-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_time.py
40 lines (37 loc) · 1.27 KB
/
parse_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
import os
import glob
import numpy as np
input_dir = './slog/'
output_file = 'time.csv'
file_prefix = 'time_book_'
#for filename in os.listdir(input_dir+file_prefix+'*'):
print(input_dir+file_prefix+'*')
for filename in glob.glob(input_dir+file_prefix+'*'):
if not os.path.isfile(filename):
continue
#assert '_bias_fixed' in filename
#print(filename)
f_name_list = filename.split('_')
model_name = f_name_list[2]
method_name = '_'.join(f_name_list[3:-3])
val_time_arr = []
train_time_arr = []
with open(filename) as f_in:
for line in f_in:
fields = line.split()
if 'time:' in line:
#print(line.split())
time = float(fields[8][:-2])
if fields[6] == 'training':
train_time_arr.append(time)
elif fields[6] == 'evaluating':
val_time_arr.append(time)
else:
print(fields[6])
assert False
elif 'total parameters:' in line:
#print(fields)
num_para = int(fields[-1])
print(model_name, method_name, num_para, np.mean(train_time_arr), np.mean(val_time_arr) )
#time_book_SAS_MoSe_bias_fixed_8738347