eventpp uses policy based design to configure and extend each components' behavior. The last template parameter in EventDispatcher, EventQueue, and CallbackList is the policies class. All those three classes have default policies class named DefaultPolicies
.
A policy is either a type or a static function member in the policies class. All policies must be public visible, so struct
is commonly used to define the policies class.
All policies are optional. If any policy is omitted, the default value is used. In fact DefaultPolicies
is just an empty struct.
The same policy mechanism applies to all three classes, EventDispatcher, EventQueue, and CallbackList, though not all classes requires the same policy.
Prototype: static EventKey getEvent(const Args &...)
. The function receives same arguments as EventDispatcher::dispatch
and EventQueue::enqueue
, and must return an event type.
Default value: the default implementation returns the first argument of getEvent
.
Apply: EventDispatcher, EventQueue.
eventpp forwards all arguments of EventDispatcher::dispatch
and EventQueue::enqueue
(both has same arguments) to getEvent
to get the event type, then invokes the callback list of the event type.
getEvent
can be non-template or template function. It works as long as getEvent
can be invoked using the same arguments as EventDispatcher::dispatch
and EventQueue::enqueue
.
Sample code
// Define an Event to hold all parameters.
struct MyEvent {
int type;
std::string message;
int param;
};
// Define policies to let the dispatcher knows how to
// extract the event type.
struct MyEventPolicies
{
static int getEvent(const MyEvent & e, bool /*b*/) {
return e.type;
}
};
// Pass MyEventPolicies as the third template argument of EventDispatcher.
// Note: the first template argument is the event type type int, not MyEvent.
eventpp::EventDispatcher<
int,
void (const MyEvent &, bool),
MyEventPolicies
> dispatcher;
// Add a listener.
// Note: the first argument is the event type of type int, not MyEvent.
dispatcher.appendListener(3, [](const MyEvent & e, bool b) {
std::cout
<< std::boolalpha
<< "Got event 3" << std::endl
<< "Event::type is " << e.type << std::endl
<< "Event::message is " << e.message << std::endl
<< "Event::param is " << e.param << std::endl
<< "b is " << b << std::endl
;
});
// Dispatch the event.
// The first argument is Event.
dispatcher.dispatch(MyEvent { 3, "Hello world", 38 }, true);
Prototype: static bool canContinueInvoking(const Args &...)
. The function receives same arguments as EventDispatcher::dispatch
and EventQueue::enqueue
, and must return true if the event dispatching or callback list invoking can continue, false if the dispatching should stop.
Default value: the default implementation always returns true.
Apply: CallbackList, EventDispatcher, EventQueue.
Sample code
struct MyEvent {
MyEvent() : type(0), canceled(false) {
}
explicit MyEvent(const int type)
: type(type), canceled(false) {
}
int type;
mutable bool canceled;
};
struct MyEventPolicies
{
static int getEvent(const MyEvent & e) {
return e.type;
}
static bool canContinueInvoking(const MyEvent & e) {
return ! e.canceled;
}
};
eventpp::EventDispatcher<int, void (const MyEvent &), MyEventPolicies> dispatcher;
dispatcher.appendListener(3, [](const MyEvent & e) {
std::cout << "Got event 3" << std::endl;
e.canceled = true;
});
dispatcher.appendListener(3, [](const MyEvent & e) {
std::cout << "Should not get this event 3" << std::endl;
});
dispatcher.dispatch(MyEvent(3));
Default value: using Mixins = eventpp::MixinList<>
. No mixins are enabled.
Apply: EventDispatcher, EventQueue.
A mixin is used to inject code in the EventDispatcher/EventQueue inheritance hierarchy to extend the functionalities. For more details, please read the document of mixins.
Default value: using Callback = std::function<Parameters of callback>
.
Apply: CallbackList, EventDispatcher, EventQueue.
Callback
is the underlying storage type to hold the callback. Default is std::function
.
Default value: using Threading = eventpp::MultipleThreading
.
Apply: CallbackList, EventDispatcher, EventQueue, HeterCallbackList, HeterEventDispatcher, HeterEventQueue.
Threading
controls threading model. Default is 'MultipleThreading'. Possible values:
MultipleThreading
: the core data is protected with mutex. It's the default value.SingleThreading
: the core data is not protected and can't be accessed from multiple threads.
A typical Threading
type looks like
struct MultipleThreading
{
using Mutex = std::mutex;
template <typename T>
using Atomic = std::atomic<T>;
using ConditionVariable = std::condition_variable;
};
For SingleThreading
, all the types Mutex
, Atomic
, and ConditionVariable
are dummy types that don't do anything.
For multiple threading, the default Mutex
is std::mutex
. eventpp
also provides a SpinLock
class which uses spinlock as the mutex.
When there are fewer threads (about around the number of CPU cores), eventpp::SpinLock
has better performance than std::mutex
. When there are much more threads than CPU cores, eventpp::SpinLock
has worse performance than std::mutex
.
Please read the benchmark for benchmark data.
Below is the sample code for how to use SpinLock
struct MultipleThreadingSpinLock
{
using Mutex = eventpp::SpinLock;
template <typename T>
using Atomic = std::atomic<T>;
using ConditionVariable = std::condition_variable;
};
struct MyEventPolicies {
using Threading = MultipleThreadingSpinLock;
};
eventpp::EventDispatcher<int, void (), MyEventPolicies> dispatcher;
eventpp::CallbackList<void (), MyEventPolicies> callbackList;
eventpp
provides a shortcut template class to customize the threading.
template <
typename Mutex_,
template <typename > class Atomic_ = std::atomic,
typename ConditionVariable_ = std::condition_variable
>
struct GeneralThreading
{
using Mutex = Mutex_;
template <typename T>
using Atomic = Atomic_<T>;
using ConditionVariable = ConditionVariable_;
};
So the previous sample code for spinlock can be rewritten as
struct MyEventPolicies {
using Threading = eventpp::GeneralThreading<eventpp::SpinLock>;
};
eventpp::EventDispatcher<int, void (), MyEventPolicies> dispatcher;
eventpp::CallbackList<void (), MyEventPolicies> callbackList;
Default value: using ArgumentPassingMode = ArgumentPassingAutoDetect
.
Apply: EventDispatcher, EventQueue.
ArgumentPassingMode
is the argument passing mode. Default is ArgumentPassingAutoDetect
.
Let's see some examples. Assume we have the dispatcher
eventpp::EventDispatcher<int, void(int, const std::string &)> dispatcher;
The event type is int
.
The listener's first parameter is also int
. Depending on how the event is dispatched, the listener's first argument can be either the event type, or an extra argument.
dispatcher.dispatch(3, "hello");
The event 3 is dispatched with one argument "hello", the listener will be invoked with the arguments (3, "hello")
, the first argument is the event type.
dispatcher.dispatch(3, 8, "hello");
The event 3 is dispatched with two arguments 8 and "hello", the listener will be invoked with the arguments (8, "hello")
, the first argument is the extra argument, and the event type is omitted.
So by default, EventDispatcher automatically detects the argument count of dispatch
and listeners prototype, and calls the listeners either with or without the event type.
The default rule is convenient, permissive, and, error prone. The ArgumentPassingMode
policy can control the behavior.
struct ArgumentPassingAutoDetect;
struct ArgumentPassingIncludeEvent;
struct ArgumentPassingExcludeEvent;
ArgumentPassingAutoDetect
: the default policy. Auto detects whether to pass the event type.
ArgumentPassingIncludeEvent
: always passes the event type. If the argument count doesn't match, compiling fails.
ArgumentPassingExcludeEvent
: always omits and doesn't pass the event type. If the argument count doesn't match, compiling fails.
Assumes the number of arguments in the listener prototype is P, the number of arguments (include the event type) in dispatch
is D, then the relationship of P and D is,
For ArgumentPassingAutoDetect
: P == D or P + 1 == D
For ArgumentPassingIncludeEvent
: P == D
For ArgumentPassingExcludeEvent
: P + 1 == D
Note: the same rules also applies to EventQueue::enqueue
, since enqueue
has same parameters as dispatch
.
Examples to demonstrate argument passing mode
struct MyPolicies
{
using ArgumentPassingMode = ArgumentPassingAutoDetect;
};
eventpp::EventDispatcher<
int,
void(int, const std::string &),
MyPolicies
> dispatcher;
// or just
//eventpp::EventDispatcher<int, void(int, const std::string &)> dispatcher;
dispatcher.dispatch(3, "hello"); // Compile OK
dispatcher.dispatch(3, 8, "hello"); // Compile OK
struct MyPolicies
{
using ArgumentPassingMode = ArgumentPassingIncludeEvent;
};
eventpp::EventDispatcher<
int,
void(int, const std::string &),
MyPolicies
> dispatcher;
dispatcher.dispatch(3, "hello"); // Compile OK
//dispatcher.dispatch(3, 8, "hello"); // Compile failure
struct MyPolicies
{
using ArgumentPassingMode = ArgumentPassingExcludeEvent;
};
eventpp::EventDispatcher<
int,
void(int, const std::string &),
MyPolicies
> dispatcher;
//dispatcher.dispatch(3, "hello"); // Compile failure
dispatcher.dispatch(3, 8, "hello"); // Compile OK
Prototype:
template <typename Key, typename T>
using Map = // std::map <Key, T> or other map type
Default value: auto determined.
Apply: EventDispatcher, EventQueue.
Map
is the associative container type used by EventDispatcher and EventQueue to hold the underlying (Event type, CallbackList) pairs.
Map
is a template with two parameters, the first parameter is the key, the second parameter is the value.
Map
must support operations []
, find()
, and end()
.
If Map
is not specified, eventpp will auto determine the type. If the event type supports std::hash
, std::unordered_map
is used, otherwise, std::map
is used.
Prototype:
template <typename Item>
using QueueList = std::list<Item>;
Default value: std::list
.
Apply: EventQueue.
QueueList
is used to manage the internal events in EventQueue. It works as a queue. Events are appended to the rear of QueueList
, and when being processing, events are popped from the head of QueueList
.
Using a different QueueList
can give more control on the queue. For example, if the QueueList
keeps the events ordered, the events will be processed in certain order instead of the adding order.
A QueueList
doesn't need to implement all members from std::list
, it must implement below types and functions.
type iterator;
type const_iterator;
bool empty() const;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_reference front() const;
void swap(QueueList & other);
void emplace_back();
void splice(const_iterator pos, QueueList & other );
void splice(const_iterator pos, QueueList & other, const_iterator it);
OrderedQueueList in eventpp is a good example.
To use policies, declare a struct, define the policies in it, and pass the struct to CallbackList, EventDispatcher, or EventQueue.
struct MyPolicies //the struct name doesn't matter
{
template <typename ...Args>
static int getEvent(const MyEvent & e, const Args &...) {
return e.type;
}
};
EventDispatcher<int, void(const MyEvent &), MyPolicies> dispatcher;
Above sample code shows a policies class, which only redefined 'getEvent', and leave all other policies default.