欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)
题目数据保证答案符合 32 位带符号整数范围。
提示:
0 <= s.length, t.length <= 1000 s 和 t 由英文字母组成
这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用KMP。
这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。
但相对于刚讲过的动态规划:392.判断子序列就有难度了,这道题目双指针法可就做不了了,来看看动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
- 确定递推公式
这一类问题,基本是要分析两种情况
- s[i - 1] 与 t[j - 1]相等
- s[i - 1] 与 t[j - 1] 不相等
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
这里可能有同学不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。
例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j];
- dp数组如何初始化
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][0] 和dp[0][j]是一定要初始化的。
每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。
dp[i][0]表示什么呢?
dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。
再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
那么dp[0][j]一定都是0,s如论如何也变成不了t。
最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。
dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。
初始化分析完毕,代码如下:
vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。
- 确定遍历顺序
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
代码如下:
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
- 举例推导dp数组
以s:"baegg",t:"bag"为例,推导dp数组状态如下:
如果写出来的代码怎么改都通过不了,不妨把dp数组打印出来,看一看,是不是这样的。
动规五部曲分析完毕,代码如下:
class Solution {
public:
int numDistinct(string s, string t) {
vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1));
for (int i = 0; i < s.size(); i++) dp[i][0] = 1;
for (int j = 1; j < t.size(); j++) dp[0][j] = 0;
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[s.size()][t.size()];
}
};
Java:
class Solution {
public int numDistinct(String s, String t) {
int[][] dp = new int[s.length() + 1][t.length() + 1];
for (int i = 0; i < s.length() + 1; i++) {
dp[i][0] = 1;
}
for (int i = 1; i < s.length() + 1; i++) {
for (int j = 1; j < t.length() + 1; j++) {
if (s.charAt(i - 1) == t.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
}else{
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[s.length()][t.length()];
}
}
Python:
class Solution:
def numDistinct(self, s: str, t: str) -> int:
dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
for i in range(len(s)):
dp[i][0] = 1
for j in range(1, len(t)):
dp[0][j] = 0
for i in range(1, len(s)+1):
for j in range(1, len(t)+1):
if s[i-1] == t[j-1]:
dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
else:
dp[i][j] = dp[i-1][j]
return dp[-1][-1]
Python3:
class SolutionDP2:
"""
既然dp[i]只用到dp[i - 1]的状态,
我们可以通过缓存dp[i - 1]的状态来对dp进行压缩,
减少空间复杂度。
(原理等同同于滚动数组)
"""
def numDistinct(self, s: str, t: str) -> int:
n1, n2 = len(s), len(t)
if n1 < n2:
return 0
dp = [0 for _ in range(n2 + 1)]
dp[0] = 1
for i in range(1, n1 + 1):
# 必须深拷贝
# 不然prev[i]和dp[i]是同一个地址的引用
prev = dp.copy()
# 剪枝,保证s的长度大于等于t
# 因为对于任意i,i > n1, dp[i] = 0
# 没必要跟新状态。
end = i if i < n2 else n2
for j in range(1, end + 1):
if s[i - 1] == t[j - 1]:
dp[j] = prev[j - 1] + prev[j]
else:
dp[j] = prev[j]
return dp[-1]
Go:
func numDistinct(s string, t string) int {
dp:= make([][]int,len(s)+1)
for i:=0;i<len(dp);i++{
dp[i] = make([]int,len(t)+1)
}
// 初始化
for i:=0;i<len(dp);i++{
dp[i][0] = 1
}
// dp[0][j] 为 0,默认值,因此不需要初始化
for i:=1;i<len(dp);i++{
for j:=1;j<len(dp[i]);j++{
if s[i-1] == t[j-1]{
dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
}else{
dp[i][j] = dp[i-1][j]
}
}
}
return dp[len(dp)-1][len(dp[0])-1]
}
Javascript:
const numDistinct = (s, t) => {
let dp = Array.from(Array(s.length + 1), () => Array(t.length +1).fill(0));
for(let i = 0; i <=s.length; i++) {
dp[i][0] = 1;
}
for(let i = 1; i <= s.length; i++) {
for(let j = 1; j<= t.length; j++) {
if(s[i-1] === t[j-1]) {
dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
} else {
dp[i][j] = dp[i-1][j]
}
}
}
return dp[s.length][t.length];
};