-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
168 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
import pickle | ||
import numpy as np | ||
import pandas as pd | ||
import dimod | ||
import os | ||
|
||
from AGV_quantum import QuadraticAGV | ||
from AGV_quantum import LinearProg | ||
from typing import Any | ||
|
||
|
||
def get_objective(lp: LinearProg, sample: dict) -> float: | ||
"""computes objective value for sample | ||
:param lp: the integer program with the relevant objective function | ||
:type lp: LinearProg | ||
:param sample: analyzed sample | ||
:type sample: dict | ||
:return: value of the objective funtion | ||
:rtype: float | ||
""" | ||
return sum( | ||
sample[f"x_{i}"] * coef for i, coef in zip(range(lp.nvars), lp.c) if coef != 0 | ||
) | ||
|
||
|
||
def get_results(sampleset: dimod.SampleSet, prob: LinearProg) -> list[dict[str, Any]]: | ||
"""Check samples one by one, and computes it statistics. | ||
Statistics includes energy (as provided by D'Wave), objective function | ||
value, feasibility analysis, the samples itself. Samples are sorted | ||
according to value of the objetive function | ||
:param sampleset: analyzed samples | ||
:type sampleset: dimod.SampleSet | ||
:param prob: integer problem according to which samples are analyzed | ||
:type prob: pulp.LpProblem | ||
:return: analyzed samples, sorted according to objective | ||
:rtype: list[Dict[str,Any]] | ||
""" | ||
dict_list = [] | ||
for data in sampleset.data(): | ||
rdict = {} | ||
sample = data.sample | ||
rdict["energy"] = data.energy | ||
rdict["objective"] = round(get_objective(prob, sample), 2) | ||
rdict["feasible"] = all(analyze_constraints(prob, sample)[0].values()) | ||
rdict["sample"] = sample | ||
rdict["feas_constraints"] = analyze_constraints(prob, sample) | ||
dict_list.append(rdict) | ||
return sorted(dict_list, key=lambda d: d["energy"]) | ||
|
||
|
||
def store_result(input_name: str, file_name: str, sampleset: dimod.SampleSet): | ||
"""Save samples to the file | ||
:param input_name: name of the input | ||
:type input_name: str | ||
:param file_name: name of the file | ||
:type file_name: str | ||
:param sampleset: samples | ||
:type sampleset: dimod.SampleSet | ||
""" | ||
if not os.path.exists("annealing_results"): | ||
os.mkdir("annealing_results") | ||
folder = os.path.join("annealing_results", input_name) | ||
if not os.path.exists(folder): | ||
os.mkdir(folder) | ||
sdf = sampleset.to_serializable() | ||
with open(file_name, "wb") as handle: | ||
pickle.dump(sdf, handle) | ||
|
||
|
||
def load_results(file_name: str) -> dimod.SampleSet: | ||
"""Load samples from the file | ||
:param file_name: name of the file | ||
:type file_name: str | ||
:return: loaded samples | ||
:rtype: dimod.SampleSet | ||
""" | ||
file = pickle.load(open(file_name, "rb")) | ||
return dimod.SampleSet.from_serializable(file) | ||
|
||
|
||
def analyze_constraints( | ||
lp: LinearProg, sample: dict[str, int] | ||
) -> tuple[dict[str, bool], int]: | ||
"""check which constraints were satisfied | ||
:param lp: analyzed integer model | ||
:type lp: LinearProg | ||
:param sample: samples generated by the optimizer | ||
:type sample: Dict[str,int] | ||
:return: dictionary mapping constraint to whether they were satisfied, and | ||
the number of satisfied constraints | ||
:rtype: tuple[dict[str, bool], int] | ||
""" | ||
result = {} | ||
num_eq = 0 | ||
|
||
if lp.A_eq is not None: | ||
for i in range(len(lp.A_eq)): | ||
expr = sum(lp.A_eq[i][j] * sample[lp.var_names[j]] for j in range(lp.nvars)) | ||
result[f"eq_{num_eq}"] = expr == lp.b_eq[i] | ||
num_eq += 1 | ||
|
||
if lp.A_ub is not None: | ||
for i in range(len(lp.A_ub)): | ||
expr = sum(lp.A_ub[i][j] * sample[lp.var_names[j]] for j in range(lp.nvars)) | ||
result[f"eq_{num_eq}"] = expr <= lp.b_ub[i] | ||
num_eq += 1 | ||
|
||
return result, sum(x == False for x in result.values()) | ||
|
||
|
||
def print_results(dict_list): | ||
soln = next((l for l in dict_list if l["feasible"]), None) | ||
if soln is not None: | ||
print("obj:", soln["objective"], "x:", list(soln["sample"].values())) | ||
print("First 10 solutions") | ||
for d in dict_list[:10]: | ||
print(d) | ||
else: | ||
print("No feasible solution") | ||
for d in dict_list[:10]: | ||
print( | ||
"Energy:", | ||
d["energy"], | ||
"Objective:", | ||
d["objective"], | ||
"Feasible", | ||
d["feasible"], | ||
"Broken constraints:", | ||
d["feas_constraints"][1], | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | ||
path_to_results = os.path.join(ROOT, "ising", "sbm_results", "H100_results.csv") | ||
path_to_annealing = os.path.join(ROOT, "annealing_results", "tiny_2_AGV", "new_bqm.pkl") | ||
|
||
size = "tiny" | ||
instance = f"{size}_ising" | ||
path_to_renumeration = os.path.join(ROOT, "ising", f"{instance}_renumeration.pkl") | ||
path_to_lp = os.path.join(ROOT, "lp_files", f"lp_{size}.pkl") | ||
|
||
|
||
results = pd.read_csv(path_to_results, sep=";") | ||
ising_solution = results[results["instance"] == f"{instance}.csv"] | ||
state = ising_solution["state"].item() | ||
state = eval(state) | ||
solution = {i + 1: state[i] for i in range(len(state))} | ||
|
||
with open(path_to_renumeration, "rb") as f: | ||
var_to_nums, nums_to_var = pickle.load(f) | ||
solutions_vars = {nums_to_var[k]: val for k, val in solution.items()} | ||
|
||
with open(path_to_lp, "rb") as f2: | ||
lp = pickle.load(f2) | ||
|
||
model = QuadraticAGV(lp) | ||
model.to_bqm_qubo_ising() | ||
sampleset = dimod.SampleSet.from_samples(solutions_vars, vartype=dimod.SPIN, energy=ising_solution["energy"].item()) | ||
decrypted_sapleset = model.interpreter(sampleset, "SPIN") | ||
decrypted_results = get_results(decrypted_sapleset, lp) | ||
print(decrypted_results) |