forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpalindrome-pairs.py
145 lines (129 loc) · 4.4 KB
/
palindrome-pairs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Time: O(n * k^2), n is the number of the words, k is the max length of the words.
# Space: O(n * k)
# Given a list of unique words. Find all pairs of indices (i, j)
# in the given list, so that the concatenation of the two words,
# i.e. words[i] + words[j] is a palindrome.
#
# Example 1:
# Given words = ["bat", "tab", "cat"]
# Return [[0, 1], [1, 0]]
# The palindromes are ["battab", "tabbat"]
# Example 2:
# Given words = ["abcd", "dcba", "lls", "s", "sssll"]
# Return [[0, 1], [1, 0], [3, 2], [2, 4]]
# The palindromes are ["dcbaabcd", "abcddcba", "slls", "llssssll"]
import collections
class Solution(object):
def palindromePairs(self, words):
"""
:type words: List[str]
:rtype: List[List[int]]
"""
res = []
lookup = {}
for i, word in enumerate(words):
lookup[word] = i
for i in xrange(len(words)):
for j in xrange(len(words[i]) + 1):
prefix = words[i][j:]
suffix = words[i][:j]
if prefix == prefix[::-1] and \
suffix[::-1] in lookup and lookup[suffix[::-1]] != i:
res.append([i, lookup[suffix[::-1]]])
if j > 0 and suffix == suffix[::-1] and \
prefix[::-1] in lookup and lookup[prefix[::-1]] != i:
res.append([lookup[prefix[::-1]], i])
return res
# Time: O(n * k^2), n is the number of the words, k is the max length of the words.
# Space: O(n * k^2)
# Manacher solution.
class Solution_TLE(object):
def palindromePairs(self, words):
"""
:type words: List[str]
:rtype: List[List[int]]
"""
def manacher(s, P):
def preProcess(s):
if not s:
return ['^', '$']
T = ['^']
for c in s:
T += ["#", c]
T += ['#', '$']
return T
T = preProcess(s)
center, right = 0, 0
for i in xrange(1, len(T) - 1):
i_mirror = 2 * center - i
if right > i:
P[i] = min(right - i, P[i_mirror])
else:
P[i] = 0
while T[i + 1 + P[i]] == T[i - 1 - P[i]]:
P[i] += 1
if i + P[i] > right:
center, right = i, i + P[i]
prefix, suffix = collections.defaultdict(list), collections.defaultdict(list)
for i, word in enumerate(words):
P = [0] * (2 * len(word) + 3)
manacher(word, P)
for j in xrange(len(P)):
if j - P[j] == 1:
prefix[word[(j + P[j]) / 2:]].append(i)
if j + P[j] == len(P) - 2:
suffix[word[:(j - P[j]) / 2]].append(i)
res = []
for i, word in enumerate(words):
for j in prefix[word[::-1]]:
if j != i:
res.append([i, j])
for j in suffix[word[::-1]]:
if len(word) != len(words[j]):
res.append([j, i])
return res
# Time: O(n * k^2), n is the number of the words, k is the max length of the words.
# Space: O(n * k)
# Trie solution.
class TrieNode:
def __init__(self):
self.word_idx = -1
self.leaves = {}
def insert(self, word, i):
cur = self
for c in word:
if not c in cur.leaves:
cur.leaves[c] = TrieNode()
cur = cur.leaves[c]
cur.word_idx = i
def find(self, s, idx, res):
cur = self
for i in reversed(xrange(len(s))):
if s[i] in cur.leaves:
cur = cur.leaves[s[i]]
if cur.word_idx not in (-1, idx) and \
self.is_palindrome(s, i - 1):
res.append([cur.word_idx, idx])
else:
break
def is_palindrome(self, s, j):
i = 0
while i <= j:
if s[i] != s[j]:
return False
i += 1
j -= 1
return True
class Solution_MLE(object):
def palindromePairs(self, words):
"""
:type words: List[str]
:rtype: List[List[int]]
"""
res = []
trie = TrieNode()
for i in xrange(len(words)):
trie.insert(words[i], i)
for i in xrange(len(words)):
trie.find(words[i], i, res)
return res