From 1f00c9a38d52180677946156890569029f3d187b Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Tue, 26 Nov 2024 13:34:57 -0500 Subject: [PATCH 01/32] relax parameters strictness --- services/boilerplate/inference_payloads.py | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/services/boilerplate/inference_payloads.py b/services/boilerplate/inference_payloads.py index 25436f98..fcab7934 100644 --- a/services/boilerplate/inference_payloads.py +++ b/services/boilerplate/inference_payloads.py @@ -100,13 +100,10 @@ class ForecastingMetadataInput(BaseMetadataInput): ) -class BaseParameters(BaseModel): - model_config = ConfigDict(extra="forbid", protected_namespaces=()) - +class BaseParameters(BaseModel): ... -class ForecastingParameters(BaseModel): - model_config = ConfigDict(extra="forbid", protected_namespaces=()) +class ForecastingParameters(BaseParameters): prediction_length: Optional[int] = Field( description="The prediction length for the forecast." " The service will return this many periods beyond the last" From 27f6a3c03f5c9b8b89aa76d8fc02def0c76ffbb4 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Tue, 26 Nov 2024 14:10:45 -0500 Subject: [PATCH 02/32] allow extra --- services/boilerplate/inference_payloads.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/services/boilerplate/inference_payloads.py b/services/boilerplate/inference_payloads.py index fcab7934..92a084d5 100644 --- a/services/boilerplate/inference_payloads.py +++ b/services/boilerplate/inference_payloads.py @@ -100,7 +100,8 @@ class ForecastingMetadataInput(BaseMetadataInput): ) -class BaseParameters(BaseModel): ... +class BaseParameters(BaseModel): + model_config = ConfigDict(extra="allow", protected_namespaces=()) class ForecastingParameters(BaseParameters): From 6dd4d4d2ec64d94d4d9d0e30ac4cd01a7810cf7d Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Mon, 2 Dec 2024 19:09:38 -0500 Subject: [PATCH 03/32] clarify citations --- wiki.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/wiki.md b/wiki.md index 5cb003db..ad2f1faa 100644 --- a/wiki.md +++ b/wiki.md @@ -17,7 +17,7 @@ In this section, we highlight the papers, blogs, pre-trained models, and open-so ## Publications 4 KDD, 1 ICLR, 2 AAAI, 1 ICML. -🚀 _**Total citations: 1700**_ (as of 26 Aug 2024). 🚀 +🚀 _**Total citations (Google Scholar): 1700**_ (as of 26 Aug 2024). 🚀 1. **TST:** Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. [_A transformer-based framework for multivariate time series representation learning._](https://arxiv.org/abs/2010.02803) In KDD 2021. **(citations: 840)** From 2c7d487fb83c80ce29c144f5bdcbaa13eb668eb0 Mon Sep 17 00:00:00 2001 From: Arindam Jati Date: Tue, 3 Dec 2024 12:20:26 -0500 Subject: [PATCH 04/32] gluonts data wrapper, and ttm gluonts predictor --- .../tinytimemixer/test_gluonts_predictor.py | 52 ++ tests/toolkit/test_get_model.py | 6 + tests/toolkit/test_gluonts_data_wrapper.py | 124 +++++ .../models/tinytimemixer/gluonts/__init__.py | 5 + .../gluonts/ttm_gluonts_predictor.py | 522 ++++++++++++++++++ tsfm_public/toolkit/ddp_utils.py | 24 + tsfm_public/toolkit/get_model.py | 18 +- tsfm_public/toolkit/gluonts_data_wrapper.py | 245 ++++++++ tsfm_public/toolkit/visualization.py | 2 +- 9 files changed, 994 insertions(+), 4 deletions(-) create mode 100644 tests/models/tinytimemixer/test_gluonts_predictor.py create mode 100644 tests/toolkit/test_gluonts_data_wrapper.py create mode 100644 tsfm_public/models/tinytimemixer/gluonts/__init__.py create mode 100644 tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py create mode 100644 tsfm_public/toolkit/ddp_utils.py create mode 100644 tsfm_public/toolkit/gluonts_data_wrapper.py diff --git a/tests/models/tinytimemixer/test_gluonts_predictor.py b/tests/models/tinytimemixer/test_gluonts_predictor.py new file mode 100644 index 00000000..6e8dbb56 --- /dev/null +++ b/tests/models/tinytimemixer/test_gluonts_predictor.py @@ -0,0 +1,52 @@ +# Copyright contributors to the TSFM project +# + +"""Tests get_model""" + +import numpy as np +import pandas as pd +import pytest +from gluonts.dataset.common import ListDataset + +from tsfm_public.models.tinytimemixer.gluonts import TTMGluonTSPredictor + + +@pytest.fixture(scope="module") +def gluonts_data_with_nan(): + # Step 1: Define the multivariate time series data + num_time_series = 3 # Number of time series + num_variables = 2 # Number of variables (dimensions) per time series + + # Create random multivariate time series data + time_series_data = [ + { + "item_id": f"ts{i+1}", + "start": pd.Timestamp("2024-01-01"), # Start time for each series + "target": np.concatenate( + ( + np.array([[np.nan, np.nan, np.nan, np.nan], [0, 1, np.nan, 2]]), + np.random.rand(num_variables, 600), + np.array([[np.nan, np.nan, np.nan, np.nan], [np.nan, 1, np.nan, 2]]), + np.random.rand(num_variables, 4), + ), + axis=1, + ), # 2D array: (num_variables, length) + } + for i in range(num_time_series) + ] + + # Step 2: Create the ListDataset + freq = "D" # Daily frequency + dataset = ListDataset( + time_series_data, + freq=freq, + one_dim_target=False, + ) + return dataset + + +def test_ttm_gluonts_predictor(gluonts_data_with_nan): + dataset = gluonts_data_with_nan + predictor = TTMGluonTSPredictor(context_length=512, prediction_length=96) + forecasts = predictor.predict(dataset) + assert forecasts[0].samples.shape == (1, 96, 2) diff --git a/tests/toolkit/test_get_model.py b/tests/toolkit/test_get_model.py index 8292a307..9d377169 100644 --- a/tests/toolkit/test_get_model.py +++ b/tests/toolkit/test_get_model.py @@ -66,3 +66,9 @@ def test_get_model(): model = get_model(model_path=mp, context_length=cl, prediction_length=fl) assert model.config.prediction_length == fl assert model.config.context_length == cl + + mp = "ibm/ttm-research-r2" + for cl in range(512, 5000, 500): + for fl in range(1, 720, 90): + model = get_model(model_path=mp, context_length=cl, prediction_length=fl) + assert model.config.prediction_filter_length == fl diff --git a/tests/toolkit/test_gluonts_data_wrapper.py b/tests/toolkit/test_gluonts_data_wrapper.py new file mode 100644 index 00000000..8f74855f --- /dev/null +++ b/tests/toolkit/test_gluonts_data_wrapper.py @@ -0,0 +1,124 @@ +# Copyright contributors to the TSFM project +# + +"""Tests get_model""" + +import numpy as np +import pandas as pd +import pytest +from gluonts.dataset.common import ListDataset +from gluonts.dataset.split import split + +from tsfm_public.toolkit.gluonts_data_wrapper import ( + StandardScalingGluonTSDataset, + TorchDatasetFromGluonTSTestDataset, + TorchDatasetFromGluonTSTrainingDataset, +) + + +@pytest.fixture(scope="module") +def gluonts_data(): + # Step 1: Define the multivariate time series data + num_time_series = 3 # Number of time series + length = 50 # Length of each time series + num_variables = 2 # Number of variables (dimensions) per time series + + # Create random multivariate time series data + time_series_data = [ + { + "item_id": f"ts{i+1}", + "start": pd.Timestamp("2024-01-01"), # Start time for each series + "target": np.random.rand(num_variables, length), # 2D array: (num_variables, length) + } + for i in range(num_time_series) + ] + + # Step 2: Create the ListDataset + freq = "D" # Daily frequency + dataset = ListDataset( + time_series_data, + freq=freq, + one_dim_target=False, + ) + return dataset + + +def test_gluonts_standard_scaling(gluonts_data): + dataset = gluonts_data + + # Split the dataset into train and test + prediction_length = 10 + train_dataset, test_template = split(dataset, offset=-prediction_length) + + # Test shapes + for entry in train_dataset: + assert entry["target"].shape == (2, 40) + + test_dataset = test_template.generate_instances( + prediction_length=prediction_length, + ) + test_dataset_input = test_dataset.input + test_dataset_label = test_dataset.label + # Test shapes + for entry in test_dataset_input: + assert entry["target"].shape == (2, 40) + for entry in test_dataset_label: + assert entry["target"].shape == (2, 10) + + # Test scaler + scaler = StandardScalingGluonTSDataset() + scaler.fit(train_dataset) + train_dataset_scaled = scaler.transform(train_dataset) + test_dataset_scaled = scaler.transform(test_dataset_input) + + # Test scaling + for entry in train_dataset_scaled: + np.testing.assert_almost_equal(entry["target"].mean(axis=1), np.array([0.0, 0.0]), decimal=4) + np.testing.assert_almost_equal(entry["target"].std(axis=1), np.array([1.0, 1.0]), decimal=4) + + for entry in test_dataset_scaled: + np.testing.assert_almost_equal(entry["target"].mean(axis=1), np.array([0.0, 0.0]), decimal=4) + np.testing.assert_almost_equal(entry["target"].std(axis=1), np.array([1.0, 1.0]), decimal=4) + + # inverse + test_label_scaled = scaler.transform(test_dataset_label) + Y = [] + for entry in test_label_scaled: + Y.append(entry["target"].T) + Y = np.array(Y) + Y_inv = scaler.inverse_transform(Y) + + Y_org = [] + for entry in test_dataset_label: + Y_org.append(entry["target"].T) + Y_org = np.array(Y_org) + + np.testing.assert_almost_equal(Y_inv.mean(), Y_org.mean(), decimal=4) + + +def test_pytorch_data_wrappers(gluonts_data): + dataset = gluonts_data + + # Split the dataset into train and test + prediction_length = 10 + train_dataset, test_template = split(dataset, offset=-prediction_length) + test_dataset = test_template.generate_instances( + prediction_length=prediction_length, + ) + test_dataset_input = test_dataset.input + test_dataset_label = test_dataset.label + + torch_train_dset = TorchDatasetFromGluonTSTrainingDataset(train_dataset, seq_len=20, forecast_len=5) + assert torch_train_dset[1]["past_values"].shape == (20, 2) + assert torch_train_dset[1]["future_values"].shape == (5, 2) + + torch_train_dset = TorchDatasetFromGluonTSTrainingDataset(train_dataset, seq_len=35, forecast_len=5) + assert torch_train_dset[1]["past_values"].shape == (35, 2) + assert torch_train_dset[1]["future_values"].shape == (5, 2) + assert len(torch_train_dset) == 3 + + torch_test_dset = TorchDatasetFromGluonTSTestDataset( + gluon_test_input=test_dataset_input, gluon_test_label=test_dataset_label, seq_len=20, forecast_len=5 + ) + assert torch_test_dset[0]["past_values"].shape == (20, 2) + assert torch_test_dset[0]["future_values"].shape == (5, 2) diff --git a/tsfm_public/models/tinytimemixer/gluonts/__init__.py b/tsfm_public/models/tinytimemixer/gluonts/__init__.py new file mode 100644 index 00000000..67f0d162 --- /dev/null +++ b/tsfm_public/models/tinytimemixer/gluonts/__init__.py @@ -0,0 +1,5 @@ +from tsfm_public.models.tinytimemixer.gluonts.ttm_gluonts_predictor import ( + TTM_AVAILABLE_CONTEXTS, + TTM_MAX_FORECAST_HORIZON, + TTMGluonTSPredictor, +) diff --git a/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py b/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py new file mode 100644 index 00000000..1f94a621 --- /dev/null +++ b/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py @@ -0,0 +1,522 @@ +# Copyright contributors to the TSFM project +# +"""Tools for building TTM Predictor that works with GluonTS datasets""" + +import copy +import math +import os +import tempfile +from typing import List + +import numpy as np +import pandas as pd +import torch +from gluonts.dataset.split import InputDataset, LabelDataset, TrainingDataset +from gluonts.itertools import batcher +from gluonts.model.forecast import SampleForecast +from torch.optim import AdamW +from torch.optim.lr_scheduler import OneCycleLR +from torch.utils.data import ConcatDataset, Subset +from tqdm.auto import tqdm +from transformers import EarlyStoppingCallback, Trainer, TrainingArguments +from transformers.integrations import INTEGRATION_TO_CALLBACK +from transformers.utils import logging + +from tsfm_public import ( + TrackingCallback, + count_parameters, +) +from tsfm_public.toolkit.get_model import get_model +from tsfm_public.toolkit.gluonts_data_wrapper import ( + StandardScalingGluonTSDataset, + TorchDatasetFromGluonTSTestDataset, + TorchDatasetFromGluonTSTrainingDataset, + impute_series, +) +from tsfm_public.toolkit.lr_finder import optimal_lr_finder +from tsfm_public.toolkit.visualization import plot_predictions + + +logger = logging.get_logger(__name__) + +# TTM Constants +TTM_MAX_FORECAST_HORIZON = 720 +TTM_AVAILABLE_CONTEXTS = [1536, 1024, 512] + +# Fewshot max allowed number of samples +# For example, if 5% few-shot for a dataset exceeds this number, +# this `FEWSHOT_MAX_NUM_SAMPLES` upper bound will be used. +FEWSHOT_MAX_NUM_SAMPLES = 500_000 + + +class TTMGluonTSPredictor: + """Wrapper to TTM that can be directly trained, validated, and tested with GluonTS datasets.""" + + def __init__( + self, + context_length: int, + prediction_length: int, + model_path: str = "ibm-granite/granite-timeseries-ttm-r2", + test_data_label: LabelDataset = None, # provide this for plotting + scale: bool = False, + random_seed: int = 42, + term: str = None, + ds_name: str = None, + out_dir: str = None, + plot_test_forecast: bool = False, + upper_bound_fewshot_samples: bool = True, + **kwargs, + ): + """Initialize a TTMGluonTSPredictor object. + + Args: + context_length (int): Context length. + prediction_length (int): Forecast length. + model_path (str, optional): TTM Model path.. Defaults to "ibm-granite/granite-timeseries-ttm-r2". + test_data_label (LabelDataset, optional): Test data label object. Only used for plotting. Defaults to None. + scale (bool, optional): To scale the data or not. Defaults to False. (Recommended to set to `True` for fine-tuning workflow.) + random_seed (int, optional): Seed. Defaults to 42. + term (str, optional): Term (short/medium/long). Defaults to None. + ds_name (str, optional): Dataset name. Only used for plotting. Defaults to None. + out_dir (str, optional): Out directory. Defaults to None. + plot_test_forecast (bool, optional): Whether to plot forecasts. Defaults to False. + upper_bound_fewshot_samples (bool, optional): If True, number of x% fewshot will be upper-bounded + to FEWSHOT_MAX_NUM_SAMPLES. Defaults to True. + """ + self.context_length = context_length + self.prediction_length = prediction_length + self.test_data_label = test_data_label + self.scale = scale + self.scaler = None + self.random_seed = random_seed + self.term = term + self.ds_name = ds_name + self.out_dir = out_dir + self.plot_test_forecast = plot_test_forecast + self.upper_bound_fewshot_samples = upper_bound_fewshot_samples + + self.device = "cuda" if torch.cuda.is_available() else "cpu" + + if "dropout" in kwargs and kwargs["dropout"] is None: + del kwargs["dropout"] + if "head_dropout" in kwargs and kwargs["head_dropout"] is None: + del kwargs["head_dropout"] + + # Call get_model() function to load TTM model automatically. + self.ttm = get_model( + model_path, + context_length=self.context_length, + prediction_length=min(self.prediction_length, TTM_MAX_FORECAST_HORIZON), + **kwargs, + ).to(self.device) + + def _process_time_series(self, dataset: TrainingDataset) -> List: + """ + Processes a time series by truncating initial NaNs and forward filling intermittent NaNs. + Returns a new truncated dataset, and does not modify the original one. + + Args: + dataset (TrainingDataset): Every series of of shape [channels, length]. + + Returns: + List: Processed time series, each of shape [channels, truncated_length]. + """ + truncated_dataset = list(copy.deepcopy(dataset)) + + for i, item in enumerate(truncated_dataset): + data = item["target"] + if len(data.shape) == 1: + data = data.reshape(1, -1) # [channels, length] + + # Step 1: Determine the longest stretch of initial NaNs across all channels + valid_mask = ~np.isnan(data) # Mask of valid (non-NaN) values + + if valid_mask.all(): + continue # Continue if no NaN + + first_valid = np.argmax(valid_mask.any(axis=0)) # First col with any valid value across channels + data = data[:, first_valid:] # Truncate cols before the first valid col + + # Step 2: Perform forward fill for NaNs + df = pd.DataFrame(data.T, columns=range(data.shape[0])) + df = df.ffill(axis=0) + + data = df.values.T + if data.shape[0] == 1: # [1, truncated_length] + data = data.reshape(-1) # [lentruncated_lengthgth] + + truncated_dataset[i]["target"] = data + + return truncated_dataset + + def train( + self, + train_dataset: TrainingDataset, + valid_dataset: TrainingDataset, + batch_size: int = 64, + freeze_backbone: bool = True, + learning_rate: float = None, + num_epochs: int = 30, + num_workers: int = 8, + fewshot_fraction: int = 1.0, + use_valid_from_train: bool = True, + save_model: bool = False, + ): + """Finetune the TTM. + + Args: + train_dataset (TrainingDataset): Training dataset. + valid_dataset (TrainingDataset): Validation dataset. + batch_size (int, optional): Batch size. Defaults to 64. + freeze_backbone (bool, optional): To freeze TTM backbone. Defaults to True. + learning_rate (float, optional): Learning rate. Defaults to None. + num_epochs (int, optional): Number of epochs. Defaults to 30. + num_workers (int, optional): Number of workers. Defaults to 8. + fewshot_fraction (int, optional): Few-shot fraction. Defaults to 1.0. + use_valid_from_train (bool, optional): Utilize unused train data for validation. Defaults to True. + save_model (bool, optional): Save model to `self.out_dir`. Defaults to False. + + Raises: + ValueError: _description_ + """ + train_dataset_scaled = self._process_time_series(train_dataset) + valid_dataset_scaled = self._process_time_series(valid_dataset) + + # Standard scale + if self.scale: + self.scaler = StandardScalingGluonTSDataset() + self.scaler.fit(train_dataset_scaled) + train_dataset_scaled = self.scaler.transform(train_dataset_scaled) + valid_dataset_scaled = self.scaler.transform(valid_dataset_scaled) + + temp_dir = tempfile.mkdtemp() + dset_train = TorchDatasetFromGluonTSTrainingDataset( + train_dataset_scaled, self.context_length, self.prediction_length + ) + + dset_valid_from_train = None + if fewshot_fraction < 1.0: + # Choose randomly + rng = np.random.default_rng(seed=self.random_seed) + if self.upper_bound_fewshot_samples: + list_size = min(int(fewshot_fraction * len(dset_train)), FEWSHOT_MAX_NUM_SAMPLES) + else: + list_size = int(fewshot_fraction * len(dset_train)) + + lst_fewshot_indx = rng.integers( + low=0, + high=len(dset_train), + size=list_size, + ) + + logger.info(f"Length of orginal train set = {len(dset_train)}") + org_dset_train = copy.deepcopy(dset_train) + dset_train = Subset(org_dset_train, lst_fewshot_indx) + logger.info(f"Length of {fewshot_fraction*100} % train set = {len(dset_train)}") + + if len(dset_train) < 1: + raise ValueError( + f"Data too small for finetuning in fewshot {fewshot_fraction*100}%. Resulting in 0 samples." + ) + + if use_valid_from_train: + all_indx = list(range(0, len(org_dset_train))) + valid_indx = list(set(all_indx) - set(lst_fewshot_indx)) + + # we don't use a huge validation set + valid_size = min(len(dset_train), len(org_dset_train) - len(dset_train)) + + valid_indx = np.random.choice(valid_indx, valid_size, replace=False) + dset_valid_from_train = Subset(org_dset_train, valid_indx) + + dset_valid = TorchDatasetFromGluonTSTrainingDataset( + valid_dataset_scaled, + self.context_length, + self.prediction_length, + last_window_only=True, + ) + + if dset_valid_from_train is not None: + dset_valid = ConcatDataset((dset_valid_from_train, dset_valid)) + + self.train_num_samples = len(dset_train) + self.valid_num_samples = len(dset_valid) + + if freeze_backbone: + print( + "Number of params before freezing backbone", + count_parameters(self.ttm), + ) + + # Freeze the backbone of the model + for param in self.ttm.backbone.parameters(): + param.requires_grad = False + + # Count params + print( + "Number of params after freezing the backbone", + count_parameters(self.ttm), + ) + + # Find optimal learning rate + # Use with caution: Set it manually if the suggested learning rate is not suitable + if learning_rate is None: + learning_rate, self.ttm = optimal_lr_finder( + self.ttm, + dset_train, + batch_size=batch_size, + ) + print("OPTIMAL SUGGESTED LEARNING RATE =", learning_rate) + + print(f"Using learning rate = {learning_rate}") + finetune_forecast_args = TrainingArguments( + output_dir=os.path.join(temp_dir, "output"), + overwrite_output_dir=True, + learning_rate=learning_rate, + num_train_epochs=num_epochs, + do_eval=True, + evaluation_strategy="epoch", + per_device_train_batch_size=batch_size, + per_device_eval_batch_size=batch_size, + dataloader_num_workers=num_workers, + report_to="none", + save_strategy="epoch", + logging_strategy="epoch", + save_total_limit=1, + logging_dir=os.path.join(temp_dir, "logs"), # Make sure to specify a logging directory + load_best_model_at_end=True, # Load the best model when training ends + metric_for_best_model="eval_loss", # Metric to monitor for early stopping + greater_is_better=False, # For loss + seed=self.random_seed, + ) + + # Create the early stopping callback + early_stopping_callback = EarlyStoppingCallback( + early_stopping_patience=5, # Number of epochs with no improvement after which to stop + early_stopping_threshold=1e-5, # Minimum improvement required to consider as improvement + ) + tracking_callback = TrackingCallback() + + # Optimizer and scheduler + optimizer = AdamW(self.ttm.parameters(), lr=learning_rate) + scheduler = OneCycleLR( + optimizer, + learning_rate, + epochs=num_epochs, + steps_per_epoch=math.ceil(len(dset_train) / (batch_size)), + ) + + hf_trainer = Trainer( + model=self.ttm, + args=finetune_forecast_args, + train_dataset=dset_train, + eval_dataset=dset_valid, + callbacks=[early_stopping_callback, tracking_callback], + optimizers=(optimizer, scheduler), + ) + hf_trainer.remove_callback(INTEGRATION_TO_CALLBACK["codecarbon"]) + + # Fine tune + hf_trainer.train() + + # Save model + if save_model: + hf_trainer.save_model(os.path.join(self.out_dir, "ttm_model")) + + def validate( + self, + valid_dataset: TrainingDataset, + batch_size: int = 64, + ): + """(Optionally) Validate. + + Args: + valid_dataset (TrainingDataset): Validation dataset. + batch_size (int, optional): Batch size. Defaults to 64. + + Returns: + flat: Validation loss. + """ + valid_dataset_scaled = self._process_time_series(valid_dataset) + if self.scale: + if self.scaler is None: + self.scaler = StandardScalingGluonTSDataset() + self.scaler.fit(valid_dataset_scaled) + + valid_dataset_scaled = self.scaler.transform(valid_dataset_scaled) + else: + valid_dataset_scaled = valid_dataset + + temp_dir = tempfile.mkdtemp() + dset_valid = TorchDatasetFromGluonTSTrainingDataset( + valid_dataset_scaled, + self.context_length, + self.prediction_length, + last_window_only=True, + ) + + # hf_trainer + hf_trainer = Trainer( + model=self.ttm, + args=TrainingArguments( + output_dir=temp_dir, + per_device_eval_batch_size=batch_size, + seed=self.random_seed, + report_to="none", + eval_accumulation_steps=10, + ), + ) + + # evaluate = zero-shot performance + print("+" * 20, "Zero-shot Test Loss", "+" * 20) + zeroshot_output = hf_trainer.predict(dset_valid) + print(zeroshot_output) + return zeroshot_output["eval_loss"] + + def predict( + self, + test_data_input: InputDataset, + batch_size: int = 64, + ): + """Predict. + + Args: + test_data_input (InputDataset): Test input dataset. + batch_size (int, optional): Batch size. Defaults to 64. + + Returns: + float: Eval loss. + """ + # Standard scale + if self.scale: + # We do not truncate the initial NaNs during testing since it sometimes + # results in extremely short length, and inference fails. + # Hence, in the current implementation the initial NaNs will be converted + # to zeros. + # (not used currently) test_data_input_scaled = self._process_time_series(test_data_input) + + # A new Standard Scaler is defined + # Note: Issue with using the train scaler directly...number of series mismatch! + test_data_input_scaled = copy.deepcopy(test_data_input) + scaler = StandardScalingGluonTSDataset() + scaler.fit(test_data_input_scaled) + test_data_input_scaled = scaler.transform(test_data_input_scaled) + else: + test_data_input_scaled = test_data_input + + while True: + try: + # Generate forecast samples + forecast_samples = [] + for batch in tqdm(batcher(test_data_input_scaled, batch_size=batch_size)): + batch_ttm = {} + adjusted_batch_raw = [] + for idx, entry in enumerate(batch): + # univariate array of shape (time,) + # multivariate array of shape (var, time) + # TTM supports multivariate time series + if len(entry["target"].shape) == 1: + entry["target"] = entry["target"].reshape(1, -1) + + entry_context_length = entry["target"].shape[1] + num_channels = entry["target"].shape[0] + # Pad + if entry_context_length < self.ttm.config.context_length: + padding = torch.zeros( + ( + num_channels, + self.ttm.config.context_length - entry_context_length, + ) + ) + adjusted_entry = torch.cat((padding, torch.tensor(impute_series(entry["target"]))), dim=1) + # observed_mask[idx, :, :(ttm.config.context_length - entry_context_length)] = 0 + # Truncate + elif entry_context_length > self.ttm.config.context_length: + adjusted_entry = torch.tensor( + impute_series(entry["target"][:, -self.ttm.config.context_length :]) + ) + # Take full context + else: + adjusted_entry = torch.tensor(impute_series(entry["target"])) + adjusted_batch_raw.append(adjusted_entry) + + # For TTM channel dimension comes at the end + batch_ttm["past_values"] = torch.stack(adjusted_batch_raw).permute(0, 2, 1).to(self.device) + + if self.prediction_length > TTM_MAX_FORECAST_HORIZON: + recursive_steps = int(np.ceil(self.prediction_length / self.ttm.config.prediction_length)) + predict_outputs = torch.empty(len(batch), 0, num_channels).to(self.device) + with torch.no_grad(): + for i in range(recursive_steps): + model_outputs = self.ttm(**batch_ttm) + batch_ttm["past_values"] = torch.cat( + [ + batch_ttm["past_values"], + model_outputs["prediction_outputs"], + ], + dim=1, + )[:, -self.ttm.config.context_length :, :] + predict_outputs = torch.cat( + [ + predict_outputs, + model_outputs["prediction_outputs"][:, : self.ttm.config.prediction_length, :], + ], + dim=1, + ) + predict_outputs = predict_outputs[:, : self.prediction_length, :] + else: + model_outputs = self.ttm(**batch_ttm) + predict_outputs = model_outputs.prediction_outputs + + # Accumulate all forecasts + forecast_samples.append(predict_outputs.detach().cpu().numpy()) + + # list to np.ndarray + forecast_samples = np.concatenate(forecast_samples) + + if self.scale: + # inverse scale + forecast_samples = scaler.inverse_transform(forecast_samples) + + if forecast_samples.shape[2] == 1: + forecast_samples = np.squeeze(forecast_samples, axis=2) + break + except torch.cuda.OutOfMemoryError: + print(f"OutOfMemoryError at batch_size {batch_size}, reducing to {batch_size // 2}") + batch_size //= 2 + + # Convert forecast samples into gluonts SampleForecast objects + # Array of size (num_samples, prediction_length) (1D case) or + # (num_samples, prediction_length, target_dim) (multivariate case) + sample_forecasts = [] + for item, ts in zip(forecast_samples, test_data_input): + forecast_start_date = ts["start"] + len(ts["target"]) + sample_forecasts.append( + SampleForecast( + item_id=ts["item_id"], + samples=np.expand_dims(item, axis=0), + start_date=forecast_start_date, + ) + ) + + if self.out_dir is None: + self.out_dir = tempfile.mkdtemp() + + if self.plot_test_forecast and self.prediction_length <= TTM_MAX_FORECAST_HORIZON: + # Create torch dataset for plotting + torch_dset_test = TorchDatasetFromGluonTSTestDataset( + gluon_test_input=test_data_input, + gluon_test_label=self.test_data_label, + seq_len=self.ttm.config.context_length, + forecast_len=self.prediction_length, + ) + # Plot random samples + plot_predictions( + dset=torch_dset_test, + model=self.ttm, + plot_dir=f"{self.out_dir}/{self.ds_name}_{self.term}", + channel=0, + plot_context=int(0.5 * self.prediction_length), + ) + + return sample_forecasts diff --git a/tsfm_public/toolkit/ddp_utils.py b/tsfm_public/toolkit/ddp_utils.py new file mode 100644 index 00000000..c414602f --- /dev/null +++ b/tsfm_public/toolkit/ddp_utils.py @@ -0,0 +1,24 @@ +import os +from datetime import timedelta + +import torch + + +def init_ddp(timeout=600): + local_rank = int(os.environ.get("LOCAL_RANK")) + world_size = int(os.environ.get("WORLD_SIZE")) + rank = int(os.environ.get("RANK")) + + torch.cuda.set_device(local_rank) + torch.distributed.init_process_group( + "nccl", + init_method="env://", + world_size=world_size, + rank=rank, + timeout=timedelta(seconds=timeout), + ) + + +def is_rank_0(): + rank = torch.distributed.get_rank() + return rank == 0 diff --git a/tsfm_public/toolkit/get_model.py b/tsfm_public/toolkit/get_model.py index 48cf7022..12e28179 100644 --- a/tsfm_public/toolkit/get_model.py +++ b/tsfm_public/toolkit/get_model.py @@ -115,6 +115,17 @@ def get_model( {SUPPORTED_LENGTHS[model_path_type]}" ) + # Choose closest context length + available_context_lens = sorted(SUPPORTED_LENGTHS[model_path_type]["CL"], reverse=True) + selected_context_length = None + for cl in available_context_lens: + if cl <= context_length: + selected_context_length = cl + break + if selected_context_length is None: + raise ValueError(f"Requested context length is too short. Requested = {context_length}.\n\ + Available lengths for model_type = {model_path_type} are: {available_context_lens}.") + if freq_prefix_tuning is None: # Default model preference (freq / nofreq) if model_path_type == 1 or model_path_type == 2: # for granite use nofreq models @@ -135,11 +146,11 @@ def get_model( try: if model_path_type == 1 or model_path_type == 2: ttm_model_revision = model_revisions["ibm-granite-models"][ - f"r{model_path_type}-{context_length}-{selected_prediction_length}-{freq_prefix}" + f"r{model_path_type}-{selected_context_length}-{selected_prediction_length}-{freq_prefix}" ]["revision"] elif model_path_type == 3: ttm_model_revision = model_revisions["research-use-models"][ - f"r2-{context_length}-{selected_prediction_length}-{freq_prefix}" + f"r2-{selected_context_length}-{selected_prediction_length}-{freq_prefix}" ]["revision"] else: raise Exception( @@ -149,9 +160,10 @@ def get_model( raise ValueError( f"Model not found, possibly because of wrong context_length. Supported context lengths (CL) and forecast/prediction lengths (FL) for Model Card: {model_path} are {SUPPORTED_LENGTHS[model_path_type]}" ) + else: + prediction_filter_length = prediction_length # Load model - model = TinyTimeMixerForPrediction.from_pretrained( model_path, revision=ttm_model_revision, diff --git a/tsfm_public/toolkit/gluonts_data_wrapper.py b/tsfm_public/toolkit/gluonts_data_wrapper.py new file mode 100644 index 00000000..e96043d1 --- /dev/null +++ b/tsfm_public/toolkit/gluonts_data_wrapper.py @@ -0,0 +1,245 @@ +import bisect +from typing import Union + +import numpy as np +import torch +from gluonts.dataset.split import InputDataset, LabelDataset, TrainingDataset +from gluonts.itertools import batcher +from gluonts.transform.feature import LastValueImputation +from torch.utils.data import Dataset +from tqdm import tqdm + + +def impute_series(target): + if np.isnan(target).any(): + target = target.copy() + if len(target.shape) == 2: + for i in range(target.shape[0]): + target[i, ...] = LastValueImputation()(target[i, ...]) + elif len(target.shape) == 1: + target = LastValueImputation()(target) + else: + raise Exception("Only 1D and 2D arrays are accepted by the impute_series() function.") + return target + + +def np_to_torch(np): + if np.dtype == "float" or np.dtype == "float32": + return torch.from_numpy(np).float() + elif np.dtype == "int": + return torch.from_numpy(np) + + +def _torch(*nps): + return tuple(np_to_torch(x) for x in nps) + + +class StandardScalingGluonTSDataset: + """ + TTM works best on standard scaled data, especially if fewshot + finetuning is being performed. + We can utilize the entire available context to do that. + This is a global sclaing operation done independently on + each channel. + """ + + def __init__(self) -> None: + self.mean = [] + self.std = [] + + def fit(self, train_data: Union[TrainingDataset, InputDataset]): + """Calculate the statistics on the historical train data. + + Args: + train_data (Union[TrainingDataset, InputDataset]): Iterator with + each series of shape [num_channels, seq_len] for multivariate + and [seq_len] for univariate. + """ + for batch in tqdm(batcher(train_data, batch_size=1)): + if batch[0]["target"].ndim == 1: + batch[0]["target"] = batch[0]["target"].reshape(1, -1) # [1, seq_len] + self.mean.append(np.mean(impute_series(batch[0]["target"]), axis=1).reshape(-1, 1)) + std = np.std(impute_series(batch[0]["target"]), axis=1).reshape(-1, 1) + for i in range(std.shape[0]): + if std[i] == 0: + std[i] = 1 + self.std.append(std) + + def transform(self, data: Union[TrainingDataset, InputDataset]): + """Apply scaler using calculated statistics. + + Args: + data (Union[TrainingDataset, InputDataset]): Iterator with + each series of shape [num_channels, seq_len] for multivariate + and [seq_len] for univariate. + + Returns: + Iternator: With each series transformed. + """ + assert len(self.mean) > 0 + assert len(self.std) > 0 + + out = list(data) + for i, _ in tqdm(enumerate(out)): + out[i]["target"] = (impute_series(out[i]["target"]) - self.mean[i]) / (self.std[i]) + return iter(out) + + def inverse_transform(self, data: np.ndarray) -> np.ndarray: + """Inverse transform, and bring data to original scale. + + Args: + data (np.ndarray): Forecast output of shape [batch, seq_len, num_channels] + + Raises: + Exception: If NaN is found in the forecast. + + Returns: + np.ndarray: Of shape [batch, seq_len, num_channels]. + """ + out = np.zeros(data.shape) + for i in tqdm(range((data.shape[0]))): + out[i, ...] = data[i, ...] * (self.std[i].T) + self.mean[i].T + if np.isnan(out[i, ...]).any(): + raise Exception("NaN found in forecast!") + return out + + +class TorchDatasetFromGluonTSTrainingDataset(Dataset): + def __init__( + self, + gluon_dataset: TrainingDataset, + seq_len: int, + forecast_len: int, + last_window_only=False, + ): + """Wrapper to create pytorch `Dataset` from GluonTS dataset. + + Args: + gluon_dataset (TrainingDataset): GluonTS dataset. + seq_len (int): Context length. + forecast_len (int): Forecast horizon. + last_window_only (bool, optional): If True, only last window will be processed. Defaults to False. + """ + # assert seq_len > forecast_len, f'sequence lenght {seq_len} has to be strictly greater than forecast length {forecast_len}' + self.seq_len = seq_len + self.forecast_len = forecast_len + self.X = list(gluon_dataset) + self.last_window_only = last_window_only + self.stride = 1 # TODO: support other strides + + # handle univariate series, and nans + for i, _ in enumerate(self.X): + if len(self.X[i]["target"].shape) == 1: + self.X[i]["target"] = self.X[i]["target"].reshape(1, -1) + + # Nan imputation + self.X[i]["target"] = impute_series(self.X[i]["target"]) + + # pad zeros if needed + if self.X[i]["target"].shape[1] < self.seq_len + self.forecast_len: + pad = np.zeros( + ( + self.X[i]["target"].shape[0], + self.seq_len + self.forecast_len - self.X[i]["target"].shape[1] + 1, + ) + ) + self.X[i]["target"] = np.concatenate((pad, self.X[i]["target"]), axis=1) + + # get shape + if not self.last_window_only: + self.cumulative_sizes = self.cumsum(self.X) + + def cumsum(self, list_data): + """ + list_data: list of numpy array of shape [channels x len] + """ + list_len, sum_ = [], 0 + for i, elm in enumerate(list_data): + data = elm["target"] + len_ = data.shape[1] - self.seq_len - self.forecast_len + 1 + list_len.append(len_ + sum_) + sum_ += len_ + return list_len + + def __len__(self): + if self.last_window_only: + return len(self.X) # = num of series + else: + return self.cumulative_sizes[-1] // self.stride + + def __getitem__(self, idx): + if self.last_window_only: + seq_x = self.X[idx]["target"][:, -(self.seq_len + self.forecast_len) : -self.forecast_len] + seq_y = self.X[idx]["target"][:, -(self.forecast_len) :] + else: + idx = idx * self.stride + if idx < 0: + if -idx > len(self): + raise ValueError("absolute value of index should not exceed dataset length") + idx = len(self) + idx + series_idx = bisect.bisect_right(self.cumulative_sizes, idx) + if series_idx == 0: + time_id = idx + else: + time_id = idx - self.cumulative_sizes[series_idx - 1] + seq_x = self.X[series_idx]["target"][:, time_id : time_id + self.seq_len] + seq_y = self.X[series_idx]["target"][ + :, time_id + self.seq_len : time_id + self.seq_len + self.forecast_len + ] + + # return torch.from_numpy(seq_x.astype(np.float)).float() + seq_x, seq_y = _torch(seq_x, seq_y) + + return_output = { + "past_values": seq_x.T, + "future_values": seq_y.T, + } + + return return_output + + +class TorchDatasetFromGluonTSTestDataset(Dataset): + def __init__( + self, + gluon_test_input: InputDataset, + gluon_test_label: LabelDataset, + seq_len: int, + forecast_len: int, + ): + """Wrapper to create pytorch `Dataset` from GluonTS dataset. + + Args: + gluon_dataset (TrainingDataset): GluonTS dataset. + seq_len (int): Context length. + forecast_len (int): Forecast horizon. + last_window_only (bool, optional): If True, only last window will be processed. Defaults to False. + """ + # assert seq_len > forecast_len, f'sequence lenght {seq_len} has to be strictly greater than forecast length {forecast_len}' + self.seq_len = seq_len + self.forecast_len = forecast_len + self.X = list(gluon_test_input) + self.Y = list(gluon_test_label) + + def __len__(self): + return len(self.Y) + + def __getitem__(self, idx): + seq_x = self.X[idx]["target"] + seq_y = self.Y[idx]["target"] + + if len(seq_x.shape) == 1: + seq_x = seq_x.reshape(1, -1) + seq_y = seq_y.reshape(1, -1) + + if seq_x.shape[1] < self.seq_len: + pad = np.zeros((seq_x.shape[0], self.seq_len - seq_x.shape[1])) + seq_x = np.concatenate((pad, seq_x), axis=1) + + seq_x, seq_y = _torch(seq_x[:, -self.seq_len :], seq_y[:, : self.forecast_len]) + + return_output = { + "past_values": seq_x.T, + "future_values": seq_y.T, + } + + return return_output diff --git a/tsfm_public/toolkit/visualization.py b/tsfm_public/toolkit/visualization.py index 658a469e..93f6623c 100644 --- a/tsfm_public/toolkit/visualization.py +++ b/tsfm_public/toolkit/visualization.py @@ -309,7 +309,7 @@ def plot_predictions( if k in signature_keys: random_samples[k] = torch.stack([dset[i][k] for i in indices]).to(device=device) output = model(**random_samples) - predictions_subset = output.prediction_outputs[:, :, channel].squeeze().cpu().numpy() + predictions_subset = output.prediction_outputs[:, :, channel].cpu().numpy() prediction_length = predictions_subset.shape[1] using_pipeline = False plot_test_data = True From 3598090ba2dca854d9af8226e1b9e814b3471026 Mon Sep 17 00:00:00 2001 From: Arindam Jati Date: Wed, 4 Dec 2024 00:28:44 -0500 Subject: [PATCH 05/32] enable truncation of context len in ttm --- pyproject.toml | 5 +++-- .../models/tinytimemixer/modeling_tinytimemixer.py | 9 +++++++++ tsfm_public/toolkit/gluonts_data_wrapper.py | 14 ++------------ 3 files changed, 14 insertions(+), 14 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 60a7c490..d21fb799 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -31,7 +31,7 @@ packages = ["tsfm_public", "tsfmhfdemos"] [project.optional-dependencies] -all = ["tsfm_public[notebooks,testing,dev]"] +all = ["tsfm_public[notebooks,external,testing,dev]"] notebooks = [ "jupyter", @@ -42,7 +42,8 @@ notebooks = [ "kaleido", "tensorboard", ] -testing = ["pytest", "tsfm_public[notebooks]", "parameterized"] +external = ["tsfm_public[notebooks]", "gluonts"] +testing = ["pytest", "tsfm_public[external]", "parameterized"] dev = ["pre-commit", "tsfm_public[testing]", "ruff==0.4.4"] # ogv deployments will already have jupyter diff --git a/tsfm_public/models/tinytimemixer/modeling_tinytimemixer.py b/tsfm_public/models/tinytimemixer/modeling_tinytimemixer.py index 2cf77f35..7ec8651e 100644 --- a/tsfm_public/models/tinytimemixer/modeling_tinytimemixer.py +++ b/tsfm_public/models/tinytimemixer/modeling_tinytimemixer.py @@ -1802,6 +1802,15 @@ def forward( Returns: """ + if past_values.dim() != 3: + raise ValueError( + "`past_values` must have 3 dimensions of shape `(batch_size, sequence_length, num_input_channels)`." + ) + if past_values.shape[1] > self.config.context_length: + past_values = past_values[:, -self.config.context_length :, :] + elif past_values.shape[1] < self.config.context_length: + raise ValueError("Context length in `past_values` is shorter that TTM context_length.") + if self.loss == "mse": loss = nn.MSELoss(reduction="mean") elif self.loss == "mae": diff --git a/tsfm_public/toolkit/gluonts_data_wrapper.py b/tsfm_public/toolkit/gluonts_data_wrapper.py index e96043d1..40e58c1c 100644 --- a/tsfm_public/toolkit/gluonts_data_wrapper.py +++ b/tsfm_public/toolkit/gluonts_data_wrapper.py @@ -2,13 +2,14 @@ from typing import Union import numpy as np -import torch from gluonts.dataset.split import InputDataset, LabelDataset, TrainingDataset from gluonts.itertools import batcher from gluonts.transform.feature import LastValueImputation from torch.utils.data import Dataset from tqdm import tqdm +from tsfm_public.toolkit.dataset import _torch + def impute_series(target): if np.isnan(target).any(): @@ -23,17 +24,6 @@ def impute_series(target): return target -def np_to_torch(np): - if np.dtype == "float" or np.dtype == "float32": - return torch.from_numpy(np).float() - elif np.dtype == "int": - return torch.from_numpy(np) - - -def _torch(*nps): - return tuple(np_to_torch(x) for x in nps) - - class StandardScalingGluonTSDataset: """ TTM works best on standard scaled data, especially if fewshot From 176e7d1c5f117b144bd8645bbeb05c628af7cdde Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Wed, 4 Dec 2024 12:55:27 -0500 Subject: [PATCH 06/32] fix issues with future exogenous --- .../toolkit/time_series_forecasting_pipeline.py | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/tsfm_public/toolkit/time_series_forecasting_pipeline.py b/tsfm_public/toolkit/time_series_forecasting_pipeline.py index aafe1eb3..8c3431db 100644 --- a/tsfm_public/toolkit/time_series_forecasting_pipeline.py +++ b/tsfm_public/toolkit/time_series_forecasting_pipeline.py @@ -372,7 +372,7 @@ def preprocess(self, time_series, **kwargs) -> Dict[str, Union[GenericTensor, Li # future data needs some values for targets, but they are unused future_time_series[target_columns] = 0 future_time_series = self.feature_extractor.preprocess(future_time_series) - future_time_series.drop(columns=target_columns) + future_time_series = future_time_series.drop(columns=target_columns) time_series = pd.concat((time_series, future_time_series), axis=0) else: @@ -424,13 +424,16 @@ def postprocess(self, input, **kwargs): # name the predictions of target columns # outputs should only have size equal to target columns + # only allow adding ground truth when not exploding + add_known_ground_truth = kwargs["add_known_ground_truth"] if not kwargs["explode_forecasts"] else False + prediction_columns = [] for i, c in enumerate(kwargs["target_columns"]): - prediction_columns.append(f"{c}_prediction" if kwargs["add_known_ground_truth"] else c) + prediction_columns.append(f"{c}_prediction" if add_known_ground_truth else c) out[prediction_columns[-1]] = input[model_output_key][:, :, i].numpy().tolist() # provide the ground truth values for the targets # when future is unknown, we will have augmented the provided dataframe with NaN values to cover the future - if kwargs["add_known_ground_truth"]: + if add_known_ground_truth: for i, c in enumerate(kwargs["target_columns"]): ground_truth = input["future_values"][:, :, i].numpy() missing = ~input["future_observed_mask"][:, :, i].numpy() @@ -478,7 +481,7 @@ def postprocess(self, input, **kwargs): # inverse scale if we have a feature extractor if self.feature_extractor is not None and kwargs["inverse_scale_outputs"]: out = self.feature_extractor.inverse_scale_targets(out) - if kwargs["add_known_ground_truth"]: + if add_known_ground_truth: out = self.feature_extractor.inverse_scale_targets(out, suffix="_prediction") return out From 3859359ebdd6fda0ca6d186c8c9d9221942cbb7d Mon Sep 17 00:00:00 2001 From: Arindam Jati Date: Wed, 4 Dec 2024 13:02:33 -0500 Subject: [PATCH 07/32] force_return in get_model --- .../gluonts/ttm_gluonts_predictor.py | 5 ++-- tsfm_public/toolkit/get_model.py | 25 ++++++++++++++++--- 2 files changed, 25 insertions(+), 5 deletions(-) diff --git a/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py b/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py index 1f94a621..b5e68fe7 100644 --- a/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py +++ b/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py @@ -83,7 +83,6 @@ def __init__( upper_bound_fewshot_samples (bool, optional): If True, number of x% fewshot will be upper-bounded to FEWSHOT_MAX_NUM_SAMPLES. Defaults to True. """ - self.context_length = context_length self.prediction_length = prediction_length self.test_data_label = test_data_label self.scale = scale @@ -105,10 +104,12 @@ def __init__( # Call get_model() function to load TTM model automatically. self.ttm = get_model( model_path, - context_length=self.context_length, + context_length=context_length, prediction_length=min(self.prediction_length, TTM_MAX_FORECAST_HORIZON), + force_return=True, **kwargs, ).to(self.device) + self.context_length = self.ttm.config.context_length def _process_time_series(self, dataset: TrainingDataset) -> List: """ diff --git a/tsfm_public/toolkit/get_model.py b/tsfm_public/toolkit/get_model.py index 12e28179..bb76c145 100644 --- a/tsfm_public/toolkit/get_model.py +++ b/tsfm_public/toolkit/get_model.py @@ -48,6 +48,7 @@ def get_model( context_length: int = None, prediction_length: int = None, freq_prefix_tuning: bool = None, + force_return: bool = False, **kwargs, ): """ @@ -102,7 +103,14 @@ def get_model( elif prediction_length <= 720: selected_prediction_length = 720 else: - raise ValueError("Currently supported maximum prediction_length = 720") + if force_return: + selected_prediction_length = 720 + LOGGER.warning( + "The requested forecast horizon is greater than the maximum supported horizon (720).\n\ + Returning TTM model with horizon 720 since `force_return=True`." + ) + else: + raise ValueError("Currently supported maximum prediction_length = 720") LOGGER.info(f"Selected prediction_length = {selected_prediction_length}") @@ -121,10 +129,21 @@ def get_model( for cl in available_context_lens: if cl <= context_length: selected_context_length = cl + if cl < context_length: + LOGGER.warning( + f"Selecting TTM context length ({selected_context_length}) < Requested context length ({context_length} since exact match was not found.)" + ) break if selected_context_length is None: - raise ValueError(f"Requested context length is too short. Requested = {context_length}.\n\ - Available lengths for model_type = {model_path_type} are: {available_context_lens}.") + if force_return: + selected_context_length = available_context_lens[-1] + LOGGER.warning(f"Requested context length is too short. Requested = {context_length}.\n\ + Available lengths for model_type = {model_path_type} are: {available_context_lens}.\n\ + Returning the shortest context length model possible since `force_return=True`.") + else: + raise ValueError(f"Requested context length is too short. Requested = {context_length}.\n\ + Available lengths for model_type = {model_path_type} are: {available_context_lens}.\n\ + To return the shortest context length model possible, set `force_return=True`.") if freq_prefix_tuning is None: # Default model preference (freq / nofreq) From beba82532231b04d0db109a0562e4e80ca5d9e55 Mon Sep 17 00:00:00 2001 From: Arindam Jati Date: Thu, 5 Dec 2024 02:10:32 -0500 Subject: [PATCH 08/32] code moved to extras folder outside tsfm_public --- .../gluonts/data}/gluonts_data_wrapper.py | 0 .../gluonts/models/tinytimemixer}/__init__.py | 2 +- .../models/tinytimemixer}/ttm_gluonts_predictor.py | 10 +++++++--- {tsfm_public/toolkit => extras/utils}/ddp_utils.py | 0 4 files changed, 8 insertions(+), 4 deletions(-) rename {tsfm_public/toolkit => extras/gluonts/data}/gluonts_data_wrapper.py (100%) rename {tsfm_public/models/tinytimemixer/gluonts => extras/gluonts/models/tinytimemixer}/__init__.py (52%) rename {tsfm_public/models/tinytimemixer/gluonts => extras/gluonts/models/tinytimemixer}/ttm_gluonts_predictor.py (99%) rename {tsfm_public/toolkit => extras/utils}/ddp_utils.py (100%) diff --git a/tsfm_public/toolkit/gluonts_data_wrapper.py b/extras/gluonts/data/gluonts_data_wrapper.py similarity index 100% rename from tsfm_public/toolkit/gluonts_data_wrapper.py rename to extras/gluonts/data/gluonts_data_wrapper.py diff --git a/tsfm_public/models/tinytimemixer/gluonts/__init__.py b/extras/gluonts/models/tinytimemixer/__init__.py similarity index 52% rename from tsfm_public/models/tinytimemixer/gluonts/__init__.py rename to extras/gluonts/models/tinytimemixer/__init__.py index 67f0d162..65da48d0 100644 --- a/tsfm_public/models/tinytimemixer/gluonts/__init__.py +++ b/extras/gluonts/models/tinytimemixer/__init__.py @@ -1,4 +1,4 @@ -from tsfm_public.models.tinytimemixer.gluonts.ttm_gluonts_predictor import ( +from .ttm_gluonts_predictor import ( TTM_AVAILABLE_CONTEXTS, TTM_MAX_FORECAST_HORIZON, TTMGluonTSPredictor, diff --git a/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py b/extras/gluonts/models/tinytimemixer/ttm_gluonts_predictor.py similarity index 99% rename from tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py rename to extras/gluonts/models/tinytimemixer/ttm_gluonts_predictor.py index b5e68fe7..dfd9040b 100644 --- a/tsfm_public/models/tinytimemixer/gluonts/ttm_gluonts_predictor.py +++ b/extras/gluonts/models/tinytimemixer/ttm_gluonts_predictor.py @@ -5,6 +5,7 @@ import copy import math import os +import sys import tempfile from typing import List @@ -27,14 +28,17 @@ count_parameters, ) from tsfm_public.toolkit.get_model import get_model -from tsfm_public.toolkit.gluonts_data_wrapper import ( +from tsfm_public.toolkit.lr_finder import optimal_lr_finder +from tsfm_public.toolkit.visualization import plot_predictions + + +sys.path.append(os.path.realpath("../../../")) +from extras.gluonts.data.gluonts_data_wrapper import ( StandardScalingGluonTSDataset, TorchDatasetFromGluonTSTestDataset, TorchDatasetFromGluonTSTrainingDataset, impute_series, ) -from tsfm_public.toolkit.lr_finder import optimal_lr_finder -from tsfm_public.toolkit.visualization import plot_predictions logger = logging.get_logger(__name__) diff --git a/tsfm_public/toolkit/ddp_utils.py b/extras/utils/ddp_utils.py similarity index 100% rename from tsfm_public/toolkit/ddp_utils.py rename to extras/utils/ddp_utils.py From c0b03eb508c64c08510e0b65cd76fe4e0646c5db Mon Sep 17 00:00:00 2001 From: Arindam Jati Date: Thu, 5 Dec 2024 03:06:12 -0500 Subject: [PATCH 09/32] tests moved --- .../gluonts/tests}/test_gluonts_data_wrapper.py | 7 ++++++- .../gluonts/tests}/test_gluonts_predictor.py | 7 ++++++- 2 files changed, 12 insertions(+), 2 deletions(-) rename {tests/toolkit => extras/gluonts/tests}/test_gluonts_data_wrapper.py (97%) rename {tests/models/tinytimemixer => extras/gluonts/tests}/test_gluonts_predictor.py (92%) diff --git a/tests/toolkit/test_gluonts_data_wrapper.py b/extras/gluonts/tests/test_gluonts_data_wrapper.py similarity index 97% rename from tests/toolkit/test_gluonts_data_wrapper.py rename to extras/gluonts/tests/test_gluonts_data_wrapper.py index 8f74855f..0fe609d0 100644 --- a/tests/toolkit/test_gluonts_data_wrapper.py +++ b/extras/gluonts/tests/test_gluonts_data_wrapper.py @@ -3,13 +3,18 @@ """Tests get_model""" +import os +import sys + import numpy as np import pandas as pd import pytest from gluonts.dataset.common import ListDataset from gluonts.dataset.split import split -from tsfm_public.toolkit.gluonts_data_wrapper import ( + +sys.path.append(os.path.realpath("../../../")) +from extras.gluonts.data.gluonts_data_wrapper import ( StandardScalingGluonTSDataset, TorchDatasetFromGluonTSTestDataset, TorchDatasetFromGluonTSTrainingDataset, diff --git a/tests/models/tinytimemixer/test_gluonts_predictor.py b/extras/gluonts/tests/test_gluonts_predictor.py similarity index 92% rename from tests/models/tinytimemixer/test_gluonts_predictor.py rename to extras/gluonts/tests/test_gluonts_predictor.py index 6e8dbb56..1f9f4e58 100644 --- a/tests/models/tinytimemixer/test_gluonts_predictor.py +++ b/extras/gluonts/tests/test_gluonts_predictor.py @@ -3,12 +3,17 @@ """Tests get_model""" +import os +import sys + import numpy as np import pandas as pd import pytest from gluonts.dataset.common import ListDataset -from tsfm_public.models.tinytimemixer.gluonts import TTMGluonTSPredictor + +sys.path.append(os.path.realpath("../../")) +from extras.gluonts.models.tinytimemixer import TTMGluonTSPredictor @pytest.fixture(scope="module") From 3df4e68725140ef795fad23a665bc08816f6defb Mon Sep 17 00:00:00 2001 From: Arindam Jati Date: Thu, 5 Dec 2024 12:30:13 -0500 Subject: [PATCH 10/32] gift srcs removed, get_model updated --- extras/gluonts/data/gluonts_data_wrapper.py | 235 -------- .../gluonts/models/tinytimemixer/__init__.py | 5 - .../tinytimemixer/ttm_gluonts_predictor.py | 527 ------------------ .../tests/test_gluonts_data_wrapper.py | 129 ----- .../gluonts/tests/test_gluonts_predictor.py | 57 -- extras/utils/ddp_utils.py | 24 - tests/toolkit/test_get_model.py | 19 +- tsfm_public/toolkit/get_model.py | 46 +- 8 files changed, 37 insertions(+), 1005 deletions(-) delete mode 100644 extras/gluonts/data/gluonts_data_wrapper.py delete mode 100644 extras/gluonts/models/tinytimemixer/__init__.py delete mode 100644 extras/gluonts/models/tinytimemixer/ttm_gluonts_predictor.py delete mode 100644 extras/gluonts/tests/test_gluonts_data_wrapper.py delete mode 100644 extras/gluonts/tests/test_gluonts_predictor.py delete mode 100644 extras/utils/ddp_utils.py diff --git a/extras/gluonts/data/gluonts_data_wrapper.py b/extras/gluonts/data/gluonts_data_wrapper.py deleted file mode 100644 index 40e58c1c..00000000 --- a/extras/gluonts/data/gluonts_data_wrapper.py +++ /dev/null @@ -1,235 +0,0 @@ -import bisect -from typing import Union - -import numpy as np -from gluonts.dataset.split import InputDataset, LabelDataset, TrainingDataset -from gluonts.itertools import batcher -from gluonts.transform.feature import LastValueImputation -from torch.utils.data import Dataset -from tqdm import tqdm - -from tsfm_public.toolkit.dataset import _torch - - -def impute_series(target): - if np.isnan(target).any(): - target = target.copy() - if len(target.shape) == 2: - for i in range(target.shape[0]): - target[i, ...] = LastValueImputation()(target[i, ...]) - elif len(target.shape) == 1: - target = LastValueImputation()(target) - else: - raise Exception("Only 1D and 2D arrays are accepted by the impute_series() function.") - return target - - -class StandardScalingGluonTSDataset: - """ - TTM works best on standard scaled data, especially if fewshot - finetuning is being performed. - We can utilize the entire available context to do that. - This is a global sclaing operation done independently on - each channel. - """ - - def __init__(self) -> None: - self.mean = [] - self.std = [] - - def fit(self, train_data: Union[TrainingDataset, InputDataset]): - """Calculate the statistics on the historical train data. - - Args: - train_data (Union[TrainingDataset, InputDataset]): Iterator with - each series of shape [num_channels, seq_len] for multivariate - and [seq_len] for univariate. - """ - for batch in tqdm(batcher(train_data, batch_size=1)): - if batch[0]["target"].ndim == 1: - batch[0]["target"] = batch[0]["target"].reshape(1, -1) # [1, seq_len] - self.mean.append(np.mean(impute_series(batch[0]["target"]), axis=1).reshape(-1, 1)) - std = np.std(impute_series(batch[0]["target"]), axis=1).reshape(-1, 1) - for i in range(std.shape[0]): - if std[i] == 0: - std[i] = 1 - self.std.append(std) - - def transform(self, data: Union[TrainingDataset, InputDataset]): - """Apply scaler using calculated statistics. - - Args: - data (Union[TrainingDataset, InputDataset]): Iterator with - each series of shape [num_channels, seq_len] for multivariate - and [seq_len] for univariate. - - Returns: - Iternator: With each series transformed. - """ - assert len(self.mean) > 0 - assert len(self.std) > 0 - - out = list(data) - for i, _ in tqdm(enumerate(out)): - out[i]["target"] = (impute_series(out[i]["target"]) - self.mean[i]) / (self.std[i]) - return iter(out) - - def inverse_transform(self, data: np.ndarray) -> np.ndarray: - """Inverse transform, and bring data to original scale. - - Args: - data (np.ndarray): Forecast output of shape [batch, seq_len, num_channels] - - Raises: - Exception: If NaN is found in the forecast. - - Returns: - np.ndarray: Of shape [batch, seq_len, num_channels]. - """ - out = np.zeros(data.shape) - for i in tqdm(range((data.shape[0]))): - out[i, ...] = data[i, ...] * (self.std[i].T) + self.mean[i].T - if np.isnan(out[i, ...]).any(): - raise Exception("NaN found in forecast!") - return out - - -class TorchDatasetFromGluonTSTrainingDataset(Dataset): - def __init__( - self, - gluon_dataset: TrainingDataset, - seq_len: int, - forecast_len: int, - last_window_only=False, - ): - """Wrapper to create pytorch `Dataset` from GluonTS dataset. - - Args: - gluon_dataset (TrainingDataset): GluonTS dataset. - seq_len (int): Context length. - forecast_len (int): Forecast horizon. - last_window_only (bool, optional): If True, only last window will be processed. Defaults to False. - """ - # assert seq_len > forecast_len, f'sequence lenght {seq_len} has to be strictly greater than forecast length {forecast_len}' - self.seq_len = seq_len - self.forecast_len = forecast_len - self.X = list(gluon_dataset) - self.last_window_only = last_window_only - self.stride = 1 # TODO: support other strides - - # handle univariate series, and nans - for i, _ in enumerate(self.X): - if len(self.X[i]["target"].shape) == 1: - self.X[i]["target"] = self.X[i]["target"].reshape(1, -1) - - # Nan imputation - self.X[i]["target"] = impute_series(self.X[i]["target"]) - - # pad zeros if needed - if self.X[i]["target"].shape[1] < self.seq_len + self.forecast_len: - pad = np.zeros( - ( - self.X[i]["target"].shape[0], - self.seq_len + self.forecast_len - self.X[i]["target"].shape[1] + 1, - ) - ) - self.X[i]["target"] = np.concatenate((pad, self.X[i]["target"]), axis=1) - - # get shape - if not self.last_window_only: - self.cumulative_sizes = self.cumsum(self.X) - - def cumsum(self, list_data): - """ - list_data: list of numpy array of shape [channels x len] - """ - list_len, sum_ = [], 0 - for i, elm in enumerate(list_data): - data = elm["target"] - len_ = data.shape[1] - self.seq_len - self.forecast_len + 1 - list_len.append(len_ + sum_) - sum_ += len_ - return list_len - - def __len__(self): - if self.last_window_only: - return len(self.X) # = num of series - else: - return self.cumulative_sizes[-1] // self.stride - - def __getitem__(self, idx): - if self.last_window_only: - seq_x = self.X[idx]["target"][:, -(self.seq_len + self.forecast_len) : -self.forecast_len] - seq_y = self.X[idx]["target"][:, -(self.forecast_len) :] - else: - idx = idx * self.stride - if idx < 0: - if -idx > len(self): - raise ValueError("absolute value of index should not exceed dataset length") - idx = len(self) + idx - series_idx = bisect.bisect_right(self.cumulative_sizes, idx) - if series_idx == 0: - time_id = idx - else: - time_id = idx - self.cumulative_sizes[series_idx - 1] - seq_x = self.X[series_idx]["target"][:, time_id : time_id + self.seq_len] - seq_y = self.X[series_idx]["target"][ - :, time_id + self.seq_len : time_id + self.seq_len + self.forecast_len - ] - - # return torch.from_numpy(seq_x.astype(np.float)).float() - seq_x, seq_y = _torch(seq_x, seq_y) - - return_output = { - "past_values": seq_x.T, - "future_values": seq_y.T, - } - - return return_output - - -class TorchDatasetFromGluonTSTestDataset(Dataset): - def __init__( - self, - gluon_test_input: InputDataset, - gluon_test_label: LabelDataset, - seq_len: int, - forecast_len: int, - ): - """Wrapper to create pytorch `Dataset` from GluonTS dataset. - - Args: - gluon_dataset (TrainingDataset): GluonTS dataset. - seq_len (int): Context length. - forecast_len (int): Forecast horizon. - last_window_only (bool, optional): If True, only last window will be processed. Defaults to False. - """ - # assert seq_len > forecast_len, f'sequence lenght {seq_len} has to be strictly greater than forecast length {forecast_len}' - self.seq_len = seq_len - self.forecast_len = forecast_len - self.X = list(gluon_test_input) - self.Y = list(gluon_test_label) - - def __len__(self): - return len(self.Y) - - def __getitem__(self, idx): - seq_x = self.X[idx]["target"] - seq_y = self.Y[idx]["target"] - - if len(seq_x.shape) == 1: - seq_x = seq_x.reshape(1, -1) - seq_y = seq_y.reshape(1, -1) - - if seq_x.shape[1] < self.seq_len: - pad = np.zeros((seq_x.shape[0], self.seq_len - seq_x.shape[1])) - seq_x = np.concatenate((pad, seq_x), axis=1) - - seq_x, seq_y = _torch(seq_x[:, -self.seq_len :], seq_y[:, : self.forecast_len]) - - return_output = { - "past_values": seq_x.T, - "future_values": seq_y.T, - } - - return return_output diff --git a/extras/gluonts/models/tinytimemixer/__init__.py b/extras/gluonts/models/tinytimemixer/__init__.py deleted file mode 100644 index 65da48d0..00000000 --- a/extras/gluonts/models/tinytimemixer/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .ttm_gluonts_predictor import ( - TTM_AVAILABLE_CONTEXTS, - TTM_MAX_FORECAST_HORIZON, - TTMGluonTSPredictor, -) diff --git a/extras/gluonts/models/tinytimemixer/ttm_gluonts_predictor.py b/extras/gluonts/models/tinytimemixer/ttm_gluonts_predictor.py deleted file mode 100644 index dfd9040b..00000000 --- a/extras/gluonts/models/tinytimemixer/ttm_gluonts_predictor.py +++ /dev/null @@ -1,527 +0,0 @@ -# Copyright contributors to the TSFM project -# -"""Tools for building TTM Predictor that works with GluonTS datasets""" - -import copy -import math -import os -import sys -import tempfile -from typing import List - -import numpy as np -import pandas as pd -import torch -from gluonts.dataset.split import InputDataset, LabelDataset, TrainingDataset -from gluonts.itertools import batcher -from gluonts.model.forecast import SampleForecast -from torch.optim import AdamW -from torch.optim.lr_scheduler import OneCycleLR -from torch.utils.data import ConcatDataset, Subset -from tqdm.auto import tqdm -from transformers import EarlyStoppingCallback, Trainer, TrainingArguments -from transformers.integrations import INTEGRATION_TO_CALLBACK -from transformers.utils import logging - -from tsfm_public import ( - TrackingCallback, - count_parameters, -) -from tsfm_public.toolkit.get_model import get_model -from tsfm_public.toolkit.lr_finder import optimal_lr_finder -from tsfm_public.toolkit.visualization import plot_predictions - - -sys.path.append(os.path.realpath("../../../")) -from extras.gluonts.data.gluonts_data_wrapper import ( - StandardScalingGluonTSDataset, - TorchDatasetFromGluonTSTestDataset, - TorchDatasetFromGluonTSTrainingDataset, - impute_series, -) - - -logger = logging.get_logger(__name__) - -# TTM Constants -TTM_MAX_FORECAST_HORIZON = 720 -TTM_AVAILABLE_CONTEXTS = [1536, 1024, 512] - -# Fewshot max allowed number of samples -# For example, if 5% few-shot for a dataset exceeds this number, -# this `FEWSHOT_MAX_NUM_SAMPLES` upper bound will be used. -FEWSHOT_MAX_NUM_SAMPLES = 500_000 - - -class TTMGluonTSPredictor: - """Wrapper to TTM that can be directly trained, validated, and tested with GluonTS datasets.""" - - def __init__( - self, - context_length: int, - prediction_length: int, - model_path: str = "ibm-granite/granite-timeseries-ttm-r2", - test_data_label: LabelDataset = None, # provide this for plotting - scale: bool = False, - random_seed: int = 42, - term: str = None, - ds_name: str = None, - out_dir: str = None, - plot_test_forecast: bool = False, - upper_bound_fewshot_samples: bool = True, - **kwargs, - ): - """Initialize a TTMGluonTSPredictor object. - - Args: - context_length (int): Context length. - prediction_length (int): Forecast length. - model_path (str, optional): TTM Model path.. Defaults to "ibm-granite/granite-timeseries-ttm-r2". - test_data_label (LabelDataset, optional): Test data label object. Only used for plotting. Defaults to None. - scale (bool, optional): To scale the data or not. Defaults to False. (Recommended to set to `True` for fine-tuning workflow.) - random_seed (int, optional): Seed. Defaults to 42. - term (str, optional): Term (short/medium/long). Defaults to None. - ds_name (str, optional): Dataset name. Only used for plotting. Defaults to None. - out_dir (str, optional): Out directory. Defaults to None. - plot_test_forecast (bool, optional): Whether to plot forecasts. Defaults to False. - upper_bound_fewshot_samples (bool, optional): If True, number of x% fewshot will be upper-bounded - to FEWSHOT_MAX_NUM_SAMPLES. Defaults to True. - """ - self.prediction_length = prediction_length - self.test_data_label = test_data_label - self.scale = scale - self.scaler = None - self.random_seed = random_seed - self.term = term - self.ds_name = ds_name - self.out_dir = out_dir - self.plot_test_forecast = plot_test_forecast - self.upper_bound_fewshot_samples = upper_bound_fewshot_samples - - self.device = "cuda" if torch.cuda.is_available() else "cpu" - - if "dropout" in kwargs and kwargs["dropout"] is None: - del kwargs["dropout"] - if "head_dropout" in kwargs and kwargs["head_dropout"] is None: - del kwargs["head_dropout"] - - # Call get_model() function to load TTM model automatically. - self.ttm = get_model( - model_path, - context_length=context_length, - prediction_length=min(self.prediction_length, TTM_MAX_FORECAST_HORIZON), - force_return=True, - **kwargs, - ).to(self.device) - self.context_length = self.ttm.config.context_length - - def _process_time_series(self, dataset: TrainingDataset) -> List: - """ - Processes a time series by truncating initial NaNs and forward filling intermittent NaNs. - Returns a new truncated dataset, and does not modify the original one. - - Args: - dataset (TrainingDataset): Every series of of shape [channels, length]. - - Returns: - List: Processed time series, each of shape [channels, truncated_length]. - """ - truncated_dataset = list(copy.deepcopy(dataset)) - - for i, item in enumerate(truncated_dataset): - data = item["target"] - if len(data.shape) == 1: - data = data.reshape(1, -1) # [channels, length] - - # Step 1: Determine the longest stretch of initial NaNs across all channels - valid_mask = ~np.isnan(data) # Mask of valid (non-NaN) values - - if valid_mask.all(): - continue # Continue if no NaN - - first_valid = np.argmax(valid_mask.any(axis=0)) # First col with any valid value across channels - data = data[:, first_valid:] # Truncate cols before the first valid col - - # Step 2: Perform forward fill for NaNs - df = pd.DataFrame(data.T, columns=range(data.shape[0])) - df = df.ffill(axis=0) - - data = df.values.T - if data.shape[0] == 1: # [1, truncated_length] - data = data.reshape(-1) # [lentruncated_lengthgth] - - truncated_dataset[i]["target"] = data - - return truncated_dataset - - def train( - self, - train_dataset: TrainingDataset, - valid_dataset: TrainingDataset, - batch_size: int = 64, - freeze_backbone: bool = True, - learning_rate: float = None, - num_epochs: int = 30, - num_workers: int = 8, - fewshot_fraction: int = 1.0, - use_valid_from_train: bool = True, - save_model: bool = False, - ): - """Finetune the TTM. - - Args: - train_dataset (TrainingDataset): Training dataset. - valid_dataset (TrainingDataset): Validation dataset. - batch_size (int, optional): Batch size. Defaults to 64. - freeze_backbone (bool, optional): To freeze TTM backbone. Defaults to True. - learning_rate (float, optional): Learning rate. Defaults to None. - num_epochs (int, optional): Number of epochs. Defaults to 30. - num_workers (int, optional): Number of workers. Defaults to 8. - fewshot_fraction (int, optional): Few-shot fraction. Defaults to 1.0. - use_valid_from_train (bool, optional): Utilize unused train data for validation. Defaults to True. - save_model (bool, optional): Save model to `self.out_dir`. Defaults to False. - - Raises: - ValueError: _description_ - """ - train_dataset_scaled = self._process_time_series(train_dataset) - valid_dataset_scaled = self._process_time_series(valid_dataset) - - # Standard scale - if self.scale: - self.scaler = StandardScalingGluonTSDataset() - self.scaler.fit(train_dataset_scaled) - train_dataset_scaled = self.scaler.transform(train_dataset_scaled) - valid_dataset_scaled = self.scaler.transform(valid_dataset_scaled) - - temp_dir = tempfile.mkdtemp() - dset_train = TorchDatasetFromGluonTSTrainingDataset( - train_dataset_scaled, self.context_length, self.prediction_length - ) - - dset_valid_from_train = None - if fewshot_fraction < 1.0: - # Choose randomly - rng = np.random.default_rng(seed=self.random_seed) - if self.upper_bound_fewshot_samples: - list_size = min(int(fewshot_fraction * len(dset_train)), FEWSHOT_MAX_NUM_SAMPLES) - else: - list_size = int(fewshot_fraction * len(dset_train)) - - lst_fewshot_indx = rng.integers( - low=0, - high=len(dset_train), - size=list_size, - ) - - logger.info(f"Length of orginal train set = {len(dset_train)}") - org_dset_train = copy.deepcopy(dset_train) - dset_train = Subset(org_dset_train, lst_fewshot_indx) - logger.info(f"Length of {fewshot_fraction*100} % train set = {len(dset_train)}") - - if len(dset_train) < 1: - raise ValueError( - f"Data too small for finetuning in fewshot {fewshot_fraction*100}%. Resulting in 0 samples." - ) - - if use_valid_from_train: - all_indx = list(range(0, len(org_dset_train))) - valid_indx = list(set(all_indx) - set(lst_fewshot_indx)) - - # we don't use a huge validation set - valid_size = min(len(dset_train), len(org_dset_train) - len(dset_train)) - - valid_indx = np.random.choice(valid_indx, valid_size, replace=False) - dset_valid_from_train = Subset(org_dset_train, valid_indx) - - dset_valid = TorchDatasetFromGluonTSTrainingDataset( - valid_dataset_scaled, - self.context_length, - self.prediction_length, - last_window_only=True, - ) - - if dset_valid_from_train is not None: - dset_valid = ConcatDataset((dset_valid_from_train, dset_valid)) - - self.train_num_samples = len(dset_train) - self.valid_num_samples = len(dset_valid) - - if freeze_backbone: - print( - "Number of params before freezing backbone", - count_parameters(self.ttm), - ) - - # Freeze the backbone of the model - for param in self.ttm.backbone.parameters(): - param.requires_grad = False - - # Count params - print( - "Number of params after freezing the backbone", - count_parameters(self.ttm), - ) - - # Find optimal learning rate - # Use with caution: Set it manually if the suggested learning rate is not suitable - if learning_rate is None: - learning_rate, self.ttm = optimal_lr_finder( - self.ttm, - dset_train, - batch_size=batch_size, - ) - print("OPTIMAL SUGGESTED LEARNING RATE =", learning_rate) - - print(f"Using learning rate = {learning_rate}") - finetune_forecast_args = TrainingArguments( - output_dir=os.path.join(temp_dir, "output"), - overwrite_output_dir=True, - learning_rate=learning_rate, - num_train_epochs=num_epochs, - do_eval=True, - evaluation_strategy="epoch", - per_device_train_batch_size=batch_size, - per_device_eval_batch_size=batch_size, - dataloader_num_workers=num_workers, - report_to="none", - save_strategy="epoch", - logging_strategy="epoch", - save_total_limit=1, - logging_dir=os.path.join(temp_dir, "logs"), # Make sure to specify a logging directory - load_best_model_at_end=True, # Load the best model when training ends - metric_for_best_model="eval_loss", # Metric to monitor for early stopping - greater_is_better=False, # For loss - seed=self.random_seed, - ) - - # Create the early stopping callback - early_stopping_callback = EarlyStoppingCallback( - early_stopping_patience=5, # Number of epochs with no improvement after which to stop - early_stopping_threshold=1e-5, # Minimum improvement required to consider as improvement - ) - tracking_callback = TrackingCallback() - - # Optimizer and scheduler - optimizer = AdamW(self.ttm.parameters(), lr=learning_rate) - scheduler = OneCycleLR( - optimizer, - learning_rate, - epochs=num_epochs, - steps_per_epoch=math.ceil(len(dset_train) / (batch_size)), - ) - - hf_trainer = Trainer( - model=self.ttm, - args=finetune_forecast_args, - train_dataset=dset_train, - eval_dataset=dset_valid, - callbacks=[early_stopping_callback, tracking_callback], - optimizers=(optimizer, scheduler), - ) - hf_trainer.remove_callback(INTEGRATION_TO_CALLBACK["codecarbon"]) - - # Fine tune - hf_trainer.train() - - # Save model - if save_model: - hf_trainer.save_model(os.path.join(self.out_dir, "ttm_model")) - - def validate( - self, - valid_dataset: TrainingDataset, - batch_size: int = 64, - ): - """(Optionally) Validate. - - Args: - valid_dataset (TrainingDataset): Validation dataset. - batch_size (int, optional): Batch size. Defaults to 64. - - Returns: - flat: Validation loss. - """ - valid_dataset_scaled = self._process_time_series(valid_dataset) - if self.scale: - if self.scaler is None: - self.scaler = StandardScalingGluonTSDataset() - self.scaler.fit(valid_dataset_scaled) - - valid_dataset_scaled = self.scaler.transform(valid_dataset_scaled) - else: - valid_dataset_scaled = valid_dataset - - temp_dir = tempfile.mkdtemp() - dset_valid = TorchDatasetFromGluonTSTrainingDataset( - valid_dataset_scaled, - self.context_length, - self.prediction_length, - last_window_only=True, - ) - - # hf_trainer - hf_trainer = Trainer( - model=self.ttm, - args=TrainingArguments( - output_dir=temp_dir, - per_device_eval_batch_size=batch_size, - seed=self.random_seed, - report_to="none", - eval_accumulation_steps=10, - ), - ) - - # evaluate = zero-shot performance - print("+" * 20, "Zero-shot Test Loss", "+" * 20) - zeroshot_output = hf_trainer.predict(dset_valid) - print(zeroshot_output) - return zeroshot_output["eval_loss"] - - def predict( - self, - test_data_input: InputDataset, - batch_size: int = 64, - ): - """Predict. - - Args: - test_data_input (InputDataset): Test input dataset. - batch_size (int, optional): Batch size. Defaults to 64. - - Returns: - float: Eval loss. - """ - # Standard scale - if self.scale: - # We do not truncate the initial NaNs during testing since it sometimes - # results in extremely short length, and inference fails. - # Hence, in the current implementation the initial NaNs will be converted - # to zeros. - # (not used currently) test_data_input_scaled = self._process_time_series(test_data_input) - - # A new Standard Scaler is defined - # Note: Issue with using the train scaler directly...number of series mismatch! - test_data_input_scaled = copy.deepcopy(test_data_input) - scaler = StandardScalingGluonTSDataset() - scaler.fit(test_data_input_scaled) - test_data_input_scaled = scaler.transform(test_data_input_scaled) - else: - test_data_input_scaled = test_data_input - - while True: - try: - # Generate forecast samples - forecast_samples = [] - for batch in tqdm(batcher(test_data_input_scaled, batch_size=batch_size)): - batch_ttm = {} - adjusted_batch_raw = [] - for idx, entry in enumerate(batch): - # univariate array of shape (time,) - # multivariate array of shape (var, time) - # TTM supports multivariate time series - if len(entry["target"].shape) == 1: - entry["target"] = entry["target"].reshape(1, -1) - - entry_context_length = entry["target"].shape[1] - num_channels = entry["target"].shape[0] - # Pad - if entry_context_length < self.ttm.config.context_length: - padding = torch.zeros( - ( - num_channels, - self.ttm.config.context_length - entry_context_length, - ) - ) - adjusted_entry = torch.cat((padding, torch.tensor(impute_series(entry["target"]))), dim=1) - # observed_mask[idx, :, :(ttm.config.context_length - entry_context_length)] = 0 - # Truncate - elif entry_context_length > self.ttm.config.context_length: - adjusted_entry = torch.tensor( - impute_series(entry["target"][:, -self.ttm.config.context_length :]) - ) - # Take full context - else: - adjusted_entry = torch.tensor(impute_series(entry["target"])) - adjusted_batch_raw.append(adjusted_entry) - - # For TTM channel dimension comes at the end - batch_ttm["past_values"] = torch.stack(adjusted_batch_raw).permute(0, 2, 1).to(self.device) - - if self.prediction_length > TTM_MAX_FORECAST_HORIZON: - recursive_steps = int(np.ceil(self.prediction_length / self.ttm.config.prediction_length)) - predict_outputs = torch.empty(len(batch), 0, num_channels).to(self.device) - with torch.no_grad(): - for i in range(recursive_steps): - model_outputs = self.ttm(**batch_ttm) - batch_ttm["past_values"] = torch.cat( - [ - batch_ttm["past_values"], - model_outputs["prediction_outputs"], - ], - dim=1, - )[:, -self.ttm.config.context_length :, :] - predict_outputs = torch.cat( - [ - predict_outputs, - model_outputs["prediction_outputs"][:, : self.ttm.config.prediction_length, :], - ], - dim=1, - ) - predict_outputs = predict_outputs[:, : self.prediction_length, :] - else: - model_outputs = self.ttm(**batch_ttm) - predict_outputs = model_outputs.prediction_outputs - - # Accumulate all forecasts - forecast_samples.append(predict_outputs.detach().cpu().numpy()) - - # list to np.ndarray - forecast_samples = np.concatenate(forecast_samples) - - if self.scale: - # inverse scale - forecast_samples = scaler.inverse_transform(forecast_samples) - - if forecast_samples.shape[2] == 1: - forecast_samples = np.squeeze(forecast_samples, axis=2) - break - except torch.cuda.OutOfMemoryError: - print(f"OutOfMemoryError at batch_size {batch_size}, reducing to {batch_size // 2}") - batch_size //= 2 - - # Convert forecast samples into gluonts SampleForecast objects - # Array of size (num_samples, prediction_length) (1D case) or - # (num_samples, prediction_length, target_dim) (multivariate case) - sample_forecasts = [] - for item, ts in zip(forecast_samples, test_data_input): - forecast_start_date = ts["start"] + len(ts["target"]) - sample_forecasts.append( - SampleForecast( - item_id=ts["item_id"], - samples=np.expand_dims(item, axis=0), - start_date=forecast_start_date, - ) - ) - - if self.out_dir is None: - self.out_dir = tempfile.mkdtemp() - - if self.plot_test_forecast and self.prediction_length <= TTM_MAX_FORECAST_HORIZON: - # Create torch dataset for plotting - torch_dset_test = TorchDatasetFromGluonTSTestDataset( - gluon_test_input=test_data_input, - gluon_test_label=self.test_data_label, - seq_len=self.ttm.config.context_length, - forecast_len=self.prediction_length, - ) - # Plot random samples - plot_predictions( - dset=torch_dset_test, - model=self.ttm, - plot_dir=f"{self.out_dir}/{self.ds_name}_{self.term}", - channel=0, - plot_context=int(0.5 * self.prediction_length), - ) - - return sample_forecasts diff --git a/extras/gluonts/tests/test_gluonts_data_wrapper.py b/extras/gluonts/tests/test_gluonts_data_wrapper.py deleted file mode 100644 index 0fe609d0..00000000 --- a/extras/gluonts/tests/test_gluonts_data_wrapper.py +++ /dev/null @@ -1,129 +0,0 @@ -# Copyright contributors to the TSFM project -# - -"""Tests get_model""" - -import os -import sys - -import numpy as np -import pandas as pd -import pytest -from gluonts.dataset.common import ListDataset -from gluonts.dataset.split import split - - -sys.path.append(os.path.realpath("../../../")) -from extras.gluonts.data.gluonts_data_wrapper import ( - StandardScalingGluonTSDataset, - TorchDatasetFromGluonTSTestDataset, - TorchDatasetFromGluonTSTrainingDataset, -) - - -@pytest.fixture(scope="module") -def gluonts_data(): - # Step 1: Define the multivariate time series data - num_time_series = 3 # Number of time series - length = 50 # Length of each time series - num_variables = 2 # Number of variables (dimensions) per time series - - # Create random multivariate time series data - time_series_data = [ - { - "item_id": f"ts{i+1}", - "start": pd.Timestamp("2024-01-01"), # Start time for each series - "target": np.random.rand(num_variables, length), # 2D array: (num_variables, length) - } - for i in range(num_time_series) - ] - - # Step 2: Create the ListDataset - freq = "D" # Daily frequency - dataset = ListDataset( - time_series_data, - freq=freq, - one_dim_target=False, - ) - return dataset - - -def test_gluonts_standard_scaling(gluonts_data): - dataset = gluonts_data - - # Split the dataset into train and test - prediction_length = 10 - train_dataset, test_template = split(dataset, offset=-prediction_length) - - # Test shapes - for entry in train_dataset: - assert entry["target"].shape == (2, 40) - - test_dataset = test_template.generate_instances( - prediction_length=prediction_length, - ) - test_dataset_input = test_dataset.input - test_dataset_label = test_dataset.label - # Test shapes - for entry in test_dataset_input: - assert entry["target"].shape == (2, 40) - for entry in test_dataset_label: - assert entry["target"].shape == (2, 10) - - # Test scaler - scaler = StandardScalingGluonTSDataset() - scaler.fit(train_dataset) - train_dataset_scaled = scaler.transform(train_dataset) - test_dataset_scaled = scaler.transform(test_dataset_input) - - # Test scaling - for entry in train_dataset_scaled: - np.testing.assert_almost_equal(entry["target"].mean(axis=1), np.array([0.0, 0.0]), decimal=4) - np.testing.assert_almost_equal(entry["target"].std(axis=1), np.array([1.0, 1.0]), decimal=4) - - for entry in test_dataset_scaled: - np.testing.assert_almost_equal(entry["target"].mean(axis=1), np.array([0.0, 0.0]), decimal=4) - np.testing.assert_almost_equal(entry["target"].std(axis=1), np.array([1.0, 1.0]), decimal=4) - - # inverse - test_label_scaled = scaler.transform(test_dataset_label) - Y = [] - for entry in test_label_scaled: - Y.append(entry["target"].T) - Y = np.array(Y) - Y_inv = scaler.inverse_transform(Y) - - Y_org = [] - for entry in test_dataset_label: - Y_org.append(entry["target"].T) - Y_org = np.array(Y_org) - - np.testing.assert_almost_equal(Y_inv.mean(), Y_org.mean(), decimal=4) - - -def test_pytorch_data_wrappers(gluonts_data): - dataset = gluonts_data - - # Split the dataset into train and test - prediction_length = 10 - train_dataset, test_template = split(dataset, offset=-prediction_length) - test_dataset = test_template.generate_instances( - prediction_length=prediction_length, - ) - test_dataset_input = test_dataset.input - test_dataset_label = test_dataset.label - - torch_train_dset = TorchDatasetFromGluonTSTrainingDataset(train_dataset, seq_len=20, forecast_len=5) - assert torch_train_dset[1]["past_values"].shape == (20, 2) - assert torch_train_dset[1]["future_values"].shape == (5, 2) - - torch_train_dset = TorchDatasetFromGluonTSTrainingDataset(train_dataset, seq_len=35, forecast_len=5) - assert torch_train_dset[1]["past_values"].shape == (35, 2) - assert torch_train_dset[1]["future_values"].shape == (5, 2) - assert len(torch_train_dset) == 3 - - torch_test_dset = TorchDatasetFromGluonTSTestDataset( - gluon_test_input=test_dataset_input, gluon_test_label=test_dataset_label, seq_len=20, forecast_len=5 - ) - assert torch_test_dset[0]["past_values"].shape == (20, 2) - assert torch_test_dset[0]["future_values"].shape == (5, 2) diff --git a/extras/gluonts/tests/test_gluonts_predictor.py b/extras/gluonts/tests/test_gluonts_predictor.py deleted file mode 100644 index 1f9f4e58..00000000 --- a/extras/gluonts/tests/test_gluonts_predictor.py +++ /dev/null @@ -1,57 +0,0 @@ -# Copyright contributors to the TSFM project -# - -"""Tests get_model""" - -import os -import sys - -import numpy as np -import pandas as pd -import pytest -from gluonts.dataset.common import ListDataset - - -sys.path.append(os.path.realpath("../../")) -from extras.gluonts.models.tinytimemixer import TTMGluonTSPredictor - - -@pytest.fixture(scope="module") -def gluonts_data_with_nan(): - # Step 1: Define the multivariate time series data - num_time_series = 3 # Number of time series - num_variables = 2 # Number of variables (dimensions) per time series - - # Create random multivariate time series data - time_series_data = [ - { - "item_id": f"ts{i+1}", - "start": pd.Timestamp("2024-01-01"), # Start time for each series - "target": np.concatenate( - ( - np.array([[np.nan, np.nan, np.nan, np.nan], [0, 1, np.nan, 2]]), - np.random.rand(num_variables, 600), - np.array([[np.nan, np.nan, np.nan, np.nan], [np.nan, 1, np.nan, 2]]), - np.random.rand(num_variables, 4), - ), - axis=1, - ), # 2D array: (num_variables, length) - } - for i in range(num_time_series) - ] - - # Step 2: Create the ListDataset - freq = "D" # Daily frequency - dataset = ListDataset( - time_series_data, - freq=freq, - one_dim_target=False, - ) - return dataset - - -def test_ttm_gluonts_predictor(gluonts_data_with_nan): - dataset = gluonts_data_with_nan - predictor = TTMGluonTSPredictor(context_length=512, prediction_length=96) - forecasts = predictor.predict(dataset) - assert forecasts[0].samples.shape == (1, 96, 2) diff --git a/extras/utils/ddp_utils.py b/extras/utils/ddp_utils.py deleted file mode 100644 index c414602f..00000000 --- a/extras/utils/ddp_utils.py +++ /dev/null @@ -1,24 +0,0 @@ -import os -from datetime import timedelta - -import torch - - -def init_ddp(timeout=600): - local_rank = int(os.environ.get("LOCAL_RANK")) - world_size = int(os.environ.get("WORLD_SIZE")) - rank = int(os.environ.get("RANK")) - - torch.cuda.set_device(local_rank) - torch.distributed.init_process_group( - "nccl", - init_method="env://", - world_size=world_size, - rank=rank, - timeout=timedelta(seconds=timeout), - ) - - -def is_rank_0(): - rank = torch.distributed.get_rank() - return rank == 0 diff --git a/tests/toolkit/test_get_model.py b/tests/toolkit/test_get_model.py index 9d377169..76eda986 100644 --- a/tests/toolkit/test_get_model.py +++ b/tests/toolkit/test_get_model.py @@ -68,7 +68,22 @@ def test_get_model(): assert model.config.context_length == cl mp = "ibm/ttm-research-r2" - for cl in range(512, 5000, 500): + for cl in range(1, 2000, 500): + for fl in range(1, 900, 90): + model = get_model(model_path=mp, context_length=cl, prediction_length=fl) + if model.config.prediction_filter_length is not None: + assert model.config.prediction_filter_length == fl + + mp = "ibm-granite/granite-timeseries-ttm-r2" + for cl in range(1, 2000, 500): + for fl in range(1, 900, 90): + model = get_model(model_path=mp, context_length=cl, prediction_length=fl) + if model.config.prediction_filter_length is not None: + assert model.config.prediction_filter_length == fl + + mp = "ibm-granite/granite-timeseries-ttm-r1" + for cl in range(512, 2000, 500): for fl in range(1, 720, 90): model = get_model(model_path=mp, context_length=cl, prediction_length=fl) - assert model.config.prediction_filter_length == fl + if model.config.prediction_filter_length is not None: + assert model.config.prediction_filter_length == fl diff --git a/tsfm_public/toolkit/get_model.py b/tsfm_public/toolkit/get_model.py index bb76c145..ace81075 100644 --- a/tsfm_public/toolkit/get_model.py +++ b/tsfm_public/toolkit/get_model.py @@ -48,7 +48,7 @@ def get_model( context_length: int = None, prediction_length: int = None, freq_prefix_tuning: bool = None, - force_return: bool = False, + force_return: bool = True, **kwargs, ): """ @@ -94,33 +94,27 @@ def get_model( with open(os.path.join(config_dir, "ttm.yaml"), "r") as file: model_revisions = yaml.safe_load(file) - if prediction_length <= 96: - selected_prediction_length = 96 - elif prediction_length <= 192: - selected_prediction_length = 192 - elif prediction_length <= 336: - selected_prediction_length = 336 - elif prediction_length <= 720: - selected_prediction_length = 720 - else: + max_supported_horizon = SUPPORTED_LENGTHS[model_path_type]["FL"][-1] + if prediction_length > max_supported_horizon: if force_return: - selected_prediction_length = 720 + selected_prediction_length = max_supported_horizon LOGGER.warning( - "The requested forecast horizon is greater than the maximum supported horizon (720).\n\ - Returning TTM model with horizon 720 since `force_return=True`." + f"The requested forecast horizon is greater than the maximum supported horizon ({max_supported_horizon}). Returning TTM model with horizon {max_supported_horizon} since `force_return=True`." ) else: - raise ValueError("Currently supported maximum prediction_length = 720") + raise ValueError(f"Currently supported maximum prediction_length = {max_supported_horizon}") + else: + for h in SUPPORTED_LENGTHS[model_path_type]["FL"]: + if prediction_length <= h: + selected_prediction_length = h + break - LOGGER.info(f"Selected prediction_length = {selected_prediction_length}") + LOGGER.info(f"Selected TTM `prediction_length` = {selected_prediction_length}") - if selected_prediction_length != prediction_length: + if selected_prediction_length > prediction_length: prediction_filter_length = prediction_length LOGGER.warning( - f"Requested `prediction_length` ({prediction_length}) is not exactly equal to any of the available TTM prediction lengths.\n\ - Hence, TTM will forecast using the `prediction_filter_length` argument to provide the requested prediction length.\n\ - Supported context lengths (CL) and forecast/prediction lengths (FL) for Model Card: {model_path} are\n\ - {SUPPORTED_LENGTHS[model_path_type]}" + f"Requested `prediction_length` ({prediction_length}) is not exactly equal to any of the available TTM prediction lengths. Hence, TTM will forecast using the `prediction_filter_length` argument to provide the requested prediction length. Supported context lengths (CL) and forecast/prediction lengths (FL) for Model Card: {model_path} are {SUPPORTED_LENGTHS[model_path_type]}" ) # Choose closest context length @@ -137,13 +131,13 @@ def get_model( if selected_context_length is None: if force_return: selected_context_length = available_context_lens[-1] - LOGGER.warning(f"Requested context length is too short. Requested = {context_length}.\n\ - Available lengths for model_type = {model_path_type} are: {available_context_lens}.\n\ - Returning the shortest context length model possible since `force_return=True`.") + LOGGER.warning( + f"Requested context length is too short. Requested = {context_length}. Available lengths for model_type = {model_path_type} are: {available_context_lens}. Returning the shortest context length model possible since `force_return=True`. Data needs to be handled properly, and it can affect the performance!" + ) else: - raise ValueError(f"Requested context length is too short. Requested = {context_length}.\n\ - Available lengths for model_type = {model_path_type} are: {available_context_lens}.\n\ - To return the shortest context length model possible, set `force_return=True`.") + raise ValueError( + f"Requested context length is too short. Requested = {context_length}. Available lengths for model_type = {model_path_type} are: {available_context_lens}. To return the shortest context length model possible, set `force_return=True`." + ) if freq_prefix_tuning is None: # Default model preference (freq / nofreq) From 69ed4fd3d22e2125c434a03fa210b305079d942e Mon Sep 17 00:00:00 2001 From: Arindam Jati Date: Thu, 5 Dec 2024 12:42:51 -0500 Subject: [PATCH 11/32] revert toml and visualization functions --- pyproject.toml | 5 ++--- tsfm_public/toolkit/visualization.py | 2 +- 2 files changed, 3 insertions(+), 4 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index d21fb799..60a7c490 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -31,7 +31,7 @@ packages = ["tsfm_public", "tsfmhfdemos"] [project.optional-dependencies] -all = ["tsfm_public[notebooks,external,testing,dev]"] +all = ["tsfm_public[notebooks,testing,dev]"] notebooks = [ "jupyter", @@ -42,8 +42,7 @@ notebooks = [ "kaleido", "tensorboard", ] -external = ["tsfm_public[notebooks]", "gluonts"] -testing = ["pytest", "tsfm_public[external]", "parameterized"] +testing = ["pytest", "tsfm_public[notebooks]", "parameterized"] dev = ["pre-commit", "tsfm_public[testing]", "ruff==0.4.4"] # ogv deployments will already have jupyter diff --git a/tsfm_public/toolkit/visualization.py b/tsfm_public/toolkit/visualization.py index 93f6623c..658a469e 100644 --- a/tsfm_public/toolkit/visualization.py +++ b/tsfm_public/toolkit/visualization.py @@ -309,7 +309,7 @@ def plot_predictions( if k in signature_keys: random_samples[k] = torch.stack([dset[i][k] for i in indices]).to(device=device) output = model(**random_samples) - predictions_subset = output.prediction_outputs[:, :, channel].cpu().numpy() + predictions_subset = output.prediction_outputs[:, :, channel].squeeze().cpu().numpy() prediction_length = predictions_subset.shape[1] using_pipeline = False plot_test_data = True From 62ea27fb18e7a23ad98ef9cabef9e28e1fc825df Mon Sep 17 00:00:00 2001 From: Stuart Siegel <12914116+ssiegel95@users.noreply.github.com> Date: Thu, 5 Dec 2024 20:52:03 -0500 Subject: [PATCH 12/32] add optional verbose payload dumps --- services/inference/tests/test_inference_lib.py | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/services/inference/tests/test_inference_lib.py b/services/inference/tests/test_inference_lib.py index 8a61c55a..a93b38aa 100644 --- a/services/inference/tests/test_inference_lib.py +++ b/services/inference/tests/test_inference_lib.py @@ -2,6 +2,9 @@ # import copy +import json +import os +import tempfile from datetime import timedelta import numpy as np @@ -86,8 +89,17 @@ def _basic_result_checks(results: PredictOutput, df: pd.DataFrame): def test_forecast_with_good_data(ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput): input = forecasting_input_base + model_id = input.model_id df = copy.deepcopy(ts_data_base) input.data = df.to_dict(orient="list") + + # useful for generating sample payload files + if int(os.environ.get("TSFM_TESTS_DO_VERBOSE_DUMPS", "0")) == 1: + with open(f"{tempfile.gettempdir()}/{model_id}.payload.json", "w") as out: + foo = copy.deepcopy(df) + foo["date"] = foo["date"].apply(lambda x: x.isoformat()) + json.dump(foo.to_dict(orient="list"), out) + runtime: InferenceRuntime = InferenceRuntime(config=config) po: PredictOutput = runtime.forecast(input=input) results = pd.DataFrame.from_dict(po.results[0]) From bfa6535687b13291b829fe7e2b85af9d5f0fd3ee Mon Sep 17 00:00:00 2001 From: Arindam Jati Date: Thu, 5 Dec 2024 22:02:10 -0500 Subject: [PATCH 13/32] exception -> valueerror --- tsfm_public/toolkit/get_model.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/tsfm_public/toolkit/get_model.py b/tsfm_public/toolkit/get_model.py index ace81075..bfb9a71f 100644 --- a/tsfm_public/toolkit/get_model.py +++ b/tsfm_public/toolkit/get_model.py @@ -148,8 +148,8 @@ def get_model( else: freq_prefix = None else: - raise Exception( - "In current implementation, set freq_prefix_tuning to None for automatic model selection accordingly.." + raise ValueError( + "In the current implementation, set `freq_prefix_tuning` to None for automatic model selection accordingly." ) if freq_prefix_tuning: freq_prefix = "freq" From 8354f6a920c9d76b8ef59c3b51f6410bc1599abb Mon Sep 17 00:00:00 2001 From: Stuart Siegel <12914116+ssiegel95@users.noreply.github.com> Date: Fri, 6 Dec 2024 09:14:45 -0500 Subject: [PATCH 14/32] we can't resolve to a single directory here, need to scan them in load --- services/inference/tsfminference/__init__.py | 21 ++++++++++++++++---- 1 file changed, 17 insertions(+), 4 deletions(-) diff --git a/services/inference/tsfminference/__init__.py b/services/inference/tsfminference/__init__.py index 93c7af2c..6de6f50c 100644 --- a/services/inference/tsfminference/__init__.py +++ b/services/inference/tsfminference/__init__.py @@ -38,7 +38,20 @@ ) # use TSFM_MODEL_DIR preferentially. If not set, use HF_HOME or the system tempdir if that's not set. -TSFM_MODEL_DIR: Path = Path(os.environ.get("TSFM_MODEL_DIR", os.environ.get("HF_HOME", tempfile.gettempdir()))) - -if not TSFM_MODEL_DIR.exists(): - raise Exception(f"TSFM_MODEL_DIR {TSFM_MODEL_DIR} does not exist.") +TSFM_MODEL_DIR: str = os.environ.get("TSFM_MODEL_DIR", os.environ.get("HF_HOME", tempfile.gettempdir())) + +# basic checks +# make sure at least one of them is a valid directory +# make sure it's readable as well +_amodeldir_found = next( + ( + adir + for adir in (Path(p) for p in TSFM_MODEL_DIR.split(":")) + if adir.exists() and adir.is_dir() and os.access(adir, os.R_OK) + ), + None, +) +if not _amodeldir_found and not TSFM_ALLOW_LOAD_FROM_HF_HUB: + raise Exception( + f"None of the values given in TSFM_MODEL_DIR {TSFM_MODEL_DIR} are an existing and readable directory." + ) From 96e5bb446a2b280cf5bf2f804ed562a0254ac363 Mon Sep 17 00:00:00 2001 From: Stuart Siegel <12914116+ssiegel95@users.noreply.github.com> Date: Fri, 6 Dec 2024 09:15:24 -0500 Subject: [PATCH 15/32] add additional directory to TSFM_MODEL_DIR --- services/inference/Makefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/services/inference/Makefile b/services/inference/Makefile index e8838bd5..c22abcc0 100644 --- a/services/inference/Makefile +++ b/services/inference/Makefile @@ -16,7 +16,7 @@ create_prometheus_metrics_dir: start_service_local: create_prometheus_metrics_dir boilerplate PROMETHEUS_MULTIPROC_DIR=./prometheus_metrics \ TSFM_PYTHON_LOGGING_LEVEL="ERROR" \ - TSFM_MODEL_DIR=./mytest-tsfm \ + TSFM_MODEL_DIR=./foobaz:./mytest-tsfm \ TSFM_ALLOW_LOAD_FROM_HF_HUB=1 \ python -m gunicorn \ -w 1 \ From 7d8d3be56275d44bc8c1fc018548338e3e32467c Mon Sep 17 00:00:00 2001 From: "Stuart A. Siegel" <12914116+ssiegel95@users.noreply.github.com> Date: Fri, 6 Dec 2024 13:30:13 -0500 Subject: [PATCH 16/32] model path resolver --- services/inference/tsfminference/dirutil.py | 41 +++++++++++++++++++++ 1 file changed, 41 insertions(+) create mode 100644 services/inference/tsfminference/dirutil.py diff --git a/services/inference/tsfminference/dirutil.py b/services/inference/tsfminference/dirutil.py new file mode 100644 index 00000000..2c746108 --- /dev/null +++ b/services/inference/tsfminference/dirutil.py @@ -0,0 +1,41 @@ +# THIS FILE IS COPIED FROM THE BOILERPLATE DIRECTORY, +# DO NOT EDIT IT OR YOU WILL LOSE YOUR CHANGES. +# MAKE CHANGES IN THE TOP LEVEL services/boilerplate DIRECTORY. +# +# +# +"""Utilities for directory operations.""" + +import os +from pathlib import Path + + +def resolve_model_path(search_path: str, model_id: str) -> Path: + """Find the first path under search_path for model_id. All entries in + search_path must be: + * an existing directory + * must be readable by the current process + + Args: + search_path (str): A unix-like ":" separated list of directories such a "dir1:dir2" + model_id (str): a model_id (which is really just a subdirectory under dir1 or dir2) + + Returns: + Path: the first matching path, None if no path is fount. + """ + + _amodeldir_found = next( + ( + adir + for adir in (Path(p) for p in search_path.split(":")) + if adir.exists() + and adir.is_dir() + and os.access(adir, os.R_OK) + and (adir / model_id).exists() + and os.access(adir / model_id, os.R_OK) + ), + None, + ) + if not _amodeldir_found: + return None + return _amodeldir_found / model_id From 82ab9871b32424e580b8497fb3368f5c8aa7964d Mon Sep 17 00:00:00 2001 From: "Stuart A. Siegel" <12914116+ssiegel95@users.noreply.github.com> Date: Fri, 6 Dec 2024 13:32:05 -0500 Subject: [PATCH 17/32] ignore prometheus metrics dir --- services/inference/.gitignore | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/services/inference/.gitignore b/services/inference/.gitignore index e3e53154..922cc22c 100644 --- a/services/inference/.gitignore +++ b/services/inference/.gitignore @@ -1,3 +1 @@ -# These version placeholders will be replaced later during substitution. -__version__ = "0.0.0" -__version_tuple__ = (0, 0, 0) +prometheus_metrics From 1a1b75ad5b347b2da0b27aa96ef70728d613c035 Mon Sep 17 00:00:00 2001 From: "Stuart A. Siegel" <12914116+ssiegel95@users.noreply.github.com> Date: Fri, 6 Dec 2024 13:32:23 -0500 Subject: [PATCH 18/32] model dir resolver --- services/boilerplate/dirutil.py | 35 +++++++++++++++++++++++++++++++++ 1 file changed, 35 insertions(+) create mode 100644 services/boilerplate/dirutil.py diff --git a/services/boilerplate/dirutil.py b/services/boilerplate/dirutil.py new file mode 100644 index 00000000..c2a68c4d --- /dev/null +++ b/services/boilerplate/dirutil.py @@ -0,0 +1,35 @@ +"""Utilities for directory operations.""" + +import os +from pathlib import Path + + +def resolve_model_path(search_path: str, model_id: str) -> Path: + """Find the first path under search_path for model_id. All entries in + search_path must be: + * an existing directory + * must be readable by the current process + + Args: + search_path (str): A unix-like ":" separated list of directories such a "dir1:dir2" + model_id (str): a model_id (which is really just a subdirectory under dir1 or dir2) + + Returns: + Path: the first matching path, None if no path is fount. + """ + + _amodeldir_found = next( + ( + adir + for adir in (Path(p) for p in search_path.split(":")) + if adir.exists() + and adir.is_dir() + and os.access(adir, os.R_OK) + and (adir / model_id).exists() + and os.access(adir / model_id, os.R_OK) + ), + None, + ) + if not _amodeldir_found: + return None + return _amodeldir_found / model_id From 06eb16b7e405d60788c93653dac584807c34bd5b Mon Sep 17 00:00:00 2001 From: "Stuart A. Siegel" <12914116+ssiegel95@users.noreply.github.com> Date: Fri, 6 Dec 2024 13:32:37 -0500 Subject: [PATCH 19/32] use model path resolver --- services/inference/tsfminference/inference.py | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/services/inference/tsfminference/inference.py b/services/inference/tsfminference/inference.py index 7a50650c..650e464e 100644 --- a/services/inference/tsfminference/inference.py +++ b/services/inference/tsfminference/inference.py @@ -17,6 +17,7 @@ from . import TSFM_ALLOW_LOAD_FROM_HF_HUB, TSFM_MODEL_DIR from .constants import API_VERSION from .dataframe_checks import check +from .dirutil import resolve_model_path from .errors import error_message from .inference_payloads import ForecastingInferenceInput, ForecastingMetadataInput, PredictOutput from .service_handler import ForecastingServiceHandler @@ -47,8 +48,8 @@ def add_routes(self, app): app.include_router(self.router) def _modelspec(self, model_id: str): - model_path = TSFM_MODEL_DIR / model_id - if not model_path.exists(): + model_path = resolve_model_path(TSFM_MODEL_DIR, model_id) + if not model_path: raise HTTPException(status_code=404, detail=f"model {model_id} not found.") handler, e = ForecastingServiceHandler.load(model_id=model_id, model_path=model_path) if handler.handler_config: @@ -84,16 +85,16 @@ def forecast(self, input: ForecastingInferenceInput): return answer def _forecast_common(self, input_payload: ForecastingInferenceInput) -> PredictOutput: - model_path = TSFM_MODEL_DIR / input_payload.model_id + model_path = resolve_model_path(TSFM_MODEL_DIR, input_payload.model_id) - if not model_path.is_dir(): + if not model_path: LOGGER.info(f"Could not find model at path: {model_path}") if TSFM_ALLOW_LOAD_FROM_HF_HUB: model_path = input_payload.model_id LOGGER.info(f"Using HuggingFace Hub: {model_path}") else: return None, RuntimeError( - f"Could not load model {input_payload.model_id} from {TSFM_MODEL_DIR.as_posix()}. If trying to load directly from the HuggingFace Hub please ensure that `TSFM_ALLOW_LOAD_FROM_HF_HUB=1`" + f"Could not load model {input_payload.model_id} from {TSFM_MODEL_DIR}. If trying to load directly from the HuggingFace Hub please ensure that `TSFM_ALLOW_LOAD_FROM_HF_HUB=1`" ) handler, e = ForecastingServiceHandler.load(model_id=input_payload.model_id, model_path=model_path) From eddab4e96a6a403724f919163b4d0b167dee6077 Mon Sep 17 00:00:00 2001 From: "Stuart A. Siegel" <12914116+ssiegel95@users.noreply.github.com> Date: Fri, 6 Dec 2024 13:32:46 -0500 Subject: [PATCH 20/32] test model path resolver --- services/tests/test_dirutil.py | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) create mode 100644 services/tests/test_dirutil.py diff --git a/services/tests/test_dirutil.py b/services/tests/test_dirutil.py new file mode 100644 index 00000000..a9d9414f --- /dev/null +++ b/services/tests/test_dirutil.py @@ -0,0 +1,17 @@ +import os +import tempfile +from pathlib import Path + +from tsfminference.dirutil import resolve_model_path + + +def test_resolve_model_path(): + with tempfile.TemporaryDirectory() as dir1: + with tempfile.TemporaryDirectory() as dir2: + dirpath = f"{dir1}:{dir2}" + os.mkdir(Path(dir1) / "amodel") + assert resolve_model_path(dirpath, "amodel") == Path(dir1) / "amodel" + assert resolve_model_path(dirpath, "foobar") is None + assert resolve_model_path("fzbatt:zap", "amodel") is None + os.mkdir(Path(dir2) / "anewmodel") + assert resolve_model_path(dirpath, "anewmodel") == Path(dir2) / "anewmodel" From f45c0b738ac614b3599eacc0abdefe3054cd39ce Mon Sep 17 00:00:00 2001 From: Stuart Siegel <12914116+ssiegel95@users.noreply.github.com> Date: Mon, 9 Dec 2024 14:54:06 -0500 Subject: [PATCH 21/32] boilerplate code --- services/inference/tsfminference/dirutil.py | 41 --------------------- 1 file changed, 41 deletions(-) delete mode 100644 services/inference/tsfminference/dirutil.py diff --git a/services/inference/tsfminference/dirutil.py b/services/inference/tsfminference/dirutil.py deleted file mode 100644 index 2c746108..00000000 --- a/services/inference/tsfminference/dirutil.py +++ /dev/null @@ -1,41 +0,0 @@ -# THIS FILE IS COPIED FROM THE BOILERPLATE DIRECTORY, -# DO NOT EDIT IT OR YOU WILL LOSE YOUR CHANGES. -# MAKE CHANGES IN THE TOP LEVEL services/boilerplate DIRECTORY. -# -# -# -"""Utilities for directory operations.""" - -import os -from pathlib import Path - - -def resolve_model_path(search_path: str, model_id: str) -> Path: - """Find the first path under search_path for model_id. All entries in - search_path must be: - * an existing directory - * must be readable by the current process - - Args: - search_path (str): A unix-like ":" separated list of directories such a "dir1:dir2" - model_id (str): a model_id (which is really just a subdirectory under dir1 or dir2) - - Returns: - Path: the first matching path, None if no path is fount. - """ - - _amodeldir_found = next( - ( - adir - for adir in (Path(p) for p in search_path.split(":")) - if adir.exists() - and adir.is_dir() - and os.access(adir, os.R_OK) - and (adir / model_id).exists() - and os.access(adir / model_id, os.R_OK) - ), - None, - ) - if not _amodeldir_found: - return None - return _amodeldir_found / model_id From 1e67a11d397e7aa7a683e741555e660f8bdccffe Mon Sep 17 00:00:00 2001 From: Stuart Siegel <12914116+ssiegel95@users.noreply.github.com> Date: Mon, 9 Dec 2024 14:54:47 -0500 Subject: [PATCH 22/32] ignore dirutil.py --- services/inference/tsfminference/.gitignore | 1 + 1 file changed, 1 insertion(+) diff --git a/services/inference/tsfminference/.gitignore b/services/inference/tsfminference/.gitignore index 15667315..fcaf21f6 100644 --- a/services/inference/tsfminference/.gitignore +++ b/services/inference/tsfminference/.gitignore @@ -2,3 +2,4 @@ inference_payloads.py errors.py hfutil.py dataframe_checks.py +dirutil.py From 35870fdbb36ec71be0082f32ee03b1b5350abdcb Mon Sep 17 00:00:00 2001 From: Stuart Siegel <12914116+ssiegel95@users.noreply.github.com> Date: Mon, 9 Dec 2024 15:05:37 -0500 Subject: [PATCH 23/32] automate maintenance of .gitignore --- services/finetuning/Makefile | 3 +++ services/finetuning/tsfmfinetuning/.gitignore | 7 +++++-- services/inference/Makefile | 3 +++ services/inference/tsfminference/.gitignore | 7 ++++--- 4 files changed, 15 insertions(+), 5 deletions(-) diff --git a/services/finetuning/Makefile b/services/finetuning/Makefile index 0688d4b2..d0223145 100644 --- a/services/finetuning/Makefile +++ b/services/finetuning/Makefile @@ -2,10 +2,13 @@ CONTAINER_BUILDER ?= docker # copies boilerplate code to suitable locations boilerplate: + rm tsfmfinetuning/.gitignore || true + echo "# THIS FILE IS AUTOMATICALLY GENERATED, YOUR CHANGES WILL BE OVERWRITTEN" > tsfmfinetuning/.gitignore for f in ../boilerplate/*.py; do \ echo $$f; \ cat ../boilerplate/warning.txt > tsfmfinetuning/$$(basename $$f); \ cat $$f>>tsfmfinetuning/$$(basename $$f); \ + echo $$(basename $$f) >> tsfmfinetuning/.gitignore; \ done image: diff --git a/services/finetuning/tsfmfinetuning/.gitignore b/services/finetuning/tsfmfinetuning/.gitignore index a6f2b475..fc766639 100644 --- a/services/finetuning/tsfmfinetuning/.gitignore +++ b/services/finetuning/tsfmfinetuning/.gitignore @@ -1,3 +1,6 @@ -inference_payloads.py -hfutil.py +# THIS FILE IS AUTOMATICALLY GENERATED, YOUR CHANGES WILL BE OVERWRITTEN +dataframe_checks.py +dirutil.py errors.py +hfutil.py +inference_payloads.py diff --git a/services/inference/Makefile b/services/inference/Makefile index c22abcc0..cbc95df3 100644 --- a/services/inference/Makefile +++ b/services/inference/Makefile @@ -2,10 +2,13 @@ CONTAINER_BUILDER ?= docker # copies boilerplate code to suitable locations boilerplate: + rm tsfminference/.gitignore || true + echo "# THIS FILE IS AUTOMATICALLY GENERATED, YOUR CHANGES WILL BE OVERWRITTEN" > tsfminference/.gitignore for f in ../boilerplate/*.py; do \ echo $$f; \ cat ../boilerplate/warning.txt > tsfminference/$$(basename $$f); \ cat $$f>>tsfminference/$$(basename $$f); \ + echo $$(basename $$f) >> tsfminference/.gitignore; \ done create_prometheus_metrics_dir: diff --git a/services/inference/tsfminference/.gitignore b/services/inference/tsfminference/.gitignore index fcaf21f6..fc766639 100644 --- a/services/inference/tsfminference/.gitignore +++ b/services/inference/tsfminference/.gitignore @@ -1,5 +1,6 @@ -inference_payloads.py -errors.py -hfutil.py +# THIS FILE IS AUTOMATICALLY GENERATED, YOUR CHANGES WILL BE OVERWRITTEN dataframe_checks.py dirutil.py +errors.py +hfutil.py +inference_payloads.py From 6d90328076ddf6d76f7b3f65de77ff4368b9d423 Mon Sep 17 00:00:00 2001 From: Giridhar Ganapavarapu Date: Mon, 9 Dec 2024 17:10:25 -0500 Subject: [PATCH 24/32] chronos handler to support chronos-bolt-* models --- .../inference/tests/test_inference_service.py | 3 +- .../tsfminference/chronos_service_handler.py | 35 ++++++++++++------- 2 files changed, 24 insertions(+), 14 deletions(-) diff --git a/services/inference/tests/test_inference_service.py b/services/inference/tests/test_inference_service.py index a791b472..10d3b441 100644 --- a/services/inference/tests/test_inference_service.py +++ b/services/inference/tests/test_inference_service.py @@ -22,6 +22,7 @@ "ibm/test-patchtst": {"context_length": 512, "prediction_length": 96}, "ibm/test-patchtsmixer": {"context_length": 512, "prediction_length": 96}, "chronos-t5-tiny": {"context_length": 512, "prediction_length": 96}, + "chronos-bolt-tiny": {"context_length": 512, "prediction_length": 96}, } @@ -369,7 +370,7 @@ def test_zero_shot_forecast_inference(ts_data): assert counts["output_data_points"] == (prediction_length // 4) * len(params["target_columns"][1:]) -@pytest.mark.parametrize("ts_data", ["chronos-t5-tiny"], indirect=True) +@pytest.mark.parametrize("ts_data", ["chronos-t5-tiny", "chronos-bolt-tiny"], indirect=True) def test_zero_shot_forecast_inference_chronos(ts_data): test_data, params = ts_data diff --git a/services/inference/tsfminference/chronos_service_handler.py b/services/inference/tsfminference/chronos_service_handler.py index bf21ddd8..5aa24ebc 100644 --- a/services/inference/tsfminference/chronos_service_handler.py +++ b/services/inference/tsfminference/chronos_service_handler.py @@ -1,6 +1,7 @@ """Service handler for Chronos""" import copy +import importlib import logging from pathlib import Path from typing import Dict, Optional, Union @@ -8,7 +9,6 @@ import numpy as np import pandas as pd import torch -from chronos import ChronosPipeline from tsfm_public import TimeSeriesPreprocessor from tsfm_public.toolkit.time_series_preprocessor import extend_time_series @@ -66,11 +66,21 @@ def _prepare( ChronosForecastingHandler: The updated service handler object. """ - model = ChronosPipeline.from_pretrained( - self.model_path, - ) + # load model class + try: + mod = importlib.import_module(self.handler_config.module_path) + except ModuleNotFoundError as exc: + raise AttributeError("Could not load module '{module_path}'.") from exc + + model_class = getattr(mod, self.handler_config.model_class_name) + model = model_class.from_pretrained(self.model_path) + self.model = model - self.config = model.model.model.config + if hasattr(self.model.model, "model"): # chronos t5 family + self.config = model.model.model.config + else: # chronos bolt family + self.config = model.model.config + self.chronos_config = self.config.chronos_config preprocessor_params = copy.deepcopy(schema.model_dump()) @@ -134,21 +144,20 @@ def _run( target_columns = self.preprocessor.target_columns prediction_length = self.preprocessor.prediction_length - num_samples = self.chronos_config["num_samples"] - temperature = self.chronos_config["temperature"] - top_k = self.chronos_config["top_k"] - top_p = self.chronos_config["top_p"] + additional_params = {} + if "num_samples" in self.chronos_config: # chronos t5 family + additional_params["num_samples"] = self.chronos_config["num_samples"] + additional_params["temperature"] = self.chronos_config["temperature"] + additional_params["top_k"] = self.chronos_config["top_k"] + additional_params["top_p"] = self.chronos_config["top_p"] context = torch.tensor(data[target_columns].values).transpose(1, 0) LOGGER.info("computing chronos forecasts.") forecasts = self.model.predict( context, prediction_length=prediction_length, - num_samples=num_samples, - temperature=temperature, - top_k=top_k, - top_p=top_p, limit_prediction_length=False, + **additional_params, ) median_forecast_arr = [] for i in range(len(target_columns)): From cd10ff4a636d08afaf4e3771d0d1b24439066e56 Mon Sep 17 00:00:00 2001 From: Giridhar Ganapavarapu Date: Tue, 10 Dec 2024 11:18:37 -0500 Subject: [PATCH 25/32] test min context length 2 --- services/inference/tests/test_inference_lib.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/services/inference/tests/test_inference_lib.py b/services/inference/tests/test_inference_lib.py index a0f290c1..bc9d0277 100644 --- a/services/inference/tests/test_inference_lib.py +++ b/services/inference/tests/test_inference_lib.py @@ -38,7 +38,7 @@ def min_context_length(model_id): model_path: Path = TSFM_MODEL_DIR / model_id assert model_path.exists(), f"{model_path} does not exist!" handler, e = ForecastingServiceHandler.load(model_id=model_id, model_path=model_path) - return handler.handler_config.minimum_context_length + return max(handler.handler_config.minimum_context_length, 2) @pytest.fixture(scope="module") @@ -274,7 +274,7 @@ def test_forecast_with_missing_row(ts_data_base: pd.DataFrame, forecasting_input if input.model_id != model_id: return df = copy.deepcopy(data) - df.drop(index=10, inplace=True) + df.drop(index=1, inplace=True) input.data = df.to_dict(orient="list") runtime: InferenceRuntime = InferenceRuntime(config=config) From 5330e1eb7728c6e708c6e7f445a0876037c69c16 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Tue, 10 Dec 2024 13:46:47 -0500 Subject: [PATCH 26/32] explicitly set device --- services/inference/tsfminference/hf_service_handler.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/services/inference/tsfminference/hf_service_handler.py b/services/inference/tsfminference/hf_service_handler.py index 1cab7417..3eb7459b 100644 --- a/services/inference/tsfminference/hf_service_handler.py +++ b/services/inference/tsfminference/hf_service_handler.py @@ -9,6 +9,7 @@ from typing import Any, Dict, Optional, Union import pandas as pd +import torch import transformers from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel @@ -353,12 +354,14 @@ def _run( total_periods=model_prediction_length, ) + device = "cpu" if not torch.cuda.is_available() else "cuda" forecast_pipeline = TimeSeriesForecastingPipeline( model=self.model, explode_forecasts=True, feature_extractor=self.preprocessor, add_known_ground_truth=False, freq=self.preprocessor.freq, + device=device, ) forecasts = forecast_pipeline(data, future_time_series=future_data, inverse_scale_outputs=True) From c96905dba5cc3c1943c5360cecf70400ced5a139 Mon Sep 17 00:00:00 2001 From: Wesley Gifford <79663411+wgifford@users.noreply.github.com> Date: Tue, 10 Dec 2024 14:04:18 -0500 Subject: [PATCH 27/32] select device --- services/finetuning/tsfmfinetuning/finetuning.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/services/finetuning/tsfmfinetuning/finetuning.py b/services/finetuning/tsfmfinetuning/finetuning.py index 374048a2..4b63e7d5 100644 --- a/services/finetuning/tsfmfinetuning/finetuning.py +++ b/services/finetuning/tsfmfinetuning/finetuning.py @@ -7,6 +7,7 @@ from typing import Any, Dict, Tuple, Union import pandas as pd +import torch from fastapi import APIRouter, HTTPException from starlette import status from transformers import EarlyStoppingCallback, Trainer, TrainingArguments, set_seed @@ -215,7 +216,7 @@ def _finetuning_common( metric_for_best_model="eval_loss", # Metric to monitor for early stopping greater_is_better=False, # For loss label_names=["future_values"], - use_cpu=True, # only needed for testing on Mac :( + use_cpu=not torch.cuda.is_available(), ) callbacks = [] From 88067b33d41e3e4c2ebd958627b7c9cd01f64069 Mon Sep 17 00:00:00 2001 From: Giridhar Ganapavarapu Date: Wed, 11 Dec 2024 16:32:39 -0500 Subject: [PATCH 28/32] fix merge issue and revert cd10ff4 --- services/inference/tests/test_inference_lib.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/services/inference/tests/test_inference_lib.py b/services/inference/tests/test_inference_lib.py index 0cdaaa96..03b76021 100644 --- a/services/inference/tests/test_inference_lib.py +++ b/services/inference/tests/test_inference_lib.py @@ -15,6 +15,7 @@ from fastapi import HTTPException from pytest import FixtureRequest from tsfminference import TSFM_CONFIG_FILE, TSFM_MODEL_DIR +from tsfminference.dirutil import resolve_model_path from tsfminference.inference import InferenceRuntime from tsfminference.inference_payloads import ( ForecastingInferenceInput, @@ -40,12 +41,12 @@ def min_context_length(model_id): - model_path: Path = TSFM_MODEL_DIR / model_id + model_path: Path = resolve_model_path(TSFM_MODEL_DIR, model_id) assert model_path.exists(), f"{model_path} does not exist!" handler, e = ForecastingServiceHandler.load( model_id=model_id, model_path=model_path ) - return max(handler.handler_config.minimum_context_length, 2) + return handler.handler_config.minimum_context_length @pytest.fixture(scope="module") @@ -308,7 +309,7 @@ def test_forecast_with_missing_row( if input.model_id != model_id: return df = copy.deepcopy(data) - df.drop(index=1, inplace=True) + df.drop(index=10, inplace=True) input.data = df.to_dict(orient="list") runtime: InferenceRuntime = InferenceRuntime(config=config) From ebe0f8e2d2bca39fccfae1b04a145ac5bd0d449b Mon Sep 17 00:00:00 2001 From: Giridhar Ganapavarapu Date: Wed, 11 Dec 2024 16:35:45 -0500 Subject: [PATCH 29/32] chronos repo name in deps, make style Signed-off-by: Giridhar Ganapavarapu --- services/inference/pyproject.toml | 2 +- .../inference/tests/test_inference_lib.py | 46 +++++-------------- 2 files changed, 12 insertions(+), 36 deletions(-) diff --git a/services/inference/pyproject.toml b/services/inference/pyproject.toml index fec42919..cd75f5aa 100644 --- a/services/inference/pyproject.toml +++ b/services/inference/pyproject.toml @@ -49,7 +49,7 @@ urllib3 = { version = ">=1.26.19,<2" } # see https://github.com/urllib3/urllib3/ aiohttp = { version = ">=3.10.11" } # ***********Chronos********* -chronos = { git = "https://github.com/amazon-science/chronos-forecasting.git" } +chronos-forecasting = { git = "https://github.com/amazon-science/chronos-forecasting.git" } [[tool.poetry.source]] name = "pytorch" diff --git a/services/inference/tests/test_inference_lib.py b/services/inference/tests/test_inference_lib.py index 03b76021..763a8752 100644 --- a/services/inference/tests/test_inference_lib.py +++ b/services/inference/tests/test_inference_lib.py @@ -33,19 +33,14 @@ MODEL_IDS = [ os.path.basename(dirpath) for dirpath, _, _ in os.walk("./mytest-tsfm") - if ".git" not in dirpath - and "./mytest-tsfm" != dirpath - and "finetuned" not in dirpath - and "figures" not in dirpath + if ".git" not in dirpath and "./mytest-tsfm" != dirpath and "finetuned" not in dirpath and "figures" not in dirpath ] def min_context_length(model_id): model_path: Path = resolve_model_path(TSFM_MODEL_DIR, model_id) assert model_path.exists(), f"{model_path} does not exist!" - handler, e = ForecastingServiceHandler.load( - model_id=model_id, model_path=model_path - ) + handler, e = ForecastingServiceHandler.load(model_id=model_id, model_path=model_path) return handler.handler_config.minimum_context_length @@ -80,9 +75,7 @@ def forecasting_input_base(request: type[FixtureRequest]) -> ForecastingInferenc schema: ForecastingMetadataInput = ForecastingMetadataInput( timestamp_column="date", id_columns=["ID"], target_columns=["VAL"] ) - parameters: ForecastingParameters = ForecastingParameters( - prediction_length=FORECAST_LENGTH - ) + parameters: ForecastingParameters = ForecastingParameters(prediction_length=FORECAST_LENGTH) input: ForecastingInferenceInput = ForecastingInferenceInput( model_id=request.param, schema=schema, @@ -108,16 +101,12 @@ def _basic_result_checks(results: PredictOutput, df: pd.DataFrame): # expected start time assert results["date"].iloc[0] - df["date"].iloc[-1] == timedelta(hours=1) # expected end time - assert results["date"].iloc[-1] - df["date"].iloc[-1] == timedelta( - hours=FORECAST_LENGTH - ) + assert results["date"].iloc[-1] - df["date"].iloc[-1] == timedelta(hours=FORECAST_LENGTH) @pytest.mark.parametrize("forecasting_input_base", MODEL_IDS, indirect=True) @pytest.mark.parametrize("ts_data_base", MODEL_IDS, indirect=True) -def test_forecast_with_good_data( - ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput -): +def test_forecast_with_good_data(ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput): input = forecasting_input_base data, model_id = ts_data_base # since we're sometimes generating non-sensible combinations @@ -183,18 +172,13 @@ def test_forecast_with_integer_timestamps( po: PredictOutput = runtime.forecast(input=input) results = pd.DataFrame.from_dict(po.results[0]) assert results[timestamp_column].iloc[0] == series_length + 1 - assert ( - results[timestamp_column].iloc[-1] - df[timestamp_column].iloc[-1] - == FORECAST_LENGTH - ) + assert results[timestamp_column].iloc[-1] - df[timestamp_column].iloc[-1] == FORECAST_LENGTH assert results.dtypes[timestamp_column] == df.dtypes[timestamp_column] @pytest.mark.parametrize("forecasting_input_base", MODEL_IDS, indirect=True) @pytest.mark.parametrize("ts_data_base", MODEL_IDS, indirect=True) -def test_forecast_with_bogus_timestamps( - ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput -): +def test_forecast_with_bogus_timestamps(ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput): input: ForecastingInferenceInput = copy.deepcopy(forecasting_input_base) data, model_id = ts_data_base # since we're sometimes generating non-sensible combinations @@ -214,9 +198,7 @@ def test_forecast_with_bogus_timestamps( @pytest.mark.parametrize("forecasting_input_base", MODEL_IDS, indirect=True) @pytest.mark.parametrize("ts_data_base", MODEL_IDS, indirect=True) -def test_forecast_with_bogus_values( - ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput -): +def test_forecast_with_bogus_values(ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput): input: ForecastingInferenceInput = copy.deepcopy(forecasting_input_base) data, model_id = ts_data_base # since we're sometimes generating non-sensible combinations @@ -235,9 +217,7 @@ def test_forecast_with_bogus_values( @pytest.mark.parametrize("forecasting_input_base", MODEL_IDS, indirect=True) @pytest.mark.parametrize("ts_data_base", MODEL_IDS, indirect=True) -def test_forecast_with_bogus_model_id( - ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput -): +def test_forecast_with_bogus_model_id(ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput): input: ForecastingInferenceInput = copy.deepcopy(forecasting_input_base) data, model_id = ts_data_base # since we're sometimes generating non-sensible combinations @@ -277,9 +257,7 @@ def test_forecast_with_insufficient_context_length( @pytest.mark.skip @pytest.mark.parametrize("forecasting_input_base", MODEL_IDS, indirect=True) @pytest.mark.parametrize("ts_data_base", MODEL_IDS, indirect=True) -def test_forecast_with_nan_data( - ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput -): +def test_forecast_with_nan_data(ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput): input: ForecastingInferenceInput = copy.deepcopy(forecasting_input_base) data, model_id = ts_data_base # since we're sometimes generating non-sensible combinations @@ -299,9 +277,7 @@ def test_forecast_with_nan_data( # @pytest.mark.skip @pytest.mark.parametrize("forecasting_input_base", MODEL_IDS, indirect=True) @pytest.mark.parametrize("ts_data_base", MODEL_IDS, indirect=True) -def test_forecast_with_missing_row( - ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput -): +def test_forecast_with_missing_row(ts_data_base: pd.DataFrame, forecasting_input_base: ForecastingInferenceInput): input: ForecastingInferenceInput = copy.deepcopy(forecasting_input_base) data, model_id = ts_data_base # since we're sometimes generating non-sensible combinations From d4f57ee5ce06a0c46b3685cd589803f7ed2eb2c8 Mon Sep 17 00:00:00 2001 From: root Date: Thu, 12 Dec 2024 12:47:19 -0600 Subject: [PATCH 30/32] poetry lock --- services/inference/poetry.lock | 1547 +++++++++++++++----------------- 1 file changed, 726 insertions(+), 821 deletions(-) diff --git a/services/inference/poetry.lock b/services/inference/poetry.lock index d345b920..038caa0c 100644 --- a/services/inference/poetry.lock +++ b/services/inference/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.5 and should not be changed by hand. [[package]] name = "absl-py" @@ -13,13 +13,13 @@ files = [ [[package]] name = "accelerate" -version = "1.1.1" +version = "0.34.2" description = "Accelerate" optional = false -python-versions = ">=3.9.0" +python-versions = ">=3.8.0" files = [ - {file = "accelerate-1.1.1-py3-none-any.whl", hash = "sha256:61edd81762131b8d4bede008643fa1e1f3bf59bec710ebda9771443e24feae02"}, - {file = "accelerate-1.1.1.tar.gz", hash = "sha256:0d39dfac557052bc735eb2703a0e87742879e1e40b88af8a2f9a93233d4cd7db"}, + {file = "accelerate-0.34.2-py3-none-any.whl", hash = "sha256:d69159e2c4e4a473d14443b27d2d732929254e826b3ab4813b3785b5ac616c7c"}, + {file = "accelerate-0.34.2.tar.gz", hash = "sha256:98c1ebe1f5a45c0a3af02dc60b5bb8b7d58d60c3326a326a06ce6d956b18ca5b"}, ] [package.dependencies] @@ -33,8 +33,8 @@ torch = ">=1.10.0" [package.extras] deepspeed = ["deepspeed"] -dev = ["bitsandbytes", "black (>=23.1,<24.0)", "datasets", "diffusers", "evaluate", "hf-doc-builder (>=0.3.0)", "parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-subtests", "pytest-xdist", "rich", "ruff (>=0.6.4,<0.7.0)", "scikit-learn", "scipy", "timm", "torchdata (>=0.8.0)", "torchpippy (>=0.2.0)", "tqdm", "transformers"] -quality = ["black (>=23.1,<24.0)", "hf-doc-builder (>=0.3.0)", "ruff (>=0.6.4,<0.7.0)"] +dev = ["bitsandbytes", "black (>=23.1,<24.0)", "datasets", "diffusers", "evaluate", "hf-doc-builder (>=0.3.0)", "parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-subtests", "pytest-xdist", "rich", "ruff (>=0.2.1,<0.3.0)", "scikit-learn", "scipy", "timm", "torchdata (>=0.8.0)", "torchpippy (>=0.2.0)", "tqdm", "transformers"] +quality = ["black (>=23.1,<24.0)", "hf-doc-builder (>=0.3.0)", "ruff (>=0.2.1,<0.3.0)"] rich = ["rich"] sagemaker = ["sagemaker"] test-dev = ["bitsandbytes", "datasets", "diffusers", "evaluate", "scikit-learn", "scipy", "timm", "torchdata (>=0.8.0)", "torchpippy (>=0.2.0)", "tqdm", "transformers"] @@ -44,98 +44,98 @@ testing = ["bitsandbytes", "datasets", "diffusers", "evaluate", "parameterized", [[package]] name = "aiohappyeyeballs" -version = "2.4.3" +version = "2.4.4" description = "Happy Eyeballs for asyncio" optional = false python-versions = ">=3.8" files = [ - {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, - {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, + {file = "aiohappyeyeballs-2.4.4-py3-none-any.whl", hash = "sha256:a980909d50efcd44795c4afeca523296716d50cd756ddca6af8c65b996e27de8"}, + {file = "aiohappyeyeballs-2.4.4.tar.gz", hash = "sha256:5fdd7d87889c63183afc18ce9271f9b0a7d32c2303e394468dd45d514a757745"}, ] [[package]] name = "aiohttp" -version = "3.11.8" +version = "3.11.10" description = "Async http client/server framework (asyncio)" optional = false python-versions = ">=3.9" files = [ - {file = "aiohttp-3.11.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2d2ca685c6a851ce64e511fbcb906e4dd97d13e567ca7ecb5cb30b184e15dc6d"}, - {file = "aiohttp-3.11.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:52913bb8a0a72a57479f54b281300c9d23036aa9aa3ebbc9a32a643484eadfc2"}, - {file = "aiohttp-3.11.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:35dafc70051b6cbd6dafb533b4e3f0df6225a4896be373ef86367b2987409331"}, - {file = "aiohttp-3.11.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:561b9596a9f90266673ef0b950c27e04ab597cdb53785e2ac91b83b33c31b509"}, - {file = "aiohttp-3.11.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d479c1fdcc920056a06d04059db52eb8590ecbbb3acdcaeeea26a88ff782e94a"}, - {file = "aiohttp-3.11.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9ce8eb6444bb6e862feca664ce365afa8e2e32db24dcf1a502719a8a002f9274"}, - {file = "aiohttp-3.11.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df9bf08eb93611b1d4d6245b6fecf88728e90eece00e00d554e1b0c445557d83"}, - {file = "aiohttp-3.11.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5a20ddaa58fea717177fac9a4a1fb8b39be868aa4fed2af6de4313b7a08f0f71"}, - {file = "aiohttp-3.11.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9f4aadfea6b48cfa17aef1a68ba6bee5a0246374f5a588e299a4f4ff5bd1c77b"}, - {file = "aiohttp-3.11.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:aa7deebb4bc5143745e6282139d7b9de50beb6d06609df64d2c993ef496bc7eb"}, - {file = "aiohttp-3.11.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fe503a76b9e3a13b62e64545693c9463afe9d429e0909120f7bb66de91ed8bc2"}, - {file = "aiohttp-3.11.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1c5838a68e31712354129add1b5fe32b06aa05275f835130edc650e6288af05f"}, - {file = "aiohttp-3.11.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:832e58d9454fe501b0d092cdf660c0e34e16005f61acd06e1c79b0fc45019c94"}, - {file = "aiohttp-3.11.8-cp310-cp310-win32.whl", hash = "sha256:00618c37a350884c08e87cf9a6532be274d564227ac49e0b474cf41f27e1f190"}, - {file = "aiohttp-3.11.8-cp310-cp310-win_amd64.whl", hash = "sha256:8eeaac75203da1a54afe1faea3c855a1973026b54929112aa9b67bceadbcb0ca"}, - {file = "aiohttp-3.11.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f8dd02b44555893adfe7cc4b3b454fee04f9dcec45cf66ef5bb53ebf393f0505"}, - {file = "aiohttp-3.11.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:658052941324edea3dee1f681375e70779f55e437e07bdfc4b5bbe65ad53cefb"}, - {file = "aiohttp-3.11.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6c829471a9e2266da4a0666f8a9e215f19320f79778af379c1c7db324ac24ed2"}, - {file = "aiohttp-3.11.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d21951756690f5d86d0215da38eb0fd65def03b5e2a1c08a4a39718a6d0d48f2"}, - {file = "aiohttp-3.11.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2fa50ddc6b21cc1ae23e13524d6f75b27e279fdf5cf905b2df6fd171891ac4e2"}, - {file = "aiohttp-3.11.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a5afbd805e449048ecebb1a256176e953d4ca9e48bab387d4d1c8524f1c7a95"}, - {file = "aiohttp-3.11.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea68db69f2a4ddc24b28b8e754fc0b963ed7f9b9a76137f06fe44643d6821fbd"}, - {file = "aiohttp-3.11.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80b3ac163145660ce660aed2f1005e6d4de840d39728990b7250525eeec4e4a8"}, - {file = "aiohttp-3.11.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e9ac0cce897904b77e109e5403ed713187dbdf96832bfd061ac07164264be16c"}, - {file = "aiohttp-3.11.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3260c77cff4e35245bc517658bd54d7a64787f71f3c4f723877c82f22835b032"}, - {file = "aiohttp-3.11.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f7fd9c11ffad6b022bf02a41a70418cb2ab3b33f2c27842a5999e3ab78daf280"}, - {file = "aiohttp-3.11.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:16bda233a7b159ab08107e8858fedca90a9de287057fab54cafde51bd83f9819"}, - {file = "aiohttp-3.11.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4867008617bbf86e9fb5b00f72dd0e3a00a579b32233caff834320867f9b7cac"}, - {file = "aiohttp-3.11.8-cp311-cp311-win32.whl", hash = "sha256:17e6b9d8e29e3bfc7f893f327e92c9769d3582cee2fb1652c1431ac3f60115a0"}, - {file = "aiohttp-3.11.8-cp311-cp311-win_amd64.whl", hash = "sha256:7f3be4961a5c2c670f31caab7641a37ea2a97031f0d8ae15bcfd36b6bf273200"}, - {file = "aiohttp-3.11.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0e3b5bfef913d6be270c81976fbc0cbf66625cd92663bbb7e03b3adbd6aa4ac6"}, - {file = "aiohttp-3.11.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cb51a81cb637b9a072c9cfae1839e35c6579638861eb3479eb5d6e6ce8bc6782"}, - {file = "aiohttp-3.11.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:dd2ca84e5f7a35f313a62eb7d6a50bac6760b60bafce34586750712731c0aeff"}, - {file = "aiohttp-3.11.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47c6663df9446aa848b478413219600da4b54bc0409e1ac4bc80fb1a81501363"}, - {file = "aiohttp-3.11.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c665ed4b52256614858b20711bbbd2755b0e19ec86870f8ff1645acf9ae9e760"}, - {file = "aiohttp-3.11.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35d4545e7684da7a954ffc2dce495462cb16a902dffdebe98572408f6aaaee83"}, - {file = "aiohttp-3.11.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85be3899e6860dd2cd3f4370ded6708e939d00d5ec922a8eb328d114db605a47"}, - {file = "aiohttp-3.11.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0ed9f1f2697713c48efc9ec483ad5d062e4aa91854f090a3eba0b19c002851d"}, - {file = "aiohttp-3.11.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c0dbae99737badf3f5e862088a118e28d3b36f03eb608a6382eddfd68178e05b"}, - {file = "aiohttp-3.11.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:beae08f900b2980af4353a0200eb162b39f276fd8a6e43079a540f83964671f4"}, - {file = "aiohttp-3.11.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d6f9e5fd1b3ecbaca3e04a15a02d1fa213248608caee99fd5bdddd4759959cf7"}, - {file = "aiohttp-3.11.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7def89a41fe32120d89cd4577f5efbab3c52234c5890066ced8a2f7202dff88"}, - {file = "aiohttp-3.11.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:98f596cf59292e779bc387f22378a3d2c5e052c9fe2bf822ac4f547c6fe57758"}, - {file = "aiohttp-3.11.8-cp312-cp312-win32.whl", hash = "sha256:b64fa6b76b35b695cd3e5c42a4e568cbea8d41c9e59165e2a43da00976e2027e"}, - {file = "aiohttp-3.11.8-cp312-cp312-win_amd64.whl", hash = "sha256:afba47981ff73b1794c00dce774334dcfe62664b3b4f78f278b77d21ce9daf43"}, - {file = "aiohttp-3.11.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a81525430da5ca356fae6e889daeb6f5cc0d5f0cef88e59cdde48e2394ea1365"}, - {file = "aiohttp-3.11.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:7565689e86a88c1d258351ebd14e343337b76a56ca5c0a2c1db96ec28149386f"}, - {file = "aiohttp-3.11.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d0f9dbe9763c014c408ad51a027dc9582518e992dc63e2ffe359ac1b4840a560"}, - {file = "aiohttp-3.11.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8ca580edc3ccd7f6ea76ad9cf59f5a8756d338e770b5eda7be26bcda8fa7ef53"}, - {file = "aiohttp-3.11.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7d141631a7348038fc7b5d1a81b3c9afa9aa056188ded7902fe754028fdea5c5"}, - {file = "aiohttp-3.11.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64e6b14608a56a4c76c60daac730b0c0eeaf9d10dfc3231f7fc26521a0d628fd"}, - {file = "aiohttp-3.11.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0983d0ce329f2f9dbeb355c3744bd6333f34e0dc56025b6b7d4f285b90acb51e"}, - {file = "aiohttp-3.11.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d96b93a46a3742880fa21bcb35c6c40cf27714ec0fb8ec85fe444d73b95131b9"}, - {file = "aiohttp-3.11.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f4f1779c3142d913c509c2ed1de8b8f920e07a5cd65ac1f57c61cfb6bfded5a4"}, - {file = "aiohttp-3.11.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:48be7cff468c9c0d86a02e6a826e1fe159094b16d5aa2c17703e7317f791b0f9"}, - {file = "aiohttp-3.11.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:daea456b79ca2bacc7f062845bbb1139c3b3231fc83169da5a682cf385416dd1"}, - {file = "aiohttp-3.11.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:c92e763cf641e10ad9342597d20060ba23de5e411aada96660e679e3f9371189"}, - {file = "aiohttp-3.11.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a750ee5a177e0f873d6b2d7d0fa6e1e7c658fc0ca8ea56438dcba2ac94bedb09"}, - {file = "aiohttp-3.11.8-cp313-cp313-win32.whl", hash = "sha256:4448c9c7f77bad48a6569062c0c16deb77fbb7363de1dc71ed087f66fb3b3c96"}, - {file = "aiohttp-3.11.8-cp313-cp313-win_amd64.whl", hash = "sha256:481075a1949de79a8a6841e0086f2f5f464785c592cf527ed0db2c0cbd0e1ba2"}, - {file = "aiohttp-3.11.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:72779bfb34d6d6b51e55a7f4901b410e416b5431738b367d49696928c91a2ca8"}, - {file = "aiohttp-3.11.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3e6523f39071a01757048985e4cc22d04aa130bc40d9128503f3a61a3ee98328"}, - {file = "aiohttp-3.11.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:220bbce18b3046973465be45415430f1cab39d7fdc40cbcf0a8c05485c6902fe"}, - {file = "aiohttp-3.11.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:336bbf7a33dd8cb4a7afb98c70e9935a81e5e88f7ac595ba2e84b1fb5da190d6"}, - {file = "aiohttp-3.11.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c5e4f1ba5059b85e05c551961a448ce2689c6249ed6a2e2174796842c191d10"}, - {file = "aiohttp-3.11.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9f9fd5c672c962389429abd11ed32c9c93f7932fd58584cae1e43951b141c6b"}, - {file = "aiohttp-3.11.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58bd94ad48143e1d42e05fc055da41de0a9933f378ad87760595b8aec83d317b"}, - {file = "aiohttp-3.11.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bf52642b12d70d78c18882915201bc5345f7c8f0f2ab8919d99b886aa6475a7"}, - {file = "aiohttp-3.11.8-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:fee12d8487b0df2b683424cca2a0d8fb7281d5607518d742e98119a74af01026"}, - {file = "aiohttp-3.11.8-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:65fd04f1fea668ad1af48ac31b752000e222dccffedcad3de8ccf9d34489ccd3"}, - {file = "aiohttp-3.11.8-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c3f397e0511a0ec4fe331e602fc057dfd336d352062deb9969ebd81e253a149c"}, - {file = "aiohttp-3.11.8-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:cf8f05f4abe3288fe2e106e1461fd20d8abf6103886ddfb6d746a5b8fb830d2b"}, - {file = "aiohttp-3.11.8-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7d71d4ac0792ff89541179394d303be846a0b6cd3821ae67286ee69ecec16f9f"}, - {file = "aiohttp-3.11.8-cp39-cp39-win32.whl", hash = "sha256:2b6f8716044ae5e5f2a3b4e4b6bfee48e97c8b2a92e56f43aadd728c7fd26b7d"}, - {file = "aiohttp-3.11.8-cp39-cp39-win_amd64.whl", hash = "sha256:da343903214bf9f9d314b913caa499fa19e26d73e6e23a3db7d4898ea6d47028"}, - {file = "aiohttp-3.11.8.tar.gz", hash = "sha256:7bc9d64a2350cbb29a9732334e1a0743cbb6844de1731cbdf5949b235653f3fd"}, + {file = "aiohttp-3.11.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cbad88a61fa743c5d283ad501b01c153820734118b65aee2bd7dbb735475ce0d"}, + {file = "aiohttp-3.11.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:80886dac673ceaef499de2f393fc80bb4481a129e6cb29e624a12e3296cc088f"}, + {file = "aiohttp-3.11.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:61b9bae80ed1f338c42f57c16918853dc51775fb5cb61da70d590de14d8b5fb4"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e2e576caec5c6a6b93f41626c9c02fc87cd91538b81a3670b2e04452a63def6"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02c13415b5732fb6ee7ff64583a5e6ed1c57aa68f17d2bda79c04888dfdc2769"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfce37f31f20800a6a6620ce2cdd6737b82e42e06e6e9bd1b36f546feb3c44f"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3bbbfff4c679c64e6e23cb213f57cc2c9165c9a65d63717108a644eb5a7398df"}, + {file = "aiohttp-3.11.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:49c7dbbc1a559ae14fc48387a115b7d4bbc84b4a2c3b9299c31696953c2a5219"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:68386d78743e6570f054fe7949d6cb37ef2b672b4d3405ce91fafa996f7d9b4d"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9ef405356ba989fb57f84cac66f7b0260772836191ccefbb987f414bcd2979d9"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:5d6958671b296febe7f5f859bea581a21c1d05430d1bbdcf2b393599b1cdce77"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:99b7920e7165be5a9e9a3a7f1b680f06f68ff0d0328ff4079e5163990d046767"}, + {file = "aiohttp-3.11.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0dc49f42422163efb7e6f1df2636fe3db72713f6cd94688e339dbe33fe06d61d"}, + {file = "aiohttp-3.11.10-cp310-cp310-win32.whl", hash = "sha256:40d1c7a7f750b5648642586ba7206999650208dbe5afbcc5284bcec6579c9b91"}, + {file = "aiohttp-3.11.10-cp310-cp310-win_amd64.whl", hash = "sha256:68ff6f48b51bd78ea92b31079817aff539f6c8fc80b6b8d6ca347d7c02384e33"}, + {file = "aiohttp-3.11.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:77c4aa15a89847b9891abf97f3d4048f3c2d667e00f8a623c89ad2dccee6771b"}, + {file = "aiohttp-3.11.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:909af95a72cedbefe5596f0bdf3055740f96c1a4baa0dd11fd74ca4de0b4e3f1"}, + {file = "aiohttp-3.11.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:386fbe79863eb564e9f3615b959e28b222259da0c48fd1be5929ac838bc65683"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3de34936eb1a647aa919655ff8d38b618e9f6b7f250cc19a57a4bf7fd2062b6d"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0c9527819b29cd2b9f52033e7fb9ff08073df49b4799c89cb5754624ecd98299"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65a96e3e03300b41f261bbfd40dfdbf1c301e87eab7cd61c054b1f2e7c89b9e8"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98f5635f7b74bcd4f6f72fcd85bea2154b323a9f05226a80bc7398d0c90763b0"}, + {file = "aiohttp-3.11.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:03b6002e20938fc6ee0918c81d9e776bebccc84690e2b03ed132331cca065ee5"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6362cc6c23c08d18ddbf0e8c4d5159b5df74fea1a5278ff4f2c79aed3f4e9f46"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3691ed7726fef54e928fe26344d930c0c8575bc968c3e239c2e1a04bd8cf7838"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:31d5093d3acd02b31c649d3a69bb072d539d4c7659b87caa4f6d2bcf57c2fa2b"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:8b3cf2dc0f0690a33f2d2b2cb15db87a65f1c609f53c37e226f84edb08d10f52"}, + {file = "aiohttp-3.11.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:fbbaea811a2bba171197b08eea288b9402faa2bab2ba0858eecdd0a4105753a3"}, + {file = "aiohttp-3.11.10-cp311-cp311-win32.whl", hash = "sha256:4b2c7ac59c5698a7a8207ba72d9e9c15b0fc484a560be0788b31312c2c5504e4"}, + {file = "aiohttp-3.11.10-cp311-cp311-win_amd64.whl", hash = "sha256:974d3a2cce5fcfa32f06b13ccc8f20c6ad9c51802bb7f829eae8a1845c4019ec"}, + {file = "aiohttp-3.11.10-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:b78f053a7ecfc35f0451d961dacdc671f4bcbc2f58241a7c820e9d82559844cf"}, + {file = "aiohttp-3.11.10-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:ab7485222db0959a87fbe8125e233b5a6f01f4400785b36e8a7878170d8c3138"}, + {file = "aiohttp-3.11.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cf14627232dfa8730453752e9cdc210966490992234d77ff90bc8dc0dce361d5"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:076bc454a7e6fd646bc82ea7f98296be0b1219b5e3ef8a488afbdd8e81fbac50"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:482cafb7dc886bebeb6c9ba7925e03591a62ab34298ee70d3dd47ba966370d2c"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf3d1a519a324af764a46da4115bdbd566b3c73fb793ffb97f9111dbc684fc4d"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24213ba85a419103e641e55c27dc7ff03536c4873470c2478cce3311ba1eee7b"}, + {file = "aiohttp-3.11.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b99acd4730ad1b196bfb03ee0803e4adac371ae8efa7e1cbc820200fc5ded109"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:14cdb5a9570be5a04eec2ace174a48ae85833c2aadc86de68f55541f66ce42ab"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:7e97d622cb083e86f18317282084bc9fbf261801b0192c34fe4b1febd9f7ae69"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:012f176945af138abc10c4a48743327a92b4ca9adc7a0e078077cdb5dbab7be0"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44224d815853962f48fe124748227773acd9686eba6dc102578defd6fc99e8d9"}, + {file = "aiohttp-3.11.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c87bf31b7fdab94ae3adbe4a48e711bfc5f89d21cf4c197e75561def39e223bc"}, + {file = "aiohttp-3.11.10-cp312-cp312-win32.whl", hash = "sha256:06a8e2ee1cbac16fe61e51e0b0c269400e781b13bcfc33f5425912391a542985"}, + {file = "aiohttp-3.11.10-cp312-cp312-win_amd64.whl", hash = "sha256:be2b516f56ea883a3e14dda17059716593526e10fb6303189aaf5503937db408"}, + {file = "aiohttp-3.11.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8cc5203b817b748adccb07f36390feb730b1bc5f56683445bfe924fc270b8816"}, + {file = "aiohttp-3.11.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:5ef359ebc6949e3a34c65ce20230fae70920714367c63afd80ea0c2702902ccf"}, + {file = "aiohttp-3.11.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:9bca390cb247dbfaec3c664326e034ef23882c3f3bfa5fbf0b56cad0320aaca5"}, + {file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:811f23b3351ca532af598405db1093f018edf81368e689d1b508c57dcc6b6a32"}, + {file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddf5f7d877615f6a1e75971bfa5ac88609af3b74796ff3e06879e8422729fd01"}, + {file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6ab29b8a0beb6f8eaf1e5049252cfe74adbaafd39ba91e10f18caeb0e99ffb34"}, + {file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c49a76c1038c2dd116fa443eba26bbb8e6c37e924e2513574856de3b6516be99"}, + {file = "aiohttp-3.11.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f3dc0e330575f5b134918976a645e79adf333c0a1439dcf6899a80776c9ab39"}, + {file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:efb15a17a12497685304b2d976cb4939e55137df7b09fa53f1b6a023f01fcb4e"}, + {file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:db1d0b28fcb7f1d35600150c3e4b490775251dea70f894bf15c678fdd84eda6a"}, + {file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:15fccaf62a4889527539ecb86834084ecf6e9ea70588efde86e8bc775e0e7542"}, + {file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:593c114a2221444f30749cc5e5f4012488f56bd14de2af44fe23e1e9894a9c60"}, + {file = "aiohttp-3.11.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7852bbcb4d0d2f0c4d583f40c3bc750ee033265d80598d0f9cb6f372baa6b836"}, + {file = "aiohttp-3.11.10-cp313-cp313-win32.whl", hash = "sha256:65e55ca7debae8faaffee0ebb4b47a51b4075f01e9b641c31e554fd376595c6c"}, + {file = "aiohttp-3.11.10-cp313-cp313-win_amd64.whl", hash = "sha256:beb39a6d60a709ae3fb3516a1581777e7e8b76933bb88c8f4420d875bb0267c6"}, + {file = "aiohttp-3.11.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0580f2e12de2138f34debcd5d88894786453a76e98febaf3e8fe5db62d01c9bf"}, + {file = "aiohttp-3.11.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a55d2ad345684e7c3dd2c20d2f9572e9e1d5446d57200ff630e6ede7612e307f"}, + {file = "aiohttp-3.11.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04814571cb72d65a6899db6099e377ed00710bf2e3eafd2985166f2918beaf59"}, + {file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e44a9a3c053b90c6f09b1bb4edd880959f5328cf63052503f892c41ea786d99f"}, + {file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:502a1464ccbc800b4b1995b302efaf426e8763fadf185e933c2931df7db9a199"}, + {file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:613e5169f8ae77b1933e42e418a95931fb4867b2991fc311430b15901ed67079"}, + {file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cca22a61b7fe45da8fc73c3443150c3608750bbe27641fc7558ec5117b27fdf"}, + {file = "aiohttp-3.11.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:86a5dfcc39309470bd7b68c591d84056d195428d5d2e0b5ccadfbaf25b026ebc"}, + {file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:77ae58586930ee6b2b6f696c82cf8e78c8016ec4795c53e36718365f6959dc82"}, + {file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:78153314f26d5abef3239b4a9af20c229c6f3ecb97d4c1c01b22c4f87669820c"}, + {file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:98283b94cc0e11c73acaf1c9698dea80c830ca476492c0fe2622bd931f34b487"}, + {file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:53bf2097e05c2accc166c142a2090e4c6fd86581bde3fd9b2d3f9e93dda66ac1"}, + {file = "aiohttp-3.11.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c5532f0441fc09c119e1dca18fbc0687e64fbeb45aa4d6a87211ceaee50a74c4"}, + {file = "aiohttp-3.11.10-cp39-cp39-win32.whl", hash = "sha256:47ad15a65fb41c570cd0ad9a9ff8012489e68176e7207ec7b82a0940dddfd8be"}, + {file = "aiohttp-3.11.10-cp39-cp39-win_amd64.whl", hash = "sha256:c6b9e6d7e41656d78e37ce754813fa44b455c3d0d0dced2a047def7dc5570b74"}, + {file = "aiohttp-3.11.10.tar.gz", hash = "sha256:b1fc6b45010a8d0ff9e88f9f2418c6fd408c99c211257334aff41597ebece42e"}, ] [package.dependencies] @@ -178,24 +178,24 @@ files = [ [[package]] name = "anyio" -version = "4.6.2.post1" +version = "4.7.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false python-versions = ">=3.9" files = [ - {file = "anyio-4.6.2.post1-py3-none-any.whl", hash = "sha256:6d170c36fba3bdd840c73d3868c1e777e33676a69c3a72cf0a0d5d6d8009b61d"}, - {file = "anyio-4.6.2.post1.tar.gz", hash = "sha256:4c8bc31ccdb51c7f7bd251f51c609e038d63e34219b44aa86e47576389880b4c"}, + {file = "anyio-4.7.0-py3-none-any.whl", hash = "sha256:ea60c3723ab42ba6fff7e8ccb0488c898ec538ff4df1f1d5e642c3601d07e352"}, + {file = "anyio-4.7.0.tar.gz", hash = "sha256:2f834749c602966b7d456a7567cafcb309f96482b5081d14ac93ccd457f9dd48"}, ] [package.dependencies] exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} idna = ">=2.8" sniffio = ">=1.1" -typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} +typing_extensions = {version = ">=4.5", markers = "python_version < \"3.13\""} [package.extras] -doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "truststore (>=0.9.1)", "uvloop (>=0.21.0b1)"] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx_rtd_theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "truststore (>=0.9.1)", "uvloop (>=0.21)"] trio = ["trio (>=0.26.1)"] [[package]] @@ -287,21 +287,18 @@ test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock [[package]] name = "asttokens" -version = "2.4.1" +version = "3.0.0" description = "Annotate AST trees with source code positions" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, - {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, + {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, + {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, ] -[package.dependencies] -six = ">=1.12.0" - [package.extras] -astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] -test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] +astroid = ["astroid (>=2,<4)"] +test = ["astroid (>=2,<4)", "pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "async-lru" @@ -749,30 +746,30 @@ files = [ ] [[package]] -name = "chronos" -version = "1.2.1" -description = "" +name = "chronos-forecasting" +version = "1.4.1" +description = "Chronos: Pretrained models for time series forecasting" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [] develop = false [package.dependencies] -accelerate = "*" -torch = ">=2.0,<3.0" -transformers = ">=4.30,<5.0" +accelerate = ">=0.32,<1" +torch = ">=2.0,<2.6" +transformers = ">=4.30,<4.48" [package.extras] -evaluation = ["datasets", "gluonts[pro]", "numpy", "typer"] +evaluation = ["datasets (>=2.18,<3.0)", "gluonts[pro] (>=0.15,<1.0)", "numpy (>=1.21,<2.0)", "typer"] test = ["numpy (>=1.21,<2.0)", "pytest (>=8.0,<9.0)"] -training = ["gluonts[pro]", "joblib", "numpy", "scikit-learn", "tensorboard", "typer", "typer-config"] +training = ["datasets (>=2.18,<3.0)", "gluonts[pro] (>=0.15,<1.0)", "joblib", "numpy (>=1.21,<2.0)", "scikit-learn", "tensorboard", "typer", "typer-config"] typecheck = ["mypy (>=1.9,<2.0)"] [package.source] type = "git" url = "https://github.com/amazon-science/chronos-forecasting.git" reference = "HEAD" -resolved_reference = "e3bbda7207468acda35185fe36e79b1c4c8fbfc0" +resolved_reference = "133761a90145f77971a08c49bfc7cca318b2df9b" [[package]] name = "click" @@ -906,73 +903,73 @@ test-no-images = ["pytest", "pytest-cov", "pytest-rerunfailures", "pytest-xdist" [[package]] name = "coverage" -version = "7.6.8" +version = "7.6.9" description = "Code coverage measurement for Python" optional = false python-versions = ">=3.9" files = [ - {file = "coverage-7.6.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b39e6011cd06822eb964d038d5dff5da5d98652b81f5ecd439277b32361a3a50"}, - {file = "coverage-7.6.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:63c19702db10ad79151a059d2d6336fe0c470f2e18d0d4d1a57f7f9713875dcf"}, - {file = "coverage-7.6.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3985b9be361d8fb6b2d1adc9924d01dec575a1d7453a14cccd73225cb79243ee"}, - {file = "coverage-7.6.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:644ec81edec0f4ad17d51c838a7d01e42811054543b76d4ba2c5d6af741ce2a6"}, - {file = "coverage-7.6.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f188a2402f8359cf0c4b1fe89eea40dc13b52e7b4fd4812450da9fcd210181d"}, - {file = "coverage-7.6.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e19122296822deafce89a0c5e8685704c067ae65d45e79718c92df7b3ec3d331"}, - {file = "coverage-7.6.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:13618bed0c38acc418896005732e565b317aa9e98d855a0e9f211a7ffc2d6638"}, - {file = "coverage-7.6.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:193e3bffca48ad74b8c764fb4492dd875038a2f9925530cb094db92bb5e47bed"}, - {file = "coverage-7.6.8-cp310-cp310-win32.whl", hash = "sha256:3988665ee376abce49613701336544041f2117de7b7fbfe91b93d8ff8b151c8e"}, - {file = "coverage-7.6.8-cp310-cp310-win_amd64.whl", hash = "sha256:f56f49b2553d7dd85fd86e029515a221e5c1f8cb3d9c38b470bc38bde7b8445a"}, - {file = "coverage-7.6.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:86cffe9c6dfcfe22e28027069725c7f57f4b868a3f86e81d1c62462764dc46d4"}, - {file = "coverage-7.6.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d82ab6816c3277dc962cfcdc85b1efa0e5f50fb2c449432deaf2398a2928ab94"}, - {file = "coverage-7.6.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:13690e923a3932e4fad4c0ebfb9cb5988e03d9dcb4c5150b5fcbf58fd8bddfc4"}, - {file = "coverage-7.6.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4be32da0c3827ac9132bb488d331cb32e8d9638dd41a0557c5569d57cf22c9c1"}, - {file = "coverage-7.6.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44e6c85bbdc809383b509d732b06419fb4544dca29ebe18480379633623baafb"}, - {file = "coverage-7.6.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:768939f7c4353c0fac2f7c37897e10b1414b571fd85dd9fc49e6a87e37a2e0d8"}, - {file = "coverage-7.6.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e44961e36cb13c495806d4cac67640ac2866cb99044e210895b506c26ee63d3a"}, - {file = "coverage-7.6.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3ea8bb1ab9558374c0ab591783808511d135a833c3ca64a18ec927f20c4030f0"}, - {file = "coverage-7.6.8-cp311-cp311-win32.whl", hash = "sha256:629a1ba2115dce8bf75a5cce9f2486ae483cb89c0145795603d6554bdc83e801"}, - {file = "coverage-7.6.8-cp311-cp311-win_amd64.whl", hash = "sha256:fb9fc32399dca861584d96eccd6c980b69bbcd7c228d06fb74fe53e007aa8ef9"}, - {file = "coverage-7.6.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e683e6ecc587643f8cde8f5da6768e9d165cd31edf39ee90ed7034f9ca0eefee"}, - {file = "coverage-7.6.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1defe91d41ce1bd44b40fabf071e6a01a5aa14de4a31b986aa9dfd1b3e3e414a"}, - {file = "coverage-7.6.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7ad66e8e50225ebf4236368cc43c37f59d5e6728f15f6e258c8639fa0dd8e6d"}, - {file = "coverage-7.6.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fe47da3e4fda5f1abb5709c156eca207eacf8007304ce3019eb001e7a7204cb"}, - {file = "coverage-7.6.8-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:202a2d645c5a46b84992f55b0a3affe4f0ba6b4c611abec32ee88358db4bb649"}, - {file = "coverage-7.6.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4674f0daa1823c295845b6a740d98a840d7a1c11df00d1fd62614545c1583787"}, - {file = "coverage-7.6.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:74610105ebd6f33d7c10f8907afed696e79c59e3043c5f20eaa3a46fddf33b4c"}, - {file = "coverage-7.6.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37cda8712145917105e07aab96388ae76e787270ec04bcb9d5cc786d7cbb8443"}, - {file = "coverage-7.6.8-cp312-cp312-win32.whl", hash = "sha256:9e89d5c8509fbd6c03d0dd1972925b22f50db0792ce06324ba069f10787429ad"}, - {file = "coverage-7.6.8-cp312-cp312-win_amd64.whl", hash = "sha256:379c111d3558272a2cae3d8e57e6b6e6f4fe652905692d54bad5ea0ca37c5ad4"}, - {file = "coverage-7.6.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0b0c69f4f724c64dfbfe79f5dfb503b42fe6127b8d479b2677f2b227478db2eb"}, - {file = "coverage-7.6.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c15b32a7aca8038ed7644f854bf17b663bc38e1671b5d6f43f9a2b2bd0c46f63"}, - {file = "coverage-7.6.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63068a11171e4276f6ece913bde059e77c713b48c3a848814a6537f35afb8365"}, - {file = "coverage-7.6.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f4548c5ead23ad13fb7a2c8ea541357474ec13c2b736feb02e19a3085fac002"}, - {file = "coverage-7.6.8-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b4b4299dd0d2c67caaaf286d58aef5e75b125b95615dda4542561a5a566a1e3"}, - {file = "coverage-7.6.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c9ebfb2507751f7196995142f057d1324afdab56db1d9743aab7f50289abd022"}, - {file = "coverage-7.6.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:c1b4474beee02ede1eef86c25ad4600a424fe36cff01a6103cb4533c6bf0169e"}, - {file = "coverage-7.6.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d9fd2547e6decdbf985d579cf3fc78e4c1d662b9b0ff7cc7862baaab71c9cc5b"}, - {file = "coverage-7.6.8-cp313-cp313-win32.whl", hash = "sha256:8aae5aea53cbfe024919715eca696b1a3201886ce83790537d1c3668459c7146"}, - {file = "coverage-7.6.8-cp313-cp313-win_amd64.whl", hash = "sha256:ae270e79f7e169ccfe23284ff5ea2d52a6f401dc01b337efb54b3783e2ce3f28"}, - {file = "coverage-7.6.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:de38add67a0af869b0d79c525d3e4588ac1ffa92f39116dbe0ed9753f26eba7d"}, - {file = "coverage-7.6.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b07c25d52b1c16ce5de088046cd2432b30f9ad5e224ff17c8f496d9cb7d1d451"}, - {file = "coverage-7.6.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62a66ff235e4c2e37ed3b6104d8b478d767ff73838d1222132a7a026aa548764"}, - {file = "coverage-7.6.8-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09b9f848b28081e7b975a3626e9081574a7b9196cde26604540582da60235fdf"}, - {file = "coverage-7.6.8-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:093896e530c38c8e9c996901858ac63f3d4171268db2c9c8b373a228f459bbc5"}, - {file = "coverage-7.6.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9a7b8ac36fd688c8361cbc7bf1cb5866977ece6e0b17c34aa0df58bda4fa18a4"}, - {file = "coverage-7.6.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:38c51297b35b3ed91670e1e4efb702b790002e3245a28c76e627478aa3c10d83"}, - {file = "coverage-7.6.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2e4e0f60cb4bd7396108823548e82fdab72d4d8a65e58e2c19bbbc2f1e2bfa4b"}, - {file = "coverage-7.6.8-cp313-cp313t-win32.whl", hash = "sha256:6535d996f6537ecb298b4e287a855f37deaf64ff007162ec0afb9ab8ba3b8b71"}, - {file = "coverage-7.6.8-cp313-cp313t-win_amd64.whl", hash = "sha256:c79c0685f142ca53256722a384540832420dff4ab15fec1863d7e5bc8691bdcc"}, - {file = "coverage-7.6.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3ac47fa29d8d41059ea3df65bd3ade92f97ee4910ed638e87075b8e8ce69599e"}, - {file = "coverage-7.6.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:24eda3a24a38157eee639ca9afe45eefa8d2420d49468819ac5f88b10de84f4c"}, - {file = "coverage-7.6.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4c81ed2820b9023a9a90717020315e63b17b18c274a332e3b6437d7ff70abe0"}, - {file = "coverage-7.6.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd55f8fc8fa494958772a2a7302b0354ab16e0b9272b3c3d83cdb5bec5bd1779"}, - {file = "coverage-7.6.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f39e2f3530ed1626c66e7493be7a8423b023ca852aacdc91fb30162c350d2a92"}, - {file = "coverage-7.6.8-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:716a78a342679cd1177bc8c2fe957e0ab91405bd43a17094324845200b2fddf4"}, - {file = "coverage-7.6.8-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:177f01eeaa3aee4a5ffb0d1439c5952b53d5010f86e9d2667963e632e30082cc"}, - {file = "coverage-7.6.8-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:912e95017ff51dc3d7b6e2be158dedc889d9a5cc3382445589ce554f1a34c0ea"}, - {file = "coverage-7.6.8-cp39-cp39-win32.whl", hash = "sha256:4db3ed6a907b555e57cc2e6f14dc3a4c2458cdad8919e40b5357ab9b6db6c43e"}, - {file = "coverage-7.6.8-cp39-cp39-win_amd64.whl", hash = "sha256:428ac484592f780e8cd7b6b14eb568f7c85460c92e2a37cb0c0e5186e1a0d076"}, - {file = "coverage-7.6.8-pp39.pp310-none-any.whl", hash = "sha256:5c52a036535d12590c32c49209e79cabaad9f9ad8aa4cbd875b68c4d67a9cbce"}, - {file = "coverage-7.6.8.tar.gz", hash = "sha256:8b2b8503edb06822c86d82fa64a4a5cb0760bb8f31f26e138ec743f422f37cfc"}, + {file = "coverage-7.6.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:85d9636f72e8991a1706b2b55b06c27545448baf9f6dbf51c4004609aacd7dcb"}, + {file = "coverage-7.6.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:608a7fd78c67bee8936378299a6cb9f5149bb80238c7a566fc3e6717a4e68710"}, + {file = "coverage-7.6.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:96d636c77af18b5cb664ddf12dab9b15a0cfe9c0bde715da38698c8cea748bfa"}, + {file = "coverage-7.6.9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d75cded8a3cff93da9edc31446872d2997e327921d8eed86641efafd350e1df1"}, + {file = "coverage-7.6.9-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7b15f589593110ae767ce997775d645b47e5cbbf54fd322f8ebea6277466cec"}, + {file = "coverage-7.6.9-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:44349150f6811b44b25574839b39ae35291f6496eb795b7366fef3bd3cf112d3"}, + {file = "coverage-7.6.9-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d891c136b5b310d0e702e186d70cd16d1119ea8927347045124cb286b29297e5"}, + {file = "coverage-7.6.9-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:db1dab894cc139f67822a92910466531de5ea6034ddfd2b11c0d4c6257168073"}, + {file = "coverage-7.6.9-cp310-cp310-win32.whl", hash = "sha256:41ff7b0da5af71a51b53f501a3bac65fb0ec311ebed1632e58fc6107f03b9198"}, + {file = "coverage-7.6.9-cp310-cp310-win_amd64.whl", hash = "sha256:35371f8438028fdccfaf3570b31d98e8d9eda8bb1d6ab9473f5a390969e98717"}, + {file = "coverage-7.6.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:932fc826442132dde42ee52cf66d941f581c685a6313feebed358411238f60f9"}, + {file = "coverage-7.6.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:085161be5f3b30fd9b3e7b9a8c301f935c8313dcf928a07b116324abea2c1c2c"}, + {file = "coverage-7.6.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ccc660a77e1c2bf24ddbce969af9447a9474790160cfb23de6be4fa88e3951c7"}, + {file = "coverage-7.6.9-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c69e42c892c018cd3c8d90da61d845f50a8243062b19d228189b0224150018a9"}, + {file = "coverage-7.6.9-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0824a28ec542a0be22f60c6ac36d679e0e262e5353203bea81d44ee81fe9c6d4"}, + {file = "coverage-7.6.9-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4401ae5fc52ad8d26d2a5d8a7428b0f0c72431683f8e63e42e70606374c311a1"}, + {file = "coverage-7.6.9-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:98caba4476a6c8d59ec1eb00c7dd862ba9beca34085642d46ed503cc2d440d4b"}, + {file = "coverage-7.6.9-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ee5defd1733fd6ec08b168bd4f5387d5b322f45ca9e0e6c817ea6c4cd36313e3"}, + {file = "coverage-7.6.9-cp311-cp311-win32.whl", hash = "sha256:f2d1ec60d6d256bdf298cb86b78dd715980828f50c46701abc3b0a2b3f8a0dc0"}, + {file = "coverage-7.6.9-cp311-cp311-win_amd64.whl", hash = "sha256:0d59fd927b1f04de57a2ba0137166d31c1a6dd9e764ad4af552912d70428c92b"}, + {file = "coverage-7.6.9-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:99e266ae0b5d15f1ca8d278a668df6f51cc4b854513daab5cae695ed7b721cf8"}, + {file = "coverage-7.6.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9901d36492009a0a9b94b20e52ebfc8453bf49bb2b27bca2c9706f8b4f5a554a"}, + {file = "coverage-7.6.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:abd3e72dd5b97e3af4246cdada7738ef0e608168de952b837b8dd7e90341f015"}, + {file = "coverage-7.6.9-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff74026a461eb0660366fb01c650c1d00f833a086b336bdad7ab00cc952072b3"}, + {file = "coverage-7.6.9-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65dad5a248823a4996724a88eb51d4b31587aa7aa428562dbe459c684e5787ae"}, + {file = "coverage-7.6.9-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:22be16571504c9ccea919fcedb459d5ab20d41172056206eb2994e2ff06118a4"}, + {file = "coverage-7.6.9-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f957943bc718b87144ecaee70762bc2bc3f1a7a53c7b861103546d3a403f0a6"}, + {file = "coverage-7.6.9-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0ae1387db4aecb1f485fb70a6c0148c6cdaebb6038f1d40089b1fc84a5db556f"}, + {file = "coverage-7.6.9-cp312-cp312-win32.whl", hash = "sha256:1a330812d9cc7ac2182586f6d41b4d0fadf9be9049f350e0efb275c8ee8eb692"}, + {file = "coverage-7.6.9-cp312-cp312-win_amd64.whl", hash = "sha256:b12c6b18269ca471eedd41c1b6a1065b2f7827508edb9a7ed5555e9a56dcfc97"}, + {file = "coverage-7.6.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:899b8cd4781c400454f2f64f7776a5d87bbd7b3e7f7bda0cb18f857bb1334664"}, + {file = "coverage-7.6.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:61f70dc68bd36810972e55bbbe83674ea073dd1dcc121040a08cdf3416c5349c"}, + {file = "coverage-7.6.9-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a289d23d4c46f1a82d5db4abeb40b9b5be91731ee19a379d15790e53031c014"}, + {file = "coverage-7.6.9-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e216d8044a356fc0337c7a2a0536d6de07888d7bcda76febcb8adc50bdbbd00"}, + {file = "coverage-7.6.9-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c026eb44f744acaa2bda7493dad903aa5bf5fc4f2554293a798d5606710055d"}, + {file = "coverage-7.6.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e77363e8425325384f9d49272c54045bbed2f478e9dd698dbc65dbc37860eb0a"}, + {file = "coverage-7.6.9-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:777abfab476cf83b5177b84d7486497e034eb9eaea0d746ce0c1268c71652077"}, + {file = "coverage-7.6.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:447af20e25fdbe16f26e84eb714ba21d98868705cb138252d28bc400381f6ffb"}, + {file = "coverage-7.6.9-cp313-cp313-win32.whl", hash = "sha256:d872ec5aeb086cbea771c573600d47944eea2dcba8be5f3ee649bfe3cb8dc9ba"}, + {file = "coverage-7.6.9-cp313-cp313-win_amd64.whl", hash = "sha256:fd1213c86e48dfdc5a0cc676551db467495a95a662d2396ecd58e719191446e1"}, + {file = "coverage-7.6.9-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:ba9e7484d286cd5a43744e5f47b0b3fb457865baf07bafc6bee91896364e1419"}, + {file = "coverage-7.6.9-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:e5ea1cf0872ee455c03e5674b5bca5e3e68e159379c1af0903e89f5eba9ccc3a"}, + {file = "coverage-7.6.9-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d10e07aa2b91835d6abec555ec8b2733347956991901eea6ffac295f83a30e4"}, + {file = "coverage-7.6.9-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:13a9e2d3ee855db3dd6ea1ba5203316a1b1fd8eaeffc37c5b54987e61e4194ae"}, + {file = "coverage-7.6.9-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c38bf15a40ccf5619fa2fe8f26106c7e8e080d7760aeccb3722664c8656b030"}, + {file = "coverage-7.6.9-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:d5275455b3e4627c8e7154feaf7ee0743c2e7af82f6e3b561967b1cca755a0be"}, + {file = "coverage-7.6.9-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:8f8770dfc6e2c6a2d4569f411015c8d751c980d17a14b0530da2d7f27ffdd88e"}, + {file = "coverage-7.6.9-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8d2dfa71665a29b153a9681edb1c8d9c1ea50dfc2375fb4dac99ea7e21a0bcd9"}, + {file = "coverage-7.6.9-cp313-cp313t-win32.whl", hash = "sha256:5e6b86b5847a016d0fbd31ffe1001b63355ed309651851295315031ea7eb5a9b"}, + {file = "coverage-7.6.9-cp313-cp313t-win_amd64.whl", hash = "sha256:97ddc94d46088304772d21b060041c97fc16bdda13c6c7f9d8fcd8d5ae0d8611"}, + {file = "coverage-7.6.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:adb697c0bd35100dc690de83154627fbab1f4f3c0386df266dded865fc50a902"}, + {file = "coverage-7.6.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:be57b6d56e49c2739cdf776839a92330e933dd5e5d929966fbbd380c77f060be"}, + {file = "coverage-7.6.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1592791f8204ae9166de22ba7e6705fa4ebd02936c09436a1bb85aabca3e599"}, + {file = "coverage-7.6.9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4e12ae8cc979cf83d258acb5e1f1cf2f3f83524d1564a49d20b8bec14b637f08"}, + {file = "coverage-7.6.9-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb5555cff66c4d3d6213a296b360f9e1a8e323e74e0426b6c10ed7f4d021e464"}, + {file = "coverage-7.6.9-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:b9389a429e0e5142e69d5bf4a435dd688c14478a19bb901735cdf75e57b13845"}, + {file = "coverage-7.6.9-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:592ac539812e9b46046620341498caf09ca21023c41c893e1eb9dbda00a70cbf"}, + {file = "coverage-7.6.9-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a27801adef24cc30871da98a105f77995e13a25a505a0161911f6aafbd66e678"}, + {file = "coverage-7.6.9-cp39-cp39-win32.whl", hash = "sha256:8e3c3e38930cfb729cb8137d7f055e5a473ddaf1217966aa6238c88bd9fd50e6"}, + {file = "coverage-7.6.9-cp39-cp39-win_amd64.whl", hash = "sha256:e28bf44afa2b187cc9f41749138a64435bf340adfcacb5b2290c070ce99839d4"}, + {file = "coverage-7.6.9-pp39.pp310-none-any.whl", hash = "sha256:f3ca78518bc6bc92828cd11867b121891d75cae4ea9e908d72030609b996db1b"}, + {file = "coverage-7.6.9.tar.gz", hash = "sha256:4a8d8977b0c6ef5aeadcb644da9e69ae0dcfe66ec7f368c89c72e058bd71164d"}, ] [package.dependencies] @@ -998,13 +995,13 @@ tests = ["pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "datasets" -version = "3.1.0" +version = "3.2.0" description = "HuggingFace community-driven open-source library of datasets" optional = false -python-versions = ">=3.8.0" +python-versions = ">=3.9.0" files = [ - {file = "datasets-3.1.0-py3-none-any.whl", hash = "sha256:dc8808a6d17838fe05e13b39aa7ac3ea0fd0806ed7004eaf4d4eb2c2a356bc61"}, - {file = "datasets-3.1.0.tar.gz", hash = "sha256:c92cac049e0f9f85b0dd63739c68e564c657b1624bc2b66b1e13489062832e27"}, + {file = "datasets-3.2.0-py3-none-any.whl", hash = "sha256:f3d2ba2698b7284a4518019658596a6a8bc79f31e51516524249d6c59cf0fe2a"}, + {file = "datasets-3.2.0.tar.gz", hash = "sha256:9a6e1a356052866b5dbdd9c9eedb000bf3fc43d986e3584d9b028f4976937229"}, ] [package.dependencies] @@ -1026,15 +1023,15 @@ xxhash = "*" [package.extras] audio = ["librosa", "soundfile (>=0.12.1)", "soxr (>=0.4.0)"] benchmarks = ["tensorflow (==2.12.0)", "torch (==2.0.1)", "transformers (==4.30.1)"] -dev = ["Pillow (>=9.4.0)", "absl-py", "decorator", "decord (==0.6.0)", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.8.0.post1)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "ruff (>=0.3.0)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tensorflow (>=2.16.0)", "tensorflow (>=2.6.0)", "tensorflow (>=2.6.0)", "tiktoken", "torch", "torch (>=2.0.0)", "torchdata", "transformers", "transformers (>=4.42.0)", "zstandard"] +dev = ["Pillow (>=9.4.0)", "absl-py", "decorator", "decord (==0.6.0)", "elasticsearch (>=7.17.12,<8.0.0)", "faiss-cpu (>=1.8.0.post1)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "ruff (>=0.3.0)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tensorflow (>=2.16.0)", "tensorflow (>=2.6.0)", "tensorflow (>=2.6.0)", "tiktoken", "torch", "torch (>=2.0.0)", "torchdata", "transformers", "transformers (>=4.42.0)", "zstandard"] docs = ["s3fs", "tensorflow (>=2.6.0)", "torch", "transformers"] jax = ["jax (>=0.3.14)", "jaxlib (>=0.3.14)"] quality = ["ruff (>=0.3.0)"] s3 = ["s3fs"] tensorflow = ["tensorflow (>=2.6.0)"] tensorflow-gpu = ["tensorflow (>=2.6.0)"] -tests = ["Pillow (>=9.4.0)", "absl-py", "decorator", "decord (==0.6.0)", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.8.0.post1)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tensorflow (>=2.16.0)", "tensorflow (>=2.6.0)", "tiktoken", "torch (>=2.0.0)", "torchdata", "transformers (>=4.42.0)", "zstandard"] -tests-numpy2 = ["Pillow (>=9.4.0)", "absl-py", "decorator", "decord (==0.6.0)", "elasticsearch (<8.0.0)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tiktoken", "torch (>=2.0.0)", "torchdata", "transformers (>=4.42.0)", "zstandard"] +tests = ["Pillow (>=9.4.0)", "absl-py", "decorator", "decord (==0.6.0)", "elasticsearch (>=7.17.12,<8.0.0)", "faiss-cpu (>=1.8.0.post1)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tensorflow (>=2.16.0)", "tensorflow (>=2.6.0)", "tiktoken", "torch (>=2.0.0)", "torchdata", "transformers (>=4.42.0)", "zstandard"] +tests-numpy2 = ["Pillow (>=9.4.0)", "absl-py", "decorator", "decord (==0.6.0)", "elasticsearch (>=7.17.12,<8.0.0)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tiktoken", "torch (>=2.0.0)", "torchdata", "transformers (>=4.42.0)", "zstandard"] torch = ["torch"] vision = ["Pillow (>=9.4.0)"] @@ -1157,13 +1154,13 @@ tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipyth [[package]] name = "fastapi" -version = "0.115.5" +version = "0.115.6" description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" optional = false python-versions = ">=3.8" files = [ - {file = "fastapi-0.115.5-py3-none-any.whl", hash = "sha256:596b95adbe1474da47049e802f9a65ab2ffa9c2b07e7efee70eb8a66c9f2f796"}, - {file = "fastapi-0.115.5.tar.gz", hash = "sha256:0e7a4d0dc0d01c68df21887cce0945e72d3c48b9f4f79dfe7a7d53aa08fbb289"}, + {file = "fastapi-0.115.6-py3-none-any.whl", hash = "sha256:e9240b29e36fa8f4bb7290316988e90c381e5092e0cbe84e7818cc3713bcf305"}, + {file = "fastapi-0.115.6.tar.gz", hash = "sha256:9ec46f7addc14ea472958a96aae5b5de65f39721a46aaf5705c480d9a8b76654"}, ] [package.dependencies] @@ -1177,13 +1174,13 @@ standard = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "htt [[package]] name = "fastjsonschema" -version = "2.21.0" +version = "2.21.1" description = "Fastest Python implementation of JSON schema" optional = false python-versions = "*" files = [ - {file = "fastjsonschema-2.21.0-py3-none-any.whl", hash = "sha256:5b23b8e7c9c6adc0ecb91c03a0768cb48cd154d9159378a69c8318532e0b5cbf"}, - {file = "fastjsonschema-2.21.0.tar.gz", hash = "sha256:a02026bbbedc83729da3bfff215564b71902757f33f60089f1abae193daa4771"}, + {file = "fastjsonschema-2.21.1-py3-none-any.whl", hash = "sha256:c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667"}, + {file = "fastjsonschema-2.21.1.tar.gz", hash = "sha256:794d4f0a58f848961ba16af7b9c85a3e88cd360df008c59aac6fc5ae9323b5d4"}, ] [package.extras] @@ -1258,61 +1255,61 @@ Werkzeug = ">=1.0.1" [[package]] name = "fonttools" -version = "4.55.0" +version = "4.55.3" description = "Tools to manipulate font files" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.55.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:51c029d4c0608a21a3d3d169dfc3fb776fde38f00b35ca11fdab63ba10a16f61"}, - {file = "fonttools-4.55.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bca35b4e411362feab28e576ea10f11268b1aeed883b9f22ed05675b1e06ac69"}, - {file = "fonttools-4.55.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ce4ba6981e10f7e0ccff6348e9775ce25ffadbee70c9fd1a3737e3e9f5fa74f"}, - {file = "fonttools-4.55.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31d00f9852a6051dac23294a4cf2df80ced85d1d173a61ba90a3d8f5abc63c60"}, - {file = "fonttools-4.55.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e198e494ca6e11f254bac37a680473a311a88cd40e58f9cc4dc4911dfb686ec6"}, - {file = "fonttools-4.55.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7208856f61770895e79732e1dcbe49d77bd5783adf73ae35f87fcc267df9db81"}, - {file = "fonttools-4.55.0-cp310-cp310-win32.whl", hash = "sha256:e7e6a352ff9e46e8ef8a3b1fe2c4478f8a553e1b5a479f2e899f9dc5f2055880"}, - {file = "fonttools-4.55.0-cp310-cp310-win_amd64.whl", hash = "sha256:636caaeefe586d7c84b5ee0734c1a5ab2dae619dc21c5cf336f304ddb8f6001b"}, - {file = "fonttools-4.55.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:fa34aa175c91477485c44ddfbb51827d470011e558dfd5c7309eb31bef19ec51"}, - {file = "fonttools-4.55.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:37dbb3fdc2ef7302d3199fb12468481cbebaee849e4b04bc55b77c24e3c49189"}, - {file = "fonttools-4.55.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5263d8e7ef3c0ae87fbce7f3ec2f546dc898d44a337e95695af2cd5ea21a967"}, - {file = "fonttools-4.55.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f307f6b5bf9e86891213b293e538d292cd1677e06d9faaa4bf9c086ad5f132f6"}, - {file = "fonttools-4.55.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:f0a4b52238e7b54f998d6a56b46a2c56b59c74d4f8a6747fb9d4042190f37cd3"}, - {file = "fonttools-4.55.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3e569711464f777a5d4ef522e781dc33f8095ab5efd7548958b36079a9f2f88c"}, - {file = "fonttools-4.55.0-cp311-cp311-win32.whl", hash = "sha256:2b3ab90ec0f7b76c983950ac601b58949f47aca14c3f21eed858b38d7ec42b05"}, - {file = "fonttools-4.55.0-cp311-cp311-win_amd64.whl", hash = "sha256:aa046f6a63bb2ad521004b2769095d4c9480c02c1efa7d7796b37826508980b6"}, - {file = "fonttools-4.55.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:838d2d8870f84fc785528a692e724f2379d5abd3fc9dad4d32f91cf99b41e4a7"}, - {file = "fonttools-4.55.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f46b863d74bab7bb0d395f3b68d3f52a03444964e67ce5c43ce43a75efce9246"}, - {file = "fonttools-4.55.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33b52a9cfe4e658e21b1f669f7309b4067910321757fec53802ca8f6eae96a5a"}, - {file = "fonttools-4.55.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:732a9a63d6ea4a81b1b25a1f2e5e143761b40c2e1b79bb2b68e4893f45139a40"}, - {file = "fonttools-4.55.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7dd91ac3fcb4c491bb4763b820bcab6c41c784111c24172616f02f4bc227c17d"}, - {file = "fonttools-4.55.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1f0e115281a32ff532118aa851ef497a1b7cda617f4621c1cdf81ace3e36fb0c"}, - {file = "fonttools-4.55.0-cp312-cp312-win32.whl", hash = "sha256:6c99b5205844f48a05cb58d4a8110a44d3038c67ed1d79eb733c4953c628b0f6"}, - {file = "fonttools-4.55.0-cp312-cp312-win_amd64.whl", hash = "sha256:f8c8c76037d05652510ae45be1cd8fb5dd2fd9afec92a25374ac82255993d57c"}, - {file = "fonttools-4.55.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8118dc571921dc9e4b288d9cb423ceaf886d195a2e5329cc427df82bba872cd9"}, - {file = "fonttools-4.55.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:01124f2ca6c29fad4132d930da69158d3f49b2350e4a779e1efbe0e82bd63f6c"}, - {file = "fonttools-4.55.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81ffd58d2691f11f7c8438796e9f21c374828805d33e83ff4b76e4635633674c"}, - {file = "fonttools-4.55.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5435e5f1eb893c35c2bc2b9cd3c9596b0fcb0a59e7a14121562986dd4c47b8dd"}, - {file = "fonttools-4.55.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d12081729280c39d001edd0f4f06d696014c26e6e9a0a55488fabc37c28945e4"}, - {file = "fonttools-4.55.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a7ad1f1b98ab6cb927ab924a38a8649f1ffd7525c75fe5b594f5dab17af70e18"}, - {file = "fonttools-4.55.0-cp313-cp313-win32.whl", hash = "sha256:abe62987c37630dca69a104266277216de1023cf570c1643bb3a19a9509e7a1b"}, - {file = "fonttools-4.55.0-cp313-cp313-win_amd64.whl", hash = "sha256:2863555ba90b573e4201feaf87a7e71ca3b97c05aa4d63548a4b69ea16c9e998"}, - {file = "fonttools-4.55.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:00f7cf55ad58a57ba421b6a40945b85ac7cc73094fb4949c41171d3619a3a47e"}, - {file = "fonttools-4.55.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f27526042efd6f67bfb0cc2f1610fa20364396f8b1fc5edb9f45bb815fb090b2"}, - {file = "fonttools-4.55.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e67974326af6a8879dc2a4ec63ab2910a1c1a9680ccd63e4a690950fceddbe"}, - {file = "fonttools-4.55.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61dc0a13451143c5e987dec5254d9d428f3c2789a549a7cf4f815b63b310c1cc"}, - {file = "fonttools-4.55.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:b2e526b325a903868c62155a6a7e24df53f6ce4c5c3160214d8fe1be2c41b478"}, - {file = "fonttools-4.55.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b7ef9068a1297714e6fefe5932c33b058aa1d45a2b8be32a4c6dee602ae22b5c"}, - {file = "fonttools-4.55.0-cp38-cp38-win32.whl", hash = "sha256:55718e8071be35dff098976bc249fc243b58efa263768c611be17fe55975d40a"}, - {file = "fonttools-4.55.0-cp38-cp38-win_amd64.whl", hash = "sha256:553bd4f8cc327f310c20158e345e8174c8eed49937fb047a8bda51daf2c353c8"}, - {file = "fonttools-4.55.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f901cef813f7c318b77d1c5c14cf7403bae5cb977cede023e22ba4316f0a8f6"}, - {file = "fonttools-4.55.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8c9679fc0dd7e8a5351d321d8d29a498255e69387590a86b596a45659a39eb0d"}, - {file = "fonttools-4.55.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd2820a8b632f3307ebb0bf57948511c2208e34a4939cf978333bc0a3f11f838"}, - {file = "fonttools-4.55.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23bbbb49bec613a32ed1b43df0f2b172313cee690c2509f1af8fdedcf0a17438"}, - {file = "fonttools-4.55.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:a656652e1f5d55b9728937a7e7d509b73d23109cddd4e89ee4f49bde03b736c6"}, - {file = "fonttools-4.55.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:f50a1f455902208486fbca47ce33054208a4e437b38da49d6721ce2fef732fcf"}, - {file = "fonttools-4.55.0-cp39-cp39-win32.whl", hash = "sha256:161d1ac54c73d82a3cded44202d0218ab007fde8cf194a23d3dd83f7177a2f03"}, - {file = "fonttools-4.55.0-cp39-cp39-win_amd64.whl", hash = "sha256:ca7fd6987c68414fece41c96836e945e1f320cda56fc96ffdc16e54a44ec57a2"}, - {file = "fonttools-4.55.0-py3-none-any.whl", hash = "sha256:12db5888cd4dd3fcc9f0ee60c6edd3c7e1fd44b7dd0f31381ea03df68f8a153f"}, - {file = "fonttools-4.55.0.tar.gz", hash = "sha256:7636acc6ab733572d5e7eec922b254ead611f1cdad17be3f0be7418e8bfaca71"}, + {file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1dcc07934a2165ccdc3a5a608db56fb3c24b609658a5b340aee4ecf3ba679dc0"}, + {file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f7d66c15ba875432a2d2fb419523f5d3d347f91f48f57b8b08a2dfc3c39b8a3f"}, + {file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e4ae3592e62eba83cd2c4ccd9462dcfa603ff78e09110680a5444c6925d841"}, + {file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62d65a3022c35e404d19ca14f291c89cc5890032ff04f6c17af0bd1927299674"}, + {file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d342e88764fb201286d185093781bf6628bbe380a913c24adf772d901baa8276"}, + {file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:dd68c87a2bfe37c5b33bcda0fba39b65a353876d3b9006fde3adae31f97b3ef5"}, + {file = "fonttools-4.55.3-cp310-cp310-win32.whl", hash = "sha256:1bc7ad24ff98846282eef1cbeac05d013c2154f977a79886bb943015d2b1b261"}, + {file = "fonttools-4.55.3-cp310-cp310-win_amd64.whl", hash = "sha256:b54baf65c52952db65df39fcd4820668d0ef4766c0ccdf32879b77f7c804d5c5"}, + {file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c4491699bad88efe95772543cd49870cf756b019ad56294f6498982408ab03e"}, + {file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5323a22eabddf4b24f66d26894f1229261021dacd9d29e89f7872dd8c63f0b8b"}, + {file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5480673f599ad410695ca2ddef2dfefe9df779a9a5cda89503881e503c9c7d90"}, + {file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da9da6d65cd7aa6b0f806556f4985bcbf603bf0c5c590e61b43aa3e5a0f822d0"}, + {file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e894b5bd60d9f473bed7a8f506515549cc194de08064d829464088d23097331b"}, + {file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:aee3b57643827e237ff6ec6d28d9ff9766bd8b21e08cd13bff479e13d4b14765"}, + {file = "fonttools-4.55.3-cp311-cp311-win32.whl", hash = "sha256:eb6ca911c4c17eb51853143624d8dc87cdcdf12a711fc38bf5bd21521e79715f"}, + {file = "fonttools-4.55.3-cp311-cp311-win_amd64.whl", hash = "sha256:6314bf82c54c53c71805318fcf6786d986461622dd926d92a465199ff54b1b72"}, + {file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f9e736f60f4911061235603a6119e72053073a12c6d7904011df2d8fad2c0e35"}, + {file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a8aa2c5e5b8b3bcb2e4538d929f6589a5c6bdb84fd16e2ed92649fb5454f11c"}, + {file = "fonttools-4.55.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07f8288aacf0a38d174445fc78377a97fb0b83cfe352a90c9d9c1400571963c7"}, + {file = "fonttools-4.55.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8d5e8916c0970fbc0f6f1bece0063363bb5857a7f170121a4493e31c3db3314"}, + {file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ae3b6600565b2d80b7c05acb8e24d2b26ac407b27a3f2e078229721ba5698427"}, + {file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:54153c49913f45065c8d9e6d0c101396725c5621c8aee744719300f79771d75a"}, + {file = "fonttools-4.55.3-cp312-cp312-win32.whl", hash = "sha256:827e95fdbbd3e51f8b459af5ea10ecb4e30af50221ca103bea68218e9615de07"}, + {file = "fonttools-4.55.3-cp312-cp312-win_amd64.whl", hash = "sha256:e6e8766eeeb2de759e862004aa11a9ea3d6f6d5ec710551a88b476192b64fd54"}, + {file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a430178ad3e650e695167cb53242dae3477b35c95bef6525b074d87493c4bf29"}, + {file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:529cef2ce91dc44f8e407cc567fae6e49a1786f2fefefa73a294704c415322a4"}, + {file = "fonttools-4.55.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e75f12c82127486fac2d8bfbf5bf058202f54bf4f158d367e41647b972342ca"}, + {file = "fonttools-4.55.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:859c358ebf41db18fb72342d3080bce67c02b39e86b9fbcf1610cca14984841b"}, + {file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:546565028e244a701f73df6d8dd6be489d01617863ec0c6a42fa25bf45d43048"}, + {file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:aca318b77f23523309eec4475d1fbbb00a6b133eb766a8bdc401faba91261abe"}, + {file = "fonttools-4.55.3-cp313-cp313-win32.whl", hash = "sha256:8c5ec45428edaa7022f1c949a632a6f298edc7b481312fc7dc258921e9399628"}, + {file = "fonttools-4.55.3-cp313-cp313-win_amd64.whl", hash = "sha256:11e5de1ee0d95af4ae23c1a138b184b7f06e0b6abacabf1d0db41c90b03d834b"}, + {file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:caf8230f3e10f8f5d7593eb6d252a37caf58c480b19a17e250a63dad63834cf3"}, + {file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b586ab5b15b6097f2fb71cafa3c98edfd0dba1ad8027229e7b1e204a58b0e09d"}, + {file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8c2794ded89399cc2169c4d0bf7941247b8d5932b2659e09834adfbb01589aa"}, + {file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf4fe7c124aa3f4e4c1940880156e13f2f4d98170d35c749e6b4f119a872551e"}, + {file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:86721fbc389ef5cc1e2f477019e5069e8e4421e8d9576e9c26f840dbb04678de"}, + {file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:89bdc5d88bdeec1b15af790810e267e8332d92561dce4f0748c2b95c9bdf3926"}, + {file = "fonttools-4.55.3-cp38-cp38-win32.whl", hash = "sha256:bc5dbb4685e51235ef487e4bd501ddfc49be5aede5e40f4cefcccabc6e60fb4b"}, + {file = "fonttools-4.55.3-cp38-cp38-win_amd64.whl", hash = "sha256:cd70de1a52a8ee2d1877b6293af8a2484ac82514f10b1c67c1c5762d38073e56"}, + {file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bdcc9f04b36c6c20978d3f060e5323a43f6222accc4e7fcbef3f428e216d96af"}, + {file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c3ca99e0d460eff46e033cd3992a969658c3169ffcd533e0a39c63a38beb6831"}, + {file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22f38464daa6cdb7b6aebd14ab06609328fe1e9705bb0fcc7d1e69de7109ee02"}, + {file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed63959d00b61959b035c7d47f9313c2c1ece090ff63afea702fe86de00dbed4"}, + {file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5e8d657cd7326eeaba27de2740e847c6b39dde2f8d7cd7cc56f6aad404ddf0bd"}, + {file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:fb594b5a99943042c702c550d5494bdd7577f6ef19b0bc73877c948a63184a32"}, + {file = "fonttools-4.55.3-cp39-cp39-win32.whl", hash = "sha256:dc5294a3d5c84226e3dbba1b6f61d7ad813a8c0238fceea4e09aa04848c3d851"}, + {file = "fonttools-4.55.3-cp39-cp39-win_amd64.whl", hash = "sha256:aedbeb1db64496d098e6be92b2e63b5fac4e53b1b92032dfc6988e1ea9134a4d"}, + {file = "fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977"}, + {file = "fonttools-4.55.3.tar.gz", hash = "sha256:3983313c2a04d6cc1fe9251f8fc647754cf49a61dac6cb1e7249ae67afaafc45"}, ] [package.extras] @@ -1729,70 +1726,70 @@ test = ["objgraph", "psutil"] [[package]] name = "grpcio" -version = "1.68.0" +version = "1.68.1" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.68.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:619b5d0f29f4f5351440e9343224c3e19912c21aeda44e0c49d0d147a8d01544"}, - {file = "grpcio-1.68.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:a59f5822f9459bed098ffbceb2713abbf7c6fd13f2b9243461da5c338d0cd6c3"}, - {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:c03d89df516128febc5a7e760d675b478ba25802447624edf7aa13b1e7b11e2a"}, - {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44bcbebb24363d587472089b89e2ea0ab2e2b4df0e4856ba4c0b087c82412121"}, - {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:79f81b7fbfb136247b70465bd836fa1733043fdee539cd6031cb499e9608a110"}, - {file = "grpcio-1.68.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:88fb2925789cfe6daa20900260ef0a1d0a61283dfb2d2fffe6194396a354c618"}, - {file = "grpcio-1.68.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:99f06232b5c9138593ae6f2e355054318717d32a9c09cdc5a2885540835067a1"}, - {file = "grpcio-1.68.0-cp310-cp310-win32.whl", hash = "sha256:a6213d2f7a22c3c30a479fb5e249b6b7e648e17f364598ff64d08a5136fe488b"}, - {file = "grpcio-1.68.0-cp310-cp310-win_amd64.whl", hash = "sha256:15327ab81131ef9b94cb9f45b5bd98803a179c7c61205c8c0ac9aff9d6c4e82a"}, - {file = "grpcio-1.68.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:3b2b559beb2d433129441783e5f42e3be40a9e1a89ec906efabf26591c5cd415"}, - {file = "grpcio-1.68.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e46541de8425a4d6829ac6c5d9b16c03c292105fe9ebf78cb1c31e8d242f9155"}, - {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:c1245651f3c9ea92a2db4f95d37b7597db6b246d5892bca6ee8c0e90d76fb73c"}, - {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f1931c7aa85be0fa6cea6af388e576f3bf6baee9e5d481c586980c774debcb4"}, - {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b0ff09c81e3aded7a183bc6473639b46b6caa9c1901d6f5e2cba24b95e59e30"}, - {file = "grpcio-1.68.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8c73f9fbbaee1a132487e31585aa83987ddf626426d703ebcb9a528cf231c9b1"}, - {file = "grpcio-1.68.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6b2f98165ea2790ea159393a2246b56f580d24d7da0d0342c18a085299c40a75"}, - {file = "grpcio-1.68.0-cp311-cp311-win32.whl", hash = "sha256:e1e7ed311afb351ff0d0e583a66fcb39675be112d61e7cfd6c8269884a98afbc"}, - {file = "grpcio-1.68.0-cp311-cp311-win_amd64.whl", hash = "sha256:e0d2f68eaa0a755edd9a47d40e50dba6df2bceda66960dee1218da81a2834d27"}, - {file = "grpcio-1.68.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:8af6137cc4ae8e421690d276e7627cfc726d4293f6607acf9ea7260bd8fc3d7d"}, - {file = "grpcio-1.68.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4028b8e9a3bff6f377698587d642e24bd221810c06579a18420a17688e421af7"}, - {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f60fa2adf281fd73ae3a50677572521edca34ba373a45b457b5ebe87c2d01e1d"}, - {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e18589e747c1e70b60fab6767ff99b2d0c359ea1db8a2cb524477f93cdbedf5b"}, - {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0d30f3fee9372796f54d3100b31ee70972eaadcc87314be369360248a3dcffe"}, - {file = "grpcio-1.68.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7e0a3e72c0e9a1acab77bef14a73a416630b7fd2cbd893c0a873edc47c42c8cd"}, - {file = "grpcio-1.68.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a831dcc343440969aaa812004685ed322cdb526cd197112d0db303b0da1e8659"}, - {file = "grpcio-1.68.0-cp312-cp312-win32.whl", hash = "sha256:5a180328e92b9a0050958ced34dddcb86fec5a8b332f5a229e353dafc16cd332"}, - {file = "grpcio-1.68.0-cp312-cp312-win_amd64.whl", hash = "sha256:2bddd04a790b69f7a7385f6a112f46ea0b34c4746f361ebafe9ca0be567c78e9"}, - {file = "grpcio-1.68.0-cp313-cp313-linux_armv7l.whl", hash = "sha256:fc05759ffbd7875e0ff2bd877be1438dfe97c9312bbc558c8284a9afa1d0f40e"}, - {file = "grpcio-1.68.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:15fa1fe25d365a13bc6d52fcac0e3ee1f9baebdde2c9b3b2425f8a4979fccea1"}, - {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:32a9cb4686eb2e89d97022ecb9e1606d132f85c444354c17a7dbde4a455e4a3b"}, - {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dba037ff8d284c8e7ea9a510c8ae0f5b016004f13c3648f72411c464b67ff2fb"}, - {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0efbbd849867e0e569af09e165363ade75cf84f5229b2698d53cf22c7a4f9e21"}, - {file = "grpcio-1.68.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:4e300e6978df0b65cc2d100c54e097c10dfc7018b9bd890bbbf08022d47f766d"}, - {file = "grpcio-1.68.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:6f9c7ad1a23e1047f827385f4713b5b8c6c7d325705be1dd3e31fb00dcb2f665"}, - {file = "grpcio-1.68.0-cp313-cp313-win32.whl", hash = "sha256:3ac7f10850fd0487fcce169c3c55509101c3bde2a3b454869639df2176b60a03"}, - {file = "grpcio-1.68.0-cp313-cp313-win_amd64.whl", hash = "sha256:afbf45a62ba85a720491bfe9b2642f8761ff348006f5ef67e4622621f116b04a"}, - {file = "grpcio-1.68.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:f8f695d9576ce836eab27ba7401c60acaf9ef6cf2f70dfe5462055ba3df02cc3"}, - {file = "grpcio-1.68.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:9fe1b141cda52f2ca73e17d2d3c6a9f3f3a0c255c216b50ce616e9dca7e3441d"}, - {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:4df81d78fd1646bf94ced4fb4cd0a7fe2e91608089c522ef17bc7db26e64effd"}, - {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:46a2d74d4dd8993151c6cd585594c082abe74112c8e4175ddda4106f2ceb022f"}, - {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a17278d977746472698460c63abf333e1d806bd41f2224f90dbe9460101c9796"}, - {file = "grpcio-1.68.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:15377bce516b1c861c35e18eaa1c280692bf563264836cece693c0f169b48829"}, - {file = "grpcio-1.68.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cc5f0a4f5904b8c25729a0498886b797feb817d1fd3812554ffa39551112c161"}, - {file = "grpcio-1.68.0-cp38-cp38-win32.whl", hash = "sha256:def1a60a111d24376e4b753db39705adbe9483ef4ca4761f825639d884d5da78"}, - {file = "grpcio-1.68.0-cp38-cp38-win_amd64.whl", hash = "sha256:55d3b52fd41ec5772a953612db4e70ae741a6d6ed640c4c89a64f017a1ac02b5"}, - {file = "grpcio-1.68.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:0d230852ba97654453d290e98d6aa61cb48fa5fafb474fb4c4298d8721809354"}, - {file = "grpcio-1.68.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:50992f214264e207e07222703c17d9cfdcc2c46ed5a1ea86843d440148ebbe10"}, - {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:14331e5c27ed3545360464a139ed279aa09db088f6e9502e95ad4bfa852bb116"}, - {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f84890b205692ea813653ece4ac9afa2139eae136e419231b0eec7c39fdbe4c2"}, - {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b0cf343c6f4f6aa44863e13ec9ddfe299e0be68f87d68e777328bff785897b05"}, - {file = "grpcio-1.68.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:fd2c2d47969daa0e27eadaf15c13b5e92605c5e5953d23c06d0b5239a2f176d3"}, - {file = "grpcio-1.68.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:18668e36e7f4045820f069997834e94e8275910b1f03e078a6020bd464cb2363"}, - {file = "grpcio-1.68.0-cp39-cp39-win32.whl", hash = "sha256:2af76ab7c427aaa26aa9187c3e3c42f38d3771f91a20f99657d992afada2294a"}, - {file = "grpcio-1.68.0-cp39-cp39-win_amd64.whl", hash = "sha256:e694b5928b7b33ca2d3b4d5f9bf8b5888906f181daff6b406f4938f3a997a490"}, - {file = "grpcio-1.68.0.tar.gz", hash = "sha256:7e7483d39b4a4fddb9906671e9ea21aaad4f031cdfc349fec76bdfa1e404543a"}, + {file = "grpcio-1.68.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:d35740e3f45f60f3c37b1e6f2f4702c23867b9ce21c6410254c9c682237da68d"}, + {file = "grpcio-1.68.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:d99abcd61760ebb34bdff37e5a3ba333c5cc09feda8c1ad42547bea0416ada78"}, + {file = "grpcio-1.68.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:f8261fa2a5f679abeb2a0a93ad056d765cdca1c47745eda3f2d87f874ff4b8c9"}, + {file = "grpcio-1.68.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0feb02205a27caca128627bd1df4ee7212db051019a9afa76f4bb6a1a80ca95e"}, + {file = "grpcio-1.68.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:919d7f18f63bcad3a0f81146188e90274fde800a94e35d42ffe9eadf6a9a6330"}, + {file = "grpcio-1.68.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:963cc8d7d79b12c56008aabd8b457f400952dbea8997dd185f155e2f228db079"}, + {file = "grpcio-1.68.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ccf2ebd2de2d6661e2520dae293298a3803a98ebfc099275f113ce1f6c2a80f1"}, + {file = "grpcio-1.68.1-cp310-cp310-win32.whl", hash = "sha256:2cc1fd04af8399971bcd4f43bd98c22d01029ea2e56e69c34daf2bf8470e47f5"}, + {file = "grpcio-1.68.1-cp310-cp310-win_amd64.whl", hash = "sha256:ee2e743e51cb964b4975de572aa8fb95b633f496f9fcb5e257893df3be854746"}, + {file = "grpcio-1.68.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:55857c71641064f01ff0541a1776bfe04a59db5558e82897d35a7793e525774c"}, + {file = "grpcio-1.68.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:4b177f5547f1b995826ef529d2eef89cca2f830dd8b2c99ffd5fde4da734ba73"}, + {file = "grpcio-1.68.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:3522c77d7e6606d6665ec8d50e867f13f946a4e00c7df46768f1c85089eae515"}, + {file = "grpcio-1.68.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9d1fae6bbf0816415b81db1e82fb3bf56f7857273c84dcbe68cbe046e58e1ccd"}, + {file = "grpcio-1.68.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:298ee7f80e26f9483f0b6f94cc0a046caf54400a11b644713bb5b3d8eb387600"}, + {file = "grpcio-1.68.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cbb5780e2e740b6b4f2d208e90453591036ff80c02cc605fea1af8e6fc6b1bbe"}, + {file = "grpcio-1.68.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ddda1aa22495d8acd9dfbafff2866438d12faec4d024ebc2e656784d96328ad0"}, + {file = "grpcio-1.68.1-cp311-cp311-win32.whl", hash = "sha256:b33bd114fa5a83f03ec6b7b262ef9f5cac549d4126f1dc702078767b10c46ed9"}, + {file = "grpcio-1.68.1-cp311-cp311-win_amd64.whl", hash = "sha256:7f20ebec257af55694d8f993e162ddf0d36bd82d4e57f74b31c67b3c6d63d8b2"}, + {file = "grpcio-1.68.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:8829924fffb25386995a31998ccbbeaa7367223e647e0122043dfc485a87c666"}, + {file = "grpcio-1.68.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:3aed6544e4d523cd6b3119b0916cef3d15ef2da51e088211e4d1eb91a6c7f4f1"}, + {file = "grpcio-1.68.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:4efac5481c696d5cb124ff1c119a78bddbfdd13fc499e3bc0ca81e95fc573684"}, + {file = "grpcio-1.68.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ab2d912ca39c51f46baf2a0d92aa265aa96b2443266fc50d234fa88bf877d8e"}, + {file = "grpcio-1.68.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95c87ce2a97434dffe7327a4071839ab8e8bffd0054cc74cbe971fba98aedd60"}, + {file = "grpcio-1.68.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e4842e4872ae4ae0f5497bf60a0498fa778c192cc7a9e87877abd2814aca9475"}, + {file = "grpcio-1.68.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:255b1635b0ed81e9f91da4fcc8d43b7ea5520090b9a9ad9340d147066d1d3613"}, + {file = "grpcio-1.68.1-cp312-cp312-win32.whl", hash = "sha256:7dfc914cc31c906297b30463dde0b9be48e36939575eaf2a0a22a8096e69afe5"}, + {file = "grpcio-1.68.1-cp312-cp312-win_amd64.whl", hash = "sha256:a0c8ddabef9c8f41617f213e527254c41e8b96ea9d387c632af878d05db9229c"}, + {file = "grpcio-1.68.1-cp313-cp313-linux_armv7l.whl", hash = "sha256:a47faedc9ea2e7a3b6569795c040aae5895a19dde0c728a48d3c5d7995fda385"}, + {file = "grpcio-1.68.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:390eee4225a661c5cd133c09f5da1ee3c84498dc265fd292a6912b65c421c78c"}, + {file = "grpcio-1.68.1-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:66a24f3d45c33550703f0abb8b656515b0ab777970fa275693a2f6dc8e35f1c1"}, + {file = "grpcio-1.68.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c08079b4934b0bf0a8847f42c197b1d12cba6495a3d43febd7e99ecd1cdc8d54"}, + {file = "grpcio-1.68.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8720c25cd9ac25dd04ee02b69256d0ce35bf8a0f29e20577427355272230965a"}, + {file = "grpcio-1.68.1-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:04cfd68bf4f38f5bb959ee2361a7546916bd9a50f78617a346b3aeb2b42e2161"}, + {file = "grpcio-1.68.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c28848761a6520c5c6071d2904a18d339a796ebe6b800adc8b3f474c5ce3c3ad"}, + {file = "grpcio-1.68.1-cp313-cp313-win32.whl", hash = "sha256:77d65165fc35cff6e954e7fd4229e05ec76102d4406d4576528d3a3635fc6172"}, + {file = "grpcio-1.68.1-cp313-cp313-win_amd64.whl", hash = "sha256:a8040f85dcb9830d8bbb033ae66d272614cec6faceee88d37a88a9bd1a7a704e"}, + {file = "grpcio-1.68.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:eeb38ff04ab6e5756a2aef6ad8d94e89bb4a51ef96e20f45c44ba190fa0bcaad"}, + {file = "grpcio-1.68.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8a3869a6661ec8f81d93f4597da50336718bde9eb13267a699ac7e0a1d6d0bea"}, + {file = "grpcio-1.68.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:2c4cec6177bf325eb6faa6bd834d2ff6aa8bb3b29012cceb4937b86f8b74323c"}, + {file = "grpcio-1.68.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:12941d533f3cd45d46f202e3667be8ebf6bcb3573629c7ec12c3e211d99cfccf"}, + {file = "grpcio-1.68.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80af6f1e69c5e68a2be529990684abdd31ed6622e988bf18850075c81bb1ad6e"}, + {file = "grpcio-1.68.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:e8dbe3e00771bfe3d04feed8210fc6617006d06d9a2679b74605b9fed3e8362c"}, + {file = "grpcio-1.68.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:83bbf5807dc3ee94ce1de2dfe8a356e1d74101e4b9d7aa8c720cc4818a34aded"}, + {file = "grpcio-1.68.1-cp38-cp38-win32.whl", hash = "sha256:8cb620037a2fd9eeee97b4531880e439ebfcd6d7d78f2e7dcc3726428ab5ef63"}, + {file = "grpcio-1.68.1-cp38-cp38-win_amd64.whl", hash = "sha256:52fbf85aa71263380d330f4fce9f013c0798242e31ede05fcee7fbe40ccfc20d"}, + {file = "grpcio-1.68.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:cb400138e73969eb5e0535d1d06cae6a6f7a15f2cc74add320e2130b8179211a"}, + {file = "grpcio-1.68.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a1b988b40f2fd9de5c820f3a701a43339d8dcf2cb2f1ca137e2c02671cc83ac1"}, + {file = "grpcio-1.68.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:96f473cdacfdd506008a5d7579c9f6a7ff245a9ade92c3c0265eb76cc591914f"}, + {file = "grpcio-1.68.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:37ea3be171f3cf3e7b7e412a98b77685eba9d4fd67421f4a34686a63a65d99f9"}, + {file = "grpcio-1.68.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ceb56c4285754e33bb3c2fa777d055e96e6932351a3082ce3559be47f8024f0"}, + {file = "grpcio-1.68.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:dffd29a2961f3263a16d73945b57cd44a8fd0b235740cb14056f0612329b345e"}, + {file = "grpcio-1.68.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:025f790c056815b3bf53da850dd70ebb849fd755a4b1ac822cb65cd631e37d43"}, + {file = "grpcio-1.68.1-cp39-cp39-win32.whl", hash = "sha256:1098f03dedc3b9810810568060dea4ac0822b4062f537b0f53aa015269be0a76"}, + {file = "grpcio-1.68.1-cp39-cp39-win_amd64.whl", hash = "sha256:334ab917792904245a028f10e803fcd5b6f36a7b2173a820c0b5b076555825e1"}, + {file = "grpcio-1.68.1.tar.gz", hash = "sha256:44a8502dd5de653ae6a73e2de50a401d84184f0331d0ac3daeb044e66d5c5054"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.68.0)"] +protobuf = ["grpcio-tools (>=1.68.1)"] [[package]] name = "gunicorn" @@ -1849,13 +1846,13 @@ trio = ["trio (>=0.22.0,<1.0)"] [[package]] name = "httpx" -version = "0.28.0" +version = "0.28.1" description = "The next generation HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpx-0.28.0-py3-none-any.whl", hash = "sha256:dc0b419a0cfeb6e8b34e85167c0da2671206f5095f1baa9663d23bcfd6b535fc"}, - {file = "httpx-0.28.0.tar.gz", hash = "sha256:0858d3bab51ba7e386637f22a61d8ccddaeec5f3fe4209da3a6168dbb91573e0"}, + {file = "httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad"}, + {file = "httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc"}, ] [package.dependencies] @@ -1873,13 +1870,13 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "huggingface-hub" -version = "0.26.3" +version = "0.26.5" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = false python-versions = ">=3.8.0" files = [ - {file = "huggingface_hub-0.26.3-py3-none-any.whl", hash = "sha256:e66aa99e569c2d5419240a9e553ad07245a5b1300350bfbc5a4945cf7432991b"}, - {file = "huggingface_hub-0.26.3.tar.gz", hash = "sha256:90e1fe62ffc26757a073aaad618422b899ccf9447c2bba8c902a90bef5b42e1d"}, + {file = "huggingface_hub-0.26.5-py3-none-any.whl", hash = "sha256:fb7386090bbe892072e64b85f7c4479fd2d65eea5f2543327c970d5169e83924"}, + {file = "huggingface_hub-0.26.5.tar.gz", hash = "sha256:1008bd18f60bfb65e8dbc0a97249beeeaa8c99d3c2fa649354df9fa5a13ed83b"}, ] [package.dependencies] @@ -2341,13 +2338,13 @@ test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (> [[package]] name = "jupyterlab" -version = "4.3.1" +version = "4.3.3" description = "JupyterLab computational environment" optional = false python-versions = ">=3.8" files = [ - {file = "jupyterlab-4.3.1-py3-none-any.whl", hash = "sha256:2d9a1c305bc748e277819a17a5d5e22452e533e835f4237b2f30f3b0e491e01f"}, - {file = "jupyterlab-4.3.1.tar.gz", hash = "sha256:a4a338327556443521731d82f2a6ccf926df478914ca029616621704d47c3c65"}, + {file = "jupyterlab-4.3.3-py3-none-any.whl", hash = "sha256:32a8fd30677e734ffcc3916a4758b9dab21b02015b668c60eb36f84357b7d4b1"}, + {file = "jupyterlab-4.3.3.tar.gz", hash = "sha256:76fa39e548fdac94dc1204af5956c556f54c785f70ee26aa47ea08eda4d5bbcd"}, ] [package.dependencies] @@ -2361,7 +2358,7 @@ jupyter-server = ">=2.4.0,<3" jupyterlab-server = ">=2.27.1,<3" notebook-shim = ">=0.2" packaging = "*" -setuptools = ">=40.1.0" +setuptools = ">=40.8.0" tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} tornado = ">=6.2.0" traitlets = "*" @@ -2555,13 +2552,13 @@ files = [ [[package]] name = "locust" -version = "2.32.3" +version = "2.32.4" description = "Developer-friendly load testing framework" optional = false python-versions = ">=3.9" files = [ - {file = "locust-2.32.3-py3-none-any.whl", hash = "sha256:ebfce96f82b0b31418a498ae97724fdba9a41754e88471de56920339f3974347"}, - {file = "locust-2.32.3.tar.gz", hash = "sha256:2b92df32c414a272dde321da4afd9e148b5fec32213fe2a260885a469374132b"}, + {file = "locust-2.32.4-py3-none-any.whl", hash = "sha256:7c5b8767c0d771b5167d5d6b82878622faead74f394eb9cafe8891d89eb36b97"}, + {file = "locust-2.32.4.tar.gz", hash = "sha256:fd650cbc40842e721668a8d0f7f8224775432b40c63d0a378546b9a9f54b7559"}, ] [package.dependencies] @@ -2579,7 +2576,7 @@ requests = [ {version = ">=2.26.0", markers = "python_full_version <= \"3.11.0\""}, {version = ">=2.32.2", markers = "python_full_version > \"3.11.0\""}, ] -setuptools = ">=65.5.1" +setuptools = ">=70.0.0" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} typing_extensions = {version = ">=4.6.0", markers = "python_version < \"3.11\""} Werkzeug = ">=2.0.0" @@ -2671,51 +2668,52 @@ files = [ [[package]] name = "matplotlib" -version = "3.9.2" +version = "3.9.3" description = "Python plotting package" optional = false python-versions = ">=3.9" files = [ - {file = "matplotlib-3.9.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9d78bbc0cbc891ad55b4f39a48c22182e9bdaea7fc0e5dbd364f49f729ca1bbb"}, - {file = "matplotlib-3.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c375cc72229614632c87355366bdf2570c2dac01ac66b8ad048d2dabadf2d0d4"}, - {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d94ff717eb2bd0b58fe66380bd8b14ac35f48a98e7c6765117fe67fb7684e64"}, - {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab68d50c06938ef28681073327795c5db99bb4666214d2d5f880ed11aeaded66"}, - {file = "matplotlib-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:65aacf95b62272d568044531e41de26285d54aec8cb859031f511f84bd8b495a"}, - {file = "matplotlib-3.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:3fd595f34aa8a55b7fc8bf9ebea8aa665a84c82d275190a61118d33fbc82ccae"}, - {file = "matplotlib-3.9.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d8dd059447824eec055e829258ab092b56bb0579fc3164fa09c64f3acd478772"}, - {file = "matplotlib-3.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c797dac8bb9c7a3fd3382b16fe8f215b4cf0f22adccea36f1545a6d7be310b41"}, - {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d719465db13267bcef19ea8954a971db03b9f48b4647e3860e4bc8e6ed86610f"}, - {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8912ef7c2362f7193b5819d17dae8629b34a95c58603d781329712ada83f9447"}, - {file = "matplotlib-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7741f26a58a240f43bee74965c4882b6c93df3e7eb3de160126d8c8f53a6ae6e"}, - {file = "matplotlib-3.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:ae82a14dab96fbfad7965403c643cafe6515e386de723e498cf3eeb1e0b70cc7"}, - {file = "matplotlib-3.9.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ac43031375a65c3196bee99f6001e7fa5bdfb00ddf43379d3c0609bdca042df9"}, - {file = "matplotlib-3.9.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be0fc24a5e4531ae4d8e858a1a548c1fe33b176bb13eff7f9d0d38ce5112a27d"}, - {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf81de2926c2db243c9b2cbc3917619a0fc85796c6ba4e58f541df814bbf83c7"}, - {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6ee45bc4245533111ced13f1f2cace1e7f89d1c793390392a80c139d6cf0e6c"}, - {file = "matplotlib-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:306c8dfc73239f0e72ac50e5a9cf19cc4e8e331dd0c54f5e69ca8758550f1e1e"}, - {file = "matplotlib-3.9.2-cp312-cp312-win_amd64.whl", hash = "sha256:5413401594cfaff0052f9d8b1aafc6d305b4bd7c4331dccd18f561ff7e1d3bd3"}, - {file = "matplotlib-3.9.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:18128cc08f0d3cfff10b76baa2f296fc28c4607368a8402de61bb3f2eb33c7d9"}, - {file = "matplotlib-3.9.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4876d7d40219e8ae8bb70f9263bcbe5714415acfdf781086601211335e24f8aa"}, - {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d9f07a80deab4bb0b82858a9e9ad53d1382fd122be8cde11080f4e7dfedb38b"}, - {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7c0410f181a531ec4e93bbc27692f2c71a15c2da16766f5ba9761e7ae518413"}, - {file = "matplotlib-3.9.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:909645cce2dc28b735674ce0931a4ac94e12f5b13f6bb0b5a5e65e7cea2c192b"}, - {file = "matplotlib-3.9.2-cp313-cp313-win_amd64.whl", hash = "sha256:f32c7410c7f246838a77d6d1eff0c0f87f3cb0e7c4247aebea71a6d5a68cab49"}, - {file = "matplotlib-3.9.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:37e51dd1c2db16ede9cfd7b5cabdfc818b2c6397c83f8b10e0e797501c963a03"}, - {file = "matplotlib-3.9.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b82c5045cebcecd8496a4d694d43f9cc84aeeb49fe2133e036b207abe73f4d30"}, - {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f053c40f94bc51bc03832a41b4f153d83f2062d88c72b5e79997072594e97e51"}, - {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbe196377a8248972f5cede786d4c5508ed5f5ca4a1e09b44bda889958b33f8c"}, - {file = "matplotlib-3.9.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5816b1e1fe8c192cbc013f8f3e3368ac56fbecf02fb41b8f8559303f24c5015e"}, - {file = "matplotlib-3.9.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cef2a73d06601437be399908cf13aee74e86932a5ccc6ccdf173408ebc5f6bb2"}, - {file = "matplotlib-3.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e0830e188029c14e891fadd99702fd90d317df294c3298aad682739c5533721a"}, - {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ba9c1299c920964e8d3857ba27173b4dbb51ca4bab47ffc2c2ba0eb5e2cbc5"}, - {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd93b91ab47a3616b4d3c42b52f8363b88ca021e340804c6ab2536344fad9ca"}, - {file = "matplotlib-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6d1ce5ed2aefcdce11904fc5bbea7d9c21fff3d5f543841edf3dea84451a09ea"}, - {file = "matplotlib-3.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:b2696efdc08648536efd4e1601b5fd491fd47f4db97a5fbfd175549a7365c1b2"}, - {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:d52a3b618cb1cbb769ce2ee1dcdb333c3ab6e823944e9a2d36e37253815f9556"}, - {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:039082812cacd6c6bec8e17a9c1e6baca230d4116d522e81e1f63a74d01d2e21"}, - {file = "matplotlib-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6758baae2ed64f2331d4fd19be38b7b4eae3ecec210049a26b6a4f3ae1c85dcc"}, - {file = "matplotlib-3.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:050598c2b29e0b9832cde72bcf97627bf00262adbc4a54e2b856426bb2ef0697"}, - {file = "matplotlib-3.9.2.tar.gz", hash = "sha256:96ab43906269ca64a6366934106fa01534454a69e471b7bf3d79083981aaab92"}, + {file = "matplotlib-3.9.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:41b016e3be4e740b66c79a031a0a6e145728dbc248142e751e8dab4f3188ca1d"}, + {file = "matplotlib-3.9.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e0143975fc2a6d7136c97e19c637321288371e8f09cff2564ecd73e865ea0b9"}, + {file = "matplotlib-3.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f459c8ee2c086455744723628264e43c884be0c7d7b45d84b8cd981310b4815"}, + {file = "matplotlib-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:687df7ceff57b8f070d02b4db66f75566370e7ae182a0782b6d3d21b0d6917dc"}, + {file = "matplotlib-3.9.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:edd14cf733fdc4f6e6fe3f705af97676a7e52859bf0044aa2c84e55be739241c"}, + {file = "matplotlib-3.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:1c40c244221a1adbb1256692b1133c6fb89418df27bf759a31a333e7912a4010"}, + {file = "matplotlib-3.9.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:cf2a60daf6cecff6828bc608df00dbc794380e7234d2411c0ec612811f01969d"}, + {file = "matplotlib-3.9.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:213d6dc25ce686516208d8a3e91120c6a4fdae4a3e06b8505ced5b716b50cc04"}, + {file = "matplotlib-3.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c52f48eb75fcc119a4fdb68ba83eb5f71656999420375df7c94cc68e0e14686e"}, + {file = "matplotlib-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3c93796b44fa111049b88a24105e947f03c01966b5c0cc782e2ee3887b790a3"}, + {file = "matplotlib-3.9.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:cd1077b9a09b16d8c3c7075a8add5ffbfe6a69156a57e290c800ed4d435bef1d"}, + {file = "matplotlib-3.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:c96eeeb8c68b662c7747f91a385688d4b449687d29b691eff7068a4602fe6dc4"}, + {file = "matplotlib-3.9.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0a361bd5583bf0bcc08841df3c10269617ee2a36b99ac39d455a767da908bbbc"}, + {file = "matplotlib-3.9.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e14485bb1b83eeb3d55b6878f9560240981e7bbc7a8d4e1e8c38b9bd6ec8d2de"}, + {file = "matplotlib-3.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a8d279f78844aad213c4935c18f8292a9432d51af2d88bca99072c903948045"}, + {file = "matplotlib-3.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6c12514329ac0d03128cf1dcceb335f4fbf7c11da98bca68dca8dcb983153a9"}, + {file = "matplotlib-3.9.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6e9de2b390d253a508dd497e9b5579f3a851f208763ed67fdca5dc0c3ea6849c"}, + {file = "matplotlib-3.9.3-cp312-cp312-win_amd64.whl", hash = "sha256:d796272408f8567ff7eaa00eb2856b3a00524490e47ad505b0b4ca6bb8a7411f"}, + {file = "matplotlib-3.9.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:203d18df84f5288973b2d56de63d4678cc748250026ca9e1ad8f8a0fd8a75d83"}, + {file = "matplotlib-3.9.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:b651b0d3642991259109dc0351fc33ad44c624801367bb8307be9bfc35e427ad"}, + {file = "matplotlib-3.9.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66d7b171fecf96940ce069923a08ba3df33ef542de82c2ff4fe8caa8346fa95a"}, + {file = "matplotlib-3.9.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6be0ba61f6ff2e6b68e4270fb63b6813c9e7dec3d15fc3a93f47480444fd72f0"}, + {file = "matplotlib-3.9.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9d6b2e8856dec3a6db1ae51aec85c82223e834b228c1d3228aede87eee2b34f9"}, + {file = "matplotlib-3.9.3-cp313-cp313-win_amd64.whl", hash = "sha256:90a85a004fefed9e583597478420bf904bb1a065b0b0ee5b9d8d31b04b0f3f70"}, + {file = "matplotlib-3.9.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3119b2f16de7f7b9212ba76d8fe6a0e9f90b27a1e04683cd89833a991682f639"}, + {file = "matplotlib-3.9.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:87ad73763d93add1b6c1f9fcd33af662fd62ed70e620c52fcb79f3ac427cf3a6"}, + {file = "matplotlib-3.9.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:026bdf3137ab6022c866efa4813b6bbeddc2ed4c9e7e02f0e323a7bca380dfa0"}, + {file = "matplotlib-3.9.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:760a5e89ebbb172989e8273024a1024b0f084510b9105261b3b00c15e9c9f006"}, + {file = "matplotlib-3.9.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a42b9dc42de2cfe357efa27d9c50c7833fc5ab9b2eb7252ccd5d5f836a84e1e4"}, + {file = "matplotlib-3.9.3-cp313-cp313t-win_amd64.whl", hash = "sha256:e0fcb7da73fbf67b5f4bdaa57d85bb585a4e913d4a10f3e15b32baea56a67f0a"}, + {file = "matplotlib-3.9.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:031b7f5b8e595cc07def77ec5b58464e9bb67dc5760be5d6f26d9da24892481d"}, + {file = "matplotlib-3.9.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9fa6e193c14d6944e0685cdb527cb6b38b0e4a518043e7212f214113af7391da"}, + {file = "matplotlib-3.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e6eefae6effa0c35bbbc18c25ee6e0b1da44d2359c3cd526eb0c9e703cf055d"}, + {file = "matplotlib-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d3e5c7a99bd28afb957e1ae661323b0800d75b419f24d041ed1cc5d844a764"}, + {file = "matplotlib-3.9.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:816a966d5d376bf24c92af8f379e78e67278833e4c7cbc9fa41872eec629a060"}, + {file = "matplotlib-3.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fb0b37c896172899a4a93d9442ffdc6f870165f59e05ce2e07c6fded1c15749"}, + {file = "matplotlib-3.9.3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5f2a4ea08e6876206d511365b0bc234edc813d90b930be72c3011bbd7898796f"}, + {file = "matplotlib-3.9.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:9b081dac96ab19c54fd8558fac17c9d2c9cb5cc4656e7ed3261ddc927ba3e2c5"}, + {file = "matplotlib-3.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a0a63cb8404d1d1f94968ef35738900038137dab8af836b6c21bb6f03d75465"}, + {file = "matplotlib-3.9.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:896774766fd6be4571a43bc2fcbcb1dcca0807e53cab4a5bf88c4aa861a08e12"}, + {file = "matplotlib-3.9.3.tar.gz", hash = "sha256:cd5dbbc8e25cad5f706845c4d100e2c8b34691b412b93717ce38d8ae803bcfa5"}, ] [package.dependencies] @@ -2730,7 +2728,7 @@ pyparsing = ">=2.3.1" python-dateutil = ">=2.7" [package.extras] -dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] +dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6,!=2.13.3)", "setuptools (>=64)", "setuptools_scm (>=7)"] [[package]] name = "matplotlib-inline" @@ -3087,26 +3085,26 @@ test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "notebook" -version = "7.0.7" +version = "7.3.1" description = "Jupyter Notebook - A web-based notebook environment for interactive computing" optional = false python-versions = ">=3.8" files = [ - {file = "notebook-7.0.7-py3-none-any.whl", hash = "sha256:289b606d7e173f75a18beb1406ef411b43f97f7a9c55ba03efa3622905a62346"}, - {file = "notebook-7.0.7.tar.gz", hash = "sha256:3bcff00c17b3ac142ef5f436d50637d936b274cfa0b41f6ac0175363de9b4e09"}, + {file = "notebook-7.3.1-py3-none-any.whl", hash = "sha256:212e1486b2230fe22279043f33c7db5cf9a01d29feb063a85cb139747b7c9483"}, + {file = "notebook-7.3.1.tar.gz", hash = "sha256:84381c2a82d867517fd25b86e986dae1fe113a70b98f03edff9b94e499fec8fa"}, ] [package.dependencies] jupyter-server = ">=2.4.0,<3" -jupyterlab = ">=4.0.2,<5" -jupyterlab-server = ">=2.22.1,<3" +jupyterlab = ">=4.3.2,<4.4" +jupyterlab-server = ">=2.27.1,<3" notebook-shim = ">=0.2,<0.3" tornado = ">=6.2.0" [package.extras] dev = ["hatch", "pre-commit"] docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.22.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] [[package]] name = "notebook-shim" @@ -3472,13 +3470,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "prometheus-client" -version = "0.21.0" +version = "0.21.1" description = "Python client for the Prometheus monitoring system." optional = false python-versions = ">=3.8" files = [ - {file = "prometheus_client-0.21.0-py3-none-any.whl", hash = "sha256:4fa6b4dd0ac16d58bb587c04b1caae65b8c5043e85f778f42f5f632f6af2e166"}, - {file = "prometheus_client-0.21.0.tar.gz", hash = "sha256:96c83c606b71ff2b0a433c98889d275f51ffec6c5e267de37c7a2b5c9aa9233e"}, + {file = "prometheus_client-0.21.1-py3-none-any.whl", hash = "sha256:594b45c410d6f4f8888940fe80b5cc2521b305a1fafe1c58609ef715a001f301"}, + {file = "prometheus_client-0.21.1.tar.gz", hash = "sha256:252505a722ac04b0456be05c05f75f45d760c2911ffc45f2a06bcaed9f3ae3fb"}, ] [package.extras] @@ -3500,129 +3498,113 @@ wcwidth = "*" [[package]] name = "propcache" -version = "0.2.0" +version = "0.2.1" description = "Accelerated property cache" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c5869b8fd70b81835a6f187c5fdbe67917a04d7e52b6e7cc4e5fe39d55c39d58"}, - {file = "propcache-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:952e0d9d07609d9c5be361f33b0d6d650cd2bae393aabb11d9b719364521984b"}, - {file = "propcache-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:33ac8f098df0585c0b53009f039dfd913b38c1d2edafed0cedcc0c32a05aa110"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97e48e8875e6c13909c800fa344cd54cc4b2b0db1d5f911f840458a500fde2c2"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:388f3217649d6d59292b722d940d4d2e1e6a7003259eb835724092a1cca0203a"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f571aea50ba5623c308aa146eb650eebf7dbe0fd8c5d946e28343cb3b5aad577"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3dfafb44f7bb35c0c06eda6b2ab4bfd58f02729e7c4045e179f9a861b07c9850"}, - {file = "propcache-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3ebe9a75be7ab0b7da2464a77bb27febcb4fab46a34f9288f39d74833db7f61"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d2f0d0f976985f85dfb5f3d685697ef769faa6b71993b46b295cdbbd6be8cc37"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a3dc1a4b165283bd865e8f8cb5f0c64c05001e0718ed06250d8cac9bec115b48"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9e0f07b42d2a50c7dd2d8675d50f7343d998c64008f1da5fef888396b7f84630"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e63e3e1e0271f374ed489ff5ee73d4b6e7c60710e1f76af5f0e1a6117cd26394"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:56bb5c98f058a41bb58eead194b4db8c05b088c93d94d5161728515bd52b052b"}, - {file = "propcache-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7665f04d0c7f26ff8bb534e1c65068409bf4687aa2534faf7104d7182debb336"}, - {file = "propcache-0.2.0-cp310-cp310-win32.whl", hash = "sha256:7cf18abf9764746b9c8704774d8b06714bcb0a63641518a3a89c7f85cc02c2ad"}, - {file = "propcache-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:cfac69017ef97db2438efb854edf24f5a29fd09a536ff3a992b75990720cdc99"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:63f13bf09cc3336eb04a837490b8f332e0db41da66995c9fd1ba04552e516354"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:608cce1da6f2672a56b24a015b42db4ac612ee709f3d29f27a00c943d9e851de"}, - {file = "propcache-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:466c219deee4536fbc83c08d09115249db301550625c7fef1c5563a584c9bc87"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc2db02409338bf36590aa985a461b2c96fce91f8e7e0f14c50c5fcc4f229016"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a6ed8db0a556343d566a5c124ee483ae113acc9a557a807d439bcecc44e7dfbb"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:91997d9cb4a325b60d4e3f20967f8eb08dfcb32b22554d5ef78e6fd1dda743a2"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c7dde9e533c0a49d802b4f3f218fa9ad0a1ce21f2c2eb80d5216565202acab4"}, - {file = "propcache-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffcad6c564fe6b9b8916c1aefbb37a362deebf9394bd2974e9d84232e3e08504"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:97a58a28bcf63284e8b4d7b460cbee1edaab24634e82059c7b8c09e65284f178"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:945db8ee295d3af9dbdbb698cce9bbc5c59b5c3fe328bbc4387f59a8a35f998d"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:39e104da444a34830751715f45ef9fc537475ba21b7f1f5b0f4d71a3b60d7fe2"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c5ecca8f9bab618340c8e848d340baf68bcd8ad90a8ecd7a4524a81c1764b3db"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c436130cc779806bdf5d5fae0d848713105472b8566b75ff70048c47d3961c5b"}, - {file = "propcache-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:191db28dc6dcd29d1a3e063c3be0b40688ed76434622c53a284e5427565bbd9b"}, - {file = "propcache-0.2.0-cp311-cp311-win32.whl", hash = "sha256:5f2564ec89058ee7c7989a7b719115bdfe2a2fb8e7a4543b8d1c0cc4cf6478c1"}, - {file = "propcache-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:6e2e54267980349b723cff366d1e29b138b9a60fa376664a157a342689553f71"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:2ee7606193fb267be4b2e3b32714f2d58cad27217638db98a60f9efb5efeccc2"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:91ee8fc02ca52e24bcb77b234f22afc03288e1dafbb1f88fe24db308910c4ac7"}, - {file = "propcache-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e900bad2a8456d00a113cad8c13343f3b1f327534e3589acc2219729237a2e8"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f52a68c21363c45297aca15561812d542f8fc683c85201df0bebe209e349f793"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e41d67757ff4fbc8ef2af99b338bfb955010444b92929e9e55a6d4dcc3c4f09"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a64e32f8bd94c105cc27f42d3b658902b5bcc947ece3c8fe7bc1b05982f60e89"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55346705687dbd7ef0d77883ab4f6fabc48232f587925bdaf95219bae072491e"}, - {file = "propcache-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00181262b17e517df2cd85656fcd6b4e70946fe62cd625b9d74ac9977b64d8d9"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6994984550eaf25dd7fc7bd1b700ff45c894149341725bb4edc67f0ffa94efa4"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:56295eb1e5f3aecd516d91b00cfd8bf3a13991de5a479df9e27dd569ea23959c"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:439e76255daa0f8151d3cb325f6dd4a3e93043e6403e6491813bcaaaa8733887"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f6475a1b2ecb310c98c28d271a30df74f9dd436ee46d09236a6b750a7599ce57"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3444cdba6628accf384e349014084b1cacd866fbb88433cd9d279d90a54e0b23"}, - {file = "propcache-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4a9d9b4d0a9b38d1c391bb4ad24aa65f306c6f01b512e10a8a34a2dc5675d348"}, - {file = "propcache-0.2.0-cp312-cp312-win32.whl", hash = "sha256:69d3a98eebae99a420d4b28756c8ce6ea5a29291baf2dc9ff9414b42676f61d5"}, - {file = "propcache-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ad9c9b99b05f163109466638bd30ada1722abb01bbb85c739c50b6dc11f92dc3"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ecddc221a077a8132cf7c747d5352a15ed763b674c0448d811f408bf803d9ad7"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0e53cb83fdd61cbd67202735e6a6687a7b491c8742dfc39c9e01e80354956763"}, - {file = "propcache-0.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92fe151145a990c22cbccf9ae15cae8ae9eddabfc949a219c9f667877e40853d"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a21ef516d36909931a2967621eecb256018aeb11fc48656e3257e73e2e247a"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f88a4095e913f98988f5b338c1d4d5d07dbb0b6bad19892fd447484e483ba6b"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5b3bb545ead161be780ee85a2b54fdf7092815995661947812dde94a40f6fb"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67aeb72e0f482709991aa91345a831d0b707d16b0257e8ef88a2ad246a7280bf"}, - {file = "propcache-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c997f8c44ec9b9b0bcbf2d422cc00a1d9b9c681f56efa6ca149a941e5560da2"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a66df3d4992bc1d725b9aa803e8c5a66c010c65c741ad901e260ece77f58d2f"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:3ebbcf2a07621f29638799828b8d8668c421bfb94c6cb04269130d8de4fb7136"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1235c01ddaa80da8235741e80815ce381c5267f96cc49b1477fdcf8c047ef325"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3947483a381259c06921612550867b37d22e1df6d6d7e8361264b6d037595f44"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d5bed7f9805cc29c780f3aee05de3262ee7ce1f47083cfe9f77471e9d6777e83"}, - {file = "propcache-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4a91d44379f45f5e540971d41e4626dacd7f01004826a18cb048e7da7e96544"}, - {file = "propcache-0.2.0-cp313-cp313-win32.whl", hash = "sha256:f902804113e032e2cdf8c71015651c97af6418363bea8d78dc0911d56c335032"}, - {file = "propcache-0.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:8f188cfcc64fb1266f4684206c9de0e80f54622c3f22a910cbd200478aeae61e"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:53d1bd3f979ed529f0805dd35ddaca330f80a9a6d90bc0121d2ff398f8ed8861"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:83928404adf8fb3d26793665633ea79b7361efa0287dfbd372a7e74311d51ee6"}, - {file = "propcache-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77a86c261679ea5f3896ec060be9dc8e365788248cc1e049632a1be682442063"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218db2a3c297a3768c11a34812e63b3ac1c3234c3a086def9c0fee50d35add1f"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7735e82e3498c27bcb2d17cb65d62c14f1100b71723b68362872bca7d0913d90"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20a617c776f520c3875cf4511e0d1db847a076d720714ae35ffe0df3e440be68"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67b69535c870670c9f9b14a75d28baa32221d06f6b6fa6f77a0a13c5a7b0a5b9"}, - {file = "propcache-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4569158070180c3855e9c0791c56be3ceeb192defa2cdf6a3f39e54319e56b89"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:db47514ffdbd91ccdc7e6f8407aac4ee94cc871b15b577c1c324236b013ddd04"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:2a60ad3e2553a74168d275a0ef35e8c0a965448ffbc3b300ab3a5bb9956c2162"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:662dd62358bdeaca0aee5761de8727cfd6861432e3bb828dc2a693aa0471a563"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:25a1f88b471b3bc911d18b935ecb7115dff3a192b6fef46f0bfaf71ff4f12418"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:f60f0ac7005b9f5a6091009b09a419ace1610e163fa5deaba5ce3484341840e7"}, - {file = "propcache-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74acd6e291f885678631b7ebc85d2d4aec458dd849b8c841b57ef04047833bed"}, - {file = "propcache-0.2.0-cp38-cp38-win32.whl", hash = "sha256:d9b6ddac6408194e934002a69bcaadbc88c10b5f38fb9307779d1c629181815d"}, - {file = "propcache-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:676135dcf3262c9c5081cc8f19ad55c8a64e3f7282a21266d05544450bffc3a5"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:25c8d773a62ce0451b020c7b29a35cfbc05de8b291163a7a0f3b7904f27253e6"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:375a12d7556d462dc64d70475a9ee5982465fbb3d2b364f16b86ba9135793638"}, - {file = "propcache-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ec43d76b9677637a89d6ab86e1fef70d739217fefa208c65352ecf0282be957"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f45eec587dafd4b2d41ac189c2156461ebd0c1082d2fe7013571598abb8505d1"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc092ba439d91df90aea38168e11f75c655880c12782facf5cf9c00f3d42b562"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa1076244f54bb76e65e22cb6910365779d5c3d71d1f18b275f1dfc7b0d71b4d"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:682a7c79a2fbf40f5dbb1eb6bfe2cd865376deeac65acf9beb607505dced9e12"}, - {file = "propcache-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e40876731f99b6f3c897b66b803c9e1c07a989b366c6b5b475fafd1f7ba3fb8"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:363ea8cd3c5cb6679f1c2f5f1f9669587361c062e4899fce56758efa928728f8"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:140fbf08ab3588b3468932974a9331aff43c0ab8a2ec2c608b6d7d1756dbb6cb"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e70fac33e8b4ac63dfc4c956fd7d85a0b1139adcfc0d964ce288b7c527537fea"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b33d7a286c0dc1a15f5fc864cc48ae92a846df287ceac2dd499926c3801054a6"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:f6d5749fdd33d90e34c2efb174c7e236829147a2713334d708746e94c4bde40d"}, - {file = "propcache-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22aa8f2272d81d9317ff5756bb108021a056805ce63dd3630e27d042c8092798"}, - {file = "propcache-0.2.0-cp39-cp39-win32.whl", hash = "sha256:73e4b40ea0eda421b115248d7e79b59214411109a5bc47d0d48e4c73e3b8fcf9"}, - {file = "propcache-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:9517d5e9e0731957468c29dbfd0f976736a0e55afaea843726e887f36fe017df"}, - {file = "propcache-0.2.0-py3-none-any.whl", hash = "sha256:2ccc28197af5313706511fab3a8b66dcd6da067a1331372c82ea1cb74285e036"}, - {file = "propcache-0.2.0.tar.gz", hash = "sha256:df81779732feb9d01e5d513fad0122efb3d53bbc75f61b2a4f29a020bc985e70"}, + {file = "propcache-0.2.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6b3f39a85d671436ee3d12c017f8fdea38509e4f25b28eb25877293c98c243f6"}, + {file = "propcache-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d51fbe4285d5db5d92a929e3e21536ea3dd43732c5b177c7ef03f918dff9f2"}, + {file = "propcache-0.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6445804cf4ec763dc70de65a3b0d9954e868609e83850a47ca4f0cb64bd79fea"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9479aa06a793c5aeba49ce5c5692ffb51fcd9a7016e017d555d5e2b0045d212"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9631c5e8b5b3a0fda99cb0d29c18133bca1e18aea9effe55adb3da1adef80d3"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3156628250f46a0895f1f36e1d4fbe062a1af8718ec3ebeb746f1d23f0c5dc4d"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b6fb63ae352e13748289f04f37868099e69dba4c2b3e271c46061e82c745634"}, + {file = "propcache-0.2.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:887d9b0a65404929641a9fabb6452b07fe4572b269d901d622d8a34a4e9043b2"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a96dc1fa45bd8c407a0af03b2d5218392729e1822b0c32e62c5bf7eeb5fb3958"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:a7e65eb5c003a303b94aa2c3852ef130230ec79e349632d030e9571b87c4698c"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:999779addc413181912e984b942fbcc951be1f5b3663cd80b2687758f434c583"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:19a0f89a7bb9d8048d9c4370c9c543c396e894c76be5525f5e1ad287f1750ddf"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1ac2f5fe02fa75f56e1ad473f1175e11f475606ec9bd0be2e78e4734ad575034"}, + {file = "propcache-0.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:574faa3b79e8ebac7cb1d7930f51184ba1ccf69adfdec53a12f319a06030a68b"}, + {file = "propcache-0.2.1-cp310-cp310-win32.whl", hash = "sha256:03ff9d3f665769b2a85e6157ac8b439644f2d7fd17615a82fa55739bc97863f4"}, + {file = "propcache-0.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:2d3af2e79991102678f53e0dbf4c35de99b6b8b58f29a27ca0325816364caaba"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:1ffc3cca89bb438fb9c95c13fc874012f7b9466b89328c3c8b1aa93cdcfadd16"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f174bbd484294ed9fdf09437f889f95807e5f229d5d93588d34e92106fbf6717"}, + {file = "propcache-0.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:70693319e0b8fd35dd863e3e29513875eb15c51945bf32519ef52927ca883bc3"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b480c6a4e1138e1aa137c0079b9b6305ec6dcc1098a8ca5196283e8a49df95a9"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d27b84d5880f6d8aa9ae3edb253c59d9f6642ffbb2c889b78b60361eed449787"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:857112b22acd417c40fa4595db2fe28ab900c8c5fe4670c7989b1c0230955465"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf6c4150f8c0e32d241436526f3c3f9cbd34429492abddbada2ffcff506c51af"}, + {file = "propcache-0.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:66d4cfda1d8ed687daa4bc0274fcfd5267873db9a5bc0418c2da19273040eeb7"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c2f992c07c0fca81655066705beae35fc95a2fa7366467366db627d9f2ee097f"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:4a571d97dbe66ef38e472703067021b1467025ec85707d57e78711c085984e54"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:bb6178c241278d5fe853b3de743087be7f5f4c6f7d6d22a3b524d323eecec505"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ad1af54a62ffe39cf34db1aa6ed1a1873bd548f6401db39d8e7cd060b9211f82"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e7048abd75fe40712005bcfc06bb44b9dfcd8e101dda2ecf2f5aa46115ad07ca"}, + {file = "propcache-0.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:160291c60081f23ee43d44b08a7e5fb76681221a8e10b3139618c5a9a291b84e"}, + {file = "propcache-0.2.1-cp311-cp311-win32.whl", hash = "sha256:819ce3b883b7576ca28da3861c7e1a88afd08cc8c96908e08a3f4dd64a228034"}, + {file = "propcache-0.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:edc9fc7051e3350643ad929df55c451899bb9ae6d24998a949d2e4c87fb596d3"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:081a430aa8d5e8876c6909b67bd2d937bfd531b0382d3fdedb82612c618bc41a"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2ccec9ac47cf4e04897619c0e0c1a48c54a71bdf045117d3a26f80d38ab1fb0"}, + {file = "propcache-0.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:14d86fe14b7e04fa306e0c43cdbeebe6b2c2156a0c9ce56b815faacc193e320d"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:049324ee97bb67285b49632132db351b41e77833678432be52bdd0289c0e05e4"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cd9a1d071158de1cc1c71a26014dcdfa7dd3d5f4f88c298c7f90ad6f27bb46d"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98110aa363f1bb4c073e8dcfaefd3a5cea0f0834c2aab23dda657e4dab2f53b5"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:647894f5ae99c4cf6bb82a1bb3a796f6e06af3caa3d32e26d2350d0e3e3faf24"}, + {file = "propcache-0.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bfd3223c15bebe26518d58ccf9a39b93948d3dcb3e57a20480dfdd315356baff"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d71264a80f3fcf512eb4f18f59423fe82d6e346ee97b90625f283df56aee103f"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:e73091191e4280403bde6c9a52a6999d69cdfde498f1fdf629105247599b57ec"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:3935bfa5fede35fb202c4b569bb9c042f337ca4ff7bd540a0aa5e37131659348"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f508b0491767bb1f2b87fdfacaba5f7eddc2f867740ec69ece6d1946d29029a6"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:1672137af7c46662a1c2be1e8dc78cb6d224319aaa40271c9257d886be4363a6"}, + {file = "propcache-0.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b74c261802d3d2b85c9df2dfb2fa81b6f90deeef63c2db9f0e029a3cac50b518"}, + {file = "propcache-0.2.1-cp312-cp312-win32.whl", hash = "sha256:d09c333d36c1409d56a9d29b3a1b800a42c76a57a5a8907eacdbce3f18768246"}, + {file = "propcache-0.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:c214999039d4f2a5b2073ac506bba279945233da8c786e490d411dfc30f855c1"}, + {file = "propcache-0.2.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aca405706e0b0a44cc6bfd41fbe89919a6a56999157f6de7e182a990c36e37bc"}, + {file = "propcache-0.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:12d1083f001ace206fe34b6bdc2cb94be66d57a850866f0b908972f90996b3e9"}, + {file = "propcache-0.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d93f3307ad32a27bda2e88ec81134b823c240aa3abb55821a8da553eed8d9439"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba278acf14471d36316159c94a802933d10b6a1e117b8554fe0d0d9b75c9d536"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4e6281aedfca15301c41f74d7005e6e3f4ca143584ba696ac69df4f02f40d629"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b750a8e5a1262434fb1517ddf64b5de58327f1adc3524a5e44c2ca43305eb0b"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf72af5e0fb40e9babf594308911436c8efde3cb5e75b6f206c34ad18be5c052"}, + {file = "propcache-0.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b2d0a12018b04f4cb820781ec0dffb5f7c7c1d2a5cd22bff7fb055a2cb19ebce"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e800776a79a5aabdb17dcc2346a7d66d0777e942e4cd251defeb084762ecd17d"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:4160d9283bd382fa6c0c2b5e017acc95bc183570cd70968b9202ad6d8fc48dce"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:30b43e74f1359353341a7adb783c8f1b1c676367b011709f466f42fda2045e95"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:58791550b27d5488b1bb52bc96328456095d96206a250d28d874fafe11b3dfaf"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:0f022d381747f0dfe27e99d928e31bc51a18b65bb9e481ae0af1380a6725dd1f"}, + {file = "propcache-0.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:297878dc9d0a334358f9b608b56d02e72899f3b8499fc6044133f0d319e2ec30"}, + {file = "propcache-0.2.1-cp313-cp313-win32.whl", hash = "sha256:ddfab44e4489bd79bda09d84c430677fc7f0a4939a73d2bba3073036f487a0a6"}, + {file = "propcache-0.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:556fc6c10989f19a179e4321e5d678db8eb2924131e64652a51fe83e4c3db0e1"}, + {file = "propcache-0.2.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:6a9a8c34fb7bb609419a211e59da8887eeca40d300b5ea8e56af98f6fbbb1541"}, + {file = "propcache-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ae1aa1cd222c6d205853b3013c69cd04515f9d6ab6de4b0603e2e1c33221303e"}, + {file = "propcache-0.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:accb6150ce61c9c4b7738d45550806aa2b71c7668c6942f17b0ac182b6142fd4"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eee736daafa7af6d0a2dc15cc75e05c64f37fc37bafef2e00d77c14171c2097"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7a31fc1e1bd362874863fdeed71aed92d348f5336fd84f2197ba40c59f061bd"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba4cfa1052819d16699e1d55d18c92b6e094d4517c41dd231a8b9f87b6fa681"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f089118d584e859c62b3da0892b88a83d611c2033ac410e929cb6754eec0ed16"}, + {file = "propcache-0.2.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:781e65134efaf88feb447e8c97a51772aa75e48b794352f94cb7ea717dedda0d"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31f5af773530fd3c658b32b6bdc2d0838543de70eb9a2156c03e410f7b0d3aae"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:a7a078f5d37bee6690959c813977da5291b24286e7b962e62a94cec31aa5188b"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:cea7daf9fc7ae6687cf1e2c049752f19f146fdc37c2cc376e7d0032cf4f25347"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:8b3489ff1ed1e8315674d0775dc7d2195fb13ca17b3808721b54dbe9fd020faf"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9403db39be1393618dd80c746cb22ccda168efce239c73af13c3763ef56ffc04"}, + {file = "propcache-0.2.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5d97151bc92d2b2578ff7ce779cdb9174337390a535953cbb9452fb65164c587"}, + {file = "propcache-0.2.1-cp39-cp39-win32.whl", hash = "sha256:9caac6b54914bdf41bcc91e7eb9147d331d29235a7c967c150ef5df6464fd1bb"}, + {file = "propcache-0.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:92fc4500fcb33899b05ba73276dfb684a20d31caa567b7cb5252d48f896a91b1"}, + {file = "propcache-0.2.1-py3-none-any.whl", hash = "sha256:52277518d6aae65536e9cea52d4e7fd2f7a66f4aa2d30ed3f2fcea620ace3c54"}, + {file = "propcache-0.2.1.tar.gz", hash = "sha256:3f77ce728b19cb537714499928fe800c3dda29e8d9428778fc7c186da4c09a64"}, ] [[package]] name = "protobuf" -version = "5.29.0" +version = "5.29.1" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-5.29.0-cp310-abi3-win32.whl", hash = "sha256:ea7fb379b257911c8c020688d455e8f74efd2f734b72dc1ea4b4d7e9fd1326f2"}, - {file = "protobuf-5.29.0-cp310-abi3-win_amd64.whl", hash = "sha256:34a90cf30c908f47f40ebea7811f743d360e202b6f10d40c02529ebd84afc069"}, - {file = "protobuf-5.29.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:c931c61d0cc143a2e756b1e7f8197a508de5365efd40f83c907a9febf36e6b43"}, - {file = "protobuf-5.29.0-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:85286a47caf63b34fa92fdc1fd98b649a8895db595cfa746c5286eeae890a0b1"}, - {file = "protobuf-5.29.0-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:0d10091d6d03537c3f902279fcf11e95372bdd36a79556311da0487455791b20"}, - {file = "protobuf-5.29.0-cp38-cp38-win32.whl", hash = "sha256:0cd67a1e5c2d88930aa767f702773b2d054e29957432d7c6a18f8be02a07719a"}, - {file = "protobuf-5.29.0-cp38-cp38-win_amd64.whl", hash = "sha256:e467f81fdd12ded9655cea3e9b83dc319d93b394ce810b556fb0f421d8613e86"}, - {file = "protobuf-5.29.0-cp39-cp39-win32.whl", hash = "sha256:17d128eebbd5d8aee80300aed7a43a48a25170af3337f6f1333d1fac2c6839ac"}, - {file = "protobuf-5.29.0-cp39-cp39-win_amd64.whl", hash = "sha256:6c3009e22717c6cc9e6594bb11ef9f15f669b19957ad4087214d69e08a213368"}, - {file = "protobuf-5.29.0-py3-none-any.whl", hash = "sha256:88c4af76a73183e21061881360240c0cdd3c39d263b4e8fb570aaf83348d608f"}, - {file = "protobuf-5.29.0.tar.gz", hash = "sha256:445a0c02483869ed8513a585d80020d012c6dc60075f96fa0563a724987b1001"}, + {file = "protobuf-5.29.1-cp310-abi3-win32.whl", hash = "sha256:22c1f539024241ee545cbcb00ee160ad1877975690b16656ff87dde107b5f110"}, + {file = "protobuf-5.29.1-cp310-abi3-win_amd64.whl", hash = "sha256:1fc55267f086dd4050d18ef839d7bd69300d0d08c2a53ca7df3920cc271a3c34"}, + {file = "protobuf-5.29.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:d473655e29c0c4bbf8b69e9a8fb54645bc289dead6d753b952e7aa660254ae18"}, + {file = "protobuf-5.29.1-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:b5ba1d0e4c8a40ae0496d0e2ecfdbb82e1776928a205106d14ad6985a09ec155"}, + {file = "protobuf-5.29.1-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:8ee1461b3af56145aca2800e6a3e2f928108c749ba8feccc6f5dd0062c410c0d"}, + {file = "protobuf-5.29.1-cp38-cp38-win32.whl", hash = "sha256:50879eb0eb1246e3a5eabbbe566b44b10348939b7cc1b267567e8c3d07213853"}, + {file = "protobuf-5.29.1-cp38-cp38-win_amd64.whl", hash = "sha256:027fbcc48cea65a6b17028510fdd054147057fa78f4772eb547b9274e5219331"}, + {file = "protobuf-5.29.1-cp39-cp39-win32.whl", hash = "sha256:5a41deccfa5e745cef5c65a560c76ec0ed8e70908a67cc8f4da5fce588b50d57"}, + {file = "protobuf-5.29.1-cp39-cp39-win_amd64.whl", hash = "sha256:012ce28d862ff417fd629285aca5d9772807f15ceb1a0dbd15b88f58c776c98c"}, + {file = "protobuf-5.29.1-py3-none-any.whl", hash = "sha256:32600ddb9c2a53dedc25b8581ea0f1fd8ea04956373c0c07577ce58d312522e0"}, + {file = "protobuf-5.29.1.tar.gz", hash = "sha256:683be02ca21a6ffe80db6dd02c0b5b2892322c59ca57fd6c872d652cb80549cb"}, ] [[package]] @@ -3747,13 +3729,13 @@ files = [ [[package]] name = "pydantic" -version = "2.10.2" +version = "2.10.3" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.10.2-py3-none-any.whl", hash = "sha256:cfb96e45951117c3024e6b67b25cdc33a3cb7b2fa62e239f7af1378358a1d99e"}, - {file = "pydantic-2.10.2.tar.gz", hash = "sha256:2bc2d7f17232e0841cbba4641e65ba1eb6fafb3a08de3a091ff3ce14a197c4fa"}, + {file = "pydantic-2.10.3-py3-none-any.whl", hash = "sha256:be04d85bbc7b65651c5f8e6b9976ed9c6f41782a55524cef079a34a0bb82144d"}, + {file = "pydantic-2.10.3.tar.gz", hash = "sha256:cb5ac360ce894ceacd69c403187900a02c4b20b693a9dd1d643e1effab9eadf9"}, ] [package.dependencies] @@ -3907,13 +3889,13 @@ diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pytest" -version = "8.3.3" +version = "8.3.4" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.8" files = [ - {file = "pytest-8.3.3-py3-none-any.whl", hash = "sha256:a6853c7375b2663155079443d2e45de913a911a11d669df02a50814944db57b2"}, - {file = "pytest-8.3.3.tar.gz", hash = "sha256:70b98107bd648308a7952b06e6ca9a50bc660be218d53c257cc1fc94fda10181"}, + {file = "pytest-8.3.4-py3-none-any.whl", hash = "sha256:50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6"}, + {file = "pytest-8.3.4.tar.gz", hash = "sha256:965370d062bce11e73868e0335abac31b4d3de0e82f4007408d242b4f8610761"}, ] [package.dependencies] @@ -3989,15 +3971,18 @@ six = ">=1.5" [[package]] name = "python-json-logger" -version = "2.0.7" -description = "A python library adding a json log formatter" +version = "3.2.0" +description = "JSON Log Formatter for the Python Logging Package" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, - {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, + {file = "python_json_logger-3.2.0-py3-none-any.whl", hash = "sha256:d73522ddcfc6d0461394120feaddea9025dc64bf804d96357dd42fa878cc5fe8"}, + {file = "python_json_logger-3.2.0.tar.gz", hash = "sha256:2c11056458d3f56614480b24e9cb28f7aba69cbfbebddbb77c92f0ec0d4947ab"}, ] +[package.extras] +dev = ["backports.zoneinfo", "black", "build", "freezegun", "mdx_truly_sane_lists", "mike", "mkdocs", "mkdocs-awesome-pages-plugin", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-material (>=8.5)", "mkdocstrings[python]", "msgspec", "msgspec-python313-pre", "mypy", "orjson", "pylint", "pytest", "tzdata", "validate-pyproject[all]"] + [[package]] name = "pytz" version = "2024.2" @@ -4400,101 +4385,114 @@ files = [ [[package]] name = "rpds-py" -version = "0.21.0" +version = "0.22.3" description = "Python bindings to Rust's persistent data structures (rpds)" optional = false python-versions = ">=3.9" files = [ - {file = "rpds_py-0.21.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a017f813f24b9df929674d0332a374d40d7f0162b326562daae8066b502d0590"}, - {file = "rpds_py-0.21.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:20cc1ed0bcc86d8e1a7e968cce15be45178fd16e2ff656a243145e0b439bd250"}, - {file = "rpds_py-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad116dda078d0bc4886cb7840e19811562acdc7a8e296ea6ec37e70326c1b41c"}, - {file = "rpds_py-0.21.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:808f1ac7cf3b44f81c9475475ceb221f982ef548e44e024ad5f9e7060649540e"}, - {file = "rpds_py-0.21.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de552f4a1916e520f2703ec474d2b4d3f86d41f353e7680b597512ffe7eac5d0"}, - {file = "rpds_py-0.21.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:efec946f331349dfc4ae9d0e034c263ddde19414fe5128580f512619abed05f1"}, - {file = "rpds_py-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b80b4690bbff51a034bfde9c9f6bf9357f0a8c61f548942b80f7b66356508bf5"}, - {file = "rpds_py-0.21.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:085ed25baac88953d4283e5b5bd094b155075bb40d07c29c4f073e10623f9f2e"}, - {file = "rpds_py-0.21.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:daa8efac2a1273eed2354397a51216ae1e198ecbce9036fba4e7610b308b6153"}, - {file = "rpds_py-0.21.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:95a5bad1ac8a5c77b4e658671642e4af3707f095d2b78a1fdd08af0dfb647624"}, - {file = "rpds_py-0.21.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3e53861b29a13d5b70116ea4230b5f0f3547b2c222c5daa090eb7c9c82d7f664"}, - {file = "rpds_py-0.21.0-cp310-none-win32.whl", hash = "sha256:ea3a6ac4d74820c98fcc9da4a57847ad2cc36475a8bd9683f32ab6d47a2bd682"}, - {file = "rpds_py-0.21.0-cp310-none-win_amd64.whl", hash = "sha256:b8f107395f2f1d151181880b69a2869c69e87ec079c49c0016ab96860b6acbe5"}, - {file = "rpds_py-0.21.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5555db3e618a77034954b9dc547eae94166391a98eb867905ec8fcbce1308d95"}, - {file = "rpds_py-0.21.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:97ef67d9bbc3e15584c2f3c74bcf064af36336c10d2e21a2131e123ce0f924c9"}, - {file = "rpds_py-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ab2c2a26d2f69cdf833174f4d9d86118edc781ad9a8fa13970b527bf8236027"}, - {file = "rpds_py-0.21.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4e8921a259f54bfbc755c5bbd60c82bb2339ae0324163f32868f63f0ebb873d9"}, - {file = "rpds_py-0.21.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a7ff941004d74d55a47f916afc38494bd1cfd4b53c482b77c03147c91ac0ac3"}, - {file = "rpds_py-0.21.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5145282a7cd2ac16ea0dc46b82167754d5e103a05614b724457cffe614f25bd8"}, - {file = "rpds_py-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de609a6f1b682f70bb7163da745ee815d8f230d97276db049ab447767466a09d"}, - {file = "rpds_py-0.21.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:40c91c6e34cf016fa8e6b59d75e3dbe354830777fcfd74c58b279dceb7975b75"}, - {file = "rpds_py-0.21.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d2132377f9deef0c4db89e65e8bb28644ff75a18df5293e132a8d67748397b9f"}, - {file = "rpds_py-0.21.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:0a9e0759e7be10109645a9fddaaad0619d58c9bf30a3f248a2ea57a7c417173a"}, - {file = "rpds_py-0.21.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9e20da3957bdf7824afdd4b6eeb29510e83e026473e04952dca565170cd1ecc8"}, - {file = "rpds_py-0.21.0-cp311-none-win32.whl", hash = "sha256:f71009b0d5e94c0e86533c0b27ed7cacc1239cb51c178fd239c3cfefefb0400a"}, - {file = "rpds_py-0.21.0-cp311-none-win_amd64.whl", hash = "sha256:e168afe6bf6ab7ab46c8c375606298784ecbe3ba31c0980b7dcbb9631dcba97e"}, - {file = "rpds_py-0.21.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:30b912c965b2aa76ba5168fd610087bad7fcde47f0a8367ee8f1876086ee6d1d"}, - {file = "rpds_py-0.21.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ca9989d5d9b1b300bc18e1801c67b9f6d2c66b8fd9621b36072ed1df2c977f72"}, - {file = "rpds_py-0.21.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f54e7106f0001244a5f4cf810ba8d3f9c542e2730821b16e969d6887b664266"}, - {file = "rpds_py-0.21.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fed5dfefdf384d6fe975cc026886aece4f292feaf69d0eeb716cfd3c5a4dd8be"}, - {file = "rpds_py-0.21.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:590ef88db231c9c1eece44dcfefd7515d8bf0d986d64d0caf06a81998a9e8cab"}, - {file = "rpds_py-0.21.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f983e4c2f603c95dde63df633eec42955508eefd8d0f0e6d236d31a044c882d7"}, - {file = "rpds_py-0.21.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b229ce052ddf1a01c67d68166c19cb004fb3612424921b81c46e7ea7ccf7c3bf"}, - {file = "rpds_py-0.21.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ebf64e281a06c904a7636781d2e973d1f0926a5b8b480ac658dc0f556e7779f4"}, - {file = "rpds_py-0.21.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:998a8080c4495e4f72132f3d66ff91f5997d799e86cec6ee05342f8f3cda7dca"}, - {file = "rpds_py-0.21.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:98486337f7b4f3c324ab402e83453e25bb844f44418c066623db88e4c56b7c7b"}, - {file = "rpds_py-0.21.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a78d8b634c9df7f8d175451cfeac3810a702ccb85f98ec95797fa98b942cea11"}, - {file = "rpds_py-0.21.0-cp312-none-win32.whl", hash = "sha256:a58ce66847711c4aa2ecfcfaff04cb0327f907fead8945ffc47d9407f41ff952"}, - {file = "rpds_py-0.21.0-cp312-none-win_amd64.whl", hash = "sha256:e860f065cc4ea6f256d6f411aba4b1251255366e48e972f8a347cf88077b24fd"}, - {file = "rpds_py-0.21.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ee4eafd77cc98d355a0d02f263efc0d3ae3ce4a7c24740010a8b4012bbb24937"}, - {file = "rpds_py-0.21.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:688c93b77e468d72579351a84b95f976bd7b3e84aa6686be6497045ba84be560"}, - {file = "rpds_py-0.21.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c38dbf31c57032667dd5a2f0568ccde66e868e8f78d5a0d27dcc56d70f3fcd3b"}, - {file = "rpds_py-0.21.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2d6129137f43f7fa02d41542ffff4871d4aefa724a5fe38e2c31a4e0fd343fb0"}, - {file = "rpds_py-0.21.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:520ed8b99b0bf86a176271f6fe23024323862ac674b1ce5b02a72bfeff3fff44"}, - {file = "rpds_py-0.21.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aaeb25ccfb9b9014a10eaf70904ebf3f79faaa8e60e99e19eef9f478651b9b74"}, - {file = "rpds_py-0.21.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af04ac89c738e0f0f1b913918024c3eab6e3ace989518ea838807177d38a2e94"}, - {file = "rpds_py-0.21.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9b76e2afd585803c53c5b29e992ecd183f68285b62fe2668383a18e74abe7a3"}, - {file = "rpds_py-0.21.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5afb5efde74c54724e1a01118c6e5c15e54e642c42a1ba588ab1f03544ac8c7a"}, - {file = "rpds_py-0.21.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:52c041802a6efa625ea18027a0723676a778869481d16803481ef6cc02ea8cb3"}, - {file = "rpds_py-0.21.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ee1e4fc267b437bb89990b2f2abf6c25765b89b72dd4a11e21934df449e0c976"}, - {file = "rpds_py-0.21.0-cp313-none-win32.whl", hash = "sha256:0c025820b78817db6a76413fff6866790786c38f95ea3f3d3c93dbb73b632202"}, - {file = "rpds_py-0.21.0-cp313-none-win_amd64.whl", hash = "sha256:320c808df533695326610a1b6a0a6e98f033e49de55d7dc36a13c8a30cfa756e"}, - {file = "rpds_py-0.21.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:2c51d99c30091f72a3c5d126fad26236c3f75716b8b5e5cf8effb18889ced928"}, - {file = "rpds_py-0.21.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cbd7504a10b0955ea287114f003b7ad62330c9e65ba012c6223dba646f6ffd05"}, - {file = "rpds_py-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6dcc4949be728ede49e6244eabd04064336012b37f5c2200e8ec8eb2988b209c"}, - {file = "rpds_py-0.21.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f414da5c51bf350e4b7960644617c130140423882305f7574b6cf65a3081cecb"}, - {file = "rpds_py-0.21.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9afe42102b40007f588666bc7de82451e10c6788f6f70984629db193849dced1"}, - {file = "rpds_py-0.21.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b929c2bb6e29ab31f12a1117c39f7e6d6450419ab7464a4ea9b0b417174f044"}, - {file = "rpds_py-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8404b3717da03cbf773a1d275d01fec84ea007754ed380f63dfc24fb76ce4592"}, - {file = "rpds_py-0.21.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e12bb09678f38b7597b8346983d2323a6482dcd59e423d9448108c1be37cac9d"}, - {file = "rpds_py-0.21.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:58a0e345be4b18e6b8501d3b0aa540dad90caeed814c515e5206bb2ec26736fd"}, - {file = "rpds_py-0.21.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:c3761f62fcfccf0864cc4665b6e7c3f0c626f0380b41b8bd1ce322103fa3ef87"}, - {file = "rpds_py-0.21.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c2b2f71c6ad6c2e4fc9ed9401080badd1469fa9889657ec3abea42a3d6b2e1ed"}, - {file = "rpds_py-0.21.0-cp39-none-win32.whl", hash = "sha256:b21747f79f360e790525e6f6438c7569ddbfb1b3197b9e65043f25c3c9b489d8"}, - {file = "rpds_py-0.21.0-cp39-none-win_amd64.whl", hash = "sha256:0626238a43152918f9e72ede9a3b6ccc9e299adc8ade0d67c5e142d564c9a83d"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6b4ef7725386dc0762857097f6b7266a6cdd62bfd209664da6712cb26acef035"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6bc0e697d4d79ab1aacbf20ee5f0df80359ecf55db33ff41481cf3e24f206919"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da52d62a96e61c1c444f3998c434e8b263c384f6d68aca8274d2e08d1906325c"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:98e4fe5db40db87ce1c65031463a760ec7906ab230ad2249b4572c2fc3ef1f9f"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:30bdc973f10d28e0337f71d202ff29345320f8bc49a31c90e6c257e1ccef4333"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:faa5e8496c530f9c71f2b4e1c49758b06e5f4055e17144906245c99fa6d45356"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32eb88c30b6a4f0605508023b7141d043a79b14acb3b969aa0b4f99b25bc7d4a"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a89a8ce9e4e75aeb7fa5d8ad0f3fecdee813802592f4f46a15754dcb2fd6b061"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:241e6c125568493f553c3d0fdbb38c74babf54b45cef86439d4cd97ff8feb34d"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:3b766a9f57663396e4f34f5140b3595b233a7b146e94777b97a8413a1da1be18"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:af4a644bf890f56e41e74be7d34e9511e4954894d544ec6b8efe1e21a1a8da6c"}, - {file = "rpds_py-0.21.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3e30a69a706e8ea20444b98a49f386c17b26f860aa9245329bab0851ed100677"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:031819f906bb146561af051c7cef4ba2003d28cff07efacef59da973ff7969ba"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b876f2bc27ab5954e2fd88890c071bd0ed18b9c50f6ec3de3c50a5ece612f7a6"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc5695c321e518d9f03b7ea6abb5ea3af4567766f9852ad1560f501b17588c7b"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b4de1da871b5c0fd5537b26a6fc6814c3cc05cabe0c941db6e9044ffbb12f04a"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:878f6fea96621fda5303a2867887686d7a198d9e0f8a40be100a63f5d60c88c9"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8eeec67590e94189f434c6d11c426892e396ae59e4801d17a93ac96b8c02a6c"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ff2eba7f6c0cb523d7e9cff0903f2fe1feff8f0b2ceb6bd71c0e20a4dcee271"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a429b99337062877d7875e4ff1a51fe788424d522bd64a8c0a20ef3021fdb6ed"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:d167e4dbbdac48bd58893c7e446684ad5d425b407f9336e04ab52e8b9194e2ed"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:4eb2de8a147ffe0626bfdc275fc6563aa7bf4b6db59cf0d44f0ccd6ca625a24e"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:e78868e98f34f34a88e23ee9ccaeeec460e4eaf6db16d51d7a9b883e5e785a5e"}, - {file = "rpds_py-0.21.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4991ca61656e3160cdaca4851151fd3f4a92e9eba5c7a530ab030d6aee96ec89"}, - {file = "rpds_py-0.21.0.tar.gz", hash = "sha256:ed6378c9d66d0de903763e7706383d60c33829581f0adff47b6535f1802fa6db"}, + {file = "rpds_py-0.22.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6c7b99ca52c2c1752b544e310101b98a659b720b21db00e65edca34483259967"}, + {file = "rpds_py-0.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be2eb3f2495ba669d2a985f9b426c1797b7d48d6963899276d22f23e33d47e37"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70eb60b3ae9245ddea20f8a4190bd79c705a22f8028aaf8bbdebe4716c3fab24"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4041711832360a9b75cfb11b25a6a97c8fb49c07b8bd43d0d02b45d0b499a4ff"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64607d4cbf1b7e3c3c8a14948b99345eda0e161b852e122c6bb71aab6d1d798c"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e69b0a0e2537f26d73b4e43ad7bc8c8efb39621639b4434b76a3de50c6966e"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc27863442d388870c1809a87507727b799c8460573cfbb6dc0eeaef5a11b5ec"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e79dd39f1e8c3504be0607e5fc6e86bb60fe3584bec8b782578c3b0fde8d932c"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e0fa2d4ec53dc51cf7d3bb22e0aa0143966119f42a0c3e4998293a3dd2856b09"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fda7cb070f442bf80b642cd56483b5548e43d366fe3f39b98e67cce780cded00"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cff63a0272fcd259dcc3be1657b07c929c466b067ceb1c20060e8d10af56f5bf"}, + {file = "rpds_py-0.22.3-cp310-cp310-win32.whl", hash = "sha256:9bd7228827ec7bb817089e2eb301d907c0d9827a9e558f22f762bb690b131652"}, + {file = "rpds_py-0.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9beeb01d8c190d7581a4d59522cd3d4b6887040dcfc744af99aa59fef3e041a8"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d20cfb4e099748ea39e6f7b16c91ab057989712d31761d3300d43134e26e165f"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:68049202f67380ff9aa52f12e92b1c30115f32e6895cd7198fa2a7961621fc5a"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb4f868f712b2dd4bcc538b0a0c1f63a2b1d584c925e69a224d759e7070a12d5"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bc51abd01f08117283c5ebf64844a35144a0843ff7b2983e0648e4d3d9f10dbb"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f3cec041684de9a4684b1572fe28c7267410e02450f4561700ca5a3bc6695a2"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7ef9d9da710be50ff6809fed8f1963fecdfecc8b86656cadfca3bc24289414b0"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59f4a79c19232a5774aee369a0c296712ad0e77f24e62cad53160312b1c1eaa1"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1a60bce91f81ddaac922a40bbb571a12c1070cb20ebd6d49c48e0b101d87300d"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e89391e6d60251560f0a8f4bd32137b077a80d9b7dbe6d5cab1cd80d2746f648"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e3fb866d9932a3d7d0c82da76d816996d1667c44891bd861a0f97ba27e84fc74"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1352ae4f7c717ae8cba93421a63373e582d19d55d2ee2cbb184344c82d2ae55a"}, + {file = "rpds_py-0.22.3-cp311-cp311-win32.whl", hash = "sha256:b0b4136a252cadfa1adb705bb81524eee47d9f6aab4f2ee4fa1e9d3cd4581f64"}, + {file = "rpds_py-0.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:8bd7c8cfc0b8247c8799080fbff54e0b9619e17cdfeb0478ba7295d43f635d7c"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:27e98004595899949bd7a7b34e91fa7c44d7a97c40fcaf1d874168bb652ec67e"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1978d0021e943aae58b9b0b196fb4895a25cc53d3956b8e35e0b7682eefb6d56"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655ca44a831ecb238d124e0402d98f6212ac527a0ba6c55ca26f616604e60a45"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:feea821ee2a9273771bae61194004ee2fc33f8ec7db08117ef9147d4bbcbca8e"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22bebe05a9ffc70ebfa127efbc429bc26ec9e9b4ee4d15a740033efda515cf3d"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3af6e48651c4e0d2d166dc1b033b7042ea3f871504b6805ba5f4fe31581d8d38"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e67ba3c290821343c192f7eae1d8fd5999ca2dc99994114643e2f2d3e6138b15"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02fbb9c288ae08bcb34fb41d516d5eeb0455ac35b5512d03181d755d80810059"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f56a6b404f74ab372da986d240e2e002769a7d7102cc73eb238a4f72eec5284e"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0a0461200769ab3b9ab7e513f6013b7a97fdeee41c29b9db343f3c5a8e2b9e61"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8633e471c6207a039eff6aa116e35f69f3156b3989ea3e2d755f7bc41754a4a7"}, + {file = "rpds_py-0.22.3-cp312-cp312-win32.whl", hash = "sha256:593eba61ba0c3baae5bc9be2f5232430453fb4432048de28399ca7376de9c627"}, + {file = "rpds_py-0.22.3-cp312-cp312-win_amd64.whl", hash = "sha256:d115bffdd417c6d806ea9069237a4ae02f513b778e3789a359bc5856e0404cc4"}, + {file = "rpds_py-0.22.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ea7433ce7e4bfc3a85654aeb6747babe3f66eaf9a1d0c1e7a4435bbdf27fea84"}, + {file = "rpds_py-0.22.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6dd9412824c4ce1aca56c47b0991e65bebb7ac3f4edccfd3f156150c96a7bf25"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20070c65396f7373f5df4005862fa162db5d25d56150bddd0b3e8214e8ef45b4"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b09865a9abc0ddff4e50b5ef65467cd94176bf1e0004184eb915cbc10fc05c5"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3453e8d41fe5f17d1f8e9c383a7473cd46a63661628ec58e07777c2fff7196dc"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f5d36399a1b96e1a5fdc91e0522544580dbebeb1f77f27b2b0ab25559e103b8b"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:009de23c9c9ee54bf11303a966edf4d9087cd43a6003672e6aa7def643d06518"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1aef18820ef3e4587ebe8b3bc9ba6e55892a6d7b93bac6d29d9f631a3b4befbd"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f60bd8423be1d9d833f230fdbccf8f57af322d96bcad6599e5a771b151398eb2"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:62d9cfcf4948683a18a9aff0ab7e1474d407b7bab2ca03116109f8464698ab16"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9253fc214112405f0afa7db88739294295f0e08466987f1d70e29930262b4c8f"}, + {file = "rpds_py-0.22.3-cp313-cp313-win32.whl", hash = "sha256:fb0ba113b4983beac1a2eb16faffd76cb41e176bf58c4afe3e14b9c681f702de"}, + {file = "rpds_py-0.22.3-cp313-cp313-win_amd64.whl", hash = "sha256:c58e2339def52ef6b71b8f36d13c3688ea23fa093353f3a4fee2556e62086ec9"}, + {file = "rpds_py-0.22.3-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:f82a116a1d03628a8ace4859556fb39fd1424c933341a08ea3ed6de1edb0283b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3dfcbc95bd7992b16f3f7ba05af8a64ca694331bd24f9157b49dadeeb287493b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59259dc58e57b10e7e18ce02c311804c10c5a793e6568f8af4dead03264584d1"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5725dd9cc02068996d4438d397e255dcb1df776b7ceea3b9cb972bdb11260a83"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99b37292234e61325e7a5bb9689e55e48c3f5f603af88b1642666277a81f1fbd"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:27b1d3b3915a99208fee9ab092b8184c420f2905b7d7feb4aeb5e4a9c509b8a1"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f612463ac081803f243ff13cccc648578e2279295048f2a8d5eb430af2bae6e3"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f73d3fef726b3243a811121de45193c0ca75f6407fe66f3f4e183c983573e130"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:3f21f0495edea7fdbaaa87e633a8689cd285f8f4af5c869f27bc8074638ad69c"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:1e9663daaf7a63ceccbbb8e3808fe90415b0757e2abddbfc2e06c857bf8c5e2b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a76e42402542b1fae59798fab64432b2d015ab9d0c8c47ba7addddbaf7952333"}, + {file = "rpds_py-0.22.3-cp313-cp313t-win32.whl", hash = "sha256:69803198097467ee7282750acb507fba35ca22cc3b85f16cf45fb01cb9097730"}, + {file = "rpds_py-0.22.3-cp313-cp313t-win_amd64.whl", hash = "sha256:f5cf2a0c2bdadf3791b5c205d55a37a54025c6e18a71c71f82bb536cf9a454bf"}, + {file = "rpds_py-0.22.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:378753b4a4de2a7b34063d6f95ae81bfa7b15f2c1a04a9518e8644e81807ebea"}, + {file = "rpds_py-0.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3445e07bf2e8ecfeef6ef67ac83de670358abf2996916039b16a218e3d95e97e"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b2513ba235829860b13faa931f3b6846548021846ac808455301c23a101689d"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eaf16ae9ae519a0e237a0f528fd9f0197b9bb70f40263ee57ae53c2b8d48aeb3"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:583f6a1993ca3369e0f80ba99d796d8e6b1a3a2a442dd4e1a79e652116413091"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4617e1915a539a0d9a9567795023de41a87106522ff83fbfaf1f6baf8e85437e"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c150c7a61ed4a4f4955a96626574e9baf1adf772c2fb61ef6a5027e52803543"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2fa4331c200c2521512595253f5bb70858b90f750d39b8cbfd67465f8d1b596d"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:214b7a953d73b5e87f0ebece4a32a5bd83c60a3ecc9d4ec8f1dca968a2d91e99"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f47ad3d5f3258bd7058d2d506852217865afefe6153a36eb4b6928758041d831"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:f276b245347e6e36526cbd4a266a417796fc531ddf391e43574cf6466c492520"}, + {file = "rpds_py-0.22.3-cp39-cp39-win32.whl", hash = "sha256:bbb232860e3d03d544bc03ac57855cd82ddf19c7a07651a7c0fdb95e9efea8b9"}, + {file = "rpds_py-0.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:cfbc454a2880389dbb9b5b398e50d439e2e58669160f27b60e5eca11f68ae17c"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d48424e39c2611ee1b84ad0f44fb3b2b53d473e65de061e3f460fc0be5f1939d"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:24e8abb5878e250f2eb0d7859a8e561846f98910326d06c0d51381fed59357bd"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b232061ca880db21fa14defe219840ad9b74b6158adb52ddf0e87bead9e8493"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac0a03221cdb5058ce0167ecc92a8c89e8d0decdc9e99a2ec23380793c4dcb96"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb0c341fa71df5a4595f9501df4ac5abfb5a09580081dffbd1ddd4654e6e9123"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf9db5488121b596dbfc6718c76092fda77b703c1f7533a226a5a9f65248f8ad"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b8db6b5b2d4491ad5b6bdc2bc7c017eec108acbf4e6785f42a9eb0ba234f4c9"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b3d504047aba448d70cf6fa22e06cb09f7cbd761939fdd47604f5e007675c24e"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:e61b02c3f7a1e0b75e20c3978f7135fd13cb6cf551bf4a6d29b999a88830a338"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:e35ba67d65d49080e8e5a1dd40101fccdd9798adb9b050ff670b7d74fa41c566"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:26fd7cac7dd51011a245f29a2cc6489c4608b5a8ce8d75661bb4a1066c52dfbe"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:177c7c0fce2855833819c98e43c262007f42ce86651ffbb84f37883308cb0e7d"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bb47271f60660803ad11f4c61b42242b8c1312a31c98c578f79ef9387bbde21c"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:70fb28128acbfd264eda9bf47015537ba3fe86e40d046eb2963d75024be4d055"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44d61b4b7d0c2c9ac019c314e52d7cbda0ae31078aabd0f22e583af3e0d79723"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f0e260eaf54380380ac3808aa4ebe2d8ca28b9087cf411649f96bad6900c728"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b25bc607423935079e05619d7de556c91fb6adeae9d5f80868dde3468657994b"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb6116dfb8d1925cbdb52595560584db42a7f664617a1f7d7f6e32f138cdf37d"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a63cbdd98acef6570c62b92a1e43266f9e8b21e699c363c0fef13bd530799c11"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b8f60e1b739a74bab7e01fcbe3dddd4657ec685caa04681df9d562ef15b625f"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:2e8b55d8517a2fda8d95cb45d62a5a8bbf9dd0ad39c5b25c8833efea07b880ca"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:2de29005e11637e7a2361fa151f780ff8eb2543a0da1413bb951e9f14b699ef3"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:666ecce376999bf619756a24ce15bb14c5bfaf04bf00abc7e663ce17c3f34fe7"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:5246b14ca64a8675e0a7161f7af68fe3e910e6b90542b4bfb5439ba752191df6"}, + {file = "rpds_py-0.22.3.tar.gz", hash = "sha256:e32fee8ab45d3c2db6da19a5323bc3362237c8b653c70194414b892fd06a080d"}, ] [[package]] @@ -4631,37 +4629,41 @@ torch = ["safetensors[numpy]", "torch (>=1.10)"] [[package]] name = "scikit-learn" -version = "1.5.2" +version = "1.6.0" description = "A set of python modules for machine learning and data mining" optional = false python-versions = ">=3.9" files = [ - {file = "scikit_learn-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:299406827fb9a4f862626d0fe6c122f5f87f8910b86fe5daa4c32dcd742139b6"}, - {file = "scikit_learn-1.5.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:2d4cad1119c77930b235579ad0dc25e65c917e756fe80cab96aa3b9428bd3fb0"}, - {file = "scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c412ccc2ad9bf3755915e3908e677b367ebc8d010acbb3f182814524f2e5540"}, - {file = "scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a686885a4b3818d9e62904d91b57fa757fc2bed3e465c8b177be652f4dd37c8"}, - {file = "scikit_learn-1.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:c15b1ca23d7c5f33cc2cb0a0d6aaacf893792271cddff0edbd6a40e8319bc113"}, - {file = "scikit_learn-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03b6158efa3faaf1feea3faa884c840ebd61b6484167c711548fce208ea09445"}, - {file = "scikit_learn-1.5.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1ff45e26928d3b4eb767a8f14a9a6efbf1cbff7c05d1fb0f95f211a89fd4f5de"}, - {file = "scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f763897fe92d0e903aa4847b0aec0e68cadfff77e8a0687cabd946c89d17e675"}, - {file = "scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8b0ccd4a902836493e026c03256e8b206656f91fbcc4fde28c57a5b752561f1"}, - {file = "scikit_learn-1.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:6c16d84a0d45e4894832b3c4d0bf73050939e21b99b01b6fd59cbb0cf39163b6"}, - {file = "scikit_learn-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f932a02c3f4956dfb981391ab24bda1dbd90fe3d628e4b42caef3e041c67707a"}, - {file = "scikit_learn-1.5.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:3b923d119d65b7bd555c73be5423bf06c0105678ce7e1f558cb4b40b0a5502b1"}, - {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f60021ec1574e56632be2a36b946f8143bf4e5e6af4a06d85281adc22938e0dd"}, - {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:394397841449853c2290a32050382edaec3da89e35b3e03d6cc966aebc6a8ae6"}, - {file = "scikit_learn-1.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:57cc1786cfd6bd118220a92ede80270132aa353647684efa385a74244a41e3b1"}, - {file = "scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9a702e2de732bbb20d3bad29ebd77fc05a6b427dc49964300340e4c9328b3f5"}, - {file = "scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:b0768ad641981f5d3a198430a1d31c3e044ed2e8a6f22166b4d546a5116d7908"}, - {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:178ddd0a5cb0044464fc1bfc4cca5b1833bfc7bb022d70b05db8530da4bb3dd3"}, - {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7284ade780084d94505632241bf78c44ab3b6f1e8ccab3d2af58e0e950f9c12"}, - {file = "scikit_learn-1.5.2-cp313-cp313-win_amd64.whl", hash = "sha256:b7b0f9a0b1040830d38c39b91b3a44e1b643f4b36e36567b80b7c6bd2202a27f"}, - {file = "scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:757c7d514ddb00ae249832fe87100d9c73c6ea91423802872d9e74970a0e40b9"}, - {file = "scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:52788f48b5d8bca5c0736c175fa6bdaab2ef00a8f536cda698db61bd89c551c1"}, - {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:643964678f4b5fbdc95cbf8aec638acc7aa70f5f79ee2cdad1eec3df4ba6ead8"}, - {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca64b3089a6d9b9363cd3546f8978229dcbb737aceb2c12144ee3f70f95684b7"}, - {file = "scikit_learn-1.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:3bed4909ba187aca80580fe2ef370d9180dcf18e621a27c4cf2ef10d279a7efe"}, - {file = "scikit_learn-1.5.2.tar.gz", hash = "sha256:b4237ed7b3fdd0a4882792e68ef2545d5baa50aca3bb45aa7df468138ad8f94d"}, + {file = "scikit_learn-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:366fb3fa47dce90afed3d6106183f4978d6f24cfd595c2373424171b915ee718"}, + {file = "scikit_learn-1.6.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:59cd96a8d9f8dfd546f5d6e9787e1b989e981388d7803abbc9efdcde61e47460"}, + {file = "scikit_learn-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efa7a579606c73a0b3d210e33ea410ea9e1af7933fe324cb7e6fbafae4ea5948"}, + {file = "scikit_learn-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a46d3ca0f11a540b8eaddaf5e38172d8cd65a86cb3e3632161ec96c0cffb774c"}, + {file = "scikit_learn-1.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:5be4577769c5dde6e1b53de8e6520f9b664ab5861dd57acee47ad119fd7405d6"}, + {file = "scikit_learn-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1f50b4f24cf12a81c3c09958ae3b864d7534934ca66ded3822de4996d25d7285"}, + {file = "scikit_learn-1.6.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:eb9ae21f387826da14b0b9cb1034f5048ddb9182da429c689f5f4a87dc96930b"}, + {file = "scikit_learn-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0baa91eeb8c32632628874a5c91885eaedd23b71504d24227925080da075837a"}, + {file = "scikit_learn-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c716d13ba0a2f8762d96ff78d3e0cde90bc9c9b5c13d6ab6bb9b2d6ca6705fd"}, + {file = "scikit_learn-1.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:9aafd94bafc841b626681e626be27bf1233d5a0f20f0a6fdb4bee1a1963c6643"}, + {file = "scikit_learn-1.6.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:04a5ba45c12a5ff81518aa4f1604e826a45d20e53da47b15871526cda4ff5174"}, + {file = "scikit_learn-1.6.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:21fadfc2ad7a1ce8bd1d90f23d17875b84ec765eecbbfc924ff11fb73db582ce"}, + {file = "scikit_learn-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30f34bb5fde90e020653bb84dcb38b6c83f90c70680dbd8c38bd9becbad7a127"}, + {file = "scikit_learn-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1dad624cffe3062276a0881d4e441bc9e3b19d02d17757cd6ae79a9d192a0027"}, + {file = "scikit_learn-1.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:2fce7950a3fad85e0a61dc403df0f9345b53432ac0e47c50da210d22c60b6d85"}, + {file = "scikit_learn-1.6.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e5453b2e87ef8accedc5a8a4e6709f887ca01896cd7cc8a174fe39bd4bb00aef"}, + {file = "scikit_learn-1.6.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:5fe11794236fb83bead2af26a87ced5d26e3370b8487430818b915dafab1724e"}, + {file = "scikit_learn-1.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:61fe3dcec0d82ae280877a818ab652f4988371e32dd5451e75251bece79668b1"}, + {file = "scikit_learn-1.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b44e3a51e181933bdf9a4953cc69c6025b40d2b49e238233f149b98849beb4bf"}, + {file = "scikit_learn-1.6.0-cp313-cp313-win_amd64.whl", hash = "sha256:a17860a562bac54384454d40b3f6155200c1c737c9399e6a97962c63fce503ac"}, + {file = "scikit_learn-1.6.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:98717d3c152f6842d36a70f21e1468fb2f1a2f8f2624d9a3f382211798516426"}, + {file = "scikit_learn-1.6.0-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:34e20bfac8ff0ebe0ff20fb16a4d6df5dc4cc9ce383e00c2ab67a526a3c67b18"}, + {file = "scikit_learn-1.6.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eba06d75815406091419e06dd650b91ebd1c5f836392a0d833ff36447c2b1bfa"}, + {file = "scikit_learn-1.6.0-cp313-cp313t-win_amd64.whl", hash = "sha256:b6916d1cec1ff163c7d281e699d7a6a709da2f2c5ec7b10547e08cc788ddd3ae"}, + {file = "scikit_learn-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:66b1cf721a9f07f518eb545098226796c399c64abdcbf91c2b95d625068363da"}, + {file = "scikit_learn-1.6.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:7b35b60cf4cd6564b636e4a40516b3c61a4fa7a8b1f7a3ce80c38ebe04750bc3"}, + {file = "scikit_learn-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a73b1c2038c93bc7f4bf21f6c9828d5116c5d2268f7a20cfbbd41d3074d52083"}, + {file = "scikit_learn-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c3fa7d3dd5a0ec2d0baba0d644916fa2ab180ee37850c5d536245df916946bd"}, + {file = "scikit_learn-1.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:df778486a32518cda33818b7e3ce48c78cef1d5f640a6bc9d97c6d2e71449a51"}, + {file = "scikit_learn-1.6.0.tar.gz", hash = "sha256:9d58481f9f7499dff4196927aedd4285a0baec8caa3790efbe205f13de37dd6e"}, ] [package.dependencies] @@ -4673,11 +4675,11 @@ threadpoolctl = ">=3.1.0" [package.extras] benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] build = ["cython (>=3.0.10)", "meson-python (>=0.16.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pydata-sphinx-theme (>=0.15.3)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=7.3.7)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-design (>=0.6.0)", "sphinx-gallery (>=0.16.0)", "sphinx-prompt (>=1.4.0)", "sphinx-remove-toctrees (>=1.0.0.post1)", "sphinxcontrib-sass (>=0.3.4)", "sphinxext-opengraph (>=0.9.1)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pydata-sphinx-theme (>=0.15.3)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=7.3.7)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-design (>=0.6.0)", "sphinx-gallery (>=0.17.1)", "sphinx-prompt (>=1.4.0)", "sphinx-remove-toctrees (>=1.0.0.post1)", "sphinxcontrib-sass (>=0.3.4)", "sphinxext-opengraph (>=0.9.1)", "towncrier (>=24.8.0)"] examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] maintenance = ["conda-lock (==2.5.6)"] -tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.5.1)", "scikit-image (>=0.17.2)"] [[package]] name = "scipy" @@ -4767,13 +4769,13 @@ type = ["importlib_metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (>=1.12 [[package]] name = "six" -version = "1.16.0" +version = "1.17.0" description = "Python 2 and 3 compatibility utilities" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, + {file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"}, + {file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"}, ] [[package]] @@ -4952,123 +4954,26 @@ test = ["pytest", "ruff"] [[package]] name = "tokenizers" -version = "0.20.3" +version = "0.21.0" description = "" optional = false python-versions = ">=3.7" files = [ - {file = "tokenizers-0.20.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:31ccab28dbb1a9fe539787210b0026e22debeab1662970f61c2d921f7557f7e4"}, - {file = "tokenizers-0.20.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c6361191f762bda98c773da418cf511cbaa0cb8d0a1196f16f8c0119bde68ff8"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f128d5da1202b78fa0a10d8d938610472487da01b57098d48f7e944384362514"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:79c4121a2e9433ad7ef0769b9ca1f7dd7fa4c0cd501763d0a030afcbc6384481"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7850fde24197fe5cd6556e2fdba53a6d3bae67c531ea33a3d7c420b90904141"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b357970c095dc134978a68c67d845a1e3803ab7c4fbb39195bde914e7e13cf8b"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a333d878c4970b72d6c07848b90c05f6b045cf9273fc2bc04a27211721ad6118"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1fd9fee817f655a8f50049f685e224828abfadd436b8ff67979fc1d054b435f1"}, - {file = "tokenizers-0.20.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9e7816808b402129393a435ea2a509679b41246175d6e5e9f25b8692bfaa272b"}, - {file = "tokenizers-0.20.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ba96367db9d8a730d3a1d5996b4b7babb846c3994b8ef14008cd8660f55db59d"}, - {file = "tokenizers-0.20.3-cp310-none-win32.whl", hash = "sha256:ee31ba9d7df6a98619426283e80c6359f167e2e9882d9ce1b0254937dbd32f3f"}, - {file = "tokenizers-0.20.3-cp310-none-win_amd64.whl", hash = "sha256:a845c08fdad554fe0871d1255df85772f91236e5fd6b9287ef8b64f5807dbd0c"}, - {file = "tokenizers-0.20.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:585b51e06ca1f4839ce7759941e66766d7b060dccfdc57c4ca1e5b9a33013a90"}, - {file = "tokenizers-0.20.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:61cbf11954f3b481d08723ebd048ba4b11e582986f9be74d2c3bdd9293a4538d"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef820880d5e4e8484e2fa54ff8d297bb32519eaa7815694dc835ace9130a3eea"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:67ef4dcb8841a4988cd00dd288fb95dfc8e22ed021f01f37348fd51c2b055ba9"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff1ef8bd47a02b0dc191688ccb4da53600df5d4c9a05a4b68e1e3de4823e78eb"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:444d188186eab3148baf0615b522461b41b1f0cd58cd57b862ec94b6ac9780f1"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37c04c032c1442740b2c2d925f1857885c07619224a533123ac7ea71ca5713da"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:453c7769d22231960ee0e883d1005c93c68015025a5e4ae56275406d94a3c907"}, - {file = "tokenizers-0.20.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4bb31f7b2847e439766aaa9cc7bccf7ac7088052deccdb2275c952d96f691c6a"}, - {file = "tokenizers-0.20.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:843729bf0f991b29655a069a2ff58a4c24375a553c70955e15e37a90dd4e045c"}, - {file = "tokenizers-0.20.3-cp311-none-win32.whl", hash = "sha256:efcce3a927b1e20ca694ba13f7a68c59b0bd859ef71e441db68ee42cf20c2442"}, - {file = "tokenizers-0.20.3-cp311-none-win_amd64.whl", hash = "sha256:88301aa0801f225725b6df5dea3d77c80365ff2362ca7e252583f2b4809c4cc0"}, - {file = "tokenizers-0.20.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:49d12a32e190fad0e79e5bdb788d05da2f20d8e006b13a70859ac47fecf6ab2f"}, - {file = "tokenizers-0.20.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:282848cacfb9c06d5e51489f38ec5aa0b3cd1e247a023061945f71f41d949d73"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:abe4e08c7d0cd6154c795deb5bf81d2122f36daf075e0c12a8b050d824ef0a64"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ca94fc1b73b3883c98f0c88c77700b13d55b49f1071dfd57df2b06f3ff7afd64"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef279c7e239f95c8bdd6ff319d9870f30f0d24915b04895f55b1adcf96d6c60d"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16384073973f6ccbde9852157a4fdfe632bb65208139c9d0c0bd0176a71fd67f"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:312d522caeb8a1a42ebdec87118d99b22667782b67898a76c963c058a7e41d4f"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2b7cb962564785a83dafbba0144ecb7f579f1d57d8c406cdaa7f32fe32f18ad"}, - {file = "tokenizers-0.20.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:124c5882ebb88dadae1fc788a582299fcd3a8bd84fc3e260b9918cf28b8751f5"}, - {file = "tokenizers-0.20.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2b6e54e71f84c4202111a489879005cb14b92616a87417f6c102c833af961ea2"}, - {file = "tokenizers-0.20.3-cp312-none-win32.whl", hash = "sha256:83d9bfbe9af86f2d9df4833c22e94d94750f1d0cd9bfb22a7bb90a86f61cdb1c"}, - {file = "tokenizers-0.20.3-cp312-none-win_amd64.whl", hash = "sha256:44def74cee574d609a36e17c8914311d1b5dbcfe37c55fd29369d42591b91cf2"}, - {file = "tokenizers-0.20.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:e0b630e0b536ef0e3c8b42c685c1bc93bd19e98c0f1543db52911f8ede42cf84"}, - {file = "tokenizers-0.20.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a02d160d2b19bcbfdf28bd9a4bf11be4cb97d0499c000d95d4c4b1a4312740b6"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e3d80d89b068bc30034034b5319218c7c0a91b00af19679833f55f3becb6945"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:174a54910bed1b089226512b4458ea60d6d6fd93060254734d3bc3540953c51c"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:098b8a632b8656aa5802c46689462c5c48f02510f24029d71c208ec2c822e771"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:78c8c143e3ae41e718588281eb3e212c2b31623c9d6d40410ec464d7d6221fb5"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b26b0aadb18cd8701077362ba359a06683662d5cafe3e8e8aba10eb05c037f1"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07d7851a72717321022f3774e84aa9d595a041d643fafa2e87fbc9b18711dac0"}, - {file = "tokenizers-0.20.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:bd44e48a430ada902c6266a8245f5036c4fe744fcb51f699999fbe82aa438797"}, - {file = "tokenizers-0.20.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:a4c186bb006ccbe1f5cc4e0380d1ce7806f5955c244074fd96abc55e27b77f01"}, - {file = "tokenizers-0.20.3-cp313-none-win32.whl", hash = "sha256:6e19e0f1d854d6ab7ea0c743d06e764d1d9a546932be0a67f33087645f00fe13"}, - {file = "tokenizers-0.20.3-cp313-none-win_amd64.whl", hash = "sha256:d50ede425c7e60966a9680d41b58b3a0950afa1bb570488e2972fa61662c4273"}, - {file = "tokenizers-0.20.3-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:9adda1ff5fb9dcdf899ceca672a4e2ce9e797adb512a6467305ca3d8bfcfbdd0"}, - {file = "tokenizers-0.20.3-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:6dde2cae6004ba7a3badff4a11911cae03ebf23e97eebfc0e71fef2530e5074f"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4a7fd678b35614fca708579eb95b7587a5e8a6d328171bd2488fd9f27d82be4"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1b80e3c7283a01a356bd2210f53d1a4a5d32b269c2024389ed0173137708d50e"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a8cc0e8176b762973758a77f0d9c4467d310e33165fb74173418ca3734944da4"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d5634b2e2f5f3d2b4439d2d74066e22eb4b1f04f3fea05cb2a3c12d89b5a3bcd"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b4ba635165bc1ea46f2da8e5d80b5f70f6ec42161e38d96dbef33bb39df73964"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18e4c7c64172e7789bd8b07aa3087ea87c4c4de7e90937a2aa036b5d92332536"}, - {file = "tokenizers-0.20.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1f74909ef7675c26d4095a817ec3393d67f3158ca4836c233212e5613ef640c4"}, - {file = "tokenizers-0.20.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0e9b81321a1e05b16487d312b4264984513f8b4a7556229cafac6e88c2036b09"}, - {file = "tokenizers-0.20.3-cp37-none-win32.whl", hash = "sha256:ab48184cd58b4a03022a2ec75b54c9f600ffea9a733612c02325ed636f353729"}, - {file = "tokenizers-0.20.3-cp37-none-win_amd64.whl", hash = "sha256:60ac483cebee1c12c71878523e768df02fa17e4c54412966cb3ac862c91b36c1"}, - {file = "tokenizers-0.20.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:3229ef103c89583d10b9378afa5d601b91e6337530a0988e17ca8d635329a996"}, - {file = "tokenizers-0.20.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6ac52cc24bad3de865c7e65b1c4e7b70d00938a8ae09a92a453b8f676e714ad5"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:04627b7b502fa6a2a005e1bd446fa4247d89abcb1afaa1b81eb90e21aba9a60f"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c27ceb887f0e81a3c377eb4605dca7a95a81262761c0fba308d627b2abb98f2b"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:65ab780194da4e1fcf5670523a2f377c4838ebf5249efe41fa1eddd2a84fb49d"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98d343134f47159e81f7f242264b0eb222e6b802f37173c8d7d7b64d5c9d1388"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2475bb004ab2009d29aff13b5047bfdb3d4b474f0aa9d4faa13a7f34dbbbb43"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b6583a65c01db1197c1eb36857ceba8ec329d53afadd268b42a6b04f4965724"}, - {file = "tokenizers-0.20.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:62d00ba208358c037eeab7bfc00a905adc67b2d31b68ab40ed09d75881e114ea"}, - {file = "tokenizers-0.20.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0fc7a39e5bedc817bda395a798dfe2d9c5f7c71153c90d381b5135a0328d9520"}, - {file = "tokenizers-0.20.3-cp38-none-win32.whl", hash = "sha256:84d40ee0f8550d64d3ea92dd7d24a8557a9172165bdb986c9fb2503b4fe4e3b6"}, - {file = "tokenizers-0.20.3-cp38-none-win_amd64.whl", hash = "sha256:205a45246ed7f1718cf3785cff88450ba603352412aaf220ace026384aa3f1c0"}, - {file = "tokenizers-0.20.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:93e37f0269a11dc3b1a953f1fca9707f0929ebf8b4063c591c71a0664219988e"}, - {file = "tokenizers-0.20.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f4cb0c614b0135e781de96c2af87e73da0389ac1458e2a97562ed26e29490d8d"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7eb2fb1c432f5746b22f8a7f09fc18c4156cb0031c77f53cb19379d82d43297a"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bfa8d029bb156181b006643309d6b673615a24e4ed24cf03aa191d599b996f51"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f90549622de3bf476ad9f1dd6f3f952ec3ed6ab8615ae88ef060d0c5bfad55d"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a1d469c74eebf5c43fd61cd9b030e271d17198edd7bd45392e03a3c091d7d6d4"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bee8f53b2594749f4460d53253bae55d718f04e9b633efa0f5df8938bd98e4f0"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:938441babf3e5720e4459e306ef2809fb267680df9d1ff2873458b22aef60248"}, - {file = "tokenizers-0.20.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7310ab23d7b0caebecc0e8be11a1146f320f5f07284000f6ea54793e83de1b75"}, - {file = "tokenizers-0.20.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:16121eb030a2b13094cfec936b0c12e8b4063c5f839591ea7d0212336d8f9921"}, - {file = "tokenizers-0.20.3-cp39-none-win32.whl", hash = "sha256:401cc21ef642ee235985d747f65e18f639464d377c70836c9003df208d582064"}, - {file = "tokenizers-0.20.3-cp39-none-win_amd64.whl", hash = "sha256:7498f3ea7746133335a6adb67a77cf77227a8b82c8483f644a2e5f86fea42b8d"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e919f2e3e68bb51dc31de4fcbbeff3bdf9c1cad489044c75e2b982a91059bd3c"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:b8e9608f2773996cc272156e305bd79066163a66b0390fe21750aff62df1ac07"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39270a7050deaf50f7caff4c532c01b3c48f6608d42b3eacdebdc6795478c8df"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e005466632b1c5d2d2120f6de8aa768cc9d36cd1ab7d51d0c27a114c91a1e6ee"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a07962340b36189b6c8feda552ea1bfeee6cf067ff922a1d7760662c2ee229e5"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:55046ad3dd5f2b3c67501fcc8c9cbe3e901d8355f08a3b745e9b57894855f85b"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:efcf0eb939988b627558aaf2b9dc3e56d759cad2e0cfa04fcab378e4b48fc4fd"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f3558a7ae6a6d38a77dfce12172a1e2e1bf3e8871e744a1861cd7591ea9ebe24"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d53029fe44bc70c3ff14ef512460a0cf583495a0f8e2f4b70e26eb9438e38a9"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57a2a56397b2bec5a629b516b23f0f8a3e4f978c7488d4a299980f8375954b85"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e5bfaae740ef9ece000f8a07e78ac0e2b085c5ce9648f8593ddf0243c9f76d"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:fbaf3ea28fedfb2283da60e710aff25492e795a7397cad8a50f1e079b65a5a70"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c47c037116310dc976eb96b008e41b9cfaba002ed8005848d4d632ee0b7ba9ae"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c31751f0721f58f5e19bb27c1acc259aeff860d8629c4e1a900b26a1979ada8e"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:c697cbd3be7a79ea250ea5f380d6f12e534c543cfb137d5c734966b3ee4f34cc"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b48971b88ef9130bf35b41b35fd857c3c4dae4a9cd7990ebc7fc03e59cc92438"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4e615de179bbe060ab33773f0d98a8a8572b5883dd7dac66c1de8c056c7e748c"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da1ec842035ed9999c62e45fbe0ff14b7e8a7e02bb97688cc6313cf65e5cd755"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:6ee4954c1dd23aadc27958dad759006e71659d497dcb0ef0c7c87ea992c16ebd"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:3eda46ca402751ec82553a321bf35a617b76bbed7586e768c02ccacbdda94d6d"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:de082392a85eb0055cc055c535bff2f0cc15d7a000bdc36fbf601a0f3cf8507a"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c3db46cc0647bfd88263afdb739b92017a02a87ee30945cb3e86c7e25c7c9917"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a292392f24ab9abac5cfa8197e5a6208f2e43723420217e1ceba0b4ec77816ac"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dcd91f4e60f62b20d83a87a84fe062035a1e3ff49a8c2bbdeb2d441c8e311f4"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:900991a2b8ee35961b1095db7e265342e0e42a84c1a594823d5ee9f8fb791958"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:5a8d8261ca2133d4f98aa9627c748189502b3787537ba3d7e2beb4f7cfc5d627"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c4fd4d71e6deb6ddf99d8d0eab87d1d16f635898906e631914a9bae8ae9f2cfb"}, - {file = "tokenizers-0.20.3.tar.gz", hash = "sha256:2278b34c5d0dd78e087e1ca7f9b1dcbf129d80211afa645f214bd6e051037539"}, + {file = "tokenizers-0.21.0-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:3c4c93eae637e7d2aaae3d376f06085164e1660f89304c0ab2b1d08a406636b2"}, + {file = "tokenizers-0.21.0-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:f53ea537c925422a2e0e92a24cce96f6bc5046bbef24a1652a5edc8ba975f62e"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b177fb54c4702ef611de0c069d9169f0004233890e0c4c5bd5508ae05abf193"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6b43779a269f4629bebb114e19c3fca0223296ae9fea8bb9a7a6c6fb0657ff8e"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9aeb255802be90acfd363626753fda0064a8df06031012fe7d52fd9a905eb00e"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d8b09dbeb7a8d73ee204a70f94fc06ea0f17dcf0844f16102b9f414f0b7463ba"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:400832c0904f77ce87c40f1a8a27493071282f785724ae62144324f171377273"}, + {file = "tokenizers-0.21.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84ca973b3a96894d1707e189c14a774b701596d579ffc7e69debfc036a61a04"}, + {file = "tokenizers-0.21.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:eb7202d231b273c34ec67767378cd04c767e967fda12d4a9e36208a34e2f137e"}, + {file = "tokenizers-0.21.0-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:089d56db6782a73a27fd8abf3ba21779f5b85d4a9f35e3b493c7bbcbbf0d539b"}, + {file = "tokenizers-0.21.0-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:c87ca3dc48b9b1222d984b6b7490355a6fdb411a2d810f6f05977258400ddb74"}, + {file = "tokenizers-0.21.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:4145505a973116f91bc3ac45988a92e618a6f83eb458f49ea0790df94ee243ff"}, + {file = "tokenizers-0.21.0-cp39-abi3-win32.whl", hash = "sha256:eb1702c2f27d25d9dd5b389cc1f2f51813e99f8ca30d9e25348db6585a97e24a"}, + {file = "tokenizers-0.21.0-cp39-abi3-win_amd64.whl", hash = "sha256:87841da5a25a3a5f70c102de371db120f41873b854ba65e52bccd57df5a3780c"}, + {file = "tokenizers-0.21.0.tar.gz", hash = "sha256:ee0894bf311b75b0c03079f33859ae4b2334d675d4e93f5a4132e1eae2834fe4"}, ] [package.dependencies] @@ -5214,41 +5119,41 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0, [[package]] name = "transformers" -version = "4.46.3" +version = "4.47.0" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" optional = false -python-versions = ">=3.8.0" +python-versions = ">=3.9.0" files = [ - {file = "transformers-4.46.3-py3-none-any.whl", hash = "sha256:a12ef6f52841fd190a3e5602145b542d03507222f2c64ebb7ee92e8788093aef"}, - {file = "transformers-4.46.3.tar.gz", hash = "sha256:8ee4b3ae943fe33e82afff8e837f4b052058b07ca9be3cb5b729ed31295f72cc"}, + {file = "transformers-4.47.0-py3-none-any.whl", hash = "sha256:a8e1bafdaae69abdda3cad638fe392e37c86d2ce0ecfcae11d60abb8f949ff4d"}, + {file = "transformers-4.47.0.tar.gz", hash = "sha256:f8ead7a5a4f6937bb507e66508e5e002dc5930f7b6122a9259c37b099d0f3b19"}, ] [package.dependencies] accelerate = {version = ">=0.26.0", optional = true, markers = "extra == \"torch\""} filelock = "*" -huggingface-hub = ">=0.23.2,<1.0" +huggingface-hub = ">=0.24.0,<1.0" numpy = ">=1.17" packaging = ">=20.0" pyyaml = ">=5.1" regex = "!=2019.12.17" requests = "*" safetensors = ">=0.4.1" -tokenizers = ">=0.20,<0.21" +tokenizers = ">=0.21,<0.22" torch = {version = "*", optional = true, markers = "extra == \"torch\""} tqdm = ">=4.27" [package.extras] accelerate = ["accelerate (>=0.26.0)"] agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] -all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision"] +all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=1.0.11)", "tokenizers (>=0.21,<0.22)", "torch", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] benchmark = ["optimum-benchmark (>=0.3.0)"] codecarbon = ["codecarbon (==1.2.0)"] deepspeed = ["accelerate (>=0.26.0)", "deepspeed (>=0.9.3)"] deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.26.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk (<=3.8.1)", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.20,<0.21)", "urllib3 (<2.0.0)"] -dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "libcst", "librosa", "nltk (<=3.8.1)", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=1.0.11)", "tokenizers (>=0.21,<0.22)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.21,<0.22)", "urllib3 (<2.0.0)"] +dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "libcst", "librosa", "nltk (<=3.8.1)", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=1.0.11)", "tokenizers (>=0.21,<0.22)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] @@ -5274,12 +5179,12 @@ tf = ["keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow (>2.9,< tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<0.24)", "tensorflow-text (<2.16)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] tiktoken = ["blobfile", "tiktoken"] -timm = ["timm (<=0.9.16)"] -tokenizers = ["tokenizers (>=0.20,<0.21)"] +timm = ["timm (<=1.0.11)"] +tokenizers = ["tokenizers (>=0.21,<0.22)"] torch = ["accelerate (>=0.26.0)", "torch"] torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] -torchhub = ["filelock", "huggingface-hub (>=0.23.2,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.20,<0.21)", "torch", "tqdm (>=4.27)"] +torchhub = ["filelock", "huggingface-hub (>=0.24.0,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.21,<0.22)", "torch", "tqdm (>=4.27)"] video = ["av (==9.2.0)"] vision = ["Pillow (>=10.0.1,<=15.0)"] @@ -5325,13 +5230,13 @@ resolved_reference = "f46398ef88df036dd92f8667c749dfbb58bcbccc" [[package]] name = "types-python-dateutil" -version = "2.9.0.20241003" +version = "2.9.0.20241206" description = "Typing stubs for python-dateutil" optional = false python-versions = ">=3.8" files = [ - {file = "types-python-dateutil-2.9.0.20241003.tar.gz", hash = "sha256:58cb85449b2a56d6684e41aeefb4c4280631246a0da1a719bdbe6f3fb0317446"}, - {file = "types_python_dateutil-2.9.0.20241003-py3-none-any.whl", hash = "sha256:250e1d8e80e7bbc3a6c99b907762711d1a1cdd00e978ad39cb5940f6f0a87f3d"}, + {file = "types_python_dateutil-2.9.0.20241206-py3-none-any.whl", hash = "sha256:e248a4bc70a486d3e3ec84d0dc30eec3a5f979d6e7ee4123ae043eedbb987f53"}, + {file = "types_python_dateutil-2.9.0.20241206.tar.gz", hash = "sha256:18f493414c26ffba692a72369fea7a154c502646301ebfe3d56a04b3767284cb"}, ] [[package]] @@ -5690,93 +5595,93 @@ files = [ [[package]] name = "yarl" -version = "1.18.0" +version = "1.18.3" description = "Yet another URL library" optional = false python-versions = ">=3.9" files = [ - {file = "yarl-1.18.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:074fee89caab89a97e18ef5f29060ef61ba3cae6cd77673acc54bfdd3214b7b7"}, - {file = "yarl-1.18.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b026cf2c32daf48d90c0c4e406815c3f8f4cfe0c6dfccb094a9add1ff6a0e41a"}, - {file = "yarl-1.18.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ae38bd86eae3ba3d2ce5636cc9e23c80c9db2e9cb557e40b98153ed102b5a736"}, - {file = "yarl-1.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:685cc37f3f307c6a8e879986c6d85328f4c637f002e219f50e2ef66f7e062c1d"}, - {file = "yarl-1.18.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8254dbfce84ee5d1e81051ee7a0f1536c108ba294c0fdb5933476398df0654f3"}, - {file = "yarl-1.18.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:20de4a8b04de70c49698dc2390b7fd2d18d424d3b876371f9b775e2b462d4b41"}, - {file = "yarl-1.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b0a2074a37285570d54b55820687de3d2f2b9ecf1b714e482e48c9e7c0402038"}, - {file = "yarl-1.18.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3f576ed278860df2721a5d57da3381040176ef1d07def9688a385c8330db61a1"}, - {file = "yarl-1.18.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3a3709450a574d61be6ac53d582496014342ea34876af8dc17cc16da32826c9a"}, - {file = "yarl-1.18.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:bd80ed29761490c622edde5dd70537ca8c992c2952eb62ed46984f8eff66d6e8"}, - {file = "yarl-1.18.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:32141e13a1d5a48525e519c9197d3f4d9744d818d5c7d6547524cc9eccc8971e"}, - {file = "yarl-1.18.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8b8d3e4e014fb4274f1c5bf61511d2199e263909fb0b8bda2a7428b0894e8dc6"}, - {file = "yarl-1.18.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:701bb4a8f4de191c8c0cc9a1e6d5142f4df880e9d1210e333b829ca9425570ed"}, - {file = "yarl-1.18.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:a45d94075ac0647621eaaf693c8751813a3eccac455d423f473ffed38c8ac5c9"}, - {file = "yarl-1.18.0-cp310-cp310-win32.whl", hash = "sha256:34176bfb082add67cb2a20abd85854165540891147f88b687a5ed0dc225750a0"}, - {file = "yarl-1.18.0-cp310-cp310-win_amd64.whl", hash = "sha256:73553bbeea7d6ec88c08ad8027f4e992798f0abc459361bf06641c71972794dc"}, - {file = "yarl-1.18.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b8e8c516dc4e1a51d86ac975b0350735007e554c962281c432eaa5822aa9765c"}, - {file = "yarl-1.18.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2e6b4466714a73f5251d84b471475850954f1fa6acce4d3f404da1d55d644c34"}, - {file = "yarl-1.18.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c893f8c1a6d48b25961e00922724732d00b39de8bb0b451307482dc87bddcd74"}, - {file = "yarl-1.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:13aaf2bdbc8c86ddce48626b15f4987f22e80d898818d735b20bd58f17292ee8"}, - {file = "yarl-1.18.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dd21c0128e301851de51bc607b0a6da50e82dc34e9601f4b508d08cc89ee7929"}, - {file = "yarl-1.18.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:205de377bd23365cd85562c9c6c33844050a93661640fda38e0567d2826b50df"}, - {file = "yarl-1.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed69af4fe2a0949b1ea1d012bf065c77b4c7822bad4737f17807af2adb15a73c"}, - {file = "yarl-1.18.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e1c18890091aa3cc8a77967943476b729dc2016f4cfe11e45d89b12519d4a93"}, - {file = "yarl-1.18.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:91b8fb9427e33f83ca2ba9501221ffaac1ecf0407f758c4d2f283c523da185ee"}, - {file = "yarl-1.18.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:536a7a8a53b75b2e98ff96edb2dfb91a26b81c4fed82782035767db5a465be46"}, - {file = "yarl-1.18.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a64619a9c47c25582190af38e9eb382279ad42e1f06034f14d794670796016c0"}, - {file = "yarl-1.18.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c73a6bbc97ba1b5a0c3c992ae93d721c395bdbb120492759b94cc1ac71bc6350"}, - {file = "yarl-1.18.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a173401d7821a2a81c7b47d4e7d5c4021375a1441af0c58611c1957445055056"}, - {file = "yarl-1.18.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7520e799b1f84e095cce919bd6c23c9d49472deeef25fe1ef960b04cca51c3fc"}, - {file = "yarl-1.18.0-cp311-cp311-win32.whl", hash = "sha256:c4cb992d8090d5ae5f7afa6754d7211c578be0c45f54d3d94f7781c495d56716"}, - {file = "yarl-1.18.0-cp311-cp311-win_amd64.whl", hash = "sha256:52c136f348605974c9b1c878addd6b7a60e3bf2245833e370862009b86fa4689"}, - {file = "yarl-1.18.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:1ece25e2251c28bab737bdf0519c88189b3dd9492dc086a1d77336d940c28ced"}, - {file = "yarl-1.18.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:454902dc1830d935c90b5b53c863ba2a98dcde0fbaa31ca2ed1ad33b2a7171c6"}, - {file = "yarl-1.18.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:01be8688fc211dc237e628fcc209dda412d35de7642453059a0553747018d075"}, - {file = "yarl-1.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d26f1fa9fa2167bb238f6f4b20218eb4e88dd3ef21bb8f97439fa6b5313e30d"}, - {file = "yarl-1.18.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b234a4a9248a9f000b7a5dfe84b8cb6210ee5120ae70eb72a4dcbdb4c528f72f"}, - {file = "yarl-1.18.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe94d1de77c4cd8caff1bd5480e22342dbd54c93929f5943495d9c1e8abe9f42"}, - {file = "yarl-1.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b4c90c5363c6b0a54188122b61edb919c2cd1119684999d08cd5e538813a28e"}, - {file = "yarl-1.18.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:49a98ecadc5a241c9ba06de08127ee4796e1009555efd791bac514207862b43d"}, - {file = "yarl-1.18.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9106025c7f261f9f5144f9aa7681d43867eed06349a7cfb297a1bc804de2f0d1"}, - {file = "yarl-1.18.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:f275ede6199d0f1ed4ea5d55a7b7573ccd40d97aee7808559e1298fe6efc8dbd"}, - {file = "yarl-1.18.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f7edeb1dcc7f50a2c8e08b9dc13a413903b7817e72273f00878cb70e766bdb3b"}, - {file = "yarl-1.18.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c083f6dd6951b86e484ebfc9c3524b49bcaa9c420cb4b2a78ef9f7a512bfcc85"}, - {file = "yarl-1.18.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:80741ec5b471fbdfb997821b2842c59660a1c930ceb42f8a84ba8ca0f25a66aa"}, - {file = "yarl-1.18.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b1a3297b9cad594e1ff0c040d2881d7d3a74124a3c73e00c3c71526a1234a9f7"}, - {file = "yarl-1.18.0-cp312-cp312-win32.whl", hash = "sha256:cd6ab7d6776c186f544f893b45ee0c883542b35e8a493db74665d2e594d3ca75"}, - {file = "yarl-1.18.0-cp312-cp312-win_amd64.whl", hash = "sha256:039c299a0864d1f43c3e31570045635034ea7021db41bf4842693a72aca8df3a"}, - {file = "yarl-1.18.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6fb64dd45453225f57d82c4764818d7a205ee31ce193e9f0086e493916bd4f72"}, - {file = "yarl-1.18.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3adaaf9c6b1b4fc258584f4443f24d775a2086aee82d1387e48a8b4f3d6aecf6"}, - {file = "yarl-1.18.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:da206d1ec78438a563c5429ab808a2b23ad7bc025c8adbf08540dde202be37d5"}, - {file = "yarl-1.18.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:576d258b21c1db4c6449b1c572c75d03f16a482eb380be8003682bdbe7db2f28"}, - {file = "yarl-1.18.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c60e547c0a375c4bfcdd60eef82e7e0e8698bf84c239d715f5c1278a73050393"}, - {file = "yarl-1.18.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e3818eabaefb90adeb5e0f62f047310079d426387991106d4fbf3519eec7d90a"}, - {file = "yarl-1.18.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5f72421246c21af6a92fbc8c13b6d4c5427dfd949049b937c3b731f2f9076bd"}, - {file = "yarl-1.18.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7fa7d37f2ada0f42e0723632993ed422f2a679af0e200874d9d861720a54f53e"}, - {file = "yarl-1.18.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:42ba84e2ac26a3f252715f8ec17e6fdc0cbf95b9617c5367579fafcd7fba50eb"}, - {file = "yarl-1.18.0-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:6a49ad0102c0f0ba839628d0bf45973c86ce7b590cdedf7540d5b1833ddc6f00"}, - {file = "yarl-1.18.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:96404e8d5e1bbe36bdaa84ef89dc36f0e75939e060ca5cd45451aba01db02902"}, - {file = "yarl-1.18.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:a0509475d714df8f6d498935b3f307cd122c4ca76f7d426c7e1bb791bcd87eda"}, - {file = "yarl-1.18.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:1ff116f0285b5c8b3b9a2680aeca29a858b3b9e0402fc79fd850b32c2bcb9f8b"}, - {file = "yarl-1.18.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e2580c1d7e66e6d29d6e11855e3b1c6381971e0edd9a5066e6c14d79bc8967af"}, - {file = "yarl-1.18.0-cp313-cp313-win32.whl", hash = "sha256:14408cc4d34e202caba7b5ac9cc84700e3421a9e2d1b157d744d101b061a4a88"}, - {file = "yarl-1.18.0-cp313-cp313-win_amd64.whl", hash = "sha256:1db1537e9cb846eb0ff206eac667f627794be8b71368c1ab3207ec7b6f8c5afc"}, - {file = "yarl-1.18.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:fa2c9cb607e0f660d48c54a63de7a9b36fef62f6b8bd50ff592ce1137e73ac7d"}, - {file = "yarl-1.18.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c0f4808644baf0a434a3442df5e0bedf8d05208f0719cedcd499e168b23bfdc4"}, - {file = "yarl-1.18.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7db9584235895a1dffca17e1c634b13870852094f6389b68dcc6338086aa7b08"}, - {file = "yarl-1.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:309f8d27d6f93ceeeb80aa6980e883aa57895270f7f41842b92247e65d7aeddf"}, - {file = "yarl-1.18.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:609ffd44fed2ed88d9b4ef62ee860cf86446cf066333ad4ce4123505b819e581"}, - {file = "yarl-1.18.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f172b8b2c72a13a06ea49225a9c47079549036ad1b34afa12d5491b881f5b993"}, - {file = "yarl-1.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89ae7de94631b60d468412c18290d358a9d805182373d804ec839978b120422"}, - {file = "yarl-1.18.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:466d31fd043ef9af822ee3f1df8fdff4e8c199a7f4012c2642006af240eade17"}, - {file = "yarl-1.18.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:7609b8462351c4836b3edce4201acb6dd46187b207c589b30a87ffd1813b48dc"}, - {file = "yarl-1.18.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:d9d4f5e471e8dc49b593a80766c2328257e405f943c56a3dc985c125732bc4cf"}, - {file = "yarl-1.18.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:67b336c15e564d76869c9a21316f90edf546809a5796a083b8f57c845056bc01"}, - {file = "yarl-1.18.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:b212452b80cae26cb767aa045b051740e464c5129b7bd739c58fbb7deb339e7b"}, - {file = "yarl-1.18.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:38b39b7b3e692b6c92b986b00137a3891eddb66311b229d1940dcbd4f025083c"}, - {file = "yarl-1.18.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a7ee6884a8848792d58b854946b685521f41d8871afa65e0d4a774954e9c9e89"}, - {file = "yarl-1.18.0-cp39-cp39-win32.whl", hash = "sha256:b4095c5019bb889aa866bf12ed4c85c0daea5aafcb7c20d1519f02a1e738f07f"}, - {file = "yarl-1.18.0-cp39-cp39-win_amd64.whl", hash = "sha256:2d90f2e4d16a5b0915ee065218b435d2ef619dd228973b1b47d262a6f7cd8fa5"}, - {file = "yarl-1.18.0-py3-none-any.whl", hash = "sha256:dbf53db46f7cf176ee01d8d98c39381440776fcda13779d269a8ba664f69bec0"}, - {file = "yarl-1.18.0.tar.gz", hash = "sha256:20d95535e7d833889982bfe7cc321b7f63bf8879788fee982c76ae2b24cfb715"}, + {file = "yarl-1.18.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7df647e8edd71f000a5208fe6ff8c382a1de8edfbccdbbfe649d263de07d8c34"}, + {file = "yarl-1.18.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c69697d3adff5aa4f874b19c0e4ed65180ceed6318ec856ebc423aa5850d84f7"}, + {file = "yarl-1.18.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:602d98f2c2d929f8e697ed274fbadc09902c4025c5a9963bf4e9edfc3ab6f7ed"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c654d5207c78e0bd6d749f6dae1dcbbfde3403ad3a4b11f3c5544d9906969dde"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5094d9206c64181d0f6e76ebd8fb2f8fe274950a63890ee9e0ebfd58bf9d787b"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35098b24e0327fc4ebdc8ffe336cee0a87a700c24ffed13161af80124b7dc8e5"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3236da9272872443f81fedc389bace88408f64f89f75d1bdb2256069a8730ccc"}, + {file = "yarl-1.18.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2c08cc9b16f4f4bc522771d96734c7901e7ebef70c6c5c35dd0f10845270bcd"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:80316a8bd5109320d38eef8833ccf5f89608c9107d02d2a7f985f98ed6876990"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:c1e1cc06da1491e6734f0ea1e6294ce00792193c463350626571c287c9a704db"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fea09ca13323376a2fdfb353a5fa2e59f90cd18d7ca4eaa1fd31f0a8b4f91e62"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e3b9fd71836999aad54084906f8663dffcd2a7fb5cdafd6c37713b2e72be1760"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:757e81cae69244257d125ff31663249b3013b5dc0a8520d73694aed497fb195b"}, + {file = "yarl-1.18.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b1771de9944d875f1b98a745bc547e684b863abf8f8287da8466cf470ef52690"}, + {file = "yarl-1.18.3-cp310-cp310-win32.whl", hash = "sha256:8874027a53e3aea659a6d62751800cf6e63314c160fd607489ba5c2edd753cf6"}, + {file = "yarl-1.18.3-cp310-cp310-win_amd64.whl", hash = "sha256:93b2e109287f93db79210f86deb6b9bbb81ac32fc97236b16f7433db7fc437d8"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8503ad47387b8ebd39cbbbdf0bf113e17330ffd339ba1144074da24c545f0069"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02ddb6756f8f4517a2d5e99d8b2f272488e18dd0bfbc802f31c16c6c20f22193"}, + {file = "yarl-1.18.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:67a283dd2882ac98cc6318384f565bffc751ab564605959df4752d42483ad889"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d980e0325b6eddc81331d3f4551e2a333999fb176fd153e075c6d1c2530aa8a8"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b643562c12680b01e17239be267bc306bbc6aac1f34f6444d1bded0c5ce438ca"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c017a3b6df3a1bd45b9fa49a0f54005e53fbcad16633870104b66fa1a30a29d8"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75674776d96d7b851b6498f17824ba17849d790a44d282929c42dbb77d4f17ae"}, + {file = "yarl-1.18.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ccaa3a4b521b780a7e771cc336a2dba389a0861592bbce09a476190bb0c8b4b3"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2d06d3005e668744e11ed80812e61efd77d70bb7f03e33c1598c301eea20efbb"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:9d41beda9dc97ca9ab0b9888cb71f7539124bc05df02c0cff6e5acc5a19dcc6e"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ba23302c0c61a9999784e73809427c9dbedd79f66a13d84ad1b1943802eaaf59"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:6748dbf9bfa5ba1afcc7556b71cda0d7ce5f24768043a02a58846e4a443d808d"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:0b0cad37311123211dc91eadcb322ef4d4a66008d3e1bdc404808992260e1a0e"}, + {file = "yarl-1.18.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0fb2171a4486bb075316ee754c6d8382ea6eb8b399d4ec62fde2b591f879778a"}, + {file = "yarl-1.18.3-cp311-cp311-win32.whl", hash = "sha256:61b1a825a13bef4a5f10b1885245377d3cd0bf87cba068e1d9a88c2ae36880e1"}, + {file = "yarl-1.18.3-cp311-cp311-win_amd64.whl", hash = "sha256:b9d60031cf568c627d028239693fd718025719c02c9f55df0a53e587aab951b5"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:1dd4bdd05407ced96fed3d7f25dbbf88d2ffb045a0db60dbc247f5b3c5c25d50"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7c33dd1931a95e5d9a772d0ac5e44cac8957eaf58e3c8da8c1414de7dd27c576"}, + {file = "yarl-1.18.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:25b411eddcfd56a2f0cd6a384e9f4f7aa3efee14b188de13048c25b5e91f1640"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:436c4fc0a4d66b2badc6c5fc5ef4e47bb10e4fd9bf0c79524ac719a01f3607c2"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e35ef8683211db69ffe129a25d5634319a677570ab6b2eba4afa860f54eeaf75"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:84b2deecba4a3f1a398df819151eb72d29bfeb3b69abb145a00ddc8d30094512"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00e5a1fea0fd4f5bfa7440a47eff01d9822a65b4488f7cff83155a0f31a2ecba"}, + {file = "yarl-1.18.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d0e883008013c0e4aef84dcfe2a0b172c4d23c2669412cf5b3371003941f72bb"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5a3f356548e34a70b0172d8890006c37be92995f62d95a07b4a42e90fba54272"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:ccd17349166b1bee6e529b4add61727d3f55edb7babbe4069b5764c9587a8cc6"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b958ddd075ddba5b09bb0be8a6d9906d2ce933aee81100db289badbeb966f54e"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c7d79f7d9aabd6011004e33b22bc13056a3e3fb54794d138af57f5ee9d9032cb"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:4891ed92157e5430874dad17b15eb1fda57627710756c27422200c52d8a4e393"}, + {file = "yarl-1.18.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ce1af883b94304f493698b00d0f006d56aea98aeb49d75ec7d98cd4a777e9285"}, + {file = "yarl-1.18.3-cp312-cp312-win32.whl", hash = "sha256:f91c4803173928a25e1a55b943c81f55b8872f0018be83e3ad4938adffb77dd2"}, + {file = "yarl-1.18.3-cp312-cp312-win_amd64.whl", hash = "sha256:7e2ee16578af3b52ac2f334c3b1f92262f47e02cc6193c598502bd46f5cd1477"}, + {file = "yarl-1.18.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:90adb47ad432332d4f0bc28f83a5963f426ce9a1a8809f5e584e704b82685dcb"}, + {file = "yarl-1.18.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:913829534200eb0f789d45349e55203a091f45c37a2674678744ae52fae23efa"}, + {file = "yarl-1.18.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ef9f7768395923c3039055c14334ba4d926f3baf7b776c923c93d80195624782"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a19f62ff30117e706ebc9090b8ecc79aeb77d0b1f5ec10d2d27a12bc9f66d0"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e17c9361d46a4d5addf777c6dd5eab0715a7684c2f11b88c67ac37edfba6c482"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a74a13a4c857a84a845505fd2d68e54826a2cd01935a96efb1e9d86c728e186"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41f7ce59d6ee7741af71d82020346af364949314ed3d87553763a2df1829cc58"}, + {file = "yarl-1.18.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f52a265001d830bc425f82ca9eabda94a64a4d753b07d623a9f2863fde532b53"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:82123d0c954dc58db301f5021a01854a85bf1f3bb7d12ae0c01afc414a882ca2"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:2ec9bbba33b2d00999af4631a3397d1fd78290c48e2a3e52d8dd72db3a067ac8"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:fbd6748e8ab9b41171bb95c6142faf068f5ef1511935a0aa07025438dd9a9bc1"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:877d209b6aebeb5b16c42cbb377f5f94d9e556626b1bfff66d7b0d115be88d0a"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:b464c4ab4bfcb41e3bfd3f1c26600d038376c2de3297760dfe064d2cb7ea8e10"}, + {file = "yarl-1.18.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8d39d351e7faf01483cc7ff7c0213c412e38e5a340238826be7e0e4da450fdc8"}, + {file = "yarl-1.18.3-cp313-cp313-win32.whl", hash = "sha256:61ee62ead9b68b9123ec24bc866cbef297dd266175d53296e2db5e7f797f902d"}, + {file = "yarl-1.18.3-cp313-cp313-win_amd64.whl", hash = "sha256:578e281c393af575879990861823ef19d66e2b1d0098414855dd367e234f5b3c"}, + {file = "yarl-1.18.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:61e5e68cb65ac8f547f6b5ef933f510134a6bf31bb178be428994b0cb46c2a04"}, + {file = "yarl-1.18.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fe57328fbc1bfd0bd0514470ac692630f3901c0ee39052ae47acd1d90a436719"}, + {file = "yarl-1.18.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a440a2a624683108a1b454705ecd7afc1c3438a08e890a1513d468671d90a04e"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09c7907c8548bcd6ab860e5f513e727c53b4a714f459b084f6580b49fa1b9cee"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b4f6450109834af88cb4cc5ecddfc5380ebb9c228695afc11915a0bf82116789"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9ca04806f3be0ac6d558fffc2fdf8fcef767e0489d2684a21912cc4ed0cd1b8"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77a6e85b90a7641d2e07184df5557132a337f136250caafc9ccaa4a2a998ca2c"}, + {file = "yarl-1.18.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6333c5a377c8e2f5fae35e7b8f145c617b02c939d04110c76f29ee3676b5f9a5"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0b3c92fa08759dbf12b3a59579a4096ba9af8dd344d9a813fc7f5070d86bbab1"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:4ac515b860c36becb81bb84b667466885096b5fc85596948548b667da3bf9f24"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:045b8482ce9483ada4f3f23b3774f4e1bf4f23a2d5c912ed5170f68efb053318"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:a4bb030cf46a434ec0225bddbebd4b89e6471814ca851abb8696170adb163985"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:54d6921f07555713b9300bee9c50fb46e57e2e639027089b1d795ecd9f7fa910"}, + {file = "yarl-1.18.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:1d407181cfa6e70077df3377938c08012d18893f9f20e92f7d2f314a437c30b1"}, + {file = "yarl-1.18.3-cp39-cp39-win32.whl", hash = "sha256:ac36703a585e0929b032fbaab0707b75dc12703766d0b53486eabd5139ebadd5"}, + {file = "yarl-1.18.3-cp39-cp39-win_amd64.whl", hash = "sha256:ba87babd629f8af77f557b61e49e7c7cac36f22f871156b91e10a6e9d4f829e9"}, + {file = "yarl-1.18.3-py3-none-any.whl", hash = "sha256:b57f4f58099328dfb26c6a771d09fb20dbbae81d20cfb66141251ea063bd101b"}, + {file = "yarl-1.18.3.tar.gz", hash = "sha256:ac1801c45cbf77b6c99242eeff4fffb5e4e73a800b5c4ad4fc0be5def634d2e1"}, ] [package.dependencies] @@ -5859,4 +5764,4 @@ testing = ["coverage[toml]", "zope.event", "zope.testing"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.13" -content-hash = "95feb5d57bc2b1b5ff51e52dfdbef0662d66d5e6f7ddaeda68be6783f9b62037" +content-hash = "e375efda1aa804de73d2be9157c07a6a61f7ccbfff28ebd1b123310192e7e0f5" From 9b793f260cb7059a8ac586c4ee06bed486ef2320 Mon Sep 17 00:00:00 2001 From: Giridhar Ganapavarapu Date: Fri, 13 Dec 2024 18:02:57 -0500 Subject: [PATCH 31/32] ID column support for chronos models --- .../inference/tests/test_inference_service.py | 87 +++++++++++++++++-- .../tsfminference/chronos_service_handler.py | 77 +++++++++------- 2 files changed, 123 insertions(+), 41 deletions(-) diff --git a/services/inference/tests/test_inference_service.py b/services/inference/tests/test_inference_service.py index 10d3b441..4152d4ed 100644 --- a/services/inference/tests/test_inference_service.py +++ b/services/inference/tests/test_inference_service.py @@ -21,8 +21,8 @@ "ttm-1536-96-r2": {"context_length": 1536, "prediction_length": 96}, "ibm/test-patchtst": {"context_length": 512, "prediction_length": 96}, "ibm/test-patchtsmixer": {"context_length": 512, "prediction_length": 96}, - "chronos-t5-tiny": {"context_length": 512, "prediction_length": 96}, - "chronos-bolt-tiny": {"context_length": 512, "prediction_length": 96}, + "chronos-t5-tiny": {"context_length": 512, "prediction_length": 16}, + "chronos-bolt-tiny": {"context_length": 512, "prediction_length": 16}, } @@ -377,17 +377,21 @@ def test_zero_shot_forecast_inference_chronos(ts_data): prediction_length = params["prediction_length"] model_id = params["model_id"] model_id_path: str = model_id - id_columns = params["id_columns"] + num_samples = 10 # test single test_data_ = test_data[test_data[id_columns[0]] == "a"].copy() + parameters = { + "prediction_length": params["prediction_length"], + } + if model_id == "chronos-t5-tiny": + parameters["num_samples"] = num_samples + msg = { "model_id": model_id_path, - "parameters": { - "prediction_length": params["prediction_length"], - }, + "parameters": parameters, "schema": { "timestamp_column": params["timestamp_column"], "id_columns": params["id_columns"], @@ -401,6 +405,7 @@ def test_zero_shot_forecast_inference_chronos(ts_data): assert len(df_out) == 1 assert df_out[0].shape[0] == prediction_length + # test with future data. should throw error. test_data_ = test_data[test_data[id_columns[0]] == "a"].copy() future_data = extend_time_series( select_by_index(test_data_, id_columns=params["id_columns"], start_index=-1), @@ -413,11 +418,15 @@ def test_zero_shot_forecast_inference_chronos(ts_data): encoded_data = encode_data(test_data_, params["timestamp_column"]) + parameters = { + "prediction_length": params["prediction_length"], + } + if model_id == "chronos-t5-tiny": + parameters["num_samples"] = num_samples + msg = { "model_id": model_id, - "parameters": { - # "prediction_length": params["prediction_length"], - }, + "parameters": parameters, "schema": { "timestamp_column": params["timestamp_column"], "id_columns": params["id_columns"], @@ -431,6 +440,66 @@ def test_zero_shot_forecast_inference_chronos(ts_data): out, _ = get_inference_response(msg) assert "Chronos does not support or require future exogenous." in out.text + # test multi-time series + num_ids = test_data[id_columns[0]].nunique() + test_data_ = test_data.copy() + + parameters = { + "prediction_length": params["prediction_length"], + } + if model_id == "chronos-t5-tiny": + parameters["num_samples"] = num_samples + + msg = { + "model_id": model_id_path, + "parameters": parameters, + "schema": { + "timestamp_column": params["timestamp_column"], + "id_columns": params["id_columns"], + "target_columns": params["target_columns"], + }, + "data": encode_data(test_data_, params["timestamp_column"]), + "future_data": {}, + } + + df_out, _ = get_inference_response(msg) + + assert len(df_out) == 1 + assert df_out[0].shape[0] == prediction_length * num_ids + + # test multi-time series multi-id + multi_df = [] + for grp in ["A", "B"]: + td = test_data.copy() + td["id2"] = grp + multi_df.append(td) + test_data_ = pd.concat(multi_df, ignore_index=True) + new_id_columns = id_columns + ["id2"] + + num_ids = test_data_[new_id_columns[0]].nunique() * test_data_[new_id_columns[1]].nunique() + + parameters = { + "prediction_length": params["prediction_length"], + } + if model_id == "chronos-t5-tiny": + parameters["num_samples"] = num_samples + + msg = { + "model_id": model_id_path, + "parameters": parameters, + "schema": { + "timestamp_column": params["timestamp_column"], + "id_columns": new_id_columns, + "target_columns": params["target_columns"], + }, + "data": encode_data(test_data_, params["timestamp_column"]), + "future_data": {}, + } + + df_out, _ = get_inference_response(msg) + assert len(df_out) == 1 + assert df_out[0].shape[0] == prediction_length * num_ids + @pytest.mark.parametrize("ts_data", ["ttm-r2-etth-finetuned-control"], indirect=True) def test_future_data_forecast_inference(ts_data): diff --git a/services/inference/tsfminference/chronos_service_handler.py b/services/inference/tsfminference/chronos_service_handler.py index 5aa24ebc..5317046b 100644 --- a/services/inference/tsfminference/chronos_service_handler.py +++ b/services/inference/tsfminference/chronos_service_handler.py @@ -6,12 +6,13 @@ from pathlib import Path from typing import Dict, Optional, Union -import numpy as np import pandas as pd import torch from tsfm_public import TimeSeriesPreprocessor -from tsfm_public.toolkit.time_series_preprocessor import extend_time_series +from tsfm_public.toolkit.time_series_preprocessor import ( + create_timestamps, +) from .inference_payloads import ( ForecastingMetadataInput, @@ -88,6 +89,12 @@ def _prepare( parameters.prediction_length or self.chronos_config["prediction_length"] ) + # model specific parameters + preprocessor_params["num_samples"] = getattr(parameters, "num_samples", None) + preprocessor_params["temperature"] = getattr(parameters, "temperature", None) + preprocessor_params["top_k"] = getattr(parameters, "top_k", None) + preprocessor_params["top_p"] = getattr(parameters, "top_p", None) + LOGGER.info("initializing TSFM TimeSeriesPreprocessor") preprocessor = TimeSeriesPreprocessor( **preprocessor_params, @@ -143,41 +150,47 @@ def _run( target_columns = self.preprocessor.target_columns prediction_length = self.preprocessor.prediction_length + timestamp_column = self.preprocessor.timestamp_column + id_columns = self.preprocessor.id_columns additional_params = {} if "num_samples" in self.chronos_config: # chronos t5 family - additional_params["num_samples"] = self.chronos_config["num_samples"] - additional_params["temperature"] = self.chronos_config["temperature"] - additional_params["top_k"] = self.chronos_config["top_k"] - additional_params["top_p"] = self.chronos_config["top_p"] + additional_params["num_samples"] = self.preprocessor.num_samples or self.chronos_config["num_samples"] + additional_params["temperature"] = self.preprocessor.temperature or self.chronos_config["temperature"] + additional_params["top_k"] = self.preprocessor.top_k or self.chronos_config["top_k"] + additional_params["top_p"] = self.preprocessor.top_p or self.chronos_config["top_p"] - context = torch.tensor(data[target_columns].values).transpose(1, 0) - LOGGER.info("computing chronos forecasts.") - forecasts = self.model.predict( - context, - prediction_length=prediction_length, - limit_prediction_length=False, - **additional_params, - ) - median_forecast_arr = [] - for i in range(len(target_columns)): - median_forecast_arr.append(np.quantile(forecasts[i].numpy(), [0.5], axis=0).flatten()) - - result = pd.DataFrame(np.array(median_forecast_arr).transpose(), columns=target_columns) - LOGGER.info("extend the time series.") - time_series = extend_time_series( - time_series=data, - freq=self.preprocessor.freq, - timestamp_column=schema.timestamp_column, - grouping_columns=schema.id_columns, - periods=prediction_length, - ) - # append time stamp column to the result - result[schema.timestamp_column] = ( - time_series[schema.timestamp_column].tail(result.shape[0]).reset_index(drop=True) - ) + LOGGER.info("model specific params: {}".format(additional_params)) - return result + scoped_cols = [timestamp_column] + id_columns + target_columns + + LOGGER.info("computing chronos forecasts.") + # create groups + accumulator = [] + for grp, batch in data[scoped_cols].groupby(id_columns): + context = torch.tensor(batch[target_columns].values).transpose(1, 0) + forecasts = self.model.predict( + context, + prediction_length=prediction_length, + limit_prediction_length=False, + **additional_params, + ) + median_forecasts = torch.quantile(forecasts, 0.5, dim=1).transpose(1, 0) + result = pd.DataFrame(median_forecasts, columns=target_columns) + if timestamp_column: + result[timestamp_column] = create_timestamps( + batch[timestamp_column].iloc[-1], + freq=self.preprocessor.freq, + periods=result.shape[0], + ) + if (id_columns is not None) and id_columns: + for k, id_col in enumerate(id_columns): + result[id_col] = grp[k] + accumulator.append(result) + + predictions = pd.concat(accumulator, ignore_index=True) + + return predictions[scoped_cols] def _train( self, From 61e822a09767cc2ad79b143813b8103ec5ed7cea Mon Sep 17 00:00:00 2001 From: Giridhar Ganapavarapu Date: Fri, 13 Dec 2024 18:19:01 -0500 Subject: [PATCH 32/32] support no ID columns as well for chronos models --- .../inference/tests/test_inference_service.py | 38 +++++++++-------- .../tsfminference/chronos_service_handler.py | 42 ++++++++++++++----- 2 files changed, 51 insertions(+), 29 deletions(-) diff --git a/services/inference/tests/test_inference_service.py b/services/inference/tests/test_inference_service.py index 4152d4ed..3c1dd189 100644 --- a/services/inference/tests/test_inference_service.py +++ b/services/inference/tests/test_inference_service.py @@ -418,12 +418,6 @@ def test_zero_shot_forecast_inference_chronos(ts_data): encoded_data = encode_data(test_data_, params["timestamp_column"]) - parameters = { - "prediction_length": params["prediction_length"], - } - if model_id == "chronos-t5-tiny": - parameters["num_samples"] = num_samples - msg = { "model_id": model_id, "parameters": parameters, @@ -444,12 +438,6 @@ def test_zero_shot_forecast_inference_chronos(ts_data): num_ids = test_data[id_columns[0]].nunique() test_data_ = test_data.copy() - parameters = { - "prediction_length": params["prediction_length"], - } - if model_id == "chronos-t5-tiny": - parameters["num_samples"] = num_samples - msg = { "model_id": model_id_path, "parameters": parameters, @@ -478,12 +466,6 @@ def test_zero_shot_forecast_inference_chronos(ts_data): num_ids = test_data_[new_id_columns[0]].nunique() * test_data_[new_id_columns[1]].nunique() - parameters = { - "prediction_length": params["prediction_length"], - } - if model_id == "chronos-t5-tiny": - parameters["num_samples"] = num_samples - msg = { "model_id": model_id_path, "parameters": parameters, @@ -500,6 +482,26 @@ def test_zero_shot_forecast_inference_chronos(ts_data): assert len(df_out) == 1 assert df_out[0].shape[0] == prediction_length * num_ids + # single series, less columns, no id + test_data_ = test_data[test_data[id_columns[0]] == "a"].copy() + + msg = { + "model_id": model_id_path, + "parameters": parameters, + "schema": { + "timestamp_column": params["timestamp_column"], + "id_columns": [], + "target_columns": ["HULL"], + }, + "data": encode_data(test_data_, params["timestamp_column"]), + "future_data": {}, + } + + df_out, counts = get_inference_response(msg) + assert len(df_out) == 1 + assert df_out[0].shape[0] == prediction_length + assert df_out[0].shape[1] == 2 + @pytest.mark.parametrize("ts_data", ["ttm-r2-etth-finetuned-control"], indirect=True) def test_future_data_forecast_inference(ts_data): diff --git a/services/inference/tsfminference/chronos_service_handler.py b/services/inference/tsfminference/chronos_service_handler.py index 5317046b..a4444de3 100644 --- a/services/inference/tsfminference/chronos_service_handler.py +++ b/services/inference/tsfminference/chronos_service_handler.py @@ -145,6 +145,7 @@ def _run( pd.DataFrame: The forecasts produced by the model. """ + predictions = None if self.preprocessor.exogenous_channel_indices or future_data is not None: raise ValueError("Chronos does not support or require future exogenous.") @@ -165,10 +166,9 @@ def _run( scoped_cols = [timestamp_column] + id_columns + target_columns LOGGER.info("computing chronos forecasts.") - # create groups - accumulator = [] - for grp, batch in data[scoped_cols].groupby(id_columns): - context = torch.tensor(batch[target_columns].values).transpose(1, 0) + + if not id_columns: + context = torch.tensor(data[target_columns].values).transpose(1, 0) forecasts = self.model.predict( context, prediction_length=prediction_length, @@ -179,16 +179,36 @@ def _run( result = pd.DataFrame(median_forecasts, columns=target_columns) if timestamp_column: result[timestamp_column] = create_timestamps( - batch[timestamp_column].iloc[-1], + data[timestamp_column].iloc[-1], freq=self.preprocessor.freq, periods=result.shape[0], ) - if (id_columns is not None) and id_columns: - for k, id_col in enumerate(id_columns): - result[id_col] = grp[k] - accumulator.append(result) - - predictions = pd.concat(accumulator, ignore_index=True) + predictions = result + else: # create groups + LOGGER.info("using id columns {} to create groups.".format(id_columns)) + accumulator = [] + for grp, batch in data[scoped_cols].groupby(id_columns): + context = torch.tensor(batch[target_columns].values).transpose(1, 0) + forecasts = self.model.predict( + context, + prediction_length=prediction_length, + limit_prediction_length=False, + **additional_params, + ) + median_forecasts = torch.quantile(forecasts, 0.5, dim=1).transpose(1, 0) + result = pd.DataFrame(median_forecasts, columns=target_columns) + if timestamp_column: + result[timestamp_column] = create_timestamps( + batch[timestamp_column].iloc[-1], + freq=self.preprocessor.freq, + periods=result.shape[0], + ) + if (id_columns is not None) and id_columns: + for k, id_col in enumerate(id_columns): + result[id_col] = grp[k] + accumulator.append(result) + + predictions = pd.concat(accumulator, ignore_index=True) return predictions[scoped_cols]