To test the Scikit-Learn server, first we need to generate a simple scikit-learn model using Python.
from sklearn import svm
from sklearn import datasets
from joblib import dump
clf = svm.SVC(gamma='scale')
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf.fit(X, y)
dump(clf, 'model.joblib')
Then, we can install and run the SKLearn Server using the generated model and test for prediction. Models can be on local filesystem, S3 compatible object storage, Azure Blob Storage, or Google Cloud Storage.
# we should indicate the directory containing the model file (model.joblib) by --model_dir
python -m sklearnserver --model_dir ./ --model_name svm
We can also use the inbuilt sklearn support for sample datasets and do some simple predictions
from sklearn import datasets
import requests
iris = datasets.load_iris()
X, y = iris.data, iris.target
formData = {
'instances': X[0:1].tolist()
}
res = requests.post('http://localhost:8080/v1/models/svm:predict', json=formData)
print(res)
print(res.text)
- Your ~/.kube/config should point to a cluster with KFServing installed.
- Your cluster's Istio Ingress gateway must be network accessible.
Apply the CRD
kubectl apply -f sklearn.yaml
Expected Output
$ inferenceservice.serving.kubeflow.org/sklearn-iris created
The first step is to determine the ingress IP and ports and set INGRESS_HOST
and INGRESS_PORT
MODEL_NAME=sklearn-iris
INPUT_PATH=@./iris-input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH
Expected Output
* Trying 169.63.251.68...
* TCP_NODELAY set
* Connected to 169.63.251.68 (169.63.251.68) port 80 (#0)
> POST /models/sklearn-iris:predict HTTP/1.1
> Host: sklearn-iris.default.svc.cluster.local
> User-Agent: curl/7.60.0
> Accept: */*
> Content-Length: 76
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 76 out of 76 bytes
< HTTP/1.1 200 OK
< content-length: 23
< content-type: application/json; charset=UTF-8
< date: Mon, 20 May 2019 20:49:02 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 1943
<
* Connection #0 to host 169.63.251.68 left intact
{"predictions": [1, 1]}
Since the KFServing SKLearnServer image is built from a specific version of scikit-learn
pip package, sometimes it might not be compatible with the pickled model
you saved from your training environment, however you can build your own SKLearnServer image following these instructions.
To use your SKLearnServer image:
- Add the image to the KFServing configmap
"sklearn": {
"image": "<your-dockerhub-id>/kfserving/sklearnserver",
},
- Specify the
runtimeVersion
onInferenceService
spec
apiVersion: "serving.kubeflow.org/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
spec:
predictor:
sklearn:
storageUri: "gs://kfserving-samples/models/sklearn/iris"
runtimeVersion: X.X.X