm7Zo1SbtmXW9a20ZFRXHjxg1jXJqUTB10Px9S7uDggKOjo5Vrkzy9Xg+Ao6PjG/Ef8E0h7Zp1SdtmTdKuWZe0rRUoCly8qG5nywYW+Cwm7Zo1SbtmXW9q275sqrNMhBZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCpKmoKFi1Cj77DE6dsnZthLCuTD2nW4g31dOnYGcHslKeEEIIITKKp09h0yZYsQLWroXwcHX/nDmwcydUrGjV6glhNfKRXYhM5sABcHODokVh7d+PrV0dIYQQQrzhDh6Ebt3A3R06dIA//zQF3ABPnkDz5nDpkvXqKIQ1SdAtrC7qSRQGvcHa1cg0vv4aIiLg9m1o2zknvVru5dH9x9aulhBCCCHeMAcPQosWUL06/PGHeaCdKxf07Qs1a6qvg4KgaVO4c8c6dRXCmiToFlb172o9+fLpKVkwgKDbD61dnVTbsvwYf3wbyKXjN9LlfleuwObN5vuWbKyNV7ko1i85nC51EEIIIcSb7dAhaNlSDbY3bTLtfx5ob9wI9+/DggWwfj34+KjHb95UA++QEOvUWwhrkaBbWM2uXfBWVy1hkU5cv1+Yb78+Y+0qpcqRbedo1b0S//u9DRWqF2Jkr52EBYdZ9J7z5+mN260a3CaHQygAgSH5ad2rCn1a7+Hxg1CL1kEIIYQQmcujRzBlCgwfDr/8Av7+EPoKHxeCg6FVK6hWTQ2snytSBH7+Ge7dUwPt5s3B1lY9ljOn2mFQvLj6+tw5aNNGS1SUhCHizSH/24VVHD8ObdpAdLTGuO/HZX48CXlixVqlnMEAgz8rgaKoP0KxejumL6mPZ8kolszYa5Hh8lFPolg4Xw3q7ewMLFpeiDPHI2hW5YixzK/r6+Dr9YSLR66l+f2FEEIIkfmsWwfly6tZxL/9Ft5/Xx3ynTMnFCoEzZqpgXhKDBoEGzaYXhcpAj/9pM7Vfu89NclrYvLlgy1bIG9e9fXBgxpGjSpOTMxrvTUhMg0JukW6u3zyDs2bKzx5Fl87ZosGIDTShV+mHbVizVJu4UI4dMQegLw5H2Jv+xSAe4/z0uvT2tTyOsvetacIC36CYlDS5J4r5x8lJDwXAF3q++PuDoU8C7DxQCV+nrgHZwc1IL8Z5EHtRjk4su1cmtxXCCGEEJYVGwvz58PIkXD3btpc89Ej6NVL7eRI6poBAWow/P776pDx5EREwL//qtsuLqZg+/33kw624ytRQu3xdnFRX+/f70KHDlqCg1P+noTIrCToFq9EMSj8PHE3Xw3cmaq52IFX79G0qYEHD9Qe7po1YdfGQOPx//1Smtjo2DSvb1oKCYHRo02vx00J5vThu7SvfcC478AFb+q09cHFzRkHBz2FC0OlSmqykc8+g8jI1N937gIX4/agoc7GbY1Ww3uf1+HMsSdUKHYRgIdhbjRoU4j//jqe+hsJIYQQIt1s3arOeR44EKZPh7p1Xz/Z2IYN4OUFS5aY9rVsqQ4JnzULBgyA2rXV3u7n/vwz+Wtu3qwuCQbQtWvKg+34KlRQlxLLlk15dk0Nfn7qcHchsjIJusUrmTpiF/3H1OWb+fXx9Y1lz78nX3rOo/uPadboCTceFALAq/gt1q2DyvWL0abmQQACgguwbM5LHrVa2Zgv9Mansm+/baBy5XCKexXmnz3V2fzHUcp4XDUrHx1jw+3bcOyYmmxkyhT16XBqHN95gQMXvAHwKXaRGi28E5QpXKYgOw/ko46X2hbhT51p8a43q1YlvF5o0GOWzNjLh2/vYvvKY6mrjBBCCCFe27Vr6vJaTZvChQum/VeuQIMGEBiY9LlJMRjUgLpVK9P5OXLAokXqMPPmzeHDD2HePNizR63D87nXf/2lnp+U1atN2x06pL5uz9WpA//+ayBnTrWT5fZt9UHDzJmgpM3gQJFJjB49mkGDBhlf9+jRg4kTJ6Z7PQ4ePIinpydhYZbLzSRBt0i1Tb8f4fPv6xpfB4bkp0GH8kwZeSzJX9an9l6iVYPbnLlZCoCieW6zeYsdudTR0nw6Kpux7PQf3JMdkh10+yH6WH2Sxy3p2I5zzJuv9tI7OSlMm2Zez6bvVOLUlcLMHbebtxvtp6HfMbzLPiFvXtDpTGX3bzybqvvO/e6BcXtQn3totJpEy+XM48Lm/aWNDzFiYm3o0kWdqxUaFMrS/+2lba2D5CngQK9PazN7RT3a9vAk5O6jVNVHCCGEEK8mIgLGjoVy5cwD2erVTcnGLl9+tcB7xQrzB/vNm8PZs9C7N2gS+eiQKxc0bqxuBwSoS4AlJjZW7aEGNYhv0CB19XpRw4bwxx/nqV1b/WwUFweffALt2klm84xg9OjReHp64unpiZeXF02aNGH27NnExcVZ9L4//PADH330UYrKpkegnJYk6BapcvXkTd4ZUNKYQKyIewAAeoMNn02vSJs28PDZaPOYqBiW/bCfOt4nqVCnNP7n1d7ZPC5BbN1soECJfMbr1m7tQ/UypwE4faM0m/9MOLdbMSh8NXAn+YrkokrZS8REpW/2DYPewOBBeuN7/3LIMQoWTFjO1t6WgV/WZdm2mmw/VpFT55y5dw+iIvTGud8nzzqm+L6hQaH8vqkSAM4OYXQbUjHZ8g7ODqzaUYlevdQ/ZAaDOgQsT4Fs9BxRm7X7qxETZ28sHxmdnWXzTqW4PkIIIYQwiYtTl8JKSS9taKgaXE+YANFqShvy5VOHge/bBzt3mgLvS5fU4DY1c7zjLys6c6Y6zNzDI/lzunQxba9cmXiZ3bvh8WN1u1Wr1A8rT0yePLFs22bgs89M+9auBT8/OJo5UvxkaXXq1GHv3r1s3ryZPn36MHv2bBYsWJCgXEwaZsPLmTMnTk5OaXa9jMSiQffhw4cZOHAgtWvXxtPTk23btr30nIMHD9KhQwfjU5VViY2NFVYRERpBh/bRPI7ICUC72ge5fDsvXw7YiUaj/qXZsAH8/BQ+7b2XwgUe887Qmuw9U8F4DfccQWxaHUxJ3yJm19ZoNYwcHmF8PX2m+X9NxaAwpv8uvplfH4Oi4/jVsuxem75LjC2esc84xLuMx1U++jLhEO/k2NrbUL7IdQAuBxYhIjTiJWeolnx/gsjo7AD0bH0cp1zOLzkDbOxsWLhQw/Dhpn3xA+0Cue/Su9Ue4+vFy11TVBchhBBCqO7fV4PnokXVry5d1B7hpBgM0LMnnHn28cXWVk2cdukS9OgBWq2aTXzHDihWTC3zPPC+dy9lddq9W/3X3l7NNJ5Y7/aL2rUDGxt1O6kh5v/8Y9pu3z5ldUkJGxuYNEmda+767KPIrVtQvz7891/a3Ueknp2dHe7u7hQsWJB3332XmjVr8t9//xmHhM+dO5fatWvTvHlzAO7evctHH31EtWrVeP/99xk8eDABAQHG6+n1eiZPnkzlypWpVq0a06ZNQ3nhSdWLw8tjYmKYPn069erVM8aGK1euJCAggJ49ewJQpUoVPD09Gf0s4ZLBYGD+/Pk0bNgQHx8f2rZty6b4i8kDu3btolmzZvj4+NCjRw/uvG4ShRSwseTFIyMj8fT0pFOnTgwZMuSl5W/fvs2AAQPo2rUrM2bMwN/fnzFjxuDu7k6dOnUsWVXxEopBoV/Hk5y+URMAz4LXWLK6LLb2toybV5/anaBbNwgKgoAADTMW1zY7v1zhKwzufYceH1XEOXeZRO/RtncVSn19ncuBxfjveEWO/neeSg3LohgUxg7YxaQF9c3Kb1gTRuO3LPJ2E3h0/zGjJpnqPft/j7FzKIFen7ph7hU8gzl2BRRFy5kD16nWzCvZ8opBYe4S0yPqD4YVSPG9tFqYMUNdnmPMGHDLFUWXBofo0i0XNVt6odXl52TJ8xy/WpZDF704f+gqZauWSNX7EUIIId4kigL798OcOWqAGj/I/vtvddmsRYvUv8EvmjDBlP07Vy51TnX58gnLFS6sBt7168ONG3Dxohp479kDbm5J1y0gQJ2jDeo62tmyJV02vty51SHmmzap86sPHVJ74+O/5+fD4O3s1CHraa15czhxAt5+W/3+hoeryWf//BM6dkz7+1nV+f/Bhf+9vFzuilDvX/N9u9pCSApy8ZQZDmWHv7xcKtjb2/P42XAHf39/nJycWLRoEQCxsbH069cPX19fli5dyuXLl9m5cyfvvfce//77L3Z2dixcuJB//vmHSZMmUaJECRYuXMjWrVupHv8/2wtGjhzJiRMnGDNmDGXKlCEgIIBHjx6RP39+fvjhBz788EM2bdqEk5MT2Z79h58/fz7//vsv48aNo2jRohw+fJhPP/2U3LlzU7VqVe7evcuQIUPo1q0bb731FmfOnGHq1Klp+r1KjEV7uuvVq8ewYcNo0qRJisovW7YMDw8PRo8eTYkSJejevTvNmjXj119/tWQ1RQrMnPaU5f+pAbezQxir/4EcrjmMx5s0UX9Z1jVN9UanjaNzfX92/H2CM9dLMGhcPZxzJ91Lq7PV8ckHt42vp88roQ4p/2AnE3+pb9yv0aiPYNcfSvqHNK19OfQkQWHuAHRpsJ9GXSq90nUqVDAF6ScPv3zS0q7VJzl/Ww2E63qfoHyNUqm6n0ajPkUPC4OAuw58v6wetdv4oNWpP/q93jLNFV/8q2Xn6QghhBCZ2b59ULGimvX7zz9NAbdWa+opXrJEnZv84lDzdevgq69M5ZctSzzgfq5IEXWoedGi6usLF2DatOTr97yXG6BevZS+K1VyQ8yPHDFlU2/cWJ3TbQkeHrB9O7Rtq76OicGYlyZLiQ2DqDsv/3oalPDcp0EpOzc27eY5K4rC/v372bt3L9WqVQPA0dGRCRMmUKpUKUqVKsWGDRswGAxMnDiR0qVLU7BgQSZOnMjdu3c59GwtusWLF9O/f3+aNm1KiRIlGDduHM7OSccF169fZ+PGjUyaNIkmTZpQqFAhatSoQcuWLdHpdLg8W3vO1dUVd3d3nJ2diYmJYf78+UyaNIk6depQqFAhOnbsSNu2bVm+fDkAf/75J4ULF2b06NEUL16ctm3b0uF1MgOmkEV7ulPrxIkT1KhRw2xf7dq1mTRpUrLn6fX6VPc4prfn9cvo9UzMtm0w6gvT49LFs85RqmKVBO8lb151rccFCzSEPdbzTsf7eJSqCoBBMUAK3nq3oVUY+4PCgwcaVv5ti8vbh/npL1O2jh/G7GT5znrs3QuXrmTj4kU9JUumzftMSsDlu8z9qxYAjvYRTJtTKEF7prRdvSqafrmcOKG89Lw5i/IYtwe8F/HK/39sbdUPAC+e/nb/Mnwy3UBcnJala0rzzXd6dLpXukWWk5l/ZkXSpF2zLmlbK9Dr0Rk39Qn/yKTJLSzXrooC16+rwd7L5iifOgXNm2sJDzeN13ZzU+jbV2HAAIXjx+Gtt7QYDBq+/RZcXQ2MHq1G3pcuQbduWkA9d8IEA40aKS/9dnl4qJ+rypRRr7t2rcLkyUmnF9+5U8Pz/rRatfSpao42bcDGRktcnIa//lKYOtVgHJq+apXpum3bGtDrXz/FeFLtamurJoPr31/DkiVaY16aoCADn36qpGi4fEansXFC45BIUqAX2btheOH7o7V3gxScq9g4obzGz4yiKOzcuRNfX1/i4uJQFIVWrVoxaNAgY7Ct0+mM7Xf+/Hlu3bqFn58foA7x1mq1REdHc/PmTby8vAgKCsLb29t4jkajoXz58iiK6fOwoijG12fPnkWn01GxYsVEf/4Nz+ZBxI8Dr127RlRUFH369DErGxsbS9myZdHr9Vy5csWsHgA+Pj4JrpVSKS2foYLuhw8f4vbCuBk3NzfCw8N5+vSpcdjAiy5dupQe1UsTp0+ftnYViI6M4dHdJ+Qr8fJ5vA8f2vD22+UxGNTfcu+/H0hhP1tOnDiR5DnPHoLxMAIenrif6vp16pSPuXMLYjBo+Omvqsb94wb/Q432hbn4+A5796pDrn/55Q5duybyJDANLZl+F72hNQD9O/5HcGQBgk88MCuT0na1dTEt0H38bI5kv48PH9rwz0b1l4BrrkhKVLFJtvyrqlXLnl27chIYqOGnn65Ro0bmyAKZXjLCz6xIe9KuWZe0bfrRRkXh92z71KlTGBwcLHavtG7XBw9smTixCPv2uVCgQDSzZl2maNHoRMs+fGhDr15lCQ9XHzGULh3Ju+/ep0mTR9jbKzx6pPZIf/65KxMmFAVgzBgtUVE3ado0hN69yxAWpn5vGjV6RJMm10jNn3Nvb09OnnTiwgUN69adw8Mj8cRVW7eWAxzQ6RSyZz/FiRPJrP+ViCpVSuLv78KtWxp+//0SXl7qZ5bly9XrajQKxYqd5sSJtBsZl1S7DhkCBkNBfvtNTbr7+edazp27x0cf3ckCgXcDKJzC9O8v/kdx/hpentoHohI5NxVCQkIoW7Ysffv2xcbGhly5cqHT6bh06RIhISHExMSYfSa9desWRYsWZfDgwQmulSNHDmM7X758GRsbU/gZGhqKoijGa4WHhxMUFMSJEycIDAxEURROnjxpds5zV65cAdT/Q9mzZzfb98knn5Dr+RJJz9jaqvFLaGgocXFxZvW/fv16gmultQwVdL+q0qVL4+iY8mzQ1qDX6zl9+jTe3t7orNiVGBMVQ/3KVzl0sQYfvr2Tb39Peq68YlDo0EFLaKj6dLNlS4U5c/Ki1ea1aB3HjYMlSxQiIky/Vb//fAeDv1HHG733Hsyere4/ebIQU6ak4GnhK3oa8ZQ/NqpJ32x0sQwfV5ECxU1Z11+lXQu7B3AryIOzN0vg4+1gHOr9olmzNOj1zx52DMhG5aqVX/PdJG7oUNi1S93eu7cEH3wgi2RCxvmZFWlL2jXrkra1gghTQlAfHx+wwIfVtG5XRYHfftMwbJiGx4/Vv7GBgfYMHFiedesMVH7hT21EBAwYoOX+fbVslSoK//1nj4NDYaCwWVlfX3B0NPD55+rf9cmTC7N5c2GuX1fPLV9e4e+/c+Dk5JuqOnfpouHkSXX75s3ytG6d8O/0gwdw44b6/alcGWrU8EnVPQD69NHg769unzrlSffuChcvwvXr6nVr1IBGjZLPRZNSKWnXRYugXDnT9/O33/JRtmweRo2SzymWljt3bmxsbIxJ0hI75uvra9xXt25dDh8+TO3atXFwcEi0bd3d3YmMjDSeFxcXR0BAAOXKlTPuc3Jywt3dHV9fX9zd3fnf//5HTEwMlV/8wQRjErby5cuTM2dOAEqVKsWECRPInj17onUH8PPzY8eOHWb1/+9Z1j5vb29ypHL+RGRkZIo6gDNU0O3m5sbD5+tNPfPw4UOzyfGJ0el0meYPrLXrOn/iIQ5dVCf6/LC8PtVr7OPdj2olWvb3WftYt149licPLFmiwdbW8nV3d4eBA9WlLgC+H7OXoeNNTwR9fKBQIYXbtzXs2qnnaXg02V0s81Rq5bzjPAxTk8J1rn+YQqVqJlouNe1aodQdbgV58CQqB7cv3qK4d+FEy8Wfm/XOO1qLDftu3VrNGBocDGvWaHjyKIqcbin/fq5ZcJA//9Az+itXfOt6WqaSVmTtn1lhGdKuWZe0bTqK933W6XRYcn5SWrTr3bswYIBpven4Hj7U0LixjjVr1DWkQc3i3bu3afmqIkVg7VoNTk5J12P0aPXv6cyZYDBoOHJE3Z8zJ6xercHFJfXvoXVrNSEqwMaNWoYOTVhm3z7Tdr16mlf6XnXsCB98oM4S+PtvLTNmmH+vOnZ8tesm52Xt+tlnavK4gQPV9vj+ey2ffJI2S5aJpGk0GjSaxNs7sWPt2rVj0aJFDBkyhCFDhhASEsLRo0fZvn077733Hvny5aNnz54sWLCA4sWLU6xYMX799VeePHlidq341y5cuDAdOnRg7NixjBkzBk9PTwIDAwkODqZly5YUKlQIjUbD7t27qVevHvb29uTIkYO+ffsyZcoUACpVqsSTJ084duwYTk5OdOjQgXfffZdff/2VGTNm0KVLF86ePcuaNWuAV/s9k9LyGWqdbl9fXw4cOGC2b//+/WZPIkRCsbFw9uzLp1IFB4Yw7ocKZvsGjPbh0rHrCcreu/6AD8eWM76e979A41IO6WHSJPjuO3UJiaHjzTOhazTQqpqalCEm1obtf1tm6TBFgR/+MCVMGzo8JeN5Xq5C+Sjj9skDgYmWMegN7NmjDgvLnRu80ubBcqLs7KBb52AAnj7VsGJeyhfH3PPvSTq+X5nl/9WkR08tikGePgshhMgYDAY1AD5/HhYuVBOXxQ8iu3VTs30/TwL7PGP289VqR482LZWVI4eaDC3vSwb7aTQwfTr06mW+7/ffeeUcND4+UPDZoL4dO8wGGBi9ThK151xdoVEjdfvmTTWB2vOs5ZC2S4WlxvvvQ6dO6vaDB6YM8CLjcHBw4LfffqNAgQJ89NFHfPrpp4wdO5bo6Gjjutt9+/albdu2jBo1iq5du5I9e/aXJtv++uuvadasGV9//TUtWrRg7NixREWpn6Pz5s3Lhx9+yMyZM6lZsybjx48H4OOPP2bQoEHMnz+fli1b8t5777Fz5048ni1YX6BAAX744Qe2b99Ou3btWLZsGcOGDbPgd+cZxYLCw8OVc+fOKefOnVNKly6tLFq0SDl37pxy584dRVEUZcaMGcqnn35qLH/r1i2lQoUKytSpU5UrV64ov/32m1K2bFll9+7diV4/IiJCOXLkiBIREWHJt5Em4uLilCNHjihxcXFpfu0ePRQFFKVRgxglOjI6yXJD3tqpqKGkorg4PjZuVyh5TYmKMpUz6A1K+9r+xuNdG+1L8zq/rn8XHjTWb0CHXRa5x759ivEelSrGKga9IUGZV2nXlfOPG6/71agHiZY5s/+SsUy7xtdf9S2k2NH/zhnvV6PsqRSdE3T7oVIwd6DxPFCUY4efWrim6ceSP7PCeqRdsy5pWysIDzf9AQgPt8gtUtOuQUGK8s47iuLlpSh58yqKTqeY/Y16/pUnj6L884/pvMhIRWnb1nRcq1WUd981vdbpFGXTptTVOzZWUXr2VJRs2RRl1qzUnZuY99831Wft2oTHfXxMdX/8+NXv8/PPpvt0727a9vZ+9WsmJrU/r1u3murSpEna1kWkrTftd3FK41GL9nSfOXOG9u3b0/7Zo7HJkyfTvn17Zs2aBUBQUBB37941li9UqBDz589n//79xmEKEyZMkDW6k3HrFvz2m7q9fYctw3r6J1ru3MErxgzc2e3DObz3EWU8rgJw8kox4j/gWT7Hn9V71eW43HME8cOvGW/IcMOO5bG3fQrA+t0lLdLD+sMPpu0Ph9qg0aZN5o4KDXyN2ycvuidaZtcmUw943Yo30uS+yfGrVwbvoup8FP/z3omOfojPoDfQs9M17oTkN9u/9A97i9VRCCGESM7MmepSXmfOwP37iY8AfOcdOHfOvNfWwUFdY/t577TBAH/8YTo+ezY0a5a6utjYwOLFEBUFH36Y6reSQKtWpu31682PhYTA83xkvr7wbCWlV9K+vWmWwPPPl8/3W1PDhlC8uLq9datpPXIhMguLBt3VqlXj4sWLCb6ej7OfMmUKS5cuTXDO6tWrOXPmDNu2baNjx46WrGKmt3Sp+VqQP/5Vj4VT9iQo98lHj9Eb1Cn8o98/Qim/oqxc44aDg3ryvHnqEg33bwQx5AtTkP3jlCu4eaTjuPIUyu6SnQZ+6l+YgOACnN5/OU2vHxgIf/2lbru5wdtvp921S5Qw5ZpJKrHk7r22xu16TfMkXigNabQaer9lCvQX/3gz2fLTP93NxkNVAMjjEoSdnfr/6I8/IE6W+xZCCGEF27aZtgsVgkqVoHlz6NEDhg+HzZvVv1OJTZezsVGHoA8fbr5/+HB1PrG1NWpkmse8YYP5Z799+0yvnw+Vf1VubqY57fFZO+jWatVh5s8tWGC9ugjxKjLUnG6ROoqiPkV90Qdjq3Joy1nj640bYeNBNetfIbc7jJikrunlVdGFH34w9d6+957Cu53uEvxE/WvUpYE/nT8wXzc9I2nZxLT81oa/E58b/armTzpiDB4HDIBk8vilmlYL3t7q9o0bEBpqflwxKOw6VgIAZ4cwKtQpnXY3T0a3D8qh06pvesnq0uhjE08SsG/dKb74Xp1nr9EY+H3+LVq1Uv8f3b8P27enS3WFEEIIo9BQOHZM3fbyUkcCHjmifgZaskTtBW/aNPlraLUwY4ZatkABGDwYpk2zfN1TwsnJNFf71i01l89zz1cggdcPugG6dDF/Xbgw+PklXjY99e6tPhwB9QFJbKxVqyNEqkjQnYn5b77I5WcdvA0bwqDO6m/dmDh7Or6Tm/s3goiNhREjTOdM/V9OHJxN62j27asmEgF48kTDf8fUJSbccjxk9q+vmPEjnbR6u5hxe/22XMmUTJ3oyGjm/aYuE6bTxjHwvciXnJF6FeLlszt1+JHZsSsnb3DvsZqppZb3RWzs0meRgbxF89CimvqJJSC4ADv+OZmgTHBgCF17uxlHTXzx3m4av12JHj1MZZb+lLYPQIQQQoiX2bdPHRYOUL/+q19Ho1F7twMC1GHlGSkRflJDzOMnUUuLGZkdOpi/7/btyRBrY+fLB+3aqdv37qmJ7YTILCTozsR+nXffuN273Sm+XVKDWuVPAXAnJD9vtb3DnNl6zp9Xy1SvDl27my8FpdHA3LlQurh5Ksw5ky6Rp3Di840ziuLehY3z0vef9SLk3uM0ue7K+Ud4EKq+9471DuNRNO3XgK9QyJQh/OSuU2bHdm0MMG7Xq5lIilIL6tXD1Ls9fJQTXw3cyYo/Ijh7FqKfKvTufIWA4AIA1PU+wVez1R7vli0hl3M4AP+sdyH8UXi61lsIIcSbbedO0/arZu+OLyMEmS+KH3Rv2KD+++SJqYe/fHl1ePjrcnODBqaVWunQ4fWvmVb69zdt//ST9eohRGpJ0J1JRT2JYvkWtbvUKdsTOvYqgZ2DHX+tzUeB3Gpyut2nfRk23PSo8rvvEv8j4uwMKxffIZutmoK/c31/umTgYeXxtax3GwCDomPLynMvLW/QK/jvVxg+XJ0fNXw4HDiAWSK2H+abMpB8+HHaB9wAFXxNC0yePGXeKLv3mF7XbZy+8+nb9KpIruxqz/vpG6X5Zn593u6WHS8vcMwO6/yrAupIiD9W5TX2wtvbw1uN1b/6kdHZ+WfRiXSttxBCiDdb/KA7LYZYZ0QlS0KpUur2vn3w6BHs329KGJcWDxue++YbdV3yd97JWN/Pxo2haFF1e/NmdZrey8TFwcGDMHWq+uCifn11nv6sWeqUuHv3zOfIC2EJEnRnUqsXHScsSg0OuzQ6QXYXtQc7X7E8/P17MHY20Wblu3VTqFYt6ev51C7NoR23WThlD7+tr5hmmbotrVV7U4C8fr0h0TKKQeHApjOM6L6TovkCqVlLw7ffwn//wbffQo0aUCRvICO672ThlD0cuqguiu1b/AK1W/tYpN7eNYoat09eMA+sdx9Vh7Y72EVSuWH6Zo63d7Rn+hdnyG6fsKfaYDD9n1g69zYFS5pnLu/RN6fp+B8OCCGEEOkhLMy8tzeP5fOPWs3z3m69Xs3iHX9oeVoGxzVqqAHtH3+oc90zivgJ1RQl6YRqly6p8/FbtoRcudTRnqNHqyMEdu2C+fPho4/UID5/frV3/623IDLtZxQKAUjQnWn9utS0NFOvfs5mx6o392LOuEPG1w52kUz+8j4v412rNH1G1cHeMfMs+1S7VXmcHZ4AsOlwZbPlQSJCI5j+yU6K5rtDjRZe/O/3+tx+WDDR69x+WJD//V6ffp+ZJkN9+H6QxR4+OOd2pkQ+NUP4mRvFjEnLbp4P4GZQIQBqlL+AnYNdktewlH6f1eFxWDYuHr3OqkUXGD8eunZVk7+5u6sJZpq/mzCjSs2W3hTLewuA7cd8Cbx6L72rLoQQ4g20b5+pt/d15nNnBi1bmrbXr0/7JGqZQZ8+pjnnCxaYr5oSEwNjx0K5cjBqlJpILzwFM95CQmDlSnXKpRCWIEF3JnTnyl22HfUFoFjeW9Rpm7A39r3P6/DN4J0Udg9g3sRjFCqdL51rmT7sHOxo0sIJgIch2Th8WA22Z3y6k2KFIxk5sz63gjyM5W10sbSocYZFi+D6dVi0CFrUuoiNzjwFpqtzMO8MrmzRulcorU4DiIpx5PIJNQDfvSXIeLxejdBEz0sPNnY2lK5YjA69yzBmjLru6alT8OBBwuVUntNoNXRvpy6caVB0/Dn/QjrWWAghxJsqredzZ2R165qWHV2/Hg4962MpVUrtsX0T5M8Pbduq23fvmpLKHTsGlSvDhAnma7Tny6d2HsybBxcvqsPy9+2Dn3+Gjz+GJk1MZRculKHmwjLSJy2ySFNL51zEoKi/WXt2uIZWVzjRcmNn12fsbACPRI9nFa1aaVi1St0eOeQ2F69k40FofeNxjcZA08rHeLtTFO16epE7v5fxWO/e0Lu3JyF3H7FmyRlWrMrG1QA3Jo25h4OzZee1V/B6yqpnw8JOHrxHmSrF2XXa1INct1X6LBWWlnoMLMr4Z4lNlv6VnxEZZKkVIYQQWdebFHTb26tB4urVEBxs2v+m9HI/178//POPuv3jj2rAPWmSqdfbxkYdTt69O5QunTCnUc2a6tdzdevCnj1w7pw6/7t69fR5H+LNIUF3JqMYFBb/Vcj4uueg4lasTcbQooVpe89R0/dGozHQtZE/Yyfmo2zV5Hutc+fPRZ9Rdegz6vmeYskVTxMVKpqStJ08HsPbmOZm2dlBtQaJD4XPyEr5FaVamTMcvODFyeuenN53Ce9ame/hgRBCiMzhyRM4+mxBkHLlsvZ87udatlSD7viy+sOGFzVpoiZ6u3kTtmxRv56rUAF+/RV8fVN+vb591aAb1CHrb2rQ7emZfC6hIUOG8OGHH6ZTbbIWGV6eyRzaepYLASUAqOdznOLeifdyv0ny54eKFU2v1WB7P2f8r/HH1lqUrVrCepVLRoUaBYzbJ89m5+5djOuuV60KDpk0F1mPLqZH77/9fMeKNRFCCJHVvUnzuZ+LP6/7uTetp1ung/feM99nYwNffaUOuU9NwA3QpYu6mg/AsmUQkb4rtmYYe/fuNX59/vnnODk5me3r27evsayiKMTFn1AvkiVBdybz60+PjNu93pW1kJ+bMgXKloV3Otzj9L5r/LmtJuWqlbR2tZJVpExBXBzVedsnL3tYLANpenu7v5dxjvzva8sYk8QJIYQQae1NGlr+XMGC5kFl4cJqr++bpm9fU6Ds46MG219/rY4WTK3s2dV536AmXlu5Ms2qmam4u7sbv5ydndFoNMbX165do2LFiuzatYuOHTvi7e3N0aNHGT16NIMGDTK7zpIlS+jVq5fxtcFgYP78+TRs2BAfHx/atm3Lpk2b0vvtWZUML89Enj6FZf/VBsAx21M6v+9r3QplIE2aqPNwIPMkjNNoNVQocZ3dp325E5KffxaeAHwBqFcrCsicXd1uHq60qHaItfurcickPzt3xNCoqe7lJwohhBCpFD9795sSdIPa233ihLr9Jr3v+AoUUOdfX7igLqX2KsF2fH37qsnVQB1i3rv3a1cxgZUr4csv1WkR6cXZGcaPh86d0+Z6M2fOZNSoURQqVIgcOXKk6Jz58+fz77//Mm7cOIoWLcrhw4f59NNPyZ07N1WrVk2bimVwEnRnIv/+C48fq5kgOnXJhnPubFaukXhdFWoUYvdpdfvv7eUB0GnjqFE9cw/X6THUj7X71e2fFtjRqKl16yOEECLrCQ+Hw4fV7bJlIW9e69YnPb3zjroOdVxc2gVTmVHZsupXWqhWTc0LcO4c7N2rrvVdOo3T0kyfrj4kSG/Tp6fd/5OhQ4dSq1atFJePiYlh/vz5LFq0CD8/NWFwoUKFOHr0KMuXL5egW2QsiqJmZ3zOEk/fRPqrUNUVnmX7jtPbAlCp1AWcc3slc1bG16adLa6uambVFSvUZcaqVbN2rYQQQmQlb+J87ue8vNTh1I8fv3nv3VI0GujXD0aMUF8vXKhOX0xLI0eq64ind0/3p5+m3fW8vb1TVf7mzZtERUWZzQcHiI2NpWxaPTHJBCToziT++uMxu3blBKBECfkFm1VUqJBwX92qD9O/ImksWzZ1XtXzBJfDhins26sOqRdCCCHSwps4nzs+P7+XlxGp0707jBqljiBYvFhd89smDaOlzp0z/8gEhxcy/Wo0GpQXFjfXx1soPTIyElCHmOd9YTiK3evOCchEJJFaJhD+KJzhH0UaX8+cCVppuSyhfPmEbVm3gWPihTOZAQNMQ778/TUsn+Nv3QoJIYTIUt7U+dzCcvLkgbZt1e1792DjRuvWJzPInTs3QUFBZvtu3rxp3C5RogR2dnYEBgZSpEgRs6/8+fOnd3WtRnq6M4GJI44QEFwfgBbVjtK2bSXrVkikGQcH8CzxhPOX1fSbGo2B2i2zxrrWtrYw8+vrtHxbXfN85DdFaNc7CgfnzJkgTgghRMYRfz53mTKQL6PlUdVHw9N7EP0QDHGg6MHRA7LHW+pVMcCD3aDRgkaH2hemgD4S4iIhLsK0XaAFOMdblSUuCmJDwS4X6OzT+91laX37wqpV6vaCBdCmjXXrk9FVr16dBQsWsHr1anx9fVm9ejW3b9/GxcUFACcnJ/r27cvkyZNRFIVKlSrx5MkTjh07hpOTEx06dLDyO0gfEnRbUdSTKNYuOY53lbxJriV98eg1Zi6pCYCdTTSz5rmhkRG6WUoFj6Ocv1wfAJ/Cp8iV19eq9UlLLd4qRvOZh9l0qAq3HxZk5uc7GfNDfWtXSwghRCa3f786BBgyQC/3he/h8QmIDISndyEqEKKDE5bzGgs+35he66Nhe4OU3cNlq3nQ/WAn7Hy2YLfOUQ2+7XKBfW713xxloHhfyJE1HuSnp2bN1MzogYGwbp3a453hHupkIHXq1GHQoEFMnz6d6OhoOnbsSJ06dXj0yLTM8ccff0zu3LmZP38+AQEBODs7U65cOQYOHGjFmqcvCbqt5OLRa3TpHMfpGzWx0cXy47jdvP+F+eLMikFh6MAQYvXFAfi0tz8lfetbobbCkiqUCWLZDnW7nu95ni8bllXMnJWLrTXj0BtsmPJzZfp+fI8CJeSvlxBCiFcXf2i5RfPcKIraYx12Uf3S2kCJfuZlri+BR8defi3DiyuTGFJeD7vc5q9jTAEN+kiIioSoO/EKrIFzUyFfY6j5J2RzS/m93nA2NmrC4kmT1ER9S5embSKyzKJjx4507NjR+LpatWpcvHgx0bJDhw5l6NChgDqf+8SJE/jGW0xeo9HQq1cvs7W73zQSdFvBn7P203+UN+FP1SHFcXpb+o+py7kLB5i+qLoxYcM/vxxiyxE15XNh9wA+n/lmpNR/07Tu7ssX8/QYFB1vv5+5s5Ynply1kgzstIs5K+sREe3EFx8dZ9E6CbqFEEK8ujRPohZxSx3q/fQeRN1Te6ufXIKwSxAXL9W0U/GEQXcuH1PQrbUHh/zgUED9N1se0NoBWnB/YZkljQ2UG60OPVcM6r9owMYRbLKrPdjPt51LmZ+bLS8UbKsG3zEhz/59BPqoF97XTbX3W6RKnz5q0A3qEPNPPkFGmorXki5B9++//86CBQsICgqiTJkyjB07Fh8fn0TLrlq1is8++8xsn52dHadPn06PqlpUTFQMg7rs5ad/TH8d8uZ8wP3HeQD47rfqXAyGP/8EW00kw8YUNJb73/gAHHN4pHudheV51SzFucPXiI3W41UzdcswZBZf/8+L3zc85nFEThZvqMWQ/85TqeGbs0yEEEKItBMRoS6XBeDpCanKxRQdDPd3qnOkbeIlLg0+CP49Xn5++DWIfQK2zqZ9ZUdC6aGQvYg6tDul0ZnOHnwnp6Ly8eRrpH69SP8Unj6AWyvh8lwoNUidM/6cosDOVpDLFwo0B7caoLV9tTpkYSVLqg9zdu2CixfV6QypWJpaiAQsHnRv2LCByZMnM27cOCpUqMDixYvp168fmzZtwtXVNdFznJyc2LRpk/G1Jgs8Wrpy8iYDe7hw6kY5476eLfby459+/DlnDx98VYu4OC0bN0LNmlDD8xy3gioD0KTSUTq+L4scZ2WelYpbuwoW5ebhylcf7mLYlHooipZhH8Ww66QiS4gJIYRItVTP5466Cxe+hbtb4PFJdV/DrerQ6+eyJTYCSwPZi0IOT9OXs6famx2fSwZ6iKzLpiZrKzsCygxLOKQ99Bzc3ah+nZsMNs7q9yF/U8jbUO1RzwKfu9NC376maQyLF0vQLV6PxYPuRYsW8dZbb9GpUycAxo0bx86dO/n777/p379/oudoNBrc3d0tXbV0c/GCQpU6eXkSmR2AbLZRzPnmCH1G1kaj1fDe53UoWRM6dYKQEDh3Ds6dUwNuW10MP8zPJcGJyPQGfVmDuUuvcelOcfacqcCqn/zpNLCGtaslhBAik5k927Sd7HxuQxxcmg2nvjQfIg5w7z/zoDtHGaj0vTpsO1s+9V+nomoQm1lptKB7YR3kkCPmr+OeQMA/6heAQ0E1+M7XEIq8m/D8N0inTjB4sJopf/ly+P57ddUZIV6FRYPumJgYzp49y4ABA4z7tFotNWvW5Pjx40meFxkZSYMGDTAYDJQrV47hw4dTqlSpJMvr9XqzRdgzmtVrNMaA27PgNZb9GYN3zZoYFAM8q3adOuqT2/bttVy4YAqwh3XfR0nfuhn6/b3JnreLtM/L6ex0TP3mAR36qb3683+xo/37Gff7Jm2bNUm7Zl3Stlag16MzburVrFNpfgvzdt27F/79V71rgQIKrVsbEr9t0F60Rz9EE2qanqiggVx+KHnqoeRvYV5f29xQcnBiFUiz95IhFOkOeZugubcV7m5Gc28Lmph4mdaj7sCNpSiB6zEU7max958Zfl6zZYPOnTX8+quWsDBYtcpA166KtauV4WWGtk1LKX2fGkVRLPa/5/79+9StW5dly5bh5+dn3D9t2jQOHz7MypUrE5xz/Phxbt68iaenJ0+ePGHhwoUcPnyY9evXk++FfP2RkZGcP3/eUtVPM0FBtnz7rQeFXAPoM+AJ2ZySfmr65ImOL0flYs+hIpTMf41f/7ybbHkhMhPFoNCxZT5uP/TA1iaObdtPkz17KrK3CiGEyDC0UVH41akDwPE9ezBYuBtQUaBvX09On3YCYMyYG7Rvb740l01cMAWDfsAtbJ3pPDQ8dGlPoNsHxNlIUjEzih7HpxdwjjyMc+QRnKOOo1WieeTUgGsFp5sVdQ1dy1PbQkQ4VHhjhqAfPerEgAGeAFSvHsrs2VesXCORUZUtWxZHR8ckj2e47OV+fn5mAbqfnx8tW7Zk2bJlfPzxx4meU7p06WTfZEbQsKGe06dj8faugk6nS7bs9j0Gju44TSmfguTMUySdaihehV6v5/Tp03h7e7+0XYWqTRf4cS7Extlw/74P8VajyFCkbbMmadesS9rWCiIijJs+Pj6QPXua3yJ+u/77r47Tp9W2LVsyjLEdlmDjXACleB/TCXc3obsaL+DOVRFDpR/I7VoNCbeTUgnoBoCij0EfcpAcWnt8XX1NRWKfoP13Bpq4CJQcZVE8OqC41QTX6mCXM9V3zCw/rz4+MGWKwvXrGg4dyoG7uy8FC778vDdZZmnbtBIZGcmlS5deWs6iQXeuXLnQ6XQEB5s/hQwODsbNLWXrBdra2lK2bFlu3bqVZBmdTpdpGjUlddXpdFRvljWzWGdVmen/oLW1aasG3QAbNujo0sW69XkZadusSdo165K2TUfxvs86nc7sdVozGHR88YUpC/eUtt2xu7AW8tSDUu+ZCnq0gkId4d52qDAJTckB6LTy/yHFdA6Qr37C/df/gjj1IYsm7Dyac89HmmrApRy41QT3muDiBbkrpbgnPKP/vOp00LMnjBsHBoOGP/7QMXq0tWuVOWT0tk0rKX2P2pcXeXV2dnaUL18ef39/4z6DwYC/v79Zb3Zy9Ho9ly5dylKJ1YR4k9Wvb+oMWb8+602XE0IIkbY0hmgWTtnNpUtqIFfbcw9tKq5VDz69l/CEyrOh9UUoPQgk4E4bRbtBjaXgXueFAwqEnoWrP8OBPrC9fsJzAzdByLH0qKVF9Oxp2l68WJ3mIERqWXx4eZ8+fRg1ahReXl74+PiwePFioqKi6PhsTOnIkSPJmzcvI0aMAGD27Nn4+vpSpEgRwsLCWLBgAYGBgXTJ6N1hQogUyZYNmjSB1ashKAgO77pD9YYyVksIIWJi4Mi+R+z45yQ79zlz8Hwpyhe5ycZdhcmZx8Xa1Utbhjh1zezoIPXLxhlcK5uXufgDmvDrFD23ipbfHTDunvbOSDT5m0DJ/uBUIuG1HVKzcLdIERsHKNZd/YoMgKB9ELQfHu6HR8dBefYE3alEwl7uS3MgcJ2aFb3sJ5C/efrX/zUULw5168Lu3XDhgrpGfDVZyVekksWD7pYtWxISEsKsWbMICgqibNmy/PLLL8bh5Xfv3kWrNXW4h4WFMXbsWIKCgnBxcaF8+fIsW7aMkiVLWrqqQoh00qbueVavVtc1XfvHZQm6hRBvpNjoWI4cjGLnvhzs2AH79kFkZC6gvrHMgQvejB++k5m/1U/qMhlb0H41QIu4qX5F3oTIOxDzCIjXZViwLdRbY37u5blow84ze+1Y7oeqyXQ71tlPjcHfgZtEPVbj6AFF3la/QB12HnwEgg+CrXPC8uFX1X/v/6d+uZRH4zkcjVIu/er8mnr3VoNugF9/TV3Qffcu/PmnulJRlSqWqJ3IDCyavdzSnmcvf1m2uIxAr9dz4sQJfH1934j5DW8KaddXc+/6A/IXzwOAT7GLnLzmaeUaJSRtmzVJu2ZdmaFt42LiOLrjAjs2PWTnPif2nipDRLTTS8+z0cVy9lAApSsWS4dapkJEBDg9q/+5X8EQCOU/My9z9GO4+P3Lr+VWA0Pj/WjjT3zc6MeDG3coMfwq4U+d0ekUzp3TULp0GtVfWJ6iwNVf4Px0eHLZ7FCMjTs2FcahLdU/w08DePIE8uWDyEjImVMNpLOlYHGhrVuhWzd1ZJ9OBwsXmg9Xz4oyw+/itJTSeNSic7qFECIx+YrloarnGQBOXffk1oUAK9dICCEs6971B5T0uEf15l589l19Nh+unCDgLlhQ/YD+y7dXuHLiJmP77wQgTm/Lp0MfWKHWLxETatr27w0nP1eHjMeXvaj5a60dZC8GrtWgQGso3puwQmOoNPxf7OygTBno1Am+/BKW3V7OJ/+dIPyp2nvav78E3JmORgMl34dW56HOP2rCtWfs4oLQHh0EW2qoPeUZmLOz+v8S4PFj+Pff5Mvr9er/4WbN1ID7+b5eveC77yxZU5FRZbglw4QQb4bWjR9y6KK6ve7Pqwwa5/Ha14yNjmX+hP0459DRc0QtNNo3Yx1RIUTGt/iHc9wMqm+2L3+uezSofJUGnatTv6GOEsbpsOqUupFTXFnw110CQ/Lz775qbF95jEZdKqZ73RMVGwa72yXc//g05K1vel2gJWTLB9mLqF8O+UBj3ufzxzw4dlbdvnhR/Vq1CsAUYWfPrvDVV/I7PdPS6qBQe/UraD/Kualo7jyLXEMOw67W0O4G6FLQfWwlvXvD0qXq9uLF8NZbiZe7dw/efRd27DDtK1UKLj/r6B82DB4+hPHj35jlzgXS0y2EsJI2XfIZt9dtev3pIYpBYUCnA3w4oR69R9bms367XvuaQgiRVtZvzWXc/u6zXVw6doM7D/Py+5ZavNdfR8mSCT+AO+VyYvJnV4yvh410Qh+bAZZ8iH0CO5qb906WHwN110CuCuZlc5SGol3BvQY4FkgQcAOsMy2rjZ1d4rccPlwhb940qLuwPveaGGqv4mKhn1BylFf3VZicoQNuUFdfKVxY3d60SR1i/qL//gNfX1PArdPBlClqArZx40zlJk6EDz6QFVzeJNLTLYSwigp1PCmY+y53QvLz33FvIh6Hkz3ny+c2JmXqiJ0sWt/A9PrX+ri772TEtPqvX1khRJZyZNs5Nq15QK8hpSnkWcDi93t0/zH7z6nBRemC1/loUr0Un9t9WC1++OksRy6X5/SN0iyYuof+Y15ctikdxT6BnS3gob/5fq/RpvUgUyEyErZvV7cLFICbN+H6dTh3Ds6ehXPnDNjYPOCzz2Tp2Kwm3LEihupH0AWsVJckiy/mMcSGqqMjMgitVp2PPWECGAzw++/Qt6+aYG3nTvXr5ElT+YIFYdkyqF1bff3ll+DmBkOGqFPd58+H4GD4/nuLLnGf7vR6CA624f7913tftraQO3fa1cvaJOgWQliFRquhdb3LzP8nP9Gx2dj29wHa9av+StdaOdefz75rkGD/J9Pr4+oZRe9+Dq9bXSFEFjF//G4Gf10TvaEc8/68x6ETcRTwsOzHoS0rz6E3qHNZW9a9BaQ8IZpWp+XbmXrqtFVfj/m+Om9/CC7WWEEsLgJ2tlKzkQPY5QIevdYlt2+Hp0/V7datwcZGHYpbqhS0awd6vcKJE3ews5OgO0vS2kKxHgn3H/0Ybq+CSt9B8T4ZZhz286AbYMwYGDky8XW7mzVTh6K7v/DfdtAgNZDs0QPi4uCvv9SvrEUHVHhpqZTo3RsWLUqTS1mdDC8XQlhNm/amYHjtmthXusbBzWfo+ZGv8fXEoTv5ZvBO4+v3Bji8NOGJECLri4uJ4+N3dzHwy7roDWqQfSc4H23a2RARYdl7r19v+lTeqn0iSyq9RO02PrzVVs3GFPTQlkmTzI/HRsey5c+jfNZ3JxuWHH6tuiZFUSB630cQtEfdYZcL6q1L/qQUWLvWtN2mzWtfTmQFd9bB9cUQ9wQO9oNdbSHqnrVrBagPg2rVUrejo80Dbq0WKlVSE6Vt2JAw4H6ua1f1/30GX3gpQ1i7Vh1VkBVIT7cQwmoadvDC4f1IomIcWb+nNAa9Aa0u5c8Cb5wNoO3beXkaqwbvvVvt4bNv1WGbQUTzwxx79Ho12cmWLVC3rkXehhAigwsNCqVr60tsOmQa1u3iFEFoeHaOHVOTHq1aZZkhngYDbDxcFQAnhwjqtC7/SteZ+r07azarH/S/+w769o7l5olTrFwWwar/vAgJr6SW+9XAqpiDtH8v7dax1uvVrOorVvzMzD5FGdZ8BjTcCvZlXuu6imKaz50tGzRsmAaVFZmfex21d/vasy7OwHWwwQuqzIXCXaxbN9Rh4i1aqP9//fzUud7166vrcOfMmbJrNG8Oe/fCrFnw6PUGi2Q4iqIQGhqKi4sLmtcYoWBnpw7f12aRLmIJuoUQVuPg7EDjygdZu78a9x7n5eihCKrUSNmcwNBQaN0pJw9C1Xng9SscZ/7KasaM5d/Nsif4Efzxh/ohtU0bhV0b7+Bb8/WzpAshMo+rJ2/Spk0c529XAdQ1r+eNP0CNdnWoUQPCwtTlf0aNghkz0v7+hw/Dw2BbABo3y479K/ZuFS0Kw4fD5MkQEwPlvLQYDJUSlFMULd2GeLG7+HkqNSz7GjU3mTABli8H0DDu788ZOK4FDrkr8bpDBI4dMyWjatxYev7EM3YuUH0heLSHQ+/D0wfqUnR734KiPaDKHLBN/YiRtNK0qRooK8rrTfPw88s6Q6fj0+sNnDhx9Y1ZpzulssizAyFEZtW6m7dxe92mlAXccXFq7/XZi2rAXdrjNn9vLIqdgyntrVar/jFr3lx9HRamoXkrO+5dz4Br3QohLGLfulNUq+PE+dslAMjtFMK2lWfp91kdypVT51I+/0w4cybMH5/2qx6sX2/abtXq9a712WcYM3gbDKYPs472EbzdcD9tah4EIDI6O2065+L25eDELpMqO3aYZ10ODdWyZm/CYP9VxM9a3rp1mlxSZCUebaHlWSjU2bTvxlLYWNHq63rnyGGlvAoi05KgWwhhVa3ambo24s/tS87ixepwcQBXV1i/oxC58+dKUM7OTv1QXcPnOgD3H+fhg57XUAyJZD0RQmQpty7coU3XQgQ/cQWgjMdVDu19Qr0OvsYyTZrAj7NNa/YM/roWW/48mqb12LDBtN2ixetdy9kZ5k67go0uFkf7CN5quJ+/5voT9EDDsu01WbnVl9peavrku4/y0bpzbp48efX73b8RxLtvhSVIFLV48Wu8iXji/85/3QcSIovK5ga1V0CN38DmWe92+BXYUgOCLZO/QAhLkKBbCGFVBQtCxYrq9vHjcOdO8uUVBb791vR6+XIoWTLp8tmzw5p1zrjnUJMQrd5bneVz/JM+QQiR6cXGQteeOXgUoT6Ma+h3jAPHXClRIeHyQ/0H6vikx04A9AYbuvQryVn/KwnKvYq71x9y9FkM7+ur/r57XR16liT4fhTBwTqWb69Jp4E1cMyhPry0d7Tnn40eFC8cDsCpUxq6dlVHB6WWPs5A9063ufcwBwCNG0RRtKh6bMuWl/+ufpnAQIzfGz8/8JCZPyIpGg0U6wYtT4Crmh+BvA0hd9qMuBAiPUjQLYSwuvgZa9csu5ts2a0rT3P2rLpduzY0avTy67sXcuPHKaYP0UO+8OT+jaBXqaoQIhMYMwb8D6u9YkXzB/H3phK4uOdMsvyUBXVoX/sAAGFRLoweEZIm9di04rxxu1W1A2lyTYAcrjnIlj1bosfcPFxZv9nJmNBpwwYYMSL195g8bDfbjqlPRPPlvM9vC8Pp2VM9ZjDAb7+9QsXjiT/sXoaWixRxKg5N9oL3OKixGDQSxojMQ/63CiGsrm0zU+rO6dPiiI6MTrLs/2aYjg17/0aK79H5gxp0aaD2cAc/cWVQr6syzFyILGjDBpg2Td22tYXlq93JmSf5yZc6Wx2/rfMmfy51WaLtR714GvH0teuyfqMpX23LNinLWZEWypRRs7HbPLv9rFkw5+t9KT5/1+qTfDWnDgBajZ4/fgkkb1F3Y9AN6hDzxNYnTqn487llqTCRYlpb8P4SHPKZ7394EM5Oeb3/lEJYkATdQgirq1gjF00rq0lRbjwoxNzxifcInTtwhc2HKwNQLO8t2r1TKFX3mf1rSdxyPARg1e7qrJyb9DDzh3eCiYvVJ3lcCJG4iNAIrpx5SFhY+n/+fRgYQ58+po82U6dC1aopOze7S3aa1bwMQFSMI/s3nn/JGcmLeRrLlkPq8mC5nUKo1rTca10vtRo0gJ9+Mr3+ZFJFQu6+fG2ioNsPebdfHgyKmqjty4F7aNDJD4ASJdRlkQDOnzcND0+tqCjYulXdzpdPXdtYiFf29AHs6QQnP4M9HSE2zNo1EiIBCbqFEBnC1JnOaDQGAMbP9ubxg9AEZb6bEmjcHtrnOjrb1C1FkaewO3MmXTK+Hvx5aR7cMh9mvnvNSRr6HSdfkTwM6u5I+KPwVN1DiDfZ+UNXyZMXSnm74eKirr3s4QEVKxpoVuUI00bstNgIk7iYOMaNsic4WF02sG1b+Pjj1F2jaVPT75Qt6xP+DkqNfevP8CRKnQ/dvMb5VP++Sgt9+sD77dSM7E9jHVj+0+mXnjOw+xUCQ/ID6lz4Md/XMTveu7dp+1WHmO/YoQbeoCZQyyrr8AorubsVop59PghYDZuqQOg5q1ZJiBfJrzkhRIbgW9eTbk33AxASnpupo4+bHQ+6/ZAlG9QuqxwOofT9pOIr3afLBzXoVE/t4X4Y5saQ3upc772742hU8Tj12ldgxwm1V+fYVS8+ee/kK91HiDfR/O8CiIw2DaOOiVETbh0/rmXLkcqM+l99fv9+v0Xu/fXg/fifV38vFM5zj0ULFTSa1F2jUftSxu2te/O+Vn3WrzYF7a1apbIiaWjwCNMw3F//zJ1s2cvHb7Bqd3UA8rgE8fvfHgkeFnTpYlpP+6+/Xq1O8bOWy3xu8dqKdYN668A2p/r6ySXYXBVuLJPh5iLDkKBbCJFhjJ9ZFDsbdc72d79VI+CyKanavKlniI5VEwe91/E4OVydX+keGq2GOb+WxNVZXb925Y4aVK5koE49G/477peg/C9r6rJmwcFXupcQb5pNu9UpHzptHI0axOLjow4f1ukMxjJjJhdJk/nS8W3+4whTFjUAwEYXy/Jfg8jtmvpAN09hd/xKqMPKj10pS9Dth69cp/U71e+FVqOnWZeyr3yd11Whjie+xS8AcOiiF+cPXU2y7Pz/3TBuf/LeWfIVy5OgjLMzdOyobj96nPr6KIppPre9PTRunPprCJFAwZbQ/AjkrKC+jouA/e/A6kJwaCDcWQdxUdato3ijSdAthMgwipb3YMjbai/001gHvhqu9kJHR0Yz53d1PqRWo+fDz5JZIywF8hZ1Z/Zk0wfPo8dMvwpL5LvJ4ul7+fHrXcZ97w0vwb3rD17rnkJkddfP3ObineIA1Ch3lm3/2XLyJNy9CzHR0LTSIQBuBnnw4zdpl8k78OpdenxgWgps0sd7qd7C+5Wv16T2feP29g2v9nN/7fRtLgSUAKB62bO4Fsj1yvVJC73fNr2nxXNvJ1om6kkUC/9RAxZ726f0+Tjp72H8IeapdfIkBASo2w0agJPTq19LCDPOJaDpfija3bQv6g5cmQ+72sDjl0+vEMJSJOgWQmQon0/zwcVRHZb56/qanPW/wrI5h7j/WO1x6VT/EEXLv/6Crm8PqkqHDqbXxYvDokVw4VZhen5Sm/c/r0WransAdRh63643Jdu5EMnYuPKacbtFQ/OEXVqdlqn/czHmbZj4o0+ieRtSKy4mjnc73iMozB2AppX38/Gk2q91zaYdTQ/1thx8teRnG1aYvhetGqfN8mOv490PymOjiwVg6b+e6BNJErlihcG4rvlbjY7g5uGa5PUaNIBCqctjaSRZy4VF2ThCjSVQ80/I3wK09ur+bHnAtbJ52bgIGX4u0o0E3UKIDMW1QG4+G6DO5zYoOkYNf8T/5pqGOA77JG26RTQaNQnQjBnw++9w4YLae2Njqw5J1Wg1jBinkC+n2kO08VAV5n6zN03uLURWtHGrg3G7RYd8CY6reRvUkSwh4bmZMup4gjKpNW7IXnadUqeFeLgG8tmkWLS61/toU6upB9meLYG9deurfSbfsMXRuN2yU/7Xqk9acC/kRqsaxwAIDMnP1hUJv/c//mSaiz9odPIPG7RazJYPS43487lbtXq1awiRLI0GinaFBhugczDUXQO+0xKu6+3fG7Y3gJBjVqmmeLOkS9D9+++/07BhQ7y9venSpQunTp1KtvzGjRtp3rw53t7etGnThl27diVbXgiRtQwdVw0PVzUT6foDVTh13ROAamXOUKPlqw8bfZGjI4wYAe++q67n+6Icbtn5ZdYN4+sRU2tz4UKa3V6ILONpxFP+O6Yuj5U35wMq1PFMtNz4/xUx5m34/vdq3L4YmGi5lNi24hgTf6kLqHPIf1/4AOfcr/9QLls2qFdP3Q4IINU/8+HhsOOk+iCgoOs9KtQu/dp1Sgu9epqeHixeFGN27OhROKSO/sfXF6rVTT7hGkCvXuavk3s4oSiwdy+8847pPj4+UKRI0ucIkSZssoNHWyj+wn/YB3vh9l/wYBdsqqwG4CHH4fEZeHRSDcQfHoLQ11s6UIjnLB50b9iwgcmTJzN48GD++ecfypQpQ79+/QgODk60/LFjxxgxYgSdO3dm9erVNGrUiMGDB3Pp0qVEywshsh4HZwe++exugv3DP4pJpLRlNX+3MoP7qBMQnz7V0K2bmpFZCGGyd/05Y9by5jUvodUlnsSsaDkPPuwaL2/DiKSTeiXn7rX7dOtfCEVRP8ZM/GgPtVql3QO5Jk1M21u2pPy8e/fUxGBPo20AaNkhLxqt9TKXx9eqe0VjAsl/dlc0G94/d66p3KBBpCjre6lSUL2a6fXmzRAcDAZTzjwiIuDnn8HPT13fe9ky07HnydiEsAolFpyeTyVR4Ppi2FQRNnjDRl/YVAm2VIOjH1mzliILsXjQvWjRIt566y06depEyZIlGTduHNmyZePvv/9OtPySJUuoU6cO7733HiVKlODjjz+mXLly/Paqi0EKITKlnh9XwsvL9LpwYej43qstE/a6ps32oEwZdfvYMfj4I4XoSIm8hXhu479hxu0WLZL/aPH5tArkzP4YgMUbanJm/+UEZQx6A2f9r5itYPCcXg/d+rnyIFSdx92i6mE+nV7vNWqfUNNGscbtrctTNvT0xOEIqlaFg88WO3B0hKEfZYyAG8DOwY5uLc8AEB2bjRV/q2PoHz8I5Y/f1febI4c68ielusfLV9WpM7i5gZ2dmrHex0ddo71/fzV52nNubvDFFzBy5Gu/JSFeXd4G0OosVPzWtNRYYpS4hPsuzlbXBjckzI0gRFJsLHnxmJgYzp49y4ABA4z7tFotNWvW5PjxxOdynThxgt4vpMWsXbs227ZtS/I+er0evT5j/8d/Xr+MXk+ROtKuljV5MrRpo64RO2yYAY1GIb2+1fHb1t4eliyBmjW1xMVpmDtPw7Z/7zBz0n1adq+SPhUSaUJ+Zi1j427T8lgN25dO9vvrkicHo/vvZvS3DdS8DePy8u8Gtfyj+49Z8v0p5i4txpW7ai9UiXw3qV/lJvXqa6jXqhgL/ijAjp3qx5cCeSNZuLwwCkqatm3Z8hry5bzPvcd52XmsNFHhkdg52CdZfs3Cw/T40JtIdeQ8Hh4Kq1cbKFuWdPudlRLdh9dk1nJ1e9ESO/r11/Prd8eJelofgJ7tzpItW5kU17ldOz18aL5Pr4f799Wv+KpWVRg0SKFzZ8U4Zz4l95Gf2awpY7SrDkp9CIXfRXNlLoRfA40NaHSgffavcymU+HWMeYT2+CdoDNEo2YujeI9DKfx2wvnib7CM0bbpJ6Xv06JB96NHj9Dr9bi6mmfAdHV15dq1a4me8/DhQ9zc3BKUf/gw6bUyM9PQ89OnZbmCrEja1TLy54dZs3Lw6JENtWuHcOJE+tfhedtqtTBihDvTpxfCYNBwObAYbXsXo9nsfXz4aTj5Sri95EoiI3mTf2b/+suNQ4dy0KPHfby9I177encDbTh/W11qqornWW7dj+XW/ZvJnlOnQzby/faEe0HObNiSg/FfHOfaiSD+3lmLyOgGZmWv3ivC1bVFWLAWGGHar9UqfD3+NneCw7kTHGDcn1ZtW9fvMSt25CUi2om/Fv1LuZoFE5RRDAqr5t1hyqI2xqHu3uUfMX3mLSDOKr+zkqPRQsmSZblyxZEDBzSs/ucccxeb0pA3aXabEydSvoa6NiqK57O/mzcL5t6TOB49siEkxJbHj23QahUaN35Ely5BlCsXCaR+jvxzb/LPbFaWcdq1NST2XC0C4v8guz5eTVGD+nRNE3ENzYEeRB4fzx33IYQ51kjZ3Iw3RMZp24zBokF3eildujSOjo4vL2hFer2e06dP4+3tjU6ns3Z1RBqRdrU8X9/nW4XT9b6Jta2vL3RufY9hHzxg7xk1yNh8pBb/vRvDx9338cWMijjlkkVnM7I3/Wf21i2YOlWLomjYvTsnkyYpDBumvNbnxIMHTSe3fKd8vJ/Z5E2coqFfP3V73FS/BMfrVziOXq/hwPlyxOrtEhwfN06hb1/T8l5p3bYtW+5nxQ51+/wJZ94d5Gt2XB+rZ0Dng/y6vp1xX9fG+/h5ZQUcnL3IqPr31xiHdn83w4NLgeoyYfUrHKdV1ybJnJmICNNDmxUrckJ2UwZ05VlmNY0mF/Dq65S/6T+zWVWmbVd9WfSBPmivzEXzQP0F4Rh9iVIBQ1Hy1MPgMwlcq73kIllbpm3bVxQZGZmiDmCLBt25cuVCp9MlSJoWHBycoDf7OTc3twS92smVB9DpdJmmUTNTXUXKSbtmXS+2beXa+dl9Mh/LZu/n03HFuBOSn1i9HdMXN+D46aNsOVwxwyROEkl7U39md/59GEVRp0TExWkYOVLDnl0x/PpzBLnzv1pgtHmzabtVKx0p/bb26gXffQfxO0OcHcLo1eY4g0Z4ULaqGohHhkVyYMtZdm4NZeeJcpy8kIf27eHzz7VoExnRmVZt27RjafhU3d62Nw+TXrjm6D57+HV9fePrbwbvZMysehn+579HD/jsMwW9XsPeg6Y2/+D9qNR/3+KV1+l0pLjxX8Gb+jOb1WW6dtU5QtEu6te9bXBiNIQcBUDzYBe6bbWgUEfwmQguZaxcWevKdG37ilL6Hi06AcHOzo7y5cvj7+9v3GcwGPD398fPL+FTbQBfX18OHDhgtm///v34pvTRuRBCWJhGq+GdoTW5cMWZL97baVwCaduxSuxdl/ySiEJY047t0Qn2rV1vR8UKERzcfCbV14uJge3b1e08edQs1Sml08GCBVC8uDqKZM70QO4EaPhheT3KVi1hLOeYw5GGnf34Zn59dh/MQ2goLF5MogF3WspfPC/eRdXeiyOXyxIcGGI89tOE3cxYWl99H9o4lv2wn7Gz62f4gBvUJGctqpv/nsqX8z7t+1a2Uo2EyKTyNYZmh6DW8niZ0IHbq9TlyISIx+Kz/vv06cOKFSv4559/uHr1Kl9//TVRUVF0fLZWxMiRI5k5c6axfM+ePdmzZw8LFy7k6tWr/PDDD5w5c4bu8VNkCiFEBuCUy4kJP9fnl6mHjfv+Nz3KijUSImmKQWHH4eIAONpHsOafWFxzqv9fbwZ5UKdVaWZ8upPbFwNRDMksuhzP3s23jSOMmzVLfSBcpQpcvQrHj8OgTwrgnNs5dRewsKa11XXEFUXLf2suArB12VEGfVXTWGbO1/t5e0jNRM/PqHp1izR7/V6X89g5JBzCL4R4CY0WirwFrc9BlR8hW171q8wwa9dMZDAWD7pbtmzJqFGjmDVrFu3ateP8+fP88ssvxuHid+/eJSgoyFi+YsWKzJgxg+XLl9OuXTs2b97MnDlzKF26tKWrKoQQr+TtD6qSP9c9ANbsq8rVk8knkRLCGq6eukVAcAEAanldoG17W44feETNcmqvZ6zejk9n1KdwmQLkdAqjRtnTvNd2D9+O3smhLWcTvebGlaZ1tlvUPGf5N5HOmrQw5WjYsimWs/5X6Ny3JHqDOjtveLedDBhb11rVe2VtelUkV3a1516r0dN/hHzGEuK1aG2h1AfQ9irUXw822c2Pnx4PZydBzGOrVE9YX7okUuvevXuSPdVLly5NsK9Fixa0aNHC0tUSQog0Yedgx4c9L/D59/lQFC2zftDw/S/WrpUQ5nasvwkUAaBBbXVd7UKeBdh5zJ0v+u9k+pL6xrJhUS4cuODNgQvAWmAqDHwvnFk/OmFra7rmxl1qRm+tRk/TNnnT542kozqty2Fv+5To2Gxs2FuabW85EhaVA4B2tQ8ybVEdK9fw1dg72jN3ylE+n1iQD7pfp5BnfWtXSYiswSY75K5kvi/iFpydCIZoODcVSg0Cz4/BIev9zhRJk0XlhBAiDQwYVQGHbHEALFhWmMePrVsfIV60Y6cp2UuDZqbkpLb2tkxbXJ89/57i0547aVntMEXcAxKcP+8XJ1q0gEeP1Ne3LwZy9lYpAKp6nsO1oGuCczI7xxyO1PZWe/ADQ/JxI0ANuCuWvMjv67zQ2WbeJEFvD6nJ1btF+GR6fWtXRYis7d42MMSo27FhcG4K/FsUDg+G8BvWrJlIRxJ0CyFEGsidPxe9equDhyIi4Bfp6RYZiGJQ2HFETfTjlO0JlRomzKpbu40P0xbXZ/2BKtx44EFY8BMObj7LtC/OY/dsuu/27VC9Oly6BBtXXjGe26LhwwTXyyqaNjOf6+zhAWt3lia7S/YkzhBCiHhK9IXWF6HEe+owdAD9U7j8I6wtCf69IOyydesoLE6CbiGESCMff2za/uEHiIuzWlWEMHPx6DXuPVaHMtbxuYCtve1LzgDn3M5UbVqeTyeU5b//wN1d3X/pElSrHMmchaahkc3b5bFIvTOCpm+Z1tx2coJ166BAwYyfpVwIkYHkKAXVfoa216HMcNOcb0UP15fA+jJwfJR16ygsSoJuIYRII56e0KqVun3rFqxacs26FRLimR3rTcPFG9SJSPX5tWrBoUPg9Sz+fPzEkVPXPQFwy/GQyo3Kpkk9M6IKFeCjj8DbG1avVl8LIcQrcSwIFWdCu5vg/TXY5VL3KwbIXsSqVROWJUG3EEKkoWEfmgKa/02PTKakeFOc2X+Zut4nGfP+TqvVYcduU892g+av1itdtCjs36fQusZhs/3Nql9Eq8u6Hyc0GvjuOzh1Cho1snZthBBZgr0reH8F7W6AzwTIWQFK9DMvExkI4fLwPqvIun8lhRDCCho2ccSnmLqe78ELXvhvOG3lGglrG/9FIHvOVGDiL/U5uTv9l9UyGGDHqaoAuDhF4FfP85Wv5ZxDw+pdFfmkx07jvm49ZH1nIYR4JbY5wOsLaHEcdPbmx05/CWs94dAHEHnHOvUTaUaCbiGESEMarYZhA4OMr7+dEW7F2ghrUwwKu0+Y1kDesOp+utfh7Fl4GKwm+avbIPtrZ9zW2eqYvqQ++9ef5r+/jtOie5W0qKYQQry5NC/kiQi7BNd+BSUOrsxTE64d+wSeZt2klVmdBN1CCJHG3hlShbw5HwDw986q3DibcPkl8Wa4cQPuPc5vfL1xe+50r8OOHabtBg3S7ro1WnrToJNf2l1QCCGEKlteKP8F2Dipr/VP4cJM+Lc4nBwD0cHWrZ9INQm6hRAijdk72jPoXXUYsUHR0aZVFIO77OLHr3axa/VJHsqD6jfGvv3mvRf7z5UnNCg0XetgqaBbCCGEhdi5gM84Ndt52U9Al03dH/cEzk6ENUXhxGfwNCjZy4iMQ4JuIYSwgA9Ge2Fv+xSAMzdL8eNf9Rj8TT3qd6iAuzsULAh//23lSgqL27fP/LXeYMO2v9NvXrdBb2DXf1EA5M6t4OOTbrcWQgjxurK5gd90aHMFSn1gWuc7LhzOTYH/moCiWLeOIkUk6BZCCAtwL+TG7K8PUyD33USPBwZCv37w4EE6V0ykqxeDboCNG9JvAfeTey7xKMwBgHpeh9HKX30hhMh8HAtClR+fBd+DQPssgWWZjxPOBxcZkvz5FUIIC3nv8zrcCc7PwzuP2L3mJHPH7WZI72vGtY5DQ2H0aOvWUVjO4wehnDmj9kCULaMnm63a47xpX0kUQ/r0TOzYeM+43aDO03S5pxBCCAvJXhiqzIG218BrLBTtZn48+Ajs6QRB/tapn0iSBN1CCGFhrgVyUadtBQZ+WZcfFhVn2zZwcVGPLVqELCuWRR3cdhlFUXsgGvnso4HfGQDuhOTn9P7L6VKHHXscjdsNWhZIl3sKIYSwMMeC4PONabj5cxdmwu1VsLUmbKkFt/8Bg946dRRmJOgWQoh0ljcvfPO5aVz5kI9s0MfKH8WsZt+uJ8btWrVtaN401vh6407LB8BxMXHsPqGuye2e4yHlq5ew+D2FEEJYSVwUBMWb0/RwP+zpCOvKwOW5EBdpvboJCbqFEMIaBn2cG59iFwE4dqUsP01KZPKvyNT2HXYxbtdqWpQWPWsaX2/a7mTx+x/fdYmwKLUODSpfQqOVeX9CCJFl2ThAm8tQfRG4lDftD78ChwfBmsJw6it4KslkrEGCbiGEsAIbOxtmf2eaY/vFdG8eBsi6m1lFXEwcB8+VBqCQ2x0KeRagVCko8ayzee9eCAuzbB12bLpv3G5QL/2StwkhhLASnT0U7w0tT0P9jZC3kelYdDCc+QZWF4bQ81ar4ptKgm4hhLCSOm0r0L3ZXgAeReTis8Hpt5SUsKyTey8TEa32ZtescNO4v0UL9d+4ONi+3bJ1+G+Ps3G7QSsPy95MCCFExqHRQIHm0GgbND+mJlzT6NRjOUpDjjLm5a8ught/QGRg+tf1DSFBtxBCWNG0H0vh7KB2eS5YW4tDW80D73v3YPnSMBZM3sO96zIkLLPYt93UVrWqm3qZnwfdABtXXrfIvaOjYUz/PWw94gdA/lz3KO1XzCL3EkIIkcHl9oOav6kZz8uMgPJfJFxm7PTXsL8brCkEe7tCyHGrVDUrk6BbCCGsKH/xvIwbegwARdEyeFAsK369y6BBULYs5M8PXXvm4L3P61C4VE7ebbKPfetOpduSU2+69UsOs+n3I6k+b/8BU0bZWo3cjdv168Zhb6tOK9i4xT7N2/HYMahcGSb+XAeDovZq9Ol4QeZzCyHEmy57Yag4A4q8bb4/4iZE3lK3FQPcWg6bKsKO5nB/JyjyeSMtSNAthBBWNmRcLcoXVpeQOnKlAm/3yc/cuXDhgnm5WL0df26rRe02PlQsdZGfJ+4mIjTCCjV+M6z45RKte1WhRffKrPrpQMpPVBT2nSwKQHb7cHxqlTIecnSyoV4FdemwgOACnD1wNU3qGhMDX34JVavCGfXy2OjiGDdoJ1/PqZUm9xBCCJEFZcsLDbdCuc8gWx7T/rubYXsD2FITbq6AmFDr1TELsGjQ/fjxY0aMGEHFihWpXLkyn3/+ORERyX9A7NGjB56enmZfX375pSWrKYQQVmVrb8uc7xL+btTpoHp1GD1Kz8h+h3HL8dB47MS1MvQfU5fCHtH8u/BgelY30zq89Rw1yl2gfbN8nNh9MdmyigITvi9ufP3lhJwY9IYU3efWxUACgtUlwaqXu4SNnY3Z8RaNTW29cdWdlFY/SecPXaVKhWDGjwf9s5XnKlSAw4fgyzn1sbW3Tf4CQggh3ly6bJCvMfhOgrY3oMqPkD3elKTgA7DvbdhS3WpVzAosGnR/8sknXLlyhUWLFjFv3jyOHDmSogD6rbfeYu/evcavkSNHWrKaQghhdfU6+DLny100r3qY0X12sml9NI8fg78/TJ6iY+ovVbgd6MTiGfuo6nnGeF5IeG7av1eFaSN2ypDzJERHwxfv76ZG89IcvlSegOCCfPRhbLLfr82b4fQZU7B89nYZ/v4pZQ839u3XGbdrVkmYorxF50LG7U3/OSc4nhqKQaFjJzh1wRUAGxv46is4dAh8K9q85GwhhBAiHhsHKPUBtLkENX+HnN6mY3nqJyy/vzvs7wGnvobrSyFoPzy9L0PSE2Gxv8hXr15lz549/PXXX3h7qw02ZswY+vfvz8iRI8mbN2+S52bLlg13d/ckjwshRFY0aFw9Bo1L+ni27NnoOaIWPUfAkW3nmDDuCWv2VkNRtIz6X33OXzrIvL+qYW+ffnXO6I4ehd694cyZumb7952twKY/DtOie5VEz5s2LeG+b6a60am/Aa0u+efV+47lM27Xal8nwfHSfsUolvcW1+8XZs8pL56EPME596sF32cPXOFCgDp8vUT+AFas86BixVe6lBBCCKHS2kDRd6HIO3BvK9xZDwVbm5d5+gBu/J7gVB3gq3FE+6AUOJcApxJQ+kPIXihB2TeJxYLu48ePkyNHDmPADVCzZk20Wi2nTp2iSZMmSZ67du1a/v33X9zd3WnQoAGDBg3CwcEhyfJ6vR798zF1GdTz+mX0eorUkXbNujJ62/o18OSvegqTPt7BVz82AODXddW43Ejhr78MxH9uqY/Vc3zPJfx3PCRvflu6DKxm9cRaN2/CypUamjdX8PJK++vHxMCECRqmTtWg16vv1dYmlra1DvP3rpoAjBnnRJO34xJ8L474P2bHDrXnuFQpBVfdGQ5c8ObMzVL8NX8/nQZUS/be+/ZpAQ0ajUKVaon/H2pW6zrzVhUmVm/HtlXHaNsn8eD/ZTavDgDUoHtwz8tUqJCfDPpf1uIy+s9slqTXozNu6rHEfz5p16xJ2jUTydNI/QLzn/EH+9ElfgY6JRIen1S/AH3R3pDNdK7mxu9ozk8FhwIoDup0LE1cOBi/IlDyt0DxmWCBN5S2Uvp/2GJB98OHD8mdO7f5zWxscHFxISgoKMnzWrduTYECBciTJw8XL15kxowZXL9+ndmzZyd5zqVLl9Ks3pZ2+vRpa1dBWIC0a9aV0du2Vd8c5HJfzcgpLXkabce+fRoqVYpjzMcHCLzymMPH3PA/60VYlCmyvROwmgZvWe+Js6JA9+5luXjRkS++UOjb9y59+97D1jZthqOFPYzgw4/Kc/aiq3Ff6dKRjPv6CiVK2HKl61lOXi/PsStlmT9pDdVbm69hPeWzJ0B9AN7qfJViua5zYKT6APmbqbkpVvlYkr3dERFaTp3yBaBkySiuXz+faDnfyo9hlbq9+u9QCvudeKX3uml7NuN2ca8YTpx4tetkJRn9ZzYr0UZF4fds+9SpUxiS6SB5XdKuWZO0a2ZWCE2pvdjH3sE+NgD7mADzf2MD0aBHQcPJK6Eo2hPGM/M/3EuBsHMQdo6kugAe6fNw3XAiiaOZj0ZRUjfofsaMGfz888/JltmwYQNbt27ln3/+YfPmzWbHatSowYcffsi7776bovv5+/vTu3dvtm7dSuHChc2ORUZGcv78eUqXLo2jo2Nq3ka60+v1nD59Gm9vb3S6pJ4LicxG2jXrymxte+QIdOyoJTDw5T3Yhd0DOH81N/aO1hmHvmf7Ixo0czPbV6FcKAvnBFKhTunXuvbDO8E0rfeIUzc8AbCxUfj8c4XPPlOwtVXbdfG3G+k/uh0AZQtd5cSlQuhs1Ta+duYWZfwKY1B05HEJ4totR+wd7KntfYGDF9UHFyvm+tPx/aqJ3n/bxic0b5MTgIEDDcyenfif2IjQCNzz2hMTZ09h9wCu3smX6tEHTyOe4u6uISrGkQK573LznrvVRzBYU2b7mc0SIiLQubgAoA8NhezZ0/wW0q5Zk7Rr1mVs2/Jl0UUHQuRtyGM+xUtz6nM0l2ah0T9N9BqK1h7Foz1KjYTD1zOayMhILl26RNmyZZONR1Pd0923b186dOiQbJlChQrh5uZGSEiI2f64uDhCQ0NTNV+7QoUKANy8eTNB0P2cTqfLND+wmamuIuWkXbOuzNK21aqpybPatVPnMcfnniOI+pWucD3AhSOXy3EryIOF03YxZHw9q9R1/rRLgHnQffKcC9UaOzJ2wB4++1+tV8q4HRwYQrP6poC7QO77rNvihl8l8/bza1iQmuVOsf+cD+dvl2D5j/voMVxdVuv7ibcwKGrW1qE9z5I9R30AvhrzlJY91PMnTMtNp/c1ifZ2H9hwgue95LV8bqDTFU9QBiBH7hzUq3CUrUcrcSvIA/+NJ6nTtkKq3u/BLZeIilH7GZtUv4qNbf5UnZ9VZZaf2Swh3vdZp9OZvU77W0m7ZkXSrlmXztYeXbaS4FIy4UG/qeA7BWIeQdRd0OjA1glsnMAmOxqtbZI94BlNSv//pjp7ee7cuSlRokSyX3Z2dvj5+REWFsaZM6YsuwcOHMBgMODj45Pi+50/rw7Nk8RqQgiRvIIFYfdu+OQTeKdLOHO+3MVZ/yvcf+TGiv9qMG+e6U/YxNlliAyLTPc63r8RxN87KwPgluMh+/fE4FUiEIA4vS1f/VifauWvcHDzmeQuk0BwYAiNagdx8vrzgPsuO7dFJgi4ATRaDd+MizW+/vo7L2Jj4WFAMAvXqHOrs9uH88FnpiC4+buVjFnjT133ZM3CQ4nWY98hU0K0WnXskq1zr26mJ/w/Lk3kQ8lLbFlvWjO1adPM8vFECCGEADQasM8NOcuDSxlw9AC7nKDNmstcWmzJsBIlSlCnTh3Gjh3LqVOnOHr0KOPHj6dVq1bGzOX379+nefPmnDp1CoBbt24xZ84czpw5Q0BAANu3b2fUqFFUqVKFMmXKWKqqQgiRZTg6wvTp8McKJwaNq0e56iWNQ44rNSxLx7oHALj3OC9zZiU+rMuSFnx7lli9Goz263iGGrXtOHLKlS/e24lOGwfA8atlqd7ci1bVD3N467mXXjM4MITGdR4YA+78ue6xY+tTSvkVS/Kc+h18aVzzNgDXbruwcCHMmXSaqBh1aNj7HY+SO38uY3mNVsNXX5i+X+Nm+WJ4YdlufayeA+dKGetQtFzBZOvdeWBV3NzU4ed/r8nO/fsvfatmtu41rQLSuMPrDcsXQgghhOVYdJ3uGTNmULx4cXr16kX//v2pWLEi33zzjfF4bGws169fJyoqCgBbW1v8/f3p168fLVq0YOrUqTRt2pR58+ZZsppCCPHG+GZaXjQaNdCb8m1uwhIuI20x+lg98/9Ue3Q1GgMDRpQAwN7Rngk/1+fA5kuUK3zFWH7DwSpUbVqO1jUOcWRb4sH3w4BgmtS9z4lr6oNZNeCOpHTFpAPu5yZ+a0omN368gR9+U5Ol6bRxfDy2RILyLbpVorKfGnifPJONf/81P37mwBWeROUAoFaF6y+dX23vYEvfvmqZ2FhYsOClVTYKuv2QY1fKAuBb/AJ5CstoMCGEECKjslj2coCcOXMyc+bMJI97eHhw8eJF4+v8+fPz22+/WbJKQgjxRitfrRjdusFvv0FICHz7LXz1Vfrce8NvR7kVpCYga1H1CMW8zJORVW5cjuMXYvh15m4mzirOrSA1q/j6A1VZ3wQa1Q7CMZc7QUHw4AEE3YvgSaQroGYpz5fzPju2RuJZKfF51C+qWhXatoV//4U7d7TG63RtfJAiZWslKK/Ravh6fDZaP1uq9MMhccwZf5IHj5x48CgnD5+Y7lurekyK6jBggDoyQVFg/nwYNSpl02K3b3rM83nxTevcBWQ0mBBCCJFRWbSnWwghRMbz9ddg8+yR68yZEBycPvedG29O+aBBiZexc7Cj/5i6XLrhztxxu/FwDTQe277XnbVr4cABuHYNnkSaMiXny3mfHVsiUhxwPzd+PMae/+c+HeOWRGlo2RIqq1PSCbhjw7ZjlTh13ZN7j/MSpzfNQ2vQMl+K7l+8ODRvrm7fugUb/ziZovO2+JvmgDfpXC5F5wghhBDCOiToFkKIN0yJEtC3r7r95AlM++x4mlw3MiwSxZD4ElnXTt9i0+FKABRxD6D5O5WSvZa9oz0Dv6zLlVuu/Pj1bjzyR5gdz50bPIs+oI7XSfq23sPenU8pUyV1ATeAjw+83fqW8XXTSoeoUMczyfIaDcyYAbbx8rzY2UTj4RqIX4nzNK18hDlf7kr2Gi8a1OOqcfvHOS/vIVcU2LpV3c6WDWo3zpv8CUIIIYSwKgm6hRDiDTR2jIK9rRrg/bDYk7vXUpnF6wULp+zBKWc2qpc7y60LdxIcnz/zGoqi/skZ8O4V47rYL2PvaM8HX9Xl2s3sXLwId+9CTIzaO3/heh52n67AgrV1KFGhyCvXfeJEDflz3cMp2xMmTnF6afl69eDePbh8GUKDQnkabcfthwU4dqUsmw9XZtC41C3F1qJzUYq4BwCw6VAlrp2+nWz5CxcgQC1O3bpq4C2EEEKIjEuCbiGEeAN5FNLwQWd/AKJiHJn02YVXvlZYcBifTiyPomg5dNGLqjVsObDJtOTX04inLPzHCwBbXQz9hpdP9T1sbaF0aciXz7yXOS0U9y7M5evO3A3UULlxyoZq584NJUtCDjeXlyZMexmdrY4B76oJ5BRFy/z/XU22/NYtprTpTZu+1q2FEEIIkQ4k6BZCiDfUZ1PKkd0+HID5f9dg1he7iIuJS/V1Zn9zjJDw3MbX9x/noX7bkvw5az8Af6008DBMnSfducHhDJlpO7tLdpxyvbyX21L6DS+PrU4debBwlRfRkdFJlt2y7Khxu0mD9F/2TQghhBCpI0G3EEK8ofIUdufjHkcAiNXb8dGkeviWus72lcdSfI0nT2DmoooAaDV6qpVRe7ijY7Px7kc1Gdt/Jz/+5GAsP2i0JP1KTJ7C7nSqr7bFwzA3/pp/JNFyMVEx7DyuLhWWN+cDvH3t062OQgghhHg1EnQLIcQbbOz3Nejbeo/x9dlbpWj8VkU61/fnxtmAl54/ezaEPFHXpn631Vl2HyvNe213G49P+Lk+/v7q8GsvL6jVMFcav4OsY9BQUzb2H39xTrSM/6ZzRESrPfJNql167aHtQgghhLA8CbqFEOINZu9oz4K1dTiw6QxVSp817v97Vw3K+rkyaXwUSuIJydVe7pnqtlYLY2b4YOdgx0//1OHb0bvQavRm5QcNUrN/i8TVbu1D+cKXAdh/zoeTey4mKLN1w2PjtsznFkIIITIHCbqFEEJQrZkXB86VZeGUPeRxCQLgaawDX3zpwBdfJH7OnDmmNb7feQc8n62SpdFq+HhyPdb+egzn7OrcZBcX6N7d0u8ic9NoNQzqbVqXfNr4IGJjzcts2W2aD9+4fan0qpoQQgghXoME3UIIIQDQ6rT0GVWHS5ftGNZ9HxqN2sU9eTJ8+6152fBH4cyYrkaEWi2MGZPwei17VuHwUXtGjYING8A58RHTIp7uQ/2Mye3+2FqbMmVg0SKIjYWQu484clmdz+1d9BL5i8v63EIIIURmIEG3EEIIMy7uLvxvaS1++ME0Fnz4cFiy0JQp+8cJRwgOUdfueqfzY8qUSfxanp4wZQrUrGnRKmcZOVxz8M1HpiRq165B375QtiyMHHrPuNZ509qBSV1CCCGEEBmMBN1CCCESNXgwfPWV6XXf921Yt/gQ4Y/Cmf6Luu62RmNgzCchVqph1jR8an327gijSRPTvqtXYcFfZY2vm7Sw3vJmQgghhEgdCbqFEEIk6auvYPB76sRtvcGGLu97M+Dtk8Z1t99p7E+ZKsWtWcUsqVb9HGzZAnv2QOPG5sfsbZ9Sp7UsvSaEEEJkFhJ0CyGESJJGA7Pm5aJro/2Amlztj621nh0zMGZCPmtWL8urXRu2boXd66/RyO8YWo2eYd0P4JjD0dpVE0IIIUQK2Vi7AkIIITI2rU7L4rWVeVTvCJsPVzbu79rIn7JVa1mxZm+OOi2Ls60lxETFYOdQ39rVEUIIIUQqSE+3EEKIl7JzsOPvrWWpXuY0ADa6WMZMkOzZ6c3Owc7aVRBCCCFEKklPtxBCiBTJ7pKdzXuL8Mu0nfhWcaFcNT9rV0kIIYQQIsOToFsIIUSK5XDNwfCp9a1dDSGEEEKITEOGlwshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWkqnndBsMBgCioqKsXJOX0+v1AERGRqLT6axcG5FWpF2zLmnbrEnaNeuStrWCp0/B09O0rdGk+S2kXbMmades601r2+dx6PO4NCkaRVGU9KiQJQQHB3Pjxg1rV0MIIYQQQgghxBuqaNGiuLq6Jnk8UwfdcXFxhIaGYm9vj1YrI+WFEEIIIYQQQqQPg8FAdHQ0Li4u2NgkPYg8UwfdQgghhBBCCCFERibdw0IIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiATd6eD333+nYcOGeHt706VLF06dOmXtKolUmj9/Pp06dcLPz48aNWowaNAgrl27ZlYmOjqacePGUa1aNfz8/Pjwww95+PChlWosXsVPP/2Ep6cnEydONO6Tds2c7t+/zyeffEK1atXw8fGhTZs2nD592nhcURS+//57ateujY+PD71795YlKDMBvV7Pd999R8OGDfHx8aFx48bMmTOH+DlhpW0zvsOHDzNw4EBq166Np6cn27ZtMzuekjZ8/PgxI0aMoGLFilSuXJnPP/+ciIiIdHwXIjHJtW1sbCzTp0+nTZs2+Pr6Urt2bUaOHMn9+/fNriFtm/G87Gc2vi+//BJPT09+/fVXs/1vertK0G1hGzZsYPLkyQwePJh//vmHMmXK0K9fP4KDg61dNZEKhw4dolu3bqxYsYJFixYRFxdHv379iIyMNJaZNGkSO3bs4LvvvmPp0qU8ePCAIUOGWLHWIjVOnTrFsmXL8PT0NNsv7Zr5hIaG8s4772Bra8vPP//M+vXrGTVqFC4uLsYyP//8M0uXLuXrr79mxYoVODg40K9fP6Kjo61Yc/EyP//8M3/++SdffvklGzZs4JNPPuGXX35h6dKlZmWkbTO2yMhIPD09+eqrrxI9npI2/OSTT7hy5QqLFi1i3rx5HDlyhC+//DK93oJIQnJt+/TpU86dO8cHH3zAqlWrmD17NtevX+eDDz4wKydtm/G87Gf2ua1bt3Ly5Eny5MmT4Ngb366KsKjOnTsr48aNM77W6/VK7dq1lfnz51uxVuJ1BQcHK6VLl1YOHTqkKIqihIWFKeXLl1c2btxoLHPlyhWldOnSyvHjx61US5FS4eHhStOmTZV9+/Yp3bt3VyZMmKAoirRrZjV9+nTlnXfeSfK4wWBQatWqpfzyyy/GfWFhYYqXl5eybt269KiieEX9+/dXPvvsM7N9Q4YMUUaMGKEoirRtZlS6dGll69atxtcpacPnv4dPnTplLLNr1y7F09NTuXfvXvpVXiTrxbZNzMmTJ5XSpUsrd+7cURRF2jYzSKpd7927p9SpU0e5dOmS0qBBA2XRokXGY9KuiiI93RYUExPD2bNnqVmzpnGfVqulZs2aHD9+3Io1E6/ryZMnAMaeszNnzhAbG2vW1iVKlKBAgQKcOHHCGlUUqfDNN99Qr149s/YDadfM6r///sPLy4uhQ4dSo0YN2rdvz4oVK4zHAwICCAoKMmtXZ2dnKlSoIL+bMzg/Pz8OHDjA9evXAbhw4QJHjx6lbt26gLRtVpCSNjx+/Dg5cuTA29vbWKZmzZpotVqZwpfJhIeHo9FoyJEjByBtm1kZDAY+/fRT+vXrR6lSpRIcl3YFG2tXICt79OgRer0eV1dXs/2urq4J5gOLzMNgMDBp0iQqVqxI6dKlAXj48CG2trbGPxrPubq6EhQUZI1qihRav349586d46+//kpwTNo1c7p9+zZ//vknffr0YeDAgZw+fZoJEyZga2tLhw4djG2X2O9mma+fsfXv35/w8HBatGiBTqdDr9czbNgw2rZtCyBtmwWkpA0fPnxI7ty5zY7b2Njg4uIiv5szkejoaGbMmEGrVq1wcnICpG0zq59//hkbGxt69uyZ6HFpVwm6hUi1cePGcfnyZf744w9rV0W8prt37zJx4kQWLlyIvb29tasj0oiiKHh5eTF8+HAAypUrx+XLl1m2bBkdOnSwcu3E69i4cSNr165l5syZlCxZkvPnzzN58mTy5MkjbStEJhIbG8tHH32EoiiMGzfO2tURr+HMmTMsWbKEVatWodForF2dDEuGl1tQrly50Ol0CZKmBQcH4+bmZqVaidfxzTffsHPnThYvXky+fPmM+93c3IiNjSUsLMysfHBwMO7u7uldTZFCZ8+eJTg4mI4dO1KuXDnKlSvHoUOHWLp0KeXKlZN2zaTc3d0pUaKE2b7ixYsTGBhoPA7I7+ZMaNq0afTv359WrVrh6elJ+/bt6dWrF/PnzwekbbOClLShm5sbISEhZsfj4uIIDQ2V382ZQGxsLB9//DGBgYEsXLjQ2MsN0raZ0ZEjRwgODqZBgwbGz1J37txh6tSpNGzYEJB2BQm6LcrOzo7y5cvj7+9v3GcwGPD398fPz8+KNROppSgK33zzDVu3bmXx4sUUKlTI7LiXlxe2trZmbX3t2jUCAwPx9fVN59qKlKpevTpr165l9erVxi8vLy/atGlj3JZ2zXwqVqxonPP73I0bNyhYsCAAHh4euLu7m7VreHg4J0+elN/NGdzTp08T9KTodDrjkmHStplfStrQz8+PsLAwzpw5Yyxz4MABDAYDPj4+6V5nkXLPA+6bN2/y66+/kitXLrPj0raZT7t27fj333/NPkvlyZOHfv368csvvwDSriDDyy2uT58+jBo1Ci8vL3x8fFi8eDFRUVF07NjR2lUTqTBu3DjWrVvHjz/+SPbs2Y3zT5ydncmWLRvOzs506tSJKVOm4OLigpOTExMmTMDPz0+CswzMycnJOC//OUdHR3LmzGncL+2a+fTq1Yt33nmHefPm0aJFC06dOsWKFSv45ptvANBoNPTs2ZO5c+dSpEgRPDw8+P7778mTJw+NGze2cu1Fcho0aMC8efMoUKCAcXj5okWL6NSpEyBtm1lERERw69Yt4+uAgADOnz+Pi4sLBQoUeGkblihRgjp16jB27FjGjRtHbGws48ePp1WrVuTNm9dab0uQfNu6u7szdOhQzp07x/z589Hr9cbPUy4uLtjZ2UnbZlAv+5l98eGJra0tbm5uFC9eHJCfWQCN8vzxsLCY3377jQULFhAUFETZsmUZM2YMFSpUsHa1RCq8uHbzc5MnTzY+QImOjmbKlCmsX7+emJgYateuzVdfffXGDJvJKnr06EGZMmX44osvAGnXzGrHjh3873//48aNG3h4eNCnTx/eeust43FFUZg1axYrVqwgLCyMSpUq8dVXX1GsWDEr1lq8THh4ON9//z3btm0jODiYPHny0KpVKwYPHoydnR0gbZsZHDx4MNGESx06dGDKlCkpasPHjx8zfvx4/vvvP7RaLU2bNmXMmDFkz549Pd+KeEFybTtkyBAaNWqU6HlLliyhWrVqgLRtRvSyn9kXNWzYkJ49e9K7d2/jvje9XSXoFkIIIYQQQgghLETmdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCPGGOnjwIJ6enhw8eNDaVRFCCCGyLAm6hRBCiESsWrUKT0/PJL9OnDhh7SpmeEeOHDF+v0JCQhIcX79+PR06dMDb25vq1avz+eefJyj39OlTPv/8c1q3bk2lSpXw8/Ojbdu2LF68mNjY2GTvP2bMGDw9PRkwYECavi8hhBAiNWysXQEhhBAiIxs6dCgeHh4J9hcuXNgKtck8DAYDEyZMwNHRkcjIyATH//jjD8aNG0eNGjUYPXo09+/fZ8mSJZw5c4aVK1dib28PqEH3lStXqFu3LgULFkSr1XL8+HEmT57MqVOnmDlzZqL3P336NP/884/xOkIIIYS1SNAthBBCJKNu3bp4e3tbuxqZzvLly7l79y6dO3dmyZIlZsdiYmL49ttvqVKlCosWLUKj0QDg5+fHwIEDWbFiBT169AAgZ86crFixwuz8d955B2dnZ3777TdGjx6Nu7u72XFFUZg4cSLt2rXjwIEDFnyXQgghxMvJ8HIhhBDiNcyaNYsyZcrg7+9vtn/s2LF4eXlx4cIFQA00v//+ezp27EilSpXw9fXl3XffTRAUBgQE4OnpyYIFC/j9999p1KgRFSpUoG/fvty9exdFUZgzZw5169bFx8eHDz74gMePH5tdo2HDhgwYMIC9e/fSrl07vL29admyJVu2bEnRezp58iT9+vWjUqVKVKhQge7du3P06NEUf08eP37Md999x9ChQ8mRI0eC45cvXyYsLIwWLVoYA26ABg0a4OjoyPr16196j4IFCwIQFhaW4NiaNWu4dOkSw4YNS3GdhRBCCEuRoFsIIYRIRnh4OCEhIWZfjx49Mh7/4IMPKFu2LF988QXh4eEA7NmzhxUrVjBo0CDKlCljvM7KlSupWrUqn3zyCUOGDCEkJIT33nuP8+fPJ7jv2rVr+eOPP+jRowd9+vTh0KFDfPzxx3z33Xfs2bOH999/n7feeosdO3YwderUBOffuHGDYcOGUbduXUaMGIFOp+Ojjz5i3759yb5ff39/unXrRkREBEOGDGHYsGGEhYXRq1cvTp06laLv2ffff4+7uztdu3ZN9HhMTAwA2bJlS3AsW7ZsnD9/HoPBkOCckJAQ7t69y9atW1m4cCEFCxakSJEiZuXCw8OZMWMGAwcOTNADLoQQQliDDC8XQgghktG7d+8E++zs7Dh9+jQAtra2TJ06lY4dOzJlyhRGjhzJF198gZeXF/379zee4+Liwn///YednZ1x31tvvUWLFi1YunQpkyZNMrvH/fv32bJlC87OzoA6R3r+/Pk8ffqUv//+Gxsb9U/4o0ePWLt2LePGjTO79o0bN/jhhx9o2rQpAJ07d6Z58+bMmDGDWrVqJfpeFUXh66+/plq1avzyyy/GXuiuXbvSqlUrvvvuOxYuXJjs9+vChQssX76cn376CZ1Ol2iZIkWKoNFoOHbsGJ06dTLuv3btmjGRWmhoKLly5TIe27p1K8OHDze+9vLyYtKkScbvw3Nz5szB3t4+0XYTQgghrEGCbiGEECIZX375JcWKFTPbp9WaDxQrXbo0Q4cOZebMmVy8eJFHjx6xcOFCs4BQp9MZg1CDwUBYWBgGgwEvLy/OnTuX4L7Nmzc3BtwAPj4+ALRt29bsuj4+Pqxbt4779+9TqFAh4/48efLQpEkT42snJyfat2/Pzz//TFBQUKK9wOfPn+fGjRt88MEHZr35ADVq1GDNmjUYDIYE7z++iRMnUrduXWrXrp1kmdy5c9OiRQtWr15NiRIlaNKkCffv32f8+PHY2toSGxtLdHS02TnVqlVj0aJFhIWF4e/vz8WLF4mKijIrc/36dZYuXcrMmTPNHkAIIYQQ1iRBtxBCCJEMHx+fFCVS69evH+vXr+fUqVMMHz6ckiVLJijzzz//sHDhQq5fv2623FVi2dHz589v9vp5AJ7U/tDQULOg+3lvcnxFixYF4M6dO4kG3Tdu3ABg1KhRSb1Nnjx5gouLS6LHNmzYwPHjx1m7dm2S5z/3zTff8PTpU6ZOnWocHt+2bVsKFy7Mli1bcHR0NCvv5uaGm5sboD6QmDdvHn369GHLli3G9zJx4kT8/Pxo1qzZS+8vhBBCpBcJuoUQQog0cPv2bW7evAnApUuXEhxfs2YNo0ePpnHjxvTr1w9XV1d0Oh3z58/n9u3bCconNTQ7qV5mRVFeo/bm1xg5ciRly5ZNtMyLwXB806ZNo1mzZtja2hIQEACYEp3du3eP2NhY8ubNC6gPC+bOnUtgYCB37tyhQIECFCxYkK5du5I7d+5EE7DF16xZM7799lu2b99O165d8ff3Z8+ePcyePdt4b4C4uDiePn1KQEAAOXPmxMnJKeXfECGEECINSNAthBBCvCaDwcDo0aNxcnKiV69ezJs3j2bNmhnnUwNs3ryZQoUKMXv2bLMe6FmzZlmkTjdv3kRRFLN7Pe/Jfp75+0XPe8qdnJyoWbNmqu959+5d1q1bx7p16xIc69ChA2XKlGHNmjVm+wv8n737jq/5egM4/rm52QlBxA6JkZgRexNbrdo6bNWWolot2tKiVI226ECtH60WLYrao/YekcQeCWImCLKTe+/vjyP3ujIkZHver9d95bu/594jcZ/vOec5xYpRrFgxQAXoAQEBqWqpTuh+/vjxY+O9AYYOHZro2Dt37tC8eXM+++wzGesthBAi00nQLYQQQrykxYsXc/LkSebMmYOPjw+HDx9m/Pjx1KxZkwIFCgCmluunA+FTp07h6+trDDrT0927d9m2bZsx8A8PD+eff/6hQoUKyWb1rly5MiVLlmTRokW0b98eBwcHs/337983vp+k/Pzzz4m2bdiwgY0bNzJ16lSKFCmSYpm/++47dDodffv2Nbtn/vz5E3WV/+uvv4xlBqhbt26S9x83bhzFihVj8ODBeHh4pHh/IYQQIiNI0C2EEEKkYM+ePVy5ciXR9urVq+Pq6srly5eN8283a9YMgG+//ZZOnToxYcIEZs2aBYCPjw9bt27lgw8+wMfHh+DgYJYvX07ZsmWJjIxM93K7ubnxxRdf4O/vj7OzM6tWreLevXtMmTIl2XMsLCyYNGkSgwYNon379nTp0oXChQtz584dDh8+jKOjI3Pnzk32/BYtWiTaljAdWuPGjc0C9l9//ZULFy5QtWpVtFotO3bsYN++fYwYMcKYNA5g3bp1LF++nBYtWuDq6kpERAT79u1j//79NG3alHr16gHmLeZP++abbyhYsGCSZRNCCCEygwTdQgghRAqS6/49ZcoUihUrxujRo8mfPz+ff/65cZ+bmxsff/wxkydPZuPGjbRt25YuXboQGhrKihUr2LdvH2XLlmX69Ols3ryZI0eOpHu53dzcGDduHNOmTSMwMJASJUrwww8/0KhRoxTPq1OnDitWrOCXX37h999/JzIyEhcXF7y8vOjZs2e6lc/Dw4Nt27axc+dO9Ho9np6ezJw5k9dee83suBo1anDy5Ek2bNhAaGgolpaWuLu789lnn9GrV690K48QQgiRUTSG9Mi8IoQQQohso1mzZpQrV4558+ZldVGEEEKIV17yE20KIYQQQgghhBDipUjQLYQQQgghhBBCZBAJuoUQQgghhBBCiAwiY7qFEEIIIYQQQogMIi3dQgghhBBCCCFEBsnRU4bFx8fz8OFDbGxssLCQ5wdCCCGEEEIIITKHXq8nJiYGJycnLC2TD61zdND98OFDgoKCsroYQgghhBBCCCFeUW5ubjg7Oye7P0cH3TY2NoB6k3Z2dllcmpTpdDouXLiAh4cHWq02q4sj0onUa+4ldZs7Sb3mXlK3WSAqCho0UMv790MGfBeTes2dpF5zr1etbqOioggKCjLGpcnJ0UF3QpdyOzs77O3ts7g0KdPpdADY29u/Ev8AXxVSr7mX1G3uJPWae0ndZgGDAc6fV8u2tpAB38WkXnMnqdfc61Wt2+cNdZaB0EIIIYQQQgghRAaRoFsIIYQQQgjxytLpIC4uq0shcjMJuoUQQgghhBCvnGvXYORIKFAASpWC69df/FoGA/j6wsOH6VY8kYtI0C2EEEIIIYTIFfR6WLMGvvkG/vlHBdYGg/kxJ09Cr15QujR8/z08egS3bsGCBS92z5gY6NkTqlWDcuXg4sWXfhsil8nRidSEEEIIIYQQAuDSJRg0CHbtMt/u7AzVq6ug+Phx2LEj6fP/+QcmTEjbPR89gs6dYedOtR4SAq+/DocOQd68aX0HIreSlm4hhBBCCCFEjhUfDzNmQJUqiQNugHv3YNs2mDbNPOB2doavvlLBOICfH1y5kvr73rkDTZuaAu4EZ89C796q1V0IkKBbCCGEEEIIkUP5+0P9+vDppxAdrba5ucGcOfD559CmDbi4mJ9Tpgz88ovqej5+vOoanuCff1J338BAaNgQTpxQ6wUKwLJlkC+fWl+3Tl1bCJDu5UIIIYQQQogcxmCAyZNVd/D4eLVNo4Hhw2HSJHB0ND/25k01ltvBARo3hqenkO7UCcaMUcv//AMff5zyvU+dUsH87dtqvUQJ2LoVKlSAggXhtddUK/fXX4O3N3Tpkk5vWuRY0tIthBBCCCGEyDHi4qB/fxg3zhRwV6gA+/fDzJnmATeoYLx4cWjfXnUHfzrgBvD0hPLl1fK+fXD3bvL3PnVKBe0JAXeFCnDggPoJ0KoVTJ1qOr5PH9UanyAyElavhrffBg8PlfBN5H4SdAshhBBCCCFyhMhIlbhsyRK1rtHAF1+oVux69V78up07q58GA6xfn/xxo0ap5GkAdevC3r3g6mp+zMiRKqgGiIhQidV++w26dVNd3bt2hT/+UFnOv/hCXUPkbhJ0v8LGjBnDkCFDjOu9e/dm8uTJmV6Ow4cP4+npyaOEv2BCCCGEEEI84/59aNkSNmxQ69bW8Pffqju5jc3LXbtTJ9NycuO6T5xQ3cgB3N1h+3aVjO1ZGg3Mn68ypoMa/92nD6xapR4aPGvoUFOLfW7k66umZytfHj77DI4dSzyNW24nQXc2NGbMGDw9PfH09KRy5cq0bNmSn376ifgM/m388ccf+fDDD1N1rATKQgghhBAiswQHq27dBw6o9Tx5YPPm9BsvXbMmFCumlrdtg8ePEx8zbZpp+ZNP1Pjw5NjZqfnCn03i5uKipjXbvNkUlPv5wbx5L1f+7GzkSPXg4fx5+PZbqFVLPbT4+GNVn69ClncJurOpRo0asW/fPrZs2UL//v356aefWLhwYaLjYmNj0+2e+fLlw/HZQTBCCCGEEEJkoXPnoEEDOH1arRcuDLt3q/HZ6cXCwtTaHRMDW7aY7798Gf76Sy27uKgx5c9TsqS6TseO8MEH8N9/KqHbr79C69bw44+mY8eNg9DQdHkr2crZs4mnVAO4ehV++EHVa7NmSfcAyE0k6M6mrK2tcXFxoXjx4rz11lvUr1+fnTt3GruEz5kzh4YNG9KmTRsAbt26xYcffkjNmjWpXbs2gwcPJjg42Hg9nU7HlClTqFmzJnXq1GHatGkYnunX8Wz38tjYWKZPn06TJk2MLe5//fUXwcHB9OnTB4BatWrh6enJmCcpH/V6PfPmzaNZs2Z4eXnRsWNHNm/ebHaf3bt307p1a7y8vOjduzc3btzIkM9QCCGEEELkbJGRqkv5tWtqvXRplTAtYW7t9JRSF/MZM0wtsh9+qFqyU6NaNVi7Fn76CXx8wPKpuaPq11fzeQM8eKDGd+c2c+aYlseNUw8cWrUy/xx2735+xvic7tWcMuzs93Du++cfV6A6NFlnvm13R7h/4vnnlv8YKqTfvx4bGxvCwsIAOHjwII6OjixevBiAuLg4Bg4ciLe3N8uWLcPS0pJffvmFd955h3Xr1mFtbc2iRYtYs2YN33zzDWXKlGHRokVs27aNunXrJnvPUaNG4evry9ixYylfvjzBwcE8ePCAokWL8uOPPzJs2DA2b96Mo6Mjtra2AMybN49169YxYcIE3NzcOHr0KJ9++ikFChSgdu3a3Lp1i6FDh/L222/To0cPAgICmPp0ikchhBBCCCGeWLZMdS0HqFpVdcsuUiRj7tWkCTg5wcOH8O+/EBurxo3fuQNPvnbj6AhPpUR6aVOnqgD/8WM1DnzQINXVPTcIDzclvLOzg48+gvz51Xu8f189jBg6VD1YmTcPWrRQyeZyo1cz6I57BFGpaF2Ndk1iW0jqzo1Ln7HOBoOBgwcPsm/fPnr16sWDBw+wt7dn0qRJWFtbA7B27Vr0ej2TJ09Go9EAMGXKFGrVqsWRI0do2LAhS5Ys4d1336VVq1YATJgwgX379iV738DAQDZt2sTixYupX78+AK5PpWZ0cnICwNnZmbx58wKqZXzevHksXryYak8eP7q6unL8+HFWrFhB7dq1+fPPPylZsqSxZbx06dJcuHCB+fPnp8vnJYQQQgghcgeDAWbPNq0vXJhxATeoALtdO5VZ/OFD1QLbsqUqQ0yMOua991TgmF6KFoWvvlJjxA0GGDZMteRb5IL+yMuWmTK9v/WW+edWoIDqoq/XwzvvqG3vvKMeOLi5ZXpRM9yrGXRb5QW74s8/ztYl6W2pOdcqb9rL9ZRdu3ZRrVo14uLiMBgMtG/fnmHDhjFx4kQ8PDyMATfAuXPnuHbtGtUTsjE8ERMTw7Vr13j8+DEhISFUrVrVuM/S0pLKlSsn6mKe4OzZs2i1WmrVqpXqMl+9epWoqCgGDBhgtj0uLo4KTyYvvHz5Ml5eXmb7vb29U30PIYQQQgjxati9GwIC1HK9elCjRsbfs3NnFXSDaoGuUwd+/lmtW1mp1tr0NmwYLFigxq4fOqSmF+vb17Q/KkoF4kFB0KiRmlc8PcXFqe7dly6pqc569lTv9WUYDKbPDZLvHTBggMoCv3y5etDx1luq3l/2/tnNqxl0V3iJrt/PdjfPIHXq1GH8+PFYWVlRqFAhLJ8a+GD3zCCSyMhIKlWqxIwZMxJdp0CBAi90/4Tu4mkR+SQDwrx58yhcuLDZvqcfEgghhBBCCPE8TycaGzYsc+7ZurWafiwmRgXdbm4qGATo1QuKp6LtLa2srVVr+pMOqYwapZKw7d+vkpAdOGBqaQcVeA8cCN27g739y99/7lw15hxU9/3PPoMRI1Q38Lwv2I64fz/4+6vlunVNmdqfpdGo+x8+rDKcHzyoWv6/+ebF7ptd5YKOC7mTnZ0dpUqVolixYmYBd1IqVarE1atXcXZ2plSpUmavPHnykCdPHlxcXDh16pTxnPj4eE4npIBMgoeHB3q9nqNHjya53+rJ4yedTmfcVqZMGaytrbl582aichQtWtR4jH/Cb+ATT5dLCCGEEEKIq1dNycyKFIGuXTPnvnnyqLHFoDKNjx+vljUa+PTTjLtvy5am6c/u3lUZvceNUxnPnw64AfbuhX79VNf0wYPh+PEXv294OHz9tfm24GDV3d3VVT0A8PODCxcSv54t19PmzNEYl583Bt7JSbV0J4Q8336rWr9zEwm6c4EOHTqQP39+Bg8ezLFjx7h+/TqHDx9m0qRJ3L59G4A+ffowf/58tm/fzuXLl5kwYUKKc2yXKFGCzp078/nnn7N9+3bjNTdu3AhA8eLF0Wg07Nq1i/v37xMREYGjoyMDBgxgypQprFmzhmvXrnH69Gl+++031qxZA8Abb7xBUFAQU6dO5cqVK6xfv964TwghhBBCCFBZrxOyhQ8erFqDM0vnzqblhKmsXn8dnoyWzDDffQdJdTYtVUp1w5440bwMjx6pVuKaNWHs2Be758yZEBKilps1gw4dzK8/fbpKYOfpmfhVvDhs3Zr4mqGhlqxerYLuggVVi/zz1K5tat02GFRW97t3X+w9ZUcSdOcCdnZ2/P777xQrVoyhQ4fStm1bvvjiC2JiYozzbg8YMICOHTsyevRo3njjDRwcHGjZsmWK1x0/fjytW7dm/PjxvPbaa4wbN46oqCgAChcuzLBhw/juu++oX78+Xz95RDZixAiGDBnCvHnzaNu2Le+88w67du2iRIkSABQrVowff/yRHTt28Prrr7N8+XI+yojBMUIIIYQQIkeKilKZvEGN7X333cy9f4cOqmX7aaNHZ/x93dxg6VKoVQveeEN9Bpcvq7HcCxeqlu/Tp1XX7QEDzLuWT56sxoKnRWioCqoBtFr1oGPdOjhzRiU1e96Djnv3oH17+PNP8+1r1xYkLk59gAMHJv0gISkjR6ru/QC3b6uHLbmFxpBcJq0cIDIykrNnz1KhQgXs02NAQwbS6XT4+vri7e2NVqvN6uKIdCL1mntJ3eZOUq+5l9RtFoiIUPMngeqj6uCQ7rdITb1GRJjGvu7bB+XKwaxZLz4WVWS859XrwoWmjNZvvw2//57JBUSNm06Y6KdJE9i1K/PL8DyPH8MPP6gx0KDGou/bl/opxz75RLWugxq//euv5vtv31YJ3i5eTHzu5cvq9y7BrFkwfDjExOgoVUrHnTvWaDRw5UraspHfuaNa1u/cUd3OHzxI/AAkO0ltPPpqJlITQgghhBA5lq+vapHbsUMlXoqLM+3bvx+OHlXzLOfGqYeyo/h49bkXKaIeerzMdFcGg3kCteHDX758L6J3b1PQ/fnnWVOG58mTB778Em7cUAFzTIzqGn/06POnVrt+3ZQ8zdZWXedZRYok321dp1Mt0Qk9Ej78UAXK1avDnTuqibxdu7T/DhYuDFu2qHHmnTpl74A7LSToFkIIIYQQOcaOHaZEV8k5fVqNEV27Vk01lRPs3g2nTqkW3mzegdNMSIgK9BJaPR0dwdtbBV/Vq6tpvipVSn3wtHev+hxA1WHt2hlS7OcaNEh1ry5Y0JRVPLv68UdTt/PgYOjWTfX8SKl7+MSJpkRow4bBk5GgqabVwrx5KkieNElt++YbyJPH9MTlgw/S+EaeqFoV/v77xc7NrmRMtxBCCCGEyDH+9z/z9TJlVIC0fLmadsjDQ20PCYGmTU1zLmdnq1apsn74oQpgn5ocJls7c0bNY/10N+PwcNVCPHu2yrBdpQr075/6a2bFNGFJ0WhU+du3z7oypJa1tQpSE6Yz278/5c/u3DlYtEgtOznBmDEvdl+NRrVIz55teqjy+LFaKFPGkO0fVmQmCbqFEEIIIUSOoNPBpk1q2dFRzet76ZLqWtuzp2oVPXRIZWEG1ZL39ttq2ieDAe7fV9Mr/f03TJsGH32kElelNPVRRtu1C956S5UPVDbozz7LuvKk1tatqhdBYKBaL1pUPTBIqjvxkiVqiqnnuX4dEia1KVw4dVmvhVKkiJpizcZGrf/6q8psnpRx40yZ4T/9FAoUeLl7Dxumkqk9mVEYgPfeM7zUMIPcRj4KIYQQQgiRIxw+rDImg8pynFSAlz8/bN6sWr8TTJiggnRnZ5Vkqnt3lY165kzo2xfc3dXcwGFhqS9LcLAKJvv2hbp1XyzZ16lTaiqq2Fjz7dOnZ+8W+jlzoG1bNaUUQLVqcOQIrF6tgvB799Q8y336mJ+TmusmtPK/954pgBSpU7OmaYw1qGC4Xz/VEr1vn0q8duyYqet24cKqd0V66NkTNmyAkiUNVKkSzjvv5Nhc3RlCxnQLIYQQQogc4d9/Tcspdfu1slLjTcuXVxmaDQbTfMtJuXVLtS5PnqzGVI8YoeZGjopS2ZPDwtTP4GDVMr1jR+KMzocPq5baMWNSN345MBDatDEFru3aqbHqCTOpDhyo5kKuUeP518osjx+rxFqzZ5u2vf66euCQkMgeVMtp8+ZqbPfKlRAdDYsXq7G/ySW5Dw83Zc+2tFRBt0i73r1VosHvv1cJ7pYsUS9Q/y6f/vzHjTOvt5fVsiVcvqzn1Knz5M3rnX4XzgUk6BZCCCGEEDnChg2m5ddeS/lYjQY+/lhl0x4xQm1zdzd/5cmjgsE1a1RgHh6uWr9nz1aBe1q7nX/+ucrg/P33KWfwDglRLfW3b6v1unVVcGpnBwEBasqs6GjVXfvYMShUKG3lSC/R0So7/M6d6kHDkSPm481HjYIpU5J/r87Oar7p//0PHj5UXZATpgJ71uzZpl4MPXtCsWLp+lZeKVOnqn/LCxea11fCv3FQ//6f7g2SXnJLtvH0JkG3EEIIIYTI9q5dAz8/tVy7tuoamxodOqhXctq3V63WP/ygAvDoaDXeNaWA29JSBcrNmqkW3QMHTOOwZ82Cu3dVoJlU9ujwcNU1O6GlvHx51YKfkLH8559VgrKDB1XLebduqqt2Utd69Ei1mCe8rlyBoCCVHKtDB9V6nlJL5r17qtvxjRuqJT/hFRam3sOxY+rzSOr9z52rWuOfZ8gQU/K7n39O+pyHD2HGDLVsYaFaYMWLs7RUPT1mzlQPcU6cML0Sfod++SXl7OYifUnQLYQQQgghsr2nW7nTO6N0uXIqCJkwQf1ctUq12OXPr1758qmfBQqo7t6NGpkHs40bq4cAgwaplsU//1QB7apV6rhHj9SUYDt3qgD70iV1XvHiak5iZ2fTtWxs1Hk1a8LNm2oKrXfegQYNzIPrhLHTyVm2TM2/3Lo1dO2qgnBLS3W9hJZrX19TArfUKF9ePWgYOFBNB5YatWqp19Gj6n6HD6v1p/3wgwr2AXr1Ut3qxcuzszN9/gkS5rR/OumZyHgSdAshhBBCiGzv6aC7XbuMuYeLC3z1lXqlVf/+ak7nHj1U6/DWrVC/vmrBPnYs8TRg+fKphG8lSya+VtGiqst748aqxf2339QrraKj1Vzla9eqIMtgUON8U8vVVbXkN2+upjRLmJIqrYYMMU0b9vPP5tO+3b+vgm5QDwW+/PLF7iFSR4LtrCFBdzbj+ZxHe0OHDmVYVk5aKIQQQgiRySIjVcssqLG+1aplbXmS06EDbNumfoaFgb9/4mM0GjW39ezZULly8teqXVt1Ee7XL+lrlCihxuWWLm0ao166tMrofv68ylC9Zo1p3HhCC+fT1/D2Vi3XVaokbtXPly/9kmz17AkjR6oAe+VKlZ09wYwZpmRy/furedeFyG0k6M5m9u3bZ1zeuHEjs2fPZvPmzcZt9gkDfgCDwYBOp8PSUqpRCCGEELnXzp2mscXt2mXvZE0NG8KePSoz+c2baluFCqq1uFkz8PFRQW1q9O2rAt8TJ1SLeEJgXbJkyuNxixdX9/rxRzU2fNUq2LgRtFp1/+bN1c+nu7VnJDs7GDBABdixsbB4sYZWrdS48Vmz1DHW1iozuhC5kURr2YyLi4txOU+ePGg0GuO2w4cP06dPH3799VdmzZrFhQsXWLhwIWvWrOHRo0f88ssvxnMnT57MuXPn+O1JXyS9Xs/8+fNZsWIFoaGhuLm5MWTIENq0aZO5b1AIIYQQIo02bTJF2ek9njsjVKmiElgdOqRak4sWffFrde2qXi9Cq1UPARo2NHXhzirvvw/ffae6uM+bp6F5c5g2TWOcym3QoKS72guRG7xyQfdff6mxIo8fZ9498+RRiTnSq7vMd999x+jRo3F1dSVv3rypOmfevHmsW7eOCRMm4ObmxtGjR/n0008pUKAAtWvXTp+CCSGEEEKkM4MBNmxQQbeNjWqlzQny53/+tGavkjJlVOv/pk1w9aqGtWsLMneuqldbWzXdmhC5VbYNupctW8bChQsJCQmhfPnyjBs3Di8vr5e+7vTpcO5cOhQwjWbMsGDOnPS51vDhw2nQoEGqj4+NjWXevHksXryYak8GQbm6unL8+HFWrFghQbcQIpGQEJX4xlofQp+uV2nRvRpaK21WF0sIkY0YDJDQ/vy//0Gv91QirPR28aIdwcHqTk2bgoND+t9DZI4hQ1TQDTB1akl0Oo1xu8zLLXKzbBl0b9y4kSlTpjBhwgSqVq3KkiVLGDhwIJs3b8b5JQefjBql5v7L7JbuTz7Rp9v1qlSpkqbjr169SlRUFAMGDDDbHhcXR4UKFdKtXEKI3GP0aJWEB1z4Y7ULJUcEM6DbRfoP96BkefP0tbHROq4Fa7lzR3WpTGUHHCFEDjdtGox+svzBUJg8U/Xse+MNNddyetm718m4nBO6lovkvfYalCoFV69iDLgdHNT/OULkZtky6F68eDE9evSg65MBLBMmTGDXrl2sWrWKd999N9HxOp0O3bPzMCSjc2f1ymw6nQ5/f1JdTlDjsBPOfXrd2to60XX0er3Ztri4OGOitcdPnjDMmTOHQoUKmZ2X1LVE6iV8dvIZ5j6vct2Gh8PKlRaY2rDgWkgJxs8pwYS5elrVPEbRQlEEXnck8JYLwfeK8uTPExUrGjh2TJ9igp+s9CrXa24ndZu5FizQMPFrU9ANau7pt9+GKVMMTJyop0OHl094ptPp2L/fFHS3aaNLNPWWyFnee0/D55+bnsp88IEeZ2eD1Gsu8ar9LU7t+8x2QXdsbCynT5/mvffeM26zsLCgfv36nDx5MslzLly4kFnFe2n+Sc0dkYxr166h0+nw9fUF4NKlS8ZrODzVtyo+Pp6rV68ajwM4fvw4Wq0WX19foqKisLKy4tChQzRq1CjRfe7cufNib0YYpaVeRc7yKtbtv/8WICLCHYD61a/ioLnJjhO10Ru0GAwWbDlaM9lzz5zRMHduII0bP8ys4r6QV7FeXxVSt6lz4cgt/vwtL+06PKBmqxJpOnfXLidGjSqD7VPbalR/xN4T6rtJQICGLl20VKwYwZAhN6hT5/ELB98PHlji76+GF5YuHUVY2Bme+rojcqBatSyxsqpCXJwFDg46Wrf2x9f31QjQXiXyt9hctgu6Hzx4gE6nS9SN3NnZmStXriR5joeHh9lUWtmRaun2p0qVKmi1qRsXGRgYiFarxdvbG1APJEB1L386gVp4eDj//vsvV69epWrVqqxfv56bN29SoUIF47kDBgzgzz//xNXVlerVqxMeHs6JEydwdHSkU6dO6flWXykvUq8iZ3iV6/aTT0zL384sQf36JQi+eIulP11k0V9lCbrratzvnOce7kXukLeYGzt3q7/DBw+WZvhwQ2YXO1Ve5XrN7aRuU+/M4cu8N7Icj6PysvlILPtqXaBG09QNN9u7F8aOtUCvN4+i//vPgR2HdIwbZ8GRI2rfmTMODB3qQePGBr7+Wk8a0tEYLVliwGBQ1+va1cb4vUbkbHPm6PnhhygmTLCmSZO0DZsU2dur9rc4MjIyVQ3A2S7ofhFarTbHVGpaymrxZEBUwvFPrz99jSZNmjBkyBC+++47YmJi6Nq1K506deLChQvG4z766COcnZ2ZP38+wcHB5MmTh4oVK/L+++/nmM8uO8tJ/wZF2rxqdRt0Jphdu1SrV7ky0TRsaItGA6XKl2DcTyX4YpYe3z1n0Vpa4F6xKHmdnQFn4uKgWDEDoaEa1q+LJyIsmrzO2Xdw96tWr68SqduUPbgTRpdu1jyOUr+fcTpr3urjxImzFuR1Srk52t9fDdFLmC/7zTeA5WpZq9XSqpWWli3h33/VfMt+fmrfnj0amjTR8tprMGkSVK+e+vJu3mzKidOxowVStblDv346vL3P4e3tLb+vudSr8rc4te8x2wXd+fPnR6vVcu/ePbPt9+7do2DBgllUqqzRpUsXunTpYlyvU6cO58+fT/LY4cOHM3z48GSvpdFo6Nu3L3379k33cgohco+lP18CVNDdr90hNBofs/0WWguqJ9EiZmUFb7Q4xE/L6xEdY83qhUfoN6phxhdYCJFqujgdb3W8yKVbtcy2X77lyuAh8PvvyY/BvnpVTfcUFqbWW7dGzcqy3Pw4jQY6dIB27UzTtCY0Am3apF4dO6ppv6pXh6pVVcLZZxkMcPs2bNmiCpQ/v4G6dV9ygLgQQmSRdMwtmT6sra2pVKkSBw8eNG7T6/UcPHjQON2VEEKI9KfXGfjfqtIAaDR6en/gmabz3+5r+ub8+/LsPeRHiFfR54P2svmICrgL5g3lv3/OkjevGgryxx+wZEnS5x3feZYmDaO4eVOt16qlZjewskr+XhYW0LMnnD4NCxdCyZKmfevWwYcfQqNG4OQE5cvDm2/C0KEqO3mlSiqjdbFi8OiRCrTbtDFkyHRkQgiRGbJd0A3Qv39/Vq5cyZo1a7h8+TLjx48nKirKrNVXCCFE+tr3rx+Bd9Q34xbVT+LqUTRN59dpVYkyRa4CsNPXm5uXb6V7GYUQL+bP2QeYtsQHAK1FPH8tDsbn9Qr8+qup9fiDD+DZDnULp+ylQRt3rgbbAeDhARs2gKNj6u5raQkDBqjW7h9/hCJFzPcbDOqey5fDzz+ra585A1FR5sd1754980QIIURqZMtnhm3btuX+/fvMnj2bkJAQKlSowIIFC1657uVCCJGZ/jf/sXG5X++YNJ+vsdDw9uuBTJxXCoPBgj/nnWfktLQF7kKI9Hfiv3MM/NTbuD7z8/34dGkCqNbo7dthwQKIjISer9/m0PF8AAx/+wjz1zY2nle38mX+3lwGFxdArwO/r1JdBhsb1ZL97rtqrPeJE6aXnx/EPPUnx9YW3NygdGlwc9NTvHgQHTqUeolPQAghsla2DLoBevXqRa9evbK6GEII8UoID4tg5XZvAPLaPaRT/xcbzvP2u6WYOE8tL1tdmJHT0qmAQogXcvcudOpTlqhY9ZVvQPu9fDChsdkxs2bB/r3RnD1vy6nzRXi32z7OXi7AsYum4z7ovpvvl9TF2u7JhnMz4Ox3aS6PtTXUrKleCeLi4OxZCA9XwXaRIqp7OoBOZ8DX9wEajQTdQoicK1t2LxdCCJG5Vi/0JSJG9Rft2coP+7x2zzkjaR7V3anlcRqAk5crcPrgpXQroxAi7YYMgevBKuCuWzWYX1bURmNhnpDM3h5WLLyGjZVKS/7b5oYcu1gRADvrSJZ+t4+fVjbB2s5GnaCLhgu/mN9oc03wHQN396lW8DSwsgIvL6hfX43jtpBvp0KIXEb+rAkhRC4SGwvdu0PTprB3Z3iqz/vf76bEZ/0G5XupMvTqFmpcXrYg+KWuJYR4cX5+sGqVWi5UCFZvKoGNvU2Sx1Zp4MEPXxwx21amyFUO7bhO74+fmYlAawttjkPx9qZtD8/BmamwvRGsLgQHekPgMoh7lJ5vSQghciQJuoUQIhdZsUJlFd61Cxo3d2Roj908vv84xXOCzgTzn6/qTl6uWCD1Xqv8UmXoOagiWot4AP5YXxa9Tv+cM4QQGWHiRNPyF19A0eekWHh/XCMGd92D1iKeLo0PcexUPrwaJjOLgW1BaPBn0vti70PQ73CwF8SYTwHL3X1w+hu4uhLun4S4lP8+CSFEbiBBtxBC5CKbN5uv//xXEyqXf8iWP44le87SJfHG5X7dribqeppWhd1caFnzJABXQ0qwf0PAS11PCJF2/vsvGFu5ixSBQYOef47GQsMvfzfmcVgcq3bXJV8hp+ec8NTfitcDoe4ScO0Glk+mD7SwAntX83NuboRTX8D+nrC5OvyVF1YXgW0N4fA7qtt66BHVhV0IIXKJbJtITQghRNro9bB1q1q2tYnHghgiYxy4FlKCNm+XoM/v+5j2iydOLqb5tA0aG5b87QaARmOg99CK6VKWt980sPlJT9VlG6rQqGO6XFYIkUpfjwsFPAAYPegEdnbVU32uXZ4XyOlg6wLOfaB0H9DFQsgeeHQBLJ75qhmeRJ6H6DvqFbIfWKi2uTSClnvSXg4hhMiGpKVbCCFyiRMHQgl9Mpz6tbaW+B+9R/NqJ4z7l25qSBF3F+wcbY0vewcNV66o/S1aaHAtVyhdytLpndrYPxkmvvIvDbGx6XJZIUQqnD54kb931QWgcL67vPdp+cwtgNYairQAjyGJ91WZCA3/gqrfQOkBKri2S6Lfe/4kZlD4rw0ceR+urYKY++lfbiGEyCDS0i2EELnE5hUBgA8AretfpHSVcmw75sqiqXsZOcmLh5EpdxXt3z/9yuLoCJ06wR9/wIMHsGkTvP56+l1fCJG8r8eGYDCUA2DUu2ewy+OTtQV6mlN59XpWXDiE+cP94/DgOBRtab4/4hrc2qKWL80DjQXk8waX+lCwHhSsDw6lzLu8CyFENiFBtxBCZLJH9x5xcs8V6rethJWNVbpdd8uu/Mbl1q+p7qEaCw0DP2vEaz1u8/WoU5y7nMf8pPzegIZ69aBnz3QrCgC9eqmgG2DOjxG0bqHF1sE2fW8ihDBz5vAlVv6nWrkLOYXw/he1srhEqWTlCC711CspD/3VGHF9nFo36OHBCfW68JPaZltEBeAN/gRt0lnahRAiK0jQLYQQmcigN9C8XjDHLnozrOduZi9vki7XfRgSxsEzlQDwLH4Ft0qlzfYXK1OEOauKpMu9UqtlS3Bx0RMSYsGWHQ6ULXmLL0dcpP+oeun6sEEIYTJp7B0MhrIAfDroNPZ5fbK2QOmlWDvo9gDu7oFb2+DOdggLAAymY6Jvw50dYGFtfq7vGLi5CZwqQYGa4FxLdV+3cszUtyCEeHVJ0C2EEJnoVuAdjl1Uyco27SqWbtfdsfosOr1qIWrT+DpQOuUTMoGlJUz75AD9R6s5fm/cL8p7XxZl2i9XGT8qmDeH1kVrpc3iUgqRe5w7epnlO9TfAZe8IQwem0NauVPL0gGKvaZeALFhEHoYQg+q171D4FgmcRfzB34Q9uR19ck0ZxoLyFtBBeF5PcG+BBSolXTXdyGEeEkSdAshRCbyPxwMqBbnwBB34mLi0qXVd/OmOONym3b2L3299NJvVEOq17/AuDEPWLe/DgCXb5ei98elmDLzEnNmR9D49apZXEohcodJY29hMJQB4JN3TuPg5JO1Bcpo1vmgWGv1AtDrVGv3sww60FiCIf6pbXp4eFq9ElQZD1W+Mq1HBsOO5qqruoWN+qm1A/uSkKcs5CmnfjqWAatnhu4IIcRTJOgWQohMFHC1jHFZp7fk6tmrlPUu9VLXNOgNbN6vrmtjFU3jDpVe6nrpzauhB2v3weEtAYz9PIbtJ2oAcOZaWdr0iGT7an/qt6uSxaUUIme7cOIKf25TrdwF84YyZGzNLC5RFrDQgn3xxNubbVFjwcMC4P4xuHdU/QzzNw/E7UuYnxcfAY8vpO7ebY5DgdRPyyaEeLVI0C2EEJnI/3x+s/WLAXdfOug+d+wK10NV0N2kagD2ebPnl+06rSuzrTX8t+okn4214vC5ykTF2tO+Zwn27bhExTpls7qIQuRY3812Qm9QwzVGDgjAMb9PlpYn27GwggLV1KvsILVNF60C8chrEHEdCjYwP8egA6t8oI9RL4M++es7upuvX14M52c+yaz+5JWnnGRXF+IVJUG3EEJkIn9/8/VL5yJf+pqbV18HVNDdpnn4S18vozXtWo3dr8XQvtFxtp+owYOI/LTuqOPAMXB1zerSCZHzxMfDqn+dAXCw1/HBuBpZXKIcQmsLzjXVKylOFaH7A9O6Ph7iwyH8Cjy+BOGX4PFFiLoD1uYPVAnZZxpHfmme2mZdAArWfRKE1wXnupLMTYhXhATdQgiRSXQ6OHPGfNvFSy9/3S07TV/aWncukcKR2YeNvQ2rt3ngU+csJy5VIPhuQdq0gb17oUCBrC6dEDnL3r1w755abttOS54CMr44Q1hYqnHkBao/vyt5XJhK1vZ063jsfbi5Ub1A7S/3AdScnVElFkJkExZZXQAhhHhVXD77gOho822XAl8u6VlUpIHdp7wAcC14gwq1yjznjOwjT4E8bNxRhDJl1JQ/Z85Ahw4Q+fKN/0K8UlavNi136ZJ15RBPabQKuoVBsx3gNQmKtQcbZ/NjDHqwe2YqR308HOgDF36GB74qOZwQIseTlm4hhMgk/vvOAfXMtl267Z70wam0e4+G6Fg1J23rto5oLHLWeMHCJfOzZQs0aAB37sCBA/BG18d8NPA8gZeiCLyiI/CqFYHBeYiIsqF141sMHF4Kj+opf27xsfHERMXg4OSQSe9EiKyh1+lZsyoesMbaGtq2zeoSCSOrPFCkmXoBGAwQfllNbxZyAEIPgEsj83PCTkHQb+oFYJlHdUUv1Bhcu4JThcx9D0KIdCFBtxBCZBL/UzGJtgXeLEh8vJrT+kVs2WJabtPR6QVLlrXKlIFNm6BJE3j8GNZvzsP6zUmPsTwV6Mm0JdDY6xTvfFyZrt212NurwMP/wEV2brjFjt327DlVnqhYOz56excTfqqDXR67FMtw4UQg8XE6SeYmcpyj289w41ZlAFo2uE7evJIYIdvSaJ5MNVYW3HsnfUzIAfP1+Mdwe5t6+Y0Dp8pQsgeU6qHmFxdC5AjSvVwIITKJ/xlb47JXZRWAx8fD1asvfs3Nm9VPrRaaN3+Z0mWtatXgn1WxWFsmfjCRwEJj6ma5x68qffppKVpUtewVdonGu7EnH0/1YcOh2jyOyku8zorpS32oWv42e9aeSvKap/aep2ODw3jWcKdKPXdW/3oo3d+bEBlp9Z+hxuUurYKyriAifZR7H1ofheozwbUb2BU13/8wAPy/hC11QBdrvi88SE1zJoTIdqSlWwghMknA5UIA2FlH0rqNLX4BavvFi6q1N62uXo7i3DnVglu3LuTLl04FzSLNWlqz8Y8TLFkUiYtzPO7uGtzL2ePumR+3CsUID4vgt59Os+BPV84Fqw/s0SPVSg7mY+ML57vLg3AnYuNtuHjTnSadYEi33Uz6WY1/P38eJo48zYrNpjnN9QYtwz4rRavu4Tjml4zCIvsz6A2s3uoGqIdSHXtVzNoCiZdnYWXKqF7+Q9UlPSIQgtfDtZWqSzqAa2fQWpufu7UORN9VWdKtC6h5y7FQCds0FmrZylGNMS/sYzov5j48OAF2JdRc5ZJRXYh0J0G3EEJkgqjHUVy6qebjrlgyCM/ypi/Hly7qoU3aOx5t+fMo0BiANo2DgZyRuTwlzbtXp3n3pPfZ57Vn5DQfPv7WwMGDehYstGDFCpV4zcnJgE+VYzRrHEnz9sWpWKcM548HMrBfOAfOqED7l7+bsH5fGJW83di61QK93hRwW2h06A1abt4vyuSRu5iyyCfj36wQLyng4EUu3fIAoElVPwqWqJbFJRLpTqMBx9IqAC//oZpP/Prf4FzH/DhdtAq4QWVJj72f/DV1z2T0fHASdrY0rVs5qeDbvgTYFgGbgmDrAjYu4N73STAvhEgLCbqFECITnDkahN6gEuBU9rhPuWLXATX28uL+vTCsSZqvuXmrqZWjddNH6VLOnEBjoaF+Aw31G8Ds2XDrFri7a7C0rGV2XPlapdnjq+Pn8bv57LuaRMY4cP12Pq5vNh3jku8hn7/vS8uOxane2JXYeBu+W1qf/kMDn5usTYistnrZDUAF3V3avzp/A15pDq5Q/qPE23VR4PY2RF6HiGtqLLhBDwbdk59PlvUxKoh+WnSI+XrcQ3j4EB6eNt9uYQOl+5tvu7IEQvZC3vKQtwI4uoO9q0oiJ4QwkqBbCCEygf+xe8blKpXiKethCpgvBaWc5CspcTFx7DimgviCeUOp0az8yxcyB3J0hHLlkt+vtdIyfHITOrx5nXeHxrN9t0o2ly+fgU8/1TB8uBOOjuqBx6f9djF5gQ9xOms+HBzKxoNuOS4bvHi1rN5czLjcqY9HFpZEZDnr/FD/9+cfp4sBzTNf/50qQMXREBls/tI/k2PDpqBqeX/arc1wdXni+1jlUw8I7F3BviQUaQ4lu6XpLYkcSh+HZXyoemgTHwYx99Qr9j5YWKup8/J4QsHaWV3STCVBtxBCZIIA/3jjcpVqjhR1L4S9TQSRMQ5cvO6S5uud3H2BR1Gqe3TL2uex0DZIt7LmRu6VXdn6H6xapePw4RuMGVMcZ2fzLpKfzajF0n9ucD20OJuP1GL9/w7TcUCdRNeKfBTJvG+OYDBA09eKULWRBxZayUsqUrZ95Qm+mmCJTm/B+q1FcHEt+PyTUnDpZBB+gSp7dZ3yAZQoVzk9iilyO61N4m35q6rX0wyGJ8HSXdUSHhOiWsuf9fBs0veJC4OwMAjzV+saTaKg2/3mZ2gi84OVPVjYgtYWtHZqXLsuSiWF00WC91SwLWQ6MXCZSiYXH6n262NBY6XOs7B+8tNKdZNvc+zJePYnHl2A+HD1kMI6H1jmle7yz2PQQ0yoGr4QE6J+RoeoOvX4wPzYPV3QBq+hKsDlFK5Z6g0o+Kf5tn9KgT5aTZNn6QhFW0K16en8ZrKOBN1CCJEJ/M+ZEtNUqV0CjYWGssWC8Qv0JPBOCeJj47G0Tv2f5Etnw4zLNarFpWdRcy2NBjp3Bnf3EPLlK55ov4OTAzPGn6LnULVvxERvWr0Ftqak8/juOc9bvSw5e91HbZgGBZwiaNrCgWbNVAZ5D4/EjUEie1m2DH7/HT76CFq1yth7BQbCyHdOs2ZndeO22V/v4utffV7qumuWBQFuAHRpG5rSoUKknUYDtgXVK6XZKFvuhUfn4dFZ9TPiGkReU93cI6+D/sn/T3me6YkRc48Cj7fB41SUpfwn5kG3PhrCrzxz0DPj1EGNR9c880A0YJJpDnQANGCVVwXgGit1bV2MyiLvNdH83L3dVFBvVwzsi4Olg+kaPPVHv2RXFdQnuL4GfEerBxkWlqqngUabeNnCFpptwczlhXB7uzou4Xitvbr30y/HMqb54BNEBqtr2jin7T+lx5fg5mYI81PzxocFqIcbz7IrmjjotrRPfFxSrJ0Tb4u5+yTfwJPcBHlzV+8dCbqFECIT+F9xA6CA432KuBcGoFzJ+/gFQrzOiqtnr1KmaqlUX+/KJVOgXbqcbQpHirToPrgec/8I5b8DBQm8asP06TBunJoHfNYXexjzXT1i481biu4/dGDVKli1Sq1XqmRgwoe+dBnoLd3Ts6E9e6BPH9DrYft2+HPxXbr1KvT8E9MoIgKmToVp0yAmppLZvlWbXfn6Ja+/eoPpS2vnXm4veTUhXpBVHlO29WcZ9KpVNOKqSsr2tMcXUn+PZwM+KyfV1T0h+LSwUsG9Pk61ehue/HRMIi9HVPCzhVRj2OMemm+ODTNf1+sg+B81Lv558lWGgnWfuoUeHl98/nnaJIaa3TuSdPf9ZxVrnzjo3t4Uwi+pHgQJ3fwdnvy0yqPqJuoWVBwD+Z76GxWyH44Pe/49o0PUg4SnA3qnShic6/Iw2oq8LqWxsC2ogn4bZ5VRXx+relDke6ZnjkEPjmVVL4T4xxD3WLV45yISdAshRAa7dw9u3VddSat42xoDsbLuMbBbHXPpdEiagu7AIFN3OHfP/CkcKdJCY6Hhx18LUrUq6HQwZQq0ahzKl58EsfWYj/E479Ln6NP9NnsP2PKffx3CwkxfOk6f1tDt3WpUn3aWyeMjaP1mDQm+s4l79+Dtt1XADRAfD2/0LcDSewd468P6abrW3Wsh/LfuIlcuxSbaFxunZeH6hly/bqr3ws6PcLB6wJXbpTh7vQxnDl+iYp2yL/Q+blyP59C5KgBUcbtAuWq5q0VI5BIaC7Arol7Pcq7DqTJbqFyhDFpDrGrh1EWpn/pY1WKaEFQ7uJmfW7Jb6saHGwyJt5XorFrdY8NUF/jYB2o59oEKqLW2KmGc9TP/r8aEpC7gBtUV+2m2LupBgUb7JLFdPOjjTcsJnh1rD6m/Z1LTvOmezNmui1ZBf3KBv2tn86A7n5f5fscy6jOzKww2hVSvA9tCKpu9Qa/eV4JKn6EvP4rLvr54e3uDNpVd9zUW0M7ffFtSwxlyMAm6hRAig/k/9f9IFW9T16tyHqb/jC6ejaB1Gq4ZGOxgXHavkMQXGvHCKlWCoUNh1iyIioK6PgUB0/jbT3rvYtLcetjYl+cjVHDu6ws7dsDq1QYOH1aB1olLFXitFzT89hTfTIZGHasmeT+ROQx6AwO6niY4WLWw5M8Xx4MwK3R6S3p/VIe42H30/bRhsuc/egS7N91g59qL7DhYDP8gD+D5+RisrGDECBg7Ni+Lvz3JiCnq4dqq34JfOOj+Z53p61vXN5PopilEdqexIN7SWQXUqQ3M0nyPJB52eqaiBTcpdkWgRzhE3oSoJy9dNGB48uJJkG8AJ/OeLRRqDN3Dkr6uwfBUlvn4xPu9p0KlL55kno9XrfjxkWq8u/EVDo5uic8t1vZJUryEjPbhSZch6rb5ulNFqDVXBd/5KmddJvpnhwbkcBJ0CyFEBgsIMC1XqWJaLlshr3H50qUknsin4MoN1R22gON9nFwKvFT5RGLjx8Off8Ldu6ZtRfPfZskvN2j5ho/ZsVot1KihXp9+ApuXHeWLCY6cvKyyy+8LqErj1+HtVvtZ8m9dtFaZk7QnLiaOu9dDKVa6iLS0Az9/tYd1u1Wmeuf80fiesmbSh3uYt6YxeoOW/qPrExe3l3c+b2Q85/o1A6vXaFi9GvbvB52uOJA4H0By2rSBmTPBU+U7o0vfcoyYopb/3liUcS/4XlavNi13kaBbiMxh6QB5y6lXetFonrQUawHrxPsTuma/iDoLTMuGJ93oE8bcx4WrBwm2RVSX86dpbaDcey92T5EsCbqFECKDPd3SXfmpYUzlqhQ2Ll8MdCC14mLiuB5aFAD3orcBCbrTW758MH3cefoOU9FSxwaHWbi8LAVL1EjxPI2Fhtd616L1W3pW/3qQcd8U4lxwGQCWbW1Awyl7eP/Lxhla9nPnYOFCWPI/CAktShMvXyZPtqBBe6/nnptb+e45z8hvTWMsl8z0o4Rrbeb83Qjrt3bz44omGAwWDPqiEaEhu7CwgFUbCnLkfNIZwS00OmqUO0fzBnepWdsWK+vELTIlvKpTrYaVWWObq2cx6pQP4PC5yvgFenLhRNrngw8Nhd1PhqWULWv+N0UIIZKk0ahkcdb5IP+r+39BVpKgWwghMpj/gYuAejJeuZKBhCynRd0LG6cNuxSc+ifZ169boDeo1lJ3j3zpXFqRoM9QT5zzHsVgMNCud+00tRZbaC3oNrgenQbGs3CqKdD+bJoXnfuEUNgt7dPEpSTiYQR/LXvEgj+Ksn9/wlYrAHb7edOwA7xW+yiTvnWketMK6Xrv7C7iYQRvvGVlTIA34s3dtOujWrw1Fhpm/dEYa6tdfPe7DwCfzfRJ8jqenirTefOa52jSpij5ClUCKiV5bEq6tQ/l8Dm1vGrpVT5LY9C9dkUoOp0a7tCli2TKF0KInCB3dZYXQohsxqA3EHBZtWiXcrlOXifTN2SNhYayblEABN51Iz6J4VxJufJUErXSlYqlX2FFIu361KJ937QF3E+ztLbkvXGN6dt2HwBhEfn45P3zKZ5z/z7MmQObNkF4MkPwAKIjolm/+Aj92u2jaFEd/T94OuAGa2sDroXvGdc3HalFjWYV6OZzkDOHL73Q+8nOIiMhJiZxPQ17+wTnb5QGoHrZs3y7oK7Zfo2FhulLmvD5wF2Jzq1a+gITJ+g4fVr1IJg9G17vU558hVKaQyllXfuWMS7/vb1ims6NjYpl6jemOZa6dHj0wuUQQgiReaSlWwghMtC18zd4HKWmSqlS9hZgPnaqbKWC+J2HuDgLrl2D0qWff83AQNOye9oayUQWmT63POsqPOBBRH5+39KQ/psf0axN3kTH3QkKoUnLPJy/pKaBs7SEunWhed3rNGt4H696buxYfYZVq/T8u78Kj6NqJ7pGxYowaBD06qUhX14nln6/lwnfu3MtRP07XLW7Hmvq6Vg26wBvDEtbxu7sKCjQwCefalizxgK9vjq2tgbyOTwkv30ojnbRHL2gxmg72j5m+Uo7bOxtEl1DY6Fh0q9NKOG6hw2bbWlcP5Iuvd0p653+WcHdK7tSvWo0J07ZcuJ0IQIDU/97/POEA1y86QNA4yq+1K4vyfmEECInkJZuIYTIQP5HbhqXK5ePTLS/7FPJiy+lsvHxyhXTsgTdOYOLa0GmfnbauD5kRF5iYsyPuXfzPi2bPjAG3KCmtNq3DybMcKVJp6rkL+xEt8H1+HN7Ax5HmYJ2R9vHDOywh4PbrxEQoLJlFyyoWtoHjGnEhSAXfhy7m8L5VGY4vUHLT/OSmGImB4l8FMmX7+2iQvk4Vq0CvV61ckdHa7h9z4mz18tw9IKp+/ecb/woV80t2etpLDQM/qox/x6szajvfCjrnfop/NKqW09THSfM7/48ocH3mPBjNQA0Gj0/zLKRBHlCCJFDSNAthBAZyP+kKdCuUtUq0f5yTyVBvZjMFJrPCjwdbFwu7ZbKPukiyw38rCH16qnl8+dh+nTTvochYbT2uf1kGipwLXiL997Vm/37eFY+hzD6tt3HukVHCAm1YsG6xtRtXjLJMb429jYM/boJV646UrZoEACHz1Ug/EEK/dez0Nat0KMHvNk9kumf7GLHX8e5f+s+oIZsrPz5AOXLPODrX32IjlUZfwsVMlCt2mOqVDFQwiUUBxvTexvWcze9PmqQJe8lKV27mpb//jt153z1UQAPI1W39n5t979yY/OFECInk+7lQgiRgfxPm6YAqVIzcfKssqV1qKlC4JLfdZ7tfp6UwAthQAk0Gj0lXXXIn/KcwcJCjdWuUUPN7T15Mrz5JhQuEE5bn2scv6gyyhbNf5ud22Ip662ei18PimHnX0fZsRPOXi6Ad4VQuvW0p2lnL6ztkp9XOin2ee1p1eAql/52I15nxZ71vrTtUyvd3+uLunIFPv4Y1q5N2GLPcnyM+0u5BOPkGIFfoKlbvKU2jhF9T/H5jGpcuXIBb29vtFqVaCw2Kpa42DgcnJpk3ptIBQ8P8PICPz84fBiuXQyjZLl8yR5/+uAl5q1WDw0cbMKZPDv9u70LIYTIONLSLYQQGSjgkvryb6mNw7O6W6L95UqaJoK+6HcrVde8cqsIAMUL3E5yfKrIvqpWhQ8/VMvR0TC492U6NrvIgTMq4C6YN5Ttm8LNuja7utnQ99OGLN3UkKMXKjJ/bWNav1UTa7sk5nRNhWYtTdPT7Tjm+eJvJh1FhIUzdtB/VKyofyrgTuxqSAn8Ak1lblP7KP6Hgpm+sCZ5Ew+Rx9rOGgen1E/Hl5m6trlmXF696FSyxxn0Bj4eHoZOrx6uff7eMYqWLpzs8UIIIbKfbBd0z5kzhzfeeIOqVatSs2bNrC6OEEK8sLiYOM5ddwPAs3hQkkFSUfci2FmrLuiXrhd87jUf339M6CN1XOlid59ztMiOxo+HEkVU1+dtB8vwn68ap5vPIYxt6+9RsU7ZFM5+eU271TR2Qd+5N4lINRMZ9AaW/7gfzzKPmbygKTEx6mtJ0aKwdCn4HbzO/6btY3jP3TSsfMrYZbxMkaus/98RNh6sSfmaOTOxQbcuccblv9fnT/a4Tb8fY+sx9X2olMt1PppUJ8PLJoQQIn1lu6A7Li6ONm3a8Oabb2Z1UYQQ4qWcPx5EnE4F2lXKhSR5jIVWQ9liaoz2ldsliI9NeYx24BlTa7i7a/YcjytSlicPzJoQYL7N7hFbVt/Au3HGtzwXKADVVJyPry+Ehmb4LZMUHxvPe1328ubwBty4XxQAK20sYz4K5fx56N0bqtR1pe+nDZm1vAl7/avy8LEdd66GcPFGyZeayi07qFinDBVcLwNw4Exlbl6+neiYuJg4Pv7c2bg+7avr2OWxy7QyCiGESB/ZbiDg8OHDAVi9enWqz9HpdOh0uowqUrpIKF92L6dIG6nX3Cs96vbU0buAyoRVuWJ0stcq63of/yCI01kTdDYI98rJj+u+fO6+cdm9VKz820uj7PI727F/TTosOcz6A3Wws45k3R+XqdHcK9PK1bSphhMn1HP3HTt0dOuWKbc1io6Iplc7f/7Z19i4rX3dw0z/qSDlvN0AHUl+FBbgXLwAeoMentmfXeo2Lbq2ucak+WUwGCxY/b9zDB5vnvfh55kPjHOMN6h4ii7v1s5e70+ne5KR4snnngFly4n1Kp5P6jX3etXqNrXvM9sF3S/iwoULWV2EVPP398/qIogMIPWae71M3e4+YeouXqBYPL6+vkkeV6zwPePynu1+PIy/l+RxAL7HTa1heZweJntNkbLs8Ds7+ls99df8Q8Va9uRxdc7UuixVKi8JD4T+WXaGsmVjM+3ekWFRfDbcjv1n6gKqdXvq6I007uJKBGEv/Tlkh7pNreoNomG+Wl75jyNeTQ8Scu0RQXdcCb6dj0WLihqPHT4imFN+2Wu2AouoKJ50msDPzw+9Xca1wuekehWpJ/Wae0ndmssVQbeHhwf29vZZXYwU6XQ6/P39qVKlClqt9vkniBzhValXg97AnIn7WLkmPz07P+C9cQ2w0Ga70SnpKj3q9tZ902fUslvzZOfUrlJ1HzyZNijqYV68vb2Tveb/7j82Lteo64a3t9cLle1Vld1+Z+vWf/4xGaFcmThGfhxLXLw1x4874u1dMlPueyvwDu26PcYvSHWjd7AJ5+/FZ2nZo8NLXzu71W1qVPUyUPazIC7dcmNvQE2aNE/6uN699XQd0CZzC5caERHGRS8vL3BI/6R1ObFexfNJveZer1rdRkZGpqoBOFOC7hkzZjB//vwUj9m4cSNlypR5oetrtdocU6k5qawi9XJzvT5+DAM6n+TvHT4A7DsN/245xv9WlKSIe6GsLVwmeNG6XbcO/vtPLTs6QunSWiySeU7hWdHJuHzpkibF+wVdNz1gLFe5aK79d5fRcvPvbGrkzaelbvlT7A2oysWb7ty8dBNXz2IZes+LAfdp3SKewDsq4C6YN5RNq+5Ss0X6TlmWo+pWC93aBPHtYrdkDylSBKZMsSBbvqWnCqXVasnIQuaoehWpJvWae70qdZva95gpQfeAAQPo3Llzise4uj5/blohROY6exa6dIFz56qZbd9ytCZe3iEs/vEo7bLRHL/ZgS5Ox5eD9/LNQh/jts6dSTbgBihbxTT9z6WglLtnBt5QWY5trKIp4pb7H3qIjNOs4QP2PsnntmPtFfqNyrig+8IFaNgsPyEhBQA13/bWzXF4VK+YYffMKT6eUJl9R09x/Y4z7sVCcC8RQemKLrhX9aR0aTWfdwY0IAshhMhEmRJ0FyhQgAIFCmTGrYQQ6WTlShgwwNR70ClPDGMGHmTW/ypwO6wwIY9caN/XhQ/+3c30hbUloy4QGnyPN1+/yvYTPsZt3bvDzz+nfF6x0oWxs44kKtaeS9edkz3OYIDAu+oBpVuhm1hoS6dHscUrqvlr+ZkwVy3v/A/6jcqY+xgM8M47EBKiMo1XLnuLLZstKVamRMbcMIdxcS3IXv+E/A/ymQghRG6U7QZl3rx5k7Nnz3Lz5k10Oh1nz57l7NmzRDw1bkgIkXHiYuIYOdCPnj1NAXeVKnDshA1jfvDBz09L+3pHjMf//FcTalUO5uyRy1lU4uzhyLYzVK8WzfYT1QHQWsTz3WeHWbFCTRGVEgutBWWK3gDgyh1XdPGGJI+7excio20BKF3FLd3KLl5NdVpWwN5G/ZLvOFIGgz7pf3cva8kS2LtXLZcpA3uOFKVYmSIZci8hhBAiO8p2Qffs2bPp1KkTP/74I5GRkXTq1IlOnToREBDw/JOFEC9Mr9Pz15yDeJW9xveLTMm5evWCQ4egbFm17uJakHX7avHzl7uxtYoC4PS1cjRrk4fASzFZUfQst2ruQRq1LcP10OIAFHIKYcffAXz8TR00qZxGuKy3yrIWG2fN9eCkT7pyxbTsXjrb/fkWOYy1nTWNq54B4Ob9opw/Hpju97h3K4xPP9Ub13/+GfLnT/fbCCGEENlatvvW9u2333L+/PlErzp16mR10YTIkVavBjs7KFkSRoxQLU5PTylo0BvYuPQoNT3P02NIPc4Fq4SGVtpYfv7hAUuXwrOTA2gsNAyZ0IRju29QudRFAG4/KETrtjaEhGTSG8smIh9F8t4oD2LjbQCoX9GPE8fiadLZO03XKedhGu1z8WLSxwQ+FRMllwldiLRo1sjUi2zHv8Hpfv0x7/sRGqq+avToYaB163S/hRBCCJHtZbugWwiRfh7de8T77zwmOhquX4dZs6BxYyhRNIoh3fbw+w/7aVjFn3Z9a3HycgXjeQ0q+bF/0yWGjMifYkttpXpl2XXAmfLlogEVLLZrB+HhGf3Oso8lPxzj3mM1Drtd3SP8d6w8xcsWfc5ZiSX0JAC4dCnpY54OukvLcG6RDpq3MyXx27nLOl2vfWCDPwvWNQYgj90jfvgmNF2vL4QQQuQUEnQLkYtNHX2CkAeJBxTfDrFjzqrG9P64AQfOmLqSVy97lo2/HWWvXxVqtUxdVmHnYgXYst2W4qpnNUePQteuEBuTMeNDsxNdnI4ffjXNvPD1lLxY271Y4FKunGk5uZbuK0ePGpfdi957ofsI8TTvxp4UcLwPwH/HPdHF6Z5zRurExcTx/lAb4/qkj05SrIxLulxbCCGEyGkk6BYilwq+eIvvl6phGVbaWE7sC+a336DT6zrjWOwEFVwv8/ecgxw7X57XetVCY5HKgchPlCwJmzdDvnxqfetWGNDxAHqdPsXzcrr1S45x8abq592s2gmq+ZR/4WuVdTPVyak9p5M8JvCqqQu6e5lMmXxC5HIWWgua1jgPwIOI/Pgej0yX684etx//IA9APcwb8lXDdLmuEEIIkRNJ0C1ELvXlR5eIjlPTeA3teYBqDUrQqxes+UdLyB0dK346wKi+u1g2cz/+l93o+n69NAfbT6tcGdatA1ubOACWbW3AqH570uW9ZFczfjU1T3/y8cu1EJYoZYtboesA7PH14P6tB4mOCbypphXK7/CAfIWcXup+QiRo1rW6cXnHnuek2n/K/v0qM/nJkxAba9p+/fxNvppdEwCNRs/cXwxYWmvTrbxCCCFETiNBtxC5kP/+C/xvYwMAnOwf8sV0L7P9jvkd6fFBfab+z4e3PmyA1ip9vhA3agTLfz6BhUYFoN/97sPUj3ely7Wzm0OHYP/RAgBU9AinzVs1X+p6GgsNXVqqadfidVb8u8y8tTsuJo5rIcUAcC96+6XuJcTTmrcydQPfuTN15xw5ovJD9OsH1auDoyPUqBbDoNf38Ha3ECJiHAEY3HVvqoeqCCGEELmVBN1C5EKjPn6IwaB+vb8YfBLnYgUy7d6vD6zDvEkHjOtjfvDhx7G7M+3+meW770zLn4xxfKleAgm6vGGqp9Vrrcz2Xb9wC71BPRxxL/7wpe8lRAIPD4w5GfbuNW+1Ts4fc06jf2r0SFwcnPC1YcG6xuwNqApA4Xx3mfyzd/oXWAghhMhhJOgWIpfZvvIEm4/UAqCkSzDDJtTN9DK883kjpozYZVwfPrkJC77Zm+nlyCiXL6up2ACKFIG33kqf69Z7rTJF8t0BYMthL8IfmNLAXzlryvxculR0+txQCECjgebN1XJkJBza8/yHOhu3qnkEtRbxvP1mHBUrgoWFeQ6HmRMvyTAIIYQQAgm6hchV9Do9n35mmlR78mdXsXWwzZKyjPnBh7GDdhnX3x3bgGU/7M+SsqS3mRPPGVv5hg0DG5uUj08tC60FnZqppFbRcXZsXu5v3Bd40RSAu5eWP90ifTWrHWRc3v7XyRSPvXgyyJhAsGHlAH7/w4rTp+HR/SgObPDnl/F72LDkKG8Mq5+RRRZCCCFyDPnmJkQusmzWAXyvqAza1cqc5a3h9bK0PBPnNuHjt3cBYDBY0PeTOqyaezBLy/Sy7t96wKIVapowe9to3n8vfadG69Ldwbi8erWp5TDwimm5dDl7hEhPLduYHs79vckVgz75f9cb/7pqXG7bIsy47ODkQL22VRj8VWPa9qmVIeUUQgghciIJunOBqMdRHN12hriYuKwuishC0dHwxXfVjOvTp0Rhoc3aX3GNhYYZS5swuKvKYq7TW/LmsBpsWJeKQaPZ1NxvTxEZowLjga8fpoDzy4/lfppPZy/yOYQB8O/+KsRExgBwJcg0/7d7eed0vacQxcoUoWHlUwCcvV6GgIPJTBYPbNxmejDUrluJDC+bEEIIkdNJ0J2DxUbF8vNXuyld8hG1W1WkfpWLhN2VBEuvqpkz4fpN9WW4TZMbNO9ePeUTMonGQsNPKxrSr50a0x0Xb03XHtYsXQqG9G0kTrNzR69Qr4I/zauf4Kcv93DzcspZwWMiY5i9VGVittDoGPGFe7qXycrGio6NAwB4HJWXHX/7ARB4Iy+gpmAqVb5Yut9XiDc6hxmXV/zvZpLHRISFs8u3CqByRlSsUyYziiaEEELkaBJ050Dx8bD45xt4lLrL0IlNuB1WGIBjFyvyWpNrPL7/OItLKDLbjRswaZJatrCAaT8Wz9oCPcNCa8GCNfXp2S0KgJgY6NsX2rWDa0HxWVau4YMfcOhcFXaerM6wrxtTvGwRGjSA77+HoCC4fyeSA5v8WfbDfiYN20WPVr7cCSsEQFefI5SuUjJDytW1mylz+ep1asD4lRA1J3jxQg+xsU+nQeRCPKXbgArG6f6W/+ueZBfznWtOExuv/v21bXQlXbL2CyGEELmdZVYXQKSeXg9//QVffQXnz5sHVfY2EUTGOHDoXBU6NjvJhj2e2OeVcZ+vik8/hYgItfzee1ClStaWJylaKy2//WGHjT0sXaq2bdoElSpEM23MCd4b2zBTu8Nf8r3KtuM1Em0/cEC9Ro7UAo2SPX/k6DwZVraW3b1wGBZHRKQVa3d7MSMMQu+rQMfdI3+G3Ve82gq7FaKp93F2nKzB5dulOP7fWWo2r2B2zIb1Mcbltu2zJkmjEEIIkdNIS3cOEB0RzfzpAVSsCG+8AefPm/a1rnWMo9vPcmBbMPkdHgCw61Q1urQ4YxwLKnK3PWtP8eefatnZ2dTinR1ZWcGSJbB2LRQtqraFRzsyZHxjmlbz4+LJoEwry/yZgcblYT138+X7e6lUKXX93Qd22Eud1pUzqmjY5bGjbTvV2h0aCr/9Ztrnnv492oUw6tk1wri8Yskds30GvYGNe1V3churaJp1qZSpZRNCCCFyKgm6s7F7N+8zadguShV/zLujKpsF240awZ7dBjYfqUnN5hWo2siTLWtukcfuEQBbjtakZ2tf4mJ0WVR6kRniY+MZ9pGptWny59coUCALC5RKHTvCmQAd73TcY9y2x98brzqF2bb8eIbfPyYyhkVrVNBspY1l7LSKTJjTiIAADWfPqgcXPj4GGtcLZki33cz4dBer5h3m5O7zhN19yIJ1ybeAp5cuXUzLP/xgWi5dOsNvLV5hXfpXxlKrknKu2FQOvc6UNf/0oYtcD1W9rHy8A3BwckjyGkIIIYQwJ93Ls1BkJCxYACFXLkFksNm+23cs+GNLDSJjfMy2N2kCn30GrVqBRmM+lq5Wy4psXOFH6+5liIxxYO2+OvTqA3/8AVptRr8bkRXmfr0fv8AmAFQve5Z3hnlkcYlSL18BLfPXNuaNv04waFhBAu+UJDrOjrfeK8WpWrcpVqZIht17zcLjhD5Scwh39TlGoZKm+YTLl4cvvoAxY/T4+t7B27sh2iz4BWrbFqytITYWAk2N8tLSLTKUc7ECtKxxlE1HanE9tDiHNvtTv50ar7JhpymBX9vW0VlVRCGEECLHkaA7C40cCXPnApR98kqahUZHt6aH+WRMPmq1rJjiNRt28GLdbydo18uLmFhLVq4ER0cV3Gsk302uEnI9lHE/VDWu/zQrHq1Vznu60rx7dfxbRdC9lfqiH/qoIL27n2DrYZcMez9zF5jyHbw3JHvmPsibF1r6hLFhaz6z7e75A4CM69ouxBvdo9l0RC0v/8eZ+u3U8sZtjsZj2vZtmAUlE0IIIXIm6V6eRW7cgIULUz7G3iaCYT13c8nvJit21H9uwJ2geffqrF5jidWTBMiLFqmWO5G7fD70DGER+QDo23Yf9dpmw+xpqeTg5MDSVaUpVuAWADtPVmfqJ3sz5F5nj1xht583AJ7Fr9CkU9WUT8hCXZr6J9pWuoLM0S0y1uv9q2NtrfIb/PVvMXQ6CAuD/fvVfg8PKJv8c2IhhBBCPENaurPIzJkQp4bN8U6fh/Rsd9lsv1arwbuhO/kLN3mh67dtC8uWQc+eai7kKVOgiHYfw7/OXq0T4eEqg3VUlOo2W7q0SrBlIY+DUnRs+xkWrld1mcfuEd/+lHO6lSenYAln/ljgS7OuhdAbtHz5U0N8Wpm6tqaGXg/bt6tW4rp1kz7m12WuxuX3el1DY5F9B0l37FURi8916A2qxd/GKpqi7oWzuFQit3NydqBtW/jnH7h9G/bsUQn9dE9ShLRtm6XFE0IIIXIcCbqzQFjIY+bNcwAssLGBSdOcKFy4errfp3t3CAmBDz5Q6yMm16dQoQO8Max+yidmMIPewJFtp1nwy32Wb69NeKT5tDM21nGUcgmmdPFQ2rWKZMj4Rpk6lVR2p9fpGTpMj8GgPpMJw09QxN0nS8uUXpp09mbsu7uYOM8Hnd6SN98phu8ZyJ+KWbJu3YJ+/WDrVrU+ezYMG2Z+TFQU/G+p6gJiYwN9P8n4hGgvo2AJZ5pUPcF/vurvQ6mCV7HQemZxqcSroGdPFXQDrFgB0feCADdAgm4hhBAirSSSyQJzJh/n8WP10ffvHUHhDGy4GjIExr27CwCDwYI+H9Vk+8oTGXfDFNy7eZ9Zn+/Gq/Ql6rapzIJ1jRMF3AAxsVZcuOHO5iO1GDapCe3rH+f+rQdZUOLsJ/xBOANf38/hc2pMb8WSlxg6oUEWlyp9jZvdkEZV/AC4dtuZd95RvTVS8u+SI3hVjjEG3ADDh8OC6X5mx/31l+omC9CjBxQomP3HwHd57bZxubTLlSwsiXiVdOgA9k/SHfz9VxybtqkVB9sIGjfSp3CmEEIIIZ4lQXcmi3ocxawlamy2hUbHJ0NDM/yeE+Y0YdDramqmOJ01nfuW4/jOsxl+36ftXuNL6bJaRkxpQsDVcsbteewe8W7vm/zwgwqSOnSAyu5B2NuY5orddKQWNbzDObnrXKaWObs5dgyq17blfxtMrbOzZzzCysYqC0uV/iytLVn2b2Vj6/bq1TBvXtLHRj2O4oPuu+nQrzah920AlTgwwbujK7Psh/3GdZW4UHn//fQuecboMrC68fehbgO7LC6NeFU4OEB7nyAA7t234u7DQgC0qBmAja18dRBCCCHSQv7nzGRLZx3nTpj68tKt6WHKVC2V4ffUWGj4ZWV9Xm94GIDw6Dy07VKQFT8dIOR6xgf9p/aep+Pb7jyKcjJua1DJj8VT93LrpgXzlhZjxAiYNQvWrQP/K26ER9qzbcUJCuZV5Qu660r9VqVYPDVjkmtlZzodfPst1KsHFy+pESGOto/57fv9NO+e/sMSsgPXkhYsXmxaHzZMT41yZ+ne9CCj+u5i7sQ9/D3nIDUr3+CXv015Dzr6nOfKFRjZ/ySgenf0/aQOq+YexG/fRQ4eVMdVqWKgXr3MfEcvrliZIvy3Loj5k/fy6be1s7o44hXyRqfbiba1bR2TBSURQgghcjYZ052JdPE6vp/rZlwfPTYVA1XTiaW1JX9u9KJV/VPsC6jK3YcuvDHMBYZBVffzNGthTfPX3WncGPLkSb/7Bp0Opk3HfMaAu2WN48z6JR8VanuleJ7GQkOLHtU5UfUm3V4/zZHzlYiOs1TWv6YAAQAASURBVGPAmEYcOrSH2cvqYGNvk34FzaaCL96i9zvO7NpjbdxWuzYsW6yjbMXc1a38Wa+/DkOHwk8/QXy8BScuVeDEpaSPtbOO5PsvjvHe2EZoLGD6Am8iH+1hzqrGamz40BrU8jT1lHiv6xE0mjqZ9E5eXu1WlajdKqtLIV41r71ZlTwfPuJxVF7Ttu6StlwIIYRIK2npzkSHN97k8m3Vst2yxnGqN62Qqfe3y2PHuu2lqF7WvGv5qUBPfpjvTvv2UKiQyqz+vDG0qRFyPZTWreO4HaYGrdcpH8CaHeWpULtMqq/h6lmMPSfKMrjrHuO2X/9pTKu6Z4mP1b18IbOxVXMP4lXN1hhwazRq6rd9+6BsxXxZW7hMMn06fPQRlCoWhoUm6fqu6n6e43tv8f6XjdFYqMnoNRYaflrRkH7t9gFqWMWBM+pBj71NBL2GlM+cNyBEDmbraEenhkeN614lT+HqWSwLSySEEELkTBJ0ZxKD3sCi301jmUeP1mRJOfIXzsehgLJs+v0Yn/bZRfWyZ9FoTElxoqNVkPP+u3HExcS98H3Cw6Fdl3xcuOEOQPkSl9mwoxgOTg5pvpaNvQ2//N2Y/03bh61VFAB7/L1ZvjL7J8F6ERFh4Qx6fQ/dBtfjQYTqDVGiSDj//QeTJmGcf/1VYGsL338PQTfyER2l55LvVbatOMGvk/bw2YBdzPt6D4cD3JJ8kGOhtWDBmnr0bH7AbPubrU7g5OKU6HghRGJv9TX9rnRoJQkthRBCiBch3cszyfa/T+J7pRYANcqdoVnXallWFisbK9q8XZM2b6v1+3cj2LXPgXXrYMkSte3XBVZcPnGCvzaWIX/htAUosbHQrRscPab+eRUv9IAt22xwLlbgpcrd99OGFK0QRusOKpnUpEnw5pugzUWx9/GdZ3mrjw0XbjQ2buve9CDz/qxA/ld8emYrGyvKVC2VpjwIWistv22oRXSLw6zdVwetRTwffOySgaUUIndp/WYNJh3eRWCQlk+/ybr/t4QQQoicTFq6M8mM6aaPevRHD43dYLODAoUc6NIF/vc/+P13sLaKB2DHierUrxnK5VNXU30tgwEGDoQtW9R6vnyweUd+SpYvkS5lbdU+H42fxKPnz6v5Y3MDvU7PtJG7qNeqDBdulAbAwSacRd/uZcX2uuQvnC9Ly5eTWdlYsXJrNf43bR/bVvpTzUe6lguRWhoLDV/M9mHBukbSQ0QIIYR4QRJ0Z4LjO8+y42QNAMoWDaLLO9k3A/Hbb8PO1WdwyRsCwLngMtRp5MietadSdf4vUy/x++9q2dZWZSOvXDl9y/jVV6blr782oItP+5yxwRdvsfrXQwQcuIhBnw4D2F/QvTtRLJ66l8ZVAxj9vQ9xOjV+u2a5M5w8GEr/0Y2y1QOanMrazpq+nzakaRb2MBFCCCGEEK8m6V6eCf47Vtq4PHLwVbRWbllXmFRo0N6Lw/uv0b7dJc5cK8u9x8606JqH1QuP0L5v8g8MrvhfY9T4osb1P/6ARo2SPfyFNW0KDRsa2LdPw7lzGv6ac5A3htVP1bl3gkKY8vkZ5vxVl9h4VVaP4oF0faswXXvaU726Slj2MqIjolnw7WH8/DWUKK7HvYwl7uXy4l7BhaLuhbkbYsGaNbBqFezaZYtOZ/qQNBo9Y/rvYcIvDXLd/NtCCCGEEEK8iiTozgTtO9qw5DcDhQvfp8+I7NvK/TT3yiU5cOwhPdsdY8vRmsTprHlrcHkOV7icZNIqvU7PgF73iYwpCcDgrrvp3LlJouPSg0YDX314mpb7VBP61zMK0WOIHgtt8h03HtwJY/rnvsxaVovIGPNyXbjhzpTpMGU6uLmp8ehDh0KpNE6hbtAb+HfJUT76vDCXbyf93m2soomNt8FgSIjsTRF+6SJXWfjzA3y6+KTtxkIIIYQQQohsS7qXZ4Ly5cHXV8/UqUHY2Fs//4RswsnFiX/3edO96UEAHkfl5fXOFjy4E5bo2F/G72W3nzcAboWuM21+9QwtW/Mulahf0Q+AM9fK8vfcQ0keF/EwgknDduFeWsOURT5Exqjs6XbWkbzXeQ+Nq/iaZW8PCoIZM6C8ZyzjB+8i8lFkqspz/lQobesdo+OA2sZp4ZISE2f7VMAN7u7wydA7HNwUwMVgV3y6eKfqfkIIIYQQQoicQVq6RYosrS353z9VuVjtHL5XynPxpjtvdTzKv/uqo7VSacMvn7rK6Ok1jecs+iUEx/yuGVoujYWGr8bG0fottT5xmgvd3jdv7T5+OII3u9zl4k0f4zZryxje63qIz6dUoIi7ysh257aBf9bC33/Df/+BTgfRMdZMmOvD4lXBzJhwim7v1U1ybHVoKMyaVZw//yxEfLwpvbhP1ZOM/cJA+KM4Ai9FExhoIPC6HVduFsYqnxvt2kHXruDtDRpNYeAVT00uhBBCCCFELiVBt3gu+7z2/POvIzXrhhL6qCCbj9Ti8zGRTP3OXnUr7/2AyBjVujuk226ads2YbuXPatmzOnUn+nPoXBVOXyvH6l8P0m1wPfR61Vo9dqwDcXFqnnCtRTx92x7ky2nulKpgXr7CRTS89x68954Kor8ddZJZSysTr7PiWkgJegwpgc+8k0yebMnDB9GcOBLBST8bTlytTWCQFihivJZrwRt8N/FaskG6EEIIIYQQ4tUiQbdIlVIVSvDXYl9a9MiPTqdl2vf2eNeEkIC97PFXQax74WtM/bVGppVJtXbH8FovtT5xmjN12+vp28+CnTtNx9Usf4WlSwxUqP38rG4FC8KMRdV4Z/AVPhxyn63HVAv+rlPVaNA++fNsbQ2M+hRGf1IA+7zFX+ZtCSGEEEIIIXIRGdMtUs2nizezZmmN6wMG6Bkzo5ZxfdEv93HM75ipZWr9Zg1qewYA4B/kgUe5OGPArdHAZ5/BAb/SSSZ/S0n5WqXZfLgGaxcepnSRpOcpd7CLpX59A2+9dYeAAD0TJmqwz2v3Uu9HCCGEEEIIkbtIS7dIkyFD4ORJWLgQoqMtAHsAhvbYjU+XzOlW/jSNhYavPo+iXV+1HhVjA0Dx4vD77+Dj83LX7jigDq16RvPzhF0cOGyLe8loqte0onr9opTzLgUWenx9g3FzK/jyb0YIIYQQQgiR62SroDs4OJhffvmFQ4cOERoaSqFChejYsSPvv/8+1tY5J+t3bqbRwM8/w5kzcFAlNad0kat8+2vNlE/MQK/1qkmtyac5eqESAF1bnObXFZUoUCB9rm/rYMvIaT6MTGKfTqdLn5sIIYQQQgghcqVsFXRfuXIFg8HAxIkTKVWqFBcuXGDcuHFERUUxevTorC6eeMLGBlb9baB1wyvcDM3HssWPcXBK46TW6UhjoWH533mY9tUeGjfR8uaw+mhk4IQQQgghhBAiG8hWQXfjxo1p3Lixcd3V1ZXAwED+/PPPFINunU6X7VscE8qX3cuZWoUKw4nzpZ5k6M6X5e+rVMXi/PyXSmCmN+ghk4qT2+pVmEjd5k5Sr7mX1G0W0OnQGhd1as7NdL+F1GtuJPWae71qdZva96kxGAyGDC7LS/nhhx/Yu3cvq1evTrQvMjKSs2fPZkGphBBCCCFebRZRUVRrpGYGObl3L3o7SSYqhHg1VahQAXt7+2T3Z6uW7mddvXqV33///bldyz08PFJ8k9mBTqfD39+fKlWqoNVqn3+CyBGkXnMvqdvcSeo195K6zQIREcZFLy8vcHBI91tIveZOUq+516tWt5GRkVy4cOG5x2VK0D1jxgzmz5+f4jEbN26kTBnTtE537tzhnXfeoU2bNvTo0SPFc7VabY6p1JxUVpF6Uq+5l9Rt7iT1mntJ3Waipz5nrVZrtp7+t5J6zY2kXnOvV6VuU/seMyXoHjBgAJ07d07xGFdXV+PynTt36NOnD9WqVePrr79O9hy9Xg9AVFRU+hQ0AyX094+MjHwl/gG+KqRecy+p29xJ6jX3krrNAtHR4OlpWtZo0v0WUq+5k9Rr7vWq1W1CHJoQlyYn243pTgi4K1WqxPTp01OsrHv37hEUFJR5hRNCCCGEEEIIIZ7i5uaGs7NzsvuzVdB9584devfuTbFixZg6dSoWFqZ5n1xcXBIdHx8fz8OHD7GxsTE7VgghhBBCCCGEyEh6vZ6YmBicnJywtEy+E3m2CrpXr17NZ599luS+8+fPZ3JphBBCCCGEEEKIl5Otgm4hhBBCCCGEECI3kT7ZQgghhBBCCCFEBpGgWwghhBBCCCGEyCASdAshhBBCCCGEEBlEgu5MsGzZMpo1a0aVKlXo3r07fn5+WV0kkUbz5s2ja9euVKtWjXr16jFkyBCuXLlidkxMTAwTJkygTp06VKtWjWHDhhEaGppFJRYv4tdff8XT05PJkycbt0m95kx37tzhk08+oU6dOnh5edGhQwf8/f2N+w0GA7NmzaJhw4Z4eXnRr18/mYIyB9DpdMycOZNmzZrh5eVFixYt+Pnnn3k6PY3UbfZ39OhR3n//fRo2bIinpyfbt28325+aOgwLC2PkyJFUr16dmjVr8vnnnxMREZGJ70IkJaW6jYuLY/r06XTo0AFvb28aNmzIqFGjuHPnjtk1pG6zn+f9zj7tyy+/xNPTk//9739m21/1epWgO4Nt3LiRKVOm8MEHH7BmzRrKly/PwIEDuXfvXlYXTaTBkSNHePvtt1m5ciWLFy8mPj6egQMHEhkZaTzmm2++4b///mPmzJn89ttv3L17l6FDh2ZhqUVa+Pn5sXz5cjw9Pc22S73mPA8fPuTNN9/EysqK+fPns2HDBkaPHo2Tk5PxmPnz5/Pbb78xfvx4Vq5ciZ2dHQMHDiQmJiYLSy6eZ/78+fz55598+eWXbNy4kU8++YQFCxbw22+/mR0jdZu9RUZG4unpyVdffZXk/tTU4SeffMKlS5dYvHgxc+fO5dixY3z55ZeZ9RZEMlKq2+joaM6cOcPgwYNZvXo1P/30E4GBgQwePNjsOKnb7Od5v7MJtm3bxqlTpyhUqFCifa98vRpEhurWrZthwoQJxnWdTmdo2LChYd68eVlYKvGy7t27Z/Dw8DAcOXLEYDAYDI8ePTJUqlTJsGnTJuMxly5dMnh4eBhOnjyZRaUUqRUeHm5o1aqVYf/+/YZevXoZJk2aZDAYpF5zqunTpxvefPPNZPfr9XpDgwYNDAsWLDBue/TokaFy5cqGf//9NzOKKF7Qu+++a/jss8/Mtg0dOtQwcuRIg8EgdZsTeXh4GLZt22ZcT00dJvwd9vPzMx6ze/dug6enp+H27duZV3iRomfrNimnTp0yeHh4GG7cuGEwGKRuc4Lk6vX27duGRo0aGS5cuGBo2rSpYfHixcZ9Uq8Gg7R0Z6DY2FhOnz5N/fr1jdssLCyoX78+J0+ezMKSiZf1+PFjAGPLWUBAAHFxcWZ1XaZMGYoVK4avr29WFFGkwcSJE2nSpIlZ/YHUa061c+dOKleuzPDhw6lXrx6dOnVi5cqVxv3BwcGEhISY1WuePHmoWrWq/G3O5qpVq8ahQ4cIDAwE4Ny5cxw/fpzGjRsDUre5QWrq8OTJk+TNm5cqVaoYj6lfvz4WFhYyhC+HCQ8PR6PRkDdvXkDqNqfS6/V8+umnDBw4kHLlyiXaL/UKllldgNzswYMH6HQ6nJ2dzbY7OzsnGg8scg69Xs8333xD9erV8fDwACA0NBQrKyvjfxoJnJ2dCQkJyYpiilTasGEDZ86c4e+//060T+o1Z7p+/Tp//vkn/fv35/3338ff359JkyZhZWVF586djXWX1N9mGa+fvb377ruEh4fz2muvodVq0el0fPTRR3Ts2BFA6jYXSE0dhoaGUqBAAbP9lpaWODk5yd/mHCQmJoYZM2bQrl07HB0dAanbnGr+/PlYWlrSp0+fJPdLvUrQLUSaTZgwgYsXL/LHH39kdVHES7p16xaTJ09m0aJF2NjYZHVxRDoxGAxUrlyZjz/+GICKFSty8eJFli9fTufOnbO4dOJlbNq0ifXr1/Pdd99RtmxZzp49y5QpUyhUqJDUrRA5SFxcHB9++CEGg4EJEyZkdXHESwgICGDp0qWsXr0ajUaT1cXJtqR7eQbKnz8/Wq02UdK0e/fuUbBgwSwqlXgZEydOZNeuXSxZsoQiRYoYtxcsWJC4uDgePXpkdvy9e/dwcXHJ7GKKVDp9+jT37t2jS5cuVKxYkYoVK3LkyBF+++03KlasKPWaQ7m4uFCmTBmzbaVLl+bmzZvG/YD8bc6Bpk2bxrvvvku7du3w9PSkU6dO9O3bl3nz5gFSt7lBauqwYMGC3L9/32x/fHw8Dx8+lL/NOUBcXBwjRozg5s2bLFq0yNjKDVK3OdGxY8e4d+8eTZs2NX6XunHjBlOnTqVZs2aA1CtI0J2hrK2tqVSpEgcPHjRu0+v1HDx4kGrVqmVhyURaGQwGJk6cyLZt21iyZAmurq5m+ytXroyVlZVZXV+5coWbN2/i7e2dyaUVqVW3bl3Wr1/PP//8Y3xVrlyZDh06GJelXnOe6tWrG8f8JggKCqJ48eIAlChRAhcXF7N6DQ8P59SpU/K3OZuLjo5O1JKi1WqNU4ZJ3eZ8qanDatWq8ejRIwICAozHHDp0CL1ej5eXV6aXWaReQsB99epV/ve//5E/f36z/VK3Oc/rr7/OunXrzL5LFSpUiIEDB7JgwQJA6hWke3mG69+/P6NHj6Zy5cp4eXmxZMkSoqKi6NKlS1YXTaTBhAkT+Pfff/nll19wcHAwjj/JkycPtra25MmTh65du/Ltt9/i5OSEo6MjkyZNolq1ahKcZWOOjo7GcfkJ7O3tyZcvn3G71GvO07dvX958803mzp3La6+9hp+fHytXrmTixIkAaDQa+vTpw5w5cyhVqhQlSpRg1qxZFCpUiBYtWmRx6UVKmjZtyty5cylWrJixe/nixYvp2rUrIHWbU0RERHDt2jXjenBwMGfPnsXJyYlixYo9tw7LlClDo0aNGDduHBMmTCAuLo6vv/6adu3aUbhw4ax6W4KU69bFxYXhw4dz5swZ5s2bh06nM36fcnJywtraWuo2m3re7+yzD0+srKwoWLAgpUuXBuR3FkBjSHg8LDLM77//zsKFCwkJCaFChQqMHTuWqlWrZnWxRBo8O3dzgilTphgfoMTExPDtt9+yYcMGYmNjadiwIV999dUr020mt+jduzfly5fniy++AKRec6r//vuP77//nqCgIEqUKEH//v3p0aOHcb/BYGD27NmsXLmSR48eUaNGDb766ivc3d2zsNTiecLDw5k1axbbt2/n3r17FCpUiHbt2vHBBx9gbW0NSN3mBIcPH04y4VLnzp359ttvU1WHYWFhfP311+zcuRMLCwtatWrF2LFjcXBwyMy3Ip6RUt0OHTqU5s2bJ3ne0qVLqVOnDiB1mx0973f2Wc2aNaNPnz7069fPuO1Vr1cJuoUQQgghhBBCiAwiY7qFEEIIIYQQQogMIkG3EEIIIYQQQgiRQSToFkIIIYQQQgghMogE3UIIIYQQQgghRAaRoFsIIYQQQgghhMggEnQLIYQQQgghhBAZRIJuIYQQQgghhBAig0jQLYQQQgghhBBCZBAJuoUQQgghhBBCiAwiQbcQQgghhBBCCJFBJOgWQgghhBBCCCEyiATdQgghhBBCCCFEBpGgWwghhBBCCCGEyCASdAshhBBCCCGEEBlEgm4hhBBCCCGEECKDSNAthBBCCCGEEEJkEAm6hRBCCCGEEEKIDCJBtxBCCPEKOnz4MJ6enhw+fDiriyKEEELkapZZXQAhhBAiu1m9ejWfffZZsvtXrFiBt7d35hUoB7h16xarVq1i165dXL16FQsLCzw8PBg8eDD169dPdHxAQAA//vgjAQEBREZGUqJECbp3787bb7+NVqsF4MGDB6xatYr//vuPy5cvEx8fT+nSpenXrx9t27ZNdM3Y2FhmzZrF2rVrefToEZ6enowYMYIGDRpk+PsXQgghkiNBtxBCCJGM4cOHU6JEiUTbS5YsmQWlyd527NjB/PnzadGiBZ07dyY+Pp61a9fSv39/vvnmG7p27Wo8NiAggDfeeAM3NzcGDRqEra0te/bsYfLkyVy7do2xY8cC4Ovry8yZM2ncuDGDBw/G0tKSLVu28NFHH3Hp0iWGDx9uVoYxY8awZcsW+vTpg5ubG2vWrOHdd99lyZIl1KxZM1M/DyGEECKBxmAwGLK6EEIIIUR2ktDS/ffff1OlSpWsLk6GOHz4MH369GHp0qXUqVPnpa938eJFnJ2dKVCggHFbbGwsr7/+OpGRkezevdu4fdy4caxZs4Z9+/aRL18+4/ZevXpx9uxZjh8/DsD169exsLCgePHixmMMBgP9+vXjxIkTHD58GHt7ewD8/Pzo3r07o0aNYuDAgQDExMTQvn17nJ2dWb58+Uu/RyGEEOJFyJhuIYQQ4gXNnj2b8uXLc/DgQbPt48aNo3Llypw7dw4wdXvu0qULNWrUwNvbm7feeotDhw6ZnRccHIynpycLFy5k2bJlNG/enKpVqzJgwABu3bqFwWDg559/pnHjxnh5eTF48GDCwsLMrtGsWTPee+899u3bx+uvv06VKlVo27YtW7duTdV7OnXqFAMHDqRGjRpUrVqVXr16GYPglJQrV84s4AawtramSZMm3L59m/DwcOP28PBwbGxsyJs3r9nxLi4u2NraGtddXV3NAm4AjUZDixYtiI2N5fr168btmzdvRqvV0rNnT+M2GxsbunXrxsmTJ7l161aq3r8QQgiR3iToFkIIIZIRHh7O/fv3zV4PHjww7h88eDAVKlTgiy++MAaVe/fuZeXKlQwZMoTy5csbr/PXX39Ru3ZtPvnkE4YOHcr9+/d55513OHv2bKL7rl+/nj/++IPevXvTv39/jhw5wogRI5g5cyZ79+5l0KBB9OjRg//++4+pU6cmOj8oKIiPPvqIxo0bM3LkSLRaLR9++CH79+9P8f0ePHiQt99+m4iICIYOHcpHH33Eo0eP6Nu3L35+fi/0GYaEhGBnZ4ednZ1xW+3atQkPD+fLL7/k8uXL3Lhxgz///JNt27bx7rvvPveaoaGhAOTPn9+47ezZs7i5ueHo6Gh2rJeXl3G/EEIIkRVkTLcQQgiRjH79+iXaZm1tjb+/PwBWVlZMnTqVLl268O233zJq1Ci++OILKleubBY8Ojk5sXPnTqytrY3bevTowWuvvcZvv/3GN998Y3aPO3fusHXrVvLkyQOAXq9n3rx5REdHs2rVKiwt1X/fDx48YP369UyYMMHs2kFBQfz444+0atUKgG7dutGmTRtmzJiRbFIxg8HA+PHjqVOnDgsWLECj0QDwxhtv0K5dO2bOnMmiRYvS9PldvXqVbdu20aZNG2NytIT3funSJVasWMFff/0FgFarZdy4cbz55pspXjMsLIy//vqLmjVrUqhQIeP2kJAQXFxcEh2fsO3u3btpKrsQQgiRXiToFkIIIZLx5Zdf4u7ubrbNwsK8k5iHhwfDhw/nu+++4/z58zx48IBFixYZA2NQAWVC0KnX63n06BF6vZ7KlStz5syZRPdt06aNMeAGU2ttx44dza7r5eXFv//+y507d3B1dTVuL1SoEC1btjSuOzo60qlTJ+bPn59scHr27FmCgoIYPHiwWWs+QL169Vi7di16vT7R+09OVFQUH374Iba2towcOdJsn1arxdXVlYYNG9KmTRusra3ZsGEDkyZNwsXFhRYtWiR5Tb1ezyeffMKjR48YN26c2b7o6GizBw8JbGxsjPuFEEKIrCBBtxBCCJEMLy+vVCVSGzhwIBs2bMDPz4+PP/6YsmXLJjpmzZo1LFq0iMDAQOLi4ozbk8qOXrRoUbP1hAA8ue0PHz40C7pLlSplbKlO4ObmBsCNGzeSDLqDgoIAGD16dHJvk8ePH+Pk5JTs/gQ6nc6YYXz+/PkULlzYbP+vv/7K0qVL2bJlCw4ODgC0bduW3r17M2HCBHx8fMweLiT4+uuv2bt3L1OnTjV23U9ga2tLbGxsonNiYmKM+4UQQoisIEG3EEII8ZKuX7/O1atXAbhw4UKi/WvXrmXMmDG0aNGCgQMH4uzsjFarZd68eWbJwBI83RX7acm1MqfHRCQJ1xg1ahQVKlRI8piETOHPM3bsWHbt2sWMGTOoV69eov1//PEHderUMQbcCZo3b86UKVO4ceMGpUqVMtv3008/8ccffzBy5Eg6deqU6JouLi7cuXMn0faQkBAAs67oQgghRGaSoFsIIYR4CXq9njFjxuDo6Ejfvn2ZO3curVu3No6nBtiyZQuurq789NNPZi3Qs2fPzpAyXb16FYPBYHavhJbsZ7OBJ0hoKXd0dKR+/fovfO+pU6eyevVqPv/8c9q3b5/kMaGhoej1+kTbE3oAxMfHm21ftmwZP/74I3379k020Vr58uU5fPgw4eHhZsnUTp06BZDsgwQhhBAio0n2ciGEEOIlLF68mJMnTzJx4kQ+/PBDqlWrxvjx47l//77xmISW66dbpE+dOoWvr2+GlOnu3bts27bNuB4eHs4///xDhQoVkuxaDlC5cmVKlizJokWLiIiISLT/6feTnAULFrBo0SLef/99+vbtm+xx7u7uHDhwwGzsuE6nY9OmTTg4OFCyZEnj9o0bNzJp0iQ6dOjAZ599luw127Rpg06nY8WKFcZtsbGxrF69mqpVqybqmi+EEEJkFmnpFkIIIZKxZ88erly5kmh79erVcXV15fLly8b5t5s1awbAt99+S6dOnZgwYQKzZs0CwMfHh61bt/LBBx/g4+NDcHAwy5cvp2zZskRGRqZ7ud3c3Pjiiy/w9/fH2dmZVatWce/ePaZMmZLsORYWFkyaNIlBgwbRvn17unTpQuHChblz5w6HDx/G0dGRuXPnJnv+tm3bmD59Om5ubpQuXZq1a9ea7W/QoAEFCxYEYNCgQXz66af06NGDHj16YGtry4YNGzh9+jQjRozAysoKAD8/P0aNGkW+fPmoV68e69atM7tmQj0AVK1alTZt2vD9999z7949SpUqxZo1a7hx4waTJ09+oc9RCCGESA8SdAshhBDJSK7795QpUyhWrBijR48mf/78fP7558Z9bm5ufPzxx0yePJmNGzfStm1bunTpQmhoKCtWrGDfvn2ULVuW6dOns3nzZo4cOZLu5XZzc2PcuHFMmzaNwMBASpQowQ8//ECjRo1SPK9OnTqsWLGCX375hd9//53IyEhcXFzw8vKiZ8+eKZ577tw5QHVjHzVqVKL9S5cuNQbdHTt2JH/+/Pz6668sXLiQ8PBw3N3dmTBhAm+88YbxnEuXLhEXF8f9+/fNPuMEU6ZMMUsgN23aNGbOnMm6det4+PAhnp6ezJ07l1q1aqVYdiGEECIjaQzpkX1FCCGEENlCs2bNKFeuHPPmzcvqogghhBACGdMthBBCCCGEEEJkGAm6hRBCCCGEEEKIDCJBtxBCCCGEEEIIkUFkTLcQQgghhBBCCJFBpKVbCCGEEEIIIYTIIDl6yrD4+HgePnyIjY0NFhby/EAIIYQQQgghRObQ6/XExMTg5OSEpWXyoXWODrofPnxIUFBQVhdDCCGEEEIIIcQrys3NDWdn52T35+ig28bGBlBv0s7OLotLkzKdTseFCxfw8PBAq9VmdXFEOpF6zb2kbnMnqdfcS+o2C0RFQYMGann/fsiA72JSr7mT1Gvu9arVbVRUFEFBQca4NDk5OuhO6FJuZ2eHvb19FpcmZTqdDgB7e/tX4h/gq0LqNfeSus2dpF5zL6nbLGAwwPnzatnWFjLgu5jUa+4k9Zp7vap1+7yhzjIQWgghhBBCCCGEyCASdAshhBBCCCGEEBlEgm4hxEsJOHCRycN3cfPy7awuihBCCCGEENlOjh7TLYTIWvdvPaBxq4I8iCjH7gPH2XqsSFYXSQghhBAi11m2DH74AWJiEu8rUACmTYM6dTK/XCJ1JOgWQryw6V+c4kGEDwA7TngTeuMBBYvnz9pCCSGEEELkIg8ewDvvQHR08seMHg27dmVakUQaSfdyIcQLuR0Ywuw/ahnX9QYtm3ZKwC2EEEII8Tx378L06XD69POP/eMPU8BtbQ0ODqaXRqO2HzkC8fEZV17xciToFkK8kCmfnyEyxsFs2/r1WVQYIYQQQogc4tEjaNQIRo2CZs0gIiLl4xcsMC0fPQrh4aZXz55qe1RU6gJ4kTUk6BZCpNn18zeZ+3ddAOysI3Fy0gOweTPExmZlyYQQQgghsi+DAfr3hwsX1Prdu7BoUfLHnzgBvr5quVYt8PIy31+7tmn5yJF0LapIRxJ0CyHS7OvRl4iNtwFg+FuHad9e/Sl5/Bj27s3KkgkhhBBCZF/ffQerV5tv+/775LuGP93K/c47ifdL0J0zSNAthEiTS75XWbS+PgB57R4y6puqdGinN+5fv+REVhVNCCGEECLb2rULxowxrZctq34GBcGqVYmPj4xU47kB7O3hjTcSH1OtGmi1almC7uxLgm4hRJqMH3MTnV5NfDCy/wkKFC1A6+aPsdTGAbB+W0EMekNWFlEIIYQQIlu5cUONv9bp1PrYsTB3rmn/9Omq6/nTVq2Chw/Vco8ekDdv4uva20Plymo5IOD548NF1pCgWwiRagEB8MdWNZbbOc99RkysAUC+Qk40qhIAwJXbJTl37EqWlVEIIYQQIjuJjVVB8927ar1VKxg/XiVRq1ZNbTt+PPGUX8/rWp4goYu5Xq/GgIvsR4JuIUSqffklGAxqborRX+Qlr7PpkWv71o+My+tXBGd62YQQQgghsqNPP4UDB9RyyZKwbJnqEq7RqH0Jpk83LV+4AHv2qOXy5aF+/eSvL+O6sz8JuoUQqXL8OKxZo5aLFIEPhlma7e/Qs5Rx+d+t+dJ07UcPDXRufAQv9wsc3XbmZYsqhBBCCJHlDAb4+WeYPVutW1vD339DwYKmY7p3h1JPvkJt2gT+/mr56YzmAwea5uNOytNB99Gj6VN2kb4k6BZCpOiK/zXGDtpF+5ahxm1jx6oxRE8rV80Nz+KqW/n+05W5d/NBqq4fHg6vtdXwz97a+Ad50K6bC1f8r6Vb+YUQQgghMltkpJoabOhQ07bZs9W0X0+ztISPPzatz5gBcXGwZIlpf58+Kd+rYkXT9zJp6c6eJOgWQiQS9TiKZTMP0KzaScp4lWTyAh9uP1CPZd3ckh9X1L6pCpb1Bi2bVzy/xToyEjp0MHW5Agh55ELb1+K5fyt1QbsQQgghRHZy8SLUq2cKnAE++QTefTfp4wcMgPz51fIff8Cvv8Lt22r99dehUKGU72dpCTVUmh0CAyEk5OXKL9KfBN1CCCOD3sCPY3dTrGgMvT6qz3++1Yz7tBbxdPC5wPbtYGOT9PkduuQzLq/fkEI/KCA6UkenTqakIfny6SlXLAiA8zdK06XNVWIiY178zQghhBBCZLI1a6BmTfDzU+sODvDnn2q8dnJdxB0dYcgQtRwfDyNGmPYNHJi6+0oX8+xNgm4hBACP7j2mZ4tDDJ/chLCIfMbt5YoFMmXELq5fvMe6/zwoUyb5a9RvW4l8DmEAbD5YibiYuCSPi4mMoWuzE2zbptbz5IEtWyzYskVLISf1eHa3nzfvdDkq048JIYQQItuLj1dJ0bp0gUdPcstWqKAC4KTm137WsGGmRo34ePWzRAmV6Tw1nu62Ll3Msx8JuoUQBBy4RK2qofz1Xz3jtrdb7Wf3P6c4f92NMT/4ULR04edex8rGitfqnQbgYaQT+/4NSHRMXEwcb7Q+ycbD6n8HB7tYNm9WT2jdK7uyfuUd7KwjAfh9S0PGD9mdHm9RCCGEECLDTJqkxmMneOMNFfxWqJC68wsXTjx2u39/leU8NSSDefaWKUH3smXLaNasGVWqVKF79+74JfS3SMamTZto06YNVapUoUOHDuzeLV+6hcgov/8OdVq6c+GGOwBO9g/5Z8Fhft/SgMavV0VjkXI38We172hrXF6/t7LZvsunrtLZ5yT/7FNzfdtZR7Jh2RmzaTBqt6rMsp/80Gj0AEyc58OS6fte5K0JIYQQQmS4iAiYNUstW1rCjz+qsdmOjmm7zsiRpi7oGo0a651abm6mrOhHjqjM6SL7yPCge+PGjUyZMoUPPviANWvWUL58eQYOHMi9e/eSPP7EiROMHDmSbt268c8//9C8eXM++OADLly4kNFFFeKVEhOjxg/17g2RkeoxatXS5zl+IIzXB9Z54eu+1quG8ansvxutALh6NphBr+/Bs3pxNhxSj2JtrKJZ99s5mnT2TnSNzoPqMuPTPcb1dz6rw6HNiVvNhRBCCCGy2m+/QViYWu7VS2UsT2mKr+R4esKHH6rl999XgXRqaTSm1u5791RCNZF9WD7/kJezePFievToQdeuXQGYMGECu3btYtWqVbybRAq/pUuX0qhRI955kh55xIgRHDhwgN9//52JEydmdHGFeGV89BHMmWNaH9DfwE+z3bBzTCZLWirlzw8NG8Lu3Sp7Z6/XjrBymzdxuhLGYwo43mfZ3Cu06FEz+fJNacLlK7v55e8mxOusGD7KhUOtwCKFR4W6OB0/j9/HlWT+o6la1YK3h9fB2s76Rd+eEEIIIYSRwWCahxtg+PCXu97338O4cZAvX9rPrV0bNm5Uy0ePQunSL1cWkX4yNOiOjY3l9OnTvPfee8ZtFhYW1K9fn5MnTyZ5jq+vL/369TPb1rBhQ7Zv357sfXQ6HTqdLl3KnFESypfdyynSJivq9cGdMD7ofZ7iRWKYPK/uCwWQt6/eZ8ECZ8ACGxsDP/5oYMAAA2CZLu+lbVsNu3er6HjZZtMgo7x2D/m43wmGj/cmr3O1597r+6V12XPyJgGXi3HUvzDLl+vp2TP5/lLjP9jDpPlNk7/gnzBh1gPGTrSkd28Dlin8BcxOv7NTp2o4cEDDrFn6ND31Follp3oV6UvqNgvodGiNizrIgM9e6jV3yk31um0bnD2rfhMaNjTg5aV/6V8FJycVzKf1OmraMFWWQ4f0dOuW+X3Mc1PdpkZq32eGBt0PHjxAp9Ph7Oxstt3Z2ZkrV64keU5oaCgFEwYkPHV8aGhosvfJSV3P/f39s7oIIgNkZr0unHKHlTvbAnD9zn5Gf2ub5i5Mf868SVxcBwB6dT9H9eqR+PqmXxnLlLEBTOO5HWzCGdhpF10G5sWxQF6uXL8C11N3rXc/zGt8avzJJ3G4uZ3GxibxfyLXAu7y7aIWz73e1Vv5GTQIvv46mkGDbtGq1f0Uk5Rk9e/sjaBYvvhCJbiLjn7E1KlJ/+0UaZPV9SoyjtRt5rGIiiJhYkk/Pz/0dnYZdi+p19wpN9Tr5MllgHwAtG9/BV/fsCwri52dFvAGYNeuCHx9sy5Gyg11m54yvHt5ZvDw8MDe3j6ri5EinU6Hv78/VapUQZvaNIQi28uKet1+8Jpx+e8dDaiwTs9XX6X+SWZMZAy//+sKqLm3vxjjQMnyHulaRm9vGDxYz5rVet5quY9Pv66Ai+trL3yt9esNbNum4dYtG/bu9eaTT8zfb3w8vN/rGvE6NYb8wzd30aN3AbNjHt57zKz5pdiyR3Vzv3bNlnHj3PlzST6mfXmRNm/VMDs+u/zOXjlqSkG6f58jZct6pzkxizDJLvUq0p/UbRaIiDAuenl5qQmJ05nUa+6UW+r14kXYt0+Vv2RJAyNGuKXYiy4zuLsbCAzUcP68I5Ure2d6eXJL3aZWZGRkqhqAM7Qa8ufPj1arTZQ07d69e4lasxMULFgwUat2SscDaLXaHFOpOamsIvUyq17PHw/k4k13s21ff21B2bKJp5lIzuoFJ7gT1hCAzo2P4l6p3nPOeDG//AK//GIB+Lz0tWbMUMG3wQBTJscy8O0ICpYw9aD54Qc4dk59LhVLXmbqgnrY2Ccem/5aL9i/H8aOhV3/Z+++w5uq3gCOf9N0t1AolL1HyyyljLL3ngIKqGxwgApOwC3+FBygAoogS8AFypAle++9y6aUvdvS3Sb5/XFobkN3Sbp4P8/Th5Pk3puT3pLkveec992i7jt1viDdB/lzueFtSlYqnmSf7P4/e+ZkjLkdHePA6tXw/PPZ1p08I7vPq7AdObdZKNHvWa/Xp7+2UaaeSs5rXpTbz2vi3DivvabDySn7X0v9+iqJWlSUjtOn9dSqlT39yO3nNr3S+xptmr3c0dGR6tWrs3v3bvN9RqOR3bt3U7t27WT38fPzY8+ePRb37dq1Cz8/P1t2VYhcYeXCy+a2f7Wb5vawYVoQmRqT0cTknwuab496O2fPEEng6wuDn78NQOhDZz5/V8tkfu6cSjgCKnPn7D/LJRtwJ2jcGDZvho0bwb+KmjVgMNqzYekF272AJ3DqtOWa/UWLsqkjQgghhDALC4O5c1XbxUV9F8sJpF53zmTzkmGDBw9m0aJFLF26lAsXLvDZZ58RFRVFz549ARg9ejSTJk0ybz9gwAC2b9/OnDlzuHDhAlOnTuXEiRP069fP1l0VIsdbsbaAuf37r5GMGKHacXHQo2s4gftSDxx3/3eCA+eqA1C7YiCNO/vaqqtW97/Pjbg6qamMP//TiLOHLmE0wksvQXS02mbUKGjQKH1XHFu1gu/G3zff3rI1Zxa0DLxoOU3+v1UxhN0NzabeCCGEEALg11/h4UPV7t8fPD1T3TzLSNCdM9k86O7UqRNjxoxhypQpdO/encDAQGbNmmWeLn7jxg3u3Llj3t7f35+JEyeycOFCunfvztq1a/npp5/w9rbumlMhcpsHt0LYcUIlJ6tUPAifOuWZPBk6tY8CICTcnU5dHbkVdCfFY0z57qG5PeqVe+jsMlFEMpuUqFiM9wbvByDe4MDYN28x8+vDbN2qHi9XDr74ImPHDGhXBWcH9fvbsr+c9TprJYY4A6evlLW4LybOieULJDmJEEIIkV2MRpg6Vbv9xhvZ15fH1a6trfSQoDvnyJKl9f369UtxpHrBggVJ7uvYsSMdO2Yu6ZIQedWahacwGBsB0LVlEDq7ctjbwcI/DTSte5ojF6sQdLs0XdufZM0WezyLF7TY/+q5G/yzRV3+LOJxh76vpVwjO6d6d0I9Zvx1i5shRVm6vQFr9kaaH5v5iwk3t4xdRHB2c6Zh9cNsPlKboNulCTp5lXLVS6W9Yxa5fPoa0XFlACjpeZ1r90sAsPBvR/q9lfJ+Dx9CeDgUT7pEXQghhBBPaPVqOH9etVu3hho1Ut8+K7m5qf4cPQonTqh8hzbIcSgyKE9kL8+tYqNiWTzzALdvxiV5zMEBOvetSNmqOScAENlrxQqt3aWHh7ntXtCdlWs9aNDgOlfvlWD/2eo0bXCeNeuiKO1TwrzdtK/OYDCqKOzVvidwck2lnnUO5V7AjS9GH2LYB0UBiIpVa9KHdNlOm7ZNM3XMFo1C2XxEtbesCmJQDgq6Tx26Baigu3/3Myz4V8e1+8VZu8+PB7dCKFi0QJJ9zp1T69bv3FGj/61aQavmMbRsfJ8SFSUKF0IIIZ7UlClaO6GsaU5Sv74Kuo1GOHwYmjTJ7h4Jm08vFyn77PVdvDCqEW9OaJ7k57XPm9OsOcTFJA3IxdMnPs7Ef7vVWmwP11CadrW8pFqyUnFW/xtOEQ81tfxUcCUaNtZxcre6DBv1MIpf/q4JgIM+lldHV8vC3lvXoHcbUaPsOfPtYgVuMXFWzUwfr0U7bUbAlq1P1DWrCzyuleOpXtOR59qrkhRxBkf+nZd0irnJaOL1gedIWLETFARz5kC/gU6UrFScKqUuMmbQFsIfhGdF94UQQog859QpWL9etStUgM6ds7c/yalXT2vLFPOcQYLubBIdEcOMRaknsQq+U4oLx65kUY9ETrZzl46QCDW63aFVCA5ODkm2qdnYm11bI6lYTGU4v3avOE3aFmb78mP88ZcT9x6qElu9W++neIWiWdd5K9M76Jk8MRx7fRx2OgMzJgUlO+KbXgFtc+667lOntclI1fwK0meAViZt4WLnJNsvnbmHdbsrA+DuGovTY0ncz1yrwDfzWhDgd5PT+y/apM9CCCFEXjZnjtZ+4w2bVsrLtMTJ1LZvz75+ZNauXVC3LkyYkN09sR4JurPJsuWO3A9XaQ7b+23izym7zD+9W+0yb3fuxN2UDiGeIitXau0ufcqmuF3FWmXZtdeVOpVPARASUYC2z3rz6SdaredR4+qntHuu0erZ2hzdeZmjOy7SbUjAEx3LydWJRjUCAbh8pxSXTly1RhetIvBSEXPbx78sAe2qU8ZL9W/DQT/uXdeyr0eERvDmR2XMt+d9d5CQENi0CT4acYDG1Y9hr1czZ04FV6JeMy8W/aS91wghhBAibf/9p/61s1NZy3OiGjXgUc5q1q5V67pzkxEj4ODBvBV0y5rubDJ7jpbwaez3rWjRQnss3niARZtU++yVYlnbMZEjJazntrODtHIMFinjxZa9LvRqd5B1B+oQE+fMtUclvRs0gHoNko6S50bVAipZ7VgtGoWx6bBqb9kQTvkckBDFZIJTV1TVhnJlYnHzUFlQenc4z8QFpYg3OLD01xMM+6AZAOPf2c+Vuy0AaFf3AD1eaoDODlq2hJYtVdK8s4cu8WyvOI4HeRMenY8+rzdi186tfDO7IY4ujkk7IYQQQgizK1fU9HJQo8mFCqE+sE1GsHtsyPv8L6B3A0cPcPAAOyfQO4KdI+gcVFvnAE6FVTsxkwli7kLUNYi8pv0bfRNiQyEuDBzyQZOFlvsFToQba9E7FOCZRm8wa3kzoqJU4P2oWnOOd+GCWo8OUKVK9vbFmiTozgaXLsGGDapdqRI0b275eOUGWlbpc9fLIKzr/n2YOBF27IB334Vu3bK7R6k7dw7OnFHtRo0evcGnwb2gOyu2+zL0mZ38trax+f5Ro2zUyVyuRfca8JNqbzlchcHZ2x0Arl/X6n9Wra59GPfuX4SJj4o+LFzsxrAP4NzhICbOawioNftTZxRKthyct3959hyN5NU+O1iwRmVVmfxnc/YdOc6ifwtTqrIkWhNCCPGUMZkg4hJE3QKvhpaPnfoa7h8Gx4Lg5Mm6FU2BDgC0998B2ybBvb1Q4xOo/Kq2nzEe9r2SvudvvQmKJkpue20lbHsGTIbU93PySnrfgyNwUwUZvao8ZNZydWF+8W836Nkzd3zGL16stXv1yr5+WJtML88Gc+dq7aFDQffYd+PKlbX22bNZ06fcwmCA3bth40a4eBHiMpBnLjQUPvsMypdX01W2b4cXX4jlwa0QW3XXKlbO0RbjdO2Q/gRYjs4OzFvViLFjDNjZqSuyeenNy5rqNyuMi4tqb9miPn+zW8KVdIBqifLe1W1dlfJFgwHYdNiP29fCeeOVu8TGqwXc7w7cibd/+RSP65rflXmrGjP982042qtlB7sDa+Jfz4n9+3LACxdCCCFsyWSEkBNwdhrs6AvLSnFqWhdO/5lMLc6w0xC8EM5Ph5PjWbsyzPxQ+yLvwdVlEHVDBd6JxT9Mf390j81ANMSkHXADxIUmvS9Wu69V9U14uIYAsHKNKzF7PwBjzk/QnFeDbhnpzmKGOANzp98HvNDrTQwcmHQ0ytNTjWbeuydB9+N++tHEqDe135mdHZQuDeULnaF88duUL2egfEUHylfOR/mqRShWrghR4VFM/Ww/38wJ4EGYi8XxwiMcmT5hF+//0CKLX0n6rVjjbm53bXsLcE9548fY6XVM+ErP6DHg4aF+XyIpJyc1i2DjRggOVrNRyqa8dD5LBAZq7apVtbbOTkfvZ8L4egYYTXqGDAhn7X41O6Z04Wt8+F3aa/Z1djpe+bgZdRqe4tkX8nP5TinuhHrSoqX6sOvQwdqvRgghhMhGhli48R8E/a5GgmMfmB9ae6wdXSauRIeJHfUN1G+QaJq4U2FzM96gZ8OJNgAUcH1AvQr71QMO+UH3WEhl5wQN5mpTweNCwRijgl5j7KN/H7WdHxuxdsgHBf3BuQi4lgSXktq/LsXVqLuDh9rucc2Xq4A/NgTHmLt0++0gC9a3JizKgw3/HKVzSBNo/Ce4V3iiX6etXLmiZVv39VUzgvMKCbqz2LpFh7l6RyV+6txgP8WLJ/8F2dtbjeheuwYRD+NxyyenCmD17wcBbfq90QiXL8Plyz5swSfJ9k4O0TjaG3gY1cJ8n7099O0Vxh+L3DCa9EyZV5W3x0fj5Jo0G3RmREdEM2boXs5ecuWnWUWpUDPzSwRCboey/bhaYFyh2GWq1M3cm2TBgmlv87Rr0UIF3QBbNpsYOCg7ewOndh4GagNQrXIYkN/8WJ9XavD1DNVetUnL+/Dd58G4eZRM93PUbVONg0fu06t3OFt3uhMZCV27wuzZMGCANV6FEEIIkc3u7oEtnSH2fpKH4uLtGbVgKvEGNdo89UcDCxok2qDGx1B5BMQ+YP8uAw8iVBLkNk1uYd9oJhQOgPxVQPfYqIa9K1QYlLn+Fm+nfjJDp1MXARzyg1sZeo0wsuBRebPF+3vRufZQWFsful1U2+QwS5Zo7bw0yg0yvTzLzZ1tNLeHDkl5Kqe311Fz+/yRCzbtU24SfFNFj472MfTqZcLfHwoWNKa4fUycMw+j1JuKnc7AgJ4XOH0aFvyVn57N1aW0myFF+W2ydYoYhtwOoV2DM0xZ2Jw1++rR99mHGOLSMUUoBWsXnTR/EHRtGZTsOl1hHS2aaKk9tyzenY09UQIDtXNdtYrl37ifn+UyFIA2/gfp9UoDMqpQCU/WbHDn2WfV7fh4GDgQvh57BJNRppsLIYTIJUwmCL+opo4n5lENDJHabUdPKNUdak9i5q3znLnubX5oyVK9OZ8KoAJT9/Lg6c/aA1rx6w69q0DFwerYjwfcOUi79na4qTys/HuoB3Hx9lD1PcuA2xCrRuNzgLw6tRxkpDtLhd1+yPKdKqlV8YI36dSvTorbVi6rTXs5d+I+tZravHs5nslo4sodVUKpXNHr/PNPwrpVO0LvhHIp8CaXzjzg0oUYgoLgUrALl64V5G6YB63qnuOT8cWpUq+i+XjvvZ+Pf7ao9sRpJRk82oidPvk3ziPbzrBx5Q2eebE8FWslP+/46rkbdGwbzonLtcz37T9bncnfR/D2aLdMveaVK7Vgq8szyUwjElZTP8ABF8dIomJd2bK/bLYHnKculwLUe0WBIpZVDHQ66N0bvvxS3XbQxzJ1esFMX5Rxdoa//lKJ9n56lFBu7Nd+XA/ayve/N03x/0VioaEwfbqaSVK+/KOfsgYKeObAAqZCCCFyn9DTcGPNoxu6R0mRdBB9G+7vh/sHIOYeFG8PLddo+znkh3IvQnwUlO8HxdqCnT2hofDpN5ZPERkJ//wDg5PJqLp2rdZu397aL842XFygc2dYtAjuPyzI1rjfaFP1OcuNbq6D7T3BqxkUawVu5cC1lPpxKQF668wETcvNmyrJMYCPj2U+m7xAgu4stHFpqHnUclCPQOwdW6a4rXcVLVvx2dMxKW73NAm5E0p4dAEAyhR9AGjJojy8PPDz8sCvWUp7F0lyT/12NWhW8wjbjvtx+mpFVs7bm2zN5yPbztCwTRmi43wYMymewS/e4aP/eVms+T219wKdu7tx5a4afvR0v8eDiIKYTHZ89Jkb3XtBxYpJDp2q+Nh4Vu9U7zj5XUJp1jUH1LHKwxxdHGlc4wQbDvlz5W5JLp4Myra+3Llyj7thah1Z1XLXgaSlA/v3V1n4Y2LgvddvUqXek63P0uth6lQoke8CH36l/linLGzOrTu7+H1NAHqHlINnk9FEn2djWbvB6fGjUsAthArFb/Dm8Hv0f7vJE/VRCCFEHndzE1z+Cx6ehSaL1LrmBPcPwKFkkp097t5+NeqdOFNxwKwkm331Fdy9q9q1amllqubPTxp0P3igrTWuVg1KlcrAa8pmvXqpoBtg8YE+tBn62AbXVqn15bc2qp/HORVWmdKLd4A631k+tm+4Wq+ud1Lr2O2c0Nk54PVAB/fjoZA/2KWvVO2yZVoi2169kiaazu1y7nyIPMZkNPH3Ki1oGvJ6ytmFASrX0OpCnT0v10YAgs/eMrfLlIhIZcv0G/1urLn97fdJr+Q9uBVCrz7ORMepBGwGoz2zFnhRuTK8/roq63R273Wat/Piyl21lrZCscvs3R7O66+r/15RUfDSSxnLiB31MIrxb+3gfrhaO9S+wSmpo5wFWjTWpldtXR2cbf0IPHTV3K5WOfkMqD4+KtP6woXwxffWKS2o08EHEyoy5+sd6O3iAVi4qRHTxu1Idb8lv+xJJuBWQiIKcOh8VYaMDuDquRtW6acQQog8Jvo27HwRNrWGCzPh9lYIy2A2YScvKNEJvN9QCcpSERwM33+v2o6OsHSpyqcE6rM1KMhy+w0bVB4hyD2j3Ak6dVIz2kC9TsPjqx5dS4JbKnFJzF0IC4So60kfu7oMLv8JF3+F8zPg7BTsTk+izO2J6Nc3gL89YH0zuLoizX7m5anlIEF3ltn13wnOXlejRy1qHaZS7XKpbl+pppYM6VxQzkt0kB2Cz2tlEEqXyvw66cQ6vliXaqXPA7DjRC32rNHWARkNRvo/c46LN9WQdqWi58ifT5VaiItT03C9vXUMebMNDyLUWnP/SoHs2u1CJb+yjB+vZcDevBlmz0o76o6JgZ8m3aJi2VA+ndbCfH/3rimvWxfW06KddrFr67bse3sMPKb9rVetkvJ2DRqoaebWvho8eHQTFv9y0Hz7/Yl1CDp5NdltI0IjeOtjLej/eNRZ/vc/GDIEWtY9T/GCNwGINzgw+X9nrNtRIYQQuZvJBBfmwMoqcPkPy8cigixvezWBxn9Boz+h0R/Q6Hf103QpdA+CnregxSrw/UyNvKbiww/Vdy6AkSPVkqiBA7XHFyyw3D43Ti1P4O6u9fnWLdi167ENanwE3S5A51NqdoH/d1DlbSjTGwo3AtfSj5KzJVM9x5jGbFxDFNzZbrmmHuDeAVjXCHY+D0fGcu/QIjZvVt+Ty5WD2rUz9VJzNBlCzSJzZmijVUMHRqaypeJe0J0Snje4fr84Z6+WsGXXco0rQVHmdpmy1vnTtdPb8e5rNxgyVtUk+HZCOIsflUsa/+Y2Vu1pAYCn+302bHYhfzEHJk2CH36AiAiIjrYD1Ch4G/+DLFnvTT5Ptfba3R1++UV7o3vnzQg6tnxIyUrFk/QjLg7mzYP//Q+Cg4taPPbyM9t4fqRMy80K9Vr74OoUQWSMG1v2V+RN47Vs6cepU9oFmmq1PLKlD92HBvDq6m1MX9KMiBh3Xhl0mjV7SyZZNz7+nX1cuauWyrSre5Bx3/knyilTiVtBdyjrHU1MnDMz/vHno0mheHhlz2sSQgiRczjFBmG35R01qp3A0RNqfwule4HjY58V7uXUzxM6eBB++021PT3hgw9Uu39/+OgjdR1g/nzV1unU7TWPlog7O0OzFJcy5ly9esG//6r24sXQ9PFcUTodeFRVPxnR6QQYo1VtcWMMGGIwxIVz7eRaSjlfxe7ebnXxpHBDy/0enoW7u9UPsHzrIAyG3qqv9ZegO3lKBfzFWmX8xeZQMtKdBcLuhfH3Rn8APFxD6TXMP137eZdWI0R3wwrz4FaIrbqXawQHa4FImQquVjvuC2/UN4/GLd1en3MnH7Duz4N88pN6V9XpjPz5yyXKVi1FwYLwxReqjvM774Czo7rC93zbnazaUdMccCdo1w4G9ToHQFikOyMGBVsk6Lp67gZfvLkXb28TL72kpjsl6NF0D8d2nGXG0mbpSmQlnpxa130agGv3i3M76EEae9hG4DntanJV//SXALO2r3/xo1QhNZ1s3YG6zJ+00+Lxs4cu8e2vKjmkgz6WqTM8kwTlRct5MbCzWgj3MCo/v3x9OAt6LoQQIseKDcFuWxeqXeqLLnHAXe5F6BIIFYckDbitxGRS398SfPqpVla1dGlo9SjGO39eGxE+dUqV8AVo3lwlJ8ttunYFh0dLq5csydiSx1S5llA1vz2qQkE/VUKtSAvuFOyDqeEC6H4JetxQo+WJRd+2uLl4nzafvFe1b+HYx3D4HfIS+SafBRbPv0JkjMpe/ULHI7jkS9//Vu/y2uj4uaPZM+KWkwRf1RIxlKlkvcLTTq5OjBpyCQCTyY73xjrxwivlMJnUf49xI7bR7nnLTPNeXiqJVdC5UBbP/Y/5qwJSXHM9aWphihZQby7Ldwbw++Rd/PPzbjoGHKCsTxE+nhxAUJAWqHTqBAcOwJJtDajZ2DvZYwrbadFY+393bI+WOyA+Np59604y43/bOHc4yKZ9OBWkZrd4ut+nSJnCNn2u1OQvlJ/p32nvPW+Nq87NS+pv2WQ0MfLVe8QZ1N/9uwN34e2f/Jqwdz4ujU6nlkhMnutDbFTqa+2EENnnVtAdfvt+J/dvPNlFxxMn4M8/tSm84ikS9xBubYHAibCjD5z+3vJxh/xweyt2qNwhuJWHFmug0W+WidNsYMUK2Poozq9UCV591fLxAQO09vz56t/cPLU8QYEC0Lq1al+5Avv3Z+GTuxRLug6uypvQOxK6nCGszjrWn1TTTEt43iCg4l61TaGMl0HNySTozgKRjtUB0NsZGPZG0izEKalcSVvHe+5kiLW7lesE39BGkUtVSv/vMT1e+agh+R4d/t+Vrtx7qNb2dm6wnw8npzyPqHDJQpStWSTVUk2exQvy0wSt1nr/txvz3IiGrNlXF6NJZYTW6Yy0bw87d8KqVVAn5WpywsZattfWdW/YUorJk3V06waFChkJaF+dVz9phn+jQqz/62AqR8m8sHthXLunliBULXs122uzdx5QjxfaqhHuBxEFeWPYFQCWzd7L2v11AShd+BofflcvxWN4+5ene2M12n3tfnH+/HGvjXsthMisPt2v0f/txtSuFcHlwORzOaTl6lVo2BBeeAG6dIHoaCt3UuQskdfh4jzYPRBWVlXJsza2hMPvQfAiuLXZcnudHeSvisHODWOVd6HzCShh+2g2Lg5Gj9Zuf/21SqKWWM+emOtaL1yokuHmhaAbLJOTJU5alm3sXSC/NysPtiU2Ti0b7fl8Mey6n4WGC6DCwDQOkLtI0J0FXnkFJk828sPki9RqUind+3lX1UbEz56Js0XXcpUroSqjVOGCUbjmt+7cngIF4OWXLe8rXzSYBcsqW2Vqd69XG9Kz2Z4k95f1uspnw7dw6eR11qyBRo2e+KnEE6rbugquTmqEe+Ohurzzjh0rVkBYuPbJHB6dj879avLH5J0pHSbTAgO1v7dqVXNGAr0fZvtQOL+qq/LPpjr8Pj+GNz/U6qV8/79g3DxSr0X/3ljt8W9/LJbtddCFEEmFPwhn23FfAILvlKJVK0Omqg588w2Eh6v2hg0qkJER7zzo4nxYVROWlYQ9g+DSfAg7DTz2/h5+IcmuxuZrOFJpM6ZaX4G99ZYMpubvv+HMo3yeTZpAjx5Jt3F3h2efVe3QUBV4b9umbpcqBVUzuOQ5J+neHewefcVYvPjJppjfvaum2rdpo/1fzyyLrOXP6iBfJVVPvbCMdIsMsreH114z0bBhWNobJ1LZXwvQz4Y83Ym04uPh2g0V9JQpb5vFNKNGqXMF4OxsZPGiGAoWLWC14//0awWqlr6Ak0M0fVvvYv3CQ1y8UYJPp7WgbNVcVPAxj3NwcqBZ/btJ7i9c2ETvNgdoX+8AAHEGR158szHfjdli1ecPPJ9oPXcjP6seO7O8ShdmylQtE2z/QQ4E31F/s23rHKTny2l/MDbqXJNG1Y4BcDK4Mv+teMJPaSGE1R3bdcm8tArg4s2ytG4ZzY2Lt1LZy9LNmzBzpuV9//0HffqokUaRCxhi4c5uCPwODr4Nu/rBpnZw/9Bj20VC6AnL++wcwLMuVB4OAbOh0zHoeDTpczh5kijrZpaYlahU9//+l3Llj8RZzEeP1mZqtG+fu2tHe3mpQBngwgU1uzKzJk1SFyM2boS//sr8cSIi1PtDQv+SJHjLQyR7eQ5WoWoh7OxUXcBzT3mt7hs3tLqCZaxTkjiJ0qVhxgyYOxfef9+O2s0qW/X4xcoX4cSlwuh0OnR2MqSdk038uSxxo0zExobSo0d+2rSxo3p1HXZ2dTHEGXitzzZmLFXLDt75pgXXr2/hm1+tk/Du1CmtXa3aEx/Oavr2z8cff8PKlZi/lKvkaQXTPQV+9FhXnnm0Xu7bH/LRqbuteiuEyIzD++6b23q7eAxGe85eK0+blufZskOPV+m0c0xMmqQFKR07qvWzkZEqc/KLL8Iff2gXuEUOERcO9/bA7e2qvNPdParU0+PCXwHPRMmAi7cHdFConmoXa6faaZTryg4XLqjyrQCVK2vBZ3KaN1ffNYOD4c4d7f7cPLU8Qa9e2u+haVOoWFElj2vZUv0US8fqTYPBsqTavn0wbFjm+rNmjZrCD/DMM6DXZ+44uYGMdOdgTk5aneezZ62YaTAXSpzVu3TplLd7UkOGwPbtKpmZLdjp7bJ9ja5IW/XqsHatke+/v8DIkSZq1tSmZOkd9Pz8T1M+G77FvP2k31owoNNuqyQICwzU2jlpGptOBz//jDn3AcDbA/biU6dCuo/R9cVK+Pio9pYtKmGgECLnOHxY+1r4++R9lPVSa7pPBVeiTeeC3LuX+v53b0by8zR1hdzJMY7Zs1XiKmdn9fjff8Og3lcx3D0GBlnonaLI63B1ORz7FLZ0hiXFYHER2P8aPEhm1Dgj4h8rW2sywfLysKktnPhcrb9OLuAGiLHMOI17eXj2HrTfC76fQ5EmOTLgBpgzR2sPHZr6iLWdnSof9vh9bdrYpm9Z6dlntTXroC5GzJyp8i8UL65yCl28mPoxNm3SsrnDk32WW0wt75XydnmBXGvM4by9VXmqhw/h9m0oWjTtfTLr5k211qVpUy3AyCmunLkBqORSZUrGADnzTV08HXR2Oj6d1oLiJbYx/JPGGE16fl/XmPD2B1iype4T/f85dUL9fbu72/YCU2aUKqVqzw8YADVrwkdTMjYPzM5OlWpJyJ/w7bdqvZwQImc4crkmoJJ7dulfi3rN79G8zX2u3vbk2HE97drBxjVhFHjwGxhjLRdzrmvMD/N7ExGpih4Paz6T4l6DKV7chaVL1XrS2Fj4fWkpHO+vY9ZLdbDzqAQeNcCjOhSoAa5lACM4FVbrOh/RGWPQnZ4EkcEQcRkiL0NEMBjjVCbsxD/VP7Ss7Rt9G64sUY85F1XP4VYa9M5p/0JuboLw82o/pyIqs7ZzEbB3t8484/hI0LtYHuvQO3D6u+S3PzdN/RQKAO/XoHz/5LczHz8C7h9UI9d396jR7PxVofVGbRudDgrUtEx25lYWvJpBkabgUU177Q75kz6Ho/WqydhKfDz8+qtq6/WW08dTMmAAfPmldjsgQCstlpsVLarqlP/5pxrx3r3bctnHoUPw4Yfq8ZTMm2d5+/hxNbvFOR3/pRKLiVGz50DlVmrZMmP75zYSdOdw3hUeshY1tHT2cDBFO9hmbvXt21C7tgq8x42DTz6xydNkWvDJM5iDbveDgEzPFtnv5Y+aUaTYXp4f4Ut0nAv/bq/Ll1/Cxx9n7nhRD6O4dFldUKpS8hw6nXWXOFhD376q3qeTU+amiPbvr34/t27BP/+YuHj8GhVqSk4DIbJbXBwcP10AAG9vO9w83KhQ041NO6BZM/X94NAh6NDZiXUvjyW/60NINFgdcu0SU9e+BqilJ6O7fAUPaoFXYzp0gH/+gZ49DMQb9MzdOoRGlXcxrOVslXjryj+WnSk/ABpq3+xNOnt0xz4EU3zSjhsiIfqmdtv7dcvHw87C/uFJ93MuogJwlxIQfUsF4W22WG4T9BtcnJt0XzsHcCigAk7HglCyC9T4yHKb29vA3g3s80HUdXWRIDIYIq+o9sPzKsFYj+uqpFKC/D5Jn8+xIBhi1GsFuLcXrpSwDLpDA9VItckEmNTxQ46CyfDY7ytGbZM40C/ZDfJV1gJtNxut48sma9bA9euq3aVL+qZQe3urDPy7d6vbeWFqeQIfH/jsM/UTGanqkW/apGazhYSoGSnjx0P5ZKqAhoWpOt+JxcfD0aPqwkRGrF+vBhUBunVLmkk+r5GgO4er7HkIUAtPzh25TFMbBd1jxqgPVIDJk9Vtpxw0mBx8RftwKF0hmSutQmSTZ4YFsMzjLB37VMZk0vHpp1CvHnTokPFjnTkcjMmkvnBVq3ALyHlBN1hOTcsoZ2d4Y+h1PhpfAqNRR+NmDhRwt8xsW8A9ktFvR9DjpbyVuVSInOz0aTUSDeoifILKlVWypBYt1PrWvfud6By2iv9Gd8SdCPN20zcOJyzKA4CBvS5RZuBaiwCya1dYMPUEz4+oBcB/p55nWOvfwJhMWvPHA0WdHlxLQ8QlddvOQQXMemeIC1M/8Q/BZEw6GhuXQhLb6NvqJ4HeRe2fOLlX9O2k+4EaYY+5o35AjdQ/blsPiL2f9P7HhZ6wDLoLNYCiraFQXfCso5KSuZVTryPodzg/A0KOQaVXkr6ey2lktHLIDwX9ID4cHBKtFaryZtr9zMVmz9baGVl7/PrrKujW67WM5nmNq6uaNt+mjfp8/vRTtWb7++9hypSk2//zj7YGu2BBePBAtQ8cyHjQ/TRNLQcJunM872rat9uzZwypbJl5u1cf49dffc2379+HZX/dpc/AtBOmZJXga9qclTKVC6WypRBZr/1z3nxxTk3JMplUsqCDB6FcuYwdJ/DIXUB9Sa3qk8yITh4x/HUXJkwKJyLGnZshRbkZknTdTK9XjCwI38mLbzXOhh4K8fQ5fFhr+/lZPlatmir91bKl+o6w40xTus26wMppW3GlDwA/bf0QUAHK+xN8wCPpczz3ci2GvqtG1w7faA29w9Vob8gJFXzG3FUBtmfdJPsa601H7+CuAlCXYkkzX5tMaiTY7rHhsgI1ocFciA1JNOJ8RY06R11XgTaoke+Ye+DsleiFj4ZS3bUAPfqWWtcc+0AdL/YBxIUmnWJtjEs74Na7qqnbxse+2xX0hdYbkm7v6AHeI1RW8PsHVECeWJLp7jp1MaBwAyjcUP2bv0qWZwzPbjdvqrwCoNYsZ+SC+PPPg6en+qmezHWVvGbECPjqKxVUz56tAvBCj33lnj9fa48bByNHqvb+/Rl7rrg4lVwRVJm2du0y3+/cQoLuHK5yTe3L6NkLGVwskQ6GOAMj3kg6n2PWlMs5Kui+clN9etvr4yhWtkg290aIpMaOhT171If7/fvwbOcb7NhXEGc3y/+3JpP68rp9u5qu1qiR9l3p1AltYVW1mrYpjZcTeBYvyORPt/Pxt5WJjLF8nUaTjodR+TGZ7BjwTgMci4Tw3IsFsqejQjxFjuy9B6hv2IlHuhP4+qrpoK1bqymom3cXpe87nVn+6PH7D1Qw98ILUCGF/Ip6PdSqpUYPL12CkDB7ChTweTQinsZQV9HWqac21unUdO7HuZWGCoOS38cYpwJpR8/ka0UXaaZ+HgkOVuWRunfHnBQSoyHptHdjHNT4RB07LkxNYXcro60ndy2j1q1nZl247lG28Md51oNuFwGd2sbR03I0+yk1b55W/Wbw4Iwti9LpMjdrLbcqXFglmfvxR3Vh7Oef4aNEqyYuXVLVCED9/b/0Erz9tppentFkalu2aKPknTtnfD14bvR0Xe7KhcpWKYGDXs33Ohds/RHe6V/s4MjFKgDUKn+aisWCANhwqA6XTlyx+vNlVvBtFWiXKnQTvUMericgci07O3UFuGIFFTgfPFWckS/us9hm69IjNKt1knbtVI3QJk1UhvJvvzFwK+g2gWe1NR1Va9swa2IOMPT9ply/X4yQCA+Ln9DwfAzvtQ0Ao0nPC4MKmK+GCyFs5/BOrUyIX/WHyW7j76/WxyZUMdi4yfJxnQ4++CD150k8in70CRNxPzE7B3AtlXzAnYxXXlHL7+rWVRdZ1TH0STN227uC7zioPx0a/wH+E8FnJJR+Ro1QO3tZv+CzvYvKJu5eTiVCk4Abk8lyavmQIdnXl9zi7be1ZMpTp2rl/8CyTNjAgSpQ9n00UTYw0DKvYlqetqnlIEF3jqd30FOxuAp+z18vhdFgtNqx71y5w0eTaplv/zQllqF9gsy35069kMxeWS/8QTj3wz0BKF00HeujhMgmBQrA4l8v4uKokt3M/LcZc77azu7Vx2njf4gWPf3YcdxyjtqZMzB6jJ5SlQqyapcfAE4O0ZSv/nQmF9PZ6fhxYROG9lf/1+Pj4bnnYPXqbO6YEHmYyWjiyHmVNamE5w2KlEw5YAsIUP8fk8vt8NxzUKVK6s+VeBT9yJFMdDYbJUzBDw9XI6AHD2Zvf0Tqtm+Hc+dUu2VLVZNapK58eW39+u3b2nRyk0lr63TQr59q1320EsRotFyikhqDAZYuVW1nZ+jY0Tp9z+kk6M4FvMveBSA6zoWr525Y7bhjR5wmJKIAAAM7badxF18GvlEFvZ2aJjV3sTeGONusI8+IK+dumdtlimfgMpoQ2aBWUx9mTDhkvv3yhw1p1LkmGw/7m++rUjqIryaYaN5c2y/e4EB0nJpq7V0yGHvHp3f1j53ejhlzPc11UuPioGdPWL8ihaRGQuQgJpP6QjlrlvoimhtcDrxm/j5Q2zvtWW5Nmjyqv/3YAO+HH6b9XIlHutP7JT0nMBhUIrkEoaFqHWq2j9aLFCUe5R46NPv6kdu8957WnjRJ/e3v3KlqegO0aqWVNK2bKP1CeqeY79ypAnpQF6/c3Z+8z7mBBN25gHeFKHP77LFbqWyZfrtXH2fOSlVj18M1hK9/UpemS1QsRqcG6tLt1XslWPfXoRSPkVWuXAgxt8uUikt5QyFyiP5vN2HEs2rhk8GoBc8Vi11m/qQdnLhQmjFjdWzZAufOmnh/6HaKF9RK3jSpc/PxQz519HqYMwd691a3Y2Kg+7PufDRsI5sXHyE6Ijr1AwiRDc6fV19Ie/ZU6x2nfp1zlmml5vCuq+a2X43IdO3TsiUsWqTdfqa7NtU0NTVrakuzc1PQff9+0oso9++rrM+nTmVPn0TKEkpfgZqF1rNndvYmd6lbV1UrADh7FpYvt6zNnbjOeb1E6QXSm0ztaZxaDhJ05wqVvbXTdC7wyUd6DXEGXh+lBQKfv3mUouW0bJ3DEl0NnDUr+0e6gy9pXwDKlJU/WZE7fD+/Ic19jwBQuvA1Zn65ncCgEvR/u4lFXoJKlXWMn9WU4JuFWTVvPz9+spWvZvhlT6dzGHt7+O036NFeBQRRsa58Obs1rZ71o0BBaO1/iC9HbuHABvnGK7JXfJyJr79WAeWWLdr9U6cYrboszFaOHNQuYtWuk/56oa1ba+3p09O3j7OzymUBKliNSaZiWE50K9GYR69e0OBRRcO7d9Xv4ezZ7OmXSN6ff2qlrV58EVzybm5Smxg9WmuPH69dYHN3t7yAUb26lgQtPSPdRqNW59vBQdVNf1pIBJMLeFfTak6ePWN64uP9Mn4nh86rTzzf8mcY8allSZ5O/fwpVkB9uizfWYdbQXeSHCMrJS4XVrqcvGuK3MHRxZEN+2twbMdZzl0uzLAPmuLg5JDi9vaO9nQaUI/XxjUnfyGpRZ/AwQH+WlqEF9rutLg/Js6ZTYf9+WhqC+q1rcak0Vuyp4PiqXd4y2nqVz3D2LGWSYcALtwsy/qF2T9jLC2Hj2ufrX4NS2TqGPkykLcrYYp5fDycPJmpp8tytxOtbqlYEf77D+o8qtp186aa4XDxYvb0LbH4eDX1f8EClW36aZXZ2txC6dABatRQ7QMHIOxRuftnn7XM5+DgoP1/PndOzTBIzf79cPXRxJo2bdQshKeFBN25QGXfYub22Wuln+hYq/6N5J3x2gKMH3+ITrJ21N7RgUE9AgG1znTBT9n7iXglUpu7Usa3VipbCpGz2DvaU7OxN06u6R85Ekk5ujjy+7rGXD13gwXf7WRw5+2U8bpqsc3UXythMj75RUkhMuLrt7dQr3UlDl9QS7R0OhNvvgnzv9eGfKb/HJ/C3jnHkbMqcWN+l1DK13iy7xnpkRuTqSUOuosWVcHCunWqBBrAtWtqRDW7GAzwxx+qpnq3bjBggCrdVr68Ws/822+qj0+Dw4e1JHd16iStOy/SptPBu+8mvT/x1PIEidd1p5Vc8GmdWg4SdOcKJSoWw/VRNYtzN1IofpkOc+ZA916uRMWqgw3qvJ2m3ZIPYoe8Uc7cnvVnmWz9MhusVTGhTPmkNcWFEE+HkpWK0++txsxZ2ZSgmyW5cCyYxtWPAXD5Tin2rc8lQ2YiTziy7Qxjv29hzttQo+w5dm++w/ffw/Mj/CjhqRKfLt9Zz6pJUK3t3vX7XLlbEgC/Spew09v+q2FuTKaWeHp5EVXFFE9PVbu8UiV1e8+ejNcrflJGowpkfH1V0J+QrTtBUJD6/te/P5QqpZLgJf5elRclXuogCdQy7/nnoWRJ7XbZstCsWdLt0ptMzWTSgm69XtW7f5pI0J0L6HRQubJqX7yoMvlmhMkEX36p3ngMj5Zo9+56k+mL6qe4T+Xa5czrUc9cq8CuHbGZ6Ll1JHw45M8PHh7Z1g0hRA6is9NRoWYZhvQLNd+38N8i2dgj8bRZ+bcWSA/vtY2DgWUJaK7+Bu0d7Xmp9xlA1ZufOelMtvQxPQ7vCDK3/aqFpryhFSUOunPrSHcCLy9VuzvBzz9nXZ/Wr1cjuc8+a5nMrUUL+PRTlezO6bGJVjt3QqNGcOJE1vUzK4WFwe+/q7a7u1baSmScoyOMGqXdHjBAq+GdWHqTqR09qi3BaN4cChe2Tj9zCwm6cwlvb/WvwaCuWqaXIc7A64Mu8dFH2n0jR8Kfy4qlOeV12Miy5vasudkzPdZkgiuPkr+Wtv2MNyFELtNjaB0cHNRMnL9XFMk1JZpE7rd2S0Fze/S4Cji6WM7EeukdH3MJzpmLqhAXkzOrbxw5os1kq+2vT2VL6/H0VKNm6vlzR2m15Ea6Ezz/vDYo8Oef8OCB7fuzahW0b2950aJhQ9i4ETZvhs8+g02b1BrbTZvgo4+gXDm13bVrasR72zbb9zOrLVgAERGq3a9fxnINiKRGjoRXXlG/y8QXlxLz8dHWeac20v00Ty0HGwfdISEhvPPOO/j7+1O3bl0++OADIhL+J6Sgf//++Pj4WPx88skntuxmrpAQdEP6k6lFR0TTp+0+ps0vb77v66/hhx+Sv1L1uF4vFDR/iCxapCVRyEp3rtwzZzYt43U96zsghMjRCnq50q6dDlDJWXbvzuYOiadC6J1Qdp+qDoB3yUuUq14qyTYlKxWnayO1wPHGg2Isn5vF847T6fDlOua2X4saWfa8CaPd4eFa/d+cLPFI9+NBt5ubGgUElTF7/nzb9uXWLRg8WA1MAPj7w+rVahS7VSvLbZ2d1Yj3//4H+/Zpo5IJdcYTB0K5nclkOdNg+PDs60te4eSkpusvWGCZQC0xvV5LKnj5smU9+8QS/tZ0OujRw/p9zelsGnS/++67nD9/nrlz5zJ9+nQOHDiQrgC6d+/e7Nixw/wzOnHe+qdU5WLnze1zO9O+NGk0GOnV+jiLtzYEwF4fx7xf7jF6tPpjTw8XFy0pSGQkzJie9eXDgs9ql5bLFDyfypZCiKdVQi1vgIULs68f4umxaVmgeS13+yYpL5AdPkJLVPrzLzkzoWLCSKmDA1TzK5Blz5vbkqklDrq9vJI+/uqrWnv6dC0gtjaTCYYM0QKbrl3V6GLHjml/v/PyUqPgHTuq2zEx8NxzMG2ato3RCNevqwB+8WJttmFusGOHlg2/UaP01Y0X1pHWuu7AQPUD6twUL541/cpJ7NPeJHMuXLjA9u3b+eeff6hZsyYAH330ES+//DKjR4+maOIFMY9xdnbGK7l3tBQYDAYMhuyvJ52ahP5ltp8Vy2szBM6cTfs4P7y/jdV7WwLg6hTBopkn6fBCnQw//5AhMG2amm72/vsmapTaT7s+/hnsfeYFXQgxt0uXynnn+UnPq8i55NzmHl26gKOjHbGxOv5ZGMXEb/QWtdATk/Oad2XluV3zn1Zcuk0HpxSfs2UvXyoWu8yFm2XZeNifwAMX8K5dzub9S6/ISDh92g7QUb26Cb3eSIZ+fQYDenPTQEZ2VgGR2vvgQSM9eyYfpeaU/7O3bqnfU6FCJnS6pL8nHx9o1syObdt0nD4NGzcaaNnS+v2YNk3H6tVqzKxoURMzZhgzND3f2VnVSX7lFR3z59thMsFrr8Hvv5u4e1eNVMbEaNF70aImAgON5LdyJUtbnNdp03QkjCe+8ooRg0EqWmQVf3/td3/ggImuXS3P7YwZ2uM9euStc5Pev2GbBd2HDx8mf/785oAboFGjRtjZ2XHs2DHatm2b4r4rVqxg+fLleHl50bJlS0aMGIFLKlXtz549a9W+29Lx48cztV+cvRZ0B5534Ugql4UvH7/NB99r84t+/HIDxaqVSnWf1Azom5/5f1XGYLSnzzAf5sevo3T1rElYdPyoNkfFxS0006/B1jJ7XkXOJ+c2d2hR14l1u2pw47YLC2euoFqj1GsNy3nNu2x9bk1GE2t3qGVbjvYxFK5gTPWzqW/Xq3w5Uy1gHv+9I2++nfK2We3ECVeMxqoAlC59jyNHLmdof7uoKBIGrI8dO4Yxle9qj3N0dADUUOT27Q85ciT12WzZ/X/25k0/QE/+/NEcOXIq2W3aty/Itm2qyszXX4dSsKB1C2VfvOjMe+9VNd/+4IPzXL8exvVMrL574w3Q60swd64acty1K/lh8lu3dPzxxwUaNHiYqT6nxVrn9f59e/75R8UcHh7xVKp0zCJfgbAtNzcnQC1P2bQpnK5dtXN78KA7U6aodbL29kaqVDnBkSM5M8eFLdks6L579y6enp6WT2Zvj4eHB3dSmuwPdOnShRIlSlCkSBHOnDnDxIkTuXTpEj/++GOK+3h7e+OaUFMrhzIYDBw/fpyaNWui12c8UYnJaKKg2wMeRBTkdHA5KpR2IH+hpJcdox5GMaCHB7Hxahrb2/02M+DNLk/U95lzDTy8toel2xvwMCo/b7xdi127TZSoUCztnZ/Q76HaQnK/emXw88tZdbqf9LyKnEvObe7S/7ndrNul2ru25OeFEX7JbifnNe/KqnN75lQUl++4A9C05gkCGgekun3pcdWYON9ETIyOVf+V4ucZJchAbGpT+9ZoRXVbNTbil9GCxony9Pj6+qa86DMZJhN4epq4f1/HxYv5U3zunPB/NiICoqPVc5cp45xiX6tVg8mTTdy+rWPLloIULephtWm0MTEwbJideRT6tdeMvPZa5svIAsycCbVqGXn3XR3x8TpcXU2UL68SrsXGwvr16rkiIirh52fdANba5/Wbb3TEx6uR1GHD7AgIyFnfF/O6WrWgQAETISE6zp9XCaFq1qxJWJieHj3sMJnU39Lnn0OHDtWzs6tWFxkZma4B4AwH3RMnTmTmzJmpbrN69eqMHtasT58+5raPjw9eXl4MGjSI4OBgypQpk+w+er0+13x5ynRf9eDvfYmNhwtyK6QIrRqeZvX6WIpXsJym/8GrBzl1pTkAtcqfYfyMRk/8u9Hr9fy20pcW9U6y/2x1rt4rQfeOgWzb74F7QfcnOnZarlx3NrfLe3vl2POcm/4GRcbIuc0dug+ohfPoKKLjXFiysRpTDSbsHVP+iJPzmnfZ+txu2Kx97rV/1ifN5ypS3IXevVUiogcPdCxerGfgQJt1L0OOHow2t+tUvYFen8FZbIleu16vt7idHn5+KrP2zZs67tzRUyyVa/nZ+X/27l2tXbSoLsV+uLio8qwTJkB8vI5ff9VbVI95Ep99pq19r1YNvv3WLqO/7mSNGqXy95hMULiwzrwu/MgRbd39sWPWea7kWOO8Go3qAkKC4cNt11+Rsrp1YcMGuHFDx+3bDtjZ6XnjDb05L0Dz5jB6dN47N+n9+81wIrUhQ4awevXqVH9Kly5N4cKFuX//vsW+8fHxhIaGZmi9dq1a6krV5csZm/KUF337nSue7up3euRiFRo1jOXsIW3q0prfDzB1oQq4nR2i+OMPfZplwdLLNb8rK9YWoVwR9T/n8IWq9O10ivjYeKscPyXBN1StB53OSMmKKecBEEI83fJ55qNzoyMA3A71Yuu/x7K3QyLPWrtWa7fvkr4Lz4mTbGVlHee0HAnUZiTWalw+lS1tI7ckU0upRndyXn5ZS2j2yy8ZWuaeok2bYOJE1XZwUHWorTlbonBhlWQtcSK2qlXB/tF1y6NHrfdciVkr2dzatXDp0dfh9u2hYkXrHFdkTOJkaqdOufLHHzr++kvd9vBQWf3zWsCdERkOuj09PalYsWKqP46OjtSuXZuwsDBOnDhh3nfPnj0YjUY1BSmdAh+lustIoJ5X1W5RhZ2bQijrdRWAoNuladwyH/vWneTOrXgGva7V1f52zD6qNahk1ecvWs6LVctj8HANBWDVnvq82W8nJmP63jUvHL3M5cCrGXrO4FvqvBcrcDtJDVQhhEis93Pae9GiP8KzsScir4qJgS1bVLt4cUiUtiZVDRtqmZT37oWXu21g//pT6f78tAVDnIFjF9X05IrFLie7ZM3WEs/SPnw4y58+3VKr0f24cuWgUyfVvnJFlfJ6Eg8fwsCBWoA6YYLl781WnJzUiDqorNPR0alvnxEmE7z3no5mzfz46ad0ltRJhZQJyxkSB90bNxbkjTe0czt9OqQwYfmpYbOSYRUrVqRp06Z8/PHHHDt2jIMHD/K///2Pzp07mzOX37p1iw4dOnDsmBqRCA4O5qeffuLEiRNcvXqVjRs3MmbMGOrVq0eVKlVs1dVcpUq9CuzabU/NcmrtwN2wwrTsVp4u3fTcClEBasf6+3ltXDObPH+1gEosmXcRB30sAD/93Zx/ZuxJc7/dq49TuXZpvH29OLHrXLqeKyYyhpsh6m+lTNG7aWwthHjade5XC1cntcZ08cbqxMU8fYlahG3t2BRKZKRqt2uX/hKcOh289rwWVc5c0Yb67apRq+I5Jn+wlbtX79mgt6k7e/gSUbEqH07tKpnIxGUFuXGkO62gGywDvyed2fDLL3D10XhF69bw1ltPdryMeDTZFIMBTiWfOy5TFiyA77+3IypKz+ef655oxDs4GFatUu1SpaBzZ+v0UWRcQg14gP/+K0RYmHqD7N8f+vbNpk7lIDat0z1x4kQqVKjAwIEDefnll/H39+fzzz83Px4XF8elS5eIiooCwMHBgd27dzN06FA6duzI119/Tbt27Zg+fbotu5nrlKhYjG17i9Lc9wgAkTGu7Nun/rC9vEzM+bsyOrsnv3KYklbP1mbGl3vNtxf8lvaf0ZwZDzCZ7IiNd2L2j+n7cL92IVGN7uK2yZophMg73Dzc6NJYzYO897AQmxbbaE6keGqt/UsLnNs3vZahfYe9V4v3BmwxXxgCOB7kzZsTmlOyvDuv9NhGTGRMKkewrsO7tc9Yv5pZ97yJ+fioElaQs0e6MzK9HKBDByj7aPLhmjXa1OeMiouDH37Qbk+dCnY2/eZuKfGIurUuily6BK+/rt2+d09nrt+cGb/8grlk2ssva1PiRdYrXTppDfty5SCVXNhPFZv+1y1QoACTJk3i8OHDHDx4kAkTJuCWKLNlqVKlOHPmDAEBKvNn8eLF+e2339i7dy/Hjx9n3bp1jB49Gnd32ybryo0KFPFgza4qPNs9zOL+OXN0FCtTwObPP/DdxhQroD6wNxz0Iyoy5cuURoORldt8zLeXbKiYril1wde1v5Uy5XNIqlchRI7Wp4/2sbboz6hs7InIbYwGI4O7bKdQvvss+G5Hstus3a5SUet0Rtq2d052m5TY6e34Zl4Lbl43MvPL7TSsqpVKio134pdlzZjwzu5M9z+jDh/UZoLUrpv+rOPWZG+vTdE/f15Npc6JMjK9HNS61VdeUW2TSSVBi89ECpy//tJGubt2Veuss1LCSDdYZ113fDz065f0PG/dmrnjPXwIs2aptl6vktiJ7KPTWY5229mZ+O03rF7jPbfKwutlwtqc3Zz5a3F+3ntPJSj49FPo8mTVwdLNTm9H5y7qcmJUjBObNqc8sn5o82nzNHGA4DulOLAx7cuawbcKmdulff0y31khxFOj4/O1cHdW3+iWbK5JbFRsNvdI5BY/fLCNX1c15X64J0NH12f3asv6wdcv3OTYJXUBuW7lQAqXKpTcYdKUzzMfwz5oyq5TNTm55zzv9NuCvV4FwF/NbsCFo1mTOHb3IS2Jml/j0lnynMlJmGJuMsGxHJr/MKPTywGGDFFJz0AlkGrf3vI4aTGZ4NtvtdvvvZf+fa3F2kH3hAmw61FpRw8PbfBl27aMHys+Hvr00S6IPPMMlCjx5H0UT6ZxY609dqzJ4vbTToLuXE6vh2++gZAQdSU1K3XppX3hWLEi5e1W/JP0U2bxH2l/8iSUGABJviCESB+XfC50a6q+uYdEFGD9WlnXLdJ2dPsZ3v+uofl2nMGR5/oX5nbwHfN96xafN7fbN7+DNVQLqMTEBS1484WdAMTEOfPmayFWOXZqFk/fzc6TKrNbWa+rFC+ffdVBckMytYxOL0/Ybto0LVvzpk3g768FnWlZuxaOP7ruExAATZqkv7/WUrgwlCyp2keOPFm28b17Ydw41bazg2XLjLi6qtTu27Zl7NgmE7zxBvz3n7pdoACMH5/5vgnrGTkShg41MnToDT7+OPsSReZEEnSLTGvbVmW3BFi5MuU3zJUbtU8oO516g128tX6ab7DBwVpbgm4hRHr1eVXLzvTnP1k3bfb0/ov4lj9LQJUT/PjxVh7cCsmy5xaZFxUezYv9VM4RgPwuqkLHtfvF6dv9qrk05tp12lem9l09kx7oCXzyQx1KeN4EYOXOWqxcadXDW7h/H177sJr59tefBNs0D0xackMytYTRVBcXcMvAW8qwYbB5s8p0D3DtmqpVPHly2kFm4lHu0aPTn7TP2hIuioSGWn4vy4jwcDWtPKF82kcfQdOmUKuWqjJx/TpcvJj+402apLJhg5pNsGwZeHtnrm/CutzdYcYME8OHXzfP9BCKBN0i09zcoFUr1b52DY7sj0iyzbVrcOi8WoRU2+cqzVuoT43zl1zNV3BTEnxJS+xSOvtmvgkhcpn2nV0pWFC1lyyBsLDUt7eW0Z+V5HiQN/vO1OCNL5pTvLQzL7Tdyca/D2E0GLOmEyLDxr5yhJPBlQGoVf4Mxw4+pHhBFQBvPlKbj0aexhBnYP0+NbU8v0soAe2su7g2n2c+Jk0tbL49ciRE2SglwTvvwK37HgB0a3qE3iMaprGHbdWsqQWUOX2ku2jRjAe/TZvCoUMq2AY1LfrNN1U255TWsB86pEbGASpVgu7dM9Vtq0g8xTyzF0XefFOt2Qc1av/xx6pdu7ZW2jG967r/+cdyqv2cOdrvVoicTIJu8US6tNayi6yYtz/J44mv1nftU4pevbQ/ucWLUz/2lTPqkqqTQwxehWWKihAifZyctPIkUVFpv9dYw/XrsHqtk8V9MXHO/LmhMW16+1Op5FXmfLXd9h0RGbJ2LUz5owEAzg5R/P67nrJVS7Fo3m3zOuuvZ9TgkzG3uPdQLalqXTcQByfrD+H0ed6eli1V+9IltXTM2tatg19/Ve38+WHan37ZOsoN6gK+z6NcqydOqIzdOUl8PNx7VNEtveu5H1esGGzYAGPGaPctWgQtWlgmaUuQeJT7nXe0KerZ4UnXdS9dCrNnq7abG/z2m5Zh3N9fu+qQnnXde/ao8lMJxo1TI+hC5AYSdIsn0qWzlo5z5QavJI9bBN1doUcP7XZqX4RNRhOXbxcDoIzX9Wz/UiCEyF0GDtTa86bfSHXb8HDo1QvatFFTbzNj3jxt6uSQfg948/mtFMqn1V6+dKsMwz5ozJUz2VMPWSR15w4MGqTd/ubLcKo3rARAk66+TPwq0vzY+O+1DE3t29omOZ9Op0pCJQQkX31l5NLJjJUlS014uCqplGDiRG29bnZLmGIeG8sTlY+yhbt3tangmQ26QZ3Xr75SU6E91EQDDh2CRo3g3Dltu0uXVEAOqvxS4vey7JB4zX1mgu7E+YamTFEj9wmqVYvE2Vn9ctMKui9cgG7dIDpa3R44UBsxFyI3kKBbPJEyVUriW/4MAPvPVufGRe2SbWSkurIL6iqvv7/KLNmokbrv5Ek4czj5LxShd8MIj86nnqPoA9u9ACFEnlS/PviUUcH21n3FuXTiSorbTpyopqFv3KjaGWUyaSM5AB99XpDv/2jOtZvuLJq2m7qVTz3azo6d64LSPF5EaATLZu3lVpB1knWJpEwmeOkluKlmkdOhA7z+ruWF45HveNCnT9J92/esYLN+Va8Oo95QQ73R0Xa8+cpVqx37g1f2cvlRYvSWLdV645wiJydTy0wStdR07w67d2u5ai5eVBmfDxxQt7//Xqs7/frrah15dqpYEVxdVTuj08ujotTsBVDLCAYPtnzc0dHEo6rBXLpkmUA3sfh49Xu78+gtsWVLVZ87u9a5C5EZEnSLJ9a1tTaKtHrhWXN70+Jj5iuSXTrHY/for61Xa20x9+JfE13eTST4rBa8ly4Rmew2QgiREp0OBvY4Y7694OcLyW4Xdj+KyZO15SupVWJIydZ/T3Dh0eFbt4by5VXbydWJ54Y3ZNxHWr6LvbvTnjs7vO9herwUQOvmIbIW3EZmfXuMf/9V7cKFYe7cpF/gdTpVA7haNe3vw6fUJcpVL2XTvn36UbR5TfnynQGsnr/viY+5c+UxfvxTFdB1cYph5sycFbDUrau1N2/Ovn4kJ6M1utOjalWVxTyhRvmdO2qq+Z9/ahfwXFxgxAjrPN+T0OvBVyW65+LFjOXIOHlSu4BQt27yf3NNm6ZdOmzFCnUsUL+7JUvA0TH9/RAiJ5CgWzyxrs9qyV9WrNbeBVcsCdG2aXTQ3O7Zp4C5vXh18peNr1wMNbfLlIpPdhshhEhN/xHe6HTqG9/8JeUxGZPmhvjp872EhGjfBE+cgKBTGZvSO3t6iLk9rNeRJI8HtKlobu89knrWa0OcgWVb1Dfck8GV2f3fiTSf/5cvtlHX+xS/frMjfR1+ykWERjD6c60kxuzZajZWctzdYckSHR75VGLPgb1sX0M7n2c+Jn2mpXIeOaYoMZExqeyRuuiIaIYNd8NkUl/5vhi1m4oV09gpizVurH7XAKtXa0s1coLM1OhOj5IlVZDZrJm6HREBL7ygZgkCDB2qLgjlBInXdWeklnribRMC98elJ+j++Wet/f33qkSYELmNBN3iidVrU40iHmrOz/r9NYiOiMZkNLFym8oG6+QQTeteNc3bl6temjqV1HTLQ+erJjvtM/iSlra1TNlszCAihMi1SnmXoHVtNVf1ws2y7Fpt+W0xIjSC7+bWSLLfyj/PJ7kvJSG3Q/hnUx0ACro94JkBVZJsU6iEJ5VKq/fIQxerE5vKkuBjx3U8jM5vvr3wt9SX19y/8YA3xgVw8Fw1Bo9pwqevbkn24oLQ/DXtECERBQB4vs1OunVLfXsfHwg8EsK6Pw8y+tumtu8g0Pf1hjT3PQKov911CzOxmPaRb8fs4fRVFWXX9znBqC+y5jVkhJMTtGun2nfuwL4nH9y3msQj3daYXp5YgQIqmV+vXpb329nB229b97meRGbXdSfeNqWgu0EDLY9BckH3uXOwfr1qV6yoytUKkRtJ0C2emJ3ejs5NTgMQGePG5qXHObz1NNfvq8KUrf2P4+bharFPr87apeMl8y2nfcZExrBitbaIqUx5y32FECK9BryoXcCbNyvU4rEZ4/dzN0wNJdWpdNJ8/8q16S/E+8dPR4mOU+9X/bscw9nNOdntApqp9cIxMXapfmndsdPyY/nvtVUwxKU87PfX9GPm+tIAn89owatD7hMvE4RS9PPcQub2m+8VSNc+xSsUpW3fOugdsuYisM5Ox5tvaKPbWzdlfpnVwhUqW5reLp5Zsx2z7DVkVJcuWjszyzxsxVYj3QmcnWHhQnjtNe2+557TlqnkBJktG5aekW43N6inVj5w+rTl7xtgxgyt/cormJcqCpHbyJ+usIou3RJNK18WxYq/tUvDXTomLTbaa0BZc3vxSu0LUNi9MDo3Ocl/+9Q7sJtTOLWblLNBj4UQT4OeQ2vj7qzK0ixcV4uoh+r9KCo8mm9/0Wotz5vvROnCalr55sM1eXg/hQK6j5n1u/YtfOjrxVPcrkEDrb13b8rH2/5YVbGbIUXZsfJ48hsD8xYmnX/6y7xCPPus7eo852b715/i4LlqAPhXCqRem2rZ3KOUNemgpXneti9pdZD0eHj/IaeuqFFu3/LnqNnY2yp9s4VOnbQ1v4krn2Q3aydSS45erzLX//orjBoFP/1km+fJrMS11NM70m0yaUF3iRKpT5VPmGIPlqPd0dEq3wKoNdyJqw0IkdtI0C2sot1z1XG0V1flV26tyIoN2hfRLs9XTrK9t395apRVSdR2B9bk2vkb3LwJzVvas/GwP6Bqpv758ykKlyqUZH8hhEgPNw83nm19BICwKA+Wz1ffGH+duJ+bIeobdK/mu6nesBJdW6hp5bHxTmxYfDLZ4yV2aHMghy+owL2e90l8m6Qc0CRk6AVVazY5JhPsSGZZ9sLfk89cdPrAJfadqQ5ArfJn+HP2NRwelY/+998nK4GW3YxGdXHC2v3/ebJWxm344Ls5uhxl4VKFqF5GfU4eOu+T7gtBiR3ccsG8lru+b87Ohl+0qKo6AHD8OOZM69nNFonUkqPTqTJYP/wAhXLY1x53d63U1/HjpGsmzbVr2v/flEa5E6QUdP/9t3aM555TJdSEyK0k6BZW4V7QnZa11WjMlbslzSMJfhVOU9o7+dGfXh21ZEUTv7hFo0Zw5LiaSu7pfp+NS8/TdXB9G/dcCJHXDRySz9xe8Jsj8bHxfDNduxj44WcFAejSXVvKsuLftLOMz56mDYEN638vlS3V9EwnJ7XWeu+OkGS3uXTqBjceFYNo1CAOZwc1VL14Q1XiY5N+y503TYtKBva+Qd8hJfnvP8j36OXu2gVNAx5w7Xzqdcozw2gw8tv3O5k1frtN1pBPmqRmB1SsCNu3Wmeu/INbIfy1Xq2/93AN5fnX/K1yXFtqXl/VdTcY7dm99kwaWye1b6e2pKJ+/Zx7gSFB165aO6eMdieMdNvZ5bxgOCslTDGPjrasK56SxFPLE09PT07jxtpIeuKgO3ECteHD09dPIXIqCbqF1XTplfQSZJfWN1Pcvle/Eub2D/P8uHRJtcuUgR07nWjUuWYKewohRPo16+5LWS9V73jdAX/++fkWV+6qda5dGu6jdguV/Kxlj5q4OqnyXqt2VEm1XFfUw0h+X+0HgKtTBH2H+6XaB0dH8K+gMpGfv1yAe9eTDuFuX63lt+hYdyedGqpR+duhXmz91zIJnCHOwG/L1ci63i6eF15VI96tW8PWrdo02FPnCzLsRevVega4e/UenRoeov/bjXnpw6bMn7TTqsc3GNRoH0BICLRta2DZrJTn5JtMqtRSz552bNhQIMXt5k8+QlSsurAyoOsR3DzSv3Y/uzRr7mBub9uU8ZHu/Ye0pV/1m6WQoj0HSRx055R13QlBd+HCahr40yqjydTSs547gYeHdvxjx+DBA/Ucu3er+2rWhEaNMtJbIXIeCbqF1XTpUzbJfV2fS3kuVo2Glalc4pLlfTXU6ExV35z/ZUgIkTvY6e0Y0EMFtEaTnokLtHTVH36ivdc4uznTtp4KjG+HerF/w6kUj7l41iFCIz0A6N3mEPkL5U9x2wQBflqgvXfjxSSP79ihBflNWhagTx9tBHnh7xEW225eepSr99SFy44BhyhaTrvoWbs27NoRR0lPNcK9Zl89Tu1Nf0b21Oxbd5I6/lGs3a8VVp77j3UzPm3cCNeva7dj4pzo9XJdpn+eNLXx5ctqLfALL8Dy5Tref78C65ckHYYzGU1MX1DafPvVt0patc+20rRjBXN765GqqWyZvH0n1Wt2cwqnar0KaWyd/WrWhNKPTtPmzfAw49cZrMpk0qaX23JqeW6Q0WRq6clcnljz5urfhGU206drj736as6qKy+sZ+zYsYxIVJC+f//+fPnll1nej7179+Lj40NYRgrRZ5AE3cJqypWDGtW1L41FC9ymbquk5XMS6Ox09O6kTY9s1kwlESqZO74LCSFykf7vNEtyXxv/QzToUN3ivq6dtHpeK/65m+LxZs0vYG4PfcUjXX1o0Mje3N67MzzJ4zsOqTc/B30s9dt40/lFX1ydowFYsqMJcYlmvM9bpvV7QP+k2c0rVHLg3ZfPmm9P/eZ6km0ywmQ0Me3TrTTpVJngO6UsHtu6ryRXklZ+zLR5v2i/d38fdWHWaNIz/NNm5pJohjgDUz7cRvXqRtasSdRPk45+Q70IPm1Za33L0sPmslnNfY9QLaASuUGJisWoVEl9ru47VixDyfFu3jCZz1XdmvdybNbyxHQ6bbQ7NhY2bMje/jx8CDGPksg/7UF3Zke6HR1V2b20JF7XvWoV/Pabaru5Qb9+6e6msJKxY8fi4+ODj48PNWrUoG3btvz444/E27g0xtSpUxk1alS6ts2KQNmaJOgWVpV4aljnFlex06f+Jzbm6zoM7bqd94dsZe0aEwUK2LZ/QoinU2VvXZLpiR9/kjQI6dxXS4a2cmPy03HPn4etR1R9b5+yN2mczqUwAS212UB7D7lbPHbnyl1zUFin8hlc87vi5uFGl26qBNm9ezo2bVLbPnwIS/5VZcIKFICugxqQnMFv+5kzt89fVYcHt0LS1c/HRYRG0L/jLl77vDlxBjVduVG1Y4x4Wbtw8NdfmTp0EmH3wli64lFuD49Idh4ux+hBW8yPfz6jBQM67aKxbyCjxjcjIkJ9xpQoAY1qqNKV9x4W4tnuIcREaiW3fv5DGyUe/lLmy29lh2bN1GuMjc1Y/er9B7Shwfotk85Ey6lyUukwW9bozm1KlgRPT9VOa6Q7OhrOPEpBUK0a5gSPqWnSRGvPnAnhj95e+vWD/GlPJBI20LRpU3bs2MHatWsZPHgwP/74I7Nnz06yXWxsbDJ7Z06BAgVwd3dPe8NcSIJuYVUDB9nh5KSuVg8bnXaSmnye+Zi1vCnjZzfH2UXmDgkhbGfgQK3dpHEszbonze5TrHxR6lVR05OPXqpC8GXLJGEGg2VCn6GvFUt3BuyyVUtSxENlkN53qqLFmvGda7Xp303qaUnZ+vTR9l+4UP37zz8Q+Shu7NuXFN87Pbw8GNTtEACRMW7MnngkXf1McPMmfPPeLmr63OP3dY3N97/5/Fa2HKrK26O1L0a//56hQ6fo71+OmtddP99uP84uOr6e24Lvx241b/Pb2sbsPV3DfHv4kPucOgX/rvWifNEgAPafrc6ofmod+I0bsHS5qqVepIiJHsNyV4LOhGm3YJlkKi2JA/SEOsi5QcuW4Poop+GqVSqTfXaxdY3u3ESn00a7b95MWk87sVOn1HslpG9qOajM5NUeVfBLfM4lgVr2cXR0xMvLi5IlS/LCCy/QqFEjNm3aZJ4S/vPPP9OkSRM6dOgAwI0bNxg1ahQBAQG89NJLvPbaa1y9quUUMRgMTJgwgbp16xIQEMA333yDyWT5Gfv49PLY2Fi+/fZbmjdvbh5x//vvv7l69SoDBgwAoF69evj4+DB27FgAjEYjM2bMoFWrVvj6+tKtWzfWJJ4SBWzdupX27dvj6+tL//79uXbNcnaULUjQLazKxwcuXoQLF6Bhw+zujRBCaPr1g+bNTRQrFsMPk1Oeatv1BS2z+cpVlgHtp59qU16LFoUhQ9L//Do7HQ1qqLXcDyIKcu5IkPmx7Vuize2mLVzM7Y4dVbkegKVL1WjnvHnaMRNfSEjOG2O0dcw/zquUbBb0xOLj1ejiM89AqVIwZmIjLt0qA4C780MWTdvN9380x8HJgYoVtVJoR4/CyYMpT8dPr3l/aENaA1/S1qm/OaE5f07ZhYNeG1HxKXmRbf8eZdpsTzw8oGDRAnz71Slz1vcZS5vx6zc7mD1bK3E0dKgOR2dtmn9ukHja7dZN0Slv+Jj9+7V2/Vx0ncHZGdq2Ve3bty1fR1bLihrduUnidd2pTTHPSObyxBJfYAJVwSAj++cagd/B0lJp/2ztlnTfrd3St2/gd1bvtpOTE3GP1jnt3r2bS5cuMXfuXGbMmEFcXBxDhw7Fzc2NBQsW8Nlnn+Hq6sqwYcPMI+Fz5sxh6dKljB8/nj/++IPQ0FDWr1+f6nOOHj2aVatW8dFHH/Hff//x+eef4+bmRvHixZk6dSoAa9asYceOHXz44YcAzJgxg2XLljFu3DhWrVrFoEGDeO+999j36ErkjRs3eP3112nZsiXLli3jueeeY9KkSVb/fT1Ogm5hdSVKQHnr5tURQogn5uoKGzcaWbnyhMX6xMelVLZo+Zx9JFyA1+vVyHNGSwgF1NEW5e7drK2z3nGgsLnduL223tjFBbp1VUNGISEwc/xOtj4a9PX2NlnU/06Ot38FOtZXUcvlO6VY/uuBZLczGU18P3YrZcoY6dZN1fk2JFoq3rr2IQ7suMNzwy2vpr7YU6tQ8cfPJ1LvTBouHg9m+wn1Dbtq6fPUbW2ZOKzvG43YsDiQLg338cUbWzhypgRNu1l+Iy9XsyjTvtBe4/CP6jB1ivqSqNPByy8/URezRdmyULroAwB27TISG512OTuT0cS+3SpAL1LESJkyNu2i1Vn+H8y+WXBZVaM7t0hvMrWMZC5PrNljqTfy7Ch3XBhEXUv7J/pO0n2j76Rv3zjrrXM2mUzs2rWLHTt2EPDoQ8fV1ZUvvviCypUrU7lyZVavXo3RaOTLL7/E29ubkiVL8uWXX3Ljxg1zsDtv3jxefvll2rVrR8WKFRk3bhz58uVL8XkvXbrEf//9x/jx42nbti2lS5emYcOGdOrUCb1ej4eHyqdSqFAhvLy8yJcvH7GxscyYMYPx48fTtGlTSpcuTc+ePenWrRsLH00X+/PPPylTpgxjx46lQoUKdOvWjR49eljt95WS3HW5VwghhLCxWrXUKO/Vq7BpE0REwI1zlxnwhpYN6OsJ8TRvnvGP0IAm+WGKau/da2AAas30ofPq2NVKn6dQScskX33aHOSPP9VQ5bvjtWU7AzvvRadLfj13YqNG6fjvRdWe8pMzPZMJPL9+Zyvv/9DC4r4SJWDQQBOD+1yjUq3klwv17q3nrffjMRjt+WNFRb4wmtI93f5x86ddBFR0OKDXVXR2SZOdNetei2bdUz/OgHcasXfPNmYsbUZ0nIv5e2unTirhZ26j00GzWqf4fV1jomJdObTlBA061Eh1nwvHgnkQptZx1694AJ0uFw11A507a+3Vq3X06pU9/ZDp5ZbSm0wto5nLEzRtqrU9PaF37/Tvm6s45AeXdGQNdk5aihdnr/Tt6/DkC+G3bNlC7dq1iYuLw2Qy0aVLF9544w0+//xzvL29cXTUShKePn2a4OBg/P39MZlMGI1G7OzsiImJITg4mIcPH3Lnzh1qJbpyY29vT40aNZJMMU8QGBiIXq+nXgbWx1y+fJmoqCiGPDYNLS4ujqpV1YXcCxcu4PvYH6ZfalfirUSCbiGEECIRnU4lc5o+XWUuXr7gJF99Y28uEfZsi928/U7awW5y6rWqhE5nxGSyY88R9S1+7/qzxBtqA9CkznXAMths37cW+V8PJSzKg+g4l0d9NNL/lfQNX7br60+VMRc4fbUiW4/5cWTbGfyaaRcQFv64yyLg7vGMkaHD7GjfHuztdUCppAd9pGg5L9rUOcDa/XUJul2a3f8dp1E6E8slZjQYmb+0gvm19RuRjnTHqZj8WwCHap9k/1kty/vwF84AT3bc7NK8mYHf16n2tvV3adAh9e33bb0KPAq6/XNX4jiAYsXUOvT9++HoUR03b6YjE5cNSCI1S1WrqqRocXEpj3SbTFrQXaxYxi5WlCyplsz8/jt88YVaapAnVX1b/WRG8+XW7UsqAgIC+Oyzz3BwcKBIkSLY22tho4uLi8W2kZGRVK9enYkTJ2IwGAgMDKRq1aro9Xo8EzLwZZBzJv4AIh8lPJkxYwZFH/tPm/giQXaQ6eVCCCHEY7o2PW5uDx1VnmOXVLBWpdQF5iyukenR3PyF8lOtjFrXfeySN1GRJnYc1L4YNGma9GPZydWJZ1oct7ivld8RSvuUSNdz6uzseGOIlsxmyhytXvPOlccY+LY2iv3lyC0sWWpH585gn87L8i/00bKE//7r/VS2TNmOlcfNa8fb+B+mVOXimTpOAidXJ/75twCF8qmkdJWKB9HhudxRJiw5zdprFz627XJNc/t9e7W1+/Ub5c5MwImnmG/fXiBb+iAj3ZYcHbVkZ6dPJ19H/eZNuPcoF2RGRrkT/Pqrml2UZ6eW5yIuLi6ULVuWEiVKWATcyalevTqXL1+mUKFClC1blmLFilG2bFnKli1Lvnz5yJcvH15eXhxNNA0iPj6ekydPpnhMb29vjEYj+1NI7ODwKC2+IdFaqIoVK+Lo6Mj169fNz5/wU7x4cfM2x49bfqYeTU8dvCckQbcQQgjxmJZdK+HiqK6YJ2TTdnd+yJLFqurCk2jQWgW98QY9hw7r2H5AC56b9miU7D59+jpZ3B7wYgYKNqOmXHt4qCl8f/zlwJ07cP5wEN1fKElMnBpNGNp1O+9/3zy1wySrx2Bfc/KyReuqExeT9prjx82fra0/HPhi+pOFpaZMlZLs3BzKRy9tYcW/xlxRpzol3v7lzZnvtx/1wRCXtDZ7YvuOaCNL9VpWtGnfbCVx6bDt2z2ypQ8SdCfV+FEhA4Mh+aoFmZ1anlg2D0iKTOjatSsFCxZk+PDhHDhwgNu3b7Nv3z6++OILbt5UuT8GDBjAzJkz2bBhAxcuXGDcuHGp1tguVaoUPXr04IMPPmDDhg1cuXKFvXv3snr1agBKliyJTqdjy5Yt3L9/n4iICNzd3RkyZAgTJkxg6dKlBAcHc/LkSRYsWMDSpUsB6Nu3L0FBQXz99ddcvHiRFStWmB+zJQm6hRBCiMe45HOhbT3LK+FzvjtB1fpPHsAENNA+enfsgN27VbtkSShbLvmP5TbP1aKgm0qm5eYUTs8hGUvp657fgWHD1Oh8TAxM+F8UnbqYuPdQZYJrW+cgP//dIFMj+Pk889Gt6REA7oYVZv3CIxnaPzIskkUb1OvJ5xJGj6G1M9yHlPjUqcD/fmlBlXoV0t44B9PZ6WhWW5WVC4vy4NjOcyluGxcTx+HzalS/YrHLeBYvmCV9tDY/P5VbAeDAgXxERGR9HxKml7u7a2XMnnbDhmntn39W08kTy2zmcpG7ubi48Ntvv1GiRAlGjRrFe++9x8cff0xMTIy57vaQIUPo1q0bY8aMoW/fvri5udE2oVRBCj777DPat2/PZ599RseOHfn444+JilIXeYsWLcobb7zBpEmTaNSoEf/73/8AePPNNxkxYgQzZsygU6dODBs2jC1btlDq0RtKiRIlmDp1Khs3bqR79+789ddfvPXWWzb87TxiysUiIiJMBw4cMEVERGR3V9IUHx9vOnDggCk+Pj67uyKsSM5r3iXnNm/KyHmdP2m7SX2lNJneemGz1fpw9KjJfNxKlbR2nz6p7/fX1J0m/0qnTPMnbc/U8168aDLZ2WnPl/BTo+xZU8jtkEwdM8G/s/eYj/dC2x0Z2vf3eQ/N+w7psi3Tfcjr/2enfrTF/Hv64f0tKW53aHOgebvn22TsXGRYeLj2hxQebvXDv/qqdvglS7L+vBYsqJ67QoUsf+ocLSBAOy+7dlk+9uKL2mNHj6Z8jLz+//Vp9rSd2/TGozLSLYQQQiTjxVGNmDR6C9+P3co3c5tY7bjVq4Obm2qfP6/dnzhzb3L6vN6Ig+eq0v/tzPWlfHno9ljZ12IFbrFqjSseXk82fbfD87XNI/HLtvkREZr+Ycl5v2trjge+6fdE/cjLmrUvZm5v25ny/Nt927U50fXrpl6XPadLnMV8/fqsLR0WGwsP1J+0JFF7TOL11j//bPlYwvRyBweoUiXr+iRETidBtxBCCJEMO70db3/dgjcnNMfe0XrFPvR6qFftcpL7m9S9a7XnSMnIQWfNbVenCFYuvk+ZKukoP5MGRxdHnmurpuNHxrjx76/pS0pz7Rps2KDa5ctDk5ZPtl4+L6vRsDIF3EIA2HakMiZj8mV29u3XgtP6TTKXNTinaN4c7O3V69ywIWuD7juJSiTLem5LvXtDwUerFhYt0hKnxcSoBGugMp3L2mwhNBJ0CyGEEFksoPoli9serqHU8Lf92tsWXSszss9WapQ9x7JfT1OnVVWrHfuFgdpo+R8r0pcpfMECMBpVe8AAsJNvJSmy09vRtNYZQK2dDzx0M9nt9h1TI+J6u3hqN8u9GdsB8uWDBo+q8507p+Ny0mtVNiNJ1FLm4gKDBql2TAzMnavap09D/KPJFZlNoiZEXiUfb0IIIUQWa9DYssZpoxpnsyS7ts5Ox+S/mnM8qDJt+9ax6rGbdq1JqZLqG/farUW4m8bAfXxsPNMmh6p+6VTQLVLXrL02K2HbgaRl1cIfmjh1RSX78y1/Hpd8Lkm2yW3atNFG9BNmRWQFqdGduldf1drTp6uLZ4mTqEnQLYQlCbqFEEKILBbQqpzF7SYNsiE1s5XZ6e14/gU1DT8+HmbOTH37f+fs58pNNTreqel5KuTuBONZonnHRPW6tyV9/NBhHUaj+mpXr1XlrOqWTbVurQXd69dn3fPKSHfqvL2hdWvVvnBBXRBJXC5MMpcLYUmCbiGEECKLFa9QlNKFgs23m7YukH2dsaKXXtKmiH/3HamWeZr8k1aDadTwUBv3LG+oXVtLwrdtW9JyTfv2ae36Abm3Lnli9eqBu7uaQbFxo7YcwdYk6E7b4wnVZKRbiJRJ0C2EEEJkg07NggAoWuA29VrnjTS/lStD376qffcuzPjqcLLbHd5ymu0n1FBY1dIXaNPbP6u6mKvZ20Pjxqp97RqM7LuV2KgY8+MWQXf9LO6cjdjbQ926DwH1N3XkSNY8r0wvT1u3blD80SqH5cth717V9vKS35kQj5OgWwghhMgG38z045cvtrFpTRjObs7Z3R2r+WB0tLn97Y8liA6PSrLNlG+11NAjh11DZ5e1malzs4QEVgA/LmpOM/9zXDlzHYB9+9QwsJsbVKuWDZ2zkfr1H5rbWbWuW0a60+bgAMOGqbbRCGFhql2rlsrTIITQSNAthBBCZIP8hfLz0ofNqBaQuzNMP656LWd6Nd8NwM2Qosz+dp/F47eD7/DHOjUMW8AthP6jrJvQLa/r2xdmfnMMJwd1cWPv6RrUrufEb9/v5PJl9bWuTtVg9HljdjkAAQFh5nZWreuWke70SbykJIFMLRciKZsF3T///DN9+/alVq1a1K1bN137mEwmJk+eTJMmTfD19WXQoEEEBQXZqotCCCGEsIEPP9PKn309rRKxUbHm2zO+OUlsvBMAw3oewc3DLcv7l5vpdDDsPV92rb1EuSJXALj3sBD9325s3qZ+1YvZ1T2bKFMmhjJl1AL27dshKunkCatLGOnW67Wa1CKp0qWha1fL+yToFiIpmwXdcXFxdOjQgeeffz7d+8ycOZMFCxbw2WefsWjRIlxcXBg6dCgxMTFp7yyEEEKIHKF2iyp0aahGuK/cLcn879Viz9ioWH7+Q61ft9MZeG1M3hrlz0r+Laty6Fg+OjfYl+Sx+g2dsqFHtqPTaVnMY2Jgxw7bP2dC0O3lJfXj05I4oRpI5vLczMfHJ9WfqVOnZncXcy2bvY2MHDmSQYMG4e3tna7tTSYT8+fPZ/jw4bRp04YqVarwzTffcPv2bTZkZWFGIYQQQjyxjz7VspNPmFqG+Nh4/vllPzceFAOge5P9lKteKqXdRToULFqA5Tvq8uXILdjpDOb7A1qWycZe2UabNlrb1l8LTSYt6Jap5Wlr2xYqqvLwODtD1arZ2x+ReTt27DD/fPDBB7i7u1vcN2TIEPO2JpOJ+Pj4bOxt7mKf3R1IcPXqVe7cuUOjRo3M9+XLl49atWpx+PBhOnfunOK+BoMBg8GQ4uM5QUL/cno/RcbIec275NzmTXJes07dNlVpW+cA6w/W5eLNsvw+ZTvTZmsZqV5/09Gq5+FpPrdjvmtKvcaHmfgttGn+kJKVm2XN78FgQG9uGsAGz5nwOpo3jwccAVi/3sT48barHfbgAcTFqVfm5WXCYMiiOmW52KxZMG6cHf36mbC3N6X5p/A0/3/NyTw9Pc1tNzc3dDqd+b59+/YxaNAgpk+fzpQpUzh79iyzZs1i2bJlhIWF8eOPPwLqnM6fP5/vvvuO+fPnA2A0Gpk1axZ///03d+/epVy5crz66qu0b98+61+klaX3bzjHBN137qhMpoUKFbK4v1ChQty9ezfVfc+ePWuzflnb8ePHs7sLwgbkvOZdcm7zJjmvWWPgoBusP6ja735ejbsP1Wd8jfIXyF/ayBEb1H96Ws+tZ0Ud46cD5LfJ7zU5dlFR1H7UPnbsGEYXF5s9182bx/HxqcqZM64cPqxj8+YTFCxom1G2oCAnoAYADg73OXIkyCbPk5fkywcTJ6p2Rv78nrb/rxs2FGD69BJERmZdpkNXVwOvvnqdNm1CMrRfcHAwBoPB/H5y/vx5AMaPH8+LL75IkSJFiI2N5f79+0RERCR530l837Jly9ixYwf9+/enWLFinD59mtGjR3P//n2qPiVTIzIUdE+cOJGZM2emus3q1aupmDDHJIt4e3vj6uqa9obZyGAwcPz4cWrWrIk+L6UUfcrJec275NzmTXJes5afnx+//HKEbcf9zAE3wKgPylPbv5xVn0vObTaIiDA3fX19Va0yK0t8Xrt0sefMGXX/7ds1adnSZPXnA630FYCPT0H8/ArY5HmeZk/r/9dXX7UjKCjr66ktXlyBd9/N2IyNS5cuodfr8fPzAyA2ViXEfO+992jdurV5u9WrV2Nvb2/eLmHk183NDT8/P2JjYxk6dCizZ882b9O+fXvu3r3LoUOHMpT/KyeKjIxM1wBwhoLuIUOG0KNHj1S3KV26dEYOaebl5QXAvXv3KJKoIOK9e/eoUqVKqvvq9fpc8x82N/VVpJ+c17xLzm3eJOc163z8oYG2fbXbhQtDv352NitpJec2CyX6Pev1emxZp0yv19O+vR2TJqnbmzbZ8cILltuEhMD06VCmDDz/fOZrRd+7p7WLFbPd36p4+v6/jhkDH38MDx+mva215MsHo0frMvx7tnuUQTBhv4TbtWrVsjiWTqdDp0t6/IT7rl69SlRUFMMSiro/EhcXR9WqVXP9+U9v/zMUdHt6elrM9bemUqVK4eXlxe7du83TDMLDwzl69GiuvwIihBBCPK1aP+dPwJfB7D2uknu9/LJKtiRERjVpAk5OKoP5+vUq4VlCYH31KnTsCCdOqNvBwTB2bOaeR2p0C1t59ln1k5u5PLaMRKfTYTJZzjpJvM45MjISgBkzZlD0sf9Qjo6ONuplzmOz7OXXr18nMDCQ69evYzAYCAwMJDAwkIhEU5E6dOjA+vXrAXXCBgwYwM8//8zGjRs5c+YMo0ePpkiRIrRJnLJSCCGEELmGzk7H9zPK4O4OFSrAyJHZ3SORW7m4qMAbVFB97pxqBwZCo0ZawA3w/vvw11+Ze56EzOUAiSZfCiGS4enpac7NleDy5cvmdsWKFXF0dOT69euULVvW4qd48eJZ3d1sY7NEalOmTGHp0qXm28888wwA8+fPJyAgAFBrBR4mml/x0ksvERUVxSeffEJYWBh16tRh1qxZODnlrXqTQgghxNOkYUMVyOj18BQNbAgbaNsWNm5U7Q0b4O5d6NJFZRwHKFBATTMHGDQISpXSAvX0kqBbiPRr0KABs2fPZtmyZfj5+bFs2TKuXLmCh4cHAO7u7gwZMoQJEyZgMpmoU6cODx8+5NChQ7i7u6e5dDmvsFnQ/dVXX/HVV1+lus2ZhGwYj+h0OkaNGsWoUaNs1S0hhBBCZAMbJrYWT5G2bbVp41OnQlAQREer23XqwKpV8OGHMHu2mobevTvs2QOVK6f/OWR6uRDp17RpU0aMGMG3335LTEwMPXv2pGnTpjxIuBIGvPnmm3h6ejJjxgyuXr1Kvnz5qFatGq+++mo29jxr5ZiSYUIIIYQQQqTGzw8KFVLJzk6f1u5v2xYWL1ZJo37+WU0/X78e7t+HTp1g926VxC8tZ8+qEXRQMzMe5fkV4qnTs2dPevbsab4dEBCQZMA0wciRIxn5aO1QQpmxhEzloAZWBw4cyMCBA23a55zMZmu6hRBCCCGEsCY7O0hUrQiAF1+ElStVwA3g4AB//w01VKltzp9XI94JI+IpiYiAXr20zNL9+knSPyGEdUjQLYQQQgghco3evbX2O+/A/PlJcwV4eKip5sWKqdu7dqkgOqXA22RSmfUTkrFVqwY//mj9vgshnk4SdAshhBBCiFyjZ09YulRNH584UY1+J6dMGTUC7uqqbi9erJKqBQUl3fann+CPP1Tb3V1t6+5uk+4LIZ5CEnQLIYQQQohcQ6eDZ56B9FSUrVMHFi3SpokfPAj+/rB6tbbNrl3w1lva7V9/hSpVrNljIcTTToJuIYQQQgiRZ3XurBKpVayobj94oO77+GO4cQOeew7i49Vj776r1nULIYQ1SdAthBBCCCHyND8/OHBAjZAn+OIL8PaG69fV7ebNYcKE7OidECKvk6BbCCGEEELkeQUKwJIl8M03qhwYQHi4+rd4cfjrL7CXYrpCCBuQoFsIIYQQQjwVdDp47z3YuFHLbG5vr0qMJdwWQghrk+t5QgghhBDiqdK8ORw5ojKWN20Kdetmd4+EEHmZBN1CCCGEEOKpU7SoZdZyIYSwFZleLoQQQgghhBBC2IgE3UIIIYQQQgghhI1I0C2EEEIIIYQQQthIrl7TbTQaAYiKisrmnqTNYDAAEBkZiT6hToXI9eS85l1ybvMmOa95l5zbbBAdDT4+Wluns/pTyHnNm+S85l1P27lNiEMT4tKU6EwmkykrOmQL9+7dIygoKLu7IYQQQgghhBDiKVWuXDkKFSqU4uO5OuiOj48nNDQUJycn7OxkprwQQgghhBBCiKxhNBqJiYnBw8MDe/uUJ5Hn6qBbCCGEEEIIIYTIyWR4WAghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLARCbqzwO+//06rVq2oWbMmzz33HMeOHcvuLokMmjFjBr169aJ27do0bNiQESNGcPHiRYttYmJiGDduHAEBAdSuXZs33niDu3fvZlOPRWb88ssv+Pj48OWXX5rvk/OaO926dYt3332XgIAAfH196dq1K8ePHzc/bjKZmDx5Mk2aNMHX15dBgwZJNYxcwGAw8MMPP9CqVSt8fX1p06YNP/30E4nT08i5zfn279/Pq6++SpMmTfDx8WHDhg0Wj6fnHIaEhPDOO+/g7+9P3bp1+eCDD4iIiMjCVyGSk9q5jYuL49tvv6Vr1674+fnRpEkTRo8eza1btyyOIec250nr/2xin3zyCT4+Pvz6668W9z/t51WCbhtbvXo1EyZM4LXXXmPp0qVUqVKFoUOHcu/evezumsiAffv28eKLL7Jo0SLmzp1LfHw8Q4cOJTIy0rzN+PHj2bx5Mz/88AMLFizg9u3bvP7669nYa5ERx44d46+//sInoebsI3Jec5/Q0FCef/55HBwcmDlzJqtWrWLMmDF4eHiYt5k5cyYLFizgs88+Y9GiRbi4uDB06FBiYmKyseciLTNnzuTPP//kk08+YfXq1bz77rvMmjWLBQsWWGwj5zZni4yMxMfHh08//TTZx9NzDt99913Onz/P3LlzmT59OgcOHOCTTz7JqpcgUpDauY2OjubUqVMMHz6cJUuW8OOPP3Lp0iWGDx9usZ2c25wnrf+zCdavX8/Ro0cpUqRIksee+vNqEjb17LPPmsaNG2e+bTAYTE2aNDHNmDEjG3slntS9e/dM3t7epn379plMJpMpLCzMVL16ddN///1n3ub8+fMmb29v0+HDh7OplyK9wsPDTe3atTPt3LnT1K9fP9MXX3xhMpnkvOZW3377ren5559P8XGj0Whq3LixadasWeb7wsLCTDVq1DCtXLkyK7ooMunll182vf/++xb3vf7666Z33nnHZDLJuc2NvL29TevXrzffTs85THgfPnbsmHmbrVu3mnx8fEw3b97Mus6LVD1+bpNz9OhRk7e3t+natWsmk0nObW6Q0nm9efOmqWnTpqazZ8+aWrZsaZo7d675MTmvJpOMdNtQbGwsJ0+epFGjRub77OzsaNSoEYcPH87Gnokn9fDhQwDzyNmJEyeIi4uzONcVK1akRIkSHDlyJDu6KDLg888/p3nz5hbnD+S85labNm2iRo0ajBw5koYNG/LMM8+waNEi8+NXr17lzp07Fuc1X7581KpVS96bc7jatWuzZ88eLl26BMDp06c5ePAgzZo1A+Tc5gXpOYeHDx8mf/781KxZ07xNo0aNsLOzkyV8uUx4eDg6nY78+fMDcm5zK6PRyHvvvcfQoUOpXLlyksflvELKFbzFE3vw4AEGg4FChQpZ3F+oUKEk64FF7mE0Ghk/fjz+/v54e3sDcPfuXRwcHMwfGgkKFSrEnTt3sqObIp1WrVrFqVOn+Oeff5I8Juc1d7py5Qp//vkngwcP5tVXX+X48eN88cUXODg40KNHD/O5S+69Wdbr52wvv/wy4eHhdOzYEb1ej8Fg4K233qJbt24Acm7zgPScw7t37+Lp6WnxuL29PR4eHvLenIvExMQwceJEOnfujLu7OyDnNreaOXMm9vb2DBgwINnH5bxK0C1Eho0bN45z587xxx9/ZHdXxBO6ceMGX375JXPmzMHJySm7uyOsxGQyUaNGDd5++20AqlWrxrlz5/jrr7/o0aNHNvdOPIn//vuPFStWMGnSJCpVqkRgYCATJkygSJEicm6FyEXi4uIYNWoUJpOJcePGZXd3xBM4ceIE8+fPZ8mSJeh0uuzuTo4l08ttqGDBguj1+iRJ0+7du0fhwoWzqVfiSXz++eds2bKFefPmUaxYMfP9hQsXJi4ujrCwMIvt7927h5eXV1Z3U6TTyZMnuXfvHj179qRatWpUq1aNffv2sWDBAqpVqybnNZfy8vKiYsWKFvdVqFCB69evmx8H5L05F/rmm294+eWX6dy5Mz4+PjzzzDMMHDiQGTNmAHJu84L0nMPChQtz//59i8fj4+MJDQ2V9+ZcIC4ujjfffJPr168zZ84c8yg3yLnNjQ4cOMC9e/do2bKl+bvUtWvX+Prrr2nVqhUg5xUk6LYpR0dHqlevzu7du833GY1Gdu/eTe3atbOxZyKjTCYTn3/+OevXr2fevHmULl3a4vEaNWrg4OBgca4vXrzI9evX8fPzy+LeivRq0KABK1asYNmyZeafGjVq0LVrV3Nbzmvu4+/vb17zmyAoKIiSJUsCUKpUKby8vCzOa3h4OEePHpX35hwuOjo6yUiKXq83lwyTc5v7pecc1q5dm7CwME6cOGHeZs+ePRiNRnx9fbO8zyL9EgLuy5cv8+uvv1KwYEGLx+Xc5j7du3dn+fLlFt+lihQpwtChQ5k1axYg5xVkernNDR48mDFjxlCjRg18fX2ZN28eUVFR9OzZM7u7JjJg3LhxrFy5kmnTpuHm5mZef5IvXz6cnZ3Jly8fvXr14quvvsLDwwN3d3e++OILateuLcFZDubu7m5el5/A1dWVAgUKmO+X85r7DBw4kOeff57p06fTsWNHjh07xqJFi/j8888B0Ol0DBgwgJ9//pmyZctSqlQpJk+eTJEiRWjTpk02916kpmXLlkyfPp0SJUqYp5fPnTuXXr16AXJuc4uIiAiCg4PNt69evUpgYCAeHh6UKFEizXNYsWJFmjZtyscff8y4ceOIi4vjf//7H507d6Zo0aLZ9bIEqZ9bLy8vRo4cyalTp5gxYwYGg8H8fcrDwwNHR0c5tzlUWv9nH7944uDgQOHChalQoQIg/2cBdKaEy8PCZn777Tdmz57NnTt3qFq1Kh999BG1atXK7m6JDHi8dnOCCRMmmC+gxMTE8NVXX7Fq1SpiY2Np0qQJn3766VMzbSav6N+/P1WqVOHDDz8E5LzmVps3b+a7774jKCiIUqVKMXjwYHr37m1+3GQyMWXKFBYtWkRYWBh16tTh008/pXz58tnYa5GW8PBwJk+ezIYNG7h37x5FihShc+fOvPbaazg6OgJybnODvXv3JptwqUePHnz11VfpOochISH873//Y9OmTdjZ2dGuXTs++ugj3NzcsvKliMekdm5ff/11Wrdunex+8+fPJyAgAJBzmxOl9X/2ca1atWLAgAEMGjTIfN/Tfl4l6BZCCCGEEEIIIWxE1nQLIYQQQgghhBA2IkG3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQQgghhBA2IkG3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQQgghhBA2IkG3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQT6G9e/fi4+PD3r17s7srQgghRJ5mn90dEEIIIXKaJUuW8P7776f4+MKFC/Hz88u6DuUid+/eZcqUKWzevJmQkBC8vLxo0KAB48ePN2/TqlUrrl27luz+ZcuWZd26debbf/zxB3v27OHYsWPcuHGDHj168NVXXyXZb//+/cyePZvAwEDu379P/vz5qVKlCiNGjKBOnTrWf6FCCCFEOknQLYQQQqRg5MiRlCpVKsn9ZcqUyYbe5Hw3btzg+eefB6Bv374ULVqU27dvc+zYMYvtPvjgAyIiIizuu379Oj/88AONGze2uH/WrFlERERQs2ZN7ty5k+JzBwUFYWdnR9++fSlcuDBhYWEsX76cfv36MWPGDJo1a2alVymEEEJkjATdQgghRAqaNWtGzZo1s7sbucYnn3yCXq/nn3/+oWDBgilu16ZNmyT3TZs2DYCuXbta3L9gwQJKlCiBTqejdu3aKR7zueee47nnnrO474UXXqBNmzbMmzdPgm4hhBDZRtZ0CyGEEJk0ZcoUqlSpwu7duy3u//jjj6lRowanT58GIDY2lsmTJ9OzZ0/q1KmDn58fL7zwAnv27LHY7+rVq/j4+DB79mx+//13WrduTa1atRgyZAg3btzAZDLx008/0axZM3x9fRk+fDghISEWx2jVqhWvvPIKO3bsoHv37tSsWZNOnTpZTNlOzdGjRxk6dCh16tShVq1a9OvXj4MHD6a534ULF9i2bRtDhw6lYMGCxMTEEBcXl67nBFi5ciWlSpXC39/f4v6SJUui0+nSfZzEXFxc8PT05OHDh5naXwghhLAGCbqFEEKIFISHh3P//n2LnwcPHpgfHz58OFWrVuXDDz8kPDwcgO3bt7No0SJGjBhBlSpVzMf5+++/qV+/Pu+++y6vv/469+/fZ9iwYQQGBiZ53hUrVvDHH3/Qv39/Bg8ezL59+3jzzTf54Ycf2L59Oy+99BK9e/dm8+bNfP3110n2DwoK4q233qJZs2a888476PV6Ro0axc6dO1N9vbt37+bFF18kIiKC119/nbfeeouwsDAGDhyYZIp4cvsCFC5cmIEDB+Lr60utWrUYNmwYV69eTXXfU6dOceHCBbp06ZLqdumRcM4uXLjAd999x9mzZ2nYsOETH1cIIYTILJleLoQQQqRg0KBBSe5zdHTk+PHjADg4OPD111/Ts2dPvvrqK0aPHs2HH35IjRo1ePnll837eHh4sGnTJhwdHc339e7dm44dO7JgwQKLJGMAt27dYt26deTLlw8Ao9HIjBkziI6OZvHixdjbq4/vBw8esGLFCsaNG2dx7KCgIKZOnUq7du0AePbZZ+nQoQMTJ05MsmY6gclk4rPPPiMgIIBZs2aZR5f79u1L586d+eGHH5gzZ06Kv6ugoCBAjfLXrFmT77//nhs3bvDjjz8yePBgli9fjouLS7L7rlixAoBu3bqlePz0GjVqFDt27ADU+enTpw8jRox44uMKIYQQmSVBtxBCCJGCTz75hPLly1vcZ2dnOUnM29ubkSNHMmnSJM6cOcODBw+YM2eOOTAG0Ov16PV6QAXQYWFhGI1GatSowalTp5I8b4cOHcwBN4Cvry+ggtLEx/X19WXlypXcunWL0qVLm+8vUqQIbdu2Nd92d3fnmWeeYebMmdy5cwcvL68kzxkYGEhQUBDDhw+3GM0HaNiwIf/++y9GozHJ608QGRkJgJeXF7/88ot5u2LFivH222+zcuXKJGuuE34fq1atolq1alSsWDHZY2fEu+++a56Ov2zZMuLi4oiPj8fJyemJjy2EEEJkhgTdQgghRAp8fX3TlUht6NChrFq1imPHjvH2229TqVKlJNssXbqUOXPmcOnSJYu1zsllRy9evLjF7YQAPKX7Q0NDLYLusmXLJlkHXa5cOQCuXbuWbNCdMFI9ZsyYlF4mDx8+xMPDI9nHnJ2dAXXBIHFg3qFDB0aPHs2hQ4eSDbr37dvHrVu3kp1VkBlVq1Y1t7t160bPnj15//33mTJlilWOL4QQQmSUBN1CCCHEE7py5QqXL18G4OzZs0ke//fffxk7dixt2rRh6NChFCpUCL1ez4wZM7hy5UqS7RNGxR+X0iizyWR6gt5bHmP06NEWgWtirq6uKe5fpEgRQK3pTkyv11OgQAHCwsKS3W/FihXY2dnRuXPnzHQ7VY6OjrRq1YpffvmF6Oho84UBIYQQIitJ0C2EEEI8AaPRyNixY3F3d2fgwIFMnz6d9u3bm9dTA6xdu5bSpUvz448/WoxA22r09fLly5hMJovnShjJLlmyZLL7JIyUu7u706hRoww/Z/Xq1QG1Hj2x2NhYHjx4gKenZ5J9YmNjWbduHfXr16do0aIZfs70iI6OxmQyERERIUG3EEKIbCHZy4UQQognMHfuXA4fPsznn3/OqFGjqF27Np999hn37983b5Mwcp14RPro0aMcOXLEJn26ffs269evN98ODw9n2bJlVK1aNdmp5QA1atSgTJkyzJkzh4iIiCSPJ349yQkICKBQoUKsWLGCmJgY8/1Lly7FYDAkG8hv3bqVsLCwJLW5M+PevXtJ7gsLC2PdunUUL16cQoUKPfFzCCGEEJkhI91CCCFECrZt28bFixeT3O/v70/p0qW5cOGCuf52q1atAPjqq6945plnGDduHJMnTwagRYsWrFu3jtdee40WLVpw9epV/vrrLypVqmROQGZN5cqV48MPP+T48eMUKlSIxYsXc+/ePSZMmJDiPnZ2dnzxxRe89NJLdOnShZ49e1K0aFFu3brF3r17cXd3Z/r06Snu7+joyOjRoxkzZgwvvvgi3bt35/r16yxYsIC6detajPwnWLFiBY6OjrRv3z7F427atMlc7zwuLo4zZ84wbdo0QNUkTyjL9tJLL1G0aFFq1apFoUKFuH79OkuWLOH27dt8//336fq9CSGEELYgQbcQQgiRgpSmf0+YMIESJUowZswYChYsyAcffGB+rFy5crz99tt8+eWXrF69mk6dOtGzZ0/u3r3LwoUL2bFjB5UqVeLbb79lzZo17Nu3z+r9LleuHB9//DHffPMNly5dolSpUnz//fc0bdo01f0CAgJYuHAh06ZN47fffiMyMhIvLy98fX3p06dPms/7zDPP4ODgwC+//MI333xD/vz56dOnD2+99VaSderh4eFs2bKFFi1aWGRqf9y6detYunSp+fapU6fMGd+LFStmDrp79erFqlWr+PXXX3n48CH58+enVq1aTJo0ibp166bZdyGEEMJWdCZrZF8RQgghRI7QqlUrKleuzIwZM7K7K0IIIYRA1nQLIYQQQgghhBA2I0G3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJruoUQQgghhBBCCBuRkW4hhBBCCCGEEMJGcnXJsPj4eEJDQ3FycsLOTq4fCCGEEEIIIYTIGkajkZiYGDw8PLC3Tzm0ztVBd2hoKEFBQdndDSGEEEIIIYQQT6ly5cpRqFChFB/P1UG3k5MToF6ki4tLNvcmdQaDgbNnz+Lt7Y1er8/u7ggrkfOad8m5zZvkvOZdcm6zQVQUNG6s2jt3gg2+i8l5zZvkvOZdT9u5jYqKIigoyByXpiRXB90JU8pdXFxwdXXN5t6kzmAwAODq6vpU/AE+LeS85l1ybvMmOa95l5zbbGAywZkzqu3sDDb4LibnNW+S85p3Pa3nNq2lzrIQWgghhBBCCCGEsBEJuoUQQgghrMhkgsjI7O6FEEKInCJXTy8XQgghhMhJwsKgYUM4dQo8PKBM8TBKe5yhTMkoypQ20qpjYQLa18jubgohhMhCEnQLIYQQ4qljMprQ2emsfty//lIBN0BoKBwPzc9x6mkbTIafPtnKiHHNrf7cQgghciaZXi6EEEKIp4bRYOS157bimT+UuV9vt/rxVy6PN7fLlAFHh7gk24z6shG7Vh1P9Tgmo4k9a05w7nCQtbsohBAii0nQLYQQQoinxpjB25j2T3NCIgowYUopqx476mEkG9bHAlC8SASXLkFUlJ4bF2+zb90pXn5mGwDxBgee7e/FzUu3kz2O0WDk9T7baNixBn4NvThz8KJV+ymEECJrSdAthBBCiFzh3j3YuBH27YMbF29jNBgztP/P47YxcUEL8+0LN8oQHRFttf5tWnqCqFhVNqtzg4PY2YGd3o5i5YtQr201flrYiBa1DgNw40Exene7QVyM5Uh4bFQsL7bfw7R/1PTzyBg3vhl3zWp9FEIIkfUk6BZCCCFEjmMymjh3OIhfv9nBSwNDqVoVCheGNm0gIABKVCyCs1M8FYtfpqXfYYZ03cWhDVcxGU3JHm/1/P28Pq6xxX1Gk56zh4Ot1ucVy7QAvks35ySP2zvas3B5KUp63gBg+4lavDd4l/nxiNAIurc4yl8bG1ns99t/9blx8ZbV+imEECJrSdAthBBCiBxl+/KjlClyA2//cgwe04RZ8z04fTrpdnEGRy7eLMuWo7WZ/19TXh7bnS6NjxC474LFdoe3nqX3y1UxmvQAlPG6an7s1OG7VumzyWhi5dbKADg5RNPm2erJblekjBeL/7iHo30MAJP/bM4fv4by4FYI7RpdYM0+lXTN2SGKtnUOAhAb78TULwNTff7dq49Tp3IgHw7bYpXXI4QQwnok6BZCCCFEjmEymhj5lhNX75WwuN/eXo1wjxoFI4Y9oEvDffiWP0MBtxCL7dbur0vNhmV584WtPLgVwtWr0OWFSkTEuAPwbIvd/DBBW0sdeNk667qPbDvDtfvFAWhV+zhuHm4pbhvQvgZTP9lrvj1shAeNG0az65QvAPldQln791l+XVgSB3u1RvznJc0ID0/+eA/vP+S5fgU5dL4q42e34NKJK1Z5TUIIIaxDgu6n2NixYxkxYoT5dv/+/fnyyy+zvB979+7Fx8eHsLCwLH9uIYQQOcvGfw5z5GIVAMoXDebLkVvYsuwkoaGwZw/88AP8NLMgK3bV5+hFHx6EFyD0bhi/T95J6UJqBNtgtGfyn82pXNlEq1Ymrl9XX3ca1rrK/OV+1Gjmb36+U5fLWKXfK/+5aW537RSV5vYvfdiUIYMNAERFQeClYgAU8bjDlv9u0qx7LUpULMaLL6rqriEhdsyenfyxPh15iGsPtIsHx/Zez+zLEEIIYQMSdOdAY8eOxcfHBx8fH2rUqEHbtm358ccfiY+PT3vnJzB16lRGjRqVrm0lUBZCCGEL336rJUf7+tNrfDC5Bc27V8fVNeV98hfKT5/XGvDn0it8NnwzLo6RANx7WJBz51Qt7goV4N/1pXDJ50L58uDoqPZNqKn9pFZuKGxud+5TMc3tdXY6fpqmp25d7b6yZY3s2BxF7eY+5vvefU/7qvb99/D4V4HDh2Hyn80s7jtxNO2gXwghRNaRoDuHatq0KTt27GDt2rUMHjyYH3/8kdnJXOKOjY212nMWKFAAd3d3qx1PCCGEyIhjO86w7oCKQssXDabnsPoZ2t/Z1ZGPpjbjzLEQnu9w2Hx/wYKwejV4eanb9vbg8yiuPXsW4pKW0s6Qm5dus+9MDQB8y5+hTJWS6euvMyxZAi1aQLt2sHOnHZVrW468V68OHTuq9uXL8M/fWqI4gwFeeQWMRp3FPsdPOmb+xQghhLA6CbpzKEdHR7y8vChZsiQvvPACjRo1YtOmTeYp4T///DNNmjShQ4cOANy4cYNRo0ZRt25d6tevz/Dhw7l6VUsUYzAYmDBhAnXr1iUgIIBvvvkGk8kyw+vj08tjY2P59ttvad68uXnE/e+//+bq1asMGDAAgHr16uHj48PYsWMBMBqNzJgxg1atWuHr60u3bt1Ys2aNxfNs3bqV9u3b4+vrS//+/bl2TUqhCCGEgIlf3jG3337pEnoHfaaOU9qnBH/8V5udO+GTT2D3bi3ITlCtmvo3Ph7On36ysmGrF2pZ3rq2vpGxvpaGzZth7VoomUKs/t57WvvbT8+ZM7T/8gvs36/ur1LFhINeXYg/cd4rQ30QQghhW/bZ3YFsEfgdnP4u7e08/aH5csv7tnaD+4fS3rfK21D17cz1LxlOTk6EhIQAsHv3btzd3Zk7dy4AcXFxDB06FD8/P37//Xfs7e2ZNm0aw4YNY/ny5Tg6OjJnzhyWLl3K+PHjqVixInPmzGH9+vU0aNAgxeccPXo0R44c4aOPPqJKlSpcvXqVBw8eULx4caZOncobb7zBmjVrcHd3x9lZlUaZMWMGy5cvZ9y4cZQrV479+/fz3nvv4enpSf369blx4wavv/46L774Ir179+bEiRN8/fXXVvs9CSGEyJ2unr3On+sDAPB0v8/gd+umsUfaGjVSP8mpVvwI4AdA4O4jVK2Z8udhWlasK2Rud+lVOJUtM6dFC6hTOZCD56py6Jw3W5Yeomrd8rz/fgFAjXLPmKHj9YFBHA/y5sy1csRGxeLoIiPeQgiREzydQXdcGESlY3Q1unQy991J375x1lnrbDKZ2L17Nzt27KBfv348ePAAV1dXvvjiCxwfLUj7999/MRqNfPl/9u47PIriDeD493LphAQICb1DEiAJCb036R1RFFSkKD/BgooiFlRQAcWGFQRBQURQQXpvAtIhQCAJLZRQkwAJ6cnd/f4YcpcjvVwa7+d58rC3O7s7x157d2be+eQTNBr15TtjxgxatGjBwYMHad++Pb/++itjx46lR48eAEydOpU9e/Zket7Q0FA2bNjAwoULaXv/F0uNGqb/DxcXFwBcXV1xdnYGVMv43LlzWbhwIf7+/sZ9jhw5wrJly2jZsiVLly6lZs2axpbxunXrcubMGebNm1cg/19CCCFKptmzbpOiUxnLxw87QRmXzhY9X0MP07jn0ycTeDSPx0lIgC0H1fRgbq4JtOzeqABqZ06jgTdevsOwV9TjWZ/pKOd8mqgoNe/4yJHQsSN41w/n5EUPUnQ2nDl2Bu+2HgVeFyGEELn3cAbdNs7gkIPxVvYZdM+yd8vZvjbOua9XGjt37sTf35/k5GQMBgP9+vXj5ZdfZtq0aXh4eBgDboDg4GAuX75M06ZNzY6RmJjI5cuXuXfvHuHh4TRp0sS4zdraGm9v73RdzFMFBQWh1Wpp0aJFjut86dIl4uPjGT16tNn65ORkGjZsCMD58+fx9fU12+7n55fjcwghhCh9oqJg7jI1JtrONpmX3sl4juuC1MjP9B1/Otgmz8fZtQtiY9Vy3/72WOWtR3y2HvtfSyZ/FMal8OpsOGj6bq7gdJtZ022Asvg0TmbpVrX+5LFYvDNp5RdCCFG4Hs6gu2E+un4/2N3cQlq1asWHH36IjY0N7u7uWFubLpWDg4NZ2bi4OBo3bsznn3+e7jgVKlTI0/lTu4vnRlycyhY7d+5cKlWqZLYt7U0CIYQQIq158+DePbU84lkbKtW2/JjkBn410VqloNNbc/p83ruEr1ljWu7XrwAqlglrW2tee+48r84wn1d81runqFilAwDe7X1gtlofeM3fcpURQgiRK5JIrZhycHCgVq1aVK1a1Szgzkjjxo25dOkSrq6u1KpVy+yvbNmylC1bFjc3N44fP27cJyUlhVOnTmV6TA8PD/R6PYdSM7Q8wMZGtQrodDrjunr16mFra8u1a9fS1aNKlSrGMidPnjQ7Vtp6CSGEeLgkJam5t1NNnFg457V1sKVB1UsABIfVQpesy2aP9Ax6A2vXqh5jNjYqA7kljXmzGeXL3DE+bu99nJFvtjM+9m5mGlseGGjZugghhMg5CbpLgf79+1O+fHnGjRvH4cOHuXLlCgcOHODjjz/mxo0bAIwYMYJ58+axdetWzp8/z9SpU7OcY7t69eoMHjyYd955h61btxqPuX79egCqVauGRqNh586d3L59m9jYWJycnBg9ejQzZsxg5cqVXL58mVOnTrF48WJWrlwJwJNPPsnFixf59NNPuXDhAmvWrDFuE0II8fBZ9ms4qZNYDBiQPsu4JTWqewuAxGR7Lp4Oy6Z0eoH7znLpksql0rntXcqWLdDqpeNU3omJo9WNagfbOOb8VAYrremnXK1akDrz5wP3t4UQQhQhCbpLAQcHB3777TeqVq3KSy+9RJ8+fXj33XdJTEw0zrs9evRoBgwYwFtvvcWTTz5JmTJl6N69e5bH/fDDD+nZsycffvghvXv3ZsqUKcTHq8QzlSpV4uWXX+aLL76gbdu2fPTRRwC8+uqrjB8/nrlz59KnTx+ee+45du7cSfXqqjtc1apV+fbbb9m2bRsDBw7kjz/+4LXXXrPg/44QQojiyqA3MGu6qeX2zYm5b23Oj4Yeicbl00dv5nr/tX9eMy73bx9QEFXK1jtfd2L1goMc/vcajdvUN9tmZaXm9QYIDYWYmEKpkhBCiGxoDJll0ioB4uLiCAoKomHDhjg6OhZ1dbKk0+kICAjAz88PrdZCWVZEoZPrWnrJtS2d5LoWL5uXHqHn8GYAtPY6yX+nvNFYafJ0rLxc299n7+WpV1X37Jmv7eStLzvn6pxtG51kX5APAOdPXKauT81c7W8Jzz0dzs9L1Jj4A1vO0rJbA8udLDbW1LQeEwNlyhT4KeQ9WzrJdS29HrZrm9N4VFq6hRBCCFEkvvsuxbj8xoSYPAfcedXI35RA7XRw7nLLbvjtEPuDVbNyo5rnikXADeBd47RxOfDw9SKsiRBCiFQSdAshhBCi0F09d511+5oDUK3CdQaNaVnodfD0r4lGowfg9LmczfZh0BuY+dpO+o5ohsGgfkYN7Zv78eCW4tPUNLD85IkS25lRCCFKFQm6hRBCCFHofvkmGL1BdT0c/VgIWpvC74boUNaBOjXUdJdB1xqS3YC7uOhYhnXfx9tfdzYG3IM77GfSp60sXdUc825Rw7gcGOJUhDURQpQGmzbBypVk+/kosiZBtxBCCCEKlV6n5+fl9QDQaPSMebV+NntYTiNfFZjGxmq4ciXzchdPhdHO/wrLtrc1rps6fid/7WiJQ1kHS1czx9xrVqSicwQAgReqZ1NaCCEyt2MH9OoFjz4KP/xQ1LUp2SToFkIIIUSh2vbnMUJvqjHQPZofpVbDogsOGzUyLZ8+nXGZf/+FFp0qEXDBCwAn+3v8M/8A73/f2WzKruJAY6XBp666e3DjbiUiwiKLuEZCiJIqbaD93nsQEVF0dSnpitc3hRBCCCFKvXk/JRmXnx+dXIQ1yT7ovnkT+vaFiEgbAOpXuciBnTcZOKb4dCl/kLdntHE58GAWzfcZ2LQJBg2C7dsLuFJCiBIlMhJWrzY9vnsXPvigyKpT4knQLYQQQohCE34lgn/+VdOEuTmH0//ZZkVan0aeaebq3n8m3fa5c03zXT/yiIGDx91p1KrousPnhLe3KQt84LGoHO8XFwfDhhlYtQqeG3EHg14GcQrxsPrjD0hKMl83Zw6cPFk09SnpJOgWQgghRKFZ9JsNyTpbAEYOOoWtg22R1sfLw/SrMuhUgtm2pCT48Ue1bGUFP/+sobxb5vOwFhc+TcsblwNP5XwatmXL4M4dVT70ankuns5dK7kQovRYuNC0/NRT6l+9Hl59VZKq5YUE3UIIIYQoFAYDzPvVxfj4uTf9iq4y95WtUJYaFa8CcPpSTbPW3T/nHuPGDbU8eDDUqlUUNcy9xq1MFT0ZUi7H+z2YKGnnuksFVCMhREly8iQcOaKWmzWD+fOhdm31ePt2WLWqyKpWYhVK0L1kyRK6du2Kj48Pjz/+OCdOnMiy/IYNG+jVqxc+Pj7079+fXbt2FUY1hRBCCGFBe/dCSIha7tgRPLzLFWl9UjWqcx2Au7HluHHxFqDm4579nakVfsLYG0VSt7xwdnWmZqVwAAIve+WoVerQITh82Hzdrn9z3kouhCg9fv3VtDxqFNjbwxdfmNZNnAiJien3E5mzeNC9fv16ZsyYwYsvvsjKlSvx8vJizJgxREZmnE3z6NGjTJw4kccee4x//vmHRx55hBdffJEzZ9KPsyqNPD09s/z79ttvi7qKQgghRJ7Mm2dafv75oqvHgxo1iDEunz5yDYD9GwM5dKYxAH51g2nfrVKR1C2vvJu5ARAdY0tYWPblf/zkcLp1uw6XkKZ9IUSBSU6G335Ty7a28OSTannwYOjcWS1fuABff10UtSu5LB50L1y4kKFDhzJkyBDq16/P1KlTsbe35++//86w/KJFi+jQoQPPPfcc9erV49VXX6VRo0b8lnr1S7k9e/YY/9555x2cnJzM1o0ePdpY1mAwkJKSUoS1FUIIIXLm7q0o/lyuMpWXKwdDhhRtfdJq2Mj0c+j08XsAfPOlKQP4hP9FoLEqWa2+Pj6m5ewSH925cYel69UNBmfHaFp5nQLg4q0aXArKQcQuhCg1Nm5UszYADBgArq5qWaNRgbbV/Y/Ljz+G69eLpIolkrUlD56UlMSpU6f43//+Z1xnZWVF27ZtOXbsWIb7BAQEMHLkSLN17du3Z+vWrZmeR6fTodPpCqTOlpJav+zqWaFCBeNymTJl0Gg0xnUHDx5k5MiRzJkzh2+++YYzZ84wf/58/vnnH6Kjo/nuu++M+86YMYPg4GB+vd8/RK/XM3/+fP78808iIiKoXbs2L7zwAj179izop/pQyel1FSWPXNvSSa5r0Vny3THiEzoD8HT/09jaelKQlyE/19bTx9m4fDrIwOWQMP7a2RJQGdYff8G/xL1mGjXSkNq2cuKEnp49M+9jvvCrABKSuwDwbP+jVChv4ECwCsJ3rA3lGY8qGe+o06E1Luoo0Aua9rjIe7a0ketafC1caAWom4wjRujM3tbe3vD88xrmzrUiJgbeflvPzz+bf7Zkdm2vXgUXF3Bysmj1C11OX8MWDbrv3LmDTqfDNfUWyX2urq5cuHAhw30iIiKoWLFiuvIRWczGnpuu51u3lmPOnKrExWmzL1xAHB11vPDCNbp1g5O5yLN/+fJldDodAQEBAJw7dw6A6dOn89RTT+Hu7k5SUhK3b98mNjbWWA4gPDycmJgY47p//vmHPXv28Mwzz1C5cmWCg4OZNGkSt2/fpmHDhgX1VB9aubmuomSRa1s6yXUtXAa9gZ8Wuxsfd33kEgEB8RY5V16urcEh1rgcGFKGLz4IIEXXD4DhfQ8QfDaToLMYs7Z2ANQk5P/tukJA94x/R+l1en5cbOpG3m1AIlGRpsGaW7Yk4NM1IMN9reLj8b+/fOLECfQODgVR9QzJe7Z0kutavNy9q2XNGl9Ag6trMu7uJ0gTXgDw2GPWLFnSmJgYa3791YquXYNo3Dgu3bHSXtuNG8vzwQd1qFw5iSVLTuPkpLfsEymGLBp0FxYPDw8cHXM2hccLL1hx8WLhdxH7++86dOt2DB8fH7TanAX8oaGhaLVa/Pz8ANVzAODNN9/kkUceMZZbv3491tbWxnKgktFFRkbi5+dHUlISY8aM4eeffzaW6dmzJxERERw9epRhw4YVyHN8GOl0Ok6ePJmr6ypKBrm2pZNc16Kxd91JTlxUAWBLz0AGPN2jwM+R32tbudxNbtytxOlLdQm6XAcAa20yE6f6U7Vu5YKursV5eaSgtUpBp7cm7Gyc2W+EtLb+eZRz1+sC0MXvKH2f6EZCTDzPT0wgMdmeAyc98POrnvFJYk03K3x9faFMmYJ+GvKeLaXkuhZP332nISVF9ZAZOVJL8+Z+GZabOlXDxIlq+ccfvdi9W4/mfnj14LW9cwe++soKnU7D1at2XLjQhBEjSs+cY3FxcTlqALZo0F2+fHm0Wm26pGmRkZHpWrNTVaxYMV2rdlblAbRabY7fsG+9BVOmwL17OSpeIMqWhTfeUC+u3NTV6v6gidTyqY+bNGlidgyNRoNGo8l0XVhYGPHx8Tz33HNmx09OTqZhw4byYVcAcnNdRcki17Z0kutaeA5uPsXgp2oaHz8/4o5F/+/zem0b1r7GjYBK3I4xDfMa2vUgNRq0K8jqFZoyZbU0qHqe4LB6nL5cB4POgLVt+p99P/1o6ho5bmwiWq2WMi5OtPIK4N+Tfpy/UYvr569R3aNq+pOk+X/WarVmjw8dghMnYNgwyGG7SJbkPVs6yXUtXtJmLR892orMLs3LL6vEmMHBsH+/huXLtQwfbl4m9dp+/DGkDQXXrLFi1KiCr3tRyenr16JBt62tLY0bN2bfvn1069YNUGOL9+3bx9NPP53hPn5+fuzfv99sXPd///2X6R3a3HrsMfVX2HQ60nXPyCuHB7pvaTQaDA/MB5I2wVpcnOryMXfuXCpVMs++amtrixBCCGEJW5cfZdAID2IT1SC+5g1O8/SEFkVcq4w18ohnR4D5ulcmliuKqhQY7/q3CA6rR2KyPedPXsCzWV2z7VfPXWfVnuaAaukfNLq5cVunNlH8e7936K49djzlkbNzGgwwYwa8955aDg1VCZeEEMXb8eOQmnKrZUto1CjzsjY28NVX0Lu3evzWWzBwYPrOLqdPQ5qUUwBs2gTx8WDB0SjFksWzl48aNYrly5ezcuVKzp8/z4cffkh8fDyPPvooAJMmTeKLNBO/jRgxgt27d7NgwQLOnz/Pt99+S2BgYKZBulDJ18LDw83WBQUFGZfr1auHra0t165do1atWmZ/VaqUvHFqQgghir+/5+yj71ONjQF35ybH2LavOvZl7Iu4Zhlr1Kmt2eNWXoG06tm4iGpTMLwbmsZmBx66mW77vC9C0OlV+8vzQ4OwsbMxbus8tKNxedd+13T7ZiQmBoYOhXffxTg3+Pr1eam5EKKwpW3lfiCndYZ69YI+fdRyWBh89pn5doMBXnvNlF+xXDn1b1wcZJEfu9SyeNDdp08f3nrrLb755hsGDhxIUFAQ8+fPN3YXv379ulnA2LRpUz7//HOWLVvGwIED2bRpE99//z0eHjm8xfoQat26NYGBgfzzzz9cvHiRb775hrNnzxq3Ozk5MXr0aGbMmMHKlSu5fPkyp06dYvHixaxcubIIay6EEKI0mjd9H0PHtyQpxQ6Age0PsGFvQ5xdnbPZs+g82Koz4cXEjAuWID5+phscgSfMn09yYjI/LfMCQGuVwtiJ5r+zWrfRYHM/Bt+5M/tzXbwI7drBX3+Zrz9xwmzotxCiGEntifv997BokVpnZ2eamzs7X34J1vf7TX/2GVy6ZNq2bh1s3qyWa9aEuXNN21atynfVS5xCSaT29NNPZ9pSvXjx4nTrevfuTe/U/goiWx06dGD8+PHMmjWLxMREhgwZwqBBg8wG9b/66qtUqFCBuXPnEhYWRtmyZWnUqBEvvPBCEdZcCCFEaZKYCJ9/Du+918a4bmTf3cxb0SbD8cTFSdqgu0oVGDK2WdFVpoB4NzcNKTt5Wt0AuXcPrlyBdX+Gc/2OGqfdv+1hqnu0NtvX0VF1Md27F86eVfPxZtU5rmNHuHJbLZctCw0bwsGD6kf9oUPQuXOBPjUhRB6dOgV//qne2/v3qx4qaQ0aBOXL5+xYnp7wyisq+E5IgEmT4PffITlZw5tvmtp2Z82C/v3V50pcHKxZoz4bHqbh/MX7G/Ah9+ijjxq74QO0atWKkJCQDMu+8sorvPLKK5keS6PR8Oyzz/Lss88WeD2FEEI8vFKSUtjxTyBLNzRhxUoNUVGmba89tZvPf22HldbiHevyzd0dXngBli5VYxVLQ8qTej41sbeJJyHZgbX/+VPe6S53Y8vd32pKjDb+lYx7IHTqpH6YA+zaFM6TI90yPVfk/YDbw0O1Yu3fr4JugH37JOgWoji4cAFatFBjqjPi5gaTJ+fumFOmqFbyiAhYvhzGjYNVq9w4e1alM+/QAR5/HDQa6NED/vkHbt2CAwegbdusj12aFP9vQSGEEEIUK/H34tm5IoBXntxJNfc79HjCj4W/mAfcn3wCXyzuUCIC7lQ//gh37sATTxR1TQqG1kZLo1oXAUhMtk8TcJv4+sIjQzLOmNSpuamv6M7VQem279tn/rhPH/VD2ssL2rTJvJwQomi89555wF21qgqIv/5a9Ui5ehVym7u6XDn1eZ/q5ZetmDdP3dTTaGD2bIzTiQ0caCr3sHUxl5ZuIYQQQmTpRugt9m46z97diew9UpGj5zxJ0fmlK1e2LAweDKNHq1bSkij1x2Fp8fr424x9O5bkFBtqVLxOjQbu1KzjQI0aULu26kpqlcl9kbadXbHWJpOis2HXoWpm2+LiVM+A4/cfvzgeZnxj6i7q4QEVKsDt26rV22Aoff+3QpQkR4+qnjwAFSuqm2H16hXM+3LMGPjhB5UBPTBQA2iN6/39TeX69VOfN3q9Cro//TT/5y4pJOgWQgghRIYSYhPo0z6IHQH+gHuGZexsEujbJoBhT9nR9xn/h24amOLuqdfaMXR8MlprLVbaWrna16m8E80bnGR/sA/BYfW4efEWlWqr18GUKXDuvKnsjBnm4zM1GmjdWmUvDw9X3Vrr1SuIZySEyIu03canTIH69Qvu2FqtatFOO4zE2dnAxx+bR/QVK6qEi7t3Q0iImufby6vg6lGclZw+X0IIIYQoVH8vunw/4DbnVf08Y/rvZvGXe7l5NZG/d7XmsbEScBdXNnY2ee7m36l1pHF517pzAPz3nxr3nlZGCZFap8nNJl3MhSg6W7aoP4A6deB//yv4c3TqBI89Znr87rsGKlVKX+5h7WIuQbcQQgghMrRqh2kaqRcGbWX1woNEXL1N0JV6zF/dgadfa4eLm0sR1lBYWqdHyhiXd+1MJj4eRo0yzcOdFRnXLUTR0+vhrbdMjz/+WE0LZgk//ABDh+oZNuwmr7yS8YfEwxp0S/dyIYQQQqSTmAgbNqjlChXg2z+7GedjFQ+Pdr090VqloNNbs+tgVaZMgdQZSVs0Bw5nvm/LlqqbucEgQbcQRWXZMjh2TC37++d8Du68cHOD3383EBAQho1NxQzL1K8PjRurqcv274ebN8mwRby0kZZuIYQQ4iGSnJhMdGR0tuV27DDN39qvHxJwP6ScXZ1pWl9NV3rqcgO+/FK1XtnZwZw52ezrDN7eavnECYiNtWRNhRAPSkyEd981Pf7008wTJxam1NZug0HN2f0wKAb/7UIIIYQoDEnxSXRuGoRLRWd++2pvlmVX/aM3LqftDigePp1ahRuXDQaVGGnatJwlQEod163TweEsWsWFEAVv7lwIDVXL3bpB9+5FW59UD2MXcwm6hRBCiIfEyp8P8d9pXwDenl6XlJSMy+l1elb/eQsAO1sdPXoUVg1FcdTpEUezx61awcSJOdtXxnULUTSio+Gjj0yPi9P0XM2bQ5Uqannr1oejF4wE3UIIIcRD4oefTEmxwiKqsHZtxuWObA/m2u3KAHRrehQnp8KonSiu2vf2xEqjA8DOzsDChRlkK484BLqkdPtK0C1E0fj8c4iIUMvDhkHTpkVbn7SsrGDAALWckACbNxdtfQqDBN1CCCHEQ+DUvnP8e9LPbN2PP2ZcdtXym8blgf0SLFgrURKUc3fh45e3U6dqOAsXamjYMINC27rAXy6wpSMEvA1X10LibTw8oHx5VWTfvpxlPRdC5E9cHHz5pVq2sVEZy4ubQYNMy//8U1S1KDwSdAshRAkVdPA8W5cfxaCXX7Eiez9+dTXdus2b4ezZ9GX/2VwdAI1GT//hORi4K0q9t2d350JYRYYNS7My6a55IV0ChO+G0zNhV39Y4Y7V4XG0apEIQHi4aXypEMJyQkJMXbYfewzq1i3a+mSkSxcoW1Yt//UXvPkmHD1aem/MSdAtjJZ8tZf/Df6XsLPXi7oqQogsGPQGvpy8C+/Wten+RFN+mPpvtvskJyYzZexO3hmzk9ionA2ekmC+9Ii5E8Oitf4AONrF8s5bptbrud+bvx7OH7/EqcsNAGjldZrKddwKr6KieNNozB/bOJuWaz0JZeqYbzfo4Nwc2pT73LhKupgLYXkXLpiWGzcuunpkxc4O+vZVy3Fxqjt8s2YqQeMHH0BwcNHWr6BJ0C0AWPvrQZ5+vR0//dORR/vdRpesK+oqCSEyEH8vnhF9/mPip53QG9Sgyo++aUh8TNZdgL98ey8fz+vMjAWd6dH2PHdu3s2y/J8/7qOq6y06+QbkOEgXxdeS745xL14FSMN7HuG1N+yxs1Wf8wvmJxF/L95YdtXvpqbIgT0jCreiomTRpPkZ2Xo+DLwAg69B+z/B42WwVskA2ngcMRbLTdB9+za0bGnFk082NAsihBBZS9ujpE6dzMsVtZkz009JeeaMmh2hYUN46aWiq1tBk6BbcP06jHrdz/j40JnG/DQ966lkhBCF78oV6NA2ht82tTNbf/OuOwtmHcx0v+ho+OyXDsbH/532pWOrcK5fuJmurE4H77wUxNDxbbhxtxL/nvTju6mHCu5JiEJn0Bv4caG78fG4V92oWBEe76Kinzux5Vk+xxQUrdpQzrg8aHjNQqunKCUcqkDNx6D5N9D/HNQfS8uBPYyN5MagO3wf6DNJn3/fzz/D0aMazp1zZNQoK/T6LIsLIe5Le5OqOHYtT1Wrlpqn+/p1mDMHOnc271Dz229FVrUCJ0H3Q06vhxEjIOK2rdn6tz9rwo3QW0VUKyFKh6T4JI7tDCY5MTlH5WOjYtm/MZAzR0PNWh4B9uxRU2wcCVRdfR3tYpn24k7j9s9+rJvpeb79Fm7fMU81HHipAe3aJnL++CXjuqgoNXfmjO/NsyR9Ns+X6MjoHD0HUfzs3xjI8VBPAFp5BdK0i7q+419xMZb5cUE5ACLCItkT6AOAR7VQvFoU419rovhzqAQt5+LS/AUaNVKrjh+H2PCrsLUDrKoNJ6dB3LUMd9+2zbS8d6+Gb7+1fJWFKA1KSkt3qooV4X//gx07VAPDl1/C0KFqnvHSQoLuh9wXX6j58QCqVoUhXQ4DEBXnwutjM8iuI4TIsSGPBNC0ixf+Hhc5tjPrwUkrftpPrRoJtOntjWezOjg6O+DmEkHT+kH07RBE165w6/59sDp19Ozbeo0p33Wmd0vVCn05vDq/zT6Q7rh376pxUqCm+Fn35zVquYUBEHqzJu0723NizxlCQtTcu+vWpZY14F39JAC3YyrwzYdH8/8fIorED79WNy6PG33XuNy6lzdN6oQAcCDYm6M7gli3NMg4bGHgI5cQoqCkTh2m08GRtZvUeO/4q3DyA1hVC3Y/Djd3GcsnJcHu3ebHePttOHeuECstRAmV2tLt6Aju7lmXLW6qVYPXXoNly+CJJ4q6NgVHgu6H2OE9EbzzjkqUpNHA4sUwZ1EdKjjdBmDp1nZs+eNIVocQQmTi6rnrrN3XEoBTlxvQqltdZry6M12+hKjwKEb23c2Q/7Um8p6r2baI6IocO9+Q9Xsakny/EfuRR+DQISt826tEV+9OsTOWnzG7Wrrjf/2Vgbt31fIzz0Cfx6qy9z9rGtdUN9Vu3K1Ex57utGyeRIiKv6hQATZt0rBydVm0Vqr75xcL/bh7Kyrf/y+icEVEwPJ/1HxNFSroGTquuXGbxkrD+NGmIQY/fh3OqvVljY8HPl6h8CoqSj2z+brPd4bqA01jwg0pcOUv2NZZBd/xN9i/XyVXArCzU/3K4+Nh9Gikm7kQWdDr4eJFtVynTvr8h6JoSND9kLp3+x7DhsaQkqLeiW+9BV27QsXqrsx697Sx3PjXXUmIlTlahcitdX+Y9xRJ1tnyzuzOdPQ7xfmTqivlztVn8G18j1/Xm8Zb92xxmGHd9tLe+zg13cKMQa+Vlbrzu3EjuKaJzdv186WTbwAAZ6/V4e8/E43bbt+4y1efxwCq5XrKFLW+Wv3K/Lu/Iq28AgGIiitHdIwaYuLtDYcOqeC+vn9tnu2jBmDejS3H1x9Ia3dJs2CBajEEGDXKCgcne7Ptw19sSlkHNXRgycbmbDroC4BbhTha9yymKW9FiWQWdAfWhY7/wIBQaPwe2FcybbzyF6xrxNY/A4yrXn01jDp1VCPB7t3w3XeFU2chSqJr10yf+8V5PPfDRoLuh9QrIwI4d702AC29Qpg2zbRt5Jttae99HIBz12szY+L+IqihECXb2g2mFujh3fdipVEt0P+d9qVJmyoMGwZdBzXgcrjq+uvsEMWvs/awYX8zft/Sjt0nm3DpVnUSEzRcCY0nIkKNcUqb4TPVux+WMy5P/8zROMfll1MCiI5TLZejBhw0+/KtUKU8W/fVoUfzw8Z1Q3qcYd8+8y/p92bUxlqrmtm/+rUpt6/fyc9/iyhEer1KTJPqf/9LX8apvBMj+gUAEJ/kSFycuhHbf5AjWhtt+h2EyCNPTyhXTi3v23d/Lt4yNaHJRzDwMrRaAHYVVYGkO2zbZJo1oWPHu8ybZ2renjxZupkLkZmSkkTtYZPBzzdR0JKT4c8l0QTsvMp6p2g02fXzqNgatGlaI2KvQMz57E9k7QiuLc3X3TkOSeY/km/e0vDLuk4AONnf4/c/7LGxMW230lox56cy+HVIJkVnw8wFbRk+QYdnQ/kBJkROxN+LZ+thlYyqcrmbLN7Qhhc3nmLEc86cv1GL2FgNf/wBoD4LOjc5xi9L3ajVsH26Y2lttFSv7ZDl+boNqk3LlnDwoEpStG4dtPaLZPZvzQCw0Sbx3ifV0u3nVK4Ma/715Zcv/qVceWseH9fGbAYggDreNRjd/19++qcj0fEufDFlJ5/M75zuWHdu3mXlwpOkpBioUduBml41qeFRCWfndEVFIdm0PJjQUC8AevSABg0yLjfutap8/6f5uoEDLVw58dCxslJ5IzZtUvkpQkPTBARaW6g3Cqr1g6OvcS9oFQcvqN8znp4GKlVKxs8PXnwRvv/e1M185051XCGESUlLovawkKC7EPzyC4wdWx4YkMcj1Lj/lxdNstz6wyfHqdck/Q/9xm3q88bI/5j5c1uSkm0Z/5JKuCbjQoTI3va1YcQnqQinb4czWGkr0bavDwEhyUx8E376SZWzs4Pp0+HVCX5YafP+5tJo4N13TYHSJ59AB4+TxCR0BuC5Qfup1bBjhvvaOtgy9r2Mt6V6d0Y9flmbSFKKHbOXtue1mSrTaKpNvx9m9MvVuHa7Q7p9XVzUlCCvvgqjRuXl2YnsrPhpP19+40hCkvlXeli46SKNG3GFzL5HGrepT0efAP496QeAg4OObt3kJqsoeG3aqKAbSNerBgB7N2j7G/+eO0SKTrUGdO1qMG6eOep71q99ntBLtuzerQLwl18upMoLUUJIS3fxJPcHC0FxzRr4bJ89PPN6+oA71ZRv2lK7tlrevh1+/71w6iVESbf2X1OTYr/HTS3MTs42zJ2rbmBNngxHj8Lrr5OvgNt4nn7goxrX2b8fvvxNvbftbBJ4Z0YmTZw5VNOrGs+PUl09Y+OsmTVLrY+LjuOlobvo9VRzrt2ukuG+UVFw4gSMHQtXr+arGiIDumQdY173Yu8pX46cbWT2d/Ou+vKp7nqNfo9nfH1SjX/+nnG5R+d7ODpatNriIZV2XPeGDZmX2xbQwrhsDLrvnsQp5CV+fqqncdvkyQZjwighhCIt3cWTtHQXgoEDITAgmr0bdlC5ciW0Vtm0IJRrorpapYq/DnFh2Z/Iyh7K+5iviwqBlPTz6zqVtaF9vzbp1qfl6KjuIvftqx5PmqSei5NT5vskxSfx0YT/iI2FTxe0w8bOJvPCQpRCBgOsXauWbW2h2+D0t5kfeUT9FSQrK3jn1WsMG1MVAJ1efbz/79EDVG/QKd/Hf/uDCsxfBImJKolRhyZnmDjJhjNXTcfu2eIwjw6I48plPZfv+XPlpgshISqpS0oK/PjRAT6e0yrfdREmpw6c526sBwAajR6tlXn2+nJlovjqo0tY21bN8jiPjm3N8DV7ORZcmekfGIByFqqxeJh17KhmR7h9G/78E77+2rzXTKrU+bk1GujUCS5fBs151UWoS+OdjO/2PT9sfZG4OA3vvRTIb39VUq3kQgizlm4JuosPCboLiZd3GRJSquPn54dWm9tue1Xu/+WFZx73U/r0gQEDYPVq9cP508kBfPSdX6blP3jxP2Yu7AxAY+/djHk7fXdTIUqz48ch7P49sq5ds75JVdAef6YS7793gbPXVaBvbxPP5OleBXLsatXghRdg9mw1jU//pzyM2xxs4/h88iHGfdARjZV5q/21SzHUqmdHis6GuUvr8d4XCdiXsX/w8CKP9u+NNy5//ua/vP5p5wdKVLz/lzUbOxuWbG5XoHUT4kH29mos9uefq+zKCxaoG/pp3bqlescANG2qgvTLl8HgMw3K1oezPzD9iXdYtv8JImMqsmSdNxO/aol/Jy/weFHltpGxcOIhltrS7e4OZcoUbV2EiXQvF9n6fJYBG2s1bdGsn7y4eCrjVveDm0/x2S+mIPvoUZlI82Fn0BuyL1TKrF1jes79+hXuubU2Wt6eYOrDPX7oAarUrZTFHrkzeTI4PJDTrYXHKY79d4PxUzulC7gBqtZy4vEuBwE17/jS7w4VWH2Kmxuht3hp6C5mv7Or0F77B86Y8na06uldKOcUIj/SZtGfMyf9nNs7dpiWzXoE2ZaHhq9D/zO49PmD955dYdw0eelHcHExbG4NR161SL2FKCx79sDzz6u8B7kVH68ayUDGcxc3EnSLbDXw0PDq8D0AJCbb8+ZLV9KVSYhNYNTzdugNplb84PNlC62Oongx6A2MHfQv7uUj+Wf+gaKuTqFa83uwcblf38K/6fDsG+2YPmEnbzyzk49/LNiu3JUrw+ujAgDQWqXw4bid7D3hgWezrL/ZX5lYzrg8e65bqbwZE34lgq6d7vH9n514dUYnfvpkd6Gcd//9GR2traFpm+xbtIUoavXrQ8/7w7JDQ02J1VKldi2HTIbhaKygam/GfTGW2rXUdIabT/Zka+D9wlW6F3ylhSgkf/wBXbrA/Pnw7LO53z9tjgMJuosXCbpFjrz3ZVPcXcIB+GtnG3atDDDbPu2VfZy+XN9sXcilvHaJFyXdqf1nmbeqIxHRFfnw44cnI9PNi+EcDG4IgE/tM9SqXfhdHK20Vrz9dWdmLeqMQ9mspxrLi6lf+7Dq5wOcOniZD37onKO8Da17Naal5ykAjod68e+q4wVer6J05+ZduneKJOhKPeO61z5uzukDWU8kfPkyvPWWeZCRG9HREBSklps0Sd8LQYjiatw40/KPP5pvS30/2NpC+8xzvWJnBx9/Yvr8mbzmD/RVB0GV3uYFw9bAzv5wbSMYpAeeKL5+/BGGD1c5UADOnlX5D3JDkqgVXxJ0ixxxdnVm+lumFrwJEx3QJauEPYd2hvHpQjXlkI02iVpuqvv51dtVuHc3ofArK4rciiXXjMvHL/lw5WxEno917fwN/vpxH1++tZNXh+/i0Y77adFcR+XK0K5d7r+QLGn9sjSt3F2vZVGy5NLaaBkwulW2rdsPmjDurnF59lel53MhOjKaXp3COB6q8mdordSvpfgkR4Y9V5OETJ5qaHAk7doZ+OwzGDwY7t3LuFxWDh1SiftAzX8sREnRty9Ur66W166FS5fUcmioKQlUmzZkm0V/2DB1wwngSGBFlt9YCQ8mqz3zLX//Y4tX89o8220NhssrTG8cIYoBgwE+/hjGj0//0jx1KnfHkunCii8JukWOjXyjLU3rq2aV46Ge/PzpXhITYeSL1Y3dyj8Y/x+P9C5n3OfMeUmY9DBascG8l8ParXnr9rpg5m7qeJXn8fFtmPhZZ2Yv7cTK3a05fETLzZvw338qw35xsWadqdWl/xDXIqxJ8fPY2BZUKX8DgFV7WmSaG6IkiY2KpV/nCxwMUWOpK5W7xZGd52ncIBKAE4G2TJ6cfr8rZ67TtVMcYWGqJ8S9e3D4cO7Pv3/tf8bl1v7F6O6TENmwtjaN7TYY4CeVmNys10e3btkfx8oKPv3U9Pjdd1WCtlT6xHtMmdOPx2b/Tch1LxZtH8jhX2fAplZwY2v+n4gQ+aTXq6lDp0wxrWtiStVBYGDujict3cWXBN0ix7Q2Wr7+wvRt9u6sRkx8NZHTp9Xjpv4pTJrVDi9vU7rm4OAHjyJKu/PHLxlb/VKlTqGVU8mJybw09F/GvN2BpBS7dNutrEy3gtety1M1C1xiXCKbD6rgq6JzBC27NyriGhUvtg62jBuuPhD0Bi3ff5p11+viLiE2gUFdg9kd6AeAa9lItq6LokkHT5b+7Yrd/Zft7Nmwfr1pvxuht3ikSwIXb9UwO17q2OzcOHDQ1KLXqmlU7g8gRBF67jkVfIMav5qUlIPx3Bno0cNU9sIFUwAfHQ2DHi/Lx3++Ylb+SGgzuH0ItneHbY9AxMOVd0QUH8nJMGqUmjov1axZalrOVCdP5u6Y0tJdfFk06L579y4TJ06kadOmNG/enHfeeYfY2Ngs93nmmWfw9PQ0+3v//fctWU2RCx0GNOGJrqp1JSK6It/PUb8sbWzgl1+tsbGzwTNNvBUSUhS1FEVp5W+h6dZt2wbZvPWNwq9E0L3lKb7/s6Nx3eh+u1ny9V52rz7BxdNXSYjT4eurth08aODm5aJv5du5KpDYRHXDqU+7YLQ2uZ0asPT73yRvbK0TAZi/wo/YuzFFXKO8SU6GoY8lsfVoMwBcHKPYvOoW3m0bAODjo6ZESjVypJ7roZFEhEXSrXMUZ6+p5odK5cKNZQ7supmrOhj0BvYHql9U5cvcoYFf7Xw8IyEKX+XK8OijavnWLfj7b9i+XT0uWxZatMjZcTQa89buadPgyBE15GLNmvTlj15L04R+c7vKeL6zP+hKz7AXUfzFx8OQIbBokXpsZQU//wxvvAGNG5vK5bWl29raNISjxDAYIPYyXP4Tjr0JV/4p6hoVKIsG3W+88Qbnzp1j4cKFzJkzh8OHD+cogB46dCh79uwx/k16cBJHUaQ++74W9jbxZuvef1/90ATwSjMtsLR0P3xWrDN1q+7aMQ6AxMScJYs6tusMzZslsOuEHwC21oksmLmbn9d0YPiEdrTv70uthtWwsbOmXzuVjMtg0LB+aS4HPVnA2n9MAWT//hJwZ8S9ZkWG91TTh92NLcein3IXaBYXS5bAmo3OAJSxj2XDn5dp2qWhWZkXX4T+/dVyeLgVzwy5RPdO4Zy6rALzmm5hHPgvCRdH1UK9/4AmV1ndL54OIzzaDYBWjc9lOF2bEMVd2oRqkyer4BugUydTK3hONGsGTz6plsPDoXlz0++P8uVh5UrT1N1HwodA29/ByZT4EF08aGU4nCgcUVHQq5fpppCtLfz1l5rDHtRrtlo1tRwYmPMUBAaDqaW7Vi3QFvefIkl31TCPwE9g10BYWQVW1YI9QyHocwhbWdQ1LFC5+EjLnfPnz7N7927++usvfO5HY++99x5jx45l0qRJVKqU+dyx9vb2uLm55fhcOp0OnU6X7zpbUmr9ins9c6Jag8q8OepfPvqpCwD+TZJ44w0tqU+tZk31ZZmSoiX46BV0uqpFWFvLKk3XtSBcu3CDfUHq/e5d6yyvvFqT7f+qbWt+OUjfvs0y3Xf5cg1jxtQnPl7dC6xS/gZ//naT1j3bZvj/27svTL+f9XbtemtGvFGw1yA319agN7B2p2p1tNEm8cgQL3lNZOLFiZX45f6QgG8W1uW513RYFeJAp4J4z+7dqyH1nvWiRda07Nkow+PNm5OE/55ort+pxLZjTY3rq5S/wZbNyVT3qEmrRsfYfLg5N++6E3r6MrUaVstRHfZtuwSoLuot/WPk9YZ8HhcJnQ6tcVEHufy/b98eGja0IihIw+XLpvVduujR6Qym45L9dZ06Ff7+24rkZNMNqMaNDaxYoadePfDyUuc5eRLiKw3FtvdgNBcWojk9HX3DSeZ1Nxjg+jqo3Dt9YjZRIB7W9+utW9C3rxXHjqnXqZOTeo127Wr+EvT2tuLqVQ137sCVKzpjEJ6ViAi4d0+9XuvUMaDTFU22/nTX1qBXU/2lir+O1Y7uaO5l3TJniDiAvgS8PnL6GrZY0H3s2DGcnZ2NATdA27ZtsbKy4sSJE3Tvnvk8imvWrGH16tW4ubnRpUsXxo8fj0MWc6GcOXOmQOtuSSdzOzijmOr5tD3HTv7LjYhyvD/5OqdOmSfKqlfJhZCr9Tl7uSJHDh9Ba126v7RKy3XNrw2/XgXUN0P39sFUrBiBvY0fCckOrNtZk6NHjmGlTd8id+6cPc880widTm1r3uAEM76MxL6SMwEBARmey7aiDjfncMKj3dh80JtD+w9hY5/99FW5lZNreyUonIu3egHQzvsYF65YQ/rp7AWgcQZ//3scO1aW4GANc+deoE2b6EKvR37es0ePegBlAXB1P01AQOY/bKa/d5XRb/TDYFA/ONycw5nz3XHu6SoSEHCbRh7X2Xw/idq6P4/SdkB4psdKa+cOU7rzmvWiM32fPIzk87jwWMXH439/+cSJE+jzMG9d375uBAXVNFtXrVoQAQHm3b1zcl2HDKnOH3+oRp3One8wdepF7t3TExAAtWvXJijIleRkDStWhODlFQ+0RFPjTwzXrOF6gPE4LjG7qX/1NRJsanK94vPcLtsDNKX7d0xReZjer9ev2/Liiw24fFn1qnBxSeGbb85SoUIcD36Eu7tXAyoDsHp1zr4nT51yBFSvq7JlIwg4dgmtPgorfSIaQzJWhkSSrCuh15pyL2l1UZSJDwQMaNCj1cVgk3IL25Sb6i/5JjYpt7DSJ3K8/mYMVqYeIa5Rq6gQvQkDWtBYYcDK+G8DfQy60EisUiK469SJS1U+MFXUoMMv9goPvqNSrMoSa9+YOIfGxNp7E2vfiJRS9N1msaA7IiKCChUqmJ/M2hoXFxfCwzP/UdGvXz+qVq2Ku7s7ISEhfP7554SGhvJd2qwCD/Dw8MAxu3kliphOp+PkyZP4+PigLfb9PXLmn92pS43TbWtY5xAhV+uTkOxABXt36njXSFemIMVFx7H+9xO06FQjxy1FBaE0Xtf8mDTJ37j89FhPmrStR7fmR1i7ryXX71TGEB2B3wPdcAE++0xjDLifekrP3DkNsXfIvvmzd7v/WLTBjZiEsty5pKXHE34F9lxyc203/27KgjWwTzx+fh0KrB6l0dtvw9Chann9+vqMG1d4d+ML4j0bFqZem5UrG2jf3jfLsn5+fpwL2sUn87vgWjaSTWsi8G1nGlN6rUcyX/+uli+cK8d4P78c1eFkyGnj8oBh7ahQpXzunkQpJJ/HRSBNsg5fX18oUybXh6hTB374wUBcnPoOcHc3MGSIl7E7eG6u6/z54OGhp1o1GDXKGSsr0/vzkUc0bNiQWm0v/Pwy6bNrMGC17WUA7JMvU+f6FGrHLMHQ+D0MNR6Xlu8C8rC9X0+fhhdeUK3XANWrG9iwQUPDhh4Zlu/SRcPixWo5Pr5e5q/XNM4EmgLzlq6raHpxEpqkO2ZldB1WQdX2phW3dqHdMSFHz6GJf0uzFmvNscVY3TiY7X6ujkmUf+C7zSq6PYak2xgqtATXFhhcW6Jxqo+TxgqnjA9TbMXFxeWoATjXQffnn3/OvHnzsiyzPm2q1lx64oknjMuenp64ubkxcuRILl++TM2aNTPcR6vVlpg3bEmqa3541k+APWr5XGAE9ZvUtti5bl0Op1fXCI6db0d112ucvZSMfZnCHZv1sFzXrERGwq5darluXfDv4IFGA/16J7B2n1q/YUUELbuZ/z+dOQN//qmW3dzgp5+scHTMWX/j/v2tWXT/R9SG1XH0Hl7w1yC7a3v3LixY3dZUp2ENHvrXQnYGD1bDUC5fho0b4fqlWKrXdc7z8WJi7nfL0ydDSpxxvaOzIzZ2Gfd+yOt79s7Nu9y6VQ4Ar1o30WorZ7vPR3M7M3hYELU83KlY3fymU5tHGhiXDwZUyFGdEuMSOXZe7degaihu1WVemLTk87gQpfl/1mq1eRpEWqECPPUUpP607NpVg3UGveNycl3LlFHdzDPSvLlpOSDAKvOqGgzQ5CMInAa31Pgozb1gNPufhqDp4P0+1HzcvLusyLOH4f169KjKsh+pZpPEwwO2bNFQs2bmzzvttGGnTmXxegXQp8BaTy5teByYCUBdh83pAm4ArSHJ/H2qzaaHoEYLDlXBzg2t9QNl9VknHzRoHdA4VEHjUDn9Ne6yATQaSkM2kpy+fnMddI8ePZrBgwdnWaZGjRpUrFiR27fNMwqnpKQQFRWVq/HaTe6/6i5dupRp0C2KH6+GppdWcGAsvSx0nkunr9C9ewpnr6kfsmGRVVm18D+eeKltNnuKBTN38+L7zXn8kSP8uq5dvhMxrVljGo/06KOmpDV9n2wA9/MnrtnqzgcP7Dfzjf8wGNT1ev11yE2nlR5DG2PzchLJOlvW7KjLbL2hUBNKJSWp7KPnzqlztmwJ9XwKr6dFSWVtDaOfus2HMypgMGhY/M1R3v66c66Po9er//9//kldYwO4GLe7OYfzzcdnefLlgvs8CDkWBpQDwLPqGVK7/2VFY6WhWdf0PTwAKlZ3pV7lS5y/UYujZxuQFJ+ErYNtlsc7vuccicmqh1Fr36uABN2iZJswQWVxTkyEYcMsc460DW1Hj2ZRUKOByo9Apa5wcwec/ADC77ciRJ2GvU/CqengNxOq9DJ92QkBkBILd05AfBjEhXHzyl0GPPUKkZEqyWzT+kFs+GA87oGR4L4N7NPERNc2woUFYF2GhsnOaDRfYTBYEbj/POycoBL+Jd2BCk2h1XzTflbWoLHmwi3THGF13S+AvTuUawI2zipRoNYeHB+IpcrUAp+p6iaSxgq0juBYHRxrqH/tK2feu6PZN+A/Cwy6+396MOjQpSRxIigU36bt0GaWEfEhfN/kOuiuUKFCum7jGfH39yc6OprAwEC8vdXctfv370ev16suSDkUFBQEkKtAXRQ9T2/TD98QCw25P30wlB697bl627zr+sJFtjzxkmXOWVqcP36JF99vTkKyA4s3tmfY74fo/XQO52fJxIoVpuXUaWAAqjeogn+9II6db8iRs424dv4GVeupQOVSUBiL16vzlitzl/H/cwSyDjjScnZ1plOTI2w92oyLt2pw+sA5Grepn6/nkVMGvYGxz+vZvl19GVWsqLJai5wZMTyOD2eo75KFf9Zi8pe5v2Gyf3/agDu98Gg3nppQAWvrfTw2rk0+amsSctLUcuDlmfNs41lp7XuF8zdqkZDswIm9p2neLes53g/8G2FcbtWy+CeZESI7jRvD8eOq51CrVpY5h4sLNGgAZ8+qc6WkZJMhXaOByl2hUhe4uQ1OfAARaspU7p6AnX2g11Go4J/FQUSpkxILsVcg9hLEXgD3LuCSZtqeuydhi7rRm6LT8sSMrVwNVwF3mwb/sXFSL5y5B3cBfaL5saNOq+myAAegfqUXOXvDg9OhVdCFbUBrdX8oliElfb0qtiE0ypSws86If6BGteyD2zI1wSePUzNrbdXfg3Q69NrwhzKwzorF+sbUq1ePDh06MGXKFE6cOMGRI0f46KOP6Nu3rzFz+c2bN+nVqxcnTpwA4PLly3z//fcEBgYSFhbGtm3beOutt2jRogVeaeehEsWep79pcsDg83nvNpqZgwehQ+9aXL1dRZ2v2gVqVLwKwJbD/lw9d73Az1laGPQGXhp7i4RkU8Kb96eVydV0RQ+6d/semzcmAVClsi7dj6Z+j5imhlr3h+kuzKwPzpOiU92VXn4qAOfyOQ+4jcfuaZqqa+2fYbneP68+fmUXvy5SAbedHaxaBfULJ94vFep4V6dzk2MAnL1Wh30bcjkZKfDnsiTjcvPm0LPLXXq2OEzPFodp4aGmkdMbtAx7uTnrFh0qkHoHB5mCXM/GBZNLpFUL0zEP7M4+kdr+s6Z+sq27lLSJWIXImKen5QLuVE3vxyQJCXC/TSd7Gg1U7gbd90CXTVDh/vuvaj8JuEuzmItwaRkcfQP+HQwbmsHfFWG5E6xrCDt7waHxcGuH+X6Ops/kt5Z+yq6gzgBULX+VFa8OwblMPFjZgdZBtQynlRJr9tC7uvpejE9yJPTW/R5NqcMaHty3zS9cuKtem87OUKFGdQl6ixmLDkj5/PPPqVu3Ls8++yxjx46ladOmTJs2zbg9OTmZ0NBQ4uPVnM82Njbs27ePMWPG0Lt3bz799FN69OjBnDlzLFlNYQEVqpTHzVn9eAy+VLBThm3dCl27wu3b6uXbzPMcu/c5M/qxs4D6kb34+5ACPWdp8ueP+9h40LxV+/DZRqz5JftkGJnZsPQkickqYB7cfm+6KaD6DTH1VFm7wQ6AG6E3mf+P+oVVxi6GCR/kvAeM2bGfqG1cXrM5+144BeG3r/by/vedjY8X/5JIWxnRkGujnjb9wPhlXvqxZ1nR6/T8tUS1+NrY6Ni8GTZuL8fGg83ZeLA5+083ZFRfle0xRWfDkOd82Lo8qz6lORNyzpQvwssv+67lOdGqo2n2h/0Hsu+AduCISlZlbw++7eplU1oIkaqpqSEw6y7mGdFooEoP6HkQ2i9X3cvTMhgg8GOIu5rveopC9mAAC7C1oxpKEPwFhP0Dd45CYmT6cvfOmT+2rwweL7Ps+iq+3DARABsbA3+trkjl8ddhWDI8mQBPxKlW5rQavg4DL0Pf09DrMD5dTQnPTlY/BkNj4Ikk6HMiXU6BlBS4dEkt160r8XaxZCjBYmNjDYcPHzbExsYWdVWylZKSYjh8+LAhJSWlqKtSaDp4BxjUt5DBcPfW3QI55s6dBoOtrcF43C5dDIaoKLXt/IlLxvWe1c4b9Dp9gZwzKyXtut69nWyoUv6G8f/puQG7jMtN6gQbdCm6PB33ia57jcfZuvxouu26FJ2hUrmbBjAYHO1iDHHRcYY3R+ww7jPxmZ35el4Na5wzgMFgZaUzhN/K+XXX6/SG4MPnM3x9ZnZtd/x9zGCjTTTW/bOJO/JV94cZgbPkAAEAAElEQVRZzN0Yg5N9tAEMhrIOUYbYqJx/lv+37rjxGvRpdTDDMilJKYYnHzG9Nh1sYw3bVxzN13s29bVmZxNvSEkqmPd9YlyCwc4m3gAGQ4OaN7MsGx5u+vxr27ZATl9qlLTP41IhJsb0goyJscgpCvK6bt1qqu7LLxdA5dK6tNxgWILB8Ie9wXDsLYMh8XYBn6B0KdL3a0KEwXDlH4PhyESDYWNLg2FLp/Rl/n1MXc/Uv9+1BsPKmgbD5vYGw57hBsOxyQbD2bkGw+3j6XY9edJgcHQ0vda+/z5v1Vy+3HSMadOyLhsaaio7eHDezldQHrbP4pzGo5J6UViMV70o47JKPpR/0z6II+l+j9KBA2H9etWNBqCuT006NVFDFUKu1mX//kwO8hCb8oE11++o4R392x7gp5UdaNZATT10PNSTf/7I2RzBaSXEJrDuPx8AKjjdpuMAn3RlrLRW9G2veh/EJZbh7/lH+XF5MwDsbBKY+GH+ho/0e1yN69frrdi4KWe3d0/uPUu35sfwal4XT49EQo5cyHafoIPnGTyiNsk61ar/v8H/8sZnnfJe8YdcGZcyPP7IcQDuxTuzckFAjvf9c4kpUefjjyZmWEZro2XRuhYMaq8+DOKTHBnwdEMCA/PWLTwlKYVz19RrzaPaZbQ2BZNx19bBDn9/dayzl92NGW4zcuCAabl16wI5vRAPDf80vcFz3dKdndOfqX91CXD6U1hdD07PgpT4Aj6RyJX4GypB2amZsOdJWOuluon/O0i1YkceVGP1H7xOtYepTPWd1qrW5ycSYNAl6L4b2i0BvxlQfyyUN++ld/euymsTd38ijWefhXHj8lb1+ymxAAjMZgTWhTQ/YerWzbycKDoSdAuL8Wxsmmkv5HKlfB8vKjyKf/eo8b+1q97hr79U98q0Rr1qCvh++VX61qR1+DB8/71adnQ08O2vjdFYaZj2gWlc7AczK6HP5ZTJW/86QUxCWQAGdDqFjV3G3WP7PVrOuPzi+82M+4wecJAqdfP3+ug30DQWfO3arMtGRsKLL4Jfx3psP6b6Gt68606fflrCr0Rkul9o4BV69HHgbmw5AHq1PMx3f7Qt1GzppdHI58sal39ZnLOp/vQ6PX9uUnOb2miTGPhs+hs9qWzsbPhjkz+9Wqox3TFx9rz8cgPOn899XUNPhRlvuHjVySIyzoPWbU1TsRzMYqTHgW2mX1aWHv8qRGlToQLUrq2WAwJMM24UiC4bwet1sLr/fZR0BwImwVoPCJ4NydFZ7y9yLjkabmxTWeR3DYT1furv3Hzzcjd3wMoqsLM3HH8bLi+D6AyGH5ZtAHEPNA7VeBR8p0K1vlCmhsoQng29HkaMUMn6QN3k+fHHvHf1rl8fbO+/nE6ezLpsaKhpuY5MaFEsSdAtLMarrWnwVHBoxSxK5szmv04bk27173Aiw6yjQx7TUEYNd+SPPyBebjAD6ofFCy9gDKg//FBDrfrqpkjv4X7GH++BgaY5s3NqxZ+mVsZHh9hlWq774z7GL4/oGBVcaa1SmDQt/7dk27aF8uXV8saNkJycvkxyMnz7rcpe+8MPqlUcwEqjfnVduFGLgT2vE38v/Ysm7Ox1HulmICxS5SfwqxvM8g2eWNvmegII8YAO/X2pW/kyANuO+XE5OPvxkAc2nTJei27Nj1O+kkuW5e0c7VixzZcuXVSywHv3rPnhh9z/CgoOuGVc9qyfcet6XqUNoNO2Zj9o/7+mse+tfCVhpBC51Ux1siI2Fs4U5Owqdq7Q9AvofwbqPAupMxDHhcHRV2FldTjyKsTL+9ZMcjREHoaLv6sM8aempy9z4Vc4PAH2j4Z13vBnOdjeDY6/C1dXw93j6i/hpvl+Lt7pj2VlCxVaqBskHVbCo+HQ9xQ4N8j3U/n+ezV9KqgbPCtWgIND1vtkxcYGGt6fbfLMGTWlXmakpbv4k6BbWIynp2k5pADymq1Zbbol3X+QU4ZlnJzg8cfVcnQ0rFyZ//OWBj98dpEjR9Sytze8+qppm0YDH31kevzhhzm/+58Un8SqXWq+4DJ2MXQfmnkyNCcn6NLFfN3TvfZTu1H+sy9bW0Pv3mo5Kgr2bLlh3JacmMySr/bSxPMWr7wCd+7HLGXKwIypdzlzLIyqFdSPoH1BPowYEIBeZ2ruv3kpnEe6JBB6UyU88ap+nk07XClbwdRCK/JOY6Vh5BD1a8FgsGLR92ez3efPJaZW5qGZdC1/kIOTHX/8YQq0Dx/OfdAdcjrOuOzV0CaLkrmXNujevy/jmQT0Oj0Hg1SK/MrlblLTo2ASuQnxMMlXMrWcKFML2vwCfY6rDOepUu7BmW9BV7A37EqMO8ch4B0VOO/si9XmVvie64l2RQXY1AL+ewoCp8G5n9Lve30jnPkGLiyEqFPAA5+RVjZqDuoHW6Pt3aDmUPCaCG0WQ5+TKhlZr4PqBkmNQWCf/0YhUI0aX31lerx0qalXRX6kdjHX6bL+LS0t3cWfNNMIi6ldW3WLSUqC4OD8HUuXrGP9XnW7z8n+Hh0HZHD38r5Ro+CXX9TyL9+eYfhwj/ydvARLiE1g/6Zg3v3IdNtzzhx19zStbt2gfXvYs0ddqz9+OsNT47L/f1u7+Ci3Y9TA0gEdjmNfpl2W5fv1g02b1LJGo+ftaQWX2b5fl0v8/nstVa/fg2nZriw/f3aYL+fV41K4eb2efRamT4eqVcsB5Vi3MoQOPZ2ISSjLXzvbMHn0TmYs6MDdu1pGPglnrqpvsHqVL7FtZxnca7ohCs6IFxvw/v2hD7+sbsq732TeHU+v0/PXZtUiobqWZ/5Z8CB3d6hVy8ClSxoCAgzokvW5GpcdfMN0U8nTv1qO98uJ2rXBvUIMt247cfC/uxj05dINXThzNJSoOJWtvJX3RTRW+R+2I8TDJrWlG1TQ/dRTFjpROR/ovAbunlIBY+hiqNILnGqbl9vUGnRxUKY2lKkDjlXByl7Nf6yxUS2zVrbg3t5sOiqSoyEqSGWxNujS/yXdUa3sKXHg/a75OS/8Apf/BodKYH//z6EqONZUXantK6XLjp2OwQDJdyEmVP3FhqpptmLvP+7wN7g0NJWPDoHTM4wPNUCGty5jL6vx1dZpmohTTDc80VhD+Sbg2kr9VWyluodnVt/2y7J+HgVkxw5T4Nujh/orCA+O6/bNpG0jbUt3QQT7ouBJ0C0sxtpajUc5fRrOntWjSzbkOfHQgc2nibynxm32bBWInWObTMt26AB1K1/hwo0abD1Qnysh16jhWbDTlmXHoDeQGJ+IfZmcjVEtKOFXIvhv83n2/hvP3sMVOHzGk6QUP+P25wb8S7t2HdPtp9HAtA+S6Npd9f+e+rENT4xJybb7dNpx8yNHZ/9cBwyAN95QXaSGDriFZ7OC6wPVq78LWqsUdHprfl3twy+rErkdY57krK3vOb6aV5+WLc339evoyfKfDtF/pD86vTWzFnWmYqX/+GVtE4LOqfEKNSpeZdt2LVXrSetiQavVsBpdO8aw/V8nzl92Zu9edRMoIwc3n+JKhPosUF3LW2RcMBPNPM5w6ZInsbFWhBw9R6NWOZ9cPeSiaUo6z2a1c3Xe7Gg00MrrFGv+a8WdmPKcDQjFo6l5c8X+HdeB+0F3Mxk7I0RepE2mltoDzKLKNYaWc6HJdEi+Z77NYIC7J1XQfTebQbsdVpoH3bePwbbO2Z9faw+N3zG/k3n7CFzLIgGKlQ04VIeqvaHF9+bbtnaBxFsqoM9qnHrMefOg2978JqFBoyXZqjw2FbzQOHtBWQ9w9oCynqB9YKhas6+h8bvqObh4mwfkBeD2bZgyBQ4dynh769bwxRfpGyzSmjfPtPz88wVXN580KUuyGtedGnRXq5Y+35EoHqR7ubAoL/djACQlWXHxdN4zmK/529SdtF+frPs+azQwcojKkqS6qxbkoK3s7VoZgEf1S7i66vjqs3sYMu4pmm8Gg+pqtGABjHnsFF7VL+BesyKDnmvFrEWd+e+0L0kppi+u2u5X+HRO5q2CXbrZ0sVP9bU7e60Ov32ddfr3G1diWL9fNRlUd73GI4/5ZVvnmjVh1SrVnf3nJQUbvJavVI723iq9Z+Q9V27HmAKkPq0OsXNFAHuO1UsXcKfq/UwLvvvgP+Pjt2a1JShIBdxVqhjYvsOWWg3z3xVeZGzU86YhIwsXZl4ubdfyzLKWZ6VZw2vG5SN7b2RRMr3UHjtVq0JZC4wuSBtI79+efmz7gQOmYQ+tO2Q9jl0IkTF3d6h+/6P82DFynTw0z+xc07dyp9xTLcxWORiukpqgLZU+KeNyD9IlQOIDSUITbmVc1njsZNVi/eB+AFGBEHU664Bba69a2tMq3wS6blFzTD96C/3j8ZysvxF9153Qah40ehOqDwQXr/St1k51oGJLcG1R4AF3VBT07KlyvRw6lPHft9/C/PmZHyMiwjSc0c1NNTAUlJxkMI+JgfD7k89I1/LiS1q6hUV51YuCnWo5+Pgt6jWplafjrN2uunJqNHr6PJF9t+cRL9Y3dVf9qzbvfG2weJbphNgEpozbzxe/dSR1Nr7X34KAU6pLd36SaaR16xa8+aaaLi3C+H3YOMOy9atcpH3TK7RrC48/74uLW9Y/1KdO1bJjoFqe9mVNnpqQjI1dxj8Glix3InXo84ihN9Ha5Kw3Qc+e6s8SBveNYpeaNQ5rbTLDexzgjXfd8WmXs9bQF97vyIXzO5m1qLNxnZubgW3bNNRvKF3KLWnwYBXI3rsHy5fDN99gTIqYSq+HP7eq2/7W2mQGjsh51/JUTVuXgW/U8uGDOp7J4X6Rkab3m1f+ZrjLVOsOzvCtWj5wQMeINNuunrvO6p2qW71Go6d5l5y30AshzDVrBmFhKvfL+fMqwWZ+6fVgldumLBtnGHAW9DpIuK66ZyfcVEGvPkn9GZJBlwQujcz3dawOHq8AetBo0//ZlAXHGqqcjbP5vm2XQLPZKvhOuAkJNyDuKsRdhtgrEHdFLTvWSF9nrSNoHcChiuoO71T7/r91TP/aV0o/Rsi2HFTuZnpcoKnj8yY2Fvr2VbO7pHrwGqbelPnkEzV8MaNW5MWLMU5n++yzpozjBaFmTZUTJyYm86A77XhuSaJWfEnQLSzK08v0Egs5FUvfPBzj4qkwAi+pb8RWnqdwr5X59ECpajWsTlf/o2w/1pRz12vz3/oTtOuXeZKv/Dq++wzPjrQm8FLndNsWLVJd7FeuNN1dz6vYqFj6dL7DkaD0B7LRJtGsQQjtmkfSrqM9bbvXo1Lt2kDtHB+/w4AmdG92hC1HmhF6sya/frGb597pkK6cwWAaNw/w7Kv+6coUhf+924pr13ZiYwNjJzagplcmfZSzMHNBRy7GJvHn37Y4O6ewcaOGhg0LZj5mkbkyZWDoUPj5Z/XjYsWiCzwzzvzXw8GDcOWmKwDdOt6lQuXc3whp2t7UDHAksFyO9ws5cRtQvSfSJoksSC261kej0WMwWLE/wN24/talW3TrEse126preRe/AMpWaJrZYYQQ2WjaVPW6AjWuO79B9zvvqCRaU6fCpEl5OICVVgXHjrn4keDSEJrPzsPJUAnHHCqrv6zoMwiMB13K2zmLmfh41SK9d6967OoKu3ZB4wfaMAYNUq+Vq1fhp5/glVfMtxsM5l3Ln3uuYOup0ajW7v374eJFdWP6wZ5WkkStZJDu5cKivHzLG5eDQ/L2clv7h2lC3X7dcz437qhnTF01F/4UladzZ0eXrOPvH8Jo3a2e8caArXUis97YxR9L9Tg6qnKHD0Nzv1j2rj1h3NegN3D++CV+nbWHcUP+5c0RO4kKz7yeumQdw/sGGgPusmX19OsHM2bAvztTiLqjY1+QD58v7szg51tTqXbeWmanfWzqkv7R13VIik/fhe3IEdMd17ZtwaOY5KqzL2PPp7905uN5nanplbdEV1ZaK5Yus2X9eh3Llp2mSZMCrqTI1Kjhpu6Ik9+1Z/tfx8y2p53ObugzeXt9u1atQG139aPx2Ln66JJTcrRf8IFTxmUv1z15Ond2nF2daVRDfd6dCK1P/L14bt+MoXuXOwSHqYC7buVLLFpexSLnF+JhUZAZzENDYeZMSEhQraEpOftIKRmsSucN56QkeOwx2L5dPXZxgS1b0gfcoG6kpJo+HeLizLf/9x8EBanlDh0sc1M27bjuU6fSb5fpwkoGCbqFRXn6m+7ahlxwzqJk5tbuqGlc7j805z82B4/2o6yDGnP051ZfkhMzmLz5Ae//byd2NoloNOToz87BlhkLBpKsU32JmtQJ4fDOS7wxqxNPPGnFf/+ZskjejCxDl0FeTHx6J0M67aeKazj1/WoxclJ75qzoyOeLO9O6eXSm84ZOfHYPq/eqeYWcHaL4b+N51qyByZOhQydrHMoWTP/11r286dNKZRO5HF6dnz9LP7b7l4WmgeqjRhXIaYsVrVZlHnVzy/41IwpO287l8K+nfr1cu1OVRx7357Xhu4i/F4/BAH/9pcpZW8PAgXk/j2/9iwDEJZYh+HBo1oXvCwk2tfh4NrRclppWvmqceYrOhh1rQ+nZrwwnQtWvuOqu19i2VUu1+hJ0C5EfaTOY5zeZ2vffY8zdEh2deTIuUTykpMCwYWqIHqiu2xs3mifYS6tJExWgA9y8CT/+aL497VjvgkygllZ247qlpbtkkKBbWJSLmwuVy90EIPhy7lse792DHYfUJ0iNaon4tM15k2oZlzL0b69SPUbHu7Bv4+ksy0deu80n8zqYJR/LKY1Gz1sjd3IgsDY+7Ux1bNJEfQF3bXocgGSdLV8u6cyKf1tz8657uuMEX65By5awYYP5+m/e3cXspSoTt7U2mb8XnsO7bQEMQsvE1I9Ng2k/+aYBCbEJxseJcYn8vki1yDs46IzzoguRXxorDas3lKOLn6mF++ulnWjufZWfPj/D5ctqXbduUKFCJgfJgcZed43Lh/fczNE+wedMN7W8/C2Xwb5VK9MNraFj6hvnE69cMYbtW5Ko3ViS+QmRX1WqQOX7b+OjR8lzwtOYmPQJtjZvzl/dhOUYDDByJKxYoR47OMDatSo7eVY++MA0RP3TT9V1B5WEbdn9GclcXEzBeUFLG3RnlMFcWrpLBgm6hcV51VLZgm9FuXHn5t1c7bt1qyk5Rb8BdrlOhtarl+mbdNOaO1mUhM1/BaM3qK5UtdzCaO110vTXSk/r1pj+/G4at/VqsZcdK48zc2Fn7BzTB+wVK8KmfY2ZMGyX2Xpnhyh6tTzERy/tZNWcLTT2VFOJREWpxB6ffqq+IFYvOMCrM0zjqud+vI9uTzTDkpp3a8SAdgcAuHq7CvNmHDBuW/3rUe7ElAPg0Q77cZEkyqIAVW9Qha2Hm/DlWzuxs1E3e05frs8Lk0w3sx4fkPV7OTsejU2fI0eO5KwvaMhF1Z3dwTaOGh6Wm4KwdWdTQB8br3rQuLrC1p1ONPCvbbHzCvGwSe1ifucOXMrjMOVFi9R3dlpbtuSvXsJytm6FJUvUsq0t/PMPdOqU5S6ACnqfeEIth4fDd9+p5d9/V2PDAZ5+uuAS5mZ0/lQZtXSnBt12duqGkiieJJGasDjPutHsVA29hBwLo3Wvcjned22aaST798/9uXs86gkT1fLGXZX4JIuy69eb5g1Z+GM4XYZklRysElAJnU5HQEAAfn5ZJ2mztrXm69870XfAES5diKNlx0o0blUPrY0pq3aX4Srr5cqVKtiePBn2rDrA9qPexmzo74zZyejJnbM8V0GZOr0cq+9/GU3/0Zsx74CjI/zyq+ljY9RzFvqGEQ81K60Vr83sTI+B53jmmWSOnTfN9WqtTWbQoPwdv65vOePy4ROu2ZZPTkzm/A2Vxdej2hWstBbKpAY0blWPMnYxxCaqKdSyGmsohMi7Zs1MXYyPHDENBcspvV7NspCqfHkVwO/fr7qZO+dtRJ2woNQx3KCmAevRI+f7fvCBmllDr4dZs2D8+MLpWg5qmjt3dzV7zYNB99GjKgM/qNdwrjPoi0Ijl0ZYnJenqbU5+MTdHO+n1+lZt04Fwo6O0KVL7s9dqbYbfh5XADh6riG3MpmaUq/Ts3GfmgfIyf4e7fpY5hdu9yeb8dw7HfBt74HWxjxBSdmyasxq2qQda/e1Ii5RdfV+8pH/+GhuR4vUKyN+HT0Z0jUAgBu3XZkzB65fuMnGg6p5oEbFq3R51K/Q6iMePo3b1Gf/yXq8M2YnVho1prp/2yNUqFI+6x2zUaZ8GepWUk1bAefrkZKc9US9F05eIUWnps7zrJPzZI55obXR0rOV+lXlVCYly7GGQoi8y28ytc2bISRELXfqBE89pZZ1Oti5M9/VExawb59puV+/3O3r5WW6xrdvw+jRptdNixZYPOlqamv3rVsYf8suXQrt2kFionrcPvcTtohCJEG3sDjPRqbxwSEhOR84dXhbEDdvqpdo9w43MpwbMSd6PWqaZzKzsVaHtwUREV1RnavFKWwdCnCSxVywsoL334d/ll7Hyf6ecX177+MsXNUUK23hvmU/nO1nHMc0cybM+fy8sQv+s4PPFnp9xMPH1sGWT+Z35vD2s3z99i5++r1gchk0a6ne4/FJjgQFZ/06Dj4eblz2apA+m39B+3FxPb57fxdHd4dlO9ZQCJE3DwbdUVFqvOz69TBnDnz0UdbBeNpW7ldege7dTY+li3nxk5JiSnJXsyZUzcMoofffV4lWAf7+27S+oKcJy0jaLubHj8Nbb8Hw4SprPqihj9OnW74eIu/kF7OwOK+Wpq6YwbfTz/mcmbV/m37o9ut4Ns/n79nTtLxpU8Zl1m81DUzu06voM1YPfLIKB3bepE+rQzzeZR//bKqBfRnLZUzOjLe3mjsZ1Dimj+e2Mm4b+aKkyBSFx7+zFxOmd6Ji9ey7g+dE07aVjMvZZS8OOW2aI8azoU2BnD8r7jXdeHFqJxnDLYQF1aihcq6Ayl5drhz4+qqcKuPGqQCrfXv499/0+4aEmBKe1qqlZlPo3NkUkEkyteLn5EnTdF9t2uTtGPXrq2GAaZUpo7KhW1raacOeego++8z0eMwY1bvCPX1+XlGMSNAtLK5mfWfs7ucXS+2KlRNrtpoSCvV9Mu8TQbdtq6aEABV06zPoSbp+pykjcO+nLJukLKcatarPuv0tWL69Da5V85GqOZ8+/NA0RkivV78oOngfp16TWkVWJyHyq1kzU6+bw4ezLhscYspj4OVbdO9FIUTB0WigefOsy8THqyD8wAHz9d9+a1p+6SUVbDs7m7JgnzmDcbYFUTyk7Vqenx5E772npq1M9eSTanigpaVt6Q6/3yal1arX4rx5GH9ni+JLgm5hcVoteNyPmc+dU118shN29joBF9QY6+YNTlOlbqVs9sicrS107aJ+YIeHQ8DuC2bbb90ydTlq0gSq1XLM87lKIy8vGD40xmzdyKeii6g2QhSMtF1Ls2vpDr6fuRzAw69GFiWFECXJ++9Do0aqBbNrV9WKOWUK/PQT9OqlysTEqOVj92cyvHsXfvlFLTs6qlbGVNLFvPhKG3TntaUb1DzYabuTjx2b92PlRqNG5o8rVlTZ2F96yTSdmSjeJOgWhcJLxc8kJ0NoaPbl1/1h6k7er1sm2c9yoWfTPcblTSvN5wZJ2+W8d+98n6pUen9SBFordbfE0S6Wx8f6FW2FhMincuWgfh0110vA0SRSkjK+G2gwQPA19QFWvWoyTuWdCquKQggLa9MGTp2Cs2dh2zYVTE+bpjJRr1ihAnFQgXaPHqrsggUQG6vWjxihspanSpsNW4Lu4iU16Lazy39yyq++go8/hj//hJYt81+3nHB2hm7d1HKTJqqxqHPnwjm3KBgSdItC4VnblPH39L6gbMtv2WYaN9n30fwPUuk1xNQVeuN288zH61eZWm379Mn3qUqlBv61+XzSXqpVuM4X7xyhbIVC6EslhIU1r6uyJCUk2XL64IUMy0REqGmAALwaWX48txCieHBwgFWrVHZoUJ8F3brB11+byrzyivk+LVqoaf5AtUJmNJytMBhynrP2oRAebppWq1kz1QMyP+zt4d134bHH8l+33FizBv77TwXcuZ3iThQ9CbpFofCtc8a4/N/2m1mWNegN7DqmMhSXK3MX/075nxO3rk9N6le5qM5/ujHRkSrQTklKYdNGNRWRi1NcvroclXavzuhEWGQVXni/8KYtE8KSmvmbkiYe3pPx51LaPBSelpueWwhRDDk5wbp1prHfN27AFTULKT16QMOG5uWtrU3Tm0ZGmrqkF6bAQGjQQP1du1b45y+O9u83LZfkGSHs7VXvDBu5/1siSdAtCkWnvvWNyzv2uWVREk4fOG+cvqtDk5B081nnVa8Oqlt5is6G7StVa/uBzae5E6tavnu2DDBLjiGEKN2atylnXD5yJOMmqeBg03LqMBkhxMPDxUUNQ/P1NV8/YULG5YtyXPe1a6rH3vnzKofO7NmFe/7iqqDGcwuRHxJ0i0LhXtONxjXVOO0jZ72ICo/KtOyujVeNy53axRdYHXr2MSVI27QhEYD1/9w2ruvds4j6gQkhioR/B9O0d4dPZjwVWcg+00S9nnXuWLxOQojip0IFFUCn3njz8zMlWntQUQXdMTHQv7+pJR5gyZK8d3Hfu1dNq9alS/rs7cVBSgosW6ZmqPHwyLpXgQTdojiQoFsUmi6tVT8nvUHLv2sznzts517TeOHOvfKetfxBnQc2wkabBMDGPXUw6A1s2Gk6fq/H8z4tmRCi5HFxc8GjmsrsePxCfZITk9OVCQ4yJVjzql9wNwGFECWLuzscPAjLl6uWb6tMfkHXr28ab7tnj2luaEvS6dRc0UePmq+/ehV27crbMT/9FMLC1PzPrVvDyJFw/Xp+a5p/cXHwww9quM+TT6qA+uxZeO21jMunpKjrBuomQrVqhVdXIdKSoFsUmq7dTJMI7tia8beQwQC7Tqq5fJydkvDrUHCBsFO5MnTwDQTg4q0a7PrnOMfOqwFZzRqcpnKd/CdsE0KULM0aqpuBicn2nDqQPplayCU1HMbRLpZq9SsXat2EEMVL2bLw+OMqAM+MRmNq7U5Kgt2783/eiAiVOT2jBGkGA7z6Kqxdqx67uKip0FItXpz78+l08O+/5ut+/VW1KM+cCQkJuT9mfoWFwUcfQa1a8OKLcOGBj+tdu9T86A8KDDTd+JBWblGUJOgWhaZTP080GtXPacf+jH+8hoSoebMB2ne0LbDx3Kl6drlnXH59kukmQJ8u+Z+WTAhR8jRvamrdPrLX/HMgMS6RCzfUvNye1S9jpZWvTCFE9tJ2Md+82XybwQDr16sAMm1X8MysWKHmhvb2hnr14J134MQJUwA+ezZ8951atraGv/+GyZPVDQKAv/6C+Fx20jl2DKLujwL09FRTLILqwv7229C4sar/r7/C9u1q/HhBBuI6HQQEwPffw/DhKtCuUUPdTIiIMJXr0QNGjzY9nj8//bHSdi0vyUnURMknvyBEoalQpTxN7mcxPx7qwe3r6cdHpu0G1alTwdeh1+AqxuXUVm6APoMrFvzJhBDFXrPW5YzLhw+bNyOdP3kFnV5lV/SsLeO5hRA507WravEG83HdJ0+qacf69lUBpI+PGnedUQu2Xq/KDBmigl2A0FCYMUPN0+ztrVp8X3/dtM+8efDII2q6s9TprO7dU1NN5caOHablCRNU9+3x401d6i9cUHUbOVKdr0EDdc5KlaBnTxWQb99ums88N6ZPV3Of+/vDSy/B0qVw+bJpu5WVqSv9pk2q5T01m/evv6reBWnJeG5RXEjQLQpVlzZqWh6DwYpdGYzr3rnTtNy5c8Gf36dtA6pUCDdb51o2khaPNMxkDyFEaebfsa6xB86RQFMytSPbg5j0qinRopdHUrp9hRAiI66uaj5oUIH2qVMqQPbzU8FoqqgoePppNTb5tunjhuhoGDxYBa+pGjUCbZrOf6dPq7HNqQH7lCkqCE719NOm5d9+y13909axSxeoWFG1OgcEmKZEy8itW6pl//33VTDu4qKmW3v1VRW4Z+fMGTX/9b175usdHdV5p0xRreq//66CcgA3N/V/lXr+B28wpAbdtramfYQoChJ0i0LVpZuDcXnHtkSzbQa9gV1bIgFwKpNC06YFf36NlYYe/c2nLOvZOrjAu7ELIUoGZ1dnPGqocd3HQ71YvzSYbk2P0PyRhqzb39JYrlkrx8wOIYQQ6fToYVpu0kQFyKmZxOvUMQWKoJKzeXvDxo0qOG3dGlavVtusrGDWLDU2+do11ZW8XTvzcz39NEydar6uc2eoXl0tb9gA4ebtDZlKTjaNQ69cWXUvT+XjA9u2qbqsXAnffANvvAFPPKGyiD841l2ngyNHVBf4nj3VsbPy7bem5S5d4Ouv4dAhuHtX3QiYNk393z3o+edNy2m7mIeHqyAd1E0QOzuEKDIyK7EoVB37emJlpUOv17LjRCuzbeeOX+J6ZG0A2jUKwNq6uUXq0KuX6oKUqk9vi5xGCFFCNO9QnZAlkJSspe9w88m43V3CmTT2FH2e7lhEtRNClETdu6uu0qCCT4AyZeC991TLr729CrZfeAHu3FGZwXv3Vq26qYm/ypWDP/5QASuooPbFF9Xf5ctqvLdWC//7n6k7eyorKzUe+rPPVAbv5cvVftk5fNjULbxLl/TH1WjUmO7GjdPvazCoLvB796q/PXtUKz+o9UuWmLfGpxUVBb/8opYdHdXY9PLls68vqO78deqoc2zaBJcuqXHgaac6k/HcoqhJS7coVC5uLjRtqlqVA4PsjUnTAHZtMGUU6dwuxmJ16N7d9CWi0Rjo+YSPxc4lhCj+UruBplW/ykXmTPuXS1fLMvGzzpJETQiRK23aqPm9U40cqVqxJ09WATfA0KGq1Tg1qAZTwN24sWrlTbstrZo1VfD+8suq63RG8tLFPO147qy6kmdEo4G6deGZZ2DOHPXc0mZBnzHDdAPiQQsXmsaujxiR84Ab1A2GMWPUssEACxaoZRnPLYoTi/2K+PHHH3nyySdp0qQJzZvnrMXSYDAwe/Zs2rdvj6+vLyNHjuTixYuWqqIoIl27mpbTjuHeucv0cuzU3TS2sqC5usKAAWp54EANFas6W+xcQojir18/lfUXoEUL+Ou3cIIv1eB/UzpiX8a+aCsnhCiR7Oxg1SqYOFHNE71wIVSpkr5c1aqq+/f336tkZACDBqmAsX79/NXBxwd8fdXy/v2mrtZZSRt0p/29llcdOpgS4545o1qwH6TTmXctf/nl3J9n1ChTorcFC9QxJegWxYnFgu7k5GR69erFsGHDcrzPvHnzWLx4MR9++CHLly/HwcGBMWPGkJiYmP3OosRIe+c09cPdoDew64gaqONoF0vzR7wy2LPg/PGH6va0dKlFTyOEKAEaNIDgYJUk6MABGPKUm+R5EELkW/v28Pnn6mZeVjQalR384kUVoK9YYZryK7+eeca0nF1rd2Ki6hYOaoquunULpg7vvmtanj49fbb29etN8253766SxuVW1aoqKzyoOb3Xr1f/l6DGtqeObxeiqFhsTPcrr7wCwIoVK3JU3mAwsGjRIsaNG0e3bt0A+Oyzz2jbti1bt26lb+o7KQM6nQ5dZv1VionU+hX3ehaGNm3A2tqKlBQNOzbdQadz5kLgZcIiVdDdtnEwVtZ+Fv2/srExje/Jz2nkupZecm1Lp8yua+3a6t/UREei5JH3bBHQ6dAaF3X5+0LN9BQPz3V1dVV/Bfk5NHQoTJpkhcGg4bffDLz3nj7dOO1U+/ZBfLy6op0769HrM5jLLA+6dIHmza04fFjD8eOwerWO3r1N1/Xrr60AVamXXtLl+WU0ejSsWaPq/+abBmJj1TFbt9aj0xXMcxHZe5jes5Dz51lsEqmFhYURHh5O27ZtjevKli1LkyZNOHbsWJZB95kzZwqjigXi5MmTRV2FYqFpPRsOhvgSElqeHRt2cHRXFKCC7qY+YQQEFGn1ck2ua+kl17Z0kutaesm1LTxW8fGkzsJ04sQJ9A4OWZbPD7muedeiRQMOHnTm/HkNv/12Fh+fjCfQXrq0ClAVgLp1LxMQEFlgdXjySRcOH1b95adMiadatRA0Gli58izbt6usbDVqJFClyqk8/wasUgXc3HwID7clJMR0Z6F69asEBNzKYk9hCfKeNVdsgu7w+3MZuLqaj+V1dXUlIiIiy309PDxwdCze07nodDpOnjyJj48PWq10W3yk3b8cvD9N941zNgQGVjRu6zO4Jn5+vkVUs9yR61p6ybUtneS6ll5ybYtArCl48/X1Vem5C5hc1/z73/80xq7Whw558MwzGbf6BgebRp2OGFGDWrVqFFgdfH3hl18MBAZqOHnSichIXypWPMHmzabhhK+/bkvTpn75Os9zz2mYMcN83ZAhVfHzq5qv44qce9jes3FxcTlqAM5V0P35558zb968LMusX7+eevXq5eaw+abVakvMRS1JdbWkrj1dmHE/u+SuHXr+PaIGDtnbxNO6e6MS938k17X0kmtbOsl1Lb3k2haiNP/PWq3W7HHBn0qua1499hi89BLEx8OyZVZ89VX6jOfx8SrZGqjpt+rWLdj/a60W3nlHTWMG8Omn1rz7rpalS1WgX7YsjB5tle+X0PPPYxZ029pCixZaS740RSYelvdsTp9jroLu0aNHM3jw4CzL1KiRt7tibm5uAERGRuLu7m5cHxkZiZeXZZNqicLXtpcXNtokknW2/L3Nmzuxal6Ntt5B2Dk2LeLaCSGEEEKUDs7OMHCgSiIbGQnz56vEbWnt2wdJSWo5t1OF5dTQofD++yqL+o4dGjSaWsTHq27go0apeuZXnToqGduWLepx06Yqk7wQRS1X2csrVKhAvXr1svyzzWyywGxUr14dNzc39qXJ7x8TE8Px48fx9/fPYk9REjk6O9Km0WkAY8AN0KljUdVICCGEEKJ0ShtkT5qkMqWnVdBThWVEq1XzlKfavl1Nxq3R5G2asMw895xpuV27gjuuEPlhsSnDrl27RlBQENeuXUOn0xEUFERQUBCxacb/9OrViy33b0VpNBpGjBjBjz/+yLZt2wgJCWHSpEm4u7sbs5mL0qVLu7vp1nUaLK3cQgghhBAFqUMH1fUa1FD8MWPMp+5KG3RbqqUb1BRmD3aK7ds3/3OSpzVkiLrJ0LMnvPZawR1XiPywWCK1b775hpUrVxofDxo0CIBFixbRqlUrAEJDQ7l3756xzPPPP098fDzvv/8+0dHRNGvWjPnz52Mn/UJKpS49yjF1jumxnR3cf2kIIYQQQogC9PnnsHEjXLkC27fD3LnwwgsqCD9wQJXx8FBzXluKrS28+Sbcn1kYMF8uCFotfP99wR5TiPyyWNA9c+ZMZs6cmWWZkJAQs8cajYYJEyYwYcIES1VLFCOtezbE3iaehGQ1xUjr1gbs7TOZPFIIIYQQQuSZs7Maz92zp3r85pvQqxeEhEBKilpnyVbuVM89BzNnGrh2TYOvr4Fu3eS3nyj9LNa9XIjs2Dna0dbzkPFxpzbRRVgbIYQQQojSrUcP05jnmBi1vH27aXthBN0ODrBli54XXrjKqlV6NBJzi4eABN2iSPXprTcu9+p4tQhrIoQQQghR+n3xhWlc9bZt8O23pm2dOxdOHTw94bnnbqQb3y1EaWWx7uVC5MRLH7bh3r2dVK+hpU3vDkVdHSGEEEKIUs3ZGebNU13LQc3RDdCoEVSqVHT1EqI0k6BbFCk7Rzs+/LFzUVdDCCGEEOKh0bOn6lo+f75pnaWmChNCSPdyIYQQQgghHjqffw7Vq5seF8Z4biEeVhJ0CyGEEEII8ZBxcYHff1ddyjt0UPNlCyEsQ7qXCyGEEEII8RDq0AGuX0cyiAthYdLSLYQQQgghxENKAm4hLE+CbiGEEEIIIYQQwkIk6BZCCCGEEEIIISykRI/p1uv1AMSnTjBYjOl0OgDi4uLQarVFXBtRUOS6ll5ybUsnua6ll1zbIpCQAJ6epmUL9FOW61o6yXUtvR62a5sah6bGpZnRGAwGQ2FUyBIiIyO5ePFiUVdDCCGEEEIIIcRDqnbt2ri6uma6vUQH3SkpKURFRWFnZ4eVlfSUF0IIIYQQQghROPR6PYmJibi4uGBtnXkn8hIddAshhBBCCCGEEMWZNA8LIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdBeCJUuW0LVrV3x8fHj88cc5ceJEUVdJ5NLcuXMZMmQI/v7+tGnThvHjx3PhwgWzMomJiUydOpVWrVrh7+/Pyy+/TERERBHVWOTFTz/9hKenJ5988olxnVzXkunmzZu88cYbtGrVCl9fX/r378/JkyeN2w0GA7Nnz6Z9+/b4+voycuRImYKyBNDpdHz99dd07doVX19funXrxvfff0/anLBybYu/Q4cO8cILL9C+fXs8PT3ZunWr2facXMO7d+8yceJEmjZtSvPmzXnnnXeIjY0txGchMpLVtU1OTmbWrFn0798fPz8/2rdvz6RJk7h586bZMeTaFj/ZvWfTev/99/H09OSXX34xW/+wX1cJui1s/fr1zJgxgxdffJGVK1fi5eXFmDFjiIyMLOqqiVw4ePAgTz31FMuXL2fhwoWkpKQwZswY4uLijGWmT5/Ojh07+Prrr1m8eDG3bt3ipZdeKsJai9w4ceIEf/zxB56enmbr5bqWPFFRUQwbNgwbGxvmzZvHunXreOutt3BxcTGWmTdvHosXL+bDDz9k+fLlODg4MGbMGBITE4uw5iI78+bNY+nSpbz//vusX7+eN954g/nz57N48WKzMnJti7e4uDg8PT354IMPMtyek2v4xhtvcO7cORYuXMicOXM4fPgw77//fmE9BZGJrK5tQkICp0+fZty4caxYsYLvvvuO0NBQxo0bZ1ZOrm3xk917NtWWLVs4fvw47u7u6bY99NfVICzqscceM0ydOtX4WKfTGdq3b2+YO3duEdZK5FdkZKTBw8PDcPDgQYPBYDBER0cbGjdubNiwYYOxzLlz5wweHh6GY8eOFVEtRU7FxMQYevToYdi7d6/h6aefNnz88ccGg0Gua0k1a9Ysw7BhwzLdrtfrDe3atTPMnz/fuC46Otrg7e1tWLt2bWFUUeTR2LFjDW+//bbZupdeeskwceJEg8Eg17Yk8vDwMGzZssX4OCfXMPVz+MSJE8Yyu3btMnh6ehpu3LhReJUXWXrw2mbk+PHjBg8PD8PVq1cNBoNc25Igs+t648YNQ4cOHQxnzpwxdOnSxbBw4ULjNrmuBoO0dFtQUlISp06dom3btsZ1VlZWtG3blmPHjhVhzUR+3bt3D8DYchYYGEhycrLZta5Xrx5Vq1YlICCgKKoocmHatGl06tTJ7PqBXNeSavv27Xh7e/PKK6/Qpk0bBg0axPLly43bw8LCCA8PN7uuZcuWpUmTJvLZXMz5+/uzf/9+QkNDAQgODubIkSN07NgRkGtbGuTkGh47dgxnZ2d8fHyMZdq2bYuVlZUM4SthYmJi0Gg0ODs7A3JtSyq9Xs+bb77JmDFjaNCgQbrtcl3BuqgrUJrduXMHnU6Hq6ur2XpXV9d044FFyaHX65k+fTpNmzbFw8MDgIiICGxsbIxfGqlcXV0JDw8vimqKHFq3bh2nT5/mr7/+SrdNrmvJdOXKFZYuXcqoUaN44YUXOHnyJB9//DE2NjYMHjzYeO0y+myW8frF29ixY4mJiaF3795otVp0Oh2vvfYaAwYMAJBrWwrk5BpGRERQoUIFs+3W1ta4uLjIZ3MJkpiYyOeff07fvn1xcnIC5NqWVPPmzcPa2poRI0ZkuF2uqwTdQuTa1KlTOXv2LL///ntRV0Xk0/Xr1/nkk09YsGABdnZ2RV0dUUAMBgPe3t68/vrrADRq1IizZ8/yxx9/MHjw4CKunciPDRs2sGbNGr744gvq169PUFAQM2bMwN3dXa6tECVIcnIyEyZMwGAwMHXq1KKujsiHwMBAFi1axIoVK9BoNEVdnWJLupdbUPny5dFqtemSpkVGRlKxYsUiqpXIj2nTprFz505+/fVXKleubFxfsWJFkpOTiY6ONisfGRmJm5tbYVdT5NCpU6eIjIzk0UcfpVGjRjRq1IiDBw+yePFiGjVqJNe1hHJzc6NevXpm6+rWrcu1a9eM2wH5bC6BPvvsM8aOHUvfvn3x9PRk0KBBPPvss8ydOxeQa1sa5OQaVqxYkdu3b5ttT0lJISoqSj6bS4Dk5GReffVVrl27xoIFC4yt3CDXtiQ6fPgwkZGRdOnSxfhb6urVq3z66ad07doVkOsKEnRblK2tLY0bN2bfvn3GdXq9nn379uHv71+ENRO5ZTAYmDZtGlu2bOHXX3+lRo0aZtu9vb2xsbExu9YXLlzg2rVr+Pn5FXJtRU61bt2aNWvW8M8//xj/vL296d+/v3FZrmvJ07RpU+OY31QXL16kWrVqAFSvXh03Nzez6xoTE8Px48fls7mYS0hISNeSotVqjVOGybUt+XJyDf39/YmOjiYwMNBYZv/+/ej1enx9fQu9ziLnUgPuS5cu8csvv1C+fHmz7XJtS56BAweyevVqs99S7u7ujBkzhvnz5wNyXUG6l1vcqFGjeOutt/D29sbX15dff/2V+Ph4Hn300aKumsiFqVOnsnbtWn744QfKlCljHH9StmxZ7O3tKVu2LEOGDGHmzJm4uLjg5OTExx9/jL+/vwRnxZiTk5NxXH4qR0dHypUrZ1wv17XkefbZZxk2bBhz5syhd+/enDhxguXLlzNt2jQANBoNI0aM4Mcff6RWrVpUr16d2bNn4+7uTrdu3Yq49iIrXbp0Yc6cOVStWtXYvXzhwoUMGTIEkGtbUsTGxnL58mXj47CwMIKCgnBxcaFq1arZXsN69erRoUMHpkyZwtSpU0lOTuajjz6ib9++VKpUqaieliDra+vm5sYrr7zC6dOnmTt3Ljqdzvh7ysXFBVtbW7m2xVR279kHb57Y2NhQsWJF6tatC8h7FkBjSL09LCzmt99+4+effyY8PJyGDRvy3nvv0aRJk6KulsiFB+duTjVjxgzjDZTExERmzpzJunXrSEpKon379nzwwQcPTbeZ0uKZZ57By8uLd999F5DrWlLt2LGDL7/8kosXL1K9enVGjRrF0KFDjdsNBgPffPMNy5cvJzo6mmbNmvHBBx9Qp06dIqy1yE5MTAyzZ89m69atREZG4u7uTt++fXnxxRextbUF5NqWBAcOHMgw4dLgwYOZOXNmjq7h3bt3+eijj9i+fTtWVlb06NGD9957jzJlyhTmUxEPyOravvTSSzzyyCMZ7rdo0SJatWoFyLUtjrJ7zz6oa9eujBgxgpEjRxrXPezXVYJuIYQQQgghhBDCQmRMtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEKXcgQMH8PT05MCBA0VdFSGEEOKhY13UFRBCCCGK0ooVK3j77bcz3b5s2TL8/PwKr0IlxO+//87+/fs5ceIE169fZ/DgwcycOTPDstHR0cyaNYstW7aQkJCAj48PkydPpnHjxmblEhMT+eWXX1i1ahVXr17F2dkZf39/Xn75ZRo0aGAsd+vWLRYtWsTx48cJDAwkLi6ORYsW0apVq3Tn1uv1LFu2jD/++IPLly/j4OBAo0aNGD9+PE2bNi3Y/xQhhBAiAxJ0CyGEEMArr7xC9erV062vWbNmEdSm+Js/fz6xsbH4+PgQHh6eaTm9Xs/YsWMJCQlhzJgxlC9fnt9//51nnnmGFStWULt2bWPZN954g+3bt/P444/TuHFjbt68ye+//84TTzzBmjVrqFatGgChoaHMmzeP2rVr4+npybFjxzI9/2effcbChQsZMGAAw4cPJzo6mmXLlvHMM8+wdOlSfH19C+z/RAghhMiIBN1CCCEE0LFjR3x8fIq6GiXG4sWLqVq1KhqNBn9//0zLbdy4kWPHjjF79mx69eoFQO/evenZsyfffvstX3zxBQA3b95k8+bNjB49mrfeesu4f/PmzXn22WfZsmULI0eOBKBx48YcOHCAcuXKGY+fkZSUFJYuXUrPnj2ZNWuWcX2vXr3o1q0bq1evlqBbCCGExcmYbiGEECIHvvnmG7y8vNi3b5/Z+ilTpuDt7U1wcDAASUlJzJ49m0cffZRmzZrh5+fH8OHD2b9/v9l+YWFheHp68vPPP7NkyRIeeeQRmjRpwujRo7l+/ToGg4Hvv/+ejh074uvry7hx47h7967ZMbp27cr//vc/9uzZw8CBA/Hx8aFPnz5s3rw5R8/p+PHjjBkzhmbNmtGkSROefvppjhw5kqN9q1Wrhkajybbcpk2bqFixIj169DCuq1ChAr1792bbtm0kJSUBEBMTA0DFihXN9ndzcwPAzs7OuM7JyYly5cple+6UlBQSEhLSHdPV1RUrKyvs7e2zPYYQQgiRXxJ0CyGEEKig7/bt22Z/d+7cMW4fN24cDRs25N133zUGiLt372b58uWMHz8eLy8v43H+/PNPWrZsyRtvvMFLL73E7du3ee655wgKCkp33jVr1hi7W48aNYqDBw/y6quv8vXXX7N7926ef/55hg4dyo4dO/j000/T7X/x4kVee+01OnbsyMSJE9FqtUyYMIG9e/dm+Xz37dvHU089RWxsLC+99BKvvfYa0dHRPPvss5w4cSI//5VmgoKCaNSoEVZW5j85fHx8iI+PJzQ0FFDd+CtXrszChQvZvn07N27c4MSJE3z44YdUr16dvn375vrc9vb2NGnShJUrV7J69WquXbtGcHAwkydPxtnZmSeeeKJAnqMQQgiRFeleLoQQQoCx63Jatra2nDx5EgAbGxs+/fRTHn30UWbOnMmkSZN499138fb2ZuzYscZ9XFxc2L59O7a2tsZ1Q4cOpXfv3ixevJjp06ebnSO1W3XZsmUBNQZ67ty5JCQk8Pfff2Ntrb6q79y5w5o1a5g6darZsS9evMi3335rbEl+7LHH6NWrF59//jnt2rXL8LkaDAY+/PBDWrVqxfz5840t1k8++SR9+/bl66+/ZsGCBbn9L8xQeHg4zZs3T7fe3d0dUEnRPD09sbGx4dtvv2XixImMGzfOWK5x48b88ccfODs75+n8s2bN4rXXXuPNN980rqtRowZLly6lRo0aeTqmEEIIkRsSdAshhBDA+++/T506dczWPdg66+HhwSuvvMIXX3xBSEgId+7cYcGCBcbAGECr1aLVagEVQEdHR6PX6/H29ub06dPpzturVy9jwA0YxxgPGDDA7Li+vr6sXbuWmzdvmgWL7u7udO/e3fjYycmJQYMGMW/ePMLDw43ds9MKCgri4sWLjBs3zqw1H6BNmzasWrUKvV6f7vnnRUJCgtlNglSp6xITE43rnJ2dadiwIb169aJJkyZcvnyZuXPnMmHCBBYuXGjWxTynypQpQ/369fHz86NNmzaEh4czb948XnzxRZYsWUKFChXy/uSEEEKIHJCgWwghhEAFtTlJpDZmzBjWrVvHiRMneP3116lfv366MitXrmTBggWEhoaSnJxsXJ9RdvQqVaqYPU4NwDNbHxUVZRZ016pVK93Y6tSM4FevXs0w6L548SKAWcKyB927dw8XF5dMt+eUvb29cdx2WqnrUgPpe/fu8dRTTzFmzBhGjx5tLOft7c0zzzzD33//zfDhw3N17pSUFEaNGkXLli2ZMmWKcX3btm3p168fP//8s1kLuBBCCGEJEnQLIYQQuXDlyhUuXboEwJkzZ9JtX7VqFZMnT6Zbt26MGTMGV1dXtFotc+fO5cqVK+nKp7aKPyizVmaDwZCP2psfY9KkSTRs2DDDMo6Ojvk+D6hEaBlNKXbr1i3A1M1806ZNRERE0LVrV7NyLVu2xMnJiaNHj+Y66D506BBnzpxh8uTJZutr165N3bp1OXr0aK6OJ4QQQuSFBN1CCCFEDun1eiZPnoyTkxPPPvssc+bMoWfPnmaZuTdt2kSNGjX47rvvzFqgv/nmG4vU6dKlSxgMBrNzpbZkp85r/aDUlnInJyfatm1rkXql8vLy4siRI+m6q584cQIHBwdjl/7IyEgAdDqd2f4GgwG9Xp9ufU5kdkxQreB5OaYQQgiRW5K9XAghhMihhQsXcuzYMaZNm8aECRPw9/fnww8/5Pbt28YyqS3XaVukjx8/TkBAgEXqdOvWLbZs2WJ8HBMTwz///EPDhg0z7FoOqst2zZo1WbBgAbGxsem2p30++dWrVy8iIiLMpjG7ffs2GzdupEuXLsax3ald4tevX2+2/7Zt24iLi8u0RT4rmR3z1KlThIaG5umYQgghRG5JS7cQQggB/Pvvv1y4cCHd+qZNm1KjRg3Onz9vnH87tQv0zJkzGTRoEFOnTmX27NkAdO7cmc2bN/Piiy/SuXNnwsLC+OOPP6hfvz5xcXEFXu/atWvz7rvvcvLkSVxdXfn777+JjIxkxowZme5jZWXFxx9/zPPPP0+/fv149NFHqVSpEjdv3uTAgQM4OTkxZ86cLM+7fft249zkycnJhISE8MMPPwBq/vDUKdR69uyJn58fb7/9NufOnaN8+fIsXboUnU7Hyy+/bDxely5daNCgAd9//z3Xrl2jSZMmXLp0iSVLluDm5sZjjz1mdv7Uc507dw5Q3fpT5xgfP348oG4utGvXjpUrVxITE0O7du0IDw/nt99+w97enmeffTbH/89CCCFEXknQLYQQQpB59+8ZM2ZQtWpV3nrrLcqXL88777xj3Fa7dm1ef/11PvnkE9avX0+fPn149NFHiYiIYNmyZezZs4f69esza9YsNm7cyMGDBwu83rVr12bKlCl89tlnhIaGUr16db766is6dOiQ5X6tWrVi2bJl/PDDD/z222/ExcXh5uaGr69vjuav3rx5MytXrjQ+Pn36tDE7e+XKlY1Bt1ar5aeffuKzzz5j8eLFJCYm4uPjw4wZM6hbt65xf1tbW5YsWcIPP/zAzp07Wbt2LWXKlKFbt2689tpr6bKMp97kSPX3338bl1ODblDB+c8//8z69evZvXs3NjY2NG/enAkTJpidXwghhLAUjaEgMrIIIYQQotB17dqVBg0aMHfu3KKuihBCCCEyIWO6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJuoUQQgghhBBCCAuRMd1CCCGEEEIIIYSFSEu3EEIIIYQQQghhISV6yrCUlBSioqKws7PDykruHwghhBBCCCGEKBx6vZ7ExERcXFywts48tC7RQXdUVBQXL14s6moIIYQQQgghhHhI1a5dG1dX10y3l+ig287ODlBP0sHBoYhrkzWdTseZM2fw8PBAq9UWdXVEAZHrWnrJtS2d5LqWXnJti0B8PLRrp5b37gUL/BaT61o6yXUtvR62axsfH8/FixeNcWlmSnTQndql3MHBAUdHxyKuTdZ0Oh0Ajo6OD8UL8GEh17X0kmtbOsl1Lb3k2hYBgwFCQtSyvT1Y4LeYXNfSSa5r6fWwXtvshjrLQGghhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuUaqFBl7ho5d2cmLPmaKuihBCCCGEEOIhVKLHdAuRlaNHoUcXZyKjO7NoxUXOXivqGgkhhBBCCCEeNtLSLUqlffuga1eIjHYB4Nz12ty7fa+IayWEEEIIIYR42EjQLUqdHTuge3eIijJff/V8eNFUSAghhBBCCPHQkqBblDh6nR6D3pDhto1/nKRPHwOxseqxnW2ycVtY6N1CqJ0QQgghhBBCmMiYblGi/PLZHsa91wwH2wT8PULxbxxN0+Y2+LepzOmjtxj2UjOSdRoA+vWDzo0P8san7QAIuxhXlFUXQgghhBBCPIQk6BYlxtLfEhk9uS0GgxUJyQ5sP1ae7ceA31JL1DOWfbxnEEtWNGT9Iq1xXdiVlEKtrxBCCCGEEEJI93JRIqxeDc+MtMNgUC/Z8mVuZ1p2RO89/L66ATY2UL22s3H91WvychdCCCGEEEIULmnpFsXetm0wdCjodOrx2DGJzPmpPDcv3eLY3kscPRjLsRN2nLnkSv9HrvHR3I5YaVWAXa1uReNxwq7bF0X1hRBCCCGEEA8xCbpFsfbf5lAGDK5NYqIapz18OPww1w6NFVSu407vOu70fjrtHh5m+7vXrIi1NpkUnQ1hN50RQgghhBBCFL3JkycTHR3NDz/8AMAzzzyDl5cX7777bqHW48CBA4wYMYJDhw7h7GyZeEH624pi69jOIPoMLk9cnAq4Bw6EX34BrTbr/dKy0lpRrcJNAMIiKmZTWgghhBBCiIfb5MmT8fT0xNPTE29vb7p37853331HSopl8yN9++23TJgwIUdlDxw4gKenJ9HR0RatU0GRoFsUS8GHLtBjoBtRceUA6N76HMuWgY1N7o9VvU5ZACKiK5KQUICVFEIIIYQQohTq0KEDe/bsYdOmTYwaNYrvvvuOn3/+OV25pKSkAjtnuXLlcHJyKrDjFSfSvVwUOzcvhtO7nw0R0aplul3jE6zcWA87u7wdr3odFziolq9ehXr1si4vhBBCCCHEw8zW1hY3NzcAhg8fztatW9m+fTuhoaFER0fj4+PDkiVLsLW1Zfv27Vy/fp2ZM2eyd+9e9Ho9LVu25L333qN69eoA6HQ6PvvsM/7++2+0Wi1DhgzBYDCYnfPB7uVJSUnMnj2btWvXEhkZSZUqVRg7dixt2rRhxIgRALRo0QKAwYMHM3PmTPR6PfPmzWPZsmVERERQu3Ztxo8fT69evYzn2bVrF9OnT+f69es0adKEwYMHW/z/U4JuUazERcfSv+ctLt5qDECTOiGs21GLMi5l8nzM++91AMLCJOgWQgghhBBFJOhLCP4y+3IVmkKn1ebrdg2A20ez39frdWj4et7qlwk7Ozvu3r0LwL59+3BycmLhwoUAJCcnM2bMGPz8/Fi8eDFnz55l586dPPfcc6xevRpbW1sWLFjAypUrmT59OvXq1WPBggVs2bKF1q1bZ3rOSZMmERAQwHvvvYeXlxdhYWHcuXOHKlWq8O233/Lyyy+zceNGnJycsLdXCZPnzp3L6tWrmTp1KrVr1+bQoUO8+eabVKhQgZYtW3L9+nVeeuklnnrqKYYOHUpgYCCffvppgf5fZUSCblFs6JJ1DO9zkkNn1Juvuus11m9xwcXNJV/HrVbNtHz1ar4OJYQQQgghRN4lR0N8Dn6QJtTIYF14zvZNLrhxzgaDgX379rFnzx6efvpp7ty5g6OjIx9//DG2trYArFq1Cr1ezyeffIJerycuLo5PPvmE1q1bc/DgQdq3b8+vv/7K2LFj6dGjBwBTp05lz549mZ43NDSUDRs2sHDhQtq2bQtAjRqm/xMXFxUfuLq6GpOfJSUlMXfuXBYuXIi/v79xnyNHjrBs2TJatmzJ0qVLqVmzJpMnTwagbt26nDlzhnnz5hXY/1lGJOgWxcbrz+xh1d5OADg7RLF+VQxV63lks1f2qrtHAeqNGRZ0Dqif72MKIYQQQgiRazbO4FAt+3L2bhmvy8m+NvnPwL1z5078/f1JTk7GYDDQr18/Xn75ZaZNm4aHh4cx4AYIDg7m8uXLNG3aFIPBgF6vx8rKisTERC5fvsy9e/cIDw+nSZMmxn2sra3x9vZO18U8VVBQEFqt1th9PCcuXbpEfHw8o0ePNlufnJxMw4YNATh//jy+vr5m2/38/HJ8jrySoFsUC1+/vYtvlqmA21qbzN+/nMenXdMCOfb/2bvvsCiON4Dj36MJCKIiFkTBBqKCYG/YYzfWmJioMWpMNMaYmMQSY4uxxRRjmj+NJjGJxkSNvcbeK2JBRcWCKCKiSIe7/f2xcsdJV47m+3mee5jbnd2dY7jjZmfmHZdS1wH1zRUSdAtpdAshhBBCiHzh+QxDv58cbm5CjRs3ZurUqVhaWlK2bFksLAzNRhsbG6O8sbGx1K5dm3nz5qHVagkMDMTT0xNzc3NKly79VNdPGS6eE7GxsYA6xLxcuXJG+1LfJMgPEr1c5Ls1q7R8MMdP//x/nx+mfb/caXADuFRz1KdDQp8yGpsQQgghhBDPCRsbG1xdXXF2djZqcKendu3aXL9+HUdHR1xdXSlfvjyurq64urpib2+Pvb09Tk5OnD59Wn9McnIy586dy/Cc7u7u6HQ6jh07lu5+y8dLGmm1Wv22atWqYWVlRWhoqP76KY8KFSro85w5c8boXKnLZSrS6Bb5KjAQXhtojqKof4qfDt/NG+P8sjgqZ8q7lcVMo74hQ8Lsc/XcQgghhBBCPM+6d+9OqVKlGDFiBMePH+fu3bscPXqUGTNmcOfOHQAGDRrEokWL2LFjB1euXGHatGmZrrHt4uJCr169mDhxIjt27ODmzZscOXKETZs2AVCxYkU0Gg27d+/m/v37xMTEYGdnx5AhQ5g1axZr1qzhxo0bnDt3jmXLlrFmzRoAXnnlFa5du8acOXO4evUq69ev1+8zJZM2uh88eMDYsWOpV68eDRo0YOLEicTExGR6zMCBA/WLsac8Jk+ebMpiinz0668QF6emBw7QMe3HVrl+DctilpQrGQ5ASLhjFrmFEEIIIYQQ2WVjY8Pvv/+Os7Mz7733Hh999BGffvopCQkJ+nW3hwwZwosvvsi4ceN45ZVXKF68OC+88EKm5506dSodO3Zk6tSpdO7cmU8//ZS4xw2HcuXK8e677/Lll1/SrFkzPvvsMwDGjBnDyJEjWbhwIV26dGHYsGHs3r1bv3SZs7MzCxYs4L///qNHjx6sWLGC999/34S/HZVGyWj2ei4YNmwY4eHhTJ8+naSkJCZOnIiXlxdffvllhscMHDgQNzc3Ro8erd9mY2OT7kLpsbGx+jkDtra2JnkNuUWr1eLv74+Pjw/m5ub5XZwCo3t32LBBTV+7Bq6uprlOI49zHLtUG41GR0KcFstilrlyXqnXokvqtmiSei26pG7zQUwMpHw/i46G4k+/vGdGpF6LJqnXout5q9vstkdN1tN95coV9u3bx4wZM6hbty4NGjRg0qRJbNy4kbCwsEyPtba2xsnJSf9Ir8EtiobAQPVn8eJQKZ2VEXKLS7lHACiKGXeuhZvuQkIIIYQQQgiRismil586dYoSJUrg5eWl39asWTPMzMwICAjIdDjB+vXrWbduHU5OTrRp04aRI0emiZKXmlarNZpEXxCllK+glzMvxcfEExxsDZhT0zUURSmHqX49FSvE69PXL4fjXL1cJrmzT+q16JK6LZqkXosuqdt8oNVirk9qMcU/canXoknqteh63uo2u6/TZI3ue/fupQkRb2FhgYODA+HhGfc0duvWDWdnZ8qWLcvFixeZN28ewcHBfPfddxkec+nSpVwrt6k9GS3veXbj7F10us4AVC17AX//2ya7Vgn7h/r0qWPB2JRPztXzS70WXVK3RZPUa9EldZt3zOLi8H2cDggIQJdJB8mzknotmqReiy6pW2M5bnTPmzePRYsWZZonJarc03j55Zf1aQ8PD5ycnBg8eDA3btygcuXK6R7j7u5eKOZ0nzlzBi8vrwI7vyEhNoHIuw8p71Y2T6536eAhfbqul8akC9OfrxWnTyfFOeTatQpDvYqnI3VbNEm9Fl1St/kgVXBcb29vk83plnoteqRei67nrW5jY2Oz1QGc40b3kCFD6NWrV6Z5KlWqRJkyZbh//77R9uTkZB4+fIiTk1O2r1e3bl0Arl+/nmGj29zcvNBUakEta2xULM18bnI62IMvPtzNh1+0Nvk1L55P0qdredmY9PdSuWoJffpWhFOuX6ug1qt4dlK3RZPUa9EldZuHUv2ezc3NjZ7n/qWkXosiqdei63mp2+y+xhw3ukuXLp1m2Hh6fH19iYqK4uzZs9SpUweAw4cPo9Pp1Luh2RT4ONJWThrqIufmjjvK6eDWAIz70o8GTf1p3dvHpNcMvFRMn/b0MW3vuouX4W8u5FEdk15LCCGEEEIIIVKYLHp5tWrV8PPz49NPPyUgIIATJ07w2Wef0bVrV8qVU4NYhYWF0alTJwICAgC4ceMG33//PWfPniUkJIT//vuPcePG0bBhQ2rWrGmqoj73rl+HOb+01D/XKea8Oqw8d2+YNsp34NUyAFiYJ1HN24Shy4GKFQ3pW7dMeikhhBBCCCGE0DNZIDVQ539/9tlnvP7665iZmdGhQwcmTZqk35+UlERwcLB+kXNLS0sOHTrEb7/9RmxsLBUqVKBDhw6MHDnSlMV87n38McTHq/df7KyjiY6343ZkeQb2Oc7mw46Ymae9NxMVEcXU0Se5HWbF98s8KV2hVI6umZyYzKVb6nSBGs43sCxW7dlfSCasraFMGbh3D0JCTHopIYQQQgghhNAzaaO7ZMmSfPnllxnud3Fx4eLFi/rnFSpU4PfffzdlkcQT9u6FlSvVtJMT7N8RT8tWsYQ9KMu24w2YM3Y3E75pbXTMmQOX6PuyJZduqdurfrqbzxcb58lK8LkQEpLcAPCsEg6YttEN4OKiNrpv3QKdDsxMNs5DCCGEEEIIIVTS7HiOaZO0jH7XsLbczJng7l2GP/4XgkajA+DTBS3Yvz5An+e3eftp3NaFS7eq6Ldt3Zvz+diBp8L0aU/3+Exy5p6KDlcBSE6Gu9fv5sk1hRBCCCGEEM83aXQ/x36ec4DTAWrEPV9fhTfeULe3e6kenw7fC4BWZ8Erg50IuXyf4W9qef2jFsQlGi/PdvJyTSJCjSPVZyXwrGEJr1p1LJ/hVWSfS2nDuPKQK/fy5JpCCCGEEEIUBh4eHpk+FixYkN9FLLRMOrxcFFyRYQ/55Ita+ufzP7uEubmH/vnkBX7sPXyK3ad9uXW/AjW8tMTHG0LiD++5Fysrhe9WtkJRzNj57wVeGtks29cPvNtQn/Zs4PqMryZ7XCrq9OmQa49okCdXFUIIIYQQouDbv3+/Pr1p0ya+/fZbtmzZot9ma2voeFMUBa1Wi4WFNCezQ3q6i7jYWFCUtNunv+/PvSg1evjL7Q7i19XDaL+5pTl/rKqAU8kHAPoGt40N/Pq/CBauaUn3nnb6/Nu3JeeoXIFBxQHQaMDD1yVHxz4tl0qGD4VbN/NmSLsQQgghhBCFgZOTk/5hb2+PRqPRP7969Sr16tVjz5499O7dGy8vL06cOMH48ePTBL3+7bffeP311/XPdTodCxcupG3btnh7e/Piiy8aNeafB3JroggbPhwWLYJSpRR83ALwrfWAevUtcCxbjO9Wqr3SNlaxzP0u/Z5m52rlWbYCOndWG+7u7vDPP+Dl5QhAi66eWFkkkJhcjO2HqqDoFDRmmizLpSjwePl1XF3B1jbz/LnFxc1woZCb6dyJEEIIIYQQwkT+/hsmT4ZHj/Lumvb28Nln0Ldv7pzvyy+/ZNy4cVSqVIkSJUpk65iFCxeybt06pk2bhpubG8eOHeOjjz6idOnSNGrUKHcKVsBJo7uICghQG9wAkZEadkXWZdcp4A/jfOOGHqVyzdYZnqdjR9i/H86fh379IPV7y7aELS3qXWXn0apcu1uJq1cVqlXPumyhoYYPG0/PHL2sZ1LRraQ+HRIqf/pCCCGEECLvfPEFXLiQP9fNrUb36NGjad68ebbzJyYmsnDhQpYuXYqvry8AlSpV4sSJE/z111/S6BaF27ffGtIl7JOIepQ2WFmlMrf4aHbWf+jNmqmP9LTvWZWdR9X09h2abDW6A0+EAs4AeHokk1d/hi7VnfTpkDvFTXqtu3chPBxq1zbpZYQQQgghRCHx8cfw6ad539P90Ue5dz4vL68c5b9+/TpxcXEMGTLEaHtSUhKeedn7ls+k0V0Ehd+M4PffSwLmlCgBISGWxEaEc+rAdU4di+ZUQDEiH1rx+SxrbEtUfKZrvfACTJyopnfsgLffzvqY80eC0De6nQ4Bfs9UhuyyL21PCZuHRMU5EHK3lMmuExQETZrA/fswYgR8O1/BwjLrYfdCCCGEEKLo6ts393qc84uNjY3Rc41Gg/JEACmt1rAkcWxsLKAOMS9XrpxRPisrKxOVsuCRRncR9L8vzpCQ0BqAof1DsLd3wd7eiU5uTnR6LXev5esLpUpBZCTs3AlaLZibZ35M4AVDA9TT2yF3C5QFF6dwzt9wIOReuWzPQc+J+Hh1GP79xyuo/fgjXDt5gr82eWBf2j5XryWEEEIIIUR+Kl26NEFBQUbbrl+/joOD+h2/WrVqWFlZERoa+twMJU+PRC8vYpISkvjhDzUSuZlGy7ujTBswzNwc2rVV72ZFRsLJPVeyPCbwsmFiuGf9SiYrW3pcyj4AID7Jhvt3HuT6+ceOicPf33jb5iMN8GsQSkjQ7Vy/nhBCCCGEEPmlSZMmnD17ln///Zdr166xYMECbt68qd9vZ2fHkCFDmDVrFmvWrOHGjRucO3eOZcuWsWbNmnwsed6SRncR88/CY4TerwDAi82PU6WO6Ru17ese0Ke3r72ZSU5V4HV1SHu5kncpXcF0w7zTkzqY2q3bxXL13P/8eIgfFqpDbqyt4ce5QZQqHgnA6WAPGjcB/70Xc/WaQgghhChcoqLgxIn0l3TNjXN36wYdOsD69aa5hhCp+fn5MXLkSL744gv69u1LbGwsfn7GU0fHjBnDyJEjWbhwIV26dGHYsGHs3r0bF5e8WTa4IJDh5UXMNz8YepHfez93G5UZeaGnG0xW0zv2OjAxk7z3b0dy96Ea0MzT9RZQ1tTFM+LiaYj0FhJmi3cunffq2RsMHVtL/3z+Z0EM/7AGbdpepUu3KK7ecSX0fgVadLBn5f+O0WVQw1y6shBCCCEKi6QkaNxYjWDduTP89Zca6Cq3fPcdbNyoprdvB29vmDABXnop6+l/QqTWu3dvevfurX/euHFjLl5Mv/No9OjRjB49GlDnc/v7++Pj46Pfr9FoeP31143W7n7eSE93EXJ4y1mOXqwDQN0qF2nVs26eXLeqV2WqlLsBwIGztYiNis0wb+AJQ0+4Z/U8DN34WOobaiEhuXPOpPgkXn0pjqg4de7KK+0O8uYHauPeo35VDh8tTpOaZwCISbCj++B67F7tnzsXF0IIIUShcfy4YcmozZvBzy/3vo8oCvzyi/G2gADo319donXJEkhMzJ1rCSFyRhrdRcj8eVH69Htv3c31IGGZeaHpNQASk4uxb8P5DPMFBjzUpz1r5v2YJ1M0upd8EcnxILWXu3qFayz8q47R796pUhl2Hq3OS20OAaBTzPn8c2265xJCCCFE0bVnj/Hz06fVnu8n48E8jcOH1RVUAOrUUc+bIigIhg4FLy81Bo8QIm9Jo7sASk5MZuufx/nnx0NpHv8uPkL4zXtpjgkJus3fu9SIgE4lwuk/Km+HL7fvYFgHfPvm6AzzBZ43NDY9vfM+mrdRo/vqs//XWfvzURat7QyAlUUCK/+Mp4RjiTT5bOxtWLG9MdXKXwdgx8n6XDxx9ZmvL4QQQojCY/duQ7qCGoKH0FBo0QI2bXq2c//6qyE9diwcOqQu59qmjWH7pUuwbt2zXUcIkXMyp7uAURQY2D2AFdsaZJjH2jKON3vv4aNpNajkoa53/cPsi2h16qf326+cw7p467worl7bHh5o3tGhKGbsOFAhw3yBQcX1ac96GeczFRenSEAN3hZy4SpQ/6nPFXj0CkM/8NQ//3riYXxbt8owv5m5GSMGBvPhF64A/DjvBt8sr/rU1xdCCCFE4ZGUBPv3q2lnZzh1Cnr0UHuoY2Kge3eYPRuqVoU7d+D2bcNPBwf45hsom0EonLg4WLFCTRcvrq4FrdFAu3bq4/ffYeBAdf/x4/AcT60VIl9Io7uAmTsXVmyrl2me+CQbFvzVip/+SWTQSzcY/XEFFq5UQ4JZmicyYpxnpsebgqNzaepVP8+JoFqcDvYg7Ho45Vyd0uQ7f8MNAHubKJyrls/jUkKpciWxtowjPsmGW+FPv0Z42LVwunS34kFMSQD6tDrEiCktszzujffrMukb9fq/bGzG5zHqP0chhBBCFG0nT6qNa4BWrdQG9M6dMGgQ/PMP6HTw8ccZH5+YqOZLz7p18PDxDL4+fcDOznh/166G9PHjT/8ahBBPR4aXFyBbtqgRJlNMHLKDeR/tNnqM6rcH22LqJ3aS1oqfV1Smbj1L7keXBuDlF05QoWq5/Cg+L7S4q0/vXBuUZn9MDFy/8zhyeZ3ieTrnPIXGTINLmTAAQsLT3hTIjphohW4d73HtrrocW90q51j8t2e2Xk/pCqV49ZUkAB4+suKPP56qCEIIIYQoZFIPLW/dWv1pY6NGMM+ssZ1i1Sp1yHh6UgdQS68Xu1QpqP54ARd/f7XXXQiRd6Snu4C4fFmNLpmynuK0aTB5cvt0806+eY/504+xYEUToqKtjfa9N72JqYuaofadHZi9VE1v36aj/2jj/alXGfCslX/rVriUjeTybTei4hyIinhECcfszy3XaqH/qxqOX1JHE1Qqc4t5397FvnTNbJ/jnTElWLJMTX//Pbz5pjoETAghhBBFV+ogaq1SzUYzM4M5c6BtW3UOdunS6nzvChWgfHn47z91jjbAhx+qQ9RTf28IDYVt29R05cqGBv2TGjRQv2/Gx8O5c5BqRSchhIlJT3cB8Oh+ND07hvLggfq8Z0+YNCnj/E6VyjBjUWtuhFjz+edQpoy6vXdvaNAw/1pvzbt4Ym0VD8COU/X1NxBSBAYa0p55PwJez6V8jD5960p4to9TFBgzBtavV5+XKKFl3ZoYSlVIGzgtM/XqGSKKBgTAgQM5OlwIIYQQhUxyMuzbp6bLlwd397R5OnaEL75QRz0OHqw+r1sXRo+Gmo/v7R88CP/+a3zcH3+oQ9NBHapulsG3+4apYuzKEHMh8pY0uvOZolMY3Oss566qAdE8PeL57beMPzBTc3CAiRPh+nW18bZ8uYkLmwXr4tb4tVJ73m+G2hj1bINxo7tWrTws2BNcnJP16ZDgB9k+7ptv4Lvv1LSFBaxaZY5X02pPVYZ33jGkf5iTdii+EEIIIYqOkych+vHiLq1b52yEm4WF2hOeYtw4w/DwJ9fmzixAWoNUMXqPHcv+9YUQz04a3fls5pg9rN6rDgl3sH3Iv3/exj6HK2nZ2qrrLlpZmaCAOfTCC4Z0jx5wJsDQ3R144KQ+7Vk942XFTK1iRcN/upDrsZnmTYhN4OSuQOaO2cTYsTr99kWLoH36o/+z5aWXoIyDGvHkn82uhF27m8URQgghhCisMhpanl3du0PLx/Fag4LU7yEAJ07A+fNqunlzw7zt9Pj6Ghr70tMtRN6SRnceuHAB6vsk0qq5Bw7F47CzjtY/Ji1oDYBGo+PPHy/hXq9K/hb2GQ0YAI6OavrSJWjcKJHfvlTHTwdeUaOFF7OMp0p164xOYXIuroZrh9xINtp35fR1Fkzawxvd9uFT9SJ2Jcyo39aTcfO7oCjq22XyJC2DBz9bGaytYVjvU4AaEG/Rl+ef7YRCCCGEKLDSC6KWExqNOvQ8xdSpEBWV/V5uAHt7w/S+M2fUud1CiLwhje48sG4dnD5rQ0yCXZpHihnv7qXLoIaZnKVwqFABjh5V76YCxCUU4/UPm/Nmj70EhVYGwL3iDcwt8y+Gn4ubYSjBrVAzYmLgty8P0rquP9V9XBn9eSt+2ejH6WAPkrWWRscO6baPqdNy523z9kfVMdNoAVi43J3kxOQsjhBCCCFEYZOcbFifu1w58PB4uvM0agQvv6ymw8NhxgzD1EJra+jXL+tzpAwxT0pSpyYKIfKGRC/PA6++Cgf3PuJyQCiaJyZrazQKXduEMuHrpxhrVEBVrQoHDyiM7r+fRWv9AFi8zrCGtWfVe0A6EUTyiEu1Mvr0mt3e/FkBHj1qliafmUaLZ6Wr+HqGUc8nmSYtHWnSqUWuLXXm6ulCt2ZHWHegMSERzqz75TC9h+df9HkhhBBC5D5/f7VXGtSh5c+yYsnMmbB6tdpoTt3z3auXGusnKw0bwm+/qenjx9WGvBDC9EzW6P7xxx/Zs2cPgYGBWFpacjwbk0cUReHbb7/l77//Jioqinr16jF16lTc3NxMVcw84eICq9ba4u8fjY+PD+bmTy6XlX8NUFOxttHwv3/9aP7FfkZMqkdcoq1+n6d7Yj6WDMpWLoOFhUJysoa7kSWN9nlUvMrgl27QplMZvJpWxbZEDaCGycoy8h0L1j2OXv7DT1b0Hm6ySwkhhBAiHzzr0PLUqlZVg7F+843x9qyGlqeQYGpC5A+TDS9PSkqiU6dO9O/fP9vHLFq0iGXLljF16lRWrlyJjY0NQ4cOJSEhwVTFFCb2+kctOLIzhBrOwfptjZoWz8cSgZm5GTVrGm4z29nB0CFaDmwIIPBGFcZ/3ZrGHetgW8I2k7Pkjhf6+VK9wjUA/jtVjw4NTjBu8G5WLLnFxYuGJUCEEEIIUTilDqL2rI1uUJeVTd2r7eyc/eCudeuq0dBBgqkJkZdM1tM9evRoAFavXp2t/Iqi8NtvvzFixAjaP/7kmDt3Ls2aNWPHjh107do1w2O1Wi1arfbZC21CKeUr6OU0hVpNqnHkVBTzp+zC2ho69PfL99/D4sWwZImGxo2hTx8FOzuA2ugUHeSgaLlRryMGBjN2rhsA20/UZ/sJ4Fd1X/HiCm3bwrx5Oqo93epk4ik9z+/ZokzqteiSus0HWi3m+qQWTPC7L+z1qtXC3r1mgIayZRVq1NA986+pZEkYP17DhAlq39mAATpAydZ5raygTh0z/P01nD+vEBWlo3g6fSHBwfDOO2Y0aqQwZYryTEPi01PY61Vk7Hmr2+y+zgIzpzskJITw8HCaNTPMrbW3t6du3bqcOnUq00b3pUuX8qKIueLMmTP5XYR8031YCQBOB5zO55Kod3mHPx7Kffnys5/vWeq1aXdrXjq6k10nvLn3qIzRvpgYDevXw/btChOGbqDzoIqYmUv8w7z0PL9nizKp16JL6jbvmMXF8ThuKgEBAehsbEx2rcJarxcu2BAVVQsAb+9ITp8OzuKI7GndWsOrr1YkKsqcbt1u4u+f/aFxbm6V8fd3QqfT8PffQfj4xKTJM3p0dQ4edGDbNg1OTkE0bx6VK+V+UmGtV5E1qVtjBabRHR4eDoBjynpTjzk6OnLv3r1Mj3V3d8fW1vRDgZ+FVqvlzJkzeHl5pTOnWxRWuVWvy3eAolO4deUWpw7d5vSNevj7azh4EO7e1RAfb8GU73uya/8pFv1aiip1KuXiqxDpkfds0ST1WnRJ3eaDGENjzdvbm3S7TJ9RYa/XXbsMXcQvvlgSHx+fXDt3SkA0KJWj4zp21PDvv2r64UN3fHwUo/3XrsGhQ4Yb/H//XZ133snd+W6FvV5Fxp63uo2Njc1WB3COGt3z5s1j0aJFmebZtGkT1fJ4HKy5uXmhqdTCVFaRfblSr+bgWrMirjUr0vPxpuhoGPfuLX74pSIAu0/74tM4mi8mHOCtSS2k1zsPyHu2aJJ6LbqkbvNQqt+zubm50fPcv1ThrNd9+wzptm3NTPkryrbUEctPnkxbpiVLQEnVDt+/X8OhQ+a0aJH7ZSms9Sqy9rzUbXZfY44a3UOGDKFXr16Z5qlU6el64JycnACIiIigbNmy+u0RERHUrFnzqc4pRGFnZwffL61In66nGDLSievhLsQk2DFyaku27jjC6t0NpeEthBBCFEDqfG41XaYM1KqVv+VJUaeOOrc7MTFtBPOkJLXR/aRZs2DjxpxfKyFBXTLN11e9phDPqxx9Wy9dujTVqlXL9GH1lO8oFxcXnJycOHTokH5bdHQ0p0+fxtfXN5MjhSj62vb15cwFB97qtVe/be3+xmxbcTIfSyWEEEKIjAQEwIMHavpZ1+fOTVZWkDLK/dIlePjQsG/dOrhzR0137w6urmp60ya18ZxTw4ZBkybQoYNJ4uwJUWiYrIssNDSUwMBAQkND0Wq1BAYGEhgYSEyq+T+dOnVi+/btAGg0GgYNGsSPP/7If//9x8WLF/n4448pW7asPpq5EM8z+9L2/LS6Jd9NNqw9cnh/dD6WSAghhCi8Hj6Ezz83HgKem3J7qbDclHq97pOp7t//73+G9KhR8OGHhuezZ+fsGrdvwx9/qOk9e+Cnn3JeTiGKCpMFUvv2229Zs2aN/nnPnj0B+O2332jcuDEAwcHBPHr0SJ/nzTffJC4ujsmTJxMVFUX9+vVZvHgxxYoVM1UxhSh0urxUBaar6WOn8nfNcyGEEKKwGjUKfv9d7fkNDISqVXPhpIoOkh5B0kN2766s39y6NXB7G4Tvh8QHkPRQzZf8yPinooMyjcFvlfF5Y0OhWGkwt86FQkLDhob0sWPQpg1cvQrbtqnbqlRR1/7284PPPoO7d+Hvv2HGDKhePXvXWLnSeG74xInQpw+UL58rL0GIQsVkje7Zs2czO4tbYhcvXjR6rtFoeO+993jvvfdMVSwhCj23WpVwtI8g4pEjxwLdUHQKGrMCMmZNiOeEvz+UKJFLX9KFELni+nXo3x+qVVPnJVtaZpw3OhpWPW7XJibCzJmweHE2LhIbCre3QNxt9RGf8jMMEiPVxrSiIyTChZ07bwAaHB0fz+f23woXvsr6GgkRabcdHwW3t0K5tuDcWX3YVclGgdOXuqf7+HH1Z+pYyW++CWZmYGMDY8aoDWadDubONe4Nz8zy5cbPo6Jg7FhD77cQzxOJwCREIaMx09DQ8yoA4VFOXL8Y9tTnCr1yB502d5cBEaKo27xZDQpUqxYE586Su0KIXDBvHhw6pPZe//135nk3boS4OMPzX39Vl8oi5gZc+h729YEtjSBsj/GBURfgyFAImARB38PN1XDvEERfVRvdio5krTn9v/+TR4/UG+I9e6oNWCxLZlwgi+JgXV592D4RlFibCHd2gDYWQjfA8XdgXVXY4AnHR0PwMnhwDnTZnzTt6Qkpq+0eO6beeEgJoGZhAW+8Ycg7cqR6kxHgl1/g1q2sz3/1Khw5oqbd3SFlReA//4QdO7JdTCGKDGl0C1EINfIrp08fO/t047S++HA3FauXp5HnBSJupXNXXQiRrmXL1J8JCbB2bf6WRQhhsHOnIf3rr5nnXbnS+HlyMswcsQrWuqq9yjdXw/1jamM6NZsK6Z/QqjTYVYfSDZmy5Tf2X/QDoHJltXcYANdXoPVm6HAYugZCzxB46SH010K/aOh9W300/c343ElRULmv2iBPLeoCXFoAhwbBpjrwdwm1cZ4N5uZQr56avnZNbXDfvas+79nTeAi4gwO8887joiTBV9norF+xwpAeMgTmzDE8f+cd9fNTiOeJNLqFKIQatjbMEzt69OnO8dMf6rC0E0G16NTmDlH3HmZxhBBCUYy/2B/YkY0uHyGEyYWFwfnzhuc7dsCtK/fh1ia4/pdR3kePYNPGJACcSoRTwkb9/7d0+4tcC3dNlVMDSQ+ML1S8MjT4HvxWq43nHtfh5XjoGwEvBrHN7Cizlr8KqD3Gf/0FpUs/PrZEDXDupM7ZdqgJthXBsgRonvg6/mSYc+sy0GQJ9AqFTieh7ufg1AI0T6wPrI2F4k8MOb+7Fw4PVXvDY24a7Uo9xHziREP6rbdIY8wYsH48nXzhQojI4l596qHlr7yi9pw3a6Y+v3QJvvhCpsWJ54s0uoUohJ4MgJJToVfucPWO4YvF8aDadHvRgtjYXCicEEXYuSPXCEs1o+PAQXMUnZLxAUKIPLF7t/FznQ5+nzQH9nSFUx8a7Vu/HuIT1AnfLzVayXud5gOQrLVk1tavwGs6dD4FryRCzfeNT2xRHNxHQqVeauO5eGUwVwP+hobCgAGG4GGzZqnLZeUajQZK+0LtifDCPuhzD9psg7qzoPJLUMoX7J4INHFrI1xdovaGr60M66rD0bfhxioa+hhWQImMVH9WqwZt26a9dNmyMHSomo6JgQULMi7m2bPqA9SGtqurOrz+xx/VHnaAWbM03LwpgZLF80Ma3UIUQuXKqUPWQA2AktO1L/dvuZpm275DxenVS4Z8CZGZneuvGz2/HVme4HMh+VQaIQSKDu78x84/0w6r/mXvYLUBHBuiBkB7LPXQ8n6tdjHm9bPYF08EYOmO3txw+BRK+YBZ9uMNa7Xw2msQHq4+79oVPvjgaV5QDliVhAovQO3x0GIldD6Ztpc8fL/x8+grcHkh7O9Lg3v105wyJYBaej76SO29B/j2W8Nw9Cel7uXu39+Q9vZWe8wBEhI0zJ1bySi6uRBFmTS6hSikGvqoy+3FxMCF49ezyG1s394kffrzcRf1AVK2bVP/QSYn51oxhShS/tuTdrmeA9tz9v4TQuSSh+dhfQ3Y2Z5dR9U70ZbmiTSoqg4BuxDqybHkr6H5CrC0B9QI2ps3q4eXLw8tJvxD6R4ree99K0CdszxrVs6LMn26obe9YkU14FhGjdc81XYHtNsFdaZA2ZZgZgjpXr1cEA62D/TPLS2NA6g92SJ2dYWBA9V0ZCSMHp32copimM9tZgYvvWS8f+pUcHFR04cOOfDHHzLMXDwfCsLHgRDiKTSqflyfPrbnZiY509p3TI2QYqbRMurD8mzcqC4LArBmDbzx0lWJai7EE5ITk9l9smaa7Qf2y3tFiHxhVxUSI7l135mgO+4ANPYK4e3RZfRZfj06Blxf1je6165VI3UD9O1rGO78/vtgr2bh55/hxo2sL5+UBGfOqEOtP/tM3WZurjY6y5TJ/Ng8Y2ED5VqD91Rovwf6RkLrTVDzA8xK16F+lRP6rL16qcPIAXVkwJoKsK8vnJulrjGeEMGsWYY56n/9lTaY5NGjauRygHbt1JF5qdnZwfz5hueDB5vx7rtqB4IQRZk0uoUopBo2K6lPHz2a/S/9D+4+JOBaDQC8qwRRoowDLVqo/zitrNS72r//W5U3uh8kPiY+V8ssRGF2YtcFouIcAOja5CjmZuqQkP0nMohmLITIFRpdAprg3+DsDOMd5tZQZRC7bhm6XNt0r8pLb1TR30hevtx42lTqoeUvv2xIly4N776rppOSYPZs40spihoA7KefYPhwNbaKvb06ZHr0aEOn8GefQYsWz/iCTcmiuLrGd70voUsAfj0a63eNGJEq350d6trjN1fB6YmwqyOsKkO5w27MHznf6JgHDwyHZTS0PLVeveCVVwzfW777Tv097tv3jK9NiAJMGt1CFFL1W1dDo1H/aR0LyP4t9UPbLqEo6lvfr6EhItQLL8DKxZf0DYnfNregWd1grp7Jxu1+IZ4D/226p09375KAT7VLAJy7UYPIsAf5VCohirCY62jOfIrX1W6YHR0CZz+D+CcmEtf7il13x+mftmmjrindu7f6PDJSDZwGauNw61Y17exsiKad4oMP1J5YUHu7g4LUoejvvgs1aoCHh9rIXLRIjafyZAyUnj1h3DgKlTEf2TFmDPzwA7RunWpHYgRY2Kc9IOY6r9UcQxefjQDcvg1jP1C/i2i1au83gJWV2rhOj0YDv/2mMHbsTWxs1LsVV69Cq1bqiAMJ6iqKIml0C1FIlXAsQU2XYABOX61OQmz2IqDtO2WIbOrX2tZoX4+BHiz/7hg2Vup/vFNXPKnftATrlhzJ8Hw6rY7oyOgM9wtRVPy3r4Q+3a57ZVo0CNc/P7Q1KD+KJETRo0uGkHWwqwusrULS6S9REh7/j9Elws01xvk1Zvpl/IoVg6ZN1fTgwYYsv/yi/ly7Vu3FBnWu8ZNzrh0dDb3diYng7g5duqg9sVeuPHFZjdoIf/lltVf8v/9g9eoCMo87B0qWhK+/fqKXG9So7X0joet5aLoMPMaoy5RZFEejgZ+GvI29dRQAS5aasX077NkDd+6oh3fpop47I2Zm0L//XU6e1OlvfigKfPMN+Piow/aFKEoK2UeDECK1Rl5qNNYkrRWn91/O1jH7jjrq0y16NEyz/6URTTn8Xwg1nNUG/YOYkvQY2pjxb+wmOVHtBb9/X52zNmgQlC+XjH1pO+pVD+T7KXu4fzvyWV+WEAVOfEw8B87WAqCyUwjVvCvT3M9Kv3//HpmQKMQzibkJAVNhrRvs7QG3N/PPkd44jwql/Mg7nFfehxcOQPXhRoddu6Y+QG1wp6wl3aaNIWDXli3qOt4ZDS1P7YMPoHjxtNstLNRzzp0LBw6oAdkuXFD/F44bpy6z9WTg8ELPzBwcPKHKAKj/tbpMWd+H0PkUlVq/yRfDvtVnffNNdQRAiv6+30L4oTTB2J5Uowbs3Qtffmmou6AgddSAzPMWRYk0uoUoxBo2MMyJOrb/XiY5VfHxapATUNfirJDBVFTvFu4cD3Ckb+tD+m1zfmmNX52TtGh4Fycnda7WsmUQHqE2PE5d8WTU9FY4u9rQv/1Btq84IcHYRJFxcHMgCUnqN8J2jYLRmGlo3qGKfv+BYyXzqWRCFBH7esPZaRB3i6RkCz74/Ute+vYf7kc7EhlTmin/zgOnZmlatrt2GdKp15c2N1dvDIM67HnBAnWFDoBKlaCxYSqzkTJlYN489TLOzjBsGKxaBRERsHOnumxWs2aGYejPHTNzdTk1r8m8OX8SrVurjerr1w1Ry+2sH9Gt0njY3gy2NIArSyE54zHj5ubqzQ5/f3VuN6jDzT/91LQvRYi8JI1uIQqxhs0Nc7mPHjfPMv/x44aorX5+mect4ViClf814evxe7AwV8fjHQ5qxIHjZdGlakvb2SnUcjNET09IsmbFf83o0L8+VSqEsmbR4ey/ICFy6ObFUHb+c4qA/ZcIv3nPZDd6/tvyUJ9u10791+lcrTxVyqkxD45eqqV/bwkhMqEo8OBM2h7QKq8DEHK/Eq2/CODrzcaLXK9apeHixbSnS93obtPGeF9KoxvUIeApy2GmN7Q8tbffVoehh4Sovbe9e6NfWlMYmJnB4sUafdC6FD0absG2WJz6JPIkHBkCq8vBocFqgDadNt3zeXjA338bery/+QYOy1cIUURIo1uIQqxui+pYmqvf9I+dzTqC8r5tofp0Vo1uAI2ZhjGzWrFn7QVcHA3HenrqGDtWncMWEaHhXHAlAvZf4v1Xd1OmhKHH/Ua4C72HN2HsgN0kJSSldwkhciQpSV0L9+MRV/ByC6JyTWfaveRLXT93ylYuQ7FiWlwcb9PA/TyDu+7n9tWwLM+ZHf/5N9Cn27xYXZ9u3k5938UnWHHyZK5cShRAv399gDd77OXCsav5XZTCQZsID85ByFq4+C2c/BD294OtjdVlqDZ5w/3jxse4vcqOmF+pNy2Yg2c9ATUY1wsvqI1zRdEwd67xIYpiaHTb2kKjRsb7PTwMc7y1qdp5/fpl/RLMzYvgcHETqFYNZjwRVL7/hy9Ck6VQqp5hY3I0BP8KO1+AtZXQnJ+Z7vnc3WHaNDWtKDBkSNqAdUIURtLoFqIQK2ZbjLpV1bncF0KqEBURlWn+fVtv6dOpg0BlpVlXL86cL86aRUe4euYm58+bMW+eOpTP6vG0Vq/m7nz1R2tu3SnBqoWHaV/PsPbnV3+0pk3DIG7dyuACQmTh0CF1Td0yZdTerC9+qsbZ6zXS5EvWWnLrfgVOBNXi100tmDnhwjNf++FDOHZKHUvq6QnO1QwLz7ZoaalPHzjwzJcSBVDYtXDe+KgRi9e1pEnr0uz851R+F6lg2+4HK21hUx3Y2xNOvAcXvoQbf0PEUXUZKoCrS40Om/NNaTq8NYjwe+qorcqVYf9++OsvHfb2j1fV+A1uGgZWceWK2hsN0Ly54f9Raq+/bvzc1TVt41w8m/feM9zccHWFFzoVg6qDodNx6HAIqg4By1RDBeJuQ9ydDM/3wQdQv76aDgxM26gXojCSRrcQhVyjemqkEUUx48SJjN/S2iQtB8+qjZSyDuHUqJP9ZcYASpZ1oOewxlSpUynTfFY2VvQe3oRtx+qxYNIefU/8gTO1qFdP7R0XIifi46FrV3VeZVSq+0oajY4mNc/w/qu7GdJtH50bHcO3WiDlSxp6t/cfL5fOGXNm7170UyratTPe17y5Ib1//zNfShRAZ4/dJFmr3lx5GFuSjq/U4Ze5UtkAKOlM59CYg5L+8GHQgI0zlGsDZQzrdR04AOPHG0acd+4MJ0+qa2GXKAEvvaTeJE5OVgNupUiJWg5ph5anePllNap5in79pAc7t5mbq/PlFy2CHTtS3fzQaKBME2jyM/QOgxZ/g0sPMLNEcX3V+CTx4fBfW7i8GAvdA5YsUYPXgTo14PTpPH1JQuQ6aXQLUcg17GSIQH7MP+PILmcPB/EwtiQAfj6X0ZiZ9luHxkzDqM9asW/jJSpVeATA3bvQoQN8/jlG88KFyMx//wQQ+TgofqlSCq++Cr//DndD4zgU6MVXf7Tm5/V+bDrSkJOXPbkdWQ6vGrcBOHPd45nXfE19o+jJRnetWoZlcQ4c0KHoMo/UKwqfoKvGSysmay15Y1wLPh2++/mtb0WBSz/A7m5pN0d1ZP6eOXSa70+rr4K5WHY1tNsJL16Bl+Og1y31eZUB+uP+/ttwjo8+gg0b1OW7UvTvf1e/nvOiRRD+eKBWZvO5U5QsabxedEZRy8WzsbNTg85Vr55BBnNrqNwXWv4LvW6D4xOR7G6shLBdcPRNWF0e77g3mTg2AlBvtgwZYpiTL0RhJI1uIQq5hqlW/UqJTJ6efdsMvX9+zfIu4lPjjnU4dcaeTp3U5zodTJoE4z54mPmBQjy29h/D38qSuUf54w947TUoUz6ddX0ea9RSnWut1Wrw93+26/+3+QEAZmYKrVsb7zMzg2Z1rwMQHm7G5dPXnu1iuUin1XH3RvankYj0Bd2tqU+3qndJn56xqDUDOh0kIfY5m3CqTYRjb8Pxd+DuXv3msWPV5Z88+kxgzP8+ZuvRuuw94cYHX/dSe7btqoJ5sTSnUxRYv15NW1jAxIlpg5yVKpXMsGFqozs2Fr791ng+t709NGhAhr74Qu3hnjfPMGxZ5KNijmmHG4Snmp+jS4Ari/mkljO1q6jBKk+eVOtPiMJKGt1CFHI1axqWLjl2LON8+w8a5p62aF/WxKUy5ugIGzeqwVE0GvWL07z5Dqz/JZO7BEKgNhzX73EHwNoyjhde8srWcalvRmX2vshK2LVwzl4qCUB990v6Xu3UmtcN1qf3bwt5+ovlovu3I2lW5zzlXJ2Y99Hu/C5OoRYUZEgv+9edbybsQaNRh+r8ub05LzS5QMiNjIZTm4apl2PMcCRS/F3Y2Z4rB3awYOsoen29Sr/rp4XqHOsnbd+uxkXIyMWL6vJQoAb4TO89BvDBB4p+uPF336nv67Aww3Ep+9Lj4gJ//aXeGBAFVLM/1DngHu/p539bWSSy5I2+mGnU99fUqVq+X5DMkSM88wgmIfKaNLqFKOTMzQ137m/cgLCQR2nyKDqFff7qmsJ21o+o2yJtACpTMzODyZPhmykB+m2vj6rBjQuhmRwlnnfHdgRy54E6L/uFhgEUd7DN4ghVdkeAZGXnOkOLq22T2+nmadGmpD5tymBq/nsv8v2UPVwPzLxh/+j+I7q0vcWRC3UA+GJRbZITZVzm00ppdFtbQ8WK8N7MVqxZdAzbYmo8jX1n6uJe05zp0/OmIbBnjT+ODlHUdr3M0jn7cn1liOnTwcZG7T2u4RqBn9dpXmpziNGv7GFU7824D1pM9Q+uMPq3BWw729HoWAsLdZj33Lnw6uMpu0lJhp7s9KTe1717xvkqVYKBA9X0gwcweLBhX0ZDy0UhotFA6fpQ/xvocQN85oB1eRpVO8b7nb8GICHBnFGjLWjSRP37rFULXntVxw8/QFxc/hZfiKxIo1uIIqBRNUNX3rH/AtPsDz53k9D76nDbZnUuYmGVSZeAib37qTe9/NSFNyNjSvFK7whZTuw5FBF6n71rTxPzMCbTfOv+NgyPfrFr9qdFeHlBsWLqqIpjBx88VRkB/tth6MFs19E+3TwN27kbAgaecs7WeXVaHT9N30tNl6u8UP8EX4/fzcXziWmWLo4Me8D3U/ZQr3ogvq08GDW9FV711RUC0hP3KI4X217WN7gB7j50Yu+6M9kqlzCWnGzova1e3TDsucfQxuzZcJ0KpdSu1rg4mDJFHXm0Yrlp5/ZPnabwIKYk529UZ8h4P6pXCuP7KXuIe/TsrY6ICDVSdGIiREfD5RuO7D9bl392N2XBX634fvPrBN1xT/fY5X+qx+/cqc7LHjHCsG/VqnQPAdT52ym6dcs4H8C4cYZRyYGp/tVJo7uIsXKAWh9Dj2Bo9D+mD/6V5u7GwQt1OvVv4M/lZrzzDrRucIWwoyshVpZJEQWTNLqFKAIaNjD0Yh09mLarZd+WG/p0i8bReVKmjGjMNPz8d03cyqrrvhwK9GLSW7nXPRgervaCiIJHm6Rl65/HebndQZxdi9OqZ126t76UaQNl7faKgBqpvPurNTPM9yRLS/Cteg6AoGslibwT+VRl3nnUFQAriwSad/FMN4+NvS31aqhzfS+EVONeyL1086W4HhhCh4b+jJjSkou3qrLjZH0+mNOamrWtqF4dRo2CZT+F0L/9QSpUsmbU9FacumK49qO4EvR9uwkfDNhjdMMqMS6Rvi+cZfdpXwD9kEyAlavSWUtJZOlG4E2SHv+Ka1S4ZrSvQftanAty5L331BFHoC5n1f9VM/y8z3BiZ9oboM/q2rkQff3qyxjuwqjprahS+RFzx+7m0f20o52y6++/0b/eMmXAoXja/xfmZsm0bJHA7Nlw+JBh+4svqpHGUzRrBuXLq+ktW9RG/JPu3zeMDnF3V+eEZ8bDA/r0Md5WsiT4+GR+nCikzK2h+pvY9vFnz5Y77Pv5e779Ft54Q61zS8OsOY6er0aTbg05/90LsKEmHHsHbv4LyZnf2BUir0ijW4gioGFLwzJex/zTBpfav98wQc+vbcm8KFKmSpUryYrfHmJhrn67m/trazb99gwTbx/7a4VCpUpQtapxL4jIX1fPhPDp8N24VQij02sNWLmzGYnJakClXf6+7Fqd/rrHV05f59wN9Vt445rnKefmlKPrNvI2NH6P705nsmkWgs/eJDisMgDNap/HtkTGQ9tbNDBc6+C29K+l6BQWfb4Xr/ol+O9UvXTzXL0K338Pg0a4sOK/ZiQkWev3NXQ/R7emhrHyX//RijaNb3DrFmiTkhnQ9QSbjqjj6u2sH7Hj7wBsrNUbcqt21JbIv08h6IwhAGUN52tp9pdytOCbb+DMGfTBIgEOnPOmYXsPPnhtN7FRmfdAh9+8x5S3d/Plx1lHQ1/2h7k+/XqX/XRtYvh7CHtQlnFftaZR3btPPXro9/8ZFsHesQMeRNsR+yie4HMhHNp8lh2rLnAvXMOefcUYN04dUZIRMzND1PD4eNi0KW2eLVtA+/jeUGZDy1ObMMH4ecuWhpseoogyM8e8Sl9aDHmHd9+FJUvg1Cn1Rs7uH+biUlqdcnMtvArNph1k5yFnCPoB9vWCVWVgd3cIWZfPL0I876TRLUQR4OpZEacS6jDcY4FV00TT3XfaAwBL80QatffI8/Klp3HHOswZa+jhHjSqKiFB6c+ZzY71S48yYICWhASIjIS33iLNUF2R977+GqrXrciMRa0JiTAMvbazNvTGffFF+kGo1i03BCjr0THz3uP0NGxsmEZx9GDOR3hsW2O4fju/zKPtN29paBwf2Jt2tMnNi6F0anyS4ZNa8ihO7Q6sVOYWW/88wbnDl/nis7u0aZM2GJSjfQRj+u8hYP8ljl6szbr9Dflu8h7DcPbT1fD1hV6dbvH3rqaAGnBuw59XaNPHl27d1RPeuwe7d+f4V/DcCwo09JLVcM+4ZefpCZs3w8aVN/CoqEYFUxQzvv6zNT6edzi4Me3w/sRE+OorqOFpzfSFrfnwi9b89mXGo34UBX5dqU4T0mgUpn9diw2HGnFqz0VeanNIH9ztQkg19m+5luPXevXMDQ6cUm/g1qkSjLe3ut3Gzhq3Wi406VSHdr1rUrJ09lu4ffsa0v/8k3Z/ToaWp6hXDzqmmkouQ8ufX1ZW0GrExxw+5YSvl/o/5WFsSTrO2cqvewepmbTxELoBIv3zr6BCACgm8sMPPygvv/yy4u3trdSvXz9bx4wbN05xd3c3egwZMiTD/DExMcrx48eVmJiY3Cq2ySQnJyvHjx9XkpOT87soIhcVpHrt0vioon4tUxRH+3vKe6/sUvz3XlDCwhT99iYN4/K7mEZ0Wp3Svdlhffla1PFXkhKScnyeHStPKMUs4/TnSXksXZr19ff866/cuHArzb6CVLeF1YEDimJmZqgPM02y0q3pEWX1/w4psVGxilvZG/p9Zw5cSnN867on9fvPH7mc4+tfPHFFf3yP5ocURclZvXZqZHhPHd12LtO8YdfCDO8zzzPKxYuKsmKFoowbpygdWt5Rihd7ZPS3ObT7XuXB3QdpzvPwoaKsXq0okycryt+/3VYSYhPSvd7hLWeVSs6xaf7mLc0TlE3Ljurz/f23Yd+wYVm+5ELNFO/Z0S/v1v/+dq8+la1jEmITlLljdxl9Jmk0WuXDgbuU2KhYRadTlA0bFMXdXUlTfzVdLivaZG265923z5CvXbu0+5fOM/y9jh2b89c6/Z1d+uNnv78rewdFRxsKFR2dZndSkqI4Oqq7ixdXlNRf1xITFaVkSXWfg4P6PD3p1au/v3reSpUU5e7d7L9GUXDk9vv10SNF6drV+P306ZANim5VBUX5A0W57298QPQNRdndXVFurFKU5PQ/Z8XTed6+P2W3PWqyRvf8+fOVpUuXKrNmzcpRo3vo0KHK3bt39Y8HD9J+KUkhjW6R3wpSvS6ZvTfNFzhQlMpOofr0Rx/ldynTigi9r1QqE6Iv45wPduXo+AMbAhTbYtH645vWuahPlykdr9y7dT/d43RanfJmjz36hsr3k3crOq1Ov78g1W1h9OiRolStavg7fHvgNeXW5TtGeeZPNDRoBr8SZrQvIjRCMTdLUkBRqlcINqqb7NImaxUH20gFFMW5dKiiKNmv1wd3HyiW5gkKKIqL461sXb+G89V034OpH86lQ40axc/i3j1F6dQp1U0NM53yzy/BRnliYtTGDihK6dI6JTG+6P49m+I92znVjZdbl2/n6NjAo1eUxjXPGNW/h/MFpaPfDaNtGo2iOJUw3LRZtfBQuucbOtRwzLJlafffu2e4yeXpmbPXqdPqFPeKhr/f9G5EpiuLRreiqDd7UrKsXm3Yvnu3Yfsrr2R8iYzqNT5eUXQ5/1gQBYQp3q9JSYryzjtPNLwn6RTl3rG0fyxnPlMb43+gKP+UUZTj7ylK5Jk057xzR1Hup/81QmTgefv+lN32qMmGl48ePZrBgwfj7p5+lMuMWFlZ4eTkpH84ODiYqIRCFC1vjPNj92p/XutwAGtLwxzCG+EV9Gk/v/woWeZKVyjFil/u64M+zf65WbYDoZ3cdYEu/SoTm6DOY3+x+RH2HK/CS73U4b337hdjwsiz6R4768OjLFrbEoAkrRXvTG/FgE4HiY7M30BzRcUH7yv6tXebNoUFS1xxrlbOKM+QD+tT0kGde/rHqrKEplo9buM2B7Q6dWh0j47haMw0OS6DmbkZDTzUQoTer8Cty9mfvrBp+TmStGrwsZ7tgrJ1/Ra+GS/lVabEPd7uvZdzgbZ0HtAww3w54egIGzfCvHnQqhWsWqWhz+tuRnlsbaF7x/sA3L+vYeeq9OfPi/QF3VTjCBQvFk2FKuWyyG2sZsOq7D9dkzkf7MbKQp3yczHUg637DDE4WrSA48fhtx8MwS5nziuRZm53bFQsK/9SJ+Xb2RnmSqfm6AhNmqjpwEAIDk6bJyPH/wvk0i11WcnWdU9RySN7UfizI3Xgs9RRzFMvFZbdoeWpFStmiGQuBKjTcxYsUKc1pfxtfDZDw5q9DdL+sdzZYUgn3IOL82GTF+zpAfdPAGqQv4oVoVo1OHEij16EKLLyb92gDBw9epSmTZtSokQJmjRpwpgxYyhVqlSmx2i1WrTa9OcEFhQp5Svo5RQ5U9DqtcWLXrR4EebffciKhUf45c+yHA+qBYCtrULTpjoKSFGNNO5UiwEvhfPbyvJEPrRi3jwd06ZlPiH7/NGrdOxZhoex6o259vVO8OemOphZmDFvViSbN2uJjrdn0Vo/Bm44TbPOhiWUli/X8MnXjdOc88/tzTlV9worV97GvZ4rUHDqtjBZ/+sxFi1Wv/0XL66wdKkOjYY0f3s2JWx4620Nc+aoEZPnz9cxc6Za72vXG+4Jdx1U76nroaHPA/573M48svMa3QY7AlnX6+od1fXpF/vYZev6H06uwOGAK8Qml8KnUSl8fBR8fBR8faGic0k0Zs2zde2cGjNGfajnTru/b4cLrFjdDIC/lsfR/uWi+Ted25/HSQlJBIe5AFCjYgg6pQbk8NQacw1j5/rRqc9lhg7W6j+PKztHM+dLW/r2VdBoQPHywXdKIKeueHIiqBZb/zrGC/0MwfZWLT7Jo+gWALzU5RrW1pXSretOnTQcPKi+dzZu1DFiRPYCWyz7+S6glu3Vfo+y/zvUajHXJ7Xp/gG2agUlS5rx4IGGdesUYmN1FCsGGzaYARrMzBQ6dMj4f1NB+z8rcocp6/XddyExUcO4cep7YdAghYMHddSqlSpTq21w9z80V39Bc2stGt3jWDi31sGtdSgVuvD9d7+g1ToRGQm9eikcOaKjbNlcL26R87y9Z7P7OjWKYtpQQ6tXr2bmzJkcP348y7wbN27E2toaFxcXbt68yVdffYWtrS1//fUX5umEpoyNjSVQQhQLkamgS9bsP1ASH59ofH0Lbi/urVtW9OlTm+RkM2xttaxde5ZSpdIPt3z/1kMGD/YkNFLtxW9S8xRfLoyjWPFi+jzrf77JtB97AlDH9QKLVzzEwtKCEyfsGDWqBklJ6j/jD4fvx835HhPmtNUHuCpeLJrPP9pBi56VKKhiY8345JMq3LpVjDlzrlKlSnyeXPfePQvOnStOxYoJVK+e9ppRdx/xSv9a3H2ofjOZMu4E3V/K/HzdunmRnGyGvX0yGzacwdJSoX37usTGmuPgkMzWrafTBBjLrqObbjJyck8A3n15A69/VCHzA4CEBA0vvPD4+iWS2Lr1FBaWhTc8ckJsIh071CE63p6SxR+wZftFLKwK3D33AufOlQi6vdwBgB7N9/DpfLtnOl9yUjJ7VoWSlARt+pSnmK3xMm4H199k9LSeAPjVOc7Xvxh65j4amsyu0+qNwmXfrsezWfo90RcvWPHaADWkePsGR5n9U9Z/t8lJWrp3rEJ4lBPFLOPZvvk4tiVtsvWazOLi8H08hOrUvn3obNI/bsoUNzZuVG94ff31ZVxd4+ndW70R6uv7iEWLLmXrekJkl6LApElV2Lq1NACVKsXz228XsLdP20Ay10bhGLWRcveXYZV8F4BkrTllR9wlMqa0Pl+9eo/44YdLT/3/SBRtnp6e2NpmvMpJjv5s5s2bx6JFizLNs2nTJqpVq5aT0+p17dpVn/bw8MDDw4P27dvre78z4u7unumLLAi0Wi1nzpzBy8sr3RsIonAqDPXq4wMv9cvvUmTNxwfefBN+/BFiY83ZuNGLefPS3hNMTkym/esX9A3uetUD2bjLDQenEkb56nxZh7VbL+B/tSZnr9dk/+pddHq9JePHm5GUpH6ZffNNHbO+b4pGA227XuPll+5w5po7MQl2jJnRk9eO7WTukhaUK1ew6lbRKbzRJ5B9+0oCsHhxLTZu1GV+UAYiQiMZOTCIyIfF8K4VhY+vOT5NylKzvhsWVhZok7Qc2XGeLWsj2XKgJicDDY3WDh0UJnwch1/rYvpy9W1zXN/g7tb0KJM+q5fl0OwBA+CXX+DRIwuO/2eJRyNPYmPV33mPHmY0aODzVK8NwMmuHExW04FBFfDy8sryPbthA4br9zSnQcP6T339gqK732GWb2/Og5iS3A3S0OU1H6P9SQlJjB92mMAgO75c4IBnw6r5U9BnkNufxxvPGDoLanlo8cmFxaAbZDKzwKu2F98tDubSrSrsO9uAuDunadqpDiFBoewOUNerr1ruOi+/1Qkz8/RnB9b1Vvjw3TvcjizP/tNeeFTTYmOfeQN685/HCY9Sh9F3b3aKZq0z/r6VRowhuru3tzcUT7tkJcCwYepUCAB//6pGvdr9+hXP9HdbGP7PipzLi3r9+29o2VLB31/DzZvWzJlTl7VrdRksMdcStNPRBf+CJnAOB0+4GjW4AU6etOf333355huT9lcWes/bezY2NpZLl7Jx4zAnE8UjIiKUy5cvZ/pISDCOALhq1apsB1JLT+PGjZXly5enu08CqYn8JvWau0JDFcXGRg1+UswqQbl5KTRNnolvGaKdV3a6qdy9EZ7h+Q5vOaNoNFo1cm6xR4pbBUOwok6d1KArqcU8jFFe77LPKAhLyZI65ZtvMo6smx/SC5p3Jm38l2wZ8oY23YBf1paxSr3q55VSxe9nGRzMr46/suWPY8rimYZyOZW4q9wJzl5Y4bOn443qdNhLhuBTq1Y93evS0+mUCqVuqxGS7WKUxMSs37OpA1b9++8zXr+A+Hex4X3zepd9RvuSE5OVV1/Yr9/v4nhLCQlK+94r6HL78/jr8YZAf0vn7M2Vc2bl51mG91D3ZocVRVGUme8ZoopPHbEry3MM7W44R3aC9vVvf0Cff+3Ph3NW4GwEUlMURYmLUxQ7OzVbqVKK4udnOOz8+cwvIf9ni6a8qtfgYEMEfVCUiROzU7gE5aNh/vpjRo1SFCurVCujLEl/hQGhet7es/kevTzFszS6b9++rXh4eCg7duxId780ukV+k3rNfR8NP6v/x/ZWrz1G+7ZuVRSNRqeAoliYJyoHNwZkeb63eu1J00j08YpToqLSz6/T6pRFn+9VilvHGB1Ts6aibNqQ//V87lCQYmMVk+Y1DR6c83NduGC8pFd2Hr7eccro0Yri6pp5vn8X5+zLe5fGR/THmmmS1RsvlnHKo8jYnL+wJ/R4MTnVF/zM37PJicmKk6N6E8DWVlFin/3yBUJcdJxSwuaBevPB9oESHxOvKIr69z7sxbQ3cXyqBipRERm8SQqo3P48HjksUv/72L8lOFfOmZWE2ATFxfGW/roBp3WKR0XD0ndXz9zI8hyr/3fI0FjotzvTvFERj/SfJ6XtIjJcoi5D2Wx0K4qi9O+f9nOiatWsI5DL/9miKS/rdccORTE3N/zd/f131sfUrJmyKoSihIcryqJFhuOLWcYrR3ekXeZSqJ6392y+Ry8PDQ0lMDCQ0NBQtFotgYGBBAYGEpNqKFKnTp3Yvn07ADExMcyZMwd/f39CQkI4dOgQI0eOxNXVFb+CGHJZCGES46ZUwN4mCoCf1zXlyunrAISGqsOQFUUdqjxzyn2advHK8nyzfvTGqUS4/rmLYygbVkdib59+fo2ZhmET/Qi8YEG3bvf02y9cgC7dzOnS+BhXz9xI/+AnzJunRj7t3x/OnMnWIZmKjYqh38sKcYnqdJqBnQ9RsqS674/fkwm9cidH55syBXSPR6VP+DCGLX8cZ9aYXfRre5AazsEAONg+5KU2h1g6Zz+hV8I4edqa+fMhKAh+XXCBmi5X0px3aPd99BiaNlBdZj78yFKf1inqcLR29c5gl825pZlp2MgwvO3YscyHuh/YdJbwCHW4fKfml8hgimqhY13cmh6t1D/Ch7EObP/7NIpOYeygvSxep/6PtTBPwrm0GuHd/2pN+nW+QHJi+nEVngdB10vq0zV83fLkmlY2Vnz4oeFvdOCrsVy8pQ71b+XtT5U6WceZaNe7FpbmiQBs2uOWJhJ6amvWF9d/nrzc+RJWNlYZ5n1WqaOYp+jWTSKQC9Nr1w6++MLwfPBguHgx4/yXL6v/80FdfaNMGXWKxIieapslIakYvfrZELbpA7i1EZLjMj6ZEClM1eofN26c4u7unuZx+LCh98Pd3V1Z9XjsYFxcnDJkyBClSZMmSu3atZU2bdookyZNUsLDMx46Kj3dIr9JvZrG1BGG4ZQDOu5TkpMVpXVrw13mLl0URZuD0V3//HhQMdMkK2VKhCun913M1jEpdXvoULLStKlx70zF0qFZ9gKePauuv5v6uO6tLyqHtzzlOHBFUYZ0M/RIele5oMRGxSoT3jqh3zb+jZ3ZPtepE4n648qWVdfVflJcdJySnJj533ZyYrLyz48HFd9q5/XlepoeUp1Wp9Srft7o97Xwsz1ZH5gNW7cazvnuu9pM37Nj+huGFC/7an+uXL+gWP/LkVTvq/3K5E8Mw/o1Gq2y/NsDSuDRK0ZTCob3PWHStZB1OkUJCFCUsLCs82Yltz+P3dzU30GJEnm7HnR0tPFwWMMQ931ZH/xYW1/D50Lg0SsZ5nvhBcP5Dxx4ysJms6c7JkYdPZL6NW3fnvUl5P9s0ZTX9arTKcqAAYa/vddfzzjvN98Y8s2ebdiecP0/pUWtY/p9LTz2Kom/WijKCmtF2dVFUS5+ryiPgk39Ugq85+09W2CGl5uSNLpFfpN6NY2H9x4qjvb39I2BAV1PGhq8FdWhXjl181KoEhn2INv5U9etTqcof/543mjY5+S3dmV6fO+OwRkOvW7ne1zZsfJElg3a1JZ9ZZhzW7zYI/0X6dArdxRL8wT9sOHsNni7NjmqP98332S7GBnSaXVK8NmbSlx03FOf48/5B4x+T6FX7jx7wRRFiYgwnLNJk4zfszqtTnF1uqmAOn3h/p3IXLl+QREfE6842KpDzM3Nkox+14tnGuYs7/nXX7GyiE/3S2duevRIUV57Tb2Gk9OzN7xz8/M4Pt4w9eIZwtI8tenTjT8zbItF5+hm1ryPDDcuv/x4V7p5bt0yvMYqVZ7yxkIOGt2Koih9+hiy29kpSkI2RrPL/9miKT/q9dEjRSlZUv37s7JSlDsZ/Itp187wd3r2rPG+O7filYplH+r3T+09WVH+wPhxfIzpX0wB9ry9Z/N9eLkQQjytEo4lGP+WOhRWUcz4faMvAObmOpYvV4d65ZRLjQqULOvwVOXRaKD/257s3J6IhXkSAPN+acjtq2Hp5j++4zyrt7oBUMEpmq+/Bpey9/X7/ztVn/b96mFvl0BTzzOM7LuXRZ/v5cTOQOKi40lOxugReCSItyfU1R//40x/aj6OLl2hajkGdDoKqMOGf/7iZJav5+DGM2w8rIZRrlTmFm+9+exraWrMNLjVdsG6uPVTn6PvWw3xqHgVgA4NjlOharlnLhdA6dJQvZI6VcD/RCLJSem/Xv+9F7kerq7L3MYngFLlSubK9QuKYrbF6NlafV9pdYbFS775WsvQCYZpXC171GXpd4YpFOPHw4oVuVuWwEBo3Bj++EN9Hh4OS+Yezt2LPIOrFx7op16413i6lQGexahRYFfc8Hfat80J7EtnMCcmHV1fqqxPb9peIt08y/9U9K9xwIC8Gebdt68h3bEjWJluNLsQadjZqaukACQmwsKFafNERcGePWrazQ3jtb2Bcs7F+GdtCczN1Wkbn62dzJGbXY0zVeiQuwUXRYI0uoUQBdI7kxvr55emmP7OXvIzxEMNXzfe7nMQgNiE4kz5IP1JYZMmxhrSI04wZgxcuWbH4pl7qV7hmn5fXKIthy948eOqlgyf1JIG7TyxtbfG0hKjR60mNYhJUNcIfqPrPgZ+0MLoemM/Ka9Pf/1ztUzn4So6hYkTDV/mp3xwBWvbgrGkh2UxS3btLc6S2fv4Y02VXD13o5pqXcUn2RASeC/dPGuWG+bE9+oek26ewq7f4MpGzz/7DN4bk7b+X32rBp9/bnj++uvg7587ZVix4CANG+o4f954+6LfK6DT5n0DNz1BJwzLv9Rw2Jvn1y9VCka9bijDsBE5u2HoUb8KVcqpN072BtTh0f1HRvuvB4Ywb1ak/vlrrz1DYXOgZ09o3lx9fR9+mDfXFCK1d94Bs8etnx9+gIQE4/3btqk3uwG6d0//ZlSTJvDpp+oOrdacgT+vJ8bPH7xngEtPqNDR+ICQtbC3J4Ssk/nfzzFpdAshCiQbexsmjQ7SP+/Q4Djjv2qZjyVSTZ5XmxI2DwH4eV1zzh26bLR/79rTbD3WAAC3sjcZNl5d89bKxoqhE1oSeM2F5d8epG/rQ1Qrfz1H165V+TIL/qiXZnvtptXp3PgYADfCXfhn4dEMz7Fj5Un2BPgAUMM5mNfH5mBN3jxQoWo53hjnRxkXx1w9b8P6hhsRFwMS082zZmtFfbrHAPdcvX5B0b5HZXx91S+Sn3yiPjIyYYIaPAjUXqFFPzzKOHM2JMQmMKrfHvqPbkZMjPr1w8sLGnsGAnA1zJX//s56pEZeCLpguHFWw8Myk5ymM/2r6swdu5s/5x/E78W6WeZPTWOmoUtLNRhiktaK/1YH6vc9uPuQrp3iuHNfXYO4Y8MTeHjkWrEzZW0N+/erIxuaNMmbawqRmqsr9OqlpsPCYOVK4/3r1xvS3bplfJ6JE6FRIzUdFKTho1l1oc4n0HINaJ5oXl389nHDuwesdoJ9fSH4d0iMTHtiUWRZZJ1FCCHyx/CJzQm5uZu74WbM/rEOZub5f5/QqVIZxg/fzcT5rdEp5owfe5/1auc3ik7hk0mGvFM/vI6VjXG0YQsrC155txmvvKs+fxj+EP/9wZw6+pBTp80JvuuGYuNifNEHZ3AsGcuX35WnuEPxdMv14UcWbH48dPOLb0vx8jsKGjPjW/SKTuGTKYbh39PH38bCKnd7lAuqhs1L69Pnz6f9HV72v87Z6zUAaFLzDM7Vso6MXxhZWcHRo3DvHpQvn3lejQa++lLHkiUKOp05+7bfBrI/xDm1B3cf0rHlTY5ebKXf9nrvy/ywrDpbfn9In7fUbQt/SuKFV3J+fkWnEH7zXqaRunMi6LLhs6ZGraeblvKsLItZ8tG81k99fJdeZfn+bzW98XBDeg6DxLhE+nS6wrkb6s27Gs7B/L7a7dkLm0PmBWNwjXhOjRkDq1ap6fnzDdMrtFrYtEndbmcHrVpleAosLWHZMvD1hdhY+PFHtWe8c+cnMiY+hKhUo+KSY+DmKvWhsYByraF8ByjrB6Xrg1n+3OQzOUWBhHCIvwuW9lDc1Xj/iTGgjQNFpz7QgWMjqDEiP0prGnk0x9wkJJCayG9Sr0VXZnUb8zBGqVg6VB9IZdeqU4qiKMqmZYbgZJ6VgnIUKO1ZPRn9O6VMqa1ZdNgo+rk2OQch4Au5mIcx+uBhtSsHpqnXuWMNgafmfLArfwpZQKX8XWk02qcOLvfhQMPvt5hlnLJ45l5Fp1UjdyXGJyrlS97RB7C7fTVnAfSOHnikNPUMUEBROjfapyQmJD5VGVNr42MI3hgRev+Zz5cfYmMVxdpafQ3OzoqiTdYpgzrv078uR/t7StCpa892kRwGUnsa8n+2aMrPetXpFKVePcOf7v7HC1UcPGjY1rt39s7144+GY8qXzyDQqzZRUUI2KMrhoYryj1PawGspj+A/0x6Xl0snPKu4cEUJP6Jory5Xbm59V9EefltRdnZWlPWeirLCxvA6j72b9ti/7NL+Pva9nPev4SlIIDUhhDAR2xK2zBhnWJ/6ownWaJN1fDLVTr9t+oRwzC3zrjtHY6bhw3cNQ9W+mJvEw4fqWqS7d2pZ/u1BJkwzRKCb8enDAjFyIK/YlrCljqtaZ4E3axDz0HjO9ppNhuHsvQa45WXRCjy/hncBNajhwa1BWeROKzEukV/X1gbAyiKBg1uDGTrBTz8Sw7KYJUP6qMOfk7WWLPkmMMNzpRYaqs41b9TcjkOB6siEzUdb8OO0Azku45OCbqpB/Erb3ad0hVLPfL78YGMDbduq6dBQeK3bWX7brMaDKGYZz7rloVT3cc3kDEIUTRoNvPee4fk336g/szu0PLW33jL0bt+5oz5XnhxwY2YJFbtC48XQ6za03wse70NxN+N8ZZ8IWnNlMawsDhtrw+7ucHw0BM5Th6tf/BYuLoCL36lzxfOCLgmiguDWJgj+I+3+I0NhW2PMDvXH5d4CzK78BLc3Q1Sg2oudIiGduCpPDslXL5hrRS8IZHi5EEI8hYHvN+WrH4M4c60Gxy/V5LXeNzl1xROAetUD6T28cZ6Xqe9bjRg/I4Qb4S5sOtKQkiVT9pgDzfT5mtQ8Q7fXG+Z5+fJbI+8wTgd7oFPM+XjYKSzK1OV2REnu3FE4fEFtFNauHEQN3xr5XNKCpYWfFfOXq+l9u2LoOihnx29YdpLwKHUCb8+WJ6jXplmaPG++X51ZS3QoihmLVlRj/Fe6DG8KxUUn8NU3VsyarSEmnXh3E79swIuvhuBW2yXtzsce3X/E4W2X8OteO03E/dioOEIinAGo4RIKlE7nDIVDly6G4bIrtqg3JjQaHb/PP0WzrgUrnoMQeenll+Hjj9V53WvWwI0bsGGDuk+jUd872aHRwM8/q/EpIiJg9Wr47Tf1hmC6zMzVxnVZP6j3pdogvbsPHp4D2yc+s6Kvqo3Vh+fVR0YqdASXF4237eoCsdfBtjIUr6z+tK2kpotXBqvSkBwNVqXAItWUq5jrcONvSLgPifchIQISIyDmJsQEg/I4EKuFHbi9ahxp7smbCCnMrdV9xV3BxhnKpP0fQPvHASs1ZoAZaMzBMv2VFworaXQLIcRTMLc054sfqtDp8T/mv9Yb5m7PmBKdL73IlsUsGDMikg+mZ9zYMDdLZu4cXZr53s+Dhg1h0Vo1vXBN6sl6mscP6PVaxr+755Vf5+r69L6jOW+A/rzEMOJjyLBi6eZxq+1Cx4bH2HK0IdfuVmLbiuN0eq1BmnwHN57h1TdK6Zd2AyhZEqZNgzM797F4rR8xCXa8Oegi245VTPfvPCToNn4tkrl2tz792h7kr/+MvwBeORMCqDdearg+yPHrLUjSazh88eFe+o5onedlEaIgKVYMRoyAqVPVudwffwxn1BUVadQIyuVgxcoKFeB//4M+fdTn77wDnp6GQGsZ0mjAoZb6SI9VKSjhqTa+dQnp51FPlHZT1Hm1AZ1ZYx3AbzVU6mV4HnMdTn2URcFRG+zxYWCTKjhIuTagS0RnW5lr4eBauxXm9tXAumzWaxKWylmwyMJIGt1CCPGUOna24IUXYPt2w7YWdU7T6dW0jYW8MmKCF8cvw+nT6peGChXUgFkVih2nQtkE6jWrQM2GRf+fW3o69K5KsWnxJCSlXUu8VCmoXx/GjLXJh5IVbOXcnKjhHExQaBWOXaxJ3KM4bOyz93u6dfk2W46qQbsqlblF+5d8M8w7fJiWLY8D7/9vYTKdnljG6ui2c3Ts60Z0vBrMzdxc4e23NUybBo6OEPlKHbbuD+FmhAs7TtZn6dx9DBlvPFzz7o1w2reJ49pddZ37lTubMXHfRer6GcJ3B52LQN/orpbx8nuFQZUq4FnpCoE3qwEwsu8ePpidSXQoIZ4jb78NM2eqqzP89Zdhe3aHlqfWuzcMHgy//AIxMdCpk7ret9ezxOSsPVF9KDqIu6M2vuNuPQ40phjGsdtUMD5OUcDcFsyKZdFYB5KijJ9bpb2xqtNpUCzsMC9RFUq4g30N9WFha5yxUk+o1BNFqyUywR9XRx+JmpiKNLqFEOIZzJ0L9eoZ/vd9PkOTr73I1tbwRzpTrSD/bgQUFK6eLhzcFsi29Rfx8CxPxRpulK9SnnLl1F4PkbEWvrcICq1CktaKY//507KnT7aO++Xbi+gU9QvhG32CMLeomGHeboPqU2HcHW5HlmfdgQaE3ojDubLauD9z4BKdejvrG9wt6pzmp18qUru+IU5BCccSTP54L2+OU3vBP/jMm04v3cG5mtoTExn2gA6t73PxlvH6WLOnRbB8h+F50IV4fdq9ZuGPJPz5p+GM/NiOF1tfZP4fzZ/LUS5CpKdcOXjlFXU4eGrduz/d+X74AYKD1cZ2ZCS88ALs2wc1nnXGksYMbJ3VR7bya6DbeUPE8NibEHNDfcTeUJ8nPlCHb9s+8Zlc3A2a/8WNcGc2763M5l1l2LHLBq0WWrfW0KWLOoe9etVnfE3PIWl0CyHEM/DxgfHjYdYsGDIEWvbwzu8iiUzU9XNHsY/Fx8cHc7kDn21+LWHpRjW9b+cDWvbM+hidDpasVXu5NRodb4yunml+y2KWDH31DjO+L49WZ8GS3yyYNAkunQzmhW4liYxRA5q1rnuKTftqptvb7tvOhQEd9/P71hY8jHVg5OALrNlTjugH0XRuHcLp4DoAuDiGEp9kxb2oMqzc2ZjP/K/rg4oFXTPMI6xRq3AGUUut15tN6PUmQA7GywrxnHjvPeNGd6VK4P2U/8ZtbNRgbO3bq0szhoVBu3bq2vSVK+dOeXNEo1GHdluXVZcjy4SiwKFD8O+/dmze3I+zZ9Pm2bJFfYB6I6FzZ3XN81atsh49LuD5CV0rhBAmMnMmREXB4sX5XRIhTMOvgyFmwb7DdpnkNNizB67eUBuw7VrF4FYr6/nywz7y0X95W7QIgs/don1HK8IelAWgcc2zrNtZPdPh7V8uqklZh3AA1u5vzG9fH6VH5/scuaA2uMs6hPPftgTeH6x+q9Qp5sz92jBMMiiinj5do17mNwqEEIVbvXrgl2oWSrduz9aAtLeHzZsNDfebN9WG9507z1ZOUwkNhdmzoWZNaN4cvviCNA1uJyeo+ESHeFAQfPsttGkDjRvDv/+qN1pFxqSnWwghcoG9fX6XQAjTqeZdmfIlw7jzoBwHz9ZEm6xgbpH5N9Offzakh76VvTeIq6s6F3LzZjWacP0mxYmMLgmAd5WLbN7tgn3pzM/l6FyK72cd46WRTgAM/tCwkkCp4pFs3xCJez13RrqUZvaSZB5FW/DrCiemzFS/WAY9XhWtbFkoUcoqW+UWQhRen3yiBh3UaGBQDldnSE/p0rBtm9qYDwqCy5fVoeZr1oDtE9OgraygTJn0z/MsFEWdarZjhxpssnz5VDFeKsCVK+pn9ObNaRvLGo0aBC5lKHn9+uq2s2fV1RA2bYIDB9QAdADHjqk93rVrw4QJ0Ldv7r+eokAa3UIIIYTIlMZMQws/M/5ZD4/i7Ag4A74Zx0TjwQNYtUpNlyoFPXtm/1pvvaV+EQT0DW73isFs21maUuVKZuscfUc0ofeGMFZvMgyptrNT2LIhHu8W7gCULOvAyHdgzhw1kNJXX6lR0G/fVvM/8zxMIUSh0LEjHD4MZmZqAzM3lCunNnj9/NQbiGfPZvyZMnBg2nnlzyIqSp3ulvIZnF1t2qhLnXXtmv6NAC8v9TFunPoZv3EjzJsH/v7q/nPnYMAAmDzZjFdeKYOnZ9qbDM8zGV4uhBBCiCz5tXfSp/ftyzzvnwuvEv84HtmAAWqAv+zq2hWcyxsi7ro6hbDjv2KUc3PK5Ki0vv+5HKUeT8m2toYNGzQ0amUc5ff99w1lW7gQjhwx7JNGtxDPj4YNc6/BnaJyZfjvP7V3OTPLlkFgYO5c88wZaNAg+w3uSpXg00/Vnu+dO9VGd3Z63kuWhNdeg5Mn1cZ3s1QrL169qmHmTFdq1DDj66/VaO5CGt1CCCGEyIbU8x73788878+LDY3moYOic3QdCwv4ZPhhQF1mbMc2LZU8shm1N5Xy5dUe82HD1C++rdJZKatcObVHCNQvhh+8fVO/r0bFWzm+phBCpFa9uvp5+c476rJiqR9Nmhjy/frrs1/r11/V+dUpU2QcHGD5cvX6//wDCxaoQ+mHDIE334StW9Vo69OnQ9WnjEau0ajD0Pfvh9271WH0KUJDNXzwgTptaMYMtXcc1J74vXth/nx1mbVmzWDyZMMqMEWVDC8XQgghRJa8vdXYBY8eqT3dipJ+wCH/vRc5edkTgPo1zlO3Qa0cX2vElJa80PMaFauVxbbE049PbNxYfWTmo7FaFv4EWp05AZcNAeNqVLwBZLzEmRBCZEe1avDdd2m3372rxpFITlZ7uz///OmWtY6Ph3ffNQ7mWq8e/P330zemc0qjUW9stmoFhw9rmTAhit271aFGERFqb/rcuWqsjCtX0h5/6BB4eKi950WV9HQLIYQQIkvm5tCsQSSgRuK9cvp6uvl+/t4Qpnfoa/ee6loaMw01fN2eqcGdXW5VzXm1w6E022vULm3yawshnl9ly6q9xKBGEd+xI+fn2LJFja+RusE9fLga6CyvGtxPatgQ5s27ir+/ltdeU+fKg3rDNr0Gd4r33lNvRBRV0ugWQgghRLb41TmtT+/beiPN/viYeP7YqK6VY20ZR/8RdfOsbM9i/NS0ky6re0kvtxDCtAYPNqRzMsT84kV1ebPOneHCBXWbjY16joULcxZHw1Tq1IHff4dLl9QbAdbWahmbNIERI+B//1Mjn/frp+aPiFB77IsqaXQLIYQQIlv82pXSp9Ob171gymEiY9Q8fdueoGRZh7wq2jOp1bg6PVsc1j93Ln0bu1LZW49cCCGeVteu4OioptesgYcPM8//4AGMHas2aDduNGxv0kQNBJkbS57ltmrV1BsBMTFqb/ehQ/DDD+q88gYN1KH3Kb+DlSvVNb+LIml0CyGEECJbGrbzwNI8EYB9J12M9u1YeZLxXxmirY14t3A0uFNM+NSw/ndN19v5WBIhxPPCygr691fT8fFqozMj//6rrqrw1VfqPHAAFxd1Pe6DB9XlvAoyM7P056w7OcG33xqejxgBkZF5V668Io1uIYQQQmSLjZ01DT3UsYxBoVW4E6xOwAs+e5OXh7qhU9RvVJ8M202zrgX8G+ATGnWozafDd+PldolPJqYTIU4IIUwg9RDzX35JP8/Zs/DKK3DvcZgMa2s14veFC/Dqq+kHtSxM+vdXh8uDGjNk7Nj8LY8pSKNbCCGEENnm1+i+Pn1g6xViHsbS68VY7kergce6ND7GtB/8Mjq8QJu+sDUBwe607eub30URQjwn6tWD2rXV9MGDhiW/UiQkwIAB6k+A7t3VOd3TpkHx4nlbVlPRaOCnn6BECfX50qWwbVv+lim3SaNbCCGEENnm18bwLW/f3kSGDrfmdLAHADWcg/ljnTvmlk+x7o0QQjyHNJrMA6pNmQKnH8ewrFNHHYJeuXKeFS/PVKwI8+YZng8fDtHR+Vee3CaNbiGEEEJkW7OONdBodAD89E8T/lqpfpWwt0ti7RptoQmeJoQQBUXqpbV++w106kcs+/ap61sDWFqq0cALQmRyUxk2DNq2VdPXr8OECflbntxkskZ3SEgIEydOpG3btnh7e9O+fXu+/fZbEhMTMz0uISGBadOm0bhxY3x9fXn33Xe5d+/p1vkUQgghRO4qVa4kdVwvA5CQVEy/fdnvlng2qp5fxRJCiEKrQgXo2FFN37wJu3ZBVBQMHAiKom6fMQPqFo5VGJ+aRgOLFoGtrfp82TLD6y/sTNbovnr1KoqiMH36dDZu3MiECRNYsWIFX3/9dabHzZw5k127dvHNN9+wbNky7t69y6hRo0xVTCGEEELkkF8D4+jeU6ZAjx75VBghhCgCnhxi/t57am8vQMuWRTO4WHqqVlXndJctC6+/XviDxKWwMNWJW7ZsScuWLfXPK1WqRHBwMMuXL2fcuHHpHvPo0SNWrVrFvHnzaNq0KaA2wrt06YK/vz8+Pj7pHqfVatFqtbn+GnJTSvkKejlFzki9Fl1St0WT1GvuaNPekh/+UdPdu+v45BOF/P6VSt3mA60Wc31Siyn+CKReiyap17S6doWSJc148EDD8uUKyclqa9PeXmHJEnW8eWH4deVG3fbpoz7U8+RGqUwnu6/TZI3u9Dx69AgHh4znep09e5akpCSaNWum31atWjWcnZ0zbXRfunQpt4tqMmfOnMnvIggTkHotuqRuiyap12fjVs+KsQPWExNrzqvvOhIQkKdfJzIldZt3zOLiSInzHhAQgM7GxmTXknotmqRejbVrV5lVq5z0DW6AsWOv8eDBffz9869cT0Pq1lie/Ze8fv06v//+e4a93AD37t3D0tKSEinx4h9zdHQkPDw8w+Pc3d2xTRn8X0BptVrOnDmDl5cX5umtDC8KJanXokvqtmiSes09vr8UrGW1pG7zQUyMPunt7W2S9YukXosmqdf0vf8+rFpleN6rl8Inn1RGoyk84cqft7qNjY3NVgdwjhvd8+bNY9GiRZnm2bRpE9WqVdM/DwsLY9iwYXTq1Il+/frl9JJZMjc3LzSVWpjKKrJP6rXokrotmqReiy6p2zyU6vdsbm5u9Dz3LyX1WhRJvRpr1gy8vSEgAMqXh//9T4OFReH8/TwvdZvd15jjRveQIUPo1atXpnkqVaqkT4eFhTFo0CB8fX357LPPMj2uTJkyJCUlERUVZdTbHRERgZOTU06LKoQQQgghhBCFgkYDa9fCihXwyitQpkx+l0jklhw3ukuXLk3p0qWzlTelwV27dm1mzZqFmVnmwdLr1KmDpaUlhw4douPjuPlXr14lNDQ0w/ncQgghhBBCCFEUuLnB+PH5XQqR20y2ZFhYWBgDBw6kQoUKjBs3jvv37xMeHm40NzssLIxOnToREBAAgL29PX369GH27NkcPnyYs2fPMnHiRHx9faXRLYQQQgghhBCi0DFZILUDBw5w/fp1rl+/brR0GMDFixcBSEpKIjg4mLi4OP2+iRMnYmZmxujRo0lMTKRFixZMmTLFVMUUQgghhBBCCCFMxmSN7t69e9O7d+9M87i4uOgb4CmKFSvGlClTpKEthBBCCCGEEKLQKzgLaz4FnU5dKD51T3lBlbJwemxs7HMRye95IfVadEndFk1Sr0WX1G0+iI8HDw9DWqPJPP9TkHotmqRei67nrW5T2qEp7dKMaBRFUfKiQKYQERHBtWvX8rsYQgghhBBCCCGeU25ubjg6Oma4v1A3upOTk3n48CHFihXLMjK6EEIIIYQQQgiRW3Q6HQkJCTg4OGBhkfEg8kLd6BZCCCGEEEIIIQoy6R4WQgghhBBCCCFMRBrdQgghhBBCCCGEiUijWwghhBBCCCGEMBFpdAshhBBCCCGEECYije488Mcff9C2bVu8vLx46aWXCAgIyO8iiRxauHAhffr0wdfXl6ZNmzJy5EiuXr1qlCchIYFp06bRuHFjfH19effdd7l3714+lVg8jf/97394eHjw+eef67dJvRZOYWFhfPjhhzRu3Bhvb2+6d+/OmTNn9PsVRWH+/Pm0aNECb29vBg8eLEtQFgJarZZvvvmGtm3b4u3tTfv27fn+++9JHRNW6rbgO3bsGG+//TYtWrTAw8ODHTt2GO3PTh0+ePCAsWPHUq9ePRo0aMDEiROJiYnJw1ch0pNZ3SYlJfHFF1/QvXt3fHx8aNGiBR9//DFhYWFG55C6LXiyes+mNnnyZDw8PPjll1+Mtj/v9SqNbhPbtGkTs2bN4p133mHNmjXUrFmToUOHEhERkd9FEzlw9OhRXnvtNVauXMnSpUtJTk5m6NChxMbG6vPMnDmTXbt28c0337Bs2TLu3r3LqFGj8rHUIicCAgJYsWIFHh4eRtulXgufhw8f0r9/fywtLVm0aBEbN25k3LhxODg46PMsWrSIZcuWMXXqVFauXImNjQ1Dhw4lISEhH0susrJo0SKWL1/O5MmT2bRpEx9++CGLFy9m2bJlRnmkbgu22NhYPDw8mDJlSrr7s1OHH374IZcvX2bp0qX89NNPHD9+nMmTJ+fVSxAZyKxu4+PjOX/+PCNGjGD16tV89913BAcHM2LECKN8UrcFT1bv2RTbt2/n9OnTlC1bNs2+575eFWFSffv2VaZNm6Z/rtVqlRYtWigLFy7Mx1KJZxUREaG4u7srR48eVRRFUaKiopTatWsrmzdv1ue5fPmy4u7urpw6dSqfSimyKzo6WunQoYNy4MABZcCAAcqMGTMURZF6Lay++OILpX///hnu1+l0SvPmzZXFixfrt0VFRSl16tRRNmzYkBdFFE9p+PDhyoQJE4y2jRo1Shk7dqyiKFK3hZG7u7uyfft2/fPs1GHK53BAQIA+z549exQPDw/lzp07eVd4kakn6zY9p0+fVtzd3ZVbt24piiJ1WxhkVK937txR/Pz8lEuXLilt2rRRli5dqt8n9aoo0tNtQomJiZw7d45mzZrpt5mZmdGsWTNOnTqVjyUTz+rRo0cA+p6zs2fPkpSUZFTX1apVw9nZGX9///woosiB6dOn06pVK6P6A6nXwmrnzp3UqVOH0aNH07RpU3r27MnKlSv1+0NCQggPDzeqV3t7e+rWrSufzQWcr68vhw8fJjg4GIALFy5w4sQJWrZsCUjdFgXZqcNTp05RokQJvLy89HmaNWuGmZmZTOErZKKjo9FoNJQoUQKQui2sdDodH330EUOHDqVGjRpp9ku9gkV+F6Aoi4yMRKvV4ujoaLTd0dExzXxgUXjodDpmzpxJvXr1cHd3B+DevXtYWlrq/2mkcHR0JDw8PD+KKbJp48aNnD9/nn/++SfNPqnXwunmzZssX76cN954g7fffpszZ84wY8YMLC0t6dWrl77u0vtslvn6Bdvw4cOJjo6mc+fOmJubo9Vqef/993nxxRcBpG6LgOzU4b179yhdurTRfgsLCxwcHOSzuRBJSEhg3rx5dO3aFTs7O0DqtrBatGgRFhYWDBo0KN39Uq/S6BYix6ZNm0ZQUBB//vlnfhdFPKPbt2/z+eefs2TJEooVK5bfxRG5RFEU6tSpwwcffABArVq1CAoKYsWKFfTq1SufSyeexebNm1m/fj1ffvkl1atXJzAwkFmzZlG2bFmpWyEKkaSkJN577z0URWHatGn5XRzxDM6ePctvv/3G6tWr0Wg0+V2cAkuGl5tQqVKlMDc3TxM0LSIigjJlyuRTqcSzmD59Ort37+bXX3+lfPny+u1lypQhKSmJqKgoo/wRERE4OTnldTFFNp07d46IiAh69+5NrVq1qFWrFkePHmXZsmXUqlVL6rWQcnJyolq1akbbqlatSmhoqH4/IJ/NhdDcuXMZPnw4Xbt2xcPDg549e/L666+zcOFCQOq2KMhOHZYpU4b79+8b7U9OTubhw4fy2VwIJCUlMWbMGEJDQ1myZIm+lxukbguj48ePExERQZs2bfTfpW7dusWcOXNo27YtIPUK0ug2KSsrK2rXrs2hQ4f023Q6HYcOHcLX1zcfSyZySlEUpk+fzvbt2/n111+pVKmS0f46depgaWlpVNdXr14lNDQUHx+fPC6tyK4mTZqwfv16/v33X/2jTp06dO/eXZ+Wei186tWrp5/zm+LatWtUrFgRABcXF5ycnIzqNTo6mtOnT8tncwEXHx+fpifF3Nxcv2SY1G3hl5069PX1JSoqirNnz+rzHD58GJ1Oh7e3d56XWWRfSoP7+vXr/PLLL5QqVcpov9Rt4dOjRw/WrVtn9F2qbNmyDB06lMWLFwNSryDDy03ujTfeYNy4cdSpUwdvb29+/fVX4uLi6N27d34XTeTAtGnT2LBhAz/88APFixfXzz+xt7fH2toae3t7+vTpw+zZs3FwcMDOzo4ZM2bg6+srjbMCzM7OTj8vP4WtrS0lS5bUb5d6LXxef/11+vfvz08//UTnzp0JCAhg5cqVTJ8+HQCNRsOgQYP48ccfcXV1xcXFhfnz51O2bFnat2+fz6UXmWnTpg0//fQTzs7O+uHlS5cupU+fPoDUbWERExPDjRs39M9DQkIIDAzEwcEBZ2fnLOuwWrVq+Pn58emnnzJt2jSSkpL47LPP6Nq1K+XKlcuvlyXIvG6dnJwYPXo058+fZ+HChWi1Wv33KQcHB6ysrKRuC6is3rNP3jyxtLSkTJkyVK1aFZD3LIBGSbk9LEzm999/5+effyY8PBxPT08mTZpE3bp187tYIgeeXLs5xaxZs/Q3UBISEpg9ezYbN24kMTGRFi1aMGXKlOdm2ExRMXDgQGrWrMknn3wCSL0WVrt27eKrr77i2rVruLi48MYbb9CvXz/9fkVR+Pbbb1m5ciVRUVHUr1+fKVOmUKVKlXwstchKdHQ08+fPZ8eOHURERFC2bFm6du3KO++8g5WVFSB1WxgcOXIk3YBLvXr1Yvbs2dmqwwcPHvDZZ5+xc+dOzMzM6NChA5MmTaJ48eJ5+VLEEzKr21GjRtGuXbt0j/vtt99o3LgxIHVbEGX1nn1S27ZtGTRoEIMHD9Zve97rVRrdQgghhBBCCCGEicicbiGEEEIIIYQQwkSk0S2EEEIIIYQQQpiINLqFEEIIIYQQQggTkUa3EEIIIYQQQghhItLoFkIIIYQQQgghTEQa3UIIIYQQQgghhIlIo1sIIYQQQgghhDARaXQLIYQQQgghhBAmIo1uIYQQQgghhBDCRKTRLYQQQgghhBBCmIg0uoUQQgghhBBCCBORRrcQQgghhBBCCGEi0ugWQgghhBBCCCFMRBrdQgghhBBCCCGEiUijWwghhBBCCCGEMBFpdAshhBBCCCGEECYijW4hhBBCCCGEEMJEpNEthBBCFHFHjhzBw8ODI0eO5HdRhBBCiOeORX4XQAghhMhPq1evZsKECRnu/+uvv/Dx8cm7AhUSf/75J4cPHyYgIIDbt2/Tq1cvZs+enW7eqKgovvjiC7Zv3058fDxeXl6MHz+e2rVr6/McOXKEQYMGZXi9MWPGMGLECAAGDhzI0aNH081nYWHBuXPncnxOIYQQwlSk0S2EEEIAo0ePxsXFJc32ypUr50NpCr7FixcTExODl5cX4eHhGebT6XQMHz6cixcvMnToUEqVKsWff/7JwIEDWb16NW5ubgBUq1aNuXPnpjl+3bp17N+/n+bNm+u3vf322/Tt29coX1xcHFOmTDHKl5NzCiGEEKYijW4hhBACaNmyJV5eXvldjEJj2bJlODs7o9Fo8PX1zTDfli1bOHXqFPPnz6dTp04AdO7cmY4dO7JgwQK+/PJLAMqUKUOPHj3SHP/999/j5uaGt7e3flt6jeW1a9cC0L17d/22nJxTCCGEMBWZ0y2EEEJkw7fffkvNmjU5dOiQ0fZPP/2UOnXqcOHCBQASExOZP38+vXv3pn79+vj4+PDqq69y+PBho+NCQkLw8PDg559/5o8//qBdu3bUrVuXIUOGcPv2bRRF4fvvv6dly5Z4e3szYsQIHjx4YHSOtm3b8tZbb7F//3569OiBl5cXXbp0Ydu2bdl6TadPn2bo0KHUr1+funXrMmDAAE6cOJGtYytWrIhGo8ky39atWylTpgwdOnTQbytdujSdO3fmv//+IzExMcNjAwICuH79ulFDOiMbNmzA1taWdu3aZZovJ+cUQgghcoM0uoUQQgggOjqa+/fvGz0iIyP1+0eMGIGnpyeffPIJ0dHRAOzbt4+VK1cycuRIatasqT/P33//TaNGjfjwww8ZNWoU9+/fZ9iwYQQGBqa57vr16/XDrd944w2OHj3KmDFj+Oabb9i3bx9vvvkm/fr1Y9euXcyZMyfN8deuXeP999+nZcuWjB07FnNzc9577z0OHDiQ6es9dOgQr732GjExMYwaNYr333+fqKgoXn/9dQICAp7lV2kkMDCQWrVqYWZm/JXDy8uLuLg4goODMzx23bp1AFk2kO/fv8/Bgwdp164dtra2mebN7jmFEEKI3CLDy4UQQghg8ODBabZZWVlx5swZACwtLZkzZw69e/dm9uzZfPzxx3zyySfUqVOH4cOH649xcHBg586dWFlZ6bf169ePzp07s2zZMmbOnGl0jbCwMLZt24a9vT2gzoFeuHAh8fHxrFq1CgsL9V91ZGQk69evZ9q0aUbnvnbtGgsWLND3JPft25dOnToxb968DOcsK4rC1KlTady4MYsXL9b3WL/yyit07dqVb775hiVLluT0V5iu8PBwGjRokGZ72bJlAbh79y4eHh5p9mu1WjZv3oy3tzeurq6ZXmPTpk0kJydn2ZDOyTmFEEKI3CKNbiGEEAKYPHkyVapUMdr2ZO+su7s7o0eP5ssvv+TixYtERkayZMkSfcMYwNzcHHNzc0BtQEdFRaHT6ahTpw7nz59Pc91OnTrpG9yAfp7xiy++aHReb29vNmzYQFhYGJUqVdJvL1u2LC+88IL+uZ2dHT179mTRokWEh4fj5OSU5pqBgYFcu3aNESNGGPXmAzRt2pS1a9ei0+nSvP6nER8fb3STIEXKtoSEhHSPO3ToEPfu3eOtt97K8hobNmygdOnSWQZGy8k5hRBCiNwijW4hhBACtVGbnUBqQ4cOZePGjQQEBPDBBx9QvXr1NHnWrFnDkiVLCA4OJikpSb89vejoFSpUMHqe0gDPaPvDhw+NGt2urq5p5lanRAS/detWuo3ua9euATBu3LiMXiaPHj3CwcEhw/3ZZW1tne687ZRtxYoVS/e49evXY25uTpcuXTI9/82bNzl16hQDBgwwuknxLOcUQgghcpM0uoUQQogcuHnzJtevXwfg0qVLafavXbuW8ePH0759e4YOHYqjoyPm5uYsXLiQmzdvpsmf0iv+pIx6mRVFeYbSG5/j448/xtPTM908Wc2Nzi4nJ6d0lxS7e/cuYBhmnlp8fDzbt2+nadOmlClTJtPzr1+/Hsh6jnZOzimEEELkJml0CyGEENmk0+kYP348dnZ2vP766/z000907NjRKDL31q1bqVSpEt99951RD/S3335rkjJdv34dRVGMrpXSk12xYsV0j0npKbezs6NZs2YmKVeKmjVrcuLEiTTD1QMCArCxsUkzpB9g586dxMTEZDtqeeXKlfHx8ck0X07OKYQQQuQmiV4uhBBCZNPSpUs5deoU06dP57333sPX15epU6dy//59fZ6UnuvUPdKnT5/G39/fJGW6e/cu27dv1z+Pjo7m33//xdPTM92h5QB16tShcuXKLFmyhJiYmDT7U7+eZ9WpUyfu3btntIzZ/fv32bJlC23atEl3vvf69euxsbExmquenvPnz3PlyhW6deuWZTmye04hhBAit0lPtxBCCAHs3buXq1evptler149KlWqxJUrV/Trb7dt2xaA2bNn07NnT6ZNm8b8+fMBaN26Ndu2beOdd96hdevWhISEsGLFCqpXr05sbGyul9vNzY1PPvmEM2fO4OjoyKpVq4iIiGDWrFkZHmNmZsaMGTN488036datG71796ZcuXKEhYVx5MgR7Ozs+OmnnzK97s6dO/VrkyclJXHx4kV++OEHQF0/PGUJtY4dO+Lj48OECRO4fPkypUqVYvny5Wi1Wt599900533w4AH79u2jQ4cOFC9ePNMyZHdoeU7OKYQQQuQ2aXQLIYQQZDz8e9asWTg7OzNu3DhKlSrFxIkT9fvc3Nz44IMP+Pzzz9m0aRNdunShd+/e3Lt3j7/++ov9+/dTvXp1vvjiC7Zs2cLRo0dzvdxubm58+umnzJ07l+DgYFxcXPj666/x8/PL9LjGjRvz119/8cMPP/D7778TGxuLk5MT3t7evPzyy1led9u2baxZs0b//Pz58/ro7OXLl9c3us3Nzfnf//7H3LlzWbZsGQkJCXh5eTFr1iyqVq2a5rxbtmwhKSkpy95rnU7Hxo0bqV27drrneZpzCiGEEKagUXIjIosQQggh8lzbtm2pUaMGCxcuzO+iCCGEECIDMqdbCCGEEEIIIYQwEWl0CyGEEEIIIYQQJiKNbiGEEEIIIYQQwkRkTrcQQgghhBBCCGEi0tMthBBCCCGEEEKYSKFeMiw5OZmHDx9SrFgxzMzk/oEQQgghhBBCiLyh0+lISEjAwcEBC4uMm9aFutH98OFDrl27lt/FEEIIIYQQQgjxnHJzc8PR0THD/YW60V2sWDFAfZE2Njb5XJrMabVaLl26hLu7O+bm5vldHJFLpF6LLqnboknqteiSus0HcXHQvLmaPnAATPBdTOq1aJJ6Lbqet7qNi4vj2rVr+nZpRgp1oztlSLmNjQ22trb5XJrMabVaAGxtbZ+LP8DnhdRr0SV1WzRJvRZdUrf5QFHg4kU1bW0NJvguJvVaNEm9Fl3Pa91mNdVZJkILIYQQQgghhBAmIo1uIYQQhUJSQlJ+F0EIIYQQIsek0S2EEKJAi46MpkeLI5SwT+aXufvzuzhCCCGEEDkijW4hhBAFVlREFJ38rrLuQGPik2z44edS+V0kIYQQQogcKdSB1IQQQhRdD8Mf0qnlDQ5f8NZvCwnPeDkOIYQQQoiCSHq6hRBCFDiRYQ9o3/wWhy94GW2/86CszO0WQgghRKEijW4hhBB5LvzmPf43Yy+bfz9G2LVwo30Rofdp1/w2x4NqAVCmxD3q1rgJgKKYcSdUm+flFUIIIYR4WjK8XAghRJ66fTWMFs3juXqnpX6bs1MU9ZuUoF49WLPSgoArngCUK3mX/zZF8eMf1TkdpOa9FWZNpSr5UXIhhBBCiJyTRrcQQog8Exn2gA5to7h6p4bR9tDwEoSuh/XrAUoAUKFUGDu3xlCzYXUq7jbkvXUrz4orhBBCCPHMpNEthBAiT8Q8jKFrm5ucva7O03Z1CqFvx8ucPOvAyWBvHj401+etWBF2bbenhmc5/fMUISF5WmwhhBBCiGcijW4hhBAmlxiXSO/2gRwKbABAWYdwtm9NpoZvawAUBa5ehZMn4eZNeOUVcHa21R+futF963oMUDzvCi+EEEKIXDd+/HiioqL44YcfABg4cCA1a9bkk08+ydNyHDlyhEGDBnHs2DFKlChhkmtIo1sIIYRJaZO0DOx2nG3HmwFQwuYhW9fdp4avhz6PRgPVqqmP9LiUuglUAuDWWX+guWkLLYQQQjynxo8fz5o1awCwtLSkQoUK9OjRg7fffhsLC9M1HxcsWJDt8+dFQzk3SaNbCCGEySgKjBxym5U71Qa3tWUcG1Zcw6dl3Rydp2KVUvr0rTDp5RZCCCFMyc/Pj1mzZpGYmMiePXuYPn06lpaWvPXWW0b5EhMTsbKyypVrlixZMlfOUxBJo1sIIYTJTJ4M//vdBQAL8yT+WXwWvxcb5vg8dqXsKGHzkKg4B26Fl8zlUgohhBAiNSsrK5ycnAB49dVX2bFjBzt37iQ4OJioqCi8vLz4448/sLKyYufOndy+fZvZs2dz4MABdDodjRo1YtKkSbi4qN8BtFotc+fOZdWqVZibm9OnTx8URTG65pPDyxMTE5k/fz4bNmwgIiKCChUqMHz4cJo2bcqgQYMAaNhQ/U7Rq1cvZs+ejU6nY9GiRfz111/cu3cPNzc3Ro4cSadOnfTX2bNnDzNnzuT27dvUrVuXXr16mfz3KY1uIYQQJvHrrzBjhprWaODXRdF0HZTzBneKimXuEXXTgZB75VB0ChozTS6VVAghhMgjgV/Bha+yzle6HrRaZ7xtz4tw/2TWx9b8ADw/eLryZaBYsWI8ePAAgEOHDmFnZ8fSpUsBSEpKYujQofj4+LBs2TKCgoLYvXs3w4YNY926dVhZWbFkyRLWrFnDzJkzqVatGkuWLGH79u00adIkw2t+/PHH+Pv7M2nSJGrWrElISAiRkZFUqFCBBQsW8O6777Jlyxbs7OywtrYGYOHChaxbt45p06bh5ubGsWPH+OijjyhdujSNGjXi9u3bjBo1itdee41+/fpx9uxZ5syZk6u/q/RIo1sIIUSu27srgTffLKZ//tVX8OobpTI5ImsuZR8QeBPik2yIDIukdIVnO58QQgiR55KiIC4ba1/GV0pnW3j2jk2Kynm5MqAoCocOHWL//v0MGDCAyMhIbG1tmTFjhn5Y+dq1a9HpdHz++efodDpiY2P5/PPPadKkCUePHqVFixb8+uuvDB8+nA4dOgAwbdo09u/fn+F1g4OD2bx5M0uXLqVZM3WKWqVKht+Jg4MDAI6Ojvo53YmJiSxcuJClS5fi6+urP+bEiRP89ddfNGrUiOXLl1O5cmXGjx8PQNWqVbl06RKLFi3Ktd9ZeqTRLYQQIlcFnbpGrxcdSEpSG90jR8J77z37eSuWj9Wnb10Nl0a3EEKIwseyBNhUzDqftVP627JzrOWzBxbbvXs3vr6+JCUloSgK3bp1491332X69Om4u7sbzeO+cOECN27coF69eiiKgk6nw8zMjISEBG7cuMGjR48IDw+nbl1DPBcLCwvq1KmTZoh5isDAQMzNzfXDx7Pj+vXrxMXFMWTIEKPtSUlJeHp6AnDlyhW8vb2N9vv4+GT7Gk9LGt1CCCFyzf3bkXTtpnA/Wm0Qd2oVyvz5zmhyYSR4xQpaffrWtSi8JIC5EEKIwsbzGYZ+Pznc3IQaN27M1KlTsbS0pGzZskZRxW1sbIzyxsbGUrt2bebNm4dWqyUwMBBPT0/Mzc0pXbr0U10/Zbh4TsTGqjfnFy5cSLly5Yz25Vawt6dllq9XF0IIUWQkxiXSu9N1gkKrAFDHNYi/VtmRW6uLVHQx/Mu6dSMud04qhBBCiDRsbGxwdXXF2dk5y2W8ateuzfXr13F0dMTV1ZXy5cvj6uqKq6sr9vb22Nvb4+TkxOnTp/XHJCcnc+7cuQzP6e7ujk6n49ixY+nut7S0BNQAbSmqVauGlZUVoaGh+uunPCpUqKDPc+bMGaNzpS6XqUijWwghxDNTdApvvXSUPQE+AJR1CGfDZhtKOObe2pkulQ13vUNuajPJKYQQQoi80r17d0qVKsWIESM4fvw4d+/e5ejRo8yYMYM7d+4AMGjQIBYtWsSOHTu4cuUK06ZNIyoq47nnLi4u9OrVi4kTJ7Jjxw5u3rzJkSNH2LRpEwAVK1ZEo9Gwe/du7t+/T0xMDHZ2dgwZMoRZs2axZs0abty4wblz51i2bJl+3fFXXnmFa9euMWfOHK5evcr69ev1+0xJhpcLIYR4Zotn7eOXjS0BdS3utSvu4upZO1evUdHNXp++FSr3jIUQQoiCwMbGht9//5158+bx3nvvER0dTfny5WnatCl2dnYADBkyhPDwcMaNG4eZmRl9+vThhRde4NGjRxmed+rUqXz11VdMnTqVBw8e4OzsrF8nvFy5crz77rt8+eWXTJgwgZ49ezJ79mzGjBlD6dKlWbhwISEhIdjb21OrVi3efvttAJydnVmwYAGzZs3i999/x9vbm/fff5+JEyea9HekUTKavZ4LHjx4wGeffcauXbswMzOjQ4cOfPLJJxQvXjzDYwYOHMjRo0eNtr388stMnz49Td7Y2Fj9nAFbW9tcL39u0mq1+Pv74+Pjg7m5eX4XR+QSqdeiS+o2Z1p5+7P3jA8Af313kH7vNMv1a4TdiqG8i/r/o0vnJDZusszxOaReiy6p23wQEwOPv1ATHQ2ZfL97WlKvRZPUa9H1vNVtdtujJu3p/vDDDwkPD2fp0qUkJSUxceJEJk+ezJdffpnpcf369WP06NH6509O1hdCCFGwXLihRlMtXzLMJA1uAKcKxbG0hKQkuBWa8wa3EEIIIUR+MNn4vCtXrrBv3z5mzJhB3bp1adCgAZMmTWLjxo2EhYVleqy1tTVOTk76R8qwBCGEEAXP/duR3H2oLm1S0zXUZNcxMwNnZzV9KxvLlArxf/buOryp6w3g+DdVWgqFQoGWooW2WHF3JviGjTHBmcCAMWUbE9jYgMEEGGMMG/IbtjGGbjDcvVBcitSQIi31Nrm/Pw5NGurQVN/P8+TplXPvPclJk7z3mBBCCJEXWKym+/jx4xQvXpw6deoYt7Vo0QIrKytOnjzJM888k+ax69atY+3atbi6utK+fXtGjBiRbm23Xq83G7kuL0rKX17Pp8gaKdeCS8o2884cuw6oKcK8qz6w6Gvm7m7FtWs6wsIgKkpPVmcUkXItuKRsc4Fej7VxUQ8WeO2lXAsmKdeCq7CVbWafp8WC7rCwsBTzstnY2ODs7Mzt27fTPK5bt264u7tTpkwZzp8/z7Rp07hy5Qo//fRTmsdcuHAh2/JtaY8OUS8KBinXgkvKNmNb95maepcpn4Cfn5/FrlXcwRWoCMCOf/dTrtLjdT+Sci24pGxzjlVMDPUfLp88eRKDBbsDSrkWTFKuBZeUrbksB93Tpk1j7ty56aZJGsr9cbz44ovGZW9vb1xdXRk0aBDXr1+nYsWKqR7j5eWVLwZS8/f3p06dOoViUIHCQsq14MrPZRsXHUdiQiJFnbN/UKPULFumMy4379KOevUsdy2fsrv592HQXdSqKPXq+Wbp+PxcriJ9Ura5ICrKuOjr62uxgdSkXAseKdeCq7CVbXR0dKYqgLMcdA8ZMoSePXumm6ZChQqULl2au3fvmm1PTEwkPDwcV1fXTF+vbt26AFy7di3NoNva2jrfFGp+yqvIPCnXgiu/le21s0G0bGXNgxhH1v7Pn7Y961n8msm/a2rVssaSL5dHedPyjcCYxy6b/FauIvOkbHNQstfZ2toaS/7zS7kWTFKuBVdhKdvMPscsB90uLi4pmo2npn79+kRERHDq1Clq164NwIEDBzAYDOpuaCadPXsWIEuBuhBCFFYfvBVI8N3mALw0tBwnGoXhWqG0Ra957pz66+gIHh4WvRQeFe2My8GB8Za9mBBCCCFENrDY6OWenp60bt2azz77jJMnT3L06FG++uorunbtStmyZQG4efMmnTp14uTJkwBcv36dWbNmcerUKYKCgti6dStjx46lcePG+Pj4WCqrQghRIOxZd5JV25sb10PvlWPQC1cw6A0Wu2ZcdDwBARoAPj5qhHFLKl/J1Hw1KEiXTkohhBBCiLzBovN0T5s2ja+++oqBAwdiZWXFs88+y6effmrcn5CQwJUrV4iJiQHA1taW/fv3s3jxYqKjo3Fzc+PZZ59lxIgRlsymEELkewa9gTHvmT7Sba3jSdDbsfFgY2Z8upMxk9qmetz9W+FMG3ccV1cdoye2QWeVtUD20onr6PXVAPApfRBo+tjPITPKVylpXA6+YZdOSiGEEEKIvMGiQXeJEiX47rvv0tzv4eHB+fPnjetubm4sXbrUklkSQogCaekP+zh6sRUAdSpfYMqX4XQZ0BiAD79rQ5sXoEED82NO7rlArxfsuXyjHQA1fY/yTL+GWbruuRO3gYdBd/WYJ3oOmeFetYxxOfhmzgwUJ4QQQgjxJCzcEFAIIYSlRUUa+HhSdeP691Mi6dy/MR+8eQmAhAQd/frBgwemY/73wx6aPeXB5RuVjNs2bsz6nJrnzsQZl31q2T9G7rOmSNEilC4eBkDw7YzHFxFCCCFE5nh7e6f7mDlzZm5nMd+yaE23EEIIy5s6zYqQu2qsjO4tDvF03yYATJxejR1H4fBhuHgRRo6Eub/E8/7gfcxc0S7Febb6Ncnytc9dMH2N+PiWerwnkEXlS90hLKI0wXfLYtAbsLKW+8dCCCHEk9qzZ49xeePGjcyYMYN//vnHuC35FM2apqHX67GxkXAyM+SXihBC5GNBQfDtt2rZxgamzTe1Ibezg2XLoFgxtb54MdSuetUs4B7afTf16qmB1vz94datrF3/bICqbbbS6aleL/VpHbNb+TIRACTqbbkdeCdHrimEEEIUdK6ursZHsWLF0Ol0xvWAgAAaNGjAzp076dWrF3Xq1OHo0aN89NFHKcbfWrx4MQMHDjSuGwwG5syZQ4cOHfD19eW5554zC+YLA7k1IYQQ+djHH8PDsSh56y3w8jH/WPf0hNmz4dVX1frFG14A2NvG8tP4wwz7pDUffQR+fmr/tm3Qr1/mrq0ZNM5dV4F2lbJBFClaKYMjskd5N9NUYcFBCZStnCOXFUIIIZ7IqlXw+efm3b0srVgx+Oor6NMne8733XffMXbsWCpUqEDx4sUzdcycOXNYu3YtEyZMoHLlyhw+fJgPPvgAFxcXmjTJeiu7/EiCbiGEyMM0g8Ynw3ayda8r3lXu0aBeIg2alqBeqyqcPx3J0qXlAShZUn2Rp+aVV2DL7/tYtLEFABVdg/jz9wgaPd0agKeegilTVNqtWzMfdAdfvkFUnBsAPpVvAjkTdHvUbwlrHubhnjsN0k0thBBC5A1Tp8K5c7lz3ewKukePHk3Lli0znT4+Pp45c+awcOFC6tevD0CFChU4evQoK1askKBbCCFE7tv6x3EmL2wHwOELsPRf0z5He9NH+ITxBlxc0u4xNOv3upQeuQODAT6ZUofSHh7GfS1bgp2dnvh4a7ZuCAXcMpW3c8dNaX2qRWf6OT2p8uVNy8HBOXZZIYQQ4ol8+CF89lnO13R/8EH2na9OnTpZSn/t2jViYmIYMmSI2faEhARq1KiRfRnL4yToFkKIPGzmjIQ090XHqSmzfDwu8+YbFUlvmI6izkWZtqRdqvscHaFFjZPsOFGfK6FuXDkVSJXaFTLM2zl/068GnxrWGabPLsmD7qCgHLusEEII8UT69Mm+Gufc4uDgYLau0+nQNM1sm15vmg0lOlrdlJ8zZw5ly5Y1S2dnZ2ehXOY9EnQLIUQedTVAz7p9aq5td5dQ/l5xD79Ddzh+3MCxUy6cCPDExjqRX2dFYmtv+0TXeqp1ODtOqOWta68yLBNB99kLRYzLNXwz168rO+RUTff1c8H0fi4cgMVL7anRxNNyFxNCCCHyIRcXFy5evGi27dq1azg7OwPg6emJnZ0dISEhhaYpeWok6BZCiDzq51+sSbp5PPy1WBo9XZNGT5v26xP06KyKYGVd94mv9VTnUnz2k1reus2aYZ9kfMy5sKbGZZ/G1dNJmb3Kl4sFVMAffNofyFpTt8xIiEugX6+7HLmozt2ywz3+/v0ErZ978tdaCCGEKCiaNWvG/PnzWbNmDfXq1WPNmjUEBgYag24nJyeGDBnCpEmT0DSNhg0b8uDBA44dO4aTkxM9e/bM5WeQMyToFkKIVBj0hly9fnQ0zJunlu3s4PV3q6RIY22bfU26Gz9dg2IOETyIKc62I9XRDBo6K126xyQNBlO6NJQq65hu2uxUspQ9DnbRxMQ7EnzDIeMDHsP4t/ay/2w74/q9qJI808eBJdP388Lw5ha5phBCCJHftG7dmhEjRjB16lTi4uLo1asXrVu35t69e8Y0Y8aMwcXFhTlz5hAUFESxYsWoWbMmb775Zi7mPGdJ0C2EEI/4e/5BXnmrFm3qxvD3bgPW1jnXXznJ779D0vfViy9CmTKWvZ6NnQ1t651j/f4m3Ap35dT+C9Rp6ZVm+ogICAlRyz4+ls3bo3RWOsqXusWl0MoE3ymd7eff9sdxJi1oA4CNdQJNfc6y97QvcQlF6DuiOd/HwjvvZPtlhRBCiDyjV69e9OrVy7jetGlTzp8/n2ra0aNHM3r0aED15/bz86NevXrG/TqdjoEDB5rN3V3YpD3qjhBCFFKzZxuIinNi06FWrFt4IMevrxk0Zn4fblwfNSpnrvtU2xjj8tb1oemmTf69mxuDj5Z3vQ9AeHQJIu9FZtt5bwfe4dXX3dA09fU4cfReth+tweCuu41p3n0XxoyBZOPECCGEEEKkSYJuIYR4REBwKePy1B9LoBm0dFJnv93rTnLyrOoL1bTuLRo3zpnrPtXN3bi8dWf6zbbP7jthXPapfMtieUpL+bJRxuXggOy5vqbB4JeCCb1XDoCnGxzjg6ltsLW3Zf7aVnzxuanLwfTp8NJLYMjdXghCCCGEyAck6BZCiGT0CXqu3q5sXD9wrg67153M0TzM/NE05/WogRfTSZm9ajevRhnn2wDs9PMhMT4xzbTnTpr6avl4XLN43h7l4R5vXA6+cj9bzjljBmzY6wuAa/EwFq/ywMpafU3qrHSMn2DFvHmQ1Ntg1SpYuehGtlxbCCGEEAWXBN3iscQ8iKF9veNUKRvEsqVxaDlbESiExQRfvkGC3nzeyCmT4tNInf0Cz4fw1y5VtV22xC1eeDOHqrlRgWWHRirIfxBTnMP/nU0z7bmLpunCfOqXTTOdpZQvb/r6Cr4WnU7KzDl+HD780LS+eJEOt6opO9IPHQrLlsYZ12f/IEG3EEIIIdInQbd4LCtmH2XHifpcveXBy/3tefFFCAvL7VwJ8eQCrqVsVr3xYGP8917I8rkWTN5N3arnqVHhcopHQ98Ipk2DyEe6I/8y9QJ6gxrj8o0Xz2DnYJfKmS3nqY5Fjctbj6Q9Qtq5q64A2NvGUsmnfJrpLKV8BdPrEhyU8ETnevAA+vWD+If3Vt57Dzr1KJVm+j597fDxuAzALv96nDl46YmuL4QQQoiCTYJu8Vj++Ms8EFi1CurUgQ3rpcpb5G8BwS7G5eqVTLWYU2e5p5Y8TZuXHWXYJy05ecWbc0GeKR7H/IvzwQdQuTJ8840aDTw2KpZfV9UG1KjZb3yQw8OCA0/1Mc1DvXW7bappEuISuBRSAQBvj2vZOnVZZpWvXMy4HBT8+F9lifGJvNjpNBce3lNp2FCVR3p0Vjre7B9kXP/lh+DHvr4QQgghCj4JukWW3b8VzubD9QAoVewuLi4q0L5xA7p11zHsud2E3w7n5tXb+O06z6alh5k/aTffvL2DtQsO5mLOhchYQIBpedib93EpqYaoXrbKievXM3eOq6eDeOn1KsYRsJ2KPKC4Q7jZI8mdOzBuHFSqmEi/TicIi1BTYPVpdxh3z3LZ86SyoEoV9QDYt0/NF/6ogFOBxib4PlXu5GDuTDw8TTXRwaH2j32edwfsZdO+WgCULJHA8uVqXvSMDHi7Lg526sVZvK4eUeFRGRwhhBBCiMJKgm6RZeuW+ht/cL/azZ9Tp3R06WLaP39da0qUcaZcFVfqt/WmS//GDPukNeNmtOP5oU3Z9feJNM4sRO5LHnR7Vk9kxFs6ABIT4fvvMz4+5kEMvXs84G6kqjHv1vwQ4ZFFCY92NnucPg2vvAJWDz+F74fb8PeepsbzjHqnWGqnzxFPPaX+xsfDnj0p95/zu21c9qmec/3dkytXyRUrKzV0eHDk481Z9tNnO5m5oi2gWhasnn+aatUyd2zJsiXo98xRAMKjnVn+87HHyoMQQgghCj4JukWW/bHa1OT0hZdL4OYG69fDr5OP4lTkQYbHr199L8M0QuSWgEtqkCydTsPNLZ6RIzUcHnbznjtX1UynRdPgrbcMHLukgkDPctdYssbbOAJ2cjVrwtKlcO4cDHrlAdZWppHCG1Q7S/POtbPvSWXRUx1M3US2/nk6xf5zp03zefvUzNk+50ls7GwoW1a9rsG3nLN8/MalR3j761bG9V+/PkC7XvWydI433zbVtv+yMO0+4EIIIYQo3CToFlkScSeCfw+pPp9uJW/QvHMdAHQ6eG1sQ04evs/Lz+ylQbWzdGl6mGHP7eKz13fww0c7jefYe+rxaqWEyAkB5yMAKF/qFvb2GqVLqxGrQTW1/vmrQ2ke++uvsHCJGojMwT6O1aviKVEm/YCwenVYuLQYF0+EMqLPTjo2PsKSpbborHTZ84QeQ4eWd43LW7enzMe586Y+3DXquqTYn1PKPxy/7cYN1RIhs66fusXLb9bEoKnn8fGQ7Qwe2zrL12/8VA0aVFMjvB+5WJMj/53J8jmEEEIIUfBJ0C2yZP1Sf+IS1FRBvZ85n6IGr0rtCvxvc0uOXqzBhgONmft3G76c044xk9pSvbqqPTtyqiyxsTmedSEy9OBuBLcj1KjcVd1CjdvfezvGWBM9Y2FVoiNSdnQ+eBBGjTKtz1tgj2+r6pm+dpXaFZi1qi3/HGpEzaaZbONsIWUqlqJOZTWy2LFLPpzaZz5X+LmAEsZlr/oVcjJrZjw81F+DQQXemXHj6i3efq8OkbGq+X6fdvuZ+Gvbx7q+zkrHm4NMTe1/mSFTOAghhBAiJQm6RZb88aephuuFl0tk6dhWrVSNWXw8HDmSnbkSIntcOWMKtKtUMHWVqFzNgb4d1CCAYRGl+WLkIdYvMj3+nrOd3r30JDycuertt+Hll3M069muU5sQADTNimYd3Fg1e//DdTgb7AVApXK3cCxeNM1zWFp5d1Mz+OCrEammiY9Xc3DPnw9v9TtE65YJBN5R0Xpjr9Ms+rtuqs3/M+ulEQ2MA+P9/m8j7t8Kz+AIIYQQQhQ2EnSLTIu8F8mmA6ppedkSt2jZJWt9Tlu2NC3v3ZudORMiewScu29crlrZvL3yh5+VNi5PW9KO7oOaGB893mxPcIi6IdW6NUydmiPZtaixk3ypW+U8AFFxTvQd0Zz3++8gODCR8AdqtHCfumVyM4uUt9tlXA4+Y2raff5oAGNHXKZRIyhWDBo0gGHD4OcVTbhysyIAFV2DWPuPK47FHZ8oD04lnejfzQ+AmHhHlvwvd/q4CyGEECLvkqBbZNqGtbHEJqgRpXo9dS7Lc/MmD7r37ExlHiIhclnARdMAYVU8zeeortfGm+4t0p/yzs3lFitXGLBNfXrrfKWUuwv7/CrQv5Np+PLvlrajbbObxnWfnJ9G3Ez58qbPoIvnYln83V7a1DmBT6OqfDvbk6NHVU33oxpW82fdmijKVcmemwZvftzQuDx7rgOalk5iIYQQQhQ6NrmdAZF//LHeVNPXZ1idLB/v7Q2lnB9wJ7wY+3bHYtAXeaJmnUJkt4ArpkHDKnsVA8xruxet9mbpzJ1ERKSMquzsoM8gT8q5FZz3tGNxRxZtaEmzCTsZ83VzEvR2BISWN+6vkctjIpavZKql/uiHdin263QaPj46GjSAhg2hQe1w6tQxcCU4nlr1amZbPmrXd6JVKzW92tmzsHs3tGmTbacXQgghRD5nsaB79uzZ7Ny5k7Nnz2Jra8uRTHTi1TSNGTNmsGrVKiIiImjQoAHjx4+ncuXKlsqmyKSoKNiwQS27ukKbp0tm+Rw6HbSsfYa1e5tyN9KFc0cu5fqAUUIkF3DNFMRVrVmWG/eCzfaXLFuCURMfb9Ct/EpnpWPEhLbUb+pPn/6lCbnrZtyX2zXdHlVLpLq9RoXLDHspkP4j6+BaIflUXs7o9XoITvWwJzJ8uGlO81kzYmndyj5XR6AXQgghRN5hsSqZhIQEOnXqxEsvvZTpY+bOncuSJUsYP348K1euxMHBgaFDhxIXF2epbIpM2rQJYh62vO3ZE2we83ZNq2am5rt7/wvJhpwJkX0CglWA5mAXTdkKpTNIXbg071KHY0dtaOvrB0Cp4vdoUC8hV/NUpaYHbiXVsOWO9lEM6rqbvev9OX21Ku9OafdIwG1ZvXtD6YdvmZV/FsGleDhPNTjGBwN2sGzGPs4fDUAzSLtzIYQQojCyWE336NGjAVi9enWm0muaxuLFixk+fDhPP/00AN9++y0tWrTgv//+o2vXrmkeq9frVe1FHpaUv7yez7SsWnoPUL8oe/bU87hPo1m7EvCdWt69x4oh+fT1SJLfy1WYGPQGrtxUTaerlgvGoFUCpGyTK13BhX8PFGf7msN4+5bF0al4rr4+1nbW7N+XyPF9B2jTxRtn1xYAGDQDpJEtS/3P2tjAa338mfRLPQDuR5Vg2/EGbDsOLFFpfCufZ968RBq0y+UmAgWUfB7nAr0ea+Oinsf+cZDuJaRcCyIp14KrsJVtZp9nnunTHRQUxO3bt2nRooVxW7Fixahbty7Hjx9PN+i+cOFCTmQxW/j7++d2FrIsLjqeDf+oPtwuxSMoWfIifn6Pdy7bkgnY28YSl1CEvcc98HvcE+Ux+bFchbm7weHEJ3YAoELZW/j7qymopGxTcvWy4m7sbe763c44cQ6oUNeWK8EBWWo2boly7fZyPMT/zbGTpTl52ZPQe+XM9p+86k2LjgmMeXkDfUaUxcY2z3wFFyjyP5tzrGJiqP9w+eTJkxgcHCx2LSnXgknKteCSsjWXZ77xb99WP95KlTJvDliqVCnCwsLSPdbLywtHxyeb9sXS9Ho9/v7+1KlTB2vrrI36ndvWzDtEVJwTAD3a+tGoUcsMjkhfY69T7Dldl4CblSlXwp5ylXN32qEnkZ/LVZjblWxwNK/6ValTp5SUbQFk6f/Zpqb7xty4GsrxfdfxOxTNqvXunLzqTaLelmlLnmPX8WAWriiHt3e2Z6HQks/jXBAVZVz09fWFokWz/RJSrgWTlGvBVdjKNjo6OlMVwFkKuqdNm8bcuXPTTbNx40Y8PT2zctonZm1tnW8K1RJ5vXIFliyBl1+GahYYl2z1nwbj8gsvOj5x/ls2vsee02r5wJar9H7TLf0D8oH89B4Uqbt2zbTsWcsNa2vVXEjKtmDKiXIt7+lGeU83uvWHD7+N56u3dzBpfiv0BhsOnSpPw4YwZQqMHAlWBWfQ+1wn/7M5KNnrbG1tbbae/ZeSci2IpFwLrscq28QosMn+m3eWlNnnmKWge8iQIfTs2TPdNBUqVMjKKY1cXV0BuHPnDmXKmGo+79y5g09uD5Gbh+n10LkznD8PCxfChQtk6xzBu/4+wdrdvgCUKHqfDr3rPvE5W7V1YMpvannv7jh6v/nEpxTiiQUEmJarVs29fIiCyc7Bjq9+bUf3PqfoP8KTC5cdiI2Ft9+G48fV57cQQghR6CQ8gOB1cG053NgC3S+BY/mMj8tnshR0u7i44OLiYpGMeHh44Orqyv79+6nxcPLXyMhITpw4kaUR0AubTZtUwA1w9Sr8sfASL73+5NXdQRdD+WD4FZZvNbWV7NXeH7sirZ/43C06Vjcu7znimmqaC8eu8NqgcKJi7XArHYlbmVjc3Qy4uVtRzt2eyIhEQkMSCEloRehNG0JDITwcOnaEzz8z4FhUqo1E1ly5YlqWoFtYSpNna3P8JHz8McyYobb99htMmAAVK+Zq1oQQQgjL0zS4f1IF2KGb4dYuMCSbqer6KvAZk2vZsxSL9ekOCQkhPDyckJAQ9Ho9Z8+eBaBixYoUfdjnp1OnTrz33ns888wz6HQ6BgwYwOzZs6lUqRIeHh5Mnz6dMmXKGEczFynNnGm+/v20ePoN0x57ftjYqFi+/+QAX89pTHScKeBuWP0Mk2ZlT4sDFzcXala4xJnAahy/7EXUgwSKFjNVzxv0Bvq/HMWh8/XUhouZP7efH/y19BqL50fRtGPtLOVLM2j8MecAmzYk8vbYMtRtLZ0tC5OA0yGAOwCVK+dqVkQB5+gI06eDHfeZNqMEAEe2nKDi0CdvSSSEEELkSVd/h5CNcOM/iL2ZehoHd9AVzO4GFqsOnDFjBj169GDmzJlER0fTo0cPevTowalTp4xprly5woMHD4zrr732Gq+++iqff/45ffr0ITo6mnnz5mFvb2+pbOZr548GsHmz+bYjF2uyd8PjjRa4aRPUrgPjZrQjOk7dGCldPIxfJ+7i4GlvylRMvVb6cbRspwZmS9TbcuiIeXv4BbPDOHQ+awFzcheCq9Cicw0+fW0H8THxmTrmdmAYL3Q4QN8RzVm4oTW9+hYhIS535yAWOSvgivqQdyt5gzw+LqMoIFrWOW9cPrLvXi7mRAghhLCwy/Ph6v9SBtyOFaD6cHh6J/QIBO9RuZM/C7NYTffkyZOZPHlyumnOnz9vtq7T6Xj77bd5++23LZWtAuWnbwMB1Q62WY1THDirAtUfpkXTqnvmzxMRAe++C/PnAxQBwEqn562+e5gwvS4ly7bJ3owDLZ8qx9yHc9fu3Qvt26vlu3fho/GmPv1bVhyjVqPyhF67S2hgJKFBsdy8oadoUR1u5W1x86mJW6USuLlB0MWbDHzpNofO18agWfP1vHZs2HaOJUusqd2ieiq5UNYuOMhr71blVnhz47aAG5VY9N1uhn3y5M3pRd4XHRHNjftlAajqfgsol/4BQmSDxu1MY6Ac9iueizkRonBKSIDt26F2bXB3z+3cCFEAaBrcOYT77V/BMMd8cMXKr8LNbWDjBGXagduz6lHMC3TmLXS3b4cRI+CFF+DLL3P2KVhKnpkyrDC6dAneeQcaNYJPP83aoJ8RdyL4bW0DABzto1izsSz1G9wg9F45/trdhMsnruFZt1KG59mx7hKDRnly7Zrpzd6uTTwzvrlKnZZts/ycMqtVK9Py3r2m5XHj4M4dtdyvHzzdVz1Ht6plMzynT/2y7D1Zisnv7WDC7JYk6m3xC/ChYds4erfbS6MGCTRoWoL6ravg7OpMRASMGRXDwsVNjedwdgwnPNoZgK9+rEL/MXHYO0pLi4LuyukQQI2FULVCRO5mRhQa7lXdKFfiJjful+XI+apohsfrGmTQGwi8EEKlGh4WyKUQBddXX6lHhQpqINoiRXI7R0LkU5EBcGUpXF2K9YOLuAH62y+D+zOmNBV7g1NVKN0crO3SPd3YsXDuHHz3nRrzRPd4vWbzFBltKpdoGgwaBOvXw/jxMHhgIvoEfaaPX/zjcSJjiwHwauejlK3sysj+5x6e24oZk66me3zMgxjefWUH7Z+rZgy4nZxg3jzYtsOOOi29HudpZVrVqlD2YRy9b58ahf3IEZgzB2Nepk3L+nlt7Gz4dGY7Dv13mdqVVGfw+ER7lv3Xkve+bUf73vUoUcaZatWgRg1YuNjBeGy35oc4dyqOzk0OA3D9tgfzpxx4oucp8oeAc3eNy1UrJ+ZiTkRhorPS0aiGmqvuflQJAvyvP9Z5Xnz6IJVretC3w34S4+X9K0RmLVum/gYGqt8gQogsiLsDF2fD5paw1hP8v4AHpoGYdNeWmae3LQ5l22YYcEdEwNGjarlq1YIRcIME3blm82bzGt4l/7Ohf5cDmfrBZNAb+GmhqVniyPdVU9g3xtbFwS4agAV/N+D+rfBUjz+2/SwNa4Xww+/tjNvatIzl5EkYOjRn3tw6HbRqogKdiAjw33uBtwYHomlq//jxUP4JZguo386HI2cqMnbQDorYxqTYf/kyhISo5WLFNOZPO8naPY0pV6UMEyaa5gf8+icvYiNTHi8KloCLpjKu6ikNgETOaVQv2rh8ZHdwlo+/G3qPP3aorjGrtjdnaI8DGPSGbMufEAVVUJBqcZhk377cy4sQ+UrwBtjVA/5yg8MjICz5P48OrUw7rpb7DK3eY9SeAXv2gOHh11hbyzW6zXESdOcCzaDx+djbKbYv+68lL3c6nOEAXv+tPMb5YNWXu13d48Za6VLuJRnUXd2qjYwtxrypx1Mcu2beQVp2rMzZQE8A7G1j+W7sTrbvtKNKlSd6WlnWsuZJ4/LwN+I4dErdSKhZ/R6jRz/5+e0d7Zm8sB3h4dYc236Oed/sZkSfnTRtEGFsQtahA5w8qWPIe77GZp2Nn6nJcy0PAhBy140586R5eUGXfI7uKl7St1bknMbNTKP2HT6U9cEb922+ZLa+eFMr3u2/G82gPXHehCjItm83X09eESKESEfwegj6GwzJvrOca0G9yfD8NQzt/+OO8/Ng5/xYp9+507Tcrt2TZTUvkaA7F2xYcphDJ9RI4HW877Fm3iHsbNT8dKu2N+fFZ46mO+r2zJmmWoyRb8aa7Xv7Y1MN+IzfqpMYb/qH+OmznfR6vTGxCapJdcPqZzi2O4h3J7fFyjrn3wotO5hGQz9wro4pn5OuYWub2hGPx87BjvrtfBj6cWtmrWrLgaPFefAA7t+HrVtTnx5qwnem5vWTJlsRHZ0yjSg4Aq6buhlUrVkmnZRCZK+GbSobl4+cyPoPlD1nGqbYNn1ZWyaO3plKaiFEkm3bzNf37cPY2k4IAejjIWCR+ptclVfVXwd3qPE+dPaDLv5QcywUrZDiNFm1Y4dpuU32j+WcayTozmGaQePzr4oZ1ye8d4HnhzZhzcKT2NuqAPqv3c3o8/Rx4qLjUhwfcPIaGw40AqBC6WCeH9LYbL93wyp0a34IgMCw8vw59xgGvYEPBuxk1MS2aJoq8lc77mHfiWrUbFrNIs8zM+q39TI2h0/y0tN7ad+7nsWvbWMDzun8vq3XtCS9e6vlmzfh558tnqUnFnEngmkf7OCvuQekliuLAoJdANXyw62KBN0i55StXIYKpVWz8qMXPLPcNHzvPtPX+DfvmTqlfj6rHT99JoG3EGl5tKY7LCxZc/OYGxCySTWjDd0CN3fC7f1w9yjcPwVxd1OcT4gCQx+n+mqvqwYHBsHVJeb7S7eAp7bB89eh/lQoWTfb+qYm789dqxaUKUA/ySTozmF/LzjM8cs1AKjveY4eQ5sA0PnVxqxddNrY/3jdvqY09w1g4ZTdRIVHGY+f9e0VY+A8/JWL2Nil7H/67numauJpCxvxcscDTFti6hTxydAdLN7YEjuH9AcysDRbe1ua1jBNG+dU5AHTfvHMxRyZSz5a4pQp8CAi7wayd0Pv0b5ZMB9Ma0ev15vx3HMGbtzI7VzlD5pBIyBUDSBQpWxwrrT6EIVboxqBgOoWdOHY1UwfFxcHh9W4j3h6wsfTGjHtgx3G/aMmtuX3H6XNrBCPunIFrl1LuX3fyrWwtprqq7qjC+zsBtufha3tYEsL+KcRbKwD255K5aT/g0tzIWgthB2CqGugj02ZToi8KjEGzs9Ug6IdHgHR6ruJ09+AIdlgzzodlG0PVlmYdimT9u5VgytDwerPDRJ05yiD3sD4SaWN619+9sBsephnX2rIht/P4Wivguzjl2sw5KPWuLnpeePlS+zaBQv+VrXc9raxvPZ+HVLTrld96tZVy0eOWrNiawtAzb39y5c7+Xpeu8ealsYS2rc0DfY2ftRR3D3zzvzItWqpactA3QGfmUdrjW4HhtGh5S2OXaph3LZ+gzW1a8Mff+RixvKJG0HRxi4XVT1SH3xQCEtq3MT0w+Wwf+l0Upo7elQF3gAtW6q/733bjk+GmqrwBr7fjFWrsiWbQuRf8eEQvBEu/AwnPmXb3IXGXU8li5/3HXOFyMsZn8+xYsptp7+GQ6/Drudhc1P4uzKscIBVJWCdN/zXFvb0hdDNT/x0hMg2hkTVmuPgMFhTHo6Ohphkg3q6d4UWv1skwE5NQe3PDTJPd446sCGYU9dUc/Am3qfp2r9RijQd+tRni4M/b460x/+q6lf8IKY4vy4rzq/LAJwAeOm5QEp7VE/1OjodvPsuDBxo2uZoH82KX/zpNihv3TZ6d2Ijrl7bjVs5PW9PbJXxATnsi7G3WbHcBYNmzbT5dXnr03CcXR9vYIhHxUbFcmp/AMcOhHHsGITdTb0ju5dnHG994kt5T5cU+25dv81Tbe5z6po3AOVKhKLZuXLzlg137sALL8ArL0Yxc3oCJcuWMDvWoDfw4O4DipcqnmduwuSGgEDTaPVVGzXIxZyIwqpRx8bwnVo+cqI4/TN53N71JwFfAFo1jwdU66WJv7bj7r2d/LK6LYl6a/r2hY8+UvMR28i3vigMDAkQdhBubFGPO4dAM9XUbd9lai47dqzqQ6rXw77TNeEFOyjVRM0lbFscDPHqoU/6Gw0uj/x+0zRTreCjEsLV48EFte7W0Xy/Pg6Ovw9lO6jHYw4+JUSWhR1UrTniwlLu83gean8GLinHDbGk5P25C1pNt3z95hB9gp6f59cyrn/5RWyagU6LrnU40Vnj0JZTzPv5Lss2NyYq1sEszahPUg+4k/TrB599Btevg6srrF9jRZMWTZ/8iWQzp5JOLFjfOrezkSbvuq682mkPize1F0IIdgABAABJREFU4l5USaaP38Hns9o91rk0Df78EzZuhGPH4PRpWxITa2Z84E74bqnG0KHqh3PFhzfYQwNu8lS7SM4GqvdCeZdQtm2JwaWiDcOHm2q5/7eiKDu2hNK1zUlu3LYn5FYxQu+U5GZ4aRL1zlRzu8rQF68ycEx93CoVvi/75COXV62ae/kQhVfDZL9psjJX8J5dpqnuWta/DqgxOnRWOn5a0ZqYYRqLFqnvmcmTVVP0ZUvjcC0nMzKIAizyKmz0hcQHqe7WNNh2ugMARR0TadfOhnr1VMuR0xeKc/+ZcEqUKpLFi2rQ4n8Qe1P1B4+9CbFJfx9uS8pPkbLmh4btgws/qYfOWgU5JepA8Rrq4VwDilYCnTROFU9AH69u/hQxDWJMcR9IiDCt2xQFjx5qcLSS9XI6hzx4YPoOrFmzYPXnBgm6c8yKnw9xLljV5LasdZJnX0y/Rk1npaNpx9o07QjfR2isWAnz5sHBgzBkCDTIoELOzg62bIENG1Rtp4dHVr9ARJLPJ1Xgf/8mojfYMH9VNT6dYchyv9/Q61G8NqIoGzYk35r5pjrx8Tpmz1bvgYEDYdAL1xkyRM+FYNUHvkLpYLb/l4BnXRU1rlwJy5bBW8NjuR9RhOC7bvy6xi3Vc18KrczHP1bm05ka3bvDsGHQsWPhqRGToFvkNhcX9d4LCIDjxyExMeP/P82gsc9f/f+XLHoPn0bmb15rGysWLoT69eH999U5t26FhnXC+OP3cJo8o274GfQGju88z/o/brJxW2keRDvy3EuVGDrMmurp39sVIudoGsTdgeirqvl30uP+KSjTFhokmw+4aEWwcTAPuov7QLlnoGR9LoRUJ/S+OwCtWltjawstWqigW9N0HDxShI6PVEZnSGcFHs+lnyYxWgXg9q7m20O3JHueelUrf+eQeRprh4eDV/1nvj38HNg4gmOFbBvIShQgidEQ+i8Erobgdar2uvki0347Z6jQB7QEqPgiuHdW7ycL2LhRtSqpUwcWLSLVWYoKcn9ukKA7RyTGJ/LVd+WN619N0GepOW+x4jqGDVPBkMEAVpmM97y81EM8Gc+6lXi20WE2HWrM9dse7N1wgtbP1c308Stn7WP4Rz7cjTQ1Y7aygpo+8TSodIiG9fU0aFaSyj6uKb4zYx5EMe9/7sya40hkJCQkqMB73jxTf7LKZQLZthWq1K5s3KbTwcsvQ5vG9xjyUghbjjZMts9AGecw3FzuYmebyKHztQHQ63WsWQNr1kD58vD999C3b5ZeqnxJgm6RFzRurN6LMTFw5tgdfJuUSjf9heNXCItQb9iWvhexsm6SIo1OB2+/rW7SvtAnkZu3bAgMK0/rLqX55LUdXA+0ZuMeL27crwGYxoQ4+y1M+Vb96HntNejV04CDo9SyiRx29xgE/Y3Vjf+oe/ck1hciU09nbd4SEJ0VVOwHcbdVoO32DDh6GHdvTxbjduigvnRbtICZM9W2ffvIetCdGTaO4FQl5fZan4BrS9UMPnQzRJxNmUYfo2opH3XkLbi5DYqUg9LNoFRT9delEdg6Zf9zEHlf/H01j3bgagj9R713kgStVV0vrJJFvC2WWvSGjcEAX36pHpoGp05Bp04wYEDKtMmblhe0/twgQXeOWL30OhdD1I+jdnWP0753/cc+V2YDbpG9Xu4Xz6aHN55/XxRO6wxuaIMaUXzkgDMs+6+lcVvZsgZmzbKic2dwdLQDMu7HPrk+fPAx/PgjzJihplNIUrXcNbZvt6GiT/lUj/Wo7sa/h8px5uAlYmMScKtUkjIVSmNjVwZQ7XYC/K8zf1FRFv5eitBQdVxwMLw2LJGez2vY2mfjpOl5UMCxU4C68VClUiLysShyQ6PKB1mB6gJ0ZNsZfJuk3+1mz+Zg4GHQ3TQ63bStW8OxfXfo+/xN9p72JT7RnvGz26Wa1tragF6vvmh27lSPEkUfMPA5P8b/WI8SZQpfFxSRjTTtYQD5QPWN1seoR2IMWvGaGGxdsE5qBHb1dzj3HTrS+1TWpT5CeKPpaR6RfH7u9u3V3xYtTNv27cv808kWtk5Qvqt6gHptIs5B+FkVgIefUX+dUpndJTpI/Y29AUFr1APUjYeilcGuJNiWUPMnuz1jOi6pHCxUqylyWEIEXFuuAu0bW0FLTJnG1hnKd1NBefIm5hYMuO/dU60zN2403/7tt9C/f8pLJx9ETWq6xWO5FW2qPhs/QZr/5Ec9BtXF4aNoYuIdWbm5NtNj4tOdcu2/lccYONyNkLumgLtPu/3MXupD6fIls3z9UqXUIEjvvQczPtvPr79XpkKZMFatLY1H9dSbjSfRWemo1Tzt+dir1qnI19NgwmTYtAnGvX8b/wuuRDyw4ci2UzTvXDvL+QXw23Wei6fv0mNIozwduAeEqBrFMs63cSrumkFqISyjURNTP+sjRzSGZJB+b7KZwFq2TznI4qPcPcuy7XBJPhi8kxkrTL9mHOyiearhKbp1jqVL32rYl3Rn8WLVoub8wxkd70c5M31ZWzbsuMpff9yidgtpdy5Scf80aGXAqbJpmyERtrSChPsQf0/94DfEG3eHRxdni/8zrD/ejU1nG3P7jurH6eYGbi5jcTf44FYilMY+5+j+9E10xaqp4LOY58O/1VQ/1EzSNFNtWvHiqvsFQIUKqoVXcDAcOKCauFpnvgdY9rItBqUaq0dGKvZ92Bz9oHlNuGaAyGTNuKq9bn5c1FU1B3PxmqoPuUtD9XraOasgPemvTdEC12x9zx5VedGpUz6tyIq5ocrX0d20Lf4eHHojZdoiZVQfbY9eaoov65ybKvj8eQf69rUytia0soJy5SAkBE6fVoF4166m9JGRpikwa9SAsmVTnjO/k6A7B7zxBsTFGbCxuUyrbqlP8yXyNqeSTjzfeh/Lt7bgbqQLW1YdpuuA1L8Qzx0OoOsrtYhPVD+iSxS9z6yvT/PSqBZPPEp4iRLw+czmfD4TIP1gO6tsbKB7d7jpf5bXxqngc/s/YTTvnLXz7Nvgz1dfxvLPIfX6DN20m3lr8+ZgeTEPYgi5q17Hqm43AAm6Re5o0LYqOp0BTbPiiH/6TcsB9hxXzWXtbOJo/FTm+hHZOdgxfXlbnu54iH27o2nToSjtnq+NQzHzpunvv69u8O3dC/Om+bNykycx8Y5cCq1M0w5RzPt2Hy+NbpHGVUShohlMy/82hbpjoOEPpm1WNnD/hFltdPBdd1YceJH1x7ux+3xrEvXmN2Vv3lQPP1yBYcbt/7TT07HJk0XCp0/D7dtquW1b09gJOp2q7V61Sv349/eHevWe6FI5o+5X6q9mgIgLcOcAhD18xASpYEwzgF0J8+PuHlXbw0+px5VFKU4NgM4G+kaCdbLBF+8cUU33i3mp2vQcmkoqO/j7Q5s26ubLyy/DggVgn9fHldQ09T8U+JeqyQ4/BT7vmY9j4FhRjRUQd1sNuufRCyr0UiPw50L5LF2q4403fIiLU795S5eG5cshKgqef16lmTLFPOgu6P25QYLuHGFrC2PGaPj5RWScWORZL79iw/Ktavn3pfF0TaU/CsA3n4cQn6haNzzT8CgLl7tTvlrL1BPnQe27VoRxann7nmJ8ksnjdv59mq8mxLH1uPkof79taM7n50Ko6OOexpG55+rZEEA12ataQf4/Re4pXqo43uUvcy7IkxMB1YhPpzXNreu3uRii+oY2rH6BIkWzdjO3++AmdB+cfhqdDlq1glat6jD+dBC9nr/G8cs1iI4rystvt+DggZ1MXdgiT7diETng8kLz9aTmzsnZlYTEKLAtwe2YqtT6aB3hUSn7GxctqsfLy5pbt+DGDdMP8CT//KN74r7WqTUtT9KyJcY57fftyydBdxKdFTj7qEfVQabtmqYGlLN6dDBdHZSoqwI47ZEXOjn7UuYBN8DFWRDwm1q2LgLFvMG5pnoUr6EGdXMop0Zpf/TYXLZzp3pJAH7/HUJDYfVqVaGRp+jjVQuGoIeBdtRV8/2PDrSn00HD6VDcG0rWz9XWCZs2waBBpiYEjRqpmXsqVlT9u2vUgLNnYfdu2L8fmjdX6Qp6f26QoFuITOvYrx4lR93jXlRJ1uxqQOQDAw6PdIe6fOIav29uBoCL013+3OxFMZdiuZDbx1e1TiUqlA4mMKw8e/xrEhcdh71j2l+cp0/DiBGwa1cts+0Odqo5vt5gw0+TLvDtorwXdAecu4sx6K6ckLuZEYVeo1qhnAvyJD7RHv/9Z2nYoUaq6fZtDiCpVUarxncsnq/KtTzYezyGES/t5rcNqtXK9GVtOeZ/gpVr3ShXpYDN6yIyJyYUTn5mWq/YF9yeSpmuR5Bxuqu/foXwKNOuKlWgWzf1aNvW2ljraDBAWBhcuKDGJAA4evTJA4nt203Ljwbdj/brHjHiiS+X+3Q6Ndf4oyr2Vg99LNw7CfeOq5HV4++rrgAJ4WrZIZXxYqKumZb1saoW9v6JlOmqj4DGs8y3Xfmf6n5Qog5YZb5bQHa5dMl8fft29f7auFF1Mch1wRvAfzzcP2nWDcNMqSZQLpX/s8ovZXt2NE11M9qyBUqWhFdeyTienzfPtDxkiBrHqMjDez5WVvDBB2oWJlC13WvWqOWC3p8bJOgWItPsHOx44blAfl1Wkug4B9augxdfNL9DPPnz6+gNlQB4Z9BJirm0y4WcPhmdlY4OTQJYtLE8sQkOHNxygjbPpz5ae0ICdO4MgYGmbZ7lrjFuzHWe7V2NqjWsiU+059c/6vP5j5E4lcxbo6kGXDANQFWlqnwcitzVqIGepf+q5SN7b6cZdO/ZmWx+7jYOqabJbg7FHFiwthXNvt7FqAnNSNDbsftUXRo0vMGubdeoVq9SjuRD5CFH3zGf47f5AiiaSiCVbH7pdetMmzduVP1qU/sRb2Wl+naXKQMVKmgEBuo4fvzJ+lrr9aYf9i4u4Otrvr9ePXBwUDMI5PhgarnFugiUbqIemVXtTSjVTA32FnEWHlxMvba8SDnz9cQYODDA2CXBqmhlPHUV0Vm3Apd64FwHilW3aHPoixdNy87OEB6uRtNu3ly9Hx99Tzy2wDXqxoU+9uHj4YCB8Xch9jbEhamm4PWngtuz5sfePWK+rrNW/bE9eqopvxxTHzg3u8TGqv+TDRvUI/kML1ZWqll+WuLjVYAO4OycyOzZOuweabD1yivw2Wdq/IS//4Zz58DDw9Sf28dH9f0uiORXphBZ8PIbnvy6TC3//ju8+KJp3/WL91m0QY0+XNwhnJGfPf4o9bmtfTtY9HC0ye3/3qPN86mn27bNFHBXqQJffnyDfgPLY2OnfoC/2mk3C9a3JjzamYXf7WTUxNy/falpcGjzaeb9fIflm01N4at65a0bAqLwadTCNMjikSOQyrA4AOw9U8+43OLZVEY0thCdlY43PmtDvSan6P1yKYLvuhF6rxwvvniZfSfzQd9IkX1CNsH1FVk6JDoa/ns4zXS5cmparsy0gm3USH3PREbquHBBNU99HCdOqNGUQTVffXQQLVtbNXXfrl1w5YpqeuyWvUOnPJb4ePj4YxX8zJmjbkTkqkp91SOJPl4F3hFnIOK8agERexNKPnKzPuKM2RgAuqirlOAqnNllSmNdBJxrQYvfoXj2z3mbVNPt4ACHDkGXLnD5sgoAW7dWTc2fSqpEjr2tAuB7fipwtnVWfeNtndVAczbFVK2/vQuUe9r8QkdGQkxwxhmKDjRfd2kI6NRzL9kQ3DqqEcftMx4s80kEB5uC7P/+U/+rqVmyJP2ge88eePBALbdoEY61dYkUaezs4J131NghAFOnqt/SiQ8HXC+otdwgQbcQWdK6tbojFxQE//6rmr8l+XZ6CRIe3uwd9eoJSpRpkzuZzAbtu1eBD9Xytj0l+CKNdH/8YVqeNg169TK/PfnOx2VZsF4t/7ikISMm5N6IsHfvwtKlMHcunDpl3hTeqcgD6rVKZf5UIXJQ/TaeWOn0GDRrDp9KfejWmBg46l8CAG9vcK1QOgdzqDTtWJtjx2/TpkUA54OrcuyCJ598At99l+NZEbkhMQoOD8/yYVu3qlo0UM3JMztydMOGGn/9paLzw4cfP+hOr2l5khYtVNANqr9pr16Pd63MSEhQgX569Ho1tdLKlWq9XDmYPdtyeXos1nZQopZ6pMehPDSapZpO3z+Jdt8fXeIjc6/rY9Ugb8mntAK1LTIAXNuoEbkfo89yYqK6mQJQrRp4ecG+XdF0f96KQ0eKEBGhbgSNHAnjx0OJC5/BpTkZn7j8cymDbutH+9CnwsqO8xfs+OlHaNZMBZ42DuXghXA1gn02WLcO1q5VTcPd3NT7x81NPe7eVUH2+vXqhlRqbGzU795Tp9QAhFu3qtYBzmnMHLlhg2m5ZctwoESq6V57Tc3IEx6uAvmkgBsKbn9ukKBbiCyxsoKXXlJ35hIT4c9VCTRtru6IJ/VjKVoUxnydN0frzqyKPh54lrvG5RuVOHC2BjEPonEoZt6BPTE+kb9WRgIlcHTU06lTymi6dgsvnml3ny07ShBw3Ym1a6FnT8vnP+JOBMd3BXDs4H2OHrfl2LVGnLtgbxxAJYlTkQe83Ok473ziQYkyVVM/mRA5xLF4UWpVuoD/VS9OXfUk5kEMDsXMm48fPqx+rIMa+Cm3lKnoyvLVtjRtrREfr+P77+Hpp1V3E1HA+U8w9est0wbYlW7yJMmblnfvnvnLNWxo+uA+cgQGpDGIaUaSD6LWoUPqaR7t153ZoPviRRW81K+v/i/TCqZv3IDffoP58+HaNfjwQ5iQxs1oTYO33jIF3KAGpPrpp1yczuxJOJQDL1NHeUNiAmcOb6JmeT3W4aeMwTiGODX4XnKX5sGlX9SydRFwcAcHN/W3iJsKUuPvQvnnwT3ZaHuJMWpqNCtbrt+sSkKCehNUd/oXVvWlTEIE24Y78tKsZaw79hx6PUyfrloyTnrnZQZX+BUrq0d+ODzq3vGU22p/puaht3ZQg9hZP3zYuUCR0mBfGmyKMaCZjkOHVJl+8QV88gn071+M7BieMjAQevc2fV9kVpkyqgVA167wzDMqwB4zRr0uCQkqsE6rtjsp6Lay0mjePO3BaYsXV2MmTJqkzrl4sWmf1HQLIYxe7pfI1KnqX2f5nHM0bQ7ff68jLk7tHz4cSrvm/3kt2ze5xuW1lYhPtGffP0d56oWGZvt3rDnJnQjVPLtbs4M4OqY+hdC7Y0uwZYda/uEHywbdwZdC6f/CDbb71QfqpZmueXON13rs54XXfHEqmX9bJIiCp1Gtm/hf9UJvsOHEoRs0e8rDbL/Z/Ny5PClCvSYlmDoV3n5brQ8cqGpM8kKTXGEhmkEFRkCi5siWu/PojGoGfOAANEtlfCdQA6Otf9jqqUgRdYMmsxom++o5ciTtdOlJTFSjJYOa/zet2vKkkZQhc/26DQaYMUM1/06qxXd2VjWmXbuqm1AuLqpl3Ny56sZD8lHZv/5aNXP+/Xc1rVJy48ap5uTJ3b6tnkeBqA3UWRFvVx7K14OKyX4YGFKJEm9uNS3rY1Wtd/J5yJMUKWcedBviISYEgEsBpubq1Ur5GccjKFokmtVjejHlzCW+nl6ZmBj1Og/7pA2/1LzKTxPP0LSpBvHhqp920iBzCRGqRr5kfXWHJHnte9WBGT79M2dU2Se5fBmGDoUvv4SPPoLBg5+sy87y5ZkPuBs2VO/Xbt3U8qOtUHr2VEE3qCb4qQXdly+rQddA1dw7O6czKj7qe+P77zH+dgbVeqsgf39I0C1EFtWtZ02NCpc5G+jJ7lP1uHziP+bMUR+2RYqo+W0LgvbtrZm3Vi1v3+XAUy+Y7/9jualZWJ/eaZ+nY0fzKSIOH1b95rKbZtAY3C+E7X4NU+yztUmkjq8N7dqpUTNr1dIBMs+wyHsaPe3Lwoe1BUfOeqQIYvZsuweoWqBWrXI2b6kZNUr1AVy3Tv1Q7d/jIpv3eWJlncm2w2k4fzSALz8OpWXzREZMKMBVH/mNzoorlTaxYLU/C1dV4d5NK5IGI3/jDTh+IfVm48ePqxZhoPrMOjqmTJMWFxfw8IglKKgIx4+rANomi79ejx419TVt1y7t1smlS6tmxxcuqGNiYzGOvPyoa9dg0CDzqY5ANZlduVI9dDqV/zupTDJgZaWC9i1bTNMqJd1gmDZN1QKCOkffvrDiYRf6VasKSNCdFqtH6nk1DRrOVIH3veOqz3hMiJqD/FFxj77QBnD0AEMCl+6Y+phXcw9S84w7lIMi5bApUo5xz8XSf7gaXTupdcGRMxVp1qsigwerADEzU4vdvKnKPKOuA0uWmJYrV4arV9XytWuq8mbiRHXTJflc1lnxv/+ZllesUP83oaGmB6j/xc6dMw50W7UCV1f1Gb9pk+rm5PDIGJ4bN5qWu3TJoHUA6ubXoEHmN5YKci03AFo+FhUVpR05ckSLiorK7axkKDExUTty5IiWmJiY21kR2eCrkds19U2gaeVdgo3Lo0YWnPINuRZhfF7Nm5vvS4xP1FyL39JA0xzsorQHdx+ke65ff9WM53qp2wWL5Hfxd7uN13Atfksb3nunNvfrXdqx7We0uOi4LJ9P/mcLprxerocOmf5XBgww36dP1Gslit5T73Hnu5rBkDt5fNTt25rmXi7GmO9JY7Y/0fkun7ymuZUMNZ5v87IjmTour5dtfnf4sKY9/bTp/Qma5kikccWRSG3t2tSP/eIL0zG//JK16yYmJmrPPHPHeLyfX9bz/s03puvPmZN+2kGDTGn37k2532DQtAULNK1YMfPXYtgwTXvpJU0rUcJ8e/KHm5umffKJpl2+rGk7dmhamTKmffb2mjZ/vnokP2bWLE2LiFD7QdPKldO0gvAWf+L/14RoTXsQoGm39mha8D+aFnZI06JvpJn8nXdMr+m2bemfets2Tatd27wcypfXtH//TfuYa9c0rW9flbZmTU1LLzTR6zXNw0OltbbWtJs3NW3fPk3r3Nn8mmXLqrRZdeqU6RxNm2b9+NQMG2Y655o1Kfd37Gjaf+xY5sr24kVN0+lMx/3+e/bkNadlNh6VoDuHyI+BguXSiWspvkxtreO0wPPBuZ21bOXjo56bjY2mPUgWV2/745jxefdqsz/D80RHa1pp53B1Lut47fq57H2dbl2/rZUqFmbM07rfDj7xOeV/tmDK6+UaG6tptrbqfVymjF5bNHW3FhWuvuNO7btofI8/3+pALufU3PY/j2k6nV79iLRK0PZv8n+s84RcvqFVLXfV7LPVq3yAFhsVm+Gxeb1s87MrVzTNycn8O8/aWtP6djUPutu3T/34Bg1MxwUFZe3aiYmJ2ttvBxqPnzcv6/lv1cp0/YsX00+b/Cbx1Kmm7ffva9r27Zr2/PPmr0PFipq2daspXUKCpu3apWkffqhptWppWtGimtatmwpUEhLMrxUUpGnNmqUdpH/1lSlt8uvu2pX11yCvyen/127dTK9fYGDG6RMSNG3GDE1zdjYvkxEjNC0y0pQuJkaVk4NDypsladm61ZSua1fzfYcPa5qvr2n/4cNZf67jxpmOnz4968enZuPGtG8IR0aabgp5eGhaQkLmy/bFF9VxdnaaFhqaPXnNaZmNR5+s/Vc6Zs+eTb9+/ahbty6NGjXK1DEfffQR3t7eZo+hQ4daKotCPDZP34o08/E32za4+wE8vNxzKUeWkTTCa2KimgoiyR/LTQNkvNAn/X47oJohDX/xmDqX3pafJl0w7rtyKpCfPttJ147RtG1rmkc1K94Zdp47D0oB8GKHfXQbmIU5R4XIQ+zt1WBMALduWTHwg1a4uyXw1gs7WfhzkDFdq2YxaZwhd7TrVZ9xw9SAWnqDDS8NdCb8dniWznHv5n2e7RBBwI1KZtsvBFfhh3H70z12wwbo0MGKRYvKmvWZFU/OoDcwuNdpIh/2KKpaVTV9Dgw0NXlOsn27akqeXHAwHFMf/zRoAOUfY5rhmjWjjMtZ7dd9+7apf7aPjxq5Oj3Jx0pYtEiNKl2tmmpa3L69mls4yaBBcPKk+cBsSSM+T5miRn2OjFTdL55/PmWz+PLl1XfeiBGkMGaM6tedpE8f0/KqVek/B5FS0nRhRYqAeyZ+qtnYqO4z/v7mYxD8/LOa033fPvVeqFlTzTsd88hH8rRp5qNyJ5e8aXn//ub7GjUyfz9s2pRxXpPTNDVGAKguDH37pp8+szp0gGIPB1Vfu9a8v/i2baa+2V26ZG1w+dmz1ft8zZqCOz+3kaWi/unTp2sLFy7UJk2apDVs2DBTx4wdO1YbOnSoduvWLePj/v37aaaXmm6Rm2aM22G642+VoAX4X8/tLGW7VatMdzY/eF+1cUqMT9TKlbihmsPZxmgRdyIyda7QgJuanU2sBprm7Hhf+2DAdq1mxYvao3f2dTpNe/dddfc4M/5Zc9N4bMmid7UbV2495rM1J/+zBVN+KNc9ezStRg1DmrVfoGn7NpzM7WymkBCXoLWsdcKYx89e357pYyPvR2rNa5w0HlvJNVDbsOiQZqVL1EDTHB0TtetpfMTu3GlqHQCa1rGjXrsTGp49T0po0z8xfddVcrurhSd/aSPNa7pB0/r3Nz/+l19MZfP551m/fmJiorZjxzFNp1P/E5n8SWm0YIHp+mPHZpxer0+/iThomqtr6k1sn8SiRZpWpIg6/6BBKZsV37+vagNB09zdH6/ZcV6Sk5/FiYmm165Wrawfr9dr2k8/pazNfrTlx+jRmtaunWnb8uUpzxUVZWo1Ury4agn4qKtXTed4tHtfRvbvNx37zDNZf67peekl07m3bDFtf+MN0/a//84f37PZKbPxqMUGUhs9ejQAq1evztJxdnZ2uLq6ZpwwGb1ejz6P39pOyl9ez6fIvN5DvPn0+3AiYpwZ3G0vFWu0KnDl27qVRtJ4i9v/Pod+sje7N5zgxn01anmnJn44OjfO1PN2rViKl57dx6KNrQmPdmbq4napptM0NWDJP5v0LJxxjobtfdI8Z2QkvPG26fPi23H+lK7QMlvKQf5nC6b8UK7NmsHJExr7/z3F/NkPWLW1AdFxRY37i9jGULe1Z557DjprHQv/V4yaDRNI1Nvy45IGjPz0NqXcXdI9Li4Oena8zv6zdQAoW+IW//4TT7W6DRix6yY/zXcnOtqad97RWLHCYHbsRb9r9OxRgYQE06hF//5rRaN691n5eyD126b9+SEydv7oFcZONbUcmjf9MkWL1je1JtDrSZq9yqWkRvQ9WL5c4+uvDcbaxLVrrQBV9dWliz7LLRH0ej1OTga8vNToyCdPakRHGzI9svNff5mu361b5q7ftauO//3P1BjUwUHD1xcaNNBo0ACef17DxYVsbVXxyiuqNvHKFTWKuqaZn9/JCZ55xooNG3SEhMDevXqzKc7ym5z8LL56FeLj1Tu1WjUNvd6Q/gGpePNNVT6DB1tx8KB5VW67dho//migdm1V67tjh7rWlCkavXsbzGp+V6/WERmp3lt9+hiws9NSvI88PKBGDSvOntVx8KDG7dsGXNL/GDX63/90gDp/v34G9Hoty881LT16wLJl6rn9+aeB9u01NA02blT/Y3Z2Gm3bGvLF92x2yuzzzHOjlx86dIjmzZtTvHhxmjVrxpgxYyhZsmS6x1y4cCHd/XmJv79/xolEvrFg1k0un4mjbe/y+Pn55XZ2LKJWxaKcvu7DsUve7Nu5j6ULTKOWt20TmqXn/XzfSBZvMpDUs0WnM9DY6yTtm1+ncVs79pyoxaxZ5UlIsOLMWWtadvJizMsb6DOiHDa2KScm/f57D65dKwtA40YR1HvaMdvLQf5nC6b8UK6ObjDqS0eGvHecPevC+HNdNY5drs2Q57Zx9kLebYf38jMXWPxPRx7EFOfL9zYweGzaedXrYdy4Kvx3UM3h5Ox4n59/OEqkVgY/v3v0ftWa3/9y5e5dW/78U8cvv1ymWTM1DHXk3SheG1ieu/dUwO3rG0nQdSvu3nfkys2KtO4Uw8R319LuhYqWf9JP6IrfTWzsrahQI2uVDpaUmJDIyAFFiE1QwxQPe24TJauWMfuMtYqJ4WFvCLp2vcmcpU4kJOj44otbvPVWCLGxOrZurQfoKF06Hisrfx73I7pq1bucP1+KhAQdf/55gZo1ozM8JjZWx+bN6vqlSiVgb38yU9cfMsSaChVK4uBgwMcnmkqVYs2ahl+/rh6W4Oiopt5LTePGLmzYUAWAX34Jw9ExKPWE+UhOfBYfPFgMHk5tV7z4Tfz8gh/7XNOnw5Il5Zg/vxwuLomMHh3EU0/dJzER/PygZEmoUcOHs2eLcvy4jjlzTJ9ZALNnVwOcAWja9CJ+fpGpXqdBAw/Oni2LwaBj3rxrPPvsvQzzlpgIv//uC1hhZ2fA0/MEfn5Zv8GQFjc3K+zs6hIfb8UffyQyZIg/AQFFCAys9TDPEVxKasdP/viezUk6TdOy7xZIKlavXs0333zDkUx0wtmwYQNFihTBw8ODwMBAvv/+exwdHVmxYgXW1il/cEdHR3P27Fm8vLxwzMr8E7lAr9fj7+9PnTp1Un0uIn8qDOX67qu7mbG8HQCr5x5g5NgqhNwti51NHKGB0Ti7Fs/S+f745QA7tyfSrLkVHV/wpnT5Umb7T5+GQa9EcvyUs3Fb7UoX6dgmiPoNbGnQshzV6lbi6DErWra0wmDQUaSIhp+fIcO+ellRGMq2MMrv5RoXHYe94xNM3poDAi+E4O1bhvhEexzto7h0NpIyFUunmnbcOB1TpqibcA4OGptWnqdV5+pmaRYv1jFkiErjVd3A8aNx6HTQpdU5dpxQIV+tihfZfsid4wcO8NmHZTl0obbx+OG9d/Ldb02wc7CzxNN9Yr9N3cuwj9tgax3PjnXnaPpsrcc+V2Cg6rOaXoPBxPhE9v1zmk1/h3P2QlGaNoxi+KeNKVHafA6gKe/uYtwMNbBHdfcrHD1VGsfij/zWiorC2ll9VgedC6dqnWIkJOhwcdG4etXA1q3Qs6f6Pxs2zMAvv2T9J2fS/+zOnXV57z0V+c6aZeCNNzI+19q10KvXk10/L7l3D9zdrUhI0FGhgsbly4ZUp2gLC1N/H537Oy/Jyc/iOXN0vPWWeqF+/tnA668/+fsgLg7s7FLvv/zHH9Cvn3pOHTpobN6sAt/QUKhUSf1uqVRJ4+LF1MsP1FSMnTqpcwwcaGD+/IzzvHkzdOmijunVS2PlyuwLuJP07GnFunXqSe/erWfXLh3jxqkn8cMPBkaN0vL992xWRUdHc+HCBWrUqJF+PJqVNutTp07VvLy80n1cunTJ7Jg///wz0326H3X9+nXNy8tL27dvX6r7pU+3yG2FoVzXzDtg7KvTtPYV43K3dgEWu2ZcdJz22evbNWurhFT7TjkViTAbrXzSpOzPQ2Eo28JIyjVnjHrR1A/43Vd2pJpmyxbTdDE2Nmp03NTo9ZrWsqXp//+bt7drQ7rtMq6Xcb6lXTkVaCzbqIgo7Y2eO80+M2pVvKBt++OYBZ/x4zlz8JLmYBdlzGePVhnPBpGWWbNMz9fDQ9Oe656gTRixTVu38IB2/miAtvi73dqLHfYap51L/nB2NmiffaZpd+6oc53YfV6ztY7TQNOsdIlpjyGQrE+3FhmpvfqqaXX2bPNphtKaTiwjSeW6a1ei8VxDhmTu2MGDTddfv/7xrp/XJJ9W6kAqkxhs3Khpjo7q8d9/OZ+/zMrJz+J33zW9ZjnxmiQmalq1aqZrHnk46+F335m2jRuX/jliY1UZgpomLjN9+AcONJ1/9eonfhqp+u030zXef1/TWrc2rSfNDFDYvmctMmXYnTt3tEuXLqX7iIsznw/3SYJuTdO0pk2basuWLUt1nwTdIrcVhnK9e+OecSqg5I/ffrP8tQ/+e0qrW+VcugPa1K31QIuPz/5rF4ayLYykXHNGyOUbWhHbaA00rYh9ghYSYr7/5rVbWrlS943/x8mnZkqN3/5Q46BqSX9B04rYRhunJ3u0bBdM3qXZ28aYfV680H6fdu1sJuYLygExkTGa7yOfbzqdXrt4/GqWz3X3VpTm7Jz+4HuZeTg5adpHHyZqdaucNm77aPD2tC/8SNB99Khp1ctLzUsNaoCwx/2pllSuERGJmrW1Op+vb2aOUwOegZq2K7ODc+Z1yefxfv9983179pgP9uXsrGlnzuRKNjOUk5/Fzz1nek2uXbP45TRNMx9AsG9fta1ePdO2c+cyPkfyac6OZXDPMDraNHe8s7Pl3u937mjG/8Py5U3LXl6mNIXte9YiU4a5uLjg6emZ7sPOLvuab924cYP79+9neWA1IUT2KVm2BA08z5lts7WF556z/LWbPFsLvwBvQi7fZMOiw3w1cgc9Wx+gkqvqx1ai6H0W/hSErW0GJxJC5Ci3qmUZMfQuALFxNkyaZNpn0BsY9MJVbtxRzZI7dojg3XfTP1/dZuV4q6+at9CgmZorLvrhOM061U71mMFjW7N/81Uae502blu1vTk+dV348uMbKab4Sc+dkLsc236WxPg05gB6DO8PPsTJK94A2Nmo+XY0zYoZ8ytk+VzfjztIeLhq8lmhgmac2ic1JYrep99T+1jy/V6ObT3FsKEGY3/lyEiY/K01J67UBKBO5QuM/6l5pvPRoAG0a6eWL1xQzWlBTbn0pL0AHR2h1sOW96dPQ3QGXbr371fThQF07Kia3RcEPXqYph5btUqFZKD6gXftaj51VXg4dOtmeh0Kq6Ruxvb2apCynDBgAJQpo5b/+ENNiZU0nkCTJuDtnfE5OnUyLf/zT/pp16+HBw+7jvfubbn3u4uL6X88ONg02F/Xrpa5XkFisXm6Q0JCOHv2LCEhIej1es6ePcvZs2eJijLNtdipUye2bNkCQFRUFFOmTMHPz4+goCD279/PiBEjqFSpEq1bt7ZUNoUQmdC++S2z9aefVoOF5BS3qmXpMqAxn85sx+pdzbh6y4O7N+4THGJH/XYyOrEQedHYCeWNgdacOaq/McCPn+xi06HGgBqpfNH8uDT7NSb35Yx6lHE2RQ8TR+2g71vpD99cv50PB87UYP6k3bgWV8fGxDvyxeRy1KwJhw5lfN37t8JpVD+Khh1qUKNyEL9NP2s2R+3j+Hv+QWatagOo0ei3rAk0vlYLFlpx717mzxUWdIcflzQCwNY6nt3/BnP/Plw8eZMVP+1j7CB1s/LDgTvYueYEt+86sey/Frz6Tkvqd6jN3HlWXLoEw4erPqpJbKwTWLxIy/IYAu+8k3Jb9+5ZOkWaGqmniV6f9mBjSZLPp/3889lz/bzAxcU0L/i1a3D0qAoqO3ZUQTbAM8+ouaQBAgKgZ0+Ijc2V7OY6gwEuX1bLVauSqc+a7ODgAG+/bcrDq6+a9j06N3daOnc2LWc0X3fS3NwAL7+cufM/rl69Um6ToDsTLFXVPnbs2FT7fB9I1gHFy8tL+/PPPzVN07SYmBhtyJAhWrNmzbRatWpp7du31z799FPt9u3baV5DmpeL3FZYynXDokNmTRDn/xqb21myuMJStoWNlGvOGjvW9Lnx5puadmTrGWNfYdC0f38/kqXzbV11TKtb5Zz26WvbNYPeYLYvo7K9d/O+9s7L2zVra1MzbA+PjJthfvb69hTNsCtX1rQ5czTtkR51mRJ4IURzcbpj6vs8YYemaZo2YoTp/FOmZP58Hw405W94751Zz1AyQYEGbXS/nVp9zzPa/37ck/EBjzQv1zTV9zR5f1bQtKCgx89T8nL9+WfTOadPT/sYg8GUB2trTQsLe/zr50W//mp6HQYMUO/HpPXmzVVRBAaq+byTtr/8snpdLOXKFU2bODHjZtBJcuqz+No102vw3HMWvVQKd++a5uROetjYaFo6oU0K1aub3sf376d9naR5yMuVU10rLCk4OGW3lOSfhYXte9YifbrzGgm6RW4rLOUacSfCOKiZtVWCFhZ8N7ezZHGFpWwLGynXnBUWZupnaGuToFV2DTD+UPtgwPZsvVZmy/b0aU1r2ND0g3HatHTyH3xHK+YQnmYf6AoVNO2Hb0K0E7vPa/GxGQ8ukZioaW2amQLunq33G28enD9vGljOw0PL1FgVN67c0hztIzXQNHvbGC3wQkjGB2WnVIJuTTMf1K1Bgye7RPJyPXTIdN7+/dM+5vRpU7p27Z7s+nnR7dumvrTJH7VrmwbD0zQ1gFfSYFygaRMmWCY/69apfsSgaaVLZ67/fk59Fm/danr+775r0Uul6r33zMsoq4H/6NGmY//4I/U08+aZ0owZ8+R5zoxmzUzX7NnTfF9h+561SJ9uIUThVMylGC8/ewCAgV32U8o9B9uWCyHyrVKlYMyQ8wAkJNpw9baaY7ix12km/pJ+03BLqVkTFiwwTfXz9YRI7t8KTzXt1HEneRCjpkV8s9cudm+P49lnTfsDA+GdT9yo29qLYsX0NPE+zfDeu5j79S62/3mcnX/5mR7b4vnwQ9h1wAWACmVuM2+FNzorlREvL+jeXXXQDQqCP2bvy/C5TBl3mui4ogC80esgHtXdHus1yW4DB5qaN3/4Yfad19cX4xge6c1EW1CblicpXdrUrzZJ1apqyigXF9O2hg3hf/8zvde/+MK8GfKT0uvh889V94Gkpu1hYaoPc16RbNrobJ1WNLPGjMFs3JnMNi1Pkrxfd1pNzJcuNS1buml5kj59TMvZ1X2kwMuhmwAWITXdIrcVpnI16A1agP/1FE06C6rCVLaFiZRrzrt7457m7HjPWCtSzCFcu+R3Nduvk9Wy7d/jojFPHw/ZnmL/zas3jbXIdjax2vVzwcZ9Bw+ajyyc1YeVlabt3p0yT9vXmEYNb1T9dLqft8GXQo0jxDvYRWmhATcz9byzVRo13Zqmajtv3XrySzxarkmtFHQ6TYuISP2Ypk1N2Qqw3OyWuWr2bNNzdHPTtMuX0047bZoprZ1d9rwmd+5oWqdOqb+/W7fO+Pic+ix+/31TvjZvtuil0vT22+r61aplfVTx6Gg1+j+o0cIf7SKQvFVJtWqW7ULwaL4GDdK0N95I2SqnsH3PSk23ECJb6ax0VKldwVgrI4QQmVGybAnGvuZnXP9lkj+edSvlXoYe+nJiEeOo4T8ubULI5Rtm+6eMO2OqRe59gAre7sZ9TZrAunVwYs9lvn1vB/2e2kd19yuZvvYXX0CrVim3t+1eg/qeZwE4crEmezf4p3mObz4+T2yCAwBvvXiIclXKZPr6OcHRESwx+UzSYGqaBseOpdwfGgoHD6rlOnWgSpXsz0NeMGCAqgVt1EjVcFetmnbad9+FIUPUcny8eu8+iePHVS160ojaVlbw7beqFQnA7t1w7lzax+ek5DXd1avnTh6+/x62bVOvS1ZHFXdwMB8t/NQp075//oHRo03rX3xhatVgaQ4OsHAh/PILMoNMJtnkdgaEEEIIUbCN/a4NZcvtpqx7EboOaJnb2QGgci0PRrywkx+XtSUm3pEJ7x9hzl/lAAi5fIOfVzYF1OjiH3+T+iwJvi098W3paVyPuBOB354rHN1/jxs3HklcujlY2+PlBYMHp54nnZWOd0bcYcB7av37qdG0SqXp5vVzwcz9qxkARe0j+fDr1KdNK4gaN1aj4YNqYt62rfn+5AFlQWxansTRMeMRrZPodDBypOpWAbBnj3mwlhX//aeaEyeNhu7qCitWQPv2aiqzpOn/5s+HqVOzfv7bt1XA3rJl9ow0nhR029pChazPxpctrKzU6/O4OnUy3eD45x91M+nUKejb1zRl19ix5iOki7xHgm4hhBBCWJSVtRVDPsp703+O+7Y289dE8CCmOPPXtuDdowF4N6zK5HEXiE1QU3qN6HsQt6rtMnW+4qWK0+b5urR5gmDvxeFNGDvxBqH3yrFmTxMun7iWomXA1x9fJj6xPACjXzmCa4XM5a8gSKrphtT7dSfvz92jh8Wzk2/UqQPFiqm5nPfuVS0FHqdW9P33TQF3kyaq/3ZSMNu/P3z0kapNX7QIvv7afBq69MTFwQ8/wMSJEBUFr7xi3lf5cTw6XZi19ZOdL7d07qz6hoO60dK/v5qiK2le7l694Jtvci17IpOkebkQQgghCqXSHqX4cKhqo6w32DDuvZsEBsKcv9QNgqJFIhn7Ta0czZOdgx0j+6u2uZpmxbfjr3F8xzk2rrrO/PkwYQIsWK/yV9whgvcn1s3R/OW2mjVNTXQPHzbf9+ABbN2qlj08oEGDnM1bXmZjA81U4whCQuDq1ayf4/hx0/zoDRrArl3mtcelS6s5wUHVWCe/AZKeDRugdm34+GMVcIMaAG7NmqznMbmQEIiJUcu51bQ8O1SvbuomsWePamlw/bpab9QIlizJufnHxeOTIhJCCCFEofXOxMaULXELgD93NufVFyOIj1dVgKNG21OmogU6JmfgjbG+ONhFA/DrmjY0aO9D174VGTYMxo+HxESVv3fes8fFrXDNJmFraxoZ/fJl1Ve5a1fVx7haNVVjCvDccznXvzW/SD6OwN69WT9+4ULT8uuvg719yjSvvWZanjcv/fNdu2ZP9+5WdOtm3vc6yVtvmUZFT8vJk7B8uamZdXK5PXJ5dtHpVG03QEKCqYWHhwesXau6Goi8T4JuIYQQQhRaRZ2L8sUY06hPu/arKcKKFYP3P8ydEYJKubswqHs6c2Khar7GvJdK1FMING5sWl64EDZuVIOq3bpl2p5U4ypMWiYbTiGrQXdcnKp9BtXS4MUXU0/Xvr2pVnbLlrRr1H/4QceLL9Zk0ybTnZHWrcHPD7p0UeshIaq5elo2blQ3W156SU1d9qiCEnSD+dRhAE5OsH49uOWNWQJFJkjQLYQQQohCbdhHzanmdtVs25gxap7x3PLNz3UZ2GUPXZsd4rXnd/H5iIPMnq2a3B48CGfOQIkSuZe/3PTCCym3WVuDu7sKwj7/HJ56Kufzldc1bWrq17xnT9aOXb8e7t5Vyz17pv3es7KCYcPUsqaZBm9LbuZM+OADKxITVRhSvjwsWwY7d0LdujB7NhRVEwfwyy+p53XPHujdGxIT1fqMGXDvnnmaixdNy/k96O7QwdSywMpK1e7XLVw9S/I9GUhNCCGEEIWarb0tX48L4cWRlQFwdjbw7ru5Wy9Roowzv21IZV4xQevWcPq06tfq5gblyqn+xPl1oKyc4uSkmuYfPapev3v3oGQmeyckb1qe1uj7SQYNUjc+9HoVdH/+uepTDqq2PPnI6WPGGPjqKyucnEzbKlZUg7AlDR722muqBjwp6PTzg27dTAO6AURGqmD9k09M2/LCdGHZpWhR+PFH9Rw//FB1qRD5i9R0CyGEEKLQ6/NmM17ssA87mzhmfn6o0NYi5xc1a6omt3XrQtmyEnBnVlITc02D/fszd0xoqGl6sgoVVK1retzdTUFhcDD8+69aXr8eBg40pRsyJJRp0zSzgDvJyJFqdHRQU4gljc598SJ07Gjq6518arHp080D8aSg28ZGBfL53ZtvqoHsXnklt3MiHocE3UIIIYQo9KysrVi+tQVxCfb0f7dZbmdHCIt4nH7dS5ao6bcABgzI3A2OpCbmAHPnqpHOX3jBNODZm28aGD48JM3jra3VQGxJNeSTJsHmzfDMM6a++82bq4C+d2+1fuuWmqoM1E2FpKC7ShXTeYTILRJ0CyGEEEIIUQhkNejWNPjtN9P6oEGZu07nzqrGG1QNd/fuplrofv1gxgwtw9Hl69SBsWPVckKCquG+ds20b8MG1ew6KQ3AtGkqsA8NhWg1AUC+b1ouCgYJuoUQQgghhCgEypeHypXV8sGDEB+ffvpDh+DsWbXcunXmBySzsTH1/dbrISJCLXfurGqjMzuv9KefgpeX+baqVVUNd1J/9IYNTQPnXboEq1cXrJHLRcEgQbcQQgghhBCFRNJ83bGxcPx4+mmzMoDao4YMMV9v2RL++APs7DJ/jiJF4NdfTetubmoqskenykpe2z1lSsEauVwUDBJ0CyGEEEIIUUhktol5TIyamgpUM+7UpmpLT9Wqag5tgPr1VTNzR8esnQOgbVtVOz5oEOzYoc77qKefVtcANTr7vHmmfRJ0i7xAgm4hhBBCCCEKieRBd3rzdf/1l2mU8D59SHWU8YwsXKiasR88+GTzyg8YoM71aFPzJDqdmkoryYEDpmXp0y3yAgm6hRBCCCGEKCRq1QJnZ7W8d68aLC01yQdQy2rT8iT29mrqL1vbxzs+K/r0USOVJ2dtDZUqWf7aQmREgm4hhBBCCCEKCSsraNFCLd+6ZT7oWJLr1+G//9Ry1arQpk3O5e9x2djA+++bb6tcOWcCfiEyIkG3EEIIIYQQhUhG/bpnzDDVgA8aRIbTe+UVgweDq6tpXZqWi7xCgm4hhBBCCCEKkaQRzCFl0L12LXz3nVq2tlb9qfMLBwcYNcq0LoOoibxCgm4hhBBCCCEKkcaNVXNsMB9M7eJF6N/ftD5pUv7rEz1qFNSurfqtJ38uQuQmm9zOgBBCCCGEECLnODpCw4ZqVPFz5yAsTNUS9+oFEREqTZ8+KftI5wclSsDJk5CQkLU5wYWwJKnpFkIIIYQQopBJ3q973z4YNgxOnVLrNWrAggX5py/3o3Q6CbhF3iJBtxBCCCGEEIVM8qD73Xdh+XK1XKwYrF6t/gohsofFgu6goCA++eQTOnTogK+vL08//TQzZswgPj4+3ePi4uKYMGECTZs2pX79+owaNYqwsDBLZVMIIYQQQohCJ3nQffmyafm338DHJ8ezI0SBZrGgOyAgAE3T+PLLL9mwYQMff/wxy5cv54cffkj3uG+++Ybt27fz448/smTJEm7dusXIkSMtlU0hhBBCCCEKnbJlU47uPXas6tcthMheFhtIrU2bNrRp08a4XqFCBa5cucKyZcsYO3Zsqsc8ePCAP//8k2nTptG8eXNABeFdunTBz8+PevXqWSq7QgghhBBCFCotW8KlS2r5qadg4sTczY8QBVWOjl7+4MEDnJ2d09x/6tQpEhISaNGihXGbp6cn7u7u6Qbder0evV6f3dnNVkn5y+v5FFkj5VpwSdkWTFKuBZeUbS7Q67E2LurBAq+9lKtlvf02bNxoRZUqsHSpAZ3OIsWYgpRrwVXYyjazzzPHgu5r166xdOnSNGu5AcLCwrC1taV48eJm20uVKsXt27fTPO7ChQvZlk9L8/f3z+0sCAuQci24pGwLJinXgkvKNudYxcRQ/+HyyZMnMTg4WOxaUq6Ws3Gj+hscrB45Scq14JKyNZfloHvatGnMnTs33TQbN27E09PTuH7z5k2GDRtGp06d6Nu3b9ZzmQEvLy8cHR2z/bzZSa/X4+/vT506dbC2ts74AJEvSLkWXFK2BZOUa8ElZZsLoqKMi76+vlC0aLZfQsq1YJJyLbgKW9lGR0dnqgI4y0H3kCFD6NmzZ7ppKlSoYFy+efMmAwYMoH79+nz11VfpHle6dGkSEhKIiIgwq+2+c+cOrq6uaR5nbW2dbwo1P+VVZJ6Ua8ElZVswSbkWXFK2OSjZ62xtbW22nv2XknItiKRcC67CUraZfY5ZDrpdXFxwcXHJVNqkgLtWrVpMmjQJK6v0B0uvXbs2tra27N+/n44dOwJqFPSQkBAZRE0IIYQQQgghRL5jsT7dN2/epH///ri7uzN27Fju3r1r3JdUa33z5k0GDhzIt99+i6+vL8WKFaN3795MnjwZZ2dnnJycmDhxIvXr10816DYYDADExMRY6mlkm6RO9tHR0YXirk9hIeVacEnZFkxSrgWXlG0uiI0Fb2/Tsk6X7ZeQci2YpFwLrsJWtklxaFJcmhadpmmaJTKwevVqPv7441T3nT9/HoCgoCCeeuopFi9eTNOmTQGIi4tj8uTJbNiwgfj4eFq1asUXX3yRavPyO3fucPXqVUtkXwghhBBCCCGEyFDlypUpVapUmvstFnTnhMTERMLDw7G3t8+w6boQQgghhBBCCJFdDAYDcXFxODs7Y2OTdiPyfB10CyGEEEIIIYQQeZlUDwshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ054D//e9/dOjQgTp16vDCCy9w8uTJ3M6SyKI5c+bQu3dv6tevT/PmzRkxYgQBAQFmaeLi4pgwYQJNmzalfv36jBo1irCwsFzKsXgcv/76K97e3nz99dfGbVKu+dPNmzd5//33adq0Kb6+vnTv3h1/f3/jfk3TmD59Oq1atcLX15dBgwbJFJT5gF6v58cff6RDhw74+vry9NNPM2vWLJKPCStlm/cdPnyYN998k1atWuHt7c1///1ntj8zZXj//n3ee+89GjRoQKNGjfjkk0+IiorKwWchUpNe2SYkJDB16lS6d+9OvXr1aNWqFR9++CE3b940O4eUbd6T0f9scp9//jne3t789ttvZtsLe7lK0G1hGzduZNKkSbz11lv89ddf+Pj4MHToUO7cuZPbWRNZcOjQIV555RVWrlzJwoULSUxMZOjQoURHRxvTfPPNN2zfvp0ff/yRJUuWcOvWLUaOHJmLuRZZcfLkSZYvX463t7fZdinX/Cc8PJyXXnoJW1tb5s6dy4YNGxg7dizOzs7GNHPnzmXJkiWMHz+elStX4uDgwNChQ4mLi8vFnIuMzJ07l2XLlvH555+zceNG3n//febNm8eSJUvM0kjZ5m3R0dF4e3vzxRdfpLo/M2X4/vvvc+nSJRYuXMgvv/zCkSNH+Pzzz3PqKYg0pFe2sbGxnDlzhuHDh7N69Wp++uknrly5wvDhw83SSdnmPRn9zybZsmULJ06coEyZMin2Ffpy1YRF9enTR5swYYJxXa/Xa61atdLmzJmTi7kST+rOnTual5eXdujQIU3TNC0iIkKrVauWtmnTJmOaS5cuaV5eXtrx48dzKZcisyIjI7Vnn31W27t3r/bqq69qEydO1DRNyjW/mjp1qvbSSy+lud9gMGgtW7bU5s2bZ9wWERGh1a5dW1u/fn1OZFE8ptdff137+OOPzbaNHDlSe++99zRNk7LNj7y8vLQtW7YY1zNThkmfwydPnjSm2blzp+bt7a3duHEj5zIv0vVo2abmxIkTmpeXlxYcHKxpmpRtfpBWud64cUNr3bq1duHCBa19+/bawoULjfukXDVNarotKD4+ntOnT9OiRQvjNisrK1q0aMHx48dzMWfiST148ADAWHN26tQpEhISzMra09MTd3d3/Pz8ciOLIgu+/PJL2rZta1Z+IOWaX23bto3atWszevRomjdvTo8ePVi5cqVxf1BQELdv3zYr12LFilG3bl35bM7j6tevz4EDB7hy5QoA586d4+jRo7Rp0waQsi0IMlOGx48fp3jx4tSpU8eYpkWLFlhZWUkXvnwmMjISnU5H8eLFASnb/MpgMPDBBx8wdOhQqlevnmK/lCvY5HYGCrJ79+6h1+spVaqU2fZSpUql6A8s8g+DwcA333xDgwYN8PLyAiAsLAxbW1vjl0aSUqVKcfv27dzIpsikDRs2cObMGf74448U+6Rc86fAwECWLVvG4MGDefPNN/H392fixInY2trSs2dPY9ml9tks/fXzttdff53IyEg6d+6MtbU1er2ed955h+eeew5AyrYAyEwZhoWF4eLiYrbfxsYGZ2dn+WzOR+Li4pg2bRpdu3bFyckJkLLNr+bOnYuNjQ0DBgxIdb+UqwTdQmTZhAkTuHjxIr///ntuZ0U8odDQUL7++msWLFiAvb19bmdHZBNN06hduzbvvvsuADVr1uTixYssX76cnj175nLuxJPYtGkT69at47vvvqNatWqcPXuWSZMmUaZMGSlbIfKRhIQE3n77bTRNY8KECbmdHfEETp06xeLFi1m9ejU6nS63s5NnSfNyCypZsiTW1tYpBk27c+cOpUuXzqVciSfx5ZdfsmPHDhYtWkS5cuWM20uXLk1CQgIRERFm6e/cuYOrq2tOZ1Nk0unTp7lz5w69evWiZs2a1KxZk0OHDrFkyRJq1qwp5ZpPubq64unpabatatWqhISEGPcD8tmcD3377be8/vrrdO3aFW9vb3r06MHAgQOZM2cOIGVbEGSmDEuXLs3du3fN9icmJhIeHi6fzflAQkICY8aMISQkhAULFhhruUHKNj86cuQId+7coX379sbfUsHBwUyZMoUOHToAUq4gQbdF2dnZUatWLfbv32/cZjAY2L9/P/Xr18/FnIms0jSNL7/8ki1btrBo0SIqVKhgtr927drY2tqalXVAQAAhISHUq1cvh3MrMqtZs2asW7eONWvWGB+1a9eme/fuxmUp1/ynQYMGxj6/Sa5evUr58uUB8PDwwNXV1axcIyMjOXHihHw253GxsbEpalKsra2NU4ZJ2eZ/mSnD+vXrExERwalTp4xpDhw4gMFgwNfXN8fzLDIvKeC+du0av/32GyVLljTbL2Wb/zz//POsXbvW7LdUmTJlGDp0KPPmzQOkXEGal1vc4MGDGTt2LLVr18bX15dFixYRExNDr169cjtrIgsmTJjA+vXr+fnnnylatKix/0mxYsUoUqQIxYoVo3fv3kyePBlnZ2ecnJyYOHEi9evXl+AsD3NycjL2y0/i6OhIiRIljNulXPOfgQMH8tJLL/HLL7/QuXNnTp48ycqVK/nyyy8B0Ol0DBgwgNmzZ1OpUiU8PDyYPn06ZcqU4emnn87l3Iv0tG/fnl9++QV3d3dj8/KFCxfSu3dvQMo2v4iKiuL69evG9aCgIM6ePYuzszPu7u4ZlqGnpyetW7fms88+Y8KECSQkJPDVV1/RtWtXypYtm1tPS5B+2bq6ujJ69GjOnDnDnDlz0Ov1xt9Tzs7O2NnZSdnmURn9zz5688TW1pbSpUtTtWpVQP5nAXRa0u1hYTFLly5l/vz53L59mxo1avDpp59St27d3M6WyIJH525OMmnSJOMNlLi4OCZPnsyGDRuIj4+nVatWfPHFF4Wm2UxB0b9/f3x8fBg3bhwg5Zpfbd++ne+//56rV6/i4eHB4MGD6du3r3G/pmnMmDGDlStXEhERQcOGDfniiy+oUqVKLuZaZCQyMpLp06fz33//cefOHcqUKUPXrl156623sLOzA6Rs84ODBw+mOuBSz549mTx5cqbK8P79+3z11Vds27YNKysrnn32WT799FOKFi2ak09FPCK9sh05ciRPPfVUqsctXryYpk2bAlK2eVFG/7OP6tChAwMGDGDQoEHGbYW9XCXoFkIIIYQQQgghLET6dAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCFFIHTx4EG9vbw4ePJjbWRFCCCEKLAm6hRBCiFSsXr0ab2/vNB9+fn65ncU8KSwsjI8//pjmzZvj6+tLz5492bRpU5rpN27cyIsvvki9evVo1KgR/fr1Y//+/WmmP3LkiLEM7t69m25eBg8ejLe3N19++eVjPx8hhBDiSdnkdgaEEEKIvGz06NF4eHik2F6xYsVcyE3eFhkZycsvv0xYWBgDBgzA1dWVTZs2MWbMGBITE+nevbtZ+pkzZzJr1iw6duxIz549SUxM5MKFC9y8eTPV8xsMBiZOnIijoyPR0dHp5mXz5s1yY0QIIUSeIEG3EEIIkY42bdpQp06d3M5GvrB8+XKuXbvGb7/9RvPmzQF46aWX6Nu3L1OmTKFjx47Y2dkB4Ofnx6xZs/joo48YNGhQps6/YsUKQkND6dOnD4sXL04zXVxcHJMnT2bYsGHMmDHjiZ+XEEII8SSkebkQQgjxBGbMmIGPj0+KJtGfffYZtWvX5ty5cwDEx8czffp0evXqRcOGDalXrx4vv/wyBw4cMDsuKCgIb29v5s+fz//+9z+eeuop6taty5AhQwgNDUXTNGbNmkWbNm3w9fVl+PDh3L9/3+wcHTp04I033mDPnj08//zz1KlThy5durB58+ZMPacTJ04wdOhQGjZsSN26dXn11Vc5evRohscdOXIEFxcXY8ANYGVlRefOnbl9+zaHDx82bl+0aBGlS5dmwIABaJpGVFRUuue+f/8+P/74I6NHj6Z48eLppp07dy6apjF06NAM8yyEEEJYmgTdQgghRDoiIyO5e/eu2ePevXvG/cOHD6dGjRqMGzeOyMhIAHbv3s3KlSsZMWIEPj4+xvOsWrWKJk2a8P777zNy5Eju3r3LsGHDOHv2bIrrrlu3jt9//53+/fszePBgDh06xJgxY/jxxx/ZvXs3r732Gn379mX79u1MmTIlxfFXr17lnXfeoU2bNrz33ntYW1vz9ttvs3fv3nSf7/79+3nllVeIiopi5MiRvPPOO0RERDBw4EBOnjyZ7rEJCQkUKVIkxfakbadPnza7Tp06dVi8eDHNmjWjQYMGtGrViqVLl6Z67unTp+Pq6kq/fv3SzUNISAhz587l/fffTzUvQgghRE6T5uVCCCFEOlJr+mxnZ4e/vz8Atra2TJkyhV69ejF58mQ+/PBDxo0bR+3atXn99deNxzg7O7Nt2zZj82qAvn370rlzZ5YsWcI333xjdo2bN2+yefNmihUrBqj+zHPmzCE2NpY///wTGxv1FX7v3j3WrVvHhAkTzM599epVZs6cybPPPgtAnz596NSpE9OmTaNly5apPldN0xg/fjxNmzZl3rx56HQ6APr160fXrl358ccfWbBgQZqvVZUqVdi3bx/BwcGUL1/euD2pljypr3Z4eDj37t3j2LFjHDhwgJEjR+Lm5sbq1av56quvsLGxMQuuz507x4oVK/j111+xtrZO8/oAkydPpkaNGnTt2jXddEIIIUROkaBbCCGESMfnn39OlSpVzLZZWZk3FPPy8mL06NF89913nD9/nnv37rFgwQJjYAxgbW1tDBgNBgMREREYDAZq167NmTNnUly3U6dOxoAbwNfXF4DnnnvO7Ly+vr6sX7+emzdvUqFCBeP2MmXK8MwzzxjXnZyc6NGjB3PnzuX27du4urqmuObZs2e5evUqw4cPN6vNB2jevDl///03BoMhxfNP0qdPH5YvX86YMWP4+OOPKV26NJs2bWLLli0AxMbGAhgHQbt//z4//PADXbp0MT7n7t27M3v2bLOg++uvv6ZNmza0atUq1esmOXDgAJs3b2blypXpphNCCCFykgTdQgghRDp8fX0zNZDa0KFD2bBhAydPnuTdd9+lWrVqKdL89ddfLFiwgCtXrpCQkGDcntro6G5ubmbrSQF4WtvDw8PNgu5KlSoZa6qTVK5cGYDg4OBUg+6rV68CMHbs2LSeJg8ePMDZ2TnVfT4+PkybNo0vvviCl156CQBXV1c++eQTxo8fj6OjIwD29vaAaiXQsWNH4/FJ/b9nzpxJSEgI7u7ubNy4kePHj7Nu3bo08wSQmJjI119/zfPPP2+8QSGEEELkBRJ0CyGEENkgMDCQa9euAXDhwoUU+//++28++ugjnn76aYYOHUqpUqWwtrZmzpw5BAYGpkifVjPqtGqZNU17gtybn+PDDz+kRo0aqaZJCpzT0qlTJzp06MC5c+cwGAzUrFmTQ4cOAaagv0SJEtjb21O8ePEUz7NUqVIARERE4O7uzrfffkvHjh2xtbUlKCjIuA/gxo0bJCQkULZsWdasWcOVK1eYMGGCMV2SqKgogoKCKFWqFA4ODll4RYQQQognJ0G3EEII8YQMBgMfffQRTk5ODBw4kF9++YWOHTsa+1MD/Pvvv1SoUIGffvrJrAbaUlNaXbt2DU3TzK6VVJOdvL91ckk15U5OTrRo0eKxr21nZ2dW27xv3z4A4zmtrKyoUaMG/v7+xMfHm/VFv3XrFgAlS5YEIDQ0lPXr17N+/foU1+nZsyc+Pj78/fffhIaGkpCQYKxhT27NmjWsWbOGWbNm8fTTTz/28xJCCCEehwTdQgghxBNauHAhx48fZ/bs2bRr146DBw8yfvx4GjVqhIuLC2CquU4eCJ84cQI/Pz/c3d2zPU+3bt1iy5YtxsA/MjKSNWvWUKNGjVSblgPUrl2bihUrsmDBArp160bRokXN9t+9e9f4fDLr6tWrLF++nPbt25v1je/cuTN+fn6sWbOGvn37Amp+7XXr1lGtWjXKli0LwKxZs1Kcc8OGDWzcuJEpU6ZQrlw5ALp06ZJq7fxbb71F27Zt6du3rzQ7F0IIkSsk6BZCCCHSsWvXLgICAlJsb9CgARUqVODy5cvG+bc7dOgAqBG0e/TowYQJE5g+fToA7dq1Y/Pmzbz11lu0a9eOoKAgli9fTrVq1YwDi2WnypUrM27cOPz9/SlVqhR//vknd+7cYdKkSWkeY2VlxcSJE3nttdfo1q0bvXr1omzZsty8eZODBw/i5OTEL7/8ku51u3TpQqdOnXBzczM+xxIlSjBhwgSzdP369eOPP/7gyy+/5MqVK7i7u/P3338TEhLC7NmzjelSq5lOmmKtTZs2xpsAnp6eeHp6pponDw8PqeEWQgiRayToFkIIIdKRVvPvSZMm4e7uztixYylZsiSffPKJcV/lypV59913+frrr9m4cSNdunShV69ehIWFsWLFCvbs2UO1atWYOnUq//zzj7HPc3aqXLkyn332Gd9++y1XrlzBw8ODH374gdatW6d7XNOmTVmxYgU///wzS5cuJTo6GldXV3x9fXnxxRczvK6Pjw+rV68mLCyMkiVL0qlTJ0aPHm3sq52kSJEiLFq0iKlTp7J69Wqio6OpUaMGc+bMyTCPQgghRH6i07Jj5BUhhBBC5BkdOnSgevXqzJkzJ7ezIoQQQhR6qQ+BKoQQQgghhBBCiCcmQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIn26hRBCCCGEEEIIC5GabiGEEEIIIYQQwkIsOmXY4cOHmT9/PqdOneL27dvMmjUr3XkyDx48yIABA1Js37NnD66urim2JyYmEh4ejr29PVZWcv9ACCGEEEIIIUTOMBgMxMXF4ezsjI1N2qG1RYPu6OhovL296d27NyNHjsz0cf/88w9OTk7G9Ufn9kwSHh7O1atXnzSbQgghhBBCCCHEY6lcuXKaMStYOOhu27Ytbdu2zfJxpUqVonjx4hmms7e3B6BixYoUKVIky9fJSQaDgUuXLlGtWjWplS9ApFwLLinbgknKteCSss0FMTFYt2kDgH7XLnBwyPZLSLkWTFKuBVdhK9vY2FiuX79ujEvTYtGg+3H16NGD+Ph4qlevzsiRI2nYsGGq6ZIK8vr16zmZvSdy6dKl3M6CsAAp14JLyrZgknItuKRsc45VTAz1z58H4PiFCxgsEHQnkXItmKRcC67CVrYZ3WDIU0G3q6srEyZMoHbt2sTHx7Nq1SoGDBjAypUrqVWrVprHeXl54ejomIM5zTq9Xo+/vz916tTB2to6t7MjsomUa8ElZVswSbkWXFK2uSAqyrjo6+sLRYtm+yWkXAsmKdeCq7CVbXR0NBcuXMgwXZ4KuqtWrUrVqlWN6w0aNCAwMJDffvuNqVOnpnmctbV1vinU/JRXkXlSrgWXlG3BJOVacEnZ5qBkr7O1tbXZevZfSsq1IJJyLbgKS9lm9jnm+Yb2derUyVfNx4UQQgghhBAiP/nrL5gxA/T63M5JwZSnarpTc+7cuVSnCxNCCCGEEEII8WT++gt69VLLBgOMGZOr2SmQLBp0R0VFmdVSBwUFcfbsWZydnXF3d+e7777j5s2bfPvttwD89ttveHh4UL16deLi4li1ahUHDhxgwYIFlsymEEIIIYQQQhQ6UVHw9tum9dWrJei2BIsG3adOnWLAgAHG9UmTJgHQs2dPJk+ezO3btwkNDTXuT0hIYMqUKdy8eRMHBwe8vLxYuHAhzZo1s2Q2hRBCCCGEEKLQ+eorCAw0re/fDxERkInZm0UWWDTobtq0KecfTiWRmsmTJ5utv/baa7z22muWzJIQQgghhBBCFHpnzsB335lvS0yE7dvh+edzJ08FVZ4fSE0IIYQQQgghRPbRNHjrLRVkA7RoYdr377+5k6eCTIJuIYQQQgghhChEli2DHTvUcpUqsGYN2NqqdQm6s58E3UIIIYQQQghRSISHw3vvmdZnzABXV2jZUq0HBMDly7mTt4JKgm4hhBBCCCGEKCS++AJu3FDLzz0H3bqp5Y4dTWmktjt7SdBdiH300UeMGDHCuN6/f3++/vrrHM/HwYMH8fb2JiIiIsevLYQQQgghRGHh5wczZ6plBweYPt2079lnTcubN+dotgo8CbrzoI8++ghvb2+8vb2pXbs2zzzzDD/99BOJSSMdWMjMmTN5O/lEfemQQFkIIYQQQoj8Q9NgxAgwGNT6p59C5cqm/fXqqWbmANu2QUJCTuew4JKgO49q3bo1e/bs4d9//2Xw4MH89NNPzJ8/P0W6+Pj4bLtmiRIlcHJyyrbzCSGEEEIIIfKGtWvVPNwAXl7m/boBrKzgmWfU8oMHprTiyUnQnUfZ2dnh6upK+fLlefnll2nRogXbtm0zNgmfPXs2rVq1olOnTgCEhoby9ttv06hRI5o0acLw4cMJCgoynk+v1zNp0iQaNWpE06ZN+fbbb9E0zeyajzYvj4+PZ+rUqbRt29ZY475q1SqCgoIYMGAAAI0bN8bb25uPPvoIAIPBwJw5c+jQoQO+vr4899xz/PPPP2bX2blzJx07dsTX15f+/fsTHBxskddQCCGEEEIIoWq5J040rU+bBvb2KdMl79ctTcyzj01uZyBXnP0ezn2fcTqXBtB2rfm2nc/B3WMZH+vzLtR49/Hylwp7e3vu378PwP79+3FycmLhwoUAJCQkMHToUOrVq8f//vc/bGxs+Pnnnxk2bBhr167Fzs6OBQsW8Ndff/HNN9/g6enJggUL2LJlC82aNUvzmh9++CF+fn58+umn+Pj4EBQUxL1793Bzc2PmzJmMGjWKf/75BycnJ4oUKQLAnDlzWLt2LRMmTKBy5cocPnyYDz74ABcXF5o0aUJoaCgjR47klVdeoW/fvpw6dYopU6Zk2+skhBBCCCGEMLd5Mxw5opbr1TMNnvaopJpuUIOpJQ/UxeMrnEF3QgTEZKJ2NbZCKttuZ+7YhOzp66xpGvv372fPnj28+uqr3Lt3D0dHRyZOnIidnR0Af//9NwaDga+//hqdTgfApEmTaNy4MYcOHaJVq1YsWrSI119/nWcfjpAwYcIE9uzZk+Z1r1y5wqZNm1i4cCEtWrQAoEIF0+vh7OwMQKlSpShevDigasbnzJnDwoULqV+/vvGYo0ePsmLFCpo0acKyZcuoWLGisWa8atWqXLhwgblz52bL6yWEEEIIIURhcf26agb+/PPwsA4sBU2Dr74yrX/6KTwMGVJwcwNfXzh5Eo4ehbAwKF06+/Nd2BTOoNu2ODiUzzhdEdfUt2XmWNviWc9XMjt27KB+/fokJCSgaRrdunVj1KhRfPnll3h5eRkDboBz585x/fp1GjRoYHaOuLg4rl+/zoMHD7h9+zZ169Y17rOxsaF27dopmpgnOXv2LNbW1jRu3DjTeb527RoxMTEMGTLEbHtCQgI1atQA4PLly/j6+prtr1evXqavIYQQQgghhID796F5cwgJgQ4dVG22tXXKdLt2wd69arlGDejZM/3zduyogm5Ng//+g379sj3rhU7hDLprPEHT70ebm1tI06ZNGT9+PLa2tpQpUwYbG1NROTg4mKWNjo6mVq1aTJs2LcV5XFxcHuv6RdK6VZaO6OhoQDUxL1u2rNm+5DcJhBBCCCGEEE/myy9VwA1qtPHx481rtJMk3zZunBowLT3PPgtTp6rlf/+VoDs7FM6gOx9wcHCgUqVKmUpbq1YtNm3aRKlSpdIcfdzV1ZUTJ04Ya64TExM5ffo0NWvWTDW9l5cXBoOBw4cPG5uXJ2drawuoAdqSeHp6YmdnR0hICE2aNEn1vJ6enmzbts1s24kTJzJ+kkIIIYQQQggAzp0zzbedZOJEaNkSHo6zDKim51u3quVq1eDFFzM+d6tWag7vmBhVe65paTdHF5kjo5cXAN27d6dkyZIMHz6cI0eOEBgYyMGDB5k4cSI3btwAYMCAAcydO5f//vuPy5cvM2HChHTn2Pbw8KBnz5588skn/Pfff8Zzbty4EYDy5cuj0+nYsWMHd+/eJSoqCicnJ4YMGcKkSZP466+/uH79OqdPn2bJkiX89ddfAPTr14+rV68yZcoUAgICWLdunXGfEEIIIYQQImPvvguJiWo5WQ9SXn0VAgNN68kmJuLjj8EmE1WuRYpAu3ZqOSQETp9+4uwWehJ0FwAODg4sXboUd3d3Ro4cSZcuXRg3bhxxcXHGmu8hQ4bw3HPPMXbsWPr160fRokV5JvnwhKkYP348HTt2ZPz48XTu3JnPPvuMmJgYAMqWLcuoUaP47rvvaNGiBV89bLcyZswYRowYwZw5c+jSpQvDhg1jx44deHh4AODu7s7MmTPZunUrzz//PMuXL+edd96x4KsjhBBCCCFEwbFxI2zapJY9PFR/7e7d1fqdO6o5eEICHD8OGzao7RUrqoA8sx6OvQyoJubiyei0tEbSygeio6M5e/YsNWrUwNHRMbezky69Xo+fnx/16tXDOrURDkS+JOVacEnZFkxSrgWXlG0uiIqCpG5tkZFQtGi2X0LKtWCScn188fFqdPHz59X6smUqyL57Fxo0gGvX1Pb334crV+DPP9X6rFkwYkTmr3P2LCT1Qn322cwH3oWtbDMbj0pNtxBCCCGEEELkA7NmmQLuli1NfbRdXGDlSng47BLTppkCbjc3eGRyoQz5+KhadFCjnz9s7CoekwTdQgghhBBCCJGDrlyBjz6CnTszf8ytWzBhglrW6WD6dPMBzpo0ge++S3ncBx+kPYd3WnQ6NXUYQGwsfPGFBN5PQoJuIYQQQgghhMhBr70GU6ZA+/bw7bdqhPCMfPYZhIer5SFDoGHDlGlGjoQ+fUzrpUvD668/Xh6fe860PHWqmuP7jz8yl1dhzqJB9+HDh3nzzTdp1aoV3t7e/Pfffxkec/DgQXr27Ent2rV55plnWL16tSWzKIQQQgghhBA5JiICduxQy5oGY8fCwIGqRjktfn4wd65aLlbMfFTy5HQ6mDdP9e8GFdA/7nAL3burEc+TumZfuwYvvKBuFPj5Pd45CyuLBt3R0dF4e3vzxRdfZCp9YGAgb7zxBk2bNuXvv/9m4MCBfPrpp+zevduS2RRCCCGEEEKIHLFrF+j15tuWLFHTdIWGmm8PCYEvv4TOnU01zJ9/DmXLpn1+Z2c4cEANrjZ48OPnU6eDb76Bkych+aRHO3eqoH748PRvFAiTTMzU9vjatm1L27ZtM51++fLleHh48NFHHwHg6enJ0aNH+e2332jdurWlsimEEEIIIYQQOSJ549/XX4elSyE6Gg4ehMaNYc0aePAAfv5ZLSfNxw1QvTqMHp3xNWxtoWTJ7MlvzZpq9PL169X84JcuqRsAv/wCZ87A339DiRLZc62CyqJBd1b5+fnRvHlzs22tWrXim2++Sfc4vV6P/tHbRXlMUv7yej5F1ki5FlxStgWTlGvBJWWbC/R6rI2L+pRVd9lyCSnXgqiwl+vWrVaADisrjW++MfD669CzpxWBgTqCg1Xg/SgrK42uXeGHHwxYW1vk3y1DXbrAU0/BzJk6vvxSR3S0jl27oE0bjQ0bDLi7F76yzezzzFNBd1hYGKVLlzbbVrp0aSIjI4mNjaVIGsPuXbhwISeyly38/f1zOwvCAqRcCy4p24JJyrXgkrLNOVYxMdR/uHzy5EkMDg4Wu5aUa8FUGMs1LMyGU6fqAlCjRjRXr54DYN48Gz74wJOTJ53M0pcqlUCPHmH07HmbcuUSuH8/9/tTP/00uLs7Mnp0Ne7ft8XfX0fTpon89NNFKlWKAwpn2aYnTwXdj8vLyyvdycjzAr1ej7+/P3Xq1CkUE8UXFlKuBZeUbcEk5VpwSdnmgqgo46Kvr+/jj9aUDinXgqkwl+uyZaY5vrp3d6BevXrG9f374Z13DCxcqKNZMxg+XKNHDyvs7MoAZXI+s+moVw8aNYIuXTSuXtURGmrPG2/UYs2aRIoUOVloyjY6OjpTFcB5KuguXbo0YWFhZtvCwsJwcnJKs5YbwNraOt8Uan7Kq8g8KdeCS8q2YJJyLbikbHNQstfZ2trabD37LyXlWhAVxnLdts20/MwzVmb/No6OMGcOzJ4NVlYAukcPz1Nq1IB9+6BTJzXYWliYjmeftWHSpOLUq1c4yjazzzFPBd316tVj165dZtv27dtndgeooPP29k53/8iRIxk1alQO5UYIIYQQQgiRHTTNNIhakSLQokXq6awsOr9U9nJzU6Ox/5+9+w6PqugCOPzb3RQIgQAhlNAhJKGFhCK9KkoRpIkoKNVCERAREAVBKVL0k6ZGEAQEKQoIAhZUepMSCL33FgghpCe79/tjyG6W9JBN47zPsw+339kdkuy5M3PmpZdUVvOICB3DhlXh7781PvnEMnXZ086mQXd4eDhXrlwxr1+7do2TJ0/i4uKCu7s7X3zxBbdv32b69OkA9OjRg2XLljF9+nS6du3K3r172bx5M/7+/rYsZo6yc+dO8/KmTZuYPXs2v//+u3lbwm70mqZhNBqxs8tRz06EEEIIIYQQjzl3Dq5eVctNmqjAOy9wcYHff4eePWHNGrVt/Xod69erub7Hj1dd0Z9mNn2OcuzYMTp16kSnTp0AmDp1Kp06dWL27NkABAUFcTPBZHRly5bF39+f3bt389JLL7Fo0SImTZr0VE0X5ubmZn4VLFgQnU5nXr9w4QK1a9dm27ZtdOnShZo1a3Lw4EHGjBnDoEGDrK4zefJkXn/9dfO6yWTC39+fVq1a4ePjQ8eOHa2CeSGEEEIIIYTt/P23Zfm557KvHLaQLx+sWgWzZplwc4sxb9+wQWVjb98eDhzIxgJmM5s2kdavX5/Tp08nu//zzz9P8px169bZrEyrV6unLQ8f2uwWiRQsCBMnQuXKmXO9L774gtGjR1O2bFkKFSqUpnP8/f1Zv349EydOpEKFCvz333988MEHFC1alGeeeSZzCiaEEEIIIYRIUsL5uZ99NvvKYSsGAwwerFG37jEOHvRl+nQ9166pfZs2qdcbb8DUqeDunr1lzWpPXb/kGTPg1Kmsv+/MmXq++SZzrjV06FAaN26c5uNjYmLw9/dn0aJF+PmpyT3Kli3LwYMHWblypQTdQgghhBBC2JDRCP/+q5aLFAE/v5SPz80cHTUGDdJ46y1YtEgF2fEjjpcsgV9+gbFjYcSIvNPFPjVPXdA9ahSMG5f1Ld0jR5oy7Xo1a9ZM1/GXL18mMjKSfv36WW2PjY2latWqmVYuIYQQQgghRGIBARAcrJZbtrRpsv8cw9ER3nkH+vVTWdk/+QTu31ezDX70EcyfDzNnQpcuoMvZidqf2FMXdHfrpl5ZzWjMvIns8+fPb7Wu0+nQNM1qW1xcnHk5IiICUF3MS5QoYXWcg4ND5hRKCCGEEEIIkaS8PJ47NQ4O8O678NprMGGCmhLNaIRLl1Rc1rmzav3Oy4F3LkpIL5JTtGhRgoKCrLadPHnSvFy5cmUcHBy4ceMG5cuXt3qVKlUqq4srhBBCCCFs5OefYeVKMGVeJ0uRCfL6eO60cHWFOXNUQ2TCBw9r18Lx49lWrCwhQXce0KBBA44dO8a6deu4dOkSs2fP5uzZs+b9zs7O9OvXj6lTp7J27VquXLnC8ePHWbp0KWvXrs3GkgshhBBCiMzy22/w8svQowe0aQO3b2d3iQRAVBTEzwpctixUqZK95cluNWrAn3/C6NGWbfv3Z195soIE3XlA06ZNGTRoEDNmzKBbt26Eh4ebp2mLN3z4cAYNGoS/vz/t2rVjwIABbN26lTJlymRPoYUQQgghRKb68UfL8l9/Qa1a1t2aRfbYswciI9Xyc8/l7W7UaaXTqQdD8f77L/vKkhWeujHduUmXLl3o0qWLeT2lKdiGDh3K0KFDk72WTqejd+/e9O7dO9PLKYQQQgghsldUFGzcaL3t9m1o3Ro+/lhNmWsn3/yzRcIHH09r1/Kk1Kmjgm9Nk5ZuIYQQQgghnnpHjsCHH8KOHVl7X01L2/jsv/+GsDC1/NJLllZETYPPPlPB3vXrtiunSJ6M505awYIQP5HS0aPqwVFeJUG3EEIIIYQQydA0mD0b6tWDzz+HZs3UNEihoba/98OHULs2FCoEu3enfOyaNZbl/v1Vq/fnn1umptq+XV3r6lXblVck9uCBpet09epQsmT2lieneeYZ9W9cXObN9JQTSdAthBBCCCFEEoKD1RzCw4ZBbKxlu7+/JRmULS1bpgKR8HAYMyb54+Li4Ndf1XKBAqpLuV6vElVt366SdwHcuQNjx9q2zMLa1q2WngpP21RhaVGvnmU5L3cxl6BbCCGEEEKIx+zZA35+sG6dZVu3biqoBdVi/MILqlU5JMQ2ZViyxLK8YwcEBiZ93M6dcO+eWm7XDvLls+xr1AgOHoQiRdT6jz/CoUO2Ka+wpmmwapVlXbqWJxbf0g15O5maBN1CCCGEEDnQrYt3CLsflt3FSFZ8NmaAr7/O2nuHhNgu0DWZYPp0aNoUrlxR24oWhQ0bYPVqFfi2amU5fuFC1eqdcNxuZjh7VgX+Cc2bl/SxCbuWJ8jBa+bmBuPGWdY/+EAFhMK2pkyB5cvVcv780Lx59pYnJ/LxAQcHtSwt3UIIIYQQIkvERscyus9W3CsXo1KFSO5cCcruIiXps88sy5Mnqy7QWSEgAEqUUHMdZ/YY0IcPVdA6ejQYjWpbkyYqidqLL6r1ihVVgO3vrxJBgUpQ9sILMGtW5gWzS5cm3vbjj2qMcEImkyXodnBQLd1JGTRIlR3gn39g8+bMKadI2rx5Kmt8wvVChbKvPDmVgwP4+qrlM2ds9zAtu0nQLYQQQghhY1HhUYzpu5V3umznyI6kp/8EuHzyGs18TzF9cQs0TU9QqBsr/E9kXUHTaOdOlVwsXsiDpINEW5g/H2Ji4O5dePVViIhI+fjLl6FvX5gwIXHAmtDFi6ordvzYaJ0OPvoI/v0XypSxPlang7fegmPH4Pnn1TaTCYYPhzffhOjojL47y7XiP0+93tJ6HR4OixdbH3vggCUr+XPPJR/YOTqqxGrxRo1SY8FF5lu2DIYMsazPnKn+D4qkJexifuBA9pXDliToFkIIIYSwsVH99zHthxb4r22GbzMvOr9wLdG42l+/34tfvQLsPVXTavu6TTmreSw8XAUQjzfozp6dNV2WE3bjPnUK3n8/+WPv3lWB6A8/wMSJ4OkJCxZYWrHjbdumEjodO6bWXVxg0yaYNCnlua3LlVMtxgmTk33/vRq7e+dOut+a2c6dcOmSWn7+efj0U8u+efOspxBbu9aynFTX8oRefhnq11fLx4+rz0Vkrg0boHdvy/pHH6X8f1RYJ1PLq+O6JegWQgghhLChTUv+Y85K68Gc6/4sQ5060LEj7N4Rw/BXt9JpQAPuh6tsVxWKX8W96E0Atgf6EHwvDRM1Z5EPP4Rz5xJvP3kS/vrLtve+elV1QU3o228trdMJRUWp+aoTlvXOHdUSXa+eZb7t775TgXl8IjJPTzW2NH6e69To9ap7/fLllgRmu3ape2S0+3vC1uw33lBTTbVoodbPnFFzcoN6yPHLL5ZydOyY8nV1OtXqGm/8+KwbFvA02LpVPdiIf6gzeLD1MAyRtIQt3Xl1XLcE3UIIIYQQNnL7UhB9h1Ywr/d8fhfuxS3J0TZsgMbNHJi1ooV5W7cWezgcWIhXX1PZhYxGAxs35YyvbFu3wpw5ajl/vsT7Z82y7f3jg01Qycvi9e8PN29a1k0m1doYP7d1qVIq83i8w4fVfNv16sHbb1u6Wb/wAuzbpwLv9Hr1VTU9l7u7Wr9yBRo3VkH94y3rKYmIUAnbQI0Zf+kltTx4sOWY+IRqJ06ohGugEr+5uaV+/SZNoHNntXzzJnzxRdrLJpIWF6eGA3TsaBla0LOn6v2h02Vv2XIDT0/LsAhp6RZCCCGEEGmmmTT6vnKJOw9UJPRiw/0s3dyI85edmTcv8ThhR/sovp6wnVV/N6BwcRc6veJq3pdw2qrs8vCh9bjUiRMty2UfvZdNmxK3RGemhEH3119bAtJ791SQHd/teuxYy1RNBQrAb7+pQHbbNkvSJrAeP/ree+q4woUzXr569VTQEN9yFxGhgvq6dVVAnha//qo+a1Ctpk5OavmllywB/YYNKqhPLWt5cj7/3NJtfvp0uHUr7ecKi7g41SuhWjXVIyG+3l58ERYtUr0PROr0evUzAio/wY0b2VseW5D/CkIIIYQQNjB3/HY271eDFUsUvsP3Kyqi0+vIl09lkj53TnWNrlb5Ls94HWPvlssM/KQZOr1qGmvY0NJy+ccf1lN0ZYdRoyzjjJs1g4EDLfveftuyPHeube6vaZbx3AUKqLHJCxaoVmxQXdu/+kq1LE+bprbp9bByJdSubSn3gQPqmPjP1t5ejcP+8suUx2+nlbu76hGQ8AFFQICaLuqVV1Rit5QknJv7jTcsy/b2ls/ZZFL/dxKO545vvU4LT0/LtcLD4ZNP0n6ugNhYNVWclxf06WPpbQCqtXvVKlVfIu3y+rhuCbqFEEIIITJZ4K6zfDC9vnl98bwrFC9n3ffX0VEFPsfPFWPfqRr4NvOy2m8wQIcOajk8HP7enELqbRv7808V5IEKeB9vxevdW81DDGpfSlnCM+rECUuLbPPmaqqhYsWsxz+PGaMeaMSbMwfat7e+jsGgxnWfPavOPXIE+vXL3LLmz6+Csu3bwc/Psn3VKvD2VmOpk3qIcvOm+qwBypdXXcYTevNNy4OBefNUN3lQAUvZsukr4yefWKY8W7AATiefVF8ksGuXqsP+/eHCBcv2Vq3Uw5Zff7X8LIi0y+vjurMk6F62bBmtWrWiZs2avPzyyxw9ejTZY9esWYOXl5fVq2bNmskeL4QQQgiRk0RFwWu9CxAdqwY9D391Ky+8VjdD1+rU9p55ed0PyX9/spVzAZfp90aY1dzP06dDpdAP4ZRlAHfRopZW2bAwFXhntoRdy5991rLcurUlO3RsrGX89MiR1gH441xcVJmrVs38ssZr2lS12s2fb2lZj4pSybXq11fJ5xJavtzSRf711xN3Ty5VCrp2VcuhoZbt6Wnljufmph5SgLpnwunERNIWLYKWLa2D7eeeU0n5/v5bPQwSGZOwpVuC7gzYtGkTU6dOZfDgwaxduxZvb2/69+/PvXv3kj3H2dmZnTt3ml///vuvrYsphBBCCJEpRo+GY+fV4FufimeZOr9Bhq/13AtOODmq9NIbtntjjE06I9e2tQF4l7nAgI47iImMyfD94p05dJHe7XbiXac0i5Y6mwPZ55+HdwZEwqkv4chHlhN29WJolw3m1Tlz0pc8LC0SThX23HPW+yZPth6r3bWrpYt5djMYYMAANdZ9xAhLS3VgoBrHmrClPmHX8tdfT/p6CROqxUvPeO6E3n0XiqiE+SxdquYqF4nFxam669dPPdgBlZBu1y41rKFJk+wtX15QpgyULKmWDxywnhYvL8iEkSspW7RoEd27d6fro8dyEydOZOvWrfzyyy+89dZbSZ6j0+lwS0v6xUeMRiPGzP7Nnsniy5fTyynSR+o175K6zZukXvOunFK3hw7B7NkGAPLl01i6pgL2+fQZLpeDkwMvPLOftTsacueBG7s2B9C4vXUPwIfBD+k5oATXg0tx+nolwl5/yJLlBgyG9N/v5sXbjB58gRV/NcSkVTRvL+xiZOgwHSNHamj39oLpscD+2jqq5VtH65p/8ldgay5cgA0/36FD16JPlL45/nOLjjaydase0OHmplG1qskqqLezU2O3Bw7UU6aMxrx5GpqW+YH/kyhYUPUS6N0bevbUc+yYjogINSZ4yxYTb76pcfSoqrQGDTQqVzYlWf6GDaFmTT2BgepzrVZNw8Mj6WNT4+QEQ4fqmDhRj9EIn39u4uuvbT/Zek75eU2LkBB47TU9f/5p+X88eLCJmTM17O1z1v+xnOBJ6rZuXT2//aYjJAROnzZmaBaBrJbW92nToDsmJobjx4/zdoLsGnq9nkaNGnE4fhBKEiIiImjZsiUmk4lq1aoxYsQIqlSpkuzxZ2yZJjOTBQYGZncRhA1IveZdUrd5k9Rr3pXddTt1ajlANRy88841Yo13MjxXc7xGDW+z9tGc0iuW3KBAaesved9Pvc31YEv/75W/FCT21SA+/PBKuuJdzaQxsKcDB85amu2KOgczoOtO2r9RlAIu+VVmcs2ZfBVWUjB4H+X40uoaw174ir8CWwMw57PjlK3sDDpLx8oCEQHYGUOIMxQmzlAYo8GFOEMh0KX8hGDlygs8fOgNgJ/ffY4eTbpJdvp09W9OH5/87bc6vviiLGvXqv8rP/6o56efLMFuixZXCAi4m+z5L75YjMDA8gA0anSTgICbyR6bmubNDRQoUJPwcAOLFsFLLx2nRInYDF8vPbL75zU1ly87MmKEB5cvq6EiBoPG6NFX6NLlLsePZ3PhcriM1G2ZMiWB0gD88ssV2rYNzuRSZR+bBt3379/HaDTi6upqtd3V1ZULCQdDJFCxYkWmTJmCl5cXDx8+ZOHChfTo0YONGzdSMr7PwWM8PT1xip9PIYcyGo0EBgZSs2ZNDBl59CxyJKnXvEvqNm+Ses27ckLdhoWE89dfzgA4O2tMmOCOs7P7E1+3bPFyjJ5hxKQZ+Gt3NWb7lDFnOD++7xzz1/kA4GAXjQkH4uJ0rFnjhoeHK1OmpL3V8vC2Uxw4Wx2AIgXuM7J/AIM+9qNg0fZJHF0bwtvAo6Db2Pw3dMF/0ibfr1QpeYaztzz553hLDHZGEqbm0e+chO7GukRX0+wLQ77ikK8kWn53cH8RrXwPc71euVDKfGy3mkupfWcpxIWBFgem2Ef/xoEWi6npr1CskeXiwYfQXfwB8pWAAhXQCpQDp/KQ3x30Nu/0mazVq2HFChPvvKMjLEyH0ajq1MFBY8SIMhQtWibZc2vUgPBwE8HB8MUXJShQoMQTlWXIEB3TpkFsrJ4//qjBl1/atrU7J/y8piYwEPr31xMSourF1VVj1SoTzZuXAZKvm6fdk9Rtx46WhI137pTH17ecDUqYuSIiItLUAJx9v2mS4efnh1+CNI9+fn60a9eOFStWMHz48CTPMRgMOfYH9nG5qawi7aRe8y6p27xJ6jXvys66/WX+EcLCVLrpVzvfxcUl7UPlUlK8rBvNfA6z9Ygf525W4Myh81SrXxnNpPHuO5HEGdXcRB8O2INn0xb06qWm15o+XY+r/WlGTfJK5Q7K6iVB5uXJHwQy8JOWKZ+Q4HM2lGwBldtD3a9498w1hn6otk+caGDNmgQ9zCMuJXkpXWwIxIbAwzPoAAqUA0NP8/5/tjqal1uX/R+6+8nPu2VwKGRVNsJOwbmvk7ipAZzKgENRsCsATuWg8TLrY+IiwJD/ibrIp6RnT5W1+ZVXLJnIO3TQ4eaW8v9hgwFmzUrxkHR5/301Dj8iAr77Ts/YsVDiyeL4NMmpv4vj4lR28pAQtV6jBqxfr6NixZxX1pwqI3Vb3zLhAwcO6DM0RCarpfU92jSRWpEiRTAYDImSpt27d49ixYql6Rr29vZUrVqVK1eu2KKIQgghhBCZYsGSwublAb3uZOq1X2prSVX9609XAVg2axfbA30BqFzyMqNnNOC119RUUvFGT/Zi/uTtqV7fZDSxYpMHAAZ9HN36VctYQXU6+gwuS/zXvHXr4KefEuyvOhp8JoHXe1DhdXBvB671wbky2BW0HJff0kMgMlLP3v0q6K5U/DwV3C6rgNneBRyLQb6SKnguUBGcPcDRuoclMfeTLqtmhPDLcP8wBO2Ee/sSH3P4A1hbCnb2gLPfwoOTYMrcQbxVqsCePWoasS5dYObMTL18mri5wTvvqOWoKDVneV6kaSqgTs1XX6n8DKAC7t27oWLFFE8RmaBoUfBQv4Y4fNiStC4vsGlLt4ODA9WrV2fPnj089yjNpMlkYs+ePfTq1StN1zAajZw5c4bmkoNfCCGEEDnU8T3n2HNS9aP2qXiaes9lMGhNxks9K/Heoymd1v3uxsA7Dxj5qSXL0JwZd8jvrMb4DhwI9y8E8NFMXwDeHtcEl8K76T640eOXNduz+RhXglQ39dZ1D+NWtl6yx6amYEH4+mvo3l2tDxmiplkqVQqo0CPlk2PDIPImOBQ2bwoIcCYmRrU0P9e2MHS5owJrXRrbjir0BNcGEHlNBdlhlyDisloOvwKxoap7up1z4nPvbIOo23BlpXoB6B3AuRIUrGJ5lWgJhdLWoyApjo4wceKjlai7at41UzQYo9W/9oWgoKfNWtxBtXbPmwfR0ar+Ro2Cx0aI5mp37qgs4w8fqvnSH58DPd6FC+oBCKiPe8ECy3zmwvbq1YNz59TDn2PHrOe5z81s3r28b9++jB49mho1auDj48PixYuJjIyky6O5DUaNGkWJEiV4/9EEi3PnzsXX15fy5csTGhrK999/z40bN3j55ZdtXVQhhBBC5CGaSSM6Mpp8BfLZ/F4L5lwHVBPNgNduotNnPABLSsUaZalV8RRHLnqz/3R13nxlD7dDGgLQpdle2vaynpbsw2m1uH97KzOXtkDT9PR734eWHe/iVjbpnoY/rbR0kXz15egnLu/LL6su0ytXwv378NZbsH59GmJGe2ewt06eu3+/JeJ5tp0rpLc6HV0ftX4/k/wxxhgwRVlvM8VCgfIqOI8LS7A9BkJPqVe8unOtg26TUQXrTu5gjIKwC/DwPISdg4fnIOIqxIRAwcrQ4LFJzXd0Vi3vjytQAUp3hDIvQfGmoLdP4weQNu7uqkv111+rmH/27AQPAlCtxDt3qnps3VpNH5ebzJsHZ8+q5RdfhH//hdq1rY/RNHj7bYiMVOvvvmvd5VnY3jPPWHrH7N8vQXeatWvXjuDgYGbPnk1QUBBVq1ZlwYIF5u7lN2/eRK+3PKkMDQ1l3LhxBAUF4eLiQvXq1VmxYgUe8X0NhBBCCCGSYDKaCNx9lp1/3mbrDge2H/bg7kNXPhqwlc++a2Gz+0ZHRLNkg2rldrSPoufgWja5z0vP3+SIv8rg/fNWFXA7OYbz1XeJkw3p9Dqm/9CcG7d2sfyvxoRHO/O/CQeY8n2LRMfGxcHqP1UCNUcHI536+mRKeefOVYHNnTvw229qDurevRMfFx2tkieFhMB770GhQtb79++3bGjVKlOKlpjBQb0S0ttDi40qQdv9w6rVO2g3PDwDYedVMB2v4GOz7IQcgd/rqGA/OhhIJjFZbEjibXrHxNsAwi/BmdnqZV8Yan4C3sPT9PbSatQo+O479X9i1iw1N7VOp+bw/uYbzBm7586Fa9dSbwk/fRoWLlRzjteokalFBVSQHBUF+fOnfJzRqMoRLzQUXngBduwAb2/L9qVLLfPBly0LkyZlfplFyuol6GTz33/qIUhekCWJ1Hr16pVsd/KlS5darY8dO5axY8dmRbGEEEIIkQcc33OOTz4MYushT+49dAW8rfZ/ubQhE77BZkl51i08SHCY6rrdtcVBipZqbJP7dHqjOp/6W28bP+g/ynq1SPJ4nV7HtHmV+LlaNDFxjsz9qTYfTAmhSInCVsfFB8YA7V80UMi1UOKLZUCxYiqA69RJrQ8bBs8+C2USJH7etw/69oWTJ9X6ypWqJTW+reXuXThzRkVUvr6QxpRAmUtvB6711Kvqo22aCSKuwcOz6lXksea4O4/meIu2zmuUSFxk4m0lWqhgXe8IBkf178PTcHur6gYPKli3d7E+7+F5OPIhuFRXXdHzl1Lj3fOXUt3T09A1vXx59WDk++/hwQMVmB47BuHh1sdFRcGGDWqO8eRomurxEBiornfmjBqzm1mio1V38aNH4eefoUOH5I/980/1kADUx6Bp6v9W69aq9b58efUz8N57lnO++Ua6lWcHPz/1u9poVC3deUWOy14uhBBCCJEeb7wRy6FzDZPdHxHlyOnTUC1zh1mbLVhkaZkc8LbtpjD1bViccuUgPrds1aoa701pkuI5ZaqUom+H7fivbcbDyELM+XQr4+e1sDomYaKzV1/N3DK/9BL06gU//qiCuAEDYPNmFbSNH68SdplMluNPnlTdeVevVq3aW7eCpj0az/1c5pbtiej0KsN6gXJQ8tnE+/OVgOLNVFdypzIqwVvBRy/nyqqruKOrCqofV+PjpO8ZEwI3NsO1X+HWn1D6Rev99w/DldXA6sTnGvJbgvAC5aHxcuv9kTcBPeRzY8wYPYsWqXrZ91huOR8fFeQCrFkDfXpFwM0/IDpItejbOT/qzl+Mo2fLEBionlLcuwcTJ5iYNdt6znb99nGQzw0cXM3n4VAEDPksDx3snMG1rnVBHp7nzw0aBw6opzNDh8TQpult7PMXADsnS28BUywYHFiwwHLqoqn/8NViHwJOFuPaNWjdIoQdy39lxOdNCQ6uBECPbmG0b2NH+scyiCfl5KR6RRw5oh7UaJpNUxlkGQm6hRBCCJFrnT54gUPn1Bd753wPebbOcZo3iaZFmxJs3OHJuPHqS/6hQ7YJui8eu8qWQ3UAlUG8eSfbdC0H9cWzRw+YPl2tz5unwyFf6l/lRn9akQW/xmE02fHV4lq891koBYuq1uzoyFjWrLEDdBQsCO2TmpL7Cc2eDf/8AzduwB9/wMiRqrt5wqlt69RR01WdPAnBwWq88OzZcOSI5dt2jgq6U1OhR+pJ49LLoTBUeFW9THGJ5xgPOZb8ucZINa487AJEJDEj0KH34fJPoDPgka84PVt8x9J/VFBfIF8Er7fcwMDnv6dG6zaUaT2CmzdV6/HD4DAK7uiS5C1XrZoEfGRen/e1jrffsfwc5ou9gu7W5tTfd/7S0Pma9bbD77Np4QvE51G4dMWB5WM+pnezJWq/7lG3lqqjuF1qCuvXq9WSJTVeK/UCbd8tQtPPdnDmphdnLxWmfsfmXL5bAYCizveY1aoqXJ2lPut4oWch8BNwdFMPBwz5UMMGHg0d0B7961QaynRW+QmyU+QtlYvAuVLakw7mECNGqPwCnTrljYAbJOgWQgghRC62+ocrgGqdGv7GP0z4+kXzvKl3EuQDO3hQtbhmtoWzzwNlAej/ykX0hvKZf5MEJkyAwoWhZk2VETwtKtYoS682O1m8qQn3w4vwzeR/GfWFOvn35Yd48EBliurU7j758xfJ9DIXKQLz51sC+oTTUTk4qGRdI0eqLsyvvQabNqmupYMHg729+sZtb6/RpEke+fadGR4PuEG1kJfvAQ+OqeRvUbdUC3bkTctyzH3V2v24qFvqX80IkTf5tld3vFzfw61QED0arKCQ00O1P8aPzp1VsrXoaNj8jyvdkyiepsHKva9YbTMadbz3Hvz+u1q3M4ak7b0m0RtA03RsCmhntW3K+rH0avIjBr1JvQ+AmHssWWKZJqxPHx32+fJR3C6Iv8a0psmnO7l6r5w54Ab4sucIirsEqRb4hMIvqgcTadH1LpAg6A4+CKFn1FR4+d1Vgj27Amm7VrzI23A/QGXhj7gOkTce/Xsdou/CS5etI9QTn8PpWaoHgVszKN4cSjSHwj45Pgh/4w2ViNHBIfVjcwsJurPAnTvw4cgwzhzSMBiOAqn80XCppqajiBd1R/1gpcaQDwpZj2Mj7DzEPkz93Hxu6kmimQb3j6R+HqgnaPYJxn/FhqonqWlRxNd6PeK66qKUGvuCqntWQqEn1dQaqXEqrZ5SxjPFwIMTqZ8H6vM1WLoaadH3MT1MQ73q7dUYq4TCL0LMg9Tv6VgUnB5LkhNyVI0nS02BClbTrhAXrsaepUXhmpYnxfDoj/bt1M+zc1JjyRJ6eAbiIlI/N39J6y8DmhFCAtNW3oJVrP+AxdxXXzpSozOo95pQxBWIvofRmErdOhRWn3FCD46r7mypcSprPZesMRJCT6d+HmTZ7widTuP5Fg/48KsWaSuXENlg5UZLkNukrXXLUp06luWDB4xA5g7qjouDhetVwGrQx9FnaNVUznhy+fPDhx+m/7wPP3VnyWYTmqbni0W1GfKZ6sb503LLnNM92p8H6iZ/kSfQrh3062edzKpBA7Ve9dHH5uKixnOPGWOZqzo2Vv3+bdgQCqQzRnnq6O3AxVu9kmOMSvp3vltTMDiZA3Qn3W0+6jTFst/gBA4uYMhHly4q6AZY+6uB7p98qeZYdyiivmfE3ONwgAPnb6tW6MY1jnHtbgku33Ljzz9h40Zo2xZuF3mNUo0+xBB3X419j74LMffU3+/4qdKM0dbfYx45EfEaV+5ZP+A6c9OL1acn06PZJlUOQMtX2qpref/+gP33YIykHLCl+kGadHcjKFjlDXiuwXne6FcQYl5J/Pc9Kg3fT0EF1Y/PFX9uPpx7LCGDfSF1rLOHqrNC3lC0LhRJ0Fvm/lE49QUE7VJ/r1NijFTfweLFz3sffQ+urVUvUEn43Bqp76WFvKBoncTfx3MAx2TyCeZWOk2L7wuR+0RERHDy5EmqVq2Kk5PtxlA9qZkz4YMPsrsUQgiRMXs2H6NBGxuknc0GRqORgIAAfH19za2hIvc6cQKqP3qe2dD3BnMW3ExUt+VLBXPlVlGc8z3kQVgB9IbMa+H57TdL8qaXXoxk3YZUUihnsx7tTrNys5rW6quvoP8bYRQvqScyxgnXgve4GVQIe8d0TEMVHg7Ojx50hIWlGhU/eKDGeJ86pb4XDR+efHK7xYvVNGMxMWp9wgQTn3ySs1vn8hSTEWKCVSBvV9CqZT02FkqUUFPBOTtDUBDke2zo85gxMG2aWvb3V70d4udt9/CAo0eNnDiR8d/FM2aoTOsAHTti7j4ePxY4fmKk7duheXO13LKlGubwuMOHoXNnsLdXXeYrVkzmpnGRqlU5Kkg9INDiH7DrsDycN6mu/+Ufa///sxHc3ZP6G6vQCxolSDJ9dy/8mXy+CnV7A+QrDu0CrYP96xvh7DcqYE8qS3688q9B42XW2w4MUw9R4htDnEqrRjaHoqn2937a/s6mNR6Vlu4s0Lo1lC0dw9XreaiPhBDiqbH1j7s0aJPdpRAisdUJ8kV1e70kcDPRMXWqnOHKrQaERRXkzKELeNerlGn3T9iCNuDtnB1wA3w0zYuVj4bQTp8OhWKOERmj5vfu9txx7B2b2fT+Li4qU3paxmj27g2entC3r0ZkZDQDBmTunNQiFXpD4u7Vj9jbq0B38WL1rOXvv61zAWgarFqllg0G6NJFTS3WrJkKgs+dgzlzdDybRP65tNq0ybI8Y4YK/PfsUZnWf/1VBdHw2M/ogKSv5ecHFy+m4f+lXX5LMrz0qjZaZZePvGF5RVxXXcUTTj33eG+0IrVVLzXNpLLnF2uogt/8pR91Uy8NjsVVfT2udHv1MhnhQSDc3vZo2rvt1ln1H79nXKSali7Jz6Cgur9zRShQETwGqN53IlUSdGeBWrXg/AUdB//bi4+PT+pPffQO1j/5pjjL2JQU6RLPMWmMIdm5Ia1ONViPD9I01e06LfT21mNDNFPautdC4nE6uey9GmNjOHrkUNrqNdF7jU1bF3GdXt03obR0owfQ2Vn/Ik5P3eT2/4cmo2VqldQkUTfGuFiOHj2act3m4bo5d+QKNRqpeWd37s25PYnE0y3+iz1A164ad+8mPqaObxRrH83edHDnzUwLuuPnngZwd4c2ueDBVM2aKjHRunUqqdnwiZahNa++njnThKUmPUmRGjaEY8dMBAQcp2RJX5uVSaRfly4q6AaVxTxh0H3ggApiQU0RFz/N26xZULu2+tM+aZIOX9+MhSEPHqhpvkC1mnt6wscfW8owaZL6f/7ggeXBXJEiqszJsXmyrjIvJb09fuq50NMQegrcHpuNwOAAL+xXw/aSynSfFnqD6j5exBe8hyVxz0bWx6c0lDDuoZqDPuTRENRy3az33w9Ad3E5bvd16C4EgIOzGppg56SGANoXUi3o8RnqnyISdGcRvUGPfT57HJ0cM9DVwo6MV1VGW9d1QEYHU+if4Nzc9V6NdoYnqNcneWovdZM6Axkfv2mP0ZjRn9m8UTfV6nvgVjScoOAC7D5dD5PJ0l0vrzHGGhn8yi5CHtgxd7EXxcq4pn6SyHbHAjVOnFDflJs0UXM/Jxl013eGOWr54IFYembS/Q/uCcFoLAyohD92ueQb1UcfqaAbIDRcdQd3L3qTJi/WTP6kbKTT5Z3sxXlJ69ZqNEF4uOraHRdn+RlI+DCse4Je1r6+8Oabau72hw91fP116Qy1dm/ZYkmM1rat5V8/P9VV/NAhlazt4kU1NR2oJIqPd4HPERJOPVeqddLHPJ53xtb3zF8K2hxU2c/jE/BFXH2U/f4ihF+yNGoUfmzo2e2t6E/NoBzAnRTK4FIN2h+33nbjDzBFqYcDTuXy3A9+LvkTIYQQIivp9DoaNyvAunVw/76OkyctY2fzmt9+DMR/repWq/X6l5Vb05gSWmSrVXO3A2qwZvcuEST30KpOswrm5YOBhTPt/qf2HDHf36fMAWyVgCyz1a0LbVre4/d/LQ+XXmlzGoN9qWwslcht8udXge7PP6uHXTt3QosW1l3L7ews3bzjTZoEK1eqVuj16105dMhEvXrpu3fCruXtHiUw1+lUa3fXrmr9s88sATck37VcJMHgCEVrJ7/fZFRj28OvWCdShrQnv3VIYpaEE1NV93dQY8dLtUk81jwXy6PtFkIIIZ5UkwS93OK78uVFR69aWhFWbWvJXysOZmNpcrdrZ2/S5pkDdGq6j7D7YTa7j2bSWLVRTdOl05no2jE02WPdyhajbLHrABw+VwmTMQ3DetLg9BlLK4x3tZw/njuhj0dYz3bwap/i2VQSkZsl7K69Zo36d/9+uPJoGvDWraFoUetz3Nzgk0/UsqbpGDUqfaGIplmC7vz5LUnSQHUpj384vGePavUGeOYZ8PFJ121ESvQG1UpevEnifT6fYWy6noslJ2Kq8zXU/hJ8JkH1seA1DCr1UV3t3Zpan6dpajq0eDHBajakPESCbiGEEElq3NiynJeD7tNnrIcPDH6/KNERaRybL8xC74XS7vmH/PFfXX7dWZ/ZEw7Y7F6Bu89y+roam92s5hHcKycx73ACdbyvAvAwshBnAy5lShlOnbe08Hj5lcmUa2aVxi/WpEOjfQDU9z5G3WdtP9WZyHvat7fMo7x27aO5uVda9ifsWp7Q4MFQpYrKJbJ1q46D6XjOGRAAtx5NKd6qlQq84+n1avjE46SVOws5uYN7O4Jd2qN5vAXe70GNj6DWZKjzFTRYBM3Wge9U6/M0I9SfD9U+hFJtVcb0on7Z8Q5sRoJuIYQQSapdG/LlU62Cu/5JYrBsHnH6senRz96oyMwxaZja5RFjrJGtawIY0n0bVT2j6NnTMs3R0yI2OpaX25wh8JKnedu3vzQwj7vMbKsWW1pqu3dKvTWkjq+ln+nBnYkznGfEqSvuAJQofIciJVwy5ZpZafVfvmxc/B8b/3ZHp89bYydF1ihUCPOY7GvXVCt3fOIye3s1PVxSHBxgxAhLAs8vvkj7PZPqWp5Q9+5QpYplvUAB6NEj7dcX2URvB+VeBt8p0HITdLkJNcZnd6kylQTdQgghkuTgAPU9jwJw8UYxrp/LnGAlJ9E0S9DtUsiIQa+ixEnf1ufisavJnhcXE8ffqw8xsOt23N2CadnVl3mrm3PqbD6WL4fly7Oi9DmDZtIY1H0Pfx6wHtN89Xo+c3bvzL7fyo0VANDrjHTtm3orbZ1nLPNHH/wvjbMEpOD+7RBuh6gu2d7lbqRydM7k6ORIuzfq4epeNPWDhUhGwi7mo0er4Bvg+edVxvDk9OqlUaSI+llctcrSJT01CYPu+CRqCRkM8OGHlvVXXoGCBdN2bZHD6PNW6jEJuoUQQiSryTMh5uVdf1zMvoLYyO3Ld3n4UC03qPOAd1/ZBUBUbH6GvZ04mNJMGivm7KZcybs81702365pxp0Hieey/fJLFdDnZiF3HjBr7DZqlD9LadebTB2+lYfBDxMd9/mIbSxYrxLROdhFM26E5dvzvHmZX66A7ac5d7MCAC18j1CiQurjkWs3rWBezoxkaqcPXzMve1XKW+MOhUiPjh0tM1ts22bZ/sorKZ+XPz906xYEgNEIs5OZFjqh4GDYu1ctV60KFSsmfdwbb8CIESqJ2+efp35dIbKCBN1CCCGS1bi5pYVw544nbyHMaU4ftrRme5UIZOIcP0oVUQMGN+yuz4ZF+8z7b128Q5fm+3h1aCNu3reMIc5nH0mXZntZPms39Z9R86UHBsJff2XRm4BMSw4GcPCfkwzouAP3svYMn9qc41eqcCO4FGNntaBCJT2TJ6vMwwA/zd7N2FktzOcu/vIgE2aUw8NDrW/Zkrj7/pNateSWebl757QlaytRwY3SJcIBOHypFqYn/LhOB943L3t75fKnK0I8geLFrZNuguol1bFj6ue+/HIQjo7q52f+fAhN5fnVn39i/tlNqmt5PINBdVlfs0YlbhMiJ5CgWwghRLIaPu+JTvdoXPfBvJfh+PQxS8utl5eOQq6F+HLiBfO2oWPciQiNYOk3F6hW0551OxuY97V95j9Wzt1N0G0jv2xrwKtDGzHyA0tStpmfh9u8/OEPwun5/C4MdnrKuV2nzTMHeL/XVr6fuoM9mwIJvZf2VthNS/4zJ9X6fkNTImOczPvi/w8EPyjAxx9DhQow7M3r9Hm/jvmYKcO20uPdRuj1MHCg5bpfT0njFDJpoJk0Vm1WzVsGfRxd+lRL87l16qsHSKGhOs6ff7JynDppGazuXaNACkcKkfcl7GIO0KYNuKQhzUHRonG8/roKukNDYcGClI9PbTy3EDmZBN1CCCGSVbi4CzUrnAUg4Lxnkt2Lc7PTpy1Nnl7VnQF4ZXBDWvkdAuDSnbJU93HkjUGVuB+uBii6FQpi9dd72LSvHt0HN8K5iLP5Gp07Q8VykQD89W8Bju48a7OyXz55jcZ+11j+l0ozf/Vuaf74ry5fLmvBgLFNadS+JiVK2TN/Vupjjv/9JYAX+9Rh/+ka5m2F8j/g3Ve2cXzvOU4duMwbnc9hePRMISQEZi8oTUycmht7QMftjPnSMndP395G8juoz+GH1eUybfqwg/+c5MKt8gC08juCW9liaT63juX5QLqyJSfl1FlLymRv3xJPdjEhcrnH5+JOrWt5QsOHW3qKzJpFsskXTSbYvFktOzsnbl0XIqeToFsIIUSKmtRR3XlNmoG9f57J5tJkrtPnLa25Xr6lANDpdcz7rgj29iogv3TZ0nr96nO7OXFcT7eBDZO8nsEAw3vtN69/OfW2LYrNrt+OUq9BPo5c9ALAyTGcwgVCEh0XFZufQSPd2b8/0S6zhw+h39ByaJr6SlCr4mm+m7SdGzftmL2iOdXqe+BZuyKL13hw6hT07Ys5+AZ4vu4Bvl7V0CoDdhFXA6+9oKYMC410YdncQxl+r9evaSxfDm+/Dd36lDVv794lIl3XydSg+7IKtPPZR1LOy/3JLiZELleuHNSvr5adnKBDh7Sf6+2tph4DlUzt55+TPu7AAbj7aBKN1q0tU5UJkVvkrbRwQgghMl3jJnZ8/eiL0M6tD2mdh6ZfOX1ZdZl3cgyndIK5nr3rVmTkSJj6aCrRkiXh22/hpZcapXrNfiPr8MmsEELCC7P8j2eYcv427pUzrzV04UJ4550axMaqILlyycts+DUO77qVuHXpNicOXuN4QBhb9ldhwxZ34uKgZ084fFi1ED3ugw/g0g2VwbpZrRP8e9AbvcEryXt7eKj7f/zxoyRpmsYn42pg72if6NjBI9z4foNanrewJG99pCWamiro6l3mTj7GlWuGROdHR+v573hpc9I0RaUhdrA30rlP9ZQ/qMfUqa0B6v4Ht18CKqRwdPJiYzGXydPThME+cdmFeNrMnw8zZsDLL6c/W/j778PGjWp55kzVUq57bBY76VoucrssCbqXLVvG999/T1BQEN7e3owbNw4fH59kj9+8eTOzZs3i+vXrVKhQgZEjR9K8efNkjxdCCGE7TV6oYF7etb9Q9hUkk8VExnDxdhkAPEtfRaf3tto/YYJqtTEa4d13oWgaZ1ZyLuLM2y9vZdoPLYg1OjB3ykmmfP/kQXd0tJoK53//g/iOas/6HWLVxooULaW6vpeqVIJSlUrw7MswMBaaNoV9++DcORg6VAXMCf35J/j7q+UCBWDRmmro0xBDVqoUP7euDsiX5DF+LbxpWDWQPSdrEnjJk52/BdC0o695/9GdZ+jYxYnLQS3S/BnY2UG9ejBihCHdU12VLKXDvehNbgSX4tCxImimxA8B0uLCBYiLU+d5VZPx3EIA1KwJS5Zk7NwWLcDPTz0YPHgQtm+HhF/7Q0Jg7VrLelJThQmR09m8e/mmTZuYOnUqgwcPZu3atXh7e9O/f3/u3buX5PGHDh3i/fffp1u3bqxbt45nn32WwYMHc+ZM3urSKIQQuUU579KULXYdgL0nPImNzhtZzC8cu4bRpJ49e1UMTrTfwUG16H7ySdoD7njvfuSFnUF9Tt+urEX4g/QlVTu5/zw/zd7NuLf+pUuzvXiXuUCBAqZHAbcyZLDG5j0+5oD7cfb2sGyZpXV70SJY/c1e8/4HD6B/f8vxM2aoYDozDX7Tksht7ixLd/B1azUatS7D5aAyKZ5vb4ihSa2zfPSRekAQEgK7d0O3bhkrTx1vNZ3ZgwgXzh9N48TAj0mYjd3bO/njhBBpo9OpKb7iqQd6cOgQvPkmlC4NR4+qbbVqqXUhchubB92LFi2ie/fudO3aFQ8PDyZOnEi+fPn45Zdfkjx+yZIlNG3alAEDBlC5cmWGDx9OtWrV+PHHH21dVCGEEMloXPsmAOHRzhw5bMzm0mSO00eDzMteHjGZeu3SHqV4rbWabux+eBEWfZH2QcSfDt5KtfqVeW1YIybNb8naHQ04fb0SRqP6k21np1qn58zVYe+Ycoe1ypVh7qxo8/pbH3hz9bRKrDai9z6uPZpu+tln1ZjpzNbt7bq4FVKf85pt9bhx/jaTJ0PnLjrCo9R4+rpVTnDg75Oc3H/B6nXqwAVCguPYEVCFSZPUOM4CT9iwXKdWpHn54M7rGbrGqVOWZQm6hcgcr7xiCaY3bFA9WurUURnNIxKkb3j33ewpnxBPyqbdy2NiYjh+/DhvJ/hLrtfradSoEYcPH07ynICAAPr06WO1rUmTJmzZsiXZ+xiNRozGnP0lML58Ob2cIn2kXvMuqVtrjV6szYo/1fL23Q741cudn0vCej113PJNroq3XabX9bDRriz5XS3/b34F3hobk6bxvz+uK59oWz77SLwr3qN6PXcGDtRo0EB1e0+Lnq8b2Pjjblb/24iQ8MK83v0i7w2/zMJfVTK4gk6RfPedA5qW9mumlZ2jHQO6HWPqwpbEGe1p2NSRKzct+3t0uc/878uRv2D+ZK+R1npJy8+sb7188I1aPvBfNN0y8IZP7j0JqCzvVSo+xGh0SvmEvMxoxGBeNGb+fyDkd3Fe9Xi96vUwZIiODz9UDxcPHLAcW7Cgxuuva7z9tkb16jb5byYy0dP2M5vW92nToPv+/fsYjUZcXV2ttru6unLhwoUkz7l79y7FihVLdPzd+JSFSchNXc8DAzNvvlKRc0i95l1St0qxYvkBNSfypk0PaN486d/huUVgYCD/nbaMs3YsGE5AQEDm3qQgtKi1j61H6nPhVjkWTP+V+u1T7k5tjIvj0m0/AMq5XWXse4co6+FEsXIuGOwMgMqGnt6iDhlrZO/Ra1y9V4ZtR/3Y/aalZX/sO39w/35Z7t9P3zXTqnkHE9MWGTFpBq7cLAyATqcxaNAN+vS5xeknnDP7cSn9zDoXt7R07z/snKE6P3HC8uAkJuYoAQFJj2l/GugjI/F7tHz06FFM+ZN/ePKk5Hdx3pSwXhs0MFCoUA1CQ1V4UqVKBN26BdG2bTBOTiZiY9P/u09kH/mZtZYnspd7enri5JSznzQbjUYCAwOpWbMmBoNkOs0rpF7zLqlbazVrQqFCGqGhOo4fL0ytWr6JssvmBgnr9WaIJeP2c12eo5ANcsSNfP8AW99Qy8tWVuTtj1LOuH3p+FVijWounNpe1xkw6sVMK8sP3x3huW7uaJrefI829f5j5OcvZiihWJr5QsfG/7FuZwMAnJ01li410aFDSaBkiqemR1p/ZksVucXN+yU5eqEKtXyc0/XeNZPG2Wtqrvqyxa7ToEmDJy53rhZuyVXg4+Pz5P3/kyC/i/Om5Or1n3/g999NNGum0bChIzpdGSDlh5UiZ3nafmYjIiLS1ABs06C7SJEiGAyGREnT7t27l6g1O16xYsUStWqndDyAwWDINZWam8oq0k7qNe+SulUMBmjYEP74A27d0nH5zAMqV0tndrEcxGAwcOaMCrZKlYIiRWxTx+16PkP1j89y/EoVdp/w4eoVjQoVkw/yLp4KJn4qK4+KUZn6f69Vl9p82G8rU75vAYCL0wPmLyuDnb3tn79/Ns2Vve1v41b4ActWFqbmM8Vtdq/UfmbreF/htz0lCQkvzOUTl6lcK3F3/uQE3QjifrgbAF7lbmMwPOUZnRJ8zgaDwXoC90y/lfwuzoser9c6ddRL5H5Py89sWt+jTROpOTg4UL16dfbs2WPeZjKZ2LNnD35+fkme4+vry969e6227d69G19fX1sWVQghRCqaVDtkXt658UQ2luTJBQdD/PNdr6SnpM4UOr2Ojj0sQd3JUym3qp4/HWZeruyR+X+iJ8xrTJdmeylW6C5L5pyiTJVSmX6PpNRoVIUb94pz5HwVmwbcaVGnlqV1Nr3J1E4dthzv7fEw08okhBAib7N59vK+ffuyatUq1q5dy/nz55kwYQKRkZF06dIFgFGjRvFF/NwAwBtvvMGOHTtYuHAh58+fZ86cORw7doxevXrZuqhCCCFS0KSJ5U/Grl0m83JMZAzH95xj84//cftSUFKn5jhnTljG9toy6AbwrOpguW8qPdDO37V0P69c3T3Ty2LvaM8v2xoQ9KAYHfvVz/Trp0Sn19m2G3sa1XnGMhzt0IH0Za0/FWiZAk0ylwshhEgrm/cpa9euHcHBwcyePZugoCCqVq3KggULzN3Fb968iV5v+SJXu3ZtZs6cyVdffcWXX35JhQoVmDdvHp6enrYuqhBCiBQ885wndoZY4oz2bNjmRbcWezh+vjhnb5THaPIAoGKp2xw7q+FUIPuDq5Sc2XcYaAqAl9thIOneV5kh4Z+vhHM8J+X8NUviUY/aHjYq0dOtdtNy5uU9J2uk69xTJy0Pm7xrFMy0MgkhhMjbsiSRWq9evZJtqV66dGmibW3btqVt27a2LpYQQoh0cCrkRG2PY+w/XYNbISX4ZVuJRMdcvFmC1T9D797ZUMB0OHMqzrzsVSUuhSOfXMKW9DMno4Dks12fO6f+tbODsmVtWqynlnvlUlSsCBcvwvZ9xQgMVIkC0+LUOUuiMG+/rOmaL4QQIvezefdyIYQQeUf3jtaJLh3to6hV8TQdGh80b/P3z+pSpd+Z85bA19PHtmOMXV2haMEH6r7H7iV7nKbB+UfTZ1WooAJvkfl0Ohg2zLI+fXrazz19Wf1fcc73EPdKmZd5XQghRN4mQbcQQog0GzapCRsX/8e6Bfs4c+gSYWH2BFzw4tcddcythXv2wNGj2VvO1Jy+pIY42RtiqFDN9tPReJa+AsDVu6UJfxCe5DF3boSbZ2Dy8NBsXqan2YABUPRR8v2ffoLLl1M/Jyo8iou31f8Vr7JXc8T4dCGEELmDBN1CCCHSzM7BjnZv1OOl/vWp4lcBOwc1VYZOB2+/bTnOf27OzexsjDNy7qbqu+3hftX8HmzJq1KIefnc0WtJHnPu8HnzcuWCO21dpKdagQLw7rtq2WiELz/an+o5587EYtLU/xXvKtG2LJ4QQog8RoJuIYQQmaJXL3DKHwvA0h81wu6HpXJG9rh3LZToWNW93Kt81mRb9/SwjBs/cyw4yWPOn7Jkxq5cyZTkMSLzDBkUS34HlcV+/uoa3L2WfNd/gFPnLYnTvBvaLvGeEEKIvEeCbiGEEJnCxQVefW4vAA8jC7Him8PZXKKk3bhg6d7t5RGVJff09LaMIT99IulW0vPnLIG5h1d+m5fpaVesuD1vdlYt3JExTsydHJji8adOWZZlujAhhBDpIUG3EEKITPPOUMuUV9/+4JrCkcnTbDyc+epFyw28vG3ftRzAy8fyWZw5l3SGtPMX7c3LlasVtXmZBIz4pDIGvXrYMedHn2TH24P1dG8SdAshhEgPCbqFEEJkmrrPVaNOlRMAHDxbjQNbTqTr/BEjwMEBqle6zqBu21k1bze3L93J1DJevmxpRfas7pKp106Oh48lWduZS4WTPObcFUtZKla3fXI3AeWrluG151XvjOCwoiyYdiDZY0+diAFU/gIPmUJdCCFEOkjQLYQQIlO93dsyrZj/nLspHGltwwb43/8gLg5OXCzNN78045UhjShZsTjeZS4wqNt2rpy6/sTlu3DV0ors5Vv6ia+XFvkLOlHOTSVQO321DJopcXP++RtqCqrSrjfJ75z8XN4ic40aZ5ky7ov5HsRGxyY6RjNpnHo0LKBiqZvkk+oRQgiRDhJ0CyGEyFSvDqpNwfwqKdhPf9TmQdCDVM8JDYVBgyzrOp11IrHT1yvxzS/N6N75fpIBa3qcuu0DQNHC0RQrk7Eu8BnhVe42ACHhhbl73TqZWujdB9wNVdOYeZS+nWVlElCjkSftG6ix3VfvluanOfsSHXPjwi3ColQiNe+ySWefF0IIIZIjQbcQQohM5VzEmV7tAgAIj3Zm2dyAVM/5aKyRa49imdat4cHdcH5fdoAxfbfSsGogdgbV+rjvVA1+XZj69E7JCQuDO3ccAfCq6pjh62SEZyVLNvczR25Y7Tt/zLJeuVzOnW4trxoz1tJ0PX1OCUxG64c+pw7fNC97eyQ/7lsIIYRIigTdQgghMt3bw0qYl79dUirF1uk9mwKZ97UOACcn8PeHgkUL8sJrdZm6sAW7T9Tkl+8OmY//6DNXjLHGDJXr7FnLspdXhi6RYZ51PM3Lp2/XsNp37mSIeblypYy9N5FxTTr40KjaUQCOX6nC6u+OWu0/dczyIMS7qnx1EkIIkT7yl0MIIUSmq9XUi4ZV1RRMgZc82fv7sSSPi4mM4c2B+dA09efo0xHHqVgx8XEd+jxjvt6JKx4sm7UnxfvHxEBwEtNhnzmjMy97eibeb0tevqUs5Tirs9p3/rxl2cPTIauKJBIYM9IyfVyPQb706QM3HzVwnz6dION9jaxJvieEECLvkKBbCCGETbzd1zKWe8Y35YhKYkrsaR/s5viVKgDUqXKCYeOSbn7W6XVMmWRpAf7kq5rExCR93ytXoFo1KFYMhgzB6r6n/7NMtuxVOWu7CScM8s+csd53/kFD83LlOjWzqEQiofZv1KV1nYPm9cWLVZ1NnQpHThYxb/f2c8+O4gkhhMjFJOgWQghhE90H1qVwYTU2du1vLlSuDLNnQ2SEajU89d95JvmrYNOgj2PBfD12DknPYQ3Qoosvzze5AsCl6y58913iYx48gHbtVMuxpsG8edCw3kPOHLoIwJlj983HepW7lSnvM63KlQPHR8PIE875DHDunGW5snfBrCuUMNMb9GzcVYtZs6BwYbUtLAzGjoXtR2sBUKTAfdzKFMu+QgohhMiVJOgWQghhE/md8/H555Y/MzduwLBhUKnMXf43Zitv9gsjJk5FoSPf2IFvc+9Urznlq3Lm5UmTIDxBY3VsdCzdnj3C8ePW5wQcK0idxsVYPmsXZy6p6cL0OqPV3NlZwWAAj4oRAJw7G2c1Lj2+e7mrqyXgE1nP3tGOoUPV2P9Bg0Cvt85F4F3uGjq9LpmzhRBCiKRJ0C2EEMJm3n4bDh2Czp0t227dd2PEtBbsPKZaDyuXvMwns+un6Xp16kC3bmr59m2YNUstayaNd7rtZctBdU3XIlGsWwfe5VVW8LCogvQc3phD56oCUKH4NRydsjZ7OYCnm0rQFRNrx5XTqmzR0Zgzt1eunOVFEkkoVkz1kgj4L5xWfpYkfo3q3MvGUgkhhMitJOgWQghhU35+sGYNBARA11aHE+33n32P/AWd0ny9zz4D/aO/XtM/jyT45n2mDN/Gwt+aAuBoH8WvS87w0ktw4IgLfdrtSHQNr/J3MvRenpSXR6R5+fQRNR/3xWPX0B41qFYunT3lEkmrWduZLQf82PzjAf43Zhvjv6qd3UUSQgiRC0nQLYQQIkvUqgU//+3H0Z1neLnlHooVustnQ7by7MvpC2S8vaFP96sAPHiYn46tr/LxnBbm/Uv+d4jGL/oAUMClAIs2NmXxjB04OVr6ontl01zLnl6WMetnTqgynEswR7eH2/FE54jspdPraNOzLsOnNqeQa6HsLo4QQohcKPmMNUIIIYQN1Gzsyap/4tdaZOgan3yi58efo4mJc2TXcR/z9s/f20r3wYmv+cbIpjzT/AID33zA9TuFeHNY1o7njudZ3TLd1OlH05edPx1h3lbZwz7LyySEEEII25KWbiGEELlOOe/SDHp5r9W2tzptZ9TM5sme412vElsO+vDThhC86iQxGXgW8PK1TDd15kIBAM5fsOyv7C0tqUIIIUReY9OgOyQkhPfff5/atWtTt25dxo4dS3h4yl36Xn/9dby8vKxe48ePt2UxhRBC5EJjp1XHtaBKbNXmmf+Yt7JRjs8s7eruSpECatqyM1dLAHDuYgHzfo8aJbKlXEIIIYSwHZt2Lx85ciRBQUEsWrSI2NhYxo4dy/jx4/niiy9SPK979+4MHTrUvJ4/f35bFlMIIUQu5Fa2GPt2XCZgzxk69q2b4hzfOYVOr8Oz7HX2nSrClaAyRIRGcP66mve5gGMYJcoXz+YSCiGEECKz2ewbyvnz59mxYwc///wzNWvWBODjjz/mrbfeYtSoUZQokfzT/Hz58uHm5pbmexmNRoxGY+oHZqP48uX0cor0kXrNu6Ruc4cKNcpQoYYan52WusoJ9epZ4T77TqnlEwcucvFWFQAqlbqBSasM8l8uQ3JC3T51jEYM5kUj2OCzl3rNm6Re866nrW7T+j5tFnQfPnyYQoUKmQNugEaNGqHX6zl69CitW7dO9twNGzawfv163NzcaNmyJYMGDUqxtfvMmTOZWnZbCgwMzO4iCBuQes27pG7zpuys11Ilgs3Lv648S6yxOgDlStwmIOBhdhUrz5Cf2ayjj4zE79Hy0aNHMdmwZ6LUa94k9Zp3Sd1as1nQfffuXYoWLWp9Mzs7XFxcCAoKSva8F198EXd3d4oXL87p06eZOXMmFy9eZO7cucme4+npiZNT2ud4zQ5Go5HAwEBq1qyJwWBI/QSRK0i95l1St3lTTqjXc8/EwWK1vDvA8mDa2zMOX1/fbClTXpAT6vapkyBPj4+PDxQokMLBGSP1mjdJveZdT1vdRkREpKkBON1B98yZM5k/f36Kx2zatCm9lzV75ZVXzMteXl64ubnRp08frly5Qrly5ZI8x2Aw5JpKzU1lFWkn9Zp3Sd3mTdlZr1Wb1Dcv7zhcwbzs4SH/1zKD/MxmoQSfs8FgsFrP/FtJveZFUq9519NSt2l9j+kOuvv160fnzp1TPKZs2bIUK1aM4OBgq+1xcXE8ePAgXeO1a9WqBcDly5eTDbqFEEKI3MLDw7IcG2v5Y125atEkjhZCCCFEbpfuoLto0aKJuo0nxc/Pj9DQUI4dO0aNGjUA2Lt3LyaTSXVBSqOTJ08CpCtQF0IIIXIqJycoWxauXrXe7lG3RvYUSAghhBA2ZbN5uitXrkzTpk0ZN24cR48e5eDBg3z22We0b9/enLn89u3btGnThqNHjwJw5coV5s2bx7Fjx7h27Rp///03o0ePpl69enh7e9uqqEIIIUSW8vKyXrezU4G4EEIIIfIem05qOnPmTD777DN69+6NXq/n+eef5+OPPzbvj42N5eLFi0RGRgJgb2/Pnj17WLJkCREREZQqVYrnn3+eQYMG2bKYQgghRJbyLH6cLVQ3r1eooAJvIYQQQuQ9Nv0TX7hwYb744otk95cpU4bTp0+b10uVKsWPP/5oyyIJIYQQ2c6z/F2r9YTjvIUQQgiRt9ise7kQQgghkuZV3XpqpcpFDmVTSYQQQghhaxJ0CyGEEFnM06e41XrlcqHZVBIhhBBC2JoE3UIIIUQWK+9dGge7aPO6h1f+bCyNEEIIIWxJgm4hhBAiixnsDXiUOGdelzm6hRBCiLxLgm4hhBAiGzSqcw+AYoXuUtmnXDaXRgghhBC2IhOUCCGEENlg6rzqeFbZSosXiuPoVCy7iyOEEEIIG5GgWwghhMgGxcq48sHMFtldDCGEEELYmHQvF0IIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWwkV4/pNplMAERGRmZzSVJnNBoBiIiIwGAwZHNpRGaRes27pG7zJqnXvEvqNhtERYGXl2VZp8v0W0i95k1Sr3nX01a38XFofFyaHJ2maVpWFMgW7t27x6VLl7K7GEIIIYQQQgghnlIVKlTA1dU12f25OuiOi4vjwYMHODo6otdLT3khhBBCCCGEEFnDZDIRHR2Ni4sLdnbJdyLP1UG3EEIIIYQQQgiRk0nzsBBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnRngWXLltGqVStq1qzJyy+/zNGjR7O7SCKd/P396dq1K35+fjRs2JBBgwZx4cIFq2Oio6OZOHEi9evXx8/Pj3fffZe7d+9mU4lFRnz33Xd4eXkxefJk8zap19zp9u3bjBw5kvr16+Pj40OHDh0IDAw079c0jVmzZtGkSRN8fHzo06ePzIaRCxiNRr766itatWqFj48Pzz33HPPmzSNhehqp25zvv//+45133qFJkyZ4eXmxZcsWq/1pqcOQkBDef/99ateuTd26dRk7dizh4eFZ+C5EUlKq29jYWGbMmEGHDh3w9fWlSZMmjBo1itu3b1tdQ+o250ntZzah8ePH4+XlxQ8//GC1/WmvVwm6bWzTpk1MnTqVwYMHs3btWry9venfvz/37t3L7qKJdNi/fz89e/Zk1apVLFq0iLi4OPr3709ERIT5mClTpvDvv//y1VdfsXTpUu7cucOQIUOysdQiPY4ePcqKFSvwip9z9hGp19znwYMHvPrqq9jb2zN//nw2btzI6NGjcXFxMR8zf/58li5dyoQJE1i1ahX58+enf//+REdHZ2PJRWrmz5/PTz/9xPjx49m0aRMjR45kwYIFLF261OoYqducLSIiAi8vLz755JMk96elDkeOHMm5c+dYtGgR3377LQcOHGD8+PFZ9RZEMlKq26ioKE6cOMHAgQNZs2YNc+fO5eLFiwwcONDqOKnbnCe1n9l4f/31F0eOHKF48eKJ9j319aoJm+rWrZs2ceJE87rRaNSaNGmi+fv7Z2OpxJO6d++e5unpqe3fv1/TNE0LDQ3Vqlevrm3evNl8zLlz5zRPT0/t8OHD2VRKkVZhYWHa888/r+3atUvr1auXNmnSJE3TpF5zqxkzZmivvvpqsvtNJpPWuHFjbcGCBeZtoaGhWo0aNbTffvstK4ooMuitt97SPvzwQ6ttQ4YM0d5//31N06RucyNPT0/tr7/+Mq+npQ7jfw8fPXrUfMy2bds0Ly8v7datW1lXeJGix+s2KUeOHNE8PT2169eva5omdZsbJFevt27d0po2baqdOXNGa9mypbZo0SLzPqlXTZOWbhuKiYnh+PHjNGrUyLxNr9fTqFEjDh8+nI0lE0/q4cOHAOaWs2PHjhEbG2tV15UrV8bd3Z2AgIDsKKJIh08//ZTmzZtb1R9IveZW//zzDzVq1GDo0KE0bNiQTp06sWrVKvP+a9euERQUZFWvBQsWpFatWvK7OYfz8/Nj7969XLx4EYBTp05x8OBBmjVrBkjd5gVpqcPDhw9TqFAhatasaT6mUaNG6PV6GcKXy4SFhaHT6ShUqBAgdZtbmUwmPvjgA/r370+VKlUS7Zd6heRn8BZP7P79+xiNRlxdXa22u7q6JhoPLHIPk8nElClTqF27Np6engDcvXsXe3t78x+NeK6urgQFBWVHMUUabdy4kRMnTvDzzz8n2if1mjtdvXqVn376ib59+/LOO+8QGBjIpEmTsLe3p3Pnzua6S+p3s4zXz9neeustwsLCaNu2LQaDAaPRyHvvvUfHjh0BpG7zgLTU4d27dylatKjVfjs7O1xcXOR3cy4SHR3NzJkzad++Pc7OzoDUbW41f/587OzseOONN5LcL/UqQbcQ6TZx4kTOnj3L8uXLs7so4gndvHmTyZMns3DhQhwdHbO7OCKTaJpGjRo1GDFiBADVqlXj7NmzrFixgs6dO2dz6cST2Lx5Mxs2bOCLL77Aw8ODkydPMnXqVIoXLy51K0QuEhsby7Bhw9A0jYkTJ2Z3ccQTOHbsGEuWLGHNmjXodLrsLk6OJd3LbahIkSIYDIZESdPu3btHsWLFsqlU4kl8+umnbN26lcWLF1OyZEnz9mLFihEbG0toaKjV8ffu3cPNzS2riynS6Pjx49y7d48uXbpQrVo1qlWrxv79+1m6dCnVqlWTes2l3NzcqFy5stW2SpUqcePGDfN+QH4350LTp0/nrbfeon379nh5edGpUyd69+6Nv78/IHWbF6SlDosVK0ZwcLDV/ri4OB48eCC/m3OB2NhYhg8fzo0bN1i4cKG5lRukbnOjAwcOcO/ePVq2bGn+LnX9+nWmTZtGq1atAKlXkKDbphwcHKhevTp79uwxbzOZTOzZswc/P79sLJlIL03T+PTTT/nrr79YvHgxZcuWtdpfo0YN7O3trer6woUL3LhxA19f3ywurUirBg0asGHDBtatW2d+1ahRgw4dOpiXpV5zn9q1a5vH/Ma7dOkSpUuXBqBMmTK4ublZ1WtYWBhHjhyR3805XFRUVKKWFIPBYJ4yTOo290tLHfr5+REaGsqxY8fMx+zduxeTyYSPj0+Wl1mkXXzAffnyZX744QeKFClitV/qNvd56aWXWL9+vdV3qeLFi9O/f38WLFgASL2CdC+3ub59+zJ69Ghq1KiBj48PixcvJjIyki5dumR30UQ6TJw4kd9++42vv/6aAgUKmMefFCxYkHz58lGwYEG6du3K559/jouLC87OzkyaNAk/Pz8JznIwZ2dn87j8eE5OThQuXNi8Xeo19+nduzevvvoq3377LW3btuXo0aOsWrWKTz/9FACdTscbb7zBN998Q/ny5SlTpgyzZs2iePHiPPfcc9lcepGSli1b8u233+Lu7m7uXr5o0SK6du0KSN3mFuHh4Vy5csW8fu3aNU6ePImLiwvu7u6p1mHlypVp2rQp48aNY+LEicTGxvLZZ5/Rvn17SpQokV1vS5By3bq5uTF06FBOnDiBv78/RqPR/H3KxcUFBwcHqdscKrWf2ccfntjb21OsWDEqVaoEyM8sgE6LfzwsbObHH3/k+++/JygoiKpVq/Lxxx9Tq1at7C6WSIfH526ON3XqVPMDlOjoaD7//HM2btxITEwMTZo04ZNPPnlqus3kFa+//jre3t589NFHgNRrbvXvv//y5ZdfcunSJcqUKUPfvn3p3r27eb+macyePZtVq1YRGhpKnTp1+OSTT6hYsWI2llqkJiwsjFmzZrFlyxbu3btH8eLFad++PYMHD8bBwQGQus0N9u3bl2TCpc6dO/P555+nqQ5DQkL47LPP+Oeff9Dr9Tz//PN8/PHHFChQICvfinhMSnU7ZMgQnn322STPW7JkCfXr1wekbnOi1H5mH9eqVSveeOMN+vTpY972tNerBN1CCCGEEEIIIYSNyJhuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRIJuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRIJuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghnlL79u3Dy8uLffv2ZXdRhBBCiDzLLrsLIIQQQuREa9as4cMPP0x2/8qVK/H19c26AuUSXl5eSW5///33eeutt8zrc+bMYe7cuYmOc3BwIDAwMNnrHzhwgJ49ewKwZ88eihYt+sTXFEIIIWxJgm4hhBAiBUOHDqVMmTKJtpcrVy4bSpM7NG7cmJdeeslqW7Vq1ZI8dsKECTg5OZnXDQZDstc1mUxMmjQJJycnIiIikj0uPdcUQgghbE2CbiGEECIFzZo1o2bNmtldjFylQoUKiYLu5LzwwgtWrdUpWblyJTdv3qRbt24sWbIkU64phBBC2JqM6RZCCCGewOzZs/H29mbPnj1W28eNG0eNGjU4deoUADExMcyaNYsuXbpQp04dfH19ee2119i7d6/VedeuXcPLy4vvv/+eZcuW8eyzz1KrVi369evHzZs30TSNefPm0axZM3x8fBg4cCAhISFW12jVqhVvv/02O3fu5KWXXqJmzZq0a9eOP//8M03v6ciRI/Tv3586depQq1YtevXqxcGDB9P1uURFRREdHZ2mY8PCwtA0LcVjQkJC+Oqrrxg6dCiFChXKlGsKIYQQWUGCbiGEECIFYWFhBAcHW73u379v3j9w4ECqVq3KRx99RFhYGAA7duxg1apVDBo0CG9vb/N1Vq9ezTPPPMPIkSMZMmQIwcHBDBgwgJMnTya674YNG1i+fDmvv/46ffv2Zf/+/QwfPpyvvvqKHTt28Oabb9K9e3f+/fdfpk2bluj8S5cu8d5779GsWTPef/99DAYDw4YNY9euXSm+3z179tCzZ0/Cw8MZMmQI7733HqGhofTu3ZujR4+m6TNbu3Ytvr6++Pj40K5dOzZs2JDssc8++yx16tShdu3ajBw5krt37yZ53KxZs3Bzc6NHjx6p3j+t1xRCCCGygnQvF0IIIVLQp0+fRNsSJuayt7dn2rRpdOnShc8//5xRo0bx0UcfUaNGDavEYS4uLvzzzz84ODiYt3Xv3p22bduydOlSpkyZYnWP27dv8+eff1KwYEFAjWf29/cnKiqKX375BTs79Sf8/v37bNiwgYkTJ1pd+9KlS8yZM4fnn38egG7dutGmTRtmzpxJ48aNk3yvmqYxYcIE6tevz4IFC9DpdAD06NGD9u3b89VXX7Fw4cIUPy8/Pz/atm1LmTJluHPnDsuXL2fkyJE8fPiQ1157zXxcoUKF6NWrF76+vjg4OHDgwAGWL19OYGAgv/zyC87OzuZjT506xcqVK/nuu+9SHJ+dnmsKIYQQWUWCbiGEECIF48ePp2LFilbb9HrrjmKenp4MHTqUL774gtOnT3P//n0WLlxoDoxBJfOKDxhNJhOhoaGYTCZq1KjBiRMnEt23TZs25oAbwMfHB4COHTtaXdfHx4fffvuN27dvU7ZsWfP24sWL07p1a/O6s7MznTp1Yv78+QQFBeHm5pbonidPnuTSpUsMHDjQqjUfoGHDhvz666+YTKZE7z+hFStWWK137dqVrl278r///Y8uXbqQL18+AHr37m113AsvvICPjw8jR45k+fLlVg8sJk+eTLNmzWjSpEmy903vNYUQQoisIkG3EEIIkQIfH580JVLr378/Gzdu5OjRo4wYMQIPD49Ex6xdu5aFCxdy8eJFYmNjzduTyo5eqlQpq/X4ADy57Q8ePLAKusuXL29uqY5XoUIFAK5fv55k0H3p0iUARo8endzb5OHDh7i4uCS7/3EODg707NmTTz75hGPHjlG3bt1kj+3QoQPTpk1j9+7d5gB506ZNHD58OMUu6ilJ6ppCCCFEVpKgWwghhMgEV69e5fLlywCcOXMm0f5ff/2VMWPG8Nxzz9G/f39cXV0xGAz4+/tz9erVRMcn1406uVbmzEgaFn+NUaNGUbVq1SSPSTgVV1rFPyh48OBBqseWLFnS6rjp06fzwgsvYG9vz7Vr1wAIDQ0F4NatW8TGxlKiRIl0XVMIIYTIShJ0CyGEEE/IZDIxZswYnJ2d6d27N99++y0vvPCCeTw1wB9//EHZsmWZO3euVQv07NmzbVKmy5cvo2ma1b3iW7JLly6d5DnxLeXOzs40atQo08oS/1AhtWm8NE3j+vXrVnN637x5k99++43ffvst0fGdO3fG29ubX3/9NV3XFEIIIbKSBN1CCCHEE1q0aBGHDx/mm2++oUWLFuzbt48JEyZQt25dc6AZ33KdMBA+cuQIAQEBuLu7Z3qZ7ty5w19//WUO/MPCwli3bh1Vq1ZNsms5QI0aNShXrhwLFy7kxRdfpECBAlb7g4ODUwyck9ofFhbG4sWLKVKkCNWrV0/x2OXLlxMcHEzTpk3N2+bNm5foPhs3bmTTpk1MmzaNkiVLpvuaQgghRFaSoFsIIYRIwfbt27lw4UKi7bVr16Zs2bKcP3/ePP92q1atAPj888/p1KkTEydOZNasWQC0aNGCP//8k8GDB9OiRQuuXbvGihUr8PDwICIiItPLXaFCBT766CMCAwNxdXXll19+4d69e0ydOjXZc/R6PZMmTeLNN9/kxRdfpEuXLpQoUYLbt2+zb98+nJ2d+fbbb5M9f9myZWzZsoWWLVvi7u7OnTt3WLNmDTdu3GD69OlW2dVbtmxJu3bt8PT0xMHBgUOHDrFx40aqVq3KK6+8Yj7uueeeS3Sf+CnWmjVrZhVkp/WaQgghRFaSoFsIIYRIQXLdv6dOnYq7uzujR4+mSJEijB071ryvQoUKjBgxgsmTJ7Np0ybatWtHly5duHv3LitXrmTnzp14eHgwY8YMfv/9d/bv35/p5a5QoQLjxo1j+vTpXLx4kTJlyvC///0v1Rbf+vXrs3LlSr7++mt+/PFHIiIicHNzw8fHJ9XAtXbt2hw+fJiff/6ZkJAQ8ufPj4+PD5MnT6Zhw4ZWx3bo0IHDhw/zxx9/EBMTg7u7OwMGDOCdd94hf/78GXrPtrimEEII8aR0WmZkXhFCCCFEjtGqVSuqVKmCv79/dhdFCCGEeOolP9GmEEIIIYQQQgghnogE3UIIIYQQQgghhI1I0C2EEEIIIYQQQtiIjOkWQgghhBBCCCFsRFq6hRBCCCGEEEIIG5GgWwghhBBCCCGEsJFcPU93XFwcDx48wNHREb1enh8IIYQQQgghhMgaJpOJ6OhoXFxcsLNLPrTO1UH3gwcPuHTpUnYXQwghhBBCCCHEU6pChQq4uromuz9XB92Ojo6AepP58+fP5tKkzGg0cubMGTw9PTEYDNldHJFJpF7zLqnbvEnqNe+Sus0GkZHQuLFa3rULbPBdTOo1b5J6zbuetrqNjIzk0qVL5rg0Obk66I7vUp4/f36cnJyyuTQpMxqNADg5OT0V/wGfFlKveZfUbd4k9Zp3Sd1mA02D06fVcr58YIPvYlKveZPUa971tNZtakOdZSC0EEIIIYQQQghhIxJ0CyGEEEKIPC0mJrtLIIR4mknQLYQQQggh8qy//4aiRdXw8+jo7C6NEOJpJEF3HnbiBHz6KQQEZHdJhBBCCCGyx4IFEB4Ou3fDxo3ZXRohxNNIgu486sIFaNgQPvkEateGd96K5d6N4OwulhBCCCFElorP9QawfHn2lUMI8fSSoDsPiomK5ZVXNEJD1bqmgf98e6p46vj6k20YY43ZW0AhhBBCiCygaXDmjGX9t98wfz8SQoisIkF3HvThgF0cOKADwN0dnJ1NANwPL8LgT5tTx+scO9YfSfP1Ni75j8/f20roPfkrJYQQQojc48YN1bU8XnQ0rFuXbcURQjylJOjOYzb8sJ8vl7UAwMEumg3rojkdcJdeL+w0H3PkohfNXqrFd5O2p3q943vO0bFPbT78qgVtml4mIjTCVkUXQgghhMhUCVu54z1JF/MHDyQTuhAi/STozkOunrlJn3c9zOszR++ldj1H3CsXZ+nvTdi54Si+lU6Z9388oyoxkSn/5fh+7jVMmprYfs/Jmrzc/iqxsbYpvxBCCCFEZkoq6N6yBYKC0ncdkwkGDoTChcHRUf3r6akyonfuDEOGwMmTmVFiIUReJEF3FoiJgS+/1LFzZyGb3SMuJo7Xut4hOKwoAJ2a7GXIp82sjmn8og8HTlWhQ6N9AASFurH+h4PJlzsyhqW/1bDatmmnF/37qz8+QgghhBA5WcIkas88o/41GmH16rRfw2SCt9+Gb7+1bHvwAM6eVRnR162DefOgTRsIC8uUYgsh8hgJurOAvz+MGqVn+PAq/PFT8kHuk5gweCc7j9UCoJzbNRb+7I1Or0t0nMHewLvv2pnX5y+0T/aavy09xN3QYgDUrnwCR0cNgKVLYdSozCy9EEIIIUTmS9jSPWGCZfmnn9J2vqbBoEFq2jEAg0HNDlOlCri4WB975Yr1PYQQKRszZgyDBg0yr7/++utMnjw5y8uxb98+vLy8CLVhlkUJurNAObeb5uUhI0tm+rjoLasOMeV71apt0Mex4of7FClRONnjn33Zj4olrgDw18HaXDp+LcnjFi6y/PeY+lkkP/2kQ/9o0xdfwIxp0s9cCCGEEDlXfEt3gQKqJbpaNbW+c6cKklOiaarbuL+/Wtfr1Xjw3btVMB8SAlFRcPCg6nIO8NVXEBBggzciRBYaM2YMXl5eeHl5UaNGDVq3bs3cuXOJi4uz6X3nzJnDsGHD0nRsVgTKmUmC7izQsXtJmvscBuDi7XJMem9/pl5/xGhnNE1V5ZThO2nYrmaKx+sNega8ch4ATdPz/axziY65cf4Wm/fVAaBsses8282Xzp2tu1aNGmPPD9N3JjpXCCGEECK7xcTAxYtq2dMTdDp49VXL/hUrkj9X02DYMPj6a7Wu18OPP0L37tbHOTpC7dowbpxaNxpVV3SjzM4qcrmmTZuyc+dO/vjjD/r27cvcuXP5/vvvEx0Xk4mZBQsXLoyzs3OmXS8nkaA7C+j0OuZ954yDXTQAMxY35tjus5ly7ZsXbhN4yRMAv8onGTm9WSpnKH2HVsWgV0+rFm5sxuMPrpbMPWVOoNany1kM9mr5zTdh0ieWAUv9xzSk1wu72PfHMTST9qRvRwghhBAiU1y4YAl+vbzUvz16WPYn18Vc02DECJgzR63rdLB4sXXA/rgPPoCqVdXy/v3WjRRC5EYODg64ublRunRpXnvtNRo1asQ///xj7hL+zTff0KRJE9q0aQPAzZs3GTZsGPXr1+fNN99k8ODBXLtm6U1rNBqZOnUqdevWpX79+kyfPh1Ns44dHu9eHhMTw4wZM2jevLm5xX316tVcu3aNN954A4B69erh5eXFmDFjADCZTPj7+9OqVSt8fHzo2LEjv//+u9V9tm3bxgsvvICPjw+vv/46169ft8lnmJBd6oeIzOBdtxJDXtnEl8s6EGe05+03I9lx1ITe8GTPPbZvOg+UAKBN89voDVXTdF6pyiV5sQP8+ivcuKFn0ybo2FHt0zRYuLqS+dg+QypZnTt2fAHunNrG7JXNMWkGlv3ZmGV/Qt0qJxjyZjCvDKpLvgL5nuh9CSGEEEI8iYTjuT1V+wQeHiqh2v79qhv4yZOWYBkgLs66hVungx9+gF69Ur6Xg4MKtJs3V+tjx6qs5u7umfVuRJ5x8ks49WXqxxWtDc3XW2/b1hGCD6V+rvcIqDoiY+VLhqOjIyEhIQDs2bMHZ2dnFi1aBEBsbCz9+/fH19eXpUuXcvbsWbZu3cqAAQNYv349Dg4OLFy4kLVr1zJlyhQqV67MwoUL+euvv2jQoEGy9xw1ahQBAQF8/PHHeHt7c+3aNe7fv0+pUqWYM2cO7777Lr///jvOzs7ky6diD39/f9avX8/EiROpUKEC//33Hx988AFFixblmWee4ebNmwwZMoSePXvSvXt3jh07xrRp0zL1s0qKtHRnoW7vFKOKu+rntPuEDwumPnnX7G3H6pmXm79QMl3nvvmmZXn+fMvyrl1w9no5AFrWO0+lmuWsztPpdfxvWVM+G7KVos7B5u0Hzlajz6gmlHUPY8LArcRGy5hvIYQQIqcyGU15updaUkE3WLdYJ2ztfvAAXnzREnADfP89PGpQS1WzZtC/v1oODYXhw9NdZPE0iA2FyOupv6KSmNcuKiht58Zm3jhnTdPYvXs3O3fupH79+gA4OTkxadIkqlSpQpUqVdi0aRMmk4nJkyfj6elJ6dKlmTx5Mjdv3mT/fjWsdvHixbz11ls8//zzVK5cmYkTJ1KwYMFk73vx4kU2b97MlClTaN26NWXLlqVhw4a0a9cOg8GAy6NMhq6urri5uVGwYEFiYmLw9/dnypQpNG3alLJly9KlSxc6duzIypUrAfjpp58oV64cY8aMoVKlSnTs2JHOnTtn2ueVHAm6s5BDfgfm/c8SpI7+3IdbF+8keawxNm2DgbbtUNnHDQZo1NY7XeVp0wbKlFHLmzZBfA+QhQstx/QbWjnJc/UGPR/PacG1G/lZ+PkO/CpbJqe8G1qMid+24Kc5+9JVHiGEEEJkjZkfbMVgp6dK6SuM7f8vAXvuoOWx+DvhdGHx3ctBjcvWPZrg5aefVA+/CxegUSP44w+13d5edSnv2zd995w2DYqpiV9YvVp9vxLCin0hyF869Vc+t8Tn5nNL27n2Tz5N8datW/Hz86NmzZq8+eabtGvXjnfffRcAT09PHBwczMeeOnWKK1euULt2berUqUPfvn1p2LAh0dHRXLlyhYcPHxIUFEStWrXM59jZ2VGjRo1E94138uRJDAYD9erVS/aYx12+fJnIyEj69euHn5+f+fXrr79y5VHmxPPnz+Pj42N1nq+vb5rvkVHSvTyLterqyxttd7JkcxNCwgsz4q1dLP+rOABXzt5n1XdHWbW+GP+dqU63FntY9XeDJKf+ArhzB06cUMt16kAKD4uSZDBAv74an36mw2SCRdN3MnxyE1atUvsLFYIuXVK+Rv6C+ek7uil9PtDY+3sgM6eFs2a76iayZ4+RND4cFkIIIUQWuX87hPGz1aTV52+VZ+rC8kxdqFqDu3dXr5op52RNXUwIhF8CnQF0dupfvZ1a1juCYzHQG570raQouZZud3do2RL++QfOnYPZs2HSJLh7V+0vWhTWrlUt1+nl6gpffmlpHR80CI4fV9nThQBUt++Mdv1+vLu5DdWvX58JEyZgb29P8eLFsbOzhI358+e3OjYiIoLq1aszc+ZMjEYjJ0+epGrVqhgMBooWLZqh+8d3F0+PiAg1Q5S/vz8lSpSw2pfwIUF2kJbubDDTv6q5W/ZPWxoz4p0bNGwI5T2L8MHM5vx3pjoAP29tyOFtp5K9zvbtluUWLTJWlv49b6PTmQD4fkUFVv4UR3i42vfqq+DklLbr6PQ6GraryaI11czbAi77ZqxQQgghhLCZJbOOEBmT+A/8mTMq+PTxgaYNQvj3l8Ppu3DoaTj0PmyuAz8Xhc1+sMkHNlaD37xgfWX4tTysLQkRj83XdXUtbO8CB9+DU7Pg6joIPgwx98loE3x8S3fJkqohIaGEXcyHD7cE3N7earx3RgLueL16QatWavnyZZgyJePXEiK75M+fn/Lly+Pu7m4VcCelevXqXL58GVdXV8qXL0/JkiUpX7485cuXp2DBghQsWBA3NzeOHDliPicuLo7jx48ne01PT09MJhP//fdfkvvt7VVvX2OCqQIqV66Mg4MDN27cMN8//lWqVCnzMYGBgVbXSlguW5GgOxu4lXVl5rgT5vX/+buzd2/Sx65ZfjvZ62xbbwnImzfL2B+kcl4laVPvIACXg8owZqRlDEi/vum/ZiHXQlR+1CP96EkXmTJDCCGEyEE0k8a3S8uY17euCeDrmVdp0cLS5Rpg577CtOrmR0vfw2z/NYkvpHGREBtmvS36rkoQdf8QkMp3CIci1usPjsO1tXD6Kzg0HHZ0ht9rY1jrhu+5Fuh/94WtHeDohMTXCr8M4VchOhiMaqaYBw/g9qOvUAlbueN17aq6kCf03HOwZw/m7zEZpdPBN9+o5Gqg8ubYeHpjIbJVhw4dKFKkCAMHDuTAgQPcuXOH/fv3M2nSJG7dugXAG2+8wfz589myZQvnz59n4sSJKc6xXaZMGTp37szYsWPZsmULV69eZd++fWx6NGajdOnS6HQ6tm7dSnBwMOHh4Tg7O9OvXz+mTp3K2rVruXLlCsePH2fp0qWsXbsWgB49enDp0iWmTZvGhQsX2LBhg3mfLWVJ0L1s2TJatWpFzZo1efnllzl69Giyx65Zs8Y8GXv8q+YT93HKefqMbEyzptaJxmrWhM/GXGXH+qPm1uc1f5RN9hrbdqjq0+uMNKmf8YQJbw6wRMb3HqouINXLnSUdQyisxA+LiIiAs5kzM5oQQgghMsHWtQGcuqaiyuY+ATTv7MvA98vy779w/brqau1V+aHl+CN+NO9Ui+dqH2TX2h1wYgb80xp+LgIXf7S+eNF6YHjU7bSwD1TqB5UHQKW+UOF1KP8qlOsOpTskHnMacz/ZMhtM4egeHIMbv8Gdf5N4U+3g13LwiyuszAfrynFmzSTz7qSC7iJFVNK0eO+8o8ZfFy6cbDHSxdPTMitMUBBs3Zo51xUiJ8qfPz8//vgj7u7uDBs2jA8++IBx48YRHR1tnne7X79+dOzYkdGjR9OjRw8KFChA69atU7zuhAkTeOGFF5gwYQJt27Zl3LhxREZGAlCiRAneffddvvjiCxo1asRnn30GwPDhwxk0aBD+/v60a9eOAQMGsHXrVso8SmTl7u7OnDlz+Pvvv3nppZdYsWIF7733ng0/nUc0G9u4caNWvXp17eeff9bOnj2rffzxx1rdunW1u3fvJnn8L7/8otWuXVu7c+eO+RUUFJTkseHh4dqBAwe08PBwW76FTBEXF6cdOHBAi4uLM2+7fVvThg3TtIkTNe34cevjm9QI0FR/Kk07se9couvdvXbXvL9OleOJ9qdHTFSMVqLwbfP1QNNmfrA1w9ebNMlynZ9+eqKi5XhJ1avIG6Ru8yap17xL6jZturfaZfkbPXtXksfExcRpS7/cqVVxv2D13QA0bW7vQZq2DPXa3NayIyxMnXx7h6ZFJf0dL0Vx0ZoWdknTbm/TtAtLNO3op5q2t79m2tJKi1xVVjP9ZK/uuev1xOeuLWcp06PXj4NeMxdtxoBZmnZknKaFXbE67do1TRs8WNOWLdM0kyn9RU7N6tWWj2fAgMy/fm4mP69519NWt2mNR23e0r1o0SK6d+9O165d8fDwYOLEieTLl49ffvkl2XN0Oh1ubm7mV7H4NJB5TPHi8NVXMH48VKtmva9Le8sT37XLriY6d/smSxNyi/pJZ0BPK3tHe/p2tnR3tzPE0mtwtRTOSFnCBIABe5+sbEIIIYTIHLcu3mHNNtWNrbhLEF0G1E3yOIO9gV7vNebExbIsnrGTyiUvm/dNWDMBo0kPTuXAuVLik4s3AUfX9BfO4AAFykPxZlDxdag5DuovwNTiT45XWoupWzh0ug6+SQyQLtMRynaFUm2gWEPQO3LmpqV527PQFjj2GYSdszqttP1O5nZqyWvVP1Yt6ZmsXTtLArU1ayBWZlIV4qll0+zlMTExHD9+nLffftu8Ta/X06hRIw4fTj45R0REBC1btsRkMlGtWjVGjBhBlSpVkj3eaDRaDaLPieLLl9ZyduxZkRGP5mlfs6k4o7+0Pm/rP1Hm5SYt8z3x++87tDwzFsdhNNnxUpMDFCvzTIavWdMrGFDTHATsvoLRmIE/vrlEeutV5B5St3mT1GveJXWbugVfHifO2BKAfl2OYXBoluLnpTPo6PleQ7oPiqNT22v8sb0Mdx+6scv1HI1bl4WICAzMAx597mn47H/+Gc6e1fHeexppSU5srleTBo4l4jdaH+T3lfV6XCSnfrIMu/MqpTKqGR3drc7VhZxAf2cr3NkKxyejudRAK/cKWrke4Fwx9cKlwtEROnTQsWKFnuBg+OMPI23bPvFl8wT5ec27nra6Tev7tGnQff/+fYxGI66u1kGXq6srFy5cSPKcihUrMmXKFLy8vHj48CELFy6kR48ebNy4kZIlSyZ5zpmEc0LkcI9ny0uJb6UwAi5U5+C5amxZ/zfFyhU279u6V00zptOZcC0fS0BAwBOXbd5nRwg46ECPd5yf6HqaSaNYQR13Hxbj8JlyHD4cYJWcJS9KT72K3EXqNm+Ses27pG6TZjTCvJ8bAuq7Q/MOxnT9rW/Q0pU/Hs2asnBlfgoUP4I+MhK/R/uPHj2K6bFphB73++9F+Phj1Tp+5swthg27nub7p7dej5yuCoDBoBFWfxYX4w5w/2wwmj7AfEzJewGUTnCO7sExdIHHIHAcYflqcNelE8GF2qHpMz7VUN26LqxY4QHAd9/dp1Spy6mc8XSRn9e8S+rWmk7TMjgPQxrcvn2bZs2asWLFCvz8/Mzbp0+fzn///cfq1atTvUZsbCzt2rWjffv2DB8+3GpfREQEJ0+exNPTE6e0zm2VTYxGI4GBgdSsWRODIW3zUk4dsZdxsxsD8MWMaIa9p56R3L8dQvEyRdA0Pb6VTnHgTPK9ALJLm2cC2HKoDgBXz96gVMUSqZyRs5lMqluYo6P19ozUq8gdpG7zJqnXvEvqNmW//QadOqnPpW1bExs2pO/rX1AQuLvr0TQdVatqBAaaIDwcg4sLAMYHD1KcjPrsWahXT09YmHoKX7iwxtWrJlKJ0zNUr5oGhQvrCQ/X4eGhceqUKfmDI2+iu/oLuisr0N1LPJWMlq8kWvXxaB5vpenej4uKUp9baKgOFxeNGzdMib5LPI3k5zXvetrqNiIigjNnzlC1atUU41GbtnQXKVIEg8HAvXv3rLbfu3cvzeO07e3tqVq1KleuXEn2GIPBkGsqNT1l7fpOY8bNVsvr1jsyYqRa3vPHOTStPgAt6t/CYPC2RVGfiF+Nh2w5pJYD916njId79hboCRiN0Lmzymr69dcqw+njctP/QZE+Urd5k9Rr3pWX69YYa2THhkC2bA6hdr18dHmrQZrP/e47y/KgQXrS+xGVLAmNGsGuXXDypI4LFwxUcbdcxGAwkNxFo6PhtdcgLMEMYyEhOn7+2UCfPmm7f3rq9fp1CA9Xy15eupTPcy4DVYepV9gluLwCLv8EIWqmHV3ULXRxIcm+t9QUKAAvvQRLl8KDBzr+/ttAhw4ZulSelJd/Xp92T0vdpvU92jSRmoODA9WrV2fPnj3mbSaTiT179li1fKfEaDRy5swZ3NzcbFXMHKtqVfB+FE/v3GmZb3Lr35HmY5q3SsOAqGzgW9sy+WXAgfBkj4uOiGbSu1tZPGNnVhQrQxYvho0b1ZPz994zcfH4jewukhBCiKeEyQQ7dsC7fS9SpvhdWnb1ZfKCFnR9uwG/LzuYpmtcugSbN6vlcuXI8Lji+CmwADZsSPt5H3wA8al8SiTo+PbNNxkrR2oSjjpMarqwZDlXgOpjoN0ReH6fSs5m7wJVBlofF3oabv4FprSN5eze3bK8alU6yiOEyDNsnr28b9++rFq1irVr13L+/HkmTJhAZGQkXbp0AWDUqFF88cUX5uPnzp3Lzp07uXr1KsePH+eDDz7gxo0bvPzyy7Yuao706GNC02DdOrW8bX9x8/6m7dLz1yTr+Daw/FUNCEx+LNScT/Ywbm4L+oxqwr+/JJ9cL7uEhcFHH1nWo6L0jHgn+V4XQgghRGaIioKxY6FsWWjWDOb+UJFbIdZDtd4aXpLQe6HJXMHiu8m7iR9M+NZbGW60tQq6169P2zlr18KcOWrZ0RH+/BNq1VLr+/fDoUMZK0tKTp+2LHt5ZfAixZ6Bpj/DS5fAofBjN5gN/z4P6yvCkY/h4bmkrmD2/POW+b9//VXVbVqZTDB/vnpwsWYNPNZ5VAiRS9i0ezlAu3btCA4OZvbs2QQFBVG1alUWLFhg7l5+8+ZN9HpL7B8aGsq4ceMICgrCxcWF6tWrs2LFCjw8PGxd1BypSxeY8mh2jDVLLtCjRyUOn1fN3zUrnsfVvXI2li55nn4VyGcfSVRsfgJOJ50AD+DntZaW+oXfBtOya1aULu2mjbvArVvWU6Ks29mAP5Yf4IXXkp5qRQghhHhSQ4bA999bb3O0j6Zdg8PcCHJm36kaXL1bmlFvbufbNc2SvU5MZAzfr1a5X+wMsfTv9RAomqEyeXlBlSpqfPbOnRAcnPKVLl+Gfv0s67NmgY8PDBxoGar17bfWXd8zQ4ZbupPyeMBtjFLdzwEirsLxyerl1gSqjoLSL/J49lgHBzVMbdEiePhQ9Tro3Dn1W9+7B2+8oYa3xdPp1GfYogW0bKnq4+5duHNHvYKC1L8VKsDbb0OhQk/y5oUQmSZLZg23kbRORp4TZHSieJNJ08q5XddA0+wMMdqPP4Rpqt1b04YMsVFhM0k9z2MaaJpOZ9QeBocm2n/zhsn8XkDTnBzDtNB7iY/LLldOXdfy2UdooGn29nHa+HcDzGX1LH1Bi46IznC9ipxP6jZvknrNu/JS3f6x/ID5742dnaZ16KBpP/6oaQ/uq/d28dhVrYDjQ/Mxf68+lOy1fpq9y3xc91a7nrhsI0ZY/m7/tCDMshIWZnVcTIymNWhg2f3yy+o7jaZpWmiophUs+Ohvv5OmhYQkf7+M1Gu7dpb7XruWkXeZAmOMpl1erWn/tte05XpNW4b1a8uzmhYckOi033+3lKlHj9Rvs3evppUrp1l9T0rvq2RJTVuyxPK55yR56edVWHva6jat8ajNu5eLJ6PTQZfnzgIQZ7Tn448t2UZbtMimQqWRXzXVB0rT9BzdfSnR/t82Wj8JjoguwM/zA7KgZGnz4dCLRMWqtKrvdt/BhK98aFxdJVY5c70iX328OzuLJ4QQIg96GPyQN4dZupHPmXmX9euhZ08oVFj1C69QvQzTRlvGcw8Y4krY/bBE1/p79SEGfljNvP7OoFRShadBwi7mCVtgH/fxx7D3UTLwihVVF+n4BuCCBaFXL7UcEQE//vjExbIS39JdoAC4Z3YeV709lOsGLX6DTtfAdzoUqmrZf/tv2OwH+wZAdLB5c6tWED+D7oYN6n0nRdNUj4CmTSE+h7Cbmxr//v77ULt2oob0ZN26pVrKmzSxTTd+IUTaSdCdC3TpUdi8fOmas3m5WfK9yXIE31qWBwQBAYmTjSQ1Hmzx8oK2LFKa7f/zOMv+VNO1FXUO5uMvfNHpdcyZ54hOp6Ye+XReXa6fu5WdxRRCCJHHjH7rMFeCygDQ0vcwbw1xTfK4geOb0qxmAAAXb5dj7EDrpGrfTdpOm1drEhJeGIAmNY7QorPvE5evcWMoUkQt//ln0sds3w7Tp6tle3tYuRIezSxmKX+C3GTffIN5zPmTiomBixfVsqdn2gPUDMlfCqp9AO2PQ5PVUKDiox0a3NgECeb3tre35OkJD1cJWh/34AG8/DIMH66mKQUVMB8+rLrjz5wJBw+qbufr1sF776mg+v33Ydo0WLhQTQ23dSt06mS57u7dULeuuoaMCRcp8fLySvE1Jz5Bg0i/LGp5t4mnoXu5pmlaXEycVtzljlWXoWrVbFDITLZ7a4i5vG++ab0vPFzT8uVT+0qVMmlepc+bj70QeCV7CvyIyWjSGlc/Yi7P7I+2Wu0f2HWbpYvYczufqi40T5OnrXvU00LqNe/KC3X77y+HrYZcnT+a8t/Ds4cvafkdws3nbN+uvjO899q/Vt8Z2jfYl6nDt3r1elRGEncvDw/XNA8Py+YZM5K/TuPGmlXZk5Leej15Mn3duDNVXJSmHZ+uaasKadr5RYl2b9liKVvXrpbt169r2vjxmlaihHX38NGjNS02NuPF+f13TfP0tL5miRKadv58xq+ZWfLCz2tedOfOHfPrhx9+0GrXrm21LSzBMBKTyaTFJvEf9GmrW+lenocY7A10annSalvzWkezqTRpV7OOi/kJc0CA9b4t6y6bs3e++KKO3t0sGcGXfnM+awqYjJ/997LruA8AXqUv8M64Rlb7J82piWtB9ah4xZbGnNgtU4gJIYR4MuEPwuk/uIh5fer7B6hUs2yK53j4lmfyh5fN6/36mejU/CD/W97CvO2917by6/Y6FCyaeT3JEnYxf9y4cXDuUTLvRo1Ua2xy4pOpQeZNH5apSdTSy+CoWr47nIeKb1jvi7hGc/0rFHeLA1RL9x9/wCuvQPny8OmnlqlhixRRvQE//xzsniDl8QsvQGCg6nXg/Kij5O3bqnXcmLbZzsRTxs3NzfwqWLAgOp3OvH7hwgVq167Ntm3b6NKlCzVr1uTgwYOMGTOGQYMGWV1nyZIl9O7d27xuMpnw9/enVatW+Pj40LFjR37//fesfnvZSoLuXKLLy05W6y0aJx67ldM4O6usmqB+6cfFWfatX2EJsju2ukCvgZ7mbttL1lREM2VSP7N0igqPYtSEMub1mZPvYu9ob3VM0VJFmDLquHl92swqxMXEIYQQQmTURwMPcOFWeUB1BR/yadM0nTd0XFUaNlTL587p+W3PM4DKVO7/2Xa+XNYCg30G5whLxgsvqO7Sj9uzB/73P7Xs6Ki6O6c0PVm3bpZxzj//rLJuP6mE04VledAdL18x0D32FfvQSOxurqJrLZWSPioK2rRR83bHfz8yGFT38kOHoEOHzCmKg4Oabuz0aTW2HmDXLkv3f5G1Vq+GqlWhTJmse1Wtqn6+MssXX3zB+++/z6ZNm/BK45x8/v7+rFu3jokTJ7Jx40b69OnDBx98wP79+zOvYDmcBN25RMvOPrg4hZjXm7XLHVOo+fmpf6OiLH8ITUYTv+1QP6T5HSJ4tn0pynq508pPtd6fv1We3buzJ+iePX4vl+6oloXnah+k/ev1kjyu/+jG1KlyAoDjV7yZ8mnOfwgihBAiZ9r121Fmr1BBdj77SBYucUFvSNtXNINBBbeOjpZthQuE8PtPgbz1sW2SvxQqpKarSigqSk0PFj82+9NPU58jO18+y5RisbFqSq0nlbClO8NzdGe26GAI2gnAKw2WJ9pdvLhKPHfpkgrCK1TI/CK4u8PSpRA/S+/48WqsuMhaM2bAqVNw/XrWvU6dUvfNLEOHDqVx48aUK1eOwvET0KcgJiYGf39/pkyZQtOmTSlbtixdunShY8eOrFy5MvMKlsPZfJ5ukTkc8jswos9uPvm6Bd1a7KFkxYbZXaQ08fW6zUpUFtaAv/+jevV6/LflBLdDagDw/DOB5C9YH4Dew2rx96OeKIuX6GncJGvLenL/eSbOU0G2Xmfki1kF0emTzsBisDcwd7aJhm3V+qefu1KomEpmIoQQthJ2P4wCLgWS/d0kcrao8CgunArlzsPilnmVbxv58Ttn4kf8TRq+jyp+LdJ1XW9v+OILNbe3lxesW6XD26d25r+BBDp0gJ0JEqlNmaK+3APUqwcjRqTtOm+9ZQkI/P1Vq6w+Dc8bIiNVa/vj3a9zREv34xyLwoun4NhnNGEWDavsZs/ZRjTw2MOQl7fR7b0uOLrZvrCNG8Po0TB1qmpd79lTJWbL/+RJ7UUajRqlhmA8fJh19yxYUP1cZZaaNWum6/jLly8TGRlJv/gnbI/ExsZStWrVZM7KeyTozkXGz2vBoA/v4ereILuLkma+nlchPug+EE5PYP3qu+b9HdvHmJe7dNUxaDCEhalMp7NmZd0fgshI6N67JBHRBQB4u8sufJqk3ELQoE0NpkwxMXas+nYwcqT6opDS+DUhhMgIzaTxbo/tzFvdnLc6bcd/bQ6fvkIkcnL/eZq1duFuaPHH9hiASgDU9z7G8Mlp61b+uMGDVdfkokXBzs4l9ROeUIcOMPpdy/pXX6l/7e1Vi3VaxyJ7eMDzz6tM6BcvwpdfqgfYyWUd1zR1/eHD1b0mTFCZ0OPvF9/SXbKkapHPMeydwW8ahkp92eE2nLvnDlPC5VF/+r/Hg/cIqP6xOs6GJkxQY8kPHYKTJ2HMGPV9S2SNbt3UKzfL/9iXc51Oh/bY9APGBEkDIh7Nj+fv70+JEiWsjnNwcOBpId3Lc5liZVxzVQuHb6Ny5uWA4yqJy/otpQHQ6Uy07+Ft3l+ggOUXUWgo/Ppr1pXzvffg2CkVcFevdJ2ZC+um6bxRozTeeee6eX3ECJjzyT6blFEI8fRaNH0H81Y3B+C7dc1Y/c2ebC6RSI+YyBh6vhbD3dBiyR5TuEAIixbnf6Lx18WLP1nirfQoXx5q1rCsG1VaFsaPh+rV03etwYMtyx98AK+9lnRLYHg49O0L/fur/cHBMHSomrt62zY15VZ8MrIc08r9OBdvDM9tpsSL34DTo+9Iplg4MQ3+fT7z5k5LhoOD6maeL59anz0b/vrLprcUeVzRokUJCgqy2nb5siXBY+XKlXFwcODGjRuUL1/e6lWqVKmsLm62kaBb2FTJisUpUVg9yQ04V54LgVc4dlllV6vvfYISFdysjk+Q6JDFc89mSRlXrlRd2kC1rK9cXxqnQk4pn5TAgAG3GD/eZF4f+ml9vv5kW2YXUwjxlDq+5xxDPrF+EDh4jAdBV+8mc4bIaSa+u5vD51U3ykolLjLqAxMzZsDixbBpExzYfo2rV+2o+kzlbC5p+rRvb73u56e6L6dXhw6qt1i8FSvUvNKBgZZtJ09C/frqM3tcYCC0aGGdfCzHBt2gmvHLdoEXT6rW7fj5vL1H2HhicaVaNTWvd7w+fdQDDCEyokGDBhw7dox169Zx6dIl5syZw9WrV837nZ2d6devH1OnTmXt2rVcuXKF48ePs3TpUtauXZuNJc9aEnQLm/OtojKV3w0txjczLpi3d3w+8RfGZs2gfHE1Bdefuytx4/xtm5bt/MkHvPmm5any3Lnpf0IPMH68xriBe83rgz9tjv9n2zOjiEKIp1hEBHTvU5LIGPUgsHCBEACCQt0Y1u90CmeKnGLXb0f5fKHqMm5viOHnFdFMm65n5Eg1dVPbtlCnaRmci9i2W7EtJAy67Qyq23dSWc1To9Opcd0//2zpEn7mTHyQrWPz5qI0aKDn+KOJQ5yd4aefVLb0OnUs19mxw7KcY5KopcTOCWp9Bu2PQ41xULZrlt16yBBo3Vot37ihuugLkRFNmzZl0KBBzJgxg27duhEREUHTptbDZIYPH86gQYPw9/enXbt2DBgwgK1bt1KmTJlkrpoHZc204baR1snIc4KnbaL4hMb0/UdT/aU0zckxzLx8bPfZJI8f99a/5mOmv7/VZuWKCo/S6lQ5br5Xz56aZjKl7xoJ69VkNGlj+1veK2jaxsX7bVN4YXNP889sXpbb6rV/f8vvEx+Py9rFY1e1IgWCzdvWLdibbWWLCo/Swh/knL+/ObFuQ++FahVLXDbX19Th/2R3kTKVMTTM/B907rSwTLnmuXOa5uenWf0tTfiqUUPTTp2yHB8Xp2nffadpxYpZH/frr5lSnOx1aJSmXdtos8tfu6ZpRYpYPrMtW2x2q0Ry4s+ryBxPW92mNR6Vlm5hc761LUkS4hOVVSp5mWr1k+5G98bAiublH1aXJiI0wiblGjNgDwfPVgOgSulrfPPNk/Xq0ul1TPquBaP7bDVv+9bflPwJQgiRguXL4Xs1pS9OTrByQzkqVC/DrE+Pm495Z2QFgm/ez/KynT54gQqlQ3AvFcvfqw9l+f1zi+G9A7h4W43bbVLjCB9Mz1sJ8BJmGU84LvtJVK4Mu3fD228n3te3L+zbZ92KbTDAm2+qlvEhQ9R6hQrQqlXmlCfbnF8IJ6fDthchcCJomf99onRp6yRqEyfafEi5EE8tCbqFzfk2TJwkoWPLS8kmhPPwLU/j6mrO7hNXPKhUPoyvPtxG5MPITCvT+oX7+OqnFgA42EWz8scwChZ88uvq9Dqmft+ckoVVt/h/DlYnOiL6yS8shHiqnD0RZhV0fPONmhYKoNfwxrRvsB+AWyEleO/9jCfeyoiYyBh6vhrFrZASPIhwodMbVTj4z8ksLUNusG7BPhb+prpYOud7yJKfij5RkrSnSb588O238OOPUKiQhpOTkQULTCxcqB5AJaVIEZgzB0JC1NRlzrmvt761W38/WtAgcAJs6wDBhzI9Kn7tNcvvlh07VEI6IUTmk6Bb2JyHT3mcHMOttnXo+0yK50wYH4dBHwfA7ZDivPd5cyqXf8Ccj7cRFR71xGX6YLxlypYvx+7Fr4V3Ckenj06v44VGKglceLQzuzYdT+UMIURmM5mydh7UzBQdEcUrHa8SFqbWe/dWY3/j6fQ6/JeWpZCz+l245KdCbNqUdeX7bNhucy8hgLCogrTtXIyzhy9l6HoPH8Ldu6rO8opbF+/w5vuW3lyzJwRQsUbZbCxR7tSzJ9y4YeLPP4/Qp0/agk1nZ3B0tHHBskKjH8H3c9A9+qp+YxP8Xgc214KTX0DkrUy5jcGg5o2ON3FiplxWCPEYCbqFzRnsDfhUtCRQc3HRaNoi5Qm4n+temyM7L/FyS8u0ODfvl2To5OZ4VIpiyZKMl+fG+Vucua66sD/jdYxBn2R+d782bSw/WpvXh2b69YUQSYuKUlPglC4Nrq6wYUN2lyj9xg3ca8507VX2GnPnJj6mtEcpvvwqn3n9rbfUdEm2tntjIFMWqNZbO0MsfpVVC3dQqBvPt7XnxvW0t8KdPQuvvw6FC4Obm0rAVeL/7d15eEzXG8Dx78xkD0mIxF57BAliFyGxq11R1dpKS6tatFpd7HvRhVKU1lLV1k9Lq6Vqi12tERH7vosQkT2Zub8/LjNGFgmZTBLv53k87tw5994zOZnJvPec855CkfiUOU0zv8O80nw3y7/ahWLIW+Ndk5JgwJs64/JgXRrvpd+HAVauVd7l4AAODnnrdyBbaDRQdSQE/QP27qb9UUfh8AhYUwqC20HM+We+VI8epmzvwcGwXfLACpHtJOgWOcLPz/QHs+2L+kxlN63WsCIrtzTkyI5TdGlsygx+9ZYbffuqa3OmpGS9Lns2mv5ANfO/bZF1z1t29Uar0QPwz/aS2X5+IYS5hDg9c+ao80GHDoUbNyA5GeZOCbd21bIk8tod5vyijgSyt01g5Yq4dIfJ9u8PrVqp21evQs+ud4i6ZbnIO+bufXq/4YJBUYdIjxu8iy27S+Bb9hQAF26WpM2LGqKiMj7P2SMX6dduJ97eBpYvN/VwGwxwK8qdY5cqsTXEj1+3+NP7/Ua0qX+QyyevWex1ZacjR9SM2+s2q0FS0cJRLPipokX+zojnRPGW0OEs1FsARRqa9it6uLnVPCB/SjodjBplejxhwjOfUgjxGAm6RY5o1K66cbtrN5ssHVs9wIvftzfg0NYTdGhqCpi/+UZdkzOrvTu7diaZ6hWY+fW4s8K9RGHqVVa/7IddrMSVcznQBSXEcygxLpF547dT8YVbvPuuuvTNo3YcLpOn8iosnBFqXB5s0Ev/UT0g/cWGNRr47jvT3NX1mwtTq/o9i82vHj4shXM3ygDgXzWUkTMDcPN05Z9NrpQtkwyo6yV36ADxj6XgSIhNIPy/M/Rvv4PKtUqydF0ABoP6FaRwYWjTBurU1vOCxxUcbM0P/vdAHXz8nFkyfWeu7fVOSUph0pi71K0LISHqPhsbWLrCDY/SRaxaN5EP2LlCxYHQaje0PwnVPgOn0upa37Yu2XKJnj2hYkV1e/Nm2LUrW04rhHhAgm6RI3r0gMmT4csv4aWXnu4cfkHe/LmlHN9/r36ZAfjnH2hU6yrnwy5n+jy7D5ruCjdonnYG9ezQpr2pe2rDVleLXUeI51VSfBJN65xi8LgmXI00JWzs3Bla1A0D1BUT9m7IG0m+khOTmbNMTcus0Rh475OyTzymTBn4/XcoVFCdxnL+5gv4ty7P/AnbsjVA/fNPWLSsEAAFnBJYtsIVGzv1g7hEhaL8u9EWDw+17M6dUN/nAv5Vj1KpxAVcne7hWMCBag0qsvjvxugN6nGFnO8y+dNLXLgA69fD/gM6Lt4qRVyCA/fvxLB2yT5KFr4OQHS8K6+PDKBjwH6un7uZba8rO4T/d4aGPqcYPbEQyeq9B3x9Yd8+aN3aunUT+ZCLF9SYBJ0uQJ1vzJ9LiYOtbeDGliyf1sYGPvvM9Fh6u4XIXhJ0ixxhYwOffgrDhz/bslygDqncuBEKF1a/UB47V5J6jRzZ9VfoE4+Nvx/PodNqz1HlkucoUurZh2Wlp00309Jn69db7DJCPLcWTtvDnuO+xscd/PdxcH8Kq1dD7x6m0SWb/4myQu2ybtWC/Vy9o9486NhoPxVqlMnUcS1bwuH/oqlXWb3RkJRiz9tjA3mt9W7u33n2bHI3b8Ibb5gefz3bIVXdKlVSP+ce9rofPVeWPcd9OXO9LNHx5jcdXZ3uMeGdYM6f1/Lp5BdSrRyh0WooUKgA7fvWI+y4E31e3Gl87q899ahW04lly6y/tJE+Wc/0D7bhF1CaAw8Sy2m1Bj79FPbvBz8/69ZP5HMaLdgVMt8XNhGub4AtzWFPP0i4naVTvvYalHvw1eXff2Hv3ozLCyEyT4JukScFBcHebXfxKqkON78dXYRmXSqzcu7uDI87sDuKZL26bngjv6sWrWOdOmoiJ1BvEjzsARFCPLuYuzFMmGXKoL1hxUH+3FWPWnXUXtTmnUyjWDbtsNzNteyiGBS+mmsKTocNz1r65TJVSrHjsBfvvWJa7+fnTY2oWz2CacODWbt4H+fDrmQ5Q7hiUHjzTYWICPVxx47qjc+01K4Nf/xhvlRTIWf1czrA5whdGu9lytBgLpyH0XOCcPV48gggN09Xlq4L4I/v/6Oo2y0A7t4vSN++0LgxHD6c/rHJicmsnLubd3tsy9RN2aw4deg8jWuEM/LLQJJS1LbyLnWWPf+cYPLkfJI9W+QtBj3cfiRKPr8U/vaGc0syfYfK1lZ6u4WwlBwJun/66SeaNWuGr68v3bt3JzQ04z9+69evp02bNvj6+tKhQwe2yaKBIg2VfAqz92AhmvkdAtTendc/qMG9iPTnT+8OMQ1B9W9Xw6L10+lMSY6io+G//yx6OSGeK1+OOsCte+p45u5N99CqZ22z50tWLIZ3qbMA7DtZhejI3L2KwJ71Yew/VQ2AGuVPEtg5659Pdo52zPo5kP99u4eCjurrPXm1PJ98HUTH/vUo71sKFxeoWxfeeguuX3/yOdctP8DaterwJE9PWLgw49FKzZqp5716NpLEuCTuxBTi5JVy7Dhag9+3N+CTr4Nw88z6dJuO/etz7JgNr3Qy3SzdtUsN9N/uf5vIa3eM+29cuMWEd4IpW+I2PYb4M2dlIE06VWPKZOWZlyUz6A18/ck2ajQoZhxlodEYGNE7mMMnSlKvZdUnnEEIC9HqoPlmNeGarZu6LzES9r4Om5tB9MlMnaZ3b3XaCqijV/bts0x1hXjeWDzoXrduHVOnTuWdd95h9erVeHt7M2DAACIjI9Msf+jQIT744AO6devGmjVraN68Oe+88w6nTp2ydFVFHlSoqBv/7PGlc4B6dzcu0Zn1v6S/LvbuRzrC/QOzJ/lIRto0jzFu/7Nsh8WvJ8Tz4NalCGb8oAbZOm0Kk78onma55g3VAE1vsGHbnydyrH5P4+svTJ8Vw9+KeKZs193ebsih3XepVTH1XPbYWDhwABYsgAEDMj6PYlCY8rmpy3bOzJt4ej75+gUKQIny7tg52mW16hlyL1GYn9eU5J9/TMsbKQrMX1yESl4aZozYztT3oylX2Z2x3wZx7Y7p98Jg0PHZKA3t20M6Xz8ANSHaldPXibl7P9Wc+LOhlwjyO8rwaYEkJKvLXlYsfoEdf4YxY1kQDs4OaZ1SiJyj0aoJ19ofhzI9TftvBcO66nB0POgzTixpZ6dOB3zo3Xdh6VI4eBDi4ixTbSGeBxpFseysqO7du+Pr68uYMWMAMBgMBAYG0rt3bwYOHJiq/LBhw4iPj2fBggXGfS+//DLe3t5MeGycS1xcHMePH8fLywsnJ8tkoc4uer2eo0eP4uvri06ns3Z18p0tvx2mVY86ALzcbDcr/q2fqoyiQPHiWm7f1lC4sMKNGwa0z3jb6UntevPiLUpWUL/41ap4nH0n0s9EnFlRt+4xe/wRypTT0XdEo2c+n0ibvGfVHAg2djbY2mdijb8cNOzVHcxZGQTAWy9tY87KtNdA/uP7fXQdpC6x894rwXy5vHGubNeLF6FSJQ0Gg5aibrc4d6kA9k7PPj7ZoDdwdPcZwkMiORaazLHLXoSfL8G5c6AoalC/beNtGjUtlObx2/88QrOXagFQ7YXTHD5dFq0ud8xKS0qC2bM1TJqQTExc2j8rrUZPp4B9lK3ozNdLfI2vuXRphRXLE2nYSP29TklKYfvao/xvRRyrt1Y1rq/tYK/Hs6gWDw8o4q5n5/ZEYhOcjed/t0cwk76tjbNr7v7+YVGxsehc1ZEL+nv3wNn5CQdkXW58z+YZ1zegPTgETaxp5RelUB0MLXerAXo6kpKgcmUtly+b3/zTaBTKlYNq1eDNNw20bfv0VZN2zb+et7aNi4vj1KlTVKlSJcN4NGtrN2VRUlISx44dY9CgQcZ9Wq0Wf39/DqczESskJIR+/fqZ7QsICGDTpk3pXicv9YIfPXrU2lXIl1xeMFDI+S53Ywuxfo8P+/fux9bBPFC4eMGW27fVpcuqVr1HaOjZbLt+Ru1as/wdQs5V49CZKmzbEIxr0YLpln2SqJvRDH+nGEcvNAXAudDfVKxd7KnPJ57seXzPJiVpWDLPhiU/V6Z0kWvMnn2GouULW7taANw8d4cFvwUC4GQfS7cBBkIertH0GI8KerQaPQZFx+Zdxc3KPdquikFhw0+Xib2vpdObxbCxteifxlRmzSqJwaC+j7t2i+D4qcyvxvBEBaFKY0eqNHakGzeAG/zxR2EmTlSzJY0afp6vllxM89DJE02JKAa8eozQo7lriH6LFlCr2n0WfmHgf8HNjPuLFLxNz7Z7afeKI0VKuwHJVKxzmlGjynH3ri2XL2to2kzHe6+s485dO9bt8uPWvTqpzp+QqOPSJbh0CdSvS+rvRRmPS0wYFUK1RiU5fT7vfP+wBG18PA/zxYWGhmJwdLTYtZ7Hz+JnVxRNiR8pHrmIYnd+RIOeq7qG3Dzy5BwHb71ViNGjy2EwmAJvRdFw7hycOwdr1+qYNOkcbdrcfaYaSrvmX9K25kn1Lw8AAEWDSURBVCz6zeLu3bvo9Xrc3c2T2Li7u3Pu3Lk0j7l9+zZFihRJVf727fQzMEpPtwBoF7CH5RsCuB/vwp3zGlr3rGn2/JFNpkUn2zSJpmZN8+efRmba9cWg7YScU+dqXg7XEtja/LopSSnMHbeb2FgYNNIH9xJpBzfnwy7TY0ARzt4wZQ0+ecSJbgOe/XWI1J7X9+zhwzBokJajR9UvWmdvlOO997Rs22lHsbKZGFtsYb3GXzQmQ3y/zz6CWjfJsHwdr+PsO+nDscuVKeZ2HY/S7qna9de5exk1qwsAjo5b+XRWxufMTjEx8Oefao+TnZ3CqAnemRrC/Sx8qqbw86ILnLlelh1hdblz9gDNupqn2j4UfILNh9Uh/GU9LzN4zIvGJcJylZrQ7EUY8ncIv/4YRYWKd3njo+Y4u7xoXqymun74q68a2LlTS4reli9/6pDqdE72sQTWCCcxScetJB8iIm2JiACDQYNWq/BG1xA+n1uOgoXb5czry+1iY42b1atXl57uXKsBhqihaI5Pp3i9aRTXPTI6JCkKlBSwN//uXbMm9Otn4PBhCA/XEB4OYWEajh+H2Fj178P48eWoVauMMX9NVki75l/PW9s+7Ol+klz4FzTrdDpdnmnUvFTXvKbLSzYs36Bur12dSNte5j/nPbtNd2sD6txBp3sh266dUbu+2KkwU39Qt//9V0ffEaZyikFhULf9LF2n9lx/vfQOk0bsYuCnjdDZmsod23OGVu2dzeYoAmzb48oY+X2yqOflPZucZGDKVC2TJkFKivlzZ2+UoX2rEwTvdcpUxmlLOXQIfllbHoAibvf5cGrtJ7ZN86Ak9j3IH7Rtjzs9yqrlH7arYlCYMcs0vPqrJTUYOj4WF/es53y4fSWSL8cepUo1G3q/n/aQ98f9+CPce5D78bXXNBQvbvnfNZ2jjvEjr/LasLIAjB1nT4tuWrN55NMnmXq1Pxp8HnvH0hav17No0rEmjdrpCQkJwdnFOc3fi9KlYevmFEYN2s7nS4KM+x1s42nnH8LL3RXa9aqBs2tds+MMBrhzB+zsNLi4yDpgZh75Oet0OrPH2X+p5+Oz2GLca0LAitT7wyfCuaXgOw683gGtKTQoUUL91+6Re0wGA7z9Nnz3HSQna+jeXceWLVCv3tNVS9o1/3pe2jazr9Gik7MKFSqETqdLlTQtMjIyVW/2Q0WKFEnVq51ReSEeat3DFwfbeAD+2Fk7VZbah5nLbXTJ1G3+7HOrM6tB66q4OKrfqjfs9UafrDc+N/L1bSxdZ/pyfiemMIPHNaGO92l2rlWHf/23O5kmrd2NAbd3qbMUc7sJwJ5j3iTFJ+XUSxH51NFdp6hf9RTjxpkC7ho1YN3vtyldRE1GFnLOm84tz5EQm2C1en78sWl79PiCmQqMW7xcy7i9aUvqxF6bVx0m5Jwp4/Td2MLMmZX199Tlk9cIaHCPqT8E0eeDAPb+E/bEYwx6A7Omm/7eDRuW5cs+tR6DG1DthdMA7Dnuy/rlB4zPnTx4jt+2qXkxirrd4vURT/ltOheysbNh2uIg/v35IIO7bWPFrN1E3NSzKrghL7/jj7Nr6p5arRaKFAEXy+feFCJn3TsBp+ZCchQcGgb/1IaIjJde1Wrh22/hpZfUx7Gx0LYtnMjduSqFsDqLBt12dnZUq1aNPXv2GPcZDAb27NmDn1/ad4tr1qzJ3r17zfbt3r07W4YCi/zN2dWZlq3Uu03Xbzmzf7/pubs3owi/VBEAvwqncHLJuekItva2tKwXDkDkfXcOblUzCn/xUTAzlgUBasKfF+uZKhxyzpvGHavz0kvQvJUtd+6rPXF1KoWzY48bLRuoX5bjk5zYv1n+0omnF/x7CHWCynD4rDcAOp3C6NHqMjEvdinCv+sScS+o3jgNPuLHa21DzG4c5ZSNG9V/AOXKwSOpQjLk7w8OD5JKb9qUernaGTNSryH1xdwi3L+f+bqdPHiORgEKJ6+WN+5bMOfJ8xzXLT/AmcvqDeVm9c5SvXrmr/msdLY6JnxmuiE+akIBY7bu6eOuoijq14P3+4fny6zcLV+pzdz/BdLzPX8KFCrw5AOEyI/s3KBcL9PjqFDY2Aj2DoCE9Kd16nTw008QFKQ+joyE1q3hyhWL1laIPM3iaUhff/11Vq5cyerVqzl79izjxo0jPj6elx7cIvvoo4/44osvjOX79OnDjh07+OGHHzh79izffPMNYWFh9OrVK71LCGHU+SVTT9aaNab9ezacNm77107/D4mltGllSkj0zx8RLPv6ECNmBBn3zRu/i3X/1WXn2lBqljcF0atXm6bMNW10ly17S1GklDuBLUzDYbcdqWbx+ov86e7NKHq9WZSkFHV+X9UXzrB302UmTFCXjQHwrluedatu4GyvLmn1+/YGDH55V6rllCxJMSh88n6E8fHEiWCfyeTeDg4Q8GAwyeXLcOaM6bnQnSf594CaQKtc0Uv0fEUNwO/cUXtyMuPQ1uMENHPh8u2SZvt/3VibexH3Mjz2y69NyR6HD85gHSsL6fJGffwqqDcBD5+twu8L/+PyyWssW98AADfnKN76tFZGpxBC5GWOxaDBYmi1Bwo90hl27gf4qzKc+Q6UtBe3d3CAP/5Q536DmnCwdWv181MIkZrFg+62bdsycuRIZs+eTadOnTh+/DiLFi0yDhe/fv06ERGmL1O1atVi5syZ/Prrr3Tq1IkNGzYwd+5cvLxybjiwyLs6dMC4DNijQffuHaZkL/4B2bt2bGa07lrRuL3gVx/6jzD9cZvwTjADR6uJmxq1r86BE5WYN/0shR/Jp9apE6zbVIiChdXxjYGdTIH2tu35f76MsIx3eh3j6oNpC838DnEwvBR1glLnOqjXqhq/Lz6JjU69efTdmiYM7RlMZERyqrKW8M+KAxwM8wCgRtV79Oz5hAMe07y5aXvLGtNNrZmTTX973n/zPGPHadE8mNY8c6ZZjqg0bVsdQlC7ksYlpmqUO8krLdSRXfFJTqxYmX4P6sEtx9kaon4OVCpxnra9UmfPtjSNVsOkMab1wcdMKcL06ZCiV28GDHk15Knmtgsh8pgiDaD1Pqg9G2wfvOeT7sC+QfBPHbi+Mc3DXFzgn3+gQgX1cXi4+n0lOWf+NAiRtyh5WGxsrHLgwAElNjbW2lV5opSUFOXAgQNKSkqKtauS7zVurCjqIFJFOX74lqIoitK05iHjvsunrmXbtbLSrtVeOGWsw8N/Q3ofVwx6Q5rlb99WlIkTFeWrrxQlOdn8OYNBUUqUUM/h7KwoSUnZ8GKEmfz+nl0xa5fx99DN+W6m3hePHgOK4uBgUPr3V5RDh1KXNegNSvh/Z5S5Y4KVd7oHK8G/H37qugb4hBiv+ft3e7J8/L5NJ4zHdw3crRw4cEA5H35JsdElKaAohQtEKjFRMYqiKErPnqbXN+PTI+me888VZxUH2zhj2QCfEOXuzSgl5LDeuK9mTfW9mpYezUw/y/kTtmX5NWUXg96gNKwSmuqzyckxWYm4HGG1ej2N/P6ezZViYky/NDExFrmEtGsOi7uuKLteU5SfMP07tzzDQ86eVZSiRU2/Ch9//OTLSLvmX89b22Y2HrV4T7cQOa1zc9P40T+WHSM5MZn/jqsjJV7wuEKpSsXTO9SiXmxtnpypRw+YtcTbLGPwo9zdYdQoNbmSzWPrDGg0prlUsbFw8GD211fkX5dPXmPwp6bkYd9OCc/U+6Lne/7MHbMNrUad052QoOGHH6BWLWjUCH78chcLJgTzSvPdFHePoGr9CrwzIZC5/wukbc9KXDt7I8t13fHnEXaG1QCgSumzdOqf9aRetZpUxM05CoCtBytj0OuZPdfR2KM7uGeoMYHWqE+S0GjU4ZQz5hYnLjrO7FyKAl9/DV16lyMhWV2T+MV6+9mwqxJunq7UqKml7oPk1yEhab83Lxy7wv+2qonKPFwi6DOsbupCOUSj1TBpQkqq/W8OtKFIKUlgKsRzx7EY+C+H5lvUIefOZaFMD/MysZchyTR9pnx5+PNP03eVadNgw4acq7IQeYEE3SLf6dTZNE9yzXp3QnedIS5R/ULtX/2StapF576mIeEtWsDSpaah8E8jsLEpmdW2P44+S9XEc8SgN/B6z+tExboB0LPFLnq+55/p4wePD+TEwcsMey8Z10dWD9u9G/p80Ii3xgbx6xZ/bkaZLzYdl+jMhA+fvI7l46ZONt2s+vi9a2h1WX/T6Gx1NK2lDiu/E1OYY//dY9EydwDs7Q0M+czXWLaqrx3dm6rJPG/d82DBFFOCw6go6NoVhg8HvV69WdazbThrgmuYJWd8803TtRcuTF2fryaexaCo00Le7X0Mx4KOWX5N2alZNz+a1jxsfGxrCx98YMUKCSGsr2hTaHMQWu4yW0YMUDOdr60Ip+eBQb1pV6+eGmw/1Ls3XLuWc9UVIreToFvkOxVqlMGnjJo4be8JX3776abxuUYNrTfRqFEjWLwYJk9W55tnNhFUegLrXjRub9tivWWcRN4ye9QONh+uDUAp92vMXZ71RHyV/Mry1Sxbrl6FBQvA1zd1mYKO0bRrsI9pw4ONS+Yt+sOfkyE3UxdOR8j2k6zfp/YCl/G4TM93G2S5rg+1aJpo3B471Y/799WguW9fLUXLuJuVHTXBw7g9fYE38ffjObT1OLVrxrF6tancyJGwfG1V7BzN80S88goUKKAmmlvxYzwxd03zpu9cv8uiNer8bUe7OAZ/moMpyzMw6RtTI/bpo65pLYR4zmk04FTCfF/0Sbi8GhJvw/7BsN4PbmwC1BuSD9f0joiAXr1An/OLXQiRK0nQLfKlzq2uGre/XtHIuO3fqnxaxXNMv37w6afgnHop2Czz8itHUbdbAOwI9SYlKfUQUSEedewYfPyl6f2wZN4NChV1e+rzOTvDwIFw5AhsWxPKh32CmTY8mP82HONOlBN/7anHyC+D+OiNQwDoDTZ8Nqlops8/bbwpo/eIQeewtbfNoHTGmnc0RZGXrqvDpjUaeP/91GV9G1Wia6CaEO1GVFF6tAnFv3U5zl1Ue7MLFYK1a9VenbRGqxQsCD1bqr3lMfGO/Drf1Is8f1qIceRN/077cS9ROPUJrMA/wIbff4fx42H2bGvXRgiRa+mcoMwrpsf3wmBLS9jWEW3MaZYsgZIPFnPYulXtaBBCSNAt8qnOr5i+2McnqF/UnZ2hesP8032j0WoIqqXOX49JKMjhbWkP3Y2MhI8+gr//zsnaidzm+nW11yExSR0mOLzvIZp3z57loDQaaNKpOtOXBjHyyyDqtaqGjZ1pOOKwyY0pVkzt+f3tN9i798nnPH34gnHes6drBAM+erZ5z15+5Sjlbj7WsWNHqFw57fKjJ5qC4bW765OYrK5VXbfqeQ4dgvbtM77em2+bsn4vXKYu8ZeQALN/VHu2tRo9748ul9WXYVFdusCYMeDk9OSyQojnlHNpaLRCHXZe+JHP5atrYV01ilz5hJ+XJxlvSI4fD8HBVqmpELmKBN0iX6oV5J3qC3b9+qkTkuV1gU1Mvdvb/r2V6nlFURO2zZihLuNx9mxO1k7kBjfO32L427coX15N7AVQrRpMmZ9z6y87F7Rh7FhTwsCRI9XfzYxMH3fJOO95WL9jOBZ8tkhQo9XQvL75G+DD96LSLV+jcWU6B5jfHXi3xzZ2HihJ2bJPvl6d5lWpUe4kAP+d8OHorlMsXw4376pD2bu2PEF539TLswkhRJ7g4Q+t90KDpeD4IBGnIRnCp9E4ri7jP1YTZxoM8Oqr6nBzIZ5nEnSLfEmj1dC5+Wmzff6ZzxWVZwS2Mc212rYrdVCycSNs3qxu6/Uwb6b1EsmJnHXrUgQjegdT3rsAX8/3JOHBtH83N/jpJ3BwyNn6DBgAlSqp29u3w/rVt9Mte+V8DEv/VudvuzjeY/BnfumWzYoWzU2RfkOvfTRq5pZh+SlfeFDI+S6FnO+y8ts9zP4lMNX87fRotBre7G3K1r5g1g1mzjQ9/+GkrM+lF0KIXEWjhfJ9oP0pqDYKtA+mAEWF8kmv1TRvrj68fh1efBFOnrReVYWwNgm6Rb7VuVtBs8eNGua/Oc9V6lbAw0W9fbw9pDL6ZFPGEoPewMiPzBPHff+jC7H3YnO0jiJnGfQGxr4VTDkvJ75YHkR8knozxtEhhQ8+UL/01KiR8/WytYUpk01B78cf3DH7fX3Ul98UIFmvBrfvvBaGq4drmuWyqmPfmlQsfgF72wQmT3vy/PAq9Spw/ZYT12460v3thlm+3mvv1MTRTl1ybN6qRsYvnE2aYFxWTAgh8jzbAlBjIrTeD26+ULw1Ou+3WL4cPB8sZHHwINSsCV99pfZ+pyc5GW5kfXVJIXI9CbpFvtWkoy9uTneNjxvUyX/BpkarIfDBvO7oeFeO7DTN6/5lzl5CjpgHFlGxbqyYI4t652cbfz3EhAVBxmRdDrbxDH81mHPhd5g50/QFyBq6doV6lcMAOHrBi59m7UlVJjJSzYgOam/8sMmNUpV5Wi7uLoSdLc6WzYdp0jFzWcPtnexxcH66YQFunq50b64mkXs4VB7gww+f6nRCCJG7FaqhBt7+P4FGQ7Fi8M8/UKmi2umRkKAmrwwKMp/ulpKijsx7800oVgyKF1cTzyYmpnkVIfIkCbpFvmVrb8vIgUfQaAwM6LADN8/s6S3LbQIDTOsYb9ugLseUGJfEZ1NMSeOmDgs2bn+zqBiK4QkTakWetXG9aXmqvm13cu5ENF/+FESxclaMth/QaDV8PsU04mT09LIkxCaQGJfIkR2nWDFrN2/2vkGc2jnMG29k/00CGzsb7J0yN0Q8OzyaUA2gilc8bdvm2OWFECJn6ezB3rQMo58fhKz9g6Ftvjbu27ED/GqksGJBAoPfMlC8OLRqBYsWwZ07apmlS6F5c5kLLvIPCbpFvvbxV0HcvxvPoj8bW7sqFhPYprhxe9tOtUduweQ9XLilBt0tah3k46+CaFjlKKD2MO5YG5rzFRU5Ytt/pih15oIqFC+f+SW6ckLQSzV5sd5+AC5FlKLCC3dxLqijZhMvXhvmz+r1xQA16eGIEdasafZo1M6XKqVMExlH9Nuf5jJjQgiRXznd38zXvYcTPCqQch7nAIhLsOfLhY34bpEttx9J8eHsDI6O6vauXWoS3GPHrFBpIbKZ/OkX+Z6zazYsip2LVWtQkcIFowDYHuZHVEQ0E+eYkjRNm6HO6R0yKNq475uv43K0jiJnREdGc+iMugaWT5nTFCnl/oQjrGPqTBc0GnVS37U7xdEbUi8r8P77UKZMTtcs+2m0GqZPuodOm0JjnyO8NrS+taskhBA5q8ZkaLKGwM5+hM57lcEt5po97WgXR7d6q/jflO+4dUvtCS/xIE/s+fNqItwNG6xQbyGykQTdQuRxWp2WwBZuANy9Z0+/Hle5HV0EgFea76Z2syoAdBtYl6Ju6rJiq7fX5crp61apr7CcXetPGucOB9a79oTS1lOjcWVG9N4OgL1tAjXLn+C1VruYMjSYP77fx/nz8PnnVq5kNmrftx6JCRqCQ3yxd7K3dnWEECJn2RWCUp2g9tcU6LqXuWt7sOnnYAZ2WM2KIa9xa54n/xvanW7truDkBLVrw759UOvBypbR0dC2LcyZY92XIcSzyGerFgvxfAoMhNWr1e0/tqpBto0umUlflDSWsXO0Y1CPcCYs8ERvsGH+9JNMWlg8rdNl2tUz11n1wynCj2t4e3hRajap/EznE88meLMpWWBg05ybt/w0pi8NYtSX0Ti7OKOz9bZ2dSxOZ6t7ciEhhHgeOBQhqHtj3CqFULPy5+jOe8HZH6DiIGORkiVh+9ZEevdKZvXaAhgM8O67EBIC33xjGoIuRF4hPd1C5AOBgan3vdV1NxVqmI/PHfShNzY6dRmx71b6kBiX9dSg16/DnLG7aex7hFKVijNsaiDfrWmCf8vSrJqXOhu1yDnbwkxDlwPbVrBiTTLHxd1FglEhhHieORYH37HQ6Tw4lTR7yvnSDFa94sHHA3Ya933/PTRsCKdP53RFhXg2EnQLkQ9Urw6F3ExrHhdwuM/oGVVTlStRoRhdA9UkVhHRRVg5f3+mr7Fpk7rMR8mS8O4Ef3aGmS/2HJ/kRPfBDZn8XrBkR7eCmBg4cFi99V+lCniWsX62ciGEECJTNI+FJDHn4NhktCQwtVljlg0bgaOD+j3nyBF1CPqqVVaopxBPSYJuIfIBrRYaVw8zPh7Rdy+eL3ikWXbIsALG7Tm/NHziuVNSYNQodTmPbdtAeSSe9i51lrFvBdO7jeku9KhvgujTdleWe9EXf76Doa9s46+l+56qB/55t3s36B/cd0lr5IMQQgiRZ9h7gte7oFFnwvau+wX7xtXAu/QFAO7fh+7dYehQSErK4DxC5BISdAuRT4z4ABxs42ngfZT3pzRIt1yjdr7UrKlGzvv269i3L/1z3jh/i5Z1jzB5sinYrlQJRn2azNFdpwi/WJ5x84JY+ncjs7XAl28IoFm9M9y6mbke73XL9tP/48bM/jWQDv3qUdQjgX7tdrJ++X75Y5pJ27aZtiXoFkIIkafZFgC/6fDiYfBQl331KX2M/eN8eNX/J2Ox2bOhcWO4ccNaFRUicyToFiKfaNyxBrHx9uwMrUrBwgXTLafRahgyRGN8/OknKWxbcyRV7/LW3w5TsxYEh6jDyHU6henT4eRJmDjZFh9/LzRajfGcH38VxG8L9uJopy5HtvtYNeo30HDyJBnSJ+v5eKyr2b57ca4sXRdA2951KVYMhgxRs5eK9AX/c9O4LUG3EEKIfMHNB1psg4bLoFBNCjjEsnxwL+b3H4Sdjfq9Zd8+6N3bfCSeELmNBN1C5CNanTZTialefRUKF1a3N2+xIahLDdzcDDSvdYhJ7wYzemAwLbpX52aUOi+4ROHrBK89y4cfgkaT/nlfGtiAHesvUsJTzaJ94QJ065bx0K+fZu3h6AUvAHzLnqJX650UdDRF2Hfvwty50KkTJCQ88aU9l+Ki49h/pBAAXiUvUPzZktILIYQQuYdGA+V6Q5tD0HofmopvMKj1T+wZ15ASnvcBNe/M99+jRt7nlkL8zYzPKaxDMUDcFbi5FU4vgEMjYHtn2FAf/igLNzZbu4YWY9Elw6Kiopg4cSJbt25Fq9XSqlUrPvvsM5ydndM9pnfv3ux7bLxrjx49mDBhgiWrKsRzxdERxoyBYcNM+xKSHdlyuBZbDpuXbVn7IMt/L4PnCxUzde7azaqw75A6Bzw8HMLCYPJkGD8+ddmE2ARGTy9rfDxrZixNuwaQEJvAPz//x8qN1fnjL0fi4iA4GF57TWHlLwbJeP2YPRtOkKxXFzQNrHMJKGvV+gghhBDZTqMB97rqv1pfUOvCz/xQXU+bjurTH3wAbRqEUyq0n5qYzTMQijZT/3evBzp7q1b/uaVPgEPvw+29EH0C9PHpl427mnP1ymEW7ekeMWIEZ86cYfHixcyfP58DBw4wZsyYJx738ssvs3PnTuO/jz76yJLVFOK5NHQoXLoES74KoW/bnbzgccXseY3GwPjBwazfUxPPF4pk6dwlS8JPP4HNg9t6U6YYCNl+KlW5byfs5VJEKQDa1DtA065+ADg4O9D5jfqs+NWRLVvAyUkt//vvGga/vEuyoz9m2ybTyIDAQLkhIYQQIp+zdYFKg2jdwY3XX1d3RUfDwLds1GHmikHtTQ0dDZuawCo32NwMjo6Ha//A/bPWrD0AJ07AO+/A+vXWrskzUgwQd00Nqi+uhCurzZ/X2sOVNXD3cAYBtwbsi4CSYunaWo3FerrPnj3Ljh07WLVqFb6+vgCMGjWKgQMH8tFHH1G0aNF0j3VwcMDDI+3My2nR6/Xo9fonF7Sih/XL7fUUWZPX27VECej1ri+93gXFoHA+/DzBf1/maKiBLj1caNJRTV7yNK/P1xdGfpjM5KkOpKRo6d9fz+7QBGztbQGIioLJCwMANcCf/LlzmtepUwf+9z/o1FEhRW/Dd2ua4PnWVsbNa/L0LzwT8lLbBu8uZNwOeLFMnqizteSldhVZI21rBXo9OuOm3rSEQrZeQto1P8rOdp0+Hf75R8v16xrW76rM0ta/0rf6J2hizz1ywQQ1CL+5FQDFIwBDs2DzE11epQaIRRqBfeFnrteTDBqkZft2Dd9+C2PGGBg9WslwCp/VRZ9EE7Ed4i5B7GU0cZcg7jLEX0FjSDYW07j6QLElZm2rdfeHq6uhQEUoUBGlYCUoWAmlQEUoWAkcS4L2QVj64Li7d8HFBXS5vC8hs7/DGkWxTNqBVatW8fnnn7N/v2kd4JSUFKpXr86sWbNo2bJlmsf17t2b06dPoygKHh4eNG3alMGDB+Po6JiqbFxcHMePH7dE9YUQ2SA5IZkBPQsTflmds/1R3z95+d2SAMydW4LFi9XJx+1bX2Tc5NsZnmvH6ssMn9zZ+HjcO2to/3ppy1Q8D0mMS6Jps1okpdhTvugFVv4dae0qCSGeE9r4ePwaqzdnD+/YgSGN72pC5ITt2115/311GlzBgin8b+UxSrheoGD8QQrGHaJA3CHsU64by0cWfJELJSaanaPauZdwSL6EgoZ4+4rEOPpx36kWSbYl0Ch6NEoKGiWFWMdqGLROpgMVJeOEN2mIj9cSFFQTvd50XOvWdxgz5gL29jk8mk9JwT7pCo5JZ7FPuoxdyk3skm9wqdinJNuYOkGL3F1FmVvTnni6FG1BjlTaarbPNvkGem0BDLoC6Rxl7pdfPJg58wX8/e8xe/aZrL0eK6lSpQpOTk7pPm+xnu7bt29TuLD5XSIbGxtcXV2JiIhI97j27dtTokQJPD09OXnyJDNnzuT8+fPMmTMn3WO8vLwyfJG5gV6v5+jRo/j6+qLL7bdsRKZJuz7Z9wvDafSiHoOi4+ufWvPawAu4larIL7+os1vs7BS+nluKsmVLZXiemjVrojEEM2xqEADjv+1IJa899Hgn/eXRnkVeadvgNSEkpajz1ALrXqZmTX8r1yh3yyvtKrJO2tYKYmONm9WrV4cMcvY8LWnX/Cm727VmTThwwMCKFVru37fh23nV+e03HzSa9qZrxl5Ec2s73D9BIbeauL1Q03SC+OvoTl4CQIOCU+JpnBJP4xm1MnXdWx8GN1/Tjmt/od3TGxyKgWMxFOfy4OKN4uINLt7gXM7Ui/vA1q2YBdwAGzYUJiqqEL//buDxAcFXr8Jvv2k4cQKGDFGoWvWpfkzqDYLIPWhuboXocDT3wuH+STSG1BlvC5ZxAo+aj7zOK3DrsdPZFQKnF8CpNMqD/3EsBXcVfKtXf6q2vXED5s5VvyOeOuVCzZo1Mz7AyuLi4jh1KvUUysdlOeieOXMmCxcuzLDMunXrsnpaox49ehi3K1eujIeHB/369ePSpUu88MILaR6j0+nyzAdxXqqryDxp1/Q1aO3Lh32D+XxJEEkp9rzZP5lqDTXEx6t/bAYP1lChQuZ+dkOnBBERsZXJi5qiKFr6vV8XvwYXqFKvgsXqn9vbdufm+8btoEBNrq5rbpLb21U8PWnbHPTIz1mn01l0HKi0a/6Une06e7aaxfzWLfjzTw2rVul45ZVHCriUV/+lxaEwNF4Nt7bBre0QFaLOVU6rzhqD+e964i1IuQ8x9yHmNJqIHeYHaO3UIdSFaoL/cgB27zY93btjOL9t9CIu3ob//tPg31Dhrz/1uHva89tvsHIl7NxpWhLt77/h+HEomP7qsOmL3A+bMzc9T5dwxfx1uteFegvUINtZDbA1tqZKPLyFoOj1EBXy1G07fTrEP5j63atX7v9ek9n6ZTno7t+/P126dMmwTOnSpSlSpAh37twx25+SksK9e/eyNF+7Rg11jeCLFy+mG3QLIXK3cXMasGbjOU5eLc++kz7se7B2d8GCCp99lrUhWRMXBHHj5na+X9uEZL0da1ZctmjQndsF7zatcR7Yrqz1KiKEEEJYkbs7fPutulQpwJAh0KwZeHpm4mAbJyjdWf0HkHQPInZBxE5IjlZ7qrW2oLEFh8dOqLUDl8pqMrGU+4+fGQxJcO8YaEzB2Y5H4vIJzdoyvH4hOsxcy9W7pbh4yYY6dVNISjGgKKlzXl+9CqM/S+brLh0e7NGomdmdy6nB/cN/Tg+m4GkfCQoL11GD/7shDw61ARcvcK0Grj7q63Auqx7r8Fh3u1MJqDgw45/jM7p8GebPf3A5J/j4Y4teLkdlOeguXLhwqmHjafHz8yM6OpqwsDB8fHwA2Lt3LwaDQR2ClEkP52xnJVAXQuQuDs4O/LAgloAO5n9ARr5xkCJF6mTpXBqthqEji/H9WvVxWLhtdlY1T0mMS2RvuDcAZT0vU6aKzHEXQgjx/OraVQ26V62CyEgYNAh+/z3LU67BzhVKtlX/PUn5vuo/gOT7cP803DuuLo8V/eD/+6fBRp3PnJICe/aoxUsWuUWZIhcp63GRfRPr0fGLPzl4vg6JyQ5ml/AuF0HnHh7MmqX2An8z14ZenrepU/5g+vXS2EAhP2jzyFLMGg1UnwwJ18G9gRqc6+zSPcXJk/Djj2qdX3lFHcZvSZMmQdKDke7vvUeqYfZ5mcWWDKtQoQKNGzdm9OjRhIaGcvDgQSZOnEi7du2Mmctv3rxJmzZtCA0NBeDSpUvMnTuXsLAwrly5wubNmxk5ciR169bF29vbUlUVQuQA/3a+DOu53fi4mNtNho2t8lTnqlyrLDY6NVNm2JmsLWeWn+zbHU9Cspq4KLDORSvXRgghhLC+uXOhyIOvBmvWwOLFOXhx24JQuBaUew1qTITGq6BdGPRIgOZqcrGQEFM6hMaNNWj8l0OtrykR0J/tS5bQs7n6XalSiYuMenkuR78KIvzvFUydCmPHqscZDBoGfb+AFH36Q5tTUhRunLukLuX1qJJtocIAcKuWZsCt18PatdC6NXh7w+TJ8Pnn4OcHjRvDr7+aAuPsdPYs/PCDuu3iAh9+mP3XsCaLJVIDdf73xIkT6du3L1qtllatWjFq1Cjj88nJyZw/f574BwP3bW1t2bNnD8uWLSMuLo7ixYvTqlUrBg8ebMlqCiFyyKR59dh3JJR9J7yZN+MCzq71n+o8do52eJU8Q/ilipy4XJaUpGRs7J6/Hu9te92M24EvPd3PUgghhMhPPD1h4UJ4OBt26FAICoLy6UznzhEajTHAfXRoeeMWHmqA/oATsGITLLgPBQqUQaN5B3jH+Pz778Py5RAWBocu1GbOzfsMey8BUmLh/hm1R/3+KY6FJtD5kxGcuV6G+VH7GfTpk6t45w58/706RP/ChbTL7Nyp/itWTB1FMGgQFC+e9R9HWiZMUHvUH77OTAyszlMsGnS7ubnxxRdfpPt8qVKlOHnypPFx8eLFWb58uSWrJISwIicXJ7Yf8UExKOhsny1I9KmqJ/wSJKXYc+Z0Et7VsqmSeUhwsGk7qNnzd9NBCCGESEvnztC/v9pzGhMDffrAtm3Zk+vv5k348kuoWBHeeCPrQ9fNgu7GaZdJL0marS189x34P1ioZPR4R7r2cKR06ULgVAqKBrFhA7z8HkRHq2VGfVWXXkMzXlzg2jVo0ECdU/2o8uVh8GB1fvXcuXDsmLr/xg0YP17tAR85Uv33LCsGHj+u3kwANdgeNuzpz5VbWWx4uRBCpEWr06Kzffa/ej7+lY3bYcfTn4+UX0Veu8vu3Woq09KloWxZ69ZHCCGEyE2+/hrKlVO3d+1Ss2I/q3Pn1IB3+nQYOFCdd6xkYVltRVF7igHc3KDaU3QYNGwIb72lbsfEqHV4aM4caNvWFHAD3L4NixZlfM6JE80D7jZt4K+/4NQp+OADePttOHpUXeqsa1fTzYuEBDX4rlJFnTuflZ/Fo8aNA8ODZPEffQSurhkWz5Mk6BZC5EkP8jMC6jCr58Xdm1GMGRRMuYo647JrgYFPkSRGCCGEyMcKFlSTgGkfRDtjxsChQ09/vrAwCAhQA++H5syB4cMzH2yeOgUREep2o0amumXV1KmmJGNr1sBvv6nZ2t991xS8Nm1qKj9zZvrzsM+fNwXlBQpAeDisXw/t2pmPDNBo1GH6q1apxwwfDjYPxkxfvKgG461aqb3WWREaqi6LBurUgCFDsnZ8XiFBtxAiT3regu57EfcYPziYcuU1TPwuiPvxLgDY2xt4800rV04IIYTIhRo1Mi07lZICvXqZ1oDOir17oUkTuH5dfVy6tOlm96xZMGJE5gLvzAwtzww3N7Un/6Hu3dXh3w99/LG6ZnmHB6uKXbliGr79uIkTTXOphw9Xe62fpHRpdYh9aCi0bGnav2kT+PlpWbAg8xO9x4wxbX/6acbD4PMyCbqFEHlS+fLg4KD+hQsLibFybSzrh2k7KFtOYdy8IO7FqWOubHTJDOqynVOhETRpYuUKCiGEELnU2LFQq5a6ffx41td+3rgRmjeHu3fVx3Xrqj3m339vCry//FKd1/ykwPvh0HJ4tqAboEcPNcM4mK5ra6tma586Ve1F/+QTU/nPP1czkz/q1ClYulTddnNTE5hlRZUqsGGDOrS8TBl1X0qKhoULS/Dvv08+fv9++OMPdbtkSTUxW34lQbcQIk/S6aBqKTUR4+lzjiTEPMWt6zwgdOcpBnzSmKhYNwB02hTe6Lid00duMv/3JrzglY8WsRRCCCGymZ2d2svr8GDp69mz1R7gf/81DcVOz//+pw6zjotTHzdrBps3q0uSvf66miX9oRkz1J7ajALvhz3d9vZQu/bTvyZQA/5vvzUlMCtcWO1p7tfPVKZhQ3UKGqgB9urV5ud4dC71hx+qgffT1KNLF/WGxqNB+88/P3ne24wZpu3Ro01tlB9J0C2EyLN8Kt0GwKDoOHEwf65T/d3s68btl5rs5eShqyz8owllq5WyYq2EEEKIvKNKFfNEan/9pfYSV6miBuH37qn7L1+GZcvUgLpsWXj5ZUhOVp/r0gX+/ts8s/iAAbBggenxtGmmtbQfd+2aaT54/fpq4P2sypdXbx589hkcPEiaI98+fWS5sClTTDcFjh6FX35Rt4sUMU/I9jQcHdU1vV1c1Av88YeGxMT0y0dFwZ9/qtseHurPPD+ToFsIkWf5VE0xbocdum3FmlhGXHQcy/+uCYCjXRw/rKpChRplrFspIYQQIg8aMkQNsEs9cs/61Cl1He+SJaFCBXjhBejbF5YsUZODPfT662qyr7R6YgcOVHucH5o4UV2e7HHZNZ/7cQEBMGlS+quYtGxpGl5/+DDGYd9jx5oC8I8/VpOoPSsHB+jYUT1pdLSGDRvSL/vbbxiD8p491REJ+ZkE3UKIPMunpinbRlhoshVrYhmrFh42zuF+ucUhXD3y4RoaQgghRA7QaNTs3ufPqwHfo9m9Y2PNs5KDGkA2awbz56vztx9m6k7L22+bD5UeMsSUnOyh7JzPnRUajfnc7qlT1V7xh0PNixdX659dunc3ja//9df0yz2a2K1Xr+y7fm4lQbcQIs/yqVvSuB12Iv+lu1y4uoFxe+BgFyvWRAghhMgfbGzgpZdgyxZ19ZO331Z7ee3s1OHZY8dCcLCaOG3zZjW5V2aW5Xz/fahTR90OCzPv/QZTT7dWq861zkldukDlyur2tm3w2mum5z77DJycsu9aLVuCi4t6x+HPP9POFn/pkvozBvDyMv3c8jMJuoUQeVapSsVxcVQnYoWdzfzyFHlBeDjs3KUukFm1KjRsW93KNRJCCCHyl2rV1OD43j2IiVED0nHj1ORjWU3qpdWq63Y/NHo03LypbkdFqctrAdSoAS45fB9dp1Ozqz90Us1DywsvwBtvZO+17OwgKCgKUH+m69enLvPzz6btXr0yd1Mjr5OgWwiRZ2m0GnzKqZOuLkaUJjoy2so1yj6LFpm233zz+fiDJIQQQliDVqsut/Ws6teH/v3V7eho07DuPXtM86dzcmj5o157zXw+O6hrZGdHQrfHtWx517j9+BBzRYEffzSv1/NAgm4hRJ7m4xVl3A7flz8ymCcmqtlTQb1j3Lu3desjhBBCiMyZOhVcH6RgWbwY9u41T6IWEGCdetnZwYgRpscVK0KfPpa5Vt260bi7q3cZ/vpLnTP/UGgoHDumbvv7qxnYnwcSdAsh8jSfaqaEHWGHo6xXkWy0euF/REaq2127Kri7W7c+QgghhMgcT081g/lDQ4aYZzO3Vk83qCPnGjZU53DPm5c9vftpUefNq9/P4uLUpdYeet4SqD0kQbcQIk/z8TNl9A47mQ3rXeQCC38w/RV8s9tRK9ZECCGEEFn19tvg66tuHzwIu3er2xUrQrFi1quXk5Nal5gYaNHCstdKK4u5Xg8rVqjbNjbqOujPCwm6hRB5mk8jb+N22FU/K9Yk8/R6NbmKoqR+7kzIRbYcVhfUrFj8AkGdfXO4dkIIIYR4FjY28M03qfdbs5f7UTmRJ6ZJE7XXH2DdOrh/X81Yfu2auq9tW56rkXwSdAsh8jSPYg7GD/WwMOvWJTOSE5N5sWUsxYqpf5BCQsyfXzTrvHH7jVcuoNFKBjUhhBAirwkMhJ49zfdZaz63NdjYQLdu6nZCAqxd+/wOLQcJuoUQ+YCPj/r/zZsQEWHdujzJjI92sXGruqb4zp1QuzYMHgx37qgB+ZI1VQGw0SXT771q1qyqEEIIIZ7BjBng7Gx6nFt6unNKjx6m7SVL4Lff1G0XF2jf3ipVshoJuoUQed7DoBtMGTEz4/hxGDTIfHkuSzq25wzjv21ots9gUJOZVKqQwKCue7kZpXbbdwo4QNGyHjlTMSGEEEJku5IlYcECcHRUl8aqWNHaNcpZAQFQvLi6vXGjOsQc1B5wR0fr1csaJOgWQuR5PhWuG7fDtu59Ynm9Hr74Avz84Lvv1Gye4eGWrCHok/X0fz2BpBR1Qcxhr+5g2jTTHfA7UQ4s/tt0C/zNgRZKKSqEEEKIHPPaa2risuXLc2YudW6i1UL37qn3P29Dy0GCbiFEPuBT8bZxO+xoYoZlz4RcJNDvBCNGqOthP/TnmuQnXufskYsM6rKdf38+mOU6fvXpDvadVLvkvUqeZ8r8OowcCSdPwqsdTpmVLeNxhZY9amX5GkIIIYTIfbTPccT16BBzgFKl1PnuzxuL/QrMmzePV155hRo1alCnTp1MHaMoCrNmzSIgIIDq1avTr18/Lly4YKkqCiHyiWr1yxi3w065pVnGoDcwZ/Q2ajQowq6jasZzjcaUPvyvFcefeJ1+vaL4bk0T2vf25czhC5mu36lD5xk9q/6DaxpYvCAGx4LquKqSJeGnP73Y/scRalU8jp1NIpM+uYhW9xz/hRZCCCFEvtCgAZQubXr86qvP500Ii73k5ORk2rRpQ8/H0/ZlYOHChfz444+MGzeOlStX4ujoyIABA0hMzLjnSgjxfHNxd+EFjysAhJ0vg2IwX4vr9pVIWtYN4d1JgcQlquO5yxe7SPDGGKqUPgPAnvBq3L56J91rXD55jZ1hNQBI1tvx0af2maqbPsVA/z73SUhWg+yhr+zAv13qZcAad6zBwdNVuB+todfwRpk6txBCCCFEbqbVQu/epu0+faxbH2uxWND93nvv0a9fP7y8vDJVXlEUli1bxttvv02LFi3w9vZm+vTp3Lp1i02bNlmqmkKIfMKnvDqv+16cG1fPmOZ4J8Qm0LHVNePa1wCDu23jSLg7TZoXpH1TNVg3KDr+WZl+b/dvS06bPV79T3G2bXtyveaO3cGuY9UBqFDsIpPnZzzyx87R7sknFUIIIYTIIz77DKZOhTVroNpzujCLjbUr8NCVK1eIiIjA39/fuK9gwYLUqFGDw4cP065du3SP1ev16PX6nKjmU3tYv9xeT5E10q65RzXvGNb9p24f+e8yxSsURTEovN75IHuOqz3HxdxusmTeJVp0VxfK1Ov1vNjZhRnL1OPW/qWh53vmbfrw/1Vr3VJd8/33FfbuNaQ7TOrs0Ut88oUpyF4w5zb2zqXk98WK5D2bf0nbWoFej864qVezVGb7JaRd8yNp1/wrrba1t4cPP3z4vDVqZTmZ/R3ONUF3xIPFdd3d3c32u7u7c/v27bQOMTp16lSGz+cmR48etXYVhAVIu1pfseJRxu09O65TrGoIK766xi+bOgDgZB/LN18cpEilooSEhBjLOhVPwc35LlGxhfj3vyoc2H8QG1ud8fmjR49y5+o9dh1rBoB3ydMYnEty6pQThw5pmDLlEu3bpx6WHhur5d23SxuHs7/ebgNuZYuYXVtYj7xn8y9p25yjjY/H78F2aGgoBguuASTtmj9Ju+Zf0rbmshR0z5w5k4ULF2ZYZt26dVSoUOGZKpVVXl5eODk55eg1s0qv13P06FF8fX3R6XRPPkDkCdKuuYdyzwGmqduXr7hzfEc8X/6kBtwajYHlc47SsW/rNI9t3WAvv25uRFRsIWKv2RDYqYZZ287/fbex7MvtrxDQtTytWqmPv5tbmOHvuuPs6mwsExMD7dtrCQ1X1wYpUyKKLxfXp2DhghZ45SIr5D2bf0nbWkFsrHGzevXqpjUQs5G0a/4k7Zp/PW9tGxcXl6kO4CwF3f3796dLly4Zlin9aHq6LPDw8AAgMjIST09P4/7IyEi8vb0zPFan0+WZRs1LdRWZJ+1qfdXqlker0WNQdPy715tfNrkan5v+wXa6vBGU7rEd2sGvm9Xt9WuiafaSqS11Oh2/PTK0vHufUvj46+jY8jp/bizOtQhXvvwsmHHz1PPHxkKnTrBzp1q+UCFY/Zcbbh7Z9UpFdpD3bP4lbZuDdOaflVjw5y7tmj9Ju+Zfz0vbZvY1ZimRWuHChalQoUKG/+zsni4JUKlSpfDw8GDPnj3GfTExMRw5cgQ/P78MjhRCCHAs6EjFEpcAuHHXg6Rk9bPojY7b+eDzjBeEbNOjClqNOifnr63mNw5vXLjFjjA1EVrlkueo1qAiANOnxmOjU9f2nv5DPa6euU5cdBwdAk8aE6y5ucHGjSAfYUIIIYQQzy+LZS+/du0ax48f59q1a+j1eo4fP87x48eJfWQoUps2bdi4cSMAGo2GPn36MG/ePDZv3szJkyf56KOP8PT0pEWLFpaqphAiH/GpkmT2uFkzhW9X+qPRajI8zr1EYfyrhQFw4koFzoRcND63elUiiqJ+VHZ78ZLxXJVrl2dwN3XYeXySEyPeOk+npsfZerAyAK6uBv79F2rXzp7XJoQQQggh8iaLJVKbPXs2q1evNj7u3LkzAMuWLaN+/foAnD9/nvv37xvLvPnmm8THxzNmzBiio6OpXbs2ixYtwt4+c+vhCiGebz7+lfn9wQqDlSvDqlUabO0z9zHXvuVddqpxN3+viWKIbykAfvunjLFM9wFVzY4Z+1V1fvzrLndjC/HL5kdWXnCMZsPKq9StW+UZXo0QQgghhMgPLBZ0T5s2jWnTpmVY5uTJk2aPNRoNQ4cOZejQoZaqlhAiH+vfH77/Hlxd4Y8/1PnUmdW+pxcff6Vu/7WrBkPQc+eODdu3q/sqVoTq9T3NjilcvBBj3t3G8Gmm4esFHO7zz/8uUr+V77O+HCGEEEIIkQ9YbHi5EELktDJl4PJlOHpUDZKzomqdEpR50Km9bRvcvw/BwW4YDOpw8m7dQJPGKPXBYxriVfI8AM72MaxfeR7/dhJwCyGEEEIIlQTdQoh8RaMB7VN8smk00L69up2cDJs2wZaNpqUIu3dP+zg7Rzs2bLBl3NvB7N1ynYAO1Z+i1kIIIYQQIr+SoFsIIR54GHQDLF2cwv6D6vj0cqXuZZiBvGy1Uoz9Nggf/0oWrqEQQgghhMhrJOgWQogHgoLAyTEFgL/W2aM3qGkvujU7nObQciGEEEIIIZ5Egm4hhHjAwQFa1j6Yan+3Xp5plBZCCCGEEOLJJOgWQohHtH/RfK3vFzyuULe5LP0lhBBCCCGejgTdQgjxiLY9zOdld215Go1WxpYLIYQQQoinI0G3EEI8okSFYtQqF2J8/NKrWVjsWwghhBBCiMdI0C2EEI/57OMEnO1jaN9gB/VbVrN2dYQQQgghRB5mY+0KCCFEbvPSwAa075PE0WNOaHVyb1IIIYQQQjw9+TYphBBp0NnqrF0FIYQQQgiRD0jQLYQQQgghhBBCWIgE3UIIIYQQQgghhIXk6TndBoMBgPj4eCvX5Mn0ej0AcXFx6HQybDW/kHbNv6Rt8ydp1/xL2tYKEhKgcmXTtib7l1eUds2fpF3zr+etbR/GoQ/j0vRoFEVRcqJClhAZGcmFCxesXQ0hhBBCCCGEEM+psmXL4u7unu7zeTroTklJ4d69e9jb26PVykh5IYQQQgghhBA5w2AwkJiYiKurKzY26Q8iz9NBtxBCCCGEEEIIkZtJ97AQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBdw746aefaNasGb6+vnTv3p3Q0FBrV0lk0YIFC+jatSt+fn40bNiQwYMHc+7cObMyiYmJjB8/nvr16+Pn58e7777L7du3rVRj8TS+++47KleuzOTJk437pF3zpps3bzJixAjq169P9erV6dChA0ePHjU+rygKs2bNIiAggOrVq9OvXz9ZgjIP0Ov1fP311zRr1ozq1avTokUL5s6dy6M5YaVtc7/9+/fz1ltvERAQQOXKldm0aZPZ85lpw6ioKD744ANq1apFnTp1+PTTT4mNjc3BVyHSklHbJicnM2PGDDp06EDNmjUJCAjgo48+4ubNm2bnkLbNfZ70nn3UmDFjqFy5MkuWLDHb/7y3qwTdFrZu3TqmTp3KO++8w+rVq/H29mbAgAFERkZau2oiC/bt28drr73GypUrWbx4MSkpKQwYMIC4uDhjmSlTprB161a+/vprfvzxR27dusWQIUOsWGuRFaGhofzyyy9UrlzZbL+0a95z7949evbsia2tLQsXLuTvv/9m5MiRuLq6GsssXLiQH3/8kXHjxrFy5UocHR0ZMGAAiYmJVqy5eJKFCxfy888/M2bMGNatW8eIESNYtGgRP/74o1kZadvcLS4ujsqVKzN27Ng0n89MG44YMYIzZ86wePFi5s+fz4EDBxgzZkxOvQSRjozaNiEhgfDwcN5++21+//135syZw/nz53n77bfNyknb5j5Pes8+tHHjRo4cOYKnp2eq5577dlWERXXr1k0ZP3688bFer1cCAgKUBQsWWLFW4llFRkYqXl5eyr59+xRFUZTo6GilWrVqyvr1641lzpw5o3h5eSmHDx+2Ui1FZsXExCitWrVSdu3apfTq1UuZNGmSoijSrnnVjBkzlJ49e6b7vMFgUBo1aqQsWrTIuC86Olrx8fFR/vrrr5yoonhKAwcOVD755BOzfUOGDFE++OADRVGkbfMiLy8vZePGjcbHmWnDh5/DoaGhxjLbtm1TKleurNy4cSPnKi8y9HjbpuXIkSOKl5eXcvXqVUVRpG3zgvTa9caNG0rjxo2VU6dOKU2bNlUWL15sfE7aVVGkp9uCkpKSOHbsGP7+/sZ9Wq0Wf39/Dh8+bMWaiWd1//59AGPPWVhYGMnJyWZtXaFCBUqUKEFISIg1qiiyYMKECQQGBpq1H0i75lVbtmzBx8eH9957j4YNG9K5c2dWrlxpfP7KlStERESYtWvBggWpUaOGfDbncn5+fuzdu5fz588DcOLECQ4ePEiTJk0Aadv8IDNtePjwYVxcXPD19TWW8ff3R6vVyhS+PCYmJgaNRoOLiwsgbZtXGQwGPvzwQwYMGEClSpVSPS/tCjbWrkB+dvfuXfR6Pe7u7mb73d3dU80HFnmHwWBgypQp1KpVCy8vLwBu376Nra2t8Y/GQ+7u7kRERFijmiKT/v77b8LDw1m1alWq56Rd86bLly/z888/8/rrr/PWW29x9OhRJk2ahK2tLV26dDG2XVqfzTJfP3cbOHAgMTExvPjii+h0OvR6PcOHD6djx44A0rb5QGba8Pbt2xQuXNjseRsbG1xdXeWzOQ9JTExk5syZtGvXjgIFCgDStnnVwoULsbGxoU+fPmk+L+0qQbcQWTZ+/HhOnz7NihUrrF0V8YyuX7/O5MmT+eGHH7C3t7d2dUQ2URQFHx8f3n//fQCqVq3K6dOn+eWXX+jSpYuVayeexfr161m7di1ffPEFFStW5Pjx40ydOhVPT09pWyHykOTkZIYOHYqiKIwfP97a1RHPICwsjGXLlvH777+j0WisXZ1cS4aXW1ChQoXQ6XSpkqZFRkZSpEgRK9VKPIsJEyYQHBzM0qVLKVasmHF/kSJFSE5OJjo62qx8ZGQkHh4eOV1NkUnHjh0jMjKSl156iapVq1K1alX27dvHjz/+SNWqVaVd8ygPDw8qVKhgtq98+fJcu3bN+Dwgn8150PTp0xk4cCDt2rWjcuXKdO7cmb59+7JgwQJA2jY/yEwbFilShDt37pg9n5KSwr179+SzOQ9ITk5m2LBhXLt2jR9++MHYyw3StnnRgQMHiIyMpGnTpsbvUlevXuXzzz+nWbNmgLQrSNBtUXZ2dlSrVo09e/YY9xkMBvbs2YOfn58VayaySlEUJkyYwMaNG1m6dCmlS5c2e97HxwdbW1uztj537hzXrl2jZs2aOVxbkVkNGjRg7dq1rFmzxvjPx8eHDh06GLelXfOeWrVqGef8PnThwgVKliwJQKlSpfDw8DBr15iYGI4cOSKfzblcQkJCqp4UnU5nXDJM2jbvy0wb+vn5ER0dTVhYmLHM3r17MRgMVK9ePcfrLDLvYcB98eJFlixZQqFChcyel7bNezp16sSff/5p9l3K09OTAQMGsGjRIkDaFWR4ucW9/vrrjBw5Eh8fH6pXr87SpUuJj4/npZdesnbVRBaMHz+ev/76i2+//RZnZ2fj/JOCBQvi4OBAwYIF6dq1K9OmTcPV1ZUCBQowadIk/Pz8JDjLxQoUKGCcl/+Qk5MTbm5uxv3SrnlP37596dmzJ/Pnz+fFF18kNDSUlStXMmHCBAA0Gg19+vRh3rx5lClThlKlSjFr1iw8PT1p0aKFlWsvMtK0aVPmz59PiRIljMPLFy9eTNeuXQFp27wiNjaWS5cuGR9fuXKF48eP4+rqSokSJZ7YhhUqVKBx48aMHj2a8ePHk5yczMSJE2nXrh1Fixa11ssSZNy2Hh4evPfee4SHh7NgwQL0er3x+5Srqyt2dnbStrnUk96zj988sbW1pUiRIpQvXx6Q9yyARnl4e1hYzPLly/n++++JiIigSpUqjBo1iho1ali7WiILHl+7+aGpU6cab6AkJiYybdo0/v77b5KSkggICGDs2LHPzbCZ/KJ37954e3vz2WefAdKuedXWrVv58ssvuXDhAqVKleL111/n5ZdfNj6vKAqzZ89m5cqVREdHU7t2bcaOHUu5cuWsWGvxJDExMcyaNYtNmzYRGRmJp6cn7dq145133sHOzg6Qts0L/vvvvzQTLnXp0oVp06Zlqg2joqKYOHEiW7ZsQavV0qpVK0aNGoWzs3NOvhTxmIzadsiQITRv3jzN45YtW0b9+vUBadvc6Env2cc1a9aMPn360K9fP+O+571dJegWQgghhBBCCCEsROZ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAW8n/MxhFDyctBfgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -808,17 +679,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "4b56cd24-bae6-4cc6-9a3c-52f965014eb0", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-4186912:t-22963135206144:data_handling.py:load_dataset:Dataset name: ettm2, context length: 512, prediction length 96\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-------------------- Running few-shot 5% --------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:p-4186912:t-22963135206144:data_handling.py:load_dataset:Data lengths: train = 1607, val = 11425, test = 11425\n", + "WARNING:p-4186912:t-22963135206144:other.py:check_os_kernel:Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "-------------------- Running few-shot 5% --------------------\n", - "ettm2 512 96\n", - "Data lengths: train = 1607, val = 11425, test = 11425\n", "Number of params before freezing backbone 805280\n", "Number of params after freezing the backbone 289696\n", "Using learning rate = 0.001\n" @@ -831,7 +721,7 @@ "
\n", " \n", " \n", - " [ 338/1300 00:30 < 01:27, 11.03 it/s, Epoch 13/50]\n", + " [ 338/1300 00:25 < 01:13, 13.07 it/s, Epoch 13/50]\n", "
\n", " \n", " \n", @@ -844,68 +734,68 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "
10.3100000.1085540.3131000.108604
20.2819000.1077600.2746000.107670
30.2476000.1073560.2308000.107023
40.1997000.1077460.1979000.107315
50.1644000.1098570.1660000.109317
60.1407000.1116900.1450000.112156
70.1322000.1115150.1354000.112260
80.1254000.1115390.1273000.111317
90.1211000.1122340.1197000.112212
100.1172000.1117260.1170000.112352
110.1145000.1147340.1159000.114259
120.1131000.1150320.1133000.115633
130.1093000.1147610.1102000.113696

" @@ -921,7 +811,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[TrackingCallback] Mean Epoch Time = 0.7072612872490516 seconds, Total Train Time = 30.80957341194153\n", + "[TrackingCallback] Mean Epoch Time = 0.6547567110795242 seconds, Total Train Time = 26.017932176589966\n", "++++++++++++++++++++ Test MSE after few-shot 5% fine-tuning ++++++++++++++++++++\n" ] }, @@ -932,7 +822,7 @@ "

\n", " \n", " \n", - " [179/179 00:01]\n", + " [179/179 00:00]\n", "
\n", " " ], @@ -947,13 +837,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'eval_loss': 0.13703393936157227, 'eval_runtime': 1.4274, 'eval_samples_per_second': 8004.064, 'eval_steps_per_second': 125.403, 'epoch': 13.0}\n", + "{'eval_loss': 0.13661938905715942, 'eval_runtime': 1.2303, 'eval_samples_per_second': 9286.193, 'eval_steps_per_second': 145.49, 'epoch': 13.0}\n", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAfFCAYAAACMBK9jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1wT5x8H8E8IQ5AliDhQcYEDEEXFheJedfuz7tnaaq2jtu7d1q11Vq177703TnCCOBAnKoJM2Svj+f1xckdMgAAJYXzfr1deXO6eu3uShyT3vWeJGGMMhBBCCCGEEEII0Tg9XWeAEEIIIYQQQggpqijoJoQQQgghhBBCtISCbkIIIYQQQgghREso6CaEEEIIIYQQQrSEgm5CCCGEEEIIIURLKOgmhBBCCCGEEEK0hIJuQgghhBBCCCFESyjoJoQQQgghhBBCtISCbkIIIYQQQgghREso6CaEEEII7+7du3B0dMTdu3d1nRVCCCGkSNDXdQYIIYSQwuLo0aOYNm1aptsPHDgAV1fX/MtQIZCSkoL58+fD398foaGhkMvlqFixInr37o0BAwbAwMBAIX1cXByWLl2KS5cuISUlBc7Ozpg6dSrq1KmT6Tk+fPiALl26IC0tDYcPH4azs7O2XxYhhBCiNgq6CSGEkBwaN24c7OzslNZXqlRJB7kp2FJSUvD69Wu0aNECFSpUgJ6eHnx9fbFw4UL4+/tj+fLlfFq5XI5Ro0YhMDAQI0eORKlSpbB3714MHjwYR48ehb29vcpzLFiwAPr6+khLS8unV0UIIYSoj4JuQgghJIdatGhBtalqsrS0xMGDBxXW9e/fH2ZmZti9ezemTp0KGxsbAMD58+fh6+uLVatWoWPHjgCATp06oUOHDlizZo1CgJ7u5s2buHXrFn744QesX79e+y+IEEIIySHq000IIYRo2OrVq1GzZk14e3srrJ81axacnJzw4sULAEBaWhpWrVqFXr16wc3NDa6urhgwYAB8fHwU9gsODoajoyO2bNmCPXv2oE2bNqhbty5GjBiB0NBQMMawbt06tGjRAi4uLhg9ejRiYmIUjtG6dWv89NNPuHXrFrp37w5nZ2d07twZFy9eVOs1PX78GCNHjoSbmxvq1q2LQYMG4eHDh7l+jypUqACAa06e7sKFCyhdujTat2/Pr7OyskKnTp1w5coVpZpsiUSCv//+G0OGDKFWBoQQQgosCroJIYSQHEpISEB0dLTC48uXL/z20aNHo1atWpgxYwYSEhIAcDWyBw8exJgxY1CzZk3+OIcOHUKjRo3w+++/Y+zYsYiOjsYPP/yAgIAApfOeOnWKb249fPhw3Lt3DxMmTMDKlStx8+ZN/Pjjj+jbty+uXbuGxYsXK+0fFBSEiRMnokWLFpg0aRLEYjHGjx+P27dvZ/l6vb29MXDgQCQmJmLs2LGYOHEi4uLiMHToUPj7+6v1nqWlpSE6OhqhoaG4dOkStm7digoVKqBy5cp8moCAANSuXRt6eoqXJ87OzkhOTsa7d+8U1u/YsQNxcXEYM2aMWnkghBBCdIGalxNCCCE5NGzYMKV1hoaGePLkCQDAwMAAixcvRq9evbBo0SJMnjwZM2bMgJOTE0aNGsXvY2FhgatXr8LQ0JBf17dvX3Tq1Am7du3CggULFM4RFhaGixcvwszMDADXB3rjxo1ISUnBkSNHoK/P/ax/+fIFp06dwrx58xSOHRQUhDVr1vA1yX369EHHjh2xbNkyNGvWTOVrZYxh7ty5cHd3x+bNmyESiQAA/fr1Q5cuXbBy5Ups3bo12/fs0qVL+O233/jnTk5OfF/sdBEREWjQoIHSvmXKlAEAhIeHw9HRkU/777//YsqUKTA1Nc32/IQQQoiuUNBNCCGE5NDs2bNRpUoVhXXf1s46ODhg3LhxWL58OQIDA/Hlyxds3bpVIcgUi8UQi8UAuAA6Li4OcrkcTk5OeP78udJ5O3bsyAfcAODi4gIA6Natm8JxXVxccPr0aYSFhaFixYr8+jJlyqBdu3b8c1NTU/To0QObNm1CREQE37c6o4CAAAQFBWH06NEKtfkA0KRJE5w4cQJyuVzp9X/L3d0d27ZtQ1xcHLy9vREYGIjk5GSFNCkpKQo3CdKlr0tNTeXXLVu2DBUrVsT//ve/LM9LCCGE6BoF3YQQQkgOubi4qDWQ2siRI3HmzBn4+/vjt99+Q/Xq1ZXSHDt2DFu3bsW7d+8gkUj49apGRy9XrpzC8/QAPLP1sbGxCkF35cqV+ZrqdOkjgn/69Ell0B0UFAQAmDJlSmYvE/Hx8bCwsMh0OwCULl0apUuXBsDdPNiwYQOGDx+Oixcv8uctUaKEyhHI09cZGRkBAPz8/HDixAls374922CfEEII0TUKugkhhBAt+fjxI96/fw8AePnypdL2EydOYOrUqWjbti1GjhwJa2triMVibNy4ER8/flRKn14r/q3MAk/GWB5yr3iMyZMno1atWirTmJiY5Pi4HTp0wD///IMrV66gX79+AAAbGxtEREQopQ0PDwcgNDNfunQpGjRoADs7OwQHBwMAXwsfERGBkJAQlC9fPsd5IoQQQrSBgm5CCCFEC+RyOaZOnQpTU1MMHToUGzZsQIcOHRRG5r5w4QIqVqyItWvXKtRAr169Wit5ev/+PRhjCudKr8lOH038W+k15aampmjatKnG8pLeVDw+Pp5fV7NmTTx8+FCpubq/vz+MjY35Jv2hoaH49OkT2rRpo3Tc0aNHw8zMDA8ePNBYXgkhhJC8oKCbEEII0YJt27bB19cX69evh6enJ+7evYu5c+eiQYMGsLKyAiDUXGcMhB8/fgw/Pz+t1NSGh4fj0qVLfOCfkJCA48ePo1atWiqblgPcgGeVKlXC1q1b8d1336FkyZIK26Ojo/nXo0p0dDRKlSql1Kz90KFD/PHTdezYERcuXMDFixf5ebqjo6Nx/vx5tGrViu/bPX/+fKSkpCgcz8fHB7t27cKUKVNQtWpVdd4OQgghJF9Q0E0IIYTk0I0bN/D27Vul9fXr10fFihXx5s0bfv7t1q1bAwAWLVqEHj16YN68eVi1ahUAwNPTExcvXsQvv/wCT09PBAcHY//+/ahevTqSkpI0nm97e3vMmDEDT548gbW1NY4cOYKoqCgsXLgw03309PTw119/4ccff8R3332HXr16wdbWFmFhYbh79y5MTU2xYcOGTPc/efIk9u/fj7Zt26JixYpITEzErVu3cPv2bbRq1QpNmjTh03bo0AGurq6YNm0aXr9+jVKlSmHfvn2QyWT49ddf+XTNmzdXOk/6fN8NGzZUq789IYQQkl8o6CaEEEJyKLPm3wsXLkT58uUxZcoUlCpVCtOnT+e32dvb47fffsPff/+Ns2fPonPnzujVqxciIyNx4MAB3Lp1C9WrV8fSpUtx/vx53Lt3T+P5tre3x6xZs7BkyRK8e/cOdnZ2+Oeff+Dh4ZHlfu7u7jhw4AD+/fdf7N69G0lJSbCxsYGLiwu+//77LPd1c3ODr68vzpw5g8jISOjr66NKlSqYNm0aBg0apJBWLBbjv//+w5IlS7Br1y6kpqbC2dkZCxcupNprQgghhZaIaWKUFUIIIYQUaK1bt0aNGjWwceNGXWeFEEIIKVZong1CCCGEEEIIIURLKOgmhBBCCCGEEEK0hIJuQgghhBBCCCFES6hPNyGEEEIIIYQQoiVU000IIYQQQgghhGhJoZ4yTCqVIjY2FkZGRtDTo/sHhBBCCCGEEELyh1wuR2pqKiwsLKCvn3loXaiD7tjYWAQFBek6G4QQQgghhBBCiil7e3tYW1tnur1QB91GRkYAuBdpbGys49xkTSaT4eXLl3BwcIBYLNZ1doiGULkWXVS2RROVa9FFZasDyclAs2bc8u3bgBauxahciyYq16KruJVtcnIygoKC+Lg0M4U66E5vUm5sbAwTExMd5yZrMpkMAGBiYlIs/gGLCyrXoovKtmiici26qGx1gDEgMJBbLlEC0MK1GJVr0UTlWnQV17LNrqszdYQmhBBCCCGEEEK0hIJuQgghhBBCCCFESyjoJoQQUmA8836N+b944WNgiK6zQgghhBCiERR0E0IIKRDkMjm69jTEnH890dxDjrioOF1niRBCCCEkzyjoJoQQUiD4nH+Gd2GVAAAfIuwwYehjHeeIEEIIISTvKOgmhBBSIBw/ofh82xkPnNhyVzeZIYQQQgjREAq6CSGE6BxjwLFrzkrrR02qioiPETrIESGEEEKIZlDQTQghROeePQNev+aWPT0ZujblarjDY23w08A3YHKmw9wRQgghhOQeBd2EEEJ07vhxYblnTxE27amK0uaRAIBjNxtj98rbuskYIYQQQkgeUdBNCCFE544dE2qye/QAbO1tsGHxK37d2Fl18fGDXAc5I4QQQgjJGwq6CSGE6NSHF8F49EgEAKjvHIdK3ADm6P1zEwzueAsAEJdkhuEj9CCnuJsQQgghhQwF3YQQQnTq+K43/HLPlg8Vtq3e0wR2dtzylSvAokX5mbPCTS6TIyyIBqEjhBBCdI2CbkIIITp17Iw5v9yjv53CNksrMbZtE57PmAHMmR5PA6tlg8kZ2jf0Q9kqNvih201I06S6zhIhhBBSbFHQTQghRGeiQqJxw98FAFC9XBDqNK6ulKZtW+DPP4Xn8xeaYVz/G5DLqK15Zvxvv8QV3/oAgC2nPNC79UOkJKboOFeEEEJI8URBNyGEEJ05tfs55EwMAOjZLggiPZHKdDNnAv8sS+Ofrz3YEkM6e0OSKsmXfBY2pw6GKjw/edsdnZoFIC4qTkc5IoQQQoovCroJIYTozPFTBvxyj77WWaadMMkQO5begliPayq952Iz9PT0RXJ8slbzqErIm8+I+BiZ7+dV16lLpfllE6NEAIDX43po3SQUEeHUNJ8QQgjJTxR0E0II0YnE2ERcuMs1Lbe1DEfjjnWy3WfI781xdNNDGBlwTaXP+DRCh6YvERsRq9W8ZnT7tD8qOZRGbSfglW9Qvp1XXaFvw3Av0AkA4FIlENdOBsHaLAoA8PCVIzxaiPDhg/rH8z77BEf/86F+9IQQQkguUdBNCCFEJy4ceIIUiTEAoLvnC+iJ1ftJ6jbCHef3v4CZMddU+ubTupgz3k9b2VSycXUEZHJ9RMaVxpxJb/PtvOo6c/gTv9y1TSgata+DG5diUKEs1yIgMBBo1gx4/Tr7Y9058wQeXWuh90+NsXb2DW1lmRBCCCnStBp0x8TEYNKkSahfvz4aNGiA6dOnIzExMct9Bg8eDEdHR4XH7NmztZlNQgghOnD8mDCids8+xjna17OXK66d/gQDMdfP+9yNShrNW2aYnOHSfaFGfr+XJ57fVSN6zUenbtfnl7v1twcA1Havhts+xqhRg1sfHAwMGQKwLCqvmZzhj8lyyOT6AIAl66tSH3pCCCEkF7QadP/+++94/fo1tm3bhg0bNuDBgwdqBdB9+/bFrVu3+MfkyZO1mU1CCCH5TJLGcOoW17TczDgOrXq65PgYbq1rwa1GIADg5acqiAqJ1mgeVXl6PxSfY8ryzxnTw/zp4Vo/r7qSk4FLl7jlsmWBBp72/LbKlYFbt8AH3t7ewJ7VDzI91slt93DneV3+eXB0RRzen/WNc0IIIYQo09fWgd+8eYObN2/i8OHDcHZ2BgDMnDkTo0aNwuTJk2Fra5vpviVKlICNjY3a55LJZJDJZHnOszal56+g55PkDJVr0UVlq13XvICYBG5+7s5tY6BvVCFX73Xj+lHwecEt3774El0GN8wyfV7L9cLNskrrDl5rjOl3AlHHXXm6s/x28SKQnMyNBt+5sxyMMWR8qdbWwMrlKejSrSQAYMr8Cug6MBampUwVjiNNk2Lq3NL41oq1FvjfQBlEqgeZ1yn6zOqATAYxvygDtPDeU7kWTVSuRVdxK1t1X6fWgm5fX1+Ym5vzATcANG3aFHp6evD390e7du0y3ffUqVM4efIkbGxs0KpVK4wZMwbGxpk3PXz58qVG865NT5480XUWiBZQuRZdVLbasXlzRQBlAACuTaXw8/PL1XGq1ojhly9cYajgrN5xcluux45VB2ABAPi+gw8OXGgMxvQwe/JnzFqVkKtjatKOHZUAcDet69R5Cz8/5QHmbMsDHRum4Pz9ZgiJLofZY09jyB/lFNJc2vsRL4J7AAAa1/TFF+aAwMCSePBAhB07XsHVteDWeNNnNv/oJSej3tdlf39/yLO4VssrKteiicq16KKyVaS1oDsyMhJWVlaKJ9PXh4WFBSIiIjLd77vvvkP58uVRpkwZBAYGYtmyZXj37h3Wrl2b6T4ODg4wMTHRWN61QSaT4cmTJ3B2doZYLM5+B1IoULkWXVS22iOTAbdvc72bDA0ZfvqpMszNK+fqWKUtHTFuHrcc8KkxXF3l2Zw79+Wamgr4+nL5Ll+e4b+9tXGtagTCY21w4nZLzE1+Cecm1XL1OjRBLpPD53oMAKBECRl+/LEKMvtpXLkhCC7uqUiTGmHj0bYYOy0UVZ24fvFJcUnotr08n3bxYhGCYowxdCj3/PRpRwwblvX7rAv0mdWBDOP0uLi4ACVLavwUVK5FE5Vr0VXcyjYpKUmtCuAcB93Lli3Dpk2bskxz9uzZnB6W9/333/PLjo6OsLGxwbBhw/DhwwdUqqR6oByxWFxoCrUw5ZWoj8q16KKy1bxbN6QICeHaJ7dvL0KpUrl/fytXM0WFCsCnT8D9+yIAYqhTXLkp17t3uT7TANCunQjmVuaY8pMXJi3xBAD8tbIGDjfXXbtr32uBCI2uDQBo4/oIZmaZN7V3rF8NEwddw+LtrZAqKYHJY8Nx7GYVAMC6+Q8REu0JAOje/C5adHNH4zRg2jQgJAQ4cQIIehaCai4Vtf6acoM+s/kow/ssFouh1ocv16eici2KqFyLruJStuq+xhwPpDZixAicPXs2y0fFihVRunRpREcrDmojlUoRGxubo/7adetyg7i8f/8+p1klhBBSAB1Yd4df7v+/pDwfr0kT7m9CAvD0aZ4Pl6lLe2/zy+1acTV8P89sCltbbgjwI0dEePxYe+fPzqnDYfxyty7J2aafsdwNZS25fY7fcsflg48QFQUs2uwOANATybBgmTUAwNAQGDsiGADAmAirFhS8qdIIIYSQgirHQbeVlRWqVauW5cPQ0BD16tVDXFwcnma4AvLx8YFcLueaIKkpICAAAHIUqBNCCCmYpGlSHLrE1cYaGyahW9e8N1NOD7oBwPu29po9X7peil9u25K7WWBiZoipU4Xa7XnztHb6bJ28JPTL/q6/Q7bpzazMsWi60CRuwh9mmD9PjtgErl/u8N4vUTvD4HA/jSkJEyPuZsPW426ICVfuL04IIYQQZVqbMqxatWrw8PDArFmz4O/vj4cPH+LPP/9Ely5d+JHLw8LC0LFjR/j7+wMAPnz4gHXr1uHp06cIDg7GlStXMGXKFDRs2BA1a9bUVlYJIYTkk6tHHiMyjhsV+7tmj5VGzc6NJvW/8Mvep+9kkTL3okKi8fA19zvkUiUQtvbCjeCffgLKfY13jx0D/B7m/1zWHwND4PeWy59bjecoX015lHVVBv/WDI0cuZvjzz7UwOo13GVBiRLAvJW1FNJalSuFYV25KcYSU02xaYmvprJPCCGEFGlanad72bJlqFq1KoYOHYpRo0ahfv36mD9/Pr9dIpHg3bt3SP7aSc7AwADe3t4YOXIkOnXqhMWLF6N9+/bYsGGDNrNJCCEkn+zfIzQn79dPM/2f6zcygaF+KgDAx798Nqlz5+qJQDDG/WS2axaqsM3YGJg6VXg+d8IjreQhK6f3veKXu7VTf95wPbEeVq9SXj9hAlChgvL68dOEsVVWb3eAJDX/bzAQQgghhY3WRi8HAEtLSyxfvjzT7XZ2dggMDOSflytXDrt379ZmlgghhOhIalIqjl7juheZGcehU/+6GjmukYkR6ld/Ap8Xznj5qSqiQqJhXd4q+x1z4NIFIbhs10m5dn7UDxIsnheFkOiyOHHLHRMGXMfSbU1hYGSg0Xxk5uQ5YZjyrv9Tr5Y7nXsHJwzpeAs7zzcHAJQqJceUKarvyTvUr4KuTe/i1B13BEeVx+GNd9B/XNPcZ5wQQggpBrRa000IIYSku7D/MWKTuDmue7T0h7GZ5ub0bVI/il/2ufxGY8cFACZnuHinKgDAUD8VHt/VVkpTwsQAf/4h1Dav2tcS7Ro9Q/iHzKfI1JSELwm4+oi7mWFnHQLXFo45PsaidTVQvmwaAGDxYj1YWmae9rdJRvzyirWWYHKW4/MRQgghxQkF3YQQQvLF/n1Sfrlff6MsUuZck2aG/LL3zcQsUubc68fv8T7CDgDQ3PkZTMxVT349YqoHNv55AwZiLni97u8Kt/oS3L/0XKP5+dalw0+RJuXez66eryHSy3mz/XJVbeH/1BCBgcCPP2adtmWPuqhXjRvk9MGr2rhz9kmOz0cIIYQUJxR0E0II0bqkuCScvMnVxpYq+QVt/6eZpuXpGrex55e9H5pr9NiXjgtTVrZrGZdl2lEzW+D6yUCUK/UZABAcVR4eXapi2+KbGs1TRidPCCO2d+2R+9YD1taAQ/aDnkOkJ8K4UULLgjPHorNITQghhBAKugkhhGjdmT2PkZjK9YXu3eYpDI0Ns9kjZyo6lkcFK26As3sBNSCTyDR27EtXhVr59t3KZJu+SWdnPHwgQrM63MwcqZISGDHVA78N9NJ4U+yEBOCkNzdnWknjVLTq6azR42emXa9q/PJdX83e5CCEEEKKGgq6CSGEaN3+o9b8cr9BJbVyjiYuQQCAhBQzPPXRTL9uaZoUVx9yU2eVNo+Eawv1pq8sV9UWV+/XxC//u86v+2evJy7uf5jtvtuX3EJp8yj8Ptgr27Rr1wLR0Vxz8p69jVCiZAm18pdXFaqXQwUbrrb73ksXyDR3j4MQQggpcijoJoSQQsrX6wWObfKBXCbPPrEOxcUBZ25y7ZZtSyfDs4dmm5ana9IolV/2vvZZI8e8/0CMuGRu8Lc2zSKhJ1b/Z9PQ2BBrD7bEymlX+XVTFteDPIvieh8QjNEz3RAVb43luz1xcV/mQXp8PLB0KbespwfMmKF21jTC3YO7kZKQqI+AgPw9NyGEEFKYUNBNCCGF0L7Vd+DW2gG9RjXGxr9u6To7WTpxAkj9Gg//r58xxAZirZynSUuhNt3bRzM/b5cuC4OSteutXi33t3790xNu9bkpxx77i7FvX+Zp//jlI1IkQr/sCVMsM50Le82yKER/7U7dvz9QM3fZyzV3d2H57t38PTchhBBSmFDQTQghhczJrXcxeGIjMMZ9he85V1/HOcra/v3Ccr9+2jtPfU8HGBpwI6R7v9bM3NGXLgnL7drl7hh6Yj0sXiLM1z1zpnATIiOvo344dK2JwrqAj9Xw77w7SmnjouKwbDlX/np6DLNn5y5vedG4sbCc26A78OFbtHN7iEmDNN/fnRBCCCkoKOgmhJBC5MqhR+j7c13I5Pr8Ou/7Jfkaz4ImKiwZFy9ywVTFikCTJtnskAdGJkao78a9L69e6SEqKpsdshEfD/j4cMsODkClSrk/Vps2QPv23HJQELDhX6nCdqkUGD9HqKoe00foCz5nlSsiPkYqpF8z7xG+JJYCAAxsf0etUcc1zc0NEIu5sr17KzbH+ycnpKJnDwkuP3LDij2euH9Zu1OrEUIIIbpCQTchhBQSPuefovtgB6RKuMGySpklAADkchEuXNBlzoCY8FgsmeSF6SMVHz/3uASplGui/X2PKOhp+VcnY1CfHjDn1tWjzyD9Ghu3a5v3kcIWLRKW/5wTh9gIIVDdvBnwf8qVq5tLHNbs98CwLtw0Y7FJFpg1XghIYyNisXwr1y9erCfFrAUV8py33ChZEnCq/BoA8PSFKRK+JORo/5mzDREQ7Mg/f3A7MovUhBBCSOFFQTchhBQCj28GolMfO37are7NfLDvgDBS9dmzusoZZ2ivF5iywhMLtyo+Dvt049P06xGu9XxkbPLs7Z23Y+3ZIczJ3bFR9qOOZ6dePWBAe64ddlS8FZbNeAQA+PKFa3KebtW/5tAT62HhGkeYlogHAPx33AN+ftz21fN8+VruQR19UKOefZ7zlluN64YAAORMjAfXXqu9n5cX8M9KkcI6v8ci1YkJIYSQQo6CbkIIKeBePnqH9l2tEJNoCQBoU+8R9l9wRas2+jAz45r3nj+TrNG5qXPixonHOHnbPcs0zer4o76n9kf6atJY6Bfsffldro8THfoFJ25yfeVtzCPQoV+9POcNAP5cVg4G4jQAwIqdjRD6NgxzZjO+KfyAAUCzZtxy2SplMGsSF9QyJsK4cVyLghXbXQGk13JX1Ei+csvdXbiMuHsrRq194uKAYcMA9k0Xbr8Aa5XpCSnoNm4EatQAtm7VdU4IIQUVBd2EEFKAJccno0MnfYTH2gAAmtR6guNXHFCiZAkYGgLt3PwAAJFfjHH/yot8zx9jwJRZlvzzeWO8cPWwr8Lj1il/XLnnCJGe9msyK1YSoYJVKADg3uPSub4RsW+DP9KkRgCAQd89g4GRQTZ7qKeqcyWM7sNVwSellsSw7z/i33+5PJqYMCxerJh+/CxHVK/OLd+8CXTpEMfffBnSyRvV6lbWSL5yy92zHL9894F6c4RP/OUL3r/nllu0AKqV5Z48eVcV0jRpFnsSUvCkpQG//Qa8fg2MGkUj+RNCVNPPPgkp7k5uvYvHj5Lxy4y6sCpXStfZIaRYObH3PYLCuRriulVe4My1ijAtZcpv79w+AUe9uOWzxyLQuGP+5u/4ccDnCRf41bYPxvR/PKBvqJ0pwdTVxCUIh73KISHFDH43A1DKpiTeBkTi7csEvHktAxCPWmtqwcTMJNNjbNtnwy8PG11eo/mbubQOtp2MQ3yyOS4+aMCvn/bzY9jZuSqkNTIC/vkH6NqVe37Hj6vZ1hdLMHOhbgNuAKjZoCrMjWMRl2wBn6f2YAwQZXFv5dS2e9i6uxEAwNSUYft2EaaMDMGbz5WRIjFG4MPXqNOkej7lnpC8u38fSErilmUyYMgQwNcXMMn864UQUgxRTTfJ0vO7r9HzhwaYvc4Tzd2jEfwqVNdZIhpEU/QUfLtPCU2yV67UQylbS4XtnfrW4JfPXLXNr2wB4EbcnjZNeL5otZ3OA24AaNJImI+rQZtaqOZSCe2+r4+fZrXAkh2tsGRHN0z7PS7T/Z/cfomHr2oDAOpXD4BLc80ODW5TsTQmj1TsI25f5iMmzXVUmb5LF6DjNzdThnb2QVXnPAynriF6Yj00qsX15Q79UjbL34iIj5H4YWIV/vnKGXdRpQpQz0UoLz+fMO1llhAtuHZN8fnLl8DUqbrJS3548oT7PlqyRLmLCCEkcxR0kyzt2BAMOeMuogM+VkPzZjK88s19P0lScOxbfQelzOLQq4UPokIK6HxTxVxEBHD+PLdcsSLQ4jvl4K98tbKoVy0AAPDodS2Evs2/oGXbNiAwkFtu3hz47rt8O3WWmrYqnW2a9dts8S6Tr7Lt60P45eH9tDP428S/GsHWUjj28j8/wdjMWGVakQj4Z2kS9MUSAFwt94wF9lrJV26414/nl+9eCVKZhskZfh70mu8m8V2TexgxmRsHwLVBST6d7yOJ9jJKiBZ4eQnLhobc3zVrgCtXdJIdrRs/HrhwAZgyhbu5QIE3IeqhoJtkSi4H9pxxUVj3PsIOzVuZwtcr//uOEs2at6QsYpMscOxmYzSolwi/G4G6zhL5xoEDXHNFABg4EJlOt9W5lRBonz/0Mh9yBiTFJWHOzBT++eLFWTcrzk/u7etgeJebsLUMR/3qAejj6Y3JQ72wYf4NjOj3EQAgkYgwa5byvpJUCXafrgMAMNRPRf/RzlrJY0mLktix7gOqlX2Pcd9fR88fsh6IrqaTCdbN9UZlm2CsmHoHVZx0O4BaRu5NhXa0d71TVaY5+p8Pjt7ghpa3NovCpj32fB9/16ZCM3m/5xZazCkhmpWaCty+zS1XqgQsXSpsGzYMiInRRa60JzISuH5deL5kCbBwoe7yQ0hhQn26SaauXwc+RVgBAJq7hSAuOh7+7xwRHmsDz86GOL3/MTy61eXTR0dKcO3wA1y9kobQMCOVx3SqlYJZq5tpbFAikjtBz4IR+Kmq8Dy8Ipq2S8KmRbcxcGIzHeaMZLR7lxzp90YHDco8Xece1vh7M7d85pwBhk/Rft5Wzb6H0HBPAECPLrFo2rTgBEsiPRG2nvb4+qyMwra+X2Q4ck6K2Fh97NkDTJrETeWV7tyeRwiP5QLgbs0fwbp8E2hLhwEN8HoAAKjXN3vUzBYYNRMA7LSWp9xwbyM0Gb/rqzzuB5MzzF9ixT9fv/glylYR3tdyVcvA1iYFYREl4PfeNdt+4YQUFPfuASlf7z22agWMHQucPMnVcgcHc7XCO3boNo+adOoUVyGT0YwZgLk599oJIZmjmu5iaMUUL7jXfIqbJx9nmW73bmH5l9/Lw8vbFk1r+wMA4pIt0L6PA9b+9RRTpwINGgCly+ijz+gm+PdwSxy72Vjl48//PDF15G1tvjyihgtH3/LLJY0SAADJaSYY9FszTBgvhYRaeOrcK993uHuP+4p2dUpEnTqZp3VvXxtWplwXgYv3akOSmvcCfP2aG1m6Y0dg/654pCYJNZhRIdFY9B8XqeqJZFgwOzLP58sv5ubADz8I/Y6njlWcW3rbTuGG4PDhdF9aHWUq2aCK7QcAwINXNZW+P87tfgD/d1x/9UaOT9Hnp8bfHgKu9bmRz6OiRAgO1m5+CdGUjE3LPT251kjbtgEWX+9B7twJHD2qi5xpx/HjwvKAAcLyr78WrZsLRQFjwB9/cNfnRbWrQ2FDQXcx8zEwBJOWeOJeoBP6D7dBSmKKynTJycDhw9yymRnQrRtQytYSF+9UQ8dG9wEAKRJj/DrLCYsXAw8fcvPIqmPFHk8c2/ww+4REa85fNOSXLxx+ix+63eCfr1qtj3btgDAaz0in9vwXxC8P6nQ/y7RiAzE6NuH6dccnm+P2mWd5OjdjXNPImze5vnv9h5ihQtkETBrkhRf332LBZH/EJXNXlSO63katRtXydL781rt3BOzLf71Jcac6Lh98BIDrQ3/6NnczoVzpGLTX0NzcxYF7C66vdnKqEZ4+Vdy2cKnwfTPt90SVU8e5ugrLfn6Zn0eSKsGVQ49waL03Dh2CwuPkvo9IiknOw6sgJGcyDqLm6cn9rViR69Od7qefisbvaWIicPEit1y2LLBrF1fLnW7ECODIEd3kjSg7cwZYtoy7Pu/aFbhxI/t9iHZR0F3MHDlpzi9/ii6PzYtUTyh5+mgc4r4O7tu7tzD1RUmLkjjhVRf92ijXVru4AL/9HIwzO+4j+FUoQt6EKTyWTxE6Ag3/vT7evlU6BMkHklQJrjzkRmYubR6JJp2csOm4BzauioTB10q+69eBzp2Vm5GR/MHkDLuPc83/RSI5+v9UM5s9gC6dheUzx2PydP79+4V+iumi4q2xYo8najWqin/2tgAAlDBIxtzlNVQcoWAzNGSYP0m4MTF1ZgnIZXLs2QNIpVxAOHiEJfQNqaZbXe5NhUHgMs5TfOuUP2495boh1a70Gt2GN1S5f8Ym/lkF3dN/vI22feuj75gm6NsXCo9eg+0xfpQl5DL64iLqiYnhpuS7dy/n+6akAN7e3LK9PfdIN2gQ0KsXtxwZyTUzL+wuXBCa0nfvztXq//knV8sNcNcL/ftz6YhuyWSKI+gnJ3MDnT54oLs8EQq6i53DJ0wVni/810Flbffu9QH88qB+SQrbDI0NsftcYyxfJsMvvwD79nF3cR8/Bpavt0PnIQ1RoXo5lKtqq/CYuKAF/vfdZwBAbKwIfftyg5CQ/OV9MxnxydzNlw6NA6En1gNEIowaVxo3bgDlv05J/OgRcGi/6pYQRLt8zj/Fm89cP9829XxRvlrZbPfp0LcWRCIu2DjrUz/X506MTcQfExP450v+isWAdrdhZCD8LzDG/XRMGHQXFaqXy/W5dKnf2MaoW4UbPPDhq9o4tP4utm8Xtg8bppNsFVruGcaByxh0L1wkLE/59TP3faOCq4vQJt33uupBHaVpUmw95qJyG7/vWyec20stqYh6Zs4EfvsN6NABSEjIPn1Gd+8KQWh6LXc6kQjYsAGw4RqA4MABbqqtwuzYMWG5Rw/ur0gErFwpfF9KJFyNN92w162dO4FnX+8ri7/O4hkfz3UXe5a3hnAkDyjoLkY+fVKuvQqJLodNC30U1kUGR/EX7eWtQuHZWnlQNLGBGL9NEmPtWqBfP6BMGaUkSkR6ImzeUxbVq3PPHz7kBjHSpt3/3EZ5q8+Y87OXdk9UiFy4JrR26NBfsdapcWPFflnzpn6CTCLLr6yRr3ZvE6ZwG9RPveay1uWt0LgxV0v7/JU5goKU08SEx+JLWEyWx1n0x318CuNuznVpH4M/Zlhgz8Vm+BSUhH+mXkftilwf6Brl32HKosLb/FpPrIfFfwlTXY2d4YDHX4e5cHcHatXSUcYKqXr1wLeUuXuXm0Po8WPg7B0uSK5kG47+v2Y+Qnv16nowMUoEAPg9VT112s1T/ohO4AZka1LjDpYvB/+YMFJoOrVqlaHK/Qn51tWr3N+YmJwHIxn7c7dqpbzdxgaYPl14Pm9eTnNXcEgkwOnT3LK5OdC6tbBNTw/YtAlo8nVsxJAQ4MOH/M8j4SQnA7NnC8/PnOHGZwGAqCigXTvgzRvd5K24o6C7GMl4l7J751h+eeG/NZEcL1zYH9ryDFIZd/U0oEsgxAZijeXB3Jzre2f0NY5ftw44uDHrAd3y4q/l5RD6pSz+/K8F3j6hXwFAmPcZANp3Ur44bdMGaFaHGzAv4GM1HFyvugsC0Y605DQcuOAEADA2TELPEVnX7GXUpYvQV/bsWWF9yJswjO59AzblTWBX2QBHNnir3P/d02As3c4NcmUgTsOKhV/4bdblrTBhYUs8DaqGd0+D8fBJaViWKTgjludG+35uaF2P688dGWfNrx8+lEYSzKkSJQDXWty84wEBIsSEx2JRhlru32eUyXLWCrGBGHWrcoHzu7BKiAmPVUpz7JBwk2Tcr1wNZfpj+UZ71CjPTbx+1a8+TYFIspWUBARm+DcJCMg8rSqq+nN/66efuP7PANff+bH2Lne06vp1YfqzLl2E+cjT6esDLVsKz58/z7eskW+sWQN+MMrvvuNacZw6xQ2oBgChoUDbtijwA1ZKpVy+P33SdU40h4LuYuTwLmHE3j8XWaCnB1fDHfqlLP5bKARWuw9a8suDftR801FXV2D1auH5DxOr4JVvkMbPk5qUilchXBNdxvSwfil1Ig8L45qNA0D9+oCtrXIakQiYN0fKP5+/1LbQ13YnJwNz5nBNrgq6C/v9EBXPBYDdPfxgbm2ezR6Czhn6dZ89C3wJi8HU4V6oXtsMG462gFRmgKTUkug7phG2rFC+Kvpj7EekSrhRpMcPuAOH+lWU0oj0RLCvYwczK7McvrKCR6QnwqLFJRTWlTBIxve9kzLZg2TFvaYQtezfFoKDB7llGxtg5Mjs93etLdzkeXwnSGEbkzMcv8I1kzIQp6HzACeF7XpiPYwf+Z5/vnJxRA5zT4qbJ08Um0HnJOhOSQF8vjYSrFqVm6NbFWNjxb61hbW2W1XT8m/Vri0sU9CtG9HRwrzpenrCsrk5V+GSPgtKUBBX4x0VpZNsZksu58YN6NaNqwhiTNc50gwKuouJsKAI3LjPRVgOdsFwcgLmLhDmTV20vhaS45Pw9skH3HnO1aw5VX4Fl2YOWsnPjz8CA9tzbd3jk83RrZsMxzb5aGSqo3Qvfd9DzoRa+i1H6yIprnhfTF86Fc4vd+iQebrWvevBw4m7Jf8iuBr2r/XJPHEhsHgxMH8+MHQo4HOrYPdT371buOExaEjO5rN3dQXKfb1PduliGqpWY1i83RPJadxIiPpi7vMlZ2L8MKk2li4V9r12xBdHrnPtA20twzHrn9z3Cy9MGrarjb6ewrCuPVs+KPQ1+LrSuLHwffvH/Cp8QDN+vDAYZ1YUBlO7F6Ow7ZHXC3yMrAAAaOPmr/Jm1OAJ9VGqJBe4773QCKFvi8CQ0URrvh2wLyeBore3MCZNZrXc6UaNEr6Xjx3LeqBAbZPLc97fWi4HTpzglg0NgU6dVKejoFv3Fi0SWiQMHQo4Zbg3aW0NXLoEVPs62ciLF1zXnIJo4UKhtZ5IxD2KAgq6i4ljOwP4wY/+1/E1RCLApbkDerfkmpl+jrHFhr/vYfcGoTZ4cO9glVO7aIJIBGzYXxc17biOJS+Cq6HXqMaoVDYaM37wwrunH/N8jue+inMHf0kshf3/Fu8Bds4fesUvd2z5OdN0Ij0R5s0VfpnnLy8PmUSaafqCjDFg106hpn736oLbXD42IhYnb3KRR2nzSLT/3jVH+4tEQOdmXMfENIkhYhJLAQAM9VMxof91fHobg4lD/fj0kycD06ZxA1SNmyQMsrhwamCOatgLu0VrqsDOOgRmxnGYNldF8w+iFvdWFfnlhCSuBYGZKTfgpjpcG5Xml/38FS9Pju8Xvq96dlV987SkRUkM+o67mSuRGWLdwhy2FybFyrfBb05qurPrz52RsTH3PZtu7lz1z6NJr14BFSoAzs7coFrqevBAaOLbti03jawqNTNMslEQgu7ISG6KM1WPV6+y37+w+fBBaEVqZKS6VUW5csC5c8Jzb9U9zXTKy0voky4SAWvX6jQ7msUKscTERPbgwQOWmJio66xkSyqVsgcPHjCpVKqT87ep95Bx4Qdjvtdf8Ov9bwXy68vYSFm1skEMYEwkkrEPLz5pPV8B994whwpv+DykP0QiGWvf4D67fPBhro89+6drSset5/iRyeWay39Oy/XyZcZ272ZMF/8GMqmMlTaPYABjZsaxLC05Ncv0cpmctXD25d+7XStu5VNONevePcX/gTIW4UySKsl2P118ZreuDuLzObavV66OcWKLD38MPZGUjfjuBnsfEMxvl8sZ++uvbz4XNT/xyw1qPGMyqUxTL6nAyaxckxOSWUpiio5yVTTIZXJmbRap8L81eeg1tfdPiktiYj0JAxirW/WFwrY6lV7yvw2hb8NU7i+VStnFk1eZvjiNAYxZmUaxxFjtXh/cOePPdiy9ydJS0rR6ngIrIUEo7IQErZxCW9/F7u6K34N6eowlJ6u3r4eHsN/Hj9mnT05mrEIFYZ+Hub+0ybWxY4Xz792r/n5Tpwr7bdqUdVp7ey6dmRnL9lpLm7+xoaGMWVoqlq/iNSZjFy5o/LQ6NWyY8Pr++CPrtOXKcemsrLIvp9zIbdl+/sxY2bLC65g3T/N50wZ141Gq6S4GIj5Gwusx12S8Wtn3qNtcaDLu3MwB/+udBgAIjxDz0xR51vVDRcfyWs9bzYZV8fxdZZzf8wC9WnhDrMfVpjKmh4sPGqBDPxcEPcvdaA/PQ4UBqMrbcIPy+Aba8f2wNGHXLhH+/LMyQkKyT+vtzfWhGTQIClMT5RdfrxeIjONqktq4PYdBiaxH+OVqu4Xn85eVhzSt8NV279+n2BkoPNYGXsf9dZSbrO0+XplfHvRT1Vwdo+uwRpg1yguje9/AU58gbDnlgUo1K/DbRSJgxgzg33+FJlu+L4TP+uqVskyndSrKSpQsASMT5ZkaiPpEeiI0qimMTGVkkIIJs9UfBt7YzBg17bjB0J6/r4K0ZO636ZVvEJ594OaDb1LrKcpWyXy6DKvy5vi+LdeaJTrBCrtWaW9i2rsXnsKjay0M/aM5BnZ6QPODFyIyGeD/zc+AXA68fJn9vklJwrR41asDdnbZ71OihG5ruxnjRrFOp87rTHf8OPdXJAK6ds06bXoT8/h43Q6AdeSI0MxaFcaAKVOKTl/hJ0+EmWcsLRXHEVDF5evlcXQ01Lp+zQ8yGTBwIPD5a6Omtm25a5WipPhdWRVDJ3YFQCbXBwD06fhOqcn4nHmGSv0lBn2fmF/Zg9hAjA4DGuDI9Sb4+CoKC8Z7wd6Gu/CSyfVx7Hjujvv8Nddn3cgImLdA6KO5bl1ec8wJDQV++EGEEydKY9So7JvhL10qfMEfPaqZPOTE+RNCf+6O7dWbIN2zlys86/oCAF6FVMHe1YWrb7dcJseBneFK6/fvzr//b3VFRgqj4VavDjTK0FQ3J0R6Iszf6Il/D7dArUbVMk03ejSwZ5ec7+cNAIM63EKTzs65Oi8hANDYTWj6PazjNZSrmrPm+q41uc+rRGaI5/e534Hj54Rm5z07f1G5X0bj/yjFL//zX2WtzBkskQA//l6T/209dK0J5v1yI5u9SE6FhwOdO+thzJga+JJ90avt1StugM1vqdPE3NsbSOPuB2XbnzujH34QAvRTp7hm2/klMBB49054rm7z6hcvuAcANGumevDVjApKv+6MNxjGj+eaK6c/0pvB+/kJNxQgSwMifYDIu4C88M1eMW2acH05bRpgZZV1ehehTkrp5pOu/PkncOUKt1yuHLBnjzDHeFFBQXcxcPi4MOdpn4HKNQR16gB9+wrPjQxS0Huk+tMUaVK5qraYttITZy8JF00nL6txG/kbEolwJ9fRkbt7lv4ldOgQN4p3Xj16BMhkXLB9/rwe/K6/yDTtm2fhOH5cuKXqdU2C1CT1Al9NOX9NeE879FK/FnXePOFr4s8Vdnxtt0wiw8fAT7h+zA/ndt9HSmLBG6Dsztkn+BTFXSW0rvcIpiW4jmxHrjrztWgFxe3bwo9mt275M3BI/4F6OLndD6XNI1G9XBCW/FtD+yclRdqQsTVR1jIM9mU+YuZy1xzv7+oiXPD6+nAjkB87LYw30GNUi2yPUd+zJjzrczXugcGVFfowasqKFcCTp/oK6+Zv9MS+1Xc0f7J8lvAlARf3PUTClwSd5oMxLlC9eFGEe/fMsWqV5r4UfX2FZTc3YVmdoDtjf+6cBN1GRorzdudnbXfGKSQB9YNuPigF0LNn9ukLQtCdlCTcwK5QAfjnH65/c/oj4wCic+d+HVju8XTgYhPgYmPgsDVwvRsQuAaIDSjw1eEnTgg3GezsgF9/zX6funWF5YIQdF++zA12C3Cjru/bB5TJvEFToUVBdwEUFRKNP8d64fbpvH8SokOjceUR9+mqbBMMt9aqm/rNns39owNA726JsLDR7ei9NV0sUZ2bHQY3byLHd7hfv+bm+AO4HwFjY2HKmrQ0YPO6vM+T8O0X1aL50ZmmXfVnABgTLhiSkg3gfT7/BvmJjYiF93NurgjHCm9hX0f9WtQW3evycxm/DrVHMw8xHB0Bk5IMlWpWgGcvV3Qe3BDDuj/SSt7zYv+uGH55xOAkdG/BFVpMoiUuHSpYE6bevCH8sHt45N95Ow1qiNAIS7wMrpzjWklCvmVfxw4fw6zxNtQOdjVyPuVkPXehisbvdTWEhgpTMzk5AdVrqBd4TZzjyC+vWJHjbGTp7VthkCI9PeCHPk/4bcN/rw+f8081e8J81qfDC3QY4IZ+PXU7+vu2bVyNcLq9e0Uai38yDqLWv7+wrE7Qrc783JkZMQKo+PXn98wZ4P79nO2fWxlrfgGuUkKd91KdqcIyKghBt5cXN6UbwE2jKZIlAdG+QNA+wH8Oulj0RUM3rtLD3//ra7RtLRxAGg98OgU8HAecqQ0crwhcagGccwMeTlA+4Yt/gCfzgeCTQOL7fA3S4+OBsWOF54sXc9e72SlINd2hoVzFWPrb9te8ZLRs8AGIeQokvMt650KGgu4CRi6To0eHj5i9zhOePWrh9I57eTreyV3PIJVx0w716fA609HIa9fmvpSnTwfWbbbO0zk1IWPfIZmMm18wJ54/EuZoTf8RGP0zg0jEfao3/Jua5/7J/n6KNaWHrrnjtd97pXQx4bHYetxNaf2lszF5On9OXDkmdDHo6PEhx/vPXSo0U753T4SXL4E0iWItz4ErTfHwasEZLViaJsWhi1zhlzBIRrehLvi+vzAF1/69+dvSIDu3zgrvXbOm+ds3VN9QX2szFZDiJy//T3U9hatBv8ByOHlSuBhT56I/3Xffgb9xe/Uq8FhD99iYnGH0T2l80+RffwX+O+CEkV1vAgBSJSXQo38ZfHihww6teRAbEYuLD7jpAs9cr4a3b7PZQUuCgrhmwRm9fSvS2JgsGYPuPn0Ag68/DdkFiomJwL2vl2U1anA1qTnxbW334MFAhJanlI+L4yovMoqJyX6O5k+fhNfq4sLNR54dnQfdrzbgzPbb/NPO1qOAgyWB8/WBOwOAp/Mh+ngIc0cLXUHmzgXkpVsAlfsBlfoCJb6pYk3+BETcBL48AuJUdIZ//R/wZA5woztwwh44bAXcGw1Itd+NbeZMIPjrsEft2yveQMqKo6PwP6/RoJsxIOo+EHIWFgk3gbCrXLP9L4+BuFdA4kcg6gHw/gCQyv0DTp7MdSMBgE51z2KKfUngRGXgrDPwpJBObJ8JCroLmM0LbuHWU65mWiozQJ8fXXDtiG+m6dOS0zBhwHWUMo1B39beCHyo+At5+JgwMFCfgaW/3V1Bx47A339zgzAUBN26Ccsnj+RgfgsAz72f8cu1bblpwqpUFaFLY+62cnBUeZzakbcOVf4+isGrnImxZK5y0L1piS8SU7nmkT09hCuGSzdt8nT+nLhwTrhB0KFLyRzv79HGQqELQsmSgHOtBHRvfhddmwpTcM2dmbNy0iav4/4Ij+Xe4y5N/WBmZY72fV1hWTIGAHD8el0kx6vo1KcDSXFJePiKa9pd0+4NbMrQVzMpnkqXFvq9+vkBR3cLwas6zVvT6ekBEycKz/9Zrpl+mntXe+PiZW4QSjs7hj//5MZR+PeAO1q6+AEAwmLKoFvnBJ03z84Nn0uvkHGM3T17cnccuZzrtmZrq1gzrO6+w4YBCV/fvqpVhZrD3btzl5+MGBOal9vYAJXKJaBGDe4cL18KreRU8fbmuq8B2U8VlpkRI7igB+D6WnfokPWgX3l15YqQ54yya2KePjc3kOGGlyz1a+B0H/h0GnizBXj6NxDBBbpmZkJN/vNnErC4NwD75iYyY4A0CUgOQYnU18onfr4YOFEFOF0bON8AuNwSuNYZuPk/4FZfrtb5ZA3u+TdY4Dqc9eIGBjUQp6FN9X0qX1unmrvg7s4tP30KHD1lCjTbBzQ/APQMBTr5AfWWAeU6AOKvVcciFR2MpYlAXKDiOkkM8HoDcMFdeZuaZDKufLIaj+L+fWDNGm7Z2BhYv179bmmGhkCtrw1fX7wQ5pzPkZgnCAtOUO6ueak5xDe7ofqniRB7teea7Z9zBU47ACcqARcaArf7AdGPEBwM7N/P7WZdKg07Rw+Bnl6GlgLSgnNNqQl0ZVeAhL4Nw+RFdRXWpUpKoOvAGvA5/0xl+lYNXmDVvpaISbTEoWtNUKdRJfzQ7SY+vgxFTAxw8WEDAIBd6VA0aldb6RgFWbNmgKUZNyjPuXNySFLVv2h6/kIYmbu2qyW/PHas8C+/dr3i6N1padzd4CNHuDvDWUlJTEFgsD0AoFrZdzA35kZH33HGHSFvhPlkJakSrN4ujBa/aKUtnO25O6UPXtVCdKgGR4bJBJMznL/N3aI2MkhBy251cnWcPXu4L+ewMK5Jk/9zUxy/6Y5Dl1xhZ80Nf3nauxHuXyoAE3RCcbC0ft9zf41MDNGrFdcUNCHFDGf3+OkgZ8ruXgrkW6Q0r19AhhIlREfqcVPVIy4OuHSba6Jeqcxnfr26hg4FLMy5COrcyZg85ys69AsmzhHGPVj391N+zmJDY0McOVcJ1csFAQAev3PEwK7PIJPI8nze/HTnhuKNgt27c9da9t49bvyU8HCuJisnVq0Crl/nlitXBq5dk8PIiIs+9u8XBjHLVswT4O4PwOOZQOBa4P1B4NUGhF76i69ddi13FaIjpVCrJnf8tLSvA44lhwEy5XFK8tK0PJ2hITdXcnotua8v0KULV4uuDRmblrdrJyxnF3RfuyYUfPdSvYFDpYADJb4GTo2A612599d/JvD5Mp82vbb7S4wBwnY3Aw6aAmecgdM1gaO23DEOloT4ZCXUCeoHpMUonzwxCIgLAKIfAuE3gNBzwMfDwIdDXK1zwmvu8Y0XEY0QFFEFANCy1nWYmYsBa3egylCg7kKgxXHguxcQNdmi0Kd+3rwMAa5IDyhVF6g1CWh1HvhfPNAvDegvBVp90zlebAx8Fwg0PwjUmQ6U7wzof63YiH0GnG8IfDiS9RutwtChgIMD0Lgx8PGj8napFBg1Svhszp2rXkuEjNKbmEulwmB5apEmAr6TsXPaclSqWgLlynGVdkeOABKpCDBSs0Ip4Q3WrhVuco35IQalqzhyNzoq/Q+oNhIo2y7rYxQyFHQXIBOmlEJsEteXemD723wNYmKqKTr1qQD/W0KzljtnnsCtAcOd54oDnsnk+thyygM1nEqhT6cgSCRcEfceULbQTQNkYAB0cvcDAMQmWeDWafX7yT1/yzWR1xdLUL1uJX59u+/r8xdFV33r48SWu1gxxQud3e/DyjIFLVpwTc1++SWb498L4ptrN6j9Bj9/z/VnTpMaYcVc4dvr8Mb7CI7i7rp2bXoXDvWroF0zLqhiTA9Xj+fkmy53XjyJx4cIruqoZd2nMDE3ydVx9PW5u/NlyijeTTUyMcL0X4Ufv7mzsr5yOHGCa16X3iQqK1Ip1x9z2jTgvXIjgkylJafhyFVuFG7TEvHoPFC4mdVvoPD69x/Pv9YGWbl1LZZf9vCgZt6keHN1FZbTa117tArM8eCCJUsCzpW4G9bhsTZIikvKZo+s/THqKSLiuO+MXi180G2I4kj/1uWtcOqEHBYm3Of55G13/DquwI/DpOD2PXOF5y9fAg+8s7kLrcLVq8LygweKA5dl5flzxam1tm/nglNPzxgA3BRHCt3NmBwIvQTcGQJIvmlZEPucq4l99jfw8Ffg9vfA/dHwuywMduda8QFgURu1agu1mAEB4PrzHjQF7v6oEHxrIugGgCpVuMGjSn9tgHjnDteSI1c1jllgTBhEzdiYC9TSKQTdSSF8bXW6J0+4D5yRQQpcrE9wNbiZSRGqOxWamH+qDciSgdinXK1vSjgg/+auSeI3P+6mVQEja0DfjAuAVTGwBAzMlVaf+TCbX+481AP4XwzQwQdosh2oMxWw6w6YOwJ6BujQgQtqAa62+/DhTF6bnhjQM1C9TaQHmNfggsS6fwOeZ4COjwALJ267NB641Qd49LvaXwQ3bggtTO7f5wb6yzh4H8DdmErvIuHiotiqR1256tf96TRwpg5WrkjD0A3bkSbRB2PAhQvctXPFisC0MwfxynwFPpX+GfJaUwDH8UC1HwH7QUDFXlww7boICSWaYeNG7rCGhsCY38oA7W9zNzqaHwTcNwM1fs75CyvI8mnecK1QdzLygiA1NeuJ4s+cESaDt7ZKYxEfI1lyQjJrXe8hv76MRTgL9PvM/l2dxAzEqfz6iqWDmddRX/bXr9eYuXEMvz7j4+bNfH7BGrJv9W3+NUzo76XWPpJUCTMySGYAY7UrvVLa/s9UL5XvUcZHyZKMSSSZn2Pb4pt82pmjjrPgN6H8OU1LxLGokGgml8lZgxrP+HTXjvgyxhg7t/s+v25Uj+u5eVtyZMUK4XUtXxChlXOkJKawiqWD+fP4nH+iMl3G983OjrGAgCyOmZTGevWS8+kNDRkbP56xsOD4bPNzavtdfr+B7W8pbJOkSpiNdQoDGCtRgrG4ONXHkEqz/sxqUju3B3x+3/h/0Pr5irP8LFeSO0e2Plf6Tr56+FG2+6kq24Htb/HHeH73da7z5HXUlz+OmXEsC34VkmnaSwceMrFYyqefPJkxuTzXp843klQJK2kUr/Tej+uXxW9vQoKQMCGBX926teIxRo/O/vxpaYy5uQn7TJjArZdKpWzlypf8+v/1TmMs9DJjfjMYO16ZsT3gHq+3KB4wYKWwLcPjr/9N54+197dxjD2ezfbsEc67aBFj7KSDsM/F5oylRLK4OMb09bk0jo45fntVevSIMQsL4dw9emR97ZFTvr7Csbt0YezFC+F5376M+8cM+IexvfqMHavI/6MmJTGmp8elc638iLEDJRk7UY2xC00Zu9GLsXujGfOfy9jLDYx9OMZY7Av+nJs2CedYM/4/7r3cZ8DYQQuuvM7UZexSSyb36s4iTnVl0uhnmb8AuZwxaTJjKVGMJXxgLP4dY5KkTJO3aiWc+8WLTJPxLlwQ0teuzZjGfhYkCYzdGiD8Dz2erdZucjljjRsrX5OKxYz98w+3/d07xkxMuPUiEWN37+Yui+fPC8f//fdsEid8YOx6TybfDTazx3yFvJUuLVfKL8BY27ZRLD4+8zd07Voh7bBhuXsNBYW68SgF3fnAx4cxKys5q1ExmF08cF9pe0ICY5UrC/98O3YI2+Kj41njmv4ZgkHFf27Puo9Y2PtwPn3kp2j2x5BrrIRhMp+mXDnGZDLtv05t+BIWw/TFaQxgrFrZICaXZX/l8vLRO/619/G8o/KYJkYJSl8Q5UqFsop2Ev65r2/m55g4UAjcty47zqRSKRvd+zq/bv4vV9nNk4/5565VA/i8J8YmMkN9LuirYvs+t2+NWkJCGCtTRniNz7L4bcurDfOF19+xkfL/+c2TjxVuFnFf1ozdV07K4qLiWZv6D5XKKP2mxuyfrrHYyNhM85LxQvvUduVfpDFjhOPt3q36GPkVnElSJcy0RBwDGCtvFaLW/zjJPQq6C763T94rfOatTKOYJDX7SERV2c744Rp/nLO77uUqPzKpjNW0e80fZ+3sLILQr3bv5i6I0/f5++9cnTpfPboWwOe3Q8P7/I1kG/MIlpaSyfuvIuhOSmLMyEjxe9vMTCEmV2nuXCF9zZrccRhjTJoQyp5fWsFsSnHfk0YGySxmk7lyQH2ts+IB02IZi37MWMgFxt7sYOzZEsZebWR9vvss3Ih5/vW1PxLOPXSonLHbg7lAMf3YJx3Y6UMhfJoxY/LwRn/j9m0hiAIYGzRIc9dsf/0lHHfdOsZSU4Vgul49OWP3xyq+h3FcRcXDh8J+gwem5fj1qHOzRdPfxTExwk2RatXUu9EllzPWtKmQ3337NJIV4eCB6xjz6sqYTL3XePSokJdatRjr0EHxczRgAGMdOwrPx47NffZCQoTjtGunIkHYTcZ8pzB2rgFje/WYbJeIjW67TiE/c+Zw/6sXLjDWp4/w/qc/xo1T/Y8slTJWvbqQ7vHj3L+OgkDnQfe///7Lvv/+e+bi4sLc3NzU2kcul7OVK1eyZs2aMWdnZzZ06FD27t27TNMXlqB7+XLFf8Kfel5XCBgmTRQCkTZtlL8ooj9/YS6O4UrBx8QfXmV6IRL8Qcp+/pn70B48qM1Xp32tXB8JQaNP9jUVxzf78Oln/3RNZZqdy28yp8ovWbdmPmz1jGvsmc8rJpfJ2Yrlwk2Nfxe/zPQcGQPCK2euMalUyt4++cDEelzQbm0WyTo2usen2blcsbY142t67ReUo/dDXZI0GWvZUng9nTtnv09epCalsso2H/nz3clwv+ON/3tW2jyC32ZeMkkIok3l7OoJoVwjP0WxRo5P+O0mxmnsp58UL0rS3+MVU66x5IRkhXwkJcqYqTF3U8Wy5BeWmpSqlNcbN4TjfPed6teTX8HZgytCrV7f1so3iYhmUdBd8MllcmZh8kUIgjqr11RLVdlu+lu4Gbh+XvbBsioZb+S61XjGpGnq/e9s2KD4nbV6tk+uzp9f1swUbiavmu7F+njeyf6GhYqg+8oVYVXGGw9btqg+BGPcRbdYzP1eicWKN2NlX2sMf22/SjjWj8O5IHGvHmNXOzH2/jBjUuXvelXSL/aNjYWazcREIa8NG35NGHmfsSO2fED6W9d/+fMfOaLWqdR28SLXmiv9+AsXaua4GQPK9MvpqlW//vYaJzL57gwBt88PjCUGM8YY275d2G/JkpydMzpa2Ldly8zTafq7+PBh4by//qr+fpcuKd7sSVXv30h9cjmLi2Ns1aoMlTlRj5Qu9iUSrgVFel5OnuT+P6dNU658ABirUIGx2MzrHtTJFitdmjuWra2KOxR3hvD/G6k7DFi/JnsVzr9qlfIunz9zLUVKlBCuPa9cUU53/LhwnLZtc/8aCgqdB92rVq1i27ZtYwsXLlQ76N64cSNzc3Njly5dYgEBAeznn39mrVu3ZikpKSrTF5agOy6OsZauzxT+WSvZfGQX9z1gD68+Z3oirhmakZGcvcwkzvv8mbEaNYQfij178vc16FLG5uCLJl7LNv2C8ULNxv41t3N0Lu9zT4W7ux1VX+jJ5YwPIMtYhCv8aGSsYU1/lCsVqhT4Zczj+nnaaWI+feQ1hS/nCO20LFfw31qhe0P79ty6mPAYVrvSK+GOqtsDFhkuYR4ewntkZJDMjm/2YcGvQhTSWpb8wu6c8WeMMRYSnMbG9LnOt3xIf1QsHcy2LLzB34DK+MM7sq9y9wLGuDuzFSpwaQwM5Cw6XPk7JL+Cs5XThP/vNTNzFxQQ9VHQXTi0rCV8fx3/L/dB98V9QteNKcOu5SovN074CTe7B+TsGEuWKP4ebFtccPt69W8r/H49uPxM4Qb2gHa3VO+kIuiePj1jTZew3LjxN/vK5YzFvWLyl5tYy3rCzcc5sxR/L2XPljK2B+zu/IZ8mlZuAYy93c1Y4qccvcbYWCE/7u6K26pU4dabmWWIh+LfMXaqFmN7wOpW8v16I0HOoqJydFq1HD8u1EJbWDD25UvejhcZKRyvdm1hfcd2QkvI0HW2XNPyN9sU9p00SXifzp3L+bnLleP2LV068zSa/i4eMSJ3eZbLGWveXNi3ShXGdu7UXFNzuZy7HuKu8xm7cuQp957f6M21xvhq40YhD82bK8bkhw8zZmqq+F1y9GheMiVjLPoxa91YaFX0+cM3EfybHYztAZPsFLPODYSbl2IxY7t2ZX345ctlQrxTiWuFkFHLlsLrOHMmD6+jgNB50J3uyJEjagXdcrmcNWvWjG3evJlfFxcXx5ycnNjp06dV7pP+IuPi4phUKi3Qj+SkZDZ/7DGl/lIZa//+nHA3y2NERkrZpk0yFhio+9eTn49A37f8e9Ssjl+26Qd2EPoN+94IyNG5EuOEpt81yr9VmSb4TSh//Db1H7AHDx6w1NRUJpVKme9txWaRAGN/j7uqdAyfi0JNbs9On3OUx2fPpKxOHTlr1UrO/PxUpzm9U+jTLNaTsOteKflSVsnJUmZvL9zhvHY1lXVsKNT417R7zSJDophUKmXx8VLWpdUHhXyWKyW8t2UtP6ssv0Dft2xA+5tMJJIpvM817V6zQxtus169hPXnz2ee1wmjhSaGmxZ4KW1PTU1VKFttPfq0FMYteHD1eb6UU3F+5Fe50iNvj7WzuKC7WtkgFv8lPtdlG/BAaBbet/XtXOXlwDrhM7pwgvL3eXaPGaOE3yQ9kZQd/Dd3+dD2o9LXlkomRgksOTGZJcUnMSvTKAYwZmyYyL6Ef1HeL0MUK42NZVKplDVqJPwGfPwoZS4uwvNHN98xWeBGJrs1gMmPVmBsD9ihcb357dVtX7LE9zcVzpEWdo+Fnh3EUt8eYjWqS/jA9927nL9GLy+hr/2oUTKFbZ06CfkMCsqwX1IECzvUjd9W3/4Bkz1dwqQSicbLYPhw4fdr1ixZtunj4rhrQ1Xbdu0SjvXbb1+PFenLxnbewq+/Pq8jk366qLRvu3bCe/H+fc5fR+vWwv6hoarTaPK7OC1NysqW5c5pbCxnCQk52//GDSkzNFTsvunkJGfHjkmZRJK3vO3YoXitUrJEAvOe687YHjD5SQcmjfRjsbFSVq6ccP6bN5WP4+8vZQ4OXJrvv8/+f0PlIy2ZyV5uZvITNRjbAzah4wrhemnPLcW0CaFM9nYv27klmk9TooScHT+e/XmSk1OZm1scv9/QoUJ+794VPoM1a8pZWppmP0O6eMTFxakVdOvreiC3dMHBwYiIiEDTpk35dWZmZqhbty58fX3RpUuXTPd9+VLFZPUFUOdhFdHA0wcL51rg5tOGAIDIOG7oytoVX6JdXwa/9OEIM1GvHjddUzbJipyaFaR48akG7jx3xo1LN2FuY5pp2mevSgEA9EQypOjFZPuefsu1mhj3Al3xKqQKbl6+DrPSiud67PUJADeJePXKYQBs8eQJNw0VjAAPD3PcvGnJPTWSoXE3M6U8iMzlsLCQIjZWH5dvWePhQz+IVUwBqcqk0aZ49swRz54BDRqI8MMPoRg27DP0v36ao4JjMPQXVz791BFnUNLULt/+ZwYNssZff9kDAL7rIkNiMve/bmUajeUr3iIoxAr4OivWrAUyGE99hcPXW0Mm10fol7IAgCq2QVi39hVkJlYqy++3Bcbo3f8CNq6zwMUH3HfGi+Bq+N/P1fg0VlYSWFr6Z/q6m9QLxUp8BwDYe6AE6rVXnZAvWy1gcoabflyezY1jITOJz/H/K8kdbZYrybvG3c1wwvE8rCqYIfBNZI72zVi2khQJAO4z9vZjyVx9vgIDwvllfYPYHB+jxw8l8Dn0PLac6gg5E2Pgrw2wW/88qtUvm+O8aEtESBo+RDQBALjVeI5nAdyo0V09IrHjXAckp5lg64oLaNmnksJ+esnJSJ/Jzd/fH3GyknjwwBUAULVqMsLCnqNjRxv4+3P7bf3zFNYMHcfvn5xWAr/vXcY//2vkBnz4UAeJEcYZzwKUmYBP0UDrNuF49bo8GBNhxYpQDB367STBWTtzxgYAlxcrq4/w8xP+t6ytKwDgyuT06Tdo3FiYI/jyqyX8cps6V5Aa8B8CkpqC6ZXI0fmz06OHIXbudIJMJsKKFQytWj2BubnqaefevzfCjz86IjFRjJkz36NTp2iF7Xv32gPgZnJxcHiFT9c2wy5iDRxK/8in8Uqej5KhekCon8K+vr7OAAxhbi5FePhjfoo1ddnYVARQBgBw8uRruLllPme9Jr6LX7wwxufP3LDpDRrE4sWLNzna38QE2LrVGGvXVoCPjwUA4OlTEXr2FMPFJQHjxgXD1TXnc7rFxIgxfnwdZJwsKjGlJDotPQevGZ6oW9kfuNgYi89vRmjoQABAO483KKX3CH6+VRSmijFOCcTRtVF489YYzpVfIPxSFAxk0dCXRsNAFg2RPA2JxnXxxawV4ks2VsiHSJ4G67hTKBu9A0YSYVpSl0rCsOU3biagtKPfN6/AAZt3CHn4++83sLOLVet6cu5cQ/TrVxuJiWLs2KEHZ+fX8PSMxdy59kj/v+zV6wP8/XP2/V6o5azeOufUrel++PAhc3BwYGFhYQrrx40bx8aPH69yn8JU053xjl5aahpbN9eLHzwJYOz6CV+d57EgPyYPvcq/V1sX38g0XVqqhBkbcv2FHSqorqnO7jFxgHCu41u9lbYvmSRs37LIS+lO7c2bwl28X37J/G5knz7C3c/bt9XL283TjxXumKY/6jknsIfXnrPkxGTWtLaQpmtTH5aWqvm78Vk9kpOlrGpVxTvGBuJUduXIw0zKLI2N7Ss0JXWq/JJ9fPVJ7fNdO+bLmtXxU3pPxozJ+k6wJE3CqtoG8bVP718EK2zPjxrRFy+E/5UOHkH5Wk7F9UE13UX3kVnZlrcK4VvP5Oa4M38RxvA4tTPrFmmZPdJS09jQzjf443g4+TJJWv5+N2f12LdP+D2aPkl4n66f8OXXt29wX3nfb2q6jx1T/v2LjJQyY2PuN8HC5AtL3GrM1fLtN2Fzh27n07drp7pWMWO5BgYKx3d2liul/fBByhYskLGDB1W/zow1yd/+7v73n7Dtn38Ufz9GjRK2nZvek0m/5KwVXU4eI0cK55oxQ/XvWEqKlDVsqPg7u3KlkDY1VcqsrbntZmZylpwsZbKX/zG2B+zc5A78Pn/8oXz8sDDhPfbwUH6P1XmsWye8hrVrVb8GTX4Xz5snnG/dulzWAn99XLqk2FoDYExPj6v1zumxhg4V8tWjh1yhBUAZy0gWuKwGi9hgzc88pCeSsoCljky+v4RSSwr5lfYqR+P/9iG/3lthP9nL/5j8qJ1yuost2L1Du/n8DBmi/L5FR0uZkRGX53Ll1K+VTi/b//4TBie2sZGz+/elTF+fO561tZzFx2vnM5TfD3VrunMUdC9dupQ5ODhk+Xj9WnGgq/wIugt6n27GVPddCXr+kf316zV2Ye8DHeascLh1Sggke3d4k2m6t2+FL8ke32UyF1Q2Dv0rDB4zfeQ1pe2DBwlfovdvflLZJ+nYMW602uRkpd15//0n5HX+fPXy1r6B0D+xbdOPTCwWjqEvTmMeTkLwWdnmI4sKiVb/hWvQ1mWPFH6wtiy8kWV6uUzO9q+5zf4ed41Ff/6S4/PJZXJ2esc95mwf+PUHkrEHanysZo0Sgv1Jg64pbFP1mdW0rVszdEMoBKMbFwX5Ua5ENzIr2ya1hBlAkuIyn24oM6NGCZ/Thw9zn7+0lDTmUEHoLnV6R+5GU8+KNE3KUpNSuUcq4x9p2QxAnbHv9dmzwnq5TM6q2L7nA4KQN58Vd/ymT/f48cLTY8eEZMOGCet3/H2SsfA77P27NGZs/PX3S18YSVzpNX1TrhkHB0sf9TgqipuarUQJYZuqPq/16zP+N+LbS8eMo27//LPitvTB1wwMGEuIVLxO5TKpeuyh3Hj3ThgF2syMqew/nnFU8oyPObPlTB7zgt3ZKwx61bv3150kSYwdrcDeHJvJb+vVS/nYXl7C8X75JXev4fp14RiZjbCtye/ijNNsBQXl+XBMLuf+f2vXFo5rapqzUbavXhX2tbDgRguPj1fMa0XbSDagqRD4/thqIxcUn6imfMAbfbIItkWM7RWrnjrPd4pi2qsdGQvnxjvKODVcvXrKp9y7N/tyVCW9bCUSKevWTTiGmZmwPGuW+scr6LTSpzsqKoq9fv06y0fqN8P+qRt0f/jwgTk4OLDn33zrDhw4kP35558q9ynsQTdRnzRNykpbp/FffJmMrcdOnxY+0NOn5+5cwa+EaUFauSrPDVu3LrdNLGYsISH35frunZBXj8bZD0F5+7Rw4VjZ5iNLTU5j9+8z5lRDeWR7A3Eq8zn/NMd50hRJqoS/0J016lq+nVcmlbELF7hp+tTx+V04K2HAtYwoaRSvcJMiPz6zGQd+ua79KdsJo+/ioiyzsu3fWRgg88WT+Bwft3t34XMaHJy3PB7Z6M0fy6nyS7VHQs+KXCZnVw8/Yv3b3uK/z759iETc901m0yhlnB/72wG8Mt6cXDHlmuLGjEF33BfmXP0TH6B/eSxEvRkD2mbNuHX9+gnr0ufkVuXbcv3334wtmrgblhnnuk5/fDu6c1qaMEJ4zZrK58k46naLFsL69+8z/FZ7qMigJImxs/W5ecNTY3I/KbtczgXvMonCjZ4ZMxSTPXokBOV6eowNGZii8LrHtl/Npnf/i3++dWvGNzOVSSTczQOAMWdn5WysWSMca8OG3L2UiAjhGK1bq06jqe/iiAhh5Pk6dfJ0KCVSKTefefprqVSJG9g4O8nJwuDHAGPr1wvboqOF68iMD+MSEvbpxlbGfKcx9lTFXfj3Bxnzn8/Nq/5uD2Ohlxj74s9Y0mduSrK0eMY+nmAsOVxxv+QwxvabcFOXRShPoVqzJnd+Q0PlOeJ79RLy5+WV/etOl7FsP38WRklPfxgaMhYaqv7xCrpCO5DalgxzSsTHx6s1kBoF3cXD0KHCB/b8edVpMo4Um9n8y+qoWDqYD8QyTsuWlib8WNWunfdyrVGRGzhMX5zG4qKyrplv5ybUcm/6W6g5TklMYbNGXeWnKwO4EbF1LS0ljX1+F559Qh0b00cYPXzemGv8+vz4zKb/KBsYCHPSEu2i7+KiK7OyzTjlzoULOT9uxpqp7GqMsyOXyZl7TWEgze1LMh/NXCrlapo2bWLs8mWuJVfGi+Kw9+Fs8W/XWI3yb5Uu4DN7XD8VqHSehATGt5pSFbS8ePCG379+nTDlnb9uDNvRnk/XsOpdxrxHCK9bzh07YzCXvly6dNYjdX9brpGRyvMBpz+MjBSDnYy1c48fC+v791d9LltbbruNjbBu2zZhv7lzv9lBLmfszlDFmsQDptyI51faMeY9nLFHkxm7N5qxd3uVT3ikLGMHSirOCb6/BHt//A9mYMA1wzU15V4zY1wwl/F9nDFgB2N7ROyfQeMV3oeM1wMhIcqnTZ+aythYeU7wjAH/7ZxNAKPAxoY7Rtmyqrdr6rt41y4hv5Mn5+lQKiUlcdPIpZ+jceOsWzEyxtXipqdv2lT5PQ4LY8zBQfF/N7cVRWpJyvxOQcabCs+eCevj44WWI2XK5Gw092/LNuOsMgDX8qUoUTce1cu+13fuhISEICAgACEhIZDJZAgICEBAQAASE4WBCDp27IhLly4BAEQiEYYMGYL169fjypUrCAwMxOTJk1GmTBm0bdtWW9kkhUjXrsLyqVOq0zx/LizXrp37czV2/gAASEw1xVMfYUCOwEBAIuGWXVxyf/x07dwDAQBSmQGunwrINN3t0/649NANAFDF9gOGThIGyTAyMcL8ja1w/8prDO18C8sne2HcXy3ynrk8MjAygK29ja6zka3f51SFWE8KAFi9yxmJsTkfLCU3wt5H4NUrbrmhWxqMjbNOTwjJncqVheWgoJzvH/Z1rC4rK8DAIG95EemJsHiBlH8+a0kVpCSmKKWTy+QY0f0uBgwAfvwRaNsWqFoVMDYGqlX4jGZ1/GFX1QJTVnjiVUgVfj9rsyi0cPZDi7rP0KIF0KIFUN81jd++8M9YpXPdu/AYsq9jdTVzUx4xy9GtKhrW4wbCevSsDJ4/kwMJb4HwG8D7A3y6G3eEQUdbtxED7puF1y0CRo0Sjvnzz8Ly338DlpYq3qxMWFsDnTsrrtPTA0aMAF6+BC5e5AbGAoB164C7d7nljIM/ubqqPnatWtzfiAggKopbvnJF2N66tYqdLJ0BUYaRUKUJQFwA8PkS8HYbELAEeLUeCPdS3lcaD0gTAblEWCdLQaXEpRjZYgMAICEBWL6MAQBmzwaePfv6Gir7YnaHHwAwTOi0Cjt+HsL/lsnk3Miq9esD5copn7ZGDe5vcjLw6ZPitozjmjk5qXi9akq/Bvv8GYiOzjptXpw9Kyx/+3+hCcbGwIkTgJ0d99zHBxg5kgsfVXn+HFi0iFvW1wc2buT+PzMqUwa4fBmo9HVcQhsbYPJkzeedZ2yb6aa6dYVlf2FcNZw7B6R8/Wrq1QtqD/arSu/ewODB3LK+PvDbb7k/VmGmtaB79erV6NGjB9asWYOkpCT06NEDPXr0wNOnT/k07969Q3y8MDrkjz/+iEGDBmH27Nno06cPkpKSsHnzZhgZGWkrm6QQad8eMDTklk+ekIHJlb/xnt97BwAQiRgcHTL5RlRDk0ap/LKP12d+2f+mEBi71M58NE51tesg/G9fOpecabo5c4SLtJkTPsDASPnKr55nTWw/0xy/LfaESE+ktJ2oVsWpIvq15a7KouKtsXnxg3w57+0Lws2c5jXv5Ms5CSmO7O2F5RwH3YwhLIT7bra1DM8msXpa9nRFl8b3AAAfIytg3XrF73MmZxjX/yZ2nnFX2lcqBd6GlMWd5y6QyAz59a3rPcL+NXfw6bMprvu74rpfHVy/Dly/Dvj46KGyTTAA4Py9hvD1eqFwzDteX/jlpk6BKvM8aJgQUO/axYCT1YHLLQGfkfx6rwBPfrnN/9wURl4GgEGDgBLfDPbt6soFMDk1dqyw3Ls38PQpsGULF8TY2wPz5nHbGOOCfYlEvaA74836gABu/6tXuecmJoD7t0UiEgG1JgFtbwJVhwO2rQEzB0Cs4i5qWozyOvNagEUdoFQ9wLoxUKYFYGAOAJjefQEM9blrkTVrZDh2DFj2daB3Q/1U7Bo9GIb6Eu58NX/DkFkDcfSwDBkvmTOb+Cc96AbA3/wFuNebfpleuTJgbq56f3V8+15qg0QCnD/PLVtYABkmQNKocuWAkyeFmzl793I3i74llwv/bwAwZUrmNy4qVuQC+CVLgGvXuPzrQsYKpIxB9+HDwnKfPnk/z+bNwPr13E0xZ+e8H69Qyqead62g5uXFT4eWwtzKxzd7K2yTy+T8iPBVbYPydB7vc0LzvyG93/PrpwwT+rad3nEvz+UaE/6FbwZWq+JrlWlunBAGkata9j1LS5GoTEdy78ntl/x7bGf9iaUmpWr9Mzuhv9Cs/dR25X5WRDvou7joyqxsX7wQmjUO6Juz64X46Hh+X8+6ymN85Jb/vXAmEnHNh0uVUmxePX2k8Dsj1pOwWeOfs99/5/pXutaV8SMdl7EIZ1OGXWOvfLP/vVs7W/i+6dtasc1wp0b3+G2ZHSssTGiCbmLC2Kt1Tbmm0FuENqN1ynJzohsaKg9Slm7QIMVmpjeyHmOTMZZ5uT5+zJWtKhIJY66uwnkWL2bM01N4HqZiLDTGFPsz//cfYwEBwvOOHbPPK08uZywlirHox4x9vspY1APGEtUcECAtlrGAFYwdq8TGtF3Lnz+93zLA2NIf1zJ2vQdjoVeU+pBfu8Y16S5bluuPrsr69ar7bWcca+a773LwelX49r38lia+izN2Hfnf//KQWTUdO6b4/ztlCmMTJ3LjPri4cF0B0rdVr144uo1lHLOgSxduXWIiYyVLcuusrZX7emenuP3OFpg+3dpEQXfxc3zzXf7Loabda4X+1u8DPgk/Fk3yFsSkJMuYoSF3QVSjhrA+48XJh8AQjZRrxpF1Ax++Vdreup4wXc22xZn3/yN507WpD/8+b90s1fpntkGNZ/z5dDXKfHFE38VFV2ZlmxSfKvSvrJ2D4YcZY6/9gvh9v2+Thw6uKmQcp2TqVG7doonXFC7qdyxV/s6Xy+QsJjyGyaQypW2ZSYpLYmUsuEE39URS9vLRO8YYN/ikZckvfBAvl2U+CNjo0Rn6qdZ9x6R3f2PswQJ+pQkSGMBYy5aZ5+PWLeEY33+vXt5z+5m9d08YmdnYWAiIypfPfJ/Ll4X8TZzI2Nq1GQLdpTk6fd7J0tjHO8eYoaFU4X/Cw4MxaTaDC6SlZd0HN+PrnDRJWH/ypLB+2rS8Zf/KFeFYqgbKy+t38dmzwvH19Rm7m0/3rhcuVD2ewLePy5fzJz95JZcLAxFWrMitO3pUeB0//JDzYxa331md9+kmRBu6DW+IprW59i8vgqth+zJvftvzh6H8cm2HpDydx6iEHtzcuKZxr14BkZHcev/XXKeeUiW/wK562TydI127FlH8slOjCujb2huXDzyEXCbHjcsxuOpbHwBQvVwQBk1onNlhSB5NW1iLX168VMz3cdSGhC8J8H3jAABwqvwKVuVKae9khBRzxqaGfNPwoM85G2ciLDiOX7a1kWSRMufmzwffFHjlSmDur/cx9R9Pfvva2dcx5PfmSvuJ9ESwsLGAnlj9SzhjM2NMGMZ1BpYzMZbO48YtCbj3FjGJlgCAps5vsuyatGQJ168cAO48tseya8uBmuOU0rVpk3k+mjUDtm3jmt1u2qR29nOlYUOhGXpyMtc3Gsi8aTkg9OkGuCbR6U3LgUz6c2uTngHsmvTAqFFCZ9qSJYHt2wFxNoMLGBhk3Qc3s+blGftz57UJcMbm5RnH29GEjx+57grpFi0CGjXS7DkyM2UKMHSo8noDA+59bd8e2Lo1689BQSISCU3MP37k+t9rumk54VDQTQoVkZ4ISxYLz+csr46kOC7Afv5E6GNdu45+ns/VpImw7OMDRIVE41M0NyKJS7X3Gus3/f1wOxgZcKNVSGSGOHStCdr1c0ONqsn46VdLPt2sPyKhb5j310VUa9LCHC1bcsuBgdzAKRlFfIzEbwO9UN7qMyYP9crTuXwuveQHumnuFppNakJIXtmX5YLukOhySE1KzSa1ICxEGFjRtgzTaJ4qVRKCwpQUYN7ahvy2BeO98Mu8lho935gZ9WBuzA2ktuOMO0LefMbtKyH89maNlQd0y8jUFNi5U+iqPWuWYpCWLrtgY9gwLkgyM8tJ7nPnr7+EAbDSZRV0lysn9GN++pTrawtwg+hltZ82TZsGlC/PDca1fr1w4yMv7OyE/vUvXwrrNRl029py7xuQs6BbLgdCQ7l6VlUkEuD774XB2bp1y9+BuUQirn/y7t3c32vXgPfvuRs7L18CFy4Aw4fnX340IWO/7vv3hcGKS5XSwc2mIoyCblLoNPvOBd2bcwNfhUSXw+o53IA0z58L/861Xa3yfJ6MQbf3zUQ88fnAP3eppTwCbG7Vdq+OgEcRmDLMC2UshJFj334oiRdfx7upUQMY8GsDjZ2TqDZtmrC8eLEeGAPiouIwd7QXqjoY4Z+9ngj9UhZLd3rile/7XJ/n1jWh9syjRR6GBCWEqKVyeeEz9zFQ/RtdYaHCyN+2ZTX/WZ02ORUWJoq/J1OGeWHaSk+Nn8vCxgJj+vkCANKkRlgx9wXueAu/m009rbM9RrNmwijLEgk3snpGpqZcDXNBYWYGrF2ruK5evczTi0RCbXdwMPDlC7fcqpXyCNT5pXx5bsTyoCBhBOi80tMDqlXjlt++Bd+yKz3oNjAAHB3zdg6RSKjtDg4G4uKyTg8AiYlAy5bca27eHLhxQznN9OmA99dGjvb2XM2/KJ/HjtXXBwYO5AYB9PTkbqDlZXRvXcsYdC9fDqSPcd29e95nbCACCrpJobRgmTX0RNyvxKL/6iEqJBrPX1vy22u6VczzOZo0FEYT9774Eo8fChdGLi6a/ehUcaqIRds88THUAof+9UF7D8U5PObM4b7kiXa1by9ckD18KMLaOVFwqCHDvA2eSEhRrJbZvqdkrs9z864wJGzzDva5Pg4hRD32FYXgOeiV+vMXhX2W88u25UtkkTJ3rMsYYdpPvvzz0b1vYOEWzdZwZzRhdh2+ZdWGQw1w5S433ZiRQQrcWjmodYx584Ra0CdPFbe1aFHwLtK7d+emPAK45vwZb6irkrGJeTpd1/ZZWnKjXWuSw9fiTksDPnzg/gZ+Hby+Zk3NlGNORjCXy4EhQ4Bbt7jnd+5wAXjnzsLI8ydPCiO4GxgABw9ytbEkbzIG3V9ncgZATcs1jYJuUijVdq+O4d9x0yzFJllgwWR/PH/PTXhYySYYZlZ5b7dWobIx7Ky5pnf3Amrgka8Q9bo0yHtNuiqGxoboM7oxLtyogDdvgMWLgR07gAEDtHI68g2RCJg2WriK3HG2PSLjSgMA9MUSjOjiBbGYa/O280DpXPX7jgmPhfezmgC4/9VKNSvkPeOEkCzZVxEud4JeJ2aRUlFYuLCfbfnc32jLyu+LPbBq+nVsmH8Daw801+qUj7b2NhjRjWsdlphqiuAo7vungUMgjEzUm57VyAjYtUt1UFZQ+7Hu2sX1ST95EqiQzVduxkAxXUF9XXnxbb/uFy+4KekAzU3plJN+3TNnAkePKq8/d467Gd63r2Jf6mXLClarisJM1bRmFhZA27b5n5eijIJuUmjNXV4dJQy42uhV+5ojNskCAFC7iub6yDZx4ZoQJ6aa4sT1OgAAkUiOOu72GjtHZqpW5ZrxDRmS/02nirNew2rBocJbhXUD2t1GwIMQbDntiU6duMIIDgauXMn58Tcv9UNyGjfZ53ct32STmhCiCZWrCPMmvw+Sqr1fWIQwF7ZtRUtNZoknNhBj3N8t8dOsFjkaHC23/phbBWKx4h3Dpm5fcnSMunWFubAzKqjBqYkJ8McfXGum7Hxb012hglArXJR8G3Rrsj93OnWD7p07gYULuWU9PeD0aW7AvUqVhDSHDgExMdxy797Ar79qJo+E6xaS3t0gXbduUJjzneQdBd2k0LKrUQ7jB3J9u9MHpQKA2jXUr8XITpNGwoA7sUmWAIDq5d6jpIV2ajyI7okNxNj+XyKcKr/Cd41v4uG1AOy52AzVXSsD4AYBSrdtW86OLZEAqw948M/HT6uURWpCiKbYOwptUIM+qN9uNizKhF8uU1E7LZzyWxWniujXT7EDarPWZXJ8nD/+ANwzjBhd2lpzwZoufRt0t2lTNG98Zwy6X77UftDt7696cLRbtxTHBli5EujShfutffmSe26TYdKBqlWBLVuKZpnoUsYm5gA1LdcGCrpJoTZlUT2UMlMcnaN2XQuNHb+JZ2mldS6OUSpSkqKkSWdn+L2pirlrTVDXQ7GKo2tXwPrreEPHjsoQE67+oHpHjgAfP+p9PQ6DQ/0qGsszISRzlWuW45eDPqnf/SgswR4AYGGahBIlNd+nW1emTlV83qSTijbV2dDXV5z2q1s33Q02pkn29oo1fLruz60t+VHTXb68MBr8xYtA/frcCOyxX382P30yRJ8+ekj7OuTC6NHCiP4AVw7jxwNv3nA14UOHcqODW2juMo98lTHoNjVVr1UIyZki8PVIirNSthaYPttcYV3t5lkMTZpD9VrUgKG+4vQyLp40inhxZmgIDOzGTWyamibG/g2P1dqPMWDFCuH5xIl0m56Q/FLSoiRszLnZId5/Vr6ZmpmwaO73xba8STYpCxcnJ2Ge41atgDI5r+gGoNgk9e+/856vgkAs5gYSS1dQm8znVbly3LzfgGLQbWGhuUHbRCJuILR0fn7AmDFcMP7jjyJMnFgdkZHcb2GbNsCqVaprsM3MuBtF27cD1atrJm9EUcagu2tXYUo5ojkUdJNCb+xY4QdCT0/1yKO5ZWRiBLcaLxXWfdsEhxQ/w4YI/SG37c1+mh2AG4n1/n1u2dWVm2aEEJJ/Klfhqi8/RZfna9aykpwsTJ1ja6vFjOnIli2Ajw9w9qxmjmdunn2awmLcOK6Wddgw5Xm+iwqRSKjtfvsW+PiRW3Zy0mzT7R07uPmsG2XoipCUBGzbpoe3b7mxFhwcuD7bBW3k++KkY0eu7C0tua4jRPMo6CaFXokSwJ493CiWixdzXxia1KS+YnNyCrpJPc+aqFuFm1vlXmAdPL+b/YBoK2be55d/+436oxGS3+xrcFGhXC5CcHD26cPChOWyZbWUKR0yNATc3alGS5URI7gbLjkdt6OwSQ+65cLMeCpHss4LQ0NuPuu7dwFfX66mO+MNmlKlGE6fpqm/dM3EBHj8GIiIyHoue5J7FHSTIsHDA7h3D/j9d80fu0kzoXOXqUkq7O01fw5S+Azv95lf3v7vxyzTvnn8HseuuwEAypX6jO//l4u5xggheZLxuzsoKPv0YZ9S+OWiWNNNslYcal0z9utOp83B8FxdgXXrgJAQYPNmOfr2DcfVq3KV+SD5T0+PG6uBaAcF3YRko0m7yvyys/3LIjFQDMm7AaOdoC+WAAB2nawFaVrm0xCtXhgExrh/nLGDX8CwhDjTtIQQ7agsfJXj/fvs04cFCuM12IpuaiFHhOhWfgfd6UqWBIYNY5g8+WORGPGeEHVQ+EBINipUL49x31+HrWU4pvyWpOvskALCpqI1ujZ9CAD4HGOLC/t9VaaLCY/F1hP1AQDGhkn4aQr1TyBEF+wrJPDLQf4vs0jJCQsVBtG0tVUx1xEhhZyq+ccpCCZEOyjoLsamTp2KMWPG8M8HDx6Mv3Uw/Ojdu3fh6OiIuLi47BPryKr9LREaZYPuI911nRVSgAwfLnyFbtuquqZ781JfJKRwUxQN6/oA1uWLxly/hBQ29rah/HJQYHi26cM+Cx1dbcsZZZGSkMLp25ruChWobzUh2kJBdwE0depUODo6wtHREU5OTmjXrh3Wrl0LqTTz5quasGbNGowfP16ttIUhUNY0kR6NfEUUdRxQH2UsuGmITt5yQ+SnaIXtklQJVm8XrmrGTyuiw+ASUghUrimMhvb+U8ls038OEy6RbCtkn56QwqZ0acU5r6mWmxDtoaC7gPLw8MCtW7dw4cIFDB8+HGvXrsWWLVuU0qWpM++JmiwtLWFqaqqx4xFS1BkY6WNwt+cAAInMEAtmvMfZs9wUPGcPfcCiSbfxMbICAOC7Jvfg6FZVl9klpFgzszKDlSl3Yywo1Cbb9GERwkhatnaW2soWITqTcdowgIJuQrSJxqgroAwNDWFjw10UDBgwAJcvX8bVq1fx7t07xMXFwdnZGXv27IGhoSGuXr2K0NBQLFq0CLdv34aenh7c3NwwY8YM2H2dYFImk2HJkiU4cuQIxGIxevfuDcYU+6gNHjwYNWvWxIwZMwBwAf2qVatw+vRpREVFoVy5chg1ahSaNGmCIUOGAAAaNmwIAOjZsycWLVoEuVyOTZs24cCBA4iMjIS9vT3GjBmDjh078ue5fv06FixYgNDQUNStWxc9e/bU+vtJiLYM+7kClu/ilv/ZUQ//7EjfUunrg/PbpGIwFC4hBZx92TBEv7ZCcFRZSNOk0DfM/DIoLNKEX7atZJ0f2SMk39WoATx4wC1T0E2I9hTPoDtgBfBiRfbprOoDLU8qrrveDYh+lP2+NX8Dav2Wu/ypYGRkhJiYGACAt7c3TE1Nse3rBJISiQQjR46Eq6sr9uzZA319ffz777/44YcfcPLkSRgaGmLr1q04duwYFixYgGrVqmHr1q24dOkSGjdunOk5J0+eDD8/P8ycORM1a9ZEcHAwvnz5gnLlymHNmjX49ddfcf78eZiamqLE14k+N27ciJMnT2LevHmwt7fH/fv38ccff8DKygqNGjVCaGgoxo4di4EDB6Jv3754+vQpFi9erLH3iZD85tS0Ojw8GG7ezLz7QUOHZ/Ds6Zp/mSKEqFS5XCwevQZkcn18ev0RlWtXzDRt2BduMmEz4zgYm5lnmo6QwqxlS2DfPm6KNA8PXeeGkKKreAbdkjgg+VP26VJU/BinRKi3r0QzfZ0ZY/D29satW7cwaNAgfPnyBSYmJvjrr79gaGgIADhx4gTkcjn+/vtviETchf/ChQvRsGFD3Lt3D82bN8eOHTswatQotG/fHgAwb9483Lp1K9Pzvnv3DufOncO2bdvQtGlTAEDFisL7YfG1E5C1tTXMzbmLkbS0NGzcuBHbtm1DvXr1+H0ePnyIAwcOoFGjRti3bx8qVaqEqVOnAgCqVq2Kly9fYtOmTRp5vwjRhYMHRdi3D0hIyLAy7hWQ/AkmJsCAn2vRmACEFAD2FYW5t4MCo7IJurlBD20towFQ0E2KphEjADMzbh77jHPZE0I0q3gG3QbmgHGF7NOVUNHnq4SNevsa5O0H2svLC/Xq1YNEIgFjDN999x1+/fVXzJ8/Hw4ODnzADQAvXrzAhw8fUL9+fYVjpKam4sOHD4iPj0dERATq1q3Lb9PX14eTk5NSE/N0AQEBEIvFfPNxdbx//x7JyckYMWKEwnqJRIJatWoBAN68eQMXF8Upk1xdXdU+ByEFUdmywMSJ366t8fVBCCko7O2Fm19BrxPQMpN0KYkpiE3ibi7bWhWfAUNJ8WNgAAwYoOtcEFL0Fc+gu1Yemn5/29xcS9zd3TF37lwYGBigTJky0NcXisrY2FghbVJSEurUqYNly5YpHcfKKnfTE6U3F8+JpCRuDuuNGzfC1tZWYVvGmwSEEEKILlSuKvy2Bb3LfEaQ8I9RALgb7LbWSdrOFiGEkCKueAbdhYCxsTEqV66sVto6derg3LlzsLa2znT0cRsbGzx+/JivuZZKpXj27Blq166tMr2DgwPkcjnu37/PNy/PyMCAGxRKJpPx66pVqwZDQ0OEhISgUaNGKo9brVo1XL16VWHd48ePs3+RhBBCSB7ZO1jyy+8/iDNNFxYr3Di2rV5dm1kihBBSDNCUYUVA165dUapUKYwePRoPHjzAx48fcffuXfz111/4/PkzAGDIkCHYtGkTLl++jDdv3mDevHlZzrFtZ2eHnj17Yvr06bh8+TJ/zLNnzwIAKlSoAJFIBC8vL0RHRyMxMRGmpqYYMWIEFi5ciGPHjuHDhw949uwZdu3ahWPHjgEA+vXrh6CgICxevBhv377FqVOn+G2EEEKINlV2FObqDorIoj93hFAnYVuptFbzRAghpOijoLsIMDY2xu7du1G+fHmMHTsWnTt3xowZM5CamsrXfI8YMQLdunXDlClT0K9fP5QsWRLt2rXL8rhz585Fhw4dMHfuXHTq1AmzZs1CcnIyAMDW1ha//vorli9fjqZNm+LPP/8EAEyYMAFjxozBxo0b0blzZ/zwww/w8vLipy4rX7481qxZgytXrqB79+7Yv38/Jip3hiWEEEI0zrKMBSwtueWgCPtM04WFCcvf9JYihBBCckzEMhtJqxBISkpCQEAAatWqBRMTk+x30CGZTAY/Pz+4urpCLM68SRspXKhciy4q26KJyrXoUrdsXV2Bx48BfX0gJQVQlXTBAmDGDG756FGgZ0/t5LnQS0wE0ru1JSQAJUtq/BT0mS2aqFyLruJWturGo1TTTQghhJBiI31aJKkUCAlRnSbsbRC/bGudqPU8EUIIKdoo6CaEEEJIsZFxLuKgINVpwt4J0bitRaRW80MIIaToo6CbEEIIIcVGZcsX/PL7B94q04RFCVNz2lay1nqeCCGEFG0UdBNCCCGk2LCvEMMvB71NVZkmLNocAGBilAjTUqqn4iSEEELURUE3IYQQQooN+xqW/HLQe9WD/IR9KQUAsLWMyo8sEUIIKeIo6CaEEEJIsVHZUZgDLChYebRtSaoE0QlWAADbUrH5li9CCCFFFwXdhBBCCCk2Stlawso0GgDw6GUVyCQyhe3hH4WB02xLJ+Vr3gghhBRNFHQTQgghpNgQ6YnQyi0QAPAlsRQeeQUqbA/7GMMv25ZW3eebEEIIyQkKugkhhBBSrLRrI+GXL50OV9gW9imBX7YtI8+3PBFCCCm6KOgmhBBCSLHSroc9v3zpuoXCtrAQoXbbtqwov7JECCGkCNPXdQaIIkdHxyy3jx07Fr/++ms+5YYQQggpeqo6V0LVsu/x9nNl3H5aBwkxiTC15AZVC4sWpgizLWekqywSQggpQrQWdK9fvx7Xr19HQEAADAwM8ODBg2z3mTp1Ko4dO6awrnnz5tiyZYu2slng3Lp1i18+e/YsVq9ejfPnz/PrTExM+GXGGGQyGfT16d4JIYQQkhPtmrzHxmOVIZEZ4saZAHQeWBcAEJbmyqexrdNYR7kjhBBSlGiteblEIkHHjh3Rv3//HO3n4eGBW7du8Y8VK1ZoKYcFk42NDf8wMzODSCTin799+xb169fH9evX0atXLzg7O+Phw4eYOnUqxowZo3Ccv//+G4MHD+afy+VybNy4Ea1bt4aLiwu6deumEMwTQgghxUm7ruX45UsP6vLLYWFCGltbEEIIIXmmtSrScePGAQCOHj2ao/0MDQ1hY2OTo31kMhlkMln2CQEcPgzMnauH+PgcnSJPzMyAOXPkqFEDaucT4AJlQNgn/fny5cvxxx9/wM7ODubm5mCM8bXe6b5dt2HDBpw+fRpz5sxB5cqV8eDBA/zxxx+wtLREw4YNNfVSi5309zcn5UoKByrboonKtejKadm27FoVenoMcrkIly4xyGTcb+znz3oAuL7cpUvLQP8qWZDJIOYXZdDGm0Wf2aKJyrXoKm5lq+7rLHDtku/du4cmTZrA3NwcjRs3xoQJE1CqVKks93n58qXax58/vyZevCiZ12zm2F9/pWHHDuDJkydq7/PhwwfIZDL4+fkBAF6/fg0A6NKlC0xMTBAdHc0/EhMT+XQAEBERgYSEBPj5+UEikWDjxo2YNm0aTE1NERUVhSpVqqBp06bYuHEjDAwMNPlSi6WclCspXKhsiyYq16IrJ2Vbq1ZNPHtWEs+eiXDp0jPY2Ejw/n1tAMYwNJTj7Vs/iGgstUzpJSej3tdlf39/yI2NtXYu+swWTVSuRReVraICFXR7eHigXbt2sLOzw8ePH7FixQr8+OOPOHDgAMRicab7OTg4KPR1zsqcOcCcOSzfa7pnzjQEADg7O2f5WjJ69+4dxGIxXF1dAQBpaWkAgK5du8I2Q5s3Kysr6Ovr8+kA4Ny5c4iKioKrqytevXqF1NRULF68WOH4EokEtWrVUtiP5IxMJsOTJ09yVK6kcKCyLZqoXIuu3JRtt24iPHvGLX/+7IR27RjiouIAGKOsVQzq1XPVWn6LhMREftHFxQUoqflKDfrMFk1UrkVXcSvbpKQktSqAcxR0L1u2DJs2bcoyzdmzZ1GtWrWcHJbXpUsXftnR0RGOjo5o27YtX/udGbFYrHah9u3LPfKbTKYHP7+c5VVPj+tyn54+/bmpqanCMb5Nx51PBpFIBLFYjNRUbvqT//77TyFYB7jm/MXhA6FtOSlXUrhQ2RZNVK5FV07KtkM7KRYu5H5Drxz2x6ABToiM5aYQszUPhVhspbV8FgkZ3mexWKzwXPOnos9sUUTlWnQVl7JV9zXmKOgeMWIEevbsmWWaihUr5uSQ2R6rVKlSeP/+fZZBd3FnZWWFV69eKaxLHzUeAKpVqwZDQ0OEhISgUaNGusgiIYQQUuA0aSxHSaMEJKaa4vLtcogIjgJj3M1pW+vEbPYmhBBC1JOjoNvKygpWVvl31/fz58+IiYnJ8cBqxU3jxo2xZcsWHD9+HK6urjh58iRevXqF2rVrA+BqxkeMGIGFCxeCMQY3NzfEx8fj0aNHMDU1zfZGCiGEEFIUGRoboqXrY5y92xCfY2xx9cRtAF+D7tKpus0cIYSQIkNrfbpDQkIQGxuLkJAQyGQyBAQEAAAqVaqEkl/7/HTs2BGTJk1Cu3btkJiYiLVr16JDhw4oXbo0Pn78iKVLl6Jy5crw8PDQVjaLBA8PD4wZMwZLly5FamoqevfujR49eij0L5gwYQKsrKywceNGBAcHw8zMDLVr18bPP/+sw5wTQgghutWuVRLO3uWWd+835NeXtZXqKEeEEEKKGq0F3atXr8axY8f45z169AAA7Ny5E+7u7gC4gcLiv45oJhaL8fLlSxw/fhzx8fEoU6YMmjVrhvHjx8PQ0FDp+MVBr1690KtXL/65u7s7AgMDVaYdN24cP02bKiKRCEOHDsXQoUM1nk9CCCGksGrfvQKwiFu+eL8+v97WloYtJ4QQohlaC7oXLVqERYsWZZkmYwBZokQJbNmyRVvZIYQQQghRUqtRNZS3CkVIdDnImTAgjm254nnDnxBCiObp6ToDhBBCCCG6ItIToV3jN0rrbctrb85pQgghxQsF3YQQQggp1tq1VW5KbmtnoYOcEEIIKYoo6CaEEEJIsda2p4PSOttKNEc3IYQQzaCgmxBCCCHFmq29DVyqCOPMGBpIYGlDNd2EEEI0g4JuQgghhBR77TwT+OUytvoQ6dHo5YQQQjSDgm5CCCGEFHvtvnfjl2m6MEIIIZpEQTchhBBCij0PD8DamluuW1e3eSGEEFK0aG2ebkIIIYSQwsLEBLhwAbh6FRg2TNe5IYQQUpRQ0E0IIYQQAsDNjXsQQgghmkTNywkhhBBCCCGEEC2hoJsQQgghhBBCCNESCroJIYQQQgghhBAtKdR9uuVyOQAgOTlZxznJnkwmAwAkJSVBLBbrODdEU6hciy4q26KJyrXoorLVgZQUwNFRWBZpfqo1Kteiicq16CpuZZseh6bHpZkRMcZYfmRIG6KiohAUFKTrbBBCCCGEEEIIKabs7e1hnT7vpAqFOuiWSqWIjY2FkZER9PSopTwhhBBCCCGEkPwhl8uRmpoKCwsL6Otn3oi8UAfdhBBCCCGEEEJIQUbVw4QQQgghhBBCiJZQ0E0IIYQQQgghhGgJBd2EEEIIIYQQQoiWUNCdD/bs2YPWrVvD2dkZ//vf/+Dv76/rLJEc2rhxI3r37o169eqhSZMmGDNmDN6+fauQJjU1FfPmzYO7uzvq1auHX3/9FZGRkTrKMcmN//77D46Ojvj777/5dVSuhVNYWBh+//13uLu7w8XFBV27dsWTJ0/47YwxrFq1Cs2bN4eLiwuGDRtGs2EUAjKZDCtXrkTr1q3h4uKCtm3bYt26dcg4PA2VbcF3//59/Pzzz2jevDkcHR1x+fJlhe3qlGFMTAwmTZqE+vXro0GDBpg+fToSExPz8VUQVbIqW4lEgqVLl6Jr165wdXVF8+bNMXnyZISFhSkcg8q24MnuM5vR7Nmz4ejoiO3btyusL+7lSkG3lp09exYLFy7EL7/8gmPHjqFmzZoYOXIkoqKidJ01kgP37t3DwIEDcfDgQWzbtg1SqRQjR45EUlISn2bBggW4du0aVq5ciV27diE8PBxjx47VYa5JTvj7+2P//v1wTJ9z9isq18InNjYW/fv3h4GBATZt2oQzZ85gypQpsLCw4NNs2rQJu3btwty5c3Hw4EEYGxtj5MiRSE1N1WHOSXY2bdqEffv2Yfbs2Th79ix+//13bN68Gbt27VJIQ2VbsCUlJcHR0RFz5sxRuV2dMvz999/x+vVrbNu2DRs2bMCDBw8we/bs/HoJJBNZlW1KSgqeP3+O0aNH4+jRo1i7di3evXuH0aNHK6Sjsi14svvMprt06RIeP36MMmXKKG0r9uXKiFb16dOHzZs3j38uk8lY8+bN2caNG3WYK5JXUVFRzMHBgd27d48xxlhcXByrU6cOO3fuHJ/m9evXzMHBgfn6+uool0RdCQkJrH379uz27dts0KBB7K+//mKMUbkWVkuXLmX9+/fPdLtcLmfNmjVjmzdv5tfFxcUxJycndvr06fzIIsmlUaNGsWnTpimsGzt2LJs0aRJjjMq2MHJwcGCXLl3in6tThunfw/7+/nya69evM0dHR/b58+f8yzzJ0rdlq8rjx4+Zg4MD+/TpE2OMyrYwyKxcP3/+zDw8PNjLly9Zq1at2LZt2/htVK6MUU23FqWlpeHZs2do2rQpv05PTw9NmzaFr6+vDnNG8io+Ph4A+Jqzp0+fQiKRKJR1tWrVUL58efj5+ekiiyQH5s+fj5YtWyqUH0DlWlhdvXoVTk5OGDduHJo0aYIePXrg4MGD/Pbg4GBEREQolKuZmRnq1q1L380FXL169eDj44N3794BAF68eIGHDx+iRYsWAKhsiwJ1ytDX1xfm5uZwdnbm0zRt2hR6enrUha+QSUhIgEgkgrm5OQAq28JKLpfjjz/+wMiRI1GjRg2l7VSuQOYzeJM8+/LlC2QyGaytrRXWW1tbK/UHJoWHXC7HggULUL9+fTg4OAAAIiMjYWBgwP9opLO2tkZERIQusknUdObMGTx//hyHDx9W2kblWjh9/PgR+/btw/Dhw/Hzzz/jyZMn+Ouvv2BgYICePXvyZafqu5n66xdso0aNQkJCAjp16gSxWAyZTIaJEyeiW7duAEBlWwSoU4aRkZGwsrJS2K6vrw8LCwv6bi5EUlNTsWzZMnTp0gWmpqYAqGwLq02bNkFfXx9DhgxRuZ3KlYJuQnJs3rx5ePXqFfbu3avrrJA8Cg0Nxd9//42tW7fCyMhI19khGsIYg5OTE3777TcAQO3atfHq1Svs378fPXv21HHuSF6cO3cOp06dwvLly1G9enUEBARg4cKFKFOmDJUtIYWIRCLB+PHjwRjDvHnzdJ0dkgdPnz7Fzp07cfToUYhEIl1np8Ci5uVaVKpUKYjFYqVB06KiolC6dGkd5Yrkxfz58+Hl5YUdO3agbNmy/PrSpUtDIpEgLi5OIX1UVBRsbGzyO5tETc+ePUNUVBR69eqF2rVro3bt2rh37x527dqF2rVrU7kWUjY2NqhWrZrCuqpVqyIkJITfDoC+mwuhJUuWYNSoUejSpQscHR3Ro0cPDB06FBs3bgRAZVsUqFOGpUuXRnR0tMJ2qVSK2NhY+m4uBCQSCSZMmICQkBBs3bqVr+UGqGwLowcPHiAqKgqtWrXir6U+ffqExYsXo3Xr1gCoXAEKurXK0NAQderUgbe3N79OLpfD29sb9erV02HOSE4xxjB//nxcunQJO3bsQMWKFRW2Ozk5wcDAQKGs3759i5CQELi6uuZzbom6GjdujFOnTuH48eP8w8nJCV27duWXqVwLn/r16/N9ftMFBQWhQoUKAAA7OzvY2NgolGtCQgIeP35M380FXEpKilJNilgs5qcMo7It/NQpw3r16iEuLg5Pnz7l0/j4+EAul8PFxSXf80zUlx5wv3//Htu3b0epUqUUtlPZFj7du3fHyZMnFa6lypQpg5EjR2Lz5s0AqFwBal6udcOHD8eUKVPg5OQEFxcX7NixA8nJyejVq5eus0ZyYN68eTh9+jT+/fdflCxZku9/YmZmhhIlSsDMzAy9e/fGokWLYGFhAVNTU/z111+oV68eBWcFmKmpKd8vP52JiQksLS359VSuhc/QoUPRv39/bNiwAZ06dYK/vz8OHjyI+fPnAwBEIhGGDBmC9evXo3LlyrCzs8OqVatQpkwZtG3bVse5J1lp1aoVNmzYgPLly/PNy7dt24bevXsDoLItLBITE/Hhwwf+eXBwMAICAmBhYYHy5ctnW4bVqlWDh4cHZs2ahXnz5kEikeDPP/9Ely5dYGtrq6uXRZB12drY2GDcuHF4/vw5Nm7cCJlMxl9PWVhYwNDQkMq2gMruM/vtzRMDAwOULl0aVatWBUCfWQAQsfTbw0Rrdu/ejS1btiAiIgK1atXCzJkzUbduXV1ni+TAt3M3p1u4cCF/AyU1NRWLFi3CmTNnkJaWhubNm2POnDnFptlMUTF48GDUrFkTM2bMAEDlWlhdu3YNK1asQFBQEOzs7DB8+HD07duX384Yw+rVq3Hw4EHExcXBzc0Nc+bMQZUqVXSYa5KdhIQErFq1CpcvX0ZUVBTKlCmDLl264JdffoGhoSEAKtvC4O7duyoHXOrZsycWLVqkVhnGxMTgzz//xNWrV6Gnp4f27dtj5syZKFmyZH6+FPKNrMp27NixaNOmjcr9du7cCXd3dwBUtgVRdp/Zb7Vu3RpDhgzBsGHD+HXFvVwp6CaEEEIIIYQQQrSE+nQTQgghhBBCCCFaQkE3IYQQQgghhBCiJRR0E0IIIYQQQgghWkJBNyGEEEIIIYQQoiUUdBNCCCGEEEIIIVpCQTchhBBCCCGEEKIlFHQTQgghhBBCCCFaQkE3IYQQQgghhBCiJRR0E0IIIYQQQgghWkJBNyGEEEIIIYQQoiUUdBNCCCGEEEIIIVpCQTchhBBCCCGEEKIlFHQTQgghhBBCCCFaQkE3IYQQQgghhBCiJRR0E0IIIYQQQgghWkJBNyGEEEIIIYQQoiUUdBNCCCGEEEIIIVpCQTchhBBCCCGEEKIlFHQTQgghxdDdu3fh6OiIu3fv6jorhBBCSJGmr+sMEEIIIQXN0aNHMW3atEy3HzhwAK6urvmXoUIgNDQUR44cgZeXF96/fw89PT04ODhg9OjRaNq0qULa8PBw7Ny5E48fP8bTp0+RlJSEnTt3wt3dXem4gwcPxr1795TWN2/eHFu2bMk0P+vXr8fKlStRo0YNnD59Ou8vkBBCCMklCroJIYSQTIwbNw52dnZK6ytVqqSD3BRsV65cwaZNm9C2bVv07NkTUqkUJ06cwPDhw7FgwQL07t2bT/vu3Tts2rQJ9vb2cHR0hK+vb5bHLlu2LH777TeFdWXKlMk0/efPn7Fx40aYmJjk7UURQgghGkBBNyGEEJKJFi1awNnZWdfZKBTc3d1x7do1WFlZ8ev69++P7t27Y/Xq1QpBd506dXD37l1YWlri/Pnz2QbdZmZm6N69u9p5Wbx4MerWrQu5XI4vX77k/MUQQgghGkR9ugkhhJBcWr16NWrWrAlvb2+F9bNmzYKTkxNevHgBAEhLS8OqVavQq1cvuLm5wdXVFQMGDICPj4/CfsHBwXB0dMSWLVuwZ88etGnTBnXr1sWIESMQGhoKxhjWrVuHFi1awMXFBaNHj0ZMTIzCMVq3bo2ffvoJt27dQvfu3eHs7IzOnTvj4sWLar2mx48fY+TIkXBzc0PdunUxaNAgPHz4MNv9atSooRBwA4ChoSFatmyJz58/IyEhgV9vamoKS0tLtfKTTiqVIjExMdt09+/fx4ULFzB9+vQcHZ8QQgjRFgq6CSGEkEwkJCQgOjpa4ZGx5nT06NGoVasWZsyYwQeVN2/exMGDBzFmzBjUrFmTP86hQ4fQqFEj/P777xg7diyio6Pxww8/ICAgQOm8p06dwt69ezF48GAMHz4c9+7dw4QJE7By5UrcvHkTP/74I/r27Ytr165h8eLFSvsHBQVh4sSJaNGiBSZNmgSxWIzx48fj9u3bWb5eb29vDBw4EImJiRg7diwmTpyIuLg4DB06FP7+/rl6DyMiImBsbAxjY+Nc7Q9wr8fV1RX169dHs2bNsHLlSkgkEqV0MpkMf/75J/r06QNHR8dcn48QQgjRJGpeTgghhGRi2LBhSusMDQ3x5MkTAICBgQEWL16MXr16YdGiRZj8f/buOzyK4g3g+PfuUkggBAih9xZKEkIn9Cq9qqAgIOWHgjQFAQHpSBGVpoAIiIgUqVKUIr3XQIDQkxBagFBCenK3vz+W3HGmkEAu9f08zz2Z253dnb3JlXdndmbkSMaOHYurqyv9+/c3buPo6MjevXuxsbExLuvSpQutWrVi5cqVfPPNN2bHCAwMZNeuXTg4OABgMBhYvHgxERERbNiwASsr9ev76dOnbN26lUmTJpnt28/Pj/nz5/POO+8A8N5779GyZUtmz55N3bp14z1XRVGYOHEitWrV4pdffkGj0QDwwQcf0KZNG+bMmcOyZcuS9fr5+/uze/duWrZsiU6nS9a2sYoWLUqtWrUoV64cYWFh7Ny5k4ULF+Ln58ecOXPM8q5Zs4Z79+7x66+/vtGxhBBCCEuQoFsIIYRIwPjx4ylZsqTZMq3WvJNYuXLlGDJkCN999x1Xr17l6dOnLFu2zBgYA+h0OmPQaTAYCA4OxmAw4OrqyuXLl+Mct2XLlsaAG8Dd3R2A9u3bm+3X3d2dbdu2ERgYSNGiRY3L8+XLR/PmzY3Pc+TIQceOHVmyZAmPHj3C2dk5zjF9fHzw8/NjwIABce6D9vT0ZMuWLRgMhjjnn5Dw8HCGDh1KtmzZGD58eJK2ic9/L0h07NiRr7/+mnXr1vHxxx8bR5F/+vQp8+bNY+DAgXG6uQshhBBpSYJuIYQQIgHu7u5JGkitb9++bN++nQsXLvDFF19QpkyZOHk2bdrEsmXL8PX1NesaHd/o6AULFjR7HhuAJ7T8+fPnZkF38eLFjS3VsUqUKAHA3bt34w26/fz8ABg1alRCp8mLFy9wdHRMcH0svV7P559/zo0bN1iyZAn58+d/7TbJ0bt3b9atW8fRo0eNQfecOXNwdHTko48+StFjCSGEEG9Lgm4hhBDiLQUEBODv7w/AtWvX4qzfsmULo0ePplmzZvTt2xcnJyd0Oh2LFy8mICAgTv6EumIn1MqsKMpblN58HyNHjqRChQrx5knqFFzjxo1j//79zJ49G09Pz7cu23/FXnx4/vw5oF4wWLduHWPGjOHhw4fGfJGRkURHR3Pnzp03GrxNCCGESAkSdAshhBBvwWAwMHr0aHLkyEGvXr1YtGgRLVq0MN5PDbBz506KFi3KggULzFqg582bZ5Ey+fv7oyiK2bFiW7ILFy4c7zaxLeU5cuSgTp06b3zsmTNnsnHjRsaMGUPbtm3feD+Jib1QEduNPDAwEIPBwNSpU5k6dWqc/E2bNqVnz56MHTvWIuURQgghEiNBtxBCCPEWli9fzrlz51i4cCGNGjXixIkTTJw4kerVqxuDwtiW61cD4fPnz+Pl5UWhQoVSvEwPHz5k9+7dxsA/JCSEzZs3U6FChXi7lgO4urpSrFgxli1bRtu2bcmePbvZ+idPnrz2XulffvmFZcuW8emnn9KrV6+3Po+QkBBsbGzMBolTFIWFCxcCUK9ePUCdruzHH3+Ms/2cOXMIDQ1l7NixZt3vhRBCiNQkQbcQQgiRgIMHD3Lr1q04y6tWrUrRokW5efOmcf7tJk2aADBjxgw6duzIpEmTmDt3LgCNGjVi165dfPbZZzRq1Ig7d+6wZs0aypQpQ1hYWIqXu0SJEowdOxZvb2+cnJzYsGEDQUFBTJ8+PcFttFotU6dO5X//+x9t27alc+fO5M+fn8DAQE6cOEGOHDlYtGhRgtvv3r2bb7/9lhIlSlCqVCm2bNlitr5u3brkzZvX+Pynn34C4MaNG4DaBT92PvCBAwcCcOnSJYYPH06bNm0oVqwYkZGR7N69m7Nnz9K1a1cqVaoEqC3ezZo1i1OmFStWAMS7TgghhEgtEnQLIYQQCUio+/f06dMpVKgQo0aNInfu3IwZM8a4rkSJEnzxxRdMmzaNHTt20Lp1azp37szjx49Zu3Ythw8fpkyZMnz77bf8888/nDx5MsXLXaJECb7++mtmzZqFr68vRYoU4YcffqB+/fqJblerVi3Wrl3LTz/9xO+//05YWBjOzs64u7vTtWvXRLe9cuUKoHZjHzlyZJz1v/32m1nQHXtBItaGDRuM6digu1ChQlSrVo3du3fz+PFjtFotpUqVYtKkSa8tjxBCCJFeaJSUGH1FCCGEEOlCkyZNKFu2LIsXL07rogghhBACSNpkm0IIIYQQQgghhEg2CbqFEEIIIYQQQggLkaBbCCGEEEIIIYSwELmnWwghhBBCCCGEsBBp6RZCCCGEEEIIISwkQ08ZFhMTw/Pnz7G1tUWrlesHQgghhBBCCCFSh8FgIDIyEkdHR6ysEg6tM3TQ/fz5c/z8/NK6GEIIIYQQQgghsqgSJUrg5OSU4PoMHXTb2toC6kna2dmlcWkSp9fruXbtGuXKlUOn06V1cUQKkXrNvKRuMyep18xL6jYNhIdD3bpq+sgRsMBvManXzEnqNfPKanUbHh6On5+fMS5NSIYOumO7lNvZ2WFvb5/GpUmcXq8HwN7ePkv8A2YVUq+Zl9Rt5iT1mnlJ3aYBRYGrV9V0tmxggd9iUq+Zk9Rr5pVV6/Z1tzrLjdBCCCGEEEIIIYSFSNAthBApICoqrUsghBBCCCHSIwm6hRDiLTx9Ct27q70qhw1L69IIIYQQQoj0RoJuIYR4QwcOQOXK8McfoNfD/PkKj+8+TetiCSGEEEKIdESCbiGESKboyGjGDjxH48YKAQGm5QaDhm2rLqVdwYQQQgghRLojQbcQQiTD9XN+1HW/xjcLq6AoGgBcK4Qa12/eap1WRRNCCCGEEOmQBN1CCJFE+zd6UcUzL6euVQLAShfN9CmhnD2Xjfy5HgKw66QbYcFhaVlMIYQQQgiRjkjQLYQQSTR8lC2hkTkAKFvIl2P/XGf0uOxY2+po3/AKAOFR9uxa552WxRRCCCGEEOmIBN1CCJEEjwIec/ZGBQAqFL3J2YvOVG9W0bi+Y+dsxvSWzTJ/mBBCCCGEUEnQLYQQSbB3yzVjul2TAHLkzmG2vsm77uTI9gKArQcrEhMVk6rlE0IIIYQQ6ZME3VnY6NGjGThwoPF5jx49mDZtWqqX48SJE7i4uBAcHJzqxxYiqfbsNgXRzVo6xFmfLXs2Wnmq3cqDXjhxZIeMYi6EEEIIISToTpdGjx6Ni4sLLi4uuLq60rx5cxYsWEBMjGVbzubPn8/QoUOTlFcCZZGVKAaF3cdKAmBrHUG9NhXjzdehnWJMb173LDWKJoQQQggh0jkJutOp+vXrc/jwYXbu3Env3r1ZsGABS5cujZMvKirl7h3NlSsXOXLkeH1GIbKYm+f98X9UFIB6rpexc7CLN1/rbpWw0kUDsGVvSRSDEm8+IYQQQgiRdVildQFE/GxsbHB2dgagW7du7Nmzh7179+Lr60twcDBubm6sWrUKGxsb9u7dy/3795kxYwZHjhxBq9VSrVo1xo4dS5EiRQDQ6/XMmjWLDRs2oNPpePfdd1EU84CgR48elC9fnrFjxwJqQD937ly2bdtGUFAQBQsWpH///nh6etKzZ08AatSoAUCnTp2YMWMGBoOBJUuWsHbtWh4/fkyJEiUYOHAgLVu2NB7nwIEDfPPNN9y/f5/KlSvTqVMni7+eQryN3X+benQ0a5hw747c+XPRqPIZ9pythm9gMbzPR+FexSY1iiiEEEIIIdKprBl0+3wPV75/fb48VaHhX+bLDrSHJ2dfv235L6DCF29WvnjY2try7NkzAI4dO0aOHDlYvnw5ANHR0fTt2xcPDw9WrVqFlZUVP/30E/369eOvv/7CxsaGZcuWsWnTJr755htKly7NsmXL2L17N7Vr107wmCNHjsTLy4tx48ZRvnx57ty5w9OnTylYsCDz589n8ODB/PPPP+TIkYNs2dSRmxcvXsxff/3FpEmTKFGiBKdOneLLL78kT5481KxZk/v37zNo0CC6d+9Oly5duHjxIjNnzkyx10kIS9hzxt2Ybv6uS6J5O/ZyZc/Lj4jNW21wr2LJkgkhhBBCiPQuawbd0cEQfvf1+SKKxrPsUdK2jU6Ze50VReHYsWMcPnyYjz76iKdPn2Jvb8/UqVOxsVFb0LZs2YLBYGDatGloNBoApk+fTo0aNTh58iT16tVjxYoV9O/fn3feeQeASZMmcfjw4QSP6+vry99//83y5cupU6cOAEWLml4PR0dHAJycnMiZMyegtowvXryY5cuXU6VKFeM2Z86cYe3atdSsWZPVq1dTrFgxRo8eDUCpUqW4du0aS5YsSZHXS4iUptfD3r1qOk8e8PAsmGj+9p1sGfRyaITNm2H8eMuWTwghhBDibQQFwYABcOcODBkCXbqAVm5CTlFZM+i2zgl2hV+fL5tz/MuSsq11zuSX6xX79++nSpUqREdHoygKbdu2ZfDgwUyePJly5coZA26AK1eucPv2bapWrWq2j8jISG7fvs2LFy949OgRlStXNq6zsrLC1dU1ThfzWD4+Puh0OmP38aTw9/cnPDycPn36mC2Pjo6mQgV1fuObN2/i7u5utt7DwyPJxxAitZ05Ay87mdCkCeh0iecvWhSqVVO3O3cObt+GYsUsXkwhhBBCiGTz94eWLeHKFfX5sWPw7bcwfTo0bw4v2/PEW8qaQXeFt+j6/d/u5hZSq1YtJk6ciLW1Nfny5cPKylRVdnbmgziFhYVRqVIlZs+eHWc/efLkeaPjx3YXT46wsDBA7WKeP39+s3WvXiQQIiP591/Tt03z5knbpmNHNegG2PJHAINHx9NrRgghhBAiDXl5QevWcP+++fKzZ6FFC7WxYcYMSEYbnEiAdBxIp+zs7ChevDiFChUyC7jjU6lSJfz9/XFycqJ48eJmDwcHBxwcHHB2dub8+fPGbWJiYrh0KeF5hMuVK4fBYODUqVPxrre2tgbUAdpilS5dGhsbG+7duxenHAULFjTm8fb2NtvXq+USIr3Zu9H0PmnWRJ9ITpOOrZ8Z05vXPUrpIgkhhBAZ2oEDMGFCCc4mYZgk8WYiIuDGDTAY4l//77/QoIEp4C5XDlatgiqvjEWzdy/UrAkffgihoZYvc2YmQXcm0K5dO3Lnzs2AAQM4ffo0AQEBnDhxgqlTp/LgwQMAevbsyZIlS9izZw83b95k0qRJic6xXaRIETp16sSYMWPYs2ePcZ87duwAoHDhwmg0Gvbv38+TJ08IDQ0lR44c9OnTh+nTp7Np0yZu377NpUuXWLlyJZs2bQLggw8+wM/Pj5kzZ3Lr1i22bt1qXCdEehMZFskR73IAlMx/m1JlXtO3/KVKHo6ULuAPwIHz7jx58MxSRRRCCCEylKgo6NpVy/btTrRurSUoKK1LlPns3w9ly6qPAgWgWzdYvhwCAtT1f/wBrVrBixfq89q14cgRNd/p07B6NZQubdrfmjUwcmSqn0amIkF3JmBnZ8fvv/9OoUKFGDRoEK1bt2bs2LFERkYa593u06cP7du3Z9SoUXzwwQdkz56d5q/pKztx4kRatGjBxIkTadWqFV9//TXh4eEA5M+fn8GDB/Pdd99Rp04dpkyZAsCwYcMYOHAgixcvpnXr1vTr14/9+/cbpy4rVKgQ8+fP599//6VDhw6sWbOGzz//3IKvjhBv7sqJR0TF2ALQ3NMvydtptBo6NPUFQG+wYvsfCfcqEUIIIbKS/fvh8WP11q3HjzWMGpW25UlISAh8/z389hskMARSuhMVBV99pXYLv3NHXfbokRpE9+mjjjFTpgx07w7R0er69u3VVu+8edXnWi188AFcvgw//QT29uryhQvhxInUP6fMQqMkNJJWBhAWFoaPjw8VKlTAPvY/Ip3S6/V4eXnh4eGB7nUjMYkMQ+o189Lr9QzqspNFG1sDsO6nY7w/wDPJ2x/66zwNOqiDF7aseYodx6qj0cpoJGlN3rOZl9RtGggNhZcX9wkJgezZU/wQUq+Zz6efwuLF5ssOHoT69dOmPPG5cUMdnyX2TswRI2DWrPQ9qNi1a2owffq0aVmFCmrwHdui/V/9+8OPP0Jid7J+9516/gCVK6v7Tyx/VnvPJjUelZZuIYRIwJGzJQHQaAw06ZD4/Nz/VaeVK/lzPQTgn5M1mPHFgRQvnxBCCJGR6PXqdJr/9cknaittevDPP+rAYa8OfTR7tjqad3qkKLB0qXovdmzAbW2tXiS4eFGdDuzwYZg4EerWVWdh0WphyhRYtCjxABpg6FA12AY4fx7mzrXo6WRaFg26nz17xvDhw6latSrVq1dnzJgxhL7mLvwePXrg4uJi9hgvE90KIVLZw9uP8PZTp7qrWuYKToWSNxOAzlrHvKk3jM/HzG3E2gVHU7KIQgghRIZy7BgEBqrp+vWfUaOG2uHWx0edpiotKYo6Unfr1qapQl/eHQnA2LFqd+u08uCBGvB++SX07KmOLu7hAQULQr9+8HISIcqVU1/nL79Ug2trazXYnjBBDb6fPoV792DcuKS13FtZwc8/m/KOH69OMyaSx6JB94gRI7hx4wbLly9n0aJFnD59OkkBdJcuXTh8+LDxMVLu3BdCpLK9W0wBc7O6D99oH10+q8O0IfuNz3t9UZUj2y68bdGEEEKIDGnjRlO6WbOnLFxoILYH8tSparfutBASAl27qvdDx95426GD2to9a5Yp32efqSN8p7YLF8DNDYYNU1vdV66EXbvUlufYixigdhc/exaqVUt4Xw4O8J+ZfV+rZk0YOFBNh4XB4MEZ5z739MJi83TfvHmTQ4cOsX79etzc3AAYN24c/fv3Z+TIkXHmcX5VtmzZcHZ2TvKx9Hq92dRV6VFs+dJ7OUXySL1mXv/+a5pjo0nLHG9cxyNn1+Om70GWbW1AZHQ2OnQrzJEjjylTMXdKFdXo+aNgNi73ZuNmO2ys9Sz+oxR5Czul+HEyMnnPZl5St2lAr0dnTOrVvsMpfgip18xCUWDjRi2gwcpKoX7957i56Rk8WMOcOVoiImDAAIW//zak6r3TgYHQsqUWb2/TQSdMMDB2rIJWC198AU+eaJgxQ22r7NVLIXt2A+3apU75vLygRQstQUFxXxRra4V8+aB4cRg+3ECHDupyS7xdJk9W6+/+fQ1bt8LGjXo6doybL6u9Z5N6nhYbSG39+vXMnDnTbJ7nmJgY3N3dmTt3boIjZ/fo0YPr16+jKArOzs40btyYgQMHYmdnFydv7I3rQgiRkhSDQudWBQgIKkI263D27vXCxs7mjfcXE61n1Cdw4EJNAIoVi2DZsivkyvX2X0hRURrO7nvEru3Z2HmqFpHR2Yzrur+zm8+/SV63eCGESCpteDhVXo5+de7QIQzx/FYTItaVK3Z89FFFAGrXfs6CBWqzdliYlvffr0RgoPo9O3XqLVq2fJoqZYqI0NC/vwuXL6uDAGbPrmfKFF8aNHhulk9RYNasovz5Zz4AbGwMzJhxC0/PYKytLdfk6+Njz2eflSU4WG0ndXUNYdCguzg5xZAnTzQ5c+pT9QLFnj25GD1anUssX74o/vzzEtmzJzAReBbzuoHULNbS/fjxY/LkMf+xZ2VlhaOjI48ePUpwu7Zt21KoUCHy5cvH1atXmT17Nr6+vixYsCDBbcqVK5chRi/39vbGzc0tS4zkl1VIvWZO1875ERCk3shV1+0yNT1rvvU+N/zznAaNQrh8LQe3b2dj4sTK7NxpwNb2zfanKDB9uoYfftDw9Gn837hr/23EZNv7FK9Q+C1KnrnIezbzkrpNA6+M0+Pu7m6x0culXjOHDRtM31UffaT+r8TW66JF0KmTum7evJJ88klxcqd8hzAzer06X/jly2q5ihRR+OcfKF++ZLz5V60CKysDq1driYrS8sUXZbC2VihfHtzcFFxd1b+NGkFKXH86eRIGDdISHKyWz9NTYft2O3LmLPP2O39DlSvD/v0K//yj4eFDGzZsqMz335tfdEjoPXv7NuTKBTlzpnKhLSwsLIxr1669Nl+yg+7Zs2ezZMmSRPPs2LEjubs16tq1qzHt4uKCs7MzH3/8Mbdv36ZYsWLxbqPT6TLMB3FGKqtIOqnXzGXfiVLGdLN3bFKkbp0K5mHHLqhVS+3KdviwhmHDdPz885vtb9UqdTCTVznnfMQHrS4TGqpl2bb6xOitmT3Rj5/Wx//ZmZXJezbzkrpNRa+8zjqdzux5yh9K6jWjix21XKOBjh01PHhgqteOHdWge9MmePhQw9df61i40LLlGTnSVCYHB9ixQ0OlSgn/j+l0sGKFOv3Wtm3qsuhoDd7emHVNL14c9u2DkvHH7mYePwaDAZyczN8+x45By5YQHKw+r18ftm/X4OCQ9u+Bn36CSpUgPBwWLNDStSvUqRM336vv2SVL1BHq8+WDvXuhYsVULrQFJfVzKdlBd58+fegUeykqAUWLFiVv3rw8efLEbHlMTAzPnz9P1v3alV+OUe/v759g0C2EEClp7z7Tl2fTzin3zVC8OGzdCg0bql9WS5bAu029adHVLVn7CQ9XB3uJ9cEH0LODD806lcHatiFB956wrvQLQiIcWLqlFuNuPqBQ6QIpdh5CCCFEcvj4qA9QR9IuUEAdjftV8+bB7t3qoGaLF8P//gdVq77Z8f74Q523ukuX+AO8n36C779X0zodrF+vDlT2OtbWsGGDOkXXoUPqAGdXr0JMjCmPvz80a6aOFF6wYPz7iYxUg9DfflN7rmm14OysDnCWP78adIeEqHkbN1Z/O1igI8kbKVlSHQl99Gj1gsGHH8K5c5AngbvZzp6FQYPU8wwMhObN1dcmKRclMpNkj16eJ08eSpcunejDxsaGKlWqEBwczMWLF43bHj9+HIPBoHZBSqLYe7aTE6gLIcSbUhQ4+nJmr+zZ9ca5KVNKjRow53vTt/P/BuUhOOhFsvbxw8RLBASo6VatYPVqaPVBBaxtrQFwKpSHgV3PABAVY8u3X19NmcILIYQQb2DTJlO6c+f48xQpYurBpShvPkL2P/9A9+4waZLaItu6NezZY9rXjh3qvmMtXAjvvJP0/dvYwIABamB/8aIaHJ8/r44oXkGdaZRbt9R9/qf9EYDnz9UyrVhhKpPBoAakFy6YLjyAGqBu25Z+Au5Yw4erre+gdhv/+OP46yo4WL3w8eoc7Pfuqed1/36qFDXdsNiUYaVLl6Z+/fp8/fXXXLhwgTNnzjBlyhTatGljHLk8MDCQli1bcuGCOoXO7du3+fHHH7l48SJ37tzh33//ZdSoUdSoUYPy5ctbqqhCCGEUEGD6IqhUKdQivSX/119Hkypn1eM9Lsyo/ueSvO0D30dMn6f2+tHp9Mz+Nv5fJMMnV8LORp20c/Hm+jx8s1nPhBBCiLf26lRhiXWYHToUXFzU9NGj8PvvyTuOosDXX5sv+/tvNcirXFmdC7xrVzXIBRg1Sm1Rfxu2tuDuDh99pAbMJUqoyy9eVIPr2AAa1ICzQQO1izWo9363aqVO8VWkiNqSHqttW9iyBdLjsFVWVupFB6eXE6Rs3Qo//GCeR1HU1/bmTfV59eqmixI3byZ8USKzsug83bNnz6ZUqVL06tWL/v37U7VqVSZPnmxcHx0dja+vL+Hh4QBYW1tz7Ngx+vbtS6tWrZg5cybvvPMOixYtsmQx0xUXF5dEH/Pnz0/rIgqRqR3faZoRwd31mUWOodFq+OU3Z7Lbqt/EizY2YO/6pAXeE77wISTCAYD+HQ9TsVL8g6jlK+bMJ/3VdeHhWr77LgUKLoQQQiSTvz+cUTtfUbWqKSiNj40NzJ1rej5ypOm+5qTYuhVOn1bTJUuqt3XF8vZW9xcbBL//PnzzTdL3nRSFC6uBd+zMyCdOQMeOandyHx/w9FRbs0ENWPftU1veT59WL/pHRsLTp2rr8V9/pcyAbJZSpIjauh9r1Cj1fGMtXqxh3To1nSsXrFunzi0eWyfxXZSIjFTvs3//ffW1/OILS59FKlIysNDQUOX06dNKaGhoWhfltWJiYpTTp08rMTExieZ7+PCh8fHrr78qVatWNVsWEhJizGswGJTo6GhLF10kIqn1KjKOz7vtU9Trs4ry84zNFq3b+eP2G49VMr+/8uLJi0Tzex+5pmg1MQooioPdcyXQ/2Gi+e/eVRQbG3X/2bMryuPHKVn6jEnes5mX1G0aCAlRjB9ir/w+SUlSrxnfDz+Y/k2mTlWXva5eO3QwbTNiRNKOo9crSuXKpu22bFGU6GhFWbdOUTw9TctBfR4WlhJnF7/z5xUlVy7T8Zo2VZTcuU3PS5ZUlKtXLXf81DRqlOm8ihdXlEePYpTff7+k2NoajMs3bTLlv35dUfLnN39t9u1TlE8+MX+NQFEcHdPmnJIjqfGoRVu6RfI5OzsbHw4ODmg0GuPzW7duUbVqVQ4cOEDnzp1xc3PjzJkzjB49moEDB5rtZ9q0afTo0cP43GAwsHjxYpo0aYK7uzvt27fnn3/+Se3TEyLdO37OyZguWzWXRY81cGJ9Grh5AeAbWIwxA84kmn/EsOcYFLW/+9hPz5KvWOJjXRQqBH37qunQUPPWAyGEECI1bNhgSr/7btK2+f57jFNqzpkDV668fptNm9R7q0HtytyundoN+v331a7qR4+q9x736mX5VmR3d7UFO7Zr+L//qi3YoLb2Hz0K5cpZ7vipacoUdXA8UHs19Oql5auvShEZqfa2GzpUbe2PVaaM2uKdK5f6/N9/1cHiFi82vUagDiyXmTr4Wmye7vTqzz/VQRpeJG/corfi4KAO5lC6dMrs77vvvmPUqFEULVqUnEmc7G7x4sX89ddfTJo0iRIlSnDq1Cm+/PJL8uTJQ82abz8HsRCZQWRYJGeuq9+CZQv54pAnh0WPp9VpWfpbbtxrhREeZc/8tQ15v9t56rePO3rbP6tOs/NUdQCKO99h6JTaSTrGqFGwZIlCTIyGed+/YPhgPY7OuVLyNIQQQoh4PXgAR46o6QoVIKlDNJUqpXYFnzJFHRl86FB1gDRN/HdUoderI2rHmjw5bl5PT/WRWjw91a7SbduaBhJr3ly9COHgkHrlsDRra3VAVw8P9R7tHTs0QDZAvfgxa1bcbWIvSjRrBmFhpuX29uo9/x99pK6zykSRaiY6laT59tukXS1LabNna1NsvsEhQ4ZQN/aSUhJERUWxePFili9fTpUqVQB1WrczZ86wdu1aCbrFW4mJiuHWxQDKepRAo03g2zCD8Dp0nagYVwBqu98FLH8zVRmP4kz7fD9fzGwEQJ9PHThR8zl5Cjga88RExTB8TC7j8xlf3yZb9iJJ2n/x4tCr7SmWbq7J81AH5k/ez7j5jVLwDIQQQoj4bdliGtU6oVHLEzJ6tDrC9+3basvoli3mLaavWrcOLl1S056e6hzX6UHz5mrgPWGCOl3otGnqfeuZTdGi6vRnbdualuXMqbB2rSbB8/X0hO3b1fu2CxRQR5zv0AFyWLa9I81kuaB75Eh1VMPUbukeMcKQYvtzS8pEgq/w9/cnPDycPn36mC2Pjo6mQuwwgkK8dGavD3O/DaJdex3vD0j8krDPyZt07Kzl2t2StKp5irV/l8chT8a9fHv8wGNjulatmERypqwhU+rz51/eHPNx48b9UjgVVINld3d13tAQ3+Ncvl0PgNrlven6WfIu1X81MT+//hWD3mDFD7+6M3TSiwxdT0IIIdI/RVFHuI6V3KDb3h6++07tHg7w+efQokXcbuExMTBxoul5fK3caalVK/WR2bVpA19+qTZwAvzyi4FSpRKfAqZRI3Ue76wgywXd772nPlKbXg9eXimzL7v/fNpoNBqU/0yOFxNjChjCXvbbWLx4sXG6tlg2mfFym3hjikHho142XLlTj5X/QLdNR/hplSuOzo5x8m5ZeoIegyvwIly9xeHvkzVoXPsy23c5k79E4vcap1fHTpjeD7UaOAMRqXJcnbWOZSuyU6VuOBHR6vvb3199bN0KUM+Y97vZJLtHQenKxen2zmFW/lOPJyF5WLXgIJ+Ob5CCZyCEEEKY27ABDh5U06VKwcvOlsny7rvQpIk6xZafnxrYzZ6t3hcd648/4No1Nd2gATRt+tZFF29oxgyoUsVAcPB1Oncuk9bFSVdkILVMIE+ePDx69MhsmY+Padqj0qVLY2Njw7179yhevLjZo2DBgqldXJGOndnrw5U7psEH/thdl8qVXnB46wXjMoPewMQB++nYr5Yx4DZuf70inrXDuX7OL7WKnKKOexcFwN42FDfP1P2yKF+jFKf23+GTrt7UqRN/96ouTY5Sp03yerrE+nxUXmN67UZp5RZCCGE5z5/DkCGm57NmvVnrs0ajDqYVe2/vvn3qnNYffAA3bkB0tNqyHSu9tXJnNVotdOmiUL16yOszZzESdGcCtWvX5uLFi2zevBk/Pz/mzZvH9evXjetz5MhBnz59mD59Ops2beL27dtcunSJlStXsmnTpjQsuUhvVv/60JjWavQA+D8qQsMOlRg/4AhPnkCnjjFMWtTImK9rk6Oc3HWZIk73AHUU7jqNcnBy/91ULfvbun/zAf6P1KC7hst1rGxSvyOQa52yLFrjxpEj6g+WW7fUe9gmDz7KpIH7+eXPNwu4ATwauFC2kC8ABy5U5v6twJQqthBCCGFm3Di4f19Nt2mT/K7lr6pYUR1tvGRJ07K1a9WB2d55B27eVJc1bareNy1EeiRBdyZQv359Bg4cyLfffst7771HaGgoHf8z0sSwYcMYOHAgixcvpnXr1vTr14/9+/dTpEjSBmMSmZ8+Ws+av10AsNZFcWb/Deq7qnNvGBQdUxbVpVAh+Gub2gVbq9Ez84sDrN7tSY3mFTl2TINrcfViz+PgvDRuU4jt29PmXN7E8b1+xnTtqs/SrByxtFr1B0b79vD1vDqM/7HRW92HrdFq6NrGHwBF0bJ+WRqMKCmEeGshT0NY8e1hTu2+nNZFEVlMTAwcO6ZOP3kmkRkuT52CH39U0/b2sGDB27c+t2qlDoQ8b546lVRsefbvN+V5tcVbiPQmy93TnZF07tyZzq9cGqxVqxZXr16NN++QIUMY8mo/nv/QaDT06tWLXr16pXg5ReZwaNdd7j0pBkDLWl54NKjJvrN6Zo7Yx/gfG6DX64iMVPPmygVrfntBi3amS8pFyhbk0MnndGpzk/2nSxMWpqFDBxg4EIYNNVCqdPq+xnfcu7gx7VnPPg1LYjldPy7M1CVqeu3m3AyemrblEUIkz1/LTjBoVBECHtdDqzWwebM6F7EQlqAocP067N6tPvbtg+BgdZ1Op86lPXiweUAdEwOffGIasXziRChRImXKY2OjHu/jj9Vjz54NIS97MbdsCXXqpMxxhLCE9P0rWAiRav7YUsyY7tZLHThNZ61jzNzGHD2iNc4z7+oKp09Di3a54uwjVz5H/jlcmi5d1Od6vXovVpmy8G7D4xzZdgHFoMTZLj04ft40vkGtNplzGj3XOmWpWOwGAEcuuRNw9V6y93HpEtSurf7w0etTuoRCiPjcuX6fzg2O06FvLQIeFwbAYNDywQeJtzgK8TqKos6X/MMP6hRdvXur3cGrV4dChcDFBQYNUm91ig24Qf38HzpUzR/xypij8+fDuXNq2t0dhg1L+TI7OKhTcN28qZa5Z09YvjzljyNESpKWbiEEUVGwfr2azp4d2nV3MVtfs5aGS5fgwgXw8ABr64T3ZWsLq1erX9SzZ0N4uNqdeePB2mw8CDVdLjJi6Ave+6R2upnXOyZG7Q4H6hX5AgUyb0DZte0dJvykDhL358oHfDG1ULK2//RTOHFCfVSsCAMGWKKUQlhW6PNQvI/5Uq2xC9a2iXygpTF9tJ4fJx5m7PdVCYmobVxe0CmI+0FOhIWp8+KeOAHFiiWyIyESMG2aOpVuUjg5QbNmatD7yy/qshUr1IuxGzeqz2P3pdHA4sWJ/154W/nywfTpltt/hqcYwGsUWOeCbPnUh20+yOYMWmsIuwOhtyEsAAq+A7k9TNuG3oY9DUAfDjFhoMsGDmVfeZRT/+YsB1bZ0+oMMxQJuoUQ7NwJT5+q6Q4d1MD7v2xtoUaNpO1Pq1XvrRo6FH7+3pf5C+24/7QAACevutJlIMz23c/wWY1S5gTe0oUL6sUBAM/kTYGd4XTtW4oJP6npNbuq8kUyupifPAmHD5uefzUqgo4tnlOwVP6ENxIindFH62lW+xbHr7jRp+0hlm6tn9ZFipe/zx3e6xDM6eum23jyOT5izuTrdOznSbPmcPQoPHgAbVqGceRQDDmdciayRyHMnThhPr/1q7Ra9d5pV1do3lx9eHioy0ENvvv0gbAwtfdb9epQtiyEhqrrP/1U7RUlLMwQA88vQdBJ0OigdB/TOo0W7v2trn8dra150K2xglB/0/OYEIh8DI+P/WdDDTTdB/lfGcFOMbzJmWR6EnQLIfhjlR7QAdCtW8rt18kJvppWkuHjoljz42G+/8mZ875qK/rOvQ4MT7lDvZXjB54AeYDM/yPBpWoxKleG8+fV1v1bt9T5U5Piu4k3AdOUcs9fZOPz/51lzb8SdIuMY/WC4xy/UheA5dvrMtb7NqXc0lcz8S3v2zRuquX2o4rGZf07HmTGIndy51dvXN2yRf28unkTLvrY837L02w7XDldt9yL9CMkBD76yNSra8AAdU7s/PnVh5OTKcCOT9euUL48dOyozp/98KH6ALW32DffWPoM0phigMgnEPFAfYQ/gPD7EPlQDX5zeUCJD8y3ubMFop6pj+jn6iMmBKwcwDYv2Dqpf/NUg+yvfCbpIyHiIWitICYUnpxRg+ygk2pa/7LVIGd586AbwKlm0oLusADz51b2kC0/6OzUR/RzCI/vljQFcpr3jtT4/orrrYlooltDoRaQvwnY5nl9GTI5CbqFyOJCnoawZZMWsMcpdxTvvGOT4sewsbOh54h69PhCIa/jE56E5OGSb/K6Nb+Np4HPmDbCi6JFNQyZ2iBOt/bjuy4D9QCo7X4XKJxqZUsLXbuqQTfAunXqPXGv43cpgPX/lAAgX+6n6GMMBL1wYu3eOny86jQtu1e3XIGFSCExUTFM+tb0/lYULT/OvMV3v6dO0B36XG0GzO6YcHfM6xcCadzEmrtB6jgTZQr68evPwdRt28AsX968sGNzMJ6eMTwJycOu09X5rOtBFm+sn25u3RHx0+vV3lU5cqRdGYYPV+e5BqhZUx2RPLldwStXVlu5P/gA9uwxLZ8zRx1wNcNSDBB2Vw2g81QzX3fmc7j9J0QEghKT8D6Kvhc36D7aXQ2aX6fWL1C6r+n5Uy/YlYQWgeArEPUcbBxNy1zHQZEOatAe+4h8qAby9kXU4N6+qHkrN4BNLuj8wHxZTCi8uAEvrr98XIOwe2BXwDzf0/PYRt+DW7+oDzSQp7rahT1vbbVbevaSoEv535vpmQTdQmRxf604T3iU2urzfuPjWFs3eM0Wb06j1VCxRACHL+bh3pOCPHv4nFz5HF+/4VuICI2gXVN/jlxq9HLJAYZ+Yz6R57Hz6tR5ttYReNRytmh50oOuXWHMGDW9dq3C6NGv/4E+d9pNDIo6j/mgbucpWsyK3qPUCxUDh+fjYrsw7HNmzlHfReax8ncdN+6XMFu2dFMVJj0NIUduy0ZAfpfuULVWdkIj7fmsy37GzHQjbxEnszxXrkCTlvm4H6S+JysWu8G/+3NSoGSJePYI5VxzsnnVeZq9m52oGFuWbGlAmS/3M/K7RhY9F/Hm9Hp1pO1//1Xvi+7T5/XbpLStW+Hnn9W0vT38/vub33vt5AR//63Oyz1vHnz4IcbBVNMtQ4zaaht2F8Lvmv6G3DIFlPpwyFYAOt833zYmRM37OtbxTPFpnTNpQbdtXvPnSiKDzGQvqbZmxz6s/vM9nKOU+kgJVtkhd2X18RoGjTVaJfrlMwWenFIfsTQ6cBkKVb8zLVMUeLBbbWHPVkB9HbS6lCl7OiBBtxBZ3B9rTd+0H/a0bAAMULHMcw5fVNM+p2/j2drNYscy6A307nCGI5fqGpd9OcuTOo0vU6O52m3z8Z0g44/wamWvYWPnbrHypBelSkH1KmGcPmePl5eGa2d9KVe1ZIL5nz18zi+b1Kv9djZhDBjthlOhPPy6yosDFzzwDSzG1M/3883SRql0BkIkX3Q0TJ5iusBU3eU6p6+W5XmYI7/NOcDASQ0T2frtLf7uBk9DGwHwwx+NWLrpOV/23c+wKTXIkSs7ly5B06YQGKiW0a3sA/bscSRfscQvBNZvX5nls4/QfZj6OTdmTj269LlDiUpFLHk64g3t329qFR4xQg1QU7rF22BQBzKLb27swEDo+0oj6g8/qPdivw0rK5gxQ+1SnliX9FQV/QKeXYSQm2r3ZvtXetfd+xsOtn/9PiIeQHSwGizHsi8CdgXVoDBbAbWV99W/2fIDStzAGcBtohrwWzuqLcnWjmCdQz1GZJB6z3RkEOT6z+8imzxqy7kSo96n7ej2MsiuoQ6Kls4o1eZyXvMhlQs+Q/dwL9zfBc8v/ieTHmxymy+LDoZ9LUzP8zeBpv9avsCpRIJuIbKwoLtB7DxVBYAiTveo19ZyAXCsShUV2KymL59/hmdryx3r608OsubfRmbLovU2dPnIgXPeaiv7ib23ALW1qXaVp5YrTDrTtelJTp9rBMDaZf58nUjQ/cu35wiJUPP2anuavEXU3hCLfsmJu2cU0Xobvl1Rl259r+Na5y1/vQlhIcuXq/eeArzzDswca6DKyzh7/rIifDregFZnmYhBMSis3WHe2hQc7sjXCxqx4PeHDP74AnNX1ebRIzVK8vCA3bsLkDee3+3x6Ta0Ll5n9/Ptb43QG6xY/N0Npi+ToDs9WrnSlH76VG3tTqlptaKi1Bbsb75RLzK99x50767OX63Vqg2J/frBo0dq/rZt4X//S5ljQzoIuCOD4M5fELBBbTE1RKnL662HYu+a8tkncguZxgocSptG5zZEm693m6A+3kSZ/m+2nWN5qP/nm22bRhRtNijYEoq0UReE34fAffDcx9SbwNHVfKOIQPPn2TLXeDFp/fYQQqSh9csuEqNXW7o/bHPNYj84X1XRI5cxfdnfcvdRLpt1wtjyqtXo2bD4OLXLewPg97Aofd6/gqLAsUOmrl6edbPO/UVd+pqC47VbE/4BEh0Zzdzl5YzPh40pakyXr1GKr/odBSBGb82n/cMx6GXUUpH+REYoTH1lpP7Jk8GjgQsN3LwAuHKnNLvXnrXY8U8ff4FvoPp551nBm/4dD6LTqveDBj7Lx7g5nsaAu1o1tetxUgPuWMMnVcRapwYZv2xwJSI04jVbiNQWFgYbNpgv++47NVh+GwYDrFqlDmw2eDDcvw+PH8OiRVC/vtq7aexYmDoVtm1Tt8mXD5Yujb81PEMJfwDXF8K/zWBjfjjRB+5tNwXcoLZ2v8q+GBTpBOUGQeXp4PkbNNkD7a5D13BoewUa/qV2fbY1vwVEvCG7glCiG1SeAvXWQKszULSjeR6rHFBprHo/e6G2akt+JiJBtxBZ2B9/mrqTf9i7QCI5U07FuqZ7gS75FbfIMfbsgU/G1jQ+nzPmMJ3712btpjzkzq62Zm86WIsFC+D4GVO3sdrNSlikPOlRsfKF8aygXoS4dLssl47diDffnwtPcidI7ZbXrs5JXKqZt4h/9V1tyhbyBeDIJXeWzjgcZx9CpIQXT14w+bP9lMwfQN6cQaaH4zPy5oVixbR8/30RwsLibvvL9IMEvByct00bqFVLTQ8dFGnMM2+pZT6PANZuNH3O9BmQl8WbGnDp5G3ebWg+/U6t6hHs2QN53mCg3/wl8vFeY/WeycfBeVn/85m3KrNIeVu2qKOGv+rOHVi9+s32pyjq/dRVq6ojkfv6mtZly2ZK+/urrd/jx5uWLV2qBt4Z2pFusKkQnBoIgf+a3/tsVwhK94Mqs6FAc/PtsuWFBhuh+nyoNBpK9oACTcGhjDpCuEgb9oWg8lR1ILlGW6H852ldohQlQbcQWVTA1Xsc9PYAoHyRm3g0cEl8gxRSsCA4voz1L19O+f1fuqROexITo16+H/rxFQZPVfuQFitfmBULTYOiDB+ucORiBQAK57lPkbIFU75A6VjXjk+M6bW/3omzXjEofPej6df/8BFxewJky56NhXOeGZ+PmFaZy2cfpWxBRZYWFR7F/HEHKF0yggk/NcLvYVGCXjiZHsG5CAqCe/c0/PFHfmrV0uJ1ztTjIvxFON8sMPXWmPTlbWO6/cfVKVZEbRHesdeZa9dSvvwGgzpLAKj3vnburn7OuFQrxfr9npzYeYkPmh7lfx0OsuufqLca9XngENPgTT8tkTm705vffzelp00zpWfOVP9PkuPZM2jRAlq3Ns1GAer82adPq9N3/fabmue/3b4/+UTtWp5hKAb1/mxFMV9uVxB4ZVn2klBhBLxzDDoGQK0lUGE45KmSqsUVIj4SdAuRxYSEwI4tLxjS64JxWbcOAak2xYxGA5UqqemAAAgOTrl9P3qktmLF7rNDB/jul/Jmedr1qMgXX6jp6GgNEdF2ANR280+5gmQQ7/d1QaNRf+mt3V48TtfwA5u9OHtDvShRrexlGnSIf8TSpu9XoWcrtYU7ONyRNu86ExgYb1YhksygN7DqhyOUL/mAIdMa8ihYHTBIp42hTEE/06PwHcqUAVtb9ce3j4+GWrVi+H7Ufgx6Az9PP8m9J2qg27Hecao1NN3WYmWjY9AQU5PgggUpfx7Hj2NsZW/ePG4rds13KrF6Tx1+3tyAnE5vFyjXbeOGWwn1ysExHzfOHc8641SkFUWBJUugcWNT1+34BAbCzp1qulgxdarGeuoEEPj4JL7tf4WGqkHz7t2mZdWqqc9371bTDg7Qowf88w/cvatO49WkCfTsqXZpT9cURb3399pPcOh9tdv4Djd1uqpXFX0XclaASuOg1TlofxOqfKtOS6WREEekL/IfKUQWcOb4CyZPhgYNIHduaNPRgc0nWhrXf9gv4UG0LKFiRVP6ysWUu+9w2rj7+L+MnatVU+9x08Uz28T06abupbE8a2a9+x8LlS5AfVf14su1uyUp6BREt+ZHWP7jfe7cge++N31FDB/0LNELMz+u8qCqm3q1w88P2rUj3m6+QiTFtWtQtUo0H31R13gvNEDXJkfxOX2H6/dKmB53inD9Opw+baBcOfWfLirahuGzGtGy1jmmL6xg3H7S9Lj9tvv2BTv12hvLl8Pz5yl7LmtXmgLfrl1Tdt//pdFqGPiJ6bPsp6W5E8kt3lZEBPTuDf37q6OSd+um3k8dn7Vr1enCQB3cTKuFUaNM62fMiNuQG5+oKLU315Ej6vO8edV9nzyptnLHp0ABGDpUHStgxQrInvA08SkvJhyeXoBHR+HBXnh8Mm6ei1PheG840B521VW7jG+vCKc/g4D16qjeAA/3mW+X1xPaXlbvE87tkQluUBeZmcWC7oULF/LBBx9QuXJlqlevnqRtFEVh7ty51KtXD3d3dz7++GP8YocaFUK8kfGf7Ke6pwMTJsChQxATY1qn1egZ+uEBynhY7l7G+FQsZJo64vLh0ymyz6C7QSxZobYS2WWLZsuWhH9Y2NjAmjWQy9H0YtRu8AY3UWYCvbq9MKYfPndm9Z669BlUkKJFYdsRtWW7iPNj3vsk8QFNcuTOwdZ/clL05Thrp06p9xjq9YluJkQckZFqUHHe29a47J3qpzn9rw9r/q1D2Sol4t2uQgX4dbkPw3scMC7bfaYagc/UG1ffb3wM93rl4myXJ4/a+gdqT6Bf5/qk2Lnoo/X8uVa9b9zGOoaOHZIQVb2ljwa54/Cyl/mqVWo3ZJHyAgLUQcpWrDAte/FCbcGOz6ujln/0kfq3dWtwfTmA87FjcPg1Q2Lo9WrAHttinjMn7NqlTjuWpJHDDXrQR6p/kxLhJ4diUEeovr8LLs9S77feVhH+zAF/V4bddWFvU/AaGXdb/7Vw61e4uxUeH1Wn6nqVtSMUbg/2Rc2XS5AtMhCLBd3R0dG0bNmSDz/8MMnbLFmyhJUrVzJx4kTWrVuHnZ0dffv2JTIy8vUbCyHiWLvgKFN+bmS2rGxZGDAANq56wOP7L5jzh2Xnpo1PxfKm9/SlizGJ5Ey6BdMuEBapRtn9OhylcCIzggCUKAHrfr5IEad7vNvwGJ6tXBPfIJP6+Mu6LJtxiPZ1T+BgF39f/6Ej82Jtax3vulcVKgTbt2P8wb9pE4zsLQOrvYknD57HGXApq5g2DS6+vC5XtkwM//55lp2nqlOtSYXENwRsbGHm8nrsXnuWQnlMTY4ajYEJ0xKez3bwAFPr8PyF9ik2Cv/hbd7cf6oOUtmy5hkcc1k+SMiRA3r1UtPh4fDrrxY/ZJZz8CBUr67eOw1gb68GwKDeR330qHn+K1dMeatWNfX20mph5Csx6IwZCR9TUdR7sdevV5/b2amft1Xiu1350THw/f1lC3Jf+Lcp/FUa1mZTH2usYLUWLv3ngBGPYEM+taV5czHYUhK2V4KdtdTRwQ92hKM94OQn6jzYr7o8Q91uXwvwGgX+qyHYRw3GX6WPp1fZf0cIt84FBVuBxyxocQreDYKGW6BQq4RfICHSOYsN0TdkyBAANm7cmKT8iqLw22+/MWDAAJq97B8za9Ys6tSpw549e2jTpk2C2+r1evTpvDkltnzpvZypLTgomCUzvShc1JoPBnumdXGSLT3X6/lD1+gzwnQP7ujBN/jfsJIUNzZqqz9A06Ls5auY5l68fM3+rcsQ+jyUeSvVc9VpYxg2rkSS9tnkXTf83gXIj4Jitk16rtuU1nNEHXqOUKcHO3kogD1HCvPvvxpOnoTKlaFfP0OSW6wrVlS7OrZrp0Gv1/L9ynqUKrGfTyfUt+xJJFFK1Ks+Ws+iKUdxcrai62e1U3Q8BMWgMLrvIb5b2RgAe3uF/PnVUYbz21+leL4HfDayGGUqp27vlNTi5QXTp2sBDVZWCmvWaqhcuXKS6uvVum38bmXOeT7hs15H2bi/FsN7HqR8zQYJ7qe8qzXNqp5hz9lq3HxQnK2/Hadtz7efrmbN76a+6u+/F51qnyf9+8OCBeq9NT8tiOazgRq0OgsE/Ho9OmNSb5GuLanyWawogGJs/fW5ouWP1VoUBfLn5+V7UH0v7t2rYfhwjXGwzpIlFTZsMHDokIahQ9W2rMGDFY4dMxhvb/rtNw2x7VzduxvQ602tzO+/D+PGabl9W8OOHXDunB53d+DZBTQPdsPTsxB0hhG/DGXptkEAWFtFs37yt9SxuYPhqitKmU/MTkd7rCeakPhnpHiVAQ3Kq69rTAS6yKQNhKkvN0ydy/oljXXeOC15itYacrqi5HIFm9ygs4PsJVBe+d2u1+uh6nxAARsnsMkDuv8M2qkg3aYykKz0+wmSfp7pZlz8O3fu8OjRI+rUqWNc5uDgQOXKlTl37lyiQfc1Sww3aiHe3t5pXYR0w9s7O+PHFiDgnvrj0sp+O2Wqpc60VSktvdXriych9P6ohLHlt2uTf3m3hyNPn3rxNB2Mq6MYFBzscvIiPCeXbhXAy8vrrfa3bVkAT0I6AtC5wUGeRjry1Ovx2xeU9Fe3lpY9L3To8JAOHdTRdLVauHnz9du9Kl8+mDrkNl/90AmAIVPrE234i3odir5xgHrzZjZOnXKgRYun5M799r0j3qZe//4tgK/ndQTA99ZmWvUqmvgGyfDXkgC+W9nR+DwsTIOvb+xUQOWB8qza/oTff91HvhKZ637dmGg9/+uWi5gY9Yd87973UZT7JPfj4dW6Hf2tLSOiTmNlk/O1nzPvvXeHPWerAfDz4hiKuCfzwP8REx3Dhj1qk2Y263BKeGje+rMuOWpVLcSJswW5ftOaVQv+wq3ha7r/vAFteDixDa0XLlzAEHtzvAXE1qttVAAaJRKtEoXGEKX+VaLQKtFolCg0SjTW+qc8dWhKlHUh4/aOL/ZT+t4o1AhOQUPc7tXhUdmYtnksM7ePISbm9Z1B61S/w/fjd5P9RRjNXDWUK9ONazdycfashkmT7tC582MMBvj1V1fAFq1WoVIlb7y8XvkMU/R81FnHN3PU/72xY58xZYofBR8vwerWRi4EuLPlzBAW7FIDbo3GwO8DutO60J9wA0KzVeRKiPkgJWUNefjvkHx6bXYirQuj12ZHo+gBA48eRvMkwsuYxyrmMeWtC6NRYgADGiUGrSECnRIe59yvex8l1N40cEeOMA0FstchwqYkYbZlCbd1IcK2BIrmlV5SBuAFvPqmNv8sfvDyITKDrPb76XXSTdD96JF6Zc3JybyLiZOTE48fJ/7juVy5ctjb21usbClBr9fj7e2Nm5sbuvhGdspCYmJg+nQNU6dq0OtNP8C9T9nzXl+PtCvYG0iP9RoTFUPbehfxe6i2hFUve5mlm2qTLXu212yZuioW8+HEVVf8HxWjbMlcZHeM/wbsg3+dJ+hhBB1610Cri/sjKDoymk7rTBdrxkwuhJtH2bcuX3qs24zEw8ODp0/2MmtFEwyKjs+ndcL19+sM+/Q+H35WHVt729fv5KW//zhNz35liYyyYf36ouzZY6BEiTcrV0L1umePOiJw+/avv01wVD9Td8kpC1vRoruBqtXjTqeWXJt/OcmUn9sbn3vWDOPZCzsCA+HJE1OhnoTkYfSIohw6UzDB901GNG3IQbx9awLgVvYBc+fmx8Ym/2u2Mnnb96xbJTfGfPOEJyF5OOlTnsruud6qF8OeP88aR1xvU8cLz/q133hfb+KLvifoelYdtX3Lpnz0GOqR8gcJDTUm3d3d336ELkWBUD80T05B0EmUvJ7oC3U0q1ftxmZoop+9dlcFy9WHIh6mBUGRaO4l3CK127sZA5Yv5GZgmSQVdUSbb5ne9SusXujVQBL4+X9naTTqFwAWLy7GsGFFuLzrL+7fVwPq5p43aV7kH9DaQNRTNEHHIegE5d1iWJznOUFPrNi1Kw9RUXm4eGEOgY8WxTnu4n6f0qX2n8bn9spDPDw8zPJo8gzFEH4fJXtJyF4cspcAm1z891O32MuHmepxZ/LQKwaICYWYEIh5ATGhlM1RBqwdXsnlAfQhx2teN+M+5Ts208pqdRsWFpakBuBkBd2zZ89myZIliebZsWMHpUuXTs5u35pOp8swlZqRymoJflcf81FfJ44ciftDZs9hZ6Zm0NcmPdXr6E8OsedsIwDyOT5i49ZcZM+Z/n6YVyzzlBNX1fT1c3eo1rRinDzn9l+h2buVMSg6+m4/xJLN9eL8CF710zECHqvzrrT1PIlH/ZopWs70VLcZzfSljbh95yhr/lV7MF30L0u/r8oyduZDPut+kk9HueJcNG+i+9i6/CTv9fcgKkYNav38NDRurGPfPnibr5rYelUMChMHHWXywrqA2jW+S5eEtwt9Hsqhi+7G51ExtnzYHc6eNd3T+SZO7r5MjyGVURT1wtL4T/YzaVEj03Gi4K7PDVq21nDtXmku+LnQ//2jrN7tmWrT/VmS95HrTF2s1oFOG8PyRU+xs3uznk9v+p7V6XTUrHiLf07m4XFwXm5fuU0ptzghSZKtX21qHezalVT/HOnUtwaFvr7PvScF+etIDe7dCKSoS6HXb5gcr5yTTqeLf7qI+MSEQcgtdQqokBvq3xc34Nl500jVAJGB6rRQvFKvOluITkLRIh+YlydHCcgTO7Cv5uXVNQ2BT/Pwxc9D+WNfC2NWa2uFkSM1NGigTvUVeGI1gX53CHyen6gYGz70XE2H6n/FOWbD2k/48ENYvRqCgjRMnKgj+qapsD0qT0B7/o8422XPBkM+Os+EedXQ6zX8+y+A+YVyjQZmz4b/fb4IomdB1BOIDEKjief/vWS3179AyaIDq1xArhTer3zHZmZZpW6Teo7JCrr79OlDp06dEs1TtOibdbNzdlavBgcFBZEvXz7j8qCgIMqXL5/QZiIDWT3vKJ+OrkRwuPoDUauF8eNh7dKb+ASU5tTVCjx7+Jxc+RzTuKQZ1+p5R5m9shEAVrpo/lxxj6Iu8c+tnNYqVjDAdjV96dwTqjWNm2ftigcYFPX9v3RrfXJ9fIBvf21gDDIMegOz5ptawkZ9lb5a87M6rU7Lqp21eW/JMb6fn52jl9VgNfBZPsb/mI9vfg6nf/9Ixk2wxTmeMa42/3KCLp9WIVqvBtx2tpGER9oSEAANG8LeXWGUq/jmvZwUg8LY/x1g+rJGxmUrVyYedO/fcpmoGPN7fW/ehP/9Tx0R/00G0/W7dId27zsTHqWey0ctDjPxJ/MBDm1soGTlMmzedJNajYJ5EZ6TtXvrUG3kfr6c3SievWYcMVEx9OkdbaznkR8fplqTRmlSltrVQvjn5YxGJ/bdeeOgOzoymo171cEZs9uG0KZ76n8OW9ta07/rVSYuLIhB0fHzd9eY8nMKB92JiQmD4CtqcF30XfM3h9douDb/9fsIimd6qeIfqi2uWls1AI/9q8sGWlsOnS1BvgI2uBT6z8B79oWg5SmzRTt3wgcDzEd4r1cPFi/WmE1tScea8NweXtyEsNtASdB8ARor0OhAawWKHhwr8e238NdfaieARYsU7KxbA+r/Qcdqm+Oej11ByFuXzyoHs3g93LunLnZyUsfUcHMDd3eoWxdcXAC0YJNLfeQo9frXUAiRPigWtmHDBqVatWqvzWcwGJS6desqS5cuNS578eKF4urqqmzbti3ebUJDQ5XTp08roaGhKVZeS4mJiVFOnz6txMTEpHVR0sTR7RdejlCiPkqWiFKOHFHXDf1wv3H5piXH07agyZSe6vXi0euKnU2o8bWcP25/WhcpUTtWnjSWddTH++LN41r8mtn/DSjK1MGmvH8tO2FcXreSV4qWLz3VbWZx7G9v5f3GRxWtJsasTnPkUJRJkxTlxQtT3j9/OqpY6aKMeT5sdkS5cztaqVTJtF3B3PcVn5M3zY4RERqhbFpyXOnS4pJSv76irFmjKHq9aX1svUZHRSsjeuyL8/9la2tejv8a1MX0efX9+AuKo6Np24ULk/+aPA18plQoesO4jwZu55SI0IhEt9n8y3Fjfq0mRtm1+nTyD5wGrl5VlD17FMXbW1EC70UqMVHqe2vG56Z6qFD0hhIeEv5G+0+J9+zfv58ylmXoh2/+Gfrq59sHTY+88X7e1t0b9xWdNloBRclu+0JZ+f3hlD1ASIjpDXBzh6L4fK8oRz5SlG0VFeUPraKsQn2EPzTfzmeOad2rj/VOirK3laKcn6Aod7YrSvjDZNXrggVqUaysFGXdusTzHjigKNmymYqfO7ei/PKL+efFm5o+XYnz2dLzvTuKEvCXovivVxTf1Yri/6eivLilKAaDcbuHDxXl4EFFuXfPbHGmJN+xmVdWq9ukxqMWC7rv3r2rXL58WZk/f77i4eGhXL58Wbl8+bISEhJizNOiRQtl165dxueLFy9WqlevruzZs0e5cuWKMmDAAKVJkyZKRET8P0Ak6M44vuxp+lHVtckR5fnj58Z121aYAqeB76XvQPG/0lO9vhoMfNz6gGLQp+9vbL/LAcbytqsT92KL781o43onh8dmP14WjFf/T+pUNF3M2bo8ZS/YpKe6zWx8LwYon3c/oNjbG8zqNV8+gzJ//GFl5feHjYECKEqPloeNAdrDh4riXuGZcV3+XIGK95FryoHNXkr/jgeU3NmfxPmxW7Wqouzcqf6IjYmJUU6dPKUM+cA84K5QOsiYXr8+4bKXKeir/qjXRSnPHz9XNm58JWC3iVTOHbhilj/Q/6Eyb+x+5Z3qp5TmDZ8qH32kKMOHK8qsWYqy4ucgpbHrYeP25QrfUoLuPUnSazj+E1P5c2d/oty84P/G9WFpkZGKMmBA3CBEq4lR8jk+NF5c0WpilGN/e7/xcVLiPRt0z/T/U6v8m5elV+tD6eZics9Wh8xe927NDyvPHj574/0ZDIri66sof/0ZpMzs/Ztxx+fGu8cfSK9CUR4eNd/JwyOKcqSHolyYpCi+qxTl0QlFiQiK93hJrdf79xXFwcF0njqdoqxeHX/e06fN87ZrpyiBgW/wYiQgIkJRypY1/39/5eeuUOQ7NjPLanWb5kH3qFGjlHLlysV5HD9u+vIpV66csmHDBuNzg8GgzJkzR6lTp47i6uqq9OrVS7l161aCx5CgO+N4p7qp9eDujftm64KDgo0/usoVTri+06P0VK8tmptaBQNvJ+2He1rSx+iV7LYvFFCU0gX84qyPbbEARZk6KVyZNdw8SBr6sY8xXan4DUUfkwLNE69IT3WbWd27pyiffqr+OP5vQBb76N3mkDHgjvX4bpBSpfRlYx6NRp/g9q8+mtR9rBz9+4LSp+3fZssXTzmo/POP6XmPjtfiLe/1c37GPA3dzxmXD/7kqXF52UK3lHs3Hyi/f39YaVnzpNnFg8QeeXM+Um54xX0fJEQfo1fa1TG1eLuVuKqEPEt/34X3bwUq9SpfTdJrMPyjfW91rJR6z5YtdEsBRbGxinhtr4P4REQoimOOMAUUJafdszduuU8pL568UHq0NA+8izsHKIe3XUryPvQxeuXnRTFKvXqKkjOnaT/2mFq6SzleVwJ/claD7NXWirKjiqIc+1hRLn6jKC98E91/TIyiTJ2qKEOHKkpY2H/XJa1ee/WK58KOVlFWrjTP5+OjKHnzmvK0aqVeGEpp27e/0iunoHqOwkS+YzOvrFa3aR50pwYJujMGg96gOOd8aPxhGV8LbD1XL+OXk7/PnTQo5ZtJT/Vavrz6+tnZZZxuadXdg14GTYY4P7RatTL9YDl3Tl32VZ998f5Y/21FygbcipK+6jazu3ZNUbq8Hzc47d/xQIIXU548eKpUL3spzjb2tiFK93cOKztWnlS2b41WPDwSDvI0Gr2ybOYhRVEUJTJCr+S0f25sOY6KiIpzzAXjDxi3/WboPuPyiNAIpVo8ZUnqw9Y6XDmy7UKyX7dnD58pLoVvGvdTqJBBGT5cUc6eTR+fASd2XlQK57lnOk9bg/LZZ4rSu7eitG54S6le9qJSNO8dxc4mVGle7bQS+vztvstT6j37aoB64sDjZG//arDVo+uztypLSvpj7hHF0d7US0SrNSjjxytKdHTi250/dFWpXf5CvP+7rwbd9oQo79QLUPSPzihKTPIuVsycadrnyJHm65JSr0ePmrbPlcs8ANdoFGXZMjWfr6+iFC5sWle/vqJY8ifkyJGKUqjQ67u6Z0XyHZt5ZbW6laA7nclq/4CvunfzgfELrlnV+O89nDRwrzHP0ukHU7mEby691KvBoAbboAbfGcWrP4zOnjUtDwlR760F9QdSbABh0BuUAe8eMPvRV6yYokTFjY/eWnqp26zk1J7LSvNqpxVb63Dly577Xtt74dnDZ0qzqqcVK12U0qrmSWXVnMNKyLMQszx6vaL88YeilCr6zOz/RquJiXN/6wdNTV29//3zrPJf7ZreNv2/7jfvRn7zgr+S0+5ZnKCkmHOA8lWfvYr3kavKkyCD4uOjKPv3K8ratYoy7xs/ZdLAfcqJnRff7AVTFMXn5E3FIUfcCxYVywQp04bsU3wvBrzxvt/GshkHFRurCGN5Cue5p5w88MCix0yp9+yCuZHGcs+bl/ztX+1Kv2nTWxUlxfldDjC7yA2KUqSIonz5paJ4HfYzuyge8ixE+bLnvji9NYoVU5S2bRXlq68UZd0iX7OgGxRl2rTklcnHx/R5D+q91a/+rHtdvcbEKEq1aqbt589XvzM++8z8PTFzpqKUKWN6XqWKojxLP9dEshz5js28slrdStCdzmS1f8BXvTqgzIge++LNc2Sb6Sr6h22vpm4B30J6qdeHD00/JFq0SNOiJMurrRu//25a/te6QFNrZ3/zbfQxeqXbhzFv9aM4KdJL3WZFyblVwKA3JCl/ZFik8uP4/UrB3PcVB7vnyqq5cQeUWjPfFHQP7rrfbF1EhKJkz66uy58vJt5j/rXshGJvG6Lkzv5E6d/xgHJwi1eK3/YQn7NnFaV9e0Wxto6/JX3AuwfeuhU5qfQxerPxJUBR6rueUx74Pnz9xm8ppd6zp06Zyt69e/K2NRgUpWhRdVsbm8QH5UsrMVExypTJhnhv66hU7JryzdB9ypr5R5TizgFm68oXuaHs/+s/38+vDKSW/WXQrdWqg5QlqSwxiuLpGbccixe/mifxev35Z9N2bm6mlnuDQVGGDYv/PeHion5virQj37GZV1ar26TGo9q0Hj1dZH5ep0ONaY8q1vHmqdGsPA4OegD2nCiHwZAqRcs0/H3uGdPFCz1Pw5Ikz6tTsly+bEpv++OKMd22yR2zbbQ6Lb+u0DF7Nnz7LXz2maVLKVKbVpf0ryaNVpOk/DZ2Ngyc1JDbgXnZuesSXT+rHSdPqw9csdZFAbBlb2kUg2Jcd+SIOgUQQIuWuniP2a53TZ48seLR05ws3tSA+u0rJ+tc3lSVKrBlC9y/DwsXQr3aoWbrF25oQHXX+3gdvGrxsvz67REWrGtofP7Z+wfYc7Ii+UvEMydcOuXuDra2avr48eRt633mOQEBarpxY8iRI2XLlhJ01jrGfa3h6FFo2xasXpk89tLtsoyZ24gPBtfB/1ERAGytI5j82T68rhahYbtyCe53zBj1r8EAH34Ijx69vizz5sGxY2o6f37z5YoS/zavevIEvvrK9Hz+fNP5aDTw/ffw5Zfm2xQrBrt3E+80hUIIYSkSdAuL8/K2NaY9auePN4+1rTWNG6uTyz96BN7eqVK0TMP/sr8xXSzHuTQsSfJULK83pi+f9AVAMShsP1gWUH/sNWmZJ8521tYwfDiMGKHO9y5EUmm0GmzsbOJdlzOvI02qXgDg9qMiZkHqP/+Y8rVokfD+be1t0VnrUqSsyeXkBJ9+CoeOZcf34h0mDdyPnU0YAD4BpanZpCTfjdyPQR/3qmbw0yi2Lj/JpiXHCQsOe6PjKwaFuT/nMz7/eepBFqxrmODrnV7Z2EDVqmr65k14/DA6ydtu/930+dum0e2ULlqKqlkTtm5VL9b8NPUMdSpeiJOnSZWzXDh+n68XNMbW3jaevZiMGgVNmqjpe/egZ08SvYB+4waMHaumNRr48091LmqAS5dg797Xn8P48RAUpKY/+AAaNjRfr9HAzJnw9dfqd0VswF206Ov3LYQQKUl+rgqLO3+tAKAGUC7VSiSYr1kzU3r3bgsXKpPx9400pouXjL83QXpUoqTGGBRc9lGbNc4fvsbdJwUBaFLFm+yO9mlWPpH1dGxrCjg3r3lgTP+zQ20B12igefNUL1aylahUhPE/NuLs4QdUKe0DQLTehhHfNqJlrXPcvhrIoUMwYYIa6ORxtqZ9n5p07l+bMiWCWTzlINGRSQ82AY7u8OaCrwsAtcpf5H9jG6T4eaWW2pVuGNMn//FK8nbbdpsuErZpk5Ilspy8eWHA2GocueTOzQu3mTJoP+3qnGDl90fYc7oK5aqWTNJ+dDpYtQryvbzu8s8/MGtW/HkNBujbF8LD1eeDBkH9+jBkiCnPvHmJH+/8ebVnB4C9vdrzKT4aDUyeDHfvwvXrUC7hxnohhLAYCbqFRYWGwrW7JQBwqxiJlY1VgnlfDbr37Jb+5clx+5UGleKlHdKuIMmk1WmpUExtpb9xrzgRoRFs+/O+cX2bluFpVTSRRbXvbvpFvmWXesHw3s0HeF9SW2uruz7IUN1Sy9coxbELpfiy537jst1nqlG8fH4aNFCDkaNHQa/XGNfff1qAT8c3oFKpO6z78Wi8LePx+WneC2P6s/89S6lTSBO1Kj80pk8cDU0kp8njO0Ec96kEQIWiNynlVswiZbOkUm7FGDe/EX8dqcVHn9dFo9W8fqNXFCigBt6al5uNG6e2Rl+/bp7vp5/g4EE1XbIkTJ+upjt1giJqr3a2blV7GsRHUWDwYFNL+rhxpu0SK5tNxup0IYTIRCToFhbl7Q2Kon77Vq7umGje8uWhcP4QAA7ujyAyLDLR/MLE/042Y7p4ubxpWJLkq1ha7RtoUHRcO3eb7XucjOvadC2VVsUSWVSh0gWo6XIRgPO+5fG9GMDODaZWz5aeVxLaNN2ytbdl1opG7Fl3lkJ57sebp0IFGPzxTTrVO2Rcdv1eSboOqkPNClf498+ziR7jYaDCn/tqAeDkEMT7n1RPsfKnhVqNTQHz8TNJu5D5z59XMCjqrQVtGwdYpFwZQbNmahAMoNfDlClq63LNmmrr9YkTMHq0Kf/SpZA9u5q2toaBA9W0osCPP8Z/jO++g0Mv/1XLlIEvvrDMuQghREqRoFtYlJeXKe3hkXhejQaaVVM3CI+y5+jflxPfQBj531cvaOi0MRQqle81udOXiuVjjOkD/9znxFW1pci1+HVKVHxN04UQFtCx5WNjesuqW/yz03SPdot2TvFtkiE0fb8qF7xt6f7OEUoV8Kd71xB+/RUCAtSBDOctL83GQ/U59vdFGrp7Gbc7c70izbpU5bfZhxPc9y9LNUTHqD2Z+vYIJlv2bAnmzQiKVyhMPkd1JLCTPqWT1Nq/fbupVbhtp1yWKlqGMGEC9O5tavEGOHUKhg6F2rVNgxJ++qk64Nyr/vc/yPby32fpUnjxwnz9smXmg6PNnWsa+E4IIdIrCbqFRSUn6AZo1sz0Db3n74wzCnda8w9UB6gr4vQg0S786VFFNztjes4vJYidVKFN47tpVSSRxXXsZhplacP+auw+UR4AR/vn1HqnQloVK0U4FcrD7zvrcvN+cX5fk4NeveJ2y63d0pV95yqzY+UpKpc0DSY3eLwbd67HbSnX62HRIjWt0cCnI5J2D3B6ptFqqO16C4Bnobm47uWXaP6YqGj+Oa5Ox5Ar+zPqtK5k6SKmazqdGhwHBMDs2fF//xcrFv8933nzQvfuajo4GFauNP0uWL9eDcpjTZoErVunbNmFEMISJOgWFuV1xDSqtrv76/M361jWmN59KAPdOJmGQp6+4EmIOnhP8QKPX5M7/alUrYAxfSuwuDHdtnPcUcuFSA3la5Q2DrZ0+HgOnobmBqB5zcsZ7qLWm9JoNbT6qAZnr5floxZqC3dwuCOf9I+JM5XT9u0Yp8lq3Vq9RzczqFXNNKjeiX33EskJR3dc4lloLgBa1r6MlU3GGdDSkgoXVmeaOHdOHZF8zBgoVcp077dDAj33Xx1QbcECDQYD7NoF3bqZ7uMeNkwdlVwIITICCbqFxeij9XhfV+8vLl3An5w5X79NgZL5cC2ujrhy+noFngY+s2AJMwf/K4HGdPHCIWlYkjdTslIRbK0jzJblzv6U2i0qJrCFEJal0UCHDnGXt3wnJu7CTE6r0zL3V1cK5FHHXtixvygrV5rn+fGHJ8Z07P24mUGteqZxSE6c0CeSE7ZtemZMt2mThAmms6CKFWHaNHVwtPv3oV69hPO6u0OjRmr62jUNS5YU5L33tES/HFD/44/V+7o1yRvnTQgh0owE3cJiblzwJyxSHR3FwyXxVoJXNauj5lUULfu2ZLxBi1Kb//WnxnSxIhkvKNBZ6yhfxN9sWas6WadFUaRPHTvGXdbivTKpXo70IE+BXCxaZrqXfehQNWgCuH7Oj1371V4pJYsE07JlWpTQMmo0KYNGozarHvdKfKyM7fvUPvpajZ6W75e3eNmygldbu5csKURYmBphd+4MS5ao824LIURGIR9ZwmK8jpnmuPVwi0gkp7nmLU3zMu/eGZWiZcqM/O/lMKaLl8iYgWrsCOax2nwoP1pF2qpVC/LnNw2eVanYNYqULZiGJUpbHTrAhx+q6WfPYMAAdXTpRd/5GfMM6Ho2UwVCOZ1yUrGoOmfVBd8yhL+IfwpD3+thXA5QL8jUrnCJvEUy7mB76Un79lC8uPmy5s3hjz/AKmN+1QkhsrBM9PUo0huvs6aAuXLV7EnerkG7Cljp1D5ku48WRTFIV73E+D8zDexUvEYi/fXSsYoVTF03tVqFlh3kR6tIWzodtK+5z/g8I04VltLmzYN8Lxt8t2yB5bOOsGyzBwC21hH0HuaWdoWzkFru6sXjGL01Zw/eijfP9p2mC8Vt381Ys0ekZzodDBpkel6rlsLGjTJSuRAiY5KgW1iM1yVToO1RJ+lTP+XInQPPCup0YTcflKRmlSesXo3xXi5h7vZtU/q/rQIZRaXG9Y3pOnU05JEx1EQ60Pez/Gg1enTaGD4a6JLWxUlzefPCj3NNrb39vvI0Dh72QfPTmbKFt1bjwsZ07HSG/7Vtmynd9v0C8eYRb2bwYPj0UwMdOz5i2zYDOXK8fhshhEiPJOgWFuN1rRgAeXI8SXa3zPc7PDOmT19wols3KF1anXrk2bMEN8uS/F+5HbpYsbQrx9uoVw/jj6nevdO2LELEqtXClcun/Lly5i4eDSToBnjvAzvea3QMwDi9H8DAobnTqkgWVatpKWP6+PG460NCYN/LDhFFi4KrayoVLIuwtYUFCxTGjbtN7sz5LyaEyCIk6BYWEej3iAfP1LmjPcr6odEmb4jRQZMbsGrOEapUNN3rGxAAX34JRQtHMH3Yful2/lJs0J0vH9jZJZ43vXJ2hgsXYP9+CbpF+uJSrRRlPDJoFxIL+XFFGZwcTJ/N1cpepkazzDnbQKVKYP+y9/iJE3HX/7srgqiXd1K1bSujaQshhIifBN3CIs4fM/V59qgYnOztNVoN3YbW5cxFJ/btg3btTOtCwrIxZm4jls86nAIlzdiiwqO4d08d7Kl4vrtpXJq3U7IkNGwoP1qFSO/yFXNmwbSrxufDBz1L9oXVjMLKCmrUUNO3b8ODB+brt604aUy3af4s9QomhBAiQ5HxH4VFeJ1+YUx7VHnzfzONRp2rs1EjuHoVvpt4nSVrygIwaEI1aja4gWudrDmND8CdGw9QFLVPefG8t4HCiW8ghBAp4IPBdXAucJbwsBja9qqT1sWxqFrVQjlwQB2jZPn0vZQqm43A+9EEBips2qcOHmdnE0aTZjLClxBCiPhJ0C0swsvX1NXQo3bKDCzj4gI/ry6LNvIAizc1JDzKni4faDjlHUp2x6SPjp6Z+F8LAtSgu1hhmV5NCJF6mr5fNa2LkCpquXgDtQEYM69JvHmaVL2InUPNVCyVEEKIjES6lwuL8LqiTptiYwPla6ZsS/QPK2pSuaQ6fY9PQGk+63YuRfefkfjfDDWmM+rI5UIIkZ7Vfac0NlaRCa63tY5g6FBdKpZICCFERiMt3SLFhYWpXcFBHYTG2jpl92/nYMe69TZUq/uCkAgHVuyoR6NZh/l4ZMaco/pt+PvFGNPFS2VLw5IIIUTmlL+EM38uPsFfm6PI5agnf37IX8CK/IWykb+IAyUrFMDRuVpaF1MIIUQ6ZrGge+HChRw4cAAfHx+sra05ffr0a7cZPXo0mzZtMltWr149li5daqliCgu4eBEM6theeHhY5hjlqpZi8fQjdP+8LgCfja9CzYY3qFgra93ffTvA1LpSvGyutCuIEEJkYu371KJ9n7QuhRBCiIzKYkF3dHQ0LVu2xMPDg/Xr1yd5u/r16zN9+nTjcxsbG0sUT1jQ+ZNPgDyA5YJugG7D6rJ//0GWbGlAWGR23u8CJy+Ekd3R3nIHTWf875ruZS/ukj8NSyKEEEIIIYSIj8WC7iFDhgCwcePGZG1nY2ODs7NzsrbR6/Xo9fpkbZPaYsuX3suZEs7t9wYaAuBW4hp6fWmLHev7X6tyvMo1vP3Kcfl2GYYMuMvPK1NvBNm0rlf/B+rFDQe7YBzy5MgS/1+pJa3rVliG1GvmJXWbBvR6dMakHizw2ku9Zk5Sr5lXVqvbpJ5nurun++TJk3h6epIzZ05q167NsGHDyJ07d6LbXLt2LZVK9/a8vb3TuggWd/ZiTmPaKkcgXl4vEsn99qZ+E0S3PkUIjbBn2erCtO/qTZEiqTuSd1rUq0Fv4PYjdwCK5b3P+QshqV6GrCArvGezIqnXzEvqNvVow8Op8jJ94cIFDHZ2FjuW1GvmJPWaeUndmktXQXf9+vVp3rw5RYoUISAggO+//57//e9/rF27Fp0u4ZFBy5Urh719+u5SrNfr8fb2xs3NLdFzyegMegMX/dRRXkvmv02dhpafv9XDA0bfhK+/Vp+fPVuJtm0Vix8X0rZe7/sGEhWjtuqXKPwcDw8ZyCclZZX3bFYj9Zp5Sd2mgVDTDBru7u6QPeWn75R6zZykXjOvrFa3YWFhSWoATlbQPXv2bJYsWZJonh07dlC69Jt1J27Tpo0x7eLigouLC82aNTO2fidEp9NlmEpND2U16A08uf+UvEWcUnzfty4EEBpZAgCPcvfQ6Yql+DHi07s3TJigDuC2cqWWCRNAm4oT4qVFvd554GhMFyuTK83/rzKr9PCeFSlP6jXzkrpNRa+8zjqdzux5yh9K6jUzknrNvLJK3Sb1HJMVdPfp04dOnTolmqdo0aLJ2eVr95U7d278/f0TDbpF0t3yvs17nUI5d7MCzaqeYca39lRrUiFF9q0YFGaMDwBKAFDZNTxF9psUhQtD8+awcyf4+sKh/eE0bGK5bm7pgdkgaq7l0rAkQgghhBBCiIQkK+jOkycPefLksVRZ4njw4AHPnj1L9sBqIn6715yha79SPA1VW5/3nK1G9abQpclRpnxbkHJVS5rlVwwKl0/cZM/Wu4SEKAwc60Hu/LkS3P/0zw+wbFsjAGytI+jau7ilTiVevbqHs3OnGmiv+P40DZvUTzCv78UAVi2+SfdPSlPSNeUuFKUmf39TunjqvtRCCCGEEEKIJLJYB9x79+7h4+PDvXv30Ov1+Pj44OPjQ+gr9/+0bNmS3bt3AxAaGsrMmTPx8vLizp07HDt2jIEDB1K8eHHq1084eBKvpxgUZn+5n5bdPHgaqg5Kp9PGGNev21uHijWK8mnfF1y4ACtXQs/OvhTOG4hrnTIMm96QcfMbUcPjOZeOXY/3GKvnHWXsvEbG57/9cJbyNUpZ9Lz+q2NHyGn3HIB1e6oQ8jT+gcXCX4TTuImGrxc0onFrZ8JTr0E+Rd2+bUpL0C2EEEIIIUT6ZLGge968eXTs2JH58+cTFhZGx44d6dixIxcvXjTm8fX15cULdWRrnU7HtWvXGDBgAC1btmTs2LFUqlSJVatWyVzdbyEsDLq38+HL2Y0wKOo9B209T3Lf7xnzxx0gn+MjAPQGKxYvc6ByZejZE1ZuKsn9pwXM9nXzQXFqNS7IxsXHzJYf3nqBj4ebBvGaPmw/XT6z/ABq/2XnYMcHLc4DEBqZg41LveLN98O4E/g/KgKAf0A25sxJpQKmMP8bz4xpCbqFEEIIIYRInyw2evmMGTOYMWNGonmuXr1qTGfLlo2lS5daqjhZkp8fdOoEXl4Vjcu+7r+fiT81QKvTMmhKQ3p9/oIfvt7P7JX1efHCfCCA7NlCaFjZhyYNQlm1MT/nblYgNDIH737qydjT+5n0U31u+eno2LsSUTHqtv3aH2TUdw1T8zTN9OqXm583q+lfV2Wn5wjz9YF+j5j+s/ko39OnQ58+kD9/6pQxpfhffQjkwsYqkgL5rbHgNTQhhBBCCCHEG5Jf6ZmUnx/UqwdeXurzHNn1bFpynMmLG6HVmardIY8D439sxM2bOkaNgjZtYNw4OHAAnjy1Y/vxGgyf1Ygj50rwUYvDxu2m/dKI9vXP0qa1nqAgNeBuXvsGP63zRKPVpOKZmvNs5UrZQr4A7POqgr/PHbP14z/3ISTCAQDHHGEAvHihjnye0fgHqlcJiuZ9YFanQgghhBBCiPRDfqmnkuvX4enT1JkW/YFfEM2bK9y9qz4vWxZOnNTRsV/tBLdxdoYZM2DbNpgyBRo0AJtsppZvOwc7fttRl+9H7TfeD77jRA2u31DzuLrCn/+UwdrW2nInlgQarYaP3/MzPv/txxvG9MWj1/llS10AHOyCObw/HAc1/mbJEn2C96unR88ePic4XJ0yrHjBoDQujRBCCCGEECIhEnSngr/+ggoVdHzYpQx+l++8foO38DTwGe80DuLGDbW1uXx5OHIEKlZ8zYZJoNFq+HxGI3auuYCTwxPj8gIFYPt2cHRMZONU1GNgOTQaAwArNpREMSgAjBj23Hhf+5hPzuJazYmvBl4GwGDQMWLYszQp75vwv/rAmC5WKDSRnEIIIYQQQoi0JEF3Krjn9wyAx0+zM3LQPYsdJ/R5KG0aB+Dtp87ZXCz/I3btUluxU1LT96ty2suBVq2galXYsQOKFUvZY7yNoi6FaVrlHKAO/nZkuzf/rDrNzlPVASjufIdhU9VW/2FjS1LMWb0Q8s/JGuz843TaFDqZ/K8/N6aLF9WnYUmEEEIIIYQQiZGgOxV0664lf66HAGw86MmedWdT/BiRYZF0anqFYz5uAORzfMSev0MpaqEpqEuUsmbHDjhzBqpUscwx3sbHH5nmAftlUTAjxpia4aePu0227NkAtdv89LGmCa+Hf+VITJRpOrX0yv9WhDFdvIQukZxCCCGEEEKItCRBdyrI6ZST6V+ZRmofMiIn0RFRKbb/mKgYurU6x+4z6qjcjvbP2bX1CWWrlEixY2Q0nfpWwcEuGIAVO+px6XZZAGqVv8gHgzzN8n4wyJOaLupUdpdul2XZrKOpW9g34H9bMaaLl86RhiURQgghhBBCJEaC7lTy0bDa1CinziHtE1CG+RMSDuweBTzm+1H7ObPXJ0n7HvHxETYeVLtL29uGsmOdP5Xru7x9oTMw+5zZ6dIpLM7y72crcUZX1+q0fD/b1EX769kVePHkhcXL+DZu3zHNXV+8bJ40LIkQQgghhBAiMRJ0pxKtTsuXI+8ZB/iaOL8q928Fxsl35dQtalSLYPisRjRuW5hHAY8T3W/A1XssWKuOyG2ti2LjMh/qtHFP+RPIgD4eUMDs+fvtH1GnjVu8eeu2rcy7DY8B8PC5MzNHnbF4+d6G/z112HWNxkDRcgXTuDRCCCGEEEKIhEjQnYpKeeSjX3t1rusX4TkZPch8iqqj272p2yQX/o+KGPMsmHYx0X3O/+YaeoM6FdmoPkdp0a26BUqeMdWtC2XKqGkbG5jxQ+Ijys2cWwhrndrt/6fVlYkIjUg0f1qKnaO7YO5AbOxsXpNbCCGEEEIIkVYk6E5lU+aVJ3f2pwD89nc9jm73BmDL0hM07VSGJyHmXYXn/16ZkKch8e7rxZMX/LxeHcXM1jqCQWMqWbDkGY9GA6tXw7vvwp9/QqlSiecvXbk4XZqeAuBpaG42L0v5Ae9SQkQEBD5TLyAUL5MrbQsjhBBCCCGESJQE3aksb2Enpgy/YHw+eJgVP/1ooHP/GkRE2wHQtMpZ3mukdnV+GpqbJTPjn8Zq6S8Gnoepo3J/1PIU+Uuk8NxgmUD16rB+PbRvn7T8ffvbG9NL/yxnoVK9ndu3TeliJe3SriBCCCGEEEKI15KgOw18MrYusYFq5AABAABJREFU7iXV0czP3qjAZ4O0GAxqVXR/5wg7jrgyaYYpgP7+l3JEhZuPdh4TA3N+Mk2D9fnXZVKh5Jlfw46VKVVCfa33HMqLn1/alic+/qYZzihePO3KIYQQQgghhHg9CbrTgJWNFfPn6OMsH/mlgd92eGJjZ0PFWmVoX/cEAHeCCvHHHwazvBs3moKvli2hUg0ZTCslaHVa+vQz3SO9fHkaFiYBNy4FGdMSdAshhBBCCJG+SdCdRhq0r0j37mpao4G5c2HmLC1analKRk8uYUzPnJ0Nw8u4W1Hgu+9M+xo+PBUKnIV8/DFoX1bD8uWgj3t9JE1EhEYyccB+hn1pmpe7RMEnaVgiIYQQQgghxOtI0J2GliyBefPg4EEYMiTues8m+alfX01fuQJbt6rpo/9c4eRJNe3uDk2bpk55s4rChdXeAwABAbBn060U2/fKlTBrFkRGJm+7fRu8qOxyj0mLGhEVYwtA+SI3qd/QOsXKJoQQQgghhEh5EnSnITs7GDwY6tVLOM/o0ab0jBkvW7mnPzMuGz4gAI3GcmXMqvp2u29ML/0p7nzqb2LnTujZE0aNiv8iS3we3wni4zaHafKeB9fulgTAShfN6N77OXOpIA55HFKkbEIIIYQQQgjLkKA7nWvVCtzc1PTx47B81hE2H64JQMHcD/igV/40LF3m1fbdvDjnfAzA5oPVeHwn6DVbvN4PP5jSP/8M//6beP4Lh69RsZKBFTtMV2U8K3hz9oAv05c1wj6nfSJbCyGEEEIIIdIDCbrTOY0GRg28aXzef0wtFEWttsE9r2BjZ5PQpuIt2GSzpmeHSwBE6234/ceLb7W/K6dusnOn+bJ+3e8nOAd70L0ndHjXjkfB6ij2jvbPWTT5IIe9K+FWN31OZSaEEEIIIYSIS4LuDKBrn+KUyBcAgN5gBYC9bSifjKqclsXK9PoOKmJML11dCMWgvPG+5s+6Y0znsAsFwC+wIF99eiZO3phoAx+088XvYVEAqpe9zJWLkXzydQOzgfaEEEIIIYQQ6Z/8gs8ArGysGN7ffDCvPh1Ok6dg7jQqUdZQoWZpPCt4A3DRvyyn9lx+o/08e/icFVurAZDdNoT9225jZxMGwIJ1DTm45bxZ/q/GaNlzVs2fz/ERm7bnpkDJfG96GkIIIYQQQog0JEF3BtHnyxrkfXmPsUZjYNiYEmlboCyib49nxvTShW92X/ey784RGqlO89Wr3RmqNanAN1+cMq7v82kuwoLVIPyPP2D2bHW5lZWB9SsfUKSszMEuhBBCCCFERiVBdwZhn9Oe3370pXLJq/ww+hClKxdP6yJlCV0+8SC7rXrf9eqdHoQ+D03W9vpoPQtWlDI+HzxS7TI+eHI96lS8AMDNB8UZN+AkXl7Qr59p27lztdRv5/Z2JyCEEEIIIYRIUxYLuu/cucOYMWNo0qQJ7u7uNGvWjHnz5hEVFZXodpGRkUyaNIlatWpRpUoVBg8ezOPHjy1VzAyl1Uc18LrlwtBvGqZ1UbIMhzwOdG1+DoAX4TlZ//O5ZG2/7bfT+AYWA6BFjdOUr6EG4DprHctW5MDWOgKAOasb0Kp5MOHh6nZ9+sCAASl0EkIIIYQQQog0Y7Gg+9atWyiKwuTJk9m+fTtfffUVa9as4YdX502KxzfffMO+ffuYM2cOK1eu5OHDhwwaNMhSxRTitfp+msuY/mZuUcLDkj6g2rwfrY3pIYPN17lUL8XkwccBUBQtDx7nBKBWLYUff0TmXxdCCCGEECITsLLUjhs0aECDBg2Mz4sWLYqvry+rV69m1KhR8W7z4sULNmzYwOzZs/H09ATUILx169Z4eXnh4eER73Z6vR69Xp/i55CSYsuX3ssp4qr5TgU8K3hzzMeNa3eL8/V4AzNnGoDE69X76HX2nqsKQNlCvjTvWjlOvqFTPVm/7RKnrlUCoECuQNatVLC2dkb+VdKWvGczJ6nXzEvqNg3o9eiMST2W+OKSes2cpF4zr6xWt0k9T4sF3fF58eIFjo6OCa6/ePEi0dHR1KlTx7isdOnSFCpUKNGg+9q1ayldVIvx9vZO6yKINzB8vIEPexqIjtbyww8a3Nyu4uoaZlwfX73OnRYElAege6fzXPB+Eu++x014zP8GOhMdY83335ziUXBBHnndtch5iOST92zmJPWaeUndph5teDhVXqYvXLiAwc7OYseSes2cpF4zL6lbc6kWdPv7+/P7778n2MoN8PjxY6ytrcmZM6fZcicnJx49epTgduXKlcPe3j7FymoJer0eb29v3Nzc0Ol0r99ApCseHjDhJowbBwaDhlmzynPqlAErq/jrNeixwvr9MQA42AUzdEIjHPI4JLjvW20jMOgN2OdslQpnI5JC3rOZk9Rr5iV1mwZCTYOLuru7Q/bsKX4IqdfMSeo188pqdRsWFpakBuBkB92zZ89myZIliebZsWMHpUuXNj4PDAykX79+tGzZki5duiT3kK+l0+kyTKVmpLIKc6NGwaZNcOYMXL6sYdqo60yeUxaIW6/Lf4XwSPXt1afrXXI5V0h039lzpvwPFZEy5D2bOUm9Zl5St6nolddZp9OZPU/5Q0m9ZkZSr5lXVqnbpJ5jsoPuPn360KlTp0TzFC1a1JgODAykZ8+eVKlShSlTpiS6Xd68eYmOjiY4ONistTsoKAhnZ+fkFlWIFGVlBcuXQ7VqajfzmT+VoWNHH7S5zPOdPw/z56tpjQYGjU084BZCCCGEEEJkXskevTxPnjyULl060YeNjQ1gCrgrVarE9OnT0WoTP5yrqyvW1tYcO3bMuOzWrVvcu3cvwfu5hUhNbm4w7n8HANAbrOjXz5qYKLUbue/FAD5qcYQqVRTuvrwlu00bKFMmrUorhBBCCCGESGsWmzIsMDCQHj16ULBgQUaNGsWTJ0949OiR2b3ZgYGBtGzZkgsXLgDg4ODAu+++y4wZMzh+/DgXL15kzJgxVKlSRYJukW589V1dKpe8AsAFPxeWfxvEsG6HcPHIz6pddVEUda6v4sXhNTPkCSGEEEIIITI5iw2kduTIEfz9/fH39zebOgzg6tWrAERHR+Pr60t4eLhx3ZgxY9BqtQwZMoSoqCjq1avHhAkTLFVMIZLNOpsNy5cp1Ggag95gxeJNrc3WOzkEMfZrOwYMtidbtjQqpBBCCCGEECJdsFjQ3blzZzp37pxoniJFihgD8Fi2trZMmDBBAm2RrlVpVIHRffYz7ZdGxmX2tqF80fMUI6ZVwdE5fY+mL4QQQgghhEgdFuteLkRm9/VcT1rXOomDXTAD3j3ATZ9QpvzcCEfnhOeiF0IIIYQQQmQtqTZPtxCZja29LVsOVcXLy4sqVetliWkRhBBCCCGEEMkjLd1CvAWNVoNGq0nrYgghhBBCCCHSKQm6hRBCCCGEEEIIC5GgWwghhBBCCCGEsJAMfU+3wWAAMJtyLL3S6/UAhIWFyb2/mYjUa+YldZs5Sb1mXlK3aSAiAlxcTGlNyt9uJfWaOUm9Zl5ZrW5j49DYuDQhGkVRlNQokCUEBQXh5+eX1sUQQgghhBBCCJFFlShRAicnpwTXZ+igOyYmhufPn2Nra4tWKz3lhRBCCCGEEEKkDoPBQGRkJI6OjlhZJdyJPEMH3UIIIYQQQgghRHomzcNCCCGEEEIIIYSFSNAthBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3alg1apVNGnSBDc3N95//30uXLiQ1kUSybR48WLeffddqlSpgqenJwMHDuTWrVtmeSIjI5k0aRK1atWiSpUqDB48mMePH6dRicWb+Pnnn3FxcWHatGnGZVKvGVNgYCAjRoygVq1auLu7065dO7y9vY3rFUVh7ty51KtXD3d3dz7++GOZgjID0Ov1zJkzhyZNmuDu7k6zZs348ccfeXVMWKnb9O/UqVN8+umn1KtXDxcXF/bs2WO2Pil1+OzZM4YPH07VqlWpXr06Y8aMITQ0NBXPQsQnsbqNjo7m22+/pV27dnh4eFCvXj1GjhxJYGCg2T6kbtOf171nXzV+/HhcXFz49ddfzZZn9XqVoNvCduzYwfTp0/nss8/YtGkT5cuXp2/fvgQFBaV10UQynDx5ku7du7Nu3TqWL19OTEwMffv2JSwszJjnm2++Yd++fcyZM4eVK1fy8OFDBg0alIalFslx4cIF1qxZg4uLi9lyqdeM5/nz53z44YdYW1uzZMkStm/fzqhRo3B0dDTmWbJkCStXrmTixImsW7cOOzs7+vbtS2RkZBqWXLzOkiVLWL16NePHj2fHjh2MGDGCX375hZUrV5rlkbpN38LCwnBxcWHChAnxrk9KHY4YMYIbN26wfPlyFi1axOnTpxk/fnxqnYJIQGJ1GxERweXLlxkwYAAbN25kwYIF+Pr6MmDAALN8Urfpz+ves7F2797N+fPnyZcvX5x1Wb5eFWFR7733njJp0iTjc71er9SrV09ZvHhxGpZKvK2goCClXLlyysmTJxVFUZTg4GClUqVKyt9//23Mc+PGDaVcuXLKuXPn0qiUIqlCQkKUd955Rzly5Ijy0UcfKVOnTlUUReo1o/r222+VDz/8MMH1BoNBqVu3rvLLL78YlwUHByuurq7Ktm3bUqOI4g31799f+eqrr8yWDRo0SBk+fLiiKFK3GVG5cuWU3bt3G58npQ5jP4cvXLhgzHPgwAHFxcVFefDgQeoVXiTqv3Ubn/PnzyvlypVT7t69qyiK1G1GkFC9PnjwQKlfv75y7do1pXHjxsry5cuN66ReFUVaui0oKiqKS5cuUadOHeMyrVZLnTp1OHfuXBqWTLytFy9eABhbzi5evEh0dLRZXZcuXZpChQrh5eWVFkUUyTB58mQaNmxoVn8g9ZpR7d27F1dXV4YMGYKnpycdO3Zk3bp1xvV37tzh0aNHZvXq4OBA5cqV5bM5natSpQrHjx/H19cXgCtXrnDmzBkaNGgASN1mBkmpw3PnzpEzZ07c3NyMeerUqYNWq5Vb+DKYkJAQNBoNOXPmBKRuMyqDwcCXX35J3759KVu2bJz1Uq9gldYFyMyePn2KXq/HycnJbLmTk1Oc+4FFxmEwGPjmm2+oWrUq5cqVA+Dx48dYW1sbvzRiOTk58ejRo7Qopkii7du3c/nyZdavXx9nndRrxhQQEMDq1avp3bs3n376Kd7e3kydOhVra2s6depkrLv4Ppvlfv30rX///oSEhNCqVSt0Oh16vZ7PP/+c9u3bA0jdZgJJqcPHjx+TJ08es/VWVlY4OjrKZ3MGEhkZyezZs2nTpg05cuQApG4zqiVLlmBlZUXPnj3jXS/1KkG3EMk2adIkrl+/zh9//JHWRRFv6f79+0ybNo1ly5Zha2ub1sURKURRFFxdXfniiy8AqFixItevX2fNmjV06tQpjUsn3sbff//N1q1b+e677yhTpgw+Pj5Mnz6dfPnySd0KkYFER0czdOhQFEVh0qRJaV0c8RYuXrzIb7/9xsaNG9FoNGldnHRLupdbUO7cudHpdHEGTQsKCiJv3rxpVCrxNiZPnsz+/ftZsWIFBQoUMC7Pmzcv0dHRBAcHm+UPCgrC2dk5tYspkujSpUsEBQXRuXNnKlasSMWKFTl58iQrV66kYsWKUq8ZlLOzM6VLlzZbVqpUKe7du2dcD8hncwY0a9Ys+vfvT5s2bXBxcaFjx4706tWLxYsXA1K3mUFS6jBv3rw8efLEbH1MTAzPnz+Xz+YMIDo6mmHDhnHv3j2WLVtmbOUGqduM6PTp0wQFBdG4cWPjb6m7d+8yc+ZMmjRpAki9ggTdFmVjY0OlSpU4duyYcZnBYODYsWNUqVIlDUsmkktRFCZPnszu3btZsWIFRYsWNVvv6uqKtbW1WV3funWLe/fu4eHhkcqlFUlVu3Zttm7dyubNm40PV1dX2rVrZ0xLvWY8VatWNd7zG8vPz4/ChQsDUKRIEZydnc3qNSQkhPPnz8tnczoXERERpyVFp9MZpwyTus34klKHVapUITg4mIsXLxrzHD9+HIPBgLu7e6qXWSRdbMDt7+/Pr7/+Su7cuc3WS91mPB06dOCvv/4y+y2VL18++vbtyy+//AJIvYJ0L7e43r17M2rUKFxdXXF3d2fFihWEh4fTuXPntC6aSIZJkyaxbds2fvrpJ7Jnz268/8TBwYFs2bLh4ODAu+++y4wZM3B0dCRHjhxMnTqVKlWqSHCWjuXIkcN4X34se3t7cuXKZVwu9Zrx9OrViw8//JBFixbRqlUrLly4wLp165g8eTIAGo2Gnj17snDhQooXL06RIkWYO3cu+fLlo1mzZmlcepGYxo0bs2jRIgoVKmTsXr58+XLeffddQOo2owgNDeX27dvG53fu3MHHxwdHR0cKFSr02josXbo09evX5+uvv2bSpElER0czZcoU2rRpQ/78+dPqtASJ162zszNDhgzh8uXLLF68GL1eb/w95ejoiI2NjdRtOvW69+x/L55YW1uTN29eSpUqBch7FkCjxF4eFhbz+++/s3TpUh49ekSFChUYN24clStXTutiiWT479zNsaZPn268gBIZGcmMGTPYvn07UVFR1KtXjwkTJmSZbjOZRY8ePShfvjxjx44FpF4zqn379vH999/j5+dHkSJF6N27N126dDGuVxSFefPmsW7dOoKDg6lWrRoTJkygZMmSaVhq8TohISHMnTuXPXv2EBQURL58+WjTpg2fffYZNjY2gNRtRnDixIl4B1zq1KkTM2bMSFIdPnv2jClTprB37160Wi3vvPMO48aNI3v27Kl5KuI/EqvbQYMG0bRp03i3++2336hVqxYgdZseve49+19NmjShZ8+efPzxx8ZlWb1eJegWQgghhBBCCCEsRO7pFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQIos6ceIELi4unDhxIq2LIoQQQmRaEnQLIYQQ8di4cSMuLi4JPry8vNK6iOnS48eP+eqrr/D09MTd3Z1OnTrx999/v3a73r174+LiwuTJkxPc7/jx46lfvz5ubm40adKEMWPGxMl39OhRevToQa1atahevTrvvfcemzdvftvTEkIIId6YVVoXQAghhEjPhgwZQpEiReIsL1asWBqUJn0LCQmhW7duPH78mJ49e+Ls7Mzff//NsGHDiImJoV27dvFut2vXrkQvYty/f58PP/wQgA8++ID8+fPz8OFDLly4YJbv33//5bPPPsPDw4PBgwej0Wj4+++/GTVqFM+ePePjjz9OqVMVQgghkkyCbiGEECIRDRo0wM3NLa2LkSGsWbMGf39/fv31Vzw9PQH48MMP6dKlCzNnzqRFixbY2NiYbRMZGcmMGTPo168f8+bNi3e/48ePR6fTsX79enLnzp3g8VetWoWzszO//fab8Thdu3alVatWbNy4UYJuIYQQaUK6lwshhBBvYd68eZQvX55jx46ZLf/6669xdXXlypUrAERFRTF37lw6d+5MtWrV8PDwoFu3bhw/ftxsuzt37uDi4sLSpUtZtWoVTZs2pXLlyvTp04f79++jKAo//vgjDRo0wN3dnQEDBvDs2TOzfTRp0oRPPvmEw4cP06FDB9zc3GjdujW7du1K0jmdP3+evn37Uq1aNSpXrsxHH33EmTNnXrvd6dOnyZMnjzHgBtBqtbRq1YpHjx5x6tSpONssWbIERVHo27dvvPu8efMmBw8epG/fvuTOnZvIyEiio6PjzRsSEoKjo6NZYG9lZUXu3LnJli3ba8svhBBCWIIE3UIIIUQiQkJCePLkidnj6dOnxvUDBgygQoUKjB07lpCQEAAOHTrEunXrGDhwIOXLlzfu588//6RmzZqMGDGCQYMG8eTJE/r164ePj0+c427dupU//viDHj160Lt3b06ePMmwYcOYM2cOhw4d4n//+x9dunRh3759zJw5M872fn5+fP755zRo0IDhw4ej0+kYOnQoR44cSfR8jx07Rvfu3QkNDWXQoEF8/vnnBAcH06tXrzjduf8rOjo63uA2dtmlS5fMlt+7d48lS5YwYsSIBIPi2IsZefPmpVevXri7u1O5cmX69evHnTt3zPLWrFmT69evM2fOHPz9/bl9+zY//vgjFy9epF+/fomWXQghhLAU6V4uhBBCJCK+Lsk2NjZ4e3sDYG1tzcyZM+ncuTMzZsxg5MiRjB07FldXV/r372/cxtHRkb1795q1wnbp0oVWrVqxcuVKvvnmG7NjBAYGsmvXLhwcHAAwGAwsXryYiIgINmzYgJWV+hX+9OlTtm7dyqRJk8z27efnx/z583nnnXcAeO+992jZsiWzZ8+mbt268Z6roihMnDiRWrVq8csvv6DRaAD1Puo2bdowZ84cli1bluBrVbJkSY4ePcrdu3cpXLiwcXlsK3lgYKBZ/hkzZlChQgXatGmT4D79/PwAteeAm5sbP/zwA/fv32fBggX07t2bv/76Czs7OwAGDhzInTt3WLRoEQsXLgTAzs6OefPm0axZswSPIYQQQliSBN1CCCFEIsaPH0/JkiXNlmm15h3FypUrx5AhQ/juu++4evUqT58+ZdmyZcbAGECn06HT6QA1gA4ODsZgMODq6srly5fjHLdly5bGgBvA3d0dgPbt25vt193dnW3bthEYGEjRokWNy/Ply0fz5s2Nz3PkyEHHjh1ZsmQJjx49wtnZOc4xfXx88PPzY8CAAWat+QCenp5s2bIFg8EQ5/xjvffee6xZs4Zhw4bx1VdfkTdvXv7++292794NQEREhDHv8ePH2bVrF+vWrYt3X7HCwsIAcHZ25ueffzYeu0CBAnzxxRds27aN999/H1AvhpQoUYIWLVrwzjvvoNfrWbduHV9++SXLly/Hw8Mj0WMJIYQQliBBtxBCCJEId3f3JA2k1rdvX7Zv386FCxf44osvKFOmTJw8mzZtYtmyZfj6+prdlxzf6OgFCxY0ex4bgCe0/Pnz52ZBd/HixY0t1bFKlCgBwN27d+MNumNblUeNGpXQafLixQscHR3jXVe+fHlmz57NhAkTjKONOzs7M2bMGCZOnIi9vT0AMTExTJs2jQ4dOhgvJiQkttt5y5YtzYL9li1bMnLkSM6ePWsMuidPnsz58+fZtGmTMW+rVq1o27Yt06ZN488//0z0WEIIIYQlSNAthBBCpICAgAD8/f0BuHbtWpz1W7ZsYfTo0TRr1oy+ffvi5OSETqdj8eLFBAQExMkf2yr+Xwm1MiuK8halN9/HyJEjqVChQrx5YgPnhLRs2ZImTZpw5coVDAYDFStW5OTJk4Ap6N+8eTO+vr5MmjQpzn3ZoaGh3LlzBycnJ+zs7MiXLx+g3tP9Kp1OR65cuQgODgbUgeo2bNhAv379zF4ja2tr6tevz6pVq4iKioozeroQQghhaRJ0CyGEEG/JYDAwevRocuTIQa9evVi0aJGxi3OsnTt3UrRoURYsWGDWAp3QNFlvy9/fH0VRzI4V25L96v3Wr4ptKc+RIwd16tR542Pb2NiYtWAfPXoUwLjP+/fvEx0dbWwNf9XmzZvZvHkzP/74I82aNaNSpUpA3PvBo6KiePr0KXny5AHg2bNnxMTEoNfr4+wzJiYGg8GAwWB443MSQggh3pQE3UIIIcRbWr58OefOnWPhwoU0atSIEydOMHHiRKpXr24MCmNbrl8NhM+fP4+XlxeFChVK8TI9fPiQ3bt3GwP/kJAQNm/eTIUKFeLtWg7g6upKsWLFWLZsGW3btiV79uxm6588eWI8n6Ty8/NjzZo1NG7c2HhvfOvWreNtSf/ss89o2LAhXbp0MQbttWrVwsnJia1bt/Lpp59ia2sLqF319Xq9MZB3cnIiZ86c7N69myFDhhhbtENDQ9m3bx+lSpWSacOEEEKkCQm6hRBCiEQcPHjw/+zdd1gUxxvA8e/dUQRBLGDvBUQBxd5Fjb23xCR2jT0mmmKJJrH3X4wl0SRq1BRL7L0k9t5771gpKlKk3O3vj5U7T4qgHAf4fp6Hx73d2d05RuDenZl3uH79epz95cqVo0CBAly7ds24/nbdunUBNSt3q1atGDVqFD/++CMAfn5+bN26lf79++Pn54e/vz9LliyhePHixmRhKalw4cJ88803nDlzhhw5crBixQqCgoKYMGFCgudotVrGjh3LJ598QrNmzWjTpg25cuXi4cOHHDp0CCcnJ+bMmZPofZs0aUKjRo3IkyeP8T1mzZqVUaNGGcsUK1aMYsWKxXt+/vz5zTKN29nZ8fXXXzNkyBA+/vhjWrZsyb1791i8eDEVKlQwPlTQ6XR0796d6dOn88EHH9CyZUsMBgP//PMPDx48YMqUKcn59gkhhBApRoJuIYQQIhEJDf+eMGECefPmZciQIWTLlo3hw4cbjxUuXJjBgwczbtw4Nm7cSJMmTWjTpg2BgYEsXbqUvXv3Urx4caZMmcLmzZuNc55TUuHChRk5ciSTJ0/mxo0b5M+fnx9++IGaNWsmel7lypVZunQpP/30E3/88Qfh4eG4ubnh4+PDBx988Nr7lixZkpUrVxIYGEi2bNlo1KgRAwcOJEeOHG/8Xlq1aoWtrS2//PILkydPJkuWLHzwwQcMGjTIbO573759yZ8/P4sWLWL27NlERUXh4eHBjBkzaNiw4RvfXwghhHgbGiUlMq8IIYQQIs2oW7cuJUqUYO7cudauihBCCPHOiz8FqhBCCCGEEEIIId6aBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiMzpFkIIIYQQQgghLER6uoUQQgghhBBCCAtJ10uGxcTE8PTpU+zt7dFq5fmBEEIIIYQQQojUYTAYiIyMxMXFBRubhEPrdB10P336lJs3b1q7GkIIIYQQQggh3lGFCxcmR44cCR5P10G3vb09oL5JBwcHK9cmcXq9nsuXL+Pu7o5Op7N2dUQKkXbNuKRtMyZp14xL2tYKIiKgenV1e98+sMBnMWnXjEnaNeN619o2IiKCmzdvGuPShKTroDt2SLmDgwOOjo5Wrk3i9Ho9AI6Oju/Ef8B3hbRrxiVtmzFJu2Zc0rZWoChw6ZK6nSkTWOCzmLRrxiTtmnG9q237uqnOMhFaCCGEEEIIIYSwEAm6hRBCCCGEEEIIC5GgWwghhBBCCJGiIiJg5UoYNgxOn7Z2bYSwrnQ9p1uId9Xz52BnB7JSnhBCCCHSiufPYfNmWLYM1q2D0FB1/+zZsHMnlCtn1eoJYTXykV2IdObgQXB1hcKFYd2KJ9aujhBCCCHecYcOwccfg5sbtG4Nf/9tCrgBnj2DRo3g8mXr1VEIa5KgW1hdxLMIDHqDtauRbnz/PYSFwZ070KJdVro02cvjh0+sXS0hhBBCvGMOHYLGjaFKFfjrL/NAO1s26N4dqlVTXwcEQIMGcPeudeoqhDVJ0C2sau1qPblz6ymez5+AO4HWrk6ybV16nL9+uMflEzdT5X5Xr8KWLeb7Fm2qgVepCDYsOpIqdRBCCCHEu+3wYWjSRA22N2827Y8NtDdtgocPYd482LABfHzU47duqYF3cLB16i2EtUjQLaxm1y54v4OWkHAnbjwsyA/fn7V2lZLl6PbzNO1Ynv/92ZwyVQrwdZedhASFWPSec+fojdtN69whi8NTAO4F56FZl4p0a7aHJ4+eWrQOQgghhEhfHj+GiRNh8GD47Tc4cACevsHHhaAgaNoUKldWA+tYhQrBr7/CgwdqoN2oEdjaqseyZlU7DIoWVV+fPw/Nm2uJiJAwRLw75H+7sIoTJ6B5c4iM1Bj3/bTEl2fBz6xYq6QzGKD/sGIoivojFK23Y8oiPzyKR7Bo6l6LDJePeBbB/LlqUG9nZ2DB0gKcPRFGw4pHjWV+31CTsl7PuHT0eorfXwghhBDpz/r1ULq0mkX8hx/gk0/UId9Zs0KBAtCwoRqIJ0W/frBxo+l1oULwyy/qXO2ePdUkr/HJnRu2boVcudTXhw5pGDKkKFFRb/XWhEg3JOgWqe7Kqbs0aqTw7EV87ZgpEoCn4S78NvmYFWuWdPPnw+Gj9gDkyhqIve1zAB48yUWXr2pQ3esce9edJiToGYpBSZF7Lp97jODQbAC09zuAmxsU8MjLpoPl+XXcHpwd1ID8VkB+atTLwtHt51PkvkIIIYSwrOhomDsXvv4a7t9PmWs+fgxduqidHAld099fDYY/+UQdMp6YsDBYu1bddnExBduffJJwsP2yYsXUHm8XF/X1/v0utG6tJSgo6e9JiPRKgm7xRhSDwq/jdvNdn53Jmot979oDGjQw8OiR2sNdrRrs2nTPePx/v7kTHRmd4vVNScHBMHSo6fWoiUGcOXKfVjUOGvcdvOhNzRY+uLg64+Cgp2BBKF9eTTYybBiEhyf/vj/PczFu9xvobNzWaDX0HF6Ts8efUabIJQACQ1yp07wA//1zIvk3EkIIIUSq2bZNnfPcpw9MmQK1ar19srGNG8HLCxYtMu1r0kQdEj5jBvTuDTVqqL3dsf7+O/FrbtmiLgkG0KFD0oPtl5Upoy4llimT8uKaGnx91eHuQmRkEnSLNzLpi130GlGL0XP9KFs2mj1rT732nMcPn9Cw3jNuPioAgFfR26xfDxX8itC82iEA/IPysmT2ax61WtmIb/TGp7IffGCgQoVQinoVZNWeKmz56xgl818zKx8ZZcOdO3D8uJpsZOJE9elwcpzYeZGDF70B8ClyiaqNveOUKVgyHzsP5qaml9oWoc+dafyRNytXxr3e04AnLJq6l08/2MW/y48nrzJCCCGEeGvXr6vLazVoABcvmvZfvQp16sC9ewmfmxCDQQ2omzY1nZ8lCyxYoA4zb9QIPv0U5syBPXvUOsTOvf7nH/X8hKxebdpu3Tr5dYtVsyasXWsga1a1k+XOHfVBw7RpoKTM4ECRTgwdOpR+/foZX3fq1Ilx48alej0OHTqEh4cHISGWy80kQbdIts1/HmX4j7WMr+8F56FO69JM/Pp4gr+sT++9TNM6dzh7qwQAhXPeYctWO7Kpo6X5akgmY9kpM90SHZIdcCcQfbQ+weOWdHzHeebMVXvpnZwUJk82r2eDD8tz+mpBfh61mw/q7aeu73G8PZ+RKxfodKay+zedS9Z9f57+yLjdr9sDNFpNvOWy5nRhy35340OMqGgb2rdX52o9DXjK4v/tpUX1Q+TM60CXr2owa1ltWnTyIPj+42TVRwghhBBvJiwMRo6EUqXMA9kqVUzJxq5cebPAe9ky8wf7jRrBuXPQtSto4vnokC0bvPeeuu3vry4BFp/oaLWHGtQgvk6d5NXrVXXrwl9/XaBGDfWzUUwMfPkltGwpmc3TgqFDh+Lh4YGHhwdeXl7Ur1+fWbNmERMTY9H7zpw5k88++yxJZVMjUE5JEnSLZLl26hYf9i5uTCBWyM0fAL3BhmFTytG8OQS+GG0eFRHFkpn7qel9ijI13TlwQe2dzekSwLYtBvIWy228bo1mPlQpeQaAMzfd2fJ33LndikHhuz47yV0oGxU9LxMVkbrZNwx6A/376Y3v/dsBx8mXL245W3tb+nxbiyXbq/Hv8XKcPu/MgwcQEaY3zv0+dc4xyfd9GvCUPzeXB8DZIYSPB5RLtLyDswMrd5SnSxf1D5nBoA4By5k3E52/qMG6/ZWJirE3lg+PzMySOaeTXB8hhBBCmMTEqEthJaWX9ulTNbgeOxYi1ZQ25M6tDgPftw927jQF3pcvq8FtcuZ4v7ys6LRp6jDz/PkTP6d9e9P28uXxl9m9G548UbebNk3+sPL45MwZzfbtBoYNM+1btw58feFY+kjxk6HVrFmTvXv3smXLFrp168asWbOYN29enHJRKZgNL2vWrDg5OaXY9dISiwbdR44coU+fPtSoUQMPDw+2b9/+2nMOHTpE69atjU9VVsY3NlZYRdjTMFq3iuRJWFYAWtY4xJU7ufi29040GvUvzcaN4Our8FXXvRTM+4QPB1Zj79kyxmu4ZQlg8+ogipctZHZtjVbD14PDjK+nTDP/r6kYFEb02sXouX4YFB0nrnmye13qLjG2cOo+4xDvkvmv8dm3cYd4J8bW3obShW4AcOVeIcKehr3mDNWiH08SHpkZgM7NTuCUzfk1Z4CNnQ3z52sYPNi07+VAO2/2+3Rtusf4euHSHEmqixBCCCFUDx+qwXPhwupX+/Zqj3BCDAbo3BnOvvj4YmurJk67fBk6dQKtVs0mvmMHFCmilokNvB88SFqddu9W/7W3VzONx9e7/aqWLcHGRt1OaIj5qlWm7VatklaXpLCxgfHj1bnmOV58FLl9G/z84L//Uu4+Ivns7Oxwc3MjX758fPTRR1SrVo3//vvPOCT8559/pkaNGjRq1AiA+/fv89lnn1G5cmU++eQT+vfvj7+/v/F6er2eCRMmUKFCBSpXrszkyZNRXnlS9erw8qioKKZMmULt2rWNseHy5cvx9/enc+fOAFSsWBEPDw+Gvki4ZDAYmDt3LnXr1sXHx4cWLVqw+eXF5IFdu3bRsGFDfHx86NSpE3ffNolCEthY8uLh4eF4eHjQtm1bBgwY8Nryd+7coXfv3nTo0IGpU6dy4MABRowYgZubGzVr1rRkVcVrKAaFHm1OceZmNQA88l1n0WpPbO1tGTXHjxpt4eOPISAA/P01TF1Yw+z8UgWv0r/rXTp9Vg7n7CXjvUeLrhUp8f0Nrtwrwn8nynHsvwuUr+uJYlAY2XsX4+f5mZXfuCaE9963yNuN4/HDJwwZb6r3rP89wc6hGHp98oa5l/EI4vhVUBQtZw/eoHJDr0TLKwaFnxeZHlH3HZQ3yffSamHqVHV5jhEjwDVbBO3rHKb9x9mo1sQLrS4Pp4pf4MQ1Tw5f8uLC4Wt4ViqWrPcjhBBCvEsUBfbvh9mz1QD15SB7xQp12awFC9S/wa8aO9aU/TtbNnVOdenSccsVLKgG3n5+cPMmXLqkBt579oCra8J18/dX52iDuo52pkwJl31Z9uzqEPPNm9X51YcPq73xL7/n2GHwdnbqkPWU1qgRnDwJH3ygfn9DQ9Xks3//DW3apPz9rOrC/+Di/15fLns5qL3WfN+uFhCchFw8JQeD5+DXl0sGe3t7nrwY7nDgwAGcnJxYsGABANHR0fTo0YOyZcuyePFirly5ws6dO+nZsydr167Fzs6O+fPns2rVKsaPH0+xYsWYP38+27Zto8rL/9le8fXXX3Py5ElGjBhByZIl8ff35/Hjx+TJk4eZM2fy6aefsnnzZpycnMj04j/83LlzWbt2LaNGjaJw4cIcOXKEr776iuzZs1OpUiXu37/PgAED+Pjjj3n//fc5e/YskyZNStHvVXws2tNdu3ZtBg0aRP369ZNUfsmSJeTPn5+hQ4dSrFgxOnbsSMOGDfn9998tWU2RBNMmP2fpf2rA7ewQwupVkCVHFuPx+vXVX5a1TFO90WljaOd3gB0rTnL2RjH6jaqNc/aEe2l1tjq+7HvH+HrKnGLqkPK+Oxn3m59xv0ajPoLdcDjhH9KU9u3AUwSEuAHQvs5+6rUv/0bXKVPGFKSfOvL6SUu7Vp/iwh01EK7lfZLSVUsk634ajfoUPSQE/O878OOS2tRo7oNWp/7od3nfNFd84e+WnacjhBBCpGf79kG5cmrW77//NgXcWq2pp3jRInVu8qtDzdevh+++M5VfsiT+gDtWoULqUPPChdXXFy/C5MmJ1y+2lxugdu2kvitVYkPMjx41ZVN/7z11Trcl5M8P//4LLVqor6OiMOalyVCiQyDi7uu/ngfEPfd5QNLOjU65ec6KorB//3727t1L5cqVAXB0dGTs2LGUKFGCEiVKsHHjRgwGA+PGjcPd3Z18+fIxbtw47t+/z+EXa9EtXLiQXr160aBBA4oVK8aoUaNwdk44Lrhx4wabNm1i/Pjx1K9fnwIFClC1alWaNGmCTqfD5cXaczly5MDNzQ1nZ2eioqKYO3cu48ePp2bNmhQoUIA2bdrQokULli5dCsDff/9NwYIFGTp0KEWLFqVFixa0fpvMgElk0Z7u5Dp58iRVq1Y121ejRg3Gjx+f6Hl6vT7ZPY6pLbZ+ab2e8dm+HYZ8Y3pcunDGeUqUqxjnveTKpa71OG+ehpAnej5s85D8JSoBYFAMkIS3/vHAioycqfDokYblK2xx+eAIv/xjytYxc8ROlu6szd69cPlqJi5d0lO8eMq8z4T4X7nPz/9UB8DRPozJswvEac+ktqtXOdMvl5MnldeeN3tBTuN2755hb/z/x9ZW/QDw6ukf9CrJl1MMxMRoWbzGndHT9eh0b3SLDCc9/8yKhEm7ZlzStlag16Mzburj/pFJkVtYrl0VBW7cUIO9181RPn0aGjXSEhpqGq/t6qrQvbtC794KJ07A++9rMRg0/PAD5MhhYOhQNfK+fBk+/lgLqOeOHWugXj3ltd+u/PnVz1UlS6rXXbdOYcKEhNOL79ypIbY/rXp1fbKao3lzsLHREhOj4Z9/FCZNMhiHpq9cabpuixYG9Pq3TzGeULva2qrJ4Hr10rBokdaYlyYgwMBXXylJGi6f1mlsnNA4xJMU6FX2rhhe+f5o7V0hCecqNk4ob/EzoygKO3fupGzZssTExKAoCk2bNqVfv37GYFun0xnb78KFC9y+fRtfX19AHeKt1WqJjIzk1q1beHl5ERAQgLe3t/EcjUZD6dKlURTT52FFUYyvz507h06no1y5cvH+/BtezIN4OQ68fv06ERERdOvWzaxsdHQ0np6e6PV6rl69alYPAB8fnzjXSqqklk9TQXdgYCCur4ybcXV1JTQ0lOfPnxuHDbzq8uXLqVG9FHHmzBlrV4HI8Cge339G7mKvn8cbGGjDBx+UxmBQf8t98sk9CvracvLkyQTPefEQjMAwCDz5MNn1a9s2Nz//nA+DQcMv/1Qy7h/VfxVVWxXk0pO77N2rDrn+7be7dOgQz5PAFLRoyn30hmYA9GrzH0HheQk6+cisTFLb1dbFtED3iXNZEv0+BgbasGqT+ksgR7ZwilW0SbT8m6pe3Z5du7Jy756GX365TtWq6SMLZGpJCz+zIuVJu2Zc0rapRxsRge+L7dOnT2NwcLDYvVK6XR89smXcuELs2+dC3ryRzJhxhcKFI+MtGxhoQ5cunoSGqo8Y3N3D+eijh9Sv/xh7e4XHj9Ue6eHDczB2bGEARozQEhFxiwYNgunatSQhIer3pl69x9Svf53k/Dn39vbg1CknLl7UsH79efLnjz9x1bZtpQAHdDqFzJlPc/JkIut/xaNixeIcOODC7dsa/vzzMl5e6meWpUvV62o0CkWKnOHkyZQbGZdQuw4YAAZDPv74Q026O3y4lvPnH/DZZ3czQOBdBwomMf37q/9RnL+H16f2gYh4zk2G4OBgPD096d69OzY2NmTLlg2dTsfly5cJDg4mKirK7DPp7du3KVy4MP37949zrSxZshjb+cqVK9jYmMLPp0+foiiK8VqhoaEEBARw8uRJ7t27h6IonDp1yuycWFevXgXU/0OZM2c22/fll1+SLXaJpBdsbdX45enTp8TExJjV/8aNG3GuldLSVND9ptzd3XF0THo2aGvQ6/WcOXMGb29vdFbsSoyKiMKvwjUOX6rKpx/s5Ic/E54rrxgUWrfW8vSp+nSzSROF2bNzodXmsmgdR42CRYsUwsJMv1V/HL6D/qPV8UY9e8KsWer+U6cKMHFiEp4WvqHnYc/5a5Oa9M1GF83gUeXIW9SUdf1N2rWgmz+3A/Jz7lYxfLwdjEO9XzVjhga9/sXDjt6ZqFCpwlu+m/gNHAi7dqnbe/cWo29fWSQT0s7PrEhZ0q4Zl7StFYSZEoL6+PiABT6spnS7Kgr88YeGQYM0PHmi/o29d8+ePn1Ks369gQqv/KkNC4PevbU8fKiWrVhR4b//7HFwKAgUNCtbtiw4OhoYPlz9uz5hQkG2bCnIjRvquaVLK6xYkQUnp7LJqnP79hpOnVK3b90qTbNmcf9OP3oEN2+q358KFaBqVZ9k3QOgWzcNBw6o26dPe9Cxo8KlS3DjhnrdqlWhXr3Ec9EkVVLadcECKFXK9P3844/ceHrmZMgQ+ZxiadmzZ8fGxsaYJC2+Y2XLljXuq1WrFkeOHKFGjRo4ODjE27Zubm6Eh4cbz4uJicHf359SpUoZ9zk5OeHm5kbZsmVxc3Pjf//7H1FRUVR49QcTjEnYSpcuTdasWQEoUaIEY8eOJXPmzPHWHcDX15cdO3aY1f+/F1n7vL29yZLM+RPh4eFJ6gBOU0G3q6srgbHrTb0QGBhoNjk+PjqdLt38gbV2XeeOO8zhS+pEn5lL/ahSdR8ffVY93rJ/ztjH+g3qsZw5YdEiDba2lq+7mxv06aMudQHw44i9DBxjeiLo4wMFCijcuaNh1049z0MjyeximadSy+ecIDBETQrXzu8IBUpUi7dcctq1TIm73A7Iz7OILNy5dJui3gXjLffy3KwPP9RabNh3s2ZqxtCgIFizRsOzxxFkdU3693PNvEP8/Zeeod/loGwtD8tU0oqs/TMrLEPaNeOStk1FL32fdTodlpyflBLtev8+9O5tWm/6ZYGBGt57T8eaNeoa0qBm8e7a1bR8VaFCsG6dBienhOsxdKj693TaNDAYNBw9qu7PmhVWr9bg4pL899CsmZoQFWDTJi0DB8Yts2+fabt2bc0bfa/atIG+fdVZAitWaJk61fx71abNm103Ma9r12HD1ORxffqo7fHjj1q+/DJlliwTCdNoNGg08bd3fMdatmzJggULGDBgAAMGDCA4OJhjx47x77//0rNnT3Lnzk3nzp2ZN28eRYsWpUiRIvz+++88e/bM7FovX7tgwYK0bt2akSNHMmLECDw8PLh37x5BQUE0adKEAgUKoNFo2L17N7Vr18be3p4sWbLQvXt3Jk6cCED58uV59uwZx48fx8nJidatW/PRRx/x+++/M3XqVNq3b8+5c+dYs2YN8Ga/Z5JaPk2t0122bFkOHjxotm///v1mTyJEXNHRcO7c66dSBd0LZtTMMmb7eg/14fLxG3HKPrjxiE9HljK+nvO/e8alHFLD+PEwfbq6hMTAMeaZ0DUaaFpZTcoQFW3Dvysss3SYosDMv0wJ0wYOTsp4ntcrUzrCuH3q4L14yxj0BvbsUYeFZc8OXinzYDlednbwcbsgAJ4/17BsTtIXx9yz9hRtPqnA0v+q0amzFsUgT5+FEEKkDQaDGgBfuADz56uJy14OIj/+WM32HZsENjZjduxqtUOHmpbKypJFTYaW6zWD/TQamDIFunQx3/fnn7xxDhofH8j3YlDfjh1mAwyM3iaJWqwcOaBePXX71i01gVps1nJI2aXCkuOTT6BtW3X70SNTBniRdjg4OPDHH3+QN29ePvvsM7766itGjhxJZGSkcd3t7t2706JFC4YMGUKHDh3InDnza5Ntf//99zRs2JDvv/+exo0bM3LkSCIi1M/RuXLl4tNPP2XatGlUq1aNMWPGAPD555/Tr18/5s6dS5MmTejZsyc7d+4k/4sF6/PmzcvMmTP5999/admyJUuWLGHQoEEW/O68oFhQaGiocv78eeX8+fOKu7u7smDBAuX8+fPK3bt3FUVRlKlTpypfffWVsfzt27eVMmXKKJMmTVKuXr2q/PHHH4qnp6eye/fueK8fFhamHD16VAkLC7Pk20gRMTExytGjR5WYmJgUv3anTooCilKvTpQSGR6ZYLkB7+9U1FBSUVwcnxi3yxS/rkREmMoZ9AalVY0DxuMd6u1L8Tq/rbXzDxnr17v1LovcY98+xXiP8uWiFYPeEKfMm7Tr8rknjNf9bsijeMuc3X/ZWKblezfe9C0k2bH/zhvvV9XzdJLOCbgTqOTLfs94HijK8SPPLVzT1GPJn1lhPdKuGZe0rRWEhpr+AISGWuQWyWnXgABF+fBDRfHyUpRcuRRFp1PM/kbFfuXMqSirVpnOCw9XlBYtTMe1WkX56CPTa51OUTZvTl69o6MVpXNnRcmUSVFmzEjeufH55BNTfdati3vcx8dU9ydP3vw+v/5quk/HjqZtb+83v2Z8kvvzum2bqS7166dsXUTKetd+Fyc1HrVoT/fZs2dp1aoVrV48GpswYQKtWrVixowZAAQEBHD//n1j+QIFCjB37lz2799vHKYwduxYWaM7Ebdvwx9/qNv/7rBlUOcD8ZY7f+iqMQN3ZvtQjux9TMn81wA4dbUILz/gWTr7AKv3qstxuWUJYObvaW/IcN02pbG3fQ7Aht3FLdLDOnOmafvTgTZotCmTuaNMnbLG7VOX3OIts2uzqQe8VrmbKXLfxPjWLol3YXU+yoEL3vGOfniZQW+gc9vr3A3OY7Z/8V/2FqujEEIIkZhp09SlvM6ehYcP4x8B+OGHcP68ea+tg4O6xnZs77TBAH/9ZTo+axY0bJi8utjYwMKFEBEBn36a7LcSR9Ompu0NG8yPBQdDbD6ysmXhxUpKb6RVK9MsgdjPl7H7raluXShaVN3ets20HrkQ6YVFg+7KlStz6dKlOF+x4+wnTpzI4sWL45yzevVqzp49y/bt22nTpo0lq5juLV5svhbkT//UZv7EPXHKffnZE/QGdQr/0E+OUsK3MMvXuOLgoJ48Z466RMPDmwEM+MYUZP808Squ+VNxXHkSZXbJTB1f9S+Mf1Bezuy/kqLXv3cP/vlH3XZ1hQ8+SLlrFytmyjWTUGLJ3Xttjdu1G+SMv1AK0mg1dH3fFOgv/OlWouWnfLWbTYcrApDTJQA7O/X/0V9/QYws9y2EEMIKtm83bRcoAOXLQ6NG0KkTDB4MW7aof6fimy5nY6MOQR882Hz/4MHqfGJrq1fPNI9540bzz3779plexw6Vf1OurqY57S+zdtCt1arDzGPNm2e9ugjxJtLUnG6RPIqiPkV9Vd+RlTi89Zzx9aZNsOmQmvWvgOtdvhivrunlVc6FmTNNvbc9eyp81PY+Qc/Uv0bt6xygXV/zddPTkib1TctvbVwR/9zoNzV3/FFj8Ni7NySSxy/ZtFrw9la3b96Ep0/NjysGhV3HiwHg7BBCmZruKXfzRHzctxQ6rfqmF612Rx8df5KAfetP882P6jx7jcbAn3Nv07Sp+v/o4UP4999Uqa4QQghh9PQpHD+ubnt5qSMBjx5VPwMtWqT2gjdokPg1tFqYOlUtmzcv9O8Pkydbvu5J4eRkmqt9+7aayydW7Aok8PZBN0D79uavCxYEX9/4y6amrl3VhyOgPiCJjrZqdYRIFgm607EDWy5x5UUHb9260K+d+ls3KsaeNh9m5+HNAKKj4YsvTOdM+l9WHJxN62h2764mEgF49kzDf8fVJSZcswQy6/c3zPiRSpp+UMS4vWF7tkRKJk9keCRz/lCXCdNpY+jTM/w1ZyRfmZfy2Z0+8tjs2NVTN3nwRM3UUt37EjZ2qbPIQK7COWlcWf3E4h+Ulx2rTsUpE3QvmA5dXY2jJr7puZv3PihPp06mMot/SdkHIEIIIcTr7NunDgsH8PN78+toNGrvtr+/Oqw8LSXCT2iI+ctJ1FJiRmbr1ubvu1Ur0sTa2LlzQ8uW6vaDB2piOyHSCwm607Hf5zw0bndteZofFlWleunTANwNzsP7Le4ye5aeCxfUMlWqQIeO5ktBaTTw88/gXtQ8Febs8ZfJWTD++cZpRVHvgsZ56fvPeRH84EmKXHf53KM8eqq+9za1j5C/cMqvAV+mgClD+Kldp82O7drkb9yuXS2eFKUW1KWTqXd78BAnvuuzk2V/hXHuHEQ+V+ja7ir+QXkBqOV9ku9mqT3eTZpANudQAFZtcCH0cWiq1lsIIcS7bedO0/abZu9+WVoIMl/1ctC9caP677Nnph7+0qXV4eFvy9UV6phWaqV167e/Zkrp1cu0/csv1quHEMklQXc6FfEsgqVb1e5Sp0zPaNOlGHYOdvyzLjd5s6vJ6XafKcugwaZHldOnx/9HxNkZli+8SyZbNQV/O78DtE/Dw8pf1qT2HQAMio6ty8+/trxBr3Bgv8Lgwer8qMGD4eBBzBKxzZxrykDy6ecpH3ADlClrWmDy1GnzRtm9x/S61nupO5++eZdyZMus9ryfuenO6Ll+fPBxZry8wDEzrD9QCVBHQvy1MpexF97eHt5/T/2rHx6ZmVULTqZqvYUQQrzbXg66U2KIdVpUvDiUKKFu79sHjx/D/v2mhHEp8bAh1ujR6rrkH36Ytr6f770HhQur21u2qNP0XicmBg4dgkmT1AcXfn7qPP0ZM9QpcQ8emM+RF8ISJOhOp1YvOEFIhBoctq93kswuag927iI5WfFnEHY2kWblP/5YoXLlhK/nU8OdwzvuMH/iHv7YUC7FMnVbWtNWpgB5wwZDvGUUg8LBzWf5ouNOCue+R7XqGn74Af77D374AapWhUK57vFFx53Mn7iHw5fURbHLFr1IjWY+Fqm3d9XCxu1TF80D693H1KHtDnbhVKibupnj7R3tmfLNWTLbx+2pNhhM/ycW/3yHfMXNM5d36p7VdPwvB4QQQojUEBJi3tub0/L5R60mtrdbr1ezeL88tDwlg+OqVdWA9q+/1LnuacXLCdUUJeGEapcvq/PxmzSBbNnU0Z5Dh6ojBHbtgrlz4bPP1CA+Tx61d//99yE85WcUCgFI0J1u/b7YtDRTlx7OZseqNPJi9qjDxtcOduFM+PYhr+Nd3Z1uQ2pi75h+ln2q0bQ0zg7PANh8pILZ8iBhT8OY8uVOCue+S9XGXvzvTz/uBOaL9zp3AvPxvz/96DHMNBnq008CLPbwwTm7M8VyqxnCz94sYkxaduuCP7cCCgBQtfRF7BzsEryGpfQYVpMnIZm4dOwGKxdcZMwY6NBBTf7m5qYmmGn0UdyMKtWaeFMk120A/j1elnvXHqR21YUQQryD9u0z9fa+zXzu9KBJE9P2hg0pn0QtPejWzTTnfN4881VToqJg5EgoVQqGDFET6YUmYcZbcDAsX65OuRTCEiToTofuXr3P9mNlASiS6zY1W8Ttje05vCaj+++koJs/c8Ydp4B77lSuZeqwc7CjfmMnAAKDM3HkiBpsT/1qJ0UKhvP1ND9uB+Q3lrfRRdO46lkWLIAbN2DBAmhc/RI2OvMUmDmcg/iwfwWL1r2MuzoNICLKkSsn1QB899YA4/HaVZ/Ge15qsLGzwb1cEVp3LcmIEeq6p6dPw6NHcZdTiaXRaujYUl0406Do+HvuxVSssRBCiHdVSs/nTstq1TItO7phAxx+0cdSooTaY/suyJMHWrRQt+/fNyWVO34cKlSAsWPN12jPnVvtPJgzBy5dUofl79sHv/4Kn38O9eubys6fL0PNhWWkTlpkkaIWz76EQVF/s3ZufR2trmC85UbO8mPkLID88R7PKJo21bBypbr99YA7XLqaiUdP/YzHNRoDDSoc54O2EbTs7EX2PF7GY127QteuHgTff8yaRWdZtjIT1/xdGT/iAQ7Olp3XXsbrOStfDAs7degBJSsWZdcZUw9yraaps1RYSurUpzBjXiQ2WfxPHr5II0utCCGEyLjepaDb3l4NElevhqAg0/53pZc7Vq9esGqVuv3TT2rAPX68qdfbxkYdTt6xI7i7x81pVK2a+hWrVi3YswfOn1fnf1epkjrvQ7w7JOhOZxSDwsJ/Chhfd+5X1Iq1SRsaNzZt7zlm+t5oNAY61DvAyHG58ayUeK919jzZ6DakJt2GxO4pkljxFFGmnClJ26kTUXyAaW6WnR1UrhP/UPi0rIRvYSqXPMuhi16cuuHBmX2X8a6e/h4eCCGESB+ePYNjLxYEKVUqY8/njtWkiRp0vyyjP2x4Vf36aqK3W7dg61b1K1aZMvD771C2bNKv1727GnSDOmT9XQ26PTwSzyU0YMAAPv3001SqTcYiw8vTmcPbznHRvxgAtX1OUNQ7/l7ud0mePFCunOm1Gmzv5+yB6/y1rTqelYpZr3KJKFM1r3H71LnM3L+Pcd31SpXAIZ3mIuvU3vTo/Y9f71qxJkIIITK6d2k+d6yX53XHetd6unU66NnTfJ+NDXz3nTrkPjkBN0D79upqPgBLlkBY6q7Ymmbs3bvX+DV8+HCcnJzM9nXv3t1YVlEUYl6eUC8SJUF3OvP7L4+N210+krWQY02cCJ6e8GHrB5zZd52/t1ejVOXi1q5WogqVzIeLozpv+9SV/BbLQJraPujlZZwj/+e6ksYkcUIIIURKe5eGlsfKl888qCxYUO31fdd0724KlH181GD7++/V0YLJlTmzOu8b1MRry5enWDXTFTc3N+OXs7MzGo3G+Pr69euUK1eOXbt20aZNG7y9vTl27BhDhw6lX79+ZtdZtGgRXbp0Mb42GAzMnTuXunXr4uPjQ4sWLdi8eXNqvz2rkuHl6cjz57DkvxoAOGZ6TrtPylq3QmlI/frqPBxIPwnjNFoNZYrdYPeZstwNzsOq+SeBsgDUrh4BpM+ubtf8OWhc+TDr9lfibnAedu6Iol4D3etPFEIIIZLp5ezd70rQDWpv98mT6va79L5fljevOv/64kV1KbU3CbZf1r27mlwN1CHmXbu+dRXjWL4cvv1WnRaRWpydYcwYaNcuZa43bdo0hgwZQoECBciSJUuSzpk7dy5r165l1KhRFC5cmCNHjvDVV1+RPXt2KlWqlDIVS+Mk6E5H1q6FJ0/UTBBt22fCOXsmK9dIvK0yVQuw+4y6veLf0gDotDFUrZK+h+t0GujLuv3q9i/z7KjXwLr1EUIIkfGEhsKRI+q2pyfkymXd+qSmDz9U16GOiUm5YCo98vRUv1JC5cpqXoDz52HvXnWtb/cUTkszZYr6kCC1TZmScv9PBg4cSPXq1ZNcPioqirlz57JgwQJ8fdWEwQUKFODYsWMsXbpUgm6RtiiKmp0xliWevonUV6ZSDniR7TtGbwtA+RIXcc7ulchZaV/zlrbkyKFmVl22TF1mrHJla9dKCCFERvIuzueO5eWlDqd+8uTde++WotFAjx7wxRfq6/nz1emLKenrr9V1xFO7p/urr1Luet7e3skqf+vWLSIiIszmgwNER0fjmVJPTNIBCbrTiX/+esKuXVkBKFZMfsFmFGXKxN1Xq1Jg6lckhWXKpM6rik1wOWiQwr696pB6IYQQIiW8i/O5X+br+/oyInk6doQhQ9QRBAsXqmt+26RgtNSuXfofmeDwSqZfjUaD8sri5vqXFkoPDw8H1CHmuV4ZjmL3tnMC0hFJpJYOhD4OZfBn4cbX06aBVlouQyhdOm5b1qrjGH/hdKZ3b9OQrwMHNCydfcC6FRJCCJGhvKvzuYXl5MwJLVqo2w8ewKZN1q1PepA9e3YCAgLM9t26dcu4XaxYMezs7Lh37x6FChUy+8qTJ09qV9dqJHRLB8Z9cRT/IHV5qcaVjxl/GYj0z8EBPIqZxhhpNAZqNMkY61rb2sK0728YX389uhARzyKsWCMhhBAZxcvzuUuWhNzpJ49q8hliwBBt7Vq8M14eBT1vnvXqkV5UqVKFs2fPsnr1am7evMnMmTO5c+eO8biTkxPdu3dnwoQJrFq1itu3b3Pu3DkWL17MqlWrrFjz1CXDy60o4lkE6xadwLtirgTXkr507DrTFlUDwM4mkhlzXNHICN0MpUz+Y1y44geAT8HTZMtV1qr1SUmN3y9Co2lH2Hy4IncC8zFt+E5GzPSzdrWEEEKkc/v3q0OAIY31cisGiHoCkYEQGaBuKwZAUb+0dpC3sfk51xZA8FG1bPQTiH6qbse+jgkDjRYKtIMaS83PDb2hHtM5gk1m0DkgHxTfTsOGamb0e/dg/Xq1xztDP9R5SzVr1qRfv35MmTKFyMhI2rRpQ82aNXn82LTM8eeff0727NmZO3cu/v7+ODs7U6pUKfr06WPFmqcuCbqt5NKx67RvF8OZm9Ww0UXz06jdfPKN+eLMikFhYJ9govVFAfiq6wGKl/WzQm2FJZUpGcCSHep27bIXiF02LKOYNiMb26rFoDfYMPHXCnT//AF5i8lfLyGEEG/u5aHlaSLPzY0/4MSXarCt6BMuZ+8GbR+Z77u3Ae6sSPz6igFsnePu31oNnj8w36dzBOfiULQbFOkM9tmT9h4EoM7h7toVxo9XE/UtXpyyicjSizZt2tCmTRvj68qVK3Pp0qV4yw4cOJCBAwcC6nzukydPUvalxeQ1Gg1dunQxW7v7XSPDy63g7xn7qVDDjTM31WHEMXpbeo2oxaBOB41PbQFW/XaYrUcrAFDQzZ/h096NlPrvmmYdy6LVqH+gP/gkfWctj0+pysXp03YfAGGRTnzz2RUr10gIIUR6Z5UkavpICDgAp7+H6BDzYxodPH+YeMANqD3er7DLGnefzhEc8oJLKXCtBtkrQNay5mWin8UNuAH04fDkNBwfBKvzwYEuEHL5NfUSL+vWzbQ9b566ipAQbyNVerr//PNP5s2bR0BAACVLlmTkyJH4+PjEW3blypUMGzbMbJ+dnR1nzpxJjapaVFREFP3a7+WXVaa/DrmyPuLhk5wATP+jCpeC4O+/wVYTzqAR+Yzl/jfGH8cs+VO9zsLyvKqV4PyR60RH6vGqlrxlGNKL7//nxZ8bn/AkLCsLN1ZnwH8XKF/33VkmQgghRMoJC1OXywLw8ACL5GKKDILHp+DxSfXryUl4egGUF70j2X0hf0tTeYfc4FgQMrmBveuLLzewy6YG5BoNoFGHgL/KcwgU76MG37ZZwc4FtLavr2NMKBTtCjHh6hD0mDA14I5+CiEveiT1z+HGIig5+C2+Ge+e4sXVhzm7dsGlS+p0hmQsTS1EHBYPujdu3MiECRMYNWoUZcqUYeHChfTo0YPNmzeTI0eOeM9xcnJi8+bNxteaDDA35eqpW/Tp5MLpm6WM+zo33stPf/vy9+w99P2uOjExWjZtgmrVoKrHeW4HqL3c9csfo80nsshxRuZRvqi1q2BRrvlz8N2nuxg0sTaKomXQZ1HsOqXIEmJCCCGSLcXmcysGdT70y/a0g0e71fnYibm/xTzozlUHWt1KuHxispR4s/Mc8kCVBfEfe3oBrs6F6wshS0nI9soapccGw9NzkLMm5KwFOSqBLtOb1SOD6t7dNI1h4UIJusXbsfjw8gULFvD+++/Ttm1bihcvzqhRo8iUKRMrViQ8d0Wj0eDm5mb8cnV1tXQ1LerSRYWKNXMZA+5MthHMm7CH39dXJ7NLZnoOr8m2bVqyv5hyc/48zFulBty2uihmzs0mwYlI9/p9WxX3fNcB2HO2DCt/OWjlGgkhhEiPZs0ybSdpPreiwKO9cHk2HP0MdjSCNUVhezwnRwXHH3BrdJDVGwp3hEq/Qunhb1j7VOLiCeWnQ+t7UO2PuMfvb4QHW+H0SNheG/7Jpn5fLv4AT87JeGqgbVtwclK3ly6FCFmARbwFi/Z0R0VFce7cOXr37m3cp9VqqVatGidOnEjwvPDwcOrUqYPBYKBUqVIMHjyYEiUSfgqo1+vNFmFPa1av0fAsXB1O5JHvOkv+jsK7WjUMigFeVLtmTfXJbatWWi5eNAXYgzruo3jZWmn6/b3LYttF2uf1dHY6Jo1+ROseaq/+3N/saPVJ2v2+SdtmTNKuGZe0rRXo9eiMm3o161SK38K8XffuhbVr1bvmzavQrJkh8dsGH0N7YhCawP1xDikxzzC8crLGyR1NyCVwLoHi4g1Zy6BkLaPOrX61Jzg9/F/T2IFjYfO6RoeijX6GWXeO/rnae39/CwCKQz6U3PVRivYE1yopXq308POaKRO0a6fh99+1hITAypUGOnSQhxGvkx7aNiUl9X1qFMVyj7IePnxIrVq1WLJkCb6+vsb9kydP5siRIyxfvjzOOSdOnODWrVt4eHjw7Nkz5s+fz5EjR9iwYQO5X8nXHx4ezoULFyxV/RQTEGDLDz/kp0AOf7r1fkYmp4SH7zx7puPbIdnYc7gQxfNc5/e/7ydaXoj0RDEotGmSmzuB+bG1iWH7v2fInNlg7WoJIYR4A9qICHxr1gTgxJ49GBwcLHo/RYHu3T04c0btfhwx4iatWgXFW9YmJpB8gT+R4+k6NPEkL9NrM/PcrhCXCvyCon3pc1Z8Q84zIkXBLvouzhEncAo/TpbwQ9jFPIpT7FreKTxxrmOFCqYNx4450bu3BwBVqjxl1qyrVq6RSKs8PT1xdHRM8HiaWzLM19fXLED39fWlSZMmLFmyhM8//zzec9zd3RN9k2lB3bp6zpyJxtu7IjqdLtGy/+4xcGzHGUr45CNrzkKpVEPxJvR6PWfOnMHb2/u17SpUzdvDTz9DdIwNDx/68NJqFGmKtG3GJO2acUnbWkFYmHHTx8cHMseTJOwtvdyua9fqOHNGbVtPT4URIwpgY1Mg7kmh19FuqYMm5plxl+LsgeI+ECWLJ2TxAPucZNJoKBP37HeIL9BM3VQU9CEX0DzYiubBNgjYDTZOFK7WH3R2plMe7UYTcgEld31wLATaN/tZSy8/rz4+MHGiwo0bGg4fzoKbW1ny5Xv9ee+y9NK2KSU8PJzLl1+/OoBFg+5s2bKh0+kICjJ/ChkUFJTkedq2trZ4enpy+/btBMvodLp006hJqatOp6NKw4yZxTqjSk//B62teQs16AbYuFFH+/bWrc/rSNtmTNKuGZe0bSp66fus0+nMXqc0g0HHN9+Yrj9xogZ7e526dNeTM+D2UparLMXBtTI82A62LuD9PRr3/miSkhH8XZbdW/0q9YU63Dz0Jjq7V0YvXJ4Od9eq21pbcCoGzu7gXEL9ciygJnhzKqpmYX+NtP7zqtNB584wahQYDBr++kvH0KHWrlX6kNbbNqUk9T1adPyMnZ0dpUuX5sCBA8Z9BoOBAwcOmPVmJ0av13P58mXc3NwsVU0hRCry8zN1hmzYkD6mxAkhhLCu+fM1xHYm1agSRnO37rDOHZa7wLYaEPHSetUaDZSbDsV7Q/MrUPLzpC3BJUx0mcClpPm+54Fwb4PptSEaQi6qQfjFaXCkD+xqCpvLwbV5ca9piLFsnS2kc2fT9sKFkmNOvBmLT1rp1q0by5YtY9WqVVy7do3vv/+eiIgI2rwYU/r1118zbdo0Y/lZs2axd+9e7ty5w7lz5/jqq6+4d+8e7dN6d5gQIkkyZYL69dXtgAA4suuudSskhBBpRFQU7N/xmHEDd1K//DGyOIZQ1fMMTx49tXbVrCo8XMvo0aa0X5MbvYfmxgJ4dsVU6PErCXqzloZKc9R1s0XKyOQKjY5C6W+gQBtw8Up4mTGHVxZPjwyGNYXh5HB4HnfueFpWtCjUqqVuX7xoWiNeiOSw+JzuJk2aEBwczIwZMwgICMDT05PffvvNOLz8/v37aLWm2D8kJISRI0cSEBCAi4sLpUuXZsmSJRQvXtzSVRVCpJLmtS6werUnAOv+ukKVujJBSgjx7omOjObooQh27svCjh2wbx+Eh2cD/IxlDl70ZszgnUz7wy+hy2R4SxdqefhQDbrbVFxB1RIvlpzU2qvrT2crB5lyJ3IFkWKylVW/YikGCPeHZ5fh2VWIuAcR98GltPl5l2ZAxF04PwEu/YCmaE9s9Y1Ss+ZvpWtX2L1b3f79d6hcOenn3r8Pf/+trlRUsaIlaifSA4tmL7e02Ozlr8sWlxbo9XpOnjxJ2bJl34n5De8Kadc38+DGI/IUzQmAT5FLnLruYeUaxSVtmzFJu2Zc6aFtY6JiOLbjIjs2B7JznxN7T5ckLNLptefZ6KI5d9gf93JFUqGWyRAWZlrIODQ0+YnUFEXt9Qy9Bs+uYgh/gLZ4N7Pe6QeHl1OidiNCnzuj08ZwfnIp3Is8g1Jfq8PHbdL25z/xwomv4dJ0dUj6CwZsoGhXtN4jIXNB69UtCZ49g9y5ITwcsmZVA+lMSVhcaNs2+PhjdWSfTgfz55sPV8+I0sPv4pSU1Hg0zWUvF0JkfLmL5KSSx1kOX/Li9A0Pbl/0p2DJ/NaulhBCWMyDG4+oUjmKWwFeCZbJl0/Ne1GnwlX86tiy8KcbjPnFjxi9LV8NfMSavWks6E4q/XO48QdEBqhBdvgdY6BNTCgh4c7UGbeDU7c/onjRaEr7QOnSUKoUbFxWntDnzgD0qv8n7s0+hWI9wcayy5OJFOY7GTwGwoVpcHUu6CPQEgPXf4ObC6HYJ1B6GDimzc8Czs7Qti0sXgxPnsDatfD++wmX1+vV5Gtjx5rmgOv10KULBAdDAgsyiQxMgm4hhFU0ey+Qw5fU7fV/X6PfqLf/QxsdGc3csftxzqKj8xfV0Wg1rz9JCCFSwcKZ57kV4Ge2L0+2B9SpcI067argV1dHsWJqDjBQp9R9PTEH8/65z73gPKzdV5l/lx+nXvtyqV73JHseAPc3q0OLs79Sz8OfJHjaX/s/4vjN8gBcumrDpauwcmXs0aIAZHaM4rv5H0DeJHQvirTJMT+U/wFKD8dw8QeUizPQGcLU3u8rP6nJ12qthrxpc9h5165q0A1qQrWEgu4HD+Cjj2DHDtO+EiXgyosUBIMGQWAgjBkT+/Mu3gUWT6QmhBDxad7eNP9u/ea3Hx6oGBR6tz3Ip2Nr0/XrGgzrseutrymEECllw7Zsxu3pw3Zx+fhN7gbm4s+t1enZS0fx4nE/gDtlc2LCsKvG14O+dkIfnUaXfNjuBytzwYHOcG2++TFdJrBxNt+n0YFTccjTkPWXBxh329nFP+tx8Bc25JKAO2PI5IbiPYYzRddi8BwKNi+mJdg4gmtV69YtEX5+UPDFKPjNm9Uh5q/67z8oW9YUcOt0MHGimoBt1ChTuXHjoG9fWcHlXSI93UIIqyhT04N82e9zNzgP/53wJuxJKJmzvn5uY0ImfbGTBRvqmF7/7oeb206+mOz39pUVQmQoR7efZ/OaR3QZ4E4Bj7wWv9/jh0/Yf15NLOWe7wafja+d5HM7DqrOzF/OcfRKac7cdGfepD30GlHTUlVNuueBcHyk6XXQUYiNie9tAGWm+VOESnNA5wCZcqpJzzIXBK0t4eHw7zG1SN68cOuWhhs34Px5OHcOzp83YGPziGHDJAt5RqPXuaD4jAXPL+DiVMiUK+7a3pHBYJ/dOhV8hVarzsceOxYMBvjzT+jeXU2wtnOn+nXqlKl8vnywZAnUqKG+/vZbcHWFAQPUIedz50JQEPz4o0WXuE91ej0EBdnw8OHbvS9bW8ieNpo+RUjQLYSwCo1WQ7PaV5i7Kg+R0ZnYvuIgLXtUeaNrLf/5AMOm14mz/8spfuTwiKBrD5n7J4RQzR2zm/7fV0NvKMWcvx9w+GQMefNb9uPQ1uXn0RuqAdCk1m0g6XOztTotP0zTU7OF+nrEj1X44FNwcUn8PIuJiYDLM+DceHgWYn7MxQvyNYW8TeOeV/ijeC/377/w/Lm63awZ2NioQ3FLlICWLUGvVzh58i52dhJ0Z1iZXKHsxLj7nwfAhlLq8mRlJ4Fd1lSv2qtig26AESPg66/jX7e7YUN1KLrbK/9t+/VTA8lOnSAmBv75R/3KWHRAmRS5UteusGBBilzK6mR4uRDCapq3MgXD69ZEJ1IyYYe2nKXzZ2WNr8cN3Mno/juNr3v2dmDt2jetoRAio4iJiuHzj3bR59ta6A1qkH03KDfNW9oQFmbZe2/YYPpU3rSVcyIl41ejuQ/vtwgAICDQlvHjzY9HR0az9e9jDOu+k42LjrxVXROiKBD56AKs94CTQyH6lYC72QVoekYNnnLWTPJk1XXrTNvNm6dghUX6d3wQRAbC1V9gvSfc/if+CDcVlSgB1aur25GR5tXRaqF8eZg+HTZujBtwx+rQQf1/n8YXXkoT1q1TRxVkBNLTLYSwmrqtvXD4JJyIKEc27HHHoDeg1SX9WeDNc/60+CAXz6PV4L1r0z0M+0EdthlAJDNn26PXq8lOtm6FWrUs8jaEEGnc04CndGh2mc2HTcO6XZzCeBqamePH1aRHK1daZoinwQCbjlQCwMkhjJrNSr/mjPhN+tGNNVvUD/rTp0P3rtHcOnma5UvCWPmfF8GhaiKySb8bWBl1iFY9k7GQ8Gvo9eqyR8uWlWRat08YVO9b0GihaCdgoVooc4FkX1dRYP16dTtTJqhbN8WqLNI7RYEclcF/DcSEwvMHsLc95K4P5aZBVm+rVe3bb6FxY7WKvr7qXG8/P3Ud7qxZk3aNRo1g716YMQMeP7ZgZa1AURSePn2Ki4sLmrfIFGdnpw7f12aQLmIJuoUQVuPg7MB7FQ6xbn9lHjzJxbHDYVSsmrR1Xp8+hWZts/LoqToP3K/MCeYur2zMWD59hj1Bj+Gvv9QPqc2bK+zadJey1dLmciRCCMu4duoWzZvHcOFORUBd83rOmINUbVmTqlUhJERd/mfIEJg6NeXvf+QIBAbZAvBew8zYv2HvVuHCMHgwTJgAUVFQykuLwVA+TjlF0fLxAC92F71A+bqeb1Fzk7FjYelSAA2jlg+hT/tjOFQZC7ZFMAbdb+D4cVMyqvfek54/8RKNBjw+hfyt4Eg/uPfi6cyDbbCpLBTtAT6jwSF3YlexiAYN1EBZUd5umoevb8YZOv0yvd7AyZPX3pl1upMqgzw7EEKkV80+Nj2tXr85aQF3TIzae33ukhpwu+e/w4pNhbFzsDOW0WrVP2aNXqw8EhKioVFTOx7ceJRylRdCpGn71p+mck0nLtwpBkB2p2C2Lz9Hj2E1KVVKnUsZ+5lw2jSYOyblVz3YsMG03TSeqc7JMWwY5MqlbhsMpg+zjvZhfFB3P82rHQIgPDIzzdtl486VoLe7IWoW5pezLj99ZseaJ6sha8LrjSdVbC83qPO5hYgjcwGovRZqLIfMhdV9igGu/QrrSsC5Ceo68KksSxYr5lUQ6ZIE3UIIq2ra0tS18fLcvsQsXKgOFwfIkQM27ChA9jzZ4pSzs1M/VFf1uQHAwyc56dv5OorBunPChBCWd/viXZp3KEDQsxwAlMx/jcN7n1G7dVljmfr14adZpjV7+n9fna1/H0vRemzcaNpu3PjtruXsDD9PvoqNLhpH+zDer7uff34+QMAjDUv+rcbybWWp4aWmT77/ODfN2mXn2bM3v9/DmwF89H5InGm0C9+8c9vMy7/z3/aBhMjANBoo2E7NG1B2kmn5uZhQuDwTFFl3S6R9EnQLIawqXz4oV07dPnEC7t5NvLyiwA8/mF4vXQrFiydcPnNmWLPeGbcsahKi1XursHT2gbestRAiLYuOhg6ds/A4TH0YV9f3OAeP56BYmUJxyvbqo+PLTjsB0BtsaN+jOOcOXI1T7k3cvxHIsRcxfNmy6u+7t9W6c3GCHkYQFKRj6b/VaNunKo5Z1IeX9o72rNqUn6IFQwE4fVpDhw7q6KDk0scY6Nj2Dg8CswDwXp0IChdWj23d+vrf1a9z7x7G742vL+SXmT/idXSZoNTX0OIqlOir5hUoM960zrcQaZgE3UIIq3s5Y+2aJfcTLbtt+RnOnVO3a9SAevVef323Aq78NNH0IXrANx48vBnwJlUVQqQDI0bAgSNqb1jhPAGs2FwMF7esCZafOK8mrWocBCAkwoWhXwSnSD02L7tg3G5a+WCKXBMgS44sZMqcKd5jrvlzsGGLkzGh08aN8MUXyb/HhEG72X5cfSKaO+tD/pgfSufO6jGDAf744w0q/pKXh93L0HKRLJlyQsWfoOl5KNLZ/FjUUwi5bJ16CZEICbqFEFbXoqEpdeeUyTFEhkcmWPZ/U03HBn1yM8n3aNe3Ku3rqD3cQc9y0K/LNRlmLkQGtHEjTJ6sbtvawtLVbmTNmfjkS52tjj/We5Mn2wMA/j3mxfOwt58numGTKV9tk+ap1xtXsqSajd3mxe1nzIDZ3+9L8vm7Vp/iu9k1AdBq9Pz12z1yFXYzBt2gDjF/m9WbXp7PLUuFiTeSxUPt7Y6lKHCkL2wuB9cWWH15MSFeJkG3EMLqylXNRoMKRwG4+agAP4+Jv0fo/MGrbDlSAYAiuW7T8sPkLVEz6/fiuGYJBGDl7ios/znhYeaBd4OIiZZ5YkIkV9jTMK6eDSQkJPU/8wbei6JbN9NHm0mToFKlpJ2b2SUzDatdASAiypH9my685ozERT2PZuthdXmw7E7BVG5Q6q2ul1x16sAvv5hefzm+HMH3X782UcCdQD7qkRODoiZq+7bPHuq09QWgWDF1WSSACxdMw8OTKyICtm1Tt3PnVtc2FuKt3fkHbv0NMWFwqLu6xNjdjRD9FokNhEghEnQLIdKESdOc0WgMAIyZ5c2TR0/jlJk+8Z5xe2C3G+hsk7cURc6Cbswebxp21n+4O49umw8z373mFHV9T5C7UE76dXQk9HFosu4hxLvswuFr5MwFJbxdcXFR117Onx/KlTPQsOJRJn+x02IjTGKiYhg1xJ6gIHXZwBYt4PPPk3eNBg1Mv1O2boj7Oyg59m04y7MIdT50o6oXkv37KiV06waftFQzsj+PdmDpL2dee06fjle5F5wHUOfCj/ixptnxrl1N2286xHzHDjXwBjWBWkZZh1dYWd4mUKyn6fWdFbCrKfyTDbZUgZPD4P5WNSgXIpXJrzkhRJpQtpYHHzfYD0BwaHYmDT1hdjzgTiCLNqpdVlkcntL9y3JvdJ/2favStrbawx0Y4sqArupc7727Y6hX7gS1W5Vhx0m1V+f4NS++7Hnqje4jxLto7nR/wiNNw6ijotSEWydOaNl6tAJD/ufHnz/ut8i9v++/nwMX1N8LBXM+YMF8BY0medeo16qEcXvb3lxvVZ8Nq01Be9OmyaxICur/hWkd49//zp5o2SsnbrJydxUAcroE8OeK/HEeFrRvb1pP+59/3qxOL2ctl/ncIsXYZIbKv0KNZWCb1bRf0UPQITg/EXY0hLXFwfAG2QWFeAsSdAsh0owx0wpjZ6PO2Z7+R2X8r5iSqs2ZdJbIaDVxUM82J8iSw/mN7qHRapj9e3FyOKvr1y7fUZUK5Q3UrG3Dfyd845T/bU0t1sw79Eb3EuJds3m3OuVDp42hXp1ofHzU4cM6ncFYZsSEQikyX/plW/46ysQFdQCw0UWz9PcAsudIfqCbs6AbvsXUYeXHr3oScCfwjeu0Yaf6vdBq9DRs7/nG13lbZWp6ULboRQAOX/LiwuFrCZad+7+bxu0ve54jd5Gccco4O0ObNur24yfJr4+imOZz29vDe+8l/xpCJKpge2h5E2qugBL9weWVqR35W4HWxnyfITq1aifeURJ0CyHSjMKl8zPgA7UX+nm0A98NVnuhI8Mjmf2n+kdTq9Hz6bBE1ghLglyF3Zg1wfTB89hx06/CYrlvsXDKXn76fpdxX8/BxXhw49Fb3VOIjO7G2TtculsUgKqlzrH9P1tOnYL79yEqEhqUPwzArYD8/DQ65TJ537t2n059TUuBjf98L1Uae7/x9erXeGjc/nfjm/3cXz9zh4v+xQCo4nmOHHmzvXF9UkLXD0zvaeHPd+ItE/EsgvmrygBgb/ucbp8n/D18eYh5cp06Bf7+6nadOuDk9ObXEiJBdi5QoA1UnAVNz0HrB1B9iTr8vEQf87JRT2B1ftjRBPZ+APs7wcEecLgvHPscrsxRs6IL8RYk6BZCpCnDJ/vg4qj+cft9QzXOHbjKktmHefhE7XFp63eYwqXffkHXD/pVonVr0+uiRWHBArh4uyCdv6zBJ8Or07TyHkAdht69wy3Jdi5EIjYtv27cblzXPGGXVqdl0v9cjHkbxv3kE2/ehuSKiYrhozYPCAhxA6BBhf18Pr7GW12zQRvTQ72th94s+dnGZabvRdP3Umb5sbfxUd/S2OjUnrzFaz3Qx5Mkctkyg3Fd8/frHcU1f44Er1enDhRIXh5LI8laLqzCIRcU+kAdfp6tjPmxG4vh+SO4vwluL4Obf8D1+XB1Dlz6Uc2IviqvGohLUjbxhiToFkKkKTnyZmdYb3U+t0HRMWTwY/73s2mI46AvU6ZbRKNRkwBNnQp//gkXL6q9Nza26pBUjVbDF6MUcmdVe4g2Ha7Iz6P3psi9hciINm1zMG43bp07znE1b4M6kiU4NDsTh5yIUya5Rg3Yy67T6rSQ/DnuMWx8NFrd2320qd4gP5leLIG9bdubZWDfuNXRuN2kbZ63qk9KcCvgStOqxwG4F5yHbcvifu9/+sU0F7/f0MQfNmi1mC0flhwvz+du2vTNriFEiooJA5vXTFnTh0PAXrCRoRnizaRK0P3nn39St25dvL29ad++PadPn060/KZNm2jUqBHe3t40b96cXbt2JVpeCJGxDBxVmfw51EzlGw5W5PQNDwAqlzxL1SZvPmz0VY6O8MUX8NFH6nq+r8rimpnfZtw0vv5iUg0uXkyx2wuRYTwPe85/x9XlsXJlfUSZmh7xlhvzv0LGvA0//lmZO5fuxVsuKbYvO86432oB6hzyP+c/wjn7238gzpQJatdWt/39SfbPfGgo7DilPgjIl+MBZWq4v3WdUkKXzqanBwsXRJkdO3YMDquj/ylbFirXSjzhGkCXLuavE3s4oSiwdy98+KHpPj4+UKhQwucIkWpKD4W2gdD6PrS8Bc2vqEPSGx2HejvBfQDYZlGHpb+anfHWUoh6/VJ8Qlg86N64cSMTJkygf//+rFq1ipIlS9KjRw+CgoLiLX/8+HG++OIL2rVrx+rVq6lXrx79+/fn8uXL8ZYXQmQ8Ds4OjB52P87+wZ9FxVPashp9VIH+3dQJiM+fa/j4YzUjsxDCZO+G88as5Y2qXUariz+JWeFS+fm0w0t5G75IOKlXYu5ff8jHvQqgKOrHmHGf7aF605R7IFe/vml769akn/fggZoY7HmkmqSpSetcaLTWy1z+sqYdyxkTSK7aXc5seP/PP5vK9esXN66IT4kSUKWy6fWWLRAUBAZTzjzCwuDXX8HXV13fe8kS07HYZGxCpAk6O3DIDZkLgnNxNfladl/IVRsqzITW96B4L/NznpyDfR1gdSF1ObLnkvtFJMziQfeCBQt4//33adu2LcWLF2fUqFFkypSJFStWxFt+0aJF1KxZk549e1KsWDE+//xzSpUqxR9vuhikECJd6vx5eby8TK8LFoQ2Pd9smbC3NXlWfkqWVLePH4fPP1OIDJfIW4hYm9aGGLcbN078o8XwyWXImvkJAAs3VuPs/itxyhj0Bs4duGq2gkEsvR4+7pGDR0/VedyNKx3hqym136L2cTWoZ8pkvG3p8SSdc/JIGJUqwaEXix04OsLAz9JGwA1g52DHx03OAhAZnYllK9Qx9E8ePeWvP9X3myWLOvInqTp2NG23bQeurmBnp2as9/FR12jv1UtNnhbL1RW++Qa+/vqt35IQqccms/r1svMT1X9jnqnbawqridfC76Z27UQ6YPP6Im8uKiqKc+fO0bt3b+M+rVZLtWrVOHEi/rlcJ0+epOsraTFr1KjB9u3bE7yPXq9Hr4+bFCQtia1fWq+nSB5pV8uaMAGaN1fXiB00yIBGo5Ba3+qX29beHhYtgmrVtMTEaPh5jobta+8ybfxDmnSsmDoVEilCfmYtY9Nu0/JYdVu5J/r9dcmZhaG9djP0hzpq3oZRuVi7US3/+OETFv14mp8XF+HqfTWhWbHct/CreIvafhpqNy3CvL/ysmOn+vElb65w5i8tiIKSom3rWVpD7qwPefAkFzuPuxMRGo6dg32C5dfMP0KnT70JV0fOkz+/wurVBjw9SbXfWUnRcXA1ZixVtxcssqNHLz2/Tz9BxHM/ADq3PEemTCWTXOeWLfXwqfk+vR4ePlS/XlapkkK/fgrt2inGOfNJuY/8zGZMGaJdS3+HRpcZzY0FaAxRoI+ASz+iXJmDUrwPiudQyORm7VqmugzRtsmQ1Pdp0aD78ePH6PV6cuQwz4CZI0cOrl+/Hu85gYGBuLq6xikfGJjwWpnpaej5mTNnrF0FYQHSrpaRJw/MmJGFx49tqFEjmJMnU78OsW2r1cIXX7gxZUoBDAYNV+4VoUXXIjSctY9PvwoldzHX11xJpCXv8s/sP/+4cvhwFjp1eoi3d9hbX+/+PRsu3FGzAVf0OMfth9Hcfngr0XNqts5E7j+e8SDAmY1bszDmmxNcPxnAip3VCY+sY1b22oNCXFtXiHnrgC9M+7Vahe/H3OFuUCh3g/yN+1OqbWv5PmHZjlyERTrxz4K1lKqWL04ZxaCwcs5dJi5obhzq7l36MVOm3QZirPI7KzEaLRQv7snVq44cPKhh9arz/LzQlIa8fsM7nDyZ9DXUtRERxM7+btQwiAfPYnj82IbgYFuePLFBq1V4773HtG8fQKlS4UDy58jHepd/ZjOydN+uNp9gW7gluR4vxu3JSrRKJBpDJJrLP6K/8iuPsn/Iw2wd0etek6gtA0r3bZvCLBp0pxZ3d3ccHR1fX9CK9Ho9Z86cwdvbG51OZ+3qiBQi7Wp5ZcvGbhVM1fvG17Zly0K7Zg8Y1PcRe8+qQcaWo9X576MoPu+4j2+mlsMpm2Q2Tcve9Z/Z27dh0iQtiqJh9+6sjB+vMGiQkqQ5vAk5dMh0cpMPS7/0M5u4cRM19Oihbo+a5BvnuF+ZE+j1Gg5eKEW03i7O8VGjFLp3Ny3vldJt26TJfpbtULcvnHTmo35lzY7ro/X0bneI3ze0NO7r8N4+fl1eBgdnL9KqXr00xqHd06fm5/I9dZkwvzInaNqhfiJnxiPM9NBm2bKskNk0/FZ5kVlNo8kGvPk65e/6z2xGlfHatQHK82kYLk5Fc/UnNPrn6JRw8gTNI1cJP5RCH1q7gqkm47Vt4sLDw5PUAWzRoDtbtmzodLo4SdOCgoLi9GbHcnV1jdOrnVh5AJ1Ol24aNT3VVSSdtGvG9WrbVqiRh92ncrNk1n6+GlWEu8F5iNbbMWVhHU6cOcbWI+XSTOIkkbB39Wd254ojKIo6JSImRsPXX2vYsyuK338NI3ueNwuMtmwxbTdtqiOp39YuXWD6dHi5M8TZIYQuzU/Q74v8eFZSA/HwkHAObj3Hzm1P2XmyFKcu5qRVKxg+XIs2nunjKdW2Ddq4w1fq9va9ORn/yjWHdtvD7xv8jK9H99/JiBm10/zPf6dOMGyYgl6vYe8hU5v3/SQi+d+3l8rrdDqS3Phv4F39mc3oMlS7Zs4D5aeB5xdwbhxc+xWcPdAW/hC0L71HRUlatsJ0LkO1bSKS+h4tmkjNzs6O0qVLc+DAAeM+g8HAgQMH8PWN+1QboGzZshw8eNBs3/79+ymb1EfnQghhYRqthg8HVuPiVWe+6bnTuATS9uPl2bs+8SURhbCmHf9Gxtm3boMd5cqEcWjL2WRfLyoK/v1X3c6ZU81SnVQ6HcybB0WLqqNIZk+5x11/DTOX1sazUjFjOccsjtRt58vouX7sPpSTp09h4ULiDbhTUp6iufAurPZeHL3iSdC9YOOxX8buZupiP/V9aGNYMnM/I2f5pfmAG9QkZ42rmP+eyp31Ia26V7BSjYTIYBzzQsXZ0OwSVFlgHnAD7GoBhz6BpxesUz9hFRbPXt6tWzeWLVvGqlWruHbtGt9//z0RERG0ebFWxNdff820adOM5Tt37syePXuYP38+165dY+bMmZw9e5aOL6fIFEKINMApmxNjf/Xjt0lHjPv+NyXCijUSImGKQWHHkaIAONqHsWZVNDmyqv9fbwXkp2ZTd6Z+tZM7l+6hGBJZdPkle7fcMY4wbtgw+YFwxYpw7RqcOAH9vsyLc/a0Ne+xQQ11HXFF0fLfmksAbFtyjH7fVTOWmf39fj4YUC3e89OqLh+Hm73u2f4Cdg5xh/ALId6CUxHI8crDrMcn4d56uPYbbCgFO5tDwIF4TxcZi8WD7iZNmjBkyBBmzJhBy5YtuXDhAr/99ptxuPj9+/cJCAgwli9XrhxTp05l6dKltGzZki1btjB79mzc3d0tXVUhhHgjH/StRJ5sDwBYs68S104lnkRKCGu4dvo2/kF5AajudZEWrWw5cfAx1UqpvZ7Reju+mupHwZJ5yeoUQlXPM/RssYcfhu7k8NZz8V5z03LTOtuNq523/JtIZfUbm3I0bN0czbkDV2nXvTh6gzo7b/DHO+k9spa1qvfGmncpR7bMas+9VqOn1xfyGUuIVPH0IthmMb2+tx62VYM9bSEk/SSGFsmXKonUOnbsmGBP9eLFi+Psa9y4MY0bN7Z0tYQQIkXYOdjxaeeLDP8xN4qiZcZMDT/+Zu1aCWFux4ZbQCEA6tRQ19Uu4JGXncfd+KbXTqYs8jOWDYlw4eBFbw5eBNYBk6BPz1Bm/OSEra3pmpt2qRm9tRo9DZrnSp03kopqNiuFve1zIqMzsXGvO9vfdyQkQv3A3LLGISYvqGnlGr4Ze0d7fp54jOHj8tG34w0KePhZu0pCvBsKd4B8TeDqb3BpOoTfUfffWQn+a6B4b/D6Fhwy3u/Td53Fe7qFEOJd0HtIGRwyxQAwb0lBnjyxbn2EeNWOnaZ5hXUampKT2trbMnmhH3vWnuarzjtpUvkIhdz845w/5zcnGjeGx4/V13cu3ePc7RIAVPI4T458OeKck945ZnGkhrfag38vODc3/dWAu1zxS/y53gudbfpNEvTBgGpcu1+IL6f4WbsqQrxbbLOA52BocQ0qzYVMudX9ih6u/ATriqtBuchQJOgWQogUkD1PNrp0VQcPhYXBb/L3UqQhikFhx1F1eS2nTM8oX7dknDI1mvsweaEfGw5W5Oaj/IQEPePQlnNM/uYCdi+m+/77L1SpApcvw6blV43nNq4bGOd6GUWDhuZznfPnh3U73cnskjmBM4QQIgm0tlC8FzS/At6jwObFdJaYUMiU07p1EylOgm4hhEghn39u2p45E2JirFYVIcxcOnadB0/U4Yo1fS5ia2/7mjPAObszlRqU5quxnvz3H7i5qfsvX4bKFcKZPd80/LFRy4z7AbHB+6Y1t52cYP16yJsv7WcpF0KkE7ZO4P0tNL8KJfpBrrqQr7l5megQdakxkW5J0C2EECnEwwOaNlW3b9+GlYuuW7dCQrywY4NpuHidmmHJPr96dTh8GLxexJ9Pnjly+oYHAK5ZAqlQzzNF6pkWlSkDn30G3t6werX6WgghUpxDLnWpsTpb467jvacdbK8FgQfjP1ekeRJ0CyFEChr0qSmg+d+U8ERKinfF2f1XqOV9ihGf7LRaHXbsNvVs12n0Zr3ShQvD/n0KzaoeMdvfsMoltLqM+3FCo4Hp0+H0aahXz9q1EUJkeK+u631/KzzYBgF7YWtV+K8h3N0IisE69RNvJOP+lRRCCCuoW98RnyLqer6HLnpxYOMZK9dIWNuYb+6x52wZxv3mx6ndqb+slsEAO05XAsDFKQzf2h5vfC3nLBpW7yrHl512Gvd93EnWdxZCCIvR2kKWl35vP9gKu5rC+pJwaSZEP7Ne3USSSdAthBApSKPVMKhPgPH1D1NDrVgbYW2KQWH3SdMayBtXPkz1Opw7B4FBapK/WnUyv3XGbZ2tjimL/Ni/4Qz//XOCxh0rpkQ1hRBCxCdXHWhyFir+DJkLm/Y/uwLHBsLq/HBsEITKlLa0TIJuIYRIYR8OqEiurI8AWLGzEjfPxV1+Sbwbbt6EB0/yGF9v+jd7qtdhxw7Tdp06KXfdqk28qdPWN+UuKIQQIn5aGyjRR022Vmu1GojHig5R1/w+8ZW1aieSQIJuIYRIYfaO9vT7SB1GbFB0NG8aQf/2u/jpu13sWn2KwIy7upJ4xb795slw9p8vzdOAp6laB0sF3UIIIVKZVgf5W0K9/6DJaSjWE3SZ1GMen5mXNURDjOSWSSsk6BZCCAvoO9QLe9vnAJy9VYKf/qlN/9G18WtdBjc3yJcPVqywciWFxe3bZ/5ab7Bh+4rUm9dt0BvY9V8EANmzK/j4pNqthRBCWFJWb6j8K7Tyh0pzwa2m+fHby9Wh52fHyrzvNECCbiGEsAC3Aq7M+v4IebPfj/f4vXvQowc8epTKFROp6tWgG2DTxtRbwP3Unss8DnEAoLbXEbTyV18IITIW+xxQvFfcZcYu/QhRj+H0SFhbBC5MlZ5vK5I/v0IIYSE9h9fkblAeAu8+ZveaU/w8ajcDul43rnX89CkMHWrdOgrLefLoKWfPKgB4ltSTyVbtcd68rziKQUmVOuzY9MC4Xafm81S5pxBCCCvTPwdnD9C8SJwZGaTO+V5bTM14ro+0bv3eQRJ0CyGEheXIm42aLcrQ59tazFxQlO3bwcVFPbZgAbKsWAZ1aPsVFEXteajns486vmcBuBuchzP7r6RKHXbscTRu12mSN1XuKYQQwsp0maDaImh6AQp/DLzoBX/+QM14vqYw7PsYLs0AfZQ1a/rOkKBbCCFSWa5cMHq4aVz5gM9s0EfrrVgjYQn7dpnm0FWvYUOjBtHG15t2Wj4AjomKYfdJdW1XtyyBlK5SzOL3FEIIkYZkKQHV/oAmZ6BAO9P+5w/g1l9wdrS6DriwOAm6hRDCCvp9nh2fIpcAOH7Vk1/GxzP5V6Rr+464GLerNyhM487VjK83/+tk8fuf2HWZkAi1DnUqXEaj1bzmDCGEEBlS1tJQczk0Oq5mP4/NeJ69Uty54CeGwJEBEH439euZgUnQLYQQVmBjZ8Os6aY5tt9M8SbQP8iKNRIpKSYqhkPn3QEo4HqXAh55KVECir3obN67F0JCLFuHHZsfGrfr1E695G1CCCHSqOy+6jrf7UOg0VHwGWV+PPyumoDtymx1/vexQRDxMN5LieSRoFsIIaykZosydGy4F4DHYdkY1j/1lpISlnVq7xXCItXe7Gplbhn3N26s/hsTA//+a9k6/LfH2bhdp2l+y95MCCFE+qG1hezlIUdF8/3Bx0Fro24bIuHSdDXz+dHP4N5mWXrsLUjQLYQQVjT5pxI4O6hdnvPWVefwNvPA+8EDWLo4hHkT9vDghqwvll7s+9fUVtWrmHqZY4NugE3Lb1jk3pGRMKLXHrYd9QUgT7YHuPsWsci9hBBCZCD5m0OLG+D5JejU5SbRR8DlGbCzMfyTDTZXUtf+FskiQbcQQlhRnqK5GDXwOACKoqV/v2iW/X6ffv3A0xPy5IEOnbPQc3hNCpbIykf197Fv/elUW3LqXbdh0RE2/3k02eftP2hKTFO9nptx269WDPa26rSCTVvtU7wdjx+HChVg3K81MSjqUjHd2lyU+dxCCCGSJpMb+E6BFtfB4zPQ2puOKXoIPgJBR+Ked2Ea3PgTnpxBo0THPf6Os7F2BYQQ4l03YFR15v19hXO3S3D0ahk+6BZ/uWi9HX9vr87f26Fs0Yv06/6IjwaUJ7NL5tSt8Dti2W+X+eATdejdirCDtOlVJWknKgr7ThUGILN9KD7VSxgPOTrZULvMSbYerYB/UF7OHbyKV7Xib13XqCgYOxbGjwf9i0T4NroYRvbey7D/VX/r6wshhHjHOOSG8tOh9Ah4+B882qV+PT0HOWubl9VHwsmhoMSgA3zRwt1C4Fz8xVcJcCoOmQtCFg9TIrd3iEWD7idPnjBmzBh27NiBVqulQYMGfPPNN2TOnPAHxE6dOnH48GGzfR988AGjR4+2ZFWFEMJqbO1tmT09DL825vt1OqhYEfxq6zEEHmf+8iIEhrgCcPJ6SXqNKMnQicEs+PEsLbpXtkLN05cj287Tf4DC/aDcrF5+ifJ1SiVYVlFg7I9Fja+/HZuVVj0MaHWvHyB2+9I9/IPyAVCl1GVs7MqZHW/8XhhbX3Seb1p5962D7guHr9GhS1ZOX8xh3FemDPw+H8qW83urawshhHjHZXKFQu+rXwDPA0CjMy8TchEU01QqDQYIu6F+PdhmXrbxCchW1vT64U41eZuiB8Xw4l895PKD0sMt8Y6swqJB95dffklAQAALFiwgOjqa4cOH8+233zJt2rREz3v//fcZOHCg8bWDg4MlqymEEFZXu3VZZn+7i3WbHSlbOgy/dlWpXsseJycAHVCRUT8+Z9mcfcz+1YXDl7wACA7NTqueFZl4bidfTaktw4jjERkJowfsZtL8augN6p+9zz4NZM9pJcHv15YtcOas6U/kuTslWfHLAdr3rfra++3bb/owUq1i3BTljdsVYNBEdXvzf858lZw38wrFoNCmLVz0VwNuGxv45hsYPhzs7GQwmxBCiBSWyS3uPqciUHs9PDmD4fEpIh6ewtFwF010PMt0ZMpj/jr4GPivjlvOLnuKVDetsNhf5GvXrrFnzx7++ecfvL29ARgxYgS9evXi66+/JleuXAmemylTJtzc4mlQIYTIwPqNqk2/UQkfz5Q5E52/qE7nL+Do9vOMHfWMNXsroyhahvzPjwuXDzHnn8rY2yd8jXfNsWPQtSucPVvLbP++c2XY/NcRGnesGO95kyfH3Td6kitte72+t3vf8dzG7eqtasY57u5bhCK5bnPjYUH2nPbiWfAznLM7xymXFOcOXuWivzp8vVgef5atz0+5cq85SQghhEhJtlkgX1PI1xRFr+fiyZOULVMGXcwTeHYFQq/Cs6sQcRfsXc3PjbifwEUNlq51qrJY0H3ixAmyZMliDLgBqlWrhlar5fTp09SvXz/Bc9etW8fatWtxc3OjTp069OvXL9Hebr1ejz52ElsaFVu/tF5PkTzSrhlXWm9b3zoe/FNbYfznO/jupzoA/L6+MlfqKfzzj4GXn1vqo/Wc2HOZAzsCyZXHlvZ9Klu9R/zWLVi+XEOjRgpeXil/fXWOs4ZJkzTo9ep7tbWJpkX1I6zYVQ2AEaOcqP9BTJzvxdEDT9ixQ+05LlFCIYfuLAcvenP2Vgn+mbuftr0TH8q/b58W0KDRKFSsHP//oYbVbzBnZUGi9XZsX3mcFt3iD/5fZ8tqf0ANuvt3vkKZMnlIo/9lLS6t/8xmSHo9OuOmHkv855N2zZikXTMuY9saDGCbDbJXUr9iKZj/rvAcDu6fq0PWNTrQaNV/tXYW+Z2S0pL6f9hiQXdgYCDZs5sPC7CxscHFxYWAgIAEz2vWrBl58+YlZ86cXLp0ialTp3Ljxg1mzZqV4DmXL19OsXpb2pkzZ6xdBWEB0q4ZV1pv26bds5DNbTVfT2zC80g79u3TUL58DCM+P8i9q084ctyVA+e8CIkwRbZ3/VdT5/0CVquzokDHjp5cuuTIN98odO9+n+7dH2BrmzKZvEMCw/j0s9Kcu2Sa4+zuHs6o769SrJgtVzuc49SN0hy/6snc8Wuo0sx8DeuJw54BfgC83+4aRbLd4ODX6gPk0ZOyU6TC8QR7u8PCtJw+XRaA4sUjuHHjQrzlylZ4AivV7dUrnlLQ9+QbvdfN/5qS0RT1iuLkyTe7TkaS1n9mMxJtRAS+L7ZPnz6NwYLTAaVdMyZp14xL2tacRlGUZH3KmTp1Kr/++muiZTZu3Mi2bdtYtWoVW7ZsMTtWtWpVPv30Uz766KMk3e/AgQN07dqVbdu2UbBgQbNj4eHhXLhwAXd3dxwdHZPzNlKdXq/nzJkzeHt7o9PpXn+CSBekXTOu9Na2R49CmzZa7t17fQ92QTd/LlzLjr2jdcah7/n3MXUamg8vK1PqKfNn36NMTfe3unbg3SAa1H7M6ZseANjYKAwfrjBsmIKtrdquC3/YRK+hLQHwLHCNk5cLoLNV2/j62duU9C2IQdGR0yWA67cdsXewp4b3RQ69mEe/7OcDtPmkUrz3377pGY2aZwWgTx8Ds2bF/yc27GkYbrnsiYqxp6CbP9fu5k726IPnYc9xc9MQEeVI3uz3ufXAzeojGKwpvf3MZghhYehcXADQP30KiSTKfVPSrhmTtGvG9a61bXh4OJcvX8bT0zPReDTZPd3du3endevWiZYpUKAArq6uBAcHm+2PiYnh6dOnyZqvXaZMGQBu3boVJ+iOpdPp0k2jpqe6iqSTds240kvbVq4Mhw9Dy5bqPOaXuWUJwK/8VW74u3D0SiluB+Rn/uRdDBhTO/6LWdjcyZcB86D71HkXKr/nyMjeexj2v+rY2tvGf3Iigu4F09DPFHDnzf6Q9Vtd8S1v3n6+dfNRrdRp9p/34cKdYiz9aR+dBqvLav047jYGpQgAAzufI3MWPwC+G/GcJp3U88dOzk7bTzTx9nYf3HiS2F7y6j430emKxikDkCV7FmqXOca2Y+W5HZCfA5tOUbNFmWS930NbLxMRpfYz1q9yDRvbPK85492QXn5mM4SXvs86nc7sdcrfSto1I5J2zbjelbZN6nt8/donr8iePTvFihVL9MvOzg5fX19CQkI4e/as8dyDBw9iMBjw8fFJ8v0uXFCH5kliNSGESFy+fLB7N3z5JXzYPpTZ3+7i3IGrPHzsyrL/qjJnjqkXdNyskoSHhKd6HR/eDGDFzgoAuGYJZP+eKLyK3QMgRm/Ldz/5Ubn0VQ5tOZvYZeIIuhdMvRoBnLoRG3DfZ+f28DgBN4BGq2H0qGjj6++nexEdDYH+Qcxfo86tzmwfSt9hpiC40UflqeSh1un0DQ/WzDdf2jLWvsOmhGjVa9olWucuHz83bv+0OPnLhm3d8NS43aDBu9vDLYQQQqR1yQ66k6pYsWLUrFmTkSNHcvr0aY4dO8aYMWNo2rSpMXP5w4cPadSoEadPnwbg9u3bzJ49m7Nnz+Lv78+///7LkCFDqFixIiVLlrRUVYUQIsNwdIQpU+CvZU70G1WbUlWKG4ccl6/rSZtaBwF48CQXs2c8T+xSFjHvh3NE69VgtEebs1StYcfR0zn4pudOdFp1jc8T1zyp0siLplWOcGTb+ddeM+heMO/VfGQMuPNke8CObc8p4VskwXP8WpflvWp3ALh+x4X582H2+DNERKlDwz5pc4zsebIZy2u0Gr77xvT9GjWjLIZXEqvqo/UcPF/CWIfCpfIlWu92fSrh6qoOP1+xJjMPH772rZrZtte0Csh7rd9uWL4QQgghLMdiQTeo87+LFi1Kly5d6NWrF+XKlWP06NHG49HR0dy4cYOIiAgAbG1tOXDgAD169KBx48ZMmjSJBg0aMGfOHEtWUwgh3hmjJ+dCo1EDvYk/ZCckniU0LUUfrWfu32qPrkZjoPcXxQCwd7Rn7K9+HNxymVIFrxrLbzxUkUoNStGs6mGObo8/+A70D6J+rYecvK4+mFUD7nDcyyUccMca94MpmdyYMQZm/qEmS9NpY/h8ZLE45Rt/XJ4KvmrgfepsJtauNT9+9uBVnkVkAaB6mRuvnV9t72BL9+5qmehomDfvtVU2CrgTyPGrngCULXqRnAVlNJgQQgiRVlksezlA1qxZmTZtWoLH8+fPz6VLl4yv8+TJwx9//GHJKgkhxDutdOUifPwx/PEHBAfDDz/Ad9+lzr03/nGM2wFqArLGlY5SxMs8GVmF90px4mIUv0/bzbgZRbkdoGYV33CwEhvqQ70aAThmcyMgAB49goAHYTwLzwGoWcpzZ33Ijm3heJSPfx71qypVghYtYO1auHtXa7xOh/cOUcizepzyGq2G78dkolkz9fWnA2KYPeYUjx478ehxVgKfme5bvUpUkurQu7c6MkFRYO5cGDIkadNi/938hNh58Q1q3gdkNJgQQgiRVlm0p1sIIUTa8/33YPPikeu0aRAUlDr3/fmlOeX9+sVfxs7Bjl4janH5phs/j9pN/hz3jMf+3evGunVw8CBcvw7Pwk2ZknNnfciOrWFJDrhjjRmDsec/1lcjXBMoDU2aQAV1Sjr+d23Yfrw8p2948OBJLmL0puRvdZrkTtL9ixaFRo3U7du3YdNfp5J03tYDpjng9duVStI5QgghhLAOCbqFEOIdU6wYdO+ubj97BpOHnUiR64aHhKMY4l8i6/qZ22w+Uh6AQm7+NPqwfKLXsne0p8+3tbh6Owc/fb+b/HnCzI5nzw4ehR9R0+sU3ZvtYe/O55SsmLyAG8DHBz5odtv4ukH5w5Sp6ZFgeY0Gpk4F25eSq9vZRJI/xz18i12gQYWjzP52V6LXeFW/TteM2z/Nfn0PuaLAtm3qdqZMUOO9XImfIIQQQgirkqBbCCHeQSNHKNjbqgHezIUe3L+ezCxer5g/cQ9OWTNRpdQ5bl+8G+f43GnXURT1T07vj64a18V+HXtHe/p+V4vrtzJz6RLcvw9RUWrv/MUbOdl9pgzz1tWkWJlCb1z3ceM05Mn2AKdMzxg30em15WvXhgcP4MoVeBrwlOeRdtwJzMvxq55sOVKBfqOStxRb43aFKeTmD8Dmw+W5fuZOouUvXgR/tTi1aqmBtxBCCCHSLgm6hRDiHZS/gIa+7Q4AEBHlyPhhF9/4WiFBIXw1rjSKouXwJS8qVbXl4GbTkl/Pw54zf5UXALa6KHoMLp3se9jagrs75M5t3sucEop6F+TKDWfu39NQ4b2kDdXOnh2KF4csri6vTZj2OjpbHb0/UhPIKYqWuf+7lmj5bVtNadMbNHirWwshhBAiFUjQLYQQ76hhE0uR2T4UgLkrqjLjm13ERMUk+zqzRh8nODS78fXDJznxa1Gcv2fsB+Cf5QYCQ9R50u3qHEmTmbYzu2TGKdvre7ktpcfg0tjq1JEH81d6ERkemWDZrUuOGbfr10n9Zd+EEEIIkTwSdAshxDsqZ0E3Pu90FIBovR2fja9N2RI3+Hf58SRf49kzmLagHABajZ7KJdUe7sjoTHz0WTVG9trJT784GMv3GypJv+KTs6Abbf3UtggMceWfuUfjLRcVEcXOE+pSYbmyPsK7rH2q1VEIIYQQb0aCbiGEeIeN/LEq3ZvtMb4+d7sE771fjnZ+B7h5zv+158+aBcHP1LWpP2p6jt3H3enZYrfx+Nhf/ThwQB1+7eUF1etmS+F3kHH0G2jKxv7Tb87xljmw+TxhkWqPfP3Kl996aLsQQgghLE+CbiGEeIfZO9ozb11NDm4+S0X3c8b9K3ZVxdM3B+PHRKDEn5Bc7eWepm5rtTBiqg92Dnb8sqomPwzdhVajNyvfr5+a/VvEr0YzH0oXvALA/vM+nNpzKU6ZbRufGLdlPrcQQgiRPkjQLYQQgsoNvTh43pP5E/eQ0yUAgOfRDnzzrQPffBP/ObNnm9b4/vBD8HixSpZGq+HzCbVZ9/txnDOrc5NdXKBjR0u/i/RNo9XQr6tpXfLJYwKIjjYvs3W3aT78e61KpFbVhBBCCPEWJOgWQggBgFanpduQmly+YsegjvvQaNQu7gkT4IcfzMuGPg5l6hQ1ItRqYcSIuNdr0rkiR47ZM2QIbNwIzvGPmBYv6TjQ15jc7q9tNShZEhYsgOhoCL7/mKNX1Pnc3oUvk6eorM8thBBCpAcSdAshhDDj4ubC/xZXZ+ZM01jwwYNh0XxTpuyfxh4lKFhdu+vDdk8oWTL+a3l4wMSJUK2aRaucYWTJkYXRn5mSqF2/Dt27g6cnfD3wgXGt8wY17iV0CSGEEEKkMRJ0CyGEiFf//vDdd6bX3T+xYf3Cw4Q+DmXKb+q62xqNgRFfBluphhnT4El+7N0RQv36pn3XrsG8fzyNr+s3tt7yZkIIIYRIHgm6hRBCJOi776B/T3Xitt5gQ/tPvOn9wSnjutsfvneAkhWLWrOKGVJ1vyxs3Qp79sB775kfs7d9Ts1msvSaEEIIkV5I0C2EECJBGg3MmJONDvX2A2pytb+2VX9xzMCIsbmtWb0Mr0YN2LYNdm+4Tj3f42g1egZ1PIhjFkdrV00IIYQQSWRj7QoIIYRI27Q6LQvXVeBx7aNsOVLBuL9DvQN4VqpuxZq9O2o2Kcr2JhAVEYWdg5+1qyOEEEKIZJCebiGEEK9l52DHim2eVCl5BgAbXTQjxkr27NRm52Bn7SoIIYQQIpmkp1sIIUSSZHbJzJa9hfht8k7KVnShVGVfa1dJCCGEECLNk6BbCCFEkmXJkYXBk/ysXQ0hhBBCiHRDhpcLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFpKu53QbDAYAIiIirFyT19Pr9QCEh4ej0+msXBuRUqRdMy5p24xJ2jXjkra1gufPwcPDtK3RpPgtpF0zJmnXjOtda9vYODQ2Lk2IRlEUJTUqZAlBQUHcvHnT2tUQQgghhBBCCPGOKly4MDly5EjweLoOumNiYnj69Cn29vZotTJSXgghhBBCCCFE6jAYDERGRuLi4oKNTcKDyNN10C2EEEIIIYQQQqRl0j0shBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0J0K/vzzT+rWrYu3tzft27fn9OnT1q6SSKa5c+fStm1bfH19qVq1Kv369eP69etmZSIjIxk1ahSVK1fG19eXTz/9lMDAQCvVWLyJX375BQ8PD8aNG2fcJ+2aPj18+JAvv/ySypUr4+PjQ/PmzTlz5ozxuKIo/Pjjj9SoUQMfHx+6du0qS1CmA3q9nunTp1O3bl18fHx47733mD17Ni/nhJW2TfuOHDlCnz59qFGjBh4eHmzfvt3seFLa8MmTJ3zxxReUK1eOChUqMHz4cMLCwlLxXYj4JNa20dHRTJkyhebNm1O2bFlq1KjB119/zcOHD82uIW2b9rzuZ/Zl3377LR4eHvz+++9m+9/1dpWg28I2btzIhAkT6N+/P6tWraJkyZL06NGDoKAga1dNJMPhw4f5+OOPWbZsGQsWLCAmJoYePXoQHh5uLDN+/Hh27NjB9OnTWbx4MY8ePWLAgAFWrLVIjtOnT7NkyRI8PDzM9ku7pj9Pnz7lww8/xNbWll9//ZUNGzYwZMgQXFxcjGV+/fVXFi9ezPfff8+yZctwcHCgR48eREZGWrHm4nV+/fVX/v77b7799ls2btzIl19+yW+//cbixYvNykjbpm3h4eF4eHjw3XffxXs8KW345ZdfcvXqVRYsWMCcOXM4evQo3377bWq9BZGAxNr2+fPnnD9/nr59+7Jy5UpmzZrFjRs36Nu3r1k5adu053U/s7G2bdvGqVOnyJkzZ5xj73y7KsKi2rVrp4waNcr4Wq/XKzVq1FDmzp1rxVqJtxUUFKS4u7srhw8fVhRFUUJCQpTSpUsrmzZtMpa5evWq4u7urpw4ccJKtRRJFRoaqjRo0EDZt2+f0rFjR2Xs2LGKoki7pldTpkxRPvzwwwSPGwwGpXr16spvv/1m3BcSEqJ4eXkp69evT40qijfUq1cvZdiwYWb7BgwYoHzxxReKokjbpkfu7u7Ktm3bjK+T0oaxv4dPnz5tLLNr1y7Fw8NDefDgQepVXiTq1baNz6lTpxR3d3fl7t27iqJI26YHCbXrgwcPlJo1ayqXL19W6tSpoyxYsMB4TNpVUaSn24KioqI4d+4c1apVM+7TarVUq1aNEydOWLFm4m09e/YMwNhzdvbsWaKjo83aulixYuTNm5eTJ09ao4oiGUaPHk3t2rXN2g+kXdOr//77Dy8vLwYOHEjVqlVp1aoVy5YtMx739/cnICDArF2dnZ0pU6aM/G5O43x9fTl48CA3btwA4OLFixw7doxatWoB0rYZQVLa8MSJE2TJkgVvb29jmWrVqqHVamUKXzoTGhqKRqMhS5YsgLRtemUwGPjqq6/o0aMHJUqUiHNc2hVsrF2BjOzx48fo9Xpy5Mhhtj9Hjhxx5gOL9MNgMDB+/HjKlSuHu7s7AIGBgdja2hr/aMTKkSMHAQEB1qimSKINGzZw/vx5/vnnnzjHpF3Tpzt37vD333/TrVs3+vTpw5kzZxg7diy2tra0bt3a2Hbx/W6W+fppW69evQgNDaVx48bodDr0ej2DBg2iRYsWANK2GUBS2jAwMJDs2bObHbexscHFxUV+N6cjkZGRTJ06laZNm+Lk5ARI26ZXv/76KzY2NnTu3Dne49KuEnQLkWyjRo3iypUr/PXXX9auinhL9+/fZ9y4ccyfPx97e3trV0ekEEVR8PLyYvDgwQCUKlWKK1eusGTJElq3bm3l2om3sWnTJtatW8e0adMoXrw4Fy5cYMKECeTMmVPaVoh0JDo6ms8++wxFURg1apS1qyPewtmzZ1m0aBErV65Eo9FYuzpplgwvt6Bs2bKh0+niJE0LCgrC1dXVSrUSb2P06NHs3LmThQsXkjt3buN+V1dXoqOjCQkJMSsfFBSEm5tbaldTJNG5c+cICgqiTZs2lCpVilKlSnH48GEWL15MqVKlpF3TKTc3N4oVK2a2r2jRoty7d894HJDfzenQ5MmT6dWrF02bNsXDw4NWrVrRpUsX5s6dC0jbZgRJaUNXV1eCg4PNjsfExPD06VP53ZwOREdH8/nnn3Pv3j3mz59v7OUGadv06OjRowQFBVGnTh3jZ6m7d+8yadIk6tatC0i7ggTdFmVnZ0fp0qU5cOCAcZ/BYODAgQP4+vpasWYiuRRFYfTo0Wzbto2FCxdSoEABs+NeXl7Y2tqatfX169e5d+8eZcuWTeXaiqSqUqUK69atY/Xq1cYvLy8vmjdvbtyWdk1/ypUrZ5zzG+vmzZvky5cPgPz58+Pm5mbWrqGhoZw6dUp+N6dxz58/j9OTotPpjEuGSdumf0lpQ19fX0JCQjh79qyxzMGDBzEYDPj4+KR6nUXSxQbct27d4vfffydbtmxmx6Vt05+WLVuydu1as89SOXPmpEePHvz222+AtCvI8HKL69atG0OGDMHLywsfHx8WLlxIREQEbdq0sXbVRDKMGjWK9evX89NPP5E5c2bj/BNnZ2cyZcqEs7Mzbdu2ZeLEibi4uODk5MTYsWPx9fWV4CwNc3JyMs7Lj+Xo6EjWrFmN+6Vd058uXbrw4YcfMmfOHBo3bszp06dZtmwZo0ePBkCj0dC5c2d+/vlnChUqRP78+fnxxx/JmTMn7733npVrLxJTp04d5syZQ968eY3DyxcsWEDbtm0Badv0IiwsjNu3bxtf+/v7c+HCBVxcXMibN+9r27BYsWLUrFmTkSNHMmrUKKKjoxkzZgxNmzYlV65c1npbgsTb1s3NjYEDB3L+/Hnmzp2LXq83fp5ycXHBzs5O2jaNet3P7KsPT2xtbXF1daVo0aKA/MwCaJTYx8PCYv744w/mzZtHQEAAnp6ejBgxgjJlyli7WiIZXl27OdaECROMD1AiIyOZOHEiGzZsICoqiho1avDdd9+9M8NmMopOnTpRsmRJvvnmG0DaNb3asWMH//vf/7h58yb58+enW7duvP/++8bjiqIwY8YMli1bRkhICOXLl+e7776jSJEiVqy1eJ3Q0FB+/PFHtm/fTlBQEDlz5qRp06b0798fOzs7QNo2PTh06FC8CZdat27NxIkTk9SGT548YcyYMfz3339otVoaNGjAiBEjyJw5c2q+FfGKxNp2wIAB1KtXL97zFi1aROXKlQFp27TodT+zr6pbty6dO3ema9euxn3vertK0C2EEEIIIYQQQliIzOkWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBDiHXXo0CE8PDw4dOiQtasihBBCZFgSdAshhBDxWLlyJR4eHgl+nTx50tpVTPOOHj1q/H4FBwfHOb5hwwZat26Nt7c3VapUYfjw4XHKPX/+nOHDh9OsWTPKly+Pr68vLVq0YOHChURHRyd6/xEjRuDh4UHv3r1T9H0JIYQQyWFj7QoIIYQQadnAgQPJnz9/nP0FCxa0Qm3SD4PBwNixY3F0dCQ8PDzO8b/++otRo0ZRtWpVhg4dysOHD1m0aBFnz55l+fLl2NvbA2rQffXqVWrVqkW+fPnQarWcOHGCCRMmcPr0aaZNmxbv/c+cOcOqVauM1xFCCCGsRYJuIYQQIhG1atXC29vb2tVId5YuXcr9+/dp164dixYtMjsWFRXFDz/8QMWKFVmwYAEajQYAX19f+vTpw7Jly+jUqRMAWbNmZdmyZWbnf/jhhzg7O/PHH38wdOhQ3NzczI4risK4ceNo2bIlBw8etOC7FEIIIV5PhpcLIYQQb2HGjBmULFmSAwcOmO0fOXIkXl5eXLx4EVADzR9//JE2bdpQvnx5ypYty0cffRQnKPT398fDw4N58+bx559/Uq9ePcqUKUP37t25f/8+iqIwe/ZsatWqhY+PD3379uXJkydm16hbty69e/dm7969tGzZEm9vb5o0acLWrVuT9J5OnTpFjx49KF++PGXKlKFjx44cO3Ysyd+TJ0+eMH36dAYOHEiWLFniHL9y5QohISE0btzYGHAD1KlTB0dHRzZs2PDae+TLlw+AkJCQOMfWrFnD5cuXGTRoUJLrLIQQQliKBN1CCCFEIkJDQwkODjb7evz4sfF437598fT05JtvviE0NBSAPXv2sGzZMvr160fJkiWN11m+fDmVKlXiyy+/ZMCAAQQHB9OzZ08uXLgQ577r1q3jr7/+olOnTnTr1o3Dhw/z+eefM336dPbs2cMnn3zC+++/z44dO5g0aVKc82/evMmgQYOoVasWX3zxBTqdjs8++4x9+/Yl+n4PHDjAxx9/TFhYGAMGDGDQoEGEhITQpUsXTp8+naTv2Y8//oibmxsdOnSI93hUVBQAmTJlinMsU6ZMXLhwAYPBEOec4OBg7t+/z7Zt25g/fz758uWjUKFCZuVCQ0OZOnUqffr0idMDLoQQQliDDC8XQgghEtG1a9c4++zs7Dhz5gwAtra2TJo0iTZt2jBx4kS+/vprvvnmG7y8vOjVq5fxHBcXF/777z/s7OyM+95//30aN27M4sWLGT9+vNk9Hj58yNatW3F2dgbUOdJz587l+fPnrFixAhsb9U/448ePWbduHaNGjTK79s2bN5k5cyYNGjQAoF27djRq1IipU6dSvXr1eN+roih8//33VK5cmd9++83YC92hQweaNm3K9OnTmT9/fqLfr4sXL7J06VJ++eUXdDpdvGUKFSqERqPh+PHjtG3b1rj/+vXrxkRqT58+JVu2bMZj27ZtY/DgwcbXXl5ejB8/3vh9iDV79mzs7e3jbTchhBDCGiToFkIIIRLx7bffUqRIEbN9Wq35QDF3d3cGDhzItGnTuHTpEo8fP2b+/PlmAaFOpzMGoQaDgZCQEAwGA15eXpw/fz7OfRs1amQMuAF8fHwAaNGihdl1fXx8WL9+PQ8fPqRAgQLG/Tlz5qR+/frG105OTrRq1Ypff/2VgICAeHuBL1y4wM2bN+nbt69Zbz5A1apVWbNmDQaDIc77f9m4ceOoVasWNWrUSLBM9uzZady4MatXr6ZYsWLUr1+fhw8fMmbMGGxtbYmOjiYyMtLsnMqVK7NgwQJCQkI4cOAAly5dIiIiwqzMjRs3WLx4MdOmTTN7ACGEEEJYkwTdQgghRCJ8fHySlEitR48ebNiwgdOnTzN48GCKFy8ep8yqVauYP38+N27cMFvuKr7s6Hny5DF7HRuAJ7T/6dOnZkF3bG/yywoXLgzA3bt34w26b968CcCQIUMSeps8e/YMFxeXeI9t3LiREydOsG7dugTPjzV69GieP3/OpEmTjMPjW7RoQcGCBdm6dSuOjo5m5V1dXXF1dQXUBxJz5syhW7dubN261fhexo0bh6+vLw0bNnzt/YUQQojUIkG3EEIIkQLu3LnDrVu3ALh8+XKc42vWrGHo0KG899579OjRgxw5cqDT6Zg7dy537tyJUz6hodkJ9TIrivIWtTe/xtdff42np2e8ZV4Nhl82efJkGjZsiK2tLf7+/oAp0dmDBw+Ijo4mV65cgPqw4Oeff+bevXvcvXuXvHnzki9fPjp06ED27NnjTcD2soYNG/LDDz/w77//0qFDBw4cOMCePXuYNWuW8d4AMTExPH/+HH9/f7JmzYqTk1PSvyFCCCFECpCgWwghhHhLBoOBoUOH4uTkRJcuXZgzZw4NGzY0zqcG2LJlCwUKFGDWrFlmPdAzZsywSJ1u3bqFoihm94rtyY7N/P2q2J5yJycnqlWrlux73r9/n/Xr17N+/fo4x1q3bk3JkiVZs2aN2f68efOSN29eQA3Qz549m6Se6tjh58+ePTPeG2DAgAFxyj58+JB69eoxbNgwmesthBAi1UnQLYQQQrylBQsWcOLECX7++Wf8/Pw4dOgQ33//PRUqVCB79uyAqef65UD41KlTnDx50hh0pqRHjx6xbds2Y+AfGhrK6tWr8fT0TDCrt5eXFwULFmT+/Pk0a9aMzJkzmx0PDg42vp/4zJ49O86+DRs2sHHjRiZNmkTu3LkTrfO0adPQ6/V06dLF7J7ZsmWLM1R++fLlxjoDVKlSJd77jxw5krx589K3b1/c3d0Tvb8QQghhCRJ0CyGEEInYvXs3169fj7O/XLlyFChQgGvXrhnX365bty4AEydOpFWrVowaNYoff/wRAD8/P7Zu3Ur//v3x8/PD39+fJUuWULx4ccLDw1O83oULF+abb77hzJkz5MiRgxUrVhAUFMSECRMSPEer1TL2/+zdd3zN1xvA8c/NzZBBQsQOiZGYEXvvvTcd9qhSVKulgxalavRXdFGrtNpSo6VWjcbeK0HsBDGTGJGd3Ht/fxy515UhIdvzfr3uK9/9Pfceift8zznPmTaNYcOG0bFjR7p3707hwoW5e/cuhw8fxsHBgQULFiR7fsuWLRNtS5gOrXHjxmYB+08//cTFixepWrUqWq2WnTt3sm/fPsaOHWtMGgewYcMG/vjjD1q2bImrqysRERHs27eP/fv306xZM+rVqweYt5g/7csvv6RgwYJJlk0IIYTIDBJ0CyGEEClIrvv3jBkzKFasGBMmTCB//vx88sknxn1ubm68//77TJ8+nc2bN9O+fXu6d+9OSEgIq1atYt++fZQtW5bZs2ezdetWjhw5ku7ldnNzY9KkScyaNYuAgABKlCjBN998Q6NGjVI8r06dOqxatYoffviBX3/9lcjISFxcXPDy8qJPnz7pVj4PDw+2b9/Orl270Ov1eHp6MnfuXNq1a2d2XI0aNTh58iSbNm0iJCQES0tL3N3d+fjjj+nbt2+6lUcIIYTIKBpDemReEUIIIUS20bx5c8qVK8fChQuzuihCCCHEKy/5iTaFEEIIIYQQQgjxUiToFkIIIYQQQgghMogE3UIIIYQQQgghRAaRMd1CCCGEEEIIIUQGkZZuIYQQQgghhBAig+ToKcPi4+N59OgRNjY2WFjI8wMhhBBCCCGEEJlDr9cTExODo6MjlpbJh9Y5Ouh+9OgRgYGBWV0MIYQQQgghhBCvKDc3N5ydnZPdn6ODbhsbG0C9SVtb2ywuTcp0Oh0XL17Ew8MDrVab1cUR6UTqNfeSus2dpF5zL6nbLBAVBQ0aqOX9+yEDvotJveZOUq+516tWt1FRUQQGBhrj0uTk6KA7oUu5ra0tdnZ2WVyalOl0OgDs7OxeiX+Arwqp19xL6jZ3knrNvaRus4DBABcuqOU8eSADvotJveZOUq+516tat88b6iwDoYUQQgghhBBCiAwiQbcQQgghhBDilaXTQVxcVpdC5GYSdAshhBBCCCFeOdevw7hxUKAAlCoFN268+LUMBjh1Ch49SrfiiVxEgm4hhBBCCCFErqDXw/r18OWX8NdfKrA2GMyPOXkS+vaF0qXhf/+DsDC4fRsWL36xe8bEQJ8+UK0alCsHly699NsQuUyOTqQmhBBCCCGEEACXL8OwYeDjY77d2RmqV1dB8fHjsHNn0uf/9RdMmZK2e4aFQbdusGuXWg8Ohi5d4NAhyJcvre9A5FbS0i2EEEIIIYTIseLjYc4cqFIlccANEBoK27fDrFnmAbezM3z+uQrGAXx94erV1N/37l1o1swUcCfw94d+/VSruxAgQbcQQgghhBAih/Lzg/r14cMPITpabXNzgx9/hE8+gbZtwcXF/JwyZeCHH1TX88mTVdfwBH/9lbr7BgRAw4Zw4oRaL1AAVq4EJye1vmGDurYQIN3LhRBCCCGEEDmMwQDTp6vu4PHxaptGA2PGwLRp4OBgfuytW2ost709NG4MT08h3bUrfPSRWv7rL3j//ZTvffq0Cubv3FHrJUrAv/9ChQpQsCC0a6daub/4Ary9oXv3dHrTIseSlm4hhBBCCCFEjhEXB4MGwaRJpoC7QgXYvx/mzjUPuEEF48WLQ8eOqjv40wE3gKcnlC+vlvftg3v3kr/36dMqaE8IuCtUgAMH1E+A1q1h5kzT8f37q9b4BJGRsG4dvPkmeHiohG8i95OgWwghhBBCCJEjREaqxGXLl6t1jQY+/VS1Yter9+LX7dZN/TQYYOPG5I8bP14lTwOoWxf27gVXV/Njxo1TQTVARIRKrPbLL9Czp+rq3qMH/PabynL+6afqGiJ3k6D7FfbRRx8xcuRI43q/fv2YPn16ppfj8OHDeHp6EpbwF0wIIYQQQohn3L8PrVrBpk1q3doa1qxR3cltbF7u2l27mpaTG9d94oTqRg7g7g47dqhkbM/SaGDRIpUxHdT47/79Ye1a9dDgWaNGmVrsc6NTp9T0bOXLw8cfw7Fjiadxy+0k6M6GPvroIzw9PfH09KRy5cq0atWK7777jvgM/m389ttveffdd1N1rATKQgghhBAiswQFqW7dBw6o9bx5YevW9BsvXbMmFCumlrdvh8ePEx8za5Zp+YMP1Pjw5NjaqvnCn03i5uKipjXbutUUlPv6wsKFL1f+7GzcOPXg4cIF+OorqFVLPbR4/31Vn69ClncJurOpRo0asW/fPrZt28agQYP47rvvWLJkSaLjYmNj0+2eTk5OODw7CEYIIYQQQogsdP48NGgAZ8+q9cKFYfduNT47vVhYmFq7Y2Jg2zbz/VeuwJ9/qmUXFzWm/HlKllTX6dwZ3nkH/vtPJXT76Sdo0wa+/dZ07KRJEBKSLm8lW/H3TzylGsC1a/DNN6pemzdPugdAbiJBdzZlbW2Ni4sLxYsX54033qB+/frs2rXL2CX8xx9/pGHDhrRt2xaA27dv8+6771KzZk1q167NiBEjCAoKMl5Pp9MxY8YMatasSZ06dZg1axaGZ/p1PNu9PDY2ltmzZ9OkSRNji/uff/5JUFAQ/fv3B6BWrVp4enry0ZOUj3q9noULF9K8eXO8vLzo3LkzW7duNbvP7t27adOmDV5eXvTr14+bN29myGcohBBCCCFytshI1aX8+nW1Xrq0SpiWMLd2ekqpi/mcOaYW2XffVS3ZqVGtGvz9N3z3HTRtCpZPzR1Vv76azxvgwQM1vju3+fFH0/KkSeqBQ+vW5p/D7t3Pzxif072aU4b5/w/O/+/5xxWoDk02mG/b3Rnun3j+ueXfhwrp96/HxsaGhw8fAnDw4EEcHBxYtmwZAHFxcQwZMgRvb29WrlyJpaUlP/zwA0OHDmXDhg1YW1uzdOlS1q9fz5dffkmZMmVYunQp27dvp27dusnec/z48Zw6dYqJEydSvnx5goKCePDgAUWLFuXbb79l9OjRbN26FQcHB/LkyQPAwoUL2bBhA1OmTMHNzY2jR4/y4YcfUqBAAWrXrs3t27cZNWoUb775Jr179+bMmTPMfDrFoxBCCCGEEE+sXKm6lgNUraq6ZRcpkjH3atIEHB3h0SP45x+IjVXjxu/ehSdfu3FwgKdSIr20mTNVgP/4sRoHPmyY6uqeG4SHmxLe2drCe+9B/vzqPd6/rx5GjBqlHqwsXAgtW6pkc7nRqxl0x4VBVCpaV6Ndk9gWnLpz49JnrLPBYODgwYPs27ePvn378uDBA+zs7Jg2bRrW1tYA/P333+j1eqZPn45GowFgxowZ1KpViyNHjtCwYUOWL1/OW2+9RevWrQGYMmUK+/btS/a+AQEBbNmyhWXLllG/fn0AXJ9Kzejo6AiAs7Mz+fLlA1TL+MKFC1m2bBnVnjx+dHV15fjx46xatYratWvz+++/U7JkSWPLeOnSpbl48SKLFi1Kl89LCCGEEELkDgYDzJ9vWl+yJOMCblABdocOKrP4o0eqBbZVK1WGmBh1zPDhKnBML0WLwuefqzHiBgOMHq1a8i1yQX/klStNmd7feMP8cytQQHXR1+th6FC1behQ9cDBzS3Ti5rhXs2g2yof2BZ//nF5XJLelppzrfKlvVxP8fHxoVq1asTFxWEwGOjYsSOjR49m6tSpeHh4GANugPPnz3P9+nWqJ2RjeCImJobr16/z+PFjgoODqVq1qnGfpaUllStXTtTFPIG/vz9arZZatWqluszXrl0jKiqKwYMHm22Pi4ujwpPJC69cuYKXl5fZfm9v71TfQwghhBBCvBp274YzZ9RyvXpQo0bG37NbNxV0g2qBrlMHvv9erVtZqdba9DZ6NCxerMauHzqkphcbMMC0PypKBeKBgdCokZpXPD3Fxanu3Zcvq6nO+vRR7/VlGAymzw2S7x0weLDKAv/HH+pBxxtvqHp/2ftnN69m0F3hJbp+P9vdPIPUqVOHyZMnY2VlRaFChbB8auCD7TODSCIjI6lUqRJz5sxJdJ0CBQq80P0TuounReSTDAgLFy6kcOHCZvuefkgghBBCCCHE8zydaGz06My5Z5s2avqxmBgVdLu5qWAQoG9fKJ6Ktre0srZWrelPOqQyfrxKwrZ/v0pCduCAqaUdVOA9ZAj06gV2di9//wUL1JhzUN33P/4Yxo5V3cDzvWA74v794OenluvWNWVqf5ZGo+5/+LDKcH7woGr5//LLF7tvdpULOi7kTra2tpQqVYpixYqZBdxJqVSpEteuXcPZ2ZlSpUqZvfLmzUvevHlxcXHh9OnTxnPi4+M5m5ACMgkeHh7o9XqOHj2a5H6rJ4+fdDqdcVuZMmWwtrbm1q1bicpRtGhR4zF+Cb+BTzxdLiGEEEIIIa5dMyUzK1IEevTInPvmzavGFoPKND55slrWaODDDzPuvq1amaY/u3dPZfSeNEllPH864AbYuxcGDlRd00eMgOPHX/y+4eHwxRfm24KCVHd3V1f1AMDXFy5eTPx6tlxP+/FHjXH5eWPgHR1VS3dCyPPVV6r1OzeRoDsX6NSpE/nz52fEiBEcO3aMGzducPjwYaZNm8adO3cA6N+/P4sWLWLHjh1cuXKFKVOmpDjHdokSJejWrRuffPIJO3bsMF5z8+bNABQvXhyNRoOPjw/3798nIiICBwcHBg8ezIwZM1i/fj3Xr1/n7Nmz/PLLL6xfvx6A1157jcDAQGbOnMnVq1fZuHGjcZ8QQgghhBCgsl4nZAsfMUK1BmeWbt1MywlTWXXpAk9GS2aYr7+GpDqbliqlumFPnWpehrAw1UpcsyZMnPhi95w7F4KD1XLz5tCpk/n1Z89WCew8PRO/iheHf/9NfM2QEEvWrVNBd8GCqkX+eWrXNrVuGwwqq/u9ey/2nrIjCbpzAVtbW3799VeKFSvGqFGjaN++PZ9++ikxMTHGebcHDx5M586dmTBhAq+99hr29va0atUqxetOnjyZNm3aMHnyZNq1a8ekSZOIiooCoHDhwowePZqvv/6a+vXr88WTR2Rjx45l5MiRLFy4kPbt2zN06FB8fHwoUaIEAMWKFePbb79l586ddOnShT/++IP3MmJwjBBCCCGEyJGiolQmb1Bje996K3Pv36mTatl+2oQJGX9fNzdYsQJq1YLXXlOfwZUraiz3kiWq5fvsWdV1e/Bg867l06erseBpERKigmoArVY96NiwAc6dU0nNnvegIzQUOnaE33833/733wWJi1Mf4JAhST9ISMq4cap7P8CdO+phS26hMSSXSSsHiIyMxN/fnwoVKmCXHgMaMpBOp+PUqVN4e3uj1WqzujginUi95l5St7mT1GvuJXWbBSIi1PxJoPqo2tun+y1SU68REaaxr/v2QblyMG/ei49FFRnvefW6ZIkpo/Wbb8Kvv2ZyAVHjphMm+mnSBHx8Mr8Mz/P4MXzzjRoDDWos+r59qZ9y7IMPVOs6qPHbP/1kvv/OHZXg7dKlxOdeuaJ+7xLMmwdjxkBMjI5SpXTcvWuNRgNXr6YtG/ndu6pl/e5d1e38wYPED0Cyk9TGo69mIjUhhBBCCJFjnTqlWuR27lSJl+LiTPv274ejR9U8y7lx6qHsKD5efe5FiqiHHi8z3ZXBYJ5AbcyYly/fi+jXzxR0f/JJ1pThefLmhc8+g5s3VcAcE6O6xh89+vyp1W7cMCVPy5NHXedZRYok321dp1Mt0Qk9Et59VwXK1avD3buqibxDh7T/DhYuDNu2qXHmXbtm74A7LSToFkIIIYQQOcbOnaZEV8k5e1aNEf37bzXVVE6wezecPq1aeLN5B04zwcEq0Eto9XRwAG9vFXxVr66m+apUKfXB09696nMAVYe1a2dIsZ9r2DDVvbpgQVNW8ezq229N3c6DgqBnT9XzI6Xu4VOnmhKhjR4NT0aCpppWCwsXqiB52jS17csvIW9e0xOXd95J4xt5ompVWLPmxc7NrmRMtxBCCCGEyDF+/tl8vUwZFSD98YeadsjDQ20PDoZmzUxzLmdna9eqsr77rgpgn5ocJls7d07NY/10N+PwcNVCPH++yrBdpQoMGpT6a2bFNGFJ0WhU+Tt2zLoypJa1tQpSE6Yz278/5c/u/HlYulQtOzrCRx+92H01GtUiPX++6aHK48dqoUwZQ7Z/WJGZJOgWQgghhBA5gk4HW7aoZQcHNa/v5cuqa22fPqpV9NAhlYUZVEvem2+qaZ8MBrh/X02vtGYNzJoF772nElelNPVRRvPxgTfeUOUDlQ3644+zrjyp9e+/qhdBQIBaL1pUPTBIqjvx8uVqiqnnuXEDEia1KVw4dVmvhVKkiJpizcZGrf/0k8psnpRJk0yZ4T/8EAoUeLl7jx6tkqk9mVEYgOHDDS81zCC3kY9CCCGEEELkCIcPq4zJoLIcJxXg5c8PW7eq1u8EU6aoIN3ZWSWZ6tVLZaOeOxcGDAB3dzU38MOHqS9LUJAKJgcMgLp1XyzZ1+nTaiqq2Fjz7bNnZ+8W+h9/hPbt1ZRSANWqwZEjsG6dCsJDQ9U8y/37m5+TmusmtPIPH24KIEXq1KxpGmMNKhgeOFC1RO/bpxKvHTtm6rpduLDqXZEe+vSBTZugZEkDVaqEM3Rojs3VnSFkTLcQQgghhMgR/vnHtJxSt18rKzXetHx5laHZYDDNt5yU27dV6/L06WpM9dixam7kqCiVPfnhQ/UzKEi1TO/cmTij8+HDqqX2o49SN345IADatjUFrh06qLHqCTOpDhmi5kKuUeP518osjx+rxFrz55u2demiHjgkJLIH1XLaooUa2716NURHw7Jlauxvcknuw8NN2bMtLVXQLdKuXz+VaPB//1MJ7pYvVy9Q/y6f/vwnTTKvt5fVqhVcuaLn9OkL5MvnnX4XzgUk6BZCCCGEEDnCpk2m5XbtUj5Wo4H331fZtMeOVdvc3c1fefOqYHD9ehWYh4er1u/581XgntZu5598ojI4/+9/KWfwDg5WLfV37qj1unVVcGprC2fOqCmzoqNVd+1jx6BQobSVI71ER6vs8Lt2qQcNR46YjzcfPx5mzEj+vTo7q/mmf/4ZHj1SXZATpgJ71vz5pl4MffpAsWLp+lZeKTNnqn/LS5aY11fCv3FQ//6f7g2SXnJLtvH0JkG3EEIIIYTI9q5fB19ftVy7tuoamxqdOqlXcjp2VK3W33yjAvDoaDXeNaWA29JSBcrNm6sW3QMHTOOw582De/dUoJlU9ujwcNU1O6GlvHx51YKfkLH8++9VgrKDB1XLec+eqqt2UtcKC1Mt5gmvq1chMFAlx+rUSbWep9SSGRqquh3fvKla8hNeDx+q93DsmPo8knr/Cxao1vjnGTnSlPzu+++TPufRI5gzRy1bWKgWWPHiLC1VT4+5c9VDnBMnTK+E36Effkg5u7lIXxJ0CyGEEEKIbO/pVu70zihdrpwKQqZMUT/XrlUtdvnzq5eTk/pZoIDq7t2okXkw27ixeggwbJhqWfz9dxXQrl2rjgsLU1OC7dqlAuzLl9V5xYurOYmdnU3XsrFR59WsCbduqSm0hg6FBg3Mg+uEsdPJWblSzb/cpg306KGCcEtLdb2ElutTp0wJ3FKjfHn1oGHIEDUdWGrUqqVeR4+q+x0+rNaf9s03KtgH6NtXdasXL8/W1vT5J0iY0/7ppGci40nQLYQQQgghsr2ng+4OHTLmHi4u8Pnn6pVWgwapOZ1791atw//+C/XrqxbsY8cSTwPm5KQSvpUsmfhaRYuqLu+NG6sW919+Ua+0io5Wc5X//bcKsgwGNc43tVxdVUt+ixZqSrOEKanSauRI07Rh339vPu3b/fsq6Ab1UOCzz17sHiJ1JNjOGhJ0ZzOez3m0N2rUKEZn5aSFQgghhBCZLDJStcyCGutbrVrWlic5nTrB9u3q58OH4OeX+BiNRs1tPX8+VK6c/LVq11ZdhAcOTPoaJUqocbmlS5vGqJcurTK6X7igMlSvX28aN57Qwvn0Nby9Vct1lSqJW/WdnNIvyVafPjBunAqwV69W2dkTzJljSiY3aJCad12I3EaC7mxm3759xuXNmzczf/58tm7datxmlzDgBzAYDOh0OiwtpRqFEEIIkXvt2mUaW9yhQ/ZO1tSwIezZozKT37qltlWooFqLmzeHpk1VUJsaAwaowPfECdUinhBYlyyZ8njc4sXVvb79Vo0NX7sWNm8GrVbdv0UL9fPpbu0ZydYWBg9WAXZsLCxbpqF1azVufN48dYy1tcqMLkRuJNFaNuPi4mJczps3LxqNxrjt8OHD9O/fn59++ol58+Zx8eJFlixZwvr16wkLC+OHH34wnjt9+nTOnz/PL0/6Iun1ehYtWsSqVasICQnBzc2NkSNH0rZt28x9g0IIIYQQabRliynKTu/x3BmhShWVwOrQIdWaXLToi1+rRw/1ehFarXoI0LChqQt3Vnn7bfj6a9XFfeFCDS1awKxZGuNUbsOGJd3VXojc4JULuv/8U40Vefw48+6ZN69KzJFe3WW+/vprJkyYgKurK/ny5UvVOQsXLmTDhg1MmTIFNzc3jh49yocffkiBAgWoXbt2+hRMCCGEECKdGQywaZMKum1sVCttTpA///OnNXuVlCmjWv+3bIFr1zT8/XdBFixQ9Zonj5puTYjcKtsG3StXrmTJkiUEBwdTvnx5Jk2ahJeX10tfd/ZsOH8+HQqYRnPmWPDjj+lzrTFjxtCgQYNUHx8bG8vChQtZtmwZ1Z4MgnJ1deX48eOsWrVKgm4hRCLBwSrxjbU+mP49rtGyVzW0VtqsLpYQIhsxGCCh/fnnn6HvcJUIK71dumRLUJC6U7NmYG+f/vcQmWPkSBV0A8ycWRKdTmPcLvNyi9wsWwbdmzdvZsaMGUyZMoWqVauyfPlyhgwZwtatW3F+ycEn48eruf8yu6X7gw/06Xa9KlWqpOn4a9euERUVxeDBg822x8XFUaFChXQrlxAi95gwQSXhARd+W+dCybFBDO55iUFjPChZ3jx9bWy0jutBWu7eVV0qU9kBRwiRw82aBROeLL8zCqbPVT37XntNzbWcXvbudTQu54Su5SJ57dpBqVJw7RrGgNveXv2fI0Ruli2D7mXLltG7d296PBnAMmXKFHx8fFi7di1vvfVWouN1Oh26Z+dhSEa3buqV2XQ6HX5+pLqcoMZhJ5z79Lq1tXWi6+j1erNtcXFxxkRrj588Yfjxxx8pVKiQ2XlJXUukXsJnJ59h7vMq1214OKxebYGpDQuuB5dg8o8lmLJAT+uaxyhaKIqAGw4E3HYhKLQoT/48UbGigWPH9Ckm+MlKr3K95nZSt5lr8WINU78wBd2g5p5+802YMcPA1Kl6OnV6+YRnOp2O/ftNQXfbtrpEU2+JnGX4cA2ffGJ6KvPOO3qcnQ1Sr7nEq/a3OLXvM9sF3bGxsZw9e5bhw4cbt1lYWFC/fn1OnjyZ5DkXL17MrOK9NL+k5o5IxvXr19HpdJw6dQqAy5cvG69h/1Tfqvj4eK5du2Y8DuD48eNotVpOnTpFVFQUVlZWHDp0iEaNGiW6z927d1/szQijtNSryFlexbr9558CRES4A1C/+jXsNbfYeaI2eoMWg8GCbUdrJnvuuXMaFiwIoHHjR5lV3BfyKtbrq0LqNnUuHrnN77/ko0OnB9RsXSJN5/r4ODJ+fBnyPLWtRvUw9p5Q303OnNHQvbuWihUjGDnyJnXqPH7h4PvBA0v8/NTwwtKlo3j48BxPfd0ROVCtWpZYWVUhLs4Ce3sdbdr4cerUqxGgvUrkb7G5bBd0P3jwAJ1Ol6gbubOzM1evXk3yHA8PD7OptLIj1dLtR5UqVdBqUzcuMiAgAK1Wi7e3N6AeSIDqXv50ArXw8HD++ecfrl27RtWqVdm4cSO3bt2iQoUKxnMHDx7M77//jqurK9WrVyc8PJwTJ07g4OBA165d0/OtvlJepF5FzvAq1+0HH5iWv5pbgvr1SxB06TYrvrvE0j/LEnjP1bjfOW8o7kXukq+YG7t2q7/DBw+WZswYQ2YXO1Ve5XrN7aRuU+/c4SsMH1eOx1H52Hokln21LlKjWeqGm+3dCxMnWqDXm0fR//1nz85DOiZNsuDIEbXv3Dl7Ro3yoHFjA198oScN6WiMli83YDCo6/XoYWP8XiNyth9/1PPNN1FMmWJNkyZpGzYpsrdX7W9xZGRkqhqAs13Q/SK0Wm2OqdS0lNXiyYCohOOfXn/6Gk2aNGHkyJF8/fXXxMTE0KNHD7p27crFixeNx7333ns4OzuzaNEigoKCyJs3LxUrVuTtt9/OMZ9ddpaT/g2KtHnV6jbwXBA+PqrVq1yZaBo2zINGA6XKl2DSdyX4dJ6eU3v80Vpa4F6xKPmcnQFn4uKgWDEDISEaNm6IJ+JhNPmcs+/g7letXl8lUrcpe3D3Id17WvM4Sv1+xumseaO/Iyf8LcjnmHJztJ+fGqKXMF/2668Bf6hlrVZL69ZaWrWCf/5R8y37+qp9e/ZoaNJES7t2MG0aVK+e+vJu3WrKidO5swVStbnDwIE6vL3P4+3tLb+vudSr8rc4te8x2wXd+fPnR6vVEhoaarY9NDSUggULZlGpskb37t3p3r27cb1OnTpcuHAhyWPHjBnDmDFjkr2WRqNhwIABDBgwIN3LKYTIPVZ8fxlQQffADofQaJqa7bfQWlA9iRYxKyt4reUhvvujHtEx1qxbcoSB4xtmfIGFEKmmi9PxRudLXL5dy2z7lduujBgJv/6a/Bjsa9fUdE8PH6r1Nm1Qs7L8YX6cRgOdOkGHDqZpWhMagbZsUa/OndW0X9WrQ9WqKuHsswwGuHMHtm1TBcqf30Ddui85QFwIIbJIOuaWTB/W1tZUqlSJgwcPGrfp9XoOHjxonO5KCCFE+tPrDPy8tjQAGo2efu94pun8NweYvjn/+kf2HvIjxKvok2F72XpEBdwF84Xw31/+5MunhoL89hssX570ecd3+dOkYRS3bqn1WrXU7AZWVsnfy8IC+vSBs2dhyRIoWdK0b8MGePddaNQIHB2hfHl4/XUYNUplJ69USWW0LlYMwsJUoN22rSFDpiMTQojMkO2CboBBgwaxevVq1q9fz5UrV5g8eTJRUVFmrb5CCCHS175/fAm4q74Zt6x+ElePomk6v07rSpQpcg2AXae8uXXldrqXUQjxYn6ff4BZy5sCoLWI589lQTTtUoGffjK1Hr/zDjzboW7JjL00aOvOtSBbADw8YNMmcHBI3X0tLWHwYNXa/e23UKSI+X6DQd3zjz/g++/Vtc+dg6go8+N69cqeeSKEECI1suUzw/bt23P//n3mz59PcHAwFSpUYPHixa9c93IhhMhMPy96bFwe2C8mzedrLDS82SWAqQtLYTBY8PvCC4yblbbAXQiR/k78d54hH3ob1+d+sp+m3ZsAqjV6xw5YvBgiI6FPlzscOu4EwJg3j7Do78bG8+pWvsKarWVwcUl7GWxsVEv2W2+psd4nTphevr4Q89SfnDx5wM0NSpcGNzc9xYsH0qlTqRd450IIkT1ky6AboG/fvvTt2zeriyGEEK+E8IcRrN7hDUA+20d0HfRiw3nefKsUUxeq5ZXrCjNuVjoVUAjxQu7dg679yxIVq77yDe64l3emNDY7Zt482L83Gv8LeTh9oQhv9dyH/5UCHLtkOu6dXrv53/K6WNs+2RB+FTSF01wea2uoWVO9EsTFgb8/hIerYLtIEdU9HUCnM3Dq1AM0Ggm6hRA5V7bsXi6EECJzrVtyiogY1V+0T2tf7PLZPueMpHlUd6eWx1kATl6pwNmDl9OtjEKItBs5Em4EqYC7btUgflhVG42FeUIyOztYteQ6NlYqLfkvWxty7FJFAGytI1nx9T6+W90Ea1sbiI+A4+/BxnJwd1e6lNHKCry8oH59NY7bQr6dCiFyGfmzJoQQuUhsLPTqBc2awd5d4ak+7+dfTYnPBg5zeqky9O0ZYlxeuTjopa4lhHhxvr6wdq1aLlQI1m0pgY2dTZLHVmngwTefHjHbVqbINQ7tvEG/95+aieD6GrgwFwx6ODoqg0ouhBC5iwTdQgiRi6xapbIK+/hA4xYOjOq9m8f3H6d4TuC5IP47pbqTlysWQL12lV+qDH2GVURrEQ/AbxvLotfpn3OGECIjTJ1qWv70Uyj6nBQLb09qxIgee9BaxNO98SGOnXbCq+Ezsxi494NCTdVyxPV0La8QQuRWEnQLIUQusnWr+fr3fzahcvlHbPvtWLLnrFgeb1we2PNaoq6naVXYzYVWNU8CcC24BPs3nXmp6wkh0s5v/0VjK3eRIjBs2PPP0Vho+GFNYx4/jGPt7ro4FXJM6iCoswi0edK3wEIIkYtJ0C2EELmEXg///quW89jEY2cTAcD14BK0fbMmA9rv425gMNER0cZXVKSB5WvcANBoDPQbVTFdyvLm66bpfVZuqpIu1xRCpN4Xk0zDPCYMO4FtGtI02OZ9zsF5y4LXF+bb4iPSUDohhHi1SNAthBC5xIkDIYQ8+Z7drr0lfkdDaVHthHH/ii0NKeLugq1DHuPLzl7D1atqf8uWGlzLFUqXsnQdWhu7J8PEV/+pITY2XS4rhEiFswcvscanLgCFne4x/MPy6X8Tz7FQoLppfW1h+MsVjgxPfGzIIbh/HMIuQdRdiI9SE3QLIcQrQoJuIYTIJbauMnXjblP/EqWrlGT7sWos/nIvjnaPnnv+oEHpVxYHB+jaVS0/eABbtqTftYUQKftiYjAGg/qKN/6tc9jmtXvOGS/AwhJq/WC+LTIIYh8kPnZPV9haE/7xgPVFYLUd/GENa5zh79Kw2Ru2N4bAP9K/nEIIkQ1k23m6hRAitwoLDePknqvUb18JKxurdLvuNp/8xuU27VT3UI2FhiEfN6Jd7zt8Mf4056/kNT8pvzegoV496NMn3YoCQN++8NtvavnHbyNo01JLHnsZBypERjp3+DKr/1Ot3IUcg3n701oZdzOnp5IuOteE+GvgUDrxcXFhibcZ4iH2vnolKPe2+TFhF7HY2YyyFm5orNtDkaZQoCZok87ALoQQ2ZUE3UIIkYkMegMt6gVx7JI3o/vsZv4fTdLluo+CH3LwXCUAPItfxa2S+RffYmWK8OPaIulyr9Rq1QpcXPQEB1uwbac9ZUve5rOxlxg0vl66PmwQQphMm3gXg6EsAB8OO4tdvqaZc+OWPmBvr6YSe5rBAJ7vqsDb7PXIfF0fA/me6QYf5o8m6haO3AK/A+CHSuDmXBcKNQbnWpC3HNi7g9Y6c96nEEK8AAm6hRAiE90OuMuxSypZ2RafYul23Z3r/NHp6wHQtvENIInWpkxmaQmzPjjAoAlqjt+b94sy/LOizPrhGpPHB/H6qLporbRZXEohco/zR6/wx071d8AlXzAjJmZgK3dyNM+MXNRowHvG88/TxYDFMw/j4sIwWBdA83RruC4a7vmoVwLbYtDtpvm5Ab9CTChY2oLWFrR2KkB3qpy4jEIIkcEk6BZCiEzkdzgIUC3OAcHuxMXEpUur79Ytccblth0yYPzmCxo4viHV619k0kcP2LC/DgBX7pSi3/ulmDH3Mj/Oj6Bxl6pZXEohcodpE29jMJQB4IOhZ7F3bJq1BUqLpLqMu/dD7/o6/kf/oWLBECxC9sK9PRARaH6cg3vic89/Aw9OJN5u5QQuDVVLeaHGKhncs8F+Ugx6iI8EXRSgAQutupbm5aZYFEK8GiToFkKITHTmWhnjsk5vyTX/a5T1LvVS1zToDWzdr65rYxVN406VXup66c2roQd/74PD284w8ZMYdpyoAcC562Vp2zuSHev8qN9BphUT4mVcPHGV37erVu6C+UIYObFmFpconWg0xFi7YijdCcoNVdsirkPwPnh0Dh5fBscKic/TRSV9vbiHcOsf9QKo9ClUnWbaH3IIDg0ENOoa8RHqldT1XosFzVMB+42/IPBXcKoK+b3UT/tSEpgLISToFkKIzOR3Ib/Z+qUz91466D5/7Co3QlTQ3aTqGezyZc8v23XaVGZ7G/hv7Uk+nmjF4fOViYq1o2OfEuzbeZmKdcpmdRGFyLG+nu+I3qCGa4wbfAaH/E2ztDwZyr4k2L+R8jE15kJMyJPAOQriwyD0GATvVdsTuDQyPy8+AsIupK4cmmeGx9zbDTfWqlcCq3zg5GUeiDtVBkv71N1DCJErSNAthBCZyM/PfP3y+ciXvubWdTcAFXS3bRH+0tfLaM16VGN3uxg6NjrOjhM1eBCRnzaddRw4Bq6uWV06IXKe+HhY+48zAPZ2Ot6ZVCOLS5QNFG2d9HaDAcLOq27qwXvBpZ75fo0FWDmq7uTaPCo4fvqltQMMav+zY8MfnUt8v7gw1SofvO+psrWDZpvNj7v7nxqbLknhhMiVJOgWQohMotPBuWe+k126/PLX3bbLwbjcpluJl79gJrCxs2Hddg+a1vHnxOUKBN0rSNu2sHcvFCiQ1aUTImfZuxdCQ9Vy+w5a8hbIm/IJrzKNRnVHd6wA5YYn3l+4GfR6+GLXbroZHl+Ch6fhoS88ePIz8ob5cfmfyWOh18F/bUAfp8aXO3lDwbrgXEf9dCgtXdSFyOEk6BZCiExyxf8B0dHm3csvB7xc0rOoSAO7T3sB4FrwJhVqlXnOGdlH3gJ52byzCA2aG7hyRcO5c9CpE2zfDnbZJxecENneunWm5e7ds64crzwLLTiWV69SfUzbY+7DQz8VjD84rQL7p0UFqYAb1M/7R9WLb9U2m4Iq+VvJXlCii3RNFyIHkqBbCCEyid++84B5V8bLd5LIupsGu/doiI5VXRHbtHdAY5GzWkMKl8zPtm3QoAHcvQsHDsBrPR7z3pALBFyOIuCqjoBrVgQE5SUiyoY2jW8zZEwpPKqn/LnFx8YTExWDvaN8ORW5m16nZ/3aeMAaa2to3z6rSyQSsSkAhZuoV1IsrFVCt8eXVHAe5m++PyYEgv5Sr1b7waV+RpdYCJHOJOgWQohM4nc6JtG2gFsFiY9Xc1q/iG3bTMttOzu+YMmyVpkysGULNGkCjx/Dxq152bg16WRwpwM8mbUcGnudZuj7lenRS4udnQo8/A5cYtem2+zcbcee0+WJirXlvTd9mPJdHWzz2qZYhosnAoiP00kyN5HjHN1xjpu3KwPQqsEN8uWTxAg5jm1R8wzqsQ8h9IjKpB56WP2MvQ/2blDwmTHoflNVUG6dH6yd1E8rJ7C0U4neEl4OZcCumOm8+Cg1pZpBr14WVk/mM8/z5KetmuPc0kHmNRciHUjQLYQQmcTvXB7jslflGHzP2BAfD9euqcDzRWzdqn5qtdCiRToUMotUqwZ/rY2lXXsDsfFJzNcLWGh0xuzMe3yrsmcgjBqjWsmPHoom5IEn4Gl2zuwVTflrRwCLfwhLcj7w03svMOmjh2w8UAcLjY4/Fxyi+1t10/vtCZFh1v1uysTdvXUgIEF3jmftpBLBJSSDM+hVIrbYB4nHdl/7I3HLeFJqzAfP0ab1yCDY3vD552ksoO1xyO9t2hZyGG5uVPOj27urn3auYCFhhRDJkd8OIYTIJGeuFALA1jqSNm3z4HtGbb906cWC7mtXojh/XrXg1q0LTk7pVNAs0ryVNZt/O8HypZG4OMfj7q7BvZwd7p75catQjPCHEfzy3VkW/+7K+SD1gYWFqVZyMB8EXtjpHg/CHYmNt+HSLXeadIWRPXcz7Xs1/v3CBZg67iyrtprmNNcbtIz+uBSte4XjkN8BIbI7g97Aun/dAPVQqnPfillbIJExNBZQqHHS++Iepu4azwbEqW29NuhVy/nTQo/C2enPXE8LdiXAMi9obcDCRiWrq7PY/LjwQDUm3SqNGTPjwiB4v0pKF3FD/Ux4xd4HfTwY4sGgg84BYFvEdO7tf+HSArUtT1HV3d/COvHLpgC4NDC/7+WfQBcDjpXUVG95CqWt3Po41RMhJvTJuP0nme8xqEz6AE6VcvY4fb0Oom9DxDWIuI4mPJDi9/zRHLWB+EcQ+0j9Oy3UFKrNND/33EzVs8PS3tTDIuHl4KYSCeYSEnQLIUQmiHocxeVbaj7uiiUD8Sxv+nJ8+ZIe2qa9+962348C6otY28ZBQM7IXJ6SFr2q06JX0vvs8tkxblZT3v/KwMGDehYvsWDVKoiMBEdHA02rHKN540hadCxOxTpluHA8gCEDwzlwTgXaP6xpwsZ9D6nk7ca//1qg15sC7oRW9Fv3izJ9nA8zljbN+DcrxEs6c/ASl297ANCkqi8FS1TL4hKJTNditwo6Yx+o4CXugVqOjwL0Kgg16FRG9KdZO0H5cU+Cb40KCHVRT17RT35GqmvaOJufG3s/cTkMOhV0PU0fm/i4Y+/Arc1YWDvjaVEUi5C8gM5UTn086GOg6pdQsqfpvPAA8EllwgJDvPn6Q18IWv/885zrQpuD5tuuLIPQQ6Z1m4IqAHesDFZ5TZ+X2xvmD0YenIIdzVL3UKTdKfOM9kEb4OyXpinqLG2f/LRTP7W2ajlPYSgz2Pxa0cFqqICVY/plvI+PNAbUxASDe1/z/YcGQOBK46oFUATgwTPXsUnigcWVJSqXQVJKdIPG65LelwNJ0C2EEJng3NFA9IYKAFT2uE+5YjdI6AZ6af9eGJ1Mgp0UbP3XNJdrm2Zh6VLOnEBjoaF+Aw31G8D8+XD7Nri7a7C0rGV2XPlapdlzSsf3k3fz8dc1iYyx58YdJ25sNR3j4vSIT94+RavOxane2JXYeBu+XlGfQaMCnpusTYistm7lTUAF3d07vjp/A8RT8pV7sfNsnKH6nBc7t8xQcK4F4VdVMBwRoH5GXlcBmj5WBdDaJIYKhZ0HQBMbigOhEJ3MPSJvmq9bJ9MybumgWp8trEBjaRrD/rSoO6l7X7rIJK7/zFQaMSFwb7d6Pc2xsnnQbZk39b0Qnn2oEX5VjeV/nrweiYPuoyPgxlr1edgUUnO/O1UCp6rg5KWC+2fvB6rews6rwPrxJfNX1FN1odFCqdfMe07YpXJIiyEu8ba4R8kfr005F0tOI0G3EEJkAr9jocblKpXiKethCpgvB6b9P5a4mDh2HlNBfMF8IdRoXv7lC5kDOThAuRS+c2qttIyZ3oROr9/grVHx7Nitks05ORn48EMNY8Y44uCgHnh8ONCH6YubEqez5t0RIWw+6JbjssGLV8u6rabEWF37e2RhScQrxa6YeVK2pOh1iVucDQYo3gkencXwyB/Ns8GcRqsCZwsrFbQ/LY8LVJqourDbuYK9q/qZmhbdql+C57sQfQeibqtATx+rXronP/UxYOOS+Fzvr1Sr9aOz8PCM+hmdRBCvf+bpQR4XcCirftoUVC8LG1PPAo0G1SZsUPueFvc45feT4NkHAgDR956UJ04Fy1E3n0w/9xTbYlD3ZyjayrTt0VnYVvv59zToIOoW2Jc0bStQQ01lZ1cS7Euhsy3B5RthlK1YE22eAqqOLPOqKfWe1XSr6pmhi1SBv7G3RZR6qJCLSNAthBCZ4Iyf6ctHlWoOFHUvhJ1NBJEx9ly6kcR/9M9xcvdFwqJU9+hWtS9goW3wnDNebe6VXfn3P1i7Vsfhwzf56KPiODubfwH4eE4tVvx1kxshxdl6pBYbfz5M58F1El0rMiyShV8ewWCAZu2KULWRBxZaye4rUrZj9Qk+n2KJTm/Bxn+L4OJa8PknpeDyyUB8A1TiwDrlz1CiXOX0KKYQ6cNCCzwTZGk0UGMuAHqdjlMnj+FdtRpaS6vnB87aPFD1ixcri9ZaBen2L5Bk0LmWej0tJhQe+auWW4s8qvu37TPDu6zyQedkuk0/T5VJUOmTpwLQSDVcQPckKI2PVMvaJILugnXVZxV9D2LuPWnlN5gfE3ULwi6YB93JjVW3cQaHcpC3DNiXUoG1VV7zY0r2NB8KoNMRHnpKtaxrkwi0n1bg1RkSI0G3EEJkAr/zpsRcVWqXQGOhoWyxIHwDPAm4W4L42HgsrVP/J/my/0Pjco1qSXTZEoloNNCtG7i7B+PkVDzRfntHe+ZMPk2fUWrf2KnetH4D8piSznNqzwXe6GuJ/42masMsKOAYQbOW9jRvrjLIe3ik31A6kTFWroRff4X33oPWrTP2XgEBMG7oWdbvqm7cNv8LH774qelLXXf9ykDADYDu7UNSOlSI7EljqYLznPYH08YZCqUi8/vLsNCChQNYpTGpZ7VZ5uvxkU9a6X3hwWnTz5h75sfZFIKyw9X0dXnLPXmVVVPQiXQhj+aFECIT+F11A6CAw32KuBcGoFxJlYwmXmfFNf+byZ2apKuXTYF26XJ5UjhSpEWvEfVoVl8FMAHXbJg9W23X6/R885EPdVq44X/DPNX8/Uf2rF0L77wD5ctDlSoG1i46iUFvePbyIhvYswf691fT7XXoAGt+vff8k15ARAR89hlUqADrd1Uy27d268tP67Vuk2lcZre+bi99PSFELmRpp1rqywyBmvOhpQ/0vA+VP3vmOFuovQCqfK6SwjnXkoA7nUlLtxBCZLDQULh9X3UlreKdxzhOuKx7DDzJxXL5bDBlqpZK9TUDAk1dttw95T/G9KKx0PDtTwWpWhV0OpgxA1o3DuGzDwL591hT43Hepc/Tv9cd9h7Iw39+dXj40NRSc/ashp5vVaP6LH+mT46gzes1ZGx4NhEaCm++CXq9Wo+Ph9cGFGBF6AHeeLd+mq5173ow/224xNXLiTM0x8ZpWbKxITdumOq9sHMY9lYPuHqnFP43ynDu8GUq1in7Qu/j5o14Dp2vAkAVt4uUq5a7xj4KITKQRqN6GYhMJZ+4EEJkMD8/03IVb9MYrHIepsD5kn8EbdJwzYAg05ye7hWKpHCkSKtKlWDUKJg3D6KioG7TgoBp/O0H/XyYtqAeNnbleQ8VnJ86BTt3wrp1Bg4fVoHWicsVaNcXGn51mi+nQ6POVZO8n8gcBr2BwT3OEhSkxj7nd4rjwUMrdHpL+r1Xh7jYfQz4MPkuo2FhsHvLTXb9fYmdB4vhF+gBPD8fg5UVjB0LEyfmY9lXJxk7Qz1cW/tL0AsH3X9tMH196/F6EpmIhRBCZCvSvVwIITLYmTOm5SpVTMtlK+QzLl++nLauyFdvqqQnBRzu4+ji+FLlE4lNngyFnskrUzT/Hf79/TizVzTFxs40FY5WCzVqwPjxcPAAbF5xlGpl/I37952pSuMuVenbZj+6uGcy8maguJg4bl6+Ld3cn/j+8z1s2K0Cbuf80fj6ahnebQ8AeoOWQRPqs/jLvWbn3LhuYN48aNIEChSAzq8VZ+7vTZ8E3M/Xtq166DZrFuTLB90HmFLtr9lc9IXfy7qnpq7tLkG3EEJke9LSLYQQGezplu7KTyUYLlelsHH5UoA9qRUXE8eNEPWF3b3oHSCZ+UvFC3NygtmTLjBgtMoO3bnBYZb8UZaCJWqkeJ7GQkO7frVo84aedT8dZNKXhTgfpMaAr/y3AQ1n7OHtzxqneI2Xdf48LFkCy3+G4JCiNPE6xfTpFjTo6JWh983OTu25wLiv6hrXl8/1pYRrbX5c0wjrN3bz7aomGAwWDPu0ESHBPlhYwNpNBTlyIemM4BYaHTXKnadFg3vUrJ0HK+vEbRglvKpTrYaVWY4oV89i1Cl/hsPnK+Mb4MnFE2mfDz4kBHY/GZZStqz53xQhhBDZkwTdQgiRwfwOXAJUC1flSgZAfQsv6l7YOG3Y5aDUt1bduGGB3qC6prt7OKVzaUWC/qM8cc53FIPBQId+tdM0LttCa0HPEfXoOiSeJTNNgfbHs7zo1j+Ywm5pnyYuJRGPIvhzZRiLfyvK/v0JW60A2O3rTcNO0K72UaZ95UD1ZhXS9d7ZXcSjCF57w4rYeNU7Yezru+nQX83NrrHQMO+3xlhb+fD1r00B+Hhu0ySv4+mpMp23qHmeJm2L4lSoElApyWNT0rNjCIfPq+W1K67xcRqD7r9XhaDTqeEO3bvnvMTPQgjxKpLu5UIIkYEMegNnrqgW7VIuN8jnaPqGrLHQUNYtCoCAe27Exyd5iUSuPpVErXSlYulXWJFIh/616DggbQH30yytLRk+qTED2u8D4GGEEx+8fSHFc+7fhx9/hC1bIDw8+eOiI6LZuOwIAzvso2hRHYPeeTrgBmtrA66FQ43rW47UokbzCvRsepBzhy+/0PvJziIjISYmcT2NfvMEF26WBqB6WX++WlzXbL/GQsPs5U34ZIhPonOrlr7I1Ck6zp5VPQjmz4cu/cvjVOjFh3T0GGDKfr9mR8U0nRsbFcvMLx8b17t3CnvhcgghhMg80tIthBAZ6PqFmzyOKgFAlbK3AfOpgspWKojvBYiLs+D6dShd+vnXDAgwLbunrZFMZJHZC8qzocIDHkTk59dtDRm0NYzmbfMlOu5uYDBNWuXlwmU1DZylJdStCy3q3qB5w/t41XNj57pzrF2r55/9VXgcVTvRNSpWhGHDoG9fDU75HFnxv71M+Z8714PVv8O1u+uxvp6OlfMO8NrotGXszo4CAwx88KGG9est0OurkyePASf7R+S3C8HBNpqjFxsB4JDnMX+stjUbj59AY6Fh2k9NKOG6h01b89C4fiTd+7lT1jv9s4K7V3aletVoTpzOw4mzhQgISP3v8fdTDnDpVlMAGlc5Re36kpxPCCFyAmnpFkKIDOR35JZxuXL5yET7yz6VvPhyKhsfr141LUvQnTO4uBZk5sdnjesjx+YjJsb8mNBb92nV7IEx4AY1pdW+fTBljitNulYlf2FHeo6ox+87GvA4yhS0O+R5zJBOezi44zpnzqhs2QULqpb2wR814mKgC99O3E1hJzUntd6g5buFDhn6njNaZFgknw33oUL5ONauBb1etXJHR2u4E+qI/40yHL1o6v7945e+lKvmluz1NBYaRnzemH8O1mb8100p6536KfzSqmcfUx2vXZu6c0KCQpnybTUANBo938yzkanohBAih5CgWwghMpDfSVOgXaWqVaL95UzJjLl0KXXXDDgbZFwu7ZbKPukiyw35uCH16qnlCxdg9mzTvkfBD2nT9I4xK7ZrwdsMf0tv9u/jWU72DxnQfh8blh4hOMSKxRsaU7dFySTH+NrY2TDqiyZcveZA2aKBABw+X4HwByn0X89C//4LvXvD670imf2BDzv/PM792/cBNWRj9fcHKF/mAV/81JToWGsAChUyUK3aY6pUMVDCJQR7G9N7G91nN33fa5Al7yUpPXqYltesSd05n793hkeRqlv7wPb7X7mx+UIIkZNJ93IhhMhAfmetjctVaiZOnlW2tA5QY7Qv+97g2e7nSQm4+BAogUajp6SrDvlTnjNYWKix2jVqqLm9p0+H11+HwgXCad/0OscvqeziRfPfYdf2WMp6q+fiNwJj2PXnUXbuAv8rBfCuEELPPnY06+aFtW3y80onxS6fHa0bXOPyGjfidVbs2XiK9v1rpft7fVFXr8L778PffydsseMPmhr3l3IJwtEhAt8AU7d4S20cYwec5pM51bh69SLe3t5otSrRWGxULHGxcdg7Nsm8N5EKHh7g5QW+vnD4MFy/9JCS5ZySPf7swcssXKceGtjbhDN9fvp3exdCCJFxpKVbCCEy0JnL6su/pTYOz+puifaXK3nPuHzJ93aqrnn1dhEAihe4k+T4VJF9Va0K776rlqOjYUS/K3RufokD51TAXTBfCDu2hJt1bXZ1s2HAhw1ZsaUhRy9WZNHfjWnzRk2sba2TusVzNW9lmp5u5zHPF38z6SjiYTgTh/1HxYr6pwLuxK4Fl8A3wFTmtrWP4ncoiNlLapIv8RB5rG2tsXdM/XR8malH2+vG5XVLTyd7nEFv4P0xD9Hp1cO1T4Yfo2jpwskeL4QQIvvJdkH3jz/+yGuvvUbVqlWpWbNmVhdHCCFeWFxMHOdvuAHgWTwwySCpqHsRbK1VF/TLNwo+95qP7z8mJEwdV7rYveccLbKjyZOhRBHV9Xn7wTL8d0qN03Wyf8j2jaFUrFM2hbNfXrOeNY1d0HftTSJSzUQGvYE/vt2PZ5nHTF/cjJgY9bWkaFFYsQJ8D97g51n7GNNnNw0rnzZ2GS9T5Bobfz7C5oM1KV8zZyY26Nk9zri8ZmP+ZI/b8usx/j2mvg+VcrnBe9PqZHjZhBBCpK9sF3THxcXRtm1bXn/99awuihBCvJQLxwOJ06lAu0q54CSPsdBqKFtMjdG+eqcE8bEpj9EOOGdqDXd3zZ7jcUXK8uaFeVPOmG+zDWPbupt4N874lucCBaCaivM5dQpCQjL8lkmKj41nePe9vD6mATfvFwXAShvLR++FcOEC9OsHVeq6MuDDhsz7owl7/ary6LEtd68Fc+lmyZeayi07qFinDBVcrwBw4Fxlbl25k+iYuJg43v/E2bg+6/Mb2Oa1zbQyCiGESB/ZbiDgmDFjAFi3bl2qz9HpdOh0uowqUrpIKF92L6dIG6nX3Cs96vb00XuAyoRVuWJ0stcq63ofv0CI01kT6B+Ie+Xkx3VfOX/fuOxeKlb+7aVRdvmd7TyoJp2WH2bjgTrYWkey4bcr1GjhlWnlatZMw4kT6rn7zp06evbMlNsaRUdE07eDH3/ta2zc1rHuYWZ/V5By3m6AjiQ/CgtwLl4AvUEPz+zPLnWbFj3aXmfaojIYDBas+/k8Iyab5334fu4D4xzjDSqepvtbtbPX+9PpnmSkePK5Z0DZcmK9iueTes29XrW6Te37zHZB94u4ePFiVhch1fz8/LK6CCIDSL3mXi9Tt7tPmLqLFygWz6lTp5I8rljhUOPynh2+PIoPTfI4gFPHTa1heR0fJXtNkbLs8Ds74Ss99df/RcVaduR1dc7UuixVKh8JD4T+WnmOsmVjM+3ekQ+j+HiMLfvP1QVU6/bMCZtp3N2VCB6+9OeQHeo2tao3iIZFann1Xw54NTtI8PUwAu+6EnTHiaVLixqPHTM2iNO+2Wu2AouoKJ50msDX1xe9bca1wuekehWpJ/Wae0ndmssVQbeHhwd2dnZZXYwU6XQ6/Pz8qFKlClqt9vkniBzhValXg97Aj1P3sXp9fvp0e8DwSQ2w0Ga70SnpKj3q9vZ902fUqmeLZOfUrlJ1HzyZNijqUT68vb2TvebP9x8bl2vUdcPb2+uFyvaqym6/s3XrP/+YjFCuTBzj3o8lLt6a48cd8PYumSn3vR1wlw49H+MbqLrR29uEs2aZP616d3rpa2e3uk2Nql4Gyn4cyOXbbuw9U5MmLZI+rl8/PT0Gt83cwqVGRIRx0cvLC+zTP2ldTqxX8XxSr7nXq1a3kZGRqWoAzpSge86cOSxatCjFYzZv3kyZMmVe6PparTbHVGpOKqtIvdxcr48fw+BuJ1mzsykA+87CP9uO8fOqkhRxL5S1hcsEL1q3GzbAf/+pZQcHKF1ai0Uyzyk8Kzoaly9f1qR4v8AbpgeM5SoXzbX/7jJabv6dTY18Tlrqlj/N3jNVuXTLnVuXb+HqWSxD73npzH3atIwn4K4KuAvmC2HL2nvUbJm+U5blqLrVQs+2gXy1zC3ZQ4oUgRkzLMiWb+mpQmm1WjKykDmqXkWqSb3mXq9K3ab2PWZK0D148GC6deuW4jGurs+fm1YIkbn8/aF7dzh/vprZ9m1Ha+LlHcyyb4/SIRvN8Zsd6OJ0fDZiL18uaWrc1q0byQbcAGWrmKb/uRyYcvfMgJsqy7GNVTRF3HL/Qw+RcZo3fMDeJ/ncdv59lYHjMy7ovngRGjbPT3BwAUDNt/3v1jg8qlfMsHvmFO9Pqcy+o6e5cdcZ92LBuJeIoHRFF9yrelK6tJrPOwMakIUQQmSiTAm6CxQoQIECBTLjVkKIdLJ6NQwebOo96Jg3ho+GHGTezxW487AwwWEudBzgwjv/7Gb2ktqSURcICQrl9S7X2HGiqXFbr17w/fcpn1esdGFsrSOJirXj8g3nZI8zGCDgnnpA6VboFhba0ulRbPGKatEuP1MWqOVd/8HA8RlzH4MBhg6F4GCVabxy2dts22pJsTIlMuaGOYyLa0H2+iXkf5DPRAghcqNsNyjz1q1b+Pv7c+vWLXQ6Hf7+/vj7+xPx1LghIUTGiYuJY9wQX/r0MQXcVarAsRM2fPRNU3x9tXSsd8R4/Pd/NqFW5SD8j1zJohJnD0e2n6N6tWh2nKgOgNYinq8/PsyqVWqKqJRYaC0oU/QmAFfvuqKLNyR53L17EBmdB4DSVdzSrezi1VSnVQXsbNQv+c4jZTDok/5397KWL4e9e9VymTKw50hRipUpkiH3EkIIIbKjbBd0z58/n65du/Ltt98SGRlJ165d6dq1K2fOnHn+yUKIF6bX6fnzx4N4lb3O/5aaknP17QuHDkHZsmrdxbUgG/bV4vvPdpPHKgqAs9fL0bxtXgIux2RF0bPc2gUHadS+DDdCigNQyDGYnWvO8P6XddCkchrhst4qy1psnDU3gpI+6epV07J76Wz351vkMNa21jSueg6AW/eLcuF4QLrfI/T2Qz78UG9c//57yJ8/3W8jhBBCZGvZ7lvbV199xYULFxK96tSpk9VFEyJHWrcObG2hZEkYO1a1OD09paBBb2DziqPU9LxA75H1OB+kEhpaaWP5/psHrFgBz04OoLHQMHJKE47tvknlUpcAuPOgEG3a2xAcnElvLJuIDItk+HgPYuNtAKhf0ZcTx+Jp0s07Tdcp52Ea7XPpUtLHBDwVEyWXCV2ItGjeyNSLbOc/Qel+/Y/e9iUkRH3V6N3bQJs26X4LIYQQItvLdkG3ECL9hIWG8fbQx0RHw40bMG8eNG4MJYpGMbLnHn79Zj8Nq/jRYUAtTl6pYDyvQSVf9m+5zMix+VNsqa1Uryw+B5wpXy4aUMFihw4QHp7R7yz7WP7NMUIfq3HYHeoe4b9j5SletuhzzkosoScBwOXLSR/zdNBdWoZzi3TQooMpid8uH+t0vfaBTX4s3tAYgLy2YXzzZUi6Xl8IIYTIKSToFiIXmznhBMEPEg8ovhNsy49rG9Pv/QYcOGfqSl69rD+bfznKXt8q1GqVuqzCzsUKsG1HHoqrntUcPQo9ekBsTMaMD81OdHE6vvnJNPPCFzPyYW37YoFLuXKm5eRauq8ePWpcdi8a+kL3EeJp3o09KeBwH4D/jnuii9M954zUiYuJ4+1RNsb1ae+dpFgZl3S5thBCCJHTSNAtRC4VdOk2/1uhhmVYaWM5sS+IX36Brl10xrHYCSq4XmHNjwc5dqE87frWQmORyoHIT5QsCVu3gpOTWv/3Xxjc+QB6nT7F83K6jcuPcemW6ufdvNoJqjUt/8LXKutmqpPTe84meUzANVMXdPcymTL5hMjlLLQWNKtxAYAHEfk5dTwyXa47f9J+/AI9APUwb+TnDdPlukIIIUROJEG3ELnUZ+9dJjpOTeM1qs8BqjUoQd++sP4vLcF3daz67gDjB/iwcu5+/K640ePtemkOtp9WuTJs2AB5bOIAWPlvA8YP3JMu7yW7mvOTqXn6g/dfroWwRKk8uBW6AcCeUx7cv/0g0TEBt9S0QvntH+BUyPGl7idEguY9qhuXd+55Tqr9p+zfrzKTnzwJsbGm7Tcu3OLz+TUB0Gj0LPjBgKW1Nt3KK4QQQuQ0EnQLkQv57b/Iz5sbAOBo94hPZ3uZ7XfI70Dvd+oz8+emvPFuA7RW6fOFuFEj+OP7E1hoVAD69a9Nmfm+T7pcO7s5dAj2Hy0AQEWPcNq+UfOlrqex0NC9lZp2LV5nxT8rzVu742LiuB5cDAD3onde6l5CPK1Fa1M38F27UnfOkSMqP8TAgVC9Ojg4QI1qMQzrsoc3ewYTEeMAwIgee1M9VEUIIYTIrSToFiIXGv/+IwwG9ev96YiTOBcrkGn37jKkDgunHTCuf/RNU76duDvT7p9Zvv7atPzBRw4v1UsgQffXTPW07m8rs303Lt5Gb1APR9yLP3rpewmRwMMDY06GvXvNW62T89uPZ9E/NXokLg5OnLJh8YbG7D1TFYDCTveY/r13+hdYCCGEyGEk6BYil9mx+gRbj9QCoKRLEKOn1M30Mgz9pBEzxvoY18dMb8LiL/dmejkyypUraio2gCJF4I030ue69dpVpojTXQC2HfYi/IEpDfxVf1Pm59KlotPnhkIAGg20aKGWIyPh0J7nP9TZ/K+aR1BrEc+br8dRsSJYWJjncJg79bIMgxBCCCGQoFuIXEWv0/Phx6ZJtad/fI089nmypCwffdOUicN8jOtvTWzAym/2Z0lZ0tvcqeeNrXyjR4ONTcrHp5aF1oKuzVVSq+g4W7b+4WfcF3DJFIC7l5Y/3SJ9Na8daFze8efJFI+9dDLQmECwYeUz/PqbFWfPQtj9KA5s8uOHyXvYtPwor42un5FFFkIIIXIM+eYmRC6yct4BTl1VGbSrlfHnjTH1srQ8Uxc04f03fQAwGCwY8EEd1i44mKVleln3bz9g6So1TZhdnmjeHp6+U6N172VvXF63ztRyGHDVtFy6nB1CpKdWbU0P59ZsccWgT/7f9eY/rxmX27d8aFy2d7SnXvsqjPi8Me3718qQcgohhBA5kQTduUDU4yiObj9HXExcVhdFZKHoaPj062rG9dkzorDQZu2vuMZCw5wVTRjRQ2Ux1+kteX10DTZtSMWg0WxqwVeniYxRgfGQLocp4PzyY7mf1rSbF072DwH4Z38VYiJjALgaaJr/2728c7reU4hiZYrQsPJpAPxvlOHMwWQmiwc2bzc9GOrQs0SGl00IIYTI6STozsFio2L5/vPdlC4ZRu3WFalf5RIP70mCpVfV3Llw45b6Mty2yU1a9Kqe8gmZRGOh4btVDRnYQY3pjou3pkdva1asAEP6NhKn2fmjV6lXwY8W1U/w3Wd7uHUl5azgMZExzF+hMjFbaHSM/dQ93ctkZWNF58ZnAHgclY+da3wBCLiZD1BTMJUqXyzd7yvEa90eGpdX/XwryWMiHobjc6oKoHJGVKxTJjOKJoQQQuRoEnTnQPHxsOz7m3iUuseoqU2487AwAMcuVaRdk+s8vv84i0soMtvNmzBtmlq2sIBZ3xbP2gI9w0JrweL19enTMwqAmBgYMAA6dIDrgfFZVq4xIx5w6HwVdp2szugvGlO8bBEaNID//Q8CA+H+3UgObPFj5Tf7mTbah96tT3H3YSEAejQ9QukqJTOkXD16mjKXr9ugBoxfDVZzghcv9Agbu3QaRC7EU3oOrmCc7u+Pf9yT7GK+a/1ZYuPVv7/2ja6mS9Z+IYQQIrezzOoCiNTT6+HPP+Hzz+HCBfOgys4mgsgYew6dr0Ln5ifZtMcTu3wy7vNV8eGHEBGhlocPhypVsrY8SdFaafnlN1ts7GDFCrVtyxaoVCGaWR+dYPjEhpnaHf7yqWtsP14j0fYDB9Rr3Dgt0CjZ88dNyJthZWvVywv70XFERFrx924v5jyEkPsq0HH3yJ9h9xWvtsJuhWjmfZydJ2tw5U4pjv/nT80WFcyO2bQxxrjcvmPWJGkUQgghchpp6c4BoiOiWTT7DBUrwmuvwYULpn1tah3j6A5/DmwPIr/9AwB8Tleje8tzxrGgInfb8/dpfv9dLTs7m1q8syMrK1i+HP7+G4oWVdvCox0YObkxzar5culkYKaVZdHcAOPy6D67+eztvVSqlLr+7kM67aVOm8oZVTRs89rSvoNq7Q4JgV9+Me1zT/8e7UIY9ekRYVxetfyu2T6D3sDmvao7uY1VNM27V8rUsgkhhBA5lQTd2VjorftMG+1DqeKPeWt8ZbNgu1Ej2LPbwNYjNanZogJVG3mybf1t8tqGAbDtaE36tDlFXIwui0ovMkN8bDyj3zO1Nk3/5DoFCmRhgVKpc2c4d0bH0M57jNv2+HnjVacw2/84nuH3j4mMYel6FTRbaWOZOKsiU35sxJkzGvz91YOLpk0NNK4XxMieu5nzoQ9rFx7m5O4LPLz3iMUbkm8BTy/du5uWv/nGtFy6dIbfWrzCug+qjKVWJeVctaUcep0pa/7ZQ5e4EaJ6WTX1PoO9o32S1xBCCCGEOelenoUiI2HxYgi+ehkig8z23blrwW/bahAZ09Rse5Mm8PHH0Lo1aDTmY+lqtarI5lW+tOlVhsgYe/7eV4e+/eG330Crzeh3I7LCgi/24xvQBIDqZf0ZOtoji0uUek4FtCz6uzGv/XmCYaMLEnC3JNFxtrwxvBSna92hWJkiGXbv9UuOExKm5hDu0fQYhUqa5hMuXx4+/RQ++kjPqVN38fZuiDYLfoHatwdra4iNhQBTo7y0dIsM5VysAK1qHGXLkVrcCCnOoa1+1O+gxqts2mVK4Ne+TXRWFVEIIYTIcSTozkLjxsGCBQBln7ySZqHR0bPZYT74yIlarSqmeM2GnbzY8MsJOvT1IibWktWrwcFBBfcayXeTqwTfCGHSN1WN69/Ni0drlfOerrToVR2/1hH0aq2+6IeEFaRfrxP8e9glw97PgsWmfAfDR2bP3Af58kGrpg/Z9K+T2Xb3/GeAjOvaLsRrvaLZckQt//GXM/U7qOXN2x2Mx7Qf0DALSiaEEELkTNK9PIvcvAlLlqR8jJ1NBKP77Oay7y1W7az/3IA7QYte1Vm33hKrJwmQly5VLXcid/lk1DkeRjgBMKD9Puq1z4bZ01LJ3tGeFWtLU6zAbQB2nazOzA/2Zsi9/I9cZbevNwCexa/SpGvVlE/IQt2b+SXaVrqCzNEtMlaXQdWxtlb5Df78pxg6HTx8CPv3q/0eHlA2+efEQgghhHiGtHRnkblzIU4Nm2No/0f06XDFbL9Wq8G7oTv5Czd5oeu3bw8rV0KfPmou5BkzoIh2H2O+yF6tE+HhKoN1VJTqNlu6tEqwZSGPg1J0bMc5lmxUdZnXNoyvvss53cqTU7CEM78tPkXzHoXQG7R89l1DmrY2dW1NDb0eduxQrcR16yZ9zE8rXY3Lw/teR2ORfQdJd+5bEYtPdOgNqsXfxiqaou6Fs7hUIrdzdLanfXv46y+4cwf27FEJ/XRPUoS0b5+lxRNCCCFyHAm6s8DD4McsXGgPWGBjA9NmOVK4cPV0v0+vXhAcDO+8o9bHTq9PoUIHeG10/ZRPzGAGvYEj28+y+If7/LGjNuGR5tPO2FjHUcoliNLFQ+jQOpKRkxtl6lRS2Z1ep2fUaD0Gg/pMpow5QRH3pllapvTSpJs3E9/yYerCpuj0lrw+tBinzkH+VMySdfs2DBwI//6r1ufPh9GjzY+JioKfV6guIDY2MOCDjE+I9jIKlnCmSdUT/HdK/X0oVfAaFlrPLC6VeBX06aOCboBVqyA6NBBwAyToFkIIIdJKIpks8OP04zx+rD76Qf0iKJyBDVcjR8Kkt3wAMBgs6P9eTXasPpFxN0xB6K37zPtkN16lL1O3bWUWb2icKOAGiIm14uJNd7YeqcXoaU3oWP84928/yIISZz/hD8IZ0mU/h8+rMb0VS15m1JQGWVyq9DVpfkMaVfEF4PodZ4YOVb01UvLP8iN4VY4xBtwAY8bA4tm+Zsf9+afqJgvQuzcUKJj9x8B3b3fHuFza5WoWlkS8Sjp1Arsn6Q7W/BnHlu1qxT5PBI0b6VM4UwghhBDPkqA7k0U9jmLecjU220Kj44NRIRl+zyk/NmFYFzU1U5zOmm4DynF8l3+G3/dpu9efonRZLWNnNOHMtXLG7Xltw3ir3y2++UYFSZ06QWX3QOxsTHPFbjlSixre4Zz0OZ+pZc5ujh2D6rXz8PMmU+vs/DlhWNlYZWGp0p+ltSUr/6lsbN1etw4WLkz62KjHUbzTazedBtYm5L4NoBIHJnhrQmVWfrPfuK4SFypvv53eJc8Y3YdUN/4+1G1gm8WlEa8Ke3vo2DQQgND7Vtx7VAiAljXPYJNHvjoIIYQQaSH/c2ayFfOOc/eh+vLSs9lhylQtleH31Fho+GF1fbo0PAxAeHRe2ncvyKrvDhB8I+OD/tN7L9D5TXfCohyN2xpU8mXZzL3cvmXBwhXFGDsW5s2DDRvA76ob4ZF2bF91goL5VPkC77lSv3Upls3MmORa2ZlOB199BfXqwaXLakSIQ57H/PK//bTolf7DErID15IWLFtmWh89Wk+Ncv70anaQ8QN8WDB1D2t+PEjNyjf5YY0p70Hnphe4ehXGDToJqN4dAz6ow9oFB/Hdd4mDB9VxVaoYqFcvM9/RiytWpgj/bQhk0fS9fPhV7awujniFvNb1TqJt7dvEZEFJhBBCiJxNxnRnIl28jv8tcDOuT5iYioGq6cTS2pLfN3vRuv5p9p2pyr1HLrw22gVGQ1X3CzRvaU2LLu40bgx586bffQPPBtG2s5Mx4G5V4zjzfnCiQm2vFM/TWGho2bs6J6reomeXsxy5UInoOFsGf9SIQ4f2MH9lHWzsbNKvoNlU0KXb9BvqjM8ea+O22rVh5TIdZSvmrm7lz+rSBUaNgu++g/h4C05crsCJy0kfa2sdyf8+PcbwiY3QWMDsxd5Ehu3hx7WN1djwUTWo5WnqKTG8xxE0mjqZ9E5eXu3WlajdOqtLIV417V6vSt53w3gclc+0rZekLRdCCCHSSlq6M9Hhzbe4cke1bLeqcZzqzSpk6v1t89qyYUcpqpc171p+OsCTbxa507EjFCqkMqs/bwxtagTfCKFNmzjuPFSD1uuUP8P6neWpULtMqq/h6lmMPSfKMqLHHuO2n/5qTOu6/sTH6l6+kNnY2gUH8aqWxxhwazRq6rd9+6BsRaesLVwmmT0b3nsPShV7iIUm6fqu6n6B43tv8/ZnjdFYqMnoNRYavlvVkIEd9gFqWMWBc+pBj51NBH1Hls+cNyBEDpbHwZauDY8a171KnsbVswMhmXIAAQAASURBVFgWlkgIIYTImSToziQGvYGlv5rGMk+YoMmScuQv7MShM2XZ8usxPuzvQ/Wy/mg0pqQ40dEqyHn7rTjiYuJe+D7h4dChuxMXb7oDUL7EFTbtLIa9o32ar2VjZ8MPaxrz86x95LGKAmCPnzd/rM7+SbBeRMTDcIZ12UPPEfV4EKF6Q5QoEs5//8G0aRjnX38V5MkD//sfBN50IjpKz+VT19i+6gQ/TdvDx4N9WPjFHg6fcUvyQY6F1oLF6+vRp8UBs+2vtz6Bo4tjouOFEIm9McD0u9KptSS0FEIIIV6EdC/PJDvWnOTU1VoA1Ch3juY9qmVZWaxsrGj7Zk3avqnW79+LwGefPRs2wPLlattPi624cuIEf24uQ/7CaQtQYmOhZ084ekz98ype6AHbttvgXKzAS5V7wIcNKVrhIW06qWRS06bB66+DNhfF3sd3+fNGfxsu3mxs3Nar2UEW/l6B/K/49MxWNlaUqVoqTXkQtFZaftlUi+iWh/l7Xx20FvG8875LBpZSiNylzes1mHbYh4BALR9+mXX/bwkhhBA5mbR0Z5I5s00f9YT3Hhm7wWYHBQrZ0707/Pwz/PorWFvFA7DzRHXq1wzhyulrqb6WwQBDhsC2bWrdyQm27sxPyfIl0qWsrTs60fhJPHrhgpo/NjfQ6/TMGudDvdZluHizNAD2NuEs/Wovq3bUJX9hpywtX05mZWPF6n+r8fOsfWxf7Ue1ptK1XIjU0lho+HR+UxZvaCQ9RIQQQogXJEF3Jji+y5+dJ2sAULZoIN2HZt8MxG++CbvWncMlXzAA54PKUKeRA3v+Pp2q83+YeZlff1XLefKobOSVK6dvGT//3LT8xRcGdPFpnzM26NJt1v10iDMHLmHQp8MA9hcUejeKZTP30rjqGSb8rylxOjV+u2a5c5w8GMKgCY2y1QOanMra1poBHzakWRb2MBFCCCGEEK8m6V6eCf47Vtq4PG7ENbRWbllXmFRo0NGLw/uv07HDZc5dL0voY2da9sjLuiVH6Dgg+QcGV/2uM35yUeP6b79Bo0bJHv7CmjWDhg0N7Nun4fx5DX/+eJDXRtdP1bl3A4OZ8ck5fvyzLrHxqqwexQPo8UZhevSxo3p1lbDsZURHRLP4q8P4+mkoUVyPexlL3Mvlw72CC0XdC3Mv2IL162HtWvDxyYNOZ/qQNBo9Hw3aw5QfGuS6+beFEEIIIYR4FUnQnQk6drZh+S8GChe+T/+x2beV+2nulUty4Ngj+nQ4xrajNYnTWfPGiPIcrnAlyaRVep2ewX3vExlTEoARPXbTrVuTRMelB40GPn/3LK32qSb0L+YUovdIPRba5DtuPLj7kNmfnGLeylpExpiX6+JNd2bMhhmzwc1NjUcfNQpKpXEKdYPewD/Lj/LeJ4W5cifp925jFU1svA0GQ0Jkb4rwSxe5xpLvH9C0e9O03VgIIYQQQgiRbUn38kxQvjycOqVn5sxAbOysn39CNuHo4sg/+7zp1ewgAI+j8tGlmwUP7j5MdOwPk/ey29cbALdCN5i1qHqGlq1F90rUr+gLwLnrZVmz4FCSx0U8imDaaB/cS2uYsbQpkTEqe7qtdSTDu+2hcZVTZtnbAwNhzhwo7xnL5BE+RIZFpqo8F06H0L7eMToPrm2cFi4pMXF5ngq4wd0dPhh1l4NbznApyJWm3b1TdT8hhBBCCCFEziAt3SJFltaW/PxXVS5VO8+pq+W5dMudNzof5Z991dFaqbThV05fY8LsmsZzlv4QjEN+1wwtl8ZCw+cT42jzhlqfOsuFnm+bt3YfPxzB693vcelWU+M2a8sYhvc4xCczKlDEXWVku3vHwF9/w5o18N9/oNNBdIw1UxY0ZdnaIOZMOU3P4XWTHFsdEgLz5hXn998LER9vSi/etOpJJn5qIDwsjoDL0QQEGAi4YcvVW4WxcnKjQwfo0QO8vUGjKQy84qnJhRBCCCGEyKUk6BbPZZfPjr/+caBm3RBCwgqy9UgtPvkokplf26lu5f0eEBmjWndH9txNsx4Z0638Wa36VKfuVD8Ona/C2evlWPfTQXqOqIder1qrJ060Jy5OzROutYhnQPuDfDbLnVIVzMtXuIiG4cNh+HAVRH81/iTzVlQmXmfF9eAS9B5ZgqYLTzJ9uiWPHkRz4kgEJ31tOHGtNgGBWqCI8VquBW/y9dTryQbpQgghhBBCiFeLBN0iVUpVKMGfy07Rsnd+dDots/5nh3dNCD6zlz1+Koh1L3ydmT/VyLQyqdbuGNr1VetTZzlTt6OeAQMt2LXLdFzN8ldZsdxAhdrPz+pWsCDMWVqNoSOu8u7I+/x7TLXg+5yuRoOOyZ+XJ4+B8R/ChA8KYJev+Mu8LSGEEEIIIUQuImO6Rao17e7NvHla4/rgwXo+mlPLuL70h/s45HfI1DK1eb0GtT3PAOAX6IFHuThjwK3RwMcfwwHf0kkmf0tJ+Vql2Xq4Bn8vOUzpIknPU25vG0v9+gbeeOMuZ87omTJVg10+25d6P0IIIYQQQojcRVq6RZqMHAknT8KSJRAdbQHYATCq926ads+cbuVP01ho+PyTKDoMUOtRMTYAFC8Ov/4KTZu+3LU7D65D6z7RfD/FhwOH8+BeMprqNa2oXr8o5bxLgYWeU6eCcHMr+PJvRgghhBBCCJHrZKugOygoiB9++IFDhw4REhJCoUKF6Ny5M2+//TbW1jkn63duptHA99/DuXNwUCU1p3SRa3z1U82UT8xA7frWpNb0sxy9WAmAHi3P8tOqShQokD7Xz2Ofh3GzmjIuiX06nS59biKEEEIIIYTIlbJV0H316lUMBgNTp06lVKlSXLx4kUmTJhEVFcWECROyunjiCRsbWLvGQJuGV7kV4sTKZY+xd0zjpNbpSGOh4Y81eZn1+R4aN9Hy+uj6aGTghBBCCCGEECIbyFZBd+PGjWncuLFx3dXVlYCAAH7//fcUg26dTpftWxwTypfdy5lahQrDiQulnmTodsry91WqYnG+/1MlMNMb9JBJxclt9SpMpG5zJ6nX3EvqNgvodGiNizo152a630LqNTeSes29XrW6Te371BgMBkMGl+WlfPPNN+zdu5d169Yl2hcZGYm/v38WlEoIIYQQ4tVmERVFtUZqZpCTe/eit5VkokKIV1OFChWws7NLdn+2aul+1rVr1/j111+f27Xcw8MjxTeZHeh0Ovz8/KhSpQparfb5J4gcQeo195K6zZ2kXnMvqdssEBFhXPTy8gJ7+3S/hdRr7iT1mnu9anUbGRnJxYsXn3tcpgTdc+bMYdGiRSkes3nzZsqUMU3rdPfuXYYOHUrbtm3p3bt3iudqtdocU6k5qawi9aRecy+p29xJ6jX3krrNRE99zlqt1mw9/W8l9ZobSb3mXq9K3ab2PWZK0D148GC6deuW4jGurq7G5bt379K/f3+qVavGF198kew5er0egKioqPQpaAZK6O8fGRn5SvwDfFVIveZeUre5k9Rr7iV1mwWio8HT07Ss0aT7LaRecyep19zrVavbhDg0IS5NTrYb050QcFeqVInZs2enWFmhoaEEBgZmXuGEEEIIIYQQQoinuLm54ezsnOz+bBV03717l379+lGsWDFmzpyJhYVp3icXF5dEx8fHx/Po0SNsbGzMjhVCCCGEEEIIITKSXq8nJiYGR0dHLC2T70SerYLudevW8fHHHye578KFC5lcGiGEEEIIIYQQ4uVkq6BbCCGEEEIIIYTITaRPthBCCCGEEEIIkUEk6BZCCCGEEEIIITKIBN1CCCGEEEIIIUQGkaA7E6xcuZLmzZtTpUoVevXqha+vb1YXSaTRwoUL6dGjB9WqVaNevXqMHDmSq1evmh0TExPDlClTqFOnDtWqVWP06NGEhIRkUYnFi/jpp5/w9PRk+vTpxm1SrznT3bt3+eCDD6hTpw5eXl506tQJPz8/436DwcC8efNo2LAhXl5eDBw4UKagzAF0Oh1z586lefPmeHl50bJlS77//nueTk8jdZv9HT16lLfffpuGDRvi6enJjh07zPanpg4fPnzIuHHjqF69OjVr1uSTTz4hIiIiE9+FSEpKdRsXF8fs2bPp1KkT3t7eNGzYkPHjx3P37l2za0jdZj/P+5192meffYanpyc///yz2fZXvV4l6M5gmzdvZsaMGbzzzjusX7+e8uXLM2TIEEJDQ7O6aCINjhw5wptvvsnq1atZtmwZ8fHxDBkyhMjISOMxX375Jf/99x9z587ll19+4d69e4waNSoLSy3SwtfXlz/++ANPT0+z7VKvOc+jR494/fXXsbKyYtGiRWzatIkJEybg6OhoPGbRokX88ssvTJ48mdWrV2Nra8uQIUOIiYnJwpKL51m0aBG///47n332GZs3b+aDDz5g8eLF/PLLL2bHSN1mb5GRkXh6evL5558nuT81dfjBBx9w+fJlli1bxoIFCzh27BifffZZZr0FkYyU6jY6Oppz584xYsQI1q1bx3fffUdAQAAjRowwO07qNvt53u9sgu3bt3P69GkKFSqUaN8rX68GkaF69uxpmDJlinFdp9MZGjZsaFi4cGEWlkq8rNDQUIOHh4fhyJEjBoPBYAgLCzNUqlTJsGXLFuMxly9fNnh4eBhOnjyZRaUUqRUeHm5o3bq1Yf/+/Ya+ffsapk2bZjAYpF5zqtmzZxtef/31ZPfr9XpDgwYNDIsXLzZuCwsLM1SuXNnwzz//ZEYRxQt66623DB9//LHZtlGjRhnGjRtnMBikbnMiDw8Pw/bt243rqanDhL/Dvr6+xmN2795t8PT0NNy5cyfzCi9S9GzdJuX06dMGDw8Pw82bNw0Gg9RtTpBcvd65c8fQqFEjw8WLFw3NmjUzLFu2zLhP6tVgkJbuDBQbG8vZs2epX7++cZuFhQX169fn5MmTWVgy8bIeP34MYGw5O3PmDHFxcWZ1XaZMGYoVK8apU6eyoogiDaZOnUqTJk3M6g+kXnOqXbt2UblyZcaMGUO9evXo2rUrq1evNu4PCgoiODjYrF7z5s1L1apV5W9zNletWjUOHTpEQEAAAOfPn+f48eM0btwYkLrNDVJThydPniRfvnxUqVLFeEz9+vWxsLCQIXw5THh4OBqNhnz58gFStzmVXq/nww8/ZMiQIZQrVy7RfqlXsMzqAuRmDx48QKfT4ezsbLbd2dk50XhgkXPo9Xq+/PJLqlevjoeHBwAhISFYWVkZ/9NI4OzsTHBwcFYUU6TSpk2bOHfuHGvWrEm0T+o1Z7px4wa///47gwYN4u2338bPz49p06ZhZWVFt27djHWX1N9mGa+fvb311luEh4fTrl07tFotOp2O9957j86dOwNI3eYCqanDkJAQChQoYLbf0tISR0dH+ducg8TExDBnzhw6dOiAg4MDIHWbUy1atAhLS0v69++f5H6pVwm6hUizKVOmcOnSJX777besLop4Sbdv32b69OksXboUGxubrC6OSCcGg4HKlSvz/vvvA1CxYkUuXbrEH3/8Qbdu3bK4dOJlbNmyhY0bN/L1119TtmxZ/P39mTFjBoUKFZK6FSIHiYuL491338VgMDBlypSsLo54CWfOnGHFihWsW7cOjUaT1cXJtqR7eQbKnz8/Wq02UdK00NBQChYsmEWlEi9j6tSp+Pj4sHz5cooUKWLcXrBgQeLi4ggLCzM7PjQ0FBcXl8wupkils2fPEhoaSvfu3alYsSIVK1bkyJEj/PLLL1SsWFHqNYdycXGhTJkyZttKly7NrVu3jPsB+ducA82aNYu33nqLDh064OnpSdeuXRkwYAALFy4EpG5zg9TUYcGCBbl//77Z/vj4eB49eiR/m3OAuLg4xo4dy61bt1i6dKmxlRukbnOiY8eOERoaSrNmzYzfpW7evMnMmTNp3rw5IPUKEnRnKGtraypVqsTBgweN2/R6PQcPHqRatWpZWDKRVgaDgalTp7J9+3aWL1+Oq6ur2f7KlStjZWVlVtdXr17l1q1beHt7Z3JpRWrVrVuXjRs38tdffxlflStXplOnTsZlqdecp3r16sYxvwkCAwMpXrw4ACVKlMDFxcWsXsPDwzl9+rT8bc7moqOjE7WkaLVa45RhUrc5X2rqsFq1aoSFhXHmzBnjMYcOHUKv1+Pl5ZXpZRaplxBwX7t2jZ9//pn8+fOb7Ze6zXm6dOnChg0bzL5LFSpUiCFDhrB48WJA6hWke3mGGzRoEBMmTKBy5cp4eXmxfPlyoqKi6N69e1YXTaTBlClT+Oeff/jhhx+wt7c3jj/JmzcvefLkIW/evPTo0YOvvvoKR0dHHBwcmDZtGtWqVZPgLBtzcHAwjstPYGdnh5OTk3G71GvOM2DAAF5//XUWLFhAu3bt8PX1ZfXq1UydOhUAjUZD//79+fHHHylVqhQlSpRg3rx5FCpUiJYtW2Zx6UVKmjVrxoIFCyhWrJixe/myZcvo0aMHIHWbU0RERHD9+nXjelBQEP7+/jg6OlKsWLHn1mGZMmVo1KgRkyZNYsqUKcTFxfHFF1/QoUMHChcunFVvS5By3bq4uDBmzBjOnTvHwoUL0el0xu9Tjo6OWFtbS91mU8/7nX324YmVlRUFCxakdOnSgPzOAmgMCY+HRYb59ddfWbJkCcHBwVSoUIGJEydStWrVrC6WSINn525OMGPGDOMDlJiYGL766is2bdpEbGwsDRs25PPPP39lus3kFv369aN8+fJ8+umngNRrTvXff//xv//9j8DAQEqUKMGgQYPo3bu3cb/BYGD+/PmsXr2asLAwatSoweeff467u3sWllo8T3h4OPPmzWPHjh2EhoZSqFAhOnTowDvvvIO1tTUgdZsTHD58OMmES926deOrr75KVR0+fPiQL774gl27dmFhYUHr1q2ZOHEi9vb2mflWxDNSqttRo0bRokWLJM9bsWIFderUAaRus6Pn/c4+q3nz5vTv35+BAwcat73q9SpBtxBCCCGEEEIIkUFkTLcQQgghhBBCCJFBJOgWQgghhBBCCCEyiATdQgghhBBCCCFEBpGgWwghhBBCCCGEyCASdAshhBBCCCGEEBlEgm4hhBBCCCGEECKDSNAthBBCCCGEEEJkEAm6hRBCCCGEEEKIDCJBtxBCCCGEEEIIkUEk6BZCCCGEEEIIITKIBN1CCCGEEEIIIUQGkaBbCCGEEEIIIYTIIBJ0CyGEEEIIIYQQGUSCbiGEEEIIIYQQIoNI0C2EEEIIIYQQQmQQCbqFEEIIIYQQQogMIkG3EEIIIYQQQgiRQSToFkIIIV5Bhw8fxtPTk8OHD2d1UYQQQohczTKrCyCEEEJkN+vWrePjjz9Odv+qVavw9vbOvALlALdv32bt2rX4+Phw7do1LCws8PDwYMSIEdSvXz/R8WfOnOHbb7/lzJkzREZGUqJECXr16sWbb76JVqsF4MGDB6xdu5b//vuPK1euEB8fT+nSpRk4cCDt27dPdM3Y2FjmzZvH33//TVhYGJ6enowdO5YGDRpk+PsXQgghkiNBtxBCCJGMMWPGUKJEiUTbS5YsmQWlyd527tzJokWLaNmyJd26dSM+Pp6///6bQYMG8eWXX9KjRw/jsWfOnOG1117Dzc2NYcOGkSdPHvbs2cP06dO5fv06EydOBODUqVPMnTuXxo0bM2LECCwtLdm2bRvvvfcely9fZsyYMWZl+Oijj9i2bRv9+/fHzc2N9evX89Zbb7F8+XJq1qyZqZ+HEEIIkUBjMBgMWV0IIYQQIjtJaOles2YNVapUyeriZIjDhw/Tv39/VqxYQZ06dV76epcuXcLZ2ZkCBQoYt8XGxtKlSxciIyPZvXu3cfukSZNYv349+/btw8nJybi9b9+++Pv7c/z4cQBu3LiBhYUFxYsXNx5jMBgYOHAgJ06c4PDhw9jZ2QHg6+tLr169GD9+PEOGDAEgJiaGjh074uzszB9//PHS71EIIYR4ETKmWwghhHhB8+fPp3z58hw8eNBs+6RJk6hcuTLnz58HTN2eu3fvTo0aNfD29uaNN97g0KFDZucFBQXh6enJkiVLWLlyJS1atKBq1aoMHjyY27dvYzAY+P7772ncuDFeXl6MGDGChw8fml2jefPmDB8+nH379tGlSxeqVKlC+/bt+ffff1P1nk6fPs2QIUOoUaMGVatWpW/fvsYgOCXlypUzC7gBrK2tadKkCXfu3CE8PNy4PTw8HBsbG/Lly2d2vIuLC3ny5DGuu7q6mgXcABqNhpYtWxIbG8uNGzeM27du3YpWq6VPnz7GbTY2NvTs2ZOTJ09y+/btVL1/IYQQIr1J0C2EEEIkIzw8nPv375u9Hjx4YNw/YsQIKlSowKeffmoMKvfu3cvq1asZOXIk5cuXN17nzz//pHbt2nzwwQeMGjWK+/fvM3ToUPz9/RPdd+PGjfz222/069ePQYMGceTIEcaOHcvcuXPZu3cvw4YNo3fv3vz333/MnDkz0fmBgYG89957NG7cmHHjxqHVann33XfZv39/iu/34MGDvPnmm0RERDBq1Cjee+89wsLCGDBgAL6+vi/0GQYHB2Nra4utra1xW+3atQkPD+ezzz7jypUr3Lx5k99//53t27fz1ltvPfeaISEhAOTPn9+4zd/fHzc3NxwcHMyO9fLyMu4XQgghsoKM6RZCCCGSMXDgwETbrK2t8fPzA8DKyoqZM2fSvXt3vvrqK8aPH8+nn35K5cqVzYJHR0dHdu3ahbW1tXFb7969adeuHb/88gtffvml2T3u3r3Lv//+S968eQHQ6/UsXLiQ6Oho1q5di6Wl+u/7wYMHbNy4kSlTpphdOzAwkG+//ZbWrVsD0LNnT9q2bcucOXOSTSpmMBiYPHkyderUYfHixWg0GgBee+01OnTowNy5c1m6dGmaPr9r166xfft22rZta0yOlvDeL1++zKpVq/jzzz8B0Gq1TJo0iddffz3Faz58+JA///yTmjVrUqhQIeP24OBgXFxcEh2fsO3evXtpKrsQQgiRXiToFkIIIZLx2Wef4e7ubrbNwsK8k5iHhwdjxozh66+/5sKFCzx48IClS5caA2NQAWVC0KnX6wkLC0Ov11O5cmXOnTuX6L5t27Y1Btxgaq3t3Lmz2XW9vLz4559/uHv3Lq6ursbthQoVolWrVsZ1BwcHunbtyqJFi5INTv39/QkMDGTEiBFmrfkA9erV4++//0av1yd6/8mJiori3XffJU+ePIwbN85sn1arxdXVlYYNG9K2bVusra3ZtGkT06ZNw8XFhZYtWyZ5Tb1ezwcffEBYWBiTJk0y2xcdHW324CGBjY2Ncb8QQgiRFSToFkIIIZLh5eWVqkRqQ4YMYdOmTfj6+vL+++9TtmzZRMesX7+epUuXEhAQQFxcnHF7UtnRixYtaraeEIAnt/3Ro0dmQXepUqWMLdUJ3NzcALh582aSQXdgYCAAEyZMSO5t8vjxYxwdHZPdn0Cn0xkzjC9atIjChQub7f/pp59YsWIF27Ztw97eHoD27dvTr18/pkyZQtOmTc0eLiT44osv2Lt3LzNnzjR23U+QJ08eYmNjE50TExNj3C+EEEJkBQm6hRBCiJd048YNrl27BsDFixcT7f/777/56KOPaNmyJUOGDMHZ2RmtVsvChQvNkoEleLor9tOSa2VOj4lIEq4xfvx4KlSokOQxCZnCn2fixIn4+PgwZ84c6tWrl2j/b7/9Rp06dYwBd4IWLVowY8YMbt68SalSpcz2fffdd/z222+MGzeOrl27Jrqmi4sLd+/eTbQ9ODgYwKwruhBCCJGZJOgWQgghXoJer+ejjz7CwcGBAQMGsGDBAtq0aWMcTw2wbds2XF1d+e6778xaoOfPn58hZbp27RoGg8HsXgkt2c9mA0+Q0FLu4OBA/fr1X/jeM2fOZN26dXzyySd07NgxyWNCQkLQ6/WJtif0AIiPjzfbvnLlSr799lsGDBiQbKK18uXLc/jwYcLDw82SqZ0+fRog2QcJQgghREaT7OVCCCHES1i2bBknT55k6tSpvPvuu1SrVo3Jkydz//594zEJLddPt0ifPn2aU6dOZUiZ7t27x/bt243r4eHh/PXXX1SoUCHJruUAlStXpmTJkixdupSIiIhE+59+P8lZvHgxS5cu5e2332bAgAHJHufu7s6BAwfMxo7rdDq2bNmCvb09JUuWNG7fvHkz06ZNo1OnTnz88cfJXrNt27bodDpWrVpl3BYbG8u6deuoWrVqoq75QgghRGaRlm4hhBAiGXv27OHq1auJtlevXh1XV1euXLlinH+7efPmAHz11Vd07dqVKVOmMG/ePACaNm3Kv//+yzvvvEPTpk0JCgrijz/+oGzZskRGRqZ7ud3c3Pj000/x8/PD2dmZtWvXEhoayowZM5I9x8LCgmnTpjFs2DA6duxI9+7dKVy4MHfv3uXw4cM4ODiwYMGCZM/fvn07s2fPxs3NjdKlS/P333+b7W/QoAEFCxYEYNiwYXz44Yf07t2b3r17kydPHjZt2sTZs2cZO3YsVlZWAPj6+jJ+/HicnJyoV68eGzZsMLtmQj0AVK1albZt2/K///2P0NBQSpUqxfr167l58ybTp09/oc9RCCGESA8SdAshhBDJSK7794wZMyhWrBgTJkwgf/78fPLJJ8Z9bm5uvP/++0yfPp3NmzfTvn17unfvTkhICKtWrWLfvn2ULVuW2bNns3XrVo4cOZLu5XZzc2PSpEnMmjWLgIAASpQowTfffEOjRo1SPK9OnTqsWrWKH374gV9//ZXIyEhcXFzw8vKiT58+KZ57/vx5QHVjHz9+fKL9K1asMAbdnTt3Jn/+/Pz0008sWbKE8PBw3N3dmTJlCq+99prxnMuXLxMXF8f9+/fNPuMEM2bMMEsgN2vWLObOncuGDRt49OgRnp6eLFiwgFq1aqVYdiGEECIjaQzpkX1FCCGEENlC8+bNKVeuHAsXLszqogghhBACGdMthBBCCCGEEEJkGAm6hRBCCCGEEEKIDCJBtxBCCCGEEEIIkUFkTLcQQgghhBBCCJFBpKVbCCGEEEIIIYTIIDl6yrD4+HgePXqEjY0NFhby/EAIIYQQQgghRObQ6/XExMTg6OiIpWXyoXWODrofPXpEYGBgVhdDCCGEEEIIIcQrys3NDWdn52T35+ig28bGBlBv0tbWNotLkzKdTsfFixfx8PBAq9VmdXFEOpF6zb2kbnMnqdfcS+o2C0RFQYMGann/fsiA72JSr7mT1Gvu9arVbVRUFIGBgca4NDk5OuhO6FJua2uLnZ1dFpcmZTqdDgA7O7tX4h/gq0LqNfeSus2dpF5zL6nbLGAwwIULajlPHsiA72JSr7mT1Gvu9arW7fOGOstAaCGEEEIIIYQQIoNI0C2EEEIIIYQQQmQQCbqFEC/lzIFLTB/jw60rd7K6KEIIIYQQQmQ7OXpMtxAia92//YDGrQvyIKIcuw8c599jRbK6SEIIIYQQuc7KlfDNNxATk3hfgQIwaxbUqZP55RKpI0G3EOKFzf70NA8imgKw84Q3ITcfULB4/qwtlBBCCCFELvLgAQwdCtHRyR8zYQL4+GRakUQaSfdyIcQLuRMQzPzfahnX9QYtW3ZJwC2EEEII8Tz37sHs2XD27POP/e03U8BtbQ329qaXRqO2HzkC8fEZV17xciToFkK8kBmfnCMyxt5s28aNWVQYIYQQQogcIiwMGjWC8eOheXOIiEj5+MWLTctHj0J4uOnVp4/aHhWVugBeZA0JuoUQaXbjwi0WrKkLgK11JI6OegC2boXY2KwsmRBCCCFE9mUwwKBBcPGiWr93D5YuTf74Eyfg1Cm1XKsWeHmZ769d27R85Ei6FlWkIwm6hRBp9sWEy8TG2wAw5o3DdOyo/pQ8fgx792ZlyYQQQgghsq+vv4Z168y3/e9/yXcNf7qVe+jQxPsl6M4ZJOgWQqTJ5VPXWLqxPgD5bB8x/suqdOqgN+7fuPxEVhVNCCGEECLb8vGBjz4yrZctq34GBsLatYmPj4xU47kB7OzgtdcSH1OtGmi1almC7uxLgm4hRJpM/ugWOr2a+GDcoBMUKFqANi0eY6mNA2Dj9oIY9IasLKIQQgghRLZy86Yaf63TqfWJE2HBAtP+2bNV1/OnrV0Ljx6p5d69IV++xNe1s4PKldXymTPPHx8usoYE3UKIVDtzBn77V43lds57n7FTawDgVMiRRlXOAHD1TknOH7uaZWUUQgghhMhOYmNV0Hzvnlpv3RomT1ZJ1KpVU9uOH0885dfzupYnSOhirterMeAi+5GgWwiRap99BgaDmptiwqf5yOdseuTasU2YcXnjqqBML5sQQgghRHb04Ydw4IBaLlkSVq5UXcI1GrUvwezZpuWLF2HPHrVcvjzUr5/89WVcd/YnQbcQIlWOH4f169VykSLwzmhLs/2d+pQyLv/zr1Oarh32yEC3xkfwcr/I0e3nXraoQgghhBBZzmCA77+H+fPVurU1rFkDBQuajunVC0o9+Qq1ZQv4+anlpzOaDxlimo87KU8H3UePpk/ZRfqSoFsIkaKrfteZOMyHjq1CjNsmTlRjiJ5WrpobnsVVt/L9ZysTeutBqq4fHg7t2mv4a29t/AI96NDThat+19Ot/EIIIYQQmS0yUk0NNmqUadv8+Wrar6dZWsL775vW58yBuDhYvty0v3//lO9VsaLpe5m0dGdPEnQLIRKJehzFyrkHaF7tJGW8SjJ9cVPuPFCPZd3ckh9X1LGZCpb1Bi1bVz2/xToyEjp1MnW5AggOc6F9u3ju305d0C6EEEIIkZ1cugT16pkCZ4APPoC33kr6+MGDIX9+tfzbb/DTT3Dnjlrv0gUKFUr5fpaWUEOl2SEgAIKDX678Iv1J0C2EMDLoDXw7cTfFisbQ9736/HeqmnGf1iKeTk0vsmMH2NgkfX6n7k7G5Y2bUugHBURH6uja1ZQ0xMlJT7ligQBcuFma7m2vERMZ8+JvRgghhBAik61fDzVrgq+vWre3h99/V+O1k+si7uAAI0eq5fh4GDvWtG/IkNTdV7qYZ28SdAshAAgLfUyflocYM70JDyOcjNvLFQtgxlgfblwKZcN/HpQpk/w16revhJP9QwC2HqxEXExcksfFRMbQo/kJtm9X63nzwrZtFmzbpqWQo3o8u9vXm6Hdj8r0Y0IIIYTI9uLjVVK07t0h7Elu2QoVVACc1Pzazxo92tSoER+vfpYooTKdp8bT3dali3n2I0G3EIIzBy5Tq2oIf/5Xz7jtzdb72f3XaS7ccOOjb5pStHTh517HysaKdvXOAvAo0pF9/5xJdExcTByvtTnJ5sPqfwd721i2blVPaN0ru7Jx9V1srSMB+HVbQyaP3J0eb1EIIYQQIsNMm6bGYyd47TUV/FaokLrzCxdOPHZ70CCV5Tw1JIN59pYpQffKlStp3rw5VapUoVevXvgm9LdIxpYtW2jbti1VqlShU6dO7N4tX7qFyCi//gp1Wrlz8aY7AI52j/hr8WF+3daAxl2qorFIuZv4szp2zmNc3ri3stm+K6ev0a3pSf7ap+b6trWOZNPKc2bTYNRuXZmV3/mi0egBmLqwKctn73uRtyaEEEIIkeEiImDePLVsaQnffqvGZjs4pO0648aZuqBrNGqsd2q5uZmyoh85ojKni+wjw4PuzZs3M2PGDN555x3Wr19P+fLlGTJkCKGhoUkef+LECcaNG0fPnj3566+/aNGiBe+88w4XL17M6KIK8UqJiVHjh/r1g8hI9Ri1aukLHD/wkC5D6rzwddv1rWF8KvvPZisArvkHMazLHjyrF2fTIfUo1sYqmg2/nKdJN+9E1+g2rC5zPtxjXB/6cR0ObU3cai6EEEIIkdV++QUePlTLffuqjOUpTfGVHE9PePddtfz22yqQTi2NxtTaHRqqEqqJ7MPy+Ye8nGXLltG7d2969OgBwJQpU/Dx8WHt2rW8lUQKvxUrVtCoUSOGPkmPPHbsWA4cOMCvv/7K1KlTM7q4Qrwy3nsPfvzRtD54kIHv5rth65BMlrRUyp8fGjaE3btV9s6+7Y6wers3cboSxmMKONxn5YKrtOxdM/nyzWjClau7+WFNE+J1VowZ78Kh1mCRwqNCXZyO7yfv42oy/9FUrWrBm2PqYG1r/aJvTwghhBDCyGAwzcMNMGbMy13vf/+DSZPAySnt59auDZs3q+WjR6F06Zcri0g/GRp0x8bGcvbsWYYPH27cZmFhQf369Tl58mSS55w6dYqBAweabWvYsCE7duxI9j46nQ6dTpcuZc4oCeXL7uUUaZMV9frg7kPe6XeB4kVimL6w7gsFkHeu3WfxYmfAAhsbA99+a2DwYANgmS7vpX17Dbt3q+h45VbTIKN8to94f+AJxkz2Jp9ztefe638r6rLn5C3OXCnGUb/C/PGHnj59ku8vNfmdPUxb1Cz5C/4OU+Y9YOJUS/r1M2CZwl/A7PQ7O3OmhgMHNMybp0/TU2+RWHaqV5G+pG6zgE6H1riogwz47KVec6fcVK/bt4O/v/pNaNjQgJeX/qV/FRwdVTCf1uuoacNUWQ4d0tOzZ+b3Mc9NdZsaqX2fGRp0P3jwAJ1Oh7Ozs9l2Z2dnrl69muQ5ISEhFEwYkPDU8SEhIcneJyd1Pffz88vqIogMkJn1umTGXVbvag/Ajbv7mfBVnjR3Yfp97i3i4joB0LfXeapXj+TUqfQrY5kyNoBpPLe9TThDuvrQfUg+HArk4+qNq3Ajddd66918xqfGH3wQh5vbWWxsEv8ncv3MPb5a2vK517t2Oz/DhsEXX0QzbNhtWre+n2KSkqz+nb0ZGMunn6oEd9HRYcycmfTfTpE2WV2vIuNI3WYei6goEiaW9PX1RW9rm2H3knrNnXJDvU6fXgZwAqBjx6ucOvUwy8pia6sFvAHw8Yng1Kmsi5FyQ92mpwzvXp4ZPDw8sLOzy+pipEin0+Hn50eVKlXQpjYNocj2sqJedxy8blxes7MBFTbo+fzz1D/JjImM4dd/XAE19/anH9lTsrxHupbR2xtGjNCzfp2eN1rt48MvKuDi2u6Fr7Vxo4Ht2zXcvm3D3r3efPCB+fuNj4e3+14nXqfGkL/7ug+9+xUwO+ZR6GPmLSrFtj2qm/v163mYNMmd35c7MeuzS7R9o4bZ8dnld/bqUVMK0v37HChb1jvNiVmESXapV5H+pG6zQESEcdHLy0tNSJzOpF5zp9xSr5cuwb59qvwlSxoYO9YtxV50mcHd3UBAgIYLFxyoXNk708uTW+o2tSIjI1PVAJyh1ZA/f360Wm2ipGmhoaGJWrMTFCxYMFGrdkrHA2i12hxTqTmprCL1MqteLxwP4NItd7NtX3xhQdmyiaeZSM66xSe4+7AhAN0aH8W9Ur3nnPFifvgBfvjBAmj60teaM0cF3wYDzJgey5A3IyhYwtSD5ptv4Nh59blULHmFmYvrYWOXeGx6u76wfz9MnAg+Pmrbucv56TKwOtfq3aN42aKJzsnq39kLZ2OMy9ExVmzeDK+/nmXFyTWyul5FxpG6zURPfc5arTb1cxu90K2kXnOjnF6vT+fGeecdDTY2Wf9eatdWSdSiojScP6+latWsKUdOr9vUSu17zNDs5dbW1lSqVImDBw8at+n1eg4ePEi1atWSPMfb25tDhw6ZbTtw4ADe3t4ZWVQhcoR/Vl0zLleveMe4PHSoKYhMiUFvYN6P+Y3r776fvXuIJPDygkGv3wPg0eM8TP3AlMn80iWVcARU5s4lv7slGXAnaNAA/vsPdu6E6uVVrwGd3pId669k3Bt4CefOm4/ZX706iwoihBBCCKOwMFi2TC3b2qrvYtmBzNedPWX4lGGDBg1i9erVrF+/nitXrjB58mSioqLo3r07AOPHj+frr782Ht+/f3/27t3L0qVLuXLlCt9++y1nzpyhb9++GV1UIbK9jducjMsrf45k5Ei1HBcH3TqF438k5cDx4JYzHLtUCYBqZfxp0MEro4qa7r6YqsfORnVl/HFNfS6eCECvh2HDIDpaHfPuu1C3fuqeODZvDv/78r5x3Wd39pzQ0v+qeTf5LZtiCAt5lEWlEUIIIQTAzz/D48dquV8/KFAgxcMzjQTd2VOGB93t27dnwoQJzJ8/ny5duuDv78/ixYuN3cVv375NcHCw8fjq1aszZ84cVq1aRZcuXdi2bRvff/89Hh7pO+ZUiJzmwd2H7DujkpOVLRqIZw135s2D9m3+z959h0VxdQEc/i1LB8WGvRewIGJFsXeNLWqiJrFFTdFYUtX0mC/RFFOMiZHYoqZpYjS22HuJHXsXROwNEKTu7vfHlR1WOu7SPO/z+Hh3dmb2wgC7Z+6958QAEB7lzhM9HLkecjPNc3z39T1ze9xLt9HZZaOIZC4pW600bz2/D4BEgwMTX73OrM8PsXWrer5yZfjkk6yd079TTZwd1Pdvy77K1uuslRgSDJy6VMliW1yCE8sXSnISIYQQIrcYjTB9uvZ4zJjc68vD6tfXVnpI0J135MjS+oEDB6Y5Ur1w4cIU27p27UrXrtlLuiREQbVm0QkMxgAAerQNQWdXGXs7WPS7gZaNThF0oSYhNyrQo/Nx1myxp1iZohbHh529yl9b1O3Pkh43GfBK2jWy86o3pzQm8I/rXAsvxdLtTVmz5775uVk/mXBzy9pNBGc3Z5rVOcTmoPqE3KhAyPEwKtcpn/GBOeTiqcvEJlQEoFyxK1y+UxaARX86MvC1tI+7dw+ioqBMyiXqQgghhHhEq1fDuXOq3b49+PgAd4Pg1n+ADpw9wckTnEuq/x2LqO3GBMAE+oeWwZlMZLkUDUDsTYg4DoY4cCoGTp64OXvi4+PG4cNw7JjKd2iDHIciiwpE9vL8Kj4mniWz9nPjWkKK5xwcoNuAalSqlXcCAJG7VqzQ2t17e5jb7kXdWbnWg6ZNrxB2uyz7ztShZdNzrFkXQwXvsub9Znx2GoNRRWEvDziGk2s69azzKPcibnwy/iAj3ikFQEy8WpM+rPt2OnRsma1ztgmIYHOQam9ZFcLQPBR0nzh4HVBB96Bep1n4j47Ld8qwdq8fd6+HU7RUkRTHnD2r1q3fvKlG/9u1g3at42jb/A5lq0kULoQQQqQp8gwceQ/ibqmANu4W2LtD4ZrgURMK14LCNfnu28aAqpiSVNaUnQMg8nTq59XZgcmo2rXehPpfWj6/tKwKup1LgVNJFUAbYiAhEuIj1P8JEdB2LRRLlhfr2nrY9VyKl2tSfA6HGYbRCIc2HaFFj/yznLCgkqA7F300ehdT5rZJ8/nPfwzj3KUEHJwccq5TIk9KTDDx7261FtvDNYKWPXwsni9XvQyr/zlDh243uRHhyYnQ6jRrfpW1K85Rp1l1Yu7F8NOfdQFw0Mfz8vjaOf41WMvQNwP4NvAsxy7WAKB0ketMnV032+dr06kozFDtLVth6Hhr9NI6Th7VyvHUqevI07Fn+Pb3MiQYHPln/h6Gjre80WAymhg95Bw3b6rvTUgIzJ0Lc+c6AWXwLneBXh1Cef+bRrgXlbpjQgghHlPRlyDsHyjXDdyTVYUxxkHonyn3jzoHV1YCcCKsFus3ngCgalXo1u3BPiVbpx10JwXcoEalkzMmQOyD5LgxV9Pvd/xdy8cOHqnu1rjKbmYxDIC9ixfSoo4PVB2S/rmFTdl8TbdIXWx0HIGL07/rFHqzPOePXMqhHom8bOcuHeHR6g9rl3bhqd6Iqdvci11b71OttMpwfvl2GVp0LMH25Uf47Q8nbt9TJbb6td9Hmaqlcq7zVqZ30DNtahT2+gTsdAYCvwpJdcQ3s/w75t113SdOafdFa/sVpf9grUzaoiXOKfZfOus/1u1WAbe7azxOD81eO325Kl/Mb4O/3zVO7btgkz4LIYQQeVLUBTg+BdY0hn8qwoExEPpQSRCnZCWK9c7gWh7sLedmz906zNweMyZZpbzKg6DhNPCfDfWmgPdrUHkglOkMxRpB8SZQshW4V7V8zcQoKFofXMqBXSoDbTo9OBYDt8opnyvkBbUngM/7UGMUVHgKSramST2tXPP2UwFw+F1IuJfy+Dxq1y5o1AimTMntnliPjHTnkmXLHbkTpT4Rd/bbxNBh2gfopctg8Sa1dvfssVvUbFw1tVOIx8jKlVq7e/9Kae5XrV4ldu25yRMdTnDgbG3Co4vQ8SlnShSPA1wAGDepSZrH5xftnqrP4Z3nMBpM+AT4P9K5nFydCPA5yKZDDbh4szzBx8Ko4pM3ppifDC5pbns3qIRrIVcqeoYRerM8Gw74cfvKHYqXVelSoyOiefW9iub95399gCeGNGP3btj01342b3Vkz6laJBocOBFancat7jFn6i76vRKQ41+XEEIIkSOiQ1VgfXER3Nmf8vlLS1XQmsSpJPS8oNZh27upKd8mI9y/DJGnIPIk/773FAB2diYGDUq2DrtkC/UvqxyLQteDqm0yQUI4xN0Be1c1kq13SXu9d+Ea4PdZis0+baHExyZu3dKx9khnohutwM2hUNb7lktGjYLDh+HMGXj77dzujXXISHcumTNX++WZ+E07BowJMP/r0VOry3vmUunc6J7IY5LWc9vZQUY5BktW9GTLnop0anQAgLgEZy5fUwF306bQuGnBWK5Q2786PgE1rHKuNgGR5vaWDVFWOeejMpngxCVVtaFyxXjcPNzQ2eno10Vlbkk0OLD0Z61e+eQ39nHpVjkAOjXaT+8XmuLsDG3bwv9+aMSOY74c3xtG3cpnAIiKLUT/0QG8+uxW4mPic/irE0IIIWzo2iZYFwD/VIJDb6UMuIv6Qd1J4D/LcrudXk03d3DXAl2dHbhVgDIdueQ6lhPBKl9OkyY6ihfHunQ6FYQXqgYuZVTgnY0Ea3o9PPmkOi4m3pW1++pncETecf68CrgBatbM3b5YkwTduSA4GDZsUO3q1aF1a8vnazTVskqfvVIRYV137sA770CrVrB8eW73JmNnz8LpB0uEAgLI1B9496LurNjuy8DOOy22jxtngw4WAG16aWvktxzKG3/hr1zR6n/WqqPdiOs3SBv9XrRETXk7eyiEqfObAWrN/vTA4qmWg/NqUIX/DpdnUJcd5m3Tfm9Nm4anCTubwToyIYQQIi8wJkLcbbh3Dm7vg5DfIfaG5T7xd+DWbsttReurUeGeF6DrIaj7ARTJWk6Ydeu0dufO2ex/DunbV2svWZLsCWMi7HwWDk1QNyceXmOey5L3NfnXkN/J9PJcMG+e1h4+POUNrBrJBu/OnMmZPuUXBoOqOXj/PlSpAhUqqEzvmRERAd98o/5FPhjYPHQwntDz9x9pTbCtrZy7HVAJs3p0iQIylwDL0dmB+asCKP+ugS++1NOoUcH642VNTVqVwMUFYmJgyxY1ypzbTpzQ2rWT5b1r1L4WVUqFEny9IpsO+XHjchRjXrpFfGJlAN4cshOvBmlnpnct7Mr8Vc1p/uk2xn7sT3yiE7tP1qVB4zusWmeicZP8U7tdCCFEAWYyqWnhdw/CnYMqmVncHUhMZW1ywO9QeYD2uIS6EY2HD1TqDxX7q6nYaThxQs0mzGhkde1arZ3Xg+527cDDQ33+XbkS4uJQuV4OvQkXf1c7nfxCTaMv2QbKdIFSbcC9Gti75Fq/JegWVmFIMDBv5h3AE73exJAhKT/gFiumRjNv35ag+2E/fG9i3Kva98zOTgXeVYqfpkqZG1SpbKBKNQeq1ChElVolKV25JDFRMUz/aB9fzPXnbqTlH5GoaEdmTtnF29+2yeGvJPNWrNGC7B4dr5PZoBvATq9jymd6xk9Qf3jtZG5Lqpyc1CyCjRshNFTNRqmU9tL5HHHypNauVUtr6+x09Hsyks8DwWjSM2xwFGv3qdkxFUpc5t2vM16zr7PT8dL7rWjY7ARPPVuYizfLczOiGG3aqje7Ll2s/dUIIYQQWaTTweGJEH0x431v7bYMul3LQY+zUKh6hoeuXQvdu6uX27EDmqTxNpqYqM1ULVIEGjfOuFu5ydERevaEhQvVYNOGDdCtS5xKKIcOeDDCkBgNV1apf0lcykD53tD4B8uTXlykjrVzVLXG7RzBzsnyMXp0xths9fnSJTW4BuDrq2YEFxQSdOewdYsPEXZTJX7q1nQfZcqk/pvt5QW7d8PlyxB9LxG3QnKpAFb/egDQpt8bjXDxIly86M0WvFPs7+QQi6O9gXsxbczb7O1hQN9IflvshtGk57v5tXh9cixOrimzQWdHbHQsE4bv4UywKz/MLkXVutlfIhB+I4LtR9XU56qlL1KzUfaS6hUtmu0uPDbatFFBN8CWzSaGDM3N3sCJnYcAtQardo1IoLD5uf4v+fB5oGqv2qTlffj641DcPMpl+jUadajNgaA79O0Xxdad7ty/Dz16wJw5MHiwNb4KIYQQIhMSIuHuYShpWQqTovW1oNuxGDh7gkNRte7ZsSg4FgHn0lCmY8pzZiLgTkhQS+8SE9Xj6dNVkJqaffvg7oOKXR06qM+TeV3fvtrXs2QJdOvmBK2Xqxrk19bD1bXqX+x1ywNjrqqs6g/bM1wF6enQA6WLvwg01TaaTJlam/7335Z9L0jywY9LwTJvjlanb/iwtOewenkeZjf1ADgXdJ56LVMGlI+j0GsqenS0j6NHL0eCg3UEBxu5ezf1Idy4BGfiElQwbaczMLB3CB98UY1q1QoTe303f21pxrXwUvwybRvD3271yP0LvxFOz/YX2X5MLdQf8NRxdh8zoHfQZ3Bk6tYuPk6iQWWX7tE2BJ1dLg+/FmBtWkQDao30liW7GTL00bKiP6qTJ7U3p1o1jRbP+fmpZShnz2rbOjQ4QN+XmpJVxcsWY80GGDQI/vpLffAYMgSunghi/OR6qa4NF0IIIazmbhBsf1rVqu6yHwon+8xb83Wo9gIUq69GX61s1iwtbw6ooG/GDCiUSqLv5FPL88uMsE6dwM0NoqPhn3/UTQYHB9TNi8rPqn8mI4QfUcH33SNqJDw6OGVpM8j0+u8ol3pYFKcNPwpbnlDX1rEYOBVT/ye13atBkbosWaIlLpKgW2Rb5I17LN/ZHIAyRa/xxMCGae5bo9Jdc/vssTvUa5nmro8Nk9HEpZsqiVTlUlf4668qD56xI+JmBMEnrxF8+i7B5+MICYHgUBeCLxflVqQH7Rqd5YPJZajZuJr5fG+9XYi/tqj21BnleH68ETt96sF70LbTbFx5lSefq0K1eqkHvmFnr9K1YxTHLtYzb9t3pg7Tvonm9fFuqR6TkZUrtWCr+5P5p9RDftTE3wEXx/vExLuyZV8lTMbcXdh94qIqW1am6DWKlLSsYqDTQb9+8Omn6rGDPp7pM4tmO0B2doY//lB3+394MJNs4ud+XAnZyje/tkzz9yK5iAiYOVPd+a9S5cG/SgaKFMveDSchhBAFnMmE7txPcOg1MD4I5va+CB22avs8PPJtRRER8OGHltvu31c3oJ9/PuX++Wk9dxIXF+jWDRYvVomEt25Vo/QWdHYqm3tRP8vtqSW4afgtGONV8G2MV9ftocfGhPtEO9WxPO7WLoi5rP6l4Vp4KXbsuALY4e1tmc+mIJCgOwdtXBpBokFl/Rra+yT2jmknO/Kqmaxs2Km8lVUwt4TfjCAqtggAFUvdBaqYn/Pw9MDP0wO/NAerS6bY0qSTD63qBrHtqB+nwqqxcv4eeg5LOboZtO00zTpUJDbBmwlfJfL8czd573+eFmt+T+w5T7debly6pZJ0FHO/zd3oophMdrz3kRu9+kK1ailOna7E+ERW71R/cQq7RNCqh08GR4hH4ejiSHOfY2w42IBLt8px4XhIrvXl5qXb3IosAUCtyleAlKUDBw2CqVNVYpS3Rl+jZuPsLT1IoteraXVlC53n3c/UD+t3i1pz/eYufl3jn+5sDZPRRP+n4lm7wenhs1LELZyqZa7y6sjbDHo9G/VLhRBCFCwmI0QFU+Xqe9idSRbJFmsETX/OsW589hncuqXa9eppZaoWLEgZdN+9q601rl0bypfPsW4+sr59VdANaop5iqA7LalNB/d6JcPDTAYDxqAgy43x4WDvnvqU9QeW7X8Sk8nO3OdsVErL0yStUg4xGU38uUoLmoaNrpLO3lDDR5teceac3BsBCD2jrTepWDb99SSZNf5NrT7xl9+kXNN993o4ffs7E5ugErAZjPbMXuhJjRowerQq63RmzxVad/I010iuWvoie7ZHMXq0+vWKiYEXXshaRuyYezFMfm0Hd6KKAdC56QkcXRwzOEo8qjbNtXrdW1eH5lo/Th4MM7dr10glSyvg7a0yrS9aBJ98Y53SgjodvDOlGnM/34HeTi1wW7QpgBmTdqR73N8//ZdKwK2ERxfh4LlaDBvvL2XJhBDicWWIhV2D4N+GsLgQ+lU1KHYvWcDtNQY67lA1snNAaKiqZgMq4djSpSqfEqj31pAQy/03bFB5hCD/jHIneeIJNaMN1NdpMORCJ+pMhKcj1b9eIapkW7uN0OJPaPQDeI1hyeER5t0L2tRykKA7x+z69xhnrqjRozb1DlG9fuV0969eV0uGdDakcDp7Pj5Cz0WY2xXKW+cvRtfnGlG7wjkAdhyrx39rjpmfMxqMDHryLBeuqSHt6qXOUrhQAqDWxPzwA3h56Rj2agfuRqu15g2qn2TXbheq+1Vi8mQtA/bmzTBndsZRd1wc/PDVdapViuDDGW3M23v1MKZ9kLCaNp20m11bt+Xen8eTR7Sf9VrplC9p2lRNM7f23eDnx7dgyU8HzI/fntqQkONhqe4bHRHNa+9rQf/7487wv//BsGHQttE5yhS9BkCiwYFp/zud6jmEEEIUINEXIeKE5TY7J5Ud++5BMNw3bzY5FH4QeH2nsl/nkHffVZ+5AMaOVUuihgzRnn84mVp+nFqexN1d6/P167BrVy51RKcDh0LgVklNZS/dDio+BV6juF3lOzYfVomSK1eG+vVzqY82JEF3DpkbqI1WDR9yP509Ffei7pQtpkaFzoSVtVm/8pNLITHmdsVK1hn9t9Pb8eYr2ujbl1O0aS+TX93Gqv9UPYhi7nfYsNmFkIsOvPuuSkoBEBtrZx4F79DgAFv2lKdUZTWV3d0dfvpJe603Xo3m8rnUR/oSEmD2bHWXdfSbpbh6V5tO/OKT23hmbDOrfL0ifY3be+PqpGZRbNlXLdfWdZ84ob1u7XoeudKHXsP9ebnPNgCi49x5aei1VL8fk9/Ya57l0anRASZ9XYP33lMZ0Dftq86hg3qcHFTpkMC/GhBxMyLFOYQQQuRjJpNKhnZ0EvxbH/6pDEETLffR6aBwLbV+uFANTGV7cLXYMIydD6rAKwcdOAC//KLaxYrBO++o9qBB2k3sBQu0GYomE6xZo9rOztDq0fPu5rjkI8fJ62DnFcuXayPwBXFqOUjQnSMib0fy58YGAHi4RtB3RINMHedVQY0Q3Yoswd3r4bbqXr4RGqp94K9Y1dVq5312TBPzaNzS7U04e/wu634/wAc/qL+qOp2R338KplKt8hQtCp98ouo4v/EGODuq26TPdNzJqh11KVTMMtlZp04wtK9KMR15351RQ0MtApews1f55NU9eHmZeOEFNd0pSe+W/3FkxxkCl7bKVCIr8ejUuu5TAFy+U4YbIXczOMI2Tp7VarHXapD5EmDW9vlPfpQvfgWAdfsbseCrnRbPnzkYzJc/q+SQDvp4pgcWS5HMrVRlT4Z0Uwvh7sUU5qfPD+VAz4UQQtiUMQGubYL942B5FRVsH/1IBd+gylE9XFqqxZ/QLxp6nMHYcilXPEeBW+Uc7bbJpD6/JfnwQ62saoUK0K6dap87p40InzihSvgCtG6tkpPlNz16PMhajsrQnpUljzkh+Y2Agji1HCTozhFLFlzifpwaGn22axAuhTL32+pVRRsdP3s47Wx/j4vQMAdzu2J16xWednJ1YtywYABMJjvemujEsy9VNidzmDRqG52escw07+mpkliFnI1gybx/WbDKP801119NL0GpIjcAWL7Tn1+n7eKvH3fT1X8/lbxL8v40f0JCtEDliSdg/374e1tT6jb3strXKTKnTXPt9+7If9oHhsT4RPauO07g/7Zx9lCITftwIkTNbinmfoeSFUvY9LXSU7h4YWZ+rf3teW1SHa4Fq59lk9HE2Jdvk2BQP/dvDtmFV4PU1+K98X4FdDq1RGLaPG/iY+JT3U8Ikfuuh9zkl292cufqo910PHYMfv9dm8IrCojYG7DzGfi7FGxqD2e+0+poJynWCOq8qwLz5FzLgj5l/pyctGKFyuANUL06vPyy5fODB2vtBQvU//l5anmSIkWgfXvVvnRJ1RzPKyIjYf161S5bFvxzt2KrzUjQnQPuO6q0+Xo7AyPGpMxCnJYa1bV1vGePh1u7W/lO6FVtFLl89cx/HzPjpfeamWsy/rPSldv31Nrebk338e60tOcRlShXnEp1S6ZbqqlYmaL8MOW8+fGg15vz9KhmrNnbCKNJZYTW6Yx07gw7d8KqVdAw7WpywsbadtbWdW/YUp5p03T07AnFixvx71yHlz9oRYOA4qz/40A6Z8m+yNuRXL6tapHWqhSW63Wyuw1uzLMd1Qj33eiijBlxCYBlc/awdp9af1WhxGXe/bpxmufwalCFXs3VaPflO2X4/fs9Nu61ECK7+ve6zKDXm1O/XjQXT6aeyyEjYWHQrBk8+yx07w6xsVbupLANkwkiz8C52bBrMCyvBienWu5j5wgX/4D4ZDdldPZQupNKiPXkJeiyD3zeA8ciOdr9jCQkwPjx2uPPP1dJ1JLr00dbQrhokUqGWxCCbsi7U8xXroT4B/fi+/QBuwIanRbQLytveeklmDbNyLfTLlCvRfVMH+dVSxsRP3M6IZ09Hw+XIlRGqRJFY3AtbN25PUWKwIsvWm6rUiqUhctqWGVqd9+Xm9Gn1X8ptlfyDOOjkVsIPn6FNWsgIOCRX0o8okbta5rXdW882Ig33rBjxQqIjNLemaNiC9FtYF1+m7YzrdNk28mT2s9b7Vp5I4Het3O8KVFY1VX5a1NDfl0Qx6vvavVSvvlfKG4e6deif2ui9vyX35fO9TroQoiUou5Gse2oLwChN8vTrp0hW1UHvvgCoh6kSNmwQX2QlhHvbDKZ1Ehy1AXrn9uYAHcOwOnpsKMfLC0DK71h7wsQslC95r3zlsc4FgEHD7AvBBX7Q8Dv0PcWtFsLXqPANe/W0vrzTzj9IJ9nixbQu3fKfdzd4akHS8wjIlTgvU2lN6F8eahVK2f6agu9emkB7ZIljzbF/NYtNdW+Qwftdz27Hoep5SBBd46wt4dXXjHRrFlkxjsnU6OBFqCfCX+869smJsLlqyroqVjFNotpxo1T1wrA2dnIksVxFC1VxGrn/+HnqtSqcB4nh1gGtN/F+kUHuXC1LB/OaEOlWnn3Tepx4+DkQKsmt1JsL1HCRL8O++nceD8ACQZHnnu1OV9P2GLV1z95Ltl67gA/q547uzwrlOC76VpW2UFDHQi9qX5mOzY8QJ8Xm2Z4joBudQmofQSA46E1+HfFI75LCyGs7siuYPPSKoAL1yrRvm0sVy9cT+coS9euwaxZltv+/Rf691cjjSIDJhNEnISzgbDzOfinkkpMtrwarG0Kt1LewM+WoInwpwesaQQHxkLonxD70HXWu4BdKolrO+9RgXaLP6DyAHDMnYSfWTV7ttb+3//STtaVPIv5+PHaTI3OnfN3gi9PTxUoA5w/r2ZXZtdXX6mbERs3wh9/ZP880dHq70NS/1q2zP658joJuvOwqrWKm+9InX3Ma3VfvaplNaxonZLEKVSoAIGB6u7nkiV21G9Vw6rnL12lJMeCqxAT68TvGwLo0K+BJEjLo6b+WIn27U20bBnO118bOXIErl/XsWh9I1btrM9LvbeZ933jiza8OWgLRoN1RqVPJKuyUru2VU5pFQMGFaJ7d9VO+lCukqcVzfQU+PETtQSIX35bKJ09hRC54dDeO+a23i4RgDOXq9Ch7T1uXkp5MzI1X32lBSldu4Lrg1/7f/6B555TN9HFQxKi4MJ82NFfrZVeVRv2vQwXf4P7l7T9bu8BfSYTyRoNcPcwnJ0J/w0H40PfeHt3MMRYbnMoDGWfAL/PoOMueCocGk1Pee7C3qBPPY9NXnX+vCrfClCjhhZ8pqZ1a+2z5s2b2vb8PLU8SfKR5JYt1br2F19U+ReuXcvcOQwGy5Jqe/dmvz9r1qgp/ABPPgl6ffbPldc93pFcHufkpOo8BwfDmTPq5md+vsP2KJJn9a5QwXavM2yY+mcrEmTnD3XqwNq1RoKCzuPn52fxJqB30PPjXy0pM3oLH/3YBoCvfmnDtRs7mbuscZoJ9TLr5EmtnZemsel08OOPKgHNvQe55l4fvAfvhpm/Ld3juep4f6qm923ZohIGNmpkm/4KIbLu0CHtPerXaXuZ8HFFLt4sz4nQ6nToZmDTZihePO3jb91SfydAfYaZM0f9TevWTQXif/6p1tDOn1+wP1xnmSEW/nseSGW+r94VPANUAjOnElDU1/L54IVw6W91DmMcGOJU+94ZSEw2o8h7jKqNnKREgMocXqKZ+ufZHIrUA7uCeWHmztXaw4en/3nazk6VD/v0U8ttHTrYrn855amnYMIENcIM6mbE+fPa7JQGDdTvadWqaZ9j0yYtmzuo9/LselymloOMdOd5Xg+SV9+7Bzdu2Pa1rl1TH6iNeWMZqYVLp7U1ZRXLycIwkbt0djo+nNGGwP9tw06npmD8uq45/TofeeTfnxPH1M+3u7ttbzBlR/nyqva8g4N6Y37vu6zNA7OzsyzV8uWXVu6gEOKRBF2sC6jknt0H1WPTRiPlS6rR7yNH9XTqBOHhaR//7bfah/kRI6BMGVWCaelSLWHVr7/CCy/kzc8ajyzhnkpEFh0KsTfVCHbcHbi+FU5/B/8Ng38bwo4Blsc5l4DiD5JROnhA2e7g9wV0+g+eDod266FrELT8y/I4kxGOfQJhy+DqGri+GW7tgrsHLQNugJu7LB+Xagu9gqH5byogL9agwAbciYnw88+qrddbTh9PS/Is5qAyahe1XuGcXFOqlKpT/uGHqt64g4Pl8wcPwrvvpn+O+fMtHx89mr1kiXFxKokaqNxKbdtm/Rz5iYx053FeVe+xFjUN88yhUEp1sc3c6hs3oH59FXhPmgQffGCTl8m20OOnAZXRuaL7AUAyjonc9+J7rShZeg/PjPIlNsGFf7Y34tNP4f33s3e+mHsxBF9Ua6drljuLTmfdJQ7WMGCAqvfp5KTlQMiKQYPU9+f6dfjrLxMXjl6mal3JaSBEbktIgKOnigDg5WWHm4cbVeu6sWmH+nB+7Zr6QN6lC6xbY6BwEcsALTwcpj+YiezgYJkluksX+OsvlVAtMRHmzVOJQ0eMyJmvLUtMJlVr+sY2MCWozNw6e7W2WWcPGCEqBKLOqWzdzp7asdc2wPY+Gb9G/J2U2+pNBjsnKNE09XXUOh04PhT1XVmjRrRT7GsPLqW1UewSAZaj3Enne0ysWQNXrqh29+5QOhMFcLy8VAb+3bvV44IwtTyJtzd89JH6d/++qke+aZOapRIerka6J0+GKqlUAY2MVHW+k0tMhMOHs17qa/16beZcz54pM8kXNBJ053E1ih0E1MKTs0EXaWmjoHvCBG0tx7Rp6rGTU/rH5KTQS9qbQ4WqhXOxJ0JYenKEP8s8ztC1fw1MJh0ffgiNG6sPmVl1+lAoJpM3ALWrXgfyXtANWjmV7HB2hjHDr/De5LIYjTqat3KgiLtldtwi7vcZ/3o0vV/IOEGbEMI6Tp3SyvbUr69tr1FDJUtq00atb92zB7o1P8S/K+7jXkqrbzlzpvpADmok0SL/yu399Gh0h4XTy/LMSB8A/l15nxHDHFMPMB9mMkF8OMRfh5grcP+K+j/+DiREqn8NvgKXMtoxl1fDkfdBp1f/7OzBpRwUrQdFfNU/1/Ipg8+7QbCmQea+ad7jLINuQyaG+3R2KkGZIQ70yT5olW6fuddMrlRb6BmszqN3VkG7nVOBHbHOrjlztHZWbvSMHq2Cbr1ey2he0Li6qmnzHTqo9+cPP1Rrtr/5Br77LuX+f/2lrcEuWhTuPqgct39/1oPux2lqOUjQned51dY+3Z45bbDJa+xefYSff9bWCN25A8v+uEX/ISVs8nrZEXrZ2dyuWCOdBWVC5ILOT3vxyVk1JctkUsmCDhyAypWzdp6TQbcAFXTX8i642YZGjnZhyldRRMe5cy28FNfCS6XYp+9LRhZG7eS515rnQg+FePwcOqS1/fwsn6tdW5X+atvWxJ07OnacaETPHptZOWcOSWm9fvhB/a/Xm3j77YcC2cPvwrV1PO1ux3CnSO7HuXFo1zX4ozo4lwLXcuBSFqq/COW6a8fF3sJuTQPqx9zA7kwGS8tqT7AMuuNuqWnWDwtdpLUdi4LPh1BznLatqJ/qS8yV9F8P4N45tRY6iVtFqDxIJSgzxD5IVGaCwrUeBPv1oIgP2GcyGVpG7F3AvbJ1zlVAXbsGK1aodpkyWbsh/swzUKyY+lenjm36l5eMGgWffaaC6jlzVAD+cA6HBQu09qRJMHasau/bl7XXSkhQyRVBLafr1Cn7/c4vJOjO42rU1T6MnjnvnM6e2WNIMDBqTMr5HLO/u5ingu5L11Q5Cnt9AqUrlczl3giR0sSJ8N9/6s39zh14qttVduwtirOb5e+tyaQ+vG7frqarBQRoAy0njmn1dGrXtU1pvLygWJmiTPtwO+9/WYP7cZZfp9Gk415MYUwmOwa/0RTHkuE8/VyR3OmoEI+RoD23AfUJO/lIdxJfX1i/Oor2HSA8qhCbT7RlwIhIlj94/s6DEa9n266latWHIhuTuomotzNSr+Jhdp8NIPhmVcKjC1OEaxB7DTgARetbBt16J3T3L5GpidAJqZRl1dmDyUCqCcoA4u/Cpb8sg26dDuq8A+jUFG1jouq/MZHQy078saIKvbrH4V2/DLhVsjyfZ3PLIFzkuvnzteo3zz+ftWVROl32Zq3lVyVKqCRz33+vpp3/+CO89572fHCwyv0Eaor6Cy/A66+r6eVZTaa2ZYs2St6tmxplL+gk6M7jKtUsi4M+ngSDI2dDrT/CO/OTHQRdUNPX61U5RVSMM+evVWbDwYYEH7tEFZ+8kckp9IYKtMsXv4beIW/0SYjk7OzUHeBGDRM4f8GBAyfKMPa5bfy0rJV5n61Lg3jvQwd2HFW3zP/3P/XGNXyYgcH9bnPyjDbVsFb9lKO/Bcnwt1sy/O2U201GE6/028aPS1phNOl5dmgRHN2hV6+c76MQj5NDO0NJCrr96twDUpb1a+BfiDXrDHTsGMu9aGc2HrdM56zTGXmn86twYxaUTJZoscpgFYyaDPj56dh9Vm0+fLc/rUusVEG3yZgy+Ze9Gybn0sQaXXAuWgWda3k1Cp30z6mEqhHtUFhNHU+u6mD1D9TdTmO8GpkOPwLhh+HuEdW+tQtib6lkZkm8Xkn1e/TSK2p98P9+VOtRm8oKmDzNZLKcWm7L6jQFxeuvw4wZKtHh9Onw5ptaQJy8TNiQIWq7r6/K9XDyJERFqVHrzHjcppaDBN15nt5BT7UyIZwKq8a5K+UxGoxWKzt189JN3vuqnvnxD9/Fs23DNd6ZVhmAedPP83Fg7ge4UXejuBNVDIAKpe4Aud8nIVJTpAgs+fkCzTpUICbelVn/tKLpZ9up5VuE999LYOOhlOsET5+G8RP0vPNOUezt/ABwcoilSp3HM7mYzk7H94taEP/8HeYsLEZiIjz9NCxbBk88kdu9E6JgMhlNBJ1TWZPKFrtKyXJl0tzXv5me1Wv0dOmcgOm+5XNPN/mTmtWiUiYKq6qli67fEfhTtYOcAmndG1VTOvZ6yvXdOjuMvcI4ERT0oHxjNtcq63Rq3XOROuofz2jPJUarNdaZkDQFPypKjYBu3AgNG6Z/jMg927fD2Qc3eNq2hWrVcrc/+UGVKmr9+uLFKsnyggWqjrfJpE0t1+lg4EDVbtRIBd1Go/r9aJmJoiYGg6poACpw79rVNl9LXiMlw/IBr0q3AIhNcCHs7NUM9s68iaNOER5dBIAhT2yneXdfhoypid5OTQObt8QLQ4Jt1pFnxaWz183timWi0tlTiNxXr6U3gVO0dYQvvtuMgG51LQLumhVC+GyKidatteMSDQ7EJqgPfl7lQrF3fHzvidrp7QicV4xBg9TjhASV9Xj9ChvXTRTCCkwm9YFy9uz8Uxbr4snL5s8D9b0uZbh/ixawYqUDzk6WX+C77ztCzwtQPu2pKcnXi5vXkdvpwbUsOOfC8jF7N5XcLAMGg0oklyQiQq1DPXzYhn0TjyT5KPfw4bnXj/zmrbe09ldfqZ/9nTtVPW9QZQCTSpo2aqTtm9kp5jt3amWQu3TJ/Oh4fidBdz7gVTXG3D5z5Ho6e2be7tVHmbtS3Y7ycA3n8x9qAlC2WmmeaHoAgLDbZVn3RypJSHLYpfPh5nbF8glp7yhEHjHo9RaMekotfDIYteC5WumLLPhqB8fOV2DCRB1btsDZMybeHr6dMkWvmfdr0fDaw6d87Oj1MHcu9OunHsfFQa+n3HlvxEY2LwkiNjobRUGFsLFz59QH0j591HrH6Z9nHMDmBYd2hZnbfj7309lT07YtLF6sfYx8sqcJ3269QZ9+3Z+6ddXvN1gmb8vr7txJeRPlzh2V9fnEidzpk0hbUukrULPQ+mSikptQGjVS1QoAzpyB5csta3Mnr3PeuLHWzmwytcdxajlI0J0v1PDSLtPZk48+0mtIMDB6nBYIfPzqYUpV1kpejEh2N3D27Nwf6Q4N1j4AVKwkP7Iif/hmQTNa+wYBUKHEZWZ9up2TIWUZ9HoL9A7aFMnqNXRMnt2S0GslWDV/H99/sJXPAv1yp9N5jL09/PIL9O6sAoKYeFc+ndOedk/5UaQotG9wkE/HbmH/BvnEK3JXYoKJzz9XAeWWLdr26d8ZMRry/nB30AHtJlb9hpmvF9o+WZWrmYGZq/vs7Ay1aqn2iRPqhlp+cD3ZmEffvtp67lu31PfhTCrlskXu+f13rbTVc8+BS8HNTWoT48dr7cmT1XRzUKPSyW9g1KmjrfnOzEi30ajV+XZwUHXTHxcSweQDXrW1utRnTqeRgTMLfpq8k4Pn1Dueb5XTjPrQMtPmEwMbULqIendZvrMh10NupjhHTkpeLqxCZfmrKfIHRxdHNuzz4ciOM5y9WIIR77TEwckhzf3tHe15YnBjXpnUmsLFpRZ9EgcH+GNpSZ7tuNNie1yCM5sONeC96W1o3LE2X43fkjsdFI+9Q1tO0aTWaSZOhNiHJmCcv1aJ9Ytyf8ZYRg4d1d5b/ZqVzdY5CqXMu5ampCnmiYlw/Hi2Xi7H3Ui2uqVaNfj3X20997VraobDhQu507fkEhNVFY2FC1W26cdVdmtzC6VLF/DxUe39+yHyQXGAp54CN62aMQ4O2u/z2bNqhkF69u2DsAcTazp0ULMQHhcSdOcDNXxLm9tnLj9aErFV/9znjcnaAozvv41NsXbU3tGBob1PAmqd6cIfcvcd8dJ9be5KRd966ewpRN5i72hP3eZeOLlmfuRIpOTo4siv65oTdvYqC7/eyfPdtlPRM8xin+k/V8dkfPSbkkJkxeevb6Fx++ocOq+WaOl0Jl59FRZ8ow35zPwxMZd6l3lBZ1TixsIuETlStSR5SbKgIJu/nFUkD7pLlVLBwrp1UO/Bx5LLl9WIam4xGOC331RN9Z49YfBgqFpVJcYaPlzNGrp8Off6l5MOHYIDaqUkDRumrDsvMqbTqczlD0s+tTxJ8nXdSd/3tDyuU8tBgu58oWy10ri6qvbZq1WzfZ65c6FXX1di4tXJhnbbTsueqQexw8ZUNrdn/14xVz/MhoZq7YpV0l8rJoQouMpVL8PA15ozd2VLQq6V4/yRUJrXOQLAxZvl2bs+nwyZiQIhaNtpJn7Txpy3wafSWXZvvsk338Azo/woW0wlPl2+s7FVk6Ba2+0rd7h0S5Xb8qsebLUKKelJNZlaHpd8ennJB/neihVTpcOqV1eP//sv6/WKH5XRqAIZX18V9Cdl604SEqI+/w0aBOXLqyR4yT9XFUQzZ2ptSaCWfc88A+WSVeKrVAlatUq5X2aTqZlMWtCt1z9+pUAl6M4HdDqoUUO1L1xQmXyzwmSCTz9Vf3gMD5Zo9+txjZmLm6R5TI36lc3rUU9frsquHfHZ6Ll1JL05FC4MHh651g0hRB6is9NRtW5Fhg2MMG9b9E8uZD4Wj62Vf2qB9Mi+2zhwshL+rdXPoL2jPS/0Ow2A0aRn1lenc6WPmXFoR4i57Vc7Iu0drSh50J1fR7qTeHrChAna4x9/zLk+rV+vRnKfesoymVubNvDhhyrZndNDE6127oSAADh2LOf6mZMiI+HXX1Xb3V0rbSWyztERxo3THg8eDHapRI6ZTaZ2+LC2BKN1ayhRwjr9zC8k6M4nvLzU/waDumuZWYYEA6OHBvPee9q2sWPh92WlM5zyOmJsJXN79rzcmR5rMsGlB8lfK9h+xpsQIp/pPbwhDg5qJs6fK0rmmxJNIv9bu6WouT1+UlUcXSxnYr3whre5BOesxTVJiMub1TeCgrSZbPUbZLMOdhYVK6ZGzdTr54/SaqmNdCd55hltUOD33+HuXdv3Z9Uq6NzZ8qZFs2aqdvjmzfDRR7Bpk1pju2kTvPceVK6s9rt8WY14b9tm+37mtIULITpatQcOzFquAZHS2LHw0kvqe5n85lJy3t7aOu/0Rrof56nlYOOgOzw8nDfeeIMGDRrQqFEj3nnnHaKTfhPSMGjQILy9vS3+ffDBB7bsZr6QFHRD5pOpxUbH0r/jXmYsqGLe9vnn8O23qd+peljfZ4ua30QWL9aSKOSkm5dumzObVvS8kvMdEELkaUU9XenUSWVNDguD3btzuUPisRBxM4LdJ+oA4FUumMp1yqfYp1z1MvQIUAscr94tzfJ5OTzvOJMOXWxobvu18cmx100a7Y6K0ur/5mXJR7ofDrrd3NQoIKiM2QsW2LYv16/D88+rgQmABg1g9Wo1it2uneW+zs5qxPt//4O9e7VRyaQ648kDofzOZLKcaTByZO71paBwclLT9RcutEyglpxeryUVvHjRsp59ckk/azod9O5t/b7mdTYNut98803OnTvHvHnzmDlzJvv3789UAN2vXz927Nhh/jc+ed76x1SN0ufM7bM7M741aTQY6dv+KEu2NgPAXp/A/J9uM368+mHPDBcXLSnI/fsQODPny4eFntFuLVcsei6dPYUQj6ukWt4AixblXj/E42PTspPmtdydW6S9QHbkKC1R6Y8/5c2EikkjpQ4OUNuvSI69bn5LppY86Pb0TPn8yy9r7ZkztYDY2kwmGDZMC2x69FCji127Zvz5ztNTjYJ37aoex8XB00/DjBnaPkYjXLmiAvglS7TZhvnBjh1aNvyAALXOXeSMjNZ1nzyp/oG6NmXK5Ey/8hL7jHfJnvPnz7N9+3b++usv6tatC8B7773Hiy++yPjx4ymVfEHMQ5ydnfFM7S9aGgwGAwZD7teTTk9S/7Lbz2pVtBkCp89kfJ5v397G6j1tAXB1imbxrON0ebZhll9/2DCYMUNNN3v7bRM+5ffRqX+DLPY++0LOh5vbFcrnvev8qNdV5F1ybfOP7t3B0dGO+Hgdfy2KYeoXeota6MnJdS24cvLarvlXKy7doYtTmq/Ztq8v1Upf5Py1Smw81ICT+8/jVb+yzfuXWffvw6lTdoCOOnVM6PVGsvTtMxjQm5sGsnKwCojU0QcOGOnTJ/UoNa/8zl6/rr5PxYub0OlSfp+8vaFVKzu2bdNx6hRs3GigbVvr92PGDB2rV6sxs1KlTAQGGrM0Pd/ZWdVJfuklHQsW2GEywSuvwK+/mrh1S41UxsVp0XupUiZOnjRS2MqVLG1xXWfM0JE0nvjSS0YMBqlokVMaNNC+9/v3m+jRw/LaBgZqz/fuXbCuTWZ/hm0WdB86dIjChQubA26AgIAA7OzsOHLkCB07dkzz2BUrVrB8+XI8PT1p27Yto0aNwiWdqvZnzpyxat9t6ejRo9k6LsFeC7pPnnMhKJ3bwheP3uCdb7T5Rd9/uoHStcune0x6Bg8ozII/amAw2tN/hDcLEtdRoU7OJCw6elibo+LiFpHtr8HWsntdRd4n1zZ/aNPIiXW7fLh6w4VFs1ZQOyD9WsNyXQsuW19bk9HE2h1q2ZajfRwlqhrTfW8a0COMT2epBcyTv3Hk1dfT3jenHTvmitFYC4AKFW4TFHQxS8fbxcSQNGB95MgRjOl8VnuYo6MDoIYit2+/R1BQ+rPZcvt39to1P0BP4cKxBAWdSHWfzp2Lsm2bqjLz+ecRFC1q3ULZFy4489ZbtcyP33nnHFeuRHIlG6vvxowBvb4s8+apIcddu1IfJr9+Xcdvv52nadN72epzRqx1Xe/cseevv1TM4eGRSPXqRyzyFQjbcnNzAtTylE2boujRQ7u2Bw648913ap2svb2RmjWPERSUN3Nc2JLNgu5bt25RrFgxyxezt8fDw4ObaU32B7p3707ZsmUpWbIkp0+fZurUqQQHB/P999+neYyXlxeuSTW18iiDwcDRo0epW7cuen3WE5WYjCaKut3lbnRRToVWpmoFBwoXT3nbMeZeDIN7exCfqKaxvT5wM4Nf7f5IfZ81z8C9y/+xdHtT7sUUZszr9di120TZqqUzPvgR/RqhLST3a1wRP7+8Vaf7Ua+ryLvk2uYvg57ezbpdqr1rS2GeHeWX6n5yXQuunLq2p0/EcPGmOwAt6x7Dv7l/uvtXmFSbqQtMxMXpWPVveX4MLEsWYlOb2rtGK6rbrrkRv6wWNE6Wp8fX1zftRZ+pMJmgWDETd+7ouHChcJqvnRd+Z6OjITZWvXbFis5p9rV2bZg2zcSNGzq2bClKqVIeVptGGxcHI0bYmUehX3nFyCuvZL+MLMCsWVCvnpE339SRmKjD1dVElSoq4Vp8PKxfr14rOro6fn7WDWCtfV2/+EJHYqIaSR0xwg5//7z1ebGgq1cPihQxER6u49w5lRCqbt26REbq6d3bDpNJ/Sx9/DF06VInN7tqdffv38/UAHCWg+6pU6cya9asdPdZvXp1Vk9r1r9/f3Pb29sbT09Phg4dSmhoKBUrVkz1GL1en28+PGW7r3po4BXMxkNFuR5eknbNTrF6fTxlqlpO03/n5QOcuNQagHpVTjM5MOCRvzd6vZ5fVvrSpvFx9p2pQ9jtsvTqepJt+zxwL+r+SOfOyKUrzuZ2FS/PPHud89PPoMgaubb5Q6/B9XAeH0Nsggt/b6zNdIMJe8e03+LkuhZctr62GzZr73udn/LO8LVKlnGhXz+ViOjuXR1LlugZMsRm3cuSwwdize2Gta6i12dxFluyr12v11s8zgw/P5VZ+9o1HTdv6imdzr383PydvXVLa5cqpUuzHy4uqjzrlCmQmKjj55/1FtVjHsVHH2lr32vXhi+/tMvqtztV48ap/D0mE5QooTOvCw8K0tbdHzlinddKjTWuq9GobiAkGTnSdv0VaWvUCDZsgKtXddy44YCdnZ4xY/TmvACtW8P48QXv2mT25zfLidSGDRvG6tWr0/1XoUIFSpQowZ07dyyOTUxMJCIiIkvrtevVU3eqLl7M2pSngujLr10p5q6+p0EXahLQLJ4zB7WpS2t+3c/0RSrgdnaI4bff9BmWBcss18KurFhbksol1W/OofO1GPDECRLjE61y/rSEXlW1HnQ6I+WqpZ0HQAjxeCtUrBDdAoIAuBHhydZ/juRuh0SBtXat1u7cPXM3npMn2crJOs4ZCTqpzUis17xKOnvaRn5JppZWje7UvPiiltDsp5+ytMw9TZs2wdSpqu3goOpQW3O2RIkSKsla8kRstWqB/YP7locPW++1krNWsrm1ayH4wcfhzp2hWjXrnFdkTfJkaidOuPLbbzr++EM99vBQWf0LWsCdFVkOuosVK0a1atXS/efo6Ej9+vWJjIzk2LFj5mP/++8/jEajmoKUSScfpLrLSqBeUNVvU5Odm8Kp5BkGQMiNCjRvW4i9645z83oiQ0drdbW/nLCX2k2rW/X1S1X2ZNXyODxcIwBY9V8TXh24E5Mxc381zx++yMWTYVl6zdDr6rqXLnIjRQ1UIYRIrt/T2t+ixb9F5WJPREEVFwdbtqh2mTKQLG1Nupo10zIp79kDL/bcwL71JzL9/mkLhgQDRy6o6cnVSl9MdcmarSWfpX3oUI6/fKalV6P7YZUrwxNPqPalS6qU16O4dw+GDNEC1ClTLL9vtuLkpEbUQWWdjo1Nf/+sMJngrbd0tGrlxw8/ZLKkTjqkTFjekDzo3rixKGPGaNd25kxIY8LyY8NmJcOqVatGy5Ytef/99zly5AgHDhzgf//7H926dTNnLr9+/TpdunThyBE1IhEaGsoPP/zAsWPHCAsLY+PGjUyYMIHGjRtTs2ZNW3U1X6nZuCq7dttTt7JaO3ArsgRte1ahe08918NVgNq1yT5emdTKJq9f2786f8+/gIM+HoAf/mzNX4H/ZXjc7tVHqVG/Al6+nhzbdTZTrxV3P45r4epnpWKpWxnsLYR43HUbWA9XJ7XGdMnGOiTEPX6JWoRt7dgUwf37qt2pU+ZLcOp08MozWlQ5a0UHmnSqTb1qZ5n2zlZuhd22QW/Td+ZQMDHxKh9O/ZrZyMRlBflxpDujoBssA79Hndnw008Q9mC8on17eO21RztfVjyYbIrBACdSzx2XLQsXwjff2BETo+fjj3WPNOIdGgqrVql2+fLQrZt1+iiyLqkGPMC//xYnMlL9gRw0CAYMyKVO5SE2rdM9depUqlatypAhQ3jxxRdp0KABH3/8sfn5hIQEgoODiYmJAcDBwYHdu3czfPhwunbtyueff06nTp2YOXOmLbuZ75StVppte0rR2jcIgPtxruzdq36wPT1NzP2zBjq7R79zmJZ2T9Un8NM95scLf8n4x2hu4F1MJjviE52Y833m3twvn09Wo7uMbbJmCiEKDjcPN7o3V/Mgb98rzqYlNpoTKR5ba//QAufOLS9n6dgRb9XjrcFbzDeGAI6GePHqlNaUq+LOS723EXc/Lp0zWNeh3dp7rF/dnHvd5Ly9VQkryNsj3VmZXg7QpQtUejD5cM0abepzViUkwLffao+nTwc7m35yt5R8RN1aN0WCg2H0aO3x7ds6c/3m7PjpJ8wl0158UZsSL3JehQopa9hXrgzp5MJ+rNj0V7dIkSJ89dVXHDp0iAMHDjBlyhTckmW2LF++PKdPn8bfX2X+LFOmDL/88gt79uzh6NGjrFu3jvHjx+PubttkXflRkZIerNlVk6d6RVpsnztXR+mKRWz++kPebE7pIuoNe8MBP2Lup32b0mgwsnKbt/nx3xuqZWpKXegV7WelYpU8kupVCJGn9e+vva0t/j0mF3si8hujwcjz3bdTvNAdFn69I9V91m5Xqah1OiMdOzunuk9a7PR2fDG/DdeuGJn16Xaa1dJKJcUnOvHTslZMeWN3tvufVYcOaDNB6jfKfNZxa7K316bonzunplLnRVmZXg5q3epLL6m2yaSSoCVmIwXOH39oo9w9eqh11jkpaaQbrLOuOzERBg5MeZ23bs3e+e7dg9mzVVuvV0nsRO7R6SxHu+3sTPzyC1av8Z5f5eD9MmFtzm7O/LGkMG+9pRIUfPghdH+06mCZZqe3o1t3dTsxJs6JTZvTHlk/uPmUeZo4QOjN8uzfmPFtzdDrxc3tCr5+2e+sEOKx0fWZerg7q090f2+uS3xMfC73SOQX376zjZ9XteROVDGGj2/C7tWW9YOvnL/GkWB1A7lRjZOUKF88tdNkqFCxQox4pyW7TtTl+H/neGPgFuz1KgD+bE5Tzh/OmcSxuw9qSdT8mlfIkddMTdIUc5MJjuTR/IdZnV4OMGyYSnoGKoFU586W58mIyQRffqk9fuutzB9rLdYOuqdMgV0PSjt6eGiDL9u2Zf1ciYnQv792Q+TJJ6Fs2Ufvo3g0zZtr7YkTTRaPH3cSdOdzej188QWEh6s7qTmpe1/tA8eKFWnvt+KvlO8yS37L+J0nqcQASPIFIUTmuBRyoWdL9ck9PLoI69fKum6RscPbT/P2183MjxMMjjw9qAQ3Qm+at61bcs7c7tz6JtZQ2786Uxe24dVndwIQl+DMq6+EW+Xc6Vkyczc7j6vMbpU8wyhTJfeqg+SHZGpZnV6etN+MGVq25k2boEEDLejMyNq1cPTBfR9/f2jRIvP9tZYSJaBcOdUOCnq0bON79sCkSaptZwfLlhlxdVWp3bdty9q5TSYYMwb+/Vc9LlIEJk/Oft+E9YwdC8OHGxk+/Crvv597iSLzIgm6RbZ17KiyWwKsXJn2H8yVG7V3KDud+gO7ZGuTDP/AhoZqbQm6hRCZ1f9lLTvT73/l3LTZU/su4FvlDP41j/H9+1u5ez08x15bZF9MVCzPDVQ5RwAKu6gKHZfvlGFArzBzacy167SPTJ17FEt5okfwwbcNKVvsGgArd9Zj5Uqrnt7CnTvwyru1zY8//yDUpnlgMpIfkqkljaa6uIBbFv6kjBgBmzerTPcAly+rWsXTpmUcZCYf5R4/PvNJ+6wt6aZIRITl57KsiIpS08qTyqe99x60bAn16qkqE1euwIULmT/fV1+pbNigZhMsWwZeXtnrm7Aud3cIDDQxcuQV80wPoUjQLbLNzQ3atVPty5chaF90in0uX4aD59QipPreYbRuo941zgW7mu/gpiU0WEvsUiH3Zr4JIfKZzt1cKVpUtf/+GyIj09/fWsZ/VI6jIV7sPe3DmE9aU6aCM8923MnGPw9iNBhzphMiyya+FMTx0BoA1KtymiMH7lGmqAqANwfV572xpzAkGFi/V00tL+wSgX8n6y6uLVSsEF9NL2F+PHYsxNgoJcEbb8D1Ox4A9GwZRL9RzTI4wrbq1tUCyrw+0l2qVNaD35Yt4eBBFWyDmhb96qsqm3Naa9gPHlQj4wDVq0OvXtnqtlUkn2Ke3Zsir76q1uyDGrV//33Vrl9fK+2Y2XXdf/1lOdV+7lzteytEXiZBt3gk3dtr2UVWzN+X4vnkd+t79C9P377aj9ySJemf+9JpdUvVySEOzxIyRUUIkTlOTlp5kpiYjP/WWMOVK7B6rZPFtrgEZ37f0JwO/RpQvVwYcz/bbvuOiCxZuxa++60pAM4OMfz6q55KtcqzeP4N8zrrzwN9+GDCdW7fU0uq2jc6iYOT9Ydw+j9jT9u2qh0crJaOWdu6dfDzz6pduDDM+N0vV0e5Qd3A936Qa/XYMZWxOy9JTITbDyq6ZXY998NKl4YNG2DCBG3b4sXQpo1lkrYkyUe533hDm6KeGx51XffSpTBnjmq7ucEvv2gZxhs00O46ZGZd93//qfJTSSZNUiPoQuQHEnSLR9K9m5aOc+UGzxTPWwTdPaB3b+1xeh+ETUYTF2+UBqCi55Vc/1AghMhfhgzR2vNnXk1336go6NsXOnRQU2+zY/58berksIF3efWZrRQvpNVeDr5ekRHvNOfS6dyphyxSunkThg7VHn/xaRR1mlUHoEUPX6Z+dt/83ORvtAxNnTvaJjmfTqdKQiUFJJ99ZiT4eNbKkqUnKkqVVEoydaq2Xje3JU0xj4/nkcpH2cKtW9pU8OwG3aCu62efqanQHmqiAQcPQkAAnD2r7RccrAJyUOWXkv8tyw3J19xnJ+hOnm/ou+/UyH2S2rXv4+ysvrkZBd3nz0PPnhAbqx4PGaKNmAuRH0jQLR5JxZrl8K1yGoB9Z+pw9YJ2y/b+fXVnF9Rd3gYNVGbJgAC17fhxOH0o9Q8UEbciiYotpF6j1F3bfQFCiAKpSRPwrqiC7a17yxB87FKa+06dqqahb9yo2lllMmkjOQDvfVyUb35rzeVr7iyesZtGNU482M+OnetCMjxfdEQ0y2bv4XqIdZJ1iZRMJnjhBbimZpHTpQuMftPyxvHYNzzo3z/lsZ37VLVZv+rUgXFj1FBvbKwdr74UZrVzv/PSHi4+SIzetq1ab5xX5OVkatlJopaeXr1g924tV82FCyrj8/796vE332h1p0ePVuvIc1O1auDqqtpZnV4eE6NmL4BaRvD885bPOzqaeFA1mOBgywS6ySUmqu/bzQd/Etu2VfW5c2uduxDZIUG3eGQ92mujSKsXnTG3Ny05Yr4j2b1bInYPftr6ttcWcy/5Odnt3WRCz2jBe4Wy91PdRwgh0qLTwZDep82PF/54PtX9Iu/EMG2atnwlvUoMadn6zzHOPzh9+/ZQpYpqO7k68fTIZkx6T8t3sWd3xnNnRw44RO8X/GnfOlzWgtvI7C+P8M8/ql2iBMybl/IDvE6nagDXrq39fHiXD6ZynfI27duH78Wa15Qv3+nP6gV7H/mcO1ce4fvfVQFdF6c4Zs3KWwFLo0Zae/Pm3OtHarJaozszatVSWcyTapTfvKmmmv/+u3YDz8UFRo2yzus9Cr0efFWiey5cyFqOjOPHtRsIjRql/jPXsmXGpcNWrFDnAvW9+/tvcHTMfD+EyAsk6BaPrMdTWvKXFau1v4Ir/g7X9gk4YG736V/E3F6yOvXbxpcuRJjbFcsnprqPEEKkZ9AoL3Q69Ylvwd9VMBlT5ob44eM9hIdrnwSPHYOQE1mb0jtnZri5PaJvUIrn/TtUM7f3BKWf9dqQYGDZFvUJ93hoDXb/eyzD1//pk2008jrBz1/syFyHH3PREdGM/1griTFnjpqNlRp3d/j7bx0ehVRizyF9bV9Du1CxQnz1kZbKeeyEUsTdj0vniPTFRscyYqQbJpP6yPfJuN1Uq5bBQTmseXP1vQZYvVpbqpEXZKdGd2aUK6eCzFat1OPoaHj2WTVLEGD4cHVDKC9Ivq47K7XUk++bFLg/LDNB948/au1vvlElwoTIbyToFo+scYfalPRQc37W7/MhNjoWk9HEym0qG6yTQyzt+9Y171+5TgUaVlfTLQ+eq5XqtM/QYC1ta8VKuZhBRAiRb5X3Kkv7+mqu6vlrldi12vLTYnRENF/P80lx3Mrfz6XYlpbwG+H8takhAEXd7vLk4Jop9ilethjVK6i/kQcv1CE+nSXBR47quBdb2Px40S/pL6+5c/UuYyb5c+BsbZ6f0IIPX96S6s0FofljxkHCo4sA8EyHnfTsmf7+3t5wMiicdb8fYPyXLW3fQWDA6Ga09g0C1M/uukXZWEz7wJcT/uNUmIqym3gfY9wnOfM1ZIWTE3TqpNo3b8LeRx/ct5rkI93WmF6eXJEiKplf376W2+3s4PXXrftajyK767qT75tW0N20qZbHILWg++xZWL9etatVU+VqhciPJOgWj8xOb0e3FqcAuB/nxualRzm09RRX7qjClO0bHMXNw9XimL7dtFvHfy+wnPYZdz+OFau1RUwVq1geK4QQmTX4Oe0G3vzZERbPBU7ex61INZTUsPpx8/aVazNfiPe3Hw4Tm6D+Xg3qfgRnN+dU9/NvpdYLx8XZpfuhdcdOy7flP9fWxJCQ9rDfHzOPmOtLA3wc2IaXh90hUSYIpenHecXN7VffKpKpY8pULUXHAQ3RO+TMTWCdnY5Xx2ij21s3ZX+Z1aIVKlua3i6R2XMcc+xryKru3bV2dpZ52IqtRrqTODvDokXwyivatqef1pap5AXZLRuWmZFuNzdorFY+cOqU5fcbIDBQa7/0EualikLkN/KjK6yie89k08qXxbDiT+3WcPeuKYuN9h1cydxeslL7ABR5O5JuLY7z7171F9jNKYr6LSrboMdCiMdBn+H1cXdWZWkWratHzD319ygmKpYvf9JqLc9f4ESFEmpa+eZDdbl3J40Cug+Z/av2KXz46DJp7te0qdbesyft821/qKrYtfBS7Fh5NPWdgfmLUs4//Wl+cZ56ynZ1nvOzfetPcOBsbQAaVD9J4w61c7lHaWvRRUvzvG1vyuogmXHvzj1OXFKj3L5VzlK3uZdV+mYLTzyhrflNXvkkt1k7kVpq9HqVuf7nn2HcOPjhB9u8TnYlr6We2ZFuk0kLusuWTX+qfNIUe7Ac7Y6NVfkWQK3hTl5tQIj8RoJuYRWdnq6Do726K79yazVWbNA+iHZ/pkaK/b0aVMGnkkqitvtkXS6fu8q1a9C6rT0bDzUAVM3U3388QYnyxVMcL4QQmeHm4cZT7YMAiIzxYPkC9Ynx56n7uBauPkH3bb2bOs2q06ONmlYen+jEhiXHUz1fcgc3n+TQeRW4N/Y6jm+LtAOapAy9oGrNpsZkgh2pLMte9GvqmYtO7Q9m7+k6ANSrcprf51zG4UH56H/+ebQSaLnNaFQ3J6zd/x+naWXcRj5/K0+XoyxRvjh1Kqr3yYPnvDN9Iyi5A1vOm9dyN/HN29nwS5VSVQcAjh7FnGk9t9kikVpqdDpVBuvbb6F4HvvY4+6ulfo6epRMzaS5fFn7/U1rlDtJWkH3n39q53j6aVVCTYj8SoJuYRXuRd1pW1+Nxly6Vc48kuBX9RQVvFIf/enbVUtWNPWT6wQEQNBRNZW8mPsdNi49R4/nm9i450KIgm7IsELm9sJfHEmMT+SLmdrNwHc/KgpA917aUpYV/2ScZXzODG0IbMSg2+nsqaZnOjmptdZ7doSnuk/wiatcfVAMIqBpAs4Oaqh6yYZaJMan/JQ7f4YWlQzpd5UBw8rx779Q6MGXu2sXtPS/y+Vz6dcpzw6jwcgv3+xk9uTtNllD/tVXanZAtWqwfat15srfvR7OH+vV+nsP1wieeaWBVc5rS62bqLruBqM9u9eezmDvlPbu1JZUNGmSd28wJOnRQ2vnldHupJFuO7u8FwznpKQp5rGxlnXF05J8anny6empad5cG0lPHnQnT6A2cmTm+ilEXiVBt7Ca7n1T3oLs3v5amvv3HVjW3P52vh/BwapdsSLs2OlEQLe6aRwphBCZ16qXL5U8Vb3jdfsb8NeP17l0S61z7d5sL/XbqORnbXvXxdVJlfdataNmuuW6Yu7d59fVfgC4OkUzYKRfun1wdIQGVVUm8nMXi3D7Ssoh3O2rtfwWXRvt5IlmalT+RoQnW/+xTAJnSDDwy3I1sq63S+TZl9WId/v2sHWrNg32xLmijHjOerWeAW6F3eaJZgcZ9HpzXni3JQu+2mnV8xsMarQPIDwcOnY0sGx22nPyTSZVaqlPHzs2bCiS5n4LpgURE69urAzuEYSbR+bX7ueWVq0dzO1tm7I+0r3voLb0q0mrNFK05yHJg+68sq47KeguUUJNA39cZTWZWmbWcyfx8NDOf+QI3L2rXmP3brWtbl0ICMhKb4XIeyToFlbTvX+lFNt6PJ32XCyfZjWoUTbYcpuPGp2p5Zv3PwwJIfIHO70dg3urgNZo0jN1oZau+t0PtL81zm7OdGysAuMbEZ7s23AizXMumX2QiPseAPTrcJDCxQunuW8Sfz8t0N6z8UKK53fs0IL8Fm2L0L+/NoK86Ndoi303Lz1M2G1147Kr/0FKVdZuetavD7t2JFCumBrhXrO3MSf2ZD4je3r2rjtOwwYxrN2nFVae95d1Mz5t3AhXrmiP4xKc6PtiI2Z+nDK18cWLai3ws8/C8uU63n67Kuv/TjkMZzKamLmwgvnxy6+Vs2qfbaVl16rm9tagWunsmbq9x9XX7OYURa3GVTPYO/fVrQsVHlymzZvhXtbvM1iVyaRNL7fl1PL8IKvJ1DKTuTy51q3V/0nLbGbO1J57+eW8VVdeWM/EiRMZlawg/aBBg/j0009zvB979uzB29ubyKwUos8iCbqF1VSuDD51tA+NpYrcoFG7lOVzkujsdPR7Qpse2aqVSiJULn98FhJC5COD3miVYluHBgdp2qWOxbYeT2j1vFb8dSvN881eUMTcHv6SR6b60DTA3tzeszMqxfM7Dqo/fg76eJp08KLbc764OscC8PeOFiQkm/E+f5nW78GDUmY3r1rdgTdfPGN+PP2LKyn2yQqT0cSMD7fS4okahN4sb/Hc1r3luJSy8mO2zf9J+7438FY3Zo0mPSM/bGUuiWZIMPDdu9uoU8fImjXJ+mnSMXC4J6GnLGutb1l6yFw2q7VvELX9q5MflK1WmurV1fvq3iOls5Qc79pVk/laNap7O89mLU9Op9NGu+PjYcOG3O3PvXsQ9yCJ/OMedGd3pNvRUZXdy0jydd2rVsEvv6i2mxsMHJjpbgormThxIt7e3nh7e+Pj40PHjh35/vvvSbRxaYzp06czbty4TO2bE4GyNUnQLawq+dSwbm3CsNOn/yM24fOGDO+xnbeHbWXtGhNFiti2f0KIx1MNL12K6Ynvf5AyCOk2QEuGtnJj6tNxz52DrUGqvrd3pWs0z+RSGP+22mygPQfdLZ67eemWOShsWOM0roVdcfNwo3tPVYLs9m0dmzapfe/dg7//UWXCihSBHkObkprnX/czZ25fsKohd6+HZ6qfD4uOiGZQ11288nFrEgxqunJA7SOMelG7cfDHH9k6dQqRtyNZuuJBbg+P++w8VJnxQ7eYn/84sA2Dn9hFc9+TjJvciuho9R5TtiwE+KjSlbfvFeepXuHE3ddKbv34mzZKPPKF7Jffyg2tWqmvMT4+a/Wr9+3XhgabtE05Ey2vykulw2xZozu/KVcOihVT7YxGumNj4fSDFAS1a2NO8JieFi209qxZEPXgz8vAgVA444lEwgZatmzJjh07WLt2Lc8//zzff/89c+bMSbFffHx8KkdnT5EiRXB3d894x3xIgm5hVUOG2uHkpO5WjxifcZKaQsUKMXt5SybPaY2zi8wdEkLYzpAhWrtF83ha9UqZ3ad0lVI0rqmmJx8OrknoRcskYQaDZUKf4a+UznQG7Eq1ylHSQ2WQ3nuimsWa8Z1rtenfLRprSdn699eOX7RI/f/XX3D/Qdw4YABp/u308PRgaM+DANyPc2PO1KBM9TPJtWvwxVu7qOt9m1/XNTdvf/WZrWw5WIvXx2sfjH79NUunTtOfPx02r7t+ptM+nF10fD6vDd9M3Gre55e1zdlzysf8eOSwO5w4Af+s9aRKqRAA9p2pw7iBah341auwdLmqpV6ypIneI/JXgs6kabdgmWQqI8kD9KQ6yPlB27bg+iCn4apVKpN9brF1je78RKfTRruvXUtZTzu5EyfU30rI3NRyUJnJaz+o4Jf8mksCtdzj6OiIp6cn5cqV49lnnyUgIIBNmzaZp4T/+OOPtGjRgi5dugBw9epVxo0bh7+/Py+88AKvvPIKYWFaThGDwcCUKVNo1KgR/v7+fPHFF5hMlu+xD08vj4+P58svv6R169bmEfc///yTsLAwBg8eDEDjxo3x9vZm4sSJABiNRgIDA2nXrh2+vr707NmTNcmnRAFbt26lc+fO+Pr6MmjQIC5ftpwdZQsSdAur8vaGCxfg/Hlo1iy3eyOEEJqBA6F1axOlS8fx7bS0p9r2eFbLbL5ylWVA++GH2pTXUqVg2LDMv77OTkdTH7WW+250Uc4GhZif274l1txu2cbF3O7aVZXrAVi6VI12zp+vnTP5jYTUjJmgrWP+fn71VLOgJ5eYqEYXn3wSypeHCVMDCL5eEQB353ssnrGbb35rjYOTA9WqaaXQDh+G4wfSno6fWfN/04a0hrygrVN/dUprfv9uFw56bUTFu9wFtv1zmBlziuHhAUVLFeHLz06Ys74HLm3Fz1/sYM4crcTR8OE6HJ21af75QfJpt1s3xaa940P27dPaTfLRfQZnZ+jYUbVv3LD8OnJaTtTozk+Sr+tOb4p5VjKXJ5f8BhOoCgZZOT7fOPk1LC2f8b+tPVMeu7Vn5o49+bXVu+3k5ETCg3VOu3fvJjg4mHnz5hEYGEhCQgLDhw/Hzc2NhQsX8tFHH+Hq6sqIESPMI+Fz585l6dKlTJ48md9++42IiAjWr1+f7muOHz+eVatW8d577/Hvv//y8ccf4+bmRpkyZZg+fToAa9asYceOHbz77rsABAYGsmzZMiZNmsSqVasYOnQob731Fnsf3Im8evUqo0ePpm3btixbtoynn36ar776yurfr4dJ0C2srmxZqGLdvDpCCPHIXF1h40YjK1ces1if+LC0yhYtn7uXpBvwer0aec5qCSH/htqi3D2btXXWO/aXMLebd9bWG7u4QM8easgoPBxmTd7J1geDvl5eJov636nxalCVrk1U1HLxZnmW/7w/1f1MRhPfTNxKxYpGevZUdb4NyZaKt69/kP07bvL0SMu7qc/10SpU/PbjsfQ7k4ELR0PZfkx9wq5V4RyN2lsmDhswJoANS07SvdlePhmzhaDTZWnZ0/ITeeW6pZjxifY1jnyvIdO/Ux8SdTp48cVH6mKuqFQJKpS6C8CuXUbiYzMuZ2cymti7WwXoJUsaqVjRpl20OsvfwdybBZdTNbrzi8wmU8tK5vLkWj2UeqPAjnInRELM5Yz/xd5MeWzszcwdm2C9dc4mk4ldu3axY8cO/B+86bi6uvLJJ59Qo0YNatSowerVqzEajXz66ad4eXlRrlw5Pv30U65evWoOdufPn8+LL75Ip06dqFatGpMmTaJQoUJpvm5wcDD//vsvkydPpmPHjlSoUIFmzZrxxBNPoNfr8fBQ+VSKFy+Op6cnhQoVIj4+nsDAQCZPnkzLli2pUKECffr0oWfPnix6MF3s999/p2LFikycOJGqVavSs2dPevfubbXvV1ry1+1eIYQQwsbq1VOjvGFhsGkTREfD1bMXGTxGywb0+ZREWrfO+luof4vC8J1q79ljYDBqzfTBc+rctSuco3g5yyRf/Tsc4Lff1VDlm5O1ZTtDuu1Bp0t9PXdy48bp+Pc51f7uB2f6pBJ4fv7GVt7+to3FtrJlYegQE8/3v0z1eqkvF+rXT89rbydiMNrz24pqfGI0ZXq6/cMWzLgAqOhwcN8wdHYpk5216lWPVr3SP8/gNwLY8982Ape2IjbBxfy59YknVMLP/Eang1b1TvDruubExLtycMsxmnbxSfeY80dCuRup1nE3qbYfnS4fDXUD3bpp7dWrdfTtmzv9kOnlljKbTC2rmcuTtGyptYsVg379Mn9svuJQGFwykTXYOWUpXpw9M3esw6MvhN+yZQv169cnISEBk8lE9+7dGTNmDB9//DFeXl44OmolCU+dOkVoaCgNGjTAZDJhNBqxs7MjLi6O0NBQ7t27x82bN6mX7M6Nvb09Pj4+KaaYJzl58iR6vZ7GWVgfc/HiRWJiYhj20DS0hIQEatVSN3LPnz+P70M/mH7p3Ym3Egm6hRBCiGR0OpXMaeZMlbl4+cLjfPaFvblE2FNtdvP6GxkHu6lp3K46Op0Rk8mO/4LUp/g968+QaKgPQIuGVwDLYLPzgHoUHh1BZIwHsQkuD/poZNBLmRu+7DSgATUnnOdUWDW2HvEjaNtp/FppNxAWfb/LIuDu/aSR4SPs6NwZ7O11QPmUJ32gVGVPOjTcz9p9jQi5UYHd/x4lIJOJ5ZIzGowsWFrV/LUNHJWJdMfpmPaLPwfrH2ffGS3L+8hnTwOPdt7c0rqVgV/Xqfa29bdo2iX9/fduDQMeBN0N8lfiOIDSpdU69H374PBhHdeuZSITlw1IIjVLtWqppGgJCWmPdJtMWtBdunTWblaUK6eWzPz6K3zyiVpqUCDVel39y47Wy63bl3T4+/vz0Ucf4eDgQMmSJbG318JGFxcXi33v379PnTp1mDp1KgaDgZMnT1KrVi30ej3FkjLwZZFzNn4A7j9IeBIYGEiph35pk98kyA0yvVwIIYR4SI+WR83t4eOqcCRYBWs1y59n7hKfbI/mFi5emNoV1bruI8FexNw3seOA9sGgRcuUb8tOrk482eaoxbZ2fkFU8C6bqdfU2dkxZpiWzOa7uVq95p0rjzDkdW0U+9OxW/h7qR3duoF9Jm/LP9tfyxL+68930tkzbTtWHjWvHe/Q4BDla5TJ1nmSOLk68dc/RSheSCWlq14mhC5P548yYalp1Vm78bFtl2uG++/do63dbxKQPzMBJ59ivn17kVzpg4x0W3J01JKdnTqVeh31a9fg9oNckFkZ5U7y889qdlGBnVqej7i4uFCpUiXKli1rEXCnpk6dOly8eJHixYtTqVIlSpcuTaVKlahUqRKFChWiUKFCeHp6cjjZNIjExESOHz+e5jm9vLwwGo3sSyOxg8ODtPiGZGuhqlWrhqOjI1euXDG/ftK/MmXKmPc5etTyPfVwZurgPSIJuoUQQoiHtO1RHRdHdcc8KZu2u/M9/l6iqi48iqbtVdCbaNBz8JCO7fu14Lll74BUj+k/wMni8eDnslCwGTXl2sNDTeH77Q8Hbt6Ec4dC6PVsOeIS1GjC8B7befub1umdJlW9n/c1Jy9bvK4OCXEZrzl+2II52vrDIc9lPllYeirWLMfOzRG898IWVvxjzBd1qtPi1aCKOfP99sPeGBJS1mZPbm+QNrLUuG01m/bNVpKXDtu+3SNX+iBBd0rNHxQyMBhSr1qQ3anlyeXygKTIhh49elC0aFFGjhzJ/v37uXHjBnv37uWTTz7h2jWV+2Pw4MHMmjWLDRs2cP78eSZNmpRuje3y5cvTu3dv3nnnHTZs2MClS5fYs2cPq1evBqBcuXLodDq2bNnCnTt3iI6Oxt3dnWHDhjFlyhSWLl1KaGgox48fZ+HChSxduhSAAQMGEBISwueff86FCxdYsWKF+TlbkqBbCCGEeIhLIRc6Nra8Ez7362PUavLoAYx/U+2td8cO2L1btcuVg0qVU39b7vB0PYq6qWRabk5R9BmWtZS+7oUdGDFCjc7HxcGU/8XwRHcTt++pTHAdGx7gxz+bZmsEv1CxQvRsGQTArcgSrF8UlKXj70feZ/EG9fUUcomk9/D6We5DWrwbVuV/P7WhZuOqGe+ch+nsdLSqr8rKRcZ4cGTn2TT3TYhL4NA5NapfrfRFipUpmiN9tDY/P5VbAWD//kJER+d8H5Kml7u7a2XMHncjRmjtH39U08mTy27mcpG/ubi48Msvv1C2bFnGjRvHW2+9xfvvv09cXJy57vawYcPo2bMnEyZMYMCAAbi5udExqVRBGj766CM6d+7MRx99RNeuXXn//feJiVE3eUuVKsWYMWP46quvCAgI4H//+x8Ar776KqNGjSIwMJAnnniCESNGsGXLFso/+INStmxZpk+fzsaNG+nVqxd//PEHr732mg2/Ow+Y8rHo6GjT/v37TdHR0bndlQwlJiaa9u/fb0pMTMztrggrkutacMm1LZiycl0XfLXdpD5SmkyvPbvZan04fNhkPm/16lq7f//0j/tj+k5Tg+onTAu+2p6t171wwWSys9NeL+mfT6UzpvAb4dk6Z5J/5vxnPt+zHXdk6dhf598zHzus+7Zs96Gg/85Of2+L+fv07dtb0tzv4OaT5v2e6ZC1a5FlUVHaD1JUlNVP//LL2un//jvnr2vRouq1q1bN8ZfO0/z9teuya5flc889pz13+HDa5yjov6+Ps8ft2mY2HpWRbiGEECIVz40L4KvxW/hm4la+mNfCauetUwfc3FT73Dlte/LMvanpPzqAA2drMej17PWlShXo+VDZ19JFrrNqjSseno82fbfLM/XNI/HLtvkRHZH5Ycn5v2prjoe86vdI/SjIWnUubW5v25n2/Nu927U50U0apV+XPa9LnsV8/fqcLR0WHw931Y+0JFF7SPL11j/+aPlc0vRyBweoWTPn+iREXidBtxBCCJEKO70dr3/ehlentMbe0XrFPvR6aFz7YortLRrdstprpGXs0DPmtqtTNCuX3KFizUyUn8mAo4sjT3dU0/Hvx7nxz8+ZS0pz+TJs2KDaVapAi7aPtl6+IPNpVoMibuEAbAuqgcmYepmdvfu04LRJi+xlDc4rWrcGe3v1dW7YkLNB981kJZJlPbelfv2g6INVC4sXa4nT4uJUgjVQmc5lbbYQGgm6hRBCiBzmXyfY4rGHawQ+DWy/9rZNjxqM7b8Vn0pnWfbzKRq2q2W1cz87RBst/21F5jKFL1wIRqNqDx4MdvKpJE12ejta1jsNqLXzJw9eS3W/vUfUiLjeLpH6rfJvxnaAQoWg6YPqfGfP6riY8l6VzUgStbS5uMDQoaodFwfz5qn2qVOQ+GByRXaTqAlRUMnbmxBCCJHDmja3rHEa4HMmR7Jr6+x0TPujNUdDatBxQEOrnrtlj7qUL6c+ca/dWpJbGQzcJ8YnMmNahOqXTgXdIn2tOmuzErbtT1lWLeqeiROXVLI/3yrncCnkkmKf/KZDB21EP2lWRE6QGt3pe/llrT1zprp5ljyJmgTdQliSoFsIIYTIYf7tKls8btE0F1IzW5md3o5nnlXT8BMTYdas9Pf/Z+4+Ll1To+NPtDxH1fydYDxHtO6arF73tpTPHzykw2hUH+0at6uRU92yqfbttaB7/fqce10Z6U6flxe0b6/a58+rGyLJy4VJ5nIhLEnQLYQQQuSwMlVLUaF4qPlxy/ZFcq8zVvTCC9oU8a+/Jt0yT9N+0GowjRsZYeOeFQz162tJ+LZtS1muae9erd3EP//WJU+ucWNwd1czKDZu1JYj2JoE3Rl7OKGajHQLkTYJuoUQQohc8ESrEABKFblB4/YFI81vjRowYIBq37oFgZ8dSnW/Q1tOsf2YGgqrVeE8Hfo1yKku5mv29tC8uWpfvgxjB2wlPibO/LxF0N0khztnI/b20KjRPUD9TAUF5czryvTyjPXsCWUerHJYvhz27FFtT0/5ngnxMAm6hRBCiFzwxSw/fvpkG5vWROLs5pzb3bGad8bHmttffl+W2KiYFPt896WWGnrsiMvo7HI2M3V+lpTACuD7xa1p1eAsl05fAWDvXjUM7OYGtWvnQudspEmTe+Z2Tq3rlpHujDk4wIgRqm00QmSkaterp/I0CCE0EnQLIYQQuaBw8cK88G4ravvn7wzTD6tTz5m+rXcDcC28FHO+3Gvx/I3Qm/y2Tg3DFnELZ9A46yZ0K+gGDIBZXxzByUHd3Nhzyof6jZ345ZudXLyoPtY1rBWKvmDMLgfA3z/S3M6pdd0y0p05yZeUJJGp5UKkZLOg+8cff2TAgAHUq1ePRo0aZeoYk8nEtGnTaNGiBb6+vgwdOpSQkBBbdVEIIYQQNvDuR1r5s89nVCc+Jt78OPCL48QnOgEwok8Qbh5uOd6//EyngxFv+bJrbTCVS14C4Pa94gx6vbl5nya1LuRW92yiYsU4KlZUC9i3b4eYlJMnrC5ppFuv12pSi5QqVIAePSy3SdAtREo2C7oTEhLo0qULzzzzTKaPmTVrFgsXLuSjjz5i8eLFuLi4MHz4cOLi4jI+WAghhBB5Qv02NeneTI1wX7pVjgXfqMWe8THx/PibWr9upzPwyoSCNcqfkxq0rcXBI4Xo1nRviueaNHPKhR7Zjk6nZTGPi4MdO2z/mklBt6en1I/PSPKEaiCZy/Mzb2/vdP9Nnz49t7uYb9nsz8jYsWMZOnQoXl5emdrfZDKxYMECRo4cSYcOHahZsyZffPEFN27cYENOFmYUQgghxCN770MtO/mU6RVJjE/kr5/2cfVuaQB6tdhH5Trl0zpcZELRUkVYvqMRn47dgp3OYN7u37ZiLvbKNjp00Nq2/lhoMmlBt0wtz1jHjlBNlYfH2Rlq1crd/ojs27Fjh/nfO++8g7u7u8W2YcOGmfc1mUwkJibmYm/zF/vc7kCSsLAwbt68SUBAgHlboUKFqFevHocOHaJbt25pHmswGDAYDGk+nxck9S+v91NkjVzXgkuubcEk1zXnNOpQi44N97P+QCMuXKvEr99tZ8YcLSPV6FcdrXodHudrO+HrljRufoipX0KH1vcoV6NVznwfDAb05qYBbPCaSV9H69aJgCMA69ebmDzZdrXD7t6FhAT1lXl6mjAYcqhOWT42ezZMmmTHwIEm7O1NGf4oPM6/r3lZsWLFzG03Nzd0Op152969exk6dCgzZ87ku+++48yZM8yePZtly5YRGRnJ999/D6hrumDBAr7++msWLFgAgNFoZPbs2fz555/cunWLypUr8/LLL9O5c+ec/yKtLLM/w3km6L55U2UyLV68uMX24sWLc+vWrXSPPXPmjM36ZW1Hjx7N7S4IG5DrWnDJtS2Y5LrmjCFDr7L+gGq/+XFtbt1T7/E+Vc5TuIKRIBvUf3pcr22xajomzwQobJPva2rsYmKo/6B95MgRjC4uNnuta9eO4u1di9OnXTl0SMfmzccoWtQ2o2whIU6ADwAODncICgqxyesUJIUKwdSpqp2VH7/H7fd1w4YizJxZlvv3cy7ToaurgZdfvkKHDuFZOi40NBSDwWD+e3Lu3DkAJk+ezHPPPUfJkiWJj4/nzp07REdHp/i7k3zbsmXL2LFjB4MGDaJ06dKcOnWK8ePHc+fOHWo9JlMjshR0T506lVmzZqW7z+rVq6mWNMckh3h5eeHq6prxjrnIYDBw9OhR6tati74gpRR9zMl1Lbjk2hZMcl1zlp+fHz/9FMS2o37mgBtg3DtVqN+gslVfS65tLoiONjd9fX1VrTIrS35du3e35/Rptf3Gjbq0bWuy+uuBVvoKwNu7KH5+RWzyOo+zx/X39eWX7QgJyfl6akuWVOXNN7M2YyM4OBi9Xo+fnx8A8fEqIeZbb71F+/btzfutXr0ae3t7835JI79ubm74+fkRHx/P8OHDmTNnjnmfzp07c+vWLQ4ePJil/F950f379zM1AJyloHvYsGH07t073X0qVKiQlVOaeXp6AnD79m1KJiuIePv2bWrWrJnusXq9Pt/8wuanvorMk+tacMm1LZjkuuac99810HGA9rhECRg40M5mJa3k2uagZN9nvV6PLeuU6fV6One246uv1ONNm+x49lnLfcLDYeZMqFgRnnkm+7Wib9/W2qVL2+5nVTx+v68TJsD778O9exnvay2FCsH48bosf5/tHmQQTDou6XG9evUszqXT6dDpUp4/aVtYWBgxMTGMSCrq/kBCQgK1atXK99c/s/3PUtBdrFgxi7n+1lS+fHk8PT3ZvXu3eZpBVFQUhw8fzvd3QIQQQojHVfunG+D/aSh7jqrkXi++qJItCZFVLVqAk5PKYL5+vUp4lhRYh4VB165w7Jh6HBoKEydm73WkRrewlaeeUv/yM5eHlpHodDpMJstZJ8nXOd+/fx+AwMBASj30C+Xo6GijXuY9NstefuXKFU6ePMmVK1cwGAycPHmSkydPEp1sKlKXLl1Yv349oC7Y4MGD+fHHH9m4cSOnT59m/PjxlCxZkg7JU1YKIYQQIt/Q2en4JrAi7u5QtSqMHZvbPRL5lYuLCrxBBdVnz6r2yZMQEKAF3ABvvw1//JG910nKXA6QbPKlECIVxYoVM+fmSnLx4kVzu1q1ajg6OnLlyhUqVapk8a9MmTI53d1cY7NEat999x1Lly41P37yyScBWLBgAf7+/oBaK3Av2fyKF154gZiYGD744AMiIyNp2LAhs2fPxsmpYNWbFEIIIR4nzZqpQEavh8doYEPYQMeOsHGjam/YALduQffuKuM4QJEiapo5wNChUL68FqhnlgTdQmRe06ZNmTNnDsuWLcPPz49ly5Zx6dIlPDw8AHB3d2fYsGFMmTIFk8lEw4YNuXfvHgcPHsTd3T3DpcsFhc2C7s8++4zPPvss3X1OJ2XDeECn0zFu3DjGjRtnq24JIYQQIhfYMLG1eIx07KhNG58+HUJCIDZWPW7YEFatgnffhTlz1DT0Xr3gv/+gRo3Mv4ZMLxci81q2bMmoUaP48ssviYuLo0+fPrRs2ZK7SXfCgFdffZVixYoRGBhIWFgYhQoVonbt2rz88su52POclWdKhgkhhBBCCJEePz8oXlwlOzt1StvesSMsWaKSRv34o5p+vn493LkDTzwBu3erJH4ZOXNGjaCDmpnxIM+vEI+dPn360KdPH/Njf3//FAOmScaOHcvYB2uHksqMJWUqBzWwOmTIEIYMGWLTPudlNlvTLYQQQgghhDXZ2UGyakUAPPccrFypAm4ABwf480/wUaW2OXdOjXgnjYinJToa+vbVMksPHChJ/4QQ1iFBtxBCCCGEyDf69dPab7wBCxakzBXg4aGmmpcurR7v2qWC6LQCb5NJZdZPSsZWuzZ8/731+y6EeDxJ0C2EEEIIIfKNPn1g6VI1fXzqVDX6nZqKFdUIuKurerxkiUqqFhKSct8ffoDfflNtd3e1r7u7TbovhHgMSdAthBBCCCHyDZ0OnnwSMlNRtmFDWLxYmyZ+4AA0aACrV2v77NoFr72mPf75Z6hZ05o9FkI87iToFkIIIYQQBVa3biqRWrVq6vHdu2rb++/D1avw9NOQmKiee/NNta5bCCGsSYJuIYQQQghRoPn5wf79aoQ8ySefgJcXXLmiHrduDVOm5EbvhBAFnQTdQgghhBCiwCtSBP7+G774QpUDA4iKUv+XKQN//AH2UkxXCGEDEnQLIYQQQojHgk4Hb70FGzdqmc3t7VWJsaTHQghhbXI/TwghhBBCPFZat4agIJWxvGVLaNQot3skhCjIJOgWQgghhBCPnVKlLLOWCyGErcj0ciGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJG8vWabqPRCEBMTEwu9yRjBoMBgPv376NPqlMh8j25rgWXXNuCSa5rwSXXNhfExoK3t9bW6az+EnJdCya5rgXX43Ztk+LQpLg0LTqTyWTKiQ7Zwu3btwkJCcntbgghhBBCCCGEeExVrlyZ4sWLp/l8vg66ExMTiYiIwMnJCTs7mSkvhBBCCCGEECJnGI1G4uLi8PDwwN4+7Unk+TroFkIIIYQQQggh8jIZHhZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRILuHPDrr7/Srl076taty9NPP82RI0dyu0siiwIDA+nbty/169enWbNmjBo1igsXLljsExcXx6RJk/D396d+/fqMGTOGW7du5VKPRXb89NNPeHt78+mnn5q3yXXNn65fv86bb76Jv78/vr6+9OjRg6NHj5qfN5lMTJs2jRYtWuDr68vQoUOlGkY+YDAY+Pbbb2nXrh2+vr506NCBH374geTpaeTa5n379u3j5ZdfpkWLFnh7e7NhwwaL5zNzDcPDw3njjTdo0KABjRo14p133iE6OjoHvwqRmvSubUJCAl9++SU9evTAz8+PFi1aMH78eK5fv25xDrm2eU9Gv7PJffDBB3h7e/Pzzz9bbH/cr6sE3Ta2evVqpkyZwiuvvMLSpUupWbMmw4cP5/bt27ndNZEFe/fu5bnnnmPx4sXMmzePxMREhg8fzv379837TJ48mc2bN/Ptt9+ycOFCbty4wejRo3Ox1yIrjhw5wh9//IF3Us3ZB+S65j8RERE888wzODg4MGvWLFatWsWECRPw8PAw7zNr1iwWLlzIRx99xOLFi3FxcWH48OHExcXlYs9FRmbNmsXvv//OBx98wOrVq3nzzTeZPXs2CxcutNhHrm3edv/+fby9vfnwww9TfT4z1/DNN9/k3LlzzJs3j5kzZ7J//34++OCDnPoSRBrSu7axsbGcOHGCkSNH8vfff/P9998THBzMyJEjLfaTa5v3ZPQ7m2T9+vUcPnyYkiVLpnjusb+uJmFTTz31lGnSpEnmxwaDwdSiRQtTYGBgLvZKPKrbt2+bvLy8THv37jWZTCZTZGSkqU6dOqZ///3XvM+5c+dMXl5epkOHDuVSL0VmRUVFmTp16mTauXOnaeDAgaZPPvnEZDLJdc2vvvzyS9MzzzyT5vNGo9HUvHlz0+zZs83bIiMjTT4+PqaVK1fmRBdFNr344oumt99+22Lb6NGjTW+88YbJZJJrmx95eXmZ1q9fb36cmWuY9Hf4yJEj5n22bt1q8vb2Nl27di3nOi/S9fC1Tc3hw4dNXl5epsuXL5tMJrm2+UFa1/XatWumli1bms6cOWNq27atad68eebn5LqaTDLSbUPx8fEcP36cgIAA8zY7OzsCAgI4dOhQLvZMPKp79+4BmEfOjh07RkJCgsW1rlatGmXLliUoKCg3uiiy4OOPP6Z169YW1w/kuuZXmzZtwsfHh7Fjx9KsWTOefPJJFi9ebH4+LCyMmzdvWlzXQoUKUa9ePfnbnMfVr1+f//77j+DgYABOnTrFgQMHaNWqFSDXtiDIzDU8dOgQhQsXpm7duuZ9AgICsLOzkyV8+UxUVBQ6nY7ChQsDcm3zK6PRyFtvvcXw4cOpUaNGiuflukLaFbzFI7t79y4Gg4HixYtbbC9evHiK9cAi/zAajUyePJkGDRrg5eUFwK1bt3BwcDC/aSQpXrw4N2/ezI1uikxatWoVJ06c4K+//krxnFzX/OnSpUv8/vvvPP/887z88sscPXqUTz75BAcHB3r37m2+dqn9bZb1+nnbiy++SFRUFF27dkWv12MwGHjttdfo2bMngFzbAiAz1/DWrVsUK1bM4nl7e3s8PDzkb3M+EhcXx9SpU+nWrRvu7u6AXNv8atasWdjb2zN48OBUn5frKkG3EFk2adIkzp49y2+//ZbbXRGP6OrVq3z66afMnTsXJyen3O6OsBKTyYSPjw+vv/46ALVr1+bs2bP88ccf9O7dO5d7Jx7Fv//+y4oVK/jqq6+oXr06J0+eZMqUKZQsWVKurRD5SEJCAuPGjcNkMjFp0qTc7o54BMeOHWPBggX8/fff6HS63O5OniXTy22oaNGi6PX6FEnTbt++TYkSJXKpV+JRfPzxx2zZsoX58+dTunRp8/YSJUqQkJBAZGSkxf63b9/G09Mzp7spMun48ePcvn2bPn36ULt2bWrXrs3evXtZuHAhtWvXluuaT3l6elKtWjWLbVWrVuXKlSvm5wH525wPffHFF7z44ot069YNb29vnnzySYYMGUJgYCAg17YgyMw1LFGiBHfu3LF4PjExkYiICPnbnA8kJCTw6quvcuXKFebOnWse5Qa5tvnR/v37uX37Nm3btjV/lrp8+TKff/457dq1A+S6ggTdNuXo6EidOnXYvXu3eZvRaGT37t3Ur18/F3smsspkMvHxxx+zfv165s+fT4UKFSye9/HxwcHBweJaX7hwgStXruDn55fDvRWZ1bRpU1asWMGyZcvM/3x8fOjRo4e5Ldc1/2nQoIF5zW+SkJAQypUrB0D58uXx9PS0uK5RUVEcPnxY/jbncbGxsSlGUvR6vblkmFzb/C8z17B+/fpERkZy7Ngx8z7//fcfRqMRX1/fHO+zyLykgPvixYv8/PPPFC1a1OJ5ubb5T69evVi+fLnFZ6mSJUsyfPhwZs+eDch1BZlebnPPP/88EyZMwMfHB19fX+bPn09MTAx9+vTJ7a6JLJg0aRIrV65kxowZuLm5mdefFCpUCGdnZwoVKkTfvn357LPP8PDwwN3dnU8++YT69etLcJaHubu7m9flJ3F1daVIkSLm7XJd858hQ4bwzDPPMHPmTLp27cqRI0dYvHgxH3/8MQA6nY7Bgwfz448/UqlSJcqXL8+0adMoWbIkHTp0yOXei/S0bduWmTNnUrZsWfP08nnz5tG3b19Arm1+ER0dTWhoqPlxWFgYJ0+exMPDg7Jly2Z4DatVq0bLli15//33mTRpEgkJCfzvf/+jW7dulCpVKre+LEH619bT05OxY8dy4sQJAgMDMRgM5s9THh4eODo6yrXNozL6nX345omDgwMlSpSgatWqgPzOAuhMSbeHhc388ssvzJkzh5s3b1KrVi3ee+896tWrl9vdElnwcO3mJFOmTDHfQImLi+Ozzz5j1apVxMfH06JFCz788MPHZtpMQTFo0CBq1qzJu+++C8h1za82b97M119/TUhICOXLl+f555+nX79+5udNJhPfffcdixcvJjIykoYNG/Lhhx9SpUqVXOy1yEhUVBTTpk1jw4YN3L59m5IlS9KtWzdeeeUVHB0dAbm2+cGePXtSTbjUu3dvPvvss0xdw/DwcP73v/+xadMm7Ozs6NSpE++99x5ubm45+aWIh6R3bUePHk379u1TPW7BggX4+/sDcm3zoox+Zx/Wrl07Bg8ezNChQ83bHvfrKkG3EEIIIYQQQghhI7KmWwghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLARCbqFEEIIIYQQQggbkaBbCCGEEEIIIYSwEQm6hRBCCCGEEEIIG5GgWwghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLARCbqFEEIIIYQQQggbkaBbCCGEEEIIIYSwEQm6hRBCCCGEEEIIG5GgWwghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLARCbqFEEIIIYQQQggbkaBbCCGEEEIIIYSwEQm6hRBCCCGEEEIIG5GgWwghhHgM7dmzB29vb/bs2ZPbXRFCCCEKNPvc7oAQQgiR1/z999+8/fbbaT6/aNEi/Pz8cq5D+citW7f47rvv2Lx5M+Hh4Xh6etK0aVMmT55s3qddu3Zcvnw51eMrVarEunXrzI9/++03/vvvP44cOcLVq1fp3bs3n332WYrj9u3bx5w5czh58iR37tyhcOHC1KxZk1GjRtGwYUPrf6FCCCFEJknQLYQQQqRh7NixlC9fPsX2ihUr5kJv8r6rV6/yzDPPADBgwABKlSrFjRs3OHLkiMV+77zzDtHR0Rbbrly5wrfffkvz5s0tts+ePZvo6Gjq1q3LzZs303ztkJAQ7OzsGDBgACVKlCAyMpLly5czcOBAAgMDadWqlZW+SiGEECJrJOgWQggh0tCqVSvq1q2b293INz744AP0ej1//fUXRYsWTXO/Dh06pNg2Y8YMAHr06GGxfeHChZQtWxadTkf9+vXTPOfTTz/N008/bbHt2WefpUOHDsyfP1+CbiGEELlG1nQLIYQQ2fTdd99Rs2ZNdu/ebbH9/fffx8fHh1OnTgEQHx/PtGnT6NOnDw0bNsTPz49nn32W//77z+K4sLAwvL29mTNnDr/++ivt27enXr16DBs2jKtXr2Iymfjhhx9o1aoVvr6+jBw5kvDwcItztGvXjpdeeokdO3bQq1cv6tatyxNPPGExZTs9hw8fZvjw4TRs2JB69eoxcOBADhw4kOFx58+fZ9u2bQwfPpyiRYsSFxdHQkJCpl4TYOXKlZQvX54GDRpYbC9Xrhw6nS7T50nOxcWFYsWKce/evWwdL4QQQliDBN1CCCFEGqKiorhz547Fv7t375qfHzlyJLVq1eLdd98lKioKgO3bt7N48WJGjRpFzZo1zef5888/adKkCW+++SajR4/mzp07jBgxgpMnT6Z43RUrVvDbb78xaNAgnn/+efbu3curr77Kt99+y/bt23nhhRfo168fmzdv5vPPP09xfEhICK+99hqtWrXijTfeQK/XM27cOHbu3Jnu17t7926ee+45oqOjGT16NK+99hqRkZEMGTIkxRTx1I4FKFGiBEOGDMHX15d69eoxYsQIwsLC0j32xIkTnD9/nu7du6e7X2YkXbPz58/z9ddfc+bMGZo1a/bI5xVCCCGyS6aXCyGEEGkYOnRoim2Ojo4cPXoUAAcHBz7//HP69OnDZ599xvjx43n33Xfx8fHhxRdfNB/j4eHBpk2bcHR0NG/r168fXbt2ZeHChRZJxgCuX7/OunXrKFSoEABGo5HAwEBiY2NZsmQJ9vbq7fvu3busWLGCSZMmWZw7JCSE6dOn06lTJwCeeuopunTpwtSpU1OsmU5iMpn46KOP8Pf3Z/bs2ebR5QEDBtCtWze+/fZb5s6dm+b3KiQkBFCj/HXr1uWbb77h6tWrfP/99zz//PMsX74cFxeXVI9dsWIFAD179kzz/Jk1btw4duzYAajr079/f0aNGvXI5xVCCCGyS4JuIYQQIg0ffPABVapUsdhmZ2c5SczLy4uxY8fy1Vdfcfr0ae7evcvcuXPNgTGAXq9Hr9cDKoCOjIzEaDTi4+PDiRMnUrxuly5dzAE3gK+vL6CC0uTn9fX1ZeXKlVy/fp0KFSqYt5csWZKOHTuaH7u7u/Pkk08ya9Ysbt68iaenZ4rXPHnyJCEhIYwcOdJiNB+gWbNm/PPPPxiNxhRff5L79+8D4OnpyU8//WTer3Tp0rz++uusXLkyxZrrpO/HqlWrqF27NtWqVUv13Fnx5ptvmqfjL1u2jISEBBITE3FycnrkcwshhBDZIUG3EEIIkQZfX99MJVIbPnw4q1at4siRI7z++utUr149xT5Lly5l7ty5BAcHW6x1Ti07epkyZSweJwXgaW2PiIiwCLorVaqUYh105cqVAbh8+XKqQXfSSPWECRPS+jK5d+8eHh4eqT7n7OwMqBsGyQPzLl26MH78eA4ePJhq0L13716uX7+e6qyC7KhVq5a53bNnT/r06cPbb7/Nd999Z5XzCyGEEFklQbcQQgjxiC5dusTFixcBOHPmTIrn//nnHyZOnEiHDh0YPnw4xYsXR6/XExgYyKVLl1LsnzQq/rC0RplNJtMj9N7yHOPHj7cIXJNzdXVN8/iSJUsCak13cnq9niJFihAZGZnqcStWrMDOzo5u3bplp9vpcnR0pF27dvz000/ExsaabwwIIYQQOUmCbiGEEOIRGI1GJk6ciLu7O0OGDGHmzJl07tzZvJ4aYO3atVSoUIHvv//eYgTaVqOvFy9exGQyWbxW0kh2uXLlUj0maaTc3d2dgICALL9mnTp1ALUePbn4+Hju3r1LsWLFUhwTHx/PunXraNKkCaVKlcrya2ZGbGwsJpOJ6OhoCbqFEELkCsleLoQQQjyCefPmcejQIT7++GPGjRtH/fr1+eijj7hz5455n6SR6+Qj0ocPHyYoKMgmfbpx4wbr1683P46KimLZsmXUqlUr1anlAD4+PlSsWJG5c+cSHR2d4vnkX09q/P39KV68OCtWrCAuLs68fenSpRgMhlQD+a1btxIZGZmiNnd23L59O8W2yMhI1q1bR5kyZShevPgjv4YQQgiRHTLSLYQQQqRh27ZtXLhwIcX2Bg0aUKFCBc6fP2+uv92uXTsAPvvsM5588kkmTZrEtGnTAGjTpg3r1q3jlVdeoU2bNoSFhfHHH39QvXp1cwIya6pcuTLvvvsuR48epXjx4ixZsoTbt28zZcqUNI+xs7Pjk08+4YUXXqB79+706dOHUqVKcf36dfbs2YO7uzszZ85M83hHR0fGjx/PhAkTeO655+jVqxdXrlxh4cKFNGrUyGLkP8mKFStwdHSkc+fOaZ5306ZN5nrnCQkJnD59mhkzZgCqJnlSWbYXXniBUqVKUa9ePYoXL86VK1f4+++/uXHjBt98802mvm9CCCGELUjQLYQQQqQhrenfU6ZMoWzZskyYMIGiRYvyzjvvmJ+rXLkyr7/+Op9++imrV6/miSeeoE+fPty6dYtFixaxY8cOqlevzpdffsmaNWvYu3ev1ftduXJl3n//fb744guCg4MpX74833zzDS1btkz3OH9/fxYtWsSMGTP45ZdfuH//Pp6envj6+tK/f/8MX/fJJ5/EwcGBn376iS+++ILChQvTv39/XnvttRTr1KOiotiyZQtt2rSxyNT+sHXr1rF06VLz4xMnTpgzvpcuXdocdPft25dVq1bx888/c+/ePQoXLky9evX46quvaNSoUYZ9F0IIIWxFZ7JG9hUhhBBC5Ant2rWjRo0aBAYG5nZXhBBCCIGs6RZCCCGEEEIIIWxGgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRNZ0CyGEEEIIIYQQNiIj3UIIIYQQQgghhI3k65JhiYmJRERE4OTkhJ2d3D8QQgghhBBCCJEzjEYjcXFxeHh4YG+fdmidr4PuiIgIQkJCcrsbQgghhBBCCCEeU5UrV6Z48eJpPp+vg24nJydAfZEuLi653Jv0GQwGzpw5g5eXF3q9Pre7I6xErmvBJde2YJLrWnDJtc0FMTHQvLlq79wJNvgsJte1YJLrWnA9btc2JiaGkJAQc1yalnwddCdNKXdxccHV1TWXe5M+g8EAgKur62PxA/i4kOtacMm1LZjkuhZccm1zgckEp0+rtrMz2OCzmFzXgkmua8H1uF7bjJY6y0JoIYQQQgghhBDCRiToFkIIIYSwIpMJ7t/P7V4IIYTIK/L19HIhhBBCiLwkMhKaNYMTJ8DDAyqWiaSCx2kqlouhYgUj7bqWwL+zT253UwghRA6SoFsIIYQQjx2T0YTOTmf18/7xhwq4ASIi4GhEYY7SWNthGvzwwVZGTWpt9dcWQgiRN8n0ciGEEEI8NowGI688vZVihSOY9/l2q59/5fJEc7tiRXB0SEixz7hPA9i16mi65zEZTfy35hhnD4VYu4tCCCFymATdQgghhHhsTHh+GzP+ak14dBGmfFfequeOuXefDevjAShTMprgYIiJ0XP1wg32rjvBi09uAyDR4MBTgzy5Fnwj1fMYDUZG999Gs64++DXz5PSBC1btpxBCiJwlQbcQQggh8oXbt2HjRti7F65euIHRYMzS8T9O2sbUhW3Mj89frUhsdKzV+rdp6TFi4lXZrG5ND2BnB3Z6O0pXKUnjjrX5YVEAbeodAuDq3dL063mVhDjLkfD4mHie6/wfM/5S08/vx7nxxaTLVuujEEKInCdBtxBCCCHyHJPRxNlDIfz8xQ5eGBJBrVpQogR06AD+/lC2WkmcnRKpVuYibf0OMazHLg5uCMNkNKV6vtUL9jF6UnOLbUaTnjOHQq3W5xXLtAC+e0/nFM/bO9qzaHl5yhW7CsD2Y/V46/ld5uejI6Lp1eYwf2wMsDjul3+bcPXCdav1UwghRM6SoFsIIYQQecr25YepWPIqXg0q8/yEFsxe4MGpUyn3SzA4cuFaJbYcrs+Cf1vy4sRedG8exMm95y32O7T1DP1erIXRpAegomeY+bkTh25Zpc8mo4mVW2sA4OQQS4en6qS6X8mKniz57TaO9nEATPu9Nb/9HMHd6+F0CjjPmr0q6ZqzQwwdGx4AID7Riemfnkz39XevPkrDGid5d8QWq3w9QgghrEeCbiGEEELkGSajibGvORF2u6zFdnt7NcI9bhyMGnGX7s324lvlNEXcwi32W7uvEXWbVeLVZ7dy93o4YWHQ/dnqRMe5A/BUm918O0VbS33yonXWdQdtO83lO2UAaFf/KG4ebmnu69/Zh+kf7DE/HjHKg+bNYtl1wheAwi4RrP3zDD8vKoeDvVoj/uPfrYiKSv189+7c4+mBRTl4rhaT57Qh+Nglq3xNQgghrEOC7sfYxIkTGTVqlPnxoEGD+PTTT3O8H3v27MHb25vIyMgcf20hhBB5y8a/DhF0oSYAVUqF8unYLWxZdpyICPjvP/j2W/hhVlFW7GrC4Qve3I0qQsStSH6dtpMKxdUItsFoz7TfW1Ojhol27UxcuaI+7jSrF8aC5X74tGpgfr0TFytapd8r/7pmbvd4IibD/V94tyXDnjcAEBMDJ4NLA1DS4yZb/r1Gq171KFutNM89p6q7hofbMWdO6uf6cOxBLt/Vbh4c2XMlu1+GEEIIG5CgOw+aOHEi3t7eeHt74+PjQ8eOHfn+++9JTEzM+OBHMH36dMaNG5epfSVQFkIIYQtffqklR/v8w8u8M60NrXvVwdU17WMKFy9M/1ea8vvSS3w0cjMujvcBuH2vKGfPqlrcVavCP+vL41LIhSpVwNFRHZtUU/tRrdxQwtzu1r9ahvvr7HT8MENPo0batkqVjOzYHEP91t7mbW++pX1U++YbePijwKFDMO33Vhbbjh3OOOgXQgiRcyTozqNatmzJjh07WLt2Lc8//zzff/89c1K5xR0fH2+11yxSpAju7u5WO58QQgiRFUd2nGbdfhWFVikVSp8RTbJ0vLOrI+9Nb8XpI+E80+WQeXvRorB6NXh6qsf29uD9IK49cwYSUpbSzpJrwTfYe9oHAN8qp6lYs1zm+usMf/8NbdpAp06wc6cdNepbjrzXqQNdu6r2xYvw159aojiDAV56CYxGncUxR487Zv+LEUIIYXUSdOdRjo6OeHp6Uq5cOZ599lkCAgLYtGmTeUr4jz/+SIsWLejSpQsAV69eZdy4cTRq1IgmTZowcuRIwsK0RDEGg4EpU6bQqFEj/P39+eKLLzCZLDO8Pjy9PD4+ni+//JLWrVubR9z//PNPwsLCGDx4MACNGzfG29ubiRMnAmA0GgkMDKRdu3b4+vrSs2dP1qxZY/E6W7dupXPnzvj6+jJo0CAuX5ZSKEIIIWDqpzfN7ddfCEbvoM/WeSp4l+W3f+uzcyd88AHs3q0F2Ulq11b/JybCuVOPVjZs9SIty1uP9lez1tcKsHkzrF0L5dKI1d96S2t/+eFZc4b2n36CffvU9po1TTjo1Y34Y+c8s9QHIYQQtmWf2x3IFSe/hlNfZ7xfsQbQernltq094c7BjI+t+TrUej17/UuFk5MT4eHhAOzevRt3d3fmzZsHQEJCAsOHD8fPz49ff/0Ve3t7ZsyYwYgRI1i+fDmOjo7MnTuXpUuXMnnyZKpVq8bcuXNZv349TZs2TfM1x48fT1BQEO+99x41a9YkLCyMu3fvUqZMGaZPn86YMWNYs2YN7u7uODur0iiBgYEsX76cSZMmUblyZfbt28dbb71FsWLFaNKkCVevXmX06NE899xz9OvXj2PHjvH5559b7fskhBAifwo7c4Xf1/sDUMz9Ds+/2SiDIzIWEKD+paZ2mSDAD4CTu4OoVTft98OMrFhX3Nzu3rdEOntmT5s20LDGSQ6crcXBs15sWXqQWo2q8PbbRQA1yh0YqGP0kBCOhnhx+nJl4mPicXSREW8hhMgLHs+gOyESYjIxuhpbIZVtNzN3bIJ11jqbTCZ2797Njh07GDhwIHfv3sXV1ZVPPvkExwcL0v755x+MRiOffvopOp16850yZQqNGzdm7969tGjRgvnz5/Piiy/SqVMnACZNmsSOHTvSfN3g4GD+/fdf5s2bR8CDTywVKmjfDw8PDwCKFy9O4cKFATUyHhgYyLx586hfv775mAMHDrBo0SKaNGnC77//TsWKFc0j41WrVuXMmTPMmjXLKt8vIYQQ+dO0L++QaFAZy0c9cwQ3jzY2fb1aXtq65xNHY+mTzfPExsL6vao8mGfxWJp0rG2F3lnS6eDNMXd5Zqx6/OUXBooUPkFEhKo7PnQotGoFPtVvcjTEi0SDA2cOncEnwMvqfRFCCJF1j2fQ7VAYXDKx3so5lelZzp6ZO9ahcNb7lcyWLVuoX78+CQkJmEwmunfvzpgxY/j444/x8vIyB9wAp06dIjQ0lAYNGlicIy4ujtDQUO7du8fNmzepV6+e+Tl7e3t8fHxSTDFPcvLkSfR6PY0bN850ny9evEhMTAzDhg2z2J6QkECtWrUAOH/+PL6+vhbP+/n5Zfo1hBBCFDwRERC4SK2JdnJMYPQ7qde4/j979x0dZdEFcPi32VQICRASOoSWBAiQ0HvvHVEUVKqiYEFFEQsoNlDQD6wgCAgiTem9V+kQahJaKKEmoQTSs7vfH0N2s6SXTb3POTnMvnWWd9t9Z+ZOdqrlY/qOPxdgk+nj7N4NERGq3KOXPVaZ6xGfpmdfa8z4L4O5GlKBjYdN380lHe8x9RsboBh1asexeJtafvpEBN4ptPILIYTIWYUz6K6Zha7fT3c3t5AmTZrw+eefY2Njg5ubG9bWpkvl4OBgtm1kZCS1a9dm2rRpSY5TsmTJTJ0/obt4RkRGqmyxs2bNonTp0mbrEt8kEEIIIRKbPRsePVLlwUNsKO1u+THJNXwqobWKR6e35tylzHcJX7vWVO7ZMxsqlgJrW2vefeUS70w2n1d86idnKVW2FQDeLevADLX8zE1fy1VGCCFEhkgitTzKwcGBypUrU65cObOAOzm1a9fm6tWruLi4ULlyZbO/YsWKUaxYMVxdXTl58qRxn/j4eM6ePZviMT08PNDr9RxJyNDyFBsb1Sqg0+mMy6pVq4atrS03b95MUo+yZcsatzl9+rTZsRLXSwghROESG6vm3k4wdmzOnNfWwZYa5a4CEBBcGV2cLo09kjLoDaxbp3qM2dioDOSWNOKDBpQoet/4uKX3SYZ+0ML42LuBaWz5mTOWrYsQQoj0k6C7AOjVqxclSpRg1KhRHD16lOvXr3Po0CG++uorbt++DcDgwYOZPXs227Zt49KlS0yaNCnVObYrVKhAv379+Pjjj9m2bZvxmBs2bACgfPnyaDQadu3axb1794iIiMDR0ZHhw4czefJkVq5cybVr1zh79iwLFy5k5cqVALzwwgtcuXKFb7/9lsuXL7N27VrjOiGEEIXP0j9DSJjEonfvpFnGLalW1bsAxMTZc+VccBpbJ3XmwAWuXlW5VNo2f0CxYtlavSQcSzgydri6Ue1gG8nM34tipTX9lKtcGRJm/nzq/rYQQohcJEF3AeDg4MBff/1FuXLlePPNN+nevTuffPIJMTExxnm3hw8fTu/evfnwww954YUXKFq0KJ06dUr1uJ9//jldunTh888/p1u3bkyYMIGoKJV4pnTp0rz11lt8//33NG/enC+//BKAd955h9GjRzNr1iy6d+/OK6+8wq5du6hQQXWHK1euHD/99BPbt2+nT58+LFmyhHfffdeC/ztCCCHyKoPewNRvTC23H4zNeGtzVtT0iDGWzx2/k+H91y2/aSz3aumXHVVK08fT27Bm7mGO7rlJ7WbVzdZZWal5vQGCguDx4xypkhBCiDRoDCll0soHIiMj8ff3p2bNmhQpUiS3q5MqnU6Hn58fPj4+aLUWyrIicpxc14JLrm3BJNc1b9my+BhdBjUAoKnXaf47643GSpOpY2Xm2v49Yz8vvqO6Z095dxcf/tA2Q+dsXus0B/zrAHDp1DWq1qmUof0t4ZWXQvhjkRoTf2jrBRp3rGG5k0VEmJrWHz+GokWz/RTyni2Y5LoWXIXt2qY3HpWWbiGEEELkip9/jjeW3x/zONMBd2bV8jUlUDsXkLHcshv/OsLBANWsXKvSxTwRcAN4VzxnLJ85eisXayKEECKBBN1CCCGEyHE3Lt5i/YGGAJQveYu+IxrneB08fSuh0egBOHcxfbN9GPQGpry7ix6DG2AwqJ9RA3pkfDy4pdSpbxpYfvpUvu3MKIQQBYoE3UIIIYTIcfN/DEBvUF0Phz8biNYm57shOhRzoEpFNd2l/82apDXgLjI8goGdDvDR9LbGgLtfq4OM+7aJpauabt6NKhrLZwIdc7EmQoiCYPNmWLmSND8fReok6BZCCCFEjtLr9PyxrBoAGo2eEe9UT2MPy6lVVwWmEREarl9PebsrZ4Np4XudpTuaG5dNGr2Lf3Y2xqGYg6WrmW5ulUpRyikUgDOXK6SxtRBCpGznTujaFZ55Bn79Nbdrk79J0C2EEEKIHLV9+QmC7qgx0J0bHqdyzdwLDmvVMpXPnUt+mz17oFGb0vhd9gLA0f4Rq+YcYuIvbc2m7MoLNFYa6lRVdw9uPyhNaHBYLtdICJFfJQ60P/0UQkNzry75Xd76phBCCCFEgTf791hj+dXhcblYk7SD7jt3oEcPCA2zAaB62Ssc2nWHPiPyTpfyp3l7hhvLZw6n0nyfjM2boW9f2LEjmyslhMhXwsJgzRrT4wcP4LPPcq06+Z4E3UIIIYTIMSHXQ1m1R00T5uoUQq8hDXK1PrU8E83VffB8kvWzZpnmu+7QwcDhk27UapJ73eHTw9vblAX+zImH6d4vMhIGDjSwejW8Mvg+Br0M4hSisFqyBGJjzZfNnAmnT+dOffI7CbqFEEIIkWMW/GVDnM4WgKF9z2LrYJur9fHyMP2q9D8bbbYuNhZ++02Vrazgjz80lHBNeR7WvKJO/RLG8pmz6Z+GbelSuH9fbR90owRXzmWslVwIUXDMm2cqv/ii+levh3fekaRqmSFBtxBCCCFyhMEAs/90Nj5+5QOf3KvME8VKFqNiqRsAnLtayax1d/msE9y+rcr9+kHlyrlRw4yr3cRU0dOBxdO939OJknatv5pNNRJC5CenT8OxY6rcoAHMmQPu7urxjh2wenWuVS3fypGge9GiRbRv3546derw3HPPcerUqVS337hxI127dqVOnTr06tWL3bt350Q1hRBCCGFB+/dDYKAqt24NHt7Fc7U+CWpVuQXAg4ji3L5yF1Dzcc/42dQKP2bk7VypW2Y4uThRqXQIAGeueaWrVerIETh61HzZ7j3pbyUXQhQcf/5pKg8bBvb28P33pmVjx0JMTNL9RMosHnRv2LCByZMn88Ybb7By5Uq8vLwYMWIEYWHJZ9M8fvw4Y8eO5dlnn2XVqlV06NCBN954g/Pnk46zKog8PT1T/fvpp59yu4pCCCFEpsyebSq/+mru1eNptWo8NpbPHbsJwMFNZzhyvjYAPlUDaNmxdK7ULbO8G7gCEP7YluDgtLf/7eujSZbtPppPmvaFENkmLg7++kuVbW3hhRdUuV8/aNtWlS9fhunTc6N2+ZfFg+558+YxYMAA+vfvT/Xq1Zk0aRL29vb8+++/yW6/YMECWrVqxSuvvEK1atV45513qFWrFn8lXP0Cbt++fca/jz/+GEdHR7Nlw4cPN25rMBiIj4/PxdoKIYQQ6fPg7kOWL1OZyosXh/79c7c+idWsZfo5dO7kIwB+/MGUAXzMa6ForPJXq2+dOqZyWomP7t++z+IN6gaDU5FwmnidBeDK3Ypc9U9HxC6EKDA2bVKzNgD07g0uLqqs0ahA2+rJx+VXX8GtW7lSxXzJ2pIHj42N5ezZs7z22mvGZVZWVjRv3pwTJ04ku4+fnx9Dhw41W9ayZUu2bduW4nl0Oh06nS5b6mwpCfVLq54lS5Y0losWLYpGozEuO3z4MEOHDmXmzJn8+OOPnD9/njlz5rBq1SrCw8P5+eefjftOnjyZgIAA/nzSP0Sv1zNnzhyWL19OaGgo7u7uvP7663Tp0iW7n2qhkt7rKvIfubYFk1zX3LPo5xNERbcF4KVe57C19SQ7L0NWrq1nHSdj+Zy/gWuBwfyzqzGgMqw/97pvvnvN1KqlIaFt5dQpPV26pNzHfN7//IiOawfAkF7HKVnCwKEAFYTvXBfEyx5lk99Rp0NrLOrI1gua+LjIe7agkeuad82bZwWom4yDB+vM3tbe3vDqqxpmzbLi8WP46CM9f/xh/tmS0rW9cQOcncHR0aLVz3HpfQ1bNOi+f/8+Op0Ol4RbJE+4uLhw+fLlZPcJDQ2lVKlSSbYPTWU29ox0Pd+2rTgzZ5YjMlKb9sbZpEgRHa+/fpOOHeF0BvLsX7t2DZ1Oh5+fHwAXL14E4JtvvuHFF1/Ezc2N2NhY7t27R0REhHE7gJCQEB4/fmxctmrVKvbt28fLL79MmTJlCAgIYNy4cdy7d4+aNWtm11MttDJyXUX+Ite2YJLrmrMMegO/L3QzPm7f4Sp+flEWOVdmrq3BIcJYPhNYlO8/8yNe1xOAQT0OEXAhhaAzD7O2dgDUJOT/7b6OX6fkf0fpdXp+W2jqRt6xdwwPw0yDNbdujaZOe79k97WKisL3SfnUqVPoHRyyo+rJkvdswSTXNW958EDL2rV1AQ0uLnG4uZ0iUXgBwLPPWrNoUW0eP7bmzz+taN/en9q1I5McK/G13bSpBJ99VoUyZWJZtOgcjo56yz6RPMiiQXdO8fDwoEiR9E3h8frrVly5kvNdxP79twodO56gTp06aLXpC/iDgoLQarX4+PgAqucAwAcffECHDh2M223YsAFra2vjdqCS0YWFheHj40NsbCwjRozgjz/+MG7TpUsXQkNDOX78OAMHDsyW51gY6XQ6Tp8+naHrKvIHubYFk1zX3LF//WlOXVEBYGPPM/R+qXO2nyOr17ZM8TvcflCac1er4n+tCgDW2jjGTvKlXNUy2V1di/PyiEdrFY9Ob03whUiz3wiJbVt+nIu3qgLQzuc4PZ7vSPTjKF4dG01MnD2HTnvg41Mh+ZNEmG5W1K1bF4oWze6nIe/ZAkqua970888a4uNVD5mhQ7U0bOiT7HaTJmkYO1aVf/vNi7179WiehFdPX9v79+F//7NCp9Nw44Ydly/XY/DggjPnWGRkZLoagC0adJcoUQKtVpskaVpYWFiS1uwEpUqVStKqndr2AFqtNt1v2A8/hAkT4NGjdG2eLYoVg/ffVy+ujNTV6smgiYTtEx7Xq1fP7BgajQaNRpPisuDgYKKionjllVfMjh8XF0fNmjXlwy4bZOS6ivxFrm3BJNc15xzecpZ+L1YyPn518H2L/t9n9trWdL/Jbb/S3HtsGuY1oP1hKtZokZ3VyzFFi2mpUe4SAcHVOHetCgadAWvbpD/7fv/N1DVy1MgYtFotRZ0daeLlx57TPly6XZlbl25SwaNc0pMk+n/WarVmj48cgVOnYOBASGe7SKrkPVswyXXNWxJnLR8+3IqULs1bb6nEmAEBcPCghmXLtAwaZL5NwrX96itIHAquXWvFsGHZX/fckt7Xr0WDbltbW2rXrs2BAwfo2LEjoMYWHzhwgJdeeinZfXx8fDh48KDZuO7//vsvxTu0GfXss+ovp+l0JOmekVkOT3Xf0mg0GJ6aDyRxgrXISNXlY9asWZQubZ591dbWFiGEEMISti07Tt/BHkTEqEF8DWuc46UxjXK5Vsmr5RHFTj/zZW+PLZ4bVck23tXvEhBcjZg4ey6dvoxng6pm629cvMXqfQ0B1dLfd3hD47o2zR6y50nv0N377HjRI33nNBhg8mT49FNVDgpSCZeEEHnbyZOQkHKrcWOoVSvlbW1s4H//g27d1OMPP4Q+fZJ2djl3DhKlnAJg82aIigILjkbJkyyevXzYsGEsW7aMlStXcunSJT7//HOioqJ45plnABg3bhzfJ5r4bfDgwezdu5e5c+dy6dIlfvrpJ86cOZNikC5U8rWQkBCzZf7+/sZytWrVsLW15ebNm1SuXNnsr2zZ/DdOTQghRN7378wD9HixtjHgblvvBNsPVMC+qH0u1yx5tdo0N3vcxOsMTbrUzqXaZA/vmqax2WeO3Emyfvb3gej0qv3l1QH+2NjZGNe1HdDaWN590CXJvsl5/BgGDIBPPsE4N/iGDZmpuRAipyVu5X4qp3WyunaF7t1VOTgYvvvOfL3BAO++a8qvWLy4+jcyElLJj11gWTzo7t69Ox9++CE//vgjffr0wd/fnzlz5hi7i9+6dcssYKxfvz7Tpk1j6dKl9OnTh82bN/PLL7/g4ZHOW6yFUNOmTTlz5gyrVq3iypUr/Pjjj1y4cMG43tHRkeHDhzN58mRWrlzJtWvXOHv2LAsXLmTlypW5WHMhhBAF0exvDjBgdGNi4+0A6NPyEBv318TJxSmNPXPP0606Y96ISX7DfKSOj+kGx5lT5s8nLiaO35d6AaC1imfkWPPfWU2babB5EoPv2pX2ua5cgRYt4J9/zJefOmU29FsIkYck9MT95RdYsEAts7Mzzc2dlh9+AOsn/aa/+w6uXjWtW78etmxR5UqVYNYs07rVq7Nc9XwnRxKpvfTSSym2VC9cuDDJsm7dutEtob+CSFOrVq0YPXo0U6dOJSYmhv79+9O3b1+zQf3vvPMOJUuWZNasWQQHB1OsWDFq1arF66+/nos1F0IIUZDExMC0afDpp82My4b22MvsFc2SHU+clyQOusuWhf4jG+ReZbKJd0PTkLLT59QNkEeP4Pp1WL88hFv31TjtXs2PUsGjqdm+RYqoLqb798OFC2o+3tQ6x7VuDdfvqXKxYlCzJhw+rH7UHzkCbdtm61MTQmTS2bOwfLl6bx88qHqoJNa3L5Qokb5jeXrC22+r4Ds6GsaNg7//hrg4DR98YGrbnToVevVSnyuRkbB2rfpsKEzD+fP2N2Ah98wzzxi74QM0adKEwMDAZLd9++23efvtt1M8lkajYciQIQwZMiTb6ymEEKLwio+NZ+eqMyzeWI8VKzU8fGha9+6Le5n2ZwustBbvWJdlbm7w+uuweLEaq1gQUp5Uq1MJe5soouMcWPefLyUcH/AgoviTtabEaKPfTr4HQps26oc5wO7NIbww1DXFc4U9Cbg9PFQr1sGDKugGOHBAgm4h8oLLl6FRIzWmOjmurjB+fMaOOWGCaiUPDYVly2DUKFi92pULF1Q681at4LnnQKOBzp1h1Sq4excOHYLmzVM/dkGS978FhRBCCJGnRD2KYtcKP95+YRfl3e7T+Xkf5s03D7i//hq+X9gqXwTcCX77De7fh+efz+2aZA+tjZZala8AEBNnnyjgNqlbFzr0Tz5jUpuGpr6iu9b4J1l/4ID54+7d1Q9pLy9o1izl7YQQuePTT80D7nLlVEA8fbrqkXLjBmQ0d3Xx4urzPsFbb1kxe7a6qafRwIwZGKcT69PHtF1h62IuLd1CCCGESNXtoLvs33yJ/Xtj2H+sFMcvehKv80myXbFi0K8fDB+uWknzo4QfhwXFe6PvMfKjCOLibahY6hYVa7hRqYoDFSuCu7vqSmqVwn2R5m1dsNbGEa+zYfeR8mbrIiNVz4CTTx6/MRom/2jqLurhASVLwr17qtXbYCh4/7dC5CfHj6uePAClSqmbYdWqZc/7csQI+PVXlQH9zBkNoDUu9/U1bdezp/q80etV0P3tt1k/d34hQbcQQgghkhUdEU33lv7s9PMF3JLdxs4mmh7N/Bj4oh09XvYtdNPA5HUvvtuCAaPj0FprsdJWztC+jiUcaVjjNAcD6hAQXI07V+5S2l29DiZMgIuXTNtOnmw+PlOjgaZNVfbykBDVrbVatex4RkKIzEjcbXzCBKhePfuOrdWqFu3Ew0icnAx89ZV5RF+qlEq4uHcvBAaqeb69vLKvHnlZ/unzJYQQQogc9e+Ca08CbnNeFS4xotdeFv6wnzs3Yvh3d1OeHSkBd15lY2eT6W7+bZqGGcu7118E4L//1Lj3xJJLiNQ0UW426WIuRO7ZulX9AVSpAq+9lv3naNMGnn3W9PiTTwyULp10u8LaxVyCbiGEEEIka/VO0zRSr/fdxpp5hwm9cQ//69WYs6YVL73bAmdX51ysobC0Nh2KGsu7d8URFQXDhpnm4U6NjOsWIvfp9fDhh6bHX32lpgWzhF9/hQED9AwceIe3307+Q6KwBt3SvVwIIYQQScTEwMaNqlyyJPy0vKNxPlZReLTo5onWKh6d3prdh8sxYQIkzEjaqCFwNOV9GzdW3cwNBgm6hcgtS5fCiROq7Oub/jm4M8PVFf7+24CfXzA2NqWS3aZ6dahdW01ddvAg3LlDsi3iBY20dAshhBCFSFxMHOFh4Wlut3Onaf7Wnj2RgLuQcnJxon51NV3p2Ws1+OEH1XplZwczZ6axrxN4e6vyqVMQEWHJmgohnhYTA598Ynr87bcpJ07MSQmt3QaDmrO7MMgD/+1CCCGEyAmxUbG0re+Pcykn/vrf/lS3Xb1Kbywn7g4oCp82TUKMZYNBJUb64ov0JUBKGNet08HRVFrFhRDZb9YsCApS5Y4doVOn3K1PgsLYxVyCbiGEEKKQWPnHEf47VxeAj76pSnx88tvpdXrWLL8LgJ2tjs6dc6qGIi9q06GI2eMmTWDs2PTtK+O6hcgd4eHw5Zemx3lpeq6GDaFsWVXetq1w9IKRoFsIIYQoJH793ZQUKzi0LOvWJb/dsR0B3LxXBoCO9Y/j6JgTtRN5VctunlhpdADY2RmYNy/5bOXJkaBbiNwxbRqEhqrywIFQv37u1icxKyvo3VuVo6Nhy5bcrU9OkKBbCCGEKATOHrjIntM+Zst++y35bVcvu2Ms9+kZbcFaifyguJszX729myoVHzFvnoaaNdO/r4cHlCihygcOpC/ruRAiayIj4YcfVNnGRmUsz2v69jWVV63KrVrkHEmLIoQQ+ZT/4UvcuPKQDs/6orHS5HZ1RB732/9uANXNlm3ZAhcuQI0a5tuu2lIBAI1GT69B6Ri4Kwq8j6a356PpTy18fMVUvvgHFC0CGivQaNW/ti5YlelIkya2bNoEISFqfGnVqjlYcSEKocBAU5ftZ5/Nm++5du2gWDF49Aj++Qfc3FSLvK+vmvWgoJGWbmG06H/7ea3fHoIv3MrtqgghUmHQG/hh/G68m7rT6fn6/DppT5r7xMXEMWHkLj4esYuIh+kbPGXQS5NUQfH4/mMWrPMFoIhdBB9/aGq9nvWL+evh0smrnL2movAmXucoU8U15yoq8peTn5rKx8bA4Vfh0Ag4OBQODIbdPWBtdZrVOGzcTLqYC2F5ly+byrVr5149UmNnBz16qHJkpOoO36CBStD42WcQEJC79ctuEnQLANb9eZiX3mvB76ta80zPe+jidLldJSFEMqIeRTG4+3+M/bYNeoMaVPnljzWJepx6F+AfPtrPV7PbMnluWzo3v8T9Ow9S3X75bwco53KXNnX90h2ki7xr0c8neBTlBMCgLsd493177GzV5/zcObFEPYoybrv67yBjuU+X0JytqMg/DHpwdE97u8jrNKu8wfgwI0H3vXvQuLEVL7xQ0yyIEEKkLsj0MU6VKrlXj7RMmZJ0Ssrz59XsCDVrwptv5l7dspsE3YJbt2DYez7Gx0fO1+b3b1KfSkYIkfOuX4dWzR/z1+YWZsvvPHBj7tTDKeylMph+N7+V8fF/5+rSukkIty7fSbKtTgcfv+nPgNHNuP2gNHtO+/DzpCPZ9yREjjPoDfw2z834eNQ7rpQqBc+1U9HP/YgSLJt5zLh+9cbixnLfQZVyrJ4in9FYQb1EA0Ub/QZN5kDjWarc8Gcop5qxGvfvY+wueuAAEBcOUWn3qvvjDzh+XMPFi0UYNswKvT7NXYQQmLd058Wu5QkqV1bzdN+6BTNnQtu25l3L//or16qW7SToLuT0ehg8GELv2Zot/+i7etwOuptLtRKiYIiNiuXErgDiYuLStX3EwwgObjrD+eNBZi2PAPv2qSk2jp1RXX2L2EXwxRu7jOu/+61qiuf56Se4d9881fCZqzVo0TyGSyevGpc9fKjmzpz8i3mWpO9m1yU8LDxdz0HkPQc3neFkkCcATbzOUL+dur6j33Y2bvPb3OIAhAaHse9MHQA8ygfh1SgP/1oTeUvVl6HaCKg+Emq8Dh5vQNt10OsCzu6+1KqlNjt5EiLOLoZVFWBHZ7j8J8Q9SvaQ27ebyvv3a/jppxx4HkIUAPmlpTtBqVLw2muwc6dqYPjhBxgwQM0zXlBI0F3Iff+9mh8PoFw56N/uKAAPI515b+SFXKyZEPlf/w5+1G/nha/HFU7sSn1w0orfD1K5YjTNunnj2aAKRZwccHUOpX51f3q08qd9e7j75D5YlSp6Dmy7yYSf29KtsWqFvhZSgb9mHEpy3AcP1DgpUFP8rF9+k8quwQAE3alEy7b2nNp3nsBANffu+vUJ2xrwrnAagHuPS/Lj58ez/h8icsWvf1YwlkcNf2AsN+3qTb0qgQAcCvDm+E5/1i/2Nw5b6NPhKkJkWTGVvC9h6jCdDo5tP6m6p9/eqsZ/rygN+wfCzU3G9OaxsbB3r/mhPvoILl7MwboLkU8ltHQXKaISlOUn5cvDu+/C0qXw/PO5XZvsI0F3IXZ0Xygff6y+3DQaWLgQZi6oQknHewAs3taCrUuOpXYIIUQKbly8xboDjQE4e60GTTpWZfI7u5LkS3gY8pChPfbS/7WmhD1yMVsXGl6KE5dqsmFfTeKeNGJ36ABHjlhRt6VKdPXJBDvj9pNnlE9y/On/M/DggSq//DJ0f7Yc+/+zpnYldVPt9oPStO7iRuOGsQSq+IuSJWHzZg0r1xRDaxUPwPfzfHhw92GW/19EzgoNhWWr1HxNJUvqGTCqoXGdxkrD6OGmIQa/TQ9h9YZixsd9niuZcxUVBZ7ZfN3X+0LRRM1vuii4ugR2dYPt7eHBaQ4eVMmVAOzsVL/yqCgYPhzpZi5EKvR6uHJFlatUKZiZwPMjCboLqUf3HjFwwGPi49U78cMPoX17KFXBhamfnDNuN/o9F6IjZI5WITJq/RLzniJxOls+ntGW1j5nuXT6JgC71pynbu1H/LnBNN66S6OjDOy4n5beJ6nkGmwMeq2s1J3fTZvAJVFs3qJnXdrU9QPgws0q/Ls8xrju3u0H/G/aY0C1XE+YoJaXr16GPQdL0cTrDAAPI4sT/lgNMfH2hiNHVHBf3dedId3VuN8HEcWZ/pm0duc3c+eqFkOAYcOscHC0N1s/6I36FHNQQwcWbWrI5sN1AXAtGUnTLnk05a3Il8yC7iudofcl6LQfaowGu0Qfand3wUYfti3YaFz0zjvBVKmiGgn27oWff86hSguRD928afrcz8vjuQsbCboLqbcH+3HxljsAjb0C+eIL07qhHzSnpfdJAC7ecmfy2IO5UEMh8rd1G00t0IM67cdKo1qg/ztXl3rNyjJwILTvW4NrIarrr5PDQ/6cuo+NBxvw99YW7D1dj6t3KxATreF6UBShoWqMU+IMnwk++by4sfzNd0USemfywwQ/wiNVy+Ww3ofNvnxLli3BtgNV6NzwqHFZ/87nOXDA/Ev608nuWGtVM/v//qzPvVv3s/LfInKQXq8S0yR47bWk2ziWcGRwTz8AomKLEBmpbsT26lsErY026Q5CZJKnJxQvrsoHDoABDbg2h0a/QN+b0HI5OFZTGxj0bN9ryjnQuvUDZs82NW+PHy/dzIVISX5JolbYJPPzTWS3uDhYvigcv1032OAYjiatfh6lmoI2UWtExHV4fCntE1kXAZfG5svun4RY8x/Jd+5qmL++DQCO9o/4e4k9Njam9VZaK2b+XhSfVnHE62yYMrc5g8bo8KwpP8CESI+oR1FsO6qSUZUpfoeFG5vxxqazDH7FiUu3KxMRoWHJEgD1WdC23gnmL3alcs2WSY6ltdFSwd0h1fN17OtO48Zw+LBKUrR+PTT1CWPGXw0AsNHG8unX5ZPs51i8KGv31GX+93soXsKa50Y1Q/PUrdgq3hUZ3msPv69qTXiUM99P2MXXc9omOdb9Ow9YOe808fEGKro7UMmrEhU9SuPklPb/l7CMzcsCCAryAqBzZ6hRI/ntRr1bjl+Wmy/r08fClROFjpWVyhuxebPKTxEUlCgg0NpCpWehfE8I+IFHR2Zw+FITADw9DZQuHYePD7zxegy/zLQzdjPftUsdVwhhkt+SqBUWEnTngPnzYeTIEkDvTB6h4pO/zKiX6tpfvz5JtXpJf+jXblad94f+x5Q/mhMbZ8voN1XCNRkXIkTadqwLJipWRTg9Wp3HSlua5j3q4BcYx9gP4Pff1XZ2dvDNN/DOGB+stJl/c2k08MknpkDp66+hlcdpHke3BeCVvgepXLN1svvaOtgy8tPk1yX4ZHI15q+LITbejhmLW/LuFJVpNMHmv48y/K3y3LzXKsm+zs5qSpB33oFhwzLz7ERaVvx+kB9+LEJ0rPlXenCI6SKNGnydlL5HajerTus6fuw57QOAg4OOjh3lJqvIfs2aqaAbSNKrBlANDrU/Zk/gSOJ16jXYvv2TrjvRIUxpUosNq84SdLsse/fCL7/AW2/lXP2FyA+kpTtvkvuDOSCvZg0c0n0fL7+XNOBOMOHH5ri7q/KOHfD33zlTLyHyu3V7TE2KPZ8ztTA7Otkwa5a6gTV+PBw/Du+9R5YCbuN5ekId1bjOwYPww1/qvW1nE83Hk1No4kynSl7leXVYBAARkdZMnaqWR4ZH8uaA3XR9sSE375VNdt+HD+HUKRg5Em7cyFI1RDJ0cTpGvOfF/rN1OXahltnfnQfqy6eCy016Ppf89Ukw+lXTlE2d2z6iSBGLVlsUUonHdW/cmPJ22/eZbhglBN2a4H9xtL3PH8MHGdeNHxfNlf3rIT4qyTGEKKykpTtvkpbuHNCnD5zxC2f/xp2UKVMarVUaLQjF66muVgmibkFkcNonsrKHEnXMlz0MhPik8+s6FrOhZc9mSZYnVqSIuovco4d6PG6cei6OjinvExsVy5dj/iMiAr6d2wIbO5uUNxaiADIYYN06Vba1hY79kt5m7tBB/WUnKyv4+J2bDBxRDgCdXn28v/bMISrUaJPl43/0WUnmLICYGJXEqFW984wdZ8P5G6Zjd2l0lGd6R3L9mp5rj3y5fseZwECV1CU+Hn778hBfzWyS5boIk7OHLvEgwgMAjUaP1so8e33xog/535dXsbYtl+pxnhnZlEFr93MioAzffGYAiluoxqIwa91azY5w7x4sXw7Tp5v3mkmQMD+3RgNt2sC1a4DWARyr0a72LkZ3/IVft71BZLQ9n354n7/edoOKz0DlQVCmA1jJz1tReCVu6ZagO++QT6Uc4uVdlOj4Cvj4+KDVZrTbXtknf5nhmcn9lO7doXdvWLNG/XD+drwfX/7sk+L2n73xH1PmtQWgtvdeRnyUtLupEAXZyZMQ/OQeWfv2qd+kym7PvVyaiZ9e5sItFejb20Qx/huvbDl2+fLw+uswY4aaxqfXix7GdQ62kUwbf4RRn7VGY2Xean/z6mMqV7MjXmfDrMXV+PT7aOyL2j99eJFJB/ebWvimfbCH975t+9QWpZ78pc7GzoZFW1pka92EeJq9vRqLPW2ayq48d666oZ/Y3buqdwxA/foqSL92DQxVhkC1YXDvKN+UX8HSQ/cIe1SSRftfYmz37/GNXwBBC6BsN2i3IeefnBB5REJLt5sbFC2au3URJtK9XKRp2lQDNtZq2qKpv3tx5Wzyre6Ht5zlu/mmIPv4cZlIs7Az6A25XYUct26t6Tn37Jmz59baaPlojKkP9+gBhyhbtXS2HX/8eHB4KqdbI4+znPjvNqMntUkScAOUq+zIc+0OA2re8cU/H8m2+uQ1t4Pu8uaA3cz4eHeOvfYPnTfl7WjSxTtHzilEViTOoj9zZtI5t3fuNJWT9AjSaMClEc5tJvPppOLGxeOXTTNtU66r+T4GA0Rcy1KdhchJ+/bBq6+qvAcZFRWlGslAxnPnNRJ0izTV8NDwzqB9AMTE2fPBm9eTbBMdEc2wV+3QG0yt+AGXiuVYHUXeYtAbGNl3D24lwlg151BuVydHrf07wFju2SPnbzoMeb8F34zZxfsv7+Kr37K3K3eZMvDeMD8AtFbxfD5qF/tPeeDZIPVv9rfHFjeWZ8xyLZA3Y0Kuh9K+zSN+Wd6Gdya34fev9+bIeQ8+mdHR2hrqN0u7RVuI3Fa9OnTpospBQabEagkSupZD6sNwRo22Muad2XKyA9vYB5Weg0oDzDe8dxRWV4atrSHoL9DrkhxLiLxiyRJo1w7mzIEhQzK+/5UrprIE3XmLBN0iXT79oT5uziEA/LOrGbtX+pmt/+LtA5y7Vt1sWeDVzHaJF/nd2YMXmL26NaHhpfj8q8KTkenOlRAOB9QEoI77eSq753y6fyutFR9Nb8vUBW1xKJb6VGOZMWl6HVb/cYizh6/x2a9t05W3oWnX2jT2PAvAySAv9qw+me31yk337zygU5sw/K9XMy5796uGnDuU+kTC167Bhx+aBxkZER4O/v6qXK9e0l4IQuRVo0aZyr/9Zr4u4f1gawstU871ip0dfPWV6fH4H1qgb74MHMqYbxi0UP0bshcOvAwbvOHqUjBIbzyRt/z2GwwapHKgAFy4oPIfZIQkUcu7JOgW6eLk4sQ3H5pa8MaMdUAXp+4WH9kVzLfz1JRDNtpYKruq7uc37pXl0YPonK+syHUrFt00lk9ercP1C6GZPtbNS7f557cD/PDhLt4ZtJtnWh+kUUMdZcpAixYZ/0KypA1LE7Vyt7+Zypb5l9ZGS+/hTdJs3X7amFEPjOUZ/ys4nwvhYeF0bRPMySCVP0NrpX4tRcUWYeArlYhO4akGBYTRooWB776Dfv3g0aPkt0vNkSOq5yyo+Y+FyC969IAKFVR53Tq4elWVg4JMSaCaNSPNLPoDB6obTgDHjsGyZcls5FyTf0+/jdf7/gyZOR/DwwDY/wJs9IXg1aY3kRC5xGBQN5BGj076cjx7NmPHkunC8i4JukW6DX2/OfWrq2aVk0Ge/PHtfmJiYOgbFYzdyj8b/R8duhU37nP+kiRMKoxWbDTv5bBuW+a6vc6dspcqXiV4bnQzxn7XlhmL27Byb1OOHtNy5w7895/KsJ9XrF1vavXt1d8lF2uS9zw7shFlS9wGYPW+RinmhshPIh5G0LPtZQ4HqrHUpYvf5diuS9SuEQbAqTO2jB+fdL/r52/Rvk0kwcGqJ8SjR3D0aMbPf3Ddf8ZyU988dPdJiDRYW5vGdhsM8Pvvqpy410fHjmkfx8oKvv3W9PiTT1SCtgR6PUxYMIpnp8wg8JYXC/YO4ejlhmrlg1Owpy9sbgw31knLt8gVer2aOnTCBNOyeqZUHZw5k7Hj5euWbl0MhB6EgP/BvgFw+c/crlG2kqBbpJvWRsv0703fZp9MrcXYd2I4d049ru8bz7ipLfDyNqVrDgh4+iiioLt08qqx1S9BwhRa6RUXE8ebA/Yw4qNWxMbbJVlvZWW6Fbx+faaqme1iImPYclgFX6WcQmncqVYu1yhvsXWwZdQg9YGgN2j55dvUu17nddER0fRtH8DeMz4AuBQLY9v6h9Rr5cnif12we/KynTEDNiRKpHw76C4d2kVz5W5Fs+MljM3OiEOHTTk0mtR/mPEDCJGLXnlFBd+gxq/GxqZ/PHdinTubtr182RTAh4dD377mXdABjtn+CS6NTQvuHYXdveB2Jsd5CJFJcXEwbJiaOi/B1KlqWs4Ep09n7Jj5qqVbHwd3dsKJD2BLc1juDFuawfH34NpyuLkxt2uYrSwadD948ICxY8dSv359GjZsyMcff0xERESq+7z88st4enqa/U2cONGS1RQZ0Kp3PZ5vr1pXQsNL8ctM9cvSxgbm/2mNjZ0NnonircDA3KilyE0r/wpKsmz7dkjjrW8Ucj2UTo3P8svy1sZlw3vuZdH0/exdc4or524QHamjbl217vBhA3eu5X4r367VZ4iIUTecurcIQGuT0akBC77Xxnljax0DwJwVPkQ8eJzLNcqcuDgY8Gws2443AMC5yEO2rL6Ld/MaANSpo6ZESjB0qJ5bQWGEBofRse1DLtxUzQ+li4cYtzm0+06G6mDQGzh4Rv2iKlH0PjV83LPwjITIeWXKwDPPqPLdu/Dvv7Bjh3pcrBg0apS+42g05q3dX3yhupo3aQJr1ybd/vilWtD5ILReDcWffJE4ean5vROTbufCgqKioH9/WLBAPbaygj/+gPffh9q1TdtltqXb2to0hCNPujQXVpSG7e3BfxqEHgB9jPk2D07lTt0sxKJB9/vvv8/FixeZN28eM2fO5OjRo+kKoAcMGMC+ffuMf+OensRR5KrvfqmMvU2U2bKJE9UPTQCvRNMCS0t34bNivalbdfvWkQDExKQvWdSJ3edp2CCa3ad8ALC1jmHulL38sbYVg8a0oGWvulSuWR4bO2t6tlDJuAwGDRsWZ3DQkwWsW2UKIHv1koA7OW6VSjGoi5o+7EFEcRb8nrFAM69YtAjWbnICoKh9BBuXX6N+u5pm27zxBvTqpcohIVa83P8qndqEcPaaCswruQZz6L9YnIuoFuqDhzQZyup+5VwwIeGuADSpfTHZ6dqEyOsSJ1QbP14F3wBt2phawdOjQQN44QVVDgmBhg1Nvz9KlICVK1VwDiogR6OBCr2h2wlovQp8p4LmqZ/Eu3vDoZHw0D8zT02IFD18CF27mm4K2drCP/+oOexBvWbLl1flM2fSf//HYDC1dFeuDNrc/CliMEDkDbi9A87/Cg/Pma+3LwOx982XFasBVQZDo9+gmx90z2Azfx6XgY+0jLl06RJ79+7ln3/+oc6TaOzTTz9l5MiRjBs3jtKlU5471t7eHldX13SfS6fTodPl7SkgEuqX1+uZHuVrlOGDYXv48vd2APjWi+X997UkPLVKldSXZXy8loDj19HpyuVibS2rIF3X7HDz8m0O+Kv3u3flC7z9TiV27FHr1s4/TI8eDVLcd9kyDSNGVCcqSv3wKVviNsv/ukPTLs2T/f/t1gO+eZL1dt0Gawa/n73XICPX1qA3sG6XanW00cbSob+XvCZS8MbY0sx/MiTgx3lVeeVdHVY5ONApO96z+/drSLhnvWCBNY271Er2eLNnxuK7L5xb90uz/UR94/KyJW6zdUscFTwq0aTWCbYcbcidB24EnbtG5Zrl01WHA9uvAqqLemPfx/J6Qz6Pc4VOh9ZY1EEG/+9btoSaNa3w99dwLdFU2u3a6dHpDKbjkvZ1nTQJ/v3Xirg40w2o2rUNrFihp1o18PJS5zl92kBUlB5b2ycble1pfC5G9/3Q3nwyLurSbAxlu6H3fBfc2pmid5ElhfX9evcu9OhhxYkT6nXk6Kheo+3bm78Evb2tuHFDw/37cP26zhiEpyY0FB49Uu/IKlUM6HRZzFOgj4eIyxAegCb6Dtg4Y3hqSj7N2S/RPDgDukj1Fx+JJj4Cn0dX0J6PNB3K9wcMjom6wrq2wcqhHAbXVlCuF4bSHcD+qdjPQIY/U3JDel/DFgu6T5w4gZOTkzHgBmjevDlWVlacOnWKTp06pbjv2rVrWbNmDa6urrRr147Ro0fjkMpcKOfPn8/WulvS6YwOzsijurxkz4nTe7gdWpyJ429x9qx5oqxqpZ0JvFGdC9dKcezoMbTWBbvlr6Bc16za+OcNQH0zdGoZQKlSodjb+BAd58D6XZU4fuwEVtqkP1guXrTn5ZdrodOpdQ1rnGLyD2HYl3bCz88v2XPZltLh6hRCSLgrWw57c+TgEWzs056+KqPSc22v+4dw5W5XAFp4n+DydWtIOp29ADRO4Ov7iBMnihEQoGHWrMs0axae4/XIynv2+HEPoBgALm7n8PNL+YfNN5/eYPj7PTEYVJDu6hTCzJ9P8khXCj+/e9TyuMWWJ0nU1i8/TvPeISkeK7FdO03pzitVC0/xfVIYyedxzrGKisL3SfnUqVPoMzFvXY8ervj7VzJbVr68P35+5qn/03Nd+/evwJIlqlGnbdv7TJp0hUeP9Pj5gbu7O/7+LsTFaVixIhAvr6gUj1MifDOVrYqi1atxUZpbG9He2kiknQd3SrzIfafOGDTZ/31TGBWm9+utW7a88UYNrl1TSYadneP58ccLlCwZydMf4W5u5QE1/d2aNen7njx7tgigel0VKxaKn9+11Hd4wibuLg6xF7GOv4dd3E3sY4NwiLmMXdw1rAxxxu0i7Tzwv+dhtq/HtXUUizpmtiy521KhQf9xPbK1+cKKq1QPk/vA/RvAjXTVN7+yWNAdGhpKyZIlzU9mbY2zszMhISn/qOjZsyflypXDzc2NwMBApk2bRlBQED8nzirwFA8PD4qkNa9ELtPpdJw+fZo6deqgzdX+Htln1d6EUu0k62pWOULgjepExzlQ0t6NKt4Vk2yTnSLDI9nw9ykatamY7pai7FAQr2tWjBvnayy/NNKTes2r0bHhMdYdaMyt+2UwhIfi81Q3XIDvvtMYA+4XX9Qza2ZN7B3Sbv7s1uI/Fmx05XF0Me5f1dL5eZ9sey4ZubZb/jZlwerTPQofn1bZVo+C6KOPYMCTm+UbNlRn1KicyxqcHe/Z4GD12ixTxkDLlnVT3dbHx4eL/rv5ek47XIqFsXltKHVbmNIy3+wcx/S/VfnyxeKM9vFJVx1OB5q66vUe2IKSZUtk7EkUQPJ5nAsSJeuoW7cuFC2a4UNUqQK//mogMlJ9B7i5Gejf38vYoJyR6zpnDnh46ClfHoYNc8LKyvT+7NBBw8aNCdX2wscntT67PhA3Cv3luWjO/4gmUgUvRWLOU+X2Z7g/nIWh+igM1V4Fu8zNzlHYFbb367lz8PrrqvUaoEIFAxs3aqhZ0yPZ7du107DwyRTzUVHV0ni9KufPm8LdxjVu4Bs/G82jQNBFq6Rl+hjQx6Jv+S84mX6Lac7/jNWJd9I8voOt+k5LzCrcDZ66f2XQOhBrVRIblzoqX4KTFy4lG+FSoh4FUWRkZLoagDMcdE+bNo3Zs2enus2GxKlaM+j55583lj09PXF1dWXo0KFcu3aNSpUqJbuPVqvNN2/Y/FTXrPCsHg37VPnimVCq13O32LnuXguha/tQTlxqQQWXm1y4God90ZydqqywXNfUhIXB7t2qXLUq+LbyQKOBnt2iWXdALd+4IpTGHc3/n86fh+XLVdnVFX7/3YoiRdLX37hXL2sWPPkRtXFNJN0GZf81SOvaPngAc9c0N9VpYI1C/1pIS79+ahjKtWuwaRPcuhpBhapOmT7e48dPeqDp4yDe1J2tiFMRbOySb43K7Hv2/p0H3L1bHACvynfQasukuc+Xs9rSb6A/lT3cKFXB/KZTsw41jOXDfiXTVaeYyBhOXFL71SgXhGuF/DYvjGXJ53EOSvT/rNVqMzWItGRJePFFSPhp2b69Butkesel57oWLaq6mSenYUNT2c/PKu2qaktArbHgNQau/wv+38O9IwBoom6iOT0Bwg5A2zwyhUY+VRjer8ePqyz7YWo2STw8YOtWDZUqpfy8E08bdvZsOl6v0Xe5uv8A0AeAqlHfYHVpebKbavVR5u/VImWTbqSxBicPFZw714KildHYuSa9Vk3mgEEH1kVAWwS09uj1es74+eHj41Pgry2Q7ueY4aB7+PDh9OvXL9VtKlasSKlSpbh3zzyjcHx8PA8fPszQeO16T151V69eTTHoFnmPV03TSyvgTARdLXSeq+eu06lTPBduqh+ywWHlWD3vP55/s3kae4q5U/byxsSGPNfhGH+ub5HlRExr15qG3jzzjGnYW48XasCT/Ilrt7nx2VP7TXn/PwwGdb3eew8y0mml84Da2LwVS5zOlrU7qzJDb8jRhFKxsSr76MWL6pyNG0O1OjnX0yK/sraG4S/e4/PJJTEYNCz88TgfTW+b4ePo9er/f9WqhCU2gLNxvatTCD9+dYEX3sq+z4PAE8FAcQA8y50noftfajRWGhq0T9rDA6BUBReqlbnKpduVOX6hBrFRsdg62Ca7bYKT+y4SE6d6GDWtewOQoFvkb2PGqCzOMTEwcKBlzpG4ge748QzsaGUNlZ+HSgMgZD8E/g+CV6l5vWu8kc21FAXNnTvQu7cp4K5fHzZuBDe31PerWVP9jjIYkslgHvsA4sKhaKK4SFuEy+dMPYmrul0230djDVa2oLVLOid9iXpQ+1OwLw1FyqtAu1g1sErHEIoiBTdvU3bLcNBdsmTJJN3Gk+Pr60t4eDhnzpzB21vNXXvw4EH0er3qgpRO/v4qa2RGAnWR+zy9TT98Ay005P7c4SA6d7Pnxj3zruvzFtjy/JuWOWdBcenkVd6Y2JDoOAcWbmrJwL+P0O2ldM7PkoIVK0zlhGlgACrUKItvNX9OXKrJsQu1uHnpNuWqqUDlqn8wCzeo8xYv+oDRrxUBUg84EnNycaJNvWNsO96AK3crcu7QRWo3q56l55FeBr2Bka/q2bFD3eEsVUpltRbpM3hQJJ9PVt8l85ZXZvwPGb9hcvBg4oA7qZBwV14cUxJr6wM8O6pZFmprEnjalG3VyzN7phRqWvc6l25XJjrOgVP7z9GwY+pzvB/aE2osN2mc95PMCJGW2rXh5EnVc6hJE8ucw9kZatSACxfUueLjM5YhHY0G3Fqqv8eXIWgRlHuqSeHuXjjzJdT9Cko1Tv44onAwGIiPCuf5Z225cUPlOmjme5dNv6/A6c5duP4A4h6ozPl2pllfiLgO947gYONEdfcmXAgqxrmzcegOvos2/i48ugj3/aDyQGiR6EeHjSNBD0zxVZWWvcHjayjVFGyKJc3On5iTJ9T7MlufvkjKYjljq1WrRqtWrZgwYQKnTp3i2LFjfPnll/To0cOYufzOnTt07dqVU6fUPGzXrl3jl19+4cyZMwQHB7N9+3Y+/PBDGjVqhFfieahEnufpa5ocMOBS5ruNpuTwYWjVrTI37qkuMZ7lL1OxlErAsPWoLzcu3sr2cxYUBr2BN0feJTrOlPBm4hdFMzRd0dMe3XvElk2xAJQto0vyo6lnB9PUUOuXmO7CTP3sEvE6dSf1rRf9cCqR/oDbeOwupqm61i0PzvD+mfXV27v5c4EKuO3sYPVqqJ4z8X6BUMW7Am3rnQDgws0qHNiYwclIgeVLY43lhg2hS7sHdGl0lC6NjtLIQ00jpzdoGfhWQ9YvOJIt9Q7wNwW5nrWzJ5dIk0amYx7am3YitYMXTP1km7bLyxOxCpF+np6WC7gT1H8yiUB0NPhnZSYwx6pQZ4J5IGMwwMlP4PZW2NIE9vSF+wVrnuFCSRcNkTch/ALcOwF398HNzXB9BVycDWe/gdCD5vs8ughL7fnw2Tns3qd+a5UrcYMVr9TFKXAUnP5M9Zi4PA+i75rve3cP7O0POzrh7bIVgKhoG4L+2wTXlsP9E4AB7u5MMpfY5fs+ADg5Qck2E6FcF7B1Tj3gFjnGoldh2rRpVK1alSFDhjBy5Ejq16/PF198YVwfFxdHUFAQUVFqBL6NjQ0HDhxgxIgRdOvWjW+//ZbOnTszc+ZMS1ZTWEDJsiVwdVI/HgOuZm/Xk23boH17uHdPvXwbeF5k7wEnhj97AVA/shf+Epit5yxIlv92gE2HzVu1j16oxdr5hzN9zI2LTxMTpwLmfi33J5kCqmd/U0+VdRvtALgddIc5q9QvrKJ2jxnzWfp7wJgd+3l3Y3ntlrR74WSHv/63n4m/tDU+Xjg/huYyoiHDhr1kSsI0f/b9VLZMSq/T888i1eJrY6NjyxbYtKM4mw43ZNPhhhw8V5NhPVS2x3idDf1fqcO2ZRnpU5q8wIumfBFePml3LU+PJq1NiZgOHkq76e3QMZWsyt4e6raoli11EKIwSAi6IYNdzNMj+i5EJpq2Ing1bPSB/QPhXnafTOSIzc1gWVFYVR7WecCm+rCtFezqqgLjwyPVjZY7u8z3sy3B0v19+WHjWEBNJfrPmGcpU/xO0nM8PVd1bJixWKeiKbP76eum2aAoXlcNd9CZMvzHx8PV6+p3WNWqMrNdXmSx7OUAxYsX5/vvv09xfYUKFQgMNAVHZcuW5a+//rJklUQO8qp0k5Azrtx+UJqHIQ9xdnVOe6c07N4NPXqosbQA7drBqlXVcXKCwaOrMunJ/Zn5yyvx4fc5O743P3h4P553Jph+pL/Sew9z1qgpHCZ+VZyeQ/RYaTN+L86sa/mAYknWN+xQk9LF73LngRvbjnoT9SiKHz73JyauLQCvDziGS7k2GT4vQLV6lalZ8RL+16txwN+b0BADpVzTd90NegPnTwRRppJLul+fu1b4MfwD002L78bu4rkX2mai5qL/q768MeERj6OLsWSLD9PDIynilL7W40ObzxAcpm7UdKp/nBIlzG8kWWmtmL2yOVHd/mPJ9ubExNnT+2Uv1tucwikL6UECrqgbSHY20VTyzJ4bij6tqmNnE01MnD2H/Gukum1oKFy6pMr164ONzFokRLo1aGAqHzsGQ4Zk48EdSkPPQLg8V3Uxj7oJGOBWjR/hAAEAAElEQVTqEvVXoj5UHwnuA8Em+3sAikyIvAG3t8OdHWBbEhr8YL7eyjrp+OfkPNVafeZ8CYbPnm98PH3sapr17wG2L4NtcbAprlqgbYqrXhOJubYAnykQ+xDvVj6w8skx7X+iX5/pYOeqkpY9JTjYlFeniqT5yJOkv4GwGK9qD41llXwo6774LNIYcPfpAxs2qG40AFXrVKJNPdWVK/BGVQ4eTOEghdiEz6y5dV8N7+jV/BC/r2xFgxpq6qGTQZ6sWpK+OYITi46IZv1/6g5sScd7tO5dJ8k2VlorerRUN9giY4ry75zj/LZM/fqxs4lm7OdZGz7S8zk1rl+vt2LT5vQF3Kf3X6BjwxN4NayKp0cMgccup7mP/+FL9BvsTpxO3U1+rd8e3v8uczcLBBR1LspzHU4C8CjKiZVz/dK97/JFpkSdzz0Tk+w2WhstC9Y3om9L9WEQFVuE3i/V5MyZzHULj4+N5+JN9VrzKH8NrU32ZGW1dbDD11cd68I1N2PCneQcOmQqN22aLacXotDwNc1qmf0t3QBaW6jxOvS6CPV/UAFSgvvH4cjrsLKCSoQlclZcOIQdgaC/4MhoWOsJqyrAwSEQ9Cdc/TtJd21cGkMJH6jQF9xfguqvgddY8J4IPt9C49+h9Sp1zZ948ACe6W9FZIzqVj5kCIya8hx4fwoeo8F9EJTvroLr4rXB+qm57Us2gFofgs83eHftY1x85nIFKFo52YAb4HKinzBVqya7ichlFm3pFoWbZ21HWK3KgddKk9WUIg9DHrJnn/qwcS93n3/+KZEkCcqwd+qwe5gqz/9TQzPp8mt09Cj88osqFyli4Kc/a6Ox0vDFZ7H0eEkt/2xKafoOJEn38NRs++cUj6PV1e3d5iw2dsnPUd3zmeLMXafKb0xswONo1U13eO/DlK3aOlPPyXjsPrZMfXKDet06eOmllLcNC4OJE2HmzGro9eqJ3nngRveeURw8HIprxeTnXA06c53O3R14EFEcgK6Nj/LzkubSmyKLhr5ajHlPZtyZv9CeF99Jex+9Ts/yzWpuUxttLH2GJL3Rk8DGzoYlm33p2+4Imw434nGkPW+9VYNmzdS0LRkRdDaYOJ07AF5VUomMM6FpcxsOPhnhcfgwdOuW/HaHtl8G1C8qS49/FaKgKVkS3N3hyhXw81MtgxaZ0cjaAbzehWqvwtXFcPF3uHdUrXNtoVo7E1tVSY27tXVRSbXsXExl25LqX3s31VpuL/OCAxATBqEHIOQ/iLz2JDu3jep2XbaTabu7+2DfcxB9O/XjxYWr4xStbFpWP+XeusnR62HwYJWsD9RNnt9+y3xX7+rVwdZW9e48fTr1bYOCTGVp6c6bJOgWFuPV3DR4KiAo618SW/45R7xOZSDu1eoU1tZJWxj7P6vhjTchIgKWLIHp08HBIclmhY5OB6+/rr4QAD7/XEPl6o4AdBvkQ5OfVAvamTNqzuznn0//sVcsN7UyPtPfLsXtOj1XB9vX1ZdH+GMVcGut4hn3RdZvyTZvDiVKwP37at7nuLik3W7j4mDmTPjsM7VdQkcfK40OvUHL5duV6dPlNNsPFcWhmPmLJvjCLTp0NBAcproT+1QNYNlGT6xt5SM0q1r1qkvVMte4fLsS20/4cC3gBpW8Up927dDmswSHqUC7Y8OTlCideuZ9uyJ2rNhelx69DezcqeHRI2t+/VXP9OkZq2uA313AHQDP6sm3rmdW4gD60KGUg+6De0zj/5rUvQUkM7+qECJFDRqooDsiAs6fV1MzWYyNI1R/Vf3dO64Sb5Xvab6NPt40FjziaurHa7kMKj1nevzoEpybAhhUN+iEP/Sgj4X4SNBFgbUjtFltfqzb2+ChPzhWgaJV1L8ptKJaVHwkPLqiko89uqD+jQuHlkvMtws9CPdPQtghCP0PwlPI3eNcyzzotnNJPuDWWEOpJlC6A5Rur7J8a1P+DZMev/yipk8FdYNnxYqs/Qa1sVGvz5Mn1Ws1JkYlbk2OtHTnffKLUViMp6epHJjCZ2NGrF1jyvDbq69jsts4OsJzz8H8+RAeDitXwqBBWT93fvfrd1c4dswdAG9veOcd0zqNBr78Ejp3Vo8//xyefTZ9d/9jo2JZvVvNF1zU7jGdBqScDM3RUY3B37zZtOylrgdxr9UyY08mGdbWKkj5+294+BD2bb1Nu+4qyVVcTBzLfj3M1z/VwD/INDFm0aLw6bgHPNfnIa3b23LzXlkO+NdhcO8DLN1mioDuXA2hQ7togu6oW8deFS6xeacLxUomHbsuMk5jpWFo/8tM/KUSBoMVC365wKc/pR50L19kamUekELX8qc5ONqxZAk8mTyDo0cz3vQQeC7SWPaqmb2DqRMH3QcPGICk9dPr9Bz2VynyyxS/QyWP7EnkJkRhUr8+/PuvKh8/buGgO7GS9aHxb0mXxz8GJy/Vcht7DwypTANYpLL54wen4NKctM9tm0yS0atL4NIfTx2/IhTzACcP9W+xGiqIdXyq6TQ6VCX8irqpMntH3YSoGxB1SyUGi3uoutC3WQdOifJUBK+G/14EKzusrOyoGxeLNjCZXkMOyXwHBPwPri1L+7lqnvpsdqwGDmXBsfqT5+UJxeuAa0t1UySb6PXwv/+ZHi9erHpVZJW3twq6dTr1WzqlWZelpTvvk6BbWIy7u6lbTEBA1o6li9OxYb/6ZnS0f0Tr3t4pbjtsmAq6Aeb/dJ5BgzLYh7QAiY6I5uDmAD750nTbc+bMpK3AHTtCy5awb5+6Vkt+P8+Lo9L+f1u38Dj3HquBpb1bncS+aItUt+/Z0xR0azR6Pvoi+zLb92x3lb//Vj9I1v0dQOMWxfjju6P8MLsaV0PM6zVkCHzzDZQrVxwozvqVgbTq4sjj6GL8s6sZ44fvYvLcVjx4oGXoC3D+hvoGq1bmKtt3FcWtkisi+wx+owYTnwx9mL+mPp/8mHJ3PL1Ozz9b1I841bU85c+Cp7m5QeXKBq5e1eDnZ0AXp8/QuOyA26ZfO56+qd8YyCh3d3Ar+Zi79xw5/N8DDPriSYYunD8exMNIlQixifcVNFals7UOQhQGiZOpHT8OL76Ye3UBVFfznk/mLzPoVStvTJgpCI8JexLg3oJiT81LmVbLeAJdZNJlj4OSLou8rv7ubDct83zXPMGYwQAr0vkdGBsGJAq64yMhPgKIQAOkeOvSLpmbBImzfFvZQIkG4NocSjVTQbTBAIY4sH+q94/WFvrdTF99s2DnTlPg27mzqSEjq7wTfcWdOZNy0J24pTs7gn2R/SToFhZjba3Go5w7Bxcu6NHFGTKdeOjQlnOEPVLdSbs0OYNdkWYpbtuqFVQtc53Ltyuy7VB1rgfepGI2ZRlOL4PeQExUDPZF7dPeOBuFXA/lvy2X2L8niv1HS3L0vCex8T7G9a/03kOLFknHT2s08MVnsbTvpBKETfrKhudHxKfZfXr+n6agYOjwtJ9r797w/vuqi9SA3nfxbJB9faC69nJGaxWPTm/Nn2vqMH91DPcemw9BaF73Iv+bXZ3GTyUY8GntybLfj9BrqC86vTVTF7SlVOn/mL+uHv4X1fRMFUvdYPsOLeWqSetidqtcszztWz9mxx5HLl1zYv9+dRMoOYe3nOV6aPq7lj+tgcd5rl71JCLCisDjF6nVJP2TqwdeMf0Q9GzgnqHzpkWjgSZeZ1n7XxPuPy7BBb8gPOqbN1cc3HkLeBJ0N4jK1vMLUVgkTqZ27Fju1SNZGisVhNsWh2LpmA7Q/SXVNVpj9WQuZitT2coGtEVVl3FtMt/P9b6Bh+cgIkgF4I8uwqPApFNYPd3lWh+bnicCNs5mU1oBqpu7c23QxWDQxxAXG42Nc1U0xTzUDYViNdS/RZNpqq0+UnXNL9lA/SX3nDLp3j2YMAGOHEl+fdOm8P33qc8WMXu2qfzqq9lWNeokSlmS2rjuhKC7fHk1naTIeyToFhbl5XaCc+d8iY214sq5q1SrVzntnZKx9l9T96Oe3VPpeoX68Tq0/yUm/lLxSXfV83zyY84F3btX+vHKG8W5ec+Vr754xDsfFLPIfIkGgxrjs38/7N9wlv0HHQi8URVIfvy8u9t1vp2Zcqtgu462tPM5zk6/+ly4WYW/pu9j6LiUu37fvv6YDQdVk0EFl5t0eNYnzTpXqgSrV6svtnffzd7gtUTp4rT09mP3KR/CHrmYreve5AjjPrShdZ966ndJMrq93Iifg/Yw6jN1U+LDqaYsfGXLGtixxZbKNaWF21KGverIjj2qPG9eykF34q7lKWUtT02DmjdZsVWNfTm2/3aGgu6EHjvlykExC4wuaNIgirX/qfLBHTeSBN2HDpmmrmnaKutTMApRGLm5QYUKaoqlEydUt+CMJA/NU+xLZT6xWqkm6u9pMWEQfh4enVeBuOtTGWkNeijbTbVGO5Qz/ytSTiWAsylGsl+2FXqpP0Cv03Hazw8fHx+06RnPVunZTDzJtD18CF26qGSzKTlyRA1DGDUq+fWhoWo4I4Crq2pgyC5Pt3Qn5/FjCHky+Yx0Lc+78uvHjMgnEk8bFnDybipbpm7dDtWVU6PR0/35tLs9D37D9EN6/j/uGPSGVLbOHtER0XwweBft+tfl4i13ImOK8t6HxRg6FKKysVHq7l3VPdrNDby8YMQImPtv7ScBt7nqZa8wtMdeZn+9F78zTpQsm0yXrUQmTTJ98X3xQyXiYuJS3HbRMkd0enXfbvCAO+nuxdClC3z6qRpTnd369TC93qy1cQzuto9T+86z/mAj2vTzSTPT+OsTW/PB4F1my1xdDWzfrqG6twTcltSvnymQXbZMJTl6ml4Py7ep2/7W2jj6DE5/1/IE9ZuaXnhHD6d+Ay+xsDD1wwrU+84SmrYyzd176JB53W5cvMWaXaqbpkajp2G79N8sEEKYS+hiHh5umvc+q/T6tLfJF+xcwLUZVB0C9b6Eck9ldbR2gHYboPlf4PsdeL0DlQeAW0s157Stc/IBdx4UEQE9epgH3FZW5n8Jvv4aoqOTHgNg4UKM09kOGaKGVmaXSpVUThxIOehOPJ5bkqjlXfnjXSHyLU8vU2eKwLPJ/IpOhytngzlzVf3YbOJ5FrfKbmnsAZVrVqC9r5qE8+Itd/7bkMZcC1l0cu95GtW+zrSFbTEYzN9WCxZA69bqrnpWRTyMoHvbYBYsMAUACWy0sTT1Os3Yl3ax4veD3A4K4cJNd+ata8UrH7fC2TXtlrFWvevRqYHqbxd0pxJ/fp/8ZOcGg2ncPMCQd3yT3S6nvfZJE8YN2cUnr+zi0pm7/LmhJXVaZGxM/5S5rXmuv/r2dHKKZ9Mmfc4l2inEihaFAQNU+fFjWLEg6bzphw/D9TuqF0PH1g8oWaZ4hs9Tv6WpGeDYmfTvH3jKNC944iSR2alR++poNOqX+0E/0+fc3at36dgukpv31FjFdj5+kshPiCyob5pcJVvm6/74Y/UZ9t13WT+WyBlRUapFev9+9djFRQW1Op35X58nU2XfuAG//570OAaDedfyV17J3npqNKbW7itX4NGjpNtIErX8QYJuYVFedUsYywGBmXu5rVtiug3ds1P658Yd9rKpeXne7w9T2TLzdHE6/v01mKYdqxlvDNhaxzD1/d0sWaynyJPZN44ehYY+Eexfd8q4r0Fv4NLJq/w5dR+j+u/hg8G7eBiScj11cToG9TjDMf8KABQrpqdnT5g8GfbsiufhfR0H/OswbWFb+r3alNLumWuZ/eIr0/itL6dXITYq6fitY8dMd1ybN8/4fMeWYl/Unm/nt+Wr2W3TnHYqJVZaKxYvtWXDBh1Ll56jXr1srqRI0bBBprGE4z+xZ8c/J8zWL19uKg94OXOvb5dyJXF3U8mHTlysji4uPl37BRw6ayx7uezL1LnT4uTiRK2K6vPuVFB1oh5Fce/OYzq1u09AsBrfWbXMVRYsk2nChMiK7Ay6g4JgyhTVCvr11xCfvo8UkYtiY9UsLTt2qMfOzrB1K9SunXTbSZNM5W++gcinctL99x/4P8mD16qVZW7KJh7XffZs0vUyXVj+IEG3sChP3wrGcuBlp1S2TNm6nZWM5V4D0v9js99wH4o5hAOwfFvdVLtKJ5j42i7sbGLQaEjXn52DLZPn9iFOp/oS1asSyNFdV3l/ahuef8GK//4zZZG8E1aUdn29GPvSLvq3OUhZlxCq+1Rm6LiWzFzRmmkL29K0YTjnzydft7FD9rFmvxp/5eTwkP82XWLtWhg/Hlq1sU4yt3RmNe3qTfcmKpvItZAK/PFd0tbu+fNM3fWHDcuW0+YpWq3KPOrqmvZrRmSf5m2L41tN/Xq5eb8cHZ7z5d1Bu4l6FIXBAP/8o7aztja1PmRG3epXAIiMKUrA0WQy+CYjMMDU3duzpuWy1DSpq+aTjdfZsHNdEF16FuVUkPoVV8HlJtu3aSlfXYJuIbIicQbzrCZT++UX1doJqrt6Ssm4RN4QHw8DB8KGDeqxoyNs2mSeYC+xevVUgA5w5w789tSsb3MSzdiWnQnUEktrXLe0dOcPEnQLi3J2daZM8TsABFzLeMvjo0ew84j6BKlYPoY6zdPfpFrUuSi9Wqpu5eFRzhzYdC7V7cNu3uPr2a2IjbdLdbvkaDR6Phy6i0Nn3M26M9erp76A29c/CUCczpYfFrVlxZ6m3HmQtJt8wLWKNG4MGzeaL//xk93MWKwycVtr4/h33kW8m9dIsn92mfSVadzr1z/WIDrCNJApJjKGvxeoFnkHBx3PPWexaohCRmOlYc3G4rTzMbVwT1/chobeN/h92nmuXVPLOnaEkqmnJ0hVba8HxvLRfXfStU/ARdNNLS9fy2Wwb9LEdENrwIjqxvnEy5R6zI6tsbjXrpDSrkKIdCpbFso8eRsfP24KmjPq8WPzoAtgy5as1U1YjsEAQ4fCihXqsYMDrFunspOn5rPPTNNYfvutuu6gkrAtXarKzs6m4Dy7JQ66k8tgLi3d+YME3cLivCqr+RHvPnTl/p0HGdp32zZTcoqeve3STIT1tK5dTd+km9feT2VL2PJPAHqDSgZW2TWYpl6nTX9N9DRtiunP545xXddG+9m58iRT5rXFrkjSgL1UKdh8oDZjBu42W+7k8JCujY/w5Zu7WD1zK7U91UCdhw9VYo9vv1VfEGvmHuKdya2M+8366gAdn2+AJTXsWIveLQ4BcONeWWZPPmRct+bP49x/XByAZ1odxFmSKItsVKFGWbYdrccPH+7Czkbd7Dl3rTqvjzPdzHqud+rv5bR41DZ9jhw7lr6+oIFXVHd2B9tIKnpYbjaEpm1NAX1ElOpB4+IC23Y5UsPX3WLnFaKwSehifv8+XE3ndNdPW7BAfWcntnVr1uolLGfbNli0SJVtbWHVKmjTJtVdABX0Pv+8KoeEwM8/q/Lff5sS5b70kgriLSGtlu6EoNvOTt1QEnmTTBkmLM6zaji7VEMvgSeCadq1eLr3XbfOVO7VK+Pn7vyMJ4xV5U27S/N1Kttu2GBKPTrvtxDa9U8tOVhpoDQ6nQ4/Pz98fOqmWg9rW2um/92GHr2PcfVyJI1bl6Z2k2pobUxzDLcbpLJerlypgu3x42Hf6kPsOO5tTM728YhdDB/fNtVzZZdJ3xRnzZMvo29+82bEx1CkCMz/0/SxMewVC33DiELNSmvFu1Pa0rnPRV5+OY4Tl0yZ7Ky1cfTtm7XjV61b3Fg+esol5Q2fiIuJ49LtigB4lL+OldZCmdSA2k2qUdTuMRExKl1tamMNhRCZ16CBqYvxsWOmoWDppdfDjz+aHpcooQL4gwdVN3OnzI2oExaUMIYb4Kef1DCy9PrsMzWzhl4PU6fC6NE507Uc1Gw1bm5q9pqng+7jx00Z+N3d8/H0d4WAXBphcV6eptbmgFMP0r2fXqdn/XoVCBcpAu3aZfzcpd1d8fG4DsDxizW5m8KsZXqdnk0H1DxAjvaPaNHdMr9wO73QgFc+bkXdlh5JptgqVkyNWU2ctGPdgSZExqiu3i90+I8vZ7W2SL2S49Pak/7t/QC4fc+FmTPh1uU7bDqsmgcqlrpBu2d8cqw+ovCp3aw6B09X4+MRu7DSqDHVvZofo2TZEqnvmIaiJYpStbRq2vK7VI34uNTn+rl8+jrxOhsAPKukP5ljZmhttHRpon5VORaNT3WsoRAi87KaTG3LFggMVOU2beDFF1VZp4Ndu7JcPWEBBw6Yyj17ZmxfLy/TNb53D4YPN71uGjXC4klXE1q7797F+Ft28WJo0QJiYtTjli0tWweRNRJ0C4vzrGUaHxwYmP6BU0e3+3PnjnqJdmp1G/tM5i7q+kxFYzmlsVZHt/sTGl5KnavRWWwdsnGSxQywsoKJE2HV4ls42pvmhWjpfZJ5q+tjpc3Zt+znM3yM45imTIGZ0y4Zu+AP6Xchx+sjCh9bB1u+ntOWozsuMP2j3fz+d/bkMmjQWL3Ho2KL4B+Q+us44GSIsexVI2k2/+z228Jq/DxxN8f3Bqc51lAIkTlPB90PH6rxshs2wMyZ8OWXqQfjiVu5334bOnUyPZYu5nlPfLwpyV2lSlAuE6OEJk5UiVYB/v3XtDy7pwlLTuIu5idPwocfwqBBprnDmzZV2dVF3iW/mIXFeTU2dcUMuNcqlS3NrfvX9EO3Z+sLmT5/ly6m8ubNyW+zYZtpYHL3rrmfsbrPC2U5tOsO3Zsc4bl2B1i1uSL2RS2XMTkl3t6muZNDQuCrWU2M64a+ISkyRc7xbevFmG/aUKpC2t3B06N+89LGclrZiwPPmeaI8axpky3nT41bJVfemNRGxnALYUEVK6qcK6CyVxcvDnXrqpwqo0apAKtlS9izJ+m+gYGmhKeVK6vZFNq2NQVkkkwt7zl92jTdV7NmmTtG9epqGGBiRYuqbOiWlnjasBdfNJ8TfsQI1bvCLWl+XpGHSNAtLK5SdSfsnuQXS+iKlR5rt5kSCvV4IfMTQTdvrqaEABV065PpSbphlykjcLcXLZukLL1qNanO+oONWLajGS7lspCqOYs+/9w0RkivV78oWnmfpFq9yrlWJyGyqkEDU6+bo0dT3zYg0JTHwKtu7r0XhRDZR6OBhg1T3yYqSgXhhw6ZL//pJ1P5zTdVsO3kZMqCff48xtkWRN6QuGt5VnoQffqpmrYywQsvqOGBlpa4pTvkSZuUVqtei7NnY/ydLfIuCbqFxWm14PEkZr54UXXxSUvwhVv4XVZjrBvWOEfZqqXT2CNltrbQvp36gR0SAn57L5utv3vX1OWoXj0oX7lIps9VEHl5waABj82WDX0xPJdqI0T2SNy1NK2W7oAnmcsBPHwqprKlECI/mTgRatVSLZjt26tWzAkT4PffoWtXtc3jx6p84slMhg8ewPz5qlykiGplTCBdzPOuxEF3Zlu6Qc2Dnbg7+ciRmT9WRtSqZf64VCmVjf3NN03TmYm8TYJukSO8VPxMXBwEBaW9/folpu7kPTumkP0sA7rU32csb15pPjdI4i7n3bpl+VQF0sRxoWit1N2SInYRPDfSJ3crJEQWFS8O1auouV78jscSH5v83UCDAQJuqg+wCuXicCzhmFNVFEJYWLNmcPYsXLgA27erYPqLL1Qm6hUrVCAOKtDu3FltO3cuRESo5YMHq6zlCRJnw5agO29JCLrt7LKenPJ//4OvvoLly6Fx46zXLT2cnKBjR1WuV081FrVtmzPnFtlDgm6RIzzdTRl/zx3wT3P7rdtN4yZ7PJP1QSpd+5u6Qm/aYZ75eMNqU6tt9+5ZPlWBVMPXnWnj9lO+5C2+//gYxUrmQF8qISysYVWVJSk61pZzhy8nu01oqJoGCMCrluXHcwsh8gYHB1i9WmWHBvVZ0LEjTJ9u2ubtt833adRITfMHqhUyueFsOcGQ/py1hUJIiGlarQYNVA/IrLC3h08+gWefzXrdMmLtWvjvPxVwZ3SKO5H7JOgWOaJulfPG8n877qS6rUFvYPcJlaG4eNEH+LbJ+py4VetUonrZK+r852oTHqYC7fjYeDZvUlMROTtGZqnLUUH3zuQ2BIeV5fWJOTdtmRCW1MDXlDTx6L7kP5cS56HwtNz03EKIPMjREdavN439vn0brqtZSOncGWrWNN/e2to0vWlYmKlLek46cwZq1FB/N2/m/PnzooMHTeX8PCOEvb3qnWEj93/zJQm6RY5o06O6sbzzgGsqW8K5Q5eM03e1qheYZD7rzOraSnUrj9fZsGOlam0/tOUc9yNUy3eXxn5myTGEEAVbw2bFjeVjx5JvkgoIMJUThskIIQoPZ2c1DK1uXfPlY8Ykv31ujuu+eVP12Lt0SeXQmTEjZ8+fV2XXeG4hskKCbpEj3Cq5UruSGqd97IIXD0Meprjt7k03jOU2LaKyrQ5dupsSpG3eGAPAhlX3jMu6dcmlfmBCiFzh28o07d3R08lPRRZ4wDRRr2eV+xavkxAi7ylZUgXQCTfefHxMidaelltB9+PH0KuXqSUeYNGizHdx379fTavWrl3S7O15QXw8LF2qZqjx8Ei9V4EE3SIvkKBb5Jh2TVU/J71By551Kc8dtmu/abxw266Zz1r+tLZ9amGjjQVg074qGPQGNu4yHb/rc5mflkwIkf84uzrjUV5ldjx5uTpxMXFJtgnwNyVY86qefTcBhRD5i5sbHD4My5aplm+rFH5BV69uGm+7b59pbmhL0unUXNHHj5svv3EDdu/O3DG//RaCg9X8z02bwtChcOtWVmuadZGR8OuvarjPCy+ogPrCBXj33eS3j49X1w3UTYTy5XOurkIkJkG3yDHtO5omEdy5LflvIYMBdp9Wc/k4Ocbi0yr7AmHH4kVpVfcMAFfuVmT3qpOcuKQGZDWocY4yVbKesE0Ikb80qKluBsbE2XP2UNJkaoFX1XCYInYRlK9eJkfrJoTIW4oVg+eeUwF4SjQaU2t3bCzs3Zv184aGqszpySVIMxjgnXdg3Tr12NlZTYWWYOHCjJ9Pp4M9e8yX/fmnalGeMgWiozN+zKwKDoYvv4TKleGNN+DyUx/Xu3er+dGfduaM6caHtHKL3CRBt8gxbXp6otGofk47Dyb/4zUwUM2bDdCytW22jedO0KXdI2P5vXGmmwDd22V9WjIhRP7TsL6pdfvYfvPPgZjIGC7fVvNye1a4hpVWvjKFEGlL3MV8yxbzdQYDbNigAsjEXcFTsmKFmhva2xuqVYOPP4ZTp0wB+IwZ8PPPqmxtDf/+C+PHqxsEAP/8A1EZ7KRz4gQ8fDIK0NNTTbEIqgv7Rx9B7dqq/n/+CTt2qPHj2RmI63Tg5we//AKDBqlAu2JFdTMhNNS0XefOMHy46fGcOUmPlbhreX5OoibyP/kFIXJMybIlqPcki/nJIA/u3Uo6PjJxN6g2bbK/Dl37lTWWE1q5Abr3K5X9JxNC5HkNmhY3lo8eNW9GunT6Ojq9yq7o6S7juYUQ6dO+vWrxBvNx3adPq2nHevRQAWSdOmrcdXIt2Hq92qZ/fxXsAgQFweTJap5mb2/V4vvee6Z9Zs+GDh3UdGcJ01k9eqSmmsqInTtN5TFjVPft0aNNXeovX1Z1GzpUna9GDXXO0qWhSxcVkO/YYZrPPCO++UbNfe7rC2++CYsXw7VrpvVWVqau9Js3q5b3hGzef/6pehckJuO5RV4hQbfIUe2aqWl5DAYrdiczrnvXLlO5bdvsP3+d5jUoWzLEbJlLsTAadaiZwh5CiILMt3VVYw+cY2dMydSO7fBn3DumRIteHrFJ9hVCiOS4uKj5oEEF2mfPqgDZx0cFowkePoSXXlJjk++ZPm4ID4d+/VTwmqBWLdAm6vx37pwa25wQsE+YoILgBC+9ZCr/9VfG6p+4ju3aQalSqtXZz880JVpy7t5VLfsTJ6pg3NlZTbf2zjsqcE/L+fNq/utHj8yXFymizjthgmpV//tvFZQDuLqq/6uE8z99gyEh6La1Ne0jRG6QoFvkqHYdHYzlndtjzNYZ9AZ2bw0DwLFoPPXrZ//5NVYaOvcyn7KsS9OAbO/GLoTIH5xcnPCoqMZ1nwzyYsPiADrWP0bDDjVZf7CxcbsGTYqkdAghhEiic2dTuV49FSAnZBKvUsUUKIJKzubtDZs2qeC0aVNYs0ats7KCqVPV2OSbN1VX8hYtzM/10kswaZL5srZtoUIFVd64EULM2xtSFBdnGodepozqXp6gTh3Yvl3VZeVK+PFHeP99eP55lUX86bHuOh0cO6a6wHfpoo6dmp9+MpXbtYPp0+HIEXjwQN0I+OIL9X/3tFdfNZUTdzEPCVFBOqibIHZ2CJFrZFZikaNa9/DEykqHXq9l56kmZusunrzKrTB3AFrU8sPauqFF6tC1q+qClKB7N4ucRgiRTzRsVYHARRAbp6XHIPPJuN2cQxg38izdX2qdS7UTQuRHnTqprtKggk+AokXh009Vy6+9vQq2X38d7t9XmcG7dVOtugmJv4oXhyVLVMAKKqh94w31d+2aGu+t1cJrr5m6syewslLjob/7TmXwXrZM7ZeWo0dN3cLbtUt6XI1GjemuXTvpvgaD6gK/f7/627dPtfKDWr5okXlrfGIPH8L8+apcpIgam16iRNr1BdWdv0oVdY7Nm+HqVTUOPPFUZzKeW+Q2aekWOcrZ1Zn69VWr8hl/e2PSNIDdG00ZRdq2eGyxOnTqZPoS0WgMdHm+jsXOJYTI+xK6gSZWvewVZn6xh6s3ijH2u7aSRE0IkSHNmqn5vRMMHapascePVwE3wIABqtU4IagGU8Bdu7Zq5U28LrFKlVTw/tZbqut0cjLTxTzxeO7UupInR6OBqlXh5Zdh5kz13BJnQZ882XQD4mnz5pnGrg8enP6AG9QNhhEjVNlggLlzVVnGc4u8xGK/In777TdeeOEF6tWrR8OG6WuxNBgMzJgxg5YtW1K3bl2GDh3KlStXLFVFkUvatzeVE4/h3rXb9HJs08k0tjK7ubhA796q3KePhlLlnCx2LiFE3tezp8r6C9CoEfzzVwgBVyvy2oTW2Be1z93KCSHyJTs7WL0axo5V80TPmwdlyybdrlw51f37l19UMjKAvn1VwFi9etbqUKcO1K2rygcPmrpapyZx0J3491pmtWplSox7/rxqwX6aTmfetfyttzJ+nmHDTIne5s5Vx5SgW+QlFgu64+Li6Nq1KwMHDkz3PrNnz2bhwoV8/vnnLFu2DAcHB0aMGEFMTEzaO4t8I/Gd04QPd4PewO5jaqBOEbsIGnbwSmbP7LNkier2tHixRU8jhMgHatSAgACVJOjQIej/oqvkeRBCZFnLljBtmrqZlxqNRmUHv3JFBegrVpim/Mqql182ldNq7Y6JUd3CQU3RVbVq9tThk09M5W++SZqtfcMG07zbnTqppHEZVa6cygoPak7vDRvU/yWose0J49uFyC0WG9P99ttvA7BixYp0bW8wGFiwYAGjRo2iY8eOAHz33Xc0b96cbdu20SPhnZQMnU6HLqX+KnlEQv3yej1zQrNmYG1tRXy8hp2b76PTOXH5zDWCw1TQ3bx2AFbWPhb9v7KxMY3vycpp5LoWXHJtC6aUrqu7u/o3IdGRyH/kPZsLdDq0xqIua1+oKZ6i8FxXFxf1l52fQwMGwLhxVhgMGv76y8Cnn+qTjNNOcOAAREWpK9q2rR69Ppm5zDKhXTto2NCKo0c1nDwJa9bo6NbNdF2nT7cCVKXefFOX6ZfR8OGwdq2q/wcfGIiIUMds2lSPTpc9z0WkrTC9ZyH9zzPPJFILDg4mJCSE5s2bG5cVK1aMevXqceLEiVSD7vPnz+dEFbPF6dOnc7sKeUL9ajYcDqxLYFAJdm7cyfHdDwEVdNevE4yfX65WL8PkuhZccm0LJrmuBZdc25xjFRVFwixMp06dQu/gkOr2WSHXNfMaNarB4cNOXLqk4a+/LlCnTvITaC9eXBYoB0DVqtfw8wvLtjq88IIzR4+q/vITJkRRvnwgGg2sXHmBHTtUVraKFaMpW/Zspn8Dli0Lrq51CAmxJTDQdGehQoUb+PndTWVPYQnynjWXZ4LukCdzGbi4mI/ldXFxITQ0NNV9PTw8KFIkb0/notPpOH36NHXq1EGrlW6LHVrs4fCTabpvX7ThzJlSxnXd+1XCx6duLtUsY+S6FlxybQsmua4Fl1zbXBBhCt7q1q2r0nNnM7muWffaaxpjV+sjRzx4+eXkW30DAkyjTgcPrkjlyhWzrQ5168L8+QbOnNFw+rQjYWF1KVXqFFu2mIYTvveeLfXr+2TpPK+8omHyZPNl/fuXw8enXJaOK9KvsL1nIyMj09UAnKGge9q0acyePTvVbTZs2EC1atUyctgs02q1+eai5qe6WlL7Ls5MfpJdcvdOPXuOqYFD9jZRNO1UK9/9H8l1Lbjk2hZMcl0LLrm2OSjR/7NWqzV7nP2nkuuaWc8+C2++CVFRsHSpFf/7X9KM51FRKtkaqOm3qlbN3v9rrRY+/lhNYwbw7bfWfPKJlsWLVaBfrBgMH26V5ZfQq69iFnTb2kKjRlpLvjRFCgrLeza9zzFDQffw4cPp169fqttUrJi5u2Kurq4AhIWF4ebmZlweFhaGl5dlk2qJnNe8qxc22ljidLb8u92b+xFqXo3m3v7YFamfy7UTQgghhCgYnJygTx+VRDYsDObMUYnbEjtwAGJjVTmjU4Wl14ABMHGiyqK+c6cGjaYyUVGqG/iwYaqeWVWlikrGtnWrely/vsokL0Ruy1D28pIlS1KtWrVU/2xTmiwwDRUqVMDV1ZUDifL7P378mJMnT+Lr65vKniI/KuJUhGa1zgEYA26ANq1zq0ZCCCGEEAVT4iB73DiVKT2x7J4qLDlarZqnPMGOHWoybo0mc9OEpeSVV0zlFi2y77hCZIXFpgy7efMm/v7+3Lx5E51Oh7+/P/7+/kQkGv/TtWtXtj65FaXRaBg8eDC//fYb27dvJzAwkHHjxuHm5mbMZi4KlnYtHiRZ1qaftHILIYQQQmSnVq1U12tQQ/FHjDCfuitx0G2plm5QU5g93Sm2R4+sz0meWP/+6iZDly7w7rvZd1whssJiidR+/PFHVq5caXzct29fABYsWECTJk0ACAoK4tGjR8ZtXn31VaKiopg4cSLh4eE0aNCAOXPmYCf9Qgqkdp2LM2mm6bGdHTx5aQghhBBCiGw0bRps2gTXr8OOHTBrFrz+ugrCDx1S23h4qDmvLcXWFj74AJ7MLAyYl7ODVgu//JK9xxQiqywWdE+ZMoUpU6akuk1gYKDZY41Gw5gxYxgzZoylqiXykKZdamJvE0V0nJpipGlTA/b2KUweKYQQQgghMs3JSY3n7tJFPf7gA+jaFQIDIT5eLbNkK3eCV16BKVMM3LypoW5dAx07ym8/UfBZrHu5EGmxK2JHc88jxsdtmoXnYm2EEEIIIQq2zp1NY54fP1blHTtM63Mi6HZwgK1b9bz++g1Wr9ajkZhbFAISdItc1b2b3lju2vpGLtZECCGEEKLg+/5707jq7dvhp59M69q2zZk6eHrCK6/cTjK+W4iCymLdy4VIjzc/b8ajR7uoUFFLs26tcrs6QgghhBAFmpMTzJ6tupaDmqMboFYtKF069+olREEmQbfIVXZF7Pj8t7a5XQ0hhBBCiEKjSxfVtXzOHNMyS00VJoSQ7uVCCCGEEEIUOtOmQYUKpsc5MZ5biMJKgm4hhBBCCCEKGWdn+Ptv1aW8VSs1X7YQwjKke7kQQgghhBCFUKtWcOsWkkFcCAuTlm4hhBBCCCEKKQm4hbA8CbqFEEIIIYQQQggLkaBbCCGEEEIIIYSwkHw9pluv1wMQlTDBYB6m0+kAiIyMRKvV5nJtRHaR61pwybUtmOS6FlxybXNBdDR4eprKFuinLNe1YJLrWnAVtmubEIcmxKUp0RgMBkNOVMgSwsLCuHLlSm5XQwghhBBCCCFEIeXu7o6Li0uK6/N10B0fH8/Dhw+xs7PDykp6ygshhBBCCCGEyBl6vZ6YmBicnZ2xtk65E3m+DrqFEEIIIYQQQoi8TJqHhRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJuoUQQgghhBBCCAuRoFsIIYQQQgghhLAQCbpzwKJFi2jfvj116tThueee49SpU7ldJZFBs2bNon///vj6+tKsWTNGjx7N5cuXzbaJiYlh0qRJNGnSBF9fX9566y1CQ0NzqcYiM37//Xc8PT35+uuvjcvkuuZPd+7c4f3336dJkybUrVuXXr16cfr0aeN6g8HAjBkzaNmyJXXr1mXo0KEyBWU+oNPpmD59Ou3bt6du3bp07NiRX375hcQ5YeXa5n1Hjhzh9ddfp2XLlnh6erJt2zaz9em5hg8ePGDs2LHUr1+fhg0b8vHHHxMREZGDz0IkJ7VrGxcXx9SpU+nVqxc+Pj60bNmScePGcefOHbNjyLXNe9J6zyY2ceJEPD09mT9/vtnywn5dJei2sA0bNjB58mTeeOMNVq5ciZeXFyNGjCAsLCy3qyYy4PDhw7z44ossW7aMefPmER8fz4gRI4iMjDRu880337Bz506mT5/OwoULuXv3Lm+++WYu1lpkxKlTp1iyZAmenp5my+W65j8PHz5k4MCB2NjYMHv2bNavX8+HH36Is7OzcZvZs2ezcOFCPv/8c5YtW4aDgwMjRowgJiYmF2su0jJ79mwWL17MxIkT2bBhA++//z5z5sxh4cKFZtvItc3bIiMj8fT05LPPPkt2fXqu4fvvv8/FixeZN28eM2fO5OjRo0ycODGnnoJIQWrXNjo6mnPnzjFq1ChWrFjBzz//TFBQEKNGjTLbTq5t3pPWezbB1q1bOXnyJG5ubknWFfrrahAW9eyzzxomTZpkfKzT6QwtW7Y0zJo1KxdrJbIqLCzM4OHhYTh8+LDBYDAYwsPDDbVr1zZs3LjRuM3FixcNHh4ehhMnTuRSLUV6PX782NC5c2fD/v37DS+99JLhq6++MhgMcl3zq6lTpxoGDhyY4nq9Xm9o0aKFYc6cOcZl4eHhBm9vb8O6detyoooik0aOHGn46KOPzJa9+eabhrFjxxoMBrm2+ZGHh4dh69atxsfpuYYJn8OnTp0ybrN7926Dp6en4fbt2zlXeZGqp69tck6ePGnw8PAw3Lhxw2AwyLXND1K6rrdv3za0atXKcP78eUO7du0M8+bNM66T62owSEu3BcXGxnL27FmaN29uXGZlZUXz5s05ceJELtZMZNWjR48AjC1nZ86cIS4uzuxaV6tWjXLlyuHn55cbVRQZ8MUXX9CmTRuz6wdyXfOrHTt24O3tzdtvv02zZs3o27cvy5YtM64PDg4mJCTE7LoWK1aMevXqyWdzHufr68vBgwcJCgoCICAggGPHjtG6dWtArm1BkJ5reOLECZycnKhTp45xm+bNm2NlZSVD+PKZx48fo9FocHJyAuTa5ld6vZ4PPviAESNGUKNGjSTr5bqCdW5XoCC7f/8+Op0OFxcXs+UuLi5JxgOL/EOv1/PNN99Qv359PDw8AAgNDcXGxsb4pZHAxcWFkJCQ3KimSKf169dz7tw5/vnnnyTr5LrmT9evX2fx4sUMGzaM119/ndOnT/PVV19hY2NDv379jNcuuc9mGa+ft40cOZLHjx/TrVs3tFotOp2Od999l969ewPItS0A0nMNQ0NDKVmypNl6a2trnJ2d5bM5H4mJiWHatGn06NEDR0dHQK5tfjV79mysra0ZPHhwsuvlukrQLUSGTZo0iQsXLvD333/ndlVEFt26dYuvv/6auXPnYmdnl9vVEdnEYDDg7e3Ne++9B0CtWrW4cOECS5YsoV+/frlcO5EVGzduZO3atXz//fdUr14df39/Jk+ejJubm1xbIfKRuLg4xowZg8FgYNKkSbldHZEFZ86cYcGCBaxYsQKNRpPb1cmzpHu5BZUoUQKtVpskaVpYWBilSpXKpVqJrPjiiy/YtWsXf/75J2XKlDEuL1WqFHFxcYSHh5ttHxYWhqura05XU6TT2bNnCQsL45lnnqFWrVrUqlWLw4cPs3DhQmrVqiXXNZ9ydXWlWrVqZsuqVq3KzZs3jesB+WzOh7777jtGjhxJjx498PT0pG/fvgwZMoRZs2YBcm0LgvRcw1KlSnHv3j2z9fHx8Tx8+FA+m/OBuLg43nnnHW7evMncuXONrdwg1zY/Onr0KGFhYbRr1874W+rGjRt8++23tG/fHpDrChJ0W5StrS21a9fmwIEDxmV6vZ4DBw7g6+ubizUTGWUwGPjiiy/YunUrf/75JxUrVjRb7+3tjY2Njdm1vnz5Mjdv3sTHxyeHayvSq2nTpqxdu5ZVq1YZ/7y9venVq5exLNc1/6lfv75xzG+CK1euUL58eQAqVKiAq6ur2XV9/PgxJ0+elM/mPC46OjpJS4pWqzVOGSbXNv9LzzX09fUlPDycM2fOGLc5ePAger2eunXr5nidRfolBNxXr15l/vz5lChRwmy9XNv8p0+fPqxZs8bst5SbmxsjRoxgzpw5gFxXkO7lFjds2DA+/PBDvL29qVu3Ln/++SdRUVE888wzuV01kQGTJk1i3bp1/PrrrxQtWtQ4/qRYsWLY29tTrFgx+vfvz5QpU3B2dsbR0ZGvvvoKX19fCc7yMEdHR+O4/ARFihShePHixuVyXfOfIUOGMHDgQGbOnEm3bt04deoUy5Yt44svvgBAo9EwePBgfvvtNypXrkyFChWYMWMGbm5udOzYMZdrL1LTrl07Zs6cSbly5Yzdy+fNm0f//v0Bubb5RUREBNeuXTM+Dg4Oxt/fH2dnZ8qVK5fmNaxWrRqtWrViwoQJTJo0ibi4OL788kt69OhB6dKlc+tpCVK/tq6urrz99tucO3eOWbNmodPpjL+nnJ2dsbW1lWubR6X1nn365omNjQ2lSpWiatWqgLxnATSGhNvDwmL++usv/vjjD0JCQqhZsyaffvop9erVy+1qiQx4eu7mBJMnTzbeQImJiWHKlCmsX7+e2NhYWrZsyWeffVZous0UFC+//DJeXl588skngFzX/Grnzp388MMPXLlyhQoVKjBs2DAGDBhgXG8wGPjxxx9ZtmwZ4eHhNGjQgM8++4wqVarkYq1FWh4/fsyMGTPYtm0bYWFhuLm50aNHD9544w1sbW0Bubb5waFDh5JNuNSvXz+mTJmSrmv44MEDvvzyS3bs2IGVlRWdO3fm008/pWjRojn5VMRTUru2b775Jh06dEh2vwULFtCkSRNArm1elNZ79mnt27dn8ODBDB061LissF9XCbqFEEIIIYQQQggLkTHdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0C2EEEIIIYQQQliIBN1CCCGEEEIIIYSFSNAthBBCFHCHDh3C09OTQ4cO5XZVhBBCiELHOrcrIIQQQuSmFStW8NFHH6W4funSpfj4+ORchfKJv//+m4MHD3Lq1Clu3bpFv379mDJlSrLbhoeHM3XqVLZu3Up0dDR16tRh/Pjx1K5d22y7mJgY5s+fz+rVq7lx4wZOTk74+vry1ltvUaNGDeN2d+/eZcGCBZw8eZIzZ84QGRnJggULaNKkSZJz6/V6li5dypIlS7h27RoODg7UqlWL0aNHU79+/ez9TxFCCCGSIUG3EEIIAbz99ttUqFAhyfJKlSrlQm3yvjlz5hAREUGdOnUICQlJcTu9Xs/IkSMJDAxkxIgRlChRgr///puXX36ZFStW4O7ubtz2/fffZ8eOHTz33HPUrl2bO3fu8Pfff/P888+zdu1aypcvD0BQUBCzZ8/G3d0dT09PTpw4keL5v/vuO+bNm0fv3r0ZNGgQ4eHhLF26lJdffpnFixdTt27dbPs/EUIIIZIjQbcQQggBtG7dmjp16uR2NfKNhQsXUq5cOTQaDb6+vilut2nTJk6cOMGMGTPo2rUrAN26daNLly789NNPfP/99wDcuXOHLVu2MHz4cD788EPj/g0bNmTIkCFs3bqVoUOHAlC7dm0OHTpE8eLFjcdPTnx8PIsXL6ZLly5MnTrVuLxr16507NiRNWvWSNAthBDC4mRMtxBCCJEOP/74I15eXhw4cMBs+YQJE/D29iYgIACA2NhYZsyYwTPPPEODBg3w8fFh0KBBHDx40Gy/4OBgPD09+eOPP1i0aBEdOnSgXr16DB8+nFu3bmEwGPjll19o3bo1devWZdSoUTx48MDsGO3bt+e1115j37599OnThzp16tC9e3e2bNmSrud08uRJRowYQYMGDahXrx4vvfQSx44dS9e+5cuXR6PRpLnd5s2bKVWqFJ07dzYuK1myJN26dWP79u3ExsYC8PjxYwBKlSpltr+rqysAdnZ2xmWOjo4UL148zXPHx8cTHR2d5JguLi5YWVlhb2+f5jGEEEKIrJKgWwghhEAFfffu3TP7u3//vnH9qFGjqFmzJp988okxQNy7dy/Lli1j9OjReHl5GY+zfPlyGjduzPvvv8+bb77JvXv3eOWVV/D3909y3rVr1xq7Ww8bNozDhw/zzjvvMH36dPbu3curr77KgAED2LlzJ99++22S/a9cucK7775L69atGTt2LFqtljFjxrB///5Un++BAwd48cUXiYiI4M033+Tdd98lPDycIUOGcOrUqaz8V5rx9/enVq1aWFmZ/+SoU6cOUVFRBAUFAaobf5kyZZg3bx47duzg9u3bnDp1is8//5wKFSrQo0ePDJ/b3t6eevXqsXLlStasWcPNmzcJCAhg/PjxODk58fzzz2fLcxRCCCFSI93LhRBCCDB2XU7M1taW06dPA2BjY8O3337LM888w5QpUxg3bhyffPIJ3t7ejBw50riPs7MzO3bswNbW1rhswIABdOvWjYULF/LNN9+YnSOhW3WxYsUANQZ61qxZREdH8++//2Jtrb6q79+/z9q1a5k0aZLZsa9cucJPP/1kbEl+9tln6dq1K9OmTaNFixbJPleDwcDnn39OkyZNmDNnjrHF+oUXXqBHjx5Mnz6duXPnZvS/MFkhISE0bNgwyXI3NzdAJUXz9PTExsaGn376ibFjxzJq1CjjdrVr12bJkiU4OTll6vxTp07l3Xff5YMPPjAuq1ixIosXL6ZixYqZOqYQQgiRERJ0CyGEEMDEiROpUqWK2bKnW2c9PDx4++23+f777wkMDOT+/fvMnTvXGBgDaLVatFotoALo8PBw9Ho93t7enDt3Lsl5u3btagy4AeMY4969e5sdt27duqxbt447d+6YBYtubm506tTJ+NjR0ZG+ffsye/ZsQkJCjN2zE/P39+fKlSuMGjXKrDUfoFmzZqxevRq9Xp/k+WdGdHS02U2CBAnLYmJijMucnJyoWbMmXbt2pV69ely7do1Zs2YxZswY5s2bZ9bFPL2KFi1K9erV8fHxoVmzZoSEhDB79mzeeOMNFi1aRMmSJTP/5IQQQoh0kKBbCCGEQAW16UmkNmLECNavX8+pU6d47733qF69epJtVq5cydy5cwkKCiIuLs64PLns6GXLljV7nBCAp7T84cOHZkF35cqVk4ytTsgIfuPGjWSD7itXrgCYJSx72qNHj3B2dk5xfXrZ29sbx20nlrAsIZB+9OgRL774IiNGjGD48OHG7by9vXn55Zf5999/GTRoUIbOHR8fz7Bhw2jcuDETJkwwLm/evDk9e/bkjz/+MGsBF0IIISxBgm4hhBAiA65fv87Vq1cBOH/+fJL1q1evZvz48XTs2JERI0bg4uKCVqtl1qxZXL9+Pcn2Ca3iT0upldlgMGSh9ubHGDduHDVr1kx2myJFimT5PKASoSU3pdjdu3cBUzfzzZs3ExoaSvv27c22a9y4MY6Ojhw/fjzDQfeRI0c4f/4848ePN1vu7u5O1apVOX78eIaOJ4QQQmSGBN1CCCFEOun1esaPH4+joyNDhgxh5syZdOnSxSwz9+bNm6lYsSI///yzWQv0jz/+aJE6Xb16FYPBYHauhJbshHmtn5bQUu7o6Ejz5s0tUq8EXl5eHDt2LEl39VOnTuHg4GDs0h8WFgaATqcz299gMKDX65MsT4+UjgmqFTwzxxRCCCEySrKXCyGEEOk0b948Tpw4wRdffMGYMWPw9fXl888/5969e8ZtElquE7dInzx5Ej8/P4vU6e7du2zdutX4+PHjx6xatYqaNWsm27UcVJftSpUqMXfuXCIiIpKsT/x8sqpr166EhoaaTWN27949Nm3aRLt27YxjuxO6xG/YsMFs/+3btxMZGZlii3xqUjrm2bNnCQoKytQxhRBCiIySlm4hhBAC2LNnD5cvX06yvH79+lSsWJFLly4Z599O6AI9ZcoU+vbty6RJk5gxYwYAbdu2ZcuWLbzxxhu0bduW4OBglixZQvXq1YmMjMz2eru7u/PJJ59w+vRpXFxc+PfffwkLC2Py5Mkp7mNlZcVXX33Fq6++Ss+ePXnmmWcoXbo0d+7c4dChQzg6OjJz5sxUz7tjxw7j3ORxcXEEBgby66+/Amr+8IQp1Lp06YKPjw8fffQRFy9epESJEixevBidTsdbb71lPF67du2oUaMGv/zyCzdv3qRevXpcvXqVRYsW4erqyrPPPmt2/oRzXbx4EVDd+hPmGB89ejSgbi60aNGClStX8vjxY1q0aEFISAh//fUX9vb2DBkyJN3/z0IIIURmSdAthBBCkHL378mTJ1OuXDk+/PBDSpQowccff2xc5+7uznvvvcfXX3/Nhg0b6N69O8888wyhoaEsXbqUffv2Ub16daZOncqmTZs4fPhwttfb3d2dCRMm8N133xEUFESFChX43//+R6tWrVLdr0mTJixdupRff/2Vv/76i8jISFxdXalbt2665q/esmULK1euND4+d+6cMTt7mTJljEG3Vqvl999/57vvvmPhwoXExMRQp04dJk+eTNWqVY3729rasmjRIn799Vd27drFunXrKFq0KB07duTdd99NkmU84SZHgn///ddYTgi6QQXnf/zxBxs2bGDv3r3Y2NjQsGFDxowZY3Z+IYQQwlI0huzIyCKEEEKIHNe+fXtq1KjBrFmzcrsqQgghhEiBjOkWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLETGdAshhBBCCCGEEBYiLd1CCCGEEEIIIYSF5Ospw+Lj43n48CF2dnZYWcn9AyGEEEIIIYQQOUOv1xMTE4OzszPW1imH1vk66H748CFXrlzJ7WoIIYQQQgghhCik3N3dcXFxSXF9vg667ezsAPUkHRwccrk2qdPpdJw/fx4PDw+0Wm1uV0dkE7muBZdc24JJrmvBJdc2F0RFQYsWqrx/P1jgt5hc14JJrmvBVdiubVRUFFeuXDHGpSnJ10F3QpdyBwcHihQpksu1SZ1OpwOgSJEiheIFWFjIdS245NoWTHJdCy65trnAYIDAQFW2twcL/BaT61owyXUtuArrtU1rqLMMhBZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWBVrQmet8+eYuTu07n9tVEUIIIYQQQhRC+XpMtxCpOX4cOrdzIiy8LQtWXOHCzdyukRBCCCGEEKKwkZZuUSAdOADt20NYuDMAF2+58+jeo1yulRBCCCGEEKKwkaBbFDg7d0KnTvDwofnyG5dCcqdCQgghhBBCiEJLgm6R7+h1egx6Q7LrNi05TffuBiIi1GM72zjjuuCgBzlQOyGEEEIIIYQwkTHdIl+Z/90+Rn3aAAfbaHw9gvCtHU79hjb4NivDueN3GfhmA+J0GgB69oS2tQ/z/rctAAi+EpmbVRdCCCGEEEIUQhJ0i3xj8V8xDB/fHIPBiug4B3acKMGOE8BfCVtUM277XBd/Fq2oyYYFWuOy4OvxOVpfIYQQQgghhJDu5SJfWLMGXh5qh8GgXrIlit5LcdvB3fbx95oa2NhABXcn4/IbN+XlLoQQQgghhMhZ0tIt8rzt22HAANDp1OORI2KY+XsJ7ly9y4n9Vzl+OIITp+w4f9WFXh1u8uWs1lhpVYBdvmop43GCb9nnRvWFEEIIIYQQhZgE3SJP+29LEL37uRMTo8ZpDxoEv86yQ2MFZaq40a2KG91eSryHh9n+bpVKYa2NI15nQ/AdJ4QQQgghhBC5b/z48YSHh/Prr78C8PLLL+Pl5cUnn3ySo/U4dOgQgwcP5siRIzg5WSZekP62Is86scuf7v1KEBmpAu4+fWD+fNBqU98vMSutFeVL3gEgOLRUGlsLIYQQQghRuI0fPx5PT088PT3x9vamU6dO/Pzzz8THWzY/0k8//cSYMWPSte2hQ4fw9PQkPDzconXKLhJ0izwp4MhlOvdx5WFkcQA6Nb3I0qVgY5PxY1WoUgyA0PBSREdnYyWFEEIIIYQogFq1asW+ffvYvHkzw4YN4+eff+aPP/5Isl1sbGy2nbN48eI4Ojpm2/HyEuleLvKcO1dC6NbThtBw1TLdovYpVm6qhp1d5o5XoYozHFblGzegWrXUtxdCCCGEEKIws7W1xdXVFYBBgwaxbds2duzYQVBQEOHh4dSpU4dFixZha2vLjh07uHXrFlOmTGH//v3o9XoaN27Mp59+SoUKFQDQ6XR89913/Pvvv2i1Wvr374/BYDA759Pdy2NjY5kxYwbr1q0jLCyMsmXLMnLkSJo1a8bgwYMBaNSoEQD9+vVjypQp6PV6Zs+ezdKlSwkNDcXd3Z3Ro0fTtWtX43l2797NN998w61bt6hXrx79+vWz+P+nBN0iT4kMj6BXl7tcuVsbgHpVAlm/szJFnYtm+phP3usABAdL0C2EEEIIIXKJ/w8Q8EPa25WsD23WmC/b3RvuHU97X6/3oOZ7matfCuzs7Hjw4AEABw4cwNHRkXnz5gEQFxfHiBEj8PHxYeHChVy4cIFdu3bxyiuvsGbNGmxtbZk7dy4rV67km2++oVq1asydO5etW7fStGnTFM85btw4/Pz8+PTTT/Hy8iI4OJj79+9TtmxZfvrpJ9566y02bdqEo6Mj9vYqYfKsWbNYs2YNkyZNwt3dnSNHjvDBBx9QsmRJGjduzK1bt3jzzTd58cUXGTBgAGfOnOHbb7/N1v+r5EjQLfIMXZyOQd1Pc+S8evNVcLnJhq3OOLs6Z+m45cubyjduZOlQQgghhBBCZF5cOESl4wdpdMVkloWkb9+47BvnbDAYOHDgAPv27eOll17i/v37FClShK+++gpbW1sAVq9ejV6v5+uvv0av1xMZGcnXX39N06ZNOXz4MC1btuTPP/9k5MiRdO7cGYBJkyaxb9++FM8bFBTExo0bmTdvHs2bNwegYkXT/4mzs4oPXFxcjMnPYmNjmTVrFvPmzcPX19e4z7Fjx1i6dCmNGzdm8eLFVKpUifHjxwNQtWpVzp8/z+zZs7Pt/yw5EnSLPOO9l/exen8bAJwcHrJh9WPKVfNIY6+0VXB7CKg3ZrD/RaB6lo8phBBCCCFEhtk4gUP5tLezd01+WXr2tcl6Bu5du3bh6+tLXFwcBoOBnj178tZbb/HFF1/g4eFhDLgBAgICuHbtGvXr18dgMKDX67GysiImJoZr167x6NEjQkJCqFevnnEfa2trvL29k3QxT+Dv749WqzV2H0+Pq1evEhUVxfDhw82Wx8XFUbNmTQAuXbpE3bp1zdb7+Pik+xyZJUG3yBOmf7SbH5eqgNtaG8e/8y9Rp0X9bDl2hRJXAfXmCr5wAwm6hRBCCCFErqiZha7fT3c3t6AmTZrw+eefY2Njg5ubG9bWprDRwcHBbNvIyEhq167NtGnT0Ol0+Pv7U7NmTbRaLSVLlszU+RO6i2dEZGQkoLqYly5d2mxd4psEuUGyl4tct/JfHe9928r4+PevD9JxQPYE3AAVqrkYy8E3M5mNTQghhBBCiELCwcGBypUrU65cObOAOzm1a9fm6tWruLi4ULly5f+zd+dhUVVvAMe/wyYgi4q4ICpuICoo7vu+L7lmWbmkZllqlplp5ZblWmmLZfbTykqz1NzNfd9XXFBRQUUUERBkh5n7++PKDCO7Mmy+n+eZhzP3nnvvmTkMzLnnnPdQrlw5KleuTOXKlbG3t8fe3h5nZ2fOnTunPyY5OZmLFy9meE53d3d0Oh0nTpxId7/l4yWNtFqtflu1atWwsrIiODhYf/2UR/ny5fV5zp8/b3Su1OUyFWl0i3zl5wevDjZHUdRfxU9H7eX1Sa2yOCpnyrmVwUyjfiCDQuxz9dxCCCGEEEI8z3r16kXJkiUZPXo0J0+e5P79+xw/fpxZs2Zx7949AIYMGcLSpUvZuXMn169fZ8aMGZmuse3q6krfvn2ZMmUKO3fu5Pbt2xw7dowtW7YAUKFCBTQaDXv37iU8PJyYmBjs7OwYPnw4s2fPZt26ddy6dYuLFy+yYsUK1q1bB8DLL79MYGAgc+fO5caNG2zcuFG/z5RM2uh++PAhEyZMoH79+jRs2JApU6YQExOT6TGDBw/WL8ae8pg6daopiyny0a+/Qlycmh78mo4ZP7TJ9WtYFrOkbIlQAIJCnbLILYQQQgghhMguGxsbfv/9d1xcXHj33XeZOHEin376KQkJCfp1t4cPH84LL7zApEmTePnllylevDidOnXK9LzTp0+nS5cuTJ8+nW7duvHpp58S97jhULZsWcaOHcuXX35J8+bN+eyzzwAYP348b7/9NkuWLKF79+6MHDmSvXv36pcuc3Fx4dtvv2XXrl307t2bVatW8d5775nw3VFplIxmr+eCkSNHEhoaysyZM0lKSmLKlCl4eXnx5ZdfZnjM4MGDcXNzY9y4cfptNjY26S6UHhsbq58zYGtra5LXkFu0Wi1nz56lXr16mJub53dxCoxevWDTJjUdGAiVK5vmOo09LnLiam00Gh0JcVosi1nmynmlXosuqduiSeq16JK6zQcxMZDy/Sw6Goo//fKeGZF6LZqkXouu561us9seNVlP9/Xr1zlw4ACzZs2ibt26NGzYkE8++YTNmzcTEhKS6bHW1tY4OzvrH+k1uEXR4Oen/ixeHCqmszJCbnEt+wgARTHjXmCo6S4khBBCCCGEEKmYLHr5mTNncHBwwMvLS7+tefPmmJmZ4evrm+lwgo0bN7JhwwacnZ1p164db7/9dpooealptVqjSfQFUUr5Cno581J8TDwBAdaAOTUrB6MoZTHV21OhfLw+ffNaKC7Vy2aSO/ukXosuqduiSeq16JK6zQdaLeb6pBZT/BOXei2apF6LruetbrP7Ok3W6H7w4EGaEPEWFhY4OjoSGppxT2PPnj1xcXGhTJkyXLlyhQULFhAQEMB3332X4TFXr17NtXKb2pPR8p5nty7cR6frBkDVMpc5e/auya7lYB+pT585EYBNueRcPb/Ua9EldVs0Sb0WXVK3eccsLg6fx2lfX190mXSQPCup16JJ6rXokro1luNG94IFC1i6dGmmeVKiyj2Nl156SZ/28PDA2dmZYcOGcevWLSpVqpTuMe7u7oViTvf58+fx8vIqsPMbEmITiLgfSTm3MnlyvauHj+jTdb00Jl2Y/lKtOH06Kc4x165VGOpVPB2p26JJ6rXokrrNB6mC43p7e5tsTrfUa9Ej9Vp0PW91Gxsbm60O4Bw3uocPH07fvn0zzVOxYkVKly5NeHi40fbk5GQiIyNxdnbO9vXq1q0LwM2bNzNsdJubmxeaSi2oZY2NiqV5vducC/Bg/gd7+WB+W5Nf88qlJH26lpeNSd+XSlUd9Ok7Yc65fq2CWq/i2UndFk1Sr0WX1G0eSvU+m5ubGz3P/UtJvRZFUq9F1/NSt9l9jTludJcqVSrNsPH0+Pj4EBUVxYULF6hTpw4AR48eRafTqXdDs8nvcaStnDTURc7Nm3SccwFtAZj0ZSsaNjtL2371THpNv6vF9GnPeqbtXXf1MvzOBT2qY9JrCSGEEEIIIUQKk0Uvr1atGq1ateLTTz/F19eXU6dO8dlnn9GjRw/KllWDWIWEhNC1a1d8fX0BuHXrFt9//z0XLlwgKCiIXbt2MWnSJBo1akTNmjVNVdTn3s2bMPeX1vrnOsWcV0aW4/4t00b59rtRGgAL8ySqeZswdDlQoYIhfeeOSS8lhBBCCCGEEHomC6QG6vzvzz77jKFDh2JmZkbnzp355JNP9PuTkpIICAjQL3JuaWnJkSNH+O2334iNjaV8+fJ07tyZt99+25TFfO59+CHEx6v3X+yso4mOt+NuRDkG9z/J1qNOmJmnvTcTFRbF9HGnuRtixfcrPClVvmSOrpmcmMzVO+p0gRout7AsVu3ZX0gmrK2hdGl48ACCgkx6KSGEEEIIIYTQM2mju0SJEnz55ZcZ7nd1deXKlSv65+XLl+f33383ZZHEE/bvh9Wr1bSzMxzcGU/rNrGEPCzD9pMNmTthL5MXtjU65vyhqwx4yZKrd9TtVT/dy+c/G+fJSsDFIBKS3ADwrBIKmLbRDeDqqja679wBnQ7MTDbOQwghhBBCCCFU0ux4jmmTtIwba1hb7osvwN27NH/8FIRGowPg029bcnCjrz7PbwsO0qS9K1fvVNFv+29/zudj+50J0ac93eMzyZl7KjjeACA5Ge7fvJ8n1xRCCCGEEEI836TR/Rz739xDnPNVI+75+Ci8/rq6vcOL9fl01H4AtDoLXh7mTNC1cEa9oWXoxJbEJRovz3b6Wk3Cgo0j1WfF74JhCa9adSyf4VVkn2spw7jyoOsP8uSaQgghhBBCFAYeHh6ZPr799tv8LmKhZdLh5aLgigiJ5OP5tfTPF312FXNzD/3zqd+2Yv/RM+w958Od8PLU8NISH28IiT+qz36srBS+W90GRTFj97+XefHt5tm+vt/9Rvq0Z8PKz/hqsse1gk6fDgp8RMM8uaoQQgghhBAF38GDB/XpLVu28M0337Bt2zb9NltbQ8eboihotVosLKQ5mR3S013ExcaCoqTdPvO9szyIUqOHv9ThMK16eBjtN7c054815XEu8RBA3+C2sYFffwpjybrW9Opjp8+/Y3tyjsrl518cAI0GPHxcc3Ts03KtaPijcOd23gxpF0IIIYQQojBwdnbWP+zt7dFoNPrnN27coH79+uzbt49+/frh5eXFqVOn+Oijj9IEvf7tt98YOnSo/rlOp2PJkiW0b98eb29vXnjhBaPG/PNAbk0UYaNGwdKlULKkQj03X3xqPaR+AwucyhTju9Vqr7SNVSzzvku/p9mlWjlWrIJu3dSGu7s7/PMPeHk5AdCyhydWFgkkJhdjx5EqKDoFjZkmy3IpCjxefp3KlcHWNvP8ucXVzXChoNvp3IkQQgghhBDCRP7+G6ZOhUeP8u6a9vbw2WcwYEDunO/LL79k0qRJVKxYEQcHh2wds2TJEjZs2MCMGTNwc3PjxIkTTJw4kVKlStG4cePcKVgBJ43uIsrXV21wA0REaNgTUZc9Z4A/jPNNGnGcSjXbZnieLl3g4EG4dAkGDoTUny1bB1ta1r/B7uNVCbxfkRs3FKpVz7pswcGGPzaenjl6Wc+kglsJfTooWH71hRBCCCFE3pk/Hy5fzp/r5laje9y4cbRo0SLb+RMTE1myZAnLly/Hx8cHgIoVK3Lq1Cn++usvaXSLwu2bbwxpB/skoh6lDVZWsfQdJs7J+he9eXP1kZ6Ofaqy+7ia3rFTk61Gt9+pYMAFAE+PZPLq19C1urM+HXSvuEmvdf8+hIZC7domvYwQQgghhCgkPvwQPv0073u6J07MvfN5eXnlKP/NmzeJi4tj+PDhRtuTkpLwzMvet3wmje4iKPR2GL//XgIwx8EBgoIsiQ0L5cyhm5w5Ec0Z32JERFrx+WxrbB0qPNO1OnWCKVPU9M6d8NZbWR9z6Zg/+ka38xGg1TOVIbvsS9njYBNJVJwjQfdLmuw6/v7QtCmEh8Po0fDNIgULy6yH3QshhBBCiKJrwIDc63HOLzY2NkbPNRoNyhMBpLRaw5LEsbGxgDrEvGzZskb5rKysTFTKgkca3UXQT/PPk5DQFoARg4Kwt3fF3t6Zrm7OdH01d6/l4wMlS0JEBOzeDVotmJtnfozfZUMD1NPbMXcLlAVX51Au3XIk6EHZbM9Bz4n4eHUYfvjjFdR++AECT5/iry0e2Jeyz9VrCSGEEEIIkZ9KlSqFv7+/0babN2/i6Kh+x69WrRpWVlYEBwc/N0PJ0yPRy4uYpIQkFv+hRiI302gZO8a0AcPMzaFDe/VuVkQEnN53Pctj/K4ZJoZ7NqhosrKlx7XMQwDik2wIv/cw188/YXwcZ88ab9t6rCGtGgYT5H83168nhBBCCCFEfmnatCkXLlzg33//JTAwkG+//Zbbt2/r99vZ2TF8+HBmz57NunXruHXrFhcvXmTFihWsW7cuH0uet6TRXcT8s+QEweHlAXihxUmq1DF9o7Zj3UP69I71tzPJqfK7qQ5pL1viPqXKm26Yd3pSB1O7c7dYrp77nx+OsHiJOuTG2hp+mOdPyeIRAJwL8KBJUzi7/0quXlMIIYQQhUtUFJw6lf6Srrlx7p49oXNn2LjRNNcQIrVWrVrx9ttvM3/+fAYMGEBsbCytWhlPHR0/fjxvv/02S5YsoXv37owcOZK9e/fi6po3ywYXBDK8vIhZuNjQi/zue7nbqMxIpz5uMFVN79zvyJRM8obfjeB+pBrQzLPyHaCMqYtnxNXTEOktKMQW71w6740LtxgxoZb++aLP/Bn1QQ3atb9B955R3LhXmeDw8rTsbM/qn07QfUijXLqyEEIIIQqLpCRo0kSNYN2tG/z1lxroKrd89x1s3qymd+wAb2+YPBlefDHr6X9CpNavXz/69eunf96kSROuXEm/82jcuHGMGzcOUOdznz17lnr16un3azQahg4darR29/NGerqLkKPbLnD8Sh0A6la5Qps+dfPkulW9KlGl7C0ADl2oRWxUbIZ5/U4ZesI9q+dh6MbHUt9QCwrKnXMmxSfxyotxRMWpc1de7nCYN95XG/ceDapy9HhxmtY8D0BMgh29htVn79qzuXNxIYQQQhQaJ08alozauhVatcq97yOKAr/8YrzN1xcGDVKXaF22DBITc+daQoickUZ3EbJoQZQ+/e6b93M9SFhmOjULBCAxuRgHNl3KMJ+fb6Q+7Vkz78c8maLRvWx+BCf91V7u6uUDWfJXHaP33rliaXYfr86L7Y4AoFPM+fxzbbrnEkIIIUTRtW+f8fNz59Se7yfjwTyNo0fVFVQA6tRRz5vC3x9GjAAvLzUGjxAib0mjuwBKTkzmvz9P8s8PR9I8/v35GKG3H6Q5Jsj/Ln/vUSMCOjuEMmhM3g5f7tjZsA74jq3RGebzu2RobHp65300b6NG941n/6+z/n/HWbq+GwBWFgms/jMeByeHNPls7G1YtaMJ1crdBGDn6QZcOXXjma8vhBBCiMJj715DurwagofgYGjZErZsebZz//qrIT1hAhw5oi7n2q6dYfvVq7Bhw7NdRwiRczKnu4BRFBjcy5dV2xtmmMfaMo43+u1j4owaVPRQ17tePOcKWp361/utly9iXbxtXhRXr31vDzTv6FAUM3YeKp9hPj//4vq0Z/2M85mKq3MEoAZvC7p8A2jw1OfyO36dEe976p9/PeUoPm3bZJjfzNyM0YMD+GB+ZQB+WHCLhSurPvX1hRBCCFF4JCXBwYNq2sUFzpyB3r3VHuqYGOjVC+bMgapV4d49uHvX8NPRERYuhDIZhMKJi4NVq9R08eLqWtAaDXTooD5+/x0GD1b3nzwJz/HUWiHyhTS6C5h582DV9vqZ5olPsuHbv9rw4z+JDHnxFuM+LM+S1WpIMEvzREZP8sz0eFNwcilF/eqXOOVfi3MBHoTcDKVsZec0+S7dcgPA3iYKl6rl8riUULJsCawt44hPsuFO6NOvER4SGEr3XlY8jCkBQP82Rxg9rXWWx73+Xl0+Wahe/5fNzfk8Rv3nKIQQQoii7fRptXEN0KaN2oDevRuGDIF//gGdDj78MOPjExPVfOnZsAEiH8/g698f7OyM9/foYUifPPn0r0EI8XRkeHkBsm2bGmEyxZThO1kwca/RY8zAfdgWU/9iJ2mt+N+qStStb0l4dCkAXup0ivJVy+ZH8enU8r4+vXu9f5r9MTFw897jyOV1iufpnPMUGjMNrqVDAAgKTXtTIDtiohV6dnlA4H11Oba6VS7y89+e2Xo9pcqX5JWXkwCIfGTFH388VRGEEEIIUcikHlretq3608ZGjWCeWWM7xZo16pDx9KQOoJZeL3bJklD98QIuZ8+qve5CiLwjPd0FxLVranTJlPUUZ8yAqVM7ppt36u0HLJp5gm9XNSUq2tpo37szm5q6qBnq2M2ROcvV9I7tOgaNM96fepUBz1r5t26Fa5kIrt11IyrOkaiwRzg4ZX9uuVYLg17RcPKqOpqgYuk7LPjmPvalamb7HO+Md2DZCjX9/ffwxhvqEDAhhBBCFF2pg6i1STUbzcwM5s6F9u3VOdilSqnzvcuXh3LlYNcudY42wAcfqEPUU39vCA6G7dvVdKVKhgb9kxo2VL9vxsfDxYuQakUnIYSJSU93AfAoPJo+XYJ5+FB93qcPfPJJxvmdK5Zm1tK23Aqy5vPPoXRpdXu/ftCwUf613lp098TaKh6AnWca6G8gpPDzM6Q9834EvJ5ruRh9+s710Gwfpygwfjxs3Kg+d3DQsmFdDCXLpw2clpn69Q0RRX194dChHB0uhBBCiEImORkOHFDT5cqBu3vaPF26wPz56qjHYcPU53XrwrhxUPPxvf3Dh+Hff42P++MPdWg6qEPVzTL4dt8oVYxdGWIuRN6SRnc+U3QKw/pe4OINNSCap0c8v/2W8R/M1BwdYcoUuHlTbbytXGniwmbBurg1rdqoPe+3g22MerbBuNFdq1YeFuwJri7J+nRQwMNsH7dwIXz3nZq2sIA1a8zxalbtqcrwzjuG9OK5aYfiCyGEEKLoOH0aoh8v7tK2bc5GuFlYqD3hKSZNMgwPf3Jt7swCpDVMFaP3xInsX18I8eyk0Z3Pvhi/j7X71SHhjraR/PvnXexzuJKWra267qKVlQkKmEOdOhnSvXvDeV9Dd7ffodP6tGf1jJcVM7UKFQz/6YJuxmaaNyE2gdN7/Jg3fgsTJuj025cuhY7pj/7PlhdfhNKOasSTf7ZWJiTwfhZHCCGEEKKwymhoeXb16gWtH8dr9fdXv4cAnDoFly6p6RYtDPO20+PjY2jsS0+3EHlLGt154PJlaFAvkTYtPHAsHoeddbT+8cm3bQHQaHT8+cNV3OtXyd/CPqPXXgMnJzV99So0aZzIb1+q46f9rqvRwotZxlOlunVGpzA518qGawfdSjbad/3cTb79ZB+v9zxAvapXsHMwo0F7TyYt6o6iqB+XqZ9oGTbs2cpgbQ0j+50B1IB4S7+89GwnFEIIIUSBlV4QtZzQaNSh5ymmT4eoqOz3cgPY2xum950/r87tFkLkDWl054ENG+DcBRtiEuzSPFLMGruf7kMaZXKWwqF8eTh+XL2bChCXUIyhH7Tgjd778Q+uBIB7hVuYW+ZfDD9XN8NQgjvBZsTEwG9fHqZt3bNUr1eZcZ+34ZfNrTgX4EGy1tLo2OE9DzB9Ru58bN6aWB0zjRaAJSvdSU5MzuIIIYQQQhQ2ycmG9bnLlgUPj6c7T+PG8NJLajo0FGbNMkwttLaGgQOzPkfKEPOkJHVqohAib0j08jzwyitweP8jrvkGo3lisrZGo9CjXTCTv36KsUYFVNWqcPiQwrhBB1m6vhUAP28wrGHtWfUBkE4EkTziWq20Pr1urzd/lodHj5qnyWem0eJZ8QY+niHUr5dM09ZONO3aMteWOqvs6UrP5sfYcKgJQWEubPjlKP1G5V/0eSGEEELkvrNn1V5pUIeWP8uKJV98AWvXqo3m1D3fffuqsX6y0qgR/Pabmj55Um3ICyFMz2SN7h9++IF9+/bh5+eHpaUlJ7MxeURRFL755hv+/vtvoqKiqF+/PtOnT8fNzc1UxcwTrq6wZr0tZ89GU69ePczNn1wuK/8aoKZibaPhp39b0WL+QUZ/Up+4RFv9Pk/3xHwsGZSpVBoLC4XkZA33I0oY7fOocINhL96iXdfSeDWriq1DDaCGycry9jsWbHgcvXzxj1b0G2WySwkhhBAiHzzr0PLUqlZVg7EuXGi8Pauh5SkkmJoQ+cNkw8uTkpLo2rUrgwYNyvYxS5cuZcWKFUyfPp3Vq1djY2PDiBEjSEhIMFUxhYkNndiSY7uDqOESoN/WuFnxfCwRmJmbUbOm4TaznR2MGK7l0CZf/G5V4aOv29KkSx1sHWwzOUvu6DTQh+rlAwHYdaY+nRueYtKwvaxadocrVwxLgAghhBCicEodRO1ZG92gLiubulfbxSX7wV3r1lWjoYMEUxMiL5msp3vcuHEArF27Nlv5FUXht99+Y/To0XR8/Jdj3rx5NG/enJ07d9KjR48Mj9VqtWi12mcvtAmllK+gl9MUajWtxrEzUSyatgdra+g8qFW+vw8//wzLlmlo0gT691ewswOojU7RQQ6Klhv1OnpwABPmuQGw41QDdpwCflX3FS+u0L49LFigo9rTrU4mntLz/JktyqReiy6p23yg1WKuT2rBBO99Ya9XrRb27zcDNJQpo1Cjhu6Z36YSJeCjjzRMnqz2nb32mg5QsnVeKyuoU8eMs2c1XLqkEBWlo3g6fSEBAfDOO2Y0bqwwbZryTEPi01PY61Vk7Hmr2+y+zgIzpzsoKIjQ0FCaNzfMrbW3t6du3bqcOXMm00b31atX86KIueL8+fP5XYR802ukAwDnfM/lc0nUu7yjHg/lvnbt2c/3LPXarJc1Lx7fzZ5T3jx4VNpoX0yMho0bYccOhckjNtFtSAXMzCX+YV56nj+zRZnUa9EldZt3zOLieBw3FV9fX3Q2Nia7VmGt18uXbYiKqgWAt3cE584FZHFE9rRtq+GVVyoQFWVOz563OXs2+0Pj3NwqcfasMzqdhr//9qdevZg0ecaNq87hw45s367B2dmfFi2icqXcTyqs9SqyJnVrrMA0ukNDQwFwSllv6jEnJycePHiQ6bHu7u7Y2pp+KPCz0Gq1nD9/Hi8vr3TmdIvCKrfqdeVOUHQKd67f4cyRu5y7VZ+zZzUcPgz372uIj7dg2vd92HPwDEt/LUmVOhVz8VWI9MhntmiSei26pG7zQYyhsebt7U26XabPqLDX6549hi7iF14oQb169XLt3CkB0aBkjo7r0kXDv/+q6chId+rVU4z2BwbCkSOGG/x//12dd97J3fluhb1eRcaet7qNjY3NVgdwjhrdCxYsYOnSpZnm2bJlC9XyeBysubl5oanUwlRWkX25Uq/mULlmBSrXrECfx5uio2HS2Dss/qUCAHvP+VCvSTTzJx/izU9aSq93HpDPbNEk9Vp0Sd3moVTvs7m5udHz3L9U4azXAwcM6fbtzUz5FmVb6ojlp0+nLdOyZaCkaocfPKjhyBFzWrbM/bIU1noVWXte6ja7rzFHje7hw4fTt2/fTPNUrPh0PXDOzs4AhIWFUaZMGf32sLAwatas+VTnFKKws7OD75dXoH+PMwx/25mboa7EJNjx9vTW/LfzGGv3NpKGtxBCCFEAqfO51XTp0lCrVv6WJ0WdOurc7sTEtBHMk5LURveTZs+GzZtzfq2EBHXJNB8f9ZpCPK9y9G29VKlSVKtWLdOH1VN+olxdXXF2dubIkSP6bdHR0Zw7dw4fH59MjhSi6Gs/wIfzlx15s+9+/bb1B5uwfdXpfCyVEEIIITLi6wsPH6rpZ12fOzdZWUHKKPerVyEy0rBvwwa4d09N9+oFlSur6S1b1MZzTo0cCU2bQufOJomzJ0ShYbIusuDgYPz8/AgODkar1eLn54efnx8xqeb/dO3alR07dgCg0WgYMmQIP/zwA7t27eLKlSt8+OGHlClTRh/NXIjnmX0pe35c25rvphrWHjl6MDofSySEEEIUXpGR8PnnxkPAc1NuLxWWm1Kv13061f37n34ypMeMgQ8+MDyfMydn17h7F/74Q03v2wc//pjzcgpRVJgskNo333zDunXr9M/79OkDwG+//UaTJk0ACAgI4NGjR/o8b7zxBnFxcUydOpWoqCgaNGjAzz//TLFixUxVTCEKne4vVoGZavrEmfxd81wIIYQorMaMgd9/V3t+/fygatXcPf/evYZ0lo3uhHCIOANxd8GqBBSvDCW8crdAqTRqZEifOAHt2sGNG7B9u7qtShV17e9WreCzz+D+ffj7b5g1C6pXz941Vq82nhs+ZQr07w/lyuXe6xCisDBZo3vOnDnMyeKW2JUrV4yeazQa3n33Xd59911TFUuIQs+tVkWc7MMIe+TECT83FJ2CxqyAjFkT4jlx9iw4OOT+l3QhxNO7eRMGDYJq1dR5yZaWGeeNjoY1a9R0YiJ88QX8/HPulSUoCHbvVtNOTqnmc+u0EBcEkX4QfgoiTkP4aYgJND5BhV7QZoPxtpPvgi4eHGsbHtZln2rceuqe7pMn1Z+pYyW/8QaYmYGNDYwfrzaYdTqYN8+4NzwzK1caP4+KggkTDL3fQjxPJAKTEIWMxkxDI88bAIRGOXPzSshTnyv4+j102txdBkSIom7rVjUoUK1aEJA7S+4KIXLBggVw5Ijae/3335nn3bwZ4uIMz3/9VV0q66klhMOj6xB+muQ7exnUL4yUwZx9+qgNWACOj4L1brC3G/h+ArfXpm1wA1iVSrvt5p9w7Sc49S7s7gjrysM/pWCrD+zvC6feg8uL1HJkwdMTUlbbPXFCvfGQEkDNwgJef92Q9+231ZuMAL/8AnfuZP123LgBx46paXd39cYDwJ9/ws6dWR8vRFEjjW4hCqHGrcrq0ycuPN04rfkf7KVC9XI09rxM2J2w3CqaEEXeihXqz4QEWL8+f8sihDBI6VkGtRGdmdWrjZ8nJ6u93dmiKBB1Fa79DIeHwL+VYY0TbKwO2xow7Z1DHDyhtjIrVdQyb16qY+2qpD2fRXFwbgHuY6H+1+A1E1z7GOeJfwAJD9Iem/QQIs5C0L9wZSGcHg+RF57I8wgeHAVton6TuTnUr6+mAwPVBvf9++rzPn2Mh4A7OsI77zw+VRJ89VUm781jq1YZ0sOHw9y5hufvvKP+/RTieWKy4eVCCNNp1LYSfKmmjx+HF1/M+Tl+/EP9x3/KvxZd211k12ELHEo75mIphSh6FMX4i/2hnXcYP75C/hVICAFASAhcumR4vnOn2iNbIZ2P56NHajRuAGdntQEYFQXLl6vDqN3cAG08xAWrc6yty4F9NcMJ7u+DXe3SLcd2307M3jAZAAvzJP76JZRSpVwMGUo1VBvU9tWhRD0o1QDsa4BZFmv9WpeGAQ8h8hJEXlQb1pEX1V7t2FugpAoNXtztiTdnD+zvDebWUKIuONQEBw8aerzIwYPqBO0pUwzZ33wz7eXHj4evv4b4eFiyRM2f0nudntRDy19+GSpWVBv2hw+rEdPnz9fQs2fmL1mIokQa3UIUQk8GQMmp4Ov3uHGvsv75Sf/a9Hwhhm07DcPNhBBpXTwWSEiIm/75ocPmEldBiAIgddAyUOcf//47TJqUNu/GjWrjEdSb1k5OarCw5GSY/fENlrwxDu5uMzRka0+Bup8bTuDUGDQWoCSrz81twKkxwTG1eO2nuSiKOpB09oTjNG35xOLcLl3Vx9OwcgTnZurD6MUmqzcIYgIhOlBt0KcWelD9qY2HsGPqA2hU7DzwJwAREWqWatUU2rdP+/esTBkYMQK+/x5iYuDbb2H69PSLeeGC+gBo3tyw7NgPP6i961otzJ6toW7dYvqly4Qo6mR4uRCFUNmyUKmSmj55MudrXx7cdiPNtgNHitO3rwz5EiIzuzfeNHp+N6IcAReD8qk0QogUqUegpPjll8fRsxVFbYwmqgtSpx5aPnAgjB92Afviait8+V+u3PL1Ne45jrtrfGILW3UoeN3Z0OkQDHiItt1eXl24mNAIewB69ID3Z7cAq5K59yIzYmYBxStBmdZQdYg6XD0155bgNhiKGw9tb1j1ZJpTvfGGxjD/HCD0MEQHgE7LxInqfG+Ab74xDEd/Uupe7kGDDGlvb7XHHCAhQcO8eRWNopsLUZRJo1uIQqpRPTVCS0wMXD55M4vcxg7sT9KnP590RR8gZft29R9kcnKuFVOIImXXPus02w7tyNnnTwiR+/bsUX9aWkLDhmpL7vJlOPHTJFhXDjZUgeCtREWpwRABypVNomVYVUod9eLdTvMBSNJaqcPDbStCpRfB411w6Zb2gg2+gtofgXNzMLdi5kxDb3uFCmqD36ygfMt2fQGa/wa9b8DAaOh2BpqvpHrHV3G0i9Fns7RINgqgps6n6QQbqsJqGyqfr8ngjjsAtWd83DtxPElRDPO5zczSTn+bPh1cXdX0kSOO/PGHjBISz4eC8udACJFDjasb7lCf2Hc7R8ceOKFGSDHTaBnzQTk2b1aXBQFYtw5ef/GGRDUX4gnJicnsPV0zzfZDB+WzIkR+unMH/P3VdJOaF3irwTv6fb/+UwniH3fJWpVk/Xo1UjfAgO53MY9XlyB4r9vX2NtEAfC//W9yq14AtFwNDRaqje90JCXB+fPqUOvPPlO3mZurjc7SpXP9ZeYOi+JQsh64vYxZ3Wk0aGzoFe/bO5kyZVLljQsGbaya1iVB1BVmv/AapezU4Kt//WPD+o9Hw7FRamA51DgzNx4PpuvQQR2Zl5qdHSxaZHg+bJgZY8eqHQhCFGXS6BaikGrUvIQ+ffx49r/0P7wfiW9gDQC8q/jjUNqRli3VKMxWVmrvwO//VuX1XoeJj4nP1TILUZid2nOZqDg12GCPpscxN1OHhBw8VT4/iyXE803RsWepYYHtdtXX8mLD37GxUhuLK48MIgFnKN8V7KoaDS1/qUcgmFlBqUaUavc5Y8epC3snJZkxZ55xYDNFUQOA/fgjjBqlxlaxt1eHTI8bh36Y9GefQcuWJn3FuapVK0N69JgnRvJozMFzIrj2Bcc6YG5NWcf7LBr8ruGYxZ/y0He1fn57RkPLU+vbF15+2fC95bvv1PfxwIFnfjlCFFjS6BaikGrQthoajfpP64Rv9m+pH9l+VR/kpVUjwxrfnTrB6p+v6hsSv21tSfO6Adw4fysXSy1E4bVri2G5nl7dE6hXTe3ZuXirBhEhD/OpVEI85zRm7DlmCFHeznMPDk729Gt7GoCImFJstLgL7bbyUFeD//5T87m4QPO+reHlBOh6HGqM5v2JNtjZqfv/9z+193zrVhg7FmrUAA8PGD0ali5V46k8GQOlT5/0A7cVZOPHq4/Fi6Ft2yd22pQDn3nQei30OA8DY6DPbV79ZAjdW14B4O5DFyasWgwOnmi18Ndf6qFWlsn0Ld4SLsyCyMtGp9Vo4LffFCZMuI2NjXq34sYNaNMG3nsPYmNN+pKFyBfS6BaikHJwcqCmqzos7tyN6iTEZi8C2oEzVfXpVm2NQ5X3HuzByu9O6HsIzlz3pEEzBzYsO5bh+XRaHdER0TktvhCFzq4DDvp0h16VaNkwVP/8yH/++VEkIYq8hARIStJAcgwErICDL4POOHro7gtqd20xqySavfU59Ali2ERDd/Mvv6m91uvXq0PCQZ1r/OScaycntYEN6hB0d3fo3l3tib1+3TivRqM2wl96CebMgV27YO3aAjSPO5tKlFCXAhs9OhuZNWZg64rGpTM//umBvRozjmW7X2HHTg379sG9e+q27o0OUiL5EPh+Cps9YbMXnJ+hLnmG+j4NGnSf06d1NG+uHqMosHAh1KunDtsXoigpZH8ahBCpNfYKBtTAL+cOXsvWMQeOGxbWbNm7UZr9L45uxtFdQdRwURv0D2NK0HtEEz56fS/JiWoveHi4OmdtyBAoVzYZ+1J21K/ux/fT9hF+N+JZX5YQBU58TDyHLqhL/1RyDqKadyVatLLS7z+4TyYkCpHb/vlboaKrjm6danB1cTs4MgRu/QX39+jzBAZCYJDaPd2suSXWFZuDRkO7doaAXdu2qet4Gw0tfyn9a77/PhQvnna7hQW0awfz5sGhQ+q63pcvq/8LJ02C9u3VhvjzomJFmD/f8PyNN9QRACkGtd1pfEDkBTg/HTbXhk210FyYjnXCNWpUV9i/H778Eqwfj27391dHDcg8b1GUSKNbiEKsUUPDnKgTBx9kklMVH68GOQGoVg3KZzAV1bulOyd9nRjQ9oh+29xf2tKqzmlaNrqPs7M6V2vFCggNUxseZ657MmZmG1wq2zCo42F2rDolwdhEkXF4qx8JSeo3wg6NA9CYaWjR2bD8zqETJfKpZEIUPUkRgbw/5CgvDtQQHmHJw2h7pv2Vatz2nc365B5D+5v27Q1pc3P1xjCoy2p++626QgeoDcYmTdK/dunSsGCB2oB2cYGRI2HNGggLU5clmzhRXXs6ZRj68+yNNwxD0m/eNEQtt7ODnh/Pgt43of5XULq58YFRfphdnEXtwJfh3n+Ym6s3O86eVed2gzrc/NNP8+qVCGF60ugWohBr1MIwl/v4SfNMcqpOnjREbU0dPCU9Dk4OrN7VlK8/2oeFuToe76h/Yw6dLIMuVVvazk6hlpshenpCkjWrdjWn86AGVCkfzLqlR7P/goTIodtXgtn9zxl8D14l9PYDk93o2bUtUp/u0EH91+lSrRxVyqoxD45fraX/bAkhntKtfwhaNZC2Te7w9YqmRrv+OT6AKxafqOti1/9Kvz11o7tdO+PTpTS6QR0CnrIcZnpDy1N76y11GHpQkNp7268f+qU1hYGZGfz8s2H1kxS9e4OtLera4TXfg86HoM9taLBIXTMcdUiAggacDHc/PDzg7683Ym2lTpdbuFDhqHyFEEWENLqFKMTqtqyOpbn6Tf/EhawjKB/YHqxPZ9XoBtCYaRg/uw371l/G1clwrKenjgkT1DlsYWEaLgZUxPfgVd57ZS+lHQw97rdCXek3qikTXttLUkJSepcQIkeSktS1cD8cfR0vN38q1XShw4s+1G3lTplKpSlWTIur010aul9iWI+D3L0RkuU5s2PX2Yb6dLsXquvTLTqon7v4BCtOn86VS4kC6PevD/FG7/1cPnEjv4tSpO3ceIf6b37HYf8WAFhZJNC5gbo8pqKYMe+/z9R1sR+P41YUQ6Pb1hYaNzY+n4cHNGumprWppoEPHJh1WczNn6/h4k+rWjWYNct4W7pRy21dwWMcdDoAfYLQ1V/EA8d+YFXSKJu77Tpm9FO7uBVFw/BX75MQccdEpRci70ijW4hCrJhtMepWVedyXw6qQlRYVKb5D/xn+MeVOghUVpr38OL8peKsW3qMG+dvc+mSGQsWqEP5rB5Pa/Vq4c5Xf7Tlzj0H1iw5Ssf6p/THf/VHW9o18ueO/N8UT+nIERgwQB362a4dzP+xGhdu1kiTL1lryZ3w8pzyr8WvW1ryxeTL6ZwtZyIj4cQZdSyppye4VDMsPNuytaU+fejQM19KFEAhgaG8PrExP29oTdO2pdj9z5n8LlLhFx0I52dCQph+09y50HnsOEKj1IWiK5WP5OCuh6za4YO9/eNVNX6D24aBVVy/rvZGA7RoYfh/lNrQocbPK1dO2zgXz+bddw03NypXVldDyZStC0qNd7hVbnLafdEBvN/9KxpUUW+2+N0ow6zhv6gB9EL2QkK4YX02IQoRaXQLUcg1rq9GGlEUM06dyvgjrU3ScviC2kgp4xhKjTrZX2YMoEQZR/qMbEKVOhUzzWdlY0W/UU3ZfqI+336yT98Tf+h8LerXV3vHhciJ+Hjo0UOdVxmV6r6SRqOjac3zvPfKXob3PEC3xifwqeZHuRKG3u2DJ8umc8ac2b8f/ZSKDh2M97VoYUgfPPjMlxIF0IUTt0nWqjdXImNL0OXlOvwyTyo7U4kPIeAPODMRjr0BBwbAro6wrSFsqAYbqsD5aXBTnQR86BB89JHaswnQrZvC6fOONGpdFgcHePFF9SZxcrIacCvF7t2G9JNDy1O89BIUK2Z4PnCg9GDnNnNzdb780qWwc2f6Nz+yrcNuLLoeYNm0v/VT2+Zs/JBzB/xgVztY4wSr7SD8lPFxSdFGN3GEKGik0S1EIdeoqyEC+YmzGUd2uXDUn8jYEgC0qncNjZlpv3VozDSM+awNBzZfpWL5RwDcvw+dO8Pnn2M0L1yIzOz6x5eIx0HxS5ZUeOUV+P13uB8cxxE/L776oy3/29iKLccacfqaJ3cjyuJV4y4A5296PPOar6lvFD3Z6K5VS11yB+DQIR2KTnpgihr/G8ZLKyZrLXl9Uks+HbVX6vsJigJXr8KiMT/QtY8TbV7pyZUD++H2GgjZpTaUolMN0b/xKwB//23YNHEibNqkwcmw0AaDBt3Xr+e8dCmEPh6oldl87hQlSkDfvobnGUUtF8/Gzk4NOle9etZ5M6XRgHMzvIfOZcqH8YD6mRv+0zKStY9j12hjoZiz8XF3NsCa0rDRHQ4PgauLIfw06GRqmygYpNEtRCHXKNWqXymRydNzYLuh969V87yL+NSkSx3OnLena1f1uU4Hn3wCk96PzPxAIR5b/4/hd2XZvOP88Qe8+iqULpfOuj6PNW6tzrXWajWcPfts19+19SEAZmaKPlJvCjMzaF73JgChoWZcOxf4bBfLRTqtjvu3sj+NRKTP/35NfbpN/av69KylbXmt62ESYhPyo1gFQ9w9fXLCBKhRQ51HPX7pZP7z7cr+y214/w9D0DM05lDMCUrUhbqfQ6s1KAps3KjutrCAKVPSBjkrWTKZkSPVRndsLHzzjfF8bnt7aNiQDM2fr/ZwL1gADRrkxgsXeeHj6fbUrq2mTwc2YMGRVVCuEzjWAhsX48wPHkdce+QPgSvg5DuwrQH87Qg7WqmjLm6tgViZ5ybyhzS6hSjkatY0LF1y4kTG+Q4eNsw9bdmxjIlLZczJCTZvhhkzQKNRvzgtWOTIxl8yuUsgBGrDceM+dwCsLePo9KJXto5LfTMqs89FVkICQ7lwtQQADdyv6nu1U2tRN0CfPrg96OkvlovC70bQvM4lylZ2ZsHEvfldnELN39+QXvGvOwsn70OjUYfq/LmjBZ2aXiboljaDo03D1MsxZjoSKTmO6/s28e3YH+jbzle/+ccl6hzrJ+242I3ItrfhxSh4OQn6P4DuZ6H2FChekStX1OWhQA3wmd5nDOD99xUsLNT0d9+pn+uQEMNxKfvS4+oKf/2l3hgQhYeVFSxbZrgJM33ZAL73286x0heJjX+iwu2rQ+lmYPbE2HZtHIQeBL8FcHAAHB2WJ2UX4knS6BaikDM3N9y5v3ULQoIepcmj6BQOnFXXFLazfkTdlmkDUJmamRlMnQoLpxm+pA0dU4Nbl4MzOUo8707s9OPeQ3VedqdGvhR3tM3iCFV2R4BkZfcGQ4urfdO76eZp2a6EPm3KYGpn91/h+2n7uOmXecP+Ufgjure/w7HLdQCYv7Q2yYnJpitYEZfS6La2hgoV4N0v2rBu6Qlsi6nxNA6cr4t7TXNmzuSZpzJkx751Z3FyjKJ25Wssn3sg11eGmDlTXQLK3h5qVA6jldc5Xmx3hHEv72PMgF24V7pD9bY9GffdaLZf6Gx0rIWFOsx73jx45RV1W1KSGRt3u4KlfbqTqVN6uQF69cq4XBUrwuDBavrhQxg2zLAvo6HlovBr3Bjee09NJyTAmDHQtKn6+1mrljrqafFiiKs0DjofVm/udD6mLk9W+RWwq2p8QqcnFmhXFDg5FgL/VGMRCGEqSiEWExOjnDx5UomJicnvomQpOTlZOXnypJKcnJzfRRG5qKDU68ThxxX1P4eibPzlWJr9131v6vd3bngiH0pooNPqlL6tjujL08zTV0mMT8zXMqWnoNRtUfXgTpiy79+zSvTD6EzzTRmxR/+7svTz/dk+f2KiohQrplNAUWq4Rei357ReR/Tar7/+9pUn080TGxWjWJonKKAoNV2vZeu82mSt8sOMfYpHhetKx/onla8m7VEuX0xQdDrjfOH3IpTvpu5VfKpd0pfD3iZS+efHIxmUJVZpW/e0Pm/KY9ffp7NVrsLMFJ/ZpCRFsbRU38M6dYz3ndhxUSlf8p7R+1yxoqKs/FOr6LS69E+YC56s30rOt5Xvpu5VYqNin/ncDx4YXm92HrZE65+s/zNaiYw0nOvAAUO+Pn0yvmbr1oZ8V6+m3Z+6Xi9fVhSNJm05Tqb/0RQFWE4+rzExitKiRea/i40bK8q9exmcIC5EUW5vUJSzHyvK/cPG+x5eVJQ/UB+rbBTl+GhFiUznF1Fk2/P2/Sm77VHp6RaiCGjU0NCLdfxw2q6WA9tu6dMtm0TnSZkyojHT8L+/a+JWRl335YifF5+8mXvdg6Ghai+IKHi0SVr++/MkL3U4jEvl4rTpU5deba9mGoxq/Y4KgBqpvNcrNTPM9yRLS/CpehEA/8ASRNyLeKoy7z5eGVDXC27R3TPdPDb2ttSvoc71vRxUjQdBD9LNl+KmXxCdG51l9LTWXLlTlZ2nG/D+3LbUrG1F9epqT86KH4MY1PEw5StaM2ZmG85cN1z7UZwDA95qyvuv7TPq5UyMS2RApwvsPecDgJnGMOR59ZpnCSf8/Lrld5ukx29xjfKBRvsadqzFRX8n3n1XHXEE6nJWg14xo5X3eU7t9sv18gReDNLXr76Moa6MmdmGKpUeMW/CXh6Fpx3tlF1//43+9ZYuDY7F0/6/MDdLpnW9K8z5+DpHjxjGob/wAjg4GPI1bw7lyqnpbdsgOp1/PeHhhtEh7u7qnPDMeHhA//7G20qUgHr1Mj9OFG62trBvHxw4oM7nf/11tc4tDbPmOH5c7QG/dCmdE1iXAddeUHcWODcz3ndnsyGtjQP/H2CTB+zvC6GHZHkykWuk0S1EEdCotWEZrxNn0waXOnjQ8MWoVfsSeVGkTJUsW4JVv0XqlwOZ92tbtvz2DBNvH/trlULFilC1Kvjl/vdd8ZRunA/i01F7cSsfQtdXG7J6d3MSk9U1fPac9WHP2vTXPb5+7iYXb6nfwpvUvERZN+d082Wksbeh8XtybzqTTbMQcOE2ASGVAGhe+xK2DhkPbW/Z0HCtw9vTv5aiU1j6+X68Gjiw60z9dPPcuAHffw9DRruyaldzEpKs9fsauV+kZzPDWPmv/2hDuya3uHMHtEnJvNbjFFuOqePq7awfsfNvX2ys1Rtya3bWJllGmOeY/3lDAMoaLoFp9pd0smDhQjh/Hn2wSIBDF71p1NGD91/dS2xUXKbXCL39gGlv7eXLD7OOhr7iD3N9emj3g/Roavh9CHlYhklftaVx3ftPPeT8958Mi2Dv3AkPo+2IfRRPwMUgjmy9wM7VZ3gQksC+Mx5MmlUNL6+Mv0aamRmihsfHw5YtafNs2wbax/eGMhtantrkJ5Z2bt3acNNDFF3m5tCyJYwdq87zPnNGvZGzd686Zx8gMFC92ZN6Kbks1XwPOuwB9zFgkbICjAJB/8KOlrC9OQStl8a3eGbS6BaiCKjsWQFnBzVK8Qm/qmmi6R445wGApXkijTt65Hn50tOkSx3mTjD0cA8ZU5Ug//TnzGbHxuXHee01LQkJEBEBb74p/yMLgq+/hup1KzBraVuCwgzRZu2sDb1x8+enH4Rqw0pDgLLeXTLvPU5PoyaGQDvHD+d8hMf2dYbrd2iVebT9Fq0NjeND+9OONrl9JZiuTU4z6pPWPIpTuwMrlr7Df3+e4uLRa8z/7D7t2qUNBuVkH8b4QfvwPXiV41dqs+FgI76bug9Lc3UFgkPnquHjA3273uHvPWoPjrVlHJv+vE67/j707KWe8MED9cupyBl/vxh9uoZ7xi07T0/YuhU2r76FRwU1KpiimPH1n22p53mPw5vPpzkmMRG++gpqeFozc0lbPpjflt++zHjUj6LAr6vVqPwajcLMr2ux6Uhjzuy7wovtjuiDu10OqsbBbYE5fq03zt/i0Bn1Bm6dKgF4e6vbbeyscavlStOudejwog8lSme8asCTBgwwpP/5J+3+TZsM6Z49s3fO+vWhSxfDc5nP/fyysoI2beDoUfB5PAAkMlL9/fj112yexMwCyraFht9Cn9tQb65xZPSwo7C/DxwflculF88dU41vX7x4sfLSSy8p3t7eSoMGDbJ1zKRJkxR3d3ejx/DhwzPML3O6RX4rSPXavYlhXreT/QPl3Zf3KGf3X1ZCQgxznpo2isvvYhrRaXVKr+ZH9eVrWeeskpSQlOPz7Fx9SilmGZdmjtfy5Vlff9+/Z5Vbl++k2VeQ6rawOnRIUczMDPVhpklWejY7pqz96YgSGxWruJW5pd93/lDaOXSp565eOpa9udKpXTl1XX987xbqHOic1GvXxobP1PHtFzPNGxIYYviceZ5XrlxRlFWrFGXSJEXp3PqeUrzYI6PfzRG99isP7z9Mc57ISEVZu1ZRpk5VlL9/u6skxCake72j2y4oFV1i0/zOW5onKFtWHNfn+/tvw76RI7N8yYWaKT6z417aq3//9q49k61jEmITlHkT9hj9TdJotMoHg/cosVGxik6nKJs2KYq7e9p5qTVdrynaZG265009R7pDh7T7ly8w/L5OmJDz1zrzHUP8hDnv7cneQdGGOd1KdNr4DElJiuLkpO4uXlydm5siMVFRSpRQ9zk6qs/Tk169nj2rnrdiRUW5fz/7r1EUHLn9eX30SFF69DD+PH36qZImTkb2CpegKNd/VZTNXob53jdX50o5nwfP2/en7LZHTdboXrRokbJ8+XJl9uzZOWp0jxgxQrl//77+8fBh2i8lKaTRLfJbQarXZXP2p/kCpwbZCdanJ07M71KmFRYcrlQsHaQv49z39+To+EObfBXbYtGGwGx1rujTpUvFKw/uhKd7nE6rU97ovU/fUPl+6l6j4EcFqW4Lo0ePFKVqVcPv4VuDA5U714yj3CyaYmjQDHs5xGhfWHCYYm6WpICiVC8f8FSBqbTJWsXRNkIBRXEpFawoSvbr9eH9h/rgaK5Od7J1/RouN7IMPOVSKtioUfwsHjxQlK5dU93UMNMp//wSYJQnJkZt7ICilCqlUxLji+7vsyk+s91S3Xi5c+1ujo71O35daVLzvFH9e7hcVrq0umW0TaNRFGcHw02bNUvSD5I3YoThmBUr0u5/8MBwk8vTM2evU6fVKe4VDL+/6d2ITFcWjW5FUW/2pGRZu9awfe9ew/aXX874EhnVa3z8UzaoRIFgqsCH77yTtuH91HQ65d7J9Ur4jvHyy5YDz9v3p3wPpDZu3DiGDRuGu7t7jo6zsrLC2dlZ/3B0dDRRCYUoWl6f1Iq9a8/yaudDWFsa5hDeCi2vT7dqlR8ly1yp8iVZ9Uu4PujTnP81z3YgtNN7LtN9YCViE9Thji+0OMa+k1V4sa86vPdBeDEmv30h3WNnf3CcpetbA5CkteKdmW14rethoiPyN9BcUfH+e4p+7d1mzeDbZZVxqVbWKM/wDxpQwlGde/rHmjIEp1o9bvN2R7Q6dWh07y6haMzSLjWUFTNzMxp6qIUIDi/PnWvZn76wZeVFkrRq8LE+Hfyzdf2WPhkv5VXa4QFv9dvPRT9bur3WKMN8OeHkBJs3w4IF6hDLNWs09B/qZpTH1hZ6dQkHIDxcw+416c+fF+nzv63GESheLJryVcpmkdtYzUZVOXiuJnPf34uVhTrl50qwB/8dMMTgaNkSTp6E3xYbgl1+scAhzdzu2KhYVv+lTsq3szPMlU7NyUkNJAVqTIuAgLR5MnJylx9X76jLSrate4aKHi5ZHJF9qQOfrVljSKdeKiy7Q8tTK1Ys3RXIxHPMwgK+/Vad1pTyu/HZZ7Bu3dOd79BhDRWavEC1gV9z6vQTv2xHhsKp9+D2WogOkPlsIksWWWfJW8ePH6dZs2Y4ODjQtGlTxo8fT8mSJTM9RqvVotWmPyewoEgpX0Evp8iZglavLV/wouULsOh+JKuWHOOXP8tw0r8WALa2Cs2a6SggRTXSpGstXnsxlN9WlyMi0ooFC3TMmJH5P7BLx2/QpU9pImPVG3Md65/izy11MLMwY8HsCLZu1RIdb8/S9a0YvOkczbvV0R+7cqWGj79ukuacf+5owZm611m9+i7u9SsDBaduC5ONv55g6c/qt//ixRWWL9eh0ZDmd8/GwYY339Iwd64aMXnRIh1ffKHW+/qNhnvCPYbUf+p6aFTvIbsetzOP7Q6k5zAnIOt6Xbuzuj79Qn+7bF3/g6nlOep7ndjkktRrXJJ69RTq1VPw8YEKLiXQmLXI1rVzavx49aGeO+3+AZ0vs2ptcwD+WhlHx5eK5u90bv89TkpIIiBEjdBUo0IQOqUG5PDUGnMNE+a1omv/a4wYptX/Pa7kEs3cL20ZMEBBowHFqx4+0/w4c92TU/61+O+vE3QaaAi2t+bn0zyKbgnAi90DsbaumG5dd+2q4fBh9bOzebOO0aOz1xBY8b/7gFq2VwY+yv57qNVirk9q0/0FbNMGSpQw4+FDDRs2KMTG6ihWDDZtMgM0mJkpdO6c8f+mgvZ/VuQOU9br2LGQmKhh0iT1szBkiMLhwzpq1crZeb7/XoNWa0ZEBPTtq3DsmI4yZYCgdZgH/KZmurIQAMWyBJSsh1LSB6V8VyjT/rm9K/S8fWaz+zo1imLaWzNr167liy++4OTJk1nm3bx5M9bW1ri6unL79m2++uorbG1t+euvvzBPJzRlbGwsfhKiWIhM+V+15uChEtSrF42PT8Htxb1zx4r+/WuTnGyGra2W9esvULJk+uGWw+9EMmyYJ8ERai9+05pn+HJJHMWKF9Pn2fi/28z4oQ8AdSpf5udVkVhYWnDqlB1jxtQgKUn9Z/zBqIO4uTxg8tz2+gBXxYtF8/nEnbTsU5GCKjbWjI8/rsKdO8WYO/cGVarE58l1Hzyw4OLF4lSokED16mmvGXX/ES8PqsX9yDIATJt0il4vZn6+nj29SE42w94+mU2bzmNpqdCxY11iY81xdEzmv//OpQkwll3Ht9zm7al9ABj70iaGTiyf+QFAQoKGTp0eX98hif/+O4OFZeENj5wQm0iXznWIjrenRPGHbNtxBQurAnfPvcC5dz2Mni91BqB3i318usguiyMyl5yUzL41wSQlQbv+5Shma7yM2+GNtxk3ow8Areqc5OtfDF/YJ45IZs859Ubhim824tk8/Z7oK5etePU1LwA6NjzOnB+z/r1NTtLSq0sVQqOcKWYZz46tJ7EtYZOt12QWF4fP4yFUZw4cQGeT/nHTprmxebN6w+vrr69RuXI8/fqpN0J9fB6xdOnVbF1PiOxSFPjkkyr8918pACpWjOe33y5jb5+9BlJyMnTuXJeoKMPfyvr1H7F48VUqPlxK+bCf0JBxEyq2mDshJV8j3KEzaOTv7fPA09MTW9uMVznJUaN7wYIFLF26NNM8W7ZsoVq1avrnOWl0P+n27dt07NiRX375hWbNmqXZn9Lodnd3z/RFFgRarZbz58/j5eWV7g0EUThJveausWM1/PCD2hgeP17HggVp/zwlJybTsdFlDl6sC0D96n7sOFAOR2eHNPma1gng7A11becFE/fQdWhrWrUyIyJC/TL7xhs6Fi9We5qungnkpRe1nA80TIl5tctu5i1rSdmyBatuFZ3C6/39+H2j+uW6SxeFzZt1WRyVvrDgCN4e7E9EZDG8a0VRz8ecek3LULOBGxZWFmiTtBzbeYlt6yPYdqgmp/0MjdbOnRUmfxhHq7bF9OUa0O4k6w+pvdw9mx1n3b76WQ7NHjlSwy+/qPX+5dQLeDT2pGdP9T0fMkTHsmVPf2/4zrW7VK6p9lZ2rH+KzUe8svzMbtoEffrkzvULisHdjrJyh9rTvuHX43R/tYHR/qSEJD4aeRQ/fzu+/NYRz0ZV86OYzyS3/x5vXnGS3q+rDd3Jw3fz2U9tnvmcmdEmafGqfkc/zPvApnM061qHIP9gqtSqgKKYUbXsTS7fcsHMPP3ZgYpOoVLZB9yNKIe1ZRyh97XY2GfegN7650l6DVFf54A2R1i1q3H2Cx0Tg/njaYDayEgonn5k840boW9ftU6GDtXh5QUffKC+htmzdUycmPFnTP7PFk15Ua+xsdC6tRlnz6r/g7p2VVi/XpetJeb274f27dNmHDNGx8KFCsQFQ9hxNBFn0EScgYdn0cQFG+VVrMui63kdzK3TnKcoe94+s7GxsVy9ejXLRneOAqmFhYUp165dy/SRkGAcaXXNmjXZDqSWniZNmigrV65Md58EUhP5Teo1dwUHK4qNjRr8pJhVgnL7anCaPFPeNEQ7r+R8W7l/KzTD8x3ddl7RaLRq5NxijxS38oZgRV27qkFXUouJjFGGdj9gFISlRAmdsnBhxpF180N6QfPOn3+6cw1/XZtuwC9ry1ilfvVLSsni4VkGB2tV56yy7Y8Tys9fGMrl7HBfuReQvbDCF87FG9XpyBcNwafWrHm616Wn0ynlS95VIyTbxSiJiVl/ZlMHrPr332e8fgHx78+Gz83Q7geM9iUnJiuvdDqo3+/qdEcJ8k/72Svocvvv8dcfGQL9LZ+7P1fOmZX/zTZ8hno1P6ooiqJ88a4hqvj00XuyPMeIXoZzZCdo36COh/T51//vaM4KnI1AaoqiKHFximJnp2YrWVJRWrUyHHbpUuaXkP+zRVNe1WtAgCGCPijKlCnZO27iRMMxY8YoipVVNlZGib2nKAErFWVbYzXi+YXPjffrtIpy829Ficv4e0tRkGt1q0t/JYeCJt+jl6d4lkb33bt3FQ8PD2Xnzp3p7pdGt8hvUq+5b+KoC/p/bG/23We077//FEWj0SmgKBbmicrhzb5Znu/NvvvSNBLrecUpUVHp59dpdcrSz/crxa1jjI6pWVNRtmzK/3q+eMRfsbGKSfOahg3L+bkuXzZe0is7Dx/vOGXcOEWpXDnzfP/+nLMv792bHNMfa6ZJVm+8WMYpjyJic/7CntD7heRUX/Az/8wmJyYrzk7qTQBbW0WJffbLFwhx0XGKg81D9eaD7UMlPiZeURT1933kC2lv4tSr6qdEhWXwISmgcvvv8dsjI/Tvx8FtAblyzqwkxCYork539Nf1PadTPCoYlr67cf5WludY+9MRQ2Nh4N5M80aFPdL/PSllF5bhEnUZymajW1EUZdCgtH8nqlbNOii0/J8tmvKyXnfuVBRzc8Pv3d9/Z31MzZopq0IoSmiooixdaji+WDFFOZ7Z/SydTlFC9ilKfJjx9vCzhiXItvgoyumJihL8n6IkF6zlXJ9VpnWb8FBRwk6pS7D5/5R2/6n3FWV1CUVZaakoR57ii00+yPfo5cHBwfj5+REcHIxWq8XPzw8/Pz9iYmL0ebp27cqOHTsAiImJYe7cuZw9e5agoCCOHDnC22+/TeXKlWlVEEMuCyFMYtK08tjbRAHwvw3NuH7uJgDBwfDaa6Ao6jCxL6aF06y7V5bnm/2DN84Oofrnrk7BbFobgb19+vk1ZhpGTmmF32ULevZ8oN9++TJ072lO9yYnuHH+VvoHP2HBAqhQAQYNgvPns3VIpmKjYhj4kkJcojp8aXC3I5Qooe774/dkgq/fy9H5pk0D3eNR6ZM/iGHbHyeZPX4PA9sfpoZLAACOtpG82O4Iy+ceJPh6CKfPWbNoEfj7w6/fXqam6/U05x3R6wC9R6QNVJeZDyZa6tM6RR2O1qH+eeyyObc0M40aG4a3nTiR+VD3Q1suEBqmDpfv2uIqGUxRLXSsi1vTu436SxgZ68iOv8+h6BQmDNnPzxvU/7EW5km4lFIjvJ+9UZOB3S6TnJh+XIXngf/NEvp0DR+3PLmmlY0VH3xg+B0d/EosV+6oQ/3beJ+lSp2s40x06FcLS/NEALbsc0sTCT21dRuL6/+evNTtKlY2VhnmfVapo5in6NnzuY01JfJQhw4wf77h+bBhcOVKxvmvXVP/54O6+kbp0jByJIwerW5LSFBXEAgJyeAEGg2UaQ3FShlvv7fDkI44A37zYU8XWFMaDrwIgX9CYmROX16BZJ78EO7vg6uL4cQ7sLMtrCkD/5SAbQ3g4EA4/Z56HyM1XSIkPQRdEiTHpD1xYWaqVv+kSZMUd3f3NI+jRw29H+7u7sqax2MH4+LilOHDhytNmzZVateurbRr10755JNPlNDQjIdgSE+3yG9Sr6YxfbRhOOVrXQ4oycmK0rat4S5z9+6Kos3BqKN/fjismGmSldIOocq5A1eydUxK3R45kqw0a2bcO1OhVHCWvYAXLqjr76Y+rlfbK8rRbU85DlxRlOE9DT2S3lUuK7FRscrkN0/pt330+u5sn+vMqUT9cWXKqOtqPykuOk5JTsz8dzs5MVn554fDik+1S/pyPU0PqU6rU+pXv2T0fi35bF/WB2bDf/8Zzjl2rDbTz+z4QYYhxSu+Opgr1y8oNv5yLNXn6qAy9WPDsH6NRqus/OaQ4nf8utGUglEDTpl0eVqdTlF8fRUlJCTrvFnJ7b/Hbm7qe+DgkLdL9EZHGw+HNQxxP5D1wY+19zH8XfA7fj3DfJ06Gc5/6NBTFjabPd0xMerokdSvaceOrC8h/2eLpryuV51OUV57zfC7N3RoxnkXLjTkmzPHsD0hQVFatjTsa9kyh1PPwk4qyukP1V7ulB7vJx8rLRXlwItP+zLzRnK8ojw4oShXf1SUM5MVJey08e57BzJ+fU8+Yu8an/vCbEXZ4G4YCVAIFJjh5aYkjW6R36ReTSPyQaTiZP9A3xh4rcdpQ4O3gjrUK6duXw1WIkIeZjt/6rrV6RTlzx8uGQ37nPrmnkyP79clIMOh1x18Tio7V5/KskGb2oqvDHNuixd7pP8iHXz9nmJpnqAfNpzdBm+Ppsf151u4MNvFyJBOq1MCLtxW4qKffpjcn4sOGb1PwdfvPXvBFEUJCzOcs2nTjD+zOq1Oqex8WwF1+kL4vYhcuX5BER8TrzjaqkPMzc2SjN7rn78wzFne9+9ZxcoiPt0vnbnp0SNFefVV9RrOzs/e8M7Nv8fx8YapF88QluapzZxp/DfDtlh0jm5mLZhouHH55Yd70s1z547hNVap8pQ3FnLQ6FYURenf35Ddzk5txGRF/s8WTflRr48eKUqJEurvn5WVotzL4F9Mhw6G39MLF4z33bunfg9J2T99+lMWJi5UUQL/UpQjryvKP07GDdEDA9PmPzRYUU5/oChXf1CUy4sU5fwsRTkzSVGOv60oh15TlAMvKcrJdxUlyt/4uGe5Y/jQT1HuH1KUe7sV5drPinLsTUXZ2kC9MZC6vE8ME0+OuJR+A3tNOUXZ0UZRjgxX57sH/qUoienc8S9kpNFdwMg/jaJJ6tV05n+wx+hLJyiKublW2Z838YzSrdurpwMUC/NE/ZfgjBqFJ3Zc1Je5vPMj5euvFcW1TFia12NjFaM0remrjO6/T/lp1j7l5K5LSuyjOCUpSTF6XDp6VSle7JH+uN++NO7xer2HIfjb1x/tzfK1Hdrkq89fsXSQEhdTMH5/E+MT9fNXOzc8kavnrl4xVAE1QNzRI8fS/cye3uOnf186NTiZq9cvKJ4MFAiKsvDrtO/FHz9eNcqTQTzTp3bpkqLUqmVcjtkTjjzTOXPz7/Gls4b53INezvtgPuHhimJX3BCLYEjXnI368DtumAfewedUunkWzNfp83z66VMWNIeN7pUrDdn798/eJeT/bNGUX/WaOkDajBlp90dGKoqFhbrfzS39NuuRI4Y54ubminI0h/EH09AmKcq9PYpyYpyirKukKAF/Gu9PeJj9nuMHT/zvvP6roqyyUZS1FRRlUx1F2d5KUfa+oCj7+yvKjrbqtjXlFGVn+7Tl2tE6e9d8ImBccuwDJXJdI0V7fIx6kyBkf9r57UVIvs/pFkKIZ/HO1Cb6+aUpZr6zn/wM8VDDx423+h8GIDahONPeT39S2CdTYg3p0acYPx6uB9rx8xf7qV4+UL8vLtGWo5e9+GFNa0Z90pqGHTyxtbfG0hKjR62mNYhJUNcIfr3HAQa/39LoehM+LqdPf/2/apnOw1V0ClOmGNYpnfb+daxtC8aSHpbFLNmzvzjL5hzgj3VVcvXcjWuqdRWfZEOQ34N086xbaZgT37dXEZtL9tjAYZWMnn/2Gbw7Pm39v/JmDT7/3PB86FA4ezZ3yrDq28M0aqTj0iXj7Ut/L49O+3RL3+U2/1OGdaNrOO7P8+uXLAljhhrKMHK0Y46O92hQhSpl1dgT+33r8Cj8kdH+m35BLJgdoX/+6qvPUNgc6NMHWrRQX98HH+TNNYVI7Z13wOxx62fxYnV+dmrbt6trdAP06pV+zIGmTeHTT9W0VguDB0PMs/zLMLOAsm2h4SLoHQiVBhrvj7qc/XPZuho/T4wAbRzE3YHICxB6AO5sgNtr4P5edVv8PYi7m/ZcZsXSuYAGHDzBbTA0WATt/oMqQ4yzWJXAv+IPKPUXQo23oEyrtPPbn0PS6BZCFEg29jZ8Ms5f/7xzw5N89FXrfCyRauqC2jjYqIFO/rehBRePXDPav3/9Of470RAAtzK3GflRM0ANkDRicmv8Al1Z+c1hBrQ9QrVyN3N07VqVrvHtH/XTbK/drDrdmpwA4FaoK/8sOZ7hOXauPs0+33oA1HAJYOiEZjkqg6mVr1qW1ye1orSrU66et1EDw42IK76J6eZZ918Ffbr3a+7p5insOvauhI+P+kXy44/VR0YmT1aDBwEkJsLSxY8yzpwNCbEJjBm4j0HjmhMTo3798PKCJp5+ANwIqcyuv08/0zVyi/9lw42zGh6WmeQ0nZlfVWfehL38uegwrV6om6NjNWYaurcOACBJa8WutX76fQ/vR9Kjaxz3wtUvwV0ancLDI9eKnSlrazh4EEJD1YaLEHmtcmU1CBqogdBWrzbev3GjId2zZ8bnmTIFGj9e0t7fHyZOzKUCajRg9sSNUKfG0PuW2sBtvBSa/Q6t10OHPdD1JPS8Ai9ch04HwbqM8bGW9uBYB2xcwDydyKDm1mBbUd3/pIr9wOM9qPUR+HwJHffBi5HQ8xI0/w08xkH5zmkb+iJdFvldACGEyMioKS0Iur2X+6FmzPmhDmbm+X+f0LliaT4atZcpi9qiU8z5aEI4G9XObxSdwsefGPJO/+AmVjbG0YYtrCx4eWxzXh6rPo8MjeTswQDOHI/kzDlzAu67odg88Q/s4XmcSsTy5XflKO5YPN1yfTDRgq0D1PT8b0ry0jsKGjPjW/SKTuHjadb65zM/uouFVe72KBdUjVoY7rJfupT2Pbx29iYXbtYAoGnN87hUyzoyfmFkZQXHj8ODB1CuXOZ5NRr46ksdy5Yp6HTmHNhxF8gg7H8WHt6PpEvr2xy/0ka/bWi/ayxeUZ1tv0fS/01125Ifk+j0cs7Pr+gUQm8/yDRSd074XzP8ralRK2e9zLnFspglExe0ferju/ctw/d/q+nNRxvRZyQkxiXSv+t1Lt5Sb97VcAng97Vuz17YHDIvGINrxHNq/HhYs0ZNL1qkroyi0ai91lu2qNvt7KBNmwxPgaUlrFgBPj4QGws//KD2jHfrZoICazRQvKL6yIxd1bTbqg1XHym0CWrvty4BipUGc9uMlxCo8dbTl1mklUfD3U1C5nSL/Cb1WnRlVrcxkTFKhVLB+nlhe9acURRFUbasMAQn86zon6NAac/qyejfKWVKbd3So/r93lUuK9rkvJ+rml9iImP0wcNqV/JLU6/zJhhiCMx9f0/+FLKASvm90mi0Tx1c7oPBhve3mGWc8vMX+xWdVp0smRifqJQrcU8fwO7ujZwF0Dt+6JHSzFONU9Ct8QElMSEn4YTT166eIXhjWHD4M58vP8TGKoq1tfoaXFwURZusU4Z0M8zpd7J/oPifCXy2i+RwTvfTkP+zRVN+1qtOpyj16xt+dQ8+Xqji8GHDtn79sneuH34wHFOu3NMFei1qnrfPrMzpFkIIE7F1sGXWJMP61BMnW6NN1vHxdDv9tpmTQzG3zLvuHI2Zhg/GGuZozp+XRGSkuhbp3t1aVn5zmMkzSuv3z/o0skCMHMgrtg621Kms1pnf7RrERBpPwFu3xTCcve9rbnlZtAKvVaP7ACiKGYf/888id1qJcYn8ur42AFYWCRz+L4ARk1vpR2JYFrNkeH91+HOy1pJlC/0yPFdqwcHqXPPGLew44qeOTNh6vCU/zDiU4zI+yf92WQBK2YVTqnzJZz5ffrCxgfbt1XRwMLza8wK/bVXjQRSzjGfDymCq16ucjyUUIn9oNPDuu4bnCxeqP7M7tDy1N9809G7fu6c+V3JnwI0oYp6fb1xCCJGLBr/XDC83tQFy8mpNXu13hzPXPQGoX92PfqOa5HmZBrzZmErOQQBsOdaIEiWgZk1o18GcV95tzuWgaoA6fLrn0EZ5Xr781tg7BACdYs6HI88wZtRD+veHFi0Ujl5WG4W1K/lTw8ctH0tZ8LRsZaVPH9iT82hBm1acJjTKGYA+rU9Rv51nmjxvvFcdjUYNorZ0VbVMA6rFRSfw+SwFd3f47be0+6d82ZDAi0GZlulR+CN2rDpFfEx8mn2xUXEEhanzG2u4Bmd6noKue3dDetU29caERqPj90VnaN6jaE6hECI7XnoJyqr31li3Dm7dgk2b1OcajfFnJzMaDfzvf+D0+L7t2rXp/10SQhrdQgjxFMwtzZm/2DAf+q+NhrlWs6ZF50svsmUxC8aPjsg0j7lZMvPm6tLM934eNEp1n2HJujZ8v7QEa9fC4cMaUgZ+9X1VAsI8qVW36vr0geM5j0D7v2WGER/DR6YXDRfcarvSpdEpAALvV2T7qvQDqh3efB7PqqF88qlGHy24RAl1XubI3gcAiEmw440hIRnO7w7yv4u350M6D2rA0BfSXuf6eUODvUblh1m9vAItvYbD/A/2M2B0wQqgKEReK1YMRo9W01otfPghnD+vPm/c2NAgz47y5eGnnwzP33lHjZ0hRGrS6BZCiKfUpZsFnToZb2tZ5xxdX2mYPwUCRk/24pVXoHZtdWjpq6/ChAmwYMpJ/lh4iAtHb+U4EnJR0blfVYpZpu3ZBHUJo44dYfyEdKK7PufKujlTw0WNhH3iSk3iHsVl+9g71+6y7bgatKti6Tt0fNEnw7yjRhqWsvtpSdpl745vv0iXAW7cDFVvjJibK7zzDly7BuPGwbyf6lDRSW0w7zzdgOXzDqY5x/1boXRsF0fgffUm2erdzTl3wHjpP/+LYfp0jWoZL79XGFSpAp4VDVNh3h6wj/fnZBIdSojnyFtvqcElAf76y7A9u0PLU+vXD4YNU9MxMdC1q6ERX9jpdOqNCfFspNEthBDPYN4848Cfn8/S5GsvsrU1/PEHXLgAu3bB77/DggUw4fOGvPJuC2o2Sie66XOisqcrh7cHMPv9f1m79CjH9t7j5k2Ij4fwcNixwzBEUBhr6XMHUJefOrEr/fXp0/PLN1fQKWpP9+v9/TG3yPhrR88hDShfUl0rfcOhhgTfMjTuzx+6Std+LkTHq9HTW9Y5x7ljYXz3naHOHJwcmPrhKf0x73/mTfB1w9rrESEP6dw2nCt3jD8Dc2aEGT33v2y4MeNeM3+WC8tNn38aSrkSIYzqs59Ff7R4Lke5CJGesmXh5XRWS+jV6+nOt3ixIeJ5RAR06qQuJ1YY3boFS5ZAnz7g4KBGc+/WDb79Vr3RKXJOGt1CCPEM6tWDjz5S08OHQ+ve3vlaHpG5uq3c6fRKRV54vRGN25SjUiV1mKHIXKvWhvSB3Q+zdYxOB8vWq73cGo2O18dVzzS/ZTFLRryiNpK1OguW/aaOOrh6OoBOPUsQEaMGNGtb9wzbD7tTu0HpNOfw6eDKa13UHu7IWEfeHnYTRafwKPwR3doGcS5AXZDa1SmY0g4PAFi9uwnXzt7Un8M/0EGfrlGrcAZRS63vG025G1GWJetaY2ElK8UKkVrqgGoAFSuC91P+G7exUYOxpazfHRICHTqoDdiCTlHg8GF1mL2Xl7qe+Vtvwfr1as99fDxs26aOKqpRA9zd1fdu714JHJdd0ugWQohn9MUXEBUFP/+c3yURwjRadTbELDhw1C6TnAb79sGNW2oDtkObGNxqZT1ffuTEevqRI0uXQsDFO3TsYkXIwzIANKl5gQ27q2Njn/E0gC+X1qSMYygA6w824bevj9O7WzjHLtcBoIxjKLu2J/DesAuAGlhv3te2+uP9w+rr0zXqZ36jQAhRuNWvD61aGZ737JnxstXZYW8PW7caGu63b6sN73v3Mj8uvwQHw5w5atDVFi1g/nx1pFxqzs5QoYLxNn9/+OYbaNcOmjSBf/9Vb7SKjMktTyGEyAX29vldAiFMp5p3JcqVCOHew7IcvlATbbKCuUXm30z/9z9DesSb2fuAVK6szoXculXtHWrQtDgR0SUA8K5yha17XbEvlfm5nFxK8v3sE7z4thoxfdgHhpUEShaPYMemCNzru/O2aynmLEvmUbQFv65yZtoX6hfLlOGgZcqAQ0mr9C4hhChCPv5YDTqo0cCQIc9+vlKlYPt2tTHv768Ox+7USY2SbmtrnNfKCkqnHbTzzBRFnWq2c6cabLJcOTXgW8rP69fVv9Fbt6ZtLGs0am999+7qkPIGDdRtFy7Ali3q49AhwzzvEyegb181lszkyTBgQO6/nqJAGt1CCCGEyJTGTEPLVmb8sxEexdnhex58Mo6JxsOHsGaNmi5ZUp0XmF1vvql+EQT0DW73CgFs312KkmVLZOscA0Y3pd+mENZuMYQgtrNT2LYpHu+W7gCUKOPI2+/A3LmQmAhffQUzZsDdu2r+GjWyX2YhROHVpQscPQpmZmoDMzeULas2eFu1Um8gXriQ8d+UwYNzd5mxqCh1ulvK3+DsatcOhg6FHj3SvxHg5aU+Jk1S/8Zv3qzGjDl7Vt1/8SK89hpMnWrGyy+XxtMz7U2G55kMLxdCCCFEllp1dNanDxzIPO+fS24Q/zge2WuvqQH+sqtHD3Apl6B/Xtk5iJ27ilHWzTmTo9L6/n9lKfl4Sra1NWzapKFxm/JGed57z1C2JUvg2DHDPml0C/H8aNQo9xrcKSpVUgOaliuXeb4VK8DPL3euef48NGyY/QZ3xYrw6adqz/fu3WqjOzs97yVKqKujnD6tNr6bNzfsu3FDwxdfVKZGDTO+/hr98o7PO2l0CyGEECJLqec9Hky7GpeR//1saDSPGBKdo+tYWMDHo44C6jJjO7drqejhkqNzgPpFd+tWGDlS/eLbJp2VssqWVXuEQP1i+P5bt/X7alS4k+NrCiFEatWrq38v33lHXVYs9aNpU0O+X3999mv9+qs6vzplioyjI6xcqV7/n3/UyOMff6z+zXvjDfjvPwgIgJkzoepTLmyi0ajD0A8eVIOqpV5GNThYw/vvq9OGZs1Se8dB7Ynfvx8WLVKXWWveHKZOLfoB2WR4uRBCCCGy5O2txi549Ejt6VaU9AMOnd1/hdPXPAFoUOMSdRvWyvG1Rk9rTac+gVSoVgZbh6cfn9ikifrIzMQJWpb8CFqdOb7XDAHjalS4BVTI+EAhhMiGatXgu+/Sbr9/X40jkZys9nZ//jmYm+f8/PHxMHascTDX+vXh77+fvjGdUxqNemOzTRs4elTL5MlR7N2rDjUKC1N70+fNU2NlXL+e9vgjR8DDQ+09L6qkp1sIIYQQWTI3h+YNIwA1Eu/1czfTzfe/7w1heke8+uCprqUx01DDx+2ZGtzZ5VbVnFc6H0mzvUbtUia/thDi+VWmjNpLDGoU8Z07c36ObdvU+BqpG9yjRqmBzvKqwf2kRo1gwYIbnD2r5dVX1bnyoN6wTa/BneLdd9UbEUWVNLqFEEIIkS2t6pzTpw/8l3bx2fiYeP7YrK6VY20Zx6DRdfOsbM/io+lpJ11W95JebiGEaQ0bZkjnZIj5lSvq8mbdusHly+o2Gxv1HEuW5CyOhqnUqQO//w5Xr6o3Aqyt1TI2bQqjR8NPP6mRzwcOVPOHhak99kWVNLqFEEIIkS2tOpTUp9Ob1/3ttKNExKh5BrQ/RYkyjnlVtGdSq0l1+rQ8qn/uUuoudiWztx65EEI8rR49wMlJTa9bB5GRmed/+BAmTFAbtJs3G7Y3baoGgsyNJc9yW7Vq6o2AmBi1t/vIEVi8WJ1X3rChOvQ+5T1YvVpd87sokka3EEIIIbKlUQcPLM0TAThw2tVo387Vp/noK0O0tdFjC0eDO8XkTw3rf9esfDcfSyKEeF5YWcGgQWo6Pl5tdGbk33/VVRW++kqdBw7g6qqux334sLqcV0FmZpb+nHVnZ/jmG8Pz0aMhIiLvypVXpNEthBBCiGyxsbOmkYc6ltE/uAr3AtQJeAEXbvPSCDd0ivqN6uORe2neo4B/A3xC4861+XTUXrzcrvLxlHQixAkhhAmkHmL+yy/p57lwAV5+GR48DpNhba1G/L58GV55Jf2gloXJoEHqcHlQY4ZMmJC/5TEFaXQLIYQQIttaNQ7Xpw/9d52YyFj6vhBLeLQaeKx7kxPMWNwqo8MLtJlL2uIb4E77AT75XRQhxHOifn2oXVtNHz5sWPIrRUICvPaa+hOgVy91TveMGVC8eN6W1VQ0GvjxR3BwUJ8vXw7bt+dvmXKbNLqFEEIIkW2t2hm+5R3Yn8iIUdacC/AAoIZLAH9scMfc8inWvRFCiOeQRpN5QLVp0+Dc4xiWdeqoQ9ArVcqz4uWZChVgwQLD81GjIDo6/8qT26TRLYQQQohsa96lBhqNDoAf/2nKX6vVrxL2dkmsX6ctNMHThBCioEi9tNZvv4FO/RPLgQPq+tYAlpZqNPCCEJncVEaOhPbt1fTNmzB5cv6WJzeZrNEdFBTElClTaN++Pd7e3nTs2JFvvvmGxMTETI9LSEhgxowZNGnSBB8fH8aOHcuDB0+3zqcQQgghclfJsiWoU/kaAAlJxfTbV/xuiWfj6vlVLCGEKLTKl4cuXdT07duwZw9ERcHgwaAo6vZZs6Bu4ViF8alpNLB0Kdjaqs9XrDC8/sLOZI3uGzduoCgKM2fOZPPmzUyePJlVq1bx9ddfZ3rcF198wZ49e1i4cCErVqzg/v37jBkzxlTFFEIIIUQOtWpoHN172jTo3TufCiOEEEXAk0PM331X7e0FaN26aAYXS0/Vquqc7jJlYOjQwh8kLoWFqU7cunVrWrdurX9esWJFAgICWLlyJZMmTUr3mEePHrFmzRoWLFhAs2bNALUR3r17d86ePUu9evXSPU6r1aLVanP9NeSmlPIV9HKKnJF6Lbqkbosmqdfc0a6jJYv/UdO9eun4+GOF/H5LpW7zgVaLuT6pxRS/BFKvRZPUa1o9ekCJEmY8fKhh5UqF5GS1tWlvr7BsmTrevDC8XblRt/37qw/1PLlRKtPJ7us0WaM7PY8ePcLRMeO5XhcuXCApKYnmzZvrt1WrVg0XF5dMG91Xr17N7aKazPnz5/O7CMIEpF6LLqnboknq9dm41bdiwmsbiYk155WxTvj65unXiUxJ3eYds7g4UuK8+/r6orOxMdm1pF6LJqlXYx06VGLNGmd9gxtgwoRAHj4M5+zZ/CvX05C6NZZn/yVv3rzJ77//nmEvN8CDBw+wtLTEISVe/GNOTk6EhoZmeJy7uzu2KYP/CyitVsv58+fx8vLCPL2V4UWhJPVadEndFk1Sr7nH55eCtayW1G0+iInRJ729vU2yfpHUa9Ek9Zq+996DNWsMz/v2Vfj440poNIUnXPnzVrexsbHZ6gDOcaN7wYIFLF26NNM8W7ZsoVq1avrnISEhjBw5kq5duzJw4MCcXjJL5ubmhaZSC1NZRfZJvRZdUrdFk9Rr0SV1m4dSvc/m5uZGz3P/UlKvRZHUq7HmzcHbG3x9oVw5+OknDRYWhfP9eV7qNruvMceN7uHDh9O3b99M81SsWFGfDgkJYciQIfj4+PDZZ59lelzp0qVJSkoiKirKqLc7LCwMZ2fnnBZVCCGEEEIIIQoFjQbWr4dVq+Dll6F06fwukcgtOW50lypVilKlSmUrb0qDu3bt2syePRszs8yDpdepUwdLS0uOHDlCl8dx82/cuEFwcHCG87mFEEIIIYQQoihwc4OPPsrvUojcZrIlw0JCQhg8eDDly5dn0qRJhIeHExoaajQ3OyQkhK5du+Lr6wuAvb09/fv3Z86cORw9epQLFy4wZcoUfHx8pNEthBBCCCGEEKLQMVkgtUOHDnHz5k1u3rxptHQYwJUrVwBISkoiICCAuLg4/b4pU6ZgZmbGuHHjSExMpGXLlkybNs1UxRRCCCGEEEIIIUzGZI3ufv360a9fv0zzuLq66hvgKYoVK8a0adOkoS2EEEIIIYQQotArOAtrPgWdTl0oPnVPeUGVsnB6bGzscxHJ73kh9Vp0Sd0WTVKvRZfUbT6IjwcPD0Nao8k8/1OQei2apF6LruetblPaoSnt0oxoFEVR8qJAphAWFkZgYGB+F0MIIYQQQgghxHPKzc0NJyenDPcX6kZ3cnIykZGRFCtWLMvI6EIIIYQQQgghRG7R6XQkJCTg6OiIhUXGg8gLdaNbCCGEEEIIIYQoyKR7WAghhBBCCCGEMBFpdAshhBBCCCGEECYijW4hhBBCCCGEEMJEpNEthBBCCCGEEEKYiDS688Aff/xB+/bt8fLy4sUXX8TX1ze/iyRyaMmSJfTv3x8fHx+aNWvG22+/zY0bN4zyJCQkMGPGDJo0aYKPjw9jx47lwYMH+VRi8TR++uknPDw8+Pzzz/XbpF4Lp5CQED744AOaNGmCt7c3vXr14vz58/r9iqKwaNEiWrZsibe3N8OGDZMlKAsBrVbLwoULad++Pd7e3nTs2JHvv/+e1DFhpW4LvhMnTvDWW2/RsmVLPDw82Llzp9H+7NThw4cPmTBhAvXr16dhw4ZMmTKFmJiYPHwVIj2Z1W1SUhLz58+nV69e1KtXj5YtW/Lhhx8SEhJidA6p24Inq89salOnTsXDw4NffvnFaPvzXq/S6DaxLVu2MHv2bN555x3WrVtHzZo1GTFiBGFhYfldNJEDx48f59VXX2X16tUsX76c5ORkRowYQWxsrD7PF198wZ49e1i4cCErVqzg/v37jBkzJh9LLXLC19eXVatW4eHhYbRd6rXwiYyMZNCgQVhaWrJ06VI2b97MpEmTcHR01OdZunQpK1asYPr06axevRobGxtGjBhBQkJCPpZcZGXp0qWsXLmSqVOnsmXLFj744AN+/vlnVqxYYZRH6rZgi42NxcPDg2nTpqW7Pzt1+MEHH3Dt2jWWL1/Ojz/+yMmTJ5k6dWpevQSRgczqNj4+nkuXLjF69GjWrl3Ld999R0BAAKNHjzbKJ3Vb8GT1mU2xY8cOzp07R5kyZdLse+7rVREmNWDAAGXGjBn651qtVmnZsqWyZMmSfCyVeFZhYWGKu7u7cvz4cUVRFCUqKkqpXbu2snXrVn2ea9euKe7u7sqZM2fyqZQiu6Kjo5XOnTsrhw4dUl577TVl1qxZiqJIvRZW8+fPVwYNGpThfp1Op7Ro0UL5+eef9duioqKUOnXqKJs2bcqLIoqnNGrUKGXy5MlG28aMGaNMmDBBURSp28LI3d1d2bFjh/55duow5e+wr6+vPs++ffsUDw8P5d69e3lXeJGpJ+s2PefOnVPc3d2VO3fuKIoidVsYZFSv9+7dU1q1aqVcvXpVadeunbJ8+XL9PqlXRZGebhNKTEzk4sWLNG/eXL/NzMyM5s2bc+bMmXwsmXhWjx49AtD3nF24cIGkpCSjuq5WrRouLi6cPXs2P4oocmDmzJm0adPGqP5A6rWw2r17N3Xq1GHcuHE0a9aMPn36sHr1av3+oKAgQkNDjerV3t6eunXryt/mAs7Hx4ejR48SEBAAwOXLlzl16hStW7cGpG6LguzU4ZkzZ3BwcMDLy0ufp3nz5piZmckUvkImOjoajUaDg4MDIHVbWOl0OiZOnMiIESOoUaNGmv1Sr2CR3wUoyiIiItBqtTg5ORltd3JySjMfWBQeOp2OL774gvr16+Pu7g7AgwcPsLS01P/TSOHk5ERoaGh+FFNk0+bNm7l06RL//PNPmn1Sr4XT7du3WblyJa+//jpvvfUW58+fZ9asWVhaWtK3b1993aX3t1nm6xdso0aNIjo6mm7dumFubo5Wq+W9997jhRdeAJC6LQKyU4cPHjygVKlSRvstLCxwdHSUv82FSEJCAgsWLKBHjx7Y2dkBUreF1dKlS7GwsGDIkCHp7pd6lUa3EDk2Y8YM/P39+fPPP/O7KOIZ3b17l88//5xly5ZRrFix/C6OyCWKolCnTh3ef/99AGrVqoW/vz+rVq2ib9+++Vw68Sy2bt3Kxo0b+fLLL6levTp+fn7Mnj2bMmXKSN0KUYgkJSXx7rvvoigKM2bMyO/iiGdw4cIFfvvtN9auXYtGo8nv4hRYMrzchEqWLIm5uXmaoGlhYWGULl06n0olnsXMmTPZu3cvv/76K+XKldNvL126NElJSURFRRnlDwsLw9nZOa+LKbLp4sWLhIWF0a9fP2rVqkWtWrU4fvw4K1asoFatWlKvhZSzszPVqlUz2la1alWCg4P1+wH521wIzZs3j1GjRtGjRw88PDzo06cPQ4cOZcmSJYDUbVGQnTosXbo04eHhRvuTk5OJjIyUv82FQFJSEuPHjyc4OJhly5bpe7lB6rYwOnnyJGFhYbRr107/XerOnTvMnTuX9u3bA1KvII1uk7KysqJ27docOXJEv02n03HkyBF8fHzysWQipxRFYebMmezYsYNff/2VihUrGu2vU6cOlpaWRnV948YNgoODqVevXh6XVmRX06ZN2bhxI//++6/+UadOHXr16qVPS70WPvXr19fP+U0RGBhIhQoVAHB1dcXZ2dmoXqOjozl37pz8bS7g4uPj0/SkmJub65cMk7ot/LJThz4+PkRFRXHhwgV9nqNHj6LT6fD29s7zMovsS2lw37x5k19++YWSJUsa7Ze6LXx69+7Nhg0bjL5LlSlThhEjRvDzzz8DUq8gw8tN7vXXX2fSpEnUqVMHb29vfv31V+Li4ujXr19+F03kwIwZM9i0aROLFy+mePHi+vkn9vb2WFtbY29vT//+/ZkzZw6Ojo7Y2dkxa9YsfHx8pHFWgNnZ2enn5aewtbWlRIkS+u1Sr4XP0KFDGTRoED/++CPdunXD19eX1atXM3PmTAA0Gg1Dhgzhhx9+oHLlyri6urJo0SLKlClDx44d87n0IjPt2rXjxx9/xMXFRT+8fPny5fTv3x+Qui0sYmJiuHXrlv55UFAQfn5+ODo64uLikmUdVqtWjVatWvHpp58yY8YMkpKS+Oyzz+jRowdly5bNr5clyLxunZ2dGTduHJcuXWLJkiVotVr99ylHR0esrKykbguorD6zT948sbS0pHTp0lStWhWQzyyARkm5PSxM5vfff+d///sfoaGheHp68sknn1C3bt38LpbIgSfXbk4xe/Zs/Q2UhIQE5syZw+bNm0lMTKRly5ZMmzbtuRk2U1QMHjyYmjVr8vHHHwNSr4XVnj17+OqrrwgMDMTV1ZXXX3+dgQMH6vcrisI333zD6tWriYqKokGDBkybNo0qVarkY6lFVqKjo1m0aBE7d+4kLCyMMmXK0KNHD9555x2srKwAqdvC4NixY+kGXOrbty9z5szJVh0+fPiQzz77jN27d2NmZkbnzp355JNPKF68eF6+FPGEzOp2zJgxdOjQId3jfvvtN5o0aQJI3RZEWX1mn9S+fXuGDBnCsGHD9Nue93qVRrcQQgghhBBCCGEiMqdbCCGEEEIIIYQwEWl0CyGEEEIIIYQQJiKNbiGEEEIIIYQQwkSk0S2EEEIIIYQQQpiINLqFEEIIIYQQQggTkUa3EEIIIYQQQghhItLoFkIIIYQQQgghTEQa3UIIIYQQQgghhIlIo1sIIYQQQgghhDARaXQLIYQQQgghhBAmIo1uIYQQQgghhBDCRKTRLYQQQgghhBBCmIg0uoUQQgghhBBCCBORRrcQQgghhBBCCGEi0ugWQgghhBBCCCFMRBrdQgghhBBCCCGEiUijWwghhBBCCCGEMBFpdAshhBBF3LFjx/Dw8ODYsWP5XRQhhBDiuWOR3wUQQggh8tPatWuZPHlyhvv/+usv6tWrl3cFKiT+/PNPjh49iq+vL3fv3qVv377MmTMn3bxRUVHMnz+fHTt2EB8fj5eXFx999BG1a9fW5zl27BhDhgzJ8Hrjx49n9OjRAAwePJjjx4+nm8/CwoKLFy/m+JxCCCGEqUijWwghhADGjRuHq6trmu2VKlXKh9IUfD///DMxMTF4eXkRGhqaYT6dTseoUaO4cuUKI0aMoGTJkvz5558MHjyYtWvX4ubmBkC1atWYN29emuM3bNjAwYMHadGihX7bW2+9xYABA4zyxcXFMW3aNKN8OTmnEEIIYSrS6BZCCCGA1q1b4+Xlld/FKDRWrFiBi4sLGo0GHx+fDPNt27aNM2fOsGjRIrp27QpAt27d6NKlC99++y1ffvklAKVLl6Z3795pjv/+++9xc3PD29tbvy29xvL69esB6NWrl35bTs4phBBCmIrM6RZCCCGy4ZtvvqFmzZocOXLEaPunn35KnTp1uHz5MgCJiYksWrSIfv360aBBA+rVq8crr7zC0aNHjY4LCgrCw8OD//3vf/zxxx906NCBunXrMnz4cO7evYuiKHz//fe0bt0ab29vRo8ezcOHD43O0b59e958800OHjxI79698fLyonv37mzfvj1br+ncuXOMGDGCBg0aULduXV577TVOnTqVrWMrVKiARqPJMt9///1H6dKl6dy5s35bqVKl6NatG7t27SIxMTHDY319fbl586ZRQzojmzZtwtbWlg4dOmSaLyfnFEIIIXKDNLqFEEIIIDo6mvDwcKNHRESEfv/o0aPx9PTk448/Jjo6GoADBw6wevVq3n77bWrWrKk/z99//03jxo354IMPGDNmDOHh4YwcORI/P7801924caN+uPXrr7/O8ePHGT9+PAsXLuTAgQO88cYbDBw4kD179jB37tw0xwcGBvLee+/RunVrJkyYgLm5Oe+++y6HDh3K9PUeOXKEV199lZiYGMaMGcN7771HVFQUQ4cOxdfX91neSiN+fn7UqlULMzPjrxxeXl7ExcUREBCQ4bEbNmwAyLKBHB4ezuHDh+nQoQO2traZ5s3uOYUQQojcIsPLhRBCCGDYsGFptllZWXH+/HkALC0tmTt3Lv369WPOnDl8+OGHfPzxx9SpU4dRo0bpj3F0dGT37t1YWVnptw0cOJBu3bqxYsUKvvjiC6NrhISEsH37duzt7QF1DvSSJUuIj49nzZo1WFio/6ojIiLYuHEjM2bMMDp3YGAg3377rb4necCAAXTt2pUFCxZkOGdZURSmT59OkyZN+Pnnn/U91i+//DI9evRg4cKFLFu2LKdvYbpCQ0Np2LBhmu1lypQB4P79+3h4eKTZr9Vq2bp1K97e3lSuXDnTa2zZsoXk5OQsG9I5OacQQgiRW6TRLYQQQgBTp06lSpUqRtue7J11d3dn3LhxfPnll1y5coWIiAiWLVumbxgDmJubY25uDqgN6KioKHQ6HXXq1OHSpUtprtu1a1d9gxvQzzN+4YUXjM7r7e3Npk2bCAkJoWLFivrtZcqUoVOnTvrndnZ29OnTh6VLlxIaGoqzs3Oaa/r5+REYGMjo0aONevMBmjVrxvr169HpdGle/9OIj483ukmQImVbQkJCuscdOXKEBw8e8Oabb2Z5jU2bNlGqVKksA6Pl5JxCCCFEbpFGtxBCCIHaqM1OILURI0awefNmfH19ef/996levXqaPOvWrWPZsmUEBASQlJSk355edPTy5csbPU9pgGe0PTIy0qjRXbly5TRzq1Migt+5cyfdRndgYCAAkyZNyuhl8ujRIxwdHTPcn13W1tbpzttO2VasWLF0j9u4cSPm5uZ079490/Pfvn2bM2fO8NprrxndpHiWcwohhBC5SRrdQgghRA7cvn2bmzdvAnD16tU0+9evX89HH31Ex44dGTFiBE5OTpibm7NkyRJu376dJn9Kr/iTMuplVhTlGUpvfI4PP/wQT0/PdPNkNTc6u5ydndNdUuz+/fuAYZh5avHx8ezYsYNmzZpRunTpTM+/ceNGIOs52jk5pxBCCJGbpNEthBBCZJNOp+Ojjz7Czs6OoUOH8uOPP9KlSxejyNz//fcfFStW5LvvvjPqgf7mm29MUqabN2+iKIrRtVJ6sitUqJDuMSk95XZ2djRv3twk5UpRs2ZNTp06lWa4uq+vLzY2NmmG9APs3r2bmJiYbEctr1SpEvXq1cs0X07OKYQQQuQmiV4uhBBCZNPy5cs5c+YMM2fO5N1338XHx4fp06cTHh6uz5PSc526R/rcuXOcPXvWJGW6f/8+O3bs0D+Pjo7m33//xdPTM92h5QB16tShUqVKLFu2jJiYmDT7U7+eZ9W1a1cePHhgtIxZeHg427Zto127dunO9964cSM2NjZGc9XTc+nSJa5fv07Pnj2zLEd2zymEEELkNunpFkIIIYD9+/dz48aNNNvr169PxYoVuX79un797fbt2wMwZ84c+vTpw4wZM1i0aBEAbdu2Zfv27bzzzju0bduWoKAgVq1aRfXq1YmNjc31cru5ufHxxx9z/vx5nJycWLNmDWFhYcyePTvDY8zMzJg1axZvvPEGPXv2pF+/fpQtW5aQkBCOHTuGnZ0dP/74Y6bX3b17t35t8qSkJK5cucLixYsBdf3wlCXUunTpQr169Zg8eTLXrl2jZMmSrFy5Eq1Wy9ixY9Oc9+HDhxw4cIDOnTtTvHjxTMuQ3aHlOTmnEEIIkduk0S2EEEKQ8fDv2bNn4+LiwqRJkyhZsiRTpkzR73Nzc+P999/n888/Z8uWLXTv3p1+/frx4MED/vrrLw4ePEj16tWZP38+27Zt4/jx47lebjc3Nz799FPmzZtHQEAArq6ufP3117Rq1SrT45o0acJff/3F4sWL+f3334mNjcXZ2Rlvb29eeumlLK+7fft21q1bp39+6dIlfXT2cuXK6Rvd5ubm/PTTT8ybN48VK1aQkJCAl5cXs2fPpmrVqmnOu23bNpKSkrLsvdbpdGzevJnatWune56nOacQQghhCholNyKyCCGEECLPtW/fnho1arBkyZL8LooQQgghMiBzuoUQQgghhBBCCBORRrcQQgghhBBCCGEi0ugWQgghhBBCCCFMROZ0CyGEEEIIIYQQJiI93UIIIYQQQgghhIkU6iXDkpOTiYyMpFixYpiZyf0DIYQQQgghhBB5Q6fTkZCQgKOjIxYWGTetC3WjOzIyksDAwPwuhhBCCCGEEEKI55SbmxtOTk4Z7i/Uje5ixYoB6ou0sbHJ59JkTqvVcvXqVdzd3TE3N8/v4ohcIvVadEndFk1Sr0WX1G0+iIuDFi3U9KFDYILvYlKvRZPUa9H1vNVtXFwcgYGB+nZpRgp1oztlSLmNjQ22trb5XJrMabVaAGxtbZ+LX8DnhdRr0SV1WzRJvRZdUrf5QFHgyhU1bW0NJvguJvVaNEm9Fl3Pa91mNdVZJkILIYQQQgghhBAmIo1uIYQQhUJSQlJ+F0EIIYQQIsek0S2EEKJAi46IpnfLYzjYJ/PLvIP5XRwhhBBCiByRRrcQQogCKyosiq6tbrDhUBPik2xY/L+S+V0kIYQQQogcKdSB1IQQQhRdkaGRdG19i6OXvfXbgkIzXo5DCCGEEKIgkp5uIYQQBU5EyEM6trjD0cteRtvvPSwjc7uFEEIIUahIo1sIIUSeC739gJ9m7Wfr7ycICQw12hcWHE6HFnc56V8LgNIOD6hb4zYAimLGvWBtnpdXCCGEEOJpyfByIYQQeerujRBatojnxr3W+m0uzlE0aOpA/fqwbrUFvtc9AShb4j67tkTxwx/VOeev5r0TYk3FKvlRciGEEEKInJNGtxBCiDwTEfKQzu2juHGvhtH24FAHgjfCxo0ADgCULxnC7v9iqNmoOhX2GvLeuZNnxRVCCCGEeGbS6BZCCJEnYiJj6NHuNhduqvO0KzsHMaDLNU5fcOR0gDeRkeb6vBUqwJ4d9tTwLKt/niIoKE+LLYQQQgjxTKTRLYQQwuQS4xLp19GPI34NASjjGMqO/5Kp4dMWAEWBGzfg9Gm4fRtefhlcXGz1x6dudN+5GQMUz7vCCyGEECLXffTRR0RFRbF48WIABg8eTM2aNfn444/ztBzHjh1jyJAhnDhxAgcHB5NcQxrdQgghTEqbpGVwz5NsP9kcAAebSP7bEE4NHw99Ho0GqlVTH+lxLXkbqAjAnQtngRamLbQQQgjxnProo49Yt24dAJaWlpQvX57evXvz1ltvYWFhuubjt99+m+3z50VDOTdJo1sIIYTJKAq8Pfwuq3erDW5ryzg2rQqkXuu6OTpPhSol9ek7IdLLLYQQQphSq1atmD17NomJiezbt4+ZM2diaWnJm2++aZQvMTERKyurXLlmiRIlcuU8BZE0uoUQQpjM1Knw0++uAFiYJ/HPzxdo9UKjHJ/HrqQdDjaRRMU5cie0RC6XUgghhBCpWVlZ4ezsDMArr7zCzp072b17NwEBAURFReHl5cUff/yBlZUVu3fv5u7du8yZM4dDhw6h0+lo3Lgxn3zyCa6u6ncArVbLvHnzWLNmDebm5vTv3x9FUYyu+eTw8sTERBYtWsSmTZsICwujfPnyjBo1imbNmjFkyBAAGjVSv1P07duXOXPmoNPpWLp0KX/99RcPHjzAzc2Nt99+m65du+qvs2/fPr744gvu3r1L3bp16du3r8nfT2l0CyGEMIlff4VZs9S0RgO/Lo2mx5CcN7hTVCj9gKjbjgQ9KIuiU9CYaXKppEIIIUQe8fsKLn+Vdb5S9aHNBuNt+16A8NNZH1vzffB8/+nKl4FixYrx8OFDAI4cOYKdnR3Lly8HICkpiREjRlCvXj1WrFiBv78/e/fuZeTIkWzYsAErKyuWLVvGunXr+OKLL6hWrRrLli1jx44dNG3aNMNrfvjhh5w9e5ZPPvmEmjVrEhQUREREBOXLl+fbb79l7NixbNu2DTs7O6ytrQFYsmQJGzZsYMaMGbi5uXHixAkmTpxIqVKlaNy4MXfv3mXMmDG8+uqrDBw4kAsXLjB37txcfa/SI41uIYQQuW7/ngTeeKOY/vlXX8Err5fM5IisuZZ5iN9tiE+yISIkglLln+18QgghRJ5LioK4bKx9GV8xnW2h2Ts2KSrn5cqAoigcOXKEgwcP8tprrxEREYGtrS2zZs3SDytfv349Op2Ozz//HJ1OR2xsLJ9//jlNmzbl+PHjtGzZkl9//ZVRo0bRuXNnAGbMmMHBgwczvG5AQABbt25l+fLlNG+uTlGrWNHwnjg6OgLg5OSkn9OdmJjIkiVLWL58OT4+PvpjTp06xV9//UXjxo1ZuXIllSpV4qOPPgKgatWqXL16laVLl+bae5YeaXQLIYTIVf5nAun7giNJSWqj++234d13n/28FcrF6tN3boRKo1sIIUThY+kANhWyzmftnP627Bxr+eyBxfbu3YuPjw9JSUkoikLPnj0ZO3YsM2fOxN3d3Wge9+XLl7l16xb169dHURR0Oh1mZmYkJCRw69YtHj16RGhoKHXrGuK5WFhYUKdOnTRDzFP4+flhbm6uHz6eHTdv3iQuLo7hw4cbbU9KSsLT0xOA69ev4+3tbbS/Xr162b7G05JGtxBCiFwTfjeCHj0VwqPVBnHXNsEsWuSCJhdGglcor9Wn7wRG4SUBzIUQQhQ2ns8w9PvJ4eYm1KRJE6ZPn46lpSVlypQxiipuY2NjlDc2NpbatWuzYMECtFotfn5+eHp6Ym5uTqlSpZ7q+inDxXMiNla9Ob9kyRLKli1rtC+3gr09LbN8vboQQogiIzEukX5db+IfXAWAOpX9+WuNHbm1ukgFV8O/rDu34nLnpEIIIYRIw8bGhsqVK+Pi4pLlMl61a9fm5s2bODk5UblyZcqVK0flypWpXLky9vb22Nvb4+zszLlz5/THJCcnc/HixQzP6e7ujk6n48SJE+nut7S0BNQAbSmqVauGlZUVwcHB+uunPMqXL6/Pc/78eaNzpS6XqUijWwghxDNTdApvvnicfb71ACjjGMqmrTY4OOXe2pmulQx3vYNuazPJKYQQQoi80qtXL0qWLMno0aM5efIk9+/f5/jx48yaNYt79+4BMGTIEJYuXcrOnTu5fv06M2bMICoq47nnrq6u9O3blylTprBz505u377NsWPH2LJlCwAVKlRAo9Gwd+9ewsPDiYmJwc7OjuHDhzN79mzWrVvHrVu3uHjxIitWrNCvO/7yyy8TGBjI3LlzuXHjBhs3btTvMyUZXi6EEOKZ/Tz7AL9sbg2oa3GvX3Wfyp61c/UaFdzs9ek7wXLPWAghhCgIbGxs+P3331mwYAHvvvsu0dHRlCtXjmbNmmFnZwfA8OHDCQ0NZdKkSZiZmdG/f386derEo0ePMjzv9OnT+eqrr5g+fToPHz7ExcVFv0542bJlGTt2LF9++SWTJ0+mT58+zJkzh/Hjx1OqVCmWLFlCUFAQ9vb21KpVi7feegsAFxcXvv32W2bPns3vv/+Ot7c37733HlOmTDHpe6RRMpq9ngsePnzIZ599xp49ezAzM6Nz5858/PHHFC9ePMNjBg8ezPHjx422vfTSS8ycOTNN3tjYWP2cAVtb21wvf27SarWcPXuWevXqYW5unt/FEblE6rXokrrNmTbeZ9l/vh4Af313mIHvNM/1a4TciaGcq/r/o3u3JDZvsczxOaReiy6p23wQEwOPv1ATHQ2ZfL97WlKvRZPUa9H1vNVtdtujJu3p/uCDDwgNDWX58uUkJSUxZcoUpk6dypdffpnpcQMHDmTcuHH6509O1hdCCFGwXL6lRlMtVyLEJA1uAOfyxbG0hKQkuBOc8wa3EEIIIUR+MNn4vOvXr3PgwAFmzZpF3bp1adiwIZ988gmbN28mJCQk02Otra1xdnbWP1KGJQghhCh4wu9GcD9SXdqkZuVgk13HzAxcXNT0nWwsUyqEEEIIURCYrKf7zJkzODg44OXlpd/WvHlzzMzM8PX1pVOnThkeu3HjRjZs2ICzszPt2rXj7bffzrS3W6vVGkWuK4hSylfQyylyRuq16JK6zb5Lp28B6hJhHlUfmfQ9c3Ex4+ZNDQ8eQEyMlpyuKCL1WnRJ3eYDrRZzfVILJnjvpV6LJqnXout5q9vsvk6TNbofPHiQZl02CwsLHB0dCQ0NzfC4nj174uLiQpkyZbhy5QoLFiwgICCA7777LsNjrl69mmvlNrUnQ9SLokHqteiSus3arsOGod5lKiRx9uxZk13LwcYZqATA3v+OUK7y000/knotuqRu845ZXBw+j9O+vr7oTDgdUOq1aJJ6Lbqkbo3luNG9YMECli5dmmmelFDuT+Oll17Spz08PHB2dmbYsGHcunWLSpUqpXuMu7t7oQikdv78eby8vJ6LoALPC6nXoqsw121CbALJSckUd8z9oEbpWblSo083696WevVMd62aZQ/w3+NGd3Gz4tSr552j4wtzvYrMSd3mg5gYfdLb29tkgdSkXoseqdei63mr29jY2Gx1AOe40T18+HD69u2baZ6KFStSunRpwsPDjbYnJycTGRmJs7Nztq9Xt25dAG7evJlho9vc3LzQVGphKqvIPqnXoquw1e1NvyBatDTnUZwtG/44T5u+9Ux+zdT/a2rXNseUb5drBUP63u24p66bwlavIvukbvNQqvfZ3NwcU374pV6LJqnXout5qdvsvsYcN7pLlSqVZth4enx8fIiKiuLChQvUqVMHgKNHj6LT6dS7odnk5+cHkKOGuhBCPK8mvnObO+HNAPg/e/cd3lT1BnD8m05aCoXSMkrLKnQwyt4bB0uUJYIKKOAAWeIAxYWibBUQEVky/LEUkeli7132LqODUVZLd5vc3x+HJg3d0HS+n+fJ0zvOvfckJ03y3rP6DCzLsQa3cfN0teg1z55Vfx0dwcPDopfCo4KdcTkkKN6yFxNCCCGEyAYWG73cy8uLli1b8umnn3L8+HEOHz7MV199RefOnSlTpgwAN2/epEOHDhw/fhyAa9euMWvWLE6ePElwcDCbN29m9OjRNGzYEF9fX0tlVQghCoRd646zamtT4/r1e2V57cXLGPQGi10zLjqewEANAF9fNcK4JZWvaGq+GhysSyelEEIIIUTeYNF5uqdOncpXX31F//79sbKy4tlnn+WTTz4x7k9ISODy5cvExMQAYGtry969e1m8eDHR0dGUK1eOZ599liFDhlgym0IIke8Z9AZGvmf6SLe1jidBb8fG/Q2Z8cl2Rk5onepx92+FM3XsUdzcdAwf3wqdVdYC2YvHrqHXVwXA13U/0Pixn0NmlK9c0rgccsMunZRCCCGEEHmDRYPuEiVKMG3atDT3e3h4cO7cOeN6uXLlWLp0qSWzJIQQBdLS7/Zw+EILAGpVOs+kL8Pp1K8hAB9Oa0WrF6FePfNjju86T/cX7bl0ow0A1f0P80zv+lm67tljYcDDoLtazBM9h8xwr1LauBxyM2cGihNCCCGEeBIWbggohBDC0qIiDXw0oZpx/dtJkXTs25AP3r4IQEKCjt694cED0zG/freLJk95cOlGReO2jRuzPqfm2dNxxmXfGvaPkfusKVK0CK7FbwMQEpbx+CJCCCGEyBwfH590HzNnzsztLOZbFq3pFkIIYXlTploReleNldGl2QGe7tUIgPHTq7LtMBw8CBcuwNChMPeneN5/fQ8zV7RJcZ7NAY2yfO2z501fI77+pR7vCWRR+VJ3uB3hSsjdMhj0Bqys5f6xEEII8aR27dplXN64cSMzZszgr7/+Mm5LPkWzpmno9XpsbCSczAz5pSKEEPlYcDBMnqyWbWxg6nxTG3I7O1i2DIoVU+uLF0PNKlfMAu6BXXZSp44aaO3ECbh1K2vXPxOoaputdHqq1Ul9WsfsVr50BACJelvCgu7kyDWFEEKIgs7Nzc34KFasGDqdzrgeGBhIvXr12L59O927d6dWrVocPnyYMWPGpBh/a/HixfTv39+4bjAYmDNnDu3atcPf35/nn3/eLJgvDOTWhBBC5GMffQQPx6LknXfA29f8Y93LC2bPhldfVesXbngDYG8byw9fHGTQxy0ZMwYCAtT+LVugd+/MXVszaJy9pgLtymWCKVK0YgZHZI/y5UxThYUEJ1CmUo5cVgghhHgiq1bBZ5+Zd/eytGLF4KuvoGfP7DnftGnTGD16NJ6enhQvXjxTx8yZM4e1a9cybtw4KlWqxMGDB/nggw9wcXGhUaOst7LLjyToFkKIPEwzaHw8aDubd7vhU/ke9eokUq9xCeq0qMy5U5EsXVoegJIl1Rd5al55Bf793x4WbWwGQAW3YH7/XwQNnm4JwFNPwaRJKu3mzZkPukMu3SAqrhwAvpVuAjkTdHvUbQ5rHubhnjv10k0thBBC5A1TpsDZs7lz3ewKuocPH07z5s0znT4+Pp45c+awcOFC6tatC4CnpyeHDx9mxYoVEnQLIYTIfZt/O8rEhW0AOHgelv5t2udob/oIH/eFAReXtHsMzfpfbVyHbsNggI8n1cLVw8O4r3lzsLPTEx9vzeYN14Fymcrb2aOmtL5VozP9nJ5U+fKm5ZCQHLusEEII8UQ+/BA+/TTna7o/+CD7zlerVq0spb969SoxMTEMGDDAbHtCQgJ+fn7Zl7E8ToJuIYTIw2bOSEhzX3ScmjLL1+MSb79VgfSG6SjqXJSpS9qkus/REZr5HWfbsbpcvl6OyyeDqFzTM8O8nT1h+tXg62edYfrskjzoDg7OscsKIYQQT6Rnz+yrcc4tDg4OZus6nQ5N08y26fWm2VCio9VN+Tlz5lCmTBmzdHZ2dhbKZd4jQbcQQuRRVwL1rNuj5tp2d7nOnyvuEXDgDkePGjhy0oVjgV7YWCfy86xIbO1tn+haT7UMZ9sxtbx57RUGZSLoPnO+iHHZzz9z/bqyQ07VdF87G0KP58MBWLzUHr9GXpa7mBBCCJEPubi4cOHCBbNtV69exdnZGQAvLy/s7OwIDQ0tNE3JUyNBtxBC5FE//mRN0s3jwW/E0uDp6jR42rRfn6BHZ1UEK+vaT3ytpzqW4tMf1PLmLdYM+jjjY87ebmxc9m1YLZ2U2at82VhABfwhp04AWWvqlhkJcQn07n6XQxfUuZu3u8ef/ztGy+ef/LUWQgghCoomTZowf/581qxZQ506dVizZg1BQUHGoNvJyYkBAwYwYcIENE2jfv36PHjwgCNHjuDk5ES3bt1y+RnkDAm6hRAiFQa9IVevHx0N8+apZTs7eHNU5RRprG2zr0l3w6f9KOYQwYOY4mw5VA3NoKGz0qV7TNJgMK6uUKqMY7pps1PJUvY42EUTE+9IyA2HjA94DF+8s5u9Z9oY1+9FleSZng4smb6XFwc3tcg1hRBCiPymZcuWDBkyhClTphAXF0f37t1p2bIl9+7dM6YZOXIkLi4uzJkzh+DgYIoVK0b16tV5++23czHnOUuCbiGEeMSf8/fzyjs1aFU7hj93GrC2zrn+ykn+9z9I+r566SUoXdqy17Oxs6F1nbOs39uIW+FunNx7nlrNvdNMHxEBoaFq2dfXsnl7lM5KR/lSt7h4vRIhd1yz/fxbfjvKhAWtALCxTqCx7xl2n/InLqEIvYY05dtYePfdbL+sEEIIkWd0796d7t27G9cbN27MuXPnUk07fPhwhg8fDqj+3AEBAdSpU8e4X6fT0b9/f7O5uwubtEfdEUKIQmr2bANRcU5sOtCCdQv35fj1NYPGzG/DjevDhuXMdZ9qHWNc3rz+erppk3/v5sbgo+Xd7gMQHl2CyHuR2XbesKA7vPpmOTRNfT2OH76brYf9eL3zTmOaUaNg5EhINk6MEEIIIUSaJOgWQohHBIaUMi5P+b4EmkFLJ3X227nuOMfPqL5QjWvfomHDnLnuU8+5G5c3b0+/2faZPceMy76VblksT2kpXybKuBwSmD3X1zR4vU8I1++VBeDpekf4YEorbO1tmb+2BZ9/ZupyMH069OkDhtzthSCEEEKIfECCbiGESEafoOdKWCXj+r6ztdi57niO5mHm96Y5r4f1v5BOyuxVs2lVSjuHAbA9wJfE+MQ00549buqr5etx1eJ5e5SHe7xxOeTy/Ww554wZsGG3PwBuxW+zeJUHVtbqa1JnpeOLcVbMmwdJvQ1WrYKVi25ky7WFEEIIUXBJ0C0eS8yDGNrWOUrlMsEsWxqHlrMVgUJYTMilGyTozeeNnDQhPo3U2S/oXCh/7FBV22VK3OLFt3OomhsVWLZroIL8BzHFOfjfmTTTnr1gmi7Mt26ZNNNZSvnypq+vkKvR6aTMnKNH4cMPTeuLF+koVyVlR/qBA2HZ0jjj+uzvJOgWQgghRPok6BaPZcXsw2w7Vpcrtzx4ua89L70Et2/ndq6EeHKBV1M2q964vyEndp/P8rkWTNxJ7Srn8PO8lOJR3z+CqVMh8pHuyD9NOY/eoMa4fOul09g52KVyZst5qn1R4/LmQ2mPkHb2ihsA9raxVPQtn2Y6SynvaXpdQoITnuhcDx5A794Q//DeynvvQYeupdJM37OXHb4elwDYcaIOp/dffKLrCyGEEKJgk6BbPJbf/jAPBFatglq1YMN6qfIW+VtgiItxuVpFUy3mlFnuqSVP0z/LDjPo4+Ycv+zD2WCvFI8jJ4rzwQdQqRJ8840aDTw2KpafV9UE1KjZb32Qw8OCA0/1NM1DvXmrbappEuISuBjqCYCPx9Vsnboss8pXKmZcDg55/K+yxPhEXupwivMP76nUr6/KIz06Kx1v9w02rv/0XchjX18IIYQQBZ8E3SLL7t8K55+DdQAoVewuLi4q0L5xA57romPQ8zsJDwvn5pUwAnacY9PSg8yfsJNvRmxj7YL9uZhzITIWGGhaHvT2fVxKqiGql61y4tq1zJ3jyqlg+rxZ2TgCtlORBxR3CDd7JLlzB8aOhYoVEund4Ri3I9QUWD3bHMTdq2z2PKksqFxZPQD27FHzhT8q8GSQsQm+b+U7OZg7Ew8vU010yHX7xz7PqH672bSnBgAlSySwfLmaFz0j/UbUxsFOvTiL19UhKjwqgyOEEEIIUVhJ0C2ybN3SE8Yf3K8+d4KTJ3V06mTaP39dS0qUdqZsZTfqtvahU9+GDPq4JWNntOGFgY3Z8eexNM4sRO5LHnR7VUtkyDs6ABIT4dtvMz4+5kEMPbo+4G6kqjF/rukBwiOLEh7tbPY4dQpeeQWsHn4K3w+34c9djY3nGfZusdROnyOeekr9jY+HXbtS7j8bEGZc9q2Wc/3dkytb0Q0rKzV0eEjk481Z9sOn25m5ojWgWhasnn+KqlUzd2zJMiXo/cxhAMKjnVn+45HHyoMQQgghCj4JukWW/bba1OT0xZdLUK4crF8PP088jFORBxkev371vQzTCJFbAi+qQbJ0Oo1y5eIZOlTD4WE377lzVc10WjQN3nnHwJGLKgj0KnuVJWt8jCNgJ1e9OixdCmfPwmuvPMDayjRSeL2qZ2jasWb2PakseqqdqZvI5t9Ppdh/9pRpPm/f6jnb5zyJjZ0NZcqo1zXklnOWj9+49BAjvm5hXP/563206V4nS+d4e4Sptv2nhWn3ARdCCCFE4SZBt8iSiDsR/H1A9fksV/IGTTvWAkCngzdG1+f4wfu8/Mxu6lU9Q6fGBxn0/A4+fXMb343ZbjzH7pOPVyslRE4IPBcBQPlSt7C313B1VSNWg2pq/eNXB9I89uefYeESNRCZg30cq1fFU6J0+gFhtWqwcGkxLhy7zpCe22nf8BBLltqis9JlzxN6DO2a3zUub96aMh9nz5n6cPvVdkmxP6eUfzh+240bqiVCZl07eYuX366OQVPP46MBW3l9dMssX7/hU37Uq6pGeD90oTqH/jud5XMIIYQQouCToFtkyfqlJ4hLUFMF9XjmXIoavMo1Pfn1n+YcvuDHhn0NmftnK76c04aRE1pTrZqqPTt0sgyxsTmedSEy9OBuBGERalTuKuWuG7e/NyLGWBM9Y2EVoiNSdnTevx+GDTOtz1tgj3+Lapm+duWansxa1Zq/DjSgeuNMtnG2kNIVSlGrkhpZ7MhFX07uMZ8r/GxgCeOyd13PnMyaGQ8P9ddgUIF3Zty4cosR79UiMlY13+/ZZi/jf279WNfXWel4+zVTU/ufZsgUDkIIIYRISYJukSW//W6q4Xrx5RJZOrZFC1VjFh8Phw5lZ66EyB6XT5sC7cqepq4Slao60KudGgTwdoQrnw89wPpFpsefc7bSo7uehIczV40YAS+/nKNZz3YdWoUCoGlWNGlXjlWz9z5chzMh3gBULHsLx+JF0zyHpZV3NzWDD7kSkWqa+Hg1B/f8+fBO7wO0bJ5A0B0VrTf0PsWiP2un2vw/s/oMqWccGO9/fzfg/q3wDI4QQgghRGEjQbfItMh7kWzap5qWlylxi+adstbntHlz0/Lu3dmZMyGyR+DZ+8blKpXM2yt/+KmrcXnqkjZ0ea2R8dH17baEhKobUi1bwpQpOZJdixo9wZ/alc8BEBXnRK8hTXm/7zZCghIJf6BGC/etXTo3s0h5ux3G5ZDTpqbd5w4HMnrIJRo0gGLFoF49GDQIflzRiMs3KwBQwS2YtX+54Vjc8Yny4FTSib7PBQAQE+/Ikl9zp4+7EEIIIfIuCbpFpm1YG0tsghpRqvtTZ7M8N2/yoHvX9lTmIRIilwVeMA0QVtnLfI7qOq186NIs/SnvyrncYuUKA7apT2+dr5Ryd2FPgCd9O5iGL5+2tA2tm9w0rvvm/DTiZsqXN30GXTgby+Jpu2lV6xi+DaowebYXhw+rmu5H1a96gnVroihbOXtuGrz9UX3j8uy5DmhaOomFEEIIkbEC9mVqk9sZEPnHb+tNNX09B9XK8vE+PlDK+QF3wouxZ2csBn2RJ2rWKUR2C7xsGjSskncxwLy2e9FqH5bO3E5ERMovAjs76PmaF2XLFZz3tGNxRxZtaE6TcdsZ+XVTEvR2BF4vb9zvl8tjIpavaKqlHvNdmxT7dToNX18d9epB/fpQr2Y4tWoZuBwST4061bMtHzXrOtGihZpe7cwZ2LkTWrXKttMLIYQQBZ+mQfgpCFkLwX9ClQFQ7a3czlW2sVjQPXv2bLZv386ZM2ewtbXlUCY68WqaxowZM1i1ahURERHUq1ePL774gkqVKlkqmyKToqJgwwa17OYGrZ4umeVz6HTQvOZp1u5uzN1IF84eupjrA0YJkVzgVVMQV6V6GW7cCzHbX7JMCYaNf7xBt/IrnZWOIeNaU7fxCXr2dSX0bjnjvtyu6faoUiLV7X6elxjUJ4i+Q2vh5pl8Ki9n9Ho9hKR62BMZPNg0p/msGbG0bGGfqyPQCyGEEHmePh7Cdj0MtNdC1GXTPrtSBSrotliVTEJCAh06dKBPnz6ZPmbu3LksWbKEL774gpUrV+Lg4MDAgQOJi4uzVDZFJm3aBDEPW9526wY2j3m7pkUTU/Pd3f+FZkPOhMg+gSEqQHOwi6aMp2sGqQuXpp1qceSwDa39AwAoVfwe9eok5GqeKlf3oFxJNWy5o30Ur3Xeye71Jzh1pQqjJrV5JOC2rB49wPXhW2bl70VwKR7OU/WO8EG/bSybsYdzhwPRDAWrqZwQQgjxWGJuwPYX4PdSsOUpODfdPOAGiLsNmiF38mcBFqvpHj58OACrV6/OVHpN01i8eDGDBw/m6aefBmDy5Mk0a9aM//77j86dO6d5rF6vV7UXeVhS/vJ6PtOyauk9QP2i7NZNz+M+jSZtSsA0tbxzlxUD8unrkSS/l6swMegNXL6pmk5XKRuCQasISNkm5+rpwt/7irN1zUF8/Mvg6FQ8V18faztr9u5J5OiefbTq5IOzWzMADJoB0siWpf5nbWzgjZ4nmPBTHQDuR5Vgy9F6bDkKLFFp/CudY968ROq1yeUmAgWUfB7nAr0ea+Oinsf+cZDuJaRcCyIp14IrRdnq4yH+LjiUNSWydsbq5hZ0iZHGTZrOBkq3RnPvglb+OShaCQwaaX6h5xGZfQ/nmT7dwcHBhIWF0axZM+O2YsWKUbt2bY4ePZpu0H3+/PmcyGK2OHHiRG5nIcviouPZ8Jfqw+1SPIKSJS8QEPB457ItmYC9bSxxCUXYfdSDgMc9UR6TH8tVmLsbEk58YjsAPMvc4sQJNQWVlG1Kbt5W3I0N425AWMaJc4BnbVsuhwRmqdm4Jcr1uZfjIf5Pjhx35fglL67fK2u2//gVH5q1T2DkyxvoOaQMNrZ55iu4QJH/2ZxjFRND3YfLx48fx+DgYLFrSbkWTFKuBZO1PpyQ3ZNxjtyBc9QeIhwbElh+qlkaryL1KBpzkoiiTQgv2pzwos0xWDtBNHDhPhCQCzm3nDzzjR8Wpn68lSpl3hywVKlS3L59O91jvb29cXR8smlfLE2v13PixAlq1aqFtXXWRv3ObWvmHSAqzgmArq0DaNCgeQZHpK+h90l2napN4M1KlC1hT9lKuTvt0JPIz+UqzO1INjiad90q1KpVSsq2ALL0/2xj031jbly5ztE91wg4EM2q9e4cv+JDot6WqUueZ8fREBauKIuPT7ZnodCSz+NcEBVlXPT394eiRbP9ElKuBZOUawGU8ABd0G9w5Vd0YTvRJauhLhFzgDq1fMG6iCm9329gV4ISOitK5Hxus010dHSmKoCzFHRPnTqVuXPnpptm48aNeHl5ZeW0T8za2jrf/MNaIq+XL8OSJfDyy1DVAuOSrf7d1J/ixZccnzj/zRveY9cptbzv3yv0eLtc+gfkA/npPShSd/WqadmrRjmsrdWXhZRtwZQT5VreqxzlvcrxXF/4cHI8X43YxoT5LdAbbDhwsjz168OkSTB0KFgVnEHvc538z+agZK+ztbW12Xr2X0rKtSCScs3nDHq4tRUCF0HQatCnMiWwXUl07p2w1j8Au2Q35hzdci6fFpTZ92+Wgu4BAwbQrVu3dNN4enpm5ZRGbm7qhb9z5w6lS5tqPu/cuYNvbg+Rm4fp9dCxI5w7BwsXwvnzZOscwTv+PMbanf4AlCh6n3Y9aj/xOVu0dmDSL2p59844erz9xKcU4okFBpqWq1TJvXyIgsnOwY6vfm5Dl54n6TvEi/OXHIiNhREj4OhR9fkthBBC5Cv3j8OWZ1JsjrX1xK5KT6w8XgC35mCVZxpX55osvQIuLi64uLhYJCMeHh64ubmxd+9e/B5O/hoZGcmxY8eyNAJ6YbNpkwq4Aa5cgd8WXqTPm09e3R184TofDL7M8s2mtpLd257ArkjLJz53s/bVjMu7DqV+l+v8kcu88Vo4UbF2lHONpFzpWNzLGSjnbkVZd3siIxK5HppAaEILrt+04fp1CA+H9u3hs08NOBaVaiORNZeTDZopQbewlEbP1uTocfjoI5gxQ2375RcYNw4qVMjVrAkhhBBpi78P0UFQopZpW8k64FwTwk+CXUmo2Ad9xVc5dc2WOnXqWrT1S35jsdsOoaGhhIeHExoail6v58yZMwBUqFCBog/7/HTo0IH33nuPZ555Bp1OR79+/Zg9ezYVK1bEw8OD6dOnU7p0aeNo5iKlmTPN17+dGk/vQdpjzw8bGxXLtx/v4+s5DYmOMwXc9audZsKs7Glx4FLOheqeFzkdVJWjl7yJepBA0WKm6nmD3kDfl6M4cK6O2nAh8+cOCIA/ll5l8fwoGrevmaV8aQaN3+bsY9OGREaMLk3tltLZsjAJPBUKuANQqVKuZkUUcI6OMH062HGfqTNKAHDo32NUGPjkLYmEEEKIbKMZ4Po/ELgQgv8EZz/oeNS0X6cD/69AS4TyXcDaXjXDDQrItSznVRarDpwxYwZdu3Zl5syZREdH07VrV7p27crJkyeNaS5fvsyDBw+M62+88Qavvvoqn332GT179iQ6Opp58+Zhb29vqWzma+cOB/LPP+bbDl2ozu4NjzcS5KZNULMWjJ3Rhug4dWPEtfhtfh6/g/2nfChdIfv6XjRvowZmS9TbcuCQeXv4BbNvc+Bc1gLm5M6HVKZZRz8+eWMb8THxmTomLOg2L7bbR68hTVm4oSXdexUhIS535yAWOSvwsrobW67kDfL4uIyigGhe65xx+dCee7mYEyGEECKZ+Htw9jtY5w3bOsK1lWCIg3sBcO+4eVrPrlChpwq4RZosVtM9ceJEJk6cmG6ac+fOma3rdDpGjBjBiBEjLJWtAuWHyUGAagfbxO8k+86oQPW7qdG06JL580REwKhRMH8+gBpV0Eqn551euxg3vTYly7TK3owDzZ8qy9yHc9fu3g1t26rlu3dhzBemPv3/rjhCjQbluX71LteDIrkeHMvNG3qKFtVRrrwt5XyrU65iCcqVg+ALN+nfJ4wD52pi0Kz5el4bNmw5y5Il1tRsVi2VXChrF+znjVFVuBXe1Lgt8EZFFk3byaCPn7w5vcj7oiOiuXG/DABV3G8BZdM/QIhs0LCNaQyUgwHFczEnQhROCQmwdSvUrAnu7rmdGyHygHvH4cIsuLw05aBo9q5Q6RWwtfz31datMGQIvPgifPmlxS+XI6RXey66eBHefRcaNIBPPslat4eIOxH8srYeAI72UazZWIa69W5w/V5Z/tjZiEvHruJVu2KG59m27iKvDfPi6lVTc/Q2reKZ8c0VajVvneXnlFktWpiWd+82LY8dC3fuqOXeveHpXuo5lqtSJsNz+tYtw+7jpZj43jbGzW5Oot6WgEBf6reOo0eb3TSol0C9xiWo27Iyzm7ORETAyGExLFzc2HgOZ8dwwqOdAfjq+8r0HRmHvaPcuSvoLp8KBdRYCFU8I3I3M6LQcK9SjrIlbnLjfhkOnauCZni8rkEGvYGg86FU9POwQC6FKLi++ko9PD3VQLRFimR8jBAFkqbB1vZw49+U+8o+DdWGgHtnsLbLkeyMHg1nz8K0aWrME93j9ZrNU2S0qVyiafDaa7B+PXzxBbzePxF9gj6jw4wWf3+UyNhiALza8TBlKrkxtO/Zh+e2YsaEK+keH/MghlGvbKPt81WNAbeTE8ybB1u22VGruffjPK1Mq1IFyjyMo/fsUd0/Dh2COXMw5mXq1Kyf18bOhk9mtuHAf5eoWVF1Bo9PtGfZf815b3Ib2vaoQ4nSzlStCn5+sHCxg/HY55oe4OzJODo2OgjAtTAP5k/a90TPU+QPgWfvGperVErMxZyIwkRnpaOBn5qr7n5UCQJPXHus87z09H4qVfegV7u9JMbL+1eIzFq2TP0NClK/QYQoNBIeqWDQ6cAu2WDZNk7gPRQ6n4Z2/4JntxwLuCMi4PBhtVylSsEIuEGC7lzzzz/mNbxLfrWhb6d9mfrBZNAb+GGhqVni0PdVU9i3RtfGwU41BVnwZz3u3wpP9fgjW89Qv0Yo3/2vjXFbq+axHD8OAwfmzJtbp4MWjVSgExEBJ3af553Xg9A0tf+LL6B8+cc/f902vhw6XYHRr22jiG1Miv2XLkFoqFouVkxj/tTjrN3VkLKVSzNuvGkOwa9/8CY2MuXxomAJvGAq4ype0gBI5JwGdUzN9w7tDMny8Xev3+O3baprzKqtTRnYdR8GvSHb8idEQRUcrFocJtmzJ/fyIoTFaRqEn4ZTE+Gf5vCHByQ+0ny8wovgXAMa/ADdQqDBTDVwWg7btQsMD7/GWluu0W2Ok6A7F2gGjc9Gh6XYvuy/5rzc4WCGA3j9t/II50JUX+42tY8aa6VLuZfktS7qVm1kbDHmTTma4tg18/bTvH0lzgR5AWBvG8u00dvZut2OypWf6GllWfPqpoEYBr8Vx4GT6kZC9Wr3GD78yc9v72jPxIVtCA+35sjWs8z7ZidDem6ncb0IYxOydu3g+HEdA97zNzbrbPhMdZ5vvh+A0LvlmDNPmpcXdMnn6K7sLX1rRc5p2MQ0at/BA1kfvHHPPxfN1hdvasGovjvRDNoT502IgmzrVvP15BUhQhQI+ji4sQUOvwvrqsKGGnDsI7i9BxIfQOgm8/Se3aHzSfB+J0f6badl+3bTcps2uZaNbCdBdy7YsOQgB46pkcBr+dxjzbwD2NnEAaqm4qVnDqc76vbMmaZajKFvx5rtG/GRqQZ8xi/VSIw3/Yj74dPtdH+zIbEJqkl1/WqnObIzmFETW2NlnfNvhebtTKOh7ztrmvPvhwlXsbVN7YjHY+dgR902vgz8qCWzVrVm3+HiPHgA9+/D5s2pTw81bpqpef2EiVZER6dMIwqOwGumbgZVqpdOJ6UQ2at+q0rG5UPHnLN8/K7T9VNsm76sNeOHb08ltRAiyZYt5ut79mBsbSdEvnbgLRVgrywKW56Cc99DZKB5GucawCNv+DzSjnvbNtNyq+wfyznXSNCdwzSDxmdfFTOuj3vvPC8MbMSahcext1UB9B87m9Dz6aPERcelOD7w+FU27GsAgKdrCC8MaGi236d+ZZ5regCAoNvl+X3uEQx6Ax/0286w8a3RNFXkr7bfxZ5jVaneuKpFnmdm1G3tbWwOn6TP07tp26OOxa9tYwPO6fy+rdO4JD16qOWbN+HHHy2epScWcSeCqR9s44+5+6SWK4sCQ1Q/JnvbWMpVlqBb5JwylUrj6aqalR8+75XlpuG795i+xr95z9Qp9bNZbfjhUwm8hUjLozXdt2+bNzcXIk9KiITb++Diz3BwKBx5P2Wa8NPqoSUbK0pnA2XaQb3v4flLqka7Qs8cy3ZmJe/PXaMGlC5AP8mk82IO+3PBQY5eUv3v6nqdpevARgB0fLUha60P80L/6sQmOLBuT2Oa+p9h2Bu36fV2PYo6q37GsyZfRtPUqOSDX7mAjV3Kjs+j3rNl/cP/o6kLG/DHH/tYsdnUKeLjgdsY/3PrxxolNzvZ2tvS2O8k247VBcCpyAOm/uSVq3lKbtw4WL1a3fmeNAneelOjWPG8cRfwUXev3+OZVjc4crENAM/9qWfuPGvKysxXGdIMGoHX1f9R5TIhWFnnnfegKBwa+AURtLM8kbHFOH8kEN+GVTJ1XFwcHFTjPuLlBR9NbYCd1Tben9IGgGHjW+NSajcvj2xuoZwLkT9dvgxXr6bcvmcPVEt7htGUNA3QQJesDisyEIL/VE179bGgJYDOVg1CZZX0sAXrolChB9gUTfP0opBLjIK7R+HuIdMjwny6ZYqUhXqPjDxcwh/uHIDiflCyDpTrAO4dwK5ETuX8se3erQZXhoLVnxsk6M5RBr2BLya4Gte//PSBWeD7bJ/6bLA9SpdXvYmOK8rRS34MGAMjxkXQp+tFXnm7Kgv+VLXc9raxvPF+rRTXAGjTvS61a8OxY3DosDWHaAaoubd/HLeLtz5tY7knmUVtm4ez7Zha/mLYYdy92uRqfpKrUUNNW7ZsmboDPvPT7Xw8vU1uZyuFsKDbPNP6Dscumwa7WL/Bmpo14aefoGfeu5GZp9wIjiY2Qf3oqeKR+uCDQlhSw0bW/LFTLR884Ypvw/TTJzl8WAXeAM0fxtXvTW7D3btb+WZ+WwD6v98E2/JqrlMhhJK8aflTT6muZqCC7v79AUMC3DsGcbfVKM+JD9TfhAiIuwtRVyDykgqwn92jApsk4WfgyKjMZcTjefP1K8tUP9tSDaBUY3VeaxlXpkAyJEDsTYi5DjGh4FIfHJNN+3jtN9j9EmgZtH6KvQGxt6GIKb6g9jdQ/3t1cyefKaj9uUGC7hy1b0MIJ6+qX1ONfE7RuW+DFGna9azLvw4neHuoPSeuqH7FD2KK8/Oy4vy8DMAJgD7PB+HqkfrtWJ0ORo16+MXxkKN9NCt+OsFzr+Wt20ajxjfgytWdlCurZ8T4FhkfkMM+Hx3GiuUuGDRrps6vzTufhOPslvV+l6mJjYrl5N5Ajuy7zZEjcPtu6h+O3l5xvPOxP+W9XFLsu3UtjKda3efkVR8Aypa4jmbnxs1bNty5o35ov/JSFDOnJ1CyTAmzYw16Aw/uPqB4qeK53uohNwUGmWoZqjSol4s5EYVVg/YNYZpaPnSsOH0zedzu9ccBfwBaNI0H1HQu439uw9172/lpdWsS9db06gVjxqj5iG3kW18Is6blo0erPqR6fbIRzCPOwt+ZvPv14JJ50G2dycm+bYqB7SO/J8J2wZUl6gGqVrxkXXBtoq5h7wb2paBoRXAol7nrCMvTNIi6CloiFHuk2+axT1RQrekhNgxiHwbZsWGY9aluugQqv2paL+adMuC2slO12CXrqL8l/KFELbB/5PehXfb8Ts0NyftzS023eCz6BD0/zq9hXP/yE+LeHAABAABJREFU89g0A51mnWtxrKPGgX9PMu/Huyz7pyFRsQ5maYZ9nH77p9694dNP4do1cHOD9WusaNSs8ZM/kWzmVNKJBetb5nY20uRT241XO+xi8aYW3IsqyfQvtvHZrDaPdS5Ng99/h40b4cgROHXKlsTE6hkfuB2mLdUYOFD9cK5QQW2+HniTp9pEciZIvRfKu1xny78xuFSwYfBg+O03le7XFUXZ9u91Orc6zo0we0JvFeP6nZLcDHclUe9M1XJXGPjSFfqPrEu5ivn3g/pxJR+5vErmWvUKka3qJxsLLStzBe/aYZrqrnnda4D6saez0vHDipbEDNJYtEh9z0ycqJqiL1sah1tZqTkThYw+Dm5uhfj7aBps+fcFwIGijgm08VxCnerdOHyiJKdOqUFWSzjXBKeqEJlOJ28rO3CqTIrBqJxrQvPlYGWvAnArGzAkgiE+2SMBdNYpB66KeqTNuyEe7uxXj+SqDYaGjww2c2iECr6cvMCpCjh6qnVrxzwzQFa+decQHP0AilYAxwrqr0N51dIhbJd6xIRApb7QbLH5scF/qP7VGYkJNV93rq5aO5TwVy0fXBqo91YOzZWdGx48MH0HVq9esPpzgwTdOWbFjwc4G6JqcpvXOM6zL6Vfo6az0tG4fU0at4dvIzRWrIR582D/fhgwAOplUCFnZwf//gsbNqjaTg+PTN55FSl8NsGTX/9ORG+wYf6qqnwyw5Dl0d6vX4vijSFF2bAh+VbrTB8fH69j9mz1HujfH1578RoDBug5H6L6H3u6hrD1vwS8aquoceVK1Sz+ncGx3I8oQsjdcvy8JvW74hevV+Kj7yvxyUyNLl1g0CBo377w1IhJ0C1ym4uLeu8FBsLRo5CYmPH/n2bQ2HNC/f+XLHoP3wbmb15rGysWLoS6deH999U5N2+G+rVu89v/wmn0jLrhZ9AbOLr9HOt/u8nGLa48iHbk+T4VGTjIOmt9W4XIix5chItzIPAX1VQcOB/qzfVbvQFoUXUztkcG0qyyI4dP9EbT1O+s9u114D9O9Z+1LZ7yUbQiOLib9+VO4lAGKr70ePltsQrCT6kg+/bDYPvB+ZTp7EqZr+tj4fyM1M9pZQd2LioAt3NRczCXrG3aH3UVwvY+bMaumfqpJ91MsLJX/c5ti0OpTNb+50cGvZpKK2i1KvvkU2Y9OA+3tmV8jrBdqWx85IaHzka1UnBwN/9b+pFhuq1soP2+rD6LPGvjRtWqpFYtWLSIVGcpKsj9uUGC7hyRGJ/IV9NMA559NU6fpea8xYrrGDRIBUMGA1hlMt7z9lYP8WS8alfk2QYH2XSgIdfCPNi94Rgtn6+d8YEPrZy1h8FjfLkbaWrGbGUF1X3jqVfxAPXr6qnXpCSVfN1S3IyOeRDFvF/dmTXHkchISEhQgfe8eRWMaSqVDmLLZqhcs5Jxm04HL78MrRreY0CfUP49XD/ZPgOlnW9TzuUudraJHDhXEwC9XseaNbBmDZQvD99+C716Zemlypck6BZ5QcOG6r0YEwOnj9zBv1GpdNOfP3qZ2xHqDdvc/wJW1o1SpNHpYMQIdZP2xZ6J3LxlQ9Dt8rTs5MrHb2zjWpA1G3d5c+O+H2AaE+LMZJg0Wf3oeeMN6N7NgIOjTHYi8qHQv+CM+SBTW0+3NS63q646dzersIaZqEB8zx5145lKL+dYNo1sHB72526g5koG1Yf8zgF1AyH+DsTdAbdHBkeMvJz2OQ3xD/v93lDrjzZZvrUL9r6a8rhHFSkN3W+abwsYA6EboUg5FTgWKfPwmg8HkTPEqVYGLg3A75F+7mE7cYi9DjGlwbFszvY/ToiA+yfh/nG4f8L0N+HhuC6lGkGlPqb0MdfTP59NUXBtCq7NVfBulaxSpdWfqgwA7F1V94DUbtYUUAYDfPmlemganDwJHTpAv34p0yZvWl7Q+nODBN05YvXSa1wIVT+O2tQ+StsedR/7XJkNuEX2erl3PJvUTGz8b1E4LZ9PPz2oEcWH9jvNsv9MX45lyhiYNcuKjh3B0dEOyLgf+8S68MFH8P33MGOGmk4hSZWyV9m61YYKvilHsQfwqFaOvw+U5fT+i8TGJFCuYklKe7piY1caUO12Ak9cY/6ioiz8XymuP/xeCQmBNwYl0u0FDVv7/DcQR1YEHjkJqBsPlSsmIh+LIjc0qLSfFaguQIe2nMa/Ufrdbnb9EwI8DLobR6ebtmVLOLLnDr1euMnuU/7EJ9rzxew2qaa1tjag16svmu3b1aNE0Qf0fz6AL76vQ4nSha8LisgZmqZ+oFtnvhGYYtDD/WNwa7vq31r2adO+yq9CwAcq0PTsDqUas2VJJ+Putt3rQq3vaebTEH5Q24z9uvMKexc18nR6nLyg03HV3DkyUPUzj70J8XdVkB5/Vz0So1L2/42/m7l8WDum3BZxVgWrnEj/2Ef7rgNWO56jemIUJLWoty2hAvsibip4d6wITpWg/HOquXxGDPqHA5OFqqbeAB4vmKfZ0w9u/A2xt9I/V/Af5kG333vgNQiig9Qj6hpEB6u8urVQTcCt0vjtUKzwzohy755qnblxo/n2yZOhb9+UvR6SD6ImNd3isdyKNn1YfDFO+tXkR11fq43DmGhi4h1Z+U9NpsfEY+eQdr+a/1Yeof/gcoTeNQXcPdvsZfZSX1zLl8zy9UuVUoMgvfcezPh0Lz//rxKepW+zaq0rHtXSH0xFZ6WjRtO052OvUqsCX0+FcRNh0yYY+34YJ867EfHAhkNbTtK0Y80s5xcgYMc5Lpy6S9cBDfJ04B4YqmoUSzuH4VTcLZdzIwqrBo1M/awPHdIYkEH63btNy83bphxk8VHuXmXYcrAkH7y+nRkrTL9mHOyiear+SZ7rGEunXlWxL+nO4sWqRc25hzPT3I9yZvqy1mzYdoU/frtFzWbS7lxkj/Bw1RVu/Xr1/RMWpvpxliunHu7uUKaMjjJlilOnVryqcYwKguhrEHlFNb8O22WqoazU1zzotisBLVermtYibmgabHs4B3Dx4lC3Wx+wAU9NtfAKCYF9+1QT1ywH/7nJ2k7dcCiR+qw2Rvq4lDXKpVtC3WlqajN06qF7+BdUbXVilBr4LTVWdqaa3LQUeeS7NTEGXWKU+baE++rxaHP6opXNg+6gNXDwLdVMW2et/hriVE1+8lr8Yt4pg+7EB+w6Vo2ImPp08P8LK6tk/fEdPVQNt0c3Feg/ys5ZPUo83m+iwubcOQd69bIytia0soKyZSE0FE6dUoF4586m9JGRpikw/fygTJmcz7OlSdCdA956C+LiDNjYXKLFcxl8IIo8yamkEy+03MPyzc24G+nCv6sO0rlf6n2bzh4MpPMrNYhPVD+iSxS9z6yvT9FnWLMnHiW8RAn4bGZTPpsJkL0jl9rYQJcucPPEGd4Yq74gt/51m6Yds3aePRtO8NWXsfx1QL0+AzftZN7avDlYXsyDGELvqtexSrkbgATdInfUa10Fnc6Apllx6ET6TcsBdh1VU8vY2cTR8KnM9SOyc7Bj+vLWPN3+AHt2RtOqXVHavFATh2LmTdPff1/d4Nu9G+ZNPcHKTV7ExDty8XolGreLYt7kPfQZ3izrT1IIVGC7YoUKtHfuVOMNJHfzpnoEBCRtsQKq4XfjGZ6p+V/6J7+1XVWZJ69Cczd9iZ06pQJ7UDVpSWMn6HTQrBmsWqV+/J84AXXqPP5zzLNSm36sZB3z0dezotUa9XrH31M3RGJvqkDYuoi6VtJgcvau5sdpegx+o7kTeg7Xonp08bfVaN5xt1TT7+ScKpmv66MzrqkGVdv9yHvhRGgjWn01Gk2z4uX2+1kw9Qj2pWuomxV2Wa8QEalbulTHW2/5EhenXntXV1i+HKKi4IWH90EmTTIPugt6f26QoDtH2NrCyJEaAQERGScWedbLr9iw/OFcnv9bGk/nVPqjAHzzWSjxiequ7DP1D7NwuTvlqzZPPXEe1LZzBRirlrfuKsbHmTxu+5+n+GpcHJuPmo/y98uGpnx2NpQKvu7Zm9FscOVMKKCaflXxlP9PkXuKlyqOT/lLnA324lhgVeLTaU1z61oYF0IrA1C/2nmKFM3azdwurzeiy+vpp9HpoEULaNGiFl+cCqb7C1c5esmP6LiivDyiGfv3bWfKwmZ5uhWLyHvCQiKoUd2R8IiUPz+LOsTh7RnKrTtFuHG/LHq9+U3qvwI6pB50FykNpVubHulIPj9327bm+5o3V0E3qCbmBTLotgSdTjVZt3cBamSYHABbJzT/r7lmCMClTh2skzcr0Mc9bNFwFaIuq6bzyVk7QNFKagouLVH91Vk/HJCsvPrr+PAvGskHMtt++yM1Thzwv78bcz2+MatXQ4mCOyB4jtu0CV57zdQXtkEDNXNPhQqq+4ifH5w5o2647d0LTZuqdAW9PzdI0C1EprXvXYeSw+5xL6oka3bUI/KBAYdHujhdOnaV//3TBAAXp7v8/o83xVzSaJKVR1WpVRFP1xCCbpdn14nqxEXHYe+Y9hRDp07BkCGwY4f5l62DnWqOrzfY8MOE80xelPeC7sCzdzEG3ZUScjczotBrUOM6Z4O9iE+058TeM9Rv55dquj3/BJLUKqNFwzsWz1elGh7sPhrDkD47+WWDarUyfVlrjpw4xsq15ShbuYDN6yKeXHy4CoaS9x+Ouckfn39KeMTPxk2V3QJ5ru56nqu7ntZ+27G3Vc2UDW02c9umHefPqzEJAA4FtQXPnubTNhX3g+I+mZ4SK/n83I8G3c2SNd7Ys0d9r4lcYG2varedKgGp3ETx7KYej+HiIzPAbd2q3l8bN4Kn52OdskDTNNXN6N9/oWRJeOWVjP/V5s0zLQ8YoMYxKvJwAiUrK/jgAzULE6ja7jVr1HJB788Nqs2OECIT7BzsePF5NeBIdJwDa9el/PeZ+Nk19AZ1L+vd147nu4AbVB/wdo1UJ5zYBAf2/3s2zbQJCdCxI+zYYdrmVfYqCybu5MKpcOxs4gD4+be6RN6LtGi+H0fgedMAVJWryD1Ikbsa1NMblw/tDksz3a7tyebnbuVg0TwlcSjmwIK1Lfjpyx3YWqvAaOfJ2tSrb+BiwNUMjhaFws2tEPAx/N0EfneB87PM9xcpzbqjXY2rGz/oyKXvvJjRfwTP+v9rDLixdsAqNpjSpVVrC09PVTV55Epd9M1WQb1p4DtCBV7OvpkOuPV60w97Fxfw9zffX6cOODz8d8pzg6mJbHHhgmnZ+eHYbidPqtrW48dzJ095TWws/P03DB8OVauqmunhw9XAZ8uWpX9sfLwK0AGcnROZPVszBtxJXnlFjZ8A8OefcPaseX9uX1/V97sgkqBbiCx4+S1TM6f//c9837UL91m0QY0+XNwhnKGfPv4o9bmtbRvT8ta/76WZbssWCApSy5Urw5Kfb3D2anleH92S8lXL8WoHNeR7eLQzC6cdtlyGs0DTYP/fp3jjhR18PM3UFL6Kt1Mu5koIaNDM1Kfw0KG00+0+Xce43OzZnBsZV2el461PW7Fzw3nKu6ipDq7fK8tLLyUSF5dj2RB5iT7ZAFrbusDpCWpwM80ANzebJY2O0fHfSTXIWVnXB7Tv/zS6RrOh6WJo+Tu0+Qs6HoUXw6GKqf9Wgwbqb2SkjvOpTFmdWceOqdGUQTVffXQ2GFtbNXUfwOXLGGfzyG3x8WqMhW7d4FYmujKLtCXVdDs4wIED4PXw4zMkRNV4b96c9rEFWUgI/Pyz6m9dqpSa0mvmTPMpVQGWLEn/PLt2wYMHarlZs/BUByO0s4N33zWtT5mibnIlje1QUGu5QYJuIbKkZUvwUOMX8fffcPu2ad/k6SVI0KuOQcNePZavp9Zp26WycXnLrhJppvvtN9Py1Knw6htlsbEz1Ri/+5Fp+Mnvl9Q3DpKRG+7eVVOu+ftDkw41mLe2FZGxqiWCU5EH1GlROYMzCGFZdVt5YaVT/yQHT6Y+dGtMDBw+UQIAHx9w83RNNZ0lNW5fkyNHbfApr36RHTnvxceZHfxBFBwJD2Bnz9T3OdeAUuaDjW7eDLHx6jvyua7FsKrxHlR7Gyr3VdN5ubdXA3o9Mrp2/fqmEaaTasMeR3pNy5Mkb2K+d+/jXyszEjLRo0mvVzWM336rmuF+/rll81SQJSaqmymganC9vVWw1+jhOJIREWp+9pEj4f79nMnTuXMwbBj8+mvKAQWzw7p18MYb8OGH8N13qqZ62zZ13b174ZNPVAsPDw816PPatRCdbAZKGxv1v+L2cIzZzZvVjANp2bDBtNy8edoJ33jD1NJgyRL1/JMU1P7cIEG3EFliZQV9Hk7dmJgIv69S35rXr5v6sRQtCiO/zpujdWdWBV8PvMqqJqP7zvgR8yDlPMCJ8Yn8sfI+AI6OejqkMo1ozWbePNNGpQm85sTatZbKsbmIOxFs/yOA78Zs49X2u6nuG4erK4wYoZqSJXEq8oA3u+7g4I6wfH2TRBQMjsWLUqPiJQBOXvEi5kFMijQHD5p+rDfPxfEZS1dwY/lqF+zsVED07bdqAB1RSMTchP/awM1kI5NV6QfN/gfdrkPnk1B3itkh69aZlrt0yfylkgfd6bUAyUjyQdTatUs9zaP9ujPrwgUV1Gzbln4wfeMGTJwI1aqp3wqffEKaN6M1Dd55B1auNG37/fe004v0XbtmKptqD2c9LF1avS+S3o96PUyfrgLy+fPVwF+W1K8f/PADvPqqala9YEHmbsZkRlAQ9OihfptOmQKjRsHLL6sg2tdXvde//lq1AEmudGl47TU1qODt2+r1eflltS8hwTywflTSPisrjaZN0x6ctnhx05gJCQmweLFpn9R0CyGMXu5tuh25fI7q7/zttzpj88rBg8HVLf/Px962kQq64xPt2fPXmRT7t605zp2IEgA812Q/jo4pkgAwanQJ4/J332V3Ls2FXLxOu7pHcXYtTpvudRg1qQ2//tOcM+fsjSOWAjRtqrFg0h6uh+qY80crfBtWSfukQuSgBjVuAqA32HDsQMpB0szm587lSRHqNCrBlCmmz7r+/fNOk1xhQfo4+K8VibePselYe+PmffofoVIfcEjZIdNgUFOEARQpAk8/nSJJmurXNy0/btCdmKhGSwY1/69f6mMUGkdShswF3QYDfP+9akE1apSpVvCll1QgERamArmNG1XzcA8P+Ogj1cw5IUEFPR07mreaSzJ2LMyZY74tLMz0PETWJB9ErWpV03LRorB6NYwfb+rTHxYGgwZB48awf79l8nP6tGrinuTSJRg4UN0Q+OknnrjLzvLlmQ/g69eHzz5T+bl+HRYuhJ49TbXR3ZKNW7d6dernuHRJ1aADNGkCzs7p3x0aMQLsHxmj18cHymXvbLh5igTdQmRR7TrW+Hmq2qidJ+tw6dg95sxRPzyLFFF9rwqCtm1NnXG27kg5WNNvy00Do/XskfZ52rc3/cDZufPJmgemRzNovN47lK0BKfvS29okUq+e+lF08iTs2aPj9Q+b4VRS+nGLvKXB06bRnQ6d8Uixf9cW0xgLLVrkSJbSNWyYqZYoLAz6dr2AQf/k1UPnDgfyyrO7+fHz7RknFjnq8jV7Pv1rGZVGXKHnjN+N2996K+2awaNHTTdknnqKNG/SpsbFBTw8Yo3neZxmuIcPm/qatmmT9thrrq6qljPpmNjYtM959ap6Lu++a54uPFzVTvfvrwL8MmXUfMRr1pjXUif1Kf/3X9Vv/XCyYU+mToUJE9SyTqeC+CRJ05qJrEkr6AbVjHrsWDWoV69epu2HDqkAcsCAzDc5v3kzc8Fu8v7RlSqZlq9eVZU3Xl7p1ypnJHmT7RUr1PrUqeo36ssvq8f8+RAaqp7nuHFqTINHxzoA9V2T1MR80ybVzelRGzealjt10lImeESZMqpGPbmCXMsNgJaPRUVFaYcOHdKioqJyOysZSkxM1A4dOqQlJibmdlZENvhq6FZNNf7StPIuIcblYUMLTvmGXo0wPq+mTc33JcYnam7Fb2mgaQ52UdqDuw/SPdfPP2vGc/V57rxF8rt42k7jNdyK39IG99iuzf16h3Zk62ktLjouy+eT/9mCKa+X64EDpv+Vfv3M9+kT9VqJovfUe9z5rmYw5E4eHxUWpmnuZWOM+Z4wcusTne/S8atauZLXjef7Z9mhTB2X18s2vzt4UNOeftr0/gRNcyTSuOJIpLZ2berHfv656ZiffsradRMTE7VnnrljPD4gIOt5/+Yb0/XnzEk/7WuvmdLu3p1yv8GgaQsWaFqxYuavxaBBmtanj6aVKGG+PfmjXDlN+/hjTbt0SdO2bdO00qVN++ztNW3+fPVIfsysWZoWEaH2g6aVLatpBeEtntP/r+++a3pNt2xJP+2WLZpWs6Z5OZQvr2l//532MVevalqvXipt9eqall5ootdrmoeHSmttrWk3b2ranj2a1rGj+TXLlFFps+rkSdM5GjfO+vGpGTTIdM41a1Lub9/etP/IkcyV7YULmqbTmY773/+yJ685LbPxqATdOUR+DBQsF49dTfFlamsdpwWdC8ntrGUrX1/13GxsNO1Bsrh6y29HjM+7e6u9GZ4nOlrTXJ3D1bms47VrZ7P3dbp1LUwrVey2MU/rftn/xOeU/9mCKa+Xa2ysptnaqvdx6dJ6bdGUnVpUuPqOO7nngvE9/kKLfbmcU3Nbfz+i6XR69SPSKkHbu+nEY50n9NINrUrZK2afrd7lA7XYqNgMj83rZZufXb6saU5O5t951taa1quzedDdtm3qx9erZzouODhr105MTNRGjAgyHj9vXtbz36KF6foXLqSfNvlN4ilTTNvv39e0rVs17YUXzF+HChU0bfNmU7qEBE3bsUPTPvxQ02rU0LSiRTXtuedUoJKQYH6t4GBNa9Ik7SD9q69MaZNfd8eOrL8GeU1O/78+95zp9QsKyjh9QoKmzZihac7O5mUyZIimRUaa0sXEqHJycEh5syQtmzeb0nXubL7v4EFN8/c37T94MOvPdexY0/HTp2f9+NRs3Jj2DeHISNNNIQ8PTUtIyHzZvvSSOs7OTtOuX8+evOa0zMajFmtePnv2bHr37k3t2rVpkDTfQwbGjBmDj4+P2WPgwIGWyqIQj83LvwJNfE+YbXu9yz48vN1zKUeWkTTCa2KimgoiyW/LTQNkvNgz41FdHBxg8EtH1Ln0tvwwwTTvy+WTQfzw6XY6t4+mdWvTPKpZ8e6gc9x5UAqAl9rt4bn+jbJ+EiHyAHt7qPuwh8StW1b0/6AF7uUSeOfF7Sz8MdiYrkWTVNr35aI23esydtAOQPVH79PfmfCwdIa5TcW9m/d5tl0EgTcqmm0/H1KZ78amP5T0hg3Qrp0VixaVkYGmsplBb+D17qeIfNijqEoV1fQ5KEg1W01u61bVBDy5kBA4oj7+qVfPNEdvVlSvHmVczmq/7rAwU/9sX9+UTYsflXyshEWLVNPuqlWhRAn1nfjnn6b9r72m5ndOPjCbjY2a6WTSJNWdKTJSDSL3wgtqX3Lly6vvvKRBpZIbOVI1eU7SM9lA8dLEPOuSmpcXKQLumfipZmOjus+cOGE+BsGPP6oRv/fsUe+F6tXh009TNrmeOjXtrhDJm5b37Wu+r0ED8/dDVgeo1DTTlLZWVubN5Z9Eu3ZQTE34wtq15k3ot2wx9UHv1Cnt7hupmT1bvc/XrCm483MbWSrqnz59urZw4UJtwoQJWv369TN1zOjRo7WBAwdqt27dMj7u37+fZnqp6Ra5acbYbaY7/lYJWuCJa7mdpWy3apXpzuYH76s2TonxiVrZEjdUczjbGC3iTkSmznU98KZmZxOrgaY5O97XPui3Vate4YL26J19nU7TRo1Sd48z4681N43Hlix6V7tx+dZjPltz8j9bMOWHct21S9P8/Axp1n6Bpu3ZcDy3s5lCQlyC1rzGMWMeP31za6aPjbwfqTX1O248tqJbkLZh0QHNSpeogaY5OiZq19L4iN2+3dQ6ADStfXu9dud6ePY8KaFN/9j0XVex3F0tPPlLG2le0w2a1rev+fE//WQqm88+y/r1ExMTtW3bjmg6nfqfyORPSqMFC0zXHz064/R6ffpNxEHT3NxSb2L7JBYt0rQiRdT5X3stZbPi+/dVbSBomrv74zU7zkty8rM4MdH02tWokfXj9XpN++GHlLXZj7b8GD5c09q0MW1bvjzluaKiTK1GihdXLQEfdeWK6RyPdu/LyN69pmOfeSbrzzU9ffqYzv3vv6btb71l2v7nn/njezY7ZTYetck4LH88w4cPB2B1WsPcpcHOzg63pN76maTX69Hn8VvbSfnL6/kUmddjgA+ffBtORIwzrz+3mwp+LQpc+bZsoQHqY2Lrn2fRT/Rh54Zj3LhfD4AOjQJwdG6YqeftVqEUfZ7dw6KNLQmPdmbK4japptM0Nf3QX5v0LJxxlvptfdM8Z2QkvDXC9HkxeewJXD2bZ0s5yP9swZQfyrVJEzh+TGPv3yeZP/sBqzbXIzquqHF/EdsYarf0ynPPQWetY+GvxaheP4FEvS3fL6nH0E/CKOXuku5xcXHQrf019p6pBUCZErf4+694qtaux5AdN/lhvjvR0da8+67GihXmI3VdCLhKt66eJCSY5nb++28rGtS5z8r/BVG3ddqfHyJj5w5fZvQUU8uhedMvUbRoXVNrAr2epCE3XUpqRN+D5cs1vv7aYKxNXLvWClBVX5066bPcEkGv1+PkZMDbW42OfPy4RnS0IcXIx2n54w/T9Z97LnPX79xZx6+/mhqDOjho+PtDvXoa9erBCy9ouLhk7/Rdr7yiahMvX1ajqGua+fmdnOCZZ6zYsEFHaCjs3q03m+Isv8nJz+IrVyA+Xr1Tq1bV0D/GYI9vv63K5/XXrdi/37wqt00bje+/N1Czpqr13bZNXWvSJI0ePQxmNb+rV+uIjFTvrZ49DdjZaSneRx4e4OdnxZkzOvbv1wgLM+CS/seo0a+/6kgaJ7t3bwN6vZbl55qWrl1h2TL13H7/3UDbthqaBhs3qv8xOzuN1q0N+eJ7Njtl9nlaLOh+XAcOHKBp06YUL16cJk2aMHLkSEqWLJnuMefPn093f15y4sSJjBOJfGPBrJtcOh1H6x7lCQgIyO3sWESNCkU5dc2XIxd92LN9D0sXmEYtb93qepae9wu9Ilm8yUBSzxadzkBD7+O0bXqNhq3t2HWsBrNmlSchwYrTZ6xp3sGbkS9voOeQstjYWqc437ffenD1ahkAGjaIoM7TjtleDvI/WzDlh3J1LAfDvnRkwHtH2bXuNr+vq8qRSzUZ8PwWzpzPu+3wXn7mPIv/as+DmOJ8+d4GXh+ddl71ehg7tjL/7VdTHDg73ufH7w4TqZUmIOAePV615n9/uHH3ri2//67jp58u0aSJGoY68m4Ub/Qvz917KuD2948k+JoVd+87cvlmBVp2iGH8qLW0ebGC5Z/0E7occBMbeys8/bJW6WBJiQmJDO1XhNgENXvFoOc3UbJKabPPWKuYGJLmi+jc+SZzljqRkKDj889v8c47ocTG6ti8uQ6gw9U1HiurEzzuR3SVKnc5d64UCQk6fv/9PNWrR2d4TGysjn/+UdcvVSoBe/vjmbr+gAHWeHqWxMHBgK9vNBUrxpo1Db92TT0swdEx5dzJSRo2dGHDhsoA/PTTbRwdg1NPmI/kxGfx/v3FADUsffHiNwkICHnsc02fDkuWlGX+/LK4uCQyfHgwTz11n8RECAiAkiXBz8+XM2eKcvSojjlzTJ9ZALNnVwWcAWjc+AIBAZGpXqdePQ/OnCmDwaBj3ryrPPvsvQzzlpgI//ufP2CFnZ0BL69jBARk32Tj5cpZYWdXm/h4K377LZEBA04QGFiEoKAaD/McwcVkw8Tnh+/ZnKTTNC37boGkYvXq1XzzzTccykQnnA0bNlCkSBE8PDwICgri22+/xdHRkRUrVmBtnfIHd3R0NGfOnMHb2xvHrMw/kQv0ej0nTpygVq1aqT4XkT8VhnId9epOZixvA8DqufsYOroyoXfLYGcTx/WgaJzdimfpfL/9tI/tWxNp0tSK9i/64Fq+lNn+U6fgtVciOXrS2bitZsULtG8VTN16ttRrXpaqtSty+IgVzZtbYTDoKFJEIyDAkGFfvawoDGVbGOX3co2LjsPeMZNVfLkk6HwoPv6liU+0x9E+iotnIildwTXVtGPH6pg0Sd2Ec3DQ2LTyHC06VjNLs3ixjgEDVBrvagaOHo5Dp4NOLc6y7ZgK+WpUuMDWA+4c3bePTz8sw4HzNY3HD+6xnWm/NMLOwc4ST/eJ/TJlN4M+aoWtdTzb1p2l8bM1HvtcQUGqz2p6DQYT4xPZ89cpNv0ZzpnzRWlcP4rBnzSkhKv51JCTRu1g7Aw1sEc198scPumKY/FHfmtFRWH9cDLf4LPhVKlVjIQEHS4uGleuGNi8Gbp1U/9ngwYZ+OmnrP/kTPqf3b69Nu+9pyLfWbMMvPVWxudauxa6d3+y6+cl9+6Bu7sVCQk6PD01Ll0ypDrFU9K8366p/9vlCTn5WTxnjo533lEv1I8/GnjzzSd/H8TFgZ1d6v2Xf/sNevdWz6ldO41//lGB7/XrULGi+t1SsaLGhQuplx/Af/9Bhw7qHP37G5g/P+M8//MPdOqkjuneXWPlyuwLuJN062bFunXqSe/cqWfHDh1jx6on8d13BoYN0/L992xWRUdHc/78efz8/NKPR7PSZn3KlCmat7d3uo+LFy+aHfP7779nuk/3o65du6Z5e3tre/bsSXW/9OkWua0wlOuaefuMfXUa17xsXH6uTaDFrhkXHad9+uZWzdoqIdW+U05FIsxGK58wIfvzUBjKtjCScs0Zw14y9QMe9cq2VNP8+69puhgbGzU6bmr0ek1r3tz0///NiK3agOd2GNdLO9/SLp8MMpZtVESU9la37WafGTUqnNe2/HbEgs/48Zzef1FzsIsy5rNri4xng0jLrFmm5+vhoWnPd0nQxg3Zoq1buE87dzhQWzxtp/ZSu93GaeeSP5ydDdqnn2ranTvqXMd2ntNsreM00DQrXWLaYwgk69OtRUZqr75qWp0923yaobSmE8tIUrnu2JFoPNeAAZk79vXXTddfv/7xrp/XJJ9Wal8qkxhs3Khpjo7q8d9/OZ+/zMrJz+JRo0yvWU68JomJmla1qumahx7Oejhtmmnb2LHpnyM2VpUhqGniMtOHv39/0/lXr37ip5GqX34xXeP99zWtZUvTetLMAIXte9YiU4bduXNHu3jxYrqPuDjz+XCfJOjWNE1r3LixtmzZslT3SdAtclthKNe7N+4ZpwJK/vjlF8tfe//fJ7Xalc+mO6BN7RoPtPj47L92YSjbwkjKNWeEXrqhFbGN1kDTitgnaKGh5vtvXr2llS113/h/nHxqptQE7L1uHFQt6S9oWhHbaOP0ZI+W7YKJOzR72xizz4sX2+7Rrp7JxHxBOSAmMkbzf+TzTafTaxeOXsnyue7eitKcndMffC8zDycnTRvzYaJWu/Ip47Yxr29N+8KPBN2HD5tWvb3VvNSgBgh73J9qSeUaEZGoWVur8/n7Z+Y4NeAZqGm7Mjs4Z16XfB7v998337drl/lgX87Omnb6dK5kM0M5+Vn8/POm1+TqVYtfTtM08wEEe/VS2+rUMW07ezbjcySf5uxIBvcMo6NNc8c7O1vu/X7njmb8Pyxf3rTs7W1KU9i+Zy0yZZiLiwteXl7pPuzssq/51o0bN7h//36WB1YTQmSfkmVKUM/rrNk2W1t4/nnLX7vRszUICPQh9NJNNiw6yFdDt9Gt5T4quql+bCWK3mfhD8HY2mZwIiFEjipXpQxDBt4FIDbOhgkTTPsMegOvvXiFG3dUs+T27SIYNSr989VuUpZ3eql5Cw2aqbniou+O0qRDzVSPeX10S/b+c4WG3qeM21ZtbYpvbRe+/OhGiil+0nMn9C5Htp4hMT6NOYAew/uvH+D4ZR8A7GzUfDuaZsWM+Z5ZPte3Y/cTHq6afHp6asapfVJTouh9ej+1hyXf7ubI5pMMGmgw9leOjISJk605drk6ALUqneeLH5pmOh/16kGbNmr5/HnVnBbUlEtP2gvQ0RFqPGx5f+oURGfQpXvvXjVdGED79qrZfUHQtatp6rFVq1RIBqofeOfO5lNXhYfDc8+ZXofCKqmbsb29GqQsJ/TrB6VLq+XfflNTYiWNJ9CoEfj4ZHyODh1My3/9lX7a9evhwcOu4z16WO797uJi+h8PCTEN9te5s2WuV5BYbJ7u0NBQzpw5Q2hoKHq9njNnznDmzBmiokxzLXbo0IF///0XgKioKCZNmkRAQADBwcHs3buXIUOGULFiRVq2bGmpbAohMqFt01tm608/rQYLySnlqpShU7+GfDKzDat3NOHKLQ/u3rhPSKgdddvI6MRC5EWjx5U3Blpz5qj+xgDff7yDTQcaAmqk8kXz49Ls15jclzPqUNrZFD2MH7aNXu+kP3xz3Ta+7Dvtx/wJO3Erro6NiXfk84llqV4dDhzI+Lr3b4XToG4U9dv54VcpmF+mnzGbo/Zx/Dl/P7NWtQLUaPT/rgkyvlYLFlpx717mz3U7+A7fL2kAgK11PDv/DuH+fbhw/CYrftjD6NfUzcoP+29j+5pjhN11Ytl/zXj13ebUbVeTufOsuHgRBg9WfVST2FgnsHiRluUxBN59N+W2Ll2ydIo0NVBPE70+7cHGkiSfT/uFF7Ln+nmBi4tpXvCrV+HwYRVUtm+vgmyAZ55Rc0kDBAZCt24QG5sr2c11BgNcuqSWq1QhU5812cHBAUaMMOXh1VdN+x6dmzstHTualjOarztpbm6Al1/O3PkfV/fuKbdJ0J0JlqpqHz16dKp9vvcl64Di7e2t/f7775qmaVpMTIw2YMAArUmTJlqNGjW0tm3bap988okWFhaW5jWkebnIbYWlXDcsOmDWBHH+z7G5nSWLKyxlW9hIueas0aNNnxtvv61phzafNvYVBk37+3+HsnS+zauOaLUrn9U+eWOrZtAbzPZlVLb3bt7X3n15q2ZtbWqG7eGRcTPMT9/cmqIZdqVKmjZnjqY90qMuU4LOh2ouTndMfZ/HbdM0TdOGDDGdf9KkzJ/vw/6m/A3usT3rGUomOMigDe+9XavrdVr79ftdGR/wSPNyTVN9T5P3ZwVNCw5+/DwlL9cffzSdc/r0tI8xGEx5sLbWtNu3H//6edHPP5teh3791Psxab1pU1UUQUFqPu+k7S+/rF4XS7l8WdPGj8+4GXSSnPosvnrV9Bo8/7xFL5XC3bumObmTHjY2mpZOaJNCtWqm9/H9+2lfJ2ke8rJlVdcKSwoJSdktJflnYWH7nrVIn+68RoJukdsKS7lG3IkwDmpmbZWg3Q65m9tZsrjCUraFjZRrzrp929TP0NYmQavkFmj8ofZBv63Zeq3Mlu2pU5pWv77pB+PUqenkP+SOVswhPM0+0J6emvbdN6HasZ3ntPjYjAeXSEzUtFZNTAF3t5Z7jTcPzp0zDSzn4aFlaqyKG5dvaY72kRpomr1tjBZ0PjTjg7JTKkG3ppkP6lav3pNdInm5HjhgOm/fvmkfc+qUKV2bNk92/bwoLMzUlzb5o2ZN02B4mqYG8EoajAs0bdw4y+Rn3TrVjxg0zdU1c/33c+qzePNm0/MfNcqil0rVe++Zl1FWA//hw03H/vZb6mnmzTOlGTnyyfOcGU2amK7ZrZv5vsL2PWuRPt1CiMKpmEsxXn52HwD9O+2llHsOti0XQuRbpUrByAHnAEhItOFKmJpjuKH3Kcb/lH7TcEupXh0WLDBN9fP1uEju3wpPNe2Uscd5EKOmRXy7+w52bo3j2WdN+4OC4N2Py1G7pTfFiulp5HOKwT12MPfrHWz9/Sjb/wgwPbbE8+GHsGOfCwCepcOYt8IHnZXKiLc3dOmiOugGB8Nvs/dk+FwmjT1FdFxRAN7qvh+PauUe6zXJbv37m5o3f/hh9p3X3x/jGB7pzURbUJuWJ3F1NfWrTVKlipoyysXFtK1+ffj1V9N7/fPPzZshPym9Hj77THUfSGrafvu26sOcVySbNjpbpxXNrJEjMRt3JrNNy5Mk79edVhPzpUtNy5ZuWp6kZ0/TcnZ1HynwcugmgEVITbfIbYWpXA16gxZ44lqKJp0FVWEq28JEyjXn3b1xT3N2vGesFSnmEK5dDLiS7dfJatn27XrBmKePBmxNsf/mlZvGWmQ7m1jt2tkQ4779+81HFs7qw8pK03buTJmnrWtMo4Y3qHYq3c/bkIvXjSPEO9hFadcDb2bqeWerNGq6NU3Vdt669eSXeLRck1op6HSaFhGR+jGNG5uyFWi52S1z1ezZpudYrpymXbqUdtqpU01p7eyy5zW5c0fTOnRI/f3dsmXGx+fUZ/H775vy9c8/Fr1UmkaMUNevWjXro4pHR6vR/0GNFv5oF4HkrUqqVrVsF4JH8/Xaa5r21lspW+UUtu9ZqekWQmQrnZWOyjU9jbUyQgiRGSXLlGD0GwHG9Z8mnMCrdsXcy9BDX44vYhw1/PuljQi9dMNs/6Sxp021yD324enjbtzXqBGsWwfHdl1i8nvb6P3UHqq5X870tT//HFq0SLm9dRc/6nqdAeDQhers3nAizXN889E5YhMcAHjnpQOUrVw609fPCY6OYInJZ5IGU9M0OHIk5f7r12H/frVcqxZUrpz9ecgL+vVTtaANGqga7ipV0k47ahQMGKCW4+PVe/dJHD2qatGTRtS2soLJk1UrEoCdO+Hs2bSPz0nJa7qrVcudPHz7LWzZol6XrI4q7uBgPlr4yZOmfX/9BcOHm9Y//9zUqsHSHBxg4UL46SdkBplMssntDAghhBCiYBs9rRVlyu6kjHsROvdrntvZAaBSDQ+GvLid75e1JibekXHvH2LOH2UBCL10gx9XNgbU6OIffZP6LAn+zb3wb+5lXI+4E0HArssc3nuPGzceSezaFKzt8faG119PPU86Kx3vDrlDv/fU+rdTommRStPNa2dDmPtHEwCK2kfy4depT5tWEDVsqEbDB9XEvHVr8/3JA8qC2LQ8iaNjxiNaJ9HpYOhQ1a0CYNcu82AtK/77TzUnThoN3c0NVqyAtm3VVGZJ0//Nnw9TpmT9/GFhKmBv3jx7RhpPCrptbcEz67PxZQsrK/X6PK4OHUw3OP76S91MOnkSevUyTdk1erT5COki75GgWwghhBAWZWVtxYAxeW/6z7GTazJ/TQQPYoozf20zRh0OxKd+FSaOPU9sgprSa0iv/ZSr0iZT5yteqjitXqhNqycI9l4a3IjR429w/V5Z1uxqxKVjV1O0DPj6o0vEJ5YHYPgrh3DzzFz+CoKkmm5IvV938v7cXbtaPDv5Rq1aUKyYmst5927VUuBxakXff98UcDdqpPpvJwWzffvCmDGqNn3RIvj6a/Np6NITFwfffQfjx0NUFLzyinlf5cfx6HRh1tZPdr7c0rGj6hsO6kZL375qiq6kebm7d4dvvsm17IlMkublQgghhCiUXD1K8eFA1UZZb7Bh7Hs3CQqCOX+oGwRFi0Qy+psaOZonOwc7hvZVbXM1zYrJX1zl6LazbFx1jfnzYdw4WLBe5a+4QwTvj6+do/nLbdWrm5roHjxovu/BA9i8WS17eEC9ejmbt7zMxgaaqMYRhIbClStZP8fRo6b50evVgx07zGuPXV3VnOCgaqyT3wBJz4YNULMmfPSRCrhBDQC3Zk3W85hcaCjExKjl3Gpanh2qVTN1k9i1S7U0uHZNrTdoAEuW5Nz84+LxSREJIYQQotB6d3xDypS4BcDv25vy6ksRxMerKsBhw+0pXcECHZMz8NZofxzsogH4eU0r6rX1pXOvCgwaBF98AYmJKn/vvmePS7nCNZuEra1pZPRLl1Rf5c6dVR/jqlVVjSnA88/nXP/W/CL5OAK7d2f9+IULTctvvgn29inTvPGGaXnevPTPd/WqPV26WPHcc+Z9r5O8845pVPS0HD8Oy5ebmlknl9sjl2cXnU7VdgMkJJhaeHh4wNq1qquByPsk6BZCCCFEoVXUuSifjzSN+rRjr5oirFgxeP/D3BkhqJS7C691SWdOLFTN18j3Uol6CoGGDU3LCxfCxo1qULVbt0zbk2pchUnzZMMpZDXojotTtc+gWhq89FLq6dq2NdXK/vtv2jXq332n46WXqrNpk+nOSMuWEBAAnTqp9dBQ1Vw9LRs3qpstffqoqcseVVCCbjCfOgzAyQnWr4dyeWOWQJEJEnQLIYQQolAbNKYpVctdMds2cqSaZzy3fPNjbfp32kXnJgd444UdfDZkP7Nnqya3+/fD6dNQokTu5S83vfhiym3W1uDuroKwzz6Dp57K+XzldY0bm/o179qVtWPXr4e7d9Vyt25pv/esrGDQILWsaabB25KbORM++MCKxEQVhpQvD8uWwfbtULs2zJ4NRdXEAfz0U+p53bULevSAxES1PmMG3LtnnubCBdNyfg+627UztSywslK1+7ULV8+SfE8GUhNCCCFEoWZrb8vXY0N5aWglAJydDYwalbv1EiVKO/PLhlTmFRO0bAmnTql+reXKQdmyqj9xfh0oK6c4Oamm+YcPq9fv3j0omcneCcmblqc1+n6S115TNz70ehV0f/aZ6lMOqrY8+cjpI0ca+OorK5ycTNsqVFCDsCUNHvbGG6oGPCnoDAiA554zDegGEBmpgvWPPzZtywvThWWXokXh++/Vc/zwQ9WlQuQvUtMthBBCiEKv59tNeKndHuxs4pj52YFCW4ucX1Svrprc1q4NZcpIwJ1ZSU3MNQ327s3cMdevm6Yn8/RUta7pcXc3BYUhIfD332p5/Xro39+UbsCA60ydqpkF3EmGDlWjo4OaQixpdO4LF6B9e1Nf7+RTi02fbh6IJwXdNjYqkM/v3n5bDWT3yiu5nRPxOCToFkIIIUShZ2VtxfLNzYhLsKfvqCa5nR0hLOJx+nUvWaKm3wLo1y9zNziSmpgDzJ2rRjp/8UXTgGdvv21g8ODQNI+3tlYDsSXVkE+YAP/8A888Y+q737SpCuh79FDrt26pqcpA3VRICrorVzadR4jcIkG3EEIIIYQQhUBWg25Ng19+Ma2/9lrmrtOxo6rxBlXD3aWLqRa6d2+YMUPLcHT5WrVg9Gi1nJCgarivXjXt27BBNbtOSgMwdaoK7K9fh2g1AUC+b1ouCgYJuoUQQgghhCgEypeHSpXU8v79EB+ffvoDB+DMGbXcsmXmBySzsTH1/dbrISJCLXfsqGqjMzuv9CefgLe3+bYqVVQNd1J/9Pr1TQPnXbwIq1cXrJHLRcEgQbcQQgghhBCFRNJ83bGxcPRo+mmzMoDaowYMMF9v3hx++w3s7DJ/jiJF4OefTevlyqmpyB6dKit5bfekSQVr5HJRMEjQLYQQQgghRCGR2SbmMTFqaipQzbhTm6otPVWqqDm0AerWVc3MHR2zdg6A1q1V7fhrr8G2beq8j3r6aXUNUKOzz5tn2idBt8gLJOgWQgghhBCikEgedKc3X/cff5hGCe/Zk1RHGc/IwoWqGfv+/U82r3y/fupcjzY1T6LTqam0kuzbZ1qWPt0iL5CgWwghhBBCiEKiRg1wdlbLu3erwdJSk3wAtaw2LU9ib6+m/rK1fbzjs6JnTzVSeXLW1lCxouWvLURGJOgWQgghhBCikLCygmbN1PKtW+aDjiW5dg3++08tV6kCrVrlXP4el40NvP+++bZKlXIm4BciIxJ0CyGEEEIIUYhk1K97xgxTDfhrr5Hh9F55xeuvg5ubaV2alou8QoJuIYQQQgghCpGkEcwhZdC9di1Mm6aWra1Vf+r8wsEBhg0zrcsgaiKvkKBbCCGEEEKIQqRhQ9UcG8wHU7twAfr2Na1PmJD/+kQPGwY1a6p+68mfixC5ySa3MyCEEEIIIYTIOY6OUL++GlX87Fm4fVvVEnfvDhERKk3Pnin7SOcHJUrA8eOQkJC1OcGFsCSp6RZCCCGEEKKQSd6ve88eGDQITp5U635+sGBB/unL/SidTgJukbdI0C2EEEIIIUQhkzzoHjUKli9Xy8WKwerV6q8QIntYLOgODg7m448/pl27dvj7+/P0008zY8YM4uPj0z0uLi6OcePG0bhxY+rWrcuwYcO4ffu2pbIphBBCCCFEoZM86L50ybT8yy/g65vj2RGiQLNY0B0YGIimaXz55Zds2LCBjz76iOXLl/Pdd9+le9w333zD1q1b+f7771myZAm3bt1i6NChlsqmEEIIIYQQhU6ZMilH9x49WvXrFkJkL4sNpNaqVStatWplXPf09OTy5cssW7aM0aNHp3rMgwcP+P3335k6dSpNmzYFVBDeqVMnAgICqFOnjqWyK4QQQgghRKHSvDlcvKiWn3oKxo/P3fwIUVDl6OjlDx48wNnZOc39J0+eJCEhgWbNmhm3eXl54e7unm7Qrdfr0ev12Z3dbJWUv7yeT5E1Uq4Fl5RtwSTlWnBJ2eYCvR5r46IeLPDaS7la1ogRsHGjFZUrw9KlBnQ6ixRjClKuBVdhK9vMPs8cC7qvXr3K0qVL06zlBrh9+za2trYUL17cbHupUqUICwtL87jz589nWz4t7cSJE7mdBWEBUq4Fl5RtwSTlWnBJ2eYcq5gY6j5cPn78OAYHB4tdS8rVcjZuVH9DQtQjJ0m5FlxStuayHHRPnTqVuXPnpptm48aNeHl5Gddv3rzJoEGD6NChA7169cp6LjPg7e2No6Njtp83O+n1ek6cOEGtWrWwtrbO+ACRL0i5FlxStgWTlGvBJWWbC6KijIv+/v5QtGi2X0LKtWCSci24ClvZRkdHZ6oCOMtB94ABA+jWrVu6aTw9PY3LN2/epF+/ftStW5evvvoq3eNcXV1JSEggIiLCrLb7zp07uLm5pXmctbV1vinU/JRXkXlSrgWXlG3BJOVacEnZ5qBkr7O1tbXZevZfSsq1IJJyLbgKS9lm9jlmOeh2cXHBxcUlU2mTAu4aNWowYcIErKzSHyy9Zs2a2NrasnfvXtq3bw+oUdBDQ0NlEDUhhBBCCCGEEPmOxfp037x5k759++Lu7s7o0aO5e/eucV9SrfXNmzfp378/kydPxt/fn2LFitGjRw8mTpyIs7MzTk5OjB8/nrp166YadBsMBgBiYmIs9TSyTVIn++jo6EJx16ewkHItuKRsCyYp14JLyjYXxMaCj49pWafL9ktIuRZMUq4FV2Er26Q4NCkuTYtO0zTNEhlYvXo1H330Uar7zp07B0BwcDBPPfUUixcvpnHjxgDExcUxceJENmzYQHx8PC1atODzzz9PtXn5nTt3uHLliiWyL4QQQgghhBBCZKhSpUqUKlUqzf0WC7pzQmJiIuHh4djb22fYdF0IIYQQQgghhMguBoOBuLg4nJ2dsbFJuxF5vg66hRBCCCGEEEKIvEyqh4UQQgghhBBCCAuRoFsIIYQQQgghhLAQCbqFEEIIIYQQQggLkaBbCCGEEEIIIYSwEAm6c8Cvv/5Ku3btqFWrFi+++CLHjx/P7SyJLJozZw49evSgbt26NG3alCFDhhAYGGiWJi4ujnHjxtG4cWPq1q3LsGHDuH37di7lWDyOn3/+GR8fH77++mvjNinX/OnmzZu8//77NG7cGH9/f7p06cKJEyeM+zVNY/r06bRo0QJ/f39ee+01mYIyH9Dr9Xz//fe0a9cOf39/nn76aWbNmkXyMWGlbPO+gwcP8vbbb9OiRQt8fHz477//zPZnpgzv37/Pe++9R7169WjQoAEff/wxUVFROfgsRGrSK9uEhASmTJlCly5dqFOnDi1atODDDz/k5s2bZueQss17MvqfTe6zzz7Dx8eHX375xWx7YS9XCbotbOPGjUyYMIF33nmHP/74A19fXwYOHMidO3dyO2siCw4cOMArr7zCypUrWbhwIYmJiQwcOJDo6Ghjmm+++YatW7fy/fffs2TJEm7dusXQoUNzMdciK44fP87y5cvx8fEx2y7lmv+Eh4fTp08fbG1tmTt3Lhs2bGD06NE4Ozsb08ydO5clS5bwxRdfsHLlShwcHBg4cCBxcXG5mHORkblz57Js2TI+++wzNm7cyPvvv8+8efNYsmSJWRop27wtOjoaHx8fPv/881T3Z6YM33//fS5evMjChQv56aefOHToEJ999llOPQWRhvTKNjY2ltOnTzN48GBWr17NDz/8wOXLlxk8eLBZOinbvCej/9kk//77L8eOHaN06dIp9hX6ctWERfXs2VMbN26ccV2v12stWrTQ5syZk4u5Ek/qzp07mre3t3bgwAFN0zQtIiJCq1GjhrZp0yZjmosXL2re3t7a0aNHcymXIrMiIyO1Z599Vtu9e7f26quvauPHj9c0Tco1v5oyZYrWp0+fNPcbDAatefPm2rx584zbIiIitJo1a2rr16/PiSyKx/Tmm29qH330kdm2oUOHau+9956maVK2+ZG3t7f277//GtczU4ZJn8PHjx83ptm+fbvm4+Oj3bhxI+cyL9L1aNmm5tixY5q3t7cWEhKiaZqUbX6QVrneuHFDa9mypXb+/Hmtbdu22sKFC437pFw1TWq6LSg+Pp5Tp07RrFkz4zYrKyuaNWvG0aNHczFn4kk9ePAAwFhzdvLkSRISEszK2svLC3d3dwICAnIjiyILvvzyS1q3bm1WfiDlml9t2bKFmjVrMnz4cJo2bUrXrl1ZuXKlcX9wcDBhYWFm5VqsWDFq164tn815XN26ddm3bx+XL18G4OzZsxw+fJhWrVoBUrYFQWbK8OjRoxQvXpxatWoZ0zRr1gwrKyvpwpfPREZGotPpKF68OCBlm18ZDAY++OADBg4cSLVq1VLsl3IFm9zOQEF279499Ho9pUqVMtteqlSpFP2BRf5hMBj45ptvqFevHt7e3gDcvn0bW1tb45dGklKlShEWFpYb2RSZtGHDBk6fPs1vv/2WYp+Ua/4UFBTEsmXLeP3113n77bc5ceIE48ePx9bWlm7duhnLLrXPZumvn7e9+eabREZG0rFjR6ytrdHr9bz77rs8//zzAFK2BUBmyvD27du4uLiY7bexscHZ2Vk+m/ORuLg4pk6dSufOnXFycgKkbPOruXPnYmNjQ79+/VLdL+UqQbcQWTZu3DguXLjA//73v9zOinhC169f5+uvv2bBggXY29vndnZENtE0jZo1azJq1CgAqlevzoULF1i+fDndunXL5dyJJ7Fp0ybWrVvHtGnTqFq1KmfOnGHChAmULl1aylaIfCQhIYERI0agaRrjxo3L7eyIJ3Dy5EkWL17M6tWr0el0uZ2dPEual1tQyZIlsba2TjFo2p07d3B1dc2lXIkn8eWXX7Jt2zYWLVpE2bJljdtdXV1JSEggIiLCLP2dO3dwc3PL6WyKTDp16hR37tyhe/fuVK9enerVq3PgwAGWLFlC9erVpVzzKTc3N7y8vMy2ValShdDQUON+QD6b86HJkyfz5ptv0rlzZ3x8fOjatSv9+/dnzpw5gJRtQZCZMnR1deXu3btm+xMTEwkPD5fP5nwgISGBkSNHEhoayoIFC4y13CBlmx8dOnSIO3fu0LZtW+NvqZCQECZNmkS7du0AKVeQoNui7OzsqFGjBnv37jVuMxgM7N27l7p16+ZizkRWaZrGl19+yb///suiRYvw9PQ021+zZk1sbW3NyjowMJDQ0FDq1KmTw7kVmdWkSRPWrVvHmjVrjI+aNWvSpUsX47KUa/5Tr149Y5/fJFeuXKF8+fIAeHh44ObmZlaukZGRHDt2TD6b87jY2NgUNSnW1tbGKcOkbPO/zJRh3bp1iYiI4OTJk8Y0+/btw2Aw4O/vn+N5FpmXFHBfvXqVX375hZIlS5rtl7LNf1544QXWrl1r9luqdOnSDBw4kHnz5gFSriDNyy3u9ddfZ/To0dSsWRN/f38WLVpETEwM3bt3z+2siSwYN24c69ev58cff6Ro0aLG/ifFihWjSJEiFCtWjB49ejBx4kScnZ1xcnJi/Pjx1K1bV4KzPMzJycnYLz+Jo6MjJUqUMG6Xcs1/+vfvT58+ffjpp5/o2LEjx48fZ+XKlXz55ZcA6HQ6+vXrx+zZs6lYsSIeHh5Mnz6d0qVL8/TTT+dy7kV62rZty08//YS7u7uxefnChQvp0aMHIGWbX0RFRXHt2jXjenBwMGfOnMHZ2Rl3d/cMy9DLy4uWLVvy6aefMm7cOBISEvjqq6/o3LkzZcqUya2nJUi/bN3c3Bg+fDinT59mzpw56PV64+8pZ2dn7OzspGzzqIz+Zx+9eWJra4urqytVqlQB5H8WQKcl3R4WFrN06VLmz59PWFgYfn5+fPLJJ9SuXTu3syWy4NG5m5NMmDDBeAMlLi6OiRMnsmHDBuLj42nRogWff/55oWk2U1D07dsXX19fxo4dC0i55ldbt27l22+/5cqVK3h4ePD666/Tq1cv435N05gxYwYrV64kIiKC+vXr8/nnn1O5cuVczLXISGRkJNOnT+e///7jzp07lC5dms6dO/POO+9gZ2cHSNnmB/v37091wKVu3boxceLETJXh/fv3+eqrr9iyZQtWVlY8++yzfPLJJxQtWjQnn4p4RHplO3ToUJ566qlUj1u8eDGNGzcGpGzzooz+Zx/Vrl07+vXrx2uvvWbcVtjLVYJuIYQQQgghhBDCQqRPtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEIXU/v378fHxYf/+/bmdFSGEEKLAkqBbCCGESMXq1avx8fFJ8xEQEJDbWcyTbt++zUcffUTTpk3x9/enW7dubNq0Kc30Gzdu5KWXXqJOnTo0aNCA3r17s3fv3jTTHzp0yFgGd+/eTTcvr7/+Oj4+Pnz55ZeP/XyEEEKIJ2WT2xkQQggh8rLhw4fj4eGRYnuFChVyITd5W2RkJC+//DK3b9+mX79+uLm5sWnTJkaOHEliYiJdunQxSz9z5kxmzZpF+/bt6datG4mJiZw/f56bN2+men6DwcD48eNxdHQkOjo63bz8888/cmNECCFEniBBtxBCCJGOVq1aUatWrdzORr6wfPlyrl69yi+//ELTpk0B6NOnD7169WLSpEm0b98eOzs7AAICApg1axZjxozhtddey9T5V6xYwfXr1+nZsyeLFy9OM11cXBwTJ05k0KBBzJgx44mflxBCCPEkpHm5EEII8QRmzJiBr69viibRn376KTVr1uTs2bMAxMfHM336dLp37079+vWpU6cOL7/8Mvv27TM7Ljg4GB8fH+bPn8+vv/7KU089Re3atRkwYADXr19H0zRmzZpFq1at8Pf3Z/Dgwdy/f9/sHO3ateOtt95i165dvPDCC9SqVYtOnTrxzz//ZOo5HTt2jIEDB1K/fn1q167Nq6++yuHDhzM87tChQ7i4uBgDbgArKys6duxIWFgYBw8eNG5ftGgRrq6u9OvXD03TiIqKSvfc9+/f5/vvv2f48OEUL1483bRz585F0zQGDhyYYZ6FEEIIS5OgWwghhEhHZGQkd+/eNXvcu3fPuH/w4MH4+fkxduxYIiMjAdi5cycrV65kyJAh+Pr6Gs+zatUqGjVqxPvvv8/QoUO5e/cugwYN4syZMymuu27dOv73v//Rt29fXn/9dQ4cOMDIkSP5/vvv2blzJ2+88Qa9evVi69atTJo0KcXxV65c4d1336VVq1a89957WFtbM2LECHbv3p3u8927dy+vvPIKUVFRDB06lHfffZeIiAj69+/P8ePH0z02ISGBIkWKpNietO3UqVNm16lVqxaLFy+mSZMm1KtXjxYtWrB06dJUzz19+nTc3Nzo3bt3unkIDQ1l7ty5vP/++6nmRQghhMhp0rxcCCGESEdqTZ/t7Ow4ceIEALa2tkyaNInu3bszceJEPvzwQ8aOHUvNmjV58803jcc4OzuzZcsWY/NqgF69etGxY0eWLFnCN998Y3aNmzdv8s8//1CsWDFA9WeeM2cOsbGx/P7779jYqK/we/fusW7dOsaNG2d27itXrjBz5kyeffZZAHr27EmHDh2YOnUqzZs3T/W5aprGF198QePGjZk3bx46nQ6A3r1707lzZ77//nsWLFiQ5mtVuXJl9uzZQ0hICOXLlzduT6olT+qrHR4ezr179zhy5Aj79u1j6NChlCtXjtWrV/PVV19hY2NjFlyfPXuWFStW8PPPP2NtbZ3m9QEmTpyIn58fnTt3TjedEEIIkVMk6BZCCCHS8dlnn1G5cmWzbVZW5g3FvL29GT58ONOmTePcuXPcu3ePBQsWGANjAGtra2PAaDAYiIiIwGAwULNmTU6fPp3iuh06dDAG3AD+/v4APP/882bn9ff3Z/369dy8eRNPT0/j9tKlS/PMM88Y152cnOjatStz584lLCwMNze3FNc8c+YMV65cYfDgwWa1+QBNmzblzz//xGAwpHj+SXr27Mny5csZOXIkH330Ea6urmzatIl///0XgNjYWADjIGj379/nu+++o1OnTsbn3KVLF2bPnm0WdH/99de0atWKFi1apHrdJPv27eOff/5h5cqV6aYTQgghcpIE3UIIIUQ6/P39MzWQ2sCBA9mwYQPHjx9n1KhRVK1aNUWaP/74gwULFnD58mUSEhKM21MbHb1cuXJm60kBeFrbw8PDzYLuihUrGmuqk1SqVAmAkJCQVIPuK1euADB69Oi0niYPHjzA2dk51X2+vr5MnTqVzz//nD59+gDg5ubGxx9/zBdffIGjoyMA9vb2gGol0L59e+PxSf2/Z86cSWhoKO7u7mzcuJGjR4+ybt26NPMEkJiYyNdff80LL7xgvEEhhBBC5AUSdAshhBDZICgoiKtXrwJw/vz5FPv//PNPxowZw9NPP83AgQMpVaoU1tbWzJkzh6CgoBTp02pGnVYts6ZpT5B783N8+OGH+Pn5pZomKXBOS4cOHWjXrh1nz57FYDBQvXp1Dhw4AJiC/hIlSmBvb0/x4sVTPM9SpUoBEBERgbu7O5MnT6Z9+/bY2toSHBxs3Adw48YNEhISKFOmDGvWrOHy5cuMGzfOmC5JVFQUwcHBlCpVCgcHhyy8IkIIIcSTk6BbCCGEeEIGg4ExY8bg5ORE//79+emnn2jfvr2xPzXA33//jaenJz/88INZDbSlprS6evUqmqaZXSupJjt5f+vkkmrKnZycaNas2WNf287Ozqy2ec+ePQDGc1pZWeHn58eJEyeIj48364t+69YtAEqWLAnA9evXWb9+PevXr09xnW7duuHr68uff/7J9evXSUhIMNawJ7dmzRrWrFnDrFmzePrppx/7eQkhhBCPQ4JuIYQQ4gktXLiQo0ePMnv2bNq0acP+/fv54osvaNCgAS4uLoCp5jp5IHzs2DECAgJwd3fP9jzdunWLf//91xj4R0ZGsmbNGvz8/FJtWg5Qs2ZNKlSowIIFC3juuecoWrSo2f67d+8an09mXblyheXLl9O2bVuzvvEdO3YkICCANWvW0KtXL0DNr71u3TqqVq1KmTJlAJg1a1aKc27YsIGNGzcyadIkypYtC0CnTp1SrZ1/5513aN26Nb169ZJm50IIIXKFBN1CCCFEOnbs2EFgYGCK7fXq1cPT05NLly4Z599u164doEbQ7tq1K+PGjWP69OkAtGnThn/++Yd33nmHNm3aEBwczPLly6latapxYLHsVKlSJcaOHcuJEycoVaoUv//+O3fu3GHChAlpHmNlZcX48eN54403eO655+jevTtlypTh5s2b7N+/HycnJ3766ad0r9upUyc6dOhAuXLljM+xRIkSjBs3zixd7969+e233/jyyy+5fPky7u7u/Pnnn4SGhjJ79mxjutRqppOmWGvVqpXxJoCXlxdeXl6p5snDw0NquIUQQuQaCbqFEEKIdKTV/HvChAm4u7szevRoSpYsyccff2zcV6lSJUaNGsXXX3/Nxo0b6dSpE927d+f27dusWLGCXbt2UbVqVaZMmcJff/1l7POcnSpVqsSnn37K5MmTuXz5Mh4eHnz33Xe0bNky3eMaN27MihUr+PHHH1m6dCnR0dG4ubnh7+/PSy+9lOF1fX19Wb16Nbdv36ZkyZJ06NCB4cOHG/tqJylSpAiLFi1iypQprF69mujoaPz8/JgzZ06GeRRCCCHyE52WHSOvCCGEECLPaNeuHdWqVWPOnDm5nRUhhBCi0Et9CFQhhBBCCCGEEEI8MQm6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBDp0y2EEEIIIYQQQliI1HQLIYQQQgghhBAWYtEpww4ePMj8+fM5efIkYWFhzJo1K915Mvfv30+/fv1SbN+1axdubm4pticmJhIeHo69vT1WVnL/QAghhBBCCCFEzjAYDMTFxeHs7IyNTdqhtUWD7ujoaHx8fOjRowdDhw7N9HF//fUXTk5OxvVH5/ZMEh4ezpUrV540m0IIIYQQQgghxGOpVKlSmjErWDjobt26Na1bt87ycaVKlaJ48eIZprO3twegQoUKFClSJMvXyUkGg4GLFy9StWpVqZUvQKRcCy4p24JJyrXgkrLNBTExWLdqBYB+xw5wcMj2S0i5FkxSrgVXYSvb2NhYrl27ZoxL02LRoPtxde3alfj4eKpVq8bQoUOpX79+qumSCvLatWs5mb0ncvHixdzOgrAAKdeCS8q2YJJyLbikbHOOVUwMdc+dA+Do+fMYLBB0J5FyLZikXAuuwla2Gd1gyFNBt5ubG+PGjaNmzZrEx8ezatUq+vXrx8qVK6lRo0aax3l7e+Po6JiDOc06vV7PiRMnqFWrFtbW1rmdHZFNpFwLLinbgknKteCSss0FUVHGRX9/fyhaNNsvIeVaMEm5FlyFrWyjo6M5f/58hunyVNBdpUoVqlSpYlyvV68eQUFB/PLLL0yZMiXN46ytrfNNoeanvIrMk3ItuKRsCyYp14JLyjYHJXudra2tzdaz/1JSrgWRlGvBVVjKNrPPMc83tK9Vq1a+aj4uhBBCCCGEEPnJH3/AjBmg1+d2TgqmPFXTnZqzZ8+mOl2YEEIIIYQQQogn88cf0L27WjYYYOTIXM1OgWTRoDsqKsqsljo4OJgzZ87g7OyMu7s706ZN4+bNm0yePBmAX375BQ8PD6pVq0ZcXByrVq1i3759LFiwwJLZFEIIIYQQQohCJyoKRowwra9eLUG3JVg06D558iT9+vUzrk+YMAGAbt26MXHiRMLCwrh+/bpxf0JCApMmTeLmzZs4ODjg7e3NwoULadKkiSWzKYQQQgghhBCFzldfQVCQaX3vXoiIgEzM3iyywKJBd+PGjTn3cCqJ1EycONFs/Y033uCNN96wZJaEEEIIIYQQotA7fRqmTTPflpgIW7fCCy/kTp4Kqjw/kJoQQgghhBBCiOyjafDOOyrIBmjWzLTv779zJ08FmQTdQgghhBBCCFGILFsG27ap5cqVYc0asLVV6xJ0Zz8JuoUQQgghhBCikAgPh/feM63PmAFubtC8uVoPDIRLl3InbwWVBN1CCCGEEEIIUUh8/jncuKGWn38enntOLbdvb0ojtd3ZS4LuQmzMmDEMGTLEuN63b1++/vrrHM/H/v378fHxISIiIsevLYQQQgghRGEREAAzZ6plBweYPt2079lnTcv//JOj2SrwJOjOg8aMGYOPjw8+Pj7UrFmTZ555hh9++IHEpJEOLGTmzJmMSD5RXzokUBZCCCGEECL/0DQYMgQMBrX+ySdQqZJpf506qpk5wJYtkJCQ0zksuCTozqNatmzJrl27+Pvvv3n99df54YcfmD9/fop08fHx2XbNEiVK4OTklG3nE0IIIYQQQuQNa9eqebgBvL3N+3UDWFnBM8+o5QcPTGnFk5OgO4+ys7PDzc2N8uXL8/LLL9OsWTO2bNlibBI+e/ZsWrRoQYcOHQC4fv06I0aMoEGDBjRq1IjBgwcTHBxsPJ9er2fChAk0aNCAxo0bM3nyZDRNM7vmo83L4+PjmTJlCq1btzbWuK9atYrg4GD69esHQMOGDfHx8WHMmDEAGAwG5syZQ7t27fD39+f555/nr7/+MrvO9u3bad++Pf7+/vTt25eQkBCLvIZCCCGEEEIIVcs9frxpfepUsLdPmS55v25pYp59bHI7A7nizLdw9tuM07nUg9Zrzbdtfx7uHsn4WN9R4Dfq8fKXCnt7e+7fvw/A3r17cXJyYuHChQAkJCQwcOBA6tSpw6+//oqNjQ0//vgjgwYNYu3atdjZ2bFgwQL++OMPvvnmG7y8vFiwYAH//vsvTZo0SfOaH374IQEBAXzyySf4+voSHBzMvXv3KFeuHDNnzmTYsGH89ddfODk5UaRIEQDmzJnD2rVrGTduHJUqVeLgwYN88MEHuLi40KhRI65fv87QoUN55ZVX6NWrFydPnmTSpEnZ9joJIYQQQgghzP3zDxw6pJbr1DENnvaopJpuUIOpJQ/UxeMrnEF3QgTEZKJ2NdYzlW1hmTs2IXv6Omuaxt69e9m1axevvvoq9+7dw9HRkfHjx2NnZwfAn3/+icFg4Ouvv0an0wEwYcIEGjZsyIEDB2jRogWLFi3izTff5NmHIySMGzeOXbt2pXndy5cvs2nTJhYuXEizZs0A8PQ0vR7Ozs4AlCpViuLFiwOqZnzOnDksXLiQunXrGo85fPgwK1asoFGjRixbtowKFSoYa8arVKnC+fPnmTt3bra8XkIIIYQQQhQW166pZuAvvAAP68BS0DT46ivT+iefwMOQIYVy5cDfH44fh8OH4fZtcHXN/nwXNoUz6LYtDg7lM05XxC31bZk51rZ41vOVzLZt26hbty4JCQlomsZzzz3HsGHD+PLLL/H29jYG3ABnz57l2rVr1KtXz+wccXFxXLt2jQcPHhAWFkbt2rWN+2xsbKhZs2aKJuZJzpw5g7W1NQ0bNsx0nq9evUpMTAwDBgww256QkICfnx8Aly5dwt/f32x/nTp1Mn0NIYQQQgghBNy/D02bQmgotGunarOtrVOm27EDdu9Wy35+0K1b+udt314F3ZoG//0HvXtne9YLncIZdPs9QdPvR5ubW0jjxo354osvsLW1pXTp0tjYmIrKwcHBLG10dDQ1atRg6tSpKc7j4uLyWNcvktatsnRER0cDqol5mTJlzPYlv0kghBBCCCGEeDJffqkCblCjjX/xhXmNdpLk28aOVQOmpefZZ2HKFLX8998SdGeHwhl05wMODg5UrFgxU2lr1KjBpk2bKFWqVJqjj7u5uXHs2DFjzXViYiKnTp2ievXqqab39vbGYDBw8OBBY/Py5GxtbQE1QFsSLy8v7OzsCA0NpVGjRqme18vLiy1btphtO3bsWMZPUgghhBBCCAHA2bOm+baTjB8PzZvDw3GWAdX0fPNmtVy1Krz0UsbnbtFCzeEdE6NqzzUt7eboInNk9PICoEuXLpQsWZLBgwdz6NAhgoKC2L9/P+PHj+fGjRsA9OvXj7lz5/Lff/9x6dIlxo0bl+4c2x4eHnTr1o2PP/6Y//77z3jOjRs3AlC+fHl0Oh3btm3j7t27REVF4eTkxIABA5gwYQJ//PEH165d49SpUyxZsoQ//vgDgN69e3PlyhUmTZpEYGAg69atM+4TQgghhBBCZGzUKEhMVMvJepDy6qsQFGRaTzYxER99BDaZqHItUgTatFHLoaFw6tQTZ7fQk6C7AHBwcGDp0qW4u7szdOhQOnXqxNixY4mLizPWfA8YMIDnn3+e0aNH07t3b4oWLcozyYcnTMUXX3xB+/bt+eKLL+jYsSOffvopMTExAJQpU4Zhw4Yxbdo0mjVrxlcP262MHDmSIUOGMGfOHDp16sSgQYPYtm0bHh4eALi7uzNz5kw2b97MCy+8wPLly3n33Xct+OoIIYQQQghRcGzcCJs2qWUPD9Vfu0sXtX7njmoOnpAAR4/Chg1qe4UKKiDPrIdjLwOqibl4MjotrZG08oHo6GjOnDmDn58fjo6OuZ2ddOn1egICAqhTpw7WqY1wIPIlKdeCS8q2YJJyLbikbHNBVBQkdWuLjISiRbP9ElKuBZOU6+OLj1eji587p9aXLVNB9t27UK8eXL2qtr//Ply+DL//rtZnzYIhQzJ/nTNnIKkX6rPPZj7wLmxlm9l4VGq6hRBCCCGEECIfmDXLFHA3b27qo+3iAitXwsNhl5g61RRwlysHj0wulCFfX1WLDmr084eNXcVjkqBbCCGEEEIIIXLQ5cswZgxs3575Y27dgnHj1LJOB9Onmw9w1qgRTJuW8rgPPkh7Du+06HRq6jCA2Fj4/HMJvJ+EBN1CCCGEEEIIkYPeeAMmTYK2bWHyZDVCeEY+/RTCw9XygAFQv37KNEOHQs+epnVXV3jzzcfL4/PPm5anTFFzfP/2W+byKsxZNOg+ePAgb7/9Ni1atMDHx4f//vsvw2P2799Pt27dqFmzJs888wyrV6+2ZBaFEEIIIYQQIsdERMC2bWpZ02D0aOjfX9UopyUgAObOVcvFipmPSp6cTgfz5qn+3aAC+scdbqFLFzXieVLX7KtX4cUX1Y2CgIDHO2dhZdGgOzo6Gh8fHz7//PNMpQ8KCuKtt96icePG/Pnnn/Tv359PPvmEnTt3WjKbQgghhBBCCJEjduwAvd5825Ilapqu69fNt4eGwpdfQseOphrmzz6DMmXSPr+zM+zbpwZXe/31x8+nTgfffAPHj0PySY+2b1dB/eDB6d8oECaZmKnt8bVu3ZrWrVtnOv3y5cvx8PBgzJgxAHh5eXH48GF++eUXWrZsaalsCiGEEEIIIUSOSN749803YelSiI6G/fuhYUNYswYePIAff1TLSfNxA1SrBsOHZ3wNW1soWTJ78lu9uhq9fP16NT/4xYvqBsBPP8Hp0/Dnn1CiRPZcq6CyaNCdVQEBATRt2tRsW4sWLfjmm2/SPU6v16N/9HZRHpOUv7yeT5E1Uq4Fl5RtwSTlWnBJ2eYCvR5r46I+ZdVdtlxCyrUgKuzlunmzFaDDykrjm28MvPkmdOtmRVCQjpAQFXg/yspKo3Nn+O47A9bWFvl3y1CnTvDUUzBzpo4vv9QRHa1jxw5o1UpjwwYD7u6Fr2wz+zzzVNB9+/ZtXF1dzba5uroSGRlJbGwsRdIYdu/8+fM5kb1sceLEidzOgrAAKdeCS8q2YJJyLbikbHOOVUwMdR8uHz9+HIODg8WuJeVaMBXGcr1924aTJ2sD4OcXzZUrZwGYN8+GDz7w4vhxJ7P0pUol0LXrbbp1C6Ns2QTu38/9/tRPPw3u7o4MH16V+/dtOXFCR+PGifzwwwUqVowDCmfZpidPBd2Py9vbO93JyPMCvV7PiRMnqFWrVqGYKL6wkHItuKRsCyYp14JLyjYXREUZF/39/R9/tKZ0SLkWTIW5XJctM83x1aWLA3Xq1DGu790L775rYOFCHU2awODBGl27WmFnVxoonfOZTUedOtCgAXTqpHHlio7r1+15660arFmTSJEixwtN2UZHR2eqAjhPBd2urq7cvn3bbNvt27dxcnJKs5YbwNraOt8Uan7Kq8g8KdeCS8q2YJJyLbikbHNQstfZ2trabD37LyXlWhAVxnLdssW0/MwzVmb/No6OMGcOzJ4NVlYAukcPz1P8/GDPHujQQQ22dvu2jmeftWHChOLUqVM4yjazzzFPBd116tRhx44dZtv27NljdgeooPPx8Ul3/9ChQxk2bFgO5UYIIYQQQgiRHTTNNIhakSLQrFnq6awsOr9U9ipXTo3G/sILalTz6GgdI0ZUY/Nmjc8/N01dVthZNOiOiori2rVrxvXg4GDOnDmDs7Mz7u7uTJs2jZs3bzJ58mQAevfuza+//srkyZPp0aMH+/btY9OmTcyZM8eS2cxTdu3aZVzeuHEjM2bM4K+//jJuS96MXtM09Ho9NjZ56t6JEEIIIYQQ4hEXL0JQkFpu0UIF3gWBszP89Re88gqsXq22rV2rY+1aNdf3Z5+ppuiFmUXvo5w8eZKuXbvStWtXACZMmEDXrl2ZMWMGAGFhYVxPNhmdp6cnc+bMYc+ePbzwwgssXLiQ8ePHF6rpwtzc3IyPYsWKodPpjOuBgYHUq1eP7du30717d2rVqsXhw4cZM2YMQ4YMMTvP119/Td++fY3rBoOBOXPm0K5dO/z9/Xn++efNgnkhhBBCCCGE5WzebFp++uncy4clFCkCK1fC9OkG3NzijdvXrVOjsXfuDIcO5WIGc5lFq0gbN27MuXPn0tw/ceLEVI9Zs2aNxfK0apW62/LggcUukUKxYjBuHHh5Zc/5pk2bxujRo/H09KR48eKZOmbOnDmsXbuWcePGUalSJQ4ePMgHH3yAi4sLjRo1yp6MCSGEEEIIIVKVfH7up57KvXxYirU1vPOORoMGJzl8uA6TJ1sRHKz2bdyoHv36wYQJ4O6eu3nNaYWuXfKUKXD2bM5fd+pUK2bPzp5zDR8+nObNm2c6fXx8PHPmzGHhwoXUrasm9/D09OTw4cOsWLFCgm4hhBBCCCEsSK+HrVvVcsmSULdu+unzM3t7jSFDNN58ExYuVEF2Uo/jxYvh99/h449h1KiC08Q+I4Uu6P7wQ/j005yv6X7/fUO2na9WrVpZSn/16lViYmIYMGCA2faEhAT8/PyyLV9CCCGEEEKIlAIC4O7d/7N333FVVn8Axz+XyxAEURAHbkXAheDIPStTS8uRWZrbypGZmbY0LUeZ9ctVmaY5MrVSy7RlhXvkQHHvvQcgG+59fn8cuJcrG+5l+X2/XvfFs59zOYz7fc4536OW27WzabL/AsPJCV55BQYNUlnZ338f7t1Tsw2++y4sWAAzZ0L37qAr2Inac+2hC7p79lSvvGYwWG8ie2dnZ4t1nU6HpmkW2xITE03L0dHRgOpiXrZsWYvjHB0drVMoIYQQQgghRJqK8njuzDg6wquvwgsvwKRJako0gwHOn1dxWbduqvW7KAfehSghvUiPh4cHt27dsth27Ngx03KNGjVwdHTk6tWrVKlSxeJVvnz5vC6uEEIIIYSwkR9/hFWrwGi9TpbCCor6eO6s8PSEOXNUQ2TKBw9r18KRI/lWrDwhQXcR0LRpUw4fPsy6des4f/48s2fP5tSpU6b9rq6uDBo0iOnTp7N27VouXrzIkSNHWLZsGWvXrs3HkgshhBBCCGv59Vd49lno3Rs6doQbN/K7RAIgNhaSZwWuVAlq1szf8uS3unXhzz9h/Hjztj178q88eUGC7iKgVatWDB8+nE8++YSePXsSFRVlmqYt2ejRoxk+fDjz58+nc+fODBkyhODgYCpWrJg/hRZCCCGEEFa1fLl5+a+/oH59y27NIn/s3AkxMWr5sceKdjfqrNLp1IOhZP/9l39lyQsP3ZjuwqR79+50797dtJ7RFGyjRo1i1KhR6V5Lp9PRv39/+vfvb/VyCiGEEEKI/BUbCxs2WG67cQMefxzee09NmWsvn/zzRcoHHw9r1/K0NGyogm9Nk5ZuIYQQQgghHnoHD8Lbb8PWrXl7X03L2vjsv/+GyEi1/PTT5lZETYMPP1TB3pUrtiunSJ+M506bmxskT6R06JB6cFRUSdAthBBCCCFEOjQNZs+Gxo3ho4+gdWs1DVJEhO3vff8+NGgAJUrAjh0ZH7tmjXl58GDV6v3RR+apqbZsUde6dMl25RWphYebu07XqQPlyuVveQqaRx5RXxMTrTfTU0EkQbcQQgghhBBpuHtXzSH82muQkGDePn++ORmULX33nQpEoqLgrbfSPy4xEX7+WS0XL666lNvZqURVW7ao5F0AN2/CO+/YtszCUnCwuafCwzZVWFY0bmxeLspdzCXoFkIIIYQQ4gE7d0JQEKxbZ97Ws6cKakG1GD/xhGpVDguzTRmWLjUvb90KoaFpH7dtG9y5o5Y7d4Zixcz7mjeHffugVCm1vnw57N9vm/IKS5oGq1eb16VreWrJLd1QtJOpSdAthBBCCFEAXT93k8h7kfldjHQlZ2MG+OKLvL13WJjtAl2jEWbMgFat4OJFtc3DA9avhx9+UIFv+/bm4xctUq3eKcftWsOpUyrwT2nevLSPTdm1PEUOXhMvL5gwwbz+5psqIBS2NW0arFihlp2doU2b/C1PQRQQAI6OallauoUQQgghRJ5IiEtg/IBgvGuUpnrVGG5evJXfRUrThx+al6dOVV2g80JICJQtq+Y6tvYY0Pv3VdA6fjwYDGpby5YqidpTT6n1atVUgD1/vkoEBSpB2RNPwKxZ1gtmly1LvW35cjVGOCWj0Rx0Ozqqlu60DB+uyg7wzz/w22/WKadI27x5Kmt8yvUSJfKvPAWVoyMEBqrlkydt9zAtv0nQLYQQQghhY7FRsbw1MJhXum/h4Na0p/8EuHDsMq0DjzNjSVs0zY5bEV6snH807wqaRdu2qeRiycLC0w4SbWHBAoiPh9u34fnnITo64+MvXICBA2HSpNQBa0rnzqmu2Mljo3U6ePdd+PdfqFjR8lidDl56CQ4fhg4d1DajEUaPhqFDIS4up+/OfK3k76ednbn1OioKliyxPHbvXnNW8sceSz+wc3JSidWSjRunxoIL6/vuOxg50rw+c6b6GRRpS9nFfO/e/CuHLUnQLYQQQghhY+MG7+bjb9syf21rAlv70e2Jy6nG1f78zS6CGhdn1/F6FtvXbSxYzWNRUSqAeLBBd/bsvOmynLIb9/Hj8MYb6R97+7YKRL/9FiZPBl9fWLjQ3IqdbPNmldDp8GG17u4OGzfClCkZz21dubJqMU6ZnOybb9TY3Zs3s/3WTLZtg/Pn1XKHDvDBB+Z98+ZZTiG2dq15Oa2u5Sk9+yw0aaKWjxxR3xdhXevXQ//+5vV33834Z1RYJlMrquO6JegWQgghhLChjUv/Y84qy8Gc6/6sSMOG0LUr7Ngaz+jng3lmSFPuRalsV1XLXMLb4xoAW0IDuHsnCxM155G334bTp1NvP3YM/vrLtve+dEl1QU3pq6/MrdMpxcaq+apTlvXmTdUS3bixeb7tr79WgXlyIjJfXzW2NHme68zY2anu9StWmBOYbd+u7pHT7u8pW7P79VNTTbVtq9ZPnlRzcoN6yPHTT+ZydO2a8XV1OtXqmmzixLwbFvAwCA5WDzaSH+qMGGE5DEOkLWVLd1Ed1y1BtxBCCCGEjdw4f4uBo6qa1vt02I53GXNytPXroUVrR2atbGva1rPtTg6EluD5F1R2IYNBz4aNBeMjW3AwzJmjlp2Lpd4/a5Zt758cbIJKXpZs8GC4ds28bjSq1sbkua3Ll1eZx5MdOKDm227cGF5+2dzN+oknYPduFXhn1/PPq+m5vL3V+sWL0KKFCuofbFnPSHS0StgGasz400+r5REjzMckJ1Q7elQlXAOV+M3LK/Prt2wJ3bqp5WvX4NNPs142kbbERDUcoGtX89CCPn1U7w+dLn/LVhj4+pqHRUhLtxBCCCGEyDLNqDHwufPcDFeR0FPN9rDst+acueDKvHmpxwk7OcTyxaQtrP67KSXLuPPMc56mfSmnrcov9+9bjkudPNm8XCnpvWzcmLol2ppSBt1ffGEOSO/cUUF2crfrd94xT9VUvDj8+qsKZDdvNidtAsvxo6+/ro4rWTLn5WvcWAUNyS130dEqqG/USAXkWfHzz+p7DarV1MVFLT/9tDmgX79eBfWZZS1Pz0cfmbvNz5gB169n/VxhlpioeiXUrq16JCTX21NPweLFqveByJydnfodAZWf4OrV/C2PLciPghBCCCGEDcyduIXf9qjBimVL3uSbldXQ2ekoVkxlkj59WnWNrl3jNo/4HWbXpgsMe781OjvVNNasmbnl8o8/LKfoyg/jxpnHGbduDcOGmfe9/LJ5ee5c29xf08zjuYsXV2OTFy5UrdigurZ//rlqWf74Y7XNzg5WrYIGDczl3rtXHZP8vXVwUOOwP/ss4/HbWeXtrXoEpHxAERKipot67jmV2C0jKefm7tfPvOzgYP4+G43qZyfleO7k1uus8PU1XysqCt5/P+vnCkhIUFPF+fnBgAHm3gagWrtXr1b1JbKuqI/rlqBbCCGEEMLKQref4s0ZTUzrS+ZdpExly76/Tk4q8DlyujS7j9clsLWfxX69Hrp0UctRUfD3bxmk3raxP/9UQR6ogPfBVrz+/dU8xKD2ZZQlPKeOHjW3yLZpo6YaKl3acvzzW2+pBxrJ5syBJ5+0vI5er8Z1nzqlzj14EAYNsm5ZnZ1VULZlCwQFmbevXg3+/mosdVoPUa5dU99rgCpVVJfxlIYONT8YmDdPdZMHFbBUqpS9Mr7/vnnKs4UL4UT6SfVFCtu3qzocPBjOnjVvb99ePWz5+Wfz74LIuqI+rjtPgu7vvvuO9u3bU69ePZ599lkOHTqU7rFr1qzBz8/P4lWvXr10jxdCCCGEKEhiY+GF/sWJS1CDnkc/H8wTLzTK0bWe6XTHtLzu2/Q/P9nK6ZALDOoXaTH384wZUL265XEeHuZW2chIFXhbW8qu5Y8+al5+/HFzduiEBPP46bFjLQPwB7m7qzLXqmX9siZr1Uq12i1YYG5Zj41VybWaNFHJ51JascLcRf7FF1N3Ty5fHnr0UMsREebt2WnlTublpR5SgLpnyunERNoWL4Z27SyD7cceU0n5/v5bPQwSOZOypVuC7hzYuHEj06dPZ8SIEaxduxZ/f38GDx7MnTt30j3H1dWVbdu2mV7//vuvrYsphBBCCGEV48fD4TNq8G1AtVNMX9A0x9d67AkXXJxUeun1W/wxJKSdkWvz2hD8K55lSNetxMfE5/h+yU7uP0f/ztvwb1iBxctcTYFshw7wyitAVOo+0qNGmZfnzMle8rCsSDlV2GOPWe6bOtVyrHaPHuYu5vlNr4chQ9RY9zFjzC3VoaFqHGvKlvqUXctffDHt66VMqJYsO+O5U3r1VSilEuazbJmaq1yklpio6m7QIPVgB1RCuu3b1bCGli3zt3xFQcWKUK6cWt6713JavKLACiNXMrZ48WJ69epFj6THcpMnTyY4OJiffvqJl156Kc1zdDodXllJv5jEYDBgsPZfditLLl9BL6fIHqnXokvqtmiSei26Ckrd7t8Ps2frAShWTGPZmqo4FLPLcbkcXRx54pE9rN3ajJvhXmz/LYQWT1r2ALx/9z59hpTlyt3ynLhSncgX77N0hR69Pvv3u3buBuNHnGXlX80watVM20u6Gxj1mo6xYzU4+SXawTcx1vuK5FsYDAb8/Aw89pgdmzbpOHsW1q83mLrH51Ty9y0uzkBwsB2gw8tLo1Yto0VQb2+vxm4PG2ZHxYoa8+ZpaJr1A//ccHNTvQT694c+few4fFhHdLQaE7xpk5GhQzUOHVLf0aZNNWrUMKZZ/mbNoF49O0JD1dj/2rU1fHzSPjYzLi4wapSOyZPtMBjgo4+MfPGF7SdbLyi/r1kRFgYvvGDHn3+a05CPGGFk5kwNB4eC9TNWEOSmbhs1suPXX3WEhcGJE4YczSKQ17L6Pm0adMfHx3PkyBFeTpFdw87OjubNm3MgeRBKGqKjo2nXrh1Go5HatWszZswYatasme7xJ22ZJtPKQkND87sIwgakXosuqduiSeq16Mrvup0+vTKgGg5eeeUyCYabOZ6rOVnzZjdYmzSn9MqlVylewfJD3jfTb3Dlrrn/96qf3Eh4/hZvv30xW9MVaUaNYX0c2XvK3Gzn4XqXIT228WQ/D4q7O3MlJAS/S6+hw4h+1wDTcYcOHcLo7MxTT5Vg0yb1mW3atCgqVTr14G1yZNWqs9y/7w9AUNA9Dh1Ku0l2xgz1taCPT/7qKx2fflqJtWvVz8ry5XZ8/7052G3b9iIhIbfTPf+pp0oTGloFgObNrxESci3dYzPTpo2e4sXrERWlZ/FiePrpI5Qtm5Dj62VHfv++ZubCBSfGjPHhwgU1VESv1xg//iLdu9/myJF8LlwBl5O6rVixHFABgJ9+ukinTnetXKr8Y9Og+969exgMBjw9PS22e3p6cjblYIgUqlWrxrRp0/Dz8+P+/fssWrSI3r17s2HDBsol9zl4gK+vLy7J8ykUUAaDgdDQUOrVq4c+J4+eRYEk9Vp0Sd0WTVKvRVdBqNvIsCj++ssVAFdXjUmTvHF19c71dSuVqcz4TwwYNT1/7ajN7ICKpgznR3afZsG6AAAc7eMw4khioo41a7zw8fFk2rSst1oe2HycvafqAFCq+D3GDg5h+HtBuHmkyERmqI1mvw3duW8tzg2oVhzK1CEgQM+8eRqnTun4778S6PWB5CY1T3K9XrzoY9rWo0dJAlP2JS+kfvgBVq408sorOiIjdRgMqk4dHTXGjKmIh0fFdM+tWxeioozcvQufflqW4sXL5qosI0fq+PhjSEiw448/6vLZZ7Zt7S4Iv6+ZCQ2FwYPtCAtT9eLpqbF6tZE2bSoC6dfNwy43ddu1qzlh482bVQgMrGyDElpXdHR0lhqAbd69PLuCgoIISpHmMSgoiM6dO7Ny5UpGjx6d5jl6vb7A/sI+qDCVVWSd1GvRJXVbNEm9Fl35Wbc/LThIZKRKN/18t9u4u2d9qFxGylTyonXAAYIPBnH6WlVO7j9D7SY10Iwar74SQ6JBzU309pCd+LZqS9++anqtGTPs8HQ4wbgpfpncQflh6S3T8tQ3Qxn2frvUB+mdoekiKOELu98xb/6jARR3Ru9eh1e7vMaoz/oCMHmynjVrQEfSAE1dztIJ/fOPuU47PGZAH38b4m5D7C2Iu6WWnb2h0gMZxU7NV/vtHMGpNLhUTHpVAge3jG8afhzcaoCd7eZ+6tNHZW1+7jlzJvIuj17BK+IPuB0OCRHqpS8GZduCVyuwd0avh1mzrFeON95Q4/Cjo+Hrr+145x0om7s4PksK6t/ixESVnTwsTK3XrQu//KKjWrWCV9aCKid128Q84QN799rlaIhMXsvqe7Rp0F2qVCn0en2qpGl37tyhdOnSWbqGg4MDtWrV4uLFi7YoohBCCCGEVSxcWtK0PKTvTZK7mVvD050iCD6oln/+/hK1m9Tgu1nb2RKquoLXKHeB8Z80xdlVTdeVnLV7/FQ/SjlvYei7rTO8vtFgZOVG1Zqst0uk56Da6R+s00Gdt8HOGxhg3m6Igbt7GVB7GB+U6s7tey6sWwfffw8vPHUKfq0FjqXAvjhoiWBMAGMiaElfdXpwKAGd9oNzedNli19dx66d9QBHqpc9R9VdD6ROT1a+UxpB95cQdjDt4x1KqEDdEAsNPrM8NyECNtRSAbebH5SsC+51wb022LuCnT3o7FWZPZuAXRajg/hwuLsX7h2Esm3AoyE1a8LOnTBt4k0O/7uVmU+8AbvTmMz76HQVfJdpA4EfQanArN0zC7y8VIK8zz5T2dU/+6zgJKKzGk1DS4jEEBeJvV180s9f0ktLAL2LeiDj4Mbnn6v8DKAC7h07zNOrCdvx8AAfHzh9Wj2ESkgoOvOd2zTodnR0pE6dOuzcuZPHktJMGo1Gdu7cSd++fbN0DYPBwMmTJ2kjOfiFEEIIUUAd2XmancdUP+qAaido/FgGQWsOPN2nOq8nTem07ncvht0MZ+wH5ixDcz65ibOrGuM7bBjcOxvCuzMDAXh5QkvcS+6g14jm6V5/52+HuXhLdVN/vNEBvCo1TvdYk8o9MQXdFbpA/HG4fxo350i++OgUvV6uD8DIkdAu4D7l0SD+rnqlxxCtgp8UDhwqSXyCIwCP1fkz/XPj0hgDbYxL//jkVmSAmKuW+8KSBuwaEyD8sHqlp1ck2BU3r9/YDNf/gpL11MODewfhzh64+x9EpBhsHjAFPBoCas72yVPdYHXP9O8D6gHBtT+g4QPN3Fd/g1vbwbU6uFYDl8pQrKx6wJHFgf1vvKHm/o6Lgy++gHHj4IERohmXK/qy6lHg4K56EWTQq0F3/FOqXd2ELrYsOBRX5bQvrure3kU97NA5qB4VZVI8MDIa4Mg0VdfJL0OUOtbOMemVtFxvonpIkuTmwd9p2akG92PdWP1qX1r5b0uzbGfvBjBx4gHADp1OzWHupjsHt66rng9OXml/T5MDePuCPeS1oGvcWAXdsbFw+LDlPPeFmc27lw8cOJDx48dTt25dAgICWLJkCTExMXRPmttg3LhxlC1bljeSJlicO3cugYGBVKlShYiICL755huuXr3Ks88+a+uiCiGEEKII0YwacTFxFCtezOb3WjjnCqBaioe8cA2dXda6dGdVtbqVqF/tOAfP+bPnRB2GPreTG2HNAOjeehed+lpOS/b2x/W5dyOYmcvaoml2DHojgHZdb+NVKe2eht+vMrfUPv9sBoFqelp+D8WLQ2I0RBzjWbfqPPePyih+7x689EYNfhndGF3CXUiMSgqMHFRrcfKyMQES7quW5BQ2HzR/6n600VEo3UwFPsW8VJdxp6SvxaukLleThRAfpoLC2BsqMIy+DNGX1NeYqypI0h6Yn0hfDKr0hrDDEHFctcynR/dAK/e13+FoFia9vv9Akjl7Z6g/XbWiO7irlvjkr9GXVbB97Q+13+2BtM5XNsCpeanvoXdWwXexMupr+SfA94E5x07MAXR4O5ZicO8WfLGkKpGRMPvT+0x+L0LVV2IUWvHqbNvjzi+/qLnROwT8DUemq/cRfQl4YBy4vRs4ukPJ+tD2V8tv2a1teNz/C+5n8j2q2tcy6NbZwZGpGT9MSValt0XQPW95HU5dV2OEn5r5K/++244G1SwTO2savDx/JjEx6oHBq68mdXk+tAQOTza/L9fq6mc2IQISwtXLEAs1BqufuZRu74FipcG5IugdMy93VhgNEHtd/Vzoi0Gp+pb7976aNK2fDrxaQLlHoWRg1ntk5KNHHlG9Y0DN1y1BdxZ17tyZu3fvMnv2bG7dukWtWrVYuHChqXv5tWvXsLMzPwmLiIhgwoQJ3Lp1C3d3d+rUqcPKlSvx8fFJ7xZCCCGEEBgNRkJ3nGLbnzcI3urIlgM+3L7vybtDgvnw67Y2u29cdBxL16tWbieHWPqMqJ/JGTnzdIdrHJyvMnj/GKwCbhenKD7/OnWyIZ2djhnftuHq9e2s+KsFUXGu/G/SXqZ90zbVsYmJ8MOfKoGak6OBZwYG5LyQ9i6m1tu5c+Hff+HmTfj1z1IsfWEP/funPiUuTiVPCguD11+HEg80kAYfesS03P7NWZC1EYqKV4vsvwcAjyBokfTJ3xCvAsvww+qrIU4F4ZohqVv8A/1fw9LJ2mznqLqEez6ivkcejVIfU+et9MtUpZeKCmNvpm5pjUpngm1DDESdVy8AR4/Ux4S+D/H3ABgXVJmvl58m0eDArFkGxlSvjQ6NZdte5MtdH3EkqaF+7ly4vCcBzxt/p1/exPucuFieRVva8aKnkbr1zBWrufmQpfb3B8fT63Tg5GnqmaBpEJtQDGfH2NTnxpuHtxoMsGilOalhRIw7T8wMZusX0/GvftsUQC/7uQ6bDj8OQKVKMGVK0gmRZyzeV7pDFpJ7TqS0/Tnz99+hpHpYVKxM0oOjMlDCXz2Y8GioHlKkpBnVQ5/bu1VvibCD6gFHzDX18wdQqSe0+sHyvGt/mB/qXPlFfXX0gLLtVQBepg241rDeQwArapyik81//0GKSbAKNZ2mabafjM9GoqOjOXbsGLVq1SoU2ctDQkIIDAwskAkjRM5IvRZdUrdFk9Rr0XRk52nef/sWwft9uXM/dX9Yl2JxREQ62Swpz6q5O+j9quq6/cLj2/nuzxwGepk4sOMmDVqUsdj20evBjP+sbbrnXD51jRq1PYhPdMLNOYIL54yUKlvS4pi//oIOHdRy9+7w009ZLFBUFLgmtUpHRqqW7gf8/DM884xadndX3UUrpkj8vHs3DBwIx46p9Vq14Jdf1LhOgBs3DJQvb4em6QgMNCcbK9CiLsK9EBV8x1yDknXAozGUDLBdkHP/jOq6HnUOIs+qoDT2RtLrJsTdATTweRke+cry3FUuKjhPMmTBAr4JHgJAkxq7OHy5LlFxlr0PABbPu8aAkt5qnL5bTSheTQWCCSoBnBYfTv1XfyL0Qm08PY2cPGmHR1LMb4i8xNHQ/dSu5YveGKta0w3RSa3q0Unj/BPUdcu2tbzxjc1g50gcXrTsVJVDoXp+XBVPl86xSV2849X5DiVNQexvv0HnpFn1dDoVrIP6Wdy2DapUUQ+HatWCu0mjH379FZ5MTtx/YRXc3KKC7/unVRCtGc29ERyTeiSUaQf1PzSXNSESfsjiYPCmi6H6APP64SlwdIYK8jPi2RSe2Gm57fdGcHdfxufp7KDlj5a5DOLDIOKkasl38szy0ISUcvt/NjoaSpRQD0rq1YNDh7J9iTyV1Xi0wGUvF0IIIYTIjn79Eth/ulm6+6NjnThxAmpbd5i1ycLFTqblIS/brhEgsFkZKleG5NyytWppvD6tZYbnVKxZnoFdtjB/bWvux5RgzgfBTJzX1uKY5K6cAM8/b90yP/009O0Ly5erBG9DhqgAKDYWJk5UCbuMKXp2HzumuvP+8AO0bw/BwaBp6oN/Unqggq94ZfWq2DXv7ulWQ73SY0xUWdx1aXz0b/G9SvCWEAbx93jrtess3mLEaLRj9xnLYQsBAeYgaM1v5Rjw4x1wSqP1HDh0EEKT8sHduWPH5MkpMq47exPveFN1k89uYFZW5Xn6cz3sTYorR73uRMcnnXBIZyTJwhQ9vhcvhs8/h5AQuHxZdZXfuhXGjDEH3L17pwi4Aao8p17JjAYVtGYWlBrjoc47qrU65nrSA5Bb6sHEg0o+0ENG75J2wF2sjOqqnpyFv2Sd1Me0Xqd6YMTfgxv/wI2/4fo/qo6TaUaVSDClm1thS9LPrUOJpBwB1cGlCrh4Q7HyKk+Bsze4+2f83nPIxUUlrzt4EE6eVA9IchD7FzgSdAshhBCi0Dqx7yz7T9cCwLXYfR5teIQ2LeNo27EsG7b6MmGi6tK6f79tgu5zhy+xab/qTl2j3AXaPGObruWgPnj27g0zZqj1efN0OBbL/KPc+A+qsfDnRAxGez5fUp/XP4zAzaMEAHExCaxZYw/ocHN7INCwktmz4Z9/4OpV+OMPGDtWtSKmnNq2YUPVwnXsmAp8OnRQ5x08aP60XWiC7oLIzt4iI7yFik9brPrUU1OZLVum1osXhxdfVAn66tZVrcPXrsGff+m4H++Bm1Ma1wRWr7ZcnzdPdRW21u/hxo3m5fPnYcUK0hy+cOOG6j0BUK4cvPACdOoErVqpn8FTp9SDngtJDwg8PLIwHVtWx0Y7eUD9qam3G+JUErjoK2rYwr2DFuPPASjdBJwrqOEIpZuoLPkeDTOf6g5UQA7gXFYFx77D1YOCewfg+ib1NfKcCqhTijxrXk6IUD027oWkvn6xstD9uuW263+rc1xrYmeITMqTkLPuRWPGqCnbnnmmaATcIEG3EEIIIQqxH769CKgPjqP7/cOkL54ydWm8mSLX0r59qsXV2hbNPgNUAmDwc+ew06eRzMuKJk2CkiVVt8t2aUyjnZZqdSvRt+M2lmxsyb2oUnw59V/GfapO/n3FfsLD1eS4z3S+h7NzKauXuVQpWLDAHNB/9pl5n6MjTJ6sAvGoKBUQbdyoupaOGAEODuoTt4ODRsuWReTTdyHw1Vfg56emEuvdW3X3Tdatm8puHhenei306pX6fE1TSfRSMhjUmP3ff899+TTNMugGmDZN/Y4/2HC+dKnKWwAwYICagqpMGTWsomVLuHTJHHCD+vksYzmKw/r0TuBSQb1KP5L2MaWbQ7fL1runnR48G6lXekrWVUMQIs+qrvRRF8xjx1NK6wHOsU/h2m/ogSCA0yRlpXdVyecc3MDOCWq+AtUfeDpy5CMoXlU9XChelX79dDz3nPr7UFRI0J0Hbt6Et8dGcnK/hl5/CDJLHeFeWyXbSBZ7M/VUFmnRF1PJGFKKPKMygWammJd6mmaiqaduWeFaXXVBSZYQYfmkLCMPzjEZfUV1u8mMg5tKAJFSxDH15DAzLhVU8opkxngIP5r5eaC+v3pz3yUt7h7G+1moVzsHcH+g+0/UOdWdKzNOHmrqj5TCDqXOtJqW4lXBsaR5PTEqdbbU9JSsZ5mRNeaaGhuWGXuX1FlV759UY7Qy41wOipUzr2uG9BPSPMitpvrjniz+XlLmzkzo9Oq9phR9EeLuYDBkUreOJdX3OKXwI2pMWWZcKqnxUskMMZZTyWQkj/5G6HQaHdqG8/bnbbNWLiHywaoN5iC3ZSfLcacNG5qX9+01kNNWl/QkJsKiX1TAqrdLZMCoWla9flqcneHtt7N/3tsfeLP0NyOaZsenixsw8kPVjfP7FeYP1L2fPANk8IE8Fzp3hkGDYNEi87amTdV6raRvm7u7apF86y2YOVNtS0hQf3+bNUtzyLiwERcXePfdtPd1766CboC1a9MOug8cgDNJucdatFDduC9cgD//hA0bVEtzbhw9ah5mkezkSTUsoXdv8zZNs+xaPniweblyZdi0SQXet5I+ej72GPTrl7uyWU1+NPGWe1S9khkT1Wei6Mvqc2DMVfW1WBpPJSKOp96WlPkeUnx+fKBnBQkRcPAdTNnvnbzA8xGcyraFWmNz+YYKDgm688DSpbBomTs5/0dWJumVExmM78mQDgjM4bklcnFuhaRXTuT0w44jOS9vabKXRjWlajk8DyCnmWWLk/P3Wj7plRO+mR+SJj05L2+ppFdOVE565UQaY6uyxJmcv1fb/Y0IPgjtOh6mace6Oby+ELZz9CgcPqf+ljYLvErpSiUt9pcuDZXL3eXidQ8O7I3GaCiOnT79uYOz6/ff4eoNZwCe6pxA+eplrXZta/NrWJ1eHU+w6jc/bt5zZ8ECGNwvkl+2BQLg6XaHx3vZrms8qBbEM2fg+HF4800YPTp1q6ReD598oroxv/QSxMer7e3ba2TaaCHyROvWqvfCvXtqmEBsLBR7YCx1yq7l/fqp45OD89dfh0cfJVdStnJ37WruPj51qrpP8sRIW7eahzG0a2dO0JfM11cNeejWTbWAf/110enObBV29uZx3ZkJ+hjCj2IMP07k7bO4OevQJUaqB/uJ99VXLVFdM6W7+7CYbi7uFlzdoIJxCbpFdjz+OFSqEM+lK0Woj4QQ4qER/MdtmnbM71IIkdoPKWbJ6fliOeBaqmMa1jzJxetNiYx14+T+s/g3zsKHxyxK2YI25GVnq13XVt792I9Vv6nlGTOgRPxhYuJVoqyejx3Bwal1Bmfnnru7mkIsK0FN//4qIBo4UCMmJo4hQxwyP0nkCQcHFeguWaKS1v/9t2UuAE0zB916vWoZ9/RUwfqWLXD6NMyZo8tV4J0y6P7kE9VSvXOnyo7/888qiIYHfkeHpH2toCA4d06C7Vyr/CwAmsHAqfSyl6fVS9OjIbTZoKZEu5M0NVr8XdXVvAiRoDsP1K8PZ87q2PffLgICAjJPn2/naPmbb0xMezxFKrrUU1EY4rF4epTuqXrLJ0+aprpdZ4Wdg8rgaDrXmLXutaDGtKRUyN6rISGeQwf3Z61eU73XhKx1EdfZpZ6nMivd6EFlKU2Z7CM7dVPYfw6NBvVENSvSqBtDYgKHDh3KuG6LcN2cPniRus1rArBtV8GeklE8vFK2pvXooXH7dupjGgbGsnarWt637ZrVgu6bN1UrH4C3N3QsBA+m6tVTiYnWrVNJzUZPNg+tef7FEumeZ03ZCWyaNYPDh42EhByhXLlAm5VJZF/37iroBlizxjLo3rtXBbGgWrRLJ3UInDULGjRQ/9qnTNERGJizMCQ8XE3zBarl2tcX3nvPXIYpU9TPeXi4+cFcqVKqzOmRgDuP6NLoaeRQAip0Vi9QPyCRZyyH0RUBEnTnETu9HQ7FHHByccrBnHX25LyqcvoDqwPSSUeZKbtcnFu43qvBXp+Les3NU3upm8zpyfn4TQcMhpz+zhaNuqndxAcvjyhu3S3OjhONMRrN3fWKGkOCgRHPbScs3J65S/woXTH1PM+i4DkcqnH0qPqk3LKlyqicZtDdxBXmqOV9exPoY6X779sZhsFQEoDnngP7QvKJ6t13VdANEBGlBkl7e1yj5VP10j8pH+l0EhAVRI8/rsbYR0Wprt2JiebfgZQPw1KO9w4MhKFDVRfu+/d1fPFFhRy1dm/aZE6Mljw2vFMn1WJ94ICaqeD331XgHxur9vftm7oLvCigdDpw88n8uEKmiH6EEkIIkRs6Ox0tWqsP5Pfu6Th2LJ8LZEO/Lg9l/trWrPqnOSP6Hsrv4ogsWj13i2m5V/f0EzU2bF3VtLwvtKTV7n98pznZaEDFvVa7rq01agQd292x2PZcxxPoHaybZE4Ubc7O5oD39m1zy3PKruX29uZu3smmTFHDDAB++cWT/fuzf++UXcs7JzWO6nSqtTvZhx9mrWu5EHlFgm4hhBBpatnSvJz8gaooOnTJ3MK3enM7/lq5Lx9LU7hdPnWNjo/s5ZlWu4m8F2mz+2hGjdUb1DRdOp2RHl0j0j3Wq1JpKpW+AsCB09UxGrIwrCcLTpw0N7/61y7447lTem+M5WwHzw+w9fxIoihK2V17zRr1dc8ec1bxxx9Xc16n5OUF77+vljVNx7hx2QtFUk4V5uwMbdqY9z3zDNRJymW6c6dq9QZ45BEIyGn+WSGsRIJuIYQQaWrRwrxclIPuEyctW/hGvOFBXHQWx+YLk4g7EXTucJ8//mvEz9uaMHuS7Vp/Q3ec4sQVNTa7db2DeNcol+HxDf0vAXA/pgSnQs5bpQzHz5jHQPsFVbTKNfNKi6fq0aX5bgCa+B+m0aO2n+pMFD1PPmmeR3nt2tRzc6c1lRio+ddr1lS5RIKDdezLxnPOkBC4fl0tt2+vAu9kdnZpT3MmrdyiIJCgWwghRJoaNIBixVSr4PZ/0hgsW0SceGB69FNXqzHzrZ1ZPt+QYCB4TQgje22mlm8sffqYpzl6WCTEJfBsx5OEnjdPD/jVT01N4y6tbfUSc0ttr2fSb+VO1jAw1rS8b1vqDOc5cfyiNwBlS96kVFl3q1wzL/3wVyAblvzHhr+90dnJoGmRfSVKmKf+unxZtXInJy5zcICnn077PEdHGDPGnMDz00+zfs+0upan1KsX1KxpXi9e3HLebiHyiwTdQggh0uToCE181Rjnc1dLc+W0dYKVgkTTzEG3ewkDejsVJU75qgnnDl9K97zE+ET+/mE/w3pswdvrLu16BDLvhzYcP1WMFStgxYq8KH3BoBk1hvfayZ97G1lsv3SlmCm7t7Xvt2pDVQDsdAZ6DMy8lbbhI8VNy/v+y+IsARm4dyOMG2GqS7Z/5auZHF0wObk40blfYzy9PTI/WIh0pOxiPn68Cr4BOnRQGcPT07evRqlS6ndx9Wpzl/TMpAy6k8eUp6TXw9tvm9efew7c3LJ2bSFsSYJuIYQQ6Wr5SJhpefsf5/KvIDZy48Jt7t9Xy00bhvPqc9sBiE1w5rWXUwdTmlFj5ZwdVC53m8d6NeCrNa25Ge6V6rjPPlMBfWEWdjOcWe9spm6VU1TwvMb00cHcv3s/1XEfjdnMwl/U/M6O9nFMGGP+9DxvnvXLFbLlBKevVQWgbeBBylbNfDxyg1ZVTcvWSKZ24sBl07Jf9cxb2oUoqrp2Nc9ssXmzeftzz2V8nrMz9Ox5CwCDAWbPzvxed+/Crl1quVYtqFYt7eP69YMxY1QSt48+yvy6QuQFCbqFEEKkq0Ubcwvhtq25byEsaE4cMLdm+5UNZfKcIMqXUgMG1+9owvrFu037r5+7Sfc2u3l+VHOu3TOPIS7mEEP31rtYMWsHTR5R86WHhsJff+XRmwCrJQcD2PfPMYZ03Yp3JQdGT2/DkYs1uXq3PO/MakvV6nZMnarmvwX4fvYO3pnV1nTuks/2MemTyvgkzfayaVPq7vu5tXrpddNyr25ZS9ZWtqoXFcpGAXDgfH2Mufx2nQi9Z1r29yvkT1eEyIUyZSyTboLqJdW1a+bnPvvsLZyc1O/PggUQkcnzqz//xPS7m1bX8mR6veqyvmaNStwmREEgQbcQQoh0Nevgi06XNK57X9HLcHzisLnl1s9PRwnPEnw2+axp26i3vImOiGbZl2epXc+BdduamvZ1euQ/Vs3dwa0bBn7a3JTnRzVn7JvmpGwzP4qyefmjwqPo02E7ens7KntdoeMje3mjbzDfTN/Kzo2hRNzJeivsxqX/mZJqfbO+FTHxLqZ9yT8Dd8OL8957ULUqvDb0CgPeaGg6ZtprwfR+tTl2djBsmPm6X0wLzfX7TKYZNVb/ppq39HaJdB9QO8vnNmyiHiBFROg4cyZ35Th+zDxY3b9u8QyOFKLoS9nFHKBjR/O0YBnx8EjkxRdV0B0RYTnFV1oyG88tREEmQbcQQoh0lSzjTr2qpwAIOeObZvfiwuzECXOTp18dVwCeG9GM9kFq8tjzNytRJ8CJfsOrcy9KDVD0KnGLH77Yycbdjek1ojmupVxN1+jWDapVjgHgr3+Lc2jbKZuV/cKxy7QIusyKv1Sa+Uu3K/DHf4347Lu2DHmnFc2frEfZ8g4smJX5mON/fwrhqQEN2XOirmlbCedwXn1uM0d2neb43gv063YafdIzhbAwmL2wAvGJTgAM6bqFtz4zz90zsL8BZ0f1ffj2h8pWmz5s3z/HOHu9CgDtgw7iVal0ls9taH4+kK1syWk5fsqcMtk/sGzuLiZEIffgXNyZdS1PafRoc0+RWbNIN/mi0Qi//aaWXV1Tt64LUdBJ0C2EECJDLRuq7rxGTc+uP0/mc2ms68QZc2uuX2B5AHR2OuZ9XQoHBxWQn79gbr1+/rEdHD1iR89hzdK8nl4Po/vuMa1/Nv2GLYrN9l8P0bhpMQ6e8wPAxSmKksXDUh0Xm+DM8LHe7NmTapfJ/fswaFRlNE19JKhf7QRfT9nC1Wv2zF7ZhtpNfPBtUI0la3w4fhwGDsQUfAN0aLSXL1Y3s8iAXcpTzwtPqCnDImLc+W7u/hy/1yuXNVasgJdfhp4DKpm29+oena3rWDXovqAC7WIOMVT2887dxYQo5CpXhiZN1LKLC3TpkvVz/f3V1GOgkqn9+GPax+3dC7eTJtF4/HHzVGVCFBb2+V0AIYQQBVuLlvZ8kfRBaFvwfR4vQtOvnLigusy7OEVRIcVcz/6NqjF2LEyfrtbLlYOvvoKnn26e6TUHjW3I+7PCCIsqyYo/HmHamRt417Bea+iiRfDKK3VJSFBBco1yF1j/cyL+japz/fwNju67zJGQSDbtqcn6Td4kJkKfPnDggGohetCbb8L5qyqDdev6R/l3nz92er807+3jo+7/3ntJSdI0jfcn1MXBySHVsSPGePHNerU8b1E5XnpXSzU11a1Lt5k79TAXL+tTnR8XZ8d/RyqYkqYpKg2xo4OBbgPqZPyNekDDBhqg7r9vy3mgagZHpy8hAVOZfH2N6B1Sl12Ih82CBfDJJ/Dss9nPFv7GG7Bhg1qeOVO1lOsemMVOupaLwi5Pgu7vvvuOb775hlu3buHv78+ECRMICAhI9/jffvuNWbNmceXKFapWrcrYsWNp06ZNuscLIYSwnZZPVDUtb99TIv8KYmXxMfGcu1ERAN8Kl9DZ+VvsnzRJtdoYDPDqq+CRxZmVXEu58vKzwXz8bVsSDI7MnXaMad/kPuiOi1NT4fzvf5DcUe3RoP2s3lANj/Kq63v56mUpX70sjz4LwxKgVSvYvRtOn4ZRo1TAnNKff8L8+Wq5eHFYvKY2dlmIIatXT55bVwcUS/OYoLb+NKsVys5j9Qg978u2X0No1TXQtP/QtpN07e7ChVtts/w9sLeHxo1hzBh9tqe6Kldeh7fHNa7eLc/+w6XQjKkfAmTF2bOQmKjO86st47mFAKhXD5Yuzdm5bdtCUJB6MLhvH2zZAik/9oeFwdq15vW0pgoToqCzeffyjRs3Mn36dEaMGMHatWvx9/dn8ODB3LlzJ83j9+/fzxtvvEHPnj1Zt24djz76KCNGjODkyaLVpVEIIQqLyv4VqFT6CgC7jvqSEFc0spifPXwZg1E9e/ardjfVfkdH1aL7/vtZD7iTvfquH/Z69X36alV9osKzl1Tt2J4zfD97BxNe+pfurXfhX/EsxYsbkwJuZeQIjd92BpgC7gc5OMB335lbtxcvhh++3GXaHx4Ogwebj//kExVMW9OIoeZEbnNnmbuDr1ur0fzxily4VTHD8x308bSsf4p331UPCMLCYMcO6NkzZ+Vp6K+mMwuPdufMoSxODPyAlNnY/f3TP04IkTU6nZriK5l6oAf798PQoVChAhw6pLbVr6/WhShsbB50L168mF69etGjRw98fHyYPHkyxYoV46effkrz+KVLl9KqVSuGDBlCjRo1GD16NLVr12b58uW2LqoQQoh0tGhwDYCoOFcOHjDkc2ms48ShW6ZlP594q167gk95XnhcTTd2L6oUiz/N+iDiD0YEU7tJDV54rTlTFrRj7damnLhSHYNB/cu2t1et03Pm6nBwyrjDWo0aMHdWnGn9pTf9uXRCJVYb0383l5Omm370UTVm2tp6vtwIrxLq+7xmc2OunrnB1KnQrbuOqFg1nr5RzaPs/fsYx/actXgd33uWsLuJbA2pyZQpahxn8Vw2LDesH2Na3rftSo6ucfy4eVmCbiGs47nnzMH0+vWqR0vDhiqjeXSK9A2vvpo/5RMit2zavTw+Pp4jR47wcor/5HZ2djRv3pwDBw6keU5ISAgDBgyw2NayZUs2bdqU7n0MBgMGQ8H+EJhcvoJeTpE9Uq9Fl9StpeZPNWDln2p5yw5HghoXzu9Lyno9fsT8Sa6mv73V6/q18Z4s/V0t/29BVV56Jz5L43+Xr6uSalsxhxj8q92hTmNvhg3TaNpUdXvPij4v6tmwfAc//NucsKiSvNjrHK+PvsCin1UyODeXGL7+2hFNy/o1s8reyZ4hPQ8zfVE7Eg0ONGvlxMVr5v29u99jwTeVcXZzTvcaWa2XrPzOBjYuBl+q5b3/xdEzB2/42K5jgMryXrPafQwGl4xPKMoMBvSmRYP1f4CQv8VF1YP1amcHI0fqePtt9XBx717zsW5uGi++qPHyyxp16tjkx0xY0cP2O5vV92nToPvevXsYDAY8PT0ttnt6enL27Nk0z7l9+zalS5dOdfzt5JSFaShMXc9DQ603X6koOKReiy6pW6V0aWdAzYm8cWM4bdqk/Te8sAgNDeW/E+Zx1k5uUYSEhFj3Jm7Qtv5ugg824ez1yiyc8TNNnsy4O7UhMZHzN4IAqOx1iXde308lHxdKV3ZHb68HVDb07BZ15DsGdh26zKU7Fdl8KIgdQ80t+++88gf37lXi3r3sXTOr2nQx8vFiA0ZNz8VrJQHQ6TSGD7/KgAHXOZHLObMflNHvrGsZc0v3ngOuOarzo0fND07i4w8REpL2mPaHgV1MDEFJy4cOHcLonP7Dk9ySv8VFU8p6bdpUT4kSdYmIUOFJzZrR9Ox5i06d7uLiYiQhIft/+0T+kd9ZS0Uie7mvry8uLgX7SbPBYCA0NJR69eqh10um06JC6rXokrq1VK8elCihERGh48iRktSvH5gqu2xhkLJer4WZM24/1v0xStggR9zYN/YS3E8tf7eqGi+/m3HG7fNHLpFgUHPhNPC7wpBxT1mtLN9+fZDHenqjaXame3Rs/B9jP3oqRwnFsiwQurb4j3XbmgLg6qqxbJmRLl3KAeUyPDU7svo7W77Uda7dK8ehszWpH+CarfeuGTVOXVZz1VcqfYWmLZvmutyFWpQ5V0FAQEDu+/+nQf4WF03p1es//8Dvvxtp3VqjWTMndLqKQMYPK0XB8rD9zkZHR2epAdimQXepUqXQ6/WpkqbduXMnVWt2stKlS6dq1c7oeAC9Xl9oKrUwlVVkndRr0SV1q+j10KwZ/PEHXL+u48LJcGrUzmZ2sQJEr9dz8qQKtsqXh1KlbFPHnfs8Qp33TnHkYk12HA3g0kWNqtXSD/LOHb9L8lRWPtVirfqz1757A94eFMy0b9oC4O4SzoLvKmLvYPvn7x9+7MmuJ2/gVTKc71aVpN4jZWx2r8x+Zxv6X+TXneUIiyrJhaMXqFE/dXf+9Ny6eot7UV4A+FW+gV7/kGd0SvF91uv1lhO4W/1W8re4KHqwXhs2VC9R+D0sv7NZfY82TaTm6OhInTp12Llzp2mb0Whk586dBAUFpXlOYGAgu3btsti2Y8cOAgMDbVlUIYQQmWhZe79peduGo/lYkty7exeSn+/6pT0ltVXo7HR07W0O6o4dz7hV9cyJSNNyDR/r/4ueNK8F3VvvonSJ2yydc5yKNctb/R5pqdu8JlfvlOHgmZo2DbizomF9c+tsdpOpHT9gPt7f577VyiSEEKJos3n28oEDB7J69WrWrl3LmTNnmDRpEjExMXTv3h2AcePG8Wny3ABAv3792Lp1K4sWLeLMmTPMmTOHw4cP07dvX1sXVQghRAZatjT/y9i+3Whajo+J58jO0/y2/D9unL+V1qkFzsmj5rG9tgy6AXxrOZrvm0kPtDO3zd3Pa9TxtnpZHJwc+GlzU26Fl6broCZWv35GdHY623Zjz6KGj5iHo+3fm72s9cdDzVOgSeZyIYQQWWXzPmWdO3fm7t27zJ49m1u3blGrVi0WLlxo6i5+7do17OzMH+QaNGjAzJkz+fzzz/nss8+oWrUq8+bNw9fX19ZFFUIIkYFHHvPFXp9AosGB9Zv96Nl2J0fOlOHU1SoYjD4AVCt/g8OnNFyK539wlZGTuw8ArQDw8zoApN37yhpS/vtKOcdzWs5cNice9WngY6MSPdwatKpsWt55rG62zj1+zPywyb+um9XKJIQQomjLk0Rqffv2TbeletmyZam2derUiU6dOtm6WEIIIbLBpYQLDXwOs+dEXa6HleWnzWVTHXPuWll++BH698+HAmbDyeOJpmW/mokZHJl7KVvSTx6LBdLPdn36tPpqbw+VKtm0WA8t7xrlqVYNzp2DLbtLExqqEgVmxfHT5kRh/kF50zVfCCFE4Wfz7uVCCCGKjl5dLRNdOjnEUr/aCbq02GfaNn9+Xpcq+06eMQe+vgG2HWPs6QkebuHqvofvpHucpsGZpOmzqlZVgbewPp0OXnvNvD5jRtbPPXFB/ay4FruPd3XrZV4XQghRtEnQLYQQIstem9KSDUv+Y93C3Zzcf57ISAdCzvrx89aGptbCnTvh0KH8LWdmTpxXQ5wc9PFUrW376Wh8K1wE4NLtCkSFR6V5zM2rUaYZmHx8NJuX6WE2ZAh4JCXf//57uHAh83Nio2I5d0P9rPhVulQgxqcLIYQoHCToFkIIkWX2jvZ07teYpwc3oWZQVewd1VQZOh28/LL5uPlzC25mZ0OigdPXVN9tH+9LpvdgS37Vw0zLpw9dTvOY0wfOmJZruG2zdZEeasWLw6uvqmWDAT57d0+m55w+mYBRUz8r/jXjbFk8IYQQRYwE3UIIIayib19wcU4AYNlyjch7kZmckT/uXI4gLkF1L/erkjfZ1n19zOPGTx6+m+YxZ46bM2PXqG5M8xhhPSOHJ+DsqLLYL/ihLrcvp9/1H+D4GXPiNP9mtku8J4QQouiRoFsIIYRVuLvD84/tAuB+TAlWfnkgn0uUtqtnzd27/Xxi8+Sevv7mMeQnjqbdSnrmtDkw9/FztnmZHnalyzgwtJtq4Y6Jd2Hu1NAMjz9+3Lws04UJIYTIDgm6hRBCWM0ro8xTXn31rWcGR6ZPs/Fw5kvnzDfw87d913IAvwDz9+Lk6bQzpJ0552BarlHbw+ZlEjDm/Rro7dTDjjnLA9Idbw+W071J0C2EECI7JOgWQghhNY0eq03DmkcB2HeqNns3Hc3W+WPGgKMj1Kl+heE9t7B63g5unL9p1TJeuGBuRfat427Va6fHJ8CcrO3k+ZJpHnP6orks1erYPrmbgCq1KvJCB9U7426kBws/3pvuscePxgMqf4GPTKEuhBAiGyToFkIIYVUv9zdPKzZ/zu0MjrS0fj3873+QmAhHz1Xgy59a89zI5pSrVgb/imcZ3nMLF49fyXX5zl4ytyL7BVbI9fWywtnNhcpeKoHaiUsV0Yypm/PPXFVTUFXwvIaza/pzeQvrGjfBPGXcpwt8SIhLSHWMZtQ4njQsoFr5axST6hFCCJENEnQLIYSwqueHN8DNWSUF+/6PBoTfCs/0nIgIGD7cvK7TWSYSO3GlOl/+1Jpe3e6lGbBmx/EbAQB4lIyjdMWcdYHPCb/KNwAIiyrJ7SuWydQibodzO0JNY+ZT4UaelUlA3ea+PNlUje2+dLsC38/ZneqYq2evExmrEqn5V0o7+7wQQgiRHgm6hRBCWJVrKVf6dg4BICrOle/mhmR6zrvvGLicFMs8/jiE347i9+/28tbAYJrVCsVer1ofdx+vy8+LMp/eKT2RkXDzphMAfrWccnydnPCtbs7mfvLgVYt9Zw6b12tULrjTrRVVb71jbrqeMacsRoPlQ5/jB66Zlv190h/3LYQQQqRFgm4hhBBW9/JrZU3LXy0tn2Hr9M6Nocz7QgeAiwvMnw9uHm488UIjpi9qy46j9fjp6/2m49/90BNDgiFH5Tp1yrzs55ejS+SYb0Nf0/KJG3Ut9p0+FmZarlE9Z+9N5FzLLgE0r30IgCMXa/LD14cs9h8/bH4Q4l9LPjoJIYTIHvnPIYQQwurqt/KjWS01BVPoeV92/X44zePiY+IZOqwYmqb+HX0w5gjVqqU+rsuAR0zXO3rRh+9m7czw/vHxcDeN6bBPntSZln19U++3Jb/A8uZynNJZ7Dtzxrzs4+uYV0USKbw11jx9XO/hgQwYANeSGrhPnEiR8b5u3iTfE0IIUXRI0C2EEMImXh5oHsv9yZeViU1jSuyP39zBkYs1AWhY8yivTUi7+Vlnp2PaFHML8Puf1yM+Pu37XrwItWtD6dIwciQW9z3xn3myZb8aedtNOGWQf/Kk5b4z4c1MyzUa1sujEomUnuzXiMcb7jOtL1mi6mz6dDh4rJRpu3+Qd34UTwghRCEmQbcQQgib6DWsESVLqrGxa391p0YNmD0bYqJVq+Hx/84wZb4KNvV2iSxcYIe9Y9pzWAO07R5Ih5YXATh/xZ2vv059THg4dO6sWo41DebNg2aN73Ny/zkATh6+ZzrWr/J1q7zPrKpcGZyShpGnnPMZ4PRp83INf7e8K5QwsdPbsWF7fWbNgpIl1bbISHjnHdhyqD4ApYrfw6ti6fwrpBBCiEJJgm4hhBA24exajI8+Mv+buXoVXnsNqle8zf/eCmbooEjiE1UUOrbfVgLb+Gd6zWmfVzYtT5kCUSkaqxPiEuj56EGOHLE8J+SwGw1blGbFrO2cPK+mC7PTGSzmzs4Lej34VIsG4PSpRItx6cndyz09zQGfyHsOTvaMGqXG/g8fDnZ2lrkI/CtfRmenS+dsIYQQIm0SdAshhLCZl1+G/fuhWzfztuv3vBjzcVu2HVathzXKXeD92U2ydL2GDaFnT7V84wbMmqWWNaPGKz13sWmfuqZnqVjWrQP/KioreGSsG31Gt2D/6VoAVC1zGSeXvM1eDuDrpRJ0xSfYc/GEKltcHKbM7TVq5HmRRBpKl1a9JEL+i6J9kDmJX/OGd/KxVEIIIQorCbqFEELYVFAQrFkDISHQo/2BVPvnz76Ds5tLlq/34Ydgl/Tfa8ZHMdy9do9pozez6NdWADg5xPLz0pM8/TTsPejOgM5bU13Dr8rNHL2X3PLziTEtnzio5uM+d/gyWlKDao0K+VMukbZ6DVzZtDeI35bv5X9vbWbi5w3yu0hCCCEKIQm6hRBC5In69eHHv4M4tO0kz7bbSekSt/lwZDCPPpu9QMbfHwb0ugRA+H1nuj5+iffmtDXtX/q//bR4KgCA4u7FWbyhFUs+2YqLk7kvul8+zbXs62ces37yqCrD6RRzdPt4HUl1jshfOjsdHfs0YvT0NpTwLJHfxRFCCFEIpZ+xRgghhLCBei18Wf1P8lrbHF3j/fftWP5jHPGJTmw/EmDa/tHrwfQakfqa/ca24pE2Zxk2NJwrN0sw9LW8Hc+dzLeOebqpE0nTl505EW3aVsPHIc/LJIQQQgjbkpZuIYQQhU5l/woMf3aXxbaXntnCuJlt0j3Hv3F1Nu0L4Pv1Yfg1TGMy8DzgF2ieburk2eIAnDlr3l/DX1pShRBCiKLGpkF3WFgYb7zxBg0aNKBRo0a88847REVl3KXvxRdfxM/Pz+I1ceJEWxZTCCFEIfTOx3XwdFOJrTo+8h/zVjUv8JmlPb09KVVcTVt28lJZAE6fK27a71O3bL6USwghhBC2Y9Pu5WPHjuXWrVssXryYhIQE3nnnHSZOnMinn36a4Xm9evVi1KhRpnVnZ2dbFlMIIUQh5FWpNLu3XiBk50m6DmyU4RzfBYXOTodvpSvsPl6Ki7cqEh0RzZkrat7n4k6RlK1SJp9LKIQQQghrs9knlDNnzrB161Z+/PFH6tWrB8B7773HSy+9xLhx4yhbNv2n+cWKFcPLyyvL9zIYDBgMhswPzEfJ5Svo5RTZI/VadEndFg5V61akal01PjsrdVUQ6tW36j12H1fLR/ee49z1mgBUL38Vo1YD5EcuRwpC3T50DAb0pkUD2OB7L/VaNEm9Fl0PW91m9X3aLOg+cOAAJUqUMAXcAM2bN8fOzo5Dhw7x+OOPp3vu+vXr+eWXX/Dy8qJdu3YMHz48w9bukydPWrXsthQaGprfRRA2IPVadEndFk35Wa/ly941Lf+86hQJhjoAVC57g5CQ+/lVrCJDfmfzjl1MDEFJy4cOHcJow56JUq9Fk9Rr0SV1a8lmQfft27fx8PCwvJm9Pe7u7ty6dSvd85566im8vb0pU6YMJ06cYObMmZw7d465c+eme46vry8uLlmf4zU/GAwGQkNDqVevHnq9PvMTRKEg9Vp0Sd0WTQWhXk8/kghL1PKOEPODaX/fRAIDA/OlTEVBQajbh06KPD0BAQFQvHgGB+eM1GvRJPVadD1sdRsdHZ2lBuBsB90zZ85kwYIFGR6zcePG7F7W5LnnnjMt+/n54eXlxYABA7h48SKVK1dO8xy9Xl9oKrUwlVVkndRr0SV1WzTlZ73WatnEtLz1QFXTso+P/KxZg/zO5qEU32e9Xm+xbv1bSb0WRVKvRdfDUrdZfY/ZDroHDRpEt27dMjymUqVKlC5dmrt371psT0xMJDw8PFvjtevXrw/AhQsX0g26hRBCiMLCx8e8nJBg/mddo5ZHGkcLIYQQorDLdtDt4eGRqtt4WoKCgoiIiODw4cPUrVsXgF27dmE0GlUXpCw6duwYQLYCdSGEEKKgcnGBSpXg0iXL7T6N6uZPgYQQQghhUzabp7tGjRq0atWKCRMmcOjQIfbt28eHH37Ik08+acpcfuPGDTp27MihQ4cAuHjxIvPmzePw4cNcvnyZv//+m/Hjx9O4cWP8/f1tVVQhhBAiT/n5Wa7b26tAXAghhBBFj00nNZ05cyYffvgh/fv3x87Ojg4dOvDee++Z9ickJHDu3DliYmIAcHBwYOfOnSxdupTo6GjKly9Phw4dGD58uC2LKYQQQuQp3zJH2EQd03rVqirwFkIIIUTRY9N/8SVLluTTTz9Nd3/FihU5ceKEab18+fIsX77clkUSQggh8p1vldsW6ynHeQshhBCiaLFZ93IhhBBCpM2vjuXUSjVK7c+nkgghhBDC1iToFkIIIfKYb0AZi/UalSPyqSRCCCGEsDUJuoUQQog8VsW/Ao72caZ1Hz/nfCyNEEIIIWxJgm4hhBAij+kd9PiUPW1alzm6hRBCiKJLgm4hhBAiHzRveAeA0iVuUyOgcj6XRgghhBC2IhOUCCGEEPlg+rw6+NYMpu0TZXByKZ3fxRFCCCGEjUjQLYQQQuSD0hU9eXNm2/wuhhBCCCFsTLqXCyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDZSqMd0G41GAGJiYvK5JJkzGAwAREdHo9fr87k0wlqkXosuqduiSeq16JK6zQexseDnZ17W6ax+C6nXoknqteh62Oo2OQ5NjkvTo9M0TcuLAtnCnTt3OH/+fH4XQwghhBBCCCHEQ6pq1ap4enqmu79QB92JiYmEh4fj5OSEnZ30lBdCCCGEEEIIkTeMRiNxcXG4u7tjb59+J/JCHXQLIYQQQgghhBAFmTQPCyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQXce+O6772jfvj316tXj2Wef5dChQ/ldJJFN8+fPp0ePHgQFBdGsWTOGDx/O2bNnLY6Ji4tj8uTJNGnShKCgIF599VVu376dTyUWOfH111/j5+fH1KlTTdukXgunGzduMHbsWJo0aUJAQABdunQhNDTUtF/TNGbNmkXLli0JCAhgwIABMhtGIWAwGPj8889p3749AQEBPPbYY8ybN4+U6Wmkbgu+//77j1deeYWWLVvi5+fHpk2bLPZnpQ7DwsJ44403aNCgAY0aNeKdd94hKioqD9+FSEtGdZuQkMAnn3xCly5dCAwMpGXLlowbN44bN25YXEPqtuDJ7Hc2pYkTJ+Ln58e3335rsf1hr1cJum1s48aNTJ8+nREjRrB27Vr8/f0ZPHgwd+7cye+iiWzYs2cPffr0YfXq1SxevJjExEQGDx5MdHS06Zhp06bx77//8vnnn7Ns2TJu3rzJyJEj87HUIjsOHTrEypUr8UueczaJ1GvhEx4ezvPPP4+DgwMLFixgw4YNjB8/Hnd3d9MxCxYsYNmyZUyaNInVq1fj7OzM4MGDiYuLy8eSi8wsWLCA77//nokTJ7Jx40bGjh3LwoULWbZsmcUxUrcFW3R0NH5+frz//vtp7s9KHY4dO5bTp0+zePFivvrqK/bu3cvEiRPz6i2IdGRUt7GxsRw9epRhw4axZs0a5s6dy7lz5xg2bJjFcVK3BU9mv7PJ/vrrLw4ePEiZMmVS7Xvo61UTNtWzZ09t8uTJpnWDwaC1bNlSmz9/fj6WSuTWnTt3NF9fX23Pnj2apmlaRESEVqdOHe23334zHXP69GnN19dXO3DgQD6VUmRVZGSk1qFDB2379u1a3759tSlTpmiaJvVaWH3yySfa888/n+5+o9GotWjRQlu4cKFpW0REhFa3bl3t119/zYsiihx66aWXtLffftti28iRI7U33nhD0zSp28LI19dX++uvv0zrWanD5L/Dhw4dMh2zefNmzc/PT7t+/XreFV5k6MG6TcvBgwc1X19f7cqVK5qmSd0WBunV6/Xr17VWrVppJ0+e1Nq1a6ctXrzYtE/qVdOkpduG4uPjOXLkCM2bNzdts7Ozo3nz5hw4cCAfSyZy6/79+wCmlrPDhw+TkJBgUdc1atTA29ubkJCQ/CiiyIYPPviANm3aWNQfSL0WVv/88w9169Zl1KhRNGvWjGeeeYbVq1eb9l++fJlbt25Z1Kubmxv169eXv80FXFBQELt27eLcuXMAHD9+nH379tG6dWtA6rYoyEodHjhwgBIlSlCvXj3TMc2bN8fOzk6G8BUykZGR6HQ6SpQoAUjdFlZGo5E333yTwYMHU7NmzVT7pV4h/Rm8Ra7du3cPg8GAp6enxXZPT89U44FF4WE0Gpk2bRoNGjTA19cXgNu3b+Pg4GD6p5HM09OTW7du5UcxRRZt2LCBo0eP8uOPP6baJ/VaOF26dInvv/+egQMH8sorrxAaGsqUKVNwcHCgW7duprpL62+zjNcv2F566SUiIyPp1KkTer0eg8HA66+/TteuXQGkbouArNTh7du38fDwsNhvb2+Pu7u7/G0uROLi4pg5cyZPPvkkrq6ugNRtYbVgwQLs7e3p169fmvulXiXoFiLbJk+ezKlTp1ixYkV+F0Xk0rVr15g6dSqLFi3Cyckpv4sjrETTNOrWrcuYMWMAqF27NqdOnWLlypV069Ytn0sncuO3335j/fr1fPrpp/j4+HDs2DGmT59OmTJlpG6FKEQSEhJ47bXX0DSNyZMn53dxRC4cPnyYpUuXsmbNGnQ6XX4Xp8CS7uU2VKpUKfR6faqkaXfu3KF06dL5VCqRGx988AHBwcEsWbKEcuXKmbaXLl2ahIQEIiIiLI6/c+cOXl5eeV1MkUVHjhzhzp07dO/endq1a1O7dm327NnDsmXLqF27ttRrIeXl5UWNGjUstlWvXp2rV6+a9gPyt7kQmjFjBi+99BJPPvkkfn5+PPPMM/Tv35/58+cDUrdFQVbqsHTp0ty9e9dif2JiIuHh4fK3uRBISEhg9OjRXL16lUWLFplauUHqtjDau3cvd+7coV27dqbPUleuXOHjjz+mffv2gNQrSNBtU46OjtSpU4edO3eathmNRnbu3ElQUFA+lkxkl6ZpfPDBB/z1118sWbKESpUqWeyvW7cuDg4OFnV99uxZrl69SmBgYB6XVmRV06ZNWb9+PevWrTO96tatS5cuXUzLUq+FT4MGDUxjfpOdP3+eChUqAFCxYkW8vLws6jUyMpKDBw/K3+YCLjY2NlVLil6vN00ZJnVb+GWlDoOCgoiIiODw4cOmY3bt2oXRaCQgICDPyyyyLjngvnDhAt9++y2lSpWy2C91W/g8/fTT/PLLLxafpcqUKcPgwYNZuHAhIPUK0r3c5gYOHMj48eOpW7cuAQEBLFmyhJiYGLp3757fRRPZMHnyZH799Ve++OILihcvbhp/4ubmRrFixXBzc6NHjx589NFHuLu74+rqypQpUwgKCpLgrABzdXU1jctP5uLiQsmSJU3bpV4Ln/79+/P888/z1Vdf0alTJw4dOsTq1av54IMPANDpdPTr148vv/ySKlWqULFiRWbNmkWZMmV47LHH8rn0IiPt2rXjq6++wtvb29S9fPHixfTo0QOQui0soqKiuHjxomn98uXLHDt2DHd3d7y9vTOtwxo1atCqVSsmTJjA5MmTSUhI4MMPP+TJJ5+kbNmy+fW2BBnXrZeXF6NGjeLo0aPMnz8fg8Fg+jzl7u6Oo6Oj1G0Bldnv7IMPTxwcHChdujTVq1cH5HcWQKclPx4WNrN8+XK++eYbbt26Ra1atXjvvfeoX79+fhdLZMODczcnmz59uukBSlxcHB999BEbNmwgPj6eli1b8v777z803WaKihdffBF/f3/effddQOq1sPr333/57LPPOH/+PBUrVmTgwIH06tXLtF/TNGbPns3q1auJiIigYcOGvP/++1SrVi0fSy0yExkZyaxZs9i0aRN37tyhTJkyPPnkk4wYMQJHR0dA6rYw2L17d5oJl7p168ZHH32UpToMCwvjww8/5J9//sHOzo4OHTrw3nvvUbx48bx8K+IBGdXtyJEjefTRR9M8b+nSpTRp0gSQui2IMvudfVD79u3p168fAwYMMG172OtVgm4hhBBCCCGEEMJGZEy3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQQgghhBA2IkG3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQQgghhBA2IkG3EEIIIYQQQghhIxJ0CyGEEEIIIYQQNiJBtxBCCCGEEEIIYSMSdAshhBBCCCGEEDYiQbcQQgghhBBCCGEjEnQLIYQQD6ndu3fj5+fH7t2787soQgghRJFln98FEEIIIQqiNWvW8Pbbb6e7f9WqVQQGBuZdgQoJPz+/NLe/8cYbvPTSS6b1OXPmMHfu3FTHOTo6Ehoamu719+7dS58+fQDYuXMnHh4eub6mEEIIYUsSdAshhBAZGDVqFBUrVky1vXLlyvlQmsKhRYsWPP300xbbateuneaxkyZNwsXFxbSu1+vTva7RaGTKlCm4uLgQHR2d7nHZuaYQQghhaxJ0CyGEEBlo3bo19erVy+9iFCpVq1ZNFXSn54knnrBorc7IqlWruHbtGj179mTp0qVWuaYQQghhazKmWwghhMiF2bNn4+/vz86dOy22T5gwgbp163L8+HEA4uPjmTVrFt27d6dhw4YEBgbywgsvsGvXLovzLl++jJ+fH9988w3fffcdjz76KPXr12fQoEFcu3YNTdOYN28erVu3JiAggGHDhhEWFmZxjfbt2/Pyyy+zbds2nn76aerVq0fnzp35888/s/SeDh48yODBg2nYsCH169enb9++7Nu3L1vfl9jYWOLi4rJ0bGRkJJqmZXhMWFgYn3/+OaNGjaJEiRJWuaYQQgiRFyToFkIIITIQGRnJ3bt3LV737t0z7R82bBi1atXi3XffJTIyEoCtW7eyevVqhg8fjr+/v+k6P/zwA4888ghjx45l5MiR3L17lyFDhnDs2LFU912/fj0rVqzgxRdfZODAgezZs4fRo0fz+eefs3XrVoYOHUqvXr34999/+fjjj1Odf/78eV5//XVat27NG2+8gV6v57XXXmP79u0Zvt+dO3fSp08foqKiGDlyJK+//joRERH079+fQ4cOZel7tnbtWgIDAwkICKBz586sX78+3WMfffRRGjZsSIMGDRg7diy3b99O87hZs2bh5eVF7969M71/Vq8phBBC5AXpXi6EEEJkYMCAAam2pUzM5eDgwMcff0z37t356KOPGDduHO+++y5169a1SBzm7u7OP//8g6Ojo2lbr1696NSpE8uWLWPatGkW97hx4wZ//vknbm5ugBrPPH/+fGJjY/npp5+wt1f/wu/du8f69euZPHmyxbXPnz/PnDlz6NChAwA9e/akY8eOzJw5kxYtWqT5XjVNY9KkSTRp0oSFCxei0+kA6N27N08++SSff/45ixYtyvD7FRQURKdOnahYsSI3b95kxYoVjB07lvv37/PCCy+YjitRogR9+/YlMDAQR0dH9u7dy4oVKwgNDeWnn37C1dXVdOzx48dZtWoVX3/9dYbjs7NzTSGEECKvSNAthBBCZGDixIlUq1bNYpudnWVHMV9fX0aNGsWnn37KiRMnuHfvHosWLTIFxqCSeSUHjEajkYiICIxGI3Xr1uXo0aOp7tuxY0dTwA0QEBAAQNeuXS2uGxAQwK+//sqNGzeoVKmSaXuZMmV4/PHHTeuurq4888wzLFiwgFu3buHl5ZXqnseOHeP8+fMMGzbMojUfoFmzZvz8888YjcZU7z+llStXWqz36NGDHj168L///Y/u3btTrFgxAPr3729x3BNPPEFAQABjx45lxYoVFg8spk6dSuvWrWnZsmW6983uNYUQQoi8IkG3EEIIkYGAgIAsJVIbPHgwGzZs4NChQ4wZMwYfH59Ux6xdu5ZFixZx7tw5EhISTNvTyo5evnx5i/XkADy97eHh4RZBd5UqVUwt1cmqVq0KwJUrV9IMus+fPw/A+PHj03ub3L9/H3d393T3P8jR0ZE+ffrw/vvvc/jwYRo1apTusV26dOHjjz9mx44dpgB548aNHDhwIMMu6hlJ65pCCCFEXpKgWwghhLCCS5cuceHCBQBOnjyZav/PP//MW2+9xWOPPcbgwYPx9PREr9czf/58Ll26lOr49LpRp9fKbI2kYcnXGDduHLVq1UrzmJRTcWVV8oOC8PDwTI8tV66cxXEzZszgiSeewMHBgcuXLwMQEREBwPXr10lISKBs2bLZuqYQQgiRlyToFkIIIXLJaDTy1ltv4erqSv/+/fnqq6944oknTOOpAf744w8qVarE3LlzLVqgZ8+ebZMyXbhwAU3TLO6V3JJdoUKFNM9Jbil3dXWlefPmVitL8kOFzKbx0jSNK1euWMzpfe3aNX799Vd+/fXXVMd369YNf39/fv7552xdUwghhMhLEnQLIYQQubR48WIOHDjAl19+Sdu2bdm9ezeTJk2iUaNGpkAzueU6ZSB88OBBQkJC8Pb2tnqZbt68yV9//WUK/CMjI1m3bh21atVKs2s5QN26dalcuTKLFi3iqaeeonjx4hb77969m2HgnNb+yMhIlixZQqlSpahTp06Gx65YsYK7d+/SqlUr07Z58+alus+GDRvYuHEjH3/8MeXKlcv2NYUQQoi8JEG3EEIIkYEtW7Zw9uzZVNsbNGhApUqVOHPmjGn+7fbt2wPw0Ucf8cwzzzB58mRmzZoFQNu2bfnzzz8ZMWIEbdu25fLly6xcuRIfHx+io6OtXu6qVavy7rvvEhoaiqenJz/99BN37txh+vTp6Z5jZ2fHlClTGDp0KE899RTdu3enbNmy3Lhxg927d+Pq6spXX32V7vnfffcdmzZtol27dnh7e3Pz5k3WrFnD1atXmTFjhkV29Xbt2tG5c2d8fX1xdHRk//79bNiwgVq1avHcc8+ZjnvsscdS3Sd5irXWrVtbBNlZvaYQQgiRlyToFkIIITKQXvfv6dOn4+3tzfjx4ylVqhTvvPOOaV/VqlUZM2YMU6dOZePGjXTu3Jnu3btz+/ZtVq1axbZt2/Dx8eGTTz7h999/Z8+ePVYvd9WqVZkwYQIzZszg3LlzVKxYkf/973+Ztvg2adKEVatW8cUXX7B8+XKio6Px8vIiICAg08C1QYMGHDhwgB9//JGwsDCcnZ0JCAhg6tSpNGvWzOLYLl26cODAAf744w/i4+Px9vZmyJAhvPLKKzg7O+foPdvimkIIIURu6TRrZF4RQgghRIHRvn17atasyfz58/O7KEIIIcRDL/2JNoUQQgghhBBCCJErEnQLIYQQQgghhBA2IkG3EEIIIYQQQghhIzKmWwghhBBCCCGEsBFp6RZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGCvU83YmJiYSHh+Pk5ISdnTw/EEIIIYQQQgiRN4xGI3Fxcbi7u2Nvn35oXaiD7vDwcM6fP5/fxRBCCCGEEEII8ZCqWrUqnp6e6e4v1EG3k5MToN6ks7NzPpcmYwaDgZMnT+Lr64ter8/v4ggrkXotuqRuiyap16JL6jYfxMRAixZqeft2sMFnManXoknqteh62Oo2JiaG8+fPm+LS9BTqoDu5S7mzszMuLi75XJqMGQwGAFxcXB6KH8CHhdRr0SV1WzRJvRZdUrf5QNPgxAm1XKwY2OCzmNRr0ST1WnQ9rHWb2VBnGQgthBBCCCGEEELYiATdQgghhBCiSIuPz+8SCCEeZhJ0CyGEEEKIIuvvv8HDQw0/j4vL79IIIR5GEnQXYUePwgcfQEhIfpdECCGEECJ/LFwIUVGwYwds2JDfpRFCPIwk6C6izp6FZs3g/fehQQN45aUE7ly9m9/FEkIIIYTIU8m53gBWrMi/cgghHl4SdBdB8bEJPPecRkSEWtc0mL/AgZq+Or54fzOGBEP+FlAIIYQQIg9oGpw8aV7/9VdMn4+EECKvSNBdBL09ZDt79+oA8PYGV1cjAPeiSjHigzY09DvN1l8OZvl6G5b+x0evBxNxR/5LCSGEEKLwuHpVdS1PFhcH69blW3GEEA8pCbqLmPXf7uGz79oC4Ggfx/p1cZwIuU3fJ7aZjjl4zo/WT9fn6ylbMr3ekZ2n6TqgAW9/3paOrS4QHRFtq6ILIYQQQlhVylbuZLnpYh4eLpnQhRDZJ0F3EXLp5DUGvOpjWp85fhcNGjvhXaMMy35vybb1hwisfty0/71PahEfk/F/jm/mXsaoqYntdx6rx7NPXiIhwTblF0IIIYSwprSC7k2b4Nat7F3HaIRhw6BkSXByUl99fVVG9G7dYORIOHbMGiUWQhRFEnTngfh4+OwzHdu2lbDZPRLjE3mhx03uRnoA8EzLXYz8oLXFMS2eCmDv8Zp0ab4bgFsRXvzy7b70yx0Tz7Jf61ps27jNj8GD1T8fIYQQQoiCLGUStUceUV8NBvjhh6xfw2iEl1+Gr74ybwsPh1OnVEb0detg3jzo2BEiI61SbCFEESNBdx6YPx/GjbNj9Oia/PF9+kFubkwasY1th+sDUNnrMot+9Ednp0t1nN5Bz6uv2pvWFyxySPeavy7bz+2I0gA0qHEUJycNgGXLYNw4a5ZeCCGEEML6UrZ0T5pkXv7++6ydr2kwfLiadgxAr1ezw9SsCe7ulsdevGh5DyFExt566y2GDx9uWn/xxReZOnVqnpdj9+7d+Pn5EWHDLIsSdOeByl7XTMsjx5az+rjoTav3M+0b1aqtt0tk5bf3KFW2ZLrHP/psENXKXgTgr30NOH/kcprHLVps/vGY/mEM33+vwy5p06efwicfSz9zIYQQQhRcyS3dxYurlujatdX6tm0qSM6Ipqlu4/Pnq3U7OzUefMcOFcyHhUFsLOzbp7qcA3z+OYSE2OCNCJGH3nrrLfz8/PDz86Nu3bo8/vjjzJ07l8TERJved86cObz22mtZOjYvAmVrkqA7D3TtVY42AQcAOHejMlNe32PV648Z74qmqaqcNnobzTrXy/B4O70dQ547A4Cm2fHNrNOpjrl65jq/7W4IQKXSV3i0ZyDdull2rRr3lgPfztiW6lwhhBBCiPwWHw/nzqllX1/Q6eD55837V65M/1xNg9degy++UOt2drB8OfTqZXmckxM0aAATJqh1g0F1RTfI7KyikGvVqhXbtm3jjz/+YODAgcydO5dvvvkm1XHxVswsWLJkSVxdXa12vYJEgu48oLPTMe9rVxzt4wD4ZEkLDu84ZZVrXzt7g9DzvgAE1TjG2BmtMzlDGTiqFno79bRq0YbWPPjgaunc46YEagO6n0LvoJaHDoUp75sHLA1+qxl9n9jO7j8Ooxm13L4dIYQQQgirOHvWHPz6+amvvXub96fXxVzTYMwYmDNHret0sGSJZcD+oDffhFq11PKePZaNFEIURo6Ojnh5eVGhQgVeeOEFmjdvzj///GPqEv7ll1/SsmVLOnbsCMC1a9d47bXXaNKkCUOHDmXEiBFcvmzuTWswGJg+fTqNGjWiSZMmzJgxA02zjB0e7F4eHx/PJ598Qps2bUwt7j/88AOXL1+mX79+ADRu3Bg/Pz/eeustAIxGI/Pnz6d9+/YEBATQtWtXfv/9d4v7bN68mSeeeIKAgABefPFFrly5YpPvYUr2mR8irMG/UXVGPreRz77rQqLBgZeHxrD1kBE7fe6ee2zZeAYoC0DHNjew09fK0nnla5TjqS7w889w9aodGzdC165qn6bBoh+qm44dMLK6xbnvTCzOzeObmb2qDUZNz3d/tuC7P6FRzaOMHHqX54Y3oljxYrl6X0IIIYQQuZFyPLevap/Ax0clVNuzR3UDP3bMHCwDJCZatnDrdPDtt9C3b8b3cnRUgXabNmr9nXdUVnNvb2u9G1FkHPsMjn+W+XEeDaDNL5bbNneFu/szP9d/DNQak7PypcPJyYmwsDAAdu7ciaurK4sXLwYgISGBwYMHExgYyLJlyzh16hTBwcEMGTKEX375BUdHRxYtWsTatWuZNm0aNWrUYNGiRfz11180bdo03XuOGzeOkJAQ3nvvPfz9/bl8+TL37t2jfPnyzJkzh1dffZXff/8dV1dXihVTscf8+fP55ZdfmDx5MlWrVuW///7jzTffxMPDg0ceeYRr164xcuRI+vTpQ69evTh8+DAff/yxVb9XaZGW7jzU85XS1PRW/Zx2HA1g4fTcd83efLixabnNE+Wyde7QoeblBQvMy9u3w6krlQFo1/gM1etVtjhPZ6fjf9+14sORwXi43jVt33uqNgPGtaSSdySThgWTECdjvoUQQoiCymgwFuleamkF3WDZYp2ytTs8HJ56yhxwA3zzDSQ1qGWqdWsYPFgtR0TA6NHZLrJ4GCREQMyVzF+xacxrF3sra+cmWG+cs6Zp7Nixg23bttGkSRMAXFxcmDJlCjVr1qRmzZps3LgRo9HI1KlT8fX1pUKFCkydOpVr166xZ48aVrtkyRJeeuklOnToQI0aNZg8eTJubm7p3vfcuXP89ttvTJs2jccff5xKlSrRrFkzOnfujF6vxz0pk6GnpydeXl64ubkRHx/P/PnzmTZtGq1ataJSpUp0796drl27smrVKgC+//57KleuzFtvvUX16tXp2rUr3bp1s9r3Kz0SdOchR2dH5v3PHKSO/yiA6+dupnmsISFrg4E2b1XZx/V6aN7JP1vl6dgRKlZUyxs3QnIPkEWLzMcMGlUjzXPt9Ha8N6ctl686s+ijrQTVME9OeTuiNJO/asv3c3ZnqzxCCCGEyBsz3wxGb29HzQoXeWfwv4TsvIlWxOLvlNOFJXcvBzUuW5c0wcv336sefmfPQvPm8McfaruDg+pSPnBg9u758cdQWk38wg8/qM9XQlhwKAHOFTJ/FfNKfW4xr6yd65D7aYqDg4MJCgqiXr16DB06lM6dO/Pqq68C4Ovri6Ojo+nY48ePc/HiRRo0aEDDhg0ZOHAgzZo1Iy4ujosXL3L//n1u3bpF/fr1TefY29tTt27dVPdNduzYMfR6PY0bN073mAdduHCBmJgYBg0aRFBQkOn1888/czEpc+KZM2cICAiwOC8wMDDL98gp6V6ex9r3CKRfp20s/a0lYVElGfPSdlb8VQaAi6fusfrrQ6z+pTT/naxDz7Y7Wf130zSn/gK4eROOHlXLDRtCBg+L0qTXw6CBGh98qMNohMUztjF6aktWr1b7S5SA7t0zvoazmzMDx7diwJsau34PZebHUazZorqJ7NxpIIsPh4UQQgiRR+7dCGPibDVp9ZnrVZi+qArTF6nW4F691KtexjlZC4X0Wrq9vaFdO/jnHzh9GmbPhilT4PZttd/DA9auVS3X2eXpCZ99Zm4dHz4cjhxR2dOFAFS375x2/X6wu7kNNWnShEmTJuHg4ECZMmWwtzeHjc7OzhbHRkdHU6dOHWbOnInBYODYsWPUqlULvV6Ph4dHju6f3F08O6Kj1QxR8+fPp2zZshb7Uj4kyA/S0p0PZs6vZeqW/f2mFox55SrNmkEV31K8ObMN/52sA8CPwc04sPl4utfZssW83LZtzsoyuM8NdDojAN+srMqq7xOJilL7nn8eXFyydh2dnY5mneuxeE1t07aQC4E5K5QQQgghbGbprIPExKf+B3/ypAo+AwKgVdMw/v3pQD6UznqSW7rLlVMNCSml7GI+erQ54Pb3V+O9cxJwJ+vbF9q3V8sXLsC0aTm/lhD5xdnZmSpVquDt7W0RcKelTp06XLhwAU9PT6pUqUK5cuWoUqUKVapUwc3NDTc3N7y8vDh48KDpnMTERI4cOZLuNX19fTEajfz3339p7ndwUL19DSmmCqhRowaOjo5cvXrVdP/kV/ny5U3HhIaGWlwrZblsRYLufOBVyZOZE46a1v8335tdu9I+ds2KG+leZ/Mv5oC8Teuc9Qmr7FeOjo33AXDhVkXeGmseAzJoYPavWcKzBDWSeqQfOuYuU2YIIYQQBYhm1PhqWUXTevCaEL6YeYm2bc1drgG27S5J+55BtAs8wJafbf+B1NrCw+FG0keolK3cyXr0UF3IU3rsMdi5E9PnmJzS6eDLL1VyNVB5c2w8vbEQ+apLly6UKlWKYcOGsXfvXm7evMmePXuYMmUK169fB6Bfv34sWLCATZs2cebMGSZPnpzhHNsVK1akW7duvPPOO2zatIlLly6xe/duNiaN2ahQoQI6nY7g4GDu3r1LVFQUrq6uDBo0iOnTp7N27VouXrzIkSNHWLZsGWvXrgWgd+/enD9/no8//pizZ8+yfv160z5bypOg+7vvvqN9+/bUq1ePZ599lkOHDqV77Jo1a0yTsSe/6hWFPk4PGDC2Ba1bWSYaq1cPPnzrElt/OWRqfV7zR6V0r7F5q6o+O52Blk1ynjBh6BBzZHznvuoCUqfyKbIxhMJC8rCI6Gg4ZZ2Z0YQQQghhBcFrQzh+WUWVbQJCaNMtkGFvVOLff+HKFdXV2q/GffPxB4No80x9Hmuwj+2/Fp7gO72u5clKlVJJ05K98ooaf12ypHXu7+trnhXm1i0IDrbOdYUoiJydnVm+fDne3t689tprvPnmm0yYMIG4uDjTvNuDBg2ia9eujB8/nt69e1O8eHEef/zxDK87adIknnjiCSZNmkSnTp2YMGECMTExAJQtW5ZXX32VTz/9lObNm/Phhx8CMHr0aIYPH878+fPp3LkzQ4YMITg4mIpJiay8vb2ZM2cOf//9N08//TQrV67k9ddft+F3J4lmYxs2bNDq1Kmj/fjjj9qpU6e09957T2vUqJF2+/btNI//6aeftAYNGmg3b940vW7dupXmsVFRUdrevXu1qKgoW74Fq0hMTNT27t2rJSYmmrbduKFpr72maZMna9qRI5bHt6wboqnUHpp2dPfpVNe7ffm2aX/DmkdS7c+O+Nh4rWzJG6brgabNfDM4x9ebMsV8ne+/z1XRCry06lUUDVK3RZPUa9EldZs1vdpvN/+Pnr09zWMS4xO1ZZ9t02p6n7X4bACaNnfUF5oWdkwdGBlp3hEZaZPy5rRely83F+2TT9I+5vJlTRsxQtO++07TjEYrFPYBP/xgLsOQIda/fmEmv69F18NWt1mNR22eSG3x4sX06tWLHj16ADB58mSCg4P56aefeOmll9I8R6fT4eWVRsa+IqZMGfj887T3dX/yHtsOq+W1312i1iOWfZ22bDwFeALQtslNoDY55eDkwMBuR/losUroZq9PoO+InF8vZQLAkF036d27TI6vJYQQQgjruH7uJms2q25sZdxv0X1IozSP0zvo6ft6C3qPSGTF7G188GklzlyvAsCkxT155ZGK6P1ehupjU59sTISbwXBhNYSFAqrnnkqNnjRsrfEX4JmiO93NLbBvNOjswcFNvezVV53elXJ3ItGd9AVHd6jWD+z05nPv7of7p9QUSQkRkHAfnEpz8kAXQJU5rZZugAoVYO7cLH3rcqRzZ5VALSoK1qxRU5E92KVdCPFwsGnQHR8fz5EjR3j55ZdN2+zs7GjevDkHDqSfnCM6Opp27dphNBqpXbs2Y8aMoWbNmukebzAYLAbRF0TJ5ctqObv2qcaYpHna12wsw/jPLM8L/ifWtNyyXbFcv/+Bo6rwyZJEDEZ7nm65l9IVH8nxNev53QXUQ5OQHRcxGDxzVbaCLLv1KgoPqduiSeq16JK6zdzCz46QaGgHwKDuh9E7ts7w+6XT6+jzejN6DU/gmY6X+GNrJW7f92LXyUa00M3BePeKaZyiIfoWuiNvorv0E7q4tKdDBfhhd09OBJfk9QkGTMmJ4+6hv5f250I7oAJAUqIzQ5W+ptgdQHd8Fnbnl6Y678T20piC7vDhGI/XRqs5LN1y2YKTE3TpomPlSjvu3oU//jDQqVOeFqHAkt/Xouthq9usvk+bBt337t3DYDDg6WkZdHl6enL27Nk0z6lWrRrTpk3Dz8+P+/fvs2jRInr37s2GDRsoV65cmuecTDlwp4B7MFteRgKrRxJytg77Ttdm0y9/U7pySdO+4F2q9VinM+JZJYGQkJBcl23ehwcJ2edI71dcc3U9zahR2k3H7fulOXCyMgcOhFgkZymKslOvonCRui2apF6LLqnbtBkMMO/HZoD67NCmiyFb/+ubtvfkj61q+ecD3Wjut5vj+m7UZg0AocfOUvfqMuyNkanO1VAfAlZsf4G+XywH4OTV67z22hUASkSep4bOAZ2WiC5lRP3ge7ArTshBy7xAlcLiSKs/3cnrqnlbb5dIdW0hYafacC6qmcUx5e4sJFHvwX3nBsQ5Vc30e5ATjRq5s3KlDwBff32P8uUv2OQ+hZX8vhZdUreWCtw83cmTmKdc79y5MytXrmT06NFpnuPr64tLVue2yicGg4HQ0FDq1auHXq/P/ASgx1O7CJmtlo+caclrXVV13bsRRuiFUgDUr3aS5m2bW6WM1pwYPrBmCJv2l+ZmeBnKlUykfLWymZ9UgBmNkJCgnlqnlJN6FYWD1G3RJPVadEndZuzXX+H6dfV96dgRHu/aLlvnV6gAH3ygoWk6fj35Gh81KYufV1fT/nqBjdDZ90C7tArKd0ar9Cyad2ewVxNUnzoFr7xszt+7fn1ZvvjCCzXdbyAaI9E0IyRGQ+J99Uq4jzEunAtnDlO1ggd2aARWC7Qs2I3BGMMagX0JcCiBZl8coi5z8oYaJletzHkc7RMoWbUNgbVTnGuIw+6nheg0lVZcc/NFq9AFrcLT4NHEsgt7Lvj7q+9bRISOLVs8qVWrVKrPEg8j+X0tuh62uo2Ojs5SA7BNg+5SpUqh1+u5c+eOxfY7d+5QunTpLF3DwcGBWrVqcfHixXSP0ev1haZSs1PWHq+0YEJS0L3uFyfGJA2d2vnHaTStCQBtm1xHr/e3RVFzJajufTbtV8uhu65Q0cc7fwuUCwYDdOumspp+8YXKcPqgwvQzKLJH6rZoknotuopy3RoSDGxdH8qm38Jo0LgY3V9qmuVzv/7avDx8uB3Z/RaVKwfNm8P27XDshANnjC9SUx9l2q/X6yFwGjSeo8Zipzg3Lg5eeAEiUzSCh4Xp+PFHPQMGpLyLHuzdAXfzJoOB8Bse6KoFYpdWob0fV68UrlyBKJXgGL+GNaDLKezsi2PxpsNPgGaex0t3/yS645/C8U+hWBmo0AWqvghlWpOb7nrFi8PTT8OyZRAeruPvv/V06ZLjyxU5Rfn39WH3sNRtVt+jTacMc3R0pE6dOuzcudO0zWg0snPnTovW7IwYDAZOnjz5UCRWe1CtWuoJKcC2beb5JoP/jjEd06Z9sTTOzH+BDcyZQkL2RqV7XFx0HFNeDWbJJ9vyolg5smQJbNigcsC8/rqRc0eu5neRhBBCPCSMRti6FV4deI6KZW7TrkcgUxe2pcfLTfn9u31Zusb58/Dbb2q5cmVyPK64q7lhm/Xr0zjAxVslQXvAm29Cciqfsik6vn35Zc7KkRnL6cJ04OYDzuUtDyrhB48GQ+CMpMA6xUfi2Jtw5hv4uy38Vh+ir+SqPL16mZdXr87VpYQQhZTN5+keOHAgq1evZu3atZw5c4ZJkyYRExND9+7dARg3bhyffvqp6fi5c+eybds2Ll26xJEjR3jzzTe5evUqzz77rK2LWiAlfZvQNFi3Ti1v3mMevdSqczopOfNZYFPzf9WQUMd0j5vz/k4mzG3LgHEt+fen9JPr5ZfISHj3XfN6bKwdY15Jv9eFEEIIYQ2xsfDOO1CpErRuDXO/rcb1MMuhWi+NLkfEnYhMr/X11B0qeTjw0ktku5U7Wcqg+5dfsnbO2rUwZ45adnKCP/+E+vXV+p49sH9/zsqSkRMnzMt+fukcZO8CZdtA7Tfhsc3Q7To0XQwVnwG9s/m4xOjUAXs2dehgnv/7559V3WaV0QgLFqgHF2vWwAOdR4UQhYTNx3R37tyZu3fvMnv2bG7dukWtWrVYuHChqXv5tWvXsLMzx/4RERFMmDCBW7du4e7uTp06dVi5ciU+Pj62LmqB1L07TJumltcsPUvv3tU5cEY1f9erdgZP7xoZnJ1/fIOqUswhhtgEZ0JOpJ0AD+DHteaW+kVf3aVdj7woXdZ9POEs169Xt9i2bltT/lixlydeSHuqFSGEECK3Ro6Eb76x3ObkEEfnpge4esuV3cfrcul2BcYN3cJXa1qne534mHi++UHNAGOvT2Bw3/uAR47K5OcHNWuq8dnbtsHduxlf6cIFGDTIvD5rFgQEwLBh5qFaX31l2fXdGixburN4UjEvqD5AvRKj4fLPcHIuVO5p2QquGeHv9uBeG0o3h9LNwLV6hl3QHR3VMLXFi+H+fdXroFu3zIt05w7066eGtyXT6dT3sG1baNdO1cft23DzpnrduqW+Vq0KL78MJUpk8f0LIWwrj+YNt4msTkZeEOR0onijUdMqe13RQNPs9fHa8m8jNdXurWkjR9qosFbS2PewBpqm0xm0+3cjUu2/dtVoei+gaS5OkVrEndTH5ZeLx69oxRyiNdA0B4dEbeKrIaay+lY4q8VFx+W4XkXBJ3VbNEm9Fl1FqW7/WLHX9P/G3l7TunTRtOXLNS38nnpv5w5f0oo73Tcd8/cP+9O91vezt5uO69V+e67LNmaM+f/29wsjzSuRkRbHxcdrWtOm5t3PPqs+02iapkVEaJqbW9L/fhdNCwtL/345qdfOnc33vXw5J+8yBaPBcj3smKZ9h+XrpzKatvlpTbu83vwmH/D77+Yy9e6d+W137dK0ypU1i89J2X2VK6dpS5emW6R8VZR+X4Wlh61usxqP2rx7ucgdnQ66P3YKgESDA++9Z55Ko23bfCpUFgXVVn2gNM2OQzvOp9r/6wbLp8LRccX5cUFIHpQsa94edY7YBNXF7NVeW5n0eQAt6qipSk5eqcbn7+3Iz+IJIYQogu7fvc/Q18zdyOfMvM0vv0CfPlCipOoXXrVORT4ebx7PPWSkJ5H3Uk/V9fcP+xn2dm3T+ivDnVMdk10pu5inbIF90Hvvwa5darlaNdVFOrkx2M0N+vZVy9HRsHx5rotlIbmlu3hx8M5tHlfdAx+Vw48AD7Rqx95ULeObu8CmVnAzdZ6a9u0heQbd9evV+06LpqkeAa1aQXIOYS8vNf79jTegQYOs53W7fl21lLdsaZtu/EKIrJOguxDo3rukafn8ZVfTcuv0e5MVCIH1zQ8IQkJSTxyf1niwJStSJ2DJD3v+PMJ3f7YAwMP1Lu99GojOTseceU7odEYAPpjXiCunr+dnMYUQQhQx4186wMVbFQFoF3iAl0Z6pnncsImtaF0vBIBzNyrzzjDLpGpfT9lCx+frERZVEoCWdQ/StltgrsvXogWUUrOW8uefaR+zZQvMmKGWHRxg1Spwd7c8Ztgw8/KXX2Iac55b8fFw7pxa9vXNVeLxtFXuAc+GQfu/oN4HUL4TOJYy77+1XQXem7uC0Zwd3cHBnKcnKkolaH1QeDg8+yyMHq2mKQUVMB84oLrjz5wJ+/apbufr1sHrr6ug+o034OOPYdEiNTVccDA884z5ujt2QKNG6hoyJlxkxM/PL8PXnOQEDSL78qjl3SYehu7lmqZpifGJWhn3mxZdhmrXtkEhrWxHcJipvEOHWu6LitK0YsXUvvLljZpfhTOmY8+GXsyfAicxGoxaizoHTeWZ/W6wxf5hPTabu4g9tu2h6kLzMHnYukc9LKRei66iULf//nTAYsjVmUMZ/z88deC85uwYZTpnyxb1meH1F/61+MzwZNPdVh2+1bdvUhlJ3b08KkrTfHzMmz/5JP3rtGihWZQ9Ldmt12PHsteN2yqMBk27uEbT1vubu5xvez7VYZs2mcvWo4d5+5UrmjZxoqaVLWvZPXz8eE1LSMh5sX7/XdN8fS2vWbaspp05k/NrWktR+H0tim7evGl6ffvtt1qDBg0stkWmGEZiNBq1hDR+QB+2upXu5UWI3kHPM+2OWWxrU/9QPpUm6+o1dDc9YQ4Jsdy3ad0FU/bOp57S0b+nOSP4si/P5E0B0/Hj/F1sPxIAgF+Fs7wyobnF/ilz6uHpph4Vr9zUgqM7ZAoxIYQQuRMVHsXgEeYW0+lv7KV6vUoZnuMTWIWpb18wrQ8aZOSZNvv434q2pm2vvxDMz1sa4uZhvZ5kKbuYP2jCBDh9Wi03b65aY9OTnEwNrDd9WI6SqOWWzg4qdYPOodBkIRSvBgEfWh5jTKRNk5uUSZqAZsMG+OMPeO45qFIFPvjAPDVsqVKqN+BHH4F9LlIeP/EEhIaqXgeuSR0lb9xQreOG1B0QhcDLy8v0cnNzQ6fTmdbPnj1LgwYN2Lx5M927d6devXrs27ePt956i+HDh1tcZ+nSpfTv39+0bjQamT9/Pu3btycgIICuXbvy+++/5/Xby1cSdBcS3Z91sVhv2yL12K2CxtVVZdUE9Uc/0dzLil9WmoPsru3P0neYr6nb9tI11dCMVupnlk2xUbGMm1TRtD5z6m0cnBwsjvEoX4pp446Y1j+eWZPE+ESEEEKInHp32F7OXq8CqK7gIz9olaXzRk2oRbNmavn0aTt+3fkIoDKVz/9wC5991xa9Qw7nCEvHE0+o7tIP2rkT/vc/tezkpLo7ZzQ9Wc+e5nHOP/6osm7nVsrpwvIs6E5mZw81BkOXU+D2wOwy55Ziv7E6PdruAdS0YR07qnm7kz8f6fWqe/n+/dCli3WK5Oiophs7cUKNrQfYvt3c/V/krR9+gFq1oGLFvHvVqqV+v6zl008/5Y033mDjxo34pTsnn6X58+ezbt06Jk+ezIYNGxgwYABvvvkme/bssV7BCjgJuguJdt0CcHcJM6237lw4plALClJfY2PN/wiNBiO/blW/pM6O0Tz6ZHkq+XnTPki13p+5XoUdO/In6J49cRfnb6qWhcca7OPJFxunedzg8S1oWPMoAEcu+jPtg4L/EEQIIUTBtP3XQ8xeqYLsYg4xLFrqjp0+ax/R9HoV3Do5mbeVLB7G79+H8tJ7tkn+UqKEmq4qpdhYNT1Y8tjsDz7IYI7sJMWKmacUS0hQU2rlVsqW7izGA9Zn98CThsQYCH0fEqN4zvfNVIeXKaMSz50/r4LwqlWtXyRvb1i2DJJn6Z04UY0VF3nrk0/g+HG4ciXvXsePq/tay6hRo2jRogWVK1emZPIE9BmIj49n/vz5TJs2jVatWlGpUiW6d+9O165dWbVqlfUKVsDZfJ5uYR2Ozo6MGbCD979oS8+2OylXrVl+FylLAv1usAqVhTXk7/+oU6cx/206yo2wugB0eCQUZ7cmAPR/rT5/J/VEWbLUjhYt87asx/acYfI8FWTb6Qx8OssNnV3aGVj0DnrmzjbSrJNa/+AjT0qUVslMhBDCViLvRVLcvXi6f5tEwRYbFcvZ4xHcvF/GPK/yDQPLv3YlecTflNG7qRnUNlvX9feHTz9Vc3v7+cG61Tr8AxpY/w2k0KULbEuRSG3aNPXhHqBxYxgzJmvXeeklc0Awf75qlbXLwvOGmBjV2v5g9+t8belOjzEOKnSB0wto6beNZjV3sPNUc5r67mfkK5H0fKUFTs7W7Y2QlhYtYPx4mD5dta736aMSsznnPqm9yKJx49QQjPv38+6ebm7q98pa6tWrl63jL1y4QExMDIOSn7AlSUhIoFatWtYrWAEnQXchMnFeW4a/fQdP76b5XZQsC/S9BMlB994o+gC//HDbtL/rk/Gm5e49dAwfAZGRKtPprFl5948gJgZ69S9HdFxxAF7uvp2Alhm3EDTtWJdp04y88476dDB2rPqgkNH4NSGEyAnNqPFq7y3M+6ENLz2zhflrC/j0FSKVY3vO0Ppxd25HlHlgjx6oDkAT/8OMnpq1buUPGjFCdU328AB7e/fMT8ilLl1g/Kvm9c8/V18dHFSLdVbHIvv4QIcOKhP6uXPw2WfqAXZ6Wcc1TV1/9Gh1r0mTVCb05Pslt3SXK6da5AsEx5LQ+AvwH4P+0ES2TmzF7fulKeue1J/+nzpQf5oKzK2ebt3SpElqLPn+/XDsGLz1lvq8JfJGz57qVZg5P/DhXKfToT0w/YAhRdKA6KT58ebPn0/ZsmUtjnN0dLRRKQse6V5eyJSu6FmoWjgCm1c2LYccUUlcftlUAQCdzsiTvf1N+4sXN/8hioiAn3/Ou3K+/jocPq4C7jrVrzBzUaMsnTdunMYrr1wxrY8ZA3Pe322TMgohHl6LZ2xl3g9tAPh6XWt++HJnPpdIZEd8TDx9XojndkTpdI8pWTyMxUucczX+ukyZ3CXeyo4qVaBeXfO6QaVlYeJEqFMne9caMcK8/Oab8MILabcERkXBwIEweLDaf/cujBql5q7evFlNuZWcjKzAtHKn5OYDLVag77yXsv4peiKEH4EtT8PfbS2mGbMFR0fVzbxYMbU+ezb89ZdNbymKOA8PD27dumWx7cIFc4LHGjVq4OjoyNWrV6lSpYrFq3z58nld3HwjQbewqXLVylC2pHqSG3K6CmdDL3L4gsqu1sT/KGWrelkcnyLRIUvmnsqTMq5apbq0gWpZX/VLBVxKuGR8UgpDhlxn4kSjaX3UB0344v3N1i6mEOIhdWTnaUa+b/kgcMRbPty6dDudM0RBM/nVHRw4o7pRVi97jnFvGvnkE1iyBDZuhL1bLnPpkj21HqmRyZUKlieftFwPClLdl7OrSxfVWyzZypVqXunQUPO2Y8egSRP1PXtQaCi0bWuZfKxABt3JPIKg3W/w6L/g2cS83c1PJWOzsdq11bzeyQYMUA8whMiJpk2bcvjwYdatW8f58+eZM2cOly5dMu13dXVl0KBBTJ8+nbVr13Lx4kWOHDnCsmXLWLt2bT6WPG9J0C1sLrCmylR+O6I0X35y1rS9a4fUHxhbt4YqZdQUXH/uqM7VMzdsWrYzx8IZOtTcJWbu3Ow/oQeYOFFjwrBdpvURH7Rh/odbrFFEIcRDLDoaeg0oR0y8ehBYsngYALcivHht0IkMzhQFxfZfD/HRItVl3EEfz48r4/h4hh1jx6qpmzp1goatKuJayjWfS5p9KYNue73q9p1WVvPM6HRqXPePP5q7hJ88mRxk6/jtNw+aNrXjSNLEIa6u8P33Klt6w4bm62zdal7OtyRq2VG2LXTYCa3WgkdDqPd+nt165Eh4/HG1fPWq6qIvRE60atWK4cOH88knn9CzZ0+io6Np1cpymMzo0aMZPnw48+fPp3PnzgwZMoTg4GAqVqyYzlWLoLyZNtw2sjoZeUHwsE0Un9JbA//R1CgsTXNxijQtH95xKs3jJ7z0r+mYGW8E26xcsVGxWsOaR0z36tNH04zG7F0jZb0aDUbtncHm9wqatmHJHtsUXtjcw/w7W5QVtnodPNj89yTA54J27vAlrVTxu6Zt6xbuyreyxUbFalHhBef/b0Gs24g7EVq1shdM9TV99D/5XSSrMkREmn5A534caZVrnj6taUFBmsX/0pSvunU17fhx8/GJiZr29deaVrq05XE//2yV4uSdtD6AXPld065stNktL1/WtFKlzN+zTZtsdqtUCuLvq7COh61usxqPSku3sLnABuYkCcmJyqqXu0DtJml3o+s3rJpp+dsfKhAdEW2Tcr01ZCf7TtUGoGaFy3z5Ze7yl+jsdEz5ui3jBwSbtn0135j+CUIIkYEVK+Cbb9SyiwusWl+ZqnUqMuuDI6ZjXhlblbvX7uV52U7sO0vVCmF4l0/g7x/25/n9C4vR/UM4d0PlNmlZ9yBvzihaCfBSZhlPOS47N2rUgB074OWXU+8bOBB277ZsxdbrYehQ1TI+cqRar1oV2re3TnnyzIMfQCLPw47nIfhJODQRjIY0T8uNChUsk6hNnmye8k0IYV0SdAubC2yWOklC13bn000I5xNYhRZ11JzdRy/6UL1KJJ+/vZmY+zFWK9Mvi3bz+fdtAXC0j2PV8kjc3HJ/XZ2djunftKFcSdUt/p99dYiLjsv9hYUQD5VTRyMtgo4vv1TTQgH0Hd2CJ5vuAeB6WFlef8P2Uw2lFB8TT5/nY7keVpbwaHee6VeTff8cy9MyFAbrFu5m0a+qi6Vrsfss/d4jV0nSHibFisFXX8Hy5VCihIaLi4GFC40sWqQeQKWlVCmYMwfCwtTUZa6Fr7e+pdPzIf4eoMHhDyG4I9y1/sTaL7xg/tuydatKSCeEsD4JuoXN+QRUwcUpymJbl4GPZHjOpImJ6O1UBs8bYWV4/aM21KgSzpz3NhMbFZvrMr050Txly2fv7CKorX8GR2ePzk7HE81VErioOFe2bzySyRlCCGszGvN2HlRriouO5bmul4iMVOv9+6uxv8l0djrmL6tECVf1t3Dp9yXYuDHvyvfhaztMvYQAImPd6NStNKcOnM/R9e7fh9u3VZ0VFdfP3WToG+beXLMnhVCtbqV8LFHh1KcPXL1q5M8/DzJgQNaaYF1dwcnJxgXLC/WnQeDHoEt6UHN9E/zeAP5qBRdWgzHBKrfR69W80ckmT7bKZYUQD5CgW9ic3kFPQDVzAjV3d41WbTOegPuxXg04uO08z7YzT4tz7V45Rk1tg0/1WJYuzXl5rp65zskrqgv7I36HGf6+9bv7dexo/tX67ZcIq19fCJG22Fg1BU6FCuDpCevX53eJsm/CsF2mTNd+lS4zd27qYyr4lOezz4uZ1l96SU2XZGs7NoQybaFqvbXXJxBUQ7Vw34rwokMnB65eyXrf1FOn4MUXoWRJ8PJSCbjKlrpD3SqnaB90gN6P7mD5/7ajGQtXf9f4eBg8VG+aHqxbq10MeLNlPpeq8CpWDIoVK1w/A1ah00HtcdD+b3BO0WPw1jbY/hz8XBVCP4TYm7m+1XPPmbO9BwfDFskDK4TVSdAt8kRQkPkfZudOhixlN63TzIfV/zTj4NaTdGtlzgx+5WZJ+vdXc3Mm5mA6y51/nTMtt29+2ybznj/ewx87nRp/9fuWCla/vhDCUmy0gblz1XjQ116D69chIQHmTTua30XLljtX7zJ3peoJ5OQQy+oV0el2kx00CDp0UMtXrsDzPe4SdtN2kXfkvfu8OKQERk21vE0avp1/dnhTr+pJAM7fqEDHTjrCwjK+zpmDFxjw5Db8/Y0sX25u4TYa4WaYJ0cu1uTfkCBW/dOcF8e0oGOTfVw6cdVm78uaDh5UGbc3/u0JQFmPMOZ/52OT/zPiIVG2DTx1Ehp/Ae7mHibEXIXQiXAz9xGyXg/vvWde/+CDXF9SCPEACbpFnmjxZIBpuUfP7M1BGdDSlzVbmrL/3+N0aWcOmOfMUXNyZrd1Z/u2eHO52mR9Pu7s8PT24BE/9WH/8IWaXD6bB01QQjyE4qLj+HLyFnwq3+TVV9XUNyltPVClUOVVWPDJIdP0YC93301Ay/QnG9bp4OuvzWNXf/vbgwYB4TYbX/366ETOXq8CQPPahxg/syUly7jz+yZ3qlZRXV1DQ9Xf5ZgHUnDERsVydPdpBj21Fb8GFViysSVGo/oI4uEBHTtCo4YGKntdppiD5cl/7m1E3aDifDtjW4Ft9U6MT2TKxHs0bgwhIWqbvT0sWVESr0ql87VsoghwcIWaw6DzYdXyXfEZ0NmBS0W1bAXPPw8+Pmr5779h+3arXFYIkUSCbpEnnnsOpk6Fzz6D7t1zdo2gtv788k81vvlGfZgB+P13aNHgCucOX8rydXbs8zQtN3007Qzq1tDxKXPz1B//utvsPkI8rOJj4mnX6CTDJ7Xmyh1z98tnnoHHGh8G1IwJu/4oHEm+EuISmLtUpWXW6YyMertqpudUqQJr1kApNzWM5dyNyjR/ojpffbDZqgHqL7/AwqWlAHB1iWXpCnfsHdUfYu8aZfnzLwe8vNSx27ZBk7rnaV47lJre53F3CcfZtRh1mvrw//buO7yp6g3g+DdJd+mA0rJlt4wWKJtSaJnKBgERZSkKgoiiCP6QvQVUQFARFEFERRQUARGUspFNWyh771IKpYOO5P7+uDQhtnRA03S8n+fpw829596c9JA07z3nvGfp+mboDep5RZ2jmTbmEhcuwMaNsP+Ajou3yhL/wIH7d2JZ9+0+yhS7DkBMghuvjA6kc+B+rp+7mWOvKycc//cMTXxPMW5KUZIfTrP184N9++DZZ61bN1HAaDRQsiU0XwOdz0GT5aD9T0fG2a/h/plsX9rGBj780PRYeruFyFkSdItcYWMDY8bAiBFPtywXqEMqN2+GYsXUL5THzpWhYVNHdv0Rmum5CfcTOHRa7TnyKXOO4mU9MjnjyT3Xw7T02caNFnsaIQqtxTP3sCfCz/i4U8A+Du5PYc0a6NvLNLrk7z/vWqF22bd60X6u3lFvHnRuup/Ktctn6bw2beDwvzE09FFvNCSl2DNkQhAvP7ub+3eePpvczZvw2mumx3PnO6SpW9Wq6udcaq972LkK7Inw48z1CsQkmN90dHO6x+Q3Qzh/XsuYac+kWTlCo9VQpGgROvZvSHiEE/3a7TQe+2NPQ2rWcWL5cusvbaRP1jPrvW34B5bjwMPEclqtgTFjYP9+8Pe3bv1EAedcHkq0MN8XHQr7BsH6mnB0HKRkb8nVl1+Gig+/uvz1F+zdm3F5IUTWSdAt8qXgYNi7LRrvMupw89sxxWnZzYdVC3dneN6B3XdJ1qvrhjf1v2rROtavryZyAvUmQXLOJBoVQgCx0bFMnmea37hp5UF+39WQuvXVXp9WXUyjWLbssNzNtZyiGBQ+XWgKTt8Zkb30y+Wrl2XHYW+Gv2ha7+eHLU1pUCuSmSNCWLd0H+fDr2Q7Q7hiUHj9dYXISPVx587qjc/01KsHv/1mvlRTUWf1czrQ9yjdmu1l+tshXDgP4xYE4+aZ+Qggdy83lm0I5Lev/6WEu5owKvq+C/37Q7NmcDiDFZSSE5NZtXA3b/XalqWbstlx6tB5mtU+zuhPgkhKUduqWtmz7PnzBNOmFZDs2SL/OTYVFAMYktTt9TXg8tos36GytZXebiEsJVeC7u+//56WLVvi5+dHz549CQ3N+I/fxo0bee655/Dz86NTp05sk0UDRTqq+hZj78GitPQ/BKi9O6+8V5t7kY+fP737iGkIakCH2hatn05nSnIUEwP//mvRpxOiUPlk7AFu3VPHM/dssYe2veuZHS9TpSTVyp4FYN/J6sRE5e1VBPZsDGf/qZoA1K50kqCu2f98snO0Y94PQfz8+R5cHNXXe/JqJf43N5jOrzakkl9ZXF2hQQN44w24fj3za25YcYB169ThSV5esHhxxqOVWrZUr3v1bBSJ8UnciS3KySsV2RFWm1+3N+Z/c4Nx98r+dJvOrzbi2DEbXuxiulm6a5ca6A959TZR1+4Y99+4cIvJb4ZQofRteg0LYMGqIJp3qcn0acpTL0tm0BuY+79t1G5c0jjKQqMxMLJvCIdPlKFhmxqZXEEIC2r0DVQfBZqHQ87jLsKObhDSHmJOZ+kSffuq01ZAHb2yb5+F6ipEIWPxoHvDhg3MmDGDN998kzVr1lCtWjUGDhxIVFRUuuUPHTrEe++9R48ePVi7di2tWrXizTff5NSpU5auqsiHipZw5889fnQNVMdAxSc6s/HHx6+LvfuRjvCAIFdLV4/nWsUat/9cvsPizydEYXDrUiSzv1GDbJ02hWkfl0q3XKsmaoCmN9iw7fcTuVa/JzH3Y9NnxYg3Ip8q23WPIU04tDuaulXSzmWPi4MDB2DRIhg4MOPrKAaF6R+ZumwXzLmJl1fmz1+kCJSu5IGdo112q54hj9LF+GFtGf7807S8kaLAl0uLU9Vbw+yR25nxbgwVfTyY8Hkw1+6Y/l8YDDo+HKuhY0d4zNcPQE2IduX0dWKj76eZE3829BLB/mGMmBnEg2R12csqpS6w4/dwZi8PxsHZIb1LCpF7bIuA/0fQPgxKtjbtv/4nbPCFox9CSlyGl7CzU6cDpnrrLVi2DA4ehPjsjVYXQjxCoyiWnRXVs2dP/Pz8GD9+PAAGg4GgoCD69u3LoEGD0pR/5513SEhIYNGiRcZ9L7zwAtWqVWPyf8a5xMfHExERgbe3N05OlslCnVP0ej1hYWH4+fmh0+msXZ0C559fDtO2V30AXmi5m5V/NUpTRlGgVCktt29rKFZM4cYNA9qnvO2UWbvevHiLMpXVL351q0Sw78TjMxFn1d1b95g/6SjlK+roP7LpU19PpE/es2oOBBs7G2zts7DGXy5656UdLFgVDMAbz29jwar010D+7et9dB/cBIDhL4bwyYpmebJdL16EqlU1GAxaSrjf4tylItg7Pf34ZIPeQNjuMxw/EsWx0GSOXfbm+PnSnDsHiqIG9ds236Zpi6Lpnr/996O0fL4uADWfOc3h0xXQ6vLGrLSkJJg/X8PUycnExqf/u9Jq9HQJ3EeFKs7M/dbP+JrLlVNYuSKRJk3V/9cpSSlsXxfGzyvjWbO1hnF9bQd7PV4ltHh6QnEPPTu3JxL3wNl4/bd6hTD183o4u+Xt7x8WFReHzk0duaC/dw+cnTM5Ifvy4ns2X1AUuPIr2sPvoUm4YtrtWAZDqx3g/MxjT01KAh8fLZcvm9/802gUKlaEmjXh9dcNtG//5NWTdi24ClvbxsfHc+rUKapXr55hPJq9tZuyKSkpiWPHjjF48GDjPq1WS0BAAIcfMxHryJEjDBgwwGxfYGAgW7Zseezz5Kde8LCwMGtXoUByfcZAUedoouOKsnGPL/v37sfWwTxQuHjBltu31aXLatS4R2jo2Rx7/ozatU6lOxw5V5NDZ6qzbVMIbiVcHls2M3dvxjDizZKEXVCTpzgXXU+VeiWf+Hoic4XxPZuUpOHbL2z49gcfyhW/xvz5ZyhRqZi1qwXAzXN3WPRLEABO9nH0GGjgSOoaTf/hWVmPVqPHoOj4e1cps3KPtqtiUNj0/WXi7mvp8npJbGwt+qcxjXnzymAwqO/j7j0iiTiV9dUYMuUC1Zs5Ur2ZIz24Adzgt9+KMWWKmi1p7IjzfPrtxXRPnTbFlIhi4EvHCA3LW0P0W7eGujXvs/hjAz+HtDTuL+5ym97t99LhRUeKl3MHkqlS/zRjx1YkOtqWy5c1tGipY/iLG7gTbceGXf7culc/zfUfJOq4dAkuXQL165L6/6K85yUmjz1CzaZlOH0+/3z/sARtQgKp+eJCQ0MxODpa7LkK42fx06uMtuwPlIz6mhJ3VqAlhXiDKydORYHmToZnvvFGUcaNq4jBYAq8FUXDuXNw7hysW6dj6tRzPPdc9FPVUNq14JK2NWfRbxbR0dHo9Xo8PMyT2Hh4eHDu3Ll0z7l9+zbFixdPU/727duPfR7p6RYAHQL3sGJTIPcTXLlzXsOzveuYHT+6xbTo5HPNY6hTx/z4k8hKu7YL3s6Rc+pczcvHtQQ9a/68KUkpLJy4m7g4GDzaF4/S6Qc358Mv02tgcc7eMGUNPnnUiR4Dn/51iLQK63v28GEYPFhLWJj6RevsjYoMH65l2047SlbIwthiC+sz6aIxGeK7/fYR/GzzDMvX945g30lfjl32oaT7dTzLeaRp158W7mXsvG4AODpuZcy8jK+Zk2Jj4fff1d5jOzuFsZOrZWkI99PwrZHCD0sucOZ6BXaEN+DO2QO07G6eavtQyAn+PqwO4a/gdZmh49sZlwjLU+pAy3YwbP0RfvruLpWrRPPaqFY4u7YzL1ZHXT/8pZcM7NypJUVvyyffd0pzOSf7OIJqHycxScetJF8io2yJjASDQYNWq/Ba9yN8tLAiLsU65M7ry+viTEOVa9WqJT3deVYTlPujUI6MwqHy69Qp/Z/U+tc3Qok2ZsuP1akDAwYYOHwYjh/XcPw4hIdriIiAuDj178OkSRWpW7e8MX9Ndki7FlyFrW1Te7ozkwf/gmafTqfLN42an+qa33R73oYVm9TtdWsSad/H/Pe8Z7fpbm1g/TvodI8fWpVdGbVruy7FmOE7UGYAAEM8SURBVPGNuv3XXzr6jzSVUwwKg3vsZ9kGted67rI7TB25i0FjmqKzNZU7tucMbTs6m81RBNi2x43x8v/JogrLezY5ycD0GVqmToWUFPNjZ2+Up2PbE4TsdcpSxmlLOXQIflxXCYDi7vd5f0a9TNumVXAS+06q29v2eNCrglo+tV0Vg8Lseabh1Z9+W5u3J8Xh6pH9nA+3r0TxyYQwqte0oe+76Q95/6/vvoN7D3M/vvyyhlKlLP9/TeeoY9Loq7z8TgUAJky0p3UPrdk88llTTb3ao4aex96xnMXr9TSad65D0w56jhw5grOrc7r/L8qVg61/pzB28HY++jbYuN/BNoEOAUd4oadChz61cXZrYHaewQB37oCdnQZXV1kHzMwjv2edTmf2OOefqnB8FluMe3UIXkea3+CtnbC9E7j6QN1PobTphlXp0upPh0fuMRkMMGQIfPUVJCdr6NlTxz//QMOGT1YtadeCq7C0bVZfo0UnZxUtWhSdTpcmaVpUVFSa3uxUxYsXT9OrnVF5IVI928sPB9sEAH7bWS9NltrUzOU2umQatHr6udVZ1fjZGrg6qt+qN+2thj5Zbzw2+pVtLNtg+nJ+J7YYQyc2p3610+xcp2b5/3d3Ms2f9TAG3NXKnqWk+00A9hyrRlJCUm69FFFAhe06RaMap5g40RRw164NG369TbniajKyI+eq0bXNOR7EPbBaPT/4wLQ9bpJLlgLj1i/UNW5v+SdtYq+/Vx/myDlTxunouGIsmJf999Tlk9cIbHyPGd8E0++9QPb+GZ7pOQa9gXmzTH/v3nkn20/7xHoNbUzNZ9Rsxnsi/Ni44oDx2MmD5/hlm5oXo4T7LV4Z+YTfpvMgGzsbZi4N5q8fDjK0xzZWzttN5E09q0Oa8MKbATi7pe2p1WqheHFwtXzuTSFyX9gE9d+Yk2qW85AOEPP4XjutFj7/HJ5/Xn0cFwft28OJvJ2rUgirs2jQbWdnR82aNdmzZ49xn8FgYM+ePfj7p3+3uE6dOuzdu9ds3+7du3NkKLAo2JzdnGnTVr3bdP2WM/v3m45F37zL8UtVAPCvfAon19ybjmBrb0ubhscBiLrvwcGtakbhj0eFMHt5MKAm/GnX0FThI+eq0axzLZ5/Hlq1teXOfbUnrn7V4+zY406bxuqX5YQkJ/b/LX/pxJML+fUI9YPLc/hsNQB0OoVx49RlYtp1K85fGxLxcFFvnIYc9efl9kfMbhzlls2b1R+AihXhkVQhGQoIAIeHSaW3bEm7XO3s2WnXkPp4YXHu38963U4ePEfTQIWTVysZ9y1akPk8xw0rDnDmsnpDuWXDs9SqlfXnfFo6Wx2TPzTdEB87uYgxW/esiVdRFPXrwbuvHi+QWbnbvFiPhT8H0Xt4AEWKFsn8BCEKKr+J4PlIUtZrG2B9TTg0EpLSX4JVp4Pvv4fgYPVxVBQ8+yxcuZJucSEEubBk2CuvvMKqVatYs2YNZ8+eZeLEiSQkJPD8w1tko0aN4uOPPzaW79evHzt27OCbb77h7NmzfPbZZ4SHh9OnTx9LV1UUAF2fN/VkrV1r2r9nk2l9yoB6j88PYCnPtTUlJPrzt0iWzz3EyNnBxn1fTNrFhn8bsHNdKHUqmYLoNWtMU+ZaNI3mn71lKV7Wg6DWpuGw247WtHj9RcEUffMufV4vQVKKmv25xjNn2LvlMpMnq8vGAFRrUIkNq2/gbK8uafXr9sYMfWFXmuWULEkxKPzv3Ujj4ylTwD6Lyb0dHCDw4WCSy5fhzBnTsdCdJ/nrgJpAq2KJS/R+UQ3A79xRe3Ky4tDWCAJbunL5dhmz/T9trse9yPS/sKb6ZK4p2eOIoRmsY2Uh3V5rhH9l9Sbg4bPV+XXxv1w+eY3lGxsD4O58lzfG1M3oEkKI/M6rGbTeAQErwamsuk9JgRMfwx/ecPoL0Kcd4eTgAL/9ps79BjXh4LPPqp+fQoi0LB50t2/fntGjRzN//ny6dOlCREQES5YsMQ4Xv379OpGRpi9TdevWZc6cOfz000906dKFTZs2sXDhQry9c284sMi/OnXCuAzYo0H37h2mZC8BgTm7dmxWPNu9inF70U++vDrSNNJj8pshDBqnJm5q2rEWB05U5YtZZyn2SD61Ll1gw5aiuBRTxzcGdTEF2tu2F/z5MsIy3uxzjKsPpy209D/EweNlqR+cNtdBw7Y1+XXpSWx06s2jr9Y25+3eIURFJqcpawl/rjzAwXBPAGrXuEfv3tk7v1Ur0/Y/a003teZMM/3teff180yYqEXzcFrznDlmOaLStW3NEYI7lDEuMVW74klebK2O7EpIcmLlqsf3oB78J4KtR9TPgaqlz9O+T9rs2Zam0WqYOt60Pvj46cWZNQtS9OrNgGEvHXmiue1CiHxGo4EKvaHjCfAdD7qHo1se3IL9Q+G3CvAgbYeFqyv8+SdUrqw+Pn5c/b6SnDt/GoTIX5R8LC4uTjlw4IASFxdn7apkKiUlRTlw4ICSkpJi7aoUeM2aKYo6iFRRIg7fUhRFUVrUOWTcd/nUtRx7ruy0a81nThnrkPozrG+EYtAb0i1/+7aiTJmiKJ9+qijJyebHDAZFKV1avYazs6IkJeXAixFmCvp7duW8Xcb/h+7O0Vl6Xzx6DiiKg4NBefVVRTl0KG1Zg96gHP/3jLJwfIjyZs8QJeTXw09c10DfI8bn/PWrPdk+f9+WE8bzuwftVg4cOKCcP35JsdElKaAoxYpEKbF3YxVFUZTevU2vb/aYo4+95u8rzyoOtvHGsoG+R5Tom3eVI4f1xn116qjv1fT0amn6XX45eVu2X1NOMegNSpPqoWk+m5wck5XIy5FWq9eTKOjv2TwpNtb0nyY21iJPIe1qBffPK8qOnoryPerPlpYZFj97VlFKlDD9V/jgg8yfQtq14CpsbZvVeNTiPd1C5LaurUzjR39bfozkxGT+jVBHSjzjeYWyVUs97lSLaveseXKmXr1g3rfVzDIGP8rDA8aOVZMr2fxnnQGNxjSXKi4ODh7M+fqKguvyyWsMHWNKHvb59ONZel/0Hh7AwvHb0GrUOd0PHmj45huoWxeaNoXvPtnFoskhvNhqN6U8IqnRqDJvTg5i4c9BtO9dlWtnb2S7rjt+P8rO8NoAVC93li6vZj+pV93mVXB3vgvA1oM+GPR65i90NPboDu0dakygNfZ/SWg06jDz2QtLER8Tb3YtRYG5c6Fb34o8SFbXJG7XcD+bdlXF3cuN2nW0NHiY/PrIkfTfmxeOXeHnrWqiMk/XSPq90yBtoVyi0WqYOjklzf7XB9lQvKwkMBWiUCpSAQJXwbP74ZmeUOMD8+OKAhFzIP4aAJUqwe+/m76rzJwJmzblbpWFyOsk6BYFTpeupnmSazd6ELrrDPGJ6hfqgFqXrFUtuvY3DQlv3RqWLTMNhX8SQc1Myay2/Rb2NFUThYhBb+CV3te5G+cOQO/Wu+g9PCDL5w+dFMSJg5d5Z3gybo+sHrZ7N/R7rylvTAjmp38CuHnXfLHp+ERnJr+f+TqW/zVjmulm1QfDr6HVZf9No7PV0aKuOqz8Tmwxjv17jyXLPQCwtzcw7EM/Y9kafnb0bKEm87x1z5NF000JDu/ehe7dYcQI0OvVm2W92x9nbUhts+SMr79ueu7Fi9PW59MpZzEo6rSQt/oew9HFMduvKSe17OFPizqHjY9tbeG996xYISFE3uBRXw2+S7Ux339tAxx+H9ZVgaNjITmGhg3VYDtV375w7VruVleIvEyCblHgVK5dHt/yauK0vSf8+OX7m8ZjTZtYb6JR06awdClMm6bON89qIqjHCWpw0bi97R/rLeMk8pf5Y3fw9+F6AJT1uMbCFdlPxFfVvwKfzrPl6lVYtAj8/NKWcXGMoUPjfcwcEWJcMm/JbwGcPHIzbeHHOLL9JBv3qb3A5T0v0/utxtmua6rWLRKN2xNm+HP/vho09++vpUR5D7OyYyd7GrdnLapGwv0EDm2NoF6deNasMZUbPRpWrKuBnaN5nogXX4QiRdREcyu/SyA22jRv+s71aJasVedvO9rFM3RMLqYsz8DUz0yN2K+fuqa1EEKk6/gM9V99AhybBr9XhpPzGTE8ybimd2Qk9OkD+txf7EKIPEmCblEgdW171bg9d6VpKYyAtpXSK55rBgyAMWPAOe1SsNnm7V+REu63ANgRWo2UpLRDRIV41LFj8MEnpvfDt1/coGgJ9ye+nrMzDBoER4/CtrWhvN8vhJkjQvh30zHu3HXijz0NGf1JMKNeOwSA3mDDh1NLZPn6MyeZMnqPHHwOW3vbDEpnrFVnUxR56bo6bFqjgXffTVvWr2lVugepCdFu3C1Br+dCCXi2Iucuqr3ZRYvCunVqr056o1VcXKB3G7W3PDbBkZ++NPUifznziHHkzatd9uNRuljaC1hBQKANv/4KkybB/PnWro0QIk9rthZ83gbtw8/kxNtw8G20G6vz7bT1lHm4mMPWrWpHgxBCgm5RQHV90fTFPuGB+kfB2RlqNSk43TcarYbguur89dgHLhzelv7Q3agoGDUK1q/PzdqJvOb6dbXXITFJnXQ3ov8hWvXMmeWgNBpo3qUWs5YFM/qTYBq2rYmNnSkRwTvTmlGypNrz+8svsHdv5tc8ffiCcd6zl1skA0c93bxnb/+KlPUwH+vYuTP4+KRfftwUUzC8bncjEpPVbL4Napzn0CHo2DHj53t9iCnr9+Ll6hJ/Dx7A/O/Unm2tRs+74ypm92VYVLduMH48ODllXlYIUYg5FId6c9Vs5+UfWU4i9hzFj3Xkh9Fj0GrVz/xJkyAkxCq1FCJPkaBbFEh1g6ul+YLdqFHahGT5XVBzU+/2tr9upTmuKGrCttmz1WU8zp7NzdqJvODG+VuMGHKLSpXUxF4ANWvC9C9zb/1lZxcbJkwwJQwcPVr9v5mRWRMvGec9vzPgGI4uTxcJarQaWjUyfwO8P/zuY8vXbuZD10DzuwNv9drGzgNlqFAh8+er36oGtSueBODfE76E7TrFihVwM1odyt69zQkq+aVdnk0IIfKNIpWg6Up47gCUaGnc3cxjBpN6TAXAYICXXlKHmwtRmEnQLQokjVZD11anzfYFZD1XVL4R9Fxp4/a2XWmDks2b4e+/1W29Hr6YY71EciJ33boUyci+IVSqVoS5X3rx4OG0f3d3+P57cHDI3foMHAhVq6rb27fDxjVp13xNdeV8LMvWq/O3XR3vMfRD/8eWzY7WrUyRfhPvfTRt6Z5h+ekfe1LUOZqiztGs+nwP838MSjN/+3E0Wg2v9zVla1807wZz5piOvz81+3PphRAiTypWD1pugaY/gYOaRPN/gw/S6uFn7vXr0K4dnDxpzUoKYV0SdIsCq2sPF7PHTZsUvDnP1RtUxtNVvX28/YgP+mRTxhKD3sDoUeaJ477+zpW4e3G5WkeRuwx6AxPeCKGitxMfrwgmIUm9GePokMJ776lfemrXzv162drC9GmmoPeD9+6Y/X991CefFSFZrwa3b74cjpunW7rlsqtz/zpUKXUBe9sHTJuZ+fzw6g0rc/2WE9duOtJzSJNsP9/Lb9bB0U5dcuyL1U2NXzibN8e4rJgQQhQIGg2UfwE6REDVIegafcaKFRq8Hi5kcfAg1Kmt59M5SRgMj79McjLcyP7qkkLkeRJ0iwKreWc/3J2ijY8b1y94waZGqyHo4bzumAQ3ju40zev+ccFejhw1DyzuxrmzcoEs6l2Qbf7pEJMXBRuTdTnYJjDipRDOHb/DnDkYvwBZQ/fu0NAnHICwC958P29PmjJRUWpGdFB749+Z1jRNmSfl6uFK+NlS/PP3YZp3zlrWcHsnexycn2xYgLuXGz1bqUnkUofKA7z//hNdTggh8j77YtDgc3AuR8mS8OefplFODxJ1vPu+HcH+xzm37Xd0+vsApKSoI/Nefx1KloRSpdTEs4mJj38aIfIbCbpFgWVrb8voQUfRaAwM7LQDd6+c6S3La4ICTesYb9ukLseUGJ/Eh9NNSeNmvBNi3P5sSUkUQyYTakW+tXmjaXmq/u13cu5EDJ98H0zJilaMth/SaDV8NN004mTcrAo8iHtAYnwiR3ecYuW83bze9wbxaucwr72W8zcJbOxssHfK2hDxnPBoQjWA6t4JtG+fa08vhBBW5e+v5hN5u9sq474doTWo074tGz7ezNBumyhV4gFt28KSJXDnjlpm2TJo1UrmgouCQ4JuUaB98Gkw96MTWPJ7M2tXxWKCnitl3N62U+2RWzRtDxduqUF367oH+eDTYJpUDwPUHsYd60Jzv6IiV2z71xSlzllUnVKVsr5EV24Ifr4O7RruB+BSZFkqPxONs4uOOs29efmdANZsLAmoSQ9HjrRmTXNG0w5+VC9rmsg4csD+dJcZE0KIgsrJCeZ+VoSQhR9R0esCAPGJzny4ahpfrWvP7Tum0UTOTnocHdXtXbvUJLjHjlmh0kLkMPnTLwo8Z7ccWBQ7D6vZuArFXO4CsD3cn7uRMUxZYErSNHO2Oqd32OAY477P5sbnah1F7oiJiuHQGXUNLN/ypyle1sPKNUrfjDmuaDTqpL5rd0qhN6RdVuDdd6F8+dyuWc7TaDXMmnoPnTaFZr5HefntRtaukhBC5L4y7QkaOprQ02UZOuCq2SFHu3h6NPyZn4f34Nbeb9mxA0o/zBN7/ryaCHfTJivUWYgcJEG3EPmcVqclqLU7ANH37BnQ6yq3Y4oD8GKr3dRrWR2AHoMaUMJdXVZszfYGXDl93Sr1FZaza+NJ49zhoIbXMiltPbWb+TCy73YA7G0fUKfSCV5uu4vpb4fw29f7OH8ePvrIypXMQR37NyTxgYaQI37YO9lbuzpCCGE1RVxtWLi0DFu26Hmx102+//wYt/76kJ9HDaVH499w8u5KvXqwbx/UfbiyZUwMtG8PCxZYt+5CPI0CtmqxEIVTUBCsWaNu/7ZVDbJtdMlM/biMsYydox2Dex1n8iIv9AYbvpx1kqmLS6V3uSy7euY6q785xfEIDUNGlKBOc5+nup54OiF/m5IFBrXIvXnLT2LWsmDGfhKDs6szOttq1q6OxelsdZkXEkKIQiI4GNzdr1CnTh10uk/BMAuij4K9OkKrTBl1ecm+nY+z5p8aGAzw1lvq/PDPPsM4BF2I/EJ6uoUoAIKC0u57o/tuKtc2H587+P1q2OjUZcS+WuVLYnz2U4Nevw4LJuymmd9RylYtxTszgvhqbXMC2pRj9Rdps1GL3LMt3DR0Oah9ZSvWJGtcPVwlGBVCCAFaW/Cob7bLWX+a1QPr8kGnGcZ9X38NTZrA6dO5XUEhno4E3UIUALVqQVF305rHRRzuM252jTTlSlcuSfcgNYlVZExxVn25P8vPsWWLeme6TBl4a3IAO8PNF3tOSHKi59AmTBseItnRrSA2Fg4cVm/9V68OXuWtn61cCCGEeGLxl9E6uDPjxTEsf6MvjnZqPpqjR6GefyKrl18FRb5viPxBgm4hCgCtFprVCjc+Htl/L17PeKZbdtg7RYzbC35skum1U1Jg7Fho2xa2bTP/+1at7FkmvBFC3+d2GveN/SyYfu13ZbsXfelHO3j7xW38sWzfE/XAF3a7d4P+4X2X9EY+CCGEEPlKyZbQ8ST4vE3f5ivZN7kh1UpHAHA/zp6e/cvwduflJO3/UIJvkedJ0C1EATHyPXCwTaBxtTDend74seWadvCjTh31j9O+/Tr27Xv8NW+cv0WbBkeZNs3096xqVRg7JpmwXac4frESE78IZtn6pmZrga/YFEjLhme4dTNrfwQ3LN/Pqx80Y/5PQXQa0JASng8Y0GEnG1fsJykp8/OFekMklQTdQgghCgQ7N6g3F9qF4tu2A/vn9uGlgO+Nh+f/0Z9m/fpy46bG/DwJwvMXQwrEXYLI3fDgtrVrYxESdAtRQDTrXJu4BHt2htbApZjLY8tptBqGDTP9cRrzvxS2rT2apnd56y+HqVMXQo6ow8h1OoVZs+DkSZgyzRbfAG80Wo3xmh98Gswvi/Yah3/tPlaTRo01nDxJhvTJej6Y4Ga27168G8s2BNK+bwNKloRhw9TspeLxQv68adyWoFsIIUSB4l4T/D+iSM+DrNjQkC8nbMbOVr0rv+9ENfr2fSTONqTA+hqwpz+cXQoxpyUIzyuSoiFyF5z5Cg6+A/+0hbXl4Cd7+K08bG4Kt0KsXUuLkOzlQhQgWp0WspCX6qWXYNQouHMH/v7Hhr//qY2DbQIBvodo0TSGxESYvqSZcfmp0sWu89OKOALbVcnwus8PasyOKhF07v0M1245c+EC9OgBBw+C3WOSaX8/bw9hFwIB8Ktwito+t/htey3uJ7gCEB0NCxfCsWOwcSM4OGT511FoxMfEs/9oUQC8y1ygVKkK1q2QEEIIYSEat6oMnliVBp2hUycD165p2bJFTbL22mtA5A6IOaH+nF+unuTgBZ6B6o97bbBzV3+KVLLiKylEDMmwzhviLmReNv6yxatjDRbt6b579y7vvfcedevWpX79+owZM4a4uLgMz+nbty8+Pj5mP+PHj7dkNYUodBwd4b9vqwfJjvxzuC7jFgQzdXGwMeBuU+8ghw/bZhpwp6rXsjr7DjlT42Eet/BwmDYt/bIP4h4wblYF4+N5c+L47s9AbkXasWbxv/R+IQEnJ/VYSAi8/LKCPlmf7rUKsz2bTpCsV+9qBNW/ZOXaCCGEEJZXty58840plHnvPbhyBYg9DzbO5oUf3ILLv8Khd+GfVvBnPdgcmPaiN0Pgwo9qeZE1Bj3EX4Xbe+HiKjQn5uAZ/aN5Ga0t2BdP/3y7YlCsAZTtBt5vqTdFCiCL9nSPHDmSyMhIli5dSnJyMmPGjGH8+PF8/PHHGZ73wgsvMHz4cONjR1mMT4gc9/bb8Pzz8M8vR9i6OZat+ytwKbKs8bhGY2DikO18OLdZtpd1KlMGvv8eGjRQE7FNn26gW6sz1GnubVbu88l7uRQZDMBzDQ/Qoru6XIiDswNdX2tE19fg33+hZUuIj4dff9Uw9IVdfPlLM+PQdgHbtpjG3gcFyRJcQgghCodnn4VXXoGlS9VpaIMGwfr1r6Kp8BJE7Vd7vW/thNu7Ifme+cm2rmkveOozNTgHcPeDEi2hWH1wLAUOJcGxpBokap7+O8iJE+qa4x07Qrt2T3253BF7AW5shruhcDccYs9BwjVQUoxFtEAJm5LATPNzS3cAGydwqwmuNdQpA6411FEIOfD7zOssFnSfPXuWHTt2sHr1avz8/AAYO3YsgwYNYtSoUZQoUeKx5zo4OODpmX7m5fTo9Xr0+rzd+5Vav7xeT5E9+b1dS5eGPm/50ectUAwK54+fJ2T9ZcJCDXTr5Urzzs2AJ3t9fn4w+v1kps1wICVFy6uv6tkd+gBbe1sA7t6FaYvVu8wajYFpHzmn+zz168PPP0OXzgopehu+Wtscrze2MvGL5k/+wrMgP7VtyO6ixu3AduXzRZ2tJT+1q8geaVsr0OuNM5r0er1pCYUcfQpp14IoJ9t11iz4808t169r2LgRli0z0LevLXgEqD/VRqu9sTHH0ETugvhLkHwf7IuhPPr8Bj3am1sxhn93w9Sf/1C0tij+81CqDDLtTI5Bc3ElikNJcPUBFx/QZDygePBgLdu3a/j8cxg/3sC4cYp1Y8/k+xB3HuKvoEm4BglXUcq/DC6mkY6am9vR7huUwUVU9ik3SIo5C66VTTtrjlN//stgSPca0dHg6gq6PN6XkNX/wxpFsUxmgdWrV/PRRx+xf79pHeCUlBRq1arFvHnzaNOmTbrn9e3bl9OnT6MoCp6enrRo0YKhQ4em29sdHx9PRESEJaovhMgByQ+SGdi7GMcvqz3co/r/zgtvlQFg4cLSLF1aCoCOz15k4rSMs1XuWHOZEdO6Gh9PfHMtHV8pZ5mK5yOJ8Um0aFmXpBR7KpW4wKr1UdaukhCikNAmJODfTL05e3jHDgwyMlFYyfbtbrz7rhocurik8PPPxyhePCWTs/5D0eMSvx/X+P24xO/H6UEEGtIPk86Vmkq063PGx44PTlHj4kvGx3qtM/H21YhzqEGcY03i7auj17kAGvQ6FxIStAQH10GvN0XZzz57h/HjL2Bvb+Gkb4oeh6SLOCaeUX+SzuCYeBb75Ktpip4tPZO7Lq2Nj//7OlN0biTZlCTJtgRJNg9/bEvywK4CCfZVQfNkEfOPP3oyZ84zBATcY/78M090jdxWvXp1nFLnRKbDYj3dt2/fplixYuZPZmODm5sbkZGRjz2vY8eOlC5dGi8vL06ePMmcOXM4f/48CxYseOw53t7eGb7IvECv1xMWFoafnx+6vH7LRmSZtGvmvl58nKbt9BgUHXO/f5aXB13AvWwVfvxRvQNsZ6cwd2FZKlQom+F16tSpg8YQwjszggGY9Hlnqnrvodebj18e7Wnkl7YNWXuEpBR7AIIaXKZOnQAr1yhvyy/tKrJP2tYKHsnTU6tWLXB2zqDwk5F2LZhyul3r1IEDBwysXKnl/n0bPv+8Fr/8YniCnuN6wBsAGJKiIXIHmtjz8OAGPLiJ5uG/5as3o7xnHdNp12/CRdNDnSEOl4SDuCQchGjTfsW+OIauN9i6FbOAG2DTpmLcu5HIL8vPUKKKN9h5GIddX70Kv/yi4cQJGDZMMebNeSJxF9D+0fixNxQeVdHLFsXnkdepr46h2Kcobr7g7ofGvjj2gP0j5zxt2964AQsXqt8RT51ypU6dOhmfYGXx8fGcOnUq03LZDrrnzJnD4sWLMyyzYcOG7F7WqFevXsZtHx8fPD09GTBgAJcuXeKZZ55J9xydTpdvPojzU11F1km7Pl7jZ/14v38IH30bTFKKPa+/mkzNJhoSEtQ/JEOHaqhcOWu/u7enBxMZuZVpS1qgKFoGvNsA/8YXqN6wcuYnP6G83rY7/75v3A4O0uTpuuYleb1dxZOTts1Fj/yedTqdRceBSrsWTDnZrvPnw5YtcOsW/P67htWrdbz44lNc0LE4PNMt3UNpalysFjT6BuKvQPRhuLNf3f4PDQo6nY7du037+j67nV9C6hGf6Mzeo6UIaJXIHyNb4eF6n18O9WXVnufZebwOiqIGouvXQ0QEuDglwYFhgEHtUXauqA4Fd6kKRSqDbRHQP4D7p9X56alcK0PJNnDjL9M+myLg5gtu1cGpLDiWAacyaIvWMX9f65yg+jtZ+vU9advOmgUJCep2nz55/3tNVuuX7aD71VdfpVu39P8DpipXrhzFixfnzp07ZvtTUlK4d+9etuZr166tZrC7ePHiY4NuIUTeNnFBY9ZuPsfJq5XYd9KXfQ/X7nZxUfjww+zdhp6yKJgbN7fz9brmJOvtWLvyskWD7rwuZLdpjfOgDhWsVxEhhBDCijw84PPP1aVKAYYNUxOxennlwpM7lYXKr5jvS7ihJnO7s19NPKZPBFsXAHbsMBWb3O8rRjQ/Rqc567gaXZaLtytQf9wBklLsjIH2o65ehXHjYO7HCpzNoCPUsRSkJKiZ3LtcBO0jwWHNMeDVXA3G3f3AuXymc9Bzw+XL8OWX6raTE3zwgXXrk5OyHXQXK1YszbDx9Pj7+xMTE0N4eDi+vr4A7N27F4PBoA5ByqLUOdvZCdSFEHmLg7MD3yyKI7CTwewPyOjXDlK8eP1sXUuj1fD26JJ8vU59HH7cNiermq8kxiey93g1ACp4XaZ8dZnjLoQQovDq3l0NulevhqgoGDwYfv3VSsmxHUtC2U7qzyNSUmDPHnW7TBko33sFFZLvsa/TKTq/ZM/BcE8Skx3MzqlWOoKu7aKZtzKAhAQ163mfl3Rk+A0q4br6b/JduL4JyrQ3HSsRpP5k4uRJ+O47tc4vvqgO47ekqVMhKUndHj4cMsi7ne9Y7JZG5cqVadasGePGjSM0NJSDBw8yZcoUOnToYMxcfvPmTZ577jlCQ0MBuHTpEgsXLiQ8PJwrV67w999/M3r0aBo0aEC1atUsVVUhRC4I6ODHO723Gx+XdL/JOxOqP9G1fOpWwEaXDED4mces+1gI7NudwINkNXFRUP2LmZQWQgghCr6FC6H4w68Ga9eqy4nlJUeOmNIhNGv28IaAnRul/Rqw/V9PevdWj1WtCmPHQliogeNnSzDj85pMmKAeMxhg8BAdKW2OQvsweHY/NP0Rak2FSgPAsykptqW5EVcFKvRVe+KzSK+HdevU5diqVYNp0+Cjj8DfX63vTz+ZAuOcdPYsfPONuu3qCu+/n/PPYU0WXad7zpw5TJkyhf79+6PVamnbti1jx441Hk9OTub8+fMkPBy4b2try549e1i+fDnx8fGUKlWKtm3bMnToUEtWUwiRS6Z+0ZB9R0PZd6IaX8y+gLNboye6jp2jHd5lznD8UhVOXK5ASlIyNnaFr8d7215343bQ80/2uxRCCCEKEi8vWLwYUmfDvv02BAdDpUpWrZbRo0PLHyb/N3JygpUrYdEiKFIktYdeC6ijjN99F1asgPBwOHRIw4Lva/HOOw9P9jD1ex87Bl2Hwpkz6nDtwVnIsXrnDnz9tTpE/8KF9Mvs3Kn+lCypjiIYPBhKlcra687M5MlqjzqorzMLA6vzFYsG3e7u7nz88cePPV62bFlOnjxpfFyqVClWrFhhySoJIazIydWJ7Ud9UQwKOtunCxJ9a+g5fgmSUuw5czqJajVzqJL5SEiIaTu4ZeG76SCEEEKkp2tXePVVtec0Nhb69YNt23Im19/Nm/DJJ1ClCrz2WvaHrmcUdKdycUl/v60tfPUVBDwMoseNU4fUl3tkdtmmTfDCCxAToz4eOxb69Ml4cYFr16BxY3VO9aMqVYKhQ9WbAQsXqsE8qBnGJ01Se8BHj1Z/nmbFwIgI9WYCqMG28UZCAWL9GfNCiEJFq9Ois336v3q+AT7G7fAIu6e+Xn4TdS2a3bvV5T7KlYMKFaxbHyGEECIvmTsXKlZUt3ftUrNiP61z59SAd9YsGDRInXesZGNZbUVRe4oB3N2h5hN0GDRpAm+oq5oRG6vWIdWCBdC+vSngBrh9G5YsyfiaU6aYB9zPPQd//AGnTsF778GQIRAWBlu3qkF+6s2LBw/U4Lt6dXXufHZ+F4+aOFEdMg8wahS4uWVYPF+SoFsIkS89zM8IqMOsCovom3cZPziEilV0xmXXgoKslCRGCCGEyKNcXNQkYNqH0c748XDo0JNfLzwcAgPVwDvVggUwYkTWg81TpyAyUt1u2tRUt+yaMcOUZGztWvjlFzVb+1tvmYLXFi1M5efMefw87PPnTUF5kSJw/Dhs3AgdOpiPDNBo1GH6q1er54wYATYPx0xfvKgG423bqr3W2REaCqtWqdteXurrKIgk6BZC5EuFLei+F3mPSUNDqFhJw5Svgrmf4AqAvb2B11+3cuWEEEKIPKhpU9OyUykp6jDr1DWgs2PvXmjeHK4/TAherpzpZve8eTByZNYC76wMLc8Kd3e1Jz9Vz57q8O9UH3ygrlne6WHi9CtXTMO3/2vKFNNc6hEj1F7rzJQrpw6xDw2FNm1M+7dsAX9/LYsWZX2i9/jxpu0xYzIeBp+fSdAthMiXKlUCBwf1L1z4kVgr18ayvpm5gwoVFSZ+Ecy9eHXMlY0umcHdtnMqNJLmza1cQSGEECKPmjAB6tZVtyMisr/28+bN0KoVREerjxs0UHvMv/7aFHh/8ok6rzmzwDt1aDk8XdAN0KuXmmEcTM9ra6tma58xQ+1F/9//TOU/+kjNTP6oU6dg2TJ1291dTWCWHdWrq3PIf/0VypdX96WkaFi8uDR//ZX5+fv3w2+/qdtlyqiJ2QoqCbqFEPmSTgc1yqqJGE+fc+RB7BPcus4HQneeYuD/mnE3zh0AnTaF1zpv5/TRm3z5a3Oe8S5Ai1gKIYQQOczOTu3ldXi49PX8+WoP8F9/mYZiP87PP6vDrOPj1cctW8Lff6tLkr3yipolPdXs2WpPbUaBd2pPt7091Kv35K8J1ID/889NCcyKFVN7mgcMMJVp0kSdggZqgL1mjfk1Hp1L/f77auD9JPXo1k29ofFo0P7DD5nPe5s927Q9bpypjQoiCbqFEPmWb9XbABgUHScOFsx1qr+af924/XzzvZw8dJXFvzWnQs2sr7kphBBCFGbVq5snUvvjD7WXuHp1NQi/d0/df/kyLF+uBtQVKqhZwJOT1WPdusH69eaZxQcOVJf3SjVzJsa1tP/r2jXTfPBGjdTA+2lVqqTePPjwQzh4kHRHvo0ZY9qePt10UyAsDH78Ud0uXtw8IduTcHRU1/R2dVWf4LffNCQmPr783bvw++/qtqen+jsvyCToFkLkW741Uozb4YduW7EmlhEfE8+K9XUAcLSL55vV1alcu7x1KyWEEELkQ8OGqQF22UfuWZ86pa7jXaYMVK4MzzwD/fvDt9+qycFSvfKKmuwrvZ7YQYPUHudUU6aoy5P9V07N5/6vwECYOvXxq5i0aWMaXn/4MMZh3xMmmALwDz5Qk6g9LQcH6NxZvWhMjIZNmx5f9pdfMAblvXurIxIKMgm6hRD5lm8dU7aN8NBkK9bEMlYvPmycw/1C60O4eRbANTSEEEKIXKDRqNm9z59XA75Hs3vHxZlnJQc1gGzZEr78Up2/nZqpOz1DhpgPlR42zJScLFVOzufODo3GfG73jBlqr3jqUPNSpdT655SePU3j63/66fHlHk3s1qdPzj1/XiVBtxAi3/JtUMa4HX6i4KW7XLymsXF70FBXK9ZECCGEKBhsbOD55+Gff9TVT4YMUXt57ezU4dkTJkBIiJo47e+/1eReWVmW8913oX59dTs83Lz3G0w93VqtOtc6N3XrBj4+6va2bfDyy6ZjH34ITk4591xt2oCrq3rH4fff088Wf+mS+jsG8PY2/d4KMgm6hRD5VtmqpXB1VCdihZ/N+vIU+cHx47Bzl7pAZo0a0KR9LSvXSAghhChYatZUg+N79yA2Vg1IJ05Uk49lN6mXVquu251q3Di4eVPdvntXXV4LoHZtcM3l++g6nZpdPdVJNQ8tzzwDr72Ws89lZwfBwXcB9Xe6cWPaMj/8YNru0ydrNzXyOwm6hRD5lkarwbeiOunqYmQ5YqJirFyjnLNkiWn79dcLxx8kIYQQwhq0WnW5rafVqBG8+qq6HRNjGta9Z49p/nRuDi1/1Msvm89nB3WN7JxI6PZfbdpEG7f/O8RcUeC778zrVRhI0C2EyNd8ve8at4/vKxgZzBMT1eypoN4x7tvXuvURQgghRNbMmAFuD1OwLF0Ke/eaJ1ELDLROvezsYORI0+MqVaBfP8s8V4MGMXh4qHcZ/vhDnTOfKjQUjh1TtwMC1AzshYEE3UKIfM23pilhR/jhu9arSA5as/hfoqLU7e7dFTw8rFsfIYQQQmSNl5eawTzVsGHm2cyt1dMN6si5Jk3UOdxffJEzvfvpUefNq9/P4uPVpdZSFbYEaqkk6BZC5Gu+/qaM3uEnc2C9izxg8Temv4Kv9wizYk2EEEIIkV1DhoCfn7p98CDs3q1uV6kCJUtar15OTmpdYmOhdWvLPld6Wcz1eli5Ut22sVHXQS8sJOgWQuRrvk2rGbfDr/pbsSZZp9eryVUUJe2xM0cu8s9hdUHNKqUuENzVL5drJ4QQQoinYWMDn32Wdr81e7kflRt5Ypo3V3v9ATZsgPv31Yzl166p+9q3p1CN5JOgWwiRr3mWdDB+qIeHW7cuWZGcmEy7NnGULKn+QTpyxPz4knnnjduvvXgBjVYyqAkhhBD5TVAQ9O5tvs9a87mtwcYGevRQtx88gHXrCu/QcpCgWwhRAPj6qv/evAmRkdatS2Zmj9rF5q3qmuI7d0K9ejB0KNy5owbk366tAYCNLpkBw2tas6pCCCGEeAqzZ4Ozs+lxXunpzi29epm2v/0WfvlF3XZ1hY4drVIlq5GgWwiR76UG3WDKiJkVEREweLD58lyWdGzPGSZ93sRsn8GgJjOpWvkBg7vv5eZdtdu+S+ABSlTwzJ2KCSGEECLHlSkDixaBo6O6NFaVKtauUe4KDIRSpdTtzZvVIeag9oA7OlqvXtYgQbcQIt/zrXzduB2+dW+m5fV6+Phj8PeHr75Ss3keP27JGoI+Wc+rrzwgKUVdEPOdl3Ywc6bpDviduw4sXW+6Bf76IAulFBVCCCFErnn5ZTVx2YoVuTOXOi/RaqFnz7T7C9vQcpCgWwhRAPhWuW3cDg9LzLDsmSMXCfI/wciR6nrYqX5fm5zp85w9epHB3bbz1w8Hs13HT8fsYN9JtUveu8x5pn9Zn9Gj4eRJeKnTKbOy5T2v0KZX3Ww/hxBCCCHyHm0hjrgeHWIOULasOt+9sLHYf4EvvviCF198kdq1a1O/fv0snaMoCvPmzSMwMJBatWoxYMAALly4YKkqCiEKiJqNyhu3w0+5p1vGoDewYNw2ajcuzq4wNeO5RmNKH/7HyohMn2dAn7t8tbY5Hfv6cebwhSzX79Sh84yb1+jhcxpYuigWRxd1XFWZMvD9795s/+0odatEYGeTyNT/XUSrK8R/oYUQQghRIDRuDOXKmR6/9FLhvAlhsZecnJzMc889R+//pu3LwOLFi/nuu++YOHEiq1atwtHRkYEDB5KYmHHPlRCicHP1cOUZzysAhJ8vj2IwX4vr9pUo2jQ4wltTg4hPVMdzVyp5kZDNsVQvdwaAPcdrcvvqncc+x+WT19gZXhuAZL0do8bYZ6lu+hQDr/a7z4NkNch++8UdBHRIuwxYs861OXi6OvdjNPQZ0TRL1xZCCCGEyMu0Wujb17Tdr59162MtFgu6hw8fzoABA/D29s5SeUVRWL58OUOGDKF169ZUq1aNWbNmcevWLbZs2WKpagohCgjfSuq87nvx7lw9Y5rj/SDuAZ3bXjOufQ0wtMc2jh73oHkrFzq2UIN1g6Ljz1WP7+3+5dvTZo/X/FmKbdsyr9fCCTvYdawWAJVLXmTalxmP/LFztMv8okIIIYQQ+cSHH8KMGbB2LdQspAuz2Fi7AqmuXLlCZGQkAQEBxn0uLi7Url2bw4cP06FDh8eeq9fr0ev1uVHNJ5Zav7xeT5E90q55R81qsWz4V90++u9lSlUugWJQeKXrQfZEqD3HJd1v8u0Xl2jdU10oU6/X066rK7OXq+et+0ND7+HmbZr67+p17mme8913FfbuNTx2mNTZsEv872NTkL1owW3sncvK/xcrkvdswSVtawV6PTrjpl7NUpnjTyHtWhBJuxZc6bWtvT28/37qcWvUynKy+n84zwTdkQ8X1/Xw8DDb7+Hhwe3bt9M7xejUqVMZHs9LwsLCrF0FYQHSrtZXstRd4/aeHdcpWeMIKz+9xo9bOgHgZB/HZx8fpHjVEhw5csRY1qlUCu7O0dyNK8pf/1bnwP6D2NjqjMfDwsK4c/Ueu461BKBamdMYnMtw6pQThw5pmD79Eh07ph2WHhen5a0h5YzD2V/psAn3CsXNnltYj7xnCy5p29yjTUjA/+F2aGgoBguuASTtWjBJuxZc0rbmshV0z5kzh8WLF2dYZsOGDVSuXPmpKpVd3t7eODk55epzZpderycsLAw/Pz90Ol3mJ4h8Qdo171DuOcBMdfvyFQ8idiTwyfdqwK3RGFixIIzO/Z9N99xnG+/lp7+bcjeuKHHXbAjqUtusbb/8dbex7AsdrxDYvRJt26qPv1pYjBFveeDs5mwsExsLHTtqCT2urg1SvvRdPlnaCJdiLhZ45SI75D1bcEnbWkFcnHGzVq1apjUQc5C0a8Ek7VpwFba2jY+Pz1IHcLaC7ldffZVu3bplWKbco+npssHT0xOAqKgovLy8jPujoqKoVq1ahufqdLp806j5qa4i66Rdra9mg0poNXoMio6/9lbjxy1uxmOz3ttOt9eCH3tupw7w09/q9sa1MbR83tSWOp2OXx4ZWt6zX1l8A3R0bnOd3zeX4lqkG598GMLEL9Trx8VBly6wc6davmhRWPOHO+6eOfVKRU6Q92zBJW2bi3Tmn5VY8Pcu7VowSbsWXIWlbbP6GrOVSK1YsWJUrlw5wx87uydLAlS2bFk8PT3Zs2ePcV9sbCxHjx7F398/gzOFEAIcXRypUvoSADeiPUlKVj+LXuu8nfc+ynhByOd6VUerUefk/LHV/MbhjQu32BGuJkLzKXOOmo2rADBrRgI2OnVt71nfNOTqmevEx8TTKeikMcGauzts3gzyESaEEEIIUXhZLHv5tWvXiIiI4Nq1a+j1eiIiIoiIiCDukaFIzz33HJs3bwZAo9HQr18/vvjiC/7++29OnjzJqFGj8PLyonXr1paqphCiAPGtnmT2uGVLhc9XBaDRajI8z6N0MQJqhgNw4kplzhy5aDy2ZnUiiqJ+VPZod8l4LZ96lRjaQx12npDkxMg3ztOlRQRbD/oA4OZm4K+/oF69nHltQgghhBAif7JYIrX58+ezZs0a4+OuXbsCsHz5cho1agTA+fPnuX//vrHM66+/TkJCAuPHjycmJoZ69eqxZMkS7O2zth6uEKJw8w3w4deHKwz6+MDq1Rps7bP2MdexTTQ71bib9WvvMsyvLAC//FneWKbnwBpm50z4tBbf/RFNdFxRfvz7kZUXHGPYtOoqDRpUf4pXI4QQQgghCgKLBd0zZ85k5syZGZY5efKk2WONRsPbb7/N22+/balqCSEKsFdfha+/Bjc3+O03dT51VnXs7c0Hn6rbf+yqzTD03Lljw/bt6r4qVaBWIy+zc4qVKsr4t7YxYqZp+HoRh/v8+fNFGrX1e9qXI4QQQgghCgCLDS8XQojcVr48XL4MYWFqkJwdNeqXpvzDTu1t2+D+fQgJccdgUIeT9+gBmnRGqQ8d3wTvMucBcLaPZeOq8wR0kIBbCCGEEEKoJOgWQhQoGg1on+CTTaOBjh3V7eRk2LIF/tlsWoqwZ8/0z7NztGPTJlsmDglh7z/XCexU6wlqLYQQQgghCioJuoUQ4qHUoBtg2dIU9h9Ux6dXLHsvwwzkFWqWZcLnwfgGVLVwDYUQQgghRH4jQbcQQjwUHAxOjikA/LHBHr1BTXvRo+XhdIeWCyGEEEIIkRkJuoUQ4iEHB2hT72Ca/T36eKVTWgghhBBCiMxJ0C2EEI/o2M58re9nPK/QoJUs/SWEEEIIIZ6MBN1CCPGI9r3M52V3b3MajVbGlgshhBBCiCcjQbcQQjyidOWS1K14xPj4+Zeysdi3EEIIIYQQ/yFBtxBC/MeHHzzA2T6Wjo130KhNTWtXRwghhBBC5GM21q6AEELkNc8PakzHfkmEHXNCq5N7k0IIIYQQ4snJt0khhEiHzlZn7SoIIYQQQogCQIJuIYQQQgghhBDCQiToFkIIIYQQQgghLCRfz+k2GAwAJCQkWLkmmdPr9QDEx8ej08mw1YJC2rXgkrYtmKRdCy5pWyt48AB8fEzbmpxfXlHatWCSdi24ClvbpsahqXHp42gURVFyo0KWEBUVxYULF6xdDSGEEEIIIYQQhVSFChXw8PB47PF8HXSnpKRw79497O3t0WplpLwQQgghhBBCiNxhMBhITEzEzc0NG5vHDyLP10G3EEIIIYQQQgiRl0n3sBBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkF3Lvj+++9p2bIlfn5+9OzZk9DQUGtXSWTTokWL6N69O/7+/jRp0oShQ4dy7tw5szKJiYlMmjSJRo0a4e/vz1tvvcXt27etVGPxJL766it8fHyYNm2acZ+0a/508+ZNRo4cSaNGjahVqxadOnUiLCzMeFxRFObNm0dgYCC1atViwIABsgRlPqDX65k7dy4tW7akVq1atG7dmoULF/JoTlhp27xv//79vPHGGwQGBuLj48OWLVvMjmelDe/evct7771H3bp1qV+/PmPGjCEuLi4XX4VIT0Ztm5yczOzZs+nUqRN16tQhMDCQUaNGcfPmTbNrSNvmPZm9Zx81fvx4fHx8+Pbbb832F/Z2laDbwjZs2MCMGTN48803WbNmDdWqVWPgwIFERUVZu2oiG/bt28fLL7/MqlWrWLp0KSkpKQwcOJD4+HhjmenTp7N161bmzp3Ld999x61btxg2bJgVay2yIzQ0lB9//BEfHx+z/dKu+c+9e/fo3bs3tra2LF68mPXr1zN69Gjc3NyMZRYvXsx3333HxIkTWbVqFY6OjgwcOJDExEQr1lxkZvHixfzwww+MHz+eDRs2MHLkSJYsWcJ3331nVkbaNm+Lj4/Hx8eHCRMmpHs8K204cuRIzpw5w9KlS/nyyy85cOAA48ePz62XIB4jo7Z98OABx48fZ8iQIfz6668sWLCA8+fPM2TIELNy0rZ5T2bv2VSbN2/m6NGjeHl5pTlW6NtVERbVo0cPZdKkScbHer1eCQwMVBYtWmTFWomnFRUVpXh7eyv79u1TFEVRYmJilJo1ayobN240ljlz5ozi7e2tHD582Eq1FFkVGxurtG3bVtm1a5fSp08fZerUqYqiSLvmV7Nnz1Z69+792OMGg0Fp2rSpsmTJEuO+mJgYxdfXV/njjz9yo4riCQ0aNEj53//+Z7Zv2LBhynvvvacoirRtfuTt7a1s3rzZ+DgrbZj6ORwaGmoss23bNsXHx0e5ceNG7lVeZOi/bZueo0ePKt7e3srVq1cVRZG2zQ8e1643btxQmjVrppw6dUpp0aKFsnTpUuMxaVdFkZ5uC0pKSuLYsWMEBAQY92m1WgICAjh8+LAVayae1v379wGMPWfh4eEkJyebtXXlypUpXbo0R44csUYVRTZMnjyZoKAgs/YDadf86p9//sHX15fhw4fTpEkTunbtyqpVq4zHr1y5QmRkpFm7uri4ULt2bflszuP8/f3Zu3cv58+fB+DEiRMcPHiQ5s2bA9K2BUFW2vDw4cO4urri5+dnLBMQEIBWq5UpfPlMbGwsGo0GV1dXQNo2vzIYDLz//vsMHDiQqlWrpjku7Qo21q5AQRYdHY1er8fDw8Nsv4eHR5r5wCL/MBgMTJ8+nbp16+Lt7Q3A7du3sbW1Nf7RSOXh4UFkZKQ1qimyaP369Rw/fpzVq1enOSbtmj9dvnyZH374gVdeeYU33niDsLAwpk6diq2tLd26dTO2XXqfzTJfP28bNGgQsbGxtGvXDp1Oh16vZ8SIEXTu3BlA2rYAyEob3r59m2LFipkdt7Gxwc3NTT6b85HExETmzJlDhw4dKFKkCCBtm18tXrwYGxsb+vXrl+5xaVcJuoXItkmTJnH69GlWrlxp7aqIp3T9+nWmTZvGN998g729vbWrI3KIoij4+vry7rvvAlCjRg1Onz7Njz/+SLdu3axcO/E0Nm7cyLp16/j444+pUqUKERERzJgxAy8vL2lbIfKR5ORk3n77bRRFYdKkSdaujngK4eHhLF++nF9//RWNRmPt6uRZMrzcgooWLYpOp0uTNC0qKorixYtbqVbiaUyePJmQkBCWLVtGyZIljfuLFy9OcnIyMTExZuWjoqLw9PTM7WqKLDp27BhRUVE8//zz1KhRgxo1arBv3z6+++47atSoIe2aT3l6elK5cmWzfZUqVeLatWvG44B8NudDs2bNYtCgQXTo0AEfHx+6du1K//79WbRoESBtWxBkpQ2LFy/OnTt3zI6npKRw7949+WzOB5KTk3nnnXe4du0a33zzjbGXG6Rt86MDBw4QFRVFixYtjN+lrl69ykcffUTLli0BaVeQoNui7OzsqFmzJnv27DHuMxgM7NmzB39/fyvWTGSXoihMnjyZzZs3s2zZMsqVK2d23NfXF1tbW7O2PnfuHNeuXaNOnTq5XFuRVY0bN2bdunWsXbvW+OPr60unTp2M29Ku+U/dunWNc35TXbhwgTJlygBQtmxZPD09zdo1NjaWo0ePymdzHvfgwYM0PSk6nc64ZJi0bf6XlTb09/cnJiaG8PBwY5m9e/diMBioVatWrtdZZF1qwH3x4kW+/fZbihYtanZc2jb/6dKlC7///rvZdykvLy8GDhzIkiVLAGlXkOHlFvfKK68wevRofH19qVWrFsuWLSMhIYHnn3/e2lUT2TBp0iT++OMPPv/8c5ydnY3zT1xcXHBwcMDFxYXu3bszc+ZM3NzcKFKkCFOnTsXf31+CszysSJEixnn5qZycnHB3dzful3bNf/r370/v3r358ssvadeuHaGhoaxatYrJkycDoNFo6NevH1988QXly5enbNmyzJs3Dy8vL1q3bm3l2ouMtGjRgi+//JLSpUsbh5cvXbqU7t27A9K2+UVcXByXLl0yPr5y5QoRERG4ublRunTpTNuwcuXKNGvWjHHjxjFp0iSSk5OZMmUKHTp0oESJEtZ6WYKM29bT05Phw4dz/PhxFi1ahF6vN36fcnNzw87OTto2j8rsPfvfmye2trYUL16cSpUqAfKeBdAoqbeHhcWsWLGCr7/+msjISKpXr87YsWOpXbu2taslsuG/azenmjFjhvEGSmJiIjNnzmT9+vUkJSURGBjIhAkTCs2wmYKib9++VKtWjQ8//BCQds2vtm7dyieffMKFCxcoW7Ysr7zyCi+88ILxuKIozJ8/n1WrVhETE0O9evWYMGECFStWtGKtRWZiY2OZN28eW7ZsISoqCi8vLzp06MCbb76JnZ0dIG2bH/z777/pJlzq1q0bM2fOzFIb3r17lylTpvDPP/+g1Wpp27YtY8eOxdnZOTdfiviPjNp22LBhtGrVKt3zli9fTqNGjQBp27wos/fsf7Vs2ZJ+/foxYMAA477C3q4SdAshhBBCCCGEEBYic7qFEEIIIYQQQggLkaBbCCGEEEIIIYSwEAm6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJuoUQQgghhBBCCAuRoFsIIYQQQgghhLAQCbqFEEIIIYQQQggLkaBbCCGEEEIIIYSwEAm6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJuoUQQgghhBBCCAv5P9yxmyU+TRQVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAfFCAYAAACMBK9jAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwU6R8H8M+yhCChIGKgYoEBiKBid3f9PDvvvNPzzDu79Ww989Sz6+zuxjrAAjEQExRBJKRr4/n9MTLDugsssMsS3/frtS9mZ56ZeXYfdne+85SIMcZACCGEEEIIIYQQjdPTdQYIIYQQQgghhJDCioJuQgghhBBCCCFESyjoJoQQQgghhBBCtISCbkIIIYQQQgghREso6CaEEEIIIYQQQrSEgm5CCCGEEEIIIURLKOgmhBBCCCGEEEK0hIJuQgghhBBCCCFESyjoJoQQQgghhBBCtISCbkIIIYTwvL294eDgAG9vb11nhRBCCCkU9HWdAUIIIaSgOHHiBGbMmJHh9sOHD8PFxSXvMlQAJCcnY+HChfDz80NoaCjkcjkqVKiAPn36YODAgTAwMFBIHxsbi5UrV+Lq1atITk6Gk5MTpk+fjtq1a2d4jg8fPqBLly5ITU3FsWPH4OTkpO2XRQghhKiNgm5CCCEkm8aPHw9bW1ul9RUrVtRBbvK35ORkvHnzBs2bN0f58uWhp6cHHx8fLF26FH5+fli9ejWfVi6XY/To0QgICMCoUaNQsmRJ/PvvvxgyZAhOnDgBOzs7ledYsmQJ9PX1kZqamkevihBCCFEfBd2EEEJINjVv3pxqU9VUokQJHDlyRGHdgAEDYGZmhv3792P69OmwtrYGAFy6dAk+Pj5Yt24dOnbsCADo1KkTOnTogA0bNigE6Gnu3LmDu3fv4scff8TmzZu1/4IIIYSQbKI+3YQQQoiGrV+/HjVq1ICnp6fC+jlz5sDR0REvX74EAKSmpmLdunXo3bs33Nzc4OLigoEDB8LLy0thv+DgYDg4OGDHjh04cOAA2rRpgzp16mDkyJEIDQ0FYwybNm1C8+bN4ezsjDFjxiA6OlrhGK1bt8bPP/+Mu3fvokePHnByckLnzp1x5coVtV7TkydPMGrUKLi5uaFOnToYPHgwHj16lOP3qHz58gC45uRpLl++jFKlSqF9+/b8OktLS3Tq1AnXr19XqsmWSCT4888/MXToUGplQAghJN+ioJsQQgjJpvj4eERFRSk8vn79ym8fM2YMatasiVmzZiE+Ph4AVyN75MgRjB07FjVq1OCPc/ToUTRo0AC///47xo0bh6ioKPz444/w9/dXOu/Zs2f55tYjRozA/fv3MXHiRKxduxZ37tzBTz/9hH79+uHmzZtYvny50v6BgYGYNGkSmjdvjilTpkAsFmPChAm4d+9epq/X09MTgwYNQkJCAsaNG4dJkyYhNjYWw4YNg5+fn1rvWWpqKqKiohAaGoqrV69i586dKF++PCpVqsSn8ff3R61ataCnp3h54uTkhKSkJLx//15h/Z49exAbG4uxY8eqlQdCCCFEF6h5OSGEEJJNw4cPV1pnaGiIp0+fAgAMDAywfPly9O7dG8uWLcPUqVMxa9YsODo6YvTo0fw+FhYWuHHjBgwNDfl1/fr1Q6dOnbBv3z4sWbJE4RxhYWG4cuUKzMzMAHB9oLdu3Yrk5GQcP34c+vrcz/rXr19x9uxZLFiwQOHYgYGB2LBhA1+T3LdvX3Ts2BGrVq1CkyZNVL5Wxhjmz58Pd3d3bN++HSKRCADQv39/dOnSBWvXrsXOnTuzfM+uXr2KyZMn888dHR35vthpwsPDUa9ePaV9S5cuDQD48uULHBwc+LR///03pk2bBlNT0yzPTwghhOgKBd2EEEJINs2dOxeVK1dWWPd97ay9vT3Gjx+P1atXIyAgAF+/fsXOnTsVgkyxWAyxWAyAC6BjY2Mhl8vh6OiIFy9eKJ23Y8eOfMANAM7OzgCA7t27KxzX2dkZ586dQ1hYGCpUqMCvL126NNq1a8c/NzU1Rc+ePbFt2zaEh4fzfavT8/f3R2BgIMaMGaNQmw8AjRo1wunTpyGXy5Ve//fc3d2xa9cuxMbGwtPTEwEBAUhKSlJIk5ycrHCTIE3aupSUFH7dqlWrUKFCBfzvf//L9LyEEEKIrlHQTQghhGSTs7OzWgOpjRo1CufPn4efnx8mT56MatWqKaU5efIkdu7ciffv30MikfDrVY2OXrZsWYXnaQF4RutjYmIUgu5KlSrxNdVp0kYE//Tpk8qgOzAwEAAwbdq0jF4m4uLiYGFhkeF2AChVqhRKlSoFgLt5sGXLFowYMQJXrlzhz1usWDGVI5CnrTMyMgIA+Pr64vTp09i9e3eWwT4hhBCiaxR0E0IIIVry8eNHBAUFAQBevXqltP306dOYPn062rZti1GjRsHKygpisRhbt27Fx48fldKn1Yp/L6PAkzGWi9wrHmPq1KmoWbOmyjQmJibZPm6HDh3w119/4fr16+jfvz8AwNraGuHh4Uppv3z5AkBoZr5y5UrUq1cPtra2CA4OBgC+Fj48PBwhISEoV65ctvNECCGEaAMF3YQQQogWyOVyTJ8+Haamphg2bBi2bNmCDh06KIzMffnyZVSoUAEbN25UqIFev369VvIUFBQExpjCudJqstNGE/9eWk25qakpGjdurLG8pDUVj4uL49fVqFEDjx49Umqu7ufnB2NjY75Jf2hoKD59+oQ2bdooHXfMmDEwMzPDw4cPNZZXQgghJDco6CaEEEK0YNeuXfDx8cHmzZvRsmVLeHt7Y/78+ahXrx4sLS0BCDXX6QPhJ0+ewNfXVys1tV++fMHVq1f5wD8+Ph6nTp1CzZo1VTYtB7gBzypWrIidO3eia9euKF68uML2qKgo/vWoEhUVhZIlSyo1az969Ch//DQdO3bE5cuXceXKFX6e7qioKFy6dAmtWrXi+3YvXLgQycnJCsfz8vLCvn37MG3aNFSpUkWdt4MQQgjJExR0E0IIIdl0+/ZtvHv3Tmm9q6srKlSogLdv3/Lzb7du3RoAsGzZMvTs2RMLFizAunXrAAAtW7bElStX8Ouvv6Jly5YIDg7GoUOHUK1aNSQmJmo833Z2dpg1axaePn0KKysrHD9+HJGRkVi6dGmG++jp6WHx4sX46aef0LVrV/Tu3Rs2NjYICwuDt7c3TE1NsWXLlgz3P3PmDA4dOoS2bduiQoUKSEhIwN27d3Hv3j20atUKjRo14tN26NABLi4umDFjBt68eYOSJUvi4MGDkMlk+O233/h0TZs2VTpP2nzf9evXV6u/PSGEEJJXKOgmhBBCsimj5t9Lly5FuXLlMG3aNJQsWRIzZ87kt9nZ2WHy5Mn4888/ceHCBXTu3Bm9e/dGREQEDh8+jLt376JatWpYuXIlLl26hPv372s833Z2dpgzZw5WrFiB9+/fw9bWFn/99ReaNWuW6X7u7u44fPgw/v77b+zfvx+JiYmwtraGs7Mzfvjhh0z3dXNzg4+PD86fP4+IiAjo6+ujcuXKmDFjBgYPHqyQViwW459//sGKFSuwb98+pKSkwMnJCUuXLqXaa0IIIQWWiGlilBVCCCGE5GutW7dG9erVsXXrVl1nhRBCCClSaJ4NQgghhBBCCCFESyjoJoQQQgghhBBCtISCbkIIIYQQQgghREuoTzchhBBCCCGEEKIlVNNNCCGEEEIIIYRoSYGeMkwqlSImJgZGRkbQ06P7B4QQQgghhBBC8oZcLkdKSgosLCygr59xaF2gg+6YmBgEBgbqOhuEEEIIIYQQQoooOzs7WFlZZbi9QAfdRkZGALgXaWxsrOPcZE4mk+HVq1ewt7eHWCzWdXaIhlC5Fl5UtoUTlWvhRWWrA0lJQJMm3PK9e4AWrsWoXAsnKtfCq6iVbVJSEgIDA/m4NCMFOuhOa1JubGwMExMTHecmczKZDABgYmJSJP4Biwoq18KLyrZwonItvKhsdYAxICCAWy5WDNDCtRiVa+FE5Vp4FdWyzaqrM3WEJoQQQgghhBBCtISCbkIIIYQQQgghREso6CaEEJJvPPd8g4W/euBjQIius0IIIYQQohEUdBNCCMkX5DI5uvUyxLy/W6JpMzliI2N1nSVCCCGEkFyjoJsQQki+4HXpOd6HVQQAfAi3xcRhT3ScI0IIIYSQ3KOgmxBCSL5w6rTi813nm+H0Dm/dZIYQQgghREMo6CaEEKJzjAEnbzoprR89pQrCP4brIEeEEEIIIZpBQTchhBCde/4cePOGW27ZkqFbY66G+0uMNX4e9BZMznSYO0IIIYSQnKOgmxBCiM6dOiUs9+olwrYDVVDKPAIAcPJOQ+xfe083GSOEEEIIySUKugkhhOjcyZNCTXbPnoCNnTW2LH/Nrxs3pw4+fpDrIGeEEEIIIblDQTchhBCd+vAyGI8fiwAArk6xqMgNYI4+vzTCkI53AQCxiWYYMVIPcoq7CSGEEFLAUNBNCCFEp07te8sv92rxSGHb+gONYGvLLV+/Dixblpc5K9jkMjnCAmkQOkIIIUTXKOgmhBCiUyfPm/PLPQfYKmwrYSnGrl3C81mzgHkz42hgtSwwOUP7+r4oU9kaP3a/A2mqVNdZIoQQQoosCroJIYToTGRIFG77OQMAqpUNRO2G1ZTStG0LLFokPF+41AzjB9yGXEZtzTPid+8Vrvu4AgB2nG2GPq0fITkhWce5IoQQQoomCroJIYTozNn9LyBnYgBAr3aBEOmJVKabPRv4a1Uq/3zjkRYY2tkTkhRJnuSzoDl7JFTh+Zl77ujUxB+xkbE6yhEhhBBSdFHQTQghRGdOnTXgl3v2s8o07cQphtiz8i7EelxT6QNXmqBXSx8kxSVpNY+qhLz9jPCPEXl+XnWdvVqKXzYxSgAAeDypi9aNQhH+hZrmE0IIIXmJgm5CCCE6kRCTgMveXNNymxJf0LBj7Sz3Gfp7U5zY9ghGBlxT6fNeDdCh8SvEhMdoNa/p3Tvnh4r2pVDLEXjtE5hn51VX6Lsw3A9wBAA4Vw7AzTOBsDKLBAA8eu2AZs1F+PBB/eN5XniKE/94UT96QgghJIco6CaEEKITlw8/RbLEGADQo+VL6InV+0nqPtIdlw69hJkx11T6zrM6mDfBV1vZVLJ1fThkcn1ExJbCvCnv8uy86jp/7BO/3K1NKBq0r43bV6NRvgzXIiAgAGjSBHjzJutj/Xf+KZp1q4k+PzfExrm3tZVlQgghpFDTatAdHR2NKVOmwNXVFfXq1cPMmTORkJCQ6T5DhgyBg4ODwmPu3LnazCYhhBAdOHVSGFG7V1/jbO3bsrcLbp77BAMx18/74u2KGs1bRpic4eoDoUb+kEdLvPBWI3rNQ2fvufLL3QfYAQBquVfFPS9jVK/OrQ8OBoYOBVgmlddMzvDHVDlkcn0AwIrNVagPPSGEEJIDWg26f//9d7x58wa7du3Cli1b8PDhQ7UC6H79+uHu3bv8Y+rUqdrMJiGEkDwmSWU4e5drWm5mHItWvZyzfQy31jXhVj0AAPDqU2VEhkRpNI+qPHsQis/RZfjnjOlh4cwvWj+vupKSgKtXueUyZYB6Le34bZUqAXfvgg+8PT2BA+sfZnisM7vu478XdfjnwVEVcOxQ5jfOCSGEEKJMX1sHfvv2Le7cuYNjx47ByckJADB79myMHj0aU6dOhY2NTYb7FitWDNbW1mqfSyaTQSaT5TrP2pSWv/yeT5I9VK6FF5Wtdt30AKLjufm5O7eNhr5R+Ry91w1dI+H1klu+d+UVugypn2n63Jbr5TtllNYdudkQM/8LQG135enO8tqVK0BSEjcafOfOcjDGkP6lWlkBa1cno0v34gCAaQvLo9ugGJiWNFU4jjRViunzS+F7azZa4H+DZBCpHmRep+gzqwMyGcT8ogzQwntP5Vo4UbkWXkWtbNV9nVoLun18fGBubs4H3ADQuHFj6Onpwc/PD+3atctw37Nnz+LMmTOwtrZGq1atMHbsWBgbZ9z08NWrVxrNuzY9ffpU11kgWkDlWnhR2WrH9u0VAJQGALg0lsLX1zdHx6lSPZpfvnydobyTesfJabmePFkNgAUA4IcOXjh8uSEY08PcqZ8xZ118jo6pSXv2VATA3bSuXfsdfH2VB5izKQd0rJ+MSw+aICSqLOaOO4ehf5RVSHP13494GdwTANCwhg++MnsEBBTHw4ci7NnzGi4u+bfGmz6zeUcvKQl1vy37+flBnsm1Wm5RuRZOVK6FF5WtIq0F3REREbC0tFQ8mb4+LCwsEB4enuF+Xbt2Rbly5VC6dGkEBARg1apVeP/+PTZu3JjhPvb29jAxMdFY3rVBJpPh6dOncHJyglgsznoHUiBQuRZeVLbaI5MB9+5xvZsMDRl+/rkSzM0r5ehYpUo4YPwCbtn/U0O4uMizOHfOyzUlBfDx4fJdrhzDP//Wws0q4fgSY43T91pgftIrODWqmqPXoQlymRxet6IBAMWKyfDTT5WR0U/j2i2BcHZPQarUCFtPtMW4GaGo4sj1i0+MTUT33eX4tMuXixAYbYxhw7jn5845YPjwzN9nXaDPrA6kG6fH2dkZKF5c46egci2cqFwLr6JWtomJiWpVAGc76F61ahW2bduWaZoLFy5k97C8H374gV92cHCAtbU1hg8fjg8fPqBiRdUD5YjF4gJTqAUpr0R9VK6FF5Wt5t29LUVICNc+uX17EUqWzPn7W6mqKcqXBz59Ah48EAEQQ53iykm5entzfaYBoF07EcwtzTHtZw9MWdESALB4bXUca6q7dtc+NwMQGlULANDG5THMzDJuau/gWhWTBt/E8t2tkCIphqnjvuDkncoAgE0LHyEkqiUAoEdTbzTv7o6GqcCMGUBICHD6NBD4PARVnSto/TXlBH1m81C691ksFkOtD1+OT0XlWhhRuRZeRaVs1X2N2R5IbeTIkbhw4UKmjwoVKqBUqVKIilIc1EYqlSImJiZb/bXr1OEGcQkKCspuVgkhhORDhzf9xy8P+F9iro/XqBH3Nz4eePYs14fL0NV/7/HL7VpxNXy/zG4MGxtuCPDjx0V48kR758/K2WNh/HL3LklZpp+12g1lSnD7nLrrjmtHHiMyEli23R0AoCeSYckqKwCAoSEwbmQwAIAxEdYtyX9TpRFCCCH5VbaDbktLS1StWjXTh6GhIerWrYvY2Fg8S3cF5OXlBblczjVBUpO/vz8AZCtQJ4QQkj9JU6U4epWrjTU2TET3brlvppwWdAOA5z3tNXu+eqskv9y2BXezwMTMENOnC7XbCxZo7fRZOnNV6JfddYB9lunNLM2xbKbQJG7iH2ZYuECOmHiuX+6IPq9QK93gcD+PLQ4TI+5mw85Tboj+otxfnBBCCCHKtDZlWNWqVdGsWTPMmTMHfn5+ePToERYtWoQuXbrwI5eHhYWhY8eO8PPzAwB8+PABmzZtwrNnzxAcHIzr169j2rRpqF+/PmrUqKGtrBJCCMkjN44/QUQsNyp21yZPlEbNzolGrl/5Zc9z/2WSMuciQ6Lw6A33O+RcOQA2dsKN4J9/Bsp+i3dPngR8H+X9XNYfA0Lg+47Ln1v1FyhXVXmUdVWGTG6CBg7czfHnH6pj/QbusqBYMWDB2poKaS3LlsTwbtwUYwkppti2wkdT2SeEEEIKNa3O071q1SpUqVIFw4YNw+jRo+Hq6oqFCxfy2yUSCd6/f4+kb53kDAwM4OnpiVGjRqFTp05Yvnw52rdvjy1btmgzm4QQQvLIoQNCc/L+/TXT/9m1gQkM9VMAAF5+5bJInTM3TgeAMe4ns12TUIVtxsbA9OnC8/kTH2slD5k5d/A1v9y9nfrzhuuJ9bB+nfL6iROB8uWV10+YIYytsn63PSQpeX+DgRBCCClotDZ6OQCUKFECq1evznC7ra0tAgIC+Odly5bF/v37tZklQgghOpKSmIITN7nuRWbGseg0oI5GjmtkYgTXak/h9dIJrz5VQWRIFKzKWWa9YzZcvSwEl+06KdfOj/5RguULIhESVQan77pj4sBbWLmrMQyMDDSaj4ycuSgMU97tf+rVcqdx7+CIoR3vYu+lpgCAkiXlmDZN9T15e9fK6NbYG2f/c0dwZDkc2/ofBoxvnPOME0IIIUWAVmu6CSGEkDSXDz1BTCI3x3XPFn4wNtPcnL6NXCP5Za9rbzV2XABgcoYr/1UBABjqp6BZ11pKaYqZGGDRH0Jt87qDLdCuwXN8+ZDxFJmaEv81HjceczczbK1C4NLcIdvHWLapOsqVSQUALF+uhxIlMk47eYoRv7xmYwkwOcv2+QghhJCihIJuQggheeLQQSm/3H+AUSYps69RE0N+2fNOQiYps+/NkyAEhdsCAJo6PYeJuerJr0dOb4ati27DQMwFr7f8XODmKsGDqy80mp/vXT32DKlS7v3s1vINRHrZb7ZftooN/J4ZIiAA+OmnzNO26FkHdatyg5w+fF0L/114mu3zEUIIIUUJBd2EEEK0LjE2EWfucLWxJYt/Rdv/aaZpeZqGbez4Zc9H5ho99tVTwpSV7VrEZpp29OzmuHUmAGVLfgYABEeWQ7MuVbBr+R2N5im9M6eFEdu79cx56wErK8A+60HPIdITYfxooWXB+ZNRmaQmhBBCCAXdhBBCtO78gSdISOH6Qvdp8wyGxoZZ7JE9FRzKobwlN8DZff/qkElkGjv21RtCrXz77qWzTN+osxMePRShSW1uZo4USTGMnN4Mkwd5aLwpdnw8cMaTmzOtuHEKWvVy0ujxM9Kud1V+2dtHszc5CCGEkMKGgm5CCCFad+iEFb/cf3BxrZyjkXMgACA+2QzPvDTTr1uaKsWNR9zUWaXMI+DSXL3pK8tWscGNBzXw6/9u8ev++rclrhx6lOW+u1fcRSnzSPw+xCPLtBs3AlFRXHPyXn2MUKx4MbXyl1vlq5VFeWuutvv+K2fINHePgxBCCCl0KOgmhJACysfjJU5u84JcJs86sQ7FxgLn73Dtlm1KJaFlT802LU/TqEEKv+x587NGjvngoRixSdzgb22aREBPrP7PpqGxITYeaYG1M27w66Ytrwt5JsUV5B+MMbPdEBlnhdX7W+LKwYyD9Lg4YOVKbllPD5g1S+2saYR7M+5GSnyCPvz98/bchBBCSEFCQTchhBRAB9f/B7fW9ug9uiG2Lr6r6+xk6vRpIOVbPPy//sYQG4i1cp5GLYTadE8vzfy8Xb0mDErWro96tdzf+21RS7i5clOOPfET4+DBjNP+8etHJEuEftkTp5XIcC7sDasiEfWtO/WAAUCNnGUvx9zdhWVv77w9NyGEEFKQUNBNCCEFzJmd3hgyqQEY477CD1x01XGOMnfokLDcv7/2zuPa0h6GBtwI6Z5vNDN39NWrwnK7djk7hp5YD8tXCPN1z54t3IRIz+OEL47ebKSwzv9jVfy94D+ltLGRsVi1mit/PT2GuXNzlrfcaNhQWM5p0B3w6B3auT3ClMGa7+9OCCGE5BcUdBNCSAFy/ehj9PulDmRyfX6d54PifI1nfhMZloQrV7hgqkIFoFGjLHbIBSMTI7i6ce/L69d6iIzMYocsxMUBXl7csr09ULFizo/Vpg3Qvj23HBgIbPlbqrBdKgUmzBOqqsf2FfqCz1vngvCPEQrpNyx4jK8JJQEAg9r/p9ao45rm5gaIxVzZet+Nyfb+SfEp6NVTgmuP3bDmQEs8uKbdqdUIIYQQXaGgmxBCCgivS8/QY4g9UiTcYFklzeIBAHK5CJcv6zJnQPSXGKyY4oGZoxQfv/S8CqmUa6L9Q89I6Gn5Vyd9UJ8WMOfUjRPPIf0WG7drm/uRwpYtE5YXzYtFTLgQqG7fDvg948rVzTkWGw41w/Au3DRjMYkWmDNBCEhjwmOweifXL16sJ8WcJeVznbecKF4ccKz0BgDw7KUp4r/GZ2v/2XMN4R/swD9/eC8ik9SEEEJIwUVBNyGEFABP7gSgU19bftqtHk28cPCwMFL1hQu6yhlnWO+XmLamJZbuVHwc8+rOp+nf84vW85G+ybOnZ+6OdWCPMCd3xwZZjzqelbp1gYHtuXbYkXGWWDXrMQDg61euyXmadX+bQ0+sh6UbHGBaLA4A8M+pZvD15bavX+DD13IP7uiF6nXtcp23nGpYJwQAIGdiPLz5Ru39PDyAv9aKFNb5PhGpTkwIIYQUcBR0E0JIPvfq8Xu072aJ6IQSAIA2dR/j0GUXtGqjDzMzrnnvpfNJGp2bOjtun36CM/fcM03TpLYfXFtqf6SvRg2FfsGe197n+DhRoV9x+g7XV97aPBwd+tfNdd4AYNGqsjAQpwIA1uxtgNB3YZg3l/FN4QcOBJo04ZbLVC6NOVO4oJYxEcaP51oUrNntAiCtlruCRvKVU+7uwmWE991otfaJjQWGDwfYd124ff2tVKYnJL/buhWoXh3YuVPXOSGE5FcUdBNCSD6WFJeEDp308SXGGgDQqOZTnLpuj2LFi8HQEGjn5gsAiPhqjAfXX+Z5/hgDps0pwT9fMNYDN475KDzunvXD9fsOEOlpvyazQkURyluGAgDuPymV4xsRB7f4IVVqBAAY3PU5DIwMsthDPVWcKmJMX64KPjGlOIb/8BF//83l0cSEYflyxfQT5jigWjVu+c4doEuHWP7my9BOnqhap5JG8pVT7i3L8sveD9WbI3zSr18RFMQtN28OVC3DPXn6vgqkqdJM9iQk/0lNBSZPBt68AUaPppH8CSGq6WedhBR1Z3Z648njJPw6qw4sy5bUdXYIKVJO/xuEwC9cDXGdyi9x/mYFmJY05bd3bh+PEx7c8oWT4WjYMW/zd+oU4PWUC/xq2QVj5l/NoG+onSnB1NXIORDHPMoiPtkMvnf8UdK6ON75R+Ddq3i8fSMDEIeaG2rCxMwkw2PsOmjNLw8fU06j+Zu9sjZ2nYlFXJI5rjysx6+f8csT2Nq6KKQ1MgL++gvo1o17/p8vV7OtL5Zg9lLdBtwAUKNeFZgbxyA2yQJez+zAGCDK5N7K2V33sXN/AwCAqSnD7t0iTBsVgrefKyFZYoyAR29Qu1G1PMo9Ibn34AGQmMgty2TA0KGAjw9gkvHXCyGkCKKabpKpF95v0OvHepi7qSWaukch+HWorrNENIim6Mn/9p8VmmSvXauHkjYlFLZ36ledXz5/wyavsgWAG3F7xgzh+bL1tjoPuAGgUQNhPq56bWqiqnNFtPvBFT/PaY4Ve1phxZ7umPF7bIb7P733Co9e1wIAuFbzh3NTzQ4Nbl2hFKaOUuwjblf6I6bMd1CZvksXoON3N1OGdfZCFadcDKeuIXpiPTSoyfXlDv1aJtPfiPCPEfhxUmX++dpZ3qhcGajrLJSXr1eY9jJLiBbcvKn4/NUrYPp03eQlLzx9yn0frVih3EWEEJIxCrpJpvZsCYaccRfR/h+romkTGV775LyfJMk/Dq7/DyXNYtG7uRciQ/LpfFNFXHg4cOkSt1yhAtC8q3LwV65qGdSt6g8AePymJkLf5V3QsmsXEBDALTdtCnTtmmenzlTjVqWyTLN5lw3eZ/BVtntzCL88or92Bn+btLgBbEoIx1696BOMzYxVphWJgL9WJkJfLAHA1XLPWmKnlXzlhLtrHL/sfT1QZRomZ/hl8Bu+m0TXRvcxcio3DoBLveJ8Op/HEu1llBAt8PAQlg0Nub8bNgDXr+skO1o3YQJw+TIwbRp3c4ECb0LUQ0E3yZBcDhw476ywLijcFk1bmcLHI+/7jhLNWrCiDGISLXDyTkPUq5sA39sBus4S+c7hw1xzRQAYNAgZTrfVuZUQaF86+ioPcgYkxiZi3uxk/vny5Zk3K85L7u1rY0SXO7Ap8QWu1fzRt6Unpg7zwJaFtzGy/0cAgEQiwpw5yvtKUiTYf642AMBQPwUDxjhpJY/FLYpjz6YPqFomCON/uIVeP2Y+EF0NRxNsmu+JStbBWDP9P1R21O0Aaum5Nxba0Xp7pqhMc+IfL5y4zQ0tb2UWiW0H7Pg+/i6NhWbyvi8stJhTQjQrJQW4d49brlgRWLlS2DZ8OBAdrYtcaU9EBHDrlvB8xQpg6VLd5YeQgoT6dJMM3boFfAq3BAA0dQtBbFQc/N474EuMNVp2NsS5Q0/QrHsdPn1UhAQ3jz3EjeupCA0zUnlMx5rJmLO+icYGJSI5E/g8GAGfqgjPv1RA43aJ2LbsHgZNaqLDnJH09u+TI+3e6ODBGafr3NMKf27nls9fNMCIadrP27q59xH6pSUAoGeXGDRunH+CJZGeCDvPNfv2rLTCtn5fZTh+UYqYGH0cOABMmcJN5ZXm4oHH+BLDBcDdmz6GVblG0JYOA+vhzUAAUK9v9ujZzTF6NgDYai1POeHeRmgy7u2jPO4HkzMsXGHJP9+8/BXKVBbe17JVSsPGOhlh4cXgG+SSZb9wQvKL+/eB5G/3Hlu1AsaNA86c4Wq5g4O5WuE9e3SbR006e5arkElv1izA3Jx77YSQjFFNdxG0ZpoH3Gs8w50zTzJNt3+/sPzr7+Xg4WmDxrX8AACxSRZo39ceGxc/w/TpQL16QKnS+ug7phH+PtYCJ+80VPlY9E9LTB91T5svj6jh8ol3/HJxo3gAQFKqCQZPboKJE6SQUAtPnXvt8x7e97mvaBfHBNSunXFa9/a1YGnKdRG4cr8WJCm5L8A3b7iRpTt2BA7ti0NKolCDGRkShWX/cJGqnkiGJXMjcn2+vGJuDvz4o9DvePo4xbmld+0VbgiOGEH3pdVRuqI1Ktt8AAA8fF1D6fvj4v6H8HvP9Vdv4PAMfX9u+P0h4OLKjXweGSlCcLB280uIpqRvWt6yJdcaadcuwOLbPci9e4ETJ3SRM+04dUpYHjhQWP7tt8J1c6EwYAz44w/u+rywdnUoaCjoLmI+BoRgyoqWuB/giAEjrJGckKwyXVIScOwYt2xmBnTvDpS0KYEr/1VFxwYPAADJEmP8NscRy5cDjx5x88iqY82Blji5/VHWCYnWXLpiyC9fPvYOP3a/zT9ft14f7doBYTSekU4d+CeQXx7c6UGmacUGYnRsxPXrjksyx73zz3N1bsa4ppF37nB99wYMNUP5MvGYMtgDLx+8w5KpfohN4q4qR3a7h5oNqubqfHmtT59w2JX7dpPiv2q4duQxAK4P/bl73M2EsqWi0V5Dc3MXBe7Nub7aSSlGePZMcdvSlcL3zYzfE1ROHefiIiz7+mZ8HkmKBNePPsbRzZ44ehQKjzMHPyIxOikXr4KQ7Ek/iFrLltzfChW4Pt1pfv65cPyeJiQAV65wy2XKAPv2cbXcaUaOBI4f103eiLLz54FVq7jr827dgNu3s96HaBcF3UXM8TPm/PKnqHLYvkz1hJLnTsQi9tvgvn36CFNfFLcojtMeddC/jXJttbMzMPmXYJzf8wDBr0MR8jZM4bF6mtARaMTvrnj3TukQJA9IUiS4/ogbmbmUeQQadXLEtlPNsHVdBAy+VfLdugV07qzcjIzkDSZn2H+Ka/4vEskx4OcaWewBdOksLJ8/FZ2r8x86JPRTTBMZZ4U1B1qiZoMq+Ovf5gCAYgZJmL+6uooj5G+GhgwLpwg3JqbPLga5TI4DBwCplAsIh4wsAX1DqulWl3tjYRC49PMU3z3rh7vPuG5ItSq+QfcR9VXun76Jf2ZB98yf7qFtP1f0G9sI/fpB4dF7iB0mjC4BuYy+uIh6oqO5Kfnu38/+vsnJgKcnt2xnxz3SDB4M9O7NLUdEcM3MC7rLl4Wm9D16cLX6ixZxtdwAd70wYACXjuiWTKY4gn5SEjfQ6cOHussToaC7yDl22lTh+dK/7VXWdu/f7M8vD+6fqLDN0NgQ+y82xOpVMvz6K3DwIHcX98kTYPVmW3QeWh/lq5VF2So2Co9JS5rjf10/AwBiYkTo148bhITkLc87SYhL4m6+dGgYAD2xHiASYfT4Urh9Gyj3bUrix4+Bo4dUt4Qg2uV16Rnefub6+bap64NyVctkuU+HfjUhEnHBxgUv1xyfOyEmAX9Miuefr1gcg4Ht7sHIQPhfYIz76Zg42Bvlq5XN8bl0qf+4hqhTmRs88NHrWji62Ru7dwvbhw/XSbYKLPd048ClD7qXLhOWp/32mfu+UcHFWWiT7nNL9aCO0lQpdp50VrmN3/edIy7+Sy2piHpmzwYmTwY6dADi47NOn563txCEptVypxGJgC1bAGuuAQgOH+am2irITp4Ulnv25P6KRMDatcL3pUTC1XjTDXvd2rsXeP7tvrL42yyecXFcd7HnuWsIR3KBgu4i5NMn5dqrkKiy2LbUS2FdRHAkf9FezjIULVsrD4omNhBj8hQxNm4E+vcHSpdWSqJEpCfC9gNlUK0a9/zRI24QI23a/9c9lLP8jHm/eGj3RAXI5ZtCa4cOAxRrnRo2VOyXtWD6J8gksrzKGvlm/y5hCrfB/dVrLmtVzhING3K1tC9emyMwUDlN9JcYfA2LzvQ4y/54gE9h3M25Lu2j8ccsCxy40gSfAhPx1/RbqFWB6wNdvdx7TFtWcJtf64n1sHyxMNXVuFn2ePJtmAt3d6BmTR1lrICqWxd8Sxlvb24OoSdPgAv/cUFyRZsvGPBbxiO0V6umBxOjBACA7zPVU6fdOeuHqHhuQLZG1f/D6tXgHxNHCU2n1q0zVLk/Id+7cYP7Gx2d/WAkfX/uVq2Ut1tbAzNnCs8XLMhu7vIPiQQ4d45bNjcHWrcWtunpAdu2AY2+jY0YEgJ8+JD3eSScpCRg7lzh+fnz3PgsABAZCbRrB7x9q5u8FXUUdBch6e9S9ugcwy8v/bsGkuKEC/ujO55DKuOungZ2CYDYQKyxPJibc33vjL7F8Zs2AUe2Zj6gW24sXl0WoV/LYNE/zfHuKf0KAMK8zwDQvpPyxWmbNkCT2tyAef4fq+LIZtVdEIh2pCal4vBlRwCAsWEieo3MvGYvvS5dhL6yFy4I60PehmFMn9uwLmcC20oGOL7FU+X+758FY+VubpArA3Eq1iz9ym+zKmeJiUtb4FlgVbx/FoxHT0uhROn8M2J5TrTv74bWdbn+3BGxVvz6EcNoJMHsKlYMcKnJzTvu7y9C9JcYLEtXy/37rNKZzlohNhCjThUucH4fVhHRX2KU0pw8KtwkGf8bV0OZ9li91Q7Vy3ETr9/wdaUpEEmWEhOBgHT/Jv7+GadVRVV/7u/9/DPX/xng+js/0d7ljlbduiVMf9alizAfeRp9faBFC+H5ixd5ljXynQ0bwA9G2bUr14rj7FluQDUACA0F2rZFvh+wUirl8v3pk65zojkUdBchx/YJI/YuWmaBXs24Gu7Qr2Xwz1IhsNp/pAS/PPgnzTcddXEB1q8Xnv84qTJe+wRq/DwpiSl4HcI10WVMD5tXUifysDCu2TgAuLoCNjbKaUQiYME8Kf984UqbAl/bnZQEzJvHNbnK7y4f8kVkHBcA9mjmC3Mr8yz2EHRO16/7wgXga1g0po/wQLVaZthyojmkMgMkphRHv7ENsGON8lXRH+M+IkXCjSI9YeB/sHetrJRGpCeCXW1bmFmaZfOV5T8iPRGWLS+msK6YQRJ+6JOYwR4kM+41hKjl0K4QHDnCLVtbA6NGZb2/Sy3hJs+T/wIVtjE5w6nrXDMpA3EqOg90VNiuJ9bDhFFB/PO1y8OzmXtS1Dx9qtgMOjtBd3Iy4PWtkWCVKtwc3aoYGyv2rS2otd2qmpZ/r1YtYZmCbt2IihLmTdfTE5bNzbkKl7RZUAIDuRrvyEidZDNLcjk3bkD37lxFEGO6zpFmUNBdRIQFhuP2Ay7CsrcNhqMjMH+JMG/qss01kRSXiHdPP+C/F1zNmmOl13BuYq+V/Pz0EzCoPdfWPS7JHN27y3Bym5dGpjpK88onCHIm1NLvOFEHibFF+2L66tkv/HKHDhmna92nLpo5crfkXwZXxaGNXhknLgCWLwcWLgSGDQO87ubvfur79ws3PAYPzd589i4uQNlv98muXklFlaoMy3e3RFIqNxKivpj7fMmZGD9OqYWVK4V9bx73wfFbXPtAmxJfMOevnPcLL0jqt6uFfi2FYV17tXhY4GvwdaVhQ+H79o+FlfmAZsIEYTDOzCgMpnY/WmHbY4+X+BhRHgDQxs1P5c2oIRNdUbI4F7j/e7kBQt8VgiGjidZ8P2BfdgJFT09hTJqMarnTjB4tfC+fPJn5QIHaJpdnv7+1XA6cPs0tGxoCnTqpTkdBt+4tWya0SBg2DHBMd2/Sygq4ehWo+m2ykZcvua45+dHSpUJrPZGIexQGFHQXESf3+vODH/2v4xuIRIBzU3v0acE1M/0cbYMtf97H/i1CbfCQPsEqp3bRBJEI2HKoDmrYch1LXgZXRe/RDVGxTBRm/eiB988+5vocL3wU5w7+mlASh/4u2gPsXDr6ml/u2OJzhulEeiIsmC/8Mi9cXQ4yiTTD9PkZY8C+vUJN/f71+be5fEx4DM7c4SKPUuYRaP+DS7b2F4mAzk24jompEkNEJ5QEABjqp2DigFv49C4ak4b58umnTgVmzOAGqBo/RRhkcen0gGzVsBd0yzZUhq1VCMyMYzFjvormH0Qt7q0q8MvxiVwLAjNTbsBNdbg0KMUv+/opXp6cOiR8X/XqpvrmaXGL4hjclbuZK5EZYtPSbLYXJkXK98Fvdmq6s+rPnZ6xMfc9m2b+fPXPo0mvXwPlywNOTtygWup6+FBo4tu2LTeNrCo10k2ykR+C7ogIboozVY/Xr7Pev6D58EFoRWpkpLpVRdmywMWLwnNP1T3NdMrDQ+iTLhIBGzfqNDuaxQqwhIQE9vDhQ5aQkKDrrGRJKpWyhw8fMqlUqpPzt6n7iHHhB2M+t17y6/3uBvDrS1tLWdUygQxgTCSSsQ8vP2k9X/733zL78m/5PKQ9RCIZa1/vAbt25FGOjz3355tKx63r8JHJ5ZrLf3bL9do1xvbvZ0wX/wYyqYyVMg9nAGNmxjEsNSkl0/RymZw1d/Lh37t9a+7mUU416/59xf+B0hZfmCRFkuV+uvjM7lwfyOdzXD+PHB3j9A4v/hh6Iikb2fU2C/IP5rfL5YwtXvzd56LGJ365XvXnTCaVaeol5TsZlWtSfBJLTkjWUa4KB7lMzqzMIhT+t6YOu6n2/omxiUysJ2EAY3WqvFTYVrviK/63IfRdmMr9pVIpu3LmBtMXpzKAMUvTSJYQo93rg//O+7E9K++w1ORUrZ4n34qPFwo7Pl4rp9DWd7G7u+L3oJ4eY0lJ6u3brJmw38ePWadPSmKsfHlhn0c5v7TJsXHjhPP/+6/6+02fLuy3bVvmae3suHRmZizLay1t/saGhjJWooRi+SpeYzJ2+bLGT6tTw4cLr++PPzJPW7Ysl87SMutyyomclu3nz4yVKSO8jgULNJ83bVA3HqWa7iIg/GMEPJ5wTcarlglCnaZCk3GnJvb4X59UAMCXcDE/TVHLOr6o4FBO63mrUb8KXryvhEsHHqJ3c0+I9bjaVMb0cOVhPXTo74zA5zkb7eFFqDAAVTlrblAenwBbvh+WJuzbJ8KiRZUQEpJ1Wk9Prg/N4MFQmJoor/h4vERELFeT1MbtBQyKZT7CL1fbLTxfuKocpKkFr7b70EHFzkBfYqzhccpPR7nJ3P5TlfjlwT9XydExug1vgDmjPTCmz2088wrEjrPNULFGeX67SATMmgX8/bfQZMvnpfBZX79WluG0ToVZseLFYGSiPFMDUZ9IT4QGNYSRqYwMkjFxrvrDwBubGaOGLTcY2ougykhN4n6bXvsE4vkHbj74RjWfoUzljKfLsCxnjh/acq1ZouItsW+d9iam9b78DM261cSwP5piUKeHND94ASKTAX7f/QzI5cCrV1nvm5goTItXrRpga5v1PsWK6ba2mzFuFOs06rzONKdOcX9FIqBbt8zTpjUxj4vT7QBYx48LzaxVYQyYNq3w9BV++lSYeaZECcVxBFRx/nZ5HBUFta5f84JMBgwaBHz+1qipbVvuWqUwKXpXVkXQ6X3+kMn1AQB9O75XajI+b4GhUn+JwT8k5FX2IDYQo8PAejh+qxE+vo7EkgkesLPmLrxkcn2cPJWz4754w/VZNzICFiwR+mhu2pTbHHNCQ4EffxTh9OlSGD0662b4K1cKX/AnTmgmD9lx6bTQn7tje/UmSG/Z2wUt6/gAAF6HVMa/6wtW3265TI7De78orT+0P+/+v9UVESGMhlutGtAgXVPd7BDpibBwa0v8faw5ajaommG6MWOAA/vkfD9vABjc4S4adXbK0XkJAYCGbkLT7+Edb6Jslew113epwX1eJTJDvHjA/Q6cuig0O+/V+avK/dKb8EdJfvmvfyppZc5giQT46fca/G/r0ZuNsODX21nsRbLryxegc2c9jB1bHV+zLnq1vX7NDbD5PXWamHt6Aqnc/aAs+3On9+OPQoB+9izXbDuvBAQA798Lz9VtXv3yJfcAgCZNVA++ml5+6ded/gbDhAlcc+W0R1ozeF9f4YYCYvyBJ7OBJ3OAz9cBWf4e++V7M2YI15czZgCWlpmndxbqpJRuPunKokXA9evcctmywIEDwhzjhQUF3UXAsVPCnKd9BynXENSuDfTrJzw3MkhGn1HqT1OkSWWr2GDG2pa4cFW4aDpzTY3byN+RSIQ7uQ4O3N2ztC+ho0e5Ubxz6/FjQCbjgu1Ll/Tge+tlhmnfPv+CU6eEW6oeNyVISVQv8NWUSzeF97RDb/VrURcsEL4mFq2x5Wu7ZRIZPgZ8wq2Tvri4/wGSE/Lfj9R/F57iUyR3ldC67mOYFuM6sh2/4cTXouUX9+4JP5rdu+fNwCEDBunhzG5flDKPQLWygVjxd3Xtn5QUakPH1UCZEmGwK/0Rs1e7ZHt/F2fhJpCPFzcC+clzwngDPUc3z/IYri1roKUrV+MeEFxJoQ+jpqxZAzx9pq+wbuHWlji4/j/NnyyPxX+Nx5WDjxD/NV6n+WCMC1SvXBHh/n1zrFunuS9FHx9h2c1NWFYn6E7fnzs7QbeRkeK83XlZ251+CklA/aCbD0oB9OqVdfr8EHQnJgo3sMuXB/76i+vfnPZYuUK4Fps//9vAcrEBwPM/geeLgRttgWMlgRvtgRcrgKjHQEokEP8OiFXRRECu29ldTp8WbjLY2gK//Zb1PnXqCMv5Iei+do0b7BbgRl0/eBAonXGDpgKLgu58KDIkCovGeeDeudx/EqJCo3D9MffpqmQdDLfWqpv6zZ3L/aMDQJ/uCbCw1u3ovTWcS6AaNzsM7txBtu9wv3nDzfEHcD8CxsbClDWpqcD2TbmfJ+H7L6plC6MyTLtukT8YEy4YEpMM4Hkp7wb5iQmPgecLbq4Ih/LvYFdb/VrU5j3q8HMZvwm1Q5NmYjg4ACbFGSrWKI+WvV3QeUh9DO/xWCt5z41D+6L55ZFDEtGjOVdo0QklcPVo/pow9c5t4UKgWbO8O2+nwfURGl4Cr4IrZbtWkpDv2dW2xccwK7wLtYVt9exPOVnXXaii8X1TFaGhwtRMjo5AterqBV6T5jnwy2vWZDsbmXr3ThikSE8P+LHvU37biN9d4XXpmWZPmMf6dniJDgPd0L+Xbkd/37WLqxFO8++/Io01B04/iNqAAcKyOkG3OvNzZ2TkSKDCt5/f8+eBBw+yt39Opa/5BbhKCXXeS3WmCksvPwTdHh7clG4A0LmTHKKYp8D7/cDj34Eb7dAlxQb1nbmBdv38vr1Gm1aAKF21qiwZ+HwV8J0GXHIDjpcCzlQFbvdUPqHPH8BpO+B2b+DZYuDTBUCaN63p4uKAceOE58uXc9e7WclPNd2hoVzFWNr/4+Jx19Ci2GjAoxvwcp1uM6dhFHTnM3KZHD07fMTcTS3RsmdNnNtzP1fHO7PvOaQybtqhvh3eZDgaea1a3JfyzJnApu1WuTqnJqTvOySTcfMLZseLx8IcrWk/AmN+YRCJuE/1lr9Tct0/2c9Xsab06E13vPENUkoX/SUGO0+5Ka2/eiE6V+fPjusnhS4GHZt9yPb+81cKzZTv3xfh1SsgVaJYy3P4emM8upF/RguWpkpx9ApX+MUMktB9mDN+GCBMwXXo37xtaZCVuxeE965J47ztG6pvqK+1mQpI0ZOb/6c6LYWrQd+AsjhzRrgYU+eiP03XruBv3N64ATzR0D02JmcY83Mq3zT5t9+Afw47YlS3OwCAFEkx9BxQGh9e6rBDay7EhMfgykNuusDzt6ri3bssdtCSwECuWXB6796JNDYmS/qgu29fwODbT0NWgWJCAnD/22VZ9epcTWp2fF/bPWQIEK7lKeVjY7nKi/Sio7Oeo/nTJ+G1Ojtz85FnRSNBd8JH4MNxIOQyEO4JxLwAEj8BknhALgVSvwIJQVyT8O+92Y7z26/wTzub/wBccAY8hwAvVwOfr0GUGo75Q/fwaebPB+T6FkDz00DDPUCVkYBJBhUTkljldV8fcfkJPgn4zQFudQHOVAPCPHL4Bqhv9mwg+NuwR+3bK95AyoyDg/A/n+OgW5oAJEcor3+6CHo326H6x1+hd7c3cG8A4DUKeDCOu0HhNRK43hZ48w8AbhaVL996AXaqcwHT6rcH3m4DQs4Bkfl3tpmcoKA7n9m+5C7uPuNqpqUyA/T9yRk3j/tkmD41KRUTB95CSdNo9GvtiYBHir+Qx04KAwP1HVTq+90VdOwI/PknNwhDftC9u7B85ng25rcA8MLzOb9cy4abJqxyFRG6NORuKwdHlsPZPbnrUOXnpRi8ypkYK+YrB93bVvggIYVrHtmrmXDFcPWOda7Onx2XLwo3CDp0KZ7t/Zu1sVDoglC8OOBUMx49mnqjW2PhS3H+7OyVkzZ5nPLDlxjuPe7S2BdmluZo388FJYpHAwBO3aqDpDgVnfp0IDE2EY9ec027a9i+hXVp+momRVOpUkK/V19f4MR+IXhVp3lrGj09YNIk4flfqyUZJ86Gf9d74so1bhBKW1uGRYu4cRT+PuyOFs6+AICw6NLo3jle582zc8Lr6mukH2P3wIGcHUcu57qt2dgo1gyru+/w4UD8t7evShWhSnb//pzlJz3GhObl1lapqCjZgerVuRudr14JreRU8fTkuq8BWU8VlpGRI7mgB+D6WnfokPmgX7l1/bqQ5/SyamKeNjc38O2GlzQRSPgARD0CQi5xtccv/wJ8ZwKBBwFw04ml1eS/eJYK9uEklz4xBIh+CoRcBN5sB/zmQ/TgZ1QLHs8F1elFeAJ3+wIeHYGrjYHztYFTtsBRM+CQAXDMkqtZvlxfKc8s3BMX7nK/pQbiVLSppaLGxsganRo9hbs79/TZs2/j7JTvAlQZCjTcAfQIAroGAPU2ARX6AuU6A5X6AxX/p3w8fVNA/7vrquTPwI02wIvlAMv+TXSZjCufzMajePAA2LCBWzY2BjZvVr9bmqEhUPNbw9eXL4U559UWdhO44Iywi5MR9vm7JhMxTyH6chPmid4QfToDBB0C3u0EXm8C/FcB73YBYdeBqMcIDgYOHeJ2s7IC9o4bCz29dMdLznhq2wIpj0ZT14rCNmVYyNvPzMIkWmlqg+JGcczz4jOV6RvXeqKQVqwnYaO63WYfAkLY16+MGRjIGMCYbamQAjcNUGoqYyXMEhjAmIVJdLamZOnf5h7/nrzwfsOvv3TgAb++dV3FOTtSUhi7fZuxY8cYi4nJ/PhJ8Un81DZVy7xj5sZcuRnqJ7NPb0KF15CcymythOmYAh69Y052AfzUN5EhUWq/ppySy+SsovVHBjBmZJCU4yl0JBLGXr5kLCxMcYqJ5IRkhdd4/8pzDeU8d0Z1u83n6ejf//HrR3YV1h/b/F+G++fllGE3jj3m8/Rj99taP19RpuvpG0nWunVTnD4SYKxi6dBsT0EUH8+YhbmEnyowtyJDopi1+Rc+b6f3+Clsj/gUyaqVfc9v797Ei0lTC9b/2fdTbdrbZzGlUAZThnl6Cqvr1cteHtasEfatVImxoCApMzKS8VMcpaia7VJVJr/6MXalGWN3+zP2aDJjL1Yy9mgy+3T4B/747RwvM3bYjPXpI+fXvXrFGAu9ytjHU4xJEhUOOXNmzqbd+t67d4pTiDVurLUZ19ioUcJ52rUTlvfs+S7hd+9h377ppjhb2pixA8j4cacfv1+HDsJ+oZtsMt/vAJg06KRiPr7cy3If/iFT/Hy9OLGWP3dbp+uMnavFlf+zpYx9usBYYgj/Oi9eFPLp6MiYLDeXyDIpYzEvGXv/L2PXWivm8WZXxlKyd603aBCXr/r1GfvwQXm7RMKYi4uQ/+XLs5/lwYOF/X191dwpNYYx718YOwC255chzFA/mYlEctahA3ftnJrKGLs3WL2yu9WTTZsm5GHOHMZY0BGunCIfM5YYqlS++RVNGVYATZxWEjGJXF/qQe3v8TWICSmm6NS3PPzuCgM4/Hf+KdzqMfz3QnHAM5lcHzvONkN1x5Lo2ykQEglXxH0Glilw0wAZGACd3H0BADGJFrh7Tv1+ci/ecU3k9cUSVKtTkV/f7gdXVCsbCAC44eOK0zu8sWaaBzq7P4BliWQ0b841Nfv11yyOfz+Qb65dr9Zb/PID1585VWqENfOFAdWObX2A4EhuOqZujb1h71oZ7Zpw8zMwpocbpzIefE1TXj6Nw4dwruqoRZ1nMDE3ydFx9PW5u/OlSyveTTUyMcLM397wz+fPybwv0+nTXPO6tCZRmZFKuf6YM2YAQcqNCDKUmpSK4ze4UbhNi8Wh8yBh1JD+g4TXf+hU3rU2yMzdmzH8crNm1MybFG0uLsJy2mVKz1YB2R5csHhxwKki1+rpS4w1EmMTs9gjc3+MfobwWO47o3dzL3QfqjjSv1U5S5w9LYeFCfd5PnPPHb+NL1jTEt27b67w/NUr4KGniia1WbhxQ1h++FBx4LLMvHihOLXW7t1cE+6WLaMBcFMcKXQ3i/HnalpP2wFxbxUPFvcWCL/D1bS9XMM1bX25Br4PhdfjUskXsHRFzZrCP5e/P4AXK7n+uxecuEG2vslNf+70KlfmBo8q9a0B4n//cS05sl3jmAXGhEHUjI2B0aOFbXxNd8wLrrnvGcXZLp5+G6rAyCAZzuWzaOabIjQzVmhi/qmWisSKRInfXQyYOwAuywDHOYD9eKDyMMC2F2DTGijVGCjbAajYD6j6I8AUq/DPvxzBL3ce0Rro8hxochCoPR0o1wkwLstfwHToADRsyKV99gw4dizLrGZMT8zl224A0OoK4DgXwLf/qZBzwOWGgEy9wVtv3xZamDx4wA30l37wPgBYt07oIuHsrNiqR13Z7tcdcgk47wi82YK1Fydg2Ja9SJUagTERLl/mrp0rVABmnN6BVy6x8KnmAVn3YKD7W6DzM6DDfaDtLaDTE6DvV8S7nsTWrdyhDQ2BsWPBtSQo1wmwrAsYl+He18Ikj24CaEVBqulOScm8duX8eeFuj5VlKgv/GMGS4pNY67qP+PWlLb6wAN/P7O/1icxAnMKvr1AqmHmc8GGLf7vJ17h+/7hzJ49fsIYcXC/UWE8c4KHWPpIUCTMySGIAY7Uqvlba/td0D5XvkULrguLcncSM7Fp+h087e/QpFvw2lD+nabFYFhkSxeQyOatX/Tmf7uZxH8YYYxf3C7Xto3veysnbki3paw1WLwnXyjmSE5JZhVLB/Hm8Lj1VmS79+2Zry5i/fybHTExlvXsLtQ+GhoxNmMBYWHBclvk5u9ub329Q+7sK2yQpEmZtlcwAxooVYyw2VvUx8rJGtJ3bQz6/b/1U3NYmGkM13fnf8Z0vlL6Tbxx7nOV+qsp2UPu7Kls9ZZfHCR/+OGbGMSz4dUiGaa8efsTEYimffurULGqL8wlJioQVN4pTeu/H98/ktzeDmu7WrRWPMWZM1udPTWXMzU3YZ+JEbr1UKmVr177i1/+v6yfGHk1h7IKLYs2Z33zFA77eqrKGbfH/Zgq11Yt2MvbpAjtwQDjvsqVyxo6VEvY5WpKxsFssNpYxfX0ujYNDDt5gFR4/ZszCQjh3z56ZX3tkl4+PcOwuXbjWamnP+/VjjIV7M3bUUnitSdw1QmIiY3p6XDqXyn5cjfHVFozd7svVdD6Zw9jLdVzNbuhVxqKFH/Nt24RzbJhxkTGvnxjz6MaY53DGfGcx9mozY8FnmTT8AfP1usqkGnzBrVoJ5375Muv0ly8L6WvVYkyjPwufLjJ2zIp7X19uUGsXuZyxhg2Vr0nFYsb++ovb/v49YyYmaS2BGPP2zln2Ll0Sjv/77xkkksRzLT7u9GPsAJh8P9jsngsV8laqlOrr6LZtI1lcXMZv6MaNQtrhw3P2GvILdeNRCrrzgJcXY5aWcla9QjC7cviB0vb4eK4JlaomP3FRcaxhDb90waBc4Z+6ZZ3HLCxIaDYX8SmK/TH0JitmmMSnKVs2l81mdOhrWDTTF6cygLGqZQKZXJb1lcurx0Lzvr4tlZsPfw2LZiZG8UpfEGVLhrIKthL+uY9PxueYNEgI3HeuOsWkUikb0+cWv27hrzfYnTNC03+XKv583hNiEpihPhf0VbYJyulbo5aQEMZKlxZe43MttvzeslB4/R0bKP+f3znzROFmUdqX9QPlpCw2Mo61cX2kVEZpNzXm/nyTxURk3Acg/YX22d3Kv0hjxwrH279f9THyKjiTpEiYabFYBjBWzjJErf9xknMUdOd/754GKXzmLU0jmSQl6wtzVWU768eb/HEu7Lufo/zIpDJWw/YNf5yNczMJQr/Zv5+7IE7b588/c3TqPPX4pj+f3w71H/A3kq3Nw1lqcgbvv4qgOzGRMSMjxe9tM7Osm0/Pny+kr1GDOw5jjElDb7KPZ4Ywa4tIBnDdpKK3mSsG0/+KGbuvIrKXJDAW84qxzx6MvT/IWMhl1rdXonAj5sW31/5YOPewoTKumet5Z+H4Bw3ZuR3C/9LYsTl8k1W4d08IogCu2a+mrtkWLxaOu2kT1zQ/LZiu6xjL2GFT4TUeNmPsK9eV8dEjYb8hQ7L/etS52aLp7+LoaOGmSNWq6t3oksu5pv1p+T14UCNZEcR/YMxvgdp33U6cEPJSs6ZiU32AsYEDGevYUXg+blzOsxYSIhynXTsVCT6eYeygEf//IdsnYmPablLIz7x53P/q5ctcd4S09z/tMX686n9kqZSxatWEdE+e5Px15Ac6D7r//vtv9sMPPzBnZ2fm5uam1j5yuZytXbuWNWnShDk5ObFhw4ax9+/fZ5i+oATdq1cr/hP+3OuWQsAwZZIQiLRpo/zZjPr8lTk7fFE4BsDYpB9fZ3ghEvxByn75hfvQHjmizVenfa1chP6uz72yrqk4td2LTz/355sq0+xdfYc5VnrFujfxYutn3WTPvV4zuUzO1qwWbmr8vfxVhudIHxBeP3+TSaVS9u7pB76ft5VZBOvY4D6fZu9qxdrW9K/pjW9gtt4PdUlSZaxFC+H1dO6sldPwUhJTWKVvfccBxv5Ld7/jrV8QK2Uezm8zLy5c9JiaytmN00K5RnyKZA0cnvLbTYxT2c8/K16UpL3Ha6bdZEnxSQr5SEyQMVNj7qZKieJfWUqicgfA27eF43Ttqvr15FVw9vC6UKvXr3XGfcyJZlDQnf/JZXJmYfJVCII6q9dUS1XZbvtTuBm4eUHWwbIq6W/kulV/rnY/7S1bFL+z1s/1ytH588qG2cLN5HUzPVjflv9lfcNCRdB9/bqwKv2Nhx07MjixNIU9ufOaicVcv22xWK5wM1b2YAJjB8B+a79OONZPI7hg4IIrY/5/MZb4We3XmXaxb2ws1GwmJAh5rV//W8LUGMZudOCDjsmdVvHnP35c7dOp5coVrjVX2vGXLtXMcdMHlGmX01WqCDew5fu/BdxXW3Kv95vdu4X9VqzI3jmjooR9W7TIOJ2mv4uPHRPO+9tv6u939arizR6VYwbkUmwsY+vWpavMCdik0DqAMa6Fg4ODkJczZ7j/zxkzlCsfAG5MgKzGH8qMXM5YqVLcNaJNqUTGIr77jMcH8v/7KXsMWP/GxxTOv26d8jE/f2Zs2TLGihUTrj2vX1dOd+qUcJy2bXP+GvILnQfd69atY7t27WJLly5VO+jeunUrc3NzY1evXmX+/v7sl19+Ya1bt2bJyckq0xeUoDs2lrEWLs8V/lkrWn9kVw4+ZI9uvGB6Iq4ZmpGRnBvAQ4XPnxmrXl34oThwIG9fgy6lbw6+bNLNLNMvmSDcjT604V62zuV58Zlwd7ej6gs9uZzxAWRpiy8KPxrpa1jTHmVLhioFfunzuHmBdpqYzxx1U+HLOVw7LcsV/LNR6N7Qvj23LvpLNKtV8bVwR9XtIYv4ImHNmgnvkZFBEju13YsFvw5RSFui+Ff233lusKKQ4FQ2tu8tvuVD2qNCqWC2Y+lt/gZU+h/eUf2Uuxcwxt2ZTRvExsBAzqK+KH+H5FVwtnaG8P+9YXbOggKiPgq6C4YWNYXvr1P/5DzovnJQ6LoxbfjNHOXl9mlf4Wb3wOwdY8UKxd+DXcvzb1+vAW2F36+H154r3MAe2O6u6p1UBN3pBxsbP15YbtiQcYMjfTjJ2JO5XFPlszWZ/IC+QnnPm6kYScgCuGbiXgsb8GlaNf7CN4XOjpgYIT/u7orbKlfm1puZpav8kKVyzaMPgNWp6PPtRoKMRYarP7Cruk6dEmqhLSwY+/o1d8eLiBCOV6uWsL5jc+HmeOgmG67p93cDxk2ZIrxPFy9m/9xly3L7liqVcRpNfxePHJmzPMvljDVtKuxbuTJje/dqrqm5XM5dD3HX+YxdP+z1rWWBKdf64putW4U8NG2qWAF37BhjpqaK3yUnTuQwQ9Ikxt5sZ+xWD9baUbgp+fnSLOW0Nzoxyb0xrHPrz3w6sZixffsyP8Xq1TIh3qnItUJIr0UL4XWcP5/D15GP6DzoTnP8+HG1gm65XM6aNGnCtm/fzq+LjY1ljo6O7Ny5cyr3SXuRsbGxTCqV5utHUmISWzjupFJ/qfS1f4smemd6jIgIKdu2TcYCAnT/evLyEeDzjn+PmtT2zTL9oA5Cv2Gf2/7ZOldCrND0u3q5dyrTBL8N5Y/fxvUhe/jwIUtJSWFSqZT53FNsFgkw9uf4G0rH8Loi1OT26vQ5W3l8/lzKateWs1at5MzXV3Wac3uFPs1iPQm75ZGcJ2WVlCRldnbCHc6bN1JYx/pCjX8N2zcsIiSSSaVSFhcnZV1afVDIZ9mSwntbpsRnleUX4POODWx/hx/VOP2xj265x3r3FtZfupRxXieOEX5Eti3xUNqekpKiULbaevRtIYxb8PDGizwpp6L8yKtypUfuHhvncEFY1TKBLO5rXI7L1v+h0Cy8X+t7OcrL4U3CZ3TpROXv86wes0YLv0l6Iik78nfO8qHtR9osFyZG8SwpIYklxiUyS1OuSbexYQL7+uWr8n7polhpTAyTSqWsQQPhN+DjRylzdhaeP1nqpNTH+uj4Pvz2ajavWMLbS4rl+vU1e+2xmiXHhrLq1eXfAl85e/8++6/Rw0Poaz96tExhW6dOQj4DA9PtJ5Gwz7f+4re52j1k8qutmDRZ89eeI0YIv19z5siyTB8by10bqtq2b59wrMmTZUwqkTDZsxUKLQY8Ni1k0tQkpX3btRPei6Cg7L+O1q2F/UNDVafR5HdxaqqUlSnDndPYWM7i47O3/+3bUmZoqNh909FRzk6elDKJJHd527NH8VqleLEE5jnfXWi27f0riwkPZ2XLCue/c0f5OH5+UmZvz6X54Ydv/xuSVCZN+MKkX/2ZNMJXZVnyj8RIJnu6hMmPl+HPPbHjGv6cV/4co3K/vXuF/BcrJmenTmX9mpOSUpibWyy/37Bhwv+yt7fwGaxRQ85SUzX7GdLFIzY2Vq2gW1/XA7mlCQ4ORnh4OBo3bsyvMzMzQ506deDj44MuXbpkuO+rV68y3JafdB5eAfVaemHpfAvcecbNLxgRyw1dWavCK7Trx+CbNhxhBurWBeLihFELi4oa5aV4+ak6/nvhhNtX78Dc2jTDtM9flwQA6IlkSNaLzvI9/Z5LVTHuB7jgdUhl3Ll2C2alFM/1xOMTAG4S8WqVwgDY4Ck/zCfQrJk57twpwT01kqFhdzOlPIjM5bCwkCImRh/X7lrh0SNfiNUcpHHKGFM8f+6A58+BevVE+PHHUAwf/hn63z7NkcHRGParC59++sjzKG5qm2f/M4MHW2HxYjsAQNcuMiQkcf/rlqZRWL3mHQJDLAFuAHfMWSKD8fTXOHarNWRyfYR+LQMAqGwTiE0bX0NmYqmy/CYvMUafAZexdZMFrjzkvjNeBlfF/34RRl+1tJSgRAm/DF93o7qhWIuuAIB/DxdD3faqE/JlqwVMznDHl8uzuXEMZCZx2f5/JTmjzXIludewhxlOO1yCZXkzBLyNyHqHdNKXrSRZAoD7jL37WDxHn68A/y/8sr5BTLaP0fPHYvgcegk7znaEnIkx6Ld62K9/CVVdy2Q7L9oSHpKKD+GNAABu1V/guT83any3ZhHYc7EDklJNsHPNZbToW1FhP72kJNT9tuzn54dYWXE8fOgCAKhSJQlhYS/QsaM1/Py4/bbd/Akbho3n90+QmGHKwbX88z/GP8WrcAvIvvoqZtC0BWJefULr1nK8fl0OjImwZk0ohg0Ly9brPH/eGgCXF0vLj/D1Ff63rKzKA+DK5Ny5t2jYMI7fds2zG7/cpvZ1RCUbI/BpgPoTI6upZ09D7N3rCJlMhDVrGFq1egpzc5nKtEFBRvjpJwckJIgxe3YQOnWKUtj+7792ALiZXOztXyPw7ilUDZmO6mXGCa8rdDBM/Z4rHdvHxwmAIczNpfjy5QnCw7P3OqytKwAoDQA4c+YN3NwynrNeE9/FL18a4/NnbqT0evVi8PLl2yz2UGRiAuzcaYyNG8vDy8sCAPDsmQi9eonh7ByP8eOD4eKS+cwsqkRHizFhQm0AwuxBCckm6LjyGm7NaoI6lfyg92YTNq42R2joEgBAN/frqB21BC/uT0CqYXl+v5Kxl3B38SW8DLKFS4UHkB+Lgr4sBiIIk3nLRUaIN66D17YbARF3Tn1pBGy+HoR19DHoyRVfQ+1KQvx0PWQoLFV8t23fXhVACQDAn3++ha1tjFrXk/PnG6J//1pISBBjzx49ODm9QcuWMZg/3w5p/5e9e3+An1/2vt8LtOzVW2efujXdjx49Yvb29iwsLExh/fjx49mECRNU7lOQarrT39FLTUllm+Z78IMnAYzdOu2j8zzm58fUYTf492rn8tsZpktNkTBjQ66/sH151TXVWT0mDRTOdWqnp9L2FVOE7TuWeSjdqb1zR7iL9+uvGd+p7ttXuHt47556ebtzTnFe9rRHXad49ujmC5aUkKQwd3u3xl4sNUWSp2WVlCRlVaoo3jE2EKew68cfZVBmqWxcP6FpoWOlV+zj609qn+/mSR/WpLav0nsydmzmtQSSVAmrYhPI1z4FvQxW2J4XNaIvXwr/Kx2aBeZpORXVB9V0F95HRmVbzjKEbz2Tk+PO/lUYw+Ps3sxbpGX0SE1JZcM63+aP08zRh0lS8/a7ObPHwYPC79HMKcL7dOu0D7++fb0Hyvt+V9N98qQwGGna719EhJQZG3O/CRbFY1nc3RlM+v4Ik0Y9Z/PmCunbtZOrrFVMX64BAcJ3ppOTXCnthw9StmSJjB05ovp1pq9J/v53959/hG1//aX4+zF6tLDt4vKZWqnlTnuMGiWca9Ys1b9jyclSVr++4u/s2rVC2pQUKbOy4rabmclZUpKUSVPimfyYNbs4tQO/zx9/KB8/LEx4j5s1U36P1Xls2iS8ho0bVb8GTX4XL1ggnG/TpqxbCGT2uHpVsbUGwJieHlfrnd1jDRsm5KtnT7lCC4DSVgns5ZraLHyLFT/zkJ5IyvxXOnDzl0e/VjiW7Omfas1/Lb9QTzEf7w8pbj8gYvJbfZj0813m7SV01xs6VPl9i4qSMiMjLs9ly6pfK51Wtv/8I3y+ra3l7MEDKdPX545nZSVncXHa+Qzl9UPdmu5sBd0rV65k9vb2mT7evFEc6Covgu783qebMdV9VwJffGSLf7vJLv/7UIc5KxjunhUCyT4d3maY7t074UuyZ9cM5oLKwtG/hcFjZo66qbR9yGDhS/TBnU8q+ySdPMmNVpuUpLQ7759/hLwuXKhe3trXE/ontm38kYnFwjH0xamsmaMQfFay/sgiQ6LUf+EatHPVY4UfrB1Lb2eaXi6Ts0Mb7rE/x99kUZ+/Zvt8cpmcndtznznZBXz7gWTsoRofqzmjhWB/yuCbCttUfWY1befOdN0QCsDoxoVBXpQr0Y2MyrZRTWEGkMTYxAz2ztjo0cLn9NGjnOcvNTmV2ZcXukud25Oz0dQzI02VspTEFO6RwvhHahZdkNP3vb5wQVgvl8lZZZsgPiAIefvdgGXp+3SHv2UTep/kn57cE8AnGz5cSJY2Q0tQEDdGDcCNepw2krjSa/quXNMPDpY26nFkJDc1W7FiwjZVfV5dXRn/G/H9pWP6Ubd/+UVxW9rgawYGGYzCHuXLmFQzI3C9fy+MAm1mxr2276UflTz9Y97kN0zut5j9t3GycM3UJ92Ob3ayt3ev8tt691Y+toeHcLxff83Za7h1SzhGRiNsa/K7OP00W4GBuT4ck8u567hatYTjmppmb5TtGzeEfS0suNHC4+IU81qhfAob2F4YO+GnNruFAPm7fvbMf226keZNGTtVibGLbtxgf3cHMnbnB27dw4mK+8mkjJ2uxthBQ258ghjhc5l+ari6dZVfw7//Zl2OqqSVrUQiZd27C8cwMxOW58xR/3j5nVb6dEdGRrI3b95k+kj5btg/dYPuDx8+MHt7e/biu2/dQYMGsUWLFqncp6AH3UR90lQpK2WVyn/xZTC2Hjt3TvhAz5yZs3MFvw7hj9HKRXlu2Dp1uG1iMWPx8Tkv1/fvhbw2a5j1EJT3zgkXjpWsP7KUpFT24AFjjtWVR7Y3EKcwr0vPsp0nTZGkSPgL3Tmjb+bZeWVSGbt8mZumTx2f339hxQy4lhHFjeIUblLkxWc2/cAvt7Q/ZTth9F1cmGVUtgM6CwNkvnwal+3j9ughfE6Dg3OXx+NbPfljOVZ6pfZI6JmRy+TsxrHHbEDbu/z32fcPkYj7vslo5qL082N/P4BX+puTa6bdVNyYPug+UJo5VXjCB+hfvYS5idMHtE2acOv69xfWpc3Jrcr35fr33+lbNHE3LNPPdZ32+H5059RUYYTwGjWUz5N+1O3mzYX1QUHpfqubqchg7GvGjpRg7HIjxt7t4+ZnjnzIjf4sSeDedEk8Y6kqKgICD3FzXQcd5QaYCz7L2Jd7bPRP6Wu7FXd5/FgIyvX0ZGxoRw+F1z2u/Xo2s8di/vnOnYr7SyTczQOAMScn5Sxt2CAca8sWVSWStfBw4RitW6tOo6nv4vBwYeT52rVzdSglUik3n3naa6lYkRvYOCtJScLgxwBjmzcL26KihOvI9A9jY8Y+fWKMSZMZi1cxnawkkbGU6Kxv7qjaHu7FWGKIyuQ1anDnNzRUniO+d28hfx4emZ9WIQvpyvbzZ+W5vA0NGQsNVf94+V2BHUhtR7o5JeLi4tQaSI2C7qJh2DDhA3vpkuo06UeKzWj+ZXVUKBXMB2Lpp2VLTRV+rGrVyn25Vq/ADRymL05lsZGZ18y3cxNqubf9KdQcJyckszmjb/DTlQHciNi6lpqcyj6//5J1Qh0b21e4YFkw9ia/Pi8+s2k/ygYGwpy0RLvou7jwyqhs00+5c/ly9o+bvmYqqxrjrMhlcuZeQxhIc/eKjEczl0q5mqZt2xi7do1ryZX+ojgs6AtbPvkmq17undIFfEaPW2cDlM4TH8/4VlOqgpaXD9/y+7vWTtcaUZrM2Kuj/MHD/irFp6vvEq34uuXcsdMHc2nLpUplPlL39+UaEaE8H3Daw8hIMdhJXzv35ImwfsAA1eeyseG2W1sL63btEvabP/+7HeRyxi41yLzJ779i7u/DCconPGKucp+grfWYgT73m25qyr1mxrhgrnZNoUnwrB6LGDsA9tfgCQrvQ/rrgRAVsVba1FTGxspzgqdv2XEvexPAKLC25o5Rpozq7Zr6Lt63T8jv1Km5OpRKiYncNHJp52jYMPNWjIxxtbhp6Rs3Vn6Pw8IYs7dX/N/NaUVRbqW/qfD8ubA+Lk5oOVK6dPZGc/++bNPPKgNwLV8KE3XjUb2se33nTEhICPz9/RESEgKZTAZ/f3/4+/sjIUHoxN+xY0dcvXoVACASiTB06FBs3rwZ169fR0BAAKZOnYrSpUujbdu22somKUC6CeOY4OxZ1WlevBCWa9XK+bkaOn0AACSkmOKZlzAgR0AAIJFwy87OOT9+mnbuAQAAqcwAt876Z5ju3jk/XH3kBgCobPMBw6Y05LcZmRhh4dZWeHD9DYZ1vovVUz0wfnHz3GculwyMDGBjZ63rbGTp93lVINaTAgDW73NCQkz2B0vJibCgcLx+zS3Xd0uFsXGenJaQIqdSJWE5MDD7+4d9G6vL0hIwMMhdXkR6IixfIuWfz1lRGckJyUrp5DI5RvbwxsCBwE8/AW3bAlWqAMbGQNXyn9Gkth9sq1hg2pqWeB1Smd/PyiwSzZ180bzOczRvDjRvDri6pPLbly6KUTrX/ctPIPs2VlcTN+URsxzcqqB+XW4grMfPS+OF9zvg3iDguDVw5398utsvhd+d1h0sFF+3CBg9Wnj+yy/C8p9/AiVKKJ02Q1ZWQOfOiuv09ICRI4FXr4ArV7iBsQBg0ybA25tbTj/4k4uL6mPXrMn9DQ8HIiO55evXhe2tW3+3g0gE1P8bMKmIDLFvb25KlPI2uUTlLhVNH2JUi20AgPh4YPWiYADA3LnAc3/un9Clkg/m9l4IAJjYdSv2/L4QYjF3LpmcG1nV1RUoW1b5+NWrc3+TkoBPnxS3pR/XzNEx45eVlbRrsM+fgSgVL11TLlwQlr//v9AEY2Pg9GnA1pZ77uUFjBrFhY+qvHgBLFvGLevrA1u3cv+f6ZUuDVy7BlT89m9jbQ1Mnar5vKujTh1h2c9PWL54EUj+9tXUuzfUHuxXlT59gCFDuGV9fWDy5JwfqyDTWtC9fv169OzZExs2bEBiYiJ69uyJnj174tmzZ3ya9+/fIy5OGB3yp59+wuDBgzF37lz07dsXiYmJ2L59O4yMjLSVTVKAtG8PGBpyy2dOy8Dkyt94L+6/BwCIRAwO9hl8I6qhUYMUftnL4zO/7HdHCIyda2U8Gqe62nUQ/revXkzKMN28ecJF2uyJH2BgpHzlV7dlDew+3xSTl7eESE+zI6oWZpUdK6B/W+6qLDLOCtuXP8yT8967LNzMaVrjvzw5JyFFkZ2dsJztoJsxhIVw3802Jb5kkVg9LXq5oEvD+wCAjxHlsWmz4vc5kzOMH3AHe8+7K+0rlQLvQsrgvxfOkMgM+fWt6z7GoQ3/4dNnU9zyc8Et39q4dQu4dQvw8tJDJWsuaLt0vz58PF4qHPM/j6/8cmPHAJV5HjxcmMVj3+ESQNC/gDROIY3HFyFqaNNGxTEGA8WKKa5zceECmOwaJwzAjT59gGfPgB07uCDGzg5YsIDbxhgX7Esk6gXd6W/W+/tz+9+4wT03MQHclYsEsHQDujwHmh4F3NYDjnOAar8AFfoCpVsAJV0Bm9aARU3lfV3XAK5rgbqrAJdlgPMiwLYHINLHzB5LYKjPXYts2FEOJ08Cq1ZxuxkaSLBv3M8wrDESaO8N/C8OQ1fOxYkTYqS/ZM5o4p+0oBsAf/M37f1Ku0yvVAkwN1e9vzq+fy+1QSIBLl3ili0sgHQTIGlU2bLAmTPCzZx//+VuFn1PLhf+3wBg2rSMb1xUqMAF8CtWADdvcvnXhfQVSOmD7mPHhOW+fXN/nu3bgc2buZtiTk65P16BlEc171pBzcuLng4thLmVT233VNgml8n5EeGr2ATm6jyeF4Xmf0P7CH1rpg0X+rad23M/1+Ua/eUr3wysZoU3KtPcPi0MIlelTBBLTZaoTEdy7um9V/x7bGv1iaUkpmj9MztxgNCs/exub62cgyij7+LCK6OyfflSaNY4sF/2rhfiouL4fVvWUR7jI6f87n9hIhE3im/JkorNq2eOEn5nxHoSNmfCC/b771z/Spc6Mn6k49IWX9i04TfZa5+sf+82zhW+b/q1Vmwz3KnBfX5bRscKCxOaoJuYMPZ6W2euH/P1gfybW9sunqX118zosmzwYMVmprczH2OTMZZxuT55wpWtKhIJYy4uwnmWL2esZUvh+Xdj9vLS92f+5x/G/P2F5x07Zp1XjUkKZ+zleja26xH+/Gn9lgHGVv4ZxfXvVeHmTa5Jd5kyXH90VTZvVt1vO/1YM1275u4lfP9efk8T38Xpu47873+5yKyaTp5U/P+dNo2xSZO4cR+cnbmuAGnbqlUrGN3G0o9Z0KULty4hgbHixbl1VlbKfb2zUtR+Z/NNn25toqC76Dm13Zv/cqhh+0ahv3WQ/yfhx6JR7oKY5CQZMzTkLoiqVxfWp784+RAQopFyTT+ybsCjd0rbW9cVpqvZtTzj/n8kd7o1FkYQ3bldqvXPbL3qz/nz6WqU+aKIvosLr4zKNjEuRehfWSsbww8zxt74BvL7/tAmFx1cVUg/Tsn06dy6ZZNuKlzU71mp/J0vl8lZ9JdoJpPKlLZlJDE2kZW24Abd1BNJ2avH7xlj3OCTJYp/5YN4uSyDkdYYY2PGpOun6p7EpCkpCgOpmYALulu0yDgfd+8Kx/jhB/XyntPP7P37wsjMxsZCQFSuXMb7XLsm5G/SJMY2bkwX6K7M1uk14uNHxl+LpD2aNcu6f21qauZp0r/OKVOE9WfOCOtnzMhd3q9fF46laqC83H4XX7ggHF9fnzHvPLp3vXSp6vEEvn9cu5Y3+cktuVwYiLBCBW7diRPC6/jxx+wfs6j9zuq8Tzch2tB9RH00rsW1f3kZXBW7V3ny2148CuWXa9kn5uo8RsX04ObGNdF+/RqIiODW+73hOvWULP4VttXK5Oocado1j+SXHRuUR7/Wnrh2+BHkMjluX4vGDR9XAEC1soEYPLFhRochuTRjqdD0b/lKMd/HURviv8bD5609AMCx0mtYli2pvZMRUsQZmxryTcMDP2dvnImw4Fh+2cZadf/bnFq4EHxT4LVrgfm/PcD0v1ry2zfOvYWhvzdV2k+kJ4KFtQX0xOpfwhmbGWPi8OcAADkTY+UCbtwS//vvEJ1QAgDQ2Oltpl2TVqzg+pUDwH/exbDqL0OV6VQ1LU/TpAmwaxfX7HbbNrWznyP16wvN0JOSuL7RQMZNywGhTzfANYlOa1oOqOjPnQdsbYHRo4UyKV4c2L076/61BgaZp8moeXn6/ty5bQKcvnl5+vF2NOHjR667Qpply4AGDTR7joxMmwYMG6a83sCAe1/btwd27sz8c5CfiERCE/OPH7n+95puWk44FHSTAkWkJ8KK5cLzeaurITGWC7BfPBX6WNeqrZ/rczVqJCx7eQGRIVH4FMWNSOJcNUhj/aZ/GGELIwNutAqJzBBHbzZCu/5uqF4lCT//VoJPN+ePCOgb5v51EdUaNTdHixbcckAAN3BKeuEfIzB5kAfKWX7G1GEeuTqX19VX/EA3Td1Cs0hNCMktuzJc0B0SVRYpiSlZpBaEhQgDK9qUZhrNU8WKQlCYnAws2Fif37Zkggd+XdBCo+cbO6suzI25gdT2nHdHyNvPuHc9hN/epKHygG7pmZoCe/dyF+kAMGeOYpCWJqtgY/hwLkgyM8tO7nNm8WJhAKw0mQXdZcsK/ZifPeP62gLcIHqZ7adNM2YA5cpxg3Ft3izc+MgNW1uhf/2rV8J6TQbdNjbc+wZkL+iWy4HQUK6eVRWJBPjhB2Fwtu7d83ZgLpGI65+8fz/39+ZNICiIu7Hz6hVw+TIwYkTe5UcT0vfrfvBAGKy4ZEnd3GwqrCjoJgVOk67O6NGUG/gqJKos1s/jBqR58UL4d67lYpnr86QPuj3vJOCp1wf+uXNN5RFgc6qWezX4Pw7HtOEeKG0hjBz77kNxvPw23k316sDA3+pp7JxEtRkzhOXly/XAGBAbGYv5YzxQxd4If/3bEqFfy2Dl3pZ47ROU4/PcvSnUnjVrnoshQQkhaqlUTvjMfQxQ/0ZXWKgw8rdNGc1/VmdMTYGFieLvybThHpixtqXGz2VhbYGx/X0AAKlSI6yZ/xL/eQq/m41bWmV5jCZNhFGWJRJuZPX0TE25Gub8wswM2LhRcV3duhmnF4mE2u7gYODrV265VSvlEajzSrlywPPn3CCAaSNA55aeHlC1Krf87h34ll1pQbeBAeDgkLtziERCbXdwMBAbm3l6AEhIAFq04F5z06bA7dvKaWbOBDy/NXK0s+Nq/kV5PHasvj4waBA3CGDLltwNtNyM7q1r6YPu1auBtDGue/TI/YwNREBBNymQlqyygp6I+5VY9k9dRIZE4cWbEvz2Gm4Vcn2ORvWF0cQ9r7zCk0fChZGzs2Y/OpUdK2DZrpb4GGqBo397oX0zxTk85s3jvuSJdrVvL1yQPXokwsZ5kbCvLsOCLS0Rn6xYLbP7QPEcn+eOtzAkbNMOdjk+DiFEPXYVhOA58LX68xeFfZbzyzblimWSMmesShthxs8+/PMxfW5j6Q7N1nCnN3Fubb5l1Zaj9XDdm5tuzMggGW6t7NU6xoIFQi3o02eK25o3z38X6T16cFMeAVxz/vQ31FWpqWKQcV3X9pUowY12rUn234o7NRX48IH7G/Bt8PoaNTRTjtkZwVwuB4YOBe7e5Z7/9x8XgHfuLIw8f+aMMIK7gQFw5AhXG0tyJ33Q/W0mZwDUtFzTKOgmBVIt92oY0ZWbZikm0QJLpvrhRRA34WFF62CYWea+3Vr5SsawteKa3t33r47HPkLU61wv9zXpqhgaG6LvmIa4fLs83r4Fli8H9uwBBg7UyunId0QiYMYY4Spyz4X2iIgtBQDQF0swsosHxGKuzdvew6Vy1O87+ksMPJ/XAMD9r1asUT73GSeEZMqusnC5E/gmIZOUisK+CPvZlMv5jbbM/L68GdbNvIUtC29j4+GmWp3y0cbOGiO7c63DElJMERzJff/Usw+AkYl607MaGQH79qkOyvJrP9Z9+7g+6WfOAOWz+MpNHyimya+vKze+79f98iU3JR2guSmdstOve/Zs4MQJ5fUXL3I3w/v1U+xLvWpV/mpVUZCpmtbMwgJo2zbv81KYUdBNCqz5q6uhmAFXG73uYFPEJFoAAGpV1lwf2UbOXBPihBRTnL5VGwAgEslR291OY+fISJUqXDO+oUPzvulUUdZ7eE3Yl3+nsG5gu3vwfxiCHedaolMnrjCCg4Hr17N//O0rfZGUyk322bXF2yxSE0I0oVJlY345KFCq9n5h4cJgYTYVSmgySzyxgRjj/2yBn+c0z9bgaDn1x/zKEIsV7xg2dvuarWPUqSPMhZ1efg1OTUyAP/7gWjNl5fua7vLlhVrhwuT7oFuT/bnTqBt0790LLF3KLevpAefOcQPuVawopDl6FIiO5pb79AF++00zeSRct5C07gZpuneHwpzvJPco6CYFlm31spgwiOvbnTYoFQDUqq5+LUZWGjUQBtyJSSwBAKhWNgjFLbRT40F0T2wgxu5/EuBY6TW6NryDRzf9ceBKE1RzqQSAGwQoza5d2Tu2RAKsP9yMfz5hRsVMUhNCNMXOQWiDGvhB/XazYZEm/HLpCtpp4ZTXKjtWQP/+ih1Qm7Qune3j/PEH4J5uxOhSVpoL1nTp+6C7TZvCeeM7fdD96pX2g24/P9WDo929qzg2wNq1QJcu3G/tq1fcc+t0kw5UqQLs2FE4y0SX0jcxB6hpuTZQ0E0KtGnL6qKkmeLoHLXqWGjs+I1allJa5+wQqSIlKUwadXaC79sqmL/RBHWaKVZxdOsGWH0bb+jkCRmiv6g/qN7x48DHj3rfjsNg71pZY3kmhGSsUo2y/HLgJ/W7H4XF2wEALEwTUay45vt068r06YrPG3VS0aY6C/r6itN+de+uu8HGNMnOTrGGT9f9ubUlL2q6y5UTRoO/cgVwdeVGYI/59rP56ZMh+vbVQ+q3IRfGjBFG9Ae4cpgwAXj7lqsJHzaMGx3cQnOXeeSb9EG3qal6rUJI9hSCr0dSlJW0scDMueYK62o1zWRo0myq27w6DPUVp5dxbkmjiBdlhobAoO7cxKYpqWIc2vJErf0YA9asEZ5PmkS36QnJK8UtisPanJsdIuiz8s3UjIRFcb8vNuVMskhZsDg6CvMct2oFlM5+RTcAxSapf/6Z+3zlB2IxN5BYmvzaZD63ypbl5v0GFINuCwvNDdomEnEDoaXx9QXGjuWC8Z9+EmHSpGqIiOB+C9u0AdatU12DbWbG3SjavRuoVk0zeSOK0gfd3boJU8oRzaGgmxR448YJPxB6eqpHHs0pIxMjuFV/pbDu+yY4pOgZPlToD7nr36yn2QG4kVgfPOCWXVy4aUYIIXmnUmWu+vJTVDm+Zi0zSUnC1Dk2NlrMmI7s2AF4eQEXLmjmeObmWacpKMaP52pZhw9Xnue7sBCJhNrud++Ajx+5ZUdHzTbd3rOHm8+6QbquCImJwK5denj3jhtrwd6e67Od30a+L0o6duTKvkQJrusI0TwKukmBV6wYcOAAN4rl8uXcF4YmNXJVbE5OQTep27IG6lTm5la5H1AbL7yzHhBtzewH/PLkydQfjZC8ZlediwrlchGCg7NOHxYmLJcpo6VM6ZChIeDuTjVaqowcyd1wye64HQVNWtAtF2bGUzmSdW4YGnLzWXt7Az4+XE13+hs0JUsynDtHU3/pmokJ8OQJEB6e+Vz2JOco6CaFQrNmwP37wO+/a/7YjZoInbtMTVJgZ6f5c5CCZ0T/z/zy7r8/Zpr27ZMgnLzlBgAoW/IzfvhfDuYaI4TkSvrv7sDArNOHfUrmlwtjTTfJXFGodU3frzuNNgfDc3EBNm0CQkKA7dvl6NfvC27ckKvMB8l7enrcWA1EOyjoJiQLjdpV4ped7F4VioFiSO4NHOMIfbEEALDvTE1IUzOehmj90kAwxv3jjBvyEobFxBmmJYRoRyXhqxxBQVmnDwsQxmuwEd3RQo4I0a28DrrTFC8ODB/OMHXqx0Ix4j0h6qDwgZAslK9WDuN/uAWbEl8wbXKirrND8gnrClbo1vgRAOBztA0uH/JRmS76Swx2nnYFABgbJuLnadQ/gRBdsCsfzy8H+r3KJCUnLFQYRNPGRsVcR4QUcKrmH6cgmBDtoKC7CJs+fTrGjh3LPx8yZAj+1MHwo97e3nBwcEBsbGzWiXVk3aEWCI20Ro9R7rrOCslHRowQvkJ37VRd0719pQ/ik7kpioZ3ewircoVjrl9CCho7m1B+OTDgS5bpwz4LHV1tyhplkpKQgun7mu7y5alvNSHaQkF3PjR9+nQ4ODjAwcEBjo6OaNeuHTZu3AipNOPmq5qwYcMGTJgwQa20BSFQ1jSRHo18RRR1HOiK0hbcNERn7roh4lOUwnZJigTrdwtXNRNmFNJhcAkpACrVEEZDC/pUPMv0n8OESySb8lmnJ6SgKVVKcc5rquUmRHso6M6nmjVrhrt37+Ly5csYMWIENm7ciB07diilS1Vn3hM1lShRAqampho7HiGFnYGRPoZ0fwEAkMgMsWRWEC5c4KbguXD0A5ZNuYePEeUBAF0b3YeDWxVdZpeQIs3M0gyWptyNscBQ6yzTh4ULI2nZ2JbQVrYI0Zn004YBFHQTok00Rl0+ZWhoCGtr7qJg4MCBuHbtGm7cuIH3798jNjYWTk5OOHDgAAwNDXHjxg2EhoZi2bJluHfvHvT09ODm5oZZs2bB9tsEkzKZDCtWrMDx48chFovRp08fMKbYR23IkCGoUaMGZs2aBYAL6NetW4dz584hMjISZcuWxejRo9GoUSMMHToUAFC/fn0AQK9evbBs2TLI5XJs27YNhw8fRkREBOzs7DB27Fh07NiRP8+tW7ewZMkShIaGok6dOujVq5fW309CtGX4L+Wxeh+3/NeeuvhrT9qWit8enMlTisBQuITkc3ZlwhD1xhLBkWUgTZVC3zDjy6CwCBN+2aaiVV5kj5A8V7068PAht0xBNyHaUzSDbv81wMs1WaezdAVanFFcd6s7EPU4631rTAZqTs5Z/lQwMjJCdHQ0AMDT0xOmpqbY9W0CSYlEglGjRsHFxQUHDhyAvr4+/v77b/z44484c+YMDA0NsXPnTpw8eRJLlixB1apVsXPnTly9ehUNGzbM8JxTp06Fr68vZs+ejRo1aiA4OBhfv35F2bJlsWHDBvz222+4dOkSTE1NUezbRJ9bt27FmTNnsGDBAtjZ2eHBgwf4448/YGlpiQYNGiA0NBTjxo3DoEGD0K9fPzx79gzLly/X2PtESF5zbFwNzZox3LmTcfeD+vbP0bKXS95lihCiUqWyMXj8BpDJ9fHpzUdUqlUhw7RhX7nJhM2MY2FsZp5hOkIKshYtgIMHuSnSmjXTdW4IKbyKZtAtiQWSPmWdLlnFj3FyuHr7SjTT15kxBk9PT9y9exeDBw/G169fYWJigsWLF8PQ0BAAcPr0acjlcvz5558QibgL/6VLl6J+/fq4f/8+mjZtij179mD06NFo3749AGDBggW4e/duhud9//49Ll68iF27dqFx48YAgAoVhPfD4lsnICsrK5ibcxcjqamp2Lp1K3bt2oW6devy+zx69AiHDx9GgwYNcPDgQVSsWBHTp08HAFSpUgWvXr3Ctm3bNPJ+EaILR46IcPAgEB+fbmXsayDpE0xMgIG/1KQxAQjJB+wqCHNvBwZEZhF0c4Me2pSIAkBBNymcRo4EzMy4eezTz2VPCNGsohl0G5gDxuWzTldMRZ+vYtbq7WuQux9oDw8P1K1bFxKJBIwxdO3aFb/99hsWLlwIe3t7PuAGgJcvX+LDhw9wdXVVOEZKSgo+fPiAuLg4hIeHo06dOvw2fX19ODo6KjUxT+Pv7w+xWMw3H1dHUFAQkpKSMHLkSIX1EokENWvWBAC8ffsWzs6KUya5uLiofQ5C8qMyZYBJk75fW/3bgxCSX9jZCTe/At/Eo0UG6ZITkhGTyN1ctrEsOgOGkqLHwAAYOFDXuSCk8CuaQXfNXDT9/r65uZa4u7tj/vz5MDAwQOnSpaGvLxSVsbGxQtrExETUrl0bq1atUjqOpWXOpidKay6eHYmJ3BzWW7duhY2NjcK29DcJCCGEEF2oVEX4bQt8n/GMIF8+RgLgbrDbWCVqO1uEEEIKuaIZdBcAxsbGqFSpklppa9eujYsXL8LKyirD0cetra3x5MkTvuZaKpXi+fPnqFWrlsr09vb2kMvlePDgAd+8PD0DA25QKJlMxq+rWrUqDA0NERISggYNGqg8btWqVXHjxg2FdU+ePMn6RRJCCCG5ZGdfgl8O+iDOMF1YjHDj2KZaNW1miRBCSBFAU4YVAt26dUPJkiUxZswYPHz4EB8/foS3tzcWL16Mz58/AwCGDh2Kbdu24dq1a3j79i0WLFiQ6Rzbtra26NWrF2bOnIlr167xx7xw4QIAoHz58hCJRPDw8EBUVBQSEhJgamqKkSNHYunSpTh58iQ+fPiA58+fY9++fTh58iQAoH///ggMDMTy5cvx7t07nD17lt9GCCGEaFMlB2Gu7sDwTPpzhwt1EjYVS2k1T4QQQgo/CroLAWNjY+zfvx/lypXDuHHj0LlzZ8yaNQspKSl8zffIkSPRvXt3TJs2Df3790fx4sXRrl27TI87f/58dOjQAfPnz0enTp0wZ84cJCUlAQBsbGzw22+/YfXq1WjcuDEWLVoEAJg4cSLGjh2LrVu3onPnzvjxxx/h4eHBT11Wrlw5bNiwAdevX0ePHj1w6NAhTFLuDEsIIYRoXInSFihRglsODLfLMF1YmLD8XW8pQgghJNtELKORtAqAxMRE+Pv7o2bNmjAxMcl6Bx2SyWTw9fWFi4sLxOKMm7SRgoXKtfCisi2cqFwLL3XL1sUFePIE0NcHkpMBVUmXLAFmzeKWT5wAevXSTp4LvIQEIK1bW3w8ULy4xk9Bn9nCicq18CpqZatuPEo13YQQQggpMtKmRZJKgZAQ1WnC3gXyyzZWCVrPEyGEkMKNgm5CCCGEFBnp5yIODFSdJuy9EI3bWERoNT+EEEIKPwq6CSGEEFJkVCrxkl8OeuipMk1YpDA1p01FK63niRBCSOFGQTchhBBCigy78tH8cuC7FJVpwqLMAQAmRgkwLal6Kk5CCCFEXRR0E0IIIaTIsKtegl8ODFI9yE/Y15IAAJsSkXmRJUIIIYUcBd2EEEIIKTIqOQhzgAUGK4+2LUmRICreEgBgUzImz/JFCCGk8KKgmxBCCCFFRkmbErA0jQIAPH5VGTKJTGH7l4/CwGk2pRLzNG+EEEIKJwq6CSGEEFJkiPREaOUWAAD4mlASjz0CFLaHfYzml21Kqe7zTQghhGQHBd2EEEIIKVLatZHwy1fPfVHYFvYpnl+2KS3PszwRQggpvCjoJoQQQkiR0q6nHb989ZaFwrawEKF226aMKK+yRAghpBDT13UGiCIHB4dMt48bNw6//fZbHuWGEEIIKXyqOFVElTJBePe5Eu49q4346ASYluAGVQuLEqYIsylrpKssEkIIKUS0FnRv3rwZt27dgr+/PwwMDPDw4cMs95k+fTpOnjypsK5p06bYsWOHtrKZ79y9e5dfvnDhAtavX49Lly7x60xMTPhlxhhkMhn09eneCSGEEJId7RoFYevJSpDIDHH7vD86D6oDAAhLdeHT2NRuqKPcEUIIKUy01rxcIpGgY8eOGDBgQLb2a9asGe7evcs/1qxZo6Uc5k/W1tb8w8zMDCKRiH/+7t07uLq64tatW+jduzecnJzw6NEjTJ8+HWPHjlU4zp9//okhQ4bwz+VyObZu3YrWrVvD2dkZ3bt3VwjmCSGEkKKkXbey/PLVh3X45bAwIY2NDQghhJBc01oV6fjx4wEAJ06cyNZ+hoaGsLa2ztY+MpkMMpks64QAjh0D5s/XQ1xctk6RK2ZmwLx5clSvDrXzCXCBMiDsk/Z89erV+OOPP2Brawtzc3Mwxvha7zTfr9uyZQvOnTuHefPmoVKlSnj48CH++OMPlChRAvXr19fUSy1y0t7f7JQrKRiobAsnKtfCK7tl26JbFejpMcjlIly9yiCTcb+xnz/rAeD6cpcqJQP9q2RCJoOYX5RBG28WfWYLJyrXwquola26rzPftUu+f/8+GjVqBHNzczRs2BATJ05EyZIlM93n1atXah9/4cIaePmyeG6zmW2LF6dizx7g6dOnau/z4cMHyGQy+Pr6AgDevHkDAOjSpQtMTEwQFRXFPxISEvh0ABAeHo74+Hj4+vpCIpFg69atmDFjBkxNTREZGYnKlSujcePG2Lp1KwwMDDT5Uouk7JQrKViobAsnKtfCKztlW7NmDTx/XhzPn4tw9epzWFtLEBRUC4AxDA3lePfOFyIaSy1DeklJqPtt2c/PD3JjY62diz6zhROVa+FFZasoXwXdzZo1Q7t27WBra4uPHz9izZo1+Omnn3D48GGIxeIM97O3t1fo65yZefOAefNYntd0z55tCABwcnLK9LWk9/79e4jFYri4uAAAUlNTAQDdunWDTbo2b5aWltDX1+fTAcDFixcRGRkJFxcXvH79GikpKVi+fLnC8SUSCWrWrKmwH8kemUyGp0+fZqtcScFAZVs4UbkWXjkp2+7dRXj+nFv+/NkR7doxxEbGAjBGGcto1K3rorX8FgoJCfyis7MzUFzzlRr0mS2cqFwLr6JWtomJiWpVAGcr6F61ahW2bduWaZoLFy6gatWq2Tksr0uXLvyyg4MDHBwc0LZtW772OyNisVjtQu3Xj3vkNZlMD76+2curnh7X5T4tfdpzU1NThWN8n447nwwikQhisRgpKdz0J//8849CsA5wzfmLwgdC27JTrqRgobItnKhcC6/slG2HdlIsXcr9hl4/5ofBAx0REcNNIWZjHgqx2FJr+SwU0r3PYrFY4bnmT0Wf2cKIyrXwKiplq+5rzFbQPXLkSPTq1SvTNBUqVMjOIbM8VsmSJREUFJRp0F3UWVpa4vXr1wrr0kaNB4CqVavC0NAQISEhaNCggS6ySAghhOQ7jRrKUdwoHgkpprh2ryzCgyPBGHdz2sYqIYu9CSGEEPVkK+i2tLSEpWXe3fX9/PkzoqOjsz2wWlHTsGFD7NixA6dOnYKLiwvOnDmD169fo1atWgC4mvGRI0di6dKlYIzBzc0NcXFxePz4MUxNTbO8kUIIIYQURobGhmjh8gQXvOvjc7QNbpy+B+Bb0F0qRbeZI4QQUmhorU93SEgIYmJiEBISAplMBn9/fwBAxYoVUfxbn5+OHTtiypQpaNeuHRISErBx40Z06NABpUqVwsePH7Fy5UpUqlQJzZo101Y2C4VmzZph7NixWLlyJVJSUtCnTx/07NlToX/BxIkTYWlpia1btyI4OBhmZmaoVasWfvnlFx3mnBBCCNGtdq0SccGbW95/yJBfX8ZGqqMcEUIIKWy0FnSvX78eJ0+e5J/37NkTALB37164u7sD4AYKi/s2oplYLMarV69w6tQpxMXFoXTp0mjSpAkmTJgAQ0NDpeMXBb1790bv3r355+7u7ggICFCZdvz48fw0baqIRCIMGzYMw4YN03g+CSGEkIKqfY/ywDJu+coDV369jQ0NW04IIUQztBZ0L1u2DMuWLcs0TfoAslixYtixY4e2skMIIYQQoqRmg6ooZxmKkKiykDNhQBybskXzhj8hhBDN09N1BgghhBBCdEWkJ0K7hm+V1tuU096c04QQQooWCroJIYQQUqS1a6vclNzG1kIHOSGEEFIYUdBNCCGEkCKtbS97pXU2FWmObkIIIZpBQTchhBBCijQbO2s4VxbGmTE0kKCENdV0E0II0QwKugkhhBBS5LVrGc8vl7bRh0iPRi8nhBCiGRR0E0IIIaTIa/eDG79M04URQgjRJAq6CSGEEFLkNWsGWFlxy3Xq6DYvhBBCChetzdNNCCGEEFJQmJgAly8DN24Aw4frOjeEEEIKEwq6CSGEEEIAuLlxD0IIIUSTqHk5IYQQQgghhBCiJRR0E0IIIYQQQgghWkJBNyGEEEIIIYQQoiUFuk+3XC4HACQlJek4J1mTyWQAgMTERIjFYh3nhmgKlWvhRWVbOFG5Fl5UtjqQnAw4OAjLIs1PtUblWjhRuRZeRa1s0+LQtLg0IyLGGMuLDGlDZGQkAgMDdZ0NQgghhBBCCCFFlJ2dHazS5p1UoUAH3VKpFDExMTAyMoKeHrWUJ4QQQgghhBCSN+RyOVJSUmBhYQF9/YwbkRfooJsQQgghhBBCCMnPqHqYEEIIIYQQQgjREgq6CSGEEEIIIYQQLaGgmxBCCCGEEEII0RIKuvPAgQMH0Lp1azg5OeF///sf/Pz8dJ0lkk1bt25Fnz59ULduXTRq1Ahjx47Fu3fvFNKkpKRgwYIFcHd3R926dfHbb78hIiJCRzkmOfHPP//AwcEBf/75J7+OyrVgCgsLw++//w53d3c4OzujW7duePr0Kb+dMYZ169ahadOmcHZ2xvDhw2k2jAJAJpNh7dq1aN26NZydndG2bVts2rQJ6YenobLN/x48eIBffvkFTZs2hYODA65du6awXZ0yjI6OxpQpU+Dq6op69eph5syZSEhIyMNXQVTJrGwlEglWrlyJbt26wcXFBU2bNsXUqVMRFhamcAwq2/wnq89senPnzoWDgwN2796tsL6olysF3Vp24cIFLF26FL/++itOnjyJGjVqYNSoUYiMjNR11kg23L9/H4MGDcKRI0ewa9cuSKVSjBo1ComJiXyaJUuW4ObNm1i7di327duHL1++YNy4cTrMNckOPz8/HDp0CA5pc85+Q+Va8MTExGDAgAEwMDDAtm3bcP78eUybNg0WFhZ8mm3btmHfvn2YP38+jhw5AmNjY4waNQopKSk6zDnJyrZt23Dw4EHMnTsXFy5cwO+//47t27dj3759CmmobPO3xMREODg4YN68eSq3q1OGv//+O968eYNdu3Zhy5YtePjwIebOnZtXL4FkILOyTU5OxosXLzBmzBicOHECGzduxPv37zFmzBiFdFS2+U9Wn9k0V69exZMnT1C6dGmlbUW+XBnRqr59+7IFCxbwz2UyGWvatCnbunWrDnNFcisyMpLZ29uz+/fvM8YYi42NZbVr12YXL17k07x584bZ29szHx8fHeWSqCs+Pp61b9+e3bt3jw0ePJgtXryYMUblWlCtXLmSDRgwIMPtcrmcNWnShG3fvp1fFxsbyxwdHdm5c+fyIoskh0aPHs1mzJihsG7cuHFsypQpjDEq24LI3t6eXb16lX+uThmmfQ/7+fnxaW7dusUcHBzY58+f8y7zJFPfl60qT548Yfb29uzTp0+MMSrbgiCjcv38+TNr1qwZe/XqFWvVqhXbtWsXv43KlTGq6dai1NRUPH/+HI0bN+bX6enpoXHjxvDx8dFhzkhuxcXFAQBfc/bs2TNIJBKFsq5atSrKlSsHX19fXWSRZMPChQvRokULhfIDqFwLqhs3bsDR0RHjx49Ho0aN0LNnTxw5coTfHhwcjPDwcIVyNTMzQ506dei7OZ+rW7cuvLy88P79ewDAy5cv8ejRIzRv3hwAlW1hoE4Z+vj4wNzcHE5OTnyaxo0bQ09Pj7rwFTDx8fEQiUQwNzcHQGVbUMnlcvzxxx8YNWoUqlevrrSdyhXIeAZvkmtfv36FTCaDlZWVwnorKyul/sCk4JDL5ViyZAlcXV1hb28PAIiIiICBgQH/o5HGysoK4eHhusgmUdP58+fx4sULHDt2TGkblWvB9PHjRxw8eBAjRozAL7/8gqdPn2Lx4sUwMDBAr169+LJT9d1M/fXzt9GjRyM+Ph6dOnWCWCyGTCbDpEmT0L17dwCgsi0E1CnDiIgIWFpaKmzX19eHhYUFfTcXICkpKVi1ahW6dOkCU1NTAFS2BdW2bdugr6+PoUOHqtxO5UpBNyHZtmDBArx+/Rr//vuvrrNCcik0NBR//vkndu7cCSMjI11nh2gIYwyOjo6YPHkyAKBWrVp4/fo1Dh06hF69euk4dyQ3Ll68iLNnz2L16tWoVq0a/P39sXTpUpQuXZrKlpACRCKRYMKECWCMYcGCBbrODsmFZ8+eYe/evThx4gREIpGus5NvUfNyLSpZsiTEYrHSoGmRkZEoVaqUjnJFcmPhwoXw8PDAnj17UKZMGX59qVKlIJFIEBsbq5A+MjIS1tbWeZ1Noqbnz58jMjISvXv3Rq1atVCrVi3cv38f+/btQ61atahcCyhra2tUrVpVYV2VKlUQEhLCbwdA380F0IoVKzB69Gh06dIFDg4O6NmzJ4YNG4atW7cCoLItDNQpw1KlSiEqKkphu1QqRUxMDH03FwASiQQTJ05ESEgIdu7cyddyA1S2BdHDhw8RGRmJVq1a8ddSnz59wvLly9G6dWsAVK4ABd1aZWhoiNq1a8PT05NfJ5fL4enpibp16+owZyS7GGNYuHAhrl69ij179qBChQoK2x0dHWFgYKBQ1u/evUNISAhcXFzyOLdEXQ0bNsTZs2dx6tQp/uHo6Ihu3brxy1SuBY+rqyvf5zdNYGAgypcvDwCwtbWFtbW1QrnGx8fjyZMn9N2czyUnJyvVpIjFYn7KMCrbgk+dMqxbty5iY2Px7NkzPo2XlxfkcjmcnZ3zPM9EfWkBd1BQEHbv3o2SJUsqbKeyLXh69OiBM2fOKFxLlS5dGqNGjcL27dsBULkC1Lxc60aMGIFp06bB0dERzs7O2LNnD5KSktC7d29dZ41kw4IFC3Du3Dn8/fffKF68ON//xMzMDMWKFYOZmRn69OmDZcuWwcLCAqampli8eDHq1q1LwVk+ZmpqyvfLT2NiYoISJUrw66lcC55hw4ZhwIAB2LJlCzp16gQ/Pz8cOXIECxcuBACIRCIMHToUmzdvRqVKlWBra4t169ahdOnSaNu2rY5zTzLTqlUrbNmyBeXKleObl+/atQt9+vQBQGVbUCQkJODDhw/88+DgYPj7+8PCwgLlypXLsgyrVq2KZs2aYc6cOViwYAEkEgkWLVqELl26wMbGRlcviyDzsrW2tsb48ePx4sULbN26FTKZjL+esrCwgKGhIZVtPpXVZ/b7mycGBgYoVaoUqlSpAoA+swAgYmm3h4nW7N+/Hzt27EB4eDhq1qyJ2bNno06dOrrOFsmG7+duTrN06VL+BkpKSgqWLVuG8+fPIzU1FU2bNsW8efOKTLOZwmLIkCGoUaMGZs2aBYDKtaC6efMm1qxZg8DAQNja2mLEiBHo168fv50xhvXr1+PIkSOIjY2Fm5sb5s2bh8qVK+sw1yQr8fHxWLduHa5du4bIyEiULl0aXbp0wa+//gpDQ0MAVLYFgbe3t8oBl3r16oVly5apVYbR0dFYtGgRbty4AT09PbRv3x6zZ89G8eLF8/KlkO9kVrbjxo1DmzZtVO63d+9euLu7A6CyzY+y+sx+r3Xr1hg6dCiGDx/Oryvq5UpBNyGEEEIIIYQQoiXUp5sQQgghhBBCCNESCroJIYQQQgghhBAtoaCbEEIIIYQQQgjREgq6CSGEEEIIIYQQLaGgmxBCCCGEEEII0RIKugkhhBBCCCGEEC2hoJsQQgghhBBCCNESCroJIYQQQgghhBAtoaCbEEIIIYQQQgjREgq6CSGEEEIIIYQQLaGgmxBCCCGEEEII0RIKugkhhBBCCCGEEC2hoJsQQgghhBBCCNESCroJIYQQQgghhBAtoaCbEEIIIYQQQgjREgq6CSGEEEIIIYQQLaGgmxBCCCGEEEII0RIKugkhhBBCCCGEEC2hoJsQQggpgry9veHg4ABvb29dZ4UQQggp1PR1nQFCCCEkvzlx4gRmzJiR4fbDhw/DxcUl7zJUAISGhuL48ePw8PBAUFAQ9PT0YG9vjzFjxqBx48YKab98+YK9e/fiyZMnePbsGRITE7F37164u7srHXfIkCG4f/++0vqmTZtix44dGeZn8+bNWLt2LapXr45z587l/gUSQgghOURBNyGEEJKB8ePHw9bWVml9xYoVdZCb/O369evYtm0b2rZti169ekEqleL06dMYMWIElixZgj59+vBp379/j23btsHOzg4ODg7w8fHJ9NhlypTB5MmTFdaVLl06w/SfP3/G1q1bYWJikrsXRQghhGgABd2EEEJIBpo3bw4nJyddZ6NAcHd3x82bN2FpacmvGzBgAHr06IH169crBN21a9eGt7c3SpQogUuXLmUZdJuZmaFHjx5q52X58uWoU6cO5HI5vn79mv0XQwghhGgQ9ekmhBBCcmj9+vWoUaMGPD09FdbPmTMHjo6OePnyJQAgNTUV69atQ+/eveHm5gYXFxcMHDgQXl5eCvsFBwfDwcEBO3bswIEDB9CmTRvUqVMHI0eORGhoKBhj2LRpE5o3bw5nZ2eMGTMG0dHRCsdo3bo1fv75Z9y9exc9evSAk5MTOnfujCtXrqj1mp48eYJRo0bBzc0NderUweDBg/Ho0aMs96tevbpCwA0AhoaGaNGiBT5//oz4+Hh+vampKUqUKKFWftJIpVIkJCRkme7Bgwe4fPkyZs6cma3jE0IIIdpCQTchhBCSgfj4eERFRSk80tecjhkzBjVr1sSsWbP4oPLOnTs4cuQIxo4dixo1avDHOXr0KBo0aIDff/8d48aNQ1RUFH788Uf4+/srnffs2bP4999/MWTIEIwYMQL379/HxIkTsXbtWty5cwc//fQT+vXrh5s3b2L58uVK+wcGBmLSpElo3rw5pkyZArFYjAkTJuDevXuZvl5PT08MGjQICQkJGDduHCZNmoTY2FgMGzYMfn5+OXoPw8PDYWxsDGNj4xztD3Cvx8XFBa6urmjSpAnWrl0LiUSilE4mk2HRokXo27cvHBwccnw+QgghRJOoeTkhhBCSgeHDhyutMzQ0xNOnTwEABgYGWL58OXr37o1ly5Zh6tSpmDVrFhwdHTF69Gh+HwsLC9y4cQOGhob8un79+qFTp07Yt28flixZonCOsLAwXLlyBWZmZgAAuVyOrVu3Ijk5GcePH4e+Pvfz/fXrV5w9exYLFixQOHZgYCA2bNiA9u3bAwD69u2Ljh07YtWqVWjSpInK18oYw/z58+Hu7o7t27dDJBIBAPr3748uXbpg7dq12LlzZ7bev6CgIFy9ehUdO3aEWCzO1r5pKlSoAHd3d9jb2yMxMRGXL1/G5s2bERgYiLVr1yqkPXToEEJCQrB79+4cnYsQQgjRBgq6CSGEkAzMnTsXlStXVlinp6fYSMze3h7jx4/H6tWrERAQgK9fv2Lnzp18YAwAYrGYDzrlcjliY2Mhl8vh6OiIFy9eKJ23Y8eOfMANAM7OzgCA7t27KxzX2dkZ586dQ1hY2P/Zu+/wKIo3gOPfu0shISFACL2EGkoSQpHeBelSVFBRkPJD6SgISK9SVZoKIiAiCkiVIk16r4EAoZMQWgihhPTkbn9/LLnjSCGBXOr7eZ57mNud3Z3NcHf77szOUKxYMePy/Pnz06xZM+N7BwcH2rdvz6JFiwgKCsLFxSXeMX19ffHz86NPnz7xnoOuXbs2GzduxGAwxDv/xERERDBo0CBy5MjBkCFDkrVNQl6+IdG+fXvGjBnD6tWr+eyzz4yjyD9+/Ji5c+fSt2/feN3chRBCiPQkQbcQQgiRCE9Pz2QNpNazZ0+2bNnCuXPn+OqrryhTpky8POvXr2fJkiXcvHnTrGt0QqOjFypUyOx9XACe2PKnT5+aBd0lSpQwtlTHcXV1BeDOnTsJBt1+fn4ADB8+PLHT5NmzZzg5OSW6Po5er+fLL7/k2rVrLFq0iAIFCrxym5To3r07q1ev5vDhw8age/bs2Tg5OfHJJ5+k6rGEEEKINyVBtxBCCPGGAgIC8Pf3B+DKlSvx1m/cuJERI0bQtGlTevbsibOzMzqdjoULFxIQEBAvf2JdsRNrZVYU5Q1Kb76PYcOGUaFChQTzJHcKrtGjR7N3715mzZpF7dq137hsL4u7+fD06VNAvWGwevVqRo4cyYMHD4z5oqKiiImJ4fbt2681eJsQQgiRGiToFkIIId6AwWBgxIgRODg40K1bNxYsWEDz5s2Nz1MDbN++nWLFijF//nyzFui5c+dapEz+/v4oimJ2rLiW7CJFiiS4TVxLuYODA3Xq1HntY0+fPp1169YxcuRI2rRp89r7SUrcjYq4buSBgYEYDAYmT57M5MmT4+V/++236dq1K6NGjbJIeYQQQoikSNAthBBCvIGlS5dy5swZfv75Zxo1asSxY8cYP3481atXNwaFcS3XLwbCZ8+exdvbm8KFC6d6mR48eMDOnTuNgX9oaCgbNmygQoUKCXYtB3B3d6d48eIsWbKENm3akDNnTrP1jx49euWz0r/++itLlizhiy++oFu3bm98HqGhodjY2JgNEqcoCj///DMA9erVA9Tpyn788cd428+ePZuwsDBGjRpl1v1eCCGESEsSdAshhBCJ2L9/Pzdu3Ii3vGrVqhQrVozr168b599u0qQJANOmTaN9+/ZMmDCBOXPmANCoUSN27NhBv379aNSoEbdv32blypWUKVOG8PDwVC+3q6sro0aNwsfHB2dnZ9auXUtwcDBTp05NdButVsvkyZP53//+R5s2bejYsSMFChQgMDCQY8eO4eDgwIIFCxLdfufOncycORNXV1dKlSrFxo0bzdbXrVuXfPnyGd//9NNPAFy7dg1Qu+DHzQfet29fAC5cuMCQIUNo3bo1xYsXJyoqip07d3L69Gk6d+5MpUqVALXFu2nTpvHKtGzZMoAE1wkhhBBpRYJuIYQQIhGJdf+eOnUqhQsXZvjw4eTJk4eRI0ca17m6uvLVV18xZcoUtm7dSqtWrejYsSMPHz5k1apVHDx4kDJlyjBz5ky2bdvG8ePHU73crq6ujBkzhhkzZnDz5k2KFi3KDz/8QP369ZPcrmbNmqxatYqffvqJP/74g/DwcFxcXPD09KRz585Jbnvp0iVA7cY+bNiweOt///13s6A77oZEnLVr1xrTcUF34cKFqVatGjt37uThw4dotVpKlSrFhAkTXlkeIYQQIqPQKKkx+ooQQgghMoQmTZpQtmxZFi5cmN5FEUIIIQSQvMk2hRBCCCGEEEIIkWISdAshhBBCCCGEEBYiQbcQQgghhBBCCGEh8ky3EEIIIYQQQghhIdLSLYQQQgghhBBCWEimnjIsNjaWp0+fYmtri1Yr9w+EEEIIIYQQQqQNg8FAVFQUTk5OWFklHlpn6qD76dOn+Pn5pXcxhBBCCCGEEEJkU66urjg7Oye6PlMH3ba2toB6knZ2dulcmqTp9XquXLlCuXLl0Ol06V0ckUqkXrMuqdusSeo165K6TQcREVC3rpo+dAgscC0m9Zo1Sb1mXdmtbiMiIvDz8zPGpYnJ1EF3XJdyOzs77O3t07k0SdPr9QDY29tni/+A2YXUa9YldZs1Sb1mXVK36UBR4PJlNZ0jB1jgWkzqNWuSes26smvdvupRZ3kQWgghhBBCCCGEsBAJuoUQIhVER6d3CYQQQgghREYkQbcQQryBx4+hSxe1V+XgweldGiGEEEIIkdFI0C2EEK9p3z6oXBn+/BP0epg3T+HhncfpXSwhhBBCCJGBSNAthBApFBMVw6i+Z2jcWCEgwLTcYNCwecWF9CuYEEIIIYTIcCToFkKIFLh6xo+6nlf49ucqKIoGAPcKYcb1GzZZp1fRhBBCCCFEBiRBtxBCJNPedd5UqZ2PE1cqAWCli2HqpDBOn8lBgdwPANhx3IPwkPD0LKYQQgghhMhAJOgWQohkGjLclrAoBwDKFr7JkW1XGTE6J9a2Ot5teAmAiGh7dqz2Sc9iCiGEEEKIDESCbiGESIaggIecvlYBgArFrnP6vAvVm1Y0rm/fMYcxvXGDzB8mhBBCCCFUEnQLIUQy7N54xZhu2yQAhzwOZuubvOeJQ45nAGzaX5HY6Ng0LZ8QQgghhMiYJOjOxkaMGEHfvn2N7z/99FOmTJmS5uU4duwYbm5uhISEpPmxhUiuXTtNQXTTFo7x1ufImYOWtdVu5cHPnDm0VUYxF0IIIYQQEnRnSCNGjMDNzQ03Nzfc3d1p1qwZ8+fPJzbWsi1n8+bNY9CgQcnKK4GyyE4Ug8LOIyUBsLWOpF7rignma9dWMaY3rH6SFkUTQgghhBAZnATdGVT9+vU5ePAg27dvp3v37syfP5/FixfHyxcdnXrPjubOnRsHB4dXZxQim7l+1h//oGIA1HO/iJ2jXYL5Wn1cCStdDAAbd5dEMSgJ5hNCCCGEENmHVXoXQCTMxsYGFxcXAD7++GN27drF7t27uXnzJiEhIXh4eLBixQpsbGzYvXs39+7dY9q0aRw6dAitVku1atUYNWoURYsWBUCv1zNjxgzWrl2LTqfjvffeQ1HMA4JPP/2U8uXLM2rUKEAN6OfMmcPmzZsJDg6mUKFC9O7dm9q1a9O1a1cA3nrrLQA6dOjAtGnTMBgMLFq0iFWrVvHw4UNcXV3p27cvLVq0MB5n3759fPvtt9y7d4/KlSvToUMHi/89hXgTO/819eho2jDx3h15CuSmUeVT7DpdjZuBxfE5G41nFZu0KKIQQgghhMigsmfQ7fs9XPr+1fnyVoWG/5gv2/cuPDr96m3LfwUVvnq98iXA1taWJ0+eAHDkyBEcHBxYunQpADExMfTs2RMvLy9WrFiBlZUVP/30E7169eKff/7BxsaGJUuWsH79er799ltKly7NkiVL2LlzJ7Vq1Ur0mMOGDcPb25vRo0dTvnx5bt++zePHjylUqBDz5s1jwIABbNu2DQcHB3LkUEduXrhwIf/88w8TJkzA1dWVEydO8PXXX5M3b15q1KjBvXv36N+/P126dKFTp06cP3+e6dOnp9rfSQhL2HXK05hu9p5bknnbd3Nn1/OviA2bbPCsYsmSCSGEEEKIjC57Bt0xIRBx59X5IoslsCwoedvGpM6zzoqicOTIEQ4ePMgnn3zC48ePsbe3Z/LkydjYqC1oGzduxGAwMGXKFDQaDQBTp07lrbfe4vjx49SrV49ly5bRu3dv3nnnHQAmTJjAwYMHEz3uzZs3+ffff1m6dCl16tQBoFgx09/DyckJAGdnZ3LlygWoLeMLFy5k6dKlVKlSxbjNqVOnWLVqFTVq1OCvv/6iePHijBgxAoBSpUpx5coVFi1alCp/LyFSm14Pu3er6bx5wat2oSTzv9vBlv7Ph0bYsAHGjrVs+YQQQggh3kRwMPTpA7dvw8CB0KkTaOUh5FSVPYNu61xgV+TV+XK4JLwsOdta50p5uV6wd+9eqlSpQkxMDIqi0KZNGwYMGMDEiRMpV66cMeAGuHTpErdu3aJq1apm+4iKiuLWrVs8e/aMoKAgKleubFxnZWWFu7t7vC7mcXx9fdHpdMbu48nh7+9PREQEPXr0MFseExNDhQrq/MbXr1/H09PTbL2Xl1eyjyFEWjt1Cp53MqFJE9Dpks5frBhUq6Zud+YM3LoFxYtbvJhCCCGEECnm7w8tWsClS+r7I0dg5kyYOhWaNYPn7XniDWXPoLvCG3T9frm7uYXUrFmT8ePHY21tTf78+bGyMlWVnZ35IE7h4eFUqlSJWbNmxdtP3rx5X+v4cd3FUyI8PBxQu5gXKFDAbN2LNwmEyEz++8/0a9OsWfK2ad9eDboBNv4ZwIARCfSaEUIIIYRIR97e0KoV3Ltnvvz0aWjeXG1smDYNUtAGJxIhHQcyKDs7O0qUKEHhwoXNAu6EVKpUCX9/f5ydnSlRooTZy9HREUdHR1xcXDh79qxxm9jYWC5cSHwe4XLlymEwGDhx4kSC662trQF1gLY4pUuXxsbGhrt378YrR6FChYx5fHx8zPb1YrmEyGh2rzN9Tpo20SeR06R9qyfG9IbVQaldJCGEECJT27cPxo1z5XQyhkkSrycyEq5dA4Mh4fX//QcNGpgC7nLlYMUKqPLCWDS7d0ONGvDRRxAWZvkyZ2USdGcBbdu2JU+ePPTp04eTJ08SEBDAsWPHmDx5Mvfv3wega9euLFq0iF27dnH9+nUmTJiQ5BzbRYsWpUOHDowcOZJdu3YZ97l161YAihQpgkajYe/evTx69IiwsDAcHBzo0aMHU6dOZf369dy6dYsLFy6wfPly1q9fD8CHH36In58f06dP58aNG2zatMm4ToiMJio8ikM+5QAoWeAWpcq8om/5c5W8nChd0B+AfWc9eXT/iaWKKIQQQmQq0dHQubOWLVucadVKS3Bwepco69m7F8qWVV8FC8LHH8PSpRAQoK7/809o2RKePVPf16oFhw6p+U6ehL/+gtKlTftbuRKGDUvz08hSJOjOAuzs7Pjjjz8oXLgw/fv3p1WrVowaNYqoqCjjvNs9evTg3XffZfjw4Xz44YfkzJmTZq/oKzt+/HiaN2/O+PHjadmyJWPGjCEiIgKAAgUKMGDAAL777jvq1KnDpEmTABg8eDB9+/Zl4cKFtGrVil69erF3717j1GWFCxdm3rx5/Pfff7Rr146VK1fy5ZdfWvCvI8Tru3QsiOhYWwCa1fZL9nYarYZ2b98EQG+wYsufifcqEUIIIbKTvXvh4UP10a2HDzUMH56+5UlMaCh8/z38/jskMgRShhMdDd98o3YLv31bXRYUpAbRPXqoY8yUKQNdukBMjLr+3XfVVu98+dT3Wi18+CFcvAg//QT29uryn3+GY8fS/pyyCo2S2EhamUB4eDi+vr5UqFAB+7j/ERmUXq/H29sbLy8vdK8aiUlkGlKvWZder6d/p+0sWNcKgNU/HeGDPrWTvf2Bf87SoJ06eGGLGifYeqQ6Gq2MRpLe5DObdUndpoOwMHh+c5/QUMiZM9UPIfWa9XzxBSxcaL5s/36oXz99ypOQa9fU8VninsQcOhRmzMjYg4pduaIG0ydPmpZVqKAG33Et2i/r3Rt+/BGSepL1u+/U8weoXFndf1L5s9tnNrnxqLR0CyFEIg6dLgmARmOgSbuk5+d+WZ2W7hTI/QCAbcffYtpX+1K9fEIIIURmoter02m+7PPP1VbajGDbNnXgsBeHPpo1Sx3NOyNSFFi8WH0WOy7gtrZWbxKcP69OB3bwIIwfD3XrqrOwaLUwaRIsWJB0AA0waJAabAOcPQtz5lj0dLIsiwbdT548YciQIVStWpXq1aszcuRIwl7xFP6nn36Km5ub2WusTHQrhEhjD24F4eOnTnVXtcwlnAunbCYAnbWOuZOvGd+PnNOIVfMPp2YRhRBCiEzlyBEIDFTT9es/4a231A63vr7qNFXpSVHUkbpbtTJNFfr86UgARo1Su1unl/v31YD366+ha1d1dHEvLyhUCHr1gueTCFGunPp3/vprNbi2tlaD7XHj1OD78WO4exdGj05ey72VFfzyiynv2LHqNGMiZSwadA8dOpRr166xdOlSFixYwMmTJ5MVQHfq1ImDBw8aX8PkyX0hRBrbvdEUMDet++C19tGpXx2mDNxrfN/tq6oc2nzuTYsmhBBCZErr1pnSTZs+5uefDcT1QJ48We3WnR5CQ6FzZ/V56LgHb9u1U1u7Z8ww5evXTx3hO62dOwceHjB4sNrqvnw57NihtjzH3cQAtbv46dNQrVri+3J0hJdm9n2lGjWgb181HR4OAwZknufcMwqLzdN9/fp1Dhw4wJo1a/Dw8ABg9OjR9O7dm2HDhsWbx/lFOXLkwMXFJdnH0uv1ZlNXZURx5cvo5RQpI/Wadf33n2mOjSYtHF67jofNqsf1m/tZsqkBUTE5aPdxEQ4dekiZinlSq6hGT4NCWLfUh3Ub7LCx1rPwz1LkK+Kc6sfJzOQzm3VJ3aYDvR6dMalX+w6n+iGkXrMKRYF167SABisrhfr1n+LhoWfAAA2zZ2uJjIQ+fRT+/deQps9OBwZCixZafHxMBx03zsCoUQpaLXz1FTx6pGHaNLWtsls3hZw5DbRtmzbl8/aG5s21BAfH/6NYWyvkzw8lSsCQIQbatVOXW+LjMnGiWn/37mnYtAnWrdPTvn38fNntM5vc87TYQGpr1qxh+vTpZvM8x8bG4unpyZw5cxIdOfvTTz/l6tWrKIqCi4sLjRs3pm/fvtjZ2cXLG/fguhBCpCbFoNCxZUECgouSwzqC3bu9sbGzee39xcboGf457DtXA4DixSNZsuQSuXO/+Q9SdLSG03uC2LElB9tP1CQqJodxXZd3dvLltynrFi+EEMmljYigyvPRr84cOIAhgWs1IeJcumTHJ59UBKBWrafMn682a4eHa/ngg0oEBqq/s5Mn36BFi8dpUqbISA29e7tx8aI6CGDOnHomTbpJgwZPzfIpCsyYUYy//84PgI2NgWnTblC7dgjW1pZr8vX1tadfv7KEhKjtpO7uofTvfwdn51jy5o0hVy59mt6g2LUrNyNGqHOJ5c8fzd9/XyBnzkQmAs9mXjWQmsVauh8+fEjevOYXe1ZWVjg5OREUFJTodm3atKFw4cLkz5+fy5cvM2vWLG7evMn8+fMT3aZcuXKZYvRyHx8fPDw8ssVIftmF1GvWdOWMHwHB6oNcdT0uUqN2jTfe59ptT2nQKJSLVxy4dSsH48dXZvt2A7a2r7c/RYGpUzX88IOGx48T/sVd9V8jJtreo0SFIm9Q8qxFPrNZl9RtOnhhnB5PT0+LjV4u9Zo1rF1r+q365BP1/0pcvS5YAB06qOvmzi3J55+XIE/qdwgzo9er84VfvKiWq2hRhW3boHz5kgnmX7ECrKwM/PWXluhoLV99VQZra4Xy5cHDQ8HdXf23USNIjftPx49D//5aQkLU8tWurbBlix25cpV5852/psqVYe9ehW3bNDx4YMPatZX5/nvzmw6JfWZv3YLcuSFXrjQutIWFh4dz5cqVV+ZLcdA9a9YsFi1alGSerVu3pnS3Rp07dzam3dzccHFx4bPPPuPWrVsUL148wW10Ol2m+SLOTGUVySf1mrXsOVbKmG76jk2q1K1zobxs3QE1a6pd2Q4e1DB4sI5ffnm9/a1YoQ5m8iKXXEF82PIiYWFalmyuT6zemlnj/fhpTcLfndmZfGazLqnbNPTC31mn05m9T/1DSb1mdnGjlms00L69hvv3TfXavr0adK9fDw8eaBgzRsfPP1u2PMOGmcrk6Ahbt2qoVCnx/2M6HSxbpk6/tXmzuiwmRoOPD2Zd00uUgD17oGTCsbuZhw/BYABnZ/OPz5Ej0KIFhISo7+vXhy1bNDg6pv9n4KefoFIliIiA+fO1dO4MderEz/fiZ3bRInWE+vz5YfduqFgxjQttQcn9Xkpx0N2jRw86xN2KSkSxYsXIly8fjx49MlseGxvL06dPU/S8duXnY9T7+/snGnQLIURq2r3H9OP5dsfU+2UoUQI2bYKGDdUfq0WL4L23fWje2SNF+4mIUAd7ifPhh9C1nS9NO5TB2rYhwXcfsbr0M0IjHVm8sSajr9+ncOmCqXYeQgghREr4+qovUEfSLlhQHY37RXPnws6d6qBmCxfC//4HVau+3vH+/FOdt7pTp4QDvJ9+gu+/V9M6HaxZow5U9irW1rB2rTpF14ED6gBnly9DbKwpj78/NG2qjhReqFDC+4mKUoPQ339Xe65pteDiog5wVqCAGnSHhqp5GzdWrx0s0JHktZQsqY6EPmKEesPgo4/gzBnIm8jTbKdPQ//+6nkGBkKzZurfJjk3JbKSFI9enjdvXkqXLp3ky8bGhipVqhASEsL58+eN2x49ehSDwaB2QUqmuGe2UxKoCyHE61IUOPx8Zq+cOfXGuSlTy1tvwezvTb/O/+ufl5DgZynaxw/jLxAQoKZbtoS//oKWH1bA2tYaAOfCeenb+RQA0bG2zBxzOXUKL4QQQryG9etN6Y4dE85TtKipB5eivP4I2du2QZcuMGGC2iLbqhXs2mXa19at6r7j/PwzvPNO8vdvYwN9+qiB/fnzanB89qw6ongFdaZRbtxQ9/lS+yMAT5+qZVq2zFQmg0ENSM+dM914ADVA3bw54wTccYYMUVvfQe02/tlnCddVSIh64+PFOdjv3lXP6969NClqhmGxKcNKly5N/fr1GTNmDOfOnePUqVNMmjSJ1q1bG0cuDwwMpEWLFpw7p06hc+vWLX788UfOnz/P7du3+e+//xg+fDhvvfUW5cuXt1RRhRDCKCDA9ENQqVKYRXpL/q+3jiZVTqvHe1iE4b3PJHvb+zeDmDpX7fWj0+mZNTPhK5IhEythZ6NO2rlwQ30evN6sZ0IIIcQbe3GqsKQ6zA4aBG5uavrwYfjjj5QdR1FgzBjzZf/+qwZ5lSurc4F37qwGuQDDh6st6m/C1hY8PeGTT9SA2dVVXX7+vBpcxwXQoAacDRqoXaxBffa7ZUt1iq+iRdWW9Dht2sDGjZARh62yslJvOjg/nyBl0yb44QfzPIqi/m2vX1ffV69uuilx/XriNyWyKovO0z1r1ixKlSpFt27d6N27N1WrVmXixInG9TExMdy8eZOIiAgArK2tOXLkCD179qRly5ZMnz6dd955hwULFliymBmKm5tbkq958+aldxGFyNKObjfNiODp/sQix9BoNfz6uws5bdVf4gXrGrB7TfIC73Ff+RIa6QhA7/YHqVgp4UHU8hd34fPe6rqICC3ffZcKBRdCCCFSyN8fTqmdr6ha1RSUJsTGBubMMb0fNsz0XHNybNoEJ0+q6ZIl1ce64vj4qPuLC4I/+AC+/Tb5+06OIkXUwDtuZuRjx6B9e7U7ua8v1K6ttmaDGrDu2aO2vJ88qd70j4qCx4/V1uN//kmdAdkspWhRtXU/zvDh6vnGWbhQw+rVajp3bli9Wp1bPK5OEropERWlPmf/wQfq3/Krryx9FmlIycTCwsKUkydPKmFhYeldlFeKjY1VTp48qcTGxiaZ78GDB8bXb7/9plStWtVsWWhoqDGvwWBQYmJiLF10kYTk1qvIPL78eI+i3p9VlF+mbbBo3c4bvdd4rJIF/JVnj54lmd/n0BVFq4lVQFEc7Z4qgf4Pksx/546i2Nio+8+ZU1EePkzN0mdO8pnNuqRu00FoqGL8Envh+iQ1Sb1mfj/8YPpvMnmyuuxV9dqunWmboUOTdxy9XlEqVzZtt3GjosTEKMrq1YpSu7ZpOajvw8NT4+wSdvasouTObTre228rSp48pvclSyrK5cuWO35aGj7cdF4lSihKUFCs8scfFxRbW4Nx+fr1pvxXrypKgQLmf5s9exTl88/N/0agKE5O6XNOKZHceNSiLd0i5VxcXIwvR0dHNBqN8f2NGzeoWrUq+/bto2PHjnh4eHDq1ClGjBhB3759zfYzZcoUPv30U+N7g8HAwoULadKkCZ6enrz77rts27YtrU9PiAzv6BlnY7ps1dwWPVbf8fVp4OENwM3A4ozscyrJ/EMHP8WgqP3dR31xmvzFkx7ronBh6NlTTYeFmbceCCGEEGlh7VpT+r33krfN999jnFJz9my4dOnV26xfrz5bDWpX5rZt1W7QH3ygdlU/fFh99rhbN8u3Int6qi3YcV3D//tPbcEGtbX/8GEoV85yx09Lkyapg+OB2quhWzct33xTiqgotbfdoEFqa3+cMmXUFu/cudX3//2nDha3cKHpbwTqwHJZqYOvxebpzqj+/lsdpOFZysYteiOOjupgDqVLp87+vvvuO4YPH06xYsXIlczJ7hYuXMg///zDhAkTcHV15cSJE3z99dfkzZuXGjXefA5iIbKCqPAoTl1VfwXLFr6JY14Hix5Pq9Oy+Pc8eNYMJyLannmrGvLBx2ep/2780du2rTjJ9hPVASjhcptBk2ol6xjDh8OiRQqxsRrmfv+MIQP0OLnkTs3TEEIIIRJ0/z4cOqSmK1SA5A7RVKqU2hV80iR1ZPBBg9QB0jQJP1GFXq+OqB1n4sT4eWvXVl9ppXZttat0mzamgcSaNVNvQjg6pl05LM3aWh3Q1ctLfUZ761YNkANQb37MmBF/m7ibEk2bQni4abm9vfrM/yefqOusslCkmoVOJXlmzkze3bLUNmuWNtXmGxw4cCB1424pJUN0dDQLFy5k6dKlVKlSBVCndTt16hSrVq2SoFu8kdjoWG6cD6CslysabSK/hpmE94GrRMe6A1DL8w5g+YepyniVYMqXe/lqeiMAenzhyLEaT8lb0MmYJzY6liEjcxvfTxtzixw5iyZr/yVKQLc2J1i8oQZPwxyZN3Evo+c1SsUzEEIIIRK2caNpVOvERi1PzIgR6gjft26pLaMbN5q3mL5o9Wq4cEFN166tznGdETRrpgbe48ap04VOmaI+t57VFCumTn/Wpo1pWa5cCqtWaRI939q1YcsW9bntggXVEefbtQMHy7Z3pJtsF3QPG6aOapjWLd1DhxpSbX8eyZlI8AX+/v5ERETQo0cPs+UxMTFUiBtGUIjnTu32Zc7MYNq+q+ODPknfEvY9fp32HbVcuVOSljVOsOrf8jjmzby3b4/ue2hM16wZm0TO1DVwUn3+/seHI74eXLtXCudCarDs6anOGxp68ygXb9UDoFZ5Hzr3S9mt+m/GF+C3f2LRG6z44TdPBk14lqnrSQghRManKOoI13FSGnTb28N336ndwwG+/BKaN4/fLTw2FsaPN71PqJU7PbVsqb6yutat4euv1QZOgF9/NVCqVNJTwDRqpM7jnR1ku6D7/ffVV1rT68HbO3X2ZffSt41Go0F5aXK82FhTwBD+vN/GwoULjdO1xbHJirfbxGtTDAqfdLPh0u16LN8GH68/xE8r3HFycYqXd+PiY3w6oALPItRHHP49/haNa11kyw4XCrgm/axxRnXkmOnzULOBCxCZJsfVWetYsiwnVepGEBmjfr79/dXXpk0A9Yx5v5tFinsUlK5cgo/fOcjybfV4FJqXFfP388XYBql4BkIIIYS5tWth/341XaoUPO9smSLvvQdNmqhTbPn5qYHdrFnqc9Fx/vwTrlxR0w0awNtvv3HRxWuaNg2qVDEQEnKVjh3LpHdxMhQZSC0LyJs3L0FBQWbLfH1N0x6VLl0aGxsb7t69S4kSJcxehQoVSuviigzs1G5fLt02DT7w5866VK70jIObzhmXGfQGxvfZS/teNY0Bt3H7qxWpXSuCq2f80qrIqeqoTzEA7G3D8Kidtj8W5d8qxYm9t/m8sw916iTcvapTk8PUaZ2yni5xvhyez5hetU5auYUQQljO06cwcKDp/YwZr9f6rNGog2nFPdu7Z486p/WHH8K1axATo7Zsx8lordzZjVYLnTopVK8e+urM2YwE3VlArVq1OH/+PBs2bMDPz4+5c+dy9epV43oHBwd69OjB1KlTWb9+Pbdu3eLChQssX76c9evXp2PJRUbz128PjGmtRg+Af1BRGrarxNg+h3j0CDq0j2XCgkbGfJ2bHOb4josUdb4LqKNw12nkwPG9d9K07G/q3vX7+AepQfdbblexskn7jkDudcqyYKUHhw6pFyw3bqjPsE0ccJgJfffy69+vF3ADeDVwo2zhmwDsO1eZezcCU6vYQgghhJnRo+HePTXdunXKu5a/qGJFdbTxkiVNy1atUgdme+cduH5dXfb22+pz00JkRBJ0ZwH169enb9++zJw5k/fff5+wsDDavzTSxODBg+nbty8LFy6kVatW9OrVi71791K0aPIGYxJZnz5Gz8p/3QCw1kVzau816rurc28YFB2TFtSlcGH4Z7PaBVur0TP9q338tbM2bzWryJEjGtxLqDd7Hobko3HrwmzZkj7n8jqO7vYzpmtVfZJu5Yij1aoXGO++C2Pm1mHsj43e6DlsjVZD59b+ACiKljVL0mFESSHEGwt9HMqymQc5sfNiehdFZDOxsXDkiDr95KkkZrg8cQJ+/FFN29vD/Plv3vrcsqU6EPLcuepUUnHl2bvXlOfFFm8hMpps90x3ZtKxY0c6vnBrsGbNmly+fDnBvAMHDmTgi/14XqLRaOjWrRvdunVL9XKKrOHAjjvcfVQcgBY1vfFqUIM9p/VMH7qHsT82QK/XERWl5s2dG1b+/ozmbU23lIuWLcSB40/p0Po6e0+WJjxcQ7t20LcvDB5koFTpjH2P76hPCWO6dj37dCyJ5XT+rAiTF6npVRvyMGBy+pZHCJEy/yw5Rv/hRQl4WA+t1sCGDepcxEJYgqLA1auwc6f62rMHQkLUdTqdOpf2gAHmAXVsLHz+uWnE8vHjwdU1dcpjY6Me77PP1GPPmgWhz3sxt2gBdeqkznGEsISMfRUshEgzf24sbkx/3E0dOE1nrWPknMYcPqQ1zjPv7g4nT0Lztrnj7SN3fie2HSxNp07qe71efRarTFl4r+FRDm0+h2JQ4m2XERw9axrfoGbrrDmNnnudslQsfg2AQxc8Cbh8N8X7uHABatVSL3z0+tQuoRAiIbev3qNjg6O061mTgIdFADAYtHz4YdItjkK8iqKo8yX/8IM6RVf37mp38OrVoXBhcHOD/v3VR53iAm5Qv/8HDVLzR74w5ui8eXDmjJr29ITBg1O/zI6O6hRc16+rZe7aFZYuTf3jCJGapKVbCEF0NKxZo6Zz5oS2XdzM1teoqeHCBTh3Dry8wNo68X3Z2sJff6k/1LNmQUSE2p153f5arNsPNdzOM3TQM97/vFaGmdc7NlbtDgfqHfmCBbNuQNm5zW3G/aQOEvf38vt8Nblwirb/4gs4dkx9VawIffpYopRCWFbY0zB8jtykWmM3rG2T+EJLZ/oYPT+OP8io76sSGlnLuLyQczD3gp0JD1fnxT12DIoXT2JHQiRiyhR1Kt3kcHaGpk3VoPfXX9Vly5apN2PXrVPfx+1Lo4GFC5O+XnhT+fPD1KmW23+2ERsOhhiweWGmGkWBC1PAEA36KNDlAIeS4FAKcpYEu8KgTXo6MGFOgm4hBNu3w+PHarpdOzXwfpmtLbz1VvL2p9Wqz1YNGgS/fH+TeT/bce9xQQCOX3anU1+YdXMvQ2Y0Sp0TeEPnzqk3BwBqp2wK7Eync89SjPtJTa/cUZWvUtDF/PhxOHjQ9P6b4ZG0b/6UQqUKJL6REBmMPkZP01o3OHrJgx5tDrB4U/30LlKC/H1v8367EE5eNT3Gk98piNkTr9K+V22aNoPDh+H+fWjdIpxDB2LJ5ZwriT0KYe7YMfP5rV+k1arPTru7Q7Nm6svLS10OavDdoweEh6u936pXh7JlISxMXf/FF2qvKJHOzo2HgL/B2un5K5f6rxILodfh2TWIuAvu48BzvGk7jQZ8xoOSSAuE1gZylgDHclBhCBRobPlzyeSke7kQgj9XmL5UP/449fbr7AzfTCmJ3528LJt5kMolTWMSbN+dcaatOrrvkTGd1S8S3KoWp3JlNX3ihDpCenJ9N/662funz3Lw5f+uJ5JbiIzpr/lHOXpJnQlg6Za63PC5lc4liu+Gzy0aNISTVysal/Vuv59Ll635aGAd7Ow1bNyI8bGf8772fNDiCjFRMelUYpHZhIbCJ5+YenX16QO7doGPDzx4oE7Fdf++umz4cHVebO0LUUPnzupNn7jntR88gEOH1HTBgvDtt2l6OtlTZBDc2aoG1ntawc4G8fOE3YSnF+HhEbi3DW6thuuL4MZSeLBfDbgBQq/F31Zrm/ixDdHw7Crc3QIxL00P9uwqRR98B7c3QlTw655dliMt3UJkc6GPQ9m4XgvY45wnmnfesUn1Y9jY2dB1aD0+/Uohn9MjHoXm5cLNlHVrfhOPA58wZag3xYppGDi5Qbxu7Ud3XATqAVDL8w5QJM3Klh46d4az6sD0rF6tPhP3Kn4XAlizzRWA/Hkeo481EPzMmVW76/DZipO06FLdcgUWIpXERscyYabp860oWn6cfoPv/kibvtlhT9VmwJxOCXQneu7quUAaN7HmTrA6zkSZQn789ksIdduYX1DnywdbN4RQu3Ysj0LzsuNkdfp13s/CdfUzzKM7ImF6vdq7ysEh/cowZIg6zzVAjRrqiOQp7QpeubLayv3hh2pwHmf2bHXA1Swp1E8NYiPvQ2QgRDz/N+595APQWkMeL2i8zXzb00Mg5BLEPIWYEIh+CvowteU5RwHIkV/9t3AbKPrCCImx4XDzdzUd8wwenYLg42pAbUaj7vPFbuIaHVjlhNiwhM8nR35wKAOObvHX1V8HGi3obNXyht6A0Jvqv2HP/40Ng7xVzEvx8CgFHv8Fh/5SF+T2gPwN1Ve+WmBXJFtOpi5BtxDZ3D/LzhIRXReADxofxdo6gTulqUSj1VDRNYCD5/Ny91Ehnjx4Su78Tq/e8A1EhkXS9m1/Dl1o9HzJPgZ9az6R55Gz6tR5ttaReNV0sWh5MoLOnWHkSDW9apXCiBGv/vGbM+U6BkWdx7z/x2cpVtyK7sPVGxV9h+TnfNtw7HNlzVHfRdax/A8d1+65mi1bvL4KEx6H4pDHshGQ34XbVK2Zk7Aoe/p12svI6R7kK+pslufSJWjSIj/3gtXPZMXi1/hvby4KlnRNYI9Qzj0XG1acpel7OYmOtWXRxgaU+Xovw75rZNFzEa9Pr1dH2v7vP/W56B490r4MmzbBL7+oaXt7+OOP13/22tkZ/v1XnZd77lz46COMg6lmKgY9RNxWu1vHdbsO84O6K9XAM861X+BiMh4kj3oUf9mD/fDoZAJ5g9UANk6OguZBd8wzOJGMAVRsndVg2MbLtKzWEvVliFUD55gQNehHUZ/Ptk7ikZTCzZM+nqJAmL8aRL/oyZmX3vuoryvz1ffWTuBUCQo0gcqTXn1eWYR0Lxcim/tzlemX9qOulg2AASqWeWpM+560bLdOg95A93anOHShsnHZ1zNqm81v+/B2sPEivFrZK9jYpX5Lf0ZTqhRUrxIOgLe3hiunX75bbu7Jg6f8ur4aAHY24fQZ4UG3oXVp6OkNwM3A4kz+8rhFyyzEm4qJgYmTTDeYqrtdBeBpuBO/z7b8EOALv7vG47A8RMfa8sOfjShdzorJA/YS+kRtgbpwARo1gnv31DJ6lL3PngNOFCyZP8n91n+3MktnmS7kR86uh9+F2xY7D/Fm9u5VW4UVBYYONU15lZoMBtOUXS8LDISePU3vf/hBfRb7TVhZwbRp6rksXpwJGjHD78DhrrD7HdhaGdYVhFU2sNEVdjeF45+D70y49TdE3DPf1q5g4vu1yqkOMmZfHOyLxl//YoCry6G2aucsCTZ5zPPlSPozr25vBy71oPxX6o2Bd29AxwdqC3tCtFZgmxccXCFPZTVfUgF3cmg06v5eqnCl4miuFZ6FodwgyFPV/KYFqEH/w8Pw2Dv+Prd4wD9lYGc9ODv6zcqXwUhLtxDZWPCdYLafULsFFXW+S702HhY/ZqWKCmxQ0xfPPqF2K8sda8zn+1n5XyOzZTF6Gzp94sgZH7WV/djuG4Da2lSrymPLFSaD6fz2cU6eaQTAqiX+jKlaMtG8v848Q2ikmrdbm5PkK6r2hljway48a0cTo7dh5rK6fNzzKu513vDqTQgLWboU/PzU9DvvwPRRBqo87/Qyb0lRvhhrQKuzTFuEYlBYtbWU2bKQCCfGzG/E/D8eMOCzc8xZUYugIPXi1csLdu4sSL58ydv/x4Pq4n16LzN/b4TeYMXC764xdUkCF/0i3S1fbko/fqy2dqfWtFrR0WoL9rffqjeZ3n8funRR56/WatVAvFcvCApS87dpA//7X+ocG8yf+U43iqJ24b7zDwSfgJDLUOkbcH1hwBrFAH7LE9/Hi0Kvg/0LLbn56qiDjtkVUFukcxQwvaxf0Vumzp9q8GvlCLqXbvDroyEqSO2ibvfS43fWuaDWb2paYwW53dWWYm0GDeNs8/LUsRGKl5c6oXv0Uwg6CEEH4PE5eHoBwm+p5/EiRVGfLddHqn9322TcfMhEMmhtCSHSwpol54nVq1edH7W+glZn+eesK3rlNqYv+lvuOcolM47x7eJGAGg1ev5ecIKZP+Tk6CUP/B4Uo8cHx1i7tyZHDpiec6pdN+u3csfp1LMsX89S06s2FWHM/ITzxUTFMGdpOeP7wSOLGdPl3yrFN732MnFhI2L11nzRO4L9Zy0XuAjxuqIiFSZPNrXGTJwIXjXdaODhzX4fLy7dLs3OVSdp/rFlxiY4efQZNwPV77vaFXzwcHvM4n/qoDdYEfgkP6Nnmy4uq1WDHTsgb96UHWPIhIrMXqHeBPt1rTvj5kWSI2eO1DwN8YbCw2HtWvNl330HffuCzRv8/BgM6lSdY8bAzRc6Li1YoL5KlFCD7xw5YPNmdV3+/JmkVTo5DHq15fTOP+rgXc+umq9/4mP+/sWWZK21KWi2L/r8+eYy4FBa/df+pesU5+rq63XYJTHTh85GDe7tExhTxsoOSnV7vWNmBDZOUKS1+ooTE6JOU/YifYTa8h95H6IfJ92rIBOSKyMhsrE//zZ1J/+oe9p8uVWsa+rqfcGvhEWOsWsXfD6qhvH97JEH6di7FqvW5yVPTrU1e/3+msyfD0dPmbpX1WrqapHyZETFyxehdgX1QuTCrbJcOJLAyKXA3z8f53awejOmbZ3juFUzbxH/5rtalC2sXuUduuDJ4mkH4+1DiNTw7NEzJvbbS8kCAeTLFWx6OT0hXz4oXlzL998XJTw8/ra/Tt1PQICabt0aatZU04P6RxnzzF1sme8jgFXrTN8zPfrkY+H6Blw4fov3Gh4xy1ezeiS7dqU84AYo4Jqf9xufAOBhSD7W/GL5LvMiZTZujN+d/PZtNWB+HYqiPk9dtao6EvmLAXeOF+63+Purrd9jx5qWLV6sBt6Z2t1/4Ug3WF8QdjUA31nxA26tNcS+9EfX2UJrX3gvGDpHQfsAaHESGmyAqrOg7BdQqJk6L7XMRW0Z1rnUZ9BfZGUPbS7C+4+gcyR4TUufslmIBN1CZFMBl++y38cLgPJFr+PVIIGRKy2gUCFweh7rX7yYdN7XceECvPcexMaqt+8HfXaJAZPV1vzi5Yuw7GfT81lDhigcOl8BgCJ571G0bKHUL1AG1rm9aaCXVb/FfwZUMSh896Pp6n/I0PhNMTly5uDn2U+M74dOqczF00GpW1CRrUVHRDNv9D5Kl4xk3E+N8HtQjOBnzqZXSG6Cg+HuXQ1//lmAmjW1eJ8xGLePeBbBt/NNvTUmfG0aS+Ldz6pTvGgkAFt3u3DlSuqX32BQZwkA9dnXjl3U7xm3aqVYs7c2x7Zf4MO3D/O/dvvZsS36jUZ97jvQNBXjT4tkzu6M5o8/TOkpU0zp6dPV/ycp8eQJNG8OrVqZZqMAdf7skyfVKbx+/13N83K3788/V7uWZyovt4oC3Nuhjuod9dC0TKNVR8mu+r0aWHcKh+rz4m/rVF59xjlLNPVnQTrbN3/mPIORoFuIbCY0FLZufMbAbueMyz5uF5BmU8xoNFCpkpoOCICQkNTbd1CQ2ooVt8927eC7X8ub5Wn7aUW++kpNx8RoiIyxA6CWh3/qFSST+KCnGxqNeqW3aksJDHrzq759G7w5fU29KVGt7EUatKscbx8Ab39Qha4t1RbukAgnWr/nQmCgBQsusgWD3sCKHw5RvuR9Bk5pSFCIOrOAThtLmUJ+pleR25QpA7a26shRvr4aataM5fvhezHoDfwy9Th3H6mBbvt6R6nW0NRd1MpGR/+BpibB+Yk8ZvEmjh7F2MrerFn8Vuwa71Tir111+GVDA3I5v9lFZt3WHni4qncOjvh6cOZo9hmnIr0oCixaBI0bm7puJyQwELZvV9PFi6tTNdZTJ4DA1zfpbV8WFqYGzTt3mpZVq6a+37lTTTs6wqefwrZtcOeOOo1XkybQtavapT3Diw2HwD3gMwH+exv+zg1hAeZ5Cj0fXdsqJxTrCLWWqYOJNd0L5b9UA+uM+tyzyHYk6BYiGzh19BkTJ0KDBpAnD7Ru78iGYy2M6z/qlfggWpZQsaIpfel8ZKrtd8roe/g/j52rVYMVK9QxPF42daqpe2mc2jVSrxyZReHSBanvrt58uXKnJIWcg/m42SGW/niP27fhu+9NPxFD+j9J8sbMjyu8qOqh3u3w84O2bUmwm68QyXHlClStEsMnX9U1PgsN0LnJYXxP3ubqXVfT63ZRrl6FkycNlCun/qeLjrFhyIxGtKh5hqk/VzBuP2Fq/H7bPXuCnXrvjaVL4enTeFneyKrlpsC3c+fU3ffLNFoNfT83fZf9tDhPErnFm4qMhO7doXdvdVTyjz+Ge/cSzrtqlTpdGKjPV2u1MHy4af20aYmPOP6i6Gi1N9ehQ+r7fPnUfR8/rrZyJ6RgQRg0SJ2mbNkyyJn4NPGWYYiByIemeZ5fdvVnODMMjn8Bhz6CHXVgTW74rwn4jIfA3aAPh3vbzbfL3xCa/Kd2E6+/Fkp1jd9lWYgMwmJB988//8yHH35I5cqVqV49eQMOKIrCnDlzqFevHp6ennz22Wf4xQ01KoR4LWM/30v12o6MGwcHDkBsrGmdVqNn0Ef7KONluWcZE1Kx8Hlj+uLBBOasfA3Bd4JZtExtJbLLEcPGjYlfWNjYwMqVkNvJ9Meo1eA1HqLMArp9/MyYfvDUhb921aVH/0IUKwabD6kt20VdHvL+528luR+HPA5s2paLYs/HWTtxQn3GMO4iU4jkiopSg4qzPrbGZe9UP8nJ/3xZ+V8dylZxTXC7ChXgt6W+DPl0n3HZzlPVCHyiPrj6QeMjeNYrF2+7vHnV1j9QewL9Nsc31c5FH6Pn71Xqc+M21rG0b5eMqOoNfdLfE8fnvcxXrFC7IYvUFxAA9eurQWycZ8/UFuyEvDhq+SefqP+2agXuzwdwPnIEDr5iSAy9Xg3Y41rMc+VSB93r1OkVI4crBogIVKdoengMHp1SR5GOfBg/X1SwOtp0bLg6onZy7gTEiQ2HR6fh5nLwHgH73oV/SsNKW1jnoqaP9Yy/3bVf1Cm6ri0E/5Xw8Ej87uT2xcAQZb7Myg4KNlG7IguRwVks6I6JiaFFixZ89NFHyd5m0aJFLF++nPHjx7N69Wrs7Ozo2bMnUVFRr95YCBHPqvmHmfRLI7NlZctCnz6wbsV9Ht57xuw/G6Z5uSqWN32mL5yPTSJn8s2fco7wKDXK7tXuMEUSGAD0Ra6usPqX8xR1vst7DY9Qu6V70htkUZ99XZcl0w7wbt1jONol3Nd/0LB8WNtaJ7juRYULw5YtGC/416+HYd1lYLXX8ej+U4vM35sZTJkC55/flytbJpb//j7N9hPVqdakQtIbAja2MH1pPXauOk3hvKYmR43GwLgpLoluN6CPqXV43s/28R61eF0HN/tw77E6SGWLGqdwym35x3gcHKDb84GOIyLgt98sfshsZ/9+qF5dfXYawN5eDYBBfY768GHz/JcumfJWrWrq7aXVwrBhpnzTEhs3KvwOSvAZPu8Rwpo16iI7O/X7tkqVBPKfHgr728P2mrChmBr0ri8I/1aBHbVgW3X4tzLcWGq+XcR9WJtPbWVenRNW2cJKG1iTV53Deqsn7KgLu5urwfmLfL9Tt9lWDY50hYvT4c4mtXWbFwL36AS6klg7xV/mWA5K94Lav0M7P2h/C8r1S+QPJETGZ7EHHQYOHAjAunXrkpVfURR+//13+vTpQ9Pn/WNmzJhBnTp12LVrF61bt050W71ejz6DN6fElS+jlzOthQSHsGi6N0WKWfPhgNrpXZwUy8j1evbAFXoMNT2DO2LANf43uCQljI3a6gVoepS9fBXTtBkXr9i/cRnCnoYxd7l6rjptLINHuyZrn03e88DvPYACKChm22Tkuk1tXYfWoetQdXqw4wcC2HWoCP/9p+H4cahcGXr1MiS7xbpiRbWrY9u2GvR6Ld8vr0cp1718Ma6+ZU8imVKjXvUxehZMOoyzixWd+9VK1fEQFIPCiJ4H+G55YwDs7RUKFFBHGS5gf5kS+e/Tb1hxylRO294pacXbG6ZO1QIarKwUVq7SULly5WTV14t12/i9ypyp/Yh+3Q6zbm9NhnTdT/kaDRLdT3l3a5pWPcWu09W4fr8Em34/SpuuSffuSI6Vf5gCjA/ej0mz75PevWH+fPXZmp/mx9CvrwatzgIBv16PzpjUW6RrS3p8F/v6wp9/alAUKFCA559B9bO4e7eGIUM0xsE6S5ZUWLvWwIEDGgYNUtuyBgxQOHLEYHy86fffNcS1c3XpYkCvNwWhH3wAo0druXVLw9atcOaMHk9P4PYGtH7L4dEJCL/L0BWzWPyvGmFb66JZ++VH1H14CsOx5ijVfzIrv/bOJjTPXj0qoAEdyot/19go4j2RpcSq0zdFm48PoI8IAqvcxvcarX2CLXmKlQM4loccLijWTuBQGuWF63a9Xg+eU9XpoqxzqQG4TV6wyW2+o2zwW5xVZKfrJ0j+eWaY0QVu375NUFAQderUMS5zdHSkcuXKnDlzJsmg+4olhhu1EB8fn1dnyiZ8fHIydlRBAu6qF5dW9lsoUy1zzsmX0er12aNQun/iamz57dzkP9771InHj715nAHG1VEMCo52uXgWkYsLNwri7e39RvvbvCSAR6HtAejYYD+Po5x47P0w6Y2SKaPVraXlzAft2j2gXTt1NF2tFq5fT9k+8ueHyQNv8c0PHQAYOLk+MYZ/qNeu2GsHqNev5+DECUeaN39Mnjxv3jviTer1398DGDO3PQA3b2ygZbdiSW+QAv8sCuC75e2N78PDNdy8GTcVUHmgPCu2POKP3/aQ3zVrPa8bG6Pnfx/nJjZW7QLevfs9FOUeKf16eLFuR8y0ZWj0Saxscr3ye+b992+z63Q1AH5ZGEtRzxQe+CWxMbGs3aU2aeawjsDVS/PG33UpUbNqYY6dLsTV69asmP8PHg1f0f3nNWgjIohraD137hyGuIfjLcDHxwcUPfaRvlgZQtDpQ9AosYAGNFoUtIAWRaNBpw/lqUNDYq1MnxGnZ3spFvQDKHo0GNAoekCPRjGgQQ+KnshoG77dMIIZm4cTG/vqzqD1ql1j3si/yBscShs3LT+VHsLl6/k4fVrDhAm36djxIQYD/PabO2CLVqtQqZIP3t7Pv8OUWOyirtGjrSPjf3wXgFGjnjBpkh8Fg/dgff0w5wI82XhqBPN3DADUXht/9P2ElpXWQThE3N6Hr5W3WbnKGPLhxBUUNMTq8hJjlc/40mvs0KBHo8Ty+KEdzyJM21rFPsQ1Z93nfyM1j9YQgc4Qhs4Qjs4QilZRe6pduXCS8Bxhxm1zhcVS0M6LKOuiRNqWIsKmFJG2pYm2KqCOKB5HDy9+qNXPq83zF0DI85fI7LLb9dOrZJigOyhInWLG2dl8AARnZ2cePkz64rlcuXLY29tbrGypQa/X4+Pjg4eHB7qERnbKRmJjYepUDZMna9DrTRfgPifseb+nV/oV7DVkxHqNjY6lTb3z+D1QW8Kql73I4vW1yJEzxyu2TFsVi/ty7LI7/kHFKVsyNzmdEn4Ae/8/Zwl+EEm77m+h1cW/CIqJiqHDatPNmpETC+PhVfaNy5cR6zYz8fLy4vGj3cxY1gSDouPLKR1w/+Mqg7+4x0f9qmNrn/xn8P798yRde5UlKtqGNWuKsWuXAVfX1ytXYvW6a5c6IvC77756BpnhvUxdjyf93JLmXQxUrR5/OrWU2vDrcSb98q7xfe0a4Tx5ZkdgIDx6ZCrUo9C8jBhajAOnCiX6ucmMpgzcj8/NGgB4lL3PnDkFsLEp8IqtTN70M+tRyYOR3z7iUWhejvuWp7Jn7jfqxbDr79PGEddb1/Gmdv1ar72v1/FVz2N0Pq2O2r5xfX4+HeSV+gcJMwVdnp6ebz5CV2wEhFxE8/Q8PPFBKdAYfYEWpnpFj25NzVfvB9BXaAgFvEwL7t1Dd/dOovl3+jSlz9KfuR5YJln7H9p6JlM7f4NVpB6eP52wsG8YjYbMVdMLizN4cFEurpvLvXvqzZx3qp/iHZtxakwZ/QieeKPRRzK0qj3z8j4h+JE1O3bkJTo6L+fPuRMYFH84/YVfzuGDZn4oMeUg+jF2Nur3rZkyy9BrrSFHQbRaK2yBhL5xEx7JJJHR2FA7iesNsRAbSjkrh5dGBvcC+pLcq3H5jc26slvdhoeHJ6sBOEVB96xZs1i0aFGSebZu3Urp0qVTsts3ptPpMk2lZqayWoLf5Yd80tOZQ4fiX8jsOujC5Ez6t8lI9Tri8wPsOt0IgPxOQazblJucuTLehXnFMo85dllNXz1zm2pvV4yX58zeSzR9rzIGRUfPLQdYtKFevIvgFT8dIeChOu9Km9rH8apfI1XLmZHqNrOZurgRt24fZuV/ag+m8/5l6fVNWUZNf0C/Lsf5Yrg7LsXyJbmPTUuP835vL6Jj1aDWz09D48Y69uyBN/mpiatXxaAwvv9hJv5cF1C7xnfqlPh2YU/DOHDe0/g+OtaWj7rA6dOmZzpfx/GdF/l0YGUURb2xNPbzvUxY0Mh0nGi443uNFq00XLlbmnN+bvT+4DB/7aydZtP9WZLPoatMXqjWgU4by9IFj7Gze72eT6/7mdXpdNSoeINtx/PyMCQfty7dopRH8VdvmIg1f0UY0507k+bfIx16vkXhMfe4+6gQ/xx6i7vXAinmVjh1D/LCOel0uoSni0jIvZ3GbtNE3nvh3wB1MK84SjQUbm3cv05no04PFRuWyI5fKFr0Q/Py5CwKtvlAYwUanfrSWhH4JD9fLRnJn/vaGrNaWysMG6ahQQN1qq/AI78TeCuQwKcFiI614aPaf9Gu+j/xjtmwdggffQR//QXBwRrGj9cRc8U0lsAn1X9Ac29rvO1y5ghn4CdnGDe3Bnq9hv/+g5fDZI0GZs2C/331JfCl+bm+vEOn5N04eC06HVin3sBl8hubdWWXuk3uOaYo6O7RowcdOnRIMk+xYq/Xzc7FRf1SCg4OJn/+/MblwcHBlC9fPrHNRCby19zDfDGiEiER6gWiVgtjx8KqxdfxDSjNicsVePLgKbnzJzCghkiWv+YeZtbyRgBY6WL4e9ldirklPLdyeqtYwQBb1PSFM4+o9nb8PKuW3cegqJ//xZvqk/uzfcz8rYExyDDoDcyYZ2oJG/5NxmrNz+60Oi0rttfi/UVH+H5eTg5fVIPVwCf5Gftjfr79JYLevaMYPc4WlwTGuNrw6zE6fVGFGL0acNvZRhERZUtAADRsCLt3hFOu4uv3clIMCqP+t4+pSxoZly1fnnTQvXfjRaJjzZ/1vX4d/vc/dUT8V7WSJ8Tvwm3afuBCRLR6Lp80P8j4n8wHOLSxgZKVy7Bh/XVqNgrhWUQuVu2uQ7Vhe/l6VqME9pp5xEbH0qN7jLGeh312kGpNGqVLWWpVC2XbcTV9bM/t1w66Y6JiWLdbHZwxp20orbuk/fewta01vTtfZvzPhTAoOn757gqTfknloPtl+igIuQxPL8LTC/DsijqidaNN5vn8/4Qbv716f08S6J7qNlgNmG3ygC4HKHo1UH/+74GTBcmfX4Ob80sz5+TxgveCzBZt3w4fDjIf4b1ePVi4UGM2tSUftIBQP4i4DRH3gHdA08oYuKPRqcfPWZKZM+Gff9ROAAsWKNhZtwfU/wftq20wL5NDaXCuAc416VcnLwvXwN276ipnZ3VMDQ8P8PSEunXBze3VfzIhRAalWNjatWuVatWqvTKfwWBQ6tatqyxevNi47NmzZ4q7u7uyefPmBLcJCwtTTp48qYSFhaVaeS0lNjZWOXnypBIbG5veRUkXh7ecU9R5J9RXSddo5dAhdd2gj/Yal69fdDR9C5pCGalezx++qtjZhBn/lvNG703vIiVp6/LjxrIO/2xPgnncS1wx+38DijJ5gCnvP0uOGZfXreSdquXLSHWbVRz510f5oPFhRauJNatTBwdFmTBBUZ49M+X9+6fDipUu2pjno6aHlNu3YpRKlUzbFcpzT/E9ft3sGJFhkcr6RUeVTs0vKPXrK8rKlYqi15vWx9VrTHSMMvTTPfH+f9nampfjZf07mb6vvh97TnFyMm37888p/5s8DnyiVCh2zbiPBh5nlMiwyCS32fDrUWN+rSZW2fHXyZQfOB1cvqwou3Ypio+PogTejVJio9XP1rQvTfVQodg1JSI04rX2nxqf2X//OGEsy6CPXv879MXvtw/fPvTa+3lTd67dU3TaGAUUJaftM2X59wdT9wCBvqYPwN9lFeVPnaKs4KWXRlFio8y3O/NN/Hxr8inK1qqKcribolycqSh3tilK+N0U1ev8+WpRrKwUZfXqpPPu26coOXKYip8nj6L8+qv598XrmjpViffd0rVLpKJEPlRfEUGKEh0Sb7sHDxRl/35FuXtXUQyGNy9HRia/sVlXdqvb5MajFgu679y5o1y8eFGZN2+e4uXlpVy8eFG5ePGiEhoaaszTvHlzZceOHcb3CxcuVKpXr67s2rVLuXTpktKnTx+lSZMmSmRkwhcgEnRnHl93NV1UdW5ySHn68Klx3eZlpsCp7/sZO1B8WUaq1xeDgc9a7VMM+oz9i+13McBY3rZ14t9suXk9xrje2fGh2cXL/LHq/5M6FU03czYtTd0bNhmpbrOam+cDlC+77FPs7Q1m9Zo/v0GZN/agsvz7g8ZAARTl0xYHjQHagweK4lnhiXFdgdyBis+hK8q+Dd5K7/b7lDw5H8W72K1aVVG2b1cvYmNjY5UTx08oAz80D7grlA42ptesSbzsZQrdVC/qddHK04dPlXXrXgjYbaKUM/sumeUP9H+gzB21V3mn+gmlWcPHyiefKMqQIYoyY4aiLPslWGnsftC4fbkiN5Tgu4+S9Tcc+7mp/HlyPlKun/N/7fqwtKgoRenTJ34QotXEKvmdHhhvrmg1scqRf31e+zip8ZkNvmv6/1Oz/OuXpVurAxnmZnLXlgfM/u4fNzuoPHnw5LX3ZzAoys2bivLPkiPK9A5DjTs+M9YzgYD7+evZTfOdPDqrKLfWKUrQUUUJ9Y8flL8gufV6756iODqazlOnU5S//ko478mT5nnbtlWUwMCU/R2SEhmpKGXLmv9/f+FyVyjyG5uVZbe6Tfege/jw4Uq5cuXivY4eNf34lCtXTlm7dq3xvcFgUGbPnq3UqVNHcXd3V7p166bcuHEj0WNI0J15vFPd1Hpw59o9s3UhwSHGi65yRRKv74woI9Vr82amVsHAW8m7cE9P+li9ktP2mQKKUrqgX7z1cS0WoCiTJ0QoM4aYB0mDPvM1piuVuKboY1OheeIFGalus6q7dxXliy/Ui+OXA7K4V/fWB4wBd5yHd4KVKqUvGvNoNPpEt3/x1aTuQ+Xwv+eUHm3+NVu+cNJ+Zds20/tP219JsLxXz/gZ8zT0PGNcPuDzx8blZQvfUO5ev6/88f1BpUWN42Y3D5J65csVpFzzjv85SIw+Vq+0rWNq8fZwvayEPsl4v4X3bgQq9SpfTtbfYMgne97oWKn1mS1b+IYCimJjFfnKXgcJiYxUFCeHcAUUJZfdk9duuU8tzx49Uz5tYR54l3AJUA5uvpDsfehj9covC2KVevUUJVcu037sCTW+KZX7mhL4ZxNFOdRFUc5/qygBGxXl6WVFiX313zA2VlEmT1aUQYMUJTz85XXJq9du3RK4saNVlOXLzfP5+ipKvnymPC1bqjeGUtuWLS/0yimknqMwkd/YrCu71W26B91pQYLuzMGgNyguuR4YLywTaoGt5+5t/HHy972dDqV8PRmpXsuXV/9+dnaZp1tadc/g50GTId6FVsuWpguWM2fUZd/02JPgxfrvy1I34FaUjFW3Wd2VK4rS6YP4wWnv9vsSvZny6P5jpXrZC/G2sbcNVbq8c1DZuvy4smVTjOLllXiQp9HolSXTDyiKoihRkXoll/1TY8txdGR0vGPOH7vPuO23g/YYl0eGRSrVEihLcl+21hHKoc3nUvx3e/LgieJW5LpxP4ULG5QhQxTl9OmM8R1wbPt5pUjeu6bztDUo/fopSvfuitKq4Q2letnzSrF8txU7mzClWbWTStjTN/stT63P7IsB6rF9D1O8/YvB1qedn7xRWVLTn3MOKU72pl4iWq1BGTtWUWJikt7u7IHLSq3y5xL8v/ti0G1PqPLOO6/XPXv6dNM+hw0zX5ecej182LR97tzmAbhGoyhLlqj5bt5UlCJFTOvq11cUS15CDhumKIULv7qre3Ykv7FZV3arWwm6M5js9h/wRXev3zf+wDWtmvCzhxP67jbmWTx1fxqX8PVllHo1GNRgG9TgO7N48cLo9GnT8tBQ9dlaUC+Q4gIIg96g9Hlvn9lFX/HiihIdPz56YxmlbrOTE7suKs2qnVRsrSOUr7vueWXvhScPnihNq55UrHTRSssax5UVsw8qoU9CzfLo9Yry55+KUqrYE7P/N1pNbLznWz9829TV+7+/Tysva/v2LdP/173m3civn/NXctk9iReUFHcJUL7psVvxOXRZeRRsUHx9FWXvXkVZtUpR5n7rp0zou0c5tv386/3BFEXxPX5dcXSIf8OiYplgZcrAPcrN8wGvve83sWTafsXGKtJYniJ57yrH99236DFT6zM7f06Usdxz56Z8+xe70q9f/0ZFSXV+FwPMbnKDohQtqihff60o3gf9zG6Khz4JVb7uuideb43ixRWlTRtF+eYbRVm91DzoBkWZMiVlZfL1NX3fg/ps9YuXda+q19hYRalWzbT9vHnqb0a/fuafienTFaVMGdP7KlUU5UnGuSeS7chvbNaV3epWgu4MJrv9B3zRiwPKDP10T4J5Dm023UX/qM3ltC3gG8go9frggelConnzdC1KirzYuvHHH6bl/6wONLV29jbfRh+rVz7+KPaNLoqTI6PUbXaUkkcFDHpDsvJHhUcpP47dqxTKc09xtHuqrJgTf0CplfNMQfeAznvN1kVGKkrOnOq6AvljEzzmP0uOKfa2oUqenI+U3u33Kfs3eqf6Yw8JOX1aUd59V1GsrRNuSe/z3r43bkVOLn2s3mx8CVCU+u5nlPs3H1j82Kn1mT1xwlT2Ll1Stq3BoCjFiqnb2tgkPShfeomNjlUmTTQk+FhHpeJXlG8H7VFWzjuklHAJMFtXvug1Ze8/L/0+h5qC7pzPg26tVh2kLFlliVWU2rXjl2PhwhfzJF2vv/xi2s7Dw9RybzAoyuDBCX8m3NzU302RfuQ3NuvKbnWb3HhUm96jp4usz/ukaT5NryrWCeZ5q2l5HB31AOw6Vg6DIcFsIhH+vneN6RKFn6ZjSVLmxSlZLl40pTf/ecmYbtPkttk2Wp2W35bpmDULZs6Efv0sXUqR1rS65P80abSaZOW3sbOh74SG3ArMx/YdF+jcr1a8PC0/dMdaFw3Axt2lUQyKcd2hQ+oUQADNW+gSPGbb7jV49MiKoMe5WLi+AfXfrZyic3ldVarAxo1w7x78/DPUq2U+h/HPaxtQ3f0e3vsvW7wsv808xPzVDY3v+32wj13HK1LANYE54TIoT0+wfT4N8dGjKdvW59RTAgLUdOPG4OCQumVLDTprHaPHaDh8GNq0AasXJo+9cKssI+c04sMBdfAPKgqArXUkE/vtwftyURq2LZfofkeOVP81GOCjjyAoKNGsRnPnwpEjarpAAfPlipLwNi969Ai++cb0ft480/loNPD99/D11+bbFC8OO3eS4DSFQghhKRJ0C4vz9rE1pr1qFUgwj7WtNY0bq5PLBwWBTwJTc4rE+V/0N6aLO5xJx5KkTMXyemP64vGbACgGhS37ywLqxV6TFnnjbWdtDUOGwNCh6nzvQiSXRqvBxs4mwXW58jnRpOo5AG4FFTULUrdtM+Vr3jzx/dva26Kz1qVKWVPK2Rm++AIOHMnJzfO3mdB3L3Y24QD4BpSmRpOSfDdsLwZ9/LuaIY+j2bT0OOsXHSU8JPy1jq8YFOb8kt/4/pfJ+5m/umGif++MysYGqlZV09evw8MHMcnedssfpu/f1o1upXbRUlWNGrBpk3qz5qfJp6hT8Vy8PE2qnObc0XuMmd8YW3vbBPZiMnw4NGmipu/eha5dSfIG+rVrMGqUmtZo4O+/1bmoAS5cgN27X30OY8dCcLCa/vBDaNjQfL1GA9Onw5gx6m9FXMBdrNir9y2EEKlJLleFxZ29UhBQAyi3aq6J5mva1JTeudPChcpi/G9GGdMlSibcmyAjci2pMQYFF33VZo2zB69w51EhAJpU8SGnk326lU9kP+3bmALODSvvG9Pbtqot4BoNNGuW5sVKMddKRRn7YyNOH7xPldK+AMTobRg6sxEtap7h1uVADhyAcePUQCevizXv9qhBx961KOMawsJJ+4mJSn6wCXB4qw/nbroBULP8ef43qkGqn1daqVXpmjF9fJt3srfbvNN0k7B169QskeXkywd9RlXj0AVPrp+7xaT+e2lb5xjLvz/ErpNVKFe1ZLL2o9PBihWQ//l9l23bYMaMhPMaDNCzJ0REqO/794f69WHgQFOeuXOTPt7Zs2rPDgB7e7XnU0I0Gpg4Ee7cgatXoVzijfVCCGExEnQLiwoLgyt3XAHwqBiFlY1VonlfDLp37ZT+5Slx64UGlRKlHdOvICmk1WmpUFxtpb92twSRYZFs/vuecX3rFhHpVTSRTb3bxXRFvnGHesPw7vX7+FxQW2uru9/PVN1Sy79ViiPnSvF1173GZTtPVaNE+QI0aKAGI4cPg16vMa6/97ggX4xtQKVSt1n94+EEW8YT8tPcZ8Z0v/89Sa1TSBc1Kz8wpo8dDksip8nD28Ec9a0EQIVi1ynlUdwiZbOkUh7FGT2vEf8cqsknX9ZFo9W8eqMXFCyoBt6a55uNHq22Rl+9ap7vp59g/341XbIkTJ2qpjt0gKJqr3Y2bVJ7GiREUWDAAFNL+ujRpu2SKptN5up0IYTIQiToFhbl4wOKov76Vq7ulGTe8uWhSIFQAPbvjSQqPCrJ/MLE/3YOY7pEuXzpWJKUq1ha7RtoUHRcOXOLLbucjetady6VXsUS2VTh0gWp4XYegLM3y3PzfADb15paPVvUvpTYphmWrb0tM5Y1Ytfq0xTOey/BPBUqwIDPrtOh3gHjsqt3S9K5fx1qVLjEf3+fTvIYDwIV/t5TEwBnx2A++Lx6qpU/PdRsbAqYj55K3o3MbX9fwqCojxa0aRxgkXJlBk2bqkEwgF4Pkyaprcs1aqit18eOwYgRpvyLF0POnGra2hr69lXTigI//pjwMb77Dg48/69apgx89ZVlzkUIIVKLBN3Cory9TWkvr6TzajTQtJq6QUS0PYf/vZj0BsLI/556Q0OnjaVwqfyvyJ2xVCwfa0zv23aPY5fVliL3EldxrfiKpgshLKB9i4fG9MYVN9i23fSMdvO2zgltkim8/UFVzvnY0uWdQ5Qq6E+XzqH89hsEBKgDGc5dWpp1B+pz5N/zNPT0Nm536mpFmnaqyu+zDia6718Xa4iJVXsy9fw0hBw5cySaNzMoUaEI+Z3UkcCO+5ZOVmv/li2mVuE2HXJbqmiZwrhx0L27qcUb4MQJGDQIatUyDUr4xRfqgHMv+t//IMfz/z6LF8OzZ+brlywxHxxtzhzTwHdCCJFRSdAtLColQTdA06amX+hd/2aeUbjTm3+gOkBdUef7SXbhz4gqetgZ07N/dSVuUoXWje+kV5FENtf+Y9MoS2v3VmPnsfIAONk/peY7FdKrWKnCuXBe/thel+v3SvDHSge6dYvfLbdWC3f2nKnM1uUnqFzSNJjcgLEe3L4av6Vcr4cFC9S0RgNfDE3eM8AZmUaroZb7DQCehOXmqrdfkvljo2PYdlSdjiF3zifUaVXJ0kXM0HQ6NTgOCIBZsxL+/S9ePOFnvvPlgy5d1HRICCxfbrouWLNGDcrjTJgArVqlbtmFEMISJOgWFuV9yDSqtqfnq/M3bV/WmN55IBM9OJmOQh8/41GoOnhPiYIPX5E746lUraAxfSOwhDHdpmP8UcuFSAvl3yptHGzp4FEHHoflAaBZjYuZ7qbW69JoNbT85C1OXy3LJ83VFu6QCCc+7x0bbyqnLVswTpPVqpX6jG5WULOaaVC9Y3vuJpETDm+9wJOw3AC0qHURK5vMM6ClJRUpos40ceaMOiL5yJFQqpTp2W/HRHruvzig2vz5GgwG2LEDPv7Y9Bz34MHqqORCCJEZSNAtLEYfo8fnqvp8cemC/uTK9eptCpbMj3sJdcSVk1cr8DjwiQVLmDX4Xwo0pksUCU3HkryekpWKYmsdabYsT87H1GpeMZEthLAsjQbatYu/vMU7sfEXZnFanZY5v7lTMK869sLWvcVYvtw8z48/PDKm457HzQpq1jONQ3LsmD6JnLB5/RNjunXrZEwwnQ1VrAhTpqiDo927B/XqJZ7X0xMaNVLTV65oWLSoEO+/ryXm+YD6n32mPtetSdk4b0IIkW4k6BYWc+2cP+FR6ugoXm5JtxK8qGkdNa+iaNmzMfMNWpTW/K8+NqaLF818QYHOWkf5ov5my1rWyT4tiiJjat8+/rLm75dJ83JkBHkL5mbBEtOz7IMGqUETwNUzfuzYq/ZKKVk0hBYt0qOElvFWkzJoNGqz6lHvpMfK2LJH7aOv1ehp8UF5i5ctO3ixtXvRosKEh6sRdseOsGiROu+2EEJkFvKVJSzG+4hpjlsvj8gkcppr1sI0L/PO7dGpWqasyP+ugzFdwjVzBqpxI5jHaf2RXLSK9FWzJhQoYBo8q1LxKxQtWygdS5S+2rWDjz5S00+eQJ8+6ujSC77zM+bp0/l0lgqEcjnnomIxdc6qczfLEPEs4SkMb14N52KAekOmVoUL5CuaeQfby0jefRdKlDBf1qwZ/PknWGXOnzohRDaWhX4eRUbjfdoUMFeumjPZ2zVoWwErndqHbOfhYigG6aqXFP8npoGdSryVRH+9DKxiBVPXTa1WoUU7uWgV6Uung3dr7DG+z4xThaW2uXMh//MG340bYemMQyzZ4AWArXUk3Qd7pF/hLKSmp3rzOFZvzen9NxLMs2W76UZxm/cy1+wRGZlOB/37m97XrKmwbp2MVC6EyJwk6BYW433BFGh71Un+1E8OeRyoXUGdLuz6/ZLUqPKIv/7C+CyXMHfrlin9cqtAZlGpcX1juk4dDXllDDWRAfTsVwCtRo9OG8snfd3SuzjpLl8++HGOqbW31ze1jYOHfdjsZJZs4a3ZuIgxHTed4cs2bzal23xQMME84vUMGABffGGgffsgNm824ODw6m2EECIjkqBbWIz3leIA5HV4lOJumR+0e2JMnzznzMcfQ+nS6tQjT54kulm25P/C49DFi6dfOd5EvXoYL6a6d0/fsggRp2Zzdy6e8OfSqTt4NZCgG+D9D+14v9ERAOP0fgB9B+VJryJZVM23SxnTR4/GXx8aCnued4goVgzc3dOoYNmErS3Mn68wevQt8mTN/2JCiGxCgm5hEYF+Qdx/os4d7VXWD402ZUOM9p/YgBWzD1GloulZ34AA+PprKFYkkqmD90q38+figu78+cHOLum8GZWLC5w7B3v3StAtMha3aqUo45VJu5BYyI/LyuDsaPpurlb2Im81zZqzDVSqBPbPe48fOxZ//X87Iol+/iRVmzYymrYQQoiESdAtLOLsEVOfZ6+KISneXqPV8PGgupw678yePdC2rWldaHgORs5pxNIZB1OhpJlbdEQ0d++qgz2VyH8nnUvzZkqWhIYN5aJViIwuf3EX5k+5bHw/pP+TFN9YzSysrOCtt9T0rVtw/775+s3LjhvTrZs9SbuCCSGEyFRk/EdhEd4nnxnTXlVe/7+ZRqPO1dmoEVy+DN+Nv8qilWUB6D+uGjUaXMO9Tvacxgfg9rX7KIrap7xEvltAkaQ3EEKIVPDhgDq4FDxNRHgsbbrVSe/iWFTNamHs26eOUbJ06m5Klc1B4L0YAgMV1u9RB4+zswmnSVMZ4UsIIUTCJOgWFuF909TV0KtW6gws4+YGv/xVFm3UPhaub0hEtD2dPtRwwieMnE7JHx09K/G/EgyoQXfxIjK9mhAi7bz9QdX0LkKaqOnmA9QCYOTcJgnmaVL1PHaONdKwVEIIITIT6V4uLML7kjptio0NlK+Rui3RPyyrQeWS6vQ9vgGl6ffxmVTdf2bifz3MmM6sI5cLIURGVved0thYRSW63tY6kkGDdGlYIiGEEJmNtHSLVBcernYFB3UQGmvr1N2/naMdq9fYUK3uM0IjHVm2tR6NZhzks2GZc47qN+HvF2tMlyiVIx1LIoQQWVMBVxf+XniMfzZEk9tJT4ECUKCgFQUK56BAUUdKViiIk0u19C6mEEKIDMxiQffPP//Mvn378PX1xdrampMnT75ymxEjRrB+/XqzZfXq1WPx4sWWKqawgPPnwaCO7YWXl2WOUa5qKRZOPUSXL+sC0G9sFWo0vEbFmtnr+e5bAabWlRJlc6dfQYQQIgt7t0dN3u2R3qUQQgiRWVks6I6JiaFFixZ4eXmxZs2aZG9Xv359pk6danxvY2NjieIJCzp7/BGQF7Bc0A3w8eC67N27n0UbGxAelZMPOsHxc+HkdLK33EEzGP87pmfZS7gVSMeSCCGEEEIIIRJisaB74MCBAKxbty5F29nY2ODi4pKibfR6PXq9PkXbpLW48mX0cqaGM3t9gIYAeLheQa8vbbFjff9bVY5WuYKPXzku3irDwD53+GV52o0gm9716n9fvbnhaBeCY16HbPH/K62kd90Ky5B6zbqkbtOBXo/OmNSDBf72Uq9Zk9Rr1pXd6ja555nhnuk+fvw4tWvXJleuXNSqVYvBgweTJ0+eJLe5cuVKGpXuzfn4+KR3ESzu9PlcxrSVQyDe3s+SyP3mJn8bzMc9ihIWac+Sv4rwbmcfihZN25G806NeDXoDt4I8ASie7x5nz4WmeRmyg+zwmc2OpF6zLqnbtKONiKDK8/S5c+cw2NlZ7FhSr1mT1GvWJXVrLkMF3fXr16dZs2YULVqUgIAAvv/+e/73v/+xatUqdLrERwYtV64c9vYZu0uxXq/Hx8cHDw+PJM8lszPoDZz3U0d5LVngFnUaWn7+Vi8vGHEdxoxR358+XYk2bRSLHxfSt17v3QwkOlZt1Xct8hQvLxnIJzVll89sdiP1mnVJ3aaDMNMMGp6enpAz9afvlHrNmqRes67sVrfh4eHJagBOUdA9a9YsFi1alGSerVu3Urr063Unbt26tTHt5uaGm5sbTZs2NbZ+J0an02WaSs0IZTXoDTy695h8RZ1Tfd83zgUQFuUKgFe5u+h0xVP9GAnp3h3GjVMHcFu+XMu4caBNwwnx0qNeb993MqaLl8md7v+vsqqM8JkVqU/qNeuSuk1DL/yddTqd2fvUP5TUa1Yk9Zp1ZZe6Te45pijo7tGjBx06dEgyT7FixVKyy1fuK0+ePPj7+ycZdIvku+Fzi/c7hHHmegWaVj3FtJn2VGtSIVX2rRgUpo0NAFwBqOwekSr7TY4iRaBZM9i+HW7ehAN7I2jYxHLd3DICs0HU3MulY0mEEEIIIYQQiUlR0J03b17y5s1rqbLEc//+fZ48eZLigdVEwnauPEXnXqV4HKa2Pu86XY3qb0OnJoeZNLMQ5aqWNMuvGBQuHrvOrk13CA1V6DvKizwFcie6/6lf7mPJ5kYA2FpH0rl7CUudSoK6dYlg+3Y10F72/UkaNqmfaN6b5wNYsfA6XT4vTUn31LtRlJb8/U3pEmn7pxZCCCGEEEIkk8U64N69exdfX1/u3r2LXq/H19cXX19fwl54/qdFixbs3LkTgLCwMKZPn463tze3b9/myJEj9O3blxIlSlC/fuLBk3g1xaAw6+u9tPjYi8dh6qB0Om2scf3q3XWo+FYxvuj5jHPnYPly6NrxJkXyBeJepwyDpzZk9LxGvOX1lAtHriZ4jL/mHmbU3EbG97//cJryb5Wy6Hm9rH17yGX3FIDVu6oQ+jjhgcUinkXQuImGMfMb0biVCxFp1yCfqm7dMqUl6BZCCCGEECJjsljQPXfuXNq3b8+8efMIDw+nffv2tG/fnvPnzxvz3Lx5k2fP1JGtdTodV65coU+fPrRo0YJRo0ZRqVIlVqxYIXN1v4HwcOjS1pevZzXCoKjPHLSpfZx7fk+YN3of+Z2CANAbrFi4xJHKlaFrV1i+viT3Hhc029f1+yWo2bgQ6xYeMVt+cNM5PhtiGsRr6uC9dOpn+QHUXmbnaMeHzc8CEBblwLrF3gnm+2H0MfyDigLgH5CD2bPTqICpzP/aE2Nagm4hhBBCCCEyJouNXj5t2jSmTZuWZJ7Lly8b0zly5GDx4sWWKk625OcHHTqAt3dF47Ixvfcy/qcGaHVa+k9qSLcvn/HDmL3MWl6fZ8/MBwLImSOUhpV9adIgjBXrCnDmegXCohx474vajDq5lwk/1eeGn4723SsRHatu2+vd/Qz/rmFanqaZbr3y8MsGNf3bipx0HWq+PtAviKm/mI/yPXUq9OgBBQqkTRlTi//lB0BubKyiKFjAGgveQxNCCCGEEEK8JrlKz6L8/KBePfD2Vt875NSzftFRJi5shFZnqnbHvI6M/bER16/rGD4cWreG0aNh3z549NiOLUffYsiMRhw648onzQ8at5vyayPerX+a1q30BAerAXezWtf4aXVtNFpNGp6pudot3Slb+CYAe7yr4O9722z92C99CY10BMDJIRyAZ8/Ukc8zG/9A9S5BsXz3zepUCCGEEEIIkXHIlXoauXoVHj9Om2nR7/sF06yZwp076vuyZeHYcR3te9VKdBsXF5g2DTZvhkmToEEDsMlhavm2c7Tj9611+X74XuPz4FuPvcXVa2oed3f4e1sZrG2tLXdiyaDRavjsfT/j+99/vGZMnz98lV831gXA0S6Eg3sjcFTjbxYt0if6vHpG9OTBU0Ii1CnDShQKTufSCCGEEEIIIRIjQXca+OcfqFBBx0edyuB38farN3gDjwOf8E7jYK5dU1uby5eHQ4egYsVXbJgMGq2GL6c1YvvKczg7PjIuL1gQtmwBJ6ckNk5Dn/Yth0ZjAGDZ2pIoBgWAoYOfGp9rH/n5adyrOfNN34sAGAw6hg5+ki7lfR3+l+8b08ULhyWRUwghhBBCCJGeJOhOA3f9ngDw8HFOhvW/a7HjhD0No3XjAHz81DmbixcIYscOtRU7Nb39QVVOejvSsiVUrQpbt0Lx4ql7jDdRzK0Ib1c5A6iDvx3a4sO2FSfZfqI6ACVcbjN4strqP3hUSYq7qDdCth1/i+1/nkyfQqeQ/9WnxnSJYvp0LIkQQgghhBAiKRJ0p4GPu2gpkPsBAOv212bX6tOpfoyo8Cg6vH2JI74eAOR3CmLXv2EUs9AU1K6lrNm6FU6dgipVLHOMN/HZJ6Z5wH5dEMLQkaZm+Kmjb5EjZw5A7TY/dZRpwush3zgRG22aTi2j8r8RaUyXcNUlkVMIIYQQQgiRniToTgO5nHMx9RvTSO0Dh+YiJjI61fYfGx3Lxy3PsPOUOiq3k/1Tdmx6RNkqrql2jMymQ88qONqFALBsaz0u3CoLQM3y5/mwf22zvB/2r00NN3Uquwu3yrJkxuG0Lexr8L+lGNMlSjukY0mEEEIIIYQQSZGgO418MrgWb5VT55D2DSjDvHGJB3ZBAQ/5fvheTu32Tda+h352iHX71e7S9rZhbF3tT+X6bm9e6EzMPldOOnUIj7f8+1lKvNHVtTot388yddEeM6sCzx49s3gZ38St26a560uUzZuOJRFCCCGEEEIkRYLuNKLVafl62F3jAF/j51Xl3o3AePkunbjBW9UiGTKjEY3bFCEo4GGS+w24fJf5q9QRua110axb4kud1p6pfwKZ0Gd9Cpq9/+DdIOq09kgwb902lXmv4REAHjx1YfrwUxYv35vwv6sOu67RGChWrlA6l0YIIYQQQgiRGAm601Apr/z0eled6/pZRC5G9DefourwFh/qNsmNf1BRY575U84nuc95315Bb1CnIhve4zDNP65ugZJnTnXrQpkyatrGBqb9kPSIctPnFMZap3b7/+mvykSGRSaZPz3FzdFdKE8gNnY2r8gthBBCCCGESC8SdKexSXPLkyfnYwB+/7ceh7f4ALBx8THe7lCGR6HmXYXn/VGZ0MehCe7r2aNn/LJGHcXM1jqS/iMrWbDkmY9GA3/9Be+9B3//DaVKJZ2/dOUSdHr7BACPw/KwYUnqD3iXGiIjIfCJegOhRJnc6VsYIYQQQgghRJIk6E5j+Yo4M2nIOeP7AYOt+OlHAx17v0VkjB0Ab1c5zfuN1K7Oj8PysGh6wtNYLf7VwNNwdVTuT1qcoIBrKs8NlgVUrw5r1sC77yYvf8/e9sb04r/LWahUb+bWLVO6eEm79CuIEEIIIYQQ4pUk6E4Hn4+qi2dJdTTz09cq0K+/FoNBrYou7xxi6yF3JkwzBdDf/1qO6Ajz0c5jY2H2T6ZpsL4cUyYNSp71NWxfmVKu6t9614F8+Pmlb3kS4m+a4YwSJdKvHEIIIYQQQohXk6A7HVjZWDFvtj7e8mFfG/h9a21s7GyoWLMM79Y9BsDt4ML8+afBLO+6dabgq0ULqPSWDKaVGrQ6LT16mZ6RXro0HQuTiGsXgo1pCbqFEEIIIYTI2CToTicN3q1Ily5qWqOBOXNg+gwtWp2pFMRDHQABAABJREFUSkZMdDWmp8/KgeF53K0o8N13pn0NGZIGBc5GPvsMtM+rYelS0Me/P5IuIsOiGN9nL4O/Ns3L7VroUTqWSAghhBBCCPEqEnSno0WLYO5c2L8fBg6Mv752kwLUr6+mL12CTZvU9OFtlzh+XE17esLbb6dNebOLIkXU3gMAAQGwa/2NVNv38uUwYwZERaVsuz1rvansdpcJCxoRHWsLQPmi16nf0DrVyiaEEEIIIYRIfRJ0pyM7OxgwAOrVSzzPiBGm9LRpz1u5pz4xLhvSJwCNxnJlzK56fnzPmF78U/z51F/H9u3QtSsMH57wTZaEPLwdzGetD9LkfS+u3CkJgJUuhhHd93LqQiEc8zqmStmEEEIIIYQQliFBdwbXsiV4eKjpo0dh6YxDbDhYA4BCee7zYbcC6Vi6rKvNe/lwyfUQgA37q/HwdvArtni1H34wpX/5Bf77L+n85w5eoWIlA8u2mu7K1K7gw+l9N5m6pBH2ueyT2FoIIYQQQgiREUjQncFpNDC873Xj+94ja6IoarUN6HoJGzubxDYVb8AmhzVd210AIEZvwx8/nn+j/V06cZ3t282X9epyL9E52IPvPqLde3YEhaij2DvZP2XBxP0c9KmER92MOZWZEEIIIYQQIj4JujOBzj1K4Jo/AAC9wQoAe9swPh9eOT2LleX17F/UmF78V2EUg/La+5o347Yx7WAXBoBfYCG++eJUvLyxMQY+bHsTvwfFAKhe9iKXzkfx+ZgGZgPtCSGEEEIIITI+uYLPBKxsrBjS23wwrx7tTpK3UJ50KlH2UKFGaWpX8AHgvH9ZTuy6+Fr7efLgKcs2VQMgp20oezffws4mHID5qxuyf+NZs/zfjNSy67SaP79TEOu35KFgyfyvexpCCCGEEEKIdCRBdybR4+u3yPf8GWONxsDgka7pW6BsouenT4zpxT+/3nPdS747Q1iUOs1Xt7anqNakAt9+dcK4vscXuQkPUYPwP/+EWbPU5VZWBtYsv0/RsjIHuxBCCCGEEJmVBN2ZhH0ue37/8SaVS17mhxEHKF25RHoXKVvo9LkXOW3V567/2u5F2NOwFG2vj9Ezf1kp4/sBw9Qu4wMm1qNOxXMAXL9fgtF9juPtDb16mbadM0dL/bYeb3YCQgghhBBCiHRlsaD79u3bjBw5kiZNmuDp6UnTpk2ZO3cu0dHRSW4XFRXFhAkTqFmzJlWqVGHAgAE8fPjQUsXMVFp+8hbeN9wY9G3D9C5KtuGY15HOzc4A8CwiF2t+OZOi7Tf/fpKbgcUBaP7WScq/pQbgOmsdS5Y5YGsdCcDsvxrQslkIERHqdj16QJ8+qXQSQgghhBBCiHRjsaD7xo0bKIrCxIkT2bJlC9988w0rV67khxfnTUrAt99+y549e5g9ezbLly/nwYMH9O/f31LFFOKVen6R25j+dk4xIsKTP6Da3B+tjemBA8zXuVUvxcQBRwFQFC33H+YCoGZNhR9/ROZfF0IIIYQQIguwstSOGzRoQIMGDYzvixUrxs2bN/nrr78YPnx4gts8e/aMtWvXMmvWLGrXrg2oQXirVq3w9vbGy8srwe30ej16vT7VzyE1xZUvo5dTxFfjnQrUruDDEV8PrtwpwZixBqZPNwBJ16vP4avsPlMVgLKFb9Ksc+V4+QZNrs2azRc4caUSAAVzB7J6uYK1tQvyXyV9yWc2a5J6zbqkbtOBXo/OmNRjiR8uqdesSeo168pudZvc87RY0J2QZ8+e4eTklOj68+fPExMTQ506dYzLSpcuTeHChZMMuq9cuZLaRbUYHx+f9C6CeA1Dxhr4qKuBmBgtP/ygwcPjMu7u4cb1CdXrnCnBQHkAunQ4yzmfRwnue/S4h/yvrwsxsdZ8/+0JgkIKEeR9xyLnIVJOPrNZk9Rr1iV1m3a0ERFUeZ4+d+4cBjs7ix1L6jVrknrNuqRuzaVZ0O3v788ff/yRaCs3wMOHD7G2tiZXrlxmy52dnQkKCkp0u3LlymFvb59qZbUEvV6Pj48PHh4e6HS6V28gMhQvLxh3HUaPBoNBw4wZ5TlxwoCVVcL1GvxQYc3eWAAc7UIYNK4RjnkdE933jTaRGPQG7HO1TIOzEckhn9msSeo165K6TQdhpsFFPT09IWfOVD+E1GvWJPWadWW3ug0PD09WA3CKg+5Zs2axaNGiJPNs3bqV0qVLG98HBgbSq1cvWrRoQadOnVJ6yFfS6XSZplIzU1mFueHDYf16OHUKLl7UMGX4VSbOLgvEr9elv0FElPrx6tH5DrldKiS575y5Uv9CRaQO+cxmTVKvWZfUbRp64e+s0+nM3qf+oaResyKp16wru9Rtcs8xxUF3jx496NChQ5J5ihUrZkwHBgbStWtXqlSpwqRJk5LcLl++fMTExBASEmLW2h0cHIyLi0tKiypEqrKygqVLoVo1tZv59J/K0L69L9rc5vnOnoV589S0RgP9RyUdcAshhBBCCCGyrhSPXp43b15Kly6d5MvGxgYwBdyVKlVi6tSpaLVJH87d3R1ra2uOHDliXHbjxg3u3r2b6PPcQqQlDw8Y/b99AOgNVvTqZU1stNqN/Ob5AD5pfogqVRTuPH8ku3VrKFMmvUorhBBCCCGESG8WmzIsMDCQTz/9lEKFCjF8+HAePXpEUFCQ2bPZgYGBtGjRgnPnzgHg6OjIe++9x7Rp0zh69Cjnz59n5MiRVKlSRYJukWF8811dKpe8BMA5PzeWzgxm8McHcPMqwIoddVEUda6vEiXgFTPkCSGEEEIIIbI4iw2kdujQIfz9/fH39zebOgzg8uXLAMTExHDz5k0iIiKM60aOHIlWq2XgwIFER0dTr149xo0bZ6liCpFi1jlsWLpE4a23Y9EbrFi4vpXZemfHYEaNsaPPAHty5EinQgohhBBCCCEyBIsF3R07dqRjx45J5ilatKgxAI9ja2vLuHHjJNAWGVqVRhUY0WMvU35tZFxmbxvGV11PMHRKFZxcMvZo+kIIIYQQQoi0YbHu5UJkdWPm1KZVzeM42oXQ5719XPcNY9IvjXBySXwueiGEEEIIIUT2kmbzdAuR1dja27LxQFW8vb2pUrVetpgWQQghhBBCCJEy0tItxBvQaDVotJr0LoYQQgghhBAig5KgWwghhBBCCCGEsBAJuoUQQgghhBBCCAvJ1M90GwwGALMpxzIqvV4PQHh4uDz7m4VIvWZdUrdZk9Rr1iV1mw4iI8HNzZTWpP7jVlKvWZPUa9aV3eo2Lg6Ni0sTo1EURUmLAllCcHAwfn5+6V0MIYQQQgghhBDZlKurK87Ozomuz9RBd2xsLE+fPsXW1hatVnrKCyGEEEIIIYRIGwaDgaioKJycnLCySrwTeaYOuoUQQgghhBBCiIxMmoeFEEIIIYQQQggLkaBbCCGEEEIIIYSwEAm6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJutPAihUraNKkCR4eHnzwwQecO3cuvYskUmjhwoW89957VKlShdq1a9O3b19u3LhhlicqKooJEyZQs2ZNqlSpwoABA3j48GE6lVi8jl9++QU3NzemTJliXCb1mjkFBgYydOhQatasiaenJ23btsXHx8e4XlEU5syZQ7169fD09OSzzz6TKSgzAb1ez+zZs2nSpAmenp40bdqUH3/8kRfHhJW6zfhOnDjBF198Qb169XBzc2PXrl1m65NTh0+ePGHIkCFUrVqV6tWrM3LkSMLCwtLwLERCkqrbmJgYZs6cSdu2bfHy8qJevXoMGzaMwMBAs31I3WY8r/rMvmjs2LG4ubnx22+/mS3P7vUqQbeFbd26lalTp9KvXz/Wr19P+fLl6dmzJ8HBweldNJECx48fp0uXLqxevZqlS5cSGxtLz549CQ8PN+b59ttv2bNnD7Nnz2b58uU8ePCA/v37p2OpRUqcO3eOlStX4ubmZrZc6jXzefr0KR999BHW1tYsWrSILVu2MHz4cJycnIx5Fi1axPLlyxk/fjyrV6/Gzs6Onj17EhUVlY4lF6+yaNEi/vrrL8aOHcvWrVsZOnQov/76K8uXLzfLI3WbsYWHh+Pm5sa4ceMSXJ+cOhw6dCjXrl1j6dKlLFiwgJMnTzJ27Ni0OgWRiKTqNjIykosXL9KnTx/WrVvH/PnzuXnzJn369DHLJ3Wb8bzqMxtn586dnD17lvz588dbl+3rVREW9f777ysTJkwwvtfr9Uq9evWUhQsXpmOpxJsKDg5WypUrpxw/flxRFEUJCQlRKlWqpPz777/GPNeuXVPKlSunnDlzJp1KKZIrNDRUeeedd5RDhw4pn3zyiTJ58mRFUaReM6uZM2cqH330UaLrDQaDUrduXeXXX381LgsJCVHc3d2VzZs3p0URxWvq3bu38s0335gt69+/vzJkyBBFUaRuM6Ny5copO3fuNL5PTh3GfQ+fO3fOmGffvn2Km5ubcv/+/bQrvEjSy3WbkLNnzyrlypVT7ty5oyiK1G1mkFi93r9/X6lfv75y5coVpXHjxsrSpUuN66ReFUVaui0oOjqaCxcuUKdOHeMyrVZLnTp1OHPmTDqWTLypZ8+eARhbzs6fP09MTIxZXZcuXZrChQvj7e2dHkUUKTBx4kQaNmxoVn8g9ZpZ7d69G3d3dwYOHEjt2rVp3749q1evNq6/ffs2QUFBZvXq6OhI5cqV5bs5g6tSpQpHjx7l5s2bAFy6dIlTp07RoEEDQOo2K0hOHZ45c4ZcuXLh4eFhzFOnTh20Wq08wpfJhIaGotFoyJUrFyB1m1kZDAa+/vprevbsSdmyZeOtl3oFq/QuQFb2+PFj9Ho9zs7OZsudnZ3jPQ8sMg+DwcC3335L1apVKVeuHAAPHz7E2tra+KMRx9nZmaCgoPQopkimLVu2cPHiRdasWRNvndRr5hQQEMBff/1F9+7d+eKLL/Dx8WHy5MlYW1vToUMHY90l9N0sz+tnbL179yY0NJSWLVui0+nQ6/V8+eWXvPvuuwBSt1lAcurw4cOH5M2b12y9lZUVTk5O8t2ciURFRTFr1ixat26Ng4MDIHWbWS1atAgrKyu6du2a4HqpVwm6hUixCRMmcPXqVf7888/0Lop4Q/fu3WPKlCksWbIEW1vb9C6OSCWKouDu7s5XX30FQMWKFbl69SorV66kQ4cO6Vw68Sb+/fdfNm3axHfffUeZMmXw9fVl6tSp5M+fX+pWiEwkJiaGQYMGoSgKEyZMSO/iiDdw/vx5fv/9d9atW4dGo0nv4mRY0r3cgvLkyYNOp4s3aFpwcDD58uVLp1KJNzFx4kT27t3LsmXLKFiwoHF5vnz5iImJISQkxCx/cHAwLi4uaV1MkUwXLlwgODiYjh07UrFiRSpWrMjx48dZvnw5FStWlHrNpFxcXChdurTZslKlSnH37l3jekC+mzOhGTNm0Lt3b1q3bo2bmxvt27enW7duLFy4EJC6zQqSU4f58uXj0aNHZutjY2N5+vSpfDdnAjExMQwePJi7d++yZMkSYys3SN1mRidPniQ4OJjGjRsbr6Xu3LnD9OnTadKkCSD1ChJ0W5SNjQ2VKlXiyJEjxmUGg4EjR45QpUqVdCyZSClFUZg4cSI7d+5k2bJlFCtWzGy9u7s71tbWZnV948YN7t69i5eXVxqXViRXrVq12LRpExs2bDC+3N3dadu2rTEt9Zr5VK1a1fjMbxw/Pz+KFCkCQNGiRXFxcTGr19DQUM6ePSvfzRlcZGRkvJYUnU5nnDJM6jbzS04dVqlShZCQEM6fP2/Mc/ToUQwGA56enmleZpF8cQG3v78/v/32G3ny5DFbL3Wb+bRr145//vnH7Foqf/789OzZk19//RWQegXpXm5x3bt3Z/jw4bi7u+Pp6cmyZcuIiIigY8eO6V00kQITJkxg8+bN/PTTT+TMmdP4/ImjoyM5cuTA0dGR9957j2nTpuHk5ISDgwOTJ0+mSpUqEpxlYA4ODsbn8uPY29uTO3du43Kp18ynW7dufPTRRyxYsICWLVty7tw5Vq9ezcSJEwHQaDR07dqVn3/+mRIlSlC0aFHmzJlD/vz5adq0aTqXXiSlcePGLFiwgMKFCxu7ly9dupT33nsPkLrNLMLCwrh165bx/e3bt/H19cXJyYnChQu/sg5Lly5N/fr1GTNmDBMmTCAmJoZJkybRunVrChQokF6nJUi6bl1cXBg4cCAXL15k4cKF6PV64/WUk5MTNjY2UrcZ1Ks+sy/fPLG2tiZfvnyUKlUKkM8sgEaJuz0sLOaPP/5g8eLFBAUFUaFCBUaPHk3lypXTu1giBV6euznO1KlTjTdQoqKimDZtGlu2bCE6Opp69eoxbty4bNNtJqv49NNPKV++PKNGjQKkXjOrPXv28P333+Pn50fRokXp3r07nTp1Mq5XFIW5c+eyevVqQkJCqFatGuPGjaNkyZLpWGrxKqGhocyZM4ddu3YRHBxM/vz5ad26Nf369cPGxgaQus0Mjh07luCASx06dGDatGnJqsMnT54wadIkdu/ejVar5Z133mH06NHkzJkzLU9FvCSpuu3fvz9vv/12gtv9/vvv1KxZE5C6zYhe9Zl9WZMmTejatSufffaZcVl2r1cJuoUQQgghhBBCCAuRZ7qFEEIIIYQQQggLkaBbCCGEEEIIIYSwEAm6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJuoUQQgghhBBCCAuRoFsIIYQQQgghhLAQCbqFEEIIIYQQQggLkaBbCCGEEEIIIYSwEAm6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJuoUQQgghhBBCCAuRoFsIIYQQQgghhLAQCbqFEEIIIYQQQggLkaBbCCGEEEIIIYSwEAm6hRBCCCGEEEIIC5GgWwghhBBCCCGEsBAJuoUQQgghhBBCCAuRoFsIIYTIpo4dO4abmxvHjh1L76IIIYQQWZYE3UIIIUQC1q1bh5ubW6Ivb2/v9C5ihvTw4UO++eYbateujaenJx06dODff/995Xbdu3fHzc2NiRMnJrrfsWPHUr9+fTw8PGjSpAkjR46Ml+/w4cN8+umn1KxZk+rVq/P++++zYcOGNz0tIYQQ4rVZpXcBhBBCiIxs4MCBFC1aNN7y4sWLp0NpMrbQ0FA+/vhjHj58SNeuXXFxceHff/9l8ODBxMbG0rZt2wS327FjR5I3Me7du8dHH30EwIcffkiBAgV48OAB586dM8v333//0a9fP7y8vBgwYAAajYZ///2X4cOH8+TJEz777LPUOlUhhBAi2SToFkIIIZLQoEEDPDw80rsYmcLKlSvx9/fnt99+o3bt2gB89NFHdOrUienTp9O8eXNsbGzMtomKimLatGn06tWLuXPnJrjfsWPHotPpWLNmDXny5En0+CtWrMDFxYXff//deJzOnTvTsmVL1q1bJ0G3EEKIdCHdy4UQQog3MHfuXMqXL8+RI0fMlo8ZMwZ3d3cuXboEQHR0NHPmzKFjx45Uq1YNLy8vPv74Y44ePWq23e3bt3Fzc2Px4sWsWLGCt99+m8qVK9OjRw/u3buHoij8+OOPNGjQAE9PT/r06cOTJ0/M9tGkSRM+//xzDh48SLt27fDw8KBVq1bs2LEjWed09uxZevbsSbVq1ahcuTKffPIJp06deuV2J0+eJG/evMaAG0Cr1dKyZUuCgoI4ceJEvG0WLVqEoij07NkzwX1ev36d/fv307NnT/LkyUNUVBQxMTEJ5g0NDcXJyckssLeysiJPnjzkyJHjleUXQgghLEGCbiGEECIJoaGhPHr0yOz1+PFj4/o+ffpQoUIFRo0aRWhoKAAHDhxg9erV9O3bl/Llyxv38/fff1OjRg2GDh1K//79efToEb169cLX1zfecTdt2sSff/7Jp59+Svfu3Tl+/DiDBw9m9uzZHDhwgP/973906tSJPXv2MH369Hjb+/n58eWXX9KgQQOGDBmCTqdj0KBBHDp0KMnzPXLkCF26dCEsLIz+/fvz5ZdfEhISQrdu3eJ1535ZTExMgsFt3LILFy6YLb979y6LFi1i6NChiQbFcTcz8uXLR7du3fD09KRy5cr06tWL27dvm+WtUaMGV69eZfbs2fj7+3Pr1i1+/PFHzp8/T69evZIsuxBCCGEp0r1cCCGESEJCXZJtbGzw8fEBwNramunTp9OxY0emTZvGsGHDGDVqFO7u7vTu3du4jZOTE7t37zZrhe3UqRMtW7Zk+fLlfPvtt2bHCAwMZMeOHTg6OgJgMBhYuHAhkZGRrF27Fisr9Sf88ePHbNq0iQkTJpjt28/Pj3nz5vHOO+8A8P7779OiRQtmzZpF3bp1EzxXRVEYP348NWvW5Ndff0Wj0QDqc9StW7dm9uzZLFmyJNG/VcmSJTl8+DB37tyhSJEixuVxreSBgYFm+adNm0aFChVo3bp1ovv08/MD1J4DHh4e/PDDD9y7d4/58+fTvXt3/vnnH+zs7ADo27cvt2/fZsGCBfz8888A2NnZMXfuXJo2bZroMYQQQghLkqBbCCGESMLYsWMpWbKk2TKt1ryjWLly5Rg4cCDfffcdly9f5vHjxyxZssQYGAPodDp0Oh2gBtAhISEYDAbc3d25ePFivOO2aNHCGHADeHp6AvDuu++a7dfT05PNmzcTGBhIsWLFjMvz589Ps2bNjO8dHBxo3749ixYtIigoCBcXl3jH9PX1xc/Pjz59+pi15gPUrl2bjRs3YjAY4p1/nPfff5+VK1cyePBgvvnmG/Lly8e///7Lzp07AYiMjDTmPXr0KDt27GD16tUJ7itOeHg4AC4uLvzyyy/GYxcsWJCvvvqKzZs388EHHwDqzRBXV1eaN2/OO++8g16vZ/Xq1Xz99dcsXboULy+vJI8lhBBCWIIE3UIIIUQSPD09kzWQWs+ePdmyZQvnzp3jq6++okyZMvHyrF+/niVLlnDz5k2z55ITGh29UKFCZu/jAvDElj99+tQs6C5RooSxpTqOq6srAHfu3Ekw6I5rVR4+fHhip8mzZ89wcnJKcF358uWZNWsW48aNM4427uLiwsiRIxk/fjz29vYAxMbGMmXKFNq1a2e8mZCYuG7nLVq0MAv2W7RowbBhwzh9+rQx6J44cSJnz55l/fr1xrwtW7akTZs2TJkyhb///jvJYwkhhBCWIEG3EEIIkQoCAgLw9/cH4MqVK/HWb9y4kREjRtC0aVN69uyJs7MzOp2OhQsXEhAQEC9/XKv4yxJrZVYU5Q1Kb76PYcOGUaFChQTzxAXOiWnRogVNmjTh0qVLGAwGKlasyPHjxwFT0L9hwwZu3rzJhAkT4j2XHRYWxu3bt3F2dsbOzo78+fMD6jPdL9LpdOTOnZuQkBBAHahu7dq19OrVy+xvZG1tTf369VmxYgXR0dHxRk8XQgghLE2CbiGEEOINGQwGRowYgYODA926dWPBggXGLs5xtm/fTrFixZg/f75ZC3Ri02S9KX9/fxRFMTtWXEv2i89bvyiupdzBwYE6deq89rFtbGzMWrAPHz4MYNznvXv3iImJMbaGv2jDhg1s2LCBH3/8kaZNm1KpUiUg/vPg0dHRPH78mLx58wLw5MkTYmNj0ev18fYZGxuLwWDAYDC89jkJIYQQr0uCbiGEEOINLV26lDNnzvDzzz/TqFEjjh07xvjx46levboxKIxruX4xED579ize3t4ULlw41cv04MEDdu7caQz8Q0ND2bBhAxUqVEiwazmAu7s7xYsXZ8mSJbRp04acOXOarX/06JHxfJLLz8+PlStX0rhxY+Oz8a1atUqwJb1fv340bNiQTp06GYP2mjVr4uzszKZNm/jiiy+wtbUF1K76er3eGMg7OzuTK1cudu7cycCBA40t2mFhYezZs4dSpUrJtGFCCCHShQTdQgghRBL279/PjRs34i2vWrUqxYoV4/r168b5t5s0aQKoo3K3b9+eCRMmMGfOHAAaNWrEjh076NevH40aNeL27dusXLmSMmXKGAcLS02urq6MGjUKHx8fnJ2dWbt2LcHBwUydOjXRbbRaLZMnT+Z///sfbdq0oWPHjhQoUIDAwECOHTuGg4MDCxYsSPK4rVq1okWLFhQqVMh4jrlz52bChAnGPKVLl6Z06dIJbl+0aFGzkcZtbGwYNmwYw4cPp0uXLrRr1467d++yfPlyqlevbrypoNPp6NGjB7Nnz6Zz5860a9cOg8HAmjVruH//PjNnzkzJn08IIYRINRJ0CyGEEElIrPv31KlTKVy4MMOHDydPnjyMHDnSuM7V1ZWvvvqKKVOmsHXrVlq1akXHjh15+PAhq1at4uDBg5QpU4aZM2eybds24zPPqcnV1ZUxY8YwY8YMbt68SdGiRfnhhx+oX79+ktvVrFmTVatW8dNPP/HHH3/wf/buOjyK4w3g+PfuIgQiQBLcJUGiuBPcHVpKcSheWqDFCm0pbr+2SAttgQIVpMVdiru7e9AIECJE7vb3x8IdIUICuVwS3s/z5GFvd3Z3LkOSe3dm3gkPD8fV1RUvLy8+/PDDN963RIkSrFixgsDAQLJly0bDhg0ZOHAgzs7Ob/1eWrZsibW1Nb/88gtTpkzB0dGRDz/8kEGDBsWa+963b1/y5cvHokWLmD17NlFRUbi7uzNjxgwaNGjw1vcXQggh3oVGSYnMK0IIIYRIM2rXrk3x4sWZO3eupasihBBCvPfiT4EqhBBCCCGEEEKIdyZBtxBCCCGEEEIIYSYSdAshhBBCCCGEEGYic7qFEEIIIYQQQggzkZ5uIYQQQgghhBDCTNL1kmExMTE8ffoUW1tbtFp5fiCEEEIIIYQQInUYDAYiIyNxcnLCyirh0DpdB91Pnz7l5s2blq6GEEIIIYQQQoj3VKFChXB2dk7weLoOum1tbQH1TdrZ2Vm4NonT6/VcvnwZNzc3dDqdpasjUoi0a8YlbZsxSbtmXNK2FhARAVWrqtv79oEZPotJu2ZM0q4Z1/vWthEREdy8edMYlyYkXQfdL4eU29nZkTlzZgvXJnF6vR6AzJkzvxf/Ad8X0q4Zl7RtxiTtmnFJ21qAosClS+p2pkxghs9i0q4Zk7RrxvW+tu2bpjrLRGghhBBCCCGEEMJMJOgWQgghhBBCCCHMRIJuIYQQQgghRIqKiIAVK2DECDh92tK1EcKy0vWcbiHeV8+fg40NyEp5QgghhEgrnj+HTZtg2TJYuxZCQ9X9s2fDzp1QpoxFqyeExchHdiHSmYMHwcUFChWCtf8+sXR1hBBCCPGeO3QIPv4YXF2hVSv4+29TwA3w7Bk0bAiXL1uujkJYkgTdwuIinkVg0BssXY1049tvISwM7tyB5m2z0qXxXh4/fGLpagkhhBDiPXPoEDRqBJUqwV9/xQ60s2WD7t2hShX1dUAA1K8Pd+9apq5CWJIE3cKi1qzSkyuXnmJ5/Qm4E2jp6iTblqXH+ev7e1w+cTNV7nf1KmzeHHvfoo3V8CgVwfpFR1KlDkIIIYR4vx0+DI0bq8H2pk2m/S8D7Y0b4eFDmDcP1q8HLy/1+K1bauAdHGyZegthKRJ0C4vZtQs+aK8lJNyeGw8L8P23Zy1dpWQ5uu08TTqW5X9/NsO7Un6GdtlJSFCIWe85d47euN2k1h0c7Z4CcC84N027lKdb0z08efTUrHUQQgghRPry+DFMmgSDB8Nvv8GBA/D0LT4uBAVBkyZQsaIaWL9UsCD8+is8eKAG2g0bgrW1eixrVrXDoEgR9fX589CsmZaICAlDxPtD/rcLizhxApo1g8hIjXHfT0t8eRb8zIK1SjqDAfqPKIqiqD9C0Xobpi7yw71YBIum7TXLcPmIZxHMn6sG9TY2BhYszc/ZE2E0KH/UWOb39dXx8XjGpaPXU/z+QgghhEh/1q2D0qXVLOLffw+ffKIO+c6aFfLnhwYN1EA8Kfr1gw0bTK8LFoRfflHnavfsqSZ5jU+uXLBlC+TMqb4+dEjDsGFFiIp6p7cmRLohQbdIdVdO3aVhQ4VnL+LrzJkiAXga7sRvU45ZsGZJN38+HD5qC0DOrIHYWj8H4MGTnHT5shpVPc6xd+1pQoKeoRiUFLnn8rnHCA7NBkA7vwO4ukJ+9zxsPFiWX8fvwcFODchvBeSjWh1Hjm47nyL3FUIIIYR5RUfD3LkwdCjcv58y13z8GLp0UTs5Erqmv78aDH/yiTpkPDFhYbBmjbrt5GQKtj/5JOFg+1VFi6o93k5O6uv9+51o1UpLUFDS35MQ6ZUE3eKtKAaFX8fv5ps+O5M1F/vetQfUr2/g0SO1h7tKFdi18Z7x+P9+cyM6MjrF65uSgoNh+HDT6zGTgjhz5D4tqx007jt40ZPqzb1wcnHAzk5PgQJQtqyabGTECAgPT/59f57nZNzuN9DBuK3Raug5sjpnjz/Du/AlAAJDXKjVLD///XMi+TcSQgghRKrZulWd89ynD0ydCjVqvHuysQ0bwMMDFi0y7WvcWB0SPmMG9O4N1aqpvd0v/f134tfcvFldEgygffukB9uv8vZWlxLLlEl5cU0Nvr7qcHchMjIJusVbmTxkF71G1eC7uX74+ESzZ82pN57z+OETGtR5xs1H+QHwKHKbdeugnF9hmlU5BIB/UB6WzH7Do1YLG/WV3vhU9sMPDZQrF0oRjwKs3FOJzX8do0S+a7HKR0ZZcecOHD+uJhuZNEl9OpwcJ3Ze5OBFTwC8Cl+iciPPOGUKlMjLzoO5qO6htkXocwcadfBkxYq413sa8IRF0/by6Ye72L78ePIqI4QQQoh3dv26urxW/fpw8aJp/9WrUKsW3LuX8LkJMRjUgLpJE9P5jo6wYIE6zLxhQ/j0U5gzB/bsUevwcu71P/+o5ydk1SrTdqtWya/bS9Wrw5o1BrJmVTtZ7txRHzRMnw5KygwOFOnE8OHD6devn/F1p06dGD9+fKrX49ChQ7i7uxMSYr7cTBJ0i2Tb9OdRRv5Yw/j6XnBuarUqzaShxxP8ZX1672Wa1LrD2VvFASiU4w6bt9iQTR0tzZfDMhnLTp3pmuiQ7IA7geij9QkeN6fjO84zZ67aS29vrzBlSux61v+oLKevFuDnMbv5sM5+avsex7PkM3LmBJ3OVHb/xnPJuu/PPzwybvfr9gCNVhNvuaw5nNi83834ECMq2op27dS5Wk8DnrL4f3tpXvUQOfLY0eXLasxaVpPmndwJvv84WfURQgghxNsJC4PRo6FUqdiBbKVKpmRjV668XeC9bFnsB/sNG8K5c9C1K2ji+eiQLRvUratu+/urS4DFJzpa7aEGNYivVSt59Xpd7drw118XqFZN/WwUEwNffAEtWkhm87Rg+PDhuLu74+7ujoeHB/Xq1WPWrFnExMSY9b4zZ87ks88+S1LZ1AiUU5IE3SJZrp26xUe9ixkTiBV09QdAb7BixNQyNGsGgS9Gm0dFRLFk5n6qe57Cu7obBy6ovbM5nALYutlAnqK5jNet1tSLSiXOAHDmphub/447t1sxKHzTZye5CmajfMnLREWkbvYNg95A/35643v/esBx8uaNW87a1po+X9dgybYqbD9ehtPnHXjwACLC9Ma536fOZU7yfZ8GPOXPTWUBcLAL4eMBZRItb+dgx4odZenSRf1DZjCoQ8By5MlE5yHVWLu/IlExtsby4ZFZWDLndJLrI4QQQgiTmBh1Kayk9NI+faoG1+PGQaSa0oZcudRh4Pv2wc6dpsD78mU1uE3OHO9XlxWdPl0dZp4vX+LntGtn2l6+PP4yu3fDkyfqdpMmyR9WHp8cOaLZts3AiBGmfWvXgq8vHEsfKX4ytOrVq7N37142b95Mt27dmDVrFvPmzYtTLioFs+FlzZoVe3v7FLteWmLWoPvIkSP06dOHatWq4e7uzrZt2954zqFDh2jVqpXxqcqK+MbGCosIexpGq5aRPAnLCkCLaoe4cicnX/feiUaj/qXZsAF8fRW+7LqXAnme8NHAKuw96228hqtjAJtWBVHMp2Csa2u0GoYODjO+njo99n9NxaAwqtcuvpvrh0HRceJaSXavTd0lxhZO22cc4l0i3zU++zruEO/EWNtaUbrgDQCu3CtI2NOwN5yhWvTjScIjswDQuekJ7LM5vOEMsLKxYv58DYMHm/a9GmjnyX6frk32GF8vXOqcpLoIIYQQQvXwoRo8FyqkfrVrp/YIJ8RggM6d4eyLjy/W1mritMuXoVMn0GrVbOI7dkDhwmqZl4H3gwdJq9Pu3eq/trZqpvH4erdf16IFWFmp2wkNMV+50rTdsmXS6pIUVlYwYYI619z5xUeR27fBzw/++y/l7iOSz8bGBldXV/LmzUuHDh2oUqUK//33n3FI+M8//0y1atVo2LAhAPfv3+ezzz6jYsWKfPLJJ/Tv3x9/f3/j9fR6PRMnTqRcuXJUrFiRKVOmoLz2pOr14eVRUVFMnTqVmjVrGmPD5cuX4+/vT+fOnQEoX7487u7uDH+RcMlgMDB37lxq166Nl5cXzZs3Z9Ori8kDu3btokGDBnh5edGpUyfuvmsShSSwMufFw8PDcXd3p02bNgwYMOCN5e/cuUPv3r1p374906ZN48CBA4waNQpXV1eqV69uzqqKN1AMCj1an+LMzSoAuOe9zqJVJbG2tWbMHD+qtYGPP4aAAPD31zBtYbVY55cqcJX+Xe/S6bMyOGQvEe89mnctT/Fvb3DlXmH+O1GGY/9doGztkigGhdG9dzFhnl+s8htWh1D3A7O83TgeP3zCsAmmes/63xNs7Iqi1ydvmLu3exDHr4KiaDl78AYVG3gkWl4xKPy8yPSIuu+gPEm+l1YL06apy3OMGgUu2SJoV+sw7T7ORpXGHmh1uTlV7AInrpXk8CUPLhy+RskKRZP1foQQQoj3iaLA/v0we7YaoL4aZP/7r7ps1oIF6t/g140bZ8r+nS2bOqe6dOm45QoUUANvPz+4eRMuXVID7z17wMUl4br5+6tztEFdRztTpoTLvip7dnWI+aZN6vzqw4fV3vhX3/PLYfA2NuqQ9ZTWsCGcPAkffqh+f0ND1eSzf/8NrVun/P0s6sL/4OL/3lwuexmouSb2vl3NITgJuXhKDIaSg99cLhlsbW158mK4w4EDB7C3t2fBggUAREdH06NHD3x8fFi8eDFXrlxh586d9OzZkzVr1mBjY8P8+fNZuXIlEyZMoGjRosyfP5+tW7dS6dX/bK8ZOnQoJ0+eZNSoUZQoUQJ/f38eP35M7ty5mTlzJp9++imbNm3C3t6eTC/+w8+dO5c1a9YwZswYChUqxJEjR/jyyy/Jnj07FSpU4P79+wwYMICPP/6YDz74gLNnzzJ58uQU/V7Fx6w93TVr1mTQoEHUq1cvSeWXLFlCvnz5GD58OEWLFqVjx440aNCA33//3ZzVFEkwfcpzlv6nBtwOdiGsWgmOzo7G4/Xqqb8sa5imeqPTxtDW7wA7/j3J2RtF6TemJg7ZE+6l1Vnr+KLvHePrqXOKqkPK++5k/G9+xv0ajfoIdv3hhH9IU9rXA08REOIKQLta+6nTruxbXcfb2xSknzry5klLu1ad4sIdNRCu4XmS0pWLJ+t+Go36FD0kBPzv2/HjkppUa+aFVqf+6Hf5wDRXfOHv5p2nI4QQQqRn+/ZBmTJq1u+//zYF3Fqtqad40SJ1bvLrQ83XrYNvvjGVX7Ik/oD7pYIF1aHmhQqpry9ehClTEq/fy15ugJo1k/quVIkNMT961JRNvW5ddU63OeTLB9u3Q/Pm6uuoKIx5aTKU6BCIuPvmr+cBcc99HpC0c6NTbp6zoijs37+fvXv3UrFiRQAyZ87MuHHjKF68OMWLF2fDhg0YDAbGjx+Pm5sbefPmZfz48dy/f5/DL9aiW7hwIb169aJ+/foULVqUMWPG4OCQcFxw48YNNm7cyIQJE6hXrx758+encuXKNG7cGJ1Oh9OLteecnZ1xdXXFwcGBqKgo5s6dy4QJE6hevTr58+endevWNG/enKVLlwLw999/U6BAAYYPH06RIkVo3rw5rd4lM2ASmbWnO7lOnjxJ5cqVY+2rVq0aEyZMSPQ8vV6f7B7H1Payfmm9nvHZtg2GfWV6XLpwxnmKlykf573kzKmu9ThvnoaQJ3o+av2QfMUrAGBQDJCEt/7xwPKMnqnw6JGG5f9a4/ThEX75x5StY+aonSzdWZO9e+Hy1UxcuqSnWLGUeZ8J8b9yn5//qQpAZtswpszOH6c9k9quHmVMv1xOnlTeeN7sBTmM2717hr31/x9ra/UDwOunf9irBF9MNRATo2Xxaje++0GPTvdWt8hw0vPPrEiYtGvGJW1rAXo9OuOmPu4fmRS5hfnaVVHgxg012HvTHOXTp6FhQy2hoabx2i4uCt27K/TurXDiBHzwgRaDQcP334Ozs4Hhw9XI+/Jl+PhjLaCeO26cgTp1lDd+u/LlUz9XlSihXnftWoWJExNOL75zp4aX/WlVq+qT1RzNmoGVlZaYGA3//KMwebLBODR9xQrTdZs3N6DXv3uK8YTa1dpaTQbXq5eGRYu0xrw0AQEGvvxSSdJw+bROY2WPxi6epECvs3XB8Nr3R2vrAkk4V7GyR3mHnxlFUdi5cyc+Pj7ExMSgKApNmjShX79+xmBbp9MZ2+/ChQvcvn0bX19fQB3irdVqiYyM5NatW3h4eBAQEICnp6fxHI1GQ+nSpVEU0+dhRVGMr8+dO4dOp6NMmTLx/vwbXsyDeDUOvH79OhEREXTr1i1W2ejoaEqWLIler+fq1aux6gHg5eUV51pJldTyaSroDgwMxOW1cTMuLi6Ehoby/Plz47CB112+fDk1qpcizpw5Y+kqEBkexeP7z8hV9M3zeAMDrfjww9IYDOpvuU8+uUcBX2tOnjyZ4DkvHoIRGAaBJx8mu35t2uTi55/zYjBo+OWfCsb9Y/qvpHLLAlx6cpe9e9Uh17/9dpf27eN5EpiCFk29j97QFIBerf8jKDwPQScfxSqT1Ha1djIt0H3inGOi38fAQCtWblR/CThnC6doeatEy7+tqlVt2bUrK/fuafjll+tUrpw+skCmlrTwMytSnrRrxiVtm3q0ERH4vtg+ffo0Bjs7s90rpdv10SNrxo8vyL59TuTJE8mMGVcoVCgy3rKBgVZ06VKS0FD1EYObWzgdOjykXr3H2NoqPH6s9kiPHOnMuHGFABg1SktExC3q1w+ma9cShISo35s6dR5Tr951kvPn3NPTnVOn7Ll4UcO6defJly/+xFVbt5YC7NDpFLJkOc3Jk4ms/xWP8uWLceCAE7dva/jzz8t4eKifWZYuVa+r0SgULnyGkydTbmRcQu06YAAYDHn54w816e7IkVrOn3/AZ5/dzQCBdy0okMT076//R3H4Ft6c2gci4jk3GYKDgylZsiTdu3fHysqKbNmyodPpuHz5MsHBwURFRcX6THr79m0KFSpE//7941zL0dHR2M5XrlzBysoUfj59+hRFUYzXCg0NJSAggJMnT3Lv3j0UReHUqVOxznnp6tWrgPp/KEuWLLH2ffHFF2R7uUTSC9bWavzy9OlTYmJiYtX/xo0bca6V0tJU0P223NzcyJw56dmgLUGv13PmzBk8PT3RWbArMSoiCr9y1zh8qTKffriT7/9MeK68YlBo1UrL06fq083GjRVmz86JVpvTrHUcMwYWLVIICzP9Vv1x5A76f6eON+rZE2bNUvefOpWfSZOS8LTwLT0Pe85fG9Wkb1a6aAaPKUOeIqas62/TrgVc/bkdkI9zt4ri5WlnHOr9uhkzNOj1Lx529M5EuQrl3vHdxG/gQNi1S93eu7coffvKIpmQdn5mRcqSds24pG0tIMyUENTLywvM8GE1pdtVUeCPPzQMGqThyRP1b+y9e7b06VOadesMlHvtT21YGPTureXhQ7Vs+fIK//1ni51dAaBArLI+PpA5s4GRI9W/6xMnFmDz5gLcuKGeW7q0wr//OmJv75OsOrdrp+HUKXX71q3SNG0a9+/0o0dw86b6/SlXDipX9krWPQC6ddNw4IC6ffq0Ox07Kly6BDduqNetXBnq1Ek8F01SJaVdFyyAUqVM388//shFyZI5GDZMPqeYW/bs2bGysjImSYvvmI+Pj3FfjRo1OHLkCNWqVcPOzi7etnV1dSU8PNx4XkxMDP7+/pQqVcq4z97eHldXV3x8fHB1deV///sfUVFRlHv9BxOMSdhKly5N1qxZAShevDjjxo0jS5Ys8dYdwNfXlx07dsSq/38vsvZ5enrimMz5E+Hh4UnqAE5TQbeLiwuBL9ebeiEwMDDW5Pj46HS6dPMH1tJ1nTv+MIcvqRN9Zi71o1LlfXT4rGq8Zf+csY9169VjOXLAokUarK3NX3dXV+jTR13qAuDHUXsZONb0RNDLC/LnV7hzR8OunXqeh0aSxck8T6WWzzlBYIiaFK6t3xHyF68Sb7nktKt38bvcDsjHswhH7ly6TRHPAvGWe3Vu1kcfac027LtpUzVjaFAQrF6t4dnjCLK6JP37uXreIf7+S8/wb5zxqeFunkpakKV/ZoV5SLtmXNK2qeiV77NOp8Oc85NSol3v34fevU3rTb8qMFBD3bo6Vq9W15AGNYt3166m5asKFoS1azXY2ydcj+HD1b+n06eDwaDh6FF1f9assGqVBien5L+Hpk3VhKgAGzdqGTgwbpl9+0zbNWtq3up71bo19O2rzhL4918t06bF/l61bv12103Mm9p1xAg1eVyfPmp7/Pijli++SJkly0TCNBoNGk387R3fsRYtWrBgwQIGDBjAgAEDCA4O5tixY2zfvp2ePXuSK1cuOnfuzLx58yhSpAiFCxfm999/59mzZ7Gu9eq1CxQoQKtWrRg9ejSjRo3C3d2de/fuERQUROPGjcmfPz8ajYbdu3dTs2ZNbG1tcXR0pHv37kyaNAmAsmXL8uzZM44fP469vT2tWrWiQ4cO/P7770ybNo127dpx7tw5Vq9eDbzd75mklk9T63T7+Phw8ODBWPv2798f60mEiCs6Gs6de/NUqqB7wYyZ6R1rX+/hXlw+fiNO2Qc3HvHp6FLG13P+d8+4lENqmDABfvhBXUJi4NjYmdA1GmhSUU3KEBVtxfZ/zbN0mKLAzL9MCdMGDk7KeJ438y4dYdw+dfBevGUMegN79qjDwrJnB4+UebAcLxsb+LhtEADPn2tYNifpi2PuWXOK1p+UY+l/VejUWYtikKfPQggh0gaDQQ2AL1yA+fPVxGWvBpEff6xm+36ZBPZlxuyXq9UOH25aKsvRUU2GlvMNg/00Gpg6Fbp0ib3vzz956xw0Xl6Q98Wgvh07Yg0wMHqXJGovOTtDnTrq9q1bagK1l1nLIWWXCkuOTz6BNm3U7UePTBngRdphZ2fHH3/8QZ48efjss8/48ssvGT16NJGRkcZ1t7t3707z5s0ZNmwY7du3J0uWLG9Mtv3tt9/SoEEDvv32Wxo1asTo0aOJiFA/R+fMmZNPP/2U6dOnU6VKFcaOHQvA559/Tr9+/Zg7dy6NGzemZ8+e7Ny5k3wvFqzPkycPM2fOZPv27bRo0YIlS5YwaNAgM353XlDMKDQ0VDl//rxy/vx5xc3NTVmwYIFy/vx55e7du4qiKMq0adOUL7/80lj+9u3bire3tzJ58mTl6tWryh9//KGULFlS2b17d7zXDwsLU44ePaqEhYWZ822kiJiYGOXo0aNKTExMil+7UydFAUWpUytKiQyPTLDcgA92KmooqShOmZ8Yt72LXVciIkzlDHqD0rLaAePx9nX2pXid39Wa+YeM9evdapdZ7rFvn2K8R9ky0YpBb4hT5m3adfncE8brfjPsUbxlzu6/bCzTou6Nt30LSXbsv/PG+1UueTpJ5wTcCVTyZr9nPA8U5fiR52auaeox58+ssBxp14xL2tYCQkNNfwBCQ81yi+S0a0CAonz0kaJ4eChKzpyKotMpsf5GvfzKkUNRVq40nRcerijNm5uOa7WK0qGD6bVOpyibNiWv3tHRitK5s6JkyqQoM2Yk79z4fPKJqT5r18Y97uVlqvuTJ29/n19/Nd2nY0fTtqfn218zPsn9ed261VSXevVSti4iZb1vv4uTGo+ataf77NmztGzZkpYvHo1NnDiRli1bMmPGDAACAgK4f/++sXz+/PmZO3cu+/fvNw5TGDdunKzRnYjbt+GPP9Tt7TusGdT5QLzlzh+6aszAncU2lCN7H1Mi3zUATl0tzKsPeJbOPsCqvepyXK6OAcz8Pe0NGa7dujS21s8BWL+7mFl6WGfONG1/OtAKjTZlMnd41/Ixbp+65BpvmV2bTD3gNcrcTJH7Jsa3Zgk8C6nzUQ5c8Ix39MOrDHoDndtc525w7lj7F/9la7Y6CiGEEImZPl1dyuvsWXj4MP4RgB99BOfPx+61tbNT19h+2TttMMBff5mOz5oFDRokry5WVrBwIUREwKefJvutxNGkiWl7/frYx4KD4WU+Mh8feLGS0ltp2dI0S+Dl58uX+y2pdm0oUkTd3rrVtB65EOmFWYPuihUrcunSpThfL8fZT5o0icWLF8c5Z9WqVZw9e5Zt27bRunVrc1Yx3Vu8OPZakD/9U5P5k/bEKffFZ0/QG9Qp/MM/OUpx30IsX+2CnZ168pw56hIND28GMOArU5D906SruORLxXHlSZTFKQu1fNW/MP5BeTiz/0qKXv/ePfjnH3XbxQU+/DDlrl20qCnXTEKJJXfvtTZu16yfI/5CKUij1dD1A1Ogv/CnW4mWn/rlbjYeLg9ADqcAbGzU/0d//QUxsty3EEIIC9i2zbSdPz+ULQsNG0KnTjB4MGzerP6dim+6nJWVOgR98ODY+wcPVucTW1qdOqZ5zBs2xP7st2+f6fXLofJvy8XFNKf9VZYOurVadZj5S/PmWa4uQryNNDWnWySPoqhPUV/Xd3QFDm85Z3y9cSNsPKRm/cvvcpchE9Q1vTzKODFzpqn3tmdPhQ5t7hP0TP1r1K7WAdr2jb1uelrSuJ5p+a0N/8Y/N/ptzZ1w1Bg89u4NieTxSzatFjw91e2bN+Hp09jHFYPCruNFAXCwC8G7ulvK3TwRH/cthU6rvulFq9zQR8efJGDfutN89aM6z16jMfDn3Ns0aaL+P3r4ELZvT5XqCiGEEEZPn8Lx4+q2h4c6EvDoUfUz0KJFai94/fqJX0OrhWnT1LJ58kD//jBlivnrnhT29qa52rdvq7l8Xnq5Agm8e9AN0K5d7NcFCoCvb/xlU1PXrurDEVAfkERHW7Q6QiSLBN3p2IHNl7jyooO3dm3o11b9rRsVY0vrj7Lz8GYA0dEwZIjpnMn/y4qdg2kdze7d1UQiAM+eafjvuLrEhItjILN+f8uMH6mkyYeFjdvrt2VLpGTyRIZHMucPdZkwnTaGPj3D33BG8nm/ks/u9JHHsY5dPXWTB0/UTC1VPS9hZZM6iwzkLJSDRhXVTyz+QXnYsfJUnDJB94Jp39XFOGriq567qfthWTp1MpVZ/EvKPgARQggh3mTfPnVYOICf39tfR6NRe7f9/dVh5WkpEX5CQ8xfTaKWEjMyW7WK/b5btiRNrI2dKxe0aKFuP3igJrYTIr2QoDsd+33OQ+N21xan+X5RZaqWPg3A3eDcfND8LrNn6blwQS1TqRK07xh7KSiNBn7+GdyKxE6FOXvCZXIUiH++cVpRxLOAcV76/nMeBD94kiLXXT73KI+equ+9dc0j5CuU8mvAe+c3ZQg/tet0rGO7Nvobt2tWiSdFqRl16WTq3R48zJ5v+uxk2V9hnDsHkc8Vura9in9QHgBqeJ7km1lqj3fjxpDNIRSAleudCH0cmqr1FkII8X7budO0/bbZu1+VFoLM170adG/YoP777Jmph790aXV4+LtycYFappVaadXq3a+ZUnr1Mm3/8ovl6iFEcknQnU5FPItg6Ra1u9Q+0zNadymKjZ0N/6zNRZ7sanK63Wd8GDTY9Kjyhx/i/yPi4ADLF94lk7Wagr+t3wHapeFh5a9qXPMOAAZFx5bl599Y3qBXOLBfYfBgdX7U4MFw8CCxErHNnGvKQPLp5ykfcAN4+5gWmDx1Onaj7N5jel2jburOp2/WpQzZsqg972duuvHdXD8+/DgLHh6QOQusO1ABUEdC/LUip7EX3tYWPqir/tUPj8zCygUnU7XeQggh3m+vBt0pMcQ6LSpWDIoXV7f37YPHj2H/flPCuJR42PDSd9+p65J/9FHa+n7WrQuFCqnbmzer0/TeJCYGDh2CyZPVBxd+fuo8/Rkz1ClxDx7EniMvhDlI0J1OrVpwgpAINThsV+ckWZzUHuxchXPw759B2FhFxir/8ccKFSsmfD2vam4c3nGH+ZP28Mf6MimWqdvcmrQ0Bcjr1xviLaMYFA5uOsuQjjsplOseVapq+P57+O8/+P57qFwZCua8x5COO5k/aQ+HL6mLYvsUuUi1pl5mqbdn5ULG7VMXYwfWu4+pQ9vtbMIpVzt1M8fbZrZl6ldnyWIbt6faYDD9n1j88x3yFoudubxT96ym43/ZIYQQQqSGkJDYvb05zJ9/1GJe9nbr9WoW71eHlqdkcFy5shrQ/vWXOtc9rXg1oZqiJJxQ7fJldT5+48aQLZs62nP4cHWEwK5dMHcufPaZGsTnzq327n/wAYSn/IxCIQAJutOt3xeblmbq0sMh1rFKDT2YPeaw8bWdTTgTv37Im3hWdaPbsOrYZk4/yz5Va1IaB7tnAGw6Ui7W8iBhT8OY+sVOCuW6S+VGHvzvTz/uBOaN9zp3AvPyvz/96DHCNBnq008CzPbwwSG7A0VzqRnCz94sbExaduuCP7cC8gNQufRFbOxsEryGufQYUZ0nIZm4dOwGKxZcZOxYaN9eTf7m6qommGnYIW5GlSqNPSmc8zYA24/7cO/ag9SuuhBCiPfQvn2m3t53mc+dHjRubNpevz7lk6ilB926meacz5sXe9WUqCgYPRpKlYJhw9REeqFJmPEWHAzLl6tTLoUwBwm606G7V++z7ZgPAIVz3qZ687i9sT1HVue7/jsp4OrPnPHHye+WK5VrmTps7Gyo18gegMDgTBw5ogbb077cSeEC4Qyd7sftgHzG8la6aBpVPsuCBXDjBixYAI2qXsJKFzsFprNDEB/1L2fWunu7qdMAIqIyc+WkGoDv3hJgPF6z8tN4z0sNVjZWuJUpTKuuJRg1Sl339PRpePQo7nIqL2m0Gjq2UBfONCg6/p57MRVrLIQQ4n2V0vO507IaNUzLjq5fD4df9LEUL6722L4PcueG5s3V7fv3TUnljh+HcuVg3LjYa7TnyqV2HsyZA5cuqcPy9+2DX3+Fzz+HevVMZefPl6HmwjxSJy2ySFGLZ1/CoKi/WTu3uo5WVyDecqNn+TF6FkC+eI9nFE2aaFixQt0eOuAOl65m4tFTP+NxjcZA/XLH+bBNBC06e5A9t4fxWNeu0LWrO8H3H7N60VmWrcjENX8XJox6gJ2Deee1e3s8Z8WLYWGnDj2gRPki7Dpj6kGu0SR1lgpLSZ36FGLsi8Qmi//JzZA0stSKEEKIjOt9CrptbdUgcdUqCAoy7X9ferlf6tULVq5Ut3/6SQ24J0ww9XpbWanDyTt2BDe3uDmNqlRRv16qUQP27IHz59X535Uqpc77EO8PCbrTGcWgsPCf/MbXnfsVsWBt0oZGjUzbe46ZvjcajYH2dQ4wenwuSlZIvNc6e+5sdBtWnW7DXu4pnFjxFOFdxpSk7dSJKD7ENDfLxgYq1op/KHxaVty3EBVLnOXQRQ9O3XDnzL7LeFZNfw8PhBBCpA/PnsGxFwuClCqVsedzv9S4sRp0vyqjP2x4Xb16aqK3W7dgyxb16yVvb/j9d/DxSfr1undXg25Qh6y/r0G3u3viuYQGDBjAp59+mkq1yVhkeHk6c3jrOS76FwWgptcJinjG38v9PsmdG8qUMb1Wg+39nD1wnb+2VqVkhaKWq1wivCvnMW6fOpeF+/cxrrteoQLYpdNcZJ3amR69//HrXQvWRAghREb3Ps3nfunVed0vvW893Tod9OwZe5+VFXzzjTrkPjkBN0C7dupqPgBLlkBY6q7Ymmbs3bvX+DVy5Ejs7e1j7evevbuxrKIoxLw6oV4kSoLudOb3Xx4bt7t0kLWQX5o0CUqWhI9aPeDMvuv8va0KpSoWs3S1ElWwRF6cMqvztk9dyWe2DKSp7cNeHsY58n+uLWFMEieEEEKktPdpaPlLefPGDioLFFB7fd833bubAmUvLzXY/vZbdbRgcmXJos77BjXx2vLlKVbNdMXV1dX45eDggEajMb6+fv06ZcqUYdeuXbRu3RpPT0+OHTvG8OHD6devX6zrLFq0iC5duhhfGwwG5s6dS+3atfHy8qJ58+Zs2rQptd+eRcnw8nTk+XNY8l81ADJnek7bT3wsW6E0pF49dR4OpJ+EcRqtBu+iN9h9xoe7wblZOf8k4ANAzaoRQPrs6nbJ50yjiodZu78Cd4Nzs3NHFHXq6958ohBCCJFMr2bvfl+CblB7u0+eVLffp/f9qjx51PnXFy+qS6m9TbD9qu7d1eRqoA4x79r1nasYx/Ll8PXX6rSI1OLgAGPHQtu2KXO96dOnM2zYMPLnz4+jo2OSzpk7dy5r1qxhzJgxFCpUiCNHjvDll1+SPXt2KlSokDIVS+Mk6E5H1qyBJ0/UTBBt2mXCIXsmC9dIvCvvyvnZfUbd/nd7aQB02hgqV0rfw3U6DfRl7X51+5d5NtSpb9n6CCGEyHhCQ+HIEXW7ZEnImdOy9UlNH32krkMdE5NywVR6VLKk+pUSKlZU8wKcPw9796prfbulcFqaqVPVhwSpberUlPt/MnDgQKpWrZrk8lFRUcydO5cFCxbg66smDM6fPz/Hjh1j6dKlEnSLtEVR1OyML5nj6ZtIfd4VnOFFtu8YvTUAZYtfxCG7RyJnpX3NWljj7KxmVl22TF1mrGJFS9dKCCFERvI+zud+ycNDHU795Mn7997NRaOBHj1gyBD19fz56vTFlDR0qLqOeGr3dH/5Zcpdz9PTM1nlb926RURERKz54ADR0dGUTKknJumABN3pxD9/PWHXrqwAFC0qv2AzCm/vuPtqVAhM/YqksEyZ1HlVLxNcDhqksG+vOqReCCGESAnv43zuV/n6vrmMSJ6OHWHYMHUEwcKF6prfVikYLbVtm/5HJti9lulXo9GgvLa4uf6VhdLDw8MBdYh5zteGo9i865yAdEQSqaUDoY9DGfxZuPH19OmglZbLEEqXjtuWNWpljr9wOtO7t2nI14EDGpbOPmDZCgkhhMhQ3tf53MJ8cuSA5s3V7QcPYONGy9YnPciePTsBAQGx9t26dcu4XbRoUWxsbLh37x4FCxaM9ZU7d+7Urq7FSOiWDowfchT/IHV5qUYVjxl/GYj0z84O3IuaxhhpNAaqNc4Y61pbW8P0b28YXw/9riARzyIsWCMhhBAZxavzuUuUgFzpJ49qbIZoiA6FmDCICYfIIHh8EvzXwuWf4ORI2N8J9nWAGPkbmhpeHQU9b57l6pFeVKpUibNnz7Jq1Spu3rzJzJkzuXPnjvG4vb093bt3Z+LEiaxcuZLbt29z7tw5Fi9ezMqVKy1Y89Qlw8stKOJZBGsXncCzfM4E15K+dOw60xdVAcDGKpIZc1zQyAjdDMU73zEuXPEDwKvAabLl9LFofVJSow8K03D6ETYdLs+dwLxMH7mTUTP9LF0tIYQQ6dz+/eoQYEgDvdyKAZ5dg/BbEHYLwm5D+G3134j7akCtjwB9ODQ6CQ6vLGl64w841D3BSxtlygG61xLoXv0Fnp4Ha0ewsjd9WTuo93DyQD40Jl+DBmpm9Hv3YN06tcc73T7USQXVq1enX79+TJ06lcjISFq3bk316tV5/Ni0zPHnn39O9uzZmTt3Lv7+/jg4OFCqVCn69OljwZqnLgm6LeTSseu0axvDmZtVsNJF89OY3XzyVezFmRWDwsA+wUTriwDwZdcDFPPxs0BthTl5lwhgyQ51u6bPBV4uG5ZRTJ+Rja1VYtAbrJj0azm6f/6APEXlr5cQQoi39+rQcovnuXmwHXYkcZmOmPDXdijxFosjm2/cAPrGHxCwJ+FzsnpD0R5QqAPYOiftPgIrKzVh8YQJaqK+xYtTNhFZetG6dWtat25tfF2xYkUuXboUb9mBAwcycOBAQJ3PffLkSXxeWUxeo9HQpUuXWGt3v29keLkF/D1jP+WquXLmpjqMOEZvTa9RNRjU6aDxqS3Ayt8Os+VoOQAKuPozcvr7kVL/fdO0ow9ajZpw4sNP0nfW8viUqliMPm32ARAWac9Xn12xcI2EEEKkd6maRE0xwNMLcG0+HOwOt5fHPu5aFbQJJISyygKZcoF9EXAqHTdwtssDOetAztqQsxbkqg9FuoPHN1DxN6i1GZqcg0oL49bp8YnE6/3kFBwbCGfHJu/9Crp1M23Pm6euIiTEu0iVnu4///yTefPmERAQQIkSJRg9ejReXl7xll2xYgUjRoyItc/GxoYzZ86kRlXNKioiin7t9vLLStNfh5xZH/HwSQ4AfvijEpeC4O+/wVoTzqBReY3l/jfWn8yO+VK9zsL8PKoU5/yR60RH6vGokrxlGNKLb//nwZ8bnvAkLCsLN1RlwH8XKFv7/VkmQgghRMoJC1OXywJwd4cUz8X0/BEEH4fAgxB4AIIOQfRT0/GYcCjQzvTaKjOU/BIUPWQpAJkLmP61cUr8Xnkaql/JpoEmZyHc/8Wc8Fe+op7A3bVqvUEN4l8VegOenFaDfWv7t7h3xlesmPowZ9cuuHRJnc6QjKWphYjD7EH3hg0bmDhxImPGjMHb25uFCxfSo0cPNm3ahLNz/ENd7O3t2bRpk/G1JgPMR7l66hZ9Ojlx+mYp477Ojfby09++/D17D32/qUpMjJaNG6FKFajsfp7bAWovd72yx2j9iSxynJG5ly1i6SqYlUs+Z775dBeDJtVEUbQM+iyKXacUWUJMCCFEspltPvfFH+HCFIi4l3i5wP1q1+ern0+9x6VgRZJAo4EsBdWv+Hh8BU/Owf2NkO21jq6bf8Lp0WrvfA4/yNsEctUDR3fQyCDYl7p3N01jWLhQgm7xbsz+k7VgwQI++OAD2rRpQ7FixRgzZgyZMmXi33//TfAcjUaDq6ur8cvFxcXc1TSrSxcVylfPaQy4M1lHMG/iHn5fV5UsTlnoObI6W7dqyZ5dLX/+PMxbqQbc1rooZs7NJsGJSPf6fV0Zt7zXAdhz1psVvxy0cI2EEEKkR7NmmbaTNJ9bHwk3FsOJYbC3PWyuDCvzQujN2OU0uvgD7kw5IV9L8JkEdXZC00vpI0FZ1tJQ8ou4+++uV/81RMGDLXDsM1hfCv5xhh0N4fS3cG8TRD2Oe+57pE0bsH8xEGDpUoiQ5PHiHZi1pzsqKopz587Ru3dv4z6tVkuVKlU4cSLheSjh4eHUqlULg8FAqVKlGDx4MMWLF0+wvF6vj7UIe1qzarWGZ+FZAHDPe50lf0fhWaUKBsUAL6pdvbr65LZlSy0XL5p+kQ/quI9iPjXS9Pt7n71sF2mfN9PZ6Jj83SNa9VB79ef+ZkPLT9Lu903aNmOSds24pG0tQK9HZ9zUq1mnUvwWsdt1715Ys0a9a548Ck2bGhK/7bPLaPd/jOZJ3M+d+mfXwS6/aYeTF1rrrJDNGyWrDzhXQHGuCJkLxg2y0/P/s9Jfobm7Hs399WjCTUs7Ef0E7m9WvwBD8U9Rynxvliqkh5/XTJmgbVsNv/+uJSQEVqww0L69TO5+k/TQtikpqe9ToyjmSw3w8OFDatSowZIlS/D19TXunzJlCkeOHGH58uVxzjlx4gS3bt3C3d2dZ8+eMX/+fI4cOcL69evJ9Vq+/vDwcC5cuGCu6qeYgABrvv8+H/md/enW+xmZ7DMlWPbZMx1fD8vGnsMFKZb7Or//fT/R8kKkJ4pBoXXjXNwJzIe1VQzbtp8hSxaDpaslhBDiLWgjIvCtXh2AE3v2YLCzM+v9FAW6d3fnzBm1+3HUqJu0bBmUYPnsTzdQ4OEkdMrrGcMhWufMzVyjCbGv9soNDIAmffRipwRFIVPUNZxC92H//DRZIs5irTd9P6/nHsdjR9N8c43hOa5PVvDYoQ7R1jktUeNUd+yYPb17uwNQqdJTZs26auEaibSqZMmSZM6cOcHjaW7JMF9f31gBuq+vL40bN2bJkiV8/vnn8Z7j5uaW6JtMC2rX1nPmTDSenuXR6XSJlt2+x8CxHWco7pWXrDkSmKsj0gS9Xs+ZM2fw9PR8Y7sKVbN28NPPEB1jxcOHXryyGkWaIm2bMUm7ZlzSthYQFmbc9PLygixZUvwWr7brmjU6zpxR27ZkSYVRo/JjZZU/7kkxYWiODUT7wJTxW3Fwx+AzGRzcIXN+tLpMZOxsKknlC7RVNxUFffgtNEGHIPAQBUt8TMHMr3x/76xAd+V/5A/4H4pjKZSsXpDV88W/3pApd5IfWKSXn1cvL5g0SeHGDQ2HDzvi6upD3rxvPu99ll7aNqWEh4dz+fLlN5Yza9CdLVs2dDodQUGxn0IGBQUleZ62tbU1JUuW5Pbt2wmW0el06aZRk1JXnU5HpQYZM4t1RpWe/g9aWrPmatANsGGDjnbtEi9vadK2GZO0a8YlbZuKXvk+63S6WK9TmsGg46uvTNefNEmDrW0C97s0B26+ssRWka5oys5EJ5m638yxqPpVuEPcY/6mEaqakPNoQs7D7SWm47YuamK3nLXBd0qSbpfWf151OujcGcaMAYNBw19/6Rg+3NK1Sh/SetumlKS+R7MmUrOxsaF06dIcOHDAuM9gMHDgwIFYvdmJ0ev1XL58GVdXV3NVUwiRivz8TJ0h69en72lxQgghUsf8+RpediZVqwbN6gXCg+1weTacHR+7cIlB4FxRXSO78mKotECWxkoJnt+B57eQzRe01nGPRwZC8DEIvRb32MkRcHIkPA80ezVTWufOpu2FC2XNbvF2zD68vFu3bgwbNgwPDw+8vLxYuHAhERERtH4xpnTo0KHkzJmTIUOGADBr1ix8fHwoWLAgISEhzJs3j3v37tEurXeHCSGSJFMmqFcPVq2CgAA4susulWrLWC0hhIiKgqP7HrNj5Sl27nPg0IXilC54i427CpA1xxvWe87AwsO1fPedadjylE7folk1Tl0XG0BrC6WGg/ZFj5PWGqouUbNzO7pZoMYZlFMJ8PxG/dJHQchFeHIKHp9S/316Dp4/VLO9vyr8Hlz8HgyRcHkGFO8LboMs8x7eQpEiUKMG7N4NFy+qa8RXlJV8RTKZPehu3LgxwcHBzJgxg4CAAEqWLMlvv/1mHF5+//59tFpTh3tISAijR48mICAAJycnSpcuzZIlSyhWrJi5qyqESCXNalxg1aqSAKz964oE3UKI91J0ZDRHD0Wwc58jO3bAvn0QHp4N8DOWOXjRk7GDdzL9D7+ELpPh/flHDh4+VIPu1uX/pbL9GHi1t9EQCeG3wb6waZ99oVSt43tHZ6Ou/53NCwp3Mu036NWHHa8K3Ae8SJoaEwYXpqG9PJt8ji0hfCI4pP38RV27qkE3wO+/Jy/ovn8f/v5bXamofHlz1E6kB2bNXm5uL7OXvylbXFqg1+s5efIkPj4+78X8hveFtOvbeXDjEbmL5ADAq/AlTl13t3CN4pK2zZikXTOu9NC2MVExHNtxkR2bAtm5z569p0sQFvnmYc9WumjOHfbHrUzhN5ZNVWFhpoWMQ0OTlkhNMUB0iLoGdNQT9d9o9V+DXkHr1jNW8fvHN+BWtSahz7Og08Zwfkop3HJfAVtnKNgBsnqCYwlwLg86We0lzQr3h/NT4Oov6kOSFxSNFZqCH0HJIZDN24IVTNyzZ5ArF4SHQ9asaiCdKQn/3bZuhY8/Vkf26XQwf37s4eoZUXr4XZySkhqPprns5UKIjC9X4RxUcD/L4UsenL7hzu2L/hQokc/S1RJCCLN5cOMRlSpGcSvAI8EyefOqeS9qlbuKXy1rFv50g7G/+BGjt+bLgY9YvTeNBd3x0T+PG/ze/hdOfKEG2dFPid1NDSHhDtQav4NTt70pVhxKl1a/SpWCDQsdCX2uBvO9av+CW7FoKDETinZT52yL9CFzPig3A0qPgPNTUa7OQaOPQKPEwM3F6lfRT6DiL5auabwcHKBNG1i8GJ48gTVr4IMPEi6v16vJ18aNM80B1+uhSxcIDoYEFmQSGZhZE6kJIURCmtY1JVNZ93c8SVfeQnRkNLNG72Lh1L0ohnQ7iEcIkQEtnHmeWwGxHy7mzvaADvX28etcPVeuwJ078Mcf0OPzYhT1LsjQSeXIk/0+AGv2VWT78uOWqHrSnBkLW2vAcicIuxP7mKKHsJtqjzZxfzf/tb8Dx2+WRW+w4tIlWLECxo6Fjz6CxZvUdbSzZArnmwm5odkVcB8gAXd6ZZcbyv4PQ9Nr3HPuiWKT3XQse9KSLFtK166m7YULEyzGgwdq7pqxY00Bd/HipuODBsGoUZKQ7X0jQbcQwiKatctl3F636d2nhygGhd5tDvLpuJp0HVqNET12vfM1hRAipazfms24/cOIXVw+fpO7gTn5c0tVevbSUaxY3CWO7bPZM3HEVePrQUPt0UenoSUfAg6ats9PhoA96nzeRztjl7N1VpeTcigO2ctDrvpQ4EMo1htKDWfd9S+MRW1s4r/V4C8zkbN8K9DKIM0MIVMO7rv0wdDsBpSbrWabL9wldpnIYAi9YZn6xcPPDwoUULc3bVKHmL/uv//Axwd27FBf63QwaZKagG3MGFO58eOhb19ZweV9Ir+5hBAW4V3dnbzZ73M3ODf/nfAk7EkoWbK+/ZIuk4fsZMH6WqbXv/vh6rqTIVP83r2yQogM5ei282xa/YguA9zI757H7Pd7/PAJ+8+XBsAt7w0+m1Azyed2HFSVmb+c4+iV0py56ca8yXvoNaq6uaqaNPpIOPMNnIhnLWaH4uq87VflqgNtAuK9VHg4bD+kbufJA7duwY0bcP48nDsH588bsLJ6xIgRsnRshmSVBdz6qV+vOzUCbiyCUiOg1FCLz9nXatX52OPGgcEAf/4J3burCdZ27lS/Tp0ylc+bF5YsUZe4A/j6a3BxgQED1F7uuXMhKAh+/NGsS9ynOr0egoKsePjw3d6XtTVkz/7mcumFBN1CCIvQaDU0rXmFuStzExmdiW3/HqRFj0pvda3lPx9gxA+14uz/Yqofzu4RdO1h967VFUJkEHPH7qb/t1XQG0ox5+8HHD4ZQ5585v04tGX5efSGKgA0rnEbSPrcbK1Oy/fT9VRvrr4e9WMlPvwUnCy1gtjjU3CgEzw5E3ukeMXfoHBDyJy81Si2b4fnz9Xtpk3Bykodilu8OLRoAXq9wsmTd7GxkaD7vRJ0BK7+CijqA54bi6HcTMjT0KLVehl0gzpEfOjQ+IeJN2igzv92fe2/bb9+aiDZqRPExMA//6hfGYsOSJmkeF27woIFKXIpi5Ph5UIIi2nW0hQMr10d/VbXOLT5LJ0/8zG+Hj9wJ9/132l83bO3HWvWvG0NhRAZRUxUDJ932EWfr2ugN6hB9t2gXDRrYUVYmHnvvX696VN5k5YOyT6/WjMvPmiu9hQHBFozYULs49GR0Wz5+xgjuu9kw6Ij71TXhCgKRF7fBJvLqwE3xB7qXah9sgNugLVrTdvNmr1jJUXG4egOJQaB5kVXaehV2NkI9rSBsNsWq1bx4lC1qrodGRk74NZqoWxZ+OEH2LAhbsD9Uvv26v/7NL7wUpqwdq06qiAjkJ5uIYTF1G7lgd0n4UREZWb9HjcMegNaXdKfBd4850/zD3PyPFoN3rs22cOI79VhmwFEMnO2LXq9mmF0yxaoUcMsb0MIkcY9DXhK+6aX2XTYNKzbyT6Mp6FZOH4cOnRQk3eZY4inwQAbj1QAwN4ujOpNS7/VdSb/6MrqzeoH/R9+gO5do7l18jTLl4Sx4j8PgkPLquV+N7Ai6hAteyZjIeE30OvVZY+WLWvA9G6jGVTna3WpLq9fgMpvfV1FgXXr1O1MmaB27ZSpr8gArB2hzHQo0hWO9FfzBQDcWQH3NoHHaCgxWF0vPJV9/TU0aqT+//X1Ved6+/mp63BnzZq0azRsCHv3wowZ8PixGStrAYqi8PTpU5ycnNC8nqgiGWxs1OH72gzSRSxBtxDCYuwc7Khb7hBr91fkwZOcHDscRvnKSctI+/QpNG2TlUdP1Xngft4nmLu8Ihqt+gv+hxm2BD2Gv/5SP6Q2a6awa+NdfKrI0mRCvE+unbpFs2YxXLhTHlDXvJ4z9iCVW1SncmUICVGX/xk2DKZNS/n7HzkCgUHWANRtkAXbt+zdKlQIBg+GiRMhKgpKeWgxGMrGKacoWj4e4MHuIhcoW7vkO9TcZNw4WLoUQMOYf0bQ55NI7MqPhucx73Td48dNyajq1pWePxGPrJ5Qdxfc/ENddu75I9CHv5jv/TuUnwM5/VK1SvXrq4GyorzbNA9f34wzdPpVer2BkyevvTfrdCdVBnl2IIRIr5p+7GncXrcpaQF3TIzae33ukhpwu+W7w78bC2FjZ3rirdWqf8wavpj+FRKioWETGx7ceJRylRdCpGn71p2mYnV7LtwpCkB2+2C2LT9HjxHVKVVKnUv58jPh9Okwd2zKr3qwfr1pu0mTd7vWiBGQM6e6bTCYPsxmtg3jw9r7aVZFzUgWHpmFZm2zcedK0LvdEDUL86tZl5+GWLH65jjQ2b7ztV/2coM6n1uIeGk0ULgTNL0EbgNA8yJ8CbkEz65YpEqOjhbMqyDSJQm6hRAW1aSFqWvj1bl9iVm4UB0uDuDsDOt35Cd77mxxytnYqB+qK3upS448fJKDvp2vyxreQrwHbl+8S7P2+Ql65gxAiXzXOLz3GTVb+RjL1KsHP80yrdnT/9uqbPn7WIrWY8MG03ajRu92LQcH+HnKVax00WS2DeOD2vv55+cDBDzSsGR7FZZv9aGah5o++f7jXDRtm51nz97+fg9vBtDhg5A4iaISW6M4OV79nf+uDyTEe8Amq5pMrcERcK6kLjNWtIelayVEkkjQLYSwqLx5oUwZdfvECbh7N/HyigLff296vXQpFCuWcPksWWD1OgdcHdUkRKv2VmLp7APvWGshRFoWHQ3tOzvyOEx9GFfb9zgHjztT1LtgnLK9+uj4otNOAPQGK9r1KMa5A1fjlHsb928EcuxFDO/jo/6+e1etOhcj6GEEQUE6lm6vQps+lcnsqD68tM1sy8qN+ShSIBSA06c1tG+vjg5KLn2MgY5t7vAg0BGAurUiKFRIPbZly5t/V7/JvXsYvze+vpBPZv6IpMpeBurvg5prTb3eLwUeirtknRBpgATdQgiLezVj7eol9xMtu3X5Gc6dU7erVYM6dd58fdf8Lvw0yfQhesBX7jy8Gf+asUKI9G/UKDhwRM0SXih3AP9uKoqTa9YEy0+aV52W1Q4CEBLhxPAhwSlSj03LLhi3m1Q8mCLXBHB0diRTlvjXLHbJ58z6zfbGhE4bNsCQIcm/x8RBu9l2XH0imivrQ/6YH0rnzuoxgwH++OMtKv6KV4fdy9BykWwaLWR6LT34o92wtSrsagGRKfMzLERKkaBbCGFxzRuYUndOnRJDZHhkgmX/N810bNAnN5N8j7Z9K9OultrDHfTMmX5drskwcyEyoA0bYMoUddvaGpauciVrjsQnX+qsdfyxzpPc2R4AsP2YB8/Dnr9zXdZvNOWrbdwsaTkrUkKJEmo2dqsXt58xA2Z/uy/J5+9adYpvZlcHQKvR89dv98hZyNUYdIM6xDy+9YmT6tX53LJUmHhnMRGwrwMoeri3Djb6qr3eQqQREnQLISyuTOVs1C93FICbj/Lz89j4e4TOH7zK5iPlACic8zYtPsqfrPvM+r0YLo6BAKzYXYnlPyc8zDzwbhAx0foEjwsh4hf2NIyrZwMJCXm3oOxtBN6Lols300ebyZOhQoWknZvFKQsNqqhJmSKiMrN/44U3nJG4qOfRbDmsLg+W3T6YivVLvdP1kqtWLfjlF9PrLyaUIfj+m9cmCrgTSIceOTAoaqK2r/vsoVYbXwCKFlWXRQK4cME0PDy5IiJg61Z1O1cudW1jId6JlR1U/A1s1RwOhN+GLZVhgw8cGwT+qyEqg63NJdIVCbqFEGnC5OkOaDTqPKyxszx58uhpnDI/TLpn3B7Y7QY66+QtRZGjgCuzJ1w2vu4/0o1Ht2MPM9+9+hS1fU+Qq2AO+nXMTOjj0GTdQ4j32YXD18iRE4p7uuDkpK69nC8flCljoEH5o0wZstNsI0xiomIYM8yWoCB12cDmzeHzz5N3jfr1Tb9TtqyP+zsoOfatP8uzCHU+dMPKF5L9+yoldOsGn7RQM7I/j7Zj6S9n3nhOn45XuRecG1Dnwo/6sXqs4127mrbfdoj5jh1q4A1qArWMsg6vsLA8DaHRSXCt+mKHAk9OwaUfYHdL+McZNpaBiAeWq6N4b8mvOSFEmuBTw52P6+8HIDg0O5OHn4h1POBOIIs2qF1WjnZP6f5Fmbe6T7u+lWlTU+3hDgxxYUBXda733t0x1ClzgpotvdlxUu3VOX7Ngy96nnqr+wjxPpr7gz/hkaZh1FFRasKtEye0bDlajmH/8+PPH/eb5d7f9t/PgQvq74UCOR6wYL6CRpO8a9RpWdy4vXVvzneqz/pVpqC9SZNkViQF9R+Sy7j9+9/ZEy175cRNVuyuBEAOpwD+/DdfnIcF7dqZ1tP+55+3q9OrWctlPrdIUZnzQZ0d4D0RsvkCr/7sKRB2EzLlsFDlxPtMgm4hRJoxdnohbKzUOds//FER/yumpGpzJp8lMlpNHNSz9QkcnR3e6h4arYbZvxfD2UFdv3b5jsqUK2ugek0r/jvhG6f8b6trsHqezAsTIik27VanfOi0MdSpFY2Xlzp8WKczZRMeNbFgisyXftXmv44yaUEtAKx00Sz9PYDszskPdHMUcMW3qDqs/PjVkgTcCXzrOq3fqX4vtBo9DdqVfOvrvCvv6u74FLkIwOFLHlw4fC3BsnP/d9O4/UXPc+QqHDc4cXCA1q3V7cdPkl8fRTHN57a1hbp1k38NIRKltYbSw6HRcWgbBDVWg/vnkM0HctaKm/H8wv/gzgqICYfQ6/BoL9xaChe/hxND4crPEP0Oa+8JgQTdQog0pFDpfAz4UO2Ffh5txzeD1V7oyPBIZv+pzofUavR8OiKRNcKSIGchV2ZNNH3wPHbc9KuwaK5bLJy6l5++3WXc13NwUR7cePRO9xQio7tx9g6X7hYBoHKpc2z7z5pTp+D+fYiKhPplDwNwKyAfP32Xcpm87127T6e+pqXAJny+l0qNPN/6evWqPTRub9/wdj/318/c4aJ/UQAqlTyHc55sb12flND1Q9N7WvjznXjLRDyLYP5KbwBsrZ/T7fOEv4evDjFPrlOnwN9f3a5VC+zt3/5aQryRTTbI1xzKfg+NTkDVZbGPP38Ep0bCnjawLAusKQrbqsO+9nB8MFyYCkf6waoC8Pi0Zd6DyBAk6BZCpCkjp3jhlFkdlvn7+iqcO3CVJbMP8/CJ2uPSxu8whUq/+4KuH/arQKtWptdFisCCBXDxdgE6f1GNT0ZWpUnFPYA6DL17+1uS7VyIRGxcft243ah27IRFWp2Wyf9zMuZtGP+TV7x5G5IrJiqGDq0fEBCiLh1Uv9x+Pp9Q7Z2uWb+16aHelkNvl/xswzLT96JJXcsvXdShb2msdNEALF7jjj6eJJHLlhmM65p/UOcoLvmcE7xerVqQP3l5LI0ka7mwKO1ruRVu/g2GhFdMMbJxAifLjVgR6Z8E3UKINMU5T3ZG9FbncxsUHcMGP+Z/P5uGOA76ImW6RTQaNQnQtGnw559w8aLae2NlrQ5J1Wg1DBmjkCur2kO08XB5fv5ub4rcW4iMaONWO+N2o1a54hxX8zaoI1mCQ7MzadiJOGWSa8yAvew6rU4Lyed8jxETotHq3u2jTdX6+cj0YgnsrVvfLgP7hi2ZjduN2+R+p/qkBNf8LjSpfByAe8G52bos7vf+p19Mc/H7DU/8YYNWS6zlw5Lj1fncTZq83TWESDHuA8FvI+RrpSZgK9BOHYruMwWq/Al+G6BIVyg1TB22/qorP8PT85aotUiHUiXo/vPPP6lduzaenp60a9eO06cTH56xceNGGjZsiKenJ82aNWPXrl2JlhdCZCwDx1Qkn7OaqXz9wfKcvuEOQMUSZ6nc+O2Hjb4uc2YYMgQ6dFDX832do0sWfptx0/h6yORqXLyYYrcXIsN4Hvac/46ry2PlzPoI7+ru8ZYb+7+CxrwNP/5ZkTuX7sVbLim2LTvO+N9qAOoc8j/nP8Ih+7s/lMuUCWrWVLf9/Un2z3xoKOw4pT4IyOv8AO9qbu9cp5TQpbPp6cHCBVGxjh07BofV0f/4+EDFGoknXAPo0iX268QeTigK7N0LH31kuo+XFxQsmPA5QqQKjUbNel5jBdTbC9WWqUPRS30JhTpAnkZQaQEU7xv7vJBLcHQArPeAfR9J8C3eyOxB94YNG5g4cSL9+/dn5cqVlChRgh49ehAUFBRv+ePHjzNkyBDatm3LqlWrqFOnDv379+fy5cvxlhdCZDx2DnZ8N+J+nP2DP4uKp7R5NexQjv7d1AmIz59r+PhjNSOzEMJk7/rzxqzlDatcRquLP4lZoVL5+LT9K3kbhiSc1Csx968/5ONe+VEU9WPM+M/2ULVJyj2Qq1fPtL1lS9LPe/BATQz2PNIKgMatcqLRWi5z+auadCxjTCC5cneZWMP7f/7ZVK5fP5KU9b14cahU0fR682YICgKDKWceYWHw66/g66uu771kienYy2RsQqRLF78HxQAocGuJBN/ijcwedC9YsIAPPviANm3aUKxYMcaMGUOmTJn4999/4y2/aNEiqlevTs+ePSlatCiff/45pUqV4o+3XQxSCJEudf68LB4eptcFCkDrnm+3TNi7mjIrHyVKqNvHj8PnnylEhkvkLcRLG9eEGLcbNUr8o8XIKd5kzfIEgIUbqnB2/5U4ZQx6A+cOXI21gsFLej183MOZR0/VedyNKhzhy6k136H2cdWvE23c3rr0eJLOOXkkjAoV4NCLxQ4yZ4aBn6WNgBvAxs6GjxufBSAyOhPL/lXH0D959JS//lTfr6OjOvInqTp2NG23aQsuLmBjo2as9/JS12jv1UtNnvaSiwt89RUMHfrOb0kIyykzHXyngq3rix0SfIvEWZnz4lFRUZw7d47evXsb92m1WqpUqcKJE/HP5Tp58iRdX0uLWa1aNbZt25bgffR6PXp93KQgacnL+qX1eorkkXY1r4kToVkzNenJoEEGNBqF1PpWv9q2trawaBFUqaIlJkbDz3M0bFtzl+kTHtK4Y/nUqZBIEfIzax4bd5uWx6rd0i3R769TDkeG99rN8O9rqXkbxuRkzQa1/OOHT1j042l+XlyYq/fVhGZFc93Cr/wtavppqNmkMPP+ysOOnerHlzw5w5m/tAAKSoq2bcnSGnJlfciDJznZedyNiNBwbOxsEyy/ev4ROn3qSfiLfEz58imsWmWgZElS7XdWUnQcXIUZS9XtBYts6NFLz+8/nCDiuR8AnVucI1OmEkmuc4sWevg09j69Hh4+VL9eVaGCQr9+Cm3bKsY580m5j/zMZkzpvl01mcBtEBTphebqHDQXp6GJDOBl8K3cWopS4AOU0qPBsYSla5uq0n3bJlNS36dZg+7Hjx+j1+txdo6dAdPZ2Znr16/He05gYCAuLi5xygcGJrxWZnoaen7mzBlLV0GYgbSreeTODTNmOPL4sRXVqgVz8mTq1+Fl22q1MGSIK1On5sdg0HDlXmGady1Mg1n7+PTLUHIVdXnDlURa8j7/zP7zjwuHDzvSqdNDPD3D3vl69+9ZceGOutRUefdz3H4Yze2HtxI9p3qrTOT64xkPAhzYsMWRsV+d4PrJAP7dWZXwyFqxyl57UJBrawsyby0wxLRfq1X4duwd7gaFcjfI37g/pdq2hu8Tlu3ISVikPf8sWEOpKnnjlFEMCivm3GXSgmbGoe6epR8zdfptIMYiv7MSo9FCsWIluXo1MwcPali18jw/LzSlIa/X4A4nTyZ9DXVtRAQvZ383bBDEg2cxPH5sRXCwNU+eWKHVKtSt+5h27QIoVSocSP4c+Zfe55/ZjCxjtGsdtAWq4PrkH3IGL8Ja/xgNCprbS7kR7UGwYyNLV9AiMkbbphyzBt2pxc3NjcyZM7+5oAXp9XrOnDmDp6cnOp3uzSeIdEHa1fx8fF5uFUjV+8bXtj4+0LbpAwb1fcTes2qQsfloVf7rEMXnHffx1bQy2GeTRWfTsvf9Z/b2bZg8WYuiaNi9OysTJigMGqQkaQ5vQg4dMp3c+KPSr/zMJm78JA09eqjbYyb7xjnu530CvV7DwQuliNbbxDk+ZoxC9+6m5b1Sum0bN97Psh3q9oWTDnTo5xPruD5aT++2h/h9fQvjvvZ19/Hrcm/sHDxIq3r10hiHdv8wLR+X76nLhPl5n6BJ+3qJnBmPMNNDm2XLskIWUwZ05UVmNY0mG/D265S/7z+zGVXGbNfKEPMdhhc939hko0C1oRR4dZmyqKdg7Zi0xAnpVMZs24SFh4cnqQPYrEF3tmzZ0Ol0cZKmBQUFxenNfsnFxSVOr3Zi5QF0Ol26adT0VFeRdNKuGdfrbVuuWm52n8rFkln7+XJMYe4G5yZab8PUhbU4ceYYW46USTOJk0TC3tef2Z3/HkFR1CkRMTEahg7VsGdXFL//Gkb23G8XGG3ebNpu0kRHUr+tXbrADz/Aq50hDnYhdGl2gn5D8lGyghqIh4eEc3DLOXZufcrOk6U4dTEHLVvCyJFatPFMH0+ptq3f2g2+VLe37c3BhNeuObzbHn5f72d8/V3/nYyaUTPN//x36gQjRijo9Rr2HjK1ed9PIpL/fXulvE6nI8mN/xbe15/ZjC7DtavOEUoPBff+EHYLnfVrDwwPfATPH4L7p1CwA1jZxX+dDCDDtW0CkvoezZpIzcbGhtKlS3PgwAHjPoPBwIEDB/D1jftUG8DHx4eDBw/G2rd//358kvroXAghzEyj1fDRwCpcvOrAVz13GpdA2na8LHvXJb4kohCWtGN7ZJx9a9fbUMY7jEObzyb7elFRsH27up0jh5qlOql0Opg3D4oUUUeRzJ56j7v+GmYurUnJCkWN5TI7ZqZ2W1++m+vH7kM5ePoUFi4k3oA7JeUukhPPQmrvxdErJQm6F2w89su43Uxb7Ke+D20MS2buZ/QsvzQfcIOa5KxRpdi/p3JlfUjL7uUsVCMhMiCrLOD02nr3IZfgwRZ4cgoO9YRV+eDEMAj3j/8aIkMxe/bybt26sWzZMlauXMm1a9f49ttviYiIoPWLtSKGDh3K9OnTjeU7d+7Mnj17mD9/PteuXWPmzJmcPXuWjq+myBRCiDTAPps9437147fJR4z7/jc1woI1EiJhikFhx5EiAGS2DWP1ymics6r/X28F5KN6EzemfbmTO5fuoRgSWXT5FXs33zGOMG7QIPmBcPnycO0anDgB/b7Ig0N2h+RdwMzqV1PXEVcULf+tvgTA1iXH6PdNFWOZ2d/u58MBVeI9P63q8nF4rNc9213Axi7uEH4hRAqKDgHnV9bZiwqGC1NgTVE40l+C7wzO7EF348aNGTZsGDNmzKBFixZcuHCB3377zThc/P79+wQEBBjLlylThmnTprF06VJatGjB5s2bmT17Nm5ubuauqhBCvJUP+1Ygd7YHAKzeV4FrpxJPIiWEJVw7fRv/oDwAVPW4SPOW1pw4+JgqpdRez2i9DV9O86NAiTxktQ+hcskz9Gy+h++H7+TwlnPxXnPjctM6242qZLwlcuo1MuVo2LIpmnMHrtK2ezH0BnV23uCPd9J7dA1LVe+tNetShmxZ1J57rUZPryHyGUsIs3MuDw0OQoPDUKgTaF886DJEwZWf1OD76KcQfs+y9RRmkSqJ1Dp27JhgT/XixYvj7GvUqBGNGr2fmf6EEOmPjZ0Nn3a+yMgfc6EoWmbM1PDjb5aulRCx7Vh/CygIQK1q6rra+d3zsPO4K1/12snURX7GsiERThy86MnBi8BaYDL06RnKjJ/ssbY2XXPjLjWjt1ajp36znKnzRlJR9aalsLV+TmR0JjbsdWPbB5kJiXAEoEW1Q0xZUN3CNXw7tplt+XnSMUaOz0vfjjfI7+5n6SoJ8f5wLg9VFqnrfF/6ES7PgJgwNfi+PAuCj0H9/ZaupUhhZu/pFkKI90HvYd7YZYoBYN6SAjx5Ytn6CPG6HTtNyV5qNTAlJ7W2tWbKQj/2rDnNl5130rjiEQq6xh3mOOc3exo1gseP1dd3Lt3j3O3iAFRwP49zXuc456R3mR0zU81T7cG/F5yLm/5qwF2m2CX+XOeBzjr9Jgn6cEAVrt0vyBdT/SxdFSHeT3Y5wWcCNL8BJYeC7sVKTKWGW7Zewiwk6BZCiBSQPXc2unRVBw+FhcFv0tMt0hDFoLDjqLq8ln2mZ5StXSJOmWrNvJiy0I/1B8tz81E+QoKecWjzOaZ8dQGbF6Mgt2+HSpXg8mXYuPyq8dxGtQPjXC+jqN8g9lznfPlg7U43sjhlSeAMIYRIhkyu4DsZWtwE3+mQt1ns48En4NJM0EdZpHoiZUjQLYQQKeTzz03bM2dCTIzFqiJELJeOXefBE3X4d3Wvi1jbWr/hDHDI7kCF+qX5clxJ/vsPXF3V/ZcvQ8Vy4cyebxpO3rBFDrPUOy2o/4FpzW17e1i3DvLkTftZyoUQ6UwmVyg5OO4a3ieHwrGBsL4U3FoKisEy9RPvRIJuIYRIIe7u0KSJun37NqxYdN2yFRLihR3rTcPFa1UPS/b5VavC4cPg8SL+fPIsM6dvuAPg4hhIuTolU6SeaZG3N3z2GXh6wqpV6mshhEgVj0/Dg23qdug12NceNpaBOysk+E5nJOgWQogUNOhTU0Dzv6nhiZQU74uz+69Qw/MUoz7ZabE67Nht6tmu1fDteqULFYL9+xSaVj4Sa3+DSpfQ6jLuxwmNBn74AU6fhjp1LF0bIcR7JZsXNDgCOWub9j05BXvawEYfuL1cgu90IuP+lRRCCAuoXS8zXoXV9XwPXfTgwIYzFq6RsLSxX91jz1lvxv/mx6ndqb+slsEAO05XAMDJPgzfmu5vfS0HRw2rdpXhi047jfs+7iTrOwshhNk4l4Pa28BvI2Qvb9r/5Azs/QA2eKnBt0jTJOgWQogUpNFqGNQnwPj6+2mhFqyNsDTFoLD7pGkN5A0rHqZ6Hc6dg8AgNclfjVpZ3jnjts5ax9RFfuxff4b//jlBo47l33ySEEKIt6fRQJ6G0OAQ+G0A54qmY0/PwfVFlqubSBIJuoUQIoV9NKA8ObM+AuDfnRW4eS7u8kvi/XDzJjx4ktv4euP27Klehx07TNu1aqXcdSs39qRWG9+Uu6AQQojEaTSQpxHUPwB+m8Clsrq/eN/Y5QzR8HAnKEqqV1HET4JuIYRIYbaZbenXQR1GbFB0NGsSQf92u/jpm13sWnWKwIy7upJ4zb79sbPQ7j9fmqcBT1O1DuYKuoUQQliIRgN5GkC9fVBnB+RuEPv43bWwvRasL/ki47kE35YmQbcQQphB3+Ee2Fo/B+DsreL89E9N+n9XE79W3ri6Qt688O+/Fq6kMLt9+2K/1hus2PZv6s3rNugN7PovAoDs2RW8vFLt1kIIIcxNo4GcfqB9bdrQlZ/Vf0MuqRnPt1aDwMOpXj1hIkG3EEKYgWt+F2Z9e4Q82e/He/zePejRAx49SuWKiVT1etANsHFD6i3gfmrPZR6H2AFQ0+MIWvmrL4QQGV/RT8C1uul14H7YUhH2d4JwmfJmCfLnVwghzKTnyOrcDcpN4N3H7F59ip/H7GZA1+vGtY6fPoXhwy1bR2E+Tx495exZdUhfyRJ6MlmrPc6b9hVDMaTOUL8dGx8Yt2tVf54q9xRCCGFhBT+Aurug5npwfGXFipt/wFo3OP212gsuw85TjQTdQghhZs55slG9uTd9vq7BzAVF2LYNnJzUYwsWIMuKZVCHtl1BUdQ53XW89lHL9ywAd4Nzc2b/lVSpw449mY3btRrnSZV7CiGESAM0GsjbGBqfgbIzwOZFIk99BJwdC5vKqQnXRKqQoFsIIVJZzpzw3UjTuPIBn1mhj9ZbsEbCHPbtembcrlrNiob1TR9uNu40fwAcExXD7pNqD4erYyClKxU1+z2FEEKkMVprcP8Uml0B989Aoy4hSa46oLOJXfb0N3B3nfSAm4EE3UIIYQH9Ps+OV+FLABy/WpJfJsQz+Veka/uOOBm3q9YvRKPOVYyvN223N/v9T+y6TEiEWoda5S6j0WrecIYQQogMyzY7lP0Bml0CnylQtGfs4/pIuDANdjWDjb5waxkYpEMgpUjQLYQQFmBlY8WsH0xzbL+a6kmgf5AFayRSUkxUDIfOuwGQ3+Uu+d3zULw4FH3R2bx3L4SEmLcOOzY9NG7Xqpl6yduEEEKkYfZFoNSXkLdp7P2BB0Efrm4/OQX7PoQNpeH67zIMPQVI0C2EEBZSvbk3HRvsBeBxWDZG9E+9paSEeZ3ae4WwSLU3u4r3LeP+Ro3Uf2NiYPt289bhvz0Oxu1aTfKZ92ZCCCHStxzVocYqyF7etC/kEhzsBqsLwdHP4NFu6f1+SxJ0CyGEBU35qTgOdmqX57y1VTm8NXbg/eABLF0cwryJe3hwQ9YXSy/2bTe1VdVKpl7ml0E3wMblN8xy78hIGNVrD1uP+gKQO9sD3HwLm+VeQgghMgiNFvK1gAaHoNYWyFHTdCziHlyeAdtqws7GlqtjOmZl6QoIIcT7LHeRnIwZuJPBk/1QFC39+0Xz5Vf32Xk4Nzt2wMWLAI5AdaxHR9G21j76f+ZAlcaeMkc3FaxfdASdTkPDj8sl67z9B62N21XruBq3/WrEYGsdQ2R0JjZusUUxKCnajsePQ5cucPasaX3Wbq0votHmSrF7CCGEyMA0GshdT/0K2Afnp8D9jaYh5jlrxS4fdludB26XB+zyoMmUC+cnWggIg2we6lxyIUG3EEJY2oAxVZn39xXO3S7O0avefNgt/nLRehv+3laVv7eBT5GL9Ov+iA4DypLFKUvqVvg9sey3y3z4iTrM7t+wg7TuVSlpJyoK+04VAiCLbSheVYsbD2W2t6Km90m2HC2Hf1Aezh28ikeVYu9c16goGDcOJkwA/YuRf1a6GEb33suI/1V95+sLIYR4D7lWhZqrIeop3FsPd1ZA/taxy4T7w5PT6hfqMOpCAA/Hqccz5QDHEuBYUk3kpstkOjc6FLRWYIiCqCcQ9dj0ZZcHXCqa/S2mFrMOL3/y5AlDhgyhTJkylCtXjpEjRxIWFpboOZ06dcLd3T3W19dff23OagohhEVZ21oz+4e4vxt1OqhUCYYP0zO0xxFcHAONx05eL0GvUTUokC+SNfMPpWZ1060jW89TudRFWjbIxcndlxItqygw7scixtdfj8uKQW9I0n1uX7qHf5C6JFilUpexson9fLtRXVNbb1xxN6nVT9CFw9co7x3E2LGmgNvbG44chq9n+2Fta534BYQQQojE2DhBoQ5Q/R9wdIt9LCpYXZYsIc8fqXPBr/0G2teWKDvzDSy1g+VOsLogbPSB7bVgT2u48nOKvw1LMmtP9xdffEFAQAALFiwgOjqakSNH8vXXXzN9+vREz/vggw8YOHCg8bWdnZ05qymEEBZXs5UPs7/exdpNmfEpHYZf28pUrWGLvT2ADijPmB+fs2zOPmb/6sThSx4ABIdmp2XP8kw6t5Mvp9aUIefxiIyE7wbsZvL8KugN6p+9zz4NZM/phId2b94MZ86a/kSeu1OCf385QLu+ld94v337dcbtKuXjpihv1DY/gyap25v+c+DL5LyZ1ygGhdZt4KK/MwBWVvDVVzByJNjYyGA2IYQQZpa3KXz4HCKDIeIe+rDb3L24i3wOoWifXYSQi/D8gdrjrXmtv/f5w/ivCWpvdwZitr/I165dY8+ePfzzzz94enoCMGrUKHr16sXQoUPJmTNngudmypQJV1fXBI8LIURG1G9MTfqNSfh4piyZ6DykKp2HwNFt5xk35hmr91ZEUbQM+58fFy4fYs4/FbG1Tb06p3XHjkHXrnD2bI1Y+/ed82bTX0do1LF8vOdNmRJ333eTXWjTy4BWl/ggsX3HTfOnq7asHue4m29hCue8zY2HBdhz2oNnwc9wyO4Qp1xSnDt4lYv+6vD1orn9WbYuH2XKvNWlhBBCiLej0UImF/XLsTQBD3OT18dHHbIH6tDxcP+45zm4gWs10NqCTbbYX06lUvMdmJ3Zgu4TJ07g6OhoDLgBqlSpglar5fTp09SrVy/Bc9euXcuaNWtwdXWlVq1a9OvXL9Hebr1ej16fttPXv6xfWq+nSB5p14wrrbetby13/qmpMOHzHXzzk5rU5Pd1FblSR+Gffwy8+txSH63nxJ7LHNgRSM7c1rTrU9HiPeK3bsHy5RoaNlTw8Ej566tznDVMnqxBr1ffq7VVNM2rHuHfXVUAGDXGnnofxsT5Xhw98IQdO9Se4+LFFZx1Zzl40ZOzt4rzz9z9tOmd+Byzffu0gAaNRqF8xfj/DzWoeoM5KwoQrbdh24rjNO8Wf/D/JptX+QNq0N2/8xW8vXOTRv/Lml1a/5nNkPR6dMZNPeb4zyftmjFJu2Zc8batzgEcSsb9HVHqK/Ur4YuZoYYpK6n/h80WdAcGBpI9e+xsdVZWVjg5OREQEJDgeU2bNiVPnjzkyJGDS5cuMW3aNG7cuMGsWbMSPOfy5cspVm9zO3PmjKWrIMxA2jXjSutt26S7I9lcVzF0UmOeR9qwb5+GsmVjGPX5Qe5dfcKR4y4cOOdBSIQpsr3rv4paH+S3WJ0VBTp2LMmlS5n56iuF7t3v0737A6ytlRS5fkhgGJ9+Vppzl5yN+9zcwhnz7VWKFrXmavtznLpRmuNXSzJ3wmoqNY29hvWkEc8APwA+aHuNwtlucHCo+gD5u8nZKVzueIK93WFhWk6f9gGgWLEIbty4EG85n3JPYIW6verfpxTwPflW73XTdlNCmiIeUZw8+XbXyUjS+s9sRqKNiMD3xfbp06cxmHE6oLRrxiTtmnFJ28amURQlWZ9ypk2bxq+//ppomQ0bNrB161ZWrlzJ5s2bYx2rXLkyn376KR06dEjS/Q4cOEDXrl3ZunUrBQoUiHUsPDycCxcu4ObmRubMmZPzNlKdXq/nzJkzeHp6otPp3nyCSBekXTOu9Na2R49C69Za7t17cw92AVd/LlzLjm1my4xD37P9MbUauMTa513qKfNn38O7ulsCZyVN4N0g6td8zOmb7gBYWSmMHKkwYoSCtbXargu/30iv4S0AKJn/Gicv50dnrbbx9bO3KeFbAIOiI4dTANdvZ8bWzpZqnhc59GIe/bKfD9D6kwrx3n/bxmc0bJYVgD59DMyaFf+f2LCnYbjmtCUqxpYCrv5cu5sr2aMPnoc9x9VVQ0RUZvJkv8+tB64WH8FgSentZzZDCAtD5+QEgP7pU8iS8ispSLtmTNKuGdf71rbh4eFcvnyZkiVLJhqPJrunu3v37rRq1SrRMvnz58fFxYXg4OBY+2NiYnj69Gmy5mt7e3sDcOvWrThB90s6nS7dNGp6qqtIOmnXjCu9tG3FinD4MLRooc5jfpWrYwB+Za9yw9+Jo1dKcTsgH/On7GLA2JoWqevcKZeB2EH3qfNOVKybmdG99zDif1XfKuN20L1gGviZAu482R+ybosLvmVjt59v7bxUKXWa/ee9uHCnKEt/2kenweqyWj+Ov41BKQzAwM7nyOLoB8A3o57TuJN6/rgp2WnziSbe3u6DG07yspe8qtdNdLoiccoAOGZ3pKb3MbYeK8vtgHwc2HiK6s29k/V+D225TESU2s9Yr9I1rKxzJ+v8jCq9/MxmCK98n3U6XazXKX8radeMSNo143pf2jap7zHZS4Zlz56dokWLJvplY2ODr68vISEhnD171njuwYMHMRgMeHl5Jfl+Fy6oQ/MksZoQQiQub17YvRu++AI+ahfK7K93ce7AVR4+dmHZf5WZM8fUCzp+VgnCQ8JTvY4Pbwbw785yALg4BrJ/TxQeRe8BEKO35puf/KhY+iqHNp9N7DJxBN0Lpk61AE7deBlw32fntvA4ATeARqvhuzHRxtff/uBBdDQE+gcxf7U6tzqLbSh9R5iC4IYdylLBXa3T6RvurJ5/ON567DtsSohWtbpNvGVe6vLxc+P2T4uTv1b3lvVPjdv167+/PdxCCCFEWme2dbqLFi1K9erVGT16NKdPn+bYsWOMHTuWJk2aGDOXP3z4kIYNG3L6tLqY+u3bt5k9ezZnz57F39+f7du3M2zYMMqXL0+JEiXMVVUhhMgwMmeGqVPhr2X29BtTk1KVihmHHJetXZLWNQ4C8OBJTmbPeJ7Ypcxi3vfniNarwWiP1mepXM2Go6ed+arnTnTaGABOXCtJpYYeNKl0hCNbz7/xmkH3gqlb/ZEx4M6d7QE7tj6nuG/hBM/xa+VD3Sp3ALh+x4n582H2hDNERKlDwz5pfYzsubMZy2u0Gr75yvT9GjPDB8Nry3bro/UcPF/cWIdCpfImWu+2fSrg4qIOP/93dRYeJrJySny27jWtAlK31bsNyxdCCCGE+Zgt6AZ1/neRIkXo0qULvXr1okyZMnz33XfG49HR0dy4cYOIiAgArK2tOXDgAD169KBRo0ZMnjyZ+vXrM2fOHHNWUwgh3hvfTcmJRqMGepO+z05I3GWkzUYfrWfu32qPrkZjoPeQogDYZrZl3K9+HNx8mVIFrhrLbzhUngr1S9G08mGObos/+A70D6JejYecvK4+mFUD7nDcyiQccL80/ntTMrmxYw3M/ENNlqbTxvD56KJxyjf6uCzlfNXA+9TZTKxZE/v42YNXeRbhCEBV7xtvnF9ta2dN9+5qmehomDfvjVU2CrgTyPGrJQHwKXKRHAVkNJgQQgiRVpktezlA1qxZmT59eoLH8+XLx6VLl4yvc+fOzR9//GHOKgkhxHutdMXCfPwx/PEHBAfD99/DN9+kzr03/HGM2wFqArJGFY5S2CN2MrJydUtx4mIUv0/fzfgZRbgdoGYVX3+wAuvrQZ1qAWTO5kpAADx6BAEPwngW7gyoWcpzZX3Ijq3huJeNfx716ypUgObNYc0auHtXa7xO+7qHKFiyapzyGq2Gb8dmomlT9fWnA2KYPfYUjx7b8+hxVgKfme5btVJUkurQu7c6MkFRYO5cGDYsadNit296wst58fWr3wdkNJgQQgiRVpm1p1sIIUTa8+23YPXikev06RAUlDr3/fmVOeX9+sVfxsbOhl6janD5pis/j9lNPud7xmPb97qydi0cPAjXr8OzcFOm5FxZH7JjS1iSA+6Xxo7F2PP/0pejXBIoDY0bQzl1Sjr+d63Ydrwsp2+48+BJTmL0puRvtRrnStL9ixSBhg3V7du3YeNfp5J03pYDpjng9dqWStI5QgghhLAMCbqFEOI9U7QodO+ubj97BlNGnEiR64aHhKMY4l8i6/qZ22w6UhaAgq7+NPyobKLXss1sS5+va3D1tjM/fbubfLnDYh3Pnh3cCz2iuscpujfdw96dzylRPnkBN4CXF3zY9Lbxdf2yh/Gu7p5geY0Gpk0D61eSq9tYRZLP+R6+RS9Qv9xRZn+9K9FrvK5fp2vG7Z9mv7mHXFFg61Z1O1MmqFY3Z+InCCGEEMKiJOgWQoj30OhRCrbWaoA3c6E7968nM4vXa+ZP2oN91kxUKnWO2xfvxjk+d/p1FEX9k9O7w1XjuthvYpvZlr7f1OD6rSxcugT370NUlNo7f/FGDnaf8Wbe2uoU9S741nUfP15D7mwPsM/0jPGT7N9YvmZNePAArlyBpwFPeR5pw53APBy/WpLNR8rRb0zylmJr1LYQBV39Adh0uCzXz9xJtPzFi+CvFqdGDTXwFkIIIUTaJUG3EEK8h/Ll19C37QEAIqIyM2HExbe+VkhQCF+OL42iaDl8yYMKla05uMm05NfzsOfMX+kBgLUuih6DSyf7HtbW4OYGuXLF7mVOCUU8C3DlhgP372koVzdpQ7WzZ4dixcDRxemNCdPeRGeto3cHNYGcomiZ+79riZbfusWUNr1+/Xe6tRBCCCFSgQTdQgjxnhoxqRRZbEMBmPtvZWZ8tYuYqJhkX2fWd8cJDs1ufP3wSQ78mhfj7xn7AfhnuYHAEHWedNtaR9Jkpu0sTlmwz/bmXm5z6TG4NNY6deTB/BUeRIZHJlh2y5Jjxu16tVJ/2TchhBBCJI8E3UII8Z7KUcCVzzsdBSBab8NnE2riU/wG25cfT/I1nj2D6QvKAKDV6KlYQu3hjozORIfPqjC6105++sXOWL7fcEn6FZ8cBVxp46e2RWCIC//MPRpvuaiIKHaeUJcKy5n1EZ4+tqlWRyGEEEK8HQm6hRDiPTb6x8p0b7rH+Prc7eLU/aAMbf0OcPOc/xvPnzULgp+pa1N3aHKO3cfd6Nl8t/H4uF/9OHBAHX7t4QFVa2dL4XeQcfQbaMrG/tNvDvGWObDpPGGRao98vYqX33louxBCCCHMT4JuIYR4j9lmtmXe2uoc3HSW8m7njPv/3VWZkr7OTBgbgRJ/QnK1l3u6uq3VwqhpXtjY2fDLyup8P3wXWo0+Vvl+/dTs3yJ+1Zp6UbrAFQD2n/fi1J5Lccps3fDEuC3zuYUQQoj0QYJuIYQQVGzgwcHzJZk/aQ85nAIAeB5tx1df2/HVV/GfM3u2aY3vjz4C9xerZGm0Gj6fWJO1vx/HIYs6N9nJCTp2NPe7SN80Wg39uprWJZ8yNoDo6Nhltuw2zYev27J4alVNCCGEEO9Agm4hhBAAaHVaug2rzuUrNgzquA+NRu3injgRvv8+dtnQx6FMm6pGhFotjBoV93qNO5fnyDFbhg2DDRvAIf4R0+IVHQf6GpPb/bW1GiVKwIIFEB0Nwfcfc/SKOp/bs9BlcheR9bmFEEKI9ECCbiGEELE4uTrxv8VVmTnTNBZ88GBYNN+UKfuncUcJClbX7vqo7RNKlIj/Wu7uMGkSVKli1ipnGI7Ojnz3mSmJ2vXr0L07lCwJQwc+MK51Xr/avYQuIYQQQog0RoJuIYQQ8erfH775xvS6+ydWrFt4mNDHoUz9TV13W6MxMOqLYAvVMGMaPNmPvTtCqFfPtO/aNZj3T0nj63qNLLe8mRBCCCGSR4JuIYQQCfrmG+jfU524rTdY0e4TT3p/eMq47vZHdQ9QonwRS1YxQ6rq58iWLbBnD9StG/uYrfVzqjeVpdeEEEKI9EKCbiGEEAnSaGDGnGy0r7MfUJOr/bW16otjBkaNy2XJ6mV41arB1q2we/116vgeR6vRM6jjQTI7ZrZ01YQQQgiRRFaWroAQQoi0TavTsnBtOR7XPMrmI+WM+9vXOUDJClUtWLP3R/XGRdjWGKIiorCx87N0dYQQQgiRDNLTLYQQ4o1s7Gz4d2tJKpU4A4CVLppR4yR7dmqzsbOxdBWEEEIIkUzS0y2EECJJsjhlYfPegvw2ZSc+5Z0oVdHX0lUSQgghhEjzJOgWQgiRZI7Ojgye7GfpagghhBBCpBsyvFwIIYQQQgghhDATCbqFEEIIIYQQQggzkaBbCCGEEEIIIYQwk3Q9p9tgMAAQERFh4Zq8mV6vByA8PBydTmfh2oiUIu2acUnbZkzSrhmXtK0FPH8O7u6mbY0mxW8h7ZoxSbtmXO9b276MQ1/GpQnRKIqipEaFzCEoKIibN29auhpCCCGEEEIIId5ThQoVwtnZOcHj6TrojomJ4enTp9ja2qLVykh5IYQQQgghhBCpw2AwEBkZiZOTE1ZWCQ8iT9dBtxBCCCGEEEIIkZZJ97AQQgghhBBCCGEmEnQLIYQQQgghhBBmIkG3EEIIIYQQQghhJhJ0CyGEEEIIIYQQZiJBdyr4888/qV27Np6enrRr147Tp09bukoimebOnUubNm3w9fWlcuXK9OvXj+vXr8cqExkZyZgxY6hYsSK+vr58+umnBAYGWqjG4m388ssvuLu7M378eOM+adf06eHDh3zxxRdUrFgRLy8vmjVrxpkzZ4zHFUXhxx9/pFq1anh5edG1a1dZgjId0Ov1/PDDD9SuXRsvLy/q1q3L7NmzeTUnrLRt2nfkyBH69OlDtWrVcHd3Z9u2bbGOJ6UNnzx5wpAhQyhTpgzlypVj5MiRhIWFpeK7EPFJrG2jo6OZOnUqzZo1w8fHh2rVqjF06FAePnwY6xrStmnPm35mX/X111/j7u7O77//Hmv/+96uEnSb2YYNG5g4cSL9+/dn5cqVlChRgh49ehAUFGTpqolkOHz4MB9//DHLli1jwYIFxMTE0KNHD8LDw41lJkyYwI4dO/jhhx9YvHgxjx49YsCAARastUiO06dPs2TJEtzd3WPtl3ZNf54+fcpHH32EtbU1v/76K+vXr2fYsGE4OTkZy/z6668sXryYb7/9lmXLlmFnZ0ePHj2IjIy0YM3Fm/z666/8/ffffP3112zYsIEvvviC3377jcWLF8cqI22btoWHh+Pu7s4333wT7/GktOEXX3zB1atXWbBgAXPmzOHo0aN8/fXXqfUWRAISa9vnz59z/vx5+vbty4oVK5g1axY3btygb9++scpJ26Y9b/qZfWnr1q2cOnWKHDlyxDn23rerIsyqbdu2ypgxY4yv9Xq9Uq1aNWXu3LkWrJV4V0FBQYqbm5ty+PBhRVEUJSQkRCldurSyceNGY5mrV68qbm5uyokTJyxUS5FUoaGhSv369ZV9+/YpHTt2VMaNG6coirRrejV16lTlo48+SvC4wWBQqlatqvz222/GfSEhIYqHh4eybt261KiieEu9evVSRowYEWvfgAEDlCFDhiiKIm2bHrm5uSlbt241vk5KG778PXz69GljmV27dinu7u7KgwcPUq/yIlGvt218Tp06pbi5uSl3795VFEXaNj1IqF0fPHigVK9eXbl8+bJSq1YtZcGCBcZj0q6KIj3dZhQVFcW5c+eoUqWKcZ9Wq6VKlSqcOHHCgjUT7+rZs2cAxp6zs2fPEh0dHautixYtSp48eTh58qQlqiiS4bvvvqNmzZqx2g+kXdOr//77Dw8PDwYOHEjlypVp2bIly5YtMx739/cnICAgVrs6ODjg7e0tv5vTOF9fXw4ePMiNGzcAuHjxIseOHaNGjRqAtG1GkJQ2PHHiBI6Ojnh6ehrLVKlSBa1WK1P40pnQ0FA0Gg2Ojo6AtG16ZTAY+PLLL+nRowfFixePc1zaFawsXYGM7PHjx+j1epydnWPtd3Z2jjMfWKQfBoOBCRMmUKZMGdzc3AAIDAzE2tra+EfjJWdnZwICAixRTZFE69ev5/z58/zzzz9xjkm7pk937tzh77//plu3bvTp04czZ84wbtw4rK2tadWqlbHt4vvdLPP107ZevXoRGhpKo0aN0Ol06PV6Bg0aRPPmzQGkbTOApLRhYGAg2bNnj3XcysoKJycn+d2cjkRGRjJt2jSaNGmCvb09IG2bXv36669YWVnRuXPneI9Lu0rQLUSyjRkzhitXrvDXX39ZuiriHd2/f5/x48czf/58bG1tLV0dkUIURcHDw4PBgwcDUKpUKa5cucKSJUto1aqVhWsn3sXGjRtZu3Yt06dPp1ixYly4cIGJEyeSI0cOaVsh0pHo6Gg+++wzFEVhzJgxlq6OeAdnz55l0aJFrFixAo1GY+nqpFkyvNyMsmXLhk6ni5M0LSgoCBcXFwvVSryL7777jp07d7Jw4UJy5cpl3O/i4kJ0dDQhISGxygcFBeHq6pra1RRJdO7cOYKCgmjdujWlSpWiVKlSHD58mMWLF1OqVClp13TK1dWVokWLxtpXpEgR7t27ZzwOyO/mdGjKlCn06tWLJk2a4O7uTsuWLenSpQtz584FpG0zgqS0oYuLC8HBwbGOx8TE8PTpU/ndnA5ER0fz+eefc+/ePebPn2/s5QZp2/To6NGjBAUFUatWLeNnqbt37zJ58mRq164NSLuCBN1mZWNjQ+nSpTlw4IBxn8Fg4MCBA/j6+lqwZiK5FEXhu+++Y+vWrSxcuJD8+fPHOu7h4YG1tXWstr5+/Tr37t3Dx8cnlWsrkqpSpUqsXbuWVatWGb88PDxo1qyZcVvaNf0pU6aMcc7vSzdv3iRv3rwA5MuXD1dX11jtGhoayqlTp+R3cxr3/PnzOD0pOp3OuGSYtG36l5Q29PX1JSQkhLNnzxrLHDx4EIPBgJeXV6rXWSTdy4D71q1b/P7772TLli3WcWnb9KdFixasWbMm1mepHDly0KNHD3777TdA2hVkeLnZdevWjWHDhuHh4YGXlxcLFy4kIiKC1q1bW7pqIhnGjBnDunXr+Omnn8iSJYtx/omDgwOZMmXCwcGBNm3aMGnSJJycnLC3t2fcuHH4+vpKcJaG2dvbG+flv5Q5c2ayZs1q3C/tmv506dKFjz76iDlz5tCoUSNOnz7NsmXL+O677wDQaDR07tyZn3/+mYIFC5IvXz5+/PFHcuTIQd26dS1ce5GYWrVqMWfOHPLkyWMcXr5gwQLatGkDSNumF2FhYdy+fdv42t/fnwsXLuDk5ESePHne2IZFixalevXqjB49mjFjxhAdHc3YsWNp0qQJOXPmtNTbEiTetq6urgwcOJDz588zd+5c9Hq98fOUk5MTNjY20rZp1Jt+Zl9/eGJtbY2LiwtFihQB5GcWQKO8fDwszOaPP/5g3rx5BAQEULJkSUaNGoW3t7elqyWS4fW1m1+aOHGi8QFKZGQkkyZNYv369URFRVGtWjW++eab92bYTEbRqVMnSpQowVdffQVIu6ZXO3bs4H//+x83b94kX758dOvWjQ8++MB4XFEUZsyYwbJlywgJCaFs2bJ88803FC5c2IK1Fm8SGhrKjz/+yLZt2wgKCiJHjhw0adKE/v37Y2NjA0jbpgeHDh2KN+FSq1atmDRpUpLa8MmTJ4wdO5b//vsPrVZL/fr1GTVqFFmyZEnNtyJek1jbDhgwgDp16sR73qJFi6hYsSIgbZsWveln9nW1a9emc+fOdO3a1bjvfW9XCbqFEEIIIYQQQggzkTndQgghhBBCCCGEmUjQLYQQQgghhBBCmIkE3UIIIYQQQgghhJlI0C2EEEIIIYQQQpiJBN1CCCGEEEIIIYSZSNAthBBCCCGEEEKYiQTdQgghhBBCCCGEmUjQLYQQQgghhBBCmIkE3UIIIYQQQgghhJlI0C2EEEIIIYQQQpiJBN1CCCGEEEIIIYSZSNAthBBCCCGEEEKYiQTdQgghhBBCCCGEmUjQLYQQQgghhBBCmIkE3UIIIYQQQgghhJlI0C2EEEIIIYQQQpiJBN1CCCGEEEIIIYSZSNAthBBCvKcOHTqEu7s7hw4dsnRVhBBCiAxLgm4hhBAiHitWrMDd3T3Br5MnT1q6imne0aNHjd+v4ODgOMfXr19Pq1at8PT0pFKlSowcOTJOuefPnzNy5EiaNm1K2bJl8fX1pXnz5ixcuJDo6OhE7z9q1Cjc3d3p3bt3ir4vIYQQIjmsLF0BIYQQIi0bOHAg+fLli7O/QIECFqhN+mEwGBg3bhyZM2cmPDw8zvG//vqLMWPGULlyZYYPH87Dhw9ZtGgRZ8+eZfny5dja2gJq0H316lVq1KhB3rx50Wq1nDhxgokTJ3L69GmmT58e7/3PnDnDypUrjdcRQgghLEWCbiGEECIRNWrUwNPT09LVSHeWLl3K/fv3adu2LYsWLYp1LCoqiu+//57y5cuzYMECNBoNAL6+vvTp04dly5bRqVMnALJmzcqyZctinf/RRx/h4ODAH3/8wfDhw3F1dY11XFEUxo8fT4sWLTh48KAZ36UQQgjxZjK8XAghhHgHM2bMoESJEhw4cCDW/tGjR+Ph4cHFixcBNdD88ccfad26NWXLlsXHx4cOHTrECQr9/f1xd3dn3rx5/Pnnn9SpUwdvb2+6d+/O/fv3URSF2bNnU6NGDby8vOjbty9PnjyJdY3atWvTu3dv9u7dS4sWLfD09KRx48Zs2bIlSe/p1KlT9OjRg7Jly+Lt7U3Hjh05duxYkr8nT5484YcffmDgwIE4OjrGOX7lyhVCQkJo1KiRMeAGqFWrFpkzZ2b9+vVvvEfevHkBCAkJiXNs9erVXL58mUGDBiW5zkIIIYS5SNAthBBCJCI0NJTg4OBYX48fPzYe79u3LyVLluSrr74iNDQUgD179rBs2TL69etHiRIljNdZvnw5FSpU4IsvvmDAgAEEBwfTs2dPLly4EOe+a9eu5a+//qJTp05069aNw4cP8/nnn/PDDz+wZ88ePvnkEz744AN27NjB5MmT45x/8+ZNBg0aRI0aNRgyZAg6nY7PPvuMffv2Jfp+Dxw4wMcff0xYWBgDBgxg0KBBhISE0KVLF06fPp2k79mPP/6Iq6sr7du3j/d4VFQUAJkyZYpzLFOmTFy4cAGDwRDnnODgYO7fv8/WrVuZP38+efPmpWDBgrHKhYaGMm3aNPr06ROnB1wIIYSwBBleLoQQQiSia9eucfbZ2Nhw5swZAKytrZk8eTKtW7dm0qRJDB06lK+++goPDw969eplPMfJyYn//vsPGxsb474PPviARo0asXjxYiZMmBDrHg8fPmTLli04ODgA6hzpuXPn8vz5c/7991+srNQ/4Y8fP2bt2rWMGTMm1rVv3rzJzJkzqV+/PgBt27alYcOGTJs2japVq8b7XhVF4dtvv6VixYr89ttvxl7o9u3b06RJE3744Qfmz5+f6Pfr4sWLLF26lF9++QWdThdvmYIFC6LRaDh+/Dht2rQx7r9+/boxkdrTp0/Jli2b8djWrVsZPHiw8bWHhwcTJkwwfh9emj17Nra2tvG2mxBCCGEJEnQLIYQQifj6668pXLhwrH1abeyBYm5ubgwcOJDp06dz6dIlHj9+zPz582MFhDqdzhiEGgwGQkJCMBgMeHh4cP78+Tj3bdiwoTHgBvDy8gKgefPmsa7r5eXFunXrePjwIfnz5zfuz5EjB/Xq1TO+tre3p2XLlvz6668EBATE2wt84cIFbt68Sd++fWP15gNUrlyZ1atXYzAY4rz/V40fP54aNWpQrVq1BMtkz56dRo0asWrVKooWLUq9evV4+PAhY8eOxdramujoaCIjI2OdU7FiRRYsWEBISAgHDhzg0qVLRERExCpz48YNFi9ezPTp02M9gBBCCCEsSYJuIYQQIhFeXl5JSqTWo0cP1q9fz+nTpxk8eDDFihWLU2blypXMnz+fGzduxFruKr7s6Llz5471+mUAntD+p0+fxgq6X/Ymv6pQoUIA3L17N96g++bNmwAMGzYsobfJs2fPcHJyivfYhg0bOHHiBGvXrk3w/Je+++47nj9/zuTJk43D45s3b06BAgXYsmULmTNnjlXexcUFFxcXQH0gMWfOHLp168aWLVuM72X8+PH4+vrSoEGDN95fCCGESC0SdAshhBAp4M6dO9y6dQuAy5cvxzm+evVqhg8fTt26denRowfOzs7odDrmzp3LnTt34pRPaGh2Qr3MiqK8Q+1jX2Po0KGULFky3jKvB8OvmjJlCg0aNMDa2hp/f3/AlOjswYMHREdHkzNnTkB9WPDzzz9z79497t69S548ecibNy/t27cne/bs8SZge1WDBg34/vvv2b59O+3bt+fAgQPs2bOHWbNmGe8NEBMTw/Pnz/H39ydr1qzY29sn/RsihBBCpAAJuoUQQoh3ZDAYGD58OPb29nTp0oU5c+bQoEED43xqgM2bN5M/f35mzZoVqwd6xowZZqnTrVu3UBQl1r1e9mS/zPz9upc95fb29lSpUiXZ97x//z7r1q1j3bp1cY61atWKEiVKsHr16lj78+TJQ548eQA1QD979mySeqpfDj9/9uyZ8d4AAwYMiFP24cOH1KlThxEjRshcbyGEEKlOgm4hhBDiHS1YsIATJ07w888/4+fnx6FDh/j2228pV64c2bNnB0w9168GwqdOneLkyZPGoDMlPXr0iK1btxoD/9DQUFatWkXJkiUTzOrt4eFBgQIFmD9/Pk2bNiVLliyxjgcHBxvfT3xmz54dZ9/69evZsGEDkydPJleuXInWefr06ej1erp06RLrntmyZYszVH758uXGOgNUqlQp3vuPHj2aPHny0LdvX9zc3BK9vxBCCGEOEnQLIYQQidi9ezfXr1+Ps79MmTLkz5+fa9euGdffrl27NgCTJk2iZcuWjBkzhh9//BEAPz8/tmzZQv/+/fHz88Pf358lS5ZQrFgxwsPDU7zehQoV4quvvuLMmTM4Ozvz77//EhQUxMSJExM8R6vVMm7cOD755BOaNm1K69atyZkzJw8fPuTQoUPY29szZ86cBM+vW7dunH0vl0OrUaNGrID9l19+4fLly3h7e6PT6di+fTt79+7l888/NyaNA1izZg1Lliyhbt265M+fn7CwMPbu3cu+ffuoVasWlStXBmL3mL9qwoQJuLi4xFs3IYQQIjVI0C2EEEIkIqHh3xMnTiRPnjwMGzaMbNmyMXLkSOOxQoUKMXjwYMaPH8+GDRto3LgxrVu3JjAwkKVLl7J3716KFSvG1KlT2bRpE4cPH07xehcqVIjRo0czZcoUbty4Qb58+fj++++pXr16oudVrFiRpUuX8tNPP/HHH38QHh6Oq6srXl5efPjhhylWPzc3N7Zu3cp///2HwWDA3d2dH374gUaNGsUqV7ZsWU6cOMH69esJDAzEysqKwoULM2LECDp27Jhi9RFCCCHMRaOkROYVIYQQQqQZtWvXpnjx4sydO9fSVRFCCCHeewkvtCmEEEIIIYQQQoh3IkG3EEIIIYQQQghhJhJ0CyGEEEIIIYQQZiJzuoUQQgghhBBCCDP5P3v3HV/z9QZw/HPvzZBBEJuQGLEj9t6199bWVm0pqqVoS4tSNfpr0UGt0mpLjaL2qL1HJCF2gpiJFdnJvff3x5F7XRkSsj3v1+u+8t3fc++RuM/3nPMcaekWQgghhBBCCCHSSJaeMiw2NpbHjx9ja2uLVivPD4QQQgghhBBCpA+DwUBUVBROTk5YWSUeWmfpoPvx48cEBARkdDGEEEIIIYQQQrymXF1dcXZ2TnR/lg66bW1tAfUm7ezsMrg0SdPr9Vy8eBF3d3d0Ol1GF0ekEqnX7EvqNnuSes2+pG4zQEQE1K+vlg8ehDT4Lib1mj1JvWZfr1vdRkREEBAQYIpLE5Olg+64LuV2dnbY29tncGmSptfrAbC3t38t/gG+LqResy+p2+xJ6jX7krrNAEYjXLiglnPkgDT4Lib1mj1JvWZfr2vdvmioswyEFkIIIYQQQggh0ogE3UIIIYQQQojXll4PMTEZXQqRnUnQLYQQQgghhHjtXL8Oo0dD3rxQogTcuPHy1zIawcsLHj9OteKJbESCbiGEEEIIIUS2YDDAunXw9dfwzz8qsDYaLY85fRr69IGSJeF//4OQELh9GxYterl7RkVBr15QtSqUKQOXLr3y2xDZTJZOpCaEEEIIIYQQAJcvw5AhsGeP5XZnZ6hWTQXFJ0/Crl0Jn//PPzB5csruGRICXbrA7t1qPSgIOnWCI0cgV66UvgORXUlLtxBCCCGEECLLio2F2bOhcuX4ATfA/fuwYwfMnGkZcDs7w5dfqmAcwNsbrl5N/n3v3oWmTc0Bdxw/P+jbV7W6CwESdAshhBBCCCGyKB8fqFcPPvkEIiPVNldX+Pln+OwzaN0a8ue3PKdUKfjpJ9X1fNIk1TU8zj//JO++/v7QoAGcOqXW8+aFFSsgd261vmGDurYQIN3LhRBCCCGEEFmM0QjTpqnu4LGxaptGAyNHwtSp4OhoeeytW2ost4MDNGoEz04h3bkzjB+vlv/5Bz7+OOl7nzmjgvk7d9R6sWKwfTuULw/58kGbNqqV+6uvwNMTunZNpTctsixp6RZCCCGEEEJkGTExMHAgTJxoDrjLl4eDB+H77y0DblDBeNGi0L696g7+bMANULYslCunlg8cgHv3Er/3mTMqaI8LuMuXh0OH1E+Ali1hxgzz8f36qdb4OOHhsHYtvP02uLurhG8i+5OgWwghhBBCCJElhIerxGXLlql1jQY+/1y1Ytet+/LX7dJF/TQaYePGxI8bO1YlTwOoUwf27wcXF8tjRo9WQTVAWJhKrPbbb9C9u+rq3q0b/PGHynL++efqGiJ7k6D7NTZ+/HiGDRtmWu/bty/Tpk1L93IcPXqUsmXLEhL3F0wIIYQQQojnPHgALVrApk1q3cYGVq9W3cltbV/t2p07m5cTG9d96pTqRg7g5gY7d6pkbM/TaGDhQpUxHdT47379YM0a9dDgecOHm1vssyMvLzU9W7ly8OmncOJE/GncsjsJujOh8ePHU7ZsWcqWLUulSpVo0aIFP/zwA7Fp/Ns4b948Pvzww2QdK4GyEEIIIYRIL4GBqlv3oUNqPWdO2Lo19cZL16gBRYqo5R074MmT+MfMnGleHjNGjQ9PjJ2dmi/8+SRu+fOrac22bjUH5d7esGDBq5U/Mxs9Wj14uHABvvkGatZUDy0+/ljV5+uQ5V2C7kyqYcOGHDhwgG3btjFw4EB++OEHFi9eHO+46OjoVLtn7ty5cXx+EIwQQgghhBAZ6Px5qF8fzp5V6wULwt69anx2atFqza3dUVGwbZvl/itX4O+/1XL+/GpM+YsUL66u07EjfPAB/PefSuj2yy/QqhXMm2c+duJECA5OlbeSqfj5xZ9SDeDaNfjuO1WvzZol3AMgO5GgO5OysbEhf/78FC1alLfeeot69eqxe/duU5fwn3/+mQYNGtC6dWsAbt++zYcffkiNGjWoVasWQ4cOJTAw0HQ9vV7P9OnTqVGjBrVr12bmzJkYn+vX8Xz38ujoaGbNmkXjxo1NLe5///03gYGB9OvXD4CaNWtStmxZxj9N+WgwGFiwYAHNmjXDw8ODjh07snXrVov77N27l1atWuHh4UHfvn25efNmmnyGQgghhBAiawsPV13Kr19X6yVLqoRpcXNrp6akupjPnm1ukf3wQ9WSnRxVq8L69fDDD9CkCVg9M3dUvXpqPm+Ahw/V+O7s5uefzcsTJ6oHDi1bWn4Oe/e+OGN8Vvd6Thnm9z84/78XH5e3GjTeYLltb0d4cOrF55b7GMqn3r8eW1tbHj16BMDhw4dxdHRk6dKlAMTExDB48GA8PT1ZsWIFVlZW/PTTT7zzzjts2LABGxsblixZwrp16/j6668pVaoUS5YsYceOHdSpUyfRe44dOxYvLy8mTJhAuXLlCAwM5OHDhxQuXJh58+YxYsQItm7diqOjIzly5ABgwYIFbNiwgcmTJ+Pq6srx48f55JNPyJs3L7Vq1eL27dsMHz6ct99+m549e+Lr68uMZ1M8CiGEEEII8dSKFaprOUCVKqpbdqFCaXOvxo3ByQkeP4Z//4XoaDVu/O5dePq1G0dHeCYl0iubMUMF+E+eqHHgQ4aoru7ZQWioOeGdnR189BHkyaPe44MH6mHE8OHqwcqCBfDGGyrZXHb0egbdMSEQkYzW1UiXBLYFJe/cmNQZ62w0Gjl8+DAHDhygT58+PHz4EHt7e6ZOnYqNjQ0A69evx2AwMG3aNDQaDQDTp0+nZs2aHDt2jAYNGrBs2TLeffddWrZsCcDkyZM5cOBAovf19/dny5YtLF26lHr16gHg8kxqRicnJwCcnZ3JlSsXoFrGFyxYwNKlS6n69PGji4sLJ0+eZOXKldSqVYs///yT4sWLm1rGS5YsycWLF1m4cGGqfF5CCCGEECJ7MBph7lzz+uLFaRdwgwqw27VTmcUfP1YtsC1aqDJERalj3ntPBY6ppXBh+PJLNUbcaIQRI1RLvjYb9EdescKc6f2ttyw/t7x5VRd9gwHeeUdte+cd9cDB1TXdi5rmXs+g2zoX2BV98XE58ie8LTnnWudKebmesWfPHqpWrUpMTAxGo5H27dszYsQIpkyZgru7uyngBjh//jzXr1+nWlw2hqeioqK4fv06T548ISgoiCpVqpj2WVlZUalSpXhdzOP4+fmh0+moWbNmsst87do1IiIiGDRokMX2mJgYyj+dvPDKlSt4eHhY7Pf09Ez2PYQQQgghxOth717w9VXLdetC9eppf88uXVTQDaoFunZt+PFHtW5trVprU9uIEbBokRq7fuSIml6sf3/z/ogIFYgHBEDDhmpe8dQUE6O6d1++rKY669VLvddXYTSaPzdIvHfAoEEqC/xff6kHHW+9per9Ve+f2byeQXf5V+j6/Xx38zRSu3ZtJk2ahLW1NQUKFMDqmYEPds8NIgkPD6dixYrMnj073nXy5s37UveP6y6eEuFPMyAsWLCAggULWux79iGBEEIIIYQQL/JsorERI9Lnnq1aqenHoqJU0O3qqoJBgD59oGgy2t5SysZGtaY/7ZDK2LEqCdvBgyoJ2aFD5pZ2UIH34MHQowfY27/6/efPV2POQXXf//RTGDVKdQPP9ZLtiAcPgo+PWq5Tx5yp/Xkajbr/0aMqw/nhw6rl/+uvX+6+mVU26LiQPdnZ2VGiRAmKFCliEXAnpGLFily7dg1nZ2dKlChh8cqZMyc5c+Ykf/78nDlzxnRObGwsZ+NSQCbA3d0dg8HA8ePHE9xv/fTxk16vN20rVaoUNjY23Lp1K145ChcubDrGJ+438KlnyyWEEEIIIcS1a+ZkZoUKQbdu6XPfnDnV2GJQmcYnTVLLGg188kna3bdFC/P0Z/fuqYzeEyeqjOfPBtwA+/fDgAGqa/rQoXDy5MvfNzQUvvrKcltgoOru7uKiHgB4e8PFi/Ffz5frWT//rDEtv2gMvJOTaumOC3m++Ua1fmcnEnRnAx06dCBPnjwMHTqUEydOcOPGDY4ePcrUqVO5c+cOAP369WPhwoXs3LmTK1euMHny5CTn2C5WrBhdunThs88+Y+fOnaZrbt68GYCiRYui0WjYs2cPDx48ICwsDEdHRwYNGsT06dNZt24d169f5+zZs/z222+sW7cOgN69exMQEMCMGTO4evUqGzduNO0TQgghhBACVNbruGzhQ4eq1uD00qWLeTluKqtOneDpaMk08+23kFBn0xIlVDfsKVMsyxASolqJa9SACRNe7p7ffw9BQWq5WTPo0MHy+rNmqQR2ZcvGfxUtCtu3x79mcLAVa9eqoDtfPtUi/yK1aplbt41GldX93r2Xe0+ZkQTd2YCdnR2///47RYoUYfjw4bRt25bPP/+cqKgo07zbgwYNomPHjowbN47evXvj4OBAixYtkrzupEmTaNWqFZMmTaJNmzZMnDiRiIgIAAoWLMiIESP49ttvqVevHl89fUQ2atQohg0bxoIFC2jbti3vvPMOe/bsoVixYgAUKVKEefPmsWvXLjp16sRff/3FR2kxOEYIIYQQQmRJEREqkzeosb3vvpu+9+/QQbVsP2vcuLS/r6srLF8ONWtC797qM7hyRY3lXrxYtXyfPau6bg8aZNm1fNo0NRY8JYKDVVANoNOpBx0bNsC5cyqp2YsedNy/D+3bw59/Wm5fvz4fMTHqAxw8OOEHCQkZPVp17we4c0c9bMkuNMbEMmllAeHh4fj5+VG+fHnsU2NAQxrS6/V4eXnh6emJTqfL6OKIVCL1mn1J3WZPUq/Zl9RtBggLU/Mngeqj6uCQ6rdITr2GhZnHvh44AGXKwJw5Lz8WVaS9F9Xr4sXmjNZvvw2//57OBUSNm46b6KdxY9izJ/3L8CJPnsB336kx0KDGoh84kPwpx8aMUa3roMZv//KL5f47d1SCt0uX4p975Yr6vYszZw6MHAlRUXpKlNBz964NGg1cvZqybOR376qW9bt3Vbfzhw/jPwDJTJIbj76eidSEEEIIIUSW5eWlWuR27VKJl2JizPsOHoTjx9U8y9lx6qHMKDZWfe6FCqmHHq8y3ZXRaJlAbeTIVy/fy+jb1xx0f/ZZxpThRXLmhC++gJs3VcAcFaW6xh8//uKp1W7cMCdPy5FDXed5hQol3m1dr1ct0XE9Ej78UAXK1arB3buqibxdu5T/DhYsCNu2qXHmnTtn7oA7JSToFkIIIYQQWcauXeZEV4k5e1aNEV2/Xk01lRXs3QtnzqgW3kzegdNCUJAK9OJaPR0dwdNTBV/VqqlpvipWTH7wtH+/+hxA1WGtWmlS7BcaMkR1r86Xz5xVPLOaN8/c7TwwELp3Vz0/kuoePmWKORHaiBHwdCRosul0sGCBCpKnTlXbvv4acuY0P3H54IMUvpGnqlSB1atf7tzMSsZ0CyGEEEKILOPXXy3XS5VSAdJff6lph9zd1fagIGja1Dzncma2Zo0q64cfqgD2mclhMrVz59Q81s92Mw4NVS3Ec+eqDNuVK8PAgcm/ZkZME5YQjUaVv337jCtDctnYqCA1bjqzgweT/uzOn4clS9SykxOMH/9y99VoVIv03LnmhypPnqiFUqWMmf5hRXqSoFsIIYQQQmQJej1s2aKWHR3VvL6XL6uutb16qVbRI0dUFmZQLXlvv62mfTIa4cEDNb3S6tUwcyZ89JFKXJXU1Edpbc8eeOstVT5Q2aA//TTjypNc27erXgT+/mq9cGH1wCCh7sTLlqkppl7kxg2Im9SmYMHkZb0WSqFCaoo1W1u1/ssvKrN5QiZONGeG/+QTyJv31e49YoRKpvZ0RmEA3nvP+ErDDLIb+SiEEEIIIUSWcPSoypgMKstxQgFenjywdatq/Y4zebIK0p2dVZKpHj1UNurvv4f+/cHNTc0N/OhR8ssSGKiCyf79oU6dl0v2deaMmooqOtpy+6xZmbuF/uefoW1bNaUUQNWqcOwYrF2rgvD799U8y/36WZ6TnOvGtfK/9545gBTJU6OGeYw1qGB4wADVEn3ggEq8duKEuet2wYKqd0Vq6NULNm2C4sWNVK4cyjvvZNlc3WlCxnQLIYQQQogs4d9/zctJdfu1tlbjTcuVUxmajUbzfMsJuX1btS5Pm6bGVI8apeZGjohQ2ZMfPVI/AwNVy/SuXfEzOh89qlpqx49P3vhlf39o3docuLZrp8aqx82kOniwmgu5evUXXyu9PHmiEmvNnWve1qmTeuAQl8geVMtp8+ZqbPeqVRAZCUuXqrG/iSW5Dw01Z8+2slJBt0i5vn1VosH//U8luFu2TL1A/bt89vOfONGy3l5VixZw5YqBM2cukCuXZ+pdOBuQoFsIIYQQQmQJmzaZl9u0SfpYjQY+/lhl0x41Sm1zc7N85cypgsF161RgHhqqWr/nzlWBe0q7nX/2mcrg/L//JZ3BOyhItdTfuaPW69RRwamdHfj6qimzIiNVd+0TJ6BAgZSVI7VERqrs8Lt3qwcNx45ZjjcfOxamT0/8vTo7q/mmf/0VHj9WXZDjpgJ73ty55l4MvXpBkSKp+lZeKzNmqH/Lixdb1lfcv3FQ//6f7Q2SWrJLtvHUJkG3EEIIIYTI9K5fB29vtVyrluoamxwdOqhXYtq3V63W332nAvDISDXeNamA28pKBcrNmqkW3UOHzOOw58yBe/dUoJlQ9ujQUNU1O66lvFw51YIfl7H8xx9VgrLDh1XLeffuqqt2QtcKCVEt5nGvq1chIEAlx+rQQbWeJ9WSef++6nZ886ZqyY97PXqk3sOJE+rzSOj9z5+vWuNfZNgwc/K7H39M+JzHj2H2bLWs1aoWWPHyrKxUT4/vv1cPcU6dMr/ifod++inp7OYidUnQLYQQQgghMr1nW7lTO6N0mTIqCJk8Wf1cs0a12OXJo165c6ufefOq7t4NG1oGs40aqYcAQ4aolsU//1QB7Zo16riQEDUl2O7dKsC+fFmdV7SompPY2dl8LVtbdV6NGnDrlppC6513oH59y+A6bux0YlasUPMvt2oF3bqpINzKSl0vruXay8ucwC05ypVTDxoGD1bTgSVHzZrqdfy4ut/Ro2r9Wd99p4J9gD59VLd68ers7Myff5y4Oe2fTXom0p4E3UIIIYQQItN7Nuhu1y5t7pE/P3z5pXql1MCBak7nnj1V6/D27VCvnmrBPnEi/jRguXOrhG/Fi8e/VuHCqst7o0aqxf2339QrpSIj1Vzl69erIMtoVON8k8vFRbXkN2+upjSLm5IqpYYNM08b9uOPltO+PXiggm5QDwW++OLl7iGSR4LtjCFBdyZT9gWP9oYPH86IjJy0UAghhBAinYWHq5ZZUGN9q1bN2PIkpkMH2LFD/Xz0CHx84h+j0ai5refOhUqVEr9WrVqqi/CAAQlfo1gxNS63ZEnzGPWSJVVG9wsXVIbqdevM48bjWjifvYanp2q5rlw5fqt+7typl2SrVy8YPVoF2KtWqezscWbPNieTGzhQzbsuRHYjQXcmc+DAAdPy5s2bmTt3Llu3bjVts48b8AMYjUb0ej1WVlKNQgghhMi+du82jy1u1y5zJ2tq0AD27VOZyW/dUtvKl1etxc2aQZMmKqhNjv79VeB76pRqEY8LrIsXT3o8btGi6l7z5qmx4WvWwObNoNOp+zdvrn4+2609LdnZwaBBKsCOjoalSzW0bKnGjc+Zo46xsVGZ0YXIjiRay2Ty589vWs6ZMycajca07ejRo/Tr149ffvmFOXPmcPHiRRYvXsy6desICQnhp59+Mp07bdo0zp8/z29P+yIZDAYWLlzIypUrCQ4OxtXVlWHDhtG6dev0fYNCCCGEECm0ZYs5yk7t8dxpoXJllcDqyBHVmly48Mtfq1s39XoZOp16CNCggbkLd0Z5/3349lvVxX3BAg3Nm8PMmRrTVG5DhiTc1V6I7OC1C7r//luNFXnyJP3umTOnSsyRWt1lvv32W8aNG4eLiwu5cuVK1jkLFixgw4YNTJ48GVdXV44fP84nn3xC3rx5qVWrVuoUTAghhBAilRmNsGmTCrptbVUrbVaQJ8+LpzV7nZQqpVr/t2yBa9c0rF+fj/nzVb3myKGmWxMiu8q0QfeKFStYvHgxQUFBlCtXjokTJ+Lh4fHK1501C86fT4UCptDs2Vp+/jl1rjVy5Ejq16+f7OOjo6NZsGABS5cuperTQVAuLi6cPHmSlStXStAthIgnKEglvrExBNGv2zXe6FEVnbUuo4slhMhEjEaIa3/+9Vfo855KhJXaLl2yIzBQ3alpU3BwSP17iPQxbJgKugFmzCiOXq8xbZd5uUV2limD7s2bNzN9+nQmT55MlSpVWLZsGYMHD2br1q04v+Lgk7Fj1dx/6d3SPWaMIdWuV7ly5RQdf+3aNSIiIhg0aJDF9piYGMqXL59q5RJCZB/jxqkkPJCfP9bmp/ioQAZ1v8TAke4UL2eZvjY6Us/1QB1376oulcnsgCOEyOJmzoRxT5c/GA7Tvlc9+3r3VnMtp5b9+51My1mha7lIXJs2UKIEXLuGKeB2cFD/5wiRnWXKoHvp0qX07NmTbk8HsEyePJk9e/awZs0a3n333XjH6/V69M/Pw5CILl3UK73p9Xp8fEh2OUGNw44799l1GxubeNcxGAwW22JiYkyJ1p48fcLw888/U6BAAYvzErqWSL64z04+w+znda7b0FBYtUqLuQ0LrgcVY9LPxZg830DLGicoXCAC/xuO+N/OT+D9wjz980SFCkZOnDAkmeAnI73O9ZrdSd2mr0WLNEz5yhx0g5p7+u23Yfp0I1OmGOjQ4dUTnun1eg4eNAfdrVvr4029JbKW997T8Nln5qcyH3xgwNnZKPWaTbxuf4uT+z4zXdAdHR3N2bNnee+990zbtFot9erV4/Tp0wmec/HixfQq3ivzSWjuiERcv34dvV6Pl5cXAJcvXzZdw+GZvlWxsbFcu3bNdBzAyZMn0el0eHl5ERERgbW1NUeOHKFhw4bx7nP37t2XezPCJCX1KrKW17Fu//03L2FhbgDUq3YNB80tdp2qhcGow2jUsu14jUTPPXdOw/z5/jRq9Di9ivtSXsd6fV1I3SbPxWO3+fO3XLTr8JAaLYul6Nw9e5wYO7YUOZ7ZVr1aCPtPqe8mvr4aunbVUaFCGMOG3aR27ScvHXw/fGiFj48aXliyZASPHp3jma87IguqWdMKa+vKxMRocXDQ06qVD15er0eA9jqRv8WWMl3Q/fDhQ/R6fbxu5M7Ozly9ejXBc9zd3S2m0sqMVEu3D5UrV0anS964SH9/f3Q6HZ6enoB6IAGqe/mzCdRCQ0P5999/uXbtGlWqVGHjxo3cunWL8uXLm84dNGgQf/75Jy4uLlSrVo3Q0FBOnTqFo6MjnTt3Ts23+lp5mXoVWcPrXLdjxpiXv/m+GPXqFSPw0m2W/3CJJX+XJuCei2m/c877uBW6S64iruzeq/4OHz5ckpEjjeld7GR5nes1u5O6Tb5zR6/w3ugyPInIxdZj0RyoeZHqTZM33Gz/fpgwQYvBYBlF//efA7uO6Jk4UcuxY2rfuXMODB/uTqNGRr76ykAK0tGYLFtmxGhU1+vWzdb0vUZkbT//bOC77yKYPNmGxo1TNmxSZG6v29/i8PDwZDUAZ7qg+2XodLosU6kpKav26YCouOOfXX/2Go0bN2bYsGF8++23REVF0a1bNzp37szFixdNx3300Uc4OzuzcOFCAgMDyZkzJxUqVOD999/PMp9dZpaV/g2KlHnd6jbgXCB79qhWrzKlImnQIAcaDZQoV4yJPxTj8zkGvPb5obPS4lahMLmcnQFnYmKgSBEjwcEaNm6IJexRJLmcM+/g7tetXl8nUrdJe3j3EV272/AkQv1+xuhteKufE6f8tORySro52sdHDdGLmy/7zd7AX2pZp9PRsqWOFi3g33/VfMve3mrfvn0aGjfW0aYNTJ0K1aolv7xbt5pz4nTsqEWqNnsYMECPp+d5PD095fc1m3pd/hYn9z1muqA7T5486HQ67t+/b7H9/v375MuXL4NKlTG6du1K165dTeu1a9fmwoULCR47cuRIRo4cmei1NBoN/fv3p3///qleTiFE9rH8x8uACroHtDuCRtPEYr9Wp6VaAi1i1tbQ+40j/PBXXSKjbFi7+BgDxjZI+wILIZJNH6PnrY6XuHy7psX2K7ddGDoMfv898THY166p6Z4ePVLrrVqhZmX5y/I4jQY6dIB27czTtMY1Am3Zol4dO6ppv6pVgypVVMLZ5xmNcOcObNumCpQnj5E6dV5xgLgQQmSQVMwtmTpsbGyoWLEihw8fNm0zGAwcPnzYNN2VEEKI1GfQG/l1TUkANBoDfT8om6Lz3+5v/ub8+1+Ze8iPEK+jz4bsZ+sxFXDnyxXMf//4kSuXGgryxx+wbFnC553c7UfjBhHcuqXWa9ZUsxtYWyd+L60WevWCs2dh8WIoXty8b8MG+PBDaNgQnJygXDl4800YPlxlJ69YUWW0LlIEQkJUoN26tTFNpiMTQoj0kOmCboCBAweyatUq1q1bx5UrV5g0aRIREREWrb5CCCFS14F/vfG/q74Zv1HtNC7uhVN0fu2WFSlV6BoAu708uXXldqqXUQjxcv6ce4iZy5oAoNPG8vfSQJp0Ks8vv5hbjz/4AJ7vULd4+n7qt3bjWqAdAO7usGkTODom775WVjBokGrtnjcPChWy3G80qnv+9Rf8+KO69rlzEBFheVyPHpkzT4QQQiRHpnxm2LZtWx48eMDcuXMJCgqifPnyLFq06LXrXi6EEOnp14VPTMsD+kal+HyNVsPbnfyZsqAERqOWPxdcYPTMlAXuQojUd+q/8wz+xNO0/v1nB2nStTGgWqN37oRFiyA8HHp1usORk7kBGPn2MRaub2Q6r06lK6zeWor8+VNeBltb1ZL97rtqrPepU+aXtzdEPfMnJ0cOcHWFkiXB1dVA0aIBdOhQ4iXeuRBCZA6ZMugG6NOnD3369MnoYgghxGsh9FEYq3Z6ApDL7jGdB77ccJ633y3BlAVqecXagoyemUoFFEK8lHv3oHO/0kREq698g9rv54PJjSyOmTMHDu6PxO9CDs5cKMS73Q/gdyUvJy6Zj/ugx17+t6wONnZPN9zcDDkqpLg8NjZQo4Z6xYmJAT8/CA1VwXahQqp7OoBeb8TL6yEajQTdQoisK1N2LxdCCJG+1i72IixK9Rft1dIb+1x2LzgjYe7V3KjpfhaA01fKc/bw5VQroxAi5YYNgxuBKuCuUyWQn1bWQqO1TEhmbw8rF1/H1lqlJf9tawNOXFIBtZ1NOMu/PcAPqxpjY2cLhhg4PRb2toOj76RKGa2twcMD6tVT47i18u1UCJHNyJ81IYTIRqKjoUcPaNoU9u8OTfZ5v/5uTnw2YEjuVypDn+7BpuUViwJf6VpCiJfn7Q1r1qjlAgVg7ZZi2NrbJnhs5frufPf5MYttpQpd48iuG/T9+JmZCKIegP/TjGt3dqVFsYUQItuRoFsIIbKRlStVVuE9e6BRc0eG99zLkwdPkjwn4Fwg/3mp7uRlivhTt02lVypDryEV0GljAfhjY2kMesMLzhBCpIUpU8zLn38OhV+QYuH9iQ0Z2m0fOm0sXRsd4cSZ3Hg0eG4WA7uCUO9P0MhXSCGESC75iymEENnI1q2W6z/+3ZhK5R6z7Y8TiZ6zfFmsaXlA92vxup6mVEHX/LSocRqAa0HFOLjJ95WuJ4RIOZ+DF02t3IUKwZAhLz5Ho9Xw0+pGPHkUw5q9dchdwCnhAws1g8qTLbddXwMPvSAm+T1shBDidSFBtxBCZBMGA2zfrpZz2MZibxsGwPWgYrR+uwb92x7gbkAQkWGRpldEuJFlq10B0GiM9B2e8sRICXn7TfP0Pis2VU6Vawohku+rieZhHuOGnMIuBWka7HIm4+CKn0Gh5ub1w/1hS1X4Oydsrxf/+Hv74N4BeHIFYsOSXxghhMgGMm32ciGEEClz6lAwwcFqasU2ba2YPfkW7/a/wK7T1QBYvqUBy90SP/+NNzS4lCmQKmXp/E4t7D9XUxCt+lvD3Hkqa7EQIu2dPXyJ1XvqAFAw9z3e+6Rc6t9Eo4Xai4AE/qhYJ9BCfnwYPD5rXrfKCXaF1StHIfXToQQUagG5K6Z+eYUQIgNJS7cQQmQTW1eau3G3qneJkpWLs+NEVRZ9vR8n+8cvPH/gwNQri6MjdO6slh8+hC1bUu/aQoikfTUhCKNRfcUb++457HLav+CMl5TjmQm7K38JJQdA/vrgXDP+sZF3LNdjn8CTi3BvL1xfCRe+h1Mfwa1Nlsfpo8gZdhxiw1O79EIIkW6kpVsIIdJZyP0QTu+7Sr22FbG2tU61627bk8e03KqN6h6q0WoY/GlD2vS8w1djz3D+Sk7Lk/J4Ahrq1oVevVKtKAD06QN//KGWf54XRqs3dORwyJG6NxFCWDh39DKr/lOt3AWcgnj/8wQC4LRQ4RNwcEh4n9EI5cdBxC2IuA2RtyHijlqOfS7RY95qluuPvHEPHIrx5gjIWwMKNIICDVVwb5MHIYTICiToFkKIdGQ0GGleN5ATlzwZ0Wsvc/9qnCrXfRz0iMPnVJfMskWv4lqxpMX+IqUK8fOaQqlyr+Rq0QLy5zcQFKRl2y4HShe/zRejLjFwbN1UfdgghDCbOuEuRmNpAD4Zchb7XE0ytkAAGo0KyhMSG2YOwEPOq8D62VMfqqSMGmMs3D+iXn4zAQ3kcoecZSFXWXCqCCX7p/EbEUKIlyPdy4UQIh3d9r/LiUsqWdmWPUVS7bq71vqhN6jnqK0b3Ui1674KKyuYOeaQaf3mg8K890Ujyrve4vfvDqKP0Wdg6YTIfs4fv8Jfu+oCkD9XEEMnpFMr96uwcoCcpaBAAyj9DtjktthtzF2JIKcuGHM+Py7dCCEX4OYG8JsF576Jf+3dLeEfF9joDps9YV9XOPsN3P0PYpKeSlEIIVKTtHQLIUQ68jkaCKgWZ/8gN2KiYlKl1XfrlhjTcut2aTR+8yUMGNuAavUuMnH8QzYcrA3AlTsl6PtxCaZ/f5mf54bRqFOVDC6lENnD1Am3MRpLATDmnbM4ODXJ2AKlhnz1uF7Inryenuhi7kPQAZUJPeiASsymj1TH5XSPf27ELQgPNK8/OgOB69SyRgu5KkC+2uA+EvJ4mI+LDIbbW0EfroLzmBD1MzbkaeZ1LWitQGMFNX8Cna353JhQtU8nQ2mEEGYSdAshRDryvVbKtKw3WHHN7xqlPUu80jWNBiNbD6rr2lpH0qhD5sr869HAnfUH4Og2XyZ8FsXOU9UBOHe9NK17hrNzrQ/12sm0YkK8iounrvLnDtXKnS9XMMMm1HjBGVlQjgLg0lW9AIwGCL8BIRdVi3m84wtC9EPQR6hg2RBt3mc0wGNf9Src2jLofnIRDvdNXplq/mi5fmUxnB4NucpDnqoqb0bepz9lDLoQry0JuoUQIh35XLD80nXJ994rB93nT1zlRrAKuhtX8cU+V+b8sl27VSV2tIL/1pzm0wnWHD1fiYhoe9r3KsaBXZepULt0RhdRiCzr27lOGIw6AEYP8sUxT5MMLU+60GjVNGMOifwNbb7LvGw0qO7o949C8FE1NvyRDxj18Vul41rPk1WG575KP/JS14wL6AN+M+9zKKGC7zxVoUATKJg6OT2EEJmfBN1CCJGOfHws1y+ff/VpcLauvQGooLt189BXvl5aa9qtKnvbRNG+4Ul2nqrOw7A8tOqo59AJcHHJ6NIJkfXExsKaf50BcLDX88HE6hlcokxIowWn8upVcoDaFhsOj7whZxnLY3OWgepzwcoerHOpOcWtcz1ddgCMYIgFYyxodJbn2peA3B7w+Jza/6ywa+oVuB5c+8QPui/+CHZFVWI4x5KW3daFEFmaBN1CCJFO9Ho4d85y26XLr37dbbsdTcutuhR79QumA1t7W9bucKdJbT9OXS5P4L18tG4N+/dD3rwZXTohspb9++H+fbXctp2OnHlzJn2CUKzsIV+d+NsdXKDsiJe7psck9dJHqTHnD0/DQ6+nP89A7NMHo04VLM+LDYcTIwCjWtdoVQCfy12NV89dGYp1Ul3shRBZjgTdQgiRTq74PSQy0rJ7+WX/V0t6FhFuZO8ZNRbRJd9Nytcs9YIzMo+ceXOyeVch6jczcuWKhnPnoEMH2LED7DNPLjghMr21a83LXbtmXDnEM3S2as7xZ+cdNxrgyRXVBd2pkuXxIRcwBdxxx4b5q9ftbWrb8aFQ6A2o+i3kzly5O4QQSZOgWwgh0onPgfNAXYttl++4vdI19+7TEBltA0Crto5otJpXul56K1g8D9u2Qf36cPcuHDoEvbs94aPBF/C/HIH/VT3+16zxD8xJWIQtrRrdZvDIErhXS/pzi42OJSoiCgenBJIrCZGNGPQG1q2JBWywsYG2bTO6RCJRGi3kKqNez3MoAfX+gBA/eHJJvUIuQuwzU5sZ9XB7O9TObXnu/eOqZd3GCayd1LRrOnvV9V2Ttf5PECK7kqBbCCHSic+ZqHjb/G/lIzZWzWn9MrZtMy+37uj0kiXLWKVKwZYt0LgxPHkCG7fmZOPWhJPBnfEvy8xl0MjjDO98XIluPXTY26vAw+fQJXZvus2uvfbsO1OOiGg7Pnp7D5N/qI1dTrsky3DxlD+xMXpJ5iaynOM7z3Hztmo1bVH/BrlySWKELMk2L7i+abnNaITIu6oV/PY2uPaHGuttX9TyuFMfQdDBhK+rsQKttXpVmgjlx5j3RT+G7XXVFGdWOVV2dZu86qdtXvOyTV7IX1eyrwvxCiToFkKIdOJzzpwh16NSFN6+tsTGwrVrKvB8GVu3qp86HTRvngqFzCBVq8I/a6Jp09ZIdGzCyYO0Gr0pO/M+7yrsGwDDR6pW8uNHIgl+WBYoa3HOrOVN+GenP4t+CklwPvAz+y8wcfwjNh6qjVaj5+/5R+j6bgJjPIXIpNb+GWxa7toyAJCgO9vQaMCukHoVbAxVpkHU/fjHRT9O/BrGWNDHqmnTDM8ldjNEqZb15Gh52HL8+909cPoTcCgO9sWf/nRRAXpc0jlrp6fJ55J+6PlK9NFqnLxG+/SlA7Sqe79Gm3b3FSKFJOgWQoh04ntFJcCxswmnVescePuq7ZcuvVzQfe1KBOfPqy8zdepA7typVNAM0qyFDZv/OMWyJeHkd47FzU2DWxl73MrmwbV8EUIfhfHbD2dZ9KcL5wPVBxYSolrJwXIQeMHc93gY6kR0rC2XbrnRuDMM676XqT+q8e8XLsCU0WdZudU8LtJg1DHi0xK07BGKYx5HhMjsjAYja7e7AuqhVMc+FZI+QWRtGg3kyBd/e+khKit6zGOIfqR+6iPAEPM0y/rTnznyW55n1KsWbmPMi6dJs3kuw+WTi/DghHolxd4FOl+33HbvAEQ/xjY6EkKdQPc0ODY+HdNuiIGYR2BfTL3ihN+EUx+r1v+4V/TDhO/b+pSaHz1O8DG4MEfN3W7jBGjV56nRPl3Wqs/MKieU/9jyWlcWq2nmnMpDrgoqCZ59seR33ddHQcwTNU+88WnW+7js90aDejhhV0j1RsjKjEaIDYPw29hHnoM7waB/8vTf5CP1cMg2L5T7yPK8iNvq89DZqQc0Orts+cBEgm4hhEgHEU8iuHxLzSVboXgAZcuZvxxfvmSA1in/D2bbn8eBRgC0bhQIZI3M5Ulp3qMazXskvM8+lz2jZzbh42+MHD5sYNFiLStXQng4ODkZaVL5BM0ahdO8fVEq1C7FhZP+DB4QyqFzKtD+aXVjNh54REVPV7Zv12IwmAPuuFb0Ww8KM230HqYvaZL2b1aIV+R7+BKXb7sD0LiKN/mKVX3BGSJbKjvy5c6zKww9Q9SyIUYFsNEPIerB0+VnftoVsjw3+qEKjIyGpO9hnSv+Nr+Z6G5upBKAfxLnVp0N5Udbbru+6gVv6qnng7aQc6p7/os4loofdN/aDDfWWm6zcgTb/E+77luBxhpKDbbMeh9xB9aXUMH2izTeBEWfScgQfAzOz1b3sXJUU9VZ/Hy6bJ0TCjaxvJZB/7TVP5XG8xuNEBUMETfVg4+Im1ByMGifmS7v3AzwmQT6SHRAeYBrCVwrp3v8oPvoELi1yXKb1gZcukH9ZNRZFiFBtxBCpINzxwMwGMsDUMn9AWWK3CCuG+ilg/thROMkzk7Y1u02puVWTUNSpZxZgUaroV59DfXqw9y5cPs2uLlpsLKqaXFcuZol2eel58dJe/n02xqERzlw405ubmw1H5M/92M+e9+LFh2LUq2RC9Gxtny7vB4Dh/u/MFmbEBlt7YqbgAq6u7Z/ff4GiDSgtVbTkSV3SrIK46DcaBWAhV1Xr/AbqpU9JsT8sk/gYfCTS8m7R/QDy/Vny2bloFqtcxQE69yAUbXcGw3qp/Vz0+ZF3kvePWMexd/2+Fz8bbGh5unfTPe4a7lu5Zi8gBvi90IIvQrX/37xeVY5zQ9O4hx/H64uVfe3yQt5PCBP9afZ9KvHf4ASRx8JQQfgyWX1Cr3y9OdV0IdbHlu0g3poE0dr++LeEpBwXoCEeisYol/8QCeLkaBbCCHSgc8J8zi8yhVjKe1uDpgvB6R8vFtMVAy7TqggPl+uYKo3K/fqhcyCHB2hTAKJgOPorHWMnNaYDm/e4N3hsezcq5LN5c5t5JNPNIwc6YSjo3rg8cmAPUxb1IQYvQ0fDg1m82HXLJcNXrxe1m4tYlru3M89A0siXktaK5V13aFEys6r+BmGR748DPQmT57caDUa4OnfWo1Gjcu2zg35LGf7QGsNHa+q4NsqhTNTuH8AxTqrwDg29GlXdsPTIN2glrW2YOsc/9xWR+Gxnxr//viceoWcVw8VDDHm7vva5/KRWDlAnqrqAYBVzqfjzHUquZ3GSn1+aFSgb/dccjx9WPLeV0KfQ2yYevAQ81i9wvwhcL15v10RcHCFMkPBrY95e2QQ7G6RvPuG37QMuh1KgFNFyFEAg00+gp9AvsKl0NrmVdn0bXI/HeOfQMLXgk1UmfQRli/HkskrSxYhQbcQQqQDXx9zApvKVR0p7FYAe9swwqMcuHQjfxJnJuz03ouERKju0S1qXUCrq59qZc2O3Cq5sP0/WLNGz9GjNxk/vijOzjqLYz6dXZPl/9zkRnBRth6rycZfj9JxUO141woPCWfB18cwGqFpm0JUaeiOVpf9xp+J1LVz1Sm+nGyF3qBl4/ZC5HdJYGxuClw+HYC3v0ocWLucL8XKVHrBGUJkEm59Mer1BBi8yO3pqTKBJpfjS/ZAsnKAXO7qlVLWuSBfbfVKCY0G2pxK+f0ASryp5mSPCVVBdFzLumn56U+tTfxzHUpAnmoqcA+/Gb9FPuKWehV6LvuqbQJ/k7TWKvh1cFW9FuyKPh1r/1zCRpcu6gUY9XpueHnh7OGZvLqtMu3Fx2QDEnQLIUQ68DlvTsxVuVYxNFoNpYsE4u1fFv+7xYiNjsXKJvl/ki/7PTItV68ak5pFzbY0GujSBdzcgsidu2i8/Q5ODsyedIZew9W+UVM8afkW5DAnncdr3wXe6mOF340masNMyOsURtM3HGjWTGWQd3eXqXEzuxUr4Pff4aOPoGXLtL2Xvz+Mfucs63ZXM22b+9UevvqlyStdd92KAMAVgK5tg5M6VAiR1VjZg1UKexDE8ZyuXqBa8Z9chgen4OFJ9fPBKXNiM4t72kHFz1TQ7lgKcpYGu2KWY7fFS5NH80IIkQ58rroCkNfxAYXcCgJQprgarxart+aa380UXe/qZXOgXbJMjiSOFCnRY2hdmtZTAYz/NVtmzVLbDXoD343fQ+3mrvjdsEw1/+CxA2vWwAcfQLlyULmykTULT2M0GNO7+CIZ9u2Dfv3UdHvt2sHq35M51jOFwsLgiy+gfHlYt7uixb41W199Wq+1m8zdYLv0cX3l6wkhsiGNVrXuu/aGqrOg+S7o/gB6RUGNOfGPrzINSr+rWsEdSkjAnYqkpVsIIdLY/ftw+4HqtlXZM4dpnHBptyjYq465fDaIUlWS/1TbP8D8H6Fb2QQSk4iXotFqmPdLPqpUAb0epk+Hlo2C+WJMANtPNDEd51nyPP163GH/oRz851ObR4/MTdtnz2ro/m5Vqs30Y9qkMFq9WV3GhmcS9+/D22+D4Wl+nthY6N0/L8vvH+KtD+ul6Fr3rgfx34ZLXL0cP1FSdIyOxRsbcOOGud4LOofgYP2Qq3dK4HejFOeOXqZC7dIv9T5u3ojlyPnKAFR2vUiZqjKeWwiRTBoN6BLoli7SlATdQgiRxnx8zMuVPc3zSZdxNwfOl/zCaJWCa/oHmpOnuJVPJBOpeCkVK8Lw4TBnDkREQJ0m+QDzWLcxffcwdX5dbO3L8REqOPfygl27YO1aI0ePqkDr1OXytOkDDb45w9fToGHHKhnyfoRiNBgZ1O0sgYFq7HOe3DE8fGSN3mBF349qExN9gP6fNEj0/JAQ2LvlJrvXX2LX4SL4BLgDL87HYG0No0bBhAm5WPrNaUZNVw/X1vwW+NJB9z8bzF/fur2ZQOInIYQQmYp0LxdCiDTm62terlzZvFy6vHn+0suXU9YV+epNNXVKXscHOOVPIBuoeCWTJkGB52bOKZznDtv/PMms5U2wtTdnqdXpoHp1GDsWDh+CzcuPU7WUn2n/Ad8qNOpUhT6tDqKP0afTO1AZ7m9evi3d3J/68ct9bNirAm7nPJF4e+t4r8s+AAxGHQPH1WPR1/stzrlx3cicOdC4MeTNCx17F+X7P5s8DbhfrHVr9dBt5kzIlQu69jen2l+9uXASZyZt7TNTBneVoFsIITI9aekWQog09mxLd6VnEgyXqVzQtHzJP/nTn8RExXAjWH1hdyt8B8j7qkUUz8mdG2ZNvED/ESo7dMf6R1n8V2nyFaue5HkarYY2fWvS6i0Da385zMSvC3A+UI0BX7G9Pg2m7+P9LxqladnPn4fFi2HZrxAUXJjGHl5Mm6alfnuPNL1vZua17wKjv6ljWl/2vTfFXGrx8+qG2Ly1l3krG2M0ahnyeUOCg/ag1cKaTfk4diHhjOBajZ7qZc7TvP49atTKgbVN/DaMYh7VqFrd2iKpnkvZItQu58vR85Xw9i/LxVMpnw8+OBj2Ph2WUrq05d8UIYQQmZME3UIIkcZ8Dl0CVAtXpYpG4uYjLexW0DRt2OXA5LdW3bihxWBUXdPd3HOncmlFnH7Dy+Kc6zhGo5F2fWulaFy2Vqel+9C6dB4cy+IZ5kD705kedOkXREHXlE8Tl5Swx2H8vSKERX8U5uDBuK3WAOz19qRBB2hT6zhTv3GkWtPyqXrvzC7scRi937ImOlb1Thj15l7a9VNzs2u0Gub80Qgb6z18+3sTAD79vkmC1ylbVmU6b17jPI1bFyZ3gYpAxQSPTUr39sEcPa+W1yy/xqcpDLrXrwxGr1fDHbp2lUz5QgiRFUj3ciGESENGgxHfK6pFu0T+G+RyMn9D1mg1lHaNAMD/niuxsQleIp6rzyRRK1mxSOoVVsTTrl9N2vdPWcD9LCsbK96b2Ij+bQ8A8CgsN2Pev5DkOQ8ewM8/w5YtEBqa+HGRYZFsXHqMAe0OULiwnoEfPBtwg42NEZeC903rW47VpHqz8nRvcphzRy+/1PvJzMLDISoqfj2NePsUF26WBKBaaT++WVTHYr9Gq2HWssZ8NnhPvHOrlLzIlMl6zp5VPQjmzoVO/cqRu8DLD+no1t+c/X71zgopOjc6IpoZXz8xrXftEPLS5RBCCJF+pKVbCCHS0PULN3kSUQyAyqVvA5ZTBZWumA/vCxATo+X6dShZ8sXX9Pc3L7ulrJFMZJBZ88uxofxDHobl4fdtDRi4NYRmrXPFO+5uQBCNW+TkwmU1DZyVFdSpA83r3KBZgwd41HVl19pzrFlj4N+DlXkSUSveNSpUgCFDoE8fDblzObH8f/uZ/D83rgepf4dr9tZlXV09K+YcoveIlGXszowC/I2M+UTDunVaDIZq5MhhJLfDY/LYB+NoF8nxiw0BcMzxhL9W2VmMx4+j0WqY+ktjirnsY9PWHDSqF07Xvm6U9kz9rOBulVyoViWSU2dycOpsAfz9k/97/OPkQ1y61QSARpW9qFVPkvMJIURWIC3dQgiRhnyO3TItVyoXHm9/6WeSF19OZuPj1avmZQm6s4b8LvmY8elZ0/qwUbmIirI85v6tB7Ro+tAUcIOa0urAAZg824XGnauQp6AT3YfW5c+d9XkSYQ7aHXM8YXCHfRzeeR1fX5UtO18+1dI+aHxDLgbkZ96EvRTMreakNhh1/LDAMU3fc1oLDwnni/f2UL5cDGvWgMGgWrkjIzXcue+E341SHL9o7v7989felKnqmuj1NFoNQ79sxL+HazH22yaU9kz+FH4p1b2XuY7XrEneOcGB95k8ryoAGo2B7+bYylR0QgiRRUjQLYQQacjntDnQrlzFOt7+MuZkxly6lLxr+p8NNC2XdE1mn3SR4QZ/2oC6ddXyhQswa5Z53+OgR7RqcseUFdsl323ee9dg8e/jebkdHtG/7QE2LDlGULA1izY0ok7z4gmO8bW1t2X4V425es2R0oUDADh6vjyhD5Pov56Btm+Hnj3hzR7hzBqzh11/n+TB7QeAGrKx6sdDlCv1kK9+aUJktJpvtkABI1WrPqFyZSPF8gfjYGt+byN67aXPR/Uz5L0kpFs38/Lq1ck758uPfHkcrrq1D2h78LUbmy+EEFmZdC8XQog05HPWxrRcuUb85FmlS+oBNUb7svcNnu9+nhD/i4+AYmg0Boq76JE/5VmDVqvGalevrub2njYN3nwTCuYNpW2T65y8pLKLF85zh907ointqZ6L3wiIYvffx9m1G/yu5MWzfDDde9nTtIsHNnaJzyudEPtc9rSsf43Lq12J1Vuzb6MXbfvVTPX3+rKuXoWPP4b16+O22PMXTUz7S+QPxMkxDG9/c7d4K10Mo/qf4bPZVbl69SKenp7odCrRWHRENDHRMTg4NU6/N5EM7u7g4QHe3nD0KFy/9IjiZXInevzZw5dZsFY9NHCwDWXa3NTv9i6EECLtSEu3EEKkId/L6su/lS6GstVc4+0vU/yeafmS9+1kXfPq7UIAFM17J8HxqSLzqlIFPvxQLUdGwtC+V+jY7BKHzqmAO1+uYHZuCbXo2uziakv/TxqwfEsDjl+swML1jWj1Vg1s7GwSusULNWthnp5u14myL/9mUlHYo1AmDPmPChUMzwTc8V0LKoa3v7nMrWsdx+dIILMW1yBX/CHy2NjZ4OCU/On40lO31tdNy2uXnEn0OKPByMcjH6E3qIdrn713gsIlCyZ6vBBCiMwn0wXdP//8M71796ZKlSrUqFEjo4sjhBAvLSYqhvM3XAEoWzQgwSCpsFsh7GxUF/TLN/K98JpPHjwhOEQdV7LIvRccLTKjSZOgWCHV9XnH4VL856XG6eZ2eMSOjfepULt0Eme/uqbda5i6oO/en0Ckmo6MBiN/zTtI2VJPmLaoKVFR6mtJ4cKwfDl4H77BrzMPMLLXXhpUOmPqMl6q0DU2/nqMzYdrUK5G1kxs0L1rjGl59cY8iR635fcTbD+hvg+VyH+Dj6bWTvOyCSGESF2ZLuiOiYmhdevWvPnmmxldFCGEeCUXTgYQo1eBduUyQQkeo9VpKF1EjdG+eqcYsdFJj9H2P2duDXdzyZzjcUXScuaEOZN9LbfZhbBt7U08G6V9y3PevFBVxfl4eUFwcJrfMkGx0bG813U/b46sz80HhQGw1kUz/qNgLlyAvn2hch0X+n/SgDl/NWa/TxUeP7Hj7rUgLt0s/kpTuWUGFWqXorzLFQAOnavErSt34h0TExXDx585m9ZnfnkDu5x26VZGIYQQqSPTDQQcOXIkAGvXrk32OXq9Hr1en1ZFShVx5cvs5RQpI/WafaVG3Z45fg9QmbAqVYhM9FqlXR7gEwAxehsC/AJwq5T4uO4r5x+Ylt1KRMu/vRTKLL+zHQfWoMOyo2w8VBs7m3A2/HGF6s090q1cTZtqOHVKPXfftUtP9+7pcluTyLBI+rTz4Z8DjUzb2tc5yqwf8lHG0xXQk+BHoQXnonkxGA3w3P7MUrcp0a31daYuLIXRqGXtr+cZOsky78OP3z80zTFev8IZur5bK3O9P73+aUaKp597GpQtK9areDGp1+zrdavb5L7PTBd0v4yLFy9mdBGSzcfHJ6OLINKA1Gv29Sp1u/eUubt43iKxeHl5JXhckYL3Tcv7dnrzOPZ+gscBeJ00t4bldHqc6DVF0jLD7+y4bwzUW/cPFWrak9PFOV3rskSJXMQ9EPpnxTlKl45Ot3uHP4rg05F2HDxXB1Ct2zPGbaZRVxfCePTKn0NmqNvkqlY/Ehaq5VX/OOLR9DBB10MIuOtC4J3cLFlS2HTsyFGBnPHOXLMVaCMieNppAm9vbwx2adcKn5XqVSSf1Gv2JXVrKVsE3e7u7tjb22d0MZKk1+vx8fGhcuXK6HS6F58gsoTXpV6NBiM/TznAqnV56NXlIe9NrI9Wl+lGp6Sq1Kjb2w/Mn1GL7s0TnVO7cpUD8HTaoIjHufD09Ez0mr8+eGJarl7HFU9Pj5cq2+sqs/3O1qn34mPSQplSMYz+OJqYWBtOnnTE07N4utz3tv9d2nV/gneA6kbvYBvK6qV+tOjZ4ZWvndnqNjmqeBgp/WkAl2+7st+3Bo2bJ3xc374Gug1qnb6FS46wMNOih4cHOKR+0rqsWK/ixaRes6/XrW7Dw8OT1QCcLkH37NmzWbhwYZLHbN68mVKlSr3U9XU6XZap1KxUVpF82blenzyBQV1Os3pXEwAOnIV/t53g15XFKeRWIGMLlw5etm43bID//lPLjo5QsqQObSLPKcpWcDItX76sSfJ+ATfMDxjLVCqcbf/dpbXs/DubHLly66hT7gz7fatw6ZYbty7fwqVskTS95yXfB7R6Ixb/uyrgzpcrmC1r7lHjjdSdsixL1a0OurcO4JulrokeUqgQTJ+uJVO+pWcKpdPpSMtCZql6Fckm9Zp9vS51m9z3mC5B96BBg+jSpUuSx7i4vHhuWiFE+vLzg65d4fz5qhbbtx2vgYdnEEvnHaddJprjNzPQx+j5Yuh+vl7cxLStSxcSDbgBSlc2T/9zOSDp7pn+N1WWY1vrSAq5Zv+HHiLtNGvwkP1P87ntWn+VAWPTLui+eBEaNMtDUFBeQM23vX1rDO7VKqTZPbOKjydX4sDxM9y464xbkSDcioVRskJ+3KqUpWRJNZ93GjQgCyGESEfpEnTnzZuXvHnzpsethBCpZNUqGDTI3HvQKWcU4wcfZs6v5bnzqCBBIflp3z8/H/y7l1mLa0lGXSA48D5vdrrGzlNNTNt69IAff0z6vCIlC2JnE05EtD2XbzgnepzRCP731ANK1wK30OpKpkaxxWuqeZs8TJ6vlnf/BwPGps19jEZ45x0IClKZxiuVvs22rVYUKVUsbW6YxeR3ycd+n7j8D/KZCCFEdpTpBmXeunULPz8/bt26hV6vx8/PDz8/P8KeGTckhEg7MVExjB7sTa9e5oC7cmU4ccqW8d81wdtbR/u6x0zH//h3Y2pWCsTv2JUMKnHmcGzHOapVjWTnqWoA6LSxfPvpUVauVFNEJUWr01Kq8E0Art51QR9rTPC4e/cgPDIHACUru6Za2cXrqXaL8tjbql/yXcdKYTQk/O/uVS1bBvv3q+VSpWDfscIUKVUoTe4lhBBCZEaZLuieO3cunTt3Zt68eYSHh9O5c2c6d+6Mr6/vi08WQrw0g97A3z8fxqP0df63xJycq08fOHIESpdW6/ld8rHhQE1+/GIvOawjADh7vQzNWufE/3JURhQ9w62Zf5iGbUtxI7goAAWcgti12pePv66NJpnTCJf2VFnWomNsuBGY8ElXr5qX3Upmuj/fIouxsbOhUZVzANx6UJgLJ/1T/R73bz/ik08MpvUff4Q8eVL9NkIIIUSmlum+tX3zzTdcuHAh3qt27doZXTQhsqS1a8HODooXh1GjVIvTs1MKGg1GNi8/To2yF+g5rC7nA1VCQ2tdND9+95Dly+H5yQE0Wg3DJjfmxN6bVCpxCYA7DwvQqq0tQUHp9MYyifCQcN4b6050rC0A9Sp4c+pELI27eKboOmXczaN9Ll1K+Bj/Z2KixDKhC5ESzRqae5Ht+jcw1a8//n1vgoPVV42ePY20apXqtxBCCCEyvUwXdAshUk/I/RDef+cJkZFw4wbMmQONGkGxwhEM676P3787SIPKPrTrX5PTV8qbzqtf0ZuDWy4zbFSeJFtqK9YtzZ5DzpQrEwmoYLFdOwgNTet3lnks++4E95+ocdjt6hzjvxPlKFq68AvOii+uJwHA5csJH/Ns0F1ShnOLVNC8nTmJ3+49Nql67UObfFi0oREAOe1C+O7r4FS9vhBCCJFVSNAtRDY2Y9wpgh7GH1B8J8iOn9c0ou/H9Tl0ztyVvFppPzb/dpz93pWp2SJ5WYWdi+Rl284cFFU9qzl+HLp1g+iotBkfmpnoY/R894t55oWvpufCxu7lApcyZczLibV0Xz1+3LTsVvj+S91HiGd5NipLXscHAPx3siz6GP0LzkiemKgY3h9ua1qf+tFpipTKnyrXFkIIIbIaCbqFyKYCL93mf8vVsAxrXTSnDgTy22/QuZPeNBY7TnmXK6z++TAnLpSjTZ+aaLTJHIj8VPHisHUr5M6t1rdvh0EdD2HQG5I8L6vbuOwEl26pft7Nqp6iapNyL32t0q7mOjmz72yCx/hfM3dBdyuVLpNPiGxOq9PStPoFAB6G5cHrZHiqXHfuxIP4BLgD6mHesC8bpMp1hRBCiKxIgm4hsqkvPrpMZIyaxmt4r0NUrV+MPn1g3T86gu7qWfnDIcb238OK7w/ic8WVbu/XTXGw/axKlWDDBshhGwPAiu31GTtgX6q8l8xq9i/m5ukxH79aC2GxEjlwLXADgH1e7jy4/TDeMf631LRCeRwekruA0yvdT4g4zbpVMy3v2veCVPvPOHhQZSY/fRqio83bb1y4xZdzawCg0RiY/5MRKxtdqpVXCCGEyGok6BYiG/I5eJFfN9cHwMn+MZ/P8rDY75jHkZ4f1GPGr01468P66KxT5wtxw4bw14+n0GpUAPrt702Y8fGeVLl2ZnPkCBw8nheACu6htH6rxitdT6PV0LWFmnYtVm/NvyssW7tjomK4HlQEALfCd17pXkI8q3lLczfw3buTd86xYyo/xIABUK0aODpC9apRDOm0j7e7BxEW5QjA0G77kz1URQghhMiuJOgWIhsa+/FjjEb16/350NM4F8mbbvfuNLg2C6YeMq2P/64J8ybsTbf7p5dvvzUvjxnv+Eq9BOJ07W2up7XrrS323bh4G4NRPRxxK/r4le8lRBx3d0w5Gfbvt2y1TswfP5/F8MzokZgYOOVly6INjdjvWwWAgrnvMe1Hz9QvsBBCCJHFSNAtRDazc9Upth6rCUDx/IGMmFwn3cvwzmcNmT5qj2l95LTGLPp6f7qXI61cuaKmYgMoVAjeeit1rlu3TSUK5b4LwLajHoQ+NKeBv+pnzvxcskRk6txQCECjgebN1XJ4OBzZ9+KHOpu3q3kEddpY3n4zhgoVQKu1zOHw/ZTLMgxCCCGEQIJuIbIVg97AJ5+aJ9We9uk1cjjkyJCyjP+uCROG7DGtvzuhPiu+O5ghZUlt3085b2rlGzECbG2TPj65tDotnZuppFaRMXZs/cvHtM//kjkAdyspf7pF6mpWK8C0vPPv00kee+l0gCmBYINKvvz+hzVnz0LIgwgObfLhp0n72LTsOL1H1EvLIgshhBBZhnxzEyIbWTHnEF5XVQbtqqX8eGtk3Qwtz5T5jfn47T0AGI1a+o+pzZr5hzO0TK/qwe2HLFmppgmzzxHJ+++l7tRoXXs4mJbXrjW3HPpfNS+XLGOPEKmpRWvzw7nVW1wwGhL/d73572um5bZvPDItOzg5ULdtZYZ+2Yi2/WqmSTmFEEKIrEiC7mwg4kkEx3ecIyYqJqOLIjJQZCR8/m1V0/qs6RFodRn7K67Rapi9vDFDu6ks5nqDFW+OqM6mDckYNJpJzf/mDOFRKjAe3OkoeZ1ffSz3s5p08SC3wyMA/j1YmajwKACuBpjn/3Yr55yq9xSiSKlCNKh0BgC/G6XwPZzIZPHA5h3mB0PtuhdL87IJIYQQWZ0E3VlYdEQ0P365l5LFQ6jVsgL1Kl/i0T1JsPS6+v57uHFLfRlu3fgmzXtUS/qEdKLRavhhZQMGtFNjumNibejW04bly8GYuo3EKXb++FXqlvehebVT/PDFPm5dSToreFR4FHOXq0zMWo2eUZ+7pXqZrG2t6djIF4AnEbnYtdobAP+buQA1BVOJckVS/b5C9O7yyLS88tdbCR4T9iiUPV6VAZUzokLtUulRNCGEECJLk6A7C4qNhaU/3sS9xD2GT2nMnUcFAThxqQJtGl/nyYMnGVxCkd5u3oSpU9WyVgsz5xXN2AI9R6vTsmhdPXp1jwAgKgr694d27eB6QGyGlWvk0IccOV+Z3aerMeKrRhQtXYj69eF//4OAAHhwN5xDW3xY8d1Bpo7YQ8+WXtx9VACAbk2OUbJy8TQpV7fu5szlazeoAeNXg9Sc4EULPMbWPpUGkQvxjO6Dypum+/vrX7cEu5jvXneW6Fj1769tw6upkrVfCCGEyO6sMroAIvkMBvj7b/jyS7hwwTKosrcNIzzKgSPnK9Ox2Wk27SuLfS4Z9/m6+OQTCAtTy++9B5UrZ2x5EqKz1vHbH3bY2sPy5Wrbli1QsXwkM8ef4r0JDdK1O/xlr2vsOFk93vZDh9Rr9Ggd0DDR80ePy5lmZWvRwwOHETGEhVuzfq8Hsx9B8AMV6Li550mz+4rXW0HXAjT1PMmu09W5cqcEJ//zo0bz8hbHbNoYZVpu2z5jkjQKIYQQWY20dGcBkWGRLJzlS4UK0Ls3XLhg3teq5gmO7/Tj0I5A8jg8BGDPmap0feOcaSyoyN72rT/Dn3+qZWdnc4t3ZmRtDcuWwfr1ULiw2hYa6ciwSY1oWtWbS6cD0q0sC7/3Ny2P6LWXL97fT8WKyevvPrjDfmq3qpRWRcMupx1t26nW7uBg+O038z631O/RLoRJr25hpuWVy+5a7DMajGzer7qT21pH0qxrxXQtmxBCCJFVSdCdid2/9YCpI/ZQougT3h1bySLYbtgQ9u01svVYDWo0L0+VhmXZtu42Oe1CANh2vAa9WnkRE6XPoNKL9BAbHcuIj8ytTdM+u07evBlYoGTq2BHO+ep5p+M+07Z9Pp541C7Ijr9Opvn9o8KjWLJOBc3WumgmzKzA5J8b4uurwc9PPbho0sRIo7qBDOu+l9mf7GHNgqOc3nuBR/ces2hD4i3gqaVrV/Pyd9+Zl0uWTPNbi9dY14GVsNKppJwrt5TBoDdnzT975BI3glUvqyaevjg4OSR4DSGEEEJYku7lGSg8HBYtgqCrlyE80GLfnbta/thWnfCoJhbbGzeGTz+Fli1Bo7EcS1ezRQU2r/SmVY9ShEc5sP5Abfr0gz/+AJ0urd+NyAjzvzqIt39jAKqV9uOdEe4ZXKLky51Xx8L1jej99ymGjMiH/93iRMbY8dZ7JThT8w5FShVKs3uvW3yS4BA1h3C3JicoUNw8n3C5cvD55zB+vAEvr7t4ejZAlwG/QG3bgo0NREeDv7lRXlq6RZpyLpKXFtWPs+VYTW4EF+XIVh/qtVPjVTbtNifwa9sqMqOKKIQQQmQ5EnRnoNGjYf58gNJPXwnTavR0b3qUMeNzU7NFhSSv2aCDBxt+O0W7Ph5ERVuxahU4OqrgXiP5brKVoBvBTPyuimn9hzmx6Kyz3tOV5j2q4dMyjB4t1Rf94JB89O1xiu1H86fZ+5m/yJzv4L1hmTP3Qa5c0KLJIzZtz22x3S2PL5B2XduF6N0jki3H1PJf/zhTr51a3rzD0XRM2/4NMqBkQgghRNYk3cszyM2bsHhx0sfY24YxotdeLnvfYuWuei8MuOM071GNteussH6aAHnJEtVyJ7KXz4af41FYbgD6tz1A3baZMHtaMjk4ObB8TUmK5L0NwO7T1ZgxZn+a3Mvv2FX2ensCULboVRp3rpL0CRmoa1OfeNtKlpc5ukXa6jSwGjY2Kr/B3/8WQa+HR4/g4EG1390dSif+nFgIIYQQz5GW7gzy/fcQo4bN8U6/x/Rqd8Viv06nwbOBG3kKNn6p67dtCytWQK9eai7k6dOhkO4AI7/KXK0ToaEqg3VEhOo2W7KkSrCllcdBSTqx8xyLN6q6zGkXwjc/ZJ1u5YnJV8yZPxZ50axbAQxGHV/80IAmLc1dW5PDYICdO1UrcZ06CR/zywoX0/J7fa6j0WbeQdId+1RA+5keg1G1+NtaR1LYrWAGl0pkd07ODrRtC//8A3fuwL59KqGf/mmKkLZtM7R4QgghRJYjQXcGeBT0hAULHAAttrYwdaYTBQtWS/X79OgBQUHwwQdqfdS0ehQocIjeI+olfWIaMxqMHNtxlkU/PeCvnbUIDbecdsbWJoYS+QMpWTSYdi3DGTapYbpOJZXZGfQGho8wYDSqz2TyyFMUcmuSoWVKLY27eDLh3T1MWdAEvcGKN98pgtc5yJOMWbJu34YBA2D7drU+dy6MGGF5TEQE/LpcdQGxtYX+Y9I+IdqryFfMmcZVTvGfl/r7UCLfNbS6shlcKvE66NVLBd0AK1dC5P0AwBWQoFsIIYRIKYlkMsDP007y5In66Af2DaNgGjZcDRsGE9/dA4DRqKXfRzXYuepU2t0wCfdvPWDOZ3vxKHmZOq0rsWhDo3gBN0BUtDUXb7qx9VhNRkxtTPt6J3lw+2EGlDjzCX0YyuBOBzl6Xo3prVD8MsMn18/gUqWuiXMb0LCyNwDX7zjzzjuqt0ZS/l12DI9KUaaAG2DkSFg0y9viuL//Vt1kAXr2hLz5Mv8Y+K5t7piWS+a/moElEa+TDh3A/mm6g9V/x7Blh1pxyBFGo4aGJM4UQgghxPMk6E5nEU8imLNMjc3WavSMGR6c5vec/HNjhnRSUzPF6G3o0r8MJ3f7pfl9n7V3nRclS+sYNb0xvtfKmLbntAvh3b63+O47FSR16ACV3AKwtzXPFbvlWE2qe4Zyes/5dC1zZnPiBFSrlYNfN5lbZ+fODsHa1joDS5X6rGysWPFvJVPr9tq1sGBBwsdGPInggx576TCgFsEPbAGVODDOu+MqseK7g6Z1lbhQef/91C552ug6uJrp96FOfbsMLo14XTg4QPsmAQDcf2DNvccFAHijhi+2OeSrgxBCCJES8j9nOls+5yR3H6kvL92bHqVUlRJpfk+NVsNPq+rRqcFRAEIjc9K2az5W/nCIoBtpH/Sf2X+Bjm+7ERLhZNpWv6I3S2fs5/YtLQuWF2HUKJgzBzZsAJ+rroSG27Nj5Sny5VLlC7jnQr2WJVg6I22Sa2Vmej188w3UrQuXLqsRIY45nvDb/w7SvEfqD0vIDFyKa1m61Lw+YoSB6mX86NH0MGP772H+lH2s/vkwNSrd5KfV5rwHHZtc4OpVGD3wNKB6d/QfU5s18w/jfeAShw+r4ypXNlK3bnq+o5dXpFQh/tsQwMJp+/nkm1oZXRzxGund+U68bW1bRWVASYQQQoisTcZ0pyN9rJ7/zXc1rY+bkIyBqqnEysaKPzd70LLeGQ74VuHe4/z0HpEfRkAVtws0e8OG5p3caNQIcuZMvfsGnA2kdcfcpoC7RfWTzPkpN+VreSR5nkar4Y2e1ThV5RbdO53l2IWKRMbYMWh8Q44c2cfcFbWxtbdNvYJmUoGXbtP3HWf27LMxbatVC1Ys1VO6QvbqVv68Tp1g+HD44QeIjdVy6nJ5Tl1O+Fg7m3D+9/kJ3pvQEI0WZi3yJDxkHz+vaaTGhg+vTs2y5p4S73U7hkZTO53eyaur1bIitVpmdCnE66bNm1XI+WEITyJymbf1kLTlQgghREpJS3c6Orr5FlfuqJbtFtVPUq1p+XS9v11OOzbsLEG10pZdy8/4l+W7hW60bw8FCqjM6i8aQ5scQTeCadUqhjuP1KD12uV8WberHOVrlUr2NVzKFmHfqdIM7bbPtO2XfxrRso4fsdH6Vy9kJrZm/mE8quYwBdwajZr67cABKF0hd8YWLp3MmgUffQQlijxCq0m4vqu4XeDk/tu8/0UjNFo1Gb1Gq+GHlQ0Y0O4AoIZVHDqnHvTY24bRZ1i59HkDQmRhORzt6NzguGndo/gZXMoWycASCSGEEFmTBN3pxGgwsuR381jmceM0GVKOPAVzc8S3NFt+P8En/fZQrbQfGo05KU5kpApy3n83hpiomJe+T2gotOuam4s33QAoV+wKm3YVwcHJIcXXsrW35afVjfh15gFyWEcAsM/Hk79WZf4kWC8j7FEoQzrto/vQujwMU70hihUK5b//YOpUTPOvvw5y5ID//Q8CbuYmMsLAZa9r7Fh5il+m7uPTQXtY8NU+jvq6JvggR6vTsmhdXXo1P2Sx/c2Wp3DK7xTveCFEfG/1N/+udGgpCS2FEEKIlyHdy9PJztWn8bpaE2GWTk4AAQAASURBVIDqZc7RrFvVDCuLta01rd+uQeu31fqDe2HsOeDAhg2wbJna9ssia66cOsXfm0uRp2DKApToaOjeHY6fUP+8ihZ4yLYdtjgXyftK5e7/SQMKl39Eqw4qmdTUqfDmm6DLRrH3yd1+vNXPlos3G5m29Wh6mAV/lifPaz49s7WtNaWqlEhRHgSdtY7fNtUk8o2jrD9QG502lg8+zp+GpRQie2n1ZnWmHt2Df4COT77OuP+3hBBCiKxMWrrTyexZ5o963EePTd1gM4O8BRzo2hV+/RV+/x1srGMB2HWqGvVqBHPlzLVkX8tohMGDYds2tZ47N2zdlYfi5YqlSllbts9No6fx6IULav7Y7MCgNzBz9B7qtizFxZslAXCwDWXJN/tZubMOeQrmztDyZWXWttas2l6VX2ceYMcqH6o2ka7lQiSXRqvh87lNWLShofQQEUIIIV6SBN3p4ORuP3adrg5A6cIBdH0n82Ygfvtt2L32HPlzBQFwPrAUtRs6sm/9mWSd/9OMy/z+u1rOkUNlI69UKXXL+OWX5uWvvjKij035nLGBl26z9pcj+B66hNGQCgPYX9L9uxEsnbGfRlV8Gfe/JsTo1fjtGmXOcfpwMAPHNcxUD2iyKhs7G/p/0oCmGdjDRAghhBBCvJ6ke3k6+O9ESdPy6KHX0Fm7ZlxhkqF+ew+OHrxO+3aXOXe9NPefOPNGt5ysXXyM9v0Tf2Bw1ec6YycVNq3/8Qc0bJjo4S+taVNo0MDIgQMazp/X8PfPh+k9ol6yzr0bEMT0z87x8991iI5VZXUv6k+3twrSrZc91aqphGWvIjIskkXfHMXbR0OxogbcSlnhViYXbuXzU9itIPeCtKxbB2vWwJ49OdDrzR+SRmNg/MB9TP6pfrabf1sIIYQQQojXkQTd6aB9R1uW/WakYMEH9BuVeVu5n+VWqTiHTjymV7sTbDtegxi9DW8NLcfR8lcSTFpl0BsY1OcB4VHFARjabS9dujSOd1xq0Gjgyw/P0uKAakL/anYBeg4zoNUl3nHj4d1HzPrMizkrahIeZVmuizfdmD4Lps8CV1c1Hn34cCiRwinUjQYj/y47zkefFeTKnYTfu611JNGxthiNcZG9OcIvWegai398SJOuTVJ2YyGEEEIIIUSmJd3L00G5cuDlZWDGjABs7W1efEIm4ZTfiX8PeNKj6WEAnkTkolMXLQ/vPop37E+T9rPX2xMA1wI3mLmwWpqWrXnXitSr4A3AueulWT3/SILHhT0OY+qIPbiV1DB9SRPCo1T2dDubcN7rso9Glb0ssrcHBMDs2VCubDSThu4hPCQ8WeW5cCaYtnVP0HFQLdO0cAmJisnxTMANbm4wZvhdDm/x5VKgC026eibrfkIIIYQQQoisQVq6RZKsbKz49Z8qXKp6Hq+r5bh0y423Oh7n3wPV0FmrtOFXzlxj3KwapnOW/BSEYx6XNC2XRqvhywkxtHpLrU+ZmZ/u71u2dp88GsabXe9x6VYT0zYbqyje63aEz6aXp5Cbysh2946Rf9bD6tXw33+g10NklA2T5zdh6ZpAZk8+Q/f36iQ4tjo4GObMKcqffxYgNtacXrxJldNM+NxIaEgM/pcj8fc34n/Djqu3CmKd25V27aBbN/D0BI2mIPCapyYXQgghhBAim5KgW7yQfS57/vnXkRp1ggkOycfWYzX5bHw4M761V93K+z4kPEq17g7rvpem3dKmW/nzWvSqRp0pPhw5X5mz18uw9pfDdB9aF4NBtVZPmOBATIyaJ1ynjaV/28N8MdONEuUty1ewkIb33oP33lNB9DdjTzNneSVi9dZcDypGz2HFaLLgNNOmWfH4YSSnjoVx2tuWU9dq4R+gAwqZruWS7ybfTrmeaJAuhBBCCCGEeL1I0C2SpUT5Yvy91Is3euZBr9cx83/2eNaAIN/97PNRQaxbwevM+KV6upVJtXZH0aaPWp8y05k67Q30H6Bl927zcTXKXWX5MiPla704q1u+fDB7SVXeGXqVD4c9YPsJ1YK/50xV6rdP/LwcOYyM/QTGjcmLfa6ir/K2hBBCCCGEENmIjOkWydakqydz5uhM64MGGRg/u6ZpfclPD3DM45iuZWr1ZnVqlfUFwCfAHfcyMaaAW6OBTz+FQ94lE0z+lpRyNUuy9Wh11i8+SslCCc9T7mAXTb16Rt566y6+vgYmT9Fgn8vuld6PEEIIIYQQInuRlm6RIsOGwenTsHgxREZqAXsAhvfcS5Ou6dOt/FkarYYvP4ugXX+1HhFlC0DRovD779Ckyatdu+Og2rTsFcmPk/dw6GgO3IpHUq2GNdXqFaaMZwnQGvDyCsTVNd+rvxkhhBBCCCFEtpOpgu7AwEB++uknjhw5QnBwMAUKFKBjx468//772Nhknazf2ZlGAz/+COfOwWGV1JySha7xzS81kj4xDbXpU4Oa085y/GJFALq9cZZfVlYkb97UuX4OhxyMntmE0Qns0+v1qXMTIYQQQgghRLaUqYLuq1evYjQamTJlCiVKlODixYtMnDiRiIgIxo0bl9HFE0/Z2sKa1UZaNbjKreDcrFj6BAenFE5qnYo0Wg1/rc7JzC/30aixjjdH1EMjAyeEEEIIIYQQmUCmCrobNWpEo0aNTOsuLi74+/vz559/Jhl06/X6TN/iGFe+zF7O5CpQEE5dKPE0Q3fuDH9fJSoU5ce/VQIzg9EA6VSc7FavwkzqNnuSes2+pG4zgF6PzrSoV3NupvotpF6zI6nX7Ot1q9vkvk+N0Wg0pnFZXsl3333H/v37Wbt2bbx94eHh+Pn5ZUCphBBCCCFeb9qICKo2VDODnN6/H4OdJBMVQryeypcvj729faL7M1VL9/OuXbvG77///sKu5e7u7km+ycxAr9fj4+ND5cqV0el0Lz5BZAlSr9mX1G32JPWafUndZoCwMNOih4cHODik+i2kXrMnqdfs63Wr2/DwcC5evPjC49Il6J49ezYLFy5M8pjNmzdTqpR5Wqe7d+/yzjvv0Lp1a3r27JnkuTqdLstUalYqq0g+qdfsS+o2e5J6zb6kbtPRM5+zTqezWE/9W0m9ZkdSr9nX61K3yX2P6RJ0Dxo0iC5duiR5jIuLi2n57t279OvXj6pVq/LVV18leo7BYAAgIiIidQqahuL6+4eHh78W/wBfF1Kv2ZfUbfYk9Zp9Sd1mgMhIKFvWvKzRpPotpF6zJ6nX7Ot1q9u4ODQuLk1MphvTHRdwV6xYkVmzZiVZWffv3ycgICD9CieEEEIIIYQQQjzD1dUVZ2fnRPdnqqD77t279O3blyJFijBjxgy0WvO8T/nz5493fGxsLI8fP8bW1tbiWCGEEEIIIYQQIi0ZDAaioqJwcnLCyirxTuSZKuheu3Ytn376aYL7Lly4kM6lEUIIIYQQQgghXk2mCrqFEEIIIYQQQojsRPpkCyGEEEIIIYQQaUSCbiGEEEIIIYQQIo1I0C2EEEIIIYQQQqQRCbrTwYoVK2jWrBmVK1emR48eeHt7Z3SRRAotWLCAbt26UbVqVerWrcuwYcO4evWqxTFRUVFMnjyZ2rVrU7VqVUaMGEFwcHAGlVi8jF9++YWyZcsybdo00zap16zp7t27jBkzhtq1a+Ph4UGHDh3w8fEx7TcajcyZM4cGDRrg4eHBgAEDZArKLECv1/P999/TrFkzPDw8eOONN/jxxx95Nj2N1G3md/z4cd5//30aNGhA2bJl2blzp8X+5NTho0ePGD16NNWqVaNGjRp89tlnhIWFpeO7EAlJqm5jYmKYNWsWHTp0wNPTkwYNGjB27Fju3r1rcQ2p28znRb+zz/riiy8oW7Ysv/76q8X2171eJehOY5s3b2b69Ol88MEHrFu3jnLlyjF48GDu37+f0UUTKXDs2DHefvttVq1axdKlS4mNjWXw4MGEh4ebjvn666/577//+P777/ntt9+4d+8ew4cPz8BSi5Tw9vbmr7/+omzZshbbpV6znsePH/Pmm29ibW3NwoUL2bRpE+PGjcPJycl0zMKFC/ntt9+YNGkSq1atws7OjsGDBxMVFZWBJRcvsnDhQv7880+++OILNm/ezJgxY1i0aBG//fabxTFSt5lbeHg4ZcuW5csvv0xwf3LqcMyYMVy+fJmlS5cyf/58Tpw4wRdffJFeb0EkIqm6jYyM5Ny5cwwdOpS1a9fyww8/4O/vz9ChQy2Ok7rNfF70Oxtnx44dnDlzhgIFCsTb99rXq1Gkqe7duxsnT55sWtfr9cYGDRoYFyxYkIGlEq/q/v37Rnd3d+OxY8eMRqPRGBISYqxYsaJxy5YtpmMuX75sdHd3N54+fTqDSimSKzQ01NiyZUvjwYMHjX369DFOnTrVaDRKvWZVs2bNMr755puJ7jcYDMb69esbFy1aZNoWEhJirFSpkvHff/9NjyKKl/Tuu+8aP/30U4ttw4cPN44ePdpoNErdZkXu7u7GHTt2mNaTU4dxf4e9vb1Nx+zdu9dYtmxZ4507d9Kv8CJJz9dtQs6cOWN0d3c33rx502g0St1mBYnV6507d4wNGzY0Xrx40di0aVPj0qVLTfukXo1GaelOQ9HR0Zw9e5Z69eqZtmm1WurVq8fp06czsGTiVT158gTA1HLm6+tLTEyMRV2XKlWKIkWK4OXllRFFFCkwZcoUGjdubFF/IPWaVe3evZtKlSoxcuRI6tatS+fOnVm1apVpf2BgIEFBQRb1mjNnTqpUqSJ/mzO5qlWrcuTIEfz9/QE4f/48J0+epFGjRoDUbXaQnDo8ffo0uXLlonLlyqZj6tWrh1arlSF8WUxoaCgajYZcuXIBUrdZlcFg4JNPPmHw4MGUKVMm3n6pV7DK6AJkZw8fPkSv1+Ps7Gyx3dnZOd54YJF1GAwGvv76a6pVq4a7uzsAwcHBWFtbm/7TiOPs7ExQUFBGFFMk06ZNmzh37hyrV6+Ot0/qNWu6ceMGf/75JwMHDuT999/Hx8eHqVOnYm1tTZcuXUx1l9DfZhmvn7m9++67hIaG0qZNG3Q6HXq9no8++oiOHTsCSN1mA8mpw+DgYPLmzWux38rKCicnJ/nbnIVERUUxe/Zs2rVrh6OjIyB1m1UtXLgQKysr+vXrl+B+qVcJuoVIscmTJ3Pp0iX++OOPjC6KeEW3b99m2rRpLFmyBFtb24wujkglRqORSpUq8fHHHwNQoUIFLl26xF9//UWXLl0yuHTiVWzZsoWNGzfy7bffUrp0afz8/Jg+fToFChSQuhUiC4mJieHDDz/EaDQyefLkjC6OeAW+vr4sX76ctWvXotFoMro4mZZ0L09DefLkQafTxUuadv/+ffLly5dBpRKvYsqUKezZs4dly5ZRqFAh0/Z8+fIRExNDSEiIxfH3798nf/786V1MkUxnz57l/v37dO3alQoVKlChQgWOHTvGb7/9RoUKFaRes6j8+fNTqlQpi20lS5bk1q1bpv2A/G3OgmbOnMm7775Lu3btKFu2LJ07d6Z///4sWLAAkLrNDpJTh/ny5ePBgwcW+2NjY3n8+LH8bc4CYmJiGDVqFLdu3WLJkiWmVm6Qus2KTpw4wf3792natKnpu9TNmzeZMWMGzZo1A6ReQYLuNGVjY0PFihU5fPiwaZvBYODw4cNUrVo1A0smUspoNDJlyhR27NjBsmXLcHFxsdhfqVIlrK2tLer66tWr3Lp1C09Pz3QurUiuOnXqsHHjRv755x/Tq1KlSnTo0MG0LPWa9VSrVs005jdOQEAARYsWBaBYsWLkz5/fol5DQ0M5c+aM/G3O5CIjI+O1pOh0OtOUYVK3WV9y6rBq1aqEhITg6+trOubIkSMYDAY8PDzSvcwi+eIC7mvXrvHrr7+SJ08ei/1St1lPp06d2LBhg8V3qQIFCjB48GAWLVoESL2CdC9PcwMHDmTcuHFUqlQJDw8Pli1bRkREBF27ds3oookUmDx5Mv/++y8//fQTDg4OpvEnOXPmJEeOHOTMmZNu3brxzTff4OTkhKOjI1OnTqVq1aoSnGVijo6OpnH5cezt7cmdO7dpu9Rr1tO/f3/efPNN5s+fT5s2bfD29mbVqlVMmTIFAI1GQ79+/fj5558pUaIExYoVY86cORQoUIA33ngjg0svktK0aVPmz59PkSJFTN3Lly5dSrdu3QCp26wiLCyM69evm9YDAwPx8/PDycmJIkWKvLAOS5UqRcOGDZk4cSKTJ08mJiaGr776inbt2lGwYMGMeluCpOs2f/78jBw5knPnzrFgwQL0er3p+5STkxM2NjZSt5nUi35nn394Ym1tTb58+ShZsiQgv7MAGmPc42GRZn7//XcWL15MUFAQ5cuXZ8KECVSpUiWjiyVS4Pm5m+NMnz7d9AAlKiqKb775hk2bNhEdHU2DBg348ssvX5tuM9lF3759KVeuHJ9//jkg9ZpV/ffff/zvf/8jICCAYsWKMXDgQHr27GnabzQamTt3LqtWrSIkJITq1avz5Zdf4ubmloGlFi8SGhrKnDlz2LlzJ/fv36dAgQK0a9eODz74ABsbG0DqNis4evRoggmXunTpwjfffJOsOnz06BFfffUVu3fvRqvV0rJlSyZMmICDg0N6vhXxnKTqdvjw4TRv3jzB85YvX07t2rUBqdvM6EW/s89r1qwZ/fr1Y8CAAaZtr3u9StAthBBCCCGEEEKkERnTLYQQQgghhBBCpBEJuoUQQgghhBBCiDQiQbcQQgghhBBCCJFGJOgWQgghhBBCCCHSiATdQgghhBBCCCFEGpGgWwghhBBCCCGESCMSdAshhBBCCCGEEGlEgm4hhBBCCCGEECKNSNAthBBCCCGEEEKkEQm6hRBCCCGEEEKINCJBtxBCCCGEEEIIkUYk6BZCCCGEEEIIIdKIBN1CCCGEEEIIIUQakaBbCCGEEEIIIYRIIxJ0CyGEEEIIIYQQaUSCbiGEEEIIIYQQIo1I0C2EEEIIIYQQQqQRCbqFEEKI19DRo0cpW7YsR48ezeiiCCGEENmaVUYXQAghhMhs1q5dy6effpro/pUrV+Lp6Zl+BcoCbt++zZo1a9izZw/Xrl1Dq9Xi7u7O0KFDqVevXrzjfX19mTdvHr6+voSHh1OsWDF69OjB22+/jU6nA+Dhw4esWbOG//77jytXrhAbG0vJkiUZMGAAbdu2jXfN6Oho5syZw/r16wkJCaFs2bKMGjWK+vXrp/n7F0IIIRIjQbcQQgiRiJEjR1KsWLF424sXL54Bpcncdu3axcKFC3njjTfo0qULsbGxrF+/noEDB/L111/TrVs307G+vr707t0bV1dXhgwZQo4cOdi3bx/Tpk3j+vXrTJgwAQAvLy++//57GjVqxNChQ7GysmLbtm189NFHXL58mZEjR1qUYfz48Wzbto1+/frh6urKunXrePfdd1m2bBk1atRI189DCCGEiKMxGo3GjC6EEEIIkZnEtXSvXr2aypUrZ3Rx0sTRo0fp168fy5cvp3bt2q98vUuXLuHs7EzevHlN26Kjo+nUqRPh4eHs3bvXtH3ixImsW7eOAwcOkDt3btP2Pn364Ofnx8mTJwG4ceMGWq2WokWLmo4xGo0MGDCAU6dOcfToUezt7QHw9vamR48ejB07lsGDBwMQFRVF+/btcXZ25q+//nrl9yiEEEK8DBnTLYQQQrykuXPnUq5cOQ4fPmyxfeLEiVSqVInz588D5m7PXbt2pXr16nh6evLWW29x5MgRi/MCAwMpW7YsixcvZsWKFTRv3pwqVaowaNAgbt++jdFo5Mcff6RRo0Z4eHgwdOhQHj16ZHGNZs2a8d5773HgwAE6depE5cqVadu2Ldu3b0/Wezpz5gyDBw+mevXqVKlShT59+piC4KSUKVPGIuAGsLGxoXHjxty5c4fQ0FDT9tDQUGxtbcmVK5fF8fnz5ydHjhymdRcXF4uAG0Cj0fDGG28QHR3NjRs3TNu3bt2KTqejV69epm22trZ0796d06dPc/v27WS9fyGEECK1SdAthBBCJCI0NJQHDx5YvB4+fGjaP3ToUMqXL8/nn39uCir379/PqlWrGDZsGOXKlTNd5++//6ZWrVqMGTOG4cOH8+DBA9555x38/Pzi3Xfjxo388ccf9O3bl4EDB3Ls2DFGjRrF999/z/79+xkyZAg9e/bkv//+Y8aMGfHODwgI4KOPPqJRo0aMHj0anU7Hhx9+yMGDB5N8v4cPH+btt98mLCyM4cOH89FHHxESEkL//v3x9vZ+qc8wKCgIOzs77OzsTNtq1apFaGgoX3zxBVeuXOHmzZv8+eef7Nixg3ffffeF1wwODgYgT548pm1+fn64urri6OhocayHh4dpvxBCCJERZEy3EEIIkYgBAwbE22ZjY4OPjw8A1tbWzJgxg65du/LNN98wduxYPv/8cypVqmQRPDo5ObF7925sbGxM23r27EmbNm347bff+Prrry3ucffuXbZv307OnDkBMBgMLFiwgMjISNasWYOVlfrv++HDh2zcuJHJkydbXDsgIIB58+bRsmVLALp3707r1q2ZPXt2oknFjEYjkyZNonbt2ixatAiNRgNA7969adeuHd9//z1LlixJ0ed37do1duzYQevWrU3J0eLe++XLl1m5ciV///03ADqdjokTJ/Lmm28mec1Hjx7x999/U6NGDQoUKGDaHhQURP78+eMdH7ft3r17KSq7EEIIkVok6BZCCCES8cUXX+Dm5maxTau17CTm7u7OyJEj+fbbb7lw4QIPHz5kyZIlpsAYVEAZF3QaDAZCQkIwGAxUqlSJc+fOxbtv69atTQE3mFtrO3bsaHFdDw8P/v33X+7evYuLi4tpe4ECBWjRooVp3dHRkc6dO7Nw4cJEg1M/Pz8CAgIYOnSoRWs+QN26dVm/fj0GgyHe+09MREQEH374ITly5GD06NEW+3Q6HS4uLjRo0IDWrVtjY2PDpk2bmDp1Kvnz5+eNN95I8JoGg4ExY8YQEhLCxIkTLfZFRkZaPHiIY2tra9ovhBBCZAQJuoUQQohEeHh4JCuR2uDBg9m0aRPe3t58/PHHlC5dOt4x69atY8mSJfj7+xMTE2PanlB29MKFC1usxwXgiW1//PixRdBdokQJU0t1HFdXVwBu3ryZYNAdEBAAwLhx4xJ7mzx58gQnJ6dE98fR6/WmDOMLFy6kYMGCFvt/+eUXli9fzrZt23BwcACgbdu29O3bl8mTJ9OkSROLhwtxvvrqK/bv38+MGTNMXffj5MiRg+jo6HjnREVFmfYLIYQQGUGCbiGEEOIV3bhxg2vXrgFw8eLFePvXr1/P+PHjeeONNxg8eDDOzs7odDoWLFhgkQwszrNdsZ+VWCtzakxEEneNsWPHUr58+QSPicsU/iITJkxgz549zJ49m7p168bb/8cff1C7dm1TwB2nefPmTJ8+nZs3b1KiRAmLfT/88AN//PEHo0ePpnPnzvGumT9/fu7evRtve1BQEIBFV3QhhBAiPUnQLYQQQrwCg8HA+PHjcXR0pH///syfP59WrVqZxlMDbNu2DRcXF3744QeLFui5c+emSZmuXbuG0Wi0uFdcS/bz2cDjxLWUOzo6Uq9evZe+94wZM1i7di2fffYZ7du3T/CY4OBgDAZDvO1xPQBiY2Mttq9YsYJ58+bRv3//RBOtlStXjqNHjxIaGmqRTO3MmTMAiT5IEEIIIdKaZC8XQgghXsHSpUs5ffo0U6ZM4cMPP6Rq1apMmjSJBw8emI6Ja7l+tkX6zJkzeHl5pUmZ7t27x44dO0zroaGh/PPPP5QvXz7BruUAlSpVonjx4ixZsoSwsLB4+599P4lZtGgRS5Ys4f3336d///6JHufm5sahQ4csxo7r9Xq2bNmCg4MDxYsXN23fvHkzU6dOpUOHDnz66aeJXrN169bo9XpWrlxp2hYdHc3atWupUqVKvK75QgghRHqRlm4hhBAiEfv27ePq1avxtlerVg0XFxeuXLlimn+7WbNmAHzzzTd07tyZyZMnM2fOHACaNGnC9u3b+eCDD2jSpAmBgYH89ddflC5dmvDw8FQvt6urK59//jk+Pj44OzuzZs0a7t+/z/Tp0xM9R6vVMnXqVIYMGUL79u3p2rUrBQsW5O7duxw9ehRHR0fmz5+f6Pk7duxg1qxZuLq6UrJkSdavX2+xv379+uTLlw+AIUOG8Mknn9CzZ0969uxJjhw52LRpE2fPnmXUqFFYW1sD4O3tzdixY8mdOzd169Zlw4YNFteMqweAKlWq0Lp1a/73v/9x//59SpQowbp167h58ybTpk17qc9RCCGESA0SdAshhBCJSKz79/Tp0ylSpAjjxo0jT548fPbZZ6Z9rq6ufPzxx0ybNo3NmzfTtm1bunbtSnBwMCtXruTAgQOULl2aWbNmsXXrVo4dO5bq5XZ1dWXixInMnDkTf39/ihUrxnfffUfDhg2TPK927dqsXLmSn376id9//53w8HDy58+Ph4cHvXr1SvLc8+fPA6ob+9ixY+PtX758uSno7tixI3ny5OGXX35h8eLFhIaG4ubmxuTJk+ndu7fpnMuXLxMTE8ODBw8sPuM406dPt0ggN3PmTL7//ns2bNjA48ePKVu2LPPnz6dmzZpJll0IIYRISxpjamRfEUIIIUSm0KxZM8qUKcOCBQsyuihCCCGEQMZ0CyGEEEIIIYQQaUaCbiGEEEIIIYQQIo1I0C2EEEIIIYQQQqQRGdMthBBCCCGEEEKkEWnpFkIIIYQQQggh0kiWnjIsNjaWx48fY2tri1Yrzw+EEEIIIYQQQqQPg8FAVFQUTk5OWFklHlpn6aD78ePHBAQEZHQxhBBCCCGEEEK8plxdXXF2dk50f5YOum1tbQH1Ju3s7DK4NEnT6/VcvHgRd3d3dDpdRhdHpBKp1+xL6jZ7knrNvqRuM0BEBNSvr5YPHoQ0+C4m9Zo9Sb1mX69b3UZERBAQEGCKSxOTpYPuuC7ldnZ22NvbZ3BpkqbX6wGwt7d/Lf4Bvi6kXrMvqdvsSeo1+5K6zQBGI1y4oJZz5IA0+C4m9Zo9Sb1mX69r3b5oqLMMhBZCCCGEEEIIIdKIBN1CCCGEEEIIIUQakaBbCPFKfA9dYtrIPdy6ciejiyKEEEIIIUSmk6XHdAshMtaD2w9p1DIfD8PKsPfQSbafKJTRRRJCCCGEyHZWrIDvvoOoqPj78uaFmTOhdu30L5dIHgm6hRAvbdbnZ3gY1gSAXac8Cb75kHxF82RsoYQQQgghspGHD+GddyAyMvFjxo2DPXvSrUgihaR7uRDipdzxD2LuHzVN6wajji27JeAWQgghhHiRe/dg1iw4e/bFx/7xhzngtrEBBwfzS6NR248dg9jYtCuveDUSdAshXsr0z84RHuVgsW3jxgwqjBBCCCFEFhESAg0bwtix0KwZhIUlffyiRebl48chNNT86tVLbY+ISF4ALzKGBN1CiBS7ceEW81fXAcDOJhwnJwMAW7dCdHRGlkwIIYQQIvMyGmHgQLh4Ua3fuwdLliR+/KlT4OWllmvWBA8Py/21apmXjx1L1aKKVCRBtxAixb4ad5noWFsARr51lPbt1Z+SJ09g//6MLJkQQgghROb17bewdq3ltv/9L/Gu4c+2cr/zTvz9EnRnDRJ0CyFS5LLXNZZsrAdALrvHjP26Ch3aGUz7Ny47lVFFE0IIIYTItPbsgfHjzeulS6ufAQGwZk3848PD1XhuAHt76N07/jFVq4JOp5Yl6M68JOgWQqTIpPG30BvUxAejB54ib+G8tGr+BCtdDAAbd+TDaDBmZBGFEEIIITKVmzfV+Gu9Xq1PmADz55v3z5qlup4/a80aePxYLffsCblyxb+uvT1UqqSWfX1fPD5cZAwJuoUQyebrC39sV2O5nXM+YNSU6gDkLuBEw8q+AFy9U5zzJ65mWBmFEEIIITKT6GgVNN+7p9ZbtoRJk1QStapV1baTJ+NP+fWiruVx4rqYGwxqDLjIfCToFkIk2xdfgNGo5qYY93kucjmbH7m2bxViWt64MjDdyyaEEEIIkRl98gkcOqSWixeHFStUl3CNRu2LM2uWefniRdi3Ty2XKwf16iV+fRnXnflJ0C2ESJaTJ2HdOrVcqBB8MMLKYn+HXiVMy/9uz52ia4c8NtKl0TE83C5yfMe5Vy2qEEIIIUSGMxrhxx9h7ly1bmMDq1dDvnzmY3r0gBJPv0Jt2QI+Pmr52Yzmgweb5+NOyLNB9/HjqVN2kbok6BZCJOmqz3UmDNlD+xbBpm0TJqgxRM8qU9WVskVVt/KDZytx/9bDZF0/NBTatNXwz/5a+AS40657fq76XE+18gshhBBCpLfwcDU12PDh5m1z56ppv55lZQUff2xenz0bYmJg2TLz/n79kr5XhQrm72XS0p05SdAthIgn4kkEK74/RLOqpynlUZxpi5pw56F6LOvqmvi4ovZNVbBsMOrYuvLFLdbh4dChg7nLFUBQSH7atonlwe3kBe1CCCGEEJnJpUtQt645cAYYMwbefTfh4wcNgjx51PIff8Avv8CdO2q9UycoUCDp+1lZQXWVZgd/fwgKerXyi9QnQbcQwsRoMDJvwl6KFI6iz0f1+M+rqmmfThtLhyYX2bkTbG0TPr9D19ym5Y2bkugHBUSG6+nc2Zw0JHduA2WKBABw4WZJura+RlR41Mu/GSGEEEKIdLZuHdSoAd7eat3BAf78U43XTqyLuKMjDBumlmNjYdQo877Bg5N3X+linrlJ0C2EACDk/hN6vXGEkdMa8ygst2l7mSL+TB+1hxuX7rPhP3dKlUr8GvXaViS3wyMAth6uSExUTILHRYVH0a3ZKXbsUOs5c8K2bVq2bdNRwEk9nt3r7ck7XY/L9GNCCCGEyPRiY1VStK5dIeRpbtny5VUAnND82s8bMcLcqBEbq34WK6YynSfHs93WpYt55iNBtxAC30OXqVklmL//q2va9nbLg+z95wwXbrgy/rsmFC5Z8IXXsba1pk3dswA8DnfiwL++8Y6JiYqhd6vTbD6q/ndwsItm61b1hNatkgsbV93FziYcgN+3NWDSsL2p8RaFEEIIIdLM1KlqPHac3r1V8Fu+fPLOL1gw/tjtgQNVlvPkkAzmmVu6BN0rVqygWbNmVK5cmR49euAd198iEVu2bKF169ZUrlyZDh06sHevfOkWIq38/jvUbuHGxZtuADjZP+afRUf5fVt9GnWqgkabdDfx57XvmMO0vHF/JYt9V85co0uT0/xzQM31bWcTzqYV5yymwajVshIrfvBGozEAMGVBE5bNOvAyb00IIYQQIs2FhcGcOWrZygrmzVNjsx0dU3ad0aPNXdA1GjXWO7lcXc1Z0Y8dU5nTReaR5kH35s2bmT59Oh988AHr1q2jXLlyDB48mPv37yd4/KlTpxg9ejTdu3fnn3/+oXnz5nzwwQdcvHgxrYsqxGslKkqNH+rbF8LD1WPUKiUvcPLQIzoNrv3S123Tp7rpqey/m60BuOYXyJBO+yhbrSibjqhHsbbWkWz47TyNu3jGu0aXIXWY/ck+0/o7n9bmyNb4reZCCCGEEBntt9/g0SO13KePylie1BRfiSlbFj78UC2//74KpJNLozG3dt+/rxKqiczD6sWHvJqlS5fSs2dPunXrBsDkyZPZs2cPa9as4d0EUvgtX76chg0b8s7T9MijRo3i0KFD/P7770yZMiWtiyvEa+Ojj+Dnn83rgwYa+WGuK3aOiWRJS6Y8eaBBA9i7V2Xv7NPmGKt2eBKjL2Y6Jq/jA1bMv8obPWskXr7pjblydS8/rW5MrN6akWPzc6QlaJN4VKiP0fPjpANcTeQ/mipVtLw9sjY2djYv+/aEEEIIIUyMRvM83AAjR77a9f73P5g4EXLnTvm5tWrB5s1q+fhxKFny1coiUk+aBt3R0dGcPXuW9957z7RNq9VSr149Tp8+neA5Xl5eDBgwwGJbgwYN2LlzZ6L30ev16PX6VClzWokrX2Yvp0iZjKjXh3cf8UHfCxQtFMW0BXVeKoC8c+0BixY5A1psbY3Mm2dk0CAjYJUq76VtWw1796roeMVW8yCjXHaP+XjAKUZO8iSXc9UX3ut/y+uw7/QtfK8U4bhPQf76y0CvXon3l5r0wT6mLmya+AX/hMlzHjJhihV9+xqxSuIvYGb6nZ0xQ8OhQxrmzDGk6Km3iC8z1atIXVK3GUCvR2da1EMafPZSr9lTdqrXHTvAz0/9JjRoYMTDw/DKvwpOTiqYT+l11LRhqixHjhjo3j39+5hnp7pNjuS+zzQNuh8+fIher8fZ2dliu7OzM1evXk3wnODgYPLFDUh45vjg4OBE75OVup77+PhkdBFEGkjPel08/S6rdrcF4Mbdg4z7JkeKuzD9+f0tYmI6ANCnx3mqVQvHyyv1yliqlC1gHs/tYBvK4M576Do4F455c3H1xlW4kbxrvfthLtNT4zFjYnB1PYutbfz/RK773uObJW+88HrXbudhyBD46qtIhgy5TcuWD5JMUpLRv7M3A6L5/HOV4C4yMoQZMxL+2ylSJqPrVaQdqdv0o42IIG5iSW9vbwx2dml2L6nX7Ck71Ou0aaWA3AC0b38VL69HGVYWOzsd4AnAnj1heHllXIyUHeo2NaV59/L04O7ujr29fUYXI0l6vR4fHx8qV66MLrlpCEWmlxH1uvPwddPy6l31Kb/BwJdfJv9JZlR4FL//6wKoubc/H+9A8XLuqVpGT08YOtTAurUG3mpxgE++Kk9+lzYvfa2NG43s2KHh9m1b9u/3ZMwYy/cbGwvv97lOrF6NIf/wzT307JvX4pjH958wZ2EJtu1T3dyvX8/BxIlu/LksNzO/uETrt6pbHJ9ZfmevHjenID14wJHSpT1TnJhFmGWWehWpT+o2A4SFmRY9PDzUhMSpTOo1e8ou9XrpEhw4oMpfvLiRUaNck+xFlx7c3Iz4+2u4cMGRSpU807082aVukys8PDxZDcBpWg158uRBp9PFS5p2//79eK3ZcfLlyxevVTup4wF0Ol2WqdSsVFaRfOlVrxdO+nPplpvFtq++0lK6dPxpJhKzdtEp7j5qAECXRsdxq1j3BWe8nJ9+gp9+0gJNXvlas2er4NtohOnTohn8dhj5ipl70Hz3HZw4rz6XCsWvMGNRXWzt449Nb9MHDh6ECRNgzx617dzlPHQaUI1rde9RtHTheOdk9O/shbNRpuXIKGs2b4Y338yw4mQbGV2vIu1I3aajZz5nnU6X/LmNXupWUq/ZUVav12dz43zwgQZb24x/L7VqqSRqEREazp/XUaVKxpQjq9dtciX3PaZp9nIbGxsqVqzI4cOHTdsMBgOHDx+matWqCZ7j6enJkSNHLLYdOnQIT0/PtCyqEFnCvyuvmZarVbhjWn7nHXMQmRSjwcicn/OY1j/8OHP3EInj4QED37wHwOMnOZgyxpzJ/NIllXAEVObOxX+6Jhhwx6lfH/77D3btgmrlVK8BvcGKneuupN0beAXnzluO2V+1KoMKIoQQQgiTkBBYulQt29mp72KZgczXnTml+ZRhAwcOZNWqVaxbt44rV64wadIkIiIi6Nq1KwBjx47l22+/NR3fr18/9u/fz5IlS7hy5Qrz5s3D19eXPn36pHVRhcj0Nm7LbVpe8Ws4w4ap5ZgY6NIhFL9jSQeOh7f4cuJSRQCqlvKjfjuPtCpqqvtqigF7W9WV8efV9bh4yh+DAYYMgchIdcyHH0Kdesl74tisGfzv6wem9T17M+eEln5XLbvJb9kURUjw4wwqjRBCCCEAfv0VnjxRy337Qt68SR6ebiTozpzSPOhu27Yt48aNY+7cuXTq1Ak/Pz8WLVpk6i5++/ZtgoKCTMdXq1aN2bNns3LlSjp16sS2bdv48ccfcXdP3TGnQmQ1D+8+4oCvSk5WunAAZau7MWcOtG0VAcCjUEfadrDhbkBQoteY+78npuUP37uPRvsSk0hmkCKlCvHJwOMAxOqtGT/qLgtnnGbvXrXf1RWmTk3ZNWu3LEcOa/X57TnumnqFTSX6GD3nb5Sw2BYVY8uG3yQ5iRBCCJFRDAaYN8+8PmJExpXleVWrmkd6SNCdeaTL0Po+ffok2lL922+/xdvWpk0b2rR5uaRLQmRXW1eeQ2+oB0CHpgFotK5YaWHln3oa1jiP19VyBNxzoUOrs2zdY0Xewnkszg+8dJvVe9TjzwJOQfT+IPE5sjOrMdNrsuCvu9x5VJB1++uw9Wi4ad/CX4w4OKTsIUIOhxzUrXia/7yqEnDPhYCzgbhWLPbiE9PJtfM3iYwpDkDRvLe4+aAIACv/tqHPR4mf9+QJhIZC4fhD1IUQQgjxijZvhsuX1XLz5lApbsKWRz5gNIBdYbDNB5o0b9+Mx8FBlefMGfD1VfkO0yDHoUihbJG9PKuKjohmzcIT3LsTE2+ftTW0612KEuUzTwAgMtbGjebl9l2cTMuOeRz5d5sTdercIvB+EY5frEjDOpfZuj2C/7N332FRXF0Ah3/LUqQoKmLvKFgRsWDvNbaoiZpiiZqiMZqqpsd8URM1McZEJbaoaRqNxpbYe++9CyL2BghSd/f748oOKx13KXre5+FhdnZm9sLA7py5955TxqekebtpX5/BYFRR2Bt9juPkkkY961zKraArX408yOCPigEQHafmpA/svI02bZtm6ZgtGoWz6bBa3rwqmAG5KOg+efAGoILuvt3OsOAfHVfulmDNXj/u3QijULGCyfY5d07NW791S/X+t2oFrZrH0rLxXUp6SRQuhBBCpCn+Phz/CqKCIOoS6J3BvToUrKG+u1fnhx+0ZK6JZU0BOPYFXP5bLevswbk4OJdUQbhjYXBwV1/5K0GFRzokjQawS2WKnMkECfchPgIcCoJDkjImxgSID1frH+5fv74Kuo1GOHQImjR53F+KeFwSdOegL4btZPycFqk+/830UM5fjsfBySH7GiVypYR4E//uUnOx3V3CadqlhsXzpSqVYPU/Z2nT6RY3wz05GVKJho2vsWbFeao3rET0/Wh+/qsmAA76ON4YWS3bfwZrGfB+I74PPMfxS5UBKF7wBpNm1czy8Vq0KwTT1PLmLTBgpDVaaR2njmnleKrXdOT5mLN8/0cJ4g2O/DNvDwNGWt5oMBlNDOt/nlu31O8mOBjmzIE5c5yAEviUuki3NiF8OrkuboWk7pgQQoinWOxduLISClSBIkkmQts5wqmJQJJcLze3mBdPhlZl3bqTAFSsaKRTpyS92Z7NtKDblAAPQtXXozybJg+6N7SEiJMqSHfyhIQoiLsHcXfVd5NBbVdvOlR+Q9sv8gKsrKKWHQqCkwf1nF9hJh8DsHfbHZo08UDkrOwf8yAAiImKJXBR2kmsQm6V5sLRy9nUIpGb7dipIyxK9W53aBWW4o2Ymo292bnlAV7FVYbzK3dK0KRtEbYtP8rvfzpx5756w+3Veh8lKhbLvsZbmd5Bz5RJkdjr47HTGQj8NjjFHt+MCmibe+d1nzyt3Ret5leI3v20D82FS/Il237pzN2s3aUCbjeXOJweSeJ+5kpFJsxrQYDfdU7vu2iTNgshhBC51oMrcGYqbGgNfxeF3f3h/AzLbfROKvAFIPm0tTlbBpqX3xoQZFkpr+Qz4DVIfS9UG/IVS/EYOLgnXxd9BWLvqCHqNzbCnT1w/yzE3tYCbkg+ZN2U5OZAfBhEXqB+ca3UybZlu+HGFvKSnTuhbl0YPz6nW2I90tOdQ5Ytd+RupLoibu+3kQEDtQvopctg0UY1d/fc8dtUqVcxJ5oocpGVK7Xlzr3LpbqdV61y7Nxzi2fanOTAuWqERRWk7XP5KOIRCzgDMGJM/VT3zytaPVebIzvOYzSYqNEo4LGO5eTiRKMaB9l4yJ9Lt0oTdDyUCjVyxxDzU0FFzcs+/uVwye9CWc9QQm6VZv0BP+5cvYtHSZUuNSo8irc/KWveft53B3imf0N27YKNi/ezaYsje05XJcHgwMmQStRrdp/Zk3bS681G2f5zCSGEENnGmABX/4XzgXDtXzXnOqkry9U2dknCombLwLEQuJSBhEgIP6G+wo7z74nnALCzM9C3exDgpe1XoDIEzEr++jE3IC5MDQOPD1fHfpRrBdW26KtgjFPrHNzVto6Fwenh8HS3R+ICe1co0VH1iMfegbi71ChzgiL5b3H7vidrDrckanUJXJt+C5VySV2zdAwdqobHnz0LH36Y062xDgm6c8jsOdpdr9GTW9GihfZcgnE/izaq5bOXi2dvw0SulDif284O0ssxWLSsJ5v3ONOz3QHW7q9DbHw+rjws6d2gAdRr8GRMV6gWUMlqx2rRKIKNh9Ty5vWRVKiR9vbZwWSCk5dV1YbyZeNwdVdZUHp1OM+kBaVJMDiw9JfjDP6oGQDj3tvH5dstAGhXdz/dX22Azg5atoSWLVXSvLMHg3iuZzzHgr2JjMlP72GN2LljCxNmN8TR2TF5I4QQQoi86sFVFWhfmK16kR/lVhFKd4cy3ZP3HnskSTarLwxFm0LRply+DCfVgELq19fjUaNN+u2wsweXUuorLa3Xq+8mk5q7be9qeSMgNa5loOVqi1V6o4FnN8Qw6xeV/2bN0db0KDUXKg7I2DFz0IULKuAGqFIlZ9tiTTK8PAcEBcH6h/9XlSpB8+aWz1duoP2jn7taFmFdd+/CRx9Bs2awfHlOtyZ9587BmTNquVEj8MjAtBy3Qm6s2ObLy+13WKwfMcIGDXwCtOimRdmbD+WOd/irV7X6n1WrawFxr75a7/fCJSoQP3comEnzGgJqzv7UQI8Uy8F5+1dg95HS9O2w3bxuyh/NaVHnDKHnrtnixxBCCCFsLyFazdFOKuI0HP/SMuB2KQM1PoNnjkKX8+A/CTwbZzjL+Nq12nL79lZod0p0OnB0f7zg2E5Pz95ayvIlB/tBs6W5PuAGWLJEW+7ZM+faYW25/zf/BJo7V1seNEj9byVVubK2fPZs9rQprzAYVM3BBw+gQgUoU0Zles+I8HCYPFl9RUSodYcOxhFy4cFjzQm2tZVztgEqYVaXDpFAxhJgOeZzYN6qRpT+2MCEiXrq1n2y3rysqX6zIjg7Q3Q0bN5sOT0qp5w8qS1XS5L3rm7rqlQoFkLQjbJsPOTHzSuRvPX6beISygPwfv8dePunnpnepYAL81Y1pvHYrQz/MoC4BCd2naqJf727rFprol79vFO7XQghxFMgPlLNc448rwLrpMnF4u6qDOMRp6HyUKj7g7ZfsRbgVkllIS/VGbxegxLtU8wQfvKkGk2YXs/qmjXass2Cbitp1Qrc3dX178rD3YjV6TCnejEZ4dx08GwCBWvmSGmz1EjQLazCEG9g7oy7gCd6vYn+/ZNf4BYurHoz79yRoPtRP/1oYsTb2u/Mzk4F3hU8zlChxE0qlDdQwcuBCpXzU6FqUYqXL0p0ZDRTv9jHhDkB3ItwtjheZJQjM8bv5MPvW2TzT5JxK/7TguwubW+Q0aAbwE6vY/zXekaOUm+8drnnPTVXcXJSowg2bICQEDUapVzqU+ezxalT2nLVqtqyzk5Hr2cj+CYQjCY9A/tFsmafGh1TpsgVPv4u/Tn7Ojsdr3/ajDoNT/LciwW4dKs0t8IL06Kl+rDr0MHaP40QQgiRRXsGQ8jC9Le7d9jysc4OGs4D13JpDu1eswY6d1adYNu3q3JbKUlI0EaqFiwI9eplqPU5xtERunaFBQsgIkLH+vXQqdPDJ8NPwP5hDzcsDEWbq5sUnk1UNnd7lxxp8+XLqnMNwNdXjQh+UkjQnc3WLjpE6C2V+KlTg32UKJHyf7a3N+zaBVeuQNT9BFzzy6kCWP3bAUAbfm80wqVLcOmSD5vxSba9k0MMjvYG7ke3MK+zt4c+PSP4fZErRpOeH+ZV5d1xMTi5JM8GnRUxUTGMGrSHs0Eu/DSrGBVrZn2KQNjNcLYdU0OfKxa/RJW6WUuqVyiFfB3CUosWKugG2LzJRP8BOdkaOLnjEFAbgGqVI4AC5ud6v16DbwLV8qqNWt6H774MwdU9nTljSdRtU40Dh+/Ss1ckW3a48eABdOkCs2dDv37W+CmEEEKIDLq6Bq79B3UmW64vVCvtoNvOAQpUU9s9yjPtZKHx8WrqXUKCejx1qgpSU7JvH9y7p5bbtFHXk7ldz57az7NkSZKg+8ZmbaO4uxC6VH0lcimjgm/3auA/2XJYbuhyiL6mSqIZ47XvxgQwxaMzxFH0bizciYOiDTPV3r//tmz7kyQP/Lk8WebO1jImDhqY+hhWb88j7EK9eZw/fIFaTZMHlE+jkOsqenS0j6VLN0eCgnQEBRm5dy/lLtzY+HzExqtg2k5n4OXuwXw2wQsvrwLE3NjF4s0NuR5WjF+nbGXQh80eu31hN8Po2voS246rifp9njvBruMG9A7JhzJlxJpFJ0gwqA+MLi2D0dnlcPfrE6xFkyhAzX/avGQX/Qc8Xlb0x3XqlPYBV7WKZaZVPz81DeXcOW1dG/8D9Hy9QaZfx6NkYf5bD337wuLF6sKjf3+4dvIwI8fVSnFuuBBCCGE1ceFw6D2V8AxUb2vZJBFX0ebgNRjcq6v61U6FVe9sYlZvx4JZnqs8c6aWNwdU0DdtGuTPn3zbpEPL88qIsHbtwNUVoqLgn3/UTQYHB1RJM0xwY5OqQR53z3LHB5fVV+QFqPO95XMnxsOd3am+ph1QBjAGPbAMuk0mVZ7NtQLkr6xGIDxy3p7UoeUgQXe2irh5n+U7GgNQotB1nnm5TqrbVi6n/fGfO36XWk1t3rxcz2Q0cfmWSiJVvthVFi+u8PAZO8JvhRN06jpBZ+4RdCGW4GAICnEm6Eohbke406ruOT4bV4Iq9bSyDh98mJ/Fm9XypGmleGWkETt9ysH74a1n2LDyGs++VAGvWikHvqHnrtGxbSTHL2l3Wvedrc6UyVG8O9I1xX3Ss3KlFmx1fjaFTwBhNfUDHHB2fEB0nAub95XDZMzZid0nL6myZSUKXadgUcsqBjod9OoFY8eqxw76OKbOKJTlADlfPvjzT3W3/6ef1LrR3/hxNXgLk39rmur/RVLh4TBjhrrzX6HCw69yBgoWztoNJyGEEE+Ba2tg/+vwIFRbd/lvy6Dbs1G6PdZZER4On39uue7BA3UD+pVXkm+fl+ZzJ3J2Vr3bixapRMJbtqheevJ7gc9w9WUyQthRFYDfOwwRZ9RXfJjq7X5URm9wuFe3fBx7B/YN1R7r7MG1POSvBAWqcD2uDtu3vwTo8PGxzGfzJJCgOxttWBpOgkFl/RrQ/RT2jqknO/KuomUrPns61uZtywvCboUTGVMQgLLF7gEVzM+5e7rj5+mOX6qd1UWTranfrgbNah5m6zE/Tod6sXLeHroOTN67eXjrGRq2KUtMvA+jvk3glZdu8cn/PC3m/J7cc4FO3Vy5fFtlwSvsdod7UYUwmez45AtXuvUEL69kh05TQlwCq3eod5wCzuE065IL6lg9wRydHWlc4zjrD/pz+XYpLp4IzrG23Lp8h9sRRQCoWv4qkLx0YN++MGkSxMbCB8OuU6Ve1qYeJNLr1bC6kvkv8PHX6o/1h4XNuXFrJ7/9F5DmaA2T0UTv5+JYs97pkWf0FHQNo2KJa7w95A59323yWG0UQgiRx5lMEHsL7gdT7vo49Gf+0Z6zdwP/b8Hr1Wxpytdfw+3barlWLa1M1fz5yYPue/e0ucbVqkHp0tnSRKvo2VMF3aB6kts8WuVMZweF/NRXosTzlBCV/IDVRkHMQBV86xzUdzsHFUTbOWAwmrh8Zhdlirez3O/+OcvHpgSVHC/yPFz7j2XrX8dkelm1udNNdLrk1+55maRVyiYmo4m/VmlB08BhFdLYGirX0OpCnT0v90YAQs7eMC+XLZnCm0AWjHw/zrw8cXLyOd33boTRs3c+YuJVAjaD0Z5ZCzypXBmGDVNlnc7uuUrzdp5cvq3m0lYsfok92yIZNkz9e0VHw6uvZi4jdvT9aMa9s527kYUBaN/gpNRRzgYtGkeYl7esDsmxdpw6qN3xr1b5forb+PioTOsLF8JXk61TWlCng4/GezHnm+3o7dQEt4UbGzFtzPY09/v7590pBNxKWFRBDp6vysCRAVKWTAghniaPXvgkRMMiF/i7GPp1ARQJTxJwF28LnY5DpdeSl/WxgZAQVc0GVMKxpUtVPiVQn63BwZbbr1+v8ghB3unlTvTMM2pEG6if02DIwE46HeQrCm4pxCulOoPXK1ChL5TvA2Wfg9LdoFQnKNEOirfhjnsXNYQ8KbcKEDALqo2GMs+pIN8+SVmzfdrohp593DP/g+ZyEnRnk53/HufsVdV71KLWISrVLp/m9pVqasmQzgUXSGPLp0fI+XDzcpnSGXnHSF/Hl+pSrcx5ALYfr8Xu/46bnzMajPR99hwXr6su7UrFzlEgfzyg5sT89BN4e+sY+HYb7kWpueb+lU6xc5czlfzKMW6clgF70yaYPSv9qDs2Fn769gZe5cL5fFoL8/puXYyp7ySspkU77WbXlq059/Z46qj2t141jfIlDRqoYebWvj55ZWQTlvx8wPz4w0l1CD4RmuK2UeFRvPOpFvR/OuIs//sfDBwILeuep0Sh6wAkGByY8r8zKR5DCCHEE8BkgrATcOJrWNsYTk2wfN7eGfSWVWRM9vmh/s/Qco2a45tNPv5YXXMBDB+upkT17689/2gytbw4tDyRm5vW5hs3YOfOHGqIc3HwGgR+46HpX9DxEDx/H7pf5Y7fZjadag1A+RI3qV035Rv5eZkE3dlkTqDWWzWo/4N0t3cr5EbJwqpX6GxoSZu1Ky+5HBxtXi5bzjq9/3Z6O95/U+t9mzg+0rw87u2trNqt6kEUdrvL+k3OBF9y4OOPVVIKgJgYO3MveBv/A2zeU5pi5dVwGDc3+Pln7bXeezuKK+dT7umLj4dZs9Rd1mHvF+PaPW048WvPbuWF4ZnL/iiypl5rH1yc1CiKzfu8cmxe98mT2utWq5Uzd3u7DQrgjR5bAYiKdeP1AddT/H2Me2+veZRHu7oHGPNdZT75RGVA37ivEocO6nFyiAEgcLE/4bfCkx1DCCFEHmWIg2vrYP9wWO4Fq2vAkQ/h9k64vCz59sVaQYmOGCu+SmiRYRg7HoVKr2ZL73aiAwfg11/VcuHC8NFHarlvX60Z8+drHfUmE/z3n1rOlw+aPX7e3WyXNClZ0mRlOU6nA+cSLN/THINBhaU9XyyanX8O2UaC7mwQcSeCvzb4A+DuEk7Pwf4Z2s+7jOohuh1RhHs3wmzVvDwjJES74C9b0Xr1A198q765N27ptvqcO3GPtX8c4LOf1LuqTmfkj5+DKFe1NIUKwVdfqTrO770H+RzVbdIX2u5g1faa5C9smeysXTsY0FPNYYl44MbQASEWgUvouWt89fYevL1NvPqqGu6UqHvT3RzdfpbApc0ylMhKPD41r/s0AFfuluBm8L109rCNU+e0WuxV/TNeAszavvnZj9IeVwFYu78u87/dYfH82YNBTPxFJYd00McxNbBwsmRuxcp70r+Tmgh3P7oAP39zKBtaLoQQwmZi78DFebDtOVhSBDa1g7NTISrIcruE+2CIsVzXdDG0XI2p3nRueAxQpamykcmkrt8Sff65Vla1TBlo1Uotnz+v9QifPKlK+AI0b66Sk+U1Xbo8zFqOytCemSmP2eFJzlqeSK7ks8GS+Zd5EKu6Rl/seBjn/Bn7b/WuoPWOnztyxSZty0tCQh3My2UrWa/wtJOLEyMGqg8Kk8mOD0Y78eLr5TGZ1L/HmKFbafeCZaZ5T0+VxCr4XDhL5v7L/FUBqc65/nZqEYoVvAnA8h0B/DZlJ4un76JjwH7K+RTl0ykBBAdrgcozz8D+/fD31gbUbOxttZ9TZEyLxtr/3dHdWu6AhLgE9q49QeD/tnLuULBN23AyWI1uKex2l6Jli9j0tdJSwKMAM77T3nveGVOd60Hqb9lkNDH8jTvEG9Tf/fv9d+Ltn3Kuivc+LYNOp6ZITJnrQ1x0XIrbCSFy3o3gW/w6eQd3rz3eTcfjx+GPP7QhvCKPMcbD7b1wcT5EnLV87up/sHsAXF6iAutEOnso1hr8v4cu59UcbX3yfDk5acUKlcEboFIleOMNy+f79dOW589X3/Py0PJEBQtCazV6m8uXVc3x3CIiAtatU8slS0JAzlZstRkJurPBA0eVMl9vZ2DwW8mzEKemciVtHu+5E2HWblaeE3JN60UuXSnjv8eMeP2ThuaajP+sdOHOfTW3t1ODfXw8JfVxREVKeVCuZtE0SzUVLlGIn8ZfMD/u+25jnh/akP/21sVoUhmhdToj7dvDjh2wahXUSb2anLCxlu21ed3rN5dmyhQdXbuCh4eRgPbVeeOzZvg38mDdnwfSOErWRdyJ4MqdEgBULRea43WyO/Wrx4ttVQ/3vahCvDX4MgDLZu9hzb66AJQpcoWPv6uX6jG8/SvQrbHq7b5ytwR//LjHxq0WQmRV725X6PtuY2rXiuLSqZRzOaQnNBQaNoQXX4TOnSEmJv19RA4zmSDsGJz+HjZ3hsWFYW0A7O6vynolVbKjyngN4OQB5ftC44XQ8za0Xg9VRqiSVLlMfDyMHKk9/uYblUQtqR49tCmECxeqZLhPQtANuXeI+cqVEPfwXnyPHmD3hEanT+iPlbu8/jpMmWLk+ykXqdWkUob3866q9YifPRNvi6blKZfDVUapIoWicSlg3bE9BQvCa69ZrqtQLIQFyypbZWh3zzca0qPZ7mTry3mG8sWQzQSduMp//0Ej65ehFJlUt3UV87zuDQfr8t57dqxYARGR2idzZEx+Or1ck9+n7EjtMFl26pT291atau5IoPf9bB+KFFB1VRZvrMNv82N5+2OtXsrk/4Xg6p52LfoPRmvPT/yxeI7XQRdCJBd5L5Ktx3wBCLlVmlatDFmqOjBhAkQ+TJGyfr26kJYe7yyIuQ3Bf8KewbD7Fbix2brjgqNC4MIc2PESLC0Bq33h4DtwdRUkaDluiLxguZ9TYagzFdpsg+43oNF8KNcLHHN3xum//oIzD/N5NmkC3bsn38bNDZ57Ti2Hh6vAe6tKb0Lp0lC1ava01Ra6ddMC2iVLHu9P6fZtNdS+TRvtfz2rnoah5SBBd7awt4c33zTRsGFE+hsnUdlfC9DPhj3d9W0TEuDKNRX0lK1gm8k0I0aocwWQL5+RJYtiKVSsoNWO/9MvFala5gJODjH0ab2TdQsPcvFaST6f1oJyVfNQwccnnIOTA83q3062vkgRE73a7Kd9vf0AxBsceentxnw3arNVX//U+STzuRv5WfXYWeVZpgg/TNUyifYd4EDILfU327bOAXq81iDdYzTqVJNG1Y4CcCKkMv+ueMxPaSGE1R3dGWSeWgVw8Xo5WreM4drFG2nsZen6dZg503Ldv/9C796qp1GkwRALN7bA4Y/gv7rwd1HY+QJcmA0Xf4ENLWF9M7h32Dqvt/d12DMILv0OMY+c43xFodyL4P8dlHsh+b7eQ6FoE7DTW6ct2WDWLG35f/9LPXdb0izmI0dqIzXat8/WfG9W5+mpAmWACxfU6Mqs+vZbdTNiwwb488+sHycqSr0/JLavadOsHyu3k6A7F6tY1cN8R+rcU16r+9o1ra5gWeuUJE6mTBkIDFR3P5cssaN2s8rp75QJxSsU5XhQBaJjnPhjfSPa9PKXBGm51KTp5Wjd2kTTpmF8952Ro0fhxg0dC9fVZdWO2rzefat52/cmtOD9vpsxGqzTK33ypLZcrZpVDmkVffrmp3NntZx4Ua6SpxXK8BD4kaO1BIgTv8+fxpZCiJxwaO9d87LeLgGAs1cq0KblfW5dTn4zMiXffqsFKR07gsvDf/t//oGXXlI30UUKEqJhcUHY0AJOjoe7B4AUuiJv7QB9KslkjfEQFwYPrqjtzv8M+0fAhtbwdwmIf+RmZ/E22rK9G5TsDP6T4Zlj0P06NP4NqrwDRfL+JNsLF1T5VoDKlbXgMyXNm2vXmrduaevz8tDyREl7kps2VfPaX3tN5V+4fj1jxzAYLEuq7d2b9fb8958awg/w7LOgzzv3cDLt6Y7kcjknJ1XnOSgIzp5Vw0Dy8h22x5E0q3cZGya6HDhQfdmKBNl5Q/XqsGaNkcOHL+Dn52fxIaB30DN9cVNKDNvMF9NbAPDtry24fnMHc5bVSzWhXkadOqUt56ZhbDodTJ+uEtDcf5g3591+e/Cpk/Hb0l1eqoTPWDW8b/NmlTCwbl3btFcIkXmHDmmfUb9N2cuoL8ty6VZpToZUok0nAxs3gYdH6vvfvq3eJ0Bdw8yerd7TOnVSgfhff6k5tPPmPdkX1ymKuQl39sLtPep7AW+oO1V73t4Z3CpB+HFtXSE/KN4OSrSD6OtwYiwUqqX2TZQQBcvKqO/GdJJUhp+EIvW1x6U6q/2KtwaP+mDnkPq+edycOdryoEFpX0/b2anyYWPHWq5r0yb1ffKK556DUaNUDzOomxEXLmijU/z91f9pxYqpH2PjRi2bO6jP8qx6WoaWgwTduZ63twq679+HmzehWDHbvdb16+piuGnT3JfE4PKZa4BKLlW2VCzglOb2QtiSzk7H59NaUKLkVoZ81hijSc9vaxsT2X4/f2+u+1j/PyePq79vNzfb3mDKitKlVe35fv2gZk345IfMjQOzs1OlWhLzJ0ycqObLCSFyh8OXagIquWfnvrWo1/wOzdvcJfRmYY4e09OunRpOWrBgyvt//712MT94MJQoob6WLlXzSePi4LffVOA9a1buu9ZIlcmkepEND9Rc5+hrqjc5+iqU66PmOCe6ewhOfq0CWJ29Cmrv7oOoS5bHfPDIY4AyPaBwHdUDXbwNOD+SNLb8CxD/yFRFu3wQl4FM806eEPvIaIUCPlDzs/T3zeMSEuCXX9SyXm85fDw1/fpZBt0BAVppsbysWDFVp/yPP1TP/65dltM+Dh6Ejz9Wz6dm3jzLx8eOqZtq+TKZqD42ViVRA/We0rJl5vbPayTozuW8K95nDWoY5tlDIRTrYJux1TdvQu3aKvAeMwY+y2XvwSEnzmAOut0OAJJxTOS81z5pRtHie3hhqC8x8c78s60uY8fCp59m7XjR96MJuqRuKFUpdQ6dzrpTHKyhTx9V79PJScuBkBl9+6rfz40bsHixiYvHrlCxpuQ0ECKnxcfDsdMFAfD2tsPV3ZWKNV3ZuB2aNVPXBwcPQocOsPb33RQob1mxICwMpj7suHVwsMwS3aEDLJ6+nR6vNyQhQc/cudDIZx+DB5nArQI4FcnYUD6jQdWCjjitvhKiVGBr56C+yr+k5iInigyGu/sfPu+oakIX8Em/R/feEdj+vBqqbYhWwbYplSlEhWqDZ0Pt8YNQCFmU/s8SH6GGlNsnyVPjOybtfXR24FjQcp2dHgrWBJ0e7F3VMHF7V8hXDNyra1/5PNNv0xPqv//g6lW13LkzFM9AARxvb5WBf9cu9fhJGFqeyMcHvvhCfT14oOqRb9yoRqmEhame7nHjoEIKVUAjIlSd76QSEuDIkcyX+lq3Ths517Vr8kzyTxoJunO5yoUPAmriybnDl2hqo6B71ChtLseUKeqxUy7qTA65rH0Yl6lYIAdbIoSlZwcHsMz9LB17V8Zk0vH551CvnrrIzKwzh0IwmXwAqFbxBpD7gm7QyqlkRb588Nagq3wyriRGo47GzRwo6GaZGbeg2wNGvhtF91fTT9AmhLCO06e1sj21a2vrK1dWvdstWqj5rXv2QKdn4vl3bGPc/D4ybzdjhrogB+jf7Rhly9a0OH6XCmNZ8IY7L/yosi79uySEwWUepom2dwXX8uBcAsr2gkqvajuaTFS4Ohq769fh/tm0h1AXa20ZdN/YBHsemTNm5wju1aCgr/pyLQ/5K6lh24ncvCAqWPVupyf6quVjUwr76F3Ao64awu0RoL67lLHenMFnjlrnOE+o2bO15cGDM77fsGEq6NbrtYzmTxoXFzVsvk0b9fn8+edqzvbkyfDDD8m3X7xYm4NdqBDcezjIYv/+zAfdT9PQcpCgO9fzrqZd3Z49Y7DJa+xafZRffvE1P757F5b9eZve/YvY5PWyIuSKNmalbOU0JpQJkQPaP+/NV+fUkCyTSSULOnAAypfP3HFOHb4NqKC7qs+Tm21oyDBnxn8bSVSsG9fDinE9LPm8mZ6vG1kQuYOX3mmcAy0U4ulz6JC27Odn+Vy1aqr0V8uW6hph+5mmdP1sHCvf6kRiSq+fpkQCrujtEviwRX8w7AR9kvGmOj3PB/zFoJmzeRDryqHgJJF9QhSEn1BfhetYvrgxjsL312fsh3i0B9uUwvuoMU5l/06aAbzciyppWCIHNzWXOvyk6onWu4C9C+gfLjsXB+dS4FxSBdNJlegA3YLBmKCCdp0duFUEO7nkzgnXr8OKFWq5RInM3RB/4QUoXFh9Va9um/blJkOHwtdfq6B69mwVgD+aw2H+fG15zBgYPlwt79uXudeKj1fJFUGVaWvXLuvtzivkHSCXq1xTuxg9eyGTkyUywBBvYOhbycdzzPrhUq4Kui9fV7Uf7fXxFC9XNJ2thch+o0fD7t3qw/3uXXiu0zW27y1EPlfL/1uTSV28btumhqs1aqR1dpw8rvWQVKtpm9J4uUHhEoWY8vk2Pp1YmQexlj+n0aTjfnQBTCY7+r3XAMeiYTz/UsGcaagQT5HDe+4A6go7aU93Il9fNRy0dat4wsId2HSyFX1+/JPlPAvA3fuq3OGLjX6nYqFDcH0jlHpGO0D1j9FXepVaNWLZdcCVoFsVCSv2NgV1J1WvclSwCojtHrnWMaoC3yadPbr8lcG9KhSoCgWqqGHpxnjVu2yMB5dSlvt6BIDfBPW8IQbun4OwoxBxBkxJOjKur1FD15OWv2q+IllPdEiIKo/UrZsaopsiexewL5fKkyK7zZunVb955ZXMTYvS6bI2ai2vKlJEJZn78Uc17Hz6dPjkE+35oCCVTBXU3/+rr8K776rh5ZlNprZ5s9ZL3qlT5ueD50USdOdy5aqUxEEfR7zBkXMh1u/hnfHVdg5fVMPXa1U4TWR0Pi5cL8/6g3UIOn6ZCjVyRyankJsq0C7tcR29Q+5okxBJ2dmpO8B168Rz4aIDB06WYPhLW/l5WTPzNluWHuaTzx3YfkzdMv/f/9QH16CBBvr1usOps9qcjqq1bZg1MRcY9GFTBn2YfL3JaOLNXluZvqQZRpOeFwcUxNFNXeQKIWzn0I4QEoNuv+r3geRl/fz94b81DrRta+L+fR0bTlimc9bpjHw0IgTaHFXzjJN6OO/Zrz7sOqBWHbGfrJVuMhlVkjLdI5emeheOV1hM1bqd0Dtk8sq8kK/6epQhBsJPaQG4a7mHveJJgu4Uhn6//rqaH/y//6kbEA1kBkyuZjJZDi23ZXWaJ8W778K0aWA0qhwN77+vBcRJy4T176/W+/qqXA+nTkFkpOq1zoinbWg5SJ3uXE/voMerxGUAzl8tbbVawAC3Lt/ik2+1OUw//RDHoN7B5sdzp15IYa/sF3kvkruRKjNomWJ309laiJxTsCAs+eUizo4PAJj5TzPmfL2NXauP0cb/IC16+JkD7kRnzsDIUXpKVyrEqp1+ADg5xFCh+tOZXExnp+PHhU0Y1Ff9ryckwPPPw+rVOdwwIZ5gJqOJw+dV1qSSha9RtFTygDtRQACsXq1LMbfD888ZqfLcJ8kD7iSS9qIfPpzkCZ0dOBRQPcVJ2dkT61jeuuWs9PmgcG2o2B/8xkHl10GffiKbxCH4kZGqB/TAAes1SVjftm1w7pxabtkSvLxytj15QYUK2vz1mze14eQmk7as08HLL6vlxLKfRqPlFJW0GAyqogGowL1jR+u0PbeToDsP8C6nSjzExDsTeu6a1Y47euhpwqIKAtD/mW007uxL/7eqoLdTc6DmLvHGEG+beeSZcfncDfNy2RKROdgSIdJXq6kPgeMPmh+/9nFDGnWqyYZD/uZ1VcoE8/V4k9bDAyQYHIiJV0OtvUuFYO/49A5EstPbETi3MH37qsfx8dCjB6xbcTNnGyZEBphM6oJy1ix1IZoXXDp1xXw9UNv7crrbN2miptLkeyRO/fiT9N+3ks4Xz+hFem5gMKhEconCw9U81CNHcq5NIm1Je7kHDcq5duQ1H3ygLX/7rfrb37FD1fMGaNVKK2laN0lKg4wOMd+xQwX0oG5eZbR3PK+ToDsP8K4YbV4+e/RGGltm3K7Vx5izUtXYdXcJ45ufqgBQ0qs4zzRQt25D75Rk7Z8HUz1Gdrl8Icy8XLZ0BjKJCpHD+r7bhKHPqYlPBqN2EepV/BLzv93O8QtlGDVax+bNcO6siQ8HbaNEoevm7ZrUuf7oIZ86ej3MmQO9eqnHsbHQ7Tk3Phm8gU1LDhMTFZOzDRQiBefPqwvSHj3UfMep36QfwOYGh3aGmpf9ajzI0D4tW8KiJJWxnu2mhpqmp2ZN9f8NeSvovns3+U2Uu3dV1ueTJ3OmTSJ1iaWvQI1C69EjJ1uTt9Stq6oVAJw9C8uXW9bmTlrnvF6SyoEZTab2NA4tBwm684TK3tppOnfq8Xt6DfEGho3QAoEv3z5CsfJa/cbBSe4GzpqV8z3dIUHaBUDZcvInK/KGyfMb0tz3MABlilxh5thtnAouSd93m6B30OYNVqqsY9yspoRcL8Kqefv48bMtfB3olzONzmXs7eHXX6F7exUQRMe5MHZ2a1o950fBQtDa/yBjh29m/3q54hU5KyHexDffqIBy82Zt/dQfjFadFmYrhw9oN7Fq18l4vdDWrbXlGTMytk++fFC1qlo+eVLdUMsLbiTp8+jZU5vPffu2+j2cPZsz7RIp++MPrbTVSy+B85Obm9QmRo7UlseN026wublZ3sCoXl2b852Rnm6jUavz7eCg6qY/LSSCyQO8q2l1qc+eMT328X4et4OD59Unnm+FMwz93LIkzzMv+1O8oPp0Wb6jDjeCbyU7RnZKWi6sTHl51xR5g6OzI+v31eDo9rOcu1SEwR81xcEp9TmJ9o72PNOvHm+OaU4BD6lFn8jBAf5cWpQX2+6wWB8bn4+Nh/z5ZGoL6rWtxrcjN+dMA8VT79Dm09SveobRoyHmkQEYF66XY93CnB8xlp5Dx7TPVr+GJbN0jPypTwNPJnGIeUICnDiRpZfLdjeTzG7x8oJ//4U6D6ubXb+uRjhcvJgzbUsqIUEN/V+wQGWbflpltTa3UDp0gBo11PL+/RARoZafew6LfA4ODtr/87lzaoRBWvbtg9CHA2vatFGjEJ4WEnTnAZV9i5uXz155vMzdq/55wHvjtAkYP34fk2zuqL2jAwO6nwLUPNMFP+XsJ+LlB9rYlbK+tdLYUojcxd7RnpqNvXFyyXjPkUjO0dmR39Y2JvTcNRZ8t4NXOm2jrGeoxTZTf6mEyfj4NyWFyIxv3t1MvdaVOHRBTdHS6Uy8/TbMn6x1+cyYnkKt6Fzm8FmVuLGAc3i2VC1JNZlaLpY06C5WTAULa9dCrYeXJVeuqB7VnGIwwO+/q5rqXbtCv35QsaJKjDVokBo1dOVKzrUvOx06pCW5q1Mned15kT6dTmUuf1TSoeWJks7rTi+54NM6tBwk6M4TSnoVx+VhMs9z1ypm+Thz5kC3ni5Ex6mDDei0jaZdUw5iB75V3rw864+yOXoxGxKiLZetkLymuBDi6VCqUglefqcxc1Y2Jfh6KS4cDaFx9aMAXLpVmr3r8kiXmXgiHN56htGTW5jzNtQod45dm24xeTK8MNSPkoVV4tPlO+pZNQmqtd25epfLt1V9a79KQdjpbX9pmBeTqSUdXl5UVTGlcGFVOqxSJfV49+7M1yt+XEajCmR8fVXQn5itO1FwsLr+69sXSpdWSfCSXlc9iZJOdZAEaln3wgtQqpT2uFw5aNYs+XYZTaZmMmlBt17/9JUClaA7D9DpoHJltXzxosrkmxkmE4wdq954DA+naPfqcp0Zi+qnuk/l2uXN81HPXKnIzu1xWWi5dSR+OBQoAO7uOdYMIUQuorPTUbFmWQa+HG5et/CfojnYIvG0WfmXFkgP6bmVA6fKEdBc/Q3aO9rzaq8zABhNemZ+eyZH2pgRh7YHm5f9qoWnvqEVJQ2682pPdyJPTxg1Sns8fXr2tWndOtWT+9xzlsncWrSAzz9Xye6cHhlotWMHNGoEx49nXzuzU0QE/PabWnZz00pbicxzdIQRI7TH/fqBXQqRY0aTqR05ok3BaN4cihSxTjvzCgm68whvb/XdYFB3LTPKEG9g2IAgPvlEWzd8OPyxrHi6Q14HDy9nXp41N2eGx5pMcPlh8tcyth/xJoTIY7oPqoODgxqJ89eKonmmRJPI+9ZsLmReHjmmIo7OliOxXn3Px1yCc+aiKsTH5s7qG4cPayPZavvr09jSegoXVr1m6vXzRmm1lHq6E73wgtYp8McfcO+e7duzahW0b29506JhQ9iwATZtgi++gI0b1RzbjRvhk0+gfHm13ZUrqsd761bbtzO7LVgAUVFq+eWXM5drQCQ3fDi8/rr6XSa9uZSUj482zzutnu6neWg52DjoDgsL47333sPf35+6devy0UcfEZX4n5CKvn374uPjY/H12Wef2bKZeUJi0A0ZT6YWExVD77Z7mTa/gnndN9/A99+nfKfqUT1fLGT+EFm0SEuikJ1uXb5jzmxa1vNq9jdACJGrFfJ0oV07HaCSs+zalcMNEk+F8Fvh7DpZHQDvUkGUr1462TalKpWgSyM1wfHaveIsn5vN444z6NClOuZlvxY1su11E3u7IyO1+r+5WdKe7keDbldX1QsIKmP2/Pm2bcuNG/DKK6pjAsDfH1avVr3YrVpZbpsvn+rx/t//YO9erVcysc540kAorzOZLEcaDBmSc215Ujg5qeH6CxZYJlBLSq/XkgpeumRZzz6pxL81nQ66d7d+W3M7mwbd77//PufPn2fu3LnMmDGD/fv3ZyiA7tWrF9u3bzd/jUyat/4pVbn4efPyuR3p35o0Goz0bH2MJVsaAmCvj2fez3cYOVL9sWeEs7OWFOTBAwickf3lw0LOareWyxY6n8aWQoinVWItb4CFC3OuHeLpsXHZKfNc7vZNUp8gO2Solqh0+s+5M6FiYk+pgwNU8yuYba+b15KpJQ26PT2TP//GG9ryjBlaQGxtJhMMHKgFNl26qN7Fjh3Tv77z9FS94B07qsexsfD88zBtmraN0QhXr6oAfskSbbRhXrB9u5YNv1GjjNWNF9aR3rzuU6fUF6hzU6JE9rQrN7FPf5OsuXDhAtu2bWPx4sXUrFkTgE8++YTXXnuNkSNHUizphJhH5MuXD8+U3tFSYTAYMBhyvp50WhLbl9V2elXQRgicOZv+cb7/cCur97QEwMUpikUzT9DhxTqZfv2BA2HaNDXc7MMPTdQovY92vf0z2fqsC74QZl4uUzr3nefHPa8i95Jzm3d07gyOjnbExelYvDCaSRP0FrXQk5Lz+uTKznP7379acek2HZxSfc2WPX3xKn6JC9fLseGQP6f2X8C7dnmbty+jHjyA06ftAB3Vq5vQ641k6tdnMKA3LxrIzM4qIFJ7HzhgpEePlKPU3PI/e+OG+j15eJjQ6ZL/nnx8oFkzO7Zu1XH6NGzYYKBlS+u3Y9o0HatXqz6zYsVMBAYaMzU8P18+VSf59dd1zJ9vh8kEb74Jv/1m4vZt1VMZG6tF78WKmTh1ykgBK1eytMV5nTZNR2J/4uuvGzEYpKJFdvH31373+/eb6NLF8twGBmrPd+/+ZJ2bjP4N2yzoPnToEAUKFDAH3ACNGjXCzs6Oo0eP0rZt21T3XbFiBcuXL8fT05OWLVsydOhQnNOoan/27Fmrtt2Wjh07lqX94u21oPvUeWcOp3Fb+NKxm3w0WRtf9OPY9RSvVjrNfdLSr08B5v9ZGYPRnt6DfZifsJYy1bMnYdGxI9oYFWfX8Cz/DLaW1fMqcj85t3lDi7pOrN1Zg2s3nVk4cwXVGqVda1jO65PL1ufWZDSxZruatuVoH0uRisY0P5v6dAll7Ew1gXncZEfefjf1bbPb8eMuGI1VAShT5g6HD1/K1P520dEkdlgfPXoUYxrXao9ydHQAVFfktm33OXw47dFsOf0/e/26H6CnQIEYDh8+meI27dsXYutWVWXmm2/CKVTIuoWyL17MxwcfVDU//uij81y9GsHVLMy+e+st0OtLMneu6nLcuTPlbvIbN3T8/vsFGjS4n6U2p8da5/XuXXsWL1Yxh7t7ApUqHbXIVyBsy9XVCVDTUzZujKRLF+3cHjjgxg8/qHmy9vZGqlQ5zuHDuTPHhS3ZLOi+ffs2hQsXtnwxe3vc3d25ldpgf6Bz586ULFmSokWLcubMGSZNmkRQUBA//vhjqvt4e3vjklhTK5cyGAwcO3aMmjVrotdnPlGJyWiikOs97kUV4nRIeSqWcaCAR/LbjtH3o+nX3Z24BDWM7d2XN9Hv7c6P1faZcw3cv7KbpdsacD+6AG+9W4udu0yUrFg8/Z0f02/h2kRyv3pl8fPLXXW6H/e8itxLzm3e0vf5XazdqZZ3bi7Ai0P9UtxOzuuTK7vO7ZmT0Vy65QZA05rHCWgckOb2ZcZUY9J8E7GxOlb9W5rpgSXJRGxqU3v/04rqtmpsxC+zBY2T5Onx9fVNfdJnCkwmKFzYxN27Oi5eLJDqa+eG/9moKIiJUa9dtmy+VNtarRpMmWLi5k0dmzcXolgxd6sNo42NhcGD7cy90G++aeTNN7NeRhZg5kyoVcvI++/rSEjQ4eJiokIFlXAtLg7WrVOvFRVVCT8/6waw1j6vEyboSEhQPamDB9sREJC7rhefdLVqQcGCJsLCdJw/rxJC1axZk4gIPd2722Eyqb+lL7+EDh2q52RTre7BgwcZ6gDOdNA9adIkZs6cmeY2q1evzuxhzXr37m1e9vHxwdPTkwEDBhASEkLZsmVT3Eev1+eZi6cst1UP/t5BbDhUiBthRWnV8DSr18VRoqLlMP2P3jjAycvNAahV4QzjAhs99u9Gr9fz60pfWtQ7wb6z1Qm9U5JuHU+xdZ87boXcHuvY6bl8NZ95uYK3Z649z3npb1BkjpzbvKFbv1rkGxlNTLwzf2+oxlSDCXvH1D/i5Lw+uWx9btdv0j732j/nk+5rFS3hTK9eKhHRvXs6lizR07+/zZqXKUcOxJiX61S9hl6fyVFsSX52vV5v8Tgj/PxUZu3r13XcuqWneBr38nPyf/b2bW25WDFdqu1wdlblWcePh4QEHb/8oreoHvM4vvhCm/terRpMnGiX2V93ikaMUPl7TCYoUkRnnhd++LA27/7oUeu8VkqscV6NRnUDIdGQIbZrr0hd3bqwfj1cu6bj5k0H7Oz0vPWW3pwXoHlzGDnyyTs3Gf37zXQitYEDB7J69eo0v8qUKUORIkW4e/euxb4JCQmEh4dnar52rVrqTtWlS5kb8vQkmvidC4Xd1O/08MUqNGoYx9mD2tCl/37bz9SFKuDO5xDN77/r0y0LllEuBVxYsaYo5Yuq/5xDF6rS55mTJMQlWOX4qQm5pmo96HRGSnmlngdACPF0y184P50aHQbgZrgnW/45mrMNEk+sNWu05fadM3bjOWmSreys45yew6e0EYm1GldIY0vbyCvJ1FKr0Z2S117TEpr9/HOmprmnauNGmDRJLTs4qDrU1hwtUaSISrKWNBFb1apg//C+5ZEj1nutpKyVbG7NGgh6eDncvj14eVnnuCJzkiZTO3nShd9/1/Hnn+qxu7vK6v+kBdyZkemgu3Dhwnh5eaX55ejoSO3atYmIiOD48ePmfXfv3o3RaFRDkDLo1MNUd5kJ1J9UtVtUYcfGMMp5hgIQfLMMjVvmZ+/aE9y6kcCAYVpd7Ymj9lKtQSWrvn6x8p6sWh6Lu0s4AKt21+ftl3dgMmbsXfPCkUtcOhWaqdcMuaHOe/GCN5PVQBVCiKR6Pa+9Fy36PTIHWyKeVLGxsHmzWi5RApKkrUlTw4ZaJuU9e+C1ruvZt+5khj8/bcEQb+DoRTU82av4pRSnrNla0lHahw5l+8tnWFo1uh9Vvjw884xavnxZlfJ6HPfvQ//+WoA6frzl781WnJxUjzqorNMxMWlvnxkmE3zwgY5mzfz46acMltRJg5QJyx2SBt0bNhTirbe0cztjBqQyYPmpYbOSYV5eXjRt2pRPP/2Uo0ePcuDAAf73v//RqVMnc+byGzdu0KFDB44eVT0SISEh/PTTTxw/fpzQ0FA2bNjAqFGjqFevHlWqVLFVU/OUKvUqsnOXPTXLq7kDtyOK0LJrBTp31XMjTAWoHevv480xzWzy+tUCKvH3vIs46OMA+Omv5iwO3J3ufrtWH6Ny7TJ4+3pyfOe5DL1W7INYroepv5WyxW6ns7UQ4mnX6eVauDipOaZLNlQnPvbpS9QibGv7xnAePFDL7dplvASnTgdvvqBFlTNXtKF+u2rU8jrHlI+2cDv0jg1am7azh4KIjlP5cGpXyUImLivIiz3d6QXdYBn4Pe7Ihp9/htCH/RWtW8M77zze8TLj4WBTDAY4mXLuuCxZsAAmT7YjOlrPl1/qHqvHOyQEVq1Sy6VLQ6dO1mmjyLzEGvAA//7rQUSEeoPs2xf69MmhRuUiNq3TPWnSJCpWrEj//v157bXX8Pf358svvzQ/Hx8fT1BQENHR0QA4ODiwa9cuBg0aRMeOHfnmm29o164dM2bMsGUz85ySXsXZuqcYzX0PA/Ag1oW9e9UftqeniTl/VUZn9/h3DlPT6rnaBI7dY3684Nf0/4zmBN7DZLIjLsGJ2T9m7MP9yoUkNbpL2CZrphDiyeHq7krnxmoc5J37HmxcYqMxkeKpteZPLXBu3/RKpvYd/EEtPui32XxjCOBYsDdvj29OqQpuvN59K7EPYtM4gnUd2qV9xvrVzL7XTcrHR5Wwgtzd052Z4eUAHTpAuYeDD//7Txv6nFnx8fD999rjqVPBzqZX7paS9qhb66ZIUBAMG6Y9vnNHZ67fnBU//4y5ZNprr2lD4kX2K1MmeQ378uUhjVzYTxWb/usWLFiQb7/9lkOHDnHgwAHGjx+Pa5LMlqVLl+bMmTMEBKjMnyVKlODXX39lz549HDt2jLVr1zJy5Ejc3GybrCsvKljUnf92VuG5bhEW6+fM0VG8bEGbv37/9xtTvKD6wF5/wI/oB6nfpjQajKzc6mN+/Pd6rwwNqQu5qv2tlK2QS1K9CiFytd69tY+1RX9E52BLRF5jNBh5pfM2PPLfZcF321PcZs02lYpapzPStn2+FLdJjZ3ejgnzWnD9qpGZY7fRsKpWKikuwYmflzVj/Hu7stz+zDp0QBsJUrtuxrOOW5O9vTZE//x5NZQ6N8rM8HJQ81Zff10tm0wqCVpCFlLg/Pmn1svdpYuaZ52dEnu6wTrzuhMS4OWXk5/nLVuydrz792HWLLWs16skdiLn6HSWvd12diZ+/RWr13jPq7Lxfpmwtnyu+fhzSQE++EAlKPj8c+j8eNXBMsxOb0enzup2YnSsExs3pd6zfnDTafMwcYCQW6XZvyH925ohNzzMy2V8/bLeWCHEU6PjC7Vwy6eu6P7eVJO46LgcbpHIK77/aCu/rGrK3cjCDBpZn12rLesHX71wnaNB6gZy3cqnKFLaI6XDpCt/4fwM/qgpO0/W5MTu87z38mbs9SoA/np2Ay4cyZ7EsbsOaknU/BqXyZbXTEniEHOTCY7m0vyHmR1eDjBwoEp6BiqBVPv2lsdJj8kEEydqjz/4IOP7Wou1g+7x42Hnw9KO7u5a58vWrZk/VkIC9O6t3RB59lkoWfLx2ygeT+PG2vLo0SaLx087CbrzOL0eJkyAsDB1JzU7de6pXXCsWJH6disWJ/+UWfJ7+p88iSUGQJIvCCEyxjm/M12bqiv3sKiCrFsj87pF+o5sO8OH3zU0P443OPJ83yLcDLllXrd2yXnzcvvmt7CGagGVmLSgBW+/uAOA2Ph8vP1mmFWOnZYlM3ax44TK7FbOM5QSFXKuOkheSKaW2eHlidtNm6Zla964Efz9taAzPWvWwLGH930CAqBJk4y311qKFIFSpdTy4cOPl218zx4YM0Yt29nBsmVGXFxUavetWzN3bJMJ3noL/v1XPS5YEMaNy3rbhPUMHw6DBhkZNOgan36ac4kicyMJukWWtW2rslsCrFyZ+hvmyg3aJ5SdTr3BLtlSP9032JAQbVmCbiFERvV+Q8vO9Mfi7Bs2e3rfRXwrnCWgynF+/HQL926EZdtri6yLjozhpZdVzhGAAs6qQseVuyXo0y3UXBpzzVrtkql9l8LJD/QYPvu+DiULXwdg5Y5arFxp1cNbuHsX3vy4mvnxN5+F2DQPTHryQjK1xN5UZ2dwzcRbyuDBsGmTynQPcOWKqlU8ZUr6QWbSXu6RIzOetM/aEm+KhIdbXpdlRmSkGlaeWD7tk0+gaVOoVUtVmbh6FS5ezPjxvv1WZcMGNZpg2TLw9s5a24R1ublBYKCJIUOumkd6CEWCbpFlrq7QqpVavnIFDu+LSrbNlStw8LyahFTbJ5TmLdSnxvkgF/Md3NSEBGmJXcrk3Mg3IUQe076TC4UKqeW//4aIiLS3t5aRX5TiWLA3e8/U4K2vmlOiTD5ebLuDDX8dxGgwZk8jRKaNfv0wJ0IqA1CrwhmOHrhPiUIqAN50uDafDD+NId7Aur1qaHkB53AC2ll3cm3+wvn5dmoR8+PhwyHaRikJ3nsPbtx1B6Br08P0GtownT1sq2ZNLaDM7T3dxYplPvht2hQOHlTBNqhh0W+/rbI5pzaH/eBB1TMOUKkSdOuWpWZbRdIh5lm9KfL222rOPqhe+08/Vcu1a2ulHTM6r3vxYsuh9nPmaL9bIXIzCbrFY+ncWssusmLevmTPJ71b36V3aXr21P7klixJ+9iXz6hbqk4OsXgWkSEqQoiMcXLSypNER6f/XmMNV6/C6jVOFuti4/Pxx/rGtOnlT6VSocz5epvtGyIyZc0a+OH3BgDkc4jmt9/0lKtamkXzbprnWX8TWIPPRt3gzn01pap13VM4OFm/C6f3C/a0bKmWg4LU1DFrW7sWfvlFLRcoANP+8MvRXm5QN/B9HuZaPX5cZezOTRIS4M7Dim4Znc/9qOLFYf16GDVKW7doEbRoYZmkLVHSXu733tOGqOeEx53XvXQpzJ6tll1d4ddftQzj/v7aXYeMzOvevVuVn0o0ZozqQRciL5CgWzyWzp20dJwr13sme94i6O4C3btrj9O6EDYZTVy6WRyAsp5Xc/yiQAiRt/Tvry3Pm3EtzW0jI6FnT2jTRg29zYp587ShkwNfvsfbL2zBI79WeznoRlkGf9SYy2dyph6ySO7WLRgwQHs8YWwk1RtWAqBJF18mff3A/Ny4yVqGpvZtbZOcT6dTJaESA5KvvzYSdCJzZcnSEhmpSiolmjRJm6+b0xKHmMfF8Vjlo2zh9m1tKHhWg25Q5/Xrr9VQaHc10ICDB6FRIzh3TtsuKEgF5KDKLyV9L8sJSefcZyXoTppv6IcfVM99omrVHpAvn/rlphd0X7gAXbtCTIx63L+/1mMuRF4gQbd4LGWrlMK3whkA9p2tzrWL2i3bBw/UnV1Qd3n9/VVmyUaN1LoTJ+DMoZQvKMJvRxAZk1+9RrF7tvsBhBBPpPr1waesCra37C1B0PHLqW47aZIahr5hg1rOLJNJ68kB+OTLQkz+vTlXrruxaNou6lY++XA7O3asDU73eFHhUSybtYcbwdZJ1iWSM5ng1VfhuhpFTocOMOx9yxvHw99zp3fv5Pu271HRZu2qXh1GvKW6emNi7Hj79VCrHfuj1/dw6WFi9JYt1Xzj3CI3J1PLShK1tHTrBrt2ablqLl5UGZ/371ePJ0/W6k4PG6bmkeckLy9wcVHLmR1eHh2tRi+AmkbwyiuWzzs6mnhYNZigIMsEukklJKjf262Hb4ktW6r63Dk1z12IrJCgWzy2Lq21XqTVC8+alzcuOWq+I9m5UwJ2D//aerbWJnMv+SXJ7d0kQs5qwXuZkg9S3EYIIVKj00H/7mfMjxdMv5DidhF3o5kyRZu+klYlhtRs+ec4Fx4evnVrqFBBLTu5OPH8kIaM+UTLd7FnV/pjZ4f0OUT3VwNo3TxM5oLbyKyJR/nnH7VcpAjMnZv8Al6nUzWAq1XT/j58SgdRvnppm7bt809izHPKl+8IYPX8vY99zB0rj/LjH6qArrNTLDNn5q6ApW5dbXnTppxrR0oyW6M7I6pWVVnME2uU37qlhpr/8Yd2A8/ZGYYOtc7rPQ69HnxVonsuXsxcjowTJ7QbCHXrpvw317Rp+qXDVqxQxwL1u/v7b3B0zHg7hMgNJOgWj63Lc1rylxWrtXfBFX+Hads0OmBe7tG7oHl5yeqUbxtfvhhuXi5bOiHFbYQQIi19h3qj06krvvl/V8BkTJ4b4qcv9xAWpl0JHj8OwSczN6R39oww8/LgnoeTPR/Qxsu8vOdw2lmvDfEGlm1WV7gnQiqz69/j6b7+z19tpa73SX6ZsD1jDX7KRYVHMfJLrSTG7NlqNFZK3Nzg7791uOdXiT3797R9De38hfPz7RdaKufho4oR+yA2jT3SFhMVw+AhrphM6pLvqxG78PJKZ6ds1rix+l0DrF6tTdXIDbJSozsjSpVSQWazZupxVBS8+KIaJQgwaJC6IZQbJJ3XnZla6km3TQzcH5WRoHv6dG158mRVIkyIvEaCbvHY6rWpRlF3NeZn3b4axETFYDKaWLlVZYN1coihdc+a5u3LVy9DnUpquOXB81VTHPYZEqSlbS1bLgcziAgh8qzS3iVpXVuNVb1wvRw7V1teLUaFR/Hd3BrJ9lv5x/lk61ITdjOMxRvrAFDI9R7P9quSbBuPkoWpVEa9Rx68WJ24NKYEHz2m435MAfPjhb+mPb3m7rV7vDUmgAPnqvHKqCZ8/sbmFG8uCM2f0w4SFlUQgBfa7KBr17S39/GBU4fDWPvHAUZObGr7BgJ9hjWkue9hQP3trl2Yhcm0D00ctZvToSrKru9znBFfZc/PkBlOTtCunVq+dQv2Pn7nvtUk7em2xvDypAoWVMn8eva0XG9nB+++a93XehxZndeddNvUgu4GDbQ8BikF3efOwbp1atnLS5WrFSIvkqBbPDY7vR2dmpwG4EGsK5uWHuPQltNcvasKU7b2P4aru4vFPj07abeO/55vOewz9kEsK1Zrk5jKVrDcVwghMqrfS9oNvHmzwi2eCxy3j9sRqiupTqUT5vUr12S8EO/vPx0hJl69X/XtfJR8rvlS3C6gmZovHBtrl+ZF6/Ydlh/Lf62pgiE+9W6/P2ccNdeXBvgysAVvDLxLggwQStX0uR7m5bc/KJihfUpULEbbPnXQO2TPTWCdnY6339J6t7dszPo0q4UrVLY0vV0Cs2Y7ZtvPkFmdO2vLWZnmYSu26ulOlC8fLFwIb76prXv+eW2aSm6Q1bJhGenpdnWFemrmA6dPW/6+AQIDteXXX8c8VVGIvEb+dIVVdO6aZFj5smhW/KXdGu7cMXmx0Z79ypmXl6zULoAi7kTQqckJ/t2r3oFdnSKp3aS8DVoshHga9BhUG7d8qizNwrW1iL6v3o+iI2OY+LNWa3nefCfKFFHDyjcdqsn9u6kU0H3ErN+0q/BBw0qkul2DBtrynj2pH2/bI1XFrocVY/vKYylvDMxbmHz86c/zPHjuOdvVec7L9q07yYFz1QDwr3SKem2q5XCLUtekg5bmeeve5NVBMuL+3fucvKx6uX0rnKNmY2+rtM0WnnlGm/ObtPJJTrN2IrWU6PUqc/0vv8CIEfDTT7Z5naxKWks9oz3dJpMWdJcsmfZQ+cQh9mDZ2x0To/ItgJrDnbTagBB5jQTdwiraPV8dR3t1V37lFi9WrNcuRDu/UDnZ9t7+FahRTiVR23WqJlfOX+P6dWje0p4Nh/wBVTP1j+knKVLaI9n+QgiREa7urjzX+jAAEdHuLJ+vrhh/mbSP62HqCrpn811Ub1iJLi3UsPK4BCfWLzmR4vGSOrjpFIcuqMC9nvcJfJukHtAkZugFVWs2JSYTbE9hWvbC31LOXHR6fxB7z1QHoFaFM/wx+woOD8tH//PP45VAy2lGo7o5Ye32T5+ilXEb8srtXF2OskhpD6qXVZ+TB8/7ZPhGUFIHNl8wz+Wu75u7s+EXK6aqDgAcO4Y503pOs0UitZTodKoM1vffg0cuu+xxc9NKfR07RoZG0ly5ov3/ptbLnSi1oPuvv7RjPP+8KqEmRF4lQbewCrdCbrSsrXpjLt8uZe5J8Kt4mjLeKff+9OyoJSua9NUNGjWCw8fUUPLCbnfZsPQ8XV6pb+OWCyGedP0H5jcvL/jVkYS4BCbM0G4GfvxFIQA6d9Omsqz4J/0s47OnaV1gg/veSWNLNTzTyUnNtd6zPSzFbYJOXuPaw2IQjRrEk89BdVUvWV+VhLjkV7nzpmlRSf9e1+gzsBT//gv5H/64O3dC04B7XDmfdp3yrDAajPw6eQezxm2zyRzyb79VowO8vGDbFuuMlb93I4w/16n59+4u4bzwpr9VjmtLzeuruu4Goz271pxJZ+vk9u7QplTUr597bzAk6tJFW84tvd2JPd12drkvGM5OiUPMY2Is64qnJunQ8qTD01PSuLHWk5406E6aQG3IkIy1U4jcSoJuYTWdeya/Bdm59fVUt+/5cknz8vfz/AgKUstly8L2HU406lQzlT2FECLjmnXzpZynqne8dr8/i6ff4PJtNc+1c8O91G6hkp+17F4TFydV3mvV9ippluuKvv+A31b7AeDiFEWfIX5ptsHREfwrqkzk5y8V5M7V5F2421Zr+S061t3BMw1Vr/zNcE+2/GOZBM4Qb+DX5apnXW+XwItvqB7v1q1hyxZtGOzJ84UY/JL1aj0D3A69wzMND9L33ca8+nFT5n+7w6rHNxhUbx9AWBi0bWtg2azUx+SbTKrUUo8edqxfXzDV7eZPOUx0nLqx0q/LYVzdMz53P6c0a+5gXt66MfM93fsOalO/6jdLJUV7LpI06M4t87oTg+4iRdQw8KdVZpOpZWQ+dyJ3d+34R4/CvXvqNXbtUutq1oRGjTLTWiFyHwm6hdV07l0u2bouz6c+FqtGw8pULhlkua6G6p2p6pv7L4aEEHmDnd6Oft1VQGs06Zm0QEtX/fFn2ntNPtd8tK2nAuOb4Z7sW38y1WMumXWQ8AfuAPRqc5ACHgVS3TZRgJ8WaO/ZcDHZ89u3a0F+k5YF6d1b60Fe+FuUxbablh4h9I66cdkx4CDFyms3PWvXhp3b4ylVWPVw/7e3Hif3ZDwje1r2rj1BHf9o1uzTCivPXWzdjE8bNsDVq9rj2Hgner5WlxlfJk9tfOmSmgv84ouwfLmODz+syLq/k3fDmYwmZiwoY378xjulrNpmW2nasaJ5ecvhqmlsmbK9J9TP7OoUSdV6FdPZOufVrAllHp6mTZvgfubvM1iVyaQNL7fl0PK8ILPJ1DKSuTyp5s3V98RpNjNmaM+98UbuqisvrGf06NEMTVKQvm/fvowdOzbb27Fnzx58fHyIyEwh+kySoFtYTfnyUKO6dtFYrOBN6rZKXj4nkc5OR69ntOGRzZqpJEKl8sa1kBAiD+n7XrNk69r4H6RBh+oW67o8o9XzWrH4dqrHmzW/oHl50OvuGWpDg0b25uU9OyKTPb/9oHrzc9DHUb+NN51e8sUlXwwAf29vQnySEe/zlmnt7tc3eXbzipUceP+1s+bHUydcTbZNZpiMJqZ9voUmz1Qm5FZpi+e27C3F5eSVH7Ns3s/a793fR92YNZr0DPm8mbkkmiHewA8fb6V6dSP//ZeknSYdLw/yJOS0Za31zUsPmctmNfc9TLWASuQFJb2KU6mS+lzde7R4ppLjXb9mMp+rujXv5Nqs5UnpdFpvd1wcrF+fs+25fx9iHyaRf9qD7qz2dDs6qrJ76Uk6r3vVKvj1V7Xs6govv5zhZgorGT16ND4+Pvj4+FCjRg3atm3Ljz/+SIKNS2NMnTqVESNGZGjb7AiUrUmCbmFVSYeGdWoRip0+7T+xUd/UYVCXbXw4cAtr/jNRsKBt2yeEeDpV9tYlG5746WfJg5BOfbRkaCs3pDwc9/x52HJY1ff2KXedxhmcChPQUhsNtOegm8Vzty7fNgeFdSqfwaWAC67urnTuqkqQ3bmjY+NGte39+/D3P6pMWMGC0GVAA1Lyyrt+5szt81fV4d6NsAy181FR4VH07biTN79sTrxBDVduVO0oQ1/Tbhz8+WeWDp1MxJ0Ilq54mNvD/QE7DpVn5IDN5ue/DGxBv2d20tj3FCPGNSMqSn3GlCwJjWqo0pV37nvwXLcwYh9oJbem/671Eg95Nevlt3JCs2bqZ4yLy1z96n37ta7B+i2Tj0TLrXJT6TBb1ujOa0qVgsKF1XJ6Pd0xMXDmYQqCatUwJ3hMS5Mm2vLMmRD58O3l5ZehQPoDiYQNNG3alO3bt7NmzRpeeeUVfvzxR2bPnp1su7i4uBT2zpqCBQvi5uaW/oZ5kATdwqr6D7DDyUndrR48Mv0kNfkL52fW8qaMm92cfM4ydkgIYTv9+2vLTRrH0axb8uw+xSsUo14VNTz5SFAVQi5ZJgkzGCwT+gx6s3iGM2CXq1qKou4qg/Tek14Wc8Z3rNGGfzeppyVl691b23/hQvV98WJ48DBu7NOHVN873T3dGdD1IAAPYl2ZPelwhtqZ6Pp1mPDBTmr63OG3tY3N699+YQubD1bl3ZHahdFvv2Xq0Kn66+cj5nnXL7TbRz5nHd/MbcHk0VvM2/y6pjF7TtcwPx4y8C4nT8I/azypUCwYgH1nqzPiZTUP/No1WLpc1VIvWtRE98F5K0Fn4rBbsEwylZ6kAXpiHeS8oGVLcHmY03DVKpXJPqfYukZ3XqLTab3d168nr6ed1MmT6r0SMja0HFRm8moPK/glPeeSQC3nODo64unpSalSpXjxxRdp1KgRGzduNA8Jnz59Ok2aNKFDhw4AXLt2jREjRhAQEMCrr77Km2++SWiollPEYDAwfvx46tatS0BAABMmTMBksvyMfXR4eVxcHBMnTqR58+bmHve//vqL0NBQ+vXrB0C9evXw8fFh9OjRABiNRgIDA2nVqhW+vr507dqV/5IOiQK2bNlC+/bt8fX1pW/fvly5Yjk6yhYk6BZW5eMDFy/ChQvQsGFOt0YIITQvvwzNm5soXjyW76ekPtS2y4taZvOVqywD2s8/14a8FisGAwdm/PV1djoa1FBzue9FFeLc4WDzc9s2x5iXm7ZwNi937KjK9QAsXap6O+fN046Z9EZCSt4apc1j/nFepRSzoCeVkKB6F599FkqXhlGTGhF0oywAbvnus2jaLib/3hwHJwe8vLRSaEeOwIkDqQ/Hz6h5v2tdWv1f1eapvz2+OX/8sBMHvdaj4lPqIlv/OcK02YVxd4dCxQoy8euT5qzvgUub8cuE7cyerZU4GjRIh2M+bZh/XpB02O2WjTGpb/iIffu05fp56D5DvnzQtq1avnnT8ufIbtlRozsvSTqvO60h5pnJXJ5U0htMoCoYZGb/POPUd7C0dPpfW7om33dL14zte+o7qzfbycmJ+IfznHbt2kVQUBBz584lMDCQ+Ph4Bg0ahKurKwsWLOCLL77AxcWFwYMHm3vC58yZw9KlSxk3bhy///474eHhrFu3Ls3XHDlyJKtWreKTTz7h33//5csvv8TV1ZUSJUowdepUAP777z+2b9/Oxx9/DEBgYCDLli1jzJgxrFq1igEDBvDBBx+w9+GdyGvXrjFs2DBatmzJsmXLeP755/n222+t/vt6lATdwupKloQK1s2rI4QQj83FBTZsMLJy5XGL+YmPSq1s0fI5e0m8Aa/Xq57nzJYQCqijTcrds0mbZ719fxHzcuP22nxjZ2fo2kV1GYWFwcxxO9jysNPX29tkUf87Jd7+FelYX0Utl26VZvkv+1PczmQ0MXn0FsqWNdK1q6rzbUgyVbx17YPs336L54dY3k19qYdWoeL36cfTbkw6Lh4LYdtxdYVdtcx56ra2TBzW561GrF9yis4N9/LVW5s5fKYkTbtaXpGXr1mMaV9pP+OQT+ow9Qd1kajTwWuvPVYTc0S5clCm2D0Adu40EheTfjk7k9HE3l0qQC9a1EjZsjZtotVZ/g/m3Ci47KrRnVdkNJlaZjKXJ9XskdQbT2wvd3wERF9J/yvmVvJ9Y25lbN94681zNplM7Ny5k+3btxPw8EPHxcWFr776isqVK1O5cmVWr16N0Whk7NixeHt7U6pUKcaOHcu1a9fMwe68efN47bXXaNeuHV5eXowZM4b8+fOn+rpBQUH8+++/jBs3jrZt21KmTBkaNmzIM888g16vx91d5VPx8PDA09OT/PnzExcXR2BgIOPGjaNp06aUKVOGHj160LVrVxY+HC72xx9/ULZsWUaPHk3FihXp2rUr3bt3t9rvKzV563avEEIIYWO1aqle3tBQ2LgRoqLg2rlL9HtLywb0zfgEmjfP/EdoQJMC8INa3rPHQD/UnOmD59Wxq5U5j0cpyyRfvdsc4Pc/VFfl++O0aTv9O+1Bp0t5PndSI0bo+PcltfzDT/nokULg+c17W/jw+xYW60qWhAH9TbzS+wqVaqU8XahXLz3vfJiAwWjP7yu8+MpoyvBw+0fNn3YRUNFhv56h6OySJztr1q0WzbqlfZx+7zViz+6tBC5tRky8s/m69ZlnVMLPvEang2a1TvLb2sZEx7lwcPNxGnSokeY+F46GcC9CzeOu77UfnS4PdXUDnTppy6tX6+jZM2faIcPLLWU0mVpmM5cnatpUWy5cGHr1yvi+eYpDAXDOQNbgfMlL8ZLPM2P7Ojz+RPjNmzdTu3Zt4uPjMZlMdO7cmbfeeosvv/wSb29vHB21koSnT58mJCQEf39/TCYTRqMROzs7YmNjCQkJ4f79+9y6dYtaSe7c2NvbU6NGjWRDzBOdOnUKvV5PvUzMj7l06RLR0dEMfGQYWnx8PFWrqhu5Fy5cwPeRP0y/tO7EW4kE3UIIIUQSOp1K5jRjhspcvHzBCb6eYG8uEfZci128+176wW5K6rWqhE5nxGSyY/dhdRW/Z91ZEgy1AWhS5ypgGWy271OLAsPCiYh2Jybe+WEbjfR9PWPdl+36+FNl1AVOh3qx5agfh7eewa+ZdgNh4Y87LQLu7s8aGTTYjvbtwd5eB5ROftCHipX3pE2d/azZV5fgm2XY9e8xGmUwsVxSRoOR+Usrmn+2l4dmIN1xGqb8GsDB2ifYd1bL8j7kxTPA4x03pzRvZuC3tWp567rbNOiQ9vZ7t4QCD4Nu/7yVOA6geHE1D33fPjhyRMf16xnIxGUDkkjNUtWqKilafHzqPd0mkxZ0Fy+euZsVpUqpKTO//QZffaWmGjyRqr6rvrKi+XLrtiUNAQEBfPHFFzg4OFC0aFHs7bWw0dnZ2WLbBw8eUL16dSZNmoTBYODUqVNUrVoVvV5P4cQMfJmULwt/AA8eJjwJDAyk2CP/tElvEuQEGV4uhBBCPKJL02Pm5UEjKnA0SAVrVUpfYM6SGlnuzS3gUYBqZdW87qNB3kQ/MLH9gHZh0KRp8o9lJxcnnm1xzGJdK7/DlPEpmaHX1NnZ8dZALZnND3O0es07Vh6l/7taL/bY4Zv5e6kdnTqBfQZvy7/YW8sS/tsvd9PYMnXbVx4zzx1v43+I0pVLZOk4iZxcnFj8T0E88qukdJVKBNPh+bxRJiwlzdprNz627nRJd/u9e7S5+/Ub5c1MwEmHmG/bVjBH2iA93ZYcHbVkZ6dPp1xH/fp1uPMwF2RmerkT/fKLGl30xA4tz0OcnZ0pV64cJUuWtAi4U1K9enUuXbqEh4cH5cqVo3jx4pQrV45y5cqRP39+8ufPj6enJ0eSDINISEjgxIkTqR7T29sbo9HIvlQSOzg8TItvSDIXysvLC0dHR65evWp+/cSvEiVKmLc5dszyM/VIRurgPSYJuoUQQohHtOxSCWdHdcc8MZu2W777/L1EVV14HA1aq6A3waDn4CEd2/ZrwXPT7o1S3Kd3HyeLx/1eykTBZtSQa3d3NYTv9z8duHULzh8KptuLpYiNV70Jg7ps48PJzdM6TIq6v+JrTl62aG114mPTn3P8qPmztfmH/V/KeLKwtJStUoodm8L55NXNrPjHmCfqVKfG27+COfP9tiM+GOKT12ZPau9hrWepXksvm7bNVpKWDtu2zT1H2iBBd3KNHxYyMBhSrlqQ1aHlSeVwh6TIgi5dulCoUCGGDBnC/v37uXnzJnv37uWrr77i+nWV+6Nfv37MnDmT9evXc+HCBcaMGZNmje3SpUvTvXt3PvroI9avX8/ly5fZs2cPq1evBqBUqVLodDo2b97M3bt3iYqKws3NjYEDBzJ+/HiWLl1KSEgIJ06cYMGCBSxduhSAPn36EBwczDfffMPFixdZsWKF+TlbkqBbCCGEeIRzfmfa1rO8Ez7nu+NUrf/4AUxAA+2jd/t22LVLLZcqBeXKp/yx3Ob5WhRyVcm0XJ0i6TEwcyl93Qo4MHiw6p2PjYXx/4vmmc4m7txXmeDa1jnA9L8aZKkHP3/h/HRtehiA2xFFWLfwcKb2fxDxgEXr1c+T3zmC7oNqZ7oNqfGpU5H//dyCKvUqpr9xLqaz09GstiorFxHtztEd51LdNj42nkPnVa++V/FLFC5RKFvaaG1+fiq3AsD+/fmJisr+NiQOL3dz08qYPe0GD9aWp09Xw8mTymrmcpG3OTs78+uvv1KyZElGjBjBBx98wKeffkpsbKy57vbAgQPp2rUro0aNok+fPri6utI2sVRBKr744gvat2/PF198QceOHfn000+JjlY3eYsVK8Zbb73Ft99+S6NGjfjf//4HwNtvv83QoUMJDAzkmWeeYfDgwWzevJnSD99QSpYsydSpU9mwYQPdunXjzz//5J133rHhb+chUx4WFRVl2r9/vykqKiqnm5KuhIQE0/79+00JCQk53RRhRXJen1xybp9MmTmv87/dZlKXlCbTOy9uslobjhwxmY9bqZK23Lt32vv9OXWHyb/SSdP8b7dl6XUvXjSZ7Oy010v8qlHurCnsZliWjpnon9m7zcd7se32TO3727z75n0Hdt6a5TY86f+zUz/ZbP49ff/h5lS3O7jplHm7F9pk7lxkWmSk9ocUGWn1w7/xhnb4v//O/vNaqJB67YoVs/2lc7WAAO287Nxp+dxLL2nPHTmS+jGe9P/Xp9nTdm4zGo9KT7cQQgiRgpdGNOLbkZuZPHoLE+Y2sdpxq1cHV1e1fP68tj5p5t6U9B7WiAPnqtL33ay1pUIF6PpI2dfiBW+w6j8X3D0fb/huhxdqm3vil231Iyo8492S837T5hz3f9vvsdrxJGvWvrh5eeuO1Mff7t2mjYmuXzftuuy5XdIs5uvWZW/psLg4uKf+pCWJ2iOSzreePt3yucTh5Q4OUKVK9rVJiNxOgm4hhBAiBXZ6O979pgVvj2+OvaP1in3o9VCv2qVk65vUvW2110jN8AFnzcsuTlGsXHKXslUyUH4mHY7OjjzfVg3HfxDryj+/ZCwpzZUrsH69Wq5QAZq0fLz58k+yGg0rU9A1DICthytjMqZcZmfvPi04rd8ka1mDc4vmzcHeXv2c69dnb9B9K0mJZJnPbalXLyj0cNbCokVa4rTYWJVgDVSmc5mbLYRGgm4hhBAimwVUD7J47O4STg1/28+9bdGlMsN7b6FGuXMs++U0dVpVtdqxX+yv9Zb/viJjmcIXLACjUS336wd2clWSKju9HU1rnQHU3PlTB6+nuN3eo6pHXG+XQO1meTdjO0D+/NDgYXW+c+d0XEp+r8pmJIla6pydYcAAtRwbC3PnquXTpyHh4eCKrCZRE+JJJR9vQgghRDZr0NiyxmmjGmezJbu2zk7HlD+bcyy4Mm371LHqsZt2qUnpUuqKe82WotxOp+M+IS6BaVPCVbt0KugWaWvWXhuVsHV/8rJqkfdNnLyskv35VjiPc37nZNvkNW3aaD36iaMisoPU6E7bG29oyzNmqJtnSZOoSdAthCUJuoUQQohsFtCqvMXjJg1yIDWzldnp7XjhRTUMPyEBZs5Me/t/5uzj8nXVO/5M0/NUzNsJxrNF845J6nVvTf78wUM6jEZ1aVevVeXsapZNtW6tBd3r1mXf60pPd9q8vaF1a7V84YK6IZK0XJhkLhfCkgTdQgghRDYrUbEYZTxCzI+bti6Yc42xoldf1YaIf/cdaZZ5mvKTVoNpxJBwG7fsyVC7tpaEb+vW5OWa9u7VlusH5N265EnVqwdubmoExYYN2nQEW5OgO32PJlSTnm4hUidBtxBCCJEDnmkWDECxgjep1/rJSPNbuTL06aOWb9+GwK8Ppbjdoc2n2XZcdYVVLXOBNr38s6uJeZq9PTRurJavXIHhfbYQFx1rft4i6K6fzY2zEXt7qFv3PqD+pg4fzp7XleHl6evaFUo8nOWwfDns2aOWPT3ldybEoyToFkIIIXLAhJl+/PzVVjb+F0E+13w53Ryr+WhkjHl54o8liYmMTrbNDxO11NDDB19BZ5e9manzssQEVgA/LmpOM/9zXD5zFYC9e1U3sKsrVKuWA42zkfr175uXs2tet/R0p8/BAQYPVstGI0REqOVatVSeBiGERoJuIYQQIgcU8CjAqx83o1pA3s4w/ajqtfLRs/kuAK6HFWP2xL0Wz98MucXva1U3bEHXMPqOsG5Ctyddnz4wc8JRnBzUzY09p2tQu54Tv07ewaVL6rKuTtUQ9E/G6HIAAgIizMvZNa9berozJumUkkQytFyI5GwWdE+fPp0+ffpQq1Yt6tatm6F9TCYTU6ZMoUmTJvj6+jJgwACCg4Nt1UQhhBBC2MDHX2jlz76ZVom46Djz48AJJ4hLcAJgcI/DuLq7Znv78jKdDgZ/4MvONUGUL3oZgDv3Pej7bmPzNvWrXsyp5tlE2bKxlC2rJrBv2wbRyQdPWF1iT7der9WkFsmVKQNduliuk6BbiORsFnTHx8fToUMHXnjhhQzvM3PmTBYsWMAXX3zBokWLcHZ2ZtCgQcTGxqa/sxBCCCFyhdotqtC5oerhvny7FPMnq8mecdFxTP9dzV+30xl4c9ST1cufnfxbVuXg0fx0arA32XP1GzrlQItsR6fTspjHxsL27bZ/zcSg29NT6senJ2lCNZDM5XmZj49Pml9Tp07N6SbmWTZ7Gxk+fDgDBgzA29s7Q9ubTCbmz5/PkCFDaNOmDVWqVGHChAncvHmT9dlZmFEIIYQQj+2Tz7Xs5OOnliUhLoHFP+/j2r3iAHRrso/y1UuntrvIgELFCrJ8e13GDt+Mnc5gXh/QsmwOtso22rTRlm19WWgyaUG3DC1PX9u24KXKw5MvH1StmrPtEVm3fft289dHH32Em5ubxbqBAweatzWZTCQkJORga/MW+5xuQKLQ0FBu3bpFo0aNzOvy589PrVq1OHToEJ06dUp1X4PBgMFgSPX53CCxfbm9nSJz5Lw+ueTcPpnkvGafum2q0rbOftYdqMvF6+X47YdtTJutZaQa9rajVc/D03xuR33XlHqNDzFpIrRpfp9SlZtlz+/BYEBvXjSADV4z8edo3jwBcARg3ToT48bZrnbYvXsQH69+Mk9PEwZDNtUpy8NmzYIxY+x4+WUT9vamdP8Unub/19yscOHC5mVXV1d0Op153d69exkwYAAzZszghx9+4OzZs8yaNYtly5YRERHBjz/+CKhzOn/+fL777jvmz58PgNFoZNasWfz111/cvn2b8uXL88Ybb9C+ffvs/yGtLKN/w7km6L51S2Uy9fDwsFjv4eHB7du309z37NmzNmuXtR07diynmyBsQM7rk0vO7ZNJzmv26D/gGusOqOX3v6zG7fvqM75GhQsUKGPksA3qPz2t57awl45xMwAK2OT3mhK76GhqP1w+evQoRmdnm73W9evH8PGpypkzLhw6pGPTpuMUKmSbXrbgYCegBgAODnc5fDjYJq/zJMmfHyZNUsuZ+fN72v5f168vyIwZJXnwIPsyHbq4GHjjjau0aROWqf1CQkIwGAzm95Pz588DMG7cOF566SWKFi1KXFwcd+/eJSoqKtn7TtJ1y5YtY/v27fTt25fixYtz+vRpRo4cyd27d6n6lAyNyFTQPWnSJGbOnJnmNqtXr8YrcYxJNvH29sbFxSX9DXOQwWDg2LFj1KxZE/2TlFL0KSfn9ckl5/bJJOc1e/n5+fHzz4fZeszPHHADjPioArX9y1v1teTc5oCoKPOir6+vqlVmZUnPa+fO9pw5o9bfvFmTli1NVn890EpfAfj4FMLPr6BNXudp9rT+v77xhh3BwdlfT23Jkoq8/37mRmwEBQWh1+vx8/MDIC5OJcT84IMPaN26tXm71atXY29vb94usefX1dUVPz8/4uLiGDRoELNnzzZv0759e27fvs3Bgwczlf8rN3rw4EGGOoAzFXQPHDiQ7t27p7lNmTJlMnNIM09PTwDu3LlD0SQFEe/cuUOVKlXS3Fev1+eZf9i81FaRcXJen1xybp9Mcl6zz6cfG2jbR3tcpAi8/LKdzUpaybnNRkl+z3q9HlvWKdPr9bRvb8e336rHGzfa8eKLltuEhcGMGVC2LLzwQtZrRd+5oy0XL267v1Xx9P2/jhoFn34K9++nv6215M8PI0fqMv17tnuYQTBxv8THtWrVsjiWTqdDp0t+/MR1oaGhREdHMzixqPtD8fHxVK1aNc+f/4y2P1NBd+HChS3G+ltT6dKl8fT0ZNeuXeZhBpGRkRw5ciTP3wERQgghnlatn/cnYGwIe46p5F6vvaaSLQmRWU2agJOTymC+bp1KeJYYWIeGQseOcPy4ehwSAqNHZ+11pEa3sJXnnlNfeZnzI9NIdDodJpPlqJOk85wfPHgAQGBgIMUe+YdydHS0UStzH5tlL7969SqnTp3i6tWrGAwGTp06xalTp4hKMhSpQ4cOrFu3DlAnrF+/fkyfPp0NGzZw5swZRo4cSdGiRWmTNGWlEEIIIfIMnZ2OyYFlcXODihVh+PCcbpHIq5ydVeANKqg+d04tnzoFjRppATfAhx/Cn39m7XUSM5cDJBl8KYRIQeHChc25uRJdunTJvOzl5YWjoyNXr16lXLlyFl8lSpTI7ubmGJslUvvhhx9YunSp+fGzzz4LwPz58wkICADUXIH7ScZXvPrqq0RHR/PZZ58RERFBnTp1mDVrFk5OT1a9SSGEEOJp0rChCmT0eniKOjaEDbRtCxs2qOX16+H2bejcWWUcByhYUA0zBxgwAEqX1gL1jJKgW4iMa9CgAbNnz2bZsmX4+fmxbNkyLl++jLu7OwBubm4MHDiQ8ePHYzKZqFOnDvfv3+fgwYO4ubmlO3X5SWGzoPvrr7/m66+/TnObM4nZMB7S6XSMGDGCESNG2KpZQgghhMgBNkxsLZ4ibdtqw8anToXgYIiJUY/r1IFVq+Djj2H2bDUMvVs32L0bKlfO+GvI8HIhMq5p06YMHTqUiRMnEhsbS48ePWjatCn3Eu+EAW+//TaFCxcmMDCQ0NBQ8ufPT7Vq1XjjjTdysOXZK9eUDBNCCCGEECItfn7g4aGSnZ0+ra1v2xaWLFFJo6ZPV8PP162Du3fhmWdg1y6VxC89Z8+qHnRQIzMe5vkV4qnTo0cPevToYX4cEBCQrMM00fDhwxn+cO5QYpmxxEzloDpW+/fvT//+/W3a5tzMZnO6hRBCCCGEsCY7O0hSrQiAl16ClStVwA3g4AB//QU1VKltzp9XPd6JPeKpiYqCnj21zNIvvyxJ/4QQ1iFBtxBCCCGEyDN69dKW33sP5s9PnivA3V0NNS9eXD3euVMF0akF3iaTyqyfmIytWjX48Ufrt10I8XSSoFsIIYQQQuQZPXrA0qVq+PikSar3OyVly6oecBcX9XjJEpVULTg4+bY//QS//66W3dzUtm5uNmm+EOIpJEG3EEIIIYTIM3Q6ePZZyEhF2Tp1YNEibZj4gQPg7w+rV2vb7NwJ77yjPf7lF6hSxZotFkI87SToFkIIIYQQT6xOnVQiNS8v9fjePbXu00/h2jV4/nlISFDPvf++mtcthBDWJEG3EEIIIYR4ovn5wf79qoc80Vdfgbc3XL2qHjdvDuPH50TrhBBPOgm6hRBCCCHEE69gQfj7b5gwQZUDA4iMVN9LlIA//wR7KaYrhLABCbqFEEIIIcRTQaeDDz6ADRu0zOb29qrEWOJjIYSwNrmfJ4QQQgghnirNm8PhwypjedOmULduTrdICPEkk6BbCCGEEEI8dYoVs8xaLoQQtiLDy4UQQgghhBBCCBuRoFsIIYQQQgghhLARCbqFEEIIIYQQQggbydNzuo1GIwDR0dE53JL0GQwGAB48eIA+sU6FyPPkvD655Nw+meS8Prnk3OaAmBjw8dGWdTqrv4Sc1yeTnNcn19N2bhPj0MS4NDU6k8lkyo4G2cKdO3cIDg7O6WYIIYQQQgghhHhKlS9fHg8Pj1Sfz9NBd0JCAuHh4Tg5OWFnJyPlhRBCCCGEEEJkD6PRSGxsLO7u7tjbpz6IPE8H3UIIIYQQQgghRG4m3cNCCCGEEEIIIYSNSNAthBBCCCGEEELYiATdQgghhBBCCCGEjUjQnQ1+++03WrVqRc2aNXn++ec5evRoTjdJZFJgYCA9e/akdu3aNGzYkKFDh3Lx4kWLbWJjYxkzZgwBAQHUrl2bt956i9u3b+dQi0VW/Pzzz/j4+DB27FjzOjmvedONGzd4//33CQgIwNfXly5dunDs2DHz8yaTiSlTptCkSRN8fX0ZMGCAVMPIAwwGA99//z2tWrXC19eXNm3a8NNPP5E0PY2c29xv3759vPHGGzRp0gQfHx/Wr19v8XxGzmFYWBjvvfce/v7+1K1bl48++oioqKhs/ClEStI6t/Hx8UycOJEuXbrg5+dHkyZNGDlyJDdu3LA4hpzb3Ce9/9mkPvvsM3x8fPjll18s1j/t51WCbhtbvXo148eP580332Tp0qVUqVKFQYMGcefOnZxumsiEvXv38tJLL7Fo0SLmzp1LQkICgwYN4sGDB+Ztxo0bx6ZNm/j+++9ZsGABN2/eZNiwYTnYapEZR48e5c8//8QnsebsQ3Je857w8HBeeOEFHBwcmDlzJqtWrWLUqFG4u7ubt5k5cyYLFizgiy++YNGiRTg7OzNo0CBiY2NzsOUiPTNnzuSPP/7gs88+Y/Xq1bz//vvMmjWLBQsWWGwj5zZ3e/DgAT4+Pnz++ecpPp+Rc/j+++9z/vx55s6dy4wZM9i/fz+fffZZdv0IIhVpnduYmBhOnjzJkCFD+Pvvv/nxxx8JCgpiyJAhFtvJuc190vufTbRu3TqOHDlC0aJFkz331J9Xk7Cp5557zjRmzBjzY4PBYGrSpIkpMDAwB1slHtedO3dM3t7epr1795pMJpMpIiLCVL16ddO///5r3ub8+fMmb29v06FDh3KolSKjIiMjTe3atTPt2LHD9PLLL5u++uork8kk5zWvmjhxoumFF15I9Xmj0Whq3LixadasWeZ1ERERpho1aphWrlyZHU0UWfTaa6+ZPvzwQ4t1w4YNM7333nsmk0nObV7k7e1tWrdunflxRs5h4vvw0aNHzdts2bLF5OPjY7p+/Xr2NV6k6dFzm5IjR46YvL29TVeuXDGZTHJu84LUzuv169dNTZs2NZ09e9bUsmVL09y5c83PyXk1maSn24bi4uI4ceIEjRo1Mq+zs7OjUaNGHDp0KAdbJh7X/fv3Acw9Z8ePHyc+Pt7iXHt5eVGyZEkOHz6cE00UmfDll1/SvHlzi/MHcl7zqo0bN1KjRg2GDx9Ow4YNefbZZ1m0aJH5+dDQUG7dumVxXvPnz0+tWrXkvTmXq127Nrt37yYoKAiA06dPc+DAAZo1awbIuX0SZOQcHjp0iAIFClCzZk3zNo0aNcLOzk6m8OUxkZGR6HQ6ChQoAMi5zauMRiMffPABgwYNonLlysmel/MKqVfwFo/t3r17GAwGPDw8LNZ7eHgkmw8s8g6j0ci4cePw9/fH29sbgNu3b+Pg4GD+0Ejk4eHBrVu3cqKZIoNWrVrFyZMnWbx4cbLn5LzmTZcvX+aPP/7glVde4Y033uDYsWN89dVXODg40L17d/O5S+m9Webr526vvfYakZGRdOzYEb1ej8Fg4J133qFr164Acm6fABk5h7dv36Zw4cIWz9vb2+Pu7i7vzXlIbGwskyZNolOnTri5uQFybvOqmTNnYm9vT79+/VJ8Xs6rBN1CZNqYMWM4d+4cv//+e043RTyma9euMXbsWObMmYOTk1NON0dYiclkokaNGrz77rsAVKtWjXPnzvHnn3/SvXv3HG6deBz//vsvK1as4Ntvv6VSpUqcOnWK8ePHU7RoUTm3QuQh8fHxjBgxApPJxJgxY3K6OeIxHD9+nPnz5/P333+j0+lyujm5lgwvt6FChQqh1+uTJU27c+cORYoUyaFWicfx5ZdfsnnzZubNm0fx4sXN64sUKUJ8fDwREREW29+5cwdPT8/sbqbIoBMnTnDnzh169OhBtWrVqFatGnv37mXBggVUq1ZNzmse5enpiZeXl8W6ihUrcvXqVfPzgLw350ETJkzgtddeo1OnTvj4+PDss8/Sv39/AgMDATm3T4KMnMMiRYpw9+5di+cTEhIIDw+X9+Y8ID4+nrfffpurV68yZ84ccy83yLnNi/bv38+dO3do2bKl+VrqypUrfPPNN7Rq1QqQ8woSdNuUo6Mj1atXZ9euXeZ1RqORXbt2Ubt27Rxsmcgsk8nEl19+ybp165g3bx5lypSxeL5GjRo4ODhYnOuLFy9y9epV/Pz8srm1IqMaNGjAihUrWLZsmfmrRo0adOnSxbws5zXv8ff3N8/5TRQcHEypUqUAKF26NJ6enhbnNTIykiNHjsh7cy4XExOTrCdFr9ebS4bJuc37MnIOa9euTUREBMePHzdvs3v3boxGI76+vtneZpFxiQH3pUuX+OWXXyhUqJDF83Ju855u3bqxfPlyi2upokWLMmjQIGbNmgXIeQUZXm5zr7zyCqNGjaJGjRr4+voyb948oqOj6dGjR043TWTCmDFjWLlyJdOmTcPV1dU8/yR//vzky5eP/Pnz07NnT77++mvc3d1xc3Pjq6++onbt2hKc5WJubm7mefmJXFxcKFiwoHm9nNe8p3///rzwwgvMmDGDjh07cvToURYtWsSXX34JgE6no1+/fkyfPp1y5cpRunRppkyZQtGiRWnTpk0Ot16kpWXLlsyYMYOSJUuah5fPnTuXnj17AnJu84qoqChCQkLMj0NDQzl16hTu7u6ULFky3XPo5eVF06ZN+fTTTxkzZgzx8fH873//o1OnThQrViynfixB2ufW09OT4cOHc/LkSQIDAzEYDObrKXd3dxwdHeXc5lLp/c8+evPEwcGBIkWKULFiRUD+ZwF0psTbw8Jmfv31V2bPns2tW7eoWrUqn3zyCbVq1crpZolMeLR2c6Lx48ebb6DExsby9ddfs2rVKuLi4mjSpAmff/75UzNs5knRt29fqlSpwscffwzIec2rNm3axHfffUdwcDClS5fmlVdeoVevXubnTSYTP/zwA4sWLSIiIoI6derw+eefU6FChRxstUhPZGQkU6ZMYf369dy5c4eiRYvSqVMn3nzzTRwdHQE5t3nBnj17Uky41L17d77++usMncOwsDD+97//sXHjRuzs7GjXrh2ffPIJrq6u2fmjiEekdW6HDRtG69atU9xv/vz5BAQEAHJuc6P0/mcf1apVK/r168eAAQPM65728ypBtxBCCCGEEEIIYSMyp1sIIYQQQgghhLARCbqFEEIIIYQQQggbkaBbCCGEEEIIIYSwEQm6hRBCCCGEEEIIG5GgWwghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLARCbqFEEIIIYQQQggbkaBbCCGEEEIIIYSwEQm6hRBCCCGEEEIIG5GgWwghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLARCbqFEEIIIYQQQggbkaBbCCGEEEIIIYSwEQm6hRBCCCGEEEIIG5GgWwghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYR4Cu3ZswcfHx/27NmT000RQgghnmj2Od0AIYQQIrf5+++/+fDDD1N9fuHChfj5+WVfg/KQ27dv88MPP7Bp0ybCwsLw9PSkQYMGjBs3zrxNq1atuHLlSor7lytXjrVr15of//777+zevZujR49y7do1unfvztdff51sv3379jF79mxOnTrF3bt3KVCgAFWqVGHo0KHUqVPH+j+oEEIIkUESdAshhBCpGD58OKVLl062vmzZsjnQmtzv2rVrvPDCCwD06dOHYsWKcfPmTY4ePWqx3UcffURUVJTFuqtXr/L999/TuHFji/WzZs0iKiqKmjVrcuvWrVRfOzg4GDs7O/r06UORIkWIiIhg+fLlvPzyywQGBtKsWTMr/ZRCCCFE5kjQLYQQQqSiWbNm1KxZM6ebkWd89tln6PV6Fi9eTKFChVLdrk2bNsnWTZs2DYAuXbpYrF+wYAElS5ZEp9NRu3btVI/5/PPP8/zzz1use/HFF2nTpg3z5s2ToFsIIUSOkTndQgghRBb98MMPVKlShV27dlms//TTT6lRowanT58GIC4ujilTptCjRw/q1KmDn58fL774Irt377bYLzQ0FB8fH2bPns1vv/1G69atqVWrFgMHDuTatWuYTCZ++uknmjVrhq+vL0OGDCEsLMziGK1ateL1119n+/btdOvWjZo1a/LMM89YDNlOy5EjRxg0aBB16tShVq1avPzyyxw4cCDd/S5cuMDWrVsZNGgQhQoVIjY2lvj4+Ay9JsDKlSspXbo0/v7+FutLlSqFTqfL8HGScnZ2pnDhwty/fz9L+wshhBDWIEG3EEIIkYrIyEju3r1r8XXv3j3z80OGDKFq1ap8/PHHREZGArBt2zYWLVrE0KFDqVKlivk4f/31F/Xr1+f9999n2LBh3L17l8GDB3Pq1Klkr7tixQp+//13+vbtyyuvvMLevXt5++23+f7779m2bRuvvvoqvXr1YtOmTXzzzTfJ9g8ODuadd96hWbNmvPfee+j1ekaMGMGOHTvS/Hl37drFSy+9RFRUFMOGDeOdd94hIiKC/v37JxsintK+AEWKFKF///74+vpSq1YtBg8eTGhoaJr7njx5kgsXLtC5c+c0t8uIxHN24cIFvvvuO86ePUvDhg0f+7hCCCFEVsnwciGEECIVAwYMSLbO0dGRY8eOAeDg4MA333xDjx49+Prrrxk5ciQff/wxNWrU4LXXXjPv4+7uzsaNG3F0dDSv69WrFx07dmTBggUWScYAbty4wdq1a8mfPz8ARqORwMBAYmJiWLJkCfb26uP73r17rFixgjFjxlgcOzg4mKlTp9KuXTsAnnvuOTp06MCkSZOSzZlOZDKZ+OKLLwgICGDWrFnm3uU+ffrQqVMnvv/+e+bMmZPq7yo4OBhQvfw1a9Zk8uTJXLt2jR9//JFXXnmF5cuX4+zsnOK+K1asAKBr166pHj+jRowYwfbt2wF1fnr37s3QoUMf+7hCCCFEVknQLYQQQqTis88+o0KFChbr7OwsB4l5e3szfPhwvv32W86cOcO9e/eYM2eOOTAG0Ov16PV6QAXQERERGI1GatSowcmTJ5O9bocOHcwBN4Cvry+ggtKkx/X19WXlypXcuHGDMmXKmNcXLVqUtm3bmh+7ubnx7LPPMnPmTG7duoWnp2ey1zx16hTBwcEMGTLEojcfoGHDhvzzzz8YjcZkP3+iBw8eAODp6cnPP/9s3q548eK8++67rFy5Mtmc68Tfx6pVq6hWrRpeXl4pHjsz3n//ffNw/GXLlhEfH09CQgJOTk6PfWwhhBAiKyToFkIIIVLh6+uboURqgwYNYtWqVRw9epR3332XSpUqJdtm6dKlzJkzh6CgIIu5zillRy9RooTF48QAPLX14eHhFkF3uXLlks2DLl++PABXrlxJMehO7KkeNWpUaj8m9+/fx93dPcXn8uXLB6gbBkkD8w4dOjBy5EgOHjyYYtC9d+9ebty4keKogqyoWrWqeblr16706NGDDz/8kB9++MEqxxdCCCEyS4JuIYQQ4jFdvnyZS5cuAXD27Nlkz//zzz+MHj2aNm3aMGjQIDw8PNDr9QQGBnL58uVk2yf2ij8qtV5mk8n0GK23PMbIkSMtAtekXFxcUt2/aNGigJrTnZRer6dgwYJERESkuN+KFSuws7OjU6dOWWl2mhwdHWnVqhU///wzMTEx5hsDQgghRHaSoFsIIYR4DEajkdGjR+Pm5kb//v2ZMWMG7du3N8+nBlizZg1lypThxx9/tOiBtlXv66VLlzCZTBavldiTXapUqRT3Sewpd3Nzo1GjRpl+zerVqwNqPnpScXFx3Lt3j8KFCyfbJy4ujrVr11K/fn2KFSuW6dfMiJiYGEwmE1FRURJ0CyGEyBGSvVwIIYR4DHPnzuXQoUN8+eWXjBgxgtq1a/PFF19w9+5d8zaJPddJe6SPHDnC4cOHbdKmmzdvsm7dOvPjyMhIli1bRtWqVVMcWg5Qo0YNypYty5w5c4iKikr2fNKfJyUBAQF4eHiwYsUKYmNjzeuXLl2KwWBIMZDfsmULERERyWpzZ8WdO3eSrYuIiGDt2rWUKFECDw+Px34NIYQQIiukp1sIIYRIxdatW7l48WKy9f7+/pQpU4YLFy6Y62+3atUKgK+//ppnn32WMWPGMGXKFABatGjB2rVrefPNN2nRogWhoaH8+eefVKpUyZyAzJrKly/Pxx9/zLFjx/Dw8GDJkiXcuXOH8ePHp7qPnZ0dX331Fa+++iqdO3emR48eFCtWjBs3brBnzx7c3NyYMWNGqvs7OjoycuRIRo0axUsvvUS3bt24evUqCxYsoG7duhY9/4lWrFiBo6Mj7du3T/W4GzduNNc7j4+P58yZM0ybNg1QNckTy7K9+uqrFCtWjFq1auHh4cHVq1f5+++/uXnzJpMnT87Q700IIYSwBQm6hRBCiFSkNvx7/PjxlCxZklGjRlGoUCE++ugj83Ply5fn3XffZezYsaxevZpnnnmGHj16cPv2bRYuXMj27dupVKkSEydO5L///mPv3r1Wb3f58uX59NNPmTBhAkFBQZQuXZrJkyfTtGnTNPcLCAhg4cKFTJs2jV9//ZUHDx7g6emJr68vvXv3Tvd1n332WRwcHPj555+ZMGECBQoUoHfv3rzzzjvJ5qlHRkayefNmWrRoYZGp/VFr165l6dKl5scnT540Z3wvXry4Oeju2bMnq1at4pdffuH+/fsUKFCAWrVq8e2331K3bt102y6EEELYis5kjewrQgghhMgVWrVqReXKlQkMDMzppgghhBACmdMthBBCCCGEEELYjATdQgghhBBCCCGEjUjQLYQQQgghhBBC2IjM6RZCCCGEEEIIIWxEerqFEEIIIYQQQggbydMlwxISEggPD8fJyQk7O7l/IIQQQgghhBAiexiNRmJjY3F3d8fePvXQOk8H3eHh4QQHB+d0M4QQQgghhBBCPKXKly+Ph4dHqs/n6aDbyckJUD+ks7NzDrcmbQaDgbNnz+Lt7Y1er8/p5ggrkfP65JJz+2SS8/rkknObA6KjoXFjtbxjB9jgWkzO65NJzuuT62k7t9HR0QQHB5vj0tTk6aA7cUi5s7MzLi4uOdyatBkMBgBcXFyeij/Ap4Wc1yeXnNsnk5zXJ5ec2xxgMsGZM2o5Xz6wwbWYnNcnk5zXJ9fTem7Tm+osE6GFEEIIIYQQQggbkaBbCCGEEMKKTCZ48CCnWyGEECK3yNPDy4UQQgghcpOICGjYEE6eBHd3KFsigjLuZyhbKpqyZYy06liEgPY1crqZQgghspEE3UIIIYR46piMJnR2Oqsf988/VcANEB4Ox8ILcIx62gZT4KfPtjB0THOrv7YQQojcSYaXCyGEEOKpYTQYefP5LRQuEM7cb7ZZ/fgrlyeYl8uWBUeH+GTbjBjbiJ2rjqV5HJPRxO7/jnPuULC1myiEECKbSdAthBBCiKfGqFe2Mm1xc8KiCjL+h9JWPXb0/QesXxcHQImiUQQFQXS0nmsXb7J37Ulee3YrAAkGB57r68n1oJspHsdoMDKs91YadqyBX0NPzhy4aNV2CiGEyF4SdAshhBAiT7hzBzZsgL174drFmxgNxkztP33MViYtaGF+fOFaWWKiYqzWvo1LjxMdp8pmdWpwADs7sNPbUbxCUeq1rcZPCxvRotYhAK7dK06vrteIj7XsCY+LjuOl9ruZtlgNP38Q68qEMVes1kYhhBDZT4JuIYQQQuQ6JqOJc4eC+WXCdl7tH07VqlCkCLRpAwEBUNKrKPmcEvAqcYmWfocY2GUnB9eHYjKaUjze6vn7GDamscU6o0nP2UMhVmvzimVaAN+5a75kz9s72rNweWlKFb4GwLbjtfjglZ3m56PCo+jW4gh/bmhksd+v/9bn2sUbVmunEEKI7CVBtxBCCCFylW3Lj1C26DW8/cvzyqgmzJrvzunTybeLNzhy8Xo5Nh+pzfx/m/La6G50bnyYU3svWGx3aMtZer1WFaNJD0BZz1DzcycP3bZKm01GEyu3VAbAySGGNs9VT3G7omU9WfL7HRztYwGY8kdzfv8lnHs3wmjX6AL/7VVJ1/I5RNO2zgEA4hKcmDr2VJqvv2v1MepUPsXHgzdb5ecRQghhPRJ0CyGEECLXMBlNDH/HidA7JS3W29urHu4RI2Do4Ht0brgX3wpnKOgaZrHdmn11qdmwHG+/uIV7N8IIDYXOL1YiKtYNgOda7OL78dpc6lOXrDOv+/DWM1y5WwKAVrWP4erumuq2Ae1rMPWzPebHg4e607hhDDtP+gJQwDmcNX+d5ZeFpXCwV3PEp//djMjIlI93/+59nn+5EAfPV2Xc7BYEHb9slZ9JCCGEdUjQ/RQbPXo0Q4cONT/u27cvY8eOzfZ27NmzBx8fHyIiIrL9tYUQQuQuGxYf4vDFKgBUKBbC2OGb2bzsBOHhsHs3fP89/DSzECt21ufIRR/uRRYk/HYEv03ZQRkP1YNtMNoz5Y/mVK5solUrE1evqsudhrVCmb/cjxrN/M2vd/JSWau0e+Xi6+blLs9Ep7v9qx83ZeArBgCio+FUUHEAirrfYvO/12nWrRYlvYrz0kuqumtYmB2zZ6d8rM+HH+TKPe3mwdE9V7P6YwghhLABCbpzodGjR+Pj44OPjw81atSgbdu2/PjjjyQkJKS/82OYOnUqI0aMyNC2EigLIYSwhYkTteRo33x+hY+mtKB5t+q4uKS+TwGPAvR+swF/LL3MF0M24ez4AIA79wtx7pyqxV2xIvyzrjTO+Z2pUAEcHdW+iTW1H9fK9UXMy516e6W7vc5Ox0/T9NStq60rV87I9k3R1G7uY173/gfapdrkyfDopcChQzDlj2YW644fST/oF0IIkX0k6M6lmjZtyvbt21mzZg2vvPIKP/74I7NTuMUdFxdntdcsWLAgbm5uVjueEEIIkRlHt59h7X4VhVYoFkKPwfUztX8+F0c+mdqMM0fDeKHDIfP6QoVg9Wrw9FSP7e3B52Fce/YsxCcvpZ0p14NusvdMDQB8K5yhbJVSGWtvPvj7b2jRAtq1gx077Khc27LnvXp16NhRLV+6BIv/0hLFGQzw+utgNOos9jl2wjHrP4wQQgirk6A7l3J0dMTT05NSpUrx4osv0qhRIzZu3GgeEj59+nSaNGlChw4dALh27RojRoygbt261K9fnyFDhhAaqiWKMRgMjB8/nrp16xIQEMCECRMwmSwzvD46vDwuLo6JEyfSvHlzc4/7X3/9RWhoKP369QOgXr16+Pj4MHr0aACMRiOBgYG0atUKX19funbtyn///WfxOlu2bKF9+/b4+vrSt29frlyRUihCCCFg0thb5uV3Xw1C76DP0nHK+JTk939rs2MHfPYZ7NqlBdmJqlVT3xMS4PzpxysbtnqhluWtS+trmWtrGdi0CdasgVKpxOoffKAtT/z8nDlD+88/w759an2VKiYc9OpG/PHznplqgxBCCNuyz+kG5IhT38Hp79LfrrA/NF9uuW5LV7h7MP19q7wLVd/NWvtS4OTkRFhYGAC7du3Czc2NuXPnAhAfH8+gQYPw8/Pjt99+w97enmnTpjF48GCWL1+Oo6Mjc+bMYenSpYwbNw4vLy/mzJnDunXraNCgQaqvOXLkSA4fPswnn3xClSpVCA0N5d69e5QoUYKpU6fy1ltv8d9//+Hm5ka+fKo0SmBgIMuXL2fMmDGUL1+effv28cEHH1C4cGHq16/PtWvXGDZsGC+99BK9evXi+PHjfPPNN1b7PQkhhMibQs9e5Y91AQAUdrvLK+/XTWeP9DVqpL5SUq3EYcAPgFO7DlO1Zuqfh+lZsdbDvNy5Z5E0tsyaFi2gTuVTHDhXlYPnvNm89CBV61bgww8LAqqXOzBQx7D+wRwL9ubMlfLERcfh6Cw93kIIkRs8nUF3fAREZ6B3NaZMCutuZWzfeOvMdTaZTOzatYvt27fz8ssvc+/ePVxcXPjqq69wfDgh7Z9//sFoNDJ27Fh0OvXhO378eOrVq8fevXtp0qQJ8+bN47XXXqNdu3YAjBkzhu3bt6f6ukFBQfz777/MnTuXRg+vWMqU0X4f7u7uAHh4eFCgQAFA9YwHBgYyd+5cateubd7nwIEDLFy4kPr16/PHH39QtmxZc894xYoVOXv2LDNnzrTK70sIIUTeNGXiXRIMKmP50BeO4urewqavV9Vbm/d88lgMPbJ4nJgYWLdXlQfz9IihfttqVmidJZ0O3n/rHi8MV48nTjBQsMBJwsNV3fEBA6BZM6hR6RbHgr1JMDhw9tBZajTytnpbhBBCZN7TGXQ7FADnDMy3ypfC8Kx8nhnb16FA5tuVxObNm6lduzbx8fGYTCY6d+7MW2+9xZdffom3t7c54AY4ffo0ISEh+Pv7WxwjNjaWkJAQ7t+/z61bt6hVq5b5OXt7e2rUqJFsiHmiU6dOodfrqVevXobbfOnSJaKjoxk4cKDF+vj4eKpWrQrAhQsX8PX1tXjez88vw68hhBDiyRMeDoEL1ZxoJ8d4hn2Uco1ra6rmp33GnzztkOXjbNkCUVFquVOXfNhlbUR8up57vT6j/xfKpVul+Xev9tlc2O0uE8c5APmpWT2eP9ar9ccORVEjlV5+IYQQ2evpDLqrPsbQ70eHm9tIQEAAX3zxBQ4ODhQtWhR7e+1UOTs7W2z74MEDqlevzqRJk5Idp3Dhwll6/cTh4pnx4IHKFhsYGEixYsUsnkt6k0AIIYRIauZMuH9fLffr70Cx8rafk1zZryx6uwQMRntOXsj6kPAVK7Tlzp2t0LBU2Dva887gC7w93rKu+MSPT1CkRFMAajSpCVPU+uNXa9uuMUIIITJFEqnlUs7OzpQrV46SJUtaBNwpqV69OpcuXcLDw4Ny5cpZfOXPn5/8+fPj6enJkSNHzPskJCRw4sSJVI/p7e2N0WhkX2KGlkc4OKheAYPBYF7n5eWFo6MjV69eTdaOEiVKmLc5duyYxbGStksIIcTTJS5O1d5O9N572fO6js6OVC55CYDToeUwxBvS2SM5k9HE/9m77/CmqjeA4980HRRKC5SWvaEt0ELL3ntPEUVFQZb8BFRUFHCAgCjgXigIgoLIUEH2kD1kQ5ltWWWvtozSQUdyf38cmjR0j3Txfp6nT0/uPOlN0rz3nPOeNWtUjzE7O5WB3JqGvluf4kXumh638D7GoHebmx571zePLT950rp1EUIIkX4SdBcAPXv2pHjx4owYMYJDhw5x5coV9u/fz9SpU7l58yYAAwcOZM6cOWzevJnz588zefLkVOfYLl++PH369OH9999n8+bNpmOuW7cOgHLlyqHT6di+fTt37twhMjISJycnhgwZwrRp01ixYgWXL1/m1KlTLFy4kBUrVgDw/PPPc/HiRWbMmMGFCxdYvXq1aZ0QQognz9LfQkiYxKJXr6RZxq2pVtXbAMTEFeLi6atpbJ3Uyb1nuXRJ5VJp0+weRYtma/WScCruxJgh6ka1o30Us34ugo3e/FWuUiVImPnzsfvbQgghcpEE3QWAo6Mjv//+O2XLluW1116jW7dufPDBB8TExJjm3R4yZAi9evVi3LhxPP/88xQpUoSOHTumetxJkybRuXNnJk2aRNeuXZkwYQLR0SrxTKlSpXj99df58ssvadasGR9//DEAb775JiNHjmT27Nl069aNYcOGsX37dsqXV93hypYty/fff8+WLVvo3bs3S5Ys4a233rLiX0cIIURepRk1Pv/U3HL77piMtzZnRU2PGFP59JFbGd5/zZ/XTeWeLfyzo0ppev+b1qyad4BDO69Tu2l1i3U2Nmpeb4DgYIiIyJEqCSGESINOSymTVj4QFRVFQEAANWvWpHDhwrldnVQZDAb8/f3x9fVFr7dSlhWR4+S6FlxybQsmua55y6bFh+ncvz4ATbxO8N8pb3Q2ukwdKzPX9o9v9/Dim6p79vS3tjPuqzYZOmezWifYG+ADwPnjl6nqUzFD+1vDsJdC+GWRGhO//9+zNOpQw3oni4w0N61HRECRItl+CnnPFkxyXQuuJ+3apjcelZZuIYQQQuSKH36IN5XfGR2R6YA7s2r5mROonQ7MWG7Z9b8fZF+galauVfFcngi4AbwrnDaVTx66kYs1EUIIkUCCbiGEEELkuGvnbrB2bwMAypW4wVNDG+V4HTz9KqLTGQE4fS59s31oRo3pb22n+8D6aJr6GtWve8bHg1uLTz3zwPITx/NtZ0YhhChQJOgWQgghRI779btAjJrqejjkmSD0djnfDdGxqCNVKqjpLgOu1yStAXdR4ZG80HEv733TxhRw92m5j7EzGlu7qunm3bCCqXwyyCkXayKEKAg2boQVK0jz81GkToJuIYQQQuQoo8HIL8uqAaDTGRn6ZvU09rCeWnVUYBoZqePKlZS3u3jqKs39rrB0azPTsskjt/PXtkY4FnW0djXTzb1iSUo6hwJw8kL5NLYWQoiUbdsGXbrA00/Djz/mdm3yNwm6hRBCCJGjtvx5lOBbagx0pwZHqFQz94LDWrXM5dOnk99m505o2LoU/he8AHAq9IB/5u5n4sw2FlN25QU6Gx0+VdXdg5v3ShF6NSyXaySEyK8SB9offgihoblXl/wub/2nEEIIIUSBN+fnWFP5lSFxuViTtIPuW7ege3cIDbMDoHqZi+zffoveQ/NOl/LHeXuGm8onD6TSfJ+MjRvhqadg69ZsrpQQIl8JC4NVq8yP792Djz7KterkexJ0CyGEECLHhFwJ5Z+dapowN+cQer5cP1frU8sz0Vzd+84kWT97tnm+6/btNQ4cc6dW49zrDp8e3t7mLPAnj95P935RUfDCCxorV8KwgXfRjDKIU4gn1ZIlEBtruWzWLDhxInfqk99J0C2EEEKIHLPgdzviDPYADHrqFPaO9rlaHy8P87fKgFMPLdbFxsJPP6myjQ388ouO4m4pz8OaV/jUK24qnzyV/mnYli6Fu3fV9sHXinPxdMZayYUQBcf8+ebyiy+q30YjvPmmJFXLDAm6hRBCCJEjNA3m/OZiejzsXd/cq8wjRUsUpULJawCcvlTRonX3z9lHuXlTlfv0gUqVcqOGGVe7sbmiJ4KKpXu/xxMlbV97KZtqJITIT06cgMOHVbl+fZg7FypXVo+3boWVK3OtavlWjgTdixYtol27dvj4+PDss89y/PjxVLdfv349Xbp0wcfHh549e7Jjx46cqKYQQgghrGjPHggKUuVWrcDDu1iu1idBrSo3ALgXWYybF28Daj7ub38wt8KPHn4zV+qWGc6uzlQsFQLAycte6WqVOngQDh2yXLZjZ/pbyYUQBcdvv5nLgwdDoULw5ZfmZWPGQExM0v1EyqwedK9bt45p06YxatQoVqxYgZeXF0OHDiUsLPlsmkeOHGHMmDE888wz/PPPP7Rv355Ro0Zx5kzScVYFkaenZ6o/33//fW5XUQghhMiUOXPM5Vdeyb16PK5WjQhT+fTh6wDs23CSg2dqA+BbNZAWHUrlSt0yy7u+GwDhEfZcvZr29j99cijJsh2H8knTvhAi28TFwe+/q7K9PTz/vCr36QNt2qjyhQvwzTe5Ubv8y+pB9/z58+nXrx99+/alevXqTJ48mUKFCvH3338nu/2CBQto2bIlw4YNo1q1arz55pvUqlWL3xOufgG3e/du08/777+Pk5OTxbIhQ4aYttU0jfj4+FysrRBCCJE+927f589lKlN5sWLQt2/u1iexmrXMX4dOH3sAwHdfmTOAj/5fKDqb/NXq6+NjLqeV+OjuzbssXqduMDgXDqex1ykALt6uwKWAdETsQogCY8MGNWsDQK9e4OqqyjqdCrRtHn1cTp0KN27kShXzJVtrHjw2NpZTp07xv//9z7TMxsaGZs2acfTo0WT38ff3Z9CgQRbLWrRowebNm1M8j8FgwGAwZEudrSWhfmnVs0SJEqZykSJF0Ol0pmUHDhxg0KBBzJo1i++++44zZ84wd+5c/vnnH8LDw/nhhx9M+06bNo3AwEB+e9Q/xGg0MnfuXP78809CQ0OpXLkyr776Kp07d87up/pESe91FfmPXNuCSa5r7ln0w1GiH7YB4KWep7G39yQ7L0NWrq2nj7OpfDpA43LQVf7a3ghQGdaffdUv371matXSkdC2cvy4kc6dU+5jPv9rfx7GtQXg5Z5HKFFcY3+gCsK3rQlmgEeZ5Hc0GNCbigay9YImPi7yni1o5LrmXfPn2wDqJuPAgQaLt7W3N7zyio7Zs22IiID33jPyyy+Wny0pXdtr18DFBZycrFr9HJfe17BVg+67d+9iMBhwTbhF8oirqysXLlxIdp/Q0FBKliyZZPvQVGZjz0jX882bizFrVlmiovRpb5xNChc28Oqr1+nQAU5kIM/+5cuXMRgM+Pv7A3Du3DkAPv30U1588UXc3d2JjY3lzp07REZGmrYDCAkJISIiwrTsn3/+Yffu3QwYMIDSpUsTGBjI2LFjuXPnDjVr1syup/rEysh1FfmLXNuCSa5rztKMGj8vdDc9btf+Ev7+0VY5V2aureYYaSqfDCrClx/5E2/oAUD/7vsJPJtC0JmH2do6AmoS8v92XMG/Y/Lfo4wGIz8tNHcj79Arhvth5sGa//77EJ92/snuaxMdjd+j8vHjxzE6OmZH1ZMl79mCSa5r3nLvnp7Vq+sAOlxd43B3P06i8AKAZ56xZdGi2kRE2PLbbza0axdA7dpRSY6V+Npu2FCcjz6qQunSsSxadBonJ6N1n0geZNWgO6d4eHhQuHD6pvB49VUbLl7M+S5if/9dhQ4djuLj44Nen76APzg4GL1ej6+vL6B6DgC8++67tG/f3rTdunXrsLW1NW0HKhldWFgYvr6+xMbGMnToUH755RfTNp07dyY0NJQjR47wwgsvZMtzfBIZDAZOnDiRoesq8ge5tgWTXNfcsWftCY5fVAFgI8+T9HqpU7afI6vXtnSxW9y8V4rTl6oScLkKALb6OMZM9qNs1dLZXV2r8/KIR28Tj8Foy9WzURbfERLb/OcRzt2oCkBb3yN0f64DDyOieWXMQ2LiCrH/hAe+vuWTP0mk+WZFnTp1oEiR7H4a8p4toOS65k0//KAjPl71kBk0SE+DBr7Jbjd5so4xY1T5p5+82LXLiO5RePX4tb17F77+2gaDQce1aw5cuFCXgQMLzpxjUVFR6WoAtmrQXbx4cfR6fZKkaWFhYUlasxOULFkySat2atsD6PX6dL9hx42DCRPgwYN0bZ4tihaFd95RL66M1NXm0aCJhO0THtetW9fiGDqdDp1Ol+Kyq1evEh0dzbBhwyyOHxcXR82aNeXDLhtk5LqK/EWubcEk1zXnHNh0ij4vVjQ9fmXgXav+7TN7bWtWvs5N/1LciTAP8+rX7gAVajTPzurlmCJF9dQoe57Aq9U4fbkKmkHD1j7p176ffzJ3jRwxPAa9Xk8RFycae/mz84Qv529W4sb565T3KJv0JIn+znq93uLxwYNw/Di88AKks10kVfKeLZjkuuYtibOWDxliQ0qX5vXXVWLMwEDYt0/HsmV6+ve33Cbh2k6dColDwdWrbRg8OPvrnlvS+/q1atBtb29P7dq12bt3Lx06dADU2OK9e/fy0ksvJbuPr68v+/btsxjX/d9//6V4hzajnnlG/eQ0g4Ek3TMyy/Gx7ls6nQ7tsflAEidYi4pSXT5mz55NqVKW2Vft7e0RQgghrGHzsiM8NdCDyBg1iK9BjdO8NLphLtcqebU8otnmb7nsjTHFcqMq2ca7+m0Cr1YjJq4Q509cwLN+VYv1187dYOXuBoBq6X9qSAPTutZN77PzUe/QHbsdeNEjfefUNJg2DT78UJWDg1XCJSFE3nbsGCSk3GrUCGrVSnlbOzv4+mvo2lU9HjcOevdO2tnl9GlIlHIKgI0bIToarDgaJU+yevbywYMHs2zZMlasWMH58+eZNGkS0dHRPP300wCMHTuWLxNN/DZw4EB27drFvHnzOH/+PN9//z0nT55MMUgXKvlaSEiIxbKAgABTuVq1atjb23P9+nUqVapk8VOmTP4bpyaEECLv+3vWXrq/WNsUcLepe5Qte8tTqEihXK5Z8mq1bmbxuLHXSRp3rp1Ltcke3jXNY7NPHryVZP2cL4MwGFX7yyv9ArBzsDOta9Ovlam8Y59rkn2TExEB/frBBx9gmht83brM1FwIkdMSt3I/ltM6WV26QLduqnz1Knz2meV6TYO33jLnVyxWTP2OioJU8mMXWFYPurt168a4ceP47rvv6N27NwEBAcydO9fUXfzGjRsWAWO9evX44osvWLp0Kb1792bjxo3MnDkTD4903mJ9AjVp0oSTJ0/yzz//cPHiRb777jvOnj1rWu/k5MSQIUOYNm0aK1as4PLly5w6dYqFCxeyYsWKXKy5EEKIgmjOp3vpN7IRsfEOAPRusZ/1e2ri7Oqcxp655/FWndGjYpLfMB/x8TXf4Dh53PL5xMXE8fNSLwD0NvEMH2P5PatJUx12j2Lw7dvTPtfFi9C8Ofz1l+Xy48cthn4LIfKQhJ64M2fCggVqmYODeW7utHz1Fdg+6jf92Wdw6ZJ53dq1sGmTKlesCLNnm9etXJnlquc7OZJI7aWXXkqxpXrhwoVJlnXt2pWuCf0VRJpatmzJyJEj+fzzz4mJiaFv37489dRTFoP633zzTUqUKMHs2bO5evUqRYsWpVatWrz66qu5WHMhhBAFSUwMfPEFfPhhU9OyQd13MWd502THE+cliYPuMmWg7/D6uVeZbOLdwDyk7MRpdQPkwQO4cgXW/hnCjbtqnHbPZoco79HEYt/ChVUX0z174OxZNR9vap3jWrWCK3dUuWhRqFkTDhxQX+oPHoQ2bbL1qQkhMunUKfjzT/Xe3rdP9VBJ7KmnoHjx9B3L0xPeeEMF3w8fwtix8McfEBen4913zW27n38OPXuqz5WoKFi9Wn02PEnD+fP2f8An3NNPP23qhg/QuHFjgoKCkt32jTfe4I033kjxWDqdjpdffpmXX3452+sphBDiyRUfG8+2f06yeH1dlq/Qcf++ed1bL+7ii9+aY6O3ese6LHN3h1dfhcWL1VjFgpDypJpPRQrZRfMwzpE1//lR3Oke9yKLPVprTow28o3keyC0bq2+mAPs2BjC84PcUjxX2KOA28NDtWLt26eCboC9eyXoFiIvuHABGjZUY6qT4+YG48dn7JgTJqhW8tBQWLYMRoyAlSvdOHtWpTNv2RKefRZ0OujUCf75B27fhv37oVmz1I9dkOT9/4JCCCGEyFOiH0Szfbk/bzy/nXLud+n0nC/zf7UMuD/5BL5c2DJfBNwJfvoJ7t6F557L7ZpkD72dnlqVLgIQE1coUcBtVqcOtO+bfMak1g3MfUW3rwpIsn7vXsvH3bqpL9JeXtC0acrbCSFyx4cfWgbcZcuqgPibb1SPlGvXIKO5q4sVU5/3CV5/3YY5c9RNPZ0Ovv0W03RivXubt3vSuphLS7cQQgghUnUz+DZ7Np5nz64Y9hwuyZFznsQbfJNsV7Qo9OkDQ4aoVtL8KOHLYUHx9sg7DH8vkrh4OyqUvEGFGu5UrOJIhQpQubLqSmqTwn2RZm1csdXHEW+wY8fBchbroqJUz4Bjjx6PGgnTvjN3F/XwgBIl4M4d1eqtaQXvbytEfnLkiOrJA1CypLoZVq1a9rwvhw6FH39UGdBPntQBetNyPz/zdj16qM8bo1EF3TNmZP3c+YUE3UIIIYRI1sPIh3RrEcA2fz/APdltHOwe0r2pPy+86ED3AX5P3DQwed2LbzWn38g49LZ6bPSVMrSvU3EnGtQ4wb5AHwKvVuPWxduUqqxeBxMmwLnz5m2nTbMcn6nTQZMmKnt5SIjq1lqtWnY8IyFEZiTuNj5hAlSvnn3H1utVi3biYSTOzhpTp1pG9CVLqoSLu3ZBUJCa59vLK/vqkZflnz5fQgghhMhRfy+4/CjgtuRV/jxDe+5i4Vd7uHUthr93NOGZ4RJw51V2DnaZ7ubfukmYqbxj7TkA/vtPjXtPLLmESE0S5WaTLuZC5J5//1U/AFWqwP/+l/3naN0annnG/PiDDzRKlUq63ZPaxVyCbiGEEEIka+U28zRSrz61mVXzDxB67Q4BV6oxd1VLXnqrOS5uLrlYQ2FtrdsXMZV3bI8jOhoGDzbPw50aGdctRO4zGmHcOPPjqVPVtGDW8OOP0K+fkRdeuMUbbyT/IfGkBt3SvVwIIYQQScTEwPr1qlyiBHz/ZwfTfKziydG8qyd6m3gMRlt2HCjLhAmQMCNpwwbAoZT3bdRIdTPXNAm6hcgtS5fC0aOq7OeX/jm4M8PNDf74Q8Pf/yp2diWT3aZ6dahdW01dtm8f3LpFsi3iBY20dAshhBBPkLiYOMLDwtPcbts28/ytPXogAfcTytnVmXrV1XSlpy7X4KuvVOuVgwPMmpXGvs7g7a3Kx49DZKQ1ayqEeFxMDHzwgfnxjBkpJ07MSQmt3Zqm5ux+EuSBP7sQQgghckJsdCxt6gXgUtKZ37/ek+q2K/8xmsqJuwOKJ0/rxiGmsqapxEhTpqQvAVLCuG6DAQ6l0iouhMh+s2dDcLAqd+gAHTvmbn0SPIldzCXoFkIIIZ4QK345yH+n6wDw3qdViY9PfjujwciqP28D4GBvoFOnnKqhyItaty9s8bhxYxgzJn37yrhuIXJHeDh8/LH5cV6anqtBAyhTRpU3b34yesFI0C2EEEI8IX782ZwU62poGdasSX67w1sDuX6nNAAd6h3BySknaifyqhZdPbHRGQBwcNCYPz/5bOXJkaBbiNzxxRcQGqrKL7wA9erlbn0Ss7GBXr1U+eFD2LQpd+uTEyToFkIIIZ4Ap/aeY+cJX4tlP/2U/LYrl90ylXv3eGjFWon8oJi7C1NHbaZKubvMn6+jZs1kNjrxMQR8Aed+hotL4Pp6uHcCjxoaxYurTfbuTV/WcyFE1kRFwVdfqbKdncpYntc89ZS5/M8/uVWLnCNpUYQQIp8KOHCeaxfv0/4ZP3Q2utyujsjjfvr6GlDdYtmmTXD2LNSoYbntP5vKA6DTGenZPx0Dd0WB9973nXnvOw0Sf9REBJvLp2dAoaT72bi3oXG9f9iwxYWQEDW+tGpVq1dXiCdaUJC5y/Yzz+TN91zbtlC0KDx4AH/9Be7uqkXez0/NelDQSEu3MFn09R7+12cnV8/eyO2qCCFSoRk1vhq/A+8mlen4XD1+nLwzzX3iYuKYMHw77w/dTuT99A2e0ozSJFVQRNyNYMEaPwAKO0Ty/jhz6/XsmZavh/PHLnHqsorCG3udpnQVt5yrqMjbHv8mfO9k2vvc3k7TYl+ZHkoXcyGs78IFc7l27dyrR2ocHKB7d1WOilLd4evXVwkaP/oIAgNzt37ZTYJuAcCa3w7w0tvN+fmfVjzd4w6GOENuV0kIkYzoB9EM7PYfY2a0xqipQZUff1eT6IjUuwB/9d4eps5pw7R5bejU7Dx3b91Ldfs/f9pLWdfbtK7jn+4gXeRdi344yoNoZwD6dz7MW+8UwsFefc7PmxtL9INo07Yr/zC3XvbuHJqzFRX5S/me5nLrldBiGTSeC/W+Au8J4FQNgKb175g2y0jQfecONGpkw/PP17QIIoQQqQtO1AmlSpXcq0dapk9POiXlmTNqdoSaNeG113KvbtlNgm7BjRsw+G1f0+ODZ2rz86epTyUjhMh5V65Ay2YR/L6xucXyW/fcmff5gRT3Cw+Hz35taXr83+k6tGocwo0Lt5JsazDA+68F0G9kU27eK8XOE778MPlg9j0JkeM0o8ZP891Nj0e86UbJkvBsWxX93I0szrJZh03rV64vZio/1b9ijtVT5HOl20PFZ6HaUPB6C+pMge6nod5XNOr3kqmRfO9eQDPCqemW3dOT8csvcOSIjnPnCjN4sA1GY6qbCyEeSXyTKi92LU9QqZKap/vGDZg1C9q0sexQ8/vvuVa1bCdB9xPOaISBAyH0jr3F8vc+q8vN4Nu5VCshCobY6FiObg8kLiYuXdtH3o9k34aTnDkSbNHyCLB7t5pi4/BJ1dW3sEMkU0ZtN63/7KeqKZ7n++/hzl3LVMMnL9WgebMYzh+7ZFp2/76aO3PaTMssSZ/NqUN4WHi6noPIe/ZtOMmxYE8AGnudpF5bdX1HvuFi2uanecUACL0axu6TPgB4lAvGq2Ee/rYm8j69PXi9hUu1xtSqpRYdOwaRF7bBsfdgVVXY2hEuLQVDTJLdt2wxl/fs0fH99zlUbyHyufzS0p2gZEn43/9g2zbVwPDVV9Cvn5pnvKCQoPsJ9+WXan48gLJloW/bQwDcj3Lh7eFnc7FmQuR/fdv7U6+tF34eFzm6PfXBSct/3kelCg9p2tUbz/pVKOzsiJtLKPWqB9C9ZQDt2sHtR/fBqlQxsnfzdSb80IaujVQr9OWQ8vz+7f4kx713T42TAjXFz9o/r1PJ7SoAwbcq0qJNIY7vPkNQkJp7d+3ahG01vMufAOBORAm+m3Qk638QkSt+/K28qTxiyD1TuUkXb+pWCQJgf6A3R7YFsHZxgGnYQu/2lxAiuyRMHWYwwOH1u8wrbm6GPc/DirJwZAw8DAEgNhZ27bI8xnvvwblzOVRhIfKxhJbuwoVVgrL8pFw5eOstWLoUnnsut2uTfSTofoId2h3K+++rREk6HSxcCLMWVKGEkxp7tXhzc/5dcji1QwghUnDt3A3W7G0EwKnLNWjcoSrT3tyeJF/C/ZD7DOq+i77/a0LYA1eLdaHhJTl6vibrdtck7lEjdvv2cPCgDXVaqERXH0xwMG0/7dtySY7/zdca9+6p8oAB0O2Zsuz5z5baFdVNtZv3StGqszuNGsQSpOIvSpSAjRt1rFhVFL1NPABfzvfl3u37Wf67iJwVGgrL/lHzNZUoYaTfiAamdTobHSOHmIcY/PRNCCvXFTU97v1siZyrqCjwLObrvvs21P3UNOYbgNg7EPgVrK4Bgd+w7794oqLUKgcH1a88OhqGDEG6mQuRCqMRLl5U5SpVCmYm8PxIgu4n1IM7D3ihXwTx8eqdOG4ctGsHJcu78vkHp03bjXzblYeRMkerEBm1dollT5E4gz3vf9uGVr6nOH/iOgDbV52hTu0H/LbOPN66c8NDvNBhDy28j1HR7aop6LWxUXd+N2wA10SxefMedWhdxx+As9er8Pef5i6ad27e4+svIgDVcj1hglpernppdu4rSWMvlXn4flQxwiPUEBNvbzh4UAX31f0q83I3Ne73XmQxvvlIWrvzm3nzVIshwODBNjg6Wc7p1H9UPYo6qqEDizY0YOOBOgC4lYiiSec8mvJW5EsWQfdhZ6j9HvQ8A+23QqX+YPPoBmLcfTjyFptn/Wza/s03r1Klimok2LULfvghJ2suRP5y/br5cz8vj+d+0kjQ/YR6Y6A/525UBqCRVxBTppjXDXq3GS28jwFw7kZlpo3Zlws1FCJ/W7Pe3ALdv+MebHSqBfq/03Wo27QML7wA7Z6qweUQ1fXX2fE+v32+m/X76vPHv83ZdaIul26XJ+ahjivB0YSGqjFOiTN8JvhgUjFT+dPPCqM9munrqwn+hEeplsvBvQ5Y/PMtUaY4m/dWoVODQ6ZlfTudYe9ey3/SH06rjK1eNbN//Vs97ty4m5U/i8hBRqNKTJPgf/9Luo1TcScG9vAHIDq2MFFR6kZsz6cKo7fTJ91BiEzy9IRixVR5717U55TOBkq1heaLoPdFqDqEhInAtxypa9q3Vat7zJljbt4eP166mQuRkvySRO1Jk8zXN5Hd4uLgz0Xh+G+/xjqncHRp9fMo2QT0iVojIq9AxPm0T2RbGFwbWS67ewxiLb8k37qt49e1rQFwKvSAP5YUws7OvN5Gb8Osn4vg2zKOeIMd0+c1o/9oA5415QuYEOkR/SCazYdUMqrSxW6xcH1TRm04xcBhzpy/WYnISB1LlkDCl8s2dY/y62I3KtVskeRYejs95Ss7pnq+Dk9VplEjOHBAJSlauxaa+Ibx7e/1AbDTx/LhJ+WS7OdUrAird9bh1y93Uqy4Lc+OaIrusVuxVbwrMKTnTn7+pxXh0S58OWE7n8xtk+RYd2/dY8X8E8THa1So7EhFr4pU8CiFs3Pafy9hHRuXBRIc7AVAp05Qo0by2414qywz/7Rc1ru3lSsnnjg2NipvxMaNKj9FcPBjAYFjaWjyC9QYwYNd4zlwoTEAnp4apUrF4esLo4aFMnNuSVM38+3b1XGFEGb5LYnak0KC7hzw668wfHhxoFcmj1Dh0U9m1E117Y+fHKNa3aRf9Gs3rc47g/5j+i/NiI2zZ+RrKuGajAsRIm1b11wlOlZFON1bnsFGX4pm3X3wD4pjzLvw86Nekw4O8Omn8OZoX2z0mX9z6XTwwQfmQOmTT6ClxwkiHrYBYNhT+6hUs1Wy+9o72jP8w+TXJfhgWjV+XRNDbLwD3y5uwVvTVabRBBv/OMSQ18tx/U7LJPu6uKgpQd58EwYPzsyzE2lZ/vM+vvquMA9jLf+lXw0xX6QRA6+Q0v+R2k2r08rHn50nfAFwdDTQoYPcZBXZr2lTFXQDSXrVmLg2YKftv8Qb1Gdiu3aPuu4YDUxv24x1qzYRfLsyu3bBzB80Xn9DvpgIkZi0dOdNcn8wB+TVrIEvd9vNgLeTBtwJJnzXjMqVVXnrVvjjj5yplxD53Zqd5ibFHs+aW5idnO2YPVvdwBo/Ho4cgbffJksBt+k8PcBHNa6zbx989bt6bzvYPeT9aSk0caZTRa9yvDI4EoDIKFs+/1wtjwqP4rV+O+jyYgOu3ymT7L7378Px4zB8OFy7lqVqiGQY4gwMfduLPafqcPhsLYufW/fUP5/yrtfp8Wzy1yfByFcemMqd2jygcGGrVls8oRKP616/PuXttmw1fyaagu7bW3DiLL8MM9+9Gz82movbfof4yOyuqhD5lrR0503S0p0DeveGk/7h7Fm/jdKlS6G3SaMFoVhdNbdlgugbEHU17RPZFILiPpbL7gdBfNL5dZ2K2tGiR9MkyxMrXBhmzoTu3dXjsWPVc3FySnmf2OhYPh79H5GRMGNec+wc7FLeWIgCSNNgzRpVtreHDn2S3mZu3179ZCcbG3j/zeu8MLQsAAaj+nj/39P7KV+jdZaP/95HJZi7AGJiVBKjlnXPMGasHWeumY/dueEhnu4VxZXLRi4/8OPKLReCglRSl/h4+Onj/Uyd1TjLdRFmp/af516kBwA6nRG9jWX2+mJF7vP1x5ewtS+b6nGeHt6E/qv3cDSwNJ9+pAHFrFRj8SRr1UrNjnDnDvz5J3zzjWWvmQQJ83PrdNC6NVy+DBQqC1Vepq3+T0Z2mMmPm0cRFVOYDyfA76PLQ/VhUGMUOFXOwWckRN6TuKVbgu48RMvHIiMjtUOHDmmRkZG5XZU0xcfHa4cOHdLi4+NzuyoZ1quXpqlQQtM+HHU01W3HD95m2nbupztzpoK5KD9fV5G6zF7bo0fN75cuXaxTt5TEx8ZrNcqcN52/kF2Udv38zWw7/ujR5ueW+MfRPlKbOXG7ZjQYk+xz7eIDzVYfq4GmlXQO0aIjorOtPplR0N6zs6f7m67Dl2O35XZ1clVBu7b5QkSE+YMgIiJdu7zzjnmXGTOSrr91y7y+fv1krmtsuHbP/3fN1fmuabsjn/hq2iI07Q8bTdvzkqYZk34WibxF3q/WU7asel+4u+fO+Z+0a5veeFS6l4s0ffG5hp2tmrbo85+9uHgq+Vb3A5tO8dmv5jGdR47IRJpPOs2o5XYVctya1ebn3KNHzp5bb6fnvdHmPtwj++2nTNVS2Xb88ePB8bGcbg09TnH0v5uMnNwanU3SbvJlKznxbNsDgJp3fPEPB7OtPnnNzeDbvNZvB9++vyPHXvv7z5jzdjTu7J0j5xQiKxJn0Z81K+mc29u2mcvJ9giyK4pL3Rf5cHIx06LxSz9TBc0Itk5JE9BoT97/IpF/7d4Nr7yi8h5kVHS06l0GMp47r5GgW6SphoeON/vvBiAmrhDvvnYlyTYPIx8y+BUHjJq563zg+aI5VkeRt2hGjeFP7cS9eBj/zN2f29XJUav/CDSVe3TP+S96L7/TnE9Hb+edAduZ+lP2duUuXRreHuwPgN4mnkkjtrPnuAee9VP/z/7GmGKm8rez3QrkzZiQK6G0a/2AmX+25s1prfn5k105ct59j2Z0tLWFek2T6acrRB5TvTp07qzKwcHmxGoJErqWQ+rDcEaMwJR3ZtPxjmyO/B0cy4LnG5YbRl2HVVXgyDtw71SW6y+ENS1ZAm3bwty58PLLGd//4kVzWYLuvEWCbpEuH35VD3eXEAD+2t6UHSv8LdZPeWMvpy9Xt1gWdCn1xD2i4Dq17yxzVrYiNLwkk6Y+ORmZbl0M4UBgTQB8Kp+hUuWcz6pro7fhvW/a8PmCNjgWTX2qscyY/I0PK3/Zz6kDl/noxzbpytvQpEttGnmqL7vHgr3YufJYttcrN929dY+OrcMIuFLNtOytqQ04vT/1iYQvX4Zx4yyDjIwID4eAAFWuWzdpLwQh8qoRI8zln36yXJfwfrC3hxYp53rFwQGmTjU/Hj/7RYw9L4NLTcsNr/wFkZcg8EtY5wN7B0Hk5SzVXwhr+Okn6N9f5UABOHtW5T/ICEmilndJ0C3SxdnVmU/HmVvwRo9xxBCnEvYc3H6VGfPVlEN2+lgquanu59fulOHBvYc5X1mR65Yvum4qH7vkw5WzoZk+1vXzN/nrp718NW47b/bfwdOt9tGwgYHSpaF584z/Q7KmdUsTtXK3u57KlvmX3k5PryGN02zdftzoEfdM5W+/LjifC+Fh4XRpfZVjwZ6A6gEAEB1bmBeGVeRhCk81ODCM5s01PvsM+vSBBw+S3y41Bw+ae802lvx0Ih/p3h3Kl1flNWvg0iVVDg42J4Fq2pQ0s+i/8IK64QRw+DAs+yuZRLVR1/j74LN4vRPAy7Pmo134DVZ7wNGxEHs3e56QEFmgaeoG0siRSUdCnMpg5wyZLizvkqBbpNugd5pRr7pqVjkW7MkvM/YQEwODRpU3dSv/aOR/tO9azLTPmfOFcqOqIpctX2/Zy2HN5sx1e503fRdVvIrz7MimjPmsDd8ubs2KXU04dFjPrVvw338qw35esXqtudW3Z1/XXKxJ3vPM8IaUKX4TgJW7G6aYGyI/ibwfSY82FzgQpMZSlyp2m8Pbz1O7RhgAx0/aM3580v2unLlBu9ZRXL2qekI8eACHDmX8/PvW/GcqN/HLQ3efhEiDra15bLemwc8/q3LiXh8dOqR9HBsbmDHD/PiDDyA21vzYaIQJy2fwzDfLCLrhxYJdL3PoQgMwxkDA57CqGgR8CYaCcyNQ5C9Go5o6dMIE87K65lQdnDyZsePl65ZuTYP7AXDmR9j1LAT/nts1ylYSdIt009vp+eZL83+zDz6vxZg3Yzh9Wj2u5xfP2M+b4+VtnlMsMPDxo4iC7vyxS6ZWvwQJU2ilV1xMHK/128nQ91oSG++QZL2NjflW8Nq1mapmtouJimHTARV8lXQOpVHHWrlco7zF3tGeEf3VB4JR0zNzRupdr/O6h5EPeapdILtO+gLgWjSMzWvvU7elJ4v/dsXh0cv2229h3TrzfjeDb9O+7UMu3q5gcbyEsdkZsf+AuVWvcb37GT+AELlo2DAVfIMavxobm/7x3Il16mTe9sIFcwAfHg5PPWXZBR3g8MP3wObRGzT2Lhx9B/6pCHcOZ/q5CJEZcXEweLCaOi/B55+raTkTnDiRsWPmu5buiItw7mfY/TysKANra8GhUWpYyLVVuV27bGXVoPvevXuMGTOGevXq0aBBA95//30iIyNT3WfAgAF4enpa/EycONGa1RQZ0LJXXZ5rp1pXQsNLMnOW+sdlZwe//maLnYMdnoniraCg3KilyE0rfg9OsmzLFkjjrW8SciWUjo1OMfPPVqZlQ3rsYtE3e9i16jgXT1/jYZSBOnXUugMHNG5dzv1Wvu0rTxIZo244dWseiN4umW6OT7j/jfXG3jYGgLnLfYm8F5HLNcqcuDjo90wsm4/UB8Cl8H02rbyNd7MaAPj4wBdfmLcfNMjIjeAwQq+G0aHNfc5eV80PpYqFmLbZv+NWhuqgGTX2nVTfqIoXuUsN38pZeEZC5LzSpeHpp1X59m34+2/YulU9LloUGjZM33F0OsvW7ilTVFfzxo1h9eqk2x8JeRp6noEqLwOP8m4YY8G5ZtKNhbCS6Gjo2xcWLFCPbWzgl1/gnXegdm3zdplt6ba1NQ/hyJMCvoI1XirJ4YH/weWl8PCx/4N3/XOlatZi1aD7nXfe4dy5c8yfP59Zs2Zx6NChdAXQ/fr1Y/fu3aafsWPHWrOaIoM+m1mJQnbRFssmTlRfNAG8vMzLpaX7ybN8rblbdbtWUQDExKQvWdTRHWdoUP8hO477AmBvG8O86bv4ZXVL+o9uTouedahUsxx2Drb0aK6ScWmajnWLcz8j7Zp/zAFkz54ScCfHvWJJ+ndW04fdiyzGgp8zFmjmFYsWweoNzgAUKRTJ+j8vU6+t5Rf2UaOgZ09VDgmxYUDfS3RsHcKpyyowr+h2lf3/xeJSWLVQ79uvy1BW94unrxIS7gZA49rnkp2uTYi8LnFCtfHjVfAN0Lq1uRU8PerXh+efV+WQEGjQwPz9o3hxWLHCPIvY4cNAkYrQ9FfoehQq9oNqQ8H2sQHkB0fB4bchIumNZCGy4v596NLFfFPI3h7++guGDFGPixeHcuVU+eTJ9M94p2nmlu5KlUCf219F4iIg9ACcn5d0CMfDWxD+WMucbVEo2w38Pocuh6B7QM7VNQdk4CMtY86fP8+uXbv466+/8HkUjX344YcMHz6csWPHUqpUynPHFipUCDc3t3Sfy2AwYDAYslxna0qoX16vZ3qUq1Gadwfv5OOf2wLgVzeWd97Rk/DUKlZU/yzj4/UEHrmCwVA2F2trXQXpumaH6xdusjdAvd+9K53ljTcrsnWnWrf61wN0714/xX2XLdMxdGh1oqPVvcAyxW/y5++3aNK5WbJ/367d4dNHWW/XrLNl4DvZew0ycm01o8aa7arV0U4fS/u+XvKaSMGoMaX49dGQgO/mV2XYWwZscnCgU3a8Z/fs0ZFwz3rBAlsada6V7PHmzIrFb3c4N+6WYsvReqblZYrf5N9NcZT3qEjjWkfZdKgBt+65E3z6MpVqlktXHfZuuQSoLuqN/CLk9YZ8HucKgwG9qWiADP7tW7SAmjVtCAjQcTlRQvG2bY0YDJr5uKR9XSdPhr//tiEuznwDqnZtjeXLjVSrBl5e6jwnTmhERxuxtwecvaHpHypaSXz8mDBszs9FZ4xFO/MtlO2J0eN1cGuddA5wkSlP6vv19m3o3t2Go0fV68jJSb1G27WzfAl6e9tw7ZqOu3fhyhWDKQhPTWgoPHig3pFVqmgYDMaMV1DTVEAccR5dxHl49KOLC0cr3RHN43WLzXWHR4MhGowP0Rli1O/4KLzvnkEfdM20ncHFF4onGqxeqiM2gV+CaxO0Mp3RSrWH4vXBJlFoqpHhz5TckN7XsNWC7qNHj+Ls7GwKuAGaNWuGjY0Nx48fp2PHjinuu3r1alatWoWbmxtt27Zl5MiROKYyF8qZM2eyte7WdCKjgzPyqM4vFeLoiZ3cDC3GxPE3OHXKMlFWtVIuBF2rztnLJTl86DB629y+3WZdBeW6ZtX6364B6j9DxxaBlCwZSiE7Xx7GObJ2e0WOHD6KjT7pF5Zz5woxYEAtDAa1rkGN40z7KoxCpZzx9/dP9lz2JQ24OYcQEu7GpgPeHNx3ELtCaU9flVHpubZXAkK4eLsLAM29j3Lhii0knc5eADpn8PN7wNGjRQkM1DF79gWaNg3P8Xpk5T175IgHUBQAV/fT+Pun/MXm0w+vMeSdHmiaCtLdnEOY9cMxHhhK4u9/h1oeN9j0KIna2j+P0KxXSIrHSmz7NnO684rVwlN8nzyJ5PM459hER+P3qHz8+HGMmZi3rnt3NwICKlosK1cuAH9/y5ax9FzXvn3Ls2SJatRp0+Yukydf5MEDI/7+ULlyZQICXImL07F8eRBeXtEpHsc58j+qaarzuU4zwrWV6K+tJMrBg9vFn+NO0S5oNknzjYiMe5Lerzdu2DNqVA0uX1ZJhl1c4vnuu7OUKBHF4x/h7u7lgNIArFqVvv+Tp04VBlSvq6JFQzl56BiOMeewMUaiN0agN0YCOkKK97PYr0zoLFwi9qA3RmAXH4peS/69ERplz+WolhbL/M7PwUaLtVimAx5/d1w+sY47zoma7LWi6KttxqAvCrGo70xXMtiXPp+xWtAdGhpKiRIlLE9ma4uLiwshISl/qejRowdly5bF3d2doKAgvvjiC4KDg/khcVaBx3h4eFA4rXklcpnBYODEiRP4+Pigz/X+Htnjn10JpdpJ1tWscpCga9V5GOdIiULuVPGukGSb7BQVHsW6P47TsHWFdLcUZYeCeF2zYuxYP1P5peGe1G1WjQ4NDrNmbyNu3C2NFh6Kb9uk4+Y++0xnCrhffNHI7Fk1KeSYdvNn1+b/sWC9GxEPi3L3kp5Oz/lm23PJyLXd9Ic5C1bvbtH4+rZMZWvx3nvQ79H//HXrqjNiRCbuxmdSdrxnr15Vr83SpTVatKiT6ra+vr6cC9jBJ3Pb4lo0jI2rQ6nT3JyW+XqnOL75Q5UvnCvGSF/fdNXhRNBpU7nXC80pUaZ4xp5EASSfx7kgUbKOOnXqQJEiGT5ElSrw448aUVHqf4C7u0bfvl6mBuWMXNe5c8HDw0i5cjB4sDM2Nub3Z/v2OtavT6i2F76+qfXZ9UWL6Yfx/Bx0535CF62mgCwcc4bKNz+m0v15aDXHoVUdAnqZpSUznrT36+nT8OqrqvUaoHx5jfXrddSs6ZHs9m3b6li4UJWjo6ul8XpVziTqrd2o+J/UOf8aOiz30+xdKdf2U4tluv2x2ISl3ZXb1a0MJR77H6W74AhxsUm2Negc0RX3ARdvcKlNxbJdqVg0+eea30VFRaWrATjDQfcXX3zBnDlzUt1mXeJUrRn03HPPmcqenp64ubkxaNAgLl++TMWKFZPdR6/X55s3bH6qa1Z4Vn8Iu1X53MlQqtetbLVz3b4cQpd2oRw935zyrtc5eymOQkVy9p/gk3JdUxMWBjt2qHLVquDX0gOdDnp0fciavWr5+uWhNOpg+Xc6cwb+/FOV3dzg559tKFw4ff2Ne/a0ZcGjL1HrV0XRtX/2X4O0ru29ezBvVTNznV6o8cS/FtLSp48ahnL5MmzYADcuRVK+qnOmjxcR8agHmjEO4qNMyws7F8bOIfneD5l9z969dY/bt4sB4FXpFnp96TT3+Xh2G/q8EEAlD3dKlre86dS0fQ1T+YB/iXTVKSYqhqPn1X41ygbjVj6/zQtjXfJ5nIMS/Z31en2mBpGWKAEvvggJXy3btdNhm0zvuPRc1yJFVDfz5DRoYC77+9ukXdXCpcDnQ6g9Di7/BUHfQth+AHTR19AdeQMu/Q6d9kmX8yx4Et6vR46oLPthajZJPDzg3391VKyY8vNOPG3YqVPpeL3e3MylDUcAlQerapHtSQJuAF3cffQ2NpavWXsX0OnBzhnsXaFodfXjVO3R7+rg4IqNjX3S93iHHWpffSH1Y+OAAVv8T57D169egb+2QLqfY4aD7iFDhtCnT59Ut6lQoQIlS5bkzh3LjMLx8fHcv38/Q+O16z561V26dCnFoFvkPV41zS+twJORdLHSeS6dvkLHjvGcva6+yF4NK8vK+f/x3GvN0thTzJu+i1ETG/Bs+8P8trZ5lhMxrV5tHnrz9NPmz/Puz9eAR/kTV29256PH9pv+zn9omrpeb78NGem00qlfbexejyXOYM/qbVX51qjlaEKp2FiVffTcOXXORo2gmk/O9bTIr2xtYciLd5g0rQSapmPhd0d475s2GT6O0aj+/v/8k7DEDnAxrXdzDuG7qWd5/vXs+zwIOnoVKAaAZ9kzJHT/S43ORkf9dslnRi5Z3pVqpS9x/mYljpytQWx0LPaO9qke79juc8TEqR5GTepcAyToFvnb6NEqi3NMDLzwgnXOkbiB7siRDOxoYweVX1A/ofvh9HS4+o9aV/klCbhFqm7dgl69zAF3Pd841i+/jXuJWHhghKLVkt2vZk310tK0RBnMNQ2ib0DIbnCpDcUS9TQtVIYLV4uZHlZ1vwAutaB0JyhUSgXUdkXVbzRMmfsB6n0F9b/N3Gs58TjtBAYD6GRW6sdl+C9SokQJqlWrluqPvb09fn5+hIeHczJRrvt9+/ZhNBpVF6R0CghQ3R0yEqiL3Ofpbf7iG2SlIfenDwTTvKWtafqdBPMXpP6FVai5tEdNbMDDOEcWbmjBhj8OZfmYy5ebywnTwACUr1EGv2rqfXz4bC2un79pWncp4CoL16l5YYoVucfI/yXtopQaZ1dnWtdV48Eu3q7A6f3nM1n7jNOMGsNfMZimuClZUmW1FukzsL+5RXr+n5UylLk7wb59iQPupELC3XhxdGP++mlvJmqYvKATd01lL8+M1zk5TeqoBAAP4xw5vift+cv37ww1lRs3yvtJZoRIS+3acOyYek/36mWdc7i4QI1HHUuOHYP4+EwcpGRjaLUCuhyBqoOg+iuW6yOC4exPYIjJanVFfnY/EE5/Rvye4TzX6SjXHuUTa1rjP7aNcsV9b3lYVRXWJxOwBn4NG5vguK8r1cuq/w2nT0RjWOoKS2zhn3Kw5zm49Iflfi61CL5rDsKrDPgLup+C+l9D7fHgMRKqDIDyvZMGxDa2cvMoB1jtNkS1atVo2bIlEyZM4Pjx4xw+fJiPP/6Y7t27mzKX37p1iy5dunD8+HEALl++zMyZMzl58iRXr15ly5YtjBs3joYNG+KVeB4qked5+pknBww8n/luoyk5cABadq3EtTtl1PnKXaBCSfWp9u8hP66du5Ht5ywoNKPGa8Nv8zDOnPBm4pQimQp6Ejy484BNG1TAXKa0gcaNLdf3aG+eGmrtEvNdmM8/Ok+8QXX/ff1Ff5yLZ/yGSY/O5qm61vx5NcP7Z9bUN3bw2wLVpcjBAVauhOrVc+z0+V4V7/K0qXsUgLPXq7B3fcYTqPy51HyTpkED6Nz2Hp0bHqJzw0M09FDTyBk1PS+83oC1Cw5mS70DA8xBrmft7Mkl0rih+Zj7d6WdSG3fWXM/2SZt8/JErEKkn6cnSf53ZLd6jyYRePgQArIyG1EJP2gyP+l47lOfwMGRsLoGnJ0NhozdSBZ5kDEOHoZAxEW4fxrCDsHtnXBtHZz5EQ6/mXRauXvHwH8c4z7xZMdxleumbPFrLH/zaZwLP7A89uPCA9Uwhhsb8C6j/m9FxzoSfK04aInyn9zeabmfTseFcNWry9kZSlSsnLXnLbKdVdv+v/jiC6pWrcrLL7/M8OHDqVevHlOmTDGtj4uLIzg4mOholSXPzs6OvXv3MnToULp27cqMGTPo1KkTs2bNsmY1hRWUKFMcN2f15THwUvZOGbZ5M7RrB3fuqJdvfc9z7NrrzJBnzgLqS/bCmUGpHeKJ9udPe9lwoKHFskNna7H61wOZPub6xSeIiVMBc58We5JMAdWjr7mnypr1KqflzeBbzP1HfcMq4hDB6I/S3wPG4tjPVTaVV28qkfKG2ej3r/cwcWYb0+OFv8bQTEY0ZNjgl8xJmH6dczeVLZMyGoz8tUi1+NrZGdi0CTZsLcaGAw3YcKAB+07XZHB3le0x3mBH32E+bF6WkT6lyQs6Z/6S7eWbdtfy9Gjcyjz7w779aY/62n9YJasqVAjqNE++a6IQIqmEoBsy2MU8PaJvwoXfVDnqChx8VQXf536Wlu/8KC4C1teDZUVguTusqgJra8PGhrC5NezoDodGqbH+d/0t9y3qwdK9/fhq/RgA7Gxj+eujqZSu1RDKPwUVnoFKz6ufxyXKS+JTwZzZ/URoZyjRQHUXr/UeeE+03C0eLl1SrdVVq0rDdZ6k5WORkZHaoUOHtMjIyNyuSpri4+O1Q4cOafHx8bldlRzT0ttfUwNQNO3e7XvZcszt2zXN3l4zHbdtW027f1+tO3/8kmm5Z7nzmtFgzJZzpia/Xdd7d+K0MsVvmv5Ow3rtMJXrVgnUDPGGTB33uXZ7TMfZvOxIkvWGeINWqtgtDTStsEOEFhUepb07cJtpnzEDtmfpedWscE4DTbOxMWght9N/3Y0GoxZ46Hyyr8+Uru22v49qdvoYU90/G7MtS3V/kkXci9CcCoVroGlFHe9rkffT/1n+39pjpmvQrfGBZLeJj43Xnm9vfm062kdqW5cfydJ7NuG15mAXrcXHZs/7PibqoeZgF62BptWoeCvVbUNCzJ9/zZply+kLjPz2eVwgRESYX5AREVY5RXZe182bzdV9/fVsqNzjQg9o2rbumrYIy5+/3TXN/0NNi7xqhZPmT7n+fjUaNe1+oKadn69p+4drWsDXSbdZXibptUzu59R0i91OHI3WCjvGmV5rM2dmsG6GOE17GKYtWxJrOsaUKanvEhxsfm336ZPB82WzXL+2OSy98aiMchdW41Xtvqmskg9l3ZSPooh91Furd29Yt051owGo6lOR1nXVUIWga1XZty+FgzzBJnxky427anhHz2b7+XlFS+rXUFMPHQv25J8l6ZsjOLGHkQ9Z+58PACWc7tCql0+SbWz0NnRvoXofRMUU4e+5R/hpWX0AHOweMmZS1oaP9HhWTUlnNNqwYWP6bu+e2HOWDg2O4tWgKp4eMQQdvpDmPgEHztNnYGXiDKpV/3+3g+pjAAEAAElEQVR9dvLOZ60zX/EnXBGXIjzb/hgAD6KdWTHPP937/rnInKjz2aeTb0XS2+lZsLYhT7VQHwbRsYXp9VJNTp7MXLfw+Nh4zl1XrzWPcpfR22VPVlZ7Rwf8/NSxzl52NyXcSc7+/eZykybZcnohnhh+5lkts7+lG8C1IbRZA50PQNlu5uUPb8OpqbCyMux+DmLvp3gIYQXx0XD3GFxcAsc/gu3d4e+SsMYL9g1WvREu/5l0vxINVcKyst2hYj+oOhhqjIKaY8FnEjSaDe23Q7Vhpl3u3YOn+xUiKlr1Wnr5ZRgxIoP1tbEFhxJ41zHPvnEyjRFYFxJ9halaNYPnEzlCgm5hNZ61nUzloMulsny8+yH32blbfQBVLnuXv/5S3SsTG/ymOeD79TfpW5PYoUMwc6YqFy6s8f1vtdHZ6JjykXnM2UfTS2HM4JTJm/86TsTDogD0an0KO4fku8f2eLqYqTxqYn3TPkN6HaBM1ay9Pnr0No8FX7Mm9W3DwmDUKPBtVY2tR1Vfw1v33OnWQ0/IldAU9ws+eYVO3Ry5F1kMgC6NDvHDkmY5mi29IBr0SlFT+deF6Zvqz2gw8udGNd+nnT6W3i8nvdGTwM7BjiUb/ejSSI2Ni4gqxOuv1+B8JnLuBZ+6arrh4lUllcg4E5o0M3+5OpDKSI/9W8zfrKw9/lWIgqZECahcWZX9/c0zbmQ714bQZi102g8Vn1NTKgFo8XDvxKMM0olcXQWhByDmTtJjiaQ0I4QHQfBCOPQG7HwKdj4Nu55N2tX7zI+qi/h6X/jvBTg5Ba6vg9jH/tb3joHxsex6rVZA95PqRkqLpdBkHjT8AfxmgM9HUH04lGoNDq6AmlFj4EA4q0Y74ucHP/2U+a7e1auD/aOvNydOpL5tcKJh5VVkQos8KcNThgmRXl7NzIOnAoNLprJl+mz66zTxhqYA9Gx5HFvbpC2MfZ/RMeo1iIyEJUvgm2/A0THJZk8cgwFefRVTQD1pko5K1dVNka79fWn8vWpBO3lSzZn93HPpP/byP82tjE/3dUhxu47P+mD/qppmKzxCBVd6m3jGTsn6LdlmzaB4cbh7V837HBcHdo9NzxwXB7NmwUcfqe0S7jna6AwYNT0Xblaid+cTbNlfBMeili+aq2dv0L6DxtUwlZ/At2ogy9Z7YmsvH6FZ1bJnHaqWvsyFmxXZctSXy4HXqOiV+rRr+zee4mqYCrQ7NDhG8VINU93eobADy7fUoXsvjW3bdDx4YMuPPxr55puM1TXQ/zZQGQDP6tk7RjNxAL1/P3Ttmvx2+3aax743rnMDKJOt9RCioKtfHy5eVN8TzpxRUzNZTclG0GIJRF2Ds7Pg/M/g8ZplFGaMg119VUAOoHd8NN+xHejswMZelfWOKnlbiUTN9fcD4doq8z6muZILgWaAuHD1oy8E1YdZ1i3q+qMWVbfcHwAcH6WSlN07AfdPgn1x8P7QcpuzsyEyWCUyu3NQPa/kPJ5RvnA5SGa+ahxcoWQzKNlU/bg2VH+PxDI47dXMmWr6VFA3eJYvz9p3UDs79fo8dky9VmNiVOLW5EhLd94n3xiF1Xh6mstB2ZDXbPUq8y3pnk85JbuNkxM8+yz8+iuEh8OKFdC/f9bPnd/9+NlFDh+uDIC3N7z5pnmdTgcffwydOqnHkybBM8+APh09Z2OjY1m5Q01RUcQhgo79Uk6G5uQEbdvCxo3mZS912UflWi0y9mSSYWurgpQ//oD792H3vzdp200luYqLiWPZjwf45PsaBAS7m/YpUgQ+HHuPZ3vfp1U7e67fKcPeAB8G9trL0s3mCOjWpRDat31I8C1169ir/Hk2bnOlaImiiKzT2egY1PcCE2dWRNNsWDDzLB9+n3rQ/ecicytzvxS6lj/O0cmBJUvg0eQZHDqU8S+ZQafNCW68atqlsmXGJQ669+19bA7VR4wGIwcCVIr80sVuUdEjexK5CfEkqVcP/v5blY8csXLQnaBwOaj78aNA8rEAMPKyOeAGMESrn+Q8HhzfOQT+49I+v1PVpEH3iUlwfg7YFQNnTyhWB9yaqUC0aI3MB+KaBjFhEHNbzROd2LV1cHMTGGLQxUdTNfQSNteuQcQ5LP4u5XsnPW7AZxCR9jAwU6+CBC7e4NoInL3Auab6XcwbnKpl680GoxG+/tr8ePFic6+KrPD2VkG3waC+S6c067K0dOd9EnQLq6lcWXWLiY2FwMCsHcsQZ2DdHvWf0anQA1r18k5x28GDVdAN8Ov3Z+jf3yNrJ8/HHkY+ZN/GQD742Hzbc9aspK3AHTpAixawe7e6Vkt+PsOLI9L+u61ZeIQ7EWpgaa+WxyhUpHmq2/foYQ66dToj703Jvsz2Pdpe4o8/Kql6/RFIo+ZF+eWzQ3w1pxqXQizr9fLL8OmnULZsMaAYa1cE0bKzExEPi/LX9qaMH7KdafNacu+enkHPw5lr6j9YtdKX2LK9CO4V3RDZZ+CoGkx8NPTh11X1+OC7lL8LGQ1G/tqkJttVXctT/ix4nLs7VKqkcemSDn9/DUOcMUPjsgNvmr/tePqlfmMgoypXBvcSEdy+48SB/+6hGYslGbpw5kgw96NUtvLG3hfR2WR92I4QT5r69c3lI0fgxRdz8OT6ZJop7YqC7wyIOA8PzsPDG6r1O+FHi1NTjxmiwM7Fct/Ye+k7b1wyY8gfPGoNibunpqgK26+CcLBsBa7wtArKTceKgNs7ICYUoq8n+rlh/m2MVa3Ez8WCTaLP2ND/VLZvVF+z4inVV59M83CirN44llUt066NHo27rqXOpxnA4bGelUWrQef9WNu2bebAt1Mnc0NGVnkn+hd38mTKQXfilu7sCPZF9pOgW1iNra0aj3L6NJw9a8QQp2U68dD+TacJe6C6k3ZufBKHwk1T3LZlS6ha+goXblZg8/7qXAm6TgXP7J22LC2aUSMmOoZCRdI3RjW7hFwJ5b9N59mzM5o9h0pw6IwnsfG+pvXDeu2kefNWSfbT6WDKR7G066gGD02easdzQ+PT7D6deNz8oCFpP9deveCdd1QXqX69buNZP/v6QHXp6YLeJh6D0ZbfVvnw68oY7kRYDkFoVuccX8+pTqNGlvv6tvJk2c8H6TnID4PRls8XtKFkqf/4dU1dAs6p6ZkqlLzGlq16ylaT1sXsVqlmOdq1imDrTifOX3Zmzx51Eyg5Bzad4kpo+ruWP66+xxkuXfIkMtKGoCPnqNU4/ZOrB100T0nnWb9yhs6bFp0OGnudYvV/jbkbUZyz/sF41LNsrti37QbwKOiun0JLmBAiVYmTqR0+nHv1MCnkDrXGpm9b7bFW8rJdwfEvMMaA4aH5x/gQ0Kkg3c4Z7IslPZZ7a7BxUGOjoy5brosJg2ur1Y9DScugO+oK7OiRjroaVWu3Y6IhMDZJbzpo+kLoXGpDMR9w8VG/i9dNerymv6kx18XrPuoynn3u3IEJE+DgweTXN2kCX36ZtMEisTlzzOVXXkl5u4zySZSyJLVx3QlBd7lySfMdibxBgm5hVV7uRzl92o/YWBsunr5EtbqVMnWc1X+bu5P26JZ65hOdDgb1Pc/EmRUedVc9wwff5VzQvWOFP8NGFeP6HTemTnnAm+8WtcpwKU1TY3z27IE9606xZ58jQdeqAsmPn6/sfoUZs1JuFWzbwZ62vkfY5l+Ps9er8Ps3uxk0NuWu3zevRLBun2oyKO96nfbP+KZZ54oVYeVK9Y/trbeyN3gtXqoYLbz92XHcl7AHrhbrujU+yNhxdrTqXTfFIVpdBzTkh+CdjPhI3ZQY97l54u0yZTS2brKnUk1p4baWwa84sXWnKs+fn3LQnbhreUpZy1NTv+Z1lv+rvkAe3nMzQ0F3Qo+dsmWhqBVGFzSuH83q/1R539ZrSYLu/fvNWQ6btHysxUsIkS7u7lC+PFy9CkePqm7BNvklrfDjXyaKVlM/mVFnirkcH6nGSof+ByH/qd8JicZ0j4UKibvCP86hpGqFdixrGWwnqDoIynQEGwcM2HL6zEVq1e+M3s4+6baPK5NNTcePuX8fOndWyWZTcvCgGoaQUhby0FA1nBHAzU01MGSXx1u6kxMRASGPJp+RruV5lwTdwqq8qt2H7aoceOx2poPuNVvVXU2dzki359Lu9jxwVHVzd9W/KvP+N5rVs0w/jHzIhBH7+PL3ViTMxvf2OPA/pbp0Z1dCt9u34d131XRpoaZk27WT3bZ6mYu0qHeF5s3g2Vfq4OKW+hf1yZP1bHs0lGrKVxV5cXQcdg7J39pdtMwJw6MYYGC/W+jt0ndjo3Nn9WMNfbrfZ4eaNQ5bfRz9O+3nnQ/c8WmevtbQVye24sL57Xy+oI1pmZubxpYtOqpLwG1VffqoQPbBA1i2DL77To27T8xohD83q9v+tvo4eg9Mf9fyBPWaFIHvVPnQAQMD0rlfWJj5/eaVtRnuUtSkpTN8r8r79xsYmGjdtXM3WLVddavX6Yw0aJv+mwVCCEv166ugOzwczp+HGjWyfsx8Fbw/zraIysJd6lHvME2DB2cg7IDqwp2Ygxv4TFZd0B3LmIPsQqVBn0bwXKSC+gEwGIi1e6z7eQ6LjITu3S0D7sevYUIC2k8+UcMXk2tFXrgQ03S2L79szjieHSpWVDlxIiJSDroTj+eWJGp5V379eBD5hKeX+b5O0KnITB3j4qmrnLyk/iM29jyFeyX3NPaASjXL085PTcJ57kZl/luXxlwLWXRs1xka1r7CFwvbmALuBAsWQKtW6h98VkXej6Rbm6ssWJA44Fbs9LE08TrBmJe2s/znfdwMDuHs9crMX9OSYe+3TDPgBmjZqy4d66v+dsG3KvLbl8lPdq5p5nHzAC+/6Zfsdjntfx80ZuzL2/lg2HbOn7zNb+ta4NM8Y2P6p89rxbN91X9PZ+d4Nmww5kyinSdckSLQr58qR0TA8gVJE+YcOABXbqleDB1a3aNE6WIZPk+9FuZmgMMn079/0HHz9DKJk0Rmp4btqqPTqW94+/zNn3O3L92mQ9sort9RLUdtff0lkZ8QWVDPPLlKtszX/f776jPss8+yfqw8QadTXcqrDLDsWg7gWBp8JoLHKDXeu2QTKFIx7YA7j4mOVi3Se/aox66uKqg1GCx/ej9qiLh2DX7+OelxNM2ya/mwYUm3yQqdztzaffGiujH9OEmilj9I0C2syquOOU1GYFDmXm5rlpgn1O3RMf1z4w4eYB7zOP/nZJKIZANDnIG/f7xKkw7VTDcG7G1j+PydHSxZbKRwYbXdoUPQwDeSPWuOm/bVjBrnj13it893M6LvTt4duJ37ISnX0xBnoH/3kxwOKA9A0aJGevSAadNg5/Z47t81sDfAhy8WtqHPK00oVTlzLbNTpprHXH38TRVio2OTbHP4sPmOa7Nm4JFHctUVKlKIGb+2YeqcNmlOO5USG70Ni5fas26dgaVLT1M3maFlwjoG9zdPhzX+g0Js/euoxfo//zSX+w3I3OvbtWwJKrtfAuDoueoY4lLpKplI4P5TprKX6+5MnTstzq7O1KqgPu+OB1cn+kE0d25F0LHtXQKvqi6kVUtfYsEymSZMiKzIzqA7OBimT4eHD1VraHz6PlJELoqNVbO0bN2qHru4wL//Qu1kOg1Onmwuf/opREVZrv/vPwgIUOWWLa1zUzbxuO5Tp5Kul+nC8gcJuoVVefqVN5WDLjhn6hhrtlU0lXv2S/+XzT5DfCnqqOZx/HNzHeJi4tLcZ+L/tuNgF4NOR7p+HBztmTavN3EGdYe3bpUgDm2/xDuft+a552347z9zFslbYUVo+5QXY17aTt/W+yjjGkJ130oMGtuCWctb8cXCNjRpEM6ZM8nXbczLu1m1R80r5Ox4n/82nGf1ahg/Hlq2tk0yt3RmNeniTbfGKpvI5ZDy/PJZ0tbuX+ebk7kMHpwtp81T9HqVedTNLe3XjMg+zdoUw6+a+vZy/W5Z2j/rx1v9dxD9IBpNg7/+UtvZ2ppbHzKjTvWLAETFFCHwUHDqGz8SFGjOJeFZ03pZahrXuQlAvMGObWuC6dyjCMeD1be48q7X2bJZT7nqEnQLkRWJM5hnNZnazJnm/Gbh4Skn4xJ5Q3w8vPCCGqIHquv2hg2WCfYSq1tXBegAt27BTz9Zrp8711zOzgRqiaU1rltauvMHCbqFVbm4uVC62C0AAi9nvOXxwQPYdlB9glQoF4NPs/Q3qRZxKULPFqpbeXi0C3s3nE51+7Drd/hkTkti45OZ0iMNOp2RcYO2s/9kZYvuzHXrqn/A7eodAyDOYM9Xi9qwfGcTbt1L2k0+8HIFGjWC9estl3/3wQ6+XazGWtnq4/h7/jm8m2XDILQUTJ5qHkz7yXc1eBj50PQ4JiqGPxaoFnlHRwPPPmu1aognjM5Gx6r1xWjra27h/mZxaxp4X+PnL85w+VGC3Q4doESJFA6SDrW97pnKh3bfStc+gefMN7W8/KyXwb5xY/MNrX5Dq5vmEy9dMoKt/8ZSuXb5lHYVQqRTmTJQ+tHb+MiRpEnB0ysiwjLoAti0KWt1E9ajaTBoECxfrh47OsKaNSo7eWo++sicw27GDHXdQSVhW7pUlV1czMF5dkscdCeXwVxauvMHCbqF1XlVug7A7ftu3L11L0P7bt5sTk7Ro5dDhpOhdeli/k+6cfXdVLaETX8FYtRUQo9Kbldp4nXC/NPYSJMmmH98b5nWdWm4h20rjjF9fhscCicN2EuWhI17azP6hR0Wy50d79Ol0UE+fm07K2f9S21PNVDn/n2V2GPGDPUPYtW8/bw5raVpv9lT99LhufpYU4MOtejVXM1ree1OGeZMM89xueq3I9yNKAbA0y334SJJlEU2Kl+jDJsP1eWrcdtxsFM3e05frs6rY803s57tlfp7OS0etc2fI4cPp68vaNBF1Z3d0T6KCh7Wmw2hSRtzQB8ZrXrQuLrC5u1O1PCrbLXzCvGkSehifvcuXLqUuWMsWKD+Zyf2779Zq5ewns2bYdEiVba3h3/+gdatU90FUEHvc8+pckgI/PCDKv/xhxobDvDSS9mXMDe58ydIrqU7Ieh2cFA3lETeJNnLhdV5Vg1nu2roJejoVZp0KZbufdesMZd79sz4uTs97QljVHnDjlJ8ksq269aZp+OZ/1MIbfumlhysFFAKg8GAv78/vr51Uq2Hrb0t3/zRmu69DnPpQhSNWpWiduNq6O3MWbXb9ldZL1esUMH2+PGwe+V+th7xNiVne3/odoaMb5PqubLL5E+LserRP6NPf/Jm6PtQuDD8+pv5Y2PwMCv9hxFPNBu9DW9Nb0On3ucYMCCOo+fNmexs9XE89VTWjl+1TjFT+dBx15Q3fCQuJo7zN1XGXY9yV7DRWymTGlC7cTWKOEQQGeMEpD7WUAiRefXrm7sYHz5sHgqWXkajmmUhQfHiKoDft091M3fO3Ig6YUUJY7gBvv9eDSNLr48+UjNrGI3w+ecwcmTOdC0HNc2du7uavebxoPvIEZWBH9RrON9m0H8CyKURVuflaW5tDjx+L937GQ1G1q5VgXDhwtC2bcbPXaqyG74eVwA4cq4mt2+nfK4Ne9U8QE6FHtC8m3W+4XZ8vj7D3m9JnRYe6O0sp8koWlSNWU2ctGPN3sZExaiu3s+3/4+PZ7eySr2S49vKk77t/AG4eceVWbPgxoVbbDigmgcqlLxG26d9c6w+4slTu2l19p2oxvtDt2OjU2OqezY7TIkyxVPfMQ1FihehainVtOV/vhrxccZUt79w4grxBjV1nmeV9CdzzAy9nZ7OjdW3Kqci8amONRRCZF5Wk6lt2gRBQarcujW8+KIqGwywfXuWqyesYO9ec7lHj4zt6+VlvsZ37sCQIebXTcOGWD3pakJr9+3bmL7LLl4MzZtDTIx63KKFdesgskaCbmF1nrXM44ODgtI/cOrQlgBu3VIv0Y4tbyY7N2J6dHm6gqmc0lirQ1sCCA0vqc7V8BT2jrkz9YWNDUycCP8svoFTIfO8EC28jzF/ZT1s9Dn7lp30ra9pHNP06TDri/OmLvgv9zmb4/URTx57R3s+mduGQ1vP8s17O/j5j+zJZVC/kXqPR8cWJiAw9ddx4LEQU9mrRtJs/tntp4XV+GHiDo7suprmWEMhROY8HnTfv6/Gy65bB7Nmwccfpx6MJ27lfuMN6NjR/Fi6mOc98fHmJHcVK0LZTIwSmjhRJVoF+Ptv8/LsniYsOYm7mB87BuPGQf/+Kms+qKGPn35q/XqIzJNvzMLqvBqZu2IG3mmZypaW1vxt/qLbo9XZTJ+/c2dzeePG5LdZt9k8MLlbl9zPWN37+TLs336Lbo0P8mzbvfyzsQKFilgvY3JKvL3NcyeHhMDU2Y1N6waNkhSZIuf4tfFi9KetKVk+7e7g6VGvWSlTOa3sxUGnzXPEeNa0y5bzp8a9ohujJreWMdxCWFGFCirnCqjs1cWKQZ06KqfKiBEqwGrRAnbuTLpvUJA54WmlSmo2hTZtzAGZJFPLe06cME/31bRp5o5RvboaBphYkSIqG7q1JZ427MUXLeeEHzpU9a5wT5qfV+QhEnQLq6tY3RmHR/nFErpipcfqzeaEQt2fz/xE0M2aqSkhQAXdxmR6kq7bbs4I3PVF6yYpS69ajauzdl9Dlm1timvZLKRqzqJJk8xjhIxG9Y2ipfcxqtWtlGt1EiKr6tc397o5dCj1bQODzHkMvOrk3ntRCJF9dDpo0CD1baKjVRC+f7/l8u+/N5dfe00F287O5izYZ85gmm1B5A2Ju5ZnpQfRhx+qaSsTPP+8Gh5obYlbukMetUnp9eq1OGcOpu/ZIu+SoFtYnV4PHo9i5nPnVBeftFw9ewP/C2qMdYMapylTtVQae6TM3h7atVVfsENCwH/XBYv1t2+buxzVrQvlKhXO9LkKIi8v6N8vwmLZoBfDc6k2QmSPxF1L02rpDnyUuRzAw7dCKlsKIfKTiROhVi3VgtmunWrFnDABfv4ZunRR20REqPLRRzMZ3rsHv/6qyoULq1bGBNLFPO9KHHRntqUb1DzYibuTDx+e+WNlRK1alo9LllTZ2F97zTydmcjbJOgWOcJLxc/ExUFwcNrbr11i7k7eo0MK2c8yoHO93abyxhWWc4Mk7nLetWuWT1UgTRwbit5G3S0p7BDJs8N9c7dCQmRRsWJQvYqa68X/SCzxscnfDdQ0CLyuPsDKl43DqbhTTlVRCGFlTZvCqVNw9ixs2aKC6SlTVCbq5ctVIA4q0O7USW07bx5ERqrlAweqrOUJEmfDlqA7b0kIuh0csp6c8uuvYepU+PNPaNQo63VLD2dn6NBBlevWVY1FbdrkzLlF9pCgW+QIz8rmjL+n9wakuf2/W8zjJrs/nfVBKl36mrtCb9hqmfl43Upzq223blk+VYFUw68yX4zdQ7kSN/jy/cMULZEDfamEsLIGVVWWpIex9pw+cCHZbUJD1TRAAF61rD+eWwiRNzg6wsqVKjs0qM+CDh3gm2/M27zxhuU+DRuqaf5AtUImN5wtJ2jpz1n7RAgJMU+rVb++6gGZFYUKwQcfwDPPZL1uGbF6Nfz3nwq4MzrFnch9EnSLHFGnyhlT+b+tt1LdVjNq7DiqMhQXK3IPv9ZZnxO3qk9Fqpe5qM5/ujbhYSrQjo+NZ+MGNRWRi1NUlrocFXRvTmvN1bAyvDox56YtE8Ka6vuZkyYe2p3851LiPBSe1pueWwiRBzk5wdq15rHfN2/CFTULKZ06Qc2altvb2pqnNw0LM3dJz0knT0KNGurn+vWcP39etG+fuZyfZ4QoVEj1zrCT+7/5kgTdIke07l7dVN621y2VLeH0/vOm6bta1g1KMp91ZnVpqbqVxxvs2LpCtbbv33Sau5Gq5btzI3+L5BhCiIKtQdNipvLhw8k3SQUGmssJw2SEEE8OFxc1DK1OHcvlo0cnv31ujuu+fl312Dt/XuXQ+fbbnD1/XpVd47mFyAoJukWOcK/oRu2Kapz24bNe3A+5n+K2OzZcM5VbN4/Otjp07mZOkLZxfQwA6/65Y1rWtXMu9QMTQuQKv5bmae8OnUh+KrKgveaJej2r3LV6nYQQeU+JEiqATrjx5utrTrT2uNwKuiMioGdPc0s8wKJFme/ivmePmlatbduk2dvzgvh4WLpUzVDj4ZF6rwIJukVeIEG3yDFtm6h+TkZNz841Kc8dtn2Pebxwmy6Zz1r+uDa9a2GnjwVgw+4qaEaN9dvNx+/ybOanJRNC5D8ubi54lFOZHY9dqE5cTFySbQIDzAnWvKpn301AIUT+4u4OBw7AsmWq5dsmhW/Q1aubx9vu3m2eG9qaDAY1V/SRI5bLr12DHTsyd8wZM+DqVTX/c5MmMGgQ3LiR1ZpmXVQU/PijGu7z/PMqoD57Ft56K/nt4+PVdQN1E6FcuZyrqxCJSdAtcky7DuZJBLdtTv6/kKbBjhNqLh9np1h8W2ZfIOxUrAgt65wE4OLtCuz45xhHz6sBWfVrnKZ0lawnbBNC5C/1a6qbgTFxhTi1P2kytaBLajhMYYdIylUvnaN1E0LkLUWLwrPPqgA8JTqdubU7NhZ27cr6eUNDVeb05BKkaRq8+SasWaMeu7ioqdASLFyY8fMZDLBzp+Wy335TLcrTp8PDhxk/ZlZdvQoffwyVKsGoUXDhsY/rHTvU/OiPO3nSfONDWrlFbpKgW+SY1j080elUP6dt+5L/8hoUpObNBmjRyj7bxnMn6Nz2gan89ljzTYBubbM+LZkQIv9pUM/cun14j+XnQExUDBduqnm5PctfxkYv/zKFEGlL3MV80ybLdZoG69apADJxV/CULF+u5ob29oZq1eD99+H4cXMA/u238MMPqmxrC3//DePHqxsEAH/9BdEZ7KRz9CjcfzQK0NNTTbEIqgv7e+9B7dqq/r/9Blu3qvHj2RmIGwzg7w8zZ0L//irQrlBB3UwIDTVv16kTDBlifjx3btJjJe5anp+TqIn8T75BiBxTokxx6j7KYn4s2IM7N5KOj0zcDap16+yvQ5c+ZUzlhFZugG59Smb/yYQQeV79JsVM5UOHLJuRzp+4gsGosit6Vpbx3EKI9GnXTrV4g+W47hMn1LRj3burANLHR427Tq4F22hU2/Ttq4JdgOBgmDZNzdPs7a1afN9+27zPnDnQvr2a7ixhOqsHD9RUUxmxbZu5PHq06r49cqS5S/2FC6pugwap89Wooc5ZqhR07qwC8q1bzfOZZ8Snn6q5z/384LXXYPFiuHzZvN7GxtyVfuNG1fKekM37t99U74LEZDy3yCsk6BY5qm1TNS2PptmwI5lx3du3m8tt2mT/+X2a1aBMiRCLZa5Fw2jYvmYKewghCjK/VlVNPXAOnzQnUzu8NYCxb5oTLXp5xCbZVwghkuPqquaDBhVonzqlAmRfXxWMJrh/H156SY1NvmP+uCE8HPr0UcFrglq1QJ+o89/p02psc0LAPmGCCoITvPSSufz77xmrf+I6tm0LJUuqVmd/f/OUaMm5fVu17E+cqIJxFxc13dqbb6rAPS1nzqj5rx88sFxeuLA674QJqlX9jz9UUA7g5qb+Vgnnf/wGQ0LQbW9v3keI3CBBt8hRbTs4msrbtsRYrNOMGjv+DQPAqUg89epl//l1Njo69bScsqxzk8Bs78YuhMgfnF2d8aigxnUfC/Zi3eJAOtQ7TIP2NVm7r5Fpu/qNC6d0CCGESKJTJ3O5bl0VICdkEq9SxRwogkrO5u0NGzao4LRJE1i1Sq2zsYHPP1djk69fV13Jmze3PNdLL8HkyZbL2rSB8uVVef16CLFsb0hRXJx5HHrp0qp7eQIfH9iyRdVlxQr47jt45x147jmVRfzxse4GAxw+rLrAd+6sjp2a7783l9u2hW++gYMH4d49dSNgyhT1t3vcK6+Yy4m7mIeEqCAd1E0QBweEyDUyK7HIUa26e2JjY8Bo1LPteGOLdeeOXeJGWGUAmtfyx9a2gVXq0KWL6oKUoFtXq5xGCJFPNGhZnqBFEBunp3t/y8m43V1CGDv8FN1eapVLtRNC5EcdO6qu0qCCT4AiReDDD1XLb6FCKth+9VW4e1dlBu/aVbXqJiT+KlYMlixRASuooHbUKPVz+bIa763Xw//+Z+7OnsDGRo2H/uwzlcF72TK1X1oOHTJ3C2/bNulxdTo1prt27aT7aprqAr9nj/rZvVu18oNavmiRZWt8Yvfvw6+/qnLhwmpsevHiadcXVHf+KlXUOTZuhEuX1DjwxFOdyXhukdukpVvkKBc3F+rVU63KJwMKmZKmAexYb84o0qZ5hNXq0LGj+Z+ITqfR+Tkfq51LCJH3JXQDTax6mYvMmrKTS9eKMuazNpJETQiRIU2bqvm9EwwapFqxx49XATdAv36q1TghqAZzwF27tmrlTbwusYoVVfD++uuq63RyMtPFPPF47tS6kidHp4OqVWHAAJg1Sz23xFnQp00z34B43Pz55rHrAwemP+AGdYNh6FBV1jSYN0+VZTy3yEus9i3ip59+4vnnn6du3bo0aJC+FktN0/j2229p0aIFderUYdCgQVy8eNFaVRS5pF07cznxGO7tO8wvx9YdzWMrs5urK/Tqpcq9e+soWdbZaucSQuR9PXqorL8ADRvCX7+HEHipAv+b0IpCRQrlbuWEEPmSgwOsXAljxqh5oufPhzJlkm5Xtqzq/j1zpkpGBvDUUypgrF49a3Xw8YE6dVR53z5zV+vUJA66E39fy6yWLc2Jcc+cUS3YjzMYLLuWv/56xs8zeLA50du8eeqYEnSLvMRqQXdcXBxdunThhRdeSPc+c+bMYeHChUyaNIlly5bh6OjI0KFDiYmJSXtnkW8kvnOa8OGuGTV2HFYDdQo7RNKgvVcye2afJUtUt6fFi616GiFEPlCjBgQGqiRB+/dD3xfdJM+DECLLWrSAL75QN/NSo9Op7OAXL6oAffly85RfWTVggLmcVmt3TIzqFg5qiq6qVbOnDh98YC5/+mnSbO3r1pnn3e7YUSWNy6iyZVVWeFBzeq9bp/6WoMa2J4xvFyK3WG1M9xtvvAHA8uXL07W9pmksWLCAESNG0KFDBwA+++wzmjVrxubNm+me8E5KhsFgwJBSf5U8IqF+eb2eOaFpU7C1tSE+Xse2jXcxGJy5cPIyV8NU0N2sdiA2tr5W/VvZ2ZnH92TlNHJdCy65tgVTSte1cmX1OyHRkch/5D2bCwwG9KaiIWv/UFM8xZNzXV1d1U92fg716wdjx9qgaTp+/13jww+NScZpJ9i7F6Kj1RVt08aI0ZjMXGaZ0LYtNGhgw6FDOo4dg1WrDHTtar6u33xjA6hKvfaaIdMvoyFDYPVqVf9339WIjFTHbNLEiMGQPc9FpO1Jes9C+p9nnkmkdvXqVUJCQmjWrJlpWdGiRalbty5Hjx5NNeg+c+ZMTlQxW5w4cSK3q5An1Ktmx4GgOgQFF2fb+m0c2XEfUEF3PZ+r+PvnavUyTK5rwSXXtmCS61pwybXNOTbR0STMwnT8+HGMjo6pbp8Vcl0zr2HDGhw44Mz58zp+//0sPj7JT6C9eHEZoCwAVatext8/LNvq8PzzLhw6pPrLT5gQTblyQeh0sGLFWbZuVVnZKlR4SJkypzL9HbBMGXBz8yEkxJ6gIPOdhfLlr+HvfzuVPYU1yHvWUp4JukMezWXg6mo5ltfV1ZXQ0NBU9/Xw8KBw4bw9nYvBYODEiRP4+Pig10u3xfbNd3Lg0TTdN8/ZcfJkSdO6bn0q4utbJ5dqljFyXQsuubYFk1zXgkuubS6INAdvderUUem5s5lc16z73/90pq7WBw96MGBA8q2+gYHmUacDB1agUqUK2VaHOnXg1181Tp7UceKEE2FhdShZ8jibNpmHE779tj316vlm6TzDhumYNs1yWd++ZfH1LZul44r0e9Les1FRUelqAM5Q0P3FF18wZ86cVLdZt24d1apVy8hhs0yv1+ebi5qf6mpN7Tq7MO1Rdskd24zsPKwGDhWyi6ZJx1r57m8k17XgkmtbMMl1Lbjk2uagRH9nvV5v8Tj7TyXXNbOeeQZeew2io2HpUhu+/jppxvPoaJVsDdT0W1WrZu/fWq+H999X05gBzJhhywcf6Fm8WAX6RYvCkCE2WX4JvfIKFkG3vT00bKi35ktTpOBJec+m9zlmKOgeMmQIffr0SXWbChUyd1fMzc0NgLCwMNzd3U3Lw8LC8PKyblItkfOadfHCTh9LnMGev7d4czdSzavRzDsAh8L1crl2QgghhBAFg7Mz9O6tksiGhcHcuSpxW2J790JsrCpndKqw9OrXDyZOVFnUt23TodNVIjpadQMfPFjVM6uqVFHJ2P79Vz2uV09lkhcit2Uoe3mJEiWoVq1aqj/2KU0WmIby5cvj5ubG3kT5/SMiIjh27Bh+fn6p7Cnyo8LOhWla6zSAKeAGaN0qt2okhBBCCFEwJQ6yx45VmdITy+6pwpKj16t5yhNs3aom49bpMjdNWEqGDTOXmzfPvuMKkRVWmzLs+vXrBAQEcP36dQwGAwEBAQQEBBCZaPxPly5d+PfRrSidTsfAgQP56aef2LJlC0FBQYwdOxZ3d3dTNnNRsLRtfi/JstZ9pJVbCCGEECI7tWypul6DGoo/dKjl1F2Jg25rtXSDmsLs8U6x3btnfU7yxPr2VTcZOneGt97KvuMKkRVWS6T23XffsWLFCtPjp556CoAFCxbQuHFjAIKDg3nw4IFpm1deeYXo6GgmTpxIeHg49evXZ+7cuThIv5ACqW2nYkyeZX7s4ACPXhpCCCGEECIbffEFbNgAV67A1q0weza8+qoKwvfvV9t4eKg5r63F3h7efRcezSwMWJazg14PM2dm7zGFyCqrBd3Tp09n+vTpqW4TFBRk8Vin0zF69GhGjx5trWqJPKRJ55oUsovmYZyaYqRJE41ChVKYPFIIIYQQQmSas7Maz925s3r87rvQpQsEBUF8vFpmzVbuBMOGwfTpGtev66hTR6NDB/nuJwo+q3UvFyItDoUdaOZ50PS4ddPwXKyNEEIIIUTB1qmTecxzRIQqb91qXp8TQbejI/z7r5FXX73GypVGdBJziyeABN0iV3XrajSVu7S6los1EUIIIYQo+L780jyuessW+P5787o2bXKmDp6eMGzYzSTju4UoqKzWvVyI9HhtUlMePNhO+Qp6mnZtmdvVEUIIIYQo0JydYc4c1bUc1BzdALVqQalSuVcvIQoyCbpFrnIo7MCkn9rkdjWEEEIIIZ4YnTurruVz55qXWWuqMCGEdC8XQgghhBDiifPFF1C+vPlxToznFuJJJUG3EEIIIYQQTxgXF/jjD9WlvGVLNV+2EMI6pHu5EEIIIYQQT6CWLeHGDSSDuBBWJi3dQgghhBBCPKEk4BbC+iToFkIIIYQQQgghrESCbiGEEEIIIYQQwkry9Zhuo9EIQHTCBIN5mMFgACAqKgq9Xp/LtRHZRa5rwSXXtmCS61pwybXNBQ8fgqenuWyFfspyXQsmua4F15N2bRPi0IS4NCU6TdO0nKiQNYSFhXHx4sXcroYQQgghhBBCiCdU5cqVcXV1TXF9vg664+PjuX//Pg4ODtjYSE95IYQQQgghhBA5w2g0EhMTg4uLC7a2KXciz9dBtxBCCCGEEEIIkZdJ87AQQgghhBBCCGElEnQLIYQQQgghhBBWIkG3EEIIIYQQQghhJRJ0CyGEEEIIIYQQViJBdw5YtGgR7dq1w8fHh2effZbjx4/ndpVEBs2ePZu+ffvi5+dH06ZNGTlyJBcuXLDYJiYmhsmTJ9O4cWP8/Px4/fXXCQ0NzaUai8z4+eef8fT05JNPPjEtk+uaP926dYt33nmHxo0bU6dOHXr27MmJEydM6zVN49tvv6VFixbUqVOHQYMGyRSU+YDBYOCbb76hXbt21KlThw4dOjBz5kwS54SVa5v3HTx4kFdffZUWLVrg6enJ5s2bLdan5xreu3ePMWPGUK9ePRo0aMD7779PZGRkDj4LkZzUrm1cXByff/45PXv2xNfXlxYtWjB27Fhu3bplcQy5tnlPWu/ZxCZOnIinpye//vqrxfIn/bpK0G1l69atY9q0aYwaNYoVK1bg5eXF0KFDCQsLy+2qiQw4cOAAL774IsuWLWP+/PnEx8czdOhQoqKiTNt8+umnbNu2jW+++YaFCxdy+/ZtXnvttVystciI48ePs2TJEjw9PS2Wy3XNf+7fv88LL7yAnZ0dc+bMYe3atYwbNw4XFxfTNnPmzGHhwoVMmjSJZcuW4ejoyNChQ4mJicnFmou0zJkzh8WLFzNx4kTWrVvHO++8w9y5c1m4cKHFNnJt87aoqCg8PT356KOPkl2fnmv4zjvvcO7cOebPn8+sWbM4dOgQEydOzKmnIFKQ2rV9+PAhp0+fZsSIESxfvpwffviB4OBgRowYYbGdXNu8J633bIJ///2XY8eO4e7unmTdE39dNWFVzzzzjDZ58mTTY4PBoLVo0UKbPXt2LtZKZFVYWJjm4eGhHThwQNM0TQsPD9dq166trV+/3rTNuXPnNA8PD+3o0aO5VEuRXhEREVqnTp20PXv2aC+99JI2depUTdPkuuZXn3/+ufbCCy+kuN5oNGrNmzfX5s6da1oWHh6ueXt7a2vWrMmJKopMGj58uPbee+9ZLHvttde0MWPGaJom1zY/8vDw0P7991/T4/Rcw4TP4ePHj5u22bFjh+bp6andvHkz5yovUvX4tU3OsWPHNA8PD+3atWuapsm1zQ9Suq43b97UWrZsqZ05c0Zr27atNn/+fNM6ua6aJi3dVhQbG8upU6do1qyZaZmNjQ3NmjXj6NGjuVgzkVUPHjwAMLWcnTx5kri4OItrXa1aNcqWLYu/v39uVFFkwJQpU2jdurXF9QO5rvnV1q1b8fb25o033qBp06Y89dRTLFu2zLT+6tWrhISEWFzXokWLUrduXflszuP8/PzYt28fwcHBAAQGBnL48GFatWoFyLUtCNJzDY8ePYqzszM+Pj6mbZo1a4aNjY0M4ctnIiIi0Ol0ODs7A3Jt8yuj0ci7777L0KFDqVGjRpL1cl3BNrcrUJDdvXsXg8GAq6urxXJXV9ck44FF/mE0Gvn000+pV68eHh4eAISGhmJnZ2f6p5HA1dWVkJCQ3KimSKe1a9dy+vRp/vrrryTr5LrmT1euXGHx4sUMHjyYV199lRMnTjB16lTs7Ozo06eP6dol99ks4/XztuHDhxMREUHXrl3R6/UYDAbeeustevXqBSDXtgBIzzUMDQ2lRIkSFuttbW1xcXGRz+Z8JCYmhi+++ILu3bvj5OQEyLXNr+bMmYOtrS0DBw5Mdr1cVwm6hciwyZMnc/bsWf7444/crorIohs3bvDJJ58wb948HBwccrs6Iptomoa3tzdvv/02ALVq1eLs2bMsWbKEPn365HLtRFasX7+e1atX8+WXX1K9enUCAgKYNm0a7u7ucm2FyEfi4uIYPXo0mqYxefLk3K6OyIKTJ0+yYMECli9fjk6ny+3q5FnSvdyKihcvjl6vT5I0LSwsjJIlS+ZSrURWTJkyhe3bt/Pbb79RunRp0/KSJUsSFxdHeHi4xfZhYWG4ubnldDVFOp06dYqwsDCefvppatWqRa1atThw4AALFy6kVq1acl3zKTc3N6pVq2axrGrVqly/ft20HpDP5nzos88+Y/jw4XTv3h1PT0+eeuopXn75ZWbPng3ItS0I0nMNS5YsyZ07dyzWx8fHc//+fflszgfi4uJ48803uX79OvPmzTO1coNc2/zo0KFDhIWF0bZtW9N3qWvXrjFjxgzatWsHyHUFCbqtyt7entq1a7N3717TMqPRyN69e/Hz88vFmomM0jSNKVOm8O+///Lbb79RoUIFi/Xe3t7Y2dlZXOsLFy5w/fp1fH19c7i2Ir2aNGnC6tWr+eeff0w/3t7e9OzZ01SW65r/1KtXzzTmN8HFixcpV64cAOXLl8fNzc3iukZERHDs2DH5bM7jHj58mKQlRa/Xm6YMk2ub/6XnGvr5+REeHs7JkydN2+zbtw+j0UidOnVyvM4i/RIC7kuXLvHrr79SvHhxi/VybfOf3r17s2rVKovvUu7u7gwdOpS5c+cCcl1Bupdb3eDBgxk3bhze3t7UqVOH3377jejoaJ5++uncrprIgMmTJ7NmzRp+/PFHihQpYhp/UrRoUQoVKkTRokXp27cv06dPx8XFBScnJ6ZOnYqfn58EZ3mYk5OTaVx+gsKFC1OsWDHTcrmu+c/LL7/MCy+8wKxZs+jatSvHjx9n2bJlTJkyBQCdTsfAgQP56aefqFSpEuXLl+fbb7/F3d2dDh065HLtRWratm3LrFmzKFu2rKl7+fz58+nbty8g1za/iIyM5PLly6bHV69eJSAgABcXF8qWLZvmNaxWrRotW7ZkwoQJTJ48mbi4OD7++GO6d+9OqVKlcutpCVK/tm5ubrzxxhucPn2a2bNnYzAYTN+nXFxcsLe3l2ubR6X1nn385omdnR0lS5akatWqgLxnAXRawu1hYTW///47v/zyCyEhIdSsWZMPP/yQunXr5na1RAY8PndzgmnTppluoMTExDB9+nTWrl1LbGwsLVq04KOPPnpius0UFAMGDMDLy4sPPvgAkOuaX23bto2vvvqKixcvUr58eQYPHky/fv1M6zVN47vvvmPZsmWEh4dTv359PvroI6pUqZKLtRZpiYiI4Ntvv2Xz5s2EhYXh7u5O9+7dGTVqFPb29oBc2/xg//79ySZc6tOnD9OnT0/XNbx37x4ff/wxW7duxcbGhk6dOvHhhx9SpEiRnHwq4jGpXdvXXnuN9u3bJ7vfggULaNy4MSDXNi9K6z37uHbt2jFw4EAGDRpkWvakX1cJuoUQQgghhBBCCCuRMd1CCCGEEEIIIYSVSNAthBBCCCGEEEJYiQTdQgghhBBCCCGElUjQLYQQQgghhBBCWIkE3UIIIYQQQgghhJVI0C2EEEIIIYQQQliJBN1CCCGEEEIIIYSVSNAthBBCCCGEEEJYiQTdQgghhBBCCCGElUjQLYQQQgghhBBCWIkE3UIIIYQQQgghhJVI0C2EEEIIIYQQQliJBN1CCCGEEEIIIYSVSNAthBBCCCGEEEJYiQTdQgghhBBCCCGElUjQLYQQQgghhBBCWIkE3UIIIYQQQgghhJVI0C2EEEIUcPv378fT05P9+/fndlWEEEKIJ45tbldACCGEyE3Lly/nvffeS3H90qVL8fX1zbkK5RN//PEH+/bt4/jx49y4cYM+ffowffr0ZLcNDw/n888/599//+Xhw4f4+Pgwfvx4ateubbFdTEwMv/76KytXruTatWs4Ozvj5+fH66+/To0aNUzb3b59mwULFnDs2DFOnjxJVFQUCxYsoHHjxknObTQaWbp0KUuWLOHy5cs4OjpSq1YtRo4cSb169bL3jyKEEEIkQ4JuIYQQAnjjjTcoX758kuUVK1bMhdrkfXPnziUyMhIfHx9CQkJS3M5oNDJ8+HCCgoIYOnQoxYsX548//mDAgAEsX76cypUrm7Z955132Lp1K88++yy1a9fm1q1b/PHHHzz33HOsXr2acuXKARAcHMycOXOoXLkynp6eHD16NMXzf/bZZ8yfP59evXrRv39/wsPDWbp0KQMGDGDx4sXUqVMn2/4mQgghRHIk6BZCCCGAVq1a4ePjk9vVyDcWLlxI2bJl0el0+Pn5pbjdhg0bOHr0KN9++y1dunQBoGvXrnTu3Jnvv/+eL7/8EoBbt26xadMmhgwZwrhx40z7N2jQgJdffpl///2XQYMGAVC7dm32799PsWLFTMdPTnx8PIsXL6Zz5858/vnnpuVdunShQ4cOrFq1SoJuIYQQVidjuoUQQoh0+O677/Dy8mLv3r0WyydMmIC3tzeBgYEAxMbG8u233/L0009Tv359fH196d+/P/v27bPY7+rVq3h6evLLL7+waNEi2rdvT926dRkyZAg3btxA0zRmzpxJq1atqFOnDiNGjODevXsWx2jXrh3/+9//2L17N71798bHx4du3bqxadOmdD2nY8eOMXToUOrXr0/dunV56aWXOHz4cLr2LVeuHDqdLs3tNm7cSMmSJenUqZNpWYkSJejatStbtmwhNjYWgIiICABKlixpsb+bmxsADg4OpmVOTk4UK1YszXPHx8fz8OHDJMd0dXXFxsaGQoUKpXkMIYQQIqsk6BZCCCFQQd+dO3csfu7evWtaP2LECGrWrMkHH3xgChB37drFsmXLGDlyJF5eXqbj/PnnnzRq1Ih33nmH1157jTt37jBs2DACAgKSnHf16tWm7taDBw/mwIEDvPnmm3zzzTfs2rWLV155hX79+rFt2zZmzJiRZP+LFy/y1ltv0apVK8aMGYNer2f06NHs2bMn1ee7d+9eXnzxRSIjI3nttdd46623CA8P5+WXX+b48eNZ+VNaCAgIoFatWtjYWH7l8PHxITo6muDgYEB14y9dujTz589n69at3Lx5k+PHjzNp0iTKly9P9+7dM3zuQoUKUbduXVasWMGqVau4fv06gYGBjB8/HmdnZ5577rlseY5CCCFEaqR7uRBCCAGmrsuJ2dvbc+LECQDs7OyYMWMGTz/9NNOnT2fs2LF88MEHeHt7M3z4cNM+Li4ubN26FXt7e9Oyfv360bVrVxYuXMinn35qcY6EbtVFixYF1Bjo2bNn8/DhQ/7++29sbdW/6rt377J69WomT55sceyLFy/y/fffm1qSn3nmGbp06cIXX3xB8+bNk32umqYxadIkGjduzNy5c00t1s8//zzdu3fnm2++Yd68eRn9EyYrJCSEBg0aJFnu7u4OqKRonp6e2NnZ8f333zNmzBhGjBhh2q527dosWbIEZ2fnTJ3/888/56233uLdd981LatQoQKLFy+mQoUKmTqmEEIIkRESdAshhBDAxIkTqVKlisWyx1tnPTw8eOONN/jyyy8JCgri7t27zJs3zxQYA+j1evR6PaAC6PDwcIxGI97e3pw+fTrJebt06WIKuAHTGONevXpZHLdOnTqsWbOGW7duWQSL7u7udOzY0fTYycmJp556ijlz5hASEmLqnp1YQEAAFy9eZMSIERat+QBNmzZl5cqVGI3GJM8/Mx4+fGhxkyBBwrKYmBjTMmdnZ2rWrEmXLl2oW7culy9fZvbs2YwePZr58+dbdDFPryJFilC9enV8fX1p2rQpISEhzJkzh1GjRrFo0SJKlCiR+ScnhBBCpIME3UIIIQQqqE1PIrWhQ4eydu1ajh8/zttvv0316tWTbLNixQrmzZtHcHAwcXFxpuXJZUcvU6aMxeOEADyl5ffv37cIuitVqpRkbHVCRvBr164lG3RfvHgRwCJh2eMePHiAi4tLiuvTq1ChQqZx24klLEsIpB88eMCLL77I0KFDGTJkiGk7b29vBgwYwN9//03//v0zdO74+HgGDx5Mo0aNmDBhgml5s2bN6NGjB7/88otFC7gQQghhDRJ0CyGEEBlw5coVLl26BMCZM2eSrF+5ciXjx4+nQ4cODB06FFdXV/R6PbNnz+bKlStJtk9oFX9cSq3MmqZlofaWxxg7diw1a9ZMdpvChQtn+TygEqElN6XY7du3AXM3840bNxIaGkq7du0stmvUqBFOTk4cOXIkw0H3wYMHOXPmDOPHj7dYXrlyZapWrcqRI0cydDwhhBAiMyToFkIIIdLJaDQyfvx4nJycePnll5k1axadO3e2yMy9ceNGKlSowA8//GDRAv3dd99ZpU6XLl1C0zSLcyW0ZCfMa/24hJZyJycnmjVrZpV6JfDy8uLw4cNJuqsfP34cR0dHU5f+sLAwAAwGg8X+mqZhNBqTLE+PlI4JqhU8M8cUQgghMkqylwshhBDpNH/+fI4ePcqUKVMYPXo0fn5+TJo0iTt37pi2SWi5TtwifezYMfz9/a1Sp9u3b/Pvv/+aHkdERPDPP/9Qs2bNZLuWg+qyXbFiRebNm0dkZGSS9YmfT1Z16dKF0NBQi2nM7ty5w4YNG2jbtq1pbHdCl/h169ZZ7L9lyxaioqJSbJFPTUrHPHXqFMHBwZk6phBCCJFR0tIthBBCADt37uTChQtJlterV48KFSpw/vx50/zbCV2gp0+fzlNPPcXkyZP59ttvAWjTpg2bNm1i1KhRtGnThqtXr7JkyRKqV69OVFRUtte7cuXKfPDBB5w4cQJXV1f+/vtvwsLCmDZtWor72NjYMHXqVF555RV69OjB008/TalSpbh16xb79+/HycmJWbNmpXrerVu3muYmj4uLIygoiB9//BFQ84cnTKHWuXNnfH19ee+99zh37hzFixdn8eLFGAwGXn/9ddPx2rZtS40aNZg5cybXr1+nbt26XLp0iUWLFuHm5sYzzzxjcf6Ec507dw5Q3foT5hgfOXIkoG4uNG/enBUrVhAREUHz5s0JCQnh999/p1ChQrz88svp/jsLIYQQmSVBtxBCCEHK3b+nTZtG2bJlGTduHMWLF+f99983ratcuTJvv/02n3zyCevWraNbt248/fTThIaGsnTpUnbv3k316tX5/PPP2bBhAwcOHMj2eleuXJkJEybw2WefERwcTPny5fn6669p2bJlqvs1btyYpUuX8uOPP/L7778TFRWFm5sbderUSdf81Zs2bWLFihWmx6dPnzZlZy9durQp6Nbr9fz888989tlnLFy4kJiYGHx8fJg2bRpVq1Y17W9vb8+iRYv48ccf2b59O2vWrKFIkSJ06NCBt956K0mW8YSbHAn+/vtvUzkh6AYVnP/yyy+sW7eOXbt2YWdnR4MGDRg9erTF+YUQQghr0WnZkZFFCCGEEDmuXbt21KhRg9mzZ+d2VYQQQgiRAhnTLYQQQgghhBBCWIkE3UIIIYQQQgghhJVI0C2EEEIIIYQQQliJjOkWQgghhBBCCCGsRFq6hRBCCCGEEEIIK8nXU4bFx8dz//59HBwcsLGR+wdCCCGEEEIIIXKG0WgkJiYGFxcXbG1TDq3zddB9//59Ll68mNvVEEIIIYQQQgjxhKpcuTKurq4prs/XQbeDgwOgnqSjo2Mu1yZ1BoOBM2fO4OHhgV6vz+3qiGwi17XgkmtbMMl1Lbjk2uaC6Gho3lyV9+wBK3wXk+taMMl1LbietGsbHR3NxYsXTXFpSvJ10J3QpdzR0ZHChQvncm1SZzAYAChcuPAT8QJ8Ush1Lbjk2hZMcl0LLrm2uUDTIChIlQsVAit8F5PrWjDJdS24ntRrm9ZQZxkILYQQQgghhBBCWIkE3UIIIYQQQgghhJVI0C0KtOCTV/j4te0c330mt6sihBBCCCGEeALl6zHdQqTmyBHo1NaZsPA2LFh+kbPXc7tGQgghhBBCiCeNtHSLAmnvXmjXDsLCXQA4d6MyD+48yOVaCSGEEEIIIZ40EnSLAmfbNujYEe7ft1x+7XxI7lRICCGEEEII8cSSoFvkO0aDEc2oJbtuw5ITdOumERmpHjvYx5nWXQ2+lwO1E0IIIYQQQggzGdMt8pVfP9vNiA/r42j/ED+PYPxqh1OvgR1+TUtz+shtXnitPnEGHQA9ekCb2gd4Z0ZzAK5ejMrNqgshhBBCCCGeQBJ0i3xj8e8xDBnfDE2z4WGcI1uPFmfrUeD3hC2qmbZ9tnMAi5bXZN0CvWnZ1SvxOVpfIYQQQgghhJDu5SJfWLUKBgxyQNPUS7Z4kTspbjuw627+WFUDOzsoX9nZtPzadXm5CyGEEEIIIXKWtHSLPG/LFujXDwwG9Xj40Bhm/VycW5duc3TPJY4ciOTocQfOXHKlZ/vrfDy7FTZ6FWCXq1rSdJyrNwrlRvWFEEIIIYQQTzAJukWe9t+mYHr1qUxMjBqn3b8//DjbAZ0NlK7iTtcq7nR9KfEeHhb7u1csia0+jniDHVdvOSOEEEIIIYTIfePHjyc8PJwff/wRgAEDBuDl5cUHH3yQo/XYv38/AwcO5ODBgzg7WydekP62Is86uj2Abn2KExWlAu7eveHXX0GvT32/xGz0NpQrcQuAq6El09haCCGEEEKIJ9v48ePx9PTE09MTb29vOnbsyA8//EB8vHXzI33//feMHj06Xdvu378fT09PwsPDrVqn7CJBt8iTAg9eoFNvN+5HFQOgY5NzLF0KdnYZP1b5KkUBCA0vycOH2VhJIYQQQgghCqCWLVuye/duNm7cyODBg/nhhx/45ZdfkmwXGxubbecsVqwYTk5O2Xa8vES6l4s859bFELr2sCM0XLVMN699nBUbquHgkLnjla/iAgdU+do1qFYt9e2FEEIIIYR4ktnb2+Pm5gZA//792bx5M1u3biU4OJjw8HB8fHxYtGgR9vb2bN26lRs3bjB9+nT27NmD0WikUaNGfPjhh5QvXx4Ag8HAZ599xt9//41er6dv375ommZxzse7l8fGxvLtt9+yZs0awsLCKFOmDMOHD6dp06YMHDgQgIYNGwLQp08fpk+fjtFoZM6cOSxdupTQ0FAqV67MyJEj6dKli+k8O3bs4NNPP+XGjRvUrVuXPn36WP3vKUG3yFOiwiPp2fk2F2/XBqBulSDWbqtEEZcimT7mo/c6AFevStAthBBCCCFyScBXEPhV2tuVqAetV1ku29EL7hxJe1+vt6Hm25mrXwocHBy4d+8eAHv37sXJyYn58+cDEBcXx9ChQ/H19WXhwoWcPXuW7du3M2zYMFatWoW9vT3z5s1jxYoVfPrpp1SrVo158+bx77//0qRJkxTPOXbsWPz9/fnwww/x8vLi6tWr3L17lzJlyvD999/z+uuvs2HDBpycnChUSCVMnj17NqtWrWLy5MlUrlyZgwcP8u6771KiRAkaNWrEjRs3eO2113jxxRfp168fJ0+eZMaMGdn6t0qOBN0izzDEGejf7QQHz6g3X3nX66z71wUXN5csHbdcOXP52rUsHUoIIYQQQojMiwuH6HR8IX1YIZllIenbNy77xjlrmsbevXvZvXs3L730Enfv3qVw4cJMnToVe3t7AFauXInRaOSTTz7BaDQSFRXFJ598QpMmTThw4AAtWrTgt99+Y/jw4XTq1AmAyZMns3v37hTPGxwczPr165k/fz7NmjUDoEIF89/ExUXFB66urqbkZ7GxscyePZv58+fj5+dn2ufw4cMsXbqURo0asXjxYipWrMj48eMBqFq1KmfOnGHOnDnZ9jdLjgTdIs94e8BuVu5pDYCz433WrYygbDWPNPZKW3n3+4B6Y14NOAdUz/IxhRBCCCGEyDA7Z3Asl/Z2hdySX5aefe2ynoF7+/bt+Pn5ERcXh6Zp9OjRg9dff50pU6bg4eFhCrgBAgMDuXz5MvXq1UPTNIxGIzY2NsTExHD58mUePHhASEgIdevWNe1ja2uLt7d3ki7mCQICAtDr9abu4+lx6dIloqOjGTJkiMXyuLg4atasCcD58+epU6eOxXpfX990nyOzJOgWecI37+3gu6Uq4LbVx/H3r+fxaV4vW45dvvglQL25rp69hgTdQgghhBAiV9TMQtfvx7ubW1Hjxo2ZNGkSdnZ2uLu7Y2trDhsdHR0tto2KiqJ27dp88cUXGAwGAgICqFmzJnq9nhIlSmTq/AndxTMiKioKUF3MS5UqZbEu8U2C3CDZy0WuW/G3gbdntDQ9/vmTfXTolz0BN0D5aq6m8tXrmczGJoQQQgghxBPC0dGRSpUqUbZsWYuAOzm1a9fm0qVLuLq6UqlSJUqXLk2lSpWoVKkSRYsWpWjRori5uXHs2DHTPvHx8Zw6dSrFY3p4eGA0Gjl48GCy6+0eTWlkMBhMy6pVq4a9vT3Xr183nT/hp0yZMqZtTpw4YXGsxPWyFgm6Ra4KCIAXB+jRNPVSnDB8O4PHtUxjr4wpXdkdG516Q169VTRbjy2EEEIIIcSTrGfPnhQvXpwRI0Zw6NAhbt++zYEDB5g6dSo3b94EYODAgcyZM4fNmzdz/vx5Jk+enOoc2+XLl6dPnz68//77bN68mStXrrB//37WrVsHQLly5dDpdGzfvp07d+4QGRmJk5MTQ4YMYdq0aaxYsYLLly9z6tQpFi5cyIoVKwB4/vnnuXjxIjNmzODChQusXr3atM6arBp037t3jzFjxlCvXj0aNGjA+++/T2RkZKr7DBgwwDQZe8LPxIkTrVlNkYt++w2io1V5wEtGJv/UOtvPYedgR6liIQBcDXFNY2shhBBCCCFEejk6OvL7779TtmxZRo8ezbvvvsuECROIiYkxzbs9ZMgQevXqxbhx43j++ecpUqQIHTt2TPW4kyZNonPnzkyaNImuXbsyYcIEoh8FDqVKleL111/nyy+/pFmzZnz88ccAvPnmm4wcOZLZs2fTrVs3hg0bxvbt201Tl5UtW5bvv/+eLVu20Lt3b5YsWcJbb71lxb+OotNSGr2eDYYNG0ZISAhTpkwhLi6O999/Hx8fH7788ssU9xkwYACVK1fmjTfeMC1zdHRMdqL0qKgo05iBwoULW+U5ZBeDwYC////Zu++wKI43gOPfowlIURELYlcQFQR7770ktpiYokaNiSYxJiaxxGgsiTXFdH8aTTTGkqixG3vvBbGgomJBFBEFpMPd/v5YueOkC0fz/TwPD3O7s7tzN9xxszPzji/e3t6Ym5vnd3EKjF69YNMmNX3jBlSubJrrNHa/wIkrddBodMTHarEsZpkr55V6LbqkbosmqdeiS+o2H0RHQ/L3s6goKP7sy3umR+q1aJJ6Lbqet7rNanvUZD3d165d48CBA8yYMYN69erRsGFDJk2axObNmwkJCcnwWGtra5ydnfU/aTW4RdHg76/+Ll4cKqaxMkJucS37GABFMePejVDTXUgIIYQQQgghUjBZ9PIzZ87g4OCAp6enflvz5s0xMzPDz88vw+EEGzduZMOGDTg7O9OuXTtGjRqVKkpeSlqt1mgSfUGUXL6CXs68FBcdR2CgNWBOrcrBKEpZTPXyVCgfp0/fvBqKS42yGeTOOqnXokvqtmiSei26pG7zgVaLuT6pxRT/xKVeiyap16LreavbrD5PkzW6Hzx4kCpEvIWFBY6OjoSGpt/T2LNnT1xcXChTpgyXL19m3rx5BAYG8uOPP6Z7zJUrV3Kt3Kb2dLS859mt8/fR6boBUK3MJXx975rsWg72Efr0mROB2JRLytXzS70WXVK3RZPUa9EldZt3zGJj8XmS9vPzQ5dBB0lOSb0WTVKvRZfUrbFsN7rnzZvHwoULM8yTHFXuWbz88sv6tLu7O87OzgwZMoRbt25RqVKlNI9xc3MrFHO6z507h6enZ4Gd3xAfE8+j+xGUq1ImT6535fARfbqep8akC9NfrB2rTyfGOubatQpDvYpnI3VbNEm9Fl1St/kgRXBcLy8vk83plnoteqRei67nrW5jYmKy1AGc7Ub30KFD6dOnT4Z5KlasSOnSpXn48KHR9qSkJCIiInB2ds7y9erVqwfAzZs30210m5ubF5pKLahljYmMobn3bc4GujP34718PLetya95+WKiPl3b08akr0ulag769J0w51y/VkGtV5FzUrdFk9Rr0SV1m4dSvM7m5uZGj3P/UlKvRZHUa9H1vNRtVp9jthvdpUqVSjVsPC0+Pj5ERkZy/vx56tatC8DRo0fR6XTq3dAs8n8SaSs7DXWRfXPGHedsYFsAxn3diobNfGnb19uk1/S/Ukyf9vA2be+6q6fhby7ocV2TXksIIYQQQgghkpksenn16tVp1aoVn3/+OX5+fpw6dYrp06fTo0cPypZVg1iFhITQtWtX/Pz8ALh16xY//fQT58+fJygoiF27djFu3DgaNWpErVq1TFXU597NmzD799b6xzrFnFeHl+P+LdNG+fa/XhoAC/NEqnuZMHQ5UKGCIX3njkkvJYQQQgghhBB6JgukBur87+nTpzN48GDMzMzo3LkzkyZN0u9PTEwkMDBQv8i5paUlR44cYenSpcTExFC+fHk6d+7MqFGjTFnM596nn0JcnHr/xc46iqg4O+4+Kscb/U6y9agTZuap781EhkXyxejT3A2x4qdlHpQqXzJb10xKSOLKHXW6QE2XW1gWq57zJ5IBa2soXRoePICgIJNeSgghhBBCCCH0TNroLlGiBF9//XW6+11dXbl8+bL+cfny5fnzzz9NWSTxlP37YfVqNe3sDAd3xtG6TQwh4WXYfrIhs8fuZcJ3bY2OOXfoCv1ftuTKHXV7tc/38uUi4zyZCbwQRHxiFQA8qoYCpm10A7i6qo3uO3dApwMzk43zEEIIIYQQQgiVNDueY9pELaPfN6wt99VX4OZVmuX/C0Kj0QHw+Q8tObjRT59n6byDNGnvypU7VfXb/tuf/fnY/mdC9GkPt7gMcuaeCo7XAUhKgvs37+fJNYUQQgghhBDPN2l0P8d+m32Is35qxD0fH4U331S3d3ipPp+P2A+AVmfBK0OcCbr6kBFvaRn8SUtiE4yXZzt9tRZhwcaR6jPjf96whFftupY5eBZZ51rKMK486NqDPLmmEEIIIYQQhYG7u3uGPz/88EN+F7HQMunwclFwPQqJ4LO5tfWP50+/grm5u/7x5B9asf/oGfae9eHOw/LU9NQSF2cIiT+i936srBR+XN0GRTFj97+XeGlU8yxf3/9+I33ao2HlHD6brHGtoNOng248pmGeXFUIIYQQQoiC7+DBg/r0li1b+P7779m2bZt+m62toeNNURS0Wi0WFtKczArp6S7iYmJAUVJvn/ahLw8i1ejhL3c4TKse7kb7zS3NWb6mPM4lwgH0DW4bG/jjf2EsWNeaXr3t9Pl3bE/KVrn8A4oDoNGAu49rto59Vq4VDR8Kd27nzZB2IYQQQgghCgNnZ2f9j729PRqNRv/4+vXr1K9fn3379tG3b188PT05deoU48ePTxX0eunSpQwePFj/WKfTsWDBAtq3b4+XlxcvvPCCUWP+eSC3JoqwESNg4UIoWVLBu4ofPrXDqd/AAqcyxfhxtdorbWMVw5wf0+5pdqlejmUroVs3teHu5gb//AOenk4AtOzhgZVFPAlJxdhxpCqKTkFjpsm0XIoCT5Zfp3JlsLXNOH9uca1iuFDQ7TTuRAghhBBCCGEif/8NkyfD48d5d017e5g+Hfr3z53zff3114wbN46KFSvi4OCQpWMWLFjAhg0bmDp1KlWqVOHEiRN88sknlCpVisaNG+dOwQo4aXQXUX5+aoMb4NEjDXse1WPPGWC5cb5xw45TqVbbdM/TpQscPAgXL8KAAZDyvWXrYEvL+tfZfbwaN+5X5Pp1heo1Mi9bcLDhw8bDI1tPK0cqVCmhTwcFy5++EEIIIYTIO3PnwqVL+XPd3Gp0jx49mhYtWmQ5f0JCAgsWLGDJkiX4+PgAULFiRU6dOsWqVauk0S0Kt++/N6Qd7BOJfJw6WFnF0nf4ZFbmf+jNm6s/aenYuxq7j6vpHTs1WWp0+58KBlwA8HBPIq/+DF1rOOvTQfeKm/Ra9+9DaCjUqWPSywghhBBCiELi00/h88/zvqf7k09y73yenp7Zyn/z5k1iY2MZOnSo0fbExEQ88rL3LZ9Jo7sICr0dxp9/lgDMcXCAoCBLYsJCOXPoJmdORHHGrxiPIqz4cqY1tg4VcnStTp1g4kQ1vXMnvPNO5sdcPBaAvtHtfARolaMyZJV9KXscbCKIjHUk6H5Jk10nIACaNoWHD2HkSPh+voKFZebD7oUQQgghRNHVv3/u9TjnFxsbG6PHGo0G5akAUlqtYUnimJgYQB1iXrZsWaN8VlZWJiplwSON7iLof3PPER/fFoBhA4Owt3fF3t6ZrlWc6fpa7l7LxwdKloRHj2D3btBqwdw842P8LxkaoB5ejrlboEy4Oody8ZYjQQ/KZnkOenbExanD8B8+WUHtl1/gxulTrNrijn0p+1y9lhBCCCGEEPmpVKlSBAQEGG27efMmjo7qd/zq1atjZWVFcHDwczOUPC0SvbyISYxP5OflaiRyM42W998zbcAwc3Po0F69m/XoEZzedy3TY/yvGiaGezSoaLKypcW1TDgAcYk2PLwXnuvnHzsmFl9f421bjzWkVcNgggLu5vr1hBBCCCGEyC9Nmzbl/Pnz/Pvvv9y4cYMffviB27dv6/fb2dkxdOhQZs6cybp167h16xYXLlxg2bJlrFu3Lh9Lnrek0V3E/LPgBMEPywPwQouTVK1r+kZtx3qH9Okd629nkFPlf1Md0l62xH1KlTfdMO+0pAymdudusVw99z+/HOHnBeqQG2tr+GVOACWLPwLgbKA7TZqC7/7LuXpNIYQQQhQukZFw6lTaS7rmxrl79oTOnWHjRtNcQ4iUWrVqxahRo5g7dy79+/cnJiaGVq2Mp46OGTOGUaNGsWDBArp3787w4cPZu3cvrq55s2xwQSDDy4uY73429CJ/8GHuNirT06l3FZispnfud2RiBnkf3n3E/Qg1oJlH5TtAGVMXz4irhyHSW1CILV65dN7r528xbGxt/eP50wMY8XFN2rW/TveekVy/V5ngh+Vp2dme1f87QfdBjXLpykIIIYQoLBIToUkTNYJ1t26wapUa6Cq3/PgjbN6spnfsAC8vmDABXnop8+l/QqTUt29f+vbtq3/cpEkTLl9Ou/No9OjRjB49GlDnc/v6+uLt7a3fr9FoGDx4sNHa3c8b6ekuQo5uO8/xy3UBqFf1Mm1618uT61bzrETVsrcAOHS+NjGRMenm9T9l6An3qJGHoRufSHlDLSgod86ZGJfIqy/FEhmrzl15pcNh3vpIbdy7N6jG0ePFaVrrHADR8Xb0GlKfvWt9c+fiQgghhCg0Tp40LBm1dSu0apV730cUBX7/3Xibnx8MHKgu0bp4MSQk5M61hBDZI43uImT+vEh9+oO37+d6kLCMdGp2A4CEpGIc2HQx3Xz+fhH6tEetvB/zZIpG9+K5jzgZoPZy1yh/gwWr6hq99s4VS7P7eA1eancEAJ1izpdfatM8lxBCCCGKrn37jB+fPav2fD8dD+ZZHD2qrqACULeuet5kAQEwbBh4eqoxeIQQeUsa3QVQUkIS//11kn9+OZLq599Fxwi9/SDVMUEBd/l7jxoR0NkhlIHv5e3w5Y6dDeuA79galW4+/4uGxqaHV95H8zZqdF/P+X+d9b8dZ+H6bgBYWcSz+q84HJwcUuWzsbdh5Y4mVC93E4Cdpxtw+dT1HF9fCCGEEIXH3r2GdHk1BA/BwdCyJWzZkrNz//GHIT12LBw5oi7n2q6dYfuVK7BhQ86uI4TIPpnTXcAoCrzRy4+V2xumm8faMpa3+u7jk6k1qeiurnf986zLaHXqp/c7r1zAunjbvCiuXvsX3dG8q0NRzNh5qHy6+fwDiuvTHvXTz2cqrs6PADV4W9Cl60CDZz6X//FrDPvIQ//424lH8WnbJt38ZuZmjHwjkI/nVgbgl3m3+G5FtWe+vhBCCCEKj8REOHhQTbu4wJkz8OKLag91dDT06gWzZkG1anDvHty9a/jt6AjffQdl0gmFExsLK1eq6eLF1bWgNRro0EH9+fNPeOMNdf/Jk/AcT60VIl9Io7uAmTMHVm6vn2GeuEQbfljVhl//SWDQS7cY/Wl5FqxWQ4JZmicwcpxHhsebgpNLKerXuMipgNqcDXQn5GYoZSs7p8p38VYVAOxtInGpVi6PSwkly5bA2jKWuEQb7oQ++xrhITdC6d7LivDoEgD0a3OEkVNaZ3rcmx/WY9J36vV/39ycL6PVf45CCCGEKNpOn1Yb1wBt2qgN6N27YdAg+Ocf0Ong00/TPz4hQc2Xlg0bIOLJDL5+/cDOznh/jx6G9MmTz/4chBDPRoaXFyDbtqkRJpNNHLqTeZ/sNfp5b8A+bIupn9iJWit+W1mJevUteRhVCoCXO52ifLWy+VF8OrW8r0/vXh+Qan90NNy89yRyed3ieTrnPJnGTINr6RAAgkJT3xTIiugohZ5dHnDjvrocW72qF1j0t0eWnk+p8iV59ZVEACIeW7F8+TMVQQghhBCFTMqh5W3bqr9tbNQI5hk1tpOtWaMOGU9LygBqafVilywJNZ4s4OLrq/a6CyHyjvR0FxBXr6rRJZPXU5w6FSZP7phm3sm3HzB/2gl+WNmUyChro30fTGtq6qKmq2M3R2YtUdM7tusYONp4f8pVBjxq59+6Fa5lHnH1bhUiYx2JDHuMg1PW55ZrtTDwVQ0nr6ijCSqWvsO87+9jX6pWls/x7hgHFi9T0z/9BG+9pQ4BE0IIIUTRlTKIWpsUs9HMzGD2bGjfXp2DXaqUOt+7fHkoVw527VLnaAN8/LE6RD3l94bgYNi+XU1XqmRo0D+tYUP1+2ZcHFy4AClWdBJCmJj0dBcAjx9G0btLMOHh6uPevWHSpPTzO1cszYyFbbkVZM2XX0Lp0ur2vn2hYaP8a7216O6BtVUcADvPNNDfQEjm729Ie+T9CHg913LR+vSda6FZPk5RYMwY2LhRfezgoGXDumhKlk8dOC0j9esbIor6+cGhQ9k6XAghhBCFTFISHDigpsuVAze31Hm6dIG5c9VRj0OGqI/r1YPRo6HWk3v7hw/Dv/8aH7d8uTo0HdSh6mbpfLtvlCLGrgwxFyJvSaM7nyk6hSF9znPhuhoQzcM9jqVL0//ATMnRESZOhJs31cbbihUmLmwmrItb06qN2vN+O9jGqGcbjBvdtWvnYcGe4uqSpE8HBYZn+bjvvoMff1TTFhawZo05ns2qP1MZ3n3XkP55duqh+EIIIYQoOk6fhqgni7u0bZu9EW4WFmpPeLJx4wzDw59emzujAGkNU8ToPXEi69cXQuScNLrz2Vdj9rF2vzok3NE2gn//uot9NlfSsrVV1120sjJBAbOpUydD+sUX4Zyfobvb/9BpfdqjRvrLiplahQqG/3RBN2MyzBsfE8/pPf7MGbOFsWN1+u0LF0LHtEf/Z8lLL0FpRzXiyT9bKxNy434mRwghhBCisEpvaHlW9eoFrZ/Eaw0IUL+HAJw6BRcvqukWLQzzttPi42No7EtPtxB5SxrdeeDSJWjgnUCbFu44Fo/FzjpK/zPph7YAaDQ6/vrlCm71q+ZvYXPo9dfByUlNX7kCTRonsPRrdfy0/zU1Wngxyziq1rBO7xQm51rZcO2gW0lG+66dvckPk/bxZs8DeFe7jJ2DGQ3aezBufncURX27TJ6kZciQnJXB2hqG9z0DqAHxFn59MWcnFEIIIUSBlVYQtezQaNSh58m++AIiI7Peyw1gb2+Y3nfunDq3WwiRN6TRnQc2bICz522IjrdL9ZNsxvv76T6oUQZnKRzKl4fjx9W7qQCx8cUY/HEL3npxPwHBlQBwq3ALc8v8i+HnWsUwlOBOsBnR0bD068O0redLDe/KjP6yDb9vbsXZQHeStJZGxw7teYAvpubO2+adT2pgptECsGCFG0kJSZkcIYQQQojCJinJsD532bLg7v5s52ncGF5+WU2HhsKMGYaphdbWMGBA5udIHmKemKhOTRRC5A2JXp4HXn0VDu9/zFW/YDRPTdbWaBR6tAtmwrfPMNaogKpWDQ4fUhg98CAL17cCYNEGwxrWHtUeAGlEEMkjrtVL69Pr9nrxV3l4/Lh5qnxmGi0eFa/j4xFCfe8kmrZ2omnXlrm21FllD1d6Nj/GhkNNCApzYcPvR+k7Iv+izwshhBAi9/n6qr3SoA4tz8mKJV99BWvXqo3mlD3fffqosX4y06gRLF2qpk+eVBvyQgjTM1mj+5dffmHfvn34+/tjaWnJySxMHlEUhe+//56///6byMhI6tevzxdffEGVKlVMVcw84eoKa9bb4usbhbe3N+bmTy+XlX8NUFOxttHwv39b0WLuQUZOqk9sgq1+n4dbQj6WDMpUKo2FhUJSkob7j0oY7XOvcJ0hL92iXdfSeDarhq1DTaCmycoy6l0LNjyJXv7zr1b0HWGySwkhhBAiH+R0aHlK1aqpwVi/+854e2ZDy5NJMDUh8ofJhpcnJibStWtXBg4cmOVjFi5cyLJly/jiiy9YvXo1NjY2DBs2jPj4eFMVU5jY4E9acmx3EDVdAvXbGjcrno8lAjNzM2rVMtxmtrODYUO1HNrkh/+tqoz/ti1NutTF1sE2g7Pkjk4DfKhR/gYAu87Up3PDU4wbspeVi+9w+bJhCRAhhBBCFE4pg6jltNEN6rKyKXu1XVyyHty1Xj01GjpIMDUh8pLJerpHjx4NwNq1a7OUX1EUli5dysiRI+n45JNjzpw5NG/enJ07d9KjR490j9VqtWi12pwX2oSSy1fQy2kKtZtW59iZSOZP2YO1NXQe2CrfX4dFi2DxYg1NmkC/fgp2dgB10Ck6yEbRcqNeR74RyNg5VQDYcaoBO04Bf6j7ihdXaN8e5s3TUf3ZVicTz+h5fs8WZVKvRZfUbT7QajHXJ7Vggte+sNerVgv795sBGsqUUahZU5fjl6lECRg/XsOECWrf2euv6wAlS+e1soK6dc3w9dVw8aJCZKSO4mn0hQQGwrvvmtG4scKUKUqOhsSnpbDXq0jf81a3WX2eBWZOd1BQEKGhoTRvbphba29vT7169Thz5kyGje4rV67kRRFzxblz5/K7CPmm13AHAM76nc3nkqh3eUc8Gcp99WrOz5eTem3Wy5qXju9mzykvHjwubbQvOlrDxo2wY4fChGGb6DaoAmbmEv8wLz3P79miTOq16JK6zTtmsbE8iZuKn58fOhsbk12rsNbrpUs2REbWBsDL6xFnzwZmckTWtG2r4dVXKxAZaU7Pnrfx9c360LgqVSrh6+uMTqfh778D8PaOTpVn9OgaHD7syPbtGpydA2jRIjJXyv20wlqvInNSt8YKTKM7NDQUAKfk9aaecHJy4sGDBxke6+bmhq2t6YcC54RWq+XcuXN4enqmMadbFFa5Va8rdoKiU7hz7Q5njtzl7K36+PpqOHwY7t/XEBdnwZSferPn4BkW/lGSqnUr5uKzEGmR92zRJPVadEnd5oNoQ2PNy8uLNLtMc6iw1+uePYYu4hdeKIG3t3eunTs5IBqUzNZxXbpo+PdfNR0R4Ya3t2K0/8YNOHLEcIP/779r8O67uTvfrbDXq0jf81a3MTExWeoAzlaje968eSxcuDDDPFu2bKF6Ho+DNTc3LzSVWpjKKrIuV+rVHCrXqkDlWhXo/WRTVBSMe/8OP/9eAYC9Z33wbhLF3AmHeHtSS+n1zgPyni2apF6LLqnbPJTidTY3Nzd6nPuXKpz1euCAId2+vZkpX6IsSxmx/PTp1GVavBiUFO3wgwc1HDliTsuWuV+WwlqvInPPS91m9Tlmq9E9dOhQ+vTpk2GeihWfrQfO2dkZgLCwMMqUKaPfHhYWRq1atZ7pnEIUdnZ28NOSCvTrcYaho5y5GepKdLwdo75ozX87j7F2byNpeAshhBAFkDqfW02XLg21a+dveZLVravO7U5ISB3BPDFRbXQ/beZM2Lw5+9eKj1eXTPPxUa8pxPMqW9/WS5UqRfXq1TP8sXrGd5SrqyvOzs4cOXJEvy0qKoqzZ8/i4+OTwZFCFH3t+/tw7pIjb/fZr9+2/mATtq88nY+lEkIIIUR6/PwgPFxN53R97txkZQXJo9yvXIGICMO+DRvg3j013asXVK6sprdsURvP2TV8ODRtCp07myTOnhCFhsm6yIKDg/H39yc4OBitVou/vz/+/v5Ep5j/07VrV3bs2AGARqNh0KBB/PLLL+zatYvLly/z6aefUqZMGX00cyGeZ/al7Pl1bWt+nGxYe+Towah8LJEQQghReEVEwJdfGg8Bz03ZWipMGwfh5+DuDri3C6Kup86jKKm3PaOU63WfTnH//n//M6Tfew8+/tjweNas7F3j7l1YvlxN79sHv/6a/XIKUVSYLJDa999/z7p16/SPe/fuDcDSpUtp0qQJAIGBgTx+/Fif56233iI2NpbJkycTGRlJgwYNWLRoEcWKFTNVMYUodLq/VBWmqekTZ/J3zXMhhBCisHrvPfjzT7Xn198fqlXL3fPv3WtI6xvd8WEQecnwE+Gv/o4OBCVFsLI6k6DedOMTbqkL1uWhdBNwevJjU/aZytaokSF94gS0awfXr8P27eq2qlXVtb9btYLp0+H+ffj7b5gxA2rUyNo1Vq82vk8wcSL06wflyj1TkYUo1EzW6J41axazMrkldvnyZaPHGo2GDz74gA8++MBUxRKi0KtSuyJO9mGEPXbihH8VFJ2CxqyAjFkT4jnh6wsODrn/JV0I8exu3oSBA6F6dXVesqVl+nmjomDNGjWdkABffQWLFuVSQZJiCLp8m927qgMWODmlmM+9qz2E+2V+Ds1TwZli7kDERfUnZJdhu60r2NcEuxrqb/saUK4jWNpnePqUPd0nT6q/U8ZKfustMDMDGxsYM0ZtMOt0MGeOcW94RlasMH4cGQljxxp6v4V4nkgEJiEKGY2ZhkYe6rCz0Ehnbl4OeeZzBV+7h06bu8uACFHUbd2qBgWqXRsCc2fJXSFELpg3D44cUXuv//4747ybN0NsrOHxH3+oS2Vli6JTh4Rf/gEOvwHbm8PaciStcGBgv/s8jlL7tnr3VhuwADikERzYojiUagBVXoc6E9WfMq2M88TcBhuX1MfGBEHIHri2EHw/hQN9IT7UOE98GMQ/NNrk4QHJq+2eOKHeeEgOoGZhAW++acg7apR6kxHg99/hzp1MXxmuX4djx9S0mxskrwj811+wc2fmxwtR1BSYdbqFEFnXuFVZth1X0yfOl6OKR/bPMffjvXz6dVsa1LzIf3vK4lTBKXcLKUQRtWyZ+js+HtavV3uBhBD5b/duQ/qPP+DVV9PPu3q18eOkJLW3O0u9uKFHwH8O3N8PCQ9T7Z6yZgYHL6uN5kqVFObMSTEazaUHFHMCBw+1Ae5QS+2tzizKWumm0OeO2sh+cAzCnvxEXFAb1cnMLMG2kvGxAb+C3yRwrAOlm0GJepiXrEd9n2YcPGTBjRtqg/v+fTV7797GQ8AdHeHdd9UI5omJ8M038PXXGRd35UpDeuhQNXr78OHq43ffhTNnMj5eiKJGerqFKIQatTX8Qz1+/NnO8evyqgCcCqhN13b3iHwQkckRQghFMf5if2hnFrp8hBAmFxICFy8aHu/cmX6P7OPHajRuAGdnQy/ukiVPert1Wgg7Add/hzPj4OFTK4VooyHo3zQb3Nsvv8LMDRMAsLDQsmp5PKVKpchQbRA0+hnc34fynaB4xeyFNbd1hUr9wGcOdNwH/R5A/4fQ5Tg0/wt8vgazp/rUQp9Eiou4ANcWwan3YWdrGtr/oM8ycZyh2//tt1NfdswYsLZW0wsWQFhY6jwppRxa/soras958+bq4ytXYO5cmRYnni/S6BaiEHo6AEp2BV+7x/V7lfWPTwbUoecLFsTE5ELhhCjCLhy7QUiKGR2HDpuj6HIvorAQ4tmkDFoG6vzjP/9MO+/GjRAXp6ZfegmSQwklJcHMj4/DhirwX2M4+qahRzul0s1AYwFWJcH1Raj/DXQ9SXDLGF7/ZQWKon69njnTnKYtrXPtOabLqiQ4NYIqA9XG/NOcGkOphqnmiTeqZvgC8SjSBlDnw7dv/2SjTgvRt0HRUaYMDBumbo6Ohh9+IF3nz6s/oDa0K1dWh9f/8guYPynCzJkabt+WQMni+SGNbiEKobJlodKTzu6TJ7O/9uXBbamXIjlwpDh9+qhDZoUQadu98abR47uPyhF4ISifSiOESJZyBEqy339/Ej1b0UHkFUhSl61NObR8QO9HjOm1GHtbdd+Sf725deupXthIf+PHFsWhp7/ay9z6X6j1IVrHBrw22IbQJ9Ope/SAjz7KlaeWc17ToOsJ6B8OnQ5Do1+gxjs0bJD6y0NyADUAom/A+kqwyhY21eaTVsOwMFeP+X5+Ivfvpv2FIWUv98CBKYrhZZiOEx+vYc6cirm5CpoQBZo0uoUopBp5q8vtRUfDpZM3M8lt7MD+RH36y3GX9UPrtm9X/0EmJeVaMYUoUnbtS91rdWhH9t5/Qojct2eP+tvSEho2VFtyly7Bif+Ng7VlYJM7RPgTGakGQwQo5xxLy5DSlAoYxgedvwEgUWvFzA0T1bnX9b+Btluh7uTUF7SvARrD1+hp0wy97RUqqA1+s4L2LdvSDpybQc13oPEv1BiyCkdHQ6vX0lIxCqDG46vqb108RPpTWbuYN1r+AcCjcEtG91sPO1rCmU8hIRxQb3Ikz+c2M1NHEqT0xRfg6qqmjxxxZPlyGWYung8F7eNACJFFjWuc1KdP7LudrWMPnFAjpJhptLz3cTk2b1aXBQFYtw7efOm6RDUX4ilJCUnsPZ068vChg/JeESI/3bkDAQFquomHP+80NCw9+8c/lQyBxsytWb9ejdQN0L9rIOZm6vv3w27fYm8TBcBv+9/mVrVNUOtDcOkKthXSvG5iIpw7pw61nv5kSW1zc7XRWbp07j/P3GZmBg0aGBq9ffpoKFMmRQZLO6jwAjjWBjN1KPjMlydQyk59PVcdGcD6rU5w+XswV0OhHz+uRi4H6NBBHZmXkp0dzJ9veDxkiBnvv692IAhRlEmjW4hCqlHzEvr08eNZ/9Iffj8Cvxs1AfCqGoBDaUdatlSjMFtZqXe8//y3Gm/2OkxcdFyullmIwuzUnktExjoC0KPpcczN1CEhB0+Vz89iCfF8S4pmz4Kf9A/bVf+blxr8jo2VGqRkxZGBxFMGKvSCYs5GQ8tf7vMIyrQF9w8p9dJu3v/QDoDERA2zZhlfRlHUAGC//gojRqixVezt1SHTo0ejHyY9fTq0bGnKJ5y7WqVYmWzkyKd2OreANuuhxwV4OQZ636Zs31XMn3LWcMySXwgv1g7MrYCnhpbX+QIuzILH14xO26cPvPKK4XvLjz+qr+OBA7n1rIQoeKTRLUQh1aBtdTQa9Z/WCb+s31I/sv2KPshLq0aGiFCdOsHqRVf0DYmlW1vSvF4g18/dysVSC1F47dryQJ/u1T0e7+pXALhwqyaPQsLzqVRCPOfMbdlz1NCd2s5jDw4lLOjbRg0S9ii6FBstgqHNBsLjy/Lff2o+Fxdo/mIL6LgHGnwDJb356CO1Jxbgt9/U3vOtW+H996FmTXB3VxumCxeq8VSejoHSuzeMG5cHzzkXjRmj/vz8M7Rtm0FGjZkaOb1sW14b257u3dXNd8NdGLv2L0CNL7NqlbrdyiKePrW/g7MTYGMN2OoDF76CyAA0Gli6VGHs2NvY2Kh3K65fhzZt4MMPkaCuokiSRrcQhZSDkwO1XAMBOHu9BvExWYuAduBMNX26VVtbo30vvuHOih9P6HsIzlzzoEEzBzYsPpbu+XRaHVGPorJbfCEKnV0HHPTpDr0q0bJhqP7xkf8C8qNIQhR58fFqzzNRgXBuKhwaaJxBo2H3hQ4AFLNKpNmIL6BvKEM+baPP8vtSNWT2+vXqkHBQ5xo/PefayUltYIM6BN3NDbp3V3tirxl31qLRqI3wl1+GWbNg1y5Yu7YAzuPORIkS8O23afRyZ0CjUXv87e3Vx4v/LMmOHbBvH9y7p27r3ugwJYqnWIr0kS+c/Qw2ucEWb8wvfcWQfic4fVqnX0pMUeC778DbWx22L0RRUsg+GoQQKTX2DAbUwC9nD17N0jEHjjvp0y1fbJRq/0sjm3F0VxA1XdQGfXh0CV4c1oTxb+4lKUHtBX/4UJ2zNmgQlCubhH0pO+rX8OenKft4ePdRTp+WEAVOXHQch87XBqCScxDVvSrRopWVfv/BfTIhUYjc9s9fj6hYIZFunaoTsLAnnPsCbq6EyMv6PDduwI3gkgA0a26JdeU2YGZOu3aGgF3btqnreBsNLX857Wt+9BEUL556u4UFtGsHc+bAoUMQGakGalu5Uu3dbt8+e8ttF3YVK8LcuYbHb72ljgBINnBMO3jhGnjPVpcrSyn8LGbnJlM3sB81y11l/374+mvDOuABAeqoAZnnLYoSaXQLUYg1amiYE3Xi4IMMcqri4tQgJ6CuxVk+namoXi3dOOnnRP+2R/TbZv/ellZ1T9Oy0X2cndUo58uWQWiY2vA4c82D96a1waWyDQM7HmbHylMSjE0UGYe3+hOfqH4j7NA4EI2Zhhadq+r3HzpRIp9KJkQRougg7CSJp6fzUd/lvPRaSR6GWxMe5cjkf6Y9yaSB0IP6Q5KjlkOK9aVRA5oNGqSmtVo12Nn27erjihWhSZO0i1C6NMybpzagXVxg+HBYswbCwtRlyT75RF17OnkY+vPsrbcMQ9Jv3jRELbezg549AbtqUPtTdbmyFwLBZ666ZvgTCRZlwa465ubqzQ5fX/ByV7/LXL8On0+S9cRE0SGNbiEKsUYtDHO5j580zzT/yZOGqK0pg6ekxcHJgdW7mvLt+H1YmKvj8Y4GNObQyTLoUrSl7ewUalcxRE+PT7Rm5a7mdB7YgKrlg1m38GjWn5AQ2XT7cjC7/zmD38ErhN5+YLIbPbu2GYZJduig/ut0qV6OqmXVmAfHr9TWv7eEEM9A0cGmWgT91Zu2r7Tn23WvGe3+53h/LjssgN63oPow/faUje527YxPmdzoBnUIePJymGkNLU/pnXfUYehBQWrvbd++6JfWFAZmZrBokWH1k2Qvvgi2tk9ltqsCHh9Dl2Pw4g103nO5X2KA0fAAd3f4+5ORWFvGAvDdfIWjq1ZD/EPTPhEh8oA0uoUoxOq1rIGlufpN/8T5zCMoH9gerE9n1ugG0JhpGDOzDfvWX8LVyXCsh4eOsWPVOWxhYRouBFbE7+AVPnx1L6UdDD3ut0Jd6TuiKWNf30tifGJalxAiWxIT1bVwPx15Dc8qAVSq5UKHl3yo18qNMpVKU6yYFlenuzR0u8iQHge5ez0k03NmxS5fw/DIdi/U0KdbdFDfd3HxVpw+nSuXEgXQn98e4q0X93PpxPX8LkrRoEuCiIvG2zRm7Ax4lfqTTnM4oAUAVhYJdGqmBixUFDPmrBuhBvN6QlEMjW5bW2jc2PiU7u7QrJma1moN2wcMyLyI5ubP13DxZ1W9OsyYYbxt4MC08+oVr4zi/iEhToONtydF41Z8PVP7TQHUOh/6UV3iV1dW5/IHb4OYYPUGjRCFjDS6hSjEitkWo141dS73paCqRIZFZpj/wH939OmUQaAy07yHJ+cuFmfdwmNcP3ebixfNmDdPHcpn9WRaq2cLN75Z3pY79xxYs+AoHeuf0h//zfK2tGsUwJ076VxAiEwcOQL9+6tDP9u1g7m/Vuf8zZqp8iVpLbnzsDynAmrzx5aWfDXhUo6vHREBJ86oY0k9PMCluiFScsvWlvr0oUM5vpQogEJuhPLmJ41ZtKE1TduWYvc/Z/K7SAWfTgsPjsG138B/HpydBCfeg0OvwZ7usK48bG8GWkMA0NmzofPHUwiNVBeKrlQxiYOHrVi1uTr29k9W1VgKtw0Dq7h2Te2NBmjRwvD/KKXBT7XrKldO3TgXOfPBB4abG5Urq6uhPBOL4tA3hI++qEWDmv4A+AfXZsbaT9W5/Hu7wb8VYJWN2vhOKSEcEiWoqyi4pNEtRCHXuL4aaURRzDh1Kv23tDZRy+HzaiOljGMoNetmfZkxgBJlHOk9vAlV61bMMJ+VjRV9RzRl+4n6/DBpn74n/tC52tSvr/aOC5EdcXHQo4c6rzIyxX0ljUZH01rn+PDVvQzteYBujU/gU92fciUMvdsHT5ZN44zZs38/+ikVHToY72vRwpA+eBBRBJ0/cZskrXpzJSKmBF1eqcvvc6Sy0xV+HtaUhu1N4dhwOPMJXPgSAn6Cm3/B3a0Q/wASI+GuOsn60CEYPx4URe1a7tYNTp+xoFEjdVj3Sy+pN4mTktSAW8l27zaknx5anuzll6FYMcPjAQOkBzu3mZur8+UXLoSdO9O++ZFlViWxcB/K4n88sLBQ53TP2jiesze9DHkUHVg/9dke8Av84whbvOH4O3BtCUT4S6+4KDCk0S1EIdeoqyEC+Qnf9CO7nD8aQERMCQBaeV9FY2babx0aMw3vTW/Dgc1XqFj+MQD370PnzvDllxjNCxciI7v+8ePRk6D4JUsqvPoq/Pkn3A+O5Yi/J98sb8tvG1ux5VgjTl/14O6jsnjWvAvAuZvuOV7zNeWNoqcb3bVrq0vuABw6pEPRSeCfoibguvHk1CStJW+Oa8nnI/ZKfT/Vs6gocOWuG/M3DaPr7K20mb6Xy8FuqY8zt4FKL4G12qv999+GXZ98Aps2qct3JRs48L5+PeeFCyH0yUCtjOZzJytRAvr0MTxOL2q5yBk7OzXoXI0amefNCi8vmDhR/Z6SpLVk6F97Sao2Glx6QrmOYPZUHJsHR9UGdvhZuLoAjg2FzbXhn1Kwuwv4TYY7WyA+LHcKKEQ2SaNbiEKuUYpVv5Ijk6flwHZD71+r5nkX8alJl7qcOWdP167qY50OJk2CcR9FZHygEE+s/8fwt7J4znGWL4fXXoPS5dJY1+eJxq3VudZarQZf35xdf9fWcADMzBR9pN5kZmbQvN5NAEJDzbh69kbOLpaLdFod929lfRqJSFvA/Vr6dJv6V/TpGQvb8nrXw8THxKd1WNGm08LVRbDF0Ps4dizUrAnuta0Ys3Qe//l1Zf+lNny0ZS+02w5djkOvAOgbCi9FQsvVULoJigIbN6rnsLCAiRNTBzkrWTKJ4cPVRndMDHz/vfF8bnt7aPjUqlQpzZ2r9nDPmwcNGuTi6yBM6rPPoE4dNX36fEnm7Z0PbTdCu62pMzvWgRL1QPPUH09iBNzbDuenw74e4DvO9AUXIg3S6BaikKtVy7B0yYkT6ec7eNgw97RlxzImLpUxJyfYvBmmTgWNRv3iNG++Ixt/z+AugRCoDceN+9SeMmvLWDq95Jml41LejMrofZGZkBuhnL9SAoAGblf0vdoptagXqE8f3B707BfLRQ/vPqJ53YuUrezMvE/25ndxCrWAAEN62b9ufDdhHxqNOlTnrx0t6NT0EkG3tOkcbRqmXo4x3ZFIigLBW7m2uCc/TD9Ln5m/6Hf9ukCdY/20HQfLE2HbCZwagX0NsC4NZhb6/Zcvq8tDgRrgM633GMBHHylYPDnsxx/V93VIiOE4C4u0jwN1ve5Vq9QbA6LwsLKCxYsNN2G++AJ++gmOHSP1CCbvr6C7L/SPgA57wHsWuPZOPQzdqanxY20CnBkHoYdkKLowKWl0C1HImZsb7tzfugUhQY9T5VF0Cgd81TWF7awfU69l6gBUpmZmBpMnw3dT/PTbBr9Xk1uXgjM4SjzvTuz05164+qWpUyM/ijs+vQ5N2rI6AiQzuzcYWlztm95NM0/LdiX0aVMGU/Pdf5mfpuzjpn/GDfvHDx/Tvf0djl2qC8DchXVISkgyXcGKuORGt7U1VKgAH3zVhnULT2BbTI2nceBcPdxqmTNtWhoNARPYt84XJ8dI6lS+ypLZB3J9ZYhp09QloOztoWblMFp5nuWldkcY/cpe3uuzHrcG1anx1lZGL/2B7ee7GB1rYaEO854zB159Vd2WmGjoyU5Lyn29eqWfr2JFeOMNNR0eDkOGGPalN7RcFH6NG8OHH6rp+Hh47z1o2lT9+6xdWx319PPPEBv75ABLOyjbFmqPg9broM9dePEGtFgJ7h9CmTbGFwjZDf5zYEdL+LcSnJsGsffy8BmK54U0uoUoAhpXN3Tlndjln2p/4IXbBD9Uh9s2r3sZC6sMugRM7P3PvejTSl27+1F0SV7pGybLiT2HwoIfsn/9WaIjojPMt+Fvw/DoF3pkfVqEpycUK6aOqjhxOPyZygiwa6ehB7NDF/s08zTq4GYIGHjGJUvn1Wl1/DptP7Vcr9OpwSm+Hb+XyxcTUJ6aIvwoJJyfpuyjfg1/fNq48960Nng2UFcISEvs41heaH9V3+AGuB/hzP4N57JULmEsKcnQe1ujhqHH7cVhTdi36SblS6pdrbGxMGWKOvJo5QrTzu3/YqpCeHQJLt6qwdDxrahRMYSfpuwj9nFs5gdnIixMXf4pIQGiouDqLScOnq/HP3ub8cOqtvy0vjcB99KYow2s+Es9fvdudV72yJGGfWvWpH/NTZsM6Z49My7fuHGGIGj+Kf7VSaO7aJs2zThoJaijMfz94a+/4N13oW1bw8gHIxoNFK8MlV+GBt+Aw1OdDrfXGtKxd+DcFPi3Ihx8Be4fINWHshDPSBrdQhQBjRoaerGOH07d1XJg2y19umWT/F1SQ2Om4be/a1GljLruyxF/Tya9nXvdg6Ghai+IKHi0iVr+++skL3c4jEvl4rTpXY9eba9k2EBZv6MCoEYq7/VqrXTzPc3SEnyqXQAg4EYJHt179Exl3n28MgBWFvG06O6RZh4be1vq11Tn+l4Kqs6DoAdp5kt20z+Izo18GTmlNZfvVGPn6QZ8NLsttepYUaOG2pOz7NcgBnY8TPmK1rw3rQ1nrhmu/TjWgf7vNOWj1/cZ3bBKiE2gf6fz7D3rA4CZxnDDYPWanIQTfn7d8r9N4pOXuGb5G0b7GnaszYUAJz74QB1xBOpyVgNfNaOV1zlO7U59AzSnblwI0tevvoyhrrw3rQ1VKz1mzti9PH6YerRTVv39N/rnW7o0OBZP/f/C3CyJ1o3vM2umwtEjhu0vvKBGGk/WvDmUK6emt21TG/FPe/jQMDrEzU2dE54Rd3fo1894W4kS4O2d8XGicLO1hX374MABdT7/m2+qdW5pmDXH8eNqD/jFi+meJm0+s6HpH+DSwzAfXEmCW6tgZ2vY6g3Xf5eh5yLHpNEtRBHQqLVhGa8TvqmDSx08aPhn0ap9ibwoUoZKli3ByqURWJir3+7m/NGWLUtzMPH2iVUrFSpWhGrVjHtBRP66fi6Iz0fspUr5ELq+1pDVu5uTkKSu4bPH14c9a9Ne9/ja2ZtcuKV+C29S6yJlqzhn67qNvQyN35N705hsmonA87cJDKkEQPM6F7F1SH9oe8uGhmsd3p72tRSdwsIv9+PZwIFdZ+qnmef6dXXO4qCRrqzc1Zz4RGv9vkZuF+jZzDBW/tvlbWjX5BZ37oA2MYnXe5xiyzF1XL2d9WN2/u2HjbV6Q27NzjokyQjzbAs4Z+g6q+lyI9X+kk4WfPcdnDuHPlgkwKELXjTq6M5Hr+0lJjLjHujQ2w+Y8s5evv4082joy5YbIjYP7n6QHk0Nfw8h4WUY901bGte7/8yjh/78n2ER7J07ITzKjpjHcQReCOLI1vPs/PscD+5r2XesDOPGa/DMIMSCmZkhanhcHGzZkjrPtm2gfXJvKKOh5SlNmGD8uHVrw00PUXSZm0PLlvD+++o87zNn1Bs5e/eqc/YBbtxQb/akXEouU1YlodogaLsJXrgOtSdAsRRLqob7wdE31WXIhMgBaXQLUQRU9qiAs4M6DPeEf7VU0XQPnHUHwNI8gcYd3fO8fGlp0qUus8caergHvVeNoIC058xmxcYlx3n9dS3x8fDoEbz9towKKwi+/RZq1KvAjIVtCQozDL22szb0xs2dm3YQqg0rDAHKXuySce9xWho1MUyjOH44+yM8tq8zXL9Dq4yj7bdobWgcH9qferTJ7cvBdG1ymhGTWvM4Vu0OrFj6Dv/9dYoLR68yd/p92rVLHQzKyT6MMQP34XfwCscv12HDwUb8OHmfYTj72er4+ECfrnf4e08zQA04t+mva7Tr50PPXuoJHzxQv5yK7AnwN0x/qOmWfsvOwwO2boXNq2/hXkGNCqYoZnz7V1u8Pe5xeHPq4f0JCfDNN1DTw5ppC9ry8dy2LP06/VE/igJ/rFanCWk0CtO+rc2mI405s+8yL7U7og/udimoOge33cj2c71+7haHzqg3cOtWDcTrSWByGztrqtR2pWnXunTo70kJp2IZnMVY//6G9D//pN6fnaHlyerXhy4pppLL0PLnl5UVtGkDR4+Cz5MBIBER6t/HH388wwmLV1YDsvUOgmbLUgRd00CNt3Kr2OJ5pZjIzz//rLz88suKl5eX0qBBgywdM27cOMXNzc3oZ+jQoenmj46OVk6ePKlER0fnVrFNJikpSTl58qSSlJSU30URuagg1Wv3JscV9WuZojjZP1A+eGWP4rv/khISoui3N20Um9/FNKLT6pRezY/qy9eyrq+SGJ+Y7fPsXH1KKWYZqz9P8s+SJZlff9+/vsqtS3dS7StIdVtYHTqkKGZmhvow0yQpPZsdU9b+74gSExmjVClzS7/v3KErqY5vW++0fv/FY1ezff3Lp67pj3+xxRFFUbJXr10bG95Tx7dfyDBvyI0Qw/vM45xy+bKirFypKOPGKUrn1veU4sUeG/1tDuu1Xwm/H57qPBERirJ2raJMnqwofy+9q8THxKd5vaPbzisVXWJS/c1bmscrW5Yd1+f7+2/DvuHDM33KhZop3rOjX96rf/32rj2TpWPiY+KVOWP3GH0maTRa5eM39igxkTGKTqcomzYpipubkqr+arleVbRJ2jTPe+CAIV+HDqn3L5ln+HsdOzb7z3Xau3v0x8/6cE/WDoqKMhQqKirV7sRERXFyUncXL64oKb+uJSQoSokS6j5HR/VxWtKqV19f9bwVKyrK/ftZf46i4Mjt9+vjx4rSo4fx++nzzxVFp8vhie/tVpQLs1NvT4zJ4YmLruft+1NW26Mma3TPnz9fWbJkiTJz5sxsNbqHDRum3L9/X/8THp76S0kyaXSL/FaQ6nXxrP2pvsCBolRyDtanP/kkv0uZWljwQ6Vi6SB9GWd/tCdbxx/a5KfYFovSH9+s7mV9unSpOOXBnYdpHqfT6pS3Xtynb6j8NHmvotMa/jsXpLotjB4/VpRq1Qx/h++8cUO5c/WeUZ75Ew0NmiGvhBjtCwsOU8zNEhVQlBrlA43qJqu0SVrF0faRAoriUipYUZSs12v4/XDF0jxeAUVxdbqTpevXdLme5nsw5Y9LqWCjRnFOPHigKF27pripYaZT/vk90ChPdLTa2AFFKVVKpyTEFd2/Z1O8Z7uluPFy5+rdbB3rf/ya0qTWOaP6d3e5pHRpdctom0ajKM4Ohps2axYcSfN8w4YZjlm2LPX+Bw8MN7k8PLL3PHVaneJWwfD3m9aNyDRl0uhWFPVmT3KWtWsN2/fuNWx/5ZX0L5FevcbF5UKDSuQbU7xfExMV5d13Uze8c+LePUV5+PTXCG2iomxtqCh7uiuK/zeKEnpEUZLicnahIuR5+/6U1faoyYaXjx49miFDhuDmlnaUy/RYWVnh7Oys/3F0dDRRCYUoWt4c14q9a315rfMhrC0NcwhvhZbXp1u1yo+SZaxU+ZKs/P2hPujTrN+aZzkQ2uk9l+g+oBIx8eo89hdaHGPfyaq81Ecd3vvgYTEmjDqf5rEzPz7OwvWtAUjUWvHutDa83vUwUY/yN9BcUfHRh4p+7d1mzeCHxZVxqW68XurQjxtQwlGde7p8TRmCU6wet3m7I1qdOjT6xS6haMw02S6DmbkZDd3VQgQ/LM+dq1mfvrBlxQUStWrwsd4dArJ0/ZY+6S/lVdrhAe/03c8Ff1u6vd4o3XzZ4eQEmzfDvHnqEMs1azT0G1zFKI+tLfTq8hCAhw817F6T9vx5kbaA22ocgeLFoihftWwmuY3ValSNg2drMfujvVhZqFN+Lge7898BQwyOli3h5ElY+rMh2OVX8xxSze2OiYxh9Sp1Ur6dnWGudEpOTmogKVBjWgQGps6TnpO7/LlyR11Wsm29M1R0z1oU/qxIGfgsZRTzlEuFZXVoeUrFihkimQsB6vScH35QpzUl/21Mnw7r1j3b+Q4dUpcJrF4dTp1KsePKD/DwJARvgdMfwfZm8LejuuzYmU/h/n6Z3yZSyb91g9Jx/PhxmjVrhoODA02bNmXMmDGULFkyw2O0Wi1abdpzAguK5PIV9HKK7Clo9dryBU9avgDz70ewcsExfv+rDCcDagNga6vQrJmOAlJUI0261ub1l0JZurocjyKsmDdPx9SpGf/Dunj8Ol16lyYiRr0x17H+Kf7aUhczCzPmzXzE1q1aouLsWbi+FW9sOkvzboYllFas0PDZt01SnfOvHS04U+8aq1ffxa1+ZaDg1G1hsvGPEyxcpH77L15cYckSHRoNqf72bBxsePsdDbNnqxGT58/X8dVXar2v32i4J9xjUP1nrodG3uHsetLOPLb7Bj2HOAGZ1+vanTX06Rf62WXp+h9PLs9Rv2vEJJXEu3FJvL0VvL0VfHyggksJNGYtsnTt7BozRv1Rz516f//Ol1i5tjkAq1bE0vHlovk3ndufx4nxiQSGqBGaalYIQqfUhGyeWmOuYeycVnTtd5VhQ7T6z+NKLlHM/tqW/v0VNBpQPL3xmeLPmWsenAqozX+rTtBpgCHY3ppFp3kc1RKAl7rfwNq6Ypp13bWrhsOH1ffO5s06Ro7M2hf/Zb/dB9SyvTrgcdZfQ60Wc31Sm+YfYJs2UKKEGeHhGjZsUIiJ0VGsGGzaZAZoMDNT6Nw5/f9NBe3/rMgdpqzX99+HhAQN48ap74VBgxQOH9ZRu3b2zvPTTxq0WjMePYI+fRSOHdNRpgxozB3QFCuNJj5FrBFdPIQeUn/856KU8EZxex+l8mtgVuCaWyb1vL1ns/o8NYpi2lsxa9eu5auvvuLkyZOZ5t28eTPW1ta4urpy+/ZtvvnmG2xtbVm1ahXmaYSmjImJwV9CFAuRoYAr1hw8VAJv7yh8fApuL+6dO1b061eHpCQzbG21rF9/npIl0w63/PBOBEOGeBD8SO3Fb1rrDF8viKVYcUOAn42/3WbqL70BqFv5EotWRmBhacGpU3a8915NEhPVf8YfjzhIFZcHTJjdXh/gqnixKL78ZCcte1ekoIqJMeOzz6py504xZs++TtWqcXly3QcPLLhwoTgVKsRTo0bqa0bef8wrA2tzP6IMAFPGnaLXSxmfr2dPT5KSzLC3T2LTpnNYWip07FiPmBhzHB2T+O+/s6kCjGXV8S23GTW5NwDvv7yJwZ+Uz/gAID5eQ6dOT67vkMh//53BwrLwhkeOj0mgS+e6RMXZU6J4ONt2XMbC6vn6Evgs7l0Lo+fLnQF4scU+Pp9vl6PzJSUmsW9NMImJ0K5fOYrZGi/jdnjjbUZP7Q1Aq7on+fZ3QzfuJ8OS2HNWvVG47PuNeDRPuyf68iUrXntdDSneseFxZv2a+d9tUqKWXl2qEhrpTDHLOHZsPYltCZssPSez2Fh8ngyhOnPgADqbtI+bMqUKmzerN7y+/fYqlSvH0beveiPUx+cxCxdeydL1hMgqRYFJk6ry33+lAKhYMY6lSy9hb5+1BlJSEnTuXI/ISMNnZf36j/n55yvq/yNFi038dYrHncUu1o/isX5YJxqPdoqzdOVC1TWgKbz/P0TWeXh4YGub/ion2fqvO2/ePBYuXJhhni1btlC9evXsnFavR48e+rS7uzvu7u507NhR3/udHjc3twyfZEGg1Wo5d+4cnp6ead5AEIVTYahXb294aUB+lyJz3t7w1lvwyy8QE2PO5s2ezJuX+p5gUkISHQdf0je469fwZ/OeKjg6Oxjlq/t1Xdb/dwnf67U4f7MWB9fuoevg1owfb0Ziovpl9q23dMz8qRkaDbTvcYOXX7rHuRtuRMfbMWZGb147sZs5i1tStmzBqltFp/BmP38OHCgBwKJFtdm8+dnWEA0LfsSoNwJ4FFEMr9qRePuY4920DLUaVMHCygJtopZjOy+ybf0jth2qxWl/Q6O1c2eFCZ/G0qptMX25+rc7qW9w92x2nEnT62c6NPv11+H33+HxYwtO7rLEvbEHMTHqa/7ii2Y0bOj9TM8NwNmuLExW0/4B5fH09Mz0PbtpE4br9zanYaMGz3z9gqJXq6Os2NGC8OgS3A/Q0P01b6P9ifGJjB9+FP8AO77+wRGPRtXyp6A5kNufx5vPGToLartr8c6FxaAbZjCzwLOOJz8uCuTKnaocON+Q2Htnada1LkEBwez1U9err1b2Ji+/3RUz87RnB9bzUvj4/XvcfVSOg2c9ca+uxcY+4wb01r9OEhqpDqPv1fwMzdum/30rlWhDdHcvLy8onnrJSoDhw9WpEAC+vtWMerUHDCie4WtbGP7PiuzLi3r9+29o3VrB11fD7dvWzJ5dj/XrdVlaYm7/foiMNM54+rQ9f/7pw3ffJX83aQAY7ipr4+6jubcDTcCPaB6ewKrux3i7pfj/odOiuf4bSrlOYFc150+wgHre3rMxMTFcuZKFG4fZmSgeFhamXL16NcOf+HjjSKtr1qzJciC1tDRp0kRZsWJFmvskkJrIb1KvuSs4WFFsbNTgJ8Ws4pXbV4JT5Zn4tiHaeSXn28r9W6Hpnu/otnOKRqNVI+cWe6xUKW8IVtS1qxp0JaXoiGhlcPcDRkFYSpTQKd99l35k3fyQVtC8c+ee7VxD39SmGfDL2jJGqV/jolKy+MNMg4O1quurbFt+Qln0laFczg73lXuBWQsrfP5snFGdDn/JEHxqzZpne156Op1SvuRdNUKyXbSSkJD5ezZlwKp//83h9QuIfxcZ3jeDux8w2peUkKS82umgfr+r0x0lKCD1e6+gy+3P42/HGwL9LZm9P1fOmZnfZhreQ72aH1UURVG++sAQVfyLkXsyPcewXoZzZCVo38COh/T51/92NHsFzkIgNUVRlNhYRbGzU7OVLKkorVoZDrt4MeNLyP/Zoimv6jUw0BBBHxRl4sSsHffJJ4Zj3ntPUayssr4yiqIoanC1hMjU25aj/mxwU5QT7ytK0GZFSXiczWdVsOWobmPuKkrYSUW5f0hRwv1zv3AmkO/Ry5PlpNF99+5dxd3dXdm5c2ea+6XRLfKb1Gvu+2TEef0/trf77DPa999/iqLR6BRQFAvzBOXwZr9Mz/d2n32pGonenrFKZGTa+XVanbLwy/1Kcetoo2Nq1VKULZvyv54vHAlQbKyiUz2nIUOyf65Ll4yX9MrKj49XrDJ6tKJUrpxxvn8XZe/Le/cmx/THmmmS1BsvlrHK40c5X5blxReSUnzBz/g9m5SQpDg7qTcBbG0VJaaIrAoTGxWrONiEqzcfbMOVuGg10q5Oq1OGv5D6Jo53NX8lMiydN0kBldufx6OGP9K/Hge3BebKOTMTHxOvuDrd0V/X76xOca9gWPru+rlbmZ5j7f+OGBoLA/ZmmDcy7LH+86SUXVi6S9SlK4uNbkVRlIEDU39OVKuWeQRy+T9bNOVlve7cqSjm5oa/u7//zvyYWrWSV4VQlNBQRVm40HB8sWKKcvxZFqE4O8XQ6E7585eFovzXXFF8P1OUuzsL/XJkadZt7H1FubdHUQL+pyhnxivKgQGKsr1V6g8A30mG1+XQ63la7meV79HLg4OD8ff3Jzg4GK1Wi7+/P/7+/kSnGIrUtWtXduzYAUB0dDSzZ8/G19eXoKAgjhw5wqhRo6hcuTKtCmLIZSGESYybUh57m0gAftvQjGtnbwIQHKwOQ1YUdajyV1Me0qy7Z6bnm/mLF84OofrHrk7BbFr7CHv7tPNrzDQMn9gK/0sW9OxpCJJy6RJ072lO9yYnuH7uVtoHP2XePDXy6cCBcO5clg7JUExkNANeVohNUKfTvNHtCCVKqPuW/5lE8LV72TrflCmgezIqfcLH0WxbfpKZY/YwoP1haroEAuBoG8FL7Y6wZPZBgq+FcPqsNfPnQ0AA/PHDJWq5Xkt13mG9DvDisNSB6jLy8SeW+rROUYejdah/Drsszi3NSKPGhuFtJ05kPNT90JbzhIapw+W7trhCOlNUCx3r4ta82Eb9I4yIcWTH32dRdApjB+1n0Qb1f6yFeSIupdQI777XazGg2yWSEtKOq/A8CLhZQp+u6VMlT65pZWPFxx8b/kbfeDWGy3fUof5tvHypWjfzOBMd+tbG0jwBgC37qqSKhJ7Suo3F9Z8nL3e7gpWNVbp5cyplFPNkPXtKBHJheh06wNy5hsdDhsDly+nnv3pV/Z8P6uobpUurUyRGjlS3xcerKwiEhGSzIJUHQL0vwbmV8TxvJQkeHIYLX8LujrDNJ/WxUYGQFJt6e0EU/wCniA1ozoyF3Z1gbTlYWwZ2tYPjI+DiLLi1GkIPQMpgdADm1oa0Nm9i1eQZU7X6x40bp7i5uaX6OXrU0Pvh5uamrHkydjA2NlYZOnSo0rRpU6VOnTpKu3btlEmTJimhoekPHZWebpHfpF5N44uRhuGUr3c5oCQlKUrbtoa7zN27K4pWm/Xz/fPLYcVMk6SUdghVzh64nKVjkuv2yJEkpVkz496ZCqWCM+0FPH9eXX835XG92l5Wjm57xnHgiqIM7WnokfSqekmJiYxRJrx9Sr9t/Ju7s3yuM6cS9MeVKaOuq/202KhYJSkh47/tpIQk5Z9fDis+1S/qy/UsPaQ6rU6pX+Oi0eu1YPq+zA/Mgv/+M5zz/fe1Gb5nxww0DCle9s3BXLl+QbHx92Mp3lcHlcmfGYb1azRaZcX3hxT/49eMphSM6H/KpGsh63SK4uenKCEhmefNTG5/Hlepor4GDg55ux50VJTxcFjDEPcDmR/8RHsfw+eC//Fr6ebr1Mlw/kOHnrGwWezpjo5WR4+kfE47dmR+Cfk/WzTldb3qdIry+uuGv73Bg9PP+913hnyzZhm2x8crSsuWhn0tW+Zg6ll8uKLcWqsox95RlI3uxj3fR95MnX9NOXXfmnKKsq6SovxbWVH+raoo66spyvrqirLRQ1F2dVSUkKf+b2oTFUWbi/PjtImK8vi62iMfsEBRTn+qKPeMR9QkPTiddo9+qh5+M0UJO2V8/jvbFOX4KEU5+aGiXPsj98ptQgVmeLkpSaNb5DepV9OIeBChONk/0DcGXu9x2tDgraAO9cqu21eClUch4VnOn7JudTpF+euXi0bDPie/vSfD4/t2CUx36HUHn5PKztWnMm3QprTsG8Oc2+LFHuu/SAdfu6dYmsfrhw1ntcHbo+lx/fm++y7LxUiXTqtTAs/fVmKjYp/5HH/NP2T0OgVfu5fzgimKEhZmOGfTpum/Z3VanVLZ+bYC6vSFh/ce5cr1C4q46DjF0VYdYm5ulmj0Wi/6yjBned+/voqVRVyaXzpz0+PHivLaa+o1nJ1z3vDOzc/juDjD1IschKV5ZtOmGX9m2BaLytbNrHmfGG5cfv3pnjTz3LljeI5Vqz7jjYVsNLoVRVH69TNkt7NTGzGZkf+zRVN+1Ovjx4pSooT692dlpSj30vkX06GD4e/0/Hnjfffuqd9Dkvd/8UUuFS76jqIELleUo8MV5fYG432JUVlrxC5HbbSmdP+QovxlrjbMd3dVlBOjFeXSD4pya42iBK5QlGu/K8qVXxXl+tLUZbr8k1qeQ28oyq7O6jn+skh9zbNTjA5Lio9RdMvNDfv/Ka0oO9up1778k1rGiCuKkpTN6SwFVL4PLxdCiGfl4OTA+LfVobCKYsafm9WhVubmOlasUId6ZZdrzfKUKOP4TOXRaGDgOx7s3pGAhXkiAPN+b8Td62mPLTu58yJr/6sCQHnnKL79FlzLPNTv33WmAR0H1MfeLp5mHucY1X8/C7/cz6nd/sRGxZGUhNGP/7EA3plQT3/8L1/5UutJdOny1cryetfjgDps+Le5pzN9Poc3n2PzUTWMcsXSd3j7rZyvpakx01CljivWxa0zz5yO/m83wr3CdQA6NzxJ+Wplc1wugFKloEZFdQib76kEkhLTfr6++y9zM1Rdl7mdtx8ly5bIlesXFMVsi9G7rfq+0uoMi5d8962WYRMM07hav1iPJT8aplCMHw8rV+ZuWfz9oUkTWL5cfRwaCovnHM3di+TA9Uvh+qkXbjWfbWWAnHjvPbArbvg77d/uFPal0pkTk4YeL1XSp7fscEgzz4q/FP1zfP31vBnm3b+/Id2lC1iZbjS7EKnY2amrpAAkJMCCBanzREbCvn1qukoVUq3tXbYs/PMP+gjo06fDsWO5UDhbF6jyKjRZCK69jPclRUOV18CpKdhUAOtyYF0WijlDsdJQzAnMn6ziVPypKSiPA0DRQtQ1uLsNrnwPp96HA/3g8EA4OgROvAN+U1KX6e5/cG0R3FgG97ar51DSmHIU9dQ0M3Mrbpb7DG2brdDnLvS9Dx12Q8P54DYKXLqAQ00wf74+AKTRLYQokN6d3EQ/vzTZtHf3k58hHmr6VOGdfocBiIkvzpSP0p4UNmlijCE98hRjxsC1G3Ys+mo/Ncrf0O+LTbDl6CVPflnTmhGTWtOwgwe29tZYWmL0U7tpTaLj1TWC3+xxgDc+aml0vbGfldOnv/2teobzcBWdwsSJhi/zUz66hrVtwVjSw7KYJXv2F2fxrAMsX5e7y6k0rqXWVVyiDUH+D9LMs26FYU58n17RaeYp7AYMqWT0ePp0+GBM6vp/9e2afPml4fHgweDrmztlWPnDYRo10nHxovH2hX+WR6fN+wZuWgJOGZZ/qem4P8+vX7IkvDfYUIbhI7N3w9C9QVWqllVvnOz3q8vjh4+N9t/0D2LezEf6x6+9loPCZkPv3tCihfr8Pv44b64pRErvvgtmT1o/P/+szs9Oaft29WY3QK9ead+MatoUPv9cTWu18MYbRqvn5T7rMtD8T+hyBPoEQd+70Pce9LsP/UKh3wMYEAX9H4K9m/GxZsWgpA9YpL2cn54uPvU286duolvYQ0lvqNgXPD6BRr9Au+3gPTPVoWGOL0C5TmBTTgI3JMujnneTkOHlIr9JvZrWz18YIo93bnhC0SZlYyJ3DqVXt/dvheqjQJtpkpTzhwOM9u/711df5iplbqWKBpwYn6is+P6Q0r/tYaV6uRvpDkFP66d2pQAlKjztIZzdmhiGi6/4Pv3JmdtXnNTnq+lyXUmML0BroZlQyuWfvhyzLs33bN3KV/R57ly9mw+lNL34eEXx8VHjDXz2WcZDinU6RRk+3PD3N+qtnEUzj4uOU959aa/R37Snp6I08TDM5d++4sQznz83P49TDs/Or7n9CXEJypyxe5S/5j/LZGvF6LVet/CYfvujkHClTiXD33qXRiefvZDZHF6eLDtVJP9ni6b8rNeU0xyWPjWqetAgw77//kv/HAkJitK4sSHvyJGmLXOO6XSKEhOszvm+ukhRzs9UFP9vFeXKz4pydbGi3Pwn9TGPryvKo3PqUPDY+1meg/K8vWez2h61yLxZLoQQ+WPExBYE3d7L/VAzZv1SFzPz/B+c41yxNONH7GXi/LboFHPGj33IRrXzG0Wn8NkkQ94vPr6JlY3xUC8LKwteeb85r7yvPo4IjcD3YCBnjkdw5qw5gferoNi4Gl80/BxOJWL4+sdyFHdM+271x59YsPXJ0M2535fk5XcVNGbGd5cVncJnUwx3rqeNv4uFVe72KBdUjVqU0qcvXkz9Gl71vcn5mzUBaFrrHC7VM4+MXxhZWcHx4/DgAZQrl3FejQa++VrH4sUKOp05B3bcBbI+xDml8PsRdGl9m+OX2+i3De57lZ+X1WDbnxH0e1vdtuDXRDq9kv3zKzqF0NsPMozUnR0BVw2fNTVrP9u0lJyyLGbJJ/PaPvPx3fuU4ae/1fTmo43oPRwSYhPo1/UaF27VB6CmSyB/rq2S88Jmk3nBGFwjnlNjxsCaNWp6/nzD9AqtFrZsUbfb2UGbNumeAktLWLYMfHwgJgZ++UXtGe/WzeTFfzYaDdiUV3/KtM7aMXbPx/eDPJNHNwFMQnq6RX6Tei26Mqrb6IhopUKpYP0d7j1rziiKoihblhl6mz0qBmQrUFpOPR39O7lMKa1beFS/36vqpTwdOZDfoiOi9cHD6lTyT1Wvc8YaejZnf7QnfwpZQCX/XWk02mcOLvfxG4bXt5hlrLLoq/2KTqv2miTEJSjlStzTB7C7ez17AfSOH3qsNPPwU0BRujU+oCTkwuiNdt6G4I1hwQ9zfL78EBOjKNbW6nNwcVEUbZJOGdTtgP55Odk/UALO3MjZRZ6xpzs75P9s0ZSf9arTKUr9+oY/3YNPBrMcPmzY1rdv1s71yy+GY8qVe7ZAr0XN8/aelUBqQghhIrYOtswYZwgc8skEa7RJOj77wk6/bdqEUMwt8647R2Om4eP3DXM0585JJCJCXYt0724tK74/zISphgh0Mz6PKBAjB/KKrYMtdSurdeZ/uybREcYT8NZtcdKn+7xeJS+LVuC1anQfUIMaHv4vINvHJ8Qm8Mf6OgBYWcRz+L9Ahk1opR+JYVnMkqH9/AFI0lqy+Dv/LJ03OFida964hR1H/NWRCVuPt+SXqYeyXcanBdxWg/iVsntIqfIlc3y+/GBjA+3bq+ngYHit53mWblXjQRSzjGPDimBqeFfOxxIKkT80GvjgA8Pj775Tf2/caNjWs2fWzvX224be7Xv31MdK7gy4EUXM8/ONSwghctEbHzbDs4raADl5pRav9b3DmWseANSv4U/fEU3yvEz9325MJecgALYca0SJElCrFrTrYM6rHzTnUlB1QB0+3XNwozwvX35r7KVGm9cp5nw6/AzvjQinXz9o0ULh6CW1UVinUgA1farkYykLnpatDBFmD+zJfrSgTctOExrpDEDv1qeo384jVZ63PqyBRqMGUVu4snqGAdVio+L5coaCmxssXZp6/8SvG3LjQlCGZXr88DE7Vp4iLjou1b6YyFiCwlwAqOkanOF5Crru3Q3pldvUGxMajY4/55+heY+iOYVCiKx4+WU1EjnAunVw6xZs2qQ+1miM3zsZ0Wjgt9/A6cl927Vr0/5cEkIa3UII8QzMLc2Z+7NhvtOqjYa52zOmROVLL7JlMQvGjHyUYR5zsyTmzNalmu/9PGiU4j7DgnVt+GlhCdauhcOHNSQP/Orzmms6Rz+/WnWroU8fOF4qg5xp+22xYcTH0OHF0sxTpY4rXRqdAuDG/YpsX5n20neHN5/Do1ookz7X6KMFlyihzssc/uIBAKLj7XhrUEi687uDAu7i5RFO54ENGPxC6utcO2dosNesHJ7Z0yvQ0mo4zP14P/1HNsv7wghRgBQrBiNHqmmtFj79FM6pKyrSuLGhQZ4V5cvD//5nePzuu2rsDCFSkka3EEI8oy7dLOjUyXhby7pn6fpqw/wpEDBygievvgp16qhDS197DcaOhXkTT7L8u0OcP3qLVi/Uy/xERVDnvtUoZpm6ZxPUJYw6doQxY23yuFQFX9kqztR0CQTgxOVaxD6OzfKxd67eZdtxNWhXxdJ36PiST7p5Rww3LGX3vwWpl707vv0CXfpX0a+lbm6u8O67cPUqjB4Nc/5Xl4pOaoN55+kGLJlzMNU57t8KpWO7WG7cV2+Srd7dnLMHjJf+C7gQpk/XrJ7+8nuFQdWq4FHRMBVmVP99fDQrg+hQQjxH3nnHsFb8qlWG7VkdWp5S374wZIiajo6Grl0NjfjCTqdTb0yInJFGtxBC5MCcOcZLUH45Q5OvvcjW1rB8OZw/D7t2wZ9/wrx5MPbLhrz6QQtqNaqWb2XLb5U9XDm8PZCZH/3L2oVHObb3HjdvQlwcPHwIO3YYhggKYy197gCQqLXixK6016dPy+/fX0anqD3db/YLwNwi/a8dPQc1oHxJda30DYcaEnzL0Lg/d+gKXfu6EBWnRk9vWfcsZ4+F8eOPhjpzcHJg8qen9Md8NN2L4GuGtdcfhYTTue1DLt8xfg/Mmhpm9DjgkuHGjFstyyw/14Lqy89DKVcihBG99zN/eYvncpSLEGkpWxZeSWO1hF69nu18P/9siHj+6BF06gQB2Q+DUSDcugULFkDv3uDgoEZz79YNfvhBvdEpsk8a3UIIkQPe3jB+vJoeOhRav+iVr+URGavXyo1Or1bkhTcb0bhNOSpVUocZioy1SrHCzIHd4Vk6RqeDxevVXm6NRsebo2tkmN+ymCXDXlUbyVqdBYuXqqMOrpwOpFPPEjyKVgOata13hu2H3ajToHSqc/h0cOX1LmoPd0SMI6OG3ETRKTx++JhubYM4G+gOgKtTMKUdHgCwencTrvre1J8j4IaDPl2zduEMopZSn7eacvdRWRasa42FlawUK0RKKQOqAVSsCF7P+G/cxkYNxta4sfo4JAQ6dFAbsAWdosDhw+owe09PqFxZHQmwfr3acx8XB9u2qaOKatYENzf1tdu7VwLHZZU0uoUQIoe++goiI2HRovwuiRCm0aqzIWbBgaN2GeQ02LcPrt9SG7Ad2kRTpXbm8+WHf+KtHzmycCEEXrhDxy5WhISXAaBJrfNs2F0DG/v0pwF8vbAWZRxDAVh/sAlLvz3Oi90ecuxSXQDKOIaya3s8Hw45D6iB9eZ8a6s/PiCsvj5ds37GNwqEEIVb/frQqpXhcc+exqPXssveHrZuNTTcb99WG9737mV8XH4JDoZZs9Sgqy1awNy56ki5lJydoUIF420BAfD999CuHTRpAv/+q95oFemTW55CCJEL7O3zuwRCmE51r0qUKxHCvfCyHD5fC22SgrlFxt9Mf/vNkB72dtbeIJUrq3Mht25Ve4caNC3Oo6gSAHhVvczWva7Yl8r4XE4uJflp5gleGqVGTB/ysWElgZLFH7Fj0yPc6rsxyrUUsxYn8TjKgj9WOjPlK/WLZfJw0DJlwKGkVVqXEEIUIZ99pgYd1Ghg0KCcn69UKdi+XW3MBwSow7E7dVKjpNvaGue1soLSqQft5JiiqFPNdu5Ug02WK6cGfEv+fe2a+hm9dWvqxrJGo/bWd++uDilv0EDddv48bNmi/hw6ZJjnfeIE9OmjxpKZMAH698/951MUSKNbCCGEEBnSmGlo2cqMfzbC41g7/M6BT/ox0QgPhzVr1HTJkuq8wKx6+231iyCgb3C7VQhk++5SlCxbIkvn6D+yKX03hbB2iyEEsZ2dwrZNcXi1dAOgRBlHRr0Ls2dDQgJ88w1MnQp376r5a9bMepmFEIVXly5w9CiYmakNzNxQtqza4G3VSr2BeP58+p8pb7yRu8uMRUaq092SP4Ozql07GDwYevRI+0aAp6f6M26c+hm/ebMaM8bXV91/4QK8/jpMnmzGK6+UxsMj9U2G55kMLxdCCCFEplp1dNanDxzIOO9fC64T9yQe2euvqwH+sqpHD3ApF69/XNk5iJ27ilG2inMGR6X2029lKflkSra1NWzapKFxm/JGeT780FC2BQvg2DHDPml0C/H8aNQo9xrcySpVUgOaliuXcb5ly8DfP3euee4cNGyY9QZ3xYrw+edqz/fu3WqjOys97yVKqKujnD6tNr6bNzfsu35dw1dfVaZmTTO+/Rb98o7PO2l0CyGEECJTKec9Hky9GpeR3xYZGs3DBkVl6zoWFvDZiKOAuszYzu1aKrq7ZOscoH7R3boVhg9Xv/i2SWOlrLJl1R4hUL8YfvTObf2+mhXuZPuaQgiRUo0a6uflu++qy4ql/Gna1JDvjz9yfq0//lDnVydPkXF0hBUr1Ov/848aefyzz9TPvLfegv/+g8BAmDYNqj3jwiYajToM/eBBNahaymVUg4M1fPSROm1oxgy1dxzUnvj9+2H+fHWZtebNYfLkoh+QTYaXCyGEECJTXl5q7ILHj9WebkVJO+CQ7/7LnL7qAUCDmhep17B2tq81ckprOvW+QYXqZbB1ePbxiU2aqD8Z+WSslgW/glZnjt9VQ8C4mhVuARXSP1AIIbKgenX48cfU2+/fV+NIJCWpvd1ffgnm5tk/f1wcvP++cTDX+vXh77+fvTGdXRqNemOzTRs4elTLhAmR7N2rDjUKC1N70+fMUWNlXLuW+vgjR8DdXe09L6qkp1sIIYQQmTI3h+YNHwFqJN5rZ2+mme+3nwxheoe99uCZrqUx01DTp0qOGtxZVaWaOa92PpJqe806pUx+bSHE86tMGbWXGNQo4jt3Zv8c27ap8TVSNrhHjFADneVVg/tpjRrBvHnX8fXV8tpr6lx5UG/YptXgTvbBB+qNiKJKGt1CCCGEyJJWdc/q0wf+S734bFx0HMs3q2vlWFvGMnBkvTwrW06M/yL1pMsantLLLYQwrSFDDOnsDDG/fFld3qxbN7h0Sd1mY6OeY8GC7MXRMJW6deHPP+HKFfVGgLW1WsamTWHkSPjf/9TI5wMGqPnDwtQe+6JKGt1CCCGEyJJWHUrq02nN6/5hylEeRat5+rc/RYkyjnlVtByp3aQGvVse1T92KXUXu5JZW49cCCGeVY8e4OSkptetg4iIjPOHh8PYsWqDdvNmw/amTdVAkLmx5Fluq15dvREQHa32dh85Aj//rM4rb9hQHXqf/BqsXq2u+V0USaNbCCGEEFnSqIM7luYJABw47Wq0b+fq04z/xhBtbeT7haPBnWzC54b1v2tVvpuPJRFCPC+srGDgQDUdF6c2OtPz77/qqgrffKPOAwdwdVXX4z58WF3OqyAzM0t7zrqzM3z/veHxyJHw6FHelSuvSKNbCCGEEFliY2dNI3d1LGNAcFXuBaoT8ALP3+blYVXQKeo3qs+G76V5jwL+DfApjTvX4fMRe/GscoXPJqYRIU4IIUwg5RDz339PO8/58/DKK/DgSZgMa2s14velS/Dqq2kHtSxMBg5Uh8uDGjNk7Nj8LY8pSKNbCCGEEFnWqvFDffrQf9eIjoihzwsxPIxSA491b3KCqT+3Su/wAm3agrb4BbrRvr9PfhdFCPGcqF8f6tRR04cPG5b8ShYfD6+/rv4G6NVLndM9dSoUL563ZTUVjQZ+/RUcHNTHS5bA9u35W6bcJo1uIYQQQmRZq3aGb3kH9icwbIQ1ZwPdAajpEsjyDW6YWz7DujdCCPEc0mgyDqg2ZQqcfRLDsm5ddQh6pUp5Vrw8U6ECzJtneDxiBERF5V95cps0uoUQQgiRZc271ESj0QHw6z9NWbVa/Sphb5fI+nXaQhM8TQghCoqUS2stXQo69SOWAwfU9a0BLC3VaOAFITK5qQwfDu3bq+mbN2HChPwtT24yWaM7KCiIiRMn0r59e7y8vOjYsSPff/89CQkJGR4XHx/P1KlTadKkCT4+Prz//vs8ePBs63wKIYQQIneVLFuCupWvAhCfWEy/fdmflng0rpFfxRJCiEKrfHno0kVN374Ne/ZAZCS88QYoirp9xgyoVzhWYXxmGg0sXAi2turjZcsMz7+wM1mj+/r16yiKwrRp09i8eTMTJkxg5cqVfPvttxke99VXX7Fnzx6+++47li1bxv3793nvvfdMVUwhhBBCZFOrhsbRvadMgRdfzKfCCCFEEfD0EPMPPlB7ewFaty6awcXSUq2aOqe7TBkYPLjwB4lLZmGqE7du3ZrWrVvrH1esWJHAwEBWrFjBuHHj0jzm8ePHrFmzhnnz5tGsWTNAbYR3794dX19fvL290zxOq9Wi1Wpz/TnkpuTyFfRyiuyRei26pG6LJqnX3NGuoyU//6Ome/XS8dlnCvn9kkrd5gOtFnN9Uosp/gikXosmqdfUevSAEiXMCA/XsGKFQlKS2tq0t1dYvFgdb14YXq7cqNt+/dQf9Ty5USrTyerzNFmjOy2PHz/G0TH9uV7nz58nMTGR5s2b67dVr14dFxeXDBvdV65cye2imsy5c+fyuwjCBKReiy6p26JJ6jVnqtS3YuzrG4mOMefV953w88vTrxMZkrrNO2axsSTHeffz80NnY2Oya0m9Fk1Sr8Y6dKjEmjXO+gY3wNixNwgPf4ivb/6V61lI3RrLs/+SN2/e5M8//0y3lxvgwYMHWFpa4pAcL/4JJycnQkND0z3Ozc0N2+TB/wWUVqvl3LlzeHp6Yp7WyvCiUJJ6Lbqkbosmqdfc4/N7wVpWS+o2H0RH65NeXl4mWb9I6rVoknpN24cfwpo1hsd9+ih89lklNJrCE678eavbmJiYLHUAZ7vRPW/ePBYuXJhhni1btlC9enX945CQEIYPH07Xrl0ZMGBAdi+ZKXNz80JTqYWprCLrpF6LLqnboknqteiSus1DKV5nc3Nzo8e5fymp16JI6tVY8+bg5QV+flCuHPzvfxosLArn6/O81G1Wn2O2G91Dhw6lT58+GeapWLGiPh0SEsKgQYPw8fFh+vTpGR5XunRpEhMTiYyMNOrtDgsLw9nZObtFFUIIIYQQQohCQaOB9eth5Up45RUoXTq/SyRyS7Yb3aVKlaJUqVJZypvc4K5Tpw4zZ87EzCzjYOl169bF0tKSI0eO0OVJ3Pzr168THByc7nxuIYQQQgghhCgKqlSB8ePzuxQit5lsybCQkBDeeOMNypcvz7hx43j48CGhoaFGc7NDQkLo2rUrfn5+ANjb29OvXz9mzZrF0aNHOX/+PBMnTsTHx0ca3UIIIYQQQgghCh2TBVI7dOgQN2/e5ObNm0ZLhwFcvnwZgMTERAIDA4mNjdXvmzhxImZmZowePZqEhARatmzJlClTTFVMIYQQQgghhBDCZEzW6O7bty99+/bNMI+rq6u+AZ6sWLFiTJkyRRraQgghhBBCCCEKvYKzsOYz0OnUheJT9pQXVMkLp8fExDwXkfyeF1KvRZfUbdEk9Vp0Sd3mg7g4cHc3pDWajPM/A6nXoknqteh63uo2uR2a3C5Nj0ZRFCUvCmQKYWFh3LhxI7+LIYQQQgghhBDiOVWlShWcnJzS3V+oG91JSUlERERQrFixTCOjCyGEEEIIIYQQuUWn0xEfH4+joyMWFukPIi/UjW4hhBBCCCGEEKIgk+5hIYQQQgghhBDCRKTRLYQQQgghhBBCmIg0uoUQQgghhBBCCBORRrcQQgghhBBCCGEi0ujOA8uXL6d9+/Z4enry0ksv4efnl99FEtm0YMEC+vXrh4+PD82aNWPUqFFcv37dKE98fDxTp06lSZMm+Pj48P777/PgwYN8KrF4Fv/73/9wd3fnyy+/1G+Tei2cQkJC+Pjjj2nSpAleXl706tWLc+fO6fcrisL8+fNp2bIlXl5eDBkyRJagLAS0Wi3fffcd7du3x8vLi44dO/LTTz+RMias1G3Bd+LECd555x1atmyJu7s7O3fuNNqflToMDw9n7Nix1K9fn4YNGzJx4kSio6Pz8FmItGRUt4mJicydO5devXrh7e1Ny5Yt+fTTTwkJCTE6h9RtwZPZezalyZMn4+7uzu+//260/XmvV2l0m9iWLVuYOXMm7777LuvWraNWrVoMGzaMsLCw/C6ayIbjx4/z2muvsXr1apYsWUJSUhLDhg0jJiZGn+err75iz549fPfddyxbtoz79+/z3nvv5WOpRXb4+fmxcuVK3N3djbZLvRY+ERERDBw4EEtLSxYuXMjmzZsZN24cjo6O+jwLFy5k2bJlfPHFF6xevRobGxuGDRtGfHx8PpZcZGbhwoWsWLGCyZMns2XLFj7++GMWLVrEsmXLjPJI3RZsMTExuLu7M2XKlDT3Z6UOP/74Y65evcqSJUv49ddfOXnyJJMnT86rpyDSkVHdxsXFcfHiRUaOHMnatWv58ccfCQwMZOTIkUb5pG4Lnszes8l27NjB2bNnKVOmTKp9z329KsKk+vfvr0ydOlX/WKvVKi1btlQWLFiQj6USORUWFqa4ubkpx48fVxRFUSIjI5U6deooW7du1ee5evWq4ubmppw5cyafSimyKioqSuncubNy6NAh5fXXX1dmzJihKIrUa2E1d+5cZeDAgenu1+l0SosWLZRFixbpt0VGRip169ZVNm3alBdFFM9oxIgRyoQJE4y2vffee8rYsWMVRZG6LYzc3NyUHTt26B9npQ6TP4f9/Pz0efbt26e4u7sr9+7dy7vCiww9XbdpOXv2rOLm5qbcuXNHURSp28IgvXq9d++e0qpVK+XKlStKu3btlCVLluj3Sb0qivR0m1BCQgIXLlygefPm+m1mZmY0b96cM2fO5GPJRE49fvwYQN9zdv78eRITE43qunr16ri4uODr65sfRRTZMG3aNNq0aWNUfyD1Wljt3r2bunXrMnr0aJo1a0bv3r1ZvXq1fn9QUBChoaFG9Wpvb0+9evXks7mA8/Hx4ejRowQGBgJw6dIlTp06RevWrQGp26IgK3V45swZHBwc8PT01Odp3rw5ZmZmMoWvkImKikKj0eDg4ABI3RZWOp2OTz75hGHDhlGzZs1U+6VewSK/C1CUPXr0CK1Wi5OTk9F2JyenVPOBReGh0+n46quvqF+/Pm5ubgA8ePAAS0tL/T+NZE5OToSGhuZHMUUWbd68mYsXL/LPP/+k2if1Wjjdvn2bFStW8Oabb/LOO+9w7tw5ZsyYgaWlJX369NHXXVqfzTJfv2AbMWIEUVFRdOvWDXNzc7RaLR9++CEvvPACgNRtEZCVOnzw4AGlSpUy2m9hYYGjo6N8Nhci8fHxzJs3jx49emBnZwdI3RZWCxcuxMLCgkGDBqW5X+pVGt1CZNvUqVMJCAjgr7/+yu+iiBy6e/cuX375JYsXL6ZYsWL5XRyRSxRFoW7dunz00UcA1K5dm4CAAFauXEmfPn3yuXQiJ7Zu3crGjRv5+uuvqVGjBv7+/sycOZMyZcpI3QpRiCQmJvLBBx+gKApTp07N7+KIHDh//jxLly5l7dq1aDSa/C5OgSXDy02oZMmSmJubpwqaFhYWRunSpfOpVCInpk2bxt69e/njjz8oV66cfnvp0qVJTEwkMjLSKH9YWBjOzs55XUyRRRcuXCAsLIy+fftSu3ZtateuzfHjx1m2bBm1a9eWei2knJ2dqV69utG2atWqERwcrN8PyGdzITRnzhxGjBhBjx49cHd3p3fv3gwePJgFCxYAUrdFQVbqsHTp0jx8+NBof1JSEhEREfLZXAgkJiYyZswYgoODWbx4sb6XG6RuC6OTJ08SFhZGu3bt9N+l7ty5w+zZs2nfvj0g9QrS6DYpKysr6tSpw5EjR/TbdDodR44cwcfHJx9LJrJLURSmTZvGjh07+OOPP6hYsaLR/rp162JpaWlU19evXyc4OBhvb+88Lq3IqqZNm7Jx40b+/fdf/U/dunXp1auXPi31WvjUr19fP+c32Y0bN6hQoQIArq6uODs7G9VrVFQUZ8+elc/mAi4uLi5VT4q5ubl+yTCp28IvK3Xo4+NDZGQk58+f1+c5evQoOp0OLy+vPC+zyLrkBvfNmzf5/fffKVmypNF+qdvC58UXX2TDhg1G36XKlCnDsGHDWLRoESD1CjK83OTefPNNxo0bR926dfHy8uKPP/4gNjaWvn375nfRRDZMnTqVTZs28fPPP1O8eHH9/BN7e3usra2xt7enX79+zJo1C0dHR+zs7JgxYwY+Pj7SOCvA7Ozs9PPyk9na2lKiRAn9dqnXwmfw4MEMHDiQX3/9lW7duuHn58fq1auZNm0aABqNhkGDBvHLL79QuXJlXF1dmT9/PmXKlKFjx475XHqRkXbt2vHrr7/i4uKiH16+ZMkS+vXrB0jdFhbR0dHcunVL/zgoKAh/f38cHR1xcXHJtA6rV69Oq1at+Pzzz5k6dSqJiYlMnz6dHj16ULZs2fx6WoKM69bZ2ZnRo0dz8eJFFixYgFar1X+fcnR0xMrKSuq2gMrsPfv0zRNLS0tKly5NtWrVAHnPAmiU5NvDwmT+/PNPfvvtN0JDQ/Hw8GDSpEnUq1cvv4slsuHptZuTzZw5U38DJT4+nlmzZrF582YSEhJo2bIlU6ZMeW6GzRQVb7zxBrVq1eKzzz4DpF4Lqz179vDNN99w48YNXF1defPNNxkwYIB+v6IofP/996xevZrIyEgaNGjAlClTqFq1aj6WWmQmKiqK+fPns3PnTsLCwihTpgw9evTg3XffxcrKCpC6LQyOHTuWZsClPn36MGvWrCzVYXh4ONOnT2f37t2YmZnRuXNnJk2aRPHixfPyqYinZFS37733Hh06dEjzuKVLl9KkSRNA6rYgyuw9+7T27dszaNAghgwZot/2vNerNLqFEEIIIYQQQggTkTndQgghhBBCCCGEiUijWwghhBBCCCGEMBFpdAshhBBCCCGEECYijW4hhBBCCCGEEMJEpNEthBBCCCGEEEKYiDS6hRBCCCGEEEIIE5FGtxBCCCGEEEIIYSLS6BZCCCGEEEIIIUxEGt1CCCGEEEIIIYSJSKNbCCGEEEIIIYQwEWl0CyGEEEIIIYQQJiKNbiGEEEIIIYQQwkSk0S2EEEIIIYQQQpiINLqFEEIIIYQQQggTkUa3EEIIIYQQQghhItLoFkIIIYQQQgghTEQa3UIIIYQQQgghhIlIo1sIIYQo4o4dO4a7uzvHjh3L76IIIYQQzx2L/C6AEEIIkZ/Wrl3LhAkT0t2/atUqvL29865AhcRff/3F0aNH8fPz4+7du/Tp04dZs2almTcyMpK5c+eyY8cO4uLi8PT0ZPz48dSpU0ef59ixYwwaNCjd640ZM4aRI0cC8MYbb3D8+PE081lYWHDhwoVsn1MIIYQwFWl0CyGEEMDo0aNxdXVNtb1SpUr5UJqCb9GiRURHR+Pp6UloaGi6+XQ6HSNGjODy5csMGzaMkiVL8tdff/HGG2+wdu1aqlSpAkD16tWZM2dOquM3bNjAwYMHadGihX7bO++8Q//+/Y3yxcbGMmXKFKN82TmnEEIIYSrS6BZCCCGA1q1b4+npmd/FKDSWLVuGi4sLGo0GHx+fdPNt27aNM2fOMH/+fLp27QpAt27d6NKlCz/88ANff/01AKVLl+bFF19MdfxPP/1ElSpV8PLy0m9Lq7G8fv16AHr16qXflp1zCiGEEKYic7qFEEKILPj++++pVasWR44cMdr++eefU7duXS5dugRAQkIC8+fPp2/fvjRo0ABvb29effVVjh49anRcUFAQ7u7u/PbbbyxfvpwOHTpQr149hg4dyt27d1EUhZ9++onWrVvj5eXFyJEjCQ8PNzpH+/btefvttzl48CAvvvginp6edO/ene3bt2fpOZ09e5Zhw4bRoEED6tWrx+uvv86pU6eydGyFChXQaDSZ5vvvv/8oXbo0nTt31m8rVaoU3bp1Y9euXSQkJKR7rJ+fHzdv3jRqSKdn06ZN2Nra0qFDhwzzZeecQgghRG6QRrcQQggBREVF8fDhQ6OfR48e6fePHDkSDw8PPvvsM6KiogA4cOAAq1evZtSoUdSqVUt/nr///pvGjRvz8ccf89577/Hw4UOGDx+Ov79/qutu3LhRP9z6zTff5Pjx44wZM4bvvvuOAwcO8NZbbzFgwAD27NnD7NmzUx1/48YNPvzwQ1q3bs3YsWMxNzfngw8+4NChQxk+3yNHjvDaa68RHR3Ne++9x4cffkhkZCSDBw/Gz88vJy+lEX9/f2rXro2ZmfFXDk9PT2JjYwkMDEz32A0bNgBk2kB++PAhhw8fpkOHDtja2maYN6vnFEIIIXKLDC8XQgghgCFDhqTaZmVlxblz5wCwtLRk9uzZ9O3bl1mzZvHpp5/y2WefUbduXUaMGKE/xtHRkd27d2NlZaXfNmDAALp168ayZcv46quvjK4REhLC9u3bsbe3B9Q50AsWLCAuLo41a9ZgYaH+q3706BEbN25k6tSpRue+ceMGP/zwg74nuX///nTt2pV58+alO2dZURS++OILmjRpwqJFi/Q91q+88go9evTgu+++Y/Hixdl9CdMUGhpKw4YNU20vU6YMAPfv38fd3T3Vfq1Wy9atW/Hy8qJy5coZXmPLli0kJSVl2pDOzjmFEEKI3CKNbiGEEAKYPHkyVatWNdr2dO+sm5sbo0eP5uuvv+by5cs8evSIxYsX6xvGAObm5pibmwNqAzoyMhKdTkfdunW5ePFiqut27dpV3+AG9POMX3jhBaPzenl5sWnTJkJCQqhYsaJ+e5kyZejUqZP+sZ2dHb1792bhwoWEhobi7Oyc6pr+/v7cuHGDkSNHGvXmAzRr1oz169ej0+lSPf9nERcXZ3STIFnytvj4+DSPO3LkCA8ePODtt9/O9BqbNm2iVKlSmQZGy845hRBCiNwijW4hhBACtVGblUBqw4YNY/Pmzfj5+fHRRx9Ro0aNVHnWrVvH4sWLCQwMJDExUb89rejo5cuXN3qc3ABPb3tERIRRo7ty5cqp5lYnRwS/c+dOmo3uGzduADBu3Lj0niaPHz/G0dEx3f1ZZW1tnea87eRtxYoVS/O4jRs3Ym5uTvfu3TM8/+3btzlz5gyvv/660U2KnJxTCCGEyE3S6BZCCCGy4fbt29y8eROAK1eupNq/fv16xo8fT8eOHRk2bBhOTk6Ym5uzYMECbt++nSp/cq/409LrZVYUJQelNz7Hp59+ioeHR5p5MpsbnVXOzs5pLil2//59wDDMPKW4uDh27NhBs2bNKF26dIbn37hxI5D5HO3snFMIIYTITdLoFkIIIbJIp9Mxfvx47OzsGDx4ML/++itdunQxisz933//UbFiRX788UejHujvv//eJGW6efMmiqIYXSu5J7tChQppHpPcU25nZ0fz5s1NUq5ktWrV4tSpU6mGq/v5+WFjY5NqSD/A7t27iY6OznLU8kqVKuHt7Z1hvuycUwghhMhNEr1cCCGEyKIlS5Zw5swZpk2bxgcffICPjw9ffPEFDx8+1OdJ7rlO2SN99uxZfH19TVKm+/fvs2PHDv3jqKgo/v33Xzw8PNIcWg5Qt25dKlWqxOLFi4mOjk61P+XzyamuXbvy4MEDo2XMHj58yLZt22jXrl2a8703btyIjY2N0Vz1tFy8eJFr167Rs2fPTMuR1XMKIYQQuU16uoUQQghg//79XL9+PdX2+vXrU7FiRa5du6Zff7t9+/YAzJo1i969ezN16lTmz58PQNu2bdm+fTvvvvsubdu2JSgoiJUrV1KjRg1iYmJyvdxVqlThs88+49y5czg5ObFmzRrCwsKYOXNmuseYmZkxY8YM3nrrLXr27Enfvn0pW7YsISEhHDt2DDs7O3799dcMr7t792792uSJiYlcvnyZn3/+GVDXD09eQq1Lly54e3szYcIErl69SsmSJVmxYgVarZb3338/1XnDw8M5cOAAnTt3pnjx4hmWIatDy7NzTiGEECK3SaNbCCGEIP3h3zNnzsTFxYVx48ZRsmRJJk6cqN9XpUoVPvroI7788ku2bNlC9+7d6du3Lw8ePGDVqlUcPHiQGjVqMHfuXLZt28bx48dzvdxVqlTh888/Z86cOQQGBuLq6sq3335Lq1atMjyuSZMmrFq1ip9//pk///yTmJgYnJ2d8fLy4uWXX870utu3b2fdunX6xxcvXtRHZy9Xrpy+0W1ubs7//vc/5syZw7Jly4iPj8fT05OZM2dSrVq1VOfdtm0biYmJmfZe63Q6Nm/eTJ06ddI8z7OcUwghhDAFjZIbEVmEEEIIkefat29PzZo1WbBgQX4XRQghhBDpkDndQgghhBBCCCGEiUijWwghhBBCCCGEMBFpdAshhBBCCCGEECYic7qFEEIIIYQQQggTkZ5uIYQQQgghhBDCRAr1kmFJSUlERERQrFgxzMzk/oEQQgghhBBCiLyh0+mIj4/H0dERC4v0m9aFutEdERHBjRs38rsYQgghhBBCCCGeU1WqVMHJySnd/YW60V2sWDFAfZI2Njb5XJqMabVarly5gpubG+bm5vldHJFLpF6LLqnboknqteiSus0HsbHQooWaPnQITPBdTOq1aJJ6Lbqet7qNjY3lxo0b+nZpegp1ozt5SLmNjQ22trb5XJqMabVaAGxtbZ+LP8DnhdRr0SV1WzRJvRZdUrf5QFHg8mU1bW0NJvguJvVaNEm9Fl3Pa91mNtVZJkILIYQQQgghhBAmIo1uIYQQhUJifGJ+F0EIIYQQItuk0S2EEKJAi3oUxYstj+Fgn8Tvcw7md3GEEEIIIbJFGt1CCCEKrMiwSLq2us6GQ02IS7Th599K5neRhBBCCCGypVAHUhNCCFF0RYRG0LX1LY5e8tJvCwpNfzkOIYQQQoiCSHq6hRBCFDiPQsLp2OIORy95Gm2/F15G5nYLIYQQolCRRrcQQog8F3r7Af+bsZ+tf54g5Eao0b6w4Id0aHGXkwG1ASjt8IB6NW8DoChm3AvW5nl5hRBCCCGelQwvF0IIkafuXg+hZYs4rt9rrd/m4hxJg6YO1K8P61Zb4HfNA4CyJe6za0skvyyvwdkANe+dEGsqVs2PkgshhBBCZJ80uoUQQuSZRyHhdG4fyfV7NY22B4c6ELwRNm4EcACgfMkQdv8XTa1GNaiw15D3zp08K64QQgghRI5Jo1sIIUSeiI6Ipke725y/qc7TruwcRP8uVzl93pHTgV5ERJjr81aoAHt22FPTo6z+cbKgoDwtthBCCCFEjkijWwghhMklxCbQt6M/R/wbAlDGMZQd/yVR06ctAIoC16/D6dNw+za88gq4uNjqj0/Z6L5zMxoonneFF0IIIUSuGz9+PJGRkfz8888AvPHGG9SqVYvPPvssT8tx7NgxBg0axIkTJ3BwcDDJNaTRLYQQwqS0iVre6HmS7SebA+BgE8F/Gx5S08ddn0ejgerV1Z+0uJa8DVQE4M55X6CFaQsthBBCPKfGjx/PunXrALC0tKR8+fK8+OKLvPPOO1hYmK75+MMPP2T5/HnRUM5N0ugWQghhMooCo4beZfVutcFtbRnLppU38G5dL1vnqVC1pD59J0R6uYUQQghTatWqFTNnziQhIYF9+/Yxbdo0LC0tefvtt43yJSQkYGVllSvXLFGiRK6cpyCSRrcQQgiTmTwZ/venKwAW5on8s+g8rV5olO3z2JW0w8EmgshYR+6ElsjlUgohhBAiJSsrK5ydnQF49dVX2blzJ7t37yYwMJDIyEg8PT1Zvnw5VlZW7N69m7t37zJr1iwOHTqETqejcePGTJo0CVdX9TuAVqtlzpw5rFmzBnNzc/r164eiKEbXfHp4eUJCAvPnz2fTpk2EhYVRvnx5RowYQbNmzRg0aBAAjRqp3yn69OnDrFmz0Ol0LFy4kFWrVvHgwQOqVKnCqFGj6Nq1q/46+/bt46uvvuLu3bvUq1ePPn36mPz1lEa3EEIIk/jjD5gxQ01rNPDHwih6DMp+gztZhdIPiLztSNCDsig6BY2ZJpdKKoQQQuQR/2/g0jeZ5ytVH9psMN627wV4eDrzY2t9BB4fPVv50lGsWDHCw8MBOHLkCHZ2dixZsgSAxMREhg0bhre3N8uWLSMgIIC9e/cyfPhwNmzYgJWVFYsXL2bdunV89dVXVK9encWLF7Njxw6aNm2a7jU//fRTfH19mTRpErVq1SIoKIhHjx5Rvnx5fvjhB95//322bduGnZ0d1tbWACxYsIANGzYwdepUqlSpwokTJ/jkk08oVaoUjRs35u7du7z33nu89tprDBgwgPPnzzN79uxcfa3SIo1uIYQQuW7/nnjeequY/vE338Crb5bM4IjMuZYJx/82xCXa8CjkEaXK5+x8QgghRJ5LjITYLKx9GVcxjW2hWTs2MTL75UqHoigcOXKEgwcP8vrrr/Po0SNsbW2ZMWOGflj5+vXr0el0fPnll+h0OmJiYvjyyy9p2rQpx48fp2XLlvzxxx+MGDGCzp07AzB16lQOHjyY7nUDAwPZunUrS5YsoXlzdYpaxYqG18TR0REAJycn/ZzuhIQEFixYwJIlS/Dx8dEfc+rUKVatWkXjxo1ZsWIFlSpVYvz48QBUq1aNK1eusHDhwlx7zdIijW4hhBC5KuDMDfq84EhiotroHjUKPvgg5+etUC5Gn75zPVQa3UIIIQofSwewqZB5PmvntLdl5VjLnAcW27t3Lz4+PiQmJqIoCj179uT9999n2rRpuLm5Gc3jvnTpErdu3aJ+/fooioJOp8PMzIz4+Hhu3brF48ePCQ0NpV49QzwXCwsL6tatm2qIeTJ/f3/Mzc31w8ez4ubNm8TGxjJ06FCj7YmJiXh4eABw7do1vLy8jPZ7e3tn+RrPShrdQgghcs3Du4/o0VPhYZTaIO7aJpj5813Q5MJI8Arltfr0nRuReEoAcyGEEIWNRw6Gfj893NyEmjRpwhdffIGlpSVlypQxiipuY2NjlDcmJoY6deowb948tFot/v7+eHh4YG5uTqlSpZ7p+snDxbMjJka9Ob9gwQLKli1rtC+3gr09K7N8vboQQogiIyE2gb5dbxIQXBWAupUDWLXGjtxaXaSCq+Ff1p1bsblzUiGEEEKkYmNjQ+XKlXFxccl0Ga86depw8+ZNnJycqFy5MuXKlaNy5cpUrlwZe3t77O3tcXZ25uzZs/pjkpKSuHDhQrrndHNzQ6fTceLEiTT3W1paAmqAtmTVq1fHysqK4OBg/fWTf8qXL6/Pc+7cOaNzpSyXqUijWwghRI4pOoW3XzrOPj9vAMo4hrJpqw0OTrm3dqZrJcNd76Db2gxyCiGEECKv9OrVi5IlSzJy5EhOnjzJ/fv3OX78ODNmzODevXsADBo0iIULF7Jz506uXbvG1KlTiYxMf+65q6srffr0YeLEiezcuZPbt29z7NgxtmzZAkCFChXQaDTs3buXhw8fEh0djZ2dHUOHDmXmzJmsW7eOW7duceHCBZYtW6Zfd/yVV17hxo0bzJ49m+vXr7Nx40b9PlOS4eVCCCFybNHMA/y+uTWgrsW9fuV9KnvUydVrVKhir0/fCZZ7xkIIIURBYGNjw59//sm8efP44IMPiIqKoly5cjRr1gw7OzsAhg4dSmhoKOPGjcPMzIx+/frRqVMnHj9+nO55v/jiC7755hu++OILwsPDcXFx0a8TXrZsWd5//32+/vprJkyYQO/evZk1axZjxoyhVKlSLFiwgKCgIOzt7alduzbvvPMOAC4uLvzwww/MnDmTP//8Ey8vLz788EMmTpxo0tdIo6Q3ez0XhIeHM336dPbs2YOZmRmdO3fms88+o3jx4uke88Ybb3D8+HGjbS+//DLTpk1LlTcmJkY/Z8DW1jbXy5+btFotvr6+eHt7Y25unt/FEblE6rXokrrNnjZevuw/5w3Aqh8PM+Dd5rl+jZA70ZRzVf9/dO+WyOYtltk+h9Rr0SV1mw+io+HJF2qioiCD73fPSuq1aJJ6Lbqet7rNanvUpD3dH3/8MaGhoSxZsoTExEQmTpzI5MmT+frrrzM8bsCAAYwePVr/+OnJ+kIIIQqWS7fUaKrlSoSYpMEN4Fy+OJaWkJgId4Kz3+AWQgghhMgPJhufd+3aNQ4cOMCMGTOoV68eDRs2ZNKkSWzevJmQkJAMj7W2tsbZ2Vn/kzwsQQghRMHz8O4j7keoS5vUqhxssuuYmYGLi5q+k4VlSoUQQgghCgKT9XSfOXMGBwcHPD099duaN2+OmZkZfn5+dOrUKd1jN27cyIYNG3B2dqZdu3aMGjUqw95urVZrFLmuIEouX0Evp8geqdeiS+o26y6evgWoS4S5V3ts0tfMxcWMmzc1PHgA0dFasruiiNRr0SV1mw+0Wsz1SS2Y4LWXei2apF6LruetbrP6PE3W6H7w4EGqddksLCxwdHQkNDQ03eN69uyJi4sLZcqU4fLly8ybN4/AwEB+/PHHdI+5cuVKrpXb1J4OUS+KBqnXokvqNnO7DhuGepepkIivr6/JruVg4wxUAmDvf0coV/nZph9JvRZdUrd5xyw2Fp8naT8/P3QmnA4o9Vo0Sb0WXVK3xrLd6J43bx4LFy7MME9yKPdn8fLLL+vT7u7uODs7M2TIEG7dukWlSpXSPMbNza1QBFI7d+4cnp6ez0VQgeeF1GvRVZjrNj4mnqTEJIo75n5Qo7SsWKHRp5t1b4u3t+muVavsAf570ugublYcb2+vbB1fmOtVZEzqNh9ER+uTXl5eJgukJvVa9Ei9Fl3PW93GxMRkqQM4243uoUOH0qdPnwzzVKxYkdKlS/Pw4UOj7UlJSURERODs7Jzl69WrVw+AmzdvptvoNjc3LzSVWpjKKrJO6rXoKmx1e9M/iBYtzXkca8uG5edo08fb5NdM+b+mTh1zTPlyuVYwpO/djn3muils9SqyTuo2D6V4nc3NzTHlm1/qtWiSei26npe6zepzzHaju1SpUqmGjafFx8eHyMhIzp8/T926dQE4evQoOp1OvRuaRf7+/gDZaqgLIcTz6pN3b3PnYTMABg4rx9mGD3CuWNqk17x0Sf1tawuuria9FK6VrPTpO7cTTHsxIYQQQohcYLLo5dWrV6dVq1Z8/vnn+Pn5cerUKaZPn06PHj0oW7YsACEhIXTt2hU/Pz8Abt26xU8//cT58+cJCgpi165djBs3jkaNGlGrVi1TFVUIIYqEgxv9+HtPM/3ju4/KMeSlQHRancmuGR+TwPXrCgC1aqkRxk2pQmXD8NWgIE0GOYUQQgghCgaTrtM9b948pk+fzuDBgzEzM6Nz585MmjRJvz8xMZHAwEBiY2MBsLS05MiRIyxdupSYmBjKly9P586dGTVqlCmLKYQQhZ5Oq2PMWMNHuqV5AolaK7Yca8T3k/YxZmabNI8Lvx/BvM/O4OysYfSM1mjMsteQvXr2FlptDQBqlT4G/2fvrqOjuNoADv82SkIgEAiQEDSQICG4u7RYKVpKBacCxUoFWirQ0uJtgVKgWJF+WAsUbWlx9+DuESBoiCe78/1xyW6WOGSj73POnozcmbmzN9nsO9eo+9z3kBrFyxQ0LgfctksmpRBCCCFE1mDRoLtAgQJMnTo1yf0eHh5cuHDBuO7m5sbSpUstmSUhhMiRlv64j6OXGgFQpfRFJn7zmHa9agPw6dQmNHkNatQwP+bknot0ec2eK7ebAVDJ9ygv9aiZpuuePxEMPA26y0e80D2khnvZIsblgDsZM1CcEEIIIcSLsHBDQCGEEJYWFmrgs/Hljes/TAylbc/afPL+ZQBiYnT06AFPnpiO+f3HPdRr6cGV26WM2zZtSvucmufPRhmXK1S2f47cp02evHkonP8eAAHBKY8vIoQQQojU8fb2TvY1Y8aMzM5itmXRmm4hhBCWN3mKFYEP1FgZHRocolX3OgCMm1aOHUfh8GG4dAkGD4a5s6P5uO8+ZqxoluA8W/3qpPna5y+a/o1U8C30fDeQRsUL3edeSGECHhTFoDdgZS3Pj4UQQogXtWfPHuPypk2bmD59On///bdxW/wpmjVNQ6/XY2Mj4WRqyDcVIYTIxvz9YdIktWxjA1Pmm9qQ29nBsmWQL59aX7wYfMpeNwu4+3fYTbVqaqC1U6fg7t20Xf/cVVXbbKXTU75a4tM6prfiRUIAiNXbEnzrfoZcUwghhMjpXF1dja98+fKh0+mM61evXqVGjRrs3LmTLl26UKVKFY4ePcqoUaMSjL+1ePFievfubVw3GAzMmTOHFi1a4Ovry6uvvmoWzOcG8mhCCCGysc8+g6djUfLBB+BVwfxj3dMTZs2Ct99W65duewFgbxvJz2MOM+DzxowaBX5+av+2bdCjR+qurRk0zt9UgXaZov7kyVsqhSPSR3E301RhAf4xFC2dIZcVQgghXsiqVfDVV+bdvSwtXz749lvo1i19zjd16lRGjhxJiRIlyJ8/f6qOmTNnDuvWrWPs2LGULl2aw4cP88knn+Di4kKdOmlvZZcdSdAthBBZmGbQ+HzATrbudcW7zENqVIulRt0CVGtUhgtnQlm6tDgABQuqf+SJeest+Pd/+1i0qQEAJV39+fN/IdRq1RiAli1h4kSVduvW1AfdAVduExblBkCF0neAjAm6Pao3hLVP8/DQnRrJphZCCCGyhsmT4fz5zLluegXdQ4cOpWHDhqlOHx0dzZw5c1i4cCHVq1cHoESJEhw9epQVK1ZI0C2EECLzbf3jOBMWNgPg8EVY+o9pn6O96SN87BgDLi5J9xia+b+qFB68A4MBPp9YhcIeHsZ9DRuCnZ2e6Ghrtm4MAtxSlbfzx01pK5QLT/U9vajixU3LAQEZdlkhhBDihXz6KXz5ZcbXdH/ySfqdr0qVKmlKf+PGDSIiIujXr5/Z9piYGCpWrJh+GcviJOgWQogsbMb0mCT3hUepKbMqeFzh/fdKktwwHXmd8zJlSbNE9zk6QoOKJ9lxojrXgty4dvoWZXxKpJi386dM3xoqVLROMX16iR90+/tn2GWFEEKIF9KtW/rVOGcWBwcHs3WdToemaWbb9HrTbCjh4eqh/Jw5cyhatKhZOjs7OwvlMuuRoFsIIbKo61f1rN+n5tp2dwnirxUP8Tt0n+PHDRw77cKJq57YWMfy68xQbO1tX+haLRs/ZscJtbx13XUGpCLoPncxj3G5om/q+nWlh4yq6b55PoCurz4GYPFSeyrW8bTcxYQQQohsyMXFhUuXLpltu3HjBs7OzgB4enpiZ2dHYGBgrmlKnhgJuoUQIov6ZbY1cQ+PB74TSa1WlajVyrRfH6NHZ5UHK+uqL3ytlm0L8eXPannrNmsGfJ7yMefv1TUuV6hdPpmU6at4sUhABfwBZ04BaWvqlhoxUTH06PKAI5fUuRu2eMhf/ztB41df/L0WQgghcop69eoxf/581q5dS7Vq1Vi7di23bt0yBt1OTk7069eP8ePHo2kaNWvW5MmTJxw7dgwnJyc6d+6cyXeQMSToFkKIRBj0hky9fng4zJunlu3s4N0RZRKksbZNvybdtVtVJJ9DCE8i8rPtSHk0g4bOSpfsMXGDwRQuDIWKOiabNj0VLGSPg104EdGOBNx2SPmA5zDmg73sP9fMuP4wrCAvdXNgybT9vDawvkWuKYQQQmQ3jRs3ZtCgQUyePJmoqCi6dOlC48aNefjwoTHN8OHDcXFxYc6cOfj7+5MvXz4qVarE+++/n4k5z1gSdAshxDP+mn+Qtz6oTJOqEfy124C1dcb1V47zv/9B3P+r11+HIkUsez0bOxuaVjvPhv11uPvYldP7L1KloVeS6UNCIDBQLVeoYNm8PUtnpaN4obtcDipNwP3C6X7+bX8cZ/yCJgDYWMdQt8I59p7xJSomD90H1eeHSPjww3S/rBBCCJFldOnShS5duhjX69aty4ULFxJNO3ToUIYOHQqo/tx+fn5Uq1bNuF+n09G7d2+zubtzm6RH3RFCiFxq1iwDYVFObD7UiPULD2T49TWDxowfHhvXhwzJmOu2bBphXN66ISjZtPH/72bG4KPFXR8B8Di8AKEPQ9PtvMG37vP2u25omvr3OG7oXrYfrUjf9ruNaUaMgOHDId44MUIIIYQQSZKgWwghnnE1oJBxefJPBdAMWjKp09/u9Sc5eU71hapb9S61a2fMdVu+4m5c3roz+Wbb5/adMC5XKH3XYnlKSvGiYcblgKvpc31Ng75vBBD0sBgArWoc45PJTbC1t2X+ukZ8/ZWpy8G0afDGG2DI3F4IQgghhMgGJOgWQoh49DF6rgeXNq4fOF+F3etPZmgeZvxkmvN6SO9LyaRMXz71y1HEORiAnX4ViI2OTTLt+ZOmvloVPG5YPG/P8nCPNi4HXHuULuecPh027vUFwDX/PRav8sDKWv2b1FnpGDPWinnzIK63wapVsHLR7XS5thBCCCFyLgm6xXOJeBJB82rHKVPUn2VLo9AytiJQCIsJuHKbGL35vJETx0cnkTr93boQyJpdqmq7aIG7vPZ+BlVzowLLFrVUkP8kIj+H/zuXZNrzl0zThVWoXjTJdJZSvLjp31fAjfBkUqbO8ePw6aem9cWLdLiVTdiRvn9/WLY0yrg+60cJuoUQQgiRPAm6xXNZMesoO05U5/pdD97sac/rr8O9e5mdKyFe3NUbCZtVbzpYm1N7L6b5XAsm7KZq2QtULHElwaumbwhTpkDoM92RZ0++iN6gxrh87/Wz2DnYJXJmy2nZOq9xeeuRpEdIO3/dFQB720hKVSieZDpLKV7C9L4E+Me80LmePIEePSD66bOVjz6CNp0KJZm+W3c7KnhcAWDXqWqcPXj5ha4vhBBCiJxNgm7xXP5YYx4IrFoFVarAxg1S5S2yt6sBLsbl8qVMtZiTZ7onljxJW5YdZcDnDTl5zZvz/p4JXsdO5eeTT6B0afj+ezUaeGRYJL+u8gHUqNnvfZLBw4IDLbuZ5qHeut020TQxUTFcDiwBgLfHjXSduiy1ipfOZ1z2D3j+f2Wx0bG83uYMF58+U6lZU5VHcnRWOt7v6W9cn/1jwHNfXwghhBA5nwTdIs0e3X3MlsPVACiU7wEuLirQvn0bXumgY8Cru3kc/Jg714Px23WBzUsPM3/8br4ftoN1Cw5mYs6FSNnVq6blAe8/wqWgGqJ62Sonbt5M3Tmun/HnjXfLGEfAdsrzhPwOj81ece7fh9GjoVTJWHq0OcG9EDUFVrdmh3H3LJY+N5UGZcqoF8C+fWq+8GddPX3L2AS/Qpn7GZg7Ew9PU010QJD9c59nRK+9bN5XGYCCBWJYvlzNi56SXsOq4mCn3pzF66sR9jgshSOEEEIIkVtJ0C3SbP3SU8Yv3G+/corTp3W0a2faP399YwoUcaZYGVeqN/WmXc/aDPi8MaOnN6Nj/7rs+utEEmcWIvPFD7o9y8cy6AMdALGx8MMPKR8f8SSCrp2e8CBU1Zi/Uv8Qj0Pz8jjc2ex15gy89RZYPf0UfvTYhr/21DWeZ8iH+RI7fYZo2VL9jI6GPXsS7j/vF2xcrlA+4/q7x1eslCtWVmro8IDQ55uz7OcvdzJjRVNAtSxYPf8M5cql7tiCRQvQ46WjADwOd2b5L8eeKw9CCCGEyPkk6BZp9sdqU5PT194sgJsbbNgAv044ilOeJykev2H1wxTTCJFZrl5Wg2TpdBpubtEMHqzh8LSb99y5qmY6KZoGH3xg4NhlFQR6FrvBkrXexhGw46tUCZYuhfPnoc9bT7C2Mo0UXqPcOeq39Um/m0qjli1M3US2/nkmwf7zZ0zzeVeolLF9zuPY2NlQtKh6XwPuOqf5+E1LjzDsu0bG9V+/O0CzLtXSdI73h5lq22cvTLoPuBBCCCFyNwm6RZqE3A/hn0Oqz6dbwdvUb1sFAJ0O3hlZk5OHH/HmS3upUe4c7eoeZsCru/jy3R38OGqn8Rx7Tz9frZQQGeHqhRAAihe6i729RuHCasRqUE2tf/n2UJLH/vorLFyiBiJzsI9i9apoChRJPiAsXx4WLs3HpRNBDOq2k9a1j7BkqS06K1363NBzaNHwgXF56/aE+Th/wdSHu2JVlwT7M0rxp+O33b6tWiKk1s3Td3nz/UoYNHUfn/XbTt+RjdN8/dotK1KjnBrh/cilShz572yazyGEEEKInE+CbpEmG5aeIipGTRXU9aULCWrwyviU4PctDTl6qSIbD9Rm7l9N+GZOM4aPb0r58qr27MjpokRGZnjWhUjRkwchBIeoUbnLugUZt380LMJYEz19YVnCQxJ2dD54EIYMMa3PW2CPb6Pyqb52GZ8SzFzVlL8P1aJS3VS2cbaQIiULUaW0Glns2OUKnN5nPlf4+asFjMte1UtkZNbMeHionwaDCrxT4/b1uwz7qAqhkar5frdm+xn3a9Pnur7OSsf7fUxN7WdPlykchBBCCJGQBN0iTf7401TD9dqbBdJ0bKNGqsYsOhqOHEnPXAmRPq6dNQXaZUqYukqULudA9xZqEMB7IYX5evAhNiwyvf6as52uXfTEPJ25atgwePPNDM16umvTJBAATbOiXgs3Vs3a/3QdzgV4AVCq2F0c8+dN8hyWVtzd1Aw+4HpIommio9Uc3PPnwwc9DtG4YQy37qtovbbXGRb9VTXR5v+p9cagGsaB8f73Ty0e3X2cwhFCCCGEyG0k6BapFvowlM0HVNPyogXu0rBd2vqcNmxoWt67Nz1zJkT6uHr+kXG5bGnz9sqfflnYuDxlSTM69KljfHV6vzkBgeqBVOPGMHlyhmTXokaO96VqmQsAhEU50X1QfT7uuYOAW7E8fqJGC69QtUhmZpHidruMywFnTU27Lxy9yshBV6hVC/Llgxo1YMAA+GVFHa7dKQlASVd/1v3timN+xxfKg1NBJ3q+4gdARLQjS37PnD7uQgghhMi6JOgWqbZxXSSRMWpEqS4tz6d5bt74QfeenYnMQyREJrt6yTRAWBlP8zmqqzXxpkOD5Ke8c3O5y8oVBmwTn946Wynk7sI+vxL0bGMavnzq0mY0rXfHuF4h46cRN1O8uOkz6NL5SBZP3UuTKieoUKssk2Z5cvSoqul+Vs1yp1i/NoxiZdLnocH7n9U0Ls+a64CmJZNYCCGEEEkzxMCttRByMbNzkq5sMjsDIvv4Y4Oppq/bgCppPt7bGwo5P+H+43zs2x2JQZ/nhZp1CpHerl4zDRpW2isfYF7bvWi1N0tn7CQkJGFUZWcH3fp4Uswt5/xOO+Z3ZNHGhtQbu5Ph39UnRm/H1aDixv0VM3lMxOKlTLXUo35slmC/TqdRoYKOGjWgZk2o4fOYKlUMXAuIpnK1SumWD5/qTjRqpKZXO3cOdu+GJk3S7fRCCCFEzvf4LFxZANeXQORd8BoCtaZndq7SjcWC7lmzZrFz507OnTuHra0tR1LRiVfTNKZPn86qVasICQmhRo0ajBkzhtKlS1sqmyKVwsJg40a17OoKTVoVTPM5dDpo6HOWdXvr8iDUhfNHLmf6gFFCxHf1himIK1upKLcfBpjtL1i0AEPGPd+gW9mVzkrHoLFNqV73FN16FibwgZtxX2bXdHuULZDo9oolrjDgjVv0HFwF1xLxp/JyRq/XQ0Cih72QgQNNc5rPnB5J40b2mToCvRBCCJGlaRqEXYegf+Dqb3D/mdaE13+H6pPB2j4zcpfuLFYlExMTQ5s2bXjjjTdSfczcuXNZsmQJY8aMYeXKlTg4ONC/f3+ioqIslU2RSps3Q8TTlredO4PNcz6uaVTP1Hx373+B6ZAzIdLP1QAVoDnYhVO0ROEUUucu9dtV4dhRG5r6+gFQKP9DalSLydQ8lankgVtBNWy5o30YfdrvZu+GU5y5XpYRE5s9E3BbVteuUPjpr8zKP/Pgkv8xLWsc45NeO1g2fR8Xjl5FM0i7cyGEEILT4+CvkrCuLBweaB5wW9lBydegwe+gyzmNsi12J0OHDgVg9erVqUqvaRqLFy9m4MCBtGrVCoBJkybRoEED/vvvP9q3b5/ksXq9XtVeZGFx+cvq+UzKqqUPAfWNsnNnPc97G/WaFYCpann3Hiv6ZdP3I052L1dhYtAbuHZHNZ0uWywAg1YKkLKNr3AJF/45kJ/taw/j7VsUR6f8mfr+WNtZs39fLMf3HaBJO2+cXRsAYNAMkES2LPU3a2MD73Q7xfjZ1QB4FFaAbcdrsO04sESl8S19gXnzYqnRLJObCORQ8nmcCfR6rI2Lep77y0Gyl5ByzYmkXHMus7LVNHhyEfJ7m6XRxYRhFe5vtk0rUBWtTF+0Um+A/dOH5hoW+VxJT6n9Hc4yjw/8/f0JDg6mQYMGxm358uWjatWqHD9+PNmg++LF7NPR/tSpU5mdhTSLCo9m49+qD7dL/hAKFryEn9/zncu2YAz2tpFExeRh73EP/J73RFlMdixXYe5BwGOiY1sAUKLoXU6dUlNQSdkm5OplxYPIYB74BaecOAOUqGrLtYCraWo2bolyfeXNaIj+i2MnC3PyiidBD4uZ7T953ZsGrWMY/uZGug0qio1tlvkXnKPI32zGsYqIoPrT5ZMnT2JwcLDYtaRccyYp15zJLiaI4B0LcAnZTJ7o65wqu54YW9P/xPxhxSmry0OYQ1WeOFbncd5GROSpAOHAuVvArUzLu6Vkmf/4wcHqy1uhQubNAQsVKsS9e/eSPdbLywtHxxeb9sXS9Ho9p06dokqVKlhbp23U78y2dt4hwqKcAOjU1I9atRqmcETyanudZs+Zqly9U5piBewpVjpzpx16Edm5XIW5XfEGR/OqXpYqVQpJ2eZAlv6brWt6bszt60Ec33cTv0PhrNrgzsnr3sTqbZmy5FV2HQ9g4YpieHsnfS6RNvJ5nAnCwoyLvr6+kDdvul9CyjVnknLNgcID0PmvgVt/YnVvt9kuH6cTaBXbmDYYfIAB5LWyJS9g/og6ewkPD09VBXCagu4pU6Ywd+7cZNNs2rQJT0/PtJz2hVlbW2ebP1hL5PXaNViyBN58E8pZYFyy1X8ajMuvve74wvlvWPshe86o5QP/Xqfr+27JH5ANZKffQZG4GzdMy56V3bC2Vs2FpGxzpowo1+KebhT3dOOVnvDppGi+HbaD8fMboTfYcOh0cWrWhIkTYfBgsMo5g95nOvmbzUDx3mdra2uz9fS/lJRrTiTlms2FXoVbq+Hmn3D/QOJpXBtj5VzR/PMhB5V5an9/0xR09+vXj86dOyebpkSJEmk5pZGrqysA9+/fp0gRU83n/fv3qZDZQ+RmYXo9tG0LFy7AwoVw8SLpOkfwrr9OsG63LwAF8j6iRdeqL3zORk0dmPibWt67O4qu77/wKYV4YVevmpbLls28fIicyc7Bjm9/bUaHbqfpOciTi1cciIyEYcPg+HH1+S2EEEJkK4cHQ9DmBJsj7Uph590fqzI9wal0xucrC0pT0O3i4oKLi4tFMuLh4YGrqyv79++n4tPJX0NDQzlx4kSaRkDPbTZvVgE3wPXr8MfCy7zx7otXd/tfCuKTgddYvtXUVrJL81PY5Wn8wudu0Lq8cXnPEddE01w8do13+jwmLNIOt8KhuBWJxN3NgJu7FcXc7QkNiSUoMIbAmEYE3bEhKAgeP4bWreGrLw045pVqI5E2166ZliXoFpZS52Ufjp+Ezz6D6U+nH/3tNxg7FkqWzNSsCSGEEIkz6OHONijWEnTxvmOX7GoKugtUgRJd0bt35My1WKpVqp6jarRflMX6dAcGBvL48WMCAwPR6/WcO3cOgJIlS5L3aZ+fNm3a8NFHH/HSSy+h0+no1asXs2bNolSpUnh4eDBt2jSKFCliHM1cJDRjhvn6D1Oi6TFAe+75YSPDIvnh8wN8N6c24VGmgLtm+bOMn5k+LQ5c3FyoVOIyZ2+V4/gVL8KexJA3n6l63qA30PPNMA5dqKY2XEr9uf38YM3SGyyeH0bd1j5pypdm0PhjzgE2b4xl2MgiVG0snS1zk6tnAgF3AEqXztSsiBzO0RGmTQM7HjFlegEAjvx7gpL9X7wlkRBCCJFuwm7A5V/VPNoRgdByGxRtbtpfvCNUDYYSXSC/l9qm14POLzNym6VZrDpw+vTpdOrUiRkzZhAeHk6nTp3o1KkTp0+fNqa5du0aT548Ma6/8847vP3223z11Vd069aN8PBw5s2bh719zpgUPb1dOHqVLVvMtx25VIm9G59vJMjNm8GnCoye3ozwKPVgpHD+e/w6bhcHz3hTpGTitdLPo2EzNTBbrN6WQ0fM28MvmHWPQxfSFjDHdzGgDA3aVuSLd3YQHRGdqmOCb93jtRYH6D6oPgs3NqZL9zzERGXuHMQiY129pp7GuhW8TRYfl1HkEA2rXDAuH9n3MBNzIoQQQjylGSDwH9jZUc2jfeZ7FXADXHmmL1SewlB5lCngFkmyWE33hAkTmDBhQrJpLly4YLau0+kYNmwYw4YNs1S2cpSfJ90CVDvYehVPc+CcClR/nBJOow6pP09ICIwYAfPnA+QBwEqn54Puexg7rSoFizZJ34wDDVsWY+7TuWv37oXmTx+aPXgAo8aY+vT/u+IYlWsVJ+jGA4JuhRLkH8md23ry5tXhVtwWtwqVcCtVADc38L90h95vBHPogg8GzZrv5jVj47bzLFlijU+D8onkQlm34CDvjCjL3cf1jduu3i7Foqm7GfD5izenF1lfeEg4tx8VBaCs+12y9ziaIruo3cw0Bsphv/yZmBMhcqeYGNi+HXx8wN09s3MjRCaLeqBqtC/NgtDL5vt01uDeHkq9niFZ2b4dBg2C116Db77JkEtaXJaZMiw3unwZPvwQatWCL75IW7eHkPsh/LauBgCO9mGs3VSU6jVuE/SwGGt21+HKiRt4Vi2V4nl2rL9MnyGe3Lhhao7erEk007+/TpWGTdN8T6nVqJFpee9e0/Lo0XD/vlru0QNadVf36Fa2aIrnrFC9KHtPFmLCRzsYO6shsXpb/K5WoGbTKLo220utGjHUqFuA6o3L4OzqTEgIDB8SwcLFdY3ncHZ8zONwZwC+/akMPYdHYe8oLS1yumtnAgE1FkLZEiGZmxmRa7iXdaNYgTvcflSUIxfKohmer2uQQW/g1sVASlX0sEAuhci5vv1WvUqUUAPR5smT2TkSIpNcngdHBoMhyny7Q3Eo9x6UGwAOGTfb0MiRcP48TJ2qxjzRPV+v2SxFRpvKJJoGffrAhg0wZgz07R2LPkaf6uMX/3Sc0Mh8ALzd9ihFS7syuOf5p+e2Yvr468keH/EkghFv7aD5q+WMAbeTE8ybB9t22FGloWWbiZQtC0WfxtH79qnuH0eOwJw5GPMyZUraz2tjZ8MXM5px6L8r+JRSncGjY+1Z9l9DPprUjOZdq1GgiDPlykHFirBwsYPx2FfqH+L86Sja1jkMwM1gD+ZPTGL6A5GjXD3/wLhctnRsJuZE5CY6Kx21Kqq56h6FFeDqqZvPdZ7XWx2kdCUPurfYT2y0/P4KkVrLlqmft26p7yBC5BqawXy9gI95wF20JTT+EzpehypfZmjAHRICR4+q5bJlc0bADRJ0Z5otW8xreJf8bkPPdgdS9YXJoDfw80JTs8TBH6umsO+NrIqDXTgAC/6qwaO7jxM9/tj2c9SsHMiP/2tm3NakYSQnT0L//hnzy63TQaM6KtAJCYFTey/yQd9baJraP2YMFC/+/Oev3qwCR86WZGSfHeSxjUiw/8oVCHzaPSVfPo35U06ybk9tipUpwthxeY3pvvvZi8jQhMeLnOXqJVMZl/WUBkAi49SqFm5cPrI7IM3HPwh6yB87VNeYVdvr07/TAQx6QwpHCSH8/VWLwzj79mVeXoSwOH003N4Gxz+BjZVVE/L4CtUF18bgPQzan4OW/6nB0awy/jvRnj1gePpvrKnlGt1mOAm6M4Fm0PhqZHCC7cv+a8ibbQ6nOIDXfyuPcSFA9eVuVvW4sVa6kHtB+nRQj2pDI/Mxb/LxBMeunXeQhq1Lc+6WJwD2tpFMHbmT7TvtKFPmhW4rzRpWOmlcHvheFIdOqwcJlco/ZOjQFz+/vaM9ExY24/Fja45tP8+873czqNtO6tYIMTYha9ECTp7U0e8jX2OzztovVeLVhgcBCHzgxpx50rw8p4s/R3cZL+lbKzJO7XqmUfsOH0r74I37tpj3u1u8uREjeu5GM2gvnDchcrLt283X41eECJEjxI08vqsz/FkItrWEc1Pg8Vm4ttg8rU4HL+2Cmj+Bc/rMVvS8du40LTdrlmnZSHcSdGeCjUsOc+iEGgm8ivdD1s47hJ2NatKxant9Xn/paLKjbs+YYarFGPx+pNm+YZ+ZasCn/1ae2GjTl7ifv9xJl3drExmjmlTXLH+WY7v9GTGhKVbWGf+r0LCFaTT0A+ermPI5/ga2tokd8XzsHOyo3qwC/T9rzMxVTTlwND9PnsCjR7B1a+LTQ42dampeP36CFeHhCdOInOPqTVM3g7KViiSTUoj0VbNJaePykRPOaT5+z9maCbZNW9aUcUN3JpJaCBFn2zbz9X37MLa2EyLbuncIDg6AdZ7wV2k49B74r4XYUFManRXobCAmNKmzZKodO0zLTdJ/LOdMI0F3BtMMGl99m8+4Pvaji3TsX4e1C09ib6sC6DW769Gt1XGiwqMSHH/15A02HqgFQInCAXTsV9tsv3fNMrxS/xAAt+4V58+5xzDoDXzSaydDxjVF01SRv916D/tOlKNS3XIWuc/UqN7Uy9gcPs4brfbSvGs1i1/bxgack/l+W61uQbp2Vct37sAvv1g8Sy8s5H4IUz7ZwZq5B6SWK42uBrgAquWHWxkJukXGKVq6CCUKq2blRy96prlp+N59pn/j339k6pT61cxm/PylBN5CJOXZmu5798ybm78QTVN9Zg0xoI+E2DCIeQLRjyDqPkTehRgZtFM8J02DiCAI2qJ+xhd2Da7Mh9Cr5tvtXaF0T2jwP+hyF17eC7ZOGZfnVIrfn7tyZSiSg76SSefFDPbXgsMcv6L631X3PE+n/nUAaPt2bdZZH6Vj70pExjiwfl9d6vueY8g79+j+fg3yOqt+xjMnXUPT1KjkA9+6hI1dwo7PIz6yZUM3tTxlYS3WrDnAiq2mThGf99/BuF+bPtcouenJ1t6WuhVPs+NEdQCc8jxhymzPTM1TfGPHwurV6rNt4kR4712NfPmz5mgOD4Ie8lKT2xy73AyAV/7SM3eeNcVk5qsUaQaNq0Hq76hM0QCsrLPO76DIHWpVvMWt3cUJjczHxWNXqVC7bKqOi4qCw2rcRzw94bMptbCz2sHHk5sBMGRcU1wK7eXN4Q0tlHMhsqdr1+DGjYTb9+2D8s/OMBobAZG3IeK2+hl/2bkyeD/TH25DRQg5n3ImvIZAremmdU2D2/+p+Y4dPMAqDVPaiJwtJgSC98HdXXD/IDw6CVH31L56C6FsH1PaIs3UTys7KNwAijYH97bgUlPVcGdxe/eqwZUhZ/XnBgm6M5RBb2DM+MLG9W++fGIW+L78Rk022h6nw9tehEfl5fiVivQbBcPGhvBGp8u89X45FvylarntbSN55+MqCa4B0KxLdapWhRMn4MhRa47QAFBzb/8ydg/vfdnMcjeZRs0bPmbHCbU8ZshR3D2bZWp+4qtcWU1btmyZegI+48udfD6tWWZnK4HgW/d4qel9TlyraNy2YaM1Pj4wezZ065aJmcsGbvuHExmjHmqV9Uh88EEhLKl2HWvW7FbLh08VpkLt5NPHOXpUBd4ADZ/G1R9NasaDB9v5fn5zAHp/XA/b4mquUyGEEr9pecuWqqsZqKC7d2/g9Hdw/XeICEi+RtqtTcKgO7WcK5qvR96B7S+rZZ0N5C0JeUuDUxnIWwYcPcDWGWzzg2sjsLZ7vuuK7OH2NghYpwLtRycSjjYe59Ep83WHovDSXihYHWwcEj8mC8up/blBgu4MdWBjAKdvqG9TdbzP0L5nrQRpWnSrzr8Op3h/sD2nrqt+xU8i8vPrsvz8ugxANQV549VbFPZ49nGsotPBiBFP/3E85WgfzorZp3ilT9Z6bDRiXC2u39iNWzE9w8Y1SvmADPb1yGBWLHfBoFkzZX5VPvjiMc6uae93mZjIsEhO77/KsQP3OHYM7j1IvCO7l2cUH3zuS3FPlwT77t4MpmWTR5y+4Q1AsQJBaHau3Llrw/376ov2W6+HMWNaDAWLFjA71qA38OTBE/IXyp/prR4y09VbptHqy9aqkYk5EblVrda1YapaPnIiPz1TedzeDScBXwAa1Y8G1Jfwcb8248HDncxe3ZRYvTXdu8OoUWo+Yhv5ry9yK0MMRAZD9H22by4CqHlLR/ZYwY4d3dHrdaYRzKMfQsi5lM8ZeTvhtgJVVXCss37ad9b6mdfTbYXqmR8Xv3Zci1XNg0Ovwp1ErtvtgXnQfWUBXPwZHEuo4NzRA/KWAqeyKmDPUyTnzLuUFRn0qlm3Y0nzcgm9CteXxUsXDfqIp69I9TM2DNCgyVrzc16ZCzeWJ369PEWhgC8UqAJurRPud23woneUaeL355aabvFc9DF6fplf2bj+zdeRSQY6DdpX4URbjUP/nmbeLw9YtqU2YZHmT6uGfJ54wB2nRw/48ku4eRNcXWHDWivqNKj7Hrjs4AABAABJREFU4jeSzpwKOrFgQ+PMzkaSvKu68nabPSze3IiHYQWZNmYHX81s9lzn0jT480/YtAmOHYMzZ2yJja2U8oE7YepSjf791RfnkiXV5qCrd2jZLJRzt9TvQnGXILb9G4FLSRsGDoQ//lDpfl+Rlx3/BtG+yUluB9sTeDcfQfcLcudxYWL1zpRzu07/16/Te3h13EqlzwOF7CT+yOVlU9eqV4h0VTPeWGhpmSt4zy7TVHcNq98E1BgdOisdP69oTMQAjUWL1P+ZCRNUU/RlS6NwLSYzMohcIvoRBKyHm39A0D9giELTYNtWNY5CXvtQmtm9TTXfThw9bs+ZM2qQ1QKuDVUQm7cUOBSDPE9fDs/+TGTu4kZJBEopyVMMKn4KTy6pAC70GsQk0frKJp/5esh5eHhcvRJj7agC8KLNzZu0AwRsVLWoeVyf3mfRbFlDalH/NYfo+2BXEOxc1E/bAuqhy+Oz6v03REGbY+BS3XRcyEU4+UXK57eyVWUQv/m3g/vTBZ0KsIs0VlN6uTYCR/dET5PdPXli+h9YqVLO6s8NEnRnmBW/HOJ8gKrJbVj5JC+/nnyNms5KR93WPtRtDT+EaKxYCfPmwcGD0K8f1EihQs7ODv79FzZuVLWdHh550utWcp2vxpfg939i0RtsmL+qHF9MN6R5tPegm2G8MygvGzfG35r6/lrR0TpmzVK/A717Q5/XbtKvn56LAar/cYnCAWz/LwbPqipqXLlSNYv/YGAkj0LyEPDAjV/XJvLlALgcVJrPfirNFzM0OnSAAQOgdevcUyMmQbfIbC4u6nfv6lU4fhxiY1P++9MMGvtOqb//gnkfUqGW+S+vtY0VCxdC9erw8cfqnFu3Qs0q9/jjf4+p85J64GfQGzi+8wIb/rjDpm2FeRLuyKtvlKL/AOuEfVuFyE5CLsImH1XDHc/FIC+CHqmgpZH3HmxtYmnge42jxyugaep7VutW7eG1x2CdgQ+onCtA9Ynm26IfquA77LoaMCvmiaoZfXbu5NhwVXuu6RM/tz4cHp9WTdWfdWSwOn98ts7qgUKeYqo5u3UeKD8IisaretRHQuBmVbuet6QaqCt+bbohBqIfQ+yTxK+b1Rj0cG+vCn6LNjPfF3JWDX6XksdnzYPuVF87Rg2wl8c0qw8lX4OiLcC1IdgVSPs5s5hNm2DkSKhSBRYtItFZinJyf26QoDtDxEbH8u1U04Bn347Vp6k5b778OgYMUMGQwQBWqYz3vLzUS7wYz6qleLnWYTYfqs3NYA/2bjxB41erpvr4lTP3MXBUBR6EmpoxW1lBpQrR1Ch1iJrV9dSoV5DSFVwTtP6KeBLGvN/dmTnHkdBQiIlRgfe8eSWNaUoXucW2rVDGp7Rxm04Hb74JTWo/pN8bgfx7tGa8fQaKON/DzeUBdraxHLrgA4Ber2PtWli7FooXhx9+gO7d0/RWZUsSdIusoHZt9bsYEQFnj93Ht06hZNNfPH6NeyHqF7ah7yWsrOskSKPTwbBh6iHta91iuXPXhlv3itO4XWE+f2cHN29Zs2mPF7cfVQRM/UvPTYKJk9SXnnfegS6dDTg4Zv0BeEQuo49SNYyPTqlXHleo+LFpf77ykMcNwm+qdQc3cKnNdr+uxiQt2rhA4zU0iCnCjEVq27590Lp1FukvbVcQXAqCSwo1LbV/hprTVM1ruD+E31JzNMc1UY+rOXdK5J9cYrXpMY/VK36T9+IdzNOEXoPdXUzrVvbqPTZEqxYG+qez01jZwutR5gH55XlYXVlA2ag86HQ1IL835PNSg8jlKWa5pvCapqbOCruh7i3kPIRcMP2MfaKC3Jf2mB9n7aDuz5BwViF0Nup3zbmS6k8dn0sNaLIO0NTLyl6dy9pBtSaIW7Z3TdhHv/Az3Q+yKYMBvvlGvTQNTp+GNm2gV6+EaeM3Lc9p/blBgu4MsXrpTS4Fqg+6ZlWP07zrczwFeyq1AbdIX2/2iGazmomN/y16TONXUz7mQdBDBvc6y7L/TCMHFy1qYOZMK9q2BUdHOyDlfuwTqsMnn8FPP8H06Wo6hThli91g+3YbSlZIOIo9gEd5N/45VIyzBy8TGRGDW6mCFClRGBu7IoBqt3P11E3mL8rLwv8VIujpzBMBAfDOgFg6d9SwtU/HSdOzoKvHTgPqwUOZUrHIx6LIDLVKH2QFqgvQkW1n8a2TfLebPVsCgKdBd93wZNM2bgzH9t2ne8c77D3jS3SsPWNmNUs0rbW1Ab1e/aPZuVO9CuR9Qu9X/RjzUzUKFMl9XVBExtA09QXd+tlGYBG3yR+6B92FnRB2RTW/fnJJBdPxB5cq4GsedOt0UH6gGqCsZDcoXB90VmybaUrSvFsdKAENmpu2Gft1ZzdW1uBYXL1IpDuhZlC108/yHadqWaOCn47MHmQanT3+3M7WzzQ5D79lvm6ISlhjDk+nTYsAG0fTtpBz6O7vpyDA+WfmbrNxgnzl1CByro2g4kfm+8NuPq3R155OrK6p+4q69/QegtVymZ7mNez+62HPa4kHzvEF71PvQfyuAx2f3ldshGp9EP1APViwK6gC7qQGtctTBDw6JL4vF3j4ULXO3LTJfPukSdCzZ8JnK/EHUZOabvFc7oabniyOGSsDWWRHnfpUxWFUOBHRjqzc4sO0iGjsHJJ+Ev7fymP0HuhG4ANTwN2t2X5mLa1A4eIF03z9QoXUIEgffQTTv9zPr/8rTYki91i1rjAe5RNvNh5HZ6Wjcv2k52MvW6Uk302BsRNg82YY/XEwpy66EvLEhiPbTlO/rU+a8wvgt+sCl848oFO/Wlk6cL8aqGoUizgH45TfNYXUQlhGrTqmZqxHjmj0SyH93r2m5YbNEw6y+Cx3z6JsO1yQT/ruZPoK07cZB7twWtY8zSttI2nXvRz2Bd1ZvFi1qLlwQaV5FObMtGVN2bjjOmv+uItPA2l3Ll6AIVYFRzGhPH4Qzr9b7djwT342by9E8H17ihTRcHOzws0N3N2hmG0ADfP9Tflqfyd/3pBzKsCzivf/pvIosySaZqpNy59fdb8AKFFCtfAKCIADB1QT1wTBf3anszIPfON4DUr6mNgwiAlVQbN9YfN9ecuogD38JoTdUkF4ZJAKzm2dVZNoW2fV91mLNT825kky1wyFh37qhS5h0L3RR9VIp8SlpnnQbZsPDFHsudCQkIj8tPH9Gysr7elOnQryXWqAR2fVpD4xNk9rqHNon+r0dOGCA927WxlbE1pZQbFiEBgIZ86oQLx9e1P60FDTFJgVK0LRognPmd1J0J0B3nsPoqIM2NhcodEriU/zJbI2p4JOdGy8j+VbG/Ag1IV/Vx2mfa/E5/U5f/gq7d+qTHSs+hJdIO8jZn53hjeGNHjhUcILFICvZtTnqxkAyQfbaWVjAx06wJ1T53hntAo+t/99j/pt03aefRtP8e03kfx9SL0//TfvZt66rDlYXsSTCAIfqPexrNttQIJukTlqNC2LTmdA06w4cir5puUAe457AGBnE0XtlqnrR2TnYMe05U1p1foQ+3aH06RFXpp19MEhn3nT9I8/Vg/49u6FeVNOsXKzJxHRjlwOKk3dFmHMm7SPN4Zm39FxRSaIfggnRsODYwRcDWbF3o5sOP4Kuy80JlZv/lD2zh0dd+6An1/cljrAZv79rBWtfJ7O7WXrrGoY83urEZydq0ABH9XUNxlnzkBwsFpu2tQ0doJOBw0awKpV6sv/qVNQrVo63Xt2ZpNXvRKTvzz4jH6+89b9FX31nzh79D8qlbTDOq4FQ8hFeHJR1ZhretVX/FmpbXoeFWy+7uDGqUddaPLtKjTNijfbnWbBTxexdy0PTuVk8Lh0tHSpjvfeq0BUlCqrwoVh+XIIC4OOHVWaiRPNg+6c3p8bJOjOELa2MHy4hp9fMnM9iizvzbdsWP70//3/lkbTPpH+KADffxVIdKxq3fBSzaMsXO5O8XINE0+cBTVvXxKe/h/dvicfn6fyuJ1/neHbsVFsPW7e9+y3jfX56nwgJStkvSfD188FAmowqrIl5O9TZJ78hfLjXfwK5/09OXG1HNHJtKa5ezOYS4GqBqdm+YvkyZu2h7kd+tahQ9/k0+h00KgRNGpUhTFn/OnS8QbHr1QkPCovbw5rwMEDO5m8sEGWbsUiMknIRUBTAXEc67xwZR7Bj5yp/PElHocXSHBYXvtQvNwucjfCm9v38hq/gMfZdOcnWn0YooJt+8LP1e83/vzczZub72vYUAXdoJqYS9BtYdb2RNsVh2LVwLqN+T5DrGrerkukuUGJbk/7i+vUS6cDKzv1O2Hvqn7mcYWCz/SDz+/NTsOfqkU68L9NPgRF+LB6NRSQaCjdbN4MffqY+sLWqqVm7ilZUnUfqVgRzp2D3bth/36oX1+ly+n9uQGkh7AQqdS6RzUK5n0IwNpdNQh9YkiQ5sqJG/xvixr8wsXpAX9u8aJ4ufStkba0slVKUaKwmk5lz6lKRIUn3//pzBn1VLJZp8pmAbeDnepnqjfY8PP4i5bL8Au4ev6Bcbls6ZhkUgphebUqq0EVomPtObX/SpLp9m0xjf7XqPZ9i+erdGUP9h4vTZ/2u43bpi1rSstaZ7l9LRUj+orcwe9zWO8NG7zh9DjzfdZ24FyFNUc6mwXcZdzvMaTHHv6ZvYT7B+dx7L8T+F++S3Q03LmjvpjHOXKpspp/OI/rcw+0tT1e9+Fng+4G8RpvZNt+3TmFlY2aazyxKdnqzYeGy6Dh/6Dh79BgKdRbANUnQaVPwLMvFH8l0Sbgly+br2/frsa8uHUrQVKB6o5x/jzMmAFLl2J8YJGcefNMy/36Gdi92zTVrZUVfPKJaf/EeIP15/T+3CBBtxCpZudgx2uvqiAtPMqBdesT/vlM+OomeoN6ZPphn5Pkc8mXIE1Wp7PS0aKO+lIfGePAwX/PJ5k2JgbatoVdu0zbPIvdYMGE3Vw68xg7GxWw//pHdUIfhiZxlsxz9aJpAKoyZeVRt8hctWqYqvaO7A1OMt2enfHm526SMU0iHfI5sGBdI2Z/swtb62gAdp+uSo2aBi773ciQPIgsKCZeC6EL01XTYIDATaq2Mr6Gy1gfZBrFbNMmuOJfmOnLGvHyez2xrzpcBUxOZbCyUnP0NmoEJUqob/rHj5Og9jst9HrTF3sXF/D1Nd9frRo4PP1zkqA7Z7p0ybTs/HRMyNOnVW3ryZOZk6esJjIS/vkHhg6FcuVUzfTQoWrgs2XLkj82OlpNVwzg7BzLrFkaeZ6Zsfitt9T4CQB//aWC+vj9uStUUH2/cyIJuoVIgzff8zQu/+9/5vtuXnrEoo1qxND8Do8Z/OXzj1Kf2Zo3My1v/+dhkum2bTM9IS5TBpb8epvzN4rTd2Rjipdz4+02asj3x+HOLJx61HIZTgNNg4P/nOGdjrv4fKqpZr6sl1Mm5koIqNXANMjikSNJp9t7tppxucHLnkknTGc6Kx3vfdmE3RsvUtxF1coHPSzG66/HEpXCgMAiB9JHwZ43zLfprKBIE6j8eYL5scNtvPhvm+qOUKwYtG6dugrrWrXUz9BQHRdfoNHUiRNqNGVQzVefnQ3G1lZN3Qdw7RrG2TwyW3S0GmOhc2e4Kw1LXkhcTbeDAxw6BJ5PPz4DAlSN99atmZe3zBQQAL/+qvpbFyqkpvSaMcN8SlWAJUuSP8+ePfDk6Rh3DRo8TnQwQjs7+PBD0/rkyeohV+zTZ3Q5tZYbJOgWIk0aNwYPNX4R//wD9+6Z9k2aVoAYveqDOeTtE9l6ap3mHUwjfm7bUyDJdH/8YVqeMgXefqcYNnamGuMPPzMNP/nTkpovVEvxoh48UFOu+fpCvTaVmbeuCaGRqiWCU54nVGtUJoUzCGFZ1Zt4YqVTfySHTyc+dGtEBBw9VQAAb29wLVE40XSWVLe1D8eO2+BdXH0jO3bRk89TO/iDyBkMetjfE+7GaxNady50uQutdqoRp58ZmGrrVlWLBvDKK6mfArVmTVOb1rjasOeRXNPyOPGbmO/f//zXSo2YVPRo0utVDeMPP8DatfD115bNU04WG6sepoCqwfXyUsFenafjSIaEqAdBw4fDo0cZk6cLF2DIEPj9d1PQmZ7Wr4d33oFPP4Uff1Q11Tt2qOvu3w9ffKFaeHh4qEGf162D8HgzUNrYqL8V16djzG7dCo8TmdY9zsaNpuWGDZNO+M47ppYGS5ao+4+TU/tzgwTdQqSJlRW88fTBfmws/LlK/dcMCjL1Y8mbF4Z/lzVH606tkhU88CymmoweOFeRiCcJ5wGOjY5lzcpHADg66mnTJkESfBp48VIzlebqTSfWrbNUjs2F3A9h5xo/fhy1g7db76VShSgKF4Zhw1RTsjhOeZ7wbqddHN4VnK0fkoicwTF/XiqXUn25T1/3JOJJRII0hw+bvqw3zMTxGYuUdGX5ahfs7FRA9MMPagAdkQtoGhwdBjdXmW8v/QbYJz3y/vr1puUOaZi6OH7QnVwLkJTEH0StRYvE0zxvv+5Ll1RQs2NH8sH07dswYQKUL6++K3zxRdJN5jUNPvgAVq40bfvzzxdrYp+b3bxpKpvyT2c9LFJE/V7E/T7q9TBtmgrI589XA39ZUq9e8PPP8Pbbqln1ggWpexiTGrduQdeu6rvp5MkwYgS8+aYKoitUUL/r332nWoDEV6QI9OmjBhW8d0+9P2++qfbFxJgH1s+K22dlpVG/ftKD0+bPD4MGmc65eLFpn9R0CyGM3uxhehy5fI7q7/zDDzpj88qBA6Gwa/afj715HRV0R8fas+/vcwn271h7kvshBQB4pd5BHBOZ/hNgxMgCxuUff0zvXJoLuBxEi+rHcS6cn2ZdqjFiYjN+39KQcxfszQYAqV9fY8HEfQQF6pizpgkVape1bMaESKVale8AagDCE4cSDpJmNj93Jk+KUK1OASZPNn3W9e6ddZrkCgsK3g2XZhKrt2bziXbGzQcOJH2IwQAbNqjlPHmgVavUX65mTdPy8wbdsbGmQdmKFlX9VBMTN5IypC7oNhjgp59UC6oRI0y1gq+/rgKJ4GAVyG3apJqHe3jAZ5+pZs4xMSroadvWvNVcnNGjYc4c823BweaDy4nUiz+IWrlypuW8eWH1ahg3ztSnPzgYBgyAunXh4EHL5OfsWdXEPc6VK9C/v3ogMHs2L9xlZ/ny1AfwNWvCV1+p/AQFwcKF0K2bqTa6c2dT2tWrEz/HlSuqBh2gXj1wdk7+6dCwYWBvb77N2xvcstfYw2kiQbcQaVS1mjUVS6jaqN2nq3HlxEPmzFFfPPPkUX2vcoLmzU2dcbbvSjhY0x/LTQOjdeua9HlatzZ9wdm9+8WaByZHM2j07RHIdr+EfeltbWKpUUN9KTp9Gvbt09H30wY4FZR+3CJrqdXKNLrTkXMeCfbv2WYaY6FRowzJUrKGDDHVEgUHQ89OlzDoX7x66MLRq7z18l5++XpnyolFhroW1oQv9x6m9PDrdJtuqoZ9772kawaPHzc9kGnZkiQf0ibGxQU8PCKN53meZrhHj5r6mjZrlnRf8sKFVS1n3DFxzeETc+OGupcPPzRP9/ixqp3u3VsF+EWLqvmI1641r6WOa17/77+q3/rReMOeTJkC48erZZ1OBfFxVj3TwECkTlJBN6hm1KNHq0G9unc3bT9yRAWQ/fqlvsn5nTupC3bj948uXdq0fOOGqrzx9Ey+Vjkl8Ztsr1ih1qdMUd9R33xTvebPh8BAdZ9jx6oxDRLr9tGokamJ+ebNqpvTszZtMi23a5fyMOdFi6oa9fhyci03AFo2FhYWph05ckQLCwvL7KykKDY2Vjty5IgWGxub2VkR6eDbwds11fhL04q7BBiXhwzOOeUbeCPEeF/165vvi42O1Vzz39VA0xzswrQnD54ke65ff9WM53rjlYsWye/iqbuN13DNf1cb2HWnNve7Xdqx7We1qPCoNJ9P/mZzpqxerocOmf5WevUy36eP1WsF8j5Uv+PODzSDIXPy+KzgYE1zLxZhzPf44dtf6HxXTt7Q3AoGGc+3ZdmRVB2X1cs2uzt8WNNatTL9foKmORJqXHEkVFu3LvFjv/7adMzs2Wm7bmxsrPbSS/eNx/v5pT3v339vuv6cOcmn7dPHlHbv3oT7DQZNW7BA0/LlM38vBgzQtDfe0LQCBcy3x3+5uWna559r2pUrmrZjh6YVKWLaZ2+vafPnq1f8Y2bO1LSQELUfNK1YMU3LCb/iGf33+uGHpvd027bk027bpmk+PublULy4pv3zT9LH3Lihad27q7SVKmlacqGJXq9pHh4qrbW1pt25o2n79mla27bm1yxaVKVNq9OnTeeoWzftxydmwADTOdeuTbi/dWvT/mPHUle2ly5pmk5nOu5//0ufvGa01MajEnRnEPkykLNcPnEjwT9TW+so7daFgMzOWrqqUEHdm42Npj2JF1dv++OY8b67NNmf4nnCwzWtsPNjdS7raO3m+fR9n+7eDNYK5btnzNP63w6+8DnlbzZnyurlGhmpaba26ve4SBG9tmjybi3ssfofd3rfJePveMdGBzI5p+a2/3lM0+n06kukVYy2f/Op5zpP4JXbWtli180+W72KX9UiwyJTPDarl212du2apjk5mf/Ps7bWtO7tzYPu5s0TP75GDdNx/v5pu3ZsbKw2bNgt4/Hz5qU9/40ama5/6VLyaeM/JJ482bT90SNN275d0zp2NH8fSpbUtK1bTeliYjRt1y5N+/RTTatcWdPy5tW0V15RgUpMjPm1/P01rV69pIP0b781pY1/3V270v4eZDUZ/ff6yium9+/WrZTTx8Ro2vTpmubsbF4mgwZpWmioKV1EhConB4eED0uSsnWrKV379ub7Dh/WNF9f0/7Dh9N+r6NHm46fNi3txydm06akHwiHhpoeCnl4aFpMTOrL9vXX1XF2dpoWFJQ+ec1oqY1HLda8fNasWfTo0YOqVatSK26+hxSMGjUKb29vs1f//v0tlUUhnpunb0nqVThltq1vhwN4eLlnUo4sI26E19hYNRVEnD+WmwbIeK1byqO6ODjAwNePqXPpbfl5vGnel2unb/Hzlztp3zqcpk1N86imxYcDLnD/iRrA5/UW+3ild520n0SILMDeHqo/7SFx964VvT9phLtbDB+8tpOFv/gb0zWql0j7vkzUrEt1Rg/YBaj+6G/0duZxcDLD3Cbi4Z1HvNwihKu3S5ltvxhQhh9HJz+U9MaN0KKFFYsWFZWBptKZQW+gb5czhD7tUVS2rGr6fOuWarYa3/btqgl4fAEBcEx9/FOjhmmO3rSoVCnMuJzWft3Bwab+2RUqJGxa/Kz4YyUsWqSadpcrBwUKqP+Jf/1l2t+nj5rfOf7AbDY2aqaTiRNVd6bQUDWIXMeOal98xYur/3lxg0rFN3y4avIcp1s307I0MU+7uOblefKAeyq+qtnYqO4zp06Zj0Hwyy9qxO99+9TvQqVK8OWXCZtcT5mSdFeI+E3Le/Y031erlvnvQ1oHqNQ005S2VlbmzeVfRIsWkE9N+MK6deZN6LdtM/VBb9cudVMBxpk1S/2er12bc+fnNrJU1D9t2jRt4cKF2vjx47WaNWum6piRI0dq/fv31+7evWt8PXr0KMn0UtMtMtP00TtMT/ytYrSrp25mdpbS3apVpiebn3ys2jjFRsdqxQrcVs3hbCO0kPshqTpX0NU7mp1NpAaa5uz4SPuk13atUslL2rNP9nU6TRsxQj09To2/194xHlsw7wPt9rW7z3m35uRvNmfKDuW6Z4+mVaxoSLL2CzRt38aTmZ3NBGKiYrSGlU8Y8/jlu9tTfWzoo1CtfsWTxmNLud7SNi46pFnpYjXQNEfHWO1mEh+xO3eaWgeAprVurdfuBz1On5sS2rTPTf/rSrk90B7Hf2tDzWu6QdN69jQ/fvZsU9l89VXarx8bG6vt2HFM0+nU30Qqv1IaLVhguv7IkSmn1+uTbyIOmubqmngT2xexaJGm5cmjzt+nT8JmxY8eqdpA0DR39+drdpyVZORncWys6b2rXDntx+v1mvbzzwlrs59t+TF0qKY1a2batnx5wnOFhZlajeTPr1oCPuv6ddM5nu3el5L9+03HvvRS2u81OW+8YTr3v/+atr/3nmn7X39lj/+z6Sm18ahNymH58xk6dCgAq5Ma5i4JdnZ2uMb11k8lvV6PPos/2o7LX1bPp0i9rv28+eKHx4REONP3lb2UrNgox5Vv40YaoD4mtv91Hv0Eb3ZvPMHtRzUAaFPHD0fn2qm6b9eShXjj5X0s2tSYx+HOTF7cLNF0mqamH/p7s56F089Ts3mFJM8ZGgrvDTN9XkwafYrCJRqmSznI32zOlB3KtV49OHlCY/8/p5k/6wmrttYgPCqvcX8e2wiqNvbMcvegs9ax8Pd8VKoZQ6zelp+W1GDwF8EUcndJ9rioKOjc+ib7z1UBoGiBu/zzdzTlqtZg0K47/DzfnfBwaz78UGPFCvORui753aBzpxLExNgat/3zjxW1qj1i5f9uUb1p0p8fImUXjl5j5GRTy6F5066QN291U2sCvZ64ITddCmqEP4TlyzW++85grE1ct84KUFVf7drp09wSQa/X4+RkwMtLjY588qRGeLghwcjHSVmzxnT9V15J3fXbt9fx+++mxqAODhq+vlCjhkaNGtCxo4aLS/pO3/XWW6o28do1NYq6ppmf38kJXnrJio0bdQQGwt69erMpzrKbjPwsvn4doqPVb2q5chr65xjs8f33Vfn07WvFwYPmVbnNmmn89JMBHx9V67tjh7rWxIkaXbsazGp+V6/WERqqfre6dTNgZ6cl+D3y8ICKFa04d07HwYMawcEGXJL/GDX6/XcdceNk9+hhQK/X0nyvSenUCZYtU/f2558GmjfX0DTYtEn9jdnZaTRtasgW/2fTU2rv02JB9/M6dOgQ9evXJ3/+/NSrV4/hw4dTsGDBZI+5ePFisvuzklOnTqWcSGQbC2be4crZKJp2LY6fn19mZ8ciKpfMy5mbFTh22Zt9O/exdIFp1PKmTYLSdN8du4eyeLOBuJ4tOp2B2l4naV7/JrWb2rHnRGVmzixOTIwVZ89Z07CNF8Pf3Ei3QcWwsbVOcL4ffvDgxo2iANSuFUK1Vo7pXg7yN5szZYdydXSDId840u+j4+xZf48/15fj2BUf+r26jXMXs247vDdfusjiv1vzJCI/33y0kb4jk86rXg+jR5fhv4NqigNnx0f88uNRQrUi+Pk9pOvb1vxvjSsPHtjy5586Zs++Qr16ahjq0AdhvNO7OA8eqoDb1zcU/5tWPHjkyLU7JWncJoJxI9bR7LWSlr/pF3TN7w429laUqJi2SgdLio2JZXCvPETGqNkrBry6mYJli5h9xlpFRBA3X0T79neYs9SJmBgdX399lw8+CCQyUsfWrdUAHYULR2NldYrn/YguW/YBFy4UIiZGx59/XqRSpfAUj4mM1LFli7p+oUIx2NufTNX1+/WzpkSJgjg4GKhQIZxSpSLNmobfvKleluDomHDu5Di1a7uwcWMZAGbPvoejo3/iCbORjPgsPngwH6CGpc+f/w5+fgHPfa5p02DJkmLMn18MF5dYhg71p2XLR8TGgp8fFCwIFStW4Ny5vBw/rmPOHNNnFsCsWeUAZwDq1r2En19ootepUcODc+eKYjDomDfvBi+//DDFvMXGwv/+5wtYYWdnwNPzBH5+6TfZuJubFXZ2VYmOtuKPP2Lp1+8UV6/m4datyk/zHMLleMPEZ4f/sxlJp2la+j0CScTq1av5/vvvOZKKTjgbN24kT548eHh4cOvWLX744QccHR1ZsWIF1tYJv3CHh4dz7tw5vLy8cEzL/BOZQK/Xc+rUKapUqZLovYjsKTeU64i3dzN9eTMAVs89wOCRZQh8UBQ7myiCboXj7Jo/Tef7Y/YBdm6PpV59K1q/5k3h4oXM9p85A33eCuX4aWfjNp9Sl2jdxJ/qNWyp0bAY5aqW4ugxKxo2tMJg0JEnj4afnyHFvnppkRvKNjfK7uUaFR6FvWMqq/gyya2LgXj7FiE61h5H+zAunwulSMnCiaYdPVrHxInqIZyDg8bmlRdo1La8WZrFi3X066fSeJU3cPxoFDodtGt0nh0nVMhXueQlth9y5/iBA3z5aVEOXfQxHj+w606m/lYHOwc7S9zuC/tt8l4GfNYEW+todqw/T92XKz/3uW7dUn1Wk2swGBsdy76/z7D5r8ecu5iXujXDGPhFbQoUNp8acuKIXYyergb2KO9+jaOnC+OY/5nvWmFhWD+dzNf//GPKVslHTIwOFxeN69cNbN0KnTurv7MBAwzMnp32r5xxf7M7d1blo49U5DtzpoH33kv5XOvWQZcuL3b9rOThQ3B3tyImRkeJEhpXrhgSneIpbt7vwon/2WUJGflZPGeOjg8+UG/UL78YePfdF/89iIoCO7vE+y//8Qf06KHuqUULjS1bVOAbFASlSqnvLaVKaVy6lHj5Afz3H7Rpo87Ru7eB+fNTzvOWLdCunTqmSxeNlSvTL+CO07mzFevXq5vevVvPrl06Ro9WN/HjjwaGDNGy/f/ZtAoPD+fixYtUrFgx+Xg0LW3WJ0+erHl5eSX7unz5stkxf/75Z6r7dD/r5s2bmpeXl7Zv375E90ufbpHZckO5rp13wNhXp67PNePyK82uWuyaUeFR2pfvbtesrWIS7TvllCfEbLTy8ePTPw+5oWxzIynXjDHkdVM/4BFv7Ug0zb//mqaLsbFRo+MmRq/XtIYNTX//3w/brvV7ZZdxvYjzXe3a6VvGsg0LCdPe67zT7DOjcsmL2rY/jlnwjp/P2YOXNQe7MGM+OzVKeTaIpMycabpfDw9Ne7VDjDZ20DZt/cID2oWjV7XFU3drr7fYa5x2Lv7L2dmgffmlpt2/r851YvcFzdY6SgNNs9LFJj2GQLw+3VpoqPb226bVWbPMpxlKajqxlMSV665dscZz9euXumP79jVdf8OG57t+VhN/WqkDiUxisGmTpjk6qtd//2V8/lIrIz+LR4wwvWcZ8Z7ExmpauXKmax55Ouvh1KmmbaNHJ3+OyEhVhqCmiUtNH/7evU3nX736hW8jUb/9ZrrGxx9rWuPGpvW4mQFy2/9Zi0wZdv/+fe3y5cvJvqKizOfDfZGgW9M0rW7dutqyZcsS3SdBt8hsuaFcH9x+aJwKKP7rt98sf+2D/5zWqpY5n+yANlUrP9Gio9P/2rmhbHMjKdeMEXjltpbHNlwDTctjH6MFBprvv3Pjrlas0CPj33H8qZkS47c/yDioWtxP0LQ8tuHG6cmeLdsFE3Zp9rYRZp8XrzXfp904l4r5gjJARGiE5vvM55tOp9cuHb+e5nM9uBumOTsnP/heal5OTpo26tNYrWqZM8Zto/puT/rCzwTdR4+aVr281LzUoAYIe96vanHlGhISq1lbq/P5+qbmODXgGahpu1I7OGdWF38e748/Nt+3Z4/5YF/Ozpp29mymZDNFGflZ/Oqrpvfkxg2LX07TNPMBBLt3V9uqVTNtO38+5XPEn+bsWArPDMPDTXPHOztb7vf9/n3N+HdYvLhp2cvLlCa3/Z+1yJRhLi4ueHp6Jvuys0u/5lu3b9/m0aNHaR5YTQiRfgoWLUANz/Nm22xt4dVXLX/tOi9Xxu+qN4FX7rBx0WG+HbyDzo0PUMpV9WMrkPcRC3/2x9Y2hRMJITKUW9miDOr/AIDIKBvGjzftM+gN9HntOrfvq2bJrVuEMGJE8uerWq8YH3RX8xYaNFNzxUU/HqdeG59Ej+k7sjH7t1ynttcZ47ZV2+tToaoL33x2O8EUP8m5H/iAY9vPERudxBxAz+Hjvoc4ec0bADsbNd+OplkxfX6JNJ/rh9EHefxYNfksUUIzTu2TmAJ5H9Gj5T6W/LCXY1tPM6C/wdhfOTQUJkyy5sS1SgBUKX2RMT/XT3U+atSAZs3U8sWLqjktqCmXXrQXoKMjVH7a8v7MGQhPoUv3/v1qujCA1q1Vs/ucoFMn09Rjq1apkAxUP/D27c2nrnr8GF55xfQ+5FZx3Yzt7dUgZRmhVy8oUkQt//GHmhIrbjyBOnXA2zvlc7RpY1r+++/k027YAE+edh3v2tVyv+8uLqa/8YAA02B/7dtb5no5icXm6Q4MDOTcuXMEBgai1+s5d+4c586dIyzMNNdimzZt+PfffwEICwtj4sSJ+Pn54e/vz/79+xk0aBClSpWicePGlsqmECIVmte/a7beqpUaLCSjuJUtSrtetfliRjNW76rH9bsePLj9iIBAO6o3k9GJhciKRo4tbgy05sxR/Y0Bfvp8F5sP1QbUSOWL5kcl2a8xvm+mV6OIsyl6GDdkB90/SH745urNKnDgbEXmj9+Na351bES0I19PKEalSnDoUMrXfXT3MbWqh1GzRUUqlvbnt2nnzOaofR5/zT/IzFVNADUa/b9rbxnfqwULrXj4MPXnuud/n5+W1ALA1jqa3f8E8OgRXDp5hxU/72NkH/Ww8tPeO9i59gTBD5xY9l8D3v6wIdVb+DB3nhWXL8PAgaqPahwb6xgWL9LSPIbAhx8m3NahQ5pOkaRa6jbR65MebCxO/Pm0O3ZMn+tnBS4upnnBb9yAo0dVUNm6tQqyAV56Sc0lDXD1KnTuDJGRmZLdTGcwwJUrarlsWVL1WZMeHBxg2DBTHt5+27Tv2bm5k9K2rWk5pfm64+bmBnjzzdSd/3l16ZJwmwTdqWCpqvaRI0cm2uf7QLwOKF5eXtqff/6paZqmRUREaP369dPq1aunVa5cWWvevLn2xRdfaMHBwUleQ5qXi8yWW8p146JDZk0Q5/8amdlZsrjcUra5jZRrxho50vS58f77mnZk61ljX2HQtH/+dyRN59u66phWtcx57Yt3tmsGvcFsX0pl+/DOI+3DN7dr1tamZtgeHik3w/zy3e0JmmGXLq1pc+Zo2jM96lLl1sVAzcXpvqnv89gdmqZp2qBBpvNPnJj6833a25S/gV13pj1D8fjfMmhDe+zUqnue1X7/aU/KBzzTvFzTVN/T+P1ZQdP8/Z8/T/HL9ZdfTOecNi3pYwwGUx6srTXt3r3nv35W9OuvpvehVy/1+xi3Xr++Kopbt9R83nHb33xTvS+Wcu2apo0bl3Iz6DgZ9Vl844bpPXj1VYteKoEHD0xzcse9bGw0LZnQJoHy5U2/x48eJX2duHnIixVTXSssKSAgYbeU+J+Fue3/rEX6dGc1EnSLzJZbyjXkfohxUDNrqxjtXsCDzM6SxeWWss1tpFwz1r17pn6GtjYxWmnXq8Yvap/02p6u10pt2Z45o2k1a5q+ME6Zkkz+A+5r+RweJ9kHukQJTfvx+0DtxO4LWnRkyoNLxMZqWpN6poC7c+P9xocHFy6YBpbz8NBSNVbF7Wt3NUf7UA00zd42Qrt1MTDlg9JTIkG3ppkP6lajxotdIn65HjpkOm/Pnkkfc+aMKV2zZi92/awoONjUlzb+y8fHNBiepqkBvOIG4wJNGzvWMvlZv171IwZNK1w4df33M+qzeOtW0/2PGGHRSyXqo4/Myyitgf/QoaZj//gj8TTz5pnSDB/+4nlOjXr1TNfs3Nl8X277P2uRPt1CiNwpn0s+3nz5AAC92+2nkHsGti0XQmRbhQrB8H4XAIiJteF6sJpjuLbXGcbNTr5puKVUqgQLFpim+vlubCiP7j5ONO3k0Sd5EqGmRXy/yy52b4/i5ZdN+2/dgg8/d6NqYy/y5dNTx/sMA7vuYu53u9j+53F2rvEzvbZF8+mnsOuACwAligQzb4U3OiuVES8v6NBBddD194c/Zu1L8V4mjj5DeFReAN7rchCP8m7P9Z6kt969Tc2bP/00/c7r64txDI/kZqLNqU3L4xQubOpXG6dsWTVllIuLaVvNmvD776bf9a+/Nm+G/KL0evjqK9V9IK5p+717qg9zVhFv2uh0nVY0tYYPx2zcmdQ2LY8Tv193Uk3Mly41LVu6aXmcbt1My+nVfSTHy6CHABYhNd0is+WmcjXoDdrVUzcTNOnMqXJT2eYmUq4Z78Hth5qz40NjrUg+h8faZb/r6X6dtJZtz06XjHn6rN/2BPvvXL9jrEW2s4nUbp4PMO47eNB8ZOG0vqysNG337oR52r7WNGp4rfJnkv28DbgcZBwh3sEuTAu6eidV952ukqjp1jRV23n37otf4tlyjWuloNNpWkhI4sfUrWvK1lXLzW6ZqWbNMt2jm5umXbmSdNopU0xp7ezS5z25f1/T2rRJ/Pe7ceOUj8+oz+KPPzbla8sWi14qScOGqeuXK5f2UcXDw9Xo/6BGC3+2i0D8ViXlylm2C8Gz+erTR9Peey9hq5zc9n9WarqFEOlKZ6WjjE8JY62MEEKkRsGiBRj5jp9xffb4U3hWLZV5GXrqm3F5jKOG/7S0DoFXbpvtnzj6rKkWuesBSni7G/fVqQPr18OJPVeY9NEOerTcR3n3a6m+9tdfQ6NGCbc37VCR6p7nADhyqRJ7N55K8hzff3aByBgHAD54/RDFyhRJ9fUzgqMjWGLymbjB1DQNjh1LuD8oCA4eVMtVqkCZMumfh6ygVy9VC1qrlqrhLls26bQjRkC/fmo5Olr97r6I48dVLXrciNpWVjBpkmpFArB7N5w/n/TxGSl+TXf58pmThx9+gG3b1PuS1lHFHRzMRws/fdq07++/YehQ0/rXX5taNViagwMsXAizZyMzyKSSTWZnQAghhBA528ipTShabDdF3fPQvlfDzM4OAKUrezDotZ38tKwpEdGOjP34CHPWFAMg8MptfllZF1Cji3/2feKzJPg29MS3oadxPeR+CH57rnF0/0Nu334mceH6YG2Plxf07Zt4nnRWOj4cdJ9eH6n1HyaH0yiRpps3zwcwd009APLah/Lpd4lPm5YT1a6tRsMH1cS8aVPz/fEDypzYtDyOo2PKI1rH0elg8GDVrQJgzx7zYC0t/vtPNSeOGw3d1RVWrIDmzdVUZnHT/82fD5Mnp/38wcEqYG/YMH1GGo8Lum1toUTaZ+NLF1ZW6v15Xm3amB5w/P23eph0+jR0726asmvkSPMR0kXWI0G3EEIIISzKytqKfqOy3vSfoyf5MH9tCE8i8jN/XQNGHL2Kd82yTBh9kcgYNaXXoO4HcSvbLFXny18oP006VqXJCwR7rw+sw8hxtwl6WIy1e+pw5cSNBC0DvvvsCtGxxQEY+tYRXEukLn85QVxNNyTerzt+f+5OnSyenWyjShXIl0/N5bx3r2op8Dy1oh9/bAq469RR/bfjgtmePWHUKFWbvmgRfPed+TR0yYmKgh9/hHHjICwM3nrLvK/y83h2ujBr6xc7X2Zp21b1DQf1oKVnTzVFV9y83F26wPffZ1r2RCpJ83IhhBBC5EqFPQrxaX/VRllvsGH0R3e4dQvmrFEPCPLmCWXk95UzNE92DnYM7qna5mqaFZPG3OD4jvNsWnWT+fNh7FhYsEHlL79DCB+Pq5qh+ctslSqZmugePmy+78kT2LpVLXt4QI0aGZu3rMzGBuqpxhEEBsL162k/x/HjpvnRa9SAXbvMa48LF1ZzgoOqsY7/ACQ5GzeCjw989pkKuEENALd2bdrzGF9gIEREqOXMalqeHsqXN3WT2LNHtTS4eVOt16oFS5Zk3Pzj4vlJEQkhhBAi1/pwXG2KFrgLwJ876/P26yFER6sqwCFD7SlS0gIdk1Pw3khfHOzCAfh1bRNqNK9A++4lGTAAxoyB2FiVvw8/ssfFLXfNJmFraxoZ/coV1Ve5fXvVx7hcOVVjCvDqqxnXvzW7iD+OwN69aT9+4ULT8rvvgr19wjTvvGNanjcv+fPduGFPhw5WvPKKed/rOB98YBoVPSknT8Ly5aZm1vFl9sjl6UWnU7XdADExphYeHh6wbp3qaiCyPgm6hRBCCJFr5XXOy9fDTaM+7dqvpgjLlw8+/jRzRggq5O5Cnw7JzImFqvka/lEiUU8uULu2aXnhQti0SQ2qdveuaXtcjaswaRhvOIW0Bt1RUar2GVRLg9dfTzxd8+amWtl//026Rv3HH3W8/nolNm82PRlp3Bj8/KBdO7UeGKiaqydl0yb1sOWNN9TUZc/KKUE3mE8dBuDkBBs2gFvWmCVQpIIE3UIIIYTI1QaMqk85t+tm24YPV/OMZ5bvf6lK73Z7aF/vEO903MVXgw4ya5ZqcnvwIJw9CwUKZF7+MtNrryXcZm0N7u4qCPvqK2jZMuPzldXVrWvq17xnT9qO3bABHjxQy507J/27Z2UFAwaoZU0zDd4W34wZ8MknVsTGqjCkeHFYtgx27oSqVWHWLMirJg5g9uzE87pnD3TtCrGxan36dHj40DzNpUum5ewedLdoYWpZYGWlaver5q6eJdmeDKQmhBBCiFzN1t6W70YH8vrg0gA4OxsYMSJz6yUKFHHmt42JzCsmaNwYzpxR/Vrd3KBYMdWfOLsOlJVRnJxU0/yjR9X79/AhFExl74T4TcuTGn0/Tp8+6sGHXq+C7q++Un3KQdWWxx85ffhwA99+a4WTk2lbyZJqELa4wcPeeUfVgMcFnX5+8MorpgHdAEJDVbD++eembVlhurD0kjcv/PSTusdPP1VdKkT2IjXdQgghhMj1ur1fj9db7MPOJooZXx3KtbXI2UWlSqrJbdWqULSoBNypFdfEXNNg//7UHRMUZJqerEQJVeuaHHd3U1AYEAD//KOWN2yA3r1N6fr1C2LKFM0s4I4zeLAaHR3UFGJxo3NfugStW5v6esefWmzaNPNAPC7otrFRgXx29/77aiC7t97K7JyI5yFBtxBCCCFyPStrK5ZvbUBUjD09R9TL7OwIYRHP0697yRI1/RZAr16pe8AR18QcYO5cNdL5a6+ZBjx7/30DAwcGJnm8tbUaiC2uhnz8eNiyBV56ydR3v359FdB37arW795VU5WBeqgQF3SXKWM6jxCZRYJuIYQQQgghcoG0Bt2aBr/9Zlrv0yd112nbVtV4g6rh7tDBVAvdowdMn66lOLp8lSowcqRajolRNdw3bpj2bdyoml3HpQGYMkUF9kFBEK4mAMj2TctFziBBtxBCCCGEELlA8eJQurRaPngQoqOTT3/oEJw7p5YbN079gGQ2Nqa+33o9hISo5bZtVW10aueV/uIL8PIy31a2rKrhjuuPXrOmaeC8y5dh9eqcNXK5yBkk6BZCCCGEECKXiJuvOzISjh9PPm1aBlB7Vr9+5usNG8Iff4CdXerPkScP/Pqrad3NTU1F9uxUWfFruydOzFkjl4ucQYJuIYQQQgghconUNjGPiFBTU4Fqxp3YVG3JKVtWzaENUL26ambu6Ji2cwA0bapqx/v0gR071Hmf1aqVugao0dnnzTPtk6BbZAUSdAshhBBCCJFLxA+6k5uve80a0yjh3bqR6CjjKVm4UDVjP3jwxeaV79VLnevZpuZxdDo1lVacAwdMy9KnW2QFEnQLIYQQQgiRS1SuDM7OannvXjVYWmLiD6CW1qblcezt1dRftrbPd3xadOumRiqPz9oaSpWy/LWFSIkE3UIIIYQQQuQSVlbQoIFavnvXfNCxODdvwn//qeWyZaFJk4zL3/OysYGPPzbfVrp0xgT8QqREgm4hhBBCCCFykZT6dU+fbqoB79OHFKf3yir69gVXV9O6NC0XWYUE3UIIIYQQQuQicSOYQ8Kge906mDpVLVtbq/7U2YWDAwwZYlqXQdREViFBtxBCCCGEELlI7dqqOTaYD6Z26RL07GlaHz8++/WJHjIEfHxUv/X49yJEZrLJ7AwIIYQQQgghMo6jI9SsqUYVP38e7t1TtcRdukBIiErTrVvCPtLZQYECcPIkxMSkbU5wISxJarqFEEIIIYTIZeL36963DwYMgNOn1XrFirBgQfbpy/0snU4CbpG1SNAthBBCCCFELhM/6B4xApYvV8v58sHq1eqnECJ9WCzo9vf35/PPP6dFixb4+vrSqlUrpk+fTnR0dLLHRUVFMXbsWOrWrUv16tUZMmQI9+7ds1Q2hRBCCCGEyHXiB91XrpiWf/sNKlTI8OwIkaNZLOi+evUqmqbxzTffsHHjRj777DOWL1/Ojz/+mOxx33//Pdu3b+enn35iyZIl3L17l8GDB1sqm0IIIYQQQuQ6RYsmHN175EjVr1sIkb4sNpBakyZNaNKkiXG9RIkSXLt2jWXLljFy5MhEj3ny5Al//vknU6ZMoX79+oAKwtu1a4efnx/VqlWzVHaFEEIIIYTIVRo2hMuX1XLLljBuXObmR4icKkNHL3/y5AnOzs5J7j99+jQxMTE0aNDAuM3T0xN3d/dkg269Xo9er0/v7KaruPxl9XyKtJFyzbmkbHMmKdecS8o2E+j1WBsX9WCB917K1bKGDYNNm6woUwaWLjWg01mkGBOQcs25clvZpvY+MyzovnHjBkuXLk2ylhvg3r172Nrakj9/frPthQoVIjg4OMnjLl68mG75tLRTp05ldhaEBUi55lxStjmTlGvOJWWbcawiIqj+dPnkyZMYHBwsdi0pV8vZtEn9DAhQr4wk5ZpzSdmaS3PQPWXKFObOnZtsmk2bNuHp6Wlcv3PnDgMGDKBNmzZ079497blMgZeXF46Ojul+3vSk1+s5deoUVapUwdraOuUDRLYg5ZpzSdnmTFKuOZeUbSYICzMu+vr6Qt686X4JKdecSco158ptZRseHp6qCuA0B939+vWjc+fOyaYpUaKEcfnOnTv06tWL6tWr8+233yZ7XOHChYmJiSEkJMSstvv+/fu4uromeZy1tXW2KdTslFeRelKuOZeUbc4k5ZpzSdlmoHjvs7W1tdl6+l9KyjUnknLNuXJL2ab2HtMcdLu4uODi4pKqtHEBd+XKlRk/fjxWVskPlu7j44OtrS379++ndevWgBoFPTAwUAZRE0IIIYQQQgiR7VisT/edO3fo2bMn7u7ujBw5kgcPHhj3xdVa37lzh969ezNp0iR8fX3Jly8fXbt2ZcKECTg7O+Pk5MS4ceOoXr16okG3wWAAICIiwlK3kW7iOtmHh4fniqc+uYWUa84lZZszSbnmXFK2mSAyEry9Tcs6XbpfQso1Z5JyzblyW9nGxaFxcWlSdJqmaZbIwOrVq/nss88S3XfhwgUA/P39admyJYsXL6Zu3boAREVFMWHCBDZu3Eh0dDSNGjXi66+/TrR5+f3797l+/bolsi+EEEIIIYQQQqSodOnSFCpUKMn9Fgu6M0JsbCyPHz/G3t4+xabrQgghhBBCCCFEejEYDERFReHs7IyNTdKNyLN10C2EEEIIIYQQQmRlUj0shBBCCCGEEEJYiATdQgghhBBCCCGEhUjQLYQQQgghhBBCWIgE3UIIIYQQQgghhIVI0J0Bfv/9d1q0aEGVKlV47bXXOHnyZGZnSaTRnDlz6Nq1K9WrV6d+/foMGjSIq1evmqWJiopi7Nix1K1bl+rVqzNkyBDu3buXSTkWz+PXX3/F29ub7777zrhNyjV7unPnDh9//DF169bF19eXDh06cOrUKeN+TdOYNm0ajRo1wtfXlz59+sgUlNmAXq/np59+okWLFvj6+tKqVStmzpxJ/DFhpWyzvsOHD/P+++/TqFEjvL29+e+//8z2p6YMHz16xEcffUSNGjWoVasWn3/+OWFhYRl4FyIxyZVtTEwMkydPpkOHDlSrVo1GjRrx6aefcufOHbNzSNlmPSn9zcb31Vdf4e3tzW+//Wa2PbeXqwTdFrZp0ybGjx/PBx98wJo1a6hQoQL9+/fn/v37mZ01kQaHDh3irbfeYuXKlSxcuJDY2Fj69+9PeHi4Mc3333/P9u3b+emnn1iyZAl3795l8ODBmZhrkRYnT55k+fLleHt7m22Xcs1+Hj9+zBtvvIGtrS1z585l48aNjBw5EmdnZ2OauXPnsmTJEsaMGcPKlStxcHCgf//+REVFZWLORUrmzp3LsmXL+Oqrr9i0aRMff/wx8+bNY8mSJWZppGyztvDwcLy9vfn6668T3Z+aMvz444+5fPkyCxcuZPbs2Rw5coSvvvoqo25BJCG5so2MjOTs2bMMHDiQ1atX8/PPP3Pt2jUGDhxolk7KNutJ6W82zr///suJEycoUqRIgn25vlw1YVHdunXTxo4da1zX6/Vao0aNtDlz5mRirsSLun//vubl5aUdOnRI0zRNCwkJ0SpXrqxt3rzZmOby5cual5eXdvz48UzKpUit0NBQ7eWXX9b27t2rvf3229q4ceM0TZNyza4mT56svfHGG0nuNxgMWsOGDbV58+YZt4WEhGg+Pj7ahg0bMiKL4jm9++672meffWa2bfDgwdpHH32kaZqUbXbk5eWl/fvvv8b11JRh3OfwyZMnjWl27typeXt7a7dv3864zItkPVu2iTlx4oTm5eWlBQQEaJomZZsdJFWut2/f1ho3bqxdvHhRa968ubZw4ULjPilXTZOabguKjo7mzJkzNGjQwLjNysqKBg0acPz48UzMmXhRT548ATDWnJ0+fZqYmBizsvb09MTd3R0/P7/MyKJIg2+++YamTZualR9IuWZX27Ztw8fHh6FDh1K/fn06derEypUrjfv9/f0JDg42K9d8+fJRtWpV+WzO4qpXr86BAwe4du0aAOfPn+fo0aM0adIEkLLNCVJThsePHyd//vxUqVLFmKZBgwZYWVlJF75sJjQ0FJ1OR/78+QEp2+zKYDDwySef0L9/f8qXL59gv5Qr2GR2BnKyhw8fotfrKVSokNn2QoUKJegPLLIPg8HA999/T40aNfDy8gLg3r172NraGv9pxClUqBDBwcGZkU2RShs3buTs2bP88ccfCfZJuWZPt27dYtmyZfTt25f333+fU6dOMW7cOGxtbencubOx7BL7bJb++lnbu+++S2hoKG3btsXa2hq9Xs+HH37Iq6++CiBlmwOkpgzv3buHi4uL2X4bGxucnZ3lszkbiYqKYsqUKbRv3x4nJydAyja7mjt3LjY2NvTq1SvR/VKuEnQLkWZjx47l0qVL/O9//8vsrIgXFBQUxHfffceCBQuwt7fP7OyIdKJpGj4+PowYMQKASpUqcenSJZYvX07nzp0zOXfiRWzevJn169czdepUypUrx7lz5xg/fjxFihSRshUiG4mJiWHYsGFomsbYsWMzOzviBZw+fZrFixezevVqdDpdZmcny5Lm5RZUsGBBrK2tEwyadv/+fQoXLpxJuRIv4ptvvmHHjh0sWrSIYsWKGbcXLlyYmJgYQkJCzNLfv38fV1fXjM6mSKUzZ85w//59unTpQqVKlahUqRKHDh1iyZIlVKpUSco1m3J1dcXT09NsW9myZQkMDDTuB+SzORuaNGkS7777Lu3bt8fb25tOnTrRu3dv5syZA0jZ5gSpKcPChQvz4MEDs/2xsbE8fvxYPpuzgZiYGIYPH05gYCALFiww1nKDlG12dOTIEe7fv0/z5s2N36UCAgKYOHEiLVq0AKRcQYJui7Kzs6Ny5crs37/fuM1gMLB//36qV6+eiTkTaaVpGt988w3//vsvixYtokSJEmb7fXx8sLW1NSvrq1evEhgYSLVq1TI4tyK16tWrx/r161m7dq3x5ePjQ4cOHYzLUq7ZT40aNYx9fuNcv36d4sWLA+Dh4YGrq6tZuYaGhnLixAn5bM7iIiMjE9SkWFtbG6cMk7LN/lJThtWrVyckJITTp08b0xw4cACDwYCvr2+G51mkXlzAfePGDX777TcKFixotl/KNvvp2LEj69atM/suVaRIEfr378+8efMAKVeQ5uUW17dvX0aOHImPjw++vr4sWrSIiIgIunTpktlZE2kwduxYNmzYwC+//ELevHmN/U/y5ctHnjx5yJcvH127dmXChAk4Ozvj5OTEuHHjqF69ugRnWZiTk5OxX34cR0dHChQoYNwu5Zr99O7dmzfeeIPZs2fTtm1bTp48ycqVK/nmm28A0Ol09OrVi1mzZlGqVCk8PDyYNm0aRYoUoVWrVpmce5Gc5s2bM3v2bNzd3Y3NyxcuXEjXrl0BKdvsIiwsjJs3bxrX/f39OXfuHM7Ozri7u6dYhp6enjRu3Jgvv/ySsWPHEhMTw7fffkv79u0pWrRoZt2WIPmydXV1ZejQoZw9e5Y5c+ag1+uN36ecnZ2xs7OTss2iUvqbffbhia2tLYULF6Zs2bKA/M0C6LS4x8PCYpYuXcr8+fMJDg6mYsWKfPHFF1StWjWzsyXS4Nm5m+OMHz/e+AAlKiqKCRMmsHHjRqKjo2nUqBFff/11rmk2k1P07NmTChUqMHr0aEDKNbvavn07P/zwA9evX8fDw4O+ffvSvXt3435N05g+fTorV64kJCSEmjVr8vXXX1OmTJlMzLVISWhoKNOmTeO///7j/v37FClShPbt2/PBBx9gZ2cHSNlmBwcPHkx0wKXOnTszYcKEVJXho0eP+Pbbb9m2bRtWVla8/PLLfPHFF+TNmzcjb0U8I7myHTx4MC1btkz0uMWLF1O3bl1AyjYrSulv9lktWrSgV69e9OnTx7gtt5erBN1CCCGEEEIIIYSFSJ9uIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghhBBCCCEsRIJuIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgm4hhBBCCCGEEMJCJOgWQgghcqmDBw/i7e3NwYMHMzsrQgghRI4lQbcQQgiRiNWrV+Pt7Z3ky8/PL7OzmCXdu3ePzz77jPr16+Pr60vnzp3ZvHlzkuk3bdrE66+/TrVq1ahVqxY9evRg//79SaY/cuSIsQwePHiQbF769u2Lt7c333zzzXPfjxBCCPGibDI7A0IIIURWNnToUDw8PBJsL1myZCbkJmsLDQ3lzTff5N69e/Tq1QtXV1c2b97M8OHDiY2NpUOHDmbpZ8yYwcyZM2ndujWdO3cmNjaWixcvcufOnUTPbzAYGDduHI6OjoSHhyebly1btsiDESGEEFmCBN1CCCFEMpo0aUKVKlUyOxvZwvLly7lx4wa//fYb9evXB+CNN96ge/fuTJw4kdatW2NnZweAn58fM2fOZNSoUfTp0ydV51+xYgVBQUF069aNxYsXJ5kuKiqKCRMmMGDAAKZPn/7C9yWEEEK8CGleLoQQQryA6dOnU6FChQRNor/88kt8fHw4f/48ANHR0UybNo0uXbpQs2ZNqlWrxptvvsmBAwfMjvP398fb25v58+fz+++/07JlS6pWrUq/fv0ICgpC0zRmzpxJkyZN8PX1ZeDAgTx69MjsHC1atOC9995jz549dOzYkSpVqtCuXTu2bNmSqns6ceIE/fv3p2bNmlStWpW3336bo0ePpnjckSNHcHFxMQbcAFZWVrRt25bg4GAOHz5s3L5o0SIKFy5Mr1690DSNsLCwZM/96NEjfvrpJ4YOHUr+/PmTTTt37lw0TaN///4p5lkIIYSwNAm6hRBCiGSEhoby4MEDs9fDhw+N+wcOHEjFihUZPXo0oaGhAOzevZuVK1cyaNAgKlSoYDzPqlWrqFOnDh9//DGDBw/mwYMHDBgwgHPnziW47vr16/nf//5Hz5496du3L4cOHWL48OH89NNP7N69m3feeYfu3buzfft2Jk6cmOD469ev8+GHH9KkSRM++ugjrK2tGTZsGHv37k32fvfv389bb71FWFgYgwcP5sMPPyQkJITevXtz8uTJZI+NiYkhT548CbbHbTtz5ozZdapUqcLixYupV68eNWrUoFGjRixdujTRc0+bNg1XV1d69OiRbB4CAwOZO3cuH3/8caJ5EUIIITKaNC8XQgghkpFY02c7OztOnToFgK2tLRMnTqRLly5MmDCBTz/9lNGjR+Pj48O7775rPMbZ2Zlt27YZm1cDdO/enbZt27JkyRK+//57s2vcuXOHLVu2kC9fPkD1Z54zZw6RkZH8+eef2Niof+EPHz5k/fr1jB071uzc169fZ8aMGbz88ssAdOvWjTZt2jBlyhQaNmyY6L1qmsaYMWOoW7cu8+bNQ6fTAdCjRw/at2/PTz/9xIIFC5J8r8qUKcO+ffsICAigePHixu1xteRxfbUfP37Mw4cPOXbsGAcOHGDw4MG4ubmxevVqvv32W2xsbMyC6/Pnz7NixQp+/fVXrK2tk7w+wIQJE6hYsSLt27dPNp0QQgiRUSToFkIIIZLx1VdfUaZMGbNtVlbmDcW8vLwYOnQoU6dO5cKFCzx8+JAFCxYYA2MAa2trY8BoMBgICQnBYDDg4+PD2bNnE1y3TZs2xoAbwNfXF4BXX33V7Ly+vr5s2LCBO3fuUKJECeP2IkWK8NJLLxnXnZyc6NSpE3PnziU4OBhXV9cE1zx37hzXr19n4MCBZrX5APXr1+evv/7CYDAkuP843bp1Y/ny5QwfPpzPPvuMwoULs3nzZv79918AIiMjAYyDoD169Igff/yRdu3aGe+5Q4cOzJo1yyzo/u6772jSpAmNGjVK9LpxDhw4wJYtW1i5cmWy6YQQQoiMJEG3EEIIkQxfX99UDaTWv39/Nm7cyMmTJxkxYgTlypVLkGbNmjUsWLCAa9euERMTY9ye2Ojobm5uZutxAXhS2x8/fmwWdJcqVcpYUx2ndOnSAAQEBCQadF+/fh2AkSNHJnWbPHnyBGdn50T3VahQgSlTpvD111/zxhtvAODq6srnn3/OmDFjcHR0BMDe3h5QrQRat25tPD6u//eMGTMIDAzE3d2dTZs2cfz4cdavX59kngBiY2P57rvv6Nixo/EBhRBCCJEVSNAthBBCpINbt25x48YNAC5evJhg/19//cWoUaNo1aoV/fv3p1ChQlhbWzNnzhxu3bqVIH1SzaiTqmXWNO0Fcm9+jk8//ZSKFSsmmiYucE5KmzZtaNGiBefPn8dgMFCpUiUOHToEmIL+AgUKYG9vT/78+RPcZ6FChQAICQnB3d2dSZMm0bp1a2xtbfH39zfuA7h9+zYxMTEULVqUtWvXcu3aNcaOHWtMFycsLAx/f38KFSqEg4NDGt4RIYQQ4sVJ0C2EEEK8IIPBwKhRo3BycqJ3797Mnj2b1q1bG/tTA/zzzz+UKFGCn3/+2awG2lJTWt24cQNN08yuFVeTHb+/dXxxNeVOTk40aNDgua9tZ2dnVtu8b98+AOM5raysqFixIqdOnSI6OtqsL/rdu3cBKFiwIABBQUFs2LCBDRs2JLhO586dqVChAn/99RdBQUHExMQYa9jjW7t2LWvXrmXmzJm0atXque9LCCGEeB4SdAshhBAvaOHChRw/fpxZs2bRrFkzDh48yJgxY6hVqxYuLi6AqeY6fiB84sQJ/Pz8cHd3T/c83b17l3///dcY+IeGhrJ27VoqVqyYaNNyAB8fH0qWLMmCBQt45ZVXyJs3r9n+Bw8eGO8nta5fv87y5ctp3ry5Wd/4tm3b4ufnx9q1a+nevTug5tdev3495cqVo2jRogDMnDkzwTk3btzIpk2bmDhxIsWKFQOgXbt2idbOf/DBBzRt2pTu3btLs3MhhBCZQoJuIYQQIhm7du3i6tWrCbbXqFGDEiVKcOXKFeP82y1atADUCNqdOnVi7NixTJs2DYBmzZqxZcsWPvjgA5o1a4a/vz/Lly+nXLlyxoHF0lPp0qUZPXo0p06dolChQvz555/cv3+f8ePHJ3mMlZUV48aN45133uGVV16hS5cuFC1alDt37nDw4EGcnJyYPXt2stdt164dbdq0wc3NzXiPBQoUYOzYsWbpevTowR9//ME333zDtWvXcHd356+//iIwMJBZs2YZ0yVWMx03xVqTJk2MDwE8PT3x9PRMNE8eHh5Swy2EECLTSNAthBBCJCOp5t/jx4/H3d2dkSNHUrBgQT7//HPjvtKlSzNixAi+++47Nm3aRLt27ejSpQv37t1jxYoV7Nmzh3LlyjF58mT+/vtvY5/n9FS6dGm+/PJLJk2axLVr1/Dw8ODHH3+kcePGyR5Xt25dVqxYwS+//MLSpUsJDw/H1dUVX19fXn/99RSvW6FCBVavXs29e/coWLAgbdq0YejQoca+2nHy5MnDokWLmDx5MqtXryY8PJyKFSsyZ86cFPMohBBCZCc6LT1GXhFCCCFEltGiRQvKly/PnDlzMjsrQgghRK6X+BCoQgghhBBCCCGEeGESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEh0qdbCCGEEEIIIYSwEKnpFkIIIYQQQgghLMSiU4YdPnyY+fPnc/r0aYKDg5k5c2ay82QePHiQXr16Jdi+Z88eXF1dE2yPjY3l8ePH2NvbY2Ulzw+EEEIIIYQQQmQMg8FAVFQUzs7O2NgkHVpbNOgODw/H29ubrl27Mnjw4FQf9/fff+Pk5GRcf3ZuzziPHz/m+vXrL5pNIYQQQgghhBDiuZQuXTrJmBUsHHQ3bdqUpk2bpvm4QoUKkT9//hTT2dvbA1CyZEny5MmT5utkJIPBwOXLlylXrpzUyucgUq45l5RtziTlmnNJ2WaCiAismzQBQL9rFzg4pPslpFxzJinXnCu3lW1kZCQ3b940xqVJsWjQ/bw6depEdHQ05cuXZ/DgwdSsWTPRdHEFefPmzYzM3gu5fPlyZmdBWICUa84lZZszSbnmXFK2GccqIoLqFy4AcPziRQwWCLrjSLnmTFKuOVduK9uUHjBkqaDb1dWVsWPH4uPjQ3R0NKtWraJXr16sXLmSypUrJ3mcl5cXjo6OGZjTtNPr9Zw6dYoqVapgbW2d2dkR6UTKNeeSss2ZpFxzLinbTBAWZlz09fWFvHnT/RJSrjmTlGvOldvKNjw8nIsXL6aYLksF3WXLlqVs2bLG9Ro1anDr1i1+++03Jk+enORx1tbW2aZQs1NeRepJueZcUrY5k5RrziVlm4Hivc/W1tZm6+l/KSnXnEjKNefKLWWb2nvM8g3tq1Spkq2ajwshhBBCCCFEdrJmDUyfDnp9ZuckZ8pSNd2JOX/+fKLThQkhhBBCCCGEeDFr1kCXLmrZYIDhwzM1OzmSRYPusLAws1pqf39/zp07h7OzM+7u7kydOpU7d+4wadIkAH777Tc8PDwoX748UVFRrFq1igMHDrBgwQJLZlMIIYQQQgghcp2wMBg2zLS+erUE3ZZg0aD79OnT9OrVy7g+fvx4ADp37syECRMIDg4mKCjIuD8mJoaJEydy584dHBwc8PLyYuHChdSrV8+S2RRCCCGEEEKIXOfbb+HWLdP6/v0QEgKpmL1ZpIFFg+66dety4elUEomZMGGC2fo777zDO++8Y8ksCSGEEEIIIUSud/YsTJ1qvi02FrZvh44dMydPOVWWH0hNCCGEEEIIIUT60TT44AMVZAM0aGDa988/mZOnnEyCbiGEEEIIIYTIRZYtgx071HKZMrB2LdjaqnUJutOfBN1CCCGEEEIIkUs8fgwffWRanz4dXF2hYUO1fvUqXLmSOXnLqSToFkIIIYQQQohc4uuv4fZttfzqq/DKK2q5dWtTGqntTl8SdOdio0aNYtCgQcb1nj178t1332V4Pg4ePIi3tzchISEZfm0hhBBCCCFyCz8/mDFDLTs4wLRppn0vv2xa3rIlQ7OV40nQnQWNGjUKb29vvL298fHx4aWXXuLnn38mNm6kAwuZMWMGw+JP1JcMCZSFEEIIIYTIPjQNBg0Cg0Gtf/EFlC5t2l+tmmpmDrBtG8TEZHQOcy4JurOoxo0bs2fPHv755x/69u3Lzz//zPz58xOki46OTrdrFihQACcnp3Q7nxBCCCGEECJrWLdOzcMN4OVl3q8bwMoKXnpJLT95YkorXpwE3VmUnZ0drq6uFC9enDfffJMGDRqwbds2Y5PwWbNm0ahRI9q0aQNAUFAQw4YNo1atWtSpU4eBAwfi7+9vPJ9er2f8+PHUqlWLunXrMmnSJDRNM7vms83Lo6OjmTx5Mk2bNjXWuK9atQp/f3969eoFQO3atfH29mbUqFEAGAwG5syZQ4sWLfD19eXVV1/l77//NrvOzp07ad26Nb6+vvTs2ZOAgACLvIdCCCGEEEIIVcs9bpxpfcoUsLdPmC5+v25pYp5+bDI7A5ni3A9w/oeU07nUgKbrzLftfBUeHEv52AojoOKI58tfIuzt7Xn06BEA+/fvx8nJiYULFwIQExND//79qVatGr///js2Njb88ssvDBgwgHXr1mFnZ8eCBQtYs2YN33//PZ6enixYsIB///2XevXqJXnNTz/9FD8/P7744gsqVKiAv78/Dx8+xM3NjRkzZjBkyBD+/vtvnJycyJMnDwBz5sxh3bp1jB07ltKlS3P48GE++eQTXFxcqFOnDkFBQQwePJi33nqL7t27c/r0aSZOnJhu75MQQgghhBDC3JYtcOSIWq5WzTR42rPiarpBDaYWP1AXzy93Bt0xIRCRitrVyBKJbAtO3bEx6dPXWdM09u/fz549e3j77bd5+PAhjo6OjBs3Djs7OwD++usvDAYD3333HTqdDoDx48dTu3ZtDh06RKNGjVi0aBHvvvsuLz8dIWHs2LHs2bMnyeteu3aNzZs3s3DhQho0aABAiRKm98PZ2RmAQoUKkT9/fkDVjM+ZM4eFCxdSvXp14zFHjx5lxYoV1KlTh2XLllGyZEljzXjZsmW5ePEic+fOTZf3SwghhBBCiNzi5k3VDLxjR3haB5aApsG335rWv/gCnoYMCbi5ga8vnDwJR4/CvXtQuHD65zu3yZ1Bt21+cCiecro8rolvS82xtvnTnq94duzYQfXq1YmJiUHTNF555RWGDBnCN998g5eXlzHgBjh//jw3b96kRo0aZueIiori5s2bPHnyhODgYKpWrWrcZ2Njg4+PT4Im5nHOnTuHtbU1tWvXTnWeb9y4QUREBP369TPbHhMTQ8WKFQG4cuUKvr6+ZvurVauW6msIIYQQQggh4NEjqF8fAgOhRQtVm21tnTDdrl2wd69arlgROndO/rytW6ugW9Pgv/+gR490z3qukzuD7oov0PT72ebmFlK3bl3GjBmDra0tRYoUwcbGVFQODg5macPDw6lcuTJTpkxJcB4XF5fnun6epB6VJSM8PBxQTcyLFi1qti/+QwIhhBBCCCHEi/nmGxVwgxptfMwY8xrtOPG3jR6tBkxLzssvw+TJavmffyToTg+5M+jOBhwcHChVqlSq0lauXJnNmzdTqFChJEcfd3V15cSJE8aa69jYWM6cOUOlSpUSTe/l5YXBYODw4cPG5uXx2draAmqAtjienp7Y2dkRGBhInTp1Ej2vp6cn27ZtM9t24sSJlG9SCCGEEEIIAcD586b5tuOMGwcNG8LTcZYB1fR861a1XK4cvP56yudu1EjN4R0RoWrPNS3p5ugidWT08hygQ4cOFCxYkIEDB3LkyBFu3brFwYMHGTduHLdv3wagV69ezJ07l//++48rV64wduzYZOfY9vDwoHPnznz++ef8999/xnNu2rQJgOLFi6PT6dixYwcPHjwgLCwMJycn+vXrx/jx41mzZg03b97kzJkzLFmyhDVr1gDQo0cPrl+/zsSJE7l69Srr16837hNCCCGEEEKkbMQIiI1Vy/F6kPL223Drlmk93sREfPYZ2KSiyjVPHmjWTC0HBsKZMy+c3VxPgu4cwMHBgaVLl+Lu7s7gwYNp164do0ePJioqyljz3a9fP1599VVGjhxJjx49yJs3Ly/FH54wEWPGjKF169aMGTOGtm3b8uWXXxIREQFA0aJFGTJkCFOnTqVBgwZ8+7TdyvDhwxk0aBBz5syhXbt2DBgwgB07duDh4QGAu7s7M2bMYOvWrXTs2JHly5fz4YcfWvDdEUIIIYQQIufYtAk2b1bLHh6qv3aHDmr9/n3VHDwmBo4fh40b1faSJVVAnlpPx14GVBNz8WJ0WlIjaWUD4eHhnDt3jooVK+Lo6JjZ2UmWXq/Hz8+PatWqYZ3YCAciW5JyzbmkbHMmKdecS8o2E4SFQVy3ttBQyJs33S8h5ZozSbk+v+hoNbr4hQtqfdkyFWQ/eAA1asCNG2r7xx/DtWvw559qfeZMGDQo9dc5dw7ieqG+/HLqA+/cVrapjUelplsIIYQQQgghsoGZM00Bd8OGpj7aLi6wciU8HXaJKVNMAbebGzwzuVCKKlRQteigRj9/2thVPCcJuoUQQgghhBAiA127BqNGwc6dqT/m7l0YO1Yt63QwbZr5AGd16sDUqQmP++STpOfwTopOp6YOA4iMhK+/lsD7RUjQLYQQQgghhBAZ6J13YOJEaN4cJk1SI4Sn5Msv4fFjtdyvH9SsmTDN4MHQrZtpvXBhePfd58vjq6+alidPVnN8//FH6vIqzFk06D58+DDvv/8+jRo1wtvbm//++y/FYw4ePEjnzp3x8fHhpZdeYvXq1ZbMohBCCCGEEEJkmJAQ2LFDLWsajBwJvXurGuWk+PnB3LlqOV8+81HJ49PpYN481b8bVED/vMMtdOigRjyP65p94wa89pp6UODn93znzK0sGnSHh4fj7e3N119/nar0t27d4r333qNu3br89ddf9O7dmy+++ILdu3dbMptCCCGEEEIIkSF27QK93nzbkiVqmq6gIPPtgYHwzTfQtq2phvmrr6Bo0aTP7+wMBw6owdX69n3+fOp08P33cPIkxJ/0aOdOFdQPHJj8gwJhkoqZ2p5f06ZNadq0aarTL1++HA8PD0aNGgWAp6cnR48e5bfffqNx48aWyqYQQgghhBBCZIj4jX/ffReWLoXwcDh4EGrXhrVr4ckT+OUXtRw3HzdA+fIwdGjK17C1hYIF0ye/lSqp0cs3bFDzg1++rB4AzJ4NZ8/CX39BgQLpc62cyqJBd1r5+flRv359s22NGjXi+++/T/Y4vV6P/tnHRVlMXP6yej5F2ki55lxStjmTlGvOJWWbCfR6rI2L+oRVd+lyCSnXnCi3l+vWrVaADisrje+/N/Duu9C5sxW3bukICFCB97OsrDTat4cffzRgbW2RP7cUtWsHLVvCjBk6vvlGR3i4jl27oEkTjY0bDbi7576yTe19Zqmg+969exQuXNhsW+HChQkNDSUyMpI8SQy7d/HixYzIXro4depUZmdBWICUa84lZZszSbnmXFK2GccqIoLqT5dPnjyJwcHBYteScs2ZcmO53rtnw+nTVQGoWDGc69fPAzBvng2ffOLJyZNOZukLFYqhU6d7dO4cTLFiMTx6lPn9qVu1And3R4YOLcejR7acOqWjbt1Yfv75EqVKRQG5s2yTk6WC7ufl5eWV7GTkWYFer+fUqVNUqVIlV0wUn1tIueZcUrY5k5RrziVlmwnCwoyLvr6+zz9aUzKkXHOm3Fyuy5aZ5vjq0MGBatWqGdf374cPPzSwcKGOevVg4ECNTp2ssLMrAhTJ+Mwmo1o1qFUL2rXTuH5dR1CQPe+9V5m1a2PJk+dkrinb8PDwVFUAZ6mgu3Dhwty7d89s271793ByckqylhvA2to62xRqdsqrSD0p15xLyjZnknLNuaRsM1C899na2tpsPf0vJeWaE+XGct22zbT80ktWZn82jo4wZw7MmgVWVgC6Zw/PUipWhH37oE0bNdjavXs6Xn7ZhvHj81OtWu4o29TeY5YKuqtVq8auXbvMtu3bt8/sCVBO5+3tnez+wYMHM2TIkAzKjRBCCCGEECI9aJppELU8eaBBg8TTWVl0fqn05eamRmPv2FGNah4ermPYsPJs3arx9demqctyO4sG3WFhYdy8edO47u/vz7lz53B2dsbd3Z2pU6dy584dJk2aBECPHj34/fffmTRpEl27duXAgQNs3ryZOXPmWDKbWcqePXuMy5s2bWL69On8/fffxm3xm9FrmoZer8fGJks9OxFCCCGEEEI84/JluHVLLTdqpALvnMDZGf7+G956C1avVtvWrdOxbp2a6/urr1RT9NzMos9RTp8+TadOnejUqRMA48ePp1OnTkyfPh2A4OBgguJNRleiRAnmzJnDvn376NixIwsXLmTcuHG5arowV1dX4ytfvnzodDrj+tWrV6lRowY7d+6kS5cuVKlShaNHjzJq1CgGDRpkdp7vvvuOnj17GtcNBgNz5syhRYsW+Pr68uqrr5oF80IIIYQQQgjL2brVtNyqVeblwxLy5IGVK2HaNAOurtHG7evXq9HY27eHI0cyMYOZzKJVpHXr1uXChQtJ7p8wYUKix6xdu9ZieVq1Sj1tefLEYpdIIF8+GDsWPD3T53xTp05l5MiRlChRgvz586fqmDlz5rBu3TrGjh1L6dKlOXz4MJ988gkuLi7UqVMnfTImhBBCCCGESFT8+blbtsy8fFiKtTV88IFGrVqnOXq0GpMmWeHvr/Zt2qRevXrB+PHg7p65ec1oua5d8uTJcP58xl93yhQrZs1Kn3MNHTqUhg0bpjp9dHQ0c+bMYeHChVSvrib3KFGiBEePHmXFihUSdAshhBBCCGFBej1s366WCxaE6tWTT5+d2dtrDBqk8e67sHChCrLjehwvXgx//gmffw4jRuScJvYpyXVB96efwpdfZnxN98cfG9LtfFWqVElT+hs3bhAREUG/fv3MtsfExFCxYsV0y5cQQgghhBAiIT8/ePBALTdvbtHB/rMMe3t4/33o10+Nyv711/DwoZptcPRomDsXpkyBLl1Al7UHan9huS7o7tZNvTKaXp9+E9k7ODiYret0OjRNM9sWGxtrXA4PDwdUE/OiRYuapbOzs0ufTAkhhBBCCCESlZP7c6fEzg6GDIE334QxY9SUaHo9XL+u4rLOnVXtd04OvLPRgPQiKS4uLgQHB5ttO3funHHZ09MTOzs7AgMDKVWqlNnLzc0to7MrhBBCCCEs5I8/YMUKMKRfI0uRDnJ6f+7UKFQIZsxQFZHxHzysWQNnzmRatjKEBN05QL169Th9+jRr167l+vXrTJ8+nUuXLhn3Ozk50a9fP8aPH8+aNWu4efMmZ86cYcmSJaxZsyYTcy6EEEIIIdLLhg3w2mvQowe0aQN37mR2jgRAZCTEzQpcogSUL5+5+clsPj6wZQuMHGnaduhQ5uUnI0jQnQM0btyYQYMGMXnyZLp16/Z/9u47rsrqD+D453IZgigq4N4ioCKCe6/M1NJyZENz5ChHZmZalqXlKLV+uSrTNGdqpZZpy8q9B4J77z0A2XDv8/vjyL1c2XAvy+/79bovnv2cy2Hc73PO+R4iIyNN07QlGjlyJEOHDmXevHl06tSJgQMHsnnzZsqXL587hRZCCCGEEFa1bJl5+e+/oU4dy27NInfs2gXR0Wq5XbuC3Y06o3Q69WAo0b59uVeWnPDYjenOT7p160a3bt1M62lNwTZixAhGjBiR6rV0Oh19+/alb9++Vi+nEEIIIYTIXTExsGGD5babN+HJJ+GDD9SUufbyyT9XJH3w8bh2LU9JvXoq+NY0aekWQgghhBDisXf4MLz3HmzblrP31bSMjc/+5x+IiFDLzz5rbkXUNPjkExXsXb1qu3KK1Ml47pQVKQKJEykFB6sHRwWVBN1CCCGEEEKkQtNg1ixo0AA+/RRatlTTIIWH2/7eDx5A3bpQtCjs3Jn2sWvWmJcHDFCt3p9+ap6aautWda3Ll21XXpFcWJi563StWlC6dO6WJ69p2FB9TUiw3kxPeZEE3UIIIYQQQqTg3j01h/Cbb0J8vHn7vHnmZFC2tHy5CkQiI+Hdd1M/LiEBfvlFLRcurLqU29mpRFVbt6rkXQC3bsG4cbYts7C0ebO5p8LjNlVYRjRoYF4uyF3MJegWQgghhBDiEbt2QWAgrFtn3tajhwpqQbUYP/WUalUODbVNGZYsMS9v2wYhISkft3073L2rljt1gkKFzPuaNoUDB6B4cbW+bBkcPGib8gpLmgarV5vXpWt5cokt3VCwk6lJ0C2EEEIIkQfdOH+LiPsRuV2MVCVmYwb46qucvXdoqO0CXaMRpk2DFi3g0iW1rUQJWL8efvxRBb5t25qPX7hQtXonHbdrDadPq8A/qblzUz42adfyJDl4TTw9Yfx48/o776iAUNjWlCmwYoVadnaGVq1ytzx5kb8/ODqqZWnpFkIIIYQQOSI+Np6x/TZTtpoHVStHc+vS7dwuUoo++cS8PHmy6gKdE4KCoFQpNdextceAPniggtaxY8FgUNuaN1dJ1J55Rq1XqaIC7HnzVCIoUAnKnnoKZs60XjC7dGnybcuWqTHCSRmN5qDb0VG1dKdk6FBVdoB//4Xff7dOOUXK5s5VWeOTrhctmnvlyascHSEgQC2fOmW7h2m5TYJuIYQQQggbi4mM4d3+m3m921YOb0t5+k+Ai8ev0DLgBNMWt0bT7Lgd7snKecdyrqAZtH27Si6WKDQs5SDRFubPh7g4uHMHXnoJoqLSPv7iRejfHyZMSB6wJnX+vOqKnTg2WqeD99+H//6D8uUtj9XpYPBgOHIE2rdX24xGGDkSBg2C2NisvjvztRK/n3Z25tbryEhYvNjy2P37zVnJ27VLPbBzclKJ1RKNGaPGggvrW74chg83r8+YoX4GRcqSdjHfvz/3ymFLEnQLIYQQQtjYmAF7+Oz71sxb25KAlj50fepKsnG1v3y3m8AGhdl9orbF9nUb81bzWGSkCiAebdCdNStnuiwn7cZ94gS8/Xbqx965owLR77+HiRPB2xsWLDC3YifaskUldDpyRK27ucHGjTBpUtpzW1esqFqMkyYn++47NXb31q1MvzWT7dvhwgW13L49fPyxed/cuZZTiK1da15OqWt5Us8/D40aqeWjR9X3RVjX+vXQt695/f330/4ZFZbJ1ArquG4JuoUQQgghbGjjkn3MXmU5mHPdX+WpVw+6dIGd2+IY+dJmnhvYmPuRKttV5ZKXKVviOgBbQ/y5dzcDEzXnkPfegzNnkm8/fhz+/tu29758WXVBTeqbb8yt00nFxKj5qpOW9dYt1RLdoIF5vu1vv1WBeWIiMm9vNbY0cZ7r9NjZqe71K1aYE5jt2KHukdXu70lbs/v0UVNNtW6t1k+dUnNyg3rI8fPP5nJ06ZL2dXU61eqa6MMPc25YwONg82b1YCPxoc6wYZbDMETKkrZ0F9Rx3RJ0CyGEEELYyM0Lt+k/orJpvVf7HZQtaU6Otn49NGvpyMyVrU3berTexaGQorz0ssouZDDo2bAxb3xk27wZZs9Wy86Fku+fOdO2908MNkElL0s0YABcv25eNxpVa2Pi3NZlyqjM44kOHVLzbTdoAK+9Zu5m/dRTsGePCrwz66WX1PRcZcuq9UuXoFkzFdQ/2rKelqgolbAN1JjxZ59Vy8OGmY9JTKh27JhKuAYq8ZunZ/rXb94cunZVy9evw+efZ7xsImUJCWo4QJcu5qEFvXqp3h86Xe6WLT/w9jYPi5CWbiGEEEIIkWGaUaP/Cxe4FaYioWea7GXp7005e9GVuXOTjxN2cojhqwlbWf1PY4qVdOO5F9xN+5JOW5VbHjywHJc6caJ5ucLD97JxY/KWaGtKGnR/9ZU5IL17VwXZid2ux40zT9VUuDD89psKZLdsMSdtAsvxo2+9pY4rVizr5WvQQAUNiS13UVEqqK9fXwXkGfHLL+p7DarV1MVFLT/7rDmgX79eBfXpZS1PzaefmrvNT5sGN25k/FxhlpCgeiXUrKl6JCTW2zPPwKJFqveBSJ+dnfodAZWf4Nq13C2PLciPghBCCCGEDcz5cCu/71WDFUsVu8V3K6ugs9NRqJDKJH3mjOoaXbPaHRr6HGH3posM+aglOjvVNNakibnl8s8/Lafoyg1jxpjHGbdsCUOGmPe99pp5ec4c29xf08zjuQsXVmOTFyxQrdigurZ/+aVqWf7sM7XNzg5WrYK6dc3l3r9fHZP4vXVwUOOwv/gi7fHbGVW2rOoRkPQBRVCQmi7qhRdUYre0JJ2bu08f87KDg/n7bDSqn52k47kTW68zwtvbfK3ISPjoo4yfKyA+Xk0V5+MD/fqZexuAau1evVrVl8i4gj6uW4JuIYQQQggrC9lxmnemNTKtL557iZIVLfv+OjmpwOfoGQ/2nPAjoKWPxX69Hjp3VsuRkfDP72mk3raxv/5SQR6ogPfRVry+fdU8xKD2pZUlPKuOHTO3yLZqpaYa8vCwHP/87rvqgUai2bPh6actr6PXq3Hdp0+rcw8fhldftW5ZnZ1VULZ1KwQGmrevXg2+vmosdUoPUa5fV99rgEqVVJfxpAYNMj8YmDtXdZMHFbBUqJC5Mn70kXnKswUL4GTqSfVFEjt2qDocMADOnTNvb9tWPWz55Rfz74LIuII+rjtHgu7ly5fTtm1bateuzfPPP09wcHCqx65ZswYfHx+LV+3atVM9XgghhBAiL4mJgZf7FiY2Xg16HvnSZp56uX6WrvVcx7um5XXfp/75yVbOBF3k1T4RFnM/T5sGVataHleihLlVNiJCBd7WlrRr+RNPmJeffNKcHTo+3jx+evRoywD8UW5uqsw1ali/rIlatFCtdvPnm1vWY2JUcq1GjVTyuaRWrDB3kX/lleTdk8uUge7d1XJ4uHl7Zlq5E3l6qocUoO6ZdDoxkbJFi6BNG8tgu107lZTvn3/UwyCRNUlbuiXozoKNGzcydepUhg0bxtq1a/H19WXAgAHcvXs31XNcXV3Zvn276fXff//ZuphCCCGEEFYxdiwcOasG3/pXOc3U+Y2zfK12T7ng4qTSS6/f6oshPuWMXFvWBuFb/hwDu2wjLjouy/dLdOrgefp22o5vvXIsWupqCmTbt4fXX9Pg2u/J5gcbMcK8PHt25pKHZUTSqcLatbPcN3my5Vjt7t3NXcxzm14PAweqse6jRplbqkNC1DjWpC31SbuWv/JKytdLmlAtUWbGcyf1xhtQXCXMZ+lSNVe5SC4hQdXdq6+qBzugEtLt2KGGNTRvnrvlKwjKl4fSpdXy/v2W0+IVBFYYuZK2RYsW0bNnT7o/fCw3ceJENm/ezM8//8zgwYNTPEen0+GZkfSLDxkMBgzW/stuZYnly+vlFJkj9VpwSd0WTFKvBVdeqduDB2HWLD0AhQppLF1TGYdCdlkul6OLI0813MvabU24FebJjt+DaPa0ZQ/AB/ce0GtgKa7eK8PJq1WJeOUBS1bo0eszf7/r528ydtg5Vv7dBKNWxbS9mJuBEW/qGD1ag1Oz4dBbGD27m1pvDAYDPj4G2rWzY9MmHefOwfr1BlP3+KxK/L7FxhrYvNkO0OHpqVGjhtEiqLe3V2O3hwyxo3x5jblzNTTN+oF/dhQponoJ9O0LvXrZceSIjqgoNSZ40yYjgwZpBAerSmvcWKNaNWOK5W/SBGrXtiMkRI39r1lTw8sr5WPT4+ICI0bomDjRDoMBPv3UyFdf2X6y9bzy+5oRoaHw8st2/PWXOQ35sGFGZszQcHDIWz9jeUF26rZ+fTt++01HaCicPGnI0iwCOS2j79OmQXdcXBxHjx7ltSTZNezs7GjatCmHEgehpCAqKoo2bdpgNBqpWbMmo0aNonr16qkef8qWaTKtLCQkJLeLIGxA6rXgkrotmKReC67crtupUysCquHg9devEG+4leW5mhM1bXKTtQ/nlF655BqFy1l+yPtu6k2u3jP3/171cxHiX7rNe+9dytR0RZpRY0gvR/afNjfblXC9x8Du23m6TwkKuzlz/ugN/M69A4Dd5Z9NxwUHB2N0duaZZ4qyaZP6zDZlSiQVKpzGGlatOseDB74ABAbeJzg45SbZadPU17w+Pvmbb3R8/nkF1q5VPyvLltnxww/mYLd160sEBd1J9fxnnvEgJKQSAE2bXico6Hqqx6anVSs9hQvXJjJSz6JF8OyzRylVKj7L18uM3P59Tc/Fi06MGuXFxYtqqIherzF27CW6dbvD0aO5XLg8Lit1W758aaAcAD//fImOHe9ZuVS5x6ZB9/379zEYDLi7u1tsd3d351zSwRBJVKlShSlTpuDj48ODBw9YuHAhL774Ihs2bKB0Yp+DR3h7e+OSOJ9CHmUwGAgJCaF27dros/LoWeRJUq8Fl9RtwST1WnDlhbqNCI3k779dAXB11ZgwoSyurmWzfd0KJSsydroBo6bn7501meVf3pTh/OieM8xf5w+Ao30sRhxJSNCxZo0nXl7uTJmS8VbLQ1tOsP90LQCKF77P6AFBDP0gkCIlLDORaaVXoO0biC7GPKg4IPRDNOcA6nSqw9xZFTh9rhD79hVFrw8gO6l5Euv10iUv07bu3YsRkLQveT7144+wcqWR11/XERGhw2BQderoqDFqVHlKlHg4D5shDtBA72Q6188PIiON3LsHn39eisKFS2WrLMOH6/jsM4iPt+PPP/344gvbtnbnhd/X9ISEwIABdoSGqnpxd9dYvdpIq1blgfJpn/wYy07dduliTth461YlAgIq2qCE1hUVFZWhBmCbdy/PrMDAQAKTpHkMDAykU6dOrFy5kpEjR6Z4jl6vz7O/sI/KT2UVGSf1WnBJ3RZMUq8FV27W7c/zDxMRodJNv9T1Dm5uGR8ql5aSFTxp6X+IzYcDOXO9MqcOnqVmo2poRo03Xo8mwaDmJnpv4C68W7Smd2813HraNDvcHU4yZpJPOndQflxy27Q8+Z0QhnzUJuUDKz8P7nVhUzdAJXfT3foPXfh/2AFvNN/PiHOzAZg4Uc+aNagW9/PLwBAFjiXAzkkFkUm/OhSBQiXBvgiPNtH/+6+5Tts3OY/+9gWIvQPxYRAXpr7Gh0O9L0GXJGXR+aVwfgkYE8CxGDiXfeRVGgwxqgzFAyzf55X1qrxFfaCIN9hbv4GnVy+VtfmFF8yZyDs3P4zn8Y8h6rJ6xdwEnT2UagPln4PyXdC7lGfmTOuV4+231Tj8qCj49ls7xo2DUtmL4zMkr/4tTkhQ2clDQ9W6nx/8+quOKlXyXlnzqqzUbSPzhA/s32+XpSEyOS2j79GmQXfx4sXR6/XJkqbdvXsXDw+PDF3DwcGBGjVqcOnSJVsUUQghhBDCKhYsKWZaHtj7FondzK3h2Y7hbD6sln/54TI1G1Vj+cwdbA1RXcGrlb7I2OmNcXZV03UlZu0eO9mH4s5bGfR+yzSvbzQYWblRtSbr7RLo8WrNtAtUpBo88S+Q/PNcv5bf8/Evn3AnrBjr1sEPP8DLLwPHp0FoBrqc+n8Cfh+Y1++dYPfO2oAjVUuepXKIV6qn4v8JOLqZ1yMuwI1NqR5uUqYjtNloue34NLi93bzuUgGKVAe9M6BTwb1OB15DoOxTludqmuWDA0MchIXA3f1wbx+EHgWXstDiZ6pXh127YMoUOPLvZmZ06QdXHpnMW0uAG3+r1/5hUGM0BE5P/31lkKcnvP66mqs8JkZ9zSuJ6KwpcZx/svnYE5MCPqyzL79U+RlABdw7d5qnVxO2U6IEeHnBmTPqIVR8fMGZ79ymQbejoyO1atVi165dtHuYZtJoNLJr1y569+6doWsYDAZOnTpFK8nBL4QQQog86uiuM+w6rvpR+1c5SYN26QStmfRsr6q89XBKp3V/eDLkVhijPzZnGZo9/RbOrmqM75AhcP9cEO/PCADgtfHNcSu2k57DmqZ6/V2/H+HSbdVN/cn6h/Cs0CDVY030hczLXc5A3BkIPUyR0GC+mrCDnm+pbunDh6tplsrE3MrYm3WyfFhxIKQscQmOALTzSyeAjg+zDLrtMviJPTaF8dPhjwwMT2x5flSZjpbrcWGw3guKB0LhinA/GEIPg/GRrPLR5om1nZxg4kSg/bdwMTHg1oFzGRXsx9yEyAvmc938LK8Vdgz2vqYeChTxgsJVwKUcuJRXLfpJ6yoVb7+t5v6OjYWvvoIxY+CREaLJGQ0QewuirkLMDdUir3dWL/uHX3X2qixJ6kJ38QdqXJiE3b1SUMgDHN3B6eHLsbjq+WDnqHoXlHvG8p43Nqm6iQ9XL2Oc6h3hUAQcij5cLgpFvdX34qFb12Np3vAOD6IKsfrdMbTw3QbxDyAhAhLUDAE4FOXcXT8+HL8ZsEenU3OYFyn0AM6tBdcq4FpV1YsuR2Zefuw0aKCC7pgYOHLEcp77/Mzm3cv79+/P2LFj8fPzw9/fn8WLFxMdHU23h3MbjBkzhlKlSvH2wwkW58yZQ0BAAJUqVSI8PJzvvvuOa9eu8fzzz9u6qEIIIYQoQDSjRmx0LIUKpx9wZNeC2VcB9QF/4MvX0dllrEt3RlXxq0CdKic4fN6XvSdrMeiFXdwMbQJAt5a76djbclqy9z6rw/2bm5mxtDWaZserb/vTpssdPCuk3NPwh1XmLpIvPR+b+QI6lwaPaqYW3+ebwgu7VUbx+/dh8GD49esF6GJuQNx9MMaCIdbya3wYxNyyCJQAdh4yTwr+RNPrULmXCkSdPFWA7ZDkVeiRPtG+I8F7uAqQ4u5D9DX1irqqvsbcAL2LClaT0jRo+I0K7hJfD06qazzq0Wx194NUEH/j77S/Z5oBNKNl8FZzLFQfCoUrqGA5MVDVNAgNhivr4MqvyQPRsGOqVT5py3xSTu7gXE69zxY/We47+incD6KskwcDnuvDV6saEhEBsyafYeKoYxB7F+LuohWvz/bTrfn1VzU3evsWN2BdBdUKn56nj4JbkgdRmhGX2JNwO52Md47FoccjybROfw2X16R/T+83oP4s0+rcrx05fUUl6Xrmoy/47/021K1imehPiwvjtbkfER2jQqQ33njY5fnuCdjd13ygnZN6IKAZHnkZ4ZmTqidIooRoNXwhJ4P00CPqZwINPJqqn6d8omFD1TsG1HzdEnRnUKdOnbh37x6zZs3i9u3b1KhRgwULFpi6l1+/fh07O/MPYXh4OOPHj+f27du4ublRq1YtVq5ciZdXGl2JhBBCCPHYMxqMhOw8zfa/brJ5myNbD3lx54E77w/czCfftrbZfWOjYlmyXrVyOznE0GtYHZvc59n21zk8T2Xw/mmzCrhdnCL58tvkyYZ0djqmfd+Kazd2sOLvZkTGuvK/CfuZ8l3rZMcmJMCPf6kEak6OBp7r72+V8s6ZA//9B7duwW+/wZIez9C3b/LjYmNV8qTQUHjrLSha1HL/7n3mBwVt35yQUo/21OkLQeLzBHsX1eKaETodVHhk8mtNe9iyGg8YH3ZJ1lQLa1Jxd9XY9KQt+0W8wb0BlGgA7vXV+HH7wsnvWzyVnx2dTu0rXgdqf5R8f9SVtN9P7N2HwXMKDw3u7TMFsWOarOfbn86QYHBg5jwPRtV8BR0aS7e/wtfbe3H0rDplzhy4cskTd9JOuHbymjcLt7zKK6Xv4tfWvF0rXBENO3SkMxmznWPybQ7mngyaBjHxhXB2jEnhPZtzFBgMsHCR+eFIeLQbT332F9umPI9vlVtg7wqaxtK/2rDpyJMAVKgAkyY9PCHikQTQxliIS+HhlN4FCle23HZ0EpycrXodJLbmOyW27nuAWw0oUU+1nqcm+jrcO6AC6egbqndBzE31MxYfBl3OWz78OfsdnPzSvF7UB0q1g9LtVG6ApL1B8pgGSTrZ7NsHSSbBytd0mqal/duSh0VFRXH8+HFq1KiRL7KXBwUFERAQkCcTRoiskXotuKRuCyap14Lp6K4zfPTebTYf9Obug+T9YV0KxRIe4WSzpDyr5uzkxTdU1+2Xn9zB8r+a2eQ+h3beom6zkhbbPn1rM2O/aJ3qOVdOX6dazRLEJThRxDmci+eNFC9VzOKYv/+G9u3Vcrdu8PPPya+ToshIcFXZ2omIgMLJg8hffoHnnlPLbm6qu2j5JImf9+yB/v3h+HG1XqMG/PqrGtcJcPOmgTJl7NA0HQEB5mRjeZ6mqUAp6ooKeHIiyIl/ABFn4cFpiLz0sDX/4SuxZd+5LDz7yHRrW7uqFvSHBs6fz3ebBwLQqNpujlzxIzLWNdntFi2CfpU6gM5BPcxwLvNw0HQ0GKLREqKp03s8IWcr4l4inlOnHShRQp1rSIgnKOgwAbV90CeEqgcViQ8G4kPVGHgtXrUoew+1vPGtbRB5gVhjMZp3b0XwcVd+mneIzm3OqO9BfDgkPFBd7Kv2AeD336HTw1n1dDoNTVMBavnysH07VKqkHg7VqAH3Hjas//YbPJ2YuD/8NFzbqILvyPMQcV4F3jp9kpc9uNWCpkssy7v5Gbi2If36q/g8NF9tXr8fBIfHw/0D6mcpLT1CLX/GQj6GkBQezoBqcS9eV/U8KNMBKr+UftkyIbv/Z6Oi1IM3gwFq14bgYKsWz+oyGo/muezlQgghhBCZ0adPPAfPNEl1f1SMEydPQk3rDrM2WbDIPJXTwNds1wgQ0KQkFStCYm7ZGjU03prSPM1zylcvQ//OW5m3tiUPoosy++PNfDi3tcUxiV05AV6y7udvnn0WeveGZctUgreBA1UAFBMDH36oEnYZkzR2Hj+uuvP++CO0bQubN2MKkB6mB8ofdDqVKM0l+1PGZZhDEdWC/mgW9kSalnJX8CaLVXf42LsQe4d3y8SyaKsRo9GOPWcthy34+5uDoDVroN+vf6RanODDEPKwZfzuPQcmTsSccT0xCZ29CzgVyVz355ItgBb8tR72P0wuOGJiPTr0qpdq0q0FC8zLixbp+PJLCAqCK1dUV/lt22DUKHPA/eKLSQJugKLVoeibGS9jUi7lwLWaaplOiEj9ONeqj2zQwbXf0r62naMaUvFoLoMy7VXrfXw43PwH7uw2171mhHv71UvvYhl0axps6ayu6VpVjWEvXEXlJihUCuxsHzq6uKjkdYcPw6lTyXMS5lcSdAshhBAi3zp54BwHz9QAwLXQA56od5RWzWNp3aEUG7Z5M/5DNYTt4EHbBN3nj1xm08F6gMog3uo523QtB/XB88UXYdo0tT53rg7HQul/lBv7cRUW/JKAwWjPl4vr8NYn4RQpofpwx0bHs2aNPaCjSJFHAg0rmTUL/v0Xrl2DP/+E0aNVK2LSqW3r1VMtXMePq8CnfXt13uHD5k/b+Srozot0OtUq/SiHour1MOjzKqumMlu6VO0uXBheeUUl6PPzU63D16/DX3/BgwepZ/Vevdpyfe5c1VXYWr+HG5Mkm79wAVasIMXhCzdvqt4TAKVLq0z6HTtCixbqZ/D0afWgJzF/XYkSWHU6NhrOMy8bYk0PN4i7q1qw7wfBvYPg8UgPGbeaD6fUK6S6n5eop5LzuVRQwxcKlVL1llJE6tFYvQCYoHoA3NoC1x9mwA9/2LWk6CO5J+Lup9Eqr1Pd4Z1LQ6HSUG+m6hqfyGiw2rj1UaPUlG3PPVcwAm6QoFsIIYQQ+diP318CVLAwss+/TPjqGVOXxltJhlweOKBaXK1t4ayzgGqlG/DCeez0lax/kyQmTIBixVS3yzapTKP9qCp+FejdYTuLNzbnfmRxvp78H2M+Vyf/seIgYWFqctznOt3H2bm41ctcvDjMn28O6L/4wrzP0VFl7R49WvVWf/llFUwZDDBsGDg4qE/cDg4azZsXkE/f+cA334CPj5pK7MUXLcfZd+2qspvHxqpeCz17Jj9f01QSvaQMBjVm/4/UG8czTNMsg25QU6717k2yYSRLlqi8BQD9+qkpqEqWVMMqmjeHy5eTJIxH/XyWtBzFYT16p+Q9ICq/nPKxdg5qVgDnctmPPB2KqOR7iQn4EqLUMIRCj7zRyIvJzzXR1Dj52NtACPBImS79CPtew87VC6+4QthFlnqYyb6Q5culIlR/ZKB25EV1rJMn6HT06aPmrndMYUh/fiVBdw64dQveGx3BqYMaen0wyX5IH+VW0zJxRMwtNQ4nPfpCUNTXclvEWfV0Kz2FPNUvtYkG9w+nfx6oJ6MOSf4ax4cnTziRmke7QEVdtUh8kSqHIqqrTlLhx9UTxPS4lLOcjsQY9zDDYwYU9bWYdkOLvY/xQQbq1c5BjfNJKvK8mlYkPU4l1B+opEKDVfeg9BSuDI7FzOsJkeqPbEYUq63GKCWKvq66RqXH3kUljEnqwSn1Bz49iU9PE2mGjM3pCioja9KkNHH30/nn8ZBOr95rUlGXIPYuBkM6detYLHnClLCjD5PspMOlgkqmksgQnXx6mtTk0N8InU6jfesw3vuydcbKJUQuWLXBHOQ272g57rRePfPygf0GzBm1rCMhARb+qgJWvV0C/UbUSOeM7HN2hvfey/x5731cliW/G9E0Oz5fVJfhn6hunD+sMJiOefHps0B96xU2iU6d4NVXYeFC87bGjdV6jYffNjc31SL57rswY4baFh+v/v42aZLikHFhIy4u8P77Ke/r1k0F3QBr16YcdB86BGcfdi1v1kx14754UbWOb9igWpqz49gx8zCLRKdOqWEJL75o3qZpll3LBwwwL1esCJs2qcD79sOPnu3aQZ8+2SubVbmUT/+YrLB3STlpX4lA6HFfjVmPPK8+z0ecf5gb4IbK9h99XX12fjTx24NTEB+O7v5B3AAiU7l38brJg+4Db8GVteBYQrWeF62Bk0djqDYg5WvkQxJ054AlS2DhUjey/o+s5MNXVlRL/5AU6YCALJ5bNBvnlnv4yoqsfthxJOvl9SBzaVSTqpLF8wCymlm2MFl/r2UevrLCO/1DUqQn6+Ut/vCVFRUfvrKiVvqHpMiZrL9X2/2N2HwY2nQ4QuMOfmkeJ0RuOHYMjpxXf0ubBFzDo0Ixi/0eHlCx9D0u3SjBof1RGA2FsdNbb9qeP/6AazedAXimUzxlqpZK54zc41OvKj07nGTV7z7cuu/G/PkwoE8Ev24PAMC9yF2e7Gm7rvGgWhDPnoUTJ+Cdd2DkyOStkno9TJ+uujEPHgxxD6e2bttWI91GC5EjWrZUvRfu31fDBGJioNAjs/Il7Vrep486PjE4f+steOKJ7JUhaSt3ly7m7uOTJ6v7JE6MtG2beRhDmzbmBH2JvL3VkIeuXVUL+LffFpzuzFnmWEwF3yVSmatL09QY8qQNbqBaql2rokVeQJdWw5C9c/Jtid3d4+7B7R3qFXGuQAXdMqt7DnjySahQLi63iyGEEFmy+c87uV0EIVL044/m5R6vlE7xmHrV1SfuiJginDp4war3T9qCNvC1FD5I5jHvf2YevzltGvy44AjRcSrxW492R3FwSiULlZW4uakpxG7cgLffTh5wJ9W3r0qi5uOjUbFiDAMH5tvJdgocBwcV6IJKWv/PP5b7Nc0cdOv1qmW8Rw8VrAOcOQOzZ2cvsk0adE+frnpCgMqO/8sv5n0Wv6MDU75WYCCcP6/GdlfJTnvI40KnU4H5o08nar4DXc5i7BFJkNc/GLpcgi5nodMR6LAfntwObTdB4Izk1yzbSU1n5pyk233Sed0LAGnpzgF16sDZczoO7NuNv79/+unz7Rwtf5CNCaqbbbp0oH9k8IMhDtKZQ1GdqrfMSKhpqutIRtg5WCZO0IwZ614LamxLUvnsvRri4wg+fDBj9ZrsvcZnrIu4zk7dN6mMdKMHNX2FXZJyZaZu8vvPodGQcpbWlKRQN4aEeIKDg9Ou2wJcN2cOX8KvaXUAtu/O21MyisdX0ta07t017qTwfKheQAxrt6nlA9uv49vg0QzBWZM49zRA2bLQoYNVLmtTtWurxETr1qmkZiMnmofWvPRK0VTPs6bMtCI2aQJHjhgJCjpK6dIBNiuTyLxu3WDxYrW8Zo1lAr79+1UQC6pF2+Nhh8CZM6FuXfWvfdIkHQEBWQtDwsLUNF+gWq69veGDD8xlmDRJ/ZyHhZkfzBUvrsqcmse+ddua7Bww6N1UAJ3RKcPqfm5ejguD8BMW87EXBBJ05xA7vR0OhRxwcnHKwpx19mS9qrKagUAHOKV7VMrssnFu/nqvBnt9Nuo1Oy0KUjfp05P18ZsOGAxZ/Z0tGHVTs5EXniUiuX2vMDtPNsBoNHfXK2gM8QaGvbCD0DB75iz2waN88nmeRd5zJETj2DH1Sbl5c5VROcWgu5ErzFbLB/bH08tK9z+wKxSDoRigEv7Y55NPVO+/r4JugPBINUi6bInrNH+mduon5SKdTgKivOjJJ9UY+8hI1bU7IcH8O5D0YVjS8d4BATBokOrC/eCBjq++KpelbuabNpkToyWODe/YUbVYHzqkZir44w8V+MfEqP29eyfvAi/yKEc38GiU26WwugL6EUoIIUR26Ox0NGupPpDfv6/j+PFcLpAN/bYshHlrW7Lq36YM6x2c28URGbR6zlbTcs9uqSdqrNeysmn5QEgxq93/xC5zslH/8vutdl1bq18fOrS5a7HthQ4n0TtYN8mcKNicnc0B75075pbnpF3L7e3VWOmkJk1SwwwAfv3VnYMHM3/vpF3LO3VSX3U61dqd6JNPMta1XIicIkG3EEKIFDVvbl5O/EBVEAVfNrfwrd7Shr9XHsjF0uRvV05fp0PD/TzXYg8R9yNsdh/NqLF6g5qmS6cz0r1LeKrHelbwoILHVQAOnamK0ZCBYT0ZcPKUufnVt2beH8+d1AejLGc7eKmfreZHEgVZ0u7aa9aor3v3mrOKP/mkmvM6KU9P+OgjtaxpOsaMyVwoknSqMGdnaNXKvO+556DWw1ymu3apVm+Ahg3BP6v5Z4WwEgm6hRBCpKhZM/NyQQ66T56ybOEb9nYJYqMyODZfmITfDadT+wf8ua8+v2xvxKwJtmv9Ddl5mpNX1djslrUPU7ZayknUEtXzvQzAg+iinA66YJUynDhrHgPtE2ijaX1spNkztencdA8AjXyPUP8J2091Jgqep582z6O8dm3yublTmkoM1Pzr1aurXCKbN+s4kInnnEFBKhEfQNu2KvBOZGeX8jRn0sot8gIJuoUQQqSobl0oVEi1Cu74t+BmMD/5yPTop69VYca7uzJ8viHewOY1QQzvuYUa3jH06mWe5uhxER8bz/MdThFywTw94Dc/NzaNu7S21YvNLbU9n0u9lTtRvYAY0/KB7detUoYTl1SW3VLFblG8VP5L+PPj3wFsWLyPDf+URWcng6ZF5hUtap7668oV1cqdmLjMwQGefTbl8xwdYdQocwLPzz9P+biUpNS1PKmePaF6dfN64cKW83YLkVsk6BZCCJEiR0do5K3GOJ+/5sHVM9YJVvISTTMH3W5FDejtVJQ46ZtGnD9yOdXzEuIS+OfHgwzpvpWynvdo0z2AuT+24sTpQqxYAStW5ETp8wbNqDG05y7+2l/fYvvlq4VM2b2tfb9VGyoDYKcz0L1/+q209RoWNi0f2JfBWQLScP9mKDdDVZds34rX0jk6b3JycaJTnwa4ly2R/sFCpCJpF/OxY1XwDdC+vcoYnprevTWKF1e/i6tXm7ukpydp0J04pjwpvR7ee8+8/sILUKRIxq4thC1J0C2EECJVzRuGmpZ3/Hk+9wpiIzcv3uHBA7XcuF4Yb7ywA4CYeGfefC15MKUZNVbO3knF0ndo17Mu36xpya0wz2THffGFCujzs9BbYcwctwW/Sqcp536dqSM38+Deg2THfTpqCwt+VRPwOtrHMn6U+dPz3LnWL1fQ1pOcuV4ZgNYBhylVOf3xyHVbVDYtWyOZ2slDV0zLPlXTb2kXoqDq0sU8s8WWLebtL7yQ9nnOztCjx20ADAaYNSv9e927B7t3q+UaNVKfU7tPHxg1SiVx+/TT9K8rRE6QoFsIIUSqmrUytxBu35b9FsK85uQhc2u2T6kQJs4OpExxNWBw/c5GrF+0x7T/xvlbdGu1h5dGNOX6ffMY4kIO0XRruZsVM3fSqKGaLz0kBP7+O4feBFgtORjAgX+PM7DLNspWcGDk1FYcvVSda/fKMG5maypXtWPyZDX/LcAPs3YybmZr07mLvzjAhOkV8fJS65s2Je++n12rl9wwLffsmrFkbaUqe1KuVCQAhy7UwZjNb9fJkPumZV+ffP50RYhsKFnSMukmqF5SXbqkf+7zz9/GyUn9/syfD+HpPL/66y9Mv7spdS1PpNerLutr1qjEbULkBRJ0CyGESFWT9t7odA/HdR8oeBmOTx4xt9z6+Ogo6l6ULyaeM20b8W5ZosKjWPr1OWrWdmDd9samfR0b7mPVnJ3cvmng5y2NeWlEU0a/Y07KNuPTSJuXPzIskl7td6C3t6Oi51U6NNzP2703893UbezaGEL43Yy3wm5css+UVOu79S2IjnMx7Uv8GbgXVpgPPoDKleHNQVfp93Y90zFT3tzMi280xc4OhgwxX/erKSHZfp+JNKPG6t9V85beLoFu/Wpm+Nx6jdQDpPBwHWfPZq8cJ46bB6v7+hVO40ghCr6kXcwBOnQwTwuWlhIlEnjlFRV0h4dbTvGVkvTGcwuRl0nQLYQQIlXFSrpRu/JpAILOeqfYvTg/O3nS3OTpU8sVgBeGNaFtoJo89sKtCtTyd6LP0Krcj1QDFD2L3ubHr3axcU8Deg5rimtxV9M1unaFKhWjAfj7v8IEbz9ts7JfPH6FZoFXWPG3SjN/+U45/txXny+Wt2bguBY0fbo2pco4MH9m+mOO//s5iGf61WPvST/TtqLOYbzxwhaO7j7Dif0X6dP1DPqHzxRCQ2HWgnLEJTgBMLDLVt79wjx3T/++Bpwd1ffh+x8rWm36sAP/HufcjUoAtA08jGcFjwyfW8/8fCBT2ZJTcuK0OWWyb0Cp7F1MiHzu0bm40+tantTIkeaeIjNnkmryRaMRfv9dLbu6Jm9dFyKvk6BbCCFEmprXU915jZqe3X+dyuXSWNfJs+bWXJ+AMgDo7HTM/bY4Dg4qIL9w0dx6/VK7nRw7akePIU1SvJ5eDyN77zWtfzH1pi2KzY7fgmnQuBCHz/sA4OIUSbHCocmOi4l3Zujosuzdm2yXyYMH8OqIimia+khQp8pJvp20lWvX7Zm1shU1G3nhXbcKi9d4ceIE9O+PKfgGaF9/P1+tbmKRAbu4u56Xn1JThoVHu7F8zsEsv9erVzRWrIDXXoMe/SqYtvfsFpWp61g16L6oAu1CDtFU9CmbvYsJkc9VrAiNGqllFxfo3Dnj5/r6qqnHQCVT++mnlI/bvx/uPJxE48knzVOVCZFf2Od2AYQQQuRtzZrb89XDD0LbNz/gyQI0/crJi6rLvItTJOWSzPXsW78Ko0fD1KlqvXRp+OYbePbZpule89XR9fhoZiihkcVY8WdDppy9Sdlq1msNXbgQXn/dj/h4FSRXK32R9b8k4Fu/Kjcu3OTYgSscDYpg097qrN9UloQE6NULDh1SLUSPeucduHBNZbBuWecY/x3wxU7vk+K9vbzU/T/44GGSNE3jo/F+ODg5JDt22ChPvluvlucuLM3g97VkU1PdvnyHOZOPcOmKPtn5sbF27DtazpQ0TVFpiB0dDHTtVyvtb9Qj6tXVAHX/A1svAJXTODp18fGYyuTtbUTvkLzsQjxu5s+H6dPh+eczny387bdhwwa1PGOGainXPTKLnXQtF/ldjgTdy5cv57vvvuP27dv4+voyfvx4/P39Uz3+999/Z+bMmVy9epXKlSszevRoWrVqlerxQgghbKf5U5VNyzv2Fs29glhZXHQc52+WB8C73GV0dr4W+ydMUK02BgO88QaUyODMSq7FXXnt+c189n1r4g2OzJlynCnfZT/ojo1VU+H873+Q2FHticCDrN5QhRJlVNf3MlVLUaZqKZ54HobEQ4sWsGcPnDkDI0aogDmpv/6CefPUcuHCsGhNTewyEENWrZo4t64OKJTiMYGtfWlSI4Rdx2sTcsGb7b8F0aJLgGl/8PZTdOnmwsXbrTP8PbC3hwYNYNQofaanuipdRkfZEte5dq8MB48URzMmfwiQEefOQUKCOs+npoznFgKgdm1YsiRr57ZuDYGB6sHggQOwdSsk/dgfGgpr15rXU5oqTIi8zubdyzdu3MjUqVMZNmwYa9euxdfXlwEDBnD37t0Ujz948CBvv/02PXr0YN26dTzxxBMMGzaMU6cKVpdGIYTILyr6lqOCx1UAdh/zJj62YGQxP3fkCgajevbsU+Vesv2OjqpF96OPMh5wJ3rjfR/s9er79M2qOkSGZS6p2vG9Z/lh1k7GD/6Pbi1341v+HIULGx8G3MrwYRq/7/I3BdyPcnCA5cvNrduLFsGPX+827Q8LgwEDzMdPn66CaWsaNsicyG3OTHN38HVrNZo+WZ6Lt8uneb6DPo7mdU7z/vvqAUFoKOzcCT16ZK089XzVdGZhUW6cDc7gxMCPSJqN3dc39eOEEBmj06kpvhKpB3pw8CAMGgTlykFwsNpWp45aFyK/sXnQvWjRInr27En37t3x8vJi4sSJFCpUiJ9//jnF45csWUKLFi0YOHAg1apVY+TIkdSsWZNly5bZuqhCCCFS0azudQAiY105fMiQy6WxjpPBt03LPl5xVr12Oa8yvPykmm7sfmRxFn2e8UHEHw/bTM1G1Xj5zaZMmt+Gtdsac/JqVQwG9S/b3l61Ts+eo8PBKe0Oa9WqwZyZsab1we/4cvmkSqw2qu8erjycbvqJJ9SYaWvr8Vp9PIuq7/OaLQ24dvYmkydD1246ImPUePr61Y+x/5/jHN97zuJ1Yv85Qu8lsC2oOpMmqXGchbPZsFyvTrRp+cD2q1m6xokT5mUJuoWwjhdeMAfT69erHi316qmM5lFJ0je88UbulE+I7LJp9/K4uDiOHj3Ka0n+k9vZ2dG0aVMOHTqU4jlBQUH069fPYlvz5s3ZtGlTqvcxGAwYDHn7Q2Bi+fJ6OUXmSL0WXFK3lpo+U5eVf6nlrTsdCWyQP78vSev1xFHzJ7nqvvZWr+s3x7qz5A+1/L/5lRk8Li5D43+XrauUbFshh2h8q9ylVoOyDBmi0bix6vaeEb1e0bNh2U5+/K8poZHFeKXned4aeZGFv6hkcEVcovn2W0c0LePXzCh7J3sG9jjC1IVtSDA40KSFE5eum/e/2O0+87+riHMR51SvkdF6ycjvbECDQvC1Wt6/L5YeWXjDx3cfB1SW9+pVHmAwuKR9QkFmMKA3LRqs/wOE/C0uqB6tVzs7GD5cx3vvqYeL+/ebjy1SROOVVzRee02jVi2b/JgJK3rcfmcz+j5tGnTfv38fg8GAu7u7xXZ3d3fOnTuX4jl37tzBw8Mj2fF3ElMWpiA/dT0PCbHefKUi75B6LbikbhUPD2dAzYm8cWMYrVql/Dc8vwgJCWHfSfM4a6cikQQFBVn3JkWgdZ09bD7ciHM3KrJg2i80ejrt7tSGhAQu3AwEoKLnZca9dZAKXi54VHRDb68HVDb0zBZ1+DgDu4OvcPluebYEB7JzkLllf9zrf3L/fgXu38/cNTOqVWcjny0yYNT0XLpeDACdTmPo0Gv063eDk9mcM/tRaf3OupY0t3TvPeSapTo/dsz84CQuLpigoJTHtD8O7KKjCXy4HBwcjNE59Ycn2SV/iwumpPXauLGeokX9CA9X4Un16lH06HGbjh3v4eJiJD4+83/7RO6R31lLBSJ7ube3Ny4ueftJs8FgICQkhNq1a6PXS6bTgkLqteCSurVUuzYULaoRHq7j6NFi1KkTkCy7bH6QtF6vh5ozbrfr1o6iNsgRN/rt/Wzuo5aXr6rCa++nnXH7wtHLxBvUXDh1fa4ycMwzVivL998epl2PsmianekeHRrsY/Snz2QpoViGBUCXZvtYt70xAK6uGkuXGuncuTRQOs1TMyOjv7Nlit/g+v3SBJ+rTh1/10y9d82ocfqKmqu+gsdVGjdvnO1y52uR5lwF/v7+2e//nwL5W1wwpVav//4Lf/xhpGVLjSZNnNDpygNpP6wUecvj9jsbFRWVoQZgmwbdxYsXR6/XJ0uadvfu3WSt2Yk8PDyStWqndTyAXq/PN5Wan8oqMk7qteCSulX0emjSBP78E27c0HHxVBjVamYyu1geotfrOXVKBVtlykDx4rap4069GlLrg9McvVSdncf8uXxJo3KV1IO88yfukTiVlVeVGKv+7LXtVpf3Xt3MlO9aA+DmEsb85eWxd7D98/dPPnNn99M38SwWxvJVxajdsKTN7pXe72w930v8tqs0oZHFuHjsItXqJO/On5rb125zP9ITAJ+KN9HrH/OMTkm+z3q93nICd6vfSv4WF0SP1mu9euol8r/H5Xc2o+/RponUHB0dqVWrFrt27TJtMxqN7Nq1i8DAwBTPCQgIYPfu3Rbbdu7cSUBAgC2LKoQQIh3Nax40LW/fcCwXS5J99+5B4vNdn5SnpLYKnZ2OLi+ag7rjJ9JuVT17MsK0XM3L+v+iJ8xtRreWu/Eoeocls09QvnoZq98jJX5Nq3PtbkkOn61u04A7I+rVMbfOZjaZ2olD5uN9vR5YrUxCCCEKNptnL+/fvz+rV69m7dq1nD17lgkTJhAdHU23bt0AGDNmDJ8nzg0A9OnTh23btrFw4ULOnj3L7NmzOXLkCL1797Z1UYUQQqSheXPzv4wdO4ym5bjoOI7uOsPvy/Zx88LtlE7Nc04dM4/ttWXQDeBdw9F833R6oJ29Y+5+Xq1WWauXxcHJgZ+3NOZ2mAddXm1k9eunRWens2039gyq19A8HO3g/sxlrT8RYp4CTTKXCyGEyCib9ynr1KkT9+7dY9asWdy+fZsaNWqwYMECU3fx69evY2dn/iBXt25dZsyYwZdffskXX3xB5cqVmTt3Lt7e3rYuqhBCiDQ0bOeNvT6eBIMD67f40KP1Lo6eLcnpa5UwGL0AqFLmJkdOa7gUzv3gKi2n9hwCWgDg43kISLn3lTUk/feVdI7nlJy9Yk486lXXy0YlerzVbVHRtLzruF+mzj1x3PywydeviNXKJIQQomDLkURqvXv3TrWleunSpcm2dezYkY4dO9q6WEIIITLBpagLdb2OsPekHzdCS/HzllLJjjl/vRQ//gR9++ZCATPh1IkE07JP9YQ0jsy+pC3pp47HAKlnuz5zRn21t4cKFWxarMdW2WplqFIFzp+HrXs8CAlRiQIz4sQZc6Iw38Cc6ZovhBAi/7N593IhhBAFR88ulokunRxiqFPlJJ2bHTBtmzcvp0uVeafOmgNfb3/bjjF2d4cSRcLUfY/cTfU4TYOzD6fPqlxZBd7C+nQ6ePNN8/q0aRk/9+RF9bPiWugBZataL/O6EEKIgk2CbiGEEBn25qTmbFi8j3UL9nDq4AUiIhwIOufDL9vqmVoLd+2C4ODcLWd6Tl5QQ5wc9HFUrmn76Wi8y10C4PKdckSGRaZ4zK1rkaYZmLy8NJuX6XE2cCCUeJh8/4cf4OLF9M+JiYzh/E31s+JT4XKeGJ8uhBAif5CgWwghRIbZO9rTqU8Dnh3QiOqBlbF3VFNl6HTw2mvm4+bNybuZnQ0JBs5cV323vcpeNr0HW/KpGmpaPhN8JcVjzhw6a1quVmS7rYv0WCtcGN54Qy0bDPDF+3vTPefMqXiMmvpZ8a0ea8viCSGEKGAk6BZCCGEVvXuDi3M8AEuXaUTcj0jnjNxx90o4sfGqe7lPpZzJtu7tZR43furIvRSPOXvCnBm7WlVjiscI6xk+NB5nR5XFfv6Pfty5knrXf4ATZ82J03yb2C7xnhBCiIJHgm4hhBBW4eYGL7XbDcCD6KKs/PpQLpcoZdfOmbt3+3jF5Mg9vX3NY8hPHku5lfTsGXNg7uXjbPMyPe48SjowqKtq4Y6Oc2HO5JA0jz9xwrws04UJIYTIDAm6hRBCWM3rI8xTXn3zvXsaR6ZOs/Fw5svnzTfw8bV913IAH3/z9+LUmZQzpJ0972BarlazhM3LJGDUR9XQ26mHHbOX+ac63h4sp3uToFsIIURmSNAthBDCauq3q0m96scAOHC6Jvs3HcvU+aNGgaMj1Kp6laE9trJ67k5uXrhl1TJevGhuRfau5WbVa6fGy9+crO3UhWIpHnPmkrksVWrZPrmbgEo1yvNye9U7415ECRZ8tj/VY08ciwNU/gIvmUJdCCFEJkjQLYQQwqpe62ueVmze7DtpHGlp/Xr43/8gIQGOnS/H1z+35IXhTSldpSS+5c8xtMdWLp24mu3ynbtsbkX2CSiX7etlhHMRFyp6qgRqJy+XRzMmb84/e01NQVXO/TrOrqnP5S2sa8x485Rxn8/3Ij42PtkxmlHjxMNhAVXKXKeQVI8QQohMkKBbCCGEVb00tC5FnFVSsB/+rEvY7bB0zwkPh6FDzes6nWUisZNXq/L1zy3p2fV+igFrZpy46Q9AiWKxeJTPWhf4rPCpeBOA0Mhi3LlqmUwt/E4Yd8LVNGZe5W7mWJkE+DX15unGamz35Tvl+GH2nmTHXDt3g4gYlUjNt0LK2eeFEEKI1EjQLYQQwqpci7vSu1MQAJGxriyfE5TuOe+PM3DlYSzz5JMQdieSP5bv593+m2lSIwR7vWp93HPCj18Wpj+9U2oiIuDWLScAfGo4Zfk6WeFd1ZzN/dThaxb7zh4xr1ermHenWyuo3h1nbrqeNrsURoPlQ58Th66bln29Uh/3LYQQQqREgm4hhBBW99qbpUzL3ywpk2br9K6NIcz9SgeAiwvMmwdFShThqZfrM3Vha3Yeq83P3x40Hf/+J+4Y4g1ZKtfp0+ZlH58sXSLLvOt5m5ZP3vSz2HfmeKhpuVrVrL03kXXNO/vTtGYwAEcvVefHb4Mt9p84Yn4Q4ltDPjoJIYTIHPnPIYQQwurqtPChSQ01BVPIBW92/3EkxePiouMYNKQQmqb+HX086ihVqiQ/rnO/hqbrHbvkxfKZu9K8f1wc3EthOuxTp3SmZW/v5PttySegjLkcp3UW+86eNS97eTvmVJFEEu+ONk8f9+LQAPr1g+sPG7hPnkyS8d4vZ5LvCSGEKDgk6BZCCGETr/U3j+We/nVFYlKYEvuzd3Zy9FJ1AOpVP8ab41NuftbZ6ZgyydwC/NGXtYmLS/m+ly5BzZrg4QHDh2Nx35P7zJMt+1TL2W7CSYP8U6cs950Na2Jarlavdg6VSCT1dJ/6PFnvgGl98WJVZ1OnwuHjxU3bfQPL5kbxhBBC5GMSdAshhLCJnkPqU6yYGhu79jc3qlWDWbMgOkq1Gp7Yd5ZJ81SwqbdLYMF8O+wdU57DGqB1twDaN78EwIWrbnz7bfJjwsKgUyfVcqxpMHcuNGnwgFMHzwNw6sh907E+FW9Y5X1mVMWK4PRwGHnSOZ8BzpwxL1fzLZJzhRImdno7Nuyow8yZUKyY2hYRAePGwdbgOgAUL3wfz/IeuVdIIYQQ+ZIE3UIIIWzC2bUQn35q/jdz7Rq8+SZULX+H/727mUGvRhCXoKLQ0X22EdDKN91rTvmyoml50iSITNJYHR8bT48nDnP0qOU5QUeKUK+ZBytm7uDUBTVdmJ3OYDF3dk7Q68GrShQAZ04nWIxLT+xe7u5uDvhEznNwsmfECDX2f+hQsLOzzEXgW/EKOjtdKmcLIYQQKZOgWwghhM289hocPAhdu5q33bjvyajPWrP9iGo9rFb6Ih/NapSh69WrBz16qOWbN2HmTLWsGTVe77GbTQfUNd2Lx7BuHfhWUlnBI2KK0GtkMw6eqQFA5ZJXcHLJ2ezlAN6eKkFXXLw9l06qssXGYsrcXq1ajhdJpMDDQ/WSCNoXSdtAcxK/pvXu5mKphBBC5FcSdAshhLCpwEBYswaCgqB720PJ9s+bdRfnIi4Zvt4nn4Ddw/9e0z6N5t71+0wZuYWFv7UAwMkhhl+WnOLZZ2H/YTf6ddqW7Bo+lW5l6b1kl49XtGn55GE1H/f5I1fQHjaoViuXO+USKatd15VN+wP5fdl+/vfuFj78sm5uF0kIIUQ+JEG3EEKIHFGnDvz0TyDB20/xfJtdeBS9wyfDN/PE85kLZHx9oV/PywCEPXCmy5OX+WB2a9P+Jf87SLNn/AEo7FaYRRtasHj6NlyczH3RfXJprmVvH/OY9VPHVBnOJJmj28vzaLJzRO7S2eno0Ks+I6e2oqh70dwujhBCiHwo9Yw1QgghhA3UbubN6n8T11pn6RoffWTHsp9iiUtwYsdRf9P2T9/aTM9hya/ZZ3QLGrY6x5BBYVy9VZRBb+bseO5E3rXM002dfDh92dmTUaZt1bwccrxMQgghhLAtaekWQgiR71T0LcfQ53dbbBv83FbGzGiV6jm+Daqy6YA/P6wPxadeCpOB5wCfAPN0U6fOFQbg7Dnz/mq+0pIqhBBCFDQ2DbpDQ0N5++23qVu3LvXr12fcuHFERqbdpe+VV17Bx8fH4vXhhx/asphCCCHyoXGf1cK9iEps1aHhPuauaprnM0u7l3WneGE1bdmpy6UAOHO+sGm/l1+pXCmXEEIIIWzHpt3LR48eze3bt1m0aBHx8fGMGzeODz/8kM8//zzN83r27MmIESNM687OzrYsphBCiHzIs4IHe7ZdJGjXKbr0r5/mHN95hc5Oh3eFq+w5UZxLt8sTFR7F2atq3ufCThGUqlQyl0sohBBCCGuz2SeUs2fPsm3bNn766Sdq164NwAcffMDgwYMZM2YMpUql/jS/UKFCeHp6ZvheBoMBg8GQ/oG5KLF8eb2cInOkXgsuqdv8obJfeSr7qfHZGamrvFCv3pXvs+eEWj62/zznb1QHoGqZaxi1aiA/clmSF+r2sWMwoDctGsAG33up14JJ6rXgetzqNqPv02ZB96FDhyhatKgp4AZo2rQpdnZ2BAcH8+STT6Z67vr16/n111/x9PSkTZs2DB06NM3W7lOnTlm17LYUEhKS20UQNiD1WnBJ3RZMuVmvZUrdMy3/suo08YZaAFQsdZOgoAe5VawCQ35nc45ddDSBD5eDg4Mx2rBnotRrwST1WnBJ3VqyWdB9584dSpQoYXkze3vc3Ny4fft2quc988wzlC1blpIlS3Ly5ElmzJjB+fPnmTNnTqrneHt74+KS8Tlec4PBYCAkJITatWuj1+vTP0HkC1KvBZfUbcGUF+r1TMMEWKyWdwaZH0z7eicQEBCQK2UqCPJC3T52kuTp8ff3h8KF0zg4a6ReCyap14LrcavbqKioDDUAZzronjFjBvPnz0/zmI0bN2b2siYvvPCCadnHxwdPT0/69evHpUuXqFixYorn6PX6fFOp+amsIuOkXgsuqduCKTfrtUbzRqblbYcqm5a9vORnzRrkdzYHJfk+6/V6i3Xr30rqtSCSei24Hpe6zeh7zHTQ/eqrr9K1a9c0j6lQoQIeHh7cu3fPYntCQgJhYWGZGq9dp04dAC5evJhq0C2EEELkF15e5uX4ePM/62o1SqRwtBBCCCHyu0wH3SVKlEjWbTwlgYGBhIeHc+TIEfz8/ADYvXs3RqNRdUHKoOPHjwNkKlAXQggh8ioXF6hQAS5fttzuVd8vdwokhBBCCJuy2Tzd1apVo0WLFowfP57g4GAOHDjAJ598wtNPP23KXH7z5k06dOhAcHAwAJcuXWLu3LkcOXKEK1eu8M8//zB27FgaNGiAr6+vrYoqhBBC5CgfH8t1e3sViAshhBCi4LHppKYzZszgk08+oW/fvtjZ2dG+fXs++OAD0/74+HjOnz9PdHQ0AA4ODuzatYslS5YQFRVFmTJlaN++PUOHDrVlMYUQQogc5V3yKJuoZVqvXFkF3kIIIYQoeGz6L75YsWJ8/vnnqe4vX748J0+eNK2XKVOGZcuW2bJIQgghRK7zrnTHYj3pOG8hhBBCFCw2614uhBBCiJT51LKcWqla8YO5VBIhhBBC2JoE3UIIIUQO8/YvabFerWJ4LpVECCGEELYmQbcQQgiRwyr5lsPRPta07uXjnIulEUIIIYQtSdAthBBC5DC9gx6vUmdM6zJHtxBCCFFwSdAthBBC5IKm9e4C4FH0DtX8K+ZyaYQQQghhKzJBiRBCCJELps6thXf1zbR+qiROLh65XRwhhBBC2IgE3UIIIUQu8CjvzjszWud2MYQQQghhY9K9XAghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLCRfD2m22g0AhAdHZ3LJUmfwWAAICoqCr1en8ulEdYi9VpwSd0WTFKvBZfUbS6IiQEfH/OyTmf1W0i9FkxSrwXX41a3iXFoYlyaGp2maVpOFMgW7t69y4ULF3K7GEIIIYQQQgghHlOVK1fG3d091f35OuhOSEggLCwMJycn7Oykp7wQQgghhBBCiJxhNBqJjY3Fzc0Ne/vUO5Hn66BbCCGEEEIIIYTIy6R5WAghhBBCCCGEsBEJuoUQQgghhBBCCBuRoFsIIYQQQgghhLARCbpzwPLly2nbti21a9fm+eefJzg4OLeLJDJp3rx5dO/encDAQJo0acLQoUM5d+6cxTGxsbFMnDiRRo0aERgYyBtvvMGdO3dyqcQiK7799lt8fHyYPHmyaZvUa/508+ZNRo8eTaNGjfD396dz586EhISY9muaxsyZM2nevDn+/v7069dPZsPIBwwGA19++SVt27bF39+fdu3aMXfuXJKmp5G6zfv27dvH66+/TvPmzfHx8WHTpk0W+zNSh6Ghobz99tvUrVuX+vXrM27cOCIjI3PwXYiUpFW38fHxTJ8+nc6dOxMQEEDz5s0ZM2YMN2/etLiG1G3ek97vbFIffvghPj4+fP/99xbbH/d6laDbxjZu3MjUqVMZNmwYa9euxdfXlwEDBnD37t3cLprIhL1799KrVy9Wr17NokWLSEhIYMCAAURFRZmOmTJlCv/99x9ffvklS5cu5datWwwfPjwXSy0yIzg4mJUrV+KTOOfsQ1Kv+U9YWBgvvfQSDg4OzJ8/nw0bNjB27Fjc3NxMx8yfP5+lS5cyYcIEVq9ejbOzMwMGDCA2NjYXSy7SM3/+fH744Qc+/PBDNm7cyOjRo1mwYAFLly61OEbqNm+LiorCx8eHjz76KMX9GanD0aNHc+bMGRYtWsQ333zD/v37+fDDD3PqLYhUpFW3MTExHDt2jCFDhrBmzRrmzJnD+fPnGTJkiMVxUrd5T3q/s4n+/vtvDh8+TMmSJZPte+zrVRM21aNHD23ixImmdYPBoDVv3lybN29eLpZKZNfdu3c1b29vbe/evZqmaVp4eLhWq1Yt7ffffzcdc+bMGc3b21s7dOhQLpVSZFRERITWvn17bceOHVrv3r21SZMmaZom9ZpfTZ8+XXvppZdS3W80GrVmzZppCxYsMG0LDw/X/Pz8tN9++y0niiiyaPDgwdp7771nsW348OHa22+/rWma1G1+5O3trf3999+m9YzUYeLf4eDgYNMxW7Zs0Xx8fLQbN27kXOFFmh6t25QcPnxY8/b21q5evappmtRtfpBavd64cUNr0aKFdurUKa1NmzbaokWLTPukXjVNWrptKC4ujqNHj9K0aVPTNjs7O5o2bcqhQ4dysWQiux48eABgajk7cuQI8fHxFnVdrVo1ypYtS1BQUG4UUWTCxx9/TKtWrSzqD6Re86t///0XPz8/RowYQZMmTXjuuedYvXq1af+VK1e4ffu2Rb0WKVKEOnXqyN/mPC4wMJDdu3dz/vx5AE6cOMGBAwdo2bIlIHVbEGSkDg8dOkTRokWpXbu26ZimTZtiZ2cnQ/jymYiICHQ6HUWLFgWkbvMro9HIO++8w4ABA6hevXqy/VKvkPoM3iLb7t+/j8FgwN3d3WK7u7t7svHAIv8wGo1MmTKFunXr4u3tDcCdO3dwcHAw/dNI5O7uzu3bt3OjmCKDNmzYwLFjx/jpp5+S7ZN6zZ8uX77MDz/8QP/+/Xn99dcJCQlh0qRJODg40LVrV1PdpfS3Wcbr522DBw8mIiKCjh07otfrMRgMvPXWW3Tp0gVA6rYAyEgd3rlzhxIlSljst7e3x83NTf425yOxsbHMmDGDp59+GldXV0DqNr+aP38+9vb29OnTJ8X9Uq8SdAuRaRMnTuT06dOsWLEit4sisun69etMnjyZhQsX4uTklNvFEVaiaRp+fn6MGjUKgJo1a3L69GlWrlxJ165dc7l0Ijt+//131q9fz+eff46XlxfHjx9n6tSplCxZUupWiHwkPj6eN998E03TmDhxYm4XR2TDkSNHWLJkCWvWrEGn0+V2cfIs6V5uQ8WLF0ev1ydLmnb37l08PDxyqVQiOz7++GM2b97M4sWLKV26tGm7h4cH8fHxhIeHWxx/9+5dPD09c7qYIoOOHj3K3bt36datGzVr1qRmzZrs3buXpUuXUrNmTanXfMrT05Nq1apZbKtatSrXrl0z7Qfkb3M+NG3aNAYPHszTTz+Nj48Pzz33HH379mXevHmA1G1BkJE69PDw4N69exb7ExISCAsLk7/N+UB8fDwjR47k2rVrLFy40NTKDVK3+dH+/fu5e/cubdq0MX2Wunr1Kp999hlt27YFpF5Bgm6bcnR0pFatWuzatcu0zWg0smvXLgIDA3OxZCKzNE3j448/5u+//2bx4sVUqFDBYr+fnx8ODg4WdX3u3DmuXbtGQEBADpdWZFTjxo1Zv34969atM738/Pzo3LmzaVnqNf+pW7euacxvogsXLlCuXDkAypcvj6enp0W9RkREcPjwYfnbnMfFxMQka0nR6/WmKcOkbvO/jNRhYGAg4eHhHDlyxHTM7t27MRqN+Pv753iZRcYlBtwXL17k+++/p3jx4hb7pW7zn2effZZff/3V4rNUyZIlGTBgAAsWLACkXkG6l9tc//79GTt2LH5+fvj7+7N48WKio6Pp1q1bbhdNZMLEiRP57bff+OqrryhcuLBp/EmRIkUoVKgQRYoUoXv37nz66ae4ubnh6urKpEmTCAwMlOAsD3N1dTWNy0/k4uJCsWLFTNulXvOfvn378tJLL/HNN9/QsWNHgoODWb16NR9//DEAOp2OPn368PXXX1OpUiXKly/PzJkzKVmyJO3atcvl0ou0tGnThm+++YayZcuaupcvWrSI7t27A1K3+UVkZCSXLl0yrV+5coXjx4/j5uZG2bJl063DatWq0aJFC8aPH8/EiROJj4/nk08+4emnn6ZUqVK59bYEadetp6cnI0aM4NixY8ybNw+DwWD6POXm5oajo6PUbR6V3u/sow9PHBwc8PDwoGrVqoD8zgLotMTHw8Jmli1bxnfffcft27epUaMGH3zwAXXq1MntYolMeHTu5kRTp041PUCJjY3l008/ZcOGDcTFxdG8eXM++uijx6bbTEHxyiuv4Ovry/vvvw9IveZX//33H1988QUXLlygfPny9O/fn549e5r2a5rGrFmzWL16NeHh4dSrV4+PPvqIKlWq5GKpRXoiIiKYOXMmmzZt4u7du5QsWZKnn36aYcOG4ejoCEjd5gd79uxJMeFS165d+fTTTzNUh6GhoXzyySf8+++/2NnZ0b59ez744AMKFy6ck29FPCKtuh0+fDhPPPFEiuctWbKERo0aAVK3eVF6v7OPatu2LX369KFfv36mbY97vUrQLYQQQgghhBBC2IiM6RZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRIJuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRIJuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEEIIIYQQwkYk6BZCCCGEEEIIIWxEgm4hhBBCCCGEEMJGJOgWQgghhBBCCCFsRIJuIYQQQgghhBDCRiToFkIIIYQQQgghbESCbiGEEOIxtWfPHnx8fNizZ09uF0UIIYQosOxzuwBCCCFEXrRmzRree++9VPevWrWKgICAnCtQPuHj45Pi9rfffpvBgweb1mfPns2cOXOSHefo6EhISEiq19+/fz+9evUCYNeuXZQoUSLb1xRCCCFsSYJuIYQQIg0jRoygfPnyybZXrFgxF0qTPzRr1oxnn33WYlvNmjVTPHbChAm4uLiY1vV6farXNRqNTJo0CRcXF6KiolI9LjPXFEIIIWxNgm4hhBAiDS1btqR27dq5XYx8pXLlysmC7tQ89dRTFq3VaVm1ahXXr1+nR48eLFmyxCrXFEIIIWxNxnQLIYQQ2TBr1ix8fX3ZtWuXxfbx48fj5+fHiRMnAIiLi2PmzJl069aNevXqERAQwMsvv8zu3bstzrty5Qo+Pj589913LF++nCeeeII6derw6quvcv36dTRNY+7cubRs2RJ/f3+GDBlCaGioxTXatm3La6+9xvbt23n22WepXbs2nTp14q+//srQezp8+DADBgygXr161KlTh969e3PgwIFMfV9iYmKIjY3N0LERERFompbmMaGhoXz55ZeMGDGCokWLWuWaQgghRE6QoFsIIYRIQ0REBPfu3bN43b9/37R/yJAh1KhRg/fff5+IiAgAtm3bxurVqxk6dCi+vr6m6/z44480bNiQ0aNHM3z4cO7du8fAgQM5fvx4svuuX7+eFStW8Morr9C/f3/27t3LyJEj+fLLL9m2bRuDBg2iZ8+e/Pfff3z22WfJzr9w4QJvvfUWLVu25O2330av1/Pmm2+yY8eONN/vrl276NWrF5GRkQwfPpy33nqL8PBw+vbtS3BwcIa+Z2vXriUgIAB/f386derE+vXrUz32iSeeoF69etStW5fRo0dz586dFI+bOXMmnp6evPjii+neP6PXFEIIIXKCdC8XQggh0tCvX79k25Im5nJwcOCzzz6jW7dufPrpp4wZM4b3338fPz8/i8Rhbm5u/Pvvvzg6Opq29ezZk44dO7J06VKmTJlicY+bN2/y119/UaRIEUCNZ543bx4xMTH8/PPP2Nurf+H3799n/fr1TJw40eLaFy5cYPbs2bRv3x6AHj160KFDB2bMmEGzZs1SfK+apjFhwgQaNWrEggUL0Ol0ALz44os8/fTTfPnllyxcuDDN71dgYCAdO3akfPny3Lp1ixUrVjB69GgePHjAyy+/bDquaNGi9O7dm4CAABwdHdm/fz8rVqwgJCSEn3/+GVdXV9OxJ06cYNWqVXz77bdpjs/OzDWFEEKInCJBtxBCCJGGDz/8kCpVqlhss7Oz7Cjm7e3NiBEj+Pzzzzl58iT3799n4cKFpsAYVDKvxIDRaDQSHh6O0WjEz8+PY8eOJbtvhw4dTAE3gL+/PwBdunSxuK6/vz+//fYbN2/epEKFCqbtJUuW5MknnzStu7q68txzzzF//nxu376Np6dnsnseP36cCxcuMGTIEIvWfIAmTZrwyy+/YDQak73/pFauXGmx3r17d7p3787//vc/unXrRqFChQDo27evxXFPPfUU/v7+jB49mhUrVlg8sJg8eTItW7akefPmqd43s9cUQgghcooE3UIIIUQa/P39M5RIbcCAAWzYsIHg4GBGjRqFl5dXsmPWrl3LwoULOX/+PPHx8abtKWVHL1OmjMV6YgCe2vawsDCLoLtSpUqmlupElStXBuDq1aspBt0XLlwAYOzYsam9TR48eICbm1uq+x/l6OhIr169+Oijjzhy5Aj169dP9djOnTvz2WefsXPnTlOAvHHjRg4dOpRmF/W0pHRNIYQQIidJ0C2EEEJYweXLl7l48SIAp06dSrb/l19+4d1336Vdu3YMGDAAd3d39Ho98+bN4/Lly8mOT60bdWqtzNZIGpZ4jTFjxlCjRo0Uj0k6FVdGJT4oCAsLS/fY0qVLWxw3bdo0nnrqKRwcHLhy5QoA4eHhANy4cYP4+HhKlSqVqWsKIYQQOUmCbiGEECKbjEYj7777Lq6urvTt25dvvvmGp556yjSeGuDPP/+kQoUKzJkzx6IFetasWTYp08WLF9E0zeJeiS3Z5cqVS/GcxJZyV1dXmjZtarWyJD5USG8aL03TuHr1qsWc3tevX+e3337jt99+S3Z8165d8fX15ZdffsnUNYUQQoicJEG3EEIIkU2LFi3i0KFDfP3117Ru3Zo9e/YwYcIE6tevbwo0E1uukwbChw8fJigoiLJly1q9TLdu3eLvv/82Bf4RERGsW7eOGjVqpNi1HMDPz4+KFSuycOFCnnnmGQoXLmyx/969e2kGzintj4iIYPHixRQvXpxatWqleeyKFSu4d+8eLVq0MG2bO3dusvts2LCBjRs38tlnn1G6dOlMX1MIIYTISRJ0CyGEEGnYunUr586dS7a9bt26VKhQgbNnz5rm327bti0An376Kc899xwTJ05k5syZALRu3Zq//vqLYcOG0bp1a65cucLKlSvx8vIiKirK6uWuXLky77//PiEhIbi7u/Pzzz9z9+5dpk6dmuo5dnZ2TJo0iUGDBvHMM8/QrVs3SpUqxc2bN9mzZw+urq588803qZ6/fPlyNm3aRJs2bShbtiy3bt1izZo1XLt2jWnTpllkV2/Tpg2dOnXC29sbR0dHDh48yIYNG6hRowYvvPCC6bh27dolu0/iFGstW7a0CLIzek0hhBAiJ0nQLYQQQqQhte7fU6dOpWzZsowdO5bixYszbtw4077KlSszatQoJk+ezMaNG+nUqRPdunXjzp07rFq1iu3bt+Pl5cX06dP5448/2Lt3r9XLXblyZcaPH8+0adM4f/485cuX53//+1+6Lb6NGjVi1apVfPXVVyxbtoyoqCg8PT3x9/dPN3CtW7cuhw4d4qeffiI0NBRnZ2f8/f2ZPHkyTZo0sTi2c+fOHDp0iD///JO4uDjKli3LwIEDef3113F2ds7Se7bFNYUQQojs0mnWyLwihBBCiDyjbdu2VK9enXnz5uV2UYQQQojHXuoTbQohhBBCCCGEECJbJOgWQgghhBBCCCFsRIJuIYQQQgghhBDCRmRMtxBCCCGEEEIIYSPS0i2EEEIIIYQQQtiIBN1CCCGEEEIIIYSN5Ot5uhMSEggLC8PJyQk7O3l+IIQQQgghhBAiZxiNRmJjY3Fzc8PePvXQOl8H3WFhYVy4cCG3iyGEEEIIIYQQ4jFVuXJl3N3dU92fr4NuJycnQL1JZ2fnXC5N2gwGA6dOncLb2xu9Xp/bxRFWIvVacEndFkxSrwWX1G0uiI6GZs3U8o4dYIPPYlKvBZPUa8H1uNVtdHQ0Fy5cMMWlqcnXQXdil3JnZ2dcXFxyuTRpMxgMALi4uDwWP4CPC6nXgkvqtmCSei24pG5zgabByZNquVAhsMFnManXgknqteB6XOs2vaHOMhBaCCGEEEIIIYSwEQm6hRBCCCFEgRYXl9slEEI8ziToFkIIIYQQBdY//0CJEmr4eWxsbpdGCPE4kqC7ADt2DD7+GIKCcrskQgghhBC5Y8ECiIyEnTthw4bcLo0Q4nEkQXcBde4cNGkCH30EdevC64PjuXvtXm4XSwghhBAiRyXmegNYsSL3yiGEeHxJ0F0AxcXE88ILGuHhal3TYN58B6p76/jqoy0Y4g25W0AhhBBCiBygaXDqlHn9t98wfT4SQoicIkF3AfTewB3s368DoGxZcHU1AnA/sjjDPm5FPZ8zbPv1cIavt2HJPj59azPhd+W/lBBCCCHyj2vXVNfyRLGxsG5drhVHCPGYkqC7gFn//V6+WN4aAEf7WNavi+Vk0B16P7XddMzh8z60fLYO307amu71ju46Q5d+dXnvy9Z0aHGRqPAoWxVdCCGEEMKqkrZyJ8pOF/OwMMmELoTIPAm6C5DLp67T7w0v0/qMsbup28CJstVKsvSP5mxfH0xA1ROm/R9Mr0FcdNr/Ob6bcwWjpia233W8Ns8/fZn4eNuUXwghhBDCmlIKujdtgtu3M3cdoxGGDIFixcDJSX319lYZ0bt2heHD4fhxa5RYCFEQSdCdA+Li4IsvdGzfXtRm90iIS+Dl7re4F1ECgOea72b4xy0tjmn2jD/7T1Snc9M9ANwO9+TX7w+kXu7oOJb+5mexbeN2HwYMUP98hBBCCCHysqRJ1Bo2VF8NBvjxx4xfw2iE116Db74xbwsLg9OnVUb0detg7lzo0AEiIqxSbCFEASNBdw6YNw/GjLFj5Mjq/PlD6kFudkwYtp3tR+oAUNHzCgt/8kVnp0t2nN5Bzxtv2JvW5y90SPWavy09yJ1wDwDqVjuGk5MGwNKlMGaMNUsvhBBCCGF9SVu6J0wwL//wQ8bO1zQYOlRNOwag16vZYapXBzc3y2MvXbK8hxAibe+++y5Dhw41rb/yyitMnjw5x8uxZ88efHx8CLdhlkUJunNARc/rpuXho0tbfVz0ptUHmfKdatXW2yWw8vv7FC9VLNXjn3g+kCqlLgHw94G6XDh6JcXjFi4y/3hM/SSaH37QYfdw0+efw/TPpJ+5EEIIIfKuxJbuwoVVS3TNmmp9+3YVJKdF01S38Xnz1LqdnRoPvnOnCuZDQyEmBg4cUF3OAb78EoKCbPBGhMhB7777Lj4+Pvj4+ODn58eTTz7JnDlzSEhIsOl9Z8+ezZtvvpmhY3MiULYmCbpzQJeepWnlfwiA8zcrMumtvVa9/qixrmiaqsopI7fTpFPtNI+309sx8IWzAGiaHd/NPJPsmGtnb/D7nnoAVPC4yhM9Auja1bJr1Zh3Hfh+2vZk5wohhBBC5La4ODh/Xi17e4NOBy+9ZN6/cmXq52oavPkmfPWVWrezg2XLoGdPy+OcnKBuXRg/Xq0bDKorukFmZxX5XIsWLdi+fTt//vkn/fv3Z86cOXz33XfJjouzYmbBYsWK4erqarXr5SUSdOcAnZ2Oud+64mgfC8D0xc04svO0Va59/dxNQi54AxBY7Tijp7VM5wyl/4ga6O3U06qFG1ry6IOrJXNOmBKo9et2Gr2DWh40CCZ9ZB6wNODdJvR+agd7/jyCZtSy+3aEEEIIIazi3Dlz8Ovjo76++KJ5f2pdzDUNRo2C2bPVuk4HixdbBuyPeucdqFFDLe/da9lIIUR+5OjoiKenJ+XKlePll1+madOm/Pvvv6Yu4V9//TXNmzenQ4cOAFy/fp0333yTRo0aMWjQIIYNG8aVK+betAaDgalTp1K/fn0aNWrEtGnT0DTL2OHR7uVxcXFMnz6dVq1amVrcf/zxR65cuUKfPn0AaNCgAT4+Prz77rsAGI1G5s2bR9u2bfH396dLly788ccfFvfZsmULTz31FP7+/rzyyitcvXrVJt/DpOzTP0RYg2/9qgx/YSNfLO9MgsGB1wZFsy3YiJ0+e889tm48C5QCoEOrm9jpa2TovDLVSvNMZ/jlF7h2zY6NG6FLF7VP02Dhj1VNx/YbXtXi3HEfFubWiS3MWtUKo6Zn+V/NWP4X1K9+jOGD7vHC0PoUKlwoW+9LCCGEECI7ko7n9lbtE3h5qYRqe/eqbuDHj5uDZYCEBMsWbp0Ovv8eevdO+16OjirQbtVKrY8bp7Kaly1rrXcjCozjX8CJL9I/rkRdaPWr5bYtXeDewfTP9R0FNUZlrXypcHJyIjQ0FIBdu3bh6urKokWLAIiPj2fAgAEEBASwdOlSTp8+zebNmxk4cCC//vorjo6OLFy4kLVr1zJlyhSqVavGwoUL+fvvv2ncuHGq9xwzZgxBQUF88MEH+Pr6cuXKFe7fv0+ZMmWYPXs2b7zxBn/88Qeurq4UKqRij3nz5vHrr78yceJEKleuzL59+3jnnXcoUaIEDRs25Pr16wwfPpxevXrRs2dPjhw5wmeffWbV71VKpKU7B/V43YPqZVU/p53H/FkwNftds7ccaWBabvVU6UydO2iQeXn+fPPyjh1w+mpFANo0OEvV2hUtztPZ6fjf8hZ8MnwzJVzvmbbvP12TfmOaU6FsBBOGbCY+VsZ8CyGEEHmV0WAs0L3UUgq6wbLFOmlrd1gYPPOMOeAG+O47eNiglq6WLWHAALUcHg4jR2a6yOJxEB8O0VfTf8WkMK9dzO2MnRtvvXHOmqaxc+dOtm/fTqNGjQBwcXFh0qRJVK9enerVq7Nx40aMRiOTJ0/G29ubcuXKMXnyZK5fv87evWpY7eLFixk8eDDt27enWrVqTJw4kSJFiqR63/Pnz/P7778zZcoUnnzySSpUqECTJk3o1KkTer0et4eZDN3d3fH09KRIkSLExcUxb948pkyZQosWLahQoQLdunWjS5curFq1CoAffviBihUr8u6771K1alW6dOlC165drfb9So0E3TnI0dmRuf8zB6ljP/XnxvlbKR5riM/YYKAt21T2cb0emnb0zVR5OnSA8uXV8saNkNgDZOFC8zGvjqiW4rl2ejs+mN2aK9ecWfjpNgKrmSenvBPuwcRvWvPD7D2ZKo8QQgghcsaMdzajt7ejerlLjBvwH0G7bqEVsPg76XRhid3LQY3L1j2c4OWHH1QPv3PnoGlT+PNPtd3BQXUp798/c/f87DPwUBO/8OOP6vOVEBYcioJzufRfhTyTn1vIM2PnOmR/muLNmzcTGBhI7dq1GTRoEJ06deKNN94AwNvbG0dHR9OxJ06c4NKlS9StW5d69erRv39/mjRpQmxsLJcuXeLBgwfcvn2bOnXqmM6xt7fHz88v2X0THT9+HL1eT4MGDVI95lEXL14kOjqaV199lcDAQNPrl19+4dLDzIlnz57F39/f4ryAgIAM3yOrpHt5DmvbPYA+Hbez5PfmhEYWY9TgHaz4uyQAl07fZ/W3waz+1YN9p2rRo/UuVv/TOMWpvwBu3YJjx9RyvXqQxsOiFOn18Gp/jY8/0WE0wqJp2xk5uTmrV6v9RYtCt25pX8O5iDP9x7ag3zsau/8IYcZnkazZqrqJ7NplIIMPh4UQQgiRQ+7fDOXDWWrS6rM3KjF1YSWmLlStwT17qlfttHOy5guptXSXLQtt2sC//8KZMzBrFkyaBHfuqP0lSsDatarlOrPc3eGLL8yt40OHwtGjKnu6EIDq9p3Vrt+Pdje3oUaNGjFhwgQcHBwoWbIk9vbmsNHZ2dni2KioKGrVqsWMGTMwGAwcP36cGjVqoNfrKVGiRJbun9hdPDOiotQMUfPmzaNUqVIW+5I+JMgN0tKdC2bMq2Hqlv3DpmaMev0aTZpAJe/ivDOjFftO1QLgp81NOLTlRKrX2brVvNy6ddbKMqDXTXQ6IwDfrazMqh8SiIxU+156CVxcMnYdnZ2OJp1qs2hNTdO2oIsBWSuUEEIIIWxmyczDRMcl/wd/6pQKPv39oUXjUP77+VAulM56Elu6S5dWDQlJJe1iPnKkOeD29VXjvbMScCfq3RvatlXLFy/ClClZv5YQucXZ2ZlKlSpRtmxZi4A7JbVq1eLixYu4u7tTqVIlSpcuTaVKlahUqRJFihShSJEieHp6cvjwYdM5CQkJHD16NNVrent7YzQa2bdvX4r7HRxUb19DkqkCqlWrhqOjI9euXTPdP/FVpkwZ0zEhISEW10paLluRoDsXeFZwZ8b4Y6b1/80ry+7dKR+7ZsXNVK+z5VdzQN6qZdb6hFX0KU2HBgcAuHi7PO+ONo8BebV/5q9Z1L0o1R72SA8+7iZTZgghhBB5iGbU+GZpedP65jVBfDXjMq1bm7tcA2zfU4y2PQJpE3CIrb/Y/gOptYWFwc2HH6GStnIn6t5ddSFPql072LUL0+eYrNLp4OuvVXI1UHlzbDy9sRC5qnPnzhQvXpwhQ4awf/9+bt26xd69e5k0aRI3btwAoE+fPsyfP59NmzZx9uxZJk6cmOYc2+XLl6dr166MGzeOTZs2cfnyZfbs2cPGh2M2ypUrh06nY/Pmzdy7d4/IyEhcXV159dVXmTp1KmvXruXSpUscPXqUpUuXsnbtWgBefPFFLly4wGeffca5c+dYv369aZ8t5UjQvXz5ctq2bUvt2rV5/vnnCQ4OTvXYNWvWmCZjT3zVLgh9nB7Rb3QzWrawTDRWuzZ88u5ltv0abGp9XvNnhVSvsWWbqj47nYHmjbKeMGHQQHNkfPeB6gJSq+JpMjGEwkLisIioKDhtnZnRhBBCCGEFm9cGceKKiipb+QfRqmsAQ96uwH//wdWrqqu1T7UH5uMPB9LquTq0q3uQHb+l/vktRZrRmkXPlNS6licqXlwlTUv0+utq/HWxYta5v7e3eVaY27dh82brXFeIvMjZ2Zlly5ZRtmxZ3nzzTd555x3Gjx9PbGysad7tV199lS5dujB27FhefPFFChcuzJNPPpnmdSdMmMBTTz3FhAkT6NixI+PHjyc6OhqAUqVK8cYbb/D555/TtGlTPvnkEwBGjhzJ0KFDmTdvHp06dWLgwIFs3ryZ8g8TWZUtW5bZs2fzzz//8Oyzz7Jy5UreeustG353HtJsbMOGDVqtWrW0n376STt9+rT2wQcfaPXr19fu3LmT4vE///yzVrduXe3WrVum1+3bt1M8NjIyUtu/f78WGRlpy7dgFQkJCdr+/fu1hIQE07abNzXtzTc1beJETTt61PL45n5BmkrtoWnH9pxJdr07V+6Y9terfjTZ/syIi4nTShW7aboeaNqMdzZn+XqTJpmv88MP2SpanpdSvYqCQeq2YJJ6LbikbjOmZ9sd5v/Rs3akeExCXIK29IvtWvWy5yw+G4CmzXn9E00Lel/T7uzTtAcPzDsiIjQtIVbTrv+taftGaNovVTVtOZq2upim/Vpd0/5sqmlbntW03QPV+Y+Kuq5pkVc0LT7KsixZrNdly8xFmz495WOuXNG0YcM0bflyTTMaM3X5DPnxR3MZBg60/vXzM/l9Lbget7rNaDxq80RqixYtomfPnnTv3h2AiRMnsnnzZn7++WcGDx6c4jk6nQ5PzxQy9hUwJUvCl1+mvK/b0/fZfkQtr11+mRoNLfs6bd14GnAHoHWjW0BNssrByYH+XY/x6SKV0M1eH0/vYVm/XtIEgEG7b/HiiyWzfC0hhBBCWMeN87dYs0V1YyvpdptuA+uneJzeQU/vt5rx4rAEVszazsefV+DsjUoATFj+Gq83K43+6GRwbWR54okv4PB7ltviQ9XrQZKub44loM4ky+MOvwfnvn9YgELqGMcS2DkWp0qMEzpdIBSpBsUDwaNhuu81vZZugHLlYM6cdC+VZZ06qQRqkZGwZo2aiuzRLu1CiMeDTYPuuLg4jh49ymuvvWbaZmdnR9OmTTl0KPXkHFFRUbRp0waj0UjNmjUZNWoU1atXT/V4g8FgMYg+L0osX0bL2aVXFUY9nKd9zcaSjP3C8rzN/8aYlpu3KZTt999/RCWmL07AYLTn2eb78SjfMMvXrO1zD1APTYJ2XsJgcM9W2fKyzNaryD+kbgsmqdeCS+o2fQu+OEqCoQ0Ar3Y7gt6xZZrfL51eR6+3mtBzaALPdbjMn9sqcOeBJ7tPN6aZz06MbnWwQ00PajAYoHQH9A+Dbk1nD25+kPAAYm+jezhv8I97enDqXmNGdjSQNDmxXew9TEPKDTEQfQ2ir6EDSgCc2ASAseKLaE2WmU80JmC31hNIkofGqSQnty0CVDY0L48gDDFVwME1a9+4LHJygs6ddaxcace9e/DnnwY6dszRIuRZ8vtacD1udZvR92nToPv+/fsYDAbc3S2DLnd3d86dO5fiOVWqVGHKlCn4+Pjw4MEDFi5cyIsvvsiGDRsoXbp0iuecSvo4M497NFteWgKqRhB0rhYHztRk06//4FGxmGnf5t2q9VinM+JeKZ6goKBsl23uJ4cJOuDIi6+7Zut6mlHDo4iOOw88OHSqIocOBVkkZymIMlOvIn+Rui2YpF4LLqnblBkMMPenJoD67NCqsyFT/+sbt3Xnz21qednJqfjVfY+bsbVIbEQODg7GWKgQFYr1JMK5DuGFm2LQm+cy1Wnx/LXRmfdmqXl6T+pu8OabV037S8VWorBrG+wNYegN4dgbw7E3hGGnxVqU42aEC9eSlltLoF7CA4tjSIjg1HkVYOvtEvA60xD9hXjOlZnC/aLtM/yeraF+fTdWrvQC4Ntv71OmzMUcvX9eJ7+vBZfUraU8N0934iTmSdc7derEypUrGTlyZIrneHt745LRua1yicFgICQkhNq1a6PX6zN0TvdndhM0Sy0fPducN7uo6rp/M5SQi8UBqFPlFE1bN7VKGa05MXxA9SA2HfTgVlhJShdLoEyVUumflIcZjRAfr55aJ5WVehX5g9RtwST1WnBJ3abtt9/gxg31fenQAZ7s0iZT55crBx9/rKFpOrYEt8B1+VZcIyOBNwHw9/d/OBn1ClLq33b6NEyebs7fu359Kb76yhPzdL8Byc7RgLi4CE4F/YdPeUf0URcpWTyQku5JjjUa0G4kDonTAUa0yMucuq4eB1TxPI+jvUpcW8m/I5WKJUnOe/0P7A6NRvNsgVamPZRsC45umfq+pMfXV33fwsN1bN3qTo0axZN9lngcye9rwfW41W1UVFSGGoBtGnQXL14cvV7P3bt3LbbfvXsXDw+PDF3DwcGBGjVqcOnSpVSP0ev1+aZSM1PW7q83Y/zDoHvdr06MGq2Wd/15Bk1T46haN7qBXu9ri6JmS6DfAzYdVMshu69S3qts7hYoGwwG6NpVZTX96iuV4fRR+elnUGSO1G3BJPVacBXkujXEG9i2PoRNv4dSt0Ehug1unOFzv/3WvDx0qB2Z/RaVLg1Nm8KOHXD8uI5z5/RUL2u+iF6vJ7WLxsbCyy9DRIR5W2iojp9+0tOvXzo3dnQl1rECdmUDsEvp+no9PGM51++1KxqRsaqLnY+vHqoNhAen0Rf3A7sk17h/AB6cQPfgBJybDzo9eDSFMk9B2Q5q/LguexP9FC4Mzz4LS5dCWJiOf/7R07lzti5ZoBTk39fH3eNStxl9jzadMszR0ZFatWqxa9cu0zaj0ciuXbssWrPTYjAYOHXq1GORWO1RNWqoJ6QA27eb55vc/E+06ZhWbQulcGbuC6hrzhQStD8y1eNio2KZ9MZmFk/fnhPFypLFi2HDBpV/9K23jJw/ei23iySEEOIxYTTCtm3wRv/zlC95hzbdA5i8oDXdX2vMH8sPZOgaFy7A77+r5YoVyfK44sQpsADWr8/4ee+8A4mpfEol6fj29ddZK0d6Tp02j2nzrlsVGs2HdpvB7pG2prj7YJcks5lmgNvbIPgD+KM+rK8Ox6ZBzO1sladnT/Py6tXZupQQIp+y+Tzd/fv3Z/Xq1axdu5azZ88yYcIEoqOj6datGwBjxozh888/Nx0/Z84ctm/fzuXLlzl69CjvvPMO165d4/nnn7d1UfOkh98mNA3WrVPLW/aas4G36JRKSs5cFtDY/F81KMQx1eNmf7SL8XNa029Mc/77OfXkerklIgLef9+8HhNjx6jXU+91IYQQQlhDTAyMGwcVKkDLljDn+yrcCLUcqjV4ZGnC74ane61vJ+9Ee5hnbPDgVBuk05U06P7114yds3YtzJ6tlp2c4K+/oI4a1s3evXDwYNbKkpaTJ83LPj5pHFjvf9DjPrTaAN5vQJFHPlNFnIOgsbBnYLbK0769ef7vX35RdZtRRiPMn68eXKxZA490HhVC5BM2H9PdqVMn7t27x6xZs7h9+zY1atRgwYIFpu7l169fx87OHPuHh4czfvx4bt++jZubG7Vq1WLlypV4eXnZuqh5UrduMGWKWl6z5BwvvliVQ2dV83ftKmdxL1stjbNzj3dgZQo5RBMT70zQyZQT4AH8tNbcUr/wm3u06Z4Tpcu4z8af48aNqhbb1m1vzJ8r9vPUyylPtSKEEEJk1/Dh8N13ltucHGLp1PgQ1267sueEH5fvlGPMoK18s6ZlqteJi47jux/VDDD2+ngG9H7Aw3zgmebjA9Wrq/HZ27fDvXtpX+niRXj1VfP6zJng7w9DhpiHan3zjWXXd2vIyHRhJvaFoVwn9QKIOA/X/4TLP8MNlTEdr0GW58TcgrDj4NEY9OkP0HZ0VMPUFi2CBw9Ur4OuXdN/H3fvQp8+anhbIp1OfQ9bt4Y2bVR93LkDt26p1+3b6mvlyvDaa1C0aPr3EULkgByaN9wmMjoZeV6Q1YnijUZNq+h5VQNNs9fHacu+j9BUu7emDR9uo8JaSQPvIxpomk5n0B7cC0+2//o1o+m9gKa5OEVo4XeTH5dbLp24qhVyiNJA0xwcErQP3wgyldW73DktNio2y/Uq8j6p24JJ6rXgKkh1++eK/ab/N/b2mta5s6YtW6ZpYffVezt/5LJW2OmB6Zh/fjyY6rV+mLXDdFzPtjuyXbZRo8z/t39YEGFeiYiwOC4uTtMaNzbvfv559ZlG0zQtPFzTihR5+L/fRdNCQ1O/X1bqtVMn832vXMnKu3wo/LSmBU/QNMMj9z49X9OWo2krC2naP+007cgUTbu9W9OMhlQv9ccf5jK9+GL6t969W9MqVtQsPidl9lW6tKYtWWL+vuclBen3VVh63Oo2o/GozbuXi+zR6aBbu9MAJBgc+OAD8zyUrVvnUqEyKLCm6gOlaXYE77yQbP9vGyznEYuKLcxP84NyoGQZ896I88TEq7Sqb/TcxoQv/WlWKxiAU1er8OUHO3OzeEIIIQqgB/ceMOhNczfy2TPu8Ouv0KsXFC2m+oVXrlWez8aax3MPHO5OxP2IZNf658eDDHmvpmn99aHOyY7JrKRdzJO2wD7qgw9g9261XKWK6iKdOH1okSLQu7dajoqCZctSvkZWJbZ0Fy4MZbOTx7WIF9T+yDL5GsDN/9RXQ4xqDT88Dv5qDL8HwKWfQTMmu1TbtpA4g+769ep9p0TTVI+AFi0gMYewp6ca//7221C3LhmehvXGDdVS3ry5bbrxCyEyToLufKDbi8VMyxeuuJqWW6bemyxPCKhjfkAQFJR84viUxoMtXlEk+cZcsPevoyz/qxkAJVzv8cHnAejsdMye64ROp/6Zfjy3PlfP3MjNYgohhChgxg4+xKXb5QFoE3CIwcNTmoALhnzYgpa1gwA4f7Mi44ZYJlX7dtJWOrxUm9DIYgA09ztM664B2S5fs2ZQXM1ayl9/pXzM1q0wbZpadnCAVavA7ZGZuIYMMS9//TWmMefZFRcH58+rZW/vjAeomVKxB1TtBy4VLLeHhsD2HvB7IFxea/GmHBzMeXoiI1WC1keFhcHzz8PIkWqaUlAB86FDqjv+jBlw4IDqdr5uHbz1lgqq334bPvsMFi5UU8Nt3gzPPWe+7s6dUL++uoaMCRdp8fHxSfM1OzFBg8i8HGp5t4nHoXu5pmlaQlyCVtLtlkWXoZo1bVBIK9u5OdRU3kGDLPdFRmpaoUJqX5kyRs2n3FnTsedCLuVOgR8yGoxas1qHTeWZ9f5mi/1Dum8xdxFrt/2x6kLzOHncukc9LqReC66CULf//XzIYsjV2eC0/x+ePnRBc3aMNJ2zdav6zPDWy/9ZfGZ4uvEeqw7f6t37YRlJ3r08MlLTvLzMm6dPT/06zZppFmVPSWbr9fjxzHXjzhajUdPCz2ja6Xma9kcj1eU86SvkE4vDN20yl617d/P2q1c17cMPNa1UKcvu4WPHalp8fNaL98cfmubtbXnNUqU07ezZrF/TWgrC72tBdOvWLdPr+++/1+rWrWuxLSLJMBKj0ajFp/AD+rjVrXQvL0D0Dnqea3PcYlurOsG5VJqMq13PzfSEOSjIct+mdRdN2TufeUZH3x7mjOBLvz6bMwVMxU/zdrPjqD8APuXO8fr4phb7J82ujXsR9ah45aZmHNspU4gJIYTInsiwSAYMK25an/r2fqrWrpDGGeAVUInJ7100rb/6qpHnWh3gfytam7a99fJmftlajyIlrNeTLGkX80eNHw9nzqjlpk1Va2xqEpOpgfWmD8tUErXs0umgSDXwGgztd6ks6CUeJlm1c1St4Um0agUlH05As2ED/PknvPACVKoEH39snhq2eHHVG/DTT8E+GymPn3oKQkJUrwPXhx0lb95UreOG5B0QhcDT09P0KlKkCDqdzrR+7tw56taty5YtW+jWrRu1a9fmwIEDvPvuuwwdOtTiOkuWLKFv376mdaPRyLx582jbti3+/v506dKFP/74I6ffXq6SoDuf6Pa8i8V662bJx27lNa6uKqsmqD/6CQnmfb+uNAfZXdqeo/cQb1O37SVrqqAZrdTPLJNiImMYM6G8aX3G5Ds4ODlYHFOiTHGmjDlqWv9sRnUS4hIQQgghsur9Ifs5d6MSoLqCD/+4RYbOGzG+Bk2aqOUzZ+z4bVdDQGUqn/fJVr5Y3hq9QxbnCEvFU0+p7tKP2rUL/vc/tezkpLo7pzU9WY8e5nHOP/2ksm5nV9LpwmwedCel06kM6E/thVbrIeBTcClvcYj9/R10f1YN5o6JgQ4d1LzdiZ+P9HrVvfzgQejc2TrFcnRU042dPKnG1gPs2GHu/i9y1o8/Qo0aUL58zr1q1FC/X9by+eef8/bbb7Nx40Z80pyTz2zevHmsW7eOiRMnsmHDBvr168c777zD3r17rVewPM7mU4YJ62jT1R83l1DCoooB0LJT/phCLTBQPXWOiVF/8GvVAqPByG/b1C+ps2MUTzxdBucizrQNDOKfgwGcvVGJnTuNNGtui4FYaZv14W4u3GoNQLu6B3j6lQYpHjdgbDO+XXKMA6drcvSSL1M+vsvEqelPGyKEEEI8asdvwcxaqYLsQg7RLFzihp0+Y+0ier0KbgMCIDZWbStWOJSfFp3jiedtk/ylaFE1XdX2JGO6Y2LU9GCJw5g//jidObKBQoXUOdOnqzHMixbB2LHZK1vSlu4MxgPWpdNBuWeSb4+PgO3P80LZOnzN7xa7SpZU86e/9poKkmyhbFlYulTlAzIa4cMPVdAfGGib+4mUTZ8OJ07kzn179LDOtUaMGEGzZs0yfHxcXBzz5s1j0aJFBD78gatQoQIHDhxg1apVNGzY0DoFy+Mk6M4nHJ0dGdVvJx991ZoerXdRukqT3C5ShgT43GQVKgtr0D/7qFWrAfs2HeNmqB8A7RuG4FykEQB936zDPw97oixeYkez5jlb1uN7zzJxrgqy7XQGPp9ZBJ1dyoG/3kHPnFlGmnRU6x9/6k5RD5XMRAghbCXifgSF3Qqn+rdJ5G0xkTGcOxHOrQclzfMq3zSw7FtXEkf8TRq5h+qBrTN1XV9f+PxzNbe3jw+sW63D17+u9d9AEp07WwbdU6aYg4kGDWDUqIxdZ/BgFRAAzJunWmXtMvC8ITpatbY/2v0611q603N8OkRfp7nXTZpU38mu001pXPcuw98qQY/ndTjlwHP7Zs3UQ42pU1Xreq9eKjGbc/aT2osMGjNGDcF48CDn7lmkiPq9spbatWtn6viLFy8SHR3Nq6++arE9Pj6eGjVqWK9geZwE3fnIh3NbM/S9u7iXbZzbRcmwAO/LkBh074+kF/Drj3dM+7s8HWda7tZdx9BhEBGhMp3OnJlz/wiio6Fn39JExRYG4LVuO/BvnnYLQeMOfkyZYmTcOPXpYPRo9UEhrfFrQgiRFZpR440XtzL3x1YMfm4r89bm8ekrRDLH956l5ZNu3Akv+cgePVAVgEa+Rxg5OWPdyh81bJjqmlyiBNjbu6V/QjZ17gxj3zCvf/ml+urgoFqsMzoW2csL2rdXmdDPn4cvvlAPsFPLOq5p6vojR6p7TZigMqEn3i+xpbt0adUin2d4D4eYm+jPfMu2D1tw54EHpdxugUdTCJ8Onk3Tv4YVTJigxpIfPAjHj8O776rPWyJn9OhhvRbn3OL8yIdznU6H9sj0A4YkSQOiHs6PN2/ePEqVKmVxnKOjo41KmffImO58xqO8e75q4QhoWtG0HHRUJXH5dVM5AHQ6I0+/6GvaX7iw+Q9ReDj88kvOlfOtt+DICRVw16p6lRkL62fovDFjNF5//appfdQomP3RHpuUUQjx+Fo0bRtzf2wFwLfrWvLj17tyuUQiM+Ki4+j1chx3wj1SPaZY4VAWLXbO1vjrkiWzl3grMypVgtp+5nXDw6mpP/xQDSXLjGHDzMvvvAMvv5xyS2BkJPTvDwMGqP337sGIEWru6i1b1JRbicnI8lQrN0AhT2j4DXQ8iL50CxVwA9zZCX83g23dIfxU2tewAkdH1c28UCG1PmsW/P23zW8rCrASJUpw+/Zti20XL5oTPFarVg1HR0euXbtGpUqVLF5lypTJ6eLmGgm6hU2VrlKSUsXUP5agM5U4F3KJIxdVdrVGvscoVdnT4vgkiQ5ZPOd0jpRx1SrVpQ1Uy/qqX8vhUtQl7ZOSGDjwBh9+aDStj/i4EV99tMXaxRRCPKaO7jrD8I8sHwQOe9eL25fvpHKGyGsmvrGTQ2dVN8qqpc4z5h0j06fD4sWwcSPs33qFy5ftqdGwWi6XNHOeftpyPTAwa2OyO3dWvcUSrVyp5pUOCTFvO34cGjVS37NHhYRA69aWycfyXNCdqHgAPPEftPwViibpWnt5DWyoCRdX27wINWuqeb0T9eunHmAIkRWNGzfmyJEjrFu3jgsXLjB79mwuX75s2u/q6sqrr77K1KlTWbt2LZcuXeLo0aMsXbqUtWvX5mLJc5YE3cLmAqqrTOV3wj34evo50/Yu7ZN/YGzZEiqVVFNw/bWzKtfO3rRp2c4eD2PQIHOXmDlzMv+EHuDDDzXGD9ltWh/2cSvmfbLVGkUUQjzGoqKgZ7/SRMepB4HFCocCcDvckzdfPZnGmSKv2PFbMJ8uVF3GHfRx/LQyls+m2TF6tJq6qWNHqNeiPK7FXXO5pJmXNOi216tu3yllNU+PTqfGdf/0k7lL+KlTiUG2jt9/L0HjxnYcfThxiKsr/PCDypZer575Otu2mZdzJYlaRul0UL4zdAqGht9CodJqu94FSrXOkSIMHw5PPqmWr11TXfSFyIoWLVowdOhQpk+fTo8ePYiKiqJFC8thMiNHjmTo0KHMmzePTp06MXDgQDZv3kx5W2UOzItyZtpw28joZOR5weM2UXxS7/b/V1OjsDTNxSnCtHxk5+kUjx8/+D/TMdPe3myzcsVExmj1qh813atXL00zGjN3jaT1ajQYtXEDzO8VNG3D4r22Kbywucf5d7Ygy2/1OmCA+e+Jv9dF7fyRy1rxwvdM29Yt2J1rZYuJjNEiw/LO/9+8WLfhd8O1KqUumupr6sh/c7tIVmUIjzD9gM75LMIq1zxzRtMCAzWL/6VJX35+mnbihPn4hARN+/ZbTfPwsDzul1+sUpycER+hacEfa9rxL5Lvy+wHk0y4ckXTihc3f882bbLZrZLJi7+vwjoet7rNaDwqLd3C5gLqmpMkJCYqq1r6IjUbpdyNrs+QKqbl738sR1R4lE3K9e7AXRw4XROA6uWu8PXXqSduyQidnY5J37ZmbL/Npm3fzDOmfoIQQqRhxQr47ju17OICq9ZXpHKt8sz8+KjpmNdHV+be9fs5XraTB85RuVwoZcvE88+PB3P8/vnFyL5BnL+pcps09zvMO9MKVgK8pFnGk47Lzo5q1WDnTjV91qP694c9eyxbsfV6GDRItYwPH67WK1eGtm2tU54cYV8Yao8H30cyscaFwV+N4epvNrltuXKWSdQmTjRP+SaEsC4JuoXNBTRJniShS5sLqSaE8wqoRLNawQAcu+RF1UoRfPneFqIfRFutTL8u3MOXP7QGwNE+llXLIihSJPvX1dnpmPpdK0oXU93i/z1Qi9io2OxfWAjxWDl9LMIi6Pj6azUtFEDvkc14uvFeAG6EluKtt7OeeCsr4qLj6PVSDDdCSxEW5cZzfapz4N/jOVqG/GDdgj0s/E11sXQt9IAlP5TIVpK0x0mhQvDNN7BsGRQtquHiYmDBAiMLF6oHUCkpXhxmz4bQUDV1mWv+662f3KG34e5e2NIZdvaxSaK1l182/23Ztk0lpBNCWJ8E3cLmvPwr4eIUabGtc/+GaZ4z4cME9HYJANwMLclbn7aiWqUwZn+whZjImGyX6Z0PzVO2fDFuN4GtfdM4OnN0djqeaqqSwEXGurJj49F0zhBCWJvRmLPzoFpTbFQML3S5TESEWu/bV439TaSz0zFvaQWKuqq/hUt+KMrGjTlXvk/e3GnqJQQQEVOEjl09OH3oQpau9+AB3Lmj6qyguHH+FoPeNvfmmjUhiCp+FXKxRPlTr15w7ZqRv/46TL9+GWuCdXUlR+a8tjljPERfN69fWAq/+cA/beHiKjDEpX5uJuj1at7oRBMnWuWyQohHSNAtbE7voMe/ijmBmpubRovWaU/A3a5nXQ5vv8DzbczT4ly/X5oRk1vhVTWGJUuyXp5rZ29w6qrqwt7Q5whDP7J+d78OHcy/Wr//Gm716wshUhYTo6bAKVcO3N1h/frcLlHmjR+y25Tp2qfCFebMSX5MOa8yfPFlIdP64MFquiRb27khhCkLVOutvT6ewGqqhft2uCftOzpw7WrG+6aePg2vvALFioGnp0rAVar4XfwqnaZt4CFefGIny/63A82Yv/q7xsXBgEF60/RgXVvspt87zXO5VPlXoUJQqFD++hmwCjsHaPUbNFoIDkkmHL/5H+x4EdaVh0Nj4cHZbN/qhRfM2d43b4atkgdWCKuToFvkiMBA8z/MTh0NGcpuWquJF6v/bcLhbafo2sKcGfzqrWL07avm5kxIyHxZdv193rTctukdm8x7/mR3X+x0BgD+2FrO6tcXQliKiTIwZ44aD/rmm3DjBsTHw9wpx3K7aJly99o95qxUPYGcHGJYvSIq1W6yr74K7dur5atX4aXu9wi9ZbvIO+L+A14ZWBSjprpITxi6g393lqV2ZdXl9cLNcnToqCM0NO3rnD18kX5Pb8fX18iyZeYWbqMRboW6c/RSdf4LCmTVv015ZVQzOjQ6wOWT12z2vqzp8GGVcXvjP+4AlCoRyrzlXjb5PyMeAzodVOsPnc9C4HQoUt28L/Y2HJ8Gv3nDtT+ydRu9Hj74wLz+8cfZupwQIgUSdIsc0expf9Ny9x72mTrXv7k3a7Y25uB/J+jcxhwwz56t5uTMbOvOju3mLlnNWmV8Pu7McC9bgoY+6sP+kYvVuXIuB5qghHgMxUbF8vXErXhVvMUbb6ipb5LadqhSvsqrMH96sGl6sNe67cG/eeqTDet08O235rGrv/9Tgrr+YTYbX/3WyATO3agEQNOawYyd0ZxiJd34Y5MblSvFA2q+5M6dIfqRFBwxkTEc23OGV5/Zhk/dcize2ByjUX0EKVECOnSA+vUMVPS8QiEHy5P/2l8fv8DCfD9te55t9U6IS2DSh/dp0ACCgtQ2e3tYvKIYnhU8crVsogAo5AE1RsMzJ6HtP1Cxp2oJB3CpaJVpxl56Cby81PI//8COHdm+pBAiCQm6RY544QWYPBm++AK6dcvaNQJb+/Lrv1X47jv1YQbgjz+gWd2rnD9yOcPX2XnA3bTc+ImUM6hbQ4dnzM1Tf/7nZrP7CPG4iouOo039Uwyd0JKrd80JG597Dto1OAKoGRN2/5k/knzFx8YzZ4lKy6zTGRnxXuV0z6lUCdasgeJF1DCW8zcr0vSpqnzz8RarBqi//goLlhQHwNUlhiUr3LB3VH+Iy1YrxV9/O+DpqY7dvh0a+V2gac0Qqpe9gJtLGM6uhajV2ItFG1pgMKrzihe+z+Rxl7hwAX7/Hfbt13PxVnmiYgrx4F4E67/fS7kSakxreLQb/cc2p0vzfVw/d9Nq78saju05QxO/U4z/pDjx6tkDtWvD3r3w1FO5WzZRwOh0ULotNF8Fz12B2h9DvS9BX8jyuPCTmb60vT28/755XVq7hbAuCbpFjrC3h3Hj4K23sjctF6gulX//DSVKqA+UR8+Vo2EzZ3b8FpzuudEPojl4WrUc+ZQ7h0d593TOyLoOPcxTn/3+u81uI8Rja/6nu9h1vLZpvXPTvRzYl8DatfDKC+beJf/8EZoLpcu8n+bt4+o99fCgS7N9VKtTKUPnPfkkHNoTTkMf9aAhLsGJIR+1otdTO3lwL/vZ5G7ehIEDzetfziqUrGzVq6u/c4mt7iHnKrPreG3OXK9MeLTlQ0c3lzA+HraZ8+ftGDf5/+3deXhM1xvA8e/MZA9JyGKvPbEkJPYlJNZSe1HV1lJaLVWqlP7UvhddKC2lVa1qq1pKSxUVu1pDQuz7HrFE9mTm/v64MmNkkZDJJPF+niePO/eee+eMk5nMe88573kuzcoRGq2GQkUK0b5PPcIjnOjddofx2J+761Hd34nvv7f+0kb6ZD0zh28lILAM+x8kltNqDYweDfv2QUCAdesnCjgHL3WZsdKdzPdHn4J1frClLdzL3g3HV1+F8g++uvzzD+zZk3l5IUTWSdAt8qXgYNiz9Q7epdTh5reiPWjexYcV83dlet7+XXdJ1qvrhjcOuGLROtapoyZyAvUmQWoPiBDi6cXciWHSHFMG7Q3LD7BmZz1q1VF7UVt0Mo1i2bTdcjfXcopiUPhsvik4fW9Y9tIvl61amu2HvBnysmm9n582NaZujUhmDAth7ZK9nAu/nO0M4YpB4c03FSIj1ccdO6o3PtNTuzb88Yf5Uk1FnNXP6UDfw3RpsodpQ0M4fw7GzgvG1fPxI4DcvFxZui6QP775j2JuNwG4c78wffpAkyZw6FDG5yYnJrNi/i7e7bE1Szdls+PkwXM0qXmMUZ8GkZSitlWV0mfY/fdxpk4tINmzRf50aLia+fza32rwvX8oJN3J0qm2ttLbLYSl5ErQ/eOPP9K8eXP8/Pzo3r07R45k/sdv/fr1tGnTBj8/Pzp06MBWWTRQpKOyb1H2HChC84CDgNq78/rwmtyLzHj+9K5Q0xDURu1qWrR+Op0pyVF0NPz3n0WfTohnyqdj9nPznjqeuXuz3bTuWdvseKlKxalSWs3qu/dEVaKj8vYqArvXh7PvZHUAalY4QVDn7H8+2TnaMeenIH79cjeFHdXXe+JKBf73eTAd+9Wjgl9pXFygbl14+224du0xFwTWLdvP2rXq8CQvL1i0KPPRSs2bq9e9ciaKxLgkbscU4cTl8mwPq8nv2xrwv8+DcfPK/nSbjv3qc/SoDS93Mt0s3blTDfQH9rtF1NXbxv3Xz99k0jshlCt5ix6DGzFvRRBNO1Vn2lTlqZclM+gNfP6/rdRsUNw4ykKjMTCiVwiHjpeiXqtqj7mCEBakKFDuVXWeN4Cih5NzYU0lODkfDI/PPturlzptBdTRK3v3WrC+QjxDLB50r1u3junTp/POO++watUqqlSpQv/+/YmKikq3/MGDBxk+fDjdunVj9erVtGjRgnfeeYeTJ09auqoiHypSzI2/d/vROVAdAxWX6Mz6nzNeF3vXQx3hjYJcMiyXU9q0iDFu//39dos/nxDPgpsXI5n1rRpk67QpTP2kRLrlWjRUAzS9wYata47nWv2exOefmD4rhr0d+VTZrrsNbMjBXXeoVSnt0NLYWNi/HxYuhP79M7+OYlCY9rGpy3be7Bt4eT3++QsVgpIV3LFztMtu1TPlXrIoP60uxd9/m5Y3UhRYsMSDyt4aZo3YxvT3oynv4874L4O5etv0e2Ew6PhojIb27SGDrx+AmhDt8qlrxNy5n2ZO/JkjFwkOCGPYjCASktVlLyuVOM/2NeHM+j4YB2eH9C4pRO7RaKBsD2h/XJ3vrXuQLDbpNuwfDOv94fqmTC9hZ6dOB0z17ruwdCkcOABxcZaruhAFnUZRLDsrqnv37vj5+TFu3DgADAYDQUFB9OrViwEDBqQp/9577xEfH8/ChQuN+1566SWqVKnCpEfGucTFxREREYG3tzdOTpbJQp1T9Ho9YWFh+Pn5odPprF2dAuff3w7RukcdAF5qvovl/9RPU0ZRoEQJLbduaShaVOH6dQPap7zt9Lh2vXHhJqUqql/8alWKYO/xjDMRZ9Xdm/eYO/EwZcvr6DOi8VNfT6RP3rNqDgQbOxts7bOwxl8ueu+V7cxbEQzA2y9uZd6K9NdA/uObvXR9qyEAQ14O4dNlTfJku164AJUrazAYtBRzu8nZi4Wwd3r68ckGvYGwXac5FhrF0SPJHL3kzbFzJTl7FhRFDeq3brxF42ZF0j1/25rDNH+xFgDVnzvFoVPl0Oryxqy0pCSYO1fDlEnJxMSl/3+l1ejpFLiXcpWc+fw7P+NrLlNGYfmyRBo2Vn+vU5JS2LY2jF+Xx7FqSzXj+toO9nq8imnx9AQPdz07tiUSm+BsvP67PUKY8mVtnF3z9vcPi4qNReeqjlzQ37sHzs6POSH78uJ7Nt+Iu4zmyGi0F5ab7VZKdsBQbxHYp59ZPykJfHy0XLpkfvNPo1EoXx6qV4c33zTwwgtPXjVp14LrWWvbuLg4Tp48SdWqVTONR7O3dlM2JSUlcfToUd566y3jPq1WS6NGjTiUwUSs0NBQ+vbta7YvMDCQTZsyvjOXn3rBw8LCrF2FAsnlOQNFnO9wJ7YI63f7sm/PPmwdzAOFC+dtuXVLXbqsWrV7HDlyJseeP7N29a9wm9Cz1Tl4uipbN4TgWqxwhmUf5+6NaIa9U5yw880AcC7yF5VqF3/i64nHexbfs0lJGr77yobvfvKhjMdV5s49TbEKRa1dLQBunL3Nwt+CAHCyj6VbfwOhqWs0PcKzoh6tRo9B0bF5Zwmzcg+3q2JQ2PDjJWLva+n0ZnFsbC36pzGNOXNKYTCo7+Ou3SKJOJn11RgeqzBUbeJI1SaOdOM6cJ0//ijK5MlqtqQxw87x2XcX0j116mRTIor+rxzlSFjeGqLfsiXUqn6fRZ8Y+DWkuXG/R+Fb9HxhD+1edsSjjBuQTKU6pxgzpjx37thy6ZKGZs11DHl5Hbfv2LFuZwA379VJc/2ERB0XL8LFi6B+XVJ/L8p6XmTSmFCqNy7FqXP55/uHJWjj40nNF3fkyBEMjo4We65n8bM4Rzi8j/NzrShzczbOCepIwIRbYRw7dh40lzM87e23izB2bHkMBlPgrSgazp6Fs2dh7VodU6acpU2brM0Xz4i0a8ElbWvOot8s7ty5g16vx93dPImNu7s7Z8+eTfecW7du4eHhkab8rVu3Mnwe6ekWAO0Cd7NsQyD34124fU7D8z39zY4f3mRadLJN02j8/c2PP4mstGvb4G2EnlXnal46piXoefPnTUlKYf6EXcTGwlujfHEvmX5wcy78Ej36e3Dmuilr8InDTnTr//SvQ6T1rL5nDx2Ct97SEhamftE6c708Q4Zo2brDjuLlsjC22MJem3jBmAzx/d57CX6+aabl63hHsPeEL0cv+VDc7RqeZdzTtOsv8/cwZk4XABwdtzB6TubXzEkxMbBmjdp7bGenMGZSlSwN4X4avtVS+GnxeU5fK8f28LrcPrOf5l3NU20fDDnO5kPqEP5yXpcYNK6tcYmwPMUfmreFwX+F8ssPd6lY6Q5vjGyBs0tb82L+6vrhr7xiYMcOLSl6Wz79sUOayznZxxJU8xiJSTpuJvkSGWVLZCQYDBq0WoU3uoby8fzyFC7aLndeX14XG2vcrFGjhvR051n+oLyK4cJyNEdGY1f3C/xLPHKjSVHMEjb4+0PfvgYOHYJjxzQcOwbh4RoiIiA2Vi03cWJ5atUqa8xfkx3SrgXXs9a2qT3dj5MH/4Jmn06nyzeNmp/qmt90edGGZRvU7bWrEnnhNfP/5927TH9MAuvcRqd7LseeO7N2bdupKNO/Vbf/+UdHnxGmcopB4a1u+1i6Tu25/nzpbaaM2MmA0Y3R2ZrKHd19mtbtnc3mKAJs3e3KOPl9sqhn5T2bnGRg2nQtU/ceFAUAAELsSURBVKZAyiO5ds5cL0v71scJ2eOUpYzTlnLwIPy8tgIAHm73+WB67ce2TYvgJPY+WLJ26253epRTy6e2q2JQmDXHNLz6s+9qMnRiLC7u2c/5cOtyFJ+OD6NqdRt6vZ/+kPdH/fAD3HuQ+/HVVzWUKGH53zWdo46Jo67w6nvlABg/wZ6W3bRm88hnTjH1ao8cdA57xzIWr9fTaNrRn8bt9ISGhuLs4pzu70WZMrBlcwpj3trGx98FG/c72MbTrlEoL3VXaPdaTZxd65qdZzDA7dtgZ6fBxUXWATPz0P+zTqcze5zzT/VsfBZbjg4q9oGyL6GzeWREwp0j8F9/qPsluJt+/0uWVH/aPXSPyWCAgQPh668hOVlD9+46/v0X6tV7wlpJuxZYz0rbZvU1WnRyVpEiRdDpdGmSpkVFRaXpzU7l4eGRplc7s/JCpHq+hx8OtvEA/LGjdpostamZy210ydRt8fRzq7OqwfPVcHFUv1Vv2FMFfbLeeGzU61tZus705fx2TFEGTWhKnSqn2LFWzfL/365kmj7vbgy4q5Q+Q3G3GwDsPlqFpPik3HopooAK23mS+tVOMmGCKeCuWRPW/X6LMh5qMrLQs1Xo3OosCbEJVqvnhx+atsdOLJylwLjlS7WM25v+TZvYa/PKQ4SeNWWcvhNblHlzsv+eunTiKoEN7jH922B6Dw9kz9/hjz3HoDcwZ6bp791772X7aZ9Yj0ENqP7cKQB2R/ixftl+47ETB87y21Y1L0Yxt5u8PuIJv03nQTZ2NsxYEsw/Px1gULetLJ+zi8gbelaGNOSldxrh7Jq2p1arBQ8PcLF87k0hLO/RgFtR4OB7cHs/bKgP+4dAcsZTSbRa+PJLePFF9XFsLLzwAhzP27kqhbA6iwbddnZ2VK9end27dxv3GQwGdu/eTUBA+neL/f392bNnj9m+Xbt25chQYFGwObs606q1erfp2k1n9u0zHbtz4y7HLlYCIKDiSZxccm86gq29La3qHQMg6r47B7aoGYU/GRnCrO+DATXhT9t6pgqHnq1Ck441ePFFaNHaltv31Z64OpWPsX23G60aqF+W45Oc2LdZ/tKJJxfyeyh1gsty6EwVAHQ6hbFj1WVi2nbx4J91ibgXVm+chhwO4NUXQs1uHOWWjRvVH4Dy5eGhVCGZatQIHB4kld60Sf1++bBZs9KuIfXJfA/u38963U4cOEvjQIUTVyoY9y2c9/h5juuW7ef0JfWGcvN6Z6hRI+vP+bR0tjomfWS6IT5mUiFjtu6ZE66gKOrXg/f7HSuQWblbvVyb+b8G0XNIIwoVKfT4E4QoqJLuQGLqzT8FTn4Bf1aDS6szPEWngx9/hOBg9XFUFDz/PFzOeIq4EM88i6chff3111mxYgWrVq3izJkzTJgwgfj4eF58cIts5MiRfPLJJ8byvXv3Zvv27Xz77becOXOGL774gvDwcF577TVLV1UUAJ1fNPVkrV5t2r97wynjdqPaGecHsJQ2rU0Jif7+I5LvPz/IiFnBxn1fTdzJuv/qsmPtEfwrmILoVatMU+aaNb7Dv3tK41HanaCWpuGwWw9Xt3j9RcF058ZdXnuzGEkpavbnas+dZs+mS0yapC4bA1ClbgXWrbyOs726pNXv2xow6KWdaZZTsiTFoPC/9yONjydPBvssJvd2cIDAB4NJLl2C06dNx47sOME/+9V5jeWLXaTny2oAfvu22pOTFQe3RBDY3IVLt0qZ7f9lY23uRd7L9NxPPzclexw2KJN1rCykyxv1Caio3gQ8dKYqvy/6j0snrvL9+gYAuDnf5e3RtTK7hBAiv7MvCm0OgP/HoHvQCx5/BbZ3gW2dIfZiuqc5OMAff6hzv0FNOPj88+rnpxAiLYsH3S+88AKjRo1i7ty5dOrUiYiICBYvXmwcLn7t2jUiI01fpmrVqsXs2bP55Zdf6NSpExs2bGD+/Pl4e+fecGCRf3XogHEZsIeD7l3bTcleGgXm7NqxWfF810rG7YW/+NJvhGmkx6R3QhgwVk3c1Lh9DfYfr8xXM89Q9KF8ap06wbpNRShcVB3fGNTJFGhv3Vbw58sIy3jntaNceTBtoXnAQQ4cK02d4LS5Duq1rs7vS05go1NvHn29uilDe4YQFZmcpqwl/L18PwfCPQGoWe0ePXtm7/wWLUzb/6423dSaPdX0t+f9N88xfoLWmEdo9myzHFHp2roqlOB2pYxLTNUsf4KXW6oju+KTnFi+IuMe1AP/RrAlVP0cqFzyHC+8ljZ7tqVptBqmjDOtDz5umgczZ0KKXr0ZMPiV0Cea2y6EyGe0tlBtJLQ7CiXamPZf/gPWVISdPSFyd5rTXFzg77+hYkX18bFj6veV5Nz50yBE/qLkY7Gxscr+/fuV2NhYa1flsVJSUpT9+/crKSkp1q5KgdekiaKog0gVJeLQTUVRFKWZ/0Hjvksnr+bYc2WnXas/d9JYh9Sfwb0iFIPekG75W7cUZfJkRfnsM0VJTjY/ZjAoSsmS6jWcnRUlKSkHXowwU9Dfs8vn7DT+Hro538nS++Lhc0BRHBwMSr9+inLwYNqyBr1BOfbfaWX+uBDlne4hSsjvh564roG+ocbn/P3r3dk+f++m48bzuwbtUvbv36+cO3ZRsdElKaAoRQtFKTF3YxRFUZSePU2vb9bowxlec83yM4qDbZyxbKBvqHLnxl0l9JDeuM/fX32vpqdHc9P/5YJJW7P9mnKKQW9QGlY9kuazyckxWYm8FGm1ej2Jgv6ezZNiYky/NDExFnkKaddcZjAoyvmfFeW3YoryI6afrV0yPOXMGUUpVsz0q/Dhh49/GmnXgutZa9usxqMW7+kWIrd1bmEaP/rH90dJTkzmvwh1pMRznpcpXblERqdaVNvnzZMz9egBc76rYpYx+GHu7jBmjJpcyeaRdQY0GtNcqthYOHAg5+srCq5LJ64yaLQpediX045l6X3Rc0gj5o/bilajzulOSNDw7bdQqxY0bgw/fLqThZNCeLnFLkq4R1KtfkXemRTE/F+DeKFnZa6euZ7tum5fc5gd4TUBqFrmDJ36ZT+pV62mlXBzvgvAlgM+GPR65s53NPboDup5xJhAa8z/ktBo1GHms+aXIC46zuxaigKffw5depUnIVkditm23j427KyMm5crNf211H2Q/Dc0NP335vmjl/l1i5qozNMlkt7v1U1bKJdotBqmTEpJs//NATZ4lJYEpkI8czQaKNsD2h+H6h+B/YPPAZ93zcspCqSow4EqVIA1a0zfVWbMgA0bcrHOQuQDEnSLAqdTZ9M8ydXr3Tmy8zRxieoX6kY10p+blBs69zENCW/ZEpYuNQ2FfxJBTUzJrLb+EfY0VRPPEIPewOs9r3E31g2Ani130nNIoyyfP2hiEMcPXOK9Icm4PrR62K5d0Ht4Y94eH8wv/zbixl3zxabjEp2Z9MHj17F81PSppptVHw65ilaX/TeNzlZHs1rqsPLbMUU5+t89Fn/vDoC9vYHBH/kZy1bzs6N7MzWZ5817niycZkpwePcudO0Kw4aBXq/eLOv5wjFWh9Q0S8745pum5160KG19Ppt8BoOiTgt5t9dRHAs7pi2Ui5p3C6CZ/yHjY1tbGD7cihUSQlifnRvUnAKdL0HgCvAKNj9+dT38UR6OzwF9IvXqqcF2ql694OrV3KywEHmbBN2iwKlYsyy+ZdXEaXuO+/HbjzeMxxo3tN5Eo8aNYckSmDpVnW+e1URQGQmqe8G4vfVf6y3jJPKXuWO2s/lQbQBKu19l/rLsJ+KrHFCOz+bYcuUKLFwIfn5pyxR2jKZdg73MGBZiXDJv8R+NOBF6I23hDIRuO8H6vWovcFnPS/R8t0G265qqZbNE4/b46QHcv68GzX36aClW1t2s7JhJnsbtmQurEH8/noNbIqjtH8eqVaZyo0bBsrXVsHM0zxPx8stQqJCaaG75D/HE3DHNm7597Q6LV6vztx3t4hg0OhdTlmdiyhemRuzdW13TWggh0DnAc90xJrwAUAxweDQkRqrLja31hrPfMWyo3rimd2QkvPYa6HN/sQsh8iQJukWB1Ln1FeP258sbG7cbta6QXvFc07cvjB4NzmmXgs0274DyFHO7CcD2I1VISUo7RFSIhx09Ch9+ano/fPfVdYoUc3vi6zk7w4ABcPgwbF19hA96hzBjWAj/bTjK7btO/Lm7HqM+DWbkGwcB0Bts+GhKsSxff8ZEU0bvEW+dxdbeNpPSmWvR0RRFXrymDpfUaOD999OW9Wtcma5BatKg63eL0aPNERo9X56zF9Te7CJFYO1atVcnvdEqhQtDz1Zqb3lMvCO/LDD1Ii+YEWocedOv0z7cSxZNewEraBRow++/w8SJMHeutWsjhMjTku+DSxXT47iLsOd1tH/78d30DZR6sJjDli1qR4MQQoJuUUB1ftn0xT4+Qf2i7uwMNRoWnO4bjVZDcC11/npMQmEObU1/6G5UFIwcCX/9lZu1E3nNtWtqr0Nikjrpblifg7TonjPLQWk00LRTDWYuDWbUp8HUa10dGztTIoL3pjaheHG15/e332DPnsdf89Sh88Z5z16ukfQf+XTznr0DylPa3XysY8eO4OOTfvmxk03B8Npd9UlMVteqrlvtHAcPQvv2mT/fmwNNWb8Xfa8u8ZeQAHN/UHu2tRo9748tn92XYVFdusC4ceDk9PiyQohnmJ0rBP4MbQ5Cibam/dEReIS14adRH6HVqp/5EydCSIh1qilEXiJBtyiQagVXSfMFu379tAnJ8rugpqbe7a3/3ExzXFHUhG2zZqnLeJw5k5u1E3nB9XM3GTbwJhUqqIm9AKpXh2kLcm/9ZefCNowfbxqaOGqU+ruZmZkTLhrnPb/X9yiOhZ8uEtRoNbSob/4G+GDI3QzL12ziQ+dA87sD7/bYyo79pShX7vHPV6dFNWqWPwHAf8d9Cdt5kmXL4MYddSh711bHqeCXdnk2IYTIN4oGQLN10HIbeJpGUTVxn8bEbpMBMBjglVfU4eZCPMsk6BYFkkaroXOLU2b7GmU9V1S+EdSmpHF76860QcnGjbB5s7qt18NXs62XSE7krpsXIxnRK4QKVQrx+QIvEh5M+3dzgx9/BAeH3K1P//5QubK6vW0brF91K8Oyl8/FsPQvdf62i+M9Bn0UkGHZ7GjZwhTpN/TeS+PmbpmWn/aJJ0Wc71DE+Q4rvtzN3J+D0szfzohGq+HNXqZs7QvnXGf2bNPxD6Zkfy69EELkSV5NoOV2aLQcHNSRhv/rMJEWAerUomvXoG1bOHHCmpUUwrok6BYFVuduhc0eN25Y8OY8V61bEU8X9fbxtlAf9MmmjCUGvYFRI80Tx33zgwux92JztY4idxn0Bsa/HUJ5byc+WRZMfJJ6M8bRIYXhw9UvPTVr5n69bG1h2lRT0Pvh8Ntmv68P+/SLQiTr1eD2nVfDcfV0TbdcdnXs40+lEuext01g6ozHzw+vWq8i1246cfWGI90HNsz28736jj+OduqSY1+tbGz8wtm0KcZlxYQQokDQaKBcT3WpsUpvo7O1Y9kvrng9WMjiwAHw9zfw2dRLGFIyzq6WnAzXs7+6pBB5ngTdosBq2tEPN6c7xscN6hS8YFOj1RD0YF53dLwrh3eY5nX/PG8PoYfNA4u7sW4snyeLehdkG385yKSFwcZkXQ628Qx7JYSzx24zezbGL0DW0LUr1PMJByDsvDc/ztmdpkxUlJoRHdTe+PemNk5T5km5uLsQfqYE/24+RNOOWcsabu9kj4Pzkw0LcPNypXsLtacndag8wAcfPNHlhBAi77Nzg3pfQcdzFK9ckb//No1ySkjQ8v6YMgTX+I9zK97F4+5KiL9KSoo6Mu/NN6F4cShRQk08m5iY2RMJkb9I0C0KLFt7W0YNOIxGY6B/h+24eeVMb1leExRoWsd46wZ1OabEuCQ+mmZKGjf9vRDj9heLi6MYHjOhVuRbG9eblqfq88IOzh6P5tMfgyle3orR9gMarYaPp5lGnIydWY6E2AQS4xI5vP0ky+fs4s1e14lTO4d5442cv0lgY2eDvVPWhojnhIcTqgFU9Y7nhRdy7emFEMI6HIsDEBCg5hMZOtR0aHtEI2q+PovlX8OgTuso4XGX1q1h8WK4fVsts3QptGghc8FFwSFBtyjQPvwsmPt34lm8pom1q2IxQW1KGLe37lB75BZO3c35m2rQ3bLWAT78LJiGVcMAtYdx+9ojuV9RkSu2/meKUmcvrEqJCllfois3BL/oT9t6+wC4GFmais/dwbmwDv+m3rz6XiNWrVe/qNnYwIgR1qxpzmjczo+qpU0TGUf03ZfuMmNCCFFQOTnB559DyLI1lC+hdg7EJTozesV0vv73LW7dczOWdXaIx9FBHX6+c6eaBPfoUStUWogcJn/6RYHn7JoDi2LnYdUbVKJo4bsAbAsP4G5kNJPnmZI0zZilzukd/Fa0cd8Xn8flah1F7oiOiubgaXUNLN+yp/Ao7W7lGqVv+mwXNBoDAFdvl0BvSLuswPvvQ9myuV2znKfRapg55R46bQpNfA/z6tD61q6SEEJYRdCrHTlyshiDBhrM9jvaxdGt3q/8OqQbN790Z/vKfyn5IE/suXNqItwNG6xQYSFykATdQuRzWp2WoJZuANy5Z0/fHle4Fe0BwMstdlG7eVUAug2oSzE3dVmxVdvqcvnUNavUV1jOzvUnjHOHg+pdfUxp66nZxIcRvbYBYG+bgH+F47zaeifThobwxzd7OXcOPv7YypXMQe371CMxQUNIqB/2TvbWro4QQlhNoUIw/0stmzbpefnlG/y4TM/N02f4deEhurU4hJOzltrPN2bvXqj1YGXL6Gh44QWYN8+6dRfiaRSwVYuFeDYFBcGqVer2H1vUINtGl8yUT0oZy9g52vFWj2NMWuiF3mDDgpknmLKoRHqXy7Irp6+x8tuTHIvQMHBYMfyb+jzV9cTTCdlsShYY1Cz35i0/iZlLgxnzaTTOLs7obKtYuzoWp7PVPb6QEEI8I4KDwc3tMv7+Huh0flDGD2pOhdjzYONEqVLq8pK9eqnfbwwGePdddX74F1+Ao6OVX4AQ2SQ93UIUAEFBafe93XUXFWuaj89964Mq2OjUZcS+XuFLYlz2U4Neuwbzxu+iid9hSlcuwXvTg/h6dVMatSrDyq/SZqMWuWdruGnoctALFa1Yk6xxcXeRYFQIIYRKo4FC5Y0PnZ1h5eJwPuw4w7jvm2+gYe07nIqQaXIif5GgW4gCoEYNKOJmWveykMN9xs6qlqZcyYrF6RqkJrGKjPZgxYJ9WX6OTZvUO9OlSsG7kxqxI9x8sef4JCe6D2rI1CEhkh3dCmJiYP8h9dZ/1argVdb62cqFEEKIp6FNuMT0Pp/x/du9cLRTA+3DEUWoXTuFlVM+g0urQZ9g3UoKkQUSdAtRAGi10KRGuPHxiD578HrOM92yg98rZNye93PDx147JQXGjIHWrWHrVlAeiqerlD7D+LdD6NVmh3HfmC+C6f3Czmz3oi/5eDtDX97Kn0v3PlEP/LNu1y7QP7jvkt7IByGEECLfKdkWOpyi19tl2fvxC1QpGQHA/XgXuo8dxtA3L5D0SynY3cf8C4oQeYwE3UIUECOGg4NtPA2qhPH+tAYZlmvczg9/f/UP0959Ovbuzfia18/dpFXdw0ydavpbVrkyjBmdTNjOkxy7UIEJXwWz9K/GZmuBL9sQSPN6p7l5I2t/ANd9v49+HzZh7i9BdOhbj2KeCfRtt4P1y/aRlPT484V6QySVBN1CCCEKDFsXqDkF3yGb2bftJq+0/s94aO6GoTQZt47r1/Tq8PSHJdyUQDw/0CdB9Em48hccnwP7BsOpBdauVY6ToFuIAqJJx5rExtuz40g1ChctnGE5jVbD4MGmP0yj/5fC1tWH0/Qub/ntEP61ICRUHUau0ynMnAknTsDkqbb4NvJGo9UYr/nhZ8H8tnCPcfjXrqPVqd9Aw4kTZEqfrOfD8a5m++7FubJ0XSAv9KpL8eIweLCavVRkLOTvG8ZtCbqFEEIUOFodhSoGsezv+iz4Uo+dnbr02N4z9en1yQzz+NqQDGu94Y9ysKcfnFsG8bJqi9WlxELkLjgxT22Xdf6wwhn+9IGt7eHge3BqPlxeY+2a5jjJXi5EAaLVaSELealeeQVGjoTbt2HzvzZs/rcmDrbxNPI9SLPG0SQmwrTFTYzLT5Useo1flsUS2LZSptd9cUADtleKoGPP57h605nz56FbNzhwAOwySKb945zdhJ0PBMCv3Elq+tzkj201uB/vAsCdOzB/Phw9CuvXg4NDlv87nhlx0XHsO1wEAO9S5ylRopx1KySEEEJYiEYDbw3UUbc+dOgAV6/Cpl2l+eYbeOONB4Vubofke+rP2SXqD4BLVfCoD/aeYO8Odu5QsX/aXnJhGaGj4eTcx5e7f8rydcllFu3pvnv3LsOHD6dWrVrUqVOH0aNHExsbm+k5vXr1wsfHx+xn3LhxlqymEM8cR0d49G2VkOzIv4dqMXZeMFMWBRsD7la1D3DokO1jA+5UtZtXZe9BZ6o9yOMWHg5Tp6ZfNiE2gbEzyxkfz5kdyw9/B3Iz0o5Vi/6j50vxODmpx0JC4NVXFfTJ+nSv9SzbveE4yXr1rkZQnYtWro0QQghhebVqwbffmh4PHw6XLz9UoHhL0D1ypz46As5+BxGzIPRDODA0bcB9aTWETYSr6yHhloVqX8AoBnUkQeQuNOd/pMyNGWjX14CkO+blitYyf6zRgmt1eK4HVP8IGnwHrXZA6525VvXcYtGe7hEjRhAZGcmSJUtITk5m9OjRjBs3jk8++STT81566SWGDBlifOwoi/EJkeOGDoUXX4R/fwtly8YYtuwrx8XI0sbjGo2BCQO38dHnTbK9rFOpUvDjj1C3rpqIbdo0A11anMa/qbdZuS8n7eFiZDAAbertp1nXOgA4ODvQ+Y36dH4D/vsPmjeHuDj4/XcNg17ayYLfmhiHtgvYusk09j4oSJbgEkII8Wx4/nl4/XVYskSdhjZgAPz1F2iKN4fizdXM5rd2w/XN6s/tfaA8dPPe3j3tRS/8BBdXPFTGExyKmf84FgfPQPBs9MR1P35cXXO8fXto2/aJL2N5hhTQPhIyhk2EuCsQd1FdWz3mPBjUaYpawLh+ys3tULqj6TyPhlDxTTX4LlIL3PzA5tmI8ywWdJ85c4bt27ezcuVK/Pz8ABgzZgwDBgxg5MiRFCtWLMNzHRwc8PRMP/NyevR6PXp93u79Sq1fXq+nyJ783q4lS8Jr7/rx2rugGBTOHTtHyF+XCDtioEsPF5p2bAI82evz84NRHyQzdboDKSla+vXTs+tIArb2tgDcvQtTF6nDyjUaA1M/dk73eerUgV9/hU4dFVL0Nny9uileb29hwldNn/yFZ0F+atuQXUWM24Fty+aLOltLfmpXkT3Stlag1xtnNOn1etMSCjn6FNKuBVFOtuvMmfD331quXdOwfj0sXWqgV6/UCd624NFU/fGdCMn31SAxKQoSb6dWxux62qi9mN3WT4xUf+6Fm5UzVB2FUrT+Qy8qCe3asuBcDsW1OrhUQ3GtpvbkOpZO06P+1ltatm3T8OWXMG6cgbFjldwf5Z4cA7FnIeYMmpgzEHcZEq6jSbgO8Tcg4RpKqc4oDb4zO0176is0CTfSv+YDikaHEn0K5eH/X+eKUOcr84IZ/A7cuQMuLqDL430JWf0d1iiKZdL6rVy5ko8//ph9+0zrAKekpFCjRg3mzJlDq1at0j2vV69enDp1CkVR8PT0pFmzZgwaNCjd3u64uDgiIiIsUX0hRA5ITkimf8+iHLuk9nCP7LOGl94tBcD8+SVZsqQEAO2fv8CEqZkP4dq+6hLDpnY2Pp7wzmrav17GMhXPRxLjkmjWvBZJKfZUKHaeFX9FWbtKQohnhDY+noAm6s3ZQ9u3Y5CRicJKtm1z5f331WlwhQun8OuvR/HwSHmia9klXcY54SjOCUdxSjiGXfJ1bPW30Srmy6lc8hrOzSI9jY9tk29Q42y7dK+p1zqj1xZSA1G0hHp+R2DL5uj1pii7Y7PDTB69DwqXJlnnYfF55mVuzMDr7srHlrvn1IDTZeaZ7at6/hWcEk8CoNc4kGRbkkTbkiTZliDRthQJ9hWIcayJQev8RHX7+WdPZs9+jkaN7jF37uknukZuq1q1Kk6pcyLTYbGe7lu3blG0aFHzJ7OxwdXVlcjIyAzPa9++PSVLlsTLy4sTJ04we/Zszp07x7x58zI8x9vbO9MXmRfo9XrCwsLw8/NDl9dv2Ygsk3Z9vG8WHaNxWz0GRcfnPz7PqwPO41a6Ej//rKaUsLNT+Hx+acqVK53pdfz9/dEYQnhvejAAE7/sSGXv3fR4J+Pl0Z5GfmnbkNWhJKXYAxBU9xL+/k8+1O1ZkF/aVWSftK0VPJSnp0aNGuD8ZF+wMyPtWjDldLv6+8P+/QaWL9dy/74NX35Zg99+Mzxh3OoPtDfboygK+uRoSLwBCTcg4SYl3WpQsnBlU6Ho4yjXn0MTlza3is4Qi85ger/ExNUwC7gB1mypyc1Lcax+vzNe7rHgVBacyqA4PceV+1X5bWsjIi6VZ/AId2PeHABuHwAl5cEw+OJg81BMpChwLwzNjc0oPsPMnk8TXgXuZvy/oNi6gkNxCntUxd/f3/zgc9+j19iAY0mw98ROoyE1X+7Ttu316zB/vvod8eRJl7TPncfExcVx8uTJx5bLdtA9e/ZsFi1alGmZdevWZfeyRj169DBu+/j44OnpSd++fbl48SLPPfdcuufodLp880Gcn+oqsk7aNWMNnvfjgz4hfPxdMEkp9rzZL5nqDTXEx6t/bAYN0lCxYtb+74ZOCyYycgtTFzdDUbT0fb8uAQ3OU7VeRYvVP6+37Y7N943bwUGaPF3XvCSvt6t4ctK2ueih/2edTmfRcaDSrgVTTrbr3LmwaRPcvAlr1mhYuVLHyy/nyKVVNkXBsShQNf3jRapD5wvqslj3IuDeUdNP9HHQx6vzyRU9u/aYAuNeveC3XxOJS7Bnz+mG1B/3H3+OaI97oSh+29eMFXteYsfJQBRFDUT/2gwREVA4dXXY/3pD9EPrs9oUVuecOxSHxFtq8jiAkm3AzddUrmiAOi+9UEUoXEn9t1B5cCwBDsXQPEhCl+59C8/66e0186RtO3MmxMer26+9lve/12S1ftkOuvv160eXLl0yLVOmTBk8PDy4ffu22f6UlBTu3buXrfnaNWuqawRfuHAhw6BbCJG3TZjXgNUbz3LiSgX2nvBl74O/DYULK3z0UfZuQ09eGMz1G9v4Zm1TkvV2rF5+yaJBd14Xssu0xnlQu3LWq4gQQghhRe7u8OWX6lKlAIMHq4lYvbwyPy/H2TiDex31JwPbF5i2J02CYf3O0eHl0ly5UYgLt8pRZ+wBklJsjYH2w65cgbFj4fPPH+x4dKZwyn24fz/tslsXfjEPusu8qP7kIZcuwYIH/zdOTvDhh9atT07K9pJhRYsWpWLFipn+2NnZERAQQHR0NOHhpqQDe/bswWAwqEOQsih1znZ2AnUhRN7i4OzAtwtj0WgMZvtHvXEAD4/sXUuj1TB0VHHj4/BjtjlRxXwpMS6RPceqAFDO6xJlq2Y+RF8IIYQoyLp2NQXdUVHw1ltpY1JrS0mB3bvV7VKloGxZCAiuwt6DhahdW92fmGxvFnBXqXSfD9/cj6ODOk/9iy9g//4HByv2B+931WW3vILAxQdsTTfk8WwCdeaB9+Bs1/XECRgzRg1+Q0Of4MVm05QpkPRg6vyQIZBJ3u18x2LrdFesWJEmTZowduxYjhw5woEDB5g8eTLt2rUzZi6/ceMGbdq04ciRIwBcvHiR+fPnEx4ezuXLl9m8eTOjRo2ibt26VKlSxVJVFULkgkbt/Hiv5zbj4+JuN3hvfAZDtB7Dp1Y5bHTJAISfzmbUXoDs3RVPQrKauCiozgUr10YIIYSwvvnzMd7QX71aXU4sLwkNNaVDaNLElC+tZEnYtg16PsjNVrmyGvCGhcGxk4WZ/nUdxk9QBykbDOoNhZQUoNpIqDMXAn+GliHQ/jh0v0vKi3Fcb3IfWm0D73fAMWsRrF4Pa9eqy7FVqQJTp8LHH0NAgFrfX34xBcY56cwZ07rrLi7wwQc5/xzWZLGgG9T53xUqVKBPnz4MGDCAWrVqMWnSJOPx5ORkzp07R/yDgfu2trbs3r2b/v3707ZtWz7++GNat27NggULMnoKIUQ+MuWrejSufgRbXRJfzTqPs+uTJd2xc7TDu5QaZB6/VI6UpOScrGa+sXWPm3E76MXHz68SQgghCjovL3g4/dTQoXD2rPXq86jt203bD5L/Gzk5wfLl6prjJ07A5Mng62sKzN9/X30McPAgZJRn+uhRqOrnSInnCrFwYdbqdfs2zJoFlSpBx47wzz9py+zYAS+/rPbOT5gA165l7dpZMWnSg5sIqK/zkXzc+Z7FspcDuLm58cknn2R4vHTp0pw4YZr4X6JECZYtW2bJKgkhrMjJxYlth31RDAo626cLEn2r6Tl2EZJS7Dl9Kokq1XOokvlISIhpO7j5szvMXgghhHhY587Qr5/acxoTA717w9atOZPr78YN+PRTNTh9443sr+yVWdCdypgk7RG2tvD119DowUIlY8eqQ+rLPLSC6oYN8NJLauAOam/5a69lvrjA1avQoIE6p/phFSrAoEHqzYD589VgHtQM4xMnqj3go0apP0+zYmBEBKSGgEWLwnvvPfm18iqL9nQLIcSjtDotOtun/6vn28jHuB0eYZdJyYIp6uoddu1SJ6qVKQPlylm3PkIIIURe8vnnUL68ur1zp5oV+2mdPasGvDNnwoAB6rzj7MwZVxS1txjAzQ2qP0GHQcOG8Pbb6nZMjFqHVPPmwQsvmAJugFu3YPHizK85ebJ5wN2mDfz5J5w8CcOHw8CB6jD3LVvUID/15kVCghp8V60Kv//+5PPnJ0xQh8wDjBwJrq6ZFs+XJOgWQuRLvg8l4HwoX2OBd+fGXca9FUL5SjrjsmtBQdm/0y6EEEIUZIULww8/gPZBtDNunDok+0mFh0NgoPlQ9XnzYNiwrAebJ09CZKS63bixqW7ZNX26KcnY6tXw229qtvZ33zUFr82amcrPnp3xPOxz50xBeaFCcOwYrF8P7dqZjwzQaCA4GFauVM8ZNgxsHoyZvnBBDcZbt1Z7rbPjyBFYsULd9vJSX0dBJEG3ECJfetaC7nuR95g4KITyFTRM/jqY+/EuANjbG3jzTStXTgghhMiDGjc2LTuVkqIOs05dAzo79uyBpk1Nc5jLlDHd7J4zB0aMyFrgnZWh5Vnh5vbQkmFA9+7q8O9UH36orlneoYP6+PJl0/DtR02ebJpLPWyY2mv9OGXKqEPsjxyBVq1M+zdtgoAALQsXlsjyaxk3zrQ9enTmw+DzMwm6hRD5UoUK4OCg/oULD42xcm0s69sZ2ylXXmHCV8Hci1PHXNnoknmryzZOHomkaVMrV1AIIYTIo8aPh1q11O2IiOyv/bxxI7RoAXfuqI/r1lV7zL/5xhR4f/qpOq/5cYF36tByeLqgG6BHDzXDOJie19ZWzdY+fbrai/6//5nKf/yxmpn8YSdPwtKl6rabm5rALDuqVlXnkP/+u5pcDSAlRcOiRSXTTcT2qH374I8/1O1SpdSM7AWVBN1CiHxJp4NqpdVEjKfOOpIQ8wS3rvOBIztO0v9/Tbgb6waATpvCGx23cerwDRb83pTnvAvQIpZCCCFEDrOzU3t5HRzUx3Pnqj3A//xjGoqdkV9/VYdZx8Wpj5s3h82b1SXJXn/dPEv6rFlqT21mgXdqT7e9PcY1uZ+URgNffmlKYFa0qNrT3LevqUzDhuoUNFAD7FWrzK/x8FzqDz5QA+8nqUeXLuoNjYeD9p9+evy8t1mzTNtjx5raqCCSoFsIkW/5Vr4FgEHRcfxAwVyn+uu5pvU4Xmy6hxMHr7Doj6aUq17airUSQggh8o+qVc0Tqf35p9pLXLWqGoTfu6fuv3QJvv9eDajLlVOzgCc/WJW0Sxf46y/zzOL9+2O2JNeMGWrPenquXjXNB69fXw28n1aFCurNg48+ggMHSHfk2+jRpu1p00w3BcLC4Oef1W0PD/OEbE/C0VFd09vFRX2CP/7QkJiYcfm7d2HNGnXb01P9Py/IJOgWQuRbvtVSjNvhB29ZsSaWERcdx7K//AFwtIvj25VVqVizrHUrJYQQQuRDgwerAXbph+5ZnzypruNdqhRUrAjPPQd9+sB336nJwVK9/rqa7Cu9ntgBA9Qe51STJ6vLkz0qp+ZzPyowEKZMyXgVk1atTMPrDx0yrb89frwpAP/wQzWJ2tNycICOHdWLRkdr2LAh47K//YYxKO/ZUx2RUJBJ0C2EyLd8/U3ZNsKPJFuxJpaxctEh4xzul1oexNWzAK6hIYQQQuQCjUbN7n3unBrwPZzdOzbWPCs5qAFk8+awYIE6fzs1U3d6Bg40Hyo9eLApOVmqnJzPnR0ajfnc7unT1V7x1KHmJUqo9c8p3bubxtf/8kvG5R5O7Pbaazn3/HmVBN1CiHzLt24p43b48YKX7nLRqgbG7QGDXKxYEyGEEKJgsLGBF1+Ef/9VVz8ZOFDt5bWzU4dnjx8PISFq4rTNm9XkXllZlvP996FOHXU7PNy89xtMPd1arTrXOjd16QI+Pur21q3w6qumYx99BE5OOfdcrVqBi4t6x2HNmvSzxV+8qP4fA3h7m/7fCjIJuoUQ+VbpyiVwcVQnYoWfyfryFPnBsWOwY6e6QGa1atDwhRpWrpEQQghRsFSvrgbH9+5BTIwakE6YoCYfy25SL61WXbc71dixcOOGun33rrq8FkDNmuCSy/fRdTo1u3qqE2oeWp57Dt54I2efy84OgoPvAur/6fr1acv89JNp+7XXsnZTI7+ToFsIkW9ptBp8y6uTri5EliE6KtrKNco5ixebtt9889n4gySEEEJYg1arLrf1tOrXh3791O3oaNOw7t27TfOnc3No+cNefdV8Pjuoa2TnREK3R7Vqdce4/egQc0WBH34wr9ezQIJuIUS+5ut917h9bG/ByGCemKhmTwX1jnGvXtatjxBCCCGyZvp0cH2QgmXJEtizxzyJWmCgdeplZwcjRpgeV6oEvXtb5rnq1o3G3V29y/Dnn+qc+VRHjsDRo+p2o0ZqBvZngQTdQoh8zbe6KWFH+KG71qtIDlq16D+iotTtrl0V3N2tWx8hhBBCZI2Xl5rBPNXgwebZzK3V0w3qyLmGDdU53F99lTO9++lR582r38/i4tSl1lI9awnUUknQLYTI13wDTBm9w0/kwHoXecCib01/Bd/sFmbFmgghhBAiuwYOBD8/dfvAAdi1S92uVAmKF7devZyc1LrExEDLlpZ9rvSymOv1sHy5um1jo66D/qyQoFsIka/5Nq5i3A6/EmDFmmSdXq8mV1GUtMdOh17g30PqgpqVSpwnuLNfLtdOCCGEEE/Dxga++CLtfmv2cj8sN/LENG2q9voDrFsH9++rGcuvXlX3vfACz9RIPgm6hRD5mmdxB+OHeni4deuSFcmJybRtFUvx4uofpNBQ8+OL55wzbr/x8nk0WsmgJoQQQuQ3QUHQs6f5PmvN57YGGxvo1k3dTkiAtWuf3aHlIEG3EKIA8PVV/71xAyIjrVuXx5k1cicbt6hriu/YAbVrw6BBcPu2GpB/t7oaADa6ZPoOqW7NqgohhBDiKcyaBc7Opsd5pac7t/ToYdr+7jv47Td128UF2re3SpWsRoJuIUS+lxp0gykjZlZERMBbb5kvz2VJR3efZuKXDc32GQxqMpPKFRN4q+sebtxVu+07Be6nWDnP3KmYEEIIIXJcqVKwcCE4OqpLY1WqZO0a5a7AQChRQt3euFEdYg5qD7ijo/XqZQ0SdAsh8j3fiteM2+Fb9jy2vF4Pn3wCAQHw9ddqNs9jxyxZQ9An6+n3egJJKeqCmO+9sp0ZM0x3wG/fdWDJX6Zb4G8OsFBKUSGEEELkmldfVROXLVuWO3Op8xKtFrp3T7v/WRtaDhJ0CyEKAN9Kt4zb4WGJmZY9HXqBoIDjjBihroedas3q5Mc+z5nDF3iryzb++elAtuv42ejt7D2hdsl7lzrHtAV1GDUKTpyAVzqcNCtb1vMyrXrUyvZzCCGEECLv0T7DEdfDQ8wBSpdW57s/ayz2K/DVV1/x8ssvU7NmTerUqZOlcxRFYc6cOQQGBlKjRg369u3L+fPnLVVFIUQBUb1+WeN2+Em3dMsY9Abmjd1KzQYe7AxTM55rNKb04X8uj3js8/R97S5fr25K+15+nD50Psv1O3nwHGPn1H/wnAaWLIzBsbA6rqpUKfhxjTfb/jhMrUoR2NkkMuV/F9DqnuG/0EIIIYQoEBo0gDJlTI9feeXZvAlhsZecnJxMmzZt6Plo2r5MLFq0iB9++IEJEyawYsUKHB0d6d+/P4mJmfdcCSGebS7uLjzneRmA8HNlUQzma3HduhxFq7qhvDsliLhEdTx3heIXCNkYQ9UypwHYfaw6t67czvA5Lp24yo7wmgAk6+0YOdo+S3XTpxjo1/s+CclqkD305e00apd2GbAmHWty4FRV7kdreG1Y4yxdWwghhBAiL9NqoVcv03bv3tatj7VYLOgeMmQIffv2xdvbO0vlFUXh+++/Z+DAgbRs2ZIqVaowc+ZMbt68yaZNmyxVTSFEAeFbQZ3XfS/OjSunTXO8E2IT6Nj6qnHta4BB3bZy+Jg7TVsUpn0zNVg3KDr+XpFxb/dv350ye7zq7xJs3fr4es0fv52dR2sAULH4BaYuyHzkj52j3eMvKoQQQgiRT3z0EUyfDqtXQ/VndGEWG2tXINXly5eJjIykUaNGxn2FCxemZs2aHDp0iHbt2mV4rl6vR6/X50Y1n1hq/fJ6PUX2SLvmHdWrxLDuP3X78H+XKFGxGIpB4fXOB9gdofYcF3e7wXdfXaRld3WhTL1eT9vOLsz6Xj1v7Z8aeg4xb9PUf1eudUvznO+/r7BnjyHDYVJnwi7yv09MQfbCebewdy4tvy9WJO/Zgkva1gr0enTGTb2apTLHn0LatSCSdi240mtbe3v44IPU49aoleVk9Xc4zwTdkQ8W13V3dzfb7+7uzq1bt9I7xejkyZOZHs9LwsLCrF0FYQHSrtZXvMRd4/bu7dcoXi2U5Z9d5edNHQBwso/li08O4FG5GKGhocayTiVScHO+w93YIvzzX1X27zuAja3OeDwsLIzbV+6x82hzAKqUOoXBuRQnTzpx8KCGadMu0r592mHpsbFa3h1Yxjic/fV2G3Ar52H23MJ65D1bcEnb5h5tfDwBD7aPHDmCwYJrAEm7FkzSrgWXtK25bAXds2fPZtGiRZmWWbduHRUrVnyqSmWXt7c3Tk5Oufqc2aXX6wkLC8PPzw+dTvf4E0S+IO2adyj3HGCGun3psjsR2+P59Ec14NZoDCybF0bHPs+ne+7zDfbwy+bG3I0tQuxVG4I61TRr2wW/7zKWfan9ZQK7VqB1a/Xx1/OLMuxdd5xdnY1lYmKgfXstR46pa4OULXmXT5fUp3DRwhZ45SI75D1bcEnbWkFsrHGzRo0apjUQc5C0a8Ek7VpwPWttGxcXl6UO4GwF3f369aNLly6ZlinzcHq6bPD09AQgKioKLy8v4/6oqCiqVKmS6bk6nS7fNGp+qqvIOmlX66tetwJajR6DouOfPVX4eZOr8djM4dvo8kZwhud2aAe/bFa316+OpvmLprbU6XT89tDQ8u69S+PbSEfHVtdYs7EEVyNd+fSjECZ8pV4/NhY6dYIdO9TyRYrAqj/dcPPMqVcqcoK8ZwsuadtcpDP/rMSC/+/SrgWTtGvB9ay0bVZfY7YSqRUtWpSKFStm+mNn92RJgEqXLo2npye7d+827ouJieHw4cMEBARkcqYQQoBjYUcqlbwIwPU7niQlq59Fb3TcxvCPM18Qsk2Pqmg16pycP7eY3zi8fv4m28PVRGg+pc5SvUElAGZOj8dGp67tPfPbelw5fY246Dg6BJ0wJlhzc4ONG0E+woQQQgghnl0Wy15+9epVIiIiuHr1Knq9noiICCIiIoh9aChSmzZt2LhxIwAajYbevXvz1VdfsXnzZk6cOMHIkSPx8vKiZcuWlqqmEKIA8a2aZPa4eXOFL1c0QqPVZHqee8miNKoeDsDxyxU5HXrBeGzVykQURf2o7Nb2ovFaPrUrMKibOuw8PsmJEW+fo1OzCLYc8AHA1dXAP/9A7do589qEEEIIIUT+ZLFEanPnzmXVqlXGx507dwbg+++/p379+gCcO3eO+/fvG8u8+eabxMfHM27cOKKjo6lduzaLFy/G3j5r6+EKIZ5tvo18+P3BCoM+PrBypQZb+6x9zLVvdYcdatzNX6vvMtivNAC//V3WWKZ7/2pm54z/rAY//HmHO7FF+HnzQysvOEazYcUV6tat+hSvRgghhBBCFAQWC7pnzJjBjBkzMi1z4sQJs8cajYahQ4cydOhQS1VLCFGA9esH33wDrq7wxx/qfOqsat/Tmw8/U7f/3FmTwei5fduGbdvUfZUqQY36XmbnFC1RhHHvbmXYDNPw9UIO9/n71wvUb+33tC9HCCGEEEIUABYbXi6EELmtbFm4dAnCwtQgOTuq1SlJ2Qed2lu3wv37EBLihsGgDifv1g006YxSHzSuId6lzgHgbB/D+hXnaNROAm4hhBBCCKGSoFsIUaBoNKB9gk82jQbat1e3k5Nh0yb4d6NpKcLu3dM/z87Rjg0bbJkwMIQ9/14jsEONJ6i1EEIIIYQoqCToFkKIB1KDboClS1LYd0Adn16+9L1MM5CXq16a8V8G49uosoVrKIQQQggh8hsJuoUQ4oHgYHByTAHgz3X26A1q2otuzQ+lO7RcCCGEEEKIx5GgWwghHnBwgFa1D6TZ3+01r3RKCyGEEEII8XgSdAshxEPatzVf6/s5z8vUbSFLfwkhhBBCiCcjQbcQQjzkhR7m87K7tjqFRitjy4UQQgghxJORoFsIIR5SsmJxapUPNT5+8ZVsLPYthBBCCCHEIyToFkKIR3z0YQLO9jG0b7Cd+q2qW7s6QgghhBAiH7OxdgWEECKveXFAA9r3TiLsqBNandybFEIIIYQQT06+TQohRDp0tjprV0EIIYQQQhQAEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIfl6TrfBYAAgPj7eyjV5PL1eD0BcXBw6nQxbLSikXQsuaduCSdq14JK2tYKEBPDxMW1rcn55RWnXgknateB61to2NQ5NjUszolEURcmNCllCVFQU58+ft3Y1hBBCCCGEEEI8o8qVK4e7u3uGx/N10J2SksK9e/ewt7dHq5WR8kIIIYQQQgghcofBYCAxMRFXV1dsbDIeRJ6vg24hhBBCCCGEECIvk+5hIYQQQgghhBDCQiToFkIIIYQQQgghLESCbiGEEEIIIYQQwkIk6BZCCCGEEEIIISxEgu5c8OOPP9K8eXP8/Pzo3r07R44csXaVRDYtXLiQrl27EhAQQMOGDRk0aBBnz541K5OYmMjEiROpX78+AQEBvPvuu9y6dctKNRZP4uuvv8bHx4epU6ca90m75k83btxgxIgR1K9fnxo1atChQwfCwsKMxxVFYc6cOQQGBlKjRg369u0rS1DmA3q9ns8//5zmzZtTo0YNWrZsyfz583k4J6y0bd63b98+3n77bQIDA/Hx8WHTpk1mx7PShnfv3mX48OHUqlWLOnXqMHr0aGJjY3PxVYj0ZNa2ycnJzJo1iw4dOuDv709gYCAjR47kxo0bZteQts17Hveefdi4cePw8fHhu+++M9v/rLerBN0Wtm7dOqZPn84777zDqlWrqFKlCv379ycqKsraVRPZsHfvXl599VVWrFjBkiVLSElJoX///sTFxRnLTJs2jS1btvD555/zww8/cPPmTQYPHmzFWovsOHLkCD///DM+Pj5m+6Vd85979+7Rs2dPbG1tWbRoEX/99RejRo3C1dXVWGbRokX88MMPTJgwgRUrVuDo6Ej//v1JTEy0Ys3F4yxatIiffvqJcePGsW7dOkaMGMHixYv54YcfzMpI2+ZtcXFx+Pj4MH78+HSPZ6UNR4wYwenTp1myZAkLFixg//79jBs3LrdegshAZm2bkJDAsWPHGDhwIL///jvz5s3j3LlzDBw40KyctG3e87j3bKqNGzdy+PBhvLy80hx75ttVERbVrVs3ZeLEicbHer1eCQwMVBYuXGjFWomnFRUVpXh7eyt79+5VFEVRoqOjlerVqyvr1683ljl9+rTi7e2tHDp0yEq1FFkVExOjtG7dWtm5c6fy2muvKVOmTFEURdo1v5o1a5bSs2fPDI8bDAalcePGyuLFi437oqOjFV9fX+XPP//MjSqKJzRgwADlf//7n9m+wYMHK8OHD1cURdo2P/L29lY2btxofJyVNkz9HD5y5IixzNatWxUfHx/l+vXruVd5kalH2zY9hw8fVry9vZUrV64oiiJtmx9k1K7Xr19XmjRpopw8eVJp1qyZsmTJEuMxaVdFkZ5uC0pKSuLo0aM0atTIuE+r1dKoUSMOHTpkxZqJp3X//n0AY89ZeHg4ycnJZm1dsWJFSpYsSWhoqDWqKLJh0qRJBAUFmbUfSLvmV//++y++vr4MGTKEhg0b0rlzZ1asWGE8fvnyZSIjI83atXDhwtSsWVM+m/O4gIAA9uzZw7lz5wA4fvw4Bw4coGnTpoC0bUGQlTY8dOgQLi4u+Pn5Gcs0atQIrVYrU/jymZiYGDQaDS4uLoC0bX5lMBj44IMP6N+/P5UrV05zXNoVbKxdgYLszp076PV63N3dzfa7u7unmQ8s8g+DwcC0adOoVasW3t7eANy6dQtbW1vjH41U7u7uREZGWqOaIov++usvjh07xsqVK9Mck3bNny5dusRPP/3E66+/zttvv01YWBhTpkzB1taWLl26GNsuvc9mma+ftw0YMICYmBjatm2LTqdDr9czbNgwOnbsCCBtWwBkpQ1v3bpF0aJFzY7b2Njg6uoqn835SGJiIrNnz6Zdu3YUKlQIkLbNrxYtWoSNjQ29e/dO97i0qwTdQmTbxIkTOXXqFMuXL7d2VcRTunbtGlOnTuXbb7/F3t7e2tUROURRFHx9fXn//fcBqFatGqdOneLnn3+mS5cuVq6deBrr169n7dq1fPLJJ1SqVImIiAimT5+Ol5eXtK0Q+UhycjJDhw5FURQmTpxo7eqIpxAeHs7333/P77//jkajsXZ18iwZXm5BRYoUQafTpUmaFhUVhYeHh5VqJZ7GpEmTCAkJYenSpRQvXty438PDg+TkZKKjo83KR0VF4enpmdvVFFl09OhRoqKiePHFF6lWrRrVqlVj7969/PDDD1SrVk3aNZ/y9PSkYsWKZvsqVKjA1atXjccB+WzOh2bOnMmAAQNo164dPj4+dO7cmT59+rBw4UJA2rYgyEobenh4cPv2bbPjKSkp3Lt3Tz6b84Hk5GTee+89rl69yrfffmvs5QZp2/xo//79REVF0axZM+N3qStXrvDxxx/TvHlzQNoVJOi2KDs7O6pXr87u3buN+wwGA7t37yYgIMCKNRPZpSgKkyZNYuPGjSxdupQyZcqYHff19cXW1tasrc+ePcvVq1fx9/fP5dqKrGrQoAFr165l9erVxh9fX186dOhg3JZ2zX9q1aplnPOb6vz585QqVQqA0qVL4+npadauMTExHD58WD6b87iEhIQ0PSk6nc64ZJi0bf6XlTYMCAggOjqa8PBwY5k9e/ZgMBioUaNGrtdZZF1qwH3hwgW+++47ihQpYnZc2jb/6dSpE2vWrDH7LuXl5UX//v1ZvHgxIO0KMrzc4l5//XVGjRqFr68vNWrUYOnSpcTHx/Piiy9au2oiGyZOnMiff/7Jl19+ibOzs3H+SeHChXFwcKBw4cJ07dqVGTNm4OrqSqFChZgyZQoBAQESnOVhhQoVMs7LT+Xk5ISbm5txv7Rr/tOnTx969uzJggULaNu2LUeOHGHFihVMmjQJAI1GQ+/evfnqq68oW7YspUuXZs6cOXh5edGyZUsr115kplmzZixYsICSJUsah5cvWbKErl27AtK2+UVsbCwXL140Pr58+TIRERG4urpSsmTJx7ZhxYoVadKkCWPHjmXixIkkJyczefJk2rVrR7Fixaz1sgSZt62npydDhgzh2LFjLFy4EL1eb/w+5erqip2dnbRtHvW49+yjN09sbW3x8PCgQoUKgLxnATRK6u1hYTHLli3jm2++ITIykqpVqzJmzBhq1qxp7WqJbHh07eZU06dPN95ASUxMZMaMGfz1118kJSURGBjI+PHjn5lhMwVFr169qFKlCh999BEg7ZpfbdmyhU8//ZTz589TunRpXn/9dV566SXjcUVRmDt3LitWrCA6OpratWszfvx4ypcvb8Vai8eJiYlhzpw5bNq0iaioKLy8vGjXrh3vvPMOdnZ2gLRtfvDff/+lm3CpS5cuzJgxI0ttePfuXSZPnsy///6LVquldevWjBkzBmdn59x8KeIRmbXt4MGDadGiRbrnff/999SvXx+Qts2LHveefVTz5s3p3bs3ffv2Ne571ttVgm4hhBBCCCGEEMJCZE63EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEhEnQLIYQQQgghhBAWIkG3EEIIIYQQQghhIRJ0CyGEEEIIIYQQFiJBtxBCCCGEEEIIYSESdAshhBBCCCGEEBYiQbcQQgghhBBCCGEh/weC2c9ebEsSoAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -983,7 +873,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.10.4" } }, "nbformat": 4, From 9d9e5e5301231f9d18a0c181aba7ec702f44d52b Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Mon, 12 Aug 2024 17:01:15 -0400 Subject: [PATCH 13/13] style --- tsfm_public/toolkit/visualization.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tsfm_public/toolkit/visualization.py b/tsfm_public/toolkit/visualization.py index 41927e0c..555c6376 100644 --- a/tsfm_public/toolkit/visualization.py +++ b/tsfm_public/toolkit/visualization.py @@ -232,7 +232,7 @@ def plot_predictions( plt.style.use("seaborn-v0_8-whitegrid") # Adjust figure size and subplot spacing - fig, axs = plt.subplots(num_plots, 1, figsize=(10, 2*num_plots)) + fig, axs = plt.subplots(num_plots, 1, figsize=(10, 2 * num_plots)) for i, ri in enumerate(random_indices): batch = dset[ri]