forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
interleaving-string.py
88 lines (79 loc) · 2.89 KB
/
interleaving-string.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import print_function
# Time: O(m * n)
# Space: O(m + n)
#
# Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.
#
# For example,
# Given:
# s1 = "aabcc",
# s2 = "dbbca",
#
# When s3 = "aadbbcbcac", return true.
# When s3 = "aadbbbaccc", return false.
#
# Time: O(m * n)
# Space: O(m + n)
# Dynamic Programming + Sliding Window
class Solution:
# @return a boolean
def isInterleave(self, s1, s2, s3):
if len(s1) + len(s2) != len(s3):
return False
if len(s1) > len(s2):
return self.isInterleave(s2, s1, s3)
match = [False for i in xrange(len(s1) + 1)]
match[0] = True
for i in xrange(1, len(s1) + 1):
match[i] = match[i -1] and s1[i - 1] == s3[i - 1]
for j in xrange(1, len(s2) + 1):
match[0] = match[0] and s2[j - 1] == s3[j - 1]
for i in xrange(1, len(s1) + 1):
match[i] = (match[i - 1] and s1[i - 1] == s3[i + j - 1]) \
or (match[i] and s2[j - 1] == s3[i + j - 1])
return match[-1]
# Time: O(m * n)
# Space: O(m * n)
# Dynamic Programming
class Solution2:
# @return a boolean
def isInterleave(self, s1, s2, s3):
if len(s1) + len(s2) != len(s3):
return False
match = [[False for i in xrange(len(s2) + 1)] for j in xrange(len(s1) + 1)]
match[0][0] = True
for i in xrange(1, len(s1) + 1):
match[i][0] = match[i - 1][0] and s1[i - 1] == s3[i - 1]
for j in xrange(1, len(s2) + 1):
match[0][j] = match[0][j - 1] and s2[j - 1] == s3[j - 1]
for i in xrange(1, len(s1) + 1):
for j in xrange(1, len(s2) + 1):
match[i][j] = (match[i - 1][j] and s1[i - 1] == s3[i + j - 1]) \
or (match[i][j - 1] and s2[j - 1] == s3[i + j - 1])
return match[-1][-1]
# Time: O(m * n)
# Space: O(m * n)
# Recursive + Hash
class Solution3:
# @return a boolean
def isInterleave(self, s1, s2, s3):
self.match = {}
if len(s1) + len(s2) != len(s3):
return False
return self.isInterleaveRecu(s1, s2, s3, 0, 0, 0)
def isInterleaveRecu(self, s1, s2, s3, a, b, c):
if repr([a, b]) in self.match.keys():
return self.match[repr([a, b])]
if c == len(s3):
return True
result = False
if a < len(s1) and s1[a] == s3[c]:
result = result or self.isInterleaveRecu(s1, s2, s3, a + 1, b, c + 1)
if b < len(s2) and s2[b] == s3[c]:
result = result or self.isInterleaveRecu(s1, s2, s3, a, b + 1, c + 1)
self.match[repr([a, b])] = result
return result
if __name__ == "__main__":
print(Solution().isInterleave("a", "", "a"))
print(Solution().isInterleave("aabcc", "dbbca", "aadbbcbcac"))
print(Solution().isInterleave("aabcc", "dbbca", "aadbbbaccc"))