-
Notifications
You must be signed in to change notification settings - Fork 0
/
L58_wgan_gp.py
248 lines (192 loc) · 6.33 KB
/
L58_wgan_gp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
from torch import nn, optim, autograd
import numpy as np
import visdom
from torch.nn import functional as F
from matplotlib import pyplot as plt
import random
h_dim = 400
batchsz = 512
viz = visdom.Visdom()
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.net = nn.Sequential(
nn.Linear(2, h_dim),
nn.ReLU(True),
nn.Linear(h_dim, h_dim),
nn.ReLU(True),
nn.Linear(h_dim, h_dim),
nn.ReLU(True),
nn.Linear(h_dim, 2),
)
def forward(self, z):
output = self.net(z)
return output
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.net = nn.Sequential(
nn.Linear(2, h_dim),
nn.ReLU(True),
nn.Linear(h_dim, h_dim),
nn.ReLU(True),
nn.Linear(h_dim, h_dim),
nn.ReLU(True),
nn.Linear(h_dim, 1),
nn.Sigmoid()
)
def forward(self, x):
output = self.net(x)
return output.view(-1)
def data_generator():
scale = 2.
centers = [
(1, 0),
(-1, 0),
(0, 1),
(0, -1),
(1. / np.sqrt(2), 1. / np.sqrt(2)),
(1. / np.sqrt(2), -1. / np.sqrt(2)),
(-1. / np.sqrt(2), 1. / np.sqrt(2)),
(-1. / np.sqrt(2), -1. / np.sqrt(2))
]
centers = [(scale * x, scale * y) for x, y in centers]
while True:
dataset = []
for i in range(batchsz):
point = np.random.randn(2) * .02
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
dataset.append(point)
dataset = np.array(dataset, dtype='float32')
dataset /= 1.414 # stdev
yield dataset
# for i in range(100000//25):
# for x in range(-2, 3):
# for y in range(-2, 3):
# point = np.random.randn(2).astype(np.float32) * 0.05
# point[0] += 2 * x
# point[1] += 2 * y
# dataset.append(point)
#
# dataset = np.array(dataset)
# print('dataset:', dataset.shape)
# viz.scatter(dataset, win='dataset', opts=dict(title='dataset', webgl=True))
#
# while True:
# np.random.shuffle(dataset)
#
# for i in range(len(dataset)//batchsz):
# yield dataset[i*batchsz : (i+1)*batchsz]
def generate_image(D, G, xr, epoch):
"""
Generates and saves a plot of the true distribution, the generator, and the
critic.
"""
N_POINTS = 128
RANGE = 3
plt.clf()
points = np.zeros((N_POINTS, N_POINTS, 2), dtype='float32')
points[:, :, 0] = np.linspace(-RANGE, RANGE, N_POINTS)[:, None]
points[:, :, 1] = np.linspace(-RANGE, RANGE, N_POINTS)[None, :]
points = points.reshape((-1, 2))
# (16384, 2)
# print('p:', points.shape)
# draw contour
with torch.no_grad():
points = torch.Tensor(points).cuda() # [16384, 2]
disc_map = D(points).cpu().numpy() # [16384]
x = y = np.linspace(-RANGE, RANGE, N_POINTS)
cs = plt.contour(x, y, disc_map.reshape((len(x), len(y))).transpose())
plt.clabel(cs, inline=1, fontsize=10)
# plt.colorbar()
# draw samples
with torch.no_grad():
z = torch.randn(batchsz, 2).cuda() # [b, 2]
samples = G(z).cpu().numpy() # [b, 2]
plt.scatter(xr[:, 0], xr[:, 1], c='orange', marker='.')
plt.scatter(samples[:, 0], samples[:, 1], c='green', marker='+')
viz.matplot(plt, win='contour', opts=dict(title='p(x):%d'%epoch))
def weights_init(m):
if isinstance(m, nn.Linear):
# m.weight.data.normal_(0.0, 0.02)
nn.init.kaiming_normal_(m.weight)
m.bias.data.fill_(0)
def gradient_penalty(D, xr, xf):
"""
:param D:
:param xr:
:param xf:
:return:
"""
LAMBDA = 0.3
# only constrait for Discriminator
xf = xf.detach()
xr = xr.detach()
# [b, 1] => [b, 2]
alpha = torch.rand(batchsz, 1).cuda()
alpha = alpha.expand_as(xr)
interpolates = alpha * xr + ((1 - alpha) * xf)
interpolates.requires_grad_()
disc_interpolates = D(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones_like(disc_interpolates),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gp
def main():
torch.manual_seed(23)
np.random.seed(23)
G = Generator().cuda()
D = Discriminator().cuda()
G.apply(weights_init)
D.apply(weights_init)
optim_G = optim.Adam(G.parameters(), lr=1e-3, betas=(0.5, 0.9))
optim_D = optim.Adam(D.parameters(), lr=1e-3, betas=(0.5, 0.9))
data_iter = data_generator()
print('batch:', next(data_iter).shape)
viz.line([[0,0]], [0], win='loss', opts=dict(title='loss',
legend=['D', 'G']))
for epoch in range(50000):
# 1. train discriminator for k steps
for _ in range(5):
x = next(data_iter)
xr = torch.from_numpy(x).cuda()
# [b]
predr = (D(xr))
# max log(lossr)
lossr = - (predr.mean())
# [b, 2]
z = torch.randn(batchsz, 2).cuda()
# stop gradient on G
# [b, 2]
xf = G(z).detach()
# [b]
predf = (D(xf))
# min predf
lossf = (predf.mean())
# gradient penalty
gp = gradient_penalty(D, xr, xf)
loss_D = lossr + lossf + gp
optim_D.zero_grad()
loss_D.backward()
# for p in D.parameters():
# print(p.grad.norm())
optim_D.step()
# 2. train Generator
z = torch.randn(batchsz, 2).cuda()
xf = G(z)
predf = (D(xf))
# max predf
loss_G = - (predf.mean())
optim_G.zero_grad()
loss_G.backward()
optim_G.step()
if epoch % 100 == 0:
viz.line([[loss_D.item(), loss_G.item()]], [epoch], win='loss', update='append')
generate_image(D, G, xr, epoch)
print(loss_D.item(), loss_G.item())
if __name__ == '__main__':
main()