forked from leiyu1980/caffe-darknet-convert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf2caffe.py
84 lines (60 loc) · 2.35 KB
/
tf2caffe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import tensorflow as tf
from tensorflow.python.framework.graph_util import convert_variables_to_constants
from graphviz import Digraph
def tf_to_dot(g):
dot = Digraph()
for n in g.node:
dot.node(n.name, label=n.name)
for i in n.input:
dot.edge(i, n.name)
return dot
def weight_varible(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
sess = tf.InteractiveSession()
# paras
W_conv1 = weight_varible([5, 5, 1, 32])
b_conv1 = bias_variable([32])
# conv layer-1
x = tf.placeholder(tf.float32, [None, 784], name='x')
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# conv layer-2
W_conv2 = weight_varible([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# full connection
W_fc1 = weight_varible([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# dropout
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# output layer: softmax
W_fc2 = weight_varible([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
y_ = tf.placeholder(tf.float32, [None, 10], name='y_')
# model training
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.initialize_all_variables())
minimal_graph = convert_variables_to_constants(sess, sess.graph_def, [y_conv.op.name])
tf.train.write_graph(minimal_graph, '.', 'minimal_graph.txt', as_text=True)
dot = tf_to_dot(minimal_graph)
fp = open('out.dot', 'w')
print >> fp, dot
fp.close()