-
Notifications
You must be signed in to change notification settings - Fork 21
/
pGAN.py
102 lines (96 loc) · 3.97 KB
/
pGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
def train():
import time
from options.train_options import TrainOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
opt = TrainOptions().parse()
model = create_model(opt)
#Loading data
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('Training images = %d' % dataset_size)
visualizer = Visualizer(opt)
total_steps = 0
#Starts training
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
#Save current images (real_A, real_B, fake_B)
if epoch_iter % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch,epoch_iter, save_result)
#Save current errors
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors)
#Save model based on the number of iterations
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
iter_data_time = time.time()
#Save model based on the number of epochs
print(opt.dataset_mode)
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
def test():
import sys
sys.argv=args
import os
from options.test_options import TestOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
from util import html
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
img_path = model.get_image_paths()
img_path[0]=img_path[0]+str(i)
print('%04d: process image... %s' % (i, img_path))
visualizer.save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio)
webpage.save()
import sys
sys.argv.extend(['--model','pGAN'])
args=sys.argv
if '--training' in str(args):
train()
else:
sys.argv.extend(['--serial_batches'])
test()